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A primeval representation of the hydrogen atom

This beautiful mandala is displayed at the temple court of Paro Dzong, the

monumental fortress of Western Bhutan [1]. It may be a primeval representation

of the hydrogen atom: the outer red circle conveys a meaning of strength, which

may correspond to the electron binding energy. The inner and spherical nucleus is

surrounded by large, osculating circles that represent the motion of the electron: the

circles not only occupy a finite region of space (as in Fig. 6.4) but are also associated

with trajectories of different energies (colors) and/or with radiation transitions of

different colors (wavelengths). At the center, within the nucleus, there are three

quarks. Reality can display charming coincidences with religious/artistic creations.

See also figure at the end of the chapters.
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Foreword

Quantum mechanics is undergoing a revolution. Not that its substance is changing,

but major developments are placing it in the focus of renewed attention, both

within the physics community and among the scientifically interested public. First,

wonderfully clever table-top experiments involving the manipulation of single

photons, atomic particles and molecules are revealing in an ever-more convincing

manner theoretically predicted facts about the counterintuitive and sometimes

“spooky” behavior of quantum systems and have led to a renewed interest in the

formulation of a strictly physics-based (non-philosophical) foundation of quantum

mechanics. Second, the prospect of building quantum computers with enormously

increased capacity of information-processing is developing great interest and high

hopes in the engineering and computer science communities. Third, condensed

matter physics and nanotechnology are narrowing down the gap between classical

and quantum domains in the practical realm. These developments demand more

and better training in quantum mechanics at the universities, with emphasis on a

clear and solid understanding of the subject. Cookbook-style learning of quantum

mechanics, in which equations and methods for their solution are memorized rather

than understood, may help the students to solve some standard problems and pass

multiple-choice tests, but it will not enable them to break new ground in real

life as physicists. On the other hand, some “Mickey Mouse courses” on quantum

mechanics for engineers, biologists and computer analysts may give an idea of what

this discipline is about, but too often the student ends up with an incorrect picture or,

at best, a bunch of uncritical, blind beliefs in linear algebra wizardry. The present

book represents a fresh start toward helping achieve a deep understanding of the

subject. It presents the material with utmost rigor and will require ironclad, old-

fashioned discipline from the students in their study.

Too frequently, in today’s universities, we hear the demand that the courses

offered be “entertaining,” in response to which some departmental brochures declare

that “physics is fun”! Studying physics requires many hours of hard work, deep

concentration, long discussions with buddies, periodic consultation with faculty,

and tough self-discipline. But it can, and should, become a passion: the passion

to achieve a deep understanding of how Nature works. This understanding usually
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viii Foreword

comes in discrete steps, and students will experience such a step-wise mode of

progress as they work their way diligently through the present book. The satisfaction

of having successfully mastered each step will then indeed feel very rewarding!

The “amount of information per unit surface” of text is very high in this book –

its pages cover all the important aspects of present-day quantum mechanics, from

the one-dimensional harmonic oscillator to teleportation. Starting from a few basic

principles and concentrating on the fundamental behavior of quantum systems

(particles) with only a few degrees of freedom (low-dimension Hilbert space) allows

the author to plunge right into the core of quantum mechanics. It also makes it

possible to introduce first the Heisenberg matrix approach – in my opinion, a

pedagogically rewarding method that helps sharpen the mental and mathematical

tools needed in this discipline right at the beginning. For instance, solving the

quantization of the harmonic oscillator without the recourse of a differential

equation is illuminating and teaches dexterity in handling the vector and matrix

representation of states and operators, respectively.

Daniel Bes is a child of the Copenhagen school. Honed in one of the cradles of

quantum mechanics by Åge Bohr, son of the great master, and by Ben Mottelson,

he developed an unusually acute understanding of the subject, which after years of

maturing he now has projected into a book – now in its third edition. The emphasis

given throughout the text to the fundamental role and meaning of the measurement

process will help the student overcome the initial reaction to the counterintuitive

aspects of quantum mechanics and better comprehend the physical meaning and

properties of Schrödinger’s wave function. The human brain is an eminently

classical system (albeit the most complex one in the Universe as we know it), whose

phylo- and ontogenetic evolution are driven by classical interactions between organ-

ism and the environment, and which processes pragmatic information, definable

only in the classical domain. It is therefore only natural that when this classical brain

looks into the microscopic domain, using human-designed instruments which must

translate quantum happenings into classical, microscopically observable effects,

strange things with unfamiliar behavior may appear in our mental images! And it is

only natural that, thus, the observer’s way of thinking and instruments should not be

left completely outside the fundamental framework of quantum physics! Bes’ book

helps to recognize, understand and accept quantum “paradoxes” not as such but as

the facts of “Nature under human observation.” Once this acceptance has settled in

the mind, the student will have developed a true intuition or, as the author likes to

call it, a “feeling” for quantum mechanics.

Chapter 2 contains the real foundation on which quantum mechanics is built;

it thus deserves, in my opinion, repeated readings – not just at the beginning

but after each subsequent chapter. With the exception of the discussion of two

additional principles, the rest of the book describes the mathematical formulations

of quantum mechanics (both the Heisenberg matrix mechanics, most suitable for

the treatment of low-dimension state vectors, and Schrödinger’s wave mechanics

for continuous variables) as well as many up-to-date applications. The examples

cover a wide variety of topics, from the simple harmonic oscillator mentioned

above to subjects in condensed matter physics, nuclear physics, electrodynamics and
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quantum computing. It is interesting to note, regarding the latter, that the concept of

qubit appears in a most natural way in the middle of the book, almost in passing,

well before the essence of quantum computing is discussed towards the end. Of

particular help are the carefully thought-out problems at the end of each chapter, as

well as the occasional listings of “common misconceptions.” A most welcome touch

is the inclusion of a final chapter on the history of theoretical quantum mechanics –

indeed, it is regrettable that so little attention is given to it in university physics

curricula: much additional understanding can be gained from learning how ideas

have matured (or failed) during the historical development of a given discipline!

Let me conclude with a personal note. I have known Daniel Bes for almost

70 years. As a matter of fact, I had known of him even before we met in person:

our fathers were “commuter–train acquaintances” in Buenos Aires, and both served

on the PTA of the primary school that Daniel and I attended (in different grades).

Daniel and I were physics students at the University of Buenos Aires (again,

at different levels), then on the physics faculty, and years later, visiting staff

members of Los Alamos National Laboratory. We always were friends, but we never

worked together – Daniel was a theoretician almost from the beginning, whereas

I started as a cosmic-ray and elementary-particle experimentalist (see Fig. 2.7).

Interestingly, reading the first edition of this book has motivated me a few years

ago to expand my current interest in foundations of information theory and work

towards developing yet another interpretation of quantum mechanics (which I call

“information-based”)!

It gives me a particular pleasure that after so many decades and despite residing

at opposite ends of the American continent, we have become professionally

“entangled” through this wonderful textbook!

Fairbanks Juan G. Roederer
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Preface to the Third Edition

The preparation of another edition of a text on quantum mechanics is always a

challenge. On the one hand, one may decide to cover some previously omitted

topics, after gauging again their relevance. On the other hand, the fast evolution

of the subject implies the need to incorporate not only new experimental facts

and theoretical developments but also new concepts in the description of nature.

Therefore, self-imposed constraints about the overall length of the book become

strained. This is a good motivation for a revision. As a consequence, few items have

been omitted and many more included, even some which are usually not discussed

in introductory texts (like the breakdown of symmetries).

The book consists of two main parts. The first one displays the following

organization:

� As in the previous editions, the basic principles of quantum mechanics are

introduced within the framework of Hilbert spaces. Their empirical consequences

(both thought and real experiments) and theoretical implications (uncertainty

relations, no-cloning theorem) are discussed.

� The Heisenberg matrix realization of the basic principles allows us to solve the

two-state system, the harmonic oscillator and a combination of the two, the

Jaynes–Cummings model. The Schrödinger realization covers conventional sub-

jects, including both bound and scattering examples. The contrast between these

two realizations underscores the appearance of the most important quantum

observable, the spin.

� The description of many-body systems requires the distinction between fermions

and bosons and the indistinguishability among each of the two types of particles.

As a consequence of these two features, there appears another formulation of

quantum mechanics, the so-called second quantization.

Most of the many-body examples that are presented – in fact, most of the

many-body systems existing in nature – are treated within the framework of

independent degrees of freedom. This is true both for fermion cases (atoms,

nuclei, molecules, metals, band structures in crystals, etc.) and for boson systems

xi



xii Preface to the Third Edition

(Bose–Einstein condensates). One explicit exception is outlined (fractional Hall

effect).

� Perturbation theory makes it possible to improve over-simplified approximations.

Hartree–Fock procedures allow us to optimize these zero-order descriptions.

The Born–Oppenheimer approximation is an essential tool in the treatment of

molecules.

� The time principle. Time evolutions are calculated both exactly (spin systems)

and perturbatively. The main motivation for the creation of quantum mechanics

was to explain the stability of electron orbits in atomic hydrogen. Therefore,

a brief introduction to Quantum Electrodynamics is presented so that this

formalism can then be used to verify the extent to which this explanation has

been accomplished by the formalism.

� Symmetry properties under transformations (translations, rotations, parity,

exchange, etc.) are essential tools to obtain solutions to problems displaying

such symmetries. However, the descriptions of many relevant systems involve

the breaking of some symmetries, as exemplified by the BCS theory of

superconductivity. The restoration of such symmetries is made through the

introduction of collective variables.

� Our everyday life has been altered in an essential way through technologies based

on quantum properties, the most conspicuous cases being the transistor and the

laser. Quantum dots, scanning tunneling microscope, magnetic resonance imag-

ing and Josephson junctions are also described in the corresponding chapters.

� Eigenstates of the position operators are normalized through the introduction of

the Dirac delta function. They lead to the notion of propagators and to the path-

integral formulation of quantum mechanics.

The second part of the text is based on the concept of entanglement, which is

the superposition principle applied to two or more systems. The following items are

included:

� Even more counterintuitive consequences of quantum mechanics appear in exper-

iments involving the entanglement of two particles. Technological improvements

have allowed the experimental verifications of such consequences.

� The EPR paper (1935) pointed at inconsistencies between experiments involving

two entangled particles separated by superluminal distances, the locality princi-

ple and the predictions of quantum mechanics. These inconsistencies lead to the

introduction of additional hidden mechanisms. In 1964, J. Bell proved that any

local mechanism implied correlations that were violated by quantum mechanics.

Experiments verified the quantum predictions. Nature is non-local.

� Quantum information theory concerns the possible use of quantum superposi-

tions inherent to quantum bits (qubits), which carry much more information than

classical bits. This program has succeeded in problems concerning cryptography

and teleportation. However, it is presently stalling on problems of quantum

computation, due to the inherent fragility of superposed states, which are

destroyed through interactions with the environment (decoherence).
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� Decoherence also allows us to explain the coexistence of microsystems described

by quantum mechanics and macrosystems obeying Newton’s laws. In fact,

macrosystems emerge from the quantum substrate as a consequence of inter-

actions with the environment. A new interpretation of quantum measurements

appears within a consistent scheme.

Finally, a brief history of quantum mechanics is presented. Quantum mechanics

emerges as an animated subject under permanent, albeit discontinuous, evolution.

Buenos Aires Daniel R. Bes
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Excerpts from the Preface to the First Edition

This text follows the tradition of starting an exposition of quantum mechanics with

the presentation of the basic principles. This approach is logically pleasing and it is

easy for students to comprehend. Paul Dirac, Richard Feynman and, more recently,

Julian Schwinger have all written texts which are epitomes of this approach.

This approach also pays dividends through the natural appearance of the most

quantum of all operators: the spin. In addition to its intrinsic conceptual value, spin

allows us to simplify discussions on fundamental quantum phenomena like interfer-

ence and entanglement, on time dependence (as in nuclear magnetic resonance) and

on applications of quantum mechanics in the field of quantum information.

Any presentation of material from many different branches of physics requires

the assistance of experts in the respective fields. I am most indebted to my colleagues

and friends Ben Bayman, Horacio Ceva, Osvaldo Civitarese, Roberto Liotta, Juan

Pablo Paz, Alberto Pignotti, Juan Roederer, Marcos Saraceno, Norberto Scoccola

and Guillermo Zemba for corrections and/or suggestions. However, none of the

remaining mistakes can be attributed to them.

My training as a physicist owes very much to Åge Bohr and Ben Mottelson of

Niels Bohr Institutet and NORDITA (Copenhagen). During the 1950s Niels Bohr,

in his long-standing tradition of receiving visitors from all over the world, used

his institute as an open place where physicists from East and West could work

together and understand each other. From 1956 to 1959, I was there as a young

representative of the South. My wife and I met Margrethe and Niels Bohr at their

home in Carlsberg. I remember gathering there with other visitors listening to Bohr’s

profound and humorous conversation. He was a kind of father figure, complete with

a pipe that would go out innumerable times while he was talking. Years later I

became a frequent visitor to the Danish institute, but after 1962 Bohr was no longer

there.

My wife Gladys carried the greatest burden while I was writing this book. It

must have been difficult to be married to a man who was mentally absent for the

better part of almost 2 years. I owe her much more than a mere acknowledgment,

because she never gave up in her attempts to change this situation (as she never did

on many other occasions in our life together). My three sons, David, Martin and

xv
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Juan, have been a permanent source of strength and help. They were able to convey

their encouragement even from distant places. This is also true of Leo, Flavia and

Elena, and of our two granddaughters, Carla and Lara.

My dog Mateo helped me with his demands for a walk whenever I spent too

many hours sitting in front of the monitor. He does not care about Schrödinger’s

cats.

Buenos Aires, Daniel R. Bes

January 2004

To the list of friends and colleagues thanked in the previous excerpts – many

of whom continued to help me for the second and third editions – I would like to

add the names of Roberto De Luca, Alejandro Hnilo, Dario Mitnik and Augusto

Roncaglia.

My new grandson Tomas was most welcomed in 2011.
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Chapter 1

Introduction

The construction of classical physics started at the beginning of the seventeenth

century. By the end of the nineteenth century, the building appeared to have been

completed: the mechanics of Galileo Galilei and of Isaac Newton, the electromag-

netism of Michael Faraday and James Maxwell, and the thermodynamics of Ludwig

Boltzmann and Hermann Helmholtz were by then well established, from both the

theoretical and the experimental points of view. The edifice was truly completed

when Albert Einstein developed the special and the general theories of relativity, in

the early twentieth century.

Classical physics deals with the trajectory of particles (falling bodies, motion

of planets around the sun) or with the propagation of waves (light waves, sound

waves). The construction of this edifice required intuition to be abandoned in favor

of a formalism, i.e., a precise treatment that predicts the evolution of the world

through mathematical equations. Classical physics has a deterministic character.

The existence of a physical reality, independent of the observer, is an implicitly

accepted dogma.

Cracks in this conception appeared around the beginning of the last century. Light

waves not only appeared to be absorbed and emitted in lumps (black-body radiation)

[2], but turned out to behave completely like particles (photoelectric and Compton

effects [3, 4]). Experiments with electrons displayed diffraction patterns that had

up to then been seen as characteristic of waves [5]. However, the most disturbing

discovery was that an atom consists of a positively charged, small, heavy nucleus,

surrounded by negatively charged light electrons [6]. According to classical physics,

matter should collapse in a fraction of a second. Nor was it understood why atoms

emitted light of certain wavelengths only, similar to an organ pipe that produces

sounds at certain well-defined frequencies [7].

In 1913 Niels Bohr was able to explain both the stability of the hydrogen atom

and the existence of discrete energy levels by means of a partial rejection of classical

mechanics and electromagnetism [8]. However, this model was largely a patch.

Bohr himself assumed the role of leader in the quest for an adequate formalism.

In 1925 Werner Heisenberg alone [9] and, subsequently, in collaboration with

Max Born and Pascual Jordan [10] developed a quantum mechanical formalism
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2 1 Introduction

in which the classical variables of position and momentum were represented by

(non-commuting) matrices. Also in 1925, Dirac introduced the idea that physical

quantities are represented by operators (of which Heisenberg’s matrices are just one

representation) and physical states by vectors in abstract Hilbert spaces [11]. In 1926

Erwin Schrödinger produced the differential formalism of quantum mechanics, an

alternative approach based on the differential equations that bear his name [12].

Since the presentation of the Heisenberg and Schrödinger formulations1 is at least

twice as difficult as the introduction of a single one, a relatively large number of un-

dergraduate quantum mechanics textbooks confine themselves to a discussion of the

Schrödinger realization. The present author contends that such a presentation of

quantum mechanics is conceptually misleading, since it leads to the impression that

quantum mechanics is another branch of classical wave physics. It is not. Let me

quote Schwinger’s opinion [14].

I have never thought that this simple wave approach [de Broglie waves and the Schrödinger

equation] was acceptable as a general basis for the whole subject.

This approach of presenting both Heisenberg and Schrödinger formulations

also pays dividends through the natural appearance of the most quantum of all

operators: the spin. In addition to its intrinsic conceptual value, spin allows us

to simplify discussions on fundamental quantum phenomena like interference and

entanglement, on time dependence (as in nuclear magnetic resonance), and on

applications of quantum mechanics in the field of quantum information.

The uncertainty of a presentation may be reduced by increasing the amount of

detail, and vice versa. Bohr used to say that accuracy and clarity were complemen-

tary concepts (Sect. 15.5.1). Thus, a short and clear statement can never be precise.

We may go further and state that the product of the indeterminacy inherent in any

message (� ) times the amount of details (��) is always larger or equal than a

constant k (�  � �� > k). The quality of textbooks should be measured by how

close this product is to k, rather than by their (isolated) clarity or completeness. It

is up to the reader to judge how closely we have been able to approach the value k.

If we have achieved our aim, a more rigorous and sufficiently simple presentation

of quantum mechanics will be available to undergraduate and first-year graduate

students.

This book should be accessible to students who are reasonably proficient in linear

algebra, calculus, classical mechanics and electromagnetism. Previous exposure to

other mathematical and/or physics courses constitutes an advantage, but it is by no

means a sine qua non.

1There also exist other formulations of quantum mechanics. All of them yield the same result for

the same problem, but one of them may be easier to apply or may provide a better insight in a

given situation. The list of quantum formalisms includes the path-integral (Feynman), phase space

(Wigner), density matrix, second quantization, variational, pilot wave (Bohm) and the Hamilton–

Jacobi formulations [13]. In the present text the second quantization formalism is presented in

Sect. 7.8�, the density matrix in Sect. 14.4 and the path integral in Sect. 11.3� .
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The reader will be confronted in Chap. 2 with a condensed presentation of

Hilbert spaces and Hermitian and unitary operators. This early presentation implies

the risk that the reader might receive the (erroneous) impression that the book is

mathematically oriented, and/or that he or she will be taught mathematics instead

of physics. However, Sects. 2.7* and 2.8* include practically all the mathematical

tools that are used in the text (outside of elementary linear algebra and calculus,

both being prerequisites). Consistent with this “physics” approach, the results

are generally starkly presented, with few detailed derivations. It is the author’s

contention that these derivations do not significantly contribute to filling the gap

between merely recognizing quantum mechanical expressions and learning how

to “do” and “feel” quantum mechanics. This last process is greatly facilitated by

solving the problems at the end of each chapter (with answers provided at the end of

the book). The instructor should act as an “answerer” and “motivator” of students’

questions and not merely as a “problem solver on the blackboard,” to facilitate the

filling of the aforementioned gap.

Sections labeled by a dagger display a somewhat more advanced degree of

difficulty. The student may leave them for a second reading, unless he or she

is specially interested on the subject. An asterisk indicates the mathematical

background of material that has been previously presented.

Although the text has been conceived as a whole unit, it also allows for different

shorter readings:

• If the aim is to operate with the formalism within some particular branch of

microphysics (solid state, molecular, atomic, nuclear, etc.), one can progress

straightforwardly from Chap. 2 to Chap. 9, probably leaving Chaps. 10 and 11

for a second reading.

• Readers more interested in recent advances on quantum theory and on applica-

tions to quantum information may skip Chaps. 7, 8, 10, and 11, to get to Chaps.

12–14 (concerning entanglement and its consequences).

• A reading with more emphasis on conceptual aspects of quantum mechanics

should proceed through Chaps. 2–7, 9, 11, 12 and 14.

A brief history of quantum mechanics is presented to acquaint the newcomer with

the development of one of the most spectacular adventures of the human mind to

date (Chap. 15). It also intends to convey the feeling that, far from being finished,

this enterprise is continuously being updated.



Chapter 2

The Principles of Quantum Mechanics

This introduction describes the mathematical tools used in the formulation of quan-

tum mechanics and the connections between the physical world and mathematical

formalism. Such links constitute the fundamental principles of quantum mechanics.1

They are valid for every specific realization of these principles. Subsequently, their

most immediate consequences are presented. Frequent shortcomings existing in

many introductions can thus be avoided.2

2.1 Classical Physics

If our vision of a moving object is interrupted by a large billboard and is resumed

after the reappearance of the object, we naturally assume that it has traveled all the

way behind the billboard (Fig. 2.1). This is implied in the notion of physical reality,

one of the postulates in the famous EPR paradox written by Einstein in collaboration

with Boris Podolsky and Nathan Rosen [16]: “If, without in any way disturbing a

system, we can predict with certainty the value of a physical quantity, then there is

an element of physical reality corresponding to this physical quantity.”

This classical framework relies on the acceptance of some preconceptions, most

notably the existence of the continuous functions of time called trajectories x.t/ [or

x.t/ and p.t/, where p is the momentum of the particle]. A trajectory describes the

1Presentations of quantum mechanics resting upon few basic principles start with [15], which

remains a cornerstone on the subject.
2In many presentations it is assumed that the solution of any wave equation for a free particle is the

plane wave exp[i.kx � !t/]. Subsequently, the operators corresponding to momentum and energy

are manipulated to obtain an equation yielding the plane wave as the solution. This procedure

is not very satisfactory because (a) plane waves display some difficulties as wave functions, not

being square integrable; (b) quantum mechanics appears to be based on arguments that are only

valid within a differential formulation; (c) it leads to the misconception that the position wave

function is the only way to describe quantum states.

D. Bes, Quantum Mechanics, Graduate Texts in Physics,
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6 2 The Principles of Quantum Mechanics

Fig. 2.1 The trajectory of the car behind the billboard as an element of physical reality

motion of a point particle, an abstract concept that does not exist in nature. The

concept of trajectory provides an important link between the physical world and its

mathematical description. For instance, it allows us to formulate Newton’s second

law,

F.x/ D M d2 x

d t2
: (2.1)

This equation of motion predicts the evolution of the system in a continuous and

deterministic way. Since this is a second order equation, the state of a system is

specified if the position and the momentum of each particle are known at any one

time.

Maxwell’s theory of electromagnetism is also part of classical physics. It is

characterized in terms of fields, which must be specified at every point in space and

time. Unlike particles, fields can be made as small as desired. Electromagnetism is

also a deterministic theory.

Essential assumptions in classical physics about both particles and fields are:

• The possibility of non-disturbing measurements

• There is no limit to the accuracy of the values assigned to physical properties

In fact, there is no distinction between physical properties and the numerical

values they assume. Schwinger characterizes classical physics as “the idealiza-

tion of non-disturbing measurements and the corresponding foundations of the

mathematical representation, the consequent identification of physical properties

with numbers, because nothing stands in the way of the continual assignment of

numerical values to these physical properties” [14], p. 11.

Such “obvious” assumptions are no longer valid in quantum mechanics. There-

fore, other links have to be created between the physical world and mathematical

formalism.

2.2 Mathematical Framework of Quantum Mechanics

According to classical electromagnetism, an inhomogeneous magnetic field B

directed along an axis (for instance, the z-axis) should bend the trajectory of particles

perpendicular to this axis. The amount of bending of these tiny magnets will be

proportional to the projection �z of their magnetic moment �. Therefore, if the beam

is unpolarized (all values .�j�j � �z � j�j/ are present), particles are classically

expected to impact over a continuous region of a screen. However, it was shown in

1921 by Otto Stern and Walther Gerlach that silver atoms distribute themselves over
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each of two lines. Since the magnetic moment is proportional to an intrinsic angular

momentum called spin (�/ S), it is apparent that only two projections of the spin

are allowed by nature [17] (for more details see Sect. 5.2.1).

Note, however, that the fact that a physical quantity may have only two values

does not require by itself to abandon classical physics. For instance, your PC is

made up from bits, i.e. classical systems that may be in one of two states.3 As befits

classical systems, their state is not altered upon measurement (thus contributing to

the stability of classical computers).

A different description is provided by vectors on a plane. While the sum of the

two states of a bit does not make sense, the addition of two vectors on a plane

is always another vector. Any vector ‰ may be written as a linear combination

(Fig. 2.2, top)

‰ D cxϕx C cyϕy ; (2.2)

where cx ; cy are amplitudes and ϕx,ϕy are two perpendicular vectors of module one.

This last property is expressed as hϕi jϕj i D ıij , which is a particular case of the

scalar product

h‰j‰0i D c�
x c0

x C c�
y c0

y : (2.3)

In quantum mechanics we allow complex values of the amplitudes. Thus, the

definition of normalized vectors becomes

h‰j‰i D jcxj2 C jcy j2 D 1 : (2.4)

Another crucial property of the chosen vector space is that the same vector ‰ may

be expressed as a combination of other sets of perpendicular vectors χx , χy along

rotated axes (Fig. 2.2, bottom)

‰ D bxχx C byχy ;

1 D jbxj2 C jby j2 : (2.5)

This two-dimensional space may be easily generalized to spaces with any number

of dimensions, called Hilbert spaces. Here we outline some properties that are

specially relevant from the point of view of quantum mechanics. This overview

is expanded in Sect. 2.7*.

• As in (2.2), any vector ‰ may be expressed as a linear combination of

orthonormal basis states ϕi :

‰ D
X

i

ci ϕi I ci D hϕi j‰i � hi j‰i ; (2.6)

3Although the bits in your PC function on the basis of quantum processes (for instance,

semiconductivity) they are not used in PCs as quantum systems.
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ψ = cxϕx +cyϕy = bxχx +byχy

by

bx

cx

cy

ψ

ψ

χy χx

ϕy

ϕx

Fig. 2.2 The same vector ‰ can be expressed as the sum of two different systems of basis vectors

ıij D hϕi jϕj i: (2.7)

• Linear operators OQ act on vectors belonging to a Hilbert space, transforming one

vector into another: OQ ‰ D ˆ. These operators obey a non-commutative algebra,

as shown in Sect. 2.7* for the case of rotations in three dimensions. We define the

commutation operation through the symbol

Œ OQ; OR� � OQ OR � OR OQ ; (2.8)

where the order of application of the operators is from right to left ( OQ OR ‰ D
OQ . OR‰/.
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• If the vector OQϕi is proportional to ϕi , then ϕi is said to be an eigenvector of the

operator OQ. The constant of proportionality qi is called the eigenvalue

OQ ϕi D qi ϕi : (2.9)

• The scalar product between a vector OQ‰a and another vector ‰b is called the

matrix element of the operator OQ between the vectors ‰a and ‰b , and it is

symbolically represented4 as

h‰bj OQ‰ai � h‰bjQj‰ai � hbjQjai : (2.10)

The matrix element is said to be diagonal if the same vector appears on both sides

of the matrix element .h‰jQj‰i/. The matrix elements of the unit operator are

the scalar products h‰aj‰bi � hajbi D h‰bj‰ai�. The norm h‰j‰i1=2 is a real,

positive number.

• The Hermitian conjugate OQC of an operator OQ is defined through the relation

hϕbjQCjϕai D hϕajQjϕbi� : (2.11)

The operator is said to be Hermitian if

OQC D OQ : (2.12)

The eigenvalues qi of a Hermitian operator are real numbers and the correspond-

ing eigenvectors ϕi constitute a set of basis vectors.

• The matrixU with matrix elements Uab is said to be unitary if the matrix elements

of the inverse are given by
.U�1/ab D U�

ba : (2.13)

Unitary transformations preserve the norm of the vectors and relate two sets of

basis states (see Fig. 2.2)

χa D
X

i

Uai ϕi : (2.14)

These abstract mathematical tools (vectors, Hermitian operators and unitary

transformations) may be represented through concrete, well-known mathematical

objects, such as column vectors and matrices (Chap. 3), or by means of functions of

the coordinate and differential operators (Chap. 4).

2.3 Basic Principles of Quantum Mechanics

In this section we present the quantum mechanical relation between the physical

world and the mathematical tools that have been outlined in the previous section.

It is formulated through the following quantum principles:

4The symbols jai and haj have been called by Dirac ket and bra, respectively [15].
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Principle 1. The state of the system5 is completely described by a vector ‰ – the

state vector or state function – belonging to a Hilbert space.

The state vector ‰ constitutes an unprecedented way of describing nature. It is an

abstract entity that carries information about the results of possible measurements.

It replaces the classical concepts of position and momentum in the description of

physical systems.

The state vector may be multiplied by an arbitrary complex constant and

still represent the same physical state. Even if we enforce the requirement of

normalization, an arbitrary overall phase is left, which has no physical significance.

This is not the case for the relative phase of the terms in the sum ca‰a C cb‰b ,

which encodes important physical information.

The fact that the sum of two state vectors is another state vector belonging to

the same Hilbert space, i.e. describing another state of the system, is usually called

the superposition principle. The sum ca‰a C cb‰b must not be interpreted in the

sense that we have a conglomerate of systems in which some of them are in the

state ‰a and some in the state ‰b , but rather that the system is simultaneously in

both component states. This statement is also valid when the system is reduced to a

single particle.

The weirdness of quantum mechanics can be traced back to this superposition. It

is fundamentally different from any property of classical particles, which are never

found as a linear combination of states associated with different trajectories: a tossed

coin may fall as a head or a tail, but not as a superposition of both.

By establishing that the state vector completely describes the state of the system,

Principle 1 assumes that there is no way of obtaining information about the system,

unless this information is already present in the state vector.

The state vector may only concern some degree(s) of freedom of the physical

system, such as position and momentum of a particle and the spin.

The relation between the physical world and states ‰ is more subtle than the

classical relation with position and momentum x; p. It relies on principles 2 and 3.

Principle 2. To every physical quantity there corresponds a single linear operator.

In particular, the operators Ox and Op, corresponding to the coordinate and momen-

tum of a particle, fulfil the commutation relation

Œ Ox; Op� D i„ ; (2.15)

The commutator is defined in (2.8) and „ is Planck’s constant h divided by 2�

(Table A.1).6 The constant „ provides an estimate of the domain in which quantum

5This notion of the state of a system is close to the one appearing in classical thermodynamics. It

is applied there to many-body systems in which the path of the constituents cannot be traced in

practice (for instance, molecules in a gas). However, in quantum mechanics the concept of state is

applied even in the case of a single particle.
6This commutation relation is related to the classical Poisson bracket (Sect. 2.6.3). It has been

derived from relativistic invariance [18], using the fact that spatial translations [generated by Op,

see (4.10)] do not commute with Lorentz transformations even in the limit c ! 1.
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mechanics becomes relevant. It has the dimensions of classical action (energy �
time). Classical physics should be applicable to systems in which the action is much

larger than „.
This is also fundamentally different from classical physics, for which physical

properties are identified with (commuting) numbers (Sect. 2.1).

Since any classical physical quantity may be expressed as a function of coordi-

nate and momentum (Q D Q.x; p/), the replacement x ! Ox and p ! Op in the

classical expression Q.x; p/ yields the operator OQ D Q. Ox; Op/. The requirement of

hermiticity is usually sufficient to account for the non-commutativity of operators

[for instance, xp $ 1
2
. Ox Op C Op Ox/]. Thus, a one-to-one correspondence between

physical quantities or observables Q and operators OQ is established. However,

there are also purely quantum operators, such as the spin operators, that cannot

be obtained through such substitution.

The operator corresponding to the classical Hamilton function H.p; x/ is called

the Hamiltonian. For a conservative system

OH D 1

2M
Op2 C V. Ox/ ; (2.16)

where M is the mass of the particle and V is the potential.

Principle 3. The eigenvalues qi of an operator OQ constitute the possible results

of the measurements of the physical quantity Q. The probability7 of obtaining the

eigenvalue qi is the modulus squared jci j2 of the amplitude of the eigenvector ϕi in

the state vector ‰ representing the state of the system.

Since the results of measurements are real numbers, the operators representing

physical observables are restricted to be Hermitian (2.12) and (2.53). In particular,

the possible values of the energy Ei are obtained by solving the eigenvalue equation

OH ϕi D Ei ϕi : (2.17)

As in the case of classical mechanics, quantum mechanics may be applied to

very different systems, from single-particle and many-body systems to fields. Thus,

quantum mechanics constitutes a framework in which to develop physical theories,

rather than a physical theory by itself. A number of simple, typical, well-known

problems of a particle moving in a one-dimensional space are discussed in Chaps. 3

and 4.

It is almost as useful to state what the principles do not mean, as to say what they

do mean. In the following we list some common misconceptions regarding quantum

states [19]:

• “The state vector is similar to other fields present in the physical world.” It is

fundamentally different from the electric or magnetic fields in electromagnetic

7Notions of probability theory are given in Sect. 2.8*.
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waves, which carry momentum, energy, etc., and in which any externally caused

change propagates at a finite, medium-dependent speed. The state vector does

not interact with particles.

• “Energy eigenstates are the only allowed ones.” This misconception probably

arises from the generalized emphasis on the solution of the eigenvalue equation

(2.17) and from its similarity to the correct statement “Energy eigenvalues are

the only allowed energies.”

• “A state vector describes an ensemble of classical systems.” In the standard

Copenhagen interpretation, the state vector describes a single system.8 In none

of the acceptable statistical interpretations is the ensemble classical.

• “A state vector describes a single system averaged over some amount of time.”

The state vector describes a single system at a single instant.

The above three principles are sufficient for the treatment of static situations

involving a single particle. Two more principles, concerning many-body systems

and the time-evolution of states, are presented in Chaps. 7 and 9, respectively.

2.4 Measurement Process

2.4.1 The Concept of Measurement

In this section we specify some basic concepts involved in the process of measure-

ment.9

Two or more systems are in interaction if the presence of one leads to changes

in the other, and vice versa. Different initial conditions generally lead to different

changes, although this may not always be the case.

A measurement is a process in which a system is put in interaction with a piece

of apparatus. The apparatus determines the physical quantity or observable to be

measured (length, weight, etc.).

There are two important steps in a measurement. The first is the preparation of the

system to be measured, i.e. the determination of the initial state. Bohr’s definition

of the word “phenomenon” refers to “an observation obtained under specified

circumstances, including an account of the whole experimental arrangement”

[21], p. 64. This should be contrasted with the EPR definition of physical reality

(Sect. 2.1).

The second important step, also crucial in the case of quantum systems, is a

(macroscopic) change in the apparatus that should be perceptible by a cognitive

system. In many cases this change is produced by a detector at one end of the

8See Sect. 12.3.3.
9Many definitions included here are extracted from [20].
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Fig. 2.3 The change in the state vector due to the measurement

apparatus. The magnitude of the physical quantity has a value if the change can

be represented in numerical form.

For some systems the interaction with the apparatus does not produce a change

in the system or produces a change which is completely determined. This is the case

of classical systems (see Sect. 2.1). Our deeply ingrained notion of classical reality

has emerged as a consequence of the fact that many independent observers may

carry out measurements on the same system without disturbing it (and agree upon

the results). On the contrary, this can only be exceptionally achieved in quantum

measurements, where a change of the system is generally associated with a change

of the apparatus (see Sect. 2.4.2).

2.4.2 Quantum Measurements

The most fundamental difference between a classical and a quantum system is

that the latter cannot be measured without being irrevocably altered, no matter

how refined the measuring instruments are. This is a consequence of the principles

presented in Sect. 2.3.

Assume that the measurement of the physical quantity Q, performed on a system

in the state ‰ expanded as in (2.6), yields the result qj . If the same measurement

is repeated immediately afterwards, the same value qj should be obtained with

certainty. Thus, the measurement has changed the previous value of the coefficients

ci ! ci D ıij . In other words, as a result of the measurement, the system “jumps”

to an eigenstate of the physical quantity that is being measured (the reduction of the

state vector). The only exceptions occur when the initial state is already represented

by one of the eigenvectors.
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Given an initial state vector ‰, we do not know in general to which eigenstate

the system will jump. Only the probabilities, represented by jci j2, are determined

(Fig. 2.3). This identification of the probabilities is consistent with the following

facts:

• Their value is always positive.

• Their sum is 1 (if the state ‰ is normalized).

• The orthogonality requirement (2.7) ensures that the probability of obtaining

any eigenvalue qj ¤ qi vanishes, if the system is initially represented by an

eigenstate ϕi (see Table 2.1).

The fact that, given a state vector ‰, we can only predict the probability

jci j2 of obtaining eigenvalues qi constitutes an indeterminacy inherent to quantum

mechanics. Our knowledge about the system cannot be improved, for instance,

through a second measurement, since the state ‰ has been transformed into ϕi . The

coefficients ci are also called probability amplitudes. The concept of probability

implies that we must consider a large number of measurements performed on

identical systems, all of them prepared in the same initial state ‰.

If in the expansion (2.6) there is a subset of basis states ϕk with the same

eigenvalue qk D q, the probability of obtaining this eigenvalue is
P

k jckj2. The

system is projected after the measurement into the (normalized) state

‰0 D 1
p
P

k jckj2
X

k

ckϕk : (2.18)

So far we have accepted the reduction interpretation of the measurement process

without further discussion. This has been, historically, the path followed by most

physicists. However, we present one more discussion of the measurement problem

in Chap. 14.

The diagonal matrix element is also called the expectation value or mean value of

the operator OQ. It is given by the sum of the eigenvalues weighted by the probability

of obtaining them

h‰jQj‰i D
X

i

qi jci j2: (2.19)

The mean value does not need to be the result qi of any single measurement, but it

is the average value of all the results obtained through the measurement of identical

systems.

Measurements of expectation values of non-commuting operators yield the

relative phases of the amplitudes (see Sect. 2.6.2).

The uncertainty or standard deviation �Q in a given measurement is defined as

the square root of the average of the quadratic deviation

�Q D h‰j .Q � h‰jQj‰i/2 j‰i 1
2

D
�

h‰jQ2j‰i � h‰jQj‰i2
�

1
2 ; (2.20)
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where

h‰jQ2j‰i D
X

i

q2
i jci j2: (2.21)

We have postulated the existence of links between the physical world and math-

ematics that are different from those characterizing classical physics. In quantum

mechanics, physical quantities are related to (non-commuting) operators; the state

vectors are constructed through operations with these mathematical entities; the

feedback to the physical world is made by measurements that yield, as possible

results, the eigenvalues of the corresponding operators. An example of this two-way

connection between formalism and the physical world is the following: assume that

the system is constructed in a certain physical state, to which the state vector ‰ is

assigned. This assignment is tested by means of various probes, i.e. measurements

of observables Q, for which we may know the eigenvector ϕi and, therefore, the

probability jhi j‰ij2 of obtaining the eigenvalues qi .

This two-way relation between physical world and formalism is not an easy

relation [22]:

“The most difficult part of learning quantum mechanics is to get a good feeling for

how the abstract formalism can be applied to actual phenomena in the laboratory. Such

applications almost invariably involve formulating oversimplified abstract models of the real

phenomena, to which the quantum formalism can effectively be applied. The best physicists

have an extraordinary intuition for what features of the actual phenomena are essential and

must be represented in the abstract model, and what features are inessential and can be

ignored. ”

2.5 Some Experimental Consequences of the Basic Principles

2.5.1 Thought Experiments

This section displays some consequences of quantum principles in the form of

thought experiments. Alternatively, one may obtain the quantum principles as a

generalization of the results of such thought experiments (see [23]).

Let us consider a Hilbert space consisting of only two independent states ϕ˙.

We also assume that these states are eigenstates of an operator OS corresponding

to the eigenvalues ˙1, respectively. Thus the eigenvalue equation OSϕ˙ D ˙ϕ˙
is satisfied. The scalar products hϕCjϕCi D hϕ�jϕ�i D 1 and hϕCjϕ�i D 0 are

verified. There are many examples of physical observables that may be represented

by such operator. For instance, the z-component of the spin10 is frequently used in

these notes (Sects. 2.2, 3.2, 5.2, 9.2, etc.).

10Another example is given by the polarization states of the photon (see Sect. 9.8.2�). Most of the

two-state experiments are realized by means of such optical devices.
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We start by constructing a filter, i.e. an apparatus such that the exiting particles

are in a definite eigenstate. In the first part of the apparatus, a beam of particles is

split into the two separate ϕ˙ beams, as in the experiment of Stern and Gerlach

(Sect. 5.2.1). In the second part, each beam is pushed towards the original direction.

Each separate beam may be masked off at the half-way point. Such an apparatus is

sketched in Fig. 2.4a with the ϕ� beam masked off. It will be called a ϕ-filter. It is

enclosed within a box drawn with continuous lines.

Any experiment requires first the preparation of the system in some definite initial

state. Particles leave the oven in unknown linear combinations ‰ of ϕ˙ states

‰ D hϕCj‰iϕC C hϕ�j‰iϕ� : (2.22)

They are collimated and move along the y-axis. In the following cases, we prepare

the particles in the filtered state ϕC, by preventing particles in the state ϕ� from

leaving the first filter (Fig. 2.4b). In the last stage of the experimental set-up we

insert another filter as part of the detector, to measure the degree of filtration. The

detector includes also a photographic plate which records the arriving particles and

is observed by an experimentalist (Fig. 2.4c).

In the first experiment, we place the detector immediately after the first filter

(Fig. 2.4d). If the ϕ� channel is also blocked in the detector, every particle goes

through; if the channel ϕC is blocked, nothing passes. The amplitudes for these

processes are hϕCjϕCi D 1 and hϕ�jϕCi D 0, respectively. The corresponding

probabilities, jhϕCjϕCij2 and jhϕ�jϕCij2, also are 1 and 0.

We now consider another set of basis states χ˙, also satisfying the orthonormality

conditions hχCjχCi D hχ�jχ�i D 1, hχCjχ�i D 0 (Fig. 2.2, bottom). It is easy to

verify that an operator OR, satisfying the eigenvalue equation OR χ˙ D ˙χ˙, does not

commute with OS . Let us perform the necessary modifications of the detector filter

so that it can block the particles in either of the states χ˙. If OR corresponds the spin

component in the x-direction, the required modification of the detector amounts to

a rotation of its filter by an angle �=2 around the y-axis. Dashed boxes represent

filters such that particles exit in the χ˙ states (χ-type filters) (Fig. 2.4e).

A particle exiting the first filter in the state ϕC reorients itself, by chance, within

the second filter. This process is expressed within the formalism by expanding the

states ϕ˙ in terms of the new basis set

ϕ˙ D hχCjϕ˙iχC C hχ�jϕ˙iχ� : (2.23)

According to Principle 3, a particle emerging from the first filter in the state ϕC will

either emerge from the detector filter in the state χC with probability jhχCjϕCij2
or in the state χ� with probability jhχ�jϕCij2. If the χ� channel of the second

filter is blocked, the particle is either projected into the state χC or is absorbed

with probability 1 � jhϕCjχCij2 = jhϕCjχ�ij2. This result sounds classical: it is

the quantum version of the classical Malus law. However, the projection process is

probabilistic. Any information about the previous orientation ϕC is lost.
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Fig. 2.4 Quantum mechanical thought experiments illustrating the basic principles listed in

Sect. 2.3. (a) Schematic representation of a filter; (b) preparation of the state of a particle; (c)

detector (filter, photoplate, observer); (d)–(g) experiments (see text). The vertical bars denote fixed

path blockings, while the diagonal bars indicate paths that can be either opened or closed. For each

experiment we perform a measurement in which the upper channel of the detector is open and the

down channel blocked, and another measurement with opposite features

We now perform two other experiments which yield results that are spectacularly

different from classical expectations. Let us restore the detector filter to the ϕ-type

and introduce a filter of the χ-type between the first filter and the detector (Fig. 2.4f).

Thus, particles prepared in the ϕC state exit the second filter in the χC state. In the

spin example, particles leave the first filter with the spin pointing in the direction

of the positive z-axis, and the second filter pointing along the positive x-axis. The

detector measures the number of particles exiting in one of the ϕ˙ states (spin
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pointing up or down in the z-direction). We use now the inverse expansion11 of

(2.23), namely

χ˙ D hϕCjχ˙iϕC C hϕ�jχ˙iϕ� : (2.24)

Thus, the total amplitudes for particles emerging in one of the states ϕ˙ are12:

hϕCjχCihχCjϕCi; (2.25)

hϕ�jχCihχCjϕCi : (2.26)

Both components ϕ˙ may emerge from the detector filter, in spite of the fact

that the fraction of the beam in the ϕ� state was annihilated inside the first filter.

There is no way in classical physics to explain the reconstruction of the beam

ϕ�. This example illustrates the quantum rule concerning the impossibility of

determining two observables associated with operators which do not commute: a

precise determination of R destroys the previous information concerning S .

The result of this experiment is also consistent with Principle 1 in Sect. 2.3,

since the state vector χC contains all possible information about the system: its past

history is not relevant for what happens to it next. The information is lost because

of the blocking mask that has been put inside the second filter.

If we repeat the last experiment, but remove the mask from the second filter

(Fig. 2.4g), the total amplitude is given by the sum of the amplitudes associated

with the two possible intermediate states

hϕCjχCihχCjϕCi C hϕCjχ�ihχ�jϕCi D hϕCjϕCi D 1; (2.27)

hϕ�jχCihχCjϕCi C hϕ�jχ�ihχ�jϕCi D hϕ�jϕCi D 0 ; (2.28)

where the closure property has been applied (2.59). All the particles get through in

the first case; none in the second case. In going from amplitude (2.26) to (2.28) we

get fewer particles, despite the fact that more channels are opened.

It is important that none of the intermediate beams suffers an additional

disturbance (for example, the influence of an electric field), which may change the

relative phases of the two channels.

The result of this last experiment is equivalent to an interference pattern.

Classically, such patterns are associated with waves. However, unlike the case of

waves, the particles are always detected as lumps of the same size on a screen placed

in front of the exit side of the detector filter. No fractions of a lump are ever detected,

as befits the behavior of indivisible particles. Therefore, these experiments display

wave–particle duality, which is thus accounted for by Principles 1–3.

11The amplitudes in (2.23) and (2.24) are related by hϕCjχ˙i D hχ˙1jϕCi� and hϕ�jχ˙i D
hχ˙1jϕ�i�, according to Table 2.1.
12One reads from right to left.
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Fig. 2.5 A double-slit

experiment. No intensity is

detected at points of the

screen if the difference 	

between the two paths is an

odd multiple of �=k

double-

slit

detector

screen

Feynman has commented this result as follows [23], pp. 1–1: “We choose to

examine a phenomenon13 which is impossible, absolutely impossible, to explain

in any classical way, and which has in it the heart of quantum mechanics. In reality,

it contains the only14 mystery.”

2.5.2 Real Two-Slit Experiments

Thought experiments played a crucial role in the clarification of controversial

aspects of quantum mechanics. The discussions between Bohr and Einstein are

paradigmatic in this respect (Sect. 15.5.2). However, since the end of the twentieth

century, real experiments have replaced thought ones. Not only have earlier views

been confirmed, but also more counterintuitive aspects of quantum mechanics have

been brought into focus.

Since Thomas Young established the wave nature of light in 1801 (using candles

as sources of light), two-slit interference experiments have become crucial to decide

between wave and particle behavior (Fig. 2.5).

The usual experimental set-up consists of a source emitting particles and three

screens placed on their path. The first screen displays a hole used to collimate the

beam. The second one is pierced by two narrow slits placed within the aperture of the

beam. The third screen is paved by detectors recording the impact of the particles.

The slits in the intermediate screen define two distinct paths for the particles.

Each particle crosses this screen in a linear superposition of two states

‰ D 1p
2

.ϕa C ϕa0/ : (2.29)

The pattern on the detection screen builds up in a pointillist way by accumulation

of discrete spots, each one produced by a single particle. It is not possible to predict

the final spot for any one particle (only the fringes where no particle will impinge

13Matter wave phenomena were experimentally verified for the first time in [5].
14Other fundamental issue in quantum physics is entanglement (Chap. 12).
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Fig. 2.6 A double-slit diffraction pattern measured with neutrons (Reprinted from [78]. Copyright

by the American Physical Society and the Institut für Experimentalphysik, Universität Wien)

can be determined beforehand). After the detection of a large number of particles,

a pattern of equidistant fringes with a high density of impacts can be seen at the

detection screen.

In a relatively recent version (1988), neutrons of de Broglie wavelength 2 nm

(4.34) impinge on two slits 22 
m and 23 
m wide, respectively, separated by a

distance of 104 
m. The main results of this experiment are [24]:

• A diffraction pattern indicating the existence of a wave interference phenomenon

(Fig. 2.6). The observation plane was located at a distance of 5 m from the

slits to insure a resolution of �100 
m. The solid line represents first-principle

predictions from quantum mechanics, including all features of the experimental

apparatus.

• The state (2.29) describes a superposition of amplitudes rather than a sum of

probabilities, leading to interference terms in the probability j‰j2.

• The discreetness of the detection events exhibits the corpuscular nature of the

neutrons.

• Neutrons were collected one by one at the observation plane, at a maximum rate

of one neutron every 2 s. Therefore, while one neutron was being registered, the

next one to arrive was usually still inside the uranium parent nucleus. The particle

nature of neutrons is thus also confirmed. Moreover, constraints on the validity

of quantum physics to statistical ensembles are ruled out.

Similar interference patterns have been obtained with atoms, molecules and clusters,

including fullerenes, a composite molecule of 64 carbon atoms [25].
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The superposition giving rise to interference phenomena requires that there is no

way to know, even in principle, which path the particle took, a or a0. Interference is

destroyed if this information exists, even if it is dispersed in the environment.

2.6 Other Consequences of the Basic Principles

It is shown in Sect. 2.6.1 that the commutation relation between two Hermitian

operators Or; Os determines the precision with which the values of the corresponding

physical quantities may be simultaneously determined. Thus, Heisenberg uncer-

tainty relations between momenta and coordinates become extended to any pair of

observables and appear as a consequence of their commutation relations.

We also present the no-cloning theorem (Sect. 2.6.2) and point out the relation

between quantum commutators and Poisson brackets (Sect. 2.6.3).

2.6.1 Commutation Relations and the Uncertainty Principle

One assumes two Hermitian operators, OR; OS , and defines a third (non-Hermitian)

operator OQ, such that

OQ � OR C i� OS; (2.30)

where � is a real constant. The minimization with respect to � of the positively

defined norm [see (2.52)]

0 � h OQ‰j OQ‰i D h‰jQCQj‰i
D h‰jR2j‰i C i�h‰jŒR; S�j‰i C �2h‰jS2j‰i (2.31)

yields the value

�min D �
i

2
h‰jŒR; S�j‰i=h‰jS2j‰i

D � i

2
h‰jŒR; S�Cj‰i�=h‰jS2j‰i

D i

2
h‰jŒR; S�j‰i�=h‰jS2j‰i: (2.32)

In the second line we have used the definition (2.11) of the Hermitian conjugate. In

the last line, the relation Œ OR; OS�C D �Œ OR; OS� stems from the Hermitian character of

the operators [see (2.51)]. Substitution of the value �min in (2.31) yields

0 �
 

h‰jR2j‰i � 1

4

jh‰jŒR; S�j‰ij2

h‰jS2j‰i

!

(2.33)
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or

h‰jR2j‰i h‰jS2j‰i � 1

4
jh‰jŒR; S�j‰ij2 : (2.34)

The following two operators Or; Os have zero expectation value

Or � OR � h‰jRj‰i ; Os � OS � h‰jS j‰i; (2.35)

and the product of their uncertainties is constrained by [see (2.20)]

�r �s � 1

2
jh‰jŒr; s�j‰ij : (2.36)

Operators corresponding to observables can always be written in the form (2.35).

If we prepare a large number of quantum systems in the same state ‰ and then

perform some measurements of the observable r in some of the systems, and of

s in the others, then the standard deviation �r of the r-results times the standard

deviation �s of the s-results should satisfy the inequality (2.36). These are intrinsic

limitations to the accuracy with which the values of two observables can be

determined.

In the case of coordinate and momentum operators, the relation (2.15) yields the

Heisenberg uncertainty relation

�x �p � „
2

: (2.37)

We emphasize the fact that this relation stems directly from basic principles and, in

particular, from the commutation relation (2.15). It constitutes an intrinsic limitation

upon our knowledge. This limitation cannot be overcome, for instance, by any

improvement of the experiment.

If the state of the system is an eigenstate of the operator Or , then a measurement of

the observable r yields the corresponding eigenvalue. The value of the observable s

associated with a non-commutating operator Os is undetermined. This is the case of

a plane wave describing a particle in free space (Sect. 4.3) for which the momentum

may be determined with complete precision, while the particle is spread over all

space.

Another consequence of the relation (2.36) is that the state vector ‰ may be

simultaneously an eigenstate of Or and Os only if these two operators commute, since

in this case the product of their uncertainties vanishes. Moreover, if the operators

commute and the eigenvalues of Os are all different within a subset of states, then

the matrix elements of Or are also diagonal within the same subset of states (see

Sect. 2.7.1*).

Heisenberg conceived the uncertainty relations to solve the wave-particle para-

dox. Pure particle behavior requires localization of the particle, while clear wave

behavior appears only when the particle has a definite momentum. Heisenberg’s

interpretation of this was that each of these extreme classical descriptions is

satisfied only when the other is completely untenable. Neither picture is valid for
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Fig. 2.7 Apparent classical trajectory of a pion. (Reproduced with permission from the authors)

intermediate situations. However, quantum mechanics has to be compatible with

the description of the motion of elementary particles (not only with the description

of the motion of macroscopic bodies) in terms of trajectories. Heisenberg’s answer

is that one may construct states ‰ that include a certain amount of localization

p0.t/ and x0.t/ in both momentum and coordinate. Thus the motion of a particle

has some resemblance to classical motion along trajectories. However, there should

be a certain spread in the momentum and in the coordinate, such that the amplitudes

hpj‰i and hxj‰i, in momentum eigenstates and in position eigenstates, allow

uncertainty relations to hold [26].

For an illuminating example, Fig. 2.7 displays the capture of a pion by a carbon

nucleus [27]. One can determine the mass, energy and charge of the particles,

by measuring the length, the grain density and the scattering direction of their

tracks. Let us assume a pion kinetic energy of 10 MeV. Using the pion mass

(139 MeV/c2), one obtains a momentum of p�=53 MeV/c. The uncertainty in the

direction perpendicular to the track may be estimated from the width of the track to

be �1 
m, which yields �p? � 10�7 MeV/c. The ratio �p?=p� � 10�9 is too

small to produce a visible alteration of the apparent trajectory

2.6.2 No-Cloning Theorem

Let us assume that there are many systems prepared in the state

‰ D aCϕC C a�ϕ� ; (2.38)

and that the two amplitudes a˙ are unknown to us. By measuring two (non-

commuting) observables such as

OQ D jϕCihϕCj � jϕ�ihϕ�j ; OR D jϕCihϕ�j C jϕ�ihϕCj ; (2.39)
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we obtain the averages

h‰jQj‰i D jaCj2 � ja�j2 ; h‰jRj‰i D a�
Ca� C a�

�aC ; (2.40)

from which we can deduce the value of the amplitudes a˙, including the relative

phase.

The situation is different if there is a single copy, since the probability amplitudes

are lost after the first measurement. A possible way out would be to produce many

copies of the initially single system, but this is prevented by the no-cloning theorem,

which also reflects the fragility of quantum states. The theorem says that the state

of a particle cannot be copied onto another particle, while the original particle

remains in the same state [28]. This is also completely different from what happens

in classical mechanics, where we can specify as much as required the state of the

system by performing additional measurements without disturbing it.

Suppose the state of two particles is given by

ϕ.1/ χ.2/ (2.41)

and that some unitary evolution effects the copying process

ϕ.1/ ϕ.2/ D U ϕ.1/ χ.2/ : (2.42)

Suppose now that this copying procedure also works for another state

φ.1/ φ.2/ D U φ.1/ χ.2/ : (2.43)

The scalar product between (2.42) and (2.43) yields

hϕjφi2 D hχ ϕjUCU jφ χi D hϕjφi : (2.44)

Since this equation has two solutions, 0 and 1, either ϕ D φ or they are mutually

orthogonal. Therefore, a general quantum cloning device is impossible.

Even if one allows non-unitary cloning devices, the cloning of non-orthogonal

pure states remains impossible unless one is willing to tolerate a finite loss of fidelity

in the cloned states.

On the positive side, the impossibility of determining the components of a vector

state prevents non-relativistic quantum mechanics to clash with relativity theory

(Sects. 12.1 and 13.3).

2.6.3 Commutation Relations and Poisson Brackets

From the commutation relation (2.15), one obtains

Œ Oxn; Op� D i„ n Oxn�1 ; Œ Ox; Opn� D i„ n Opn�1 ; (2.45)
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which shows that the commutation operation acts as a sort of differential operation.

Arbitrary functions of the coordinate and the momenta, Ou D u. Ox; Op/, satisfy the

following relations:

ŒOu; Ov� D �ŒOv; Ou�

ŒOu; c� D 0

Œ.OuC Ov/; Ow� D ŒOu; Ow� C ŒOv; Ow�

ŒOu Ov; Ow� D ŒOu; Ow�Ov C OuŒOv; Ow�

0 D ŒOu; ŒOv; Ow�� C ŒOv; Œ Ow; Ou�� C Œ Ow; ŒOu; Ov�� ; (2.46)

as may be verified through power series expansions. These properties are shared by

the (classical) Poisson brackets

fu; vgPB D
@u

@x

@v

@p
� @u

@p

@v

@x
: (2.47)

Dirac has pointed out that “classical mechanics provides a valid description of

dynamical systems under certain conditions. We should thus expect that important

concepts in classical mechanics correspond to important concepts in quantum

mechanics” [15]. In fact, the quantum mechanical commutator can be obtained

from the classical Poisson bracket through the replacement of the coordinate and

momentum by the corresponding quantum operators and multiplication by i„

i„fu; vgPB ! ŒOu; Ov� : (2.48)

The commutativity of the classical multiplication rule is obtained in the limiting

case „ ! 0.

However, the Poisson brackets (2.47) can only be defined with reference to a

definite set of coordinates and momenta (although they are invariant under a change

of this set). The quantum commutation relation is not limited by this condition

and, therefore, has a more fundamental character. A particularly relevant example

is the case of the spin components, which do not have classical counterparts (see

Sect. 5.2).

2.7* Properties of Hilbert Spaces and Operators

In the following, we briefly review some properties of these mathematical tools.

A Hilbert space is a generalization of the Euclidean, three-dimensional space

(see Table 2.1). As in ordinary space, the summation ca‰a C cb‰b and the scalar
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Table 2.1 Some relevant properties of vectors and operators in Euclidean and Hilbert spaces

Euclidean space Hilbert space

Vectors r ‰

Superposition r D cara C cbrb ‰ D ca‰a C cb‰b

Scalar product hrajrbi D ra � rb D cab h‰aj‰bi D h‰bj‰ai� D cab

ca; cb; cab D real ca; cb ; cab D complex

Basis set hvi jvj i D ıij hϕi jϕj i � hi jj i D ıij

Dimension � 3 2 � � � 1
Completeness r D

P

i xi vi ‰ D
P

i ci ϕi

Projection xi D hvi jri ci D hϕi j‰i
Scalar product hrajrbi D P

i x
.a/
i x

.b/
i h‰aj‰bi D P

i

�

c
.a/
i

��
c

.b/
i

Norm hrjri1=2 D
�
P

i x2
i

�1=2 h‰j‰i1=2 D
�
P

i jci j2
�1=2

Operators OR�.�/ ra D rb
OQ‰a D ‰b

Commutators Œ ORx. �
2

/; ORy. �
2
/� ¤ 0 Œ OQ; OR�

Eigenvalues ODi vi D �i vi
OQϕi D qi ϕi

product h‰bj‰ai D cab between two vectors are well-defined operations.15 While

the constants ca; cb; cab are real numbers in everyday space, it is essential to allow

for complex values in quantum mechanics.

The norm of a vector is defined as the square root of the scalar product of a vector

with itself. A vector is said to be normalized if its norm equals 1. Two vectors are

orthogonal if their scalar product vanishes. A vector ‰ is linearly independent of a

subset of vectors ‰a; ‰b; : : : ; ‰d if it cannot be expressed as a linear combination

of them16 (‰ ¤ ca‰a C cb‰b C 	 	 	 C cd ‰d ).

These last two concepts allow us to define sets of basis vectors ϕi satisfying the

requirement of orthonormalization. Moreover, these sets may be complete, in the

sense that any vector ‰ may be expressed as a linear combination of them17 [see

(2.6)]. The scalar product hi j‰i is the projection of ‰ onto ϕi . The scalar product

between two vectors ‰a; ‰b and the square of the norm of the vector ‰ are also

given in terms of the amplitudes ci in Table 2.1.

The number of states in a basis set is the dimension � of the associated Hilbert

space. It has the value 3 in normal space. In this book, we use Hilbert spaces with

dimensions ranging from two to infinity.

15Definition of these fundamental operations is deferred to each realization of Hilbert spaces [(3.2),

(3.4) and (4.1), (4.2)]. In the present chapter we use only the fact that they exist and that hajbi D
hbjai�.
16Although the term “linear combination” usually refers only to finite sums, we extend its meaning

to also include an infinity of terms.
17The most familiar case of the expansion of a function in terms of an orthonormal basis set is

the Fourier expansion in terms of the exponentials expŒikx�, which constitute the complete set of

eigenfunctions corresponding to the free particle case (see Sect. 4.3).
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Fig. 2.8 The final orientation

of the axes depends on the

order of the rotations. R� here

represents a rotation of �=2

around the �-axis

In ordinary space, vectors are defined by virtue of their transformation properties

under rotation operations OR�.�/ (� denoting the axis of rotation, and � the angle).

These operations are generally non-commutative, as the reader may easily verify by

performing two successive rotations of � D �=2, first around the x-axis and then

around the y-axis, and subsequently comparing the result with the one obtained by

reversing the order of these rotations (Fig. 2.8). Mathematically, this is expressed

through the non-vanishing of the operator (2.8).

In ordinary space, a dilation OD is an operation yielding the same vector

multiplied by a (real) constant. This operation has been generalized in terms of

eigenvectors and eigenvalues in (2.9). In general, linear combinations of such

eigenvectors do not satisfy the eigenvalue equation.

2.7.1* Some Properties of Hermitian Operators

The Hermitian conjugate operator OQC is defined through the (2.11). Similarly, we

may write

h‰bjQj‰ai D h OQ‰aj‰bi� D h OQC‰bj‰ai : (2.49)

The following properties are easy to demonstrate

�

OQC c OR
�C
D OQC C c� ORC; (2.50)

�

OQ OR
�C
D ORC OQC: (2.51)

According to (2.11), the norm of the state OQ‰ is obtained by

h OQ‰j OQ‰i1=2 D h‰jQCQj‰i1=2 : (2.52)

The norm is a real, positive number.

An operator is said to be Hermitian if it is equal to its own Hermitian conjugate

operator

OQC D OQ: (2.53)
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Assume now that the state ϕi is an eigenstate of the Hermitian operator OQ
corresponding to the eigenvalue qi . In this case

hi jQjii D qi hi jii ; hi jQjii� D q�
i hi jii

hi jQjii D hi jQjii� ! qi D q�
i : (2.54)

Therefore, the eigenvalues of Hermitian operators are real numbers.

Consider now the non-diagonal terms

hj jQjii D qi hj jii ; hi jQjj i� D q�
j hi jj i� D q�

j hj jii ; (2.55)

then

0 D .qi � qj / hj jii; (2.56)

i.e. two eigenstates, belonging to different eigenvalues, are orthogonal. They may

also be orthonormal, upon multiplication by an appropriate normalization constant,

which is determined up to a phase.

The eigenvectors of a Hermitian operator constitute a complete set of states for a

given system. This means that any state function ‰, describing any state of the same

system, may be expressed as a linear combination of basis states ϕi [see (2.6)].

We define the projection operator (a theoretical filter) jiihi j through the equation

jiihi jϕj � hi jj iϕi D ıij ϕi ; (2.57)

which implies that
X

i

jiihi j‰ D ‰ (2.58)

for any ‰. Thus, unity may be expressed as the operator
P

i jiihi j. From this

property stems the closure property, according to which the matrix elements of

the product of Hermitian operators may be calculated as the sum over all possible

intermediate states of products of the matrix elements corresponding to each

separate operator

hi jQRjj i D
X

k

hi jQjkihkjRjj i: (2.59)

2.7.2* Unitary Transformations

The unitary matrix .Uai / D .hi jai/ in (2.14) transforms the basis set ϕi into the

basis set χa. Such a matrix does not represent a physical observable and it is not

therefore required to be Hermitian.
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The inverse transformation to (2.14) is written as

ϕi D
X

a

hajiiχa : (2.60)

Therefore, the inverse transformation U�1 is the transposed conjugate:

U�1 D .hajii/ D UC ; UCU D UUC D I; (2.61)

where I is the unit matrix. A matrix satisfying (2.61) is said to be unitary.

Equation (2.61) implies that

X

i

hajiihi jbi D ıab

X

a

hi jaihajj i D hi jj i D ıij (2.62)

If states are transformed according to χ D U ϕ, then the state U OQ ϕ may be written

as
U OQ ϕ D U OQUCU ϕ D R χ; (2.63)

which yields the rule for the transformation of operators, namely

OR D U OQ UC: (2.64)

In addition to the norm, unitary transformations preserve the value of the determi-

nant and the trace

det.hajRjbi/ D det.hi jQjj i/;

trace.Q/ �
X

i

hi jQjii D trace.R/ �
X

a

hajRjai: (2.65)

2.8* Notions on Probability Theory

Probability theory studies the likelihood Pi that the outcome qi of an event will take

place. The limits of Pi are

0 � Pi � 1 : (2.66)

If Pi D 0, the outcome qi cannot occur; if Pi D 1, it will take place with certainty.

If two events .i; j / are statistically independent, the probability that both i and

j take place is given by the product

P
.i and j / D Pi Pj : (2.67)
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If two events are mutually exclusive, the probability that one or the other occur is

the sum

P.i or j / D Pi C Pj : (2.68)

Probability may be defined as

Pi � lim
N !1

ni

N
; (2.69)

where ni is the number of outcomes qi of a total of N �
P

i ni outcomes. Since

the limit N ! 1 is never attained, in practice N should be made large enough so

that the fluctuations become sufficiently small.

The collection of Pi s is called the (discrete) probability distribution. The

concepts of average hQi, root mean square hQ2i1=2 and root mean square deviation

�Q, applied in Sect. 2.4, are given by

hQi D
X

i

qi Pi ;

hQ2i1=2 D
 

X

i

q2
i Pi

!1=2

;

�Q D h.Q � hQi/2i1=2 D
�

hQ2i � hQi2
�1=2

: (2.70)

In the case of a continuous distribution, the sums
P

i are replaced by integrals
R

dx. Instead of probabilities Pi one defines probability densities �.x/ such that

1 D
Z 1

�1
�.x/ dx;

hQi D
Z 1

�1
q.x/ �.x/dx: (2.71)

Problems

Problem 1. Assume that the state ‰ is given by the linear combination ‰ D
c1‰1 C c2‰2, where the amplitudes c1; c2 are arbitrary complex numbers, and both

states ‰1; ‰2 are normalized.

1. Normalize the state ‰, assuming that h1j2i D 0.

2. Find the probability of the system being in the state ‰1.
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Problem 2. Use the same assumptions as in Problem 2, but h1j2i D c ¤ 0

1. Find a linear combination ‰3 D �1‰1 C �2‰2, such that it is orthogonal to ‰1

and normalized.

2. Express the vector ‰ as a linear combination of ‰1 and ‰3.

Problem 3. Prove (2.50) and (2.51).

Hint: Apply successively the definition of Hermitian conjugate to the operators
OQ; OR. For instance, start with h‰bjQ Rj‰ai = h OR‰ajQCj‰bi�=	 	 	 .

Problem 4. Show that

Œ OQ; OR� D �Œ OR; OQ�

Œ OQ OR; OS� D Œ OQ; OS� OR C OQ Œ OR; OS� :

Problem 5. Find the commutation relation between the coordinate operator Ox and

the one-particle Hamiltonian (2.16). Discuss the result in terms of the simultaneous

determination of energy and position of a particle.

Problem 6. Find the commutation relations

1. Œ Opn; Ox�, where n is an integer

2. Œf . Op/; Ox�. Hint: Expand f . Op/ in power series of Op and apply the previous

commutation relation.

Problem 7. Verify that the commutation relation (2.15) is consistent with the fact

that the operators Ox and Op are Hermitian.

Problem 8. Assume the basis set of states ϕi

1. Calculate the effect of the operator OR �
P

i jiihi j on an arbitrary state ‰.

2. Repeat for the operator OR � ˘i

�

OQ � qi

�

, assuming that the equation OQϕi D
qi ϕi is satisfied.

Problem 9. Find the relation between the matrix elements of the operators Op and

Ox in the base of eigenvectors of the Hamiltonian (2.16).

Problem 10. Consider the eigenvalue equations

OF ϕ1 D fi ϕ1 ; OF ϕ2 D f2ϕ2 ; OGχ1 D g1χ1 ; OGχ2 D g2χ2 ; (2.72)

and the relations

ϕ1 D
1p
5

.2χ1 C χ2/ ; ϕ2 D
1p
5

.χ1 � 2χ2/: (2.73)

1. Is it possible to simultaneously measure the observables F and G?
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2. Assume that a measurement of F has yielded the eigenvalue f1. Subsequently

G and F are measured (in this order). Which are the possible results and their

probabilities?

Problem 11. Consider eigenstates ϕp of the momentum operator. Assume that the

system is prepared in the state

‰ D 1p
6

.ϕ2p C ϕp/ C
r

2

3
ϕ�p : (2.74)

1. What are the possible results of a measurement of the kinetic energy K , and what

are their respective probabilities?

2. Calculate the expectation value and the standard deviation of the kinetic energy.

3. What is the vector state after a measurement of the kinetic energy that has yielded

the value kp D p2=2M ?

Problem 12. Evaluate, in m.k.s. units, possible values of the precision to which

the velocity and the position of a car should be measured to verify the uncertainty

relation (2.37).

Problem 13. A 10 MeV proton beam is collimated by means of diaphragms with a

5 mm aperture.

1. Show that the spread in energy �EH , associated with the uncertainty principle,

is negligible relative to the total spread, �E � 10�3 MeV.

2. Calculate the distance x that a proton has to travel to traverse 5 mm in a

perpendicular direction, if the perpendicular momentum is due only to the

uncertainty principle.

Problem 14. Verify (2.46).



Chapter 3

The Heisenberg Realization

of Quantum Mechanics

In this chapter, we present the simplest realization of the basic principles of quantum

mechanics. We employ column vectors as state vectors and square matrices as

operators. This formulation is especially suitable for Hilbert spaces with finite

dimensions. However, we also treat within this framework the problem of the

harmonic oscillator and the Jaynes–Cummings model.

3.1 Matrix Formalism

3.1.1 A Realization of the Hilbert Space

The state vector ‰ may be expressed by means of the amplitudes ci filling the

successive rows of a column vector:

‰ D .ci / �

0

B

B

B

@

ca

cb

:::

c�

1

C

C

C

A

: (3.1)

The dimension of the Hilbert space is given by the number of rows. The sum of two

column vectors is another column vector in which the amplitudes are added:

˛B‰B C ˛C ‰C D .˛Bbi C ˛C ci /: (3.2)

The scalar product requires the definition of the adjoint vector ‰C, i.e. a row vector

obtained from ‰ with amplitudes

‰C D .c�
a ; c�

b ; : : : ; c�
� /: (3.3)
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The scalar product of two vectors ‰B and ‰C is defined as the product of the adjoint

vector ‰C
B and the vector ‰C , viz.,

h‰B j‰C i D
iD�
X

iDa

b�
i ci ;

h‰j‰i D
iD�
X

iDa

jci j2 D 1: (3.4)

A useful set of (orthonormal) basis states is given by the vector columns ϕi with

amplitudes cj D ıij . In such a basis, the arbitrary vector (3.1) may be expanded as

‰ D ca

0

B

B

B

@

1

0
:::

0

1

C

C

C

A

C cb

0

B

B

B

@

0

1
:::

0

1

C

C

C

A

C 	 	 	 C c�

0

B

B

B

@

0

0
:::

1

1

C

C

C

A

: (3.5)

All the properties listed in Table 2.1 are reproduced within the framework of column

vectors.

Operators are represented by square matrices

OQ D .hi jQjj i/ �

0

B

B

B

@

hajQjai hajQjbi 	 	 	 hajQj�i
hbjQjai hbjQjbi 	 	 	 hbjQj�i

:::
:::

: : :
:::

h�jQjai h�jQjbi 	 	 	 h�jQj�i

1

C

C

C

A

: (3.6)

The matrices corresponding to physical observables are Hermitian [see (2.11)]. The

initial state j labels the columns, while the final state i labels the rows. The order

a; b; : : : ; � is immaterial, provided it is the same in both columns and rows (i.e. the

matrix elements hi jQjii should lie on the diagonal). The matrix elements hi jQjj i
are constructed as in (2.10). If ϕi belongs to the basic set

OQ ϕi D
X

j

c
.i/
j ϕj ! hj jQjii D c

.i/
j : (3.7)

A matrix multiplying a vector yields another vector, so that

‰B D OQ ‰C  ! bi D
X

j

hi jQjj icj : (3.8)
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The product of two matrices is another matrix:

OS D OQ OR ! hi jS jj i D
X

k

hi jQjkihkjRjj i; (3.9)

which is consistent with the closure property (2.59). The multiplication of matrices

is a non-commutative operation, as befits the representation of quantum operators.

3.1.2 Solution of the Eigenvalue Equation

In matrix form, the eigenvalue equation (2.9) reads

0

B

B

B

@

hajQjai hajQjbi 	 	 	 hajQj�i
hbjQjai hbjQjbi 	 	 	 hbjQj�i

:::
:::

: : :
:::

h�jQjai h�jQjbi 	 	 	 h�jQj�i

1

C

C

C

A

0

B

B

B

@

ca

cb

:::

c�

1

C

C

C

A

D q

0

B

B

B

@

ca

cb

:::

c�

1

C

C

C

A

; (3.10)

which is equivalent to the � linear equations (one equation for each value of i )

j D�
X

j D1

hi jQjj i cj D q ci : (3.11)

The eigenvalues q and the amplitudes ci are the unknowns to be determined.1

The solution to (3.11) is obtained by casting the original matrix (hi jQjj i/ into

a diagonal form. In this case the diagonal matrix elements become the eigenvalues,

hi jQjj i D ıij qi . The i th eigenvector is given by the amplitudes cj D ıij , as in

(3.5). For instance,

0

B

B

B

@

q1 0 	 	 	 0

0 q2 	 	 	 0
:::

:::
: : :

:::

0 0 	 	 	 q�

1

C

C

C

A

0

B

B

B

@

0

1
:::

0

1

C

C

C

A

D q2

0

B

B

B

@

0

1
:::

0

1

C

C

C

A

: (3.12)

The linear homogeneous equations (3.11) have the trivial solution ci D 0, to be

discarded. The existence of additional, non-trivial solutions requires the determinant

to vanish:

det .hi jQjj i � qıij / D 0: (3.13)

1This equation may be obtained directly by using the expansion (2.6) on both sides of the general

eigenvalue equation OQ‰ D q‰. One obtains
P

j cj
OQϕj D q

P

j cj ϕj . The scalar product with

ϕi of both sides of this last equation yields (3.11).
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This eigenvalue equation is equivalent to a polynomial equation for q. Its � roots are

the eigenvalues of the operator OQ.

The vanishing of the determinant (3.13) implies that one of the equations (3.11)

may be expressed as a linear combination of the other � � 1 equations. Therefore,

by disregarding one of these equations (for instance, the one corresponding to

the last row) and dividing the remaining equations by ca, one obtains a set

of � � 1 non-homogeneous linear equations2 yielding the value of the ratios

cb=ca; cc=ca; : : : ; c�=ca, for each eigenvalue q. The normalization equation (3.4)

determines the value of jcaj2, up to the usual overall arbitrary phase of the state

vector. Note that the relative phases in the linear combination have physical

significance, although the overall phase is unimportant.

Diagonalization yields a new set of eigenstates φa. Each of them may be

expressed as a linear combination of the old basis states ϕi .

φa D
X

i

hi jaiϕi : (3.14)

The amplitudes hi jai are the matrix elements of a unitary matrix U D .hi jai/ (2.14).

The modulus squared jhajiij2 is both the probability of measuring the eigenvalue qi ,

associated with the eigenstate ϕi , if the system is in the state φa, and the probability

of measuring the eigenvalue ra, associated with the eigenstate φa, when the state of

the system is ϕi .

3.2 Two-Dimensional Spaces

A general vector state is written as a superposition of the basis states (3.5):

‰ D caϕa C cbϕb

ϕa D
�

1

0

�

; ϕb D
�

0

1

�

: (3.15)

We define the Hermitian, traceless, Pauli matrices �i .i D x; y; z/

�x D
�

0 1

1 0

�

; �y D
�

0 �i

i 0

�

; �z D
�

1 0

0 �1

�

; I D
�

1 0

0 1

�

: (3.16)

They all square to the unit matrix I. The basis states (3.15) are eigenstates of �z

with eigenvalues˙1.

2If several roots have the same eigenvalue, more equations should be discarded to get a non-

homogeneous set of equations.
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The most general observable can be written as a linear combination of the

matrices (3.16) with real parameters �0; �i

OQ D �0I C
X

i

�i �i : (3.17)

The two-component states satisfy the eigenvalue equation

�

hajQjai hajQjbi
hbjQjai hbjQjbi

� �

ca

cb

�

D q˙

�

ca

cb

�

; (3.18)

where hajQjai D �0C�z, hbjQjbi D �0��z and hajQjbi D hbjQjai� D �x� i�y .

The resulting eigenvalues are

q˙ D
1

2
.hajQjai C hbjQjbi/˙ 1

2

q

.hajQjai � hbjQjbi/2 C 4jhajQjbij2;
(3.19)

while the amplitudes of the eigenvectors are given by

cb

ca

ˇ

ˇ

ˇ

ˇ

˙
D q˙ � hajQjai

hajQjbi ; .ca/˙ D
 

1C
ˇ

ˇ

ˇ

ˇ

cb

ca

ˇ

ˇ

ˇ

ˇ

2

˙

!� 1
2

: (3.20)

Figure 3.1 plots the eigenvalues q˙ and the initial expectation values as functions

of Q � hajQjai, assuming a traceless situation .hajQjai D �hbjQjbi/ and

hajQjbi D 2. The eigenvalue qC is always higher than jQj, while q� is always

below �jQj: the two eigenvalues repel each other and never cross, if hajQjbi ¤ 0.

The distance � D
p

Q2 C jhajQjbij2 � Q measures the increase in the highest

eigenvalue of Q, due to the superposition of the states ϕa; ϕb , and it is maximized

at the crossing point Q D 0.

The physical world displays many systems with two states, the spin being the

most conspicuous one. But in fact, any two states sufficiently isolated from the

remaining ones may be approximated as a two-state system, for which the no-

crossing rule holds. Another example is given by an electron and two protons. As

a reasonable approximation, we may neglect the motion of the protons, since they

are much heavier than the electron. The two states ϕa; ϕb represent the electron

bound to each of the protons: a hydrogen atom and a separate proton in each case.

In this case the Hamiltonian OH plays the role of OQ in (3.18) and (3.19). The extra

binding �, arising from the superposition of states ϕa; ϕb , allows for the existence

of a bound state: the stability of the ionized hydrogen molecule thus has a purely

quantum mechanical origin. This problem is discussed in more detail in Sect. 8.4.1.

Let us consider the case OQ D �x . Equation (3.19) yields the eigenvalues sx D ˙1

and the eigenvectors
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Fig. 3.1 Eigenvalues q˙ of a 2 � 2 system (continuous curves) as functions of Q, half of the

energy distance between the diagonal matrix elements (dotted lines)

φ.x/
a D

1p
2

�

1

1

�

D 1p
2

ϕa C
1p
2

ϕb;

φ
.x/

b D
1p
2

�

1

�1

�

D 1p
2

ϕa �
1p
2

ϕb : (3.21)

These equations express the eigenstates of �x as linear combinations of the

eigenstates (3.15) of �z. The relevance of the relative sign is apparent, in spite of

the fact that the probability of obtaining any component of �z is the same for both

cases.

The unitary transformation

U D 1p
2

�

1 1

1 �1

�

(3.22)

transforms the basis set of eigenvectors of the operator �z into the basis set of

eigenvectors of �x , in accordance with (3.14)

U

�

1

0

�

D 1p
2

�

1

1

�

; U

�

0

1

�

D 1p
2

�

1

�1

�

: (3.23)

Similarly, the operator �z is transformed into the operator �x [see (2.14)]

�

0 1

1 0

�

D U

�

1 0

0 �1

�

UC: (3.24)
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It happens that the operators representing the spin components are given by OSi D
„
2
�i . Thus, the fact that the eigenvalues of �z are the same as those of �x is to be

expected for physical reasons: the eigenvalues do indeed have physical significance,

while the orientation of the coordinate system in an isotropic space does not.

3.3 Harmonic Oscillator

Here we present a solution to the harmonic oscillator problem, a solution that stems

directly from the basic principles listed in Sect. 2.3. The Hamiltonian corresponding

to the one-dimensional harmonic oscillator is

OH D 1

2M
Op2 C M!2

2
Ox2; (3.25)

where ! is the classical frequency (Fig. 3.2).

The harmonic oscillator potential is probably the most widely used potential in

physics, because of its ability to represent physical potentials in the vicinity of stable

equilibrium [e.g. vibrational motion in molecules (8.28)].

It is always convenient to start by finding the order of magnitude of the quantities

involved. To do so, we apply the Heisenberg uncertainty principle (2.37). If the

substitutions Ox ! �x and Op ! „=2�x are made in the harmonic oscillator energy,

so that

E � „2

8M .�x/2
C M!2 .�x/2

2
; (3.26)

then minimization with respect to �x gives the value at the minimum:

.�x/min D
r

„
2M!

; (3.27)

which yields the characteristic orders of magnitude

xc D
r

„
M!

; pc D
p
„M!; Ec D „!: (3.28)

3.3.1 Solution of the Eigenvalue Equation

We intend to solve (2.17). The unknowns are the eigenvalues Ei and the eigen-

functions ϕi . The fundamental tool entering the present solution is the commutation

relation (2.15).

We first define the operators aC; a
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aC �
r

M!

2„ Ox �
ip

2M„!
Op; a �

r

M!

2„ Ox C
ip

2M„!
Op: (3.29)

The operators Ox and Op are Hermitian, since they correspond to physical observables.

Therefore, the operators a; aC are Hermitian conjugates of each other, according to

(2.50). They satisfy the commutation relations

� OH; aC� D „!aC; (3.30)
�

a; aC� D 1: (3.31)

We now construct the matrix elements (2.10) for both sides of (3.30), making use of

two eigenstates ϕi ; ϕj :

hi jŒ OH; aC�jj i D .Ei � Ej /hi jaCjj i D „!hi jaCjj i: (3.32)

We conclude that the matrix element hi jaCjj i vanishes, unless the difference

Ei � Ej between the energies of the two eigenstates is the constant „!. This

fact implies that we may sequentially order the eigenstates connected by aC, the

difference between two consecutive energies being „!. Another consequence is that

we may assign an integer number n to each eigenstate.

Since a; aC are Hermitian conjugate operators, we may also write

hnC 1jaCjni D hnjajnC 1i�: (3.33)

Finally, we expand the expectation value of (3.31):

1 D hnjŒa; aC�jni
D hnjajnC 1ihnC 1jaCjni � hnjaCjn� 1ihn� 1jajni
D jhnC 1jaCjnij2 � jhnjaCjn� 1ij2: (3.34)

This is a finite difference equation in yn D jhnC 1jaCjnij2, of the type 1 D yn �
yn�1. Its solutions are

jhnC 1jaCjnij2 D nC c; hnC 1jaCjni D
p

nC 1; (3.35)

where c is a constant. Since the left-hand side is positive definite, the quantum

number n must have a lower limit, which we may choose to be n D 0. It corresponds

to the ground state ϕ0. In such a case, the matrix element h0jaCj � 1i should

disappear, which fixes the value of the constant c D 1. Therefore, according to

(3.33), h�1jaj0i D 0, which is equivalent to

a ϕ0 D 0; (3.36)
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i.e. the ground state is annihilated by the operator a, which is called the annihilation

operator.

The whole set of orthogonal eigenstates may be constructed by repeatedly

applying the operator aC, the creation operator:

ϕn D
1p
nŠ

�

aC�n ϕ0; n D 0; 1; : : : : (3.37)

These states are labeled with the quantum number n. They are eigenstates of the

operator On D aC a, the number operator, with eigenvalues n:

On ϕn D
1p
nŠ

aCŒa; .aC/n�ϕ0 D
1p
nŠ

aCn
�

aC�n�1
ϕ0 D nϕn: (3.38)

The factor 1=
p

nŠ ensures the normalization of the eigenstates.

To find the matrix elements of the operators Ox and Op, we invert the definition in

(3.29):

Ox D
r

„
2M!

�

aC C a
�

; Op D i

r

M„!
2

�

aC � a
�

; (3.39)

and obtain the non-vanishing matrix elements

hnC 1jxjni D hnjxjnC 1i D
r

„
M!

nC 1

2
; (3.40)

hnC 1jpjni D hnjpjnC 1i� D i

r

M„! nC 1

2
: (3.41)

Substitution of (3.39) into the Hamiltonian yields

OH D „!
�

OnC 1

2

�

; (3.42)

where the operator On has the quantum number n (D 0,1,2, : : :) as eigenvalues. Thus,

the Hamiltonian matrix is diagonal, with eigenvalues En represented in Fig. 3.2

hnjH jni D En D „!
�

nC 1

2

�

: (3.43)

The creation and annihilation operators are often used in many-body quantum

physics (Sects. 7.4.4� and 7.8�). They are also essential tools in quantum field theory,

since they allow us to represent the creation and annihilation of phonons, photons,

mesons, etc. (Sects. 9.8.2� and 9.8.3�).

Quantum mechanics has provided the present derivation based on the fundamen-

tal commutation relation (2.15), which yield the properties of the matrix elements



42 3 The Heisenberg Realization of Quantum Mechanics
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Fig. 3.2 Harmonic oscillator potential and its eigenvalues. All energies are given in units of „!.

The dimensionless variable u D x=xc has been used

hnjaCjmi in a straightforward way. The results are also valid for any problem

involving two operators satisfying (2.15), with a Hamiltonian that is quadratic in

these operators.

3.3.2 Some Properties of the Solution

In the following we use this exact, analytical solution of the harmonic oscillator

problem to deduce some relevant features of quantum mechanics.3 The discussion

of the spatial dependence of the harmonic oscillator problem is deferred to Sect. 4.2.

• The classical equilibrium position xDpD 0 is not compatible with the uncer-

tainty principle, because it implies a simultaneous determination of coordinate

and momentum. The replacement of �x in (3.26) with (3.27) yields the

zero-point energy4 (3.43)

E0 D
1

2
„!; (3.44)

3However, the reader is warned against concluding that most quantum problems are analytically

solvable, a conclusion that may be reinforced throughout these notes by the repeated utilization of

exactly soluble examples. Most quantum problems require insight into physics to approximate the

solution and/or sizeable computing facilities.
4The procedure is only expected to yield correct orders of magnitude. It is a peculiarity of the

harmonic oscillator that the results are exact.
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i.e. the minimum energy that the harmonic oscillator may have. This purely

quantum effect was observed even before the invention of quantum mechan-

ics. Roger Mulliken showed in 1924 that the inclusion of (3.44) leads to a

better agreement with data obtained by comparing the vibrational spectra (see

Sect. 8.4.2) of two molecules made up from different isotopes of the same

element [29]. Applications of the zero-point energy concept range from the

explanation of the intermolecular Van der Vaals force (Problem 11, Chap. 8) to

speculations about massive effects of the electromagnetic vacuum represented by

the ground state of infinite harmonic oscillators (Sect. 9.8.2�).

• By using the closure property (2.59) and the matrix elements (3.40) and (3.41),

one obtains the matrix element of the commutator Œ Ox; Op�:

hnjŒx; p�jmi D hnjxjnC 1ihnC 1jpjmi C hnjxjn � 1ihn� 1jpjmi
�hnjpjnC 1ihnC 1jxjmi � hnjpjn � 1ihn� 1jxjmi

D i„•nm: (3.45)

The matrix elements of the operators Ox2 and Op2 may be constructed in a similar

way:
M!

„ hnjx
2jni D 1

„M!
hnjp2jni D nC 1

2
; (3.46)

which implies the equality between the kinetic energy and potential expectation

values (virial theorem).

Applying the definition of the root mean square deviation �Q given in (2.20),

the product �x�p yields

.�x/n.�p/n D
En

!
D „

�

nC 1

2

�

� 1

2
„: (3.47)

This inequality expresses the uncertainty principle (Sect. 2.6.1). We have thus

verified the intimate connection between the commutation relation of two

operators and the uncertainties in the measurement of the corresponding physical

quantities.

• The invariance with respect to the parity transformation Ŏ (x ! �x) plays an

important role in quantum mechanics. The fact that neither the kinetic energy nor

the harmonic oscillator potential energy is altered by the parity transformation is

expressed by the commutation relation

Œ OH; Ŏ � D 0: (3.48)

As a consequence of this relation, it is possible to know simultaneously the eigen-

values of the two operators OH , Ŏ (see Sect. 2.6.1). In this case the eigenstates of

the harmonic oscillator Hamiltonian are also eigenstates of the parity operator Ŏ .
The eigenvalues of the operator Ŏ are determined by the fact that the operator Ŏ 2
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must have the single eigenvalue �2 D 1, since the system is left unchanged after

two applications of the parity transformation. There are thus two eigenvalues

corresponding to the operator Ŏ , namely � D ˙1. The eigenfunctions are either

invariant under the parity transformation (� D 1, even functions) or change sign

(� D �1, odd functions). This is verified in the case of the harmonic oscillator,

since the operators aC; a change sign under the parity transformation and the

parity of the state labeled by the quantum number n is therefore

Ŏ ϕn D .�1/nϕn: (3.49)

Symmetries constitute essential tools in the characterization and solution of

quantum problems. Every symmetry gives rise to a new quantum number.

3.4 The Jaynes–Cummings Model

Consider a system consisting of a two-state atom coupled to a harmonic oscillator.

The Hamiltonian of the uncoupled subsystems is

OH0 D
„
2

Œ!a�z C !ho .2 OnC 1/� : (3.50)

The eigenvalues of this Hamiltonian are organized as ladder doublets separated by

the oscillator distance „!ho. The atom excitation energy is „!a. The eigenvectors of
OH0 are given by the product states ϕa ¦n and ϕb ¦n [see (3.15) and (3.37)].

Let us introduce a coupling Hamiltonian

Hcoup D �i
„
2

˝ .a�C � aC��/; �˙ D
1

2
.�x ˙ i�y/; (3.51)

which feeds the population of the upper atomic state with a simultaneous de-

exitation of the oscillator, and vice versa. Therefore, it only displays a non-vanishing

matrix element between the states ϕa ¦n and ϕb ¦nC1, which remain uncoupled from

all other pairs. Aside from a common constant energy, the Hamiltonian of the pair

is

OH0 C OHho D
„
2

�

W �z C ˝n�y

�

D „
2

�

W �i˝n

i˝n �W

�

; (3.52)

where W D !a � !ho and ˝n D ˝
p

nC 1. Since this is a particular case of the

Hamiltonian (3.18), the discussion following that equation applies. In particular, the

resulting eigenstates are of the form

‰˙ D c.˙/
an ϕa ¦n C c

.˙/

b.nC1/ ϕb ¦nC1: (3.53)
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This simple Jaynes–Cummings model [30] is applicable to recent tests of

quantum mechanics based on the interaction between a single atom and the

electromagnetic field (Sect. 12.3.3).

Problems

Problem 1. Consider the matrix

0

@

0 1 0

1 0 1

0 1 0

1

A:

1. Find the eigenvalues and verify the conservation of the trace after diagonali-

zation.

2. Find the eigenvector corresponding to each eigenvalue.

3. Check the orthogonality of states corresponding to different eigenvalues.

4. Construct the unitary transformation from the basic set of states used in (3.5) to

the eigenstates of this matrix.

Problem 2. Consider the matrix

�

a c

c �a

�

:

1. Calculate the eigenvalues as functions of the real numbers a; c.

2. Show that the odd terms in c vanish in an expansion in powers of c (jcj � jaj).
3. Show that the linear term does not disappear if jcj � jaj.
Problem 3. Which of the following vector states are linearly independent?

ϕ1 D
�

i

1

�

; ϕ2 D
�

�i

1

�

; ϕ3 D
�

1

i

�

; ϕ4 D
�

1

�i

�

:

Problem 4. Consider the two operators

OQ D

0

@

0:5 0 0

0 0:5 0

0 0 �1

1

A and OR D

0

@

0 0:5 0

0:5 0 0

0 0 1

1

A:

1. Calculate the eigenvalues.

2. Determine whether or not the operators commute.

3. If so, obtain the simultaneous eigenvectors of both operators.
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Problem 5. Consider a unit vector with components cos ˇ and sin ˇ along the

z- and x-axes, respectively. The matrix representing the spin operator in this

direction is written as OSˇ D OSz cos ˇ C OSx sin ˇ.

1. Find the eigenvalues of OSˇ using symmetry properties.

2. Diagonalize the matrix.

3. Find the amplitudes of the new eigenstates in a basis for which the operator OSz is

diagonal.

Problem 6. If a and aC are the annihilation and creation operators defined in

(3.29), show that Œa; .aC/n� D n.aC/.n�1/.

Problem 7. 1. Calculate the energy of a particle subject to the potential V.x/ D
V0 C c Ox2=2 if the particle is in the third excited state.

2. Calculate the energy eigenvalues for a particle moving in the potential V.x/ D
c Ox2=2C b Ox.

Problem 8. 1. Express the distance xc as a function of the mass M and the

restoring parameter c used in Problem 7.

2. If c is multiplied by 9, what is the separation between consecutive eigenvalues?

3. Show that xc is the maximum displacement of a classical particle moving in a

harmonic oscillator potential with an energy of „!=2.

Problem 9. Evaluate the matrix elements hn C �jx2jni and hn C �jp2jni in the

harmonic oscillator basis for � D 1; 2; 3; 4:

1. Using the closure property and the matrix elements (3.41)

2. Applying the operators Ox2 and Op2, expressed in terms of the aC; a, on the

eigenstates (3.37)

Find the ratio hnC �jKjni W hn C �jV jni .� D 0;˙2/ in the harmonic oscillator

basis, where OK; OV are the operators corresponding to the kinetic and the potential

energies, respectively. Justify the resulting sign difference between these three cases

on quantum mechanical grounds.

Problem 10. Calculate the expectation value of the coordinate operator for a linear

combination of harmonic oscillator states with the same parity.

Problem 11. 1. Construct the normalized, linear combination of harmonic oscilla-

tor states ‰ D c0ϕ0 C c1ϕ1 for which the expectation value h‰jxj‰i becomes

maximized.

2. Evaluate in such a state the expectation values of the coordinate, the momentum

and the parity operators.

Note: In some chemical bonds, nature takes advantage of the fact that electrons

protrude from the atom in a state similar to the linear combination ‰. This situation

is called hybridization.

Problem 12. Verify the normalization of the states (3.37).

Problem 13. Find the amplitudes c
.˙/
i in (3.53) for the resonant case !a D !ho.



Chapter 4

The Schrödinger Realization

of Quantum Mechanics

The realization of the basic principles of quantum mechanics by means of position

wave functions is presented in Sect. 4.1. This is where the time-independent

Schrödinger equation is obtained, and where the spatial dimension in quantum

problems appears explicitly.

The harmonic oscillator problem is solved again in Sect. 4.2. The reader will thus

be able to contrast two realizations of quantum mechanics by comparing the results

obtained here with those presented in Sect. 3.3.

Solutions to the Schrödinger equation in the absence of forces are discussed in

Sect. 4.3. Such solutions present normalization problems which are solved by taking

into consideration the limiting case of particles moving either in a large, infinitely

deep square well potential, or along a circumference with a large radius (Sect. 4.4.1).

These solutions are applied to some situations that are interesting both conceptually

and in practical applications: the step potential (Sect. 4.5.1) and the square barrier

(Sect. 4.5.2), which are schematic versions of scattering experiments. The free-

particle solutions are also applied to the bound-state problem of the finite square

well (Sect. 4.4.2), to the periodic potential (Sect. 4.6�) and to a practical application,

the tunneling microscope (Sect. 4.5.3).

4.1 Time-Independent Schrödinger Equation

In the formulation of quantum mechanics presented in this chapter, the state vector

is a complex function of the coordinate, ‰ D ‰.x/. This type of state vector is

usually known as a wave function. The sum of two wave functions is another wave

function

‰.x/ D ˛B‰B.x/C ˛C ‰C .x/: (4.1)
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The scalar product is defined as

h‰B j‰C i D
Z 1

�1
‰�

B‰C dx: (4.2)

As a consequence of this choice of ‰.x/, the coordinate operator is simply the

coordinate itself
Ox D x: (4.3)

A realization of the algebra (2.15) is given by the assignment1

Op D �i„ d

dx
; (4.4)

since for an arbitrary function f .x/,

Œx; Op�f D �i„x df

dx
C i„d.xf /

dx
D i„f: (4.5)

It is simple to verify that the operator x is Hermitian, according to the definition

(2.53). This is also true for the momentum operator, since

Z 1

�1
ˆ� Op‰dx D �i„ˆ�‰j1�1 C i„

Z 1

�1
‰

d

dx
ˆ� D

�Z 1

�1
‰� Opˆdx

��
; (4.6)

where we have assumed ‰.˙1/ D 0, as is the case for bound systems. The

eigenfunctions of the momentum operator are discussed in Sect. 4.3.

A translation of the state vector by the amount a can be performed by means of

the unitary operator

U.a/ D exp

�

i

„a Op
�

; (4.7)

since

U.a/‰.x/ D
X

n

an

nŠ

dn‰

dxn
D ‰.x C a/: (4.8)

An observable is translated as

U OQ.x/UC D OQ.x C a/: (4.9)

A finite translation may be generated by a series of infinitesimal steps

U.ıa/ D 1C i

„ıa Op; (4.10)

and Op is referred to as the generator of infinitesimal translations.

1Although any function of x may be added to (4.4) and still satisfy (2.15), such a term should be

dropped because free space is homogeneous.
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The replacement of the operators (4.3) and (4.4) in the classical expression of any

physical observable Q.x; p/ yields the corresponding quantum mechanical operator
OQ D Q.x; Op/ in a differential form. Given any complete set of orthonormal wave

functions ϕi.x/, the matrix elements associated with the operator OQ are constructed

as in (2.10). This construction provides the link between the Heisenberg and the

Schrödinger realizations of quantum mechanics.

The conservation law associated with translational symmetry is expressed by the

commutation Œ OH ; Op� D 0. This is the second symmetry that we have come across in

the present text.

The Hamiltonian (2.16) yields the eigenvalue equation

� „
2

2M

d2ϕi

dx2
C V.x/ϕi D Eiϕi ; (4.11)

which is called the time-independent Schrödinger equation.

4.1.1 Probabilistic Interpretation of Wave Functions

Information may be extracted from the wave function through the probability

density (2.71) [31]

�.x/ D j‰.x/j2: (4.12)

The probability of finding the particle in the interval L1 � x � L2 is given by the

integral
Z L2

L1

j‰.x/j2dx: (4.13)

In particular, the probability of finding the particle anywhere must equal 1:

1 D h‰j‰i; (4.14)

which implies that the wave function should be normalized.

We now discuss how this probability changes with time t . We therefore allow for

a time dependence of the wave function2 [‰ D ‰.x; t/]:

d

dt

Z L2

L1

j‰.x; t/j2dx D
Z L2

L1

� P‰�‰ C‰� P‰
�

dx

D i

„

Z L2

L1

h

�

i„ P‰
��

‰ �‰��i„ P‰
�

i

dx: (4.15)

2The time dependence of the wave function is discussed in Chap. 9. We anticipate the result here

because the notion of probability current is needed in the next few sections.
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We may replace i„ P‰ with OH‰, according to the time-dependent Schrödinger

equation (9.5). We are left with only the kinetic energy contribution, since the terms

proportional to the potential cancel inside (4.15):

d

dt

Z L2

L1

j‰.x; t/j2dx D � i„
2M

Z L2

L1

�

d2‰�

dx2
‰ �‰� d2‰

dx2

�

dx

D i„
2M

Z L2

L1

d

dx

�

�d‰�

dx
‰ C‰� d‰

dx

�

: (4.16)

We obtain the equation
@�

@t
C @j

@x
D 0; (4.17)

where we have defined the probability current

j.x; t/ � � i„
2M

�

�@‰�

@x
‰ C‰� @‰

@x

�

: (4.18)

Equation (4.17) is a continuity equation, similar to the one used in hydrodynamics

to express conservation of mass. Imagine a long prism along the x-axis, bound by

two squares of area A at x D L1 and x D L2, respectively. The variation of the

probability of finding the particle inside the prism, i.e.

� @

@t

Z L2

L1

� dx;

is equal to the difference between the fluxes leaving and entering the prism, viz.

AŒj.L2/ � j.L1/� (see Fig. 4.1).

The probability density and the probability current give spatial dimensions to the

Schrödinger realization of quantum mechanics. These spatial features are especially

useful in chemistry, where bulges of electron distribution in atoms are associated

with increases in the chemical affinities of elements (Fig. 5.2).

The expression for the probability current underscores the need to use complex

state vectors in quantum mechanics, since the current vanishes for real wave

functions.

j1 j2

dr/dt

Fig. 4.1 Conservation of probability density. The rate of change within a certain interval is given

by the flux differences at the boundaries of the interval
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Here we may continue the list of misconceptions that prevail in quantum

mechanics [19]:

• “The probability current j.x/ is related to the speed of that part of the particle

which is located at the position x.” This statement gives the false impression

that, although the particle as a whole has neither a definite position nor a definite

momentum, it is made up of parts that do. In fact, particles are not made up of

parts.

• “For any energy eigenstate, the probability density must have the same symmetry

as the Hamiltonian.” This statement is correct in the case of inversion symmetry,

for even states of a parity-invariant Hamiltonian (see Sect. 4.2). It is not correct

for odd states. It is also generally false for a central potential, since only l D 0

states have probability densities with a spherical shape (Fig. 5.2).

• “A quantum state ‰.x/ is completely specified by its associated probability

density j‰.x/j2.” The probability densities, being real numbers, cannot give

information about all the properties of the state, such as, for example, those

related to momentum.

• “The wave function is dimensionless.” It has the dimensions Œlength��dN=2 , where

N is the number of particles and d is the dimension of the space.

• “The wave function ‰.x/ is a function of regular three-dimensional space.” This

is true only for one-particle systems. For two-particle systems, the wave function

‰.x1; x2/ exists in six-dimensional, configuration space.

• “The wave function is similar to other waves appearing in classical physics.”

Unlike electromagnetic or sound waves, the wave function is an abstract entity.

In particular, it does not interact with particles.

Both the probability density and the probability current are defined at each point

in space. Other quantum predictions require integration over the whole space. For

instance, the expectation value of an operator OQ is

h‰jQj‰i �
Z 1

�1
‰.x; t/� OQ‰.x; t/dx: (4.19)

For an operator depending only on the coordinate x, this definition is a direct

consequence of Born’s probability density (4.12). However, for a differential

operator such as Op, the alternative
R

‰. OQ‰/�dx is also possible. Nevertheless, the

two definitions are identical for physical (Hermitian) operators.

4.2 The Harmonic Oscillator Revisited

The Schrödinger equation (4.11) corresponding to the harmonic oscillator Hamilto-

nian (3.25) reads
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� „
2

2M

d2ϕn.x/

dx2
C M!2

2
x2ϕn.x/ D Enϕn.x/: (4.20)

4.2.1 Solution of the Schrödinger Equation

It is always useful to rewrite any equation in terms of dimensionless coordinates.

Not only does one get rid of unnecessarily cumbersome constants, but the solution

may apply just as well to cases other than the one being considered. Therefore, in

the present problem, the coordinate x and the energy E are divided by the value of

the characteristic length and energy (3.28), namely

u D x=xc; e D E=„!: (4.21)

The Schrödinger equation thus simplified reads

� 1

2

d2ϕn.u/

du2
C 1

2
u2ϕn.u/ D enϕn.u/: (4.22)

This equation must be supplemented with the boundary conditions

ϕn.˙1/ D 0: (4.23)

The eigenfunctions and eigenvalues are of the form

ϕn.x/ D Nn exp

�

�1

2
u2

�

Hn.u/; en D nC 1

2
: (4.24)

The Hn are Hermite polynomials3 of degree n D 0; 1; 2; : : : . The eigenfunctions

and eigenvalues are also labeled by the quantum number n. Up to a phase, the

constants Nn are obtained from the normalization condition (4.14)

Nn D 2n=2
�

 
1
2 nŠxc

��1=2

: (4.25)

Since the Hamiltonian is a Hermitian operator, the eigenfunctions are orthogonal to

each other and constitute a complete set of states:

3The reader is encouraged to verify that the few cases listed in Table 4.1 are correct solutions. Use

can be made of the integrals

Z 1

�1
exp.�u2/u2ndu D .2n � 1/ŠŠ

2n
 

1
2 ;

Z 1

�1
exp.�u2/u2nC1du D 0:
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Table 4.1 Solutions to the harmonic oscillator problem for small values of n. Pn is defined

in (4.30)

n en Hn Nn 1=4x
1=2
c Pn(%)

0 1/2 1 1 15.7

1 3/2 u
p

2 11.2

2 5/2 u2 � 1=2
p

2 9.5

5 11/2 u5 � 5u3 C 15u=4 2=
p

15 5.7

hnjmi D
Z 1

�1
ϕ�

nϕmdx D ınm; ‰.x/ D
X

n

cnϕn: (4.26)

The solutions corresponding to the lower quantum numbers are displayed in

Table 4.1 and Fig. 4.2.

4.2.2 Spatial Features of the Solutions

The following features arise from the spatial dimension associated with the

Schrödinger formulation:

• Probability density. There are nodes in the probability density (except for the

n D 0 state). The existence of such nodes is incompatible with the classical

notion of a trajectory x.t/, according to which the particle bounces from one

side of the potential to the other, while going through every intermediate point.

The fact is that the particle can never be found at the nodes. The quantum picture

reminds us of the stationary wave patterns obtained, for instance, inside an organ

pipe. The role that is played in the case of sound by the ends of the pipe is played

in the case of the quantum harmonic oscillator by the boundary conditions.

• Comparison between the classical and quantum mechanical probability densi-

ties. The classical probability for finding a particle is inversely proportional to its

speed [v D
�

2E=M � !2x2
�1=2

for the harmonic oscillator]. Therefore, we may

define a classical probability density Pclas D != v. The probability of finding

the particle in any place, within the classically allowed interval �xn � x � xn,

is 1. Here, xn D xc.2n C 1/1=2 for a particle with energy „!.n C 1=2/. The

classical probability density displays a minimum around the origin and diverges

as the particle approaches the end points of the allowed interval. The quantum

mechanical density distribution for the ground state has exactly the opposite

features. However, as n increases, the quantum mechanical density distribution

tends towards the classical limit (Fig. 4.2). In fact, the quantum probability

Pn.x0; �x/ satisfies the limiting relation
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Fig. 4.2 Quantum mechanical probability densities and the classical probability densities of a

harmonic oscillator potential as a function of the dimensionless distance u, for the quantum

numbers n D 0; 1; 2 and 5. Vertical lines represent the limits of the classically allowed interval

lim
n!1

Pn.x0; �x/ D Pclas.x0; �x/

Pn.x0; �x/ D
Z x0C�x=2

x0��x=2

jϕnj2dx; (4.27)

as required by Bohr’s correspondence principle.

• Tunnel effect. Outside the allowed interval �xc � x � xc, the classical particle

would have a negative kinetic energy and thus an imaginary momentum. How-

ever, this argument does not hold in the quantum case, because it would imply

some simultaneous determination of the particle location and the momentum,

contradicting the uncertainty principle. Let us suppose that a particle in its ground
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state has been detected within the interval xc � x �
p

2xc, i.e. within the region

following the classically allowed one. In this interval, the probability density

decreases from N 2
0 =e at x D xc to N 2

0 =e3 (i.e. by a factor e�2). If we measure

the particle within this interval, and we take it to be a reasonable measure of the

uncertainty in the position of the particle, then

�x � 0:41xc: (4.28)

According to the Heisenberg principle, the minimum uncertainty in the determi-

nation of the momentum is

�p � 1:22
p
„!M ; (4.29)

which is consistent with an uncertainty in the kinetic energy larger than

.�p/2 =2M � 3
4
„!. Since the potential energy in the same interval increases

from „!=2 to „!, we cannot make any statement about a possible imaginary

value for the momentum, which would rule out the possibility that the particle

penetrates into the classically forbidden region.

The probability of finding the particle in the classically forbidden region is

Pn D
2nC1

 1=2nŠ

Z 1

p
2nC1

e�u2 jHnj2du: (4.30)

This probability is a finite number, as large as 16% for the ground state. It

decreases as the quantum number n increases, consistent with the tendency to

approach the classical behavior for higher values of the energy (see Table 4.1).

4.3 Free Particle

If there are no forces acting on the particle, the potential is constant: V.x/ D V0. Let

us assume in the first place that the energy E � V0. In such a case the Schrödinger

equation reads

� „
2

2M

d2ϕk.x/

dx2
D .E � V0/ϕk.x/: (4.31)

There are two independent solutions to this equation, namely

ϕ˙k.x/ D A exp.˙ikx/; k D
p

2M.E � V0/

„ : (4.32)

The parameter k labeling the eigenfunction is called the wave number and

has dimensions of a reciprocal length. The eigenvalues of the energy and the

momentum are
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Fig. 4.3 Real component,

imaginary component and

modulus squared of a plane

wave as functions of the

dimensionless variable

u D kx, where u is measured

in radians

0 5 10 15 20 25 30

Im(ϕk)

Re(ϕκ)

u

|ϕk|
2

E D „2k2=2M C V0; p D ˙„k: (4.33)

Unlike the case of the harmonic oscillator (a typical bound case), the eigenvalues

of both the momentum and the energy belong to a continuous set. The free-particle

solutions satisfy the de Broglie relation [32]

p D „k D h=�; (4.34)

where � is the particle wave length. The probability density is constant over the

whole space (Fig. 4.3)

�˙k.x/ D ϕ�
˙k.x/ϕ˙k.x/ D jAj2; (4.35)

while the probability current reads

j˙k.x/ D �i
„

2M

�

ϕ�
˙k

dϕ˙k.x/

dx
� ϕ˙k.x/

dϕ�
˙k.x/

dx

�

D ˙jAj
2„k

M
: (4.36)

These results pose normalization problems, which may be

• Solved by applying more advanced mathematical tools, as in Sect. 11.1�

• Taken care of through the use of tricks, as in Sect. 4.4.1

• Circumvented, by looking only at the ratios of the probabilities of finding the

particle in different regions of space (Sects. 4.5.1 and 4.5.2)

Since there are two degenerate solutions,4 the most general solution for a given

energy E is a linear combination

‰.x/ D AC exp.ikx/C A� exp.�ikx/: (4.37)

4Two or more solutions are called degenerate if they are linearly independent and have the same

energy.
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Let us consider now the case E � V0, which makes no sense from the classical

point of view. However, the solution of the harmonic oscillator problem (third item

in Sect. 4.2.2) has warned us not to reject this situation out of hand in the quantum

case. In fact, the general solution is the linear combination5

‰.x/ D BC exp.�x/C B� exp.��x/; � D �ik D
p

2M.V0 � E/

„ : (4.38)

This general solution diverges at infinity: j‰j ! 1 as x ! ˙1. Rather than a

total rejection, this feature implies that the solution (4.38) can only be used if at

least one of the extremes cannot be reached. For instance, if V0 > E for x > a, one

imposes BC D 0.

4.4 One-Dimensional Bound Problems

4.4.1 Infinite Square Well Potential. Electron Gas

The potential in this case is V.x/ D 0 if jxj � a=2 and V.x/ D 1 for jxj � a=2

(Fig. 4.4).

The two infinite discontinuities should be canceled in the Schrödinger equation

by similar discontinuities in the second derivative at the same points. This is

accomplished by requiring the wave function to be a continuous function and

requiring the first derivative to have a finite discontinuity at the boundaries of the

potential. Since the wave function vanishes outside the classically allowed interval,

the continuity of the wave function requires ‰.˙a=2/ D 0.

According to (3.48), we may demand that the eigenfunctions of the Hamiltonian

carry a definite parity. This is accomplished by using the solutions (4.37) with AC D
A� for the even parity states, and AC D �A� for the odd ones. The eigenfunctions

are written as

ϕeven
n .x/ D

r

2

a
cos.knx/; ϕodd

n .x/ D
r

2

a
sin.knx/ (4.39)

inside the well, and vanish outside the well. As a consequence of the boundary

conditions,
kna

2 
D n0; n0 D 1

2
; 1;

3

2
; 2; : : : ; (4.40)

where the half-integer values correspond to the even solutions and the integer values

to the odd ones. The eigenvalues of the energy are

5The only difference between the two solutions (4.37) and (4.38) is whether k is real or imaginary.
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ϕ1

ϕ2

ϕ3

E3

E2

E1

–a / 2 a / 20

Fig. 4.4 Infinite square well potential. The energies En (continuous lines) and wave functions

ϕn.x/ (dotted curves) are represented for the quantum numbers n D 1; 2 and 3

En D
„2k2

n

2M
D „

2 2

2Ma2
n2; (4.41)

with n D 2n0 D 1; 2; : : : .

The reader is recommended to check that the quantum features associated with

the solution of the harmonic oscillator problem (Sect. 4.2.2) are reproduced in the

case of the infinite square well. The exception is the one related to the tunnel effect,

which is prevented here by the infinite discontinuity in the potential.

By increasing the size of the box, the infinite potential well may be used to

model the potential binding the electrons in a metal. In the electron gas model in

one dimension, the (non-interacting) electrons are confined to a (large) segment a,

which is much larger than the size of a given experimental set-up.

However, the standing waves (4.39) are not convenient for discussing charge

and energy transport by electrons. In fact, the probability current associated with

them vanishes. In the theory of metals, it is more convenient to use running waves

exp.˙ikx/ (4.32). We may use an alternative boundary condition by imagining that

the end point at x D a=2 is joined to the opposite point at x D �a=2. In this way

the segment transforms into a circumference with the same length a. An electron

arriving at the end of the well is not reflected back in, but leaves the metal and

simultaneously re-enters at the opposite end. The representation of a free particle

becomes more adequate as the radius a=2  gets larger. This procedure results in the

boundary condition ‰.x/ D ‰.x C a/, or

kna

2 
D n; n D 0;˙1;˙2; : : : : (4.42)
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The total number of states is the same as for the standing waves (4.40), since

the presence of half-integer and integer numbers in that case is compensated for

here by the existence of two degenerate states ˙n. The eigenfunctions and energy

eigenvalues are

ϕn.x/ D 1p
a

exp.iknx/; En D
„2k2

n

2M
: (4.43)

As mentioned in Sect. 4.3, these functions are also eigenfunctions of the momentum

operator Op with eigenvalues „kn. Although the momenta (and the energies) are

discretized, the gap

�k D 2 =a (4.44)

between two consecutive eigenvalues becomes smaller than any prescribed interval,

if the radius of the circumference is taken to be sufficiently large.

In quantum mechanics, sums over intermediate states often appear. In the

case of wave functions of the type (4.43), this procedure may be simplified by

transforming the sums into integrals, using the length element in the integrals

.a=2 /dk, according to (4.44):

X

k

fk !
a

2 

Z

fkdk: (4.45)

The extension of the model to include a periodic crystal structure is performed in

Sect. 4.6�. Calculations with the electron gas model for the three-dimensional case

are carried out in Sect. 7.4.1.

4.4.2 Finite Square Well Potential

The potential reads V.x/ D �V0 < 0 if jxj < a=2 and V.x/ D 0 for other values

of x. Here we consider only bound states, with a negative energy (0 � �E � �V0).

As in the harmonic oscillator case, the potential is invariant under the parity

transformation x ! �x. Thus we expect the eigenfunctions to be either even or

odd with respect to this transformation. Therefore, the solution (4.37) applies in the

region jxj � a=2, with

AC D ˙A� and k D 1

„
�

2M.V0 �E/
�1=2

:

Moreover, invariance under the parity transformation allows one to confine calcula-

tion of the boundary conditions to the position x D a=2. The wave function to the

right of this point is given by (4.38) with BC D 0 and � D .1=„/.2ME/1=2.
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Fig. 4.5 Graphical determination of the energy eigenvalues of a finite square well potential.

The intersections of the continuous curve
p

.13=�/2 � 1 with the dashed curves correspond to

even-parity solutions, while those with the dotted curves correspond to the odd ones. The value

M V0a
2=„2 D 338 is assumed

The ratio between the continuity conditions corresponding to the first derivative

and to the function itself yields the eigenvalue equation

�

k
D tan

ka

2
: (4.46)

This is as far as we can go analytically in this case. Equation (4.46) must either

be solved numerically or using the following graphical method: the equation

determining the value of k is equivalent to the equation E D V0 � „2k2=2M .

Therefore, we obtain the ratio

�

k
D
r

2M V0

„2k2
� 1; (4.47)

and (4.46) becomes
r

M V0a2

2„2�2
� 1 D tan �; (4.48)

where � � ka=2. The function tan � increases from zero to infinity in the interval

0 � � �  =2, while the left-hand side decreases from infinity to a finite value as

� increases in the same interval. Therefore, there is a value of � at which the two

curves intersect, corresponding to the lowest eigenvalue. An analogous argument

is made for the successive roots of (4.48). The nth root is found in the interval

.n � 1/  � � � .n � 1=2/ . (Fig. 4.5).
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Unlike the harmonic oscillator case, the number of roots is limited, since (4.48)

requires � � �max, where

�max D
r

M V0a2

2„2
: (4.49)

There is a set of odd solutions that satisfy an equation similar to (4.46), namely

� cot
ka

2
D �

k
: (4.50)

Unlike the classical case, the probability density is not constant in the interval

jxj � a=2. Moreover, there is a finite probability of finding the particle outside

the classically allowed region. However, the solutions tend towards the classical

behavior as n increases.

The spectrum of normalizable (bound) states is always discrete. Conversely,

states that have a finite amplitude at infinity must be part of a continuous spectrum.

This is the case for positive values of the energy (see Sect. 4.5.2).

4.5 One-Dimensional Unbound Problems

In this section we study problems related to the scattering of a particle by means of

a potential. We assume that the particle impinges from the left and may be reflected

and/or transmitted. There is no incoming wave from the right. Therefore the state

vector must satisfy the following boundary conditions:

• It includes the term AC exp.ikx/ for x ! �1;

• It does not include the term A� exp.�ikx/ for x !1.

4.5.1 One-Step Potential

The one-step potential is written as V.x/ D 0 for x < 0 and V.x/ D V0 > 0 for

x > 0 (Fig. 4.6). It represents an electron moving along a conducting wire that is

interrupted by a short gap. The electron feels a change in the potential as it crosses

the gap.

Ea < V0

Classically, the particle rebounds at x D 0 and cannot penetrate the region x � 0.

Quantum mechanically this is no longer the case. For x � 0 the solution is given as

the superposition of an incoming and a reflected wave (4.37), with V0 D 0. Equation
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Fig. 4.6 One-step potential. Subscripts a and b label wave functions corresponding to energies

Ea D 3V0=4 and Eb D 5V0=4, respectively

(4.38) holds for x � 0. This last solution cannot be rejected, since it does not diverge

on the right half-axis if we impose the boundary condition BC D 0.

To have a Schrödinger equation valid at every point of space, the wave function

and its first derivative should be continuous everywhere, including the point at which

there is a finite discontinuity in the potential. These two requirements imply that

AC C A� D B� ; AC �A� D i
�

k
B�: (4.51)

Therefore

AC D
1

2
B�

�

1C i
�

k

�

; A� D
1

2
B�

�

1 � i
�

k

�

: (4.52)

The total wave function is given by

‰a.x/ D 1

2
B�

h�

1C i
�

k

�

exp.ikx/C
�

1 � i
�

k

�

exp.�ikx/
i

D B�
h

cos.kx/ � �

k
sin.kx/

i

.x � 0/;

‰a.x/ D B� exp.��x/ .x � 0/: (4.53)

The solution for x � 0 represents the superposition of an incident and a reflected

wave. Since both amplitudes have equal module, they generate a standing wave with

the corresponding nodes at positions such that tan.kx/ D k=�, for x � 0 (see the

first item in Sect. 4.2.2). The probability currents associated with the incident and
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reflected waves are

jI D �jR D
„k
M

jB�j2
4

�

1C �2

k2

�

: (4.54)

The reflection coefficient is defined as the absolute value of the ratio between

reflected and incident currents. In the present case,

R �
ˇ

ˇ

ˇ

ˇ

jR

jI

ˇ

ˇ

ˇ

ˇ

D 1: (4.55)

The mutual cancelation between the two probability currents is correlated with the

real character of the wave function (4.53).

There is a tunneling effect for x � 0, since the particle can penetrate into

the forbidden region over a distance of the order of �x D 1=�. This length is

accompanied by an uncertainty in the momentum and in the kinetic energy, so that

�p � „
�x
�
p

2M.V0 �Ea/; �E � .�p/2

2M
� V0 � Ea; (4.56)

respectively. The consequences of these uncertainties parallel those discussed in

Sect. 4.2.2.

Eb > V0

The classical solution describes an incident particle which is totally transmitted, but

with a smaller velocity. From the quantum mechanical point of view, the solution

for x � 0 is again given by (4.37) with V0 D 0, representing an incident plus a

reflected wave. For x � 0 this same solution is valid, but with the wave number kb D
p

2M.Eb � V0/=„. There is no incident wave from the right, since there is nothing

that may bounce the particle back. Let C denote the amplitude of the transmitted

wave exp.ikbx/. The continuity of the wave function and its first derivative at x D 0

requires that

AC C A� D C ; AC � A� D
kb

k
C: (4.57)

Using these equations, we may express the amplitudes of the reflected and transmit-

ted waves as proportional to the amplitude of the incident wave, so that

‰b.x/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

AC

�

exp.ikx/C k � kb

k C kb

exp.�ikx/

�

.x � 0/ ;

AC
2k

k C kb

exp.ikbx/ .x � 0/:

(4.58)
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The probability currents associated with the incident, reflected and transmitted

waves are

jI D
„k
M
jACj2;

jR D �
„k
M

�

k � kb

k C kb

�2

jACj2; (4.59)

jT D
„kb

M

�

2k

k C kb

�2

jACj2;

respectively. In this case we also define a transmission coefficient T � jT=jI

R D
�

k � kb

k C kb

�2

; T D 4kkb

.k C kb/2
; (4.60)

and we find that R C T D 1 as expected, since the current should be conserved in

the present case.

What makes the particle bounce? The quantum mechanical situation is similar to

a beam of light crossing the boundary between two media with different indices of

refraction. At least a partial reflection of the beam takes place.

Note that the wave functions (4.53) and (4.58) may be obtained from each other

through the substitution kb.E/ D i�.E/.

4.5.2 Square Barrier

The potential is given by V.x/ D 0 .jxj > a=2/ and V.x/ D V0 .jxj < a=2/

(Fig. 4.7). We only consider explicitly the case E � V0. Classically, the particle can

only be reflected at x D �a=2.

For x � �a=2 and for x � a=2, the solution to the Schrödinger equation

again takes the form (4.37), with the same value of k for both regions (V0 D 0).

However, there is only a transmitted wave, C exp.ikx/, for x � a=2. Within the

intermediate region �a=2 � x � a=2, the solution is as in (4.38). We cannot now

reject either of the two components on account of their bad behavior at infinity.

We thus have five amplitudes. The continuity conditions at the two boundaries

provide us with four equations: the four remaining amplitudes may be expressed

in terms of the amplitude of the incident wave AC. We may also obtain here the

currents associated with the incident beam jI, the reflected beam jR, the transmitted

beam jT and the beam within the barrier jB, and the reflection and transmission

coefficients R; T :
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Fig. 4.7 Square barrier and associated wave function. Here E D 3V0=4

jI D
„k
M
jACj2; jR D �

„k
M
jA�j2;

jT D
„k
M
jC j2; jB D

2„�
M

h

Re .BC/Im .B�/� Re .B�/Im .BC/
i

;

R D
ˇ

ˇ

ˇ

ˇ

jR

jI

ˇ

ˇ

ˇ

ˇ

D sinh2.�a/

4E

V0

�

1 � E

V0

�

C sinh2.�a/

;

T D
ˇ

ˇ

ˇ

ˇ

jT

jI

ˇ

ˇ

ˇ

ˇ

D
ˇ

ˇ

ˇ

ˇ

jB

jI

ˇ

ˇ

ˇ

ˇ

D

4E

V0

�

1 � E

V0

�

4E

V0

�

1 � E

V0

�

C sinh2.�a/

: (4.61)

For values of �a > 1 the transmission coefficient displays an exponential

decay

T � 16E

V0

�

1 � E

V0

�

exp.�2�a/: (4.62)

Transmission through a potential barrier is another manifestation of the tunnel

effect, which has been discussed both in connection with the harmonic oscillator

(Sect. 4.2.2) and with the one-step potential (Sect. 4.5.1). The tunnel effect manifests

itself in the ’-decay of nuclei, the tunneling microscope, etc.
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Fig. 4.8 Scanning tunneling microscope

The corresponding analysis for the case of a potential well parallels the one

made for the square barrier. A solution of type (4.37), instead of (4.38), should

also be used for the region inside the well. There will also be incident, reflected

and transmitted waves, and coefficients of reflection and transmission that sum to a

value of unity.

4.5.3 Scanning Tunneling Microscope

The scanning tunneling microscope (STM) was developed in the 1980s by Gerd

Binnig and Heinrich Rohrer [33]. A conducting probe ending in a very sharp tip is

held close to a metal sample. In a metal, electrons move freely according to the

electron gas model [Sects. (4.4.1) and (7.4.1)], filling all levels up to the Fermi

energy �F. The potential rises at the surface of the metal forming a barrier, and

electrons tunnel through the barrier between tip and surface sample (Fig. 4.8). The

tunneling current6 is proportional to the transmission coefficient T (4.62). Thus, it

exponentially increases as the distance tip–surface decreases. The tip is mounted on

a piezoelectric tube, which allows very small movements by applying voltage at its

electrodes. The tip slowly scans the surface.

6A small voltage difference Vts between tip and sample must be introduced, to ensure the existence

of empty electron states in the sample, that should be occupied by tunneled electrons.
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Fig. 4.9 Periodic potential. The upper part of the figure represents a realistic potential. The lower

one mocks this potential as successive square wells

An effective value of � can be estimated by replacing the difference V0 � E

in (4.38) by an average of sample and tip work functions W (the smallest energy

needed to remove an electron from a metal, about 4 eV). Thus �� 2 Å�1 and,

consequently, the device is sensitive to changes in distance at the subangstrom scale

(Problem 12).

The tip is moved over the surface of the sample, which requires high precision

movement coupled to electrical control. This is achieved by means of piezoelectric

elements.

The STM is used in both industrial and basic research to obtain atomic-scale

images of metal surfaces and of other materials, from the atomic to the micron

scale. It is also possible to achieve tiny tunnel currents if, for instance, biological

materials are spread as thin films over conductive substrates.

Large electric fields applied to the tip can lift atoms one by one and deposit them

at chosen locations. The contents of all books from the British Library could thus fit

on top of one stamp. One can also make small “quantum corrals,” a few angstrom

wide.7

7However, it is still difficult to find quantum features in these small systems because of decoherence

(see Sect. 14.2�).
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4.6� Band Structure of Crystals

A crystal consists of an array of N positive ions displaying a periodic structure

in space and electrons moving in the electric field generated by the ions. Figure 4.9

sketches the potential V.xCd/ D V.x/ that an electron feels in the one-dimensional

case. In this section we study the main features of the single-particle eigenstates in

such a potential.

Classically, an electron moving in the potential of Fig. 4.9 may be bound to a

single ion so that it is unable to transfer to another ion. Quantum mechanically, this

may be ensured only if the distance d between the ions is very large. In such a case,

the N states in which the electron is bound to one atom of the array constitute an

orthogonal set of states which is N times degenerate. However, as the distance d is

reduced to realistic values, we expect the degeneracy to be broken and the energy

eigenvalues to be distributed within a band. In the following, we show how this

picture is represented mathematically.

The Bloch theorem states that the wave function of a particle moving in a periodic

potential has the form

ϕk.x/ D exp.ikx/uk.x/; (4.63)

where k is real and uk.x C d/ D uk.x/ is a periodic function [34].

Since the most relevant property of the potential is its periodicity and not its

detailed shape, we replace the realistic potential with a periodic array of square well

potentials (Fig. 4.9). We have learned by now how to solve square well problems.

Here V.x/ D �V0 .0 � x � b/ and V.x/ D �V1 (b � x � d ). Moreover,

V.x C d/ D V.x/. We denote the energy by �E , with E > 0. We assume that the

electron is bound to the crystal for negative energy values.

Region I: �V0 � �E � �V1

According to Sect. 4.3, the wave functions in the interval nd � x � .nC 1/d are

‰.x/ D
�

AC exp.ikbx/C A� exp.�ikbx/; nd � x � nd C b;

BC exp.�bx/C B� exp.��bx/; nd C b � x � .nC 1/d;
(4.64)

where

kb D
1

„
p

2M.V0 � E/; �b D
1

„
p

2M.E � V1/: (4.65)

Thus the periodic function uk.x/ is of the form

uk.x/ D

8

<

:

AC expŒi.kb � k/x�C A� expŒ�i.kb C k/x�; nd � x � nd C b;

BC expŒ.�b � ik/x�C B� expŒ�.�b C ik/x�;

nd C b � x � .nC 1/d:
(4.66)
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The periodicity of uk requires

uk.x/ D AC expŒi.kb � k/.x � d/�C A� expŒ�i.kb C k/.x � d/�; (4.67)

for
.nC 1/d � x � .nC 1/d C b:

The continuity conditions for the wave function, or equivalently for uk, yield four

linear equations for the amplitudes A˙; B˙ (two at x D b and two at x D d ).

Therefore the determinant of the coefficients of the amplitudes should vanish. This

condition leads to the equation

f .E/ D cos.kd/; (4.68)

where

f .E/ D �2
b � k2

b

2kb�b

sinh
�

�b.d � b/
�

sin.kbb/C cosh
�

�b.d � b/
�

cos.kbb/: (4.69)

Region II: �V1 � �E � 0

The procedure is completely parallel to the previous case except for the fact that the

wave function is also of the form (4.37) in the interatomic space b � x � d , with

kc D .1=„/
p

2M.E � V1/. Equation (4.68) still holds, with

f .E/ D �k2
c C k2

b

2kbkc

sin
�

kc.b � d/
�

sin.kbb/C cos
�

kc.d � b/
�

cos.kbb/: (4.70)

The allowed values of E fall into bands satisfying the condition jf .E/j � 1.

Figure 4.10 represents the function f .E/, encompassing the two regions I and II,

for the parameters V1 D V0=2 and b D „
p

2=M V0.

Fig. 4.10 Available intervals of energy (bands), obtained with the periodic square potential of

Fig. 4.9
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Equation (4.68) remains unchanged if k is increased by a multiple of 2 =d . We

therefore confine k to the interval

�  

d
� k �  

d
: (4.71)

We now apply the periodic boundary conditions discussed in Sect. 4.4.1. The length

of the circumference is a D Nd . Therefore,

exp.iknNd/ D 1; kn D ˙
2 n

Nd
; n D 0;˙1;˙2;˙1

2
N; (4.72)

where the limits (4.71) have been taken into account. There are as many possible

values of k as there are ions in the array. This result is consistent with the fact that

binding the electron to each ion also constitutes a possible solution to the problem,

as mentioned at the beginning of this section.

Problems

Problem 1. Using Table 4.1, verify that

1. The operator a (3.29) annihilates the ground state wave function ϕ0

2. The operator aC, applied to ϕ1.x/ yields
p

2ϕ2.x/

Hint: express the operators a; aC as differential operators.

Problem 2. Assume an infinite square well such that V.x/ D 0 in the interval

0 < x < a and V.x/ D1 for the remaining values of x.

1. Calculate the energies and wave functions.

2. Compare these results with those obtained in the text centering the well at the

origin and explain the agreement on physical grounds.

3. Do the wave functions obtained in the first part have a definite parity?

Problem 3. Relate the minimum energy for a particle moving in a square well to

the Heisenberg uncertainty principle.

Problem 4. Find the eigenvalue equations for a particle moving in a potential well

such that V.x/ D 1 for jxj � a=2, V.x/ D V0 � 0 for �a=2 � x � 0 and

V.x/ D 0 for 0 < x < a=2. Assume 0 � E � V0.

Problem 5. Estimate the error if we use (4.45) in the calculation of
P

k Ek. Hint:

recall that
nD�
X

nD0

n2 D �

6
.� C 1/.2� C 1/:

Problem 6. Assume a free electron gas confined to a one-dimensional well of

width a
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1. Obtain the density of states �.E/ as a function of energy.

2. Calculate � for E D 1 eV and a D 1 cm.

Problem 7. Consider a square well such that V.x/ D 1 for x < 0, V.x/ D 0 for

0 < x < a=2 and V.x/ D V0 for x > a=2.

1. Write down the equation for the eigenvalues.

2. Compare this equation with the one obtained for the finite square well in

Sect. 4.4.2.

3. For V0 ! 1, show that the wave function for the finite well satisfies the

condition that it vanishes at xD a=2 and does not penetrate the classically

forbidden region.

Problem 8. Calculate the number of even-parity states (EPS) and odd parity states

(OPS) for a finite square well potential of depth V0 centered at the origin, if the

parameter

� D a

„

r

M V0

2

lies in the intervals .0;  =2/, .0;  /, .0; 3 =2/ and .0; 2 /.

Problem 9. Calculate the transmission and reflection coefficients for an electron

with a kinetic energy of E D 2 eV coming from the right. The potential is V.x/ D 0

for x � 0 and V.x/ D V0 D 1 eV for x � 0.

Problem 10. The highest energy of an electron inside a block of metal is 5 eV

(Fermi energy). The additional energy that is necessary to remove the electron from

the metal is 3 eV (work function).

1. Estimate the distance through which the electron penetrates the barrier, assuming

that the width of the (square) barrier is much greater than the penetration

distance.

2. Estimate the transmission coefficient if the width of the barrier is 20 Å.

Problem 11. Obtain the transmission coefficients of a potential barrier in the limits

�a� 1 and �a� 1.

Problem 12. Estimate the sensitivity to the distance tip-sample in an STM, assum-

ing that a relative variation of 1% in the current can be detected and � D 2 Å�1.

Problem 13. 1. Show that the eigenfunction of the Hamiltonian of a periodic

potential is not an eigenfunction of the momentum operator.

2. Why is it not a momentum eigenstate?

3. Give an expression for the expectation value of the momentum.

Problem 14. In the presence of interactions, it is sometimes useful to mock the

spectrum by one of a free particle (4.33) with an effective mass. Obtain the value of

Meff at the extremes of the intervals allowed by (4.68).

Hint: Expand both sides of (4.68) and add the resulting expression 	E.k2/ to the

kinetic energy (4.33).
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Problem 15. A linear combination ‰.x/ of momentum eigenstates (4.43) repre-

senting a localized particle is called a wave packet. Choose as amplitudes cp D
� expŒ�p2=˛2�.

1. Obtain the value of � such that the normalization condition
P

p jcpj2 D 1 is

satisfied.

2. Calculate the probability density j‰.x/j2.

3. Obtain the matrix elements h‰jxj‰i and h‰jx2j‰i.
4. Obtain the matrix elements h‰jpj‰i and h‰jp2j‰i.
5. Verify Heisenberg uncertainty relation (2.37).

Hint: replace sums by integrals as in (4.45).
R1

�1 expŒ�.x C iˇ/2=˛2�dx D ˛
p

 =2;
R1

�1 f .k/ expŒikx�dx D 2  f .0/.



Chapter 5

Motion in Angular Subspace

This chapter deals with the angular degrees of freedom and, therefore, the crucial

role is played by the spherical symmetry. The quantum angular momenta are

treated from both matrix and differential equation points of view. The difference

in the corresponding results reveals the existence of the most important quantum

observable: the spin. Addition of angular momenta, quantum rotations and the

Wigner–Eckart theorem are also discussed.

The commutation relation (2.15) is straightforwardly generalized to the three-

dimensional case

Œ Oxi ; Opj � D i„ıij : (5.1)

In classical physics, angular momentum is a physical, observable vector L that

plays an important role, since it is a conserved quantity in the absence of external

torques �:

L D r � p;
dL

dt
D �: (5.2)

As in the case of the Schrödinger equation, we quantize the problem by substituting

Opi ! �i„ @

@xi

(5.3)

into the classical expression (5.2). One obtains the commutation relations

Œ OLx ; OLy � D i„ OLz; Œ OLy ; OLz� D i„ OLx ; Œ OLz; OLx � D i„ OLy ; (5.4)

Œ OL2; OLx � D Œ OL2; OLy � D Œ OL2; OLz� D 0: (5.5)
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5.1 Eigenvalues and Eigenstates

5.1.1 Matrix Treatment

In the following, we take the commutation relations (5.4) as the definition of

quantum angular momentum. Therefore, this definition also takes care of the

quantum version of orbital angular momentum (5.2). However, as we shall see,

definition (5.4) also includes other types of angular momenta of a purely quantum

mechanical origin. From here on we let OJi denote operator components that satisfy

the relations

Œ OJi ; OJj � D i„�ijk
OJk ; (5.6)

where �ijk is the Levi–Civita tensor,1 whatever their origin may be. We use the

notation OLi for angular momentum operators associated with orbital motion (5.2).

The commutation relations ensure that one can precisely determine the modulus

squared simultaneously with one projection of the angular momentum, but not two

projections at the same time. Consequently, one may construct eigenfunctions that

are common to the operators OJ 2 and OJz. The choice of the z-component is arbitrary,

since the space is isotropic and, consequently, there are no preferred directions.

The procedure for solving this problem closely follows the matrix treatment of

the harmonic oscillator (Sect. 3.3.1). It is given in detail in Sect. 5.4*. The following

results are obtained:

• The two-dimensional angular subspace displays two more symmetries and thus

provides two additional quantum numbers. The eigenvalue equations for the

operators OJ
2

and OJz can be written as

OJ 2ϕj m D „2j.j C 1/ϕj m; OJzϕj m D „mϕj m; (5.7)

where the possible values of the quantum numbers j; m are

� j � m � j; j D 0;
1

2
; 1;

3

2
; : : : ; (5.8)

with m increasing in units of 1.

• Since the maximum value of m is j , and j 2 < j.jC1/, the maximum projection

of the angular momentum is always smaller than the modulus (except for j D 0).

Thus, the angular momentum vector can never be completely aligned with the z-

axis. This fact is consistent with the lack of commutativity in (5.6): a complete

alignment would imply the vanishing of the components OJx ; OJy and thus the

simultaneous determination of the corresponding physical quantities and of Jz

(see Problem 3).

1�ijk D 1 if i; j; k are cyclical (as for i D z, j D x, k D y); otherwise �ijk D �1 (as for i D z,

j D y, k D x).
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Fig. 5.1 Possible orientations of a j D 5=2 angular momentum vector

Figure 5.1 represents the possible orientations of the angular momentum

vector for the case j D 5=2. It looks as if the angular momentum precesses

around the z-axis. However, this picture is incorrect, since it implies that the

end point of the angular momentum vector goes through a circular trajectory,

something that does not make sense from the point of view of quantum

uncertainty relations.

• The operators OJx and OJy display non-diagonal matrix elements within the basis

(5.7), namely

hj 0m0jJx jjmi D ıj 0j ım0.m˙1/

„
2

p

.j �m/.j ˙mC 1/;

hj 0m0jJy jjmi D �ıj 0j ım0.m˙1/

i„
2

p

.j �m/.j ˙mC 1/: (5.9)

• None of the operators OJx ; OJy ; OJz; OJ 2 connects states with different values of the

quantum number j .

• Properties of the unitary operator associated with rotations are discussed in

Sect. 5.3.2�.

5.1.2 Treatment Using Position Wave Functions

The concept of orbital angular momentum is especially useful in problems with

spherical symmetry (like those involving atoms, nuclei, etc.), for which it is

convenient to use the spherical coordinates
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x D r sin � cos �; y D r sin � sin �; z D r cos �;

dx dy dz D r2 sin � dr d� d�; (5.10)

0 � � � �; 0 � � � 2�; 0 � r � 1:

In these coordinates, the orbital angular momentum operators read

OLx D i„
�

sin �
@

@�
C cot � cos �

@

@�

�

;

OLy D i„
�

� cos �
@

@�
C cot � sin �

@

@�

�

;

OLz D �i„ @

@�
;

OL2 D �„2

�

@2

@�2
C cot �

@

@�
C 1

sin2 �

@2

@�2

�

: (5.11)

The detailed treatment of the orbital angular momentum operator is given in

Sect. 5.5*. The results of such an approach are as follows:

• The simultaneous eigenfunctions of the operators OL2; OLz are called spherical

harmonics and denoted by Ylml
.�; �/. They satisfy the eigenvalue equations

OLzYlml
D „mlYlml

;

OL2Ylml
D „2l.l C 1/Ylml

; (5.12)

Ŏ Ylml
D .�1/lYlml

;

where

� l � ml � l; l D 0; 1; 2; : : : : (5.13)

and Ŏ is the parity operator2 (3.49).

• Using the expressions (5.11), one may construct the matrix elements of the

operators OLx ; OLy . One obtains the same form as the matrix elements in (5.9),

with the replacement j ! l , m! ml .

• The spherical harmonics constitute a complete set of single-valued basis states

on the surface of a sphere of unit radius:

‰.�; �/ D
X

lml

clml
Ylml

: (5.14)

2For the three-dimensional case, the parity operation is written as r ! �r or equivalently, r ! r ,

� ! � � � , � ! � C �.
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Fig. 5.2 Projection of the spherical harmonics Yl0 on the (x; z) plane, for the values l D 0–3.

While all the Yl0 are axially symmetric wave functions, l D 0 implies full spherical symmetry.

The distance from the center to the top of the figures is
p

.2l C 1/=4� . Solid lines denote positive

lobules; dotted lines, negative ones

They can be visualized as vibrational modes of a soap bubble.

• Figure 5.2 displays the projection of some spherical harmonics on the (x; z)

plane. The protruding shapes have important consequences in the construction

of chemical bonds.

• The rotational Hamiltonian of a molecule is proportional to the operator OL2
.

The corresponding energy eigenvalues therefore follow the rule l.l C 1/ (see

Sect. 8.4.2).

By taking the commutation relations as the definition of the angular momentum

operators, we have obtained operators that are not derived from the classical orbital

angular momentum (see Sects. 5.1.1 and 5.1.2). This statement is supported by the

fact that the quantum numbers j; m associated with these quantum mechanical

angular momenta may take either integer or half-integer values, in contrast with

those labeling the orbital angular momentum, which can only take integer values.

Otherwise we obtain the same matrix elements for the projections OJi (5.9) as for

the orbital angular momentum projections OLi . On the other hand, the probability

densities associated with the orbital angular momentum display interesting and

useful features that are lacking in the more general derivation (Fig. 5.2).

5.2 Spin

5.2.1 Stern–Gerlach Experiment

A particle with a magnetic moment � and subject to a magnetic field B experiences

a torque �. When the particle is rotated through an angle d� about the direction of

�, the potential energy U increases:

� D � � B; dU D �B sin �d�; U.�/ D ��B cos � D �� � B: (5.15)



78 5 Motion in Angular Subspace

According to classical electromagnetism, an electric current i produces a magnetic

moment proportional to the area subtended by the current. If this current is due to a

particle with charge e and velocity v moving along a circumference of radius r , then

�l D iA D ev

2�r
�r2 D e

2M
L D e

jej
gl�B

„ L: (5.16)

Thus, the magnetic moment due to the orbital motion is proportional to the orbital

angular momentum. In vector and operator notation,

O�l D
e

jej
gl �B

„
OL; (5.17)

where �B � jej„=2M is called the Bohr magneton (Table A.1) and gl D 1 is the

orbital gyromagnetic ratio.

Therefore, the presence of a magnetic field displaces the energy of a particle

by an amount proportional to the component of the angular momentum along the

magnetic field (Zeeman effect). Classically, this change is a continuous function of

the orientation of the angular momentum but, according to quantum mechanics, the

projections of the angular momentum are discretized (5.12):

�Eml
D gl �BBml : (5.18)

Therefore, an orbital angular momentum should give rise to an odd number .2lC1/

of energy eigenstates.

For a uniform magnetic field, there is no net force acting on the magnetic dipole.

However, if the field has a gradient in the z-direction, the net force is

Fz D
@

@ z
.� � B/ D �z

@B

@z
: (5.19)

Figure 5.3 is a sketch of the experimental set-up used by Stern and Gerlach [17].

Silver atoms are heated in an oven and escape through a hole. The beam is colli-

mated and subsequently deflected by a nonuniform magnetic field perpendicular to

its direction. Finally, a visible deposit is allowed to build up on a glass plate located

far from the region of deflection.

∇B

Fig. 5.3 Sketch of the Stern–Gerlach experimental arrangement
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Fig. 5.4 Two figures contained in a letter to Bohr from Stern, communicating his experimental

results. Stern explains that the magnetic field was too weak at the extremes of the beam. The

figure to the left was obtained, for comparison, in the absence of magnetic field. (Reproduced with

permission from Niels Bohr Archive, Copenhagen)

We may ignore the nuclear contributions to the magnetic moment on the grounds

that the nuclear magneton is about 2,000 times smaller than the Bohr magneton.

(It includes the proton mass in the denominator, instead of the electron mass.)

Moreover, 46 of the 47 electrons form a spherically symmetric electron cloud with

no net angular momentum (see Sect. 7.3). Therefore, the total spin of the Ag atom

may be ascribed to the last electron.

The Stern–Gerlach result is reproduced in Fig. 5.4. Neither the classical contin-

uous pattern nor the orbital quantum mechanical results displaying the separation

into an odd number of terms were obtained: the beam was split into only two other

beams, as would befit an angular momentum with j D s D 1=2.

Spin has become the most important quantum observable, both due to its

conceptual importance and because quantum information is based on two-state

systems (Chap. 13). Consistently with this relevance, modern techniques for spin

detection and manipulation have greatly improved since Stern and Gerlach’s times.

It is now possible to deal with individual spins, rising the hopes for spintronics –

exploiting the spin degree of freedom in electronic circuits, playing a similar role as

the charge degree of freedom (Sect. 7.4.5�).

5.2.2 Spin Formalism

Three years after the publication of the Stern–Gerlach experiment, George

Uhlenbeck and Samuel Goudsmit proposed another quantum number to specify

the state of electrons (and of many other fundamental particles) [35]. It labels the
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two projections of the spin, by then a new physical entity representing an intrinsic

angular momentum.

Since the spin is a pure quantum observable, only the matrix treatment formalism

is possible. If s D 1=2, then the basis set of states is given by the two-component

vectors (3.15) [36]

ϕ
.z/

" � ϕ 1
2

1
2
�
�

1

0

�

; ϕ
.z/

# � ϕ 1
2 .� 1

2 /
�
�

0

1

�

: (5.20)

The following representation of the spin operators reproduces (5.7) and (5.9) for

j D 1=2

OSi D
„
2

�i ; . OSi/
2 D „

2

4
I; i D x; y; z; (5.21)

where the �i are the Pauli matrices (3.16). Therefore the algebra suited for the spin

case has been developed in Sect. 3.2.

The spin has its own associated magnetic moment

O�s D
gs��

„
OS ; (5.22)

with a gyromagnetic ratio of gs D 2:00 for electrons,3 gs D 5:58 for protons and

gs D �3:82 for neutrons. The constant �� stands for minus the Bohr magneton �B

in the case of electrons, or for the nuclear magneton �p D ep„=2Mp in the case of

protons and neutrons (Table A.1), where ep and Mp are the proton charge and mass,

respectively. The total magnetic moment operator is given by

O� D O�s C O�l D
��

„
�

gs
OS C gl

OL
�

: (5.23)

Obviously, gl D 0 for neutrons. The quantal magnetic moment is not always

proportional to the angular momentum.

The eigenstates of the operator OSx have been obtained by means of a unitary

transformation of the eigenvectors of OSz (3.21). This is a particular case of the more

general transformation aligning the spin s D 1=2 operator with a direction of space

labeled by the angles ˇ; �. The operator OSˇ� may be written as the scalar product of

the spin vector OS times a unit vector along the chosen direction (see Problem 5 in

Chap. 3):

OSˇ� D sin ˇ cos � OSx C sin ˇ sin � OSy C cos ˇ OSz

D „
2

�

cos ˇ sin ˇ exp.�i�/

sin ˇ exp.i�/ � cos ˇ

�

: (5.24)

3The spectroscopy of single trapped electrons has yielded the value of gs D 2 � 1:00159652188.

The theoretical QED calculation agrees within a few parts per billion [37], p. 5.
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The same two eigenvalues ˙„=2 are obtained upon diagonalization. As explained

in Sect. 3.2, this is a consequence of space isotropy. The diagonalization also yields

the state vectors

ϕ
.ˇ�/

" D

0

B

@

cos
ˇ

2

sin
ˇ

2
exp.i�/

1

C

A

z

; ϕ
.ˇ�/

# D

0

B

@

sin
ˇ

2
exp.�i�/

� cos
ˇ

2

1

C

A

z

; (5.25)

while the rotational unitary transformation acting on states (5.20) is

Uˇ� D
 

cos
ˇ

2
sin

ˇ

2
exp.�i�/

sin
ˇ

2
exp.i�/ � cos

ˇ

2

!

: (5.26)

The factor 1=2 multiplying the angle ˇ is characteristic of the effect of rotations

on j D 1=2 objects. It may be verified through the value of the amplitudes (3.21)

in the case of transformation from the z to the x eigenstates. In that case, ˇ D
�=2; � D 0.

An arbitrary linear combination of spin up and spin down states such as in (5.25)

is called a qubit. The word “qubit” is short for “quantum bit,” a concept used in

quantum computation (Sect. 13.4�).

5.3 Other Features of the Motion in Angular Subspace

The contents of this section are extracted from [38], Appendix 1A.

5.3.1 Addition of Angular Momenta

Consider two angular momentum vector operators, OJ 1 and OJ 2. They are indepen-

dent vectors, i.e. Œ OJ 1; OJ 2� D 0. Therefore, the product states are simultaneous

eigenstates of the operators OJ 2
1 ; OJz1; OJ 2

2 and OJz2 :

ϕj1m1j2m2
D ϕj1m1

ϕj2m2
: (5.27)

These .2j1C 1/.2j2C 1/ eigenstates constitute a complete basis for states carrying

the quantum numbers j1; m1; j2; m2. However, it may not be the most useful one.

We may prefer a basis labeled by the quantum numbers associated with the total

angular momentum OJ (see Fig. 5.5):

OJ D OJ 1 C OJ 2: (5.28)
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Fig. 5.5 Coupling of two vectors with j1 D 5=2 and j2 D 1=2 (dotted lines) may yield a vector

with j D 3; m D 2 (continuous line). The superposition (5.31) has two components, with m1 D
3
2
; m2 D 1

2
and m1 D 5

2
; m2 D � 1

2
, respectively

Since the components OJx ; OJy ; OJz also satisfy the commutation relations (5.4) and

(5.6), there must exist another basis set made up from eigenstates of the operators
OJ 2 and OJz. Since the commutation relations

Œ OJ 2; OJ 2
1 � D Œ OJ 2; OJ 2

2 � D Œ OJ 2; OJz� D Œ OJ 2
1 ; OJz� D Œ OJ 2

2 ; OJz� D 0 (5.29)

vanish, the new set of basis states may be labeled by the quantum numbers

j1; j2; j; m

ϕj1j2j m �
�

ϕj1
ϕj2

�j

m
: (5.30)

The two basis sets (5.27) and (5.30) are equally legitimate. According to

Sect. 2.7.2*, there is a unitary transformation connecting the two bases

ϕj1j2j m D
X

m1m2

c.j1m1I j2m2I jm/ ϕj1m1j2m2
: (5.31)

The quantum numbers j1; j2 are valid for both sets and they are not therefore

summed up in (5.31). The sum over m1; m2 is restricted by the addition of

projections

m D m1 C m2 (5.32)

For classical vectors, the modulus of the sum of two vectors lies between the sum

of their moduli and the absolute value of their difference. Something similar takes

place in quantum mechanics:

j1 C j2 � j � jj1 � j2j: (5.33)

The quantum number j is an integer if both j1; j2 are integers or half-integers;

j is a half-integer if only one of the constituents is an integer. The amplitudes

c.j1m1I j2m2I jm/ are called Wigner or Clebsch–Gordan coefficients. They are real

numbers satisfying the symmetry relations
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c.j1m1I j2m2I jm/ D .�1/j1Cj2�j c
�

j1.�m1/I j2.�m2/I j.�m/
�

D .�1/j1Cj2�j c
�

j2m2I j1m1I jm
�

D .�1/j1�m1

s

2j C 1

2j2 C 1
c
�

j1m1I j.�m/I j2.�m2/
�

D .�1/j2Cm2

s

2j C 1

2j1 C 1
c
�

j.�m/I j2m2I j1.�m1/
�

:

(5.34)

The inverse transformation is

ϕj1m1
ϕj2m2

D
j Dj1Cj2
X

j Djj1�j2j
c.j1m1I j2m2I jm/

�

ϕj1
ϕj2

�j

mDm1Cm2
: (5.35)

Replacement of (5.35) into the r.h.s. of (5.31) (and vice versa) yield the

orthogonality relations

X

m1m2

c.j1m1I j2m2I jm/ c.j1m1I j2m2I j 0m0/ D ıj 0j ım0m;

X

j m

c.j1m1I j2m2I jm/ c.j1m0
1I j2m0

2I jm/ D ım0
1m1

ım0
2m2

: (5.36)

The example of the summation of an angular momentum j1 with the spin j2 D
s2 D 1=2 is given in Sect. 5.6* (See also Fig. 5.5).

5.3.2� Rotations

In analogy with (4.7), the unitary operator associated with rotations is

U.˛/ D exp

�

i

„˛� OJ

�

: (5.37)

The rotation is specified by the axis of rotation (direction of the vector ˛) and

the magnitude of the rotation angle ˛. The operator OJi is referred to as the

generator of rotations around the i -axis. The following properties stem from the

commutators (5.4):

• The rotated state may be expressed as linear combinations of states carrying the

same value of J .

ϕJM D
X

K

DJ
MK .˛/ ϕJK : (5.38)
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• The operator (5.37) cannot be straightforwardly written as a product of three

successive rotations along orthogonal coordinate axes. Instead, the transforma-

tion may be decomposed into the following three rotations, using the Euler

parametrization (˛ ! .�; �; !/)

U.�; �; !/ D exp

�

i

„
OJz�

�

exp

�

i

„
OJy�

�

exp

�

i

„
OJz!

�

DJ
MK.�; �; !/ D hJM jU.�; �; !/jJKi

D exp .iM�/ d J
MK.�/ exp .iK!/ ; (5.39)

where

0 � � � 2� ; 0 � � � � ; 0 � ! � 2�: (5.40)

The unitary character of the rotational transformation is expressed by the

relations

X

M

DJ �
MK1

DJ
MK2
D ıK1K2 ;

X

K

DJ �
M1K DJ

M2K D ıM1M2 : (5.41)

For the inverse rotation .�; �; !/�1 D .� � !; �;�� � �/

DJ
MK ..�; �; !/�1/ D DJ �

KM .�; �; !/: (5.42)

The D functions constitute a complete orthogonal set of basis functions in the

�; �; ! space.4 Their normalization is obtained from the integral

Z �

0

sin �d�

Z 2�

0

d�

Z 2�

0

d! DJ �
MKDJ 0

M 0K0 D
8�2

2J C 1
ıJ 0J ıM 0M ıK0K : (5.43)

They represent generalizations of spherical harmonics, which are the complete

orthogonal set in �; � space (Sect. 5.5*)

DJ
M0.�; �; !/ D

�

4�

2J C 1

�1=2

YJM .�; �/: (5.44)

5.3.3� The Wigner–Eckart Theorem

One may also characterize operators OQ�� by their transformation properties under

rotations

4In fact, they are the eigenstates of the axially symmetric top, K being the projection over the

symmetry axis.
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OQ�� D
X

�

D�
��
OQ��: (5.45)

An operator carrying � D 0 is a scalar. A vector corresponds to a tensor of rank

�=1. Any operator can be expanded in a series of spherical tensors.

Since the expansions (5.31) and (5.35) have a pure geometrical origin, they are

valid even if one or both of the state vectors are replaced by operators carrying

angular momentum quantum numbers:

ϕJ2M2
D
X

�M1

c.J1M1I��IJ2M2/ OQ�� ϕJ1M1
: (5.46)

The scalar product of both sides with a state carrying the quantum numbers J 0
2; M 0

2

is given by

X

�M1

c.J1M1I��jJ2M2/ hJ 0
2M 0

2jQ��jJ1M1i D N ıJ 0
2J2

ıM 0
2M2

; (5.47)

where N is independent of the magnetic quantum numbers. The Wigner–Eckart

theorem is obtained multiplying both sides by the coefficient c.J1M 0
1I��0IJ2M2/

and applying the orthogonality properties (5.36) (i.e. summing over J2; M2)

hJ2M2jQ��jJ1M1i D N c.J1M1I��IJ2M2/: (5.48)

All the dependence of the matrix element on the magnetic quantum numbers is

expressed by means of a Clebsch–Gordan coefficient. Let us remark that this result

holds whatever the nature of the initial and final states. The constant N is usually

expressed through the reduced matrix element,5 which is defined as

hJ2jjQ�jjJ1i D N .2J2 C 1/: (5.49)

As a consequence of (5.48), we obtain selection rules analogous to (5.32) and (5.33)

for the matrix elements hJ2M2jQ��jJ1M1i. For instance, matrix elements of a

spherically symmetric operator vanish unless initial and final states are characterized

by the same angular momentum quantum numbers. This is frequently the case of the

Hamiltonian. In addition, the product of parities should be �f �Q �i D C1. See also

Problem 5.

5.4* Details of the Matrix Treatment

We define the operators

5The concept of reduced matrix element is applied in Sect. 9.8.5�.
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OJ˙ D OJx ˙ i OJy : (5.50)

They play a role similar to the creation and destruction operators aC; a in the

harmonic oscillator case (Sect. 3.3.1). Since the operator OJ� is Hermitian conjugate

to OJC (Sect. 2.7.1*),

hjmjJCjjm0i D hjm0jJ�jjmi�: (5.51)

Applying the commutation relations (5.6), we obtain the relations

Œ OJz; OJC� D „ OJC; (5.52)

Œ OJC; OJ�� D 2„ OJz: (5.53)

The matrix elements of (5.52) read

hjm0jŒJz; JC�jjmi D „.m0 �m/hjm0jJCjjmi D „hjm0jJCjjmi; (5.54)

which implies that hjm0jJCjjmi is only different from zero if m0 D m C 1.

Therefore the operator OJC raises the projection of the angular momentum by one

unit of „ (and OJ� does the opposite).

The expectation value of (5.53) yields

hjmjŒJC; J��jjmi D hjmjJCjj.m � 1/ihj.m� 1/jJ�jjmi
�hjmjJ�jj.mC 1/ihj.mC 1/jJCjjmi

D jhjmjJCjj.m � 1/ij2 � jhj.mC 1/jJCjjmij2

D 2„2m; (5.55)

where (5.51) has been used. The solution to this first-order difference equation in

jhj.mC 1/jJCjjm/ij2 is

jhj.mC 1/jJCjjm/ij2 D „2
�

c �m.mC 1/
�

: (5.56)

Since the left-hand side is positive, only the values of m that make the right-hand

side positive are allowed and the matrix element between the last allowed eigenstate

ϕj mmax
and the first rejected eigenstate ϕj.mmaxC1/ should therefore vanish. Here

mmax is the positive root of the equation c D m.m C 1/. The assignment of the

quantum number j D mmax determines the value of the constant c D j.j C 1/.

Therefore,

hj.mC 1/jJCjjm/i D „
p

.j �m/.j CmC 1/; (5.57)

where the positive value for the square root is chosen by convention. The relative

phases of states with different values of m are also fixed by this convention.
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We verify the vanishing of the matrix elements connecting admitted and rejected

states:

hj.j C 1/jJCjjj i D hj.�j /jJCjj.�j � 1/i D 0: (5.58)

Since m increases in steps of one unit between �j and j [see (5.54)], the possible

values of the quantum numbers j; m are those given in (5.8).

The matrix elements (5.9) corresponding to the operators OJx and OJy can be

obtained from (5.51) and from (5.57). Addition of the squares of these matrices

yields the (diagonal) matrix elements of OJ 2 (5.7).

5.5* Details of the Treatment of Orbital Angular Momentum

Eigenvalue Equation for the Operator OLz

The eigenvalue equation for the operator OLz is

� i„d‰.�/

d�
D lz‰.�/: (5.59)

The solution is proportional to exp.ilz�=„/. We may require ‰.� C 2�/ D ‰.�/,

which implies the existence of discrete values for the eigenvalue lz D „ml (ml D
0;˙1;˙2; : : :). Thus the orthonormal set of eigenfunctions6 of the operator OLz is

given by

ϕml
.�/ D 1p

2�
exp.iml�/: (5.60)

Eigenvalue Equation for the Operators OL2; OLz

We try a function of the form ‰.�; �/ D Plml
.�/ exp.iml�/. It follows that, in the

eigenvalue equation for the operator OL2:

• We can make the replacement d2=d�2 ! �m2
l

• We may drop the exponential exp.iml�/ from both sides of the equation

We obtain a differential equation depending on the single variable � :

� „2

�

d2

d�2
C cot �

d

d�
� m2

l

sin2 �

�

Plml
.�/ D �Plml

.�/: (5.61)

6This is also the complete set in the angular subspace of a two-dimensional space.
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The solutions to this equation for ml D 0 may be expressed as polynomials Pl .cos �/

of order l in cos � , called Legendre polynomials .l D 0; 1; 2; : : : /. Each Pl gives

rise to the 2l C 1 associated Legendre functions Plml
.�/ with jml j � l . All of them

are eigenfunctions of the operator OL2 with eigenvalue � D l.l C 1/„2.

The simultaneous eigenfunctions of the operators OL
2

and OLz are called spherical

harmonics:

Ylml
.�; �/ D Nlml

Plml
.�/ exp.iml�/; (5.62)

where Nlml
are constants chosen to satisfy the orthonormalization equation

hl 0m0
l jlmli D

Z �

0

sin �d�

Z 2�

0

d� Y �
l 0m0

l
Ylml
D ıl l 0ıml m

0
l
: (5.63)

Here

Y �
lml
D .�1/ml Yl.�ml /: (5.64)

The spherical harmonics corresponding to the lower values of l are given in

Table 5.1.

In particular, the vector r can be written in terms of the spherical harmonics Y1�:

x D
r

2�

3
r .�Y11CY1.�1//; y D i

r

2�

3
r .Y11C Y1.�1//; z D

r

4�

3
r Y10:

(5.65)

The l values (5.13) are traditionally replaced by symbolic letters in the literature

(Table 5.2). This correspondence has only historical support.

The coupling to angular momentum zero of two spherical harmonics depending

on different orientations in space depends on the angle ˛12 subtended by the two

orientations through the equation

Table 5.1 Spherical harmonics corresponding to the lowest values of l

Y00 D 1p
4�

Y1.˙1/ D �
r

3

8�
sin � exp.˙i�/

Y10 D
r

3

4�
cos � Y2.˙1/ D �

r

15

32�
sin.2�/ exp.˙i�/

Y20 D
r

5

16�
.3 cos2 � � 1/ Y2.˙2/ D

r

15

32�
sin2 � exp.˙i2�/

Table 5.2 Equivalence

between quantum number l

and symbolic letters

l Symbol

0 s

1 p

2 d

3 f

4 g
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�

Yl.�1; �1/Yl.�2�2/
�0

0
D 1p

2l C 1

ml Dl
X

ml D�l

.�1/l�ml Ylml
.�1; �1/Yl.�ml /.�2; �2/

D .�1/l

p
2l C 1

4�
Pl .cos ˛12/: (5.66)

5.6* Coupling with Spin s D 1=2

The use of (5.31) is exemplified in the case where the second angular momentum

is the spin j2 D s D 1=2 (Fig. 5.5). Here the summation consists of two terms,

corresponding to the two values of the spin projection ms D ˙1=2. According to

(5.33), there are also two values for the total angular momentum j D j1 ˙ 1=2.

However, if j1 D 0, only the value j D 1=2 is allowed:

ϕ.j1Dj C 1
2 /sj m D �

s

j �mC 1

2j C 2
ϕj1.m� 1

2 /1

�

1

0

�

2

C
s

j CmC 1

2j C 2
ϕj1.mC 1

2 /1

�

0

1

�

2

; (5.67)

ϕ.j1Dj � 1
2 /sj m D

s

j Cm

2j
ϕj1.m� 1

2 /1

�

1

0

�

2

C
s

j �m

2j
ϕj1.mC 1

2 /1

�

0

1

�

2

:

A particular application of this example is the coupling of orbital motion with the

spin of an electron (Sect. 6.2). In this case, the eigenstates ϕj1m1
are the spherical

harmonics Yl1ml1
(5.62). However, (5.67) is valid whatever the nature of the angular

momentum j1 may be.

If j D j1 C 1
2

and jmj D j , there is a single term in (5.67). For the particular

case j1 D 0, this is a physical consequence of the fact that a spherical object should

be uncoupled from the total angular momentum (Fig. 5.2).

Problems

Problem 1. A plastic disk rotates with angular velocity 100 rad/s. Estimate, in units

of „, the order of magnitude of the angular momentum.

Problem 2. 1. Construct the matrix for the operator OLx (5.11) in the basis of

spherical harmonics Y1ml
(Table 5.1).

2. Diagonalize the matrix and compare its eigenvalues with those of the operator OLz.
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Problem 3. Verify that the product of the uncertainties �Jx �Jy satisfies the

inequality (2.36).

Problem 4. Calculate OJ� OJ .

Problem 5. Consider the following matrix elements between spherical harmonic

states:

h00jY20j00i; h10jY20j10i; h11jY21j21i; h00jY11j11i; h00jY11j1.�1/i;

h00j˘ j00i; h11j˘ j11i; h00j˘ j10i:

1. Find out which of the above matrix elements vanishes due to conservation of

orbital angular momentum and/or parity.

2. Calculate those that remain.

Problem 6. Calculate Œ OS2
x ; OSz� for spin s D 1=2 particles.

Problem 7. 1. Construct the eigenstates of OSx and OSy using the eigenstates of OSz

as basis states.

2. If the spin Sx is measured when the particle is in an eigenstate of the operator
OSy , what are the possible results and their probabilities?

3. Construct the matrix corresponding to OSx using the eigenstates of OSy obtained in

the first part as basis states.

4. Express the eigenstates ϕ.sx / using the eigenstates ϕ.sy / as basis states.

Problem 8. A particle is in the spin state

�

a

b

�

, with a; b real. Calculate the

probability of obtaining the eigenvalue „=2 if:

1. Sx is measured

2. Sy is measured

3. Sz is measured

Problem 9. A particle is in the spin state ‰ D
�

cos.�=2/

sin.�=2/

�

.

1. What are the values of Sz that would appear as a result of a measurement of this

observable? What are the associated probabilities?

2. What is the mean value of Sz in this state?

Problem 10. 1. Construct the possible states with m D 1=2 that are obtained by

coupling an orbital angular momentum l D 2 with a spin s D 1=2.

2. Verify the orthonormality of the coupled states.

3. Construct the wave vector corresponding to the state with j D m D l C 1=2.

What is the probability that the spin points up?

Problem 11. Write the two-spin state vectors with s D 1
2

that have a definite total

angular momentum.
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Problem 12. Apply the closure property as in (2.59) to the transformations (5.31)

and (5.35).

Problem 13. Relate the coupling between an orbital angular momentum l and a

spin s D 1
2

to the coupling of the spin to the same orbital angular momentum.



Chapter 6

Three-Dimensional Hamiltonian Problems

In the present chapter, we broaden the quantum mechanical treatment of the

problem of a single particle moving in three-dimensional space to incorporate the

Hamiltonian. We only treat central potentials V.r/ D V.r/. In particular, we study

the Coulomb and the three-dimensional harmonic oscillator potentials, including

Rydberg atoms. We also present the spin–orbit interaction and elements of scattering

theory.

6.1 Central Potentials

The solution to a given problem can be simplified by exploiting the associated

symmetries. We have already shown that this is the case by applying invariance

under the inversion operation (see the bound problems of Sects. 4.2 and 4.4). Since

problems involving a central potential V.r/ are spherically symmetric, we shall

make use of this symmetry. For this purpose, we write the kinetic energy Laplacian

in spherical coordinates (5.10). The total Hamiltonian reads

OH D 1

2M

�

Op2
x C Op2

y C Op2
z

�

C V.r/

D „2

2M

�

� @2

@r2
� 2

r

@

@r

�

C
OL2

2M r2
C V.r/; (6.1)

where the operator OL2 is the square of the orbital angular momentum (5.11). Since

the Hamiltonian (6.1) commutes with operators OL2 and OLz, there is a basis set of

eigenfunctions for the three operators. The eigenvalue equation (4.11) is solved

by factorizing the wave function into radial and angular terms, the latter being

represented by the spherical harmonics (5.62):

‰.r; �; �/ D Rnr l.r/Ylml
.�; �/: (6.2)
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In such a case, the operator OL2 in the kinetic energy can be replaced by its eigenvalue

„2l.l C 1/, and moreover, the spherical harmonics cancel on both sides of the

Schrödinger equation.1 One is left with a differential equation depending on a single

variable: the radius. Thus,

� „2

2M

�

� d2

dr2
� 2

r

d

dr
C l.l C 1/

r2

�

C V.r/

�

Rnr l.r/ D Enr lRnr l.r/; (6.3)

where the new quantum number nr distinguishes between states with the same value

of l . Since the magnetic quantum number ml does not appear in this equation, the

eigenvalues Enr l are also independent of it. In consequence, the eigenenergies of

a central potential are necessarily degenerate, with degeneracy equal to 2l C 1

(5.13). This result is to be expected since the quantum number ml depends on

the orientation of the coordinate axis. That is to say, the central potential has

spherical symmetry and the resulting energies (which are physical quantities) should

not depend on the orientation of the coordinate axis (which is an artifact of the

calculation).

Systems for which the number of quantum numbers equals the number of degrees

of freedom are called integrable. Do not get a wrong impression out of the present

chapter: they are the exceptions.

6.1.1 Coulomb and Harmonic Oscillator Potentials

In this section, we discuss the solutions to the eigenvalue equation for two central

potentials: the Coulomb potential�Ze2=4��0r and the three-dimensional harmonic

oscillator potential M!2r2=2.

It is always useful to begin by estimating the orders of magnitude of the quantities

involved. For the linear harmonic oscillator, this has already been done in (3.28).

These orders of magnitude remain valid for the three-dimensional case, since

the harmonic Hamiltonian is separable into three Cartesian coordinates, and the

estimate (3.28) holds for each coordinate. For the Coulomb potential, we may again

use the Heisenberg uncertainty relations

p2 � 3 .�px/2 � 3„2

4

1

.�x/2
� 9„2

4

1

r2
: (6.4)

Therefore, the radius rm is obtained by minimizing the lower bound energy

E � 9„2

8M r2
� Ze2

4��0r
; (6.5)

1This is another application of the separation of variables method for solving partial differential

equations.
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Table 6.1 Solutions to the Coulomb and harmonic oscillator potentials

Problem Coulomb Harmonic oscillator

Characteristic length a0 D 4��0„2=Me2 xc D
p

„=M!

Wave function Rnr l.u/Ylml .�; �/ Rnr l .u/Ylml .�; �/

u D Zr=a0 u D r=xc

Radial quantum nr D 0; 1; : : : nr D 0; 1; : : :

numbers

Principal quantum n D nr C l C 1 D 1; 2; : : : N D 2nr C l=0,1, : : :

numbers

Energies Z2EH=n2 „!.N C 3=2/

EH D �e2=8��0a0

Degeneracy n2 .N C 1/.N C 2/=2

which yields

rm D
9

4Z
a0; E � 16Z2

9
EH; (6.6)

where the Bohr radius a0 and the ground state energy of the hydrogen atom EH are

given in Tables 6.1 and A.1.

The solutions of the Schrödinger equation for the Coulomb2 and the harmonic

oscillator potentials are shown in Table 6.1. The corresponding details are outlined

in Sect. 6.4*. The following comments stem from the comparison between the

solutions for these two potentials:

• In both cases, the radial factor Rnr l .r/ may be expressed as a product of an

exponential decay, a power of u, ul , and a polynomial of degree nr (Coulomb) or

2nr (harmonic oscillator).

• The radial factor ul decreases the radial density jRnr l j2r2 for small values of u

and increases it for large values. It is a manifestation of centrifugal effects due to

rotation of the particle.

• Both potentials display a higher degree of degeneracy than is required by

spherical invariance.

• All degenerate states in the harmonic oscillator potential have the same value of

.�1/l D .�1/N , where N is the principal quantum number (Table 6.1) and thus

have the same parity. This is not true for the Coulomb potential, where states

with even and odd values of l may be degenerate [see the last equation of (5.12)].

• The energies of the Coulomb potential are represented in Fig. 6.1, while those of

the harmonic potential have the same pattern as in Fig. 3.2. The eigenvalues of

the former display an accumulation point at E1 D 0. They are equidistant in the

harmonic oscillator case.

2Solutions for the Coulomb potential applying matrix algebra can be found in [39].
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Fig. 6.1 Coulomb potential and its eigenvalues. The dimensionless variable u D r=a0 has been

used

We have verified the commonly made statement that the Schrödinger equation

is exactly soluble for the two central potentials treated in this section. In fact the

two Schrödinger equations are related by a simple change of independent variable

r ! r2, if the energy and the strength of the potential are swapped and the orbital

angular momentum is rescaled (Problem 8) [40]. Thus, the Schrödinger equations

corresponding to the Coulomb and three-dimensional harmonic oscillator potential

constitute only one soluble quantum mechanical central problem, not two.

The harmonic oscillator potential is also separable in Cartesian coordinates. As

an exercise, derive the degeneracies using the Cartesian solution and check the

results against those appearing in the last column of Table 6.1.

While the Coulomb potential is an essential tool for the systematic description

of atomic spectra, the three-dimensional harmonic oscillator plays a similar role

for the nuclear spectra. This similitude is remarkable in view of the very different

constituents and interactions that are present in both systems (Sect. 7.3).

6.1.2 Rydberg Atoms

The set of degenerate single particle levels constitutes a shell (Sect. 7.3). Since all

the magnetic substates are filled up in a closed shell, this system displays spherical

symmetry. Alkali atoms have one electron outside closed shells. Their spectrum

shows to a large extent the characteristic features of single-particle motion, the effect

of the closed shell electrons being almost totally limited to screen the nuclear charge.

Rydberg atoms are alkali atoms excited to states with large quantum number n D
O.50/, carrying an orbital angular momentum l D n � 1 with projection ml D l .
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Assuming that the outside electron feels a Coulomb potential with charge 1, the

energies and wave functions [(6.2) and (6.27)] are given by

En D �RH „ c=n2;

ϕn;n�1;n�1 D
1

q

�a3
0

1

nnnŠ

�

� r

a0

sin � exp.i�/

�n�1

exp.�r=na0/; (6.7)

where RH is approximately the Rydberg constant and a0 is the Bohr radius

(Table A.1).

The mean value of the radius is

rn � hn; n � 1; n � 1jr jn; n� 1; n � 1i D a0 n.2nC 1/=2 � a0n2; (6.8)

which tell us that the radius of the orbit n is much larger than the radius of the

core, and that the approximation gets better the higher the value of n. Moreover, the

relative dispersion is
�rn

rn

D 1=
p

2nC 1; (6.9)

with a similar expression for the � degree of freedom. Thus the density distribution

resembles a tire. In fact, it is the closest that one can get to the circular orbits of

the old Bohr atomic model (see Problem 14). The azimuthal angle � is completely

unspecified, as required by Heisenberg’s uncertainty principle. See also Problem 14

and Problem 14 in Chap. 9.

The coupling with other degenerate states (such as ϕn;n�2;n�2) can become

sufficiently small by making use of an electric field along the direction of the

angular momentum (Stark effect), which destroys this degeneracy (see Problem 12,

Chap. 8).

Rydberg atoms with 40 < n < 60 are presently used to verify quantum

mechanical properties that were discussed by means of thought experiments during

most of the last century (Sect. 12.3.3). They are also candidates to play the role of

qubits in future quantum computers (Sect. 13.4�).

6.2 Spin–Orbit Interaction

One may incorporate the spin degree of freedom into the present treatment. The

degeneracies displayed in Table 6.1 are thus doubled.

According to the results of Sect. 5.3.1, there are two complete sets of wave

functions that may take care of the spin s D 1=2:

ϕnlml sms
D Rnr l Ylml

ϕsms
; (6.10)
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ϕnlsj m D Rnr l

X

ml CmsDm

c.lml I smsI jm/Ylml
ϕsms

; (6.11)

where the Clebsch–Gordan or Wigner coefficients are given in Sect. 5.6*. As

mentioned in Sect. 5.3.1, the first set is labeled with the quantum numbers lmlsms

specifying the modulus and the z-projection of the orbital angular momentum and

the spin. In the second set, the moduli of the orbital angular momentum and the spin

remain as good quantum numbers, to be accompanied by jm, associated with the

modulus and z-projection of the total angular momentum OJ D OLC OS .

The Coulomb interaction is the strongest force acting inside an atom, and yields

adequate results for many purposes. However, the experimental spectrum displays

small shifts in energy associated with values of j . Another (weaker) force that is

present in the atom is provided by the interaction between the magnetic moment of

the spin and the magnetic field produced by the orbital motion of the electron3:

OVso D vso
OS � OL; (6.12)

where we have approximated the radial factor by a constant vso.

Suppose we sit on the electron. We see the charged nucleus orbiting around us.

The current associated with this moving charged nucleus produces a magnetic field

at the location of the electron. The OS � OL term can be interpreted as the interaction

between the spin magnetic moment of the electron and this magnetic field.

There are additional terms, the hyperfine interactions, arising from the interaction

between the nuclear and the electron spins. Although they are even smaller, they

produce a splitting of the ground state of the hydrogen atom with astrophysical

importance [which the interaction (6.12) does not].

The radial term Rnr l has been dropped in the present section, since the spin–orbit

interaction (6.12) does not affect the radial part of the wave function.

The spin–orbit interaction satisfies the commutation relations

Œ OVso; OL2� D Œ OVso; OS2� D Œ OVso; OJ 2� D Œ OVso; OJz� D 0; (6.13)

while Œ OVso; OLz� ¤ 0, Œ OVso; OSz� ¤ 0. Bearing in mind this property, different

procedures – already developed in these notes – may be applied to incorporate the

interaction (6.12).

1. The interaction is not diagonal within the set of eigenstates of the projections

of the angular momenta (6.10). Since OVso commutes with OJz, the spin–orbit

interaction conserves the total projection m D ml C ms and thus gives rise to

matrices of order 2 which may be diagonalized according to Sect. 3.2.

3Criteria which are frequently used to construct interactions involving pure quantum variables are

(1) simplicity and (2) invariance under transformations, such as rotations, parity and time-reversal

operations. The interaction (6.12) satisfies all these criteria. Moreover, it may also be obtained in

the non-relativistic limit of the Dirac equation.
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2. The spin–orbit interaction is diagonal within the set of eigenstates (6.11).

This constitutes a significant advantage. The diagonal matrix elements are the

eigenvalues, which may be obtained through calculation.

3. Observing that

OL� OS D 1

2

�

OJ 2 � OL2 � OS2
�

; (6.14)

we obtain

hlsjmjS � Ljlsjmi D „
2

2

�

j.j C 1/� l.l C 1/� 3

4

�

: (6.15)

Due to the spin–orbit interaction, the two states with j˙ D l ˙ 1=2 become

displaced by an amount proportional to the values appearing on the right-hand

side of (6.15).

6.3 Some Elements of Scattering Theory

6.3.1 Boundary Conditions

We consider an incident particle scattered by a central, finite-sized potential. The

asymptotic boundary condition for this problem requires the asymptotic wave

function to be expressed as a superposition of an incident plane wave along the

z-axis and an outgoing spherical wave (Fig. 6.2):

lim
r!1

‰.r; �/ D A

�

exp.ikz/C exp.ikr/

r
fk.�/

�

; (6.16)

where kD
p

2ME=„ is the wave number (4.32) and fk.�/ is the amplitude of the

scattered wave in the polar direction � . The spherical wave carries a factor 1=r , since

Fig. 6.2 Schematic representation of a scattering experiment. After being produced in a source,

the projectile is collimated, accelerated and collimated again. It collides with the target in the form

of a plane wave. It is subsequently scattered as a spherical wave, within a solid angle that makes

an angle � with the direction of incidence
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j‰.r/j2 must be proportional to 1=r2 to conserve probability (see Problem 11). The

azimuth angle � does not appear, because the problem displays axial symmetry.

Expression (6.16) constitutes a generalization of the boundary conditions discussed

at the beginning of Sect. 4.5 to the three-dimensional case.

6.3.2 Expansion in Partial Waves

As in the case of a three-dimensional harmonic oscillator, the free particle problem

admits solutions in both Cartesian and polar coordinates. The solutions to the

Hamiltonian (6.1) with V.r/ D 0 are, in spherical coordinates,

ϕ
.1/

lml
.r; �; �/ D jl .kr/Ylml

.�; �/; ϕ
.2/

lml
.r; �; �/ D nl .kr/Ylml

.�; �/; (6.17)

where jl and nl are Bessel and Neumann functions, respectively (see Sect. 6.5*).

The eigenstates (6.17) constitute a complete set. Our immediate task is to construct

the most general linear combination which asymptotically yields (6.16). We first

note that the function exp.ikz/ may be expanded as

exp.ikz/ D
p

4�

lD1
X

lD0

il.2l C 1/1=2jl Yl0: (6.18)

Secondly, the second term on the right-hand side of (6.16) can be written in

terms of the Hankel function of the first kind, which behaves asymptotically as an

outgoing spherical wave (6.37). Therefore, the most general and acceptable linear

combination is

‰.r; �/ D A

lD1
X

lD0

hp
4� il.2l C 1/1=2jl C clh

.C/

l .kr/
i

Yl0

D A
p

�

lD1
X

lD0

il .2l C 1/1=2al .jl cos ıl � nl sin ıl/ Yl0: (6.19)

Here cl ; al are complex amplitudes, which may be expressed in terms of ıl , the

(real) phase shift of the l-partial wave:

cl D
p

� il.2l C 1/1=2.a2
l � 1/; al D exp.iıl/: (6.20)

We notice that fk.�/ is provided by the second term in the first line of (6.19).

Replacing the Hankel function by its asymptotic representation one gets

fk.�/ D �i

p
�

k

lD1
X

lD0

.2l C 1/1=2 Œexp.i2ıl/� 1� Yl0: (6.21)
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6.3.3 Cross Sections

According to (6.16), the ratio between the scattered flux in the direction � and the

incident flux along the polar axis is given by jf .�/j2=r2. The differential cross

section is defined as the number of particles that emerge per unit incident flux, per

unit solid angle and per unit time:

�.�/ D jf .�/j2 D �

k2

ˇ

ˇ

ˇ

ˇ

ˇ

lD1
X

lD0

.2l C 1/1=2
�

exp.i2ıl/� 1
�

Yl0

ˇ

ˇ

ˇ

ˇ

ˇ

2

: (6.22)

The total cross section is the integral over the whole solid angle

� D 2�

Z �

0

�.�/ sin �d� D 4�

k2

lD1
X

lD0

.2l C 1/ sin2 ıl : (6.23)

The values of ıl are determined by applying continuity equations at the border r D a

of the central potential. In the case of scattering by a rigid sphere of radius a, the

phase shifts are given by (6.19) and (6.35):

tan ıl D
jl .ka/

nl .ka/
; lim

ka!0
tan ıl D

.ka/2lC1

.2l C 1/
�

.2l � 1/ŠŠ
�2

: (6.24)

If ka D 0, all the partial wave contributions vanish except for l D 0, due to the k2

appearing in the denominator of the cross sections (6.22) and (6.23). We obtain

�.�/ D a2; � D 4�a2: (6.25)

The scattering is spherically symmetric and the total cross section is four times

the area seen by classical particles in a head-on collision. This quantum result also

appears in optics and is characteristic of long-wavelength scattering. The fact that �

is the total surface area of the sphere is interpreted by saying that the waves “feel”

all this area.

Some features of scattering theory deserve to be stressed:

• The classical distance of closest approach to the z-axis of a particle with orbital

angular momentum „l and energy E is l=k. Therefore, a classical particle is not

scattered if l > ka. A similar feature appears in quantum mechanics, since the

first and largest maximum of jl .kr/ lies approximately at r D l=k. Thus, for

l > ka, the maximum occurs where the potential vanishes: the largest value of l

to be included is of order ka.

• The calculation of the probability current (4.18) with wave function (6.16)

should yield interference terms in the whole space. They would be nonphys-

ical consequences of assuming an infinite plane wave for the incident beam.
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In practice, the beam is collimated and, as a consequence, the incident plane

wave and the scattered wave are well separated, except in the forward direction

(Fig. 6.2). On the other hand, in most experimental arrangements, the opening of

the collimator is sufficiently large to ensure that there are no measurable effects

of the uncertainty principle due to collimation (see Problem 12 of Chap. 2).

• Interference in the forward direction between the incident plane wave and the

scattered wave gives rise to the important relation

� D 4�

k
Im
�

fk.0/
�

; (6.26)

by comparing (6.21) and (6.23). The attenuation of the transmitted beam

measured by Im
�

fk.0/
�

is proportional to the total cross section � . The validity of

(6.26) (optical theorem) is very general and is not restricted to scattering theory.

• The previous description of a scattering experiment is made in the center of mass

coordinate system. We must therefore use the projectile–target reduced mass and

the energy for the relative motion to determine the value of k. Moreover, there

is a geometrical transformation between the scattering angles � and �lab because

the two systems of reference move relative to each other with the velocity of the

center of mass.

6.4* Solutions to the Coulomb and Oscillator Potentials

The hydrogen atom constitutes a two-body problem which can be transformed to

a one-body form by changing to the center of mass frame. As a consequence,

the reduced mass for relative motion should be used [as will be done in (8.22)].

However, for the sake of simplicity, we ignore the motion of the nucleus here, since

it is much heavier than the electron.

It is always helpful to work with dimensionless variables, as in (4.22). In the case

of the hydrogen atom, the natural length is the Bohr radius (Table A.1). Thus, one

may use u D Zr=a0. The solution to the radial equation (6.3) takes the form

Rnr l.r/ D Nnl.Z=na0/3=2 exp.�u=n/ulLnr .u/; (6.27)

where Lnr .u/ are polynomials of degree nr D 0; 1; 2; : : : called Laguerre polyno-

mials. The Nnl are normalization constants such that

Z 1

0

r2Rnr l Rn0
r ldr D ınr n0

r
: (6.28)

The energy Z2jEHj=n2 is the ionization or binding energy, i.e. the amount of energy

that must be given to the Z atom to separate an electron in the n state. Figure 6.3

represents the probability density as a function of the radial coordinate for the
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Fig. 6.3 Radial probability densities of the Coulomb potential

n D 1; 2 states (Table 6.2). The expression for the probability density includes a

factor r2 associated with the volume element (5.10).

Figure 6.4 combines the angular distribution associated with the spherical

harmonics of Fig. 5.2 with the radial densities appearing in Fig. 6.3.

The Bohr radius a0 may be compared with the expectation value of the coordinate

r in the ground state of the hydrogen atom. According to Table 6.2, one gets

h100jr j100i D
Z 1

0

Z �

0

Z 2�

0

r3 jϕ100j2 dr sin �d�d�

D 4

a3
0

Z 1

0

r3 exp.�2r=a0/dr D 3

2
a0: (6.29)

There are also positive energy, unbound solutions to the Coulomb problem. They

are used in the analysis of scattering experiments between charged particles.

In the harmonic oscillator, the dimensionless length is given by the ratio u D
r=xc, as in (4.21). The radial eigenfunctions are

Rnr l D NN l

1

�1=4x
3=2
c

exp.�u2=2/ulF

�

�nr ; l C 3

2
; u2

�

: (6.30)

The confluent hypergeometric function F.�nr ; l C 3=2; u2/ is a polynomial of the

order nr in u2 (nr D 0; 1; 2; : : :). Some radial probability densities are displayed in

Fig. 6.5. The NN l are normalization constants such that (6.28) also holds true in this

case. The energy eigenvalues are given by
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Table 6.2 Radial dependence of the lowest solutions for the Coulomb potential and the three-

dimensional harmonic oscillator

Coulomb potential

n nr l Nnl Lnr .u/

1 0 0 2 1

2 1 0 2 1 � 1

2
u

2 0 1 1=
p

3 1

3 2 0 2 1 � 2

3
u C 2

27
u2

3 1 1 4
p

2=9 1 � 1

6
u

3 0 2 4=27
p

10 1

Three-dimensional harmonic oscillator

N nr l NN l F

�

�nr ; l C 3

2
; u2

�

0 0 0 2 1

1 0 1 2
p

2=3 1

2 1 0
p

6 1 � 2

3
u2

2 0 2 4=
p

15 1

3 1 1 2
p

5=3 1 � 2

5
u2

3 0 3 4
p

2=105 1

Fig. 6.4 Probability density plots of some hydrogen atomic orbitals. The density of the dots

represents the probability of finding the electron in that region [41]. (Reproduced with permission

from University Science Books)
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Fig. 6.5 Radial probability densities of the harmonic oscillator potential

E D „!
�

N C 3

2

�

: (6.31)

Using procedures similar to those applied for the linear harmonic oscillator,

we may calculate the expectation values of the square of the radius and of the

momentum. We thus verify the virial theorem (3.46) once again:

hN lml jr2jN lmli=x2
c D hN lml jp2jN lmlix2

c =„2 D N C 3

2
: (6.32)

The lowest energy solutions are given on the right-hand side of Table 6.2.

Useful definite integrals are

Z 1

0

un exp.�au/du D nŠ

anC1
;

Z 1

0

u2n exp.�u2/du D .2n � 1/ŠŠ
p

�

2nC1
;

Z 1

0

u2nC1 exp.�u2/du D nŠ

2
:

6.5* Some Properties of Spherical Bessel Functions

The spherical Bessel functions jl .kr/ [and the Neumann nl .kr/] satisfy the

differential equation
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Table 6.3 Lowest spherical Bessel functions

l jl nl

0
1

�
sin � � 1

�
cos �

1
1

�2
sin � � 1

�
cos � � 1

�2
cos � � 1

�
sin �

2

�

3

�3
� 1

�

�

sin � � 3

�2
cos � �

�

3

�3
� 1

�

�

cos � � 3

�2
sin �

� „
2

2M

�

d2

dr2
C 2

r

d

dr
� l.l C 1/

r2

�

jl .kr/ D „
2k2

2M
jl.kr/: (6.33)

Their asymptotic properties for large arguments are

lim
�!1

jl .�/ D 1

�
sin

�

� � 1

2
l�

�

; lim
�!1

nl .�/ D �1

�
cos

�

� � 1

2
l�

�

; (6.34)

while for small arguments they are

lim
�!0

jl .�/ D �l

.2l C 1/ŠŠ
; lim

�!0
nl .�/ D � .2l � 1/ŠŠ

�lC1
: (6.35)

The spherical Hankel functions are defined by

h
.C/

l .�/ D jl .�/C inl .�/; h
.�/

l .�/ D jl .�/� inl .�/: (6.36)

Due to (6.34), these have the asymptotic expressions

lim
�!1

h
.C/

l .�/ D .�i/lC1

�
exp.i�/; lim

�!1
h

.�/

l .�/ D .i/lC1

�
exp.�i�/: (6.37)

The first three jl s and nl s are given in Table 6.3.

Problems

Problem 1. Calculate the difference in the excitation energy of nD 2 states

between hydrogen and deuterium atoms. Hint: use the reduced mass instead of the

electron mass.

Problem 2. 1. Assign the quantum numbers nlj to the eigenstates of the Coulomb

problem with n � 3.

2. Do the same for the three-dimensional harmonic oscillator with N � 3.
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Problem 3. 1. Obtain the degeneracy of a harmonic oscillator shell N , including

the spin.

2. Obtain the average value hjL2jiN of the operator OL2 in an N shell.

3. Calculate the eigenvalues of a harmonic oscillator potential plus the interaction

[see (7.16)]

� !

16

�

1

„
OL2 � „N.N C 3/

�

� !

4„
OL� OS ;

for N D 0; 1; 2; 3.

4. Give the quantum numbers of the states with minimum energy for a given

shell N .

Problem 4. 1. Find the energy and the wave function for a particle moving in an

infinite spherical well of radius a with l D 0. Hint: replace ‰.r/! f .r/=r .

2. Solve the same problem using the Bessel functions given in Sect. 6.5*�.

Problem 5. 1. Find the values of r at which the probability density is at a

maximum, assuming the n D 2 states of a hydrogen atom.

2. Calculate the mean value of the radius for the same states.

Problem 6. Solve the harmonic oscillator problem in Cartesian coordinates. Cal-

culate the degeneracies and compare them with those listed in Table 6.1.

Problem 7. 1. Find the ratio between the nuclear radius and the average electron

radius in the n D 1 state, for H and for Pb. Use Rnucleus � 1:2A1=3 F,

A.H/DZ.H/D 1, A.Pb/ D 208 and Z.Pb/ D 82.

2. Do the same for a muon (M
 D 207Me).

3. Is the picture of a pointlike nucleus reasonable in all these cases?

Problem 8. Replace r2 ! s in the radial equation of a harmonic oscillator

potential. Find the changes in the constants l.l C 1/, M!2 and E that yield

the Coulomb radial equation. Hint: make the replacement R.r/ ! s1=4ˆ.s/ and

construct the radial equation using s � r2 as variable.

Problem 9. The positronium is a bound system of an electron and a positron (the

same particle as an electron but with a positive charge). Their spin–spin interaction

energy may be written as OH D a OS e� OS p, where e and p denote the electron and

positron, respectively.

1. Obtain the energies of the resultant eigenstates (see Problem 11 of Chap. 5).

2. Generalize (6.15) to the product of two arbitrary angular momentum OJ 1 	 OJ 2

Problem 10. Calculate the splitting between the 2p states with m D 1=2 of a

hydrogen atom in the presence of spin–orbit coupling and a magnetic field B in the

z-direction:

1. At the limit vso D 0

2. At the limit Bz D 0

3. As a function of the ratio q D 2�BBz=„2vso
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Problem 11. Calculate the current associated with the spherical wave A exp.ikr/=r

and show that the flux within a solid angle d˝ is constant.

Problem 12. A beam of particles is being scattered from a constant potential well

of radius a and depth V0. Calculate the differential and the total cross section in the

limit of low energies.

Hint: Consider only the l D 0 partial waves.

1. Obtain the interior logarithmic derivative (times a) for r D a (see Problem 4).

2. Obtain the exterior logarithmic derivative (times a) for r D a in the low energy

limit.

3. Calculate tan ı0.

4. Calculate �.�/.

5. Calculate � .

Problem 13. Consider a planar motion.

1. What is the analogue of spherical symmetry in a two-dimensional space? Find

the corresponding coordinates.

2. Write down the operator for the kinetic energy in these coordinates and find the

degeneracy inherent in potentials with cylindrical symmetry.

3. Find the energies and degeneracies of the two-dimensional harmonic oscillator

problem.

4. Verify that the function

ϕn D
1

xc

p
�nŠ

exp.�u2=2/un exp.˙in�/

is an eigenstate of the Hamiltonian (u D �=xc).

Problem 14. Consider the outer electron of a Rydberg atom

1. Calculate the quantum frequency !ph of the photon emitted in the transition

ϕn;n�1;n�1 ! ϕn�1;n�2;n�2 and the classical frequency !cl of the rotational

motion of the electron.

2. Which principle relates these two frequencies?



Chapter 7

Many-Body Problems

So far, we have discussed only one-particle problems. We now turn our attention to

cases in which more than one particle is present.

In the first place, we stress the fact that if OH D OH.1/C OH.2/, where OH .1/ and
OH.2/ refer to different degrees of freedom (in particular, to different particles), and

if OH.1/ϕa.1/ D Eaϕa.1/ and OH.2/ϕb.2/ D Ebϕb.2/, then

ϕab.1; 2/ D ϕa.1/ ϕb.2/;

OH ϕab.1; 2/ D .Ea C Eb/ ϕab.1; 2/: (7.1)

In the second place, we note that the distinction between identical particles is

prevented in quantum physics by Heisenberg indeterminacy (unless they are wide

apart). The quantum treatment of identical particles requires a new principle – the

Pauli Principle – which is presented in Sect. 7.1. Particles can be either fermions or

bosons.

In this chapter, we deal with many-body problems that are amenable to an

independent-particle description. Central potentials in atomic and nuclear physics,

electron gas and periodic potentials in solid state physics are fermion problems to

be treated with methods developed in Chap. 6 and Sects. 4.4 and 4.6�. Problems

involving phonons in lattices and condensation of bosons are dealt with by means

of generalizations of the harmonic oscillator solution (Sect. 3.3.1). An exception

is represented by the fractional Hall effect. Rather than presenting an overview of

these many-body fields, we restrict ourselves to illustrate the quantum formalism

with relevant applications. However, even this restricted framework allows us to

introduce some of the most spectacular discoveries of the recent decades, which

are based on quantum mechanics and are (or may become) cornerstones of present

and future technologies: transistors, quantum dots, Bose–Einstein condensation and

quantum Hall effects.

The concept of creation and annihilation operators is extended to many-body

boson and fermion systems in Sect. 7.8�.
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7.1 The Pauli Principle

Let us now consider the case of two identical particles, 1 and 2. Two particles are

identical if their interchange, in any physical operator, leaves the operator invariant:

Œ OP12; OQ.1; 2/� D 0; (7.2)

where OP12 is the operator corresponding to the interchange process 1 $ 2.

As a consequence, the eigenstates of OQ may be simultaneous eigenstates of OP12

(Sect. 2.6.1). The operator OP 2
12 must have the single eigenvalue 1, since the system

is left invariant by interchanging the particles twice. Thus the two eigenvalues

of the operator OP12 are ˙1. The eigenstates are said to be symmetric (C1) or

antisymmetric (�1) under the interchange of particles 1$ 2.

Consider two orthogonal single-particle states ϕp; ϕq which may be, in particular,

eigenstates of a Hamiltonian. We construct the four two-body states by distributing

the two particles in the two single-particle states. The symmetric combinations are

‰.C/
pp D ϕp.1/ϕp.2/; (7.3)

‰.C/
qq D ϕq.1/ϕq.2/; (7.4)

‰.C/
pq D

1p
2

h

ϕp.1/ϕq.2/C ϕq.1/ϕp.2/
i

; (7.5)

while the antisymmetric state is

‰.�/
pq D

1p
2

h

ϕp.1/ϕq.2/� ϕq.1/ϕp.2/
i

: (7.6)

The states (7.5) and (7.6) are called entangled states, meaning that they are not

simply written as a component of the tensor product of the state vectors of particle

1 and particle 2 (see Chap. 12).

The average distance between two entangled identical particles is

hpqj.r1�r2/
2jpqi1=2

.˙/D
�

hpjr2jpiChqjr2jqi�2hpjrjpihqjrjqi � 2 jhpjrjqij2
�1=2

;

(7.7)

where the subscripts .˙/ denote symmetric and antisymmetric states. The first

three terms correspond to the average “classical” distance which is obtained if state

functions of the type ϕp.1/ϕq.2/ are used. According to (7.7), this classical distance

may be decreased for entangled particles in symmetric states and increased if they

are in antisymmetric states. Therefore, the symmetry induces correlations between

identical particles, even in the absence of residual interacting forces.

We now generalize the construction of symmetric and antisymmetric states to �

identical particles. Let OPb denote the operator that performs one of the �Š possible
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permutations. It can be shown that this operator may be written as a product of two-

body permutations OPij . Although this decomposition is not unique, the parity of the

number �b of such permutations is. We construct the operators

OS � 1p
�Š

X

b

OPb; OA � 1p
�Š

X

b

.�1/�b OPb : (7.8)

Acting with the operator OS on a state of � identical particles produces a symmetric

state, while acting with OA produces an antisymmetric state.

A new quantum principle has to be added to those listed in Chap. 2:

Principle 4. There are only two kinds of particles in nature1: bosons described by

symmetric state vectors and fermions described by antisymmetric state vectors.

As long as the Hamiltonian is totally symmetric in the particle variables, its

eigenstates may be labeled with their properties under the interchange of two

particles (symmetry or antisymmetry). According to Principle 4, many otherwise

possible states are eliminated. For instance, the only two-body fermion state that

can be found in nature is (7.6).

All known particles with half-integer values of spin are fermions (electrons,

muons, protons, neutrons, neutrinos, etc.). All known particles with integer spin

are bosons2 (photons, mesons, etc.).

Moreover, every composite object has a total angular momentum, which can

be viewed as the composite particle spin, and which is obtained according to the

addition rules of Sect. 5.3.1. If this spin has a half-integer value, the object behaves

like a fermion, whereas a composite system with an integer value of the spin acts as

a boson. For instance, He3 is a fermion (two protons and one neutron), while He4 is

a boson (an ’-particle, with two protons and two neutrons), in spite of the fact that

both isotopes have the same chemical properties.

Let us distribute � identical bosons into a set of single-particle states ϕp and

denote by np the number of times that the single-particle state p is repeated. The np

are called occupation numbers. To construct the symmetrized �-body state vector,

we start from the product

‰pq���r .1; 2; : : : ; �/

D ϕp.1/ϕp.2/ 	 	 	ϕp.np/ϕq.np C 1/ϕq.np C 2/ 	 	 	ϕq.np C nq/ 	 	 	ϕr .�/

D ϕ
.np/
p ϕ

.nq/
q 	 	 	ϕ.nr /

r ; (7.9)

1For the last 20 years it has been understood that, although this postulate holds true in our three-

dimensional world, there is a whole range of intermediate possibilities – anyons – between bosons

and fermions, in two dimensions. In some cases there are surface layers a few atoms thick in which

the concept of anyons is realized, as in the fractional quantum Hall effect (Sect. 7.6.2�).
2Pauli produced a demonstration of this relation between spin and statistics which involved many

complications of quantum field theory. Feynman’s challenge that an elementary proof of the spin-

statistics theorem be provided has not yet been answered.
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with
P

i ni D �. Subsequently, the state vector is symmetrized by applying the

operator OS . The final state is

‰np;nq ;:::;nr .1; 2; : : : ; �/ D N OS‰pq���r .1; 2; : : : ; �/; (7.10)

where N is a normalization constant. The occupation numbers label the states.

There are no restrictions on the number of bosons in a given single-boson state.

For instance, in the two-particle case, the possible symmetric state vectors are (7.3),

(7.4) and (7.5).

We may also characterize the state by using the occupation numbers in the case

of fermions. The procedure for constructing the antisymmetric state is the same, but

for the application of the operator OA instead of OS. However, the results are different,

in the sense that occupation numbers must be 0 or 1. Otherwise the state vector

would not change its sign under the exchange of two particles occupying the same

state. The antisymmetrization principle requires that fermions should obey Pauli’s

exclusion principle [42]: “If there is an electron in the atom for which these [four]

quantum numbers have definite values, then the state is occupied, full, and no more

electrons are allowed in.”

The antisymmetric state function for � fermions may be written as a Slater

determinant:

‰pq���r .1; 2; : : : ; �/ D 1p
�Š

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ϕp.1/ ϕp.2/ 	 	 	 ϕp.�/

ϕq.1/ ϕq.2/ 	 	 	 ϕq.�/
:::

:::
: : :

:::

ϕr .1/ ϕr .2/ 	 	 	 ϕr .�/

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

: (7.11)

The permutation of two particles is performed by interchanging two columns, which

produces a change of sign. All the single-particle states must be different. Otherwise,

the two rows are equal and the determinant vanishes.

A widely used representation of the states (7.9) and (7.11), in terms of creation

and annihilation operators, is given in Sect. 7.8�.

The possibility of placing many bosons in a single (symmetric) state gives rise

to phase transitions, with important theoretical and conceptual implications that are

illustrated for the case of the Bose–Einstein condensation (Sect. 7.5�). Even more

spectacular consequences appear in the fermion case.3 Some of them will be treated

later in this chapter.

3To reconcile the successes of the (fermion) quark model with the requirement that the total wave

function be antisymmetric, it is necessary to hypothesize that each quark comes into three different

species, which are labeled by the colors red, green and blue. Baryon wave functions may thus be

antisymmetrized in color subspace.
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7.2 Two-Electron Problems

Let us consider the case of the He atom. For the moment, we disregard the

interaction between the two electrons. The lowest available single-particle states

for the two electrons are the ϕ100 1
2 ms

, ϕ200 1
2 ms

and ϕ21ml
1
2 ms

states, where we use the

same representation as in (6.10).

This problem involves four angular momenta: the two orbital and the two spin

angular momenta. The two orbital angular momenta and the two spins may be

coupled first4 ( OL D OL1 C OL2 and OS D OS 1 C OS 2). Subsequently, the addition of

the total orbital and total spin angular momenta yields the total angular momentum
OJ D OLC OS .

The spin part of the state vector may carry spin 1 or 0. We obtain the

corresponding states ¦s
ms

by using the coupling given in (5.67), with j1 D j2 D 1=2.

The (three) two-spin states with spin 1 are symmetric, while the state with spin 0 is

antisymmetric. Thus,

¦1
1.1; 2/ D ϕ".1/ϕ".2/; ¦1

0.1; 2/ D 1p
2

h

ϕ".1/ϕ#.2/C ϕ".2/ϕ#.1/
i

;

¦1
�1.1; 2/ D ϕ#.1/ϕ#.2/; ¦0

0.1; 2/ D 1p
2

h

ϕ".1/ϕ#.2/ � ϕ".2/ϕ#.1/
i

:

(7.12)

We now consider different occupation numbers for the two electrons:

1. The two electrons occupy the lowest orbit ϕ100 1
2 ms

. In this case, the spatial part

is the same for both electrons and, thus, the state vector is necessarily spatially

symmetric. Therefore the symmetric spin state with spin 1 is excluded by the

exclusion principle. Only the (entangled) state with zero spin can exist.

2. One electron occupies the lowest level ϕ100 1
2 ms

and the other, the next level

ϕ200 1
2 ms

. In this case, the difference in the radial wave functions allows us to

construct both a symmetric and an antisymmetric state for the spatial part of the

wave function [(7.5) and (7.6), respectively]. Both spatial states carry l D 0.

Two total states are now allowed by the Pauli principle: the combination of the

symmetric spatial part with the antisymmetric spin state and vice versa. The (so

far neglected) interaction between the electrons breaks the degeneracy between

these two allowed total states: according to (7.7), two electrons in a spatially

antisymmetric state are further apart than in a symmetric state. They thus feel less

4There is an alternative coupling scheme in which the orbital and spin angular momenta are first

coupled to yield the angular momentum of each particle: OJ i D OLi C OS i (i D 1; 2), as in (6.11).

Subsequently, the two angular momenta are coupled together: OJ D OJ 1 C OJ 2. The two coupling

schemes give rise to two different sets of basis states.
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Coulomb repulsion. Their energy decreases relative to the energy of the spatially

symmetric state.

3. One electron occupies the lowest level ϕ100 1
2 ms

and the other, the level ϕ21ml
1
2 ms

.

It is left for the reader to treat this case as an exercise. He or she may follow

the same procedure as in the previous example, bearing in mind that the orbital

angular momentum no longer vanishes.

7.3 Periodic Tables

7.3.1 The Atomic Case

The attraction exerted by the nuclear center, proportional to Ze2, allows us to

implement a central-field description for atomic systems displaying more than

one electron. However, the Hamiltonian also includes the Coulomb repulsion

between electrons. This interaction is weaker (since it is only proportional to e2),

but an electron experiences Z � 1 such repulsions. We can nonetheless take them

into account to a good approximation by modifying the central field because:

• Electrons from occupied levels cannot be scattered to other occupied levels (Pauli

principle) and when scattered to empty levels have to overcome the gap between

the energy of the occupied level and the energy of the last filled state, thus

reducing the effectiveness of the residual interaction.

• The electric fields created by electrons lying outside a radius r 0 tend to cancel for

radius r < r 0, due to the well-known compensation between the field intensity

(/ 1=r2) and the solid angle (/ r2).

Although the optimum choice of the single-particle central potential constitutes

a more difficult problem (see Sect. 8.6.1� on the Hartree–Fock approximation), it is

simple to obtain the behavior at the limits

lim
r!0

V.r/ D � Ze2

4��0r
; lim

r!1
V.r/ D � e2

4��0r
: (7.13)

Close to the nucleus, the electron feels all the nuclear electric field. Far away, this

field is screened by the remaining Z � 1 electrons. The potential at intermediate

points may be obtained qualitatively by interpolation.

The energy eigenvalues of this effective potential are also qualitatively repro-

duced by adding the term
OHl D c OL2 (7.14)

to the Coulomb potential, since the centrifugal term „2l.l C 1/=2M r2 prevents the

electrons occupying levels with large values of l from approaching the center and,

thus, feeling the greater attraction of the potential at small radii.
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Fig. 7.1 Electron shell

structure. The figure gives a

rough representation of the

order of single-electron

levels. Numbers to the right

indicate the number of

electrons in closed shell
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The energies Enl are also labeled by the orbital quantum number, since the

potential is no longer simply proportional to 1=r (Sect. 6.1.1). They are qualitatively

presented in Fig. 7.1, where the nomenclature of Table 5.2 is used. The set of energy

levels which are close to each other is called a shell. In a closed shell, all magnetic

substates are occupied.

The ground state of a given atom is determined by successively filling the

different single-particle states until the Z electrons are exhausted. A closed shell

carries zero orbital and zero spin angular momenta (see Problem 7). A closed shell

displays neither loose electrons nor holes, and thus constitutes a quite stable system.

This fact explains the properties of noble gases in the Mendeleev chart, for which

Z D 2, 10, 18, 36, 54 and 86 (Fig. 7.1). The angular momenta (including the

magnetic momenta), the degree of stability, the nature of chemical bonds and, in

fact, all the chemical properties are determined by the outer electrons lying in the

last, unfilled shell, a spectacular consequence of the Pauli principle.

The electron configuration of an atom with many electrons is specified by the

occupation of the single-particle states of the unfilled shell. For instance, the lowest

configuration in the Mg atom, with Z D 12, is5 .3s/2. Configurations .3s/.3p/ and

.3p/2 lie close in energy.

In the atomic case the total single-particle angular momentum j is not usually

specified (as it was not in Sect. 7.2), because the strength of the spin–orbit coupling

is small relative to the electron repulsions. However, for heavier elements and inner

shells, the quantum numbers .l; j / become relevant once again.

5The first number is the Coulomb principal quantum number; the orbital angular momentum

follows the notation of Table 5.2; the exponent (2) denotes the number of particles with the previous

two quantum numbers.
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7.3.2 The Nuclear Case

Let us now consider the nuclear table. A nucleus has A nucleons, of which N

are neutrons and Z are protons. Nuclei with the same A are called isobars; with

the same N , isotones and with the same Z, isotopes. In spite of the fact that there

is no ab initio attraction from a nuclear center and the internuclear force is as

complicated as it can be, the Pauli principle is still effective: the starting point for

the description of most nuclear properties is a shell model. For systems with short-

range interactions, a realistic central potential follows the probability density, which

in the nuclear case has a Woods–Saxon shape, w.r/ (Fig. 7.3). A strong spin–orbit

interaction must be included on the surface, with an opposite sign to the atomic case.

A central Coulomb potential also appears for protons

OV D �v0w.r/ � vso

r2
0

r

dw.r/

dr
OL� OS C Vcoul

w.r/ �
�

1C exp
r �R

a

��1

: (7.15)

The empirical values of the parameters appearing in (7.15) are [38]

v0 D
�

�51C 33
N �Z

A

�

MeV and vso D 0:44v0:

Here a D 0:67 F represents the skin thickness and R D r0A
1=3 is the nuclear radius,

with r0 D 1:20 F. The resulting shell structure is shown in Fig. 7.2.

Nucleons moving in a Woods–Saxon potential see a potential similar to the

harmonic oscillator potential (Fig. 7.3). An attractive term of the form (7.14) should

also be included, since the nuclear single-particle states in which nucleons lie close

to the surface are more energetically favored by the Woods–Saxon potential than by

the harmonic oscillator potential (Fig. 7.3). Therefore, the simpler effective potential

OV D Mp!
2

2
r2 � c OL	 OS � d

�

OL2 � hL2iN
�

(7.16)

may be used instead of (7.15), at least for bound nucleons, where „! D 41 MeV

A�1=3, c D 0:13!=„, and d D 0:038!=„ for protons and d D 0:024!=„ for

neutrons ([38], Chap. 2). The symbol hL2iN denotes the average value of L2 in

an N -oscillator shell (Problem 3 of Chap. 6). The eigenstates are labeled with

the quantum numbers N ljm� , where the new quantum number � equals 1=2 for

neutrons and �1=2 for protons.

The lowest shell N D 0 is filled up with four nucleons, two protons and two

neutrons, giving rise to the very stable ’-particle. As in the electron case, closed

shells do not contribute to the properties of low-lying excited states. Note that both

nucleons should fill closed shells to obtain the analogy of noble gases. This occurs
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Fig. 7.2 Nuclear shell structure. This figure is an approximation of the order of single-nucleon

levels. They are labeled with the quantum numbers N lj . The number of nucleons for closed shell

systems is indicated on the right
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Fig. 7.3 Comparison of the Woods–Saxon and harmonic oscillator potentials [38]
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Table 7.1 Levels of Sn133

populated by transferring a

neutron from the deuteron

target to the closed shell

Sn132. Energies in keV

Level Energy S

5f7/2 g.s. 0.86 ˙ 0.16

5p3/2 854 0.92 ˙ 0.18

5p1/2 1,363 1.1 ˙ 0.3

5f5/2 2,005 1.1 ˙ 0.2

in the nuclear systems Z D N D 2; Z D N D 8; Z D N D 20; Z D 20; N D 28;

Z D N D 28; Z D N D 50; Z D 50; N D 82 and Z D 82; N D 126.

It should be stressed that, unlike the hydrogen case, the description of heavier

atoms/nuclei in terms of a central field is, at best, a semi-quantitative approximation:

one-body terms can never completely replace two-body interactions. The approxi-

mation is more reliable for systems that have one more particle (or hole) than a

closed shell. In fact, the single-particle spectrum can be determined by transferring

one nucleon to the double closed shells, as in (d,p) reactions. For instance, the

spectroscopic factor (the ratio between experimental and predicted cross sections)

should be S D 1 if the single-particle states are pure, without admixtures of core

excitations.

Recently, single-particle levels above the double closed shell nucleus Z D 50,

N D 82 (mean lifetime of 40 s) have been measured [43]. Since it is not possible

to make a target with such a short-lived nucleus, a beam of Sn132 has been runned

upon a deuterium target. The Sn133 levels are disentangled through properties of the

scattered protons (intensities, energies, angular distributions). The results are given

in Table 7.1 and agree, within expectations, with predictions from Fig. 7.2.

7.4 Motion of Electrons in Solids

7.4.1 Electron Gas

In the simplest possible model of a metal, electrons move independently of each

other. The electrostatic attraction of the crystalline lattice prevents them from

escaping when they approach the surface. The electron gas results of Sect. 4.4.1

may be easily generalized to the three-dimensional case. The wave states are given

as the product of three one-dimensional solutions (4.43)

ϕnxnynz
D 1p

V
exp

h

i.knx x C kny y C knz
z/
i

: (7.17)

The volume is V D a3. The allowed k values constitute a cubic lattice in which two

consecutive points are separated by the distance 2�=a (4.42)
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kni D
2�

a
ni ; ni D 0;˙1;˙2; : : : ; i D x; y; z: (7.18)

The energy of each level is

�k D
„2jkj2
2M

: (7.19)

To build the �-electron ground state, we start by putting two electrons on the level

kx D ky D kz D 0. We successively fill the unoccupied levels as their energy

increases. When there is a large number of electrons, the occupied region will be

indistinguishable from a sphere in k-space. The radius of this sphere is called kF,

the Fermi momentum, and its energy �F � „2k2
F=2M , the Fermi energy. At zero

energy, the levels with jkj � kF are occupied pairwise and those above are empty.

Since we are interested in the large-volume limit, the levels are very close together

and we may replace summations with integrals that have a volume element similar

to (4.45). Thus,
X

k

fk �
V

8�3

Z

fkd3k: (7.20)

An electron gas is characterized by the Fermi temperature TF � �F=kB, where kB

is the Boltzmann constant (Table A.1). If the temperature T � TF, the electron gas

has properties that are very similar to the T D 0 gas. The number of levels per unit

volume with energy less than � and the density of states per unit interval of energy

per unit volume are

n.�/ D 2

V

X

nxnynz

� 1

4�3

Z

k�k�

d3k D k3
�

3�2
D 1

3�2

�

2M�

„2

�3=2

;

�.�/ D @n

@�
D 1

�2„3

�

2M 3�
�1=2

; (7.21)

respectively. At the Fermi energy, the values of these quantities are

nF D
1

3�2
k3

F; �F D
3nF

2�F

: (7.22)

For the Na typical case: nF � 2:65 � 1022 electrons/cm3, kF � 0:92 � 108 cm�1,

�F � 3:23 eV and TF � 3:75 � 104 K.

We now explore some thermal properties of an electron gas. If the electrons

would obey classical mechanics, each of them should gain an energy of the order of

kBT in going from absolute zero to the temperature T . The total thermal energy per

unit volume of electron gas would be of the order of
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ucl D nFkBT; (7.23)

and the specific heat at a constant temperature would thus be independent of the

temperature:

.CV /cl D
@ucl

@T
D nFkB: (7.24)

However, the Pauli principle prevents most of the electrons from gaining energy.

Only those with an initial energy �k such that �F � �k < kBT can be expected to

gain energy. The number of such electrons is given roughly by

�FkBT D 3nF

2

T

TF

: (7.25)

The total thermal energy and specific heat per unit volume are

u D �F.kBT /2; (7.26)

CV D 3nFkB

T

TF

: (7.27)

The specific heat is proportional to the temperature and is reduced by a factor

� 1=100 at room temperature.

The probability of an electron being in a state of energy � is given by the Fermi–

Dirac distribution �.�/ (7.55). Using this distribution, the expression for the total

energy per unit volume is

u D 1

2�2

Z 1

0

� �.�/ �.�/ k2 dk; (7.28)

which is a better approximation than (7.26). Upon integration, one obtains results

similar to (7.27).

7.4.2� Band Structure of Crystals

Although the electron gas model explains many properties of solids, it fails to

account for electrical conductivity, which can vary by a factor of 1030 between good

insulators and good conductors.

A qualitative understanding of conductors and insulators may be obtained from

a simple generalization of the band model described in Sect. 4.6�. As a consequence

of the motion of single electrons in a periodic array of ions, the possible individual

energies are grouped into allowed bands. Each band contains 2N levels, where N

is the number of ions, and the factor 2 is due to spin.
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According to the Pauli principle, we obtain the ground state by successively

filling the individual single-particle states of the allowed bands. The last filled band

is called the valence band. If we place the solid within an electric field, the electrons

belonging to a valence band cannot be accelerated by a small electric field, since

they would tend to occupy other states of the same band, which are already occupied.

Much like the case of closed shells in atoms and nuclei, electrons in a valence band

constitute an inert system which do not contribute to thermal or electrical properties.

A solid consisting only of filled bands is an insulator. The insulation gets better

as the distance �E between the upper valence band and the next (empty) band

increases.

By contrast, electrons in partially filled bands can easily absorb energy from an

applied electric field. Such a band is called a conduction band.

The previous considerations are valid for T D 0. In solids which are insulators

at T D 0, the thermal motion increases the energy of the electrons by an amount

kBT . As the temperature increases, some electrons belonging to the valence band

may jump to the conduction band. This system is a semiconductor. The conductivity

varies as exp.��E=kBT /.

The existence of conductors, semiconductors and insulators is a consequence

of the Pauli principle. Another consequence arises from the fact that the electrons

which jump to the conduction band leave empty states called holes in the valence

band. Other electrons of the same valence band may occupy these holes, leaving

other holes behind them. Thus there is a current, due to the electrons of the valence

band, which is produced by the holes. The holes carry a positive charge, because

they represent the absence of an electron.

7.4.3� Transistors

Semiconductors have become key parts of electronic circuits and optical applica-

tions in modern electronic industry, due to the fact that their electrical conductivity

can be greatly altered by means of external stimuli (voltage, photon flux, etc.) and

by the introduction of selected impurities (doping).

There are different kinds of transistors, each one having different applications.

Here we outline one of them, the metal-oxide semiconductor field effect transistor

(MOSFET).

We denote by n a semiconductor with electrons at the conduction band and by p,

one with holes at the valence band (Sect. 7.4.2�). As most transistors, the MOSFET

consists of a sandwich made up by three semiconductors, the middle one being of

different type than the other two (Fig. 7.4). On top there is an insulator followed by

a metallic layer. If the control voltage applied between the metal and the bottom of

the transistor vanishes, there is no electron output current flowing from left to right.

However, if the bottom is at a negative potential, the positive free charges (holes)

get attracted to it, and the output current flows on top, below the insulator layer. The

output power can be much greater than at the control circuit.
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n np

Fig. 7.4 Diagram of a MOSFET transistor

Weak voltage signals, arising from an antenna, can replace the control voltage

and get amplified by a transistor. This is the role of transistors at your TV set. The

MOSFET can also be used as a classical bit of your PC, the control voltage allowing

(or not) the current to flow. They also play the role of switches.

Because of their flexibility, reliability and low cost, transistors are the building

blocks of modern electronic circuits. They are used either as isolated units or as parts

of integrated circuits (chips). Transistors were invented by John Bardeen, Walter

Brattain and William Shockley at the Bell Labs in 1947.

7.4.4� Phonons in Lattice Structures

Up to now we have treated the ions as fixed in space at positions Ri , giving rise to

the crystal lattice structure. This is a consequence of the much larger ion mass MI

relative to the electron mass M . Subsequently we allow for a small fluctuation ui in

the coordinate ri D Ri C ui of the i ion (Born–Oppenheimer approximation). For

the sake of simplicity, we make the following approximations:

� A linear, spinless chain of N ions separated by the distance d .

� Only terms up to quadratic order in ui are kept in the ion–ion potential. Linear

terms in the fluctuations vanish due to the equilibrium condition and the constant,

equilibrium term will be dropped.

� Only interactions between nearest neighbors are considered.

Therefore, the Hamiltonian reads

OH D 1

2MI

X

i

Op2
i C

MI !2

8

X

i;j

�

ui � uj

�2
ıi.j ˙1/

D 1

2MI

X

i

Op2
i C

MI !2

2

X

i

Ou2
i �

MI !2

2

X

i

uiuiC1

D „!
X

i

�

aC
i ai C

1

2

�

� „!
4

X

i

�

aC
i C ai

� �

aC
iC1 C aiC1

�

; (7.29)
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where the creation and annihilation operators6 aC
i ; ai are defined as in (3.29) for

each site i . The strength parameter ! in the ion–ion potential may be interpreted as

the frequency of each oscillator in the absence of coupling with other oscillators.

As in classical physics, the coupled oscillators may become uncoupled by means

of a linear transformation

OH D „!k

�

C
k k C

1

2

�

C
k D

X

i

.�ki a
C
i � �ki ai /;

X

i

.�ki �
�
li � �ki �

�
li / D ıkl : (7.30)

The uncoupling procedure is described at the end of the section. The resultant

amplitudes �ki ; �ki and the new frequencies !k are

�ki D
1

2

�r

!

!kN
C
r

!k

!N

�

exp.ikri /;

�ki D
1

2

�r

!

!kN
�
r

!k

!N

�

exp.ikri/;

!k D
1p
2

! k d; (7.31)

where the frequencies !k are proportional to the wave number k. If a cyclic chain is

assumed (rN C1 D r1, see Sect. 4.4.1)

k D kn D
2� nk

N d
; nk D 0:˙ 1;˙2; : : : : (7.32)

Thus, there are not only electrons and ions in a crystal but also extended periodic

boson structures called phonons are present as well. According to (7.1), the phonon

eigenstates and energies are given by7

‰ D
Y

k

ϕnk
D
Y

k

1p
nk Š

.C
nk

/nk j0i; (7.33)

E.nk/ D
X

k

„wk

�

nk C
1

2

�

: (7.34)

These lattice vibrations have consequences on the thermodynamic properties of

crystals, and in particular on the specific heat: because of the linear dependence of

6See also Sect. 7.8� .
7See also Sect. 7.8� .
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frequency8 on momentum, we can ignore the occupancy of other, finite frequency

modes, if the thermal frequency kBT=„ is sufficiently small. To obtain the total

phonon energy per unit volume V , we replace the phonon occupancies nk in (7.34)

by the thermal occupancy �k given by the Bose–Einstein distribution (7.53)

uphonon D
„˛
V

X

k

k

2

4

1

exp
�

„˛k
kBT

�

� 1
C 1

2

3

5

! „˛
2�2

Z 1

0

k3dk

exp
�

„˛k
kBT

�

� 1
C „˛

2V

X

k

k

D �2 .kBT /4

30.„˛/3
C „˛

2V

X

k

k: (7.35)

Therefore, the phonon contribution to the specific heat at small T (well below room

temperature) is proportional to T 3.

The Uncoupling of the Hamiltonian

The amplitudes �ki ; �ki and the frequencies !k are determined by solving the

harmonic oscillator equation

Œ OH ; C
k � D „!k C

k : (7.36)

Using the last line of (7.29) with this equation, one obtains

.„! � „!k/
X

i

�ki a
C
i C .„! C „!k/

X

i

�ki ai

D „!
4

X

i

.�ki C �ki /
�

aC
i�1 C ai�1 C aC

iC1 C aiC1

�

D „!
4

X

i

�

�k.iC1/ C �k.iC1/ C �k.i�1/ C �k.i�1/

� �

aC
i C ai

�

: (7.37)

Since aC
i ; ai represent independent degrees of freedom, their coefficients in the first

line of (7.37) should equal those in the third line. This requirement yields N sets of

two homogeneous linear equations

8This linearity also holds in three dimensions (sound waves).
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�ki � �ki D
wk

!
.�ki C �ki / ;

�ki C �ki D �
!2

2!2
k

.�k.iC1/ C �k.iC1/ C �k.i�1/ C �k.i�1/ � 2�ki � 2�ki/

� �!2d 2

2!2
k

d2 .�ki C �ki /

.d ri/2
: (7.38)

The last equation implies the frequencies given in the last line of (7.31) and

�ki C �ki D N exp.ikri /; (7.39)

where N is a normalization constant. The normalization condition in (7.30) and the

first of equations (7.38) yield the amplitudes (7.31).

This method of uncoupling constitutes a particular application of the random-

phase approximation, a standard procedure in many-body physics (Sect. 8.6.2�).

7.4.5� Quantum Dots

Quantum dots, also called artificial atoms, are small regions (from 1 to about

100 nm; 1 nm = 10�9 m) of one semiconductor material buried in another

semiconductor material with a larger energy gap �E (Sect. 7.4.2�). They are made

up by roughly 106 atoms. In addition, quantum dots contain a controlled number of

electrons that display atomic-like spectra with very sharp discrete lines (like natural

atoms do). However, unlike natural atoms, their energies can be strongly influenced

by the size of the dot and other interactions with the surroundings.

Electrons in a layer of GaAs are sandwiched between two layers of insulating

AlGaAs, acting as tunnel barriers. One of these barriers is connected to the source

lead, the other to the drain lead. The entire structure may also be linked to an

insulated metal electrode which fixes the bias potential Vg.

The forces acting on the electrons inside the dot are difficult to estimate.

However, it is possible to apply the concept of a central confining potential as in

Sect. 7.3. When an electron enters or leaves the quantum dot there is a noticeable

change in the capacitance of the dot, which can be measured. In Fig. 7.5 the

capacitance is plotted against the voltage Vg. Each maxima denotes the loading

of an additional electron to the dot. The first two electrons fill the lowest, spin

degenerate states. The next shell displays four equally spaced maxima, which is

consistent with a harmonic oscillator potential in two dimensions [Problem 13 of

Chap. 6 and (7.45)]. Indeed, many properties of quantum dots can be accounted for

by means of a parabolic confinement in the xy plane and assuming an oblate shape

for the dot.
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Fig. 7.5 Capacitance spectroscopy reveals quantum-dot electron occupancy and ground-state

energies. (Reproduced with permission from [45])

Fig. 7.6 Discrete energy

levels of a quantum dot are

detected by varying Vsd.

Every time a new discrete

state is accessible there is a

peak in d I=d Vsd [44]
eVsd

drain

source

Being finite-size systems, quantum dots can display shell effects similar to

those discussed in Sect. 7.3. One can obtain the energy spectrum by measuring the

tunneling current. The Fermi level in the source rises proportionally to a voltage Vsd

relatively to the drain and to the energy levels of the dot. Additional current flows

each time that the Fermi energy of the source rises above a level of the dot. Thus

energy levels are measured by the voltages at which there are peaks in the curve

representing d I=d Vsd against Vsd, where I is the tunneling current (Fig. 7.6).

Energy levels vary also in the presence of a magnetic field perpendicular to the

GaAs layer. Very strong fields may produce Landau levels (Sect. 7.6.1�).

Quantum dots also display spin filtering capabilities for generating or detecting

spin-polarized currents [45]. In one of such devices the spin state is mapped into a

charge state as follows: the splitting between the energy levels is made so large that

only the ground state can be occupied. Moreover, Coulomb repulsion ensures that
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at most one electron is allowed. A magnetic field lifts the degeneracy between the

spin-up and spin-down states by an amount larger than the thermal energy. Initially

the Fermi level �F of an adjacent reservoir lies below the spin-up state and the dot is

empty. The voltage is then adjusted so �F lies in between the two spin states. Thus an

electron with spin up remains in the dot, while an electron with spin down leaves the

dot. Subsequently, the charged state is measured. Once emptied, the dot can receive

another electron with spin up from the reservoir.

This device constitutes a modern version of the Stern–Gerlach apparatus. It joins

several advances in the electrical control of spins, including electrically controlled

coupling between spins in quantum dots, quasi-one-dimensional quantum-dot

arrays, etc. Since such devices could be self-contained in a chip (without the need of

lasers and other optical elements) they could interface naturally with conventional

electronic circuits. Thus they may be essential elements in future instrumentation

for quantum information.

Another application is based on the emission frequency sensitivity to the size and

composition of the dot. As a consequence, quantum dots have shown advantages

over traditional organic dyes in modern biological analysis. They also allow for the

use of blue lasers in modern DVD players.

7.5� Bose–Einstein Condensation

In 1924, Einstein realized the validity of the fact that as T increases (and remains

below a critical value Tc), the ground state of a system of bosons (particles at

rest) remains multiply occupied (see Sect. 7.7�) [46]. Any other single orbital,

including the orbital of the second lowest energy, will be occupied by a relatively

negligible number of particles. This effect is called Bose–Einstein condensation.9

Its experimental realization was made possible by the development of techniques

for cooling, trapping and manipulating atoms.10

In Einstein’s original prediction, all bosons were supposed to be slowed down to

zero momentum, which implies a macroscopic space, according to the uncertainty

principle. However, any experimental set-up requires some confinement. The

confining potential in the available magnetic traps for alkali atoms can be safely

approximated by the quadratic form

Vext.r/ D M!2

2
r2: (7.40)

9The sources [47] have been used for this section.
10Einstein himself suggested H2 and He4 as possible candidates for B–E condensation. Only in

1938 the He4 superfluid transition at 2.4 K was interpreted as a transition to the B–E condensate.

However, this interpretation was marred by the presence of large residual interactions.
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Neglecting the interaction between atoms implies that the Hamiltonian eigenvalues

have the form (6.31), since we are considering a system composed of a large number

� of non-interacting bosons. The many-body ground state ϕ.r1; : : : ; r�/ is obtained

by putting all the particles into the lowest single-particle state ϕ0.r/:

ϕ.r1; : : : ; r�/ D
iD�
Y

iD1

ϕ0.r i /; ϕ0.r/ D
�

M!

�„

�3=4

exp.�r2=2x2
c /: (7.41)

The density distribution then becomes �.r/ D � jϕ0.r/j2. While its value grows

with �, the size of the cloud is independent of � and is fixed by the harmonic

oscillator length xc (3.28). It is typically of the order of xc � 1 
m in today’s

experiments.

At finite temperatures, particles are thermally distributed among the available

states. A rough estimate may be obtained by assuming kBT � „!. In this limit we

may use a classical Boltzmann distribution

n.r/ D exp
�

�M!2r2=2kBT
�

; (7.42)

which displays the much broader width

kBT

M!2
D xc

kBT

„! � xc: (7.43)

Therefore, the Bose–Einstein condensation in harmonic traps appears as a sharp

peak in the central region of the density distribution. Figure 7.7 displays the density

for 5,000 non-interacting bosons in a spherical trap at temperature T D 0:9Tc,

where Tc is the critical temperature (see below). The central peak is the condensate,

superimposed on the broader thermal distribution. The momentum distribution of

the condensate is also Gaussian, having a width „=xc (3.46). The momentum

distribution of the thermal particles is broader, of the order of .kBT /1=2. In fact

these two momentum distributions are also represented by the curves in Fig. 7.7,

provided the correct units are substituted.

In 1995, rubidium atoms confined within a magnetic trap were cooled to the

submicrokelvin regime by laser methods and then by evaporation [48]. The trap was

suddenly turned off, allowing the atoms to fly away. By taking pictures of the cloud

after various time delays, a two-dimensional momentum distribution of the atoms

was constructed. As the temperature was lowered, the familiar Gaussian hump of the

Maxwell–Boltzmann distribution was pierced by a rapidly rising sharp peak caused

by atoms in the ground state of the trap, that is by the condensate.

By allowing the trap to have cylindrical symmetry, the average momentum

along the short axis was double that along the other [see the harmonic oscillator

predictions (3.46)]. In contrast, the momentum distribution is always isotropic for a

classical gas, unless it is flowing.
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Fig. 7.7 Comparison between the densities of the condensate and the thermal particles

The calculation of the critical temperature Tc involves concepts of statistical

mechanics that lie beyond the scope of this discussion. The experimental results

for the condensate fraction closely follow the thermodynamic limit [48]:

T

Tc

D 1 �
��0

�

�1=3

:

For 40,000 particles, Tc is approximately 3 � 10�7 K.

The first demonstration of the Bose–Einstein condensation involved 2,000 atoms.

Today millions are being condensed.

Bose–Einstein condensation is unique because it is the only pure quantum

mechanical phase transition: it takes place without any interaction between the

particles. This field is presently full of activity: collective motion, condensation and

damping times of the condensate, its interaction with light, collision properties, and

effects of the residual interactions are just some of the themes that are currently

under very intense theoretical and experimental study.

7.6� Quantum Hall Effects

A planar sample of conductive material is placed in a magnetic field perpendicular to

its surface. An electric current I is made to pass from one end to the other by means

of a potential VL. The longitudinal resistivity is the ratio RL D VL=I . Because of

the Lorentz force, more electrons accumulate on one side of the sample than on the

other, thereby producing a measurable voltage VH – the Hall voltage – across the

sample. The ratio RH D VH=I is called the Hall resistivity. It increases linearly with

the magnetic field.
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Fig. 7.8 The integer quantum Hall effect appears as plateaus in the Hall resistivity of a sample

which coincide with the disappearance of the sample’s electrical resistivity, as the magnetic field

strength is varied [51]. (Reproduced with permission from Springer-Verlag)

However, in 1980 Klaus von Klitzing found that, for samples cooled to within 1 K

and placed in strong magnetic fields, the Hall resistivity exhibits a series of plateaus,

i.e. intervals in which the Hall resistivity appears not to vary at all with the magnetic

field [49]. Figure 7.8 displays a diagram of the measured inverse Hall resistance

h=e2RH as a function of the density of electrons n times the characteristic area of

the problem (7.48). The longitudinal resistance is sketched as well. Where the Hall

resistivity is constant, the longitudinal resistivity practically vanishes. Moreover,

the resistivity is RH D h=e2n, with an amazing accuracy of order 10�6. Here h is

Planck’s constant, e is the electron charge and n is an integer (Fig. 7.8). This is even

true for samples with different geometries and with different processing histories,

as well as for a variety of materials. It is the integer quantum Hall effect.

In 1982 Daniel Tsui, Horst Störmer and Arthur Gossard discovered other plateaus

at which n has specific fractional values (1/3, 2/5 and 3/7) [50]. This is the fractional

quantum Hall effect.

7.6.1� Integer Quantum Hall Effect

Consider the planar motion of an electron in an external, uniform, magnetic field

perpendicular to the plane.11 For the sake of simplicity we will study circular

geometries, and thus choose the symmetric gauge Ax D yB=2, Ay D �xB=2.

Replacing the momentum Op by the effective momentum Op � eA [53] in the free

particle Hamiltonian yields

OH D 1

2M
Op

2 C e2B2

8M
�2 C �BB

„
�

OLz C 2 OSz

�

: (7.44)

11The main source of this section is [52].
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The first two terms in (7.44) represent a two-dimensional harmonic Hamiltonian.

The eigenvalues and eigenstates of the two-dimensional harmonic oscillator are (see

Problem 13 in Chap. 6)

En D „!.nC 1/; n D 0; 1; 2; : : : ; xc D
p

„=M!

ϕnml
.�; �/ D Rn�ml

.u/ϕml
.�/; � D

p

x2 C y2; � D tan�1 y

x
; u D �=xc

ϕml
.�/ D 1p

2�
exp.iml�/; ml D n; n � 2; : : : ;�n (7.45)

Rn�ml
.u/ D Nnml

exp.�u2=2/uml fn�ml
.u2/; n� D

1

2
.n �ml/:

The first two terms in (7.44) yield the frequency

! D � eB

2M
D �BB

„ : (7.46)

The term proportional to OLz arises from the cross product of the square of the

effective momentum, and the term proportional to OSz arises from (5.22). Since the

change in energy produced by increasing n by one unit is exactly compensated

by decreasing the orbital angular momentum by one unit of „, there are sets of

degenerate states called Landau levels. In particular, the lowest Landau level is made

up of radial nodeless states and values of ml D �n. It has zero energy, since the

spin term (sz D �„=2) compensates exactly for the zero point energy „! of the

harmonic oscillator.

To keep electrons from flying apart, one adds a radial confining potential which

does not alter the symmetry of the problem. Let us assume that all states of the first

Landau level are occupied12 up to and including a minimum angular momentum

jMl j. The expectation value of the density,

nDjMl j
X

nD0

jϕn.�n/j2 D
2

x2
c

exp
�

�u2
�

nDjMl j
X

nD0

1

nŠ
u2n; (7.47)

is practically constant for u � �=xc �
p

jMl j and drops rapidly to zero around
p

jMl j. This configuration is incompressible, since a compression would require

the promotion of an electron to a higher Landau level.

Since the characteristic area of the problem is

�x2
c D

„�
M!

D h

jejB ; (7.48)

12The Slater determinant for jMl jC1 electrons moving in the first Landau level is written in (7.50).
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the constant of proportionality between the number of electrons per unit area and

the strength of the magnetic field depends only on Planck’s constant and the charge

of the electron.

However, there are impurities and, consequently, the single energy of a Landau

level is spread out into a band. The states of the band belong to two classes: states

near the bottom or the top of the band are localized states.13 Near the center of each

energy band are extended states, each one spreading out over a large space. They

are the only ones that may carry current.

At very low temperatures, only states below the Fermi energy are occupied.

Assume that the Fermi level is at the subband of localized states near the top of some

Landau band. Now gradually increase the strength of the magnetic field, adjusting

the current so that the Hall voltage remains constant. Since the number of states per

unit area is proportional to the applied magnetic field [see (7.48)], the number of

levels in each Landau state increases proportionately.

Many of the newly available states will be below the Fermi level, so electrons

from higher energy localized states will drop to fill them. As a result, the Fermi level

descends to a lower position. However, as long as it remains in the subband of high-

energy localized states, all the extended states remain fully occupied. The amount

of current flowing therefore remains constant and so does the Hall resistivity.

As the Fermi level descends through the subband of extended states, some of

them are vacated. The amount of current flowing decreases, while the Hall resistivity

increases.

Eventually, the extended states will be emptied and the Fermi level will enter

the subband of low-energy localized states. If there is at least one full Landau

band below the Fermi level, the extended states in that band will be able to carry

a constant current. However, because the extended states in one band have been

completely emptied, the number of subbands of extended states has been reduced

by one, and the Hall resistance is larger than it was on the previous plateau. The

current is proportional to the number of occupied subbands of extended states, and

on each plateau an integral number of these subbands is filled.

The second striking feature of the quantized Hall effect is that current flows

without resistance in the plateau region. Recall that, to dissipate power, an electron

must make a transition to a state of lower energy, the excess energy being distributed

within the lattice as vibrations or heat.

First we examine the regime between two plateaus. The Fermi energy varies

slightly from point to point: the voltage measured at opposite sides of the sample

gauges the difference between the Fermi energies at the two points. Thus, an

electron can find itself in an extended state that is below the local Fermi energy

in one region of space, but which extends into a region where its energy is above

the local Fermi energy. The electron would thus be able to drop into a lower level,

dissipating some energy into the lattice. This sample exhibits electrical resistance.

13Low (high) energy localized states arise around impurity atoms which have an excess (dearth) of

positive charge.
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If the Fermi energy is within the region of energy corresponding to localized

states, there may also be empty states of lower energy. These states, however, are

far apart in space, at distances much larger than the localization distance. Electrons

cannot drop to lower states, and thus they cannot dissipate energy.

Within this model, localized states also act as a reservoir of electrons, so that, for

finite ranges of magnetic field strengths, the extended states in each Landau band

are either completely empty or completely filled. Without the reservoir, the width of

the regions displaying an integer quantum Hall effect would be vanishingly small.

Therefore, a relatively simple model of independent electrons, moving under the

influence of electric and magnetic fields, can account for the main properties of

the integer quantum Hall effect. This model has some features in common with the

band structure of metals that explains the existence of conductors and insulators

(Sect. 7.4.2�).

The quantized Hall effect enables us to calibrate instruments with extreme

accuracy as well as to measure fundamental physical constants more precisely than

ever before.

7.6.2� Fractional Quantum Hall Effect

The fractional quantum Hall effect is seen only when a Landau level is partially

filled. For instance, a plateau is seen when the lowest Landau level is approximately

one-third full. In this case the Hall resistivity is equal to one-third of the square of

the electron charge divided by Planck’s constant.

The independent particle model previously used to explain the integer quantum

Hall effect does not show any special stability when a fraction of the states is filled.

To explain the fractional quantum Hall effect, we must consider the interaction

between electrons (like everything associated with open shells).

It is helpful to write the total wave function of particles moving in a Landau level

as a Slater determinant (7.11):

‰ D
 p

2

xc

!Ml C1
1

p

.Ml C 1/Š

 

nDMl
Y

nD0

1p
nŠ

!

ˆ.1; 2; : : : ; Ml C 1/; (7.49)
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D exp

 

�1

2

iDMl C1
X

iD1

jzi j2
!

i>j DMl�1
Y

i>j D0

.zi � zj /: (7.50)

Here z � u exp.�i�/.

In 1983, Robert Laughlin modified this wave function as follows [54]:

ˆ� D exp

 

�1

2

iDMlC1
X

iD1

jzi j2
!

i>j DMl�1
Y

i>j D0

.zi � zj /�: (7.51)

These wave states are exact ground states in the limit when electron–electron

repulsions become infinitely short ranged. The exponent � measures the fraction

of filled states: the wave functions have the required stability when � equals 1/3,

1/5, 1/7, 2/3, 4/5 or 6/7. The denominator in the fraction � must be an odd number

to satisfy the Pauli principle. A mechanism based on localized and extended states

may also be invoked here but, instead of being applied to independent electrons,

it must be used for quasi-particles, which may be described as fractionally charged

anyons (see the first footnote 1 on p. 111). The topic of anyons lies beyond the scope

of this text.

7.7� Quantum Statistics

Differences between counting the number of states according to whether the

particles are distinguishable or not and, in the latter case, whether they are bosons

or fermions, have already appeared in the two-body case, as shown in Sect. 7.1. If

three particles have to be distributed into three states, we may construct:

• One antisymmetric Slater determinant (7.11)

• Ten symmetric states [three states ϕ
.3/
a , six states ϕ

.2/
a ϕ

.1/

b and one state

ϕ
.1/
a ϕ

.1/

b ϕ
.1/
c (7.9)]

• Sixteen states which are neither symmetric nor antisymmetric

Such differences lead to different occupation distributions n.�/ for the levels with

energy �.14 Let us assume that:

1. The equilibrium distribution is the most probable distribution consistent with a

constant number of particles and a constant energy.

2. The particles are identical.

3. The particles are distinguishable.

4. There is no restriction on the number of particles in any state.

14See [58], p. 417.
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Fig. 7.9 Maxwell–Boltzmann (M–B), Bose–Einstein (B–E) and Fermi–Dirac (F–D) distribution

functions. The value n.�/ gives the fraction of levels at a given energy which are occupied when

the system is in thermal equilibrium. The curves correspond to (a) T D 300 K, (b) T D 1;000 K,

(c) T D 5;000 K and (d) T D 10;000 K

Given these assumptions, one derives the classical M–B distribution [Fig. 7.9

(M–B)]:

�.�/ D exp

�

�� � �

kBT

�

; (7.52)

where � is a constant fixing the number of particles.

In the quantum mechanical case, this distribution can only hold if the particles

do not overlap. If this is not the case and, consequently, assumption 3 is removed,

one obtains the B–E distribution [Fig. 7.9(B–E)], which applies to bosons [55]
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�.�/ D
�

exp

�

� � �

kBT

�

� 1

��1

: (7.53)

The occupancy of the ground state equals the total number of particles in the limit

T ! 0. If we choose zero for the energy of the ground state,

lim
T !0

�.0/ D lim
T !0

�

1 � �

kBT
C 	 	 	 � 1

��1

� �kBT

�
� N; � D �kBT

N
:

(7.54)

Thus, in a boson system, the constant � must lie below the ground state energy, if

the occupations are to be non-negative numbers. In Fig. 7.9(B–E) it is assumed that

kBT � N .

Moreover, if assumption 4 is replaced by the condition that the number of

particles in each level may be 0 or 1, the F–D distribution is derived [Fig. 7.9

(F–D)] [56, 57]

�.�/ D
�

exp

�

� � �

kBT

�

C 1

��1

: (7.55)

In the case of an electron gas, the parameter � may be approximated by the Fermi

energy �F for T � 0 (Sect. 7.4.1). Thus � � 3:23 eV for the Na case.

At energies below kBT , the number of particles per quantum state is greater for

the B–E than for the M–B distribution. The opposite is true for the F–D distribution.

For small temperatures, this last distribution only differs from a step function within

a region of a few kBT around � D �. This fact can be exploited by expanding the

integrand g.�/ �.�/ around �. The first terms in the resultant Sommerfeld expansion

are

Z 1

�1
g.�/�.�/d� D

Z �

�1
g.�/d� C �2

6
.kBT /2 dg

d�

ˇ

ˇ

ˇ

ˇ

�D�

CO

�

kBT

�

�4

: (7.56)

For values of .� � �/=kBT � 1, the three distributions coincide.

7.8� Occupation Number Representation

(Second Quantization)

The representation (3.37) of the harmonic oscillator states may be straightforwardly

generalized to the case in which � oscillators are present. The eigenstates and

eigenvalues of the energy are [see (7.1)]

ϕn1;n2;:::;n�
D

pD�
Y

pD1

1
p

npŠ
.aC

p /np ϕ0; apϕ0 D 0;
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En1;n2;:::;n� D
pD�
X

pD1

Epnp ; (7.57)

where np is an eigenvalue of the operator Onp D aC
p ap (np D 0; 1; 2; : : :). We have

disregarded the ground state energy.

The creation and annihilation operators corresponding to different subscripts

commute with each other

Œap; aq � D
�

aC
p ; aC

q

�

D 0;
�

ap; aC
q

�

D ıpq: (7.58)

The np quanta that occupy the p-state are indistinguishable from one another. They

are therefore bosons, and states ϕn1;n2;:::;n�
constitute another representation of states

(7.10). Note that it is much simpler to construct the vector state (7.57) than to

apply the symmetrization operator OS (7.8). Examples of the occupation number

representation are given by phonons in lattice structures (Sect. 7.4.4�) and by the

quantized radiation field (Sect. 9.8.2�).

One-body operators in many-body systems have been previously expressed as

a sum of individual terms OQ D
P

i
OQi . In second quantization we may write

OQ D
P

q�p cqpaC
q ap

hn1; n2; : : : ; .nq C 1/; .np � 1/; : : : ; n� jQjn1; n2; : : : ; nq ; np : : : n�i (7.59)

D h.nq C 1/; .np � 1/jQjnq; npi

D cqp

q

.nq C 1/.np/

D cqp if np D 1; nq D 0:

Therefore, cqp D hqjQjpi and thus

OQ D
X

qp

hqjQjpiaC
q ap: (7.60)

This expression makes no explicit reference to individual particles. A similar

equivalence may be obtained for n-body operators. If n D 2,

OQ D 1

2

X

����

hϕ�.1/ϕ�.2/jv.1; 2/jϕ�.1/ϕ�.2/iaC
� aC

� a�a�: (7.61)

The operators aC
lml

and .�1/l�ml al.�ml / have the same coupling properties as the

spherical harmonics Ylml
.

Another important advantage of the second quantization formalism becomes

apparent if the number of particles is not conserved. If an atom is prepared in

an exited state, after a finite time the quantum state will be a superposition of a
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component representing the initial state plus another component with the atom in a

lower state and an emitted photon. The number of photons is not conserved.

It is natural to seek a similar formalism which may apply to fermions. A system

of such particles can be described as a many-particle state vector that changes its

sign with the interchange of any two particles. Since the required linear combination

of products of one-particle states [Slater determinant (7.11)] can be uniquely

specified by listing the singly occupied states, the formalism we seek must limit

the eigenvalues of Onp to 0 and 1.

The desired modification consists in the replacement of commutators Œ OA; OB� by

anticommutators

f OA; OBg � OA OB C OB OA: (7.62)

The anticommutators of creation and annihilation operators read

fap; aqg D faC
p ; aC

q g D 0; faC
p ; aqg D ıpq : (7.63)

The eigenvalues of the number operators are obtained by constructing the operator

equation

. Onp/2 D aC
p apaC

p ap D aC
p .1 � aC

p ap/ap D aC
p ap D Onp : (7.64)

Since both operators . Onp/2 and Onp are simultaneously diagonal, (7.64) is equivalent

to the algebraic equation n2
p D np , which has two roots: 0 and 1. Fermions thus obey

the exclusion principle. Within this limitation, the eigenstates and energies (7.57) are

also valid for the case of fermions. Note that an interchange of two fermion creation

operators changes the sign of the eigenststate [as happens for the Slater determinant

(7.11)].

A state such as a closed shell, in which levels � are occupied, may be

represented as

ϕ0 D
Y

�

aC
� ϕvacuum: (7.65)

ϕ0 may be used as a redefined vacuum state. Thus aC
� ϕ0 and aC

� a�ϕ0 represent a

one-particle state and a particle-hole state, respectively.

Single-body and two-body operators are also constructed as in (7.60) and (7.61)

within the fermion occupation number representation. If acting on products of

fermion creation and annihilation operators, care must be taken with the number

of permutations between the operators, to obtain consistent phases.

The operators aC
j m and .�1/j �maj.�m/ have the same angular momentum

coupling properties as states ϕj m.
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Problems

Problem 1. Two particles with equal mass M are confined by a one-dimensional

harmonic oscillator potential characterized by the length xc. Assume that one is in

the eigenstate n D 0 and the other in n D 1. Find the probability density for the

relative distance x D xa � xb , the root mean square value of x, and the probability

of finding the two particles within a distance of xc=5 from each other if they are:

1. Non-identical particles

2. Identical bosons

3. Identical fermions

Hint: write the two-particle wave function in terms of the relative coordinate x and

the center of mass coordinate xg D .xa C xb/=2 and integrate the total probability

density with respect to xg.

Problem 2. Consider a He atom in which one electron is in the state ϕ100 1
2 ms

and

the other in the state ϕ21ml
1
2 ms

.

1. Construct the possible two-electron states.

2. Split the energy of the allowed states in a qualitative manner by including a

Coulomb repulsion between the electrons.

Problem 3. Couple two independent bosons, each carrying spin 2. What spin

angular momenta are possible? [See the relations (5.34)].

Problem 4. State whether the spatial sector of a two-body vector state is symmetric

or antisymmetric with respect to the interchange of the particles, if the spin sector

is given by [see (5.30)]:

1. Œϕ 1
2
.1/ ϕ 1

2
.2/�00

2. Œϕ 1
2
.1/ ϕ 1

2
.2/�1m

3. Œϕ1.1/ ϕ1.2/�00
4. Œϕ1.1/ ϕ1.2/�1m
5. Œϕ1.1/ ϕ1.2/�2m

Problem 5. What angular momenta are possible for two fermions constrained to

move in a j -shell? A j -shell is constituted by the set of states which has the same

quantum numbers, including j , with the exception of the projection m.

Problem 6. Couple the spin states of a deuteron (sd D 1) and a proton (sp D 1=2).

What total spins are possible:

1. If we ignore the Pauli principle?

2. If the three nucleons move within the N D 0 harmonic oscillator shell and the

Pauli principle is taken into account? (This is approximately the He3 ground

state.)
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Problem 7. Show that a closed fermion j -shell carries zero angular momentum:

1. Using the Slater determinant (7.11)

2. Using the occupation number representation (7.57) plus the anticommutation

relations (7.63)

Problem 8. Calculate the angular momentum j and the parity of odd nuclei with

1, 3, 7, 9, 21 and 39 protons. Assume that the Hamiltonian used in Problem 3 of

Chap. 6 is valid.

Problem 9. 1. Calculate the magnetic moment of nuclei with 3, 7 and 9 protons,

for states with m D j . Disregard the neutron contribution.

2. Do the same for neutrons.

Problem 10. Obtain the ratio v=c for:

1. An electron in the outer shell of the Pb atom (ZD 82)

2. A neutron in the outer shell of the Pb208 nucleus

3. An electron with the Fermi momentum in metal Na [see (7.22)]

Problem 11. Repeat the calculation of Sect. 7.4.1 for a two-dimensional gas model.

Problem 12. Obtain the ratio between the average energy per electron and the

Fermi energy for one-, two- and three-dimensional gas models.

Problem 13. The semiconductor Cu2O displays an energy gap of 2.1 eV. If a thin

sheet of this material is illuminated with white light:

1. What is the shortest wavelength that gets through?

2. What color is it?

Problem 14. Consider the Fermi–Dirac distribution (7.55):

1. Find the temperature dependence of the difference � � �F

Hint: impose the conservation of the number of electrons nF

2. Evaluate this difference for Na at room temperature.

Problem 15. Obtain the temperature dependence of the specific heat due to the

phonons for high values of T .

Problem 16. Find the matrix elements habjQjabi, hbcjQjabi and hacjQjabi
of the operator OQ D

P

pq qpqaC
p aq , where aC

p ; ap are fermion creation and

annihilation operators and p D a; b; c. Assume that qpq D qqp.



Chapter 8

Approximate Solutions to Quantum Problems

The previous chapters may have left the (erroneous) impression that there is

always an exact (and elegant) mathematical solution for every problem in quantum

mechanics. In most cases there is not. One must resort to makeshift approxima-

tions, numerical solutions or combinations of both. In this chapter we discuss

approximate methods that are frequently applied: perturbation theory, variational

procedure, approximate matrix diagonalization, Hartree–Fock and random phase

approximations. They are illustrated by means of applications to two-electron

atoms, molecules, periodic potentials, etc.

8.1 Perturbation Theory

The procedure is similar to the one used in celestial mechanics, where the trajectory

of a comet is first calculated by taking into account only the attraction of the sun.

The (smaller) effect of planets is included in successive orders of approximation.

We divide the Hamiltonian OH , which we do not know how to solve exactly, into

two terms. The first term, OH0, is the Hamiltonian of a problem whose solution we

know and which is reasonably close to the original problem; the second term, OV , is

called the perturbation. Thus

OH D OH0 C � OV ; (8.1)

OH0ϕ.0/
n D E.0/

n ϕ.0/
n : (8.2)

The perturbation term has been multiplied by a constant � that is supposed to be

a number less than 1. The constant � is helpful for keeping track of the order

of magnitude of the different terms of the expansion that underlies the theory.

Otherwise it has no physical meaning. It is replaced by 1 in the final expressions.

We solve the eigenvalue equation
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OH‰n D En‰n (8.3)

by expanding the eigenvalues and the eigenstates in powers of � and successively

considering all terms corresponding to the same power of � in (8.3):

En D E.0/
n C �E.1/

n C �2E.2/
n C 	 	 	 ;

‰n D ϕ.0/
n C �‰.1/

n C �2‰.2/
n C 	 	 	 : (8.4)

The terms independent of � yield (8.2). The terms proportional to � give rise to the

equation
�

OH0 �E.0/
n

�

‰.1/
n D

�

� OV C E.1/
n

�

ϕ.0/
n : (8.5)

First, we take the scalar product of ϕ
.0/
n with the states on each side of (8.5). The

left-hand side vanishes because of (8.2). We thus obtain the first-order correction to

the energy

E.1/
n D hϕ.0/

n jV jϕ.0/
n i: (8.6)

Therefore, the leading order term correcting the unperturbed energy is the expecta-

tion value of the perturbation.

Next, we take the scalar product with ϕ
.0/
p .p ¤ n/, so that

�

E.0/
p �E.0/

n

�

hϕ.0/
p j‰.1/

n i D �hϕ.0/
p jV jϕ.0/

n i: (8.7)

Using the states ϕ
.0/
p as basis states, we expand

‰.1/
n D

X

p¤n

c.1/
p ϕ.0/

p ; c.1/
p D

hϕ.0/
p jV jϕ.0/

n i
E

.0/
n �E

.0/
p

: (8.8)

The still missing amplitude c
.1/
n is determined from the normalization condition:

since both ‰n and ϕ
.0/
n are supposed to be normalized to unity, the terms linear in

� are

0 D h‰nj‰ni � hϕ.0/
n jϕ.0/

n i D �
�

h‰.1/
n jϕ.0/

n i C hϕ.0/
n j‰.1/

n i
�

D 2�Re .c.1/
n /: (8.9)

Therefore, the first-order coefficient c
.1/
n disappears, since we can make it real by

changing the (arbitrary) phase of ϕ
.0/
n .

Equations (8.6) and (8.8) determine the first-order changes in the energies

and state vectors in terms of matrix elements of the perturbation with respect to

the basis of zero-order states. The convergence of perturbation theory requires

that jc.1/
p j2 � 1, i.e. the matrix element of the perturbation between two states

should be smaller than the unperturbed distance between these states. In particular,

perturbation theory cannot be applied if there are non-vanishing matrix elements
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between degenerate states. In these cases, we must resort to either variational

(Sect. 8.2) or diagonalization procedures (Sect. 8.5).

The second-order correction to the energy is given by

E.2/
n D

X

p¤n

jhϕ.0/
p jV jϕ.0/

n ij2

E
.0/
n � E

.0/
p

: (8.10)

This perturbation theory is called the Raleigh–Schrödinger perturbation theory. Its

apparent simplicity disappears in higher orders of perturbation, due to the increase

in the number of contributing terms. A formal simplification may be achieved

by summing up partial series of terms. For instance, in the Brillouin–Wigner

perturbation theory, one replaces the unperturbed energy E
.0/
n of the state n by the

exact energy En in the denominators. For the case of the energy expansion, one

obtains

En D E.0/
n C hϕ.0/

n jV jϕ.0/
n i C

X

p¤n

jhϕ.0/
p jV jϕ.0/

n ij2

En � E
.0/
p

C 	 	 	

D E.0/
n C hϕ.0/

n jV jϕ.0/
n i C

X

p¤n

jhϕ.0/
p jV jϕ.0/

n ij2

E
.0/
n �E

.0/
p

�
X

p¤n

jhϕ.0/
p jV jϕ.0/

n ij2hϕ.0/
n jV jϕ.0/

n i
�

E
.0/
n � E

.0/
p

�2
C 	 	 	 : (8.11)

The last term appears as a third-order term in the Raleigh–Schrödinger perturbation

theory. It does not exist1 in the Brillouin–Wigner expansion, since it has been

taken into account through the replacement in the denominator of the second-

order term (8.10). However, the advantage of reducing the number of terms may

be compensated by a decrease in the convergence of the perturbation expansion,

associated with the nature of the partial summations. Moreover, different powers of

� may be present in many terms of the Brillouin–Wigner series.

There is an elegant and useful formulation of perturbation theory conceived

by Feynman. This uses diagrams carrying both a precise mathematical meaning

and a description of the processes involved [59]. The “finest hour” of perturbation

theory is represented by the calculation of the gyromagnetic electron value to nine

significant figures, using quantum electrodynamics (see Sect. 5.2.2).

The ground state energy of the He atom is calculated using perturbation theory

in Sect. 8.3.

1One can prove that the Brillouin–Wigner expansion does not contain terms in which the state ϕ
.0/
n

appears in the numerator as an intermediate state.
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8.2 Variational Procedure

This approximation may be considered as the inverse of the perturbation procedure:

instead of working with a fixed set of unperturbed states, one guesses a trial state

‰, which may be expanded in terms of the basis set of eigenstates ϕE of the

Hamiltonian (‰ D
P

E cEϕE ):

h‰jH j‰i D
X

E

EjcE j2 � E0

X

E

jcE j2 D E0; (8.12)

where E0 is the ground state energy. The state ‰ may depend on some parameter,

and the expectation value of the Hamiltonian is minimized with respect to this

parameter. One thus obtains an upper limit for the ground state energy of the system.

The fact that the energy is an extremum guarantees that if the trial wave function

is wrong by something of the order of ı, the variational estimate of the energy is off

by something of the order ı2. So one can be rewarded with a good energy estimate,

even though the initial wave function may be only a fair guess.

The ground state energy obtained in first-order perturbation theory

E
.0/
0 C hϕ

.0/
0 jV jϕ

.0/
0 i is an expectation value of the total Hamiltonian and is thus

equivalent to a non-optimized variational calculation.

8.3 Ground State of the He Atom

This three-body problem may be reduced to a two-body problem by again con-

sidering a very massive nucleus. However, even the remaining problem is difficult

to solve because of the presence of the Coulomb repulsion V between the two

electrons. The total Hamiltonian is OH0 C V , where

OH0 D �
„2

2M

�

r2
1 Cr2

2

�

� Ze2

4��0

�

1

r1

C 1

r2

�

; V D e2

4��0r12

: (8.13)

Here r12 D jr1 � r2j is the distance between the electrons.

We know how to solve the problem of two electrons moving independently of

each other in the Coulomb potential of the He nucleus. Because the ground state

energy of a hydrogen-like atom is proportional to Z2 and there are two electrons,

the unperturbed energy is 8EH, where EH is the energy of the electron in the H atom.

The antisymmetrized two-electron state vector of the ground state in the He atom

is discussed in Sect. 7.2. Using this state, the first-order correction to the energy is

(Sect. 8.7*)

E.1/
g:s: D

�

ϕg:s:

ˇ

ˇ

ˇ

ˇ

e2

4��0r12

ˇ

ˇ

ˇ

ˇ

ϕg:s:

�

D �5

2
EH: (8.14)
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Therefore, the total energy becomes 5:50EH, which constitutes an improved

approximation to the experimental result 5:81EH compared with the unperturbed

value 8EH.

As mentioned in Sect. 8.2, one may improve the predictions for the ground state

by a variational calculation. In this case we may write the expectation value of the

kinetic energy, of the potential energy and the Coulomb repulsion as functions of

the parameter Z� entering the wave function. The value Z D 2 is kept in the

Hamiltonian:

hϕg:s:jH jϕg:s:iZ� D �2.Z�/2EH C 4ZZ�EH �
5

4
Z�EH: (8.15)

Minimization with respect to Z� yields the effective value Z� D 1:69 for He

(instead of 2), which is an indication that the electrons mutually screen the nuclear

attraction. The final result is hϕg:s:jH jϕg:s:iZD1:69 D 5:69EH, and this is in even

better agreement with the experimental value than the first-order perturbation result.

To apply the variational procedure to excited states, one must ensure their

orthogonality with lower energy states, for the resulting value of the minimization

parameter.

8.4 Molecules

Molecules are made up of nuclei and electrons. The theoretical description of this

many-body system is facilitated by the very different masses of the two constituents,

which allows us to decouple their respective motions. The procedure is called the

Born–Oppenheimer approximation. In principle, it is possible to begin by solving

the problem of motion of electrons subject to the (static) field of the nuclei and to the

field of other electrons. In this first step, the nuclear coordinates Ri are treated as

parameters. Minimization of the energy W.Ri / with respect to these parameters

yields their equilibrium values. A subsequent step consists in allowing small

departures of the nuclei from their equilibrium position and using the associated

increase in the energy W as the restoring force for the oscillatory motion. Finally,

the molecules may also perform collective rotations without changing the relative

positions of the electrons and the nuclei.

8.4.1 Intrinsic Motion: Covalent Binding

We illustrate the procedure for the case of the molecular hydrogen ion H2
C.

Figure 8.1 represents the two protons 1 and 2 and the electron. The assumption

that the protons are at rest simplifies the Hamiltonian to
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Fig. 8.1 The hydrogen ion

OH D � „
2

2M
r2 � e2

4��0jr �R1j
� e2

4��0jr �R2j
C e2

4��0R
; (8.16)

where R D jR1 � R2j. Although in this particular case, exact numerical solutions

may be obtained by solving the Schrödinger equation in elliptical coordinates, it is

more instructive to approximate the solution by means of a variational procedure.

If the distance R is very large, the two (degenerate) solutions describe a H atom

plus a dissociated proton. The two orbital wave functions are

ϕ1 D ϕ100.jr �R1j/; ϕ2 D ϕ100.jr �R2j/: (8.17)

Note that such wave functions are orthogonal only for very large values of R. In

fact, their overlap is h1j2i D 1 for R D 0.

The requirement of antisymmetry between the two protons must be taken into

account. As in Sect. 7.2, the spin of the two protons may be coupled to 1 (symmetric

spin states) or to 0 (antisymmetric spin states). The corresponding spatial wave

functions should thus be antisymmetric and symmetric, respectively:

ϕ� D
ϕ1 � ϕ2

p

2.1� h1j2i/
: (8.18)

The energy to be minimized with respect to the distance R is

E˙.R/ D h˙jH j˙i

D E100 C
e2

4��0R
� e2

4��0.1˙ h1j2i/

�

2

ˇ

ˇ

ˇ

ˇ

1

jr �R1j

ˇ

ˇ

ˇ

ˇ

2

�

� e2

4��0.1˙ h1j2i/

�

1

ˇ

ˇ

ˇ

ˇ

1

jr �R1j

ˇ

ˇ

ˇ

ˇ

2

�

; (8.19)

which has the limits

lim
R!0

E˙ !1; lim
R!1

E˙ D E100: (8.20)
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E+

E–

E100

R

Fig. 8.2 Lowest energies of the hydrogen ion as a function of the distance between protons

Since the matrix element in the third line of (8.19) is positive, we conclude that the

energy corresponding to the spatially symmetric wave function lies lowest. In fact,

the two curves are plotted in Fig. 8.2. Only the energy corresponding to ϕC displays

a minimum. This may be interpreted as being due to the build-up of the electron

density between the two nuclei, which allows for the screening of the Coulomb

repulsion. This type of binding is called covalent binding.2

8.4.2 Vibrational and Rotational Motions

We consider here the somewhat more general case of a diatomic molecule with

masses M1 and M2, respectively. First we perform the well-known separation

between the relative and center of mass operators:

OR D OR1 � OR2; ORg D
M1

Mg

OR1 C
M2

Mg

OR2;

OP D M2

Mg

OP1 �
M1

Mg

OP2; OPg D OP1 C OP2: (8.21)

The inversion of definitions (8.21) yields the kinetic energy

OP
2

1

2M1

C
OP

2

2

2M2

D
OP

2

g

2Mg

C
OP

2

2�
: (8.22)

Here Mg DM1 CM2 is the total mass and � � M1M2=Mg is the reduced mass.

2See also the example in Sect. 3.2.
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If the potential energy V.R/ depends only on the distance between the ions, the

center of mass moves as a free particle. This problem has already been discussed in

Sect. 4.3. The kinetic energy associated with the relative motion may be expressed

in spherical coordinates, as in (6.1), with the substitution M ! �.

Let us split the relative Hamiltonian into rotational and vibrational contributions,

viz.,

OH D OHrot C OHvib;

OHrot D
1

2�R2
OL

2
; (8.23)

OHvib D �
„2

2�

�

d2

dR2
C 2

R

d

dR

�

C V.R/: (8.24)

We now assume that the interactions between the ions stabilize the system at the

relative distance R0. The difference y D R �R0 will be such that jyj � R0.

Rotational Motion

The Hamiltonian for the rotational motion may be approximated as (see Fig. 8.3)

OHrot D
1

2I
OL2; I D �R2

0; (8.25)

where I is the moment of inertia. The eigenfunctions are labeled by the quantum

numbers l; ml (Sect. 5.1.2). The energies are obtained by replacing the operator OL
2

in (8.25) by its eigenvalues „2l.l C 1/. The photon energy corresponding to the

transition between neighboring states increases linearly with l , so that

�.l ! l � 1/ D „
2

I
l: (8.26)

Fig. 8.3 Vibrational (dashed

line), rotational (dotted lines)

and translation of the center

of mass G (continuous line)

of a diatomic molecule

G
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Vibrational Motion

If the stabilization at R � R0 is sufficiently good we may extend the domain of

the radial coordinate from 0 to �1, since the wave function should be increasingly

small for negative values of R. Simultaneously, the R2 factor in the volume element

may be eliminated from the integrals by the substitution ‰.R/! ˆ.R/=R. In such

a case the radial Schrödinger equation transforms into a linear equation of the type

seen in Chap. 4:

� „
2

2�

�

d2

dR2
C 2

R

d

dR

�

‰ C V.R/‰ D E‰ �! � „
2

2�

d2

dR2
ˆC V.R/ˆ D Eˆ;

(8.27)

with the boundary conditions ˆ.˙1/ D 0.

Finally, the Taylor expansion of the potential around the equilibrium position

R0 and the replacement of the coordinate R by y D R � R0 yield the harmonic

oscillator Hamiltonian discussed in Sects. 3.3 and 4.2 (see Fig. 8.3)

"

� „
2

2�

d2

dy2
C 1

2

d2V.R/

dR2

ˇ

ˇ

ˇ

ˇ

RDR0

y2

#

ˆ D
�

E � V.R0/
�

ˆ: (8.28)

The vibrational states are equidistant from each other (Fig. 3.2). The photon

spectrum displays the single frequency

�.N ! N � 1/ D „! D „
s

1

�

d2V.R/

dR2

ˇ

ˇ

ˇ

ˇ

RDR0

: (8.29)

8.4.3 Characteristic Energies

The diatomic molecule is the simplest illustration of a general feature: the breaking

of the spherical symmetry produced by the shape of the intrinsic system generates

rotational degrees of freedom; if the amount of this breaking is measured by

a minimization parameter (the distance R0), there appear vibrational degrees of

freedom around this value.

The intrinsic motion of electrons and the vibrational and rotational motion of

nuclei are associated with different characteristic energies. The order of magnitude

for intrinsic transitions should be similar to the excitation energies in atoms

Eintr � �EH D
„2

2a2
0M

; (8.30)

since the same Coulomb interaction and similar interparticle distances are present.

Here a0 is the Bohr radius (Table 6.1). The potential energy of the vibrational motion
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Fig. 8.4 Vibrational and

rotational excitations of a

molecule. Dotted lines

represent allowed transitions,

according to the definition

(9.71)

originates also in the Coulomb potential and thus should be of the same order of

magnitude as Eintr

Evib D „
s

Eintr

2a2
0�
� „2

a2
0

p
2M�

�
s

M

Mp

Eintr (8.31)

Rotational energies are given by (8.26)

Erot �
„2

2a2
0�
� M

Mp

Eintr: (8.32)

Since the ratio between the electron and the proton masses M=Mp � 1=2;000

(see Table A.1), the transitions between vibrational states occupy an intermediate

energy range compared to those corresponding to intrinsic electron transitions or

to transitions between rotational states. Therefore, the molecular spectrum displays

vibrational states on top of each intrinsic excitation and rotational states on top of

each vibrational state (see Fig. 8.4). The electromagnetic radiation associated with

transitions between intrinsic, vibrational and rotational states appears, successively,

in the visible, infrared and radiofrequency regions of the optical spectrum.

As the energies of the rotational and vibrational excitations increase, the

approximations become less reliable:

• Terms that are functions of y will appear in the rotational Hamiltonian, coupling

the rotational and vibrational motion

• Higher order terms in the Taylor expansion of the potential become relevant

8.5 Approximate Matrix Diagonalizations

If the conditions for applying perturbation theory are not satisfied, we may resort to

a diagonalization procedure. This is obviously necessary if there are degenerate or

close-lying states. This is the case if two or more particles are added to a closed shell,
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whether it be atomic or nuclear. The size of the matrix to be diagonalized may be

reduced due to physical considerations, for example, when we use the symmetries

of the Hamiltonian. If we are only interested in the ground state and neighboring

states, we may also simplify the problem by taking into account only those states

which are close in energy to the ground state.

It is also possible to include those contributions to the matrix elements of the

Hamiltonian to be diagonalized that arise from states not included in the diagonal-

ization. One may use either the technique of folded diagrams (a generalization of

Raleigh–Schrödinger perturbation theory) [61] or the Bloch–Horowitz procedure

(an extension of the Brillouin–Wigner expansion) [62].

An alternative procedure consists in simplifying the expressions for the matrix

elements. This includes eliminating many of them (see Problem 12). In such cases,

good insight is required to avoid distorting the physical problem.

8.5.1� Approximate Treatment of Periodic Potentials

This example illustrates the interplay between exact diagonalization and perturba-

tion theory that can be applied in more complicated situations. We treat the same

problem as in Sect. 4.6�, but in the limit of a small periodic potential V.x/.

We choose the free-particle Hamiltonian H0 D 1
2M
Op2 as zero-order Hamiltonian.

The unperturbed energies are given in Fig. 8.5a, as a function of the wave number

k. If V.x/ D V.x C d/, a Fourier transform of the potential yields

V.x/ D
X

n

Vn; Vn D vn exp

�

i2�nx

d

�

; n D 0;˙1;˙2; : : : (8.33)

Therefore, the non-vanishing matrix elements of the perturbation are

hk0jVnjki D vn; if k0 � k D 2�n

d
; (8.34)

Fig. 8.5 Bands in periodic potentials. The unperturbed parabolic energies are given as functions

of k in (a). The eigenvalue E� is plotted in the interval 0 � jkj � �
d

and EC for �
d

� jkj in (b)
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and the Hamiltonian matrix is of the form3

0

B

B

B

B

B

B

B

B

@

. . . . . . . . . . . . . . . . . .

. . . „2

2M

�

k � 4�
d

�2
v1 v2 v3 . . .

. . . v1
„2

2M

�

k � 2�
d

�2
v1 v2 . . .

. . . v2 v1
„2

2M
k2 v1 . . .

. . . v3 v2 v1
„2

2M

�

k C 2�
d

�2
. . .

. . . . . . . . . . . . . . . . . .

1

C

C

C

C

C

C

C

C

A

:

(8.35)

We concentrate on the non-diagonal terms v1. However small, they cannot be

treated in perturbation theory, because they connect degenerate states: the state with

k D �
d

has the same unperturbed energy as the state with k0 D k � 2�
d
D ��

d
.

Thus, we must first proceed to make a diagonalization between degenerate (or quasi-

degenerate) states, i.e. we must put to zero the determinant

ˇ

ˇ

ˇ

ˇ

ˇ

„2

2M

�

k � 2�
d

�2 �E v1

v1
„2

2M
k2 �E

ˇ

ˇ

ˇ

ˇ

ˇ

D 0: (8.36)

The eigenvalues

E˙ D
„2

2M

0

@k2 � k
2�

d
C 2�2

d 2
˙

s

4�2

d 2

�

k � �

d

�2

C
�

2M v1

„2

�2

1

A (8.37)

are plotted as functions of k in Fig. 8.5b. There are no states in the interval

1
2M

�

„�
d

�2

� v1 � E � 1
2M

�

„�
d

�2

C v1. A gap of size 2v1 appears in the spectrum,

pointing to the existence of two separate bands.

In the region jkj � �
d

, the remaining non-diagonal terms vn may be treated as

perturbations, if they are sufficiently small. Unfortunately, they usually are not so in

realistic cases.

8.6 Independent-Particle Approximations

8.6.1� The Hartree–Fock Approximation

On several occasions we have used with good results a product of single-particle

states to represent the ground state of many-fermion problems (atoms, nuclei,

metals, etc.)

3We disregard v0 since it only affects the zero-point energy.
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ϕ0 D
Y

h

aC
h jvacuumi; (8.38)

where h denotes occupied states. Of course this can only be an approximation if the

Hamiltonian includes n-body interactions, with n > 1. The Hartree–Fock procedure

determines the best single particle set to be used in such cases. It consists on the

replacement of some (large) one-body operators by their expectation values, thus

neglecting their fluctuations.

Let us consider a system of identical fermions within the formalism of second

quantization. The Hamiltonian is

OH D
X

kj

hkjH1jj icC
k cj C

1

2

X

klj m

hkl jH2jjmicC
k cC

l cmcj ; (8.39)

where OH� contains �-body terms (�=1,2). States (8.38) are eigenstates of an

independent particle Hamiltonian

OHHF D
X

i

�i aC
i ai : (8.40)

The two sets of single-fermion creation operators are related through a transforma-

tion

aC
i D

X

j

�ij cC
j : (8.41)

To find the Hartree–Fock single-particle energies �i and the amplitudes �ij , we

calculate the commutators

Œ OHHF ; aC
i � D

X

k

�i �ikcC
k (8.42)

Œ OH ; aC
i � D

X

q

�iq

2

4

X

k

hkjH1jqicC
k C

1

2

X

klj

.hkl jH2jqj i�hkl jH2jjqi/cC
k cC

l cj

3

5

D
X

qk

�iqcC
k

2

4hkjH1jqi C
X

lj

.hkl jH2jqj i � hkl jH2jjqi/cC
l cj

3

5

�
X

qk

�iqcC
k

"

hkjH1jqi C
X

h

.hkhjH2jqhi � hkhjH2jhqi/
#

: (8.43)

In deriving the last line, we have replaced the operator cC
l cj ! ılj if l D j D h (h

D occupied state). Equating the coefficients of cC
k from (8.42) and (8.43) yields the

eigenvalue matrix equations (3.11)
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�i �ik D
X

q

"

hkjH1jqi C
X

h

.hkhjH2jqhi � hkhjH2jhqi/
#

�iq; (8.44)

which we know how to solve to obtain energies and amplitudes.

However, the replacement of cC
l cj by ılj would be a good approximation for

the number operator acting on the ground state (8.38), only if the set cC
j of creation

operators is the same as the set aC
i appearing in (8.38). In general, this is not the

case, since the initial guess may be arbitrary, aside from some boundary conditions

[see, for instance (7.13)]. We iterate the previous process, starting now from the new

set ai defined by the transformation (8.41) with the amplitudes �ik just obtained

from (8.44), until convergence to a unique set is obtained.

The matrix elements of OH2 in (8.44) can be interpreted as due to the one-body

potential produced by all the particles in occupied states. The second contribution of
OH2 is due to the antisymmetry of the fermion state (8.38) and is called the exchange

term. The Hartree approximation is obtained by neglecting this last contribution.

The lowest excited states ϕph D aC
p ahϕ0 are obtained by promoting a particle

from an occupied state h to an empty state p. Their excitation energy is given by the

difference �p � �h. The matrix elements between the ground and particle-hole states

vanish

hphjH j0i D 0: (8.45)

8.6.2� The Random–Phase Approximation (RPA)

Products of fermion operators may act as bosons. In particular, the commutation of

the products

C
ph � aC

p ah; (8.46)

used in the last paragraph of the Hartree–Fock subsection, is

ŒaC
h ap; aC

p0 ah0 � D ıp0p aC
h ah0 � ıh0h aC

p0ap � ıp0p ıh0h

ŒaC
p ah; aC

p0 ah0 � D ŒaC
h ap ; aC

h0 ap0 � D 0; (8.47)

where we have used the same approximation aC
h ah0 � ıh0h involved in the Hartree–

Fock case. Therefore, the set of operators C
ph; ph obey boson commutation

relations (within the approximation).

The Hamiltonian (8.40) may be written as

OHHF �
X

ph

ephC
phph; eph D �p � �h; (8.48)

as can be verified by commuting both sides with C
ph or with ph.
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In addition to the terms in the Hamiltonian determining OHHF, there are residual

contributions of OH . Some of them may be expressed in terms of the bosons (8.46)

and thus, they represent (quadratic) boson interactions:

OH2b D
1

2

X

.ph/;.p0h0/

�

hph0jH2jhp0iC
php0h0 C hpp0jH2jhh0iC

phC
p0h0

�

C h:c:

(8.49)

The objective now is to obtain a set of uncoupled bosons, giving rise to the

Hamiltonian
OHb �

X

n

„!n� C
n �n D OHHF C OH2b : (8.50)

The procedure is similar to that used in the Hartree–Fock case. One starts by defining

the boson transformation [which plays a similar role to (8.41)]

� C
n D �n;.ph/

C
ph � �n;.ph/ph: (8.51)

Subsequently, we equate the terms proportional to C
ph and to ph in the commutation

of both sides of (8.50) with the uncoupled bosons � C
n . One obtains a set of 2� linear

equations, � being the number of possible pairs (ph)

�

A B

�B� �A�

� �

�n

�n

�

D !n

�

�n

�n

�

; (8.52)

where

hp0h0jAjphi D ephıp0pıh0h C hp0hjH2jh0pi
hp0h0jBjphi D hp0pjH2jh0hi: (8.53)

The solution is symmetrical between positive and negative values of !n and an

interchange between �n and ��
n . Only the positive energies are considered

It is usually convenient to further limit the possible pairs (ph) by requiring, for

instance, that the bosons carry a definite momentum or angular momentum, parity,

etc.

Although the RPA modes constitute simple boson excitations, they have a

complicated (collective) structure from the point of view of the original constituents

of the system (electrons, ions, nuclei, etc.). They may occupy regions of the

spectrum that cannot be simply covered by particle-hole excitations (8.48). See,

for instance, Sects. 7.4.4�, 8.4.2 and 10.1.6�.

The RPA excitation spectrum replaces the HF particle-hole spectrum. It is

expected to be more accurate, since it takes into account residual interactions

(8.49) not included in (8.48). However, if many bosons C
ph (8.46) become admixed

in the ground state through the RPA correlations, the approximation (8.47) becomes
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less valid. Corrections to the Hartree approximation + RPA lie beyond the scope of

this text.

8.7* Matrix Elements Involving the Inverse

of the Interparticle Distance

Although the integrals involved may be found in tables, we calculate them explicitly

as a quantum mechanical exercise. The inverse of the distance between two particles

may be expanded as

1

r12

D 1

r2

X

l

�

r1

r2

�l

Pl .cos ˛12/; r1 < r2: (8.54)

Here Pl is the Legendre polynomial of order l (Sect. 5.5*), a function of the angle

˛12 subtended by the two vectors r1; r2. It may be expressed by coupling two

spherical harmonics to zero angular momentum (5.66).

Next, we evaluate matrix elements such as

�

n1l1m1n2l2m2

ˇ

ˇ

ˇ

ˇ

1

r12

ˇ

ˇ

ˇ

ˇ

n1l1m1n2l2m2

�

D N 2
n1l1

N 2
n2l2

Z 1

0

jRn1l1.1/j2r2
1 dr1

Z 1

0

jRn2l2.2/j2r2
2 dr2

�
Z 4�

0

jYl1m1.1/j2d˝1

Z 4�

0

jYl2m2.2/j2d˝2=r12

D N 2
n1l1

N 2
n2l2

X

l

4�

2l C 1

Z 1

0

jRn1l1.1/j2r2
1 dr1

�
"

1

r lC1
1

Z r1

0

jRn2l2.2/j2r lC2
2 dr2 C r l

1

Z 1

r1

jRn2l2.2/j2r1�l
2 dr2

#

�
ml Dl
X

ml D�l

.�1/l�ml hYl1m1 jYlml
jYl1m1ihYl2m2 jYl.�ml /jYl2m2i: (8.55)

The angular integrals restrict the values of l in the summation (see Problem 5 in

Chap. 5). If at least one of the particles is in an s state, only one l term survives. If

both particles are in s states,
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�

n100n2l2m2

ˇ

ˇ

ˇ

ˇ

1

r12

ˇ

ˇ

ˇ

ˇ

n100n2l2m2

�

D N 2
n10N

2
n2l2

Z 1

0

jRn10.1/j2r2
1 dr1

�
�

1

r1

Z r1

0

jRn2l2.2/j2r2
2 dr2 C

Z 1

r1

jRn2l2.2/j2r2dr2

�

;

(8.56)

which yields the value (8.14) for n1 D n2 D 1.

Problems

Problem 1. 1. Obtain the expression for the second-order correction to the energy

in perturbation theory and show that this correction is always negative for the

ground state.

2. Calculate the second-order correction to the eigenstate.

Problem 2. Assume that the zero-order Hamiltonian and the perturbation are given

by the matrices

OH0 D

0

@

5 0 0

0 2 0

0 0 �1

1

A ; OV D

0

@

0 c 0

c 0 0

0 0 2c

1

A :

1. Calculate the first-order perturbation corrections to the energies.

2. Calculate the second-order perturbation corrections to the energies.

3. Obtain the first-order corrections to the vector states.

4. Obtain the second-order corrections to the vector states.

5. Expand the exact energies in powers of c and compare the results with those

obtained in perturbation theory:

.1C x/1=2 D 1C 1

2
x � 1

8
x2 C 1

16
x3 � 	 	 	 :

Problem 3. 1. Calculate the first- and second-order corrections to the ground state

energy of a linear harmonic oscillator if a perturbation V.x/ D kx is added, and

compare with the exact value.

2. Do the same if the perturbation is V.x/ D bx2=2.

Problem 4. 1. Calculate the lowest relativistic correction to the ground state

energy of a linear harmonic oscillator. Hint: expand the relativistic energy
p

M 2c4 C c2p2 in powers of p=Mc.

2. Obtain the order of magnitude of the ratio between the relativistic correction and

the non-relativistic value in the molecular case.
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Problem 5. Obtain the vector state up to second order in the Brillouin–Wigner

perturbation theory. Compare with the results (8.8) and Problem 1.

Problem 6. Show that the Brillouin–Wigner perturbation theory already yields the

exact results (3.19) in second order, for a Hamiltonian of the form (3.18). Hint: use

Ea D hajH jai C
jhajH jbij2

Ea � hbjH jbi
:

Problem 7. Minimize the ground state energy by taking the mass as the variation in

the lowest harmonic oscillator state and using the harmonic oscillator potential plus

the relativistic kinetic energy as Hamiltonian. Include as many powers of p2=M 2c2

in the latter as are necessary to obtain an improvement over the perturbation results

of Problem 5:

1. Write the expectation value of the Hamiltonian as a function of M �=M .

2. Write the minimization condition.

3. Solve this equation in powers of „!=Mc2.

4. Expand the energies in powers of „!=Mc2.

Problem 8. Calculate the perturbation correction for the two 1s2p electron states

in the He atom. Explain why perturbation theory may be used in spite of the existing

degeneracies.

Problem 9. 1. In units of EH, calculate the first-order perturbation correction for

the ground state energy of the He atom, the ionized Li atom and the doubly

ionized Be atom.

2. Obtain the variational energies using the effective number of electrons Z� as the

variational parameter.

3. Compare with the experimental values: �79 eV (He), �197 eV (LiC), �370 eV

(BeCC).

Problem 10. Substitute R ! R0 C y in the rotational Hamiltonian (8.23) and

expand the Hamiltonian in powers of y up to quadratic order. Calculate the

correction for the energy in perturbation theory, using the product of the rotational

and vibrational bases as an unperturbed basis

.1C a/�2 D 1 � 2aC 3a2 C 	 	 	 :

Problem 11. Two He atoms are attracted by a Van der Waals potential V.R/ D
4�
h

�

�
�

�1
2 �

�

�
�

�6
i

, with � D 8:75 � 10�4 eV and � D 2:56 Å. Find

1. The energy �0 and separation distance R0 at equilibrium.

2. The characteristic vibrational energy „!.

3. The characteristic rotational energy „2=2� R2
0.

Problem 12. A hydrogen atom is subject to a constant electric field in the z-

direction (Stark effect):



Problems 159

1. Construct the matrix of the perturbation for the n D 2 state and diagonalize this

matrix.

2. Do the same for the N D 2 states of the harmonic oscillator potential.

Problem 13. Consider N fermions interacting through V D �

4

P

i;j .xi � xj /2:

1. Write the Hamiltonian H in second quantization form.

2. Write the Hartree Hamiltonian HH and the residual interaction V 0. Find the

Hartree frequency !H.

3. Write the RPA Hamiltonian HRPA and find the root !RPA (N � 1).

4. Which symmetry is carried by the original Hamiltonian H and is violated by HH

(see Chap. 10).



Chapter 9

Time Dependence in Quantum Mechanics

Up to now we have only considered static situations (except for the reduction of the

state vector when a measurement takes place). We now discuss the time dependence

of the state vector, which requires a new principle. The resultant time-dependent

Schrödinger equation is solved exactly for simple (spin) cases and in perturbation

theory. The notion of transition probability yields physical meaning to non-diagonal

matrix elements and allows us to present the energy–time uncertainty relation,

together with the concept of mean lifetime (Sect. 9.5).

In Chap. 1 we stressed the fact that the main reason for the development of

quantum mechanics was the instability of the hydrogen atom under classical

mechanics and electromagnetism. Thus, an exposition of quantum mechanics

cannot be deemed complete without showing that this original crisis has been

solved. This task requires an introduction to quantum electrodynamics (QED). The

concepts of induced and spontaneous emission, laser optics and selection rules

appear along the exposition.

9.1 The Time Principle

In the first place we stress the fact that in quantum mechanics, time is taken to be

a parameter, not an observable. Although there is an evolution operator, there is no

such thing as a time operator.1

1As Jun John Sakurai points out: “Ironically, in the historical development of wave mechanics

both L. de Broglie and E. Schrödinger were guided by a kind of covariant analogy between energy

and time on the one hand and momentum and position (spatial coordinate) on the other. Yet

when we now look at quantum mechanics in its finished form, there is no trace of a symmetrical

treatment between time and space. The relativistic quantum theory of fields does treat the time and

space coordinates on the same footing, but it does so at the expense of demoting position from the

status of being an observable to that of being just a parameter.” [63], Chap. 2. Nevertheless, and

D. Bes, Quantum Mechanics, Graduate Texts in Physics,

DOI 10.1007/978-3-642-20556-9 9, © Springer-Verlag Berlin Heidelberg 2012
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Assume that the system is represented at time t by the time-dependent state

vector ‰.t/. At time t 0 > t , the system will evolve in accordance with

‰.t 0/ D U.t 0; t/‰.t/; (9.1)

where U.t 0; t/ is called the evolution operator. This operator satisfies the conditions

of being unitary and

lim
t 0!t

U.t 0; t/ D 1: (9.2)

Therefore, if t 0 D t C�t ,

‰.t C�t/ D U.t C�t; t/‰.t/

D
�

1C @

@t 0 U.t 0; t/

ˇ

ˇ

ˇ

ˇ

t 0Dt

�t C 	 	 	
�

‰.t/;

@

@t
‰.t/ D @

@t 0U.t 0; t/jt 0Dt‰.t/: (9.3)

A new quantum principle must be added to those stated in Chaps. 2 and 7.

Principle 5. The operator yielding the change of the state vector over time is

proportional to the Hamiltonian

@

@t 0 U.t 0; t/jt 0Dt D �
i

„
OH.t/: (9.4)

Note the following consequences:

• The time evolution of the system is determined by the first-order linear equation

i„ @

@t
‰.t/ D OH‰.t/: (9.5)

This is called the time-dependent Schrödinger equation. It is valid for a general

state vector, and it is independent of any particular realization of quantum

mechanics.

• The evolution is deterministic, since the state vector is completely defined

once the initial state is fixed (quantum indeterminacy pertains to measurement

processes).

• The evolution is unitary (i.e. the norm of the states is preserved).

although the commutation relation Œ Ox; Op� has been postulated in the present text, it has also been

derived in the non-relativistic limit of Lorentz transformations [18], thus suggesting a deeper link

between relativity and quantum mechanics.
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• The evolution of the system is reversible.

• The evolution satisfies the composition property

U.t 0 � t/ D U.t 0 � t 00/U.t 00 � t/ .t 0 > t 00 > t/: (9.6)

• If Œ OH .�1/; OH.�2/� D 0, the evolution operator is

U.t 0; t/ D exp

"

� i

„

Z t 0

t

OH.�/ d�

#

: (9.7)

In the case of a time–independent Hamiltonian satisfying the eigenvalue equation
OHϕi D Ei ϕi , the solution to the differential equation (9.5) may be found using the

method for separation of variables. Hence,

ϕi .t/ D f .t/ϕi ; i„df

dt
D Ei f ! f D exp.�iEi t=„/ (9.8)

and thus,

ϕi .t/ D ϕi exp

�

� i

„Ei t

�

: (9.9)

We expect the solutions of a time-independent Hamiltonian to be independent of

time. However, as usual, this requirement can only be enforced up to a phase. This

is consistent with the result (9.9).

The constant of proportionality �i=„ chosen in (9.4) ensures that the time-

dependent wave function for a free particle with energy E D „! is a plane wave, as

expected [see (4.32)]:

ϕ˙k.x; t/ D A exp Œi.˙kx � !t/� : (9.10)

If the Hamiltonian is time independent and the state is represented at time t D 0 by

the linear combination (2.6) of its eigenstates,

‰.t D 0/ D
X

i

ci ϕi ; (9.11)

(9.9) implies that at time t the state has evolved into2

‰.t/ D
X

i

ci ϕi exp

�

� i

„Ei t

�

: (9.12)

2The evolution is valid only for the Hamiltonian basis. Therefore, the expression ‰.t/ D
P

i ci ϕi exp.�iqi t=„/ makes no sense if ϕi , qi are not eigenstates and eigenvalues of the

Hamiltonian.
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The relation Œ OQ; OH� D 0 implies a conservation law. If the system is initially in

an eigenstate of the operator OQ it remains so during its time evolution.

9.2 Time Dependence of Spin States

9.2.1 Larmor Precession

To begin with we give a simple but non-trivial example of a solution to (9.5). We

use as Hamiltonian the interaction (5.15), with the magnetic field directed along the

z-axis. The evolution operator (9.7) is given by

Uz.t; 0/ D expŒ�i OHzt=„� D
�

exp[i!Lt=2] 0

0 exp[�i!Lt=2]

�

OHz D �!L
OSz; (9.13)

where !L � �� gs B=„ is called the Larmor frequency [see (5.22)]. We have used

(5.21) in the expansion of the exponential in (9.13).

The time evolution is given by

‰.t/ D
�

c".t/

c#.t/

�

D Uz.t; 0/

�

c".0/

c#.0/

�

: (9.14)

If the state of the system is an eigenstate of the operator OSz at t D 0, it remains

so forever and (9.14) is just a particular case of (9.9). However, if at t D 0 the spin

points in the positive x-direction [initial values: c" D c# D 1=
p

2, see (3.21)], then

‰.t/ D 1p
2

�

1

1

�

cos
!Lt

2
C i

1p
2

�

1

�1

�

sin
!Lt

2
: (9.15)

The probability of finding the system with spin aligned with the x-axis (or in the

opposite direction) is cos2.!Lt=2/ [or sin2.!Lt=2/].

The expectation values of the spin components are

h‰jSxj‰i D
„
2

cos.!Lt/; h‰jSyj‰i D �
„
2

sin.!Lt/; h‰jSzj‰i D 0:

(9.16)

The spin precesses around the z-axis (the magnetic field axis), with the Larmor

frequency !L in the clockwise direction (x ! �y). It never aligns itself with the

z-axis. Unlike the case in which a definite projection of the angular momentum

along the z-axis is well defined (see the discussion of Fig. 5.1 in Sect. 5.1.1), we

are describing a true precession here, which is obtained at the expense of the

determination of Sz.
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If t � 1=!L, we speak of a transition from the initial state ϕSxD„=2 to the final

state ϕSxD�„=2 with the probability !2
Lt2=4. In this case, the probability per unit time

is linear in time.

If the z-direction is substituted by the x-direction in the Hamiltonian (9.13), we

obtain the transformation

Ux.t; 0/ D
�

cos !Lt=2 i sin !Lt=2

i sin !Lt=2 cos !Lt=2

�

: (9.17)

9.2.2 Magnetic Resonance

We now add a periodic field along the x- and y-directions, of magnitude B 0 and

frequency !, to the constant magnetic field of magnitude B pointing along the z-

axis. The Hamiltonian reads

OH D ��sB OSz � �sB
0
�

cos !t OSx � sin !t OSy

�

D �1

2
�s„

�

B B 0 exp.i!t/

B 0 exp.�i!t/ �B

�

: (9.18)

Since this Hamiltonian does not commute with itself at different times, we cannot

use the evolution operator (9.7). We must solve instead the differential equation (9.5)

for the amplitudes ci .t/. Although the solution may be worked out analytically for

any value of !, it turns out that the maximum effect is obtained if this frequency

equals the Larmor frequency !L. We make this assumption in the derivation below.

We also set !0 � �sB
0.

We try a solution of the form (9.14), but with time-dependent amplitudes:

�

b".t/

b#.t/

�

D
�

expŒi!t=2� c".t/

expŒ�i!t=2� c#.t/

�

;

� Pb"
Pb#

�

D i

2
!0
�

b#
b"

�

: (9.19)

The solution to the last equation is

�

b"
b#

�

D

0

B

@

cos
!0t

2
sin

!0t

2

i sin
!0t

2
�i cos

!0t

2

1

C

A

�

b".0/

b#.0/

�

: (9.20)

This result ensures the occurrence of the spin flip: a spin pointing up (down) will

eventually point down (up), i.e. it will be flipped. The probabilities that the initial

spin is maintained or flipped are (Fig. 9.1)
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Fig. 9.1 Probability of a spin flip according to (9.22). Values of !=!L are represented on the

horizontal axis, while probabilities are indicated on the vertical axis. The resonant behavior for

! D !L is apparent. The parameters are t!L D 4; !0=!L D 1=10 (a); t!L D 4; !0=!L D 1=2

(b) and t!L D 2; !0=!L D 1=2 (c). The comparison between the last two graphs anticipates the

complementary relation between time and energy [see (9.35) and Sect. 9.5]

P"!" D P#!# D cos2

�

1

2
!0t

�

;

P"!# D P#!" D sin2

�

1

2
!0t

�

: (9.21)

For an arbitrary relation between ! and !L, the probability of a spin flip is given by

P"!#.t/ D .!0/2

.! � !L/2 C .!0/2
sin2

�

1

2
t
p

.! � !L/2 C .!0/2

�

: (9.22)

This equation expresses a typical resonance phenomenon (hence the name magnetic

resonance): if ! � !L, a very weak field B 0 produces large effects (Fig. 9.1).

One cannot treat the interaction with the sinusoidal field as a small perturbation.
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This would require j!0j� j! � !Lj, a condition violated in the neighborhood of

resonance.

Nuclear magnetic resonance (NMR) is an essential part of processes involving

the alignment of spins. It has applications in many branches of physics, such

as measuring magnetic moments of particles, including elementary particles, and

determining properties of condensed matter. It is also an important tool in quantum

computing.

In medicine, NMR is called magnetic resonance imaging (MRI). It is the result

of three contributing quantum technologies:

• The patient is placed in a large magnetic field that is produced without heating,

by means of superconducting coils (Sect. 10.1).

• The evolution of spins of the hydrogen atoms in our body is affected by both

static and modulated fields, as described above.

• The signals picked by detection coils are transformed into images by computers

employing hardwares based on transistor technologies (Sect. 7.4.3�).

An enormous amount of information is obtained from the medium. For instance, the

brain activity can be directly observed through changes in the magnetic environment

produced by the flux of blood.

9.3 Sudden Change in the Hamiltonian

We consider a time-dependent Hamiltonian OH such that OH D OH0 for t < 0 and
OH D OK0 for t > 0, where OH0 and OK0 are time-independent Hamiltonians. We

know how to solve the problem for these two Hamiltonians:

OH0ϕi D Eiϕi ;
OK0φi D �i φi : (9.23)

The system is initially in the state ϕi exp.�iEi t=„/. For t > 0, the solution is given

by the superposition

‰ D
X

k

ckφk exp.�i�kt=„/; (9.24)

where the amplitudes ck are time independent, as is OK0.

The solution must be continuous in time to satisfy a differential equation.

Therefore, at t D 0,

ϕi D
X

k

ckφk �! ck D hφkjϕi i: (9.25)

The transition probability is given by

Pϕi !φk
D jckj2: (9.26)
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9.4 Time-Dependent Perturbation Theory

If the Hamiltonian includes both a time-independent term OH0 and a time-dependent

contribution OV .t/, one may still use the expansion (9.12), but with time-dependent

amplitudes [ci D ci .t/]. In that case, the Schrödinger equation for the Hamiltonian
OH0 C OV is equivalent to the set of coupled equations

i„
X

i

Pci ϕi exp.�iEi t=„/ D OV
X

i

ci ϕi exp.�iEi t=„/: (9.27)

The scalar product with ϕk yields

i„ Pck D
X

i

ci hkjV jii exp.i!ki t/; !ki D
Ek � Ei

„ ; (9.28)

where !ki is the Bohr frequency. This set of coupled equations must be solved

together with boundary conditions, such as the value of the amplitudes ci at t D 0.

The formulation of the time-dependent problem in terms of the coupled amplitudes

ci .t/ is attributed to Dirac.

The set of coupled equations (9.28) is not easier to solve than (9.5). Therefore,

one must resort to a perturbation treatment. As in Sect. 8.1, we multiply the

perturbation OV .t/ by the unphysical parameter � (0 � � � 1) and expand the

amplitudes

ck.t/ D c
.0/

k C �c
.1/

k .t/C �2c
.2/

k .t/C 	 	 	 : (9.29)

We impose the initial condition that the system be in the state ϕ
.0/
i .t/ at t D 0. This

condition is enforced through the assignment c
.0/

k D ıki , which accounts for terms

independent of � in (9.28).

The perturbation is applied at t D 0. Our aim is to calculate the probability of

finding the system in another unperturbed eigenstate ϕ
.0/

k at time t . The terms linear

in � yield

Pc.1/

k D �
i

„hkjV jii exp.i!ki t/: (9.30)

Therefore, the transition amplitudes are given by

c
.1/

k .t/ D � i

„

Z t

0

hkjV jii exp.i!ki �/d�: (9.31)

The transition probability between the initial state i and the final state k, induced by

the Hamiltonian OV .t/, is given in first-order of perturbation theory as

P
.1/

i!k.t/ D
ˇ

ˇ

ˇ
c

.1/

k

ˇ

ˇ

ˇ

2

: (9.32)
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9.5 Energy–Time Uncertainty Relation

Consider matrix elements of the perturbation hkjV jii which do not depend on time

in the interval .0; t/, and otherwise vanish. The first-order amplitude and transition

probabilities (9.31) and (9.32) are given by

c
.1/

k D �
hkjV jii
„!ki

Œexp.i!ki t/ � 1� ; (9.33)

P
.1/

i!k D
ˇ

ˇ

ˇ

ˇ

hkjV jii
„!ki

ˇ

ˇ

ˇ

ˇ

2

4 sin2 .!ki t=2/: (9.34)

The result (9.34) is common to many first-order transition processes. Therefore,

we discuss it in some detail:

• If the final states ϕk belong to a continuous set, the transition probability is

proportional to the function f .!/ D .4=!2/ sin2 .!t=2/ plotted in Fig. 9.2.

The largest peak at ! D 0 has a height proportional to t2, while the next

highest, at ! � 3 =t , is smaller by a factor of 4=9 2 � 1=20. Therefore,

practically all transitions take place for frequencies lying within the central peak,

which is characteristic of the phenomena of resonance. The secondary peaks are

associated with diffraction processes.

• The total probability is obtained by integrating over the frequencies. Assuming

that the matrix element is not changed within the frequency interval of the main

peak, and approximating the surface of the latter by the area of an isosceles

triangle of height t2 and half-base 2 =t , we conclude that the total probability

ω

f(ω)

t2

t

0

3π

t

2π

4t2

9π2

Fig. 9.2 The function f .!/ as a function of the frequency !
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increases linearly with time and that the probability per unit interval of time is

constant.

• The energy of an initially excited atomic state may be obtained from the

frequency of the photon resulting from de-excitation of this state (Sect. 9.8.4�).

Therefore, the spread shown in Fig. 9.2 changes the notion of the eigenvalue in

the case of an unstable state. Instead of a sharp energy, the existence of the spread

is associated with an indeterminacy in the energy on the order of

�E � „2 

t
: (9.35)

This inequality is a manifestation of the uncertainty as applied to energy and

time. There is a similar uncertainty if the energy of the excited states is obtained

via a process of absorption of electromagnetic radiation.

This time–energy relation was anticipated in the caption of Fig. 9.1.

• It would be wrong to conclude from (9.35) that energy is not conserved at the

microscopic quantum scale, since such conservation principle does not hold for

a time-dependent Hamiltonian. What enters in (9.35) is the difference between

eigenvalues of the unperturbed Hamiltonian.

• Non-diagonal matrix elements hkjV jii acquire physical meaning, since they can

be measured through transition rates.

• If there is a continuum of final states, we are interested in summing up the

probabilities over the set K of these final states (k 2 K):

P
.1/
i!K D

Z Ei C�E=2

Ei ��E=2

P
.1/

i!k�.Ek/dEk; (9.36)

where �.Ek/ is the density of the final states.3 Assuming that both jhkjV jiij2 and

�.Ek/ remain constant during the interval �E, and that most of the transitions

take place within this interval, then

P
.1/
i!K �

4

„2
jhkjV jiij2�.Ek/

Z 1

�1
dEk

sin2 !ki t=2

!2
ki

D 2 t

„ jhkjV jiij
2 �.Ek/:

(9.37)

The expression for the transition per unit time is called the Fermi golden rule:

dP
.1/
i!K

dt
D 2 

„ jhkjV jiij
2 �.Ek/: (9.38)

So far, the transition probability dP=dt per unit time has been calculated for a

single system. If there are N similar systems present (for instance, N atoms), one

cannot ascertain when a particular system will decay. If dP=dt is time-independent

3The density of states is given in (7.21) for the free particle case. A similar procedure is carried out

for photons in (9.60).
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(as in (9.38)), the total rate of change is given by

dN

dt
D �N dP

dt
: (9.39)

Therefore,

N D N0 exp

�

�dP

dt
t

�

D N0 exp.�t=�/; � D
�

dP

dt

��1

: (9.40)

The constant � is called the mean lifetime. It is the time required for the reduction of

the size of the population by a factor of 1=e and thus it is a measure of the the time

�t at which the decay takes place. The energy–time uncertainty relation is written

in analogy4 with (2.37)

	t 	E � „: (9.41)

A short mean lifetime implies a broad peak, and vice versa.

9.6� The Heisenberg Picture

So far, the expectation value of an operator OQ not depending explicitly on time only

depends on the time evolution of the state vector (Sect. 9.1). There is an alternative

description – the Heisenberg picture – in which the state vector is frozen at, for

instance, t D 0, and the operator evolves as

OQ.H/.t/ D OUC.t/ OQ.S/ OU.t/; (9.42)

where the superscripts .H/ and .S/ stand for Heisenberg and Schrödinger, respec-

tively. We can easily verify that both pictures yield the same expectation value of

the operator

h‰.t/jQ.S/j‰.t/i D h‰.0/jUC.t/Q.S/U.t/j‰.0/i D h‰.0/jQ.H/j‰.0/i: (9.43)

The time derivative of the Heisenberg version of the operator yields

d OQ.H/

d t
D d OUC.t/

d t
OQ.S/ OU.t/ C OUC OQ.S/ d OU.t/

d t

D i

„
OUC.t/ OH OQ.S/ OU.t/ � i

„
OUC OQ.S/ OH OU.t/

D � i

„ Œ OQ.H/; OH�; (9.44)

where (9.7) has been used. This is the Heisenberg equation of motion.

4However, it has a different origin (see footnote 1).
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9.7� Time-Reversal Symmetry

The quantum mechanical version of the time-reversal operation is characterized, in

the case of one particle, by the transformation O� of the position, momentum and

spin operators

Ox0
i D O� Oxi

O��1 D Oxi ;

Op0
i D O� Opi

O��1 D � Opi ;

OS 0
i D O� OSi

O��1 D � OSi : (9.45)

Thus, the time-reversal operation should more appropriately be called motion-

reversal. A Hamiltonian such as OP 2=2M C V.x/ is invariant under this transfor-

mation.

Since a unitary transformation preserves relations between operators, the time-

reversal transformation cannot be unitary. For instance,

Œ Oxi ; Opi � D �Œ Ox0
i ; Op0

i �: (9.46)

It is possible, however, to write O� as a product of a unitary transformation OU� times

an operation OK defined as the complex conjugation of all c-numbers. This is called

an antiunitary transformation. Therefore,

O� ϕi D OU�
OK ϕi D

X

i 0
hi 0jii� OU� ϕi 0 : (9.47)

If Œ O�; OH� D 0, the Hamiltonian eigenstates ϕi and O� ϕi correspond to the same

eigenvalue Ei , no mater how complicated the potential may be. For instance, if the

central potential is not spherically symmetric, the 2J C 1 degeneracy disappears,

but the levels still display the twofold Kramers degeneracy (m;�m), due to the

time-reversal symmetry.

The universal validity of the time-reversal invariance is still not a closed subject.

9.8� Quantum Electrodynamics for Newcomers

In Chap. 1, we stated that the most relevant manifestation of the crisis in physics that

took place at the beginning of the twentieth century was the (classical) instability

of the motion of an electron circling around the nucleus. To show that quantum

mechanics does indeed solve this problem, we must use that beautiful extension of

quantum mechanics called quantum electrodynamics. In the following we present a

very brief introduction to QED.
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We first consider the electromagnetic field in the absence of charges (light

waves). A quadratic expression for the energy is obtained in terms of canonical

variables. Subsequently, the theory is quantized by replacing such variables with

operators satisfying the relation (2.15) (or an equivalent). In the next step, we

consider the interaction between particles and the electromagnetic field. Finally, we

solve the ensuing time-dependent problem applying perturbation theory.

9.8.1� Classical Description of the Radiation Field

In the absence of charges, the classical electromagnetic vector potential A.r; t/

satisfies the equation

r2A D 1

c2

@2A

@t2
: (9.48)

The vector A may be written as the sum of a transverse and a longitudinal

component. The latter can be included within the particle Hamiltonian, since it is

responsible for the Coulomb interaction and does not cause the radiation field. The

transverse component At.r ; t/ satisfies the equation

divAt D 0: (9.49)

It may be expanded in terms of a complete, orthonormal set A�.r/ of functions of

the coordinates:

At D
X

�

c�.t/A�; (9.50)

Z

L3

A�
�A�0 dV D ı�;�0 ; (9.51)

where we assume a large volume L3 enclosing the field. Insertion of (9.50) in (9.48)

and separation of variables yield the two equations

d2

dt2
c� C !2

�c� D 0; (9.52)

r2A� C
!2

�

c2
A� D 0; (9.53)

where !� is introduced as a separation constant. The solution to the oscillator

equation (9.52) is

c� D �� exp.�i!�t/; (9.54)
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with �� independent of time. A solution to (9.53) is given by the three-dimensional

generalization (7.17) of (4.43). Periodic boundary conditions are assumed, so that

A� D
1

L3=2
v� exp.ik��r/; k�i D 2 n�i =L: (9.55)

There are two independent directions of polarization v�, since (9.49) implies

v�	k� D 0.

We construct the electric field

E D � @

@t
At D i

X

�

!�c�A�: (9.56)

The total field energy is expressed as

U D 1

2

Z

L3

�

�0jE j2 C �0jBj2
�

dV D
Z

L3

�0jE j2dV

D �0

X

�

!2
�c�

� c�

D
X

�

„!�a�
�a�; (9.57)

where the substitution

c� D c

s

„
�0!�

a�

has been made. Note that since the vector field has dimension k m s�1 C�1, the

amplitudes c� have dimension k m5=2 s�1 C�1 and the amplitudes a� are dimension-

less.

9.8.2� Quantization of the Radiation Field

We have obtained an expression for the energy of the radiation field that is quadratic

in the amplitudes a�
� ; a�. Quantization is achieved by replacing these amplitudes by

the creation and annihilation operators aC
� ; a�, satisfying the commutation relations

(3.31) and (7.58). We thus obtain the Hamiltonian5

OH D
X

�

„!� aC
� a� : (9.58)

5We ignore the ground state energy of the radiation field.
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This Hamiltonian implies that:

• The radiation field is made up of an infinite number of oscillators. The state of

the radiation field is described by all the occupation numbers n�.

• The oscillators are of the simple, boson, harmonic type introduced in (3.29) and

used in Sects. 7.4.4� and 7.8�, if the quantum radiation field is in a stationary state

without residual interactions.

• In agreement with Einstein’s 1905 hypothesis, each oscillator has an energy

which is a multiple of „!�. The energy of the field is the sum of the energies

of each oscillator.

• Since the radiation field is a function defined at all points of space and time, the

number of canonical variables needed for its description is necessarily infinite.

However, by enclosing the field within the volume L3, we have succeeded in

transforming this infinity into a denumerable infinity.

• In the absence of any interaction between particles and radiation field, vector

states may be written as products of the two Hilbert subspaces, and the energy

Eb;n1 ;n2;::: is the sum of particle and radiation terms [see (7.1)]

‰b;n1;n2;::: D ϕb.particles/ �…�

1p
n�Š

.aC
� /n�ϕ0;

Eb;n1;n2;::: D Eb C
X

�

„!�n�: (9.59)

• The number of states up to a certain energy n.E�/ and per unit interval of energy

�.E�/ for each independent direction of polarization is6

n.E�/ D L3k3
�

6 2
D L3E3

�

6 2„3c3
; �.E�/ D @n

@E�

D L3!2
�

2 2„c3
: (9.60)

• The Hermitian, quantized, vector potential reads

OAt D
1

2

X

�

s

„
�0L3!�

h

a�v� exp.ik�	r/C aC
� v� exp.�ik� 	 r/

i

: (9.61)

• We may be only interested in the polarization states of the photon, ignoring

wavelength and direction of motion. A complete description of this system

requires only two basis states, as in the case of spin. The analogous to the

Stern–Gerlach device is a calcite crystal: a beam of monochromatic light passing

through this crystal will produce two parallel emergent beams with the same

6These expressions have been derived using a similar procedure to the one used to obtain (7.21).

A factor of 2, which was included in (7.21) due to spin, is not needed in (9.60). It reappears in

(9.66), where the two directions of polarization are taken into account.
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frequency and polarization axis perpendicular to each other. Most of the thought

quantum experiments have become real laboratory experiments through the use

of polarized photons.

9.8.3� Interaction of Light with Particles

In the presence of an electromagnetic field, the momentum Op of the particles7 is

replaced in the Hamiltonian by the effective momentum [53]

Op �! Op � e OAt ; (9.62)

1

2M
Op

2 �! 1

2M
Op

2 C OV C 	 	 	 ; OV D
r

˛4 �0„c
M 2

OAt 	 Op: (9.63)

The various ensuing processes may be classified according to the associated power

of the fine structure constant ˛. The smallness of ˛ (Table A.1) ensures the

convergence of perturbation theory. The linear, lowest order processes require

only the perturbation term OV . This causes transitions in the unperturbed system,

particle C radiation, by changing the state of the particle and simultaneously

increasing or decreasing the number of field quanta by one unit (emission or

absorption processes, respectively).

We apply the perturbation theory developed in Sects. 9.4 and 9.5. Since the

radiation field has a continuous spectrum, a transition probability per unit time

(9.38) is obtained.

According to (9.61) and (9.63), the matrix elements of the perturbation read

hb.n� C 1/jV jan�i D K�

p

n� C 1;

hb.n� � 1/jV jan�i D K�

p
n�; (9.64)

where K� is given by

K� D
„
M

r

˛ c

L3!�

hb j.v�	p/ exp.˙ik�	r/jai

� „
M

r

˛ c

L3!�

hbjv�	pjai

D i„!�

r

˛ c

L3!�

hbjv� 	 rjai: (9.65)

7ŒOp; OAt � D 0 because of (9.49).
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We have neglected the exponential within the matrix element, on the basis of the

estimate hk�ri � !�a0=c D O.10�4), for „!� � 1 eV. The third line is derived

using the relation Op D .iM=„/Œ OH; Ox� (Problem 9 of Chap. 2).

We next work out the product appearing in the golden rule (9.38):

2 

„ jK�j2 �.E�/ D ˛j!�j3
c2
jhbjv� 	 rjaij2

�! 2˛j!�j3
3c2

jhbjrjaij2 ; (9.66)

where we have summed over the two final polarization directions and averaged over

them.

9.8.4� Emission and Absorption of Radiation

The transition probabilities per unit time are given by

dP
.1/

an�!b.n��1/

dt
D 2˛j!�j3

3c2
jhbjrjaij2 Nn�; (9.67)

dP
.1/

an�!b.n�C1/

dt
D 2˛j!�j3

3c2
jhbjrjaij2 . Nn� C 1/; (9.68)

for absorption and emission processes, respectively. Here Nn� is the average number

of photons of a given frequency (Fig. 9.3).

Fundamental consequences can be extracted from (9.67) and (9.68):

• The probability of absorbing a photon is proportional to the intensity of the

radiation field present before the transition. This intensity is represented by Nn�.

This is to be expected. However, the probability of emission consists of two

terms: the first one also depends on the intensity of the radiation field (induced

emission); the second term, independent of the field intensity, allows the atom to

decay from an excited state in vacuo (spontaneous emission).

Fig. 9.3 The absorption process (9.67) (left) and the emission process (9.68) (right) of electro-

magnetic radiation. Labels a,b denote particle states
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• The mean lifetime of the excited state ϕ210 in the hydrogen atom („! D 10:2 eV)

may be obtained8 from (9.68) and (9.40). The result yields � D 0:34 � 10�9 s.

Does this represent a short or a long time? In fact it is a long time, since this

mean lifetime has to be compared with the period of the emitted radiation T D
2 =! D 0:41� 10�15 s. The mean lifetime is associated with a spread in energy

of 1:23 � 10�5 eV, which is much smaller than the excitation energy. We can

see now how effectively the great crisis of early twentieth century physics was

resolved.

• The ratio . Nn� C 1/= Nn� is needed to preserve the correct thermal equilibrium of

the radiation with a gas: in a gas at temperature T , the number of atoms in the

states a; b is given by exp.�Ea=kBT / and exp.�Eb=kBT /, respectively. The

condition for equilibrium is

Pemission exp.�Ea=kBT / D Pabsorption exp.�Eb=kBT /; (9.69)

which yields

Nn� D 1= Œexp.„!ab=kBT / � 1� : (9.70)

From this deduction of Planck’s law, Einstein showed the need for spontaneous

and induced emission in quantum theory [64].

9.8.5� Selection Rules

We now focus our attention on the particle matrix elements. The transition probabil-

ities are also proportional to the squared modulus of the matrix elements jhbjrjaij2.

Therefore, transition rates give information about the value of non-diagonal matrix

elements. (Since Chap. 2, we know that diagonal matrix elements represent averages

obtained in measurements of the eigenvalues of physical observables.)

Let lb;  b (la;  a) be the orbital angular momentum and parity quantum numbers

of the final (initial) state. Conservation of angular momentum requires the orbital

angular momentum of the final state to equal the vector sum of the initial angular

momentum and that of the radiation (see Sect. 5.3.1). The latter manifests itself

through the operator Or in (9.68), which can be expressed as a sum of terms

proportional to the spherical harmonics Y1ml
. Therefore, the matrix elements must

satisfy the selection rule la C 1 � lb � jla � 1j (5.33), or �l D 0;˙1.

8An order of magnitude of � may be obtained by equating the rate of radiation of an oscillating

classical dipole with the ratio between the emitted energy „! and the mean lifetime

!4D0

3c2
D „!

�
�! � D 3„c2

!3D0

:

The amplitude of the dipole oscillation is approximated by D0 � �ea0. If the transition energy is

assumed to be 10 eV, we obtain an estimated value � D O.10�10 s).
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Since the operator r is odd under the parity operation (5.12), the non-vanishing of

this matrix element also requires the initial and final states to carry a different parity,

 a b D �1. The combination of the conservation rules associated with orbital

angular momentum and parity is condensed in the selection rule

�l D ˙1; (9.71)

which defines allowed transitions (see, for instance, Fig. 8.4).

Forbidden (i.e. non-allowed) transitions may also occur, but are much weaker

than the allowed ones. Their relative intensity may be estimated on the basis of the

expectation value of the neglected terms in (9.65).

Let us now consider the final (initial) angular momentum jb (ja) with projection

mb (ma)

3

4 
jhjbmbjrjjamaij2 D

X

�

jhjbmbjr Y1�jjamaij2

D 1

2jb C 1
jhjbjjr Y1jjjaij2

X

�

c
�

jamaI 1�I jbmb

�2

D 1

2ja C 1
jhjbjjr Y1jjjaij2

X

�

c
�

jb.�mb/I 1�I ja.�ma/
�2

;

(9.72)

where we have successively applied (5.65), the definition (5.49) of the reduced

matrix element and the last one of equations (5.34). In general we must sum over all

possible final projections mb. If this is the case, the first of equations (5.36) yields

X

mb

jhjbmbjrjjamaij2 D
4 

3

jhjbjjr Y1jjjaij2
2ja C 1

; (9.73)

which is independent of the initial projection ma and of other geometrical terms

(such as Wigner coefficients).

9.8.6� Lasers and Masers

The first material used to produce laser light9 was ruby [65]. The ions undergoing

laser transitions are Cr3C, an impurity in the Al2O3 crystal.

9Laser, light amplification by stimulated emission of radiation; maser, microwave amplification

by stimulated emission of radiation. These two devices differ in the range of electromagnetic

frequency in which they operate.
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Fig. 9.4 Schematic representation of the levels of a ruby laser

Figure 9.4 schematizes the three relevant levels of Cr. At room temperature the

population of state 2 is much smaller than that of state 1, since E2 � E1 � kT

(see Sect. 7.7�). A population inversion is achieved by means of auxiliary radiation

(pumping radiation) exciting many atoms into higher energy states 3 (actually into

two excited bands), from which they spontaneously decay into the state 2 (or

back to 1) within 10�7 s. Since the spontaneous lifetime of state 2 is rather large

(10�3 s), a considerable fraction of the population of state 1 is transferred to state 2

(� 1=2/.

Some of the photons spontaneously emitted in the decay of state 2 are reflected

back and forth between a completely reflecting and a partially reflecting surface of

the crystal. Thus a standing electromagnetic wave is built. Its intensity increases

very rapidly through induced emission of further photons, simultaneously with the

depopulation of state 2. A pulse of laser light crosses over the partially reflecting

surface. The main characteristics of this emitted light are:

• Extreme monochromaticity.

• Large power per unit area of cross section (more than 109 times the one obtained

from conventional light sources).

• Extreme coherence. The phase of the light emitted from one atom is related to

that from each other atom. As a consequence, the phase difference between the

laser light beam will stay constant at two different points (the points may be

separated as much as 100 km). On the contrary, light spontaneously emitted is

incoherent.

Laser light is playing an ever increasing role in many scientific and technological

applications: precise determinations of length and time, CD players and readers,

non-linear optics, hot fusion, etc. In communications, laser light allows to trans-

port 1012 information units per second through a single optical fiber across the

oceans.
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Problems

Problem 1. At t D 0, a state is given by the linear combination of the two lowest

states of a linear, infinite square well potential of width a :

‰.t D 0/ D 1p
3

ϕ1 � i

r

2

3
ϕ2:

1. Write the wave function at time t .

2. Calculate the probability of finding the particle in the second half of the well.

Problem 2. Use the time-dependent Schrödinger equation to show that Newton’s

second law is obeyed on average in quantum mechanics (Ehrenfest theorem). Hint:

calculate
dh‰.t/jpj‰.t/i

dt
;

as in (4.15).

Problem 3. In the state (9.15), calculate the amplitude of the eigenstate of the

operator OSy , with spin pointing in the positive direction.

Problem 4. Write the evolution operator for a Hamiltonian �� 	B if the magnetic

field points to the same direction as vector n (jnj D 1).

Problem 5. A particle is in the ground state of an infinite linear square well

potential. What is the probability of finding it in the n D 1; 2; 3 states when the

wall separation is suddenly doubled by displacing the right wall?

Problem 6. Calculate the probability of a spin flip in the first order of perturbation

theory. Assume the Hamiltonian (9.18) and j!0=.! � !L/j � 1. Compare with the

exact result (9.22).

Problem 7. A particle in the ground state of a linear harmonic oscillator interacts

with a projectile through an interaction of the form V0ı.u� vt=xc/.

1. Express the amplitude for the transition to the first excited state as an integral

over the time interval t1 � t � t2.

2. Calculate the probability of this transition for t1 D �1, t2 D 1.

Problem 8. The Hamiltonian

OV .t/ D V0

„2
OS 1	 OS 2 cos.!t/

acts on a two-spin system. Find the time-dependent solution if:

1. The system has ms D 0.

Hint: try ‰.t/ D cos � exp.i�/¦1
0 C sin � exp.�i3�/¦0

0.

2. The system is in the Bell state ‰B0 D 1p
2

�

ϕ".1/ϕ".2/C ϕ#.1/ϕ#.2/
�

.
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Problem 9. What is the probability of exciting a linear harmonic oscillator from

the ground state to the first excited state, assuming that a perturbation V D Kx,

acting for an interval t , is added to the oscillator Hamiltonian?

Problem 10. 1. Obtain the expression for the second-order amplitudes c
.2/

k .t/ if

the perturbation is constant in time.

2. Calculate the probability of a transition to the second excited state for the same

case as in Problem 9.

Problem 11. 1. Interpret the ratio 2	E 	l=„c, where 	l is the length of the

system.

2. Calculate this ratio for the “giant resonance” (	E � 4 MeV) and for a slow

neutron resonance (	E � 0:1 eV) in the case of a nucleus with A � 100. (See

Problem 7, Chap. 6).

3. Do the same for a meson with a spread of 200 MeV (proton size� 10�17 m).

Problem 12. Calculate the ratio between the populations of the states ϕ210 and ϕ310

if hydrogen atoms in their ground state are illuminated with white light.

Problem 13. 1. Calculate the ratio between the intensities of photons de-exciting

the state ϕ310 of the hydrogen atom.

2. Calculate the mean lifetime of this state.

3. Calculate the width of this state.

Problem 14. Consider the transition ϕn;lDn�1 ! ϕn�1;n�2 via the dipole operator

Q1� D
q

4 
3

rY1� in a Rydberg atom. In the limit of large n, obtain

1. The reduced matrix element for the transition.

2. The mean lifetime � for the .n; n � 1! n � 1; n � 2/ transition.

3. The ratio between this lifetime and �.2; 1! 1; 0/.



Chapter 10

Broken Symmetries

We have discussed several problems in which the symmetry of the Hamiltonian

constitutes an essential tool in the construction of the (factorized) eigenstates. In

these cases, the ground state ϕ0 is annihilated by the generators of the transformation

associated with that symmetry. For instance, in the case of the hydrogen atom,

Œ OH; OLi � D 0 and OLi ϕ0 D 0. We say that the states carry the same symmetry as

the Hamiltonian.

In the present chapter, we study situations in which this is not the case. In

fact, the description with broken symmetries permeates an important fraction of

today physics: ferromagnetism; superconductivity and superfluidity (condensed

matter physics, nuclei, neutron stars); Hartree–Fock description (atomic and nuclear

physics); molecules; quadrupole deformed nuclei; theory of electro-weak interac-

tions and quantum chromodynamics (field theory, cosmology); etc.

The chapter is divided into two main sections. In the first one, we present the

treatment of superconducting and superfluid systems by Bardeen, in collaboration

with Leon N. Cooper and John R. Schrieffer. The BCS theory [66] constitutes

a relevant illustration of a description based on the approximation of broken

symmetries. Superconducting systems are macroscopic manifestations of quantum

mechanics, and thus bear relevance in the diffuse limit between classical and

quantum descriptions of nature. In addition, they display an increasing number of

technical applications ranging from the transmission of electric currents without

losses to the most accurate determination of the ratio e=„.
In the second section of the chapter, we delve deeper into the concept of

broken symmetry by means of a very simple mechanical example. Corrections to

this approximation demand the appearance of additional degrees of freedom, the

collective variables, which become compensated by the existence of constraints.

Little attention, if any, is paid in quantum textbooks to the problem of quantization

with constraints, an area where great progress has been made over the last 35 years

[67]. This subject is not only of paramount importance in gauge field theories

[68], but it also has applications in quantum mechanics, as in the description of

many-body systems from moving frames of reference [69]. Moreover, the problem

is conceptually significant in terms of properties of Hilbert spaces. Although we
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184 10 Broken Symmetries

are here restricted to present just an outline of the BRST procedure, we hope that

the reader may get some feeling of this elegant method developed by C. Becchi,

A. Rouet, R. Stora and I.V. Tyutin [67] (Sects. 10.2.2–10.2.4�).

Quantization with constraints and superconductivity are two subjects which are

seldom explained together. However, although the formalism describing supercon-

ductivity has more complexity than the one employed in Sect. 10.2, the underlying

mechanism of broken symmetry is similar in both cases. Moreover, the collective

sector that appears as a consequence of the BRST formalism provides a phase to

the BCS solution which becomes relevant in processes involving the transference of

pairs of particles (e.g. Josephson junctions).

10.1 The BCS Theory of Superconductivity

In many cases for which the exact eigenstates with the correct symmetry are difficult

to obtain, it is a good approximation to use solutions involving a breakdown of

symmetries. In this section we present superconductivity as an illustration of a

broken symmetry. The formalism applies as well to nuclear superfluidity.

Heike Kamerlingh Onnes discovered in 1911 that, below a certain temperature,

most metals conduct electricity without any resistance [70]. It took almost 50

years until Bardeen, Cooper and Schrieffer developed an adequate microscopic

description for the quantum state of electrons in a metal, subject to attractive

interactions. They were able to explain the behavior of all superconducting materials

known at the time when the theory was developed [66]. Those materials are known

today as low critical temperature superconductors. The magnetic response of the

superconductors as well as the formal discussion of a possible microscopic theory

for the superconductivity found in copper oxide superconductors (high critical

temperature superconductors) is not the subject of this introduction.

10.1.1� The Conjugate Variable to the Number of Particles

We consider now the case of the gauge symmetry,1 associated with the number

of particles N . For all systems treated so far, the number of particles has been a

conserved quantity and its conjugate variable has been ignored. In fact, it has been

completely undetermined, as in (10.38). Thus, we start by looking for the conjugate

variable � to the number of particles. This variable does exist, as can be verified for

the boson case within the harmonic description.

According to (3.42), the number of bosons ON D aCa is given by
OH

„!
� 1

2
. The

corresponding classical expression is

1The use of the word gauge is explained in footnote 5.
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N D 1

2„

�

1

M!
p2 C M! x2

�

: (10.1)

If the gauge angle is defined as

� D � tan�1 p

M! x
; (10.2)

the (classical) Poisson bracket has the value

f�; „N gPB D „
�

@�

@x

@N

@p
� @�

@p

@N

@x

�

D 1: (10.3)

Therefore, according to Dirac’s relation (2.48), the commutator

Œ O�;„ ON � D i„ (10.4)

holds. Indeed, the operator „ ON plays the same role as a two-dimensional angular

momentum, with the angle O� being its conjugate variable.

In analogy to (4.7) and (5.37), we may also construct an operator generating

rotations in gauge space

R.�/ D exp.i � ON /

R.�/ aC R.��/ D exp.i�/ aC: (10.5)

We now turn our attention to the fermion case. From hereon aC denotes the

creation of a fermion. A pair of fermions acts like a boson,2 since changing the

position of the pair does not produce a change of the wave function. Thus, to

preserve (10.5) for the case of fermion pairs, we infer for the single fermion

R.�/ D exp.i � ON /

R.�/ aC R.��/ D exp.i�=2/ aC; (10.6)

where ON  is the operator corresponding to the number of pairs of fermions.3

Operators with the same number of single-fermion creation and annihilation

operators behave like scalars under gauge transformations; operators with two more

creation than annihilation operators behave as bosons do in (10.5)

R.�/ aC
1 a2 R.��/ D aC

1 a2

R.�/ aC
1 aC

2 R.��/ D exp.i�/ aC
1 aC

2 : (10.7)

2We have used already a similar substitution in (8.46).
3The factor 1=2 in the r.h.s. of (10.6) plays a similar role as the same factor in the rotation of spin

states (5.26).
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10.1.2� The Monopole Pairing Operator and the Hamiltonian

Two identical fermions may be created at the same point of space if they are in a

singlet-spin state. The associated operator in the x-representation is

� C
x;0 D

1p
2

X

n;n0
hxjnihxjn0i

X

msD˙ 1
2

aC
n;ms

aC
n0;�ms

; (10.8)

see Sect. 11.1�. We consider the case for which the creation of two particles at

the same point is homogeneous over all space (monopole pairing). If intermediate

momentum eigenstates are used, the total operator for creating two particles at the

same point is

OP C D
Z

dx � C
x;0 D

1p
2

X

p;p0

Z

dx hxjpihxjp0i
X

msD˙ 1
2

aC
p;ms

aC
p0 ;�ms

D 1p
2

X

p>0

X

msD˙ 1
2

aC
p;ms

aC
�p;�ms

!
X

p>0

aC
p aC

�p: (10.9)

We have used (11.7) for the overlaps hxjpi and (11.6) for the delta function.

The explicit dependence on spin has been omitted in the last line, for the sake

of simplicity. The notation p > 0 indicates that the sum includes only a single

term for each (degenerate) pair of momentum states .p;�p/. In the nuclear case

the momentum representation may be replaced by eigenstates of the Woods–Saxon

potential (7.15), which can also be paired in time-reversed states (Sect. 9.7�).

A simplified, schematic Hamiltonian may be written as

OH D OHsp C OHtb

OHsp D
X

p>0

�p

�

aC
p ap C aC

�pa�p

�

OHtb D �g OP C OP : (10.10)

It turns out that there is a net effective attraction between the electrons, due to the

interactions between the electrons with the vibrations of the ions in the lattice. Thus

the strength g > 0. However, this attraction is very weak, and only a tiny thermal

agitation is needed to destroy it. In the nuclear case there is a natural attraction

between nucleons without invoking other processes.

The two-body term OHtb allows pairs of nearby particles to jump from one

momentum state to the other, thus generating correlations in their motion. It is
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called a contact interaction because the leap only takes place if they are at the same

place. Consistently, a delta force also displays fairly constant matrix elements for

the jump of pairs of particles.4 The expression (10.10) has the advantage over a

delta interaction that it has a simpler expression, due to the fact that it is written in

a separable form. Nevertheless, in spite of its simplifications, this Hamiltonian is

still difficult to solve (but for special cases as those described in Problems 1 and 2).

Therefore, we resort to approximations. However, see Ref. [132].

Note that the Hamiltonian (10.10) is a scalar under gauge transformations (10.6).

There are also normal electrons (not bound in pairs), moving around the metal in

an ordinary way. We disregard this complication here.

10.1.3� The BCS Hamiltonian

We have mentioned that a pair of fermions acts like a boson. In a system with

N >> 1 bosons, the creation of all of them in a single state is favored over

their distribution in different states, since the amplitude for creating a new pair is

proportional to
p

N C 1 (3.35). The essential feature of the superconducting phase

is the presence of many bosons (i.e. pairs of bound electrons) in a single quantum

state. This is called a condensate.

The mean-field approximation is a straightforward extension of the Hartree–

Fock treatment (Sect. 8.6.1�). It is also obtained by using a representation in which

large matrix elements of some operator become expectation values, ignoring their

quantum fluctuations. In the superconducting case this operator is P C, which bears

some relation with the persistance of currents. Thus,

OP C ! h0jP Cj0i D
X

p>0

h0jaC
p aC

�p j0i D
�

g
exp.i�/; (10.11)

where the (real) modulus is given in units of the interaction strength. Thus, we

require that �=g >> 1.

The phase angle � of the condensate represents the orientation of the system in

gauge space. Since it is conjugate to the number of bosons in the condensate, it is

completely undefined [as in (10.38)] for systems with a definite number of pairs of

particles. The choice of a particular value of � in (10.11) implies that:

• The original symmetry of the Hamiltonian is broken in the state ϕ0.

• The number of pairs of particles becomes ill defined. This is consistent with the

fact that the expectation value of an operator creating two particles is different

from zero.

4There are also cases of superconductivity for which other components of the interaction have to

be introduced.
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• We may request that at least the average number of pairs of particles has a

prescribed value A . Thus, we add to the Hamiltonian (10.10) a term changing

the origin of single-particle energies, which has a vanishing expectation value

� 2� . ON  � A / I A  � h0jN j0i: (10.12)

The (pair-degenerate) single-particle energies �p become replaced by �p��. The

constant � is used to fix the average number of particles to the number 2A , and

plays a similar role as the Fermi energy in normal systems (see Sect. 7.7�). It is

called a Lagrange multiplier.

In the following we choose � D 0. However, since this option is arbitrary,5

physical results should not depend on it.

The monopole pairing operator can be written as

OP C D �

g
C
�

OP C � �

g

�

; (10.13)

where the first term on the right hand side is supposed to be much larger than the

term between parenthesis. The BCS Hamiltonian is obtained by expanding OHtb in

powers of �=g. To leading orders,6

OH ! OHBCS D 2�A  �
�2

g

C
X

p>0

h

.�p � �/
�

aC
p ap C aC

�pa�p

�

� �
�

aC
p aC

�p C a�pap

�i

:

(10.14)

Since this Hamiltonian is only quadratic in the fermion creation and annihilation

operators, it is easy to diagonalize. We use the transformation

˛C
˙p D UpaC

˙p � Vpa�p: (10.15)

The operators ˛C
˙p create excitations called quasi-particles. They carry good

momentum˙p, since the annihilation of an entity carrying momentum�p implies

the creation of the momentum˙p. The normalization condition implies

U 2
p C V 2

p D 1: (10.16)

5The word gauge is used in this chapter by the similarity with electromagnetic theory, where a

gradient may be added to the vector potential without altering the physical results.
6Parts of the residual terms in OH � OHBRST are taken into account in Sect. 10.1.5�.
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The diagonalization amounts to insure the vanishing of the terms creating two-

quasi-particles in (10.14). Inversion of (10.15) and replacement in OHBCS yields the

equations

2UpVp D
�

Ep

and U 2
p � V 2

p D
�p � �

Ep

; (10.17)

which determine the ground state energy W , the quasi-particle excitation energies

Ep, and the amplitudes Up; Vp .

OHBCS D W C
X

p>0

Ep

�

˛C
p ˛p C ˛C

�p˛�p

�

(10.18)

W D 2
X

p>0

�pV 2
p �

�2

g
I Ep D

q

.�p � �/2 C�2 I

Up D
1p
2

�

1C �p � �

Ep

�1=2

I Vp D
1p
2

�

1 � �p � �

Ep

�1=2

:

The Hamiltonian OHBCS describes a system of independent quasi-particles. The

condensate provides an energy of order � to each single-particle excitation energy

j�p � �j, and an extra contribution to the binding energy.

In the limit � ! 0, VpD 1 .0/ and UpD 0 .1/ for single-particle energies

.�p��/ < 0 .> 0/. For a normal system, Vp drops abruptly from 1 to 0 at the Fermi

level, while in superconducting systems there is a diffuseness of the Fermi energy

extending over a range of size �. The BCS solution is able to describe solutions

ranging from a cylindrically symmetric vacuum (completely undetermined �) to a

vacuum which does not display this symmetry.

There are still two parameters in this solution, � and �, which must be deter-

mined. This is accomplished by making use of the following two requirements:

• The expectation value (10.11) and the first of requirements (10.17) yield the self-

consistent condition
2

g
D
X

p>0

1

Ep

: (10.19)

A solution with a non-vanishing � is always obtained for sufficiently large values

of g.

• The requirement that the average number of the pair of particles corresponds to

a certain prefixed value A  is written as

1

2

*

0j
X

p

aC
p apj0

+

D
X

p>0

V 2
p D A : (10.20)
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10.1.4� The Ground State

The ground state ϕ0 represents the vacuum of quasi-particles (˛pϕ0 D 0). In terms

of particles, it is given by

ϕ0 D
Y

p>0

�

Up C VpaC
p aC

�p

�

ji; (10.21)

where ji is the true vacuum of particles.

The matrix elements for the creation and the destruction of a particle between the

ground state and the states ˛C
p ϕ0 are given by

h˛C
p jaC

p j0i D Up; h˛C
p japj0i D �Vp: (10.22)

Therefore, U 2
p .V 2

p / in (10.18) is the probability that the particle state p is empty

(occupied).

The expectation value of the operator creating a pair of particles is

h0jaC
p aC

�pj0i D UpVp D
�

2Ep

� 1

2
: (10.23)

This expectation number is larger for states within the gap (j�p � �j << �) and

decreases for distant states (j�p � �j >> �). Replacement of (10.23) in (10.19)

yields the ratio �=g. It is a large number (as required), since all contributions to the

sum (10.11) have the same sign.

As an illustration, let us consider the case of 19 pairs of particles allowed to move

in 38 single-particle equidistant levels. The distance between consecutive levels will

be the unit of energy. For g D 0:456, (10.19) and (10.20) yield the parameters

� D 4:50 and � D 19:50. The quasi-particle energies Ep are compared with the

particle excitation energies j�p � �j in Fig. 10.1c. The occupation probabilities V 2
p

are represented in Fig. 10.1a and the amplitudes UpVp in Fig. 10.1b.

The particles constituting a pair are not very close in real space, in spite of the

fact that a contact interaction has been used: the mean value of this distance is

somewhat larger than the average distance between different pairs of particles. This

is due to the fact that, in the condensate, there are many pairs of particles occupying

the same state.

10.1.5� The Excitation Spectrum

The ground state (10.21) displays an even number of particles. In fact, although the

transformation (10.15) to quasi-particles does not conserve the number of particles,

it preserves the parity in the number of particles. Systems with an even number of

particles are represented by states with an even number of quasi-particles, including
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Δ = 0

Vp
2

UpVp

εp

Ep

μ–Δ μ+Δ

det (ω)

½

2Δ

0 0

0
0

1

μ

|εp-μ|

μ–Δ μ μ+Δ

εp

εp μ+Δμμ–Δ

ω

a b

c d

Fig. 10.1 Occupation probabilities V 2
p (a); amplitudes UpVp (b); and quasi-particle energies Ep

(c), as functions of the particle energies �p . The determinant det.!/ is represented as a function of

! in (d) [see (10.29)]

the vacuum state ϕ0. Odd systems are in correspondence with states with an odd

number of quasi-particles, like ˛C
p ϕ0.

Therefore, the lowest excited states of an even system consists of two quasi-

particle states ˛C
p1

˛C
p2

ϕ0, with energies Ep1CEp2 � 2�. Thus, the spectrum displays

a gap in the vicinity of the ground state.

In a normal conductor, resistance originates from the heat produced by collisions

of the moving electrons with the ionic lattice. In a superconductor, the current is due

to pairs of electrons moving together, each pair with a non-vanishing center of mass

momentum. These pairs form a highly collective quantum condensate: breaking a

pair requires a change of energy of all other pairs, which is of order of the gap (� 2.7

meV for Nb). Thus, resistance is suppressed.

However, since there is no restoring force in the � angular direction, we should

expect the existence of a zero frequency boson, which appears to be precluded by

the existence of a gap. Nevertheless, we have seen in Sect. 8.6.2� that low energy

bosons may appear as RPA excitations of the ground state in fermion systems. In

the following, we search for this type of excitations in the superconducting case.

We again take advantage of the fact that a pair of fermion operators acts in many

respects as a boson, and make the replacement

˛C
p ˛C

�p ! C
p I Œp; C

p0 � D ıpp0 : (10.24)
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We now focus our attention on states of the form ˛C
p ˛C

�pϕ0 ! C
p ϕ0, with

energies 2Ep.

In addition to the BCS Hamiltonian (10.14), there are residual interactions that

are quartic products of quasi-particle operators. We select those terms which allow

for the replacement of the two pairs of fermions, ˛C
p ˛C

�p and ˛�p˛p , by the bosons

(10.24), and thus, become quadratic in these boson operators.7 We also obtain the

operator associated with the number of pairs of particles

OHb D W C
X

p>0

2EpC
p p � g

X

p;p0>0

.U 2
pC

p � V 2
p p/ .�V 2

p0
C
p0 C U 2

p0p0/

. ON /b D A  C
X

p>0

UpVp.C
p C p/: (10.25)

We carry below the uncoupling of the bosons C
p ; p in OHb , and we find that a

zero frequency root !0 D 0 is always present (Fig. 10.1d). The associated creation

operator � C
0 (D �0) is proportional to the boson term of the operator8 ON  in the last

line of (10.25).

The Uncoupling of the Hamiltonian (10.25) and the Presence

of the Zero-Frequency Excitation

The procedure is completely similar to the one applied in the RPA (Sect. 8.6.2�). We

perform the linear transformation

� C
� D

X

p>0

.��pC
p � ��pp/: (10.26)

Use is made of the commutation

Œ OHb ; � C
� � D

X

p>0

�

��p2Ep � ��1V
2

p � ��2U
2
p

�

C
p

C
X

p>0

�

��p2Ep C ��1U
2
p C ��2V

2
p

�

p (10.27)

��1 � g
X

p>0

.��pV 2
p � ��pU 2

p /; ��2 � g
X

p>0

.��pU 2
p � ��pV 2

p /:

7It can be shown that the remaining terms only yield higher order contributions in perturbation

theory [69].
8The applicability of the BRST procedure (Sect. 10.2.1) also requires the existence of a zero

frequency boson. The generator ON , together with the angle � , are incorporated into the unphysical

sector, as in Sect. 10.2.4�.
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The amplitudes ��p; ��p are obtained from the condition that the coefficients of the

operators C
p and p vanish in the harmonic equation Œ OHb ; � C

� �� !� � C
� D 0. One

obtains

��p D
��1V

2
p C��2U

2
p

2Ep � „!�

; ��p D �
��1U

2
p C��2V

2
p

2Ep C „!�

: (10.28)

Introduction of (10.28) into the definitions on the last line of (10.27) yields two

linear, homogeneous, coupled equations, which should have a null determinant

0 D ��1

�

A � 1

g

�

C ��2 C I 0 D �n1 C C �n2

�

B � 1

g

�

det.!/ D
�

A � 1

g

� �

B � 1

g

�

� C 2; (10.29)

where

A D
X

p>0

 

V 4
p

2Ep � „!
C

U 4
p

2Ep C „!

!

I B D
X

p>0

 

U 4
p

2Ep � „!
C

V 4
p

2Ep C „!

!

C D 4
X

p>0

U 2
pV 2

p Ep

4E2
p � „2!2

: (10.30)

The Hamiltonian OHb may be expressed in terms of the bosons (10.26)

OHb D W � g
X

p>0

V 4
p C

X

�

„!�� C
� ��; (10.31)

where the frequencies !� are given by the roots of the equation det.!/ D 0.

The determinant is represented in Fig. 10.1d as a function of !, using the same

parameters as in Figs. 10.1a–c. Poles appear at each unperturbed excitation value

2Ep: there are none within the gap 2� and become compressed just above the

gap; they are separated by twice the distance between consecutive levels for higher

states.

The roots !� display a density similar to that of the poles (they are completely

intermixed), but for the root !0 D 0, which is present at the origin. Using the

normalization condition (10.16) and the self-consistency requirement (10.19), it is

simple to show that there is always a zero frequency root, independently of the

single-particle spectrum and of the number of pairs of particles. Moreover, the

relative amplitudes of the (coupled) bosons C
p C p for this root are proportional

to UpVp, and thus � C
0 C �0 is proportional to the boson term in ON  (10.25).
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10.1.6� Collective sector. Rotational Bands. Josephson Junctions

The breaking of rotational invariance is always associated with the occurrence

of rotational degrees of freedom. The simplest example is given by the diatomic

molecule (see Sect. 8.4.3).

The intrinsic motion is described relative to the body-fixed coordinate frame

� D 0. The orientation of the body-fixed frame relative to the laboratory frame

is determined by the collective azimuthal angle �. The separation of motion into

intrinsic and rotational components yields the product state

‰n� ;A  D
1p
2 

exp.iA �/
Y

�¤0

1p
n�Š

�

� C
�

�n�
ϕ0; (10.32)

where A  is the number of pairs of particles. In the present subsection, the

relevance of the presence of the collective eigenvector exp(iA �=
p

2 ) (5.60) in

the description of a superconductor is emphasized.

The product states (10.32) constitute an approximation, since there appear more

degrees of freedom than the original ones. One consequence is that overcomplete-

ness and Pauli violations are included in (10.32). However, a legitimation of these

states is presented in Sect. 10.2.

States with the same number n� of finite frequency bosons can be grouped

into “rotational” bands made up from systems with different numbers of pairs

of particles. In particular, the set of ground states of even systems constitutes a

rotational band. The associated rotational energies can be obtained as in (10.65).

Since ϕ0 is a valid description of the ground state in the intrinsic system, any

operator must be transformed to this system before operating within states (10.32).

For instance, using (10.7)

hn� D 0; A0
 jR�1.�/ P C R.�/jn� D 0; A i

D h0jP
Cj0i

2 

Z 2 

0

d� expŒi.�A0
  C 1C A /�

D 	

g
ıA0

 ;A C1: (10.33)

The presence of the collective sector in (10.32) ensures the conservation of the

number of particles, which the intrinsic state ϕ0 by itself does not. Moreover, (10.33)

is the large matrix element of the transfer operator connecting consecutive members

of the ground state band.

A Josephson junction [71] is made up from two superconductors separated

by a thin layer of insulating material. We assume, for simplicity, that the two

superconductors are made of the same material and that the junction is symmetrical.

A potential difference V may exist between the two sides of the insulating

barrier. Therefore, there appears a difference between the Fermi energies of the two

superconductors �1 � �2 D eV , where e is the electron charge. The Lagrange
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multipliers are related to the angular frequencies by the canonical equation through

the term (10.12) included in OHBCS,

P� D @ HBCS

„ @A 

D 2

„�: (10.34)

Thus, one obtains

P�1 � P�2 D
2

„ eV

�1 � �2 D
2

„ eV .t � t0/ C ı0 (10.35)

Our aim is to find the probability amplitude for the electrons to jump across the

junction. This tunneling can be represented by a symmetrical coupling that destroys

a pair on one side of the barrier and creates another on the other side ([38], Chap. 6)

OHcoup D K cos .�1 � �2/; (10.36)

where K is a constant determining the intensity of the tunneling. The presence of

(10.36) prevents the separate conservation of .A /1 and .A /2. In fact, the canonical

equations . PA /i D � @H
@�i

yield the current J from superconductor 1 to 2

J / . PA /1 D �. PA /2 D �
@Hcoup

„@�1

D J0 sin .�1 � �2/ D J0 sin

�

2eV

„ .t � t0/ C ı0

�

(10.37)

The current J0 is the maximum current that can be passed by the junction. It is

proportional to the coupling strength K .

• dc Josephson current: with no applied dc voltage, a dc current flows across the

junction, with a value between J0 and �J0 depending on the phase shift ı0

• ac Josephson current: with a dc voltage applied across the junction, an ac current

oscillates with frequency ! D 2eV=„. Thus, a photon of energy „! D 2eV is

emitted or absorbed each time that a pair crosses the junction. Note the factor 2,

which reflects the fact that it is a pair of electrons that crosses. A very precise

measure of the ratio e=„ is obtained by measuring voltage and frequency.

10.2 Quantization with Constraints

10.2.1 Constraints

Let us consider a very simple system of one particle constrained to move along a

circumference of radius r0, in real space. Thus, as in the BCS case, there is an initial
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circular symmetry. The fact that one takes place in gauge space, and the other in real

space, is immaterial. On the other hand, this toy model is much simpler to handle,

because any other degree of freedom is gone, but the rotation along the angular

coordinate � .

The Hamiltonian and eigenstates are given by

OH D
OL2

2M r2
0

; ϕm.�/ D 1p
2 

exp.im�/; (10.38)

where „m is the eigenvalue of the angular momentum OL and the conjugate angle �

is completely undetermined .0 � � � 2 /. In particular, the ground state satisfies

the relation OLϕ0 D 0.

However, other descriptions are also possible. For instance, from a rotating frame

of reference. In this case, states ϕ.�/ carry less symmetry than the circular symmetry

associated both with the Hamiltonian and with the eigenstates (10.38). We say that

there has been a breakdown of symmetry.

Moreover, this description requires the inclusion of the angle � specifying the

orientation of the moving frame relative to the laboratory. Hence, we have an

overcomplete set of degrees of freedom, namely the two angles � and �.

We call intrinsic, the coordinates of a system that are referred to a rotating frame

of reference. The motion of the moving frame relative to the laboratory is described

by means of collective coordinates. Therefore, in this problem:

• The rotations of the system are generated by the intrinsic angular momentum OL
(5.37). There is also a collective angular momentum OI , the generator of rotations

of the moving frame.

• The classical set of equations defining the momenta in terms of partial derivatives

of the Lagrange function L cannot be solved in this case. This failure is due to

the fact that this function does not contain information about the frame itself. For

instance, in the case of one particle allowed to move on a circumference of radius

r0, the Lagrange function may be expressed in terms of the angular velocities P�
and P� (Fig. 10.2):

L D J

2

�

P� C P�
�2

: (10.39)

Here � D tan�1.y=x/ andJ DM r2
0 is the moment of inertia. From the equations

L D @L

@ P�
and I D @L

@ P�
;

one obtains the orbital angular momentum L and the constraint L D I :

L D J
�

P� C P�
�

; (10.40)

f � L � I D 0: (10.41)
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Fig. 10.2 Intrinsic (x; y) and

laboratory (x lab; ylab)

coordinates of a generic

point P . The two sets of

coordinates are related by a

rotation. Reproduced from

Fig. 1 of the second of

Refs. [69], with authorization

from A.A.P.T θr0

0

P

y x

ylab

xlab

φ

Equation (10.41) expresses the obvious fact that if the particle is rotated through

an angle relative to the moving frame, the corresponding description should be

completely equivalent to the one obtained by rotating the moving frame in the

opposite direction. This constitutes a mechanical analogue of a gauge invariance.

The quantity f is the classical generator of transformations within the gauge

space associated with this simple model. It transforms a given physical trajectory

into an equivalent one described from another frame. To choose a gauge means

to select only one of these equivalent trajectories.

• Our aim is to quantize this classical model. The following commutation relations

hold:

Œ O�; OL� D Œ O�; OI � D i„: (10.42)

Since we have artificially enlarged the vector space, we must expect the presence

of unphysical states and operators, in addition to physical ones. The constraint

(10.41) is equivalent to the quantum mechanical conditions

Of ϕph D 0; Of ϕunph ¤ 0;

Œ Of ; OOph� D 0; Œ Of ; OOunph� ¤ 0; (10.43)

where the labels “ph” and “unph” indicate physical and unphysical states or

operators. Except in simple cases, this separation is by no means a trivial

operation.

• Since the problem displays circular symmetry, there is no restoring force in the

intrinsic angular direction. Therefore, we expect a zero energy state created by an

operator proportional to the generator OL. Consequently, “infrared divergences”

may prevent the applicability of perturbation theory.

10.2.2 Outline of the BRST Solution

The most natural thing to do would be to use the constraint (10.41) to reduce the

number of variables to the initial number. However, progress has been made in the
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opposite direction, i.e. by enlarging the number of variables and introducing a more

powerful symmetry.

The collective subspace is given by the eigenfunctions of the orbital angular

momentum in two dimensions (5.60):

ϕm.�/ D 1p
2 

exp.im�/: (10.44)

The collective coordinate �, which was introduced in Sect. 10.2.1 as an artifact

associated with the existence of the moving frame, has been raised to the status

of a real degree of freedom.

Since this problem has only one real degree of freedom, and since this role is

taken by the collective angle, all others are unphysical. There must therefore be a

trade-off: the intrinsic coordinate � has to be transferred to the unphysical subspace.

In the BRST procedure, this unphysical subspace is also integrated with auxiliary

fields [67]. All effects of the unphysical degrees of freedom on any physical

observable must cancel out. Moreover, the degree of freedom . O�; OL/ acquires a finite

frequency through its mixture with the other spurious fields, and perturbation theory

becomes feasible.

Quite generally, the total zero-order state may be factorized into three terms:

• A collective term carrying a representation of the degrees of freedom correspond-

ing to the symmetry that is being restored: 1p
2 

exp.im�/ for two dimensional

rotations (10.44);
q

2IC1
8 2 DI

MK for three dimensional rotations (5.43); 1p
V

exp.ip	
r=„/ for translations (7.17); etc..

• A term representing the physical intrinsic degrees of freedom. For instance, had

a radial potential 1
2
M!2.r � r0/

2 been added to the Hamiltonian, a harmonic

oscillator would describe the (real) motion along the radial direction.

• An unphysical term including the degrees of freedom associated with the broken

symmetries in the intrinsic system, plus the auxiliary fields that have been

introduced.

The reader may believe these conclusions and proceed to Sect. 10.3 if he or she

does not wish to get involved with the somewhat abstract BRST manipulations.

Note that the BRST procedure can be applied in particular to the BCS solution

(Sect. 10.1), which displays all the necessary features:

1. There is an initial circular symmetry (in gauge space).

2. This symmetry is destroyed in the chosen, arbitrary frame (� D 0).

3. There is a large parameter measuring the deformation in gauge space (�=g). It

plays the same role as r0 in the toy model. Eventually, a perturbation expansion

in inverse powers of this parameter becomes possible.

4. There is a zero frequency boson associated with the generator of rotations in

gauge space ( ON ).

Thus, (10.32) becomes completely justified.
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10.2.3� A Presentation of the BRST Symmetry

for the Abelian Case

An elementary presentation of the quantum mechanical BRST method is given in

the second of references [69]. In the following, we follow this presentation.

• A new symmetry requires additional degrees of freedom. Thus, the gauge

symmetry implied the existence of both intrinsic and collective coordinates

(10.40). The BRST enlarged space is obtained through further inclusion of a new

boson degree of freedom,9 with an associated constraint,

Œ O�; OB� D i; OB ϕph D 0; (10.45)

and of two new fermion variables � and N�, called ghosts, with their conjugate

partners   and N 
f�;  g D f N�; N g D 1: (10.46)

All other anticommutators vanish. The ghosts carry zero angular momentum.

• The generator Ő of BRST transformations is a linear function of the two

constraints (10.43) and (10.45)

Ő D �� Of C N  OB: (10.47)

It is a nilpotent ( Ő 2 D 0) and Hermitian ( Ő C D Ő ) operator, which annihilates

physical states and commutes with physical operators [see (10.43)]

Ő ϕph D 0; Œ Ő ; OQph� D 0: (10.48)

• However, there is a set of unphysical states and operators satisfying similar

properties, namely

ϕ¦ D Ő ϕunph; OQ¦ D f Ő ; OQunphg: (10.49)

Therefore, we must act within the composite subspace ϕph + ϕ¦ with the set of

operators OQph + OQ¦. States ϕ¦ have zero norm. Fortunately, the enlargement

of space and of the set of operators does not change the values of the matrix

elements, since

.hphj C h¦j/.Qph C Q¦/.jphi C j¦i/ D hphjQphjphi: (10.50)

9The boson term O� may include a constant value that plays the role of the Lagrange multiplier

(10.12) in the previous section. We use „ D 1 in Sects. 10.2.3 and 10.2.4.
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This statement may be verified term by term. For instance,

h¦jQ¦jphi D hunphj˝2 Qunphjphi C h¦jQunph ˝jphi D 0C 0: (10.51)

• We construct the BRST Hamiltonian by adding to the Hamiltonian OH a OQ¦

operator
OHBRST D OH C f O�; Ő g (10.52)

For any choice of the operator O�, OHBRST yields the same physical eigenvalues as

the original OH . The selection of O� is equivalent to the selection of a gauge. One

possible choice is motivated by an analogy with the covariant gauge in Yang–

Mills theory

O� D   O� C N�
�

O� � 1

2I
OB
�

OHBRST D OH � O� Of C i  N  C OB O� � 1

2I
OB2 C � N� Œ O�; OL�; (10.53)

where I D M r2
0 is the moment of inertia and O� is a function of the intrinsic

coordinates which does not commute with OL. It may well be the conjugate angle,

but this is not necessary. Since OHBRST does not commute with OL (unlike OH ), the

microscopic circular symmetry is lost. Microscopic invariance is replaced by a

macroscopic collective invariance.

10.2.4� Application of the BRST Formalism to the Abelian

Toy Model

The previous subsection displays a quite general presentation of the BRST formal-

ism as applied to Abelian transformations. We return now to the toy model described

in Sect. 10.2.1. We may choose the classical, “deformed” solution x D r0, y D 0 as

the starting point for the motion in the intrinsic system. The radius r0 constitutes the

large distance of the problem, the order parameter. Thus, the leading contribution

to the particle angular momentum is OL.0/ D r0 Opy . It is convenient to choose O� as

the conjugate variable to this leading order term: O� D Oy=r0. This choice fixes the

particle to the moving x-axis. Thus, OHBRST (10.53) may be written as

OHBRST D OHb C OHg C OHc C OHx

OHb D
1

2M
Op2
y � r0 O� Opy C

1

r0

OB Oy � 1

2I
OB2

OHg D i  N  C i� N�
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OHc D O� OI

OHx D
1

2M
Op2
x C

1

r0

. Ox � r0/ � N� C O� Œ. Ox � r0/ Opy � Oy Opx �: (10.54)

As usual in field theory, we proceed to diagonalize the quadratic Hamiltonian

to define a basis of independent bosons and fermions. By completing squares, we

obtain for OHb

OHb D
1

2M
. Opy � M r0 O�/2 C M

2
Oy2 � 1

2I

�

OB � M r0y
�2

� I

2
O�2

D � C
1 �1 � C

0 0; (10.55)

where

� C
1 D

1p
2M

. Opy �M r0 O�/ C i
M

2
Oy

C
0 D �i

1p
2I

. OB �M r0 Oy/ C
r

I

2
O�

Œ�1; � C
1 � D Œ0; C

0 � D 1: (10.56)

Thus, OHb has been written in terms of two uncoupled oscillators, with frequencies

˙1. We can overcome this last inconvenience through the replacement C
0 ! �0,

0 ! � C
0 . Therefore,

OHb D � C
1 �1 � � C

0 �0 C 1 (10.57)

Œ� C
0 ; �0� D 1: (10.58)

If the new vacuum state is annihilated by �0, all excitations of OHb become positive,

at the expense of working with the anomalous metric (10.58).10

The ghost sector may be written as

OHg D Naa � Nbb � 1

a D i NbC D 1p
2

. N  � i�/; b D �i NaC D 1p
2

. C i N�/: (10.59)

Note that

f Na; ag D f Nb; bg D 1; but Na ¤ aC I Nb ¤ bC: (10.60)

10This metric has been also employed for the boson associated with the Lagrange multiplier, for

instance in QED.
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Therefore, the quadratic Hamiltonian of the unphysical sector,

OH .2/
unph D � C

1 �1 � � C
0 �0 C Naa C Nbb; (10.61)

is a supersymmetric Hamiltonian with a characteristic energy equal to unit. Some

interesting features of this Hamiltonian are:

• The eigenvectors define the subspace

ϕn1;n0;na;nb
D 1p

n1Š n0Š
.� C

1 /n1 .� C
0 /n0 . Na/na . Nb/nb ϕ0; (10.62)

with n1; n0 D 0; 1; 2; ::: and na; nb D 0; 1.

• The vacuum state is annihilated by the operators �1, �0, a, b and thus, by the

quadratic term in the BRST generator (10.47)

Ő .2/ D �i.� C
1 C � C

0 /a � .�1 C �0/ Nb: (10.63)

Therefore, this vacuum is a physical state, according to (10.43). In fact, it is the

only one among the whole set of states (10.62). Moreover, the system displays

the BRST symmetry (Œ Ő ; OHBRST� D 0 I Ő ϕ0 D 0).

• The cancelation of unphysical effects would not be possible if all states (10.62)

were ordinary states in Hilbert space. However, the unusual relations (10.58) and

(10.60) are well defined and may be used without problems.

• As a consequence of the circular symmetry, the Hamiltonian OH does not display

a restoring force in the y-direction. However, this symmetry is lost for OHBRST in

the intrinsic frame and, as a consequence, all unphysical degrees of freedom have

acquired a finite frequency [see (10.61)]. Perturbation theory becomes feasible.

• The coupling term OHc in (10.54) can be obtained from the second equation

(10.56)

OHc D
OIp
2I

.� C
0 C �0/ (10.64)

Since this term is small ŒO .1=r0/�, it can be treated in perturbation theory. The

second-order contribution has the value

	E.2/ D � OI 2
unphh0j�jn0 D 1ihn0 D 1j�j0iunph D

OI 2

2I
; (10.65)

where (10.56) and (10.58) have been used. Second-order perturbation theory

yields a positive contribution to the energy of the ground state due to the unusual

metric (10.58). It agrees with the exact result in the present case. The associated

eigenfunctions are given by (10.44). The spectrum displays a physical collective

rotation given by (10.44) and (10.65).
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• The presence of OHx allows for radial motion (or motion along the x-axis in the

intrinsic frame). The spectrum also displays physical, intrinsic, finite-frequency

modes.

• There are unphysical excitations described by the excited states of (10.62).

• The BRST treatment is something of an overkill for the Abelian model. In fact,

the ghosts are uncoupled from the start. Their role is much more significative

for non-Abelian transformations. “Nevertheless, through the Abelian calculation,

we have been able to discuss properties of the BRST procedure that continue to

be present in the non-Abelian case, such as the BRST symmetry, the existence

of the zero-norm subspace, the construction of the unphysical subspace, and

the feasibility of the perturbation expansion” [69]. Moreover, statements in

Sect. 10.2.2 have been substantiated.

10.3 Generalizations

Symmetry breaking is common in physics.

The treatment of the two examples presented in this chapter has in common

the fact that, although the generators of the transformations commute with the

Hamiltonian ([ OL; OH� D Œ ON ; OH� D 0), the ground states are represented by states

which are not annihilated by the generators. As a consequence, the states OLϕ0 and
ON ϕ0 have the same energy as the ground state configuration ϕ0. There are many

degenerate ground states. We speak of a hidden symmetry.

In finite systems one of these configurations may tunnel through to other

configurations, so the true ground state becomes a superposition of degenerate

states. One consequence is that the lost symmetry is retrieved at the collective level

in the form of rotational bands, as indicated after (10.32).

For instance, in many nuclear species it is convenient to extend the spherical

shell-model (Sect. 7.3.2) by including a quadrupole term in the single-particle

potential V2 / r2Y20.�/ [38]. In this case, the large number measuring the defor-

mation is the expectation value of the quadrupole operator h0j
P

h r2
hY20.�h/j0i. As

a consequence, ϕ0 is not longer an eigenstate of the angular momentum OI with

null eigenvalue. The associated degeneracy manifests itself in the form of low-lying

rotational bands,11 with characteristic energies .„2=2I/I.I C 1/ and eigenstates

DI
MK ϕ� (Sect. 5.3.2�).

One also finds zero-energy bosons in infinite deformed systems, which are

related to the one found in subsection 10.1.5�. They are called Goldstone bosons.

Moreover, they may materialize as very light particles, like the pion. However, the

procedure based on collective variables is not applied to those cases, since it may

take an infinite amount of time to get across all configurations.

11Similar effects appear in the case of the (non-spherical) diatomic molecule (Sect. 8.4.2).
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A second generalization concerns the generation of energy, a consequence

similar to the increase of the single-particle energy j�p ��j by an amount of O.�/.

Most of the mass of hadrons, such as the proton, arises not from the masses of their

constituent quarks, but from the quarks’ kinetic energy and the energy stored in

the gluon field, through processes involving the breakdown of “gauge symmetries”.

For instance, in the Nambu–Jona Lasinio model of nucleons, quarks are subject to

contact forces, and their condensate becomes responsible for the generation of the

nucleon mass M : the solution of an equation similar to (10.19) yields the nucleon

(relativistic) energies Ep D .p2 CM 2c4/1=2, having the same form as in (10.18).

Problems

Problem 1. Consider two fermions moving in a j -shell:

1. Calculate the size of the Hamiltonian matrix if we assume two-particle states of

the form

φmm0 D
1p
2

�

ϕj m.1/ϕj m0.2/ � ϕj m.2/ϕj m0.1/
�

I

2. Approximate the matrix elements of the Hamiltonian by the expression

hmm0jH jm00m000i D �g ım.�m0/ım00.�m000/. Calculate the size of the matrix to

be diagonalized;

3. Find the eigenvectors and eigenvalues. Hint: Try a solution of the form ‰ D
P

m cmφm.�m/: (a) with amplitudes cm D constant, (b) with amplitudes such that
P

m cm D 0.

The particles in the resulting extra-bound state ŒE0 D �g.j C 1
2
/� are said to form

a Cooper pair. This extra binding is the basis for the explanation of the phenomenon

of superconductivity.

Problem 2. Let us consider A  pairs of particles which are allowed to move in

degenerate, ˝ pairs of time-reversed states. The particles are coupled by the pairing

interaction (10.10). Calculate:

1. The exact ground state energy for A  D ˝=2. Hint: verify that the operators

„ OP C; „ OP and „. 1
2
˝ � ON / satisfy the same commutation relations as the three

components of the angular momentum operator. Find the maximum value of J .

2. The moment of inertia I of the “rotational” band associated with the ground

states of even systems. Hint: OHrot D „2. 1
2
˝ � ON /2=2I.

3. The lowest excitation energy for A  D 1
2
˝ . Hint: Use J 0 D J �1 for the excited

state.

Problem 3. Solve the BCS equations for the system considered in the previous

problem

1. Write Ep; V 2
p ; 	; �.
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2. Calculate the three results obtained in Problem 2 within the BCS approximation.

3. Compare the results of the previous item with the exact results obtained in

Problem 2, and explain the origin of the discrepancies.

Problem 4. Write the operator OP � �
g

in terms of quasi-particles.

Problem 5. Consider a symmetric system of levels around the Fermi surface:

1. Verify that there is always one boson root at zero energy.

2. Calculate the energy of the first excited root.

Problem 6. Verify all terms in (10.50).

Problem 7. Show that all four terms in OH .2/

unph yield a positive contribution if applied

to the ground state eigenvector ϕ0.

Problem 8. 1. Obtain an expression for the operator OL.0/ in terms of the boson

degrees of freedom � C
1 ; � C

0 .

2. Calculate the matrix element hn1 D n0 D 1jL.0/j0i.



Chapter 11

Eigenvectors of the Position Operator

Path Integral Formulation

In the first place, we enlarge the Hilbert space1 by broadening the normalization

procedure through the introduction of the Dirac delta function.2 Subsequently, the

notion of propagator as a probability amplitude is introduced. This concept allows

us to present the formulation of quantum mechanics in terms of path integrals. This

formalism, due to Feynman [72], provides a most powerful link between classical

and quantum mechanics. It is widely applied in field theory, statistical mechanics,

cosmology, financial mathematics, etc.

11.1� Eigenvectors of the Position Operator

and the Delta Function

It is convenient to include the eigenvectors ϕx of the position operator Ox in the

quantum formalism.
Ox ϕx D x ϕx : (11.1)

We must give a value to the scalar product between continuum eigenstates hxjx0i.
By analogy with (2.58), we write the unit operator as

I D
Z

dx jxihxj : (11.2)

Thus, either discrete or continuous states ϕn may be expressed as

ϕn D
Z

dx0jx0ihx0jni : (11.3)

1Another enlargement was accomplished in Sect. 10.2.4�.
2Since the mathematical level of the present chapter is somewhat higher than in the other ones, it

is only reccommended for a second lecture or to physics students oriented towards mathematical

formalizations.
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Let us apply the bra hxj to both sides of this equation

hxjni D
Z

dx0 ı.x � x0/hx0jni

hxjx0i � ı.x � x0/; (11.4)

where the scalar product between position eigenstates is given by the Dirac delta

function, a generalization of the Kronecker delta to the continuum case.3 Since

ı.x � x0/ vanishes for x ¤ x0 and equals1 if x D x0, the limits of integration in

(11.4) can be arbitrary, provided that the point x is enclosed within the interval of

integration.

There exists a continuous formalism quite parallel to the discrete one used so far

in this book. In fact, the wave functions ϕn.x/ introduced in connection with the

Schrödinger representation may be interpreted as the probability amplitude of the

system described by the state vector ϕn to be at the position x.

ϕn.x/ D hxjni : (11.5)

Upon a measurement of the position performed with a precision 	x, the state

collapses into a wave packet of dimension 	x with probability jϕn.x/j2 	x.

There are several mathematical representations of the delta function, such as

ı.x/ D 1

2 

Z 1

�1
dk exp.ikx/

D lim
�!0

1

�
p

 
exp.�x2=�2/ : (11.6)

The delta-normalization is not only applicable to the position eigenstates (as in

(11.4)). In particular, the eigenfunctions (4.32) of the momentum operator can be

written as

ϕk.x/ D 1p
2 

exp.ikx/

hkjk0i D ı.k � k0/ ; (11.7)

where (11.6) has been applied.

It is also possible to define the momentum probability amplitudes

ϕn.p/ D hpjni D
Z

dx hpjxihxjni D 1

.2 „/1=2

Z

dx exp.�ipx=„/ hxjni :

(11.8)

The probability amplitudes hxjni and hpjni are the Fourier transforms of each other.

3The delta function is not a proper function, but a distribution. It is only defined within integrals

such as in (11.4).
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11.2� The Propagator

The propagator (or Green function) is the probability amplitude for the transition

from (x1; t1) to (x2; t2).

hx2; t2I jx1; t1i D hx2jU.t2 � t1/jx1i ; (11.9)

where we have assumed that t2 � t1. The propagator summarizes the quantum

mechanics of the system.

• Using (9.2) and (11.4) one obtains

lim
t2!t1
hx2; t2jx1; t1i D hx2jx1i D ı.x2 � x1/ : (11.10)

• The time evolution of a state ϕn.x; t/ is given by the space integral

ϕn.x2; t2/ D
Z

dx1 hx2; t2jx1; t1iϕn.x1; t1/ : (11.11)

• The propagator is also related to more familiar concepts, as energy levels and

wave functions. We can write (11.9) as

hx2; t jx1; 0i D
X

n

hx2jniexp.�iEnt=„/hnjx1i

D
X

n

ϕn.x2/exp.�iEnt=„/ϕ�
n.x1/

Z

dx hx; t jx; 0i D
X

n

exp.�iEnt=„/ ; (11.12)

where t D t2 � t1. A Fourier transform is performed on both sides of (11.12)

hx2; zjx1; 0i D
X

n

Z 1

0

dt ϕn.x2/expŒi.z � En/t=„/�ϕ�
n.x1/

D i„
X

n

ϕn.x2/ ϕ�
n.x1/

z� En

; (11.13)

where Im.z/ > 0 has been assumed. Singularities arise at Im.z/ > 0. The poles

of the energy propagator yield the energy of the states, while wave functions are

given by the residues, in the case of a discrete spectrum. The propagator displays

a cut for a continuous spectrum.

• An alternative interpretation of the propagator regarded as a function of x2 is that

it represents the wave function at time t2 of a particle that was localized before at
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.x1; t1/. Thus, the propagator satisfies the time-dependent Schrödinger equation

in the variables .x2; t2/.

• The composition property of quantum mechanics allows us to divide the time

interval t2 � t1 into two segments

hx2; t2jx1; t1i D
Z

dx00hx2; t2jx00; t 00i hx00; t 00jx1; t1i ; (11.14)

since the unit operator may be expressed as

I D
Z

dx00jx00; t 00ihx00; t 00j D expŒ�i OHt 00=„�
Z

dx00jx00ihx00j exp.i OHt 00=„/ :

(11.15)

Here OH is assumed to be time independent and (11.2) has been used.

The amplitude for the transition from (x1; t1) to (x2; t2) may be expressed

as the result of transition from (x1; t1) to all available intermediate points x
00

followed by transitions from (x
00
; t

00
) to (x2; t2). In a two-slit experiment, the total

probability amplitude for the particle being detected at the point x2 on the screen

is the sum of the amplitudes for the particle starting at the point x1 and passing

through either of the two holes. Interference plays here a fundamental role, since

the probability of finding the particle at x2 results from a double-path interference

process.

• The interval t2 � t1 may also be further subdivided into n segments

hx2;2 jx1; t1i D
I

Œdx�

n
Y

�D1

hx.�/; t .�/jx.��1/; t .��1/i

I

�
Z Z

:::

Z

; Œdx� �
n�1
Y

�D1

dx.�/ : (11.16)

Here t2 � t1 D
Pn

�D1.t
.�/ � t .��1// and x.n/ D x2, t .n/ D t2, x.0/ D x1, t .0/ D t1.

These last two positions are fixed points, not variables of integration.

11.2.1� The Free Particle Propagator

We calculate now the propagator of a free particle. In this case, a continuous

quantum number k labels the eigenstates of the momentum (11.7)

hxjki D 1p
2 

exp.ikx/ ; Ek D
„2k2

2M
: (11.17)

We obtain a Gaussian integral by introducing these expressions in (11.12)
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hx2; t2jx1; t1ifree D
1

2 

Z 1

�1
dk exp

�

�ik.x2 � x1/� ik2 „.t2 � t1/=2M
�

:

(11.18)

Completing squares yields the exponential function

exp

�

�i
„.t2 � t1/

2M

�

.k C ˛/2 � ˛2
�

�

: (11.19)

Therefore,

hx2; t2jx1; t1ifree D
1

2 
exp

�

iM.x2 � x1/2

2„.t2 � t1/

� Z 1

�1
dk0expŒ�ˇ2k02�

D
s

M

i2 „.t2 � t1/
exp

�

iM.x2 � x1/2

2„.t2 � t1/

�

; (11.20)

where

˛ D .x2 � x1/M

.t2 � t1/„ ; ˇ2 D i„.t2 � t1/

2M
; k0 D k C ˛ : (11.21)

The free particle propagator (11.20) displays a central role in the next section.

11.3� Path Integral Formulation of Quantum Mechanics

Consider the case of a particle moving in a one-dimensional potential V.x/. The

particle starts at the position (x1; t1) and ends at (x2; t2). The time t2 � t1 is divided

into n equal intervals of duration � . The propagator between the positions x.��1/

and x.�/ during this time interval is4

�

x.�/

ˇ

ˇ

ˇ

ˇ

exp

�

� i�

„ .T C V /

�
ˇ

ˇ

ˇ

ˇ

x.��1/

�

(11.22)

D
�

x.�/

ˇ

ˇ

ˇ

ˇ

exp

�

� i�

„ T

�

exp

�

� i�

„ V

�

exp

�

� �2

2„2
ŒT; V �

�
ˇ

ˇ

ˇ

ˇ

x.��1/

�

;

where T is the kinetic energy. In the limit � ! 0, the term proportional to the

commutator ŒT; V � can be neglected, since it is of higher order in �=„.

4Use is made of the mathematical identity exp(A C B) = exp(A) exp(B) exp(� 1
2
ŒA; B�) (times

exponential terms involving two or more commutators).
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lim
�!0

�

x.�/

ˇ

ˇ

ˇ

ˇ

exp

�

� i�

„ .T C V /

�
ˇ

ˇ

ˇ

ˇ

x.��1/

�

D lim
�!0
hx.�/; t .�/jx.��1/; t .��1/ifree exp

�

� i�

„ V.x.��1//

�

D lim
�!0

�

M

i2 „�

�1=2

exp

�

i�

„
�

T . Px.�//� V.x�/
�

�

D lim
�!0

�

M

i2 „�

�1=2

exp

�

i�

„ L. Px.�/; x.�//

�

; (11.23)

where L is the classical Lagrangian. The potential term has been factored out during

each interval � ! 0 because it stays constant within such interval. The result (11.20)

for the kinetic energy part of the Hamiltonian has been used.

The particle travels from x1 to x2 through a series of intermediate steps

x.1/; x.2/; :::, which define a “path.” The total amplitude for the particle to begin

at x1 and end up at x2 is given by the sum over all possible paths. The number of

integrations become infinite as the time interval � tends to zero. In this limit, the

propagator for the total time interval t2 � t1 may be written as a path integral

lim
�!0;n!1

hx2; t2jx1; t1i D lim
�!0;n!1

�

M

i2 „�

�n=2 I

Œdx� exp

�

i

„S.x2; t2jx1; t1/

�

;

(11.24)

where

S.x2; t2jx1; t1/ D
n
X

�D1

�hx.�/; t .�/jx.��1/; t .��1/i D
Z t2

t1

dt L.t/ : (11.25)

The action S has the same dimension as „. The symbols
H

and Œdx� have been

defined in (11.16).

• All the paths contribute equally in magnitude, but the phase of their contribution

is different. The phase is given by the classical action (in units of „).
• Expression (11.24) has been derived from laws of quantum mechanics to which

the reader has become familiar by now. One of them is the superposition

principle, used in summing the contributions of alternative paths. The other is

the composition property of the transition amplitude, which allows us to divide

the total time interval into segments of vanishing duration � . Feynman’s original

approach was to adopt (11.24) as an hypothesis and, subsequently, derive the

time-dependent Schrödinger equation.

• The path integral relates certain quantum probability amplitudes to the classical

action. Therefore, it provides a deep link between classical and quantum physics

which is explained in [72] as follows: the classical approximation corresponds to

the case of large S in relation to „. A small change in the path induces a change
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X2= 1

X1= t1= 0 t2= Π / 2ωτ

Fig. 11.1 Trajectory of a particle moving in a harmonic oscillator potential: minimum action

trajectory (full line) and two other possible trajectories (dashed lines)

in S that is small in the scale of S but not negligible in the scale of „. Thus, small

changes in the path produce finite changes in the phase, and the contributions

of the different trajectories mutually cancel because they do not add coherently

in phase with one another. However, there is the special path for which S is an

extreme (Fig. 11.1). In this case, there is no change in S, at least to first order.

In this way the classical laws of motion arise from the quantum laws. From the

extreme condition one derives the Euler’s equations of motion

d

dt

�

@L

@ Px

�

� @L

@ x
D 0 : (11.26)

Classical physics takes into account only the trajectory xcl.t/ satisfying (11.26).

• In the quantum case, S may be comparable with „, and all the trajectories must

be added in detail.

• Path integrals whose exponents are quadratic in x and Px may be calculated

exactly. Thus, it is useful to find first the classical path xcl using (11.26) and,

subsequently, to replace x; Px by y D x � xcl; Py D Px � Pxcl in the Lagrangian.

Exact quantum expressions for the quadratic fluctuations around the classical

path can be obtained (see the example in Sect. 11.3.1�). Higher than quadratic

terms in the potential may be calculated by means of perturbation expansions.

• “Since its inception in Richard Feynman’s 1942 doctoral thesis, the path integral

has been a physicist’s dream and a mathematician’s nightmare. To a physicist,

the path integral provides a powerful and intuitive way to understand quantum

mechanics, building on the simple idea that quantum physics is fundamentally

a theory of superposition and interference of probability amplitudes... To a

mathematician, the path integral is at best an ill-defined formal expression.

It is some sort of vaguely integral-like object involving a sum over badly

specified collection of functions, having an undefined measure, and whose value
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is apparently determined by a group of unclear and perhaps incompatible limits

that may or may not yield finite answers”5 [74].

• Feynman’s path integral is not a too convenient tool for solving problems in non-

relativistic quantum mechanics, such as those tackled in this text. On the contrary,

methods based on path integrals are very powerful in other branches of modern

physics, such as quantum field theory and statistical mechanics. The Lagrange

formulation of problems involving quantum chromodynamics (QCD), the theory

of strong interactions, is amenable to quantification via path integrals and to sub-

sequent perturbation expansion. Expressions are obtained in a Lorentz-covariant

form. The relation with statistical mechanics stems from the third line in (11.12),

which resembles the “sum over states” associated with the partition function

Z D
X

n

exp.�ˇEn/ : (11.27)

In fact, one obtains the partition function from (11.12) by analytical continuation

of t into the purely imaginary axis, with ˇ D it=„, real and positive.

11.3.1� The Harmonic Oscillator Re-revisited.

The Path Integral Calculation

Let us exemplify once more with the harmonic oscillator. The Lagrangian reads

L D M

2
. Px2 � !2x2/ : (11.28)

Therefore, the classical equation of motion (11.26) yields the equation Rx C !2x D
0. The solution is

xcl D A sin !t C B cos !t

A D x2 cos !t1 � x1 cos !t2

sin !.t2 � t1/
; B D x1 sin !t2 � x2 sin !t1

sin !.t2 � t1/
: (11.29)

We make now a transformation of variables

y D x � xcl ; (11.30)

and thus, the action reads

S D Scl C
M

2
. Py2 � !2y2/ ; y.t1/ D y.t2/ D 0 : (11.31)

5An up-to-date attempt to put path integral methods on a sound mathematical footing can be found

in [73].



11.3 Path Integral Formulation of Quantum Mechanics 215

This expression is exact, since in this case there are no higher order terms in y.

Therefore, the path integral has been factorized into

hx2; t2jx1; t1i D h0; t2j0; t1i exp.iScl/ : (11.32)

The two factors are calculated in Sect. 11.3.2*. The results are

h0; t2j0; t1i D
s

M!

i2 „ sin !.t2 � t1/
(11.33)

Scl D
M!

2 sin !.t2 � t1/
Œ.x2

1 C x2
2/ cos !.t2 � t1/ � 2x1x2� :

The dependence on the spatial coordinates x1 and x2 is determined only by the

classical action.

Let us obtain once more the energy levels of the harmonic oscillator. We use the

trace of the propagator (11.32)

Z

dx hx; t jx; 0i D
�

M!

i2 „ sin !t

�1=2 Z

dx exp

 

� i2M! sin2 .!t=2/

„ sin !t
x2

!

D 1

i2 sin !t=2

D exp

�

�i
1

2
!t

� 1
X

nD0

exp.�in!t/ : (11.34)

The sought energies are obtained by comparing the last line of (11.34) and of

(11.12).

11.3.2* The Classical Action and the Quantum Correction

to the Harmonic Oscillator

In the first place we compute the classical action

Scl D
M

2

Z t2

t1

dt . Px2
cl � !2x2

cl/

D M!

4

�

.A2 � B2/ cos 2!t � 2AB sin 2!t
�t2

t1
; (11.35)

which yields (11.34), upon replacement of the values A; B given in (11.29).
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Let us now evaluate the propagator h0; t2j0; t1i for the harmonic oscillator.6

According to (11.23)

h0; t2j0; t1i

D lim
n!1

�

M

i2 „�

�n=2 I

Œdy� exp

(

iM

2„

n�1
X

�D0

�

.y�C1 � y�/2

�
� �!2y2

�

�

)

D lim
n!1

�

M

i2 „�

�n=2 I

Œd�� exp

�

� M

i2�„ �T ��

�

; (11.36)

with

y0 D yn D 0 I � D .t2 � t1/=n I Œdy� D
n�1
Y

�D1

dy� : (11.37)

In the second line of (11.36) we have used a vector .��/ and a matrix .h�j� j!i/
which are defined as

.��/ D

0

B

B

B

B

B

@

y1

y2

y3

:::

yn�1

1

C

C

C

C

C

A

; .h�j� j!i/ D

0

B

B

B

B

B

@

2 � �2!2 �1 0 ... 0

�1 2 � �2!2 �1 ... 0

0 �1 2 � �2!2 ... 0
:::

:::
:::

:::
:::

0 0 0 ... 2��2!2

1

C

C

C

C

C

A

:

(11.38)

Diagonalization of the matrix � yields the matrix � with eigenvalues �a (1 � a �
n � 1)

� D UC� U ; � D U � (11.39)

Here U is unitary and real. The vector � is also real and constitutes a .n � 1/

dimensional vector space. The Jacobian going from Œd�� to Œd�� is also 1, since

jdet.U/j D 1. Therefore, the integral in the second line of (11.36) has the value

I

Œd�� exp

�

� M

i2�„ �T ��

�

D
I

Œd�� exp

�

� M

i2�„ �T ��

�

(11.40)

D
n�1
Y

aD1

�

i2 �„
M�a

�1=2

D
�

i2 �„
M

�.n�1/=2
1

p

det.�/
:

The determinant det(�) is derived as follows: if sj denotes the value of the

determinant of the truncated matrix consisting of the first j rows and columns of

(11.38), the value of sj C1 is given by means of an expansion in minors

6We follow the procedure used in [75].



11.3 Path Integral Formulation of Quantum Mechanics 217

sj C1 D .2 � �2!2/sj � sj �1 ; (11.41)

with s1 D 2� �2!2, and s0 is defined as 1. Equation (11.41) may be rewritten in the

form
sj C1 � 2sj C sj �1

�2
D �!2 sj : (11.42)

In the limit � ! 0 this relation yields a differential equation for the function s.t/

of the time variable t D t1 C j� . This equation applies as well to the function

r.t/ D �s.t/, which has simpler initial conditions

rtDt1 D 0 I d r

dt

ˇ

ˇ

ˇ

ˇ

tDt1

D �
� s1 � s0

�

�

D 2 � !2�2 � 1 D 1: (11.43)

The solution of the equation
d2 r.t/

dt2 D �!2 r.t/ is

r.t/ D sin !.t � t1/

!

det.�/ D r.t2/

�
D sin !.t2 � t1/

!�
: (11.44)

Replacement of (11.40) and (11.44) in (11.36) yields the value of the propagator

h0; t2j0; t1i appearing in (11.33).



Chapter 12

Entanglement and Experimental Tests

of Quantum Mechanics

Equations (7.3)–(7.6) display two possible features appearing in the description of

bipartite systems: in the first two equations, each subsystem possesses its own quan-

tum state ϕp , which constitutes a complete description of the physical state of the

subsystem (a familiar situation from classical physics). This feature of separability

does not hold for the last two equations. Schrödinger was the first to emphasize the

non-classical features of “entangled” states and coined this term in [76].

Alain Aspect describes the difference between classical and quantum correlations

in bipartite systems as follows: “If we have a pair of identical twins we do not

know what their blood type is before testing them, but if we determine the type

of one, we know for sure that the other is the same type. We explain this by the

fact that they were born with, and still carry along, the same specific chromosomes

that determine their blood type. Two entangled photons are not two distinct systems

carrying identical copies of the same parameter. A pair of entangled photons must

instead be considered as a single, inseparable system, described by a global wave

function that cannot be factorized into single photon states.” [77].

The concept of entanglement is a direct consequence of the superposition

principle applied to composite systems. It has become a fundamental tool in the

solution of many quantum problems during the second half of the last century:

• In the discussions on the validity of quantum mechanics [Sect. 12.3, including

the clarification of the EPR paradox (Sect. 12.3.2)].

• In the field of quantum information (Chap. 13).

• In the description of the emergence of the classical world from the quantum

substrate and, as a consequence, in a consistent quantum explanation of the

collapse postulate (Sect. 14.3�).

We also discuss in the present chapter some recent experiments confirming the

validity of quantum mechanics (Sect. 12.3), all of which make use of the concept of

entanglement.

Entanglement constitutes the central tool in the forthcoming chapters. In all

presentations we make use of two-dimensional Hilbert spaces. Therefore the

considerations on these spaces given in Sects. 3.2 and 5.2.2 are assumed here. In
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particular, a set of basis states for a single qubit is given by the two-component

column vector representation

ϕ0 D
�

1

0

�

I ϕ1 D
�

0

1

�

: (12.1)

Qubits are realized either by means of particles with spin s D 1
2
, two isolated

levels, the two states of photon polarization (Sect. 9.8.2�), etc. It is yet unclear which

is better for computational purposes, although photons are preferred in the case of

communication.

The quantum formalism to be used from here on is rather different from the

one that we have employed so far. For instance, the matrix density formulation of

quantum mechanics (Sect. 14.4) is a convenient tool to deal with entangled states,

and to depart from the considerations of isolated microsystems.

12.1 Entanglement

Let us perform some thought experiments with the same filters used in Sect. 2.5.1:

two particles, 1 and 2, are emitted simultaneously from the same source, in opposite

directions (Fig. 12.1). Each particle enters a filter aligned with the laboratory

z-axis and may be detected by an observer provided with another filter. The same

orientation ˇ, relative to the laboratory frame, holds for both observers’ filters. The

down channel is blocked in all four filters. Thus cos2.ˇ=2/ represents the probability

that a particle is detected, and sin2.ˇ=2/ the probability that it gets absorbed (5.25).

If two particles are emitted in the entangled state

1p
2

�

ϕ0.1/ϕ0.2/C ϕ1.1/ϕ1.2/
�

; (12.2)

then:

• A measurement of particle 1 destroys the entangled state. Particle 2 assumes the

same state as the one into which particle 1 was projected by the measurement.

• The correlation is 100%, regardless of the filter orientation ˇ.

Fig. 12.1 Thought experiments illustrating the properties of entangled states. Both particles are

filtered by the source filters into the state ϕ0 through a first filter (full line box) and are detected by

filters oriented at an angle ˇ (dashed box). Trajectories inside the filters have not been drawn



12.2 The Bell States 221

• This result is also independent of the initial direction of the z-axis. Replacing

ϕ0; ϕ1 by linear orthonormal combinations χ0; χ1 generated by rotations around

the y-axis, yields the entangled state

1p
2

�

χ0.1/χ0.2/C χ1.1/χ1.2/
�

:

A measurement of particle 1 would project particle 2 into the same state as

particle 1.

• The comparison with the (non-entangled) product state ϕ0.1/ϕ0.2/ is illuminat-

ing: here the probability that the two particles get through is cos4.ˇ=2/, while

the probability that both are absorbed is sin4.ˇ=2/. Therefore the probability that

both observers find the same result is 1 � .1=2/ sin2 ˇ. If ˇ D  =2, this last

probability has the value 1/2, the same classical value as for two independent

players tossing coins.

• The correlation implicit in (12.2) takes place regardless of the distance between

the two particles: particle 2 (non-locally) becomes represented by a definite state

as the result of the measurement of particle 1. Entanglement implies that nature

is non-local, since the outcome of the local measurement on the second particle

is determined by quantum correlations encoded in the total, entangled state of the

bipartite system.

• Note that the outcome of the measurement on the first particle is completely

random. This randomness implies that any useful information between the

two partners has to be transmitted by conventional means. Therefore, although

quantum mechanics is a non-relativistic theory, its probabilistic structure prevents

any contradiction with relativity theory.

Entanglement constitutes a profound, non-classical correlation between two (or

more) quantum entities. The constituent parts of entangled systems do not have their

own individual quantum states. Only the total system is in a well-defined state. This

is fundamentally unlike anything in classical physics.

12.2 The Bell States

A complete set of basis states for the two-spin system may be either constructed as

products of the states (12.1), or represented by four component column vectors

ϕ
.2/
0 D ϕ0ϕ0 D

0

B

B

@

1

0

0

0

1

C

C

A

I ϕ
.2/
1 D ϕ0ϕ1 D

0

B

B

@

0

1

0

0

1

C

C

A

;
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ϕ
.2/
2 D ϕ1ϕ0 D

0

B

B

@

0

0

1

0

1

C

C

A

I ϕ
.2/
3 D ϕ1ϕ1 D

0

B

B

@

0

0

0

1

1

C

C

A

: (12.3)

It is customary to think of the first qubit in the product representation as the

control qubit, and the second as the target qubit.

A general state is written as the superposition

‰.2/
c D

1
p

jc00j2 C jc01j2 C jc10j2 C jc11j2

0

B

B

@

c00

c01

c10

c11

1

C

C

A

: (12.4)

The Bell states constitute specific examples of entangled pairs

ϕB0
� 1p

2

0

B

B

@

1

0

0

1

1

C

C

A

; ϕB1
� 1p

2

0

B

B

@

1

0

0

�1

1

C

C

A

;

ϕB2
� 1p

2

0

B

B

@

0

1

1

0

1

C

C

A

; ϕB3
� 1p

2

0

B

B

@

0

1

�1

0

1

C

C

A

: (12.5)

• Since Bell states are orthonormal, any two-qubit state may be expressed as a

linear combination of these states.

• The Bell states are eigenstates of the product operators OSz.1/ OSz.2/ and
OSx.1/ OSx.2/ (see Problem 1). These product operators are included among the

interactions in the controlling Hamiltonian (13.14), used to manipulate qubits.

• Successive introduction of these product interactions separates any two-qubit

system into the four Bell channels, in a similar way as the interaction with the

magnetic field splits the two channels associated with a single qubit (Sects. 2.5.1

and 5.2.1).

• The two spins in a product operator must be simultaneously measured, since

detection of a single spin destroys the entanglement. On the contrary, unitary

operations can be applied to any one spin or to both of them.

12.3 Experimental Tests of Quantum Mechanics

Thought experiments played a crucial role in the clarification of controversial

aspects of quantum mechanics. The discussions between Bohr and Einstein are

paradigmatic in this respect (Sect. 15.5.2). However, since the end of the twentieth
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century, real experiments have replaced thought ones. Not only have earlier views

been confirmed, but also more counterintuitive aspects of quantum mechanics have

been brought into focus. In this presentation we restrict ourselves to the discussion

of three types of experiments, in spite of other fascinating results that have been or

are being obtained:

• Two-slit experiments which, according to Feynman constitute “a phenomenon

which is impossible, absolutely impossible, to explain in any classical way.”

([23], p. 1–1).

• Experiments that can decide between local realism or quantum mechanics as the

proper tool for describing the physical world.

• Experiments with single quantum systems, which bear on the statistical frame-

work of quantum mechanics.

Entanglement plays a central role in all these experiments. Present sources of

entangled photons are based on the process of parametric down conversion: if a

non-linear optical crystal is pumped by a laser beam, a photon may decay into

two entangled photons (with a small probability, 10�12 � 10�10). The energy and

momentum of the two photons add up to their value in the original one. The two

photons may have the same or different polarizations.

12.3.1 Two-Slit Experiments Revisited

Two-slit experiments performed with a single qubit are described in Sect. 2.5.2.

The superposition (2.29) giving rise to interference phenomena requires that

there is no way to know, even in principle, which path the particle took, a or a0.
Interference is destroyed if this information exists, even if it is dispersed in the

environment.

Two-slit experiments with two entangled particles have been used to verify even

more spectacular and non-intuitive consequences of quantum mechanics.1

Consider two photons, A and B , emitted in opposite directions. Photon A is

monitored by detector A after going through a double slit with holes at a and a0.
Photon B gets across a lens and can be observed by detector B placed at different

distances behind the lens (Fig. 12.2). Whenever photon A is found in a beam at a

(a0), photon B is in the beam b (b0). The entangled quantum state is

‰ D 1p
2

.ϕa.A/ϕb.B/ C ϕa0.A/ϕb0.B// : (12.6)

• If B is not registered, the distribution of A on a plane parallel to the double slit is

incoherent. This is due to the fact that we can still obtain information about the

path of A by measuring the state of B .

1Intensive use has been made of [78], [79].
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double-

slit

source

detector A detector B

focal

plane

image

plane
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Fig. 12.2 A double-slit diffraction pattern measured with entangled photons. The two photons are

detected after the double slit and at the focal plane of the lens, respectively. Detector B may also

be displaced towards the image plane

• If photon B is detected at the focal plane of the lens, information about its

distance from the propagation axis before the lens is lost, and thus information

about through which slit A proceeds is lost as well. The momentum of both

photons is well defined and an interference pattern appears behind the two slit

plane (wave feature). Photons are collected one by one, and the observed count

rate implies that the average spatial distance between photons is at least of the

order of 100,000 km.

• One can find through which slit A proceeds through, by detecting B at the image

plane (particle feature), since there is a one-to-one relationship between positions

on this plane and the double slit. No interference pattern appears in this case.

• Interference pattern and path information are mutually exclusive results. There-

fore, Bohr’s complementarity (Sect. 15.5.1) appears as a consequence that it is

not possible to position detector B simultaneously at the focal and at the image

plane. Intermediate situations are also possible, the visibility of the interference

pattern being reduced by placing detector B between the focal and the image

plane: the experiment displays a continuous complementarity.

• After detection of A, one can arbitrarily delay detection of B , either at the focal or

at the image plane. Thus the possibility of detecting or not detecting a diffraction

pattern is decided after the detection of the diffracted photon. According to

this result, it has been claimed that the future can modify the past, in quantum

mechanics. However, this interpretation is incorrect, since the prediction of the

outcome requires a total specification of the experimental setup, including the

position of all detectors (see Bohr’s definition of “phenomenon,” Sect. 2.4.1).

• Registration of A behind the double slit results in a Fraunhofer double slit pattern

for B at the focal point, although B never proceeded through a double slit. This

result has been interpreted as a consequence of the fact that the state incident on

the double slit is a wave packet with appropriate momentum distribution such that

the probability density has a peak at both slits. By virtue of the strong momentum

entanglement at the source, B has a related momentum distribution (in fact, it
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is the time reversal of the other wave packet) and the Fraunhofer observation

conditions become realized after the lens [78].

12.3.2 EPR and Bell Inequalities

We consider a source emitting two particles in the Bell state

ϕB0
D 1p

2
Œϕ0.1/ϕ0.2/C ϕ1.1/ϕ1.2/� : (12.7)

If each particle is detected by a Stern–Gerlach detector (Fig. 2.4c) and if the two

detectors are oriented along the same direction, particle 2 will be detected in the

same spin state as particle 1, independently of their mutual distance. Einstein,

Podolsky and Rosen [16] admitted the validity of this quantum prediction, but

concluded about the incompleteness of quantum mechanics using the following

argument2:

• The state of particles exists independently of observation (the notion of physical

reality stated in Sect. 2.1).

• A measurement of particle 1 cannot affect the state of particle 2 if they are at

sufficient macroscopic distance (notion of locality).

Thus, particle 2 must have carried information about its spin state before detection

of particle 1. Therefore, there must be an underlying mechanism – usually called

hidden variable – completing quantum mechanics.

In 1964 John Bell realized that local realism, as understood by EPR, was incom-

patible with quantum mechanics [81]. He devised a thought experiment in which

the two fundamental world views would yield different results. Thus physical facts,

and not philosophical considerations, could decide between these points of view.

A double Stern–Gerlach apparatus is improved by allowing each of the two

detectors to rotate around the beam axis (y-axis). They may be oriented along one

of the three directions (Fig. 12.3): along the z-axis (orientation a); making an angle

of 2 =3 with it (orientation b); an angle of 4 =3 (orientation c). In the following,

the notation .˛1; ˛2/ labels the position of the detectors 1 and 2, respectively. For

instance, .a; c/ means that detector 1 points along the z-axis, and detector 2 is

oriented at an angle 4 =3 relative to this axis. It is assumed that the orientations

of the two detectors are totally uncorrelated. Moreover, no connections between

source and detectors or between detectors are allowed.

In the first place, we analyze the problem from the point of view of local realism.3

The instructions carried by each particle are of the form xaxbxc , meaning that if the

2The present argument is the spin version of the EPR original one. The adaptation is due to David

Bohm [80].
3The Bell inequality described here is taken from [82].
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Fig. 12.3 Sketch of an experiment testing the Bell inequality described in the text. At each detector

position, the three axes a; b; c lie on the same plane perpendicular to the trajectories

detector is at the j th position .j D a; b; c/, the result of the measurement is xj

(xj D 0; 1).

There are eight possible sets of instructions, namely: 000, 001, 010, 011, 100,

101, 110, 111. It is unimportant which set is valid during a given run. It is important,

however, that the two particles carry the same set, because it is an experimental fact

that the same result is obtained for both particles if the two detectors display the

same orientation (Bohm-EPR experiment).

Let us exclude for the moment the instruction sets 000 and 111. For any of the

remaining six sets, the same results are obtained for both particles in five cases, and

opposite results in four cases. For instance, if the instruction set is 011, the pairs

(aa),(bb),(bc),(cb),(cc) yield the same result, while opposite results are obtained

from (ab),(ac),(ba),(ca).

It is obvious that the two excluded sets of instructions can only increase the

possibility that the two counters yield the same result. Therefore, the probability of

obtaining the same result must always be � 5=9 (Bell inequality).

Let us now perform a quantum analysis of the experiment. According to (5.25),

the expression of state ϕ
.a/
0 D ϕ0 in the basis corresponding to the orientations b; c is

ϕ
.a/
0 D

1

2
ϕ

.b/
0 C

p
3

2
ϕ

.b/
1 D �

1

2
ϕ

.c/
0 C

p
3

2
ϕ

.c/
1 : (12.8)

Since only the relative angle between the two detectors matters, we can assume

without loss of generality that particle 1 has been detected in the state ϕ0 with the

apparatus in the orientation a. The probabilities of the different outcomes for particle

2 are given in Table 12.1. The sum of probabilities for each orientation divided

by the number of orientations yields the same probability for obtaining equal or

opposite results, at odds with the prediction of local realism. An identical argument

applies if particle 1 was to be detected in the state ϕ
.a/
1 .

At the time of Bell’s publication it was not possible to perform an experimental

test. In the first successful attempt, spin 1/2 particles were replaced by two photons

emitted in a radiative J D 0 ! J D 0 cascade using Ca atoms as sources (1981).

As expected for entangled photons, the same polarization state was verified for both

of them. A Bell inequality somewhat different from the one explained above was
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Table 12.1 Probabilities for

the results of particle 2
Detector 2 a b c Total probability (%)

Same result as for 1 1 1/4 1/4 50

Opposite result 0 3/4 3/4 50

used. The experiment contradicted the prediction of local realism and confirmed the

existence of the quantum correlation [83].

The localization aspect was treated by increasing the distance between the two

detectors as far as 13 m, so no signal from one to the other counter could be

transmitted at subluminal velocities before detection.

However, two loopholes remained open.4 One of them consisted of the possibility

that the apparatus settings could be known by the detectors and/or by the source

before registration of the photons. This loophole was closed by introducing the

parametric down conversion (Sect. 12.3), by increasing distances to 355 m and by

changing the measurement settings according to a random-number generator in a

time scale much shorter than the photon time of flight (1/13). The importance of the

last feature stresses the relevance of this experiment [84].

Another logical loophole consisted of the possibility that the detected photons

were not faithful representatives of all photons emitted, most of which were lost.

This possibility was ruled out by observing nearly all entangled pairs of ions in a

cavity [87].

Today it is possible to violate Bell inequalities by many standard deviations

in short times. Moreover, in case of Schrödinger cat states with three and four

photons (see Sect. 14.2), situations exist in which predictions of quantum mechanics

and local realism are exactly the opposite. Experiments have again confirmed the

quantum prediction.

12.3.3 Single Quantum Systems

Starting in the 1970s, it became possible to manipulate and observe single quantum

objects, such as a photon or an ion. Improvements in the knowledge of certain

quantities, such as the gyromagnetic ratio of the electron (Sect. 5.2.2) were obtained

through the trapping of an electron on a macroscopic time scale with electric and

magnetic fields. It has also been possible to verify the indistinguishability between

two electrons or two atoms of the same element, a key fact in quantum physics.

Moreover, many thought and counterintuitive experiments became experimentally

feasible.

A common feature of the ion and photon trap experiments is that the Jaynes–

Cummings model can be applied if the bipartite interacting system (field plus atom)

substitutes the quantum oscillator and the two-state system of Sect. 3.4. In this

4The two loopholes have not been closed yet in a single experiment.
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Fig. 12.4 Quantum jumps of a single ion in a trap. (Reprinted with permission from Nagourney

et al. [85], with authorization from the American Physical Society)

simple model there appears for the first time the entanglement of a microsystem with

a macrosystem5 (3.53). Note, however, that the unveiling of these direct quantum

manifestations requires extremely sophisticated techniques, which we are unable to

discuss here.

In one kind of experiment, an ion is confined to a region around equilibrium,

the oscillations being reduced to zero-point fluctuations. Laser beams are used to

manipulate the ion, to cool down its motion and to “see” it. The internal evolution

can also be monitored, since the ion scatters laser light resonant with the distance

between two levels. The light becomes invisible, however, if the ion “jumps” into

a non-resonant third level. The scattered light suddenly reappears if the ion returns

to one of the two levels resonating with the laser light. Figure 12.4 represents laser-

induced fluorescence of a barium ion on the ϕ6p ! ϕ6s transition versus time.

Additional lamp irradiation interrupts the fluorescence by transitions from ϕ6s to a

metastable level.

Schrödinger believed in a statistical framework for quantum mechanics and thus,

that sudden jumps of a single ion could not be observed: “We never experiment

with just one electron or atom or (small) molecule. In thought-experiments we

sometimes assume that we do; this invariably entails ridiculous consequences...”

(quoted in [37]).

If many ions are present, the trap confining potential competes with the Coulomb

repulsion and a quasi-crystalline order is observed.

In another type of experiment, the roles of matter and radiation are exchanged.

Photons with wavelengths in the millimeter range are made to bounce between

5This type of entanglement constitutes the basis for understanding the emergence of classical

macrosystems from the quantum substrate (Sect. 14.2�).
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the walls of a cavity with highly reflecting superconducting walls. Rydberg atoms

(Sect. 6.1.2) [interacting strongly with microwaves and having a long meanlife

(Problem 14 in Chap. 9)], are sent one by one to interact with the photons.

Consider two consecutive states in the Rydberg atom, ϕe and ϕg . The radiation

field is described by the eigenstates of the harmonic oscillator χn in the occupation

number representation (Sects. 3.3.1 and 9.8.2�), with the resonant photon frequency

!ph. The atom-field coupling Hamiltonian may be approximated by

OHcoup D �i„˝0

2
.a�C � aC��/ ; (12.9)

where ˝0 is proportional to the dipole moment of the Rydberg atom and to the mean

square value of the electric field. The Jaynes–Cummings model applies (Sect. 3.4

and Problem 13 of Chap. 3). The resultant eigenenergies and eigenstates are

En˙ D „!ph

�

nC 1

2

�

˙ „˝n

2
I ˝n D ˝0

r

nC 1

2

‰n˙ D
1p
2

�

ϕeχn ˙ iϕgχnC1

�

: (12.10)

Inversion of (12.10) yields

ϕeχn D
1p
2

.‰nC C ‰n�/ : (12.11)

Up to an overall phase, the time-evolution of this state is given by

Œϕeχn�.t/ D 1p
2

�

exp
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˝nt
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�

‰nC C exp
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i
˝nt

2

�

‰n�

�

D cos
˝nt

2
ϕeχn C sin

˝nt

2
ϕgχnC1: (12.12)

If the atom is in an initial state ϕe in free space, it decays to the final state ϕg ,

while simultaneously emitting a photon that escapes (Sect. 9.8.4�). In the present

case, the photon gets trapped by the cavity, and the atom-field coupling results in a

reversible energy exchange.

Assume now that the atom, initially in the state ϕe , interchanges energy with a

field that does not have a definite number of photons (χ D
P

n cnχn). Applying

(12.12), one obtains

Œϕeχ�.t/ D
X

n

cn

�

cos
˝nt

2
ϕeχn C sin

˝nt

2
ϕgχnC1

�

: (12.13)
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Fig. 12.5 Fourier transform of the time-dependent atomic signal detected after the interaction of

a single Rydberg atom with a small field stored in a superconducting cavity. The average number

of photons is Nn D 0:85 ˙ 0:04. The discrete peaks appear at frequencies which are proportional to

the square root of the successive number of photons. (Reprinted with permission from Brune et al.

[86], with authorization from the American Physical Society)

The probability of finding the atom in the state ϕe is

Pe.t/ D
X

n

jcnj2
1C cos ˝nt

2
: (12.14)

Thus, the Fourier transform of the signal due to detection of the atoms leaving

the cavity, displays peaks associated with transitions between states with a discrete

number of photons (Fig. 12.5). The frequencies of the peaks are proportional top
nC 1, as expected.

These cavity quantum electrodynamics (CQED) experiments show clear

evidence of field “graininess,” the fundamental hypothesis of Einstein in 1905

(Sect. 15.3.1). CQED experiments can also be considered to be modern versions

of the photon box imagined by Einstein for the 1930 Solvay meeting (Fig. 15.3).

Instead of weighing the box, information about the fields is imprinted on the exit

ions, and photons are thus counted without being destroyed.

The cavity photons can also be prepared into a sort of Schrödinger cat state.

A thorough presentation of both ion and photon traps, covering both results and

the experimental difficulties that have been overcome, can be found in [37].

12.3.4 A Quantum, Man-Made Mechanical Object

During 2010, quantum effects in the motion of a human-made object were experi-

mentally observed for the first time [88]. A mechanical resonator – an oscillator –
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displayed an isolated frequency such that „! D 2:6 � 10�5 eV. It was cooled

at 0.1 K using conventional cryogenic refrigeration, and thus „!=kBT � 3.

Quantum measurements of the resonator were made using a superconducting qubit

as a measurement device. The coupled system can be described by the Jaynes–

Cummings model (Sect. 3.4). The system has proved to be much more stable than

the resonator plus a classical measuring device. The following features appeared

experimentally:

• The mechanical resonator was cooled to its ground state. The estimated number

of phonons was h0jnj0i D 0:07.

• An individual quantum excitation (phonon) could be created in the resonator and

the exchange of this excitation between the resonator and the entangled qubit was

observed.

• A superposition state was generated in the resonator, with a qubit response in

good agreement with theory.

Therefore, quantum mechanics applies as well to a mechanical object large enough

to be seen with the naked eye.

However, one may not conclude that present experimental successes have proved

the validity of quantum mechanics. It is worthwhile to remember that experiments

can only prove that a theory is not correct, if their results contradict predictions of

the theory. In the future, we expect more and even more subtle tests on the validity

of quantum mechanics.



Chapter 13

Quantum Information

13.1 Conceptual Framework

Assume for a moment that the Hilbert space is restricted to the pure basis states.1

For a single qubit, the only available states would thus be the two states (12.1). For

n qubits, there are 2n orthogonal product vectors ϕ
.n/
i in a space of 2n dimensions.

Classical computation operates in this space. Linear combinations of vectors are

not allowed. Therefore, the only operations that can be performed are permutations

between the basis states (unless the size of the space is changed).

Quantum mechanics allows for superpositions ‰.n/ of the basis vectors ϕ
.n/
i

with complex amplitudes ci (2.6). Quantum operations are only limited by the

requirement of unitarity, i.e. the norm of the state should be preserved. Therefore,

classical states and classical operations constitute sets of vanishingly small size

relative to those sets encompassing quantum states and quantum operations. Thus,

quantum information offers a wealth of new possibilities: all kinds of interference

effects may take place in the much larger space, much faster calculations can

be performed if all components of the state vector work in parallel, and so on.

Quite typically, the time for solving a problem may increase either exponentially

or polynomially with its complexity. By taking advantage of interference and

entanglement, a problem with an exponential increase in a classical computer may

be transformed into a problem with polynomial increase in the quantum case.

However, this promising picture is limited by the fact that it is very difficult to

extract anything from the state vector ‰.n/, despite the immense amount of informa-

tion that it carries. In fact, the only way is to perform a measurement, which relates

‰.n/ to a single probability jci j2. Therefore, the strategy consists in producing trans-

formations that lead to a state .‰0/.n/
, in which very few amplitudes c0

i do not vanish.

A quantum process starts with the preparation of the system in some initial state

ϕ
.n/
0 (i.e. with a measurement) and ends with another measurement in the final

1See also Mermin’s presentation [22].
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state ϕ
.n/
f (see Sects. 2.4 and 2.5). Measurements are a class of transformations

that provide classical information but change the state irreversibly. Between any

two measurement operations, quantum transformations are unitary operations that

change the state of the system in a deterministic and reversible way. A quantum

algorithm is a unitary operation that may be represented by successive unitary

operations (9.7) – quantum gates (Sect. 13.5*).

A collection of n qubits is called a quantum register of size n. We assume that

information is stored in the register in binary form. An n-register can store the

numbers J D 0; 1; : : : ; .2n�1/. A quantum register of size 1 can store the numbers

0 and 1; of size 2, the numbers 0,1,2 and 3; etc.

We do not attempt to give a complete description of the recent developments

on quantum information. Rather, we use the respectable knowledge of quantum

mechanics which readers should now have to illustrate these new uses with

pertinent examples: quantum cryptography (Sect. 13.2); teleportation (Sect. 13.3)

and quantum computation (Sect. 13.4�).

A presentation of the most common gates used in quantum information processes

is made in Sect. 13.5*.

13.2 Quantum Cryptography

Traditional strategies for keeping secrets in the distribution of cryptographic keys

depend on human factors, so their safety is difficult to assess. As a consequence,

they have been replaced to a large extent by cryptosystems. A cryptographic key

is transmitted through a succession of numbers 0 and 1. Their present safety is

due to the fact that, with classical computers, no fast algorithms can work out the

decomposition of a large number in prime factors. However, this statement may

no longer be true with the advent of quantum computation (see Sect. 13.4�). Hence

the continuing interest in exploring safer systems for transmission of cryptographic

keys. In this section, we show that the quantum key distributions are impossible to

break, and that this impossibility arises from fundamental quantum laws.

A well-known protocol is called BB84 [89]: every actor involved is provided with

a filter of the type discussed in Sect. 2.5.1. The encoder (usually named Alice) can

send particles that are in an eigenstate of either OSz or OSx. We label the corresponding

states by ϕ0, ϕ1, ¦0, ¦1. The decoder (frequently called Bob) may orient his

detection equipment along either the z- or the x-direction. For instance, if Alice has

sent three qubits that are polarized according to "z, "x and #x, and if Bob aligns

his apparatus in the z-direction for the first qubit and the x-direction for the last two,

he will detect intensities 1, 1 and 0 with certainty. These are the good qubits, i.e.

those sent and measured with both pieces of apparatus along the same orientation.

If Alice sends a qubit in the ϕ0 state while Bob orients his equipment towards the

x-direction, he may detect the intensities 1 or 0 with equal probability. Bad qubits

are those in which the sender and receiver apparatus have different orientations.
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For each qubit sent, Alice records the eigenvalue as well as the orientation of

her filter. Bob selects his orientations at random and informs Alice of them. With

this knowledge, Alice can tell Bob which ones are good qubits, the ones which are

kept in order to codify the message. Both messages from Bob and Alice can even be

made over an open phone, since they carry no information useful for a third party.

Let us assume that there is an eavesdropper, usually called Eve. Eve cannot

be prevented from eavesdropping, but if she does, Alice and Bob will know:

let us assume that Alice has sent a qubit in the ϕ1 state, that Eve’s apparatus

is in orientation x, and Bob’s in orientation z. Eve’s measurement increases the

probability that Bob will detect the particle from 0 to 1=4 [D jhϕ1j¦0ih¦0jϕ0ij2, see

(3.21)]. Bob chooses a random subset of the good qubits that he has retained, and

communicates them to Alice, also publicly. Alice may find discrepancies between

her notes and Bob’s message. If she does not, all good qubits constitute a perfect

secret between Alice and Bob.

Quantum cryptography applies the rule that quantum states are perturbed by the

act of measurement, unless the observer knows in advance what observables can be

measured without being perturbed (Sect. 2.4). Eve cannot succeed without knowing

the basis common to both Alice and Bob.

Commercial equipment for bank transfers by means of quantum cryptography is

available, within city boundaries.

13.3 Teleportation

Alice and Bob are at a macroscopic distance from each other. Alice’s particle is

initially in the ‰c state

‰c D c0ϕ0 C c1ϕ1 : (13.1)

The objective is to put Bob’s particle in the same state, but without transporting

the particle or sending any classical information about it.

Alice and Bob start by each taking one of the two qubits which have been

prepared, for instance in the Bell state ϕB0
(12.5). Alice now has two qubits, one

in the state ‰c and the other in the Bell state (see Fig. 13.1). The three-qubit state

can be written as

‰.3/ D ‰cϕB0

D 1p
2

.c0ϕ0ϕ0ϕ0 C c0ϕ0ϕ1ϕ1 C c1ϕ1ϕ0ϕ0 C c1ϕ1ϕ1ϕ1/ (13.2)

D 1

2

�

ϕB0

�

c0

c1

�

C ϕB1

�

c0

�c1

�

C ϕB2

�

c1

c0

�

C ϕB3

�

�c1

c0

��

;
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Bell analyzer
ψc

ψc

ϕB0

2 bits of classical

information

single qubit

transformation

entangled
pair

Fig. 13.1 Scheme illustrating the process of teleportation. Dashed lines represent entangled qubits

in the state ϕB0
, while the dotted line indicates that classical information is transmitted

where the qubit taken by Bob from the Bell state has been explicitly separated and

the two qubits in Alice’s posesion have been expressed in terms of Bell states.

Alice now filters her two qubits into a well-defined Bell state (Problem 10).

Simultaneously, Bob’s qubit is also projected into a well-defined state, but Bob

ignores the relation between this state and the initial state ‰c . Bob needs to know

in which Bell state the system has collapsed to reconstruct the original qubit. This

information must be provided by Alice by conventional means, i.e. at a speed less

than or equal to the velocity of light.

Suppose, for instance, that instead of going through the previous procedure, Alice

constructs the state ‰c by filtering the spin, and sends the information about the

alignment axis to Bob, who can thus filter the particle in the same direction. Are

there still advantages in teleportation? The answer is affirmative, for the following

reasons:

• The teleported state ‰c might not be known by Alice. If she attempts to measure

it, the state of the qubit could be changed.

• Bob receives complete information about Alice’s qubit at the expense of that

qubit: in quantum teleportation the original qubit is destroyed. This is a manifes-

tation of the no-cloning theorem (Sect. 2.6.2).

• The qubit ‰c is determined by the amplitudes c0; c1, for which the transmission

time increases with the required precision. Now the results of the quantum

experiments are discrete numbers. In quantum teleportation, discrete information

about the Bell state is transformed into continuous information about the state of

the qubit.

Quantum teleportation was discovered in 1993 [90]. It was observed for the first

time in 1997 with entangled photons [91].
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13.4� Quantum Computation

We describe the factorization procedure as one of the few “best typical” examples of

the still unharnessed power of quantum computers.2 Note that the security of widely

used encryption codes rests on the present practical impossibility of breaking a large

number N in its prime factors, using classical computers.

13.4.1� Factorization

Factorization of a number in its prime components makes use of the following

property: Let a be coprime with N (no common factors) and define the function

faN .J / � aJ ; mod N: (13.3)

This function has at least two important properties:

• It is periodic. For instance, if a D 2, N D 15, the successive values of the

function f are 1; 2; 4; 8; 1; 2 and so on. Thus, the period P D 4.

• Provided that P is even, the greatest common divisors of the pairs

.aP=2 C 1; mod N / and .aP=2 � 1; mod N / are factors of N . In the present

example, they are 5 and 3, respectively.

The level of complexity in the calculation of the period using a classical computer is

as large as any other factorization algorithm. By contrast, there exists the following

quantum algorithm due to Schor [93]:

1. The operation makes use of a control register (left) and a target register (right).

Start the operation with both registers in the state with J D 0 [all qubits in the

ϕ0 state (13.25)]

‰
.n/
1 D ϕ

.n/
0 ϕ

.n/
0 : (13.4)

2. Load the control register with the integer series (13.26)

‰
.n/
2 D 2�n=2

J D2n�1
X

J D0

ϕ
.n/
J ϕ

.n/
0 : (13.5)

3. Select a value for a (coprime to N ) and place the remainder faN .J / in the target

register, as in (13.27)

‰
.n/
3 D 2�n=2

J D2n�1
X

J D0

ϕ
.n/
J ϕ

.n/

faN .J / : (13.6)

2The contents of this section have been mainly extracted from [92].
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For n D 4 and the previous example, ‰
.n/
3 takes the value

1

4

�

ϕ
.4/
0 C ϕ

.4/
4 C ϕ

.4/
8 C ϕ

.4/
12

�

ϕ
.4/
1 C

1

4

�

ϕ
.4/
1 C ϕ

.4/
5 C ϕ

.4/
9 C ϕ

.4/
13

�

ϕ
.4/
2

C 1

4

�

ϕ
.4/
2 C ϕ

.4/
6 C ϕ

.4/
10 C ϕ

.4/
14

�

ϕ
.4/
4 C

1

4

�

ϕ
.4/
3 C ϕ

.4/
7 C ϕ

.4/
11 C ϕ

.4/
15

�

ϕ
.4/
8 :

(13.7)

Thus, the period P D 4 is encoded in each of the superposition states

representing the control register.

4. Measure the target register. This information yields one value ¦ D faN .J / and

destroys the information about the others. According to (2.18) we retain only the

terms ϕ
.n/
J in the control register that are multiplied by ϕ

.n/
¦

‰
.n/
4 D

1
p

2n=P

0

@

rD2n=P �1
X

rD0

ϕ
.n/
J DrP Cq

1

A ϕ.n/
¦ ; (13.8)

where we have assumed that 2n=P is an integer,3 as in (13.7).

5. The residue q must be eliminated in order to find the period. To do so we perform

a Fourier transform on the control register

‰
.n/
5 D U

.ctrl/
FT ‰

.n/
4

D
p

P

2n

0

@

KD2n�1
X

KD0

r<2n=P
X

rD0

expŒiK.rP C q/ =2.n�1/�ϕ
.n/
K

1

A ϕ.n/
¦

D

0

@

r<2n=P
X

rD0

c¦;rP ϕ
.n/
rP

1

A ϕ.n/
¦ : (13.9)

The last step relies on the vanishing of the factor

r<2n=P
X

rD0

expŒiK.rP / =2.n�1/� ; (13.10)

unless K is zero or an integer multiple of 2n=P , if P is an integer divisor of 2n.

Accordingly, the Fourier transform of (13.7) yields

�

ci0ϕ
.4/
0 C ci4ϕ

.4/
4 C ci8ϕ

.4/
8 C ci12ϕ

.4/
12

�

ϕ.4/
¦ ; (13.11)

where all subindexes in the control register are multiples of the period.

3The procedure can be extended if this is not the case.
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6. Measure the control system.

7. Repeat the operation until the period becomes established.

The number � of bit operations required to factor the number N with a classical

computer is expected to increase with N no less rapidly than

�.N / D exp
h

1:32 L1=3 .log2 L/2=3
i

; (13.12)

where L D log2 N is essentially the number of bits required to represent N . The

number �q of universal quantum gates needed to implement Schor’s algorithm has

been estimated to be

�q.N / D L2 .log2 L/ .log2 log2 L/ : (13.13)

Thus, the factorization is transformed from a problem in which time increases

exponentially, to a problem in which it increases only polynomially. It has been

estimated that the factorization time of a 400-digit number can be reduced from the

age of the universe to a few years [77].

A variety of two-level quantum systems has been considered. Modern exper-

imental techniques allow us to orient their spins (or equivalent observables)

and to implement the gates. However, the situation becomes drastically more

complicated when operating a large scale computer, combining many gates. The

greatest problems lie in alteration of states due to decoherence, i.e. the unavoidable

coupling with a surrounding medium (Sect. 14.2�). Up to now, the successes of

quantum computation have been limited to the decomposition of small numbers into

their prime factors [94]. The number of operational qubits can still be expressed

with one digit, while many thousand qubits would be neeeded for the envisaged

applications.

It is true that we cannot ignore the example of the path traveled “from the

Pascal machine to the Pentium processor.” There exist new strategies for partially

controlling the effects of decoherence. For instance, by redundancy. The fact that

this problem is linked to defence and financial activities has undoubtedly contributed

to intense endeavors on the subject. But we should bear in mind that the interest in

quantum computing is not limited to those applications: the physics involved in

experiments with entangled particles is helping us to obtain a better understanding

of the most fundamental aspects of quantum mechanics.

13.5* Quantum Gates

A quantum gate is a device that performs a unitary transformation on selected qubits

at a certain time. A quantum network is a device consisting of quantum gates that

are synchronized in time.
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It can be proved that any unitary operation in a system of qubits may be

reproduced by a sequence of one- and two-qubit operations, which constitutes a

practical advantage from the engineering point of view. Manipulations of a single

qubit may be performed by controlling a magnetic field at its site (Sect. 9.2).

Simultaneous manipulations of two qubits require an interaction between them.

Therefore we use a controlling Hamiltonian

OHctr D ��s

N
X

i

B.i/.t/� OS
.i/ C

X

a;b
i¤j

J
.i;j /

ab .t/ OS .i/
a
OS .j /

b ; (13.14)

where summation over space indices a; b D x; y; z is understood (see Problem 9 in

Chap. 6 and Problem 7 in Chap. 9). This Hamiltonian satisfies the requirements for

controlling a quantum computer. In fact, it even exceeds them. The Hadamard gate,

all the phase gates and the controlled-NOT gate constitute a universal set of gates,

although this set is not unique. Any transformation between the n-states of a register

may be constructed from them.

Interactions with the measurement device and with the environment should also

be taken into account.

13.5.1* One-Qubit Systems

The Hadamard gate UH and the phase gate U�.ˇ/ transform the one-qubit states

through the operations4

UH ϕJ D
1p
2

KD1
X

KD0

exp.iJK /ϕK ; J D 0; 1;

UH ϕ0 D
1p
2

.ϕ0 C ϕ1/ ; UH ϕ1 D
1p
2

.ϕ0 � ϕ1/ : (13.15)

The phase gate adds a phase to the state ϕ1.

U�.ˇ/ ϕJ D exp.iJˇ/ϕJ : (13.16)

These two operations are sufficient to construct any unitary operation on a single

qubit, since

4We keep the quantum mechanical notation previously used in this text. In computation texts, the

Hadamard gate is denoted by H , successive transformations are read from left to right, and so on.

Overall phases are frequently disregarded.
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U�.�C  =2/UH U�.ˇ/UHϕ0 D ϕ0 cos
ˇ

2
C ϕ1 exp.i�/ sin

ˇ

2
; (13.17)

up to a phase. This expression is the most general form for a qubit.

A qubit is manipulated by acting with the first term in (13.14). Switching on the

z- or x-component of the magnetic field during a time � introduces the transforma-

tions Uz.ˇ=2/ and Ux.ˇ=2/. They are given by (9.14) and (9.17), respectively, with

ˇ D !L� .

The Hadamard gate and the phase gate can be constructed by means of the

following operations:

UH D Uz. =2/Ux. =2/Uz. =2/ D 1p
2

�

1 1

1 �1

�

; (13.18)

U�.ˇ/ D Uz.�ˇ/ D
�

1 0

0 exp.iˇ/

�

: (13.19)

We obtain expressions (13.15) upon application of matrices (13.18) and (13.19) to

column states (12.1).

13.5.2* Two-Qubit Systems

The two-qubit states can be represented as products of single qubits ϕJ .1/ϕK.2/

or in the computational basis ϕ
.2/
J , with J D 0; 1; 2; 3. Any effect upon them of the

Pauli principle is ignored, since they are separated in space and thus distinguishable.

Successive application of the Hadamard gate on the state ϕ
.2/
0 yields

UH.2/UH.1/ ϕ
.2/
0 D UH.2/

1p
2

�

ϕ
.2/
0 C ϕ

.2/
1

�

D 1

2

J D3
X

J D0

ϕ
.2/
J : (13.20)

Useful gates acting on two-qubit systems are the controlled-NOT gate UCNOT and

the controlled-phase gate UCB.�/

UCNOT ϕJ ϕK D ϕJ ϕJ ˚K ;

UCB.�/ ϕJ ϕK D expŒiJK�� ϕJ ϕK ; (13.21)

where the symbol ˚ denotes the summation .J C K/ modulo 2. These two gates

apply a single-qubit transformation to the target qubit if the control qubit is in the

state ϕ1, and do nothing if the control qubit is in the state ϕ0. The control bit remains

unchanged, but its states determine the evolution of the target.
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The controlled-NOT and the controlled-phase gates are expressed, in matrix form

UCNOT D

0

B

B

@

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

1

C

C

A

I UCB.�/ D

0

B

B

@

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 exp(i�)

1

C

C

A

: (13.22)

The construction of the controlled-NOT and controlled-phase gates starting from

the Hamiltonian (13.14) has been omitted from this presentation.

Combining these operations yields the discrete Fourier transformation

UFT ϕ
.2/
J D

1

2

KD3
X

KD0

expŒiJK =2� ϕ
.2/
K ;

UFT D USWAP

� 

2

�

U
.targ/
H UCB

� 

2

�

U
.ctrl/
H

D 1

2

0

B

B

@

1 1 1 1

1 i �1 �i

1 �1 1 �1

1 �i �1 I

1

C

C

A

; (13.23)

where the SWAP transformation interchanges the values of the control and target

bits

USWAP ϕJ .1/ ϕK.2/ D ϕK.1/ ϕJ .2/

USWAP D UCNOTU
ctr
H U

tag
H ⊓CNOTU

tag
H U ctr

H UCNOT

D

0

B

B

@

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

1

C

C

A

: (13.24)

13.5.3* n-Qubit Systems

As for the one- and two-qubit cases, we may use either the product or the column

representation. In most applications the initial state is

ϕ
.n/
0 D

kDn
Y

kD1

ϕ0.k/: (13.25)



Problems 243

The transformations (13.20), (13.21) and (13.24) may be generalized to the case

of n-qubits

˘kDn
kD1 UH .k/ ϕ

.n/
0 D

1p
2n

J D2n�1
X

J D0

ϕ
.n/
J : (13.26)

If the control and target are n-registers, operation (13.21) becomes

Uϕ
.n/
J ϕ

.n/
K D ϕ

.n/
J ϕ

.n/
K˚J ; Uf ϕ

.n/
J ϕ

.n/
K D ϕ

.n/
J ϕ

.n/

K˚f .J / ; (13.27)

where the symbol˚ in the first equation (13.21) denotes summation modulo 2n and

a function f .J / is defined mapping the number J into another number that may be

stored by an n-register.

The discrete Fourier transformation (13.23) is generalized as

UFTϕ
.n/
J D 2�n=2

KD2n�1
X

KD0

expŒiJK =2.n�1/�ϕ
.n/
K : (13.28)

All components of the state vector work in parallel using the gates described

above.

Problems

Problem 1. Find the eigenvalues of the product operators OSz.1/ OSz.2/ and
OSx.1/ OSx.2/ for each Bell state.

Problem 2. Alice and Bob share a good qubit (Sect. 13.2). Assume that Alice sends

the qubit in the state ϕ0. Determine the probability that Bob detects the intensity

1 if:

1. There is no eavesdropper and Bob’s detector is aligned with the z-axis.

2. There is no eavesdropper and Bob’s detector is antialigned with the z-axis.

3. There is no eavesdropper and Bob’s detector is oriented at random.

4. Eve is active and Bob’s detector is aligned with the z-axis.

5. Eve is active and Bob’s detector is antialigned with the z-axis.

6. Eve is active and Bob’s detector is oriented at random.

Problem 3. Find the generators of rotations that Bob has to perform in order to

obtain the original qubit for each Bell state that Alice may have detected (Sect. 13.3).

Problem 4. Express the Fourier transform of a single qubit in terms of universal

gates.
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Problem 5. Show that Ux. /Uz.ˇ/Ux.� / D Uz.�ˇ/.

Problem 6. Show that
„
2
UCNOT

OS .ctrl/
x UCNOT D OS .ctrl/

x
OS .targ/
x :

Problem 7. Verify (13.26) for the case n D 3.

Problem 8. Alice and Bob share two particles in a given Bell state. Alice performs

a unitary transformation on her qubit using either the unit matrix I or one of the

Pauli matrices. Subsequently, she sends her qubit to Bob.

1. Can Bob find which transformation Alice has performed?

2. Can Eve find which transformation Alice has performed?

The information that Bob receives (one of the four numbers) can be encoded in

two bits of classical information, in spite of the fact that he receives a single qubit

(from which a single bit is expected to be extracted). This quantum result is called

superdense coding.

Problem 9. Find the value of the amplitudes cir in the Fourier transform (13.11).

Problem 10. Construct the algorithm for a Bell analyzer

1. Apply the controlled-NOT gate to each Bell state

2. Apply the Hadamard gate to the control qubit

3. Show that the resultant states are products of classical bits (12.1).



Chapter 14

Interpretations of Measurements.

Decoherence. Density Matrix

The problem of getting the interpretation proved to be rather

more difficult than just working out the equations [95].

Problems associated with the interpretation of the measurement processes are

revisited in the present chapter. A brief survey of the orthodox line of thought is

outlined in Sect. 14.1. Huge amounts of ink and paper have been devoted to the

presentation of improved interpretations, without any of them having generated

a general consensus.1 However, a novel explanation of the coexistence between

quantum and classical descriptions, based on the notion of decoherence, has

been developed since the 1980s. The emergence of classicality from the quantum

substrate interacting with the environment, outlined in Sect. 14.2�, appears to be

a consistent approach. Its application to the measurement process is described in

Sect. 14.3�.

In the present chapter, use is made of the density matrix, another formulation of

quantum mechanics. It is appropriate for treating two entangled systems of which

we have access to only one of them. The associated formalism is presented in

Sect. 14.4.

14.1 Orthodox Interpretations

So far, predictions of quantum mechanics for isolated microsystems have never

failed. However, the macroworld cannot be altogether forgotten even in the extreme

Copenhagen interpretation, since it plays at least an essential role in the measure-

ment process connecting quantum and classical systems.

If the quantum state of a system is denoted by ‰.t0/ at t D t0, the system evolves

swiftly and deterministically to the state ‰.t1/ at t D t1, in accordance with the

time-dependent Schrödinger equation. However, if a measurement takes place, it

changes suddenly and impredictably.

1A critical discussion on alternative interpretations can be found, for instance, in [97].
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None of the difficulties with the collapse principle has been so caricatured as the

one due to Schrödinger [96]. He imagined an unstable nucleus inside a box. Its decay

product, an ˛-particle, may free some poison that would also kill a cat staying inside

the box.2 Let S0, S1 represent the two states of the system (not-decayed-atom and

decayed-atom) and C0, C1 those of the cat (alive and dead). The quantum evolution

implies

S0 C ! S0 C0;

S1 C ! S1 C1; (14.1)

where C is an initial, ready state for the cat. If the atom is in a quantum superposition,

the linear evolution requires3

.c0S0 C c1S1/ C ! c0S0C0 C c1S1C1: (14.2)

The collapse principle that we have been applying so far tells us that the cat will

be either dead or alive after the measurement. Note that the composite systemC cat

is in an entangled state at the beginning of the measurement. Thus neither the atom

nor the cat are in a definite state. But a superposition of an alive and a dead cat has

never been seen!4

Two orthodox interpretations are outlined in the following sections:

14.1.1 The Standard Interpretation

The standard interpretation is not much more than an enunciation of the basic

Principle 3. Therefore, its main contents are:

• Every measurement performed on a quantum system induces a breakdown

of the continuous evolution associated with the Schrödinger evolution, as a

consequence of the collapse of the state ‰ into an eigenstate ϕn of the measured

observable Q.

• The probability of a particular outcome qn is given by jh‰jϕnij2.

• It is the observer who chooses the observable to be measured.

According to Zeilinger, “If we accept that the quantum state is no more than a

representation of the information we have, then the spontaneous change of the state

upon observation, the so-called collapse or reduction of the wave packet, is just a

2The link between the nuclear microsystem and the meter (the animal cat) goes through a chain of

amplifying stages with intermediate systems (detector, poison, etc.) also getting correlated. In the

text, we use the word “cat” to represent all of these items plus the animal.
3A similar operation may be accomplished by the controlled-NOT gate (13.21).
4Entangled states representing N spins pointing together in opposite directions ‰ D 1p

2
Œϕ0.1/

ϕ0.2/:::ϕ0.N / C ϕ1.1/ϕ1.2/:::ϕ1.N /� are called Schrödinger cat states or GHZ states.
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very natural consequence of the fact that, upon observation, our information changes

and therefore we have to change our representation of the information, that is, the

quantum state.” [78].

14.1.2 The Copenhagen Interpretation

Although the standard interpretation has often been confused with the Copenhagen

interpretation, this last one includes the classical world in the process of measure-

ment.

Intermediate classical apparatuses are necessary to convey to our classical minds

the results of measurements on the quantum level. When particles are detected, the

atoms of the detector become ionized, producing first a few electrons, and then

a cascade of electrons. The state vector should take these macroscopic effects

into account. Because of the linearity of the Schrödinger evolution, there is no

mechanism to stop the evolution and yield a single result for the measurement.

Ultimately the evolution may involve the observer’s brain, since the disappear-

ance of macroscopic superpositions is attributed to the existence of the observer.

Some extreme advocates of this interpretation have even argued that this mechanism

may be linked to the property of consciousness in the human brain. Thus, it has been

argued that quantum mechanics has an anthropocentric foundation, a concept which

had disappeared from science after the Middle Ages.

However, the frontier between the quantum and the classical domains remained

an ill-defined concept. This division was never accepted by Bell and other thinkers.

In fact, there exist mesoscopic and even macroscopic quantum systems that

are described with a global quantum wave function [Bose–Einstein condensates

(Sect. 7.5�), superconductors (Sect. 10.1), neutron stars, etc.].

14.2� The Emergence of Classicality from the Quantum

Substrate. Decoherence

In this section we present a derivation of Newtonian mechanics as a limiting case

of quantum mechanics.5 Zurek was the first to emphasize the relevance of the

interaction of systems with the environment [99], which in this case is represented

by the initial state ε and the two states ε0 and ε1 that are obtained through the linear

evolution

ϕ0 ε! ϕ0 ε0;

ϕ1 ε ! ϕ1 ε1: (14.3)

5We mostly follow Chap. 2 of [98] throughout this section.
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The system–environment interaction frequently manifests through a scattering

process of surrounding particles interacting with the system (photons, air molecules,

etc.).

If the initial state is a quantum superposition ϕ˙ D 1p
2

.ϕ0 ˙ ϕ1/, the evolution

yields entangled states

ϕ˙ ε! 1p
2

.ϕ0 ε0 ˙ ϕ1ε1/ : (14.4)

The reduced density matrix6 operator for the system may be written7

O�S D
1

2
.jϕ0ihϕ0j C jϕ1ihϕ1j ˙ jϕ0ihϕ1jhε1jε0i ˙ jϕ1ihϕ0jhε0jε1i/

� 1

2
.jϕ0ihϕ0j C jϕ1ihϕ1j/ : (14.5)

In deriving the last line we have assumed that the environment states are almost

orthogonal to each other. This assumption is based on the complexity of the

environment: if, for instance, we consider a beam of light quanta impinging over

the system, the overlap between states before and after the collision may not be very

much smaller than one for each individual photon, but the overlap of N photons

may be close to vanishing in the limit of large N . If this is the case, the density

matrix becomes similar to the one associated with an uncorrelated admixture of two

separate states and thus, it is not able to display interference phenomena. Moreover,

the larger the system, the more likely that the environment states become mutually

orthogonal.

Therefore, classical macroscopic systems emerge as a consequence of being

monitored by the rest of the universe. The environment acts as a device yielding

information about which path in the two slit experiment (Fig. 2.5), which destroys

the interference pattern.

Equation (14.5) does not imply that the system is in a mixture of states ϕ0 and ϕ1.

Since these two states are simultaneously present in (14.4), the composite systemC
environment displays superposition and associated interferences. However, (14.5)

says that such quantum manifestations will not appear as long as experiments are

performed only on the system S. Thus, there has been a leakage of coherence from

the system to the composite entity. Since we are not able to control this entity, the

decoherence has been completed to all practical purposes.

For many system–environment models the overlaps

hεi .t/jεj .t/i / exp.�t=�d / (14.6)

6The density matrix formalism is outlined in Sect. 14.4.
7An expansion of the environmental states in terms of an orthonormal set, εi D P

l ci
l φl , yields:

trace.jεi ihεj j/ =
P

l ci
l c

j�
l = hεj jεi i.
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display an extremely fast exponential decay for i ¤ j . Calculations for simplified

cases yield decay times between O
�

10�14
�

s and much less. In particular, the

estimated decoherence times for neural superpositions (10�19–10�20) s is much

smaller than typical times for cognitive processes (10�2–1) s [98].

In contrast with the states ϕ˙ of the system, the states ϕ0 and ϕ1 do not become

entangled with the environment, according to (14.3). We thus conclude that there

are states less prone to decoherence than others. They are called pointer states and

make up the pointer subspace of the Hilbert space of the system. They play two

essential roles:

• Sets of pointer states are made up from states most immune to decoherence.

The composite pointer state C environment remains in a product state at

all subsequent times. The selection of these states is determined through the

structure of the system–environment Hamiltonian using methods developed in

[99].

• Pointer states are also the states for which information is redundantly stored in

a large number of fragments of the environment, in such a way that multiple

observers can retrieve this information without disturbing the state of the system

(as, for instance, through visual registration of photons that have been scattered

from the system).

Since these are characteristic features of classical systems, classical reality has

emerged from the quantum substrate.

Decoherence therefore explains why we do not see quantum superpositions

in our everyday world: macroscopic objects are more difficult to keep isolated

than microscopic objects. It also explains why spin up and down states are more

easily preserved than their linear combinations through their interaction with the

environment. This promising result is presently the subject of many studies.

14.2.1� A Mathematical Model of Decoherence

Consider a qubit (the system) coupled to other N � 1 qubits representing the

environment.8 Let the Hamiltonian be

OH D �4

„
OS .1/
z

kDN
X

kD2

jk
OS .k/
z ; (14.7)

where any interaction between the qubits of the environment is disregarded. Assume

an initial state of the form

ˆ.0/ D ‰.0/

kDN
Y

kD2

‰.k/.0/

8See [100], Sect. 2.5.



250 14 Interpretations of Measurements Decoherence Density Matrix

‰.0/ D c0ϕ0 C c1ϕ1; ‰.k/.0/ D c
.k/
0 ϕ

.k/
0 C c

.k/
1 ϕ

.k/
1 : (14.8)

The evolution of the system yields

ˆ.t/ D exp
�

�i OH t=„
�

ˆ.0/

D c0ϕ0

kDN
Y

kD2

h

c
.k/
0 exp .ijkt/ ϕ

.k/
0 C c

.k/
1 exp .�ijkt/ ϕ

.k/
1

i

Cc1ϕ1

kDN
Y

kD2

h

c
.k/
0 exp .�ijk t/ ϕ

.k/
0 C c

.k/
1 exp .ijk t/ ϕ

.k/
1

i

: (14.9)

The density operator is

O�.t/ D jˆ.t/i hˆ.t/j: (14.10)

Since we are interested in the system consisting of the first qubit, we trace out the

remaining ones

O�.1/ D jc0j2 j0ih0j C jc1j2 j1ih1j C z.t/ c0c�
1 j0ih1j C z�.t/ c�

0 c1j1ih0j;

z.t/ D
kDN
Y

kD2

h

jc.k/
0 j2exp .ijk t/C jc.k/

1 j2exp .�ijkt/
i

: (14.11)

The time-dependence z.t/ included in the non-diagonal terms encompasses the

relevant information concerning the coherence of the system. If jz.t/j ! 0, we

are in the presence of a non-unitary process with an irreversible loss of information.

This simple model is not quite up to this task, since there is a recurrence time �r

for the function z to reassume the value 1. Nevertheless, there is an effective loss of

coherence, since

hz.t/i D lim
T !1

1

T

Z T

0

dt 0z.t 0/ D 0;

hjz.t/j2i D 1

2N �1

kDN
Y

kD2

"

1C
�

ˇ

ˇ

ˇ
c

.k/
0

ˇ

ˇ

ˇ

2

�
ˇ

ˇ

ˇ
c

.k/
1

ˇ

ˇ

ˇ

2
�2
#

; (14.12)

which tell us that the fluctuations of z.t/ around the mean value 0 are inversely

proportional to a function which increases exponentially with of the dimensions of

the Hilbert space. Therefore, for a sufficiently large interval, and if the spins of the

environment are initially oriented on the xy plane, the loss of information becomes
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irreversible.9 The ϕ0 and ϕ1 are the pointer states of the simplified model and there

is decoherence.

14.2.2� An Experiment with Decoherence

Since 1996, many experiments have demonstrated the dynamics of decoherence, by

showing how superposition states become unobservable due to decoherence. In the

following, we present one of such experiments.

As mentioned in Sect. 2.5.2, two-slit experiments were carried out even with

relatively large objects such as fullerenes. The “matter” category of these objects

appears evident from the fact that a molecule C70 has more than 103 particle

components (electrons and nucleons). It is also possible to assign to them a

temperature, and thermal radiation has also been observed.

A variation of the two-slit experiment consists of an application of the Talbot–

Lau effect: if a wave impinges perpendicularly on a grating composed of parallel

slits, as a consequence of interference the pattern of the grating will be reproduced

at multiples of the distance L�Dd 2=�. Here d is the spacing between adjacent slits

and �, the wavelength.

Experiments clearly display the oscillatory fluctuations in the density of the

C70 molecule along an axis perpendicular both to the incident direction and to the

grating, at the distance L�. The confirmation of the existence of interference effects

due to the Talbot–Lau effect was obtained by varying the velocity of the particles

and thus the wavelength according to the de Broglie prescription.

Decoherence is produced by collisions between C70 molecules and molecules

in the background gas. The amount of decoherence can be tuned by changing the

density of the gas. Let us define the visibility factor as the ratio

V D Imax � Imin

Imax C Imin

; (14.13)

where Imax and Imin are the maximum and minimum amplitudes in the interference

pattern, respectively. The visibility decays exponentially with the increase in the

density, as shown in Fig. 14.1.

“Thus these experiments provide impressive direct evidence for how the interac-

tion with the environment gradually delocalizes the quantum coherence required for

the interference effects to be observed... So we can smoothly navigate and explore

the quantum-classical boundary, and we find our observations to be in excellent

agreement with theoretical predictions.” (M. Schlosshauer [98], p. 265).

Decoherence is currently the subject of a great deal of research. Many questions

have been clarified to a large extent in recent years. These include the rate of

9This is due to the fact that (14.11) is a sum of periodic terms. However, for macroscopic

environments of realistic size, Zurek has pointed out that �r can exceed the life of the universe.
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Fig. 14.1 Dependence of the visibility (14.13) of the interference pattern on the pressure of the

background gas [102] (reproduced with permission from the authors and from Springer Science

and Business Media)

decoherence, the dynamical selection of the pointer states, the dissipation of energy

into the environment, and many others.

14.3� Quantum Measurements

A quantum measurement is an experiment coupling a microscopic system to a

macroscopic meter. This last piece of the experiment is coupled to the environment.

Decoherence ensures the classical description of the meter.

The von Neumann scheme for measurements assumes that all states are quantum

mechanical, including the much smaller set of classical states. This is a different

starting point than the one upon which the Copenhagen interpretation is based.

Even though the possible superpositions in Hilbert space are potentially expanded

with the Schrödinger equation, we have seen in Sect. 14.2� that the process of

decoherence, i.e. the interaction between systems and environment, leads to the

elimination of quantum superposition effects within the observed system, and to

the selection of a small subset of classical, pointer states [100].

In the following, we sketch how this may be applied for the measurement

of a two-state system (Fig. 14.2). Consider, for instance Schrödinger’s thought

experiment. At the quantum end (left side of the figure) the microsystem is

represented by the two nuclear states, with an ˛-particle inside or outside the nucleus

‰S.0/ D c0ϕ0 C c1ϕ1: (14.14)
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Fig. 14.2 Sketch of the measurement of a qubit. “Rest” is called “environment” in the text.

Initially, there is a superposition of the two nuclear states. One of the two alternatives for the

Schrödinger cat occurs at the classical end. (Reproduced from J. Roederer [20], with permission

from Springer-Verlag)

We consider a quantum apparatus Z (cat et al.) with a Hilbert space spanned by

the two states χ1; χ0. One can assume that the initial state of the binary microsystem-

apparatus is

‰S;Z.0/ D .c0ϕ0 C c1ϕ1/ χ1: (14.15)

The entanglement of the composite system may be produced by means of the

interaction represented by a controlled-NOT gate [see (13.22)]. It is represented

by the two arrows linking the qubit with the apparatus. Thus,

‰
S;Z
t D c0ϕ0χ1 C c1ϕ1χ0: (14.16)

If the detector is in the state χ1, the microsystem is guaranteed to be found in the

state ϕ0, and vice versa. However, there is an ambiguity in a correlated state of

the form (14.16), since we may rotate both the system and the apparatus without

changing ‰
S;Z
t (see p. 221). The ambiguity may be superseded by introducing

another system, the environment E , which is also represented by two quantum states

ε1; ε0. From now on we apply the decoherence process to the composite system C
apparatus

‰S;Z ;E.0/ D ‰
S;Z
t ε1 �! ‰

S;Z ;E
t D c0ϕ0χ1ε1 C c1ϕ1χ0ε0: (14.17)
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Since we cannot control the environment, we are limited to evaluate expectation

values of observables belonging to the (S;Z) subsystems. In the state (14.17), any

such expectation value is

hQi D jc0j2hϕ0χ1jQjϕ0χ1i C jc1j2hϕ1χ0jQjϕ1χ0i
C2Re

�

c0c�
1 hϕ1χ0jQjϕ0χ1i hε0jε1i

�

: (14.18)

The third term in this equation is responsible for introducing interference. Inter-

action with the environment has the effect of modulating this interference term,

whose magnitude is reduced by a factor determined by the absolute value of the

overlap hε0jε1i. When this overlap is sufficiently small, quantum interference effects

become dynamically suppressed. The two (curved) arrows inside the box represent

the correlation between the state of the system and the cat after decoherence has

taken place.

The classical end appears at the extreme right of the figure, the word “Cbit”

labels the cat, either dead or alive (and the observer looking at it).

As pointed out by M. Schlosshauer [98], p. 50, there are three issues in the

measurement problem:

1. The problem of non-observability of interference. Through the interaction with

the environment, decoherence explains why patterns of interference between

macroscopic objects dissapear and only one of the possible outcomes is observed.

An observer would only see the Schrödinger cat either dead or alive, because the

duration of the weird state (14.2) will be incredibly short in a system with so

many components. “Decoherence produces an effect that looks and smells like a

collapse.” [125].

2. The problem of the preferred basis. The preferred states of the system–apparatus

are those that become least entangled with the environment in the course of the

evolution and are thus most immune to decoherence. If the interaction between

the (microscopic) system and the environment is neglected, the different pointer

positions of the apparatus are the robust preferred states “superallowed” by the

environment.

3. The question about why a particular outcome appears to the observer, rather than

another possible one, is outside the domain of decoherence. It belongs to the

philosophical aspects of the relation between quantum mechanics and reality.

14.4 The Density Matrix

The density matrix operator corresponding to a state ‰ is defined as the projector

O� D j‰ih‰j: (14.19)
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In particular, O�i D jiihi j is used in (2.57). The expectation value of an operator OQ
in the state ϕi is given by

trace.�i Q/ D
X

i 0
hi 0jiihi jQji 0i D hi jQjii: (14.20)

If our system is in a state ‰, the descriptions in terms of ‰ and in terms of the

density matrix (14.19) are completely equivalent.

14.4.1 Mixed Density Matrix

In a mixed state we do not know in which state ϕi the system is. Therefore, only

probabilities �i can be ascribed to each state

0 � �i � 1;
X

i

�i D 1; (14.21)

which can be interpreted as a classical probability distribution of quantum states.

The projection operator can be generalized in terms of the density matrix

O� D
X

i

�i jiihi j : (14.22)

Thus, the present formalism is especially useful when we have less than complete

information on the system. For instance, the silver atoms leaving the furnace in a

Stern–Gerlach experiment are randomly oriented in space (as in Fig. 2.4). In this

case, �C D �� D 1=2, the probabilities of the spin being up or down being the

same. We say that the system is in a mixed state and the density matrix is given by

O� D 1

2
.j0ih0j C j1ih1j/ : (14.23)

If �i 0 D ıi 0i , we say that the system is in a pure state, like all those that we have

studied so far in the present text. In this case the density matrix reduces to the

projection jiihi j.
Some consequences of the definition (14.22) are:

• The expectation value of an operator OQ acting within the complete set of states

ϕi , is given by

hjQji D trace.� Q/ D
X

i 0i

�i hi 0jiihi jQji 0i

D
X

i

�i hi jQjii; (14.24)
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where the expectation values hi jQjii are weighted for each of the possible states

ϕi by their respective classical probability.

• The matrix elements of the density matrix are given by

hi j�jj i D
X

k

�khi jkihkjj i (14.25)

and therefore,

trace.�/ D
Y

ik

�k jhi jkij2 D
X

k

�k D 1; (14.26)

where trace(�2) < 1, unless we are dealing with a pure state.

The matrix elements hi j�jii represent the probability of finding the system in the

state ϕi . The non-diagonal matrix elements hi j�jj i may vanish, even if none of

their terms do.

• Let us rotate the spin axis by means of the transformation (5.26). In such a case

(14.23) is transformed to

O� D 1

2

�

j0.ˇ;�/ih0.ˇ;�/j C j1.ˇ;�/ih1.ˇ;�/j
�

: (14.27)

Thus, the mixed density matrix does not provide information about the particular

axis in which the state has been prepared.

• A mixed state is not a superposition of pure states ‰ D
P

i

p
�i ϕi , which

correspond to a density matrix with off diagonal terms

O� D
X

i

�i jiihi j C
X

i¤j

p
�i �j jiihj j: (14.28)

• The (useless) overall phase multiplying the state vector disappears from the

formalism.

• As time changes,

O�.t/ D
X

i

�i ji.t/ihi.t/j;

hi j�.t/jj i D
X

k

�khi jk.t/ihk.t/jj i: (14.29)

Therefore, according to the time principle (9.4),

OP� D �iŒ OH ; O��: (14.30)
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14.4.2 Reduced Density Matrix

The reduced density matrix is the appropriate tool for the treatment of two (or more)

entangled systems A; B , if we have access only to system A.

O�.A/ D traceB

�

O�.AB/
�

; (14.31)

where the operator O�.A/ is obtained by performing a partial trace over the subsystem

B . If we denote by ‰.AB/ a pure eigenstate of the whole system

‰.AB/ D
X

i;�

ci� ϕ
.A/
i χ.B/

� (14.32)

and OQ is an operator acting only within the (complete) subspace ϕ
.A/
i , its expectation

value can be written

h‰.AB/jQj‰.AB/i D
X

i;j;�

hi .A/jQjj .A/i D trace. O�.A/Q/: (14.33)

The reduced density matrix can be written as

O�.A/ D
X

i;j;�

c�
i�cj� ji .A/ihj .A/j;

trace.�.A// D 1 hk.A/j O�.A/jk.A/i � 0; (14.34)

which are conditions equivalent to (14.21). Therefore, O�.A/ satisfies the definition of

a density matrix, upon the diagonalization within the subspace A.

As an example, consider the case of two qubits, A and B , in the Bell state ‰B0

(Sect. 12.2). The density matrix operator is written

O�.AB/
B0
D 1

2

�

j0.A/0.B/i C j1.A/1.B/i
� �

h0.A/0.B/j C jh1.A/1.B/j
�

: (14.35)

Since this is a pure state, trace.�2/ D 1. Let us assume that we do not have access

to qubit B . We obtain the reduced density matrix for qubit A by tracing out qubit B

O�.A/ D 1

2

�

j0Aih0.A/j C j1.A/ih1.A/j
�

D 1

2

�

1 0

0 1

�

; (14.36)

which behaves as a mixed state, since trace
�

.�.A//2
�

D 1=2. In a Bell state we have

incomplete information on the properties of each qubit. Moreover, the information

encoded in (14.36) is the same for any of the Bell states.
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The expectation value of the spin of qubit A along the x-direction vanishes

hjSxji D
„
2

trace
�

�x�.A/
�

D 0: (14.37)

The reduced density matrix is used in Sect. 14.2� to formalize the concept of

decoherence. In such case, the universe is divided into two parts: A, the system

upon which we are interested, and B , the rest of the universe.

Problems

Problem 1. A C70 molecule moves with a velocity of about 100 m/s. Calculate the

Talbot–Law distance if the separation between two consecutive slits is 1 
m.

Problem 2. Show that the mean value of the density matrix is always positive.

Problem 3. Show that the density operator is Hermitian.

Problem 4. Consider the pure spin state ϕ
ˇ�

" (5.25).

1. Construct the density operator.

2. Obtain the averages hSxi; hSyi; hSzi.

Problem 5. Consider the unpolarized mixed spin state (�ˇ� ! d˝=4�).

1. Construct the density operator and compare the result with (14.36).

2. Obtain the averages hSxi; hSyi; hSzi.
3. Interpret the difference between these averages and those obtained in Problem 4.

Problem 6. Calculate the value of 	x for a particle moving in a harmonic oscillator

potential at temperature T . Assume a Maxwell–Boltzmann distribution [�n D
exp.�„! n=kBT /] and use

R1
0 exp.�x/ xndx D � .n/.



Chapter 15

A Brief History of Quantum Mechanics

15.1 Social Context in Central Europe During the 1920s

To continue the building analogy of Chap. 1, the theoretical foundations of physics

were shaken at the beginning of the twentieth century. These tremors preceded those

of the society as a whole. The historian Eric Hobsbawm has written [103]:

The decades from the outbreak of the First World War to the aftermath of the second, were

an Age of Catastrophe for this society [: : :] shaken by two world wars, followed by two

waves of global rebellion and revolution [: : :]. The huge colonial empires, built up before

and during the Age of the Empire, were shaken, and crumbled to dust. A world economic

crisis of unprecedented depth brought even the strongest capitalistic economies to their

knees and seemed to reverse the creation of a single universal world economy, which had

been so remarkable an achievement of nineteenth-century liberal capitalism. Even the USA,

safe from war and revolution, seemed close to collapse. While the economy tottered, the

institutions of liberal democracy virtually disappeared between 1917 and 1942 from all but

a fringe of Europe and parts of North America and Australasia, as Fascism and its satellite

authoritarian movements and regimes advanced.

Since quantum mechanics was developed for the most part in Northern and Central

Europe (see Table 15.1), we will devote most of our attention here to the conditions

prevailing at that time in Germany and Denmark.

Hobsbawm’s description applies particularly well to the case of Germany:

while the Anglo-Saxon world and the wartime neutrals more or less succeeded in

stabilizing their economies between 1922 and 1926, Germany was overwhelmed in

1923 with economic, political and spiritual crises. Hunger riots erupted everywhere,

as the value of the mark plunged to 10�12 of its pre-1913 value. Additional

difficulties arose from a repressed military putsch in North Germany, a separatist

movement in the Rhineland, problems with France on the Rhur, and radical leftist

tendencies in Saxony and Thuringia. In the East, Soviet Russia did not fare better.

A cultural movement against dogmatic rationalism gained ground in German

society after the war. A widely read book opposed causality to life, and assimilated

physics into causality [104]. Moreover, a profound division along political, scientific

and geographic lines started to grow in the German physics community. Right wing
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physicists were in general chauvinistic, ultraconservative, provincial, anti-Weimar

and anti-Semitic. They were interested in the results of experiments and dissociated

themselves from quantum and relativity theory. On the opposite side, the Berlin

physicists were labeled as liberal and theoretical. Note, however, that the German

physicists of that time, with the possible exception of Einstein and Born, could

only be labeled as liberal or progressive in comparison with Johannes Stark and

Philipp Lenard. The adjective “theoretical” (appearing also in the name of Bohr’s

Institute in Copenhagen) would be translated today as “fundamental.” Although the

main theoretical center was in Berlin, strong theoretical schools also flourished in

Göttingen and Munich. The start of Nazi persecutions in the 1930s and the exclusion

of Jews from the first group had consequences on the world distribution of physicists

devoted to the most fundamental aspects of physics.

After the First World War (1918) German physicists had been excluded from

international collaborations, and the lack of foreign currency made it almost

impossible to purchase foreign journals and equipment. However, a new national

organization, the Notgemeinschaft der Deutschen Wissenschaft, created in 1920

under the direction of Max von Laue and Max Planck, was instrumental in the

provision of funds for scientific research. Atomic theorists in Berlin, Göttingen

and Munich received sufficient funds to support the work of physicists like

Heisenberg and Born. The foreign boycott was not observed by Scandinavia and the

Netherlands: Bohr kept friendly relations with his German colleagues (see p. 267).

Denmark had been on the decline at least since 1864, when it was defeated by

Prussia and Austria with the resultant loss of about one-third of its territory. The

years after the war represented a period of unprecedented turmoil in Denmark as

well. For the first time in 400 years, this country teetered on the brink of revolution,

although of a kind that was different from those experienced in neighboring coun-

tries, disputes over the shift of the border with Germany, social struggles between

town and country and fights for extensive reforms in employment conditions. All

these difficulties added to the loss of wartime markets, and to trade deficits and

inflation. In spite of such hardships, Bohr’s new institute was inaugurated in 1921.

The scientific and the social crisis during the first part of the twentieth century

were both very profound. However, the first one was over by the end of the 1920s.

The second one continued in crescendo until the aftermath of the Second World War

(1945).

15.2 Pre-history of Quantum Physics (1860 � t � 1900)

Gustav Kirchhoff is at the origin of both radiation and matter branches of quantum

physics.1 In 1860 he showed that the emissive power of a black-body E.�/

depends only on the frequency � and on the temperature T and challenged both

the experimentalists and theoreticians to find such dependence [108]. This search

1The sources [105–107] have been used extensively for this chapter.
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proved to be full of difficulties. Only in 1893 Wilhelm Wien demonstrated his

displacement law and in 1896 he proposed the exponential dependence for the

function f .�=T / in (15.1) [109]. In 1900 Planck modified this dependence with

an extremely successful guess (15.2), that still holds today

E.�/ D �3 f .�=T / f .�=T / D ˛ expŒ�ˇ�=T � (15.1)

! h�3

c2

1

expŒh�=kT � � 1
; (15.2)

where the Planck constant h was introduced [2].

Analytical spectroscopy was also started by Kirchhoff in 1860, in collaboration

with Robert Bunsen [110]. The Balmer formula fitting the frequencies of the discrete

hydrogen spectrum dates from 1885

�n D cRH

�

1

4
� 1

n2

�

; n D 3; 4; : : : ; (15.3)

where RH is the Rydberg constant [7]. No significant progress was made in

understanding Balmer’s formula for 28 years.

15.3 Old Quantum Theory (1900 � t � 1925)

15.3.1 Radiation

Planck justified his law by means of an unorthodox way of counting partitions plus

the quantum hypothesis: the (fictitious) oscillators of a black-body have energy [2]

� D h� : (15.4)

In 1905 Einstein showed that the expression for the increase of entropy with

volume of a gas composed of non-interacting molecules becomes identical to the

same quantity for monochromatic radiation obeying Wien exponential law (15.1),

if in such expression the number of molecules n is replaced by E=h�, where E is

the total energy. Thus, from purely thermodynamic arguments, Einstein concluded

that “... it seems reasonable to investigate whether the laws governing the emission

and transformation of light are also constructed as if light consisted of ... energy

quanta” [3]. This proposal constituted a revolution, in view of the so far wholly

accepted Maxwell’s wave theory of light. Moreover, Einstein endowed Planck’s

oscillators with physical reality.

On the basis of (15.4), Einstein interpreted the photoelectric effect as the total

transfer of the photon2 energy to the electron, whose energy E is given by

2The term “photon” was only coined during the 1920s.
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E D h� �W ; (15.5)

where W is the work function of the metal. This relation was only confirmed

experimentally in 1914 by Robert Millikan [111], although even then Millikan

did not conclude in favor of Einstein’s “bold, not to say reckless hypothesis.” In

fact, from 1905 to 1923 Einstein was the only physicist seriously considering the

existence of light quanta.

From 1906 to 1911, quantum theory was Einstein’s main concern (even more

than the theory of relativity). He contributed to the specific heat of solids and to

energy fluctuations of black-body radiation. In 1909, he foretold: “It is my opinion

that the next phase of theoretical physics will bring us a theory of light which can

be interpreted as a kind of fusion of the wave and the emission theory.”

Between 1916 and 1917 Einstein made fundamental contributions to the theory

of radiation [64]. Combining classical thermodynamics and electromagnetism

with Bohr’s first two quantum postulates (Sect. 15.3.2), and assuming thermal

equilibrium between atoms and radiation field, he derived:

• The concepts of spontaneous and induced emission and absorption, from which

he could obtain Planck radiation law (15.2) (see Sect. 9.8.4�).

• The momentum of the light particle h�=c which, together with the energy (1905),

completes the properties of a quantum particle.

• The need of a probabilistic description, inherent to the concept of spontaneous

emission

Einstein’s 1917 paper carried the seeds of many developments in physics. However,

he did not work by himself two rather immediate consequences:

1. The scattering of an atom and a light particle. Such experiments made by

Arthur Compton verified both the energy and the momentum conservation in

these processes and thus confirmed the validity of the light quantum hypothe-

sis3(1923, [4]).

2. Satyendra Bose’s derivation of Planck’s law using symmetric states was trans-

lated and submitted for publication by Einstein in 1924 [55]. The same year

Einstein applied Bose’s ideas to an ideal gas of particles [46] (see Sect. 7.5� on

Bose–Einstein condensation).

However, a last storm over the light quanta was on the way (Sect. 15.5.2).

3However, explanations based on classical electromagnetic fields and quantized processes of

emission and absorption could only be completely ruled out after experimental evidence that there

is no lower limit on the accumulation time of light energy in the photoelectric effect [112] or on

the non-existence of correlations of a photon with itself [113].
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15.3.2 Matter

In 1911, the work of Rutherford’s young colleagues Hans Geiger and Ernest

Mardsen showed conclusively that a hydrogen atom consists of one electron outside

the positively charged nucleus, where almost all the mass is concentrated [6]. At

that time, electrons were supposed to be just particles. (Electron wave behavior was

experimentally verified in [5].)

Like Einstein in 1905, Bohr was aware that the postulates of his 1913 model [8]

were in conflict with classical physics:

• An atom displays stationary states of energy En that do not radiate.

• Transitions between stationary states are accompanied by monochromatic radia-

tion of frequency � satisfying the Balmer series

h� D En �Em : (15.6)

This assumption implied a renunciation of causality because of the absence of

any directive for the transition.

• For large values of n, the quantum frequency � should agree with the classical

frequency of light irradiated by the rotating electron. This correspondence

principle constituted the main link between classical and quantum theory. (See

Fig. 4.2 as an illustration of the survival of the correspondence principle in

quantum mechanics.)

The derivation of the Rydberg constant as a function of the mass and the charge

of an electron and of Planck’s constant, and the correct helium ion/hydrogen ratio

to five significant figures, commanded the attention of the physics community.

By means of his precise determination of X-ray energies, Henry Moseley gave

further support to the Bohr model both through the assignment of a Z value to all

known elements and the prediction of the still missing elements [114]. James Frank

and Heinrich Hertz further confirmed the model by using the impact of electrons on

atoms to excite their atomic spectrum [115]. The Bohr model appeared to work, in

spite of its assumptions. To joke about the situation with the old quantum theory,

Bohr used to tell the story of a visitor to his country home who noticed a horseshoe

hanging over the entrance door. Puzzled, he asked Bohr if he really believed that

this brought luck. The answer was: “Of course not, but I am told it works even if

you don’t believe in it.” [107].

Bohr developed his model during a post-doctoral stay at Rutherford’s laboratory

(Manchester, UK). He was appointed professor of physics at the University of

Copenhagen in 1916 and the Universitetets Institut for Teoretisk Fysik (today, Niels

Bohr Institutet) was inaugurated in 1921. Unlike Einstein and Dirac, Bohr seldom

worked alone. His first collaborator was Hendrik Kramers (Netherlands), followed

by Oscar Klein (Sweden). During the 1920s, there were 63 visitors to the Institute

who stayed more than one month, including 10 Nobel Laureates. The flow of foreign
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visitors lasted throughout Bohr’s life: he became both an inspiration and a father

figure.

Arnold Sommerfeld established an important school in Munich. In 1914, it was

found that every line predicted by the Balmer formula is a narrowly split set of lines.

By taking into account the influence of relativity theory, Sommerfeld showed that

the orbits of the electrons are approximate ellipses displaying a parhelion precession

[116]. Sommerfeld’s work was also one of the first attempts to unite the quantum

and relativity theories, a synthesis still not completely achieved.

In Göttingen, Born did not turn his attention to atomic theory until around 1921.

Heisenberg and Jordan were his assistants.

In 1924 Pauli had published 15 papers on topics ranging from relativity to the old

quantum theory, the first one before entering the University of Munich. In 1922, he

went for a year to Copenhagen. Later he held a position at Hamburg. He made the

assumption of two-valuedness for electrons and stated the exclusion principle [42]

(Sect. 7.1) so important for understanding the properties of atoms, metals, nuclei,

baryons, etc.

The crucial experimental results of Stern and Gerlach were known in 1921

[17]. A proposal concerning spin was made4 by two Dutch students from the

University of Leiden, Uhlenbeck and Goudsmit, who also suggested the existence

of ms D ˙1=2 as a fourth quantum number [35] (Sect. 5.2.2). They explained

the anomalous Zeeman effect by including the factor of two appearing in (5.22),

which was accounted for in [117]. After receiving objections from Henrik Lorentz,

Uhlenbeck and Goudsmit considered withdrawing their paper, but it was too late.

(Their advisor, Paul Ehrenfest, also argued that the authors were young enough to

be able to afford some stupidity.) The two-component spin formalism (5.20) was

introduced by Pauli in 1927 [36].

Dirac, and independently Enrico Fermi, developed quantum statistics for anti-

symmetric wave functions [56, 57].

However, until 1925, there were almost as many setbacks as successes in the

application of the model. For instance, the spectrum of He proved to be intractable,

in spite of heroic efforts by Kramers, Heisenberg and others. The final blow was the

negative result of the BKS proposal (Sect 15.5.2).

4The combination of the Pauli principle and of spinning electrons prompted Ralph Kronig to

propose the idea of half-integer spin. However, he was dissuaded from publishing it by Pauli and

others, on the grounds that models for electrons carrying an intrinsic angular momentum „=2

either required the periphery of the electron to rotate with a velocity much larger than the velocity

of light c, or the electron radius to be much larger than the classical value.
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15.4 Quantum Mechanics (1925 � t � 1928)

Periodically, Bohr used to gather his former assistants together at the Institute in

Copenhagen (Fig. 15.1). In 1925, the ongoing crisis in quantum mechanics was

examined by Bohr, Kramers, Heisenberg and Pauli. A few months later, back at

Göttingen, Heisenberg found a way out of the impasse [9]. He succeeded in formu-

lating the theory in terms of observable quantities, doing away with the concepts of

orbits and trajectories (see Sect. 2.1). Heisenberg found a correspondence between

the coordinate x.t/ and the double array xnm (n; m labeling quantum states). xnm.t/

was interpreted as a sort of transition coordinate, and hence an allowed observable.

To represent x2.t/, he made the crucial assumption that .x2/nm D
P

p xnpxpm.

Heisenberg solved the simple but non-trivial problem of the harmonic oscillator by

showing that the Hamiltonian is given by Hmn D Enınm, where the En reproduce

the correct eigenvalues (Sect. 3.3).

Born and Jordan realized that the arrays (xnm) were matrices and arrived at the

fundamental commutation relation (2.15) in its matrix form (3.45) [118]. Born,

Heisenberg and Jordan wrote a comprehensive text on quantum mechanics, which

included unitary transformations, perturbation theory, the treatment of degenerate

systems and commutation relations for the angular momentum operators [10].

Many of these results were also obtained by Dirac [11], who introduced the

idea that physical quantities are represented by operators (of which Heisenberg’s

matrices are just one representation), the description of physical states by vectors

in abstract Hilbert spaces, and the connection between the commutator of two

operators with the classical Poisson bracket.

In 1926, Pauli and Dirac independently reproduced the results for the hydrogen

atom of old quantum theory using the new matrix mechanics [39].

Fig. 15.1 The 1930 Copenhagen Conference. In the front row: Klein, Bohr, Heisenberg, Pauli,

Gamow, Landau and Kramers. (Reproduced with permission from the Niels Bohr Archive,

Copenhagen)
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Zurich-based Schrödinger did not belong to the Copenhagen–Göttingen–Munich

tradition. In 1925 he came across de Broglie’s suggestion [32] that the wave–

corpuscle duality should also be extended to material particles, satisfying the

momentum–frequency relation (4.34). This relation is reproduced if the momentum

and the energy are replaced by the differential operators (4.4) and (9.5) and if

such operators act on the plane wave solutions (4.32) and (9.10). Upon making

the same substitution in a general Hamiltonian, Schrödinger derived the time-

independent and the time-dependent equations that bear his name [12]. Quantization

was obtained through the requirement that the wave function should be single-

valued (as in (5.32)). Schrödinger presented his derivation as a step towards a

continuous theory, the integers (quantum numbers) originating in the same way as

the number of nodes in a classical vibrating string. Schrödinger’s formulation gained

rapid acceptance, both because of the answers that it produced and because it was

built from mathematical tools that were familiar to the theoretical physicists of the

time. Schrödinger hoped that quantum mechanics would become another branch

of classical physics: waves would be the only reality, particles being produced by

means of wave packets. This expectation turned out to be wrong.

In 1926, Schrödinger also proved that the matrix and the differential formulation

are equivalent. Since physicists understood how to transcribe the language of

wave mechanics into matrix mechanics, both of them were referred to as quantum

mechanics.

The probability interpretation of j‰.x; t/j2 is usually considered part of the

Copenhagen interpretation. However, Born was the first to write it explicitly [31].

In his paper on collision theory, he also stated that jci j2 (2.6) was the probability

of finding the system in the state i . He emphasized that quantum mechanics does

not answer the question: what is the state after a collision? Rather it tells us how

probable a given effect of the collision is. Determinism in the atomic world was

thereby explicitly abandoned.

In 1926 Heisenberg was able to account for the He problem using the

Schrödinger equation plus the Pauli principle plus spin (Sect. 8.3) [119].

The relativistic generalization of the Schrödinger time-dependent, two-

component spin formalism encountered some difficulties. In 1928, Dirac produced

an equation, linear in both the coordinates and time derivatives, with the properties

that:

• It is Lorentz invariant

• It satisfies a continuity equation (4.17) with positive density � (which previous

attempts at relativistic generalization had failed to do)

• It encompasses spin from the start

• It reproduces the results of the Sommerfeld model for the H atom, which were

more accurate than the predictions of (new) quantum mechanics [120]

The price that Dirac had to pay for this most beautiful product of twentieth century

mathematical physics was that it turned out to be a four-component rather than a

two-component theory. Its interpretation including the additional two components

is beyond the scope of this exposition.
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Table 15.1 Publications in quantum mechanics. July 1925–March 1927 [105]

Country Papers written Country Papers written

Germany 54 France 12

USA 26 USSR 11

Switzerland 21 Netherlands 5

Britain 18 Sweden 5

Denmark 17 Others 7

A few comments are in order:

• Quantum mechanics and its traditional interpretation were developed over only a

few years (1925–1928). The rate of publication in this period was such that many

physicists complained about the impossibility of keeping up to date. Moreover,

communication delays certainly hampered the ability of non-European physicists

to contribute.

• Quantum mechanics was developed under a very unfavorable social context (see

Sect. 15.1).

• Unlike previous scientific cornerstones, quantum mechanics was the result of the

coherent effort of a group of people, mostly in Northern and Central Europe.

Table 15.1 shows the number of papers written in each country during the period

of major activity in the creation of quantum mechanics. It reflects both the

predominance of Germany and the number of visitors, especially in the case

of Denmark. It also reminds us that the scientific center of gravity was only

transferred to the other side of the Atlantic after the Second World War (1939–

1945).

• The Bohr Festspiele took place at Göttingen in 1922. After Bohr’s speech, the

20 year old Heisenberg stood up and raised objections to Bohr’s calculations.

During a walk in the mountains that same afternoon, Bohr invited Heisenberg

to become his assistant in Copenhagen. This anecdote points out the extreme

youth (and self-confidence) of most of the contributors to quantum mechanics.

In 1925 Dirac was 23 years old, Heisenberg was 24, Jordan 22, and Pauli 25.

The “elders” were Bohr (40), Born (43), and Schrödinger (38). Feynman (24)

produced the path integral formulation of quantum mechanics being a graduate

student at Priceton (Sect. 11.3�).

15.5 Philosophical Aspects

15.5.1 Complementarity Principle

Neither the Heisenberg nor the Schrödinger formulations improved the contem-

porary understanding of wave-particle duality. In 1927, Heisenberg answered the

question: can quantum mechanics represent the fact that an electron finds itself
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approximately in a given place and that it moves approximately with a given

velocity and can we make these approximations so close that they do not cause

mathematical difficulties? [26]. The answer was given in terms of the uncertainty

relations (2.37) and (9.35) (see the last paragraph of Sect. 2.6.1). Heisenberg’s

paper was the beginning of the discussion of the measurement problem in quantum

mechanics (Chap. 14), about which so many volumes have been written.

As most theoretical physicists would have done, Heisenberg derived his uncer-

tainty principle from the (matrix) formalism (Sect. 2.6.1). Bohr had the opposite

attitude. While being duly impressed by the existence of at least two formulations

predicting correct quantum results, he insisted on first understanding the conceptual

implications, rather than the formalisms. His main tools consisted of words, which

he struggled continually to define precisely. Bohr pointed out that theories – even

quantum theories – were checked by readings from classical instruments. Therefore,

all the evidence has to be expressed within classical language, in which the mutually

exclusive terms “particle” and “wave” are well defined. Either picture may be

applied in experimental situations, but the other is then inapplicable. The idea of

complementarity is that a full understanding of this microscopic world comes only

from the possibility of applying both pictures; neither is complete in itself. Both

must be present, but when one is applied, the other is excluded.

The complementary principle is not an independent principle of quantum physics

but a series of conceptual statements interpreting the mathematical formalism.

Bohr’s ideas were stated at the Como Conference, September 1927. Bohr continued

to reformulate the presentation of complementarity throughout the rest of his

life [21].

15.5.2 Discussions Between Bohr and Einstein

Many histories of science display a sequence of continuous successes, thus ignoring

the many frustrations accompanying creative processes. The discussions between

Bohr and Einstein about problems of principle illustrate the difficulties inherent to

changes in the description of the physical world, even in the case of our greatest

forefathers.

The first meeting between Bohr and Einstein took place in 1920, on the occasion

of Bohr’s visit to Berlin. Verification of general relativity through the bending of

light had taken place shortly before. Thus Einstein was on the zenith, while Bohr

was only a rising star. Although they interchanged affectionate compliments, the

subject of their Berlin conversations remains unclear. Like many other physicists,

at that time Bohr did not believe in light quanta, and this disbelief continued even

after Compton’s experiment (1923). In 1924 there appeared a paper signed by

Bohr, Kramers and the American physicist John Slater with the following contents

[121]:

• Since the simultaneous validity of the (continuous) wave theory of light, and

the description of matter processes involving (discrete) energy transitions is



15.5 Philosophical Aspects 269

incompatible with conservation of energy in individual events, this principle is

given up, as well as the conservation of momentum. They hold only statistically.

• Statistical independence of the processes of emission and absorption in distant

atoms is also assumed.

• The mediation of virtual fields produced by virtual oscillators is proposed.

However the paper describes neither formal mechanisms governing the behavior

of these entities, nor their interaction with real fields. In fact, (15.6) is the only

mathematical expression included in the paper.

Born, Klein and Schrödinger reacted positively. Einstein and Pauli were against.

However, two experiments on Compton scattering ended the BKS speculation dur-

ing the following year. They concerned the time-interval between the electron recoil

and the scattered photon, and momentum conservation in individual processes. The

BKS proposal marked the end of old quantum mechanics.

Einstein’s initial appraisal of Heisenberg’s and Schrödinger quantum mechanics

appears to have been positive. However, the approval was withdrawn after Born’s

probabilistic interpretation. Einstein never accepted limitations to our knowledge

arising from first principles of the theory.

Quantum mechanics was discussed at the V Solvay Conference (1927) in

Brussels, attended by all founders. Einstein expressed his concern over the extent

to which the causal account in space and time had been abandoned in quantum

mechanics. The discussions centered on whether a fuller description of phenomena

could be obtained through the detailed balance of energy and momentum in

individual processes. For instance, in the case of a beam of particles passing through

a slit in a diaphragm, Einstein would suggest that the indetermination principle

could be invalidated by measuring the momentum of the recoiling slit. During the

evenings Bohr would explain how the inherent uncertainty in the location of the slit

due to its recoil restored Heisenberg’s principle. Bohr systematically emphasized

the need to fully specify the measuring apparatus in any experiment. It was on this

occasion that Einstein asked whether God had recourse to playing dice, to which

Bohr replied by calling for great caution in ascribing attributes to Providence in

everyday language.

At the next Solvay meeting in 1930 (Fig. 15.2), Einstein claimed that a control of

energy and time could be achieved using relativity theory. He proposed the device

represented in Fig. 15.3, consisting of a box with a hole on a wall and a clock inside,

such that a single photon might be released at a known moment. Moreover, it would

be possible to measure the energy of the photon with any prescribed accuracy by

weighing the box before and after the event, and make use of the relativity equation

E D mc2. Bewilderment among quantum physicists lasted until the next day, when

Bohr came up with an answer based on general relativity: since the rate of the

clock depends on its position in a gravitational field, the lack of precision in the

box displacement generates an uncertainty �t in the determination of time, while

the indeterminacy in the energy �E is obtained through the position–momentum

relation (2.37). The product �t�E satisfies the Heisenberg time–energy uncertainty

relation.
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Fig. 15.2 Einstein and Bohr

leaving the Solvay meeting of

1930. (Reproduced with

permission from the Niels

Bohr Archive, Copenhagen)

Fig. 15.3 Sketch of the

thought experiment proposed

by Einstein to reject the

time–energy uncertainty

relation. (Reproduced with

permission from the Niels

Bohr Archive, Copenhagen)

In 1935 Einstein, Podolsky and Rosen presented a profound argument pointing

to the incompleteness of quantum mechanics [16]. They considered a system

consisting of two entangled and spatially separated particles, which required the

existence of a hidden mechanism to reproduce the quantum results (Sect. 12.3.2).

An adaptation of their argument to the case of spin entanglement was produced by

David Bohm [80].

Bohr’s reply was based on his concept of “phenomenon”: the two (mutually

exclusive) experimental setups were not specified in the EPR definition of reality

[122].
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Probably the best description of Einstein’s and Bohr’s respective positions is

stated in Bohr’s presentation on the occasion of Einstein’s 70th birthday [124] and

in Einstein’s answer in the same volume [123].

15.6 Recent Quantum Mechanics

Rather than dwell on philosophical interpretations of equations, most physicists

proceeded to carry out many exciting applications of quantum mechanics [125]:

This approach proved stunningly successful. Quantum mechanics was instrumental in

predicting antimatter, understanding radioactivity (leading to nuclear power), accounting

for the behavior of materials such as semiconductors, explaining superconductivity, and

describing interactions such as those between light and matter (leading to the invention of

the laser) and of radio waves and nuclei (leading to magnetic resonance imaging). Many

successes of quantum mechanics involve its extension, quantum field theory, which forms

the foundations of elementary particle physics : : : .

On the other hand, the controversy over the EPR experiment did not die down.

Einstein believed that, although quantum predictions were correct, indeterminacies

appeared because some parameters characterizing the systems were unmeasurable.

Therefore, an ensemble of identically prepared systems, all of them represented

by the same quantum state ‰, would not represent a collection of identical

systems. Quantum mechanics would only appear probabilistic because we cannot

measure the values of the “hidden variables.” A more fundamental theory restoring

determinism should bear to quantum mechanics a relation similar to the one existing

between classical and statistical mechanics.

There were also attempts to prove that no hidden variable theory could reproduce

the statistical properties of quantum theory. In particular, von Neumann’s classic

book [101] contains a mathematical proof that quantum theory is incompatible with

the existence of “dispersion free ensembles” (such that hjQ2ji D hjQji2, for any

observable Q). This precision would entail the existence of hidden variables.

In 1964, Bell wrote two seminal papers. In the first one, he showed that there

was a questionable assumption in von Neumann’s proof. In fact, he explicitly

constructed a deterministic non-local model, generating results whose averages

were identical to the predictions of quantum theory [126]. The second paper was

not about quantum mechanics, but develops the consequences of both the existence

of hidden variables and of Einstein’s locality [81]. He found that such systems5

would induce correlations that could be measured. He also showed that quantum

predictions violated such restrictions. Thus quantum theory and Einstein’s locality

could not both be right. From there on, the emphasis was shifted from hidden

variables to locality. Non-locality became an important feature of this world.

5One such systems is presented in Sect. 12.3.2.
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Note that hidden variables are not ruled out, provided they are non-local.

However, they have become a less attractive concept, since they were initially

invoked to preserve locality.

The quantum-classical boundary persisted for decades as an ill-defined con-

cept, although it was essential for the Copenhagen interpretation of measure-

ments. Moreover, quantum effects were observed beyond the microscopic domain

[fullerenes (Sect. 2.5.2), Bose–Einstein condensation (Sect. 7.5�), superconductivity

(Sect. 10.1)].

The notion of isolated systems, which originated in classical physics, was

adopted in quantum mechanics without further scrutiny. Only recently was it

realized that the openness of quantum systems (i.e. their interaction with the

environment) is essential to explain how a quantum system becomes effectively

classical. In Sect. 14.2� it is described how the coupling to the environment

defines the observable physical properties of the system. Quantum coherences

are delocalized into the entangled system–environment system, which effectively

removes them from our observation. This process is very fast and irreversible in

practice. Thus, classical systems appear to emerge from the quantum substrate [98].

Ironically, the locality of classical systems had been responsible for the idealization

of the isolated-system concept.

The first paper on what was later called “decoherence” was written in 1970 by

H. Dieter Zeh [127], who observed that realistic macroscopic quantum systems are

typically found in states that are correlated with the environment, inhibiting the

description of the dynamics of the system itself by means of the quantum formalism.

In 1981, Zurek developed the concept of environment-induced superselection

[128]. He also showed how environment-induced superselection determines the

“pointer” preferred states, and how it explains the fact that position is observed to be

the usually preferred quantity in the everyday world. In 1984, Zurek derived a quite

general expression from which typical decoherence timescales could be evaluated

[129].

Erich Joos and Zeh presented in 1985 a detailed model for decoherence induced

by the scattering of environmental particles, including numerical timescales for

objects of various sizes and immersed in different environments [130].

Will quantum computing eventually become an accomplished instrument? As

objects become larger and larger, they become more sensitive to external perturba-

tions, which can destroy quantum superpositions. Nobody knows whether there is

a hypothetical limit beyond which decoherence would be inevitable, or whether we

always can, at least in principle, take sufficient precautions to protect the system

against perturbations, no matter how large they are. Laboratory incident light is

not even needed to produce decoherence. Thermal radiation, cosmic background

radiation, gravity waves, etc., may be sufficient.



An Evanescent Particle (1997). Pérez Celis, Argentine painter (1939–2008). Starting from the

bottom, this beautiful picture conveys the image of the linear combination (2.29), representing

a particle exiting from the intermediate screen in a two-slit experiment (Fig. 2.5). Both green

and brown components display a definite wave length, as befits a plane wave. Environment

effects become effective after traveling some distance, resulting in a classical, decohered, single

component. This picture belongs to the collection of Banco de la Nación Argentina, and is

reproduced with authorization from this institution and from Pérez Celis’ family
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Solutions to Problems and Physical Constants

Solutions to Problems

Chapter 2

Problem 1. (1) ‰ D c1
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Problem 9.
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„ .

Problem 10.

result probability result probability

g1, f1 16/25 g1, f2 4/25

g2, f1 1/25 g2, f2 4/25
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Problem 11. .1/ P.4Kp/ D 1

6
P.Kp/ D 5

6
: .2/ hjKji D 3

2
Kp 	K D

p
5

2
Kp:

(3)
1p
5

ϕ2 C
2p
5

ϕ3 .

Problem 12. �x � 10�19 m, �v � 10�19 m s�1.

Problem 13. (1) �EH=�E D O.10�25/ . (2) x D O.1010/ m.

Chapter 3

Problem 1. (1) 0; ˙
p

2 . (2) ϕ˙
p

2 D
1

2

0

@

1

0

0

1

A˙ 1p
2

0

@

0

1

0

1

AC 1

2

0

@

0

0

1

1

A ,

ϕ0 D
1p
2

0

@

1

0

0

1

A � 1p
2

0

@

0

0

1

1

A ; U D 1

2

0

@

1
p

2 1p
2 0 �

p
2

1 �
p

2 1

1

A :

Problem 2. (1) �˙ D ˙
p

a2 C c2 : (2) �˙ D ˙jaj
�

1C c2

2a2
C 	 	 	

�

:

(3) �˙ D ˙jcj
�

1C a2

2c2
C 	 	 	

�

:

Problem 3. h1j2i D h1j3i D h2j4i D h3j4i D 0 :

Problem 4. (1) �Q D .0:5; 0:5;�1/ ; �R D .0:5;�0:5; 1/ .

(2) Œ OQ; OR� D 0 : (3)

0

@

1=
p

2

1=
p

2

0

1

A ;

0

@

1=
p

2

�1=
p

2

0

1

A ;

0

@

0

0

1

1

A .

Problem 5. (1)˙„
2

: (3) ϕˇ" D cos
ˇ

2

�

1

0

�

C sin
ˇ

2

�

0

1

�

;

ϕˇ# D � sin
ˇ

2

�

1

0

�

C cos
ˇ

2

�

0

1

�

:

Problem 7. (1) E D V0 C
7„
2

r

c

M
: (2) E D � b2

2c
C „

r

c

M

�

nC 1

2

�

.

Problem 8. (1) xc D
p
„=.Mc/1=4 : (2) 3„! .

Problem 9. (1)
2M!

„ hnC 2jx2jni D � 2

„M!
hnC 2jp2jni D

p

.nC 1/.nC 2/ ; and 0 otherwise. (3)
hnjKjni
hnjV jni D �

hn˙ 2jKjni
hn˙ 2jV jni D 1 .
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Problem 10. Zero.

Problem 11. (1) ‰ D 1p
2

ϕ0 C
1p
2

ϕ1 : (2) h‰jxj‰i D 1p
2

xc ; h‰jpj‰i D
h‰j˘ j‰i D 0 .

Problem 13. c˙
an D �ic˙

b.nC1/ D
1p
2

.

Chapter 4

Problem 2. (1) ϕn D
r

2

a
sin.knx/ .0 � x � a/ and ϕn D 0 otherwise.

kn D n =a ; En D „2k2
n=2M: (3) No.

Problem 3. E � .„�p/2=2M � „2=8Ma2 .

Problem 4. i� coth
�a

2
D k cot

ka

2
; � D

p

2M.V0 � E/=„;
k D
p

2ME=„.

Problem 5.
X

k

Ek �
a

2 

Z

Ekdk � Ekmax D „2k2
max=2M .

Problem 6. (1) �.E/ D a

 „

r

M

2E
: (2) 0.81 107 eV.

Problem 7. (1) � cot
ka

2
D �

k
.

Problem 8. 1 eps, 1 epsC 1 ops, 2 epsC 1 ops, 2 epsC 2 ops.

Problem 9. R D 0:030 ; T D 0:97 .

Problem 10. (1) xd � 1=� D 1:13 Å. (2) T D 1:7 � 10�15 .

Problem 11. lim
�a�1

T D 2E=V0

2E=V0 CM V0a2=„2
;

lim
�a�1

T D 16E

V0

�

1 � E

V0

�

exp

�

�2a

„
p

2M.V0 �E/

�

.

Problem 12. 3 10�3 Å.

Problem 13. (2) The lattice exerts forces on the electron.

(3) hkjpjki D „k
Z

jukj2dx � i„
Z

u�
k

duk

dx
dx .
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Problem 14.
1

Meff

D 1

M
� d 2

„2.df =dE/EDE0

, where f .E0/ D ˙1.

Problem 15. (1) � D
 

2„
p

2 

a˛

!1=2

. (2) j‰j2 D ˛

„
p

2 
expŒ�x2˛2=2„2�

(3) 0, „2=˛2. (4) 0, ˛2=4.

Chapter 5

Problem 1. O
�

1031
�

.

Problem 2.
„p
2

0

@

0 1 0

1 0 1

0 1 0

1

A �! „

0

@

1 0 0

0 0 0

0 0 �1

1

A :

Problem 4. i„J .

Problem 5. (1) h00jY20j00i D h11jY21j21i D h00jY11j11i D h00j˘ j10i D 0 .

(2) h10jY20j10i D 0:25 ; h00jY11j1.�1/i D �0:28 ; h00j˘ j00i D �h11j˘ j11i
D 1 :

Problem 7. (1) ϕsxD˙ 1
2
D 1p

2

�

1

˙1

�

; ϕsy D˙ 1
2
D 1p

2

�

1

˙i

�

:

(2)˙„
2

;
1

2
: (3) OSx D

„
2

�

0 i

�i 0

�

:

(4) ϕsxD˙ 1
2
D 1˙ i

2
ϕsy D 1

2
C 1� i

2
ϕsyD� 1

2
.

Problem 8. (1)
1

2
.aC b/2 : (2)

1

2
.a2 C b2/ : (3) a2 .

Problem 9. (1)
„
2

; cos2 ˇ

2
; �„

2
; sin2 ˇ

2
: (2)

„
2

cos ˇ :

Problem 10. (1) ϕ 3
2

1
2
D �

r

2

5
Y20

�

1

0

�

C
r

3

5
Y21

�

0

1

�

;

ϕ 5
2

1
2
D
r

3

5
Y20

�

1

0

�

C
r

2

5
Y21

�

0

1

�

: (3) Yl l

�

1

0

�

; 1 .

Problem 11. Equation (7.12).
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Problem 12.
P

m1m2
c.j1m1; j2m2; jm/c.j1m1; j2m2; j 0m0/ D ıjj 0ımm0 ;

P

j m c.j1m1; j2m2; jm/c.j1m0
1; j2m0

2; jm/ D ım1m0
1
ım2m0

2
.

Problem 13. ϕ 1
2 lj m D .�1/

1
2 Cl�j ϕl 1

2 j m.

Chapter 6

Problem 1. 2:5 � 10�3 eV.

Problem 2. (1) 1s 1
2
; 2s 1

2
; 2p 1

2
; 2p 3

2
; 3s 1

2
; 3p 1

2
; 3p 3

2
; 3d 3

2
; 3d 5

2
:

(2) 0s 1
2
; 1p 1

2
; 1p 3

2
; 2s 1

2
; 2d 3

2
; 2d 5

2
; 3p 1

2
; 3p 3

2
; 3f 5

2
; 3f 7

2
.

Problem 3. (1) .N C 1/.N C 2/ : (2)
„2

2
N.N C 3/ :

(3) EN lj D „!
�

˛N lj

16
C 3

2

�

, where ˛N lj D 0.0s 1
2
/; 10.1p 3

2
/; 20.1p 1

2
/;

27.2d 5
2
/; 37.2d 3

2
/; 37.2s 1

2
/; 39.3f 7

2
/; 53.3f 5

2
/; 53.3p 3

2
/; 59.3f 1

2
/ :

(4) l D N ; j D N C 1

2
.

Problem 4. ϕn D
1p
2 a

1

r
sin

n r

a
; En D

1

2M

�„n 

a

�2

:

Problem 5. r
.nr D1;lD0/
max D 5:2a0; h200jr j200i D 6a0; r

.nr D0;lD1/
max D 4a0;

h21mljr j21mli D 5a0 .

Problem 7. (1)
R

h100jr j100i D 1:5 � 10�5 .H/ ;

R

h100jr j100i D 7:3 � 10�3 .Pb/ : (2)
R

h100jr j100i D 3:1 � 10�3 .H/ ;

R

h100jr j100i D 1:5 .Pb/ .

Problem 8. r2 ! s ; ϕ.r2/! s1=4�.s/ ; l.l C 1/! 1

4
l.l C 1/� 3

16
;

1

4
E ! e2=4 �0 ;

1

8
M!2 ! �E :

Problem 9. EsD0 D �
3

4
a„2 ; EsD1 D

1

4
a„2 .

Problem 10. .1/ �BBz: .2/
3

2
�so„2: .3/

1

2
�so„2.9C 2q C q2/1=2:
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Problem 11. jr D jAj2„k=r2M ; flux(d˝/ D jAj2„kd˝=M .

Problem 12. (1) ˇ� D �1C ak� cot ak� I k� D 1
„
p

2M V0.

(2) ˇC D sin ı0=.ak cos ı0 C sin ı0/ I k D 1
„
p

2ME.

(3) tan ı0 D ka .1 � tan ak�=ak�/. (4) �.�/ D a2 .1 � tan ak�=ak�/2.

(5) � D 4  a2 .1 � tan ak�=ak�/2.

Problem 13. (1) V D V.�/ ; � �
p

x2 C y2 ; � � tan�1.y=x/ :

(2)
1

2M

�

Op2
x C Op2

y

�

D � „
2

2M

�

@2

@�2
C 1

�

@

@�
C 1

�2

@2

@φ2

�

; Eml
D E�ml

:

(3) En D „!.nC 1/ ; nC 1 ; n D 0; 1; 2; : : : .

Problem 14. (1) !ph D !cl D „=Ma2
0n3 .

(2) Bohr correspondence principle (Sect. 15.3.2).

Chapter 7

Problem 1. (1)
1

2xc

p
2 

exp

�

� x2

2x2
c

��

1C x2

x2
c

�

; xc

p
2 ; 0:10 :

(2)
1

xc

p
2 

exp

�

� x2

2x2
c

�

; xc ; 0:16 .

(3)
1

x3
c

p
2 

exp

�

� x2

2x2
c

�

x2 ; xc

p
3 ; 0:0021 :

Problem 2. (1) ϕC D
1p
2

�

ϕ100.1/ϕ21ml
.2/C ϕ100.2/ϕ21ml

.1/
�

¦sD0 ;

ϕ� D
1p
2

�

ϕ100.1/ϕ21ml
.2/� ϕ100.2/ϕ21ml

.1/
�

¦sD1;ms : (2) EC > E� :

Problem 3. J D 0; 2; 4 :

Problem 4. (1) s. (2) a. (3) s. (4) a. (5) s.

Problem 5. J even.

Problem 6. (1) 3=2; 1=2 : (2) 1=2 :

Problem 8.
1

2
C ;

3

2
� ;

1

2
�;

5

2
C ;

7

2
� ;

1

2
� :

Problem 9. (1) 3:8= � 0:26=4:8 (�p). (2) �1:9=0:64=� 1:9 (�p).
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Problem 10. (1) 1 10�3. (2) 2 10�1. (3) 4 10�3.

Problem 11. n.�/ D M�

 „2
; CV D 2nFkB

T

TF

:

Problem 12. 1/3; 1/2; 3/5.

Problem 13. (1) 5:9 � 103 Å. (2) Red.

Problem 14. (1) � 2

12
.kBT /2 =�F. (2) �1:7 � 10�4 eV.

Problem 15. Constant.

Problem 16. qaa C qbb ; �qac ; qbc .

Chapter 8

Problem 1. (1) Equation (8.10).

(2) c
.2/

p¤n
D 1

E
.0/
n �E

.0/
p

2

4

X

q¤n

c.1/
q hϕ.0/

p jV jϕ.0/
q i � E.1/

n c.1/
p

3

5 ;

c.2/
n D �

1

2

X

p¤n

jc.1/
p j2 .

Problem 2. (1) E
.1/
1 D E

.1/
2 D 0 ; E

.1/
3 D 2c :

(2) E
.2/
1 D �E

.2/
2 D

jcj2
3

; E
.2/
3 D 0 :

(3) ϕ
.1/
1 D

c

3
ϕ

.0/
2 ; ϕ

.1/
2 D �

c

3
ϕ

.0/
1 ; ϕ

.1/
3 D 0 :

(4) ϕ
.2/
1 D �

jcj2
18

ϕ
.0/
1 ; ϕ

.2/
2 D �

jcj2
18

ϕ
.0/
2 ; ϕ

.2/
3 D 0 :

(5) E˙ D
7

2
˙ 3

2

r

1C 4jcj2
9
� 7

2
˙ jcj

2

3
; E3 D �1C 2c .

Problem 3. (1) E
.1/
0 D 0 ; E

.2/
0 D �

k2

2M!2
:

(2) E
.1/
0 D

bx2
c

4
; E

.2/
0 D �

b2x2
c

16M!2
.

Problem 4. (1) E
.1/
0 D �

3

32M

�„!
c

�2

: (2) 10�8 .
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Problem 5. ‰n D

2

41 � 1

2

X

p¤n

jhϕ.0/
p jV jϕ.0/

n ij2

.E
.0/
n �E

.0/
p /2

3

5ϕ.0/
n

C
X

p¤n

hϕ.0/
p jV jϕ.0/

n i
E

.0/
n C hϕ.0/

n jV jϕ.0/
n i � E

.0/
p

ϕ.0/
p C

X

p;q.¤n/

hϕ.0/
p jV jϕ.0/

q ihϕ0
q jV jϕ

.0/
n i

.E
.0/
n �E

.0/
p /.E

.0/
n � E

.0/
q /

ϕ.0/
p .

Problem 7.

(1) hH i D „!
4

"

M

M � C
M �

M
� 3

8

„!
Mc2

�

M �

M

�2

C 15

32

� „!
Mc2

�2 �
M �

M

�3

C 	 	 	
#

:

(2) 1 D
�

M �

M

�2

� 3

4

„!
Mc2

�

M �

M

�3

C 45

32

� „!
Mc2

�2 �
M �

M

�4

C 	 	 	 :

(3)
M �

M
D 1C 3

8

„!
Mc2

� 45

128

� „!
Mc2

�2

C 	 	 	 :

(4) hH i D „!
2

"

1 � 3

16

„!
Mc2

C 3

16

� „!
Mc2

�2

C 	 	 	
#

.

Problem 8.

�

1s2p ˙
ˇ

ˇ

ˇ

ˇ

e2

4 �0r

ˇ

ˇ

ˇ

ˇ

1s2p˙
�

D �.0:98˙ 0:08/EH :

Problem 9.

hH iZ Z� hH iZ� exp

He 5:50 1.69 5:69 5:81

LiC 14:25 2.69 14:44 14:49

BeCC 27:00 3.69 27:19 27:21

Problem 10. �E D 3„!
4

�

xc

R0

�4

l.l C 1/� „!
2

�

xc

R0

�6

l2.l C 1/2 .

Problem 11. (1) �0 D �8:75 10�4 eV ; R0 D 2:87 Å :

(2) „! D 4:0 10�3 eV. (3)
„2

2� R2
0

D 1:29 10�4 eV.

Problem 12. E˙.m D 0/ D E
.0/
nD2 ˙ 3eEza0 ; E.m D ˙1/ D E

.0/
nD2 :

Problem 13. (1) H D 1

2M

X

��

h�jp2j�iaC
� a�

C g

2

X

��

h�jx2j�i
X

�

aC
� aC

� a�a� �
g

2

X

����

h�jxj�ih�jxj�iaC
� aC

� a�a�:

(2) HH D „!H

X

�

�

aC
� a� C

1

2

�

I V 0 D �g

2

 

X

��

h�jxj�iaC
� a�

!2

I
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!H D
r

Ng

M
. (3) HRPA D „!HC � g

2
hN C 1jxjN i2 .C C /2 I

C D aC
N C1aN I !RPA D 0. (4) Translational invariance.

Chapter 9

Problem 1. 0:50� 0:40 sin.3 2„t=2Ma2/ :

Problem 2.
dh‰jpj‰i

dt
D �

�

‰

ˇ

ˇ

ˇ

ˇ

dV

dx

ˇ

ˇ

ˇ

ˇ

‰

�

.

Problem 3. cy" D
1 � ip

2
cos

�

1

2
!Lt C  

4

�

.

Problem 4. Un.t; 0/ D cos
!Lt

2
I C i sin

!Lt

2
n � � .

Problem 5. 0.36, 0.50, 0:13 :

Problem 6. P
.1/

"!# D
!02

.! � !L/2
sin2

�

1

2
t.! � !L/

�

.

Problem 7.

(1) c0!1 D �
ivV0

„xc

r

2

 
exp

�

� „!
4M v2

�Z t2

t1

t exp

"

� v2

x2
c

�

t � i
„!

2M v2

�2
#

dt :

(2) jc0!1j2 D
V0

2M v4
exp

�

� „!
2M v2

�

.

Problem 8.

(1) ‰.t/ D cos �0 exp

�

� iV0 sin.!t/

4„!

�

¦1
0 C sin �0 exp

�

i3V0 sin.!t/

4„!

�

¦0
0 .

(2) ‰.t/ D exp

�

� iV0 sin.!t/

4„!

�

ϕB0
.

Problem 9. P0!1 D 2

�

Kxc

„!

�2

sin2 !t

2
:

Problem 10.

(1) c
.2/

k D
1

„2

X

j

hkjV jj ihj jV jii
�

1

!ki !kj

C exp.i!ki t/

!ki !j i

C exp.i!kj t/

!kj !ij

�

:

(2) P0!2 D 2

�

Kxc

„!

�4

sin4 !t

2
.
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Problem 11. (1) 0.5 and 0:5 � 10�7. (2) 2 � 10�2.

Problem 12.

ˇ

ˇ

ˇ

ˇ

h210jrj100i
h310jrj100i

ˇ

ˇ

ˇ

ˇ

2

D 6:3 ;
P.100! 210/

P.100! 310/
D 3:8 .

Problem 13. (1)
P.310! 200/

P.310! 100/
D 0:13 : (2) 1:1 � 10�8 s. (3) 4 � 10�7 eV.

Problem 14. (1) hn; n� 1jjQ1jjn� 1; n� 2i D �a0 n3=
p

2 :

(2) �.n; n � 1! n� 1; n � 2/ D 6n4„=˛5Mc2 :

(3)
�.n; n � 1! n� 1; n � 2/

�.2; 1! 1; 0/
D 7n4.

Chapter 10

Problem 1. (1) j.2j C 1/ � j.2j C 1/ : (2)

�

j C 1

2

�

�
�

j C 1

2

�

:

(3) Ea D �g

�

j C 1

2

�

; Eb D 0 .

Problem 2. (1) h0jHtbj0iA D ˝
2
D �g

˝2

4

�

1C 2

˝

�

. (2) I D h2

2g
.

(3) �EA D ˝
2
D g ˝ .

Problem 3. (1) Ep D
g˝

2
I V 2

p D
A 

˝
I 	 D g

p

A .˝ �A / I

� D g

�

A  �
˝

2

�

.

(2) h0jHtbj0iA D ˝
2
D �g

˝2

4
I I D h2

2g
I 	EA D ˝

2
D g ˝ .

(3) The BCS approximation is only correct to leading order in ˝�1.

Problem 4. P C D
P

p>0

h

UpVp.1 � ˛p˛�p/ C U 2
p˛C

p ˛C
�p � V 2

p ˛�p˛p

i

.

Problem 5. 2�.

Problem 8. (1) OL.0/ D
q

I

2

�

� C
1 C � C

0 C �1 C �0

�

. (2) 0.
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Chapter 13

Problem 1.

ϕB0
ϕB1

ϕB2
ϕB3

OSz.1/ OSz.2/ 1 1 �1 �1
OSx.1/ OSx.2/ 1 �1 1 �1

Problem 2. 1; 0;
1

2
;

3

8
;

1

8
;

1

4
.

Problem 3. OSz

�

ϕB1

�

; OSx

�

ϕB2

�

; OSy

�

ϕB3

�

:

Problem 4. UH .

Problem 8. Alice’s transformations yield a unique Bell state.

Problem 9.

fi ci0 ci4 ci8 ci12

1 1 1 1 1

2 1 i �1 �i

4 1 �1 1 �1

8 1 �i �1 i

Chapter 14

Problem 1. L� D 0:2 m.

Problem 4.

(1) O� D 1

2

�

1C cos ˇ expŒ�i�� sin ˇ

expŒi�� sin ˇ 1 � cos ˇ

�

(2) hSxi D
„
2

sin ˇ cos �; hSyi D
„
2

sin ˇ sin �; hSzi D
„
2

cos ˇ.

Problem 5.

(1) O� D 1

2

�

1 0

0 1

�

(2) hSxi D hSyi D hSzi D 0:

Problem 6. 	x D
s

„
M!

�

1

2
C kBT

„!

�
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