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Preface

Symmetry can be seen as the most basic and important concept in physics.
Momentum conservation is a consequence of translational symmetry of space.
More generally, every process in physics is governed by selection rules that
are the consequence of symmetry requirements. On a given physical system,
the eigenstate properties and the degeneracy of eigenvalues are governed by
symmetry considerations. The beauty and strength of group theory applied to
physics resides in the transformation of many complex symmetry operations
into a very simple linear algebra. The concept of representation, connecting
the symmetry aspects to matrices and basis functions, together with a few
simple theorems, leads to the determination and understanding of the funda-
mental properties of the physical system, and any kind of physical property,
its transformations due to interactions or phase transitions, are described in
terms of the simple concept of symmetry changes.

The reader may feel encouraged when we say group theory is “simple linear
algebra.” It is true that group theory may look complex when either the math-
ematical aspects are presented with no clear and direct correlation to applica-
tions in physics, or when the applications are made with no clear presentation
of the background. The contact with group theory in these terms usually leads
to frustration, and although the reader can understand the specific treatment,
he (she) is unable to apply the knowledge to other systems of interest. What
this book is about is teaching group theory in close connection to applications,
so that students can learn, understand, and use it for their own needs.

This book is divided into six main parts. Part I, Chaps. 1-4, introduces
the basic mathematical concepts important for working with group theory.
Part II, Chaps.5 and 6, introduces the first application of group theory to
quantum systems, considering the effect of a crystalline potential on the elec-
tronic states of an impurity atom and general selection rules. Part III, Chaps. 7
and 8, brings the application of group theory to the treatment of electronic
states and vibrational modes of molecules. Here one finds the important group
theory concepts of equivalence and atomic site symmetry. Part IV, Chaps. 9
and 10, brings the application of group theory to describe periodic lattices in
both real and reciprocal lattices. Translational symmetry gives rise to a lin-
ear momentum quantum number and makes the group very large. Here the
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concepts of cosets and factor groups, introduced in Chap. 1, are used to factor
out the effect of the very large translational group, leading to a finite group
to work with each unique type of wave vector — the group of the wave vector.
Part V, Chaps. 11-15, discusses phonons and electrons in solid-state physics,
considering general positions and specific high symmetry points in the Bril-
louin zones, and including the addition of spins that have a 47 rotation as the
identity transformation. Cubic and hexagonal systems are used as general ex-
amples. Finally, Part VI, Chaps. 1618, discusses other important symmetries,
such as time reversal symmetry, important for magnetic systems, permutation
groups, important for many-body systems, and symmetry of tensors, impor-
tant for other physical properties, such as conductivity, elasticity, etc.

This book on the application of Group Theory to Solid-State Physics grew
out of a course taught to Electrical Engineering and Physics graduate students
by the authors and developed over the years to address their professional
needs. The material for this book originated from group theory courses taught
by Charles Kittel at U.C. Berkeley and by J.H. Van Vleck at Harvard in the
early 1950s and taken by G. Dresselhaus and M.S. Dresselhaus, respectively.
The material in the book was also stimulated by the classic paper of Bouckaert,
Smoluchowski, and Wigner [1], which first demonstrated the power of group
theory in condensed matter physics. The diversity of applications of group
theory to solid state physics was stimulated by the research interests of the
authors and the many students who studied this subject matter with the
authors of this volume. Although many excellent books have been published
on this subject over the years, our students found the specific subject matter,
the pedagogic approach, and the problem sets given in the course user friendly
and urged the authors to make the course content more broadly available.

The presentation and development of material in the book has been tai-
lored pedagogically to the students taking this course for over three decades
at MIT in Cambridge, MA, USA, and for three years at the University Fed-
eral of Minas Gerais (UFMG) in Belo Horizonte, Brazil. Feedback came from
students in the classroom, teaching assistants, and students using the class
notes in their doctoral research work or professionally.

We are indebted to the inputs and encouragement of former and present
students and collaborators including, Peter Asbeck, Mike Kim, Roosevelt Peo-
ples, Peter Eklund, Riichiro Saito, Georgii Samsonidze, Jose Francisco de Sam-
paio, Luiz Gustavo Cangado, and Eduardo Barros among others. The prepa-
ration of the material for this book was aided by Sharon Cooper on the figures,
Mario Hofmann on the indexing and by Adelheid Duhm of Springer on editing
the text. The MIT authors of this book would like to acknowledge the contin-
ued long term support of the Division of Materials Research section of the US
National Science Foundation most recently under NSF Grant DMR-04-05538.

Cambridge, Massachusetts USA, Mildred S. Dresselhaus
Belo Horizonte, Minas Gerais, Brazil, Gene Dresselhaus
August 2007 Ado Jorio
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Part 1

Basic Mathematics



1

Basic Mathematical Background: Introduction

In this chapter we introduce the mathematical definitions and concepts that
are basic to group theory and to the classification of symmetry proper-
ties [2].

1.1 Definition of a Group

A collection of elements A, B,C, ... form a group when the following four
conditions are satisfied:

1. The product of any two elements of the group is itself an element of
the group. For example, relations of the type AB = C are valid for all
members of the group.

2. The associative law is valid — i.e., (AB)C = A(BC).

3. There exists a unit element F (also called the identity element) such that
the product of F with any group element leaves that element unchanged
AE =FEA = A.

4. For every element A there exists an inverse element A~! such that A=1A4 =
AATL =E.

In general, the elements of a group will not commute, i.e., AB # BA. But if
all elements of a group commute, the group is then called an Abelian group.

1.2 Simple Example of a Group

As a simple example of a group, consider the permutation group for three
numbers, P(3). Equation (1.1) lists the 3! = 6 possible permutations that
can be carried out; the top row denotes the initial arrangement of the three
numbers and the bottom row denotes the final arrangement. Each permutation
is an element of P(3).
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Fig. 1.1. The symmetry operations on an equilateral triangle are the rotations by
+27/3 about the origin and the rotations by 7 about the three twofold axes. Here
the axes or points of the equilateral triangle are denoted by numbers in circles

123 123 123
E‘<123> A_<132> B_(321>

(1) () - (2) o

We can also think of the elements in (1.1) in terms of the three points of an
equilateral triangle (see Fig.1.1). Again, the top row denotes the initial state
and the bottom row denotes the final position of each number. For example,
in symmetry operation D, 1 moves to position 2, and 2 moves to position 3,
while 3 moves to position 1, which represents a clockwise rotation of 27/3
(see caption to Fig. 1.1). As the effect of the six distinct symmetry operations
that can be performed on these three points (see caption to Fig.1.1). We can
call each symmetry operation an element of the group. The P(3) group is,
therefore, identical with the group for the symmetry operations on a equilat-
eral triangle shown in Fig.1.1. Similarly, F' is a counter-clockwise rotation of
27/3, so that the numbers inside the circles in Fig. 1.1 move exactly as defined
by Eq.1.1.

It is convenient to classify the products of group elements. We write these
products using a multiplication table. In Table 1.1 a multiplication table is
written out for the symmetry operations on an equilateral triangle or equiva-
lently for the permutation group of three elements. It can easily be shown that
the symmetry operations given in (1.1) satisfy the four conditions in Sect. 1.1
and therefore form a group. We illustrate the use of the notation in Table 1.1
by verifying the associative law (AB)C = A(BC) for a few elements:

(AB)C = DC = B
A(BC) = AD =B . (1.2)

Each element of the permutation group P(3) has a one-to-one correspondence
to the symmetry operations of an equilateral triangle and we therefore say
that these two groups are isomorphic to each other. We furthermore can
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Table 1.1. Multiplication® table for permutation group of three elements; P(3)

EABCDF

EABCDF
AEDVFBC
BFEDCA
CDFFEAB
DCABFE
FBCAED

® AD = B defines use of multiplication table

SO QW el

use identical group theoretical procedures in dealing with physical problems
associated with either of these groups, even though the two groups arise from
totally different physical situations. It is this generality that makes group
theory so useful as a general way to classify symmetry operations arising in
physical problems.

Often, when we deal with symmetry operations in a crystal, the geomet-
rical visualization of repeated operations becomes difficult. Group theory is
designed to help with this problem. Suppose that the symmetry operations in
practical problems are elements of a group; this is generally the case. Then if
we can associate each element with a matrix that obeys the same multiplica-
tion table as the elements themselves, that is, if the elements obey AB = D,
then the matrices representing the elements must obey

M(A) M(B) = M(D) . (1.3)

If this relation is satisfied, then we can carry out all geometrical opera-
tions analytically in terms of arithmetic operations on matrices, which are
usually easier to perform. The one-to-one identification of a generalized sym-
metry operation with a matrix is the basic idea of a representation and
why group theory plays such an important role in the solution of practical
problems.

A set of matrices that satisfy the multiplication table (Table 1.1) for the
group P(3) are:

1 V3 _1 V3 _1_ V3

_ 2 2 _ 2 2 _ 2 2
C_<£_1> D_<_£_1> F_<L§ _1> - (14

2 2 2 2 2 2

We note that the matrix corresponding to the identity operation F is always
a unit matrix. The matrices in (1.4) constitute a matrix representation of
the group that is isomorphic to P(3) and to the symmetry operations on
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an equilateral triangle. The A matrix represents a rotation by +7 about the
y axis, while the B and C' matrices, respectively, represent rotations by +m
about axes 2 and 3 in Fig.1.1. D and F', respectively, represent rotation of
—27/3 and +27/3 around the center of the triangle.

1.3 Basic Definitions

Definition 1. The order of a group = the number of elements in the group.
We will be mainly concerned with finite groups. As an example, P(3) is of
order 6.

Definition 2. A subgroup = a collection of elements within a group that by
themselves form a group.

Examples of subgroups in P(3):

E (BE,A) (E,D,F)
(£, B)
(E,C)

Theorem. If in a finite group, an element X 1is multiplied by itself enough
times (n), the identity X™ = E is eventually recovered.

Proof. If the group is finite, and any arbitrary element is multiplied by itself
repeatedly, the product will eventually give rise to a repetition. For example,
for P(3) which has six elements, seven multiplications must give a repetition.
Let Y represent such a repetition:

Y=XP=X9, where p>gq. (1.5)

Then let p = q¢ + n so that

XP = X9 = XIX" = X1=XF, (1.6)

from which it follows that
X"=FL. (1.7)
O

Definition 3. The order of an element = the smallest value of n in the rela-

tion X" = E.
We illustrate the order of an element using P(3) where:

e F isof order 1,
A, B, C are of order 2,
e D, F are of order 3.
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Definition 4. The period of an element X = collection of elements E, X,
X2, ..., X" where n is the order of the element. The period forms an
Abelian subgroup.

Some examples of periods based on the group P(3) are

E,A
E,B
E.C
E,D,F =E,D,D?.

1.4 Rearrangement Theorem

The rearrangement theorem is fundamental and basic to many theorems to
be proven subsequently.

Rearrangement Theorem. If FE A, As,..., A, are the elements of
a group, and if Ay is an arbitrary group element, then the assembly of
elements

ArE, AgAq, ... AR Ap (1.9)
contains each element of the group once and only once.

Proof. 1. We show first that every element is contained.
Let X be an arbitrary element. If the elements form a group there will
be an element A, = A,ZlX. Then ALA, = AkAlle = X. Thus we can
always find X after multiplication of the appropriate group elements.

2. We now show that X occurs only once. Suppose that X appears twice
in the assembly Ay E, Ap Ay, ..., AxAp, say X = A A, = Ay As. Then by
multiplying on the left by A,:l we get A, = Ag, which implies that two
elements in the original group are identical, contrary to the original listing
of the group elements.

Because of the rearrangement theorem, every row and column of a multi-
plication table contains each element once and only once. [l

1.5 Cosets

In this section we will introduce the concept of cosets. The importance of
cosets will be clear when introducing the factor group (Sect. 1.7). The cosets
are the elements of a factor group, and the factor group is important for
working with space groups (see Chap.9).

Definition 5. If B is a subgroup of the group G, and X is an element of G,
then the assembly EX, B1X, B2 X, ..., By X is the right coset of B, where B
consists of E, By, Ba, ..., By.

A coset need not be a subgroup. A coset will itself be a subgroup B if X is
an element of B (by the rearrangement theorem).



8 1 Basic Mathematical Background: Introduction

Theorem. Two right cosets of given subgroup either contain exactly the same
elements, or else have no elements in common.

Proof. Clearly two right cosets either contain no elements in common or at
least one element in common. We show that if there is one element in common,
all elements are in common.

Let BX and BY be two right cosets. If By X = B;Y = one element that
the two cosets have in common, then

B 'B, =YX (1.10)

and Y X! is in B, since the product on the left-hand side of (1.10) is in B.
And also contained in Bis EYX ™!, BiY X! B.YX~1 ... B,YX~ ! Fur-
thermore, according to the rearrangement theorem, these elements are, in
fact, identical with B except for possible order of appearance. Therefore the
elements of BY are identical to the elements of BY X !X, which are also
identical to the elements of BX so that all elements are in common. O

We now give some examples of cosets using the group P(3). Let B = FE, A be
a subgroup. Then the right cosets of B are

(E,A)E - E,A (E,A)C —C,F

(E,A)A— AJE (E,A)D— D,B

(E,A)B — B,D (E,A)F — F,C, (1.11)
so that there are three distinct right cosets of (E, A), namely

(E,A)  which is a subgroup
(B,D)  which is not a subgroup
(C,F)  which is not a subgroup.
Similarly there are three left cosets of (E, A) obtained by X (E, A):

(E,A)
(C, D) (1.12)
(B,F).

To multiply two cosets, we multiply constituent elements of each coset in
proper order. Such multiplication either yields a coset or joins two cosets. For
example:

(E,A)(B,D)=(EB,ED,AB,AD) = (B,D,D,B) = (B,D) . (1.13)
Theorem. The order of a subgroup is a divisor of the order of the group.

Proof. If an assembly of all the distinct cosets of a subgroup is formed (n of
them), then n multiplied by the number of elements in a coset, C, is exactly
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the number of elements in the group. Each element must be included since
cosets have no elements in common.

For example, for the group P(3), the subgroup (F, A) is of order 2, the
subgroup (E, D, F) is of order 3 and both 2 and 3 are divisors of 6, which is
the order of P(3). O

1.6 Conjugation and Class

Definition 6. An element B conjugate to A is by definition B = XAX 1,
where X is an arbitrary element of the group.

For example,

A=X"'BX=YBY', where BX=XA and AY =YB.

3

The elements of an Abelian group are all selfconjugate.

Theorem. If B is conjugate to A and C is conjugate to B, then C' is conjugate
to A.

Proof. By definition of conjugation, we can write

B=XAX""!
C=YBY!.

Thus, upon substitution we obtain
C=YXAX 'Y '=YXAYX)".

O

Definition 7. A class is the totality of elements which can be obtained from
a given group element by conjugation.
For example in P(3), there are three classes:

1. F,;
2. A, B,C,
3. D,F.

Consistent with this class designation is

ABA™' = AF =C (1.14)
DBD™ ' =DA=C. (1.15)

Note that each class corresponds to a physically distinct kind of symmetry
operation such as rotation of m about equivalent twofold axes, or rotation



10 1 Basic Mathematical Background: Introduction

of 27/3 about equivalent threefold axes. The identity symmetry element is
always in a class by itself. An Abelian group has as many classes as elements.
The identity element is the only class forming a group, since none of the other
classes contain the identity.

Theorem. All elements of the same class have the same order.

Proof. The order of an element n is defined by A™ = E. An arbitrary conju-
gate of Ais B = XAX ! Then B" = (XAX 1)(XAX~!)...n times gives
XA"X'=XEX ' =FE.

Definition 8. A subgroup B is self-conjugate (or invariant, or normal) if
XBX 1 is identical with B for all possible choices of X in the group.

For example (E, D, F) forms a self-conjugate subgroup of P(3), but (E, A)
does not. The subgroups of an Abelian group are self-conjugate subgroups. We
will denote self-conjugate subgroups by A/. To form a self-conjugate subgroup,
it is necessary to include entire classes in this subgroup.

Definition 9. A group with no self-conjugate subgroups = a simple group.

Theorem. The right and left cosets of a self-conjugate subgroup N are the
same.

Proof. If N; is an arbitrary element of the subgroup N, then the left coset is
found by elements XN; = XN; X 'X = N X, where the right coset is formed
by the elements N; X, where N; = X N, X 1.

For example in the group P(3), one of the right cosets is (F,D,F)A =
(A, C, B) and one of the left cosets is A(E, D, F') = (A, B,C) and both cosets
are identical except for the listing of the elements. O

Theorem. The multiplication of the elements of two right cosets of a self-
conjugate subgroup gives another right coset.

Proof. Let N X and NY be two right cosets. Then multiplication of two right
cosets gives

(NX)NY) = N;XN,Y = Ni(XN,)Y
= Ny(NpX)Y = (N;N,)(XY) = N(XY)  (1.16)

and NV (XY') denotes a right coset. 0O

The elements in one right coset of P(3) are (E,D,F)A = (A,C, B) while
(E,D,F)D = (D, F, E) is another right coset. The product (A, C, B)(D, F, E)
is (A, B,C) which is a right coset. Also the product of the two right cosets
(A,B,C)(A,B,C) is (D, F, E) which is a right coset.
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1.7 Factor Groups

Definition 10. The factor group (or quotient group) is constructed with re-
spect to a self-conjugate subgroup as the collection of cosets of the self-
conjugate subgroup, each coset being considered an element of the factor group.
The factor group satisfies the four rules of Sect. 1.1 and is therefore a group:

1. Multiplication — (N X)(NY) = NXY.

2. Associative law — holds because it holds for the elements.

3. Identity — EN, where E is the coset that contains the identity element.
N is sometimes called a normal divisor.

4. Inverse — (XN)(X7'NV) = (WX)(X'N) = N2 = EN.

Definition 11. The index of a subgroup = total number of cosets = (order of
group) /(order of subgroup).

The order of the factor group is the index of the self-conjugate subgroup.

In Sect. 1.6 we saw that (F, D, F) forms a self-conjugate subgroup, A/
The only other coset of this subgroup AV is (A4, B, C), so that the order of this
factor group = 2. Let (A, B,C) = A and (E, D, F) = £ be the two elements
of the factor group. Then the multiplication table for this factor group is

S
IS BN

&
A
£ is the identity element of this factor group. £ and A are their own inverses.
From this illustration you can see how the four group properties (see Sect. 1.1)
apply to the factor group by taking an element in each coset, carrying out the
multiplication of the elements and finding the coset of the resulting element.
Note that this multiplication table is also the multiplication table for the
group for the permutation of two objects P(2), i.e., this factor group maps
one-on-one to the group P(2). This analogy between the factor group and
P(2) gives insights into what the factor group is about.

1.8 Group Theory and Quantum Mechanics

We have now learned enough to start making connection of group theory to
physical problems. In such problems we typically have a system described
by a Hamiltonian which may be very complicated. Symmetry often allows us
to make certain simplifications, without knowing the detailed Hamiltonian.
To make a connection between group theory and quantum mechanics, we
consider the group of symmetry operators Pg which leave the Hamiltonian
invariant. These operators Pp are symmetry operations of the system and the
Pg operators commute with the Hamiltonian. The operators Ppg are said to
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form the group of the Schrodinger equation. If H and Pr commute, and if Pg
is a Hermitian operator, then H and Pp can be simultaneously diagonalized.

We now show that these operators form a group. The identity element
clearly exists (leaving the system unchanged). Each symmetry operator Pr
has an inverse Pg ! to undo the operation Ppg and from physical considerations
the element ]515 !'is also in the group. The product of two operators of the
group is still an operator of the group, since we can consider these separately
as acting on the Hamiltonian. The associative law clearly holds. Thus the
requirements for forming a group are satisfied.

Whether the operators PR be rotations, reflections, translations, or per-
mutations, these symmetry operations do not alter the Hamiltonian or its
eigenvalues. If Hv,, = E,1, is a solution to Schrodinger’s equation and H
and Pr commute, then

PRHwn = PREni/}n = H(Pan) = En(PRi/}rJ . (117)

Thus I:’an is as good an eigenfunction of H as v, itself. Furthermore, both
¥, and Pan correspond to the same eigenvalue FE,,. Thus, starting with
a particular eigenfunction, we can generate all other eigenfunctions of the same
degenerate set (same energy) by applying all the symmetry operations that
commute with the Hamiltonian (or leave it invariant). Similarly, if we consider
the product of two symmetry operators, we again generate an eigenfunction
of the Hamiltonian H

PrPsH = HPRPs
PrPsHipy, = PRPsEptpy, = Eq(PrPsthn) = H(PrPstbn),  (1.18)

in which PRps’L/Jn is also an eigenfunction of H. We also note that the action
of Pr on an arbitrary vector consisting of ¢ eigenfunctions, yields a £ x /¢
matrix representation of P that is in block diagonal form. The representation
of physical systems, or equivalently their symmetry groups, in the form of
matrices is the subject of the next chapter.

Selected Problems

1.1. (a) Show that the trace of an arbitrary square matrix X is invariant
under a similarity (or equivalence) transformation UXU 1.

(b) Given a set of matrices that represent the group G, denoted by D(R) (for
all R in G), show that the matrices obtainable by a similarity transfor-
mation UD(R)U ™! also are a representation of G.

1.2. (a) Show that the operations of P(3) in (1.1) form a group, referring to
the rules in Sect. 1.1.

(b) Multiply the two left cosets of subgroup (F, A): (B, F) and (C, D), refer-
ring to Sect. 1.5. Is the result another coset?



1.8 Group Theory and Quantum Mechanics 13

(¢) Prove that in order to form a normal (self-conjugate) subgroup, it is nec-
essary to include only entire classes in this subgroup. What is the physical
consequence of this result?

(d) Demonstrate that the normal subgroup of P(3) includes entire classes.

1.3. (a) What are the symmetry operations for the molecule ABy,, where the
B atoms lie at the corners of a square and the A atom is at the center
and is not coplanar with the B atoms.

b) Find the multiplication table.

c¢) List the subgroups. Which subgroups are self-conjugate?

d) List the classes.

e) Find the multiplication table for the factor group for the self-conjugate
subgroup(s) of (c).

A/\/—\/\

1.4. The group defined by the permutations of four objects, P(4), is isomor-
phic (has a one-to-one correspondence) with the group of symmetry opera-
tions of a regular tetrahedron (7). The symmetry operations of this group
are sufficiently complex so that the power of group theoretical methods can be
appreciated. For notational convenience, the elements of this group are listed
below.

e=(1234) g=(3124) m=(1423) s = (4213)
a=(1243) h=(3142) n=(1432) = (4231)
b= (2134) i=(2314) o= (4123) wu = (3412)
= (2143) j=(2341) p=(4132) v =(3421)
= (1324) k= (3214) g¢=(2413) w = (4312)

f = (1342) [=(3241) 7= (2431) y=(4321)

Here we have used a shorthand notation to denote the elements: for example
J = (2341) denotes

1234

2341/

that is, the permutation which takes objects in the order 1234 and leaves them
in the order 2341:

(a) What is the product vw? wov?

(b) List the subgroups of this group which correspond to the symmetry oper-
ations on an equilateral triangle.

(c) List the right and left cosets of the subgroup (e, a, k, 1, s, t).

(d) List all the symmetry classes for P(4), and relate them to symmetry op-
erations on a regular tetrahedron.

(e) Find the factor group and multiplication table formed from the self-
conjugate subgroup (e, ¢, u,y). Is this factor group isomorphic to P(3)?
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Representation Theory and Basic Theorems

In this chapter we introduce the concept of a representation of an abstract
group and prove a number of important theorems relating to irreducible rep-
resentations, including the “Wonderful Orthogonality Theorem.” This math-
ematical background is necessary for developing the group theoretical frame-
work that is used for the applications of group theory to solid state physics.

2.1 Important Definitions

Definition 12. Two groups are isomorphic or homomorphic if there exists
a correspondence between their elements such that

A— A
B— B
AB — AB,

where the plain letters denote elements in one group and the letters with carets
denote elements in the other group. If the two groups have the same order
(same number of elements), then they are isomorphic (one-to-one correspon-
dence). Otherwise they are homomorphic (many-to-one correspondence).

For example, the permutation group of three numbers P(3) is isomorphic
to the symmetry group of the equilateral triangle and homomorphic to its
factor group, as shown in Table 2.1. Thus, the homomorphic representations
in Table 2.1 are unfaithful. Isomorphic representations are faithful, because
they maintain the one-to-one correspondence.

Definition 13. A representation of an abstract group is a substitution group
(matriz group with square matrices) such that the substitution group is homo-
morphic (or isomorphic) to the abstract group. We assign a matriz D(A) to
each element A of the abstract group such that D(AB) = D(A)D(B).
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Table 2.1. Table of homomorphic mapping of P(3) and its factor group

permutation group element factor group
E,D F — &
A B, C — A

The matrices of (1.4) are an isomorphic representation of the permutation
group P(3). In considering the representation

E A
D — (1) B} — (—1)
F C

the one-dimensional matrices (1) and (—1) are a homomorphic representa-
tion of P(3) and an isomorphic representation of the factor group &, A (see
Sect. 1.7). The homomorphic one-dimensional representation (1) is a repre-
sentation for any group, though an unfaithful one.

In quantum mechanics, the matrix representation of a group is important
for several reasons. First of all, we will find that an eigenfunction for a quan-
tum mechanical operator will transform under a symmetry operation similar
to the application of the matrix representing the symmetry operation on the
matrix for the wave function. Secondly, quantum mechanical operators are
usually written in terms of a matrix representation, and thus it is convenient
to write symmetry operations using the same kind of matrix representa-
tion. Finally, matrix algebra is often easier to manipulate than geometrical
symmetry operations.

2.2 Matrices

Definition 14. Hermitian matrices are defined by: A = A*, A* = A, or A =
A (where the symbol x denotes complex conjugation, ~ denotes transposition,
and t denotes taking the adjoint)

ayl aig - --
A= |anaxz- | (2.1)
aip azy -
t o a a .
A= 12 422 , (2.2)
* *
Ay Qg -+

At=|aizaz | (2.3)
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Unitary matrices are defined by: A* = {U =A"1
Orthonormal matrices are defined by: A = A1,

Definition 15. The dimensionality of a representation is equal to the dimen-
sionality of each of its matrices, which is in turn equal to the number of rows
or columns of the matriz.

These representations are not unique. For example, by performing a similarity
(or equivalence, or canonical) transformation UD(A)U~! we generate a new
set of matrices which provides an equally good representation. A simple phys-
ical example for this transformation is the rotation of reference axes, such as
(x,y,2) to (¢',y',2"). We can also generate another representation by taking
one or more representations and combining them according to

D(A) O 2.4
O D'(A))’ '

where @ = (m x n) matrix of zeros, not necessarily a square zero matrix. The
matrices D(A) and D’(A) can be either two distinct representations or they
can be identical representations.

To overcome the difficulty of non-uniqueness of a representation with re-
gard to a similarity transformation, we often just deal with the traces of the
matrices which are invariant under similarity transformations, as discussed in
Chap. 3. The trace of a matrix is defined as the sum of the diagonal matrix
elements. To overcome the difficulty of the ambiguity of representations in
general, we introduce the concept of irreducible representations.

2.3 Irreducible Representations

Consider the representation made up of two distinct or identical representa-
tions for every element in the group

D(A) O
O D(A))
This is a reducible representation because the matrix corresponding to each
and every element of the group is in the same block form. We could now
carry out a similarity transformation which would mix up all the elements so

that the matrices are no longer in block form. But still the representation is
reducible. Hence the definition:

Definition 16. If by one and the same equivalence transformation, all the
matrices in the representation of a group can be made to acquire the same
block form, then the representation is said to be reducible; otherwise it is
irreducible. Thus, an irreducible representation cannot be expressed in terms
of representations of lower dimensionality.
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We will now consider three irreducible representations for the permutation
group P(3):

E A B
e (1) (1) (1)
v (1) (=1 (=1)

10 -10 £
Iz (01) (0 1) (fﬁ _§>
I : (

Is:

[\v]
/N

E A B
1000 10 00 Lo 0 0
o | 0100 0-100 0-1 0 0 (2.6)
B loo1o0) {00 —10[ |00 L - ’
0001 00 01 00 - -1
where IR is of the form
nlolo
0|0 | . (2.7)
OO,

It is customary to list the irreducible representations contained in a reducible
representation I as
IR=0In1+1v+15. (2.8)

In working out problems of physical interest, each irreducible representation
describes the transformation properties of a set of eigenfunctions and corre-
sponds to a distinct energy eigenvalue. Assume IR is a reducible represen-
tation for some group G but an irreducible representation for some other
group G'. If I'g contains the irreducible representations Iy + I'y, + I as il-
lustrated earlier for the group P(3), this indicates that some interaction is
breaking up a fourfold degenerate level in group G’ into three energy levels in
group G: two nondegenerate ones and a doubly degenerate one. Group theory
does not tell us what these energies are, nor their ordering. Group theory
only specifies the symmetries and degeneracies of the energy levels. In gen-
eral, the higher the symmetry, meaning the larger the number of symmetry
operations in the group, the higher the degeneracy of the energy levels. Thus
when a perturbation is applied to lower the symmetry, the degeneracy of the
energy levels tends to be reduced. Group theory provides a systematic method
for determining exactly how the degeneracy is lowered.
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Representation theory is useful for the treatment of physical problems be-
cause of certain orthogonality theorems which we will now discuss. To prove
the orthogonality theorems we need first to prove some other theorems (in-
cluding the unitarity of representations in Sect. 2.4 and the two Schur lemmas
in Sects. 2.5 and 2.6).

2.4 The Unitarity of Representations

The following theorem shows that in most physical cases, the elements of
a group can be represented by unitary matrices, which have the property of
preserving length scales. This theorem is then used to prove lemmas leading
to the proof of the “Wonderful Orthogonality Theorem,” which is a central
theorem of this chapter.

Theorem. Every representation with matrices having nonvanishing determi-
nants can be brought into unitary form by an equivalence (similarity) trans-
formation.

Proof. By unitary form we mean that the matrix elements obey the relation
(A7), = A;fj = Aj;, where A is an arbitrary matrix of the representation.
The proof is carried out by actually finding the corresponding unitary matrices
if the A;; matrices are not already unitary matrices.

Let A1, Ay, -+, A denote matrices of the representation. We start by

forming the matrix sum
h
H= Z A AL (2.9)
r=1

where the sum is over all the elements in the group and where the adjoint of
a matrix is the transposed complex conjugate matrix (Af);; = (Az)j;- The
matrix H is Hermitian because

HN =) (A, AN =" A, AL (2.10)

x

Any Hermitian matrix can be diagonalized by a suitable unitary transforma-
tion. Let U be a unitary matrix made up of the orthonormal eigenvectors
which diagonalize H to give the diagonal matrix d:

d=U"'HU
=> U A AU

=Y U'AUUTALU

=> A AL, (2.11)
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where we define AI = U~ 'A,U for all z. The diagonal matrix d is a special
kind of matrix and contains only real, positive diagonal elements since

dpr = ZZ ki (AL);
= ZZ(AI)ICJ(AI)ZJ
= ZZI 2)ksl” - (2.12)

Out of the diagonal matrix d, one can form two matrices (d'/? and d~1/2)

such that
RV dll O
dv? = Vidao (2.13)
@ &
and L
Vi 0
d=1? = Vi , (2.14)
o .

where d'/? and d—1/? are real, diagonal matrices. We note that the generation
of d~ rom requires that none of the dj; vanish. These matrices clearly

fd=1/2 from d'/2 requires that f the d ish. Th trices clearl
obey the relations

(@)t =a'? (2.15)
(d=V)t = g=1/2 (2.16)
(d'/*)(d"/?) = d (2.17)
so that R
dM2d1? = q=Y/24Y? = 1 = unit matrix . (2.18)
From (2.11) we can also write
d=d"/?d"?=>" A, Al (2.19)

We now define a new set of matrices
A, =d V2 4,d? (2.20)

and R
Al = (UTA U =UAIU (2.21)

Al = (@ V2 A, = a2 AL V2 (2.22)
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We now show that the matrices A, are unitary:

A AT = (d7V24,dY/2) (@2 AL d1/?)
= d Y2A,dALd"?
—1/2 A A At At g—1/2
=d 'y A A, AT ATdY
Y

=d 'Y (A, A)(AA,)Td 2

Y

=d 2y A AL a7/ (2.23)

by the rearrangement theorem (Sect. 1.4). But from the relation

d=> A.Af (2.24)

it follows that Az/ll =1, so that A, is unitary.
Therefore we have demonstrated how we can always construct a unitary
representation by the transformation:

A, =d YV2UTTAUAY? (2.25)
where
h
H=Y AAl (2.26)
=1
h A A~
d=> AAl, (2.27)
x=1

and where U is the unitary matrix that diagonalizes the Hermitian matrix H
and A, =UTA4,U. O

Note: On the other hand, not all symmetry operations can be represented by
a unitary matrix; an example of an operation which cannot be represented by
a unitary matrix is the time inversion operator (see Chap. 16). Time inversion
symmetry is represented by an antiunitary matrix rather than a unitary ma-
trix. It is thus not possible to represent all symmetry operations by a unitary
matrix.

2.5 Schur’s Lemma (Part 1)

Schur’s lemmas (Parts 1 and 2) on irreducible representations are proved in
order to prove the “Wonderful Orthogonality Theorem” in Sect. 2.7. We next
prove Schur’s lemma Part 1.
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Lemma. A matriz which commutes with all matrices of an irreducible repre-
sentation is a constant matriz, i.e., a constant times the unit matriz. There-
fore, if a mon-constant commuting matrix exists, the representation is re-
ducible; if none exists, the representation is irreducible.

Proof. Let M be a matrix which commutes with all the matrices of the rep-
resentation Ay, As, ..., Ap O

MA, = A, M . (2.28)
Take the adjoint of both sides of (2.28) to obtain

AT MT = MTAT . (2.29)

Since A, can in all generality be taken to be unitary (see Sect. 2.4), multiply
on the right and left of (2.29) by A, to yield

MTA, =AM, (2.30)

so that if M commutes with A, so does M T, and so do the Hermitian matrices
Hy and Hs defined by

Hy =M+ M
Hy =i(M — M), (2.31)
HjA, =A;H;, where j=12. (2.32)

We will now show that a commuting Hermitian matrix is a constant matrix
from which it follows that M = H;, — iH> is also a constant matrix.

Since H; (j = 1,2) is a Hermitian matrix, it can be diagonalized. Let U
be the matrix that diagonalizes H; (for example Hp) to give the diagonal
matrix d

d=U"'H,U . (2.33)

We now perform the unitary transformation on the matrices A, of the rep-
resentation A, = U~1A,U. From the commutation relations (2.28), (2.29),
and (2.32), a unitary transformation on all matrices H; A, = A, H; yields

(U H;U) (UT'AU) = (U AL U) (UTTH;U) . (2.34)

d A, A, d

So now we have a diagonal matrix d which commutes with all the matrices of
the representation. We now show that this diagonal matrix d is a constant ma-
trix, if all the A, matrices (and thus also the A, matrices) form an irreducible
representation. Thus, starting with (2.34)

dA, = Ayd (2.35)

we take the ij element of both sides of (2.35)
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dii(Ar)ij = (Ap)ijdyy (2.36)

so that A
(Az)ij(dii — djj) =0 (2.37)

for all the matrices A,.

If di; # djj, so that the matrix d is not a constant diagonal matrix, then
(/lm)ij must be 0 for all the Am This means that the similarity or unitary
transformation U1 A,U has brought all the matrices of the representation
A, into the same block form, since any time d;; # d;; all the matrices (/Alm)lj
are null matrices. Thus by definition the representation A, is reducible. But we
have assumed the A, to be an irreducible representation. Therefore (Am)ij #0
for all AI, so that it is necessary that d;; = d;;, and Schur’s lemma Part 1 is
proved.

2.6 Schur’s Lemma (Part 2)

Lemma. If the matriz representations DM (A1), DM (Ay),..., DM (A)
and D@ (A}),DP(Ay),...,DP(A},) are two irreducible representations
of a given group of dimensionality {1 and {2, respectively, then, if there is
a matriz of {1 columns and fo rows M such that

MDW(A,) =DP(A,)M (2.38)

for all A, then M must be the null matric (M = O) if {1 # ly. If {1 = Lo,
then either M = O or the representations D™ (A,) and D (A,) differ from
each other by an equivalence (or similarity) transformation.

Proof. Since the matrices which form the representation can always be trans-
formed into unitary form, we can in all generality assume that the matrices of
both representations DM (A,) and D) (A,) have already been brought into
unitary form. O

Assume ¢ < {5, and take the adjoint of (2.38)
[DW(A)]TMT = MT[DP (4,)]. (2.39)

The unitary property of the representation implies [D(A,)]T = [D(A,)] ™! =

D(A;?!), since the matrices form a substitution group for the elements A, of
the group. Therefore we can write (2.39) as

DWAYMT = MTD@ (AT . (2.40)
Then multiplying (2.40) on the left by M yields

MDW(AYMT = MMTD® (ATY) = D@ (A HYMMT (2.41)
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which follows from applying (2.38) to the element A, ! which is also an element
of the group

MDW(AZY) = D@ (A M . (2.42)

We have now shown that if M DM (A,) = D@ (A,)M then MMT commutes
with all the matrices of representation (2) and MTM commutes with all ma-
trices of representation (1). But if MM commutes with all matrices of a rep-
resentation, then by Schur’s lemma (Part 1), MM is a constant matrix of
dimensionality (f2 x £3):

MM"=c1, (2.43)

where 1 is the unit matrix.
First we consider the case {1 = f5. Then M is a square matrix, with an
inverse

;
M—lzﬁ, c#0. (2.44)
C

Then if M~ # O, multiplying (2.38) by M ~! on the left yields
DW(A,) =M D3 (A,)M (2.45)

and the two representations differ by an equivalence transformation.
However, if ¢ = 0 then we cannot write (2.44), but instead we have to
consider MMt =0

> MM =0=">" MyM;, (2.46)
k k

for all 75 elements. In particular, for ¢ = j we can write
> MM =" |Mi> =0 (2.47)
k k

Therefore each element M;; = 0 so that M is a null matrix. This completes
proof of the case {1 = {5 and M = O.

Finally we prove that for 1 # f5, then M = O. Suppose that ¢1 # {5, then
we can arbitrarily take ¢1 < £5. Then M has ¢; columns and {5 rows. We can
make a square ({3 X £2) matrix out of M by adding (¢3 — ¢1) columns of zeros

{1 columns

00---0

00---0 (2.48)
Uy TOws M 00---0 = N = square ({3 x {2) matrix .

00---0
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The adjoint of (2.48) is then written as

Mt
00 0 ---0 )
000 ---0| =N (2.49)
00 0 ---0
so that R
NNT=MM"=¢1 dimension (f5 x £5) . (2.50)

D ONuNj; =Y NuNj =cl
k k

ZN“CN;}“ = Cég .
ik

But if we carry out the sum over i we see by direct computation that some
of the diagonal terms of >, ;, Nix N}, are 0, so that ¢ must be zero. But this
implies that for every element we have N;; = 0 and therefore also M;; = 0,
so that M is a null matrix, completing the proof of Schur’s lemma Part 2.

2.7 Wonderful Orthogonality Theorem

The orthogonality theorem which we now prove is so central to the applica-
tion of group theory to quantum mechanical problems that it was named the
“Wonderful Orthogonality Theorem” by Van Vleck, and is widely known by
this name. The theorem is in actuality an orthonormality theorem.

Theorem. The orthonormality relation

. L), o h
> DR (R = 010, 0 b (2:51)
R

J

1s obeyed for all the inequivalent, irreducible representations of a group, where
the summation is over all h group elements Ay, As,..., Ay and {; and {;
are, respectively, the dimensionalities of representations I; and I . If the
representations are unitary, the orthonormality relation becomes

. r! * h
> DUE(R) (D (R)] = 011y B (2.52)
R j
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Ezample. To illustrate the meaning of the mathematical symbols of this theo-
rem, consider the orthogonality between the I} and I/ irreducible represen-
tations for the P(3) group in Sect. 2.5 using the statements of the theorem
(2.52):

ST DE(R)DYY(R) = [(1) - (1)] + [(1) - (1)] + (1) - (1)] (2.53)
R

+H() - DI+ [A) - (D] M) - (1)) = 0.

Proof. Consider the £;; x £; matrix

M => DY (R)XDUD)(RTY), (2.54)
R

where X is an arbitrary matrix with ¢; rows and ¢; columns so that M is
a rectangular matrix of dimensionality (¢; x £;). Multiply M by D) (S) for
some element S in the group:

pU(S)M =Y " D) ($) DY) (R) X DD (RTY) (2.55)
ﬁ_/ R
éj/ X@j
We then carry out the multiplication of two elements in a group
DU(S)M =Y " DE(SR) X DU)(RTIS™HDUI(S) (2.56)
£, %0 R
U X£Lj

where we have used the group properties (1.3) of the representations I'; and
I'j,. By the rearrangement theorem, (2.56) can be rewritten

DU(S)M =Y " DT(R) X DUI(R™H) DU (S) = M DUI(S) . (2.57)
R

M
Now apply Schur’s lemma Part 2 for the various cases. O
Case 1. {; # Egl or if ; = ¢;/, and the representations are not equivalent.

Since DY) (S)M = M DUJ3)(S), then by Schur’s lemma Part 2, M must
be a null matrix. From the definition of M we have

(Fj/) I _
0=Mu =5 > D/ (RIX\D{(RY). (2.58)
R ~,A

But X is an arbitrary matrix. By choosing X to have an entry 1 in the v/
position and 0 everywhere else, we write

000000---
000100 ---

v [pnong0 | xachaeam
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It then follows by substituting (2.59) into (2.58) that

0= D" (RDUIERT). (2.60)
R

Case 2. {; = {; and the representations I'; and ;s are equivalent.
If the representations I'; and I'js are equivalent, then ¢; = £;; and Schur’s
lemma part 1 tells us that M = cl. The definition for M in (2.54) gives

My = e =SS DI (R)X2D52 (R . (2.61)
Ry,A
Choose X in (2.59) as above to have a nonzero entry at v’ and 0 everywhere

else. Then X\ = ¢/,,,04,0x,, so that

(2%

b = D (R) DU (RY) | (2.62)
R

where ¢!, = ¢/cl,,.. To evaluate ¢!/, choose =y’ in (2.62) and sum on u:

S 8 =SS D (R) DS (R ZD (2.63)
Iz R

o

since DU3)(R) is a representation of the group and follows the multiplication
table for the group. Therefore we can write

oty =S DS (RR) =S DY () = DU (B 21 (2.64)
R R

ry . . . . .
But Dl(,/; )(E) is a unit (¢;; x ¢;/) matrix and the v'v matrix element is 6,/,,.
The sum of unity over all the group elements is h. Therefore we obtain

an = ﬁ&,,,/ . (2.65)
4y
Substituting (2.65) into (2.62) gives:
h () (L) e
Eéw,a,,y, => D" (R) D, (R™"). (2.66)
R
We can write the results of Cases 1 and 2 in compact form
. ) e h
> DU3(R) D (RTY) = g—japjypj/éwawl . (2.67)
For a unitary representation (2.67) can also be written as
> DUI(R) D, (R) = g—japj,pj, SpugurOur - (2.68)

This completes the proof of the wonderful orthogonality theorem, and we see
explicitly that this theorem is an orthonormality theorem.
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2.8 Representations and Vector Spaces

Let us spend a moment and consider what the representations in (2.68) mean
as an orthonormality relation in a vector space of dimensionality h. Here h
is the order of the group which equals the number of group elements. In this
space, the representations fo;f )(R) can be considered as elements in this h-
dimensional space:

v = [D;,Cﬂ(Al), DU (Az), ... ,D;,Cﬂ(Ah)} . (2.69)
The three indices I, u,v label a particular vector. All distinct vectors in
this space are orthogonal. Thus two representations are orthogonal if any one
of their three indices is different. But in an h-dimensional vector space, the
maximum number of orthogonal vectors is h. We now ask how many vectors
ka,ryj) can we make? For each representation, we have ¢; choices for ;1 and v
so that the total number of vectors we can have is ) y E? where we are now
summing over representations I';. This argument yields the important result

S B<h. (2.70)
J

We will see later (Sect. 3.7) that it is the equality that holds in (2.70). The
result in (2.70) is extremely helpful in finding the totality of irreducible (non-
equivalent) representations (see Problem 2.2).

Selected Problems

2.1. Show that every symmetry operator for every group can be represented
by the (1 x 1) unit matrix. Is it also true that every symmetry operator for
every group can be represented by the (2 x 2) unit matrix? If so, does such
a representation satisfy the Wonderful Orthogonality Theorem? Why?

2.2. Consider the example of the group P(3) which has six elements. Using the
irreducible representations of Sect. 2.3, find the sum of E?. Does the equality
or inequality in (2.70) hold? Can P(3) have an irreducible representation with
£; = 37 Group P(4) has 24 elements and 5 irreducible representations. Using
(2.70) as an equality, what are the dimensionalities of these 5 irreducible
representations (see Problem 1.4)7
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Character of a Representation

We have already discussed the arbitrariness of a representation with re-
gard to similarity or equivalence transformations. Namely, if D f)(R) is
a representation of a group, so is U_lD(Ff)(R)U. To get around this ar-
bitrariness, we introduce the use of the trace (or character) of a matrix
representation which remains invariant under a similarity transformation.
In this chapter we define the character of a representation, derive the most
important theorems for the character, summarize the conventional nota-
tions used to denote symmetry operations and groups, and we discuss the
construction of some of the most important character tables for the so-
called point groups, that are listed in Appendix A. Point groups have no
translation symmetry, in contrast to the space groups, that will be dis-
cussed in Chap.9, and include both point group symmetry operations and
translations.

3.1 Definition of Character

Definition 17. The character of the matriz representation x'i (R) for a sym-
metry operation R in a representation DU3)(R) is the trace (or the sum over
diagonal matriz elements) of the matriz of the representation:

4
X" (R) = trace DU (R) = Z DYD(R) ., (3.1)

p=1

where /; is the dimensionality of the representation I'; and j is a representa-
tion index. From the definition, it follows that representation I'; will have h
characters, one for each element in the group. Since the trace of a matrix is
invariant under a similarity transformation, the character is invariant under
such a transformation.
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3.2 Characters and Class

We relate concepts of class (see Sect. 1.6) and character by the following the-
orem.

Theorem. The character for each element in a class is the same.

Proof. Let A and B be elements in the same class. By the definition of class
this means that A and B are related by conjugation (see Sect. 1.6)

A=Y 'BY, (3.2)

where Y is an element of the group. Each element can always be represented
by a unitary matrix D (see Sect.2.4), so that

D(A)=D(Y Y D(B) D(Y) =D '(Y) D(B) D(Y). (3.3)

And since a similarity transformation leaves the trace invariant, we have the
desired result for characters in the same class: x(A) = x(B), which completes
the proof. O

The property that all elements in a class have the same character is responsible
for what van Vleck called “the great beauty of character.” If two elements of
a group are in the same class, this means that they correspond to similar sym-
metry operations — e.g., the class of twofold axes of rotation of the equilateral
triangle, or the class of threefold rotations for the equilateral triangle.

Sometimes a given group will have more than one kind of twofold sym-
metry axis. To test whether these two kinds of axes are indeed symmetrically
inequivalent, we check whether or not they have the same characters.

We summarize the information on the characters of the representations
of a group in the celebrated character table. In a character table we list the
irreducible representations (IR) in column form (for example, the left-hand
column of the character table) and the class as rows (top row labels the
class). For example, the character table for the permutation group P(3) (see
Sect. 1.2) is shown in Table 3.1. (Sometimes you will see character tables with
the columns and rows interchanged relative to this display.)

Table 3.1. Character table for the permutation group P(3) or equivalently for group
“D3” (see Sect. 3.9 for group notation)

class — Cy 3Cs> 2C3
IR| x(E) x(A,B,C) x(D,F)
I 1 1 1
Iy 1 1 1
Iy 2 0 -1
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Table 3.2. Classes for group “Ds” or equivalently for the permutation group P(3)
and for the symmetry operations of the equilateral triangle

notation for each class of Dz  equilateral triangle P(3)*
class 1 E (N, =1) 1C;  (identity class) (1)(2)(3)
class 2 A,B,C (N, =3) 3C2 (rotation of m about twofold axis) (1)(23)
class 3 D, F (Ny, = 2) 2Cs  (rotation of 120° about threefold axis) (123)

*For the class notation for P(3) see Chap. 17

We will see in Sect. 3.9 that this group, more specifically this point group
is named D3 (Schoenflies notation). In Table 3.1 the notation NyCy, is used in
the character table to label each class Ci, where IV, is the number of elements
in C,. If a representation is irreducible, then we say that its character is
primitive. In a character table we limit ourselves to the primitive characters.
The classes for group D3 and P(3) are listed in Table 3.2, showing different
ways that the classes of a group are presented.

Now that we have introduced character and character tables, let us see
how to use the character tables. To appreciate the power of the character
tables we present in the following sections a few fundamental theorems for
character.

3.3 Wonderful Orthogonality Theorem for Character

The “Wonderful Orthogonality Theorem” for character follows directly

from the wonderful orthogonality theorem (see Sect.2.7). There is also
a second orthogonality theorem for character which is discussed later (see
Sect. 3.6). These theorems give the basic orthonormality relations used to set
up character tables.

Theorem. The primitive characters of an irreducible representation obey the
orthogonality relation

S XUD(R) X (RTY) = héry 1, (3.4)
R

or

ZX(FJ-)(R) Y Ti(R)* = hér, r,, (3.5)
R

where I'; denotes irreducible representation j with dimensionality ;.

This theorem says that unless the representations are identical or equivalent,
the characters are orthogonal in A-dimensional space, where h is the order of
the group.
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Example. We now illustrate the meaning of the Wonderful Orthogonality The-
orem for characters before going to the proof. Consider the permutation group
P(3). Let I'; = It and I'j; = I't/. Then use of (3.13) yields

>N () [ (@] = W)+ @OE1) + @)
& —_— Y N——

class of E class of A,B,C  class of D,F

=1-3+2=0. (3.6)

It can likewise be verified that the Wonderful Orthogonality Theorem works
for all possible combinations of I'; and I'js in Table 3.1.

Proof. The proof of the wonderful orthogonality theorem for character follows
from the Wonderful Orthogonality Theorem itself (see Sect. 2.7). Consider the
wonderful orthogonality theorem (2.51)

) ), h
S DE(R)DYT (R = 701, 1 Byt G (3.7)
R J

Take the diagonal elements of (3.7)
. Tj1) ) e h
> DUI(R)D, (R = é—japj,pj/(sw/aulu. (3.8)
Now sum (3.8) over p and p’ to calculate the traces or characters

S5 DR ZD' :_5F F,Zgw,aw, (3.9)
R u

pu!

where we note that

Z Opp Oprp = Z Oup = 45 (3.10)
pop! Iz

so that
Zx“’ XB(RTY) = hér,r, (3.11)

completing the proof. Equation (3.11) implies that the primitive characters
of an irreducible representation form a set of orthogonal vectors in group-
element space, the space spanned by h vectors, one for each element of the
group, also called Hilbert space (see Sect.2.8). Since any arbitrary represen-
tation is equivalent to some unitary representation (Sect.2.4), and the char-
acter is preserved under a unitary transformation, (3.11) can also be writ-
ten as

S B(R) [x“f”(R)} f_ hor,.r, - (3.12)
R
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Since the character is the same for each element in the class, the summation
in (3.12) can be written as a sum over classes k

ZNkX(Fj)(Ck) {X(Fj/)(ck)} = hér, r, , (3.13)
k

where N denotes the number of elements in class k, since the representation
for R is a unitary matrix, x/7)(R™') = [xU7)(R)]* (see Sect.2.2). Also,
since the right-hand side of (3.13) is real, we can take the complex conjugate
of this equation to obtain the equivalent form

3N [X(Fj)(ck)} X (Cr) = hor, r, - (3.14)
k

O

The importance of the results in (3.11)—(3.14) cannot be over-emphasized:

1. Character tells us if a representation is irreducible or not. If a representa-
tion is reducible then the characters are not primitive and will generally
not obey this orthogonality relation (and other orthogonality relations
that we will discuss in Sect. 3.6).

2. Character tells us whether or not we have found all the irreducible rep-
resentations. For example, the permutation group P(3) could not contain
a three-dimensional irreducible representation (see Problem 1.2), since by
(2.70)

> & <h. (3.15)
J

Furthermore, character allows us to check the uniqueness of an irreducible
representation, using the following theorem.

Theorem. A necessary and sufficient condition that two irreducible represen-
tations be equivalent is that the characters be the same.

Proof. Necessary condition: If they are equivalent, then the characters are
the same — we have demonstrated this already since the trace of a matrix is
invariant under an equivalence transformation.

Sufficient condition: If the characters are the same, the vectors for each of
the irreducible representations in h-dimensional space cannot be orthogonal,
so the representations must be equivalent. O

3.4 Reducible Representations

We now prove a theorem that forms the basis for setting up the characters
of a reducible representation in terms of the primitive characters for the ir-
reducible representations. This theoretical background will also be used in
constructing irreducible representations and character tables, and is essential
to most of the practical applications of group theory to solid state physics.
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Theorem. The reduction of any reducible representation into its irreducible
constituents is unique.

Thus, if x(Cx) is the character for some class in a reducible representation,
then this theorem claims that we can write the character for the reducible
representation x(Cr) as a linear combination of characters for the irreducible
representations of the group x*)(Cy)

Cr) = ZaiX(Fi)(ck)7 (3.16)

where the a; coefficients are non-negative integers which denote the number
of times the irreducible representation I'; is contained in the reducible rep-
resentation. Furthermore we show here that the a; coefficients are unique.
This theorem is sometimes called the decomposition theorem for reducible
representations.

Proof. In proving that the a; coeflicients are unique, we explicitly determine
the values of each a;, which constitute the characters for a reducible repre-
sentation. Consider the sum over classes k:

ZNk [ Ck)r X(Ck) = 5;.- (3.17)

Since x(Ck) is reducible, we write the linear combination for x(Cy) in (3.17)
using (3.16) as

S5 =N [\ e)] S ain ™ (i)
k I
_ Zaz {ZNk { (F] )r X(Fi)(ck)} . (3.18)

We now apply the Wonderful Orthogonality Theorem for Characters (3.13)
to get

Zaihéfw‘f; ajh = ZNk |: (FJ Ck):| X(Ck) =5, (3.19)
I
yielding the decomposition relation

! ZNk [ (1) ’“)r X(C) = % (3.20)

and completing the proof of the theorem. Thus the coefficients a; in (3.16)
are uniquely determined. In other words, the number of times the various
irreducible representations are contained in a given reducible representation
can be obtained directly from the character table for the group.
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This sort of decomposition of the character for a reducible representa-
tion is important for the following type of physical problem. Consider a cubic
crystal. A cubic crystal has many symmetry operations and therefore many
classes and many irreducible representations. Now suppose that we squeeze
this crystal and lower its symmetry. Let us further suppose that the energy
levels for the cubic crystal are degenerate for certain points in the Brillouin
zone. This squeezing would most likely lift some of the level degeneracies. To
find out how the degeneracy is lifted, we take the representation for the cubic
group that corresponds to the unperturbed energy and treat this represen-
tation as a reducible representation in the group of lower symmetry. Then
the decomposition formulae (3.16) and (3.20) tell us immediately the degen-
eracy and symmetry types of the split levels in the perturbed or stressed
crystal. (A good example of this effect is crystal field splitting, discussed in
Chap.5.) O

3.5 The Number of Irreducible Representations

We now come to another extremely useful theorem.

Theorem. The number of irreducible representations is equal to the number
of classes.

Proof. The Wonderful Orthogonality Theorem for Character (3.14)

k
Z Nk/ {X(Fi)(ck/)} X(Fj)(ck/) = haFi,Fj (3.21)
k=1

can be written as

k} *
Ne'  (r Ny
> [ | [FEeo|=oma. o
k'=1
LN
o X (Cr)

in (3.22) gives the k'th component of a k-dimensional vector. There can be
only k such vectors in a k-dimensional space, since the (k + 1)th vector would
be linearly dependent on the other k vectors. If there were less than k such
vectors, then the number of independent vectors would not be large enough to
span the k-dimensional space. To express a reducible representation in terms
of its irreducible components requires that the vector space be spanned by ir-
reducible representations. Therefore the number of irreducible representations
must be k, the number of classes.

Each term
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For our example of the permutation group of three objects, we have three
classes and therefore only three irreducible representations (see Table 3.1).
We have already found these irreducible representations and we now know
that any additional representations that we might find are either equivalent
to these representations or they are reducible. Knowing the number of distinct
irreducible representations is very important in setting up character tables.

As a corollary of this theorem, the number of irreducible representations
for Abelian groups is the number of symmetry elements in the group, because
each element is in a class by itself. Since each class has only one element, all
the irreducible representations are one dimensional. U

3.6 Second Orthogonality Relation for Characters

We now prove a second orthogonality theorem for characters which sums
over the irreducible representations and is extremely valuable for constructing
character tables.

Theorem. The summation over all irreducible representations

Z X9 (cy) {X(Fj)(ck’)} Ni = hogrr (3.23)
I

yields a second orthogonality relation for the characters. Thus, the Wonderful
Orthogonality Theorem for Character yields an orthogonality relation between
rows in the character table while the second orthogonality theorem gives a sim-
ilar relation between the columns of the character table.

Proof. Construct the matrix

X)) xM(Cy) - -

x2(C) xP(Co) -+
Q=1 ®@) x®@C) - | (3.24)

where the irreducible representations label the rows and the classes label the
columns. @ is a square matrix, since by (3.22) the number of classes (desig-
nating the column index) is equal to the number of irreducible representations
(designating the row index). We now also construct the square matrix

le(l)(cl)* N1X(2) (CL)* ---

o1 | Nax® ()t Nax P (C2) -
Q=73 | NaxO(Cs)* Nsx@(cy)* - | (3.25)
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where the classes label the rows, and the irreducible representations label the
columns. The ij matrix element of the product QQ’ summing over classes is
then N
k(I , *
QRN = TX(FZ)(Ck) [X(F])(Ck)] =0r,r; (3.26)
k

using the Wonderful Orthogonality Theorem for Character (3.13). Therefore
QQ'=1lor @ =Q 'and Q'Q =1 since QQ~' = Q'Q =1, where 1 is the
unit matrix. We then write Q’Q in terms of components, but now summing
over the irreducible representations

Ng () (ry) *
! = _ B B ’ = ’ .
QQue = L FA () (e = o (3.27)
so that b
S e [X(Fi)(ck/)} = <o (3.28)
T k
which completes the proof of the second orthogonality theorem. O

3.7 Regular Representation

The regular representation provides a recipe for finding all the irreducible
representations of a group. It is not always the fastest method for finding the
irreducible representations, but it will always work.

The regular representation is found directly from the multiplication table
by rearranging the rows and columns so that the identity element is always
along the main diagonal. When this is done, the group elements label the
columns and the inverse of each group element labels the rows. We will il-
lustrate this with the permutation group of three objects P(3) for which the
multiplication table is given in Table 1.1. Application of the rearrangement
theorem to place the identity element along the main diagonal gives Table 3.3.
Then the matrix representation for an element X in the regular representation
is obtained by putting 1 wherever X appears in the multiplication Table 3.3

Table 3.3. Multiplication table for the group P(3) used to generate the regular
representation

S Qm e
I
"qbQ‘mibbj

[ I

O Qm>=|m
QO E-|»
= QD Uwm|w
T eEmOmQQ
HEe Q-
DO Q9lT




38 3 Character of a Representation

and 0 everywhere else. Thus we obtain

100000
010000
001000
000100 |~
000010
000001

D™5(E) = (3.29)

which is always the unit matrix of dimension (h x h). For one of the other
elements in the regular representation we obtain

010000
100000
000001
000010
000100
001000

D™8(A) = (3.30)

and so on. By construction, only D™8(E) has a non-zero trace!

We now show that the regular representation is indeed a representation.
This means that the regular representation obeys the multiplication table
(either Table 1.1 or 3.3). Let us for example show

D™5(BC) = D™%(B)D™5(C)) . (3.31)

It is customary to denote the matrix elements of the regular representation
directly from the definition D™#(X) 1 , , where A, ' labels the rows and A;
W A

labels the columns using the notation

1if A'A =X
Dreg(X)Afl A, = (3.32)
B 0 otherwise.

Using this notation, we have to show that

D" 8(BC) 41 4, = > DrE(B) azt 4, D E(C) g1 4, (3.33)
Aj

Now look at the rearranged multiplication table given in Table 3.3. By con-
struction, we have for each of the matrices

1 if A 'A; =B
reg _
P (B)A’:l’Aj_ 0 otherwise, (334

1 if AJ'A=C
Dng(C)A—l a = (3.35)
0 otherwise.

j i
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Therefore in the sum ZAj D™8(B) ;-1 4, D™8(C) 4-1 , of (3.33), we have
J El 7

¢ 1N
only nonzero entries when '
BC = (A" Aj)(A7 T Ay) = AN A (3.36)
——
1

But this coincides with the definition of D**#(BC):

1 if A'A;=BC
D*E(BC) 41 , = (3.37)
B 0 otherwise.

Therefore D*# is, in fact, a representation of the group A1, ..., Ap, completing
the proof.

The following theorem allows us to find all the irreducible representations
from the regular representation.

Theorem. The reqular representation contains each irreducible representa-
tion a number of times equal to the dimensionality of the representation.

(For the group P(3), this theorem says that D& contains D) once, D(1")
once, and DU2) twice so that the regular representation of P(3) would be of
dimensionality 6.)

Proof. Since D**8 is a reducible representation, we can write for the characters
(see (3.16))

X"°8(Cr) Zazx (3.38)

where } . is the sum over the irreducible representations and the a; coeffi-
cients have been shown to be unique (3.20) and given by

=R M) e, (3.39)

We note that Ng = 1 for the identity element, which is in a class by itself.
But by construction x"°8(Cj) = 0 unless C;, = E in which case x"8(E) = h.
Therefore a; = X(Fi)(E) = (;, where x(I*) is the trace of an ¢; dimensional
unit matrix, thereby completing the proof.

The theorem (3.38) that we have just proven tells us that the regular
representation contains each irreducible representation of the group at least
once. To obtain these irreducible representations explicitly, we have to carry
out a similarity transformation which brings the matrices of the regular rep-
resentation into block diagonal form. It turns out to be very messy to extract
the matrices of the regular representation — in fact, it is so tedious to do
this operation that it does not even make an instructive homework problem.
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It is much easier to write down the matrices which generate the symmetry
operations of the group directly.

Consider for example the permutation group of three objects P(3) which
is isomorphic to the symmetry operations of a regular triangle (Sect. 1.2). The
matrices for D and F' generate rotations by £27/3 about the z axis, which
is L to the plane of the triangle. The A matrix represents a rotation by +m
about the y axis while the B and C matrices represent rotations by £m about
axes in the x—y plane which are £120° away from the y axis. In setting up
a representation, it is advantageous to write down those matrices which can
be easily written down — such as F, A, D, F. The remaining matrices such as
B and C' can then be found through the multiplication table. O

We will now make use of the regular representation to prove a useful
theorem for setting up character tables. This is the most useful application of
the regular representation for our purposes.

Theorem. The order of a group h and the dimensionality {; of its irreducible
representations I'; are related by

> =h. (3.40)

We had previously found (2.70) that > {3 < h. The regular representation
allows us to prove that it is the equality that applies.

Proof. By construction, the regular representation is of dimensionality h
which is the number of elements in the group and in the multiplication table.
But each irreducible representation of the group is contained ¢; times in the
regular representation (see (3.38)) so that

X¢(E Z aJ X Z 0%, (3.41)

r; Y 13]
where one ¢; comes from the number of times each irreducible representation
is contained in the regular representation and the second ¢; is the dimension

of the irreducible representation I;.
We thus obtain the result

> =h, (3.42)
J
where Zj is the sum over irreducible representations. For example for P(3),

we have (1 =1, £1, = 1, £5 = 2 so that Y (7 = 6 = h. O

3.8 Setting up Character Tables

For many applications it is sufficient to know just the character table without
the actual matrix representations for a particular group. So far, we have only
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set up the character table by taking traces of the irreducible representations
— i.e., from the definition of x. For the most simple cases, the character table
can be constructed using the results of the theorems we have just proved —
without knowing the representations themselves. In practice, the character
tables that are needed to solve a given problem are found either in books or
in journal articles. The examples in this section are thus designed to show the
reader how character tables are constructed, should this be necessary. Our
goal is further to give some practice in using the theorems proven in Chap. 3.

A summary of useful rules for the construction of character tables is given
next.

(a) The number of irreducible representations is equal to the number of classes
(Sect. 3.5). The number of classes is found most conveniently from the
classification of the symmetry operations of the group. Another way to
find the classes is to compute all possible conjugates for all group elements
using the group multiplication table.

(b) The dimensionalities of the irreducible representations are found from
> 02 = h (see (3.42)). For simple cases, this relation uniquely determines
the dimensionalities of the irreducible representations. For example, the
permutation group of three objects P(3) has three classes and therefore
three irreducible representations. The identity representation is always
present, so that one of these must be one-dimensional (i.e., the matrix
for the identity element of the group is the unit matrix). So this gives
12472422 = 6.This equation only has one integer solution, namely 12 4
12 + 22 = 6. No other solution works!

(c) There is always a whole row of 1s in the character table for the identity
representation.

(d) The first column of the character table is always the trace for the unit
matrix representing the identity element or class. This character is always
¢;, the dimensionality of the (¢; x ¢;) unit matrix. Therefore, the first
column of the character table is also filled in.

(e) For all representations other than the identity representation Iy, the fol-
lowing relation is satisfied:

SN =0, (3.43)
k

where ), denotes the sum on classes. Equation (3.43) follows from the
wonderful orthogonality theorem for character and taking the identity
representation I'7 as one of the irreducible representations.
If there are only a few classes in the group, (3.43) often uniquely deter-
mines the characters for several of the irreducible representations; partic-
ularly for the one-dimensional representations.

(f) The Wonderful Orthogonality Theorem for character works on rows of the
character table:
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> X@0] XTC)Nk = horr (3.44)
k

This theorem can be used both for orthogonality (different rows) or for
normalization (same rows) of the characters in an irreducible representa-
tion and the complex conjugate can be applied either to the x(!*)(Cy) or
to the x(/3)(Cy) terms in (3.44) since the right hand side of (3.44) is real.
The second orthogonality theorem works for columns of the character
table: i} B
> {X(m(ck)} X (ew) = O (3.45)
T, k
This relation can be used both for orthogonality (different columns) or
normalization (same columns), as the wonderful orthogonality theorem
for character.
From the second orthogonality theorem for character, and from the char-
acter for the identity class

XT(E) = ¢; (3.46)

we see that the characters for all the other classes obey the relation

> XTI Eet =0, (3.47)

I

where r, denotes the sum on irreducible representations and ¢; is the
dimensionality of representation I';. Equation (3.47) follows from the won-
derful orthogonality theorem for character, and it uses the identity rep-
resentations as one of the irreducible representations, and for the second
any but the identity representation (I; # I1) can be used.

With all this machinery it is often possible to complete the character tables

for

simple groups without an explicit determination of the matrices for a rep-

resentation.

Let us illustrate the use of the rules for setting up character tables with

the permutation group of three objects, P(3). We fill in the first row and first
column of the character table immediately from rules #3 and #4 in the earlier

list

(see Table 3.4).
In order to satisfy #5, we know that Y1) (Cy) = —1 and xv)(C3) = 1,

which we add to the character table (Table 3.5).

Table 3.4. Character table for P(3) — Step 1

C1 3C2 2Cs
I 1 1 1
Fl’ 1

Iy
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Table 3.5. Character table for P(3) — Step 2

C1 3C2 2Cs
I 1 1 1
o 1 -1 1
I

Table 3.6. Character table for P(3)

Ci 3C2 2Cs
no1 11
., 1 -1 1
L, 2 0 -1

Table 3.7. Multiplication table for the cyclic group of three rotations by 27 /3 about
a common axis

E Cs (32
E|E C5 (2
Cs | Cs C;: E
c:2lc: E Cs

Now apply the second orthogonality theorem using columns 1 and 2 and
then again with columns 1 and 3, and this completes the character table,
thereby obtaining Table 3.6.

Let us give another example of a character table which illustrates another
principle that not all entries in a character table need to be real. Such a sit-
uation can occur in the case of cyclic groups. Consider a group with three
symmetry operations:

e F — identity,
e (5 — rotation by 27/3,
e (3 - rotation by 4r/3.

See Table 3.7 for the multiplication table for this group. All three oper-
ations in this cyclic group C3 are in separate classes as can be easily seen
by conjugation of the elements. Hence there are three classes and three irre-
ducible representations to write down. The character table we start with is
obtained by following Rules #3 and #4 (Table 3.8). Orthogonality of I to
I yields the algebraic relation: 1 +a + b = 0.

Since C§ = (3C3 and C§03 = F, it follows that b = a? and ab = a® =1,
so that a = exp(2mi/3). Then, orthogonality of the second column with the
first yields ¢ = exp(47i/3) and orthogonality of the third column with the
first column yields d = [exp(47i/3)]?. From this information we can read-
ily complete the Character Table 3.9, where w = exp[27i/3]. Such a group
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Table 3.8. Character table for Cyclic Group Cs

E Cs C?

1 1 1
Fz 1 a b
Fg 1 C d

Table 3.9. Character table for cyclic group Cs

E C3 C?

In 1 1 1
L 1 w W?
s 1 W w

often enters into a physical problem which involves time inversion symme-
try, where the energy levels corresponding to [5 and I3 are degenerate
(see Chap. 16).

This idea of the cyclic group can be applied to a four-element group: F,
Ca, Cy, C3 — to a five-element group: E, C5, C2, C3, C# — and to a six-element
group: E, Cg, C3, Ca, C3, CF, etc. In each case, use the fact that the Nth
roots of unity sum to zero so that each I is orthogonal to I and by the
rearrangement theorem each I'; is orthogonal to I';,. For the case of Bloch’s
theorem, we have an N-element group with characters that comprise the Nth
roots of unity w = exp[27i/N].

All these cyclic groups are Abelian so that each element is in a class by
itself. The representations for these groups correspond to the multiplication
tables, which therefore contain the appropriate collections of roots of unity.

The character tables for all the point groups used in this chapter are listed
in Appendix A. The notation used in these tables is discussed in more detail
in the next sections.

3.9 Schoenflies Symmetry Notation

There are two point group notations that are used for the symmetry operations
in the character tables printed in books and journals. One is the Schoenflies
symmetry notation, which is described in this section and the other is the
Hermann—Mauguin notation that is used by the crystallography community
and is summarized in Sect. 3.10. For the Schoenflies system the following no-
tation is commonly used:

e F = Identity
e (), =rotation through 27 /n. For example C is a rotation of 180°. Likewise
Cs is a rotation of 120°, while C? represents a rotation of 60° followed
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X

Fig. 3.1. Schematic illustration of a dihedral symmetry axis. The reflection plane
containing the diagonal of the square and the fourfold axis is called a dihedral plane.
For this geometry o4(z,y, 2) = (—y, —z, 2)

by another rotation of 60° about the same axis so that CZ = Cs. In
a Bravais lattice it can be shown that n in C), can only assume values of
n =1, 2,3, 4, and 6. The observation of a diffraction pattern with fivefold
symmetry in 1984 was therefore completely unexpected, and launched the
field of quasicrystals, where a six-dimensional space is used for obtaining
crystalline periodicity.

o = reflection in a plane.

oy, = reflection in a “horizontal” plane. The reflection plane here is per-
pendicular to the axis of highest rotational symmetry.

e o, = reflection in a “vertical” plane. The reflection plane here contains
the axis of highest rotational symmetry.

e 0, is the reflection in a diagonal plane. The reflection plane here is a verti-
cal plane which bisects the angle between the twofold axes L to the prin-
cipal symmetry axis. An example of a diagonal plane is shown in Fig.3.1.
oq is also called a dihedral plane.

e ¢ is the inversion which takes

r— -
Yy— -y
z— —Z.

e S, is the improper rotation through 27 /n, which consists of a rotation by
27 /n followed by a reflection in a horizontal plane. Alternatively, we can
define S,, as a rotation by 47 /n followed by the inversion.

e (), = compound rotation—inversion, which consists of a rotation followed
by an inversion.
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In addition to these point group symmetry operations, there are several space
group symmetry operations, such as translations, glide planes, screw axes,
etc. which are discussed in Chap.9. The point groups, in contrast to the
space groups, exhibit a point that never moves under the application of all
symmetry operations. There are 32 common point groups for crystallographic
systems (n = 1,2,3,4,6), and the character tables for these 32 point groups
are given in many standard group theory texts. For convenience we also list
the character tables for these point groups in Appendix A (Tables A.1-A.32).
Tables A.22—A.28 are for groups with fivefold symmetry axes and such tables
are not readily found in group theory books, but have recently become im-
portant, because of the discovery of quasicrystals, Cgp, and related molecules.
Note that the tables for fivefold symmetry are: Cs (Table A.22); C5, (Ta-
ble A.23); Cs, = C5 ® op; D5 (Table A.24); Dsq (Table A.25); Dsp, (Ta-
ble A.26); I (Table A.27); and I}, (Table A.28). Recurrent in these tables is
the “golden mean,” 7 = (1 +1/5)/2 where 7 — 1 = 2cos(21/5) = 2cos 72°.
These are followed by Tables A.33 and A.34 for the semi-infinite groups Cuoy
and Do, discussed later in this section.

Certain patterns can be found between the various point groups. Groups
C1,C5, ..., Cgs only have n-fold rotations about a simple symmetry axis C,
(see for example Table A.15) and are cyclic groups, mentioned in Sect. 3.8.
Groups C,, have, in addition to the n-fold axes, vertical reflection planes o,
(e.g., Table A.16). Groups C,; have, in addition to the n-fold axes, hor-
izontal reflection planes oj and include each operation C, together with
the compound operations C,, followed by o5, (Tables A.3 and A.11 illus-
trate this relation between groups). The groups Ss, S4, and Sg have mostly
compound operations (see Tables A.2, A.17, and A.20). The groups de-
noted by D, are dihedral groups and have non-equivalent symmetry axes
in perpendicular planes (e.g., Table A.18). The group of the operations of
a square is D4 and has in addition to the principal fourfold axes, two sets
of non-equivalent twofold axes (Table A.18). We use the notation C% to in-
dicate that these twofold axis are in a different plane (see also Table A.12
for group D3, where this same situation occurs). When non-equivalent axes
are combined with mirror planes we get groups like Dap, D3y, ete. (see Ta-
bles A.8 and A.14). There are five cubic groups T, O, Ty, Tp, and Oy,. These
groups have no principal axis but instead have four threefold axes (see Ta-
bles A.29-A.32).

3.10 The Hermann—Mauguin Symmetry Notation

There is also a second notation for symmetry operations and groups, namely
the Hermann—Mauguin or international notation, which is used in the Interna-
tional Tables for X-Ray Crystallography, a standard structural and symmetry
reference book. The international notation is what is usually found in crys-
tallography textbooks and various materials science journals. For that reason
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Table 3.10. Comparison between Schoenflies and Hermann-Mauguin notation

Schoenflies Hermann-Mauguin

rotation Ch n
rotation—inversion 1Ch n
mirror plane o m

horizontal reflection

plane L to n-fold axes oh n/m
n-fold axes in

vertical reflection plane O nm
two non-equivalent

vertical reflection planes Oyt nmm

Table 3.11. Comparison of notation for proper and improper rotations in the
Schoenflies and International systems

proper rotations improper rotations

international Schoenflies international Schoenflies

1 Cy 1 Sa
2 Cy 2=m o

3 Cs 3 Sgl
32 Cz;l 32 56
4 Ci i St
43 CZI 413 84
5 Cs 5 S10
54 cyt 54 St
6 Cs 6 Syt
65 Cgl 65 Ss

it is also necessary to become familiar with this notation. The general corre-
spondence between the two notations is shown in Table 3.10 for rotations and
mirror planes. The Hermann—Mauguin notation 7 means iC,, which is equiv-
alent to a rotation of 27 /n followed by or preceded by an inversion. A string
of numbers like 422 (see Table A.18) means that there is a fourfold major
symmetry axis (Cy axis), and perpendicular to this axis are two inequivalent
sets of twofold axes C} and C¥, such as occur in the group of the square (Dy).
If there are several inequivalent horizontal mirror planes like

2 2 2
m’ m’ m’

an abbreviated notation mmm is sometimes used [see notation for the group
Dy, (Table A.8)]. The notation 4mm (see Table A.16) denotes a fourfold axis
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and two sets of vertical mirror planes, one set through the axes Cy and denoted
by 20, and the other set through the bisectors of the 20, planes and denoted
by the dihedral vertical mirror planes 204. Table 3.11 is useful in relating the
two kinds of notations for rotations and improper rotations.

3.11 Symmetry Relations
and Point Group Classifications

In this section we summarize some useful relations between symmetry opera-
tions and give the classification of point groups. Some useful relations on the
commutativity of symmetry operations are:

(a) Inversion commutes with all point symmetry operations.

(b) All rotations about the same axis commute.

(c¢) All rotations about an arbitrary rotation axis commute with reflections
across a plane perpendicular to this rotation axis.

(d) Two twofold rotations about perpendicular axes commute.

(e) Two reflections in perpendicular planes will commute.

(f) Any two of the symmetry elements oy, S,, C, (n = even) implies the
third.

If we have a major symmetry axis C,(n > 2) and there are either twofold
axes Cy or vertical mirror planes o,, then there will generally be more than
one C5 or o, symmetry operations. In some cases these symmetry operations
are in the same class and in the other cases they are not, and this distinction
can be made by use of conjugation (see Sect. 1.6).

The classification of the 32 crystallographic point symmetry groups shown
in Table 3.12 is often useful in making practical applications of character
tables in textbooks and journal articles to specific materials.

In Table 3.12 the first symbol in the Hermann—Mauguin notation denotes
the principal axis or plane. The second symbol denotes an axis (or plane)
perpendicular to this axis, except for the cubic groups, where the second
symbol refers to a (111) axis. The third symbol denotes an axis or plane that
is L to the first axis and at an angle of 7/n with respect to the second axis.

In addition to the 32 crystallographic point groups that are involved with
the formation of three-dimensional crystals, there are nine symmetry groups
that form clusters and molecules which show icosahedral symmetry or are
related to the icosahedral group Ij,. We are interested in these species because
they can become part of crystallographic structures. Examples of such clusters
and molecules are fullerenes. The fullerene Cgp has full icosahedral symmetry
I, (Table A.28), while C7p has Dsp symmetry (Table A.26) and Cgo has
D54 symmetry (Table A.25). The nine point groups related to icosahedral
symmetry that are used in solid state physics, as noted earlier, are also listed
in Table 3.12 later that double line.



3.11 Symmetry Relations and Point Group Classifications

49

Table 3.12. The extended 32 crystallographic point groups and their symbols(®

system Schoenflies| Hermann—-Mauguin symbol(b) examples

symbol full abbreviated
triclinic C1 1

Ci, (S2) 1 1 Al2SiOs
monoclinic  |Cip, (S1) |m m KNO;

Co 2 2

Can 2/m 2/m
orthorhombic |Cs, 2mm mm

Do, (V) |222 222

Dop, (Vi) |2/m 2/m 2/m |mmm I, Ga
tetragonal Cy 4 4

Sy 4 4

Can 4/m 4/m CaWOy

Do, (Va) |42m 42m

Clo 4mm 4mm

Dy 422 42

Dan 4/m 2/m 2/m |4/mmm TiOg2, In, 5-Sn
rhombohedral |C3 3 3 Asls

Csi,(Ss) |3 3 FeTiO3

CSv 3m 3Im

D3 32 32 Se

ng 32/m 3m Bi, AS7 Sb, A1203
hexagonal C3p, (S3) |6 6

Cs 6 6

Csn 6/m 6/m

D3h 62777, 62m

Ceo 6mm 6mm 7Zn0O, NiAs

D@ 622 62 CeF3

D, 6/m 2/m 2/m |6/mmm Mg, Zn, graphite

Footnote (a): The usual 32 crystallographic point groups are here extended by in-
cluding 9 groups with 5 fold symmetry and are identified here as icosahedral point

groups.

Footnote (b): In the Hermann—Mauguin notation, the symmetry axes parallel to
and the symmetry planes perpendicular to each of the “principal” directions in the
crystal are named in order. When there is both an axis parallel to and a plane
normal to a given direction, these are indicated as a fraction; thus 6/m means
a sixfold rotation axis standing perpendicular to a plane of symmetry, while 4 denotes
a fourfold rotary inversion axis. In some classifications, the rhombohedral (trigonal)
groups are listed with the hexagonal groups. Also show are the corresponding entries
for the icosahedral groups (see text).
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Table 3.12. (continued)

the extended 32 crystallographic point groups and their symmetries

system Schoenflies| Hermann—Mauguin symbol|examples
symbol full abbreviated
cubic T 23 23 NaClO3
Ty, 2/m3 m3 FeS;
Ty 43m 43m 7nS
O 432 43 B-Mn
Oy, 4/m 3 2/m |m3m NaCl, diamond, Cu
icosahedral |C’ 5 5
Csi, (S10) |10 10
0511 5m 5m
Csh, S5 5 5
Ds 52 52
D5d 52/m 5/TTL Oso
Dsp, 102m 102m Cro
1 532 532
Iy Cso

It is also convenient to picture many of the point group symmetries with
stereograms (see Fig. 3.2). The stereogram is a mapping of a general point on
a sphere onto a plane going through the center of the sphere. If the point on
the sphere is above the plane it is indicated as a +, and if below as a o. In
general, the polar axis of the stereogram coincides with the principal axis of
symmetry. The first five columns of Fig.3.2 pertain to the crystallographic
point group symmetries and the sixth column is for fivefold symmetry.

The five first stereograms on the first row pertaining to groups with a sin-
gle axis of rotation show the effect of two-, three-, four-, and sixfold rotation
axes on a point +. These groups are cyclic groups with only n-fold axes.
Note the symmetry of the central point for each group. On the second row
we have added vertical mirror planes which are indicated by the solid lines.
Since the “vertical” and “horizontal” planes are not distinguishable for Cf,
the addition of a mirror plane to Cj is given in the third row, showing the
groups which result from the first row upon addition of horizontal planes.
The symbols @ indicate the coincidence of the projection of points above and
below the plane, characteristic of horizontal mirror planes.

If instead of proper rotations as in the first row, we can also have im-
proper rotations, then the groups on row 4 are generated. Since S is identical
with Cip, it is not shown separately; this also applies to S3 = C3; and
to S5 = Csp (neither of which are shown). It is of interest to note that So
and Sg have inversion symmetry but S4 does not.

The addition of twofold axes L to the principal symmetry axis for the
groups in the first row yields the stereograms of the fifth row where the twofold



3.11 Symmetry Relations and Point Group Classifications 51

——-

from S, with ./:o__
2 fold axes

Fig. 3.2. The first five columns show stereographic projections of simple crystallo-
graphic point groups

axes appear as dashed lines. Here we see that the higher the symmetry of the
principal symmetry axis, the greater the number of twofold axes Dj (not
shown) that would have 5 axes separated by 72°.

The addition of twofold axes to the groups on the fourth row yields the
stereograms of the sixth row, where Dy; comes from Sy, while D34 comes from
Se. Also group Dsq (not shown) comes from S1g. The addition of twofold axes
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Fig. 3.3. Schematic diagram for the symmetry operations of the group Ty

to Sy results in Cyj,. The stereograms on the last row are obtained by adding
twofold axes L to C), to the stereograms for the C,; groups on the third row.
D5, (not shown) would fall into this category. The effect of adding a twofold
axis to Cyy, is to produce Co,.

The five point symmetry groups associated with cubic symmetry (7', O,
Ty, Ty, and Op,) are not shown in Fig. 3.2. These groups have higher symmetry
and have no single principal axis. The resulting stereograms are very compli-
cated and for this reason are not given in Fig. 3.2. For the same reason the
stereograph for the I and I} icosahedral groups are not given. We give some
of the symmetry elements for these groups next.

The group T' (or 23 using the International notation) has 12 symmetry
elements which include:

1 identity

3 twofold axes (z,9,2)

4 threefold axes (body diagonals — positive rotation)
4 threefold axes (body diagonals — negative rotations)

12 symmetry elements

The point group 7}, (denoted by m3 in the abbreviated International nota-
tion or by 2/m3 in the full International notation) contains all the symmetry
operations of T and inversion as well, and is written as T, = T ® i, indicating
the direct product of the group 7" and the group C; having two symmetry
elements F, i (see Chap. 6). This is equivalent to adding a horizontal plane of
symmetry, hence the notation 2/m; the symbol 3 means a threefold axis (see
Table 3.11). Thus T}, has 24 symmetry elements.

The point group Ty (43m) contains the symmetry operations of the reg-
ular tetrahedron (see Fig.3.3), which correspond to the point symmetry for
diamond and the zincblende (III-V and II-VI) structures. We list next the 24
symmetry operations of Ty:
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Fig. 3.5. Schematic diagram of the CO molecule with symmetry C's, and symmetry
operations F, 2Cy, 0y, and the linear CO2 molecule in which the inversion operation
together with (E,2C4,0,) are also present to give the group Doop,

identity,

eight C5 about body diagonals corresponding to rotations of +2m/3,
three Cy about x,y, z directions,

six Sy about z,y, z corresponding to rotations of £m/2,

six gq planes that are diagonal reflection planes.

The cubic groups are O (432) and Oy, (m3m), and they are shown schemati-
cally in Fig.3.4.

The operations for group O as shown in Fig. 3.4 are E, 8Cs3, 3Cy = 3C7%,
6C5, and 6Cy. To get Op, we combine these 24 operations with inversion to
give 48 operations in all. We note that the second symbol in the Hermann—
Mauguin (International) notation for all five cubic groups is for the (111) axes
rather than for an axis | to the principal symmetry axis.

In addition to the 32 crystallographic point groups and to the eight fivefold
point groups, the character tables contain listings for C, (Table A.33) and
Doop, (Table A.34) which have full rotational symmetry around a single axis,
and therefore have an co number of symmetry operations and classes. These
two groups are sometimes called the semi-infinite groups because they have
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an infinite number of operations about the major symmetry axis. An example
of Cwy symmetry is the CO molecule shown in Fig. 3.5.

Here the symmetry operations are I, 2Cy, and o,. The notation Cy de-
notes an axis of full rotational symmetry and o, denotes the corresponding
infinite array of vertical planes. The group D has in addition the inversion
operation which is compounded with each of the operations in C,, and this
is written as Doop, = Cooy ® 7 (see Chap.6). An example of a molecule with
Doop, symmetry is the CO5 molecule (see Fig. 3.5).

Selected Problems

3.1. (a) Explain the symmetry operations pertaining to each class of the point
group Dsp,. You may find the stereograms on p. 51 useful.

(b) Prove that the following irreducible representations F; and Es in the
group Dj (see Table A.24) are orthonormal.

(c) Given the group T (see Table A.29), verify that the equality

ZE?:h
J

is satisfied. What is the meaning of the two sets of characters given for
the two-dimensional irreducible representation E?7 Are they orthogonal to
each other or are they part of the same irreducible representation?

(d) Which symmetry operation results from multiplying the operations o,
and o4 in group Cy,? Can you obtain this information from the character
table? If so, how?

3.2. Consider an A3Bs; molecule consisting of 34 atoms at the corners of
a regular triangle and 3B atoms at the corners of another regular triangle,
rotated by 60° with respect to the first.

(a) Consider the A and B atoms alternately occupy the corners of a planar
regular hexagon. What are the symmetry operations of the symmetry
group and what is the corresponding point group? Make a sketch of the
atomic equilibrium positions for this case.

(b) If now the A atoms are on one plane and the B atoms are on another
parallel plane, what are the symmetry operations and point group?

(¢) If now all atoms in (a) are of the same species, what then are the symmetry
operations of the appropriate point group, and what is this group?

(d) Which of these groups are subgroups of the highest symmetry group? How
could you design an experiment to test your symmetry group identifica-
tions?

3.3. (a) What are the symmetry operations of a regular hexagon?
b) Find the classes. Why are not all the two-fold axes in the same class?
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(¢) Find the self-conjugate subgroups, if any.

(d) Identify the appropriate character table.

(e) For some representative cases (two cases are sufficient), check the validity
of the “Wonderful Orthogonality and Second Orthogonality Theorems”
on character, using the character table in (d).

3.4. Suppose that you have the following set of characters: x(E) = 4, x(or) =
23 X(C?)) = 13 X(S?)) = _11 X(Cé) = Oa X(UU) =0.

(a) Do these characters correspond to a representation of the point group
D3, ? Is it irreducible?

(b) If the representation is reducible, find the irreducible representations con-
tained therein.

(c) Give an example of a molecule with Ds;, symmetry.

3.5. Consider a cube that has Oy symmetry.

(a) Which symmetry group is obtained by squeezing the cube along one of
the main diagonals?

(b) Which symmetry group is obtained if you add mirror planes perpendic-
ular to the main diagonals, and have a mirror plane crossing these main
diagonals in the middle.
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Basis Functions

In the previous chapters we have discussed symmetry elements, their ma-
trix representations and the properties of the characters of these representa-
tions. In this discussion we saw that the matrix representations are not unique
though their characters are unique. Because of the uniqueness of the characters
of each irreducible representation, the characters for each group are tabulated
in character tables. Also associated with each irreducible representation are
“basis functions” which can be used to generate the matrices that represent
the symmetry elements of a particular irreducible representation. Because of
the importance of basis functions, it is customary to list the most important
basis functions in the character tables.

4.1 Symmetry Operations and Basis Functions

Suppose that we have a group G with symmetry elements R and symmetry
operators Pg. We denote the irreducible representations by I',, where n labels
the representation. We can then define a set of basis vectors denoted by |I,7).
Each vector |I,j) of an irreducible representation I, is called a component
or partner and j labels the component or partner of the representation, so
that if we have a two-dimensional representation, then j = 1,2. All partners
collectively generate the matrix representation denoted by DU™)(R). These
basis vectors relate the symmetry operator Pg with its matrix representation
D) (R) through the relation

Palla) = 3" DU (B)al 1), (4.1)

The basis vectors can be abstract vectors; a very important type of basis vector
is a basis function which we define here as a basis vector expressed explicitly
in coordinate space. Wave functions in quantum mechanics, which are basis
functions for symmetry operators, are a special but important example of such
basis functions.
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In quantum mechanics, each energy eigenvalue of Schrodinger’s equation is
labeled according to its symmetry classification, which is specified according
to an irreducible representation of a symmetry group. If the dimensionality of
the representation is j > 1, the energy eigenvalue will correspond to a j-fold
degenerate state, with j linearly independent wave-functions. The effect of
the symmetry operator Ppg on one of these wave functions (e.g., the ath wave
function) will generally be the formation of a linear combination of the j wave
functions, as is seen in (4.1).

Like the matrix representations and the characters, the basis vectors also
satisfy orthogonality relations

<F7L7|Fn’.7/> = 5nn’5jj’ ) (42)

and this relation is proved in Sect.6.2 in connection with selection rules. In
quantum (wave) mechanics, this orthogonality relation would be written in
terms of the orthogonality for the wave functions

/w;,j(r)wn’,j/ (r)dgr = 57m’6jj/ ) (43)

where the wave functions v, ; and 1, j» correspond to different energy eigen-
values (n,n') and to different components (j,j') of a particular degenerate
state, and the integration is usually performed in 3D space. The orthogonality
relation (4.3) allows us to generate matrices for an irreducible representation
from a complete set of basis vectors, as is demonstrated in Sect. 4.2.

4.2 Use of Basis Functions
to Generate Irreducible Representations

In this section we demonstrate how basis functions can be used to generate
the matrices for an irreducible representation.

Multiplying (4.1) on the left by the basis vector (I',/j’| (corresponding in
wave mechanics to 1, ;,(r)), we obtain using the orthogonality relation for
basis functions (4.2):

(Do |Pr|Toa)y =~ DY) (R)jo (Do |Tnj) = DY) (R) jrabnm . (4.4)

J

From (4.4) we obtain a relation between each matrix element of DU")(R);,
and the effect of the symmetry operation on the basis functions:

DY)(R)ja = (Ij|Pr|Tha) . (4.5)

Thus by taking matrix elements of a symmetry operator Pg between all pos-
sible partners of an irreducible representation as shown by (4.5) the matrix
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y

©) ©

Fig. 4.1. Symmetry operations of an equilateral triangle. The notation of this di-
agram defines the symmetry operations in Table 4.1. Each vertex is labeled by the
same number as its axis

representation D" (R);, can be generated. In practice, this turns out to be the
easiest way to obtain these matrix representations for the symmetry elements.

As an example of how basis vectors or basis functions can generate the
matrices for an irreducible representation, consider a planar molecule with
threefold symmetry such that the symmetry operations are isomorphic to
those of an equilateral triangle and also isomorphic to P(3) (see Chap. 1). Thus
there are six symmetry operations and six operators Pg (see Sect.1.2). The
proper point group to describe all the symmetry operations of a regular planar
triangle could be D3, = D3 ® o5,. However, since the triangle is a 2D object,
the horizontal mirror plane may not be an important symmetry operation
and we can here simplify the algebra by using the group D3 which has six
symmetry elements. Group theory tells us that the energy levels can never be
more than twofold degenerate. Thus no threefold or sixfold degenerate levels
can occur because the largest dimensionality of an irreducible representation
of P(3) is 2 (see Problem 2.2). For the one-dimensional representation I}, the
operator Pg leaves every basis vector invariant. Thus any constant such as
the number one forms a suitable basis function. For many practical problems
we like to express our basis functions in terms of functions of the coordinates
(x,y,2). Some explanation is needed here about the meaning of (x,y,z) as
a basis function. To satisfy the orthonormality requirement, the basis functions
are vectors with unit length and the matrices which represent the symmetry
operations are unitary matrices. The transformation properties of the z, y,
and z components of an arbitrary vector under the symmetry operations of
the group are the same as those for the unit vectors z, y, and z.

In this connection it is convenient to write out a basis function table such
as Table 4.1. On the top row we list the functions to be investigated; in the
first column we list all the symmetry operations of the group (see Fig. 4.1 for
notation). If we denote the entries in the table by f’(x,y, z), then Table 4.1
can be summarized as

PRf(»’vaaZ) :f/(zayvz) ) (46)
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where the symmetry operations Ppg label the rows. From Table 4.1 we can
then write down the matrix representations for entries on each irreducible
representation. In the trivial case of the identity representation, the (1 x 1)
matrix 1 satisfies Pgl = 1 for all Pg so that this homomorphic representation
always applies, i.e., |[I7) = 1.

To find the basis functions for the I's representation (i.e., the representa-
tion of the factor group for P(3)), we note that (E, D, F') leaves z invariant
while (A, B,C) takes z into —z, so that z forms a suitable basis function for
I'y/, which we write as |I'1/) = z. Then application of (4.5) yields the matrices
for the irreducible representation I

(z|(E,D,F)|z) =1, (z|(A,B,C)|z) = —1. (4.7)

Thus the characters (1) and (—1) for the (1 x 1) irreducible representations
are obtained for I';,. We note that in the case of (1 x 1) representations, the
characters and the representations are identical.

To find the two-dimensional representation I we note that all the group
operations take (z,y) into (z/,y'). Table 4.1 shows the results of each Pg
operator acting on z,y, z to yield 2/, v/, 2’ and Pg acting on 22,42, 22 to yield
22,92, 22, Table 4.1 thus can be used to find the matrix representation for I
by taking as basis functions |1, 1) = |z) and |I%,2) = |y). We now illustrate
the use of Table 4.1 to generate the matrix DU2)(Cy' = D) where D is
a clockwise rotation of 27/3 about the z-axis:

D|z) = —1/2(z +v/3y) yields first column of matrix representation
Dly) = 1/2(V3xz —y) yields second column of matrix representation

so that
_1 V3
(D) (=1 _ _ 2 2
poscrt (3 9). "
2 2

To clarify how we obtain all the matrices for the irreducible representations
with I symmetry, we repeat the operations leading to (4.8) for each of the
symmetry operations Pg. We thus obtain for the other five symmetry opera-
tions of the group Pg using the same basis functions (z,y) and the notation

of Fig.4.1:
10
D<F2><E>—< ) , (4.9)

1 _ B
2 2

i _;> , (4.10)
2 2
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D) (Cy = F) = <% \/7§> (4.11)
~10
D) (Cy(1) = 4) = ( ) 1) , (1.12)
DR (C5(3) = C) = < 3 VT§> (4.13)
? Vi 1] '

As mentioned before,  and y are both basis functions for representa-
tion Iy and are called the partners of this irreducible representation.
The number of partners is equal to the dimensionality of the representa-
tion.

In Table 4.1 we have included entries for PR,TQ, PRyQ, PRZQ and these
entries are obtained as illustrated below by the operation D = C5 L

Dz? = (—E - ﬁy) = (x_2 + ﬁxy + §y2> , (4.14)

2 2 4 2 4
2 2
Dy? = <% + ?z) = (yz — ?zy + %:172> , (4.15)
D(z* +y*) =2+ 4%, (4.16)
z V3 y V3
Dlay) = (‘5 - 7?/) <‘5 g )
- i (—2:17y —V3[a? - y2]) , (4.17)
D(z* —y%) = 7% (2[:02 — 3% - 4\/5:173/) , (4.18)
D(zxz) = <§ - ?y) z, (4.19)
D(yz) = (—g + ?:C) z. (4.20)

Using (4.1) we see that Pr(22+y2) = (22 +42) for all Pg so that (22 +y2)
is a basis function for I} or as we often say transforms according to the irre-
ducible representation I'y. Correspondingly z(2?+y?) transforms as I, and 22
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transforms as I';. These transformation properties will be used extensively for
many applications of group theory. It is found that many important basis
functions are given directly in the published character tables. Like the matrix
representations, the basis functions are not unique. However, corresponding
to a given set of basis functions, the matrix representation which is generated
by these basis functions will be unique.

As before, the characters for a given representation are found by tak-
ing the sum of the diagonal elements of each matrix in a given representa-
tion:

X(R) =tr DU(R) =Y DU™(R);; = > (LnjlPrllng) . (4.21)
J J
Since the trace is invariant under a similarity transformation, the character
is independent of the particular choice of basis functions or matrix represen-
tations.

If instead of a basis function (which generates irreducible representations)
we use an arbitrary function f, then a reducible representation will result, in
general. We can express an arbitrary function as a linear combination of the
basis functions. For example, any linear function of z, y, z such as f(z,y, z) can
be expressed in terms of linear combinations of basis vectors z, y, z and likewise
any quadratic function is expressed in terms of quadratic basis functions which
transform as irreducible representations of the group. For example for the
group P(3) (see Table 4.1), quadratic forms which serve as basis functions are
(22 + y?) and 2?2 which both transform as I'; z transforms as I'/; (2z,yz2)
and (zy, 2% — y?) both transform as I'.

If we now inspect the character table D3(32) found in Table A.12 (and
reproduced below in Table 4.2), we find that these basis functions are listed
in this character table. The basis functions labeled R, represent the angular
momentum component around axis « (e.g., Ry = yp, — zp,). For the two
dimensional irreducible representations both partners of the basis functions
are listed, for example (zz,zy) and (22 —y?, zy), etc. The reason why (z,y, 2)
and (R, Ry, R,) often transform as different irreducible representations (not
the case for the group D3(32)) is that x, y, z transforms as a radial vector (such
as coordinate, momentum) while R,, R,, R, transforms as an axial vector
(such as angular momentum r X p).

Table 4.2. Character Table for Group D3 (rhombohedral)

D5(32) E 205 3C,
CC2 + y27 Z2 Al 1 1 1
R., z Ao 1 1 —1

(z® —y*, zy) (R, Ry)

(22,y2) } (2,9) } sle 1 o
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4.3 Projection Operators P( T

The previous discussion of basis vectors assumed that we already knew how
to write down the basis vectors. In many cases, representative basis functions
are tabulated in the character tables. However, suppose that we have to find
basis functions for the following cases:

(a) An irreducible representation for which no basis functions are listed in
the character table; or
(b) An arbitrary function.

In such cases the basis functions can often be found using projection opera-
tors Pkg, not to be confused with the symmetry operators Pr. We define the
projection operator P,gé ") as transforming one basis vector |I,¢) into another
basis vector |1, k) of the same irreducible representation I,:

P00 = |Thk) . (4.22)

The utility of projection operators is mainly to project out basis functions
for a given partner of a given irreducible representation from an arbitrary
function. The discussion of this topic focuses on the following issues:

(a) The relation of the projection operator to symmetry operators of the
group and to the matrix representation of these symmetry operators for
an irreducible representation (see Sect.4.4).

(b) The effect of projection operators on an arbitrary function (see Sect. 4.5).

As an example, we illustrate in Sect. 4.6 how to find basis functions from an
arbitrary function for the case of the group of the equilateral triangle (see
Sect. 4.2).

4.4 Derivation of an Explicit Expression for P(F")

In this section we find an explicit expression for the projection operators PIEZF")
by considering the relation of the projection operator to symmetry operators
of the group. We will find that the coefficients of this expression give the
matrix representations of each of the symmetry elements.

Let the projection operator P( ) he written as a linear combination of
the symmetry operators Pg:

= Aw(R)Pr (4.23)
R

where the Age(R) are arbitrary expansion coefficients to be determined. Sub-
stitution of (4.23) into (4.22) yields
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Py Tt) = [Tk = ZAM )Pr|L) . (4.24)

Multiply (4.24) on the left by (I},k| to yield

(Tnk|Tnk) = 1= Ae(R) (k| PR|Tnt) . (4.25)
N————
r D) (R) e

But the Wonderful Orthogonality Theorem (2.51) specifies that

> DU(R); DI (R)ge = - (4.26)

where h is the number of symmetry operators in the group and /¢, is the dimen-
sionality of the irreducible representation I,, so that we can identify Ag¢(R)
with the matrix element of the representation for the symmetry element R:

Ly

- 2pI(R)E, . (4.27)

Age(R) =

Thus the projection operator is explicitly given in terms of the symmetry
operators of the group by the relation:

“ [n . A
Pl = - S DU (R);, PR . (4.28)
R

From the explicit form for I:’]EZF") in (4.28) and from (4.22) we see how to find
the partners of an irreducible representation I, from any single known basis
vector, provided that the matrix representation for all the symmetry operators
DU)(R) is known.

As a special case, the projection operator PIS,I;") transforms |I5,k) into itself
and can be used to check that |I},k) is indeed a basis function. We note that

the relation of ]5,5,1;”) to the symmetry operators Ppg involves only the diagonal
elements of the matrix representations (though not the trace):

o £ . A
PISI?) - Z DY) (R);y Pr (4.29)
R

where A
PU|Ok) = [Tk (4.30)

4.5 The Effect of Projection Operations
on an Arbitrary Function

The projection operators P,E,f") defined in (4.30) are of special importance
because they can project the kth partner of irreducible representation I3,
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from an arbitrary function. Any arbitrary function F' can be written as a linear
combination of a complete set of basis functions |I,/j):

F=3 "N nwg" . (4.31)

r,, j

We can then write from (4.29):

o l, . 7
PR = - >~ DT (R);, PrF (4.32)
R

and substitution of (4.31) into (4.32) then yields
A fn I, " * ™ .
PE = Zzzzf;’ "D (R);y, PrILw ') . (4.33)
R Fn’ J’

But substitution of (4.1) into (4.33) and use of the Wonderful Orthogonality
Theorem (2.51):

h

ZD(Fn/)(R)jj,D(Fn)(R)Zk = é_éFn,Fnzéjk‘Sj’k (4.34)
R n
yields
PUVF = (50 | (4.35)
where ‘
Sy n . P
P =523 DU (R)jy P (4.36)
R

We note that the projection operator does not yield normalized basis func-
tions. One strategy to find basis functions is to start with an arbitrary func-
tion F.

(a) We then use P]E,f") to project out one basis function |, k).

(b) We can then use the projection operator PA’]EZF") to project out all other
partners |I,¢) orthogonal to |I,k) in irreducible representation I5,. Or

alternatively we can use PMF "’ to project out each of the partners ¢ of the
representation, whichever method works most easily in a given case.

If we do not know the explicit representations D,(CI;")(R)*, but only know
the characters, then we can still project out basis functions which trans-
form according to the irreducible representations (using the argument given
in the next paragraph), though we cannot in this case project out specific
partners but only linear combinations of the partners of these irreducible
representations.

If we only know the characters of an irreducible representation I, we
define the projection operator for this irreducible representation as P,
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5() = N p) _ o (5 (RY* P
P = ;PM = ;§D (R)ixPr . (4.37)

so that ’
A(Fn) __n (Fn) * D
P =7 ER X (R)*Pgr (4.38)

and using (4.35) we then obtain

PIDR=N"PUE =3 f 0k (4.39)
k k

which projects out a function transforming as I, but not a specific partner
of I,.

In dealing with physical problems it is useful to use physical insight in
guessing at an appropriate “arbitrary function” to initiate this process for
finding the basis functions and matrix representations for specific problems.
This is the strategy to pursue when you do not know either the matrix repre-
sentations or the basis functions a priori.

4.6 Linear Combinations of Atomic Orbitals
for Three Equivalent Atoms
at the Corners of an Equilateral Triangle

As an example of finding basis functions from an arbitrary function, we here
consider forming linear combinations of atomic orbitals which transform as
irreducible representations of the symmetry group.

In many of the applications that we will be making of group theory
to solid-state physics, we will have equivalent atoms at different sites. We
use the symmetry operations of the group to show which irreducible rep-
resentations result when the equivalent atoms transform into each other
under the symmetry operations of the group. The discussion of projec-
tion operators of an arbitrary function applies to this very important
case.

As an example of this application, suppose that we have three equivalent
atoms at the three corners of an equilateral triangle (see Fig.4.2) and that
each atom is in the same spherically symmetric ground state described by
a wave function g (r;), where the subscript ¢ is a site index, which can apply
to any of the three sites. As a short-hand notation for tg(r,), 1o (rs), Yo (re)
we will here use a, b, c.

We now want to combine these atomic orbitals to make a molecular orbital
that transforms according to the irreducible representations of the group. We
will see that only the I'; and I, irreducible representations are contained in the
linear combination of atomic orbitals for a, b, ¢. This makes sense since we have
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Pg

C

Fig. 4.2. Equilateral triangle and arbitrary functions a, b, ¢ for atomic orbitals at
corners of an equilateral triangle, defining the notation used in Sect. 4.6

three atomic orbitals which split into a nondegenerate and a two-dimensional
representation in trigonal symmetry through the symmetry operations Pg on
the equivalent site functions a, b, c.

To generate the proper linear combination of atomic orbitals that trans-
form as irreducible representations of the symmetry group, we use the
results on the projection operator to find out which irreducible represen-
tations are contained in the function F. According to the above discus-
sion, we can project out a basis function for representation I,, by consid-
ering the action of PIS,I;") on one of the atomic orbitals, as for example
orbital F' = a:

S ﬂn * > n
PiMa =223 DU (R)y, Pra= £ |10k (4.40)
R

)

in which we have used the definition for ]5,5,5" given by (4.35) and the expres-

sion for ]5,5,1;”) given by (4.36). If the representation I, is one-dimensional,
then we can obtain DU)(R) directly from the character table, and (4.40)
then becomes

. / N
(Fn) __n (Fn) * — (Fn)
Pa = 23 3 F(R) Pra = £ |1,) (4.41)

For the appropriate symmetry operators for this problem we refer to Sect. 1.2
where we have defined: E = identity; (A, B,C) = 7 rotations about twofold
axes in the plane of triangle; (D, F) = 2m/3 rotations about the threefold axis
L to the plane of the triangle. These symmetry operations are also indicated
in Fig.4.2.

For the identity representation I; the characters and matrix representa-
tions are all unity so that



4.6 Linear Combinations of Atomic Orbitals for Three Equivalent Atoms 69
. 1 . . . . . .
P g = E(PEG + Psa+ Pga+ Poa+ Ppa+ Pra)
1
= g(a+a+c+b+b+c)

= %(a—i—b—i—c) , (4.42)
a result which is intuitively obvious. Each atom site must contribute equally
to the perfectly symmetrical molecular representation I';. This example illus-
trates how starting with an arbitrary function a (or ¥(r,)) we have found
a linear combination that transforms as Ij. Likewise, we obtain the same
result by selecting b or ¢ as the arbitrary function

) . 1
PUDp = pUDe = Flatb+o). (4.43)

We now apply a similar analysis for representation I, to illustrate another
important point. In this case the matrix representations and characters are
+1 for (E,D, F), and —1 for (A, B,C). Thus

~ 1 - N N N ~ N
pPUIg = E(PEG — Paa — Pgpa — Pca+ Ppa + Pra)

1
:6(a—afc—b+b+c)20, (4.44)
which states that no molecular orbital with I}, symmetry can be made by

taking a linear combination of the a, b, ¢ orbitals. This is verified by considering
Py = pUvle =0 . (4.45)

The same approach can be used to obtain the two-dimensional irreducible
representations, but it does not result in a simple set of linear combinations
of atomic orbitals with a set of unitary matrices for the representation of the
symmetry operations of the group (see Problem 4.6).

To obtain a symmetrical set of basis functions for higher dimensional repre-
sentations it is useful to start with an arbitrary function that takes account of
the dominant symmetry operations of the group (e.g., a threefold rotation PD)

|lMa) = a+ wb+ w?c, (4.46)

where w = 2™/3 and we note here from symmetry that Pp|lha) = w?|Iha)

and Pp|lha) = w|lha).

Thus |I2a) is already a basis function. Clearly the partner of |Ipa) is
|Iba)* since Pp|lha)* = Pp(a+ w?b + we) = wla 4+ w?b + we) = w|lh3),
where we have used the notation («, 3) to denote the two partners of the I
representation:

|Iha) =a+wb+w?c, |I2B) =a+w?+wc. (4.47)
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The two partners in (4.47) are complex conjugates of each other. Correspond-
ing to these basis functions, the matrix representation for each of the group
elements is simple and symmetrical

E= (é?) A= <(1)(1)) B= <g“§) (4.48)
o (1) 0= (5) - (32).

By inspection, the representation given by (4.48) is unitary.

4.7 The Application of Group Theory
to Quantum Mechanics

Suppose FE, is a k-fold degenerate level of the group of Schrédinger’s equa-
tion (see Sect.1.8). Then any linear combination of the eigenfunctions
Un1,Un2, -« -, Unk is also a solution of Schrédinger’s equation. We can write
the operation PRi/}na on one of these eigenfunctions as

Pana = Z D(n) (R)joﬂ/)nj ’ (449)
J

where D(")(R);,, is an irreducible matrix which defines the linear combination,
n labels the energy index, « labels the degeneracy index.

Equation (4.49) is identical with the more general equation for a basis
function (4.1) where the states | I, «) and |I7,5) are written symbolically rather
than explicitly as they are in (4.49).

We show here that the matrices D™ (R) form an £, dimensional irre-
ducible representation of the group of Schrodinger’s equation where £,, denotes
the degeneracy of the energy eigenvalue E,,. Let R and S be two symmetry
operations which commute with the Hamiltonian and let RS be their product.
Then from (4.49) we can write

PRS"bna = PRpswna = PR ZD(n)(s)jawnj (450)

J

= %} DO(R); DS jatbur = Y [P R)D(S)|

k

after carrying out the indicated matrix multiplication. But by definition, the
product operator RS can be written as

pRSQ/]na = Z D(n)(RS)kawnk 5 (451)
k
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so that
D™(RS) = D™ (R)D™(S) (4.52)

and the matrices D™ (R) form a representation for the group. We label quan-
tum mechanical states typically by a state vector (basis vector) |«, I},, j) where
I, labels the irreducible representation, j the component or partner of the
irreducible representation, and « labels the other quantum numbers that do
not involve the symmetry of the Pr operators.

The dimension of the irreducible representation is equal to the degeneracy
of the eigenvalue E,,. The representation D™ (R) generated by Prippg is an
irreducible representation if all the ¢, correspond to a single eigenvalue F,,.
For otherwise it would be possible to form linear combinations of the type

1/}41171/);2""’1%15 w:z,s-i-lv""w;zk ’ (4'53>

subset 1 subset 2

whereby the linear combinations within the subsets would transform amongst
themselves. But if this happened, then the eigenvalues for the two subsets
would be different, except for the rare case of accidental degeneracy. Thus,
the transformation matrices for the symmetry operations form an irreducible
representation for the group of Schrodinger’s equation.

The rest of the book discusses several applications of the group theory
introduced up to this point to problems of solid state physics. It is convenient
at this point to classify the ways that group theory is used to solve quantum
mechanical problems. Group theory is used both to obtain exact results and
in applications of perturbation theory. In the category of exact results, we
have as examples:

(a) Irreducible representations of the symmetry group of Schrédinger’s equa-
tion label the states and specify their degeneracies (e.g., an atom in
a crystal field).

(b) Group theory is useful in following the changes in the degeneracies of the
energy levels as the symmetry is lowered. This case can be thought of in
terms of a Hamiltonian

H="Ho+MH, (4.54)

where Hp has high symmetry corresponding to the group G, and H’ is
a perturbation having lower symmetry and corresponding to a group G’
of lower order (fewer symmetry elements). Normally group G’ is a sub-
group of group G. Here we find first which symmetry operations of G
are contained in G’; the irreducible representations of G’ label the states
of the lower symmetry situation exactly. In going to lower symmetry we
want to know what happens to the degeneracy of the various states in the
initial higher symmetry situation (see Fig.4.3). We say that in general the
irreducible representation of the higher symmetry group forms reducible
representations for the lower symmetry group.
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high symmetry low symmetry
degenerate state

Fig. 4.3. The effect of lowering the symmetry often results in a lowering of the
degeneracy of degenerate energy states

The degeneracy of states may either be lowered as the symmetry is low-
ered or the degeneracy may be unchanged. Group theory tells us exactly
what happens to these degeneracies. We are also interested in finding the
basis functions for the lower symmetry group G’. For those states where
the degeneracy is unchanged, the basis functions are generally unchanged.
When the degeneracy is reduced, then by proper choice of the form of the
partners, the basis functions for the degenerate state will also be basis
functions for the states in the lower symmetry situation.

An example of going from higher to lower symmetry is the following: If
(z,y, z) are basis functions for a three-dimensional representation in the
cubic group, then lowering the symmetry to tetragonal with z as the main
symmetry direction will give a two-dimensional representation with basis
functions (z,y) and a one-dimensional representation with basis function
z. However, if the symmetry is lowered to tetragonal along a z’ direction
(different from z), then linear combinations of (x,y, z) must be taken to
obtain a vector along 2’ and two others that are mutually orthogonal.
The lowering of degeneracy is a very general topic and will enter the
discussion of many applications of group theory (see Chap. 5).

Group theory is helpful in finding the correct linear combination of wave-
functions that is needed to diagonalize the Hamiltonian. This procedure
involves the concept of equivalence which applies to situations where
equivalent atoms sit at symmetrically equivalent sites (see Chap. 7).

Selected Problems

4.1. (a) What are the matrix representations for (2zy,z? — y?) and (R,, Ry)

in the point group D3?

(b) Using the results in (a), find the unitary transformation which transforms

the matrices for the representation corresponding to the basis functions
(xy, x? — y?) into the representation corresponding to the basis functions

(z,y).

(¢) Using projection operators, check that zy forms a proper basis function

of the two-dimensional irreducible representation I in point group D3.
Using the matrix representation found in (a) and projection operators,
find the partner of zy.
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(d) Using the basis functions in the character table for Dsjp, write a set of
(2 x 2) matrices for the two two-dimensional representations E’ and E”.
Give some examples of molecular clusters that require Dj; symmetry.

4.2. (a) Explain the Hermann—Manguin notation Ty (43 m).

(b) What are the irreducible representations and partners of the following
basis functions in T,; symmetry? (i) wz?+w?y?+22, where w = exp(27i/3);
(i) zyz; and (iii) 22yz.

(c) Using the results of (b) and the basis functions in the character table for
the point group 7Ty, give one set of basis functions for each irreducible
representation of Ty.

(d) Using the basis function wz? + w?y? + 22 and its partner (or partners),
find the matrix for an S; rotation about the z-axis in this irreducible
representation.

4.3. Consider the cubic group Op. Find the basis functions for all the sym-
metric combinations of cubic forms (z,y, z) and give their irreducible repre-
sentations for the point group Oy,.

4.4. Consider the hypothetical molecule CHy (Fig.4.4) where the four H
atoms are at the corners of a square (+a,0,0) and (0,+a,0) while the C
atom is at (0,0, z), where z < a. What are the symmetry elements?

(a) Identify the appropriate character table.

(b) Using the basis functions in the character table, write down a set of
(2 x 2) matrices which provide a representation for the two-dimensional
irreducible representation of this group.

(¢) Find the four linear combinations of the four H orbitals (assume identical
s-functions at each H site) that transform as the irreducible representa-
tions of the group. What are their symmetry types?

(d) What are the basis functions that generate the irreducible representations.

(e) Check that xz forms a proper basis function for the two-dimensional rep-
resentation of this point group and find its partner.

(f) What are the irreducible representations and partners of the following
basis functions in the point group (assuming that the four hydrogens lie
in the xy plane): (i) xyz, (ii) 22y, (iii) 2%z, (iv) = + iy.

(g) What additional symmetry operations result in the limit that all H atoms
are coplanar with atom C? What is now the appropriate group and char-
acter table? (The stereograms in Figure 3.2 may be useful.)

Fig. 4.4. Molecule CH4
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Fig. 4.5. Molecule ABg

4.5. Consider a molecule ABg (Fig.4.5) where the A atom lies in the central
plane and three B atoms indicated by “()” lie in a plane at a distance ¢ above
the central plane and the B atoms indicated by “X?” lie in a plane below the
central plane at a distance —c¢’. When projected onto the central plane, all B
atoms occupy the corners of a hexagon.

(a) Find the symmetry elements and classes.

(b) Construct the character table. To which point group (Chap.3) does this
molecule correspond? How many irreducible representations are there?
How many are one-dimensional and how many are of higher dimensional-
ity?

(¢) Using the basis functions in the character table for this point group, find
a set of matrices for each irreducible representation of the group.

(d) Find the linear combinations of the six s-orbitals of the B atoms that
transform as the irreducible representations of the group.

(e) What additional symmetry operations result in the limit that all B atoms
are coplanar with A7 What is now the appropriate group and character
table for this more symmetric molecule?

(f) Indicate which stereograms in Fig. 3.2 are appropriate for the case where
the B atoms are not coplanar with A and the case where they are copla-
nar.

4.6. Consider the linear combinations of atomic orbitals on an equilateral
triangle (Sect. 4.6).

(a) Generate the basis functions |I21) and |[I52) for the linear combination
of atomic orbitals for the I irreducible representation obtained by using

the projection operator acting on one of the atomic orbitals ]51({ g and

1—:’2({2)(1.

(b) Show that the resulting basis functions |I1) and |[I52) lead to matrix
representations that are not unitary.

(c) Show that the |I51) and |I%22) thus obtained can be expressed in terms of
the basis functions |I2a) and |[I25) given in (4.47).

4.7. The aim of this problem is to give the reader experience in going from
a group with higher symmetry to a group with lower symmetry and to give
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Fig. 4.6. Hypothetical XH;2 molecule where the atom X is at the center of a regular

dodecahedron

Fig. 4.7. Hypothetical XH;2 molecule where the atom X is at the center of a regular
truncated icosahedron

some experience in working with groups with icosahedral and fivefold sym-
metry. Consider the hypothetical XHj, molecule (see Fig.4.6) which has I,
icosahedral symmetry, and the X atom is at the center. The lines connecting
the X and H atoms are fivefold axes.

(a) Suppose that we stretch the XH;o molecule along one of the fivefold axes.
What are the resulting symmetry elements of the stretched molecule?

(b) What is the appropriate point group for the stretched molecule?

(c) Consider the G, and H, irreducible representations of group I as a re-
ducible representation of the lower symmetry group. Find the symmetries
of the lower symmetry group that were contained in a fourfold energy
level that transforms as G, and in a fivefold level that transforms as H,
in the I}, group. Assuming the basis functions given in the character table
for the I; point group, give the corresponding basis functions for each of
the levels in the multiplets for the stretched molecule.

(d) Suppose that the symmetry of the XHjo molecule is described in terms
of hydrogen atoms placed at the center of each pentagon of a regular
dodecahedron (see Fig.4.7). A regular dodecahedron has 12 regular pen-
tagonal faces, 20 vertices and 30 edges. What are the symmetry classes for
the regular dodecahedron. Suppose that the XH;s molecule is stretched
along one of its fivefold axes as in (a). What are the symmetry elements
of the stretched XH;2 molecule when viewed from the point of view of
a distortion from dodecahedral symmetry?
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Splitting of Atomic Orbitals
in a Crystal Potential

This is the first of several chapters aimed at presenting some general ap-
plications of group theory while further developing theoretical concepts and
amplifying on those given in the first four chapters. The first application of
group theory is made to the splitting of atomic energy levels when the atom
is placed in a crystal potential, because of the relative simplicity of this appli-
cation and because it provides a good example of going from higher to lower
symmetry, a procedure used very frequently in applications of group theory to
solid state physics. In this chapter we also consider irreducible representations
of the full rotation group.

5.1 Introduction

The study of crystal field theory is relevant for physics and engineering appli-
cations in situations where it is desirable to exploit the sharp, discrete energy
levels that are characteristic of atomic systems together with the larger atomic
densities that are typical of solids. As an example, consider the variety of pow-
erful lasers whose operation is based on the population inversion of impurity
levels of rare earth ions in a transparent host crystal. The energy levels of
an electron moving in the field of an ion embedded in such a solid are ap-
proximately the same as for an electron moving in the field of a free ion.
Thus the interaction between the ion and the host crystal can be treated in
perturbation theory. Group theory plays a major role in finding the degen-
eracy and the symmetry types of the electronic levels in the crystalline field.
The topic of crystal field splittings has found many important applications
such as in the use of erbium-doped silica-based optical glass fiber amplifiers
in optical communications systems. Such applications provide motivation for
understanding the splitting of the energy levels of an impurity ion in a crystal
field.

In this chapter the point group symmetry of an impurity ion in a crystal is
presented. The crystal potential Vi, determines the point group symmetry.
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Following the discussion on the form of the crystal potential, some properties
of the full rotation group are given, most importantly the characters x()(a)
for rotations through an angle o and x(“)(i) for inversions. Irreducible repre-
sentations of the full

rotation group are generally found to be reducible representations of a
point group of lower symmetry which is a subgroup of the higher symmetry
group. If the representation is reducible, then crystal field splittings of the
energy levels occur. If, however, the representation is irreducible, then no
crystal field splittings occur. Examples of each type of representation are
presented. We focus explicitly on giving examples of going from higher to
lower symmetry. In so doing, we consider the

(a) Splitting of the energy levels,

(b) Symmetry types of the split levels,

(c) Choice of basis functions to bring the Hamiltonian H into block diag-
onal form. Spherical symmetry results in spherical harmonics Yz, (6, ¢)
for basis functions. Proper linear combinations of the spherical harmon-
ics Yim (0, ¢) are taken to make appropriate basis functions for the point
group of lower symmetry.

In crystal field theory we write down the Hamiltonian for the impurity ion in
a crystalline solid as

2 2 2
_ D; Ze e .
H—; %—H—i—;;jﬁ-zj:&j&ﬁj-ﬁ-muhlu + Vital, (5.1)

where the first term is the kinetic energy of the electrons associated with the
ion, the second term represents the Coulomb attraction of the electrons of the
ion to their nucleus, the third term represents the mutual Coulomb repulsion
of the electrons associated with the impurity ion, and the sum on j denotes
a sum on pairs of electrons. These three quantities are denoted by Hy the
electronic Hamiltonian of the free atom without spin—orbit interaction. Hy
is the dominant term in the total Hamiltonian H. The remaining terms are
treated in perturbation theory in some order. Here &;;€; - s; is the spin-orbit
interaction of electrons on the impurity ion and +;,J; - I, is the hyperfine
interaction between the electrons on the ion and the nuclear spin. The per-
turbing crystal potential Vita of the host ions acts on the impurity ion and
lowers its spherical symmetry.

Because of the various perturbation terms appearing in (5.1), it is impor-
tant to distinguish the two limiting cases of weak and strong crystal fields.

(a) Weak field case. In this case, the perturbing crystal field Vit is considered
to be small compared with the spin—orbit interaction. In this limit, we find
the energy levels of the free impurity ion with spin—orbit interaction and
at this point we consider the crystal field as an additional perturbation.
These approximations are appropriate to rare earth ions in ionic host
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crystals. We will deal with the group theoretical aspects of this case in
Chap. 14, after we have learned how to deal with the spin on the electron
in the context of group theory.

(b) Strong field case. In this case, the perturbing crystal field Vi, is strong
compared with the spin—orbit interaction. We now consider Vi, as the
major perturbation on the energy levels of Hy. Examples of the strong
crystal field case are transition metal ions (Fe, Ni, Co, Cr, etc.) in a host
crystal. It is this limit that we will consider first, and is the focus of this
chapter.

We note that the crystal potential Vi, lowers the full rotational symmetry
of the free atom to cause level splittings relative to those of the free atom.

We now consider in Sect. 5.2 some of the fundamental properties of the
full rotation group. These results are liberally used in later chapters.

5.2 Characters for the Full Rotation Group

The free atom has full rotational symmetry and the number of symmetry
operations which commute with the Hamiltonian is infinite. That is, all Cy
rotations about any axis are symmetry operations of the full rotation group.
We are not going to discuss infinite or continuous groups in any detail, but
we will adopt results that we use frequently in quantum mechanics without
rigorous proofs.

Let us then recall the form of the spherical harmonics Y, (0, ¢) which are
the basis functions for the full rotation group:

2641 (0= |m1]
Yem (0, ¢0) = I (T |m))

P (cos 0)e™? (5.2)

in which
Yo,—m(0,0) = (—=1)"Yem(0,0)", (5.3)

and the symbol * denotes the complex conjugate. The associated Legendre
polynomial in (5.2) is written as

PP (z) = (1 — x2)1/2Im] d! Py(x), (5.4)

dzlml

in which x = cos 6, while
Py (x) = [(=1)" (¢ = m)!/(£+m) P (z),

and the Legendre polynomial Py(z) is generated by

1/v/1—2sx + 52 = ipg(:c)se. (5.5)
£=0
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It is shown above that the spherical harmonics (angular momentum eigen-
functions) can be written in the form

}/é,m (95 ¢) = Cpém (9) eim¢ ) (56)

where C' is a normalization constant and P;"(¢) is an associated Legendre
polynomial given explicitly in (5.4). The coordinate system used to define
the polar and azimuthal angles is shown in Fig.5.1. The Y7, (6, ¢) spherical
harmonics generate odd-dimensional representations of the rotation group and
these representations are irreducible representations. For £ = 0, we have a one-
dimensional representation; £ = 1 (m = 1,0,—1) gives a three-dimensional
irreducible representation; £ = 2 (m = 2,1,0,—1, —2) gives a five-dimensional
representation, etc. So for each value of the angular momentum, the spherical
harmonics provide us with a representation of the proper 2/+1 dimensionality.

These irreducible representations are found from the so-called addition
theorem for spherical harmonics which tells us that if we change the polar axis
(i.e., the axis of quantization), then the “old” spherical harmonics Yz ., (6, ¢)
and the “new” Yy ./ (0',¢') are related by a linear transformation of basis
functions when ¢’ = ¢:

PrYem(0,¢') = Y D (R)mimYem (0,9), (5.7)

m/’

where Py denotes a rotation operator that changes the polar axis, and the ma-
trix DU (R),,/m provides an (-dimensional matrix representation of element
R in the full rotation group. Let us assume that the reader has previously

g (X7Y7Z)
L (r,0,0)

Fig. 5.1. Polar coordinate system defining the polar angle § and the azimuthal
angle ¢



5.2 Characters for the Full Rotation Group 83

seen this expansion for spherical harmonics which is a major point in the
development of the irreducible representations of the rotation group. From
the similarity between (5.7) and (4.1), the reader can see the connection be-
tween the group theory mathematical background given in Chap.4 and the
application discussed here.

In any system with full rotational symmetry, the choice of the z-axis is
arbitrary. We thus choose the z-axis as the axis about which the operator P,
makes the rotation a. Because of the form of the spherical harmonics Yz . (6, ¢)
[see (5.6)] and the choice of the z-axis, the action of P, on the Yz, (6, ¢) basis
functions only affects the ¢ dependence of the spherical harmonic (not the 6
dependence). The effect of this rotation on the function Y7 ., (6, ¢) is equivalent
to a rotation of the axes in the opposite sense by the angle —«

Pan,m(ea ¢) = }/Z,m(ea ¢ - CY) = e—ima}/&m(e, ¢) ) (58)

in which the second equality results from the explicit form of ¥z ,,,(6, ¢). But
(5.8) gives the linear transformation of Yz, (6, ¢) resulting from the action by

the operator P,. Thus by comparing (5.7) and (5.8), we see that the matrix
DU (@) is diagonal in m so that we can write D (@) prm = €60,
where —¢ < m </, yielding

efiE(x O
efi(efl)a
DO (a) = . : (5.9)
O eiéa

where O represents all the zero entries in the off-diagonal positions. The char-
acter of the rotations C, is thus given by the geometric series

YO (a) = trace DO (a) = e 4 ... 4 ¢lf®
_ efiE(l [1 + eia R e2i€a}

20
_ efiE(l Z(eika)
k=0
]
= e - a0 1
el _ 1
_ el(t+1/2)a _ o=i(t+1/2)a _ sin[(£+ 3)e] . (5.10)
ela/2 _ g—ia/2 Sln[(%)a]

Thus we show that the character for rotations o about the z-axis is

sin[(£ + 1)a] .

O (0) —
Xe) sin[a/2]

(5.11)
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To obtain the character for the inversion operator i, we have

and therefore
m=~{
X)) = (1) =(=Dfe+1), (5.13)
m=—/

where Yy, (0, ¢) are the spherical harmonics, while £ and m denote the total
and z-component angular momentum quantum numbers, respectively.

The dimensionalities of the representations for £ = 0,1,2,...are 1,3,5,....
In dealing with the symmetry operations of the full rotation group, the in-
version operation frequently occurs. This operation also occurs in the lower
symmetry point groups either as a separate operation ¢ or in conjunction with
other compound operations (e.g., S =i ® C3_1). A compound operation (like
an improper rotation or a mirror plane) can be represented as a product of a
proper rotation followed by inversion. The character for the inversion opera-
tion is +(2¢ + 1) for even angular momentum states (¢ = even in Y7, (0, ¢))
and —(2¢ + 1) for odd angular momentum states (see (5.13)). This idea of
compound operations will become clearer after we have discussed in Chap. 6
the direct product groups and direct product representations.

We now give a general result for an improper rotation defined by

Sp=Ch @0 (5.14)

and S5 = C35 ® 0y, is an example of (5.14) (for an odd integer n). Also S, can
be written as a product of C,, 5 ®1, as for example, S¢ = C3 @1, for n an even
integer, where ® denotes the direct product of the two symmetry operations
appearing at the left and right of the symbol ®, which is discussed in Chap. 6.
If we now apply (5.11) and (5.12), we obtain

sin[(£ + %)oz] -

sin[a/2] (5.15)

X(é)(Sn) = X(é)(cn/Q & Z) = (_1)

In the case of mirror planes, such as oy, 04, or o, we can make use of relations
such as

op =01 (5.16)

to obtain the character for mirror planes in the full rotation group.

Now we are going to place our free ion into a crystal field which does not
have full rotational symmetry operations, but rather has the symmetry oper-
ations of a crystal which may include rotations about finite angles, inversions
and a finite number of reflections. The full rotation group contains all these
symmetry operations. Therefore, the representation D(é)(a) given above is a
representation of the crystal point group if « is a symmetry operation in that
point group. But D (a) is, in general, a reducible representation of the lower
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symmetry group. Therefore the (2¢ + 1)-fold degeneracy of each level will in
general be partially lifted.

We can find out how the degeneracy of each level is lifted by asking what
are the irreducible representations contained in D) () in terms of the group
of lower symmetry for the crystal. The actual calculation of the crystal field
splittings depends on setting up a suitable Hamiltonian and solving it, usually
in some approximation scheme. But the energy level degeneracy does not
depend on the detailed Hamiltonian, but only on its symmetry. Thus, the
decomposition of the level degeneracies in a crystal field is a consequence of
the symmetry of the crystal field.

5.3 Cubic Crystal Field Environment
for a Paramagnetic Transition Metal Ion

As an example of a crystal field environment, suppose that we place our

paramagnetic ion (e.g., an iron impurity) in a cubic host crystal. Assume
further that this impurity goes into a substitutional lattice site, and is sur-
rounded by a regular octahedron of negative ions (see Fig.5.2). A regular
octahedron has O symmetry, but since we have not yet discussed the inver-
sion operation and direct product groups (see Chap.6), we will simplify the
symmetry operations and work with the point group O. The character table
for O is shown in Table 5.1 (see also Table A.30). From all possible rotations
on a sphere, only 24 symmetry operations of the full rotation group remain
in the group O.

Reviewing the notation in Table 5.1, the I' notations for the irreducible
representations are the usual ones used in solid-state physics and are due to
Bouckaert, Smoluchowski and Wigner [1].

The second column in Table 5.1 follows the notation usually found
in molecular physics and chemistry applications, which are two research
fields that also make lots of use of symmetry and group theory. The key

Fig. 5.2. A regular octahedron inscribed in a cube, illustrating the symmetry op-
erations of group O
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Table 5.1. Character table for O and decomposition of the angular momenta rep-
resentations into the irreducible representations of group O

0] E 8Cs 3C,=3C? 6C5% 6C4
I Ay 1 1 1 1 1
15 As 1 1 1 —1 —1
T2 E 2 —1 2 0
s T 3 0 -1 -1 1
Ios 1o 3 0 -1 1 —1
Lo Ax 1 1 1 1
Iy=1 Th 3 -1 -1
Ir—o E+Ts 5 —1 1 —1
Tr—3 A +T + T 7 1 —1 —1 —1
To—4 Al +E+T 4+ T 9 0 1 1
Ii—s E+4+2T)+T, 11 —1 —1 —1 1

to the notation is that A denotes one-dimensional representations, E de-
notes two-dimensional representations, and T denotes three-dimensional
representations. Papers on lattice dynamics of solids often use the A, E,T
symmetry notation to make contact with the molecular analog. The sub-
scripts in Table 5.1 refer to the conventional indexing of the representations
of the group O (see Table A.30). The pertinent symmetry operations can
be found from Fig. 5.2, and the classes associated with these symmetry
operations label the various columns where the characters in Table 5.1
appear.
The various types of rotational symmetry operations are listed as

e the 8C3 rotations are about the axes through the triangular face centroids
of the octahedron,
the 6C4 rotations are about the corners of the octahedron,
the 3C5 rotations are also about the corners of the octahedron, with
Cy = (3,

e the 6C% rotations are twofold rotations about a (110) axis passing through
the midpoint of the edges (along the 110 directions of the cube).

To be specific, suppose that we have a magnetic impurity atom with an-
gular momentum ¢ = 2. We first find the characters for all the symmetry
operations which occur in the O group for an irreducible representation of
the full rotation group. The representation of the full rotation group will
be a representation of group O, but in general this representation will be
reducible.

Since the character for a general rotation a in the full rotation group is
found using (5.11), the identity class (or oo = 0) yields the characters

(+3
X9(0) = —2

- AL (5.17)
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Table 5.2. Classes and characters for the group O

class « X(Z)(O‘)
sin(5/2) - (27r/3) _
6C onja SREEUEE _ (1/v3)/0/vE) = -
sin(5/2)r
302 and 602 271'/2 W =1

Table 5.3. Characters found in Table 5.2 for the I r(ft) of the full rotation group
(t=2)

E 8Cs 3Cy 6C% 6Cy
r'» s -1 1 1 -1

rot

For our case £ = 2 (x?)(E) = 5), and by applying (5.11) to the symmetry
operations in each class we obtain the results summarized in Table 5.2. To
compare with the character table for group O (Table 5.1), we list in Table 5.3

the characters found in Table 5.2 for the I r(ot) of the full rotation group (¢ =
2) according to the classes listed in the character table for gr oup O (see

Tables 5.1 and A.30).

We note that I (Ot) is a reducible representation of group O because group O

has no irreducible representations with dimensions ¢,, > 3. To find the irre-
@

ot We use the decomposition formula

ducible representations contained in I
for reducible representations (3.20):

1 i * . reduci
a; = E ZNkX(FJ)(Ck) X ed Cble(Ck), (5.18)
k

where we have used (3.16)

chduciblc(ck) _ Z an(Fj)(Ck) , (519)

in which x(/%) is an irreducible representation and the characters for the re-
ducible representation I r(ot) are written as yreducible(c, ) = I ot (Ck). We now
ask how many times is A; contained in I r(ot){? Using (5.18) we obtain

as, = —[5-8+3+6-6/=0, (5.20)

24[
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—— F
You(0, 6) .~ 2-fold level

5-fold level
4
3-fold level
Spherical O symmetry
symmetry octahedral crystal field

Fig. 5.3. The splitting of the d-Levels (fivefold) in an octahedral crystal field

which shows that the irreducible representation A; is not contained in Fr(ft).

We then apply (5.18) to the other irreducible representations of group O:

As aA2:24[578+3 6+6]=0
E: aE:24[10+8+6+0 0]=1
T : aT1:214[15+0 3-6-6/=0
T - aT2:214[15+0 34646 =1,

so that finally we write
2
I =E+1,

which means that the reducible representation Fr(ot) breaks into the irreducible
representations F and T5 in cubic symmetry. In other words, an atomic d-level
in a cubic O crystal field splits into an F and a T5 level. Similarly, an atomic
d-level in a cubic Oy, crystal field splits into an Ey; and a Ty, level, where
the g denotes evenness under inversion. Group theory does not provide any
information about the ordering of the levels (see Fig. 5.3). For general utility,
we have included in Table 5.1 the characters for the angular momentum states
{=0,1,2,3,4,5 for the full rotation group expressed as reducible represen-
tations of the group O. The splittings of these angular momentum states in
cubic group O symmetry are also included in Table 5.1.

We can now carry out the passage from higher to lower symmetry by going
one step further. Suppose that the presence of the impurity strains the crystal.
Let us further imagine (for the sake of argument) that the new local symmetry
of the impurity site is Dy (see Table 5.4 and Table A.18), which is a proper
subgroup of the full rotation group. Then the levels E' and T5 given above may
be split further in Dy (tetragonal) symmetry (for example by stretching the
molecule along the fourfold axis). We now apply the same technique to inves-
tigate this tetragonal field splitting. We start again by writing the character
table for the group D4 which is of order 8. We then consider the represen-
tations E and T5 of the group O as reducible representations of group Dy
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E. -nondegenerate A

Yom(8, ) ,// 2-fold level hondegenerate B

5-fold level "+ _2.fold level
h ::\
3-fold level  pondegenerate B
Spherical O symmetry D, symmetry
symmetry octahedral tetragonal
crystal field crystal field

Fig. 5.4. d-Level splitting in octahedral and D4 crystal fields

Table 5.4. Character table for D4 and the decomposition of the irreducible repre-
sentations of group O into representations for group D4

character table for Dy E Cy=C? 2Cs 205 20C%

I A 1 1 1 1 1
Iy A 1 1 1 -1 -1
Iy B 1 1 -1 1 -1
Iy Bs 1 1 -1 -1 1
Iz FE 2 —2 0 0
reducible representations from O group
i) 2 2 0 2 0 =A1+ B
T> 3 —1 —1 —1 1 =FE+ By

Table 5.5. Decomposition of the £ = 2 angular momentum level into the irreducible
representations of group Dy

E Cy 204 20, 2C%
r'» s 1 -1 1 1 A +B +B+E

rot

and write down the characters for the E, Cy, C3, C} and CY operations from
the character table for O given above, noting that the C4 in the group Dy
refers to three of the (110) axes 6C% of the cubic group O (Table 5.4). Using
the decomposition theorem, (3.20), we find that F splits into the irreducible
representations A; + By in the group D4 while T5 splits into the irreducible
representations F + By in the group Dy, as summarized in Fig. 5.4.

We note that the Cy operations in Dy is a 7 rotation about the z-axis and
the 2C% are 7 rotations about the z- and y-axes. The Cy and the 2C) come
from the 3Cy = 3C% in group O. The 2CY are 7 rotations about (110) axes
and come from the 6C% in group O. To check the decomposition of the ¢ = 2
level in Dy symmetry, we add up the characters for A; + By + By + E for
group Dy (see Table 5.5), which are the characters for the spherical harmonics
considered as a reducible representation of group Dy, so that this result checks.
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Fig. 5.5. d-Level splitting in various crystal fields

Suppose now that instead of applying a stress along a (001) direction, we
apply a stress along a (110) direction (see Problem 5.4). You will see that
the crystal field pattern is somewhat altered, so that the crystal field pattern
provides symmetry information about the crystal field. Figure 5.5 shows the
splitting of the ¢ = 2 level in going from full rotational symmetry to various
lower symmetries, including Doy, Ty, On, and Dsjp, showing in agreement
with the above discussion, the lifting of all the degeneracy of the ¢ = 2 level
in Dop symmetry.

5.4 Comments on Basis Functions

Although group theory tells us how the impurity ion energy levels are split
by the crystal field, it does not tell us the ordering of these levels. Often a
simple physical argument can be given to decide which levels ought to lie
lower. Consider the case of a d-electron in a cubic field, where the host ions
are at x = +a, y = *a, z = fa. Assume that the impurity ion enters the
lattice substitutionally, so that it is replacing one of the cations. Then the
nearest neighbor host ions are all anions. The charge distributions for the d-
states are shown in Fig. 5.6. Referring to the basis functions for O, which can
be obtained from Table A.30, we see that for the irreducible representation £
we have basis functions (22 — 2, 322 — 7?) and for Ty we have basis functions
(xy, yz, zz). For the basis functions which transform as the T5 representation,
the charge distributions do not point to the host ions and hence the crystal
field interaction is relatively weak.

However, for the d-functions which transform as F, the interaction will be
stronger since the charge distributions now do point to the host ion sites. If,
however, the interaction is repulsive, then the E level will lie higher than the
T5 level. A more quantitative way to determine the ordering of the levels is to
solve the eigenvalue problem explicitly. In carrying out this solution it is con-
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() (b)

Fig. 5.6. The angular parts of d-wave functions in cubic crystals are shown as
labeled by the basis functions for the partners of their irreducible representations.
(a) zy/r? = (T2), (b) yz/1* = (T2), (¢) (2*—y*)/r* = (E), (d) (3z°—r?)/r? = (E)

venient to use basis functions that transform as the irreducible representations
of the crystal field group.

We now look at the basis functions which provide irreducible represen-
tations for these cases of lower symmetry. In going from the full rotation
group to the cubic group O, we obtain the irreducible representations F
and 75 shown in Fig. 5.3, which can be expressed in terms of the basis func-
tions for these irreducible representations. The basis functions for the twofold
level are (22 — y?) and (322 — r?), while the basis functions for the three-
fold level are (zy), (yz), and (zx). We note that these basis functions bring
the crystal field potential into block form, but need not completely diago-
nalize the Hamiltonian. There are various forms of the crystal field poten-
tial that have O symmetry (e.g., octahedral sites, cubic sites, etc.), and
in each case the appropriate set of basis functions that transform as irre-
ducible representations of the group will bring the secular equation into block
form.

Upon lowering the symmetry further to D, symmetry, the T5 and E levels
split further according to 7o — FE + By and E — Ay + By (see Fig.5.4). The
appropriate basis functions for these levels can be identified with the help of
the character table for group D4 in Table A.18:

E{‘Z , Bo{ay, Bi{a®—y®, A {2 (5.21)
In Sects. 5.3 and 5.4 we consider the spherical harmonics for £ = 2 as reducible
representations of the point groups Oy, O, and Dy. In this connection, Ta-
ble 5.6 gives the decomposition of the various spherical harmonics for angular
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Table 5.6. Splitting of angular momentum in cubic symmetry Oy,

V4 Alg Agg Eg Tlg ng A1y Aoy Ey Ty Tou
01

1 1

2 1 1

3 1 1 1
4 |11 1 1 1

5 1 2 1
6 |1 1 1 1 2

7 1 1 2 2
8 |1 2 2 2

9 1 1 1 3 2
10 | 1 1 2 2 3

11 1 2 3 3
12 ] 2 1 2 3 3

13 1 1 2 4 3
14 |1 1 3 3 4

15 1 2 2 4 4

momentum ¢ < 15 into irreducible representations of the full cubic group Oy,
which will be further discussed in Chap.6 when direct product groups are
discussed.

5.5 Comments on the Form of Crystal Fields

Any function (e.g., any arbitrary Vita) can be written in terms of a com-
plete set of basis functions, such as the spherical harmonics. In the case of
the crystal field problem, group theory can greatly simplify the search for
the spherical harmonics Y7 ., (0, ¢) pertaining to Viia. Consider, for example,
Veubic and Table 5.6. The spherical harmonics in Vi, must exhibit all the
symmetry operations of the physical system. We note that the lowest angular
momentum state to contain the totally symmetric A;, irreducible represen-
tation of Oy, is ¢ = 4, and must, therefore be the lowest angular momentum
state in the crystal field for a cubic crystal Viypic when written in terms of
spherical harmonics.

We can check the predictions from group theory by obtaining the crystal
field analytically. To construct the crystal field, we consider the electrostatic
interaction of the neighboring host ions at the impurity site. To illustrate how
this is done, consider the highly symmetric case of an impurity ion in a cubic
environment provided by ions at x = +a, y = +a, 2z = ta. The contribution
from an ion at x = —a at the field point r denoted by (z,y, z) is
= _ < S (5.22)

R N O O N
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where e is the charge on the electron and ¢ is a small dimensionless quantity
if considering (z,y,z) in the neighborhood of the origin 0. Then using the
binomial expansion:

5 4 35 4

1 3
(1+E)_1/2:1_§E+§E2_E5 +1—28£ +oe, (5.23)

we obtain the contribution to the potential for charges e at x = ¢ and z = —a:

2 Lt ey 5 Bt
Veea Vama = = 1= 502 /a®) + 5% /a?) + Z(r* o)

15 5, 9005, o 35
- 2(?/a*)(?/a )+§(:174/a4)+--'} (5.24)

For a cubic field with charges e at © = +a, y = +a, 2 = *a we get for
‘/total = thal:

2e 35, 4 4 21, 4, 4
thal—;[?ﬂr@(x +y +Z)7§(7’/04)+"' , (525)
so that the perturbation that will lift the degeneracy of the free atom is of
the form

35
‘/cubic = c |:

4a®
From these expressions it also follows that for a orthorhombic field where the

charges are at = +a, y = +b, 2 = +¢ (and a # b # ¢). The crystal potential
becomes

(z* +y* + 2%) - §r4] . (5.26)

‘/t:otal:_+_+_+ez
a &

2¢ 2e 2e 2{2 1 1}

2 1 1 2 1 1
+ey? {— - = - ;} +e2? [0—3 - - —] ; (5.27)

so that the orthorhombic perturbation Vgtho that will lift the degeneracy of
the free atom is of the form

Vrtho = A2? + By? — (A + B)2?, (5.28)

where the values for the coefficients A and B can be found from (5.27).

We note that Voupic contains no terms of order 22, whereas Vyeno does. Let
us now express the crystal field potential in terms of spherical harmonics since
the unperturbed states for the free impurity ion are expressed in that way.
Here we make use of the fact that the crystal field potential is generated by a
collection of point sources and in the intervening space we are “outside” the
field sources so that the potential must satisfy the Laplace equation V2V = 0.
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Solutions to Laplace’s equation [5] are of the form 7Yy, (6, #). From the
definitions for the spherical harmonics (5.2) it is clear that for a cubic field
(5.26), the only spherical harmonics that will enter Veypic are Yi, Va4 and
Yy 4 since (z/4)* involves only Yy o while [(z/4)* 4 (y/4)*] involves only Y4 4
and Yy _4.

The crystal field potential Vi, can therefore be written in terms of spher-
ical harmonics, the basis functions normally used to describe the potential of
the free ion which has full spherical symmetry. One important role of group
theory in the solution of quantum mechanical problems is to determine the
degeneracy of the eigenvalues and which choice of basis functions yields the
eigenvalues most directly. This information is available without the explicit
diagonalization of the Hamiltonian. In the case of the crystal field problem,
we determine Vi, for a specific crystal symmetry using the appropriate basis
functions for the relevant point group.

Selected Problems

5.1. Consider the hydrogen atom, described by the Schrédinger equation
h2
ngnfm == *_v?« - — + V(T) wnlm = Enewnlm .
2m r2

(a) Does H commute with any arbitrary rotation about the origin? Explain
your answer.
(b) If the electron is in a d-orbital (¢ = 2) described by the eigenfunction

anm (T; 95 ¢) = Rn (T)}/Q7m (95 ¢) ’

where Y3.,,(0, ¢) is a spherical harmonic for ¢ = 2, what is the effect on
Unom(r, 0, ¢) of rotating the coordinate system by a polar angle . Is the
new wave function still an eigenfunction of the Hamiltonian with the same
eigenvalue? Explain.

5.2. Suppose that an iron (Fe) impurity is introduced into a two-dimensional
honeycomb lattice of an insulating host material. A honeycomb lattice is a
hexagonal lattice with atoms at the hexagon corners but not at the center.
Suppose that the Fe impurity is placed first in a substitutional location and
second in an interstitial location at the center of the hexagon.

substitutional interstitial
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(a) What is the difference in crystal potential (include only nearest neighbors)
between the substitutional and interstitial locations?

(b) For the interstitial case, express your result in part (a) in terms of spherical
harmonics for the lowest order terms with angular dependencies.

(c) What is the proper point group symmetry and character table in each
case?

(d) Give the crystal field splitting of the fivefold d-levels of the Fe impurity
in the crystal fields for the two locations of the Fe ion in part (a).

(e) Identify the basis functions associated with each of the levels in part (d).

(f) Since the bonding orbitals lie lower in energy than the antibonding or-
bitals, indicate how the ordering of the levels might indicate whether the
Fe impurity is located substitutionally or interstitially in the honeycomb
lattice.

5.3. Show (by finding the characters of the rotation group) that the d-level
for a transition metal impurity in a metal cluster with I, point symmetry is
not split by the icosahedral crystal field.

5.4. Suppose that a stress is applied along a (110) axis of a cubic crystal,
thereby lowering its symmetry from O to Ds.

(a) What are the symmetry operations of Dy? Identify each symmetry axis
of Dy with a particular (zyz) direction of the high symmetry group O.
(b) Considering the irreducible representation I} r(ozt) for the full rotation group
as a reducible representation of Do, find the irreducible representations of
D5 contained in 1"(2)

rot *

(¢) How do the Ty and FE levels corresponding to Fr(ft) in the cubic group
split by the application of a force along the (110) direction, giving the
irreducible representations of the group Ds contained in the 75 and E
levels.

(d) What is the physical interpretation of the occurrence of a particular irre-

ducible representation I; of group D, more than once when the fivefold
degeneracy of r?

rot

is lifted by applying a force in the (110) direction?

5.5. What is the form of the crystal field of a hexagonal semiconductor like
ZnO? Which are the lowest order Y7, (0, ¢) spherical harmonics that describe
the crystal field potential?
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Application to Selection Rules
and Direct Products

Our second general application of group theory to physical problems will be to
selection rules. In considering selection rules we always involve some interac-
tion Hamiltonian matrix H’ that couples two states 1, and ¢g. Group theory
is often invoked to decide whether or not these states are indeed coupled
and this is done by testing whether or not the matrix element (o, H't3)
vanishes by symmetry. The simplest case to consider is the one where the
perturbation H’ does not destroy the symmetry operations and is invariant
under all the symmetry operations of the group of the Schrédinger equation.
Since these matrix elements transform as scalars (numbers), then (¢, H'1)3)
must exhibit the full group symmetry, and must therefore transform as the
tully symmetric representation I't. Thus, if (¥, H'tpg) does not transform as
a number, it vanishes. To exploit these symmetry properties, we thus choose
the wave functions ¢ and 13 to be eigenfunctions for the unperturbed Hamil-
tonian, which are basis functions for irreducible representations of the group
of Schrédinger’s equation. Here H'tg transforms according to an irreducible
representation of the group of Schrodinger’s equation. This product involves
the direct product of two representations and the theory behind the direct
product of two representations will be given in this chapter. If H'tg is or-
thogonal to 1y, then the matrix element (¢4, H'1)g) vanishes by symmetry;
otherwise the matrix element need not vanish, and a transition between state
1o and 1Yz may occur.

6.1 The Electromagnetic Interaction as a Perturbation

In considering various selection rules that arise in physical problems, we often
have to consider matrix elements of a perturbation Hamiltonian which lowers
the symmetry of the unperturbed problem. For example, the Hamiltonian in
the presence of electromagnetic fields can be written as

1

HZ%(p—SA)2+V. (6.1)
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Then the proper form of the Hamiltonian for an electron in a solid in the
presence of an electromagnetic field is

_ A2 2 2A2
H:MjLV(T):p_JrV(T)f%p.AjLe

2
2m 2m (6.2)

2mc2’

in which A is the vector potential due to the electromagnetic fields and V (r)
is the periodic potential. Thus, the one-electron Hamiltonian without electro-

magnetic fields is
2

Ho = 2”—m L V(r), (6.3)

and the electromagnetic perturbation terms H. , are

e e? A2

H.,,=——p A+ (6.4)
me

2mc2’

which is usually approximated by the leading term for the electromagnetic
perturbation Hamiltonian

M, =——p A (6.5)
mc

Such a perturbation Hamiltonian is generally not invariant under the symme-
try operations of the group of Schrédinger’s equation which are determined
by the symmetry of the unperturbed Hamiltonian Hy. Therefore, we must
consider the transformation properties of H't1)g where the eigenfunction 3 is

chosen to transform as one of the partners ¢§Fi) (denoted by |I;5) in Chap. 4)
of an irreducible representation I'; of the unperturbed Hamiltonian Hy. In gen-
eral, the action of H’ on 1/1]@) will mix all other partners of the representation
I; since any arbitrary function can be expanded in terms of a complete set
of functions wJ(-Fi). In group theory, the transformation properties of H’ z/Jj(-Fi)
are handled through what is called the direct product. When H’' does not
transform as the totally symmetric representation (e.g., H.,, transforms as
a vector x,y, z), then the matrix element (1/1,@%7‘(’ 1/)J(»Fi)) will not in general
vanish.

The discussion of selection rules in this chapter is organized around the

following topics:

(a) summary of important symmetry rules for basis functions,

(b) theory of the Direct Product of Groups and Representations,

(c) the Selection Rule concept in Group Theoretical Terms,

(d) example of Selection Rules for electric dipole transitions in a system with
full cubic point group symmetry.
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6.2 Orthogonality of Basis Functions

The basis functions z/JS ) where we here use the superscript ¢ as an abbreviated
notation for the superscript I; for a given irreducible representation i are
defined by (see (4.1))

£

Ppypd) =3 DO(R) gy (6.6)

Jj=1

where Pp is the symmetry operator, w((; ) denotes the basis functions for an
l;-dimensional irreducible representation (i) and D) (R),,, is the matrix repre-
sentation for symmetry element R in irreducible representation (7). To exploit
the symmetry properties of a given problem, we want to find eigenfunctions
which form basis functions for the irreducible representations of the group
of Schrédinger’s equation. We can find such eigenfunctions using the sym-
metry operator and projection operator techniques discussed in Chap.4. In
this chapter, we will then assume that the eigenfunctions have been chosen to
transform as irreducible representations of the group of Schrodinger’s equa-
tion for Hy. The application of group theory to selection rules then depends
on the following orthogonality theorem. This orthogonality theorem can be
considered as the selection rule for the identity operator.

Theorem. Two basis functions which belong either to different irreducible
representations or to different columns (rows) of the same representation are
orthogonal.

Proof. Let ¢>£f> and ’L/}S/) be two basis functions belonging, respectively, to
irreducible representations (i) and (/) and corresponding to columns « and
o of their respective representations. By definition:

£
Prof) = 3 DO(R)aséf”

j=1
Pryl) =" DU (R)arpsl). (6.7)
Ji'=1

Because the scalar product (or the matrix element of unity taken between the
two states) is independent of the coordinate system, we can write the scalar
product as

(60, 987) = (Bold), Prol))
=3 p0 (B3, D (R)avy (6,05

=SS DOR), DO Ry (67, 05) . (68)

Jj' R
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since the left-hand side of (6.8) is independent of R, and h is the order of the
group. Now apply the Wonderful Orthogonality Theorem (Eq. 2.52)

1 i * i’ 1
> > DY(R);; DY) (R)ry = 7 0ii107 o (6.9)
R K2

o0 (6.8), which yields:

(40.08) = Faiuw S (000 60

j=1

Thus, according to (6.10), if the basis functions ¢§$) and 1/1((;//) correspond to
two different irreducible representations ¢ # i’ they are orthogonal. If they
correspond to the same representation (i = ¢’), they are still orthogonal if
they correspond to different columns (or rows) of the matrix — i.e., if they
correspond to different partners of representation i. We further note that the
right-hand side of (6.10) is independent of « so that the scalar product is the
same for all components «, thereby completing the proof of the orthogonality
theorem. O

In the context of selection rules, the orthogonality theorem discussed above
applies directly to the identity operator. Clearly, if a symmetry operator is
invariant under all of the symmetry operations of the group of Schrédinger’s
equation then it transforms like the identity operator. For example, if

Moy = By (6.11)

then ES,/) is a number (or eigenvalues) which is independent of any coordinate
system.

If 7,/1((;//) and ¢>£f> are both eigenfunctions of the Hamiltonian Hy and are
also basis functions for irreducible representations (i') and (¢), then the matriz
element ( S),Howg)) vanishes unless i = i/ and o = o/, which is a result
familiar to us from quantum mechanics.

In general, selection rules deal with the matrix elements of an operator
different from the identity operator. In the more general case when we have
a perturbation H’, the perturbation need not have the full symmetry of Hy.
In general H'y transforms differently from .

6.3 Direct Product of Two Groups

We now define the direct product of two groups. Let G4 = E,As, ..., Ap, and
Gp = E,Bs,..., By, be two groups such that all operators Ar commute with
all operators Bg. Then the direct product group is
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Ga®Gp = E,AQ, ey Aha,BQ,AQBQ, ey AhaBQ, ey Ahthb (612)

and has (h, X hp) elements. It is easily shown that if G4 and G are groups,
then the direct product group G4 ®Gp is a group. Examples of direct product
groups that are frequently encountered involve products of groups with the
group of inversions (group C;(S2) with two elements F,i) and the group of
reflections (group C,(Cip) with two elements E,o0}). For example, we can
make a direct product group D3y from the group D3 by compounding all the
operations of Dg with (E, ) (to obtain Dsq = D3®C;), where i is the inversion
operation (see Table A.13). An example of the group D34 is a triangle with
finite thickness. In general, we simply write the direct product group

D3y = D3 ®1, (6.13)

when compounding the initial group D3 with the inversion operation or with
the mirror reflection in a horizontal plane (see Table A.14):

D3p = D3 @ oy, . (6.14)

Likewise, the full cubic group Oy, is a direct product group of O ® 1.

6.4 Direct Product of Two Irreducible Representations

In addition to direct product groups we have the direct product of two rep-
resentations which is conveniently defined in terms of the direct product of
two matrices. From algebra, we have the definition of the direct product of
two matrices A ® B = C, whereby every element of A is multiplied by every
element of B. Thus, the direct product matrix C' has a double set of indices

AijBre = Cig je - (6.15)

Thus, if A is a (2 x 2) matrix and B is a (3 x 3) matrix, then C is a (6 x 6)
matrix.

Theorem. The direct product of the representations of the groups A and B
forms a representation of the direct product group.

Proof. We need to prove that
DY (4D (B;) = (DY) (A;B}))ip.jq - (6.16)
To prove this theorem we need to show that
D) (A, By) DY (A By) = DY (A;By) (6.17)

where
A; = A Ap s Bj = ByBy . (6.18)
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Since the elements of group A commute with those of group B by the definition
of the direct product group, the multiplication property of elements in the
direct product group is

ApBy Ay By = AyAp ByBy = A;B;, (6.19)

where A By is a typical element of the direct product group. We must now
show that the representations reproduce this multiplication property. By def-
inition:

D(a®b) (AkBg)D(a®b) (Ak/BZ’)
= [D(Ay) @ D (B)][D“ (Ay) @ DV (B)] . (6.20)

To proceed with the proof, we write (6.20) in terms of components and carry
out the matrix multiplication:

[D<a®b> (A, Bg) DY) (A, Be/)}

ip,Jq

= Z(D(a) (Ar) ® D(b)(BZ))iZLST (D(a) (Ar) ® D (Ber))sr,jq

=" D (4D (Aw) Y DX (B) DY (By)

= D (A;)DY)(B;) = (DY (4;B;))ip.jq - (6.21)

q
This completes the proof. (I

It can be further shown that the direct product of two irreducible representa-
tions of groups G4 and Gp yields an irreducible representation of the direct
product group so that all irreducible representations of the direct product
group can be generated from the irreducible representations of the original
groups before they are joined. We can also take direct products between two
representations of the same group. Essentially the same proof as given in
this section shows that the direct product of two representations of the same
group is also a representation of that group, though in general, it is a reducible
representation. The proof proceeds by showing

(D@L ()DBER(B)| = DESE(AB),,,  (6.22)

ip,Jq

where we use the short-hand notation ¢; and ¢5 to denote irreducible represen-
tations with the corresponding dimensionalities. The direct product represen-
tation D“1®%)(R) will in general be reducible even though the representations
{1 and {9 are irreducible.
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6.5 Characters for the Direct Product

In this section we find the characters for the direct product of groups and for
the direct product of representations of the same group.

Theorem. The simplest imaginable formulas are assumed by the characters
in direct product groups or in taking the direct product of two representations:

(a) If the direct product occurs between two groups, then the characters for
the irreducible representations in the direct product group are obtained by
multiplication of the characters of the irreducible representations of the
original groups according to

X2 (ApBy) = X (Ax) XY (By) . (6.23)

(b) If the direct product is taken between two representations of the same
group, then the character for the direct product representation is writ-
ten as

(6@ (R) = y (1) (R) x2)(R) . (6.24)

Proof. Consider the diagonal matrix element of an element in the direct prod-
uct group. From the definition of the direct product of two groups, we write

DS (A By)iy jq = DY (Ax) D) (By). (6.25)

Taking the diagonal matrix elements of (6.25) and summing over these matrix
elements, we obtain

> DEE (AL By)iy i = ZD(“) A) Y DY (By) (6.26)
ip p

which can be written in terms of the traces:
X9 (ApBy) = X' (Ar)x ™ (By) . (6.27)

This completes the proof of the theorem for the direct product of two groups.
O

The result of (6.27) holds equally well for classes (i.e., R — C), and thus can
be used to find the character tables for direct product groups as is explained
below.

Exactly the same proof as given above can be applied to find the character
for the direct product of two representations of the same group

@) (R) = y (1) (R)x () (R) (6.28)

for each symmetry element R. The direct product representation is irreducible
only if x(“1®%)(R) for all R is identical to the corresponding characters for
one of the irreducible representations of the group ¢; ® £s.
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In general, if we take the direct product between two irreducible repre-
sentations of a group, then the resulting direct product representation will be
reducible. If it is reducible, the character for the direct product can then be
written as a linear combination of the characters for irreducible representa-
tions of the group (see Sect.3.4):

XV RX(R) =" axuwx " (R), (6.29)
where from (3.20) we can write the coefficients ay,, as

1 :
anr = 7 0 Ne, X ()" [xV (Cax®(Ca)] (6.30)
Ca

where C, denotes classes and N¢, denotes the number of elements in class
Co- In applications of group theory to selection rules, constant use is made of
(6.29) and (6.30).

Finally, we use the result of (6.27) to show how the character tables for
the original groups G4 and Gp are used to form the character table for the
direct product group. First, we form the elements and classes of the direct
product group and then we use the character tables of G4 and Gp to form
the character table for G4 ® Gp. In many important cases, one of the groups
(e.g., Gp) has only two elements (such as the group C; with elements F,1)
and two irreducible representations I'y with characters (1,1) and Iy, with
characters (1,—1). We illustrate such a case below for the direct product
group Cy, = C4y ® i, a table that is not listed explicitly in Chap.3 or in
Appendix A. In the character table for group Cy, (Table 6.1) we use the
notation g to denote representations that are even (German, gerade) under
inversion, and u to denote representations that are odd (German, ungerade)
under inversion.

We note that the upper left-hand quadrant of Table 6.1 contains the char-
acter table for the group C4. The four classes obtained by multiplication of

Table 6.1. Character table for point group Cyp,

Cin=0C1Q®1 (4/m)

E C, Ci C3 i iCy iCy iC3

Ay 1 1 1 1 1 1 1 1
By 1 1 -1 -1 1 1 -1 —1| even under
. 1 )

1 -1 i =1 -1 R A .
E, {1 1 ; 1 -1 — ; | inversion (9)

Ay 1 1 1 1/ -1 -1 -1 -1
B. 1 1 -1 -1 -1 -1 1 1 | odd under

1 -1 i —i | —1 1 —i i . ion (u)
1 -1 i il 1 1 ;  _,; | mversion (u
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the classes of Cy by ¢ are listed on top of the upper right columns. The char-
acters in the upper right-hand and lower left-hand quadrants are the same as
in the upper left hand quadrant, while the characters in the lower right-hand
quadrant are all multiplied by (—1) to produce the odd (ungerade) irreducible
representations of group Cyy,.

6.6 Selection Rule Concept in Group Theoretical Terms

Having considered the background for taking direct products, we are now
ready to consider the selection rules for the matrix element

W, 1)) (6.31)

This matrix element can be computed by integrating the indicated scalar
product over all space. Group theory then tells us that when any or all the
symmetry operations of the group are applied, this matriz element must trans-
form as a constant. Conversely, if the matrix element is not invariant under
the symmetry operations which form the group of Schrodinger’s equation,
then the matrix element must vanish. We will now express the same physical
concepts in terms of the direct product formalism.

Let the wave functions ¢§f) and z/JS,/) transform, respectively, as partners
a and o of irreducible representations I; and I, and let H’ transform as
representation ;. Then if the direct product I'; ® I';s is orthogonal to I7, the
matrix element vanishes, or equivalently if I; ® I'; ® Iy does not contain the
fully symmetrical representation I, the matrix element vanishes. In particu-
lar, if H' transforms as Iy (i.e., the perturbation does not lower the symmetry
of the system), then, because of the orthogonality theorem for basis functions,

either ¢S/) and w((;,) must correspond to the same irreducible representation
and to the same partners of that representation or they are orthogonal to one
another.

To illustrate the meaning of these statements for a more general case, we
will apply these selection rule concepts to the case of electric dipole transitions
in Sect. 6.7 below. First, we express the perturbation H’ (in this case due to
the electromagnetic field) in terms of the irreducible representations that H’
contains in the group of Schrédinger’s equation:

H =3 fHY, (6.32)
7.8
where j denotes the irreducible representations I'; of the Hamiltonian H’, and

(3 denotes the partners of I';. Then H’ ¢§f ), where (i) denotes irreducible repre-
sentation I, transforms as the direct product representation formed by taking

the direct product H/ﬁ(j) ® ¢§3) which in symmetry notation is I'; 3 ® I . The
matrix element (z/JS/I), H’ @@) vanishes if and only if w((j,/) is orthogonal to all
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the basis functions that occur in the decomposition of H’ gb(()f ) into irreducible
representations. An equivalent expression of the same concept is obtained by
considering the triple direct product w((;,,) QH (ﬁj) ® (b((; ) In order for the ma-
trix element in (6.31) to be nonzero, this triple direct product must contain
a term that transforms as a scalar or a constant number, or according to the
irreducible representation I7.

6.7 Example of Selection Rules

We now illustrate the group theory of Sect.6.6 by considering electric dipole
transitions in a system with O symmetry. The electromagnetic interaction
giving rise to electric dipole transitions is

M= ——p- A, (6.33)
mc

in which p is the momentum of the electron and A is the vector potential
of an external electromagnetic field. The momentum operator is part of the
physical electronic “system” under consideration, while the vector A for the
electromagnetic field acts like an external system or like a “bath” or “reser-
voir” in a thermodynamic sense. Thus p acts like an operator with respect to
the group of Schrédinger’s equation but A is invariant and does not trans-
form under the symmetry operations of the group of Schrodinger’s equation.
Therefore, in terms of group theory, HL. , for the electromagnetic interaction
transforms like a vector, just as p transforms as a vector, in the context of
the group of Schrodinger’s equation for the unperturbed system Hoy = E.
If we have unpolarized radiation, we must then consider all three compo-
nents of the vector p (i.e., pz,py,p-). In cubic symmetry, all three compo-
nents of the vector transform as the same irreducible representation. If in-
stead, we had a system which exhibits tetragonal symmetry, then p, and
py would transform as one of the two-dimensional irreducible representations
and p, would transform as one of the one-dimensional irreducible representa-
tions.

To find the particular irreducible representations that are involved in cubic
symmetry, we consult the character table for O, = O ® i (see Table A.30). In
the cubic group Oy, the vector (z,y, z) transforms according to the irreducible
representation T, and so does (pg,py,p-), because both are radial vectors
and both are odd under inversion. We note that the character table for Oy
(Table A.30) gives the irreducible representation for vectors, and the same
is true for most of the other character tables in Appendix A. To obtain the
character table for the direct product group O = O ® i we note that each
symmetry operation in O is also compounded with the symmetry operations
E and i of group C; = S (see Table A.2) to yield 48 symmetry operations
and ten classes.
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Table 6.2. Characters for the direct product of the characters for the 71, and T,
irreducible representations of group Op,

E 8Cs 3C: 6Cy 6Cy i 8iC3 3iCy 6iCe 6iCy
9 0 1 -1 -1 -9 0 -1 1 1

For the Oy group there will then be ten irreducible representations, five
of which are even and five are odd. For the even irreducible representations,
the same characters are obtained for class C and class iC. For the odd rep-
resentations, the characters for classes C and iC have opposite signs. Even
representations are denoted by the subscript g (gerade) and odd representa-
tions by the subscript « (ungerade). The radial vector p transforms as an odd
irreducible representation 77, since p goes into —p under inversion.

To find selection rules, we must also specify the initial and final states. For
example, if the system is initially in a state with symmetry 75, then the direct
product H;,, ® v1,, contains the irreducible representations found by taking
the direct product xr,, ® x1,,- The characters for xr,, ® xr,, are given in
Table 6.2, and the direct product xr1,, ® X1, is a reducible representation of
the group Op,. Then using the decomposition formula (6.30) we obtain:

Ty ® ng =Agy + By +Tiy +Toy - (634)

Thus we obtain the selection rules that electric dipole transitions from a state
T54 can only be made to states with Agy, Ey, 11y, and T, symmetry. Fur-
thermore, since H._, is an odd function, electric dipole transitions will couple
only states with opposite parity. The same arguments as given above can be
used to find selection rules between any initial and final states for the case
of cubic symmetry. For example, from Table A.30, we can write the following
direct products as

Eg & Tlu = Tlu + T2u
Tlu®T1u - A1g+Eg +T1g+T29 '

Suppose that we now consider the situation where we lower the symmetry
from Oy, to Dyy. Referring to the character table for Dy in Tables A.18 and
6.3, we can form the direct product group Dy by taking the direct product
between groups Dy, = D4®i where i here refers to group Sy = C; (Table A.2).

We note here the important result that the vector in Dy, = Dy ® ¢ sym-
metry does not transform as a single irreducible representation but rather as
the irreducible representations:

Z"AQu
(z,y) > By |~

so that Ty, in Oy symmetry goes into: As, + E, in Dy, symmetry.
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Table 6.3. Character table for the pint group D4 (422)

Dy (422) E Cy=Ci 20, 2C, 204
2 49?22 A |1 1 1 1 1
R., z Ay | 1 1 1 -1 -1
% —y? B |1 1 -1 1 -1
Ty B> 1 1 —1 —1 1
(z,y) }
TZ,Yz E | 2 -2 0 0 0
(w292 | (R.,R,)

Table 6.4. Initial and final states of group Dy, that are connected by a perturbation
Hamiltonian which transform like z

initial state final state
Alg A2u
Asg At
Blg BQu
ng Blu
Alu A2g
Agu Alg
Blu BZg
Bay By
E. E,

Furthermore a state with symmetry 754 in the Oy group goes into states
with E,+ Bs, symmetries in Dy, (see discussion in Sect. 5.3). Thus for the case
of the Dy group, electric dipole transitions will only couple an A, state to
states with E, and Ag, symmetries. For a state with E, symmetry according
to group Dy, the direct product with the vector yields

E ®(A2u+E ) q®A2u+E QF, = F, +(A1U+A2u+31u+32u), (6.35)

so that for the Dy group, electric dipole transitions from an E, state can
be made to any odd parity state. This analysis points out that as we reduce
the amount of symmetry, the selection rules are less restrictive, and more
transitions become allowed.

Polarization effects also are significant when considering selection rules.
For example, if the electromagnetic radiation is polarized along the z-direction
in the case of the Dy, group, then the electromagnetic interaction involves
only p, which transforms according to As,. With the p, polarization, the
states listed in Table 6.4 are coupled by electric dipole radiation (i.e., by
matrix elements of p,).

If, on the other hand, the radiation is polarized in the z-direction, then
the basis function is a single partner x of the F, representation. Then if the
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initial state has A1, symmetry, the electric dipole transition will be to a state
which transforms as the x partner of the E,, representation. If the initial state
has Ay, symmetry (transforms as z), then the general selection rule gives
Agy ® B, = E, while polarization considerations indicate that the transition
couples the A, level with the zz partner of the E, representation. If the
initial state has F, symmetry, the general selection rule gives

(Eu ® Eu) = Alg + Agg + Blg + ng . (636)

2 2 2 2
The polarization 2 couples the partner EZ to A7, ™" and By, ™" while the

partner EY couples to A5)¥" and B;/. We note that in the character ta-
ble for group Dy the quantity xy—yz transforms as the axial vector R, or
the irreducible representation As, and xy transforms as the irreducible rep-
resentation By,. Thus polarization effects further restrict the states that are
coupled in electric dipole transitions. If the polarization direction is not along
one of the (z,y, z) directions, H.,, will transform as a linear combination of
the irreducible representations A, + E, even though the incident radiation
is polarized.

Selection rules can be applied to a variety of perturbations H’' other than
the electric dipole interactions, such as uniaxial stress, hydrostatic pressure
and the magnetic dipole interaction. In these cases, the special symmetry of
H’ in the group of Schrodinger’s equation must be considered.

Selected Problems

6.1. Find the 4 x 4 matrix A that is the direct product A = B ® C of the
(2 x 2) matrices B and C given by

B = (bll b12> and C — <011 012) .
ba1 bao C21 C22
6.2. (a) Show that if G 4 with elements F, Ao, ..., A, and Gp with elements
E.Bs,..., By, are groups, then the direct product group G4 ® G is also
a group. Use the notation B;;Cy = (B ® C)ik,j to label the rows and
columns of the direct product matrix.
(b) In going from higher to lower symmetry, if the inversion operation is pre-

served, show that even representations remain even and odd representa-
tions remain odd.

6.3. (a) Consider electric dipole transitions in full cubic Op symmetry for
transitions between an initial state with A;, symmetry (s-state in quan-
tum mechanics notation) and a final state with T, symmetry (p-state
in quantum mechanics notation). [Note that one of these electric dipole
matrix elements is proportional to a term (1|p;|x), where |1) denotes the
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s-state and |z) denotes the x partner of the p-state.] Of the nine possi-
ble matrix elements that can be formed, how many are nonvanishing? Of
those that are nonvanishing, how many are equivalent, meaning partners
of the same irreducible representation?

(b) If the initial state has F, symmetry (rather than A;, symmetry), repeat
part (a). In this case, there are more than nine possible matrix elements.
In solving this problem you will find it convenient to use as basis functions
for the Ey, level the two partners 22 + wy? + w?2? and 22 4+ w?y? + wz?,
where w = exp(27i/3).

(c) Repeat part (a) for the case of electric dipole transitions from an s-state
to a p-state in tetragonal Dy, symmetry. Consider the light polarized
first along the z-direction and then in the xz—y plane. Note that as the
symmetry is lowered, the selection rules become less stringent.

6.4. (a) Consider the character table for group Cap (see Sect.6.5). Note that
the irreducible representations for group C4 correspond to the fourth roots
of unity. Note that the two one-dimensional representations labeled E are
complex conjugates of each other. Why must they be considered as one-
dimensional irreducible representations?

(b) Even though the character table of the direct product of the groups C4C;
is written out in Sect. 6.5, the notations Cyp and (4/m) are used to label
the direct product group. Clarify the meaning of Cyp, and (4/m).

(c) Relate the elements of the direct product groups Cy ® C; and Cy ® Cyp
(see Table A.3) and use this result to clarify why the notation Cy and
(4/m) is used to denote the group C4y ®17 in Sect. 6.5. How do groups Cy ®1
and C4 ® oy, differ?

6.5. Suppose that a molecule with full cubic symmetry is initially in a Ty,
state and is then exposed to a perturbation H’ inducing a magnetic dipole
transition.

(a) Since H' in this case transforms as an axial vector (with the same point
symmetry as angular momentum), what are the symmetries of the final
states to which magnetic dipole transitions can be made?

(b) If the molecule is exposed to stress along a (111) direction, what is the
new symmetry group? What is the splitting under (111) stress of the T
state in Oy, symmetry? Use the irreducible representations of the lower
symmetry group to denote these states. Which final states in the lower
symmetry group would then be reached by magnetic dipole transitions?

(c) What are the polarization effects for polarization along the highest sym-
metry axes in the case of O symmetry and for the lower symmetry group?

6.6. Show that the factor group of the invariant subgroup (F, o) of group
Csp, is isomorphic to the group C5. This is an example of how the C5 group
properties can be recovered from the C3;, = C5 ® o, group by factoring out
the (F,op) group.
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Molecular Systems



7

Electronic States
of Molecules and Directed Valence

This chapter considers the electronic states of molecules, the formation
of molecular bonds and the simplifications that are introduced through
the use of group theory. We organize our discussion in this chapter in
terms of a general discussion of molecular energy levels; the general con-
cept of equivalence; the concept of directed valence bonding; the appli-
cation of the directed valence bond concept to various molecules, includ-
ing bond strengths in directed valence bonds; and finally ¢ and 7m bond-
ing.

7.1 Introduction

The energy levels of molecules are basically more complicated than those of
atoms because there are several centers of positive charge which serve to
attract a given electron, and because these centers are themselves in rel-
ative motion. Since the nuclei are very massive relative to the electrons,
we can utilize the Born-Oppenheimer approximation which separates out
the electronic motion from the nuclear or ionic motion. In this approxima-
tion, the electrons move in a potential generated by the equilibrium po-
sitions of the nuclei. We are thus left with three kinds of molecular mo-
tion, the electronic motion which is most energetic, the vibrational motion
which is less energetic, and the rotational motion which is least energetic.
If these motions are independent they can be decoupled (but this is not
always the case). In this chapter we consider the electronic energy levels
of some typical molecules considering the Born—Oppenheimer approxima-
tion, and in Chap.8 we consider the vibrational and rotational levels of
molecules.

The effective one-electron potential V(r) for an electron in a molecule
must be invariant under all symmetry operations which leave the molecule
invariant. If we did not exploit the symmetry explicitly through group theory,
we would then solve the Schrédinger equation to find the energy eigenvalues
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and the corresponding eigenfunctions of the molecule taking into account all
the valence electrons for all the atoms in the molecule. This would require
solution of a large secular equation of the form:

|(i|H|yp5) — Edij| = 0. (7.1)

Utilization of symmetry (as for example using group theoretical methods)
allows us to choose our basis functions wisely, so that many of the matrix
elements in the secular equation vanish through symmetry arguments and the
secular equation breaks up into block diagonal form. Thus by using symmetry,
we have to solve much smaller secular equations, and only those states which
transform according to the same irreducible representations will couple to
each other according to group theory arguments. Group theory is used in yet
another way for solving the electronic problem. Many molecules contain more
than one equivalent atom. Symmetry is used to simplify the secular equation
by forming linear combinations of atomic orbitals that transform according to
the irreducible representations of the group of Schrédinger’s equation. Using
such linear combinations of atomic orbitals, the secular equation can more
readily be brought into block diagonal form. In this chapter we show how
to form linear combinations of atomic orbitals that transform as irreducible
representations of the appropriate symmetry group, and we will show how the
equivalence concept is used in forming these linear combinations.

U1 — 1

’

bonding orbital

Entibonding
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A
Eamm - ¥
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Fig. 7.1. Electronic wave functions for a diatomic molecule. On the left the free
atomic orbitals are shown for two similar atoms on different sites. On the right,
the formation of bonding and antibonding states is indicated. To find the energy
splitting between the bonding and antibonding states (indicated schematically), the
solution of Schrédinger’s equation is necessary
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In the free atom, the electronic orbitals display the symmetry of a (1/r)
potential, and therefore the free-atom orbitals are eigenfunctions which trans-
form according to irreducible representations of the full rotation group. In
a molecule or in a solid, the electrons tend to spend more time between the
ion cores in the bonding state and the increased probability of finding the elec-
tron between two nuclei (see Fig.7.1) is called a chemical bond. These bonds
display the known symmetry of the molecule (or the solid). For this reason,
the wavefunctions for the electrons in the molecule (or the solid) transform as
irreducible representations of the appropriate symmetry group, which in gen-
eral will be of lower symmetry than the full rotation group. From elementary
considerations, we know that molecular bonds arise from the exchange inter-
action whose magnitude depends on the extent of the overlap of the charge
clouds between neighboring atoms. Because these orbitals concentrate the
charge along preferred directions, the bonding is called directed valence bond-
ing, and these directed valence bonds exhibit the symmetry of the molecule
(or of the solid). We use the directed valence bonding concepts to identify the
kinds of symmetries needed to make the desired orbitals.

Symmetry enters the electronic problem of molecules in yet another way,
namely through the Pauli principle and the effect of the permutation of the
electrons on the electron wavefunctions. This topic is discussed in Chap.17
for many-electron states.

7.2 General Concept of Equivalence

Equivalent bonding orbitals for a molecule are required to transform into one
another under all the symmetry operations of the point group with no more
change than a possible change of phase. The equivalence transformation, which
takes one equivalent function into another, generates a representation for the
point group called the equivalence representation. The equivalence representa-
tion will in general be reducible. We denote the representation that generates
the transformation between equivalent atom sites by I'*® and its characters
by x*% where a.s. = atomic sites. In this section we present the equivalence
concept, show how to find the irreducible representations contained in the
equivalence representation and then give a few examples.

The matrices D** (R);; for the equivalence representation I'** are found
from the general definition in (4.1)

P]ﬂ/)i = Z Da's'(R)jﬂ/)j (72)

J

or written in matrix form from (4.5)
D**(R)ji = (5| Prlei). (7:3)

Explicitly, the D*®(R);; matrices are found by entering unity into the j,4
position in the matrix if P(R) takes site ¢ into an equivalent site j and zero
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otherwise. From this argument we readily see that the characters for the equiv-
alence representation can be found by counting the number of points which
are left unaffected by the symmetry operation, because it is only those points
that will give a contribution to the matrix on diagonal positions and will thus
contribute to the character for that symmetry operator. To obtain the charac-
ters for the equivalence representation x**, we take a representative member
of each class and consider the number of points that are left unchanged under
action of the representative symmetry operator.

The representation I'** is in general reducible. The pertinent symmetry
types for the problem are then found by decomposing I'** into its irreducible
representations. To illustrate this concept, consider the example of three iden-
tical atoms at the corners of an equilateral triangle as for example the three
hydrogen atoms in the NH3 molecule. The symmetry group is Cs,, and the
character table for group Cs, is given in Table A.10. Referring to Fig.4.2,
where the three equivalent sites are labeled by (a, b, ¢) we obtain D*% (R) for
some typical symmetry operators:

100
DEsS)Ey=1010 |, (7.4)
001

001
DEs) () =1100 |, (7.5)
010

100
D@ (g,)=1001 ], (7.6)
010

in which the rows and columns correspond to the sequence of atoms (a,b, ¢)
and the symmetry operations selected are FE, D, and A following Fig.4.2.
From these matrices we can compute the characters for each of the classes for
the I'*® representation in group Cs,(3m). The character x*% (R) is always
the number of sites that are left unchanged by the operation Ppg so that for
each of the three classes x** (E) = 3, x*%(C3) = 0, and x**(0,) = 1. These
results are summarized in Table 7.1. From Table A.10 we see immediately
that x*% = ' 4+ x'2 for every class, since I'*% = I} + I, in agreement
with results obtained in Sect. 4.6. The orbitals on the nitrogen atom are then
chosen so that they bond to the atomic orbitals of the three hydrogen atoms,
as discussed in Sect. 7.5.1.

Table 7.1. x** for the group Cs,

E 203 30'v
Xa‘s' 3 0 1 =11 +1=A,+F
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7.3 Directed Valence Bonding

For diatomic molecules we know immediately, without recourse to group the-
ory, how to make a bonding orbital out of the free atomic orbitals. In this
case, we need simply to take the symmetrical combination (1, + ) to pile
up charge in the directed valence bond (see Fig.7.1).

For the case of the homopolar diatomic molecule, we thus form an occupied
bonding state (1), + 1) and an unoccupied antibonding state of higher energy
(o — 1bp). Suppose that this diatomic molecule only has two symmetry oper-
ations, the identity E and the mirror plane reflections o; or m. These are the
two symmetry elements of the group Ciy, (see Table 7.2). (In Sect. 7.4 we will
consider the semi-infinite groups Do and Cs,, which give the full symmetry
of typical homogeneous and heterogeneous diatomic molecules.) Taking 1, as
an arbitrary function, and noting that mea = 1y, for the mirror plane opera-
tions, the projection operator for one-dimensional irreducible representations
(see (4.38)) can be written as

. l, . A
P = - > X (R)* Pr. (7.7)
R

The basic formula (7.7) for finding linear combinations of atomic orbitals when
acting on the wave function 1, yields (see Table 7.2):

P, = L) Pptha + (1) Buti] = Sl + ] bonding

DO | =

P, = S[0)Pptba + (~1)Pytha] = 5[ — ] antibonding (7.8)
for the bonding and antibonding states, so that the bonding orbitals will
have I'} symmetry and the antibonding orbitals will have I'] symmetry. Since
there are only two initial wave functions ¢, and v, the combinations in (7.8)
are all the independent linear combinations that can be formed, and except
for a normalization factor of v/2, these functions are proper bonding and
antibonding orbitals.

Our discussion of the use of projection operators (see Sects. 4.5 and 4.6)
illustrates how linear combinations of atomic orbitals could be found such that
the resulting orbitals transform according to irreducible representations of the

Table 7.2. Character table for the group Cip

Cin(m) E o
a?y? 2% oy | Reyzyy | A (D) | 11
T2,Y2 Ry,Ry,z | AV (I7) | 1 -1

X2 0=nI+I1=A+A4A"
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point group. Here we used the Cyj group that has only two one-dimensional
irreducible representations, and we found the two related electronic states.
However, most of the symmetry groups have many irreducible representations
with different dimensionalities. To find the right symmetries for the electronic
states, one would have to apply the projectors to all of them. This process
is largely simplified by using the directed valence representation I'p vy, which
introduces two kinds of simplifications:

(a) Ip.v. gives all the irreducible representations for the molecular orbitals
before the molecular orbitals are found explicitly. This saves time because
the projection operator PI) need not then be applied to irrelevant rep-
resentations, but only to those irreducible representations contained in
Ipv..

(b) If we are only interested in finding the number of distinct eigenvalues and
their degeneracies, this follows directly from the characters xp.v. of the
representation I v.. To obtain this kind of information, it is not necessary
to solve Schrodinger’s equation or even to find the linear combination of
molecular orbitals as in Sect. 4.6.

The directed valence representation I v, uses the equivalence transformation
to determine the characters of 1'%, In Sect. 7.4 we discuss the directed valence
representation for diatomic molecules and in Sect. 7.5, we extend the concept
to multiatomic molecules with more complicated symmetries.

7.4 Diatomic Molecules

In this section we introduce the semi-infinite groups Do, and Cy, and we
illustrate the use of the equivalence transformation to form symmetrized lin-
ear combinations of atomic orbitals. We then develop the directed valence
representation for the simplest case of diatomic molecules. Both homonuclear
molecules (like Hy) and heteronuclear molecules (like CO) are considered.

7.4.1 Homonuclear Diatomic Molecules

The simplest molecules are the homonuclear diatomic molecules. For homonu-
clear molecules (such as Hy) the appropriate symmetry group is Doop and the
character table for Doy, is shown in Table 7.3 (see also Table A.34). We now
summarize the main points about this character table. Cy denotes an arbi-
trary rotation about the linear molecular axis (z-axis) and C4 is a twofold
axis L to Cy. In the group Doy, each of the operations E, Cy, and CY is also
combined with inversion. We further note that o, is a mirror plane through
the molecular axis, so that o, = iC}%. The subscripts g and u refer to the
evenness and oddness of functions under the inversion operation, while the
superscripts + and — refer to the evenness and oddness of functions under
reflection in a mirror plane. The characters for o, in the D, group are found
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Table 7.3. Character table for the semi-infinite group Doop (c0/mn)

Doy, (00/mm) E 2Cy (% i 2iC,  iCy
% +y?, 22 Ag(ZH) |1 111 1 1
A (Z5) |1 1 1 -1 -1 -1

R. Asg(27) | 1 1 -1 1 1 -1

2 Asu(ZH) | 1 1 -1 -1 -1 1

(xz,yz) (Re, Ry) | E1g(Ily) | 2 2cos¢p 0 2 2cos ¢ 0
(z,v) Ei.(IT,) | 2 2cos¢p 0 —2 —2cos¢ 0

(x? — 2, zy) Eog(Ay) |2 2cos2¢ 0 2 2 cos2¢ 0
Ey(Ay) |2 2cos2¢ 0 —2 —2cos2¢ 0

Table 7.4. x** for the group Dsopn

E 2C, Ci=io, i 2iCs iC'2=o0,

= Alg + A2u

as. 9 9 0 0 0 2
X = oF+of

most conveniently by considering the effect of the operation o, on the basis
functions which correspond to a given irreducible representation. For example,
the symmetry operation o, changes (z,y) into (—z,y) yielding a transforma-
tion matrix

o) =("p1) 79)

and the corresponding character for o, is x(0,) = 0 which from the character
table is associated with the Ey, irreducible representation.

For a homogeneous diatomic molecule (such as Hs) use of the equivalence
transformation on the two sites of the homogeneous diatomic molecule, as
shown in Table 7.4 yields the characters for the equivalence transformation.
When forming a linear combination of atomic orbitals (LCAOs) from s func-
tions on the two equivalent atomic sites (see Sect. 7.3), the normalized bonding
orbital v¥s = (1, + 13)/+/2 is symmetric and has Y or Ajy symmetry and
the normalized antibonding orbital YA = (14 — t3)/+/2 is antisymmetric and
has X or Ay, symmetry. These two LCAOs correspond to directed valence
orbitals because they result in a rearrangement of the charge on the individual
atomic sites. The bonding LCAO is a directed valence orbital corresponding
to a pile up of charge between the two atoms to produce a lower energy state.
By using the equivalence concept in Sect. 7.2, we have constructed a linear
combination of atomic orbitals which transform as irreducible representations
of the group of Schrodinger’s equation. Thus ¥g and ¥ form such basis func-
tions and the Hamiltonian for the homogeneous diatomic molecule will not
couple states 1g and ¥4 to each other. This follows from the argument that
the product (Hi)g) transforms as A;,, since H transforms as A, and so does
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1s. Also ¢ transforms as As,,. The selection rules thus tell us that the matrix
element (¢a|H|t)s) must vanish. Thus to bring the secular equation into block
diagonal form, we have to make a unitary transformation on the atomic basis
functions (¢4, 1) to bring them into the form (g, ¥a):

(://ji): N (z2)2<§§> (ﬁ:) (7.10)

unitary matrix

Applying the unitary transformation UHUT to the original matrix (written
in terms of the original ¢, and ) will bring the secular matrix into block
diagonal form. Bringing the secular equation into block diagonal form greatly
simplifies the solution of the secular equation. In this simple case, the equiva-
lence transformation and group theoretical arguments took a coupled (2 x 2)
secular equation and decomposed it into two decoupled (1 x 1) secular equa-
tions. The bonding or directed valence state will be the state of lowest energy.

As an example of homonuclear diatomic molecule we discuss the hydrogen
molecule Hs. In this case we can put each electron in a (o41s) orbital and
construct bonding and antibonding orbitals. For Hy, the bonding orbital o,
is occupied with electrons having opposite spin states and the antibonding o,
orbital is unoccupied. The (041s) state is symmetric under both inversion 4
and reflection o,. Hence the symmetry for each of the separated atoms is E*
so that the symmetry for the molecule is XF @ XF = YF. We write thls
state as ' ZF where the superscript 1 denotes a smglet (s = 0) with a total
spin degeneracy of (2s 4+ 1) = 1. By making spatial bonding orbitals that are
symmetric under exchange of the electrons, the Pauli principle tells us that
the spin state for the directed valence bonding orbital must be antisymmetric:

— la(1)B(2) — a(2)5(1)] , 7.11

ﬁ[()ﬂ() (2)8(1)] (7.11)
where (a, 3) give the spin state (up, down), and 1,2 number the electrons
(group theory aspects for spin are treated in Chaps. 14 and 15). In Problem 7.1
we extend the concepts of Sect.7.4.1 to the hypothetical Hes molecule and
the Hy ion.

7.4.2 Heterogeneous Diatomic Molecules

We next illustrate the case of a linear heterogeneous diatomic molecule with
the CO molecule. Since the electronic wave functions on each site are not
equivalent (see Fig.7.2), there is no inversion symmetry. The appropriate
symmetry group for CO is C,, which has the Character Table 7.5 (see also
Table A.33). The symmetry operations of Cs, have already been covered
when discussing the symmetry operations of Do (see Sect.7.4.1). Using the
equivalence operation on the carbon and oxygen atoms in CO, we have the
result I'*% = 24, (see also x*%(E,2Cy,0,) for Hy with Do), symmetry in
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Fig. 7.2. The wave functions for a heteropolar diatomic molecule and their for-
mation of bonding and antibonding states. If 2V3 is the energy separation between
the anion and cation for large interatomic distance, the splitting resulting from an
interaction energy 2V, is shown

Table 7.5. Character Table for Group Cooy

C oov (00m) E 2Cy Oy

(2 + 92, 2%) z A(ZT) 1 1 1
R. Ax(X7) 1 1 -1

(zz,y2) E:]Céj)Ry) } E\(IT) 2 2cos ¢ 0
(2% =y, xy) BEy(A 2 2co0s2¢ 0

Sect.7.4.1). Now the C' atom in CO has the electronic configuration 2s?2p?
while O has the configuration 2s?2p*. We will then make bonding and anti-
bonding molecular orbitals from 2s,2p., and 2p, , atomic orbitals. From the
basis functions given in the character table for group Cs, we see that the
irreducible representations for these atomic orbitals are

25 — A1
2pz b A1
2pz,y — E1 .

To find the direct products using the character table for C, we note that

cos? ¢ = (%) (14 cos29¢),
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which allows us to evaluate the direct product F; ® E; to obtain
E1®E1 :Al +A2+E2

state is symmetric, the spin state is antisymmetric by the Pauli principle
(a singlet spin configuration). However, an antisymmetric spatial state (such
as the Ay state) is accompanied by a symmetric spin state (a triplet spin
configuration) and therefore would have a molecular orbital notation 33~
(see character table for Do, in Sect.7.4.1). The secular equation implied by
the interactions in Fig. 7.2 (see caption) is

Vs—E V3
=0, (7.12)
Voo =V3—-FE

whose solution gives the splitting between the bonding and antibonding states
of heteropolar diatomic molecules

E=+\/VZ+ Vi (7.13)
as shown in Fig.7.2.

Referring to Fig.7.3 the number of electrons which form bonds in CO
are four from carbon and six from oxygen to give a total of ten electrons.
We note from Fig.7.3 that the occupied levels include the 2s A; bonding

Ay .
,/ antibonding "
/ \

\
)/ E, LUMO',
/.- antibonding BN E,
£y 27 AT 2py
Tt~ Ey HOMO
—____dd v A4

/ .
%, Ay ¢ bonding 2,

2Pz y

O A .
bonding

Ay
.- antibonding ">~

~

25 —= B 2s

-

bonding

C: 2572p? CO molecule 0: 2522

Fig. 7.3. Bonding and antibonding molecular levels for the CO molecule
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and antibonding orbitals and the 2p A; and F; bonding orbitals. The 2p A
and E; antibonding orbitals will remain unoccupied. Since the p, orbitals are
directed along the molecular axis, the bonding—antibonding interaction (and
level splitting) will be largest for the p. orbitals, as shown in Fig. 7.3.

The symmetry of the s-function orbitals for a diatomic molecule are found
directly from the transformation properties of x** . However, since p electrons
have angular momentum [ = 1, they transform like the vector (basis functions
x,y,7), so that for p-function orbitals we must take the direct product of
the transformation of the equivalent sites with the transformation proper-
ties of a vector at each site written as x®5 ® xVe¢'°r. For the case of the
heterogeneous CO molecule with Cu, symmetry x*% = 24; = 2XT and
xveeter = Ay + By = XF 4 II. With regard to the p. orbital, both the bond-
ing and antibonding orbitals (see Fig. 7.3) have A; or X7 symmetry. For the
bonding p, orbital, there is a maximum of the charge accumulation between
the C and O atoms which results in the large separation in energy between
the bonding and antibonding orbitals. For the (pg,p,) orbitals, the bonding
and antibonding levels both have E; or II symmetry. The character table for
group Coo,y (Table 7.5) relates the notation for the irreducible representations

| ! [ [ |
Hiln(ss) Hil (=) © MG (55 Hilu 52y O
I

I I
Ha AlT(45|)H§ﬁAI(ZZ): o : Hg;?4lT(Z;< i’l?Al(zzj o
I I I I I
————— el el it Bttt Bttt il
I I I I I
I I I I I
I I I I o
o 1o HE s, (ay.ay) | O 1Y wACR)
| [ I I |
| [ I I |
| [ I I |
————— el et Il el it
I [ I I |
O () M0, 1) 0 ML) HIO (52) O
_____ o o L o _ L ________
I I I I I
c,0 e I I |
Hiion(26) H3o, T(22) 0 A1, (22) ©
| I I I I
————— e e e R i et
| I I I I
I I I I I
I I I I I
o : o :HE‘LEIT(J:;I/..T]/) : o : o :Hg;?El(Tl ,zY)
I I I I I
I I I I I
| [ I I |

Fig. 7.4. Schematic diagram of the block structure of the matrix Hamiltonian for
molecular orbitals for the CO molecule arising from the symmetry of the orbitals
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with angular momenta states. The directed valence bonding is along the z-axis
and involves only bonding levels.

The symmetry types of each of the molecular orbitals determines the form
of the secular equation, as shown in Fig. 7.4. The minimum basis for describing
the bonding states is eight, including the 2s, 2p,,, 2p,, and 2p, orbitals for each
atom, since the 1s level is too low in energy to be of importance. The terms on
the diagonals represent the self energy of the electronic orbitals, and the terms
in the off-diagonal positions are the coupling terms. Only electronic states
belonging to the same irreducible representation can couple, and the block
structure of the matrix Hamiltonian of the secular equation then assumes the
form shown in Fig. 7.4.

7.5 Electronic Orbitals for Multiatomic Molecules

In this section, we consider the electronic levels for several multiatomic
molecules, each selected for particular pedagogic purposes.

7.5.1 The NH3z Molecule

To bond to the H atoms, the N atom must make orbitals directed to the three
hydrogens (see Fig.7.5). We refer to this as the directed valence bonds of
the nitrogen atoms. The directed valence bonds Ip v, for the nitrogen must
therefore exhibit the same symmetry as does the LCAO (linear combination of
atomic orbitals) for the hydrogens which transform as I"*%. We have already
seen in Sect. 4.6 how to construct LCAQOs for the three equivalent atoms at the

Fig. 7.5. Schematic diagram of the symmetry operations for an NHs molecule
(group C3,) where the three hydrogen atoms are at the corners of an equilateral
triangle and the N atom is along the normal through the midpoint of this triangle
but not coplanar with the hydrogens
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corners of an equilateral triangle (e.g., the hydrogen atoms in NHs). In this
case we use group C', (see Fig. 7.5) and obtain the irreducible representations
A; + F for the linear combination of atomic orbitals for the three hydrogen
atoms discussed in Sects.4.6 and 7.2. To bond to the nitrogen atom, it is
necessary for the directed valence representation I v, for the nitrogen atom
to have the same symmetries as I'*® so that Ipyv. =11+ 1= A, + E.

We now explore the orbitals that can be made at the nitrogen site. Nitrogen
has the electronic configuration 1s22522p3. The 1s and 2s electrons will lie low
in energy, and bonding orbitals to the hydrogens will be made with the three
2p electrons [40]. The p electrons transform like the vectors (z,y, z) and the
character table for Cs, shows that the p, and p, functions will transform
as E(I3) and the p, as A;(I1). The nitrogen atom thus bonds to the linear
combination of atomic orbitals of the three hydrogen atoms with the same
symmetries A; + E that comes from I'**. Thus the nitrogen has three p
electrons for bonding and the Hj likewise has three electrons for bonding. The
Ay bonding states will hold two electrons and the E bonding state will hold
four electrons. These bonding states can then accommodate all six valence
electrons, with three coming from the hydrogen atoms and three from the
nitrogen atom. All the antibonding states will be unoccupied. See reference
[40] for a detailed analysis of the molecular orbitals of NH3 and other molecules
discussed in this chapter from a group theory standpoint.

7.5.2 The CH,4 Molecule

In this example we consider generally how carbon atoms can form tetrahedral
bonds. One example of such tetrahedral bonds for carbon is in the diamond
structure. The tetrahedral carbon bonds in diamond have the same point
group symmetry as the directed valence bond of carbon in the CH4 methane
molecule. The methane molecule forms a regular tetrahedron (see Fig. 3.3),
where the carbon atom is at the center of the tetrahedron, and the four H
atoms are at the tetrahedral vertices; this structure has T,; point symmetry
(see Table A.32).

The bonding of the CH4 molecule is produced by a directed valence bond
from the carbon atom to the four hydrogen atoms at the corners of a tetra-
hedron. The ground state of the carbon atom is 15225%2p?. We will see below
that the carbon atom must be promoted to a 1522s'2p3 configuration to make
the directed valence bonds. The four equivalent hydrogen atoms form LCAOs
to make the bonds from the four points labeled a, b, ¢, d in Fig. 3.3 (where the
four hydrogens are located) to the center of the tetrahedron where the carbon
atom is located.

Let us start with the symmetry of the linear combination of atomic orbitals
of the four hydrogen atoms at the corner of a regular tetrahedron which has
Ty symmetry (see Table A.32 and Table 7.6). The 24 symmetry operations of
T, are described in Sect.3.11 and in Fig.3.3. If we now consider each of the
symmetry operations the group Ty acting on the points a, b, ¢, d (see Fig. 3.3)
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Table 7.6. Character Table for group T;(43m)

T4(43m) E 8C3 3C: 604 6S4

A1 1 1 1 1

A |11 1 -1 -1

El2 -1 2 0 0

(Re,R,,R.) | T» |3 0 -1 -1 1

(z,y,2) |3 0 -1 1 -1
r*s |4 1 0 2 0 |=>A+D

where the four hydrogens are located, we obtain the equivalence representa-
tion for the hydrogen orbitals I"*%. Some typical matrices for the symmetry
operations of T, in the equivalence representation I'** for the four hydrogen

atoms are

1000
e 0100
D*(E)= | 1010l (7.14)

0001

1000
0010
0001 |~
0100

D™ (Cs) = (7.15)

etc., where the rows and columns relate to the array (a b ¢ d) of Fig.3.3.
To find the characters for each class we use the equivalence transformation
principle to find how many sites go into themselves under the symmetry op-
erations of each class of T;. The results for the characters of the equivalence
representation I'** formed from transforming the atom sites (a.s.) according
to the symmetry operations of group Ty are summarized just under the char-
acter table for Ty (see Table 7.6). Using the decomposition theorem (3.20)
we then find the irreducible representations of T,; that are contained in "%
(see Table 7.6). Thus I'** gives the symmetries for the LCAOs for the equiv-
alence transformation showing that these orbitals are made of an s-function
transforming as A; and a p-function transforming as T5.

The linear combination of the atomic orbitals of the four hydrogen atoms
transforming as A; is clearly the symmetric sum of the atomic orbitals.

MA0=%wu+wme+w@ (7.16)

and the three degenerate partners of the T representation are
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Table 7.7. Characters and symmetries for the angular momentum states in T}
symmetry

E 803 302 60’d 654
Xe=0 1 1 1 1 1 Aq A1 — s state
Xe=1 3 0 -1 1 -1 15 T> — p state
Xe=2 H -1 1 1 -1 E+T
1
1 (Ts) = 5(1/%1 + b — e — Ya)
1
Po(T2) = 5(% — ¥+ Ve — Pa)
1
P3(T2) = 5(% =ty — e + Ya) - (7.17)

The T, orbitals must be orthogonal to the A; orbitals and to each other and
must transform as irreducible representation 75 under symmetry operations
of the group (see Problem 7.6).

The symmetries for the directed valence orbitals for the carbon atom can
be related conveniently to angular momentum states using the full rotation
group and the characters for rotations and inversions (see (5.11) and (5.13)).
To make a directed valence bond from the central carbon atom to the four
hydrogen atoms at locations a, b, c,d in Fig. 3.3, the carbon atom must have
wave functions with the same symmetries for its four valence electrons as the
four LCAOs for the hydrogen atoms (see (7.16) and (7.17)). This tells us that
the electronic states for the carbon directed valence state must have a 2s'2p?
configuration and A; + T3 symmetries for the carbon valence electrons. The
symmetries for the angular momentum states are found from

sin[(¢ 4+ %)a]

X(@) = sin(a/2)

for pure rotations
o sin[(£ + %)a]

x(ia) = (=1) sin(a/2)

for improper rotations.

We thus obtain the characters for the angular momentum states in the Ty
group and list them in Table 7.7, where we have made use of the fact that

oq = iC}
S4 = 104 )

in which the C4 is a (110) twofold axis. We note that the C% operation to-
gether with the inversion operation take one of the a, b, ¢, d vertices in Fig. 3.3
into a vertex occupied by a hydrogen atom. The joint operation iCy = Sy
transforms the a, b, ¢, d vertices another themselves.
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Table 7.8. Relation between angular momentum states and basis functions for
group Ty

basis functions

=0 s-state 1

(=1 p-state (z,9,2)

L=2 d-state (zy, yz, zx,x? —y?, 327 — 7'2)
——

T, E

The results in Table 7.7 could equally well have been obtained by look-
ing at the character table for group T, (see Table A.32) and making the
identifications as displayed in Table 7.8, and by associating the various basis
functions of the angular momentum states with the appropriate irreducible
representations for the Ty group.

If we now apply this discussion to the CH4 molecule we see that the di-
rected valence orbitals for the carbon contain one 2s (A7) state and three 2p
(T5) states to bond to the four hydrogen atoms. These A; and T» states can
accommodate all eight valence electrons for the CH4 molecule. A linear com-
bination of s and p,, py, p. functions which transforms at A; and 75 for the
directed valence orbitals of the carbon atom along the four diagonal directions
of the cube (see Fig.3.3) is

WL 11) = 50+, iy, )
V(1L 1, 1) = (W + Y — by, — ¥p.)
V(1,1 -1) = 5 (s — W+, — )
P, ~1,1) = L (s — Y. — ¥, + ). (7.18)

The linear combination with all “+” signs ¥(1,1,1) transforms as the
A irreducible representation. The other three functions with two “+”
and two “—” signs transform as the three partners of the 7% irreducible
representation as can be seen by applying the symmetry operations of
group Ty to these directed valence wave functions. Thus (7.18) gives
a set of orthonormal wave functions for the four electrons of the carbon
atom.

Bonding states are made between the A; carbon orbital and the A; or-
bital of the four hydrogens and between the corresponding 7> carbon and
hydrogen orbitals following the same type of block diagonal form as is shown
in Fig. 7.4 for the CO molecule. Although the carbon electrons must be pro-
moted to the excited sp® configuration to satisfy the bonding orbitals in the
molecule, the attractive bonding energy due to the CH, bonds more than
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compensates for the electronic excitation to form the sp?® excited state for
the carbon atom. It is of interest that the orbitals in (7.18) also represent
normalized functions for tetrahedral bonding orbitals in common semicon-
ductors.

Finally we consider the bond strengths along a directed valence orbital
to show that the bond strength is a maximum along the directed valence
orbital. To illustrate bond strengths, consider the (1,1,1) directed valence
bond 1 (ths + thp, + tp, + 1p.) With Ay symmetry for CHy (see (7.18)). We
express each of the terms of this equation in terms of spherical harmonics,
using polar coordinates. For angular momentum ¢ = 0 and ¢ = 1 the spherical
harmonics yield

Vs =1, P, = V3sinfsin ¢,
Pp, = V3sinbcos ¢, 1, = V3cosh. (7.19)

We can thus write the angular dependence of the directed valence bond along
(111) as

¥(1,1,1)] 4 = %T) [1 +V/3sin f(cos ¢ + sin @) + V3 cos 9} . (7.20)
Differentiation with respect to # and ¢ determines the values of # and ¢
which give a maximum bond strength. It is found that this wavefunction
is a maximum along the (111) direction, but not along another one of the

diagonal axes (see Problem 7.6).

7.5.3 The Hypothetical SHg Molecule

As another illustrative example, consider a hypothetical molecule SHg where
the six identical H atoms are arranged on a regular hexagon (e.g., the ben-
zene ring has this basic symmetry) and the sulfur is at the center. For the
hydrogens, we have six distinct atomic orbitals. To simplify the secular equa-
tion we use group theory to make appropriate linear combinations of atomic
orbitals:

Ya

pp
e
R (7.21)
e
Yy

so that the transformed linear combinations are proper basis functions for
irreducible representations of the point symmetry group Dg;, which applies to
this problem. We see that the largest dimension for an irreducible representa-
tion in Dgp is n = 2. We show below that the use of symmetry will result in
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Fig. 7.6. Geometry of the hypothetical SH¢ planar molecule with six hydrogens at
the corners of a hexagon and the sulfur atom at the center (Dg, symmetry)

a secular equation with block diagonal form, having blocks with dimensions
no greater than (2 x 2).

To find the proper linear combination of atomic orbitals, we find the char-
acters for the equivalence transformation I'*% (R) for the six hydrogen atoms
in Dgp, symmetry (see Fig.7.6) by considering how many atom sites go into
each other under the various symmetry operations of the group. The results
for I'** for each class are given at the bottom of the Character Table 7.9 for
Dg where Dgp, = Dg®i. We now set up the appropriate linear combinations of
atomic orbitals for the six hydrogen atoms. This can be done most easily by
utilizing the correspondence of this problem with the sixth roots of unity. We
will denote the sixth roots of unity by 1,2, w, —1,w?, 25, where w = ¢27/3
and 2 = e2™/6, For simplicity we will denote the atomic orbitals at a site
a by 1, and use the abbreviated notation a. In terms of the site notation
(a,b,c,d, e, f), the sixth orthogonal linear combinations formed by taking the
sixth roots of unity are

U a+b+c+d+e+ f transformsas 17,
Py a4+ Nb+we—d+wle+ 2F,
3 a4 wb+wic+d+we+w3f,
Yy a—b+c—d+e— f transformsas I3,
¥s  a+w?bt+wetd+wietwf,
Y6 a+ b+ wic—d+we+ 2f.

To obtain the symmetries of the functions 1, ...,1¥s we examine PR’L/Ji
where Py is a symmetry operation in group Dg. Clearly ¥o and s are part-
ners since ¢35 = g, and similarly 13 and 15 are partners since ¥; = s,
so these provide good candidates for representing the I's and [ irreducible
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Table 7.9. Character table for point group Dg

Ds E Cy 2C; 2Cs 3C5; 3CY
% 492, 22 (A | 1 1 1 1 1 1
2 N(A) |1 1 1 1 -1 -1
IyB)|1 -1 1 -1 1 -1
B | 1 -1 1 -1 -1 1
(? — %, zy) | I5(E2) | 2 2 -1 -1 0 0
(zz,y2),(x,y) | ITs(E1) | 2 -2 -1 1 0 0
rs 6 0 0 0 2 0|=I1+I5+15+1%
"""
HF17T1:O b0 Y
o Hryryi O o
0 0y, | O
o 0 10 " Hrgrs

Fig. 7.7. Schematic of the secular equation for six hydrogen orbitals at the corners
of a regular hexagon. Outside of the block structure, all entries are zeros. The I}
and I3 are one-dimensional representations and the I's and I's are two-dimensional
representations

representations. By inspection, 1 is invariant under all the symmetry oper-
ations of the group and thus 1; transforms as 7. As for 14, application of
Cs(vg) = —14, and Cs1hy = 1y, etc. verifies that ¢4 transforms as I's. In-
spection of the character table shows differences between I's and I's under the
operations in classes Cy and 2Cg. It is clear that the basis formed by 1, and
1 transforms under Cy as

Co(¥2,96) = <(()25 ?2) <Z<23> (7.22)

since a — b,b — ¢,c¢ — d, etc. Thus the trace of the matrix is

. . 2
Q4+ 2° =e?™/0 4 e727/6 = 2 cos % =1, (7.23)
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which is the proper character for I's. As a check, we see that Co(e, 1)
results in a trace = 23+ 21 = 23 + 23 = 2cosm = —2, and this also checks.
Similarly we see that the transformation matrix for

Co(t)s,v5) = D™ (Cg) (ii)

again sends a — b,b — c,c — d, etc. and yields a trace of w + w? = —1
while C (13, 1)5) yields a trace of w® 4+ w® = 2. The unitary transformation U
which takes the original basis a,b,c,d,e, f into a basis that exhibits Dg
symmetry

a Y1
b (o
c | _ o
U d | = | v (7.24)
€ 3
! Ps

brings the one-electron molecular secular matrix into the block diagonal form
shown in Fig.7.7, and zeros in all the off-diagonal positions coupling these
blocks.

Just as we used some intuition to write down the appropriate basis func-
tions, we can use physical arguments to suggest the ordering of the energy
levels. The fully symmetric state yields a maximum charge density between the
atom sites and therefore results in maximum bonding. On the other hand, the
totally antisymmetric state yields a minimum bonding and therefore should be
the highest energy state. The doubly degenerate levels have an intermediate
amount of wave function overlap.

The six symmetric orbitals that we make can be populated by 12 electrons.
But we only have six electrons at our disposal and these will go into the lowest
energy states. Figure 7.8 shows a schematic view of the pile up of charge for
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Fig. 7.8. Energies of the LCAOs formed by six hydrogen atoms at the corners of
a hexagon. Also shown is a schematic summary of the wave functions for the various
orbitals
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the states of various symmetry. The I} state has the strongest bonding and
the Iy state has the next strongest binding, and therefore we can expect
the six electrons to populate these states preferentially. For this reason, the
molecular bonding produces a lower energy state than the free atoms.

Let us now consider making directed valence orbitals from the S atom
at the center of the hexagon to the six hydrogens. An isolated S atom is in
a 1522522p%3523p* configuration. Thus to bond to the hydrogen atoms in the
six LCAOs, given by 1, ...,1g, would require all the bonding states and
all the antibonding states to be occupied. This implies that the sulfur atom
would have to be promoted to a high energy state to bond in a planar config-
uration (see Problem 7.3). The sulfur atom in the ground state configuration
would only bond to the Iy and I blocks of the secular equation for SHg in
Fig.7.7.

7.5.4 The Octahedral SFg Molecule

We next give an example of SFg with a molecular configuration that involves
octahedral bonding (see Fig.7.9). The octahedral configuration is very com-
mon in solid state physics.

If we now use the symmetry operations of O, (Table A.30) we get the
characters for the equivalence representation I'** for the six atoms which sit
at the corners of the octahedron (see Fig. 7.9 and Table 7.10). The decomposi-
tion of the reducible representation I'** for the six equivalent fluorine atoms
gives

s = Alg + Eg + Tl - (725)

If we (hypothetically) were to put s-functions on each of the six fluorine sites,
then I'*% given by (7.25) would be appropriate to make the linear com-
bination of atomic orbitals for the six fluorine atoms. However, if we put

Fig. 7.9. Schematic diagram of the SF¢ molecule which exhibits octahedral bonding
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p-functions on each fluorine site then the appropriate equivalence transfor-
mation for p-electrons would be I'*s @ I'Tiw)  where we note that for Oy,
symmetry the vector transforms as 73,. This general concept of taking the
direct product of the transformation of the atom sites with the symmetry of
the orbital on each site is frequently used in applications of the equivalence
principle.

Let us now look at the orbitals for electrons on the sulfur site to make the
directed valence bonds as shown in Fig. 7.9. Bonding orbitals are found by
setting the directed valence representation equal to the symmetries found from
the equivalence transformation for the fluorine electrons bonding to the sulfur.
For simplicity let us assume that I'*® = Ip.y. to fully exploit the bonding of
the cation and anions. We then need to identify the irreducible representations
contained in yp vy, with angular momentum states. The characters for the
angular momentum states in O, symmetry are then found from

sin(f + 3o

sin(«/2) (7.26)

x(a) =

and using the character table for O (see Table A.30). The results for the
angular momentum states are tabulated in Table 7.11. As an example, let us
suppose for simplicity that we have s functions on each of the six fluorine sites.
Then to produce Ipv. = Aig + Eg + Th, as in (7.25) we can use an s state
¢ =0 for the Ay, symmetry, a p state (¢ = 1) for the T3, symmetry, and a d
state (¢ = 2) for the E, symmetry in (7.25). Thus sp3d® orbitals are required
for the directed valence of the sulfur ion, which ordinarily has an atomic
ground state configuration 3s23p*. Thus to make the necessary bonding, we
must promote the S atom to an excited state, namely to a 3s'3p33d? state.
This type of excitation is called configuration mizing. In Problem 7.2, a more
realistic version of the octahedral SFg molecule is considered, with p-function
wave functions for each of the six fluorine sites.

7.6 o- and w-Bonds

We now discuss the difference between o- and m-bonds which are defined in
the diagram in Fig. 7.10. The situation which we have considered until now is
bonding by s-functions or by p-functions in the direction of the bond and this is
denoted by o-bonding, as shown in Fig. 7.10. Because of their asymmetry, the

Table 7.10. Characters for the 6 atoms sitting at the corners of an octahedron,
e.g., for the F sites of the SFs molecule

E 8Cs 3C, 6C; 6Cs i 8iC3 3iC> 6iCy; 6iCy
r*s 6 0 2 0 2 0 0 4 2 0




7.6 o- and w-Bonds 135

Table 7.11. Characters for angular momentum states and their irreducible repre-
sentations in Op symmetry

E 8C5 30> 6C) 6C4 1 8iCs 3iCs 6iC) 6iCy

¢=0/1 1 1 1 1 1 1 1 1 1]|=A4y

(=13 0 -1 -1 1-3 0 1 1 —1|=Tu

(=2/5 -1 1 1 -1 5 -1 1 1 —1|=E,+Ty

(=37 1 -1 -1 -1 =7 =1 1 1 1|= Asy+ Tiu+Tou
(=49 0 1 1 1-9 0 -1 —1 =1|=Ag+E,;+Ti,+ Ty

o bonds with p-functions (V. in Fig. 7.10) play an important role in making
directed valence bonding orbitals. We can also obtain some degree of bonding
by directing our p-functions L to the bond direction, as also shown in Fig. 7.10,
and this is called m-bonding. We note that there are two equivalent mutually
perpendicular directions that are involved in w-bonding. From considerations
of overlapping wavefunctions, we would expect m-bonding to be much weaker
than o-bonding.

Just as group theory tells us which LCAOs are needed to form o-bonds,
group theory also provides the corresponding information about the linear
combination of atomic orbitals that form m-bonds. We now describe in this
section a procedure for finding the symmetry for both o-bonds and 7-bonds.

Let us first review the situation for the o-bonds. To find a o-bond, we con-
sider the atomic wave function at each equivalent site to be degenerate with
the corresponding wave functions on the other sites and we find the transfor-
mation matrices that transform equivalent sites into one another according to
the symmetry operations of the group. To find out if an entry in this matrix is
1 or 0 we ask the question whether or not a site goes into itself under a partic-
ular symmetry operation. If it goes into itself we produce a 1 on the diagonal,
otherwise a 0. Therefore by asking how many sites go into themselves, we
obtain the character for each symmetry operation. This is the procedure we
have used throughout the chapter to find I™** which denotes the equivalence
transformation. This gives the symmetry designations for Vy,, bonds.

To find the characters for a w-bond, we have to consider how many vectors
normal to the bond direction remain invariant under the symmetry operations
of the group. The simplest way to obtain the characters for the o-bonds and
m-bonds is to consider the transformation as the product of two operations:
the transformation of one equivalent site into another, followed by the trans-
formation of the vector on a site. Thus we write

F(a-S-) ® Z—‘gcncral vector — Z—v(a.s.) & FvcctorJ_ to o—bonds
+F(a's') ® Lyector || to o—bonds - (727)

But

(

— p(as.
Ibv. o-bonds = I ) ® F(vcctor || to o-bonds) *
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atom 1

S atom 2

Dz

o-state

By o-state
P m-state
m-state

Fig. 7.10. Schematic diagram of: o-bonding (Vsse ) by s-functions and (Vppe) by lon-
gitudinally oriented p-functions. Directed valence V. are also indicated. m-bonding
(Vppr) with transverse p-functions shown for two orientations

Thus

(a.5.)

FD.V. m-bonds = r & Z—‘gcncral vector — Z—‘D.V. o-bonds » (728)

and we thus obtain the desired result

FD.V.w—bonds = Z—v(a.s.) & Fvcctor 1 to o-bonds - (729)

As an example of o-bonds and m-bonds let us consider the problem of trigonal
bonding of a hypothetical C4 cluster, where one carbon atom is at the center
of an equilateral triangle and the other three carbon atoms are at the corners
of the triangle, as shown in Fig.7.11. The pertinent character table is Dsp
which is given in Table 7.12. For this group op denotes an x—y reflection
plane and o, denotes a reflection plane containing the threefold axis and one
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of the twofold axes. Consider the linear combination of atomic orbitals made
out of the three carbon atoms at the corners of the equilateral triangle. From
the equivalence transformation for these three carbons, we obtain I"(3-5-) (see
Table 7.13). Clearly if each of the orbitals at the corners of the equilateral
triangle were s-functions, then the appropriate linear combination of atomic
orbitals would transform as A} + E’

AL+ e + s, (7.30)

2
o {% + wihs + w Y3 (7.31)

1+ wihe +wips

where
21

oo (). i

In transforming wavefunctions corresponding to higher angular momentum
states, we must include the transformation of a tensor (vector) on each of
the equivalent sites. This is done formally by considering the direct product
of ') with Iensor, Where Itensor gives the transformation properties of
the orbital: a scalar for s-functions, a vector for p-functions, a tensor for d-
functions, etc.

We now illustrate the construction of LCAOs from s- and p-functions,
noting that from the character table for the group Dsj,, s-functions transform

Fig. 7.11. Schematic diagram of a carbon atom forming bonds to three other carbon
atoms at the corners of an equilateral triangle

Table 7.12. Character Table for Group Dsp(6m2)

D3y (6m2) =D3®op E | on | 2C3 | 253 3Cé 3o,
22+ 22 A1 1 1 1 1 1
R. Ay (1| 1| 1| 1| —1] 41

AV 1| =1 1| =1 1] -1

2 A1 =1 1| -1 -1 1

(2 —y*, zy) | (z,9) E |2 2| —-1| -1 0 0
(xz,y2) (Rs,Ry) | E" | 2| 2| —1 1 0 0




138 7 Electronic States of Molecules and Directed Valence

o-bonding m-bonding

A

o 1

Fig. 7.12. Schematic diagram for the o-bonds and the in-plane w-bonds for car-
bon atoms at the corners of a triangle to a carbon atom at the center of the
triangle

as A, p. functions as A5 and (ps,py) functions as E’. We thus obtain for
the transformation properties of the three s-functions at the corners of an
equilateral triangle as

r*>ely=(Al+E ) A=A, +F. (7.33)
For the p, functions which transform as A we have for the direct product:
r*>erl, =(A+FE)® Ay = Ay + E". (7.34)
Finally for the p,, functions which transform as E’ we obtain

r*serl, , =A+E)oFE = A, + A, +2F . (7.35)

Py
We will see below that the A} + E’ symmetries correspond to o-bonds and
the remaining (A}, + E’) + (A4 + E") correspond to m-bonds, as shown in
Fig. 7.12.

For the carbon atom at the center of the equilateral triangle (see Fig. 7.11)
we make directed valence orbitals to the carbon atoms at sites (1), (2), and (3)
from states with A} and E’ symmetry (see Sect.7.5.1), which in accordance
with the character table for Djp, transform as the v and vy, , 1, wave
functions. The directed orbitals from the central carbon atom are thus

Table 7.13. Characters for the I'** representation of three carbon atoms sitting
at the corners of an equilateral triangle (Ds), symmetry)

E Oh 203 283 3Cé 3Uu
res)> 3 3 0 0 1 1 = A +F
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Y1 = as + By,

1 V3
e =ots + 5 | —5vp, + 7‘/%]
1 V3
U3 =avs + 5| —S¥p, — 7%1,1 : (7.36)
The orthonormality condition on the three waves functions in (7.36), gives
4+ p52=1, B%?=2a°, (7.37)
or
1 \/5
o= —— , = - 738
5 =3 (7.39)
so that

1 2
T e
1 1 1
TR L
1 1 1
TR A e (7.39)

Using the basis functions in the character table for D3 and the classification
of angular momentum states in Table 7.14, we can make o-bonding orbitals
with the following orbitals for the central carbon atom, neglecting for the
moment the energetic constraints on the problem:

252p° s+ (P2 Dy)
253d*> s+ (dxy, dwz_yz)

3d2p2 dsz2_,2 + (vapy)
3d%  dysey2 + (duy du2y2)

It is clear from Table 7.14 that the lowest energy o-bond is made with the
252p? configuration. The carbon atom has four valence electrons, three of
which make the in-plane trigonal o-bonds. The fourth electron is free to bond
in the z-direction. This electron is involved in 7-bonds, frequently discussed
in organic chemistry.

To obtain m-bonds from the central carbon atom to the atoms at the
corners of the triangle, we look at the character table to see how the vector
(x,y, z) transforms:

Dyector = E' + A} . (7.40)
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Table 7.14. Characters for the angular momentum states and their irreducible
representations for the group Ds, (@)

FE Oh 203 25’3 3Cé 30'v

L=0 1 1 1 1 11 A
(=1 3 1 0 -2 -1 1 AY+F
1
1

=2 5 -1 1 1 1 "+ E +E"

(=3 7 1 1 -1 1 "+ AL+ A+ B+ B

(®1Tn this character table, the characters for the various entries are found using the
relations oy, = iC3, 255 = 2iCs and 30, = 3iCs

We then take the direct product:
Fas.
a.s. i ! ! "
F ®Fvector:(A1+E)®(E+A2)
Xvector

=(A|®9FE)+ (A0 A))+ (E' @ E') + (E' ® AY)
= (E') + (A9) + (B' + A} + Ay) + (B")
= (Al +E)+(E+ A+ A, + E"). (7.41)

Since the irreducible representations for the o-bonds are A} and E’, we have
the desired result that the irreducible representations for the m-bonds are

E' + Ay + AL+ E”.

We can now go one step further by considering the polarization of the w-bonds
in terms of the irreducible representations that are even and odd under the
horizontal mirror plane operation oy,:

Even under o,

——
XD.V. m-bonds = A/Q + E + A/Q/ + E" . (742)

——
Odd under o,

This polarization analysis identifies the bonds in (7.33)—(7.35).

To find the irreducible representations contained in the directed valence
m-bonds, we have to go to rather high angular momentum states: { = 2 for
an E” state and ¢ = 3 for an A} state. Such high angular momentum states
correspond to much higher energy. Therefore m-bonding will be much weaker
than o-bonding. The irreducible representations A4 + E’ correspond to 7-
bonding in the z-direction while the A, 4+ E’ representations correspond to
m-bonding in the plane of the triangle, but L to the o-bonding directions.
We further note that the symmetries AY + E” correspond to p, and d.,dy.
orbitals for angular momentum 1 and 2, respectively. On the other hand, the
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symmetries A} + E’ require ¢ = 3 states, and therefore correspond to higher
energies than the AJ + E” orbitals. A diagram showing the orbitals for the
o-bonds and 7-bonds for the various carbon atoms is given in Fig.7.12.

7.7 Jahn—Teller Effect

The Jahn-Teller (JT) effect was discovered in 1937 [42] and it represents one of
the earliest applications of group theory to solid-state physics [9]. The Jahn—
Teller Theorem states that “any nonlinear molecular system in a degenerate
electronic state will be unstable and will undergo a distortion to form a system
of lower symmetry and lower energy, thereby removing the degeneracy.” The
spontaneous geometrical distortion in an electronically excited state results in
a lowering of the symmetry and a splitting of energy levels.

Both static and dynamic JT effects must be considered. In the static JT
effect, a structural distortion lowers the symmetry of the system and lifts
the degeneracy of the state. For a partially filled band, such a distortion
thus leads to a lowering of the total energy of the system as the lower en-
ergy states of the multiplet are occupied and the higher-lying states remain
empty.

The dynamic JT effect [44] can occur when there is more than one possible
distortion that could lead to a lowering of the symmetry (and consequently
also the lowering of the energy) of the system. If the potential minima of
the adiabatic potential are degenerate for some symmetry-lowered states of
a molecule, the electrons will jump from one potential minimum to another,
utilizing their vibrational energy, and if this hopping occurs on the same
time scale as atomic or molecular vibrations, then no static distortion will
be observed by most experimental probes. Those vibrational modes which
induce the dynamic JT effect contribute strongly to the electron—phonon cou-
pling.

The Jahn-Teller effect applies to some simple polyatomic molecules, such
as Hs, and to complex organic molecules including carbon nanotubes as well
as defect centers. The effect has also been discussed for different symmetry
structures, such as cubic, tetrahedral, tetragonal, trigonal [60], and even icosa-
hedral systems, such as Cgo [32].

For nonlinear molecules in a geometry described by a point symmetry
group possessing degenerate irreducible representations there always exists
at least one nontotally symmetric vibration that makes such electronically
degenerate states unstable. Under this symmetry-lowering vibration, the nu-
clei are displaced to new equilibrium positions of lower symmetry causing
a splitting of the originally degenerate state. The Jahn—Teller effect describes
the geometrical distortion of the electron cloud in the nonlinear molecule un-
der certain situations. Consider a molecule that is in a degenerate state W#F ‘
belonging to the irreducible representation I, with partners u. Then the com-
plex conjugate wave function K¥!' is necessarily a state with the same energy



142 7 Electronic States of Molecules and Directed Valence

where K is the complex conjugation operator (see Chapter 16). If the nuclear
coordinates are displaced from the high-symmetry configuration by a normal
mode vibration ij , the electronic potential deviates from its equilibrium sit-
uation. The electronic potential can, therefore, be expanded in terms of the
vibrational symmetry coordinates:

Vir,Q) =Vo+> VhQli+ > vEhQbhQl+-... (7.43)
I;,r I'jk,r,s

For small displacements only the first sum can be considered, and we have
the “linear” Jahn—Teller effect. A first-order perturbation approach to the
electronic levels involves the matrix elements:

M= (W |V (r,Q)wl) . (7.44)

The argument of Jahn and Teller is that, since M reverses its sign if @ is
replaced by —@Q, each perturbation AE of an electronic energy level should
also reverse its sign. Consequently, if M # 0 due to any term related to a Q'
belonging to I; # I, i.e., the lattice mode vibration does not belong to the
totally symmetric representation, the symmetry of the unperturbed molecular
configuration also becomes unstable.

An interesting and instructive example of the Jahn—Teller effect occurs in
the Cgo molecule which has 60 carbon atoms at the 60 vertices of a truncated
regular icosahedron. Although each carbon atom is in an equivalent site to
every other carbon atom on the icosahedron, two of the nearest neighbor C-C
bonds are single bonds while one is a double bond to satisfy the valence
requirements of the carbon atom which is in column IV of the periodic table.
Since the length of the double bond (0.140 nm) is shorter that that of the single
bond (0.146 nm), the icosahedron becomes slightly distorted. This distortion
does not affect the energy of the neutral atom in the ground state (HOMO),
but does affect the filling of the excited states as charge is added to the
fullerene [32]. The Jahn-Teller effect often involves spins and time reversal
symmetry (see Chap. 16), as illustrated in Fig. 16.5 and the associated text.

We also comment on the Renner—Teller effect, that is a splitting on the
vibrational levels of molecules due to even terms in the vibronic perturbation
expansion (7.43). This effect is usually smaller than the linear Jahn-Teller
effect, which is due to the odd terms in the expansion in (7.43), but it becomes
important for linear diatomic molecules where the Jahn—Teller effect is absent.
More details about the Jahn—Teller effect can be found in the literature, for
example in [60].

Selected Problems

7.1. This problem is on diatomic molecules and considers the helium molecule
He, and the hydrogen molecular ion with an extra electron Hj .
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(a) Suppose that we could make a bound diatomic molecule containing four
electrons out of two helium atoms. What would you expect the ground
state electronic configuration to be, what would its symmetry state be,
and what would be its total electronic spin? Since the Hes molecule is not
formed under ordinary circumstances we know that the antibonding state
lies too high in energy to form a bound state.

(b) Hy however involves occupation of an antibonding state and does indeed
form a bound state. What is the symmetry configuration of the three
electrons in H; 7 Why is it possible for H; to form a stable bound state
but not for Hes? Group Theory gives us the symmetry designation for each
molecular electronic state, but does not by itself give definitive information
as to whether or not a bound state is formed.

7.2. Consider a hypothetical SFg molecule with octahedral symmetry (see
Sect. 7.5.4 and Fig. 7.9).

(a) Using I'*®, construct the linear combination of atomic orbitals for the
six holes on the six fluorine atoms which transform according to the three
irreducible representations A1, + E4 + 11, contained in I'*, assuming
that wave functions with p symmetry (¢ = 1) are used to describe the
valence states for the fluorine wave functions. Note that it is easier to
consider a single hole rather than all the electrons in the nearly filled shell
of the fluorine atom.

(b) What are the angular momentum states required to bond the sulfur to
the six fluorine atoms in p states.

(c) What are the irreducible representations corresponding to o-bonds and
m-bonds for the central sulfur atom to the six fluorine atoms? Sketch the
orientation of these bonding orbitals.

7.3. Why would the octahedral configuration of Fig.7.9 be more stable for
a hypothetical SHg molecule than the planar configuration in Fig.7.67 Con-
sider the angular momentum states required for the S atom to make the
appropriate directed valence bonds to the six hydrogens in the planar SHg
hypothetical molecule.

7.4. CoHy (ethylene) is a planar molecule which has the configuration shown
in Fig. 7.13.

H H
Fig. 7.13. Symmetry of the ethylene C2H4 molecule
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Fig. 7.14. Symmetry of the Bi2H12 icosahedral molecule

(a) Identify the appropriate point group for CoHy.

(b) Find the equivalence representation I'®* for the two carbon atoms and
for the four hydrogen atoms in the CoH4 molecule.

(c) Considering the directed valence orbitals, how do the carbon atoms satisfy
their bonding requirements? Which angular momentum states are needed
to form bonding orbitals from each carbon atom?

(d) Give the block diagonal structure for the secular equation for the electronic
energy levels of ethylene.

7.5. Consider the B1oH12 molecule shown in Fig. 7.14 where the 12 hydrogen
atoms (small balls) and the 12 boron atoms (large balls) are at vertices of
a regular icosahedron.

(a) What are the symmetry operations associated with the ten classes of the
full icosahedral group I}, (see Table A.28).

(b) What are the symmetries and degeneracies of the 12 linear combinations
of atomic orbitals (LCAOs) associated with the 12 equivalent hydrogen
atoms?

(c¢) Write the linear combinations of the 12 atomic orbitals (LCAOs) for the
12 hydrogen atoms in B1oHis in I}, symmetry.

(d) What are the angular momentum states involved with each of the directed
valence ¢ orbitals from a boron atom to a hydrogen atom?

7.6. This problem further develops the symmetry properties of the CHy
molecule introduced in Sect. 7.5.2.

(a) Using one symmetry operation from each class of the point group Ty, show
that the linear combination of atomic orbitals 41 (T%) in (7.17) transforms
as one of the partners of the irreducible representation 75.

(b) Using the symmetrized linear combination of atomic orbitals for the four
hydrogen atoms in (7.16) and (7.17) and the wave functions for the four
valence electrons for the carbon atom, construct the matrix Hamiltonian
for the secular equation for the CH4 molecule in block form showing the
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nonzero entries and their symmetries, analogous to the corresponding ma-
trix Hamiltonian for finding the electronic states for the CO molecule in
Fig. 7.4.

(c) Show that the directed valence bond wave function for CHy given by (7.20)
has its maximum value along the (111) direction. What is the value of this
bond along a (111) direction? Along what direction does this bond have
its minimum value?

(d) What are the symmetries for the two lowest energy antibonding levels
for the four hydrogen atoms and the four electrons on the carbon atom
yielding the antibonding excited states of the CH4 molecule? Why do you
expect these excited states to have higher energies than the bonding states
discussed in Sect. 7.5.27



8

Molecular Vibrations, Infrared,
and Raman Activity

In this chapter we review molecular vibrations and present the use of
group theory to identify the symmetry and degeneracy of the normal
modes. Selection rules for infrared and Raman activity are also dis-
cussed and are illustrated for a variety of molecules selected for pedagogic
purposes.

8.1 Molecular Vibrations: Background

In this section we briefly indicate how group theory helps to simplify
the solution of the dynamical matrix for molecular vibrations to ob-
tain the symmetries and degeneracies of the normal modes and their
characteristic displacements more quickly and directly. A molecule hav-
ing its atoms at their equilibrium sites is in an energy minimum. If the
atoms are displaced from their equilibrium positions, a restoring force
will be exerted which will tend to bring the atoms back to equilibrium.
If the displacement is small, the restoring forces and molecular motion
will be harmonic. The harmonic nature of the force implies that the
system can be in a quantum mechanical eigenstate, or normal mode of
vibration.

Suppose that a molecule contains N atoms (depending on whether
a net charge can be assigned to a specific atomic site) and suppose
further that the potential function describing the forces, such as bond
bending and bond stretching forces, can be expressed in terms of the
3N coordinates for the N atoms, as V(Ri,...,Ry). We are particu-
larly interested in V(Rj,...,Ry) about its equilibrium coordinates at

,..., Ry, and we expand V about these equilibrium coordinates, uti-
lizing the fact that a minimum in energy implies the vanishing of the
first derivative of the potential. We can then conveniently take our
zero of energy at the potential minimum and obtain a Hamiltonian for
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molecular vibrations in terms of the small displacements from equilib-
rium:

He Y i L0V (8.1)
= —-m _—— 5 .
2 o HQagka&ké
kinetic energy potential energy

where myj denotes the mass of the kth ion, &, denotes its displacement
coordinate, and the potential energy depends on the second derivative
of V(Ry,...,Ry). The Hamiltonian in (8.1) gives rise to a (3N x 3N)
secular equation. The roots of this secular equation are the eigen-
frequencies w?% and the eigenvectors denote the normal modes of the sys-
tem.

The usual procedure for finding the normal modes involves two transfor-
mations, the first being used to eliminate the mass term in the kinetic energy:

@k = /M (8.2)

and a second transformation is used to express g in terms of the normal mode
coordinates Q:

Qe = ZakKQK ; (8.3)
K

where aix denotes the amplitude of each normal mode Qi that is contained
in q.

Thus, by a proper choice of the axx amplitudes, we can use (8.2) and (8.3)
to reduce the potential energy V to a sum of squares of the form w% Q3% /2.
These transformations yield for the potential function in (8.1):

1 0*V 1 5
Vv 5 g <6qk6qg) arxarr QrQr 5 EK wi Q% , (8.4)

)

K,L

where the coefficients ay i are chosen to form a unitary matrix satisfying (8.4).
Thus we obtain the relations aTKk = al_ﬁé = apx if the matrix elements of arx
are real. The apx coefficients are thus chosen to solve the eigenvalue problem
defined in (8.4). To achieve the diagonalization of the Vi, matrix implied by
(8.4) we must solve the secular equation

0%V
—1 — 2
;(]’Kk <—6qk6q4) agr, wK(SKL. (85)

Solution of the secular equation (8.5) yields the eigenvalues or normal mode
frequencies w%- and the eigenfunctions or normal mode amplitudes ay for
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Table 8.1. Correspondence between important quantities in the electronic problem
(see Sect.7.1) and the molecular vibration problem

quantity electronic molecular vibration
. ?v_ _

matrix element Hyy Baroa; = Vie

eigenvalue E, w%

eigenfunction® Un(r) akK

For the molecular vibration problem, it is the normal mode amplitude axx which
describes the physical nature of the small amplitude vibrations and is analogous
to the wave function 1y, (r) for the electronic problem. The eigenvalues and eigen-
functions are found by diagonalizing Hp, (electronic problem) or Vi, (vibrational
problem)

K =1,...,3N. From the form of the secular equation we can immediately
see the correspondence between the electronic problem and the molecular
vibration problem shown in Table 8.1.

The transformation defined by (8.2)—(8.5) leads to a simpler form for the
Hamiltonian

H=> Pi/2mk+wiQ%/2, (8.6)
K

which is a sum of harmonic oscillators, where Q% is the normal coordinate.

The Hamiltonian in (8.6) can become quite complicated, but group theory
can greatly simplify the required work by finding the normal modes that
directly put H into block diagonal form. As an example, one can compare
the analytical solution for the “oscillator formed by three equal masses at
the corners of an equilateral triangle”, as developed by Nussbaum [56], with
the group theory analysis of this same pedagogic molecule to be developed in
Problem 8.1.

8.2 Application of Group Theory
to Molecular Vibrations

In an actual solution to a molecular vibration problem, group theory helps
us to diagonalize the Vi, matrix, to classify the normal modes and to find
out which modes are coupled when electromagnetic radiation interacts with
the molecule, either through electric dipole transitions (infrared activity) or
in inelastic light scattering (the Raman effect). We discuss all of these issues
in this chapter.

We make use of the symmetry of the molecule by noting that the molecule
remains invariant under a symmetry operation of the group of the Schrodinger
equation. Therefore, application of a symmetry operation PR to an eigenfunc-
tion of a normal mode fx just produces a linear combination of other normal



150 8 Molecular Vibrations, Infrared, and Raman Activity

modes of the same frequency wg . That is, fx forms a basis for a representation
for the symmetry operators Pgr of the molecule

Prfi® = > D (R)krrc [, (8.7)
K/

where D (R) g x denotes the matrix elements of the matrix representation
for symmetry operator R, and ¢ denotes the irreducible representation which
labels both the matrix and the basis function (normal mode coordinate in
this case) and « denotes the partner of the basis function in representation
1. Since the basis functions for different irreducible representations do not
couple to each other, group theory helps to bring the normal mode matrix Vi,
into block diagonal form, with each eigenvalue and its corresponding normal
mode labeled by an appropriate irreducible representation. This is similar
in concept to the solution of the electronic eigenvalue problem discussed in
Chap. 7, except that for the vibrational problem every atom (or ion) in the
molecule has three degrees of freedom, and a vector must be assigned to
each atomic site. Thus the molecular vibration problem is analogous to the
electronic problem for p-functions, where the p-functions also transform as
a vector.

Therefore, to find the normal modes for the vibration problem, we carry
out the following steps:

(a) Identify the symmetry operations that define the point group G of the
molecule in its equilibrium configuration.

(b) Find the characters for the equivalence representation, I'equivalence = I
(a.s. stands for atom site). These characters represent the number of
atoms that are invariant under the symmetry operations of the group.
Since I'*% is, in general, a reducible representation of the group G, we
must decompose I'** into its irreducible representations.

(c) We next use the concept that a molecular vibration involves the transfor-
mation properties of a vector. In group theoretical terms, this means that
the molecular vibrations are found by taking the direct product of '
with the irreducible representations for a radial vector [such as (z,y, 2)].
The representation for the molecular vibrations Ip,01.vib. are thus found
according to the relation

Fmol.vib. = (Fa.s. ® Fvcc) - Z—‘trans - Frot P (88)

where Ii;ans and Iot denote the representations for the simple transla-
tions and rotations of the molecule about its center of mass. The charac-
ters found from (8.8), in general, correspond to a reducible representation
of group G. We therefore express I 01.vib. in terms of the irreducible rep-
resentations of group G to obtain the normal modes. Each eigen-mode is
labeled by one of these irreducible representations, and the degeneracy
of each eigen-frequency is the dimensionality of the corresponding irre-
ducible representation. The characters for I};.ns are found by identifying
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the irreducible representations of the group G corresponding to the ba-
sis functions (z,y, z) for the radial vector r. The characters for I} are
found by identifying the irreducible representations corresponding to the
basis functions (R, Ry, R,) for the axial vector (e.g., angular momen-
tum which for example corresponds to r X p). Since the radial vector r
(x,y, z) and the axial vector r x p denoted symbolically by (R, Ry, R.)
transform differently under the symmetry operations of group G, every
standard point group character table (see Appendix A) normally lists
the irreducible representations for the six basis functions for (x,y, z) and
(Rz, Ry, R,).

(d) From the characters for the irreducible representations for the molecular
vibrations, we find the normal modes, as discussed in the next section.
The normal modes for a molecule as defined by (8.8) are constrained to
contain only internal degrees of freedom, and no translations or rotations
of the full molecule. Furthermore, the normal modes must be orthogonal
to each other.

(e) We use the techniques for selection rules (see Sect. 6.6 in Chap. 6) to find
out whether or not each of the normal modes is infrared active (can be
excited by electromagnetic radiation, see Sect. 8.6) or Raman-active (see
Sect. 8.7).

It is important to recall that I'ye.(R) is obtained by summing the irreducible
representations to which the z, y, and z basis functions belong. If (z,y, 2)
are the partners of a three-dimensional irreducible representation 7', then
Ty (R) = I'T(R). If, instead, x, y, and z belong to the same one-dimensional
irreducible representation A, then I'ee(R) = 3I'4(R). If the x, y, and 2z basis
functions are not given in the character table, I'vec(R) can be found directly
from the trace of the matrix representation for each rotation R. All the point
group operations are rotations or combination of rotations with inversion. For
proper rotations, Xvec(R) = 1 + 2cosf, so that the trace for the rotation
matrix can be always be found directly from

cos(f) sin() 0
—sin(f) cos(9) 0 | . (8.9)
0 0 1

Improper rotations consist of a rotation followed by a reflection in a horizon-
tal plane resulting in the character —1 4 2 cos# where the 41 for the proper
rotation goes into —1 for an improper rotation, since z goes into —z upon
reflection. Table 8.2 shows characters for Iye. for several selected point group
operations. For C5, we need to consider cos72° = 0.30901 ... and the corre-
sponding character becomes Yyec(Cs) = 1.61803.. ..

To illustrate the procedure for finding molecular vibrations, we consider
in the next sections the molecular vibrations of several different molecules
to illustrate the methods discussed above and to provide more practice in
using the various point groups. However, before going to specific molecules,
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Table 8.2. Characters Xvec for the vector for selected point group operations

E Cy C3 Cs Cs i o Se Si S3
3 -1 0 1 2 -3 1 0 -1 =2

we present the general procedure used to find the eigenvectors for the normal
modes associated with a specific irreducible representation of a group.

8.3 Finding the Vibrational Normal Modes

In searching for the vectors which describe the normal mode displacements,
we identify the point group of the molecule, thus providing us with the sym-
metry operations and the character table. Therefore, to find the normal mode
eigenvector associated with an irreducible representation, we apply the pro-
jection operator algebra (see Chap.4) to a chosen elementary motion of the
atoms in the molecule (see (4.38))

R L, e
prn) — - ZX(F"’)(R) Pr. (8.10)
R

This operation, however, projects out a function transforming as I, but not
a specific partner of I,. While this is not a problem in dealing with 1D
irreducible representations, for the case of multidimensional irreducible rep-
resentations, physical insights are usually needed for finding physically mean-
ingful partners of I3, quickly. The projection operators can also be used to
check if the normal modes that are found are a combination of partners
or not, and to find the other partners orthogonal to the first partner (see
Chap. 4). Furthermore, a given set of partners is not unique, but the part-
ners can be transformed among each other to get another orthonormal set.
As an example, we can find the eigenfunction (normal mode) for a tetra-
hedral molecule (e.g., CHy, point group T;) belonging, for example, to the
totally symmetric A; irreducible representation. Since the four H atoms in
CH4 are equivalent (can be brought one into another by any of the sym-
metry operations of the group), the initial mode displacements of the atoms
(denoted by ) can be chosen so that only one of the H atoms and the C
atom are moving in an arbitrary direction, as shown in Fig.8.1a. The iden-
tity operator applied to 1o keeps it unchanged. The operation (E + C3)vy
gives the result shown in Fig.8.1b, where the chosen axis for Cy is dis-
played. By applying the complete set P(Al)z/Jo and summing up all the vec-
tors, we find the A; mode, as shown in Fig.8.1c, where the C atom does not
move.

Through this example, we show how physical insight helps to find the
eigenvectors. The mode in Fig.8.1c is the stretching of the C-H bonds (the
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(a)

Fig. 8.1. Schematic for obtaining the totally symmetric normal mode of a tetrahe-
dral (Tq point group) molecule. (a) The initial chosen arbitrary motion o of two
nonequivalent atoms; (b) the result of applying the operations E and C2 on to; and
(c) the normal mode displacements for the A; symmetry mode of CHy obtained
from the projection operator I:’(Al)z/)o after summing up all the vectors

so-called breathing mode) that keeps the tetrahedral symmetry unchanged,
as it should, since it belongs to the totally symmetric A; irreducible repre-
sentation. Therefore, this normal mode could be visualized without doing
any of the procedures shown in Fig.8.1a,b. In other cases, the final nor-
mal mode vector may not be so obvious, but still the use of physical in-
sights are useful. For example, for finding the normal modes belonging to
other irreducible representations of the tetrahedron, it is interesting to start
with atomic motions that are not the ones found for the A; eigenvector, so
that you increase the likelihood of finding displacements that may be or-
thogonal to the partners belonging to the normal modes that you already
have. More about the normal modes of the tetrahedron will be discussed in
Sect. 8.8.3.

Finding the normal vibrational modes is not a difficult procedure, but
it gets more and more complicated as the number of atoms in the molecule
increases. For dealing with a large molecule composed of N atoms, we can
calculate

Q" =PI g¢. (8.11)

Here ( is a vector of dimensions 3N with the coordinates of an arbitrary initial
motion of the atoms, and PU") is a 3N x 3N matrix having all the atomic
coordinates for the IV atoms in their equilibrium positions, and describing the
symmetry operations of the molecule. The Q'" is another 3/N-dimensional
vector giving the normal mode belonging to I;,, or a combination of normal
modes if I, is not a one-dimensional irreducible representation. In this way
the partners can be found by using a less arbitrary initial vector (.

In the next sections we start to illustrate the procedure for finding molec-
ular vibrations for specific and simple molecules. In doing so, we can better
illustrate the physical insights for finding the normal modes, rather than using
the formal procedure discussed above. We start by considering the molecular
vibrations of an isolated HoO molecule to illustrate finding the normal modes.
Then we introduce additional theoretical issues associated with the observa-
tion of combination modes as well as infrared active and Raman active modes
before returning to additional examples of molecular vibrations, for which we
also include a discussion of their infrared and Raman activity.
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8.4 Molecular Vibrations in H,O

We start by considering the vibrations of an isolated HoO molecule. This
molecule is chosen because it is a simple molecule, has two different chem-
ical species and involves a point group Cs,(2mm) (Table A.5) we have not
discussed previously. The four symmetry operations for the HoO molecule
(see Fig. 8.2) include E the identity operation, a 180° rotation C around the
z-axis, a reflection plane o, in the plane of molecule and a o), reflection per-
pendicular to the plane of the molecule. The o, plane is a vertical reflection
plane since the zz plane contains the highest symmetry axis Cs. The reflection
plane o, which goes through C5 is L to the plane of the molecule. In labeling
the axes, the plane of the H,O molecule is denoted by zz, with the z-axis
parallel to a line going through the two hydrogens, and the perpendicular
y-axis goes through the oxygen atom. The appropriate point group for the
H50O molecule is the group C5, and the character table is given in Table 8.3
and Table A.5.

Next we find I'*%. For HoO we have to consider the transformation of
three atoms under the symmetry operations of the group. In writing down
I'*5 we recall that for each site that is invariant under a symmetry operation,

()

B; mode of H-O

Fig. 8.2. Normal modes for the HoO molecule with three vibrational degrees of
freedom. (a) The breathing mode with symmetry A;, which changes only bond
lengths. (b) The symmetric stretch mode of HoO with A; symmetry, which changes
bond angles. (c) The antisymmetric stretch mode with By symmetry
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a contribution of +1 is made to the character of that operation; otherwise the
contribution is zero. Thus, we obtain for the characters for x*% (H20) for all
three atoms in the HoO molecule as given in Table 8.4.

From the character table for group Ca,(2mm) we see that the radial or
polar vector transforms as

Fvcc:A1+Bl+B27

where z,x,y, respectively, transform as A;, By and Bs. Likewise the irre-
ducible representations for the rotations I, are As + By + Bs, corresponding
to the rotations R, Ry, and R, respectively. We then calculate the irreducible
representations Iiol.vib. contained in the molecular vibrations:

Dmotvib. = I'*® @ I'vec — Itranslations — Lrot
= (2414 B1) ® (A1+B1+B2) — (A1+B1+Bs) — (A2+B1+Bs)
= [341 +3B1 4+ 2By + A3] — (A1 + By + B2) — (A2 + B1 + Bs)
Dol.vib. = 241 + By . (8.12)

The three modes in Ii,o1vib. are all one-dimensional irreducible represen-
tations and therefore have nondegenerate or distinct vibrational frequen-
cies.

We must now find the normal modes corresponding to each eigen-
frequency. It is easy to use physical insights in such a simple symmetry.
The two normal modes with A; symmetry must leave the symmetry undis-
turbed and this can be accomplished by the stretching of bonds and flexing
of bond angles. These modes are the breathing and symmetric stretch modes
(see Fig.8.2). All molecules have a “breathing” mode which leaves the sym-
metry unchanged. To get the eigenvectors for the breathing mode of the
H20 molecule, assume that one of the hydrogen atoms is displaced in some
way. With A; symmetry, this implies (under operation Cs) that the other H

Table 8.3. Character Table for Group Ca,(2mm)

Cay (2mm) E Cy o, o,
z2,y2%,2% | 2 A | 1 1 1 1
Ty R. Ax | 1 1 -1 -1
xz Ry,x | B1 1 -1 1 -1
Yz Ry,y | B2| 1 -1 -1 1

Table 8.4. Characters for the Atomic Site Transformation for HoO

E Cy o0, o)
Fa‘s‘(HQO) 3 1 3 1 = 2A, + B,
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atom must be correspondingly displaced (see Fig.8.2(a)). To prevent trans-
lations and rotations of the molecule, O must be displaced as shown in
Fig.8.2(a). (The actual vibration amplitude for each atom is constrained to
avoid translation and rotation of the molecule.)

The same arguments can be applied to obtain the A; symmetric stretch
mode shown in Fig.8.2(b). Application of the symmetry operations of group
Cy(2mm) (Table A.5) confirms that this mode has A; symmetry. The H atom
motion is taken so that the two A; modes are orthogonal. Since the breathing
mode and symmetric stretch mode have the same symmetry they can mix (or
couple to each other) and for this reason the directions of the H atom motion
for each of the modes in Fig.8.2(a), (b) are not uniquely specified.

To obtain the normal mode for By symmetry, we observe that the character
for the C5 operation is —1, so that the two hydrogen atoms must move in
opposite directions relative to the O atom. Likewise, the motion of the O atom
must be odd under Cs. These arguments determine the normal B; mode shown
in Fig.8.2(c).

As mentioned above, all molecules have a breathing mode which transforms
as A; and preserves the molecular symmetry. As a practical matter in checking
whether or not the calculated normal modes are proper normal modes, it is
useful to verify that the normal mode motion does not involve motion of the
center of mass or rotation about the center of mass, and that all normal modes
are orthogonal to each other.

8.5 Overtones and Combination Modes

In addition to the first-order molecular vibrations discussed above, harmon-
ics (or multiples of the fundamental mode frequency such as 2w, 3w, etc.)
and combination modes (which refer to the sum and differences of the mode
frequencies, such as wy £ wy) are observed. The observation of these modes
usually involves a perturbation to excite these modes, but this perturba-
tion will also perturb their frequencies somewhat. We consider in this sec-
tion the group theory of harmonics and combination modes in the limit of
small perturbations so that the perturbation to the mode frequencies is min-
imal.

Since the two phonon state is a product of the normal modes, the mode
frequency for the lowest overtone mode (or second harmonic) is at ~ 2w,
and the symmetry of the harmonic is given by the direct product I; ® I'; and
the irreducible representations combined therein. Similarly, the combination
modes are at frequencies ~ (wr, +-wr;) in the limit of a very weak perturbation
and have symmetries given by I; ® I';. In Sect. 8.8.3 where we consider the
overtones (harmonics) and combination modes of the methane molecule, we
can see which modes are activated in the infrared and Raman spectra for a real
molecule and we can see the frequency shifts produced by the perturbation
exciting these higher order molecular vibrations. Some of these modes for the
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Table 8.5. Observed vibrational frequencies for the methane molecule®

assignment symmetry mode frequency (cm™)
v1 (A1) A fundamental 2914.2
vo(E) E fundamental 1526
v3(T5) T fundamental 3020.3
va(T2) Ty fundamental 1306.2

A A1+ A+ F overtoneP 3067.0

2u3 A+ E)+Th+ 1> overtone” 6006

3v3 (A1 +Th) + 21> overtone® 9047

24 A+ E)+Th+ 1> overtone” 2600

V4 — U3 A+ E)+Th+T> combination 1720

Vo + Va4 T, + T combination 2823

*Herzberg, “Infrared and Raman Spectra of Polyatomic Molecules”, “Molecu-

lar Spectra and Molecular Structure II”, 1949, “Van Nostrand Reinhold”, “New
York” [40]

PFor overtones, only the symmetric combinations of basis functions are Raman al-
lowed

“For 3v3 the symmetric combinations correspond to the angular momentum states
L =1 which transforms as 7% and L = 3 which transforms as A + 11 + 15

methane molecule CH, are given in Table 8.5 and are further discussed in
Sect. 8.8.3.

8.6 Infrared Activity

If electromagnetic radiation is incident on a molecule in its ground state, then
the radiation will excite those vibrational modes which give rise to a dipole
moment. In the ground state, the molecule is in a zero phonon state and there-
fore has A; symmetry. We can use group theory to decide whether or not an
electromagnetic transition will occur, i.e., if a given excited mode can be con-
nected by the electromagnetic wave to the ground state A; (or more generally
to the initial state of a highly excited molecule). The perturbation Hamilto-
nian for the interaction of the molecule with the electromagnetic (infrared)
interaction is

7_(/infrarcd =—-F- u, (813)

where E is the incident oscillating electric field and w is the induced dipole
moment arising from atomic displacements. In this interaction, w transforms
like a vector. To find out whether the incident photon will excite a particular
vibrational mode, we must examine the selection rules for the process. This
means that we must see whether or not the matrix element for the excita-
tion (vs|u|y;) vanishes, where 1y denotes the normal mode which we are
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trying to excite and w is the vector giving the transformation properties of
H'infrared, While 1; denotes the initial state of the molecule, which for most
cases is the ground state. The ground state has no vibrations and is repre-
sented by the totally symmetric state A; of the unperturbed molecule, while
'H'infrareq transforms like a vector, since the applied field is external to the
molecule.

To determine whether or not a molecule is infrared active, we use the usual
methods for finding out whether or not a matrix element vanishes. That is,
we ask whether the direct product I'.. ® I'; contains the representation I'y; if
(I'vee®1;) does not contain Iy, or equivalently if I'y @ I've.®1; does not contain
Aj, then the matrix element = 0. Since molecular vibrations are typically
excited at infrared frequencies, we say that a molecule is infrared active if
any molecular vibrations can be excited by the absorption of electromagnetic
radiation. The particular modes that are excited are called infrared-active
modes. Correspondingly, the modes that cannot be optically excited are called
infrared inactive. Considering infrared excitation from the vibrational ground
state (no phonon), we write Iyec ® A1 = I'yec. The infrared active modes thus
transform as the irreducible representations for the basis vector z,y, and z
(usually given in the character tables), and the specific basis vector indicates
the polarization of the light needed to excite that specific mode.

As applied to the H,O molecule (see Sect.8.4) we have the following iden-
tification of terms in the electromagnetic matrix element. Suppose that the
initial state has A; symmetry for the unexcited molecule and that the vector u
transforms as

’LLHA1+B1+B2

corresponding to the transformation properties of z,x,y, respectively. The
case of the HoO molecule shows that the components of the vector may trans-
form according to different irreducible representations of the point group for
the molecule. Thus, we obtain for the direct product between the vector and
the initial state:

(Al + B1+ BQ) ® (Al) = A+ B+ B> (814)

showing the irreducible representations that are infrared active.

Therefore the two A; modes and the B; mode of water are all infrared-
active. Each of the three vibrations corresponds to an oscillating dipole mo-
ment. As far as polarization selection rules are concerned, we can excite either
of the two A; modes with an optical electric field in the z-direction, the twofold
axis of the molecule. To excite the By mode, the optical electric field must
be along the z-direction, the direction of a line connecting the two hydro-
gen atoms. An electric field in the y direction (perpendicular to the plane
of the molecule) does not excite any vibrational modes. Since all vibrational
modes of the water molecule can be excited by an arbitrarily directed E
field, all the vibrational modes of the water molecule are infrared-active. It
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is not always the case that all vibrational modes of a molecule are infrared-
active. It can also happen that for some molecules only a few of the modes
are infrared-active. This situation occurs in molecules having a great deal of
Symmetry.

To observe infrared activity in the second-order infrared spectra, we re-
quire that the combination of two vibrational modes be infrared-active. From
a group theoretical standpoint, the symmetry of the combination mode aris-
ing from constituent modes of symmetries I; and I’; is given by the direct
product I; ® I'j. Since groups containing inversion symmetry have only odd
parity infrared-active modes, such symmetry groups have no overtones in the
second-order infrared spectrum.

8.7 Raman Effect

In the Raman effect the inelastically scattered light from a system is detected.
The induced dipole moment is

u=a E;coswt, (8.15)

where @ is the Raman polarizability tensor, a second rank symmetric tensor.
Because the inelastic scattering of the incident light E; can excite molecular
vibrations, the polarizability tensor has frequency dependent contributions at
the molecular vibration frequencies w,,

a=ag +A o coswyt (8.16)
so that

u = (30 +A @ cos wut) - E; cos wt (8.17)

< [cos(w — wy)t + cos(w + wy)t] - Ej

= EO -E; coswt +

where the first term in (8.16 and 8.17) is the Rayleigh component at incident
frequency w, the second term is the Stokes component at frequency (w — wy),
and the third term is the anti-Stokes component at frequency (w + w,). In
observing the first-order Raman effect,’ the scattered light is examined for
the presence of Stokes components at frequencies (w — w,) and of anti-Stokes
components at frequencies (w+w, ). Not all normal modes of the molecule will
yield scattered light at (w £ w, ), although if the Stokes component is excited,
symmetry requires the anti-Stokes component to be present also, though its
intensity may be small.

!The first-order Raman process is the interaction of light with one vibrational
mode. The second-, third-, ...nth-order Raman effect is related to combination or
overtones involving two, three, ...nth vibrational modes.
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To find whether or not a vibrational mode is Raman active, we ask whether
or not the matrix element for the Raman perturbation vanishes. The Raman
perturbation is of the —u - E form and using (8.15), H'Raman 1S Written as

H Raman = —% E;Eq cos(w £ wy)t . (8.18)
The transformation properties of Hp,, ., are those of a second rank symmetric
tensor Aca;; (where ¢,j = z,y, 2). The vectors E; and Eg for the incident
and scattered light are external to the molecular system and it is only the
symmetry of the polarizability tensor Ac;; that pertains to the molecule. To
find out whether a particular normal mode is Raman-active we need only
consider the matrix element:

(¢f|H/Raman|wi) ) (819)

where ¢ is the final state corresponding to a normal mode we are trying
to excite, H'Raman is the Raman perturbation which has the transformation
properties of a symmetric second rank tensor, and v; is the initial state gen-
erally taken as the ground state which has the full symmetry of the group
of Schrédinger’s equation. A vibrational mode is Raman active if the direct
product (I3 @ I/ gannan s Where H Raman transforms as a second rank symmetric
tensor) contains the irreducible representation for the final state I't. This is
the basic selection rule for Raman activity. The group theory associated with
tensors is discussed in more detail in Chap. 18.

Since the Raman process is a second-order process, it involves an interme-
diate state. The process involves an electron—photon interaction to produce
an excited state where an electron—phonon scattering event occurs creating
(Stokes process) or absorbing (anti-Stokes process) a phonon, and finally the
scattered photon is emitted in an electron—photon interaction. In terms of
the spectroscopy of molecular systems with inversion symmetry, the Raman
effect is especially important because it is a complementary technique to in-
frared spectroscopy. Since the infrared excitation is a first-order process and
the dipole operator transforms as a vector, selection rules for a vector in-
teraction couple states with opposite parity. On the other hand, the Raman
process, being a symmetric second-order process, is characterized by an in-
teraction H'Raman Which transforms as a tensor that is even under inversion
and therefore couples an initial and final state of similar parity. Thus for
molecules with inversion symmetry infrared spectroscopy probes molecular
vibrations with odd parity, while Raman spectroscopy probes modes with
even parity.

If the molecule does not have inversion symmetry, some vibrational modes
are both Raman and infrared active, and others can be neither Raman nor
infrared-active. The latter symmetry modes are called silent modes.

The use of polarized light plays a major role in the assignment of ex-
perimentally observed Raman lines to specific Raman-active modes. In Ra-
man experiments with polarized light, it is customary to use the notation:
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ki(EE,)k, to denote the incident propagation direction k;, the incident and
scattered polarization directions (E;FEs) and the scattered propagation direc-
tion k. From (8.18) we see that the Raman tensor H'Raman depends on both
E; and Eg and on the change in the polarizability tensor A o , where E; and
E are, respectively, the incident and the scattered electric fields. It is custom-
ary to designate the scattered light as having diagonal Raman components
(E; || Es), or off-diagonal Raman components (E; LE).

To find the selection rules for the Raman effect, we observe that the po-
larizability A o in (8.15) is a second rank symmetric tensor (see Chap.18)
and has the same transformation properties as a general quadratic form (e.g.,
22,y% 2% 2y, yz, zz). The transformation properties of these basis functions
are usually found in the table of characters for the point groups, indicating
the irreducible representations to which the Raman-active vibrational modes
belong. The polarization selection rules for specific modes according to their
incident and scattered polarization is also obtained from the basis functions.
We note here that the symmetric off-diagonal components correspond to com-
binations (zy + yx)/2 and the corresponding terms for yz and zz. The anti-
symmetric terms for a second rank tensor correspond to (zy — yx)/2 and its
partners, which transform as the axial vectors (R, Ry, R.), and are so listed
in the character tables. In a second-order Raman spectrum, a combination
mode or overtone will be observable if I ® I'; contains irreducible representa-
tions that are themselves Raman-active, since the H'Raman matrix element in
this case will couple a no-phonon ground state to a combination mode excited
state (see (8.19)). Since 22 + y? + 2?2 transforms as the identity transformation
and the direct product I; ® I'; always contains the identity representation, all
second harmonics at 2w; are Raman-active modes. Thus, some silent modes
that cannot be found in the first-order spectrum can thus be observed in the
second-order spectrum.

In the following subsections we discuss molecular vibrations for specific
molecules, and in so doing, we will also include comments about the infrared
and the Raman activity of these molecules.

8.8 Vibrations for Specific Molecules

In this section we consider molecular vibrations for specific molecules, start-
ing with linear molecules in Sect.8.8.1 and then going to more complex
multiatomic molecules. We also discuss the infrared (Sect.8.6) and Raman
(Sect. 8.7) activity of the normal modes for each of the molecules that are
considered.

8.8.1 The Linear Molecules

The procedure for dealing with the molecular vibrations of linear molecules
such as CO or Hs is special and is slightly different from what has been de-
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scribed in Sect. 8.2. We now present a method for handling the linear molecules
and give some examples. For a linear molecule, the irreducible representations
for the rotations just involves the rotations R, and R,, assuming the molecular
axis to be along 2. Thus for the linear molecule, only two degrees of freedom
are removed by I}, since rotations along the axis of the molecule correspond
to the identity operation, considering the atoms as homogeneous balls with-
out any internal degrees of freedom. First we consider the heterogeneous CO
linear molecule (group Cu, in Table A.33) followed by the homogeneous Hy
linear molecule (group Do, in Table A.34). With these simple molecules, we
illustrate both molecular vibrations of linear molecules and the use of the
semi-infinite point groups Cso, and Deo, in this context.

The appropriate symmetry group for CO is Cu, (see Sect.7.4.2). The
symmetry operations 2C, denote rotations about the 2 axis in clockwise and
counter-clockwise senses by an arbitrary angle ¢. Thus Cj is a class with
an oo number of symmetry operations. The symmetry plane o, is a vertical
plane through the molecular axis at an angle ¢ with respect to an arbitrary
direction denoted by ¢ = 0. Since the 2Cy and o, classes are of infinite order,
the number of irreducible representations is also infinite.

The first step in finding I},o1vip. for a linear molecule is to compute
I'*s. For the CO molecule shown in Fig.8.3, the equivalence transfor-
mation yields I'™% (see Table 8.6), from which we find the irreducible
representations for the molecular vibrations of CO, remembering that
ot only contains rotations in the xy plane normal to the rotation axis
of the molecule, and therefore I}, transform as F; while I, transform
as A1 + E1:

Fmol.vib. = & Fvec - Ftrans - Frot )
Iwolvib. = (241) ® (A1 + E1) — (A1 + Ev) — E1 = Ay

A1 mode of CO

Fig. 8.3. CO molecule only has an A; breathing mode. The lighter mass of the C
atom results in a larger displacement to maintain the center of mass

Table 8.6. Characters for the Atomic Site Transformation for the CO molecule

E 20¢ Oy
r*s 2 2 2 =24
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The A; mode is the breathing mode for the CO molecule (see Fig.8.3).
Since the C and the O atoms are distinct, this molecule has a dipole mo-
ment along the z direction so that CO is infrared active. From the char-
acter table for Cy, we see that the components of the Raman tensor
(22 + y?) and 22 transform as A, so we conclude that CO is also Raman
active.

If we now consider the Oz molecule (see Fig.8.4), we have a homo-nuclear
molecule following the symmetry group Do (see Character Table A.34).
Here the displacements are now fully symmetric unlike the situation for the
CO molecule where the center of mass of the molecule must be conserved so
that the lighter atom has a larger vibrational amplitude. In the case of the O2
molecule the characters for I'** are listed in Table 8.7. Thus the irreducible
representations for the molecular vibrations of Os become:

Fmol.vib. =I"*® Fvec - Ftrans - Frot

Z—‘mol,vib. = (Alg + A2u) ® (A2u + Elu) - (AQu + Elu) - Elg (820)
— Alg )

where [0t = F4 for the rotations R, R,. Because of the inversion symmetry
of the Oz molecule, all the normal modes have either even (gerade) or odd
(ungerade) symmetries. Thus for Oz the breathing mode (see Fig.8.4) has
A4 symmetry and is infrared-inactive. From simple physical considerations
the breathing mode for Oz has no oscillating dipole moment nor can a dipole
moment be induced. Hence Oz does not couple to an electromagnetic field
through an electric dipole interaction, in agreement with our group theoreti-
cal result, so O is not infrared active. The A, mode of the Oz molecule is
however Raman active, as is also the CO molecular vibrational mode men-
tioned above.

Ay mode of Oy

Fig. 8.4. The Oz molecule only has an A;, breathing mode with symmetric dis-
placements of the atoms in the normal mode vibration

Table 8.7. Characters for the Atomic Site Transformation for the O molecule

E 20, Cb i 2iC, iCh
s 2 2 0 0 0 2 = Ay+Ay
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Table 8.8. Characters for the Atomic Site Transformation for the COs molecule

E 20, C, i 2iC4 iCh
r~s 3 3 1 1 1 3

(a) vy breathing

A

Ay, mode of CO,

(b) vy stretch

As, mode of CO,

(c) . vy bending -

F1., mode of CO»

Fig. 8.5. The three vibrational normal modes of CO3: (a) the breathing mode with
A1y symmetry, (b) the antisymmetric stretch mode with A, symmetry, and (c) the
doubly degenerate F1, mode where the mode displacements for the two partners
are orthogonal (i.e., || and L to the page)

The COs molecule is chosen for discussion to show the various types of
modes that can be expected for linear molecules involving three or more atoms.
Below we consider another molecule (C2Hsz) described by the same symmetry
group Do, but having slightly more complexity.

For the case of COz (see Fig.8.5), we again have a linear molecule with
Do, symmetry and now ['*® corresponds to a three-dimensional representa-
tion (see Table 8.8), so that I'*® = 24;, + Aa,.

Fmol.vib. = & Z—‘vcc - Ftrans - Z—‘rot
Fmol.vib. == (2A1g + A2u) ® (A2u + Elu) - (A2u + Elu) - Elg (821)
= Alg + A2u + Elu .

The normal modes for COs are easily found with the help of the character
table, and are shown in Fig.8.5. The A;; mode is the breathing mode, the
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(@) Vi breathing v2 breathing
! r” ™ '/ \ \\ g “\\ . N f./-ﬁ\‘. f/—_h\‘\ .//.\ /’-"\ )
i ‘.f /L ——— t '\ ) x \-IE-—/,‘—“ — = ﬁ. —— \—;‘,-—I .
APAN / St NI\ NS S

Aig modes of CoHs

(b) v3 stretch
Sl N R 2
l\};l-«z-'—ﬁ-; });
\_/ h_‘__’/ N
Az, mode of C2Ha»
L V4 bending vs bending

Ei, mode of C:Ha Eio mode of CoHy

Fig. 8.6. Schematic diagram of the normal modes of the linear C2Hz molecule: (a)
two breathing modes of A1y symmetry, (b) an antisymmetric stretch mode of Ag,
symmetry, and (c) and (d) two doubly-degenerate bending modes of F14 and E1,
symmetries

Ay, mode is the antisymmetric stretch mode and the E7, mode is a doubly
degenerate bending mode where the displacements of the carbon and the two
oxygens are normal to the molecular axis for each partner of the Eq, bending
mode. Of these modes only the A1, mode is Raman active. In this case, the A,
and Ey, modes are infrared-active while the symmetric A;, mode is infrared-
inactive as can be seen from the character table for Do, (Table A.34).

For the case of the linear CoHy molecule, H-C=C-H, also following group
Do, symmetry, we obtain

™5 =241, + 24y, (8.22)
using the result for Os. Thus ho1.vib. for the CoHy molecule becomes
Iolvib. = (2414 4+ 2A42,) ® (Agy + Evy) — (Agy + Evy) — Eny
Dmolvib. = 2419 + Aoy + Evy + By .

The five normal modes for the molecular vibrations of CoHy are shown in
Fig. 8.6, again illustrating the breathing, antisymmetric stretch and bending
modes corresponding to five different vibrational frequencies. These concepts
can of course be generalized to give normal modes for more complex linear
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molecules. For the CoHy molecule, the two A;4 modes correspond to basis
functions (22 and 2% +y?) while the F}, modes correspond to the (zz, zy) basis
functions. These two different symmetry modes can be distinguished using
optical polarization experiments whereby the A;, modes will be observable
when the incident and scattered light are polarized parallel to each other, but
the Eq, mode will be observed when the polarization of the incident beam
is along the molecular axis but the scattered beam is perpendicular to the
molecular axis.

In Problem 8.3 it is shown that I}.o1.vib. and the normal modes of the
CoHs linear molecule can be easily found by considering the CoHy molecule
as being composed of two C—H blocks or of the two hydrogen atoms and
the two carbon atoms as two other blocks, each with internal degrees of
freedom vibrating against each other. Such considerations help in provid-
ing intuition about obtaining the internal vibrational modes of complex
molecules.

We now illustrate how symmetry is used to assist in the solution of molec-
ular vibration problems for several 3D molecules of pedagogic interest.

8.8.2 Vibrations of the NH3 Molecule

The NH3 molecule is one of two molecules selected for illustrating normal
mode properties of three-dimensional molecular vibrations. To illustrate some
features of degenerate normal modes, let us consider the NHsz molecule (see
Fig.8.7). The hydrogen atoms in NHjs are at the corners of an equilateral
triangle and the nitrogen atom is either above or below the center of the
triangle. If the molecule were planar, it would have D3;, symmetry, but because
the N atom is not coplanar with the three hydrogen atoms, the appropriate
symmetry group is Cs, (see Table A.10). We note that I'*® for the three
hydrogen atoms at the corners of a triangle transforms as A; + E and we
further note that I'** for the nitrogen atom transforms as A; under all the
symmetry operations of the group. The results are written in Table 8.9 first
for all four atoms. We can also consider the three hydrogen atoms separately
and build up I'yelvib. from the N atom plus the three hydrogen LCAOs as
two building blocks (see Problem 8.1).

Fmol.vib. = & Fvcc - Z—‘trans - Frot
Fmol.vib. - (2141 + E) ® (Al + E) — (Al + E) — (AQ —+ E)
=24, +2E. (8.23)

Table 8.9. Characters for the Atomic Site Transformation for the NH3 molecule

E 203 3oy

as 401 2 =24,+E
g 3 0 1 = A+E
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e One mode of the NH3 molecule with A; symmetry is the breathing mode,
where the nitrogen atom is at rest and the equilateral triangle expands
and contracts (see Fig.8.7(a)).

e For the A; out-of-plane breathing mode, the H atoms move in the +z direc-
tion while the N atom moves in the —z direction, such that no translation
of the center of mass occurs (see Fig.8.7(b)).

e One of the F modes is a doubly-degenerate in-plane mode. One eigenvector
is made from the linear combination of hydrogen atom motions (H; +
wHy + w?H3) where the motion of each H atom bears a phase relation
of w = e2™/3 relative to the next H atom. The second eigenvector is

(a) (b)
A1 in-plane breathing A1 z-axis breathing

©
E: z-axis screw

Fig. 8.7. Normal modes for the NH3 molecule: (a) the in-plane breathing mode, (b)
the out-of-plane (z-axis) breathing mode for which + and — refer to above and below
the plane, respectively, and (c) the two partners of the in-plane mode of E symmetry
which are complex conjugates of each other. The phase factor w is exp(27/3). There
is also another doubly-degenerate E mode for z-axis (out-of-plane) motion that is
not shown
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H, + w?Hy + wH; which is orthogonal to the first. The nitrogen atom
moves in the zy plane in such a way as to prevent translation of the center
of mass and rotation of the molecule (see Fig.8.7(c)).

e For the second doubly degenerate E' mode, the hydrogen atoms move in the
out-of-plane direction with a phase difference between adjacent hydrogen
atoms. For one partner, the three hydrogen atoms have phase factors of 1,
w and w? while the second partner has motions with phases for its three
hydrogen atoms that are the complex conjugates of the phases of the first
partner w = e2™/3 for one partner and w? = e¢*™/3 for the other partner.
The nitrogen atom again moves in such a way as to prevent translations
or rotations of the molecule (not shown in Fig.8.7(c)).

The molecular vibrations for the NH3 molecule illustrate the concept of phase
relations between the motions of various atoms in executing a normal mode.
Though it should be emphasized that in the case of degenerate modes, the nor-
mal mode (basis function) picture is not unique, and therefore linear combina-
tions of modes of the same symmetry are also possible. Since the normal modes
for the NH3 molecules have Ay and E symmetries and since [yoc = A1 + E,
all the vibrational modes for NH3 are infrared-active, with one of the two
A; modes excited by polarization E || 2, the other being excited by polar-
ization E1Z. The same is true for the two F modes. The connection of the
normal modes of NH3 to the normal modes of three atoms at the vertices
of a triangle is considered in Problem 8.1. For the case of the NH3 molecule
which has C3, symmetry, the two Raman-active modes with A; symmetries
have normal mode displacements z2 + y? and 22 and the two modes with
E symmetries have normal mode displacements (2% — y2, zy) and (zz,yz),
so that all the normal modes for the NH3 molecule (2A4; + 2F) are Raman-
active. Polarization selection rules imply that the A; modes are diagonal (i.e.,
scattering occurs when the incident and scattered polarizations are parallel
E; || Ey), while the E modes are off-diagonal (i.e., scattering occurs when
E; | Ey).

8.8.3 Vibrations of the CH,4 Molecule

The CH,4 molecule is chosen to illustrate the vibrational modes of a five atom
molecule with high symmetry and to give more practice with the Ty point
group symmetry (Table A.32) because of the importance of this point group
symmetry to semiconductor physics.

The equivalence transformation for the four hydrogen atoms of the CHy
molecule yields I = Ay + T (see Sect.7.5.2) while for the carbon atom
I'&* = Ay since the carbon atom is at the center of the regular tetrahedron.
Thus for the whole CH4 molecule with Ty symmetry we have I'*5 = 24 + T5.
In Ty symmetry, the radial vector transforms as 75 while the angular momen-
tum (or axial vector for rotations) transforms as T;. We thus get the following
result for I'yolvib. for the CHy molecule.
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For the symmetry types in the molecular vibrations Iyl vib. (see Fig. 8.8):

a.s.
Fmol.vib. =T & Fvcc - Ftrans - Frot

Imolvib. = [CAL+To) @ (To)]— T - T

translations
=2+ (M1 +Te+E+A)—To— T
=A+E+2T5.

For many molecules of interest, the normal modes are given in [40]. We give in
Fig. 8.8 the normal modes adapted from this reference. For the CH4 molecule
only the modes with T5 symmetry are infrared active. The modes with Ay, E,
and T, symmetries are Raman active, where (2y, yz, zx) transforms as 7o and

Fig. 8.8. Normal vibrations of a tetrahedral CH4 molecule [40]. The three twofold
axes (dot-dash lines) are chosen as the z-, y-, and z-axes. The exact directions of
the H atom displacements depend on the nature of the C—H bond strength and the
masses of H and C. Although CH4 and CCls have, of course, the same symmetry
modes, the H and Cl atom displacement directions will differ. This issue was also
discussed in Sect. 8.4 for the modes of H2O (see Fig. 8.2)
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the basis functions z? — 42, and 322 — r? transform as E, while 72 transforms
as A; (see Table A.32).

We now give an example of harmonics and combination modes that
can be observed in the second-order Raman and infrared spectra in terms
of the CH4 molecule. In Table 8.5 the frequencies of the four fundamen-
tal modes in the Raman spectra are given along with some of the over-
tones and combination modes. The symmetries of the overtones (harmon-
ics) and combination modes are found by taking the direct product I; ® I
between these modes. We see that the mode frequencies can deviate sig-
nificantly from w; + w; and the reason for this is that the perturbation
which excites the harmonics and combination modes also perturbs the har-
monic oscillator potential for the molecule with some combination mode fre-
quencies being increased and others being decreased. We note that the Tb
modes are observed in the first-order infrared spectrum for CH4. Some of
the direct products of importance in interpreting the second-order spectra
are

EFQE=A +As+F
and

ToTy=A1+E+T1+ 1.

8.9 Rotational Energy Levels

In practice all molecules have rotational levels (labeled by quantum num-
ber 7). In the approximation that we can discuss the rotational motion as dis-
tinct from the vibrational motion, the rotational motion of molecules should
be much lower in frequency than the vibrational motion, and of course very
much lower in frequency than the electronic motion. Typical rotational ener-
gies are of the order of ~ 1meV and occur at far-infrared frequencies. The
vibrational modes are observed in the mid-IR range, typically in the range
20-200meV.

In Sect.8.9.1 we discuss rotational energy levels of a molecule in terms
of the rigid rotator as a simple example. Then in Sect.8.9.2 we state
the Wigner—Eckart theorem which gives in succinct form the selection
rules for IR and Raman activity for rotational energy levels. Finally in
Sect. 8.9.3 we introduce the coupling between the vibrational and rotational
levels, giving some examples of rotational energy levels for a few simple
molecules.

8.9.1 The Rigid Rotator

To illustrate molecular vibrations, we consider the simple case of the rigid
rotator neglecting the effect of the molecular vibrations. The Hamiltonian for
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Rotational quantum numbers
4 ] 100 e ARl riits
7

1 i
104° 103° 102*¢ 101® 100* 99°
I I | Grating setting
5 6
4 5

(b) Ji=1

Fig. 8.9. (a) Rotational levels of a diatomic molecule. (b) Energy separation
between sequential rotational levels. (c) The rotational absorption spectrum for
gaseous HCI

rotational motion is written as

oAy I
HrOt_E+E+2Iz7

(8.24)

where I, 1,1, are the principal moments of inertia and Jg,J,,J. are the
angular momentum operators. The coordinates x,y, z are chosen so that the
z axis is along the main symmetry axis of the molecule. If we have a diatomic
molecule, one principal moment of inertia vanishes I, = 0, while the other
two become equal I, = I,,. In this case the Hamiltonian is simply

J2

7_(rot = ﬁa

(8.25)

and has eigenvalues
E; =Rh%*j(j+1)/21.

Unlike the vibrational energy levels which are all equally spaced with a level
separation hw,,, the rotational energy levels are unequally spaced:

Bji— B =Cli+1)(+2) —jG+ 1] =20G+1)  (8.26)

with C = h%/2I and the level spacing depends on the quantum number j
(see Fig.8.9(a)). If the molecule contains a permanent electric dipole mo-
ment, then it is possible to excite the molecule into higher rotational en-
ergy states by electric dipole transitions. The selection rules for transitions
between rotational energy levels follow from the Wigner—Eckart theorem
(Sect. 8.9.2).

According to this theorem, for light polarized along the principal axis of
rotation of the HCI molecule, the selection rule for electric dipole transitions
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is Aj = 0 while for light polarized in the plane L to this axis, the selection
rule is Aj = £1. If there is no vibrational-rotational interaction, Aj = 0 does
not give rise to optical absorption.

Thus, the first rotational transition will require a photon energy 2C, the
second 4C, the third 6C, etc. This pattern is indicated in Fig. 8.9(a) for the HC1
molecule and in Fig. 8.9(b) we see that (E; + 1 — E;) increases proportional
to (j1) with a constant coefficient of 2C. The actual spectrum for HCI is
shown in Fig 8.9(c). It is clear that diatomic molecules like Hy have a center
of inversion and hence no permanent dipole moment. Thus, molecules of this
type do not exhibit any pure rotational infrared spectra. On the other hand,
heterogeneous diatomic molecules like CO and HCI can exhibit rotational
infrared spectra.

8.9.2 Wigner—Eckart Theorem

The Wigner—Eckart theorem, based on the full rotation group, gives the se-
lection rules for transitions between rotational levels observed for molecules
in IR and Raman spectroscopy and their polarization effects.

For proof of the Wigner—Eckart theorem, see Tinkham, p.131-132 [70].
This theorem deals with the matrix elements of a tensor T}’ where w is
the rank of the tensor and p is a component index, to be discussed fur-
ther below. The theorem is discussed for angular momentum states which
correspond (through the group of Schrodinger’s equation) to the full rotation
group.

The full rotation group has only odd-dimensional representations:

One-dimensional ¢ = 0 s-states
Three-dimensional ¢ = 1 p-states

Five-dimensional ¢ = 2 d-states.

Thus, a scalar (¢ = 0) corresponds to a tensor with w = 0 and p = 0. A vector
corresponds to a tensor with w = 1, £ = 1, and u = £1,0, which denote the
three my values for £ = 1. A general second rank tensor can be considered as
the direct product

r'=ter=t=r=C4r=t4+r-=° (8.27)

having dimensions 3 x 3 = 1 4+ 3 + 5 = 9. Thus the second rank tensor
will have a part which transforms as w = 0 and p = 0, another part which
transforms as w = 1, p = £1,0 and a third part which transforms as w = 2,
w = £2,1,0, thereby accounting for all nine components of the second rank
tensor. The parts that transform as w = 0 and w = 2 constitute the symmetric
components and correspond to the Raman tensor. The parts that transform
as w = 1 constitute the antisymmetric components of a second rank tensor
and correspond to the angular momentum components.
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Because of the form of the Wigner—Eckart Theorem given by
(N'j'm/ [T | Nj) = Al St et (NI T]ING) (8.28)

the selection rules for a tensor operator T}, between states having full rota-
tional symmetry can be obtained quickly. Here j' lies in the range

J-wl<i < +w), (8.29)

which is related to the properties of the addition of angular momentum vec-
tors. In (8.28), N and N’ are principal quantum numbers, j and j' are quan-
tum numbers for the total angular momentum, while m and m’ are quantum
numbers for the z component of the angular momentum. The coefficients A7/’
are called Wigner coefficients [2] and are tabulated in group theory texts (see
for example, Tinkham) [70]. The reduced matrix element (Nj'||T“||Nj) in
(8.28) is independent of p,m, and m’ and can therefore be found for the
simplest case p = m’ = m = 0. This generality makes the Wigner—Eckart
theorem so powerful. The selection rules on both j and m are obtained by
rewriting the restrictions implied by (8.28) and (8.29), yielding

Ajl=1j—j<w
[Am|=|m'—m|=p<w. (8.30)

We now write down some special cases of (8.30).
For electric dipole transitions, we have w = 1 and the selection rules

Aj=0,+1
Am =0 for E| z
Am=+1 for E 132, (8.31)

where E || Z refers to linear polarization along the quantization axis and
E 1 Z refers to circular polarization about the quantization axis.

For Raman transitions (where Hp, .., transforms as a second rank sym-
metric tensor), we have either w = 0 or w = 2 and the corresponding selection
rules

w=0: Aj=0, Am=0,
w=2: Aj=0,%£1,+2, Am=0,+1,+2. (8.32)

In specific geometries, not all of these transitions are possible.

In applying the Wigner—Eckart theorem to the rotational selection rules for
a linear diatomic molecule, we know that the dipole moment must be along the
molecular z-axis, so that only p = 0 applies. In this case the Wigner—FEckart
Theorem gives the selection rules

Aj=0,£1; Am =0 for L.R. activity
Aj=0,£2; Am =0 for Raman activity . (8.33)
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8.9.3 Vibrational-Rotational Interaction

Since the nuclei of a molecule are actually in vibrational motion, there is
consequently an interaction between the vibrational and rotational motions.
These interactions become important when the energy of a rotational energy
level becomes comparable to a vibrational energy level. Let us illustrate this
coupling in terms of a diatomic molecule, where we write for the Hamilto-
nian
2 2

H = g_u + ﬁ +as€? + as€?, (8.34)
in which the first term is the kinetic energy (and p is the reduced mass of the
molecule). The second term denotes the rotational energy of the molecule,
while a£2 is the harmonic restoring force for the vibrational energy, and
a3€? is an anharmonic restoring term arising in the vibrational problem. The
distance between the nuclei is now modified by the vibrational displacements
from equilibrium

R — Req

=¢ where R = Req(1+¢). (8.35)
Req

We therefore write

1t 1. 24 ...
R? T RR(1+6? R 1243+ (5:36)

so that we can express the Hamiltonian in terms of an unperturbed term Hj
and a perturbation term H’:

H=Ho+H, (8.37)
where
p?
Ho = o + BegJ? + a2€? (8.38)
and 1
Beg = —5- (8.39)
2uRZ,

The first term in (8.38) denotes the kinetic energy and the second term defines
the rotational energy when the molecule is in its equilibrium configuration,
while the third term denotes the vibrational potential energy for the harmonic
restoring forces. Thus Hy gives the energies for the vibrational and rotational
motion in the limit where the vibrational and rotational motions are decou-
pled. For the Hy limit the selection rules are the same as if the vibrations
and rotations occurred independently. The perturbation Hamiltonian then
becomes

H' = a3€® — 2Beq€J* + 3Be€2J7, (8.40)
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where the first term is an anharmonic term that gives rise to overtones and
combination modes in the vibrational spectrum. The second and third terms
in (8.40) are associated with coupling between rotational and vibrational levels
and give corrections to the rotational levels. The term in £.J? makes a con-
tribution in second-order perturbation theory, while the term in £2J2 makes
a contribution in first-order perturbation theory which is proportional to

(n—|— %) hwyj(j +1).

Thus, the application of perturbation theory results in energy levels for the
vibrational-rotational problem:

1 1
Enj = hw,y <n+—> + Aj(j +1) + Az hw, <n+—> JE+1)+--- (841)
2) L 2 2

pure rotational
pure vibrational interaction terms

in which A; and A, are constants. For the diatomic molecule A; = (h/2]) in
accordance with (8.25). From a group theoretical point of view, the interac-
tion terms modify the selection rules and new features in the IR and Raman
spectra can be seen. In general, the symmetry of an interacting vibrational
and rotational level is given by the direct product Iy, ® [yot-

In making rotational transitions on absorption between different vibra-
tional levels, we not only can have Aj = 1 (the R-branch) but we also can
have Aj = —1 (the P-branch). This is illustrated in the vibrational-rotational
spectrum shown in Fig.8.10 for the HCl molecule. We note here that the
spectral lines in the R-branch (upshifted in frequency) are not symmetrically
spaced with respect to the down-shifted P-branch. The Q-branch (Aj = 0)
occurs very close to the central frequency 1, and would in fact be coincident
with v if the moment of inertia would be independent of the vibrational state.
Study of the @Q-branch requires high resolution laser spectroscopy.

If there were no vibrational-rotational interaction, the spacing of all spec-
tral lines (shown in the top portion of Fig.8.10) would be the same for all
vibrational levels n. For the case of diatomic molecules and for the polariza-
tion where FE is along the molecular axis, then the selection rules An = +1
and Aj = 0 determine the vibrational-rotational spectrum, while for E per-
pendicular to the main symmetry axis of the molecule, the selection rules are
An =0 and Aj = +1.

Rotational Raman Spectra are also observed. Here the transitions with
Aj = 2 are excited for the pure rotational transitions, An = 0 (see Figs.8.9
and 8.10). This series is called the S-branch. When vibrational-rotational Ra-
man spectra are excited, transitions with Aj = 0 and Aj = —2 are also pos-
sible and these are called the O-branches. Because of the anharmonic terms
in the Hamiltonian, there are vibrational-rotational spectra which occur be-
tween vibrational states separated by An = 2,3, ..., etc. These anharmonic
transitions would be expected to have lower intensity.
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Fig. 8.10. P (Aj = —-1), R (Aj = +1) and Q (Aj = 0) branches of the

rotational structure of the HCI vibrational-rotational band near 2,885 cm ™' shown
schematically

The above discussion focused on the vibrational degrees of freedom. There
are in addition the electronic levels which generally are separated by much
greater energies than are the vibrational and rotational levels. There is how-
ever some interaction also between the vibrational and rotational states and
the electronic levels. Interactions between the electronic and rotational levels
give rise to “A-doubling” of the rotational levels, and coupling between the
electronic and vibrational levels gives rise to vibronic levels.

Selected Problems

8.1. This problem relates to the interrelation of fundamental group the-
ory concepts from small molecular clusters to the molecular vibrations of
actual molecules of interest. We illustrate this approach using the normal
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modes for three equal masses at the corners of an equilibrium triangular (see
Sect. 8.1).

(a) Find the normal modes for a triangular cluster containing three hydrogen
atoms at the corners of an equilateral triangle. Indicate which modes are
IR active and which are Raman active.

(b) Find the normal modes for a hypothetical planar NHs molecule where
the N atom is at the centroid of the triangle and coplanar with the three
hydrogens. Which point group describes this molecule? Which modes are
infrared active and which are Raman active?

(c) Relate the results in (a) and (b) to the normal modes, and to the IR and
Raman activity for the NHs molecule with C5, group symmetry.

(d) Relate the normal modes of the water molecule (Sect.8.4) to the normal
modes of the triangular cluster in (a). Account for the similarities and
differences between the two cases.

8.2. Both CO; and N3O are linear molecules, but have different equilibrium
arrangements giving rise to different symmetry groups (see Fig. 8.11).

(a) What are the appropriate point groups for CO2 and NoO?

(b) What symmetries are involved for the bonding and antibonding electronic
orbitals for these molecules?

(c) What are the differences in the symmetries of the normal modes for these
two molecules?

(d) Show schematically the atomic displacements for the normal modes of
each molecule.

(e) What are the expected differences in their IR spectra? Raman spectra?

(f) What are the expected differences in the rotational spectra of these two
molecules?

(g) Which of these rotational modes can be excited by infrared or Raman
spectroscopy?

8.3. Consider the linear CoHs molecule (H-C=C-H) as being composed of
either two C—H blocks or of another configuration with the two hydrogen
atoms vibrating against the two carbon atoms as another block, each with
internal degrees of freedom. Such block grouping approaches help in providing
intuition about the internal vibrations of complex molecules.

Fig. 8.11. Configurations for the linear molecules CO2 and N2O
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(a) Show that the same results for Iol.vib. are obtained for CoHy by taking
the direct product of the I,01.vib. for the constituent C—H blocks consid-
ered above.

(b) By applying appropriate symmetry operations on the basis functions, show
that the bending and stretching modes as given in Fig. 8.6 belong to the
E14 and Ey,, irreducible representations.

8.4. CoHy (ethylene) is a planar molecule which has the configuration shown
on Fig. 8.12.

(a) Using the point group and I'** found in Problem 7.4, find the symmetries
of the allowed molecular vibrations for the CoHy molecule.

(b) Sketch the normal mode displacements for each of the allowed molecular
vibrations in (a).

(¢) Which modes are infrared-active? Which are Raman-active? What are the
polarization selection rules?

8.5. This problem is designed to show that group theory becomes increasingly
important for treating molecular vibrations for high symmetry molecules

(a) Find the molecular vibrations for the hypothetical molecule XH;o where
the 12 hydrogen atoms are at the vertices of a regular icosahedron and
the atom X is at the center of the icosahedron. Find I'*® for XHq, for
the icosahedral group Ij,.

(b) What are the symmetries for the normal modes? Which are infrared-
active? Raman active?

(c) What are the polarization selection rules for observing the infrared modes?
for the Raman modes?

8.6. Consider the methane molecule CHy.

(a) What is the group symmetry and to which irreducible representations do
the R,, Ry, and R, basis functions belong (see Sect. 7.5.2 and Sect. 8.8.3)?

(b) Describe the symmetries and eigenvectors for the rotational levels.

(c) What are the symmetries for the vibrational-rotational interactions?

(d) Describe the infrared and Raman spectra of methane including rotational,
vibrational modes, and the interaction between them. Consider also the
combination modes (see Table A.32).

(e) What are the expected polarization effects in these spectra?

H H
Fig. 8.12. Configurations of the CoH4 ethylene molecule
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Space Groups in Real Space

According to the one-electron Hamiltonian for the electronic energy band
structure for solids, we write Schrodinger’s equation as

n_,
H(r) = |5V 4 V)| wir) = Butr), 0.1

where V(r) is a periodic potential. The symmetry group of the one-electron
Hamiltonian and of the periodic potential in (9.1) is the space group of
the crystal lattice, which consists of both translational symmetry opera-
tions and point group symmetry operations. Both the translational and
point group symmetry operations leave the Hamiltonian invariant, and con-
sequently all these symmetry operators will commute with the Hamiltonian,
and provide quantum numbers for labeling the energy eigenvalues and eigen-
functions.

In this chapter we introduce the basic background for space group opera-
tions (Sect.9.1) and show how these operations form space groups (Sect.9.2).
In addition to the point group and translation operations, we consider the
compound symmetry operations of glide planes and screw axes (Sect.9.1.2)
and the nonsymmorphic space groups associated with these compound sym-
metry operations (Sect.9.2.3). An introduction to a few kinds of 3D space
groups is given in Sect.9.2. However, for pedagogic purposes we discuss all
17 two-dimensional (2D) space groups in some detail in Sect.9.3 to famil-
iarize the reader with the notation and the symmetry operations occurring
in both symmorphic and nonsymmorphic 2D-space groups. A brief introduc-
tion to line groups, describing the properties of systems exhibiting trans-
lational properties in one dimension, is given in Sect. 9.4. Finally we dis-
cuss the determination of the crystal structure and space groups in Sect. 9.5,
and the use of standard reference texts, [58,76] such as the Crystal Struc-
tures, by R.W.G. Wyckoff, and the International Tables for X-Ray Crystal-
lography.
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9.1 Mathematical Background for Space Groups

9.1.1 Space Groups Symmetry Operations

Definition 18. The point group and translation symmetry operations which
carry the crystal into itself form a group called the space group.

A common notation for space group operators is
{Ra|T} (9.2)

where R, denotes point group operations such as rotations, reflections,
improper rotations and inversions, while 7 denotes translation operations.
Pure rotations and pure translations are special cases of space group opera-
tions:

{€|0} = identity
{a|0} = pure rotations or more generally point group operations

{e|7} = pure translations by vector 7.

We can relate the operator {«|7} for the space group to a coordinate trans-
formation

{a|r}r=r"=a r+7, (9.3)

>
where a denotes the transformation matrix for rotations and 7T denotes
a translational transformation.

Definition 19. The result for the multiplication of two space group opera-
tors is

{87 Halr} = {Balfr + 7'}, (9-4)

where {a|T} is the first space group operator and {B|7'} is the second.

Proof. Multiplication of two space group operators proceeds from this identi-
fication:

{8l Halry = 5 {E T T} +7
:E'Z'T—FE-T—FT’
={Balpr+ 7'} .

Using the results of this definition of the multiplication of two space group
operations we can write

{alr} {8} =a - B -r+ @ 7'+ (9.5)
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so that commutation of these two space group operators requires that
a-f=-a and Br+7 =07 +7T (9.6)

which is not generally valid. Thus we conclude that although simple transla-
tions commute with each other, general space group operations do not com-
mute. O

Definition 20. The inverse of {«|r} is given by
{ajr}y P ={a" - a"'7}. (9.7)

Proof. Using the proposed definition of {a|7} ™! we carry out the following
multiplication of two space group symmetry elements to obtain

{altHalr} ™" = {aa" a(~a7 1) + 7} = {£|0} (9.8)
which verifies the definition for {a|r} 1. O

Having specified the identity operation {£|0}, the rules for multiplication, and
the rules for specifying the inverse operation, and noting that the associative
law applies, we see that the elements {a|7} form a space group.

Definition 21. The matriz representation for the space group operator is

@=(,4). 99)

>
e
where 1 is a number, 0 denotes a row of three zeros, T is a column vector,
> . . . . .
and @ is a (3 x 3) rotation matriz. Introducing the basis

1
r 3
where 1 is a number and T is a column vector consisting for example of

T

0 I
z

the action of the space group operation on the coordinate system then is writ-

N T A E O B

Theorem. The matriz
10
Ta

forms a representation for the space group operator {«|r}.
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Proof. To prove that the matrix of (9.9) is a representation for the space group
operator {«|7}, we write down the multiplication and inverse transformations.
Multiplication of two matrices yields

<10> . < 1 : )
& ( H)z . (9.11)
T 3 T« '+ BT B«

which yields another symmetry operation of the space group
{Blr"Healr} = {Balfr + 7'} . (9.12)

Using (9.11) we can write the product of the matrix representation of {a|7}
with that of its inverse operator {a|7} ! to obtain

(Lot s (D=0 o

thereby showing that

{alr}"Halr} = {0} (9.14)

9.1.2 Compound Space Group Operations

In space groups we may find instead of simple translation operations, com-
pound symmetry operations that combine translations and point group oper-
ations. The two types of compound symmetry operations are the glide planes
and the screw axes.

Mirror
plane
3 3
a
£ £
[ . .
right-hand left-hand
screw screw
(a) Glide plane (b) Screw axis

Fig. 9.1. (a) The glide plane operation that takes A into A’. (b) Right- and left-
hand screw axes (belong to closely related but different space groups)
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A glide plane consists of a translation parallel to a given plane followed
by a reflection in that plane (see Fig.9.1(a)). There are in fact three different
types of glide planes that are identified: the azial glide along a symmetry
axis (a, b, or ¢), the diagonal glide or n-glide in two or three directions (e.g.,
(a+b)/2 or (a+ b+ ¢)/2) and finally the diamond glide corresponding to
(a+b)/4or (a+b+c)/d).

A screw axis is a translation along an axis about which a rotation is si-
multaneously occurring. In Fig. 9.1(b) we show a threefold screw axis, where
a is the lattice constant. The tellurium and selenium structures have threefold
screw axes similar to those shown in Fig. 9.1b. A summary of the various pos-
sible screw axes and the crystallographic notation for each is given in Fig. 9.2.
The screw axes shown in Fig. 9.2 are from top to bottom: the first row shows
twofold screw axes, followed by a row of threefold and fourfold screw axes and
the last two rows show sixfold screw axes. An n-fold screw axis has a trans-

+O %+O §

Fig. 9.2. A summary of all possible screw axes, including twofold, threefold, fourfold
and sixfold screw axes (see text)
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lation of pro/n where 7o is a unit cell translation of the translation group,
p is an integer p = 1,...,n, and the rotation that goes with the translation
is 2p/n. Thus for the threefold row, the first entry is a 27w or zero rotation
every time there is a translation of 7y/3, while the second entry has a rotation
of 2m/3, for each 7/3 translation and the last entry has a rotation of 47/3 or
(—27/3), for each 79/3 translation.

9.1.3 Translation Subgroup

Theorem. All the elements of the space group G that are of the form {e|r}
constitute the translation group T. Here T is a subgroup of G and defines the
Bravais lattice.

Proof. Symmetry elements of the group 71" are defined by the translation vec-
tors R,, which leave the Bravais lattice invariant R,, = Yn;a;, and a; is the
primitive vector of the Bravais lattice. The translation group is a self-conjugate
or invariant or normal subgroup of G since

{RalmHeltH{RalT} ™" = {RalTHeltHRS | — Ry '}
= {Ra|lTHR'| = Ry + 1}
= {e| = RaR,'T 4+ Rot + 7}
= {e|Rqat}. (9.15)

But R,t is just another translation vector in group 7" and therefore the oper-
ation {e|R4t} is a symmetry operation of group T', and we have shown that
{e|r} forms the translation subgroup of G. O

Although the translation group 7' is an invariant subgroup of G, we cannot
generally say that the space group G is a direct product of a translation group
with a point group, as discussed in Sect.9.1.4. It should be noted that since
the individual elements {e|7'} and { R, |7} do not commute, as we show below:

{el”HRa|T} = {Ral™ + 7}
{Ro|THel™'} = {Ro|Ra7 + 7} . (9.16)

However, since the translation group is an invariant subgroup of G, it is of
interest to study the cosets of the factor group which it defines. A right coset
of the translation group considered as a subgroup of G is then

Co = [{el” HRal7}] = {Ral7"}], (9-17)

where the bracket in (9.17) denotes all the terms in the coset that can be
formed using all possible values of 7/. Although each element {R,|7} does
not commute with {e|7'} as seen in (9.16), all {R,|7"} are contained in the
right coset. Using the same argument as used above for the right coset, we
can show that C, is also a left coset of the translation group from which we
conclude that T is a self-conjugate (or normal) subgroup of G.
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Theorem. The cosets Cy, form a factor group of the space group G.

Proof. Consider the multiplication rule for the cosets:
CaCp = {Ralm H{Rs|r2}] = {RaRp|Rata + 11} = [{Ry|73}] = Cy, (9.18)

where RoRg = R, defines the group property in the point group and 73 =
R,To+471 is a translation of the lattice. Since 71 and 75 range over all possible
translation vectors, the vector 73 also spans all possible translations, and C,
satisfies the multiplication rule. O

The factor group G/T will be very important in applications of group theory
to space groups, since it factors out the pure translational properties of the
space groups, being isomorphic with the point group which makes up the
rotational parts of the operators of the space groups. For a summary of cosets
and factor group properties, see Sect. 1.5—-1.7.

9.1.4 Symmorphic and Nonsymmorphic Space Groups

The space group G consists of all operations { R, |7} which leave a given lattice
invariant. We can write the space group operations in the form

{Ra|7} = {Ra|Rn + Ta} = {5|Rn}{Ra|Ta}a (9-19)

where R, is a general vector of the Bravais lattice and the vector 7, (associated
with each of the point group operators Ry, ) is either zero or a translation that
is not a primitive translation of the Bravais lattice. The {R4|7} for which
R,, = 0 are either simple point group operations, when 7, = 0, or one of the
compound operations (glide plane or screw axis discussed in Sect 9.1.2) when

Ta 7# 0.

Definition 22. If, with a suitable choice of origin in the direct lattice, we find
that all the elements of G are in the form { Ry |7} = {Ra|Rn} = {|Rn}{Ra|0}
(1o, = 0 for all symmetry operations), then the space group G is called a simple
or symmorphic group. If, with any suitable choice of origin in the direct lattice,
Ta # 0 for at least one {Ry |7} operation, then G is called a nonsymmorphic

group.

Symmorphic space groups, therefore, contain an entire point group as a sub-
group. The point group ¢ is obtained from the space group G by placing
T = R, = 0 for all {R,|7} elements in G. The space group is said to be
a semi-direct product of the translation and point groups, where semi is used
since a direct product would give {R,|R,} @ {e|Rn} = {Ra|Rn + Rn }. We
will see in the next chapters that, once the wavevector k of the wavefunctions
under study is chosen, we can work the space group problem by considering
the rotational aspects, which reduce the work to a point group gx problem.
We then have h symmetry elements rather than A'h, where N ~ 1023,
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For nonsymmorphic groups, 7, is not zero for at least one R,. By multi-
plying two space group elements of the type {Rq |70} (R, = 0) we get

{RalTaH{RplTs} = {Ry|T+ + Ry} (9.20)

and R, may or may not be zero. Therefore, the entire set of space group
elements {R,|T,} may fail to form a group if the lattice vector R, # 0.
Furthermore, the entire point group g of the crystal, obtained by setting all
translations (including the nonprimitive ones) in G equal to zero is a sub-
group of its Bravais lattice point group (called the holohedral group, which
is defined as the group of the Bravais lattice), but it is not a subgroup of
G. In this case, to work with the rotational aspects of the nonsymmorphic
space group, a procedure to remove the translational effect is needed. Two
alternative procedures are available: (1) One approach is to form the factor
group G/T of G with respect to the translation group T (Sect.9.1.3). The
G/T factor group will be isomorphic with the point group which makes up
the rotational parts of the operators in the space group. (2) The G/T fac-
tor group representation can be obtained by means of the multiplier algebra,
where all members of a given coset are represented by a single element, and we
work with the multiplier groups or multiplier representation. These concepts
will be discussed briefly in Sect. 10.4.

To fully describe a space group G, it is sufficient to list the elements
{Ra|Ta} representing the cosets of G/T and the a; primitive vectors of the
Bravais lattice. It is clear that the applications of group theory to symmor-
phic space groups are simpler when compared to applications to nonsym-
morphic space groups. The operations R, apply to the translation vectors in
accordance with the definition of the space group operations, and the sym-
metry operations of the factor group G/T for symmorphic space groups are
isomorphic with the point group g. Thus irreducible representations of the
factor group G/T are also irreducible representations of g and are likewise
irreducible representations of G. It can be shown that all irreducible rep-
resentations of G can be compounded from irreducible representations of
g and T, even though G is not a direct product group of g and T [47].
The development of representations for the space groups will be discussed
in Chap. 10.

9.2 Bravais Lattices and Space Groups

Now that we have introduced the mathematical background for working with
space groups, we can introduce the 14 Bravais lattices which denote the
possible crystallographic lattices that can form three-dimensional structures,
and the 230 space groups (73 symmorphic and 157 nonsymmorphic) that
can be formed by placing different atomic structures in the Bravais lattice
sites.
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Fig. 9.3. The fourteen Bravais space lattices illustrated by a unit cell of each: (1) tri-
clinic, simple; (2) monoclinic, simple; (3) monoclinic, base centered; (4) orthorhom-
bic, simple; (5) orthorhombic, base centered; (6) orthorhombic, body centered; (7)
orthorhombic, face centered; (8) hexagonal; (9) rhombohedral; (10) tetragonal, sim-
ple; (11) tetragonal, body centered; (12) cubic, simple; (13) cubic, body centered;
and (14) cubic, face centered

The requirements of translational symmetry limit the possible rotation an-
gles of a Bravais lattice and in particular restrict the possible rotation axes to
onefold, twofold, threefold, fourfold and sixfold. Fivefold axes or axes greater
than six do not occur in crystalline materials because these axes are not
compatible with translational symmetry [7]! as shown in Problem 9.5. When
rotational symmetry does occur in crystals, then severe restrictions on the
rotation angle are imposed by the simultaneous occurrence of the repetition
of the unit cells through rotations and translations. The 14 Bravais lattices

'See [47], pp. 14 and 178.
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which form 3D space groups are shown in Fig. 9.3. They are also discussed in
solid state physics texts [45] and in crystallography texts [58, 68].

9.2.1 Examples of Symmorphic Space Groups

If all the operations of the space group are simply point group operations
on to which we add translation operations from the Bravais lattice, we have
a simple or symmorphic space group. The 73 symmorphic space groups are
listed in Table 9.1, and they can be found in the “International Crystallo-
graphic Tables”. Symbols that are used for 3D space groups (see Table 9.1)
include A or B for monoclinic groups, and C, A or B, I, F' for orthorhombic
groups, and these are defined in Table 9.1. In the case of rectangular lattices,

Table 9.1. The 73 symmorphic space groups

crystal system  Bravais lattice space group

triclinic P P1, P1
monoclinic P P2, Pm, P2/m

Bor A B2, Bm, B2/m
orthorhombic P P222, Pmm?2, Pmmm

C,A orB C222, Cmm2, Amm2*, Cmmm
1 1222, Imm2, Immm

F F222, Fmm2, Fmmm
P

tetragonal P4, P4, P4/m, P422, P4dmm
P42m, P4m2*, P4/mmm
I 14, 14, 14/m, 1422, T4mm
I142m, I4m2?®, I4/mmm
cubic P P23, Pm3, P432, P43m, Pm3m
1 123, Im3, 1432, 143m, Im3m
F F23, Fm3, F432, F43m, Fm3m
trigonal PP P3, P3, P312, P321*, P3ml
P31m?, P31m, P3m1?*
(rhombohedral) R R3, R3, R32, R3m, R3m
hexagonal PP P6, P6, P6/m, P622, P6mm

P6m2, P6m2*, P6/mmm

[P, I, F (A, B or C) and R, respectively, denote primitive, body centered, face
centered, base centered (along the a, b or ¢ crystallographic axis) and rhombohedral
Bravais lattices (see Fig.9.3)]

# The seven additional space groups that are generated when the orientations of the
point group operations are taken into account with respect to the Bravais unit cell
b Primitive hexagonal and trigonal crystal systems have the same hexagonal Bravais
lattice
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the inequivalent axes are parallel to the sides of the conventional rectangu-
lar unit cell. In the case of square lattices, the first set of axes is parallel to
the sides and the second set is along the diagonals. In the case of hexagonal
lattices, one axis is 30° away from a translation vector.

We now illustrate the idea of symmorphic space groups using an example
based on the Dy, point group (see character Table A.8) embedded in a tetrag-
onal Bravais lattice (no.11 in Fig.9.3). Suppose that we have a molecule
with atoms arranged in a Dy4 point group configuration as shown in Fig. 9.4.
We see that the Dyy point group has classes E, C5 rotations about the z-
axis, 254 improper rotations about the z-axis, 204 passing through the z axis
and through the center of each of the dumbbell axes, and 2C% axes in (110)
directions in the median plane. The top view of this molecule is shown in
Fig.9.4(b).

We could put such X4 molecules into a solid in many ways and still retain
the point group symmetry of the molecule. To illustrate how different space

P
¢

(@)

- O

Fig. 9.4. (a) Schematic diagram of an X4 molecule with point group Dsg (42m)
symmetry. (b) Top view of a molecule X4 with Dog symmetry. The symmetry axes
are indicated
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Fig. 9.5. Tetragonal Bravais lattice with two possible orientations of a molecule
with Doy symmetry resulting in two different three-dimensional space groups. The
maximum symmetry that the tetragonal Bravais lattice can support is Dap, = D4 ®1
(4/mmm)
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groups can be produced with a single molecular configuration, we will put the
X4 molecule with Dyy symmetry into two different symmorphic space groups,
as shown in Fig. 9.5.

We note that with either of the placements of the molecule in Fig.9.5,
all the point group operations of the molecule are also operations of the space
lattice. However, if the symmetry axes of the molecule do not coincide with the
symmetry axes of the lattice in which they are embedded, the combined space
group symmetry is lowered. Particular point group operations are appropriate
to specific Bravais lattices, but the connection is homomorphic rather than
isomorphic. For example, the point group operations T', Ty, T}, O and Oy
leave each of the simple cubic, face-centered cubic and body-centered cubic
Bravais lattices invariant. Even though a given Bravais lattice is capable of
supporting a high symmetry point group (e.g., the FCC structure), if we have
a lower symmetry structure at each of the lattice sites (e.g., the structure in
Fig.9.4), then the point symmetry is lowered to correspond to that structure.
On the other hand, the highest point group symmetry that is possible in
a crystal lattice is that which has all the symmetry operations of the Bravais
lattice, so that the group Oy, will be the appropriate point group for an FCC
structure with spherical balls at each lattice site (see Problem 9.1).

9.2.2 Cubic Space Groups and the Equivalence Transformation

We now introduce the cubic groups that will be frequently discussed for il-
lustrative purposes in subsequent chapters. The use of the equivalence trans-
formation to obtain the characters x®® for this transformation is also dis-
cussed. Figure 9.6 illustrates several different kinds of cubic space groups com-
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(a) Copper (b) NaCl (c) CaF,
Fm3m(O,, 5) Fm3m(0,, 3) Fm3m(0, )

&
(d) CsCl (e)Iron
Pm3m(0, ) Fm3m(Oy ")

() Diamond (g) Diamond (h) ZnS or GaAs

Fd3m(0, 7) (projection) F43m(T, ?)

Fig. 9.6. Example of cubic lattices. Here (a), (b), (c) pertain to space group #225;
(d) pertains to #221 and (e) to #229; while (f) and (g) are for #227; and (h) is
for #223

monly occurring in solid state physics, including FCC, BCC, diamond and
zinc blende structures. The diamond structure is nonsymmorphic and will be
discussed in Sect.9.2.3. First we show that a given space can support sev-
eral different crystal structures. We illustrate this with Fig.9.7 which shows
three different crystal structures all having the same space group symmetry
operations of O} (Pm3m). This space group will support full Oy, point symme-
try. The different crystal structures are obtained by occupying different sites
as listed in the “International Crystallographic Tables” (see Table C.2). The
space group is specified in terms of an origin at the center which has the full
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(a) (b) (c) ABO,-BaTiO;

Fig. 9.7. Example of three cubic lattices with the space group #221 O}, (Pm3m)
(see Table C.2). (a) Simple cubic (SC), (b) body centered cubic (BCC), and (c)
perovskite structure

symmetry of the Bravais lattice (P4/m(3)2/m). Inspection of space group
221 yields the structure shown in Fig.9.7(a) where only site b is occupied,
while Fig.9.7(b) has site occupation of both sites a and b, each having site
symmetry m3m (see Table C.2). For the perovskite structure in Fig.9.7(c)
we have occupation of Ba atoms on b sites, Ti atoms on a sites and three
oxygens on c sites. We note in Table C.2 that the site symmetry 4/mmm is
different on the c sites than for the a or b sites which have m3m site symme-
tries.

Important for many applications of group theory is the number of atoms
within the primitive cell (for example for calculation of x**). For example,
in Fig.9.7(a) there is one atom per unit cell. This can be obtained from
Fig.9.7(a) by considering that only one eighth of each of the eight atoms shown
in the figure is inside the cubic primitive cell. In Fig.9.7(b) there are two dis-
tinct atoms per unit cell but for each I'*% = I to give a total I'*% = 2I7.
In Fig.9.7(c), there are one Ti, six half O, and eight 1/8 parts of Ba inside
the primitive cell, giving altogether five atoms, i.e., one unit of BaTiOs per
unit cell. Here I'*® for each of the Ba and Ti sublattices we have 'S = I}
but for the three oxygens I'*® = I} + I3 to give a total of I'*% = 31 + I
for the whole BaTiOs molecule (see Sect.11.3.2).

Concerning more general cubic groups, the structures for Fig.9.6(a—c) are
all group #225 based on a FCC Bravais lattice, while (d) has the CsCl struc-
ture (group #221) as in Fig.9.7(b) which has two atoms per unit cell. The
structure for iron (group #229) is based on the full BCC Bravais lattice where
the central atom and the corner atoms are the same. Figures 9.6(f) and (g)
are for the nonsymmorphic diamond lattice, discussed in detail in Sect.9.2.3,
which has two atoms/unit cell. The zinc blende structure shown in Fig. 9.6(h)
is similar to that of Fig.9.6(f) except that the atoms on the two sublattices
are of a different species and therefore the zinc blende structure has a different
symmetry group #203, and this group is a symmorphic group.

9.2.3 Examples of Nonsymmorphic Space Groups

A familiar example of a non-symmorphic space group is the diamond struc-
ture shown in Fig. 9.6(f), where we note that there are two atoms per unit cell



9.2 Bravais Lattices and Space Groups 197

l+o Oéll+ 51"'0 OAIT+
" . ‘T———O-——-—"'{?
3+0 o %+O o
*
%+O OAIT+ —l+o OAITJ’ i .
3.C O+ 3.0 O+ 0
2
(a) P41 (C4 )
+O O3+ ) 3 ¢
Lo © 1.0 ©*
4
.o o4 .o [0F
l+o O+ El"_o O+ v
3
(b) . P42 (C4 )
lho O°4 t.g O ]
oF o- ¥ f
l+C) 4]T+O
{ $ {
1,0 (0fr Lo [OF
2lo O4+ = 5* ‘
Z+O $+O
(©) P45 (C4 %)

Fig. 9.8. Examples of space groups with screw axes. The three examples are (a)
P4y (C3) #76, (b) P4o (C3) #77 and (c) P43 (C1) #78. See Sect. 9.1.2 and Fig. 9.2
for notation
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Fig. 9.9. Example of a space group with a screw axis in the plane of the figure:
P42,m (D3,;) (#113)

(the atoms on the cube corner positions and those in the centered positions).
The symmetry operations of Ty represent all the point group operations that
take one type of atom into another. In addition, each of the operations of
Ty can be compounded with a translation along (a/4)(111) which takes one
inequivalent atom into another. Because of these additional symmetry oper-
ations, which are not point group operations of Ty, the diamond structure is
not a Bravais lattice and is nonsymmorphic. The screw axis pertinent to the
diamond structure is shown in Fig. 9.6(g).

Another example of space groups with screw axes is given in Fig.9.8 for
space groups P41 (C%) #76, P4y (C3) #77 and P43 (C}) #78. The space
group P4 #75 is a symmorphic space group with a similar arrangement of
the four atom cluster but without a screw axis. The group numbers #75
to #78 come from the International Tables of X-ray Crystallography [58]
(see Appendix C for a few examples of such tables). Each space group in
Fig. 9.8 has point group C4 symmetry, but has a different fourfold screw axis
(41,42,43). The atom locations are given in the left hand diagrams and the
symmetry operations which include screw axes are shown in the right hand
diagrams. Some twofold screw axes are also present.

Screw axes may also occur normal to the c-axis, as is shown in Fig. 9.9 for
space group P42ym (D3,) #113. Diamond glide planes along (110) directions
also occur for this space group. The Dy operations result in the occurrence
of equivalent sites (z,v, 2), (—y,x, —2), (—z, —y,2) and (y, —z, —z2).

Three-dimensional space groups will be discussed further in the next chap-
ters. The reader is referred to texts such as Burns and Glazer [16] who give
a detailed treatment of space group symmetries. In the next section we dis-
cuss the 2D space groups in more depth, first because they are simpler, and
because they provide an instructive pedagogic introduction to space groups.

9.3 Two-Dimensional Space Groups

In this section we use the 17 two-dimensional space groups to illustrate in some
detail the concepts introduced in this chapter from a pedagogic standpoint.
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Table 9.2. Summary of the 17 two-dimensional space groups, their properties and
notations

point lattice type international® notation type notation
group table number full short
1 oblique 1 pl symmorphic pl
2 a #b,¢ #90° 2 p211 symmorphic p2
m rectangular 3 plml symmorphic pm
(p or ¢) 4 plgl nonsymmorphic g
a #b,¢=090° 5 clml symmorphic cm
2mm rectangular 6 p2mm symmorphic pmm
a #b,¢=90° 7 p2mg  nonsymmorphic pmg
8 p2g9g nonsymmorphic pgg
9 c2mm symmorphic cmm
4 square p 10 p4 symmorphic p4
dmm  a=10b,¢=90° 11 pdmm symmorphic pdm
12 pdgm nonsymmorphic plg
3 hexagonal 13 p3 symmorphic p3
3m a=b,¢=120° 14 p3ml symmorphic p3ml
15 p3lm symmorphic p3lm
6 16 pb symmorphic p6
6mm 17 pbmm symmorphic pbm

# International Tables for X-Ray Crystallography, published by the International
Union of Crystallography, Kynoch Press, [58] Birmingham, England (1952). See also
G. Burns and A.M. Glazer, [16] “Space Groups for Solid State Scientists”, Academic
Press, Inc., 2nd Edition 1978

There are five distinct Bravais lattices in two-dimensions. If we consider
a, b to be the two primitive translation vectors and ¢ to be the angle between
a and b, then the five lattice types are summarized in Table 9.2, where the
17 two-dimensional space groups are listed.

If we add two-dimensional objects, e.g., a set of atoms, to each cell of
a Bravais lattice, we can change the symmetry of the lattice. If the object,
sometimes called a motif, lowers the symmetry to that of another group, then
the resulting symmetry space group for the structure is identified with the
lower symmetry space group.

We give in this table the symmetries of each of these space groups, classified
in terms of the five Bravais lattices in two dimensions. Listings from the
“International Tables for X-Ray Crystallography” are given in Tables B.2—
B.17 of Appendix B [58].

The notation used to designate the two-dimensional space groups is illus-
trated by the example pdgm (see Table 9.2). The initial symbol (“p” in this
example) indicates that the unit cell is either a primitive (p) unit cell or a cen-
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r=4 z=6

Fig. 9.10. Space group symbols used at lattice points for twofold (an American
football), threefold (a triangle), fourfold (a square), and sixfold (a hexagon) rotations
(z = n to denote an n-fold rotation)

tered (c) unit cell. The next symbol “4” indicates rotational symmetry about
an axis perpendicular to the plane of the two-dimensional crystal. The possible
n-fold rotations for a space group are 1, 2, 3, 4, and 6, and the symbols used
to denote such axes are shown in Fig.9.10. The last two symbols in pdgm,
when present, indicate either additional symmetries for the two inequivalent
in-plane axes, or they refer to a glide plane (denoted by “g”) through the
primary axis, or to a mirror plane denoted by “m” through the primary axis,
and “1” indicates that there is no additional symmetry.

In the following sections we discuss the space groups associated with each
of the five 2D Bravais lattices.

9.3.1 2D Oblique Space Groups

The symmetries of the two 2 oblique space groups are shown in Tables B.1
and B.2 of Appendix B. The lowest symmetry two-dimensional space group
(#1) only has translational symmetry (pl) and no additional point group
operations. We use the lower case notation pl to denote 2D space groups
and P1 with a capital letter to denote the corresponding 3D space groups.
The diagram for pl shows only one general point (x,y) with translations by
lattice vectors (1,0), (0,1), and (1,1). Open circles on the left hand diagram
in Table B.1 are used to denote the three open circles obtained from the first
open circle by these three translations.

However, by placing a motif with twofold rotational symmetry normal
to the plane, the p211 space group (#2) is obtained, as shown in the
symmetry diagram from the International Tables for X-Ray Crystallogra-
phy. The twofold axis through the center of the rhombus (indicated by an
American-football-shaped symbol on the right of Table B.2) denotes the
symmetry operation that takes a general point (z,y) into (—x, —y), shown
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as point symmetry type e on the crystallographic table for space group
#2(p211). Points obtained by rotations are indicated by open circles in Ta-
ble B.2. For the four special points (1/2, 1/2), (1/2, 0), (0, 1/2), (0, 0), la-
beled d, ¢, b, a, respectively, the twofold rotation takes the point into itself
or into an equivalent point separated by a lattice vector. The site symme-
try for these four special points is listed in the table for group p2 as having
a twofold axis. A general point (such as e) under the action of the twofold
axis and translation by (1,0), (0,1), and (1,1) yields the eight open points
in the figure for group p2, two of which are within the unit cell shown in
Table B.2.

These special points d, ¢, b, a are examples of what is generally called Wyck-
off positions [76]. The concept of Wyckoff positions and their site symmetries
is fundamental for the determination and description of crystal structures,
since it is important to establish the reference point for the symmetry op-
erations of an overall consistent coordinate system. The group of all sym-
metry operations that leaves a point P invariant is called the site-symmetry
group. A point P is called the point of special position with respect to the
space group G if there is at least one symmetry operation of G, in addi-
tion to the identity, that leaves P invariant (otherwise, P is called a point of
general position). A Wyckoff position consists of all points P for which the
site-symmetry groups are conjugate subgroups of GG, and each Wyckoff posi-
tion of a space group is labeled by a letter which is called the Wyckoff letter,
and the site symmetries are indicated in the International Crystallography
Tables [58].

9.3.2 2D Rectangular Space Groups

Primitive lattices. Of the seven rectangular 2D space groups, five are primitive
and two are centered (see Table 9.2). We consider these together as is done in
the International Tables for X-Ray Crystallography [58]. Of the five primitive
rectangular space groups only two are symmorphic, and three are nonsymmor-
phic. In general, the full rectangular point symmetry is 2mm (C2, ). The point
group 2mm has elements E, Cs., 0, 0,: the identity; a twofold axis Cs. per-
pendicular to the plane; and mirror planes parallel to the z and y axes through
C5.. The corresponding space group listed as space group #6 is p2mm (see
Table B.6). When introducing a lower symmetry motif, the resulting group
must be a subgroup of the original group. The lower symmetry rectangular
space group plml has point group operations (F,o,) and is listed as space
group #3 (see Table B.4). We note that (E, 0y) is equivalent to (E, 0,) by an
interchange of axes and each corresponds to point group m (C1p).

The symbol () containing a comma inside the circle provides a sense of ori-
entation that is preserved under translations. Under a mirror plane operation
(see Table B.4), the symbols () and () are interchanged; the mirror plane is
represented on the right by a solid horizontal line. The three kinds of Wyckoff
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positions [76] and site symmetries (the general point ¢ and the points a and b
on the mirror planes) are also listed in Table B.4 for space group #3.

So far we have dealt with space groups where the point group operations
are separable from the translation group operations. Such groups are sym-
morphic space groups.

In the case of the rectangular primitive lattice, mirror operations can be
replaced by glide reflections. The glide planes are denoted by dashed lines (see
diagram for space group #4 (plgl) in Table B.4). No distinct screw opera-
tions are possible in two-dimensions. A glide reflection symmetry operation
is a compound operation consisting of a reflection combined with a fractional
unit cell translation, not a primitive unit cell translation. The resulting space
group is nonsymmorphic because of the glide plane operation. Replacing m by
g in plml (space group #3) gives plgl (space group #4) where the transla-
tion 71 /2 is compounded with the reflection operation; this translation can be
followed by comparing the () symbols for space groups #3 and #4 (Tables B.3
and B.4).

For the case of space group #6 (p2mm), replacing one of the mirror planes

by a glide plane gives the nonsymmorphic group p2mg (#7) as shown in Ta-
ble B.7. When both mirror planes of space group #6 are replaced by glide
planes, we get space group #8 (p2gg) which has the fractional translation
(1/2)T1 + (1/2)72, but a mirror plane reflection o, or o, as shown in Ta-
ble B.8. The compound mirror plane translation operations can be denoted
by {ou|(1/2)m1 + (1/2)ma}, {0y [(1/2)71 + (1/2)72).
Centered Rectangular Lattices. The centered rectangular lattice with the full
centered rectangular symmetry (see Table B.9) is the space group ¢2mm (#9)
which is a centering of space group #6 (p2mm). The lower symmetry centered
rectangular subgroup, related to space group #3 (plml) is space group #b5
(c1m1) (shown in Table B.5). We note that the centering is equivalent to
introducing a (1/2)71 + (1/2)72 translation as indicated in Table B.5 for
space group clml (#5). All the centered rectangular lattices are considered
to be symmorphic even though they have the translation (1/2)7q + (1/2)72
to do the centering operation. As a more interesting example of a centered
rectangular space group, let us look at space group #9 which is denoted
by ¢2mm (Table B.9). This space group has two equivalent positions (0,0)
and (1/2, 1/2). The symmetry operations include a twofold axis along the
z-direction and two sets of intersecting mirror planes. Four of the symme-
try operations shown in Table B.9 are connected with the 2mm operations,
and the other four symmetry operations are related to compounding these
point group operations with the simple translation (1/2)71 4+ (1/2)72 tak-
ing (0,0) to (1/2,1/2). The table shows that ¢2mm can be realized through
six different kinds of Wyckoff positions and their corresponding site sym-
metries. It should be noted that the various 2D space group tables pro-
vide special relations for the crystallographic h and k£ Miller indices that
are used to distinguish diffraction patterns associated with each of the space
groups.
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9.3.3 2D Square Space Group

There are three 2D square space groups. The square lattice space with the
full 4mm point group symmetry is pdmm (space group #11), which is shown
in Table B.11. The point group symmetry elements are E, C’Z;, CL., Ca, oy,
Oz, Oda, 0gp corresponding to Cy,. The only distinct subgroup of Cy, is C4
which has symmetry elements F, C’jz, C., Ca;. In this case, the space group
is p4 (space group #10 in International Tables for X-Ray Crystallography).
The fourfold axis is clearly seen on the left hand diagram in Table B.10. The
() points in space group #11 are obtained by adding mirror planes to space
group #10. In the diagram on the right we see lattice locations with fourfold
and with twofold axes, a feature found in all three 2D square lattices (see
Tables B.10-B.12).

By combining the translation (1/2)7y 4+ (1/2)72, where 1/27; and
(1/2)T2 are translation vectors, with the mirror planes o, 0y, 04q, 0 We
obtain the glide reflections {o,|(1/2)71 + (1/2)72}, {oy|(1/2)71 + (1/2)T2},
{0da|(1/2)T1 + (1/2)712}, {oa|(1/2)T1 + (1/2)72}. These glide reflections
are used to form the nonsymmorphic square lattice of space group #12
(pdgm). We note there are mirror planes along the square diagonals and
also mirror planes through the z- and y-axes. Space group #12 (pdgm) is
obtained from space group #11 (p4mm) by translation of the comma points
by (1/2)7T1 + (1/2)72, taking the open points into comma points.

9.3.4 2D Hexagonal Space Groups

There are five 2D hexagonal space groups, and all are symmorphic. The

—)hexagonal space group #17 with the full hexagonal point group sym-
metry is p6mm. The point group symmetry elements are E, Cq, Cy, Cy
C5, C, 041,042,043, Ou1,0v2, 0yz. The diagram for p6mm (#17) is shown in
Table B.17.

The four subgroups of Cg, are Cg, Cs,,, Csq, C3, giving rise, respectively,
to space groups p6 (#16), p3m1 (#14), p3lm (#15), and p3 (#13), as sum-
marized in Table 9.3. The symmetry diagrams for the five 2D hexagonal space
groups are shown in Tables B.13-B.17.

Table 9.3. Summary of the symmetry operations of two-dimensional hexagonal
space groups that are subgroups of #17 (p6mm)

space group point group elements
p3 E, C;r, Cy

p3ml E, C;r, C:;,O'vl,avz,dvg
p3lm E,Cf, Cy 041,042,043

6 E,Cf, Cy,Cf, Cy, Co
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9.4 Line Groups

Line groups describe the symmetry of systems exhibiting translational pe-
riodicity in one dimension [71]. Examples of quasi-one-dimensional systems,
are stereoregular polymers and carbon nanotubes. In addition, some three-
dimensional crystals can be highly anisotropic, as for example chain-type crys-
tals which have line groups as subgroups of their space group. Whenever only
one direction is relevant for some physical properties of a three-dimensional
system, one can expect to derive useful information by applying suitable line
group approaches. The advantage of using line groups is their simplicity.

Generally, quasi-1D systems exhibit, besides translational symmetry, point
group and compound operations. As explained further below, line groups gen-
erally involve a generalized translation group Z and an axial point group P
giving the internal symmetries [22]. By a generalized translation group we
mean that Z denotes an infinite cyclic group composed of general translational
operations along the line axis, that may include screw axes or glide planes.
The line group symmetry elements are represented by {Cr|a}, where CJ is
a rotation of 27wr/n, and n and r are non-negative integers and where r < n,
and 0 < « < 1 represent a translation along the line axis by aa, where a is the
translational period of the system. For a given choice for r, any multiple of
q/n, where ¢ is a divisor of n, may be added to r with no effect on the resulting
line group L, so that the minimum value of r is used to avoid nonuniqueness.
There are three different types of generalized translation groups:

e Those formed by simple translations, T = {E|a} and the translational
period is aa;

e Those with the occurrence of a screw axis, T, = {C!|a} and in this case
the translational period is naa;

e Those with the occurrence of a glide plane, T. = {o,|a} and in this case
the translational period is 2aa.

The azial point groups P are: Cy,, Sapn, Cun, Cny, Dy, Dyp and Dy,q, where
n=1,2,3,...is the order of the principal rotational axis.

The line groups are formed by taking the weak direct product L = Z - P.
The product between Z and P must be a weak direct product? (indicated
here by “”) because all elements of Z, except for the identity, have a nonzero
translational part, while no point group element on P has translations. The
intersection between groups Z and P is, therefore, only the identity operation.
However, the product Z - P forms a group only if Z and P commute (this is

2The general concept of a weak direct product is defined in the following way:
A Group G is said to be the weak direct product of its subgroups H and K when
(i) the identity element is the only intersection of H and K and (ii) each element of
G is the product of one element in H with one element in K. Semi-direct and direct
products are special cases of the weak-direct product. When H and K are invariant
subgroups, the result is a direct product. When only H is an invariant subgroup,
the result is a semidirect product.
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Fig. 9.11. Schematic theoretical model for the three different types of single-wall
carbon nanotubes: (a) the “armchair” nanotube, (b) the “zigzag” nanotube, and
(c) the “chiral” nanotube [63]

always the case only for Z = T'). Furthermore, some products with different
factors are identical. There are an infinite number of line groups, and they
are classified into 13 families [22]. In Problem 9.7 we use carbon nanotubes to
exemplify the use of line groups.

Carbon nanotubes can be viewed as a graphene sheet (a single layer
from a 3D graphite crystal) rolled up into a cylinder, one atomic layer in
thickness. Their physical properties depend on how the graphene sheet is
rolled up, and from a symmetry point of view, two types of tubes can
be formed, namely the achiral tubes, as shown in Fig.9.11(a) and (b), or
the chiral tubes, illustrated in Fig.9.11(c). Because of the small diame-
ter of a carbon nanotube (~10 A) and the large length-to-diameter ra-
tio (> 10%), a carbon nanotube from a symmetry standpoint is a one-
dimensional crystal with a translation vector T' along the cylinder axis
and a small number of carbon hexagons associated with the circumferen-
tial direction. For this reason, this structure is a very appropriate system
to study line groups. The relation between carbon atoms on a carbon nan-
otube and the symmetry operations on the respective line groups is one-to-
one, and nanotubes are, therefore, a prototype system for illustrating line
groups [23,24].

9.5 The Determination of Crystal Structure

and Space Group

In many research situations, the researcher must first identify the crystal
structure and the space group, as summarized below.
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9.5.1 Determination of the Crystal Structure

The standard determinations of crystal structures are carried out using diffrac-
tion techniques, either X-ray or neutron diffraction. The elastically scattered
beams give rise to a series of diffraction peaks which can be indexed according
to the points in reciprocal lattice. The results of many such structural determi-
nations for specific materials are listed in the series of books by Wyckoff [76].

We illustrate the use of Wyckoff’s books to find the crystal structure of
a particular material in Problem 9.6. The information to be extracted from
Wyckoff’s book concerns the number of allotropic structures of a given chem-
ical species, the Wyckoff positions of the atoms within the unit cell, the site
symmetries of the atoms in each of the structures and the space group des-
ignations. Such information is also available from websites [58]. Appendix C
shows some illustrative crystal structures.

9.5.2 Determination of the Space Group

The International Tables for X-Ray Crystallography [58] helps with the de-
termination of the space group and the symmetry operations of the space
group® [58]. These volumes deal with space groups in general but do not refer
to specific materials, which is the central theme of Wyckoff’s books. In some
cases Wyckofl’s books give the space group designation, and then the listing
of the Wyckoff positions needs to match up with the proper Wyckoff positions
in the International Tables for X-Ray Crystallography under the appropriate
space group. If the space group is not given explicitly in Wyckoff’s books [76],
then the space group must be found from the Crystallographic information
and the Wyckoff positions. The procedure that is used to find the space group
is to first find the Wyckoff positions and site symmetries as illustrated in
Problems 9.4 and 9.6. Information about space groups is also available from
websites [54, 58, 76].

Selected Problems

9.1. (a) For the crystal structure shown in Fig.9.5(a) list the symmetry ele-
ments and identify the space group and give the space group number and
symmetry designations for this symmorphic space group (see Table 9.1).

(b) Find the Wyckoff positions for the four atoms per unit cell and find the
site symmetries for the structure shown in Fig. 9.5(a).

(c) Find x4V for the space group in Fig.9.5(a) and find the irreducible
representations contained in IV,

(d) Repeat (a), (b) and (c) for the space group in Fig.9.5(b).

3International Tables for X-ray Crystallography.
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Fig. 9.12. Translation—rotation symmetry for a fourfold axis (a), and a threefold
axis (b)

9.2. (a) List the real space symmetry operations of the nonsymmorphic two-
dimensional square space group pdgm (#12).

(b) Explain all the open and filled points, and the solid and dashed lines
in the diagram for the 2D space group pdgm (#12). Explain the point
symmetry entries for each of the site symmetries a, b, ¢, d on the table for
space group #12 (p4dgm) in Table B.12 in Appendix B which was taken
from the International Crystallography Tables.

(c) Explain the differences in the symmetry operations between the 2D space
group #12 and the 2D space group #11. Why does the figure for group
#11 have dashed lines? Why is group #12 not classified as a centered
space group? Why are there no centered square 2D space groups?

9.3. Show that in the diamond structure, the product of two symmetry opera-
tions involving translations 7 yields a symmetry element with no translations

{alrH{BIr} = {~l0},
where 7 = (1,1, 1)a/4. What is the physical significance of this result?

9.4. Consulting Wyckoff’s book “Crystal Structures” 2nd edn., Krieger (1981)
for the crystal structure of Nb3Sn, a prototype superconductor with the A-15
(or 3-W) structure used for high field superconducting magnet applications:

(a) List the site locations of each atom within the unit cell of NbsSn as ob-
tained from Wyckoff’s book or from another source.

(b) Identify the proper space group for NbsSn and give the Wyckoff positions
for each atom and its site symmetry.

9.5. To understand why fivefold symmetry does not form a Bravais lattice,
consider the interplay of a fourfold or threefold axes and their translations,
shown in Fig.9.12. In general, the only acceptable values of « are those that
cause BB’ in Fig.9.12 to be an integer multiple of the original translation, 7
(that is we require BB’ = mr, where m is an integer).

(a) By relating BB’ to 7 and «, show that the only values of « satisfying the
restriction BB’ = mr are 0, 7/3, /2, 2w /3 and 7.
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(b) Show schematically that in the case of fivefold symmetry, BB’ gives rise
to a new translation 7/ in the same direction as 7, but inconsistent with
the original lattice vectors coming from A. This inconsistency can also be
expressed by stating that BB’ violates the initial hypothesis that 7 is the
shortest translation in the direction BB'.

9.6. This problem provides experience with finding the Wyckoff positions for
3D graphite in the hexagonal crystal structure (see Fig. C.1 in Appendix C)
and in the rhombohedral crystal structure (see Fig. C.2)

(a) From the crystal structure model, find the coordinates for the four distinct
atoms per unit cell in 3D graphite and give their site symmetries.

(b) Using space group #194 (Table C.3 in AppendixC) find the Wyckoff
positions and their symmetries.

(c) Explain the diagrams appearing at the top of Table C.3, especially the
notation. Why are space groups #191, #192, and #193 not appropriate
for describing the structure for 3D graphite (Fig. C.1)?

(d) Repeat (a) for rhombohedral graphite (Table C.4) with 6 atoms/unit cell
in the hexagonal system and two atoms/unit cell in the rhombohedral
system (space group #166).

9.7. Consider single wall carbon nanotubes, as presented in Sect. 9.4 and dis-
cussed in Appendix E.

(a) Find the space groups with the appropriate symmetries for the semicon-
ducting (6,5) and the metallic (6,6) carbon nanotubes.

(b) The physical properties of carbon nanotubes can be obtained from those—
of a graphene sheet by the zone-folding procedure. Using the linear-helical
construction (see Appendix E), show how the allowed k vectors of a car-
bon nanotube can be mapped into the Brillouin zone of two-dimensional
graphite, and discuss the conservation of the linear and helical quantum
numbers. The diagram on the cover to this book can be very helpful for
solving this problem.

(c) Find the appropriate line groups for chiral and achiral carbon nanotubes.
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Space Groups in Reciprocal Space
and Representations

When moving from molecules to crystals, the physical properties will be de-
scribed by dispersion relations in reciprocal space, rather than by energy lev-
els. One of the most important applications of group theory to solid state
physics relates to the symmetries and degeneracies of the dispersion relations,
especially at high symmetry points in the Brillouin zone. As discussed for the
Bravais lattices in Sect. 9.2, the number of possible types of Brillouin zones is
limited. The reciprocal space for Bravais lattices is discussed in Sect. 10.1 and
this topic is also discussed in solid state physics courses [6,45].

The classification of the symmetry properties in reciprocal space involves
the group of the wave vector, which is the subject of this chapter. The group
of the wave vector is important because it is the way in which both the
point group symmetry and the translational symmetry of the crystal lattice
are incorporated into the formalism that describes the dispersion relations of
elementary excitations in a solid. Suppose that we have a symmetry operator
P{ R.|-} based on the space group element {R,|7} that leaves the periodic
potential V() invariant,

Pip iy V(r)=V(r). (10.1)

The invariance relation of (10.1) has important implications on the form of the
wave function (7). In particular if we consider only the translation operator
Py.|ry based on the translation group elements {¢|7}, we have the result

Projryo(r) = o(r + 7). (10.2)

Within this framework, we can prove Bloch’s theorem in Sect. 10.2.2, and then
we go on in Sect. 10.3 to determine the symmetry of the wave vector. We then
discuss representations for symmorphic and nonsymmorphic space groups and
illustrate the group of the wave vector. In Sect. 10.6 we consider the group of
the wave vector in some detail for the simple cubic lattice and then we make
a few comments to extend these results for the simple cubic lattice to the
face centered and body centered cubic structures. The compatibility relations
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leading to the formation of branches in the dispersion relations are discussed
(Sect. 10.7), illustrated by the same three cubic space groups as in Sect. 10.6.
Finally, the group of the wave vector is considered for the nonsymmorphic
diamond lattice in Sect. 10.8.

10.1 Reciprocal Space

Definition 23. The set of all wave vectors K, that yield plane waves with
the periodicity of a given Bravais lattice defines its reciprocal lattice, and the
K, are called reciprocal lattice vectors.

The relation . .
ele-(’!‘+Rn) — ele~7' (103)

holds for any v, and for all R, and K,, defining the Bravais lattice in real
space and reciprocal space, respectively, where the reciprocal lattice is charac-
terized by the set of wavevectors K, satisfying

el EmRn — 1 (10.4)

Considering R,, = > n;a; and K,, =Y m;b; (i,7 = 1,2, 3), where a; and b;
are, respectively, the primitive translation vector and the primitive reciprocal
lattice vector for the unit cells of a space lattice, then

bj ca; = 271’61']‘ (105)

defines the orthonormality relation satisfying (10.4).
The more general ortho-normality relation for a general lattice vector R,
and a general reciprocal lattice vector K,, will be given by

R, K,,=27tN,,, = 21Ny, (10.6)

where N, = N; is an integer depending on n,m.

Table 10.1. Summary of the real and reciprocal lattice vectors for the five two-
dimensional Bravais lattices (see Sect.9.3)

translation vectors reciprocal lattice vectors
type a as by b2
oblique, p (a1, 0) az(cos@,sinf) (2w/a1)(1,—cot @) (27/a2)(0,csch)
rectangular, p (a1, 0) (0, a2) (27 /a1)(1,0) (27/a2)(0,1)
rectangular, ¢ (a1/2,a2/2) (—a1/2,a2/2) 2m(1/a1,1/a2) 2w(—1/a1,1/a2)
square, p (a,0) (0,a) (27 /a)(1,0) (27 /a)(0,1)

hexagonal, p  (0,-a)  a(v3/2,1/2) (2x/a)(1/v3,~1) (2r/a)(2/v/3,0)




10.2 Translation Subgroup 211

To illustrate the primitive translation vectors of the unit cells in real and
reciprocal space for the Bravais lattices, we list in Table 10.1 the primitive
translation vectors and the corresponding reciprocal lattice vectors for the
five two-dimensional Bravais lattices based on (10.5). The vectors a; and as
for these 2D lattices are expressed in terms of unit vectors along appropriate
directions of the five Bravais lattices, and a and b are lattice constants. For
three-dimensional space groups, there are three unit vectors a;, and three unit
vectors b; in k-space, using the space group notation. The Brillouin zones for
several three-dimensional space groups can be found in Appendix C and in
the literature [50].

10.2 Translation Subgroup

For the translation subgroup 7" which is a subgroup of the space group G, con-
sider the translation operator P .} based on the translation group elements
{e|7}, yielding the result

Popyi(r) = d(r+7), (10.7)

but since the translation operations all commute with one another, the trans-
lations form an Abelian group.

Definition 24. Since the translation operation T can be written in terms of
translations over the unit vectors a;

3
T = E n;a;,
i=1
we can think of the translation operators in each of the a; directions as com-

muting operators:
{elr} = {elmiH{elmaHelra}, (10.8)

where T; = n;a;. The real space lattice vectors produced by the translation
operator are denoted in Sect. 10.1 by R,,.

10.2.1 Representations for the Translation Group

The commutativity of the {e|7;} operations in (10.8) gives three commuting
subgroups. It is convenient to use periodic boundary conditions and to relate
the periodic boundary conditions to cyclic subgroups (see Sect. 1.3), so that
{e|lm1 V1 = {e|m2}V2 = {e]r3}Vs = {]0}, and N is the number of unit
cells along 7;. In a cyclic subgroup, all symmetry elements commute with one
another, and therefore the subgroup is Abelian and has only one-dimensional
irreducible matrix representations. Furthermore, the number of irreducible
representations of the cyclic subgroup is equal to the number of elements h
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in the group, and each element is in a class by itself. Since {e|7;}V = {£]0},
the irreducible representation for the cyclic group can be written as a set of
matrices which are phase factors or characters of the form exp(ik;n;a;), and
are the N roots of unity. Here k; = 2wm;/L; (where m; is an integer and L; is
the length of the crystal in direction a;) defines the irreducible representation,
and there are MJNoN3 ~ 1023 of such irreducible representations. In this
context, the wave vector k serves as a quantum number for the translation
operator.

10.2.2 Bloch’s Theorem and the Basis Functions
of the Translational Group

Theorem. If an eigenfunction vy, transforms under the translation group ac-
cording to the irreducible representation labeled by k, then 1y (r) obeys the
relation

Pleprybn(r) = (e + 1) = T4 (r) (10.9)
and Y (7r) can be written in the form
Y (r) = *Tug(r), (10.10)
where u,(r + 7) = uk(r) has the full translational symmetry of the crystal.

Proof. Since the translation group is Abelian, all the elements of the group
commute and all the irreducible representations are one-dimensional. The re-
quirement of the periodic boundary condition can be written as

{e|T1+ NL1} = {e|]T1}, (10.11)

where N is an integer and L, is the length of the crystal along basis vector a;.
This results in the one-dimensional matrix representation for the translation
operator T; = n;a;

DM (nyay) = eF1mar = et (10.12)

since .
Prir(r) = D*(R)yp(r), (10.13)
where R denotes a symmetry element k; = 27wmy /Ly corresponds to the mjth
irreducible representation and my = 1,2,...,(L1/a1). For each mq, there is

a unique k1, so that each irreducible representation is labeled by either m; or
k1, as indicated above.

We now extend these arguments to three dimensions. For a general trans-
lation

3
=Y nia;, (10.14)
1=1

the matrix representation or character for the (mjmams)th irreducible repre-
sentation is
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Dkl (n1a1)Dk2 (TLQCLQ)Dka (ngag) — eiklnlaleianQGQeikgngag — eik-T , (1015>

since
{e|T} = {e|T1 Helm2Helms}. (10.16)
Thus our basic formula Pij = >, YaD(R)q; yields
Ploiryo(r) = (r)e* ™ = FTy(r) = (r + 1), (10.17)

since the representations are all one-dimensional. This result is Bloch’s the-
orem where we often write 7 = R, in terms of the lattice vector R,,. This
derivation shows that the phase factor e®7 is the eigenvalue of the translation
operator P{E|T}. O

Because of Bloch’s theorem, the wave function ¢ (r) can be written in the
form .

U (r) = e® T uy(r), (10.18)
where uy () exhibits the full translational symmetry of the crystal. This result
follows from:

Ur(r + R,) = By, (r 4 R,) = B En [eik'Tuk(r)} , (10.19)

where the first equality in (10.19) is obtained simply by substitution in (10.18)
and the second equality follows from Bloch’s theorem. In these terms, Bloch’s
theorem is simply a statement of the translational symmetry of a crystal.

The Bloch functions are the basis functions for the translation group 7.
The wave vector k has a special significance as the quantum number of transla-
tion and provides a label for the irreducible representations of the translation
group. If the crystal has a length L; on a side so that ng different lattice
translations can be made for each direction a;, then the number of k vectors
must be limited to

kx,ky,kz:(),i2—ﬁ,i4—ﬁ,...,iz (10.20)

noa noa a

in order to insure that the number of irreducible representations is equal to the
number of classes. Since the translation group is Abelian, every group element
is in a class by itself, so that the number of irreducible representations must
equal the number of possible translations. Since the number of translation
operators for bulk crystals is very large (~ 1023), the quantum numbers for
translations are discrete, but very closely spaced, and form a quasi-continuum
of points in reciprocal space. For nanostructures, the number of translation
operations can be quite small (less than 100) and some unusual quantum size
effects can then be observed.

We note that all of these k-vectors are contained within the first Brillouin
zone. Thus, if we consider a vector in the extended Brillouin zone k + K,
where K, is a reciprocal lattice vector, the appropriate phase factor in Bloch’s
theorem is

el (kT Km) B — gk Rn (10.21)

since Ky, - R,, = 27N where N is an integer.
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10.3 Symmetry of k Vectors
and the Group of the Wave Vector

When we choose a given eigenstate 15 () of the crystal potential, except for
eigenstates at the I" point (k = 0), the basis function will exhibit a modulation
described by the wavevector k, and this modulation will decrease the crystal
symmetry. In this case, we work with the group of the wave vector, that is
a subgroup of the space group G. To introduce this concept, we consider
in Sect.10.3.1 the action of a point group symmetry operator on a lattice
vector and on a reciprocal lattice vector. Next we discuss the group of the
wave vector and the star of a wave vector, including an example of these
concepts in terms of the two-dimensional square lattice (Sect. 10.3.2). Finally
in Sect. 10.3.3 we consider the effect of translations and point group operations
on Bloch functions, thereby clarifying the degeneracies introduced by the point
group symmetries of crystal lattices.

10.3.1 Point Group Operation in r-space and k-space

The effect of a symmetry operator P, on a lattice vector R,, and on a recipro-
cal lattice vector K, subject to the orthogonality relation (10.6) is considered
in this section.

Let P, denote a symmetry operator of the point group of the crystal, then
P, R, leaves the crystal invariant. If R,, is a translation operator, then P,R,
is also a translation operator (lattice vector), since the full symmetry of the
lattice is preserved. Likewise P,K,, is a translation operator in reciprocal
space. Since PaRn is a lattice vector, we can write

(P,R,)- K., = 27N, (10.22)

where N is an integer, not necessarily the same integer as Ny in (10.6). Since

a~! is also a symmetry operator of the group, we have

(P7'R,) - K,, = 27Ns, (10.23)

and again N3 is not necessarily the same integer as N7 or Ny. Furthermore, any
scalar product (being a constant) must be invariant under any point symmetry
operator. Thus if we perform the same symmetry operation on each member
of the scalar product in (10.23), then the scalar product remains invariant

P.(P7'R,)  (P.K,,) =27Ns = R,, - (P.K,,). (10.24)

Equations (10.22)-(10.24) lead to several results: If P, is a symmetry oper-
ator of a point group of a crystal, and R,, and K,, are, respectively, lattice
and reciprocal lattice vectors, then ]5(; 'R, and P,K,, also are, respectively,
a lattice vector and a reciprocal lattice vector. Thus the effect of an operator
P, on a direct lattice vector R, is equivalent to the effect of operator ]5(; L on
the corresponding reciprocal lattice vector K,
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10.3.2 The Group of the Wave Vector G and the Star of k

Definition 25. The group of the wave vector is formed by the set of space
group operations which transform k into itself, or into an equivalent k =
k + K, vector, where K, is a vector of the reciprocal lattice.

The addition of K,, does not change the energy of the system since e'* Fr =

el(k+Km) Ba e both k and (k + K,,) belong to the same translational irre-
ducible representation (see Sect. 10.2.2). Clearly, all the symmetry operations
of the space group take the point k = 0 into itself so that the space group
itself forms the group of the wave vector at k = 0. Furthermore, the group of
the wave vector for nonzone center k-vectors (k # 0) remains a subgroup of
the space group for k = 0.

Let us now consider the action of the point group operations on a general
vector k in reciprocal space, not necessarily a reciprocal lattice vector. The
set of wave vectors k’ which are obtained by carrying out all the point group
operations on k is called the star of k. If k is a general point in the Brillowin
zone, there will be only one symmetry element, namely the identity, which
takes k into itself and in this case the wave functions describing electron
states only see the translational symmetry {e|7} of the space group. On the
other hand, if the k-vector under consideration lies on a symmetry axis or
is at a high symmetry point in the Brillouin zone, then perhaps several of
the point group operations will transform k into itself or into an equivalent
k-vector k + K,,.

An informative example for the formation of the group of the wave vector
for various k-vectors is provided by the two-dimensional square lattice. Here
the point group is Dy and the symmetry operations are E, Cy = 2C3%, 2C,,
2CY%, 2CY (diagonals). The various k-vectors in the star of k are indicated in
the diagrams in Fig.10.1 for the two-dimensional square lattice. The group
elements for the group of the wave vector in each case are indicated within the
parenthesis. The top three diagrams are for k-vectors to interior points within
the first Brillouin zone and the lower set of three diagrams are for k-vectors to
the Brillouin zone boundary. Thus the star of k shown in Fig.10.1 is formed
by consideration of P,k for all operators P, for the point group. The group of
the wave vector is formed by those I:’a for which Pakz =k+ K,,, where K,
is a reciprocal lattice vector (including K,, = 0). The concepts presented in
Fig.10.1, are reinforced in Problem 10.2 for the hexagonal lattice with point
group Dg.

10.3.3 Effect of Translations and Point Group Operations
on Bloch Functions

We will now consider the effect of the symmetry operations on k with re-
gard to the eigenfunctions of Schrodinger’s equation. We already know from
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Bloch’s theorem that the action of any pure translation operator I:’{E|.,} on
wave function vy (1) (where T = R,,) yields a wave function e'* Rnq)y (1)

Prorytor(r) = e® Ty (r) . (10.25)

There will be as many wave functions of this functional form as there are trans-
lation vectors, each corresponding to the energy E(k). These Bloch functions
provide basis functions for irreducible representations for the group of the
wave vector. If k is a general point in the Brillouin zone, then the star of k
contains wave vectors which are all equivalent to k from a physical standpoint.
The space group for a general wave vector k will however contain only the
symmetry elements {¢|R,}, since in this case all the k-vectors are distinct.
For a wave vector with higher symmetry, where the operations I:’gk =k+K,,
transform k into an equivalent wave vector, the space group of the wave vector
contains the symmetry element {5|R,,} and the energy at equivalent k points
must be equal. If the point group of the wave vector contains irreducible rep-
resentations that have more than one dimension, then a degeneracy in the
energy bands will occur. Thus bands tend to “stick together” along high sym-
metry axes and at high symmetry points.
The effect of a point group operation on this eigenfunction is

PrrjoyUe(r) = Pgjoye® Tug(r) (10.26)

in which we have written the eigenfunction in the Bloch form. Since the effect
of a point group operation on a function is equivalent to preserving the form
of the function and rotating the coordinate system in the opposite sense, to
maintain invariance of scalar products we require

E-R,'r=R.k-r. (10.27)

If we now define ug_x(r) = ur(R,'r) for the periodic part of the Bloch
function and denote the transformed wave vector by k' = Rk, then we have

iR, k-7

Pig, joytu(r) = ur, k(1) = YR, k(T) (10.28)

which we will now show to be of the Bloch form by operating with the trans-
lation operator on ¥ gk (7)

Prm¥rak(r) = Py [ Fe* Tuy (R )]
= elftek(r 1) (R e + R 7). (10.29)

Because of the periodicity of ug(r) we have

up k(r+7) = up(Ry'r + R'T) = up (R ') = up k(r), (10.30)
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% to an interior point in the Brillouin zone

2 D

arbitrary ¥ to BZ interior: symmetrical F to BZ interior: symmetrical I to BZ interior:
8 K in star; (E) 4k in star; (E,CY) 4k in star; (E.CY)

kto a point on the Brillouin zone boundary

r
art)itrary F to BZ boundary: symmetrical ¥ to BZ boundary: symmetrical  to BZ boundary:
4 k in star; (E, C%) 2 k in star; (E,Cy,2CY) 1 k in star; (E, Cy,2Cy, 2C5, 2CY)

Fig. 10.1. Illustration of the star of k for various wave vectors in the Brillouin zone
of a simple 2D square lattice. The top three diagrams are for k-vectors to an interior
point in the Brillouin zone, while the bottom three diagrams are for wave vectors
extending to the Brillouin zone boundary. In each case the point group elements for
the group of the wave vector are given in parentheses

and noting the orthonormality relation (10.6) for the plane wave factor, we get
Preiry¥ran(r) = ¥ g i (r) (10.31)

where up,_,(r) is periodic in the direct lattice. The eigenfunctions Vg, k()
thus forms basis functions for the R,kth irreducible representation of the
translation group 7'. As we saw in Sect. 10.3.2, the set of distinct wave vectors
in k-space which can be generated by operating on one k vector by all the
symmetry elements of the point group g is called the “star of k” (see Fig. 10.1).

Considering the above arguments on symmorphic groups for simplicity,
where the point group ¢ is isomorphic to G/T and {R,|T} = {€|T}P{Ra‘0},
we have

Piro iy ¥e(r) = Projry Pra. oy i (r)
= P{al-r}"/)Rak(r)
= e ek Ty (). (10.32)
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R

Fig. 10.2. The shaded triangle "'ARSX AI" which constitutes 1/8 of the Brillouin
zone for the 2D square lattice and contains the basic wave vectors and high symmetry
points

Similarly we obtain

Py eyorak(r) = e oRek ™ g p (7). (10.33)

Thus the set of eigenfunctions {¢g_r(7)} obtained by taking the star of k
spans the invariant subspace of the point group g since the product operation
RgR, is contained in g. If h is the order of the group g, there are h functions
in the set {¢r_ i (r)}. All of these representations are completely specified by
k, but they are equally well specified by any of the k vectors in the star of k.
Although all the functions in the set {¢)r_x(7)} correspond to the same energy,
we do not say that the functions ¥y (r) and ¥ r_i(r) are degenerate. Instead
we write {¢k(r)} for all the functions in the set {¢g_r(r)} and consider the
extra point group symmetry to yield the relation E(k) = E(R.k) for all
R,. In this way, we guarantee that the energy F(k) will show the full point
group symmetry of the reciprocal lattice. Thus for the two-dimensional square
lattice, it is only necessary to calculate E(k) explicitly for k points in 1/8 of
the Brillouin zone contained within the sector 'ARSX AT (see Fig.10.2).
These statements are generally valid for nonsymmorphic groups as well.

We use the term “degeneracy” to describe states with exactly the same
energy and the same wave vector. Such degeneracies do in fact occur because
of symmetry restrictions at special high symmetry points in the Brillouin
zone and such degeneracies are called “essential” degeneracies. “Essential”
degeneracies occur only at high symmetry or special k points, while acciden-
tal (“nonessential”) degeneracies occur at arbitrary k points. “Special” high
symmetry points in the Brillouin zone are those for which

Rok=k+ K, , (10.34)

where K ,, is the reciprocal lattice vector including K,, = 0. In the cases
where the symmetry operation yields R,k = k+ K ,,, then the eigenfunctions
have essential degeneracies because we now can have degenerate eigenfunc-
tions with the same energy eigenvalue at the same k vector. These essential
band degeneracies are lifted as we move away from the high symmetry points
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to a general point in the Brillouin zone. The rules governing the lifting of
these degeneracies are called compatibility relations, discussed in Sect. 10.7.

10.4 Space Group Representations

We start by saying that tables for the group of the wave vector for each unique
k vector for each of the 230 space groups have been established and are avail-
able in different references, as reviewed in Sect. 10.9. For each wavevector k,
the spacial group representations are constructed from the analysis of the
group of wavevector and of the star of k, and the use of the multiplier alge-
bra, that we briefly discuss below. The representations will be square matrices
with dimension (¢q) x (£q), i.e., £ x £ blocks of ¢ X ¢ matrices, where ¢ is the
number of k vectors in the star, and ¢ is defined by the representations in the
group of the wavevector. Each line (or column) in the matrix will have only
one g X ¢ nonzero entry and the remaining entries are filled with null g x ¢
matrices. The £ x £ block arrangement describes the symmetries relating the
different vectors in the star of k, and the nonzero g x ¢ matrix describes the
symmetry with respect to the specific k and its group of the wavevector.

The rotational aspects of the group of the wave vector are described by the
g X q matrices related to the factor group Gy /T). The T}, group can be repre-
sented by a linear combination of the three lattice vectors, and the symmetry
elements usually shown in the character tables are related to a {Rq|Ta}/Tk
coset. The subgroups of the group of the wave vector k occurring at points in
the Brillouin zone with fewer symmetry operations are called the small rep-
resentations, in contrast to the full point group symmetry for £ = 0 which is
called the large representation. The Bloch functions with wavevectors k form
the basis, and each symmetry element is a coset formed by several elements,
but is represented by a typical element, a “representative coset.”

10.4.1 Symmorphic Group Representations

The representation theory for symmorphic groups is relatively simple. Since
there are no compound operations, the factor group Gy /Ty is symmorphic to
the point group g.

Small Representation. The small representations for the group of the wave
vector of k are given by

Dy ({Ra|Rp}) = * B DI (R,) (10.35)

where {R,| R, } belongs to G}, and e'*F» comes from T, with R,, being a lat-
tice vector or a primitive translation, and I is an irreducible representation
coming from one of the 32 crystallographic point groups (see Chap. 3), whose
character tables are given in Appendix A. Here D'%(R,,) refers only to the
point group.
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Characters for Small Representation. The characters for the irreducible rep-
resentations are given by

Xt ({Ra|Rn}) = e* Bry (R, (10.36)

where x'?(R,) only refers to the point group.

Large Representation. For the I' point we have k = 0 and e!*F» = 1. Also,
if we consider the factor group of Gy with respect to the translations, then
also R, = 0 and again ¢/*B» = 1. In both cases, both representations and
characters are identical to those from the point groups.

10.4.2 Nonsymmorphic Group Representations
and the Multiplier Algebra

As for the symmorphic groups, we denote the group of the wave vector k by
G}, For symmetry operations { R|7} that involve translations 7 smaller than
the smallest Bravais lattice vector, the translations introduce a phase factor
explik - 7]. However, as discussed in Sect.9.1.4, the entire set of space group
elements { R, |7} may fail to form a group, and the point group g of the crys-
tal is not a subgroup of G. In this case, to work with the rotational aspects
of the nonsymmorphic space group, procedures to remove the translational
effect are needed. Furthermore, the factor group Gy /T contain cosets formed
only by pure translations, giving rise to irrelevant representations. The rel-
evant representations, describing the rotational aspects of the group of the
wavevector, can be directly obtained by using the multiplier algebra.

Multiplier Groups. If the representations are written in terms of a Bloch wave
basis, the translational group is diagonalized and the multiplier groups are
defined by

{Ro|ToH{ Ry} = e retReams=asl{ R\ Ry|T0g} (10.37)

where the [To + RaTpg — Tag) represents a lattice vector translation resulting
from the product of the elements in the group of the wave vector. Any element
{R,|T~ + Ry} thus generated can be represented by a single element

M(y) = e—ik'[‘rw-i-Rn]{R’yh-v + R} (10.38)
in the multiplier group, obeying the algebra
M(a)M(a') = eEeTo' M(ad), (10.39)

the exponential factor being 1 except for points at the Brillouin zone boundary,
where Rk =k + K, and K, is a reciprocal lattice translation. The factor
group Gy /Ty will, therefore, be isomorphic to a point group from which the
rotational aspects of the group of the wave vector can be treated.
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Small and Large Representations. In general the representations are obtained
from the irreducible representations of the multiplier group. From (10.38)
and (10.39) it can be shown that the small representations are obtained from
ordinary point group representations when the point group operation leaves k
invariant, since in that case K, = 0 in (10.39). The same applies to the large
representation, where K, = 0 always. Note that the multiplier algebra also
applies to symmorphic groups. In this case 7o = To» = 73 = 0 in (10.38) and
(10.39), and the representations are also obtained from ordinary point group
representations, as discussed above.

Characters for Small and Large Representations. At the zone center, the char-
acters for the group of the wave vector are the same as the isomorphic point
group, because the phase factor explik - 7] reduces to unity when k = 0. For
each symmetry axis leading away from k = 0, the character tables for those
k points can be obtained by selecting the

appropriate point group character table and by multiplying the character
for the symmetry operations that contain a translation 7 by a phase factor
explik - 7.

More detailed discussions of the space group representations and multiplier
groups are available elsewhere [50,53].

10.5 Characters for the Equivalence Representation

We now discuss the computation of the characters x°"- for the equivalence
representation in space groups, and its decomposition into the irreducible
representations of the group. For a specific wavevector k, the general formu-
lation for x; ™" related to a specific class of symmetry space group operators

{Ro|Ry, + T4} is given by

X (Rl B+ 7a}) = e 5T S 15 e e, €50 (1040)
j

where the first exponential factor is related to the phase factor for translation
R, + T,. The delta function basically gives 1 for atoms remaining in their
position under the space group symmetry operation {Rq|R, + T4} or is 0
otherwise. For space groups, however, equivalent atoms on different unit cells
must be considered as equivalent. Here 7; is the position in the jth atom
with respect to the origin of the point group, and (g, |R, t7o}r;r, = 1 if
{Rua|R,, + To}r; and 7 refer to equivalent atomic positions, occurring when
(Rarj = rj + Ry,). It is clear that the delta function is always zero when
To # 0.

The decomposition of the equivalence transformation into the irreducible
representations of the space group is made by using the procedure discussed in
Sect. 3.4. The first exponential factor in (10.40) turns out not to be important
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for this decomposition process, since x*4"V- will then be multiplied by [x(/#)]*
(see (3.20)), which carries the complex conjugate of the exponential factor.

Equation (10.40) gives the general rule for the equivalence transformation
in crystalline structures. The last exponential term in (10.40) appears for
specific k points at the zone boundary, for which R 'k = k + K, where
K, is a reciprocal lattice vector. At most of the k points, including the I”
point, R;'k = k and K,, = 0 so that e 7 = 1, and we just work with
the general concept of x*% =0 or 1.

10.6 Common Cubic Lattices: Symmorphic Space
Groups

In this section we limit our discussion to symmorphic space groups, where
the group of the wave vector for arbitrary k is a subgroup of the group of the
wave vector k = 0, which displays the full point group symmetry of the crystal
(see Sect.10.4.1). This situation applies to all crystal lattices, whether they
are cubic, hexagonal, etc. We discuss here the group of the wave vector for
the three-dimensional simple cubic lattice Pm3m (O}) #221 (see Fig. 10.3) in

/ M

Fig. 10.3. The Brillouin zone for the simple cubic lattice (space group #221) show-
ing the high symmetry points and axes

Fig. 10.4. Brillouin zones for the (a) face-centered (space group #225) and (b)
body-centered (space group #229) cubic lattices showing the points and lines of
high symmetry in (a). The point Z on the line between X and W is also called V'
in the literature and point Q is between L and W
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some detail, and we refer also to the group of the wave vector for the B.C.C.
(space group Im3m (O5) #229) and for the F.C.C. (space group F'm3m (O3)
#225) structures (see Fig. 10.4).

Figure 10.3 shows the Brillouin zone for the simple cubic lattice. The high
symmetry points and axes in these figures are labeled using the standard
notation found in the crystallography literature, the group theory literature,
and in the solid state physics literature.

10.6.1 The I' Point

The symmetry operations of the group of the wave vector at the I' point
(k = 0) are the symmetry operations of the Oy group indicated in Fig.3.4
compounded with full inversion symmetry, O, = O ® i. The character table
for Oy along with the basis functions for all the irreducible representations
is given in Table 10.2. The form of the basis functions is helpful in identify-
ing s (I'1), p (Is) and d (I'2,I5;) electronic states of the Oy, cubic crystal
where the symmetries of the corresponding irreducible representations are
shown.

The notation used in Table 10.2 is that traditionally used in the solid state
physics literature [1] and dates back to the 1930s. Here Iy and I denote

Table 10.2. Character table for the cubic group Oy corresponding to the group of
the wave vector at k = 0 for the three cubic space groups #221 (SC), #225 (FCC),
and #229 (BCC)f

repr. basis functions E 3C? 6C4 6C5 8Cs i 3iC? 6iCy 6iCh 8iC's
() 1 1 1 1 1 11 1 1 1 1
$4(y2*22)+
L (I3) { y*(z2 —2?)+ 1 1 -1 -1 1 1 1 -1 -1 1
Z4(x2_y2)
N xz_yz
Iz () {2Z2_x2_y2 2 2 0 0 -1 2 2 0 0 -1
Ns(Iy) =y, 2 3 -1 1 -1 0-3 1 -1 1 0
Dos () 2(2° —92). .. 3 -1 -1 1 0-3 1 1 -1
ayz[zt(y® — 2%)+
nIry) < y'(z? —2%)+ 1 1 1 1 1-1 -1 -1 -1 -1
Z(a? —y?)]
ny(ry) =xyz 1 1 -1 -1 1-1 -1 1 1 -1
Iy (I5) zyz(z® —y?). .. 2 2 0 0 -1-2 -2 0 0 1
I'is (I zy(z? —y°) ... 3 -1 1 -1 0 3 -1 1 -1 0
Tjs (I3 2y, yz, 2 3 -1 -1 1 0 3 -1 -1 1 0
t The basis functions for I'y; are z(z® — %), z(y* — 2°), y(2° — ?), for I}, are

ryz(z® — y?), xyz(32° — r?) and for I}5 are zy(z® — y?), yz(y* — 2°), za(2* — 2?)
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Table 10.3. Character table C4, for the group of the wave vector at a A point®

representation basis functions E C? 20; 2iC3 2iCh
Ay Lz, 222 —y2—22 1 1 1 1 1
Ay y? — 22 1 1 -1 1 -1
Al yz 1 1 -1 -1 1
Al yz(y? — 2%) 1 1 1 -1 -1
As Y, 2, XY, TZ 2 =2 0 0

* A= 25(z,0,0) (SC, FCC, BCC); T = 2(1,1,z) (SC)

1D irreducible representations, I'15 denotes the 2D irreducible representation,
while I'i5 and I55 denote the two 3D irreducible representations and the
notations used are historical.! In this notation, I'is and Ihs are odd while
Il and I'j; are even under inversion (as can be seen from the basis functions
in Table 10.2). To get around this apparent nonuniformity of notation with
regard to even and odd functions, we often use Fii (e.g., ng) to emphasize
the parity (even or odd property) of a wavefunction for the cubic groups. We
notice that to obtain basis functions for all the irreducible representations of
the group Oy, in Table 10.2 we need to include up to sixth-order polynomials.

10.6.2 Points with k # 0

In Table C.6 in Appendix C we see that the special point R in Fig. 10.3 for
the simple cubic lattice that also has full Oy symmetry. Special care must be
given to operations taking k into k 4+ K,,, since they also add exponential
factors to the computation of x°4"V, for example, as discussed in Sect. 10.5.

We next consider the group of the wave vector at lower symmetry points.
First we consider the group of the wave vector for a point along the A axis (see
Fig.10.3) which has fewer symmetry operations than the group of the wave
vector at k = 0. The group of the wave vector at A is an example of a small
representation. The symmetry operations for a point along the A axis for the
simple cubic lattice are those of a square, rather than those of a cube and are
the symmetry operations of point group Cy,. Group Cy, is a subgroup of the
full cubic group Oj. The multiplication table for the elements of the point
group Cy, which is appropriate for a reciprocal lattice point A along the z
axis is given in Table C.9. Multiplication tables like this can be compiled for
all the groups of the wave vectors for all high symmetry points in the Brillouin
zone for all the space groups.

The character table (including basis functions) for the group of the wave
vector for A, where A = (A,0,0) is along Z, is given in Table 10.3 and Ta-
ble C.8. Since the A point occurs in space groups #221 (SC), #225 (FCC)

The numbers contained in the subscripts denote how the I" point levels split in
the A axis direction, as discussed in Sect. 10.7.
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Table 10.4. Character table for the group of the wave vector A

character table for the A axis

AN=Cs5, E 205 31Co
Ay 1 1 1
As 1 1 -1
A3 2 -1 0

and #229 (BCC), the character table and basis functions in Table 10.3 are
applicable for all these space groups. In Table 10.3 for the A point, the Cy
rotation operation is along Z, the 2iC% are along 7, 2, and the 2iC} are along
{011}. The basis functions in the character table can be found from inspec-
tion by taking linear combinations of (z¢,y™, 2™) following the discussion in
Chap. 4. The process of going from higher to the lower symmetry defines the
compatibility relations (Sect.10.7) between irreducible representations of Oy,
and those of Cy4, showing the path from the higher group Oy to the lower
symmetry Cy,. The basis functions for the lower symmetry groups (such as
the group of A) are related to those of Oy, by considering the basis functions
of the point group Oj as reducible representations of the subgroup A, and
decomposing these reducible representations into irreducible representations
of the group A. For example I'j; (or using I to show its parity) of point
group Oy, is a reducible representation of Cy,, and reduction of Iy (or )
into irreducible representations of Cy, yields the compatibility relation (see
Sect. 10.7)

[F215]oh = [FQJE]oh — [Ay + A5]c4v )

showing the origin of the I'j; notation. We note that yz is the longitudinal
partner for A = (A,0,0) and corresponds to the irreducible representation

%, while zy,zz are the transverse partners corresponding to As. What is
different here from the discussion in Sect. 5.3 is that the dispersion relations
also go from lower to higher symmetry. For example, the A point goes into
the X point for space groups # 221 and # 225 and into the H point for
#1229 (BCC) all having more symmetry operations than at the A point. We
also note that the group of the wave vector for point 1" for the simple cubic
lattice (see Fig.10.3) also has Cy, symmetry (see Tables C.6 and C.8). In
considering the group of the wave vector for point T, remember that any
reciprocal lattice point separated by a reciprocal lattice vector from T is an
equally good T point. The character Table 10.3 also serves for the T-point, but
the symmetry operations and basis functions would need proper modification.
Character tables for all the high symmetry points for k vectors in the simple
cubic lattice are discussed in this section. For example, the symmetry group
for a wave vector along the (111) axis or A axis is Cs, (see Fig.10.3), which
is given in Table 10.4. For a A point along the (111) direction, the 2C5 are
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along {111}, and the 3iCy are along (110), (101), and (011) directions. For
the A point we can do threefold rotations in both + senses about I'R for
group #221, about I'L for #225 and about I'P for #229 (see Fig.10.4).
Whereas the A point follows the same point group Cjs,, the end points R,
L, and P for the three space groups have different point group symmetries.
We can also do 180° rotations about twofold axes I'M followed by inversion
(see Fig. 10.3). By I'M’ we mean the wave vector to the center of an adjacent
cube edge, and we here note that a rotation by m about I'M’ in group #221
followed by inversion does not leave A invariant. Only three of the “I'M"”
axes are symmetry operations of the group; the other three such axes (like
I'M in the diagram) are not symmetry operations. Therefore instead of the
symmetry operations 6:Cy which hold for the I" and R points, the class 3iCs
for the group of the A point only has three symmetry elements. Table C.10
in Appendix C gives the basis functions for each irreducible representation
of the group of the wave vector at a A point and shows that point F for
the BCC structure also has ('3, symmetry, but the symmetry operations and
basis functions need to be appropriately modified.

The final high symmetry point along one of the three main symmetry axes
is the X point along the {110} axes. The group of the wave vector for the X
point is Cs, and the character table is shown in Table C.11 in Appendix C.
This character table applies to the X point for the simple cubic, FCC and BCC
lattices (see Fig. 10.4). All the irreducible representations are one-dimensional.
Table C.6 identifies high symmetry points in other space groups which have
high symmetry points with C5, symmetry. Table C.11 in Appendix C also
shows that the group of the wave vector for high symmetry points Z and
S for the simple cubic lattice, points U, Z, and K for the FCC lattice, and
points G and D for the BCC lattice all belong to group Co,,.

Table 10.5. Character tables for the group of the wave vector (group Dgp) for
points M and X for space group #221

M E 207 C3. 2C. 20, i 2iCF iCF, 2iCa  2iCh
X E 207, C§ 20y 20, i 2iC3, iCj 2iCy  2iCy
My, X1 1 o1 111 1 1 1 1
Ma, X2 1 11 -1 -1 1 1 1 -1 -1
Ms,Xs 1 -1 1 -1 1 1 -1 1 -1 1
My Xs 1 -1 1 1 -1 1 -1 1 1 -1
M{,X{ 1 o1 O -1 -1 -1 -1
M, X5 1 I e S R -1 -1 1 1
MiX; 1 -1 1 -1 1 -1 1 -1 1 -1
My, Xy 1 -1 1 1 -1 -1 1 -1 -1 1
Ms, X5 2 0 -2 0o 0 2 0 -2 0

Mi, X5 2 0 -2 0 0 -2 0 2 0 0
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It can also happen that two high symmetry points such as M and X for the
simple cubic lattice belong to the same point group Dy, but the symmetry
operations for the two groups of the wave vector can refer to different axes
of rotation, as shown in Table 10.5. The notation Cf” in Table 10.5 refers

to a twofold axis I'X, while 2C%, refers to the two twofold axes L to I'X.
These are in different classes because in one case X is left invariant, while in
the other case X goes into an equivalent X point separated by a reciprocal
lattice vector. To put it in more physical terms, if the X point would not
exactly be on the zone boundary but were instead at a A point arbitrarily
close, the CEH operation would still hold, while the 2C% operations would not.
When we list multiple high symmetry points with a given character table in
Appendix C, we do not generally distinguish between the symmetry operations
for the individual classes (compare for example Table 10.5 and Table C.15).
Character tables for all the high symmetry points in the Brillouin zone for the
simple cubic lattice (#221) (see Fig.10.3) and for the FCC and BCC lattices
(see Fig.10.4) are given in Appendix C, since we use these groups frequently
for illustrative purposes in this book.

10.7 Compatibility Relations

As stated above, compatibility relations relate the basis functions (wave func-
tions) in going from one wave vector to another belonging to a different sym-
metry group. Such a situation, for example, occurs when going from k = 0 (I"
point with full O}, symmetry) to an interior k point such as a A point with
Cy, symmetry and then in going from the A point to the X point with Dy,
Symmetry.

To study these compatibility relations, let us follow some particular energy
band around the Brillouin zone and see how its symmetry type and hence how
its degeneracy changes. The problem of connectivity (connecting energy bands
as we move from one k point to a neighboring k point with a different group
of the wave vector) is exactly the same type of problem as that occurring in
crystal field splittings (Sect. 5.3) as we go from a high symmetry crystal field
to a perturbed crystal field of lower symmetry.

As an illustration of compatibility relations, consider a simple cubic lattice
as we move along a (111) direction from I — A — R from the center of the
Brillouin zone to the zone corner (see Fig.10.3). At the I" point (k = 0) we
have the full point group symmetry Op. As we now go from a higher point
group symmetry Oy at I’ to a k vector along A, we go to a point group
of lower symmetry Cs,. Since there are no three-dimensional representations
in Cs,, we know that the degeneracy of the threefold degenerate levels in
Oy, symmetry, i.e., I'5, [z, ng, F;g levels, will be at least partially lifted. We
proceed as before to write down the character table for the A point, and below
it we will write down the representations of the I" point group, which we now
treat as reducible representations of the A point group. We then reduce out
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Table 10.6. Compatibility relations along A in the simple cubic BZ

irreducible
A E | 2C5 | 3iC2 | representations
Ay 1 1 1
Ag 1 1 -1
As 2| —1
o) |1 1 1| Ay
L () |1 1| —1| A,
e (I | 2| =1 0| As
s (5| 3 0 —1|Ax+ 45
F2l5 (F;g) 3 1| A+ /13
iy 1 1 —1| Az
I (Iy) 1 1 104
Iy (I'y) | 2] -1 0| As
Is (Flg) 3 0 1| Ay + Az
I5s (FQE) 3 0 —1 | Ax + A3

the irreducible representations of the A point symmetry group. This process is
indicated in Table 10.6, below where we list the ten irreducible representations
of Oy and indicate the irreducible representations of C's, therein contained.
This procedure gives a set of compatibility conditions. In a similar way, the
compatibility relations for a simple cubic lattice along the A and X axes
follow the progression from I' to A to X and also from I" to X to M as can
be seen from Fig. 10.3. In going from A — X we go from Cy,, symmetry to Dy,
symmetry, since at the Brillouin zone boundary, translation by a reciprocal
lattice vector introduces additional symmetries associated with a mirror plane.
Similarly, in going from 3 — M we get four equivalent M points so that the
symmetry group goes from Cs, to Dyy. Compatibility relations for the simple
cubic lattice are summarized in Table 10.7 for illustrative purposes.

Tables of compatibility relations for all space groups are compiled in the
literature, e.g. Miller and Love’s book [54] (see Sect. 10.9).

As an example of using these compatibility relations, let us consider what
happens as we move away from the I" point k = 0 on a threefold level, such as
Iy (or IE) in Table 10.7. There are many possibilities, as indicated below:

F2/5 — Aoy + A5 — X3+ X5, (1041)
Iy — A+ A3 — Ris, (10.42)
F2/5—>21+22+23—>M1+M5. (1043)

Suppose that we want to find a set of compatible symmetries in going around
a circuit using the Brillouin zone shown in Fig. 10.3.

r—-Y—-M-—-7—-X—-A—1T. (10.44)
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Table 10.7. Compatibility relations for the high symmetry points in the simple
cubic lattice

compatibility relations between I" and A, A, X

IEL | Iy | T Ly | Iy | Iy | I Iy Iy
(100) | Ay | Az | A1Ax| A1As Aot As | Ay | Agr | Ay Ao | A As | A As
(111) /11 A2 A3 /11/13 /11/13 A2 Al AS A2A3 A2A3
(110) | X1 | Xy | 21 Xa | 21 X350 | X153 | Xy | Mg | XoXg | XXXy | X132 Xy
compatibility relations between Xand A, Z, S
X1 | Xo| X3 Xy X5 Xy | Xor | X Xy Xy
Ay | Ax| Ay Ay As Ay | Ao Ao Ay As
Zv | Zv| Za Zy4 VYA Zo | Za Zs3 Zs3 Z1Zy
S1|Sa| 51 Sy 5283 | S2 | 53 Sa S3 5154
compatibility relations between Mand X, Z, T
My | M| Ms My My, Mo | M3z | My Ms M
S| Xa| 2 I X Xy | X X3 2o Xs PP
Zi | Z1 | Zs Zs Zo Zy | Za Zy ZoZy Z1Z3
Ty | To | To Ty Ty Tor | To T Ts Ts

Then we must verify that when we arrive back at I" we have the same symme-
try type as we started with. A set of such compatible symmetries designates
a whole band.

To go around one of these circuits, basis functions prove very useful and
the tight binding wave functions are often used to keep track of the symme-
try. We know that s-functions transform like the identity representation so
that a possible circuit would be I'T1 — Ay — Ry — S1 — X1 — Ay — I
(see Fig.10.3). If we have p-functions, the basis functions are (z,y, z) and we
can join up representations corresponding to these basis functions. Likewise
for the five d-functions in cubic symmetry, we have three that transform as
(xy, xz,yz) with F;g symmetry and two that transform as (22 + wy? + w?2?)
and (22 +w?y? +w2?) corresponding to I'j; symmetry, where w = exp(27i/3).

As an example of how compatibility relations are used in the labeling of
energy bands, we show the energy dispersion relation E(k) in Fig. 10.5 for the
high symmetry directions k199 and k111 for the simple cubic structure. For the
band with lower energy, we have the compatibility relations 17 — A; — X3
and I} — Ay — R;. For the upper band, we see a splitting of a p-band as we
move away from k = 0, and a consistent set of compatibility relations is

FQJB—>Azl+A5, Ay — X9 and Az — Xj
FQEHA1+A3, AlﬂR;r and AgHRE

In applying the compatibility relations as we approach the R point from the
A direction, we note that the R point has the same group of the wave vector
as k = 0 and the same subscript notation can be used to label the R point,
namely Rl, Rg, R127 R15 and R25.
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Fig. 10.5. Schematic diagram of energy bands illustrating compatibility relations.
The diagrams below show both level crossings between bands of the same symmetries
and level anticrossings between bands of different symmetries where interactions
occur

When levels of different symmetry approach one another, they can simply
cross as indicated in Fig.10.5 for the Ay and A} levels, and this is simply
referred to as a level crossing, where the two bands retain their original sym-
metry after the crossing. However, when two levels of the same symmetry
approach one another, there is an interaction between them and this case is
also illustrated in Fig.10.5 for two energy levels of A; symmetry. The effect
in this case is called level anticrossing because the levels do not actual cross
in this case, though their wave functions become admixed in an appropriate
linear combination.

10.8 The Diamond Structure:
Nonsymmorphic Space Group

In this section we extend our discussion to nonsymmorphic space groups,
where the symmetry operations can be a combination of point group and
translation operations. In this case, to work with the rotational aspects of the
nonsymmorphic space group, procedures to remove the translational effect are
needed, and they are discussed in Sect. 10.4.

To illustrate the symmetry of a nonsymmorphic space group we use the di-
amond lattice (space group #227, O7 ) which is shown in Fig. 10.6 as a specific
example. Not only C, but also Si and Ge crystallize in the diamond structure,
that is described by a nonsymmorphic space group with two atoms/primitive
unit cell. Figure 10.6 is equivalent to Fig.9.6(f), except that Fig. 10.6 explic-
itly shows the two distinct atoms per unit cell, indicated as light atoms and
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Fig. 10.6. The zinc blende structure with 7y symmetry illustrating the two dis-
similar lattice sites. With identical atoms at the two sites, the diamond structure
results. The space group for the diamond lattice is F'd3m or #227 (OZ) The space
group for the zinc blende structure is #216 [F43m)]

dark atoms. We will take the “primitive unit cell” for the diamond structure
to be the FCC primitive unit cell formed by the four dark atoms in Fig. 10.6
surrounding one light atom (see Fig. 9.6(b) for the NaCl structure which con-
sists of inter-penetrating FCC structures for Na and for Cl). The dark atoms
in Fig.10.6 are on sites for one FCC lattice, and the light inequivalent atoms
of the same species are on another FCC lattice displaced from the first FCC
lattice by a(1/4,1/4,1/4), as shown in Fig.10.6. A screw axis indicated in
Fig.9.6(g) takes the dark atoms on the first sublattice in Fig.10.6 into the
light atoms on the second sublattice and vice versa.

10.8.1 Factor Group and the I' Point

The factor group G/T for diamond is isomorphic to the point group Op. The
set of operations PR that are relevant for the diamond structure are, therefore,
the 48 operations of the Oy, point group. Each of the 24 symmetry operators
Pg of group Ty will leave each distinct atom on the same sublattice. However,
the operations in Oy that are not in T; when combined with a translation
T4 = a/4(111) for the diamond structure take each atom on one sublattice
into the other sublattice. This space group is nonsymmorphic because half of
the symmetry operations of the group of the wave vector at k = 0 contain
translations 74 = a/4(111). The 48 symmetry operations and ten classes for
the diamond structure at k = 0 are given in Table 10.8, showing 24 operations
of the form {R,|e} and 24 operations of the form {R,/|T4}. At the I point
k = 0, we have explik - 7] = 1 so that the phase factor does not matter, and
the group of the wave vector is given by the Oy, group, compare Tables 10.2
and C.17.

In computing the characters y°4V for the equivalence transformation
eV we take into account the two kinds of lattice sites, one on each of
the two FCC sublattices. Thus an atom is considered “to go into itself” if it
remains on its own sublattice and “not to go into itself” if it switches sub-
lattices under a symmetry operation Pp. Using this criterion, the results for
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Table 10.8. Classes and characters for the equivalence transformation for the dia-
mond lattice

{0} 8{Csl0}  3{C2|0}  6{ChlTa} 6{CalTa}
Jeauiv 2 2 2 0 0

{i|Td} 8{i03|Td} 3{iCQ|Td} 6{’LCé|O} 6{iC4|0}
reavy 0 0 0 2 2

X°MY for the diamond structure are given in Table 10.8. Note that, although
we can count eight C atoms inside the full cubic unit cell, x*9%"V(E) = 2 for
the identity operation. One must keep in mind that the primitive unit cell
has only 2 atoms/cell while the full cubic unit cell is four times larger. We
emphasize that x°"Y must be computed on the basis of the number of atoms
in the primitive unit cell.

Decomposition of I'®V in Table 10.8 into irreducible representations of
Oy, (see Table 10.2) leads to 'Y = [y + I, or I}" + I, . Here I is
even under inversion and I, is odd under inversion, using the usual notation
for irreducible representations for solids. We also note that the operation
{i|T4} interchanges sublattices 1 +» 2. We make use of this result for "9V
in subsequent chapters in discussing the electronic energy band structure and
phonon dispersion relations of solids crystallizing in the diamond structure.
The character table for the group of the wave vector for the I' point for
the diamond structure is given in Table C.17, utilizing the classes given in
Table 10.8 and utilizing the character table for the O, group in Table 10.2.

10.8.2 Points with k # 0

We next consider the group of the wave vector for the high symmetry points
with & # 0 in the Brillouin zone for the diamond structure, and we use the
FCC Brillouin zone in Fig. 10.4(a) to delineate those high symmetry points.

At the A point, which is an interior point in the Brillouin zone, the five
classes for group Cy, for the A point for the symmorphic FCC group in
Table 10.3, go into {E[0}, {C}|0}, 2{Cu|Ta}, 2{iC%|Ta}, {2iC5|0} for the
diamond lattice. The characters for the classes with a translation 74 will
include phase factors Ta = explik - T4 for all k& points along the A axis
where k- 74 = (27/a)(k,0,0) - (a/4)(1,1,1) = 7wk/2, and where kK — 0
as k — 0, and k — 1 as k approaches the X point. Thus s denotes the
fractional length of the k vector along the A axis. The corresponding char-
acter table then is derived from Table 10.3 by multiplying the characters
in classes 2{Cy|T4} and 2{iC3|T4} by the phase factor Ta to yield Ta-
ble 10.9.

For interior k points along the X' direction, the phase factor exp[ik - 74]
enters in a similar way and here the classes and characters for the irreducible



10.8 The Diamond Structure: Nonsymmorphic Space Group 233

Table 10.9. Character table Cy, for the group of the wave-vector at a A point for
the nonsymmorphic diamond structure®

representation  {F|0} {C3[0} 2{Cu|Ta} 2{iCi|Ta} 2{iC5|0}

Ay 1 1 1-Ta 1-Ta 1
Az 1 1 —1-Ta 1-Ta -1
Ay 1 1 —1-Th —1-Th 1
Ay 1 1 1-Th —1-Th -1
As 2 -2 0 0 0

* A=2m/a(x,0,0) (diamond). Phase factor Ta = exp|i5x]

Table 10.10. Character table Ca, for the group of the wave-vector at a X point
for the nonsymmorphic diamond lattice®

representation {E|0} {Cy|Ta} 2{iC3|Ta} {iC5]0}

2 1 1-Tx 1-Tx 1
Y 1 1-Tx —1-Tx -1
X3 1 —-1-Tx —-1-Tx 1
X 1 —-1-Tx 1-Tx -1

* ¥ =2x/a(k, k,0)(diamond). Phase factor Tx = explirk]

Table 10.11. Character table Cs, for the group of the wave-vector at a A point for
the nonsymmorphic diamond structure®

representation {E|0} 2{C3|0} 3{iC5|0}

A 1 1 1

A2 1 1 -1

As 2 —1 0
* A =2r/a (k,k, k) (diamond)

representations for the group of the wave vector are given in Table 10.10,
where the phase factor T is exp|ink]. As kK — 0 the X' point approaches the
I" point (group Op) and as k — 3/4 the K point (see Fig. 10.4(a)) is reached.
The corresponding compatibility relations are found by relating Table 10.10
to Table C.17 in the limit K — 0 and to a modified form of Table 10.10 in the
limit k — 3/4.

Along the A direction the symmetry operations do not involve the trans-
lation 74 and therefore no phase factors appear in the character table for the
group of the wave vector along the A axis (Table 10.11), nor do phase fac-
tors enter the character table for the end points of the A axis either at the
I' point (0,0,0) or at the L point (7w/a)(1,1,1) which has symmetry Dsq (see
Table C.18).
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Table 10.12. Character table for the group of the wave-vector at a X point for the
nonsymmorphic diamond structure®

representation {E|0} {Co|0} 2{C:|Ta} 2{iCo |0}

X1 2 2 0 2
Xo 2 2 0 -2
X3 2 —2 -2 0
Xy 2 -2 2 0

*X = (27/a)(1,0,0)

The point X at k = (27/a)(1,0,0) is a special point. The primitive trans-
lations can be written as

a1 = (a/2)(1,1,0), as=(a/2)(0,1,1), as=(a/2)(1,0,1). (10.45)

The translation group T} is formed by elements {¢|R,,}, where R,, = nja; +
naas + nzas, and where ni,ny, ny are integers. Using the Bloch wave func-
tions as a basis, the phase factors are represented by eExFn — (_1)(n2+n3)
considering the X point at the zone boundary along the A-axis.

The factor group Gx /T'x has 14 classes. However, Table 10.12 shows only
four classes and four relevant irreducible representations. Six of the 14 classes
corresponding to translations have only 0 entries for all the characters, and
the remaining four classes can be obtained from Table 10.12 by adding a 74
translation and multiplying the characters by —1. Because of the irrelevant
representations, the compatibility relations between high symmetry points in
nonsymmorphic groups are sometimes not evident. For example, A; + A) go
into X7 and Ajs goes into Xy. This is easily seen for the first { |0}, second
{C?%]0} and fifth {2iC%|0} classes in Table 10.9, while the two remaining classes
in the A group, namely {2Cy|7;} and {2iC%|74}, go into two classes of the X
point that are not listed in Table 10.12 and have all entries for their characters
equals zero.

In summary, for some of the high symmetry points of the diamond struc-
ture, the group of the wave vector is found in a similar way as for a symmorphic
FCC structure, while for other high symmetry points (e.g., along the A and
Y axes) the group of the wave vector behaves differently. The high symmetry
points where phase factors are introduced are A, X, W, S(Z) and those with-
out phase factors are I', A, L, Q. The point X is a special point at which the
structure factor vanishes and there is no Bragg reflection, nor are there phase
factors, but the behavior of the X point in the diamond structure is different
from that of the X point in the FCC structure which is a true Bragg reflec-
tion point. The group of the wave vector for all the high symmetry points
on the square face, for example W and S(Z), of the Brillouin zone for the
diamond structure are also twofold degenerate. This degeneracy reflects the
fact that the structure factor for the Bragg reflection for that whole face is



10.9 Finding Character Tables for all Groups of the Wave Vectors 235

identically zero and hence there is no physical reason for the electronic or
phonon dispersion curves to be split by that particular wave vector.

10.9 Finding Character Tables for all Groups
of the Wave Vectors

Fortunately, tables for the group of the wave vector for each unique k vector
for each of the 230 space groups have been established and are available
in various references [49, 54]. These listings contain character tables for all
groups of the wave vectors for every space group. These references do not
refer to specific materials — they only refer to the space group which describes
specific materials.

Appendix C gives the character tables for the group of the wave vector for
all the high symmetry points for the simple cubic lattice space group #221.
Familiarity with the use of character tables for the group of the wave vector
can be gained through the problems at the end of this chapter (Sect. 10.9).

Selected Problems

10.1. Sketch the primitive translation vectors for the unit cells in r-space and
k-space for the five 2D Bravais lattices given in Table 10.1. What is the angle
between b; and by?

10.2. (a) Construct the star and group of the wave vector for a simple 2D
hexagonal space group (#17), as discussed in Sect. 10.3.2. Show how the
group of the wave vector for k = by /2 is a subgroup of the group of the
wavevector at k = 0.

(b) Now construct the star and group of the wave vector for the 2D hexagonal
space group #14 and contrast your results with those in (a).

10.3. The Brillouin zone and the high symmetry points of the tetragonal
structure shown in Fig. 10.7 on the right applies to the space group of the
structure shown on the left. See Problem 9.1 for the real space symmetry of
this 3D structure.

(a) Find the star of the wave vector for this space group.

(b) Find the group of the wave vector for the I" point (k = 0).

(¢) Now find the group of the wave vector along the A, A and X directions
and give the compatibility relations relating the irreducible representa-
tions at £ = 0 to those along these high symmetry axes when we move
away from the I" point.
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Fig. 10.7. (a) 3D crystal structure composed of a tetragonal Bravais lattice with
a molecule with Doq symmetry. (b) The tetragonal Brillouin zone with the high
symmetry points

10.4. (a) Show that for the diamond structure (Sect. 10.8) the product of two
symmetry operations involving translations 7 yields a symmetry element
with no translations

{a|m}{BIr} = {710},

where 7 = (1,1, 1)a/4. What is the physical significance of this result?
(b) What is the result of the product of the two symmetry elements
{a|T}{B]0}? Is this product the same as {S|0}{a|r}? If not what is
the difference?
(c) What are the symmetry operations and the group of the wave vector for
the diamond structure at the L point? at the K point? at the W point?
(d) Find the characters x®4"" for one symmetry operation in each class of the
diamond structure, space group #227.

10.5. (a) List the real space symmetry operations of the nonsymmorphic two-
dimensional square space group pdgm (#12).

(b) Explain the symmetry diagrams and the point symmetry notations for
space group #12 (pdgm) in Table B.12 (Appendix B) which was taken
from the International Crystallography Tables.

(c) Find the group of the wave vector for the high symmetry points in the
space group p4gm and compare your results with those for the symmorphic
group pdmm [Table B.11 (Appendix B)].

(d) What is the difference between the 2D space group #11 (pdmm) and the
3D group P4mm? What would be the difference in the equivalence trans-
formation 9%V for the two cases (you can instead give the characters
XY for this transformation)?
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10.6. The electronic energy band structure of graphite near the Fermi level
has become especially interesting after the discovery of single wall carbon
nanotubes in 1993. (The crystal structure of 3D graphite is shown in Fig. C.1
in Appendix C and problem 9.6 relates to the space group crystal structures.)

(a) Find I*9Y at the I'-point for the four atoms in the unit cell of graphite
(see Fig. C.1 in Appendix C). Give the I" point irreducible representations
contained in ["¢aWV,

(b) Explain the symmetry operations for the group of the wave vector at k = 0
for group #194 that combine point group operations with translations.
Compare your results to Table C.24 in Appendix C.

10.7. This problem makes use of carbon nanotubes (see Problem 9.7) to dis-
cuss space groups and line groups. Appendix E provides information of use to
solve this problem (see also reference [8]).

(a) Find the lattice vectors in reciprocal space and describe the one-
dimensional Brillouin zone of carbon nanotubes. Compare your results to
Appendix E.

(b) Find the factor groups Gy /T for the group of the wave vectors at the I’
point (k = 0) for chiral and achiral carbon nanotubes, and the character
tables for the isomorphic point groups. Then apply your result explicitly
to a metallic (6,6) and a semiconducting (6,5) nanotube.

(c) Find the line groups for chiral and achiral carbon nanotubes and their
respective character tables. By factoring out the effect of translations from
line groups, find the resulting point groups (called isogonal point groups),
with the same order of the principal rotation axis, where rotations include
a screw-axis. Also give explicit results for the (6,6) and (6,5) nanotubes.

(d) Repeat (a), (b) and (c) for k # 0.

(e) Discuss the different dimensionalities for the irreducible representations
in space groups compared with line groups, for both £ = 0 and k # 0.

10.8. Consider the carbon nanotubes presented in Sect. 9.4 and discussed in
Appendix E.

(a) Show that the "9 for zigzag SWNTSs at k = 0 is

n—1
F;g;l;/g = Alg + Bog + Aoy + By + Z(Ejg + Eju) , (1046)
j=1

(b) Find the compatibility relations along the one-dimensional Brillouin zone
for both chiral and achiral carbon nanotubes.
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Applications to Lattice Vibrations

Our first application of the space groups to excitations in periodic solids is
in the area of lattice modes. Group theoretical techniques are important for
lattice dynamics in formulating the normal mode secular determinant in block
diagonal form, and symmetry is also important in determining the selection
rules for optical processes involving lattice modes such as infrared and Ra-
man activity. Transitions to lower symmetry through either phase transitions
or strain-induced effects may lead to mode splittings. These mode splittings
can be predicted using group theoretical techniques and the changes in the
infrared and Raman spectra can be predicted. Another aim of this chapter is
to consolidate some of the space group concepts of Chap.9 on r space and
Chap. 10 on k space with additional developments on both the fundamentals
and applications of space groups.

11.1 Introduction

The atoms in a solid are in constant motion and give rise to lattice vibrations
which are very similar to the molecular vibrations which we have discussed
in Chap.8. We discuss in this section and in Sect.11.2 the similarities and
differences between lattice modes and molecular vibrations.

Suppose that we have a solid with N atoms which crystallize into a sim-
ple Bravais lattice with 1 atom/unit cell. For this system there are 3N de-
grees of freedom corresponding to three degrees of freedom/atom for the
molecular system or three degrees of freedom/primitive unit cell for sim-
ple crystalline solids. There are N allowed wave vector states in the Bril-
louin zone which implies that there are three branches for the phonon dis-
persion curves of a simple monatomic solid, each branch containing solu-
tions for N k-vectors. For the case of molecules, we subtract three de-
grees of freedom corresponding to the uniform translation of the molecule.
In the crystalline solid, these uniform translational modes correspond to
the acoustic modes at &k = 0, which are subject to the constraint that
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Fig. 11.1. Phonon dispersion curves for a one-dimensional line of atoms with (a)
a single mass and (b) two different masses m and M

w2 oustic = 0 as k — 0. The three modes corresponding to the rota-
tions of the solid about the center of mass are not specifically considered
here.

We have found in Chap. 10 that the translational symmetry of a crystal
is conveniently handled by labeling the N irreducible representations of the
translation group by the N k vectors which are accommodated in the 1st
Brillouin zone. So if we have a primitive unit cell with 1 atom/unit cell,
there are three vibrational modes for each k value and together these three
modes constitute the acoustic branches. In particular, there are three acoustic
vibrational modes for the k = 0 wave vector, which exhibits the full point
group symmetry of the crystal; these three acoustic modes correspond to the
pure translational modes which have zero frequency and zero restoring force.

We review here the phonon dispersion relations in a one-dimensional crys-
tal with 1 atom/unit cell (see Fig.11.1(a)) and with 2 atoms/unit cell (see
Fig.11.1(b)) having masses m and M where m < M, and a is the distance be-
tween adjacent atoms. For the acoustic branch at k = 0, all atoms vibrate in
phase with identical displacements u along the direction of the atomic chain,
thus corresponding to a pure translation of the chain. The wave vector k dis-
tinguishes each normal mode of the system by introducing a phase factor e'*®
between the displacements on adjacent sites. For the case of one atom/unit
cell, the lattice mode at the zone boundary corresponds to atoms moving 90°
out of phase with respect to their neighbors. For the case of 2 atoms/unit
cell, the size of the unit cell is twice as large, so that the size of the corre-
sponding Brillouin zone (B.Z.) is reduced by a factor of 2. The dispersion
relations and lattice modes in this case relate to those for one atom/unit cell
by a zone folding of the dispersion relation shown in Fig. 11.1(a), thus leading
to Fig. 11.1(b). Thus the optical mode at k = 0 has neighboring atoms moving
out of phase with respect to each other. The normal mode at the new B.Z.
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Fig. 11.2. Phonon dispersion curves for Ge along certain high symmetry axes in the
Brillouin zone. The data at the I' point are from Raman scattering measurements
and the data elsewhere in the zone are from neutron scattering experiments [28]

boundary k& = 7/2a thus corresponds to a mode where one atom is at rest,
while its neighbor is in motion.

In three-dimensions, the phonon dispersion relations for Ge with the di-
amond structure (with 2 atoms/unit cell) are plotted along high symmetry
directions in Fig. 11.2 and the dispersion relations are labeled by the appropri-
ate irreducible representations by giving the symmetry of the corresponding
normal mode (see Chap. 10 for the notation used in Fig.11.2). The phonon
dispersion relations for germanium are determined from inelastic neutron scat-
tering measurements and are plotted as points in Fig. 11.2. At a general point k
in the B.Z. for the diamond structure, there are three acoustic branches and
three optical branches. However, at certain high symmetry points and along
certain high symmetry directions, mode degeneracies occur as, for example,
along I'L and I'X. Group theory allows us to identify the high symmetry
points in the B.Z. where degeneracies occur, which branches stick together,
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which branches show simple mode crossings, and which modes show anticross-
ings, [12-14,28,30] (see Fig. 10.5), to be discussed further in this chapter.

The symmetry aspects of the lattice mode problem at k = 0 for simple
structures with 1 atom/unit cell are simply the uniform translation of the
solid. However, group theory is needed to deal with lattice modes away from
k = 0. Furthermore, the lattice modes that are of interest in the current
literature often involve complicated crystal structures with many atoms/unit
cell or systems with reduced dimensionality; for such problems, group theory
is a powerful tool for lattice mode classification and for the determination of
selection rules for infrared and Raman spectroscopy and for phonon-assisted
optical transitions more generally.

The general outline for procedures that utilize group theory to solve for
the lattice modes in solids is as follows:

1. Find the symmetry operations for the group of the wave vector k = 0, the
appropriate character table and irreducible representations.

2. Find the irreducible representations using Iat. mod. = I°M™Y' ® INiector-
The meaning of this relation is discussed below (item (c) in Sect.11.2).
We will use Flat.mod. to denote Hatticc modes-

3. Find the irreducible representations of Il.¢.mod.- The characters for the
lattice mode representation express the symmetry types and degeneracies
of the lattice modes.

4. Find the normal mode patterns.

5. Which modes are IR-active? Which modes are Raman-active? Are there
any polarization effects?

6. Repeat items 14 for other points in the Brillouin zone and find the lattice
for k #£ 0.

7. Using the compatibility relations, connect up the lattice modes at neigh-
boring k points to form a phonon branch.

11.2 Lattice Modes and Molecular Vibrations

There are several aspects of the lattice mode problem in the crystalline phase
that differ from simple molecular vibrations (see Sect.8.2):

(a) The eigenvectors and normal modes. In the lattice mode problem, we con-
sider normal modes for the atoms in a unit cell rather than for a molecule,
and in either case the lattice mode is one form of a basis vector or eigen-
vector (see Chap.4). Since the symmetry is different for the various types
of k-vectors in the Brillouin zone, we must solve the lattice mode problem
for each distinct type of k-vector. On the other hand, for many experi-
mental studies of the lattice modes, we use light as our probe. Usually the
main interest is in lattice modes at or near k = 0 (the I" point) because the
wavelength of light is long (A &~ 500 nm) compared to lattice constants a,
and the magnitude of the corresponding k wavevector (k = 27 /)\) is very
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small compared with Brillouin zone dimensions (27/a, @ ~ 0.1-1.0nm).
Most of our simple examples, therefore emphasize the lattice modes for
k=0.

(b) Equivalence. To find the equivalence transformation 1'°9%V- for molecules,
we consider the action of a symmetry operator PR on an atomic site and
examine the transformation matrix to see whether or not the site is trans-
formed into itself under the point symmetry operation PRQ. In the case of
a crystal, however, we consider all points separated by a lattice vector R,
as identical when considering I" point (k = 0) phonons. Thus r — r + R,
is an identity transformation for all R,,. and therefore we denote the equiv-
alence transformation in crystalline solids by I"*"": and the correspond-
ing characters of this representation by y°4V-. Compound operations in
nonsymmorphic groups always give x°4"V- = 0 since the translation 7,
is not a lattice vector. When considering lattice modes away from the I’
point, we must consider the group of the wavevector G and phase factors
related to translations. Modes away from k& = 0 are discussed in Sect. 11.4.

(c) Degrees of freedom and phonon branches. For the case of molecular vibra-
tions, we have

Fmol. vib. = chuiv. & Fvcc - Ftrans — Frot , (111)
whereas for lattice modes (lat. mod.), we simply write
Flat. mod. = chuiv. ® Fvcc . (112)

That is, we do not subtract Ityans. and Iyet. in (11.2) for the lattice modes
for the following reasons. Each atom /unit cell has three degrees of freedom,
yielding a normal mode for each wave vector k in the Brillouin zone. The
collection of normal modes for a given degree of freedom for all k vectors
forms a phonon branch. Thus for a structure with one atom/unit cell there
are three phonon branches, the acoustic branches. If there is more than 1
atom/unit cell, then

no. of branches = (no. of atoms/unit cell) x 3 (11.3)

of which three are acoustic branches and the remainder are optical
branches. The translational degrees of freedom correspond to the triv-
ial k = 0 solution for the three acoustic branches which occur at w = 0
and are smoothly connected with nontrivial solutions as we move away
from the I' point. Since the atoms in the solid are fixed in space, there
are no rotational degrees of freedom to be subtracted.

We will now illustrate the application of group theory to the solution of the
lattice mode problem for several illustrative structures. First we consider sim-
ple symmorphic structures in Sect. 11.3. Then we consider some simple non-
symmorphic structures (see Sect. 11.3.3). Our initial examples will be for the
k = 0 modes. This will be followed by a discussion of modes elsewhere in the
Brillouin zone.
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11.3 Zone Center Phonon Modes

In this section we consider the symmetries of zone center phonon modes for
some illustrative cases. The examples selected in this section are chosen to
demonstrate some important aspect of the lattice mode problem and to gain
some experience in using simple space groups.

11.3.1 The NaCl Structure

The NaCl structure is shown in Fig.9.6(b). This very simple example is se-
lected to illustrate how the symmetries of the lattice modes are found. We
take our “basic unit cell” to be the primitive rhombohedral unit cell of either
one of the inter-penetrating FCC structures (space group #225 (Fm3m) O}),
so that each primitive unit cell will contain an Na atom and a Cl atom. The
larger cubic unit cell (Fig.9.6(b)) contains four primitive unit cells with four
Na and four Cl atoms (ions). The space group O for the NaCl structure is
a symmorphic structure, and the group of the wave vector at k = 0 for the
NaCl structure is Oy,. Since the details of the translations do not enter into
the considerations of phonons at k = 0 for symmorphic space groups, we need
to consider only point group operations for Oy as given in Table 10.2. Under
all symmetry operations of Oy each Na and Cl atom site is transformed either
into itself or into an equivalent atom site separated by a lattice vector R,,.
Thus,

reaw- —opy . (11.4)
For Oy, symmetry, [e.. = 15, so that at kK =0

Nat. mod. = 211 ® I'ts = 2175, (11.5)

where the basis functions for I'5 are (x,y, z). Thus both the acoustic branch
and the optic branch at k = 0 have I; (or Ij;) symmetry. The normal
modes for the acoustic branches of the NaCl structure have both the Na and
Cl atoms moving in phase in the x, y, and z directions, while for normal

...... >--..‘>---> (:I:7y0r Z)

acoustic branches

------ o

optic branches

= (z,y or 2)

Fig. 11.3. In-phase (acoustic) and out-of-phase (optic) normal modes at k = 0 for
NaCl
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modes in the optic branches, the two atoms move out of phase in the z, y,
and z directions (see Fig.11.3). Since the electromagnetic interaction trans-
forms as the vector (I75), the optic branch is infrared-active. The acoustic
branch is not optically excited because w = 0 at k = 0. Since the optic
branch for the NaCl structure has odd parity, it is not Raman-active. As
we move away from the I' point (k = 0), the appropriate symmetries can
be found by compatibility relations. For example along the (100) directions
I'is — A1 + Ag in which A; is the symmetry of the longitudinal mode and
Az is that for the doubly degenerate transverse modes. We will now give
several other examples of zone center modes in other structures and then re-
turn in Sect. 11.4 to the discussion of nonzone-center modes for simple struc-
tures.

11.3.2 The Perovskite Structure

Let us now consider lattice modes in BaTiOg (see Fig.9.7(c)), an example of
a cubic crystal structure with slightly more complexity, but still correspond-
ing to a symmorphic space group. The focus of this section is to illustrate
the identification of the normal modes. For the perovskite structure shown in
Fig.9.7(c), there are 5 atoms/unit cell and therefore there are 15 degrees of
freedom, giving rise to three acoustic branches and twelve optical branches.
The point group of symmetry at k = 0 is Oy,. Consider the unit cell shown
in Fig.11.4. The Ba** jons at the cube corners are shared by eight neigh-
boring unit cells, so that one Ba®T ion is considered to be associated with
the unit cell shown. Likewise the O?~ ions in the face centers are shared by
two unit cells, so that 302~ ions are treated in the unit cell shown. The Ti*"
ion at the cube center is of course fully contained in the unit cell shown in
Fig. 11.4.

Using the diagram in Fig.11.4, we thus obtain Character Table 11.1
for I"°9"- From the character table for Oy (see Table A.31) we see that

reamv- = 3rt 4. (11.6)

We note that the Ba?* and Ti** ions each transform as I')” with the three
oxygens transforming as I} + I'12. In Oy symmetry

Iyee. =175, (11.7)
so that

DNatmod. = (BIT + I'h) @ I'fy = 315 + (ITh ® I'3) (11.8)
=AI; + oy = A + Ty (11.9)
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Table 11.1. Characters for Iquiv for perovskite. The atoms that remain unchanged
under each symmetry operation are indicated

E 8Cs3 3C% 6C 6C, i 8Cs 3iC7 6iCh,  6iCy

reaiv- 5 2 5 3 3 5 2 5 3 3
all Ba,/Ti all BaTi Ba/Ti all Ba/Ti all Ba/Ti Ba,Ti
one O one O one O one O

Fig. 11.4. Schematic diagram of the z-component lattice modes at k = 0 for the
BaTiOs perovskite structure. (a) I'is acoustic mode; (b) I'2s mode where only two
of the three distinct oxygens move; (c) I15 mode with the Ti** and Ba?T vibrating
against the oxygens. (d) I''s mode with the Ti** vibrating against the Ba?t and
(e) I's breathing mode of the transverse oxygens vibrating against the longitudinal
oxygens, while the Ti*t and Ba?* are at rest

where we note that both I'; and I%; have odd parity. Thus at k = 0
there are five distinct normal mode frequencies, including the acoustic branch
with I'j; symmetry and w = 0. Since the atom sites for the Ba?T and
Ti** ions transform as I')", we know that the I'5 mode requires motion of
the oxygens. In the following we illustrate how the normal mode patterns
shown in Fig. 11.4 are obtained. Note the numbers assigned to the oxygens in
Fig.11.4(b).

The search for the eigenvectors at the I" point is similar to the procedure
used for finding the normal modes of molecular vibration (see Sect. 8.3). Since
k = 0, the phase factors for the translational symmetries are all e/*7 = 1.
One just needs to consider the unit cell as the “molecule”, find the normal
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modes, and the eigenvectors will be a repetition of the normal modes in all
the unit cells in the lattice.

From the character table for O; we note that the characters for C§ are
different for the I'15 and Is modes, and for this reason Cf is a useful symme-
try operation for finding the normal mode displacements. First we consider
the effect of C} on each of the three inequivalent oxygen sites and on each of
the three components of the vector; this consideration is independent of the
symmetry of the vibrational mode:

1 2 T Y
cil12)1=11], Cily|l=1|—-=]|". (11.10)
3 3 z z

Finding the normal mode for the acoustic translational branch is trivial (see
Fig.11.4a). The operations of (11.10) are now applied to find the normal
modes in Fig.11.4b and e. For the Is5 displacements, Fig. 11.4b shows the
motions for the z component of the mode. The partners are found by cyclic
operations on (z,y,z) and atom sites (1, 2, 3), as given in (11.11). Then
operation by C} yields

—T9 + 3 —y1 + Y3 0-1 0 —T9 + 3
Cil vi—ys |=|-a2+a3|=(1 0 0 T (11.11)
—z1+ 22 —zo+ 21 0 0-1 —21 4+ 29

giving a character of —1 for C} in the I representation. Performing repre-
sentative operations on this normal mode will show that it provides a proper
basis function for the I'5 irreducible representation in the point group Op,.

Now consider the I'15 normal mode given in Fig. 11.4e. The displacements
shown in the diagram are for the z component of the mode. To achieve no
motion of the center of mass, the actual displacements must be —z; — 2o + 223
for the three oxygens at positions 1, 2 and 3. Using cyclic permutations we
obtain the three components of the mode given in (11.12). Then action of C%
yields

201 — 22 — a3 2y2 — Y1 — Y3
CZ —y1 + 2y2 — y3 = To — 271 + 23
—21 — 29 + 223 —29 — 21 + 223
010 2$1 — T2 — X3
= —-100 fy1+2y27y3 s (11.12)
001 72172’24’223

so that the character for this I'15 mode is +1, in agreement with the character
for the C} operation in the I'5 . irreducible representation (see the character
table for Oyp). Operation with typical elements in each class shows this mode
provides a proper basis function for I75.

Clearly all the modes shown in Fig. 11.4 have partners z,y and z, so that
collectively they are all the normal modes for BaTiO3. Since all modes for
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BaTiOs at k = 0 have odd parity, none are Raman-active, noting that for
the Oy, point group, Raman-active modes have Ay, E, and Ty, (or I, 12 and
I's5) symmetries. However, the 315 or 3I; modes are infrared-active, and
can be excited when the E vector for the light is polarized in the direction of
the oscillating dipole moment, as indicated in Fig. 11.4.

11.3.3 Phonons in the Nonsymmorphic Diamond Structure

We now illustrate the mode symmetries at the I" point for a nonsymmorphic
space group with 2 atoms/unit cell (specifically we illustrate the lattice modes
of Ge or Si, which both crystallize in the diamond structure). Most of the sym-
metry properties, including the calculation of x°®V: and the decomposition
of I'*9%V- into irreducible representations of Oy, (I = I + I'y), were dis-
cussed in Sect. 10.8. We now make use of this result for I'°9"" in discussing
the I'" point phonons.

To get the characters for the lattice vibrations, we then take I'vec. = 15
which is odd under the inversion operation:

Dat. mod. = MY @ Tyee. = (I + ') @ I's = I'i5 + oy (11.13)

where I55 and I'»/ are respectively, even and odd under the inversion opera-
tion.

For each k value, there are six vibrational degrees of freedom with 2
atoms/unit cell. These break up into two triply degenerate modes at k = 0,
one of which is even, the other odd under inversion. The odd mode I35 is the
acoustic mode, which at k = 0 is the pure translational mode. The other mode
is a I's5 mode, which is symmetric under inversion and represents a breath-
ing or optic mode. The optic mode is Raman-active but not infrared-active.
Furthermore, the Raman-active mode is observed only with off-diagonal po-
larization E;1 Eg for the incident and scattered light.

Let us now illustrate a screw axis operation in the diamond structure (see
Fig.9.6(g)) and see how this operation is used in finding the normal modes in
a nonsymmorphic crystal. Denoting the dark atoms in Fig. 10.6 by 1 and the

;) and on the

light atoms by 2, consider the effect of {C§|7} on atom sites <
x
vector | vy

z

@i (3)=(3) tem o] = (=) (11.14)

z z

Using these results we can then obtain the characters for the displacements
(Ry 4+ R2) which has I'i5 symmetry and is identified with the basic vibration
of an FCC sublattice:
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As Transverse
I3
A Longitudinal
w
Ay Longitudinal
As Transverse
I's

4q

Fig. 11.5. Lattice modes along the A-axis for the diamond structure, showing the
compatibility relations as we move away from the center of the cubic Brillouin zone

1+ 2o Y2 + 1 010 1 + X2
{Cilmy |yt | = —m2—a1 | = | =100 | | y1+u2 (11.15)
21+ 22 20+ 21 001 21+ 22

yielding a character of 4+1 for {Cf|7}, in agreement with the character for
{C?|7} in the I'5 irreducible representation for the acoustic mode transla-
tional branches of point group Oy,. If all the symmetry operations are then
carried out, it is verified that Ry + Ry provides basis functions for the I75
irreducible representation of Oy,.

When the two FCC sublattices vibrate out of phase, their parity is reversed
and a mode with even parity (the Is5 mode) is obtained

T — X2 Y2 — Y1 0-1 0 T — T2
{Ciltt [ pi—w2 | =| —z24a [ =1 0 O | y1—w | (11.16)
Z1 — 22 zZ9 — 21 0 0-1 zZ1 — 22

yielding a character of —1. This checks with the character for {Cf|T} in the
irreducible representation I55 for the point group Oy,.

As we move away from k = 0 along the A axis or the A axis, the triply
degenerate modes break up into longitudinal and transverse branches. The
symmetries for these branches can be found from the compatibility relations
(see Sect.10.7). For example, as we move away from k = 0 along the A axis
toward the X point (see Fig.11.5), we have the compatibility relations

I's — A1+ 45
Ios — Ay + As. (11.17)

Group theory gives no information on the relative frequencies of the I'15 and
I55 modes.
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We finally note that in general the Raman tensor has modes which
transform as a second rank symmetric tensor (see Table 10.2). The Raman-
active modes would include modes for the Oy, group of the wave vector with
symmetries I + I12 + I55. Since the optic mode for the diamond struc-
ture at £ = 0 has Ib5 symmetry, this mode is Raman-active. Table 10.2
also tells us that the I symmetry mode has basis functions of the form
xy,yz, zx, indicating that the Raman tensor for the diamond structure is of
the functional form E;EZ, Qizy(I25) plus cyclic permutations of ,y, z. Thus,
observation of this Raman-active mode requires the use of cross-polarized
light or (||, L) settings of the incident and scattered polarizations, respec-
tively.

11.3.4 Phonons in the Zinc Blende Structure

Closely related to the diamond structure is the zinc blende structure (space
group F43m #216, T3) where the two FCC sublattices in Fig. 10.6 are chem-
ically distinct. This space group is symmorphic. This is the crystal struc-
ture for III-V semiconductor compounds, such as GaAs. For this case, the
Ga atoms (ions) would be on one FCC sublattice and the As ions on the
other FCC sublattice. If it happens that a Ga atom is on the wrong lat-
tice, this is called an antisite location, and is considered a defect in the lat-
tice.

Since the sublattices are chemically distinct, the group of the k-vector at
k = 0 for the zinc blende structure has only the 24 operations of the point
group T. It is a symmorphic structure and the factor group Gy /Ty is there-
fore isomorphic to its point group Ty (Sect.9.1.4). In calculating Iat.mod.,
we note that the vector in group Ty transforms as the irreducible representa-
tion I15. Thus from the irreducible representations contained in Teaviv. e
obtain

Fequiv. = 2A1 = 2F1 s
so that when we take the direct product of I"*YV: with ... we obtain
Flat.mod. = 2A1 (%9 TQ = 2T2 = 2F15 . (1118)

For the zinc blende structure, the optic mode is both infrared-active and
Raman-active since the irreducible representation I35 for point group Ty
corresponds to both Iis5 and I55 of the point group Op. This correspon-
dence is apparent from comparing the character tables for T,; and Oj (see
Table 10.2).

The well known LO-TO splitting of the optic phonon in ionic crystals
is associated with an anticrossing of the optic phonon level and the photon
propagation dispersion relation which occurs very close to the B.Z. center (see
discussion in Sect.10.7). Appropriate linear combinations of wave functions
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will lead to two distinct levels that do not cross, each represented by the
movement of one sublattice. Since GaAs is a polar crystal, in this case, the
LO and TO modes will be split. The more polar the crystal, the larger the
LO-TO splitting.

11.4 Lattice Modes Away from k£ = 0

Modes at k # 0 can be observed by optical spectroscopy when superlattice
effects are present, giving rise to zone folding, or when defects are present,
breaking down translational symmetry. Nonzone center modes can also be ob-
served in second-order Raman spectra (comprising phonons with wave vectors
+k and —k). Lattice modes at k # 0 are routinely observed by neutron, X-ray
and electron inelastic scattering techniques.

To construct phonon branches for the entire range of k vectors within
the first Brillouin zone, we must consider the general procedure for finding
the lattice modes at other high symmetry points in the B.Z., and we make
use of compatibility relations to relate these solutions to related solutions at
neighboring k-points.

The procedure for finding lattice modes at k # 0 is outlined below:

(a) Find the appropriate group of the wave vector at point k.

(b) Find I'®9%"V:- and I, for this group of the wave vector. When considering
lattice modes away from the I' point, care must be taken with special k
points at the Brillouin zone boundary where R 'k = k + K, (K, is
a reciprocal lattice vector). One should not simply use y°4V: = 1 or
0, as for the case of molecules, because the lattice vector translation for
k # 0 will add a phase factor (see Sect.10.5). In this case we use for the
characters for the equivalence transformation

X = 3 gy T (11.19)
J

where 7; is the position of the jth atom with respect to the origin of the
point group, and dg,r; »; = 1 if Ryr; and 7; refer to equivalent atomic
positions (Ror; =7, + Ry).
(¢) Within a unit cell
DNat.mod. = FequiV' @ I'vec. (11-20)

find the symmetry types and mode degeneracies of I1at.mod.-
(d) Introduce a phase factor relating unit cells with translation by 7:

Py W (r) = e®* T (r)  Bloch theorem. (11.21)

(e) Find lattice modes (including phase factor).

We illustrate these issues in terms of the NaCl structure which was previously
considered with regard to its normal modes at k = 0 (see Sect. 11.3.1).
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11.4.1 Phonons in NaCl at the X Point k = (7/a)(100)

The group of the wave vector at the point X is given in the Table C.15 in
Appendix C. We first identify the symmetry operations of point group Dy
and we then obtain I'°9"Y" for these symmetry operations.

We first review the situation for the I' point (Oy), see Table 11.2. Thus,
we have I'°1V- for the Na and Cl ions, and for I'yee. at k=0

F;(;uiv. -
Fétlluiv. -
Lyee. =I5,
so that for £ = 0 we have
Datmod. = 211 ® I's = 2115

Similarly for the X point, we first find '°9"- for each type of atom (see
Table 11.3). Thus, we obtain reawv- P and INat.moa. at the X point:

Fls](;uiv. — X,
Fétlluiv. - X,
FDiee. = X) + X5,
where X corresponds to x, and X! corresponds to (y, z). We thus obtain
Nat.mod. = 2X1 @ (X; + Xi) = 2X, + 2X].

Compatibility relations give I'1s — Ay +As; — X+ X! for the phonon branch
connecting I' to X.
The action of the translation operator on a basis function (normal mode)
yields
Prryu(r) = e*Tu(r), (11.22)

Table 11.2. Characters for I'*"V: for NaCl at the I" point

I'point E 8Cs 3C? 6C, 6C, i 8iCs 3iC? 6iCy 6iCy

rgey 11 1 1 111 1 1 1
ey 11 1 1 111 1 1 1

Table 11.3. Characters for %" for NaCl at the X point

X point E 207, C§ 20y 20> i 2C; iCj 2iCy  2iCy

rgev 11 1 1 111 1 1 1
ey 11 1 1 111 1 1 1
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where k = (w/a)Z at the X point under consideration. For R, = aZ we
obtain e’*'7 = e = —1 so that there is a 7 phase difference between unit
cells along &. However, for R, = afj or a2, we have ¢’*7 = ¢ = 1 and
there is effectively no phase factor along § and 2.

The phase factor of (11.22) refers to the relative phase in the vibration
between atoms in adjacent unit cells. The relative motion between atoms
within a unit cell was considered in Sect. 11.2. Thus the NaCl structure (space
group #225) has a set of three acoustic branches and three optical branches
each having X} and X! symmetries at the X point, where

Xy —w,
XL —y, 2.
The normal modes for the three acoustic branches are shown in Fig.11.6 in
terms of the symmetry classifications X} and X! (twofold) for the longitudinal
and transverse branches, respectively. The corresponding normal modes for
the three optical branches are shown in Fig. 11.7.
For rows of atoms in unit cells along the y and z directions, even consider-

ing that the crystal is strictly not infinite, there will be essentially zero phase
difference (e*®, with 6 = /N, where N = 107) between molecules vibrating

Acoustic branches &, =7/a

longitudinal
X!
A4

) > Cl
@\r Cl Na 1 @a Cl
...... 2. ... transverse
§
Na Cl N > Na cl
e D ...... ‘ ...... d .......... p ...... ‘ ... transverse
Y y X

Fig. 11.6. Acoustic vibrational modes of NaCl showing longitudinal and transverse
normal mode displacements at the X point (k; = 7/a) in the Brillouin zone for the
X} and X{ normal modes

Optic branches k, =m/a

Cl Cl Cl
Na Na Na PP
longitudinal
..... @,‘ >(}‘ Xflglllln
1
A C1 Na Cl Cl
..... @A,Q @\Ia‘ transverse
X:
Na v N ) Na
D ............ d ..... ’ p ..... ... transverse
X!

Fig. 11.7. Optic vibrational modes of NaCl showing longitudinal and transverse
normal mode displacements at the X point (k; = 7/a) in the Brillouin zone for the
X4 and X{ normal modes
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in the acoustic mode as we move in the y and z directions. This is also true
for the optical branches shown in Fig. 11.7.

11.4.2 Phonons in BaTiO3 at the X Point

The modes in the case of BaTiOj3 (see Fig. 9.7(c)) involve more than one atom
of the same species within the unit cell so that a few new aspects enter the
lattice mode problem in this case. The character table for the group of the
wave vector at the X point for BaTiOg is the same as for NaCl (Table C.15).
At the X point, we compute I'*9%V- (see Table 11.4) using the symmetry
operators for the group of the wave vector at the X point making use of the
notation in Fig. 11.8.

F];(;ulv. =X
F;(ilulv. _ Xl
equiv.
g™ = 2X) + Xy
Dvee. = X} + X1, (11.23)

where X corresponds to x, and X! to (y,z). The symmetries of the normal
modes are found by taking the direct product of IV ® [ec.

B 0= X1 0 (X, + Xb) = X, + X}
L od. = X1 © (X4 + X4) = X, + X5

The Ba and Ti atoms form normal modes similar to NaCl with the Ba moving
along x (X symmetry) or along y or z (X! symmetry) with the Ti and O3 at
rest, and likewise for the Ti atoms moving along the x direction. The phase
relations for atomic vibrations in adjacent unit cells in the = direction have
a phase factor e™ = —1, while rows of similar atoms in the y and z direction
have no phase shift. For the oxygens,

s L= 02X+ Xo) ® (X + X)) =2X, + X} +3X}. (11.24)

The mode patterns and basis functions at the X point for BaTiOg are given
in Fig. 11.8 and Table 11.5.

Table 11.4. Characters for the equivalence transformation for the Ba, Ti and three
oxygen ions in BaTiOs with O} symmetry

X point E 203, CF 20y 20> i 2iC;, iCj 2iCy  2iCs

gy 1 1 1 11 1 1 1 1
rgwve 1 1 1 11 1 1 1 1
reey 3003 3 1 13 3 3 1 1
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The mode symmetry and the normal mode displacements are verified by
the following considerations. Perusal of the X-point character table shows
that the symmetry types are uniquely specified by the operations Cy, C2
and 7. The effect of these operations on the coordinates (z,y, z) and on the
site locations are

1 1 T T
Cyl2|=1|3|, Cylyv]|=1|—-=+],
Z Y
1 1 T —x
C2 2 = 3 ) C2 ) = z )
3 2 z Y
1 1 T —x
2| =(2], tly]=|—y
3 3 z —z

By carrying out the symmetry operations on the basis functions, we verify
that the matrix representations for each of the symmetry operations have the
correct characters for the X} irreducible representation:

Cy(w1 + 22 +23) = (21 + 23 + 22), so that X1 = 41,
Cg($1+$2+l‘3) = —(z1 +.’L‘3+CL‘2), so that X(C2) =-1,
i(xy + 29+ x3) = —(21 + T2 + x3), so that x@ = -1,

Applying the same approach to the normal mode displacements with X/ sym-
metry we have

oo [(rtyrtus) [ ma-amon) 0-1\ (y1+y2+ys
4 21+ 22+ 23 Y1+ Y3+ 10 21+ 22 + 23

STty -1 0 [y1+y2+uys
21+ 22 + 23 0-1)\z1+2z+z2)’

so that x(Cy) = 0, and x(i) = —2, which are the correct characters for the
X! irreducible representation. Finally for the X} modes

04”(—:172 +a3) = (—x3+x2) = —(—22 + 23) — X(C'4||) =-1
Co(—z2 + Ig) =x3— 29 = (—x2+x3) — X(CQ) =+1
i(=m2 + x3) = —(—22 + 73) — x(i) = —1.

These same calculations can be applied to the basis functions in Fig. 11.8 and
their irreducible representations and the results are listed in Table 11.5.

The phase factors for oxygens separated by a lattice vector a are e™ = —1
while the oxygens separated by a lattice vector ay or aZ have no phase differ-
ence (i.e., phase factor = 1).
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X3:y1-y3
n1t+n+173 -};1 +yZ2 “21- 72+ 273

Fig. 11.8. Mode pattern models for the X point modes in BaTiOs. The basis
functions for each normal mode are indicated

Table 11.5. Basis functions for the various irreducible representations entering the
lattice modes in BaTiO3

basis functions irreducible representation
Tr3 — T2 Xé
Y — Y3 Xé
—21 + 22
2rx1 —x2 — 3 X
—y1 + 2y2 — ys Xt
—21 — 22 + 223
T1+x2 + 23 X4
Y1+ y2 +ys X!
21+ 22 + 23

11.4.3 Phonons at the K Point in Two-Dimensional Graphite

Two-dimensional graphite, called a graphene sheet, belongs to the symmor-
phic hexagonal space group #191 of the International Tables of Crystallogra-
phy [58] and has the symmetry designations Déh in accord with the Schoen-
flies notation, and P6/mmm in the Hermann-Mauguin notation. Three-
dimensional graphite is described by the nonsymmorphic space group #194
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and symmetry designation Dgh as is discussed further in Problem 11.1. Al-
though a single graphene sheet is two-dimensional, we need to consider a three-
dimensional space group to account for the out-of-plane phonons. The rota-
tional aspects for real space and for the group of the wave vector at k = 0
in reciprocal space are described by the point group Dgj, (see Fig. 11.9) and
Table A.21. The direct lattice vectors are given by

a; = g (\/§:E+ﬁ>
ag = g (fﬁ:ﬁ +g) : (11.25)

where a = 2.456 A is the lattice parameter denoting the nearest neighbor
distance between crystallographically equivalent atoms. The dotted line in
Fig.11.9a defines the rhombus for the real space unit cell containing two
inequivalent carbon atoms, labeled 1 and 2. The associated Wyckoff positions
for atoms 1 and 2 are

1=(2/3,1/3)
2 =(1/3,2/3) . (11.26)

Figure 11.9b shows the hexagonal Brillouin zone of 2D graphite. The reciprocal
lattice vectors are given by

b = 2F <£km H;y)

3

by = — <\/?§kz + ky> . (11.27)

The letters I', M and K are the high symmetry points while X', T, and A
denote arbitrary points along high symmetry lines, and u represents a general
point inside the two-dimensional Brillouin zone. The K point is a special
symmetry point where the electronic valence and conduction bands cross in
a single point through which the Fermi level passes. Before developing the
group theory for the K point phonons, however, it is interesting to point
out that, for the hexagonal Bravais lattice, the real and reciprocal lattice are
rotated by 90° with respect to each other (see Fig.11.9), and this is reflected
in the definition of the symmetry axes (Fig.11.10).

The appropriate group of the wave vector at the K point is the Dsj, (see
Table A.14). The [ ec. transforms as Ag for light polarized along the z-axis,
and as E’ for light polarized in the (x,%) plane. The x®9"V: and ['°9%V- are
given in Table 11.6. The characters for x°4V- in Table 11.6 are given by the
number of atoms in the unit cell that remain unchanged under a symmetry
operation for each class, except for y°4"V-(C3), since the C3 operation takes
the k = K vector into an equivalent point, i.e., Cg_lK = K + K,,, where
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3
(@) //O---Q\ /,0--1\ T—»,@
/ \

Fig. 11.9. Real (a) and reciprocal (b) lattices for a two-dimensional graphene
sheet. The lattice vectors for real and reciprocal space are indicated and the two
nonequivalent atoms with the real space unit cell are indicated in (a)

Fig. 11.10. (a) Directions of some symmetry operations of 2D graphite in the direct
space. (b) Directions of some symmetry operations of 2D graphite in the reciprocal
space

Table 11.6. I for the K point in graphite (Dsy)

Dgh FE 203 302 Oh 253 30'1,
X;guiw 2 1 0 2 1 0 F}c{quiw — E/
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(@) KiLAE' D, (b) kitAA,D, (C) KoTAE"D,,

(d) kiLoe'p,  (e) kitoa D,  (f) KoTOE"D,

Fig. 11.11. A single graphene sheet. The solid and open dots indicate the A and B
sublattices, respectively. The arrows show directions of the atomic displacements for
the six stationary phonon modes of the graphene sheet at the K point. The labels
of the phonon modes are identified in the text. The dotted and crossed points in
(c) and (f) represent the vectors pointing in and out of the image plane. The large
and small points indicate the magnitudes of the vectors equal to /2 and 1/\/57
respectively

K, is a reciprocal lattice vector. The equivalence transformation is therefore
given by (11.19), where j = 1,2, and r1 = (a/2)[(v/3/3)& + §] and 7o =
(a/2)[(—/3/3)& 4 §]. Considering the K point at K = (b; + by)/3), and
considering C5 'K = K — by and from (11.19) we have for the equivalence
representation (see Sect. 11.4)

Xequiv.(c3) — eib1.r1 +eib2.r2 — e—i4w/3+e—i2w/3 — 9¢os 27‘(/3 =1, (11.28)
as shown in Table 11.6 and a similar result follows for Ss ! K. Finally,
Flat.mod. = Fequiv. & Fvcc. = E/ ® (A; + E/) = A/l + A/Q + E/ + EI/ . (1129)

There are four eigenvalues at the K point; two are nondegenerate and two are
doubly degenerate.
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The eigenvectors can be found from the projector algebra (see Sect.4.3)
by introducing a phase factor relating unit cells with translations by R,, =
niaj + naag, according to (11.21).

Figure 11.11 shows the normal mode displacements in the graphene sheet
at the K point. When considering the D3; symmetry and introducing the K
point phase factor, the K point wavefunction periodicity is described by a
supercell of six carbon atoms, as shown in gray in Fig. 11.11 (the lattice dis-
tortions caused by the K point phonon mode is incommensurate with the two-
atom unit cell). The A} and A} phonon modes shown in Figs. 11.11 (b) and (e)
obey Cg symmetry, while the £/ and E” phonon modes in Figs. 11.11 (a), (d),
and (f) have the C5 rotation axes perpendicular to the hexagonal plane. In
contrast, the point group Dsj, contains the C5 rotation axis, but neither the
Cg nor Cy rotation axes. This contradiction is resolved by considering that
the complex travelling phonon modes at the K (K’) point only have the Cs
rotation axes. Time-reversal symmetry mixes the complex travelling phonon
modes at the K and K’ points into real stationary phonon modes that obey
Dgp symmetry. The stationary phonon modes shown in Figs. 11.11 thus pre-
serve the Cg and (5 rotation axes.

11.5 Phonons in Te
and a-Quartz Nonsymmorphic Structures

In this section we discuss phonon modes for tellurium (with 3 atoms/unit
cell). We then show how the lattice modes for this nonsymmorphic structure
can be used to obtain the lattice modes for a-quartz (with 9 atoms/unit cell)
which has the same space group as Te.

11.5.1 Phonons in Tellurium

The structure for Te (space groups P3121', #152; P3221', #154) is a spi-
ral nonsymmorphic space group as shown in Fig.11.12. There are three Te
atoms/unit cell and these Te atoms are at levels 0, ¢/3 and 2¢/3. The struc-
ture for right-handed Te shows a right-handed screw when viewed along +2.
When the atoms are arranged with the opposite screw orientation, we have

Table 11.7. Character Table for the D3 Point Group

D3 (32) E 203 3C}
xz + y27 z2 Aq 1 1 1
R.,z Ax | 1 1 -1

(02,52) } () } sle 21 o
(

(z® —y*, zy) R:, Ry)
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Fig. 11.12. (a) Model for the Te crystal structure showing the overall structure,
(b) the structure of one chain from the side view, and (c) the top view of three
adjacent chains Fix labels a, b, ¢ on figure
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Table 11.8. Characters for the Equivalence Transformation for the Group of the
Wave Vector at £ = 0 for Tellurium

{Ej0}y  2{Gslr}  3{Cx[0}
XequivA 3 0 1 FequivA — Al +E

left-handed Te. For this structure threefold rotations about the ¢ axis must
be combined with a translation 7 = (¢/3)(001) to leave the crystal invariant.
The three twofold symmetry axes normal to the threefold axis do not require
translations. The appropriate point group at k = 0 is D3 and the charac-
ter table is given in Table 11.7. Note that mirror planes are not symmetry
operations.

Following the same procedure as was used for the nonsymmorphic diamond
structure (see Sect. 11.3.3), we find 1°9%": by considering the number of sites
within the unit cell that remain invariant (or transform into the identical site
in a neighboring unit cell, see Table 11.8). To find the lattice vibrations, we
note that the vector transforms as As + E. This allows us to separate out
the lattice modes in the z-direction from those in the x — y plane. For the
z-direction

equiv. ® Dyee. z = (Al + E) QA=A+ F, (11.30)

where the A; mode corresponds to pure translations in the z direction at
k = 0. The phonon dispersion curves for tellurium have been measured [61]
by inelastic neutron scattering and the results along the high symmetry axes
are shown in Fig.11.13.

We show the normal modes with Ay and E symmetry in Fig.11.14. For
the in-plane motion, the symmetries are obtained by computing:

Y@ Do (ag) = (A1 + E) @ E = E + (A1 + Ay + E). (11.31)

The translational mode in the z,y directions transforms as E. The in-plane
modes at k = 0 are shown in Fig.11.15. The As and E modes are IR active,
and the A; and F modes are Raman-active.

Since the Te structure has a screw axis, right and left circularly polarized
light are of importance for optical experiments. For linear polarization, we
consider the E vector for the light in terms of x, y, z components. For circular
polarization we take the linear combinations (x + iy) and (z — iy). From the
character table, we note that (x +iy)(x —iy) = 22 + y? transforms as A; and

the dipole moment u is related to the polarizability tensor a by

(ug + zuy)/\/5 Q11 02 03 (E; + ZEy)/ﬁ
(ug —iuy)/V2 | = | o1 o aas (E, —iE,)/V2 |, (11.32)
Uy Q31 (32 33 B,
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Fig. 11.13. Phonon modes for Te shown on the left along several high symmetry
directions as indicated on the right (A.S. Pine and G. Dresselhaus, PRB Vol 4, p
356 (1971))
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Fig. 11.14. Normal modes for Te for z-axis vibrations. The A2 mode (a) is a pure
translational mode along the z-axis. The E mode has displacements along z which
have phase differences of w = exp(27i/3) with respect to one another. One partner
of the E mode is shown explicitly in (b). For the other partner, the displacements
correspond to the interchange of w « w?, yielding the complex conjugate (c.c.) of
the mode that is shown
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Fig. 11.15. In-plane normal modes for Te. The A; normal mode (a) is a breathing
mode, while the A2 mode (b) is a rocking mode corresponding to rotations of the
three tellurium atoms for each half cycle of the vibration. The two E modes (c, d) can
be described as a breathing and a rocking mode with phase relations w = exp(27i/3)
between each of the atoms as indicated (with the complex conjugate partner in each
case obtained by the interchange of w « w?)

so that the polarizability tensor for A; modes will have the form

a00
EA’IZ 0a0
000

for in-plane motion with the Raman tensor having components (ELrEb_ +
E' E¥ )a(Ar). The polarizability tensor for the z-axis motion is

000
au=1000
00b

and has A; symmetry with the Raman tensor having components E! ESa(A;).
Finally for general A; motion, the polarizability tensor is written as
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a00
Qs =10a0]. (11.33)
00b

To find the energy for aligning the dipole moment in an electric field, we need
to take the dot product of the dipole moment with the electric field

(ug + iuy)/V2
B u= (B —iB) V2 (B +iB) V2, E2) - | (w0 —iw)/V2 |

Uz
so that
U+
E* u=(E_,E{,E,) | u_
Uz

=F_ ui +Fiu_ + Fou, = Byu, + Eyuy + Fou, = real quantity .

For the electromagnetic (infrared) interaction, the pertinent symmetries are
Eiu_(F)+ E_u4(F) for in-plane motion and E,u,(As) for z-axis motion.
In considering the Raman effect, we find the energy of the Raman in-
teraction in terms of E*- o -E which, when properly symmetrized becomes
1/2 [E* o« -E+ E- o E*} Thus for the Raman mode with A; symmetry,

the induced dipole w4 has the same sense of polarization as the incident
electric field. However, the energy involves E; and Eg or alternatively E7
and E; to yield the combination (1/2)(EY} E* + E' E%) which transforms as
(x +iy)(z — iy) = 22 + 42, as desired for a basis function with A; symmetry.

For Raman modes with E symmetry we can have a dipole moment
uy induced by E,, leading to the combination of electric fields E}E. .
To have a symmetric polarizability tensor, we must also include the term
(EXE;)* = E_E, since the energy must be unchanged upon interchange of
electric fields E «<» E*. Thus the polarizability and Raman tensors must be
of the form

000 . .
- Bl Esa_(E) + B Esa (E
api=|00r |, and yBra-(B)+ E_Efay (B) )0
’ - or BB a_(E) + ELE® o (E).
.

The partner of this polarizability tensor with E symmetry will produce the
displacement w, from an electric field displacement E_ yielding

00r
aga=[000]. (11.35)
0r*0
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The other lattice mode for Te with E symmetry (denoted here by E’) pro-
duces a dipole moment uy from an electric field E_. This however involves
E_(E,)* = E? for the incident and scattered electric fields so that the
polarizability tensor in this case is

0s0
ap1=[000]; basis function z% (11.36)
000
and the corresponding partner is
000
apo=|s00]; basisfunction a2 . (11.37)
000

The Raman tensor for the £’ mode has the form E', ES oy (E)+E" E* a_(E).
We can relate these partners of the E’ modes to the basis functions of the
character table for D3 by considering the basis functions for the partners
1 N2 2
Partner #1: 5(90 —iy)° =%
1 N2 2
Partner #2: 5(:0 +iy)® = a7 . (11.38)

By taking the sums and differences of these partners we obtain

1 1

73+ =Sl +iy)?+ (@ —iy)’ = (@ — )
2 2 1 ST N2
i -t = i(x—i—zy) —é(w—zy) =2y, (11.39)

which form a set of partners listed in the character table for Ds.

11.5.2 Phonons in the a-Quartz Structure

We will now examine the lattice modes of a-quartz (space group D3, #152,
P3;21 for the right-hand crystal or D3, #153, P3312 for the left-hand crystal).
We will use this example as a means for showing how lattice modes for crystals
with several atoms per unit cell (such as a-quartz) can be built up from
simpler units, in this case the tellurium structure discussed in Sect.11.5.1.
In Sect.11.6 we discuss the effect of an applied axial compressive force upon
lattice vibrations in a-quartz.

The spiral structure of a-quartz about the z-axis is shown in Fig. 11.16(a)
where each solid ball represents a SiOs unit, and the diagram on the left
is identical to that for tellurium (see Fig.11.12(a)). The projection of the
nine atoms in SiOy onto the basal plane is shown in Fig.11.16(b). The Si
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atoms (1, 4 and 7) occupy positions at levels 0, ¢/3, 2¢/3, respectively (as for
tellurium). The oxygen atoms (9, 5, 3, 8, 6 and 2) occupy positions at levels
¢/9, 2¢/9, 4¢/9, 5¢/9, Tc/9 and 8c¢/9, respectively (these sites are of course
not occupied in tellurium). Thus both Te and a-quartz are described by the
same space group, but have different site symmetries. Figure 11.16 shows the
right-handed tellurium structure.

There are three molecular SiO4 units per unit cell giving rise to nine atoms
per unit cell or 27 lattice branches of which 24 are optic modes. By examining
the atom locations in Fig. 11.16(b), we can determine the point group symme-
try of a-quartz. The z-axis is a threefold axis of rotation when combined with
the translation 7 = (¢/3)(001). In addition there is a twofold axis from the
center to each of the silicon atoms. The symmetry elements are the same as
for tellurium discussed in Sect. 11.5.1. In order to determine the normal modes
of vibration, we first find the characters for the transformation of the atomic
sites. It is convenient to make use of the results for tellurium, noting that the
silicon atoms in quartz occupy the same sites as in tellurium. In Table 11.9
we obtain the lattice modes in a-quartz at k = 0.

The lattice modes for the silicon are identical with those found previously
for Te, so that part of the problem is already finished. For the six oxygens we
have

Hat.mod., z = (Al + AQ + QE) ® A2 3 for z motion

DNatmod., .y = (A1 + A2+ 2E)® E;  for x,y motion.

2¢/3

'@

= A

2\
Sdne

/¥

(a) (b)
(a) (b)

Fig. 11.16. Structure of (a) right-handed a-quartz and (b) the projection of the
atoms on the basal plane of a-quartz. Atoms #1, 4, 7 denote Si and the other
numbers denote oxygen atoms
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Table 11.9. Characters for the Equivalence Transformation for a-quartz

{El0}  2{Cs|r}  3{C|0}

I—vseiquivA 3 0 1 _ Al + E
Lol 6 0 0 = Ay + Ay +2E

E i
partner is c.c. partner is c.c.

Fig. 11.17. Normal modes along the z-direction for the six oxygens in the a-quartz
crystal. The A2 mode is a uniform translation while the A; mode is a rocking of
the oxygens around the Si. The E modes are related to the A2 and A; modes by
combining the 1,w,w? phases with the translational and rocking motions

Carrying out the direct products we obtain

DNatmod., » = Ao + A1 + 2E;  for z motion
DNatmod., o,y = 241 +2A45+4E;  for z,y motion, (11.40)

where