ELEMENTS
OF QUANTUM
CHEMISTRY



ELEMENTS
OF QUANTUM
CHEMISTRY

by
RUDOLF ZAHRADNIK

J. Heyrovsky Institute of Physical Chemistry and Electrochemistry,
Czechoslovak Academy of Sciences, Prague

RUDOLF POLAK
J. Heyrovsky Institute of Physical Chemistry and Electrochemistry,
Czechoslovak Academy of Sciences, Prague

PLENUM PRESS ¢ NEW YORK AND LONDON

SNTL ¢ PUBLISHERS OF TECHNICAL LITERATURE, PRAGUE






CONTENTS

1. Introduction 9
2. A brief comment on the development of the theory of the chemical
bond 11
3. The time-independent Schrodinger equation 13
3.1  Introduction of the equation 13
3.2 Formulation of the Schrodinger equation for simple systems 18
3.2.1 A particle in a one-dimensional potential box 18
3.2.2 The harmonic oscillator 18
3.23 The hydrogen atom 19
324 The hydrogen molecular ion, H; 19
3.3 Examples of the solution of the Schrédinger equation 20
3.3.1 The free particle 20
3.3.2 A particle in a potential box; the solution and its consequences 22
333 The harmonic oscillator 27
334 The rigid rotator 33
3.3.,5 The hydrogen atom 35
References 46
4. Mathematics and logic of quantum mechanics 47
4.1 Linear operators and their properties 47
42  Axiomatic foundation of quantum mechanics 49
43  Consequences of the axiomatic system 51
44 Constants of motion. The Pauli principle 55
45 Matrix representation of operators and operations with matrices 65
4.6  Approximate solution of the Schrodinger equation: variation and perturbation
methods 70
References 79
5. Basic approximations in the theory of the chemical bond 80
5.1 Introductory comments 80
5.2 Neglecting of non-electrostatic interactions 81
5.3 The Born-Oppenheimer and adiabatic approximations 82
54  The method of configuration interaction 87
5.5  The independent electron model (one-electron approximation) 92

5.6 The method of molecular orbitals as linear combinations of atomic orbitals 100
References 102



6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

7.1
72
73

8.1
82

9.1
9.2
9.3
9.4

10.

10.1
10.2
10.2.1
10.2.2
10.3
10.3.1
10.3.2
10.3.3
10.34
10.3.5
10.3.6
10.4
10.5
10.6
10.6.1
10.6.2
10.6.3

Symmetry in quantum chemistry

Introduction

Symmetry transformations of the Hamiltonian

The principal symmetry groups and their notation
Matrix representation of symmetry groups

Selection rules for matrix elements

Symmetry and hybrid orbitals

Spin and spatial symmetry of many-electron systems
Perturbation treatment for symmetrical systems
References

Atomic orbitals (AO) and molecular orbitals (MO)

The significance of hydrogen type orbitals; atomic orbitals
Hybridization

Molecular orbitals

References

Many-electron atoms

The one-electron approximation and the periodic system of the elements
The total angular momentum
References

Diatomic molecules

Introductory comments; the hydrogen molecular ion, H;
The H, molecule

Calculation of the molecular integrals

General diatomic molecules and correlation diagrams
References

Calculation methods in the theory of the chemical bond

Introductory remarks

All-valence electron MO-LCAO methods

Methods explicitly considering electron repulsion

Methods using an effective Hamiltonian

n-Electron theory

n —o-Electron separation

The Pople version of the SCF method for n-electron systems
The Pariser-Parr method of limited configuration interaction
A survey of semiempirical n-electron methods

Very simple n-electron version of the MO method
Perturbation methods within the framework of the simple MO method
The FE-MO method

Valence bond theory (VB method)

The crystal field and ligand field theories

Introductory comments

The electrostatic model (crystal field)

Ligand field theory

References

103

103
106
110
114
125
128
137
147
148

150

150
151
154
160

161

161
165
169

170

170
174
179
184
189

190

190
195
195
207
209
209
21
214
216
222
233
238
239
249
249
251
259
260



11.

11.2

1121
1122
1123
1124
1125
11.2.6

12.

121
122
123
124

13.

13.1

13.1.1
13.1.2
13.13
132

1321
13.2.2
13.23
13.24
13.2.5
13.2.6
13.27
1328
13.3

133.1
1332
1333

14.

15.

15.1
15.2
153

Use of the solution to the Schrodinger equation

Quantities related to the molecular energy (the total electron energy, ionization

potential, electron affinity, excitation energy)

"Quantities derived from the wave function

Introductory comments

Density matrix

Localized orbitals

Electron distribution in molecules

Dipole moment

Nodal planes of molecular orbitals: the Woodward-Hoffmann rules
References

Examples of the study of polyatomic molecules

Introductory comments

Inorganic compounds

Organic compounds

Examples of systems studied in biochemistry
References

Molecular spectroscopy

Phenomenological description

Introductory comments

Units and the spectral regions

Absorption and emission spectra, the population of excited states
Excitation within a single electronic level

Introductory comments on radiofrequency spectroscopy
Nuclear quadrupole resonance (NQR)

The elementary theory of magnetic resonance

Nuclear magnetic resonance (NMR)

Electron spin resonance (ESR)

Pure rotational spectra

Vibrational spectroscopy

Raman spectroscopy

Excitation within the framework of several electronic levels
Absorption spectra in the ultraviolet and visible regions
Luminescence phenomena (fluorescence, phosphorescence)
Photochemistry

References

Magnetic properties of molecules

References

Thermochemical properties and molecular stability

Heats of formation and atomization
Delocalization energies of conjugated compounds
Stabilization of coordination compounds
Reference

263

263
272
272
273
278
282
285
289
293

295

295
295
304
308
311

312

312
312
313
316
321
321
323
324
326
333
340
341
345
347
347
366
369
376

371
382

383

383
385
387
390



16.  Chemical reactivity 391
16.1 Introductory comments 391
16.2  Empirical approach 393
16.3  Theoretical approach 396
16.3.1 Qualitative considerations 396
16.3.2 Quantitative considerations. Calculations of absolute values of equilibrium

and rate constants 410
164  Calculations of relative equilibrium and rate constants 417
16.5 Compromise approach: the quantum chemical treatment 419
16.5.1 Reactions of conjugated compounds 419
16.5.2 Substitution reactions of complexes of the transition elements 434

References 436
17. Weak interactions 438
17.1  Introduction 438
17.2  van der Waals interaction between a pair of linear oscillators 439
173  Various means of calculating intermolecular interaction energies 442
174  Application of weak interactions from the point of view of physical chemistry 446

References 449

Index 451



1. INTRODUCTION

The post-war generation of chemists learned to handle a blow pipe at
the university as thoroughly as modern chemistry students learn to write
computer programmes. Even after World War II the rule of three was
considered to be sufficient mathematical knowledge for chemists and the
short course of “higher mathematics” at technical universities was the
test most feared by chemistry students. However, even then some en-
visaged the theoretical derivation of information on the properties of
molecules from knowledge of the bonding of the component atoms.

During the last quarter of this century, amazing changes have
occurred in chemistry, some of them almost incredible. Dirac’s famous
clairvoyant statement* has been partially realized. Incorporation of
quantum mechanics into chemistry encountered numerous difficulties.
After all, the reserve of experimental chemists is not surprising. For
decades the hydrogen and helium atoms and the hydrogen molecule
belonged among the systems most frequently investigated by theoreti-
cians. Later these systems were supplemented by ethylene and benzene.
The authors of this book can therefore recall with understanding the words
of the late Professor Luke$: “Well, when they succeed in computing a
molecule of some alkaloid by those methods of yours...”. Unfortunately,
the calculations on calycanin were not completed before his death.

Now there is no need to convince even the members of the older
generation of the usefulness of quantum chemistry for chemists. Even
the most conservative were convinced after the introduction of the Wood-
ward-Hoffmann rules.

* “The underlying physical laws necessary for the mathematical theory of a large part
of physics and the whole of chemistry are thus completely known, and the difficulty is only
that the exact application of these laws leads to equations much too complicated to be
soluble. It therefore becomes desirable that approximate practical methods of applying
quantum mechanics should be developed, which can lead to an explanation of the main
features of complex atomic systems without too much computation”. [P. A. M. Dirac:
Proc. Roy. Soc. (London) 123, 714 (1929).]
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This book is concerned, on the one hand, with an introduction
to the theory of the chemical bond to a degree necessary for active
understanding of quantum chemical semi-empirical methods (Chapter 10,
which completes the methodical part) and, on the other hand, with the
study of the relationships between the structures of molecules and their
properties. Among these properties, both the static characteristics (thermo-
chemical, electric, magnetic, optical) and the dynamic characteristics,
chemical reactivity characterized by the equilibrium and velocity con-
stants, will be discussed. It is necessary to define the meaning of the term
“structure” more precisely. In a narrow sense structure means the way
in which atoms are bonded in molecules or the arrangement of molecules
in a crystal lattice. In recent years, structure in this sense has often been
determined directly using X-ray analysis. Here, as a rule, for the probable
structure of a compound the theoretical characteristics will be determined
by computation and afterwards will be compared with the experimental
results.

An attempt will be made to acquaint the reader with these com-
parisons in such a way as to enable him not only to perform similar
comparisons himself but also to open new possibilities. In comparing
theoretical and experimental quantities, both a more profound qualitative
explanation of the studied properties and processes and quantitative
interpretation of experimental data will be necessary. This approach will
help in generalizing the knowledge obtained and in condensing large
groups of experimental data into empirical formulae, in which, of course,
quantities appear resulting from quantum-chemical calculations. These
relationships will be used as interpolation formulae and will permit
estimation of the values of experimental characteristics in substances not
yet prepared, whose properties are of interest. Moreover, there is also
the very attractive possibility of using the quantum theory of the chemical
bond not only for the interpretation, but also for the prediction of
properties.



2. A BRIEF COMMENT
ON THE DEVELOPMENT
OF THE THEORY

OF THE CHEMICAL BOND

It is admirable that, as early as in the nineteenth century, chemists
succeeded in defining concepts of the structure of substances that are
in remarkable agreement with modern knowledge of the quantum theory
of the chemical bond and with direct structural determinations using
electron or neutron diffraction and X-ray analysis. Only in the theory
published in 1916 by Kossel and Lewis did electrons assume a decisive
role in concepts of the origin of the chemical bond. (The electron was
discovered by Thomson only 19 years earlier, and 5 years earlier
Rutherford proposed the planetary model of the atom. The basic
concepts of this very successful and innovative theory are based on the
ideas of electrovalency and covalency, which are still accepted at the
present time. This theory of the chemical bond forms a basis for the
theory of mesomeric and inductive effects which contributed consider-
ably to the rationalization of organic and inorganic chemistry (Robinson,
Ingold, Arndt, Eistert). The work carried out by their predecessors
(Kekulé, Cooper, Butlerov, Werner, and in spatial structure Le Bel and
van’t Hoff) is of essential importance.

The difficulties encountered in classical mechanics will be men-
tioned in another context. Here, however, it should be noted that
classical Newtonian mechanics is useful for the description and predic-
tion of phenomena in the middle and macro cosmos. The growing need
to describe the motion of particles forming molecules and atoms led to
the establishment of a new mechanics, quantum mechanics, in the
twenties of this century.

The fundamental equation of this new mechanics, the Schrodinger
equation, can be obtained in two ways. The method given by Schrodinger
is apparently less complicated, proceeding from the concept that electron
motion can be described in terms used for the description of wave
motion, leading to the term “wave mechanics”.

Quite independently, the same result was achieved by Heisenberg,
who made use of matrix properties. Although the two approaches are
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formally quite different, the results have been shown by Born and Jordan
to be equivalent.

Later, Dirac and von Neumann formulated quantum mechanics
more generally and showed that Schrodinger’s and Heisenberg’s approaches
are special cases of a more general theory.



3. THE TIME-INDEPENDENT
SCHRODINGER EQUATION

3.1 Introduction of the equation

It is important to remember that the Schrodinger equation, similar to the
principal thermodynamic laws, cannot be derived from the general
principles of physics. It is true that we can proceed from the classical law
of conservation of energy and, through a number of modifications (some
of them inconceivable from the point of view of classical mechanics),
arrive at the Schrodinger equation (“derive it”). However, this procedure
does not possess the character of derivation by deduction that is
considered normal in classical physics. The only method of determining
whether the equation obtained has physical significance, ie. whether it
gives a true picture of the real behaviour of particles, will lie in comparison
of values for quantities calculated using this equation with experimentally
obtained values.

In classical physics two fundamental objects are investigated, namely
the particle and the wave. A particle can be localized in space and time
and characterized by dynamic characteristics such as its linear momentum
p and energy E. A wave originates in connection with a disturbance in a
continuous medium and can be assigned kinematic characteristics, such
as wavelength A and frequency v. Although a wave can assume certain
dynamic characteristics reminiscent of particle properties (i.e. momentum
density, energy density), it is apparently an object quite different from
a particle.

For the sake of simplicity we shall, first of all, discuss a point
particle of mass m, moving in a constant (i.e. time-independent) external
field along the x-axis. The principle of the conservation of energy holds
for such a system and it is therefore denoted as a conservative system.
The principle of the conservation of energy can be expressed by the
equation

E=T+V, (3-1)
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where E is the total energy of the given point particle, T is its kinetic
energy and V is its potential energy. The relationship

T= L mx? (3-2)
2
is also valid, where x = dx/dt (x is the trajectory, t is the time).
Since the potential energy of a point particle in an external field
is a function of its coordinates, it then follows that

E= -%m)l‘z + V(x) (3-3)

If in equation (3-3) the expression for the linear momentum p is
introduced in the form

p = mx, (3-4)

it then follows that
2

A
E=o—+ V() (3-5)

As is familiar from classical mechanics, for a conservative system the
total energy can be identified with the corresponding Hamiltonian
function H, and thus

H(p,x)=E (3-6)

Equation (3-5) is a first-order differential equation; considering the initial
conditions it is then possible, by integration, to derive the equation for
the trajectory of the particle, x = x(z). It thus follows that the solution of
the equation of motion in classical mechanics (represented here by the
principle of the conservation of energy) provides fully defined functions
describing the dependence of the dynamic quantities on time, thus
permitting calculation of values of these dynamic quantities at each
instant.

The discussion of the behaviour and properties of “classical”
particles can be extended to microparticles, using the electron as
a representative example. It has been experimentally demonstrated that
the electron behaves as a particle: its charge has a discrete value
(cf. Millikan’s experiment) and it can be localized (a track in the Wilson
chamber). However, if an attempt were made to localize the electron
by giving its position in a given instant of time (with an arbitrary
precision), it would be found that this cannot be achieved. Experiments
have even been carried out in which electrons behave as waves. In
interference or diffraction phenomena (the experiments of C. J. Davisson,
L. H. Germer, and E. Rupp), electrons must be treated as waves with
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a wavelength given by the de Broglie relation
A=—, (-7

where p is the momentum of the electron and h is Planck’s constant.

The electron, similar to other microparticles, is therefore an object
which in the classical sense resembles neither a particle nor a wave.
This complication always appears in the character of laws describing
the behaviour of microparticles.

In his five papers published in the first half of 1926 in the journal
Annalen der Physik, E. Schrodinger proposed a new system of dynamics
for the description of microparticles, in which the wave function, ¥,
assumes a leading role.

The Schrodinger wave function is a quantity that characterizes the
state of the particle in a particular way. By solving the wave equation,
a function is obtained giving the dependence of this quantity on the
spatial coordinates of the particle (and possibly also on time). The
position of an electron is given by the probability function, which is
a function of the coordinates, usually written g (x, y, z), and is denoted as
the probability density. Its value increases with increasing probability
of electron occurrence in a given area in space. It appears that this
probability density can be expressed by the wave function, ¥. The
physical significance of the wave function, if real, is such that its
square (P?) gives the probability distribution function for the particular
coordinate system and permits calculation of the physical quantities of
the given particle. It is necessary to add, however, in the general case,
the wave function can be complex, so that instead of the square of the
function the product of ¥ and its complex conjugate, ¥*¥, is employed.
It is preferable to choose the multiplication constant for the wave
function so that the equality o(x, y,z) = ¥*(x, y, z) ¥(x, y, z) holds. The
probability of finding a particle in a volume element dt (dr = dxdydz)
whose centre has coordinates x, y, z is given by the expression ¥Y*¥ dz.
By summing all possible contributions of this type throughout the
entire space, that is by integration, unity results, ie. the particle must
be located somewhere in the given space. If this condition is fulfilled,
then function ¥ is said to be normalized. The physical meaning of the
wave function is ensured when ¥ is continuous, single-valued and finite.

A detailed explanation of the fundamental postulates of quantum
mechanics will be resumed later. Here, only the quantum-mechanical
formulation for a moving point particle will be described; the classical
formulation was discussed in the introductory part of this section.
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In this way, the relationship between the two types of mechanics will
become apparent.

Conversion of the classical formulation of the problem [expressed
by equations (3-5) and (3-6)] to the quantum formulation can be effected
in two steps:

a) Linear momentum p in the classical formulae will be replaced
by the operation “differentiation with respect to a trajectory” multiplied
by the constant h/2mi (where h is Planck’s constant and i= ./(—1);
the symbol £ is sometimes used in place of the expression h/2x). This process
(representing a first step that, from the point of view of classical
mechanics, is rather unexpected) can be symbolically described as follows:

h d
P™ Omi dx
Similarly, for p?,
ot ()
2ni dx \ 2mi dx 4n? dx?

In the conversion from classical to quantum mechanics the x-coordi-
nate remains unchanged.

As in classical mechanics any physical quantity of a system can be
expressed in terms of its coordinates and its momentum —for instance
the Hamiltonian function in equations (3-5) and (3-6)—it is possible,
on the basis of such a “surprising” procedure, to form a corresponding
expression for each quantity which will be called the operator of the

given quantity. The operator of a physical quantity will later be denoted
by the symbol of this quantity printed in school script. Consequently,

h d
T dx
P () = V)

The operator of the Hamiltonian function, called the Hamiltonian operator
(or simply the Hamiltonian),for a particle moving along a straight line
in the direction of the x-axis can then be expressed by the relationship

h?  d?

H = - 8n2m dx?

+ ¥ (x) (3-8)

Simultaneously, the Hamiltonian can be considered to consist of two
partial operators, i.e. the kinetic energy operator,

h? d?
T 2n?m dx?
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and the potential energy operator,
V(x)

b) The wave function ¥ will be sought as a solution of the
Schrodinger wave equation in the form

HY =EY (3-9

This equation can be obtained formally from classical equation (3-6),
according to paragraph a), by replacing the Hamiltonian function H
with the Hamiltonian operator (conversion “to operator form”) and
both sides will then be multiplied by function ¥(x) (this multiplier is
always written on the right-hand side). Thus, for this particle it follows
that

h2 d2
[~ m Ak + “V(x)]‘l’(x) = E¥(x) (3-10)
This equation is often written in the form
d?¥Y  8n’m
a—x—2—+—hz—~(E—“V)‘I’=O, (3-11)

where, for the sake of simplicity, instead of ¥7(x) and ¥(x), only ¥~ and ¥
are written.

Extension to a three-dimensional system encounters no difficulties.
For the kinetic energy it then holds that

. . 1
T= —2—m(x2 +y2 4+ = W(l’i + p + pd),
where p,, p, and p, are the components of the momentum which will

be replaced by the corresponding operators:
h 0 h 0 h 0
F e AT i ey AT m e
The Schrodinger equation now assumes the form

oy N ' 4 N 0*y N 8n’m
ox?  0y? 022 h?

(E-9)¥=0 (3-12a)

This type of equation can further be simplified by introducing the Laplace
operator (symbol A)

0 i 02
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in place of symbol A, V? can be written, where V is the nabla vector

operator <75x_’ ;}T, 767—)] . Thus the Schrédinger equation can be rewritten

as

8 2
AY + —T;;Z—WL(E — V)P =0 (3-12b)

3.2 Formulation of the Schrodinger equation
for simple systems

3.21 A particle in a one-dimensional potential box

Let us consider a particle moving in the direction of the x-axis inside
a so-called one-dimensional potential box. It is assumed that the particle
has the same potential energy at any place in the box; this energy can
conveniently be set equal to zero. It is further assumed that the energy
of the particle everywhere outside the box is infinitely high (Fig. 3-1).

The Schrodinger equation for a particle in a box assumes the form

d*¥Y  8n’m
42 o E¥Y =0 (3-13)
(as ¥ =0).
V=00 V=oco
m
A/ V=0 . X Fig. 3-1. A particle of mass min a one-
x=0 x=a dimensional potential box of length a.

322 The harmonic oscillator

A particle of mass m is moving along the x-axis alternately in the
positive and the negative direction and its equilibrium position is x = 0
(Fig. 3-2). The force F acting on the particle is directed against the
displacement and is proportional to the magnitude of the displacement, x.
Thus it follows that

F = —kx,
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where k is a proportionality constant, called the force constant. For the
potential energy it then follows that

V=-— g(—kx)dx = —;—kx2

By substituting this expression for ¥ into Eq. (3-11) the required
Schrodinger equation is obtained:

d?¥Y  8n’m 1
Sy TE k)P =0 3-14
dxz h2 2 ( )
z
positions
of the maximum —e
deviation
y
________ -—x X
+e
y
Fig. 3-2. A harmonic oscillator of mass m. Fig. 3-3. Model of the hydrogen

atom: nucleus (+e¢) and electron
(—e).
32.3 The hydrogen atom

Even for the hydrogen atom (which is a proton-electron system, Fig. 3-3),
the formulation of the Schrédinger equation poses no difficulties. The
electron is considered to move in a three-dimensional space about the
nucleus which is at rest. The potential energy of this system can be
expressed as

_e—e) ¢

T dmeyr  dmeyr’

where e is the elementary charge, r is the distance between the electron
and the nucleus and ¢, is the permittivity of a vacuum. By substituting
this expression into Eq. (3-12b), the Schrodinger equation is obtained
in the form

8n’m e?
AY + W2 (E + Imegr ) ¥Y=0 (3-15)

324 The hydrogen molecular ion, Hj

Now a system of two protons and one electron (Fig. 3-4), which is an
ionization product of the simplest molecule, will be considered.
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1(-e)
Py Wy
4 8 Fig. 3-4. The hydrogen molecular ion:
nuclei (4, B), electron (1). Distances
A(+e) MAB B(+e) are denoted by r.

For the potential energy of this system it holds that

1 ( e’ e? e? >
V= -+ —,
4me, ''a Tz Tas
so that the Schrodinger equation [obtained by substituting for ¥~ in
Eq. (3.12b)] has the form

8n’m e? e? o2
AY + h? <E + dmegry o + dneyr g 41tsorAB> ¥=0 @16

3.3 Examples of the solution
of the Schrodinger equation

3.3.1 The free particle

A free particle is defined as a particle that is moving in a constant potential
field (ie., it has the same potential energy everywhere). Then, without
losing generality, it is possible to set V= 0 and the Schrodinger equation
for a particle moving along a straight line then assumes the form

¥ gnmE
dx? h?

p (3-17)

throughout the whole x-coordinate region, in contrast to the limited
validity of Eq. (3-13).

This is a second-order differential equation with constant coeffi-
cients, whose solution consists of two functions, as can be verified by
substitution:

¥, = N,exp [—2;1 J(2mE) x] (3-18)

¥Y,=N, exp|: - ggl \/(2mE) x] (3-19)

(N, and N, are constants).
In addition, both these functions satisfy the relationships

¥, = JCmE) ¥, (3-20)
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2¥, = —JQmE) ¥,, (3-21)

agreeing with Eq. (3-9) in one significant property: applying the operator
to a function yields the same function multiplied by a constant. An
equation possessing this property is called a characteristic equation;
function ¥, which satisfies such an equation, is then a characteristic
function (or eigenfunction), and the corresponding constant is denoted
as the characteristic value (or eigenvalue). As will be shown later,
characteristic values in equations of this type are measurable values
of physical quantities which are represented by the corresponding oper-
ator. More specifically, from Eq. (3-20) it follows that, if a particle is in
state ¥, (with energy E), it is moving in the positive direction of the
x-axis with the linear momentum /(2mE). A particle in state ¥, and with
the same energy moves with an equally large momentum but in the
opposite direction. The expression for the magnitude of the momentum
will be readily understood by considering that the classical value for the
total energy is given by the expression
E = ?lmvz,
and thus
J@mE) = m|v|

It is quite sufficient here to confine the discussion to a particle
moving in the positive direction of the x-axis. Some interesting physical
consequences result from the form of wave function (3-18): First, energy E
cannot assume negative values, as for E < V' the exponential factor would
become a real number and function ¥ for x » o0 would become infinite,
thus losing physical meaning.

Wave function (3-18) can be employed for calculation of the
probability density of the particle:

P*(x) ¥,(x) = N, exp [2—:—1 J(@2mE) xj| N¥exp l:— -277:—1 J(2mE) x]
= N*N, (3-22)

Hence it follows that the probability density of the particle is independent
of the x-coordinate, so that the particle can be found with equal prob-
ability at any point in the one-dimensional space within which it moves.
Thus, the uncertainty in the position of the particle is infinitely large,
in agreement with the Heisenberg uncertainty principle, according to
which the more accurate the determined value for the particle coordinates,
the less accurate is the determined value of its momentum and vice versa.
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[In the given case the particle has a quite definite exact momentum value,
J(2mE), so that the uncertainty in its position is infinitely large.]
Wave function (3-18) is sometimes written in the form

¥, = N, exp (ikx), (3-23)

where the expression ihn— J(2mE) is replaced by a new quantity k, termed

the wave vector (in a multidimensional case it would actually be a vector).
This quantity is related to the energy by the expression
h2

— 2 -
= gk (3-24)

The meaning of the wave vector will follow from comparison of relation
(3-24) with the classical expression for the energy

L. 1, )
E—2mv—2mp, (3-25)

into which the de Broglie relation (3-7) can be substituted:

2
E= 71,77 (%) (3-26)

Comparing this relation with Eq. (3-24), it follows that

, 8m®m  4n?

T 2mA® A2

or

k| =22 (3-27)

3.3.2 A particle in a potential box;
the solution and its consequences

Let us return to the study of the behaviour of a particle in a potential
box (Fig. 3-1). The same differential equation as for a free particle must
be solved, except that wave function ¥ must satisfy the boundary con-
ditions describing the fact that the particle cannot be present in some
regions (ie. outside the box) as infinitely high energy would be needed
to transfer it to these regions. For these regions the x-coordinate has
the values

and
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Thus, the probability of finding the particle anywhere outside the box
equals zero, so that the wave function whose square is proportional
to this probability must also have zero value. For regions outside the
box it therefore holds that

Y=0

It will be seen that, because of this condition, the particle can no
longer assume any energy value in the interval <0, c0), but can have only
certain allowed energy values; that is, the particle energy is quantized.

Here again, it is necessary to find a function ¥(x) that, when
differentiated twice, yields the same function multiplied by a constant.
From the theory of linear second-order differential equations it follows
that the general solution of Eq. (3-13) can be found in the form

¥Y(x) = Asin (ax) + B cos (ax) (3-28)

It can easily be shown that, for function ¥ in this form,

2
e (3-29)

This equation is identical to Eq. (3-13), which is to be solved, provided
that

2
o = B (3-30)

So far, nothing has been involved in the solution that would limit the
value of E.

Certain boundary conditions must be introduced: ¥(x) must equal
zero at the edge of the box; hence

a) ¥(0) = 0,
b) ¥Y(a) = 0.
Condition a) is satisfied by expression (3-28) only if
B=0
Moreover, condition b) requires that
aa = nm,
where n is an integer called the quantum number. It then follows that

o="r (3-31)

a
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By comparing equations (3-30) and (3-31) it is found that

8n2mE  n’n

Y

so that, for the allowed energy values

E= n2< h? ) (3-32)

8ma®

wheren=1,23, ....
Now the value of constant 4 [Eq. (3-28)] must be found; function ¥
must be normalized, i.e.

+ o0
j p2dr =1 (3-33)
Here this condition has the form
a 2
j(A sin ﬂ%’i) dx = 1 (3-34)
0

Calculation of the given integral results in the condition

A=\/£
a

The solution is therefore obtained in the form

Y = < \/1> sin 22X (3-35)
a a

n2h?
" 8ma®

(3-36)

In Fig. 3-5 the result of the calculation (for n = 1, 2, 3) is represented
graphically. Wave functions ¥, are given at levels corresponding to the
respective values of E,. In addition to ¥,, ¥? is also plotted as
a function of x.

For a given quantum number n, the energy is inversely proportional
to the mass of the particle and to the length of the box. The heavier
the particle and the longer the box, the closer together the values of E, lie.
For example, with m ~ 1 g and a ~ 1 cm, the levels are so close together
that they appear as a continuum. Therefore quantization occurs only when
ma® ~ h* (where h = 6.625.10734 J s). On the other hand, if

ma* > h?

the quantum mechanical treatment leads to the classical result, ie. to
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energies that are not quantized. Furthermore, from Fig. 3-5 it is apparent
that ¥, changes sign at every nodal point (a point where ¥ = 0); the
number of nodal points equals (n — 1). In general, the larger the number
of nodal points -(or ‘nodal planes) under otherwise constant conditions,
the higher is the energy of the corresponding state.

3
Fig. 3-5. Graphical representation of ~uT 2
the solution for a particle in a box
[Egs. (3-35) and (3-36)].
¥ (—), ¥? (....). Energy is 1
expressed as a multiple of h?/8ma’.
Nodal points (1 denotes the number) 0

are designated by short arrows. 0 a

A particle in a three-dimensional box provides a very instructive
illustration. In this connection, a certain technique for the solution of the
Schrodinger equation, which will be used later, will be introduced.

The Schrodinger equation (3-12b) for a particle in a three-dimen-
sional box assumes the form [cf. Eq. (3-13)]

h2

8n’m

AY = E¥ (3-37)

This equation can be rewritten to give

i 2B Cl el 8n’mE

Tt T T TR (3-38)

To solve this equation an attempt can be made to separate variables x, y
and z, i.e. the solution must be found in the form

¥ = X(x) Y(y) Z(2), (3-39)

where each of the functions X, Y and Z depends exclusively on a single
variable.
If the expression for function ¥ from the last equation is introduced
into Eq. (3-38), then, after partial differentiation, the expression
0*X o0*Y 0*Z 8n’mE

YZ—(.)X2 +XZ——6y2 + XY 2T = T2

XYZ (3-40)

is obtained. Dividing this equation by the product XYZ and modifying
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it leads to the relationship

1 *X N 1Y N §n’mE _ 1 0°Z
X ox* Y d9)? W Z 02

(3-41)

In order that this equation hold for any set of values x, y, z, both sides
must equal a constant; this constant can be expressed in the form
8n2mE_/h?, where the value of constant E_ is still undetermined. Therefore,

1 0°Z  8n’mE,

9) “Z T T W (3-42)
1 *X 1 %Y  8n’mE  8n’mE,
b) X2 T Y ar T R TR (3-43)

The same procedure as used in Eq. (3-41) can be applied to Eq. (3-43),
which can be rearranged to give

1 02X  8n’m 1

'Y
Yo T BB =Ty aT

\

, (3-44)

‘3)1 D

where both sides can be set equal to a constant; this constant can then be
expressed as 8n’mE /h*:

2 2
laX_SnmE

a) - 773;2— =T (3-45)
1 0*°Xx 8mim 8n’mE,
b) var = (E-E.—E)=———5= (346

Equations (3-42), (3-45) and (3-46) have the same form as the
equation for a particle in a one-dimensional box [cf. Eq. (3-13)], the
solution of which is already known. If the three-dimensional box has
dimensions a, b, ¢, we can write

21,2

X = ( \/%) sin M5 g = ;,’;,Zz (347)
2\ . nmy. nZh?

Y = B sin —L—b ; E = _L—8mb2 (3-48)
21,2

Z= ( \/%) sin ”zc’_‘z . E, = gm}lz (3-49)

Then, for the total wave function ¥ and the total energy E, it holds
that

W= xyz = [ )sin ™" sin ™™ gin "7 (3-50)
abe a b c
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h? [ n? n? n?
= - = ¥y z -
E=E +E, +E, 8m[a2+b2 +C2} (3-51)

One aspect of the solution, which can be illustrated for a particle
in a three-dimensional box where a = b = ¢, is worth mentioning. Then,
for the total energy

h2
8ma’®

(n2 + n2 + nd) (3-52)

Hence, the lowest energy level (n, = n, = n, = 1) is given by

3h?
8ma’®

E1,1,1) =

The next energy-richer state can be described by three combinations of
quantum numbers, where two quantum numbers are set equal to 1 and
one is equal to 2:

3h?
4ma*

EQ,1,1) = E(1,2,1) = E(1,1,2) =

A level with the same energy but characterized by different combinations
of quantum numbers and consequently by different wave functions is
designated as a degenerate level. The number of states with the same
energy is given by the order of the degeneracy. The second energy level
(ie. the first excited level) of a particle in a cubic box is, therefore,
threefold degenerate.

The described procedure is the basis of the free electron method
(briefly denoted as the FEMO method —free electron molecular orbital
method) which was proven useful in the study of simpler conjugated
compounds. This method is by far not as important as the LCAO-MO
method (see Chapter 10); nevertheless, it deserves attention and not only
from a pedagogical point of view.

3.3.3 The harmonic oscillator

A particle executing simple harmonic motion, called a harmonic oscillator,
is another simple system that is of interest because of its important role
as a model in molecular spectroscopy.

In the Schrodinger equation of the harmonic oscillator [Eq. (3-14)]
new symbols are introduced for expressions that contain only constants:

_ 8n’mE b= 2m\/(mk)
-kt B h
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Thus the equation assumes the form

2
%’f +(a— b)Y =0 (3-53)

Next, a new dimensionless variable ¢ = (\/b)x is introduced; therefore
d?/dx?* = b d?/d&2. Equation (3-53) can then be written in the form

%’f + <7“ - £2> v =0 (3-54)

Wave function ¥ must necessarily fulfil the following conditions: it must
be continuous, single-valued and finite. For the sake of simplicity, Eq. (3-54)
will first be solved for | £ | > /(a/b) (the asymptotic solution). The equation

S -er=0 (3-59)

is then obtained, which is satisfied by the solution
P =t (3-56a)

The positive sign in the exponent has, of course, no physical meaning,
since for £ —» oo function ¥ tends to infinity; therefore, only the solution

Y= 2 (3-56b)

is valid.

Let us now return to the original differential equation, (3-54).
From mathematical experience it follows that the expression, e ~%"/2, will
act as a factor in the solution:

Y =f(&)e (3-57)
It would then remain to establish the form of function f(£). By substituting
for ¥ and d?¥/d¢? into Eq. (3-54) the equation
1= 28f + (% = 1) f=0 (3-58)
is obtained, where f” = d*f/dé? and f* = df/d¢.

Equation (3-58) can be solved in the form of an infinite power series:

/= iakf" =a,+ a;&' + a,&* + ... (3-59)
=0

k

The first and second derivatives can then be written as

f=3 k! (3-60)
k=1
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"= f k(k — l)a,‘f"_2 (3-61)
k=2

Substituting these power series into differential equation (3-58) gives

0

k;k(k — 1) a2 - Zk;kaké" + (% - 1) kgoakc" =0  (3-62)
The term | = k — 2 can be substituted into the first summation and the-
original symbols can be retained, so that k appears instead of I. The second
summation can be augmented by the term corresponding to k = 0, as this
term vanishes anyway. Then the equation

Y ok +2)k+ Dag & =) al <2k +1- i) (3-63)
k=0 k=0 b

is obtained. This equation must be valid for any value of & which is,

of course, possible only when the coefficients of identical powers of £ are

equal on both sides of the equation. By comparing the expressions for

the coefficient for the same power of &, the recursion formula

a
2k+1—?

%2 =AD&+ D) .

is obtained, permitting formation of a set of even coefficients a, from the
initial value a, and a similar set of odd coefficients from the initial
value a,. No conditions are imposed on the initial values of a, and a,,
so that they may be chosen arbitrarily.

Thus, the solution of differential equation (3-58) has been found
in the form

Y(E) = &) e 7, (3-65)

but it has not yet been determined whether ¥ fulfils the requirements
imposed on the wave function, in particular, whether it is finite for all
values of & To this end, the behaviour of ¥(£) will be compared with
the behaviour of the exponential function e*’, which evidently diverges
for large values of ¢. This comparative function can be expressed in the
form of an infinite series:

2 4 v v+2
B B S L S A
1! 2! v v
7)! <3+1>!

=by+ bt + b+ .+ bE + b, 8T+ (3-66)
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For the quotient of two successive coefficients the relationship
b 1
Pl (3-67)

v Y
2+1

is obtained, which, for large values of v, can be replaced by the expression
2/v. An analogous coefficient ratio in infinite series (3-59) is given for
large values of k —as follows from Eq. (3-64) —by the expression:

ak+2 I~ l (3-68)

a, k

The Schrédinger Equation and its Solution for the Rigid Rotator, Harmonic Oscillator and

Problem Schrodinger equation Schrodinger equation
(in Cartesian coordinates) (in polar coordinates)
. 8n2uE 1 Y
rigid rotator AY + W ¥Y=0 2O 307
+ L2 sin @ id +
sin@ 00 00
2IEY
t—r = 0
harmonic d?¥Y  8n’u kx?
oscillator ot \F 2 >W =0
hydrogen 8n’m e? a(,0¥ 1 oy
atom A¥ + = E+4n30r ¥ =0 a\" o)t snede t
1 o (. 0¥
T e 55(5"‘ @ %) *

2mr? e?
* _712_(E * 41tsor> ¥=0
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It follows that both the series have the same asymptotic character. To
examine the asymptotic behaviour of function ¥, function f(&) in Eq. (3-65)
will be replaced by comparative function e*’:

PR el 82 _ o2

(3-69)

Hence it follows that function ¥ diverges for large values of ¢ and
consequently does not have the properties required of the wave function.
It is evident that no solution containing f(£) in the form of an infinite
series is suitable. Thus another similar solution must be found that, in
contrast to the former, does not diverge. To obtain a non-divergent finite

Hydrogen Atom Table 3-1
E 14
E < Il + 1yn? Y=Y,,(0,9) associated Legendre polynomial
L 21 (spherical harmonics) of degree I, of order m
(1=0,1,2..) v (0.0~ [210=]m]! I/ZP'm'm L imo
L= 2 (I+]|m| ! J@n)
normalization factor
—_ J o\ ,
Th, . (©) F,(®)

7.0 =[G | H@e

2%(n!)
1 —_— T
= (n + 7) ho normalization Hermite polynomial
factor
n=012..)
(0 = 2mv)
E - - e? radial function
" 8me,aon’
n=123..) angular function

Rn.l(r) = - I:

¥ =R, (Y, 0, P)

A‘)herical harmonics

N

4n—1— 1)
n*[(n + D'

i

Z
ao

)&

—

\ g

normalization factor

n

] —uin 20
fornes )
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solution, the infinite series can be terminated, that is, replaced by a
polynomial. Then g, will assume a value of zero after a certain term, i..

a,#0,a,#0,...,a, #0, (3-70)
and

Aoy T Apyy =03 = -0 = 0 (3'71)

Considering Eq. (3-64), it must then hold that

M+ 1-— %
SRR ToEs o
which is possible only when
m+1-L-o (3-73)

b

Substituting for quantities a and b and after appropriate rearrangement,
the condition assumes the form

E, = 5};— (\/—E) (n + —;_—) = (n + %) hv, (3-74)

where n is zero or a positive integer and the expression (1/2m) \/(k/m)
has the meaning of frequency v.

It then follows that the requirement that wave function ¥ be finite,
which was realized by terminating the infinite series, leads to quantization

Some Special Functions Employed in Quantum Chemistry* Table 3-2
Function Symbol  Differential equation Occurrence
harmonic ™ (d*f/dx?) + m*f =0 translation motion
Legendre P/(x) (1 — x?)(d?f/dx?) — 2x(df/dx) + I(l + 1)f =0 angular motion
associated  PJ'(x) (1 = x?)(d?f/dx?) — 2x(df/dx) + angular motion
Legendre +[0+ 1) —m* (1 —x?)]f=0 (hydrogen atom)
Laguerre® L (x) x(d*f/dx?) + (df/dx) — (1/2 + x/4 + n)f =0  radial motion
Hermite  H,(x) (d%f/dx?) — 2x(df/dx) + 2nf = 0 harmonic
oscillator

* Reproduced from J. M. Anderson: Mathematics in Quantum Chemistry, Benjamin, New
York, 1966.
® Polynomial of the L§(x) type appearing in the solution of the wave function for the hydrogen
ds

atom is related to the Laguerre polynomial L,(x) by the relationship Li(x) = e L(x).
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of the energy values. For the sake of completeness, it should be added
that differential equation (3-58) is called the Hermite equation and the
corresponding solutions are denoted Hermite polynomials (cf. Tables 3-1
and 3-2).

The result of the quantum-mechanical treatment of the harmonic
oscillator as represented by Eq. (3-74) is interesting in that it demon-
strates the inadmissibility of zero energies (for n = 0, E, = hv/2, Fig. 3-6).
This is related to the uncertainty principle; if the oscillating particle
possesses zero energy, it would have zero momentum and would be
located exactly in the equilibrium position characterized by the potential
energy minimum.

n u

9 9

4 4

3 3

Fig. 3-6. Graphical representation 2 2

of the solution for the harmonic 1
oscillator [Eqgs. (3-65) and (3-74)].

¥ ), ¥2(.....). Energy is 00

expressed in multiples of hv; u denotes
the number of nodal points.

The particle in a box, for which the series of allowed quantum
numbers begins with unity and not with zero (cf. p.24), is analogous.
The rotator (see the next section) is, however, different, as it can assume
an infinite number of equilibrium positions in the plane and consequently
its ground state can possess zero energy.

3.34 The rigid rotator

In the previous instances the complete solution of the problem was given.
For the rigid rotator and the hydrogen atom the solution will be outlined
to an extent sufficient for further discussion.

The theory of the rigid rotator is important in the analysis of the
rotational spectra of diatomic molecules. The rigid rotator (Fig. 3-7) is

Fig. 3-7. The rigid rotator. IS « S
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a system consisting of two point particles of mass m, and m,, which
are held a constant distance apart by a massless bond. This system
rotates around the (O) axis passing through the centre of mass of the
system and lying perpendicular to the projection plane. Here, translational
motion of the rotator is not considered and therefore the centre of mass
of the rotator is considered to be at rest, fixed in the origin of the
coordinate system.

In classical mechanics the following relation [cf. Eq. (3-2)] holds
for the kinetic energy of a two-particle system:

22 22
T ="M | T

5 5 (3-75)

where r, and r, are radius vectors giving the positions of the two
particles. The distance between the particles is given by vector r, for
which it holds that

r=r,—r, (3-76)

If vector r is introduced into the relation expressing the assumed location
of the centre of mass in the origin of the coordinate system (i.e. into
the relation, m,r, + m,r, = 0), then

‘m,
m; + m,

", (3-77)
m; +m,

r, r; r, =

Substitution of these equations into the expression for the kinetic energy
(3-75) leads to the relationship

T=H_ (3-78)
2
where
__mm, .
b=+ m, (3-79)

denotes the reduced mass of the system.
Since for a rigid rotator |r| =a (a is a constant), it follows from
Eq. (3-78) that the system is mathematically equivalent to a system in
which a particle of mass u moves over the surface of a sphere of radius a.
If no external forces act on the rotator, the potential energy of
the hypothetical particle can be set equal to zero. The Schrédinger
equation then has the form

TEE w— (3-80)
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Passing from Cartesian coordinates to spherical coordinates (cf. Fig. 3-8)
permits exploitation of the symmetry of the system and leads to
a substantial simplification of Eq. (3-80). Expression of the Laplace oper-
ator A in spherical coordinates can be found in text-books on quantum
mechanics (cf. e.g. Ref. 1 in Chapter 4):

fof.0), 1 & 1 a( - 3a\]
A=[’a?<’ 67)* Sin? 0 367 | sin0 00 (Sm@ a@ﬂ’

As for a rigid rotator, coordinate r is equal to constant q, the first term
differentiated with respect to r is omitted. Furthermore, in Eq. (3-80)
the reduced mass pu can be expressed in terms of the moment of
inertia I,

I = pa?, (3-81)

and h/2n can be replaced by h. The Schrodinger equation for a rigid
rotator in spherical coordinates is thus obtained, as given in Table 3-1.
The solution of differential equations of this type is well known (see
Table 3-1).

The eigenfunctions satisfying the given characteristic equation are
called spherical harmonics, Y, (@, ®), and can be expressed in a separated
form

Y, .(0,®) = Th,,(0) F,(®), (3-82)

where the indices indicate the dependence on integral values of quantum
numbers | and m, where

12 |m| (3-83)

For the eigenvalues giving the allowed energies of the rotator it holds
that
I+ )#?

E, 21 ’

(3-84)
where | is the rotational quantum number, which can assume values
of positive integers including zero.

3.3.5 The hydrogen atom

Solution of the hydrogen atom problem is, for several reasons, of
fundamental importance. First, it is one of the few important systems
in chemistry that—as a two-body problem—is still exactly solvable.
Further, it provides a natural starting point for discussion and solution
of problems concerning many-electron atoms. Finally, atomic wave
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functions of the hydrogen type or related types represent elementary
building units for constructing molecular wave functions. For all these
reasons, atomic wave functions of the hydrogen type will be discussed in
detail in this section. The problem of the hydrogen atom is similar
to that of the rigid rotator. The boundary condition of a constant distance
between the components of the rigid rotator is replaced in the hydrogen
atom by the existence of Coulomb interaction between the nucleus and
the electron. Because of the large difference between the masses of the
nucleus of the hydrogen atom (M) and of the electron (m), the nucleus
(i.e. the proton) can be considered as the centre of mass of the system
and assumed to be at rest. Hydrogen-type atoms, which are systems
consisting of a nucleus of Z protons and one electron [ie. cations
with a charge of + (Z — 1)e (Fig. 3-8)], are similar. The Schrédinger
equation for these atoms appears far more complicated in spherical
coordinates than in Cartesian coordinates (compare Table 3-1), but
the use of spherical coordinates as for the rigid rotator permits easy
separation of the variables, r, @, and ¢.

Fig. 3-8. Model of a hydrogen-like

atom with nucleus of mass M and

charge +Ze. The position of the

electron is given in polar coordinates
(r,®,0).

/ A S

The solution can therefore begin with the Schrodinger equation
for the hydrogen atom as given in Table 3-1, for which a solution

in the form
¥ = R(NY(O, d), (3-85)

will be sought, where R is a function of the radial coordinate r, alone,
and Y is a function of the angular coordinates @ and &. If Eq. (3-85) is
substituted into the Schrodinger equation for the hydrogen atom, both
sides of this equation are divided by function ¥, and the expressions
depending on angular variables are transferred to the right-hand side,

then the equation
oR 2mr? e?
2 —_— =
(r or > t (E + 41t£0r)

Lo
or
62Y 1 0 . Y
[sm 2@ 092 sin 2] a—@—<sm e %)] (3-86)

R
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is obtained. Since either side depends on only one kind of independent
variable, Eq. (3-86) can be satisfied only when

1 1 %Y 1 J (. Y
B V[Sin2 0 09? tSne —6_@—(Sln 6 6_@‘>:| =4 (3-87a)

and

1 0(,0R 2mr? e?
T{g(f ——a-":—) + h2 (E + 41[807') = A., (3-87b)

where A is a constant. Comparison of Eq. (3-87a) with the equation for
the rigid rotator in Table 3-1 demonstrates that they correspond to the
same type of differential equation; the equations are identical when
) = 2IE/h?. Thus, the corresponding solutions for the eigenvalues and
eigenfunctions for the rigid rotator can be used to express the quantities
sought in Eq. (3-87a): function Y and the allowed values of constants A
are then given by

Y=Y,O,9 (3-88a)

J=10+1) (3-88b)

The symbols employed have the same meaning as for the rigid rotator.
Due to the validity of Eq. (3-88b), function R(r), as the solution of Eq.
(3-87b), is obviously dependent on the value of quantum number L
As described in text-books on quantum mechanics, the approach to the
solution of Eq. (3-87b) is similar to the calculation of the differential
equation describing a harmonic oscillator (cf. Section 3.3.3). The final
solution is, as in Eq. (3-57), sought in the form of a product of an
approximate solution and a power series. The requirement of quadratic
integrability of the wave function (that is, the requirement of normaliz-
ability) necessitates introduction of a further integral (positive) quantum
number, n [similarly as in Eq.(3-73)]. As a final solution of the equation
for the radial part of the wave function, the function R, (r) is obtained
(see Tables 3-1 and 3-3).

Some Normalized Radial Wave Functions R, (r) for Hydrogen-like Atoms Table 3-3
Z 3/2 2 Z 3/2
R..=2(= -e - (£ 27 — 2) a-0/3
1,0 (%) e Ry, 81\/3<a0) ( 180 + 20%)e
1 Z 3/2 4 VA 3/2
- | = — -el/2 = = _ -e/3
R0 =73 2<a0) 2-ae R = 3176 (ao) 6 -0ee
1 (ZV?
= — — —e/2
Rz 2./6 ( a, ) ee
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In Table 3-1 the Schrodinger equation for the hydrogen atom is
given, together with its solution; conventional symbols are used. The
symbol E, denotes the energy of the n-th level of the hydrogen -atom
(n =1,2,3 ...). The corresponding wave function ¥ (or ¥, ), called the
atomic orbital (AO), can be expressed using Eq. (3-85) as the product
of the radial and angular parts (Fig. 3-8):

qln,l,m = Rn,l(r) Yl,m(@a ¢)a ) (3'89)

where n denotes the principal quantum number, | is the azimuthal
quantum number and m is the magnetic quantum number. Constant q,
corresponds to the radius of the first Bohr orbit (a, = 0.0529 nm) and
dimensionless parameter g is defined by the relation

_Zr (3-90)
o
where Z is the number of protons in the nucleus.
The wave function ¥,,, (3-89) is an eigenfunction not only of the
Hamiltonian but also of the angular momentum operators (cf. Section 4.4).
It holds

‘#‘Pn,l,m = Enqln,l,m (3'91)
32?’"’,’", =1+ l)hz!l’",,,m (3-92)
"?zq’n,l,m = mhq’n,l,m (3'93)

The principal quantum number n determines the energy of the
electron, the quantum number / determines the orbital angular momentum
of the electron, and the quantum number m determines its z component.

The quantum number n, can assume an arbitrary positive integral
value (for large values of n quantization of the energy is less important).
Quantum number ! can assume any positive integral value from 0 to
(n — 1), so that to each value of n corresponds a total of n different
values of quantum number [, for which

0<li<n-—1 (3-94)

Quantum number m can assume any integral value in the interval —I
to +1 (including zero), i.e. to each value of | correspond (2! + 1) different
values of m, for which

Im| <1 (3-95)

Numbers [ and m (by analogy with the quantum numbers in the Bohr
theory) are called the azimuthal quantum number and the magnetic quantum
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number, respectively; some authors call them the angular momentum quantum
numbers. For lucidity, the individual values of the azimuthal quantum
number are, as a rulc, expressed by letters according to the following
convention:

value of I: 01234

designation: spdfg

For elucidation of the shapes of the wave functions, some specific
examples of radial, angular and total wave functions for hydrogen-like
atoms are given in Tables 3-3 to 3-5. The partial and total functions are
independently normalized to unity (cf. Section 3.1).

A disadvantage of the angular functions given in Table 3-4 lies in
the fact that they are generally complex functions that cannot be represen-
ted in real space. However, equally good and real wave functions (atomic
orbitals) are obtained through linear combination of spherical harmonics

Some Normalized Spherical Harmonics Y, (@, ®) for Hydrogen-like Atoms Table 3-4

s orbital p orbitals d orbitals
! V3 _ s 2
Yoo = N Y, 0= 2 Jn cos O Y,0= m(?& cos* @ — 1)
V3o tio JI5 +io
=N i =N @ eti
Y, 4 PN sin @ e Y, 44 N sin2@ e
— \/15 in2 12i0
Y, 4, = N sin“ @e
Some Normalized Wave Functions ¥, , of Hydrogen-like Atoms Table 3-5
n l m
1 7 \3/2
1 0 0 Y= —(—é—) e ¢
Jr\a
1 Z\?
- (= 2 — -e/2
2 0 0 ¥, aJ@m) (”o 2-o0)e
1 Z\*?
= o/2
2 1 0 N (“0) oe % cos @
32
Yo = 4\/121{) (%) 0e~?sin O cos ®
0
2 ! 1 1 Z\*¥? .
Vs, = IR a_> 0e %?sin Osin ®
0
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with equal values of /, and the same value of | m|, for instance:

(\/_é_) (Y, +Y, )= ?/J%-sin O cos ¢ (3-96)

(It should be noted that the actual atomic orbitals are obtained by
multiplying the angular part of the wave function by the radial part
[cf. Eq. (3-89)]. This circumstance, of course, does not affect the symmetry
considerations in any way.) This combination will be denoted p,, since
the expression on the right-hand side of Eq. (3-96) exhibits the same
angular dependence as the expression for transformation of the x-coordinate
when passing from Cartesian to spherical coordinates. Two more real
atomic orbitals with / = 1 can be obtained in a similar way, their designa-
tion being apparent from the survey given below (symbol Y, , is replaced
by p;, etc.):

pl + p—l ~ Q1 ~
————\/2 sin @ cos  ~ x Py
Po Y COSO ~ 2z p,
——ip‘—_/&l~sin8sindi~y P,
V2
Table 3-6

Survey of Atomic Orbitals for the Principal Quantum Numbers n = 1,n = 2,and n = 3

Quantum numbers Symbol Conventional notation
of atomic
orbital angular function resulting real
n 1 m (complex) function (atomic
orbital)
1 0 0 Y100 Is Is
2 0 0 ¥,00 2s 2s
1 -1 L ST 2p_, 2p,
1 0 Y210 2p, I 2p,
1 1 Yo 2p, 2p,
3 0 0 Y100 3s 3s
1 -1 Y34 3p_, 3p,
1 0 Y0 3p, E— 3p,
1 1 LT 3p, 3p.
2 -2 ¥ 3d_, 3d,,
2 -1 b SO 3d_, id,,
2 0 Y120 3d, —_— 3d,.
2 1 Y12 3d, 3d,._,.
2 2 Y22 3d, 3d,.
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In a similar way, real atomic orbitals denoted dxy, d,., dyz,
d,._,, d,, are obtained from complex angular functions d;, d,,,and d,,.
A survey of atomic orbitals with principal quantum numbers n = 1,
n =2 and n = 3 is given in Table 3-6.

06
\4
0.4 - 4Tr'2w2
Fig. 3-9. The shape of the P(1s) atomic 0.2} y2
orbital and of quantities related to
it in terms of dependence on the 00 I &2 0.4
distance from the nucleus. ——= r(nm)

In chemical applications, graphic representation of wave functions
is frequently used; however, their radial and angular parts are generally
depicted separately. From this point of view, the 1s atomic orbital (i.. the
wave function ¥, ), is instructive; here the relationships are particularly
simple as the function is spherically symmetrical and decreases exponen-
tially with increasing distance from the nucleus. (Spherical symmetry is
a characteristic property of all s-type atomic orbitals, whatever the value
of the principal quantum number.) Fig. 3-9 represents the dependence
of ¥, ¥? and 4nr*¥? on the value of r for the 1s orbital (¥ designates
the ¥, function and Y2 gives the probability density of an electron at
any point at a distance r from the nucleus).

In Fig. 3-10 various modes of graphical representation of the 1s
orbital are given: a) a section through a series of concentric spheres with
the value of ¥ given for each (“contour” representation); b) designation
of the envelope corresponding to the space where the probability of
electron occurence anywhere inside this envelope is, for instance, 90 per cent
(or, for example, 99 per cent); for all points on the envelope ¥ (= ¥,,)
has the same value; ¢) indication of the electron probability density at
different points by the corresponding density of dots (for the 1s orbital
the density of dots decreases exponentially with the distance from the

nucleus).

a) b) o)
Fig. 3-10. Various modes of graphical representation of the 1s atomic orbital: (a) by contours,
(b) by a region with certain probability of electron occurrence, (c) by an electron cloud.
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1s 2s 3s l——»n
&@A ‘
. Xz |
o 2p 3p
3d
9

Fig. 3-11. Dependence of radial functions R,, on ¢ (Table 3-3). The region corresponding
to negative R,, values is shaded, nodal points are indicated by arrows.

9 u
S Px

& & o 7%
Rk el

22

Fig. 3-12. Angular part of the s, p, d orbitals. The signs of the wave functions are indicated
(+, —) and symmetry with respect to inversion is given (g, u).

For atomic orbitals with higher values of n and I, the graphical
representation becomes more complicated. In Figs. 3-11 and 3-12, radial
and angular functions are pictured for several different orbitals. Whereas
a similar mode was used for depicting the radial function, as for the 1s
orbital in Fig. 3-9, the angular part of the orbital can most conveniently
be depicted by mode b (cf. Fig. 3-10). While this representation encounters
no difficulties for s-type orbitals, the other types of orbitals are treated
in a way that can be illustrated, for instance, on the 2p, orbital. For
purposes of graphical representation, that part of the function which
depends on variables @ and @ is separated from the expression for this
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orbital and is denoted B; the resultant relationship then formally cor-
responds to the expression for this orbital where the radial part is by
convention set equal to unity [ f(r) = 1]:
¥,,, = f(r)|sin O cos |
—
B

A representation using the square of the wave function can also be
employed:
Y3, =f*(r)|sin @ cos & |?
e ———
B2
Graphical representations are usually limited to two dimensions; orbital
2p, can be conveniently characterized by a section lying in the x — y

plane for which ©® = 90°. Graphical representation of the dependence
of B or B on @ is called a polar plot (Fig. 3-13).

a y b y

Fig. 3-13. (a) Graphical representation of values of the 2p [f(r) = 1] orbital denoted by B,
(b) A similar dependence as in the part (a) but for values of B2,

To the graphical representation of the angular function can be
added that each value of I corresponds to a certain characteristic shape
independent of the principal quantum number. The s orbitals have, as
has already been mentioned, spherical symmetry, whereas the other
orbitals are directed (i.e. they have relatively large values in certain
directions from the nucleus); these facts are important for the theory
of the chemical bond. According to mode b in Fig. 3-10, the p orbitals
can be represented by a pair of ellipsoids, touching each other in one
point, which are symmetrical with respect to the axis designated by the
index of symbol p (ie. the p,, p, and p, orbitals are oriented in three
mutually perpendicular directions). For the sake of lucidity, in graphical
representation of these orbitals, cigar-like shapes are drawn instead of
rather voluminous ellipsoids. This is particularly advantageous in more
complicated representations encountered, for instance, with d orbitals,
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each of which (except the d,, orbital) corresponds to four such cigar-like
configurations. A complete wave function (the atomic orbital) is rarely
treated graphically, since the form of the angular function is usually quite
satisfactory. It is necessary, of course, in the individual parts of the
representation (that is, in the individual cigar-like areas) to indicate the
sign of the wave function ¥ in the respective part of space. This is, in
fact, very important for considerations on orbital overlap in connection
with the formation of chemical bonds.

The results of the study of atomic orbital properties in the hydrogen
atom can be characterized as follows:

a) The larger the value of n, the larger the spatial area in which
the wave function assumes non-vanishing values. This is not readily
apparent from Fig. 3-11, however, as parameter g is plotted on the x-axis
instead of distance r, where
_ 2Zr
"~ na,

4

b) The probability density of an electron in the nucleus is zero, the
only exception being s orbitals. This fact is very important for spectroscopy
in the radiofrequency region.

¢) The number of nodal surfaces of the atomic orbitals (that is,
surfaces in which the wave function has zero value) depends on the
values of numbers n and I. Spherical nodal surfaces occur in the radial
part of the wave function; in the angular part nodal planes are involved.
The number of these planes in the angular part equals number I. Since
the total number of nodal surfaces equals n — 1, (n — [ — 1) nodal surfaces
will remain for the radial part (after subtracting the ! nodal planes of the
angular part).

d) In atomic orbitals with identical values of n, the electron density
close to the nucleus is smaller for larger values of number . From the
solution of the Schrodinger equation for the hydrogen atom (Table 3-1)
it follows that the energy term appears only in its radial part, so that
obviously the energy is independent of quantum number m (which occurs
in the angular function, but not in the radial). As the radial function
involves both n and [, it could be expected that the orbital energy will
depend on both of these quantum numbers. It appears, however, that,
owing to the special position of the Coulomb potential of the point
charge among potentials of spherical symmetry, the orbital energy in
hydrogen-like atoms depends on the principal quantum number n alone:

Z2e? Z?

E, = = -7 13.60 eV (3-97a)

" 2 . 4neqagn’
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energy continuum
0 o electroninfinitely
5 far from the nucleus
B34
[¥%)
36 1

Fig. 3-14. Dependence of the orbital energy of the hydrogen atom [Eq. (3-97a); Z = 1]
on quantum number n.

En En,l
—3d
3s 3p 3d 3s
—_—2
—_—25 —2p —_—2s P
1s 1s
a) b)

Fig. 3-15. Dependence of orbital energies on quantum numbers n and / for (a) an atom with
one electron, (b) an atom with more electrons.

Negative values are obtained for orbital energies due to the fact that zero
energy was, by definition, assigned to a system composed of a proton
and of an infinitely distant electron (Fig. 3-14); all the remaining systems,
where the electron is closer to the proton, have energy values below zero,
i.e. negative.

It is worth noting that the energy of a particle exposed to a constant
potential field in a “box” is directly proportional to n? whereas the
energy of a charged particle in the central electrostatic field varies
inversely with n?. It is apparent from expression (3-97a) that, in hydrogen-
like atoms, the 3s, 3p and 3d orbitals have the same energy (that is,
they are many-fold degenerate states). It will be shown later that this
degeneracy is considerably reduced in systems with more electrons (at
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least two) where repulsion among these electrons is considered (Fig. 3-15).
In these systems, the energy is dependent not only on n, but also on I,
so that only those orbitals that have the same combinations of n and [
are degenerate; the order of degeneracy is equal to 2/ + 1 (hence, the
order of degeneracy of p, d and f orbitals is 3, 5 and 7, respectively).

Transition of an electron from an orbital with principal quantum
number n, into an orbital with this number equal to n, is accom-
panied by emission or absorption of energy in the form of electro-
magnetic radiation. For the hydrogen-like atom the following relation-
ship (cf. Table 3-1) is valid:

2,2
_E Z—"’<—1- - —12—> =" 3o

mo UM Bregan \ nt o nb A
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4. MATHEMATICS AND LOGIC
OF QUANTUM MECHANICS

4.1 Linear operators and their properties

In the preceding chapter the concept of an operator was introduced,
which will now be made more precise and specified in greater detail.
The theory of linear operators is one of the fundamental mathematical
tools of quantum mechanics! ~*2,

Definition 1. The term operator € denotes an instruction according
to which to function f(x, y, ...) of coordinates x, y, ... is assigned another
function F(x, y, ...) in the same variables:

0f=F (@-1)

(denotation of the dependence on the coordinates is omitted).
Definition 2. Operator O is linear if

of, + 1) = 0f, + 0f, (4-2)

and
Ocf = c0f, @-3)

f, and f, being functions and ¢ an arbitrary constant.
From relations (4-2) and (4-3) it follows that

Oc,f, + c,f)) = ¢,0f, + ¢,0f,, 4-4)

where ¢, and ¢, are arbitrary constants. In all the following considerations
it will be assumed that general operators satisfy properties (4-2) and (4-3).
It can easily be verified that the operators introduced in the preceding
chapter are linear.

We have already encountered operators requiring differentiation of
the function or multiplication by one of the coordinates — such operators
or combinations thereof will appear here most frequently. The following
symbols

P, = 4-5)
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2 =x 4-6)
can be introduced. By definition,
_9
P == @4-7)
2f=x.f 4-8)
The action of operator 2_ on Eq. (4-7) gives
2P f=x BL 4-9)

and #_ acting on Eq. (4-8) gives
9’.@,]-— x.f) = f+x—a—f~ (4-10)

from which it follows that the result depends on the sequence of
operations. In other words, operators #_and 2_are not commutative.
Subtracting Eq. (4-9) from Eq. (4-10) gives

[g’x’@x - ‘gx?x] f = j; (4'1 1)

and since f is an arbitrary function of its coordinates, Eq. (4-11) can be
changed into a form in which only operators occur:

P2 -2 P =l 4-12)

where 1 is the identity operator.
Definition 3. Operators satisfying the equation

[#,2]= P2 - 22 =0 (4-13)

are termed commutative operators. The symbol [, 2] is called the
commutator of # and 2.

For example, operators 2, and £, are a pair of commutative
operators.

Definition 4. Operator @(x) is a Hermitian operator if

[ 1) O(x) f,(x) dx = [ f(x) O*(x) f}(x) dx, (4-14)

where an asterisk denotes complex conjugate quantities and integration
is performed over all possible values of variable x. If more variables are
involved, dx is replaced by the volume element dt =dxdy... and
integration is performed over variables x, y, ....

Definition 5. To each operator @ can be assigned a linear equation of
the type

of = of, 4-15)
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where o is a constant which, in general, can be a complex number.
This equation is called an eigenvalue (or characteristic) equation, function f
and constant o are called, respectively, an eigenfunction (or characteristic
function) and an eigenvalue (or characteristic value) of operator 0.

Equation (4-15) can be satisfied by a number of functions with
various properties; among them is the trivial solution, f = 0. In order
to ensure that the solution obtained is reasonable from a physical
point of view (cf. Eq. (4-22)) the eigenfunctions must fulfil the following
requirements:

a) function f exists in the whole region in which the variables lie,

b) function f must be continuous and finite everywhere in this
region (with the exception of singular points),

¢) function f must be single-valued.

Other functions can, of course, satisfy Eq. (4-15) so that

Of, = ol (4-16)
where the subscript indicates that there can be further eigenvalues whose
spectrum can pass through discrete or continuous values.

An interesting consequence for its eigenvalues follows from the
definition of the hermicity of operator 0. If Eq. (4-15) is multiplied from
the left by the function f* and integration is carried out over the entire
space, then
[f*0fdt
[IFARCE

Similarly, if we start with the complex conjugate of Eq.(4-15) and
multiply it by function f, after integration we obtain

o* = %*If:% (4-18)

From comparison of Eqs. (4-17) and (4-18) and from' the condition of
hermicity of operator (4-14) it can be seen that

o =o* 4-19)

0=

4-17)

Thus, it obviously holds that:
Theorem 1. The eigenvalues of Hermitian operators are real numbers.

4.2 Axiomatic foundation
of quantum mechanics
Scientific disciplines, deductive by character, depend on axioms or

postulates which are considered to be fundamental and non-deducible.
It is necessary to realize that the justification of postulates depends on
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the ability of the theory based on them to interpret observations (to
correlate data) and to predict experimental facts.

There is, as a rule, a number of ways of forming the axiomatic basis
of a certain branch of science. Individual modes can differ in character,
generality and the number of postulates required. Classical mechanics
is a good example: it can begin from Newton’s laws or from the principle
of least action and the properties of an inertial frame of reference.
It is evident that, while the first approach allows simple formulation
of “normal” problems from the field of mechanics up to the motion of
celestial bodies, the second is, because of its generality, also useful
for investigating problems in which electrical, magnetic and relativistic
phenomena appear. The example given also shows that the system of
postulates can be chosen so that, within a specific application, it may
be possible to use the respective laws directly without further derivation.

For our purpose, i.e. for the application of quantum mechanics to
the problems of chemical bonding, it will be satisfactory to axiomatically
introduce the Schrodinger equation, interpretation of the wave function and
the requirements imposed on it. Even so, it is not surprising that the
postulates of quantum mechanics are not immediately clear as they
concern the properties of particles of the microcosmos, with which we
have no direct experience.

To investigate a system composed of n particles, the classical descrip-
tion requires knowledge of 3n coordinates and 3n momenta at a given
instant in time. Description of this system in quantum mechanics can be
performed after introduction of the following postulates.

Postulate 1. To every physical quantity M corresponds a linear,
Hermitian operator . (observable), which can be obtained by the
following steps: in the classical expression for the corresponding physical
quantity expressed in terms of Cartesian coordinates and momenta

a) time and coordinates will remain unchanged

b) linear momentum p_ will be replaced by the operator

h 0
Rl R

Postulate 2. Every dynamic state of the particle system is fully
described by a function of the coordinates and time, wave function ®.
The wave function (in the form normalized to unity) must satisfy conditions
a) to ¢) in Section 4.1, and has the following physical interpretation: the
expression &*¢ dt gives the probability that at time ¢ the variables lie in
the intervals x, to x, + dx,, y, to y, +dy,, z, to z, + dz,, x, to x, +
+ dx,, ... z, to z, + dz,, where dt = dx, dy, dz, ... dz,. Each of the n
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particles occurs somewhere in space and therefore the integrated probability
density must equal 1:

[o*ddr =1 (4-20)

Equation (4-20) must be understood as a condition which is
satisfied by function @ at a certain instant t. The time dependence of the
wave function then need not be considered; it is necessary, however, to
require that the norm be maintained throughout the time development
of the system.

Postulate 3. In the time-dependent Schrodinger equation the wave
function @ satisfies the relationship

HD = ih —82 (4-21)
ot
where ## is the Hamiltonian operator of the given system and ¢ is
the time.

Postulate 4. The only possible values obtained by measuring the

physical quantity M are the eigenvalues, m,, of the equation

MY, =mY,, 4-22)

where ¥, fulfils conditions a) to ¢) in Section 4.1 and .#is the corresponding
observable.

Postulate 5. If the state of the given system is described by wave
function @, the mean (or expectation) value m of physical quantity M
is given by the expression

[o* ad dr

"= o dr

4-23)
In the next section, the relationship between the mean value defined
in this way and the mean value of an experimental quantity obtained by
a series of measurements will be described.

4.3 Consequences of the axiomatic system

To facilitate analysis of the properties of the wave function, some
important concepts must be introduced:

Definition 6. The set of functions ¢,(x), @,(X), ..., @x(x), ..., defined
for variable x in the interval (a, b), is orthonormal if the scalar product
satisfies the relationship

b
j(o?‘(x) q)j(x) dx = <o, I (Pj> = 5,']', (4-24)
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where §;; is the Kronecker symbol (6; = 1; 6;; =0 for i #j), and is
complete if the arbitrary function f(x) satisfying properties a) to c)
introduced in Section 4.1 can be approximated by

S = fulx) = —21 cip{x); (4-25)

where
b
F1f(x) = fux) |? dx (4-26)

approaches zero provided m tends to infinity.

Similar sets of functions exist for functions of more variables and
also for infinite intervals.

Expansions of type (4-25) are useful for representing the wave
function of a system in terms of a linear combination of functions ¢(x).
If the analytical form of the function f is known, the expansion coefficients,
c;, can easily be calculated: Multiplying Eq. (4-25) from the left by the
function @¥(x), performing integration over the given interval and con-
sidering the orthonormality of the functions leads to the expression

b
¢, = [ or(x) f(x) dx 4-27)

The form of expansion (4-25) is also useful for finding the wave function
as a solution of an eigenvalue problem. The solution leads, as a rule, to
a linear problem in variables c; that is relatively easy to solve.

Theorem 2. The eigenfunctions of the Hermitian operator form
a complete orthonormal set.

Proof of the completeness of a set of functions is a difficult problem,
so that only an outline of the proof of the orthonormality of eigenfunctions
of the Hermitian operator will be given here.

Let .# be the Hermitian operator, ¥, and ¥, its two eigenfunctions
and m, and m, the respective eigenvalues. Therefore

MY, =m P, (4-28)
MY, =m,P, (4-29)

Multiplication of Eq. (4-28) from the left by function ¥4 and integration
gives

[P MY dt=m, [P3YP, dr, (4-30)
and, because of the hermiticity of .#

[P, M*Psdr=m [P3Y¥, do (4-31)
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The complex conjugate of Eq. (4-29) is then multiplied from the
left by ¥, and integrated to give
[P, M*Psdr =m} [P Pidr=m, [P, Pidr @-32)

which is due to the fact that the eigenvalues of Hermitian operators are
real numbers. The left-hand sides of Egs. (4-31) and (4-32) are identical,

so that
m, [PE¥ dt =m, [ ¥, P%dr, (4-33)

which for m; + m, can be valid only if
[y, de =0 (4-34)

For m, = m,, the proof is insufficient; however, it is still possible to find
a set of orthogonal eigenfunctions by orthogonalization, employed in
linear algebra.

Theorem 2 guarantees the possibility of expanding wave function ¢
in a certain instant in terms of eigenfunctions ¥;, corresponding to
a certain observable. Substituting the expansion

=¥, (4-35)

into Eq. (4-20), where ¥, satisfies Eq. (4-22), and considering the ortho-
normality of functions ¥, leads to the relationship

;Ici ? = (4-36)

Substituting Egs. (4-20) and (4-35) into expression (4-23) for the mean
value 7 of the physical quantity M gives

m=Y|c['m, 4-37
Relationship (4-37) is analogous to the definition of the mean
experimental value of quantity M, for which value m, was determined p,
times, value m, determined p, times, etc. It then holds that
m = iz m
- N i pi i’
where N is the total number of measurements (N = Z p;) and p,/N is the

probability of finding value m, during the measurements. The sum of all
the probabilities fulfils the necessary condition that

pi _
2y !

In condition (4-36) the square of the absolute value of coefficient c; can be
interpreted as follows:
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Theorem 3. If a system is in a state described by wave function @
expressible in terms of the expansion & =) ¢,¥,, the value | ¢, |? is the
i

probability that value m,, corresponding to the eigenfunction ¥, is
found as the measured value of quantity M.

The definition of commutative operators was given in Section 4.1.
Here it will be shown that the commutation of two operators reflects
significant physical properties of the system.

Theorem 4. The necessary and sufficient condition for two physical
quantities K and M to simultaneously assume the precise values k; and m;
during the measurement is the commutability of their operators & and

To verify the validity of this theorem, it is necessary to show
that, if there is a complete set of orthogonal functions which are
simultaneously eigenfunctions of both operators 4" and .4 then these
operators commute. Conversely, it also holds that, if the two operators
A" and A commute, they have a set of common eigenfunctions.

The first part of the theorem can easily be proved. It suffices to
examine, according to Egs. (4-11) to (4-13), the action of the respective
commutator on an arbitrary function f. According to the above assumption
it holds that

HY, = kY, (4-38)
MY, = mY, (4-39)

and
[x,'/”Jf= [x,J/{_IZCiW,., (4‘40)

where Theorem 2 was used for expansion of function f in a series of
functions ¥,. Using Egs. (4-38) and (4-39) for modification of Eq. (4-40)
leads to the result

Y cfkim, — mk) ¥, =0, 4-41)
thus proving the commutability of operators o and .4 in the sense
of Definition 3. The second part of the theorem will be proved for
a special case assuming that the eigenvalues of one of the operators
(say HA") are not degenerate, in other words, that in Eq. (4-38) only one
function ¥, corresponds to value k;. Generalization of the proof for
the degenerate case renders no difficulty; it is, however, too lengthy to be
given in detail here. Equation (4-38) is multiplied from the left by
operator . and A is substituted for A # as implied in the assumption;
the relation

H(ME) = k(MP), (4-42)
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is then obtained, from which it follows that A, = .#¥, is also an
eigenfunction of " with the eigenvalue k;. However, since k; corresponds
to a non-degenerate state, A, can differ from ¥, only by a constant
factor,ie. A, = m,¥,, and
MY, =mVY,

Thus it has been shown that ¥, is also an eigenfunction of operator .

The final theorem is of no less importance and its usefulness for
facilitating some calculations will be appreciated later.

Theorem 5. Let A and .# be Hermitean operators that commute.
Let ¥, and ¥, be eigenfunctions of operator .4 and m, and m, be the
respective eigenvalues. If m; # m,, then the integral | ¥*¢"¥, dr equals

zero.
It obviously holds that

j YIAMY,dTr = m, j YiAY,dr (4-43)
and, moreover,
(VI MY, dt = (PEMfdr; f=HY,, (4-44)

where the commutation property of the operators was employed.
Hermicity of operator .# permits rewriting the right-hand side of Eq. (4-44)
in the form

[faPtdr =m, [fPEdr=m, [PIHY,dr, (4-45)

taking into account Definition 4 and Theorem 1. The left-hand sides of
Eqs. (4-43) and (4-44) are identical; therefore

(my —m) [PIAHY,dr =0, (4-46)

whence it follows that, for m, % m,, the corresponding integral must
vanish.

To conclude, it is necessary to state that, for the sake of simplicity,
we have assumed (and shall continue to assume) a discrete spectrum
of eigenvalues and that generalization to a continuous spectrum is
possible.

4.4 Constants of motion.
The Pauli principle

Among quantum mechanical operators, the Hamiltonian is undoubtedly
the most important, not only because of its relation to the total
energy of the system but also for its role in the time-dependent
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Schrodinger equation (see Postulate 3). If # does not depend explicitly
upon the time, 3¢ is identical with the total energy operator. Then the
Schrédinger equation (4-21) also has a solution that can be found by
separation of the spatial coordinates and time.

It can be assumed that wave function @ can be written as the
product of two functions,

o(r, 1) = f(2) ¥(r), (4-47)

where f depends only on time, t, and ¥(r) only on the spatial coordinates,
symbolically denoted by r. Substitution of assumption (4-47) into Eq. (4-21)
permits rewriting the Schrodinger equation in the form
1 afy ) ¥P(r)
= 4-48
R I 49
where each side of the equation depends on a different type of variable,
which is possible only if both the left-hand and right-hand sides equal
a common constant, denoted by E. Thus two equations result:

H(r)¥(r) = E¥(r) (4-49)

and

L df()
ih 10 = Eds,

where the first is the eigenvalue equation for the energy, that is, the
time-independent Schrodinger equation. States represented by wave function
¥, (r) and with a precise value of energy E, [the solution of Eq. (4-49)]
are called stationary states.

If, in addition, the form of function & (r, t) is to be found, Eq. (4-50)
must be integrated, giving

(4-50)

ft) = Ae™ B, @-51)
where A is the integration constant. Hence the particular solution
of Eq. (4-47) is obtained:
| O,(r, 1) = V,(r) e (4-52)

In general the initial state of a system is described by a wave function
which can be expressed as an expansion in a series of eigenfunctions
of Eq. (4-49):

&(r,0) = Y ¢, 7,(r) (4-53)
k
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According to the theory of differential equations, the following solution
satisfies Eq. (4-21):

B(r,1) = Y ¢, Py(r) e B (4-54)
k

In Egs. (4-53) and (4-54), the c, denote the expansion coefficients. By
substituting expansion (4-54) into expression (4-23) for calculation of the
mean energy value, it follows that not only the total energy of a system
but also the statistical energy distribution is constant in time:

E=[o*#ddt =) |c | [¥r#Y, dv =) | |*E,  (4-55)
k k

Similarly, there are other physical quantities whose statistical
distribution does not vary in time. This property is possessed by any
observable .# that does not depend explicitly on time and commutes
with the Hamiltonian:

[#5] =0 (4-56)

From the rule of differentiation of the product of functions, it follows
for the derivative of the mean value of M with respect to time that

d ., oo , ., 0
+ [ o aa'/t”didr 4-57)

In Eq. (4-57) Postulate 1, which stated that operators can be treated as
functions of time, was used. The time variation of the wave function is
given by the Schrodinger equation (4-21) and the derivative d®*/dt can
therefore be expressed by the complex conjugate of Eq. (4-21):

*
ih 6% = —H*P* (4-58)
Substituting these expressions into Eq. (4-57) gives
1 oM
i_h — [(H*D*) MD dT + [O* MAD dr} + [ P* pr odr =
= o [ O MA) Dt + [ 0> 5{;:’ & dr, (4-59)

where the fact that # is a Hermitian operator was employed. Equation
(4-59) expresses the general time dependence of the mean value of
physical quantity M. If 0.#/0t =0 and # satisfies Eq. (4-56), the
right-hand side of Eq. (4-59) is equal to zero. The observable .# is then,
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by analogy with classical mechanics, called a constant of motion. It is apparent
that, if the wave function in the initial instant (¢ = 0) is identical with the
eigenfunction ¥, of .# [cf. Eqgs. (4-52) and (4-53)] with eigenvalue m,,
then, during the evolution of the system, physical quantity M retains
the value m,. Then m, is said to be a “valid quantum number”. It can
be used for classification of stationary states, since, employing Theorem 4,
conditions are obviously fulfilled for the energy of the system to assume
precise values of E, .

As a constant of motion, the angular momentum is particularly
important for systems with spherical symmetry, represented, for example
by atoms, where the electrons move in the electrostatic field of the point
charge of the atomic nucleus. According to the classical definition, the
angular momentum L of a point particle of mass m with linear mo-
mentum p = mv, whose position is specified by vector r, is given by the
relationship

|L|=|rxp|=]|r||p|sin® (4-60)
(cf. Fig. 4-1).

/
' ' m(x,y,2)

Fig. 4-1. Angular momentum vector L.

In three-dimensional space the expression for L can be written
in the form of a determinant

i, Jj, k| ... unit vectors
L=|x, y, :|... componentsofr (4-61)
Py Py» D-| ... components of p

Considering Postulate 1, the corresponding operator can be written as
i, j, k
& = —ih|x, y, z (4-62)

5 5 8
X’y oz
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Expressions for components of this operator can be obtained by
expanding the determinant

. 0 0

gx = —1h<y FZ_ - Za—y'> (4-633)
. 0 0

gy = —ih (Z EC_ - X—a?> (4-63b)
. 0 0

gz = —ih (X Ey— -y a‘) (4'63C)

For the operators of components of the position vector and the momentum,
the commutation relations

[m’ /Lx] = [y’ /lv] = [Z, /lz] = lh (4'64)

are valid [called Heisenberg’s commutation rules, cf. Postulate 1 and
Egs. (4-5) to (4-13)]; the commutation relations

(£, 2] =ine, (4-65a)
(2, 2.] = ihe, (4-65b)
(2, 2] =ihe, (4-650)

are then obtained for the components of the angular momentum, indicating
that simultaneous measurement of the components of the angular
momentum is precluded (cf. Theorem 4).

The operator of the square of the angular momentum can be
defined as

L =L+ L+ &L=

= —h? —?——-z—a— 2+ zi—xi 2+ xi—- KAY
= Yoz " %%y ox oz oy Y ox

(4-66)

Using relations (4-64) and (4-65), it can be shown that each component
of the angular momentum commutes with £2, so that

(£, 2] =%, 2] =[2..2*]=0 (4-67)

On the basis of relationships (4-65) and (4-67), £? and one of the
operators of the angular momentum components that mutually commute,
usually &, can be selected from the four operators defined by Egs. (4-63)
and (4-66). This ensures that both these physical quantities are, in principle,
simultaneously measurable. It is now necessary to determine the eigen-
values for these observables, on the basis of Postulates 1 and 4, which
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can be carried out, similarly as with the rigid rotator and the hydrogen
atom, by introducing spherical coordinates (cf. Fig. 3-8). A rather lengthy
transformation of Egs. (4-66) and (4-63c) results in the expressions

o9 8 1@
2 __ 4 _ - -
L= "o e (S“‘@ a@)+ sn?0 067 Y
¢ = —in-2 (4-69)
- 0P

Comparison of Eq. (4-68) with the formulation of the Schrodinger equation
given for the rigid rotator in Table 3-1 permits prediction of eigenvalues
and eigenfunctions for the equation

LY, =LY, (4-70)
namely
L2 =kl +1) 4-71)
and
¥, = Y,,(0,®) = Th,,(0) F,(®), (4-72)
where
— 1 im® -
Fm(ds) = m € (4 73)

The other functions are given in Table 3-1. | and m are integral quantum
numbers for which condition (3-83),

12|m]|,

is valid. From the separated form of function ¥, in Eq. (4-72) it follows
that ¥, is also an eigenfunction of & ,, since, from Eq. (4-69),

LF = —ih% = —ih(im)F () = hmF, (@),  (4-74)

and hence, considering Eq. (3-83), the eigenvalues of L, are
L =bm; m=0, t1,...,+I] 4-75)
Thus, the angular momentum is a vector whose length equals

AL + 1]

This vector is oriented so that the component in a chosen direction,
z, is an integral multiple of 4. The behaviour of the vector of the angular
momentum, as follows from Egs. (4-70), (4-71), (4-74) and (4-75), can be
understood as its spatial quantization.
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Comparing the eigenfunctions of 2, i.e. Eq. (4-72), with the eigen-
functions for the hydrogen atom (see Table 3-1) shows that the angular
parts (spherical harmonics) are identical for the two cases. Since the
radial part of the hydrogen wave function is constant with respect
to operators 2 and &, it can, according to Theorem 4, be assumed that
operators #, &£* and &£, commute. The same result could be derived
using commutation relations for the corresponding operators expressed
in analytical form. Thus it follows that, for the hydrogen atom, all
three observables, #,%? and &, are constants of motion.

In the many-electron atom the quantities derived from the total
angular momentum act as constants of motion. For a system of n electrons
the operator of the z-component, Z,, of the total (orbital) angular
momentum, L, is defined as the sum of all the z-components

L,=) L, (4-76)
k=1

of the orbital angular momenta of the individual electrons; a similar defini-
tion is also valid for the two remaining components, £, and % . By using
commutation relations (4-65) for the operators of the individual electrons,
formally identical commutation relations can be derived for operators
of the components of the total momentum. On this basis, the angular
momentum can be defined in general as any vector satisfying commutation
relations (4-65). For the sake of completeness it can be added that the
operator of the square of the total angular momentum is again defined
by Eq. (4-66), that is, as the sum of the squares of three components of type
(4-76), and that, for the many-electron atom, neglecting spin-orbit inter-
action, operators #, £* and &, commute. In connection with the
eigenvalues of the total angular momentum, it is particularly interesting
to determine these values from the eigenvalues of the constituent quantities.
The procedure used for addition of two momenta represents a general
algorithm that is also applicable to a many-component system; the process
of vector addition is then repeated stepwise for all pairs of vectors.

Assuming that there is a system of two commuting angular momenta,
corresponding either to two independent particles, such as a pair of
electrons, or to two independent coordinates of the same particle, such
as the spatial and spin coordinates of an electron, and if the squares
of the momenta [cf. Eq. (4-71)] are given by the expressions

Ly =1, + 1) 4-77a)

and
L,Z2 =h,(, + 1) (4-77b)
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then the square of the total angular momentum has the value

L} =Rl + 1), (4-78)
where
l=ll+lz,ll+lz-1,...,|ll—12| (4-79)

The result has a simple vectorial interpretation if vectors of length
I, and I, are added vectorially; the largest value of the resulting vector
corresponds to parallel alignment; further values vary by 1 owing
to spatial quantization and the lowest value corresponds to antiparallel
alignment of vectors [, and [,. The spatial quantization of the resulting
vector, L, is also subject to a rule of type (4-75).

In addition to orbital angular momentum, an electron has an
intrinsic angular momentum —the spin. It has been experimentally de-
termined that its components in a particular direction can have values
of * 1h. Dirac demonstrated that the existence of spin naturally follows
from the relativistic description of an electron moving in an electromagnetic
field. For practical purposes, however, it is preferable to introduce spin
by the Pauli procedure, where the spin of an electron is treated as
a physical quantity corresponding to the angular momentum with the
quantum number | = s = 1. The existence of spin momentum S, indepen-
dent of the orbital momentum, L, is thus postulated. In connection with
the spin, similar operators &2 and &, can be defined. These operators
satisfy commutation rules analogous to those valid for operators £?,
£, etc., for example

[9%,%.]=0 (4-80)
[¥..9,] =ik, (4-81)

These operators are applied to spin functions o and f, which have
the properties of orthonormal functions:

[a*(o)ale)do = 1; [ B*(0) Blo) do = 1 (4-82)
ja B(o)do = 0, (4-83)

where ¢ represents the discrete spin variable corresponding to the eigen-
value of &, and assumes the two values + 5. The characteristic equations
for operators &2 and &, have the form
) 1 1\,, h
,Yoc=71+7 h*a, L o=—=uo (4-84a)

) 1 1\,, _ _ﬁ_
Vﬁ—;( 7>hﬁ, LY
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In contrast to all the cases discussed so far, the analytical form
of functions « and B cannot be established. In practice, the spin-
dependent part of a one-electron function is defined by specifying the
value of the quantum number, m; = +#/2.

Similarly as with the orbital angular momentum, the total spin
angular momentum can be introduced; for a system of n electrons,

M=

S =

S, (4-85)

It

1

From the procedure of vector addition it is apparent that quantum
number S [by analogy with [ in Eq. (4-78)] assumes integral values if n
is even and half-integral values if n is odd. The largest possible eigenvalue
of &, is evidently 1nh.

The total angular momentum of a system of electrons, considering
the spin, is defined as

J=L+S=Z"i= Li+ZSi (4-86)
i=1 =1 i=1

and
Fr=gi+ 1+ 7 (4-87)

The following quantum numbers correspond to the given six
operators related to the many-electron atom:

LM,
S, Mg
J, M,

For the total operators the commutation rules given in Table 4-1 are
valid.

The computation of physical properties of atomic systems is carried
out by setting up stationary wave functions that are simultaneously
eigenfunctions of a maximum number of commuting operators. Physical
quantities are generally expressed in terms of matrix elements of type
(4-97); according to Theorem 5, the matrix elements of the total energy
operator of a system are non-zero only if the Hamiltonian in the matrix
element is surrounded by functions with eigenvalues identical of the other
commuting operators. The extent of the calculation can then be reduced
considerably. It follows from Table 4-1 that the group of operators
L L., F* and & . 1is suitable for the Hamiltonian, exhibiting no
explicit dependence on the electronic spin. If subtler types of interaction
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are also included in the Hamiltonian, such as, for instance, spin-orbit
coupling, which contributes the term

e#(SL) = 2 f(ri) (gixyix + giy'spiy + gizyiz) (4'88)
i=1

to the non-relativistic Hamiltonian, then the four given operators are not
constants of motion and their role is assumed by operators #2 and #,.
&(r)) is a function of the radial coordinate of the i-th electron alone, and
depends on the type of spherically symmetrical potential field in which
the electron is moving.

So far only those constants of motion that have classical analogues
have been discussed. There are also other types of operators commuting
with the Hamiltonian. Let us consider a system of identical particles;
this can be an atom, a molecule, or a solid substance, where it is assumed
that n electrons move in the electrostatic field of the rigidly fixed nuclei.
Since the electrons are indistinguishable, the Hamiltonian is invariant
under any transposition of the electrons. Mathematically this property
can be expressed by the relationship

P,H = HP,, (4-89)

where 2, denotes the transposition operator of the k-th and j-th electrons.
It follows from relationship (4-89) that operator £, is a constant of
motion and that 2, and # have common eigenfunctions.

Table 4-1
Commutation Properties of Operators Corresponding to Quantities L, S, J, and H
(Hamiltonian where L—S coupling is not considered).0 denotes that the operators in the
respective row and column commute, the dash denotes that they do not commute [Ref. 5]

¢ ¢ ¢ £ 9y L L P g S I I K

x y z x y z

¢, 0 - o o o o0 o0 0 - - - 0
¢ - 0o - 0 0 0 0 0 - 0 - - 0
£ - - 0 0 0 0 0 0 - - 0 0
£ o 0 0 ©0 0 0 ©0 0 0 0 © 0
., 0 0 0 O o - - 0 0 - - - 0
#, o 0o o 0O - 0 - 0 - 0 - - 0
., 0o 0 0 O - - 0 0 - - 0 - 0
£ 0 0 0 0 0 0 0 0 0 0 0 0 O©
g, 0 - - 0 O - - 0 ©0 - - 0 0
$ - 0O - 0 - 0 - 0 - 0 - 0 0
s - o o - o 0 - - 0 0 0
5 - -0 - -0 0 0 0 0
# 0 0 o 0 o0 0 0 0 0 0
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If the wave function
YA,2, 0k, ) = WL k) (4-90)

is a function of the space and spin coordinates of a system of electrons,
then

PG, k) = 29, k) = V(K j) (4-91)

where 4 is a real eigenvalue, and 2, is a Hermitian operator (the right-hand
side of the second equation expresses the result of the operation on the
function). If the operator P, is repeatedly applied to Eq. (4-91), then

PLY(, k) = 129, k) = ¥(j, k) (4-92)

whence it follows that
=1, A= +1 4-93)

Thus it has been shown that the solutions ¥ of the stationary Schrédinger
equation may or may not change sign on transposition of two identical
particles. States of the first type are referred to as symmetric, those of
the second type as antisymmetric states. The functions that can be
considered to be actual solutions are given by the Pauli exclusion principle.
according to which, of all possible solutions of the Schrodinger equation
for electrons, only those which are antisymmetric are to be considered.
The Pauli principle, originally only a hypothesis, was later shown experi-
mentally to be valid.

4.5 Matrix representation of operators
and operations with matrices

It has been shown that the mean values of physical quantities for a system
which is in a stationary state are constant in time [cf. Eq. (4-59)]. In
quantum chemistry these states are generally most interesting and therefore
the dependence of operators and of the wave function on time will be
excluded from further discussion.

The expectation value of physical quantity K can be written
according to Postulate 5 as follows:

k=(o*odr:  [o*dr =1 (4-94)

It is sometimes expedient to expand wave function @ in Eq. (4-94) in
terms of a set of eigenfunctions (see Theorem 2) of observable .,

d=Yc¥, (4-95)
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so that
k=Y ctcK,;, (4-96)
i,j
where
K= IY’;"XY’J. dr 4-97)

By introducing a certain sequence for functions ¥;, expressions (4-97)
can be systematically arranged in an array

K., K;p, ..., K
K Koy, oo K

5 2j> -

1j> -

P : = K=K (4-98)
I.(“, I.<i2’ ) I.<ij’
This scheme is usually referred to as a matrix. Matrix element K
is located in matrix K on the intersection of the i-th row and the j-th
column. Matrices can assume finite as well as “infinite” dimensions.
When the matrix consists of m rows and n columns it is called an m, n-
type matrix. The matrix of the m, m type is termed square matrix.
Matrix K is said to form the matrix representation of the operator A .
The respective functions ¥,, i=1,2, ..., are the basis vectors of the
representation. If functions ¥, i 21,2, .., are eigenfunctions of operator
A, it follows from Theorem 2, Section 4.3, that matrix K has non-zero
elements only on the main diagonal.
Since the operators considered here are linear, it is useful to introduce
some matrix operations.
Let us assume that operator A" is defined as the sum of two
operators:
N =oA+RB (4-99)

By substituting Eq. (4-99) into Eq. (4-97), it follows for the matrix elements
that
K,;=4,;+B; (4-100)

and, consequently, that the surﬁ of two matrices,
K=A+B, (4-101)

can be defined so that the matrix elements satisfy Eq. (4-100).

To derive the algorithm for matrix multiplication it is necessary to
utilize the fact that the function f= A"¥; can be expanded using
Theorem 2, as

H¥; =% K¥, (4-102)
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Operator X" can be defined as
N =AR (4-103)
Then successive action of the operators on ¥; gives

A BY) = S LB¥, = VLBV, = L ByAu¥, (4104
k ki

Comparison of coefficients of the same function in Egs. (4-102) and (4-104)
yields an expression for the general element K;; of matrix K in terms of
matrix elements of A and B:

K;;= ;Ai,‘B,‘j (4-105)

For the sake of completeness, multiplication of matrix K by a constant,
k, can be defined as

A = kK, (4-106)
where

A, =kK,; (4-107)

Some special kinds of matrices can be given:
Null matrix 0, definition: K;; = 0 for all i and j.
Unit matrix 1, definition: K;; = 1 for all i; K;; = 0, for i = j.
Diagonal matrix, definition: non-zero elements on the main diagonal alone.
Inverse K1 of matrix K, definition: KK~ ! = K™ !K = 1.
Transposed matrix KT to matrix K, definition:(K"),; = K;;.
Complex conjugate matrix K to matrix K, definition: (K);; = K},.
Hermitean conjugate matrix K" to matrix K, definition: (K"); = K*.
If K is a Hermitean matrix, then

K = KY, or K;; =K% (4-108)
and it is evident that, for real matrix elements, the matrix is symmetrical and
K =KT, or K=K, (4-109)

It can easily be verified that a matrix representing a Hermitian
operator is also Hermitian.
A unitary matrix is defined as

KHK = KKH =1 (4-110)
For real matrices definition (4-110) reduces to give
K'™K = KKT =1 @-111)

and matrix K, satisfying relation (4-111),is called an orthogonal matrix.
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The matrix formulation of some problems permits more lucid and
more compact recording of complex expressions, as is demonstrated in
several examples given below. Let us define ¢ as a one-column matrix and
arrange functions ¥; in the corresponding order in one-row matrix ¥.
Expression (4-95) can then be written in the form of the matrix product

¢

®=|¥,%,..||c|=Pe (4-112)

Let us suppose that the set of functions ¥,, i = 1, 2, ...,is normalized but
not orthogonal. Basis sets of this type are frequently used in quantum
chemical calculations. Therefore,

[¥re;di=s, (4-113)

with S;; =1 for all i's. S is called the metric or overlap matrix of the
corresponding basis set. The norm of wave function @ is then given,
instead of by Eq. (4-36), by the more general expression

[@*ddr = Y cre, [ Y1, de (4-114)
ij

In order that expressions of type (4-114) be recordable by the matrix
formalism, a two-dimensional matrix to the basis ¥,, i=1,2, ..., is
formally assigned, where the column index specifies functions ¥, arranged
in a certain order, and the row index (continuous) lies in the region
of the integration variable. In accordance with this notation, the chosen
function ¥; is a one-column matrix, and the integral in Eq. (4-114) can
be formally written as

[ry do = Piy,, (4-115)

where the integration is expressed by the summation involved in the
matrix multiplication. This notation also implies that

S = iy (4-116)
and
[@*® dr = DD = cHPHPc = MSc, 4-117)
where the property of matrix multiplication has been employed:
[AB]H = BHAH (4-118)

The problem of transformation of the operator from one represen-
tation to another merits particular attention. Let us assume that the
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representation of operator " for the basis formed of eigenfunctions ¥,
i=1,2, .., of operator . [i.c. matrix K defined by Eqgs. (4-97) and (4-98)]
and the following transformation are known:

v, =Y Uy (4-119a)

¥, =Y U, (4-119b)

These equations relate the set of functions ¥, i = 1,2, ..., to a new set ¢ i
j=1,2, ..., which is also assumed to be complete and orthonormal. Now
the relationship between matrices K and K’ can be investigated, where

K= (ot o;de (4-120)
First, system of linear equations (4-119) can be written in matrix form:
Y =¢U (4-121)
Forming the product according to Eq. (4-116)
PHY = UlptpU, (4-122)
then, because
PHY = M9 =1 (the bases are orthonormal) (4-123)
the expression [cf. Eq. (4-110)]
UHU =1 (4-124)

is obtained. Therefore, transformation between two orthonormal basis
sets is evidently mediated by a unitary matrix. Further, by substituting
expansions for ¥; and ¥; from expressions (4-119) into Eq. (4-97), it
follows that

K= Y UiU,; K, (4-125)

k,l
so that the transformation of the whole matrix can be written as follows:
K = UPK'U (4-126a)
By matrix multiplication of Eq. (4-126a) from the left by U and from
the right by U and using property (4-110), the inverse transformation
UKUY = K’ (4-126b)
is obtained. One more important property of a unitary transformation

deserves mentioning. A unitary transformation retains the sum of the
diagonal elements; this sum is called the trace of matrix K and is
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designated by
TrK =Y K, 4-127)

From Eq. (4-125) it follows that
TrK =Y ULUK;, = Y Ky, ), UrU, (4-128)
Kl i

ik, i
According to the definition of a unitary matrix (4-110), its rows and
columns form orthonormal vectors in the sense

Z ViU, = Z UiUs = 0u» (4-129)

where §,, is the Kronecker symbol defined in Eq. (4-24). Hence, from
Eq. (4-128),

TrK = ¥ K};8, = TrK,, (4-130)
k1

i.e. the trace of the matrix is invariant under unitary transformation.

4.6 Approximate solution of the Schrodinger
equation: variation and perturbation
methods

With the exception of quite simple problems (whose significance for
chemistry is limited), the Schrodinger equation is not exactly solvable.
Thus it is often necessary to use approximate solutions. This is un-
doubtedly undesirable from a mathematical point of view, but in physics
and chemistry approximate solutions can be quite useful. In fact, it is
often possible to find approximate solutions that are very close to the
exact solution.

In this connection two methods are particularly important: the
variation and perturbation methods. The first is more important for the
applications discussed here and so will be discussed first.

The variation method is based on the variation principle: if f is an
arbitrary function satisfying the condition

[f¥fdr=1,
then
[f*#f dr 2 E,, (4-131)

where E, denotes the ground state energy of the system (that is, the
lowest eigenvalue of Hamiltonian 5#).
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The proof of the theorem is simple. It is assumed that the solutions ¥,
of the stationary Schrodinger equation

HV, = EY,

are known. According to Theorem 2, function f can be expressed in the
form of expansion (4-25)

f= Z ¥, (4-132)

with expansion coefficients c; satisfying condition (4-36). Substituting this
expansion into the integral in Eq. (4-131) yields

[frofde =3 ;| [¥HY drv =} |c,[E; 2 E )| ¢’ (4-133)
where the fact that the energies of the excited states E; (i = 1, 2, ...) of the
system are higher than (or at least equal to) the energy of the ground
state E, was employed; finally, using Eq. (4-36), relationship (4-131) is
obtained.

The energy calculated using the approximate function f'is therefore,
according to the variation principle, higher than energy E, (or, in the
limiting case, equal to it). When the exact wave function cannot be
determined because of the mathematical complexity of the problem, then
a formulation is used where f is to be determined in such a way that
the integral, [ f* *#f dr, has a minimum value. The exact energy value
of the ground state E, is then approached most closely. It is worth
noting that the variation method can be modified so that it can be used
for the calculation of excited states of the system.

In practical calculations based on the variation method the following
procedure is employed. A trial wave function is proposed (on the basis
of experience) for the problem under study, containing initially variable
parameters. The energy corresponding to this wave function is expressed
in terms of these parameters; their numerical values are then determined
so that the calculated energy of the ground state (the state with the
minimum allowed energy) is as low as possible. The proposed approximate
function f can have an arbitrary form (as long as it satisfies the usual
requirements imposed on wave functions). Usually it has the form of
a linear combination of other functions (which do not form a complete
system):

f= Z”: P, (4-134)
i=1

where coefficients c; are the parameters to be optimized.
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It can be mentioned, for illustration, that the @’s can be atomic
orbitals when forming molecular orbitals, or that the @s can denote
valence bond (canonical) structures in the valence bond method or,
finally, that the @s can be Slater determinants (or their linear combi-
nations) corresponding to distinct configurations in the configuration
interaction method.

In the mathematical formulation of the problem, the minimum
value of the expression

min | f*#fdz (4-135)

should be found, which, in terms of variation calculus, can be expressed
by the condition

5[ f*H#fde =0 (4-136)

It is necessary to realize that the variation parameters, c,, are not
independent and are subject to the condition

[f*fde = Y. cre; [ ®Fd,dr = 'S¢ = 1, 4-137)

i,j=1
where, for the elements of the overlap matrix, the denotation
Si; = joro;dt

was employed, using the matrix notation from Eq. (4-117). In accordance
with the method of Lagrange multipliers, instead of Eq. (4-136), the
equation

O[ff*#f dr — E([ f*fdt — 1)] =0, (4-138)

will be solved, in which E is the Lagrange multiplier, so that all para-
meters ¢; can formally be considered independent. In this calculation
stage it is necessary to be aware that, in general, a complex number is
given by both its real and imaginary parts, and that, consequently,
¢; and its conjugate quantity c¥ are two independent parameters. Substi-
tuting expansion (4-134) into Eq. (4-138) gives

5c;“j§1cj[H,.j — ES; ] +j;6cjz ct[H; — ES;] =0, (4-139)

i=1

™M=

i=1

where || H,;|| is the matrix representing the operator # within the basis
G,i=12,..,

H;= |9} HP,dt

Since all the variations in Eq. (4-139) are now independent, it can be
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satisfied only if the coefficients of all the variations are zero, so that

n

Y c[H; — ES;]=0, fori=12..,n  (4140a)

j=1
n

Y c¥[H; - ES;]=0, forj=12.,n (4-140b)
1

i=

Systems of equations (4-140a) and (4-140b) determine coefficients c,
and their complex conjugate values c¥. As both H and S are Hermitian
matrices, that is, H;; = H¥ and S; = S}, it follows that system of equations
(4-140b) is the complex conjugate of system (4-140a). Then system of
equations (4-140a) can be considered as the final result which represents
the condition for the optimum values of coefficients c,. For the sake
of lucidity, the linear system of equations with unknown ¢js can be

written as
¢,[H,, — E] +¢,[Hy, — ES,] + ... +Cn[H1n"‘E51n]=0
?1[”21 — ES,,] + ¢,[H,, — E] + ... +¢[Hy — ES,, ] =0

él[Hnl - ESnl] + CZ[Hn2 - ESnZ] + ...+ Cn[Hml - E] = 0 (4-141)

In Eq. (4-141) the normality of functions &,, | ®¥®,dt = 1, for all i’s,
was taken into account. It is obvious that this system of equations is
satisfied for values ¢, =c, ... c, = 0. However, this is not a physically
significant solution. A non-trivial solution can be found if

det|| H;; — ES;;l| =
H,, —-E  H,, - ES,,, .., H, —ES,

=|Hy = ESy;, Hy, —E, .., Hy, = ES,, | =0 (4-142)
H,, —ES,,, H,—ES,, .., H_ —E

Equation (4-142), called the secular equation, represents an n-th order
algebraic equation in E and has, consequently, n real roots: E,, E, ... E,.
The reality of the roots is a consequence of the hermicity of matrices
H and S. Provided function f represents a state of the system, then,
according to the variation principle, the smallest root is the best approxi-
mation to the ground state energy. If good judgment is applied in
choosing the variation function, the approximate energy value may be
very close to the true energy. The other roots can be interpreted as
approximate values of the energies of the excited states. The entire
derivation could be carried out in such a compact form only because
of use of the matrix formalism. System of equations (4-141) can be
rewritten in the form



74

(H — ES)c =0, (4-143)

where the notation used in Egs. (4-112) and (4-117) is employed. By
multiplying from the left by matrix c® it can easily be proven that E is
an energy value (cf. Eq. (4-23)) since, employing Eq. (4-137), it follows that

cHc = Ec'Sc = E (4-144)

When solving a system of equations of type (4-141), the procedure
leading to the determination of optimum values for variable parameters
(called MO expansion coefficients, expansion coefficients of the VB or CI
wave function) is as follows:

1. The matrix elements of the Hamiltonian (H;j) and the elements
of the overlap matrix (S;;) are calculated.

2. The determinant in Eq. (4-142) is expanded and the algebraic
equation of the n-th degree is solved. In this way, n real energy values
are obtained (where multiple roots corresponding to degenerate levels
can appear). These values correspond to n wave functions, each of which
is expressed as a linear combination of n functions (®,).

3. For each of the energy values, a system of equations is solved
for the unknown expansion coefficients. For each energy level, E;, n values
of Cji (G =1,2,...,n) are obtained; since there are n energy values
(E, i=1,2,...,n), a total of n* expansion coefficients is found; these
coefficients are not independent because of the condition of orthonormality
of the individual solutions.

From a broader point of view, the perturbation method has a parti-
cularly important position in quantum mechanics. It is, however, less
important here than the variation method and will therefore only be
outlined in general. The perturbation method is suitable for the solution
of the Schrodinger equation (E;, ¥;) for a problem which differs only
slightly from another, related problem, for which the solution (E;, ¥7) is
known. The required solution, ie. E; and ¥,, is then expressed in terms
of known values, E; and ¥;. The formation of the investigated system
from the initial system is considered to be the result of a particular
perturbation. The situation can be visualized as follows:

ORIGINAL PERTURBED

(the solution of the Schrédinger (the solution of the Schrodinger
equation is known) equation is required)

H°, VL E] H, ¥, E,

HOV = B2V HY, =EY,
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Among various forms of the perturbation theory'?, the Rayleigh-
Schrodinger theory is of main importance here. The Hamiltonian # of the
studied system is considered to be resolvable into two parts,

H=H+ I, (4-145)

where #° is the Hamiltonian of the unperturbed system and A¥" is
a perturbation term. A in Eq. (4-145) is a parameter which may (but
need not) have physical significance and whose main purpose is to
distinguish different orders of perturbation contributions. It is evident
that, if A approaches zero, the solution of the perturbed Hamiltonian, 5,
converges to the solution of the unperturbed Hamiltonian #°; below we
will consider first the case when, in the process 4 — 0 (the value of A
tends to zero), it holds that ¥, » ¥; and E, —» E;, where E; is a non-
degenerate eigenvalue.
The equation to be solved can be written as

(#° + 1 —E)¥, =0 (4-146)

According to the basic assumption of the Rayleigh-Schrodinger pertur-
bation theory, ¥; and E; can be expanded into a power series of para-

meter A:
P, =¥ + AP + 2P+ (4-147a)

E, = EX + AE® + A2E® + .. (4-147b)
Expansions (4-147) are substituted into Eq. (4-146) and, because
the resulting equation must be satisfied for all values of A, the coefficient

of each power of 4 must be equal to zero. As a result a system of
equations is obtained:

0-th order: (#° —E)¥; =0 (4-148a)
1st order: (H#°—EHNPD + (v —ENY; =0 (4-148b)
2nd order: (#° —E)PYP + (v — EV)PY — EDP =0 (4-1480)
Solved successively, these equations yield the correction contributions of
the individual orders. The function ¥; as a solution of the unperturbed
problem is assumed to be normalized, | (¥;)* ¥; dr = 1. The properties
of function ¥; must be also defined. It seems natural to choose ¥,

normalized, which is the usual approach. For certain reasons, however,
it is more advantageous to choose

[(#o)* W, dr =1 (4-149)

With this type of normalization condition, ¥; approaches ¥; as A



76

approaches zero and, in addition, multiplying Eq. (4-147a) by function
(¥7)* from the left and integrating yields

JP* PN de = [(P)* PP dr = ... =
= [(F)*PMdr=...=0 (4-150)

Equations (4-150) can clearly be interpreted geometrically; an integral
of type [¥*¥,dr has the properties of a scalar product and, from
elementary vector calculus, the scalar product of two vectors is zero
if these vectors lie perpendicular to each other, so that the projection
of the one on the other is zero. Equation (4-150) can be interpreted
analogously, so that the wave function corrections have no “component”
in common with the unperturbed function ¥;.

Under these conditions it is easy to obtain explicit expressions for
the energy corrections E{. Multiplying Eq. (4-148) from the left by
function (¥;)* and integrating, and using both the hermicity of #° and
orthogonality relations (4-150), it follows that

ED = [ (P ¥ ¥ de (4-151a)
E® = [(¥)* v PO de (4-151b)

In order to obtain the expressions for the perturbation corrections to the
wave function, the completeness of the orthonormal set of functions ¥7,
i=1,2, ..., will be employed. Function ¥{" in Eq. (148b) can then be
expressed in the form of an expansion

PO =Y ¢ 4-152)
i

and substituted into Eq. (4-148b). Multiplying the resulting expression
from the left by function (¥};)* for k # i and integrating yields

c(Ey — E)) + j(?’,‘j)*“V‘I’f dt=0 (4-153)
and hence
- Vki .

where V,; = [(P)*¥"¥; dr is a matrix element of the perturbation ope-
rator within the basis of unperturbed functions. Coefficient c; equals zero
due to condition (4-150), so that, for the first-order correction,
P
1) = ! ° -
¥i ;fﬁﬁfw" (4-155)

where the prime on the summation sign denotes that the term for j =i
is removed from the summation.
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Perturbation contributions of higher orders can, similarly as for the
first order, be obtained by solution of the corresponding equation of
system of equations (4-148). The complexity of the expressions increases
very rapidly with the order of the perturbation contribution and it is
therefore evident that the usefulness of employing the perturbation treat-
ment for the solution of a problem is related to the rate of convergence
of the perturbation series. In practice, the expression for the energy
contribution of the second order is still useful (and is used, for example,
in the interpretation of NMR spectra); this expression is obtained by
substitution of Eq. (4-155) into Eq. (4-151b):

E(Z) Z | Vi |2

1 .
Once again it must be emphasmed that the perturbatioﬂ treatment
can be used only when the perturbation is relatively small; the condition

[Vl < | - 7|

can be regarded as an approximate criterion of the validity of the use
of this method.

In previous considerations we started from the assumption that
unperturbed energy level E; corresponds to a single eigenfunction. It has
been shown that, on perturbation, this level is simply shifted by the
value of the correction contributions. Often it is necessary, however, to
solve problems where two or more orthonormal eigenfunctions cor-
respond to one unperturbed eigenvalue. If they are g in number,
?:, P35, ..., ¥, then the level corresponding to eigenvalue E; is said to
be g-fold degenerate. As a rule, the introduction of a perturbation removes
this degeneracy, so that, in practice, the original unperturbed level splits
into several levels with different energy values. In contrast to the non-
degenerate case where the perturbed function of the zeroth-approximation
is already known [cf. Eq. (4-147a)], the situation is more complicated,
because under continuous removal of the perturbation, function ¥, can,
in general, tend to function f in the form of a linear combination of
functions

g
f=Y ¥, (4-156)
k=1

which is also an eigenfunction of the unperturbed operator, J#°, with
the eigenvalue E;. It then follows that it is necessary to replace Eq. (4-147a)
by the assumption that

Y=+ APD 4+ 29D 4 (4-157)
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with the consequence that even system of equations (4-148) is changed as
follows:

O-th order  (#° — E))f=0 (4-158a)
1st order #° —E)¥V + (¥ —EN)f=0  (4-158b)

While Eq. (4-158a) is automatically satisfied, Eq. (4-158b) will be used
for the determination of both expansion coefficients a, and the correction
term for energy E{". Similarly as in the normalization condition expressed
by Egs. (4-149) and (4-150), it will be necessary that corrections of the
first and higher orders be orthogonal to the space which is spanned by
functions Y7, Y5, ..., ¥,. Using this condition in Eq. (4-158b) and
multiplying it from the left by function (¥$)*, after integration and
successive application of further functions Y3, ..., ¥,, a system of g
equations for unknown coefficients a, is obtained:

g
kZ ayVy — EMé,) = 0, (4-159)
=1
wherej = 1,2, ..., 9.
Matrix designation of the integral

I(?’;.’)*“I/"I’: dr =V,
has been introduced, and the orthonormality of functions
b 2T ST SO I( 49 ¥, dr =9,

for j,k=1,...,g, has been taken into account. Solution of system of
equations (4-159) is mathematically equivalent to problem (4-141), which
was solved when dealing with the linear variation problem. Moreover,
there is also a simplifying circumstance here in that the overlap matrix S
is a unit matrix. Therefore, all the possible values of EXV[(E),, (EM),, ...,
(E{),] can be obtained by solving the secular determinant

det |, — E6,, | =0 (160

Successive substitution of the energy values (E{),, ... in system of
equations (4-159) yields the corresponding series of expansion coefficients
bound by the normalization condition

g9
2 lalf =1
k=1

In conclusion it is necessary to add that not all of the g values
(EM),, (EM),, ..., (E{V), need be different. Supposing that there are m
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different energy values (m < g), then up to first-order accuracy the
original energy level E7 splits, owing to the perturbation, into m levels
with the following energies:

E, = E] + (E{Y),, (4-161)

where j indicates the different correction values.

oo 0 9N W
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5. BASIC APPROXIMATIONS
IN THE THEORY
OF THE CHEMICAL BOND

5.1 Introductory comments

The modern theory of the chemical bond is based on the quantum
mechanics of systems composed of electrons and atomic nuclei, assuming
that solution of the fundamental quantum mechanical equation leads to
a complete description of the system. As follows from the two preceding
chapters, difficulties lie not in the formulation of the Schrodinger equation,
but in its solution. As even three-particle systems are not exactly solvable,
problems interesting for chemists must be simplified by conversion into
model systems. The mere fact that, as a rule, an isolated system is treated
(an atom, a molecule, a solid or a system of several partial subsystems)
is a kind of abstraction, as the influence of the surrounding medium, for
example the influence of a solvent, is frequently ignored.

Let us start from the general formulation of the atom, molecule or
solid matter as a system composed of N atomic nuclei and n electrons.
This system is described by the time-dependent Schrodinger equation
introduced by Postulate 3. If only stationary cases are studied (see
Section 4.4), a description of the system can be obtained by solving
the equation

H D)) = WDy, (5-1)
where #, is the total Hamiltonian of the system, @(y) are the wave
functions of the stationary states (the variable y expresses the dependence
on the spatial [R] and spin [X] coordinates of the nuclei and on the
spatial [r] and spin [¢] coordinates of the electrons, subscript i indicates
different solutions) and W, is the corresponding eigenvalue of the total
energy. The total Hamiltonian can be expressed as the sum of three
contributions:

H,=H + H o + Ky (5-2)
where ., contains the operators of the kinetic energy and the electro-
static interactions of all the participating particles, 3., expresses all

ext

types of interactions of the system with the external magnetic and electric
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fields and #,,, contains all types of non-electrostatic interactions between
particles in the given system, related to the spins of the electrons and
nuclei.

Equation (5-1) represents an exact formulation for an isolated
system. Approximations enabling the solution of a particular problem
can, in principle, be divided into two groups. The first contains approxi-
mations that simplify the Hamiltonian, limit the form of the wave
function, and, as a rule, have a more general character so that they can
be used in a number of various methods. In the second group belong
approximations related to determination of the values of the integrals
appearing in the calculation schemes. This type of approximation is
frequently specific for a particular method and will therefore be discussed
when describing the individual methods. This chapter contains a brief
outline of approximations employed in the first group. It should be
added that the effect of approximations in individual methods on the
ability to predict the physical and chemical properties of systems can
be judged only on the basis of comparison of theoretical results with
experimental data. This is not always true of non-empirical methods:
sometimes the quality of approximations is studied by comparing the
results of less precise procedures with those obtained using more precise
ones.

5.2 Neglecting of non-electrostatic
interactions

The approximation of neglecting non-electrostatic interactions consists
of ignoring terms #,, and 5, in the total Hamiltonian (5-2), ie.
contributions following from the spins of the electrons and atomic nuclei
and the influence of the external field. This approximation is used in
nearly all quantum-chemical methods. Investigation of interactions of the
spin-spin coupling type (interaction of two charged particles via magnetic
dipoles corresponding to their spins) and spin-orbit coupling type (inter-
action of charged particles via magnetic dipoles corresponding to spin
and orbital motions) is important for the study of atomic fine structure;
the magnitude of the effect increases with increasing atomic number.
Part of the Hamiltonian #,, is taken into account in studying the
effect of external fields on molecular systems, for example when inter-
preting NMR and ESR spectra.

The independence of the Hamiltonian of the spin coordinates of the
electrons has an important theoretical consequence: the Hamiltonian
commutes with the spin operators and the total spin quantum numbers
are thus “valid” quantum numbers for characterizing the electronic states.
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5.3 The Born-Oppenheimer
and adiabatic approximations

Within the framework of the approximation neglecting all non-electro-
static interactions, the Hamiltonian of the system can be expressed by
the relationship

H., = g.n + ‘d/-e + Ven + 4t/nec + Vnn’ (5'3)

€n

where the individual terms correspond to the following contributions
to the total energy of the system:
WMo
T =——) —A
I IR VA
(7, is the kinetic energy operator of the atomic nuclei, and M, is the mass
of the nucleus I),
h2 n A
Te=— ;
e 2m igl i
(T, is the kinetic energy operator of the electrons, and m is the mass of an

electron),
n N ZI(:'Z

Va=-2 X

i=11=1 4n80|ri_RI|

(¥, is the potential energy operator of the electrostatic interaction between
the electrons and the nuclei, Z, is the charge of nucleus I in units of the
elementary charge e, r; is the positional vector describing the position
of electron i, and R; is the positional vector describing the position of
nucleus I with respect to the origin of the coordinate system),

n 2

e
V=) —T——
° §j4n80|ri -]
(¥, is the potential energy operator of electrostatic interactions between

the electrons), N 7.7 o?
o

Vo = Z 4“80'R1_RJ|

I<J

(¥, 1s the potential energy operator of electrostatic interactions between
the nuclei).

A further simplification of the Hamiltonian (5-3) can be based on
the fact that electrons have a substantially smaller mass than nuclei;
for the hydrogen atom the mass ratio is 5 : 10%,

First, the interaction of the electron—atomic nucleus pair will be
considered. Since the same force acts on both particles, the lighter of
the two, the electron, acquires a much greater acceleration according
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to Newton’s second law, so that the average velocity of the electron is
substantially higher than that of the nucleus. On this basis, for an initial
system of n electrons and N nuclei the following model' can be formed:
slowly moving atomic nuclei create an electrostatic field in which the
electrons move with a much greater velocity; the ratio between the mean
velocity of the electrons and the mean velocity of the nuclei is so large
that the motion of the electrons is almost instantly adaptable to changes
in the configuration of the nuclei, and, conversely, the nuclei are exposed
to such rapid fluctuations of electrostatic potential from the electrons
that they “see” only its mean value.

In the zeroth approximation, the mass of the nuclei can be con-
sidered to be infinitely large. This assumption leads to the conclusion
that both the acceleration imparted to the nuclei and their velocity
become zero, and consequently, the kinetic energy of the nuclei can
be considered equal to zero. An attempt to find the stationary states
of the system leads to the Schrodinger equation

[#. — E(R)] ¥(R,r) =0, (5-4)

where the nuclei are assumed to be fixed in space, so that the coordinates
of the atomic nuclei in an arbitrary configuration can then be considered
as parameters (denoted by symbol R). The Hamiltonian, 5., i1s defined
by the established notation as

H, =T AV gtV e + % in (5-5)

E(R) is the total energy of a system in a state described by wave function
¥ (R, r), where for simplicity the spin part of the coordinates is omitted,
as it has no direct relation to this problem.

This simplification is called the Born-Oppenheimer approximation
and leads, as has been shown, to complete separation of the motion
of the electrons from that of the nuclei. By solving Eq. (5-4) a system
of eigenvalues E(R) and eigenfunctions ¥(r, R) can be obtained for any
nuclear configuration R, where subscript i characterizes the set of quantum
numbers determining the corresponding stationary state.

It is, of course, necessary to determine the magnitude of the error
introduced into the calculation when using the Born-Oppenheimer approxi-
mation. If the concept of fixed nuclei is abandoned, then the problem
is expressed by the Schrodinger equation in the form

(Hey — W)PR, 1) =0 (5-6)

The solution of the Born-Oppenheimer approximation [represented by
Eq. (5-4)] will be assumed to be known, enabling wave function (R, r)
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to be sought in the form of an expansion in a series whose terms are
the orthonormalized functions ¥ (R, r):

&R, 1) =) E(R) P(R,7) (5-7)
For the sake of simplicity, it is assumed that only a discrete spectrum
of eigenvalues of operator 3, exists. Functions Z(R) act as expansion
coefficients in Eq. (5-7) and are dependent only on the coordinates of
the nuclei.

Before substituting Eq. (5-7) into Eq. (5-6), the action of the operator
of the total kinetic energy of the nuclei 4, on the product of functions
E(R) ¥R, ) will be investigated. The Laplace symbol A, is equal to
the sum of three expressions of the type 9%/0X7, where X, represents
one of the three rectangular coordinates describing the position of
nucleus I. According to the rule of differentiation of the product of two
functions the expression

04EYP) 0*E 0E oY  _ oY

ax? Vet iaxax tEaxe

(5-8)
is obtained. The required expression then follows
T [E(R)P(R,r)] = P(R,r) T E(R) — h? 2— [V,E(R)] [V, %R, ] +

+ E(R) T ¥ (R,7) (5-9)

From Eq. (5-9) and the fact that #,, = #, + J_ and after substituting
series (5-7) into Eq. (5-6) the expression

T, — WER) PR + ¥R 1) T ,E(R) -
- 1T 37 VER] VRN + ER T PR N} =0 (5-10)

is obtained. Functions ¥ (R, r) in Eq. (5-10) are assumed to be ortho-
normal,
| Y¥(R,r) Y(R,r)dr =6, (5-11)

where symbol dr indicates integration over the coordinates of all the
electrons. Of the operators depending on the variables denoted by R,
operator J, contains only those which have a simple dependence on R,
so that, by multiplying Eq. (5-10) from the left by function ¥Y¥*(R,r),
integrating over the coordinates of electrons r, and employing Eq. (5-4),
the expression

[7, + E(R) ~ W]E(R) = £ A,5(R) (5-12)
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is obtained, where operator 4 is defined as follows:
Ay = h? Z T}I—j P*(R,7) [V,P(R,r)]drV, —
1

— Y*R, 1T ¥ (R, r)dr (5-13)

Expression (5-12) is actually a system of differential equations because
Eq. (5-10) can be multiplied not only by function ¥¥(R,r) but by any
other function which is also a solution of Eq. (5-4).

No approximations were used, so that system of equations (5-12)
gives a true picture of the relationship between the electron and the
nuclear motion in the form of the square matrix, 4. If only the diagonal
elements are considered in this matrix, then the original system of
equations (5-12) is separated into a system of independent equations

[, + ¢(R)] E(R) = WE(R), (5-14)

where ¢(R) [¢(R) = E|(R) — A;;] is the corrected electronic energy ob-
tained within the framework of the Born-Oppenheimer approximation,
where the correction A;; can change the original value in either the
positive or negative sense. This approximation allowing separation of the
electron and the nuclear motion and, in addition, taking into account
the weak interaction of both motions is called the adiabatic approxi-
mation?.

Similar to expression E(R) in the Born-Oppenheimer approxima-
tion, the term ¢(R) in the adiabatic approximation can be interpreted
in the eigenvalue equation for the nuclear motion (5-14) as a potential
in whose field the atomic nuclei move. The parallel between the two
types of approximation is retained for the total molecular wave function,
which is, in both cases, equal to the simple product '

?;, = E;,(R) ¥(R), (5-15)

(84}

where a new index v was introduced to distinguish the different solutions
of Eq. (5-14).

Generally, the adiabatic approximation is justified when the solution
of Eq. (5-14) differs only slightly from the solution of system of equations
(5-12). In the Schrédinger perturbation theory, where the Born-Oppen-
heimer approximation is considered to be a zero approximation, the
adiabatic correction, A4;;, corresponds to the first-order perturbation
term; similarly, the off-diagonal elements, which correspond to the inter-
action of various electronic levels, can be interpreted as representing
contributions of the second order (cf. Section 4.6). From the convergence
condition of the perturbation expansion it follows that the adiabatic
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approximation is a reasonable approximation if

E¥(R)A,E, (R)dR < | W, — W

ij=jv Jv

[ (5-16)

for i # j and arbitrary v, v/, where W,, is the eigenvalue corresponding

—

to the eigenfunction Z,,. Criterion (5-16) is satisfied for a majority of
molecules; it is, however, not fulfilled for some large systems where the
energy levels are very close together and explains the failure of the
adiabatic approximation for these cases. The relationship between the
electron and the nuclear motion should then be examined so that the
largest interaction elements of operator 4;; are included in the calculation.
Terms E/(R) or ¢(R), of course, can no longer be interpreted as the
potential field in which the nuclei are moving.

Table 5-1
Experimental and Calculated Dissociation Energies (in cm™!') of Some Molecules in
the Ground State

H, HD D,
experimental 36113.6 36 400.5 36744.2
Born — Oppenheimer approximation 36112.2 36401.5 36 745.6
adiabatic approximation 36118.0 36 405.7 367483
non-adiabatic approach 36114.7 36402.9 36 746.2

The Born-Oppenheimer approximation generally represents a very
good approximation to real systems. Errors arising from its use are much
smaller than those encountered using other approximations. Reliable
numerical verification is possible solely in the smallest systems where
the same accuracy or greater as that of the measured quantities can be
achieved. Since the ratio of the masses of an electron and the participating
nuclei is minimal in these systems, the deviations from validity of the
Born-Oppenheimer or the adiabatic approximation are, consequently,
maximal, assuming that criterion (5-16) is not considered. Table 5-1,
from Wolniewicz's paper?, gives the dissociation energies of the H,,
HD and D, molecules in the ground state. Included in the table are
experimental values and values calculated within the framework of the Born-
Oppenheimer approximation together with the adiabatic correction and
the correction for non-adiabaticity. It is obvious that the agreement with
experiment is very good in all cases and that the adiabatic correction
to the Born-Oppenheimer approximation decreases with increasing masses
of the participating nuclei, beginning with a correction of 0.016 9 for the
hydrogen molecule and ending with a value of 0.007 9; for D, . In addition,
Table 5-1 shows that, of the two types of approximation, only the adiabatic
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approximation fulfils the variation principle, and thus the corresponding
calculated energy values lie above the actual experimentally determined
values.

In conclusion it is necessary to state that the Born-Oppenheimer
approximation is used in practically all quantum chemical calculations
of the electronic structure of molecules and solid substances and therefore
the solution of Eq. (5-4) will receive a great deal of attention here. It will
be useful to simplify the notation in this equation: first, designation
of the dependence of the nuclear coordinates, which has been shown
to be of only parametric character, will be omitted. Furthermore, the
electronic Hamiltonian #, will be designated # and the term ¥,
which contributes a constant amount to the total energy of a system
with a given nuclear configuration, irrespective of the state of the system,
will be omitted. Wave function ¥ depends on the spin and spatial
coordinates of all the electrons. In this modified notation, the Schrodinger
equation assumes the form

(£ — E)¥(r,0) =0, (5-17)

where it is convenient to separate # into one-electron and two-electron
contributions:

Ho=T, +V, +V =Y A+ YL gl (5-18)
i=1 i<j
where
. h? N Z,e*
B T AT .
and

. e? 19
20, )) = m (5-19b)

5.4 The method of configuration interaction

In Section 4.3 the concept of a complete orthonormal set of functions
was introduced. Let us assume, in accordance with this definition, that
there is a complete orthonormal set of one-electron functions, A,(x),
k=1,2,3,..., where each of the functions depends on the spatial
coordinates () and on the spin coordinate (¢). Functions of this type are
generally referred to as spin orbitals. Since set of functions 4, is complete,
wave function @, which describes any stationary state of the electron,
can be expressed in the form of the expansion

P(x) = Z c;A(x) (5-20)
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(It should again be noted that, for the sake of simplicity, only functions
corresponding to discrete spectra are considered.)

The set of spin orbitals 4,, k = 1,2, ..., can be used to express
the n-electron wave function ¥, which is the solution of Eq. (5-17).
To this end it will be convenient to investigate first a system composed
of two electrons.

The wave function ¥(x,, x,) of a two-electron system, where x,
and x, denote the space-spin coordinates of the first and second electrons,
can be expressed in terms of functions A, as follows: assuming that
electron 2 is fixed in space and that, consequently, its coordinates can be
considered to be a set of constants, it follows that

P(x,, x, = const) = Y. c,A(x,) (5-21a)
Release of electron 2 from its fixed position can be expressed in the
following manner: all quantities c; (initially constant) in Eq. (5-21a) will
become a function of the instantaneous coordinate of electron 2; therefore
it follows that

ci(x,) = Z Ci,j'lj(xz) (5-21b)
J
and, after substituting Eq. (5-21b) into Eq. (5-21a)
Y(x,, x,) = Z ¢; jAxg) Afx,), (5-22)
L,J

where ¢;; are the corresponding expansion coefficients that are not,
however, independent. As mentioned previously (cf. Section 4.4), a wave
function describing a system of electrons must obey the Pauli principle,
i.e. its sign changes on exchanging the coordinates of an arbitrary pair
of electrons:

PLY(x,,x) = —Y(xy, x;), (5-23)

where 2, is the transposition operator of electrons 1 and 2. Condition
(5-23) results in the expression

Cij = —Cji (5-24)
and permits Eq. (5-22) to be written in the form
P(x;, x;) = Z Ci,j[’li(xl) )'j(xZ) — Alx;) )»j(x1)] (5-25)

i<j
Equation (5-25) embodies the property of diagonal expansion coefficients
following from Eq. (5-24),

¢c..=0 for all values of i,

ii
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and includes the assumption that the spin orbitals are ordered in a fixed
sequence. The expression in square brackets in Eq. (5-25) is obviously
an expanded second-order determinant

Afxy), Afx,)
Afxy), A1x,)

which can be taken as an element of the total set of functions used for
expanding the two-electron function. In order to conform with the
standard manner of expanding functions, expressed by Egs. (4-35) and
(4-36), the elements must be both normalized and mutually orthogonal
functions. First, from the condition

1= ij Afx )y A0e) % | Axy), Afx))
K2 2060, Ae) | ] A A50x,)

= o e Ay dx [25(065) 2xp) dvy +

det || (1), 2| = (5-26)

dx, dx, =

+ [ A3c) Adx) dx, [ 22(0x,) Ax,) dx, ) = kiz{ 1+1}, (527

where the orthonormality of spin orbitals has been taken into account,
it follows that the two-electron determinant function

1 Alxy), Afxz)
K| 40x,), A0x)

is normalized if k = /2. It similarly follows that the determinants are
orthogonal if they differ in at least one spin orbital.

On generalization of the above considerations, it follows that any
n-electron wave function can be expanded as a linear combination of
determinants in the form*

W(1,2,...,n) =Y Cedg(l, 2, ..., n), (5-28)
K

where the summation is carried out over all the ordered configurations K
of the spin orbitals. An ordered configuration K is a certain selection
of n indices fulfilling the condition i < j < ... < k. Cy is the expansion
coefficient; its significance is such that |Cy|* gives the weight of the
function

A(x), Afxy), -y Adx,)
B Afxy), Ax)s s Afx,)

21,2, com) = =2 Ay | (529)

i MMy -

T, Al s Aylx,)
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in expansion (5-28). The cofactor 1/,/n! of the determinant function
ensures its normalization. The function defined by Eq. (5-29) is termed
the Slater determinant.

Expansion of the wave function in form (5-28) is, as a rule, not
practically feasible, as the complete sets of one-electron functions are not
usually of finite dimension. Numerical applications must be limited to
bases of finite dimentions, where the solutions assume an approximate
character. It was noted in Section 4.6 that, for calculations of this type,
the variation method is useful.

Now let us assume that, in contrast to the preceding instance,
a finite incomplete set of m spin orbitals 2,(x) is considered. This will
permit a wave function in form (5-28) to be sought, that is,in the form of
a linear combination of Slater determinants, with the restriction, however,
that the summation includes a finite number of configurations. If the
summation is carried out over all possible configurations of the given
spin-orbital space we shall speak again of “complete configuration inter-
action”; if function ¥ is to be found in the form of a linear combination
of specially selected configurations, this is termed “limited configuration
interaction”. This involves a certain nomenclatural inaccuracy, since both
complete and incomplete sets of one-electron functions are assigned
a wave function in the form of a “complete configuration interaction”,
although in the first instance it represents a precise function, in the second,
that is, for an incomplete set, it is only an approximate wave function,
which can be at best optimized. The best solution in the chosen extent
of configuration interaction is obtained by solving equations of types
(4-141) and (4-142), where the corresponding matrix elements are now
defined with respect to the (5-18) type of Hamiltonian:

Hy, = [A%#4,dt = I, + G,,, (5-30a)
Sy = | 4%4,dr, (5-30b)
where
I, = jA’}‘['"Z #i)] 4,dt
and o

Gy = [ AT 9l 0) 4, e

i<j
The solution of the secular problem is a standard task, but the
calculation of the matrix elements of operator # enclosed by Slater
determinants is a specific problem occurring in calculations using the
configuration interaction method. It is summarized in Slater’s rules®.
In calculating integrals (5-30) it is convenient to classify cases according
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to the number of spin orbitals in which the 4, and 4, functions differ
from each other. The number of differing spin orbitals can be determined
so that, using the rule for the interchange of rows in the determinant,
the 4, and 4, determinant functions are converted to a mutual maximum
coincidence and then compared row by row. For illustration, 4, =
= |4, X4 4;| is not compared with 4,=|4, 4, 4| but —4, =
= | A, 4;, 4| with 4,, where (—4,) differs from 4, in one spin orbital.
In calculation of the corresponding matrix elements, a number of cases
will be distinguished:

1. 4, and 4, do not differ from each other

2. 4, and A4, differ in one spin orbital; 1, in 4, is replaced in 4,
by spin orbital 4,

3. 4, and 4, differ in two spin orbitals; 1, and 4, in 4, are replaced
in 4, by spin orbitals 4, and 4,

4. 4, and 4, differ from each other in more than two spin orbitals.

Table 5-2

Matrix Elements in the Secular Equation Employed in the CI Method
Cases 1 2 3 4

4, = 4, A4); 4,(2) Ay Ay); 45 (s Ag)
Sy 1 0 0 0
I, ‘_i‘i(/uli]}.,‘) Q| A2 0 0
Gy .-; (<24, 9lli'lj> - i(g‘ »)[<Aij’a|9|)‘ilc> - | 9| Acds> = 0

—]<1i'1;| #4401 -, 914) =yl 7| 2>

The matrix elements of the overlap matrix S;;, the one-electron
part of Hamiltonian I;, and the two-electron part of Hamiltonian G,
are given in Table 5-2. The matrix elements were written using the Dirac
notation, according to which

{4, | % | Ay = f/l:‘(xl) #(1) A(x,) dx, (5-31a)
<lalb | g | }'cld> =
= ([ 2%(x,) 25(x,) g1, 2) A(x,) A(x,) dx, dx, (5-31b)

The expressions can be somewhat simplified—as will be justified
later —by noting that spin orbitals have the form of a simple product
of the spatial, orbital depending on the space coordinates and of spin



92

function « or §; thus
Ax) = or)n(o), (5-32)

where 7 is either function « or function .

If spin orbitals are expressed in the form (5-32), integration can
easily be performed in matrix elements (5-31) over the spin variable
[cf. Egs. (4-82) and (4-83)], since operators # and ¢ do not depend on
the spin coordinates. We then obtain

0, %o if 4, and 4, have the same spin
<&,|%Ilb>={< [#] 00 @ b same spin)
0 (if 4, and 4, have a different spin)
(0,0 | ¢| 002> (if 2, has the same spin
as A, and A, has the

Gy | 7] Acda rame oo 44 39
LA MC A I (if the above condition

is not satisfied)

Relations (5-33) and (5-34) enable us to express the matrix element
types given in Table 5-2 in terms of integrals over space coordinates
alone, provided the specific way in which the 4, and 4, Slater determi-
nants are occupied by spin orbitals is known.

The choice of suitable one-electron functions, A(x), forming an
incomplete set has not yet been discussed. The suitability of use of the
configuration interaction method and the convergence properties of an
expansion of type (5-28) depend on this choice. A frequently used
procedure begins with a one-particle approximation to the given problem
as the first calculation step, giving the requisite one-electron functions.

5.5 The independent electron model
(one-electron approximation)

The term Y. (i, j) in Hamiltonian (5-18) expressing the electrostatic inter-
i<j

action betw}een electrons renders the differential equations describing

many-electron systems exactly unsolvable. The Schrodinger equation

can be converted into a solvable problem by separating the sum of the

two-electron operators into contributions which can be summed up over

the individual electrons:

Y g, ) = Y70 (5-35)

i<j i
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Assumption (5-35) can be physically interpreted so that each of the
electrons moves in the electrostatic field of the nuclei and in the space-
and time-averaged potential of the remaining electrons. Substitution of
Eq. (5-35) into Eq. (5-18) yields an approximate Hamiltonian for the
n-electron system

# Y [4) + V0] = Y #0), (5-36)
i=1 i=1

which allows formulation of a simple solution ¥(x) of the Schrodinger
equation for our model case,

L3 #70] ¥(x) = E¥(), (537)

that is, in the form of the product of one-electron functions:
P(x) = 4,(x,) A,(x,) ... A,(x,) (5-38)

If Eq. (5-38) is substituted into Eq. (5-37), bearing in mind that each of

the #'(j) operators acts on only one function, 4(x;), and if Eq. (5-37)
is multiplied by the expression 1/%(x), then the relationship

L AH(3) A(x)

—— Lt = F 5-39

i:Zl A{x) G-39)

is obtained. Since individual terms in the summation are independent,

Eq. (5-39) can be satisfied only when each of the terms equals a constant:

H()A(x;)
W = Ei’ (5-403)
where
Z E,=E (5-40b)

Equation (5-40a) is the one-particle Schrodinger equation for the i-th
electron; however, since it has the same form for all electrons, all possible
one-electron states represented by functions A; must satisfy Egs. (5-40a)
and (5-40b). The one-electron Hamiltonian, #(i), is assumed not to
contain spin variables (interactions of a non-electrostatic nature are
neglected), so that the assumption expressed by Eq. (5-32) can be applied
to function A(x;,), and the one-electron Schrodinger equation can be
written in the form

H'()) o(r) = Eor) (5-41)

Since integration was carried out over the spin variable, only space
coordinates occur in the equation. Function ¢(r) is, according to the
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circumstances, called either an atomic or a molecular orbital. It is now
necessary to arrange the form of the product function (5-38) so that ¥(x)
satisfies the Pauli principle. It follows from the preceding section that
the Slater determinant represents such a function, and thus the final
equation for a system described within a one-particle approximation
assumes the form

x) = | A;06)), A,(x5), oy A%, |5 (5-42)

where the notation introduced in Eq. (5-29) is used, according to which
symbolically only the diagonal elements of the determinant are written
out. It is worth noting that function (5-42) expresses an older formulation
of the Pauli principle, stating that two electrons cannot occupy the same
one-electron function as, owing to the equality of two rows, the deter-
minant vanishes.

It has been shown experimentally that the majority of molecules
contain an even number of electrons and that, in its energy-lowest state,
the total spin equals zero, so that the electrons occupy the same number
of o« and B spin states. Wave function (5-42) then assumes the form

(5-43)

Y(x) = |(p1(r1 Ot(O' (p1(r2) ﬁ(az) ,([)"/2(!’"_1)0((0'"_1), (Pn/z(rn)ﬁ ,.) s

where every ¢, orbital is occupied by two electrons, one in the a spin
state and another in the f state. Such a system is usually termed
a system with closed shells; if each orbital is not occupied by a pair
of electrons, it is termed a system with open shells.

In conclusion, it is desirable to describe methods for setting up the
approximate one-particle potential energy, ¥", defined by Eq. (5-35).
In principle, two procedures are possible:

a) the semiempirical method, where a potential is produced, such that
experimental data can be reproduced by computation,

by the “sclf-consistent field” method.

The Hiickel method and the extended Hiickel method, to be
described in Chapter 10, are examples of the first category. The “self-
consistent field” method is based on the requirement that the functional

[P*A#Y d

E=vva

(5-44)
has a minimum, where the Hamiltonian & is defined by Eq. (5-18) and
function ¥ by Eq. (5-42). The variation variables are represented by the
one-electron functions 4,(x,). In other words, the optimum spin orbitals
which yield the best, i.e. the minimum, estimate of the total energy of the
system, expressed by Eq. (5-44), are sought.
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The problem can also be approached using the configuration inter-
action method, which affords a more accurate estimate of the wave
function and according to which the wave function is expressed in the
form of a linear combination of Slater determinants [cf. Eq. (5-28)]
corresponding to particular spin orbital configurations. Let us assume
that the first n spin orbitals of an orthonormalized basis set minimize
expression (5-44); function ¥ = 4, is evidently one of the determinants
in expansion (5-28). The corresponding configuration, K, = 1, 2, ..., n, is
termed the ground state configuration, and can obviously be expected to
appear in the expansion with the maximum weight (represented by the
value | C,|*) compared with the other configurations. In the configura-
tion expansion of wave function @, of course, also appear configurations
that differ from the ground state configuration in one, two, or more spin
orbitals: "

®=Cydy+ Y Y Cd,+ .., (5-45)
i=1g(>n)
where 4, is the Slater determinant of the configuration in which the 4,
spin orbital from the ground state configuration is replaced by the 4,
spin orbital, which lies outside the ground state configuration.
It will be demonstrated that, when

=R I SO B |

nl

minimizes expression (5-44), the relation
AAA. dt =0, forall 1=<i<n and ¢q>n, (5-46)
0 iq

called the Brillouin theorem, is valid.

The proof of the theorem is relatively simple. Let us assume that,
although 4, is an “optimum” Slater determinant, the Brillouin theorem
(5-46) does not hold; for example, let

Hy, = [A3#4,,d1 # 0 (5-47)

Assumption of the validity of Eq. (5-47) justifies considering a function
of the form
¥ =Cy4, + C,4, (5-48)

and specifying coefficients C;, and C, so that the normalized function ¥
yields an energy minimum. According to Egs. (4-142) and (5-30) and
due to the validity of the expression S,, = [4§4,,dt = 0 (cf. Table 5-2),
it is necessary to solve the secular equation

HOO_E Hy, -
Hg, Hy, -E =0 G-49)
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where an analogous notation is used for the matrix elements as that
employed in Eq. (5-47) and the hermiticity of operator # is employed.
The smaller of the two roots,

_ 2
E, = H,, ‘; H,, + \/I:_(_H_OO_THIL + ‘H01 ‘Z:I’ (5-50)

has a lower value than that corresponding to diagonal element H;
rearranging the expression for E _, the relationship

—_ H11 —Hoo _ |H00—H11| 4‘Ho112
E_—H00+ 3 3 1+ (Hoo“

Hl 1)2

H,-H 4| Hy, |?
=H00————( “2 °°W\/[1+ﬁ]—l} (5-51)

is obtained, where the facts that the value of H, is negative and that
the inequality H,, < H,, holds, were utilized. Since wave function ¥
given by Eq. (5-48) corresponds to the sum of two determinants differing
in only one row, function ¥ can, because of the basic properties of
determinants, be expressed as a single determinant,

W = |4y, Ay ooy Codi + Cihgs oo Ay | (5-52)

This corresponds to E_ < jAg‘JfAO dz, which is, however, contradictory
to the initial assumption that 4, is the optimum determinant function,
whereby the indirect proof is complete.

Brillouin’s theorem can now be used to formulate the Hartree-Fock
equations. Solving them leads to spin orbitals 4,, k=1, 2, ..., i, ..., n,
which represent elements of the optimum Slater determinant (in the sense
of the variation principle®:7).

Using the second column of Table 5-2, integral (5-46) can be
expressed as follows:

ji?‘(xl)lé(l)l Jdx, + Z [j A¥(x,) A¥(xy) g(1,2) Ax;) A,(x;) dx, dx,

(#l)
— [ A%(x,) A4(x) (1, 2) A x,) Afxy) dx, dx,] = 0 (5-53)

In contrast to Table 5-2, the Dirac notation is not used in Eq. (5-33)
[cf. Eq. (5-31)]. If Eq. (5-53) is converted into its complex conjugate, if the
hermiticity of operator #(1) is employed and if the notation of variables
x, and x, is interchanged in the first integral within the square brackets
to facilitate further modifications (which is permissible), then the relation-
ship
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jl’;(xl) A1) Ax)dx, + Y [f A(xey) Bix,) 2(1, 2) Afxy) Afx,) dx, dx, —
j=1
(#i)
- jl;‘(xl) A¥(x;) g1, 2) Afx;) Afx,) dx, dx,] = 0 (5-54)
is obtained.
The integration in Eq. (5-54) can be divided into two stages:
integration over variables denoted by x, and then integration over the x,
coordinates. The relationship is then converted to the form

fl;“(xl) {A(1) A(x,) + il[j | Afx,) |2 #(1,2)dx, A(x,) —
=
(#i)
— [ A%(x;)) Afx,) g1, 2) dx, A(x )]} dx, = 0 (5-55)

Equation (5-55) can be conceived as a condition to be fulfilled by the
overlap integral

§ 2% f(x,) dx,,

where f(x,) represents the expression in the braces, which is no longer
dependent on x, after integration over variables x,. Let us now examine
the general form of function f(x)).

The condition is satisfied trivially if 4, and f (or 4, and 1) have
different spin functions. Generally, it is possible, however, to express
function f in a form that satisfies Eq. (5-55) as a linear combination of
spin orbitals occupied in the ground state configuration

f =l_il ey (5-56)

as spin orbital 4, lies outside this configuration, so that it is assumed
to be orthogonal to all the As, | = 1, 2, ..., n. Substitution for fin Eq. (5-56)
from Eq. (5-55) leads to the general Hartree-Fock equations. Condition
(5-55) is also fulfilled for a particular case when

f(xl) = Eili(xl) (5-57)

In order to avoid the above trivial case, the same spin functions
must correspond to spin orbitals 4; and 4,. Thus the so-called canonical
form of the Hartree-Fock equations is obtained:

AN M) + 3 (1] 400 P 400, 2) dx, 2 =
(Fi)
- IA;‘(XZ) Afx;) (1, 2) dx, )*j(xl)] = gA(x,) (5-58)

for i=12..,n,
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which must be satisfied by the spin orbitals if the one-determinant
approximation is to be optimum for calculation of the energy of the
system.

Equation (5-58) can be very simply expressed using the spatial
orbitals ¢,, provided that the ground state configuration has the character
of closed shells, so that 4, corresponds to (5-43). Using Eq. (5-33) and
(5-34) and the properties of the spin functions, the relationship

FM)ofr) =gofr), i=12.,n72, (5-59)

is obtained, where

n/2

F() = #41) + Z [2£,1) - H (1 )] (5-59b)
and #; and A’; denote the Coulomb and exchange operators:

F M ofr) = []|ofr)]? 2(1,2)dr, or,) (5-59¢)
A (1) ofr,) = | 0¥(ry) o/r,) g(1,2)dr, or,) (5-594)

In expression (5-59b), account is taken of the fact that, for j = i,
the Coulomb and exchange operators are identical —thus the limitation
j# i used in Eq. (5-58) can be omitted in the summation index in
Eq. (5-59b).

Operator & is referred to as the Hartree-Fock operator and from
expressions (5-59) it is clear that it is a one-electron operator. It can be
easily verified that all the operators &7;, #;, and & are linear and
Hermitian. Operator #; can be interpreted physically: the matrix element
(o;| #;| 0> [cf. notation in Eq. (5-31)] expresses the electrostatic inter-
action between two charge clouds whose spatial charge density is given
by the expressions | ¢,(r,)|* and | ¢(r,)|*. Operator #’; cannot be inter-
preted according to classical conceptions; it represents the exchange
interaction between two electrons which is a consequence of the Pauli
exclusion principle.

The solution of the Hartree-Fock equations, (5-58) or (5-59), repre-
sents a non-linear problem for the required one-particle functions, as
these functions which act as eigenfunctions are, moreover, included in the
Coulomb and exchange operators. Because of this kind of non-linearity,
the Hartree-Fock equations are, as a rule, solved in an iterative manner.
In the first calculation stage an estimate of the form of the one-electron
functions is made and then these approximate functions ¢{? (i = 1,2,...,n/2)
are substituted into the expressions for the Coulomb and exchange
integrals, which for a closed-shell consist of the terms in the summation
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in Eq. (5-59b). This step enables construction of the operator (1) in the
zeroth approximation and, after solving system of equations (5-59a),
calculation of the partially corrected one-electron functions, ¢{". If n/2
functions corresponding to the n/2 lowest eigenvalues are selected, then
the calculation can be repeated until the ¥ functions calculated in the
k-th step of the iterative process are sufficiently similar to functions %~
the criterion of convergence being chosen according to the requirements
on the accuracy of the calculation. The ¢® functions fulfilling this
criterion are then considered to be the solution to the problem.

The method of solution of the Hartree-Fock equations leads to the
term “self-consistent field method” (SCF method); however, the term
Hartree-Fock method (HF method) is also employed.

According to Table 5-2 and Egs. (5-33) and (5-34), the total energy
of a system can be calculated within the framework of the SCF approxi-
mation (for a system with closed shells):

E=[4,#4,dt =
=_Zn: <4 I 4|}*i> + Zn:i [(fuj | g | Aidip = Ak, | 9|1j}*i>] =
n/2 n/2
= 22((1) | 40> + 3 Y [Kow;| 2|00 — 200;] g|000] +

+.Z (0:0:] ¢ | 0:00:> =
n/2 n/2
= 2Z<¢ [£lod + X ¥ [2ow;lg]00p — <00 2] 000]
o (5-60)
Since according to Eq. (5-59) the relation

n/2
g = <(Pi I % | (Pi> + Z [2<(Pi(ﬂj ' g ' (P,'(Pj> - <(pi(pj | g I (ijpi>] (5-61)
i=1

is valid for ¢;, Eq. (5-60) can be modified to give

n/2 n/2 n/2

E=2)&-2 YIXowlglowp ~<ow;lglow] (562
i j=1

from which it follows that, in the HF method, relation (5-40b) derived
for a model of independent particles based on assumption (5-35) does not
apply for ¢, since the physical basis for the HF model expressed by
Eq. (5-59) [or (5-58)] takes into account the motion of each electron
in the field of all the remaining electrons, and ¢;, consequently, dcnotes
the energy of the i-th electron in the field of all the rest. The sum of the ¢,
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n/2
values over all the electrons 2) ¢ (consider that each ¢, orbital is
i=1
occupied by two electrons—by one in the a state and by another in the
B state) necessarily includes an interelectron interaction twice, which
must be taken into account when expressing the total energy of system

(5-62).

5.6 The method of molecular orbitals
as linear combinations of atomic orbitals

In connection with the determination of optimum one-electron functions
it becomes necessary to choose the analytical form of these functions so
that the variation procedure satisfies requirements imposed on the
accuracy of the calculation and, at the same time, is mathematically
manageable with relative ease.

Due to the spherical symmetry of one-electron potentials, it is
reasonable when considering atoms to utilize various modifications of
functions that are solutions of the Schrodinger equation for the hydrogen
atom and are furnished with suitable variation parameters as variation
functions.

One-particle potentials in molecules are not characterized by spherical
symmetry and thus the form of the one-electron functions is not im-
mediately apparent. It is then possible to tentatively write functions ¢,
as an expansion in a series of a complete set of functions, for instance,
using all the atomic eigenfunctions corresponding to one atom in the
molecule. Such a procedure would, of course, be mathematically un-
manageable.

Generally, however, it can be assumed that the molecular orbital ¢
will follow the shape of the molecule and that the electron close to the
atomic nucleus will primarily “feel” the influence of the potential at this
nucleus.

These conditions will be satisfied by one-electron functions, mole-
cular orbitals, of the type

0= Ycut, (=12 (5-63)
n

where functions y, are atomic orbitals located on the atoms of a given
molecule. Theoretical justification of this assumption encounters some
difficulties and, moreover, the type and number of functions can hardly
be anticipated. However, the quality of the atoms forming a molecule is
taken into account in this manner. From experience it follows that the
atomic orbitals which describe the properties of the most loosely bonded
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electrons, ie. the valence orbitals, will contribute most substantially to
the description of the bonding in a molecule.

Optimization of the expansion coefficients in Eq. (5-63) leads to
the linear variation problem whose solution is expressed by Egs. (4-141)
and (4-142). It is necessary to be aware that the optimization of one-electron
energies, E; = (o, | #"| ¢,), simultaneously leads to minimization of the
total energy of the system, E, due to the validity of relationship (5-40b).
If the one-electron Hamiltonian is given by Egs. (5-35), (5-36) and (5-41),
then the coefficients of Eq. (5-63) must be found as a solution of a system
of homogeneous linear algebraic equations in unknown ¢ ’s:

Yolln # 0y — EXu il =0, u=12.., (564)
where E, is the one of the roots of the secular determinant [cf. Eq. (4-142)],

| Ol | 1> = EQtu |20 [ =0, (5-65)

and where again the notation
[ 22D #°() 1) dr, = (r, | | 1) (5-662)
[ xMdry = <, 1 (5-66b)

is employed.

Analogously, within the framework of the Hartree-Fock scheme,
determination of the optimum linear combination of atomic orbitals
of the (5-63) type leads to equations formally similar to Egs. (5-64)
and (5-65), except that, instead of #" and E,, the Hartree-Fock operator &
and the eigenvalues ¢, appear. The Hartree-Fock equations in the LCAO
approximation are sometimes referred to as Roothaan equations®. The
principal difference between them and equations of the (5-64) type is
related to the well-known fact that the set of equations

Yol F ) — e, a1 =0, u=12 .., (567
is not linear in the coefficients ¢ ;, these coefficients also appearing in
operator # [cf. Eq. (5-59)].

The comments on the Hartree-Fock equations in the conclusion
to the previous section also hold for the numerical solution to Egs. (5-67).
It should also be noted that the description of open shell systems can
be analogous, though more complex.

pi?
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6. SYMMETRY IN QUANTUM
CHEMISTRY

6.1 Introduction

Planary and spatial configurations are sometimes characterized by a
property which is usually referred to as the geometrical regularity or
symmetry. For description of this symmetry, symmetry operations are
introduced that transform the original configuration into a physically
identical configuration, while the individual points need not return to
their original positions. Typical symmetry operations are:

a) rotation by an angle ¢, about axis ¢, designated by Z(¢, ),

b) reflection in the plane {n, designated by o,,

c) inversion through a point (a centre of symmetry), designated by i,
or various combinations of these operations. However, with symmetry
operations a “leaving the configuration at rest” operation must also be
considered, the identity operation, denoted &.

In Table 6-1 all the symmetry operations of a rectangle, whose
apices are designated by numbers, are given. Symmetry operations are
denoted by the previously introduced symbols, where, for example, 2(z, )
is a rotation from the original position by 180° about the z-axis and o,
is a reflection in the yz-plane. It is evident that two symmetry operations
performed successively give another symmetry operation of the particular
configuration —for such cases we use a multiplicative notation. For
instance, if operations o, (= A4) and o,, (= B) are carried out suc-
cessively, then

It can readily be seen that the final configuration corresponds to the last
figure in Table 6-1 and that it can be obtained from the original
configuration by the single operation Z(z, n), (= C). This relation can



104

Table 6-1
Symmetry Operations of a Rectangle
Original configuration Symmetry  Symbol  Final Further operations
operation configuration of the D,, group

leading to the same
final configuration

& E 0., 04
4 3
2 1
X
Oy A R(x,m); €,
1 2
3 4
: Y 4 3
o o, B R, 7); 6
1 2
3 4
R(z,m) C 6,
2 1
be expressed symbolically by the equation
C = BA, (6-1)

where the first operation performed is always written on the right in the
product. This convention is important because the sequence of partial
operations can, in general, affect the result of the overall operation.
Further, for each symmetry operation an inverse operation exists which
returns the configuration to its original position, so that the product
of these operations is equal to the identity operation. It can happen,
of course, that a particular operation is, in itself, an inverse operation.
The result of multiplication of the four operators in Table 6-1 can be
expressed in the form of a table (Table 6-2). Using this scheme it can
easily be verified that symmetry operations of a rectangle, forming a set
of elements E, A, B, C, satisfy the following conditions:

a) A “multiplication” operation is defined so that element Z is
assigned to any ordered pair of elements X, Y of the same set,

XY=12 (6-2)
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b) The associative law holds for the multiplication of three elements,
written as
(XY)Z = X(YZ) (6-3)

¢) An identity element E exists where, for any element X of the set,
it holds that
EX=XE=X (6-4)

d) An element Y is assigned to every element X so that

XY=YX=E (6-5)
Symbol Y denotes the inverse of element X so that
Y=x"1 (6-6)
Table 6-2

Multiplication Table for Symmetry Operations of a Rectangle
(operations are defined in Table 6-1)

second factor

A

E A B C

(
E E A B C
A A E C B

first factor ¢

B B C E A
C C B A E

3

A set of elements (of any kind) satisfying the four above conditions
is called a group. The number of elements is the order of the group.
Showing that symmetry operations of a certain configuration satisfy the
four given axioms, ie. that they constitute a group, bring symmetry
considerations into a well-studied field of mathematics—the theory of
abstract groups—as will be utilized below. It is also necessary to mention
that if the symmetry operations are such that one point of the con-
figuration (e.g., the centre of a rectangle) stays fixed in space, then we
speak of point groups.
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6.2 Symmetry transformations
of the Hamiltonian

It is evident that the operations presented under points a) to c) in
Section 6.1 leading to positional changes in configurations can be realized
in two physically equivalent ways: either by movement of the configura-
tion in a fixed coordinate system, or by a change in the coordinate
system with unchanged position of the configuration. As functions and
operators depending on space coordinates will also be discussed below,
an unambiguous definition of the transformation of Cartesian coordi-
nates will be introduced.

First, let us imagine that a rectangular Cartesian coordinate system
is rigidly connected with the configuration under study in such a way
that all the rotation axes pass through the origin of the coordinate
system. If the configuration is rotated, it is possible to consider the
initial and final positions of the coordinate system as defining two
coordinate systems. Therefore, to the same point in space can be assigned
either rectangular coordinates x, y, z with respect to the original system
or coordinates x', y', z' with respect to the new coordinate system and
their relationship is expressed by an orthogonal matrix [see Eqgs. (4-111)
and (4-124)]:

!
(yy 415 45

(6-7)

= || d21 Gp3 G23

0= =
L - K

’

a3y A4z As3

The matrix elements q,; belong to the transformation matrix a. Equation
(6-7) represents three equations, the first of which is

— ! / /
X=a,X +a,y +a;;z

(y)
, B
v F (x’)

El ——{-E . .
| Fig. 6-1. Transformation of the
| coordinates on rotation of the
| Cartesian coordinate system about

0 a C "3 (x) the z-axis through angle a.

From Fig. 6-1 the form of the transformation matrix for the rotation of
the configuration by an angle o about the z-axis is apparent. For the
calculation of coordinates of point B in the primed and unprimed
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systems, it is necessary to bear in mind that

x=0D—CD = x'cosa — y'sinat (6-8a)
y=OE + EF = x'sina + y' cosu (6-8b)
z=7 (6-8c)

and thus the corresponding transformation matrix takes the form

cosoe —sina 0
a, =|sina cosa0 (6-9)
0 0 1

Transformation matrices corresponding to reflections in the planes
determined by the coordinate axes or to reflections through the origin
have a particularly simple form. For instance, reflection in the zy-plane
leads to matrix a,:

-1 0 0
a,= 0 1 0 (6-10)
0 0 1

The following transformation matrix corresponds to the reflection opera-
tion through the origin (inversion):

~1 0 0
a,=|| 0-1 0 (6-11)
0 0 -1

An inverse matrix can easily be constructed [see Eq. (4-111)] for an
orthogonal matrix so that primed coordinates can also easily be expressed
as a linear combination of unprimed coordinates:

’

/

T

—a (6-12)

L= =
(NI SEE 3

Thus, for example, for coordinate x/,
x'=ay;x + a,,y + a2

Operation of a certain transformation on a general function f or on
a general operator @ can best be expressed in operator form: symbol I
will denote the operator that represents the rotation, reflection, or in-
version. The operations J f(x, y, z) or F 0(x, y, z) then simply mean that
substitution in the corresponding expressions must be performed according
to (6-7), where matrix a expresses the transformation of coordinates
which occurred as a result of the corresponding operation. Therefore,
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T f(x,y,2) =f(x,y,7) (6-13a)
and
TOx,y,2)0=0x,Y,2)To, (6-13b)

where ¢ is an arbitrary function (cf. Section 4.1). The function f(x’, y, z')
generally has a different analytical form than the original function
f(x, y, z). If, however, the analytical form is preserved after the transfor-
mation, a symmetry transformation of the function f(x, y, z) has occurred.
The same considerations, of course, also hold for Eq. (6-13b); if operator @
remains invariant under the performed transformation, or, in other words,
if it holds that O(x, y, z) = O(x', y', Z), then it follows from Eq. (6-13b) that

T0 =0T (6-14)

Thus, if 7 is an operator corresponding to the symmetry transformation
of operator 0, this property will be manifested by commutation of the two
operators.

As an example of the determination of symmetry operations of an
operator, the properties of a Hamiltonian corresponding to an electron,
moving in the electrostatic field of four protons, located at the corners
of a rectangle whose orientation with respect to the coordinate system
is defined by the figure in the first column of Table 6-1, will be
considered. The Hamiltonian for this system can be expressed as

h2 4 82

ZA-—

== o £ Aney|r — R |’

(6-15)
where r = (x, y, z) gives the position of the electron under study and the
summation expresses its electrostatic interaction with the four protons,
whose positions are determined by vectors R;. First, the behaviour of the
Laplace operator under the rotation operation, for example, under
rotation about the z-axis, can be established. According to the elementary
rules of differentiation,
62 (‘32 52
Rz, )77+ 53 +537=
( ){6x2 dy* ' 0z%

I (V]2 (2 4 (Y2,
- 0x dy | |ox? 0x dy | |o9y?
ox' dy’  ox oy | 0? 0*
+ 2[?36_ FX- + ?y- —6—y-:|ax,—ay, + (—3—2'72 @(Z, d), (6-16)

where it is assumed that the dependence of the primed coordinates on
the unprimed ones is known and has the form of Eq. (6-12); for rotation
by angle a« about the z-axis, the relationships
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/

x' =cosea.x + sina.y (6-17a)

y = —sina.x + cosa.y (6-17b)
are obtained and, from these equations, the expressions necessary for
derivation can be obtained. It is seen that

Alx, v, z) = A(X, ¥V, Z) (6-18)

or, in other words, that the Laplace operator is invariant to rotation
about the :z-axis; in addition, it can be shown that this operator is
invariant to rotation about an arbitrary axis passing through the origin.

If the transformation relations for other symmetry operations
presented in Table 6-1 [see Eq. (6-10)] are also taken into consideration,
it can be concluded that operator A is invariant to all the operations
of a rectangle symmetry, and the second term of the Hamiltonian (6-15)
remains to be investigated. First, the potential originating from four
protons at an arbitrary point in the [x, y, z] space must be expressed.
It is obvious that any change in the position of these protons, expressed
by the transformations shown in Table 6-1, does not change this potential,
and therefore the potential energy for the mutual interaction between
the electron and protons can be described in the form

2 2

Z41teolr— R,| Z 41t80|r—R’,l

(6-19)

where r' = (x, y/, Z) is the position vector of the electron and R; the
position vector of the nucleus I after the symmetry transformation.

In summary it can be said that the Hamiltonian (6-15) is invariant
under any symmetry operation of a rectangle (see Table 6-1), or that

H(x,y,2)=HX,V,2) (6-20)

In accordance with this finding, a symmetry transformation of the Hamil-
tonian will be generally defined as a linear transformation of the coordin-
ates that leaves the Hamiltonian unchanged in the sense of Eq. (6-20).

The above consideration concerned a system of a single electron
which moves in an electrostatic field of symmetrically arranged nuclei.
It is obvious that a similar approach can be employed in studying the
symmetry properties of the Hamiltonian corresponding to the independent
electron model [see Eq. (5-37)], since the symmetry of the effective
potential ¥” is consistent with the configuration of the nuclei of atoms
which form a molecule. Apart from one-electron contributions, a complete
quantum-chemical Hamiltonian also contains the operators of electrostatic
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interaction between electrons, i.e. the expression

2
e
G)=2 TT1—=7 (6-21)
E,-y i;j 4n80|r,.—rj|
It is evident that the distance between two points in space is not changed
by the symmetry transformations and consequently that

r—nl =15 62)

Therefore, even sum (6-21) is invariant to the simultaneous orthogonal
transformation of the coordinates of all the electrons. Thus even for
a precise Hamiltonian, the spatial symmetry is determined by the
configuration of the atomic nuclei forming the molecule. In this con-
nection it is necessary to realize that, in all these considerations on the
symmetry properties of the Hamiltonian, the validity of the Born-Oppen-
heimer approximation, according to which atomic nuclei, responsible for
the molecular geometry, are considered to be a rigid configuration, is
tacitly assumed.

The electron system of an atom that is exposed to the spherically
symmetrical potential of an atomic nucleus must be considered as a special
case. This, in its own way, the highest kind of spatial symmetry, mani-
fested in invariance of the Hamiltonian to rotation around any axis
passing through the atomic nucleus, has already been taken into account
by classifying states in atomic systems using eigenvalues of the angular
momentum operators. It can be demonstrated that there is a close
relationship between angular momentum operators and operators of
infinitesimal rotations®.

It will be recalled that the angular momentum was established as
one of the constants of motion. On comparing Eq. (6-14), where the
Hamiltonian of the system can be substituted for the general operator €.
with Eq. (4-56) it can be concluded that the operators of symmetry
transformations of the Hamiltonian also act as constants of motion and
can be used to classify various states. It can easily be proved that all
symmetry transformations of the Hamiltonian satisfy axioms a) to d) in
Section 6.1, and that they therefore form a group. In this connection we
speak about the symmetry group of the Hamiltonian.

6.3 The principal symmetry groups
and their notation

In addition to groups of finite order there are also groups of infinite
order. Thus, for example, there is an infiniie number of symmetry opera-
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tions on the sphere corresponding to the full three-dimensional rotation
group.

If some of the elements of a group in themselves satisfy the group
axioms, the set of these elements is called a subgroup of the corresponding
group. From this point of view, all symmetry groups related to molecular
symmetry are subgroups of the full rotational group, since the symmetry
operations of every molecule are also included in the symmetry operations
of a sphere.

The symmetry properties of a molecule can be described if all the
possible symmetry operations under which the molecule is not physically
changed are given. Thus simple symbols (the Schonflies notation) were
introduced to denote the most important symmetry groups.

Among the simplest point groups are those corresponding to opera-
tions of rotation about a single axis. If the molecule is invariant under
rotation through 2m/n, about a particular axis &, then this is termed an
n-fold axis, and the corresponding symmetry group is denoted C,. If the
symbols given in the introduction are used, the rotation operator can
be defined as

€,= R (c, 3}%‘—) (6-23)

for which n-fold repetition leads to the identity operation:
€) =¢ (6-24)

Each of the integral multiples k of the elementary rotation €, (k =
=1, 2, ..., n) represents an element of the group. Groups whose elements
satisfy property (6-24) are termed cyclic.

Another cyclic group of the n-th order is the group S,, which is
composed of the multiples of element &, = 6,%,, which refers to rotation
through 2n/n (@,) with reflection (6,) in the plane perpendicular to the
symmetry axis; this kind of rotation is called improper rotation. Groups
of this type are defined for even n only.

Other groups are derived from the above-described cyclic groups
by supplying them with further symmetry elements. Symmetry elements,
such as, for example, different types of symmetry axes, can be distinguished
from symmetry operations, e.g., the operations of rotation corresponding
to an active rotation through a particular angle about the axis. Dihedral
groups also have, in addition to the principal rotational axis (which is
the axis of highest order compared to the other symmetry axes), twofold
axes, which are perpendicular to the principal axis. The operations
of rotation about these axes will be denoted by primes, e.g., 45, €,, and
the respective symmetry elements by C,, C,. Further symmetry elements
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can be reflection planes o with a different orientation with respect to the
principal axis:

a) perpendicular to it: g,

b) passing throughit: o,

¢) passing through it and also bisecting the angles between minor
twofold axes: 64.

The notation of indices on the symbols for reflection ¢ can be
derived from the following model: if the principal axis is orientated

Table 6-3
Selection of Point Groups
Group Symmetry elements Examples of symmetrical molecules forn = 2
Molecule Graphical representation
H
C, n-fold axis of rotation H,0, \‘ 0
S, n-fold axis of improper trans A
rotations CIBrHC — CHBrCl C C Br =S
N Ct
C
W
Con n-fold axis of rotation, trans M
gy, plane CIHC=CHCl H/C C p
h
C, n-fold axis of rotation, H,0 }@
n o, planes H” 67 6
Cyz
D, n-fold axis of rotation, partially deformed “ X
n two fold axes C,, Cj, ... H,C==CH, Co
D,, as D, deformed
nog planes H,C-CH,
D,, asD, H,C=CH,

oy, plane
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vertically, the symmetry plane g, is orientated horizontally, the o, plane
vertically and the g, plane is, in a certain sense, diagonal.

Different types of groups, which can be formed in this way, are given
in Table 6-3, together with examples of molecules whose symmetry
corresponds to the n =2 term of a certain type of symmetry group,
where n denotes the order of the principal rotational axis. In this
connection it is necessary to note that there exist symmetrical configura-
tions corresponding only to a limited number of point groups, which can
be deduced from the general properties of the space group of which
the point groups are subgroups. On the other hand, it is possible to
consider some continuous groups, to which, for instance, diatomic
molecules correspond. in their rotational symmetry, to be a limiting
case for n —» co. Thus to the CO molecule corresponds the group C_,
and, to the H, molecule, the group D_,, where the symbol co denotes
the presence of a symmetry axis of “infinite order”.

The graphical representation of molecules in Table 6-3 is supple-
mented by denotation of the various symmetry elements of the respective
groups, which are again and more illustratively given in the diagrams
in Fig. 6-2. The diagrams are termed stereographic projections of the

G, S, Can

y y y
+ +
¥ 65, (yx)
/l\ LY /”l%
SZ

C.
QFD/ @

DZ
Y C ;’
+
X
)
C2 c,
yD2h
Cy
6h (xy)
c X

Fig. 6-2. Stereographic projections of some point groups with two-fold principal axis.
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point groups and enable a quick and easy estimate of the relevant
symmetry properties. In constructing these diagrams, a convention accord-
ing to which a + sign denotes the points above the projection plane and O
denotes points below it is employed. In some instances the projection
plane is identical with the ¢, plane; the principal symmetry axis then
passes through the centre of a circle perpendicular to the g, plane.
The meaning of the other symbols in the diagram is self-evident.

T4 Oy
I\
I\
\
\\ -
J \
X \\\\ \\\\ \
= Fig. 6-3. A tetrahedron and a cube.

In conclusion, two important symmetry groups, Ty and O,, cor-
responding to a tetrahedron and a cube, respectively (see Fig. 6-3),
can be mentioned. The first consists of 24 symmetry elements (E, 8C, 3C,,
6S,, 60,),and methane is an example of a molecule with this symmetry.
The O, group, consisting of 48 elements (E, 3C,, 6C,, 1C,, 8C,, i, 3iC,,
6iC,, 6iC,, 8iC,) assumes an important positio. in the theory of
inorganic complex compounds.

6.4 Matrix representation of symmetry
groups

The discussion begun in Section 6.2 can now be continued, starting
with the general Schrodinger eyuation

-

H(r) Vi(r) = EY,(r), (6-25)

where the symbol r denotes dependence on all the space coordinates of
the system. If operator &, which belongs among the operators of
symmetry transformations of the Hamiltonian, acts on both sidcs of
Eq. (6-25), the relationship

H(r') ¥,(r) = E¥,(r) (6-26a)

is obtained, in which use is made of the invariance of the Hamiltonian
under the symmetry operation. However, function ¥, can in general
change its form, denoted by a change in the subscript. The denotation
of variables is, of course, arbitrary and therefore Eq. (6-26a) can be
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expressed using unprimed coordinates:
H(r) ¥,(r) = E¥, (1), (6-26b)

whence it can be seen that ¥,(r) is also an eigenfunction of the Hamiltonian
and possesses the same eigenvalue as ¥, (r). Thus the set of all symmetry
transformations of the Hamiltonian can be used to determine different
eigenfunctions corresponding to one energy level. This fact permits
determination of the degree of degeneracy of the energy level, which
can be defined as the number of linearly independent functions ¥,.

If level E is m-fold degenerate, then functions ¥, (i=1, 2, ..., m)
can be considered to form a set of orthonormalized functions. The
action of operator 4 on one of the functions ¥, must necessarily
be expressible in the form of a linear combination of functions of the
given set

m
TY, = j;lA(.T)!IJ i (6-27)

Jt

where || A" || = A™ is a matrix whose elements are coefficients of linear
expansion (6-27). The orthonormality of functions, written using the

notation introduced in Section 5.4 as
PPy =6, (i=1,2..,m),

results in the relationship

(6-28)

ijo

m m m
TN =Y Y (AD* AP = Y (A A =0
k=11=1 k=1

indicating that A™ is a unitary matrix [cf. Eq. (4-110)]. When deriving
relationship (6-28) use was made of the fact that the expression (| ¥ P
is a number and thus cannot be influenced by transformation . An
operator leaving a scalar product invariant is termed a unitary operator;
it is represented by a unitary matrix.

Equation (6-27) can be rewritten using the matrix formalism
introduced in Section 4.5:

TP =YPAD, (6-29)
where ¥ must be taken as the one-row matrix
'I’=||'I’,,‘P2,...,‘PMH (6-30)

This notation will enable easy investigation of the successive action of
the two operators J and ¥, belonging among the symmetry trans-
formations of the Hamiltonian, on the set of functions ¥, which refer
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to a degenerate level. From Eq. (6-29) it is evident that
WY =vTY =vPATD = PAVAD = PAFD = AT, (6-31a)
whence it follows that
A® = A¥D = AMAD, (6-31b)
where the operation
W=AvT (6-32)

has been introduced, which according to the definition of a group also
belongs among the symmetry transformations of the Hamiltonian. It
is worth noting that the unit matrix A% =1 corresponds to the
identity operation.

Equations (6-31) and (6-32) imply that the original group of symmetry
transformations Z, ¥, ..., has been replaced by a set of unitary
matrices AT, AY), ... which also form a group in accordance with
the definition in Section 6.1, provided that the operation of matrix
multiplication is introduced as group multiplication. Such a set of
matrices satisfying Egs. (6-31) and (6-32) is said to constitute an
m-dimensional matrix representation of the original group of symmetry
operations, and the set of functions ¥, (i=1, 2, ..., m) is called
the basis of this representation.

This important conclusion will enable us to denote the energy level
and the corresponding eigenfunctions by the representation which is
related to it. Specification of the representation affords information on
the symmetry properties of eigenfunctions, which must be known, for
example, in determining the selection rules for various types of matrix
elements, as will be seen below.

Let us assume that the matrix representation A™, A®, A®)_ of
a certain group of symmetry operations is known. It is also assumed
that the set of functions ¥, (i=1, 2, ..., m) is known, constituting
a basis for this representation, which guarantees that the action of a
symmetry operation on any of these functions forms new functions
“remaining” in the space of Y, functions. For some purposes it can
be useful to pass from one set of functions Y, to another set of
orthonormalized functions ¢; (i =1, 2, ..., m), which can be carried
out by the transformation

¥ = oV, (6-33)

where U is a unitary matrix [see Eq. (4-124)]. The new basis can be
taken as physically fully equivalent to the original basis. Substituting
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Eq. (6-33) into Eq. (6-29) gives
Ty =T U = pUAD (6-34a)
and, after multiplying from the right by matrix U™, the relationship
T ¢ = gUADU! (6-34b)
is obtained. Equation (6-34b) justifies introduction of the matrices
B" = UADU (6-35a)

which determine the transformation properties of the new basis ¢, (i =
=1, 2, ...) with respect to the symmetry operations under consideration.
The inverse transformation to Eq. (6-35a),

AT = UMy, (6-35b)
permits substitution into Eq. (6-31b):
U-'BYUu-'BMU = U !'BYU, (6-36a)
whence it follows that
BY"'B™ = BW (6-36b)
Thus it has been shown that the matrices B™, BY), B™, ... also

form a rgpresentation of the group of symmetry operations under
consideration. The representations whose mutual relationship is carried
out using equations of the type (6-35) (similarity transformation) are
termed equivalent representations.

Let us introduce now a matrix of the type

B, 0
B = . , (6-37)
0, B,

which will be termed a block matrix. Non-zero matrix elements occur
here only in submatrices B,, B,, ... along the main diagonal, while
zeros are everywhere else.

When passing from one representation to another using the
equivalence relation (6-35a), it can happen that the new matrix representa-
tion will be such that all matrices B®) (K =T, V, W, ...) are block
matrices of the same type, i.e. the homothetic submatrices have the same
dimensions. It can easily be demonstrated that, for the matrix product
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of such block matrices, it is valid that

BY), 0 B, 0
BY), B,
BVB™ — _ ' -
vV T
0, B, || 0. B,”
B, 0
W
BY),
- . — B™, (6-38)
0, B,
where
B™ = BYBD, i=1,2 ..k (6-39)
Thus submatrices B{", BY"), B{"), ... for a given subscript i also form

a matrix representation of the corresponding group, and this representation
generally has a lower dimension than the original. If the resulting situation
is interpreted using the basis functions, then the new set of functions ¢,
can be divided into subsets with the dimensions of the submatrices.
The functions belonging to a certain subset are only mutually transformed
by the action of the symmetry operations of the group under consideration.
If the original m-dimensional representation is denoted by the symbol T,
then it has been decomposed into representations I';, I',, ..., I',, which
is normally denoted as a direct sum, and is written in the form

F=r,+T,+..+T, (6-40)

where it cannot be excluded that each new representation will be
contained more than once, for example,

=k, +kT,+ ... (6-41)

The sum of the dimensions of the components must, of course, equal
the dimension of the original representation I

A matrix representation for which there is a unitary transformation
[ie. a transformation of the type (6-35)] such that it transforms it into
block form [see Eq. (6-38)] is denoted as reducible. A matrix representation
that cannot be reduced is called irreducible. As will be seen later, the
concept of reducibility of the representation is of fundamental importance
for applying group theory in quantum mechanics. As an example,
a statement sometimes also introduced as an axiom can be formulated:



119

Theorem 6-1. The eigenfunctions of the Hamiltonian belonging
to the same energy level form the basis for an irreducible representation
of the symmetry group under which the Hamiltonian is invariant (if
accidental degeneracies are excluded). Accidental degeneracy occurs when
the order of the degeneracy cannot be accounted for by symmetry
considerations.

Similarly as the concept of equivalance was introduced in the form
of the relationship of two representations, the equivalence relationship
between elements of the same group can also be introduced. Two elements
of a given group, X and Y, are equivalent (or conjugate) when in the
group appears an element Z such that the following relation is valid:

X=2'Y7 (6-42)

All equivalent elements of a given group form a class of equivalent
elements. As a rule, a group is composed of several classes. If the
symmetry operations are group elements, it is possible, from analogy
with Eqgs. (6-33) and (6-35a), to conclude that, in Eq. (6-42), X denotes
the operation which results from operation Y by similarity transformation
through symmetry operation Z. Thus, equivalent operations X and Y
can, in principle, be taken as identical, possessing, however, a different
system of coordinates in which the operation is carried out. An example
of the division of group elements into classes is the recording of the
symmetry operations of groups T, and O,, given at the end of Section 6.3
(p. 114), where it can be seen that group T, has five and group O, ten
classes of equivalent elements.
The number, N,, of non-equivalent irreducible representations of
a finite group is closely connected with the number, N_, of classes in the
group. It can be proved? that
N, =N, (6-43)
Further considerations will be based on the relationship between
the matrix elements {B{"}  of irreducible representations. In expression
(6-44), {B{"} , denotes the matrix element of the i-th irreducible represen-

tation, which lies at the point of intersection of the u-th row and v-th
column of matrix B{", which corresponds to the symmetry operation J
of symmetry group G. In group representation theory it has been shown?
that
> {BOh (B}, = 9-5,5,6.,, (6-44)
TeG i
where the symbol Te G under the summation sign indicates that the
summation proceeds over all group elements (symmetry operations);

g denotes the order of the group and m; the dimension of the i-th matrix
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representation. Equation (6-44) expresses the orthogonality relation between
the matrix elements of representations and indicates that only the sum
of the squares of moduli of homothetic matrix elements of a given
irreducible representation equals g/m; and that all other types of products
are equal to zero.

It has so far been shown that all necessary data on the symmetry
properties of a certain symmetry group are stored in the sets of matrices
forming the irreducible representations of that group. It appears, however,
that this information can be stored in a still more concise form. The
character D of element I of the group under study, corresponding
to matrix representation A" is defined as the trace of this matrix
[see Eq. (4-127)]; thus

m

(D =TrAD =y 4D (6-45)
n=1

The character of a representation is understood to be a set of characters

xD, Te G, corresponding to all the group elements.

Since the trace of a matrix is invariant under a unitary transformation
[see Eq. (4-130)], all equivalent representations [i.e. those which satisfy
relationship (6-35)] have the same character. Moreover, ‘it is evident
that, for the same reasons [cf. Eq. (6-42)], the elements of the same class
of a group have identical character and that, consequently, this character
is a property of a class of equivalent elements. It is further evident that
the character of a reducible matrix can be expressed as the sum of the
characters of its components, as follows directly from Eqgs. (6-38) and
(6-40).

Character tables of irreducible representations of all the required
point groups are listed in numerous text-books on quantum chemistry* 8
and group theory °~!2. For illustration, in Tables 6-4 to 6-6 are given
the character tables of representations of some groups discussed earlier
(denotation of symmetry elements is the same as in Fig. 6-2), of the
group D¢, (corresponding to the symmetry of the benzene molecule),
and of the group O, both of which will be needed in the ensuing
discussion. From Tables 6-4 to 6-6 it can be seen that a standard
notation is assigned to the characters: the letters A and B correspond to
one-dimensional, E to two-dimensional, and T to three-dimensional
representations. If inversion is involved in a group, the index g (gerade)
or u (ungerade) is attached to the letter according to whether the sign
is preserved or changed during the inversion, respectively.

In a one-dimensional representation, the matrix element is directly
equal to the character, which enables us to verify the validity of the
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Table 6-4
Characters of Irreducible Representations of Some Point Groups
C,, S,
C, E C,
S, E i
A A, 1
B A4, | 1 -1
Can: Coyy Dy
Con E C, i oy
Cy, E C, a, a,
D, E C, (04 C, /
A, A, A 1 1 1 1
A, A, B, 1 1 -1 -1
B, B, B, 1 -1 1 -1
B, B, B, 1 -1 -1 1
Dy
D,, E C,(2) i) Cy() i Ory g, 0,
A, 1 1 1 1 1 1 1 1
A, 1 1 1 1 -1 -1 -1 -1
B, 1 1 -1 -1 1 1 -1 -1
B,, 1 1 -1 -1 -1 -1 1 1
By, 1 -1 1 -1 1 -1 1 -1
B,, 1 -1 1 -1 -1 1 -1 1
B, 1 -1 -1 1 1 -1 -1 1
B,, 1 -1 -1 1 -1 1 1 -1

general equation, (6-44): at first glance it is obvious that the rows
(i.e. the characters of irreducible representations) correspond to orthogonal
vectors.

An additional useful orthogonality relation for the characters can
readily be derived from Eq. (6-44). By substituting y =v and % = 1
into this equation, the relationship

TZG {BgT)}:u {B(;'T)}u = Tﬁf 5ij5u;. (6-46)

is obtained. This relation can further be employed to express the product
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Z [X(T) * (T) = Z Z 2 {B(T)} {B(T)} -

TeG TeG p=1 A=1

9
= z ] 511514# 511' ’

(6-47)

where labels i and j indicate that the characters correspond to any two
irreducible representations. The validity of orthogonality relation (6-47)
for irreducible representations can easily be verified on the particular
examples given in Table 6-4.

So far only one way of constructing matrix representations of
a group from their representations (irreducible ones, for instance), namely
in the form of a direct sum, has been discussed. Now another way,

Table 6-5
Characters of Representations of the Dg, Group
7 3
Dg, E 2C, 2:;03 i"cg 3¢, 3C, o, 36, 30, 2S¢ 28, SEZ i
A, 1 1 1 1 1 1 1 1 1 1 1 1
A, 11 1 1 1 1 -1 -1 -1 -1 -1 -1
Asg 1 1 1 1 -1 -1 1 -1 -1 1 1 1
A, 11 1 1 -1 -1 -1 1 1 -1 -1 -1
B, 1 -1 1 -1 1 -1 -1 -1 1 1 -1 1
B,, 1 -1 1 -1 1 -1 1 1 -1 -1 1 -1
B,, 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1
B,, 1 -1 1 -1 -1 1 1 -1 1 -1 1 -1
E, 2 1 -1 =2 0 0 -2 0 0 -1 1 2
E,., 2 1 -1 =2 0 0 2 0 0 1 -1 =2
E,, 2 -1 -1 2 0 0 2 0 0o -1 -1 2
E,, 2 -1 -1 2 0 0 -2 0 0 1 | )
(xm )? 4 1 1 4 0 0 4 0 0 1 1 4
X(L?;T) 2 -1 -1 2 2 2 2 2 2 -1 -1 2
[XE“]‘T’ 3 0 3 1 1 3 1 1 0 0 3
[XEI. m 1 1 1 1 -1 -1 1 -1 -1 1 1 1
Table 6-6

Characters of Irreducible Representations of the O Group

0 E 8C, 3¢, 6C, 6C,

A, 1 1 1 1 1

A, 1 1 1 -1 -1

E 2 -1 2 0

T, 3 0 -1 1 -1

T, 3 0 -1 -1 1
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based on the so-called direct product of two (or more) representations,
symbolically denoted by I' = I') @ I',, will be introduced.

. In Chapter 5 many-electron systems were described using product
functions, consisting of the products of one-electron functions—atomic
or molecular orbitals. These one-electron functions are, as a rule, the
solution of a problem within the independent particle approximation
(see Section 5.5) and, according to Theorem 6-1, form the basis for
a representation of the symmetry group of the corresponding Hamiltonian.

Let us assume that two sets of functions ¥, (i=1, 2, ..., m)
and ¢, (i=1, 2, ..., m) are available, each of which forms a basis
for the matrix representation of the same group, which can be expressed
using the general group element J [cf. Eq. (6-29)] as follows:

Ty = yAD (6-482)
To=0¢BD, TeG (6-48b)

The product space of functions ¥, and ¢, will be constructed so that
all possible products of the type ¥,¢;, the number of whichis u = m.m/,
are formed. For the sake of consistency with the previous discussion,
it should be remembered that such a product space would be suitable
for the description of a two-electron system. Let us first verify that
a set of product functions forms a basis for the representation of
group G. Taking into account Egs. (6-27) and (6-48), it holds that

m m
flpiq)j = Z Z Ag)ijT)‘/’kq’x (6-49)
k=11=1
If an auxiliary index r is introduced to designate a pair of indices i, j and
indices k, | are replaced by the new index s, then the expressions
occuring in Eq. (6-49) can be rewritten to give

e
D = AL B} (6-51)

Thus, Eq. (6-49) can be rewritten in the form
T, = z} DO, (6-52)

whence, on comparison with Egs. (6-27) to (6-32), it follows that
matrices DT, Te G, form a new representation obtained as a direct
product of the two original representations. The relationship of the
product representation to the original representations is worth noting.
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It is expressed by Eq. (6-51) which, for lucidity, can be rewritten
explicitly:

(T) (T) (T) (T)R(T) (T)R(T) (T)R(T)
DY}, D3, ..., DY, A71BiY, AYVB13s - AimBim
) )T | _ || 4Drm 4@ (MR(T
D, DY, ..., DD | = | ADBD, ADBD, ..., ADBD, || (6-53)
nNT) T (T MR 4(T)R(T) T) p(T
DD, DD, ..., DI ADBD,  ADBD . ADBD,

Equations (6-53) and (6-51) represent the definition of the direct product of
two matrices (in contrast to the matrix product introduced in Section 4.5).

The direct product can be obtained for any two representations, i.e.
also for irreducible representations. It can be expected that the direct
product will generally afford a representation which can be decomposed
in the sense of Egs. (6-40) and (6-41) into irreducible components.
The fact that the character of the product representation is equal to
the product of the characters of the original representations, as follows
from Egs. (6-45) and (6-53), can be used here:

W =10 TeG (6-54)

It has been mentioned that, for irreducible representations, the characters
XD and ¥ are known, so that I, Te G, can be easily calculated.

According to the basic character properties, the following relation
for the character )T of a representation reducible in the sense of

Eq. (6-41) holds:

15 = 2k, (6-55)
where, as in Eq. (6-47), index i expresses the relationship to the irreducible
representation i. If Eq. (6-55) is multiplied by the complex conjugate
character of the j-th irreducible representation [x{"]* and if summation is
carried out over all the group elements, then it follows that
YT =Yk Y PP = g Y ko = gk;  (6-56)
TeG ) i TeG i

1

This equation indicates that the reducible representation described by
its character i, Te G, contains the j-th irreducible representation as
a component k;times. Thus Eq. (6-56), based on knowledge of the
characters alone, permits decomposition of the reducible representation
into its irreducible components.

It should be noted, in conclusion, that basic equations have been

introduced in this section which will be necessary when utilizing the
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symmetry properties of the studied systems for their quantum chemical
solution. If the reader has not yet noticed the usefulness of some
particular concepts, it will become more evident in further sections
of the book where their application in practice will be discussed.

6.5 Selection rules for matrix elements

It was mentioned in the previous chapter that one of the steps in
quantum chemical calculations is the evaluation of integrals of the type

M; = _‘.'/’:k'/”'//; dr = (Y, | '/”| '/’,'>, (6-57)

where the reader should reacquaint himself with the symbols introduced
in Section 5.4 for matrix elements of the operator .# between functions y,
and y;. The action of an operator on a function generally leads to
another function,

MY =g, (6-58)
and, after substituting in Eq. (6-57),
M;; = Yi||lop (6-59)

It should be emphasized in this connection that only the symmetry
properties of the functions are now relevant and it is not necessary for
the functions to be normalized; this fact is manifested by using two
strokes in the scalar product symbol. ¥, is assumed to be one of the
functions forming the basis for the irreducible representation I',, cor-
responding to matrices A", Te G, of group G, while ¢; belongs to the
basis of the irreducible representation I';, which corresponds to matrices
B, TeG. Should it happen that both irreducible representations are
the same, they will be assumed to be identical and not merely equivalent.
Expression (6-59) is a scalar product, ie, a number, and the action
of an operator of symmetry transformation 4 on M;; can therefore
not change its value and, using Eq. (6-49), the expression

My= M, = 3 5 (4D BP0 (6-60)

can be written. Operation Z in Eq. (6-60) is, of course, arbitrary; the
symmetry operations ¥, #, ... belonging to the given group might
equally well have been chosen. Summing all such cases, then the
relationship

Y TM, =M= 3, 3 TUPBP ey 66D

TeG k=11=1T
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results. Eq. (6-61) can be simplified using Eq. (6-44), so that the final
result can be written in the form

M;; = %5,4851'; k; Wellow (6-62)
According to Eq. (6-62), integral (6-37) is nonvanishing only when:
1. A = B, ie. irreducible representations I', and I'y are identical.
2. If condition 1 is fulfilled, it must also hold that i=j (ie.
Y, = ([)j).
If conditions 1 and 2 hold, then Egs. (6-59) and (6-62) yield the
relationship

My = Wl = 3 Wl (6-63)

1
m,
Since the right-hand side of Eq. (6-63) is independent of index i, Eq. (6-63)
holds if all the values <y, |[¥,>, k = 1, 2, ..., m, are the same.

The derived relations will now be applied to particular operators ..
Two cases will be discussed separately:

a) the operators J of the given group, G, correspond to the
symmetry transformations of operator .4,

b) condition a) is not fulfilled.

The first category includes, of course, the trivial case when # = 1
(more generally . =a constant). Relation (6-62) then ensures the
orthogonality of some functions purely on the basis of their symmetry
properties. The case when . is the Hamiltonian (many-electron,
Hartree-Fock or some other one-electron Hamiltonian) is, however,
typical for this category. The Hamiltonian # is invariant under all
symmetry operations of the given group and, therefore corresponds to
the irreducible representation Ajgs for which it 1s characteristic that all
matrix elements of the one-dimensional representation are equal to one
(cf. Table 6-4). Since the symmetry properties of ¢; are, according to
Eq. (6-58), given in the form of a direct product of irreducible representations
Ay, (corresponding to .#) and T, [corresponding to the basis Y/,
(i = 1,2, ...)], it must necessarily hold that even the functions ¢, ¢,, ..., ®;
form the basis of I',; in short, from the relationship

A, ®T, =T, (6-64)

it follows that
r,=r, (6-65)

Thus, the application of Eq. (6-62) to this case can be summarized as
follows:
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CAEAIDEIN (6-66)

provided the following conditions are fulfilled:

1. irreducible representations I', and I',, to which bases ¥,
(i=1,2..)and y; (i =1, 2, ...) correspond, are equal.

2.i=]j.
Equation (6-63) then acquires the following form

W0 = T I, (6-67)

from which it follows that the level whose energy is given by the value
Y| #|¥;> is m-fold degenerate; this is an alternate formulation of
Theorem 6-1 (see Section 6.4).

Now the second category of operators, i.e. those which do not satisfy
the above condition a) will be treated. In general, it can be assumed
that operator . has symmetry properties such that it is transformed
according to representation I'y,, which need not be irreducible. The
functions ¢}, j = 1, 2, ... then correspond to the product representation

=ry®r,=Ykr, (6-68)

where its decomposition has already been given in Eq. (6-41). Regarding
the validity of Eq. (6-62), it is immediately evident that matrix element M,;
is nonvanishing only when k, # 0, where k, is the coefficient of the
irreducible representation I',, according to which function ¥, is trans-
formed.

One of the most important ways of applying the given result is the
determination of selection rules for spectroscopic transitions between two
states. Here the selection rules imply prediction, on the basis of symmetry
considerations, of whether the intensity of the transition is strictly zero
or differs from zero. We shall see in the chapter on molecular spectroscopy
that the basic quantity for calculation of the intensity of a transition is
the transition moment, which is expressed by integrals of the type

Wil x|, ly [, Wl =y (6-69)

where X, v, - are the Cartesian coordinates of the position vector of the
electron and the matrix elements represent the components of the one-
electron dipole transition moment vector. At least one vector component
must be nonvanishing if the transition is to be allowed for symmetry
reasons. If we consider the transition between the ground state of the
molecule, which is usually symmetrical with respect to all operations of
the symmetry group of the Hamiltonian (and thus corresponds to the



128

irreducible representation 4, ) and the excited state, and take Eq. (6-68)
into account, then the relationship

A,=T,®T, (6-70)

is valid for expressing the condition that component x of the transition
moment does not vanish. I, in Eq. (6-70) denotes the irreducible representa-
tion of the symmetry group of the Hamiltonian according to which
coordinate x is transformed under the given symmetry conditions.
Equation (6-70) can be satisfied only if I', = I', because only then
it is possible to represent the symmetry of A4,, by a direct product.
If the fact that coordinate x changes sign when passing through the
origin is taken into account, it readily follows from Fig. 6-2 and Table 6-4
that, for example, for groups C,, S,, C,,, C,,, D, and D,,, the x
coordinate gradually corresponds to the irreducible representations B, 4,
B,, B,, B, and B, and that the excited states for which the x component
of the transition moment differs from zero correspond to the same
symmetry type.

The discussion so far has been general in as much as it comprises
the interpretation of electronic and vibrational spectra, i.e. spectra in the
UV region, visible spectra and IR spectra. For UV and visible spectra, the
wave functions ¥, and y; from Eq. (6-69) must be understood as
electronic functions, for vibrational spectra functions ¥; and ¥ denote
the vibrational wave functions.

Determination of the selection rules for Raman spectra resembles
the previous cases except that, instead of integrals of the type (6-69), it is
necessary to investigate integrals such as

CACUDS (6-71)

where « is one of the components of the polarizability tensor which
represents a symmetrical matrix of order 3. It is not as easy to determine
the symmetry properties of the polarizability tensor as it was in the
previous case with Cartesian coordinates, but they are usually given
as supplementary information in character tables of irreducible repre-
sentations.

6.6 Symmetry and hybrid orbitals-

All considerations in the previous section were based on the assumption
that functions occuring in the matrix elements belong to the bases spanning
irreducible representations. The simplification achieved in a number
of problems is connected with the fact that the functions of these
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properties can be considered to be eigenfunctions of the symmetry
operators of the Hamiltonian, i.e. of operators which commute with the
Hamiltonian. It is evident from this viewpoint that the partial result,
presented in the form of Eq. (6-65) and of the additional conditions
given in Section 6.5, corresponds to Theorem 5 in Section 4.3.

It often happens in quantum-chemical studies that, in the beginning
of the calculation, functions forming the basis of a reducible representation
are available. The MO-LCAO method discussed in Section 5.6 is a typical
example. It is assumed in this method that the basis set of atomic
orbitals, used for the construction of the molecular orbitals, is the basis
for a reducible representation of the symmetry group of the Hamiltonian.
Otherwise the basis would have no physical meaning, as can be de-
monstrated by the example of an electron moving in the electrostatic field
of four protons and described by Hamiltonian (6-15). The most obvious
course is to look for a wave function [cf. Eq. (5-63)] in the form of a linear
combination of atomic orbitals (1s),, i = 1, 2, 3, 4,located on all nuclei,
i =1, 2,3, 4 represented by the figure in the first column of Table 6-1, i.e.

VR

o =Y c(ls), (6-72)

i=1

On the other hand, there is no point in assigning 1s orbitals to certain
nuclei and, for example, p orbitals to others. It is also clear that the
requirement of a reducible basis is essentially identical with the require-
ment that physically equivalent atoms (here four protons) supply the same
atomic orbitals to the total set of atomic functions. The atomic orbitals
(1s);, i = 1, 2, 3, 4, arranged in the correct sequence in a one-row matrix
of the type (6-30), are transformed by the symmetry operations of a
rectangle as follows:

1000
0100
0010
0001

0100
1000
0001
0010

0001
0010
0100
1000

A® = (6-73a)

AU — AC2)

(6-73b)

Ay = ACY) (6-73¢)
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0010
0001
1000
0100

AR(z,n) =AY = = A(CZ) (6-73d)

It can easily be verified that binary products of matrices (6-73) conform
with the multiplication table (Table 6-2); thus the matrices form a represen-
tation which can obviously be reduced (as follows from Table 6-4 according
to the character table for the group D,,, corresponding to the symmetry
of a rectangle) and the atomic orbitals form the respective basis.

Thus functions are available which belong to the basis of the
reducible representation, and functions which form the bases of the
irreducible representations of the symmetry group G of the Hamiltonian
must be constructed. Let {B{"}, be the matrix element of irreducible
representation i, satisfying Eq. (6-44) and &—a function which belongs
to the basis of the reducible representation. At arbitrary but then fixed
value of v, function ¢ can be defined by the equation

o) =Y (B}, 79, (6-74)

TeG
where the summation includes all the elements of G. In order to succeed
in the investigation of the symmetry properties of ¢\?, a further symmetry
operation ¥~ will be introduced, so that Eq. (6-32) is valid and consequently

T =v "y (6-75)
It then holds that
Vol =Y (BOY vTd =Y {BY '"M}*x wo, (6-76)
TeG WeG

as in the summation the product ¥"Z again runs through all the elements
of the group. Because the matrices of the representation [see Egs. (6-28)
and (4-110)] are unitary it holds that

BV - [BY]™! =[BT, (6-77)
which allows modification of the matrix element in Eq. (6-76) to give
{BY "My, = L {BY )k (B}, = X (B}, (B}, (6-78)
By substituting Eq. (6-78) into Eq. (6-76), the final form is obtained,
Vo) =Y LB}, (B} #o =
WeG x

=Y {B"},, ga{ B™"}x, wo = g{ B}, o, (6-79)
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where relation (6-74) was again employed. If this equation is compared with
Eq. (6-27), it will be seen that all the conditions are satisfied for functions
@, w=1,2, ..., defined by Eq. (6-74) to span the i-th irreducible repre-
sentation of G. The given problem is thus solved. Unfortunately, the
whole matrices of the representation are not generally known, but only
their characters. Because, however, index v in Eq. (6-74) has an arbitrary
value, it can be set equal to u. If, in addition, the summation is carried
out over pu, the relationship

0" = ¥ ({"IT 0 (6-80)

TeG

is obtained from Eq. (6-74),where the symbol of the character is substituted
for the sum of the diagonal elements [cf. Eq. (6-45)]. It is clear that
function ¢ in Eq. (6-80) belongs to the space of functions spanning
the i-th irreducible representation, and this equation can be considered
as a recipe for construction of the functions forming the bases of ir-
reducible representations. It should be stressed that the thus-obtained
functions will not in general be normalized.

Returning to the model of the electron in the electrostatic field of
four protons, it is necessary first of all to be aware that the symmetry
operations of group D, are sufficient for describing the symmetry pro-
perties of a rectangle, as follows from Table 6-4; it is superfluous to
attribute full D,, symmetry to the rectangle, because, due to the planarity
of the figure, some operations of group D,, become identical. In order to
decompose the matrix representation given by Egs. (6-73a) to (6-73d),
the irreducible representations contained as its components must be
discovered. This problem is easily solved using Eq. (6-56), as it is sufficient
to sum the products

k=14 (™% (6-81)

TeD,

(where g = 4 is the order of groupv D,) to determine the “participation
number” k; of the individual irreducible representations. The traces of
matrices (6-73a) to (6-73d) yield the characters

=4 x§?=0; 5P =0 45? =0 (6-82)

These, together with the characters of the irreducible representations
of group D, (Table 6-4),enable decomposition of the reducible represen-
tation into its irreducible components:

I'=A+B,+B,+ B, (6-83)
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As a consequence, four new functions can be formed using 1s orbitals
located on four centres, which establish the bases of the given irreducible
representations. Equation (6-80) can then be rewritten to give

o? = ¥B&(1s), + €, (1), + 1D E5(15), + (D€ (1s),, (6-84)

where it is borne in mind that the characters are real numbers and
i=A, B,, B, and B,. Using Table 6-1, the effect of the operators on
the (1s), function [e.g., €,(1s), = (1s),] is determined and, after substi-
tuting the characters in Eq. (6-84), four functions with the required
properties are obtained as the final result:

o = (1s), + (1s); + (1s), + (1s),
0B = (1s), + (1s); — (1s), — (1s),
@®) = (1s), — (1s); + (1s), — (1s),
0% = (Is); — (1s); — (Is), + (1s),

These functions are not normalized but determination of the corresponding
normalization constants is a simple matter:

1
K= \/(<(p(i) | (p(i)>)

The described symmetrization of the functions will prove very
useful in simplifying the solution of the secular determinant, encountered
in calculations using one-electron LCAO methods [see Eq. (5-65)]. This
simplification follows from the validity of the selection rules for matrix
elements. For instance, in the illustrative example the calculation of the
wave function and the energy considering the original formulation [see
Egs. (5-64) and (5-65)] would lead to a fourth-order secular determinant.
If the basis set of atomic orbitals is replaced by the basis set of symmetry
orbitals, expressed, for example, by Eq. (6-85), molecular orbitals can be
sought in the form

(6-85)

(6-86)

o = ¥ e 67
k

where all the functions ¢’ belong to the i-th irreducible representation.
Thus the property that the matrix elements of the Hamiltonian vanish
when the functions surrounding the operator belong to different irreducible
representations is employed. Instead of the original secular determinant,
it is necessary to solve a number of secular determinants of lower order,
each corresponding to one irreducible representation of the corresponding
symmetry group: this is termed factorization of the secular determinant
by using the spatial symmetry of the system.
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In the case under study, the inclusion of symmetry considerations
leads to a complete factorization of the secular problem so that the form
of the molecular orbitals can be entirely determined from the symmetry.
The energies corresponding to the molecular orbitals are determined as
the diagonal elements of the normalized functions (6-85).

A complete determination of the wave functions through symmetry
considerations is, of course, only possible in special cases. Generally
the molecular orbitals are sought in the form of (6-87); the practical
procedure will be demonstrated using the ethylene molecule (presented
in Table 6-3), which has D,, symmetry in the ground state.

First, the special case of the LCAO approximation will be discussed,
including in the basis set only those atomic orbitals which are occupied
by electrons in the free (i.e. not bound) atoms in the ground state. This
basis set of atomic orbitals is termed the minimum basis set. For the C,H,
molecule the minimum basis set is formed by the following orbitals:

for each carbon:  (1s),(As), (2p,), (2p,), (2p,)

for each hydrogen: (1s)

Thus the basis set of atomic orbitals has a dimension of 14 and the
secular determinant without considering symmetry would also be of
order 14. In the first stage the inclusion of symmetry considerations
requires separation of the atomic orbitals into subsets of equivalent
atomic orbitals which are interchangeable during symmetry operations
of the molecule.

The following subsets are evidently of this type,

{(19), (19)5}, {(2s);, (25),}, {(2pY)y> D))} {(2p);, 2Py},
{(zpz)l’ (2pz)2}’ {(15)1 , (18),, (18)5, (1s),},

which span reducible representations of group D,,. By decomposing
these representations the following symmetry functions are obtained:

(1s){ + (1s)§
t(1s)] — (1s)§
(2s); + (29),
1 (25), — (29),
D (2pdy + (2P,
(pr)l - (2px)2
: (2py), + (2p,),
p,), — (2p,),
(2p,), + (2p,),
© (2p.), = (2p.),

b
[ - [} [ w w a w o
e ®w ¢ LR - -] e g ..

=-I~ I~ I~ I QR - I~ ~ B O o v

N
w=
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A (1s), + (1), + (1s); + (1s),
By,: (1s); — (1s), — (1s); + (1s),
B,,: (1s); + (1s), — (1s); — (1s),
B, (1s); — (Is), + (1s); — (1s),

Thus the following distribution of symmetry orbitals has been
obtained:4 x A,, 4 x By,, 2x B,,, 2x B,,, 1 x B,, 1 x B,,, where the
number of cases corresponding to the same type of irreducible represen-
tation simultaneously indicates the order of the secular determinant, the
solution of which yields molecular orbitals with the pertinent symmetry.
For example, the molecular orbitals of 4, symmetry assume the form

P9 = c,[(195 + (19)7] + ¢,[(29), + (25),] +
+ ¢ [(2p,); — (2p,),] + ¢ [(1s), + (1s), + (1s); + (1s),]  (6-88)

The symmetry of a problem can also be used to determine orbitals
with specific spatial properties, called hybrid orbitals. Pauling'® demon-
strated on the basis of orbital hybridization that it is possible to
construct linear combinations of atomic wave functions such that equi-
valent orbitals are formed which, however, are oriented in different
directions. When, for example, describing the chemical bonding in the
methane molecule using orbitals located in the C—H bonds, it is necessary
to begin with four equivalent orbitals directed from the carbon atom
to the corners of a regular tetrahedron where the hydrogen atoms are
located. Kimball'* formulated a general procedure for describing hybrid
orbitals on the basis of group considerations. This procedure will be
clarified for the case when one atom forms six equivalent orbitals within
the molecule. Such a situation is encountered when interpreting the
properties of transition metal complexes.

The central atom, which has six identical neighbours (e.g. atoms),
is located at the origin of the rectangular coordinate system; the neigh-
bours, called ligands, lie on the x, y, z axes at equal distances from the
origin (Fig. 6-4). The six equivalent hybrid orbitals on the central atom
directed to the ligands are denoted by g, i = 1, 2, ..., 6. These orbitals
span the reducible representation I, which can be decomposed into
irreducible representations of group O (see Table 6-6):

r=4,+E+T, (6-89)

In solving the problem it suffices here (cf. the case of the rectangle) to
assign the system to the subgroup O of symmetry group O,. The sym-
metry orbitals corresponding to the given irreducible representations will
be constructed using relation (6-80). Since determination of the functions
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spanning a multidimensional representation has not yet been discussed,
it will be carried out here for the representation E. Using Eq. (6-80) and
the character table for group O in Table 6-6, the relationship (the
characters are real numbers)

Y 4PT ¢, =40, — 26, — 20, — 20, — 205 + 40, (6-90)

TeO
is obtained. Since the other linearly independent function (representation
E is two-dimensional) is to be determined, the operator is applied to still
another function, o;, for example

Y 1T 6, =40, — 26, — 205 — 205 — 204 + 40, (6-91)

TeO

Fig. 6-4. Schematic representation
of octahedral complex symmetry.

If the result is a function linearly dependent on the original function
(6-90), it is necessary to try application of the operator on still another
function ¢,. Here, however, this is not necessary. For reasons which will
become obvious later, that function is chosen as the second required
function which is obtained by multiplying Eq. (6-91) by two and adding
to Eq. (6-90). Thus, the following function orthogonal to Eq. (6-90) is
obtained:

20, + 0, — 05— 0y)
The functions spanning representation T, would also be constructed in
a similar manner. Since the hybrid orbitals are assumed to be ortho-

normalized functions, the resulting functions spanning the corresponding
irreducible representations can be written in the form

. ! 1
Ay dy =7€(a, +0,+ 0,4+ 0, + 05+ 0)

, 1
E: o'2=715(201 — 06, — 03— 04 — 05+ 20¢)
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1
T,: o,= —\75 (0, —a,)
1
as = 7 (05 —ay)
Og = 712— (6, — 0¢) (6-92)

If the central atom is assumed to have s, p and d orbitals, nine
functions s, p,, Py» P-» d.., dxz_yz, d d,,, dxy are available for the
calculation. Their symmetry properties with respect to the symmetry
operations of group O are such that they span the following irreducible

representations:

xz?

Aplos

E: d.d._,
Tl: px’ py’ P.
T,: d,.d,.d,,

Usually information on the transformation properties of atomic orbitals can
be found as supplementary data in character tables, e.g., in reference 4.
If the respective atomic orbitals are substituted for functions o; (it would
be necessary, of course, to first ensure that the functions o/ and the
atomic orbitals possess the same transformation properties, in other
words that their corresponding matrix representations are identical and
not merely equivalent), then Eq. (6-92) can be rewritten in matrix form:

All's 1J6 146 146 146 14J6  1/J6]| |,
E| d. 13 =112 =112 =1/J12 =1/J12 173 ||,
da_y [0 12 -12 12 -12 0 7
Tlp, |10 12 0 =142 0 0 7y
I p, 0 0 2 0 =12 0 o
P, 1/J2 0 0 0 0 —1/2|| ||
(6-93)

The inverse of transformation (6-93) allows expression of the hybrid
orbitals in terms of atomic orbitals. Since the transformation matrix is
a unitary matrix, replacement of the rows by the columns leads to the
inverse of the original matrix [cf. Eq. (4-110)]. Thus, for example, the
hybrid ¢, oriented in the direction of the positive part of the z-axis is
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given by the expression

1 1 1
o, = _\76 s + 7§ d,. + 75 p. (6-94)

Thus it has been shown that the d2sp* electron configuration is capable
of forming equivalent orbitals in the direction of three right-angled axes.
Kimball!* has published a table of possible configurations for hybrid
orbitals (cf. Table 7-2) corresponding to coordination numbers 2 to 8.
Thus, for example, with compounds of the methane type, where four
equivalent orbitals must be constructed along the axes of a regular
tetrahedron, an s orbital must be combined with three p orbitals. Using
the notation for electron configurations this can be expressed as sp’
hyhridization.

6.7 Spin and spatial symmetry
of many-electron systems

In Section 5.4, a very general way of expressing the wave function of
a many-electron system in the form of a linear combination of Slater
determinants was described. Since the molecular Hamiltonian does not
usually contain operators depending upon spin variables, the operators
of the total spin &, and &2 are constants of motion and it is, therefore,
expedient to expand the total wave function by means of linear combina-
tions of the Slater determinants chosen so that they are eigenfunctions
not only of &, but also of &>.

In order to investigate the action of the spin operators and sym-
metry transformations, the general Slater determinant is studied:

A1, 2, .on)=0,(1)n,(1), 0, 1,(2), ..., @, () 1, (0)|,  (6-95)

where the notation introduced in Egs. (5-29) and (5-32) is employed. The
function # is a general spin function which can be a or f, according to the
circumstances. The definition of &, from Egs. (4-84) and (4-76) permits
instant application of the operator to function (6-95). Thus, it is seen
that 4 is the eigenfunction of & :

P Ay = Shin, — ny) Ay, (6-96)

where n, is the number of « spins and n, is the number of B spins
in the Slater determinant 4., for which it holds, of course, that n =
=n, + ng.

It must simultaneously be stated that the form of the total angular
momentum (spin or orbital), as introduced in Egs. (4-66), (4-76) and (4-85),
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requires a certain modification in order to investigate its effect upon
product functions.

This modification, which we shall demonstrate on relations of the
angular momentum, can also be directly applied to the spin momentum.
It consists in rearranging the commutation relations of type (4-65) to
the form

(£, L. ]=h2, (6-97a)

(£, L _]=-hL_ (6-97b)

(., 2 ]=2n2,, (6-97¢)

where &, and Z_ are called the shift operators, defined by equations
£, =%, +i2, (6-98a)

£ =%, -i%, (6-98b)

Operators &, and & _ are called shift operators because of a further
given property. The relation of the functions

u, =LY, (6-99)

to the operator &, where Y, are the spherical harmonics (see Table 3-1)
is of particular interest. Employing commutation relations (6-97) and
Egs. (4-72) and (4-74) it then follows that

1
LEN) =5 LALL . ~ L L)Y, =

- —;11-3’3.‘% Y, — £L.2, mY, (6-100)

On multiplying Eq. (6-100) from the left by £ ', the expression
L(L.Y,)=hm+ 1) L. Y, (6-101a)
is obtained, and, in an analogous way, also obtained is the relationship
(L Y,)=hm-1)2L_Y,, (6-101b)
Equations (6-101) indicate that the functions £ _.Y,, and £ _Y,, are also
eigenfunctions of &, with eigenvalues A(m + 1) and A(m — 1), respectively.
It follows from Egs. (4-72) and (4-74) that
L N =A N sy (6-102a)
L NXp=AY ey (6-102b)

where 4, and A_ are proportionality constants. These constants can
be determined from the conditions that all functions Y, must be normal-

im
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ized and that the relationship
-1£mZl

is valid for m:
A, =h{ll+ 1) —mm+ )]'2=h[(1-m(+m+ 1]/ (6-103a)
A_=hll+ 1) —mm— D)2 =h[(I+m)( —m+ 1)]? (6-103b)

It can easily be verified using commutation relations (4-65) that the
operator of the square of the angular momentum can be alternately
expressed as follows:

L =L L. +L+he, (6-104a)

P =P L+ L b2, (6-104b)

In comparison with the previous expression [cf. Eq. (4-66)], this relation-
ship has the advantage that the effect of all the operators on the
right-hand side of the equations on the one-particle functions is known.
This advantage is not yet apparent in the simplest case when

LN, =L &L, +L+nL)Y,, =

=hI0 + 1) — m(m + 1) + m*> + m] Y, = k(l + 1)Y,,, (6-105)

Im>

where the self-evident result is obtained [cf. Eq. (4-71)]. If £? refers to
the total angular momentum of n particles, then

L =L L L= L)+ (L L+ (L L) =
i=1 i=1 i=1

=YL 42y L L+ YL L+ L L) (6-106)
i=1 i<j i<j
where subscripts i and j denote the angular momentum operators of the
individual particles. The operator in this form is directly applicable to
determinant functions and is currently used in atomic quantum theory.
Analogous relationships apply for the spin momentum operators;
the possible values of the spin quantum numbers must, of course, be borne
in mind [see Eq. (4-84)]. Thus Egs. (6-102) and (6-103) for the one-electron
spin operators acquire the form

FL.o0=0 (6-107a)
LB = ha (6-107b)
L _a=hp (6-107c)
S _B=0, (6-107d)

where ¥, =& +i¥ and¥_ =&, —i¥,.
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For illustration the form of &2 for a two-electron system will be given:
SP=Ft+ P +2F, L+ L L+ L L, (6-108)

where the numbers denote the dependence of the operators on the particle
coordinates. To determine the eigenfunctions of &2 as linear combination
of Slater determinants, the Slater determinant is introduced:

L [0n) e0n0) _
| oy, 0n, | = AL %()'12(2)[ (6-109)

Two cases will be distinguished:
a) n=oan=0 o n=Fn=4

In view of the validity of Eq. (6-107), only three terms yield non-zero
contributions when operator (6-108) acts, for example, on the determinant

|00, yal:

3 3
£ 0,0, (pzocl—-hz[ +7+ :llwloc Pl =
=h*. 1(1 + )|, 0], (6-110)

in other words the determinant is an eigenfunction of ¥? with § =1
[cf. Eq. (4-85)] and therefore corresponds to a triplet state*. The following
expanded form of the determinant is also worth noting:

| @10 @y | = 715 [0:(1) 022) — ¢,(2) @, (D] x(1) x(2)  (6-111)

The conclusion would be analogous if both spin functions were f functions.
These two determinant functions differ by an eigenvalue with respect
to &,, which, according to Eq. (6-96), has the value # for the first case
and —# for the second case.

b) no=0o 1= or n=3n=ua

When applying operator (6-108) to the two determinants, it follows
that neither of them is an eigenfunction of %2. However, on formation
of linear combinations, it follows that

F*? {712- (@i 08| £ ] 0,8, 0,0 D} =

(3 3 2
“a\ata gt )lewedls
+ (1 + [—%— + % - %jl) | @B, 0, |}, (6-112)

* The quantity (25 + 1) is termed the multiplicity of the state; e.g., S = 1 corresponds
to a triplet and S = 0 to a single state.
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where the combination with the positive sign corresponds to the triplet
state (S = 1) and the combination with the negative sign corresponds
to the singlet state (S = 0). The two functions have the common property
that they are eigenfunctions of &%, with eigenvalues equal to zero. The
expanded form of functions (6-112),

1
7 (0,0 0,8| £ | 0,8, 0,a]) =
=1[a(1) B2) + 2) )] [@,(1) 0,(2) F 0,(2) @,(1)],  (6-113)

enables comparison with Eq. (6-111), leading to the conclusion that the
triplet state consists of the product of a symmetrical spin function
and an antisymmetrical spatial function; for the singlet state the sym-
metries are the reverse.

The given example of a two-electron system demonstrates the
method used in studying the symmetry properties of a product function
of the Slater type of determinant. The spatial (molecular) orbitals
@15 Py, .- @;, ... in the Slater determinant are assumed to correspond
to the irreducible representations I',, I',, ..., I';, .... The symmetry
properties of the determinant then correspond to the product represen-
tation which is generally reducible and which can be decomposed
according to Eq. (6-40):

r®r,®.@r®.=r=yr, (6-114)
J

The spin function product, which also generates a generally reduc-
ible representation,

Ly ®@ L@ ... @ Lyyp = ‘L;r(sw (6-115)

decomposable into components which correspond to the pure spin states
of a many-electron system, can be interpreted similarly. This is, of course,
only another way of expressing the vector addition of spin momenta
[see Egs. (4-85) and (4-79)].

The resulting states corresponding to the products of the spatial
and spin functions can then be satisfied using the dual notation I';, I,
where the first symbol indicates the behaviour of the function under
transformation of the space coordinates and the second indicates the
properties of the function towards operations affecting the spin coordin-
ates. It is, of course, necessary that the total function satisfy the Pauli
principle, ie. that it be antisymmetrical towards permutation of the
electron coordinates.
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In order to be able to express the left-hand sides of Egs. (6-114)
and (6-115), the occupation of the one-electron energy levels, ie. the
electron configurations, must be known. The solution will be demon-
strated on a particular case, using the benzene molecule in the so-called
n-electron approximation, in which only the most freely bonded electrons
of the double bonds (see below) are considered. The electronic states are
assumed to be given in the form of a linear combination of p orbitals,
oriented perpendicularly to the benzene ring plane, i.e. in the orientation
given in Fig. 6-5 by the six p, orbitals located on the nuclei of the
carbon atoms. The benzene molecule is considered to be a suitable
example since, because of its high symmetry, degenerate one-electron
states must be considered, which somewhat complicates the analysis of
the symmetry properties of the states.

Six p, atomic orbitals (denoted p, where the subscript i indicates
the relationship to the atom) form the basis of the reducible represen-
tation I' of the group D, . Decomposition of this representation using the
character table (Table 6-5) leads to following result:

['=A, +B, +E,+E, (6-116)

It must be borne in mind, however, that p_ orbitals are antisymmetric
with respect to the xy(o,) plane. Similarly as in the previous example
of an electron in the field of four protons, it is possible to use symmetry
considerations to determine the complete form of the molecular orbitals
(in non-normalized form):

®1(A;,) =Py + P, +P3 + Py +Ps + P
®y(Eyy) =Py + P2 — Py — Ps

@3(Eyp) =Py — P, — 23 — Ps + Ps + 2P
@4(Ez) = P+ P, — 2P + Py + Ps — 2ps
@s(Ey) =P, — P, + Py — Ps

®6(Bag) =Py — P2+ Py — Pyt Ps — Ps

(6-117)

Any calculation within the framework of the one-electron approximation
(for example, using the Hiickel method) would afford the sequence of
energy levels (from the lowest energy value) 4,,, E,,, E,,, B, (cf. Fig. 6-6).
By distributing the six electrons which form the “m-electron” system into
one-particle levels, the electron configurations are obtained. States of
different spatial symmetry and spin multiplicity can arise from a given
electron configuration.

In Fig. 6-6 is given, as the first case, the ground state configuration
[cf. Eq. (5-45)] corresponding to the configuration (4,,)* (E,)*; the
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Fig. 6-5. Symmetry operations of the
benzene molecule.

occupation is denoted by the upper indices. In this configuration all the
bonding levels are fully occupied by electrons and the only way of
realizing occupation of the molecular orbitals is complete spin pairing.
For this reason only a single state corresponds to this configuration,
denoted ‘A“, where the multiplicity symbol (upper index) and the total
spatial symmetry symbol are combined. Without going into greater
detail, analysis of the doubly excited configuration (4,,)* (E,,)* (E,,)?,
also given in Fig. 6-6, will be carried out; of all the possible doubly
excited configurations, this one gives rise to the largest number of states
and affords a general description!’ of their determination.

I ! I | I
|
o
>.829 ' |
4 I
g [fa——|0— o—|o0— —
|
£,0-0- 00 | 0— O0— |00 O—
. |
Ay OO 0O i 0O
|
|

Fig. 6-6. Schematic representation of some electron configurations of the n-electron system
of the benzene molecule.

First it is expedient to divide the total electron system into individual
subgroups which occupy degenerate or non-degenerate energy levels.
These subgroups of electrons correspond to certain electronic states
which can be used for determination of the total electronic states by
forming the direct product of the “partial” electronic states.
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The electron pair occupying the A4, level is the first subgroup in the
studied doubly excited configuration. Because it is a non-degenerate level
according to the Pauli principle, these two electrons have opposite spins
and their total spin is zero, ie. the multiplicity is equal to one. The
spatial symmetry of the “partial” state can be expressed as the direct
product, for which (cf. Table 6-5)

A2u®A2u= Alg (6'118)

Thus a single state belongs to the first electronic subgroup, which is
expressed symbolically as

SG[(4,,)"] = ' 4 (6-119)

g
It is easily verified that each level with closed shell character has the
same symmetry properties. The second subgroup consists of electrons
which partially occupy the degenerate E,  level. The Pauli principle
permits two possible states for the total spin, S =0 and S = I, for the
pair of electrons in this level, according to whether the electrons have
the same or the opposite spin. The situation is similar to the already-
described two-electron system starting with Eq. (6-109), where it was
found that the triplet state is connected with the antisymmetric space
function, whereas the singlet state corresponds to a symmetric space
function. It appears that the product representation with basis (6-50)
formed from two sets of functions, ¢, i=1,...,m,and ¥, i=1,...,m
(m = 2), which both span the same irreducible representation A, Te G
(so that ¢, = y,), can be expressed as the direct sum of two representa-
tions (not necessarily irreducible), of which one can be combined with
the singlet function and the second with the triplet functions. The sym-
metrical product (py/; + @ ;) spans the first representation, which has

the dimension %(m + 1), the antisymmetrical product (¢,¥; — ¢, spans

. . .1
the second representation of dimension 7(m - 1)

It can now be shown that the characters
]9 and [xi]W%,  TeG,

connected with the representations defined on the basis of symmetrical
(S-) and antisymmetrical (AS-) products, can be expressed in a simple
manner. The action of the operator  of the given symmetry group G,
for example, on the general function corresponding to the basis of the
S-products can be written according to Eq. (6-49):
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T(oy; + o) = ) APAD oY, + oY) =

k=11=1

=5 § AP AP0, + ob) -

Z Z APAT + ADAD) (0, + o) (6-120)
k 11=
It appears from Eqgs. (6-50) and (6-51) that in the diagonal element of the
product representation i = k, j = [ and that the character of the represen-
tation defined by Eq. (6-120) can thus be expressed as follows:

G0 =5 & Supap+ apam 1
=1

According to Eq. (6-54), the first term in the sum in Eq. (6-121) expresses
the square of the character of the representation A™), Te G; the second
term represents the trace of the matrix product of two matrices A™
and therefore corresponds to the character of the matrix A", where ¥~
is the operation corresponding to repeated action of operator

V=9 (6-122)
Therefore, Eq. (6-121) can be written in the final form
(i1 = 2[067)? + x4 "] (6-123)

For the representation corresponding to the AS products, it can similarly
be derived that

DAL = 2007 — %™ (6-124)

Equations (6-123) and (6-124) enable the symmetric and, asymmetric
parts of the direct product E, (RE, to be found. The squares of the
characters (¢§,)* of the 1rredu01ble representatlon E,, of the group D,
can easily be calculated. They are also given in the lower part of
Table 6-5. In determination of the x‘”’ values, the characters of group Dy,

are again used, where it is always necessary to determine operation ¥~

according to Eq. (6-122) and to find its respective character. Thus, for
example, repetition of operation €, leads to operation 4., repetition
of €, leads to &, etc. Table 6-5 also gives the resulting values of
characters 5.1, together with values

[z, )" and  [x3, ]9

determined according to Egs. (6-123) and (6-124). If the values of the
characters in the last line of this table are compared with the values of the
characters of representation A,,, they are found to be equal. Since the
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antisymmetric space product function is combined with the triplet spin
state, the conditions for the existence of state A4, are fulfilled. The
character of the symmetric product representation obviously corresponds
to a reducible representation which can be decomposed, using Eq. (6-56),
into a direct sum of irreducible representations (4,, + E, ). If we bear
in mind that these spatial functions are to be combined with the singlet
spin functions, the possible states of the second subgroup of electrons
can be written in the form

SG[(E,p)?] = ", + 'E,, + *A,, (6-125)

It could be found, using a similar procedure, that for the third subgroup
of electrons the following decomposition is valid

SG[(E,,)*] = Ay, + 'Ey, + 34, (6-126)

All the states corresponding to the configuration (4,,)* (E,,)* (E,,)’
of the six-electron system can be determined by expressing the direct
product

SG[(4,,)*] ® SG[(E,,)’] ® SG[(E,,)*] =
= ("4, + "Eyy +2A,) @ ("4, + 'Ey + A,,), (6-127)

where it has already been taken into account that the direct product is not
affected by multiplication by the totally symmetric representation '4,,.
Multiplication and further decomposition yields

1Alg + 1E2g + 3A23 + 1EZ!; + 1E2g ® 1E2g + 1E2g ® 3A2g +
+ 3A}!g + 3AZg ® lEZg + 3A2g ® 3A2g = (6'128)
3
=5A, +A, + 34, +2°4,, + "4, + 2°E, + 3'E,,,

where the rules for vector addition of spin momenta [cf. Egs. (4-85) and
(4-79)] according to which it is possible to decompose two “partial”
triplet states into “total” quintet, triplet and singlet states, were also
employed.

Analysis of the given configuration, considering all possible states,
is so much mor¢ complicated than the other cases that search for all
possible states of the remaining configurations is, by contrast, an easy
matter. Thus, for example, the states which can be derived {rom the
direct product

’E,y® *E,, = °B,, + *B,, + ’E,, + 'B,, + By, + 'E|, (6-129)

correspond to the singly excited configuration (4, (E,K)3 (E,,)", also
schematically represented in Fig. 6-6. The attentive reader has certainly
noticed a certain difference in direct multiplication amongst cases where
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the symmetry “inside” the degenerate level is being studied and cases
where the direct product of “partial” states of electron subgroups is
expressed [cf, for example, Eqgs. (6-126) and (6-129)]. This difference
follows from the validity of the Pauli principle and is manifested in the
fact that, in the first case, all possible spatial symmetries with all possible
spin states cannot be realized, as they are in the second case.

The considerations given so far include almost all cases which we
might encounter when studying the symmetry properties of configurations,
except for the electron configuration (T)?, where T denotes one of the
triply degenerate irreducible representations occuring in some groups of
high symmetry. It is sufficient to state here that they can be solved
similarly as in the determination of the states of atoms, which makes use
of the shift operators which were already introduced in Egs. (6-98)
and (6-107).

6.8 Perturbation treatment
for symmetrical systems

In this section a few remarks will be given, supplementing the discussion
of the perturbation method in Section 4.6, from the viewpoint of sym-
metry relations between solution of the original and the perturbed system.
The basic equation of the perturbation treatment [Eq. (4-145)],
where the Hamiltonian of the investigated system # can be separated
into the Hamiltonian of the unperturbed system #° and the perturbation

term ¥~, can be written
' H=H + IV, (6-130)

where A is only a parameter. Roughly speaking, #° corresponds to the
approximate solution of the problem, ignoring a number of finer effects
which are included in contribution ¥°. It can thus be expected that
operator #° has a higher degree of symmetry than Hamiltonian # and
that the group of symmetry transformations G of # will, therefore, be
a subgroup of the group of symmetry transformations G, of the un-
perturbed Hamiltonian, 3#°.

Let us consider an eigensolution of the unperturbed Hamiltonian
3° corresponding to a g-fold degenerate energy level E;. According to
Theorem 6-1 in Section 6.4, the corresponding eigenfunctions ¥, ¥3, ..., ¥}
(cf. last part of Section 4.6) span the irreducible representation I'° of
group G, . The decrease in symmetry under the influence of perturbation ¥~
can result in I'° becoming reducible with respect to the new group G:

rFP=r, +r,+..+T, (6-131)



148

If it is decomposed into m irreducible representations of group G, then
this phenomenon can be interpreted in physical terms by stating that the
original energy level, E7, is split by the perturbation into m new levels
which can be classified according to the irreducible representations of
group G. The same result would, of course, be obtained by analysis of
the matrix elements of the secular determinant (4-160) from the viewpoint
of selection rules [Eq. (6-65)] if the matrix elements of operator ¥~ were
expressed in terms of the symmetry functions corresponding to group G.

A practical application of these general considerations can be dem-
onstrated on one of the quantum chemical methods for calculation
of the properties of inorganic complexes, the crystal field theory which
is based on the model given below. The Hamiltonian of a free atom,
considering only electrostatic interactions, is invariant under the simul-
taneous rotation of the coordinates of all the electrons. This type of
symmetry of the Hamiltonian leads to degeneracy of the atomic terms,
so that, for example, the energy level of a single electron in the d state
is five-fold degenerate—since there are five different d functions. If the
atom is exposed to the effect of ligands (i.e. of chemically bonded adjacent
atoms) and if the resulting configuration of nuclei corresponds to sym-
metry group G, the original spherical symmetry of the atom is disturbed
and the original degeneracy will be resolved or “lifted”. Quantum numbers
L and M, cease to be valid and are replaced by quantum numbers I’
and mp, where I' denotes the irreducible representation of G and m,
denotes a component of the multidimensional irreducible representation I'.
It was found, for example, in Section 6.6 in the discussion of the con-
struction of hybrid orbitals that, if the atom is placed in a ligand field
of octahedral symmetry (see Fig. 6-4), splitting of the atomic degenerate d
states into two new states, corresponding to irreducible representations E
and T of group O, occurs. Thus the originally five-fold degenerate level is
split into two new energy levels, one three-fold degenerate and the other
doubly degenerate.
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7. ATOMIC ORBITALS (AO)
AND MOLECULAR ORBITALS (MO)

7.1 The significance
of hydrogen-type orbitals;
atomic orbitals

The solution of the Schriodinger equation for the hydrogen atom can
rarely be used directly in more complex chemical problems. This solution
nevertheless forms a basis for the study of more complicated atoms and
even for molecules. The possible modes of graphical representation of the
radial and angular parts of hydrogen-type functions — the atomic orbitals —
have already been described. Thus only a few remarks will be given here
in this connection:

(i) The application of computers permits information on the graphical
representation of complete AO’s to be obtained.

(i) Frequently, the graphical representation of the angular part is
particularly useful. It should be noted that the contours in Fig. 3-10b
indicate the regions in space in which the electron can be found (with
the given probability). This figure is not to be understood as describing
a “smearing out” of the electron charge in space.

(iii) The sign of the wave function (+ or —) in the individual AO
parts must be specified. This is important when analyzing the symmetry
of the studied formations and in the calculation of some integrals. The
sign of the wave function is, however, of no physical importance (in the
sense of comparison with a physical quantity).

In qualitative considerations it is often expedient to form molecular
orbitals — one-electron functions distributed over the entire molecule —on
the basis of the principle of effective overlap of the atomic orbitals.
In this connection not only the atomic orbitals themselves (hydrogen-type
wave functions) but also linear combinations thereof, called hybrid orbitals
[linear combinations of orbitals corresponding to a single atom (cf.
Section 6.6)] are employed.
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7.2 Hybridization

The concept of AO hybridization is of particular importance in explaining
the spatial arrangement of inorganic and organic molecules. The concepts
of hybridization and hybrid orbitals have already been introduced in
Section 6.6, where hybrid orbitals were constructed on the basis of
symmetry considerations using group theory. In this section the physical
aspect of the problem will be discussed; hybridization in the carbon
atom will be mentioned in greater detail, as this atom is the basic
building unit of an important and extensive group of organic compounds
and because it is an especially instructive case.

B =120°
a) b) c) d)

Fig. 7-1. Various types of carbon compounds: (¢) methane, (b) ethylene, (c) acetylene,
(d) carbene.

First a survey of bonding types in organic compounds will be given
(Fig. 7-1). The carbon atom in the ground state (*°P) corresponds to
a o-double-bonded atom, these bonds being perpendicular. These condi-
tions apparently do not exist in any of the mentioned molecules. An
explanation for this specific situation can be achieved by assuming the
carbon atom to be in an excited state (°S; Fig. 7-2) and by forming four
new orbitals as linear combinations of the four original singly occupied
orbitals (2s, 2p,, 2p,, 2p,). These new orbitals, called hybrid orbitals,
are equivalent and possess quite different directional properties than the

(sP (2s¥ (2p? (1s¥ (25) (2p)3 (15)* (sp)*

I ORI e

1s —H— 1s—H— 1s -H—
a) b) c)

Fig. 7-2. States of the carbon atom: () the >P ground state (c divalent), (b) the °S excited
state (o tetravalent non-hybridized), (c) the sp® hybridized state (o tetravalent).
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initial orbitals. Their spatial arrangement can be depicted by placing the
nucleus of the atom in the centre of a rcgular tetrahedron so that the
individual hybrid orbitals are directed toward its corners. These orbitals -
are called sp® or tetragonal orbitals. The four hybrid orbitals are some-
times denoted te,,.te,, te,, te,. They have the following form (Fig. 7-3):

te, =3(6+p,+p,+p,)
te, =3(s+p, — p, — D,
2 21( P.—P,— D a-1)
te3=—2_(s—px+py—pz)
te, =36 —p, —p, + p.

nodal plane

Fig. 7-3. “Contours” of electron
densities for the sp® hybrid orbital:
nodal surface (----), symmetry axis
(=+-- ). The thick arrow indicates
the part which is usually depicted
(considerably deformed) in graphical
representations (see Fig. 7-4).

c)

Fig. 7-4. Hybrid orbitals of the carbon atom (not cross-hatched): (a) sp>, (b) sp? (c) sp.
Non-hybridized orbitals are cross-hatched (below the indicated plane by dashed lines).

The four hybrid sp® orbitals are depicted in Fig. 7-4; for lucidity
only the larger parts of the orbitals* in which the presence of the electron
is more probable are given. These hybrid orbitals are used for the
theoretical description of saturated organic compounds. For the descrip-
tion of conjugated compounds, trigonal sp? hybridization and linear
(digonal) sp hybridization (Fig. 7-4b, c) are of particular importance. As

* On the axis of this larger part but in the opposite direction lies a smaller part of
the orbital (separated by a nodal plane), which is, however, not shown for the sake of
simplicity (cf. Fig. 7-3).
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will be shown later, hybrid orbitals (sp?, sp) are used for the description
of C—C and C—H o-bonds and the remaining nca-hybridized orbitals
(p;; p, and p)) are used for the description of n bonds, which are
responsible for the characteristic behaviour of conjugated compounds
(conjugated double or triple bonds) (Table 7-1).

Table 7-1
Survey of Hybridization of the Carbon Atom Orbitals®
s P, D, P, Hybrid orbitals Non-hybrid oM
(number) orbitals
1 1 1 1 sp® (4) none 109°
1 1 1 1 sp2 (3) P, 120°
1 1 1 1 sp(2) P, P, 180°
1 1 1 1 - all -
* Framed values are AO’s used for construction of the hybrid orbitals.
® The angle formed by the hybrid orbitals.
Table 7-2
Survey of Hybridization in the Central Atom in Complexes
Geometrical arrangement Coordination number Hybrid orbital

(number of hybrid orbitals)

linear 2 sp
dp
nonlinear 2 ds
trigonal plane (120° angles) 3 sp?
dp?
trigonal pyramid 3 p?
d’p
tetrahedron 4 sp®
d3s
square 4 dsp?
dzpz
trigonal bipyramid 5 dsp?®
d3sp
pentagonal plane 5 d3p?
octahedron 6 d?sp?

dodekahedron 8 d*sp®
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X Fig. 7-5. Model of an octahedral
complex: central atom @, ligands Q.
The d2sp® hybrid orbitals are

! represented by arrows.

In connection with transition metal compounds, the coordination
number and the geometric properties of the central atom are of interest
(Table 7-2), cf. Sections 6.6 and 10.6. Most important is octahedral d*sp*
hybridization, in which the individual hybrid orbitals are directed (towards
the ligands) in the direction of the axes of rectangular space coordinates
(Fig. 7-5), cf. Sections 6.6 and 10.6. For example Eq. (6-94) is valid for the
hybrid orbital oriented in the direction of the positive part of the z-axis.

7.3 Molecular orbitals

In Sections 5.5 and 5.6 the concept of the one-electron wave function
(a function depending upon the coordinates of a single electron), describing
the electronic state in molecules within the framework of the one-electron
approximation, was introduced. These functions are called molecular
orbitals and were denoted by symbol ¢. An effective procedure for
construction of these MO’s from atomic orbitals in the form of a linear
combination (LC) of atomic orbitals y (hence the abbreviated name of the
method MO-LCAO) was also shown:

0=y (7-2)
pu=1

In this equation ¢, denotes parameters to be determined and the y,’s are
the individual AO’s that are considered when forming the MO. The
assumed shape of the molecular orbitals has been discussed in detail in
Section 5.6.

The atoms combine to form molecules, provided this process is
connected with a decrease in the total energy. It appeared that the
process of covalent bond formation can be described by two apparently
very different methods—the MO method and the valence bond (VB)
method. It can be shown, however, that these methods are equivalent in
many ways (cf. Section 10.5). For this reason and also because the
application of the VB method is much more complicated with more
complex molecules, only the MO method will be discussed here.
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Covalent bonds have been shown to be formed when an effective
overlap of the atomic orbitals occurs (the conditions for the formation
of ionic bonds will be discussed later). Therefore this property can be
used for a qualitative estimation of the bonding conditions in molecules
without performing calculations based on the variation or perturbation
treatments.

A quantitative measure of the overlap of the atomic orbitals can
be obtained using the overlap integral. Since we are chiefly interested in
the overlap of atomic orbitals, the overlap integral S,, can be defined as

S, = | xix, dt, (7-3)

where y, and y, are atomic orbitals localized on the same atom or on
two different atoms. The overlap integral can be defined, of course, as
well as for y, and y, also for other types of functions. When the
functions in the integrand are identical, Eq. (7-3) becomes the normali-
zation condition

flx,Pde=1 (7-4)

The value of integral (7-3) lies within the limits, —1, 1. It is important
for the formation of the chemical bond that S, be positive and if the
bond is to be sufficiently strong, S,, must be relatively large, as it is
assumed, according to the principle of maximum overlap, that the strength
of the bond is directly proportional to the value of the overlap integral.

In contrast to the calculation of the other integrals which were
discussed earlier (matrix elements), calculation of the overlap integrals
should, in principle, present no difficulties (cf. Section 9.3). The calculation
need not be carried out, however, for atoms of the first series of the
periodic table of elements, since tabulated values® of overlap integrals
for Slater-type orbitals (cf. Section 8.1) are available.

If the overlap between two atomic orbitals is relatively large, the
formation of molecular orbitals

© =cXy T X (7-5)

describing a strong bond can be assumed. By means of linear combina-
tions exactly the same number of independent new functions can be
formed from m original functions. Two molecular orbitals can be formed
from two atomic orbitals. In order to retain a general approach and yet
to be able to work with simple expressions, the expansion coefficients
will be denoted by two subscripts, generally c,;, where the first subscript
(1) denotes the atomic orbital and the second subscript (i) denotes the
molecular orbital. Thus the two molecular orbitals can be written as
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Py = Cyd1 T Cda (7-6)
®y = CiaX1 T CaaXa : (7-7)

Now the conditions for the formation of effective overlap can be
specified. The approach of the orbitals to a small distance (mostly 0.1 to
0.2 nm) is a necessary condition (Fig. 7-6). To obtain a bonding overlap,
the AO’s must be of the same symmetry with respect to rotation or
reflection (Fig. 7-7). If one of the AQ’s is symmetric and the other
antisymmetric, the resulting overlap is zero (Fig. 7-7)**. If the value of
the overlap integral is to be sufficiently large, it is necessary, of course,
that both atomic orbitals have sufficiently large values in the same region
of space (i.e. their product as a function of the space coordinates must
not have a value close to zero). This condition is connected with the
spatial distribution of the two participating atomic orbitals and it can
be expected, considering the radial distribution of atomic orbitals, that

%1 Ko X1 K2 K1 X2
(large distance)
Sp=0 ? >Sp>0 Sip =Sy =1

Fig. 7-6. Dependence of the overlap integral S,, between two 1Is (x,, x,) atomic orbitals
on the interorbital distance.

Fig. 7-7. Examples of effective (S,, > 0) and ineffective (S,, = 0, S,, < 0) overlap of s, pand d

nv
atomic orbitals, from the viewpoint of covalent bond formation. Letters S and 4 denote

orbitals symmetrical and antisymmetrical with respect to rotation or reflection.
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Fig. 7-8. The overlap of two p orbitals
in T and o orientation,

b)
Fig. 7-9. (a) Dependence of the S,, overlap integrals on interatomic distance r for four
bonds: o and 7 overlap. (b) The shape of dependencies of S,, on r for various types of
overlaps between the s and p orbitals (cf. Fig. 7-7).
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the situation will be favourable if the energies of the two atomic states
are similar.

It appears that p-type orbitals (and higher orbitals) can overlap in
two ways, as shown in Fig. 7-8 where the forms of the resulting MO’s
and their symmetries are also indicated. According to the symmetry,
two types of MO can be distinguished: 6-MO’s (symmetric with respect
to reflection in the plane in which the two atomic nuclei lie) and n-MO’s
(antisymmetric). A further important difference is that the orbitals of the
first group can generally be transformed into two-centre orbitals (they

Table 7-3
Survey of Effective and Ineffective Overlap between y, and y, Orbitals
(the x-axis is the molecular axis; from Ref. 2)
X\«
Xu Overlap
effective ineffective
s 8P, 422, d2 P> P> d,,,d,.,d,.
px S, px’dxzfyz’dzz py’ p:’dxv’/dx:’dv:
P, P>y, d,. $, Py P54y, d e, des
dxv pv’dx_v S, Px» p:,dy:,dx:, dxz—-vz’ d:z
d,, d,, S, Pxs Pys Pobdyyndy,da o, ds
dxz_yz S, pxydxl_vad:Z Py P:,dx,., dx:, dv; ’

Fig. 7-10. Types of overlap of s, p and d atomic orbitals leading to o, ® and & type
molecular orbitals.
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6 . /@@@6*

s s
(cntlbondmg)
a) . b) .

(bonding) p
i \ _—_g_—'_(jri‘b ing)
@ ®omond|nq
sp? 6 .
S d)
S
sp?

e)

Fig. 7-11. Formation of molecular orbitals by atomic orbital overlap. Overlap of two s atomic

orbitals (a). Overlap of s and p atomic orbitals (b). Overlap of the p, atomic orbitals of

ethylene (c). Formation of the o skeleton of ethylene by overlap of the s and sp? atomic

orbitals; the bonding n-molecular orbital of ethylene (d). Formation of the o skeleton of

benzene by overlap of the s and sp? atomic orbitals, In the last figure the lowest energy
n-molecular orbital of benzene is indicated.
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are located mainly in the region between the two atomic nuclei) whereas
it is typical for ©-MO’s that they are polycentric and often smeared out
over a large number of atoms. They are therefore called delocalized
MO’s (in contrast to localized MO’s). In Fig. 7-9 the dependence of the
overlap integrals (for overlap of the o-and n-type orbitals) on the distance
between the atoms is depicted. Finally the effective (S > 0) and the
ineffective (S = 0) AO combinations (ineffectiveness caused by symmetry)
are summarized in Table 7-3. If the overlap integral equals zero, then
the respective functions are said to be orthogonal. Finally, examples of
overlap leading to o, n, and & molecular orbitals are given in Fig. 7-10
(cf. Section 9.4).

Fig. 7-11 indicates the form of the molecular orbitals (bonding and
antibonding, cf. Sections 9.1 and 9.4) for several combinations of atomic
orbitals. For several simple hydrocarbons, the formation of bonding
MO’s (the antibonding MQ’s are not given) of the o and w types, by
overlap of various AO’s, is depicted schematically.
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8. MANY-ELECTRON ATOMS

8.1 The one-electron approximation

and the periodic system of the elements’ ~°

A system consisting of a nucleus of charge +Ze and n electrons
(1,2, ..., 0, j, ..., n) will be chosen as a model. Two types of interactions
occur: mutual repulsion of the electrons and attraction between the
nucleus and the electrons. The expression for the potential energy of
the i-th electron assumes the form

Ze2 n €2

s Uy

(8-1)

where r, is the position vector of the i-th electron. It is assumed that the
immobile atomic nucleus is located at the origin of the coordinate
system. The two-electron part of the operator can be simplified (cf.
Section 5.5) if the i-th electron is assumed to be exposed to the effect of an
averaged potential of all the remaining electrons: V; then depends only
onr;: :
ZeZ n e2

.___—_+ N
4ney || Ty 4neg |r, — rj|

V(r) ~ (8-2)
A further assumption of averaging in all directions in space can be
introduced and a spherically symmetric potential V(r,) (r; is no longer
a vector) is then obtained. These two assumptions permit functions for
higher atoms to be obtained in the same form as for the hydrogen atom.
The Schrodinger equation then has the form

{Z A+ —2’—?21— [E - Z‘V’,.(r,.)]} =0 (8-3)

Hartree and Fock? introduced the reduction of the many-electron Schro-
dinger equation to this form and suggested a technique for its solution —the
self-consistent field method (SCF method), the general theory of which
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was explained in Section 5.5. It should be noted that the one-electron
functions sought are atomic functions, the atomic orbitals.

A great advantage of this procedure using the one-electron approxi-
mation lies in the fact that the solution (orbital) can be expressed in the

form ¥ = R() YO, 9) (8-4)
The atomic SCF orbitals are often algebraically expressed in the form

Y =(Yc " e Y, (0, D) (8-5)
n¢

The symbols n, | and m denote the quantum numbers and, similarly as
in hydrogen AO’s, the principal quantum number n is connected with
the number of nodal planes, for r =0 to oo, the total number being
(n — I — 1); here, however, the electron energy is not a simple function
of the principal quantum number. Manipulation of these functions is
considerably simplified if the summation in Eq. (8-5) is confined to a single

term
Y= c"{r"_1 e ¥Y,0,9), (8-6)

where c,, is the normalization constant, n is the principal quantum
number and 7 _S

¢= @&-7)

n

In this equation Z denotes the atomic number and S is the screening
constant.

The electrons are divided into three groups according to their
principal quantum number (considering only n = 1, 2, 3):

Is
2s, 2p
3s, 3p, 3d

Inside the individual groups, the radial part of the function is the same
for all orbitals. Quantity S is calculated for an electron with a certain
quantum number n as follows:

1. Electrons in the higher shells are ignored.

2. A contribution of 0.35 is taken for each electron in the same
shell; for the 1s electron this value is taken to be 0.30.

3. Contributions from electrons in the lower shells are included
in such a way that for the s and p electrons a value of 0.85 is
attributed to the nearest lower shell and 1.00 for each electron in the
farther shell. For d electrons the value 1.00 is taken for each internal
electron.
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According to these rules, for example, this quantity for the 1s
orbital of the hydrogen atom has the value

1-0
e = = 1

and for occupied orbitals of the carbon atom

6 —0.30
Céls = —_‘_‘1 = 5.70
6 —-—2x085—-3x035
cbae=cbop = 5 = 1.625

These rules are termed the Slater rules and are widely applied in quantum
chemistry (but must not be confused with the rules introduced by the
same author for calculation of the matrix elements of the Hamiltonian).
The functions constructed according to these rules are called Slater
orbitals.

The periodicity of the ordering of the elements (Mendeleev's
periodic system) can easily be understood by considering the arrangement
of the energy levels in the atom and by recalling that, according to
the Pauli principle, no two electrons in the same atom may have
all four quantum numbers (n, I, m, s) identical.

For an atom with one electron, the orbital energies are given
merely by the principal quantum number so that, for example, the same
energy level corresponds to the 2s and 2p atomic orbitals. The transition
from the potential of a point charge to the general spherically symmetric
potential in the Hamiltonian is manifested by removal of the degeneracy
in states which have the same principal quantum number (Fig. 3-15).

In the ground state of atoms, the electrons occupy the atomic
orbitals of the lowest energy (the Aufbau principle) according to the
Pauli principle. The np orbitals correspond to higher energy than do
the ns orbitals, but this is still substantially lower than that corresponding
to the (n + 1)s orbitals. The electrons in the nd orbitals have roughly
the same energy as electrons in the (n + 1)s orbitals.

After occupation of the 3s and 3p atomic orbitals, the 4s level
is occupied rather than the 3d level; after filling the 4s orbital (K, Ca;
in K the 3d level lies about 2.7eV higher than the 4s level), electrons
fill the 3d level. Elements with incompletely filled 3d levels are called
transition elements. The small energy difference between the 3d and 4s
states is demonstrated by the fact that, for example, chromium does
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Table 8-2
Approximate Differences in Energy between the 2s and 2p One-Electron States in eV [Ref. 1]

Li Be B C N (0] F

E(2p) — E(2s) 1.9 27 36 42 109 15.6 20.8

not have the expected configuration 4s23d*, but 4s3d°. After occupation
of the 3d orbitals (Sc...Zn) the 4p levels (Ga...Kr) are gradually
filled and the process is repeated in the S5s, 4d and 5p levels. It is
characteristic for the second series of transition elements (Y ... Cd)
that the 4d AO’s are incompletely occupied. After occupation of the 6s
orbitals (Cs, Ba), the 4f level is gradually filled; these are the rare earth
elements (La... Yb). A similar situation at the S5f level exists for the
actinoids (Ac ... No). These relationships are summarized in Table 8-1.
Finally, in order to obtain a more quantitative notion, the differences
in the energies of one-electron 2p and 2s states are given in Table 8-2
for the elements of the first series of the periodic system.

8.2 The total angular momentum**

The introduction of the total electron angular momentum in atomic
systems has already been discussed in several chapters (cf. Sections 4.4 and
6.7). Therefore, only the important conclusions from the above text and
several applications of the rule of vector addition of the individual
angular momenta to give the total angular momentum will be given here.

The magnitude of the orbital angular momentum is given by
h J[L(L + 1)]; the resulting orbital quantum number L can be obtained
from the values of the quantum numbers of the individual electrons by
vector addition. Only electrons in incomplete shells contribute (for
example, in the ground state of the sodium atom only one of eleven
electrons need be considered; there is no contribution from the 1s?, 2s?
and 2p® electrons). It should be added that the magnitude of the orbital
angular momentum of the individual electrons is  \/[I(l + 1)].

Quantum number L defines the energy of atomic states, which are
called terms; we denote the individual terms by capital letters according
to the values of L as follows:

L: 0123 4 ..
notation of the state: S P D F G ...
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The analogy with the symbols used for the individual electrons (s, p, d, ...)
is obvious. The component of the angular momentum in the direction
of the z-axis equals #M ; the only possible values of quantum number M,
are L, L-1,...,0, ..., —L.

Figure 8-1 depicts the vector addition® (i.e. the calculation of L)
for p?, p® and d? configurations. The addition for p? (Fig. 8-1a) is clear:
three states arise, D, P and S. It is evident from Fig. 8-1b that p3
considered as p> + p. Many more terms appear here: F, D (twice), P (three
times) and S.

1=1 - 1=1
o }L 2(D) l-i{} 1_1N1_1 a)
“L=1(P) L=0(S)

1=1
Lp3 -3(F) , LpP=2 k1-1

1=1 Lot b)
Lt -2(0) Lp- ,H
Lpd=1p  1TLp*-008)
=t} g atcp)
Lp? =0
1=2 1=2
L =4(6) g 1=2
1=2 1=2 //L-J(F)I_ZD
L=2(D)
c)

l-z[g'z "ZNI-Z

L=1(P) L=0(s)

Fig. 8-1. Determination of quantum number L for (a) two p electrons, (b) three p electrons,
(c¢) two d electrons.

In the graphical representation the procedure is simplified in that
vectors of length [ are employed and the result amounts to L.

The same rules apply for the addition of the electron spins to give
the total spin momentum. For a system with two electrons, for example,

S = 1, if the spins are parallel, and

S = 0, if the spins are antiparallel.
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For a system of three electrons,
S = 3, if the spins are parallel, and
S =3, if one spin is antiparallel to the other two.
Thus, for two p electrons, six terms come into consideration:

3D lD 3P IP 3S IS

These states are allowed only for two non-equivalent electrons (e.g.,
3p and 2p); if the electrons are equivalent (e.g. 2p?) then in consequence
of the Pauli exclusion principle (cf. Sections 4.4 and 6.7) the only allowed
states are

D, °P, 'S

If the spin-orbit coupling term is included in the Hamiltonian
[cf. Eq. (4-88) and Section 5.2] L ceases to be a “good” quantum number
and it is necessary to introduce (cf. Section 4.4) the total angular
momentum, the magnitude of which is

WU + 1)),

where J is the quantum number of the total angular momentum.
J acquires the values

L+SL+S—-1,.,|L-S§]

It must be stressed that it is assumed that the spin-orbit coupling
can be considered to be a small perturbation in comparison with the
electrostatic interaction among the electrons (called the Russell-Saunders
coupling) and that the term wave functions are considered to be eigenfunc-
tions of the zeroth order. This assumption is not fulfilled for some atoms
of higher atomic number where the so called j—j coupling approximation
is more suitable; this takes into account the fact that the spin-orbit
interaction energy exceeds the electrostatic interaction energy. It can be
said on the whole that the actual energy levels of all atoms lie between
these extreme cases.

In Fig. 8-2 an example of the calculation of J for two non-equivalent
p electrons is given. Strictly speaking, the initial vectors of the orbital
angular momentum and of the spin have the magnitude

hJILL + 1)] and A J[S(S + 1)]

In the graphical representation again vectors L and § are used
and thus quantum number J is obtained directly. The number of
possible J values has a simple relation to S, being equal to (2S + 1),
the multiplicity of the state. The value J is given by this expression
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only if L =S (cf Fig. 8-2). If L < S, the number of values of J is
given by the expression (2L + 1).

For qualitative information the energy levels of a many-electron
atom are given in the so-called term diagram. The differences between the
energy of the ground state and the energy of the individual excited
states gives the positions of the absorption and emission lines in the
spectrum of the free atom.

S=1 X S=0
- —A B
|
i
S=1 S=1 |
L-20) =3 18-1 E )
L=2 = I,/J-Z L=2 :J" : L-2 J=
' I
3 3 3 ! 1
D, D, D, o,
|
|
i
[
|
|
|
S=1 :
L=1P) | tu=2 15" sy |
L=1 =117y L= H | L=1TJ-1
3 3 3 | 1
R A R : Py
!
i
| L=0
L=0(S) S=1fJ-1 l S=0
3 | Y8
Sy l So

Fig. 8-2. Determination of quantum number J. S as a term symbol (L = 0) should not
be confused with S denoting the total spin.

In order to calculate the energy of a many-electron atom, a many-
electron wave function must be found that satisfies the conditions
imposed on wave functions. It is expedient to construct this n-electron wave
function from- one-electron functions, ie. from the atomic orbitals.
The construction of such a function can be carried out using Slater
determinants or a linear combination thereof. The construction of these
determinants for molecular systems has been described in Sections 5.4 and
5.5, where the discussion given also applies to atoms.
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9. DIATOMIC MOLECULES

9.1 Introductory comments;
the hydrogen molecular ion, H,

Diatomic molecules can be divided into homonuclear and heteronuclear
molecules; examples are molecular hydrogen and carbon monoxide,
respectively. The simplest known diatomic molecule, the molecular
hydrogen ion, also belongs in the first group. This system consists of two
protons and one electron. The simplicity of this system makes it a suitable
link between the theories of atoms and molecules (Fig. 3-4).

Therefore an attempt will be made to calculate the energy of
the H; ion. A molecular orbital constructed as a linear combination
of atomic orbitals can be used as a wave function for the description
of the electron in the ion, so that!

O =CiX + ) 9-1)

[cf. Eq. (5-63)], where orbital y, corresponds to atom A and orbital y,
corresponds to atom B. The electronic energy is given by the relationship

E = [p*#¢dt = {o|H#|op), 9-2)

where it is assumed that orbital ¢ is a normalized function. The
explicit form of the Hamiltonian defined in Section 3.2.4 is not used
here because in the following qualitative considerations the matrix
elements will be handled as compact wholes. The application of the
variation method for the determination of the optimum values of the
expansion coefficients ¢, and c, (i.e. of coefficients which afford minimum
energy) leads to a system of linear equations for the coefficients [cf. Eqgs.
(5-64) and (4-141)]:

¢,(Hy, — E)+ c)(H,, — ES;;) =0 (9-3a)
¢;(Hy, — ES,;) + ¢y(Hy, —E) =0 (9-3b)
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In the equations
H, = | #10>,
Suv = <X‘1 l XV ls

the hermicity of the Hamiltonian and the normality of the atomic
orbitals is employed. It has already been mentioned [cf. Egs. (5-65) and
(4-142)] that non-trivial values of ¢, and c, (the trivial values ¢, = ¢, =0
are not important here) can be obtained only for quite definite energy values.
These values can be obtained by solving a quadratic equation in E,
which is obtained from the condition that the determinant of system (9-3)
must vanish:

Hy, - E, H,, - ES,,

=0 (9-4)
H12 - ES]2’ H22 —E

By rearrangement of the determinant an explicit expression for the
quadratic equation can be obtained:

E*(1 — S%,)— E(H,, + H,, —2H, S,,)+ H,,H,, — H}, =0 (9-5)
Solution then gives

_ Hu + sz - 2H12S12

E=—"i-gy ¢
+ \/[(Hu + H,, - 2H12S12)2 — 41 - sz)(Hnsz — H%z)] (9-6)
- 2(1 — 8%)

It appears that qualitatively correct results can be obtained even with
such drastic simplification as neglecting the overlap integral:

S$,,=0

(We shall return to this unexpected approximation later.)
Thus it follows that

= H, +Hy,+ \/[(Hu + sz)2 —4H,,H,y, — H%z)]

Evs > -7
A new denotation can be introduced here:
H,=H,,=u« (9-8)
(centres A and B are identical, so that H,, = H,,)
H,=8 ©-9)
P TN L G ) R ©-10)

2
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This result can now be interpreted. Quantity o [Eq. (9-8)] is termed
the Coulomb integral and quantity f [Eq. (9-9)] the resonance integral.
Because of the definition

o, = (g | | 1, (9-11)

the Coulomb integral obviously represents the energy of the electron
in the field of both nuclei, situated in the atomic orbital x, (function y,
is normalized). The interpretation of the resonance integral is not as
simple:

By = | # |1 6-12)

It suffices, however, to state that f also has the dimension of energy and
is connected with the strength of the bond which it describes (the
greater its absolute value, the stronger the respective bond) and that,
similar to a, it is a negative quantity:

a<0;, p<0 (9-13)

S ¢2"y17(7°1‘7°2)
w A
of 4o L MO
i g

_— (p'-v—%()'.‘ﬁ)(:z)

a) b)

Fig. 9-1. Interaction of two atomic orbitals (with the same energy) leading to bonding and
antibonding molecular orbitals: (a) state prior to interaction, (b) state following interaction.

Apparently the value of one calculated energy level in the molecular
ion is lower and the other is higher than the energy of an electron
situated in the atomic orbital [cf. Eq. (9-10) and Fig. 9-1]. As has already
been mentioned, the energy corresponding to the atomic orbital equals a.

The expansion coefficients of the MO’s can be calculated by
substituting the calculated energy values into system of equations (9-3)
(S = 0) to give (first for E = o + f)

—c,f+c,p=0

and (for E = a — B)
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Thus for the unnormalized MO’s it holds that
®y = X1 + X2 (9'14)
0, =X — X2 9-15)

Neglecting the overlap between the atomic orbitals, the normalization
condition for the molecular LCAO orbital has the form

2 2
(piloy=[(Y c)dr= Y ci=1 (9-16)
p=1 pu=1

for i = 1 and 2. Here is necessary that
¢+ =1,
so that the normalization factor is then

1
N=ﬁ

The normalized MO’s will therefore have the following form:

0=+ 70 0-17)
02 =Tyt~ 1) 0-18)

For the original, physically correct assumption that S, # 0, the
following expressions for the MO’s and their energies can be obtained:

1 o+ B

¢, = m(xl +x); E = i, (9-19)

_ ! ) _2=h i
¢ = [2(1 _ Slz)] (Xl Xz), E2 1 — S12 (9 20)

It should be noted that, on the basis of the symmetry considerations
in Section 6.6, coefficients ¢, and ¢, could be determined directly without
calculation.

If the total energy of the system is to be determined, then the
dependence of the electron energy of both states (the bonding state and
the antibonding state), and the dependence of the energy of the proton
repulsion on the internuclear distance are equally important. By the
superposition of the two quantities, the dependence of the total energy
on the internuclear distance is obtained. This dependence for the bonding
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state has a minimum (indicating the equilibrium internuclear distance
and the magnitude of the dissociation energy), whereas the dependence
for the antibonding state is monotonic (Fig. 9-2).

Fig. 9-2. The molecular hydrogen ion:
dependence of the electron energy
( ) and the proton repulsion
energy (————) on the distance
r between the protons,
for the bonding o (a) and antibonding
o* (b) states. (c) Superposition of the
two dependences. r,;, is the
equilibrium distance, E, is the
dissociation energy.

9.2 The H, molecule

The H; molecular ion represents a model system for illustrating the
effects leading to the bonding properties of molecules. However, the
transition to real and chemically interesting systems, to many-electron
systems, makes it necessary to include contributions of mutual electron
repulsion which do not occur in the Hamiltonian of H. New specific
problems arise when the interelectron interaction is included and can best
be demonstrated on a related system—the H, molecule.

The hydrogen molecule? is composed of two protons which will
be denoted by p and v and two electrons. Provided the relativistic
effects are not taken into consideration, the electronic Hamiltonian
of the H, molecule can be written within the limits of the Born-Oppen-
heimer approximation in the form [cf. Eq. (5-18)]

# = 22 i) + 9(1,2), (9-21)
i=1
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where the one-electron operator #(i) (depending only on the coordinates
of a single electron) equals the sum of the kinetic energy operator
of the electron and of the potential energy of Coulomb interaction
between the electron and the nuclei:

/;(i)=_l'i4. ez( ! T L ) 9-22)

2m 7' dme, \ [, — R, r,—R)]

Operator g(1,2) depends on the distance between the two electrons
[cf. Eq. (5-19b)] and corresponds to their Coulomb interaction:

e2

AD = Gl =l -

The problem can first be considered from the aspect of the one-electron
approximation. The behaviour of each electron i can then be described
by a one-electron wave function ¢(i) (cf. Section 5.6), by an orbital
which can best be expressed in the form (9-1). Since the H, molecule
is symmetric with respect to a plane perpendicular to the bond and lying
midway between the nuclei, the values of coefficients ¢, and ¢, in Eq. (9-1)
can be determined directly (cf. Section 6.6). Two molecular orbitals,
¢, and ¢@,, are obtained [cf. Eq. (9-19) and (9-20)], of which one is
symmetric (¢,) and the other antisymmetric- (¢,). The electron wave
function of the H2 molecule in the ground state, which has the character
of a closed shell system, can be written [cf. Eq. (5-43)] in the form
of a Slater determinant,

_ 1 |e,(e(t), ¢,()BM)| _ _
40="72 10, 22), 0,2 Q) |12 0,8

= 75 0100, [x) B2) — o) AV 024

which can be intepreted as occupation of ¢, by two electrons, one in spin
state « and the second in spin state f.

Since the wave function of the ground state is known, an attempt
can be made to calculate the electron energy for a molecule in the ground
state:

E,=<{4,|#|4,> 9-25)
Substituting Egs. (9-21) and (9-24) into Eq. (9-25) gives
1 2 .
Ey =5 <oi(D0,Q)] ¥ 4) + 9(1,D) | 9,(1) 9,2, x
i=1

x a(1) B2) — o2) B(1) [ (1) B2) — od2) B(1)):s. (9-26)
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where use was made of the fact that Hamiltonian # does not depend
on the spin coordinates, allowing separation of the space and spin
variables. The variables are denoted by the index at the Dirac bracket.
Elsewhere the symbols introduced in Chapter 5 are used, which permit
simpler expression of multiple integrals. As spin functions «(i) and p(i)
are orthonormal functions [cf. Eqgs. (4-82) and (4-83)], it follows that

(1) BR2) — «(2) B(1) | 1) B(2) — (2) (1), = 2,
so that Eq. (9-26) can be rewritten in the form

Ey = Co,(D] #1) | 0,(1)> + 0,2 | £2) | 0,(D)> +
+<0,(1) 0,(2)| #(1,2) | 0,(1) 0,2, (6-27)

where limitation of the integrations to the space coordinates of the
electrons alone is not denoted, as this can no longer lead to error.
It is worth noting that the first two integrals are identical; they differ
merely in the denotation of the integration variable: expression (9-27)
represents the result which could be determined directly by employing
the Slater rules [see Table 5-2 and Egs. (5-33) and (5-34)]. If the
expression for the molecular orbital ¢1 [cf. Eq. (9-19)] is also considered,

o
1= I+ s,] e T

then the energy can be expressed in terms of integrals containing only
atomic orbitals. The numerical calculation of the integrals required
assumption of the analytical form of atomic orbitals x, and y,. If they
are chosen in the form of Slater 1s functions (cf. Section 8.1), the relationship

(9-28)

x(1) = 717; e, (9-29)

is obtained, where r, is the radial coordinate of the first electron related
to the nucleus u as the origin. One-electron integrals lead to the
following types of integrals (without including the multiplication factors):

CAOIF PR (9-30a)

<x,,(1) L xl(l)> (9-30b)
1x
<x;(1) - x1(1)> (9-300

Here either x = A or » # A. Similarly, the last integral (called the
two-electron Coulomb integral) on the right-hand side of Eq. (9-27)
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can be expressed in terms of various integrals of the type

D) 1) | 21,2 | 1,1 1,2 (9-31)

In our particular case, when the energy of the diatomic molecule
is to be calculated in terms of atomic orbitals which are spherically
symmetric towards the centre on which they are located [cf. Eq. (9-28)],
the given types of integrals can be expressed in analytical form (cf.
Section 9.3). This is not generally true and in the calculation of some
types of integrals it is necessary to resort to numerical integration.

So far only the expression and calculation of the electronic energy of
the ground state of the H, molecule has been discussed, which, from the
viewpoint of the one-electron approximation, corresponds to occupation
of ¢, by two electrons. To extend these considerations to electronically
excited states, the distribution of the two electrons of the H, molecule
between orbitals ¢, and ¢, must be known. The situation can be
schematically represented as follows:

‘ 11
@2 , J !

1 ‘ ‘

1 1 I I

14, 34, 34, 4, 4, 14,

(9-32)

The direction of the arrow represents the spin state of the electron;
an arrow directed upwards denotes spin o, downwards spin B. Each of
the six electron configurations can be represented by the Slater determinant
indicated below scheme (9-32) [cf. Egs. (5-29) and (9-24)]. If the cor-
responding Slater determinants are pure spin states (i.e. if they are
eigenfunctions of &2), their multiplicity is expressed by the index at
the top left in the symbol of the Slater determinant of the given
configuration. Of the functions given, Slater determinants 4, and 4,
do not correspond to pure spin states, but suitable linear combinations
thereof do [cf. Eq. (6-112)], one leading to the singlet state (*4}) and the
other to the triplet state (*4,).

In the framework of the one-particle approximation, Slater de-
terminants (or suitable linear combinations thereof, for example, 4 and
34,) of the given electron configurations can be considered to be wave
functions describing electronically excited states of the H, molecule.
The respective energy levels can be calculated in a manner analogous
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to that employed for the energy Eo of the ground state [cf. Egs. (9-25).
(9-30) and (9-31)]. The total energy of the molecule, E,, can be
determined when the nuclear interaction energy is added to the total
electron energy, this term corresponding to the Coulomb repulsion of
two point charges of magnitude +e, independent of the electronic
state within the Born-Oppenheimer approximation. The dependence
of the total energies for various states on the distance between the atoms
is given in Fig. 9-3; minima appear on the curves for the ground state
(at the equilibrium distance of the two atoms corresponding to formation
of the chemical bond) and for the singly excited singlet state. It is also worth
noting that the curve describing the ground state does not converge,
on separation of the atoms, to the energy of the two individual atoms,
but to a larger value. This important fact will be discussed in Section 10.5,
where the integrals responsible for the origin of bonding states in molecules
will be given.

Etot (ad)

Fig. 9-3. Dependence of E,,,
of the H, molecule as a function of

b N | | l | the interatomic distance (r,,)
0 01 02 0.3 0.4 05 for various electron configurations
— ryy (nm) ("4, = 1,45, = 2,34 = 3,4, = 4).

It remains to be added that the numerical results can be improved
by the method of configuration interaction (cf. Section 5.4). On the basis of
the arguments in Sections 5.4 and 5.5 the wave function of the ground
state ¥ can be sought in the form

W =c,'dy + ¢, 4, (9-33)

where the variation principle is used for determination of the expansion
coefficients. Other configurations of scheme (9-32) do not interact with
the ground state configuration (*4,) because of inconvenient space and
spin symmetry properties (cf. Section 6.7). The matrix elements of the
corresponding secular problem, leading to determination of the allowed
energy values, can again be expressed by means of integrals of the
type (9-30) and (9-31) [cf. Table 5-2 and Egs. (5-33) and (5-34)].
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9.3 Calculation of the molecular integrals

In all the problems solved so far, the results were expressed in terms
of integrals whose integrand was composed of an operator surrounded
by atomic orbitals. This was also true in the previous section for the
discussion of the H, molecule. The calculation of these integrals is actually
only applied mathematics. Furthermore, a number of these integrals
can be found in tables (almost solely for Slater-type atomic orbitals),
and the computer programmes for their calculation are available within
the international exchange programme. Nonetheless, we consider it
expedient to describe the calculation of at least the simplest integrals
in order to give the reader an idea of the approach taken in the
calculation of the molecular integrals. The integrals used in the calculation
for the H, molecule are particularly useful for this purpose.

Similarly as in the previous section, it will be assumed that the
molecular orbitals are a linear combination of Slater functions (1s), i.e.

(1s) = \/ <—ani>e‘", (9-34)

where, for the time being, the centre to which the atomic orbital (1s)
is related is not designated because one-centre integrals will be discussed
first. In contrast to Eq. (9-29), the value of the exponential factor is not yet
specified in Eq. (9-34). It is first necessary to show that orbital (9-34)
is a normalized function. In spherical polar coordinates it holds,

fo

(1s)|(As)y = Tj.e‘z"r2 sin®@ d¢ de dr, (9-35)

for the following integration.limits:
@ e |0, 2rn)
O e0, n) (9-36)
r €40, o)

After integration over angular variables, the expression

(1) (1s)y = 4o e~ 2*r* dr 9-37)
is obtained. Integration by parts yields the relationship
© !
{ e~ x" dx = a—"ﬁ (9-38)

where ¢ is a positive and n a non-negative integral constant. It then
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follows from Eq. (9-38) that

{(1s)| (15)) = 4 =1 (9-39)

The expression for the one-centre nuclear attraction integral can also
be derived:
<(1s)

The one-centre kinetic energy integral can conveniently be expressed
using the Laplace operator in spherical polar coordinates:

S0, 1( 1 38 o, 1 &
A‘TZE?[’ E]Jr (sm@ a@[S‘“@a@] sin? O aqﬂ) 541

Because the (1s) function does not depend on the angular coordinates
it follows that

N e

and after substituting into expression (9-30a),

(1s)|A|(1s)) = 4o®[a? fe 2 r?dr — 2afe 2 rdr] = —a?,  (9-43)

%l (ls)> =403 [e 2 rdr=a (9-40)

where Eq. (9-38) was employed.

Now the one-centre two-electron integral expressing the Coulomb
interaction between electrons occuring on the same atom can be
calculated:

((1s), (1), | #(1,2) | (15), (1s),) =

e” 2ary e~ 2ary

=] sin@ , sin@ ,rir2dd, dd,dO, dO , dr, dr,, (9-44)
17 "2

= 0]

where the dependence of the coordinates on the position of the first or
second electron is denoted by the indices. As the interaction occurs
between two spherically symmetric charge distributions, integration over
angular variables can easily be carried out. If the integration is carried
out stepwise, for example, first over the coordinates of the first electron,
then the fact that the classical electrostatic potential outside the charge
distribution of a spherical shell is equal to the potential caused by the
same total charge located at the origin and that the potential inside
a spherical shell is equal to its value on the surface can be used.
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It therefore follows that
{(1s); (15), | £(1,2) | (1s), (1s),) =

= 16a° je'“"[] e~ 2y, dr, + L e 2emy? dr{l r2dr, (9-45) '
0

0 r T

Integration by parts of the expressions inside the bracket yields

172 - 2ary,2 - _ e 2 T2 .l_ 1 1 -4
72_({6 rydry = 2 [a +a2+2r2a3 Y (9-46)

2

fezonrar =< [ 4 L (9-47)

" 1= 20 |2 2a

and substitution into Eq. (9-45) yields the relationship

1 % 1 %
6| __ 2 n—4arz _ —4ar;
160 [ e grz e dr, e (j;rz e *2dr, +

+ ! ? e mdr | = (9-48)

e 2 8

where Eq. (9-38) has again been used.

It therefore follows that the calculation of one-centre integrals
can easily be performed if spherical polar coordinates are used. The
calculation of two-centre integrals is more difficult. One approach to
their solution lies in the introduction of ellipsoidal coordinates, where
the centres on which the atomic orbitals are located act as foci for
the ellipsoidal coordinate system.

(XY, 2]———

Fig. 9-4. Graphical representation of

==
relationship of elliptical, rectangular |rA Y /: B
and spherical polar coordinates for = R : e Z
the two-centre problem. (. 2 -

Let A and B be two centres and r,, r; and R be determined
according to Fig. 9-4. The ellipsoidal coordinates &, n and @ of the point
given by the Cartesian coordinates x, y, z are defined as follows:

_Tatrs
¢= R
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—'A”"T"s
n R
@ is the angle between the plane defined by the triangle A, B, [x, y, z]
and the x-axis.

It is obvious from the definition that the values of the ellipsoidal
coordinates lie in the following intervals:

tedl, o) (9-49a)
ne{—11) (9-49b)
@ (0, 2n) (9-49¢)

The relationship of the ellipsoidal coordinate system to the Cartesian
system, with its origin in the centre of the line connecting points A and B,
can be derived on the basis of simple geometrical considerations. It
follows from Fig. 9-4 that

2 2 R 2
ry =0+ —§—+z , (9-50a)

R 2
13 =02 + (7 — z> , (9-50b)

where v is the height of the (rotating) triangle A, B, [x, y, z], and, after
substracting these equations, '

z= 71R_ (ra +1rg)(ry —1p) = %{n (9-51a)

Because the remaining Cartesian coordinates depend simply on v,

X = vcos P

y = v sin @,

it follows from Egs. (9-50a) and (9-50b) that

X = —121\/[(52 — 1)1 — n»)] cos & (9-51b)

- —’23\/[(62 —1)(1 —n*] sin & (9-51c)

All the relationships for the two-centre spherical polar and ellipsoidal
coordinates can be obtained just as easily; in summarized form,

= er "R (9-52a)



183

ry = —%l R (9-52b)
cos@, = 15-:-6';] (9-52¢)
c0s6 , = 16——6»1” ' (9-52d)

The volume element for integration in three-dimensional space can then
be written as

3

dr =dxdydz = (l;—) (&2 — n?)dEdndd (9-53)

The usefulness of the coordinate transformations can be demonstrated

on the calculation of overlap integrals between (1s)-type Slater orbitals,
one of which is located on centre A and the second on centre B, assuming

that, in general, the atomic orbitals differ in their exponent; one will be
denoted o and the other f. Therefore the integral

(1), | (18)g> = —‘/(—O;:ﬁl femerae frads (9-54)

must be calculated. By introducing relations (9-52a), (9-52b) and (9-53)
into Eq. (9-54) and integrating over @, the relationship

(L) -

% s [fz e~ LRI2)@+B) o —n(R/2)(@~B) _ e—é(R/Z)(Hﬂ),’Z e—n(R/Z)(a*ﬂ)] dédn =

R 3
= 2./(*B?) (—2—) [AYBY — AVBY] (9-55)
is obtained, where new constants
a= —I;(a + p) (9-56a)
and
R .
b-Ra-p (©-56)

were introduced, as were the auxiliary integrals

AW = j e dE (9.57a)
1
and

1
BY = [ e ™dy (9-57b)
-1
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The introduction of various types of auxiliary integrals is common
in calculations of molecular integrals, as it enables rational calculation
or tabulation of the results (cf, for example, the tables by Miller,
Gerhauser and Matsen®). Calculation of integrals of type A“ and B®
is simple and is carried out according to the value of parameters « or b
either using recurrence formulas derived by integration by parts or
numerically by expanding the exponential function into a power series.
It is worth noting that even two-centre Coulomb integrals with spherically
symmetrical charge distributions can be expressed by integrals of type
A and BY.

In conclusion it ‘should be mentioned that the calculation of
two-centre molecular integrals with charge distributions that are not
characterized by spherical symmetry and, in particular, the calculation of
many-centre (three- and four-centre) integrals are much more complicated
than calculation of the integrals discussed in this section. An introduction
to these problems and the respective references can be found in review
articles (for example Ref. 4).

9.4 General diatomic molecules
and correlation diagrams

First, the homonuclear diatomic molecules composed of elements of
the first series of the periodic table of the elements will be discussed.
On the two atoms, which will be denoted by A and B, 1s, 2s, 2p,, 2p, and 2p,
atomic orbitals are available. AO’s of the same energy will be combined,
taking their symmetry properties into consideration. The interaction
between AQO’s corresponding to different energy levels will not be
considered. By combination of two AO’s, wto MQO’s are always obtained,
of which one is bonding in relation to the initial AO’s and the other is
antibonding. It is necessary to be aware of the relativity of these
concepts; for example, the antibonding MO formed from two 1s AO’s
has a more favourable energy than the bonding MO derived from the
2s AO’s. The expressions for the MO in Fig. 9-5 have the form given by
Egs. (9-19) and (9-20). For illustration, the MO’s formed by combination
of the 1s AO’s can be given:

o(ls) =

\/[2(1 + ((IS)A I (1s)p0)] [(1s)4 + (18)g] (9-58a)

o*(1s) = (18), — (18)g] (9-58b)

NPT <(1s)A [(1s)g)] [
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A1) A(l)— A(2) A(2)
6*(20y)

*
T (2R) 7(2p,

2, 2, 2p, T2 *(2p)
62py)
6%(2s)

s 2s

6 (2s)
6*®(1s)

.

1s - 1s
6 (1s)

Fig. 9-5. Formation of o- and n-MO’s by interactions between s and p atomic orbitals
localized on atoms A(1) and A(2).

The difference in the energies of the - and n-MO’s formed by the
overlap of p-type AO’s is not, in practice, large and their energies
can therefore lie in the opposite sequence, depending on the specific
conditions in the individual molecule. The example given in Fig. 9-5
corresponds, for example, to the O, molecule, but it does not describe
the conditions in the B, molecule.* The oxygen molecule is correctly
described inasmuch as the reason why the oxygen has a triplet ground
state is evident (the presence of two electrons in degenerate orbitals with
parallel spins). If the 16 electrons of the corresponding O2 molecule are
placed in the MO’s according to increasing energy (Aufbau principle),
14 of them will completely occupy seven MO’s and the 15th and 16th
electron, in agreement with Hund’s rule (cf. Section 10.6.2), will be placed,
with parallel spins, in the degenerate n*(2p:)- and n*(2px)-MO’s.

Studies of correlation diagrams®~® provide useful information on
the bonding conditions in diatomic molecules. A correlation diagram
characterizes the gradual transition of one-electron states from a system
of two infinitely distant atoms to a system where the atoms coincide
(the united atom). The states of diatomic molecules obviously lie between
these two extremes.

Before discussing correlation diagrams, some preliminary considera-
tions on the symmetry of a system composed of two atoms on the y-axis
will be mentioned. Three cases can be distinguished.

* The B, molecule has a triplet ground state, whereas it should have a singlet ground
state according to Fig. 9-5.
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a) If the atoms are infinitely far apart, each is spherically sym-
metrical and n, | and m are valid quantum numbers.

b) If the nuclei approach each other, the spherical symmetry of the
partial systems, the atoms, is lost. The system is invariant under arbitrary
rotation about the y-axis, i.e. the formation is characterized by axial
symmetry. Classical mechanics shows that, for such a system, the
projection of the total angular momentum onto the y-axis is retained
(termed the constant of motion). In quantum mechanics, this type of
symmetry is manifested by quantization of the projection of the total
angular momentum onto the y-axis (cf. Section 4.4). Because we are
interested in classification of the one-electron levels, quantum number A
is introduced to denote the value of the projection of the angular
momentum of the electron (in multiples of #) in the given state. If I is
the quantum number of the electron in the atom, it is evident that 4
can assume the values

=L1-1,..,210, (9-59)

where, e.g., it is sufficient to consider only the value A =1, as the
state with A = —I (momentum with the opposite orientation) has the
same energy and thus corresponds to a doubly degenerate level. Levels
with different values of quantum number A are usually denoted by small
Greek letters; for states A = 0, 1, 2, 3, ... the notation o, =, 8, @, ... is used.

If the molecule is homonuclear, the symmetry of the system is further
increased by inversion in the point which divides the line connecting
the two atoms. This type of symmetry permits classification of the states
of homonuclear molecules according to whether the inversion does or
does not produce a change in the sign of the wave function (cf. Section 6.2);
the symmetric states are denoted by g and the antisymmetric states by u.

c) If the given atoms combine to form a single, united atom (it
must be stressed that this is purely a mental process) a spherically
symmetric system is again obtained for which the same classification
of states applies as for the atom.

If certain rules are taken into account, it is possible to ensure that
the states in cases a) to c) are connected and are a continuous function
of the distance between the atoms. Information on the energy distribution
corresponding to the molecular orbitals in a diatomic molecule is
obtained by connecting the levels at the two extremes by lines (infinitely
remote and united atoms). The following rules must be obeyed:

A. Symmetry conservation is manifested in the fact that quantum
number A and the u- or g-property of the orbital do not change.

B. The non-crossing rule’, according to which it is inadmissible
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for energy lines correspoding to orbitals of the same symmetry to cross,
because interaction occurs between these states; no limitation applies
on the other hand if levels of different symmetry intersect.

The occupation of these one-particle states by electrons must obey
the Pauli principle and, if the degenerate levels are incompletely occupied,
Hund’s rule of maximum multiplicity must be applied.

g

q = y
symmetry with
Nrespect to y 6 T 6 T
symmetry with 9 u u u
_respect
to inversion
(6*) 6 L ——
u
MO OO,

(6) 6 ¥ 2
Ty =

symmetry with respect
toy and toinversion

Fig. 9-6. Classification of atomic orbitals and molecular orbitals according to their symmetry
elements.

The classification of some atomic and molecular orbitals based on
their symmetry elements, according to point b) is depicted in Fig. 9-6.
A number of useful conclusions can be obtained on the basis of graphical
representation of orbitals. For example, the bonding and antibonding
combinations of 1s orbitals can be represented as follows:

(Is), +(Is)y - & & (9-60a)
(Is)y, —(1s)y - & © (9-60b)

Because the quantum number for separated atoms is [ = 0, then
A =0, so that only o states can arise in both cases. The symmetrical
combination (9-60a) remains spherically symmetric on united atom forma-
tion so that the transition, separated atoms—molecule— united atom, can
be written as follows:

o, Is - o(ls), - (Is), (9-61a)

g
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The antisymmetrical combination (9-60b) in the limiting transition to
the united atom has the symmetry properties of a p orbital orientated
in the direction of the y-axis. It therefore holds that

o, Is - o*ls), - (2p), [ie (p),] (9-61b)

u

All s-type orbitals behave analogously. It is, of course, more difficult to
study the symmetry properties of orbitals with higher values of quantum
number [. Evidently, however, for example, antibonding combinations of p
orbitals orientated parallel to each other (for example, in the direction of
the x-axis) have the symmetry properties of d orbitals (concretely of
the'dxy orbital) on transition to the united atom.

united MO A0
atom [
b
] 3
& &
= &
6 u 4 E‘: ©
T U 4Ds4p, S %
, 3 $
V=)
6 g ds R
* N
=}
6 g ey < 2
T G 3dyy,3dy, 5 e
6 g 3y 3dty2 s
6 u 3py b3
T u 3Pxs3p;,
6 g 3s
T u 20,20, | X2P), ~ .y
6 u 2Py \ 2p ﬁor‘
6(2p),
6%2s)
6 2s NN \ 2 6
9 N 605y $o 9
6%(1s)
6 1 u
9 s 6(19), s 09
R'O . R-OO

B, % —R-—
Fig. 9-7. Qualitative correlation diagram for homonuclear diatomic molecules. Right ordinate:

separated atoms, left ordinate: united atoms; the region between these extremes characterizes
conditions in molecules. Examples: B,, O, (according to Heilbronner and Bock®).
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In Fig.9-7 a qualitative correlation diagram for diatomic homo-
nuclear molecules is given. In contrast to Eqs. (9-61a) and (9-61b), the
right-hand side of the diagram, corresponding to the separated atoms,
represents the symmetry properties of the atomic orbitals of the partial
systems. In the diagram the positions which correspond to the O,
molecule and the B, molecule are indicated. This procedure is most
useful, as information on molecules is obtained from knowledge of the
symmetry properties of the participating orbitals alone. In recent years
correlation diagrams have been widely applied, for example, with complex
compounds, in the analysis of the mechanism of some stereospecific
cyclizations and in the interpretation of collision processes of atoms.
It should be mentioned that correlation diagrams can also be constructed
for heteronuclear molecules (cf., for example, Ref. 9). '
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10. CALCULATION METHODS IN THE
THEORY OF THE CHEMICAL BOND

10.1 Introductory remarks

It was seen in Chapter 5 that the one-electron approximation represents
a basic approach to the study of the electronic structure of atoms and
molecules, either as a self-contained model or as a starting point for more
accurate calculations.

In analyzing the solvability of the Hartree-Fock equations, relations
(5-59a) to (5-59d), which apply when the ground state is described
by a Slater determinant of type (5-43) corresponding to a closed shell
system, will be used as a starting point. Such systems are of particular
interest here. From the viewpoint of the variation principle, the optimum
one-electron functions (orbitals), depending on the space coordinates
of the given electron, can be of two kinds (depending on whether atoms
or molecules are considered). These are either a) atomic orbitals g,
which are located on the selected atom establishing the origin of the
local coordinate system in which the electronic coordinates are defined,
or b) molecular orbitals ¢, which are distributed on a greater number
of centres in the many-nuclear system—the molecule. The construction
of molecular orbitals by expansion in terms of atomic orbitals located on
the atoms forming the molecule is most expedient [cf. Eq. (5-63)];
in other words, these atomic orbitals form a basis set for the expansion
of the molecular orbitals. If the number of AQ’s is such that they describe
(in a minimum number) only electrons of atoms in the ground state,
we speak of a minimum basis set (cf. Section 6.6). An example of
an extended basis set is the Slater “double zeta” (DZ) basis set, where
two Slater functions (see below) with different exponents correspond to
one atomic orbital (the exponents denoted here by ¢ are sometimes
denoted by {).

It was shown in Section 5.6 that, within the framework of the
Hartree-Fock scheme, the determination of the optimum linear combination
of atomic orbitals (i.e. those fulfilling the variation principle)
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m
0= X Culy (10-1)
p=1
is connected with the solution of the Roothaan equations

Yo {fxFy dry — g [y, de} =0, p=12,...,m (10-2

where & is the Hartree-Fock operator. Because a non-trivial solution
for coefficients c,; must be found, the calculation of the secular determinant
[cf. Eq. (4-142)],

det || <x, | | 1> — e<n x> || =0, (10-3)

becomes necessary, where the notation used in Section 5.6 is again used.
Considering Eqgs. (5-59b) and (5-59¢) and the expansion of the molecular
orbitals in the form (10-1), the matrix element of operator & from Eq. (10-3)
can be written as

F, =) F | x=l 4|1 +

m m 1

+ Y Y P, {(IW | 00) — = (ue] vo)}, (10-4)
e=10=1

where the charge- and bond-order matrix was introduced, whose general

element is defined by the expression

n/2

P,=2 -21 cxe, (10-5)
=

(summation is carried out over the occupied molecular orbitals) and
the shortened form for the two-electron integrals is given by

(wv|eo) = [ (1) 1,(1) #(1,2) 13 (2) 2,(2) dr, de, =

= (e 2| 010 (10-6)
[cf. Eq. (5-31b)].

Eqgs. (10-2) to (10-4) represent the exact formulation of the Hartree-
Fock n-electron problem for a closed shell system in the MO-LCAO
approximation. In principle the basis set of the atomic orbitals can be
chosen extensive enough that the calculated value of the total energy
is the lowest within the framework of the Hartree-Fock model, this
value being referred to as the Hartree-Fock energy limit. When starting
such a calculation, it is necessary to choose the AO basis set. As a rule,
atomic orbitals are used which have identical angular parts (spherical
harmonics) and different radial parts:

a) hydrogen-type functions whose radial part forms a Laguerre
polynomial (cf. wave functions for the hydrogen atom),
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b) Slater functions whose radial part is a function of the type
"~ exp (=¢r),

where n is the principal quantum number of the orbital and ¢ is a constant
specific for the atom and its electronic shell characterized by n (cf.
Section 8.1).

¢) Gaussian-type functions whose exponential factor is of the type

exp (—1r?)

When performing calculations in molecules, fixed combinations of
Gaussian functions are frequently used and we then speak of a contracted
basis set. Such a function often simulates an atomic orbital. Clementi
and Davis optimized contracted basis sets using calculations on atoms.

Each of the described types of atomic orbitals has its advantages
and disadvantages. The first two types of orbitals satisfactorily describe
the electron density near the atomic nuclei but lead to very complicated
many-centre integrals of type (10-6). Gaussian functions in matrix
elements can be much more easily integrated but they provide a poor
description of the electron distribution in the close vicinity of and at
a great distance from the atomic nuclei. This disadvantage is often
compensated by increasing the number of atomic orbitals.

The treatments which have been mentioned here are called “ab
initio”, sometimes also “absolute”, as there is only a single step between
the quantum mechanical formulation of the problem and the result of
the calculation, consisting of the choice of the analytical form and
the number of functions undergoing the optimization process. There
is a number of difficulties hindering the extensive application of these
methods to large molecules:

a) The number of two-electron integrals of type (uv | ¢o) is proportion-
al to the fourth power of m, where m denotes the number of atomic
orbitals, so that calculations performed with a relatively small atomic
orbital basis set are the only practicable ones.

b) The calculation of some integrals of type (uv|go) was, until
recently, rather difficult.

c¢) Most serious is that the error in the calculated binding energies
of molecules (the binding energy is defined as the energy of the mole-
cule less the energy of the atoms forming it) amounts to about 19,
even if the Hartree-Fock equations are solved accurately. For chemical
purposes —estimation of the equilibrium and the rate constants—an
accuracy of one to two orders greater is needed. In the one-electron
model each particle moves in the average field of all the other particles,
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ie., correlation of particle movements is not taken into consideration.
Physically, it is evident that Coulomb repulsion between the electrons
does not allow two particles to occur simultaneously at the same
point in space; it is customary to describe this situation by saying
that each electron is surrounded by a “Coulomb hole”. In the Hartree-Fock
scheme only the “Fermi hole™ appears, so that in a given region the
existence of two electrons with parallel spins is excluded [being against
the Pauli principle, cf. Eq. (5-42) and below], where the same (space)
molecular orbital may be occupied by electrons with different spins.
This shortcoming in the model is termed the correlation error and
a quantity called the correlation energy, E_,, is introduced for its
quantitative estimation. E__is defined for a given system as the difference
between the exact value of its total energy, E and Hartree-Fock
energy limit, Eyp:

exact’

E_ _=E

corr exact

— Eyp, (10-7)

where the relativistic contributions are not included in the exact energy
value. For example, the SCF treatment' for the total energy yields
a value of —2722.65 eV for the hydrogen fluoride molecule, while the
experimental value is equal to —2734.16 eV. This appears to be satis-
factory agreement. The dissociation energy, Dg, of a molecule is defined
as the difference between the energy of the molecule, Dy, and the energy
D, of the individual atoms formed on dissociation of the molecule,

Dy = Dy, — D,y (10-8)

and for the SCF treatment it amounts to

Dy = —2722.65 + 271854 = —4.11eV

The experimental Dy value is —6.08 eV; it therefore follows that, for
chemically and physically important quantities, obtained as the difference
of two large numbers, the error amounts to several tens of percent
of the correct value and that “absolute” calculation on the level of
the one-particle model is quite insufficient. The correlation energy then
assumes values of the same order as the calculated quantities themselves;
consequently, calculation of the correlation energy is of particular interest
in quantum chemistry today.

Fortunately, semiempirical methods present a way of avoiding
these difficulties. The use of these methods is accompanied by two
characteristics. On the one hand, approximations are introduced which
lead to a substantial decrease in the number of electron repulsion
integrals (and complete elimination of the most difficult ones); on the
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other hand, certain integrals are replaced by numerical values chosen
so that the semiempirical theory describes the experimental characteristics
of the substance (or of a small group of substances) chosen for adjusting
the parameters.

In the reduction of the number of repulsion integrals a very
important part is played by the zero differential overlap approximation
(denoted by the abbreviation ZDO, see below) which Pople in England
and Pariser and Parr in the USA employed independently in 1953
in two important semiempirical methods. The Pople approximation is
a direct continuation of the Roothaan SCF method and represents
a simplified self-consistent field method, whereas, in the Pariser and Parr
method, the individual molecular states (the ground state and the excited
states) are described using a linear combination of a certain number
of Slater determinants. This is not an iteration method. Essentially the
approximations employed and the evaluation of the integrals are very
similar in these two methods. Both methods were elaborated in the form of
n-electron approximations.

Table 10-1
Survey of Semiempirical Methods Employed in Quantum Chemistry
I. All electrons (or valence II. n-electron approximation
electrons) are included

1. Closed electron shell 2. Open electron shell
_ CI Jaffé? CI Craig!?; Pariser, Parr!® CI Ishitani, Nagakura'®
8 Dewar? SCF Roothaan'* SCF Roothaan?°
'E% SCF Klopman* SCF Pople!’ SCF Longuet-Higgins,
E S Pople, Santry, Segal® Pople?!
§ fg Katagiri, Sandorfy®

Jungen, Labhart’

Hoffmann® Improved HMO (e.g. McLachlan??
:g: g Sandorfy’ Coulson — Golebiewski)!¢  HMO!’
-aé Brown!° HMO'
5 g Del Re!! Perturbation treatment'®

(within HMO formation)

The Roothaan method forms a basis for various semiempirical
methods, those considering all the valence electrons and the m-electron
methods. The following survey summarizes these methods, starting with
the more generally applicable ones (considering the .valence electrons),
followed by the more special methods.
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Before considering the evaluation of the F,, expressions (matrix
elements of the Hartree-Fock operator) it will be expedient to classify
these methods into several groups:

I. Methods which explicitly consider either all the electrons or
at least all the valence electrons (as well as methods limited to the
c-electrons alone).

II. Methods in which only m-electrons are explicitly considered.

All the methods are further divided into two groups according to
the type of electron configuration in the electronic ground state:

1. methods suitable for systems with closed electron shells,

2. methods suitable for systems with open electron shells.

A more detailed survey is given in Table 10-1, where the level
of sophistication of the individual methods is also taken into consideration.

Tables 10-2 and 10-3 contain detailed data on the Hamiltonian,
wave functions, matrix elements and the regions where the individual
versions of the MO-LCAO method can be best employed.

10.2 All-valence electron MO-LCAO methods

10.2.1 Methods explicitly considering electron
repulsion

Semiempirical methods based on the SCF theory, suitable for studying
large systems in which all the electrons in the valence shells are explicitly
considered, were developed in 1965 to 1967. They are particularly
attractive because they can be applied to a great variety of types of
inorganic and organic systems.

Pople, Santry and Segal® studied the nature of these methods in
detail and published a general analysis of semiempirical methods considering
valence electrons. Among the proposed schemes, the CNDO (complete
neglect of differential overlap) method was the first to be developed
and employed for the calculation of charge distributions in some large
organic molecules. Among further methods various modifications of this
semiempirical method should be mentioned, such as the INDO? (inter-
mediate neglect of differential overlap) method, the MINDO?%-2° (modified
intermediate neglect of differential overlap) method, the PNDO? (partial
neglect of differential overlap) method and related methods®°, which were
mostly intended for the calculation of particular physical properties of
molecules.
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Among the large number of these highly related approximations,
the CNDO method will be discussed in greater detail. Recognition and
understanding of the sequence of approximations leading to the CNDO
scheme will provide a basis for orientation amongst the other methods
when the expressions for the respective matrix elements are known.

Equations for the CNDO scheme can be derived from the expressions
characterizing the general MO-LCAO version of the Hartree-Fock method
and from Egs. (10-1) to (10-6) by the following series of approximations:

a) Of the total electron system of the molecule, only the electrons
in the valence shells of all the participating atoms are explicitly considered.
Therefore, for example, the hydrogen atom contributes an electron in
the 1s state to the total electronic system, first-row elements contribute
electrons in the 2s and 2p states, etc. This assumption allows us to
exclude electrons in the inner shells, which are assumed to electrostatically
shield the atomic nuclei, from consideration. The remainder of the atom,
by which we understand, for example, atom A deprived of n, valence
electrons, is generally represented physically as a positive point charge
n,e, where e is the proton charge; it is usual to call it the core.

b) Each atom in the molecule contributes only atomic orbitals
corresponding to the principal quantum number, which is related to
the highest occupied orbital of the isolated atom, to the molecular
orbitals of type (10-1). Thus a hydrogen atom supplies a 1s orbital,
first-row elements supply 2s and 2p orbitals, etc. It is assumed that
the atomic orbitals form a set of orthonormalized functions.

¢) In order to decrease the number of two-electron integrals of type
(wv | o), the zero differential overlap assumption is introduced, according
to which

)z, (1) =0 (10-9)

for u # v. Relationship (10-9) is a stricter condition than the requirement
of orthogonality of functions y, and y, and permits rearrangement of the
double sum on the right-hand side of Eq. (10-4) in the form

> ¥ Pwvleo) Y Punlead, (10100

e=1lao=1

1 & & 1
-5 Zl leou(”g | vo) - — TP‘W(quv) (10-10b)
e=1lo=
Although neglecting the differential overlap might seem to be too
great an interference with the general equations, its usefulness must be
judged from the quality of the numerical calculations, which will be
discussed below. It is sufficient here to note that a partial correction is
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introduced by the NDDO?® (neglect of diatomic differential overlap)
scheme, according to which relation (10-9) applies only to orbitals
located on different atoms.

d) It is evident that the solution of the physical problem should not
depend upon the choice of the coordinate system, which is arbitrary.
Pople, Santry and Segal® showed that the zero differential overlap
approximation calls for additional approximations which are contingent
on the requirement that the results be independent of the choice of the
coordinate system (similarly as with the exact Hartree-Fock solution).
An example will be useful here.

Coulomb interaction will be assumed to exist between two electrons,
of which one occupies the (2p), orbital on atom A and the second, the
(2s)g orbital on atom B; the orientation of the (2p,), orbital is determined
by the unprimed coordinate system depicted in Fig. 6-1, where the origin
of the coordinate system lies in the nucleus of atom A. We would have
been equally justified in choosing the primed system of Cartesian coordi-
nates, which has a common origin with the original system but differs by
rotation through angle o about the z-axis. Because the p orbitals have
the same transformation properties as the axes of the Cartesian system,
for the p' orbitals expressed with respect to the primed system and for
the p orbitals expressed with respect to the non-primed system, the
relationship

’ . 2 -
(2p,) _ c.os o, Sin o (2p,) (10-11)
(2p,) —sin a, COS o (2p,)
is valid. If the angle of rotation is @ = m/4, for which
T .m 1
€08 - = sin - = —\/—, (10-12)
then the product is given by
.1
(2p.f 2p) = 5 [@p,) + 2pJ] [P, — (2p,)] =
1
=5 [2p,) () — (2p) (2p,)] (10-13)

It is evident, furthermore, that because of its spherical symmetry the
(2s)g orbital remains invariant to rotation through any angle.
If zero differential overlap is introduced for the primed system, then

(2P (2P | (25)p (25)p) = 0 (10-14)
and therefore, considering Eq. (10-13), it follows that

((2P.)a (2P)4 | (29)5 (29)p) = ((2P,)4 (2P))s | (25)5 (25)p)  (10-15)
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This result indicates that the Coulomb integrals must not depend on the
orientation of the p orbitals. For this reason Pople and co-workers
introduced the assumption that the Coulomb two-electron integrals
(up|vv) depend only on the atoms on which the atomic orbitals Xy
and y, are located, thus being independent of the specific type of orbital.
They denoted these integrals as

Yaaw = ([ 1) = (29)yr (25) | 25)y (25)y) (10-16)
where x, is the orbital located on atom M and y, is the orbital located
on atom N. This approximation corresponds to “averaging” of the
interaction of the electrons located in valence states of different atoms
of the molecule and also fulfills the requirement that the solution be
invariant to a transformation which leads to combination of the 2s and 2p
orbitals on one centre. The second kind of invariance called the “hybridiza-
tion invariance” is far less important and a number of semiempirical
schemes do not even require its fulfilment (for example, the EHT method,
see below).

¢) The approximations concerning one-electron integrals will be
analyzed by discussing the diagonal and nondiagonal elements separately.
If 4 = v, then, from Eq. (5-19a), it follows for the one-electron part of the
matrix element F,, [cf. Eq. (10-4)] that
h? Zye’ Xu> B
Xu>’ (10-17)

a4l = (1

T 4me, [r — Ry |

Z;e?
I(#ZM) <X”‘ 4ney [r — Ry |

where M denotes the atom on which the y, orbital is located and Z] is
the core charge expressed in multiples of the proton charge. If we assume
that atomic orbital y,, in accordance with the Goeppert-Mayer and
Sklar®*! approximation, is an eigenfunction of the one-electron atomic

Hamiltonian
h? Z) e
(‘ md dmeo|r — Ry | Yo = Uy (10-18)

then quantity U, can be considered to be the energy of an electron which
is in the atomic valence state x,. The value of U, can either be determined
by calculation or can be taken from the experimentally determined
atomic energy levels. Pople and co-workers chose the latter and set U,
equal to the negative value of the ionization potential of the electron
occurring in valence state y,. This second kind of parameter was used
in the version of the method known as CNDOJ1. It appears, however,
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that the method yields better numerical results if U, is determined from
the average of the ionization potential I, and the electron affinity 4,
where both quantities are related to valence state x,; this is obviously
a better way of describing the energy conditions when loss of an electron
and acceptance of an electron into the orbital y, are equally probable.
This alternative is used® in the CNDO/2 method.

The expressions

r,2
Zie

x,‘>, I+ M,

correspond to the electrostatic interaction between the electron, whose
probability density is determined by function x, located on atom M,
and the remainder of the atom (the core) I. If the analytical form of y,, is
given (for example, as a Slater orbital) it is relatively easy to calculate
these integrals, as they are of the two-centre type (the coordinates of yx,
are related to the nucleus of atom M, and the point charge of core I
occurs at the nucleus of atom I). Similarly as in Coulomb two-electron
integrals, the individual orbitals on the atom are also not differentiated
in these integrals and the following average interaction is always intro-

duced:
<(2s) M

which again depends only on the type of participating atoms, M and I.
This way of expressing the interaction is replaced in the CNDO/2 version
by introducing the modified Goeppert-Mayer and Sklar potential. The core
is then represented by a superposition of the neutral atom and the
electron “holes”, so that it is assumed that

_ <X#

The first expression on the right-hand side of the equation represents the
penetration integral corresponding to the interaction between the electron
located (on atom M) in orbital x, and neutral atom I, which is in the
valence state. It can be assumed that the integral has a small value, which
can therefore be neglected, so that

| Y2y =0 (10-21)

Because of approximation (10-9), the non-diagonal elements of %
should be zero. It appears, however, that a semiempirical method using
such an approximation would not yield physically reasonable results.

Z)e?
4mey | r — R, |

(2S)M> = Upmps (10-19)

’r 2
Zie

m X#> =l | 18 | X — Zpme  (10-20)
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It is therefore assumed in the CNDO method that
| %) 1> = Baanl | 1 (10-22)

where (y, | ,> is the overlap integral and B, is a parameter depending
on atoms M and N on which the atomic orbitals are located. It is
necessary to investigate only cases when M # N, because the atomic
orbitals of the valence shell located on the same atom are always
orthogonal, so that the one-centre matrix elements (10-22) vanish. The
actual form of the atomic orbitals on the right-hand side of Eq. (10-22)
expresses an additional assumption for calculation of the matrix elements
and is consequently not directly related to the basis set of the atomic
orbitals [cf. approximation b)] in terms of which molecular orbitals
are expressed. The introduction of primed orbitals into expression (10-22)
permits the geometry of the molecule to be considered when calculatirig
the matrix elements of % and ensures space and “hybridization” invariance
of the solution.

The introduction of approximations a) to e), ie. Egs. (10-10a),
(10-10b), (10-16), (10-18), (10-19) and (10-22), causes the secular determinant
(10-3) and the matrix elements of the Hartree-Fock operator (10-4) to
assume the following form in the CNDO/1 method:

det| F,, —&8,,|| = 0 (10-23)

1
F,=U,+ (PM - 7Pw> Yum + 2, (Pyyn — vpy)  (10-24)
N(#M)

o 1
Fu = BunSi = 5 Putuns R FY (10-25)

P,, denotes the total electron charge on atom M:

Py = Z P, (10-26)
ne(M)
where the sum is carried out over atomic orbitals located on atom M.
S, 1s an abbreviated notation for the overlap integral:

Su = 1> (10-27)

Numerical calculation according to this scheme also requires specification
of the necessary integrals or matrix elements. Integrals S, , vy and y,y
are calculated using the Slater orbitals (with the Slater value of the
exponential factor for all atoms except hydrogen for which the value
1.2 was chosen). The experimentally determined values of the ionization
potentials U, for the first and second row elements are given in Table 10-4.
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Table 10-4
Values of Parameter (—U,) in the CNDO/1 Method (in eV) [from Ref. 5]
Atom H Li Be B C N (0] F
Is 13.06 - - - - - - -
2s - 5.39 9.32 14.05 19.44 25.58 32.38 40.20
2p - 3.54 596 8.30 10.67 13.19 15.85 18.66

The arithmetical mean of the corresponding atomic parameters is used
for the value of B3,y :

Biow = 5 Bis + B (10-29)

The values of the atomic parameters ff; have been determined by com-
parison with the “ab initio” type of calculation for a number of small
molecules to achieve optimum agreement of the electron charge distribu-
tion with the distribution resulting from semiempirical calculations. The
choice of B,y in form (10-28) keeps the number of semiempirical para-
meters used in the calculation scheme at an acceptable level. The S},
values for various atoms are given in Table 10-5.

Table 10-5
Values of Parameter By, in the CNDO/1 Method (in eV) [from Ref. 5]
Atom H Li Be B C N (0] F
— By 9 9 13 17 21 25 31 39

The SCF treatment based on the definition of the matrix elements
(10-24) and (10-25) can be numerically solved in a standard manner as
described in Section 5.5. Pople and Segal® proposed suitable expressions
for construction of the zero approximation to the Hartree-Fock operator
elements:

F,,=U, (10-29)

Fo, = BynS,n (10-30)

Calculations at the SCF level are usually carried out to obtain
theoretical information on the ground state of the electronic system.
It was shown in Section 5.5 that the total electronic energy of a system
can be simply expressed in terms of the eigenvalues of the SCF operator
and of the interelectronic interaction energy [cf. Eq. (5-62)]. It is preferable
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for some purposes to express the total energy E,,, of a molecule (differing
from the total electronic energy by a constant contribution corresponding
to the core repulsion) in terms of one-atom and two-atom contributions:
E, = ZEM + ZZEMN’ (10-31)

M

M<N
where

1 1
EM = z P‘“‘U“ + 7 Z Z (lePM'M' - 7Pi"r> yMM (10-32)

ne(M) ue(M) p'e(M)

o 1
EMN = Z Z [ZPuVﬂMNSuv - —2-PivyMN:| +

ue(M) ve(N)

Z,Z}e?
+ l:m — Pyvyn — Pty + PMPNyMN:| (10-33)

In expression (10-33) it is assumed that the core interaction terms
can be expressed in the form of Coulomb repulsion between point charges
at a distance of R .

As mentioned in Section 10.1, the semiempirical methods are
accompanied by a considerable decrease in the number of integrals
involved in the calculation. Table 10-6, taken from the paper by Klopman
and O’Leary3?, demonstrates this situation by comparing the CNDO
method with the SCF “ab initio” t.eZtment on the example of the propane
molecule.

Table 10-6
Number of Molecular Integrals Necessary for Calculation
of the Propane Molecule [from Ref. 32]
Integrals SCF “ab initio” CNDO
minimum basis set of
atomic orbitals
one-centre 368 11
two-centre 6652 55
three- and four-centre 31206 0
total 38 226 66

The results originally achieved using the CNDO/2 method for more
than twenty molecules (with 4 (BeH,) to 26 (NF;) valence electrons) were
very encouraging. The calculated quantities included dipole moments,
valence angles and deformation vibrations. In recent years, methods of
the CNDO type and related methods (INDO, MINDO) have been
widely applied and proved satisfactory in calculation of various physical
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properties for a variety of compounds. It might be added that Del Bene
and Jaffé? introduced new parameters into the CNDO scheme and thus
succeeded in interpreting the electronic spectra of some hydrocarbons
and their heteroanalogues. They utilized the limited configuration inter-
action in their method, which will be discussed in detail in Section 10.3.2
on the theoretical treatment of m-electron systems.

A semiempirical method involving valence electrons was also de-
veloped by Klopman?®3. He applied it to more than 100 diatomic mole-
cules and to a number of triatomic molecules. A number of papers*~3°
are also concerned with these subjects.

10.2.2 Methods using an effective Hamiltonian

Hoffmann® introduced a method using the effective Hamiltonian — similarly
as in the HMO method — but involving all the valence electrons. Formally,
this is the Hiickel method with an extended atomic orbital basis set,
referred to as the EHT method (“extended Hiickel theory”) in the
literature. The basis set for a hydrocarbon consists of carbon 2s and 2p
orbitals and hydrogen 1s orbitals; the method takes into account overlap
and non-neighbouring interactions. The calculations are performed using
the following values of the ionization potentials:

H,(C2p) = —114eV
H,(C 25) = —214¢eV

H,(H1s) = —136eV

For the hydrocarbon C H,, the following atomic orbitals basis set is used:

m hydrogen Slater orbitals, exponent 1.0

n 2s Slater orbitals for carbon

3n 2p Slater orbitals for carbon} exponent 1.625

These data are essential for calculation of the overlap integrals between
Slater orbitals.

The method is applicable to a great variety of organic and inorganic
molecules. It has proven satisfactory in studies concerning conformation
of cycles, internal rotation, geometric isomerism and distribution of o
and = electrons. It fails in the calculation of bond lengths (and valence
vibrations) and it overestimates steric factors.

Several methods!®*14%~44 operating on a similar level were intro-
duced earlier. They were mainly intended for studies of saturated hydro-
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carbons. Hoffmann’s method has been described in greater detail because
it is the most universal. It has also contributed to the formulation of
a series of empirical rules (the Woodward-Hoffmann rules), which are
used e.g. to predict the stereospecific course of various reactions of
organic and inorganic compounds, and was particularly welcomed by
chemists.

The method proposed by Del Re'! is rather interesting for its
simplicity. It solves the secular determinant for all localized bonds of the
studied molecule (A):

H,—-E H,—-ES, _0 (10-34)
H, —ES, H, —E
e e— ——
u v
(A)

The overlap is neglected. The evaluation of H,,, H,, and H, (see
Table 10-2), which depend on the nature of atoms y and v forming the
bond, proceeds in the following way: it is assumed that quantities ¢,,
(Table 10-2) depend only on atoms x and v and not on the surroundings
and that J, depends solely on the nature of the atoms directly bound to
atom p, so that

S,=8+ Y vad (10-35)
A (neighbours of
orbital p)
Table 10-7

Parameters of the Method According to Del Re!!

Bond C-H C-C C-N C-0 C-F N-H O-H C-d

ta 100 100 100 095 085 045 045 065
YA 03 0.1 0.1 0.1 0.1 03 03 02
o 04 0.1 0.1 0.1 0.1 04 0.4 0.4
R 007 007 007 007 007 024 040 007
& 000 007 024 040 057 000 000 035

Equations of type (10-35) are set up in a number corresponding to
the number of non-equivalent atoms in the system, giving a set of n
equations for n unknown values, 6,. The values of J;, y,,, and ¢, are
given in Table 10-7. The secular equation can then be solved and the
electron density and bond orders can be calculated in the usual manner.
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10.3 n-Electron theory

10.3.1 n—o-Electron separation

The m-electron approximation is based on the assumption that, in un-
saturated and aromatic compounds, only the n-electron system is con-
sidered explicitly in quantum mechanical calculations. The remaining
electrons of the molecule, including the o electrons, are considered to be
a rigid skeleton, in the electrostatic field of which the  electrons move,
and it is assumed that they are independent of changes in the m-electron
system. Their effect is described semiempirically either by the values of
parameters or by means of a potential, which is, for example, of a purely
electrostatic nature in the Goeppert-Mayer and Sklar approximation.
Within the framework of the n-electron theory, interpretations have been
made with remarkable accuracy and a number of physical properties
of aromatic and conjugated compounds, for example, their heats of
formation and electronic spectra, have been predicted.

Strictly speaking, as the electrons are indistinguishable we should
speak of m states and o states described by wave functions of suitable
symmetry, instead of © electrons or o electrons. However, concepts such
as the = electron, etc., are already in common use and have an established
place in quantum chemical terminology.

The definition of states of T and o symmetry is based on the fact
that, in planar polyatomic molecules, it is possible to divide the atomic
orbitals forming the basis set for the expansion of the molecular orbitals
into two distinct groups. One group contains 7 orbitals, which are anti-
symmetric with respect to reflection in the molecular plane; the other
group consists of o orbitals, which are symmetric. For example, in the
ethylene molecule, whose atoms lie in the xy-plane, it is possible to
separate (2p,); and (2p,), orbitals located on the (1, 2) carbon atoms
of the molecule, which are of the m type, from the minimum atomic
orbital basis set (cf. Section 6.6). The other orbitals of this basis set are &
orbitals. The © atomic orbitals form the basis for the construction of the
molecular orbitals of = symmetry, on which the description of ®© bonds
is founded. In ethylene there are two electrons in the © bond (one double
bond), benzene has six © electrons, etc.

n-Electrons differ from o electrons not only in their symmetry
properties. First, each group of electrons occurs in a different part of the
molecule. A 7 electron has zero probability density in the molecular plane,
whereas a ¢ electron occurs in this plane with maximum probability.
Generally, n electrons are more weakly bound to the molecule than o
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electrons so that they are more easily ionized and more reactive and are
therefore generally responsible for the chemical and physical properties
of m-electron-containing compounds (electronic spectra, ionization poten-
tials etc.). A further difference between the two types of electrons consists
in the fact that the o states can be localized in space. In this way we
obtain a description for electrons in bonds between a pair of adjacent
atoms, or for lone electron pairs on individual atoms, whereas the
7 electrons form a delocalized system over the entire conjugated molecular
skeleton.

McWeeny*® and Lykos and Parr*® systematically studied the
n-electron approximation and the region of validity of m— o separability.
They concluded that, under certain conditions, the n-electron Hamiltonian
(i.e. the Hamiltonian which depends solely on the coordinates of the
7 electrons) can be defined as

H, = f H) + fy(i, . (10-36)

i=1 i<j

which, after substituting into the expression for the mean energy value,

E — <¢ﬂ | e#ﬂ: ¢7[>

] AL RN (10-37)

where @,(1, 2, ..., n;) is the wave function describing the m electrons,
yields the m-electron contribution to the total energy of the system
including interaction with the other electrons and nuclei of the molecular
system. #° in Eq. (10-36) is the one-electron operator involving the
kinetic energy of the m electrons and their interaction with the nuclei
of the atoms and with all the o electrons. The conditions ensuring the
validity of o —n separability restrict the form of the wave function and
can be summarized as follows:

a) The normalized wave function @ for the entire electron system
can be written in the form of an antisymmetrized product,

® =l B (1,2 ..n) B (N1, sy + 1), (10-38)

where @_is an antisymmetric function with respect to permutation of
the n electrons, @, is antisymmetric with respect to permutation of the
o electrons and operator &, carries out permutations of ¢ and n
electrons in such a way that the total wave function also fulfils the Pauli
principle [cf. Egs. (4-91) and (4-93)].

b) Each of partial functions @, and @, is, in itself, normalized, ie.,

(B0 =<D,| D, =1 (10-39)
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¢) Each of functions @, and <D,,A can be expanded [cf. Eq. (5-28)] in
a series of orthonormal Slater determinants,

o =Y At (10-40)

o,=Y e, (10-41)

in which determinants A7 and 47 are built by means of n and & orbitals,
respectively. It is assumed that the subsets of m and o orbitals possess
no common elements —atomic orbitals.

d) Wave function @, is identical for the ground state and for all the
excited states of the molecule. In other words, all changes in the molecule
(excitation, ionization) occur only in the m-electron system and the other
electrons are not affected.

On fulfillment of conditions a) to d), the total electronic energy of
a molecule can be written in the form

E=E +E, (10-42)

where E; denotes a constant energy value (common for the electronic
ground state and for the electronically excited states of the molecule)
which is contributed by electrons in o states (including all the electrons
in the inner, i.e. non-valence-atomic shells), and the =n-electron energy,
E_, is defined by Eq. (10-37). In agreement with this conclusion, the
variation principle can be applied directly to expression (10-37) without
considering the o electrons, as they contribute only a constant value to
the total energy.

1032 The Pople version of the SCF method
for m-electron systems

Initially, it should be noted that similar approximations are employed
in the calculation scheme of the Pople version'® of the SCF method for n-
electron systems as those encountered when deriving the equations
characterizing the CNDO method. This is essentially because the SCF-
method for m-electron systems had already been elaborated (in the early
fifties), and had proven satisfactory; consequently, an attempt was later
made to apply similar calculation schemes to the description of systems
involving all the valence electrons.

From the general LCAO-SCF expressions and Egs. (10-1) to (10-6)
it is possible to obtain the Pople version of the SCF method by introducing
the following approximations:
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a) The w electrons in the studied aromatic or conjugated molecule
can be treated independently of the other electrons. Molecular orbitals
(10-1) are expressed in the form of a linear combination of atomic
orbitals of ©= symmetry, for example, in atoms with atomic numbers
3 to 10, the 2p orbitals perpendicular to the molecular plane are
considered.

b) The zero differential overlap approximation expressed by Eq.
(10-9) is used, enabling a considerable reduction of the number of two-
electron integrals [cf. Egs. (10-10a) and (10-10b)], as well as neglect of all
overlap integrals.

¢) The one-centre Coulomb integrals are expressed using atomic
spectroscopic data for the ionization potential I, and electron affinity 4,
of an electron occurring in the n—orbital y, of the atom M:

(uplpw) =y, =1,— A, (10-43)

where a similar notation as in Eq. (10-16) was introduced for the Coulomb
integrals except that indices which simultaneously denote the atom are
retained, which is possible because only one atomic orbital located on
atom M can occur in molecular orbital (10-1). Relation (10-43) was
introduced by Pariser*’ and is based on the energy balance for the model
reaction of a simple electron transfer process; the respective electron is
assumed to occupy atomic valence state p. For two carbon atoms we
can write

C+C - C+cC* (10-44)

This type of charge transfer can be represented by the superposition
of two processes:

C - Cr+e (I

C+e - C (=4,
whence
Ic—Ac=AE=y, (10-45)

On the left-hand side of Eq. (10-45) are quantities related to the carbon
atom. Their numerical values are evident from Table 10-8. Analogous
relations are also used for the determination of one-centre Coulomb
integrals for other atoms (cf. Table 10-8).

d) The matrix elements of operator #° are expressed similarly
as in the CNDO scheme.

The diagonal element (xu|,#°|xu> can be written as given by
Eq. (10-17). Egs. (10-18) to (10-21) yield

Sl H | 1> = U, — (Z Z s (10-46)
v(Fn)
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Table 10-8

Parameters I,, A,, B, (in eV) of the Pople SCF Method*
Atom (k) Type of compound 1, A, Bic
C conjugated planar 11.22 0.69 —2318
N pyridine 14.1 1.8 -2318

aniline, pyrrole 273 9.3 —1.854
(o] ketone, quinone 13.6 23 —-2318

phenol, furan 329 10.0 —2318
(o) phenolate 210 9.5 —2318
S thiophene 200 9.16 —1.623

2 The same parameters are also used in the common PPP method (PPP is an abbreviation
of Pariser, Parr and Pople), a limited configuration interaction method (LCI) utilizing the SCF
molecular orbitals (i.e. LCI-SCF method, see below).

where Z, denotes the number of electrons which the atom v (previously
denoted by N) contributes to the n-electron system. The Goeppert-Mayer
and Sklar assumptions®!, represented by Egs. (10-18) and (10-20), were
originally introduced in a treatment of m-electron systems. However,
assumption (10-21) of negligibility of the penetration integrals, although
used frequently in various versions of parametrization, is not always
employed.

The non-diagonal matrix elements are considered to be empirical
parameters, which are usually chosen so that the calculation optimally
reproduces the experimental data for one molecule or a group of molecules.*
The “tight binding” approximation is very often introduced, according
to which

B;, if pandv correspond to neighbouring atoms

<X“ | # |X”> - {0 in all other cases. (10-47)

The rearrangement of the matrix elements of the Hartree-Fock
operator (10-4) in the sense of approximations a) to d), i.e., Egs. (10-10a),
(10-10b), (10-43), (10-46) and (10-47), leads to the expressions

1
Fop=U,+ 5Py + (; Poo = Zo) Vya (10-48)
a(#u
1
FIW = ;V - 7 Puvyuv’ (.u # V) (10'49)

* We speak of the adjustment of parameters to experimental data. The values thus
obtained (for example, using heats of formation, and spectral transitions in ethylene and
benzene) are then employed in the entire region of structurally related (in this case
conjugated) compounds. )
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The secular determinant has the form given by expression (10-23). The
charge-and bond-order matrix elements P, were defined by Eq. (10-5)
and refer to molecular orbitals of = symmetry. Table 10-8 summarizes
the values of I,, A, as well as the core resonance integral ﬂ;v for
a number of important atoms and bonds. It should be added when
considering the numerical solution of the SCF equations, discussed in
detail in Section 5.5, that the secular determinant of the zeroth iteration
step is usually constructed using expansion coefficients obtained by the
simple molecular orbital method (HMO, see below).

The Pople method appears to be the most convenient semi-
empirical method for description of the properties of aromatic and
conjugated organic molecules in the electronic ground state (heats of
formation, dipole moments, bond lengths, chemical reactivity). The total
electron energy at the SCF level can best be expressed in the form
of Eq. (5-62). To determine the total energy of the molecule, E_,, it is
necessary to add the core repulsion terms [cf. Eq. (10-33)].

The repulsion of electrons corresponding to atoms px and v in
a neutral molecule with uniform electron charge distribution is approxi-
mately the same as the y and v core repulsion, so that the Coulomb term
(the second term) in Eq. (5-62) is roughly compensated by the core
repulsion and Eq. (5-62) therefore assumes the form

Eo=2Y 6+ 1Y <00;|¢]00) (10-50)
i i j

If the eigenvalues ¢ and the exchange integrals in Eq. (10-50) are
expressed in terms of the expansion coefficients of the molecular orbitals,
the relationship

tot?

1 .1
Etot = ;Puu<Uu + 7 P,,,,}’,,,,) + Z; PuV<ﬂllV - _4- Puvyuv> (10-51)
n¥Fv

is obtained. If the expressions in parentheses are replaced by the Coulomb
(x,) and resonance (B,,) integrals from the HMO method, the HMO
expression for the total energy is obtained (Section 10.3.5).

10.3.3 The Pariser-Parr method of limited
configuration interaction

Approximation of the wave function as a single-determinant function, is,
as a rule, insufficient for the calculation of the electronic structure of
molecules in excited states. A remedy for this situation can be found
by describing the electronic states of the molecule in terms of a linear
combination of Slater determinants (cf. Section 5.4).
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Slater determinants can be constructed on the basis of either HMO
(see below) or SCF molecular orbitals. In some systems (for example,
benzenoid hydrocarbons) the HMO and SCF orbitals lead to practically
the same results. In systems with heteroatoms, however, the application
of SCF molecular orbitals is preferable; in addition, it is possible to use
the fact that configurations of singly excited states do not interact with the
ground state configurations [the Brillouin theorem (cf. Section 5.5)].
The integrals which must be evaluated when employing the configuration
interaction method are analogous to the integrals appearing in treatments
using the SCF method.

In the semiempirical method of Pariser and Parr!? the expansion
of the wave function involves, in addition to the determinant of the ground
state, only the determinants of singly excited configurations, obtained
from the ground state configuration (cf. Sections 5.4 and 5.5) by replacing
the i-th occupied molecular orbital by the j-th unoccupied molecular
orbital. Such a configuration will be denoted by the symbol (i, j).

The wave function describing state ¢ can then be written in the

form
Y,=Cod, + Z C

(i,))

(10-52)

(i, J)" ij>

where expansion coefficients C are variation parameters. Expansion of
the wave function using all the singly excited configurations is sometimes
too tedious from the aspect of computation and then only some of them
are considered. The general algorithm for the calculation has been
described in Section 5.4.

The expression for the charge distribution derived from the wave
function described above warrants particular attention. Whereas the
electron densities on atoms (q,) and bond orders (P,,) can be simply
expressed within the single-determinant approximation (SCF or HMO;
closed shell system) in the form

=2 ) ckey (10-53a)

i(occ.)

4, = P (10-53b)

the expression for the bond orders in the limited configuration interaction
(LCI) method involving singly excited configurations alone is defined
in a far more complicated way>*:
le;Cl) = P + (z) [C(l ])a]z(cwcw (’ul(’w) +
L,J

+ / Z (CO a (C(l J)a) ((’m vj + Lujcw) +
(%))

+ Z (C(i,j)a) (C(k,l)u) [((’u} vl + Lul('v_)) 51k ((’m vk + cukcvi) 51’[] (10-54)

(i) <(k,1)
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P,, is the bond-order matrix element of the ground state configuration
[cf. Eq. (10-53a)], indices i and k denote occupied molecular orbitals,
j and | are unoccupied molecular orbitals and it is assumed that

expansion coefficients are real numbers. The summation ) is equi-
1 . GH<hD
valent to the summation 5 Y. over all the considered singly excited
(.4 # (k1)

configurations. The expression for the generalized bond order “p%
follows from the expression for the first-order density matrix cor-

responding to wave function ¥,
Furs ) = X P nulr) 1,(r) (10-55)
uv

(cf. Section 11.2.2). In this equation, the atomic orbitals are assumed to
be real functions.

10.3.4 A survey of semiempirical n-electron methods

Having become acquainted with the most important types of semi-
empirical methods used for studies of conjugated systems, the most
important approximations which have so far been employed will be
surveyed (Table 10-9). In this connection, we will mention various
possibilities for the approximation of integrals and describe the most
important expressions.

The neglecting of individual terms and approximations will be
discussed systematically; the scheme given in Table 10-9 applies for the
further discussion.

Group A.

The very numerous theoretical characteristics of planar (or almost
planar) conjugated systems, which are interesting for chemists and
physicists, are not significantly influenced by this group of approximations.

Group B.

Subgroup B.1. Within the Goeppert-Mayer and Sklar approxima-
tion, in instance (i), «; (c denotes core) will be approximated by the
corresponding ionization potential of the atom in the valence state.
In instance (ji) the penetration integrals are explicitly considered, but this
is rather rare?**® =39 Their inclusion is manifested in two chief ways:

a) in a non-uniform charge distribution in alternant hydrocarbons,

b) in the fact that the theoretical transitions corresponding to o
bands in the electronic spectra of benzenoid hydrocarbons (see below)
become allowed.
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Table 10-9
Survey of Neglected Terms and Approximations in n-Electron Semiempirical Methods
Used for the Study of Conjugated Systems

A.1. Neglect of relativistic corrections Bl u=v
2. Born-Oppenheimer approximation (i) approximation through effective
3. Electron correlation is included only ionization potentials I (neglect of
in empirical parameters penetration integrals)
4. m-electron approximation (if) calculation of penetration
[ A4, d integrals
E= {42 dr 2.u#Fy
L =Y +YY 4,)) (i) p and v are neighbours
i i<j a) studies with constant empirical
4,...normalized Slater determinant values (2 to 3 V)
of the ground state (LCAO p) values depend on the bond
approximation, y denotes AO’s) length [B, =f(r,,) or f(P,)]
(i) p and v are not neighbours

) B, = O(tight binding approxi-
mation)

B B~ Si

— a) jx“(l) H*(1) x,(1) dz(1). . .one- and two-centre core integrals
b) _[x"(l) (D #(1,2) 1,(2) 1 ,(2) dz(1) de(2) = (v | ¢0). . .many-centre electron repulsion
integrals

C.1. “m* catastrophe” [ZDO: zero differential overlap. . . (uv | ¢0) 8,,6,,]
2. One-centre electron repulsion integrals: (up | up) = Yu=1,— A4,
3. Two-centre electron repulsion integrals: (up|vv) = Y., approximated using various
formulas (see the text)

Subgroup B.2.
Case I: p and v are neighbouring atoms

a) If constant quantities are employed, it is possible to use the
values given in Table 10-8.

b) In general it is necessary to include the dependence of these
integrals on the bond lengths’!:32. Several empirical formulas have
been proposed for this purpose*, 1 and 6 are particularly important:

1. Be, = B5 exp {a(1.397 — r,)} (10-56)

a is equal to either 4.5988 (reference 53), or
3.2196 (reference 54)

* The formulae were taken directly from the quoted papers. The distances are mostly
in 107'°m and the calculated quantities are in eV. Before using these formulae, it is
recommended that the reader consult the original literature.
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and further r,, = b — cP,,
with b = 1.52, ¢ = 0.19, or
b = 1.50, ¢ = 0.15 (cf. cited papers)
B5 denotes the core resonance integral of the standard C—C bond;
the value B = —2.318 eV is frequently used.

2. » ¢, = k/rS, (reference 55) (10-57)
keec = —17.464
koo = —13.983
kc—o = —28.8086
3. oy = —6442 exp (—5.6864r,,) (reference 13) (10-58)
4. B, = —2524 exp {*5.047<£‘-‘—E—_—-6L - 2>2 - SrMV} (reference 56)
(&s are the effective nuclear chargé; of the orbitals) (10-59)

5 B, = —1.60 + aP,, + bP?, (reference 57) (10-60)

6. Finally. Mulliken’s relation between the resonance and overlap integrals
must be mentioned:

C C S v
o = Bo —SOL (10-61)
(the quantities with index O refer to the reference bond)

7. e, = L ds, (reference 58)

uv
T druv

Case II: pu and v are not neighbouring atoms

a) B;, = 0 (“tight binding” approximation; this approximation is
used very frequently).

b) If all B’s are considered, then the greatest difficulty lies in finding
a suitable function to correctly describe the interaction between more
distant centres. Flurry and Bell>® tested several approximations:

;v ~ Suv
=1 [a exp(—hr‘w)]

The following relation appeared to them to be useful (although not
optimal):

‘c“' - (_2—2__—8%)2:5& (Huquv)”Z (10-62)
uv

(H,, is the ionization potential for the valence state.)
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Flurry, Stout and Bell*® employed the formula of Katagiri and
Sandorfy® in studies of phenols and related compounds.

S
e, = - e {b, + (up|pp) + b, + (v |w) + 2up|w)}, (10-63)

where b, and b, are empirical constants:

Atom  Type b,

C - 7.56
N pyridine 11.15
N pyrrole 20.0
(0] carbonyl 9.0
o furan 38.0

The following expression appeared to be particularly useful:

22,7
B = K252 = Su), (10-64)

u" v

where K is a numerical constant (0.5246), Z, (Z,) are the core charges
and S, is the overlap integral between Slater orbitals.

Group C.

Subgroup C.1. The zero differential overlap approximation (ZDO)
reduces “catastrophe m*” to “unpleasantness m?”. It is almost universally
applied. -

Subgroup C.2. Approximation I— A [cf. Eq. (10-45)] of one-centre
electron repulsion integrals, introduced by Pariser, has proven very
satisfactory.

Subgroup C.3. Two-centre electron repulsion integrals for n electrons
located in the x, and x, AO’s

Vo = (| w) = [ (1) 2,(D) [ /(dmegr, )] x¥(2) 1,2 de(1) de(2)  (10-65)
must fulfill two conditions:
lim y(r) = vy, (10-66)
r—0
lim y(r) = e*/4ne,r
Many formulae are used in the literature for approximating these integrals;
several of them are given here for illustration; formula 4.* below has
proven very useful.

* The distances are substituted in multiples of 107 '®m; y,, is in eV.
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1. The expression given by Parr®® based on a model in which the
distribution of the m charges is approximated by charged spheres:

_ 27-1/2 27-1/2
o2 (2] 5] )
uv uv uv

(r,, 2 28 x 1071° m) (10-67)

R, (R)) denotes the diameter of a homogeneously charged sphere. For R,
it holds

4.597
T2

u

R 1078 cm

In addition,

Yoo = 2[00 + 2] —ary, — b2, (r,, <28x1071°m) (10-68)

uv

2. The Pople approximation'®
Yy = 143997, (10-69)

3. The Léwdin-Ohno approximation®*

62

Yoy = W, (10-70)
14.399 '
0.5[7,, + 7l
4, The Mataga-Nishimoto approximation for hydrocarbons*®

e 14399
a+r, 1328+r,

where ¢ =

Vor = (10-71)

This completes the detailed discussion of parametrization in m-elec-
tron methods. There are several reasons for the extent of this information.
First of all, when using semiempirical methods, the chemist frequently
encounters many of the given formulae in the literature. Furthermore,
the n-electron methods are not obsolete, as some authors believed in the
early seventies. In spite of the development of theoretically more exact
methods and the use of computers, it cannot be expected that, in the near
future, these methods will yield better numerical results for planar
conjugated systems than those based on the m-electron approximation;
in addition, financial outlay connected with calculations on systems
containing 20 to 50 atoms (50 to 120 electrons) would be unjustifiable.
Furthermore, the parametrization of m-electron methods is sufficiently
developed so that these methods are very suitable, not only for the
interpretation of experimental data, but even for relatively safe predictions;
they can also contribute to the solution of structural problems.
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At present there is, however, a certain characteristic of semiempirical
quantum chemical methods which should be mentioned; this could be
termed a method and parameter explosion. The reader has probably
noticed that the number of combinations of proposed approximations
to the individual integrals (Table 10-9) amounts to several hundred. For
the chemist who is not a quantum chemist, selection of a method for the
interpretation of experimental data is not an easy task. It is obviously
necessary to choose the optimum combination (i.e., the one best describing
the experimental results). This choice is almost impossible. Confusion can
be overcome by applying a version which has proven satisfactory in
a well established laboratory. There is, however, also a second possibility:
to investigate systematically, after sufficient theoretical consideration, the
very numerous available possibilities. Though this is rather thankless
work, it has led®? to useful results. It would be foolish to believe that it
yields the best results for conjugated compounds of all known types and
for all important physical characteristics. But we can safely claim that
it yields good results for the characteristics of the ground state (heats of
atomization, dipole moments, bond lengths) as well as for the charac-
teristics of electronically excited states (excitation energy, transition and
dipole moments). This is a very positive result, because in the literature
it is widely believed that description of the characteristics in ground and
excited states can be achieved only by using two different sets of para-
meters.

Because of its universal applicability, because of the possibility of
considering the o-core polarization and because of its “objectiveness”
(in the sense of “independence” of the person doing the calculation as far
as the parametrization is concerned), the proposed procedure deserves
more detailed description. The diagonal elements #’;, are approximated
by the formula

H o =0y — ;Zvv,w =2 Z Vo (10-72)
vFu [

where the individual terms are defined as follows:

a,=b22+c,Z, +d, (10-73)
Yuu = €2, + 1, (10-74)
9,=9+A9,2, - Z9) (10-75)

The second summation in Eq. (10-72) is carried out only over atoms
bound by o bonds.
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The change in the core charge, AZ , is calculated using the formula

Xy = Xy -2 _

v;‘ LT T s (10-76)
where the summation is carried out over all the neighbours of position g,
Le.,, not only over all the atoms of the conjugated skeleton. y, is the
Mulliken electronegativity of atom y; in references 62 are given tables
of the optimal values of constants b,, c,, d,, f,, 3; and A3, for elements
of the first two periods of the periodic table of the elements and also
for As, Se, Br, Sb, Te and 1. The 9, terms appear in the expressions
for the bond length

_ 29 +0.175(Z, - 7)) B nn,
Ty = \/I: 9“ Y (1523 — 0.19P,)) —"‘—nu T (10-77)

where n, and n, are the principal quantum numbers of the Slater orbitals
of atoms p and v [cf. Egs. (8-6) and (8-7)].

Finally, the resonance integrals (all of them, the “tight binding”
approximation is not used here) are approximated by the expression

= 4,,=0. 542ﬁ~u"‘—s 2 -5,), (10-78)

u

where S, is the overlap integral between the Slater orbitals of atoms u
and v. It remains to be added that the two-centre repulsion integrals have
been evaluated using the formula introduced by Mataga and Nishimoto

[Eq. (10-71)].

103.5 Very simple m-electron
version of the MO method

One of the oldest versions of the MO method, the Hiickel method!”-04~¢
(HMO), belongs in this group. It is characteristic for this method that
various simplifications were taken to extremes: the introduction of any
further simplification would result in the collapse of the whole method.
Similarly as in the EHT method, here the electron repulsion is also not
explicitly considered and it is assumed that the total Hamiltonian can be
expressed as the sum of effective Hamiltonians, each of which depends
on the coordinates of a single electron (cf. Section 5.5):

Nr
H(1,2,..,n)=) ]fff (10-79)
n=1

Consequently, the effective operator #' corresponds to the first electron,
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etc. This need not be specified because all matrix elements in which these
operators appear are —as mentioned below —considered to be empirical
parameters. Therefore, in practice, these integrals are not calculated but
are replaced by suitable numerical values (adjustment to the experimental
data).

The difference between the HMO method and the EHT method lies
in that a) in the HMO method the overlap integrals (xu| L =S,
(u # v) are neglected and b) while the p, atomic orbitals of the carbon
atoms alone establish the basis set for the MO’s in the HMO method,
all atomic orbitals corresponding to the valence electrons are considered
in the EHT method.

The optimum values of c,; (4 is the AO index, i is the MO index

m

in the molecular orbitals ¢, = ) ¢,X,) are determined as usual by the
n=1

variation method. The system of linear equations for their determination
has the form

M=

c¢(H,, — ESM) = 0; u=12..,m (10-80)

v=1

and it must hold that
det || H, - ES”V|| =0 (10-81)
The following types of matrix elements occur in the energy calculation
H,, = [ 1, dt = (o, | 7|1, (10-82)

denoted by o, (Coulomb integral: 4 = v) and by B,, (resonance integral:
u # v; the atomic orbitals are considered to be real functions).

In the Hiickel method, the following simplifying assumptions are
made concerning these integrals:

a) The «,, for all centres (corresponding to all conjugated C atoms)
have the same value, a.

b) B,, is considered to equal zero if the carbon atoms in the u
and v positions are not bound by a ¢ bond and to equal the uniform
value B if the C atoms are bound to each other (the “tight binding”
approximation).

¢) It is assumed that the atomic orbitals form an orthonormal basis,
so that

where 9, is the Kronecker delta.
The o and B integrals are considered to be empirical parameters
of the HMO method, so that numerical calculations can be carried out



224

within the framework of this method without specifying the expressions
for the AO’s and for the effective Hamiltonian. The total m-electron
energy [cf. Egs. (5-40b) and (10-115)] obtained within the HMO scheme
will be denoted by W.

Several refinements have been introduced into the HMO method;
a modification enables extension of the method to systems containing
heteroatoms (Pauling).

The first refinement (Wheland) concerns the introduction of non-
vanishing values for the overlap integrals between adjacent orbitals; it is
usually assumed in cyclic systems that S, = 0.25,where u and v designate
the 2p, AO’s on adjacent carbons connected by a ¢ bond. The introduction
of this refinement does not lead to numerical complications and can be
made after completion of the standard HMO calculation. It appears,
however, that its introduction is not connected with increased quality
of the theoretical data. Considerably more important are modifications
which do not employ constant values of «, and f,, but rather assume
functional dependences either

o, = 2,(9,)
or

B = Bu(Pyy):

or make both assumptions simultaneously. For more detailed information
on the respective methods as well as their range of application, see
Table 10-3.

Many studies have been devoted to the selection of empirical
parameters for heteroatoms and for heteroatom—carbon and hetero-
atom —heteroatom bonds. Streitwieser proposed a very useful series of
values; we have also used similar values in our laboratory; Table 10-10
indicates a set of values which proved satisfactory in various applications.
These parameters are generally stated in the form

4, = o+ h,f (10-83)
Buc = kuch, (10-84)

where u denotes the heteroatom, uC is the heteroatom —carbon bond, « is
the Coulomb integral of the 2p, carbon orbital and # is the resonance
integral of the m carbon —carbon bond.

It can be shown that, for some simple systems (for example polyenes,
cyclopolyenes, polyacenes), expressions for the calculation of orbital
energies and other quantities can be given in closed form (Table 10-11).
For polyenes, the general expression of the orbital energy can be obtained
in a manner which will be outlined briefly here using a polyene of m
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Table 10-10

HMO Parameters h, and k,, [Eqs. (10-83) and (10-84)]
Atom Example h, Bond k,c
B (borazole) -1 B=N, B=C 0.7
C (naphthalene, azulene) 0 C=C 1
C (hexatriene) 0 C=C 1.1

Cc-C 0.9
N (pyridine) 0.5 C=N 1
N (pyridine cation) 20 Cc=N 1
N (pyrrole, aniline) 15 C-N 08
N (nitrile) 0.5 C=N| 14
N (nitrobenzene) 20 C=N 0.8

=0
N 0.7
~0
(0] (ketone, phenolate) 1.0 C=0,C-0" 10
o (furan, phenol) 20 Cc-0 038
S (thioketone) 0.5 C=S 09
S (thiophene, thiophenol) 1 Cc-S 0.7
F (fluorobenzene) 3 C-F 0.7
Cl (chlorobenzene) 2 c-dl 04
Br (bromobenzene) 1.5 C—-Br 03
1 (iodobenzene) 13 C-1 0.25
Table 10-11

General Formulas for Calculation of HMO Orbital Energies in Several Types of Systems

Formula System k;
in Fig. 10-1
1 Ii I 2cos—" s =12 .,m
inear polyenes v ma i i=12 ..,
N 2jn .
11 cyclic Hiickel polyenes 2 cos 7; i=L2 ...,m
I lic Mobi I 2 jn = 41,43 <i(m — 1), m even
cyclic Mobius polyenes cosT, j=+1, 43, .., tm,m odd

carbon atoms as an example. The construction of the determinant
according to Eq. (10-81) including the HMO approximation is straight-
forward; for the sake of simplicity, the equation obtained will be divided
by B and the substitution (x — E)/f = k will be introduced, to give
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k100 ..0
1k10..0
01k1..0[=0 (10-85)
0000 ..k

This determinant of order m will be denoted D, ; expansion by cofactors
of the first row elements leads directly to the recurrence formula

D, =kD, ,—D, _, (10-86)

It will be convenient to find a pair of numbers r and s which possess the
following properties:

r+s=k (10-87a)
rs =1 (10-87b)
Solving this system of equations gives
r=k/2+ J(k*4 - 1) (10-88a)
s =k/2 — J(k*/4 - 1) (10-88b)

The recurrence formula can be expressed in terms of r and s:
D, —sD, ,=rD,_, —sD,_, (10-89a)
D,—-rD,_,=sD,_, —rD,_,) (10-89b)

The left-hand sides of these equations are terms of geometric series with
quotients r and s; it is therefore possible to write

D, —sD,_, =r""*D, — sD,) (10-90a)
D, —rD,_, =s""*D, —rD,) (10-90b)

D, _, can easily be eliminated from these equations and the following
relation is then obtained:
m-—1 _ _ am—1 _
p " (D, —sD,) —s"" (D, —rD,) (10-91)

m r—s

Eq. (10-91) can be changed into a more convenient form by the substitution
k =2cos ¢ (10-92)

Then for r and s it holds that
r=cos¢ + isin ¢ (10-93a)
$=Cos¢Q — isin@ (10-93b)
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Using the Moivre theorem and considering the expressions

D, =k
D,=k*-1
then
p, =Snmt e (10-94)
sin ¢
Now the equation D, = 0 can be solved. From Eq. (10-94)
sin(m+ 1)¢ =0, (10-95a)
so that
__Jn .
0= (10-95b)
and therefore
- Jn .
kj--2cosm+1 (10-96)

It is evident from the course of the cosine that all the required solutions will
be found by considering a total of m values for j: 1,2, 3, ..., m. It is
obvious that the expression obtained for k; is identical with that given
in Table 10-11. It remains to be added that expressions are available
in the literature®* which allow direct calculation of orbital energies
for further systems: for cyclopolyenes in which conjugation is caused by
overlap of the p and d orbitals (IV), for radialenes (V), dendralenes (VI)
and polyacenes (VII) (Fig. 10-1).

In systems I to VII (and similarly in all further periodic conjugated
molecules), expressions for the expansion coefficients and for quantities
derived from them can be stated in closed form. This fact can be
illustrated by the expression for the bond orders in a polyene with m
carbon atoms (where m is an even number),

1 ' T _ Qu+m
u—1 S -
PM+1 = 1 ' cosec 3 5 + (—1)*7" cosec ) 2 |, (10-97)

and by the expression for the n-electron energy of a cyclopolyene with m
carbon atoms:

T
W = mo + 28 <cosec o i 1), (10-98)
where o and § denote the Coulomb and resonance integrals, respectively.

It is desirable to briefly discuss the numerical part of the calculations.
The HMO method is an ideal example because it provides very lucid
results. It has, however, some important features in common with more
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Fig. 10-1. Schematic representation of some m-electron systems. I —linear polyenes, II —cyclic
Hiickel polyenes, III-cyclic Mobius polyenes, IV —cyclic p—d polyenes, V —radialenes,
VI—dendralenes, VII —polyacenes.

complicated methods. The solution of the secular determinant is, for
example, met in the HMO, SCF and the CI methods. However, the
difficulty of obtaining the matrix elements in the individual methods
differs a great deal.

For illustration, methylenecyclopropene (VIII) can be chosen. The
following system of equations is then valid:

4 } (@—E)c; +c,B =0
? Y @—=E)c,+cf+cp+c,f=0
H, ! (@ = E)es +c,B + ¢ B =0

VIl (@—=E)cy + c,p + ;B =0 (10-99)
The substitution
—-@—-E/f=k (10-100)
yields
—ke, + ¢, =0
—ke, + ¢y +e3+c,=0 (10-101)
—key+ ¢, + ¢, =0

—kcy + ¢y + ¢y =0
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These equations have a non-trivial solution only if the determinant
of the multiples of ¢ is zero, i.e.

~k 1 0 0
1 -k 1 1

o 1-r 11=9 (10-102)
0 1 1 —k

Expansion of the determinant leads to a quartic algebraic equation, the
solutions of which are

k, = 2170; k, =0311; k, = —1000; k, = —1481

Because of the relationship between k and the orbital energy E, it then
holds that

E=a+kp (10-103)

Since the Coulomb (x) and resonance (f) integrals are negative quantities,
the lowest of the four values of the orbital energy can be written
in the form

E, =a+ 21708 (10-104)
The energy of the least favourable level is evidently
E, =a— 1481P (10-105)

By stepwise solution of system of Egs. (10-101) for k,, k,, k, and k,,
the expansion coefficients of all four MQO’s are obtained. Their normalized
values are given in Table 10-12. The procedure for the calculation
is shown in detail, for example, in the collection of examples®®. Here
it is sufficient to give the expression for ¢, corresponding to ¢, :

0, = 0282y, + 0612y, + 0.523y, + 0.523y, (10-106)

Because errors occur very easily in the numerical computations,
it is desirable to discuss the checking of the results in somewhat greater
detail.

First, the orbital energies (E;, = a + k,f) and molecular orbitals
will be discussed; it can be shown that the sum of the eigenvalues
of the HMO matrix (quantities k) must equal the trace of the HMO
matrix [cf. Eq. (4-130)] and that the sum of the squares of the eigen-
values equals the sum of the squares of all elements of the HMO
matrix, ie.:

Z k; = z a,, (10-107)
i=1 p=1
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Lki=Y Y a, (10-108)
i=1 p=1v=1
Because of the orthonormality of the molecular orbitals it holds that
5(Zcmxu)2 dr = Zcm(xu |2 + (Zv) ;cm Wty =1 (10-109)

Because the AO’s employed form an orthonormal set, the expansion
coefficients evidently fulfil the condition

i = (10-110)
n=1

In the EHT method, where the overlap is not neglected, a different
condition is, of course, valid. It can similarly be shown that, for orthogonal
MO’s (cf. Table 10-12)

Z =05 i 4] (10-111)

In order to simplify checking of the correctness of the results given
in Table 10-12, a table of the squares of values k; and c,; is drawn up.

Table 10-12
HMO Orbital Energies and Expansion Coefficients of Methylenecyclopropene (VIII)

u= 1 2 3 4
i k; Expansion coefficients (c,;) Y €y
"
1 2.170 0.282 0.612 0.523 0.523 } 0
2 0.311 -0.815 -0.254 0.368 0. 368} 0
3 —1.000 0 0 -0.707 0.707 } 0
4 —1.481 —0.506 0.749 0.302 0.302
Tk,= 0000
§= 1 2 3 4
i k2 Squares of expansion coefficients (cZ) Y.k
m
1 4.709 0.080 0.374 0.273 0.273 1.000
2 0.097 0.664 0.065 0.135 0.135 0.999
3 1.000 0 0 0.500 0.500 1.000
4 2.193 0.256 0.561 0.091 0.091 0.999

Tk = 7.999 Zc’ 1.000 1.000 0.999 0.999
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From the HMO matrix* of the investigated system

0100
1011
0101

0110

it follows that
4

4 4

Y 4,=0 and ) } a,-=
n=1 n=1v=1

The values of k; and c; are apparently correct.

Furthermore, in all the conjugated hydrocarbons, the sum of the
squares of k; equals double the number of C—C bonds; this can easily
be verified.

It is also simple to check the correctness of the calculation of the
electron charge densities. The sum of the electron charge densities in
the individual positions (g, = P,,) equals the total number of  electrons (n,):

™M=

g, =1, (10-112)

1]
—

u

The check-up on the correctness of the bond orders is more complicated.
It can be shown that the orbital energies (the total energy) of the system
are related to the expansion coefficients (bond orders). This relationship
is obtained using the general expression for the energy. For the orbital

energy,
#ef
E = S0l o) (10-113)

: KA
where ¢, = Z c,iX,- Because of the orthonormality properties of the ¢,

and the AO’s 1t holds that
Z ot + 253 e (10-114)

u<v
Considering the deﬁmtlon of the m-electron energy, W (as the sum
of the MO energies multiplied by the occupation numbers), valid in empirical
methods, a transition from the expression for E; to the expression for W
can be made by summing over all the doubly occupied MO’s:
W=2Y% E=2Y Yo, +2 Y 2yYcecB,, (10-115)
i(occ) i(occ) p i(occ) u<v

* The HMO matrix is identical with the topological matrix, which has ones in the
positions corresponding to C—C bonds and zeros in all the other positions.
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The summation over the MO’s can easily be performed employing
the definition of the electron charge densities and bond orders, giving
the relationship
W= Zqﬂau + 222Puvﬂyv (10'116)
n

B<v

It follows from Egs. (10-114) and (10-116) that the orbital and
total m-electron energy can be calculated using expansion coefficients;
because W is determined simply by summing the corresponding orbital
energies and because the correctness of g can be verified using relation
(10-112), it follows that Eq. (10-116) can be used for checking of the bond
order values. The expressions for E; and W have an important role in the
perturbation treatment.

First it will be verified whether E;, = a + 2.1708 corresponds to ¢,
[Eq. (10-106)] in methylenecyclopropene. According to Eq. (10-113)

E, = {(0.282y, + 0.612y, + 0.523y, + 0.523x,) x
x #*'(0.282y, + 0.612y, + 0.523y, + 0.523y,)dr = a + 2.1708

Thus the previously quoted value of E, is correct. The data will now be
verified in the molecular diagram:

0.818

First it holds that

4
Y g, = 1488 + 0.877 + 0.818 + 0.818 = 4.001
u=1

From the given orbital energy values it follows that

2
W= Y 2E, = 4a + 49628
2

W can be calculated using Eq. (10-116). Because uniform values of « and
are employed in the HMO method the relation
W = 1.478a + 0.8820 + 0.820a + 0.820a +
+ 2(0.7588 + 0.4538 + 04538 + 0.818p) = 4a + 4.9628

is valid. The correctness of the data in the molecular diagram has
therefore been verified.
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103.6 Perturbation methods within the framework
of the simple MO method

Now a group of methods yielding values which can be considered as
approximations to HMO values will be considered. Let us assume that
the quantum-chemical (HMO) solution for a particular system is known
(i.e., all the E;s and c,;s are known) and that the solution for a system
differing only slightly from the initial system is required; the new
system can differ in the value of the Coulomb integral in the u position
or in the value of the resonance integral of the go bond. This situation
can be symbolically described as follows:

Original system New (perturbed) system

ua,) Hle, + o)

o o

0 / 8.0 0 //(ﬂ,, + 0B,,)

. ... E; = E, + OE,

El
W..W=W+ W

Known values{q ...q' =g+ 6q ¢ Values to be calculated
P ..P =P+6P

c U

TR C‘"-

The characteristics of the new system could, of course, be obtained
by the usual HMO procedure, i.e. by arranging and solving the respective
secular equation. It is typical for the perturbation treatment that
the approximate values of the required characteristics (of the new system)
can be obtained from (known) characteristics of the original system.
The function allowing calculation of the orbital energy E will be
approximated by another function, this substitution being meaningful
within a certain interval. A Taylor series is a suitable function for this
purpose:

2
Bo) = B@) + 2o (o, ) 40 TED e
+ L PE@ (0, — a) + ... (10-117)

31 03
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The expression for the total n-electron energy can, of course, be expanded
quite similarly. A rough estimate of the extent of the perturbation,
which is expressed by the values da, and df,,,, is generally not difficult.
For illustration, the perturbation can be imagined to represent the
substitution of the =CH— group by a nitrogen atom, ie. the formal
formation of pyridine from benzene:

o o+ 0.58

N
O — O
The change in the value of the Coulomb integral, da, is then given
by the expression

oa = o + 0.58 — o = 0.58
W_J l
new original
Coulomb integral

It remains to calculate the values of the partial derivatives. Eq. (10-114)
leads to the result*

OE, _ » JOE, _
2a. i B, = 2c ¢, (10-118)

n

From Eq. (10-116)* it follows that

ow ow
T 9 g, = e (o

"

Thus, the first differential coefficient in expansion (10-117), corresponding
to the change in the Coulomb and resonance integrals, is estimated
for both the orbital energy and the total energy. The calculation of
further differential coefficients will be discussed later. First, however, the
number of terms in expansion (10-117) to be considered must be decided:
it is necessary to compromise between accuracy (which demands as many
terms as possible) and ease of calculation (which, of course, requires
as few terms as possible). According to the number of derivatives
considered, we speak of first-order, second-order, or higher-order per-
turbation calculations:

oc2. 0 ..
* The terms FC“L&“ and 5%‘— o, are negligible compared to ¢, 'and g,,.
a“ (]
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OE = 1st derivative + 2nd derivative + higher derivatives
Perturbation calculation of

first -order
_

second order

higher order

—_—
>

Fortunately, it appears that the first-order derivative often suffices for
qualitative or semiquantitative solution of problems. The energy expressions
for the perturbed system are given in Table 10-13.

Table 10-13
Expressions for the Energy of a Perturbed System
Energy Perturbation
Coulomb integral resonance integral
orbital E, + cloa, E; + 2c,c,08,,
total n W+ q,0a, W+ 2P,68,,

If changes in « and B occur simultaneously, then the following
relation holds for the total energy:

W' =W + q,00, + 2P,0B,, (10-120)

The perturbation can, of course, occur in several centres simultaneously;

in the general case
W =W+ anéau + ZZPuvéﬂ“v, (10-121)
13 uv

where the summation is carried out over all “perturbed” atoms ()
and bonds (uv). Calculation of orbital energies is usually confined to the
first-order perturbation theory (although higher terms can, of course,
be included). In the calculation of the total energy, it is interesting to
consider the second-order derivatives, as they enable calculation of
electron densities and bond orders. The expressions for the second-order
derivatives can be written in the form

w0 (oW aq
5a = Ga, (aaﬂ>‘ s, (10-122)
FW o (aW\_., P
= =28 10-123
= a8 a0 (e

where relations (10-119) were employed.
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The physical significance of quantity dq,/da, is clear; it corresponds
to the change in the electron density induced by a change in the
Coulomb integral; quantity dP,,/0B,, has analogous meaning. These
quantities are called®® polarizabilities and they are denoted by the
symbol II. It is possible to generalize and to extend the definition
of polarizability:

(

atom—atom ... IT v ==k W

atom—bond ... IT = —agﬂ—
polarizability “ L (10-129)
bond —atom ... IT . ==

P
‘ bond—bond ... I, , = 75‘:

The polarizabilities discussed so far in connection with the perturbation
calculation are special cases and are called self-polarizabilities (atom — atom,

1,,; bond—bond I, ,). For the n-electron energy of the perturbed
system,

1
W =W+ 4,00, + 5 I1,,00) (10-125)

W =W+ 2P, 0B, + 11, (5B, (19-126)

It should again be borne in mind that the energy W’ of the new
(perturbed) system is calculated solely in terms of characteristics of the
original system (g, P, IT); it remains, for general information, to give the
expression for the I, polarizabilities:

0CC unocc C C. C kc

=4 Z 2 e (10-127)
j k

J

where the k; values are defined by Eq. (10-100). The first summation is carried
out over the occupied MO’s, the second over the unoccupied MO’s.

Before giving a few examples, it should be noted that the polar-
izabilities are used for perturbation calculations of indices occurring in
molecular diagrams; by rearranging the definitions, the relationships

dq, = 00, P, =1, 0B, (10-128)

oo
are obtained. The numerical calculation of the polarizabilities in more
extensive systems is rather lengthy, however, for hundreds of systems
these data are available in the literature. It is also true, however, that
polarizabilities are no longer used as much as they once were.
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As an example, the orbital energies, the total energy and the
n-electron density distribution for cyclopropenone will be calculated by the
perturbation method from the data for methylenecyclopropenone. In order
to determine how closely the perturbation data approach the data obtained
by solving the secular equation, the results obtained from the perturbation
method will be compared with the accurate (HMO) calculation:

Y e

Initial system Perturbed system

Table 10-12 gives the HMO data for the initial system, the orbital energies
and the expansion coefficients; the polarizability values are as follows:

Y 1 2 3 4
u
1 0.402
2 | -0247 0311
3 |-0078 ~0.032 0.434
4  |-0078 ~0032 —0324 0435
ut 1 2 2 3 2 4 3 4
e
1 2 | 0265
2 3 |-0201 0329
2 4 |-0201 ~0.005 0329
3 4 | 0137 0123 —0123 0110

The polarizability matrices are symmetrical and the self-polarizabilities
are the diagonal elements of these matrices.

The values of the orbital energies [cf. Eqs. (10-100), (10-117) and
(10-118)] can now be calculated:

K, =k, +(c,,)?0a, = 2170 + (02827 = 2249
K, =k, +(c,,)?0a, = 0311 + (08152 = 0976
Ky = ks + (c,5)* 62, = —1.000 + 0 = —1.000
K, =k, + (cy0)* 02, = —1481 + (0.506 = —1.225

For the n-electron energy

W = W + q,00, = 4a + 49628 + 14888 = 4o + 6.4508
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so that

q; = q, + II,,6a, = 1488 + 0.402 = 1.890

q, = q, + 11,60, = 0.877 — 0.247 = 0.630

g5 = q5 + 11,360, = 0.818 — 0.078 = 0.740

q, = q, + I,,60, = 0818 — 0.078 = 0.740
The characteristics of the original system (A) and those of the perturbed
system (B) (perturbation model of cyclopropenone) can be compared with
the HMO data for cyclopropenone (C) (Table 10-14). It is then interesting

to investigate the extent to which the W’ value approaches the W (HMO)
value if the second-order perturbation calculation is used:

W = W+ q,6a, + II,,(0u,)? (10-129)
(= 40 + 49628 + 14888 + 04028 = 4a + 6.852P)

Table 10-14

Energy Characteristics of Cyclopropenone
(Expressed in Multiples of the § Value) and n-Electron Densities

A B C
k, 2.170 2.249 2303
k, 0.311 0.976 1.000
ky —1.000 —1.000 —1.000
k, —1.481 —-1225 —1.303
W— 4a 4962 6.450 6.606
q, 1.488 1.890 1.759
q, 0.877 0.630 0.723
q3 0.818 0.740 0.759
qs 0.818 0.740 0.759

In the chapter on electronic spectroscopy, the very useful application
of the perturbation method for estimation of the effect of substituents
on the position of the longest wavelength bands is discussed.

10.4 The FE-MO method®”~7°

The free electron method is now used very little in practice. It seems
unable to compete with the very flexible and universally applicable
MO-LCAO method. For study of the theory of the chemical bond,
however, it has several interesting features. The basic idea is very
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simple: the conditions for the m-electrons in polyene (free mobility in
the vicinity of the skeleton of C—C bonds and the “impossibility”
of leaving this skeleton) are reminiscent of the conditions for a particle
in a potential box. This model is undoubtedly very primitive; its
advantage lies in that it leads to such a simple form for the Schrodinger
equation that the solution can be achieved in a closed form (by direct
integration). Except for the hydrogen atom, this is one of the few
such cases.

Transition to more complicated systems requires the following
modification of the simple model: (i) transition to a two-dimensional
box (this allows the treatment of planar conjugated systems), (ii) the
possibility of introducing positions with changed potential values allows
description of systems containing heteroatoms. In spite of these pos-
sibilities, the FE-MO method is unable to seriously compete with
the MO-LCAO method.

10.5 Valence bond theory (VB method)

The valence bond (VB) theory”! and the molecular orbital theory are
the two basic methods for construction of an approximate wave function,
describing the electronic states in a molecule. Historically, the valence
bond method evolved from the Heitler —London theory of the hydrogen
molecule, published in 1927, ie. one year after the appearance of the
fundamental papers on quantum mechanics. The Heitler — London work
was, in principle, the first successful attempt at quantum-mechanical
interpretation of covalent bonding in a molecule. Because the VB
theory represents an extension of the Heitler—London model of the
hydrogen molecule, it will be useful to demonstrate the physical meaning
of assumptions used in the VB method on this example.

Let us start by considering two hydrogen atoms which are initially
so far apart that interaction between them is impossible. The electronic
states of the atoms are described by the wave functions x,(1) and y,(2),
where the indices of the functions (of atomic orbitals) denote the nuclei
and the numbers denote the individual electrons (their coordinates). The
system as a whole is described by the product of these functions,

%D 2,2), (10-130)
as it is assumed that, for non-interacting atoms, the relationships
H(1) x,(1) = E,x,(1) (10-131a)

#Q)1,0 = ExQ) (10-131b)
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are valid, where (1) and #(2) are the Hamiltonians for electron 1 and
electron 2, respectively. The Hamiltonian of the entire system is then

HO = 22: H(i); (10-132)
i=1

the wave function in the Schrodinger equation
HOP° = E°P° (10-133)
can therefore be sought in the form
¥ =5, (10-134)
and the total energy E of the system is given by
E°=E, + E; (10-135)

[cf. Eq. (5-40b)]. This leads to the obvious result that the total electronic
energy in the absence of mutual interaction equals the sum of the
energies of the subsystems.

When the hydrogen atoms gradually approach each other, interactions
begin to occur between them, which are of three types depending on the
kind of participating particles:

a) electron —electron,

b) electron —nucleus of the second atom,

¢) nucleus —nucleus.

These interactions must be included in the total Hamiltonian
of the system and their resultant leads to ‘the formation of a stable
hydrogen molecule when the hydrogen atoms reach the equilibrium
distance. The construction of the complete Hamiltonian 3 encounters
no difficulties [cf. Eq. (5-18)] and therefore the principal problem lies in
determination of the approximate wave function ¥ for the system.
It is plausible to demand that at large internuclear distances the wave
function takes the form (10-134), describing two separate atoms. As
the electrons are indistinguishable, functions x,(1)x,(2) and x,(2)x,(1)
are equally probable and therefore wave function ¥ describing the
hydrogen molecule can be written in the form (omitting the normalization
factor)

¥ ~ %, %,2) £ 2,2 2D (10-136)

Function ¥ is, of course, still incomplete because it does not include the
spin states of the electrons. The two-electron problem was discussed
in Section 6.7, where it was found that the total wave function satisfies
the Pauli principle in two instances:
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a) if the part of the wave function that depends on the spatial
coordinates is symmetrical and the spin part describes a singlet state,

b) ifthe part of the wave function depending on the spatial coordinates
is antisymmetrical and the spin part describes a triplet state.

Thus the total electronic wave function can be written in the form
[cf. Eq. (6-113)]

¥, = N1, 0D + 1,0 60] 75 ) A — @ AW],  (10-137)
72

where the index g (gerade) indicates that the spatial part of the wave
functions is symmetrical with respect to permutation of the electrons.
A function of the following type is, of course, also admissible:

¥, = N,[1(0) 1,2) — 10) x1)] ﬁ (1) B(2) + «(2) B(D)], (10-138)

where the index u (ungerade) indicates that the spatial part of the wave
function is antisymmetrical. N, and N, denote the normalization constants
in the given equations. In Eq. (10-138), only one of the three possible spin
functions of the triplet state is considered (cf. Section 6.7), as the remaining
two correspond to the same (degenerate) energy level.

We can determine which of the two functions, (10-137) or (10-138),
describes a stable bond between hydrogen atoms. Calculation of the
energy expectation value for ¥, yields

LKy |\
T AT S
_ Niu ) 12 + 1,2 1M # [ 2,0 1 + 1, 10> _
2N + <1, [ 1,20 <6 [ 2,0)]

E

Jl + Kl
= (10-139)
1+ 582,
and similarly for ¥,
J -K
E,=—F, (10-140)
1-582,

where the normality of the spin functions was used and the following
symbols were introduced; for the Coulomb integral

I = Q| | 2ty (10-141a)
for the exchange integral

K' = Qo | | nx (10-141b)
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and for the overlap integral
S = | 1Y (10-141¢)

The notation for the integrals has already been defined by Egs. (5-31a)
and (5-31b).

The qualitative discussion of energy expressions (10-139) and (10-140)
is simplified by neglecting the overlap integrals. Then the total energy
of the hydrogen molecule, E,,, including the nuclear repulsion energy,
E___, can be written in the form

rep?
Eyg=J +E,, + K (10-142)
Ejpw=J +E ., — K (10-143)

At large internuclear distances the value of K’ is negligible and the
expression (J' + E ) represents the energy of the atoms and their
Coulomb interaction. At smaller distances the value (J' + E,. ) varies
slowly and has a shallow minimum in the region of the equilibrium
distancg of the nuclei. In this region K’ is a relatively large negative
number and represents about 90%; of the binding energy of the molecule,
provided it is in the singlet state, corresponding to the wave function ¥,.
For the triplet state corresponding to ¥, the K’ term leads to repulsion
of the hydrogen atoms at all internuclear distances, causing spontaneous
dissociation of the molecule into two hydrogen atoms.

It should be pointed out that the overlap integral is particularly
important and that this was not considered in the qualitative discussion.
Neglect of this factor can lead to serious inconsistencies in the quantitative
treatments and, therefore, generalizing the Heitler-London approach to a
many-atom system leads to serious difficulties connected with the non-
orthogonality of the atomic orbital basis set.

The important conclusions derived from the given solution for the
hydrogen molecule form the basis for the logical structure of the valence
bond method. The covalent bond between two atoms, depicted in the
chemical formula by a dash,is described in the VB method by a function
of type (10-137), corresponding to antiparallel spins for the electrons
forming the bond. These functions are said to describe a “local singlet”
state —local because it corresponds specifically to the bond between two
atoms. The form of the wave function for the polyatomic molecule must
then satisfy the condition of forming “local singlet” states in the respective
bond regions.

Although the Heitler-London theory yields qualitatively correct
results, there is a considerable quantitative disagreement with the experi-



243

mental values of physical quantities. Several modifications of this method
have therefore been suggested, which are also suitable for the calculation
of other types of covalent bonds. Their use has led to a substantial
improvement in the results. One of these procedures consists of using hybrid
orbitals instead of atomic orbitals for construction of the spatial part
of the function describing the bond. The hybrid orbitals (cf. Sections 6.6
and 7.2) then have the advantage that their orientation can be chosen in
the bond direction. In other instances, more accurate results were obtained
when “a certain amount” of the ionic structure was included, i.e. functions
of the type x,(1)x,(2) or x,1)x,(2), so that the required VB function
(without the spin part) would have the form

(D) 1@ + 22 1M1 + AL 1,2) + 1,(0) 1], (10-144)

where coefficient A specifies the extent of inclusion of the ionic form and
is usually considered to be a variation parameter.

The expressions for the VB functions can be compared with the
wave functions constructed on the basis of molecular orbitals (expressed
as a linear combination of atomic orbitals). It is sufficient to investigate
the part of the wave function which depends on the spatial coordinates
of the electrons. The molecular orbital for the given problem, corresponding
to the lowest occupied one-electron state, has the form

@~ [, + 1), (10-145)

where it is assumed that ¢ is expanded in terms of the AO minimum
basis set. Two electrons with different spins can occupy this molecular
orbital and the spatial part of the product wave function is then given
by the expression

o(1) o) ~ 1D 1,2 + 1,2 1) + 1D 2,2 + 1D )], (10-146)

allowing direct comparison with Egs. (10-137) and (10-144). Com-
parison with the uncorrected VB function indicates that function (10-146)
contains additional ionic contributions which can be physically inter-
preted as corresponding to the extreme electron density distribution when
both electrons occur on the same nucleus, representing the H*H ™ ionic
state. These states are known to be considerably less stable than the
states corresponding to a uniform electron distribution and if this
difference is not considered, the implications connected with the use of
MO’s in form (10-145) cannot be properly understood. At large inter-
atomic distances, the single-determinant MO theory fails completely,
because a wave function of form (10-146) predicts the formation of ions
(which is a process requiring energy consumption) with the same prob-
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ability as dissociation into two neutral atoms. The single-determinant
MO theory then yields excessively high values for the total energy of
the system.

The whole problem can also be interpreted in terms of electron
correlation, i.e. by the concept introduced in Section 10.1. Evidently the
single-determinant MO theory underestimates electron correlation: the
distribution of electrons 1 and 2 in a certain molecular orbital is quite
independent, leading, for example, to the same probability for structures
XX, and x,x,. The VB method, on the other hand, overestimates
correlation, because it admits only the possibility of complete separation
of the electrons on the two atoms. It is therefore evident that (i) correct
description would lead to results lying between the VB and MO data;
when the two methods yield similar results, then the results can be
considered to be reliable, (ii) in order to improve the VB description, it is
necessary to consider ionic forms, i.e. wave functions of type (10-144).

For a wave function constructed on a molecular orbital basis,
improvement is possible using the configuration interaction method
(cf. Section 5.4). If two electrons are placed in the antibonding orbital

o ~[x, -1l (10-147)

(i.e. a doubly excited configuration; the symmetry of the singly excited
configuration is unsuitable and therefore does not interact with the ground
state configuration, cf. Section 6.7), a determinant function is obtained,
which interacts with the ground state determinant. The spatial part of this
wave function can be written in the (unnormalized) form

o(1) 0(2) + ko'(1) 9'(2), (10-148)

whence, after substituting Eqs. (10-145) and (10-147), multiplying and
comparing with expression (10-144), it follows that the two functions
(VB and CI) are equivalent, as long as

(10-149)

Generally, the two methods yield similar results in a broad region.

To describe the general procedure for constructing the VB wave
functions, it is advantageous to investigate a suitable model molecule.
We shall choose the water molecule. It is preferable to choose a coordinate
system with the nucleus of the oxygen atom lying in the origin and both
O —H bonds in the xy-plane, forming equal angles with the x- and y-axes.
It will be satisfactory in a rough model to assume that the OH bonds
form a 90° angle, i.e. that the nuclei of the hydrogen atoms are located
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on the x- and y-axes (the experimental value of this angle is 105° and
refinement of the model could be achieved, for example, by introducing
suitable hybrid orbitals). The atomic orbitals required here are the (ls),
(2s), (2p,), (2p,) and (2p,) orbitals located on the nucleus of the oxygen
atom and the (1s), and (Is), orbitals corresponding to the hydrogen
atoms, where the y atom lies on the x-axis and the v atom on the y-axis.
To a first approximation it can be assumed that the bond is formed
through the electron pairs described by the (2p,) and (ls), orbitals and
the (2p,) and (1s), orbitals, and that the remaining orbitals are occupied
by two electrons so that they are unable to contribute to the bonding
in the molecule. The electron configurations of the participating atoms
can therefore be written as follows:

O: (1s)% (29)% (2p,)%, (2p,), (2p,)
H: (ls),
H: (1s),

Because electrons with opposite spins are responsible for the bond forma-
tion, the spin functions multiplying spatial (2p,) and (1s), orbitals must
differ; the same must also be true for the (2p,) and (1s), orbitals. This
condition is satisfied by the four combinations of functions indicated in
Table 10-15 as cases 2 to 5, of which case 2 will be discussed in greater
detail as an example:

(p)a, (1s),8, (2p)a, (1s), B

Although the closed shells of the oxygen atom also play a certain
part in the total wave function of the electron system of the water
molecule, they are not given in Table 10-15, because their occupation is
fixed and identical for all six possibilities indicated in the table. The wave
functions must be antisymmetric with respect to the permutation of the
electron coordinates —this property can easily be achieved by replacing
the product functions with Slater determinants (cf. Sections 5.4 and 5.5).

Table 10-15

Valence Structures of the Electron System of the H,O Molecule

Case (2p,) (1s), (2p,) (1s), Function

1 o o B B Y,

2 o B o B v,

3 B o o B v,

4 o B B ] Y,

5 B a B ] Y,

6 B B ] a b
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We can therefore assign a Slater determinant ¥ to each case given in
Table 10-15, which will be illustrated again with case 2:

¥, = |(15)a, (15) B, (25) @, (25) B, (2p,) @, 2p,) B, (2p,) o, (15), B,
(2p,) o, (13), B (10-150)

So far, four determinants which are all eigenfunctions of the
operator of the z-component of the total spin momentum &, have been
formed; in addition, the spin functions of the bonding orbitals are suitable
for bond formation. A VB wave function can be formed from these four
determinants if there exists a linear combination such that the resultant
function ¥ is antisymmetric with respect to interchange of the spins
assigned to the (2p,) and (1s), orbitals, as well as to the (2p,) and (1s),
orbital pair; the electrons in the bond regions then form “local singlet”
states. In general,

5
v~y a, (10-151a)

Since ¥ must be antisymmetric with respect to interchange of the spin
functions assigned to orbitals (2p,) and (1s),, then

Y~[-a,¥ —a,¥,—a,¥s —as¥,] (10-151b)
and, because of the second condition also
Y~[-a,? —a;¥s—0a, ¥, —as¥,] (10-151c¢)
Equations (10-151a) to (10-151c) are fulfilled when
a, = as,
ay =a, = —a,,

giving for the unnormalized function describing the bonding situation
in the water molecule,

WP, -, -, + ¥] (10-152)

This function is sometimes referred to as an eigenfunction of the
(2p,) — (1), and (2p,) — (1s), bonds corresponding to a certain valence
structure. It can be shown that this function is an eigenfunction of the
operator of the square of the total spin momentum %2 with the eigen-
value S = 0.

Sometimes, a larger number of valence structures can be attributed
to a certain molecule. It appears, for example, that in a system of
(2n)!

2n m-electrons described, by 2n atomic functions there are ———————
nl(n + 1)!
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independent structures with covalent bonds of zero total spin. Con-
sequently, for benzene, five structures form a complete set of VB functions.
It is obviously not sufficient to consider only the two Kekulé structures,
I and II, but it is necessary also to consider structures with long bonds
(IIT-V), called Dewar structures.

O@@@@

(IT) (I1) Iv

The total VB wave function is considered in the form
Y =C,(P'+ P+ C (P + ¥V + ¥Y) (10-153)

The symmetry of the molecule is also taken into account here. The set
of functions I—V is complete because any further structure can be
expressed as a combination of these five structures.

The calculation of VB functions and their energies is formally quite
simple. In general, the VB function is assumed to have the form

p =Y Cy, (10-154)

where m is the number of valence structures.
The variation method leads to the usual system of equations

Y C(H; —ES;)=0; j=1,2.,m (10-155)
i=1

Similarly as in the MO-LCAO method, the values of the expansion
coefficients can be calculated by solving system of equations (10-155);
the allowed energy values are determined from the condition (10-156):

det||H; — ES;|[ =0 (10-156)

The squares of coefficients (C?) represent the weight of the i-th structure
in the VB wave function. Of course, ¥ appearing in Eq. (10-154)
is a many-electron wave function. The matrix elements have the usual
meaning

H, = | (@9* ¥ dr (10-157)
= [@)*¥ dr, (10-158)

where # is the Hamiltonian of the studied electron system. The diagonal
element H,, represents the energy of the k-th structure.
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The following expression has proven useful for calculation of
non-diagonal elements:

Hy — ESy = == [J' — E + bK'], (10-159)

2" i
where J' is Coulomb integral; K’ is the exchange integral; i is the number
of cyclic (closed) formations (called “islands”) formed on superposition
of the k-th and I-th structures, the matrix elements of which are
calculated*, b = ¢ —4d; ¢ is the number of pairs of neighbouring
centres (chemically bonded) in the islands; and d is the number of
neighbouring pairs of centers on neighbouring islands (bonded in the
respective compound).

As an example, the expression for the matrix element between the
Kekulé (k) and Dewar (1) structures of naphthalene can be derived:

D

The © bonds of these structures:
a9 R

N e
Superposition:

1k

3rd island, consequently, i = 3

Determination of ¢ Determination of d
1 6 1 4
Q “ D Q ” D
3 4 2 3
d=4

* Two n bonds connecting two centres are also considered to be an island. The
number of islands is determined by investigating the pattern formed by superposition of the
diagrams of the respective structure in which only n-bonds and long bonds are depicted.
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Substitution into Eq. (10-159) gives (2n = 10)
H, - ES, = 25—1_3—[J’ —E+ <6 - %4)K’:I =

= %[J’ — E + 4K'] (10-160)

The non-diagonal elements can be determined by several different
procedures.

The lowest energy value obtained by solving the secular equation
corresponds to the ground state; the other values correspond to the
electronically excited states. The difference between the ground state
energy and the energy of the Kekulé structure equals the resonance
energy.

10.6 The crystal field and ligand field
theories’2 8!

10.6.1 Introductory comments

These theories originated from the necessity of interpreting properties,
mainly optic and magnetic, of numerous series of compounds in which
the ion of an element (mostly of a transition element) is surrounded by
a certain number of other molecules or ions which are called ligands.
These compounds are termed complex compounds. The arrangement
of the ligands around the central atom is regular and mostly corresponds
to one of the three arrangements depicted in Fig. 10-2. In cases (a) and (b)
the arrangements are of octahedral and tetrahedral symmetry, respectively.
Case (c) represents a square complex. ‘

The crystal field theory was established®® as early as 51 years ago,
shortly after quantum mechanics was introduced. It has the particularly

a) b) | c)

Fig. 10-2. Octahedral, tetrahedral, and square complexes: central ion (@), ligands (O).
In (a) and (b) the tetrahedron and the octahedron are, for lucidity, drawn in a cube.
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interesting feature that, from mere knowledge of the symmetry of the
ligand arrangement around the central ion, it is, for example, possible
to predict that the (five-fold) degeneracy of the d orbitals will be removed
(cf. Sections 6.6 and 6.8). In addition it is also possible to determine
how the d orbitals will split and to find the degeneracy of the new levels.
This is a valuable and interesting result. However, these considerations
tell us nothing about the energy sequence of the individual orbitals
or groups of degenerate orbitals. This is not particularly surprising
and is a common feature of all descriptions based on symmetry
considerations of molecular configurations, in other words on group
theory.

Now when various types of all valence electron methods (EHT,
CNDO, INDO) are available, nothing, in principle, prevents quantitative
solution of these problems.

The fact that symmetry considerations alone can explain the splitting
of degenerate d orbitals is particularly noteworthy and permits explanation
of the absorbance by complexes of the first series of transition elements
(as in higher series) in the visible region, ie. in the electromagnetic
radiation region with wavenumbers of 12000 to 25000 cm ™. Experience
with conjugated compounds (as far as the relationship between structure
and colour is concerned) does little to explain why “small” (and
unconjugated) formations, such as different complexes in which the ion
of the transition element (e.g. V>*, Fe?* or Cu?*) is the central atom,
are coloured (i.e. have absorption maxima in the visible region); yet
similar compounds containing Ca?* and Zn?* are colourless. This
observation can easily be explained qualitatively because a “suitable”
energy gap between the d orbitals is formed on removal of the degeneracy.
As the incomplete occupation of d orbitals is typical for complexes of
transition elements, the reason for their colour is obvious. In Ca?*,

Table 10-16
Ground State Terms of Free Atoms and the Corresponding Spectroscopic Notation
[Ref. 77]

4s K Ca
251/2 lso
3d Sc Ti V Ctr Mn Fe Co Ni Cu Zn
2])3/1 3FZ 4F3/2 783 6SS/Z 5D4 ‘FQIZ 3F4 JSI/Z lSO
4p Ga Ge As Se Br Kr

2 3 4. 3 2 1
Pl/l PD S]/Z PZ P3/2 SO
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Table 10-17
Number of d Electrons in Atoms and Ions of the Transition Elements

Sc Ti A% Cr Mn Fe Co Ni Cu Zn

Neutral atom (Me) 1 2 3 5 5 6 7 8 100 10
Me?* 1 2 3 4 5 6 7 8 9 10
Me3* 0 1 2 3 4 5 6 7 8 9

One electron only in the 4s atomic orbital.

on the other hand, the d orbitals are unoccupied and in Zn®>* they
are fully occupied.

These phenomena can be considered more specifically, first, by
finding which elements are involved (Table 10-16) and how many
d electrons are available in the various ionic states (Table 10-17).
This section will deal with the electron configurations of dipositive
and tripositive ions of the transition elements. It has already been
shown that these elements are typified by their incompletely filled d electron
shells. The rare earth elements have similar properties as the transition
metals and have incompletely filled f electron shells. There are three
series of transition metals among the stable elements. To the first
series belong elements of atomic numbers 21 to 30 with electron

configurations
(15)*(25)*(2p)° (3s)* (3p)° (3d)"(4s)",

where n has values from 1 to 10 and k the value 2, except for elements
Cr and Cu, where k = 1. It is noteworthy that the (1s) to (3p) orbitals
(inclusive) are fully occupied in these elements and that this partial
configuration corresponds to the electron configuration of argon. These
orbitals are only slightly influenced by the ligand environment and are
usually not considered explicitly. Since the ionization of electrons, when
divalent and trivalent ions of the transition elements are formed, occurs
chiefly in the 4s atomic orbital, the ion of the transition metal in
a complex compound is considered to be a d" ion perturbed by its
immediate environment, the ligands. The data in Table 10-17 can be
understood on this basis. The elements with atomic numbers 39 to 48 belong
to the second series of transition metals and the elements with atomic
numbers 72 to 80 to the third series.

10.6.2 The electrostatic model (crystal field)

The crystal field theory considers ligands replaced by point charges
(or dipoles) and assumes solely electrostatic interaction between the
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central atom and these point charges. It appears that this very simple
model often leads to the same sequence of energy levels as more
complicated models. Dubious results are, however, sometimes obtained,
for example, for square complexes, if the formation of the covalent
bond is completely ignored. The combination of the crystal field theory
with the molecular orbital theory, known as the ligand field theory, does
not have this drawback. It will be discussed later.

From the aspect of the electron configuration of the central ion,
the described model of the complex ion corresponds to the intramolecular
Stark effect, with the metal ion located in an electrostatic field induced
by the ligands, which are considered to be fixed and unpolarizable.
It is expedient to assume that the nucleus of the central ion is located
at the origin of the coordinate system. The ligand environment is assumed
to have a certain symmetry corresponding to point group G. The
electrostatic potential caused by the ligands has the same symmetry
(cf. Section 6.2). The Hamiltonian of an ion located in the ligand
field then has the form

#=3 L A R R g
= 2m Tt dmeyr, e i
+ Y 40, )), (10-161)
i<j

where, in addition to known symbols [cf. Egs. (5-18), (5-19) and (4-88)],
the term ¥"(r;), denoting the potential energy operator of the i-th electron
in the ligand field,also appears. With the exception of ¥7(r;), # therefore
corresponds to the Hamiltonian of the free ion. Because the perturbation
method will be used for solution of the problem, it will be important
to know the ratio of the magnitudes of the different terms occurring
in the Hamiltonian. The following cases are of practical importance:

a LL<V g weak field scheme
by ¥ >g 22L& strongfield scheme
) VvV <&F =g rare earth scheme

Notation has been introduced here for the total effects of the spin-orbit
interaction, L&, of the crystal field, ¥°, and of the intereletronic
repulsion, g. In the “accurate” solution of the problem (by means of
a variation or perturbation calculation, taking into account a sufficient
number of perturbation contributions) all three cases coincide and the
final result is always the same. If only first-order perturbation contributions
are considered, the results differ. A further reason for differentiating
individual cases lies in an attempt to render the calculation more



253

convenient and also appears in the specification of the initial functions
representing the unperturbed functions in the perturbation method.
In case a), where, the effect of the electron interaction exceeds the
electrostatic influence of the ligands, the calculation is begun with wave
functions describing the terms of the ion to which perturbation ¥~ is
applied and, to include the spin-orbit interaction, a further perturbation
in the form of the respective operator is introduced. It should be noted
that, in metals of the first series of transition elements, the effect of the
spin-orbit interaction on the energy spectrum of the ions is comparatively
small, and therefore it is not usually taken into consideration. In case b)
it is assumed that the crystal field is so strong that it perturbs the [—I
coupling and therefore the one-electron orbitals are taken directly as the
basis for the perturbation treatment. To factorize the secular problem
(cf. Section 6.6), suitable linear combinations of the atomic orbitals are
usually used which simultaneously form the bases for the irreducible
representations of symmetry group G. In case ¢) ¥ is applied as the
perturbation to the free ion energy levels in which the effect of the [—s
coupling is included.

As will be seen below, qualitative changes in the term system
of the free ion can be determined on the basis of the crystal field
theory, which also provides a method for their quantitative determination.
For this reason the procedure is carried out in two stages.

Table 10-18
Relationship between Terms of “Free” and “Complex” Ions in a Field of Octahedral Symmetry

Term of free ion S P D F G

Terms in complex ion A, T, ET, A,,T,,T, A,ET,T,

Using the representation theory of finite groups, first the splitting
of the terms of the free ion caused by the electrostatic field is determined.
The paper by Bethe®® is of fundamental importance in this respect;
it presents a method for decomposition of the irreducible representations
of the full three-dimensional rotation group into irreducible representations
of point groups of lower symmetry, especially for octahedral, hexagonal,
tetragonal, and rhombic groups. The paper also demonstrates the derivation
of the characters of the individual irreducible representations of the given
symmetry groups. Thus, for example, in a field of octahedral symmetry,
the term of the free ion is split in dependence on quantum number L
in the way indicated in Table 10-18 (cf. Section 6.7).
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In the further stage of the calculation, the extent of splitting
or the shift of unsplit terms is determined by the perturbation method.
The general procedure in the quantitative treatment of the crystal field
problem was described in Section 6.8. It remains to describe the best
way of adapting the perturbation operator (limited to cases when the
spin-orbit interaction is negligible). If the ligands can be represented
by charge density g(R), the following expression can be written for the
potential energy V(r) of the electron occuring in position r:

|

e = - 4ne
0

eR)

§|T—”r—| dR, (10-162)
where R is the position vector of a general point in the charge cloud
and the integration is performed over the entire charge distribution.
If the ligands are approximated by point charges, as is frequently done,
then the integration is reduced to summation over these point charges.
An important step in the modification of expression (10-162) is formulation
of the denominator of the integrand as follows:

1 1
[R—r]  (R*+7r*—2Rrcosw)

1 r\? r -12
= f[l + (?) - 2—R~cos a):| (10-163)

Here r and R are the magnitudes of the corresponding vectors and w
is the angle lying between vectors r and R; it is assumed that r < R.
It can be expected that the relationship

2
r r
(T{_> - 2?008(1)

is valid for this case, and therefore expression (10-163) can be rearranged
by expansion in a binomial series of the type

<1, (10-164)

[1 +x]_”2=1——;x+%x2—... (10-165)

If the terms are arranged according to powers of r/R, it then follows that

1 © k

r
|—R———r—|— = k;) RFT P, (cos w), (10-166)

where P,(cos w) are Legendre polynomials which are sometimes defined
as coefficients of the respective power series. It is preferable to write
Eq. (10-166) in the form
1 2k
—I—R?!— = kgo ‘—r§+—1 Pk (COS (D), (10-167)
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where, because of convergence of the series, the denominator on the
right-hand side of the equation contains the magnitude of the larger of
vectors r and R and the numerator contains the smaller of the two.
A series of type (10-167) is known as the multipole expansion of a potential
in the given point.

As follows from the form of Hamiltonian (10-161), the operator
of the potential energy of the electrons in the electrostatic field of the
ligands has the form

"Z Y(r) (10-168)

As every wave function can be expressed in the form of an expansion
in terms of Slater determinants (cf. Section 5.4), the calculation of
matrix elements

(4] Zl V()| 4 (10-169)

becomes of principal importance.

In Eq. (10-169) 4, and 4, are determinant functions [cf. Eq. (5-29)]
constructed on the basis of one-electron orbitals, here atomic orbitals .
It has been shown [cf. Table 5-2 and Eqgs. (5-33) and (5-34)] that matrix

elements (10-169) can be expressed in terms of the integrals
M) | 1,1)), (10-170)

where (specifically for this case) x, and y, are two atomic orbitals
(for example, d orbitals) centered on the nucleus of the transition metal
ion. Atomic orbitals can be expressed as the product of the radial and
angular parts, the latter of which is, in principle, an associated Legendre
function. The ¥7(r,) operator is invariant under all symmetry operations
of point group G, which corresponds to the ligand environment. It also
appears®! that if multipole expansion (10-167) is employed for expressing
¥’(r,), the Legendrc polynomials P,(cosw) can be represented as an
expansion of products of two associated Legendre polynomials, where
one coefficient depends solely on the angular electron coordinates and the
second on the angular coordinates related to the charge distribution
of the ligands. The integrand of matrix element (10-170), which depends
on the angular coordinates, therefore has, in principle, the form of the
product of three associated Legendre polynomials and it is evident
that, in view of the orthogonality relations between these types of functions,
the infinite series is reduced to the sum of a few terms. Moreover, it is
evident that the calculation will also be simplified by application of the
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selection rules derived in Section 6.5. More details on this subject
are provided in monographs devoted to the theory of the crystal and
ligand fields (e.g. Ref. 81).

It has already been noted that a number of interesting conclusions
on the bonding conditions in complex compounds can be drawn on the
basis of qualitative considerations and taking into account the symmetry
of the problem. A single d electron located in an octahedral ligand field
is an example. This model can be used to represent the aquo complex
of trivalent titanium. Such a system, denoted as d', is characteristic in
that the procedure for the solution is the same irrespective of whether
a weak or a strong field scheme is employed. In Section 6.6 it was
concluded that in a field of six ligands of octahedral symmetry (group 0),
the five originally degenerate d orbitals are separated into two sets.
One set consists of the d, and d,_,, orbitals, belonging to the ir-
reducible representation E (twofold degeneracy); the second set, consist-
ing of the d,, d,, d,, orbitals, spans representation T, (threefold
degeneracy). Placing the d orbitals in a crystal field is manifested in
general by an increase in their energy; this phenomenon is caused by
the monopole contribution (k = 0) of expansion (10-167). Furthermore,
splitting of the levels occurs which is characteristic for the symmetry
of the ligand distribution around the central ion. The conditions in
octahedral complexes can be understood on the basis of the geometry
of the angular parts of the d orbitals; in Fig. 10-3 two of these
orbitals (d,,, d,,_,,) are depicted in a model of the octahedral complex.

x2—y

Fig. 10-3. Central ion (@)
and ligands (O)
in an octahedral complex.
The d,,_, and d_, orbitals are
depicted (the latter hatched).

These two orbitals will be discussed here, as they lie in the direction
toward the ligands leading to the greatest interaction due to the repulsion
between the electrons in the orbitals and the point charges (representing
the ligands). This interaction is manifested by an increase in the energy
of orbitals of E symmetry. The centre of gravity of the term must be
preserved, however, and the energy of orbitals of T, symmetry will
consequently decrease. The monopole contribution of the ligand charge
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a)

Fig. 10-4. Effect of a crystal field of octahedral symmetry [b) and c)] formed by six ligands
on the fivefold degenerate level corresponding to the d' states of the free atom [a)].

distribution has already been taken into account in the increase in the
energy of all the d orbitals by the value E; (cf. Fig. 10-4). The second
step concerning the removal of the degeneracy depends on the specific
geometry of the ligand arrangement. The centre of gravity is preserved —
this property is connected with the invariance of the trace of the secular
determinant matrix [cf. Eq. (4-130) and (4-160)] toward unitary trans-
formation. The resultant effect of the perturbation is graphically re-
presented in Fig. 10-4. Fig. 10-5 depicts the effect of the intensity of the
electrostatic field on the extent of splitting of the E and T, levels of
the d' system; the figure represents the simplest possible Orgel diagram
expressing the continuous transition from atomic states to states of the
complex ion. It is evident from the figures that the energy difference
corresponding to the new terms is important for spectroscopy. This
difference, 4 = E(E) — E(T,), is a basic parameter for octahedral complexes
and is usually denoted by 4 or 10Dq. If the energy of the terms of the
complex ion is expressed relative to the centre of gravity of these

-

=————————————— L

Fig. 10-5. Diagram for the energy
levels of the d' system. —A
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terms, the value 24 is obtained for the energy of term E and —24
for the energy of term T,. Transition between these terms (as a d—d
transition) is forbidden by the selection rules in atomic electron spectroscopy,
because it is a transition between states of equal parity. Owing to the
interaction of the electronic and the nuclear motion during vibrations
in the complex ion, the transition becomes partially allowed. This
then explains the existence of the weak absorption band in the visible
region of the spectrum of [Ti(H,0),]** ions.

Many-electron systems are somewhat more complicated, as it
becomes necessary to distinguish between weak and strong crystal fields.
Consequently, for example, for the d? system corresponding to the Ni**
ion, under the influence of a weak crystal field, the terms of the
free ion Ni?*, i.e. the functions corresponding to states 'S, *P, 'D, *F and
!G, are employed as the unperturbed functions for the perturbation
treatment.

Use of a strong crystal field scheme allows lucid interpretation of
the states of the complex ion, because diagrams similar to that in
Fig. 10-5 can also be used for many-electron systems. When carrying
out qualitative considerations, it is necessary to resort to Hund’s rule
of maximum multiplicity for the ground states of atomic systems. This
rule expresses the empirically determined fact (which has also been
theoretically confirmed) that an electron system is in the ground state
when the maximum number of electrons have parallel spins. Then the
maximum number of electron exchange integrals is nonzero; these integrals
appear in the expression for the total enmergy with a negative sign
[cf. Eq. (5-62)], thus decreasing the total value. In the strong crystal
field approximation, the ground state of the d? system in the octahedral
field will therefore correspond to the triplet state of electron configuration
(T,)* and, similarly, the d* system will correspond to quartet (7).
However, the d* configurations, where k assumes values k = 4, 5, 6, 7,
are ambiguous because if 4 (the “strength” of the electrostatic field)
is small, Hund’s rule affects the entire d shell, corresponding to an
attempt by the ion to attain maximum multiplicity. The complex ion
will then be in the same spin state as the free ion. If A is large, the
electrons are forced into the energetically more favourable T, level,
accompanied by a gain in the “orbital energy” and a loss in the
exchange energy. There is consequently a change in multiplicity during
transition from the free ion to the complex bonded ion. Thus, for
example, the Fe3* ion, corresponding to the d° configuration, can,
according to this model, occur in two electron configurations in complex
compounds:
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(EP(T)? (E)(T2)°
e :
e e

These configurations can be distinguished on the basis of magnetic
measurements. The first possibility, in the Pauling nomenclature, cor-
responds to an ionic complex (or a “high spin complex”); the second
possibility, where a change in the multiplicity occurs on formation of
the complex, corresponds to a covalent complex (“low spin complex”).

T,

10.6.3 Ligand field theory

As mentioned in the previous section, the crystal field theory solves the
bonding conditions in the complex compound using a model in which
the electrostatic field of the ligands influences the electrons of the central
ion. This model does not include charge transfer between the ligands and
the central atom, in contradiction to a number of experimental results
obtained using neutron diffraction, paramagnetic electron resonance and
nuclear magnetic resonance. It is a further disadvantage of the crystal
field theory that it does not sufficiently explain the relative stability
of complexes in dependence on changes in the ligand environment
and that it is unable to describe a double bond between a ligand and
an ion, which often contributes to the stability of the complex.

It was therefore necessary to include the possibility of charge
transfer between the ligands and the central ion, which is fulfilled by
a variety of methods in the molecular orbital theory. The ligand field
theory is, in essence, a specific version of these methods for calculation of
the properties of complex compounds. This theory proceeds from the
assumption of the molecular orbital theory and passes into the electrostatic
model in the limiting case of zero charge transfer. Jarrett®2, for example,
gave a general formulation of the problem.

Using the molecular orbital theory, which explicitly considers
the orbital structure of the ligands, one-electron orbitals can be written
in the form

(p = Za“X“ + Zb).xl’ (10—171)
n i

where index u denotes the orbitals located on the central ion and 4
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the orbitals located on the ligands; a, and b, are the corresponding
expansion coefficients. It is obvious that any approach using an “ab initio”
type of treatment leads to numerical problems in the form of many-centre
integrals and high-order secular problems. Consequently, many semi-
empirical methods have been developed in this field, resembling those
discussed in Section 10.2, involving all the valence electrons. The
expression for the calculation of the off-diagonal elements in the EHT
method (cf. method 5 in Table 10-2) had already been used ten years
prior to its formulation in calculation®® of the electronic structure of the
complex MnO, ion.

It should be mentioned in this connection that a new approach
to studies of the electronic structure of inorganic complexes, based on the
application of the Slater expression of the exchange energy, has been
introduced by Johnson®* and co-workers within the framework of the
scattering model of the SCF theory (the method is denoted briefly
SCF-X,-SW). This treatment does not require the calculation of many-
centre integrals and the results of its application to several ionic
molecules [e.g. to the (SO,)*~ ion] are rather promising.
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11. USE OF THE SOLUTION
TO THE SCHRODINGER EQUATION

11.1 Quantities related to the molecular
energy (the total electron energy,
ionization potential, electron affinity,
excitation energy)’

In methods in which electron repulsion is not considered explicitly
(HMO, EHT), the relations are simple. For illustration it will be useful
to consider a system described, say, by six molecular orbitals (¢, , @,, ..., 9¢)
and by the corresponding orbital energies (E,, E,, ..., E¢) (Fig. 11-1).
The total energy is given by [cf. Eq. (10-115)].

W=y nk,, (11-1)
where n; is the occupation number of the i-th MO (and can assume
a value of 0, 1 or 2) and E, is the orbital energy of the i-th MO for which

E,=a+kf (11-2)

The Coulomb (a) and resonance (f) integrals in this formula can be
expressed in the usual energy units. This does not imply that the
corresponding integrals need be solved, but only that numerical values
are assigned to them such that the theoretical quantities in which

Ll T B %
T — & %
— & 9
[ S
"’_" & ¢
Fig. 11-1. Molecular orbitals ¢, H E, ¢2
and their energies E, for the studied -1—‘-— £ ¢
system.
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these integrals appear give a true representation of different experimental
characteristics for specimens of various classes of substances. In the
HMO method energy characteristics are, as a rule, expressed in terms
of quantities « and f. When comparing theoretical (HMO) data with
experimental results, an incongruency appears: for the standard resonance
integral (the resonance integral corresponding to the carbon 2p, atomic
orbitals on neighbouring atoms), a value of 20—200 kJ/mol is obtained
according to the nature of the experimental data (instead of the
expected constant value). It follows that the numerical value of S,
corresponding to a certain characteristic and to a certain group of
substances, cannot be used for another characteristic or another group
of substances.

In the considered methods, calculation of the electron energy (m
or © + o) is very simple; it is given by the sum of the occupied
one-electron energy levels [cf. Eq. (11-1)]; this energy can also be expressed
in terms of electron charge densities and bond orders and of the Coulomb
and resonance integrals. The expression valid in the HMO theory has
already been given [cf. Eq. (10-116)].

The heats of formation* of non-conjugated organic compounds can
be calculated relatively accurately using group contributions. On the
other hand, in conjugated (most frequently planar) compounds this is not
true and the differences between experimental and calculated values are
considerable. This difference is called the resonance energy. Theoretically,
a similar quantity, called the delocalization energy (Ey), is defined as
the difference between the m-electron energy of the system (W), whose
delocalization energy is calculated, and the m-electron energy of the
energetically most favourable Kekulé structure (Wy); consequently (cf.
Sections 10.5 and 15.2)

Ey=W- W (11-3)

The ionization potential (I) represents the energy that must be added
to a system to transfer an electron from the system to a site of zero
potential. On the other hand, the energy which is liberated on the
addition of one electron to a system is called the electron affinity (A).
The most important of these quantities is connected with the highest
occupied and the lowest unoccupied MO’s (the first ionization potential
and the first electron affinity). Fig. 11-2 illustrates changes in the occupa-
tion of MO’s due to these two processes (b, ¢) as well as to the electron

* The heat which is liberated on formation of 1 mol of a substance from the
elements, where the reactants and products are in their standard states. This heat can be
determined indirectly from the heat of combustion or of hydrogenation (see below).
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Fig. 11-2. Ground state (a), state after ionization (radical cation) (b), state after attachment
of an electron (radical anion) (c), state following the lowest energy excitation (d). The electronic
energies of individual systems are given.

excitation with the lowest energy requirement (called the N —» V, excita-
tion, N and V being symbols for the “normal” and “valence” states).
From the energies of these structures and from the energy of a molecule
in the initial state very useful theoretical characteristics can be calculated
from simple differences (cf. Fig. 11-2):

I=W,—-W,=—E, (11-4)
A=W, -W,=E, (11-5)
EN-V)=W,—- W, =E, — E, (11-6)

It follows that the i-th ionization potential (the i-th electron affinity) is,
in general, equal to the orbital energy of the i-th MO (except for the
sign of the ionization potential). In Fig. 11-3 the first ionization potentials
are plotted against the HMO energies of the highest occupied MO’s for
a series of conjugated hydrocarbons (Table 11-1). Separation of data for
hydrocarbons with markedly alternating bonds (polyenes) is not sur-
prising, since in these systems one of the HMO assumptions (assumption
of equality of the resonance integrals) is not fulfilled. If various values
of B, according to the lengths of the C—C bonds, are introduced into
the calculation, quite satisfactory results are obtained.

In methods where electron repulsion is considered explicitly (e.g.
the Pople approximation of the Roothaan SCF method, CNDO methods),
the relationships are more complex. In the expression for the total electron
energy appear not only orbital energies ¢;, but also terms derived from
electron repulsion [cf. Eq. (10-31)]. Electron Coulomb and exchange
integrals are defined as follows [cf. Egs. (5-59¢) and (5-59d)]:
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Fig. 11-3. Dependence of adiabatic ionization potentials on the HMO energy of the highest
occupied m-molecular orbital for polyenes (A) and for benzenoid hydrocarbons (O).

Table 11-1
Theoretical and Experimental First Ionization Potentials and Electron Affinities

Hydrocarbon ky I A®
7 eV 5%
Ethylene 1.000 10.52 -
1,3-Butadiene 0.618 9.07 -
1,3,5-Hexatriene 0.445 8.23 -
1,3,5,7-Octatetraene 0.347 7.80 -
Benzene 1.000 9.24 -
Naphthalene 0.618 8.14 0.148
Anthracene 0414 742 0.556
Tetracene 0.295 6.94 -
Phenanthrene 0.605 8.07 0.307
Benz[a]anthracene 0.452 1.52 0.630
Pyrene 0.445 7.70 0.591
Chrysene 0.520 7.82 0.397
Diphenyl 0.705 8.27 -

* Tonization potential determined from photoionization and electron spectroscopy measure-
ments (from various sources).
b R.S. Becker, E. Chen: J. Chem. Phys. 45, 2403 (1966).
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Jij= 4m ”‘P*( )2 L i(1)<p,(2)drldr2 (11-7)

1
* — -
K, = m Do3(); 02 9f2)dr, dr, (11-8)

The expressions for the individual energy characteristics are given in
Table 11-2. The expression for the ionization energy (and also for the
electron affinity) is particularly interesting, because it is formally the
same as the expression appearing in the simple methods. This is a con-
sequence of the Koopmans theorem, according to which the SCF orbital
energies ¢; of the parent system can also be used for calculation of the
total energy of the ion derived (by removal or acceptance of an electron)
from this system. At the same time the change in geometry which
generally accompanies ionization is not considered, nor is the fact that
the system formed is (in contrast to the parent system) a system with an
open electron shell. These are undoubtedly rather drastic simplifications
for which the use of Koopmans theorem has been repeatedly criticized. The
correct procedure requires calculation of the SCF energy for the parent
system with a closed shell and for the radical-ion with an open electron
shell; in both systems it is necessary to take correct interatomic distances
into account. Numerical values of ionization potentials obtained by the
two procedures differ only slightly in rigid molecules (e.g. conjugated
hydrocarbons), which supports the use of the Koopmans theorem in these
systems. However, in small molecules, the difference in the results usually
amount to about 1 eV. For radicals the Koopmans theorem leads to more

Table 11-2
MO-Energy Characteristics (Closed Shell Systems)
Characteristics Methods
semiempirical® empirical
ionization potential;
ionization of the electron from the i-th MO ¢, E,
excitation energy;
excitation of an electron from the i-th MO
to the j-th MO
(S-9) e —&—J,; + 2K
i i i E. —
(S-T) g —¢&—Jy i~ B
Total electron energy 2V e+ YY), - K 2Y E,
i i j i

® For definition of integrals J; and K;; see Eqgs. (11-7) and (11-8).
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Table 11-3
MO-Energy Characteristics (Open Shell Systems)*
Characteristics SCF method of Longuet-Higgins
and Pople

ionization potential; |
ionization of electron from the singly occupied m-th MO ¢, — > Joum
ionization potential;
ionization of electron from the doubly occupied i-th MO

3
a) leading to a singlet state & K.,

1
b) leading to a triplet state & + 7K,.,,,
electron affinity (acceptance of an electron into e + 1 J

the m-th MO) ' moo2omm
excitation energy;
excitation of an electron (D—D’)

a) from a doubly occupied into a singly occupied MO e+ % Ky + 0 —2J.)

(i-m)® m
b) from a singly occupied into an unoccupied MO e+ 1 Ko+ Jo =20
(m—r) v 3
1 1
Total electron energy 227 P (F, —H:) — T Jo
nv

* For definition of integrals J;; and K;; see Egs. (11-7) and (11-8); m is a subscript of
the singly occupied MO in the initial system.

b Excitation of this type is designated as A-type excitation.

¢ B-type excitation.

complex expressions (Table 11-3). Some interesting information follows
from this table, for example, that ionization from an arbitrary doubly
occupied level leads to two different values for the ionization potential
(according to the multiplicity of the system after ionization). Most important
is that Table 11-3 points out the incorrectness of mechanical transfer
of expressions from closed shell systems to systems with open shells.

In calculations within the framework of many-electron methods (e.g.
methods of configuration interaction), the theoretical intepretation of
electronic excitation requires knowledge of the energy difference for two
states of the molecule studied (the state before and after excitation);
in ionization processes, the energy difference for two-electron systems,
differing in the number of electrons which the parent system loses or
gains, must be found (cf. Sections 5.4 and 5.5).

It will now be suitable to describe the experimental determination
of ionization potentials. For several decades three methods have been
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used: electron impact, photoionization, and optical spectroscopy. None
of the methods is particularly simple, so that the number of experimentally
determined ionization potentials was, until recently, not large. A few years
ago an interesting and powerful method was developed permitting deter-
mination not only of the first, but also of a number of higher ionization
potentials in a single experiment using a fairly simple procedure. This is
the method of photoelectron spectroscopy (PES)?. In this method, the
studied molecules in the gaseous phase are ionized by photons of a defined
energy (photons of 21.21 eV from a helium discharge lamp are generally
used), and the kinetic energy of the electrons liberated from the molecule
is experimentally determined. A photoelectron spectrum is schematically
depicted in Fig. 11-4. The maxima of the bands indicate directly the
individual ionization potentials. From the reproduction of a real spectrum
of carbon monoxide (Fig. 11-5) it is evident that the situation is more
complicated and individual bands have a fine structure. The structure
of the spectrum depends on the fact that, when ionized, the molecules
are excited to a set of vibrational states of a molecular ion. In Fig. 11-6
this situation is outlined for a diatomic molecule (polyatomic molecules
are rather similar).

€ o

122 :

22 e ®@ O
2N ONONO) w
o
&6 vertical ! adiabat.
TEQ YIP
cOE Voo
Vy= = \
1/\/\/\1 L T L 1

20 10 20 18 16 14
- E(eV) ~—— Efev)
Fig. 11-4. Photoelectron Fig. 11-5. Actual photoelectron
spectrum — schematic spectrum: the 2nd and 3rd bands
representation. display vibrational structure.

Tonization begins from the vibrational ground state of the parent
system: transition into a set of vibrational states must be considered.
The two most important, called the vertical and adiabatic transitions, are
illustrated in Fig. 11-6. It is typical for the first that no change occurs
in the interatomic distance; such a transition is called a Franck-Condon
transition and it is the most intense (cf. the 2nd band in Fig. 11-5). The
second important transition is that into the vibrational ground state of
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vertical system after
W pot. ionization
(radical cation)
adiabat. pot.

_—

parent system

—_—

Fig. 11-6. Potential energy curves of the parent system and of the radical cation produced
by removing an electron.

the molecular ion. This is obviously the transition with the lowest energy
requirement (0—O0 transition).

It is necessary to add that the first ionization potentials determined
by electron impact are always several tenths of an eV higher than the
values determined by photoionization. The difference is very likely due to
the fact that, in the first method, vertical potentials are measured,
whereas in the second method, adiabatic potentials are found. The reason
that vertical transitions (transitions with no change in interatomic distances)
are obtained in electron impact measurements is the very short duration
of this process —after removal of the electron the molecule simply has not
enough time to change its geometry.

While calculation of electron affinities is as simple as calculation
of ionization potentials, their experimental determination is more difficult.
It is based on the ability of substances to absorb thermal electrons.
The relative absorption is expressed by an absorption coefficient which
can be shown to be related to the electron affinity of the molecule.
Electron affinities have so far been determined in this way for only a few
benzenoid hydrocarbons (Table 11-1) and for a number of their derivatives.
Correlation of these affinities with HMO energies (of the orbitals which
the thermal electron enters) is less satisfactory than correlation of ioniza-
tion potentials. :

With regard to the complexity of direct determination of electron
affinities, it is useful to mention that polarographic half-wave potentials
of reduction waves can be proportional to electron affinities. This is true
of aprotic solvents where the radical-anion formed is not subject to
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further conversions and where the polarographic process is reversible.
The values obtained in this way, however, include the solvation energy
of the ion formed.

In the discussion of the possibilities of using one-electron energies,
the simple calculation of localization energies is worth mentioning (which,
however, must not be mistaken for delocalization energies). These quantities
will be used later in the calculation of the m-electron contribution to the
activation energy. The atomic localization energy of an atom in a con-
jugated planar system is defined as the difference between the energy of a
system formed after removal of the u-th AO from a conjugated parent system
and the energy of the parent system. This removed orbital (AO) can be
occupied by none, one or two electrons. Similarly, the bond localization
energy (also called ortholocalization energy) is defined as the energy of
a double bond plus that of the remaining part of the original molecule
reduced by the energy of the original system. Paralocalization and
generally polycentric localization energies can be defined in a similar
way. Apparently, the delocalization energy can be considered as a special

O
N

8 (a
(a)u (0)< o> N |

(“three-fold"localization

(b)

atomic localization  bond localization energy)
energy energy delocalization energy
(A) (Ag) (Ep)
(a) (b) (@) (b) (a) (b) (c)
s | _ .
|.i_|_1 N - - - I
‘ [0 2 o B S T T I e o
-00- oo
1 oo 0o o0 00~
r -0~ -0-0-

Wi Sa+5468 o 4o +4ATR 20 +23 200+2B 2x+23 2m+2/3
(remanders) g4 5.46/3 6o +6.47/3 60 +6/3

Fig. 11-7 Illustration of localization and delocalization energy calculations.
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case of “polybond” localization energy. For illustration*, the atomic
localization (A4), ortholocalization (A4,) and delocalization (Ey) energies
of benzene (cf. Fig. 11-7) can be calculated:

A= |6+ 5466 — (60 + 8f) | = 2.548
Ag = |60 + 6476 — (62 + 86) | = 1.53p
Ey=|6a + 68 — (6o + 8B)| = 2B

11.2 Quantities derived
from the wave function

11.2.1 Introductory comments

The object of any sufficiently general quantum-chemical calculation is to
obtain a wave function for the studied molecule or for any other electron
system. Knowledge of the wave function is a prerequisite for calculating
the expectation values of physical quantities, among which energy assumes
an exceptional position —because of its role in the Schrodinger equation
and as a universal constant of motion. Among the other measurable
physical and chemical quantities are a number of those which are indis-
pensable for characterization of molecules; the theoretical interpretation
of these quantities is thus inevitably necessary. Calculation of the dipole
moment of molecules in the text below will serve as an example for these
quantities.

The use of a wave function for the calculation of physical quantities
alone is disadvantageous because a great deal of information contained
in the wave function is lost. On the other hand, during the development
of modern chemistry, a number of specific concepts were formed, which
proved to be very useful for prognosis and interpretation of the chemical
and physical properties of electron systems. This applies to terms such as
the two-electron bond, lone electron pair and hybridization. In addition,
the properties of molecules can be intepreted in terms of atomic properties,
such as atomic charges. This fact motivated efforts to elaborate methods
which would be capable of analyzing very complex wave functions in
terms of these concepts. However, before describing these methods, it
would be useful to introduce the density matrices, by means of which
these methods can conveniently be classified.

* The HMO energies of benzene and butadiene equal 6a + 6B and 4a + 4.47B,
respectively.
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11.2.2 Density matrix

Let us start, for the sake of simplicity, from the definition of a spin
orbital (5-32):
Mx) = o(r)n(o), (11-9)

where the symbols have the same meaning as in Section 54. From the
statistical interpretation (cf. postulate 2 in Section 4.2) it follows that the
expression

| A(x) |? dx (11-10)
gives the probability of occurrence of an electron in the space-spin element
dx = dr do and thus

0 = [2) [* = | o) [* | n(o) | (11-11)

is the electron probability density function. If we are not interested in the
spin, then integration can be carried out over the spin variable to give

e(r)dr = dr [y(x)do = | o(r) |* dr, (11-12)

where o(r) gives the probability density without reference to the spin.
Generalization of the given relations for the many-electron system
(where the number of electrons is n) is relatively easy considering that

the expression
| P(x,, x5, ..., x,)|* dx, dx, ... dx, (11-13)

represents the probability of simultaneously finding electron 1 in element
dx,, electron 2 in element dx,, ... and finally electron n in element dx,.
The probability of finding electron 1 in a space-spin element dx, with
an arbitrary distribution of the other electrons is obtained by integration
of expression (11-13) over the coordinate of the second to the n-th electron.
We are, however, more interested in the probability of finding any of
the n electrons in element dx,, as the electrons in the considered system
are indistinguishabl¢. Since the product PW* is symmetrical in the
variables of the n electrons, the desired probability is obtained by multi-
plication of the given integral by number n:

Wxy) =nf|P(xy, x,, X5, ..y X,) |2 dx, ... dx,, (11-14)

where x, denotes “point x,” at which the probability density of any of
the n electrons is evaluated. For the determination of the “spinless”
density Eq. (11-12) is again valid. )

The probabilities for configurations of any number of particles can
also be found. The relationship

[, x,) = MH W(x,, Xg oo %) P dxy o dx,,  (11-15)
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giving the probability density of simultaneously finding one electron at
“point x,” and the second electron at “point x,”, is of practical significance.
Function (11-15) is connected with the so-called pair correlation function

. P(ry,r,) = [T(x,, x,)do, do, (11-16)

which can be used for the study of correlation effects in electronic
systems.*

For illustration, functions y(x,) and g(r,) can be calculated for the
two-electron system of the H, molecule, described by the VB wave
function [cf. Eq. (10-137)]

W(x, x,) = 715 L) () + 2,r1) 1,(r2)] 715 [a(0,) B(a;) — Blo,) a(o)]
(11-17)

where, for the sake of simplification, it is assumed that the atomic orbitals
are orthonormal. Obviously it holds that

He) = 2 4|00 + 10 1) [ X
x |a(0,) Blo,) — Blo,) o) [* dr, do, =
— L) B+ 1) PP + [Beaf]  ars

and after integration over the spin variable o,

o(ry) = | x(r) [* + | xlry) I (11-19)

leading to the trivial result that o(r,) is equal to superposition of partial
densities produced by the atomic orbitals localized on centres px and v.
Eqgs. (11-18) and (11-19) permit expression of the probability ¢*(r;) of
finding the electron in spin state a (or f), whence

¢(r) = Pe,) = 5 olr) (11-20

Expressions defined by Egs. (11-14) and (11-15) [or by (11-12) and
(11-16)] can be understood as diagonal elements of matrices with contin-
uous indices (matrices with continuous indices have already been des-
cribed in Section 4.5):

y(15 1) = n[ V(1,2 .., n) PX1, 2, ...y n)dr, . dg,  (11-21)

nn—1)
2

rq,21,2) = [®(1,2,3,...,n) ¥%(1, 2,3, ...,n)d1, ... dv,, (11-22)

where it is intentionally not specified whether the wave functions depend
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on the space-spin or only on the space coordinates of the electrons, in
order to include both possibilities. The given expressions define the density
matrices of the first [Eq. (11-21)] and the second order [Eq. (11-22)].

The establishment of density matrices has the following practical
importance. It has already been mentioned that theoretical expressions
for physical quantities depend both on the wave function ¥ and on its
complex conjugate ¥*; moreover, these relations can be expressed by
matrix elements in which integration is performed only over the co-
ordinates of a limited number of particles corresponding to the type of
particle interaction. In applications, only two-particle interactions of
coulombic character can occur and thus the number of coordinates
(n — 2)is not of direct importance for the calculation of physical quantities.
Establishment of density matrices removes these disadvantages and there-
fore simplifies descriptions of electron systems.

Let us start from Eq. (5-18) for the Hamiltonian of a molecular
electron system treated within the Born-Oppenheimer approximation.
The energy expectation value of a molecule in a state defined by wave
function ¥ can be expressed as

PPy = [PHL,2, ..., n)[i Ai)] ¥, 2, ..., n)dt +
+ [ P*(1,2, ... n) [T ¢, )] P, 2, ..., n) ds, (11-23)

i<j
where dt = dt, dt, ... d7,. ’

First the total energy contribution originating from matrix elements
of the one-electron operator will be examined. Because the integration
variable notation can be changed and because the product P¥* is
invariant under an arbitrary permutation of the coordinates, then any
of the addends can be modified so that n identical integrals are obtained, i..

(2412, .o m) [ 3 AD] (L, 2, ..., mde =
i=1

=n[¥¥1,2,...,n) A1) ¥(1,2,..,n)dr =
= [[40)y(1; 1)];.2, dry, (11-24)

where definition (11-21) was used. Primed variables were introduced to
indicate that the operator acts only on the non-conjugate component of
the density matrix. After operating the primes are dropped (symbolically
denoted 1'>1) and then it is necessary to carry out the integration.
A similar modification can be made with the two-electron contributions
of Eq. (11-23), to give

Y|#|¥) = [[A1)y(1; 1))y, dr, +
+ [ g(1,2)T(1,2;1,2)dz, d1,, (11-25)
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where g(1,2) in the second term on the right-hand side of Eq. (11-25) is
only a multiplication operator and thus primed coordinates need not be
introduced (in contrast to operator #(1), which, like other operators,
also contains the Laplace operator involving differentiation).

Density matrices assume particularly simple expressions when wave
function ¥ is represented by a single Slater determinant (cf. Section 5.5):

W(1,2,...,n) = 4g(1,2, ...,n) = 71;1—!—det||/ll(l), L2, .. Am|  (11-26)

This happens in the Hiickel and extended Hiickel methods and in all
SCF procedures. It will be assumed that the spin orbitals, 4;, in Eq. (11-26)
are orthonormal. Density matrices could be obtained by direct calculation.
For the derivation, however, a method comparing known expressions will
be employed. Using Table 5-2, the energy expectation value for Hamiltonian
(5-18) and wave function (11-26) can be expressed by the relationship

| | 0> = 3.t | A1) | 40> +

s 3 G042 91,2 40 1) -

ij=1

— (1) A(2)] 2(1, D) 21) 242)] (11-27)

Comparison of Eq. (11-27) with Eq. (11-25) leads to the expressions

1) = 327064 4 (11-28)

Py, %33 %4 3) = 3 [AFG) A05) Aky) o) —
— 20 ) ) A(xy)] =
= LD X0 Wi ) = s W) e )] (1129

for the density matrices (containing spin variables), so that, provided the
first-order density matrix is known, the second-order density matrix can
be constructed according to Eq. (11-29) (this conclusion is general enough
to hold even for density matrices of higher orders and is one of the
typical properties of the one-particle approximation). Therefore, the
expression y(x,; x;) is denoted as the Fock-Dirac density matrix and is
referred to as the “fundamental invariant of the SCF solution™.

If a system with closed shells is under study [cf. Eq. (5-43)], it is
advantageous to employ the “spinless” density matrix §, which can be
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obtained from Eq. (11-28) by integration over the spin variable:

n/2

7(r,r) = 25 016} o), (11-30)

where ¢, are orbitals depending on space variables alone.

For further considerations, knowledge of some properties of the
first-order density matrix, related to the one-determinant wave function,
will be important. For derivation of the corresponding expressions, it will
be useful to employ the matrix notation established in Section 4.5. In
this notation, a set of spin orbitals can be written in matrix form

A =[] 4400, 4500, -y A0, Ay 20, .. | (11-31)

where the column index specifies spin orbitals arranged according to
increasing relevant orbital energy E, (or ¢;), and the row index (continuous)
specifies the spin-space coordinates of the electron. It has already been
mentioned that the property of orthonormality of a set of spin orbitals
can be written [cf. Eq. (4-123)] as

ML =1, (11-32)

where 1 is a unit matrix of the same dimension as the spin-orbital space
(given by the number of spin orbitals). Then density matrix (11-28).can
be written in the form

y = ALAM = 2048, (11-33)

where 1, is a square matrix in the spin-orbital space with the first n
diagonal elements equal to 1 and all the other elements equal to zero;
index O signifies that matrix 4, contains only occupied spin orbitals
of number n. At the same time, number n gives the number of columns in 4,,.
Density matrix (11-33) has the following properties:
a) y is invariant to unitary transformation of occupied spin orbitals.
If a new set of spin orbitals, 4, is established,

Ay = A,U, (11-34)
where U is a unitary matrix, then

¥y = AyA)H = A, UUHH = 2 =y (11-35)

Owing to this property, expectation values of physical quantities
remain unchanged on transition from occupied molecular orbitals that
are solutions of standard SCF equations to other orthogonal orbitals
bound to the original occupied orbitals by a unitary transformation.
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b) y has the property of a projection operator, projecting an arbitrary
function (defined in the spin-orbital space 4) into the space of the occupied
orbitals. If the function f'is of the type

f=Ac, (11-36)
where ¢ is a column matrix of the form
_ |l -
c= el (11-37)

¢, (of dimension n) contains coefficients multiplying occupied spin orbitals
and c, denotes the contributions of the virtual functions, then it follows
that, using Eqs. (11-32), (11-33), and (11-36), the equation

v = 4oC, (11-38)

is valid. Therefore, after action of the density matrix on f, that part of the
function lying in the space of occupied spin orbitals is obtained.

In closed shell systems, a simplification occurs in that the dimension
of the density matrix is effectively reduced from n to n/2 if the “spinless”
density matrix (11-30) is employed.

11.2.3 Localized orbitals

The methods of wave function analysis to obtain localized functions
describing individual groups of electrons have been elaborated almost
solely for the one-electron model®’. Firstly, the properties of the Hartree-
Fock manifold, a) and b) in Section 11.2.2, provided a natural basis for
these methods. Secondly, in accordance with the Lewis interpretation of
the chemical bond, pairs of electrons can be considered to be elementary
localized groups. The simplest description of these pairs can be effected
using a single function of space coordinates, which can be combined
with spin functions « and f; the concept of a one-electron function is
connected with the one-electron model.

To form localized one-electron functions describing bonds and lone
pairs of molecules, properties a) and b) of the first-order density matrix
can be employed. Therefore, methods applied in the analysis of wave
functions will be divided into two groups. Both begin, of course,from the
solved one-electron model of the problem and have molecular orbitals
as input data for the calculation.

In the localization methods based on the invariance of the density
matrix [property a)], use is made of the fact that Eq. (11-34) combines
two equivalent sets of one-electron functions. If transformation matrix U
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is of order m, then it contains im(m — 1) independent parameters®. This
number of degrees of freedom can be utilized for the introduction of
additional conditions depending on a suitably defined criterion, thus
fixing the elements of the respective transformation matrix. Since in this
connection closed shell systems are of particular interest and only the
spatial part of the one-electron function [cf. Eq. (11-9)] participates in the
transformation, it holds that m = n/2 for this type of system and it is
sufficient to investigate the relationship between the molecular orbitals,
,, and the localized functions, ¢;.

Molecular orbitals are usually expressed as a linear combination
of the atomic orbitals y,, and it will be advantageous here to write the
molecular orbitals as follows [cf. Eq. (5-63)]:

@ = Y Caias (11-39)

I ae(l)

where the sum is carried out over all the atomic orbitals (denoted by
subscript «) localized on atom I and over all atoms I forming the
molecule. The molecular orbitals (the solution of the standard one-electron
problem) has non-vanishing coefficients c; over the entire molecule; from
Theorem 6-1 of Section 6.4 it follows that the coefficients assume values
such that ¢; is a component of the basis corresponding to one of the
irreducible representations of the symmetry group of the molecule. On
the other hand, function ¢! must be localized in a certain part of the
molecule. It is, for example, optimal for the orbital describing the bond
between atoms A and B that only coefficients ¢4, a € (A) and c‘;i, pe(B)
differ substantially from zero, while the contributions from the remaining
atoms are negligibly small. Similarly, when ¢; describes the inner electron
shell or the lone electron pair on atom A, considerable contributions to
orbital @] originate from atomic orbitals situated on the single atom, A.
Coefficients c2, ae(A),in both cases give information on the character
of the hybrid orbital participating in the formation of the localized
one-electron function.

The criteria used for the determination of transformation matrix
U remain to be mentioned. With symmetrical molecules such as methane,
for instance, the fact that the molecule contains some equivalent atoms
or bonds can be used. If the properties of the C—H bond (say, its dipole
moment) in the CH, molecule were of interest, the original set of
molecular orbitals would have to be transformed to give four physically
equivalent orbitals describing the C—H bonds in the methane molecule.
It appears that, if the calculation is carried out by the MO-LCAO method
with the minimum basis set of atomic orbitals (cf. the discussion of the
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C,H, molecule in Section 6.6), the symmetry of the problem suffices for
determination of all the parameters of the transformation matrix.

Generally, of course, the symmetry of the problem is insufficient for
determination of the transformation matrix; then other criteria based on
particular physical concepts must be employed. For details, see Refs. 6—9.

The localized functions calculated on the basis of the invariance
property of the density matrix are in a certain sense equivalent to the
molecular orbitals. The thus-defined localized orbitals are, of course,
not localized only in certain parts of the molecule, but have a certain
non-zero electron density over practically the entire molecule; therefore
the electron pairs cannot be isolated so that each occupies a region
defined exclusively either by one or by two centres, although this would
be an ideal property for orbitals transferable, for example, for a certain
bond from molecule to molecule. Experiments on Compton X-ray scat-
tering!® yielded persuasive proof of the possibility of localization and
transferability of bonds in some molecules, and demonstrated that theoret-
ical analysis of molecular wave functions from this point of view is of
practical importance.

It has been found!! that the projection property of the Fock-Dirac
matrix, i.e. property b) in Section 11.2.2, can be expediently utilized for
the construction of functions localized only on a certain number of
centres. For the sake of simplicity only closed shell electron systems will
be considered. In view of Egs. (11-38) and (11-30) the relationship

n"jn=k 0sk<2, (11-40)

holds for any normalized function n of type (11-36) (cf. notation in
Section 4.5). It applies especially that, if # is identical with an occupied
molecular orbital n = ¢;, 1 < i < n/2, then k = 2; if n is a virtual orbital,
then k = 0. n can be considered to be a function of several undetermined
parameters and to fulfil the localization condition in a certain region of
the molecule (see below). These conditions can easily be realized if the
one-electron functions are approximated in the LCAO form. With respect
to the possible intepretation of quantity k as an occupation number, it is
both physically and mathematically justified to require that the equation

k = max [n"y], (11-41)

expressing maximization of the corresponding functional, be valid for the
optimum localized functions.

If, for example, the bond between atoms A and B of the studied
molecule is to be described, we can proceed in two ways:



281

a) We can assume that the bond orbital 1,5 is of the form
Nag = 4N, + brg), (11-42a)

where 7, = ) c,X, is a fixed hybrid orbital on atom A (i.e. its expansion
ue(A)
coefficients ¢, are known), g is the normalization constant and b—a para-

meter (characterizing the polarity of the bond) which is to be optimized.
b) If the fixed hybrid assumption is abandoned, a more general
problem can be solved, i.e. a function of the form

Nap = XD4s (11-42b)

can be sought, where D,p is a column matrix composed of linear
coefficients multiplying the atomic orbitals localized on atoms A and B.

When criterion (11-41) is employed, both cases can be solved
exactly and version b) can be used for the determination of “optimal”
hybrid orbitals in the sense of the best approximation to the SCF solution
of the respective problem. The assumption of the number of centres
appearing in Eq. (11-42b) can, of course, be varied according to the type
of problem. If an optimal hybrid describing a lone pair is sought, # is
expanded in terms of the atomic orbitals localized on the corresponding
atom.

This method therefore characterizes the electron pair by two quanti-
ties: by the localized function 5 and the occupation number k, which can
be considered to be a quantitative measure of the localization. Its value,
for bond orbitals for example, usually lies in the range 1.98 to 2.00 for
both semiempirical and “ab initio” wave functions. In comparison with
other methods of analyzing wave functions from the viewpoint of their
localizability, its advantage lies mainly in its simplicity and small demands
on computer time and, furthermore, in the fact that it permits study of
a specific part of the molecule without explicit consideration of the
remainder.

Let us summarize the results obtained by the analysis of wave
functions from the point of view of orbital localizability. It has been
shown that well-defined localized orbitals describe inner shell electrons,
lone pairs and two-centre bonds. Localized functions exhibit a consider-
able degree of transferability between different (in a certain sense similar)
molecules. The nature of hybridization of atomic orbitals which contribute
to localized functions is also correlated with the position of the atom in
the periodic table. Application to the wave functions of electron-deficient
molecules confirmed the existence of three-centre two-electron bonds,
BHB and BBB, in borohydrides. The application of the localization
method to the m-electron systems of both butadiene isomers'? provided
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interesting results. For the two-centre C1—C2 7 bond the occupation
number k = 1.96 results, and although it is smaller than the occupation
numbers for ¢ orbitals, the difference is not sufficient to justify suggesting
that the degree of localization is a crucial factor differentiating n and o
systems. The occupation numbers for orbitals of the C2—C3 and C1—-C4
bonds are much smaller and the occupation number for the C1—-C3
bond is the lowest, in agreement with Rumer’s theorem, according to
which valence schemes which exhibit bond crossing should be excluded
from valence diagrams.

So far, the analysis of wave functions has been discussed from the
point of view of the possibility of obtaining localized functions directly
related to the concepts of the classical theory of the chemical bond. The
positive results of these calculations confirmed or initiated the formulation
of approximate methods and models, in which the localization of electron
groups was assumed. Among the simplest methods of this type are semi-
empirical one-electron methods describing the o electron system by means
of strictly localized orbitals and intended mostly for the calculation of
the ground state physical properties of molecules, such as heats of
atomization'3 and dipole moments'* (cf. methods described in Section
10.2.2). The same idea, although in a more precise version, has been
utilized in models constructing the wave function from molecular frag-
ments. The approximation of separated electron groups*, the theory of
“atoms’® (or molecules'®) in molecules” and the method of molecular
fragments'’ are of this type. Even within the framework of many-
electron theories, the application of localized orbitals is useful for
simplification of the calculation and for improvement of the convergence
of both perturbation approaches and different versions of the configuration
interaction method®.

11.24 Electron distribution in molecules

Analysis of the molecular wave function from the viewpoint of the
charge distribution in the individual parts (atoms) of the molecule allows
quantitative expression of changes in the electron distribution when
forming molecules from fragments (atoms). It is then possible to establish
a qualitative interpretation of the quantum chemical calculation, based
on concepts such as “ionicity”, polarity and covalency of the bonds.
Hereafter all charge values will be given as multiples of the elementary
electron charge.

Electron redistribution during molecular formation can be studied
using function (r), which was introduced by Roux and co-workers'®.
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This function is defined by the relationship
a(r) = a(r) = ). o,(r), (11-43)
I

where the electron density function g(r) is given by Egs. (11-14) and (11-12)
and g,(r) is the hypothetical free atom electronic density function un-
changed by bond formation and localized on atom I of the molecule.
The difference between the electron density in the molecule and the sum
of the electron densities in the system of free atoms (or ions) must be
calculated for each point in space. Most convenient is graphical represen-
tation of function d(r) in the form of curves corresponding to the same
density values in characteristic planes intersecting the molecule. d(r) as
a difference function describes the change in the electron densities which
occur on formation of the bond better than electron density contour
maps (cf. e.g. Fig. 9-2).

For some purposes the described representation of the electron
distribution is unnecessarily detailed. Thus it is naturally sometimes
necessary to condense the relevant information and to describe the
charges localized on the atoms or to give data on the density of electrons
in the individual bonds. The most common method for the calculation
of atomic charges from a wave function of the MO-LCAO type is
undoubtedly Mulliken’s “population analysis”*°, which can be best il-
lustrated on a two-centre one-electron (or two-electron) system. For
a normalized molecular orbital ¢ we have

¢ =X, + ¢y (11-44)

where subscripts ¢ and v denote the centres (the nuclei of atoms I and J),
and the number of electrons, k, contained in this orbital is given by

k=kic,|* + 2k ) + ey P (11-45)

where {y, | ,> is the overlap integral between the two orbitals. The term
containing the overlap, called the “overlap population”, can be interpreted
as a measure of the accumulation of the electron charge between the
atomic partners and is therefore related to the strength of the corresponding
bond. Assuming that the participating atoms influence the magnitude of
this term to the same degree, the electron charge Q, on atom I
(whose nucleus is identical with centre u) can be defined according
to Mulliken?° by the relationship

QI = k(l Cu|2 + C:‘\(Xﬂ I Xv>) (11'46)

Derivation of the general expression for the atomic charge can begin
with Eq. (11-28) or (11-30) for the density matrix. After substituting
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Eq. (11-39) into Eq. (11-30) and after integration over the space coordinates
of the electron, the relationship

n/2
n=2%% Z Y Y () (C;i) {ta | X;> (11-47)
I J ae(I) pe(J)i=1
is obtained for molecular orbitals in the form of (11-39) and for a closed
shell system. Assuming that the atomic orbitals localized on a single centre
are orthonormal ({x;|xf> = 0,4), the quantities Q; can be introduced:
0= Qs (11-48)
ae(I)
where

n/2 n/2
Qu=2[ Z (ca)* (c;i) + Z Z X | XIJ3> Z (cz)* C)Jsi]’ (11-49)
i=1 J(#1) pe()) i=1
which, in the sense of the introductory example, can be interpreted as
electron charges localized in atomic orbital x;(Q,;) and on atom I(Q,).

The condition

=30 (11-50)

is, of course, valid. If Q, is known, the total charge on atom I can be
calculated as the difference (Z, — Q,), where Z, is the (effective) nuclear
charge of the atom.

It is obvious that, for zero atomic orbital overlap, the term
involving the overlap between the atomic orbitals of different atoms
in expressions (11-46) or (11-49) can be disregarded and the value
k|c,|* is then a measure of the electron density on atom I, leading to
the expression defined by Coulson?! within the Hiickel theory as the
atomic charge for the 7 electrons. The electron density in the region
of the bond, ie. the bond order, is estimated from the value of the
product kc¥c, (the Coulson bond order). In molecules with several
occupied molecular orbitals, the (total) electron densities and bond
orders are given by the sum of the contributions from the individual
molecular orbitals.

Although the Mulliken definition of the atomic charge in a molecule
is among the most frequently used, it has a number of shortcomings.
First, the “overlap population” is equally distributed between atoms
I and J, and is, in general, fulfilled only when the atoms are of the
same kind. Further, the definitions given [cf. Eqs. (11-48) and (11-49)]
do not exclude the possibility of negative electron densities if the
contribution from the non-diagonal terms is negative and sufficiently
large, and, on the contrary, it has even happened that the calculated
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charge was greater than 2. The results of population analysis are not
invariant under transformation of atomic orbitals and, in addition, the
calculated charges depend markedly on the choice of the AO basis set.

These drawbacks can best be illustrated on an example of calculation
using expansion of the one-electron wave function (of the molecular
orbitals) in the form of a linear combination of atomic orbitals, which are
all localized on the nucleus of a single selected atom; one-centre methods
seemed to afford good results in the calculation of physical quantities®?
for symmetrical molecules, such as the CH, molecule. Population
analysis would nonetheless attribute the total electron charge to a single
atom, the nucleus of which is chosen as the origin for expansion
of the wave function. However, population analysis provides physically
reliable results as long as the basis set of the atomic orbitals is chosen
consistently with the electronic structure of the atoms forming the
molecule.

The described shortcomings can be removed by the definition of
the atomic charge proposed by Politzer et al*3, which sets out directly
from the physical interpretation of the first-order density matrix. This
method is based on the partition of the molecular space into regions
corresponding to the individual atoms. The electron charge of atom I
is given by the integral

0 = Jo(r)dr, (11-51)

where o(r) is the electron probability density [cf. Egs. (11-12) and (11-14)]
and the integration is carried out over the region corresponding to
atom I. It is evident that the method allows a certain amount of freedom
in defining the spatial regions corresponding to the individual atoms
forming the molecule. Nevertheless, the numerical application of this
method has provided results identical with experimental data even
when other methods yielded worse results, for example, with fluorinated
hydrocarbons.

11.2.5 Dipole moment

Although it would be ideal to gain experimental information on the
electron distribution in the regions corresponding to the individual
atoms and in regions between neighbouring atoms, nonetheless less
detailed information on the charge distribution, namely, the dipole
moment, is also very useful. In electroneutral systems (molecules) there are,
of course, many regions with a local excess or deficiency of electrons.
From the point of view of the molecule as a whole, this distribution is
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equivalent to a distribution in which all the positive charges are con-
centrated in a single point charge (centre of charge); with negative
charges the situation is analogous. The absolute magnitudes of these
charges are, of course, identical (the electroneutrality condition). The
dipole moment pu is defined as follows (Fig. 11-8):

u = der (11-52)

/ oe
Fig. 11-8. Dipole moment

-de [Eq. (11-52)].

In classical physics the dipole moment of a system of point charges
415 dy, ---s q, (Where Y g, = 0) equals
i=1
u =Zq,.r,-, (11-53)

where r; is the position vector of a given point charge from an arbitrary
origin. For continuous charge distribution integration must be carried out:

u={o(r)rdr, (11-54)

where o(r) is the charge density (r expresses the dependence on the
space coordinates) and dr is the volume element. In the study of molecules,
both these expressions®* are used: for purposes of calculation, the molecule
is split into a set of positively charged nuclei [which have quite definite
positions, Eq. (11-53)] and a continuously distributed electron density
[Eq. (11-54)]. If the nuclear charge is equal to Z,e and if the electron
charge density is expressed in terms of function o(r) [cf. Egs. (11-12),
(11-14) and (11-24)] multiplied by the electron charge, it follows that

p=eY ZR, — ejQ(r)rdr, (11-55)
T

where R, denotes the position vector of nucleus .

The expression for the calculation of the dipole moment can, of
course, also be used when the calculation is confined to only a certain
portion of the electrons. The most important example is the n-electron
approximation applied to conjugated systems. In expression (11-55) Z,
then denotes the core charge of the I-th atom and the spinless density
matrix o(r) describes the m-electron distribution. In this way the n-electron
component of the total dipole moment is obtained.
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The introduction of molecular orbitals as a linear combination of
atomic orbitals into o(r), corresponding to a closed shell system [cf.
Egs. (11-12), (11-14) and (11-30)], can be written as follows (using the
one-electron approximation):

n/2
olr) = 2% ax®) 10 X ey (11-56)
n,v i=1

If Eq. (11-56) is substituted into expression (11-54) the electronic part
of the dipole moment (11-55) is obtained:

pa= —efordr=—e)3r, P, (11-57)
[T

where P is the charge- and bond-order matrix defined by Eq. (10-5) and
the matrix element r,, is given by the equation

r, =[5 e, 0) dr = | 2] 2, (11-58)

where r =+ denotes the position vector of the selected electron. All
the position vectors are, of course, related to a particular origin of
the coordinate system (in classical electrostatics it has been shown that,
for an electroneutral s}stem, the value of the dipole moment is invariant
to the choice of the origin of the coordinate system).

The values of matrix elements (11-58) will now be evaluated. The
expression for their calculation is considerably simplified if the zero
differential overlap approximation [cf. Eq. (10-9)] is used:

0ux =0, uFv,

this being a typical feature of the m-electron approximation. Then all
elements r,,, u # v, are also equal to zero. For diagonal elements r,
it is expedient to express position vector r as the sum of two vectors,

u

r=R, +r, (11-59)

where R, is a constant vector which gives the position of nucleus I
on which y, is centered with respect to the chosen origin and r’ is a new
variable vector related to the nucleus of atom I. It therefore follows that

r, =R + e, (11-60)

which is a vector equation representing three equations for the individual
components. For example, for the x-component

xuu = X]<X“ | X,‘> + <X‘4 | x, l Xu> (11-61)

The coefficient of X, is the norm of atomic orbital and thus equals 1;
from symmetry considerations it follows that the second integral equals
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zero [cf. Eq. (6-70)]. Thus
r. =R, (11-62)
and finally
oy = —ezuRqu, (11-63)

because the indices of the atomic nuclei and orbitals can be identified,
because in the m-electron approximation each atom contributes a single
atomic orbital to the total basis set of atomic orbitals. Since in this
approximation P, denotes the Coulson n-electron density Q; on atom I,
the final expression for the dipole moment can be written within the
framework of the one-electron m electron approximation:

p=ey R(Z, - Q) (11-64)
I
Y
|
9 x  Fig. 11-9. Dipole moment vector and
Ay its u, and p, components.

Assuming that the studied system is planar (and lies in the x, y-plane),
the absolute value of the dipole moment vector (cf. Fig. 11-9) is given by

=+ pd), (11-65)
where . and p, are the respective components of the vector, for example
I’tx = eZXI(ZI - QI)) (11'66)

I

where X is the x-coordinate of nucleus I with respect to the fixed origin.
The dipole moment forms angle ® with the positive part of the x-axis,
for which it holds that

tan® = £ (11-67)

Ky

The total dipole moment of planar conjugated compounds can be
expressed as the sum of the 6 and n components:

= ”cr + B, (11'68)

With some m-electron systems, the contribution of the o component is
practically negligible in comparison with the contribution of the =
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component. The dipole moment of the ¢ component can be expressed
by superimposing the dipole moment of the individual ¢ bonds, which
are tabulated in the literature. The contributions originating from non-
bonding atomic orbitals —lone pairs (for example on nitrogen in pyridine
or oxygen in carbonyl compounds), which are more significant than the
dipole moments of 6 bonds—must also be included. If the m-electron
density obtained by the HMO or SCF method is substituted into the
expression for the dipole moment, the calculated values are too high.
More correct values of u are obtained if methods are employed for the
calculation of the electron densities in which the a (or «f) values are
corrected for the charge densities in the respective positions. This is done
in the w-technique (the modifited HMO method) and in the VESCF
method (the modified SCF method). There are also very useful methods
in which the electrons of the o bonds are considered explicitly. In these cases,
however, the simple relation (11-64) for the calculation of the dipole
moment is not valid and it is necessary to employ a more complicated
expression. Good agreement of theory and experiment has been achieved
in a number of instances using the CNDO/2 method: the deviation of
the calculated and experimental values is usually about 10%,.

11.2.6 Nodal planes of molecular orbitals:
the Woodward-Hoffmann rules

In the mid-sixties Woodward and Hoffmann published a method?3,
which enabled prediction of the details of the stereochemical course of
some cyclization reactions by means of the shape and nodal planes
of the frontier molecular orbitals. It soon appeared, however, that the
whole consideration must be given a more reliable physical basis,
represented by correlation diagrams. Knowledge of the shape of molecular
orbitals (the location of nodal planes) can, nevertheless, be used empirically
for interpretation and prediction of the course of some reactions.
Electrocyclic reactions, i.e. reactions in which a ¢ bond is formed
or broken between the ends of a linear conjugated system, will be
treated here in greater detail. Examples are the formation of cyclobutene
from 1,3-butadiene and the formation of 1,3-butadiene from cyclobutene:

il

CH,

\

4 HC—CH, )
. — HE—EH, (11-69)

2
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Woodward and Hoffmann represent this process schematically for a polyene
with nr electrons as follows:

Rotation of the terminal atoms of the open system out of the plane
can occur in two ways, as is clear if we assume that the ends of the
chain consist of different atoms A, B, C and D. The two possible types
of rotation are called disrotation and conrotation:

Disrotation q;( =

. A

A
Conrotation Q = Yid (11-72)
i

b 5

(11-71)

It has been experimentally found for butadiene that disrotation
occurs in the first excited state, whereas conrotation is decisive for the process
in the ground state. For interpretation of this experimental data it
is necessary to analyze the molecular orbitals of butadiene and cyclobutene
which participate in the electrocyclic reaction. For butadiene these are
four n-MO’s, with cyclobutene two n-MO’s and the two o-MO’s of
the bond formed (Fig. 11-10). The cyclization can be followed using
a correlation diagram which enables identification of orbitals with
corresponding symmetry in the initial and final states. In addition to
a two-fold symmetry axis, these states also have a symmetry plane
(Fig. 11-11). The molecular orbitals of the initial and final states can be
classified using symbols S (symmetric) and A (antisymmetric) (Fig. 11-11),
depending on their behaviour on application of the particular symmetry
operations. The symmetry of a molecular orbital is designated by two letters,
where the first refers to reflection in the symmetry plane (o) and the
second refers to rotation about the symmetry axis (C,) (Fig. 11-10).

It should be noted that the transition states which occur in disrotation
and conrotation are of lower symmetry: to the transition states in
disrotation corresponds only a symmetry plane (o) and to the transition
states in conrotation only a symmetry axis (C,). The terminal atomic
orbitals in the n-MO (¢,) of butadiene permit to occur these processes
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a) b)

Fig. 11-10. n- and o-molecular orbitals of butadiene (a) and cyclobutene (b).

Fig.11-11.Plane of symmetry (o) and two-fold symmetry axis (C,) in butadiene and cyclobutene.

disrotation conrotation

Fig. 11-12. Behaviour of the ¢, molecular orbital of butadiene under disrotation and
conrotation: only the p, atomic orbitals in positions 1 and 4 are indicated. The initial
position (1, 1'), position during rotation (2, 2), position after rotation (3, 3').
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(Fig. 11-12). If states of equal symmetry are connected (Fig. 11-13), taking
into account the principles usual in the construction of correlation
diagrams?>:26 (conservation of symmetry of the molecular orbitals in the
initial, transition and final states, the non-crossing rule, cf. Section 9.4), it
follows that for the electrocyclic reaction of butadiene (thermal reaction)
conrotation is preferable, because the bonding MO’s of the reactant pass
into bonding orbitals of the product (Fig. 11-13). A further occurrence
is the initiation of an electrocyclic reaction by a photon. Whereas in
the former case the reaction occurred in the electronic ground state,
here the reaction occurs in an electronically excited state. The reaction
course can be interpreted in terms of disrotation (cf. Fig. 11-13). Further-
more, it is necessary to investigate the effect of the chain length on the

two - fold symmetry

plane of symmetry 6 axis Cy o

A S A £

9, S5t g, o* |'s

o]

2

& ™ g2 S_q¢ |5

frontier o

MO N TS T 1=
S A

0, e 0} T o

£

s s A s g

12— 6 2 6 8

disrotation conrotation

Fig. 11-13. Correlation diagrams of conrotation and disrotation in butadiene.

chain growth

Fig. 11-14. The shape of frontier molecular orbitals in butadiene and hexatriene.



293

cyclization mechanism. First, however, it should be noted that the
frontier MO’s play a decisive role in these processes. This is usually
the highest bonding orbital in the reaction in the ground state and the
lowest antibonding orbital in photochemical reactions. It appears that, in
order to determine the reaction course, it is sufficient to investigate
whether, in the given type of rotation, the overlapping parts of the AO’s
have the same sign or whether the positive part of one terminal AO
would overlap the negative part of the other. The situation can be
clarified using the example of butadiene and hexatriene in the ground
and excited states (Fig. 11-14). It is evident from the figure that knowledge
of the nodal planes in the frontier MO is sufficient for formulation of
the “selection rule”. Thermally initiated electrocyclic reactions in systems
with 4m 7 electrons in polyene (m =1, 2, 3, ...) proceed through
conrotation, whereas in systems with 4m + 2 electrons disrotation takes
place. In similar photochemical processes the opposite is true.
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12. EXAMPLES OF THE STUDY
OF POLYATOMIC MOLECULES

12.1 Introductory comments

As far as quantum chemical studies of the electronic structure of
molecules are concerned, modern techniques focus attention on semi-
empirical and nonempirical methods, in which all the valence electrons
(CNDO-type methods) or all the electrons in general (“ab initio” methods)
are explicitly considered. The semiempirical methods are rather easily
applicable, but they sometimes fail quantitatively or even qualitatively,
their chief disadvantage being the limited region of application of the
individual versions of the SCF method. It is evident, however, that
there is a great number of problems in chemistry that can be successfully
studied using simple empirical methods considering all the valence
electrons or only the w electrons.

12.2 Inorganic compounds

More attention should be paid to the solid phase!:?, whose importance
is not confined to heterogeneous catalysis alone. Much effort is being
devoted to theoretical studies of the electronic structure of the solid
phase, both in non-metals and metals. In non-metals, molecular crystals
(for example solid pentane, bromine, numerous organic compounds),
covalent crystals (e.g. diamond, germanium) and ionic crystals (e.g. NaCl,
CuSO0,) can be distinguished.-

In molecular crystals, the individual molecules are held together
by van der Waals forces (see Chapter 17). They are, roughly speaking,
one to two orders of magnitude smaller than the forces responsible
for chemical bonds. The heats of sublimation and melting roughly equal
tens of kJ/mol. That the individuality of molecules is retained in the solid,
liquid and gaseous phases is supported by the fact that vibrational
spectra differ only insignificantly in these phases.
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Covalent crystals represent giant molecules. It is expedient to
describe them in terms of localized bonds, as the bonds in the crystal
bulk greatly resemble bonds in normal covalent compounds. However,
the bonding conditions in the surface layers often differ considerably
from the conditions inside the crystal. It is rather interesting that both
important types of hybridization known for carbon atoms in organic
compounds, sp> and sp?, are represented in covalent crystals, in diamond
and graphite, respectively. Graphite can be considered to be a system
of two-dimensional infinite benzenoid hydrocarbons. The distance between
the individual layers is 0.335 nm, indicating the possibility that only van der
Waals forces are operative. In graphite, the electrons originating from
the p, orbitals occupy MO’s which extend over infinite areas: the high
electrical conductivity of graphite is immediately evident from this
description. It is a typical feature of all classifications of substances
that, in addition to well-defined types, there are numerous transient types.
This concept explains, in principle, the gradual transition to ionic
crystals. Although zinc sulphide has a diamond lattice, it is certainly
not a covalent crystal; the interaction between Zn>* and S~ participates
in the bond formation to a considerable degree. There is even an almost
ionic analogue of graphite, namely boron nitride, BN.

Classical representatives of ionic crystals are the halogenides of the
alkaline metals. Cations M* and anions X~ are quite regularly arranged
in cubic lattices: each anion is surrounded at distance r by six cations
and vice versa. A further layer at a distance of r,/2 contains twelve
anions and finally, at a distance of r\/ 3 there are eight cations. As a first
approximation, the participation of the covalent bond can be neglected
entirely and only the Coulomb interaction between M* and X~ need
be considered. Whereas the potential energy of this interaction in a hypo-
thetical diatomic molecule M*X~ amounts to e*/4ne,r (where r is
the distance M* ... X7), the potential energy V of the interaction of
ion M* with the two closest layers of anions (6 and 8 ions) and with

Table 12-1
Contributions to the Total Lattice Energy of Sodium Chloride,
in eV [Ref. 1]

Electrostatic energy 8.92
Polarizability 0.13
Repulsion energy -1.03
Zero-point vibrational energy —-0.08

Total lattice energy 7.94
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the closest layer of cations (12 ions) amounts to

e (6 12 8
V=- 4me, (7 2 * r\/3> (12-1)

Similar expressions apply to all further cations M* and anions X~.
If all these contributions are summed and the result is divided by two
(otherwise each interaction would be counted twice), the expression for
the total electrostatic energy of this type of crystal is obtained; this
is usually stated in the following simplified form:

—Ae?
= s
dme,r

(12-2)

where A is the Madelung constant, which has values roughly between
1.7 and 5. In reality, however, the covalent bond always participates
in the bonding in ionic crystals. If the participation of the covalent
bond is estimated, the “ionicity” of the bond is also determined and
thus the factor by which the electrostatic energy must be reduced is
obtained [Eq. (12-2)]. In more precise calculations, it is also necessary
to consider the polarizability of the ions (particularly of easily deformable
anions), the repulsion effects between clouds of electrons and the
vibrational energy at absolute zero. Table 12-1 gives the magnitude of
the individual contributions in sodium chloride. The experimental lattice
energy amounts to 7.86 eV; the theory agrees well with the experimental
value. The scope of this book does not permit a more detailed description
or even brief comments on metals.

Among special illustrations, the results of MO studies in boranes?
have an important place and have drawn the attention of both theoretical
and experimental chemists for years. Several dozen boranes have been
studied by different extended MO methods. Boranes are described as
compounds with an electron deficit. This is not surprising, considering
that formation of a normal o bond requires two electrons. In the
simplest borane B,Hg, for example, there are eight atoms that are, in
the extreme case, connected by seven bonds, which require 14 electrons.
In diborane, however, only 12 valence electrons are available. However,
if electron-deficient systems are considered to have unoccupied bonding
MO’s (as, for example, in many dications), then boranes cannot be
included in this category since they have no such orbital. Many
attempts have been made to interpret the nature of the bonding in
boranes. For diborane (B,H,) the theory must take into account the
experimentally determined structure (Fig. 12-1) which corresponds to the
previous finding that only 4 of the 6 hydrogen atoms are equivalent
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Fig. 12-1. Arrangement of atoms in diborane.

and can be exchanged. Only two theoretical concepts that seem to be
most justified will be treated here. The first is the original idea of Pitzer,
according to which diborane is some sort of diprotonated “ethylene” (I).

The similarity
P\e H® o
B B

T

I

of the UV spectra of ethylene and diborane supports this hypothesis;
it is contradicted, however, by the greater length of the B—B bond
(0.18 nm), as well as by the fact that the diborane hydrogens exhibit
no acidity. The other description originated with Longuet-Higgins*, who
suggested tricentre bonds either of the B— H—B type or of the B—B—B
type (in other types of boranes). Employing symmetry considerations
it can be shown that the central part of the molecule contains molecular
orbitals formed by the overlap of the hybrid orbitals of boron with
the 1s orbital of hydrogen. The following hybrid orbitals are ascribed to
the first boron atom:

(D (R (]
([ (IR s

Hybrid orbitals 6, and o, are formed on the second boron atom.
Symmetry orbitals (cf. Section 6.6) in the LCAO form are formed from
these four orbitals as well as from the pair of 1s hydrogen orbitals (h,, h,)
and the corresponding symbols of irreducible representations (Table 12-2)
are assigned to them. The corresponding bonding and antibonding MO’s
will be formed by combination of AO’s of the same symmetry (using
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Table 12-2
Group Orbitals in Diborane (II) and Their Symmetry
Orbital Symmetry Orbital Symmetry
1 1
5 (hy + hy) AB 7(‘71 +0,—0;~0,) B,,
1 1
) (hy —hy) By, “2'(01 —0,—-03+0,) Bi.
1 1
7(0, +0,+0;3+0,) A, 7(01 —-0,+0;—0,) B,,

orbitals of symmetry A, and B,,); the remaining B;, and B, orbitals
are nonbonding. For characterization of bonds in diborane both bonding
MO’s are of interest:

Ag o, =cy(hy + hy)) +cy(0, + 0, + 03+ 0,) (12-5)

B, ©,=1c3h; —hy) +c,(0, — 0, — 03+ 0,) (12-6)

It should be noted that the explanation of the bonding properties
of boranes is, on the one hand, a problem of considerable importance in
the theory of the chemical bond, and, on the other hand, it is important for
interpretation of the physical properties and the reactivity of numerous
compounds not only of boron, but also of beryllium and aluminium.

Great attention has been paid in recent years to experimental
and also theoretical studies of formally conjugated inorganic compounds®.
In addition to the already classical borazine (III), numerous cyclic
compounds containing phosphorus and nitrogen or sulphur and nitrogen,
often stabilized by fluorine bonded to phosphorus or sulphur, have been
studied.

F
PAN P é\
g g I
N§B/N %N/ F \Né NE
111 1AY \%

In systems IV and V (examples of very extensive series of
compounds) — considering possible conjugation —an atom with a p, orbital
(N) alternates with an atom with d orbitals (P, S). However, only d_, and
d,, orbitals have suitable symmetry for overlap with a p, orbital;
d,,,d._, and d.. orbitals are symmetrical with respect to the xy plane,

xy?
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Fig. 12-2. Symmetry of d,, and d,_ orbitals from the viewpoint of possible overlap with p,
orbitals.

so that their overlap with p, orbitals is ineffective. Although d,, orbitals
correspond to p, orbitals (Fig. 12-2) even in symmetry with respect to
rotation about the y axis, greater attention has been paid to models
in which only the d_, orbital is assigned to phosphorus atoms. According
to Craig®, such a system is called heteromorphous; a system of three p_(N)
orbitals and three d,, (P) orbitals, on the other hand, is described as
homomorphous, because all the atomic orbitals have the same local sym-
metry. It is obvious that in a heteromorphous system (Fig. 12-3) there
are two subsets of the same symmetry: three p, orbitals and three d,,
orbitals. Within the framework of these sets MO’s can be formed on the
basis of symmetry consideration alone. The expression for the orbital
energies of such a cycle can be given in the closed form (x, = o, = o)

E; = o+ 2sin (%)ﬁ (12-7)

where j has the values 0, +1, ... +m/2 or +(m — 1)/2 for m even or odd
and m is the number of AO’s in the respective subset (here, 3). If the
Coulomb integrals of the p, and d,, orbitals differ by A«, then the
diagram of orbital energies depicted in Fig. 12-4 corresponds to the
system represented in Fig. 12-3. Thus the sequence of degenerate and
non-degenerate levels is the opposite to that in benzene (cf. Fig. 6-6).
If the Coulomb integrals of the p and d orbitals are identical, the
highest occupied level would be degenerate and only incompletely oc-
cupied. It is not expedient to develop such considerations further,
because experimental experience (spectral, geometrical and also thermo-
chemical data) has shown that these systems do not have much in
common with classical conjugated hydrocarbons. It should, however,
be added that the theory leads to the result that, in general, for systems
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in which d orbitals are available on some atoms, on the one hand,
the Hiickel “condition of aromaticity” from the theory of planar
monocyclic hydrocarbons (the number of electrons in the conjugation
equals 4m + 2, where m =0, 1, 2, ...) is not valid and, on the other
hand, even non-planar systems can, in principle, be conjugated.

_______________ —_ 3
O ==y 3
Fig. 12-3. Conjugated subsystems Fig. 12-4. Orbital energies
of the heteromorphous cycle. of a six-member p--d cycle (a, # a,).

Electronic spectra suggest that conjugation participates more signif-
icantly in non-substituted cycles composed of nitrogen and sulphur
atoms. Several series of such compounds can be predicted theoretically
and syntheses performed in recent years confirm that such considerations
are justified. Firstly, cycles with an even number of atoms have been
found; two subgroups can be distinguished here: that with an even
number of nitrogen atoms and that with an odd number. Taking into
account that nitrogen has five valence electrons (odd number), it follows
that the neutral forms of systems of the second subgroup are radicals.
Systems with an odd number of atoms have also been shown to exist.
Experimental and also theoretical evidence tends to demonstrate that
regularities common for conjugated hydrocarbons cannot be expected
for these systems. On the contrary, often even formally very similar
substances have different geometry and properties. In the S,N, cycle, in
agreement with X-ray analysis, EHT type calculations support the saddle
form evident from Fig. 12-5. The system S,N, was prepared in the
cationic form and is obviously planar; its electronic spectrum was inter-
preted by means of the n-electron approximation, using the configuration
interaction method (PPP method). The cation S;NJ, which was prepared
as the chloroaluminate, should also be mentioned. It results from the
X-ray analysis that this is a nearly planar system, with the first absorption
band in the region between the UV and visible regions (Fig. 12-6). The
interpretation of both the physical properties and the reactivity of the
system using the EHT and PPP theories proved successful. The heart-
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shaped form of this cation is remarkable and can be seen in the EHT
molecular diagram (Fig. 12-7). That it is a conjugated system tends to be
proved by its electronic spectrum, by the fact that it can be qualitatively
interpreted using the n-electron approximation and by the generally
uniform overlap population between the individual N and S atoms.

Another pair of experimentally and theoretically studied systems
(EHT, PPP, CNDO/2) are cycles VI and VII. To a certain extent these
systems can also be considered as conjugated.

0 S
/N 7\
R—B —R — —
\ /B R B\ B—R

S—sS
VI VII

According to the results of X-ray analysis, the structure which does
not have the highest possible symmetry exists in some complex compounds.
Complexes of divalent copper (Cu?*, d° complex), for example, are not
exactly octahedral but are somewhat prolonged in the direction of the
z-axis. Jahn and Teller interpreted this observation. The unpaired copper
electron seems to be located in one of the two degenerate E, orbitals.
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According to the Jahn-Teller theorem such a situation does not occur in
real systems and the system can eliminate the degeneracy by a small
change in the geometry: this is called a Jahn-Teller distortion. This
distortion is manifested by removal of the degeneracy of incompletely
occupied orbitals and it is accompanied by a decrease in the total energy
compared with the original system. The prolongation (shortening) of the
z-axis results in the d,,_  (d,.) orbital having the highest energy and it is
thus only singly occupied. Although this phenomenon does not apply to
inorganic complexes alone, it plays a very important role in them.
Similarly, the final example can also be studied by the ligand field
method; it concerns rhenium, which belongs in the third series of
transition elements. The dianion Re,CIZ~ is characterized by a very
short Re —Re bond, only about 0.22 nm, around which no rotation occurs:
the chlorine atoms are held in an energetically disadvantageous “eclipsed”
position (Fig. 12-8)°. The figure demonstrates why the Re —Re bond is so
short: o, ® and 8 bonds exist simultaneously between the rhenium atoms,
so that this bond is of very high order. The participation of & overlap
(leading to the & bond) requires an “eclipsed” position of the chlorines;
the energy yield connected with the formation of this bond is obviously
greater than the energy loss caused by repulsion of the chlorine atoms.

b) c)
0 _a \ ’ d) 0
Q== < <>
A AN 1T
022nm ] S = b 6{ |
(!
ol _a \ ’ C%%B
ReZ”
Cl/ \Cl_ l\
d,? dyz dxy

Fig. 12-8. Formation of o (b), n (c), and & (d) bonds in the dianion (a).
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12.3 Organic compounds

For decades (1930 —1960), bar some exceptions, the calculations of models
of organic compounds were confined to m electron approximation in
conjugated compounds. The breakthrough into the field of aliphatic
compounds was made by the introduction of the extended Hiickel theory
(EHT) by Hoffmann in 1963. The basic features of this method were
mentioned in Chapter 10. Despite all of its known shortcomings, this
method can also be applied for the estimation of molecular geometry,
although the data obtained are usually of only qualitative significance.

-120
S
2
L
t -130
o b Fig. 12-9. Dependence of total energy
o 0z ; 0% on the bond length I

—=1(nm) (according to Hoffmann?).

Fig. 12-9 gives the dependence of the total energy of methane on the
length of the C—H bond. Use of the EHT method is, of course, not
confined to aliphatic systems alone. An example® is the investigation
of the effect of the orientation of the C—H bond in vinylmethylene (VIII).
The shift of the “methylene” hydrogen is described by the a and § angles,
angle a being a measure of the deviation of the C—H bond from the
v-axis (in the arrangement in formula VIII, angle « equals 0).

H

Ny

C :
7N, Y
H H
vIIl

Positive values of a correspond to the cis arrangement (or rather to the
“approach” to this arrangement); angle f is a measure of the displacement
of the C—H bond in the direction of the z-axis (which is vertical to the
horizontal plane). The result of the EHT calculation is demonstrated in
Fig. 12-10.

Extended methods (methods in which all valence electrons are
considered) allow further physical properties to be estimated in aliphatic
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Fig. 12-10. EHT-energy contours in vinylmethylene: effect of orientation of the methylene
bond (according to Ref. 8).

systems such as, for example, the ionization potential, the rotation barrier
and the wave number of deformation vibrations.

Formaldehyde, for example, is a molecule in which both ¢ and &
molecular orbitals play an important role, so that description of this
molecule by the m-electron approximation is insufficient, although it is
rather tempting due to its simplicity. Considered from a wider aspect, the
situation would not even be improved by considering the electron
repulsion within the framework of the PPP method. The difficulty lies in
the fact that description of the formaldehyde molecule using a model
considering only two electrons (out of 16) is too rough.

|
|

(-0.95; 0.54) } (0.95;0.54)
I

Fig. 12-11. The geometry of formal- I
dehyde used in the calculation: x and y I
coordinates (10'° m). 0(0;-1.21)

With a comparatively small molecule such as formaldehyde, the
application of extended methods is particularly desirable. Fig. 12-11 shows
the coordinates of the formaldehyde atoms which were used in calculation
by the EHT, CNDO/2 and “ab initio” methods. The orbital energies
obtained are plotted in Fig. 12-12. In another figure (Fig. 12-13) are
given the calculated charges and the dipole moments. There is no doubt
that the EHT method exaggerates the charge distribution characteristics.

A great number of examples has convincingly shown that the
different versions of the MO methods are suitable for interpreting the
properties of conjugated systems. We should like to quote one example:
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— HOMO " g
a) b) c)
Fig. 12-12. EHT (a), CNDO/2 (b), and “ab initio” (DZ basis set) (c) orbital energies
of formaldehyde.
0.103 0.004 0.445
H \ /H H\ H H
0.857 C 0.209 C / 0.016 C
-1.062 0 -0.210 0 -0.306 0
M =22.410%Cm A=T72407%0Cm A =407.10%Cm
a) b) c)

Fig. 12-13. EHT (a), CNDO/2 (b), and “ab initio” (DZ basis set) (c) charges and dipole
moment of formaldehyde. The experimental dipole moment is 7.8 x 1073° C m.

on the basis of knowledge of the HMO expansion coefficients of the
frontier orbitals (HOMO, LFMO) and using first-order perturbation
calculations, it is possible to draw qualitatively correct conclusions on
the positions into which a substituent (of a chosen nature) should be
introduced in order to increase (or decrease) the ionization potential or
the electron affinity, or to induce a hypsochromic or bathochromic shift*
of the first (longest wavelength) band in the electronic spectrum (cf. Section
13.3.1). For rapid orientation it is expedient to indicate the values of the
expansion coefficients in the individual positions in the structural formulae
(Fig. 12-14). The calculation is then easily performed using the expressions
from Table 10-13 and Eq. (12-104) and Table 13-7. In the papers by
E. Heilbronner and co-workers, it is possible to find a number of cases
of skillful utilization of the perturbation treatment.

* Shift to shorter or longer wavelengths, respectively.
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QLo ®;

E (HOMO) = oc +0.48 3 E(LFMO) = - 0.40 3

Fig. 12-14. The circles correspond to the squares of the HMO expansion coefficients
in HOMO and LFMO. Positive (Q) and negative (@) coefficients.

The fact that MO calculations for dozens of systems and correct
predictions of their stability were made prior to experimental proof is very
encouraging. Amongst these systems are, for example, the molecules and
ions designated IX—XIII. In recent years, quantum chemical methods
have also begun to be used for structure elucidation in organic compounds.

00O 8 e

XII XIII

The theoretical explanation of the conditions in numerous non-
classical systems has often considerably influenced further experimental
studies. This was true, for example, with paracyclophanes (XIV). Between
the two benzene rings transannular interaction exists, which, on the whole,
has no influence on the bonding conditions, but significantly affects the
electronic spectrum. Mainly systems in which m = n were studied theoret-
ically; the influence of the CH, bridges is especially pronounced when
m = n = 2. The splitting of the original benzene energy levels is illustrated
in Fig. 12-15.

: @e@

XIv

The last example is ferrocene, which is one of the longest known
representatives of a very extensive group of organometallic compounds.
Metals have been found to act as donors or acceptors of electrons in
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various organometallic compounds (Fig. 12-16). Using symmetry con-
siderations it is possible to directly construct a qualitative scheme of the
orbital energy levels. Still, it must be borne in mind that the = molecular
orbitals of cyclopentadienyl correspond to the symmetry species A4,, E;
and E, and the AO’s of iron to 4,(4s, 3d,.), A,,(4p,), E,,(3d,;, 3d,),
E, @p,, 4p,) and E, (3d,,, 3d,._.); of course, only orbitals of equal
symmetry may be combined.

B
T et
E2u " EZu ‘‘‘‘‘‘‘‘ ‘E2u
w e 2 i
YA
qu —C

—J—E T E \‘\.._ Eiq
A2u +
Ay = An metal as
— e A T acceptor .
a) b) c)

Fig. 12-15. Hartree-Fock orbital energies of  Fig. 12-16. Interaction of the d orbitals of a

benzene (a, ¢) and (n, n) paracyclophane (b). transition metal M with bonding and
The levels are designated by the symbols of antibonding molecular orbitals
irreducible representations of the Dg, group (the occupied orbital is hatched).

(according to Ref. 9).

Although calculations performed by various methods led to some-
what contradictory results for the electron distribution, all of them
explain the kinetic and thermodynamic stability of ferrocene quite well.
The situation is similar for numerous organometallic compounds.

12.4 Examples of systems studied
in biochemistry

It is surprising how often one encounters conjugated systems when
investigating compounds which are interesting or even occupy key
positions in biochemistry more closely. This is all the more remarkable
since the chief components of living organisms, proteins, sugars and fats,
are unconjugated systems.

The conjugated components of nucleic acids (pyrimidines and purines),
various coenzymes, porphyrines and bile pigments, pteridines and proteins
belong among the most frequently studied components of living matter.
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phosphate é N phosphate
carbohydrate — A ---- T— carbohydrate

phosphate phosphate
carbohydrate — T ---- A— carbohydrate

phosphate < P phosphate
carbohydrate — G---- C — carbohydrate

phosphate N phosphate
)z carbohydrate—C ---- G— carbohydrate

1. 2.

Fig. 12-17. Designation: A —adenine, T—thymine, G —guanine, C —cytosine. The 1st and 2nd
phosphate-sugar chains are denoted by numbers (cf. Fig. 12-18).

From the classical point of view, proteins are, of course, unconjugated
systems. If, however, we consider the possibility of hydrogen bond
formation, the system becomes in a certain sense conjugated.

Two examples can be given for the sake of illustration. The first
concerns calculation of the electronic structure of pairs of nucleic acid
bases. Fig. 12-17 presents a scheme of the catenation of components of
deoxyribonucleic acid (DNA): phosphate, sugar and bases (pyrimidines
and purines). The Watson-Crick model of DNA (Fig. 12-18) shows the
correct spatial arrangement (Fig. 12-18). The adenine-thymine and guanine-
cytosine pairs are the most important; it is evident from their molecular
diagrams (Fig. 12-19) and from the molecular diagrams of the free com-
ponents that the interaction mediated by the hydrogen bonds is weak.
This is true of the energy characteristics as well as of the electron
distribution. In semiempirical calculations the presence of the hydrogen
bond can be described in several ways: merely by considering mutual

2

{

NN

pair of bases

¥

Fig. 12-18. The Watson-Crick DNA " o 54 phosphate-
model. ~carbohydrate chain
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polarizations (without intermolecular electron transfer), by a suitable
change in the values of the Coulomb integrals of the atoms lying in the
vicinity of a particular atom, by attributing small values (about 0.2f)
of the resonance integral of the hydrogen bond or, finally, by considering
the hydrogen atom of a hydrogen bond explicitly in terms of its 2p,
orbital (ay = o — 1.8f); the same value as previously (0.28) is assigned
to the H—X (and H ... X) bonds. It is rather interesting to note that the
differences between the SCF and HMO molecular diagrams are not
significant.

0.879 H,
|
1072 C
1048 1.487
1032 092 7 0 >~ osan
H 738
NH
HN N
1769 1704~ H 1.363
0.746 0.114‘\\N N
1470
0 K
1.487 0.875
0.590 "
N 1.666
1172 nmog 1.463
0730 N
0,884 H < _1.501
0402~
0
HN N
1,690 \0.687 71472 >~ y 1.2N30
0408 N
» 1644
1.006
151 SN
1.710 NH
0402 ™\ N 08 s
H 1.481

Fig. 12-19. SCF-electron densities of pairs of bases!!.

Hydrogen bonds play an important role in protein molecules. As
early as in the forties Szent-Gyorgyi explained their semiconductivity
qualitatively using a model which Evans and Gergely processed semi-
quantitatively. It is assumed that the individual macromolecules are
connected by hydrogen bonds in the peptide linkage region (Fig. 12-20).

" For years attempts have been made to utilize quantum chemical
characteristics in molecular pharmacology and toxicology. The attempts
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Fig. 12-20. Model of protein molecules.

of B. and A. Pullman to correlate the carcinogenic activities of benzenoid
hydrocarbons with indices of the K and L spheres (9—10 bond in
phenanthrene and the atom pair 9, 10 in anthracene) are amongst the
oldest endeavours in this field. Theoretical characteristics have also been
utilized for estimation of the carcinogenic activity of compounds of other
structural types. The MO method has also been used for interpretation
of the course of metabolism in vivo and in vitro. In recent years, the
number of attempts to utilize theoretical characteristics in the search of
biologically effective substances has been steadily increasing.

The number of studies published in the field of quantum bio-
chemistry is increasing very rapidly. Great attention is being paid, e.g.,
to the conformation of biologically active substances and to the effects
of the medium on the conformation. A large number of important works
have been published in the Collections of Jerusalem Symposiums'2.
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13. MOLECULAR SPECTROSCOPY

13.1 Phenomenological description

13.1.1 Introductory comments

In this chapter, the processes in which electromagnetic radiation plays
a key role in addition to that played by the studied molecules will be
discussed. We shall chiefly be interested in processes during which no
structural changes occur in the molecule. Two types of processes will be
considered:

a) the molecules accept energy either from the electric or from the
magnetic component of the radiation; these are absorption processes,

b) molecules which are in an excited state (i.e., any state with energy
higher than that of the ground state) return to the ground state with
release of energy in the form of electromagnetic radiation; these are
emission processes.

W (E) ye Eg
1 Fig. 13-1. Absorption and emission
w| gbsorption emission processc.s, G and E denote ground
N and excited states. ¥ and E denote
the wave functions and energies of
G) y Eg these states.

These processes are schematically illustrated in Fig. 13-1. In order
that the molecule be capable of absorbing energy in the form of radiation,
it must possess at least one further state with higher energy, an excited
state, in addition to the ground state. This is usually some sort of
rotational, vibrational or electronic state, which is “inherent” to the
molecule and is attainable under normal conditions. However, there also
exist certain degenerate states which are incompletely occupied and un-
interesting from the point of view of absorption spectroscopy. It appears
that this degeneracy can be removed by placing the studied molecule in
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a sufficiently strong external electric or magnetic field. In such cases,
which are of decisive importance in nuclear magnetic and electron spin
resonance, the given basic condition concerning the existence of several
states with different energy is fulfilled in the presence of the external field.

13.1.2 Units and the spectral regions

In order that the system pass from the ground state G (described by the
wave function ¥;;) to the excited state E (described by the wave function
¥5), it must accept an amount of energy AE:

AE = E; — Eg (13-1)

As long as radiation is considered to be of a corpuscular nature, the
energy expression for the distance between the levels (G and E in
Fig. 13-1) is appropriate; however, we are often obliged to characterize
radiation as a propagated wave and it is then necessary to find a relation
which would fit both the corpuscular and the wave characteristics; this
is the common relationship

E = hy, (13-2)

where E is the energy, v is the frequency and h is Planck’s constant.

C

Fig. 13-2. Graphical representation
of Eq. (13-3).

-
[__

It is sometimes expedient to characterize the propagation of a wave by
its wavelength; it should simultaneously be borne in mind that the electric
and magnetic components of electromagnetic radiation can be described
similarly to other periodic processes by the equation (Fig. 13-2)

y = Asin %11’._ L, (13-3)

where A denotes the amplitude, t is the time corresponding to one
oscillation and ¢ is time. According to the electromagnetic theory of light,
the propagation of a light ray (in the direction of the t-axis in Fig. 13-3)
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Fig. 13-3. Wave of plane polarized light. 1 denotes the wavelength.

is connected with both the electric and the magnetic waves, where both
are propagated in the same phase. The vectors of the electric (E) and
magnetic (H) fields lie in mutually perpendicular planes; these vectors
are simultaneously also perpendicular to the ray representing the direction
of light propagation (cf. Fig. 13-3). We can now return to the original
problem: for velocity v it holds by definition that v = I/t, where | denotes
the path length and ¢ time. The velocity of a periodical event can be
expressed in terms of the-frequency v and the wavelength A. Here v
denotes the velocity of electromagnetic radiation in a vacuum (c ~
~ 3.10° km/s):

c= Ay (13-4)
Equation (13-2) can then be rewritten in the form
E=hy = % (13-5)

In place of the wavelength /, its reciprocal value —the wave number
(dimension length™!)—is often employed. If the molecule accepts a photon
of frequency v, its energy increases by hv. On emission of a photon from
the excited molecule, its energy decreases by the same value. The energy
of one mole of photons (i.e. 6.023 x 103 photons) is called an einstein.

The kinetic energy, which is gained by an electron exposed to
a potential of 1V, is termed one electron volt (V). If one mole of these
elementary particles has this amount of energy, it corresponds to an
energy of 96.49 kJ/mole.

It is one of the chief tasks of spectroscopy to determine experi-
mentally and also theoretically the energy differences between the levels

corresponding to the ground and the excited states. It follows from the
above discussion that these differences can be expressed in the usual
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Table 13-1
Units for Characterization of Radiation
Spectra Energy Frequency Wave number Wavelength
UV and visible eV,] cm™! nm (= 107° m)
IR cm™! pum (= 10" °m)

radiofrequency MHz (= 10%s71)

energy units (joules, electron volts) or in the units of quantities that are
proportional to the energy, i.e. in frequency units (Hz) or wave numbers
(cm™%), possibly in units of reciprocal wave numbers, ie. in wavelength
units (nm). Physicists prefer energy units, physical chemists often work
with wave numbers and chemists employ wavelengths. Here the energy or
quantities directly proportional to it will b<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>