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1. INTRODUCTION 

The post-war generation of chemists learned to handle a blow pipe at 
the university as thoroughly as modern chemistry students learn to write 
computer programmes. Even after World War II the rule of three was 
considered to be sufficient mathematical knowledge for chemists and the 
short course of "higher mathematics" at technical universities was the 
test most feared by chemistry students. However, even then some en­
visaged the theoretical derivation of information on the properties of 
molecules from knowledge of the bonding of the component atoms. 

During the last quarter of this century, amazing changes have 
occurred in chemistry, some of them almost incredible. Dirac's famous 
clairvoyant statement* has been partially realized. Incorporation of 
quantum mechanics into chemistry encountered numerous difficulties. 
After all, the reserve of experimental chemists is not surprising. For 
decades the hydrogen and helium atoms and the hydrogen molecule 
belonged among the systems most frequently investigated by theoreti­
cians. Later these systems were supplemented by ethylene and benzene. 
The authors of this book can therefore recall with understanding the words 
of the late Professor Lukes: "Well, when they succeed in computing a 
molecule of some alkaloid by those methods of yours ... ". Unfortunately, 
the calculations on calycanin were not completed before his death. 

Now there is no need to convince even the members of the older 
generation of the usefulness of quantum chemistry for chemists. Even 
the most conservative were convinced after the introduction of the W ood­
ward-Hoffmann rules. 

* "The underlying physical laws necessary for the mathematical theory of a large part 
of physics and the whole of chemistry are thus completely known, and the difficulty is only 
that the exact application of these laws leads to equations much too complicated to be 
soluble. It therefore becomes desirable that approximate practical methods of applying 
quantum mechanics should be developed, which can lead to an explanation of the main 
features of complex atomic systems without too much computation". [Po A. M. Dirac: 
Proc. Roy. Soc. (London) 123, 714 (1929).] 
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This book is concerned, on the one hand, with an introduction 
to the theory of the chemical bond to a degree necessary for active 
understanding of quantum chemical semi-empirical methods (Chapter 10, 
which completes the methodical part) and, on the other hand, with the 
study of the relationships between the structures of molecules and their 
properties. Among these properties, both the static characteristics (thermo­
chemical, electric, magnetic, optical) and the dynamic characteristics, 
chemical reactivity characterized by the equilibrium and velocity con­
stants, will be discussed. It is necessary to define the meaning of the term 
"structure" more precisely. In a narrow sense structure means the way 
in which atoms are bonded in molecules or the arrangement of molecules 
in a crystal lattice. In recent years, structure in this sense has often been 
determined directly using X-ray analysis. Here, as a rule, for the probable 
structure of a compound the theoretical characteristics will be determined 
by computation and afterwards will be compared with the experimental 
results. 

An attempt will be made to acquaint the reader with these com­
parisons in such a way as to enable him not only to perform similar 
comparisons himself but also to open new possibilities. In comparing 
theoretical and experimental quantities, both a more profound qualitative 
explanation of the studied properties and processes and quantitative 
interpretation of experimental data will be necessary. This approach will 
help in generalizing the knowledge obtained and in condensing large 
groups of experimental data into empirical formulae, in which, of course, 
quantities appear resulting from quantum-chemical calculations. These 
relationships will be used as interpolation formulae and will permit 
estimation of the values of experimental characteristics in substances not 
yet prepared, whose properties are of interest. Moreover, there is also 
the very attractive possibility of using the quantum theory of the chemical 
bond not only for the interpretation, but also for the prediction of 
properties. 



2. A BRIEF COMMENT 
ON THE DEVELOPMENT 
OF THE THEORY 
OF THE CHEMICAL BOND 

It is admirable that, as early as in the nineteenth century, chemists 
succeeded in defining concepts of the structure of substances that are 
in remarkable agreement with modern knowledge of the quantum theory 
of the chemical bond and with direct structural determinations using 
electron or neutron diffraction and X -ray analysis. Only in the theory 
published in 1916 by Kossel and Lewis did electrons assume a decisive 
role in concepts of the origin of the chemical bond. (The electron was 
discovered by Thomson only 19 years earlier, and 5 years earlier 
Rutherford proposed the planetary model of the atom.) The basic 
concepts of this very successful and innovative theory are based on the 
ideas of electrovalency and covalency, which are still accepted at the 
present time. This theory of the chemical bond forms a basis for the 
theory of mesomeric and inductive effects which contributed consider­
ably to the rationalization of organic and inorganic chemistry (Robinson, 
Ingold, Arndt, Eistert). The work carried out by their predecessors 
(Kekule, Cooper, Butlerov, Werner, and in spatial structure Le Bel and 
van't Hoff) is of essential importance. 

The difficulties encountered in classical mechanics will be men­
tioned in another context. Here, however, it should be noted that 
classical Newtonian mechanics is useful for the description and predic­
tion of phenomena in the middle and macro cosmos. The growing need 
to describe the motion of particles forming molecules and atoms led to 
the establishment of a new mechanics, quantum mechanics, in the 
twenties of this century. 

The fundamental equation of this new mechanics, the Schrodinger 
equation, can be obtained in two ways. The method given by SchrOdinger 
is apparently less complicated, proceeding from the concept that electron 
motion can be described in terms used for the description of wave 
motion, leading to the term "wave mechanics". 

Quite independently, the same result was achieved by Heisenberg, 
who made use of matrix properties. Although the two approaches are 
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formally quite different, the results have been shown by Born and Jordan 
to be equivalent. 

Later, Dirac and von Neumann formulated quantum mechanics 
more generally and showed that Schrodinger's and Heisenberg's approaches 
are special cases of a more general theory. 



3. THE TIME-INDEPENDENT 
SCHRODINGER EQUATION 

3.1 Introduction of the equation 

It is important to remember that the Schrodinger equation, similar to the 
principal thermodynamic laws, cannot be derived from the general 
principles of physics. It is true that we can proceed from the classical law 
of conservation of energy and, through a number of modifications (some 
of them inconceivable from the point of view of classical mechanics), 
arrive at the Schrodinger equation ("derive it"). However, this procedure 
does not possess the character of derivation by deduction that is 
considered normal in classical physics. The only method of determining 
whether the equation obtained has physical significance, i.e. whether it 
gives a true picture of the real behaviour of particles, will lie in comparison 
of values for quantities calculated using this equation with experimentally 
obtained values. 

In classical physics two fundamental objects are investigated, namely 
the particle and the wave. A particle can be localized in space and time 
and characterized by dynamic characteristics such as its linear momentum 
p and energy E. A wave originates in connection with a disturbance in a 
continuous medium and can be assigned kinematic characteristics, such 
as wavelength A and frequency v. Although a wave can assume certain 
dynamic characteristics reminiscent of particle properties (i.e. momentum 
density, energy density), it is apparently an object quite different from 
a particle. 

For the sake of simplicity we shall, first of all, discuss a point 
particle of mass m, moving in a constant (i.e. time-independent) external 
field along the x-axis. The principle of the conservation of energy holds 
for such a system and it is therefore denoted as a conservative system. 
The principle of the conservation of energy can be expressed by the 
equation 

E=T+V, (3-1) 
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where E is the total energy of the given point particle, T is its kinetic 
energy and V is its potential energy. The relationship 

T= ~mx2 2 . 

is also valid, where .x = dx/dt (x is the trajectory, t is the time). 

(3-2) 

Since the potential energy of a point particle in an external field 
is a function of its coordinates, it then follows that 

E = ~ mi2 + V(x) (3-3) 

If in equation (3-3) the expression for the linear momentum p is 
introduced in the form 

p = mx, (3-4) 
it then follows that 

2 

E = im + V(x) (3-5) 

As is familiar from classical mechanics, for a conservative system the 
total energy can be identified with the corresponding Hamiltonian 
function H, and thus 

H(p,x) = E (3-6) 

Equation (3-5) is a first-order differential equation; considering the initial 
conditions it is then possible, by integration, to derive the equation for 
the trajectory of the particle, x = x(t). It thus follows that the solution of 
the equation of motion in classical mechanics (represented here by the 
principle of the conservation of energy) provides fully defined functions 
describing the dependence of the dynamic quantities on time, thus 
permitting calculation of values of these dynamic quantities at each 
instant. 

The discussion of the behaviour and properties of "classical" 
particles can be extended to microparticles, using the electron as 
a representative example. It has been experimentally demonstrated that 
the electron behaves as a particle: its charge has a discrete value 
(cf. Millikan's experiment) and it can be localized (a track in the Wilson 
chamber). However, if an attempt were made to localize the electron 
by giving its position in a given instant of time (with an arbitrary 
precision), it would be found that this cannot be achieved. Experiments 
have even been carried out in which electrons behave as waves. In 
interference or diffraction phenomena (the experiments of C. 1. Davisson, 
L. H. Germer, and E. Rupp), electrons must be treated as waves with 
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a wavelength given by the de Broglie relation 

A=~ 
p' 

(3-7) 

where p is the momentum of the electron and h is Planck's constant. 
The electron, similar to other microparticles, is therefore an object 

which in the classical sense resembles neither a particle nor a wave. 
This complication always appears in the character of laws describing 
the behaviour of microparticles. 

In his five papers published in the first half of 1926 in the journal 
Annalen der Physik, E. Schrodinger proposed a new system of dynamics 
for the description of microparticles, in which the wave function, 'P, 
assumes a leading role. 

The Schrodinger wave function is a quantity that characterizes the 

state of the particle in a particular way. By solving the wave equation, 
a function is obtained giving the dependence of this quantity on the 
spatial coordinates of the particle (and possibly also on time). The 
position of an electron is given by the probability function, which is 
a function of the coordinates, usually written (2 (x, y, z), and is denoted as 
the probability density. Its value increases with increasing probability 
of electron occurrence in a given area in space. It appears that this 
probability density can be expressed by the wave function, 1Jl. The 
physical significance of the wave function, if real, is such that its 
square (1Jl2 ) gives the probability distribution function for the particular 
coordinate system and permits calculation of the physical quantities of 
the given particle. It is necessary to add, however, in the general case, 
the wave function can be complex, so that instead of the square of the 
function the product of IJl and its complex conjugate, 1Jl*1Jl, is employed. 
It is preferable to choose the multiplication constant for the wave 
function so that the equality (2(x, y, z) = 1Jl*(x, y, z) tjJ(x, y, z) holds. The 
probability of finding a particle in a volume element dr (dr = dx dy dz) 
whose centre has coordinates x, y, z is given by the expression 1Jl*'P dr. 
By summing all possible contributions of this type throughout the 

entire space, that is by integration, unity results, i.e. the particle must 
be located somewhere in the given space. If this condition is fulfilled, 
then function 'P is said to be normalized. The physical meaning of the 
wave function is ensured when 'P is continuous, single-valued and finite. 

A detailed explanation of the fundamental postulates of quantum 
mechanics will be resumed later. Here, only the quantum.mechanical 
formulation for a moving point particle will be described; the classical 
formulation was discussed in the introductory part of this section. 
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In this way, the relationship between the two types of mechanics will 
become apparent. 

Conversion of the classical formulation of the problem [expressed 
by equations (3-5) and (3-6)] to the quantum formulation can be effected 
in two steps: 

a) Linear momentum p in the classical formulae will be replaced 
by the operation "differentiation with respect to a trajectory" multiplied 
by the constant h/2rci (where h is Planck's constant and i = J( -1); 
the symbol h is sometimes used in place of the expression h/2rc). This process 
(representing a first step that, from the point of view of classical 
mechanics, is rather unexpected) can be symbolically described as follows: 

Similarly, for p2 , 

p2 -'> 2~i d~x (2~i d~'() = - 4~22 d~2 
In the conversion from classical to quantum mechanics the x-coordi­

nate remains unchanged. 
As in classical mechanics any physical quantity of a system can be 

expressed in terms of its coordinates and its momentum - for instance 
the Hamiltonian function in equations (3-5) and (3-6) - it is possible, 
on the basis of such a "surprising" procedure, to form a corresponding 
expression for each quantity which will be called the operator of the 
given quantity. The operator of a physical quantity will later be denoted 
by the symbol of this quantity printed in school script. Consequently, 

f(x) = V(x) 

The operator of the Hamiltonian function, called the Hamiltonian operator 
(or simply the Hamiltonian), for a particle moving along a straight line 
in the direction of the x-axis can then be expressed by the relationship 

h2 d2 

Yf = - -8 2 -d 2 + f(x) rc m x 
(3-8) 

Simultaneously, the Hamiltonian can be considered to consist of two 
partial operators, i.e. the kinetic energy operator, 

h2 d2 

- 2rc 2m dx 2 ' 
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and the potential energy operator, 

f(x) 

b) The wave function tp will be sought as a solution of the 
Schrodinger wave equation in the form 

.Yetp = Etp (3-9) 

This equation can be obtained formally from classical equation (3-6), 
according to paragraph a), by replacing the Hamiltonian function H 
with the Hamiltonian operator (conversion "to operator form") and 
both sides will then be multiplied by function tp(x) (this multiplier is 
always written on the right-hand side). Thus, for this particle it follows 
that 

[ h2 d2 ] 
- 81t2m dx2 + f(x) tp(x) = Etp(x) (3-10) 

This equation is often written in the form 

d2 tp 81t 2m 
dx2 + --iiz- (E - f) 'I' = 0, (3-11) 

where, for the sake of simplicity, instead of f(x) and tp(x), only "I'" and tp 

are written. 
Extension to a three-dimensional system encounters no difficulties. 

For the kinetic energy it then holds that 

T = ~m(x2 + y2 + ..:2) = _1_(P2 + p2 + p2) 2 4. 2m x y z' 

where PX' Py and Pz are the components of the momentum which will 
be replaced by the corresponding operators: 

The Schrodinger equation now assumes the form 

02tp 02tp 02tp 81t2m 
ox2 + ay2 + OZ2 + -h2-(E - f) 'I' = ° (3-12a) 

This type of equation can further be simplified by introducing the Laplace 
operator (symbol L\) 

02 02 02 

~+~+~=L\ 
uX uy uZ 
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[in place of symbol A, V2 can be written, where V is the nabla vector 

operator ( :x' ;y-' ;z-) J. Thus the Schrodinger equation can be rewritten 

as 

AIJ' + 8rc:m (E - "1/) IJ' = 0 
h 

(3-12b) 

3.2 Formulation of the Schrodinger equation 
for simple systems 

3.2.1 A particle in a one-dimensional potential box 

Let us consider a particle moving in the direction of the x-axis inside 
a so-called one-dimensional potential box. It is assumed that the particle 
has the same potential energy at any place in the box; this energy can 
conveniently be set equal to zero. It is further assumed that the energy 
of the particle everywhere outside the box is infinitely high (Fig. 3-1). 

The Schrodinger equation for a particle in a box assumes the form 

d2 1J' 8rc2 m EIJ' = 0 
dx2 + h2 

(3-13) 

(as "1/ = 0). 

v-oo 

m 

/ v=o .J...-------...... -----_x 
x-a x~a 

Fig. 3-1. A particle of mass m in a one­

dimensional potential box of length o. 

3.2.2 The harmonic oscillator 

A particle of mass m is moving along the x-axis alternately in the 
positive and the negative direction and its equilibrium position is x = 0 
(Fig. 3-2). The force F acting on the particle is directed against the 
displacement and is proportional to the magnitude of the displacement, x. 
Thus it follows that 

F = -kx, 
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where k is a proportionality constant, called the force constant. For the 
potential energy it then follows that 

x 1 
V = - J ( - kx) dx = - kx2 

o 2 

By substituting this expression for "1/ into Eq. (3-11) the required 
Schrodinger equation is obtained: 

dZtp 8n2m (E _ ~k z)tp = 0 
dx 2 + hZ 2 x (3-14) 

Fig. 3-2. A harmonic oscillator of mass m. 

3.2.3 The hydrogen atom 

z 

-e 

------~~-------x 
+e 

y 

Fig. 3-3. Model of the hydrogen 
atom: nucleus (+ e) and electron 

( -e). 

Even for the hydrogen atom (which is a proton-electron system, Fig. 3-3), 
the formulation of the SchrOdinger equation poses no difficulties. The 
electron is considered to move in a three-dimensional space about the 
nucleus which is at rest. The potential energy of this system can be 
expressed as 

where e is the elementary charge, r is the distance between the electron 
and the nucleus and eo is the permittivity of a vacuum. By substituting 
this expression into Eq. (3-12b), the Schrodinger equation is obtained 
in the form 

(3-15) 

3.2.4 The hydrogen molecular ion, H; 

Now a system of two protons and one electron (Fig. 3-4), which is an 
ionization product of the simplest molecule, will be considered. 
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1(-el 

~ 
A( tel rAB B( tel 

Fig. 3-4. The hydrogen molecular ion: 
nuclei (A, B), electron (1). Distances 

are denoted by r. 

For the potential energy of this system it holds that 

so that the Schrodinger equation [obtained by substituting for 11 in 
Eq. (3.12b)] has the form 

8n2m ( e2 + e2 
_ e2 

) ITI = 0 A'P + -h2 E + 4 4 4 T ncor 1 A ncor lS ncor AB 

3.3 Examples of the solution 
of the Schrodinger equation 

3.3.1 The free particle 

(3-16) 

A free particle is defined as a particle that is moving in a constant potential 
field (i.e., it has the same potential energy everywhere). Then, without 
losing generality, it is possible to set V = 0 and the Schrodinger equation 
for a particle moving along a straight line then assumes the form 

d2 'P 8n2 mE 
dx2 = - -h-2- '1' (3-17) 

throughout the whole x-coordinate region, in contrast to the limited 
validity of Eq. (3-13). 

This is a second-order differential equation with constant coeffi­
cients, whose solution consists of two functions, as can be verified by 
substitution: 

[ 2ni ] '1' 1 = N 1 exp h J (2)>1E) x (3-18) 

[ 2ni . ] 
'1'2 = N2 exp - fj-J(2mE)x (3-19) 

(N 1 and N 2 are constants). 
In addition, both these functions satisfy the relationships 

(3-20) 
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(3-21) 

agreeing with Eq. (3-9) in one significant property: applying the operator 
to a function yields the same function multiplied by a constant. An 
equation possessing this property is called a characteristic equation; 
function 'l', which satisfies such an equation, is then a characteristic 
function (or eigenfunction), and the corresponding constant is denoted 
as the characteristic value (or eigenvalue). As will be shown later, 
characteristic values in equations of this type are measurable values 
of physical quantities which are represented by the corresponding oper­
ator. More specifically, from Eq. (3-20) it follows that, if a particle is in 
state 'l'1 (with energy E), it is moving in the positive direction of the 
x-axis with the linear momentum J(2mE). A particle in state 'l' 2 and with 
the same energy moves with an equally large momentum but in the 
opposite direction. The expression for the magnitude of the momentum 
will be readily understood by considering that the classical value for the 
total energy is given by the expression 

and thus 

1 
E = -mv2 

2 ' 

J(2mE) = ml v I 

It is quite sufficient here to confine the discussion to a particle 
moving in the positive direction of the x-axis. Some interesting physical 
consequences result from the form of wave function (3-18): First, energy E 
cannot assume negative values, as for E < V the exponential factor would 
become a real number and function 'l' for x ~ 00 would become infinite, 
thus losing physical meaning. 

Wave function (3-18) can be employed for calculation of the 
probability density of the particle: 

'l'i(x) 'l' 1 (x) = N 1 exp [2:i J(2mE) x] NT exp [ - 2:i J(2mE) x] 

= NT N 1 (3-22) 

Hence it follows that the probability density of the particle is independent 
of the x-coordinate, so that the particle can be found with equal prob­
ability at any point in the one-dimensional space within which it moves. 
Thus, the uncertainty in the position of the particle is infinitely large, 
in agreement with the Heisenberg uncertainty principle, according to 
which the more accurate the determined value for the particle coordinates, 
the less accurate is the determined value of its momentum and vice versa. 
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[In the given case the particle has a quite definite exact momentum value, 
J(2mE), so that the uncertainty in its position is infinitely large.] 

Wave function (3-18) is sometimes written in the form 

'l'l = N 1 exp (ikx), (3-23) 

where the expression 2h~ J(2mE) is replaced by a new quantity k, termed 

the wave vector (in a multidimensional case it would actually be a vector). 
This quantity is related to the energy by the expression 

E=~k2 
81t2m 

(3-24) 

The meaning of the wave vector will follow from comparison of relation 
(3-24) with the classical expression for the energy 

1 1 
E = 2: mv2 = 2m p2, 

into which the de Broglie relation (3-7) can be substituted: 

E = 2~( ~ Y 
Comparing this relation with Eq. (3-24), it follows that 

or 

81t 2m 41t2 
k2 = 2mA.2 = T 

3.3.2 A particle in a potential box; 
the solution and its consequences 

(3-25) 

(3-26) 

(3-27) 

Let us return to the study of the behaviour of a particle in a potential 
box (Fig. 3-1). The same differential equation as for a free particle must 
be solved, except that wave function P must satisfy the boundary con­
ditions describing the fact that the particle cannot be present in some 
regions (i.e. outside the box) as infinitely high energy would be needed 
to transfer it to these regions. For these regions the x-coordinate has 
the values 

x~a 

and 
x~O 
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Thus, the probability of finding the particle anywhere outside the box 
equals zero, so that the wave function whose square is proportional 
to this probability must also have zero value. For regions outside the 
box it therefore holds that 

p = ° 
It will be seen that, because of this condition, the particle can no 

longer assume any energy value in the interval (0, Cf), but can have only 
certain allowed energy values; that is, the particle energy is quantized. 

Here again, it is necessary to find a function P(x) that, when 
differentiated twice, yields the same function multiplied by a constant. 
From the theory of linear second-order differential equations it follows 
that the general solution of Eq. (3-13) can be found in the form 

P(x) = A sin (ax) + B cos (ax) 

It can easily be shown that, for function P in this form, 

d2 P = _a2 p 
dx2 

(3-28) 

(3-29) 

This equation is identical to Eq. (3-13), which is to be solved, provided 
that 

(3-30) 

So far, nothing has been involved in the solution that would limit the 
value of E. 

Certain boundary conditions must be introduced: P(x) must equal 
zero at the edge of the box; hence 

a) 

b) 

P(o) = 0, 

P(a) = 0. 

Condition a) is satisfied by expression (3-28) only if 

B =0 

Moreover, condition b) requires that 

aa = n1t, 

where n is an integer called the quantum number. It then follows that 

nn 
a=­

a 
(3-31) 
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By comparing equations (3-30) and (3-31) it is found that 

= (il' 

so that, for the allowed energy values 

E = n2(8~:2 ), (3-32) 

where n = 1, 2, 3, .... 
Now the value of constant A [Eq. (3-28)] must be found; function 'P 

must be normalized, i.e. 
+00 

J 'P2 d. = 1 (3-33) 
-00 

Here this condition has the form 

I ( A sin n:x y dx = 1 (3-34) 

Calculation of the given integral results in the condition 

A = J~ 
The solution is therefore obtained in the form 

T = - SlD--ITJ (J 2) . mtx 
n a a 

(3-35) 

(3-36) 

In Fig. 3-5 the result of the calculation (for n = 1, 2, 3) is represented 
graphically. Wave functions 'Pn are given at levels corresponding to the 
respective values of En ' In addition to 'P n' 'P; is also plotted as 
a function of x. 

For a given quantum number n, the energy is inversely proportional 
to the mass of the particle and to the length of the box. The heavier 
the particle and the longer the box, the closer together the values of En lie. 
For example, with m :::::; 1 g and a :::::; 1 em, the levels are so close together 
that they appear as a continuum. Therefore quantization occurs only when 
ma 2 :::::; h2 (where h = 6.625.10- 34 J s). On the other hand, if 

ma2 ~ h2 

the quantum mechanical treatment leads to the classical result, i.e. to 
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energies that are not quantized. Furthermore, from Fig. 3-5 it is apparent 
that P n changes sign at every nodal point (a point where P = 0); the 
number of nodal points equals (n - 1). In general, the larger the number 
of nodal points (or 'nodal planes) 'under otherwise constant conditions, 
the higher is the energy of the corresponding state. 

Fig, 3-5, Graphical representation of 
the solution for a particle in a box 

[Eqs, (3-35) and (3-36)]. 
'I' (-), '1'2 ( ..... ). Energy is 

expressed as a multiple of h2/8ma 2 , 

Nodal points (1/ denotes the number) 
are designated by short arrows. 

3 

2 

o 

A particle in a three-dimensional box provides a very instructive 
illustration. In this connection, a certain technique for the solution of the 
Schrodinger equation, which will be used later, will be introduced. 

The Schrodinger equation (3-12b) for a particle in a three-dimen­
sional box assumes the form [cf. Eq. (3-13)] 

h2 

- 87t2m ~ P = EP (3-37) 

This equation can be rewritten to give 

a2p a2p a2p 87t2mE 
ax2 + ay2 + az2 = - -h-2 - P (3-38) 

To solve this equation an attempt can be made to separate variables x, y 
and z, i.e. the solution must be found in the form 

P = X(x) Y(y) Z(z), (3-39) 

where each of the functions X, Yand Z depends exclusively on a single 
variable. 

If the expression for function P from the last equation is introduced 
into Eq, (3-38), then, after partial differentiation, the expression 

a2 X a2 Y a2z 87t2mE 
YZ ax2 + XZ ay2 + XY az2 = - -h-2 - XYZ (3-40) 

is obtained. Dividing this equation by the product XYZ and modifying 
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it leads to the relationship 

1 OZ X 1 OZ Y 8rtZmE 1 OZ Z 
X oxz + Y oyZ + -h-z - = - Z ozz (3-41) 

In order that this equation hold for any set of values x, y, z, both sides 
must equal a constant; this constant can be expressed in the form 
8rtZmEz/h z, where the value of constant Ez is still undetermined. Therefore, 

a) 
1 02Z 8rt2mEz 

- Z OZ2 = hZ (3-42) 

b) 
1 OZ X 1 OZ Y 8rtZmE 8rtZmE 
X oxz + Y ol + -h-z - = hZ Z 

(3-43) 

The same procedure as used in Eq. (3~41) can be applied to Eq. (3-43), 
which can be rearranged to give 

(3-44) 

where both sides can be set equal to a constant; this constant can then be 
expressed as 8rtZmEihz: 

a) 
1 OZ X 8rtZmE 

----- y Y 8y2 - h2 
(3-45) 

b) ~ OZ X = _ 8rtZm (E _ E _ E ) = _ 8rtZmEx 
X ox2 hZ z Y hZ 

(3-46) 

Equations (3-42), (3-45) and (3-46) have the same form as the 
equation for a particle in a one-dimensional box [cf. Eq. (3-13)], the 
solution of which is already known. If the three-dimensional box has 
dimensions a, b, c, we can write 

X (J 2) . nxrtx = - sm--; 
a a 

(3-47) 

Y =(J2). ~. b sm b ' (3-48) 

- - sm--Z - (J 2). nzrtz. 
c c' 

(3-49) 

Then, for the total wave function '1' and the total energy E, it holds 
that 

ITt XYZ (J 8 ) . nxrtx . nyrty . nzrtz 
T = = - sm--sm sm--

abc abc 
(3-50) 
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(3-51) 

One aspect of the solution, which can be illustrated for a particle 
in a three-dimensional box where a = b = c, is worth mentioning. Then, 
for the total energy 

h2 2 2 2 E = -8 2 (nx + ny + nz ) rna 

Hence, the lowest energy level (nx = ny = nz = 1) is given by 

3h 2 

E(I, 1, 1) = -8 2 
rna 

(3-52) 

The next energy-richer state can be described by three combinations of 
quantum numbers, where two quantum numbers are set equal to 1 and 
one is equal to 2: 

3h 2 
E(2, 1, 1) = E(I, 2,1) = E(I, 1,2) = -4-2 rna 

A level with the same energy but characterized by different combinations 
of quantum numbers and consequently by different wave functions is 
designated as a degenerate level. The number of states with the same 
energy is given by the order of the degeneracy. The second energy level 
(i.e. the first excited level) of a particle in a cubic box is, therefore, 
threefold degenerate. 

The described procedure is the basis of the free electron method 
(briefly denoted as the FEMO method - free electron molecular orbital 
method) which was proven useful in the study of simpler conjugated 
compounds. This method is by far not as important as the LCAO-MO 
method (see Chapter 10); nevertheless, it deserves attention and not only 
from a pedagogical point of view. 

3.3.3 The harmonic oscillator 

A particle executing simple harmonic motion, called a harmonic oscillator, 
is another simple system that is of interest because of its important role 
as a model in molecular spectroscopy. 

In the Schrodinger equation of the harmonic oscillator [Eq. (3-14)] 
new symbols are introduced for expressions that contain only constants: 

a= b = 2rtJ(rnk) 
h 
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Thus the equation assumes the form 

d2 'l' 
-d 2 + (a - b2x 2 ) 'l' = 0 

x • 
(3-53) 

Next, a new dimensionless variable ~ = (Jb) x is introduced; therefore 
d2/dx2 = b d2 /d~2. Equation (3-53) can then be written in the form 

(3-54) 

Wave function 'l' must necessarily fulfil the following conditions: it must 
be continuous, single-valued and finite. For the sake of simplicity, Eq. (3-54) 
will first be solved for I ~ I ~ J(a/b) (the asymptotic solution). The equation 

~~; - ~2 'l' = 0 (3-55) 

is then obtained, which is satisfied by the solution 

'l' = e±~212 (3-56a) 

The positive sign in the exponent has, of course, no physical meaning, 
since for ~ ~ 00 function 'l' tends to infinity; therefore, only the solution 

(3-56b) 

is valid. 
Let us now return to the original differential equation, (3-54). 

From mathematical experience it follows that the expression, e-~21 2, will 
act as a factor in the solution: 

(3-57) 

It would then remain to establish the form of functionf(~). By substituting 
for 'l' and d2 'l' /d~2 into Eq. (3-54) the equation 

If! - 2~f' + (~ - 1) f = 0 (3-58) 

lC; obtained, where!" = d2f1de andf' = df/d~ . 
Equation (3-58) can be solved in the form of an infinite power series: 

00 

j = L ak~k = ao + a1 ~1 + a2~2 + ... (3-59) 
k =O 

The first and second derivatives can then be written as 

00 

f' = L kaik-1 (3-60) 
k=l 
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00 

f" = L k(k - 1) ak~k-2 (3-61) 
k=2 

Substituting these power series into differential equation (3-58) gives 

k~/(k - 1) ak~k-2 - 2k~lkak~k + (~ - 1) k~Oak~k = ° (3-62) 

The term 1 = k - 2 can be substituted into the first summation and the· 
original symbols can be retained , so that k appears instead of I. The second 
summation can be augmented by the term corresponding to k = 0, as this 
term vanishes anyway. Then the equation 

k~O (k + 2)(k + 1)ak+2~k =k~oak~k(2k + 1 - ~) (3-63) 

is obtained. This equation must be valid for any value of ~, which is, 
of course, possible only when the coefficients of identical powers of ~ are 
equal on both sides of the equation. By comparing the expressions for 
the coefficient for the same power of ~, the recursion formula 

a 
2k + 1 -­

b 
ak+2 = ak (k + 2)(k + 1) (3-64) 

is obtained, permitting formation of a set of even coefficients ak from the 
initial value ao and a similar set of odd coefficients from the initial 
value a1 • No conditions are imposed on the initial values of ao and al' 
so that they may be chosen arbitrarily. 

Thus, the solution of differential equation (3-58) has been found 
in the form 

(3-65) 

but it has not yet been determined whether 'I' fulfils the requirements 
imposed on the wave function, in particular, whether it is finite for all 
values of ~. To this end, the behaviour of 'l'(~) will be compared with 
the behaviour of the exponential function e~2, which evidently diverges 
for large values of ~. This comparative function can be expressed in the 
form of an infinite series: 

2 ~2 ~4 ~v ~v+2 

e~ = 1 + -1 ,- + -2'- + ... + Gr + ( ) + .. . 
. . ~,~ l' 

2' 2 + . 

= bo + b2~2 + b4~4 + ... + bvC + bv+2C +2 + .. . (3-66) 
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For the quotient of two successive coefficients the relationship 

bV + 2 

T= ~+1 
2 

(3-67) 

is obtained, which, for large values of v, can be replaced by the expression 
2/v. An analogous coefficient ratio in infinite series (3-59) is given for 
large values of k - as follows from Eq. (3-64) - by the expression: 

(3-68) 

The Schrodinger Equation and its Solution for the Rigid Rotator, Harmonic Oscillator and 

Problem 

rigid rotator 

harmonic 

oscillator 

hydrogen 

atom 

Schrodinger equation 
(in Cartesian coordinates) 

Schrodinger equation 

(in polar coordinates) 

1 0 (. 0'1') 
+ sin e oe sm e oe + 

2IE'l' _ 0 
+-h-2 - -

o ( 2 0'1') 1 02 '1' - r - +---- + or or sin2 e 0cI>2 

1 0 (. 0'1') 
+ sin e oe sm e oe + 
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It follows that both the series have the same asymptotic character. To 
examine the asymptotic behaviour offunction 'l', functionJ@ in Eq. (3-65) 
will be replaced by comparative function e~2: 

(3-69) 

Hence it follows that function 'l' diverges for large values of ~ and 
consequently does not have the properties required of the wave function. 
It is evident that no solution containing J(~) in the form of an infinite 
series is suitable. Thus another similar solution must be found that, in 
contrast to the former, does not diverge. To obtain a non-divergent finite 

Hydrogen Atom 

E 

E = [1(1 + l)h 2
] 

I 21 

(I = 0, 1,2, ... ) 

(n = 0, 1, 2, ... ) 
(w = 2rrv) 

(n = 1, 2, 3, .. . ) 

Table 3-1 

'P == Yl,m(8, <1» associated Legendre polynomial 
(spherical harmonics) of degree I, of order m 

[ 21+1 (1-lml)!]1/2 ~ 1 . 
Y1•m(8, <1» = - 2- (I + I m I)! pjml(cos 8) J (2rr) e,m4> 

normalization factor 

'P.w = [ ~~~~~)r2 H.(~)e-~'/2 
'----.,---' "------
normalization Hermite polynomial 
factor 

radial function 

~function 1 l'~ 
'P = R.,l(r) Y 1,m(8, <1» ; 

spherical harmonics 

R.1(r) = _ [4(n -1- 1)!JI /2(~_)3/2(~)le-./.L21+1 (2~) 
, n4 [(n + 1)!]3 Qo n . + I n 

normalization factor 
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solution, the infinite series can be terminated, that is, replaced by a 
polynomial. Then Ok will assume a value of zero after a certain term, i.e. 

ao =1= 0, a 1 =1= 0, ... , a" =1= 0, 

and 

a,,+1 =On+2 =an+ 3 = ... =0 

Considering Eq. (3-64), it must then hold that 

a 
2n+l- b 

a,,+2 = an (n + 2) (n + 1) = 0, 

which is possible only when 

a 
2n + 1 - - = ° b 

(3-70) 

(3-71) 

(3-72) 

(3-73) 

Substituting for quantities a and b and after appropriate rearrangement, 
the condition assumes the form 

En = 2~- (J ~) (n + ~) = (n + ~) hv, (3-74) 

where n is zero or a positive integer and the expression (lj2n) J(kjm) 
has the meaning of frequency v. 

It then follows that the requirement that wave function 'P be finite, 
which was realized by terminating the infinite series, leads to quantization 

Some Special Functions Employed in Quantum Chemistry' Table 3-2 

Function Symbol Differential equation Occurrence 

harmonic eimx Wfldx 2 ) + m2{ = 0 translation motion 

Legendre P,(x) (I - x2 ) Wfldx 2 ) - 2x(dfldx) + /(/ + l)f = 0 angular motion 

associated P~(x) (1 - x2 ) Wfldx 2 ) - 2x(dfldx) + angular motion 
Legendre + [/(/ + 1) - m2/(1 - x2)]f = 0 (hydrogen atom) 

Laguerreb L.(x) xWfldx2 ) + (dfldx) - (112 + x/4 + n)f = 0 radial motion 

Hermite H.(x) Wfldx 2 ) - 2x(dfldx) + 2nf = 0 harmonic 
oscillator 

• Reproduced from J. M. Anderson: Mathematics in Quantum Chemistry, Benjamin, New 
York, 1966. 

b Polynomial of the L~(x) type appearing in the solution of the wave function for the hydrogen 

atom is related to the Laguerre polynomial Lk(X) by the relationship L~(x) = dd~s L/x). 
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of the energy values. For the sake of completeness, it should be added 
that differential equation (3-58) is called the Hermite equation and the 
corresponding solutions are denoted Hermite polynomials (cf. Tables 3-1 
and 3-2). 

The result of the quantum-mechanical treatment of the harmonic 
oscillator as represented by Eq. (3-74) is interesting in that it demon­
strates the inadmissibility of zero energies (for n = 0, Eo = hv/2, Fig. 3-6). 
This is related to the uncertainty principle; if the oscillating particle 
possesses zero energy, it would have zero momentum and would be 
located exactly in the equilibrium position characterized by the potential 
energy minImum. 

Fig. 3-6. Graphical representation 
of the solution for the harmonic 
oscillator [Eqs. (3-65) and (3-74)]. 

tp (--), tp2 ( ..... ). Energy is 
expressed in multiples of hv; u denotes 

the number of nodal points. 

9.5-~ ~ 
u 
9 

~ 4.5-
'" .L: 

LJ 3.5-

f 2.5-

1.5-

4 4 

3 3 

2 2 

o 0 

The particle in a box, for which the series of allowed quantum 
numbers begins with unity and not with zero (cf. p.24), is analogous. 
The rotator (see the next section) is, however, different, as it can assume 
an infinite number of equilibrium positions in the plane and consequently 
its ground state can possess zero energy. 

3.3.4 The rigid rota tor 

In the previous instances the complete solution of the problem was given. 
For the rigid rotator and the hydrogen atom the solution will be outlined 
to an extent sufficient for further discussion. 

The theory of the rigid rotator is important in the analysis of the 
rotational spectra of diatomic molecules. The rigid rotator (Fig. 3-7) is 

Fig. 3-7. The rigid rotator. : a .. ! 
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a system consisting of two point particles of mass m1 and m2 , which 
are held a constant distance apart by a massless bond. This system 
rotates around the (0) axis passing through the centre of mass of the 
system and lying perpendicular to the projection plane. Here, translational 
motion of the rotator is not considered and therefore the centre of mass 
of the rotator is considered to be at rest, fixed in the origin of the 
coordinate system. 

In classical mechanics the following relation [cf. Eg. (:1-2)J holds 
for the kinetic energy of a two-particle system: 

(3-75) 

where r 1 and r 2 are radius vectors giving the posItIons of the two 
particles. The distance between the particles is given by vector r, for 
which it holds that 

(3-76) 

If vector r is introduced into the relation expressing the assumed location 
of the centre of mass in the origin of the coordinate system (i.e. into 
the relation, ml r I + m2r 2 = 0), then 

(3-77) 

Substitution of these equations into the expression for the kinetic energy 
(3-75) leads to the relationship 

where 

Jlr2 

T=-2-' 

denotes the reduced mass of the system. 

(3-78) 

(3-79) 

Since for a rigid rotator I r I = a (a is a constant), it follows from 
Eq. (3-78) that the system is mathematically equivalent to a system in 
which a particle of mass Jl moves over the surface of a sphere of radius a. 

If no external forces act on the rotator, the potential energy of 
the hypothetical particle can be set equal to zero. The Schrodinger 
equation then has the form 

/). t.p 87[2 JlE t.p = 0 
+ h2 (3-80) 
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Passing from Cartesian coordinates to spherical coordinates (cf. Fig. 3-8) 
permits exploitation of the symmetry of the system and leads to 
a substantial simplification of Eq. (3-80). Expression of the Laplace oper­
ator I:! in spherical coordinates can be found in text-books on quantum 
mechanics (cf. e.g. Ref. 1 in Chapter 4): 

I:!= - r - +-----+---- SIDl':Y-- r [ 0 (2 0) . 1 02 1 0 (. a 0 )] - 2 
- or or sin2 e ocp2 sin e oe oe 

As for a rigid rotator, coordinate r is equal to constant a, the first term 
differentiated with respect to r is omitted. Furthermore, in Eq. (3-80) 
the reduced mass J1. can be expressed in terms of the moment of 
inertia I, 

(3-81) 

and h/21t can be replaced by h. The Schrodinger equation for a rigid 
rotator in spherical coordinates is thus obtained, as given in Table 3-1. 
The solution of differential equations of this type is well known (see 
Table 3-1). 

The eigenfunctions satisfying the given characteristic equation are 
called spherical harmonics, Y1,m(e, cP), and can be expressed in a separated 
form 

(3-82) 

where the indices indicate the dependence on integral values of quantum 
numbers 1 and m, where 

I ~ Iml (3-83) 

For the eigenvalues giving the allowed energies of the rotator it holds 
that 

E _ l(l + 1) h2 

1- 21 ' (3-84) 

where I is the rotational quantum number, which can assume values 
of positive integers including zero, 

3.3.5 The hydrogen atom 

Solution of the hydrogen atom problem is, for several reasons, of 
fundamental importance. First, it is one of the few important systems 
in chemistry that - as a two-body problem - is still exactly solvable. 
Further, it provides a natural starting point for discussion and solution 
of problems concerning many-electron atoms. Finally, atomic wave 
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functions of the hydrogen type or related types represent elementary 
building units for constructing molecular wave functions. For all these 
reasons, atomic wave functions of the hydrogen type will be discussed in 
detail in this section. The problem of the hydrogen atom is similar 
to that of the rigid rotator. The boundary condition of a constant distance 
between the components of the rigid rotator is replaced in the hydrogen 
atom by the existence of Coulomb interaction between the nucleus and 
the electron. Because of the large difference between the masses of the 
nucleus of the hydrogen atom (M) and of the electron (m), the nucleus 
(i.e. the proton) can be considered as the centre of mass of the system 
and assumed to be at rest. Hydrogen-type atoms, which are systems 
consisting of a nucleus of Z protons and one electron [i.e. cations 
with a charge of + (Z - 1) e (Fig. 3-8)], are similar. The SchrOdinger 
equation for these atoms appears far more complicated in spherical 
coordinates than in Cartesian coordinates (compare Table 3-1), but 
the use of spherical coordinates as for the rigid rotator permits easy 
separation of the variables, r, e, and cPo 

y 

z 

m,-e 

M,+Ze 
~~~~~-----x 

Fig. 3-8. Model of a hydrogen-like 
atom with nucleus of mass M and 
charge + Z e. The position of the 
electron is given in polar coordinates 

(r,~, 8). 

The solution can therefore begin with the SchrOdinger equation 
for the hydrogen atom as given in Table 3-1, for which a solution 
in the form 

'P = R(r) Y(e, cP), (3-85) 

will be sought, where R is a function of the radial coordinate r, alone, 
and Y is a function of the angular coordinates e and cPo If Eq. (3-85) is 
substituted into the SchrOdinger equation for the hydrogen atom, both 
sides of this equation are divided by function 'P, and the expressions 
depending on angular variables are transferred to the right-hand side, 
then the equation 

~ ! (r2 ~~) + 2~t (E + 4::or) = 

1 [ 1 i]2Y 1 a (. ay)] 
- y sin2 e acP2 + sin e ae sm e ae (3-86) 
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is obtained. Since either side depends on only one kind of independent 
variable, Eq. (3-86) can be satisfied only when 

1 [ 1 a2 y 1 a ( . ay)] 
- y sin2 e 0<1)2 + sin e ae sm e ae = A (3-87a) 

and 

~ :, (r2 ~~) + 2~;2 (E + 4:Lr) = A, (3-87b) 

where A is a constant. Comparison of Eq. (3-87a) with the equation for 
the rigid rotator in Table 3-1 demonstrates that they correspond to the 
same type of differential equation; the equations are identical when 
A = 2IEjh2. Thus, the corresponding solutions for the eigenvalues and 
eigenfunctions for the rigid rotator can be used to express the quantities 
sought in Eq. (3-87a): function Y and the allowed values of constants A 
are then given by 

Y = Yl ,m(e, <1» 

), = /(1 + 1) 

(3-88a) 

(3-88b) 

The symbols employed have the same meaning as for the rigid rotator. 
Due to the validity of Eq. (3c88b), function R(r), as the solution of Eq. 
(3-87b), is obviously dependent on the value of quantum number 1. 
As described in text-books on quantum mechanics, the approach to the 
solution of Eq. (3-87b) is similar to the calculation of the differential 
equation describing a harmonic oscillator (cf. Section 3.3.3). The final 
solution is, as in Eq. (3-57), sought in the form of a product of an 
approximate solution and a power series. The requirement of quadratic 
integrability of the wave function (that is, the requirement of normaliz­
ability) necessitates introduction of a further integral (positive) quantum 
number, n [similarly as in Eq.(3-73)]. As a final solution of the equation 
for the radial part of the wave function, the function Rn.k) is obtained 
(see Tables 3-1 and 3-3). 

Some Normalized Radial Wave Functions Rnk) for Hydrogen-like Atoms Table 3-3 

R = -- - (2 - Q)e - · /2 1 (Z )3/2 
2.0 2 J2 ao 

4 (Z )3/2 
R3"=81 J 6 ~ (6-Q) Qe-'/3 

1 (Z )3/2 
R2 , l = 2 J6 ~- €I e-·/2 
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In Table 3-1 the Schrodinger equation for the hydrogen atom is 
given, together with its solution; conventional symbols are used. The 
symbol En denotes the energy of the n-th level of the hydrogen atom 
(n = 1,2,3 ... ). The corresponding wave function 'P (or 'Pn,l,m)' called the 
atomic orbital (AO), can be expressed using Eq. (3-85) as the product 
of the radial and angular parts (Fig. 3-8): 

(3-89) 

where n denotes the principal quantum number, I is the azimuthal 
quantum number and m is the magnetic quantum number. Constant ao 
corresponds to the radius of the first Bohr orbit (ao = 0.0529 nm) and 
dimensionless parameter Q is defined by the relation 

Zr 
Q =-;-, 

o 

where Z is the number of protons in the nucleus. 

(3-90) 

The wave function 'P n,l,m (3-89) is an eigenfunction not only of the 
Hamiltonian but also of the angular momentum operators (cf. Section 4.4). 
It holds 

:Ye'P n,l,m = En 'P n,l,m 

.Ie2 'P n,l,m = l(l + 1) h2 'P n,l,m 

.Ie z 'P n.l,m = mh 'P n.l,m 

(3-91) 

(3-92) 

(3-93) 

The principal quantum number n determines the energy of the 
electron, the quantum number I determines the orbital angular momentum 
of the electron, and the quantum number m determines its z component. 

The quantum number n, can assume an arbitrary positive integral 
value (for large values of n quantization of the energy is less important). 
Quantum number I can assume any positive integral value from 0 to 
(n - 1), so that to each value of n corresponds a total of n different 
values of quantum number I, for which 

0~1~n-1 (3-94) 

Quantum number m can assume any integral value in the interval -/ 
to + / (including zero), i.e. to each value of I correspond (2/ + 1) different 
values of m, for which 

(3-95) 

Numbers I and m (by analogy with the quantum numbers in the Bohr 
theory) are called the azimuthal quantum number and the magnetic quantum 
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number, respectively; some authors call them the angular momentum quantum 
numbers. For lucidity, the individual values of the azimuthal quantum 
number are, as a rule, expressed by letters according to the following 
convention: 

value of I: 

designation: 

o 1 234 

s pdf g 

For elucidation of the shapes of the wave functions, some specific 
examples of radial, angular and total wave functions for hydrogen-like 
atoms are given in Tables 3-3 to 3-5. The partial and total functions are 
independently normalized to unity (cf. Section 3.1). 

A disadvantage of the angular functions given in Table 3-4 lies in 
the fact that they are generally complex functions that cannot be represen­
ted in real space. However, equally good and real wave functions (atomic 
orbitals) are obtained through linear combination of spherical harmonics 

Some Normalized Spherical Harmonics YI,m(e, <1» for Hydrogen-like Atoms Table 3-4 

S orbital 

Y __ 1_ 
0,0 - 2.1rc 

p orbitals 

.13 
Y1,0 = 2.1rc cose 

Y -~. e ±i0 
1,±1-2.1(2rc)SIll e 

d orbitals 

.15 2 
Y2 ,0 = 4.1rc (3 cos e - 1) 

.115 , ±0 Y 2 ,±1 = --sIll2ee • 
4.1(2rc) 

Some Normalized Wave Functions 'P n,l,m of Hydrogen-like Atoms Table 3-5 

n m 

o o 'P =-- eO 1 (Z )312 _ 
Is .Jrt ao . 

2 o o 1 ( Z )312 
'P2s = 4.1(2rc) --;;;; (2-Q)e- 012 

2 o 

2 ±1 

1 ( Z )312 
{ 

'P 2p. = 4.1(2rc) --;;;; Q e -012 sin e cos <1> 

__ 1_ (~)3!2 -012' " . 
'P 2py - 4.1(2rc) ao Q e Sill e Sill <1> 
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with equal values of /, and the same value of 1 m I, for instance: 

(J~)(YI.I +YI.- I)= 211t sin 8 cos <P (3-96) 

(It should be noted that the actual atomic orbitals are obtained by 
multiplying the angular part of the wave function by the radial part 
[cf. Eq. (3-89)]. This circumstance, of course, does not affect the symmetry 
considerations in any way.) This combination will be denoted PX' since 
the expression on the right-hand side of Eq. (3-96) exhibits the same 
angular dependence as the expression for transformation of the x-coordinate 
when passing from Cartesian to spherical coordinates. Two more real 
atomic orbitals with 1 = 1 can be obtained in a similar way, their designa­
tion being apparent from the survey given below (symbol Y I I is replaced 
by PI, etc.): 

PI + P-I '" sin 8 cos <P '" x 
.)2 

Po '" cos 8 '" z 

- i PI - P - I '" sin 8 sin <P '" Y . ../2 Py 

Table 3-6 
Survey of Atomic Orbitals for the Principal Quantum Numbers n = 1, n = 2. and n = 3 

Quantum numbers 

n 

1 

2 

3 

o 
o 

o 

m 

o 
o 

-1 
o 
1 

o 
-1 

o 

2 -2 
2 -1 
2 0 
2 
2 2 

Symbol 

of atomic 

orbital 

'l'",l.m 

'1'100 

'I' 200 

'I' 21-1 

'I' 210 

'I' 211 

'I' 300 

'I' 31-1 

'I' 310 

'1'311 

'I' 32 - 2 

'1'32-1 

'I' 320 

'I' 321 

'I' 322 

Conventional notation 

angular function resulting real 

(complex) function (atomic 

orbital) 

Is Is 

2s 2s 

2
P

'} r' 2pO -- 2py 

2PI 2P: 
3s 3s 

3p_, } r' 3PO -----+ 3py 

3PI 3pz 

3d, } { 3d" 3d_ I 3dxz 

3do -----+ 3dy. 

3d l 3dx2 _y2 

3d2 3d: 2 
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In a similar way, real atomic orbitals denoted dXY ' dxz ' dyz ' 

dX2 _ Y2 ' dz2 are obtained from complex angular functions do, d±l' and d±2 ' 
A survey of atomic orbitals with principal quantum numbers n = 1, 
11 = 2. and 11 = 3 is given in Table 3-6. 

Fig. 3-9. The shape of the 'P(1s) atomic 
drbital and of quantities related to 

It in terms of dependence on the 
distance from the nucleus. 

0.6 

0.4 

0.2 

0.2 
- r(nm) 

0.4 

In chemical applications, graphic representation of wave functions 
is frequently used; however, their radial and angular parts are generally 
depicted separately. From this point of view, the Is atomic orbital (i.e. the 
wave function "15)' is instructive; here the relationships are particularly 
simple as the function is spherically symmetrical and decreases exponen­
tially with increasing distance from the nucleus. (Spherical symmetry is 
a characteristic property of all s-type atomic orbitals, whatever the value 
of the principal quantum number.) Fig. 3-9 represents the dependence 
of '1', '1'2 and 41tr2p2 on the value of r for the Is orbital ('1' designates 
the '1' Is function and '1'2 gives the probability density of an electron at 
any point at a distance r from the nucleus). 

In Fig. 3-10 various modes of graphical representation of the 1s 
orbital are given: a) a section through a series of concentric spheres with 
the value of '1' given for each ("contour" representation); b) designation 
of the envelope corresponding to the space where the probability of 
electron occurence anywhere inside this envelope is, for instance, 90 per cent 
(or, for example, 99 per cent); for all points on the envelope tp (== tp 1s) 
has the same value; c) indication of the electron probability density at 
different points by the corresponding density of dots (for the Is orbital 
the density of dots decreases exponentially with the distance from the 
nucleus). 

~o . i : .. <.):~\?~ .... ;:.; .. . 
. . . . 

a) b) c) 

Fig. 3-10. Various modes of graphical representation of the Is atomic orbital: (a) by contours, 
(b) by a region with certain probability of electron occurrence, (c) by an electron cloud. 
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C 
a: 

1s 2s 38 

-9 

Fig. 3-11. Dependence of radial functions Rnl on e (Table 3-3). The region corresponding 
to negative Rnl values is shaded, nodal points are indicated by arrows. 

g u 

Fig. 3-12. Angular part of the s, p, d orbitals. The signs of the wave functions are indicated 

(+, -) and symmetry with respect to inversion is given (g, u). 

For atomic orbitals with higher values of n and I, the graphical 
representation becomes more complicated. In Figs. 3-11 and 3-12, radial 
and angular functions are pictured for several different orbitals. Whereas 
a similar mode was used for depicting the radial function, as for the Is 
orbital in Fig. 3-9, the angular part of the orbital can most conveniently 
be depicted by mode b (cf. Fig. 3-10). While this representation encounters 
no difficulties for s-type orbitals, the other types of orbitals are treated 
in a way that can be illustrated, for instance, on the 2px orbital. For 
purposes of graphical representation, that part of the function which 
depends on variables e and <I> is separated from the expression for this 
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orbital and is denoted B; the resultant relationship then formally cor­
responds to the expression for this orbital where the radial part is by 
convention set equal to unity [J(r) = 1]: 

1J'2Px = f(r) I~I 
B 

A representation using the square of the wave function can also be 
employed: 

1J'2 = f2(r) 1 sin e cos cp 12 
2px '----v--' 

B2 

Graphical representations are usually limited to two dimensions; orbital 
2px can be conveniently characterized by a section lying in the x - y 
plane for which e = 90°. Graphical representation of the dependence 
of B or B2 on cP is called a polar plot (Fig. 3-13). 

a y b y 

x x 

Fig. 3-13. (a) Graphical representation of values of the 2pxCf(r) = 1] orbital denoted by B, 
(b) A similar dependence as in the part (a) but for values of B2. 

To the graphical representation of the angular function can be 
added that each value of I corresponds to a certain characteristic shape 
independent of the principal quantum number. The s orbitals have, as 
has already been mentioned, spherical symmetry, whereas the other 
orbitals are directed (i.e. they have relatively large values in certain 
directions from the nucleus); these facts are important for the theory 
of the chemical bond. According to mode b in Fig. 3-10, the p orbitals 
can be represented by a pair of ellipsoids, touching each other in one 
point, which are symmetrical with respect to the axis designated by the 
index of symbol p (i.e. the Px' Py and Pz orbitals are oriented in three 
mutually perpendicular directions). For the sake of lucidity, in graphical 
representation of these orbitals, cigar-like shapes are drawn instead of 
rather voluminous ellipsoids. This is particularly advantageous in more 
complicated representations encountered, for instance, with d orbitals, 



44 

each of which (except the dz2 orbital) corresponds to four such cigar-like 
configurations. A complete wave function (the atomic orbital) is rarely 
treated graphically, since the form of the angular function is usually quite 
satisfactory. It is necessary, of course, in the individual parts of the 
representation (that is, in the individual cigar-like areas) to indicate the 
sign of the wave function 'P in the respective part of space. This is, in 
fact, very important for considerations on orbital overlap in connection 
with the formation of chemical bonds. 

The results of the study of atomic orbital properties in the hydrogen 
atom can be characterized as follows: 

a) The larger the value of n, the larger the spatial area in which 
the wave function assumes non-vanishing values. This is not readily 
apparent from Fig. 3-11, however, as parameter (l is plotted on the x-axis 
instead of distance r, where 

2Zr 
(l =na 

o 

b) The probability density of an electron in the nucleus is zero, the 
only exception being s orbitals. This fact is very important for spectroscopy 
in the radiofrequency region. 

c) The number of nodal surfaces of the atomic orbitals (that is, 
surfaces in which the wave function has zero value) depends on the 
values of numbers nand 1. Spherical nodal surfaces occur in the radial 
part of the wave function; in the angular part nodal planes are involved. 
The number of these planes in the angular part equals number I. Since 
the total number of nodal surfaces equals n - 1, (n - 1 - 1) nodal surfaces 
will remain for the radial part (after subtracting the 1 nodal planes of the 
angular part). 

d) In atomic orbitals with identical values of n, the electron density 
close to the nucleus is smaller for larger values of number 1. From the 
solution of the SchrOdinger equation for the hydrogen atom (Table 3-1) 
it follows that the energy term appears only in its radial part, so that 
obviously the energy is independent of quantum number m (which occurs 
in the angular function, but not in the radial). As the radial function 
involves both nand 1, it could be expected that the orbital energy will 
depend on both of these quantum numbers. It appears, however, that, 
owing to the special position of the Coulomb potential of the point 
charge among potentials of spherical symmetry, the orbital energy in 
hydrogen-like atoms depends on the principal quantum number n alone: 

Z2 e2 Z2 
E" = - 2 4. 2 = - -2 13.60 e V 

. 1tLoaon n 
(3-97a) 
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Fig. 3-14. Dependence of the orbital energy of the hydrogen atom [Eq. (3-97a); Z = 1] 
on quantum number n. 

En,l 
-3d 

--3s --Jp -3d --35 
--Jp 

--25 -2p --2s 
--2p 

--15 --1s 

0) b) 

Fig. 3-15. Dependence of orbital energies on quantum numbers n and I for (a) an atom with 
one electron, (b) an atom with more electrons. 

Negative values are obtained for orbital energies due to the fact that zero 
energy was, by definition, assigned to a system composed of a proton 
and of an infinitely distant electron (Fig. 3-14); all the remaining systems, 
where the electron is closer to the proton, have energy values below zero, 
i.e. negative. 

It is worth noting that the energy of a particle exposed to a constant 
potential field in a "box" is directly proportional to n2 , whereas the 
energy of a charged particle in the central electrostatic field varies 
inversely with n2 • It is apparent from expression (3-97a) that, in hydrogen­
like atoms, the 3s, 3p and 3d orbitals have the same energy (that is, 
they are many-fold degenerate states). It will be shown later that this 
degeneracy is considerably reduced in systems with more electrons (at 
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least two) where repulsion among these electrons is considered (Fig. 3-15). 
In these systems, the energy is dependent not only on n, but also on I, 
so that only those orbitals that have the same combinations of nand 1 
are degenerate; the order of degeneracy is equal to 21 + 1 (hence, the 
order of degeneracy of p, d and f orbitals is 3, 5 and 7, respectively). 

Transition of an electron from an orbital with principal quantum 
number n1 into an orbital with this number equal to n2 is accom­
panied by emission or absorption of energy in the form of electro­
magnetic radiation. For the hydrogen-like atom the following relation­
ship (cf. Table 3-1) is valid: 

Z2e2 ( 1 1 ) he E -E --- ---- -hv--
"2 ", - 8m; a n2 n2 - - A o 0 1 2 

(3-97b) 
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References given in Chapter 4 can be also used in this chapter. 



4.MATHEMATICS AND LOGIC 
OF QUANTUM MECHANICS 

4.1 Linear operators and their properties 

In the preceding chapter the concept of an operator was introduced, 
which will now be made more precise and specified in greater detail. 
The theory of linear operators is one of the fundamental mathematical 
tools of quantum mechanics 1 -12. 

Definition 1. The term operator (I) denotes an instruction according 
to which to function I(x, y, ... ) of coordinates x, y, ... is assigned another 
function F(x, y, ... ) in the same variables: 

(l)f = F (4-1) 

(denotation of the dependence on the coordinates is omitted). 
Definition 2. Operator l!J is linear if 

(4-2) 

and 
(!)cl = c(!) f, (4-3) 

11 and 12 being functions and c an arbitrary constant. 
From relations (4-2) and (4-3) it follows that 

(f)(CJI + Cd2) = c1l!JI1 + c2l!J12' (4-4) 

where c1 and c2 are arbitrary constants. In all the following considerations 
it will be assumed that general operators satisfy properties (4-2) and (4-3). 
It can easily be verified that the operators introduced in the preceding 
chapter are linear. 

We have already encountered operators requiring differentiation of 
the function or multiplication by one of the coordinates - such operators 
or combinations thereof will appear here most frequently. The following 
symbols 

a 
~x=ax (4-5) 
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ilx = x 

can be introduced. By definition, 

~l' = of ax 
ill' = x·f 

The action of operator ilx on Eq. (4-7) gives 

af 
ilx~ l' = xa; 

and ~ x acting on Eq. (4-8) gives 

a of 
~xill' = a; (x .f) = f + xai' 

(4-6) 

(4-7) 

(4-8) 

(4-9) 

(4-10) 

from which it follows that the result depends on the sequence of 
operations. In other words, operators ~ x and ilx are not commutative. 
Subtracting Eq. (4-9) from Eq. (4-10) gives 

(4-11) 

and since f is an arbitrary function of its coordinates, Eq. (4-11) can be 
changed into a form in which only operators occur: 

~xilx - ilx~x =1, 

where 1 is the identity operator. 
Definition 3. Operators satisfying the equation 

[~,il] == ~il- il~ = 0 

(4-12) 

(4-13) 

are termed commutative operators. The symbol [~, il] is called the 
commutator of ~ and il. 

For example, operators ilx and ~y are a pair of commutative 
operators. 

Definition 4. Operator (!I(x) is a Hermitian operator if 

f f!(x) (!I(x) f 2(x) dx = f f 2(x) (!I*(x) ,ft'(x) dx, (4-14) 

where an asterisk denotes complex conjugate quantities and integration 
is performed over all possible values of variable x. If more variables are 
involved, dx is replaced by the volume element d-r = dx dy ... and 
integration is performed over variables x, y, . ... 

Definition 5. To each operator (!I can be assigned a linear equation of 
the type 

(!If = of, (4-15) 
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where 0 is a constant which, in general, can be a complex number. 
This equation is called an eigenvalue (or characteristic) equation, function f 
and constant 0 are called, respectively, an eigenfunction (or characteristic 
function) and an eigenvalue (or characteristic value) of operator (J). 

Equation (4-15) can be satisfied by a number of functions with 
various properties; among them is the trivial solution, f = O. In order 
to ensure that the solution obtained is reasonable from a physical 
point of view (cf. Eq. (4-22)) the eigenfunctions must fulfil the following 
requirements: 

a) function f exists in the whole region in which the variables lie, 
b) function f must be continuous and finite everywhere in this 

region (with the exception of singular points), 
c) function f must be single-valued. 

Other functions can, of course, satisfy Eq. (4-15) so that 

(J)fk = OJk' (4-16) 

where the subscript indicates that there can be further eigenvalues whose 
spectrum can pass through discrete or continuous values. 

An interesting consequence for its eigenvalues follows from the 
definition of the hermicity of operator (J). If Eq. (4-15) is multiplied from 
the left by the function f* and integration is carried out over the entire 
space, then 

0= (4-17) 

Similarly, if we start with the complex conjugate of Eq. (4-15) and 
multiply it by function f, after integration we obtain 

* _ Sf(J)*f* d. 
o - SIfl2 d. (4-18) 

From comparison of Eqs. (4-17) and (4-18) and from the condition of 
hermicity of operator (4-14) it can be seen that 

0=0* (4-19) 
Thus, it obviously holds that: 

Theorem 1. The eigenvalues of Hermitian operators are real numbers. 

4.2 Axiomatic foundation 
of quantum mechanics 

Scientific disciplines, deductive by character, depend on axioms or 
postulates which are considered to be fundamental and non-deducible. 
It is necessary to realize that the justification of postulates depends on 
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the ability of the theory based on them to interpret observations (to 
correlate data) and to predict experimental facts. 

There is, as a rule, a number of ways of forming the axiomatic basis 
of a certain branch of science. Individual modes can differ in character, 
generality and the number of postulates required. Classical mechanics 
is a good example: it can begin from Newton's laws or from the principle 
of least action and the properties of an inertial frame of reference. 
It is evident that, while the first approach allows simple formulation 
of "normal" problems from the field of mechanics up to the motion of 
celestial bodies, the second is, because of its generality, also useful 
for investigating problems in which electrical, magnetic and relativistic 
phenomena appear. The example given also shows that the system of 
postulates can be chosen so that, within a specific application, it may 
be possible to use the respective laws directly without further derivation. 

For our purpose, i.e. for the application of quantum mechanics to 
the problems of chemical bonding, it will be satisfactory to axiomatically 
introduce the Schrodinger equation, interpretation of the wave function and 
the requirements imposed on it. Even so, it is not surprising that the 
postulates of quantum mechanics are not immediately clear as they 
concern the properties of particles of the microcosmos, with which we 
have no direct experience. 

To investigate a system composed of n particles, the classical descrip­
tion requires knowledge of 3n coordinates and 3n momenta at a given 
instant in time. Description of this system in quantum mechanics can be 
performed after introduction of the following postulates. 

Postulate 1. To every physical quantity M corresponds a linear, 
Hermitian operator Jt (observable), which can be obtained by the 
following steps: in the classical expression for the corresponding physical 
quantity expressed in terms of Cartesian coordinates and momenta 

a) time and coordinates will remain unchanged 
b) linear momentum Px will be replaced by the operator 

h a 
fix = 21ti ax 

Postulate 2. Every dynamic state of the particle system is fully 
described by a function of the coordinates and time, wave function <P. 
The wave function (in the form normalized to unity) must satisfy conditions 
a) to c) in Section 4.1, and has the following physical interpretation: the 
expression <P*<P d, gives the probability that at time t the variables lie in 
the intervals Xl to Xl + dx p Yl to Yl + dYl' Zl to Zl + dzl, x2 to X2 + 
+ dx2 , ••• z. to z. + dz., where d, = dXl dYl dZl ... dz •. Each of the n 
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particles occurs somewhere in space and therefore the integrated probability 
density must equal 1 : 

J 1/>*1/> d .. = 1 (4-20) 

Equation (4-20) must be understood as a condition which is 
satisfied by function I/> at a certain instant t. The time dependence of the 
wave function then need not be considered; it is necessary, however, to 
require that the norm be maintained throughout the time development 
of the system. 

Postulate 3. In the time-dependent SchrOdinger equation the wave 
function I/> satisfies the relationship 

.1f1/> = ih ~~ , (4-21) 

where .1f is the Hamiltonian operator of the given system and t is 

the time. 
Postulate 4. The only possible values obtained by measuring the 

physical quantity M are the eigenvalues, mk , of the equation 

(4-22) 

where 'Pk fulfils conditions a) to c) in Section 4.1 and Jtis the corresponding 
observable. 

Postulate 5. If the state of the given system is described by wave 
function 1/>, the mean (or expectation) value m of physical quantity M 
is given by the expression 

__ J 1/>* Jtl/>'d .. 
m - J 1/>*1/> d .. (4-23) 

In the next section, the relationship between the mean value defined 
in this way and the mean value of an experimental quantity obtained by 
a series of measurements will be described. 

4.3 Consequences of the axiomatic system 

To facilitate analysis of the properties of the wave function, some 
important concepts must be introduced: 

Definition 6. The set of functions <PI (x), <P2(X), ... , <Pk(X), ... , defined 
for variable x in the interval (a, b), is orthonormal if the scalar product 
satisfies the relationship 

b 

J<pi(x) <pix) dx = (<Pi ! <p) = bu, (4-24) 
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where Jij is the Kronecker symbol (J ii = 1; Jij = 0 for i # j), and is 
complete if the arbitrary function f(x) satisfying properties a) to c) 
introduced in Section 4.1 can be approximated by 

m 

f(x) ~ fm(x) = L C/Pi(X), (4-25) 
i= I 

where 
b 

J 1 f(x) - fm(x) 12 dx (4-26) 
a 

approaches zero provided m tends to infinity. 
Similar sets of functions exist for functions of more variables and 

also for infinite intervals. 
Expansions of type (4-25) are useful for representing the wave 

function of a system in terms of a linear combination of functions ({Ji(X). 
If the analytical form of the function f is known, the expansion coefficients, 
Ci , can easily be calculated: MUltiplying Eq. (4-25) from the left by the 
function ({Jt(x), performing integration over the given interval and con­
sidering the orthonormality of the functions leads to the expression 

b 

Ck = J ((J:(x) f(x) dx (4-27) 
a 

The form of expansion (4-25) is also useful for finding the wave function 
as a solution of an eigenvalue problem. The solution leads, as a rule, to 
a linear problem in variables Ci that is relatively easy to solve. 

Theorem 2. The eigenfunctions of the Hermitian operator form 
a complete orthonormal set. 

Proof of the completeness of a set of functions is a difficult problem, 
so that only an outline of the proof of the orthonormality of eigenfunctions 
of the Hermitian operator will be given here. 

Let J( be the Hermitian operator, 'PI and 'P 2 its two eigenfunctions 
and mi and m2 the respective eigenvalues. Therefore 

J('P I = mi 'PI 

J('P 2 = m2 'P 2 

(4-28) 

(4-29) 

Multiplication of Eq. (4-28) from the left by function 'P! and integration 
gives 

J 'P!J('P I d-r = mi J 'P!'P I d-r, 

and, because of the hermiticity of J( 

J 'PIJ(*'P! d-r = mi J 'P!'PI d-r 

(4-30) 

(4-31) 
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The complex conjugate of Eq. (4-29) is then multiplied from the 
left by 'PI and integrated to give 

J 'P I vII* 'Pi dr = mi J 'PI 'Pi dr = m2 J 'PI 'Pi dr (4-32) 

which is due to the fact that the eigenvalues of Hermitian operators are 
real numbers. The left-hand sides of Eqs. (4-31) and (4-32) are identical, 
so that 

mi J 'Pi 'P I dr = m2 J 'P I 'Pi dr, 

which for mi ± m2 can be valid only if 

J 'Pi 'PI dr = 0 

(4-33) 

(4-34) 

For mi = m2 , the proof is insufficient; however, it is still possible to find 
a set of orthogonal eigenfunctions by orthogonalization, employed in 
linear algebra. 

Theorem 2 guarantees the possibility of expanding wave function cP 
in a certain instant in terms of eigenfunctions 'Pi' corresponding to 
a certain observable. Substituting the expansion 

(4-35) 

into Eq. (4-20), where 'Pi satisfies Eq. (4-22), and considering the ortho­
normality of functions 'Pi leads to the relationship 

(4-36) 

Substituting Eqs. (4-20) and (4-35) into expression (4-23) for the mean 
value iii of the physical quantity M gives 

iii=Ilc i l2 mi (4-37) 
i 

Relationship (4-37) is analogous to the definition of the mean 
experimental value of quantity M, for which value mi was determined PI 
times, value m2 determined P2 times, etc. It then holds that 

1 
iii = Ii LPimp 

I 

where N is the total number of measurements (N = I Pi) and pJN is the 
i 

probability of finding value mi during the measurements. The sum of all 
the probabilities fulfils the necessary condition that 

III = 1 
iN 

fn condition (4-36) the square of the absolute value of coefficient ci can be 
interpreted as follows: 
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Theorem 3. If a system is in a state described by wave function <P 

expressible in terms of the expansion <P = L Ci~' the value 1 Ci 12 is the 
i 

probability that value mi> corresponding to the eigenfunction 'Pi> is 
found as the measured value of quantity M. 

The definition of commutative operators was given in Section 4.1. 
Here it will be shown that the commutation of two operators reflects 
significant physical properties of the system. 

Theorem 4. The necessary and sufficient condition for two physical 
quantities K and M to simultaneously assume the precise values k i and mi 

during the measurement is the commutability of their operators:K and Jt. 
To verify the validity of this theorem, it is necessary to show 

that, if there is a complete set of orthogonal functions which are 
simultaneously eigenfunctions of both operators :K and Jt, then these 
operators commute. Conversely, it also holds that, if the two operators 
:K and J( commute, they have a set of common eigenfunctions. 

The first part of the theorem can easily be proved. It suffices to 
examine, according to Eqs. (4-11) to (4-13), the action of the respective 
commutator on an arbitrary function f According to the above assumption 
it holds that 

and 

(4-38) 

(4-39) 

(4-40) 

where Theorem 2 was used for expansion of function f in a series of 
functions 'Pi' Using Eqs. (4-38) and (4-39) for modification of Eq. (4-40) 
leads to the result 

L ci(kimi - miki) 'Pi = 0, 
i 

(4-41) 

thus proving the commutability of operators :K and J( in the sense 
of Definition 3. The second part of the theorem will be proved for 
a special case assuming that the eigenvalues of one of the operators 
(say :K) are not degenerate, in other words, that in Eq. (4-38) only one 
function 'Pi corresponds to value ki. Generalization of the proof for 
the degenerate case renders no difficulty; it is, however, too lengthy to be 
given in detail here. Equation (4-38) is multiplied from the left by 
operator J( and J(:K is substituted for:KJ( as implied in the assumption; 
the relation 

(4-42) 
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is then obtained, from which it follows that Ai = JI 'Pi is also an 
eigenfunction of :K with the eigenvalue ki • However, since k i corresponds 
to a non-degenerate state, Ai can differ from 'Pi only by a constant 
factor, i.e. Ai = mj'P j, and 

Thus it has been shown that 'Pi is also an eigenfunction of operator Jt. 
The final theorem is of no less importance and its usefulness for 

facilitating some calculations will be appreciated later. 
Theorem 5. Let :K and JI be Hermitean operators that commute. 

Let 'P 1 and 'P 2 be eigenfunctions of operator JI and m1 and m2 be the 
respective eigenvalues. If m1 =1= m2 , then the integral J 'Pi:K'P 2 dr equals 
zero. 

It obviously holds that 

J 'Pi :K JI'P 2 dr = m2 J 'Pi :K'P 2 dr (4-43) 

and, moreover, 

(4-44) 

where the commutation property of the operators was employed. 
Hermicity of operator JI permits rewriting the right-hand side of Eq. (4-44) 
in the form 

J f Jt* 'Pi dr = m1 J f'Pi dr = m1 J 'Pi:K'P 2 dr, (4-45) 

taking into account Definition 4 and Theorem 1. The left-hand sides of 
Eqs. (4-43) and (4-44) are identical; therefore 

(4-46) 

whence it follows that, for m1 =1= m2 , the corresponding integral must 
vanish. 

To conclude, it is necessary to state that, for the sake of simplicity, 
we have assumed (and shall continue to assume) a discrete spectrum 
of eigenvalues and that generalization to a continuous spectrum is 
possible. 

4.4 Constants of motion. 
The Pauli principle 

Among quantum mechanical operators, the Hamiltonian is undoubtedly 
the most important, not only because of its relation to the total 
energy of the system but also for its role in the time-dependent 
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Schrodinger equation (see Postulate 3). If :/f does not depend explicitly 
upon the time, :/f is identical with the total energy operator. Then the 
Schrodinger equation (4-21) also has a solution that can be found by 
separation of the spatial coordinates and time. 

It can be assumed that wave function <P can be written as the 
product of two functions, 

<P(r, t) = f(t) lJ'(r), (4-47) 

where f depends only on time, t, and '1'(r) only on the spatial coordinates, 
symbolically denoted by r. Substitution of assumption (4-47) into Eq. (4-21) 
permits rewriting the Schrodinger equation in the form 

ih _1_ af(t) = :/f(r) '1'(r) 
f(t) at '1'(r)' 

(4-48) 

where each side of the equation depends on a different type of variable, 
which is possible only if both the left-hand and right-hand sides equal 
a common constant, denoted by E. Thus two equations result: 

:/f(r) '1'(r) = E'1'(r) (4-49) 

and 

'h df(t) = Ed 
1 f(t) t, (4-50) 

where the first is the eigenvalue equation for the energy, that is, the 
time-independent Schrodinger equation. States represented by wave function 
'1'k(r) and with a precise value of energy Ek [the solution of Eq. (4-49)J 
are called stationary states. 

If, in addition, the form of function <P (r, t) is to be found, Eq. (4-50) 
must be integrated, giving 

(4-51) 

where A is the integration constant. Hence the particular solution 
of Eq. (4-47) is obtained: 

(4-52) 

In general the initial state of a system is described by a wave function 
which can be expressed as an expansion in a series of eigenfunctions 
of Eq. (4-49): 

<P(r,O) = L ck tp k(r) (4-53) 
k 
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According to the theory of differential equations, the following solution 
satisfies Eq. (4-21): 

<P(r,t) = LCkPk(r)e-iEkt/1i 
k 

(4-54) 

In Eqs. (4-53) and (4-54), the ck denote the expansion coefficients. By 
substituting expansion (4-54) into expression (4-23) for calculation of the 
mean energy value, it follows that not only the total energy of a system 
but also the statistical energy distribution is constant in time: 

E = S <P*3f<P d. =L 1 Ck 12 S Pt3fPk d. = LIck 12 Ek (4-55) 
k k 

Similarly, there are other physical quantities whose statistical 
distribution does not vary in time. This property is possessed by any 
observable vii that does not depend explicitly on time and commutes 
with the Hamiltonian: 

[vi( 3f] = 0 (4-56) 

From the rule of differentiation of the product of functions, it follows 
for the derivative of the mean value of M with respect to time that 

~ S <P* Jt<P d. = S a<P* Jt<P d. + S <P* Jt a<p d. 
dt at at 

+ S <P* aJt <P d. 
at 

(4-57) 

In Eq. (4-57) Postulate 1, which stated that operators can be treated as 
functions of time, was used. The time variation of the wave function is 
given by the Schr6dinger equation (4-21) and the derivative a<P*/at can 
therefore be expressed by the complex conjugate of Eq. (4-21): 

ih a<P* = -3f*<P* 
at 

Substituting these expressions into Eq. (4-57) gives 

i~ { - S (3f*<P*) JtiP d. + S <P* JtJf<P d.} + S <P* a: <P d. = 

(4-58) 

1 aJt 
= 1h S <P*[ vi( 3f] <P d. + S <P* -----at <P d., (4-59) 

where the fact that 3f is a Hermitian operator was employed. Equation 
(4-59) expresses the general time dependence of the mean value of 
physical quantity M. If aJt/at = 0 and Jt satisfies Eq. (4-56), the 
right-hand side of Eq. (4-59) is equal to zero. The observable vii is then, 
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by analogy with classical mechanics, called a constant of motion. It is apparent 
that, if the wave function in the initial instant (t = 0) is identical with the 
eigenfunction tp k of vH [cf. Eqs. (4-52) and (4-53)] with eigenvalue mk , 

then, during the evolution of the system, physical quantity M retains 
the value mk • Then mk is said to be a "valid quantum number". It can 
be used for classification of stationary states, since, employing Theorem 4, 
conditions are obviously fulfilled for the energy of the system to assume 
precise values of Ek • 

As a constant of motion, the angular momentum is particularly 
important for systems with spherical symmetry, represented, for example 
by atoms, where the electrons move in the electrostatic field of the point 
charge of the atomic nucleus. According to the classical definition, the 
angular momentum L of a point particle of mass m with linear mo­
mentum p = mv, whose position is specified by vector r, is given by the 
relationship 

(4-60) 

( cf. Fig. 4-1). 

o 
Fig. 4-1. Angular momentum vector L. 

In three-dimensional space the expression for L can be written 
in the form of a determinant 

i, j, k unit vectors 

L= x, y, - components of r (4-61) -
P-,. P". P= components of p 

Considering Postulate 1, the corresponding operator can be written as 

i, j, k 

It' = -iii x, y, 2 (4-62) 
a a a 

ox' oy' 02 
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Expressions for components of this operator can be obtained by 
expanding the determinant 

I£ = -ih(Y~- - Z~) 
x oz oy (4-63a) 

I£ = -ih(Z ~- - x~) 
y ox oz (4-63b) 

I£ = -ih(X~- - Y~-) 
z oy ox (4-63c) 

For the operators of components ofthe position vector and the momentum, 
the commutation relations 

(4-64) 

are valid [called Heisenberg's commutation rules, cf. Postulate 1 and 
Eqs. (4-5) to (4-13)]; the commutation relations 

[I£x' I£y] = ihI£z 

[I£y, I£J = ihI£x 

[I£z' I£x] = ihI£y 

(4-65a) 

(4-65b) 

(4-65c) 

are then obtained for the components of the angular momentum, indicating 
that simultaneous measurement of the components of the angular 
momentum is precluded (cf. Theorem 4). 

The operator of the square of the angular momentum can be 
defined as 

I£2 = I£2 + I£2 + I£2 = x y z 

= _h2{(Y~_Z~)2 +(Z~_X~)2 +(X~_y~)2} 
OZ oy ox oz oy ox 

(4-66) 

Using relations (4-64) and (4-65), it can be shown that each component 
of the angular momentum commutes with I£2, so that 

[I£x,I£2] = [I£,.,I£2] = [I£=,I£2] = 0 (4-67) 

On the basis of relationships (4-65) and (4-67), I£2 and one of the 
operators of the angular momentum components that mutually commute, 
usually I£z, can be selected from the four operators defined by Eqs. (4-63) 
and (4-66). This ensures that both these physical quantities are, in principle, 
simultaneously measurable. It is now necessary to determine the eigen­
values for these observables, on the basis of Postulates 1 and 4, which 
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can be carried out, similarly as with the rigid rotator and the hydrogen 
atom, by introducing spherical coordinates (cf. Fig. 3-8). A rather lengthy 
transformation of Eqs. (4-66) and (4-63c) results in the expressions 

2 1i2 a (. a ) 
9' =- sin e ae sm e ae + 

9'z = - iii a~ 

1 a2 

sin2 e a~2 (4-68) 

(4-69) 

Comparison of Eq. (4-68) with the formulation of the Schrodinger equation 
given for the rigid rotator in Table 3-1 permits prediction of eigenvalues 
and eigenfunctions for the equation 

(4-70) 
namely 

(4-71) 
and 

(4-72) 

where 

F (m) 1 imCf> 
m'¥ =~e (4-73) 

The other functions are given in Table 3-1. I and m are integral quantum 
numbers for which condition (3-83), 

I ~ Iml, 
is valid. From the separated form of function 'P, in Eq. (4-72) it follows 
that 'P, is also an eigenfunction of 9'z ' since, from Eq. (4-69), 

and hence, considering Eq. (3-83), the eigenvalues of L z are 

L z = lim; m = 0, ± 1, ... , ± I 

Thus, the angular momentum is a vector whose length equals 

IiJ[I(/ + 1)] 

(4-75) 

This vector is oriented so that the component in a chosen direction, 
Z, is an integral multiple of Ii. The behaviour of the vector of the angular 
momentum, as follows from Eqs. (4-70), (4-71), (4-74) and (4-75), can be 
understood as its spatial quantization. 
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Comparing the eigenfunctions of.;£2, i.e. Eq. (4-72), with the eigen­
functions for the hydrogen atom (see Table 3-1) shows that the angular 
parts (spherical harmonics) are identical for the two cases. Since the 
radial part of the hydrogen wave function is constant with respect 
to operators .;£2 and ';£Z it can, according to Theorem 4, be assumed that 
operators :Yf, .;£2 and ';£Z commute. The same result could be derived 
using commutation relations for the corresponding operators expressed 
in analytical form. Thus it follows that, for the hydrogen atom, all 
three observables, :Yf,.;£2 and~, are constants of motion. 

In the many-electron atom the quantities derived from the total 
angular momentum act as constants of motion. For a system of n electrons 
the operator of the z-component, !£z' of the total (orbital) angular 
momentum, L, is defined as the sum of all the z-components 

(4-76) 

of the orbital angular momenta of the individual electrons; a similar defini­
tion is also valid for the two remaining components, It' x and It' y' By using 
commutation relations (4-65) for the operators of the individual electrons, 
formally identical commutation relations can be derived for operators 
of the components of the total momentum. On this basis, the angular 
momentum can be defined in general as any vector satisfying commutation 
relations (4-65). For the sake of completeness it can be added that the 
operator of the square of the total angular momentum is again defined 
by Eq. (4-66), that is, as the sum of the squares of three components of type 
(4-76), and that, for the many-electron atom, neglecting spin-orbit inter­
action, operators :Yf, !£2 and !£z commute. In connection with the 
eigenvalues of the total angular momentum, it is particularly interesting 
to determine these values from the eigenvalues of the constituent quantities. 
The procedure used for addition of two momenta represents a general 
algorithm that is also applicable to a many-component system; the process 
of vector addition is then repeated stepwise for all pairs of ve~tors. 

Assuming that there is a system of two commuting angular momenta, 
corresponding either to two independent particles, such as a pair of 
electrons, or to two independent coordinates of the same particle, such 
as the spatial and spin coordinates of an electron, and if ~he squares 
of the momenta [cr. Eq. (4-71)] are given by the expressions 

(4-77a) 

and 
(4-77b) 
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then the square of the total angular momentum has the value 

L? = h2 1(1 + 1), 
where 

(4-78) 

(4-79) 

The result has a simple vectorial interpretation if vectors of length 
11 and 12 are added vectorially; the largest value of the resulting vector 
corresponds to parallel alignment; further values vary by 1 owing 
to spatial quantization and the lowest value corresponds to antiparallel 
alignment of vectors 11 and 12, The spatial quantization of the resulting 
vector, L, is also subject to a rule of type (4-75). 

In addition to orbital angular momentum, an electron has an 
intrinsic angular momentum - the spin. It has been experimentally de­
termined that its components in a particular direction can have values 
of ± ih. Dirac demonstrated that the existence of spin naturally follows 
from the relativistic description of an electron moving in an electromagnetic 
field. For practical purposes, however, it is preferable to introduce spin 
by the Pauli procedure, where the spin of an electron is treated as 
a physical quantity corresponding to the angular momentum with the 
quantum number I == s = i. The existence of spin momentum S, indepen­
dent of the orbital momentum, L, is thus postulated. In connection with 
the spin, similar operators y2 and Y z can be defined. These operators 
satisfy commutation rules analogous to those valid for operators 22, 
2 z, etc., for example 

[y 2,Yz] = 0 

[yo' YJ = ihg;, 

(4-80) 

(4-81) 

These operators are applied to spin functions a and p, which have 
the properties of orthonormal functions: 

S a*(O') a(O') dO' = 1; S W(O') {3(0') dO' = 1 

S a*(O'){1(0') dO' = 0, 

(4-82) 

(4-83) 

where 0' represents the discrete spin variable corresponding to the eigen­
value of Y z and assumes the two values ± i. The characteristic equations 
for operators y2 and Y z have the form 

2 1 ( 1) 1:.2 Y a = 2 1 + 2 rt a, (4-84a) 

y2 {3 = ~ (1 + ~) li 2 {3, (4-84b) 
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In contrast to all the cases discussed so far, the analytical form 
of functions (:J. and {3 cannot be established. In practice, the spin­
dependent part of a one-electron function is defined by specifying the 
value of the quantum number, ms = ± h/2. 

Similarly as with the orbital angular momentum, the total spin 
angular momentum can be introduced; for a system of n electrons, 

(4-85) 

From the procedure of vector addition it is apparent that quantum 
number S [by analogy with I in Eq. (4-78)] assumes integral values if n 
is even and half-integral values if n is odd. The largest possible eigenvalue 
of //z is evidently inh. 

The total angular momentum of a system of electrons, considering 
the spin, is defined as 

n " " 

J = L + S = L Ji = L Li + L Si (4-86) 
i=1 i=1 i=1 

and 

(4-87) 

The following quantum numbers correspond to the given six 
operators related to the many-electron atom: 

L, ML 

S, Ms 

J, M J 

For the total operators the commutation rules given in Table 4-1 are 
valid. 

The computation of physical properties of atomic systems is carried 
out by setting up stationary wave functions that are simultaneously 
eigenfunctions of a maximum number of commuting operators. Physical 
quantities are generally expressed in terms of matrix elements of type 
(4-97); according to Theorem 5, the matrix elements of the total energy 
operator of a system are non-zero only if the Hamiltonian in the matrix 
element is surrounded by functions with eigenvalues identical of the other 
commuting operators. The extent of the calculation can then be reduced 
considerably. It follows from Table 4-1 that the group of operators 
fl!2, fI!=, //2 and //= is suitable for the Hamiltonian, exhibiting no 
explicit dependence on the electronic spin. If subtler types of interaction 
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are also included in the Hamiltonian, such as, for instance, spin-orbit 
coupling, which contributes the term 

n 

.7f(SL) = L ~(ri) (!£iJ/iX + !£i//iY + !£izYiz) (4-88) 
i= 1 

to the non-relativistic Hamiltonian, then the four given operators are not 
constants of motion and their role is assumed by operators ,$2 and ,$z. 
~(ri) is a function of the radial coordinate of the i-th electron alone, and 
depends on the type of spherically symmetrical potential field in which 
the electron is moving. 

So far only those constants of motion that have classical analogues 
have been discussed. There are also other types of operators commuting 
with the Hamiltonian. Let us consider a system of identical particles; 
this can be an atom, a molecule, or a solid substance, where it is assumed 
that n electrons move in the electrostatic field of the rigidly fixed nuclei. 
Since the electrons are indistinguishable, the Hamiltonian is invariant 
unqer any transposition of the electrons. Mathematically this property 
can be expressed by the relationship 

~jk.7f = .7f~jk' (4-89) 

where ~jk denotes the transposition operator of the k-th and j-th electrons. 
It follows from relationship (4-89) that operator ~jk is a constant of 
motion and that ~jk and .7f have common eigenfunctions. 

Table 4-1 
Commutation Properties of Operators Corresponding to Quantities L, S, J, and H 

(Hamiltonian where L - S coupling is not considered),O denotes that the operators in the 
respective row and column commute, the dash denotes that they do not commute [Ref. 5] 

!l'x !l'y !l', !l'2 [/'X [/'y [/', [/'2 fx fy f, f2 jf 

!l'x 0 0 0 0 0 0 0 0 

!l'y 0 0 0 0 0 0 0 0 

Il', 0 0 0 0 0 0 0 0 
!l'2 0 0 0 0 0 0 0 0 0 0 0 0 0 

[/'x 0 0 0 0 0 0 0 0 

[/'y 0 0 0 0 0 0 0 0 
[/', 0 0 0 0 0 0 0 0 
[/'2 0 0 0 0 0 0 0 0 0 0 0 0 0 

fx 0 0 0 0 0 0 0 

fy 0 0 0 0 0 0 0 

f, 0 0 0 0 0 0 0 
$'2 0 0 0 0 0 0 0 
jf 0 0 0 0 0 0 0 0 0 0 0 0 0 
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If the wave function 

P(1,2, ... ,j, ... , k, ... ,11) = P(;, k) (4-90) 

is a function of the space and spin coordinates of a system of electrons, 
then 

(4-91) 

where A. is a real eigenvalue, and I1'jk is a Hermitian operator (the right-hand 
side of the second equation expresses the result of the operation on the 
function). If the operator ~jk is repeatedly applied to Eq. (4-91), then 

I1'Jk P(i, k) = A. 2 P(i, k) = 'P(j, k) 

whence it follows that 

A. 2 = 1, A. = ± 1 

(4-92) 

(4-93) 

Thus it has been shown that the solutions P of the stationary Schrodinger 
equation mayor may not change sign on transposition of two identical 
particles. States of the first type are referred to as symmetric, those of 
the second type as anti symmetric states. The functions that can be 
considered to be actual solutions are given by the Pauli exclusion principle. 
according to which, of all possible solutions of the Schrodinger equation 
for electrons, only those which are antisymmetric are to be considered. 
The Pauli principle, originally only a hypothesis, was later shown experi­
mentally to be valid. 

4.5 Matrix representation of operators 
and operations with matrices 

It has been shown that the mean values of physical quantities for a system 
which is in a stationary state are constant in time [cf. Eq. (4-59)]. In 
quantum chemistry these states are generally most interesting and therefore 
the dependence of operators and of the wave function on time will be 
excluded from further discussion. 

The expectation value of physical quantity K can be written 
according to Postulate 5 as follows: 

-,;: = J q>*,Kq> d,: J q>*q> dr = I (4-94) 

It is sometimes expedient to expand wave function q> in Eq. (4-94) in 
terms of a set of eigenfunctions (see Theorem 2) of observable vii, 

(4-95) 
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so that 

where 

k = L cicj Kij , 
i,j 

(4-96) 

(4-97) 

By introducing a certain sequence for functions 'Pi' expressions (4-97) 
can be systematically arranged in an array 

KiP K 12 , ... , K ij , 

K 2P K 22 , ... , K 2j , 

(4-98) 

This scheme is usually referred to as a matrix. Matrix element Kij 

is located in matrix K on the intersection of the i-th row and the j-th 
column. Matrices can assume finite as well as "infinite" dimensions. 
When the matrix consists of m rows and n columns it is called an m, n­
type matrix. The matrix of the m, m type is termed square matrix. 

Matrix K is said to form the matrix representation of the operator %. 
The respective functions 'Pi' i = 1, 2, ... , are the basis vectors of the 

• representation. If functions 'Pi' i = 1,2, ... , are eigenfunctions of operator 
%, it follows from Theorem 2, Section 4.3, that matrix K has non-zero 
elements only on the main diagonal. 

Since the operators considered here are linear, it is useful to introduce 
some matrix operations. 

Let us assume that operator % is defined as the sum of two 
operators: 

(4-99) 

By substituting Eq. (4-99) into Eq. (4-97), it follows for the matrix elements 
that 

Kij = Aij + Bij 

and, consequently, that the sum of two matrices, 

K = A + B, 

can be defined so that the matrix elements satisfy Eq. (4-100). 

(4-100) 

(4-101) 

To derive the algorithm for matrix multiplication it is necessary to 
utilize the fact that the function f = %'Pj can be expanded using 
Theorem 2, as 

%'Pj = L Kij'P j (4-102) 
i 
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Operator :K can be defined as 

(4-103) 

Then successive action of the operators on 'P j gives 

d(al'Pj) = dI,Bkj'Pk = I, Bkjd'Pk = I, BkjA ik 'Pi (4-104) 
k k ki 

Comparison of coefficients of the same function in Eqs. (4-102) and (4-104) 
yields an expression for the general element Kij of matrix K in terms of 
matrix elements of A and B: 

(4-105) 

For the sake of completeness, multiplication of matrix K by a constant, 
k, can be defined as 

A=kK, (4-106) 
where 

Aij = kKij (4-107) 

Some special kinds of matrices can be given: 
Null matrix 0, definition: Kij = 0 for all i and j. 
Unit matrix 1, definition: Kii = 1 for all i; Kij = 0, for i = j. 
Diagonal matrix, definition: non-zero elements on the main diagonal alone. 
Inverse K- 1 of matrix K, definition: KK- 1 = K-1K = 1. 
Transposed matrix KT to matrix K, definition:(KT)ij = Kji . 
Complex conjugate matrix K to matrix K, definition: (K)ij = K~. 
Hermitean conjugate matrix K" to matrix K, definition: (K")ij = Kt. 

If K is a H ermitean matrix, then 

K = K", or (4-108) 

and it is evident that, for real matrix elements, the matrix is symmetrical and 

or (4-109) 

It can easily be verified that a matrix representing a Hermitian 
operator is also Hermitian. 

A unitary matrix is defined as 

K"K = KK" = 1 

For real matrices definition (4-110) reduces to give 

KTK = KKT = 1 

(4-110) 

(4-111) 

and matrix K, satisfying relation (4-111), is called an orthogonal matrix. 
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The matrix formulation of some problems permits more lucid and 
more compact recording of complex expressions, as is demonstrated in 
several examples given below. Let us define c as a one-column matrix and 
arrange functions 'Pi in the corresponding order in one-row matrix tp. 
Expression (4-95) can then be written in the form of the matrix product 

c1 

4>=II'P1>'P2",,11 c2 :=tpc (4-112) 

Let us suppose that the set of functions 'Pi' i = 1, 2, "" is normalized but 
not orthogonal. Basis sets of this type are frequently used in quantum 
chemical calculations. Therefore, 

(4-113) 

with Sii = 1 for all i's. 5 is called the metric or overlap matrix of the 
corresponding basis set. The norm of wave function 4> is then given, 
instead of by Eq. (4-36), by the more general expression 

J 4>*4>dr = LC{CjJ 'P{'Pjdr (4-114) 
ij 

In order that expressions of type (4-114) be recordable by the matrix 
formalism, a two-dimensional matrix to the basis 'Pi' i = 1,2, "" is 
formally assigned, where the column index specifies functions 'Pi arranged 
in a certain order, and the row index (continuous) lies in the region 
of the integration variable. In accordance with this notation, the chosen 
function 'Pi is a one-column matrix, and the integral in Eq. (4-114) can 
be formally written as 

(4-115) 

where the integration is expressed by the summation involved in the 
matrix mUltiplication. This notation also implies that 

5 = tp"tp (4-116) 

and 

J 4>*4> dr = «p"«p = c"tp"tpc = c"Sc, (4-117) 

where the property of matrix multiplication has been employed: 

[AB]" = B"A" (4-118) 

The problem of transformation of the operator from one represen­
tation to another merits particular attention. Let us assume that the 
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representation of operator :K for the basis formed of eigenfunctions 'Pi' 
i = 1,2, ... , of operator ..It[i.e. matrix K defined by Eqs. (4-97) and (4-98)] 
and the following transformation are known: 

i : 

(4-119a) 

(4-119b) 

These equations relate the set of functions 'Pi' i = 1,2, ... , to a new set ({Jj' 

j = 1,2, ... , which is also assumed to be complete and orthonormal. Now 
the relationship between matrices K and K' can be investigated, where 

(4-120) 

First, system of linear equations (4-119) can be written in matrix form: 

Y' = qJU 

Forming the product according to Eq. (4-116) 

Y'HY' = UHqJHqJU, 

then, because 

Y'HY' = qJHqJ = 1 

the expression [cf. Eq. (4-110)] 

(the bases are orthonormal) 

UHU = 1 

(4-121) 

(4-122) 

(4-123) 

(4-124) 

is obtained. Therefore, transformation between two orthonormal basis 
sets is evidently mediated by a unitary matrix. Further, by substituting 
expansions for 'Pi and 'Pj from expressions (4-119) into Eq. (4-97), it 
follows that 

Kij = L Ut;UljK~p (4-125) 
k,l 

so that the transformation of the whole matrix can be written as follows: 

K = UHK'U (4-126a) 

By matrix multiplication of Eq. (4-126a) from the left by U and from 
the right by U H and using property (4-110), the inverse transformation 

UKUH = K' (4-126b) 

is obtained. One more important property of a unitary transformation 
deserves mentioning. A unitary transformation retains the sum of the 
diagonal elements; this sum is called the trace of matrix K and is 
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designated by 

Tr K = LKii (4-127) 
i 

From Eq. (4-125) it follows that 

Tr K = L UtPliK~1 = L K~l L UtPli (4-128) 
i,k,l k,l i 

According to the definition of a unitary matrix (4-110), its rows and 
columns form orthonormal vectors in the sense 

L UtPli = L U~Uil = (jkl> (4-129) 
i i 

where (jkl is the Kronecker symbol defined in Eq. (4-24). Hence, from 
Eq. (4-128), 

Tr K = L K~AI = Tr K', (4-130) 
k,t 

i.e. the trace of the matrix is invariant under unitary transformation. 

4.6 Approximate solution of the Schrodinger 
equation: variation and perturbation 
methods 

With the exception of quite simple problems (whose significance for 
chemistry is limited), the Schrodinger equation is not exactly solvable. 
Thus it is often necessary to use approximate solutions. This is un­
doubtedly undesirable from a mathematical point of view, but in physics 
and chemistry approximate solutions can be quite useful. In fact, it is 
often possible to find approximate solutions that are very close to the 
exact solution. 

In this connection two methods are particularly important: the 
variation and perturbation methods. The first is more important for the 
applications discussed here and so will be discussed first. 

The variation method is based on the variation principle: if f is an 
arbitrary function satisfying the condition 

f f*f dr = 1, 

then 

(4-131) 

where Eo denotes the ground state energy of the system (that is, the 
lowest eigenvalue of Hamiltonian Jft'). 
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The proof of the theorem is simple. It is assumed that the solutions 'Pi 
of the stationary SchrOdinger equation 

:Ye'Pi = Ei'Pi 

are known. According to Theorem 2, function f can be expressed in the 
form of expansion (4-25) 

(4-132) 

with expansion coefficients ci satisfying condition (4-36). Substituting this 
expansion into the integral in Eq. (4-131) yields 

U* :Yefd-r = L 1 Ci 12 S 'Pi:Ye'Pi dr = L 1 Ci 12 Ei ~ Eo L 1 Ci 12, (4-133) 
iii 

where the fact that the energies of the excited states E; (i = 1,2, ... ) of the 
system are higher than (or at least equal to) the energy of the ground 
state Eo was employed; finally, using Eq. (4-36), relationship (4-131) is 
obtained. 

The energy calculated using the approximate function f is therefore, 
according to the variation principle, higher than energy Eo (or, in the 
limiting case, equal to it). When the exact wave function cannot be 
determined because of the mathematical complexity of the problem, then 
a formulation is used where f is to be determined in such a way that 
the integral, S f* Jlt'f dr, has a minimum value. The exact energy value 
of the ground state Eo is then approached most closely. It is worth 
noting that the variation method can be modified so that it can be used 
for the calculation of excited states of the system. 

In practical calculations based on the variation method the following 
procedure is employed. A trial wave function is proposed (on the basis 
of experience) for the problem under study, containing initially variable 
parameters. The energy corresponding to this wave function is expressed 
in terms of these parameters; their numerical values are then determined 
so that the calculated energy of the ground state (the state with the 
minimum allowed energy) is as low as possible. The proposed approximate 
function f can have an arbitrary form (as long as it satisfies the usual 
requirements imposed on wave functions). Usually it has the form of 
a linear combination of other functions (which do not form a complete 
system): 

n 

f = L c;cPp (4-134) 
i = 1 

where coefficients Ci are the parameters to be optimized. 
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It can be mentioned, for illustration, that the ~;'s can be atomic 
orbitals when forming molecular orbitals, or that the ~/s can denote 
valence bond (canonical) structures in the valence bond method or, 
finally, that the ~;'s can be Slater determinants (or their linear combi­
nations) corresponding to distinct configurations in the configuration 
interaction method. 

In the mathematical formulation of the problem, the minimum 
value of the expression 

min ff*:Kfd. (4-135) 

should be found, which, in terms of variation calculus, can be expressed 
by the condition 

6 U*:Kfd. = ° (4-136) 

It is necessary to realize that the variation parameters, ci' are not 
independent and are subject to the condition 

n 

ff*f d. = L cic J ~i~j d. = c"Sc = 1, (4-137) 
i,j~ 1 

where, for the elements of the overlap matrix, the denotation 

Sij = f ~i~j d. 

was employed, using the matrix notation from Eq. (4-117). In accordance 
with the method of Lagrange multipliers, instead of Eq. (4-136), the 
equation 

6[f f*:Kf d. - E(f f*f d. - 1)] = 0, (4-138) 

will be solved, in which E is the Lagrange multiplier, so that all para­
meters cj can formally be considered independent. In this calculation 
stage it is necessary to be aware that, in general, a complex number is 
given by both its real and imaginary parts, and that, consequently, 
cj and its conjugate quantity ci are two independent parameters. Substi­
tuting expansion (4-134) into Eq. (4-138) gives 

n n n n 

L 6ci L clHjj - ESij] + L 6c j L ciCHij - ESjj] = 0, (4-139) 
j~l j~l j~l i~l 

where II Hij II is the matrix representing the operator :K within the basis 
~i' i = 1,2, ... , 

Hij = f ~~ :K~j d. 

Since all the variations in Eq. (4-139) are now independent, it can be 
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satisfied only if the coefficients of all the variations are zero, so that 
n 

~>lHij - ESij] = 0, for i = 1, 2, ... , n (4-140a) 
j= 1 

n 

~>i[Hij - ESij] = 0, for j = 1, 2, ... , n (4-140b) 
i= 1 

Systems of equations (4-140a) and (4-140b) determine coefficients Ci 

and their complex conjugate values cf. As both Hand S are Hermitian 

matrices, that is, H ji = Ht and S ji = St, it follows that system of equations 
(4-140b) is the complex conjugate of system (4-140a). Then system of 
equations (4-140a) can be considered as the final result which represents 
the condition for the optimum values of coefficients ci . For the sake 
of lucidity, the linear system of equations with unknown c; s can be 
written as 

c1[H ll - E] + c2[H 12 - ES I2 ] + ... + cn[H ln - ES 1n] = 0 

cl [H21 - ES21 ] + c2[H 22 - E] + ... + c'[H2n - ES 2n] = 0 

= 0 (4-141) 

In Eq. (4-141) the normality of functions (/Ji' J (/Ji(/Ji d7: = 1, for all i's, 
was taken into account. It is obvious that this system of equations is 
satisfied for values c 1 = C 2 ... cn = O. However, this is not a physically 
significant solution. A non-trivial solution can be found if 

det II Hij - ESij II = 

... , H2n - ES 2n = 0 (4-142) 

Hnn - E 

Equation (4-142), called the secular equation, represents an n-th order 
algebraic equation in E and has, consequently, n real roots: EI' E2 ... En' 
The reality of the roots is a consequence of the hermicity of matrices 
Hand S. Provided function f represents a state of the system, then, 
according to the variation principle, the smallest root is the best approxi­
mation to the ground state energy. If good judgment is applied in 
choosing the variation function, the approximate energy value may be 
very close to the true energy. The other roots can be interpreted as 
approximate values of the energies of the excited states. The entire 
derivation could be carried out in such a compact form only because 
of use of the matrix formalism. System of equations (4-141) can be 
rewritten in the form 
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(H-ES)c=O, (4-143) 

where the notation used in Eqs. (4-112) and (4-117) is employed. By 
mUltiplying from the left by matrix c" it can easily be proven that E is 
an energy value (cf. Eq. (4-23)) since, employing Eq. (4-137), it follows that 

c"Hc = Ec"Sc = E (4-144) 

When solving a system of equations of type (4-141), the procedure 
leading to the determination of optimum values for variable parameters 
(called MO expansion coefficients, expansion coefficients of the VB or CI 
wave function) is as follows: 

1. The matrix elements of the Hamiltonian (Hi) and the elements 
of the overlap matrix (Si) are calculated. 

2. The determinant in Eq. (4-142) is expanded and the algebraic 
equation of the n-th degree is solved. In this way, n real energy values 
are obtained (where multiple roots corresponding to degenerate levels 
can appear). These values correspond to n wave functions, each of which 
is expressed as a linear combination of n functions (<PJ 

3. For each of the energy values, a system of equations is solved 
for the unknown expansion coefficients. For each energy level, Ep n values 
of cji (j = 1,2, ... , n) are obtained; since there are n energy values 
(Ei ' i = 1,2, ... , n), a total of n2 expansion coefficients is found; these 
coefficients are not independent because of the condition of orthonormality 
of the individual solutions. 

From a broader point of view, the perturbation method has a parti­
cularly important position in quantum mechanics. It is, however, less 
important here than the variation method and will therefore only be 
outlined in general. The perturbation method is suitable for the solution 
of the Schrodinger equation (Ep 'Pi) for a problem which differs only 
slightly from another, related problem, for which the solution (E~, 'P~) is 
known. The required solution, i.e. Ei and 'Pi' is then expressed in terms 
of known values, E~ and 'P~. The formation of the investigated system 
from the initial system is considered to be the result of a particular 
perturbation. The situation can be visualized as follows: 

SYSTEM 

ORIGINAL 
(the solution of the Schrodinger 
equation is known) 

.YeO, tp~ , E~ 

.tt'0 'P~ = E~ 'P~ 

PERTURBED 
(the solution of the SchrOdinger 
equation is required) 

.tt', 'Pj,E j 

.tt''Pj = Ej 'P j 
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Among various forms of the perturbation theory13, the Rayleigh­
Schrodinger theory is of main importance here. The Hamiltonian 3( of the 
studied system is considered to be resolvable into two parts, 

(4-145) 

where 3(0 is the Hamiltonian of the unperturbed system and Af is 
a perturbation term. A in Eq. (4-145) is a parameter which may (but 
need not) have physical significance and whose main purpose is to 
distinguish different orders of perturbation contributions. It is evident 
that, if A approaches zero, the solution of the perturbed Hamiltonian, 3(, 

converges to the solution of the unperturbed Hamiltonian :yr; below we 
will consider first the case when, in the process A -+ 0 (the value of A 
tends to zero), it holds that 'Pi -+ 'P7 and Ei -+ E7, where E7 is a non­
degenerate eigenvalue. 

The equation to be solved can be written as 

(4-146) 

According to the basic assumption of the Rayleigh-Schrodinger pertur­
bation theory, 'Pi and Ei can be expanded into a power series of para­
meter A: 

'P. = 'P? + A'P~l) + A2'P~2) + ... 
I , I , (4-147a) 

(4-147b) 

Expansions (4-147) are substituted into Eq. (4-146) and, because 
the resulting equation must be satisfied for all values of A, the coefficient 
of each power of A must be equal to zero. As a result a system of 
equations is obtained: 

O-th order: 

1st order: 

2nd order: 

(3(0 - E~) 'P~ = 0 

(3(0 - E~) 'Pl l) + ("I' - Ell») 'P~ = 0 

(4-148a) 

(4-148b) 

Solved successively, these equations yield the correction contributions of 
the individual orders. The function 'P~ as a solution of the unperturbed 
problem is assumed to be normalized, J ('P~)* 'P~ d-r = 1. The properties 
of function 'Pi must be also defined. It seems natural to choose 'Pi 
normalized, which is the usual approach. For certain reasons, however, 
it is more advantageous to choose 

J ('P7)* 'Pi d-r = 1 (4-149) 

With this type of normalization condition, 'Pi approaches 'P~ as A 
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approaches zero and, in addition, multiplying Eq. (4-147a) by function 
(pn* from the left and integrating yields 

f (p~)* pl 1) dT = f (pn* pl2) dT = ... = 
= f (p~)* pln) dT = ... = 0 (4-150) 

Equations (4-150) can clearly be interpreted geometrically; an integral 
of type f PiP 2 dT has the properties of a scalar product and, from 
elementary vector calculus, the scalar product of two vectors is zero 
if these vectors lie perpendicular to each other, so that the projection 
of the one on the other is zero. Equation (4-150) can be interpreted 
analogously, so that the wave function corrections have no "component" 
in common with the unperturbed function p~. 

Under these conditions it is easy to obtain explicit expressions for 
the energy corrections Eln). Multiplying Eq. (4-148) from the left by 
function (p~)* and integrating, and using both the hermicity of :7(0 and 
orthogonality relations (4-150), it follows that 

Ell) = f (p~)* ftp~ dT 

El2) = f (p~)* fpji) dT 

(4-151a) 

(4-151b) 

In order to obtain the expressions for the perturbation corrections to the 
wave function, the completeness of the orthonormal set of functions p~, 

i = 1,2, ... , will be employed. Function pl 1) in Eq. (148b) can then be 
expressed in the form of an expansion 

pl1) = L cjPj (4-152) 
j 

and substituted into Eq. (4-148b). Multiplying the resulting expression 
from the left by function (tp~)* for k =1= i and integrating yields 

(4-153) 

and hence 

for k =1= i, (4-154) 

where v"i = f (p~)*fp~ dT is a matrix element of the perturbation ope­
rator within the basis of unperturbed functions. Coefficient ci equals zero 
due to condition (4-150), so that, for the first-order correction, 

'1'(1) = _'" Vji p~ (4-155) 
I L:- E~ - E? J' 

J J I 

where the prime on the summation sign denotes that the term for j = i 
is removed from the summation. 
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Perturbation contributions of higher orders can, similarly as for the 
first order, be obtained by solution of the corresponding equation of 
system of equations (4-148). The complexity of the expressions increases 
very rapidly with the order of the perturbation contribution and it is 
therefore evident that the usefulness of employing the perturbation treat­
ment for the solution of a problem is related to the rate of convergence 
of the perturbation series. In practice, the expression for the energy 
contribution of the second order is still useful (and is used, for example, 
in the interpretation of NMR spectra); this expression is obtained by 
substitution of Eq. (4-155) into Eq. (4-151b): 

EF) = '" 1 Vji 12 
I ~E~-W 

} I } 

Once again it must be emphasized that the perturbation treatment 
can be used only when the perturbation is relatively small; the condition 

I Y;i I ~ I Ej - E~ I 
can be regarded as an approximate criterion of the validity of the use 
of this method. 

In previous considerations we started from the assumption that 
unperturbed energy level E~ corresponds to a single eigenfunction. It has 
been shown that, on perturbation, this level is simply shifted by the 
value of the correction contributions. Often it is necessary, however, to 
solve problems where two or more orthonormal eigenfunctions cor­
respond to one unperturbed eigenvalue. If they are g in number, 
'l'~, 'l'~, ... , 'l';, then the level corresponding to eigenvalue E~ is said to 
be g-Jold degenerate. As a rule, the introduction of a perturbation removes 
this degeneracy, so that, in practice, the original unperturbed level splits 
into several levels with different energy values. In contrast to the non­
degenerate case where the perturbed function of the zeroth-approximation 
is already known [cf. Eq. (4-147a)], the situation is more complicated, 
because under continuous removal of the perturbation, function 'l'i can, 
in general, tend to function J in the form of a linear combination of 
functions 

(4-156) 

which is also an eigenfunction of the unperturbed operator, ;yr, with 
the eigenvalue E?1t then follows that it is necessary to replace Eq. (4-147a) 
by the assumption that 

'l'. =J+ )''l'(1) + }.2'l'(2) + ... 
l . l I (4-157) 
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with the consequence that even system of equations (4-148) is changed as 
follows: 

O-th order 

1st order 

(.7r - En!= 0 

(.teo - En 'l'11) + (f - Ell))! = 0 

(4-158a) 

(4-158b) 

While Eq, (4-158a) is automatically satisfied, Eq, (4-158b) will be used 
for the determination of both expansion coefficients at and the correction 
term for energy Eji), Similarly as in the normalization condition expressed 
by Eqs, (4-149) and (4-150), it will be necessary that corrections of the 
first and higher orders be orthogonal to the space which is spanned by 
functions 'l'~, 'l'~, .. " 'l';, Using this condition in Eq, (4-158b) and 
multiplying it from the left by function ('l'~)*, after integration and 
successive application of further functions 'l'~, "" 'l';, a system of g 

equations for unknown coefficients ak is obtained: 

(4-159) 

where j = 1,2, .. " g, 
Matrix designation of the integral 

f ('l'j)*f'l'~ d-r = ljk 

has been introduced, and the orthonormality of functions 

for j, k = 1, "" g, has been taken into account. Solution of system of 
equations (4-159) is mathematically equivalent to problem (4-141), which 
was solved when dealing with the linear variation problem, Moreover, 
there is also a simplifying circumstance here in that the overlap matrix 5 
is a unit matrix, Therefore, all the possible values of £\1)[(Eji))1 ,(Eji))2' .. " 
(Eji))g] can be obtained by solving the secular determinant 

det Illjk - Eji)b jk II = 0 (4-160) 

Successive substitution of the energy values (El 1))1' in system of 
equations (4-159) yields the corresponding series of expansion coefficients 
bound by the normalization condition 

In conclusion it is necessary to add that not all of the g values 
(El 1))1' (El 1))2' .. " (£\l))g need be different. Supposing that there are m 
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different energy values (m ~ g), then up to first-order accuracy the 
original energy level E~ splits, owing to the perturbation, into m levels 
with the following energies: 

Ei = E~ + (El1»)j' 

where j indicates the different correction values. 
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5. BASIC APPROXIMATIONS 
IN THE THEORY 
OF THE CHEMICAL BOND 

5.1 Introductory comments 

The modern theory of the chemical bond is based on the quantum 
mechanics of systems composed of electrons and atomic nuclei, assuming 
that solution of the fundamental quantum mechanical equation leads to 
a complete description of the system. As follows from the two preceding 
chapters, difficulties lie not in the formulation of the Schrodinger equation, 
but in its solution. As even three-particle systems are not exactly solvable, 
problems interesting for chemists must be simplified by conversion into 
model systems. The mere fact that, as a rule, an isolated system is treated 
(an atom, a molecule, a solid or a system of several partial subsystems) 
is a kind of abstraction, as the influence of the surrounding medium, for 
example the influence of a solvent, is frequently ignored. 

Let us start from the general formulation of the atom, molecule or 
solid matter as a system composed of N atomic nuclei and n electrons. 
This system is described by the time-dependent Schrodinger equation 
introduced by Postulate 3. If only stationary cases are studied (see 
Section 4.4), a description of the system can be obtained by solving 
the equation 

(5-1) 

where 3ft is the total Hamiltonian of the system, <Pi(Y) are the wave 
functions of the stationary states (the variable y expresses the dependence 
on the spatial [RJ and spin [rJ coordinates of the nuclei and on the 
spatial [r J and spin [(J J coordinates of the electrons, subscript i indicates 
different solutions) and W; is the corresponding eigenvalue of the total 
energy. The total Hamiltonian can be expressed as the sum of three 
contributions: 

(5-2) 

where 3fen contains the operators of the kinetic energy and the electro­
static interactions of all the participating particles, 3fext expresses all 
types of interactions of the system with the external magnetic and electric 
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fields and Jl'f'int contains all types of non-electrostatic interactions between 
particles in the given system, related to the spins of the electrons and 
nuclei. 

Equation (5-1) represents an exact formulation for an isolated 
system. Approximations enabling the solution of a particular problem 
can, in principle, be divided into two groups. The first contains approxi­
mations that simplify the Hamiltonian, limit the form of the wave 
function, and, as a rule, have a more general character so that they can 
be used in a number of various methods. In the second group belong 
approximations related to determination of the values of the integrals 
appearing in the calculation schemes. This type of approximation is 
frequently specific for a particular method and will therefore be discussed 
when describing the individual methods. This chapter contains a brief 
outline of approximations employed in the first group. It should be 
added that the effect of approximations in individual methods on the 
ability to predict the physical and chemical properties of systems can 
be judged only on the basis of comparison of theoretical results with 
experimental data. This is not always true of non-empirical methods: 
sometimes the quality of approximations is studied by comparing the 
results of less precise procedures with those obtained using more precise 
ones. 

5.2 Neglecting of non-electrostatic , 
interactions 

The approximation of neglecting non-electrostatic interactions consists 
of ignoring terms Jl'f'ext and Jl'f'int in the total Hamiltonian (5-2), i.e. 
contributions following from the spins of the electrons and atomic nuclei 
and the influence of the external field. This approximation is used in 
nearly all quantum-chemical methods. Investigation of interactions of the 
spin-spin coupling type (interaction of two charged particles via magnetic 
dipoles corresponding to their spins) and spin-orbit coupling type (inter­
action of charged particles via magnetic dipoles corresponding to spin 
and orbital motions) is important for the study of atomic fine structure; 
the magnitude of the effect increases with increasing atomic number. 
Part of the Hamiltonian Jl'f'ext is taken into account in studying the 
effect of external fields on molecular systems, for example when inter­
preting NMR and ESR spectra. 

The independence of the Hamiltonian of the spin coordinates of the 
electrons has an important theoretical consequence: the Hamiltonian 
commutes with the spin operators and the total spin quantum numbers 
are thus "valid" quantum numbers for characterizing the electronic states. 
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5.3 The Born-Oppenheimer 
and adiabatic approximations 

Within the framework of the approximation neglecting all non-electro­
static interactions, the Hamiltonian of the system can be expressed by 
the relationship 

:Yfen = :Tn +:Te + "Yen + "Ycc + "Ynn, (5-3) 

where the individual terms correspond to the following contributions 
to the total energy of the system: 

(:Tn is the kinetic energy operator of the atomic nuclei, and M[ is the mass 
of the nucleus 1), 

112 n 

:T = - -- L~' 
e 2m j= I I 

(:Te is the kinetic energy operator of the electrons, and m is the mass of an 
electron), 

("Yen is the potential energy operator ofthe electrostatic interaction between 
the electrons and the nuclei, Z [ is the charge of nucleus I in units of the 
elementary charge e, rj is the positional vector describing the position 
of electron i, and R[ is the positional vector describing the position of 
nucleus I with respect to the origin of the coordinate system), 

("Yee is the potential energy operator of electrostatic interactions between 
the electrons), 

("Ynn is the potential energy operator of electrostatic interactions between 
the nuclei). 

A further simplification of the Hamiltonian (5-3) can be based on 
the fact that electrons have a substantially smaller mass than nuclei; 
for the hydrogen atom the mass ratio is 5 : 104 . 

First, the interaction of the electron - atomic nucleus pair will be 
considered. Since the same force acts on both particles, the lighter of 
the two, the electron, acquires a much greater acceleration according 
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to Newton's second law, so that the average velocity of the electron is 
substantially higher than that of the nucleus. On this basis, for an initial 
system of n electrons and N nuclei the following model I can be formed: 
slowly moving atomic nuclei create an electrostatic field in which the 
electrons move with a much greater velocity; the ratio between the mean 
velocity of the electrons and the mean velocity of the nuclei is so large 
that the motion of the electrons is almost instantly adaptable to changes 
in the configuration of the nuclei, and, conversely, the nuclei are exposed 
to such rapid fluctuations of electrostatic potential from the electrons 
that they "see" only its mean value. 

In the zeroth approximation, the mass of the nuclei can be con­
sidered to be infinitely large. This assumption leads to the conclusion 
that both the acceleration imparted to the nuclei and their velocity 
become zero, and consequently, the kinetic energy of the nuclei can 
be considered equal to zero. An attempt to find the stationary states 
of the system leads to the Schrodinger equation 

(5-4) 

where the nuclei are assumed to be fixed in space, so that the coordinates 
of the atomic nuclei in an arbitrary configuration can then be cl'lhidered 
as parameters (denoted by symbol R). The Hamiltonian, :Yee , is Jefined 
by the established notation as 

(5-5) 

Ei(R) is the total energy of a system in a state described by wave function 
lJ'i(R, r), where for simplicity the spin part of the coordinates is omitted, 
as it has no direct relation to this problem. 

This simplification is called the Born-Oppenheimer approximation 
and leads, as has been shown, to complete separation of the motion 
of the electrons from that of the nuclei. By solving Eq. (5-4) a system 
of eigenvalues Ei(R) and eigenfunctions lJ'i(r, R) can be obtained for any 
nuclear configuration R, where subscript i characterizes the set of quantum 
numbers determining the corresponding stationary state. 

It is, of course, necessary to determine the magnitude of the error 
introduced into the calculation when using the Born-Oppenheimer approxi­
mation. If the concept of fixed nuclei is abandoned, then the problem 
is expressed by the Schrodinger equation in the form 

(:Yeen - W) cP(R, r) = 0 (5-6) 

The solution of the Born-Oppenheimer approximation [represented by 
Eq. (5-4)] will be assumed to be known, enabling wave function cP(R, r) 
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to be sought in the form of an expansion in a series whose terms are 
the orthonormalized functions 'Pi(R, r): 

4>(R, r) = L Ei(R) 'Pi(R, r) (5-7) 
i 

For the sake of simplicity, it is assumed that only a discrete spectrum 
of eigenvalues of operator .Yee exists. Functions Ei(R) act as expansion 
coefficients in Eq. (5-7) and are dependent only on the coordinates of 
the nuclei. 

Before substituting Eq. (5-7) into Eq. (5-6), the action of the operator 
of the total kinetic energy of the nuclei ~ on the product of functions 
Ei(R) 'Pi(R, r) will be investigated. The Laplace symbol III is equal to 
the sum of three expressions of the type iP/aX;, where XI represents 
one of the three rectangular coordinates describing the position of 
nucleus I. According to the rule of differentiation of the product of two 
functions the expression 

a2(E'P) a2E aE alP ~ a2'P 
ax2 = 'P ax2 + 2 ax ax + .!! ax2 (5-8) 

is obtained. The required expression then follows 

/T n[E'i(R) 'Pi(R, r)] = 'Pi(R, r) /T nE';(R) - li2 L ~ [V IE'i(R)] [VI 'Pi(R, r)] + 
I I 

+ Ei(R) /T n 'Pi(R, r) (5-9) 

From Eq. (5-9) and the fact that .Yeen = .Yee + /Tn and after substituting 
series (5-7) into Eq. (5-6) the expression 

L {(~ - W) Ei(R) 'Pi(R, r) + 'Pi(R, r) /T nEi(R) -
i 

- h2 L ~-[VIEi(R)] [VI'P;(R, r)] + Ei(R):!Tn'Pi(R, r)} = 0 (5-10) 
I I 

is obtained. Functions 'Pi(R, r) in Eq. (5-10) are assumed to be ortho­
normal, 

S 'Pj(R, r) 'P;(R, r) dr = bij , (5-11) 

where symbol dr indicates integration over the coordinates of all the 
electrons. Of the operators depending on the variables denoted by R, 
operator .Yee contains only those which have a simple dependence on R, 
so that, by multiplying Eq. (5-10) from the left by function 'Pj(R, r), 
integrating over the coordinates of electrons r, and employing Eq. (5-4), 
the expression 

[/Tn + Ej(R) - W]Ej(R) = LAjiEi(R) (5-12) 
i 
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is obtained, where operator Aji is defined as follows: 

Aii = h2 L 1:- S 'l'j(R, r)[V/Pi(R, r)] drV/ -
I lVI I 

- S 'l'j(R, r) ff n 'l';(R, r) dr (5-13) 

Expression (5-12) is actually a system of differential equations because 
Eq. (5-10) can be multiplied not only by function 'l'j(R, r) but by any 
other function which is also a solution of Eq. (5-4). 

No approximations were used, so that system of equations (5-12) 
gives a true picture of the relationship between the electron and the 
nuclear motion in the form of the square matrix, A ii . If only the diagonal 
elements are considered in this matrix, then the original system of 
equations (5-12) is separated into a system of independent equations 

(5-14) 

where f.iR) [f.iR) = EiR) - Ajj] is the corrected electronic energy ob­
tained within the framework of the Born-Oppenheimer approximation, 
where the correction Ajj can change the original value in either the 
positive or negative sense. This approximation allowing separation of the 
electron and the nuclear motion and, in addition, taking into account 
the weak interaction of both motions is called the adiabatic approxi­
mation2 . 

Similar to expression EiR) in the Born-Oppenheimer approxima­
tion, the term f.J{R) in the adiabatic approximation can be interpreted 
in the eigenvalue equation for the nuclear motion (5-14) as a potential 
in whose field the atomic nuclei move. The parallel between the two 
types of approximation is retained for the total molecular wave function, 
which is, in both cases, equal to the simple product 

(5-15) 

where a new index v was introduced to distinguish the different solutions 
of Eq. (5-14). 

Generally, the adiabatic approximation is justified when the solution 
of Eq. (5-14) differs only slightly from the solution of system of equations 
(5-12). In the Schrodinger perturbation theory, where the Born-Oppen­
heimer approximation is considered to be a zero approximation, the 
adiabatic correction, Aii , corresponds to the first-order perturbation 
term; similarly, the off-diagonal elements, which correspond to the inter­
action of various electronic levels, can be interpreted as representing 
contributions of the second order (cf. Section 4.6). From the convergence 
condition of the perturbation expansion it follows that the adiabatic 
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approximation is a reasonable approximation if 

J3* (R)A . .s. ,(R)dR ~ I w: - w. ,I 
I,V lJ l.V l,V l,v (5-16) 

for i =I=.i and arbitrary v, v', where W; v is the eigenvalue corresponding 
to the eigenfunction 3i,v' Criterion (5-16) is satisfied for a majority of 
molecules; it is, however, not fulfilled for some large systems where the 
energy levels are very close together and explains the failure of the 
adiabatic approximation for these cases. The relationship between the 
electron and the nuclear motion should then be examined so that the 
largest interaction elements of operator Aij are included in the calculation. 
Terms EiR) or ej(R), of course, can no longer be interpreted as the 
potential field in which the nuclei are moving. 

Table 5-1 

Experimental and Calculated Dissociation Energies (in cm - [) of Some Molecules in 

the Ground State 

H2 HD O2 

experimental 36113.6 36400.5 36744.2 

Born - Oppenheimer approximation 36112.2 36401.5 36745.6 

adiabatic approximation 36118.0 36405.7 36748.3 

lion-adiabatic approach 36114.7 36402.9 36746.2 

The Born-Oppenheimer approximation generally represents a very 
good approximation to real systems. Errors arising from its use are much 
smaller than those encountered using other approximations. Reliable 
numerical verification is possible solely in the smallest systems where 
the same accuracy or greater as that of the measured quantities can be 
achieved. Since the ratio of the masses of an electron and the participating 
nuclei is minimal in these systems, the deviations from validity of the 
Born-Oppenheimer or the adiabatic approximation are, consequently, 
maximal, assuming that criterion (5-16) is not considered. Table 5-1, 
from Wolniewicz's paper3, gives the dissociation energies of the Hz, 
HO and Oz molecules in the ground state. Included in the table are 
experimental values and values calculated within the framework of the Born­
Oppenheimer approximation together with the adiabatic correction and 
the correction for non-adiabaticity. It is obvious that the agreement with 
experiment is very good in all cases and that the adiabatic correction 
to the Born-Oppenheimer approximation decreases with increasing masses 
of the participating nuclei, beginning with a correction of 0.016 % for the 
hydrogen molecule and ending with a value of 0.007 % for Oz. In addition, 
Table 5-1 shows that, of the two types of approximation, only the adiabatic 
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approximation fulfils the variation principle, and thus the corresponding 
calculated energy values lie above the actual experimentally determined 
values. 

In conclusion it is necessary to state that the Born-Oppenheimer 
approximation is used in practically all quantum chemical calculations 
of the electronic structure of molecules and solid substances and therefore 
the solution of Eq. (5-4) will receive a great deal of attention here. It will 
be useful to simplify the notation in this equation: first, designation 
of the dependence of the nuclear coordinates, which has been shown 
to be of only parametric character, will be omitted. Furthermore, the 
electronic Hamiltonian ;Yfe will be designated ;Yf and the term "Y nn ' 

which contributes a constant amount to the total energy of a system 
with a given nuclear configuration, irrespective of the state of the system, 
will be omitted. Wave function 'P depends on the spin and spatial 
coordinates of all the electrons. In this modified notation, the Schrodinger 
equation assumes the form 

(;Yf - E) 'P(r, a) = 0, (5-17) 

where it is convenient to separate ;Yf into one-electron and two-electron 
contributions: 

where 

and 

n n 

;Yf = fT., + "f/'"n + 1/"c = L A(i) + L !I(i, 1), (5-18) 
i= 1 i<j 

2 

!I(i,j) = 41teo I~i - rjl 

(5-19a) 

(5-19b) 

5.4 The method of configuration interaction 

In Section 4.3 the concept of a complete orthonormal set of functions 
was introduced. Let us assume, in accordance with this definition, that 
there is a complete orthonormal set of one-electron functions, Ak(X), 
k = 1,2,3, ... , where each of the functions depends on the spatial 
coordinates (r) and on the spin coordinate (a). Functions of this type are 
generally referred to as spin orbitals. Since set of functions Ak is complete, 
wave function cI>, which describes any stationary state of the electron, 
can be expressed in the form of the expansion 

cI>(X) = L CiAi(X) (5-20) 
i 
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(It should again be noted that, for the sake of simplicity, only functions 
corresponding to discrete spectra are considered.) 

The set of spin orbitals Ak , k = 1,2, ... , can be used to express 
the n-electron wave function '1', which is the solution of Eq. (5-17). 
To this end it will be convenient to investigate first a system composed 
of two electrons. 

The wave function 'P(xp x 2 ) of a two-electron system, where Xl 
and X 2 denote the space-spin coordinates of the first and second electrons, 
can be expressed in terms of functions Ak as follows: assuming that 
electron 2 is fixed in space and that, consequently, its coordinates can be 
considered to be a set of constants, it follows that 

'P(Xl' x2 == const) = L CiAi(X l ) 
i 

(5-21a) 

Release of electron 2 from its fixed position can be expressed in the 
following manner: all quantities Ci (initially constant) in Eq. (5-21a) will 
become a function of the instantaneous coordinate of electron 2; therefore 
it follows that 

Ci(X 2) = L ci.lix2) 
j 

and, after substituting Eq. (5-21b) into Eq. (5-21a) 

'P(Xl' x 2) = ~>i,A(XlPj(X2)' 
i,j 

(5-21 b) 

(5-22) 

where Ci,j are the corresponding expansion coefficients that are not, 
however, independent. As mentioned previously (cf. Section 4.4), a wave 
function describing a system of electrons must obey the Pauli principle, 
i.e. its sign changes on exchanging the coordinates of an arbitrary pair 
of electrons: 

(5-23) 

where ~ 12 is the transposition operator of electrons 1 and 2. Condition 
(5-23) results in the expression 

C·. = -c·· I,J J,I 
(5-24) 

and permits Eq. (5-22) to be written in the form 

'P(xp x 2) = L Ci,lAi(X l )))X2) - Ai(x 2Pix l)] (5-25) 
i<j 

Equation (5-25) embodies the property of diagonal expansion coefficients 
following from Eq. (5-24), 

C .. = 0 
1,1 

for all values of i, 
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and includes the assumption that the spin orbitals are ordered in a fixed 
sequence. The expression in square brackets in Eq. (5-25) is obviously 
an expanded second-order determinant 

det II Ai(I), AP) II = I Ai(X 1), Ai(X 2) I 
A/X 1)' A/X2) 

(5-26) 

which can be taken as an element of the total set of functions used for 
expanding the two-electron function. In order to conform with the 
standard manner of expanding functions, expressed by Eqs. (4-35) and 
(4-36), the elements must be both normalized and mutually orthogonal 
functions. First, from the condition 

1 = -.;. s 1 Ai(X I ), Ai(X 2) 1* 1 Ai(X 1), Ai(X 2) 1 dX I dX2 = 
kiA/Xl)' Aj (X 2) 1 1 A/XI)' ))x2) 1 

= k12 U A;"(X I ) Ai(X 1) dX 1 S Aj(X2) Aix 2) dX2 + 

+ P;"(X2)A.i(X2) dX2 Pj(X1P/X 1) dx 1 } = k; {I + l}, (5-27) 

where the orthonormality of spin orbitals has been taken into account, 
it follows that the two-electron determinant function 

1 \ Ai(X I)' Ai(X2) \ 
k A/X I ),).j(X2 ) 

is normalized if k = J2. It similarly follows that the determinants are 
orthogonal if they differ in at least one spin orbital. 

On generalization of the above considerations, it follows that any 
n-electron wave function can be expanded as a linear combination of 
determinants in the form4 

'1'(1,2, . '" n) = L CK .dK(1, 2, . '" n), 
K 

(5-28) 

where the summation is carried out over all the ordered configurations K 
of the spin orbitals. An ordered configuration K is a certain selection 
of n indices fulfilling the condition i < j < .. . < k. C K is the expansion 
coefficient; its significance is such that I C K 12 gives the weight of the 
function 

1 
.dK(I,2, "., n) = /I 

'\In. 

Ai(X 1)' Ai(X 2 ), . '" Ai(Xn) 

AiXl)' AiX2)' . '" A/Xn) (5-29) 
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in expansion (5-28). The cofactor I/Jn! of the determinant function 
ensures its normalization. The function defined by Eq. (5-29) is termed 
the Slater determinant. 

Expansion of the wave function in form (5-28) is, as a rule, not 
practically feasible, as the complete sets of one-electron functions are not 
usually of finite dimension. Numerical applications must be limited to 
bases of finite dimentions, where the solutions assume an approximate 
character. It was noted in Section 4.6 that, for calculations of this type, 
the variation method is useful. 

Now let us assume that, in contrast to the preceding instance, 
a finite incomplete set of m spin orbitals }.lx) is considered. This will 
permit a wave function in form (5-28) to be sought, that is, in the form of 
a linear combination of Slater determinants, with the restriction, however, 
that the summation includes a finite number of configurations. If the 
summation is carried out over all possible configurations of the given 
spin-orbital space we shall speak again of "complete configuration inter­
action"; if function '1' is to be found in the form of a linear combination 
of specially selected configurations, this is termed "limited configuration 
interaction". This involves a certain nomenclatural inaccuracy, since both 
complete and incomplete sets of one-electron functions are assigned 
a wave function in the form of a "complete configuration interaction", 
although in the first instance it represents a precise function, in the second, 
that is, for an incomplete set, it is only an approximate wave function, 
which can be at best optimized. The best solution in the chosen extent 
of configuration interaction is obtained by solving equations of types 
(4-141) and (4-142), where the corresponding matrix elements are now 
defined with respect to the (5-18) type of Hamiltonian: 

where 

and 

HlJ = S ,1j~ ,1 J dr = IlJ + GlJ , 

SlJ = S ,1j,1J dr, 

" IlJ = S ,1i[ L A(i)] ,1 J dr 
i= 1 

GlJ = S ,110: ~(i, i)J ,1 J dr 
i<j 

(5-30a) 

(5-30b) 

The solution of the secular problem is a standard task, but the 
calculation of the matrix elements of operator ~ enclosed by Slater 
determinants is a specific problem occurring in calculations using the 
configuration interaction method. It is summarized in Slater's rules5• 

In calculating integrals (5-30) it is convenient to classify cases according 



91 

to the number of spin orbitals in which the A I and A J functions differ 
from each other. The number of differing spin orbitals can be determined 
so that, using the rule for the interchange of rows in the determinant, 
the A I and A J determinant functions are converted to a mutual maximum 
coincidence and then compared row by row. For illustration, A I := 

:= I)'i' Ak, )'il is not compared with A2 := IAi' Ai' All but -AI:= 
:= I Ai' Ai' Ak I with A2 , where (-AI) differs from A2 in one spin orbital. 
In calculation of the corresponding matrix elements, a number of cases 
will be distinguished: 

1. A I and A J do not differ from each other 
2. A I and A J differ in one spin orbital; Au in A I is replaced in A J 

by spin orbital Ac 
3. A I and A J differ in two spin orbitals; Au and Ab in A I are replaced 

in A J by spin orbitals Ac and Ad 
4. A I and A J differ from each other in more than two spin orbitals. 

Table 5-2 
Matrix Elements in the Secular Equation Employed in the CI Method 

Cases 2 3 4 

Ll iAa); Ll J(AJ LliAa, .lob); LlJ(A" Ad) 

0 0 0 

n 

IlJ I <AiIIlPi> <.loa III I A) 0 0 
i=l 

I [ < AiAa I fJ I AiA,.) - O.Ab I fJ I Vd> - 0 
i<j i( t- /1,c) 

- <AiAa I fJ I A,A,)] - <A.Ab I fJ I AdA) 

The matrix elements of the overlap matrix S IJ' the one-electron 
part of Hamiltonian I IJ' and the two-electron part of Hamiltonian G IJ 

are given in Table 5-2. The matrix elements were written using the Dirac 
notation, according to which 

<Au Iii lAb) = J A:(X I ) 1i(1) Ab(X I ) dXI 

<AuAb I fli A)d) = 

= H A:(X I ) A6'(X2} fI(l, 2} AJX 1} Aix 2} dX 1 dX2 

(5-31a) 

(5-31 b) 

The expressions can be somewhat simplified - as will be justified 
later - by noting that spin orbitals have the form of a simple product 
of the spatial, orbital depending on the space coordinates and of spin 
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function r:t. or {3; thus 

(5-32) 

where Yf is either function r:t. or function {3. 
H spin orbitals are expressed in the form (5-32), mtegration can 

easily be performed in matrix elements (5-31) over the spin variable 
[cf. Eqs. (4-82) and (4-83)], since operators ~ and ~ do not depend on 
the spin coordinates. We then obtain 

{ < ({) u I ~ I ({)b> (if Au and Ab have the same spin) 
(Au I ~ lAb> = o (if Au and Ab have a different spin) 

(if Au has the same spin 
as Ac' and Ab has the 
same spin as Ad) 

(if the above condition 
is not satisfied) 

(5-33) 

(5-34) 

Relations (5-33) and (5-34) enable us to express the matrix element 
types given in Table 5-2 in terms of integrals over space coordinates 
alone, provided the specific way in which the .:1/ and .:1 J Slater determi­
nants are occupied by spin orbitals is known. 

The choice of suitable one-electron functions, Ai(X), forming an 
incomplete set has not yet been discussed. The suitability of use of the 
configuration interaction method and the convergence properties of an 
expansion of type (5-28) depend on this choice. A frequently used 
procedure begins with a one-particle approximation to the given problem 
as the first calculation step, giving the requisite one-electron functions. 

5.5 The independent electron model 
(one-electron approximation) 

The term L ~(i,j) in Hamiltonian (5-18) expressing the electrostatic inter-
i<j 

action between electrons renders the differential equations describing 
many-electron systems exactly unsolvable. The Schrodinger equation 
can be converted into a solvable problem by separating the sum of the 
two-electron operators into contributions which can be summed up over 
the individual electrons: 

L U(i,j) ~ L "Y(i) (5-35) 
i<j 
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Assumption (5-35) can be physically interpreted so that each of the 
electrons moves in the electrostatic field of the nuclei and in the space­
and time-averaged potential of the remaining electrons. Substitution of 
Eq. (5-35) into Eq. (5-18) yields an approximate Hamiltonian for the 
n-electron system 

n n 

3( ~ L [Jt(i) + f(i)] = L 3('(i), (5-36) 
i= 1 i= 1 

which allows formulation of a simple solution 'P(x) of the Schrodinger 
equation for our model case, 

n 

[L 3('(i)] 'P(x) = E'P(x), (5-37) 
i= 1 

that is, in the form of the product of one-electron functions: 

(5-38) 

If Eq. (5-38) is substituted into Eq. (5-37), bearing in mind that each of 
the 3('(;) operators acts on only one function, A/X), and if Eq. (5-37) 
is multiplied by the expression 1/'P(x), then the relationship 

f 3('(i) Ai(X) = E 
i = 1 Ai(Xi) 

(5-39) 

is obtained. Since individual terms in the summation are independent, 
Eq. (5-39) can be satisfied only when each of the terms equals a constant: 

(5-40a) 

where 
(5-40b) 

Equation (5-40a) is the one-particle Schrodinger equation for the i-th 
electron; however, since it has the same form for all electrons, all possible 
one-electron states represented by functions Ai must satisfy Eqs. (5-40a) 
and (5-40b). The one-electron Hamiltonian, 3('(i), is assumed not to 
contain spin variables (interactions of a non-electrostatic nature are 
neglected), so that the assumption expressed by Eq. (5-32) can be applied 
to function Ai(X), and the one-electron SchrOdinger equation can be 
written in the form 

(5-41) 

Since integration was carried out over the spin variable, only space 
coordinates occur in the equation. Function <Pi(r) is, according to the 
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circumstances, called either an atomic or a molecular orbital. It is now 
necessary to arrange the form of the product function (5-38) so that lJI(x) 
satisfies the Pauli principle. It follows from the preceding section that 
the Slater determinant represents such a function, and thus the final 
equation for a system described within a one-particle approximation 
assumes the form 

(5-42) 

where the notation introduced in Eq. (5-29) is used, according to which 
symbolically only the diagonal elements of the determinant are written 
out. It is worth noting that function (5-42) expresses an older formulation 
of the Pauli principle, stating that two electrons cannot occupy the same 
one-electron function as, owing to the equality of two rows, the deter­
minant vanishes. 

It has been shown experimentally that the majority of molecules 
contain an even number of electrons and that, in its energy-lowest state, 
the total spin equals zero, so that the electrons occupy the same number 
of rt. and {3 spin states. Wave function (5-42) then assumes the form 

lJI(x) = I ({JI(r l )rt.(a l ),({JI(r2){3(a2), ... , ({In/2(rn-I)rt.(an-I),({Jn/2(rn){3(an) I, (5-43) 

where every ({Ji orbital is occupied by two electrons, one in the rt. spin 
state and another in the fi state. Such a system is usually termed 
a system with closed shells; if each orbital is not occupied by a pair 
of electrons, it is termed a system with open shells. 

In conclusion, it is desirable to describe methods for setting up the 
approximate one-particle potential energy, "II, defined by Eq. (5-35). 
In principle, two procedures are possible: 

a) the semiempiricai method, where a potential is produced, such that 
experimental data can be reproduced by computation, 

h) tile ""\('If-col1sistcl1t field" method. 
The Huckel method and the extended Huckel method, to be 

described in Chapter 10, are examples of the first category. The "self­
consistent field" method is based on the requirement that the functional 

E _ j lJI*.1flJl dr 
- jlf'*lJIdr 

(5-44) 

has a minimum, where the Hamiltonian .1f is defined byEq. (5-18) and 
function If' by Eq. (5-42). The variation variables are represented by the 
one-electron functions Ak(Xk). In other words, the optimum spin orbitals 
which yield the best, i.e. the minimum, estimate of the total energy of the 
system, expressed by Eq. (5-44), are sought. 
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The problem can also be approached using the configuration inter­
action method, which affords a more accurate estimate of the wave 
function and according to which the wave function is expressed in the 
form of a linear combination of Slater determinants [cf. Eq. (5-28)] 
corresponding to particular spin orbital configurations. Let us assume 
that the first n spin orbitals of an orthonormalized basis set minimize 
expression (5-44); function 'l' == .do is evidently one of the determinants 
in expansion (5-28). The corresponding configuration, Ko == 1, 2, ... , n, is 
termed the ground state configuration, and can obviously be expected to 
appear in the expansion with the maximum weight (represented by the 
value I Co 12) compared with the other configurations. In the configura­
tion expansion of wave function <P, of course, also appear configurations 
that differ from the ground state configuration in one, two, or more spin 
orbitals: n 

<P = Co.d o + L L Ciq.d iq + "., (5-45) 
i=lq(>n) 

where .d iq is the Slater determinant of the configuration in which the )'i 

spin orbital from the ground state configuration is replaced by the Aq 
spin orbital, which lies outside the ground state configuration. 

It will be demonstrated that, when 

.do == IA 1 ,A2 ,,,·,Ap ,,.,An l 
minimizes expression (5-44), the relation 

J .d6.#' .d iq dr = 0, for all 1 ~ i ~ nand q > n, 

called the Brillouin theorem, is valid. 

(5-46) 

The proof of the theorem is relatively simple. Let us assume that, 
although .do is an "optimum" Slater determinant, the Brillouin theorem 
(5-46) does not hold; for example, let 

HOI = J .d6.#'.d iq dr =1= 0 (5-47) 

Assumption of the validity of Eq. (5-47) justifies considering a function 
of the form 

(5-48) 

and specifying coefficients Co and C1 so that the normalized function 'l' 
yields an energy minimum. According to Eqs. (4-142) and (5-30) and 
due to the validity of the expression S 12 = J .d6.d iq dr = 0 (cf. Table 5-2), 
it is necessary to solve the secular equation 

(5-49) 
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where an analogous notation is used for the matrix elements as that 
employed in Eq. (5-47) and the hermiticity of operator :Yf is employed. 
The smaller of the two roots, 

E± = Hoo;Hll ±J[(Hoo~Hll)2 +IHoI 12J (5-50) 

has a lower value than that corresponding to diagonal element H 00; 

rearranging the expression for E _, the relationship 

E = H Hll - Hoo _ 1 Hoo - Hili J[1 41 HOI 12 J 
- 00 + 2 2 + (H - H )2 

00 11 

= Hoo - (Hll - Hoo) {J[1 + 41 HOI 12 2J - 1} (5-51) 
2 (Hoo - Hll) 

is obtained, where the facts that the value of H 00 is negative and that 
the inequality H 00 < H 11 holds, were utilized. Since wave function 'P 
given by Eq. (5-48) corresponds to the sum of two determinants differing 
in only one row, function 'P can, because of the basic properties of 
determinants, be expressed as a single determinant, 

(5-52) 

This corresponds to E_ < J Ll6Jft'Llo dr, which is, however, contradictory 
to the initial assumption that Llo is the optimum determinant function, 
whereby the indirect proof is complete. 

Brillouin's theorem can now be used to formulate the Hartree-Fock 
equations. Solving them leads to spin orbitals Ak , k = 1, 2, . .. , i, ... , n, 
which represent elements of the optimum Slater determinant (in the sense 
of the variation principle6•7). 

Using the second column of Table 5-2, integral (5-46) can be 
expressed as follows: 

n 

J A;"(X1) A(1) Aix l) dX1 + L [J Aj(X1) A;"(X2) g(1, 2) Aixl) Aq(X2) dX 1 dX2 
j=t 
('ti) 

- Pj(X1P;"(X2) g(1, 2PiX1Pj(X2) dX t dx2] = 0 (5-53) 

In contrast to Table 5-2, the Dirac notation is not used in Eq. (5-33) 
[cf. Eq. (5-31)]' If Eq. (5-53) is converted into its complex conjugate, if the 
hermiticity of operator ~(1) is employed and if the notation of variables 
Xl and x 2 is interchanged in the first integral within the square brackets 
to facilitate further modifications (which is permissible), then the relation­
ship 
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n 

J A:(XI) ~(1) Ai(XI) dXI + L U A:(XI) A1xz) g(1, 2) Ai(XI) Aixz) dX1 dxz -
j= I 
(" i) 

- J A:(X I) Aj(XZ) g(1, 2) AixI) Ai(xz) dX I dxz] = 0 (5-54) 

is obtained. 
The integration in Eq. (5-54) can be divided into two stages: 

integration over variables denoted by Xz and then integration over the Xl 
coordinates. The relationship is then converted to the form 

n 

J A:(X I) {~(1) Ai(X I) + LUI Aixz) IZ g(1, 2) dxz Ai(X I) -
j= I 
(" i) 

- .f ),j(x2 ) Aj(xz) g(1, 2) dX 2 )'ix,)]} dx, = 0 (5-55) 

Equation (5-55) can be conceived as a condition to be fulfilled by the 
overlap integral 

where f(x l ) represents the expression in the braces, which is no longer 
dependent on Xz after integration over variables xz. Let us now examine 
the general form offunctionf(x l). 

The condition is satisfied trivially if Aq and f (or Aq and Ai) have 
different spin functions. Generally, it is possible, however, to express 
function f in a form that satisfies Eq. (5-55) as a linear combination of 
spin orbitals occupied in the ground state configuration 

n 

f = L cliA" (5-56) 
1= 1 

as spin orbital Aq lies outside this configuration, so that it is assumed 
to be orthogonal to all the A,'s, I = 1, 2, ... , n. Substitution for fin Eq. (5-56) 
from Eq. (5-55) leads to the general Hartree-Fock equations. Condition 
(5-55) is also fulfilled for a particular case when 

(5-57) 

In order to avoid the above trivial case, the same spin functions 
must correspond to spin orbitals Ai and Aq. Thus the so-called canonical 
form of the Hartree-Fock equations is obtained: 

n 

~(1) Ai(XI) + L [J 1 AjX2) 12 g(1, 2) dX2 Aj(XI) -
j= I 
(" j) 

- J Aj(xz) Ai(X 2) g(1, 2) dX 2 Aj(X I)] = ciAi(X1) (5-58) 

for i = 1, 2, ... , n, 
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which must be satisfied by the spin orbitals if the one-determinant 
approximation is to be optimum for calculation of the energy of the 
system. 

Equation (5-58) can be very simply expressed using the spatial 
orbitals ({>i' provided that the ground state configuration has the character 
of closed shells, so that .10 corresponds to (5-43). Using Eq. (5-33) and 
(5-34) and the properties of the spin functions, the relationship 

i = 1, 2, ... , n12, 

is obtained, where 

n/Z 

~(1) = /i(1) + L [2$P) - $)1)] 
j= 1 

and $j and :Kj denote the Coulomb and exchange operators: 

$P) ({>i(r1) = J 1 ((>irz) IZ $1(1, 2) drz ((>;(r1) 

:KP) ({>i(r1) = J ({>j(rz) ((>i(rZ) $1(1,2) drz ({>irl) 

(5-59a) 

(5-59b) 

(5-59c) 

(5-59d) 

In expression (5-59b), account is taken of the fact that, for j = i, 
the Coulomb and exchange operators are identical- thus the limitation 
j + i used in Eq. (5-58) can be omitted in the summation index in 
Eq. (5-59b). 

Operator ~ is referred to as the Hartree-Fock operator and from 
expressions (5-59) it is clear that it is a one-electron operator. It can be 
easily verified that all the operators :Kj , $j' and ~ are linear and 
Hermitian. Operator $j can be interpreted physically: the matrix element 
<({>i 1 $j 1 ({>i) [cf. notation in Eq. (5-31)] expresses the electrostatic inter­
action between two charge clouds whose spatial charge density is given 
by the expressions 1 ({>irz) IZ and 1 ((>i(r 1) IZ. Operator :Kj cannot be inter­
preted according to classical conceptions; it represents the exchange 
interaction between two electrons which is a consequence of the Pauli 
exclusion principle. 

The solution of the Hartree-Fock equations, (5-58) or (5-59), repre­
sents a non-linear problem for the required one-particle functions, as 
these functions which act as eigenfunctions are, moreover, included in the 
Coulomb and exchange operators. Because of this kind of non-linearity, 
the Hartree-Fock equations are, as a rule, solved in an iterative manner. 
In the first calculation stage an estimate of the form of the one-electron 
functions is made and then these approximate functions cplO) (i = 1,2,""", n12) 
are substituted into the expressions for the Coulomb and exchange 
integrals, which for a closed-shell consist of the terms in the summation 
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in Eq. (5-59b). This step enables construction of the operator ~(1) in the 
zeroth approximation and, after solving system of equations (5-59a), 
calculation of the partially corrected one-electron functions, <pIll. If nl2 
functions corresponding to the nl2 lowest eigenvalues are selected, then 
the calculation can be repeated until the <plk) functions calculated in the 
k-th step of the iterative process are sufficiently similar to functions <plk - 1), 

the criterion of convergence being chosen according to the requirements 
on the accuracy of the calculation. The <plk) functions fulfilling this 
criterion are then considered to be the solution to the problem. 

The method of solution of the Hartree-Fock equations leads to the 
term "self-consistent field method" (SCF method); however, the term 
Hartree-Fock method (HF method) is also employed. 

According to Table 5-2 and Eqs. (5-33) and (5-34), the total energy 
of a system can be calculated within the framework of the SCF approxi­
mation (for a system with closed shells): 

E = J LloJfLlo dr = 

n n n 

= I <Ai 1 ~ 1 A) + II [<AiAj 19' 1 AiAj> - <AiAj 19' 1 Ai) J = 
i= 1 i<j 

n/2 n/2 n /2 

= 2 I <<Pi 1 ~ 1 <p) + I I [4<<Pi<Pj 19' 1 <Pi<P) - 2<<Pi<Pj 19' 1 <Pj<P) J + 
i= 1 i < j 

n/2 

+ L <<P/Pi 19' 1 <Pi<P) = 
i= 1 

n/2 n/2 n /2 

= 2 L <<Pi 1 ~ 1 <p) + I I [2<<Pi<P j 19' 1 <Pi<Pj> - <<Pi<Pj 19' 1 <Pj<Pi> J 
i= 1 i= 1 j= 1 

(5-60) 

Since according to Eq. (5-59) the relation 

n/2 

ei = <<Pi 1 ~ 1 <p) + L [2<<Pi<Pj 19' 1 <Pi<P) - <<Pi<Pj 19' 1 <Pj<P) J (5-61) 
j= 1 

is valid for ep Eq. (5-60) can be modified to give 

n/2 n /2 n /2 

E = 2 Lei - L L [2<<Pi<Pj 19' 1 <Pi<Pj> - <<Pi<Pj 19' 1 <Pj<P) J, (5-62) 
i=1 i=1j=1 

from which it follows that, in the HF method, relation (5-40b) derived 
for a model of independent particles based on assumption (5-35) does not 
apply for Gi' since tpe physical basis for the HF model expressed by 
Eq. (5-59) [or (5-58)J takes into account the motion of each electron 
in the field of all the remaining electrons, and ep consequently, denotes 
the energy of the i-th electron in the field of all the rest. The sum of the Cj 
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n/2 

values over all the electrons 2 L 6i (consider that each (Pi orbital is 
i= 1 

occupied by two electrons - by one in the IX state and by another in the 
f3 state) necessarily includes an interelectron interaction twice, which 
must be taken into account when expressing the total energy of system 
(5-62). 

5.6 The method of molecular orbitals 
as linear combinations of atomic orbitals 

In connection with the determination of optimum one-electron functions 
it becomes necessary to choose the analytical form of these functions so 
that the variation procedure satisfies requirements imposed on the 
accuracy of the calculation and, at the same time, is mathematically 
manageable with relative ease. 

Due to the spherical symmetry of one-electron potentials, it is 
reasonable when considering atoms to utilize various modifications of 
functions that are solutions of the SchrOdinger equation for the hydrogen 
atom and are furnished with suitable variation parameters as variation 
functions. 

One-particle potentials in molecules are not characterized by spherical 
symmetry and thus the form of the one-electron functions is not im­
mediately apparent. It is then possible to tentatively write functions <Pi 

as an expansion in a series of a complete set of functions, for instance, 
using all the atomic eigenfunctions corresponding to one atom in the 
molecule. Such a procedure would, of course, be mathematically un­
manageable. 

Generally, however, it can be assumed that the molecular orbital <P 

will follow the shape of the molecule and that the electron close to the 
atomic nucleus will primarily "feel" the influence of the potential at this 
nucleus. 

These conditions will be satisfied by one-electron functions, mole­
cular orbitals, of the type 

(i = 1,2, ... ), (5-63) 

where functions X", are atomic orbitals located on the atoms of a given 
molecule. Theoretical justification of this assumption encounters some 
difficulties and, moreover, the type and number of functions can hardly 
be anticipated. However, the quality of the atoms forming a molecule is 
taken into account in this manner. From experience it follows that the 
atomic orbitals which describe the properties of the most loosely bonded 
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electrons, i.e. the valence orbitals, will contribute most substantially to 
the description of the bonding in a molecule. 

Optimization of the expansion coefficients in Eq. (5-63) leads to 
the linear variation problem whose solution is expressed by Eqs. (4-141) 
and (4-142). It is necessary to be aware that the optimization of one-electron 

energies, Ei = <<r>i I:¥f" I <r», simultaneously leads to minimization of the 
total energy of the system, E, due to the validity of relationship (5-40b). 

Ifthe one-electron Hamiltonian is given by Eqs. (5-35), (5-36) and (5-41), 

then the coefficients of Eq. (5-63) must be found as a solution of a system 

of homogeneous linear algebraic equations in unknown cv/s: 

L cvJ <X/l I :¥f" I xV> - Ei<X/l I Xv>] = 0, Ii = 1, 2, ... , (5-64) 
v 

where Ei is the one of the roots of the secular determinant [cf. Eq. (4-142)], 

I <X/l I :¥f" I Xv> - E<X/l I xv> I = 0, 

and where again the notation 

is employed. 

Sx/l*(1):¥f"(I)x.(I)dr1 = <X/lI:¥f"lxV> 

JX/l*(I)Xv(l)dr1 = <X/l I xV> 

(5-65) 

(5-66a) 

(5-66b) 

Analogously, within the framework of the Hartree-Fock scheme, 
determination of the optimum linear combination of atomic orbitals 
of the (5-63) type leads to equations formally similar to Eqs. (5-64) 
and (5-65), except that, instead of :¥f" and Ep the Hartree-Fock operator [F 

and the eigenvalues ei appear. The Hartree-Fock equations in the LCAO 
approximation are sometimes referred to as Roothaan equations8 . The 
principal difference between them and equations of the (5-64) type is 
related to the well-known fact that the set of equations 

Ii = 1,2, ... , (5-67) 

is not linear in the coefficients c/li' these coefficients also appearing in 
operator [F [cf. Eq. (5-59)]. 

The comments on the Hartree-Fock equations in the conclusion 
to the previous section also hold for the numerical solution to Eqs. (5-67). 
It should also be noted that the description of open shell systems can 
be analogous, though more complex. 
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6. SYMMETRY IN QUANTUM 
CHEMISTRY 

6.1 Introduction 

Planary and spatial configurations are sometimes characterized by a 
property which is usually referred to as the geometrical regularity or 
symmetry. For description of this symmetry, symmetry operations are 
introduced that transform the original configuration into a physically 
identical configuration, while the individual points need not return to 
their original positions. Typical symmetry operations are: 

a) rotation by an angle cp, about axis ~, designated by ~(~, cp), 
b) reflection in the plane ~Yf, designated by O'~q, 
c) inversion through a point (a centre of symmetry), designated by i, 

or various combinations of these operations. However, with symmetry 
operations a "leaving the configuration at rest" operation must also be 
considered, the identity operation, denoted tt. 

In Table 6-1 all the symmetry operations of a rectangle, whose 
apices are designated by numbers, are given. Symmetry operations are 
denoted by the previously introduced symbols, where, for example, ~(z, n) 
is a rotation from the original position by 1800 about the z-axis and O'yz 

is a reflection in the yz-plane. It is evident that two symmetry operations 
performed successively give another symmetry operation of the particular 
configuration - for such cases we use a multiplicative notation. For 
instance, if operations O'xz (== A) and O'yz (== B) are carried out suc­
cessively, then 

2 2 3 4 

D~D~D 
4 3 3 4 2 1 

It can readily be seen that the final configuration corresponds to the last 
figure in Table 6-1 and that it can be obtained from the original 
configuration by the single operation ~(z, n), (== C). This relation can 
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Table 6-1 

Symmetry Operations of a Rectangle 

Original configuration Symmetry Symbol Final Further operations 

operation configuration of the D2h group 
leading to the same 

final configuration 

1 2 

E D (Ix,; tJh 

4 3 

x tj tlx• A 91(x, It); ~~ 

d3- 3 4 
--- ---: y 

4 3 

3 4 
tly. B CJ 91(y, It); ~; 

1 2 

91(z, It) c tj ";~2 
2 1 

be expressed symbolically by the equation 

C = BA, (6-1) 

where the first operation performed is always written on the right in the 
product. This convention is important because the sequence of partial 
operations can, in general, affect the result of the overall operation. 
Further, for each symmetry operation an inverse operation exists which 
returns the configuration to its original position, so that the product 
of these operations is equal to the identity operation. It can happen, 
of course, that a particular operation is, in itself, an inverse operation. 
The result of multiplication of the four operators in Table 6-1 can be 
expressed in the form of a table (Table 6-2). Using this scheme it can 
easily be verified that symmetry operations of a rectangle, forming a set 
of elements E, A, B, C, satisfy the following conditions: 

a) A "multiplication" operation is defined so that element Z is 
assigned to any ordered pair of elements X, Y of the same set, 

XY=Z (6-2) 
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b) The associative law holds for the multiplication of three elements, 
written as 

(XY) Z = X(YZ) (6-3) 

c) An identity element E exists where, for any element X of the set, 
it holds that 

EX = XE = X 

d) An element Y is assigned to every element X so that 

XY= YX = E 

Symbol Y denotes the inverse of element X so that 

Y= X-I 

Table 6-2 
Multiplication Table for Symmetry Operations of a Rectangle 
(operations are defined in Table 6-1) 

second factor 

. • , 
E A B C 

E E A B C 

A A E C B 
first factor 

B B C E A 

C C B A E 

(6-4) 

(6-5) 

(6-6) 

A set of elements (of any kind) satisfying the four above conditions 
is called a group. The number of elements is the order of the group. 
Showing that symmetry operations of a certain configuration satisfy the 
four given axioms, i.e. that they constitute a group, bring symmetry 
considerations into a well- studied field of mathematics - the theory of 
abstract groups - as will be utilized below. It is also necessary to mention 
that if the symmetry operations are such that one point of the con­
figuration (e.g., the centre of a rectangle) stays fixed in space, then we 
speak of point groups. 
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6.2 Symmetry transformations 
of the Hamiltonian 

It is evident that the operations presented under points a) to c) in 
Section 6.1 leading to positional changes in configurations can be realized 
in two physically equivalent ways: either by movement of the configura­
tion in a fixed coordinate system, or by a change in the coordinate 
system with unchanged position of the configuration. As functions and 
operators depending on space coordinates will also be discussed below, 
an unambiguous definition of the transformation of Cartesian coordi­
nates will be introduced. 

First, let us imagine that a rectangular Cartesian coordinate system 
is rigidly connected with the configuration under study in such a way 
that all the rotation axes pass through the origin of the coordinate 
system. If the configuration is rotated, it is possible to consider the 
initial and final positions of the coordinate system as defining two 
coordinate systems. Therefore, to the same point in space can be assigned 
either rectangular coordinates x, y, z with respect to the original system 
or coordinates x', y', z' with respect to the new coordinate system and 
their relationship is expressed by an orthogonal matrix [see Eqs. (4-111) 
and (4-124)]: 

X (/11 a12 a13 x' 

y (/21 a22 a23 y' (6-7) 

(/31 (/32 (/33 -' -

The matrix elements (/ij belong to the transformation matrix a. Equation 
(6-7) represents three equations, the first of which is 

(y') 

(yl 

B 
(x') 

Fig. 6-1. Transformation of the 
coordinates on rotation of the 

Cartesian coordinate system about 
~-=--L-:':-+---o-(xl the z-axis through angle Ct. 

From Fig. 6-1 the form of the transformation matrix for the rotation of 
the configuration by an angle r:x about the z-axis is apparent. For the 
calculation of coordinates of point B in the primed and unprimed 



systems, it is necessary to bear in mind that 

x = OD - CD = x' cos IX - y' sin IX 

y = OE + EF = x' sin IX + y' cos IX 

Z = z' 

and thus the corresponding transformation matrix takes the form 

cos IX -sin IX 0 
a 1 = sin IX cos IX 0 

o 0 1 
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(6-8a) 
(6-8b) 

(6-8c) 

(6-9) 

Transformation matrices corresponding to reflections in the planes 
determined by the coordinate axes or to reflections through the origin 
have a particularly simple form. For instance, reflection in the zy-plane 
leads to matrix a 2 : 

-1 0 0 
010 
o 0 

(6-10) 

The following transformation matrix corresponds to the reflection opera­
tion through the origin (inversion): 

-1 0 0 
a 3 = 0 -1 0 

o 0-1 
(6-11 ) 

An inverse matrix can easily be constructed [see Eq. (4-111)] for an 
orthogonal matrix so that primed coordinates can also easily be expressed 
as a linear combination of un primed coordinates: 

x' x 
y' = aT y (6-12) 
-' z -

Thus, for example, for coordinate x', 

Operation of a certain transformation on a general function f or on 
a general operator (!) can best be expressed in operator form: symbol !T 
will denote the operator that represents the rotation, reflection, or in­
version. The operations !T f(x, y, z) or !T (!)(x, y, z) then simply mean that 
substitution in the corresponding expressions must be performed according 
to (6-7), where matrix a expresses the transformation of coordinates 
which occurred as a result of the corresponding operation. Therefore, 



108 

fF f(x, y, z) = f(x', y', z') (6-13a) 
and 

fFl!J(x, y, z) qJ = l!J(x', y', z') fFqJ, (6-13b) 

where qJ is an arbitrary function (cf. Section 4.1). The function f(x', y', z') 
generally has a different analytical form than the original function 
f(x, y, z). If, however, the analytical form is preserved after the transfor­
mation, a symmetry transformation of the function f(x, y, z) has occurred. 
The same considerations, of course, also hold for Eq. (6-13b); if operator l!J 
remains invariant under the performed transformation, or, in other words, 
if it holds that l!J(x, y, z) == l!J(x', y', z'), then it follows from Eq. (6-13b) that 

fFl!J=l!Jf7 (6-14) 

Thus, if fF is an operator corresponding to the symmetry transformation 
of operator l!J, this property will be manifested by commutation of the two 
operators. 

As an example of the determination of symmetry operations of an 
operator, the properties of a Hamiltonian corresponding to an electron, 
moving in the electrostatic field of four protons, located at the corners 
of a rectangle whose orientation with respect to the coordinate system 
is defined by the figure in the first column of Table 6-1, will be 
considered. The Hamiltonian for this system can be expressed as 

h2 4 e2 

.Yt'=---L\-L ' 
2m I=141tBolr-RII 

(6-15) 

where r == (x, y, z) gives the position of the electron under study and the 
summation expresses its electrostatic interaction with the four protons, 
whose positions are determined by vectors RI . First, the behaviour of the 
Laplace operator under the rotation operation, for example, under 
rotation about the z-axis, can be established. According to the elementary 
rules of differentiation, 

{ 02 02 02 } 
9P(z, ex) ox], + oi + a/I = 

= {[(OX~)2 + (OX')2J~+ [(0y')2 + (0()2J~+ OX oy OX,2 ox oy 0y'2 

[OX' oy' Ox' OY'] 02 02 } + 2 ox- ox- + ai ai ox' oy' + OZ12 £1i(z, ex), (6-16) 

where it is assumed that the dependence of the primed coordinates on 
the un primed ones is known and has the form of Eq. (6-12); for rotation 
by angle ex about the z-axis, the relationships 



X' = cos CI. • X + sin CI. • Y 

y' = - sin CI. • x + cos CI. • Y 
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(6-17a) 

(6-17b) 

are obtained and, from these equations, the expressions necessary for 
derivation can be obtained. It is seen that 

d(x, y, z) = d(X', y', Zl) (6-18) 

or, in other words, that the Laplace operator is invariant to rotation 
about the z-axis; in addition, it can be shown that this operator is 
invariant to rotation about an arbitrary axis passing through the origin. 

If the transformation relations for other symmetry operations 
presented in Table 6-1 [see Eq. (6-10)] are also taken into consideration, 
it can be concluded that operator d is invariant to all the operations 
of a rectangle symmetry, and the second term of the Hamiltonian (6-15) 
remains to be investigated. First, the potential originating from four 
protons at an arbitrary point in the [x, y, z] space must be expressed. 
It is obvious that any change in the position of these protons, expressed 
by the transformations shown in Table 6-1, does not change this potential, 
and therefore the potential energy for the mutual interaction between 
the electron and protons can be described in the form 

4 e2 4 e2 

[~1 41tco I r - R[ I = [~1 41tco I r' - R~ I ' (6-19) 

where r' == (x', y', Zl) is the position vector of the electron and R~ the 
position vector of the nucleus I after the symmetry transformation. 

In summary it can be said that the Hamiltonian (6-15) is invariant 
under any symmetry operation of a rectangle (see Table 6-1), or that 

.tf(x, y, z) = .tf(X', y', Zl ) (6-20) 

In accordance with this finding, a s ymmetry transformation of the Hamil­
tonian will be generally defined as a linear transformation of the coordin­
ates that leaves the Hamiltonian unchanged in the sense of Eq. (6-20). 

The above consideration concerned a system of a single electron 
which moves in an electrostatic field of symmetrically arranged nuclei. 
It is obvious that a similar approach can be employed in studying the 
symmetry properties of the Hamiltonian corresponding to the independent 
electron model [see Eq. (5-37)], since the symmetry of the effective 
potential "Y is consistent with the configuration of the nuclei of atoms 
which form a molecule. Apart from one-electron contributions, a complete 
quantum-chemical Hamiltonian also contains the operators of electrostatic 
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interaction between electrons, i.e. the expression 

(6-21) 

It is evident that the distance between two points in space is not changed 
by the symmetry transformations and consequently that 

(6-22) 

Therefore, even sum (6-21) is invariant to the simultaneous orthogonal 
transformation of the coordinates of all the electrons. Thus even for 
a precise Hamiltonian, the spatial symmetry is determined by the 
configuration of the atomic nuclei forming the molecule. In this con­
nection it is necessary to realize that, in all these considerations on the 
symmetry properties of the Hamiltonian, the validity of the Born-Oppen­
heimer approximation, according to which atomic nuclei, responsible for 
the molecular geometry, are considered to be a rigid configuration, is 
tacitly assumed. 

The electron system of an atom that is exposed to the spherically 
symmetrical potential of an atomic nucleus must be considered as a special 
case. This, in its own way, the highest kind of spatial symmetry, mani­
fested in invariance of the Hamiltonian to rotation around any axis 
passing through the atomic nucleus, has already been taken into account 
by classifying states in atomic systems using eigenvalues of the angular 
momentum operators. It can be demonstrated that there is a close 
relationship between angular momentum operators and operators of 
infinitesimal rotations 1. 

It will be recalled that the angular momentum was established as 
one of the constants of motion. On comparing Eq. (6-14), where the 
Hamiltonian of the system can be substituted for the general operator (I). 

with Eq. (4-56) it can be concluded that the operators of symmetry 
transformations of the Hamiltonian also act as constants of motion and 
can be used to classify various states. It can easily be proved that all 
symmetry transformations of the Hamiltonian satisfy axioms a) to d) in 
Section 6.1, and that they therefore form a group. In this connection we 
speak about the symmetry group of the Hamiltonian. 

6.3 The principal symmetry groups 
and their notation 

In addition to groups of finite order there are also groups of infinite 
order. Thus, for example, there is an infinite number of symmetry opera-
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tions on the sphere corresponding to the full three-dimensional rotation 
group. 

If some of the elements of a group in themselves satisfy the group 
axioms, the set of these elements is called a subgroup of the corresponding 
group. From this point of view, all symmetry groups related to molecular 
symmetry are subgroups of the full rotational group, since the symmetry 
operations of every molecule are also included in the symmetry operations 
of a sphere. 

The symmetry properties of a molecule can be described if all the 
possible symmetry operations under which the molecule is not physically 
changed are given. Thus simple symbols (the SchOnjlies notation) were 
introduced to denote the most important symmetry groups. 

Among the simplest point groups are those corresponding to opera­
tions of rotation about a single axis. If the molecule is invariant under 
rotation through 21[/n, about a particular axis ~, then this is termed an 
n-fold axis, and the corresponding symmetry group is denoted Cn' If the 
symbols given in the introduction are used, the rotation operator can 
be defined as 

(6-23) 

for which l1-fold repetition leads to the identity operation: 

(6-24) 

Each of the integral multiples k of the elementary rotation CCn (k = 
= 1, 2, ... , n) represents an element of the group. Groups whose elements 
satisfy property (6-24) are termed cyclic. 

Another cyclic group of the n-th order is the group Sn' which is 
composed of the multiples of element [/'n == tlhCCn , which refers to rotation 
through 21[/n (CCn) with reflection (tlh) in the plane perpendicular to the 
symmetry axis; this kind of rotation is called improper rotation. Groups 
of this type are defined for even n only. 

Other groups are derived from the above-described cyclic groups 
by supplying them with further symmetry elements. Symmetry elements, 
such as, for example, different types of symmetry axes, can be distinguished 
from symmetry operations, e.g., the operations of rotation corresponding 
to an active rotation through a particular angle about the axis. Dihedral 
groups also have, in addition to the principal rotational axis (which is 
the axis of highest order compared to the other symmetry axes), twofold 
axes, which are perpendicular to the principal axis. The operations 
of rotation about these axes will be denoted by primes, e.g., CC~, CC;, and 
the respective symmetry elements by C~, C;. Further symmetry elements 
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can be reflection planes (1 with a different orientation with respect to the 
principal axis: 

a) perpendicular to it: (1h' 

b) passing through it: (1v' 

c) passing through it and also bisecting the angles between minor 
twofold axes: (1d' 

The notation of indices on the symbols for reflection (1 can be 
derived from the following model: if the principal axis is orientated 

Table 6-3 

Selection of Point Groups 

Group Symmetry elements Examples of symmetrical molecules for n = 2 

Molecule Graphical representation 

C. n-fold axis of rotation H20 2 ~ o '" __ I 0 

Sn n-fold axis of improper trans ~~ rotations CIBrHC - CHBrCI --- - C C:- B;-52 

H Cl 

C2 

Cnh n-fold axis of rotation, trans Y~Z H x 

U h plane CIHC=CHCI ~C C~'6h 
C.v n-fold axis of rotation, H2O ~ n Uv planes H 6v R6~ 

~z 
Dn n-fold axis of rotation, partially deformed "\) "-~~ c; n two fold axes C~, C;, ... H2C=CH2 

'Cr 

Dnd as Dn, deformed x C' 
nUd planes H2C-CH2 2 

D.h as D., H2C=CH2 x C' 
u h plane 2 

lin 
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vertically, the symmetry plane CTb is orientated horizontally, the CTv plane 
vertically and the CT d plane is, in a certain sense, diagonal. 

Different types of groups, which can be formed in this way, are given 
in Table 6-3, together with examples of molecules whose symmetry 
corresponds to the n = 2 term of a certain type of symmetry group, 
where n denotes the order of the principal rotational axis. In this 
connection it is necessary to note that there exist symmetrical configura­
tions corresponding only to a limited number of point groups, which can 
be deduced from the general properties of the space group of which 
the point groups are subgroups. On the other hand, it is possible to 
consider some continuous groups, to which, for instance, diatomic 
molecules correspond. in their rotational symmetry, to be a limiting 
case for n --+ 00. Thus to the CO molecule corresponds the group Coov ' 

and, to the H2 molecule, the group D oob' where the symbol 00 denotes 
the presence of a symmetry axis of "infinite order". 

The graphical representation of molecules in Table 6-3 is supple­
mented by denotation of the various symmetry elements of the respective 
groups, which are again and more illustratively given in the diagrams 
in Fig. 6-2. The diagrams are termed stereographic projections of the 

x 

6~(xz) 

Fig. 6-2. Stereographic projections of some point groups with two-fold principal axis. 
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point groups and enable a quick and easy estimate of the relevant 
symmetry properties. In constructing these diagrams, a convention accord­
ing to which a + sign denotes the points above the projection plane and 0 
denotes points below it is employed. In some instances the projection 
plane is identical with the O"h plane; the principal symmetry axis then 
passes through the centre of a circle perpendicular to the O"h plane. 
The meaning of the other symbols in the diagram is self-evident. 

Fig. 6-3. A tetrahedron and a cube. 

In conclusion, two important symmetry groups, Td and Dh , cor­
responding to a tetrahedron and a cube, respectively (see Fig. 6-3), 
can be mentioned. The first consists of 24 symmetry elements (E, 8C 3' 3C 2' 

6S4 , 60" d)' and methane is an example of a molecule with this symmetry. 
The Dh group, consisting of48 elements (E, 3C2 , 6C4 , (iC~, 8C3 , i, 3iC2 , 

6iC 4' 6iC~, 8iC 3) assumes an important positio", in the theory of 
inorganic complex compounds. 

6.4 Matrix representation of symmetry 
groups 

The discussion begun in Section 6.2 can now be continued, starting 
with the general Schrodinger et}uation 

J'f(r) tpk) = Etp I (r), (6-25) 

where the symbol r denotes dependence on all the space coordinates of 
the system. If operator fr, which belongs among the operators of 
symmetry transformations of the Hamiltonian, acts on both sides of 
Eq. (6-25), the relationship 

J'f(r') 'I' 2(r') = E'l' 2(r') (6-26a) 

is obtained, in which use is made of the in variance of the Hamiltonian 
under the symmetry operation. However, function tp I can in general 
change its form, denoted by a change in the subscript. The denotation 
of variables is, of course, arbitrary and therefore Eq. (6-26a) can be 
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expressed using un primed coordinates: 

J'f(r) 'P k) = E'P k), (6-26b) 

whence it can be seen that 'P 2(r) is also an eigenfunction of the Hamiltonian 
and possesses the same eigenvalue as 'PI (r). Thus the set of all symmetry 
transformations of the Hamiltonian can be used to determine different 
eigenfunctions corresponding to one energy level. This fact permits 
determination of the degree of degeneracy of the energy level, which 
can be defined as the number of linearly independent functions 'Pi' 

If level E is rn-fold degenerate, then functions 'Pi (i = 1, 2, ... , rn) 
can be considered to form a set of orthonormalized functions. The 
action of operator :!T on one of the functions 'Pi must necessarily 
be expressible in the form of a linear combination of functions of the 
given set 

m 

:!T'Pi = L A~;)'Pj' (6-27) 
j = 1 

where II A~;) II = A(T) is a matrix whose elements are coefficients of linear 
expansion (6-27). The orthonormality of functions, written using the 
notation introduced in Section 5.4 as 

< 'Pi I 'P) = bij ; (i,; = 1,2, ... , rn), 

results in the relationship 

m m m 

:!T <'Pi I 'P) = L L (Af))* AIJ)bkl = L (Af))* Ai~) = bjj , (6-28) 
k=l'=l k=l 

indicating that A (T) is a unitary matrix [cf. Eq. (4-110)]. When deriving 
relationship (6-28) use was made of the fact that the expression < 'Pi I 'P) 
is a number and thus cannot be influenced by transformation :!T. An 
operator leaving a scalar product invariant is termed a unitary operator; 
it is represented by a unitary matrix. 

Equation (6-27) can be rewritten using the matrix formalism 
introduced in Section 4.5: 

:!TY' = Y'A(T), 

where Y' must be taken as the one-row matrix 

(6-29) 

(6-30) 

This notation will enable easy investigation of the successive action of 
the two operators :!T and "Y, belonging among the symmetry trans­
formations of the Hamiltonian, on the set of functions 'Pi' which refer 
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to a degenerate level. From Eq. (6-29) it is evident that 

~ = f:T'P = f'PA(T) = 'PA(V)A(T) = 'PA(VT) = 'PA(W), (6-31a) 

whence it follows that 

(6-31b) 

where the operation 

(6-32) 

has been introduced, which according to the definition of a group also 
belongs among the symmetry transformations of the Hamiltonian. It 
is worth noting that the unit matrix A(E) = 1 corresponds to the 
identity operation. 

Equations (6-31) and (6-32) imply that the original group of symmetry 
transformations :T, f, ... , has been replaced by a set of unitary 
matrices A(T), A(V), ... , which also form a group in accordance with 
the definition in Section 6.1, provided that the operation of matrix 
multiplication is introduced as group multiplication. Such a set of 
matrices satisfying Eqs. (6-31) and (6-32) is said to constitute an 
m-dimensional matrix representation of the original group of symmetry 
operations, and the set of functions 'Pi (i = 1, 2, ... , m) is called 
the basis of this representation. 

This important conclusion will enable us to denote the energy level 
and the corresponding eigenfunctions by the representation which is 
related to it. Specification of the representation affords information on 
the symmetry properties of eigenfunctions, which must be known, for 
example, in determining the selection rules for various types of matrix 
elements, as will be seen below. 

Let us assume that the matrix representation A(T), A(V), A(W), ... of 
a certain group of symmetry operations is known. It is also assumed 
that the set of functions t/J i (i = 1, 2, ... , m) is known, constituting 
a basis for this representation, which guarantees that the action of a 
symmetry operation on any of these functions forms new functions 
"remaining" in the space of t/Ji functions. For some purposes it can 
be useful to pass from one set of functions t/Ji to another set of 
orthonormalized functions (fJi (i = 1, 2, ... , m), which can be carried 
out by the transformation 

'" = qJU, (6-33) 

where U is a unitary matrix [see Eq. (4-124)]. The new basis can be 
taken as physically fully equivalent to the original basis. Substituting 
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Eq. (6-33) into Eq. (6-29) gives 

17", = 17 q>U = q>UA(T) (6-34a) 

and, after multiplying from the right by matrix U -1, the relationship 

(6-34b) 

is obtained. Equation (6-34b) justifies introduction of the matrices 

(6-35a) 

which determine the transformation properties of the new basis <Pi (i = 
= 1, 2, ... ) with respect to the symmetry operations under consideration. 
The inverse transformation to Eq. (6-35a), 

A(T) = U- 1 B(T)U, 

permits substitution into Eq. (6-31b): 

U- 1B(V)UU- 1B(T)U = U- 1BwU, 

whence it follows that 

(6-35b) 

(6-36a) 

(6-36b) 

Thus it has been shown that the matrices B(T), aW), a(W), ... also 
form a r«presentation of the group of symmetry operations under 
consideration. The representations whose mutual relationship is carried 
out using equations of the type (6-35) (similarity transformation) are 
termed equivalent representations. 

Let us introduce now a matrix of the type 

B1> ° B2 , 

B= (6-37) 

0, Bk 

which will be termed a block matrix. Non-zero matrix elements occur 
here only in submatrices B1 , B2 , ... along the main diagonal, while 
zeros are everywhere else. 

When passing from one representation to another using the 
equivalence relation (6-35a), it can happen that the new matrix representa­
tion will be such that all matrices a(K) (K = T, v, W, ... ) are block 
matrices of the same type, i.e. the homothetic submatrices have the same 
dimensions. It can easily be demonstrated that, for the matrix product 
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of such block matrices, it is valid that 

BW) 
1 , ° B(T) 

1 , ° BW) 
2 , 

B(T) 2 , 

0, B(Y) 
k ' 

0, 

(6-38) 

0, B(Wl 
k , 

where 

B(W) - B(Y)B(T) . - 12k 
i - ii' 1- , , ... , (6-39) 

Thus submatrices BlT), BlY), BlWl, ... for a given subscript i also form 
a matrix representation ofthe corresponding group, and this representation 
generally has a lower dimension than the original. If the resulting situation 
is interpreted using the basis functions, then the new set of functions (()i 

can be divided into subsets with the dimensions of the submatrices. 
The functions belonging to a certain subset are only mutually transformed 
by the action of the symmetry operations of the group under consideration. 
If the original m-dimensional representation is denoted by the symbol r, 
then it has been decomposed into representations r l' r 2' ... , r k' which 
is normally denoted as a direct sum, and is written in the form 

(6-40) 

where it cannot be excluded that each new representation will be 
contained more than once, for example, 

(6-41) 

The sum of the dimensions of the components must, of course, equal 
the dimension of the original representation r. 

A matrix representation for which there is a unitary transformation 
[i.e. a transformation of the type (6-35)] such that it transforms it into 
block form [see Eq. (6-38)] is denoted as reducible. A matrix representation 
that cannot be reduced is called irreducible. As will be seen later, the 
concept of reducibility of the representation is of fundamental importance 
for applying group theory in quantum mechanics. As an example, 
a statement sometimes also introduced as an axiom can be formulated: 
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Theorem 6-1. The eigenfunctions of the Hamiltonian belonging 
to the same energy level form the basis for an irreducible representation 
of the symmetry group under which the Hamiltonian is invariant (if 
accidental degeneracies are excluded). Accidental degeneracy occurs when 
the order of the degeneracy cannot be accounted for by symmetry 
considerations. 

Similarly as the concept of equivalance was introduced in the form 
of the relationship of two representations, the equivalence relationship 
between elements of the same group can also be introduced. Two elements 
of a given group, X and Y, are equivalent (or conjugate) when in the 
group appears an element Z such that the following relation is valid: 

X = Z-lyZ (6-42) 

All equivalent elements of a given group form a class of equivalent 
elements. As a rule, a group is composed of several classes. If the 
symmetry operations are group elements, it is possible, from analogy 
with Eqs. (6-33) and (6-35a), to conclude that, in Eq. (6-42), X denotes 
the operation which results from operation Y by similarity transformation 
through symmetry operation Z. Thus, equivalent operations X and Y 
can, in principle, be taken as identical, possessing, however, a different 
system of coordinates in which the operation is carried out. An example 
of the division of group elements into classes is the recording of the 
symmetry operations of groups Td and 0h' given at the end of Section 6.3 
(p. 114), where it can be seen that group Td has five and group 0h ten 
classes of equivalent elements. 

The number, N ir , of non-equivalent irreducible representations of 
a finite group is closely connected with the number, Nc ' of classes in the 
group. It can be proved2 that 

(6-43) 

Further considerations will be based on the relationship between 
the matrix elements {BlT)}"v of irreducible representations. In expression 
(6-44), {BlT)}"v denotes the matrix element of the i-th irreducible represen­
tation, which lies at the point of intersection of the /l-th row and v-th 
column of matrix BlT), which corresponds to the symmetry operation fT 
of symmetry group G. In group representation theory it has been shown3 

that 
(6-44) 

where the symbol T E (; under the summation sign indicates that the 
summation proceeds over all group elements (symmetry operations); 
g denotes the order of the group and mi the dimel1sion of'the i-th matrix 



120 

representation. Equation (6-44) expresses the orthogonality relation between 
the matrix elements of representations and indicates that only the sum 
of the squares of moduli of homothetic matrix elements of a given 
irreducible representation equals g/mi and that all other types of products 
are equal to zero. 

It has so far been shown that all necessary data on the symmetry 
properties of a certain symmetry group are stored in the sets of matrices 
forming the irreducible representations of that group. It appears, however, 
that this information can be stored in a still more concise form. The 
character X(T) of element f/ of the group under study, corresponding 
to matrix representation A (T), is defined as the trace of this matrix 
[see Eq. (4-127)]; thus 

m 

iT) = TrA(T) = L 
J1~1 

4(T) 
, Illl (6-45) 

The character of a representation is understood to be a set of characters 
iT), TE G, corresponding to all the group elements. 

Since the trace of a matrix is invariant under a unitary transformation 
[see Eq. (4-130)], all equivalent representations [i.e. those which satisfy 
relationship (6-35)] have the same character. Moreover,' it is evident 
that, for the same reasons [cf. Eq. (6-42)], the elements of the same class 
of a group have identical character and that, consequently, this character 
is a property of a class of equivalent elements. It is further evident that 
the character of a reducible matrix can be expressed as the sum of the 
characters of its components, as follows directly from Eqs. (6-38) and 
(6-40). 

Character tables of irreducible representations of all the required 
point groups are listed in numerous text-books on quantum chemistrl- 8 

and group theory 9 -12. For illustration, in Tables 6-4 to 6-6 are given 
the character tables of representations of some groups discussed earlier 
(denotation of symmetry elements is the same as in Fig. 6-2), of the 
group D6h (corresponding to the symmetry of the benzene molecule), 
and of the group 0, both of which will be needed in the ensuing 
discussion. From Tables 6-4 to 6-6 it can be seen that a standard 
notation is assigned to the characters: the letters A and B correspond to 
one-dimensional, E to two-dimensional, and T to three-dimensional 
representations. If inversion is involved in a group, the index g (gerade) 
or u (ungerade) is attached to the letter according to whether the sign 
is preserved or changed during the inversion, respectively. 

In a one-dimensional representation, the matrix element is directly 
equal to the character, which enables us to verify the validity of the 
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Table 6-4 
Characters of Irreducible Representations of Some Point Groups 

C2, S2 

C2 E 

S2 E 

A Ag 1 

B Au . 1 -1 

C2h , C2v ' D2 

C2h E C2 i O"h 

C2v E C2 O"~ 0"" v 

D2 E C2 C" 2 C' 2 

Ag AI A 1 1 1 1 

Au A2 BI 1 1 -1 -1 
Bg BI B2 1 -1 1 -1 

Bu B2 B3 1 -1 -1 1 

D2h 

D2h E C2(~) C;Cr) C'2(~) O"xy 0" xz 0" yz 

Ag 1 
Au -1 -1 -1 -1 
Big -1 -1 1 -1 -1 
Blu -1 -1 -1 -1 1 1 
B2• -1 -1 1 -1 -1 
B2u -1 -1 -1 1 -1 1 
B3g -1 -1 1 -1 -1 1 
B3u -1 -1 -1 -1 

general equation, (6-44): at first glance it is obvious that the rows 
(i.e. the characters of irreducible representations) correspond to orthogonal 
vectors. 

An additional useful orthogonality relation for the characters can 
readily be derived from Eq. (6-44). By substituting Jl = v and x = A 
into this equation, the relationship 

(6-46) 

is obtained. This relation can further be employed to express the product 
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mi mj 

L [xlTl]* xjTl = L L L {B~T)}* {B~T)} = 
, 1111 J H 

TeG TeG 11= 1 ).= 1 
mi 

= L -.!l_ JjjJ1l1l = gJji , (6-47) 
11=1 mj 

where labels i and j indicate that the characters correspond to any two 
irreducible representations. The validity of orthogonality relation (6-47) 
for irreducible representations can easily be verified on the particular 
examples given in Table 6-4. 

So far only one way of constructing matrix representations of 
a group from their representations (irreducible ones, for instance), namely 
in the form of a direct sum, has been discussed. Now another way, 

Table 6-5 
Characters of Representations of the D6b Group 

2C~ cJ S2 
D6h E 2C6 

6 3C2 3C~ I1b 311v 311d 2S6 2SJ 
== 2C3 == C; ==i 

A I, 1 
Alu -1 -1 -1 -1 -1 -1 
A2, -1 -1 -1 -1 
A2u 1 1 -1 -1 -1 1 -1 -1 -1 
BI , -1 -1 -1 -1 -1 1 1 -1 1 
Blu -1 -1 -1 1 -I -1 -1 
B2, -1 -1 -1 -1 -1 -1 
B2u 1 -1 -1 -1 1 1 -1 1 -1 -1 
E I, 2 -1 -2 0 0 -2 0 0 -1 1 2 
Elu 2 -1 -2 0 0 2 0 0 1 -1 -2 

E2K 2 -1 -1 2 0 0 2 0 0 -1 -1 2 
E2u 2 -1 -1 2 0 0 -2 0 0 1 -2 

(X[~)2 4 4 0 0 4 0 0 4 
iTT) E,. 2 -1 -1 2 2 2 2 2 2 -1 -1 2 

[xi,JT ) 3 0 0 3 3 1 0 0 3 

[xt.JZ'J -1 -1 -1 -1 

Table 6-6 
Characters of Irreducible Representations of the 0 Group 

0 E 8CJ 3C2 6C4 6C~ 

AI 1 

A2 -1 -1 
E 2 -1 2 0 0 

TI 3 0 -1 1 -1 
T2 3 0 -1 -1 
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based on the so-called direct product of two (or more) representations, 
symbolically denoted by r = r 1 ® r 2' will be introduced. 

In Chapter 5 many-electron systems were described using product 
functions, consisting of the products of one-electron functions - atomic 
or molecular orbitals. These one-electron functions are, as a rule, the 
solution of a problem within the independent particle approximation 
(see Section 5.5) and, according to Theorem 6-1, form the basis for 
a representation of the symmetry group of the corresponding Hamiltonian. 

Let us assume that two sets of functions t/l i (i = 1, 2, ... , m) 
and ({Ji (i = 1, 2, ... , m') are available, each of which forms a basis 
for the matrix representation of the same group, which can be expressed 
using the general group element :!T [cf. Eq. (6-29)] as follows: 

:!T '" = '" JJ( T) 
(6-48a) 

(6-48b) 

The product space of functions t/l i and ({Ji will be constructed so that 
all possible products of the type t/li({Jj' the number of which is u = m. m', 
are formed. For the sake of consistency with the previous discussion, 
it should be remembered that such a product space would be suitable 
for the description of a two-electron system. Let us first verify that 
a set of product functions forms a basis for the representation of 
group G. Taking into account Eqs. (6-27) and (6-48), it holds that 

m m' 

:!Tt/li({Jj = L L Ar)BlPt/lk({J1 (6-49) 
k= 11= 1 

If an auxiliary index r is introduced to designate a pair of indices i, j and 
indices k, 1 are replaced by the new index s, then the expressions 
occuring in Eq. (6-49) can be rewritten to give 

t/l 1 ({J 1 , t/l 1 ({J2' ... , t/l 1 ({J m" t/l 2 ({J P .. . , t/I i({J j,' .. . , t/I k({J1> ... , t/I m({J m' } 

cP p cP 2 ' ... , cPr' ... ,cPs' ... ,4>. 
(6-50) 

(6-51) 

Thus, Eq. (6-49) can be rewritten in the form 

" 
:!T4>r = L D~;)4>s' (6-52) 

s= 1 

whence, on comparison with Eqs. (6-27) to (6-32), it foIIows that 
matrices D(T), TE G, form a new representation obtained as a direct 
product of the two original representations. The relationship of the 
product representation to the original representations is worth noting. 
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It is expressed by Eq. (6-51) which, for lucidity, can be rewritten 
explicitly: 

D(T) 
11 , 

D(T) 
12' ... , Di~) A(T)B(T) A(T)B(T) A(T)B(T) 

11 11' 11 12' ... , 1m 1m' 

D(T) D(T) 
21> 22' ... , D~,? A(T)B(T) A(T)B(T) 

11 21> 11 22' 
A (T)B(T) 

... , 1m 2m' (6-53) 

D(T) D(T) 
ul' u2' ... , D:!) A:;;) B~~, A:;;) B~~, ... , A~~B~~, 

Equations (6-53) and (6-51) represent the definition of the direct product of 
two matrices (in contrast to the matrix product introduced in Section 4.5). 

The direct product can be obtained for any two representations, i.e. 
also for irreducible representations. It can be expected that the direct 
product will generally afford a representation which can be decomposed 
in the sense of Eqs. (6-40) and (6-41) into irreducible components. 
The fact that the character of the product representation is equal to 
the product of the characters of the original representations, as follows 
from Eqs. (6-45) and (6-53), can be used here: 

X(T) - X(T)X(T) TE G 
D - A B ' (6-54) 

It has been mentioned that, for irreducible representations, the characters 
X(]> and X<l) are known, so that Xg-), TE G, can be easily calculated. 

According to the basic character properties, the following relation 
for the character Xg-) of a representation reducible in the, sense of 
Eq. (6-41) holds: 

xg-) = L: kiX\T), (6-55) 
i 

where, as in Eq. (6-47), index i expresses the relationship to the irreducible 
representation i. If Eq. (6-55) is multiplied by the complex conjugate 
character of the j-th irreducible representation [xT]* and if summation is 
carried out over all the group elements, then it follows that 

L [XjT)]* Xg-) = L ki L [xjT)] * X\T) = g L kioij = gkj (6-56) 
TeG i TeG i 

This equation indicates that the reducible representation described by 
its character Xg-), TE G, contains the j-th irreducible representation as 
a component kj times. Thus Eq. (6-56), based on knowledge of the 
characters alone, permits decomposition of the reducible representation 
into its irreducible components. 

It should be noted, in conclusion, that basic equations have been 
introd uced in this section which will be necessary when utilizing the 
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symmetry properties of the studied systems for their quantum chemical 
solution. If the reader has not yet noticed the usefulness of some 
particular concepts, it will become more evident i" further sections 
of the book where their application in practice will be discussed. 

6.5 Selection rules for matrix elements 

It was mentioned in the previous chapter that one of the steps in 
quantum chemical calculations is the evaluation of integrals of the type 

(6-57) 

where the reader should reacquaint himself with the symbols introduced 
in Section 5.4 for matrix elements of the operator vIt between functions l/Ii 
and l/Ij. The action of an operator on a function generally leads to 
another function, 

vltl/lj = ({J j , 

and, after substituting in Eq. (6-57), 

(6-58) 

(6-59) 

It should be emphasized in this connection that only the symmetry 
properties of the functions are now relevant and it is not necessary for 
the functions to be normalized; this fact is manifested by using two 
strokes in the scalar product symbol. l/Ii is assumed to be one of the 
functions forming the basis for the irreducible representation r l' cor­
responding to matrices A(T), TE G, of group G, while ({Jj belongs to the 
basis of the irreducible representation r 3' which corresponds to matrices 
B (T), T E G. Should it happen that both irreducible representations are 
the same, they will be assumed to be identical and not merely equivalent. 
Expression (6-59) is a scalar product, i.e., a number, and the action 
of an operator of symmetry transformation fT on Mij can therefore 
not change its value and, using Eq. (6-49), the expression 

m m' 

Mij = fTMij = L L (AI»* BlJ!<l/Ikll({JI> (6-60) 
k= 1 1=1 

can be written. Operation fT in Eq. (6-60) is, of course, arbitrary; the 
symmetry operations 1/, 11/', ... belonging to the given group might 
equally well have been chosen. Summing all such cases, then the 
relationship 

m m' 

L fTMij = gMij = L L L (AI>)*BlJ><l/Ikll({JI> (6-61) 
TeG k=ll=lTeG 
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results. Eq. (6-61) can be simplified usmg Eq. (6-44), so that the final 
result can be written in the form 

1 m 

Mij = m(jAB(jij k~1 <t/lkll(Pk) (6-62) 

According to Eq. (6-62), integral (6-57) is nonvanishing only when: 
1. A == B, i.e. irreducible representations r I and r 3 are identical. 
2. If condition 1 is fulfilled, it must also hold that i = j (i.e. 

t/l i == (P). 
If conditions 1 and 2 hold, then Eqs. (6-59) and (6-62) yield the 
relationship 

(6-63) 

Since the right-hand side of Eq. (6-63) is independent of index i, Eq. (6-63) 
holds if all the values <t/lkllt/lk)' k = 1,2, ... , m, are the same. 

The derived relations will now be applied to particular operators Jt. 
Two cases will be discussed separately: 

a) the operators :T of the given group, (1, correspond to the 
symmetry transformations of operator Jt, 

b) condition a) is not fulfilled. 
The first category includes, of course, the trivial case when vii == 1 

(more generally vii == a constant). Relation (6-62) then ensures the. 
orthogonality of some functions purely on the basis of their symmetry 
properties. The case when vii is the Hamiltonian (many-electron, 
Hartree-Fock or some other one-electron Hamiltonian) is, however, 
typical for this category. The Hamiltonian ;Y{' is invariant under all 
symmetry operations of the given group and, therefore corresponds to 
the irreducible representation A Ig' for which it IS characteristic that all 
matrix elements of the one-dimensional representation are equal to one 
(cf. Table 6-4). Since the symmetry properties of ({Jj are, according to 
Eq. (6-58), given in the form of a direct product of irreducible representations 
A Ig (corresponding to vii) and r 2 [corresponding to the basis t/I;, 
(i = 1, 2, ... )], it must necessarily hold that even the functions (p I , ({J 2' ... , ({J j 

form the basis of r 2; in short, from the relationship 

(6-64) 

it follows that 
(6-65) 

Thus, the application of Eq. (6-62) to this case can be summarized as 
follows: 
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< l/tJif Il/tj> =1= 0, (6-66) 

provided the following conditions are fulfilled: 
1. irreducible representations r 1 and r 2' to which bases l/t i 

(i = 1,2, ... ) and l/t; (i = 1,2, ... ) correspond, are equal. 
2. i = ,;. 

Equation (6-63) then acquires the following form 

from which it follows that the level whose energy is given by the value 
< l/t Jif Il/t;) is m-fold degenerate; this is an alternate formulation of 
Theorem 6-1 (see Section 6.4). 

Now the second category of operators, i.e. those which do not satisfy 
the above condition a) will be treated. In general, it can be assumed 
that operator .It has symmetry properties such that it is transformed 
according to representation r M' which need not be irreducible. The 
functions CPj''; = 1, 2, ... then correspond to the product representation 

r=rM ®r2 =I,kJi' (6-68) 
i 

where its decomposition has already been given in Eq. (6-41). Regarding 
the validity of Eq. (6-62), it is immediately evident that matrix element Mij 
is nonvanishing only when kl =1= 0, where kl is the coefficient of the 
irreducible representation r 1 , according to which function l/t i is trans­
formed. 

One of the most important ways of applying the given result is the 
determination of selection rules for spectroscopic transitions between two 
states. Here the selection rules imply prediction, on the basis of symmetry 
considerations, of whether the intensity of the transition is strictly zero 
or differs from zero. We shall see in the chapter on molecular spectroscopy 
that the basic quantity for calculation of the intensity of a transition is 
the transition moment, which is expressed by integrals of the type 

(6-69) 

where x, 1', : are the Cartesian coordinates of the position vector of the 
electron and the matrix elements represent the components of the one­
electron dipole transition moment vector. At least one vector component 
must be nonvanishing if the transition is to be allowed for symmetry 
reasons. If we consider the transition between the ground state of the 
molecule, which is usually symmetrical with respect to all operations of 
the symmetry group of the Hamiltonian (and thus corresponds to the 
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irreducible representation A 19) and the excited state, and take Eq. (6-68) 
into account, then the relationship 

(6-70) 

is valid for expressing the condition that component x of the transition 
moment does not vanish. r x in Eq. (6-70) denotes the irreducible representa­
tion of the symmetry group of the Hamiltonian according to which 
coordinate x is transformed under the given symmetry conditions. 
Equation (6-70) can be satisfied only if r2 == rx ' because only then 
it is possible to represent the symmetry of A 19 by a direct product. 
If the fact that coordinate x changes sign when passing through the 
origin is taken into account, it readily follows from Fig. 6-2 and Table 6-4 
that, for example, for groups C2 , 52' C2h , C2v ' D2 and D2h , the x 

coordinate gradually corresponds to the irreducible representations B, Au, 
Bu' Bp B3 and B3u and that the excited states for which the x cOIl.lponent 
of the transition moment differs from zero correspond to the same 
symmetry type. 

The discussion so far has been general in as much as it comprises 
the interpretation of electronic and vibrational spectra, i.e. spectra in the 
UV region, visible spectra and IR spectra. For UV and visible spectra, the 
wave functions I/Ii and I/Ii from Eq. (6-69) must be understood as 
electronic functions, for vibrational spectra functions 1/1 i and 1/1; denote 
the vibrational wave functions. 

Determination of the selection rules for Raman spectra resembles 
the previous cases except that, instead of integrals of the type (6-69), it is 
necessary to investigate integrals such as 

(6-71) 

where ex is one of the components of the polarizability tensor which 
represents a symmetrical matrix of order 3. It is not as easy to determine 
the symmetry properties of the polarizability tensor as it was in the 
previous case with Cartesian coordinates, but they are usually given 
as supplementary information in character tables of irreducible repre­
sentations. 

6.6 Symmetry and hybrid orbitals · 

All considerations in the previous section were based on the assumption 
that functions occuring in the matrix elements belong to the bases spanning 
irreducible representations. The simplification achieved in a number 
of problems is connected with the fact that the functions of these 
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properties can be considered to be eigenfunctions of the symmetry 
operators of the Hamiltonian, i.e. of operators which commute with the 
Hamiltonian. It is evident from this viewpoint that the partial result, 
presented in the form of Eq. (6-65) and of the additional conditions 
given in Section 6.5, corresponds to Theorem 5 in Section 4.3. 

It often happens in quantum-chemical studies that, in the beginning 
of the calculation, functions forming the basis of a reducible representation 
are available. The MO-LeAO method discussed in Section 5.6 is a typical 
example. It is assumed in this method that the basis set of atomic 
orbitals, used for the construction of the molecular orbitals, is the basis 
for a reducible representation of the symmetry group of the Hamiltonian. 
Otherwise the basis would have no physical meaning, as can be de­
monstrated by the example of an electron moving in the electrostatic field 
of four protons and described by Hamiltonian (6-15). The most obvious 
course is to look for a wave function [cf. Eq. (5-63)] in the form of a linear 
combination of atomic orbitals (Is);, i = 1, 2, 3, 4, located on all nuclei, 
i = 1,2,3,4 represented by the figure in the first column of Table 6-1, i.e. 

4 

q> = L ci(lS)i (6-72) 
i= 1 

On the other hand, there is no point in assigning Is orbitals to certain 
nuclei and, for example, p orbitals to others. It is also clear that the 
requirement of a reducible basis is essentially identical with the require­
ment that physically equivalent atoms (here four protons) supply the same 
atomic orbitals to thf, total set of atomic functions. The atomic orbitals 
(Is);. i = 1, 2, 3, 4, arranged in the correct sequence in a one-row matrix 
of the type (6-30), are transformed by the symmetry operations of a 
rectangle as follows: 

100 0 

A(E) = o 100 
o 0 1 0 

(6-73a) 

o 0 0 1 

o 1 0 0 

A(axz ) = A(C2 ') = 1 000 
000 1 

(6-73b) 

o 0 1 0 

000 1 

A(ayz ) = A(C[) = 001 0 
o 1 0 0 

(6-73c) 

1 0 0 0 
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o 0 1 0 
000 1 
1 000 
o 1 0 0 

(6-73d) 

It can easily be verified that binary products of matrices (6-73) conform 
with the multiplication table (Table 6-2); thus the matrices form a represen­
tation which can obviously be reduced (as follows from Table 6-4 according 
to the character table for the group D 2h' corresponding to the symmetry 
of a rectangle) and the atomic orbitals form the respective basis. 

Thus functions are available which belong to the basis of the 
reducible representation, and functions which form the bases of the 
irreducible representations of the symmetry group G of the Hamiltonian 
must be constructed. Let {BV)}/lv be the matrix element of irreducible 
representation i, satisfying Eq. (6-44) and <1> - a function which belongs 
to the basis of the reducible representation. At arbitrary but then fixed 
value of v, function q>~) can be defined by the equation 

q>~) = L {B~T)}:v f7<1>, (6-74) 
TeG 

where the summation includes all the elements of G. In order to succeed 
in the investigation of the symmetry properties of q>~), a further symmetry 
operation "I'" will be introduced, so that Eq. (6-32) is valid and consequently 

(6-75) 

It then holds that 

'j/'m(i) = '" {B~T)}* "I"'f7<1> = '" {B~V-'W)}* 111<1> (6-76) ~/l L. I ~ L . I ~ , 

TeG WeG 

as in the summation the product 'j/' f7 again runs through all the elements 
of the group. Because the matrices of the representation, [see Eqs. (6-28) 
and (4-110)] are unitary it holds that 

(6-77) 

which allows modification of the matrix element in Eq. (6-76) to give 

{ B~v-'W)}* = '" {B~V-')}* {B~W)}* = '" {B~V)} {B~W)}* (6-78) 
I. IJV i..J _ I. J1.X _ I. xv i..J 1 X'1l _ 1 xv 

By substituting Eq. (6-78) into Eq. (6-76), the final form is obtained, 

'j/'q>~) = L L {BjV)},./l {BjW)}:v 111<1> = 
WeG" 

= L {Bt)}"/l L {BjW)}:v 111<1> = L {BjV)},./l q>~), (6-79) 
"WeG " 
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where relation (6-74) was again employed. If this equation is compared with 
Eq. (6-27), it will be seen that all the conditions are satisfied for functions 
q>~), /1 = 1, 2, ... , defined by Eq. (6-74) to span the i-th irreducible repre­
sentation of G. The given problem is thus solved. Unfortunately, the 
whole matrices of the representation are not generally known, but only 
their characters. Because, however, index v in Eq. (6-74) has an arbitrary 
value, it can be set equal to /1. If, in addition, the summation is carried 
out over /1, the relationship 

q>(i) = L (xlT))*S-cP (6-80) 
TeG 

is obtained from Eq. (6-74), where the symbol of the character is substituted 
for the sum of the diagonal elements [cf. Eq. (6-45)]. It is clear that 
function q>(i) in Eq. (6-80) belongs to the space of functions spanning 
the i-th irreducible representation, and this equation can be considered 
as a recipe for construction of the functions forming the bases of ir­
reducible representations. It should be stressed that the thus-obtained 
functions will not in general be normalized. 

Returning to the model of the electron in the electrostatic field of 
four protons, it is necessary first of all to be aware that the symmetry 
operations of group D2 are sufficient for describing the symmetry pro­
perties of a rectangle, as follows from Table 6-4; it is superfluous to 
attribute full D2h symmetry to the rectangle, because, due to the planarity 
of the figure, some operations of group D2h become identical. In order to 
decompose the matrix representation given by Eqs. (6-73a) to (6-73d), 
the irreducible representations contained as its components must be 
discovered. This problem is easily solved using Eq. (6-56), as it is sufficient 
to sum the products 

ki = i L (xlT))*x~) (6-81) 
TeD2 

(where g = 4 is the order of group D2) to determine the "participation 
number" ki of the individual irreducible representations. The traces of 
matrices (6-73a) to (6-73d) yield the characters 

x<g2l = 0; (6-82) 

These, together with the characters of the irreducible representations 
of group D 2 (Table 6-4), enable decomposition of the reducible represen­
tation into its irreducible components: 

(6-83) 
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As a consequence, four new functions can be formed using Is orbitals 
located on four centres, which establish the bases of the given irreducible 
representations. Equation (6-80) can then be rewritten to give 

((J(i) = XIE)8(ls)1 + xlC2)rc 2(ls)1 + xlC2) rc;(ls)l + xlCi) rc~(ls)l' (6-84) 

where it is borne in mind that the characters are real numbers and 
i = A, B1 , B2 and B3 • Using Table 6-1, the effect of the operators on 
the (IS)l function [e.g., rc~(IS)l = (ls)2] is determined and, after substi­
tuting the characters in Eq. (6-84), four functions with the required 
properties are obtained as the final result: 

({J(A) = (IS)l + (Ish + (ls)4 + (ls)2 

({J(Btl = (ls)l + (ls)3 - (ls)4 - (ls)2 

({J(B2) = (ls)l - (lsh + (ls)4 - (ls)2 

({J(B3) = (ls)l - (lsh - (ls)4 + (ls)2 

(6-85) 

These functions are not normalized but determination of the corresponding 
normalization constants is a simple matter: 

(6-86) 

The described symmetrization of the functions will prove very 
useful in simplifying the solution of the secular determinant, encountered 
in calculations using one-electron LeAO methods [see Eq. (5-65)]. This 
simplification follows from the validity of the selection rules for matrix 
elements. For instance, in the illustrative example the calculation of the 
wave function and the energy considering the original formulation [see 
Eqs. (5-64) and (5-65)] would lead to a fourth-order secular determinant. 
If the basis set of atomic orbitals is replaced by the basis set of symmetry 
orbitals, expressed, for example, by Eq. (6-85), molecular orbitals can be 
sought in the form 

(6-87) 

where all the functions ({J~) belong to the i-th irreducible representation. 
Thus the property that the matrix elements of the Hamiltonian vanish 
when the functions surrounding the operator belong to different irreducible 
representations is employed. Instead of the original secular determinant, 
it is necessary to solve a number of secular determinants of lower order, 
each corresponding to one irreducible representation of the corresponding 
symmetry group: this is termed factorization of the secular determinant 

by using the spatial symmetry of the system. 
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In the case under study, the inclusion of symmetry considerations 
leads to a complete factorization of the secular problem so that the form 
of the molecular orbitals can be entirely determined from the symmetry. 
The energies corresponding to the molecular orbitals are determined as 
the diagonal elements of the normalized functions (6-85). 

A complete determination of the wave functions through symmetry 
considerations is, of course, only possible in special cases. Generally 
the molecular orbitals are sought in the form of (6-87); the practical 
procedure will be demonstrated using the ethylene molecule (presented 
in Table 6-3), which has D2h symmetry in the ground state. 

First, the special case of the LCAO approximation will be discussed, 
including in the basis set only those atomic orbitals whieh are occupied 
by electrons in the free (i.e. not bound) atoms in the ground state. This 
basis set of atomic orbitals is termed the minimum basis set. For the C2H4 
molecule the minimum basis set is formed by the following orbitals: 

for each carbon: (1s)c,(As), (2px)' (2py), (2pz) 
for each hydrogen: (1s) 

Thus the basis set of atomic orbitals has a dimension of 14 and the 
secular determinant without considering symmetry would also be of 
order 14. In the first stage the inclusion of symmetry considerations 
requires separation of the atomic orbitals into subsets of equivalent 
atomic orbitals which are interchangeable during symmetry operations 
of the molecule. 

The following subsets are evidently of this type, 

{(1s)~, (1s}~}, {(2S)I' (1S)2}' {(2PX) 1 , (2Px}2}' {(2py) 1 , (2p)2}' 
{(2Pz)I' (2Pz)2}' {(1s)!> (1S)2' (1sh, (1S}4}' 

which span reducible representations of group D2h . By decomposing 
these representations the following symmetry functions are obtained: 

Ag: (1s)~ + (1s)~ 
B3u: (1s)~ - (1s)~ 

Ag: (2S}1 + (2sh 

B3u: (2S}1 - (2S)2 

B3u: (2Px)1 + (2Px}2 

Ag: (2Px)1 - (2P)2 
B2u : (2pY)1 + (2py}2 

BIg: (2pY}1 - (2p)2 

B1u: (2PZ}1 + (2pz}2 
B2g : (2pz}J - (2pz}2 
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Ag: (1S)1 + (1S)2 + (1S)3 + (1S)4 
B3u: (1S)1 - (1S)2 - (1sh + (1S)4 

B2u : (1S)1 + (1S)2 - (1sh - (1S)4 

BIg: (1S)1 - (1S)2 + (1Sh - (1S)4 

Thus the following distribution of symmetry orbitals has been 
obtained: 4 x Ag , 4 X B 3u ' 2 X BIg' 2 X B 2u ' 1 X B 1u ' 1 X B 2g , where the 
number of cases corresponding to the same type of irreducible represen­
tation simultaneously indicates the order of the secular determinant, the 
solution of which yields molecular orbitals with the pertinent symmetry. 
For example, the molecular orbitals of Ag symmetry assume the form 

fP(A 1 > = c1[(1s)i + (1s)~] + c2[(2s)1 + (2S)2] + 
+ c3[(2Px)1 - (2Px)2] + c4[(1s)1 + (1S)2 + (1S)3 + (1S)4] (6-88) 

The symmetry of a problem can also be used to determine orbitals 
with specific spatial properties, called hybrid orbitals. Pauling13 demon­
strated on the basis of orbital hybridization that it is possible to 
construct linear combinations of atomic wave functions such that equi­
valent orbitals are formed which, however, are oriented in different 
directions. When, for example, describing the chemical bonding in the 
methane molecule using orbitals located in the C - H bonds, it is necessary 
to begin with four equivalent orbitals directed from the carbon atom 
to the corners of a regular tetrahedron where the hydrogen atoms are 
located. Kimball14 formulated a general procedure for describing hybrid 
orbitals on the basis of groU{\ considerations. This procedure will be 
clarified for the case when one atom forms six equivalent orbitals within 
the molecule. Such a situation is encountered when interpreting the 
properties of transition metal complexes. 

The central atom, which has six identical neighbours (e.g. atoms), 
is located at the origin of the rectangular coordinate system; the neigh­
bours, called ligands, lie on the x, y, z axes at equal distances from the 
origin (Fig. 6-4). The six equivalent hybrid orbitals on the central atom 
directed to the ligands are denoted by 0"" i = 1, 2, ... , 6. These orbitals 
span the reducible representation r, which can be decomposed into 
irreducible representations of group 0 (see Table 6-6): 

(6-89) 

In solving the problem it suffices here (cf. the case of the rectangle) to 
assign the system to the subgroup 0 of symmetry group 0h. The sym­
metry orbitals corresponding to the given irreducible representations will 
be constructed using relation (6-80). Since determination of the functions 
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spanning a multidimensional representation has not yet been discussed, 
it will be carried out here for the representation E. Using Eq. (6-80) and 
the character table for group 0 in Table 6-6, the relationship (the 
characters are real numbers) 

L X<J)ff(J1 = 4(JI - 2(J2 - 2(J3 - 2(J4 - 2(Js + 4(J6 (6-90) 
TEO 

is obtained. Since the other linearly independent function (representation 
E is two-dimensional) is to be determined, the operator is applied to still 
another function, (Jp for example 

L X<J) ff (J 2 = 4(J 2 - 2(J I - 2(J 3 - 2(J S - 2(J 6 + 4(J 4 (6-91) 
TEO 

Fig. 6-4. Schematic representation 
of octahedral complex symmetry. 

If the result is a function linearly dependent on the original function 
(6-90), it is necessary to try application of the operator on still another 
function (Ji' Here, however, this is not necessary. For reasons which will 
become obvious later, that function is chosen as the second required 
function which is obtained by multiplying Eq. (6-91) by two and adding 
to Eq. (6-90). Thus, the following function orthogonal to Eq. (6-90) is 
obtained: 

2((J2 + (J4 - (J3 - (Js) 

The functions spanning representation TI would also be constructed in 
a similar manner. Since the hybrid orbitals are assumed to be ortho­
normalized functions, the resulting functions spanning the corresponding 
irreducible representations can be written in the form 

A I: (Jfl = J6 ((J I + (J 2 + (J 3 + (J 4 + (J s + (J 6) 

E: (J~ = -ju(2(J1 - (J2 - (J3 - (J4 - (Js + 2(J6) 
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(J"~ = ~ ((J"2 - (J"3 + (J"4 - (J"S) 

T1: (J"~= ji((J"2-(J"4) 

(J"~ = ·~h((J"3 - (J"s) 

(J"~ = ji((J"1 - (J"6) (6-92) 

If the central atom is assumed to have s, p and d orbitals, nine 

functions s, Px' pY' Po, do2 ' dXLY2 ' dxo ' dyz ' dXY are available for the 
calculation. Their symmetry properties with respect to the symmetry 
operations of group 0 are such that they span the following irreducible 
represen ta tions: 

AI: s 

E: dz2 , dx2 _ y2 

T1 : Px' Py' pz 

T2 : dxz ' dyZ ' dXY 

Usually information on the transformation properties of atomic orbitals can 
be found as supplementary data in character tables, e.g., in reference 4. 
If the respective atomic orbitals are substituted for functions (J"; (it would 
be necessary, of course, to first ensure that the functions (J"; and the 
atomic orbitals possess the same transformation properties, in other 
words that their corresponding matrix representations are identical and 
not merely equivalent), then Eq. (6-92) can be rewritten in matrix form: 

A s 1/~6 1/~6 1/~6 1/~6 1/~6 1/~6 (jl 

E d=2 1/~3 -1/~12 -1/~12 -1/~12 -1/~12 1/~3 (J"2 

dx2 _ ).2 0 1/2 -1/2 1/2 -1/2 0 (j3 

TI Px 0 I/J2 0 -1/~2 0 0 (j4 

Py 0 0 1/~2 0 -1/~2 0 (js 

Po 1/~2 0 0 0 0 -1/~2 (j6 

(6-93) 

The inverse of transformation (6-93) allows expression of the hybrid 
orbitals in terms of atomic orbitals. Since the transformation matrix is 
a unitary matrix, replacement of the rows by the columns leads to the 
inverse of the original matrix [cf. Eq. (4-110)]. Thus, for example, the 
hybrid (J" I oriented in the direction of the positive part of the z-axis is 
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given by the expression 
1 1 1 

(J 1 = J6 s + J3 dz 2 + J2 Pz (6-94) 

Thus it has been shown that the d2sp3 electron configuration is capable 
of forming equivalent orbitals in the direction of three right-angled axes. 
Kimball 14 has published a table of possible configurations for hybrid 
orbitals (cf. Table 7-2) corresponding to coordination numbers 2 to 8. 
Thus, for example, with compounds of the methane type, where four 
equivalent orbitals must be constructed along the axes of a regular 
tetrahedron, an s orbital must be combined with three p orbitals. Using 
the notation for electron configurations this can be expressed as Sp3 
hyJ,ridization. 

6.7 Spin and spatial symmetry 
of many-electron systems 

In Section 5.4, a very general way of expressing the wave function of 
a many-electron system in the form of a linear combination of Slater 
determinants was described. Since the molecular Hamiltonian does not 
usually contain operators depending upon spin variables, the operators 
of the total spin [/z and [/2 are constants of motion and it is, therefore, 
expedient to expand the total wave function by means of linear combina­
tions of the Slater determinants chosen so that they are eigenfunctions 
not only of [/z' but also of [/2. 

In order to investigate the action of the spin operators and sym­
metry transformations, the general Slater determinant is studied: 

AK(l, 2, .. . ,11)= 1 (fJ1(1) 111(1), (fJ2(2) 112(2), ... , (fJn(n) l1n(l1) I, (6-95) 

where the notation introduced in Eqs. (5-29) and (5-32) is employed. The 
function 11 is a general spin function which can be (X or p, according to the 
circumstances. The definition of [/z from Eqs. (4-84) and (4-76) permits 
instant application of the operator to function (6-95). Thus, it is seen 
that AK is the eigenfunction of [/z: 

(6-96) 

where n" is the number of (X spins and 11(J is the number of f3 spins 
in the Slater determinant AK , for which it holds, of course, that 11 = 

= 11" + I1p . 

It must simultaneously be stated that the form of the total angular 
momentum (spin or orbital), as introduced in Eqs. (4-66), (4-76) and (4-85), 
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requires a certain modification in order to investigate its effect upon 
product functions. 

This modification, which we shall demonstrate on relations of the 
angular momentum, can also be directly applied to the spin momentum. 
It consists in rearranging the commutation relations of type (4-65) to 
the form 

[2z, 2+] = h2+ 

[2 z' 2 _] = - h2 _ 

[2 + , 2 _] = 2h2 z' 

(6-97a) 

(6-97b) 

(6-97c) 

where 2+ and 2_ are called the shift operators, defined by equations 

2 + = 2x + i2y 

2_ = 2x - i2y 

(6-98a) 

(6-98b) 

Operators 2 + and 2 _ are called shift operators because of a further 
given property. The relation of the functions 

(6-99) 

to the operator 2 z ' where Ylm are the spherical harmonics (see Table 3-1) 
is of particular interest. Employing commutation relations (6-97) and 
Eqs. (4-72) and (4-74) it then follows that 

1 
2 z(2 + Ylm) = 7/ 2 z(2z2 + - 2 +2z) Ylm = 

1 2 = 7/2z2+ Ylm - 2 z2+ mYlm (6-100) 

On multiplying Eq. (6-100) from the left by 2; 1, the expression 

(6-101a) 

is obtained, and, in an analogous way, also obtained is the relationship 

(6-101 b) 

Equations (6-101) indicate that the functions 2 + Y lm and 2 _ Y lm are also 
eigenfunctions of 2 z with eigenvalues h(m + 1) and h(m - 1), respectively. 
It follows from Eqs. (4-72) and (4-74) that 

2 + Ylm = .A+ YI,m+l 

2 _ Ylm = A_ YI,m-l' 

(6-102a) 

(6-102b) 

where A + and A _ are proportionality constants. These constants can 
be determined from the conditions that all functions Y lm must be normal-



ized and that the relationship 

-I ~ m ~ I 
is valid for m: 

A+ = h[/(l + 1) - m(m + 1)]1/2 = h[(/ - m)(/ + m + 1)]1/2 

A_ = h[/(/ + 1) - m(m - 1)]1/2 = h[(/ + m)(/ - m + 1)]112 
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(6-103a) 

(6-103b) 

It can easily be verified using commutation relations (4-65) that the 
operator of the square of the angular momentum can be alternately 
expressed as follows: 

Ie2 = Ie _Ie + + Ie; + hIez 

Ie2 = Ie +Ie _ + Ie; - hIez 

(6-104a) 

(6-104b) 

In comparison with the previous expression [cf. Eq. (4-66)], this relation­
ship has the advantage that the effect of all the operators on the 
right-hand side of the equations on the one-particle functions is known. 
This advantage is not yet apparent in the simplest case when 

Ie2Y 1m = (Ie _Ie + + Ie; + hIez) Y 1m = 
= h[/(l + 1) - m(m + 1) + m2 + m] Y1m = h2 /(1 + 1) Y1m , (6-105) 

where the self-evident result is obtained [cf. Eq. (4-71)]. If Ie2 refers to 
the total angular momentum of n particles, then 

n n n 

Ie2 = Ie; + Ie; + Ie; = (L Ie xJ2 + (L Ie yJ2 + (L Ie zJ2 = 
i=1 i=1 i=1 

n n n 

= LIe? + 2 L IeziIezj + L (Ie +iIe _ j + Ie -iIe +), (6-106) 
i=1 i<j i<j 

where subscripts i and j denote the angular momentum operators of the 
individual particles. The operator in this form is directly applicable to 
determinant functions and is currently used in atomic quantum theory. 

Analogous relationships apply for the spin momentum operators; 
the possible values of the spin quantum numbers must, of course, be borne 
in mind [see Eq. (4-84)]' Thus Eqs. (6-102) and (6-103) for the one-electron 
spin operators acquire the form 

f/'+ C( = 0 (6-107a) 

f/'+!3 = hC( 

f/' _C( = hf3 

f/' -f3 = 0, 

where f/' + = f/' x + if/' y and f/' _ = f/' x - if/' y. 

(6-107b) 

(6-107c) 

(6-107d) 
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For illustration the form of f/2 for a two-electron system will be given: 

f/2 = f/i + f/~ + 2f/z1 f/z2 + f/ +1f/ -2 + f/ -1f/ +2' (6-108) 

where the numbers denote the dependence of the operators on the particle 
coordinates. To determine the eigenfunctions of f/2 as linear combination 
of Slater determinants, the Slater determinant is introduced: 

1 1- 1 I(PI(l)11t(I), CfJ2(1) '12(1) I 
CfJI'1I' CfJ2'12 - -;;2 (PI(2) '11(2), CfJ2(2)'12(2) 

(6-109) 

Two cases will be distinguished: 

a) '11 = tX, '12 = tX or '11 = p, '12 = P 
In view of the validity of Eq. (6-107), only three terms yield non-zero 

contributions when operator (6-108) acts, for example, on the determinant 

1 CfJl tX, QJ2tX I: 

f/2ICfJltX,QJ2tXl=li2[! +! + !]iQJltX, QJ2tX 1 = 

= li 2 • 1(1 + 1) 1 QJl tX, QJ2tX I, (6-110) 

in other words the determinant is an eigenfunction of f/2 with S = 1 
[cf. Eq. (4-85)] and therefore corresponds to a triplet state*. The following 
expanded form of the determinant is also worth noting: 

1 
iQJl tX,QJ2 tX i = J2 [QJI(I) QJ2(2) - QJI(2)QJ2(I)]tX(l)tX(2) (6-111) 

The conclusion would be analogous if both spin functions were P functions. 
These two determinant functions differ by an eigenvalue with respect 
to f/z' which, according to Eq. (6-96), has the value Ii for the first case 
and - Ii for the second case. 

b) IJ 1 = tX, '12 = P or 

When applying operator (6-108) to the two determinants, it follows 
that neither of them is an eigenfunction of f/2. However, on formation 
of linear combinations, it follows that 

f/2 { )2 (i QJ I tX, QJ2PI ± 1 QJ IP, QJ2 CX i)} = 

= );{(! + ! - ~ ± l)i QJI CX, QJ2PI + 

+ (1 ± [! + ! - !])iQJIP,QJ2CXi}, (6-112) 

* The quantity (2S + 1) is termed the mUltiplicity of the state; e.g., S = I corresponds 
to a triplet and S = 0 to a single state. 
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where the combination with the positive sign corresponds to the triplet 
state (S = 1) and the combination with the negative sign corresponds 
to the singlet state (S = 0). The two functions have the common property 
that they are eigenfunctions of Y z with eigenvalues equal to zero. The 
expanded form of functions (6-112), 

1 J2"(1 ({J1 rx, ({J2(3 1 ± 1 ({J1(3, ({J2 rx I) = 

= H rx(l) (3(2) ± rx(2) (3(1)] [({J t (1) ({Jz(2) =+= ({Jt (2) ({J2(1)], (6-113) 

enables comparison with Eq. (6-111), leading to the conclusion that the 
triplet state consists of the product of a symmetrical spin function 
and an antisymmetrical spatial function; for the singlet state the sym­
metries are the reverse. 

The given example of a two-electron system demonstrates the 
method used in studying the symmetry properties of a product function 
of the Slater type of determinant. The spatial (molecular) orbitals 
({J1' ({Jz, ... , ({Jp ... in the Slater oeterminant are assumed to correspond 
to the irreducible representations r 1> r 2' ... , rp .. . . The symmetry 
properties of the determinant then correspond to the product represen­
tation which is generally reducible and which can be decomposed 
according to Eq. (6-40): 

r 1 ® r 2 ® ... ® rj ® .. . = r = r,rj 
j 

(6-114) 

The spin function product, which also generates a generally reduc­
ible representation, 

(6-115) 

decomposable into components which correspond to the pure spin states 
of a many-electron system, can be interpreted similarly. This is, of course, 
only another way of expressing the vector addition of spin momenta 
[see Eqs. (4-85) and (4-79)]. 

The resulting states corresponding to the products of the spatial 
and spin functions can then be satisfied using the dual notation r j , r(s» 
where the first symbol indicates the behaviour of the function under 
transformation of the space coordinates and the second indicates the 
properties of the function towards operations affecting the spin coordin­
ates. It is, of course, necessary that the total function satisfy the Pauli 
principle, i.e. that it be antisymmetrical towards permutation of the 
electron coordinates. 
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In order to be able to express the left-hand sides of Eqs. (6-114) 
and (6-115), the occupation of the one-electron energy levels, i.e. the 
electron configurations, must be known. The solution will be demon­
strated on a particular case, using the benzene molecule in the so-called 
n-electron approximation, in which only the most freely bonded electrons 
of the double bonds (see below) are considered. The electronic states are 
assumed to be given in the form of a linear combination of p orbitals, 
oriented perpendicularly to the benzene ring plane, i.e. in the orientation 
given in Fig. 6-5 by the six Pz orbitals located on the nuclei of the 
carbon atoms. The benzene molecule is considered to be a suitable 
example since, because of its high symmetry, degenerate one-electron 
states must be considered, which somewhat complicates the analysis of 
the symmetry properties of the states. 

Six Pz atomic orbitals (denoted Pi where the subscript i indicates 
the relationship to the atom) form the basis of the reducible represen­
tation r of the group D6h • Decomposition of this representation using the 
character table (Table 6-5) leads to following result: 

(6-116) 

It must be borne in mind, however, that Pz orbitals are antisymmetric 
with respect to the XY(O'h) plane. Similarly as in the previous example 
of an electron in the field of four protons, it is possible to use symmetry 
considerations to determine the complete form of the molecular orbitals 
(in non-normalized form) : 

C/11(A 2u) = Pl + P2 + P3 + P4 + Ps + P6 

C/12(E1g) = Pl + P2 - P4 - Ps 

C/13(E 1g) = Pl - P2 - 2P3 - P4 + Ps + 2P6 

C/14(E2u) = Pl+ P2 - 2P3 + P4 + Ps - 2P6 

C/1S(E2J = Pl - P2 + P4 - Ps 

C/16(B 2g) = Pl - P2 + P3 - P4 + Ps - P6 

(6-117) 

Any calculation within the framework of the one-electron approximation 
(for example, using the Hiickel method) would afford the sequence of 
energy levels (from the lowest energy value) A2u ' E1g , E2u ' B2g (cf. Fig. 6-6). 
By distributing the six electrons which form the "n-electron" system into 
one-particle levels, the electron configurations are obtained. States of 
different spatial symmetry and spin multiplicity can arise from a given 
electron configuration. 

In Fig. 6-6 is given, as the first case, the ground state configuration 
[cf. Eq. (5-45)] corresponding to the configuration (A 2Y (Elg)4; the 



Fig. 6-5 . Symmetry operations of the 
benzene molecule. 
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occupation is denoted by the upper indices. In this configuration all the 
bonding levels are fully occupied by electrons and the only way of 
realizing occupation of the molecular orbitals is complete spin pairing. 
For this reason only a single state corresponds to this configuration, 
denoted I A ,where the multiplicity symbol (upper index) and the total 1. 
spatial symmetry symbol are combined. Without going into greater 
detail, analysis of the doubly excited configuration (A 2Y (E 1g)2 (E 2Y, 
also given in Fig. 6-6, will be carried out; of all the possible doubly 
excited configurations, this one gives rise to the largest number of states 
and affords a general description 15 of their determination. 

][ ][ 

>. ~9 --
0-
L 
Q) 

E2u----~ . -0-- ~ -0--

r 
E,g 0<>- -0-0- ~ ~ -0-0- -0--

A2u 0<>- <>-0- -0-0-

Fig. 6-6. Schematic representation of some electron configurations of the It-electron system 
of the benzene molecule. 

First it is expedient to divide the total electron system into individual 
subgroups which occupy degenerate or non-degenerate energy levels. 
These subgroups of electrons correspond to certain electronic states 
which can be used for determination of the total electronic states by 
forming the direct product of the "partial" electronic states. 
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The electron pair occupying the A2u level is the first subgroup in the 
studied doubly excited configuration. Because it is a non-degenerate level 
according to the Pauli principle, these two electrons have opposite spins 
and their total spin is zero, i.e. the multiplicity is equal to one. The 
spatial symmetry of the "partial" state can be expressed as the direct 
product, for which (cf. Table 6-5) 

(6-118) 

Thus a single state belongs to the first electronic subgroup, which is 
expressed symbolically as 

(6-119) 

It is easily verified that each level with closed shell character has the 
same symmetry properties. The second subgroup consists of electrons 
which partially occupy the degenerate E 19 level. The Pauli principle 
permits two possible states for the total spin, S = 0 and S = 1, for the 
pair of electrons in this level, according to whether the electrons have 
the same or the opposite spin. The situation is similar to the already­
described two-electron system starting with Eq. (6-109), where it was 
found that the triplet state is connected with the antisymmetric space 
function, whereas the singlet state corresponds to a symmetric space 
function. It appears that the product representation with basis (6-50) 
formed from two sets of functions, ({Jp i = 1, ... , m, and t/lp i = 1, . .. , m 
(m ~ 2), which both span the same irreducible representation A(T), Te G 
(so that ({Ji == t/lJ, can be expressed as the direct sum of two representa­
tions (not necessarily irreducible), of which one can be combined with 
the singlet function and the second with the triplet functions. The sym­
metrical product «({Jit/l j + ({Jjt/l i) spans the first representation, which has 

the dimension ~ (m + 1), the antisymmetrical product «({Jit/l j - ({Jjt/l i) spans 

the second representation of dimension ~ (m - 1). 

It can now be shown that the characters 

connected with the representations defined on the basis of symmetrical 
(S-) and antisymmetrical (AS-) products, can be expressed in a simple 
manner. The action of the operator :!T of the given symmetry group G, 
for example, on the general function corresponding to the basis of the 
S-products can be written according to Eq. (6-49): 
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m m 

ff(<{Jit/l j + «Jjt/li) = L L Af)A\j)(<{Jkt/l, + «J,t/lk) = 
k=l'=l 

m m 

= L LA}) A\f)(<{Jkt/l, + «J,t/lk) = 
k= 1 ,= 1 

_ 1 ~ ~ (T) (T) (T) (T) - 2 k~\ '~l (Aki Alj + Akj Ali )(<{J kt/l , + «J,t/lk) (6-120) 

It appears from Eqs. (6-50) and (6-51) that in the diagonal element of the 
product representation i = k,1 = I and that the character of the represen­
tation defined by Eq. (6-120) can thus be expressed as follows: 

1 m m 

[X~J~T) = 2 i~l Jl (A~f> Aj~) + A~P Ajf») (6-121) 

According to Eq. (6-54), the first term in the sum in Eq. (6-121) expresses 
the square of the character of the representation A(T), TE G; the second 
term represents the trace of the matrix product of two matrices A(T) 
and therefore corresponds to the character of the matrix A(V), where "Y 
is the operation corresponding to repeated action of operator ff, 

"Y = ff2 

Therefore, Eq. (6-121) can be written in the final form 

[Xi]~T) = H(X~»)2 + X~T)] 

(6-122) 

(6-123) 

For the representation corresponding to the AS products, it can similarly 
be derived that 

(6-124) 

Equations (6-123) and (6-124) enable the symmetric and,asymmetric 
parts of the direct product E 1g ® E1g to be found. The squares of the 
characters (x1!?l of the irreducible representation E1g of the group D6h 

can easily be calculated. They are also given in the lower part of 
Table 6-5. In determination of the X<[.,~) values, the characters of group D6h 

are again used, where it is always necessary to determine operation "Y 
according to Eq. (6-122) and to find its respective character. Thus, for 
example, repetition of operation ~ 6 leads to operation ~ 3' repetition 
of ~ 2 leads to cf, etc. Table 6-5 also gives the resulting values of 
characters XE(TT), together with values 

Ii 

[X2 J(Tl and [X2 ](T) 
Eli S Eli AS 

determined according to Eqs. (6-123) and (6-124). If the values of the 
characters in the last line of this table are compared with the values of the 
characters of representation A2g , they are found to be equal. Since the 
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antisymmetric space product function is combined with the triplet spin 
state, the conditions for the existence of state 3 A2g are fulfilled. The 
character of the symmetric product representation obviously corresponds 
to a reducible representation which can be decomposed, using Eq. (6-56), 
into a direct sum of irreducible representations (A Ig + E2g ). If we bear 
in mind that these spatial functions are to be combined with the singlet 
spin functions, the possible states of the second subgroup of electrons 
can be written in the form 

(6-125) 

It could be found, using a similar procedure, that for the third subgroup 
of electrons the following decomposition is valid 

(6-126) 

All the states corresponding to the configuration (A 2Y (E Ig)2 (E2Y 
of the six-electron system can be determined by expressing the direct 
product 

SG[(AzY] ® SG[(E 1/] ® SG[(E2Y] = 
= eAlg + lE2g + 3A2g)®eAlg + lE2g + 3A 2g), (6-127) 

where it has already been taken into account that the direct product is not 
affected by multiplication by the totally symmetric representation 1 A 1 g . 

Multiplication and further decomposition yields 

1A18 + lE2g + 3A Zg + 1E28 + 1E2g ® lE2g + 1E28 ® 3A 2g + 
+ 3A 2g + 3A 2g ® lE2g + 3A28 ® 3A 2g = (6-128) 

= 5 A I g + 3 Al g + 3 1 A 1 g + 2 3 A 2g + 1 A 2g + 2 3 E 2g + 3 1 E 2g ' 

where the rules for vector addition of spin momenta [cf. Eqs. (4-85) and 
(4-79)] according to which it is possible to decompose two "partial" 
triplet states into "total" quintet, triplet and singlet states, were also 
employed. 

Analysis of the given configuration, considering all possible states, 
is so much more complicated than the other cases that search for all 
possible states of the remaining configurations is, by contrast, an easy 
matter. Thus, for example, the s.tates which can be derived from the 
direct product 

2Elg® 2Ezu = 38 1u + 382u + 3E 1u + IB lu + IB2u + 1Elu (6-129) 

correspond to the singly excited configuration (AzY (E1g)3 (E2Y, also 
schematically represented in Fig. 6-6. The attentive reader has certainly 
noticed a certain difference in direct multiplication amongst cases where 
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the symmetry "inside" the degenerate level is being studied and cases 
where the direct product of "partial" states of electron subgroups is 
expressed [cr., for example, Eqs. (6-126) and (6-129)]. This difference 
follows from the validity of the Pauli principle and is manifested in the 
fact that, in the first case, all possible spatial symmetries with all possible 
spin states cannot be realized, as they are in the second case. 

The considerations given so far include almost all cases which we 
might encounter when studying the symmetry properties of configurations, 
except for the electron configuration (IV, where T denotes one of the 
triply degenerate irreducible representations occuring in some groups of 
high symmetry. It is sufficient to state here that they can be solved 
similarly as in the determination of the states of atoms, which makes use 
of the shift operators which were already introduced in Eqs. (6-98) 
and (6-107). 

6.8 Perturbation treatment 
for symmetrical systems 

In this section a few remarks will be given, supplementing the discussion 
of the perturbation method in Section 4.6, from the viewpoint of sym­
metry relations between solution of the original and the perturbed system. 

The basic equation of the perturbation treatment [Eq. (4-145)], 
where the Hamiltonian of the investigated system ;Ye can be separated 
into the Hamiltonian of the unperturbed system ;YeO and the perturbation 
term 1/", can be written 

;Ye = :Yr .. + A1/", (6-130) 

where A is only a parameter. Roughly speaking, ;Yeo corresponds to the 
approximate solution of the problem, ignoring a number of finer effects 
which are included in contribution 1/". It can thus be expected that 
operator ;Yeo has a higher degree of symmetry than Hamiltonian ;Ye and 
that the group of symmetry transformations G of ;Ye will, therefore, be 
a subgroup of the group of symmetry transformations Go of the un­
perturbed Hamiltonian, ;Yeo. 

Let us consider an eigensolution of the unperturbed Hamiltonian 
¥f0 corresponding to a g-fold degenerate energy level E~. According to 
Theorem 6-1 in Section 6.4, the corresponding eigenfunctions "'~ , t/I~, ... , "'; 
(cf. last part of Section 4.6) span the irreducible representation ro of 
group Go. The decrease in symmetry under the influence of perturbation "II 
can result in ro becoming reducible with respect to the new group G: 

ro = r 1 + r2 + ... + rill (6-131) 
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If it is decomposed into m irreducible representations of group G, then 
this phenomenon can be interpreted in physical terms by stating that the 
original energy level, E~, is split by the perturbation into m new levels 
which can be classified according to the irreducible representations of 
group G. The same result would, of course, be obtained by analysis of 
the matrix elements of the secular determinant (4-160) from the viewpoint 
of selection rules [Eq. (6-65)] if the matrix elements of operator f were 
expressed in terms of the symmetry functions corresponding to group G. 

A practical application of these general considerations can be dem­
onstrated on one of the quantum chemical methods for calculation 
of the properties of inorganic complexes, the crystal field theory which 
is based on the model given below. The Hamiltonian of a free atom, 
considering only electrostatic interactions, is invariant under the simul­
taneous rotation of the coordinates of all the electrons. This type of 
symmetry of the Hamiltonian leads to degeneracy of the atomic terms, 
so that, for example, the energy level of a single electron in the d state 
is five-fold degenerate - since there are five different d functions. If the 
atom is exposed to the effect of ligands (i.e. of chemically bonded adjacent 
atoms) and if the resulting configuration of nuclei corresponds to sym­
metry group G, the original spherical symmetry of the atom is disturbed 
and the original degeneracy will be resolved or "lifted". Quantum numbers 
Land M L cease to be valid and are replaced by quantum numbers r 
and mr , where r denotes the irreducible representation of G and mr 
denotes a component of the multidimensional irreducible representation r. 
It was found, for example, in Section 6.6 in the discussion of the con­
struction of hybrid orbitals that, if the atom is placed in a ligand field 
of octahedral symmetry (see Fig. 6-4), splitting of the atomic degenerate d 
states into two new states, corresponding to irreducible representations E 
and T of group 0, occurs. Thus the originally five-fold degenerate level is 
split into two new energy levels, one three-fold degenerate and the other 
doubly degenerate. 
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7. ATOMIC ORBITALS (AO) 
AND MOLECULAR ORBITALS (MO) 

7.1 The significance 
of hydrogen-type orbitals; 
atomic orbitals 

The solution of the Schrodinger equation for the hydrogen atom can 
rarely be used directly in more complex chemical problems. This solution 
nevertheless forms a basis for the study of more complicated atoms and 
even for molecules. The possible modes of graphical representation of the 
radial and angular parts of hydrogen-type functions - the atomic orbitals­
have already been described. Thus only a few remarks will be given here 
in this connection: 

(i) The application of computers permits information on the graphical 
representation of complete AO's to be obtained 1. 

(ii) Frequently, the graphical representation of the angular part is 
particularly useful. It should be noted that the contours in Fig. 3-lOb 
indicate the regions in space in which the electron can be found (with 
the given probability). This figure is not to be understood as describing 
a "smearing out" of the electron charge in space. 

(iii) The sign of the wave function (+ or -) in the individual AO 
parts must be specified. This is important when analyzing the symmetry 
of the studied formations and in the calculation of some integrals. The 
sign of the wave function is, however, of no physical importance (in the 
sense of comparison with a physical quantity). 

In qualitative considerations it is often expedient to form molecular 
orbitals - one-electron functions distributed over the entire molecule - on 
the basis of the principle of effective overlap of the atomic orbitals. 
In this connection not only the atomic orbitals themselves (hydrogen-type 
wave functions) but also linear combinations thereof, called hybrid orbitals 
[linear combinations of orbitals corresponding to a single atom (cf. 
Section 6.6)] are employed. 
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7.2 Hybridization 

The concept of AO hybridization is of particular importance in explaining 
the spatial arrangement of inorganic and organic molecules. The concepts 
of hybridization and hybrid orbitals have already been introduced in 
Section 6.6, where hybrid orbitals were constructed on the basis of 
symmetry considerations using group theory. In this section the physical 
aspect of the problem will be discussed; hybridization in the carbon 
atom will be mentioned in greater detail, as this atom is the basic 
building unit of an important and extensive group of organic compounds 
and because it is an especially instructive case. 

ex, ~ f09' 

a) 

;3 = 120· 

b) 

H~C-H 

180' 

c) d) 

Fig.7-\. Various types of carbon compounds: (a) methane, (b) ethylene, (c) acetylene, 
(d) carbene. 

First a survey of bonding types in organic compounds will be given 
(Fig. 7-1). The carbon atom in the ground state ep) corresponds to 
a a-double-bonded atom, these bonds being perpendicular. These condi­
tions apparently do not exist in any of the mentioned molecules. An 
explanation for this specific situation can be achieved by assuming the 
carbon atom to be in an excited state eS; Fig. 7-2) and by forming four 
new orbitals as linear combinations of the four original singly occupied 
orbitals (2s, 2px' 2py, 2pz). These new orbitals, called hybrid orbitals, 
are equivalent and possess quite different directional properties than the 

list (2s'f (2p)2 (151 (25) (2p)3 (ld (Sp3)~ 

2p+ + 2p+ + + 
sp3+ + + + 

25-tt 25+ 

15* 15-1t- 15-tt-
a) b) c) 

Fig. 7-2. States of the carbon atom: (a) the 3p ground state (cr divalent), (b) the 5S excited 
state (cr tetravalent non-hybridized), (c) the Sp3 hybridized state (cr tetravalent). 
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initial orbitals. Their spatial arrangement can be depicted by placing the 
nucleus of the atom in the centre of a regular tetrahedron so that the 
individual hybrid orbitals are directed toward its corners. These orbitals· 
are called Sp3 or tetragonal orbitals. The four hybrid orbitals are some­
times denoted te p te2, te3, te4 . They have the following form (Fig.7-3): 

0) 

tel = i(s + Px + Py + Pz} 

te2 = i(s + Px - Py - pz} 

te3 = i(s - Px + Py - Pz} 

te4 = i(s - Px - p)' + P:) 

Fig. 7-3. "Contours" of electron 
densities for the Sp3 hybrid orbital : 

nodal surface (----), symmetry axis 
(-.- .-). The thick arrow indicates 

the part which is usually depicted 
(considerably deformed) in graphical 

representations (see Fig. 7-4). 

Py I#z 

. ..-

120° 

b) c) 

Z'l. 
~" 

(7-1) 

Fig. 7-4. Hybrid orbitals of the carbon atom (not cross-hatched): (a) Sp3, (b) sp\ (e) sp. 
Non-hybridized orbitals are cross-hatched (below the indicated plane by dashed lines). 

The four hybrid Sp3 orbitals are depicted in Fig. 7-4; for lucidity 
only the larger parts of the orbitals* in which the presence of the electron 
is more probable are given. These hybrid orbitals are used for the 
theoretical description of saturated organic compounds. For the descrip­
tion of conjugated compounds, trigonal Sp2 hybridization and linear 
(digonal) sp hybridization (Fig. 7-4b, c) are of particular importance. As 

* On the axis of this larger part but in the opposite direction lies a smaller part of 
the orbital (separated by a nodal plane), which is, however, not shown for the sake of 
simplicity (cf. Fig. 7-3). 
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will be shown later, hybrid orbitals (Sp2, sp) are used for the description 
of C - C and C - H a-bonds and the remaining nea-hybridized orbitals 
(pz; . Pz and Py) are used for the description of 1t bonds, which are 
responsible for the characteristic behaviour of conjugated compounds 
(conjugated double or triple bonds) (Table 7-1). 

Survey of Hybridization of the Carbon Atom Orbitals' 

px py pz Hybrid orbitals Non-hybrid 

(number) orbitals 

[1 1 I Sp3 (4) none 

11 IJ Sp2 (3) p, 

11 II sp (2) Py' Pz 

all 

• Framed values are AO's used for construction of the hybrid orbitals. 

b The angle formed by the hybrid orbitals . 

Survey of Hybridization in the Central Atom in Complexes 

Geometrical arrangement 

linear 

nonlinear 

trigonal plane (120° angles) 

trigonal pyramid 

tetrahedron 

square 

trigonal bipyramid 

pentagonal plane 

octahedron 
dodekahedron 

Coordination number 

(number of hybrid orbitals) 

2 

2 
3 

3 

4 

4 

5 

5 
6 
8 

Table 7-1 

1090 

1200 

1800 

Table 7-2 

Hybrid orbital 

sp 

dp 

ds 
Sp2 

dp2 
p3 

d2p 
Sp3 

d3s 
dsp2 

d2p2 

dsp3 

d3sp 
d3p2 

d2sp3 

d4 sp3 
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y 

z 
I 
I 

-u .. - ___ ~"'U_--- X Fig. 7-5. Model of an octahedral 
complex: oentral atom ., ligands O . 

The d2sp3 hybrid orbitals are 
represented by arrows. 

In connection with transition metal compounds, the coordination 
number and the geometric properties of the central atom are of interest 
(Table 7-2), cf. Sections 6.6 and 10.6. Most important is octahedral d2sp3 

hybridization, in which the individual hybrid orbitals are directed (towards 
the ligands) in the direction of the axes of rectangular space coordinates 
(Fig. 7-5), cr. Sections 6.6 and 10.6. For example Eq. (6-94) is valid for the 
hybrid orbital oriented in the direction of the positive part of the z-axis. 

7.3 Molecular orbitals 

In Sections 5.5 and 5.6 the concept of the one-electron wave function 
(a function depending upon the coordinates of a single electron), describing 
the electronic state in molecules within the framework of the one-electron 
approximation, was introduced. These functions are called molecular 
orbitals and were denoted by symbol <po An effective procedure for 
construction of these MO's from atomic orbitals in the form of a linear 
combination (LC) of atomic orbitals X (hence the abbreviated name of the 
method MO-LCAO) was also shown: 

(7-2) 

In this equation e/l denotes parameters to be determined and the X/l's are 
the individual AO's that are considered when forming the MO. The 
assumed shape of the molecular orbitals has been discussed in detail in 
Section 5.6. 

The atoms combine to form molecules, provided this process is 
connected with a decrease in the total energy. It appeared that the 
process of covalent bond formation can be described by two apparently 
very different methods - the MO method and the valence bond (VB) 
method. It can be shown, however, that these methods are equivalent in 
many ways (cf. Section 10.5). For this reason and also because the 
application of the VB method is much more complicated with more 
complex molecules, only the MO method will be discussed here. 
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Covalent bonds have been shown to be formed when an effective 
overlap of the atomic orbitals occurs (the conditions for the formation 
of ionic bonds will be discussed later). Therefore this property can be 
used for a qualitative estimation of the bonding conditions in molecules 
without performing calculations based on the variation or perturbation 
treatments. 

A quantitative measure of the overlap of the atomic orbitals can 
be obtained using the overlap integral. Since we are chiefly interested in 
the overlap of atomic orbitals, the overlap integral 5/lv can be defined as 

5/lV = J X:Xv dr, (7-3) 

where X/l and Xv are atomic orbitals localized on the same atom or on 
two different atoms. The overlap integral can be defined, of course, as 
well as for X/l and Xv also for other types of functions. When the 
functions in the integrand are identical, Eq. (7-3) becomes the normali­
zation condition 

(7-4) 

The value of integral (7-3) lies within the limits, -1, 1. It is important 
for the formation of the chemical bond that 5/lV be positive and if the 
bond is to be sufficiently strong, 5/lV must be relatively large, as it is 
assumed, according to the principle of maximum overlap, that the strength 
of the bond is directly proportional to the value of the overlap integral. 

In contrast to the calculation of the other integrals which were 
discussed earlier (matrix elements), calculation of the overlap integrals 
should, in principle, present no difficulties (cf. Section 9.3). The calculation 
need not be carried out, however, for atoms of the first series of the 
periodic table of elements, since tabulated values3 of overlap integrals 
for Slater-type orbitals (cf. Section 8.1) are available. 

If the overlap between two atomic orbitals is relatively large, the 
formation of molecular orbitals 

(7-5) 

describing a strong bond can be assumed. By means of linear combina­
tions exactly the same number of independent new functions can be 
formed from m original functions. Two molecular orbitals can be formed 
from two atomic orbitals. In order to retain a general approach and yet 
to be able to work with simple expressions, the expansion coefficients 
will be denoted by two subscripts, generally c/li ' where the first subscript 
(Il) denotes the atomic orbital and the second subscript (i) denotes the 
molecular orbital. Thus the two molecular orbitals can be written as 
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(7-6) 

(7-7) 

Now the conditions for the formation of effective overlap can be 
specified. The approach of the orbitals to a small distance (mostly 0.1 to 
0.2 nm) is a necessary condition (Fig. 7-6). To obtain a bonding overlap, 
the AO's must be of the same symmetry with respect to rotation or 
reflection (Fig. 7-7). If one of the AO's is symmetric and the other 
antisymmetric, the resulting overlap is zero (Fig. 7-7)2.4. If the value of 
the overlap integral is to be sufficiently large, it is necessary, of course, 
that both atomic orbitals have sufficiently large values in the same region 
of space (i.e. their product as a function of the space coordinates must 
not have a value close to zero). This condition is connected with the 
spatial distribution of the two participating atomic orbitals and it can 
be expected, considering the radial distribution of atomic orbitals, that 

12 

Y,., 
(large distance) 

St2';' a 

Fig. 7-6. Dependence of the overlap integral S 12 between two Is (Xl> X2) atomic orbitals 
on the interorbital distance. 

s s 

S~)I>O"~" teA .~. rn ~ 
A83 .~ .. 
A3j_ A 

S.uv<O ... .. .... 

- + 

S 

~ 
~ ... 

Fig. 7-7. Examples of effective (S", > 0) and ineffective (S", = 0, S", < 0) overlap of s, p and d 
atomic orbitals, from the viewpoint of covalent bond formation. Letters S and A denote 

orbitals symmetrical and antisymmetrical with respect to rotation or reflection. 
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PI P2 

.~--

0- .. .. overlap ... . .. . .. 1r-

MO formed is 

sym. (S ) antisym. (A) 
with respect to the line 
connecbnq the nuclei {:, ..... ' T . .:) 

Fig. 7-8. The overlap of two p orbitals 
in It and cr orientation. 

--~--

0.4 

0.3 

" ffi v)'" 
0.2 (?f) 

0.1 C-F 

0 
0.1 0.2 0.1 

r(nm) 

0) 

5 s ffi 6 (5,5) 

s Px 8x=>L t)(s,p) 
s Pz ~ L S -0 
5 Py .~ P. Px ~~ 6(p" ,px' 

V)~+ 

Pz Px} ~ L S -0 - r 
Py P. 
Pz Pz} m 'T(pz ,pzl 
Py Py ;r Ipy Py) 

Pz Py ~#I S-O 

b ) 

Fig. 7-9. (a) Dependence of the S", overlap integrals on interatomic distance r fo r four 
bonds: cr and It overlap. (b) The shape of dependencies of S", on r for various types of 

overlaps between the s and p orbitals (cf. Fig. 7-7). 
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the situation will be favourable if the energies of the two atomic states 
are similar. 

It appears that p-type orbitals (and higher orbitals) can overlap in 
two ways, as shown in Fig. 7-8 where the forms of the resulting MO's 
and their symmetries are also indicated. According to the symmetry, 
two types of MO can be distinguished: Q'-MO's (symmetric with respect 
to reflection in the plane in which the two atomic nuclei lie) and 1t-MO's 
(anti symmetric). A further important difference is that the orbitals of the 
first group can generally be transformed into two-centre orbitals (they 

Table 7-3 

Survey of Effective and Ineffective Overlap between X" and '/." Orbitals 

(the x-axis is the molecular axis; from Ref. 2) 

Px 
P, 
dx , 

d" 
dx1 _ v2 

effective 

s, Px ' dx2 _ V2 ' d: 1 

s, Px , dX2 _ Y2 ' d=2 

P" dx,' dxz 

P" dx .. 

d,z 
s, Px , dx2 _.v2 ' dZ1 

s S 

x, 

Overlap 

p p 

ineffective 

P" P" d", dxz, d" 
P" Pz,dx.,/dxz,d,z 
s, Px' P.=' d),z, dX2 _ Y1 ' d: 2 

s, Px' Pz' d", dxz, dx'_'" dz' 
s, Px ' PY' Pz' dxv ' d.,.:, dx1 _ V2 ' dz2 

P" Pt' dx,' dxz, d" 

6:tJ3 ~ 
~ 
~ 

Fig. 7-10. Types of overlap of s, p and d atomic orbitals leading to cr, It and 0 type 
molecular orbitals. 
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6 

~6· 0~6* 
s s <~- s Px/ ~ . (ontlbondlng) ~_ . 

-E=~6 ~E3e-6 
a) (bonding) b) 

8 
-'-~--'Jl'* 

< 8 (t)(Ontibonding ) 

( + ) 
_ ._ ._ . -1f . 

c) ( _ ) (bonding) 

d) 

e) 

Fig. 7. 11. Formation of molecular ~rbitals by atomic orbital overlap. Overlap of two s atomic 
orbitals (a). Overlap of sand p atomic orbitals (b). Overlap of the p, atomic orbitals of 
ethyletle (c~ Formation of the (J skeleton of ethylene by overlap of the sand Spl atomic 
orbitals; the bonding It-molecular orbital of ethylene (d). Formation of the (J skeleton of 
benzene by overlap of the sand Sp2 atomic orbitals. In the last figure the lowest energy 

It-molecular orbital of benzene is indicated. 
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are located mainly in the region between the two atomic nuclei) whereas 
it is typical for 1t-MO's that they are polycentric and often smeared out 
over a large number of atoms. They are therefore called de localized 
MO's (in contrast to localized MO's). In Fig. 7-9 the dependence of the 
overlap integrals (for overlap of the cr-and 1t-type orbitals) on the distance 
between the atoms is depicted. Finally the effective (S > 0) and the 
ineffective (S = 0) AO combinations (ineffectiveness caused by symmetry) 
are summarized in Table 7-3. If the overlap integral equals zero, then 
the respective functions are said to be orthogona1. Finally, examples of 
overlap leading to cr, 1t, and 0 molecular orbitals are given in Fig. 7-10 
(cf. Section 9.4). 

Fig. 7-11 indicates the form of the molecular orbitals (bonding and 
antibonding, cf. Sections 9.1 and 9.4) for several combinations of atomic 
orbitals. For several simple hydrocarbons, the formation of bonding 
MO's (the antibonding MO's are not given) of the cr and 1t types, by 
overlap of various AO's, is depicted schematically. 
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8. MANY-ELECTRON ATOMS 

8.1 The one-electron approximation 
and the periodic system of the elements1 - 3 

A system consisting of a nucleus of charge + Ze and n electrons 
(1, 2, ... , i, j, ... , n) will be chosen as a model. Two types of interactions 
occur: mutual repulsion of the electrons and attraction between the 
nucleus and the electrons. The expression for the potential energy of 
the i-th electron assumes the form 

where rj is the position vector of the i-th electron. It is assumed that the 
immobile atomic nucleus is located at the origin of the coordinate 
system. The two-electron part of the operator can be simplified (cf. 
Section 5.5) if the i-th electron is assumed to be exposed to the effect of an 
averaged potential of all the remaining electrons: Jt; then depends only 

Ze2 n e2 
Jt;(r) ~ - I I + L I I 41t1,o r i j(ti) 41tBo r i - rj 

(8-2) 

A further assumption of averaging in all directions in space can be 
introduced and a spherically symmetric potential Jt;(r) (ri is no longer 
a vector) is then obtained. These two assumptions permit functions for 
higher atoms to be obtained in the same form as for the hydrogen atom. 
The Schrodinger equation then has the form 

{~~i + !~[E -~fi(ri)]}1f' = 0 (8-3) 

Hartree and Fock 2 introduced the reduction of the many-electron Schr6-
dinger equation to this form and suggested a technique for its solution - the 
self-consistent field method (SCF method), the general theory of which 



162 

was explained in Section 5.5. It should be noted that the one-electron 
functions sought are atomic functions, the atomic orbitals. 

A great advantage of this procedure using the one-electron approxi­
mation lies in the fact that the solution (orbital) can be expressed in the 
form 

IF = R(r) Y(B, <1» (8-4) 

The atomic SCF orbitals are often algebraically expressed in the form 

IF = (~:>n~rn-l e-~r)Ylm(B, <1» (8-5) 
n,~ 

The symbols n, I and m denote the quantum numbers and, similarly as 
in hydrogen AO's, the principal quantum number n is connected with 
the number of nodal planes, for r = 0 to 00, the total number being 
(n - I - 1); here, however, the electron energy is not a simple function 
of the principal quantum number. Manipulation of these functions is 
considerably simplified if the summation in Eq. (8-5) is confined to a single 
term 

(8-6) 

where cn~ is the normalization constant, n is the principal quantum 
number and z-s e=--n 

(8-7) 

In this equation Z denotes the atomic number and S is the screening 
constant. 

The electrons are divided into three groups according to their 
principal quantum number (considering only n = 1, 2, 3): 

1s 

2s,2p 

3s, 3p, 3d 

Inside the individual groups, the radial part of the function is the same 
for all orbitals. Quantity S is calculated for an electron with a certain 
quantum number n as follows: 

1. Electrons in the higher shells are ignored. 
2. A contribution of 0.35 is taken for each electron in the same 

shell; for the 1s electron this value is taken to be 0.30. 
3. Contributions from electrons in the lower shells are included 

in such a way that for the sand p electrons a value of 0.85 is 
attributed to the nearest lower shell and 1.00 for each electron in the 
farther shell. For d electrons the value 1.00 is taken for each internal 
electron. 
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According to these rules, for example, this quantity for the 1s 
orbital of the hydrogen atom has the value 

and for occupied orbitals of the carbon atom 

J! = 6 - 0.30 = 5 70 
C"'1s 1 . 

~ _ ~ _ 6 - 2 x 0.85 - 3 x 0.35 = 1.625 
C 25 - C 2p - 2 

These rules are termed the Slater rules and are widely applied in quantum 
chemistry (but must not be confused with the rules introduced by the 
same author for calculation of the matrix elements of the Hamiltonian). 
The functions constructed according to these rules are called Slater 
orbitals. 

The periodicity of the ordering of the elements (Mendeleev's 
periodic system) can easily be understood by considering the arrangement 
of the energy levels in the atom and by recalling that, according to 
the Pauli principle, no two electrons in the same atom may have 
all four quantum numbers (n, 1, m, s) identical. 

For an atom with one electron, the orbital energies are given 
merely by the principal quantum number so that, for example, the same 
energy level corresponds to the 2s and 2p atomic orbitals. The transition 
from the potential of a point charge to the general spherically symmetric 
potential in the Hamiltonian is manifested by removal of the degeneracy 
in states which have the same principal quantum number (Fig. 3-15). 

In the ground state of atoms, the electrons occupy the atomic 
orbitals of the lowest energy (the Aufbau principle) according to the 
Pauli principle. The np orbitals correspond to higher energy than do 
the ns orbitals, but this is still substantially lower than that corresponding 
to the (n + l)s orbitals. The electrons in the nd orbitals have roughly 
the same energy as electrons in the (n + l)s orbitals. 

After occupation of the 3s and 3p atomic orbitals, the 4s level 
is occupied rather than the 3d level; after filling the 4s orbital (K, Ca; 
in K the 3d level lies about 2.7 eV higher than the 4s level), electrons 
fill the 3d level. Elements with incompletely filled 3d levels are called 
transition elements. The small energy difference between the 3d and 4s 
states is demonstrated by the fact that, for example, chromium does 
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Table 8-2 
Approximate Differences in Energy between the 2s and 2p One-Electron States in eV [Ref. 1J 

Li Be B c N o F 

E(2p) - E(2s) 1.9 2.7 3.6 4.2 10.9 15.6 20.8 

not have the expected configuration 4s23d4 , but 4s3d5• After occupation 
of the 3d orbitals (Sc ... Zn) the 4p levels (Ga ... Kr) are gradually 
filled and the process is repeated in the 5s, 4d and 5p levels. It is 
characteristic for the second series of transition elements (Y ... Cd) 
that the 4d AO's are incompletely occupied. After occupation of the 6s 
orbitals (Cs, Ba), the 4f level is gradually filled; these are the rare earth 
elements (La ... Vb). A similar situation at the 5f level exists for the 
actinoids (Ac ... No). These relationships are summarized in Table 8-1. 
Finally, in order to obtain a more quantitative notion, the differences 
in the energies of one-electron 2p and 2s states are given in Table 8-2 
for the elements of the first series of the periodic system. 

8.2 The total angular momentum4 ,5 

The introduction of the total electron angular momentum in atomic 
systems has already been discussed in several chapters (cf. Sections 4.4 and 
6.7). Therefore, only the important conclusions from the above text and 
several applications of the rule of vector addition of the individual 
angular momenta to give the total angular momentum will be given here. 

The magnitude of the orbital angular momentum is given by 
h J[ L(L + 1)]; the resulting orbital quantum number L can be obtained 
from the values of the quantum numbers of the individual electrons by 
vector addition. Only electrons in incomplete shells contribute (for 
example, in the ground state of the sodium atom only one of eleven 
electrons need be considered; there is no contribution from the 1S2, 2S2 
and 2p6 electrons). It should be added that the magnitude of the orbital 
angular momentum of the individual electrons is h J[l(l + 1)]. 

Quantum number L defines the energy of atomic states, which are 
called terms; we denote the individual terms by capital letters according 
to the values of L as follows: 

L: 0 1 2 3 4 
notation of the state: S PDF G 
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The analogy with the symbols used for the individual electrons (s, p, d, ... ) 
is obvious. The component of the angular momentum in the direction 
of the z-axis equals hM L; the only possible values of quantum number. M L 

are L, L - 1, ... , 0, ... , - L. 
Figure 8-1 depicts the vector addition3 (i.e. the calculation of L) 

for p2, p3 and d2 configurations. The addition for p2 (Fig. 8-1a) is clear: 
three states arise, 0, P and S. It is evident from Fig.8-1b that p3 is 
considered as p2 + p. Many more terms appear here: F, 0 (twice), P (three 
times) and S. 

1-1 I) L-Z(D) 1-1 ,. 1-1~ \-1 1-1 
1-1 l.·~ 

. L -l(Pl L - 0 (S) 

0) 

b) 

1-211 1-2 L-4(Gl, 1-2 
t-2 1-2r!r-J(Fl l _2f)-1/ L' l,(zW) 

c) 

1-2!52 1-zfP-z 
L-HPl L- O(S) 

Fig. 8-1. Determination of quantum number L for (a) two p electrons, (b) three p electrons, 
(c) two d electrons. 

In the graphical representation the procedure is simplified in that 
vectors of length I are employed and the result amounts to L. 

The same rules apply for the addition of the electron spins to give 
the total spin momentum. For a system with two electrons, for example, 

S = 1, if the spins are parallel, and 
S = 0, if the spins are antiparallel. 
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For a system of three electrons, 
S = i, if the spins are parallel, and 
S = 4, if one spin is antiparallel to the other two. 
Thus, for two p electrons, six terms come into consideration: 

These states are allowed only for two non-equivalent electrons (e.g., 
3p and 2p); if the electrons are equivalent (e.g. 2p2) then in consequence 

of the Pauli exclusion principle (cf. Sections 4.4 and 6.7) the only allowed 
states are 

If the spin-orbit coupling term is included in the Hamiltonian 
[cf. Eq. (4-88) and Section 5.2J L ceases to be a "good" quantum number 
and it is necessary to introduce (cf. Section 4.4) the total angular 
momentum, the magnitude of which is 

hJ[J(J + 1)], 

where J is the quantum number of the total angular momentum. 
J acquires the values 

L + S, L + S - 1, ... , I L - S I 
It must be stressed that it is assumed that the spin-orbit coupling 

can be considered to be a small perturbation in comparison with the 
electrostatic interaction among the electrons (called the Russell-Saunders 
coupling) and that the term wave functions are considered to be eigenfunc­
tions of the zeroth order. This assumption is not fulfilled for some atoms 
of higher atomic number where the so called j - j coupling approximation 
is more suitable; this takes into account the fact that the spin-orbit 
interaction energy exceeds the electrostatic interaction energy. It can be 
said on the whole that the actual energy levels of all atoms lie between 
these extreme cases. 

In Fig. 8-2 an example of the calculation of J for two non-equivalent 
p electrons is given. Strictly speaking, the initial vectors of the orbital 
angular momentum and of the spin have the magnitude 

hJ[L(L + 1)] and hJ[S(S + 1)] 

In the graphical representation again vectors land S are used 
and thus quantum number J is obtained directly. The number of 
possible J values has a simple relation to S, being equal to (2S + 1), 
the multiplicity of the state. The value J is given by this expression 
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only if L f; S (cf. Fig. 8-2). If L < S, the number of values of J is 
given by the expression (2L + 1). 

For qualitative information the energy levels of a many-electron 
atom are given in the so-called term diagram. The differences between the 
energy of the ground state and the energy of the individual excited 
states gives the positions of the absorption and emission lines in the 
spectrum of the free atom. 

S-1 x 5 -0 

" r 

5=1 

}J-J 
S -1 

L- 2(D) 

L-2 ~-2 11'-' L-2 !J-2 
L-2 L-2 iJ - 1 

3D 3D 3D fD 
3 2 f 2 

'-'I) L-1(P) J-2 S -1 

L-l L-1[1_1 L-1HS-l Lz l tJ-l 

3/J 
2 

3p 
1 

3/J 
0 

1p 
1 

S - dJ-l 
L=O 

L - O(S) s=o 
J -0 

Js 
1 

.1S 
0 

Fig. 8-2. Determination of quantum number J. S as a term symbol (L = 0) should not 
be confused with S denoting the total spin. 

In order to calculate the energy of a many-electron atom, a many­
electron wave function must be found that satisfies the conditions 
imposed on wave functions. It is expedient to construct this n-electron wave 
function from · one-electron functions, i.e. from the atomic orbitals. 
The construction of such a function can be carried out using Slater 
determinants or a linear combination thereof. The construction of these 
determinants for molecular systems has been described in Sections 5.4 and 
5.5, where the discussion given also applies to atoms. 
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9. DIATOMIC MOLECULES 

9.1 Introductory comments; 
the hydrogen molecular ion, H~ 

Diatomic molecules can be divided into homonuclear and heteronuclear 
molecules; examples are molecular hydrogen and carbon monoxide, 
respectively. The simplest known diatomic molecule, the molecular 
hydrogen ion, also belongs in the first group. This system consists of two 
protons and one electron. The simplicity of this system makes it a suitable 
link between the theories of atoms and molecules (Fig. 3-4). 

Therefore an attempt will be made to calculate the energy of 
the Hi ion. A molecular orbital constructed as a linear combination 
of atomic orbitals can be used as a wave function for the description 
of the electron in the ion, so that l 

(9-1) 

[cf. Eq. (5-63)], where orbital Xl corresponds to atom A and orbital X2 
corresponds to atom B. The electronic energy is given by the relationship 

(9-2) 

where it is assumed that orbital <p is a normalized function. The 
explicit form of the Hamiltonian defined in Section 3.2.4 is not used 
he!\! because in the following qualitative considerations the matrix 
elements will be handled as compact wholes. The application of the 
variation method for the determination of the optimum values of the 
expansion coefficients C I and c2 (i.e. of coefficients which afford minimum 
energy) leads to a system of linear equations for the coefficients [cf. Eqs. 
(5-64) and (4-141)]: 

cl(Hll - E) + c2(H12 - ES 12 ) = 0 

cl(H 12 - ES I2 ) + c2(H 22 - E) = 0 

(9-3a) 

(9-3b) 
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In the equations 

H"v = <x"I.Yflx), 
S"v = <x"IXvl, 

the hermicity of the Hamiltonian and the normality of the atomic 
orbitals is employed. It has already been mentioned [cf. Eqs. (5-65) and 
(4-142)J that non-trivial values of C1 and c2 (the trivial values c1 = c2 = 0 
are not important here) can be obtained only for quite definite energy values. 
These values can be obtained by solving a quadratic equation in E, 
which is obtained from the condition that the determinant of system (9-3) 
must vanish: 

I H 11 - E, H 12 - ES 121 = 0 
H12 - E5'2' H22 - E 

(9-4) 

By rearrangement of the determinant an explicit expression for the 
quadratic equation can be obtained: 

E2(1- Si2) - E(HII + H22 - 2H12 S'2) + HllH22 - Hi2 = 0 (9-5) 

Solution then gives 

E - Hll+H22-2HI2S12 + 
1.2 - 2(1 - Si2) -

+ J[(H ll + H22 - 2H 12512)2 - 4(1 - Si2)(H ll H22 - Hi2)] (9-6) 
- 2(1 - Si2) 

It appears that qualitatively correct results can be obtained even with 
such drastic simplification as neglecting the overlap integral: 

S'2 = 0 

(We shall return to this unexpected approximation later.) 
Thus it follows that 

E - Hll + H22 + J[(H ll + H22)2 - 4(HllH22 - Hi2)] (9-7) 
1,2. - 2 

A new denotation can be introduced here: 

Hll =H22 =rx 

(centres A and B are identical, so that H II = H 22) 

H 12 = 13 

2rx + J[(2rx)2 - 4(rx2 - 132)] = rx + 13 
2 -

(9-8) 

(9-9) 

(9-10) 
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This result can now be interpreted. Quantity li. [Eq. (9-8)] is termed 
the Coulomb integral and quantity P [Eq. (9-9)] the resonance integral. 
Because of the definition 

(9-11 ) 

the Coulomb integral obviously represents the energy of the electron 
in the field of both nuclei, situated in the atomic orbital Xp. (function Xp. 
is normalized). The interpretation of the resonance integral is not as 
simple: 

(9-12) 

It suffices, however, to state that p also has the dimension of energy and 
is connected with the strength of the bond which it describes (the 
greater its absolute value, the stronger the respective bond) and that, 
similar to li., it is a negative quantity: 

li. < 0; P<O (9-13) 

w 

a) b) 

Fig. 9-1. Interaction of two atomic orbitals (with the same energy) leading to bonding and 
anti bonding molecular orbitals: (a) state prior to interaction, (b) state following interaction. 

Apparently the value of one calculated energy level in the molecular 
ion is lower and the other is higher than the energy of an electron 
situated in the atomic orbital [cf. Eq. (9-10) and Fig. 9-1]' As has already 
been mentioned, the energy corresponding to the atomic orbital equals li.. 

The expansion coefficients of the MO's can be calculated by 
substituting the calculated energy values into system of equations (9-3) 
(S = 0) to give (first for E = li. + P) 

-c1P + czP = 0 

and (for E = r:t. - [3) 

C1P + czp = 0 
C1 = -Cz 



Thus for the unnormalized MO's it holds that 

<PI = Xl + X2 

<P2 = Xl - X2 
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(9-14) 

(9-15) 

Neglecting the overlap between the atomic orbitals, the normalization 
condition for the molecular LCAO orbital has the form 

2 2 

<<pii<p)=J( L c"ixYdr = L C;i = 1 ,,= 1 ,,= 1 

for i = 1 and 2. Here is necessary that 

ci + c~ = 1, 

so that the normalization factor is then 

1 
N=7i 

The normalized MO's will therefore have the following form: 

1 
<PI = 72 (Xl + X2) 

1 
<P2 = 72 (Xl - X2) 

(9-16) 

(9-17) 

(9-18) 

For the original, physically correct assumption that S 12 -::/= 0, the 
following expressions for the MO's and their energies can be obtained: 

1 
El = a+f3 

(9-19) <PI = J[2(1 + S 12)] (Xl + X2); 1 + S12 

1 a-f3 
(9-20) <PI = J[2(l - S12)] (Xl - X2); E2 = 1 - S 12 

It should be noted that, on the basis of the symmetry considerations 
in Section 6.6, coefficients c1 and c2 could be determined directly without 
calculation. 

If the total energy of the system is to be determined, then the 
dependence of the electron energy of both states (the bonding state and 
the antibonding state), and the dependence of the energy of the proton 
repulsion on the internuclear distance are equally important. By the 
superposition of the two quantities, the dependence of the total energy 
on the internuclear distance is obtained. This dependence for the bonding 
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state has a mInImUm (indicating the equilibrium internuclear distance 
and the magnitude of the dissociation energy), whereas the dependence 
for the antibonding state is monotonic (Fig. 9-2). 

w 

\ 6 
\ .. 

............... --

-p a) 

9.2 The H2 molecule 

Fig. 9-2. The molecular hydrogen ion: 

dependence of the electron energy 
( ) and the proton repulsion 
energy (- - - -) on the distance 

r between the protons, 

for the bonding cr (a) and anti bonding 

cr* (b) states. (c) Superposition of the 
two dependences. r m;n is the 

equilibrium distance, ED is the 
dissociation energy. 

The H; molecular ion represents a model system for illustrating the 
effects leading to the bonding properties of molecules. However, the 
transition to real and chemically interesting systems, to many-electron 
systems, makes it necessary to include contributions of mutual electron 
repulsion which do not occur in the Hamiltonian of H;. New specific 
problems arise when the interelectron interaction is included and can best 
be demonstrated on a related system - the Hz molecule. 

The hydrogen moleculez is composed of two protons which will 
be denoted by f1. and v and two electrons. Provided the relativistic 
effects are not taken into consideration, the electronic Hamiltonian 
of the Hz molecule can be written within the limits of the Born-Oppen­
heimer approximation in the form [cf. Eq. (5-18)] 

z 
:/t' = L A(i) + ~(1, 2), (9-21) 

i= 1 
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where the one-electron operator A(i) (depending only on the coordinates 
of a single electron) equals the sum of the kinetic energy operator 
of the electron and of the potential energy of Coulomb interaction 
between the electron and the nuclei: 

JZ(I) = - -L1i - -- + • 112 e2 (1 1) 
2m 4neo• I r i - R/l I I r i - Rv I (9-22) 

Operator 09(1,2) depends on the distance between the two electrons 
[cf. Eq. (5-19b)] and corresponds to their Coulomb interaction: 

2 

09(1,2) = 4ne I: _ r I (9-23) 
o I 2 

The problem can first be considered from the aspect of the one-electron 
approximation. The behaviour of each electron i can then be described 
by a one-electron wave function <p(i) (cf. Section 5.6), by an orbital 
which can best be expressed in the form (9-1). Since the H2 molecule 
is symmetric with respect to a plane perpendicular to the bond and lying 
midway between the nuclei, the values of coefficients c1 and c2 in Eq. (9-1) 
can be determined directly (cf. Section 6.6). Two molecular orbitals, 
<PI and <P2' are obtained [cf. Eq. (9-19) and (9-20)], of which one is 
symmetric (<PI) and the other antisymmetric (<P2). The electron wave 
function of the H2 molecule in the ground state, which has the character 
of a closed shell system, can be written [cf. Eq. (5-43)] in the form 
of a Slater determinant, 

which can be intepreted as occupation of <PI by two electrons, one in spin 
state rx. and the second in spin state p. 

Since the wave function of the ground state is known, an attempt 
can be made to calculate the electron energy for a molecule in the ground 
state: 

Eo = <.,10 I Jff I .,10> 

Substituting Eqs. (9-21) and (9-24) into Eq. (9-25) gives 

1 2 

Eo = 2 <<PI (1) <PI(2) I i~l A(i) + 09(1,2) I <PI(l) <PI (2». x 

(9-25) 

x <rx.(1) P(2) - rx.(2) P(l) I rx.(1) P(2) - rx.(2) P(l).. (9-26) 
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where use was made of the fact that Hamiltonian :Yf does not depend 
on the spin coordinates, allowing separation of the space and spin 
variables. The variables are denoted by the index at the Dirac bracket. 
Elsewhere the symbols introduced in Chapter 5 are used, which permit 
simpler expression of multiple integrals. As spin functions ()(i) and f3(i) 
are orthonormal functions [cf. Eqs. (4-82) and (4-83)], it follows that 

<()(1) f3(2) - ()(2) f3(I) 1 ()(1) f3(2) - ()(2) f3(I), = 2, 

so that Eq. (9-26) can be rewritten in the form 

Eo = <0/1(1) 11l(1) 1 0/1(1) + <0/1(2) 11l(2) 1 0/1(2) + 
+ <0/1(1) 0/1(2) 19(1,2) 1 0/1(1) 0/1(2), (9-27) 

where limitation of the integrations to the space coordinates of the 
electrons alone is not denoted, as this can no longer lead to error. 
It is worth noting that the first two integrals are identical; they differ 
merely in the denotation of the integration variable: expression (9-27) 
represents the result which could be determined directly by employing 
the Slater rules [see Table 5-2 and Eqs. (5-33) and (5-34)]' If the 
expression for the molecular orbital 0/1 [cr. Eq. (9-19)J is also considered, 

(9-28) 

then the energy can be expressed in terms of integrals containing only 
atomic orbitals. The numerical calculation of the integrals required 
assumption of the analytical form of atomic orbitals Xil and Xv' If they 
are chosen in the form of Slater Is functions (cf. Section 8.1), the relationship 

X (l)=_l_e<-rlll) 
Il -,In ' (9-29) 

is obtained, where rill is the radial coordinate of the first electron related 
to the nucleus Jl as the origin. One-electron integrals lead to the 
following types of integrals (without including the multiplication factors): 

<x,,(l) 1 Ll1 1 X;.(I) (9-30a) 

(X,,(l) I t I X;.(I~ (9-30b) 

(XiI) I r ~ x I X;.(l)) (9-30c) 

Here either x = A. or x =1= A.. Similarly, the last integral (called the 
two-electron Coulomb integral) on the right-hand side of Eq. (9-27) 
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can be expressed in terms of various integrals of the type 

(9-31) 

In our particular case, when the energy of the diatomic molecule 
is to be calculated in terms of atomic orbitals which are spherically 
symmetric towards the centre on which they are located [cf. Eq. (9-28)], 
the given types of integrals can be expressed in analytical form (cf. 
Section 9.3). This is not generally true and in the calculation of some 
types of integrals it is necessary to resort to numerical integration. 

So far only the expression and calculation of the electronic energy of 
the ground state of the H2 molecule has been discussed, which, from the 
viewpoint of the one-electron approximation, corresponds to occupation 
of ({JI by two electrons. To extend these considerations to electronically 
excited states, the distribution of the two electrons of the H2 molecule 
between orbitals ({JI and ({J2 must be known. The situation can be 
schematically represented as follows: 

++++-t+ 
-t+++++ 

(9-32) 

The direction of the arrow represents the spin state of the electron; 
an arrow directed upwards denotes spin IX, downwards spin p. Each of 
the six electron configurations can be represented by the Slater determinant 
indicated below scheme (9-32) [cf. Eqs. (5-29) and (9-24)]. If the cor­
responding Slater determinants are pure spin states (i.e. if they are 
eigenfunctions of [/2), their multiplicity is expressed by the index at 
the top left in the symbol of the Slater determinant of the given 
configuration. Of the functions given, Slater determinants L13 and L14 
do not correspond to pure spin states, but suitable linear combinations 
thereof do [cf. Eq. (6-112)], one leading to the singlet state e L1~) and the 
other to the triplet state e L1~). 

In the framework of the one-particle approximation, Slater de­
terminants (or suitable linear combinations thereof, for example, lL1~ and 
3 L1~) of the given electron configurations can be considered to be wave 
functions describing electronically excited states of the H2 molecule. 
The respective energy levels can be calculated in a manner analogous 
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to that employed for the energy Eo of the ground state [cf. Eqs. (9-25), 
(9-30) and (9-31)]. The total energy of the molecule, Etot' can be 
determined when the nuclear interaction energy is added to the tota:l 
electron energy, this term corresponding to the Coulomb repulsion of 
two point charges of magnitude + e, independent of the electronic 
state within the Born-Oppenheimer approximation. The dependence 
of the total energies for various states on the distance between the atoms 
is given in Fig. 9-3; minima appear on the curves for the ground state 
(at the equilibrium distance of the two atoms corresponding to formation 
of the chemical bond) and for the singly excited singlet state. It is also worth 
noting that the curve describing the ground state does not converge, 
on separation of the atoms, to the energy of the two individual atoms, 
but to a larger value. This important fact will be discussed in Section 10.5, 
where the integrals responsible for the origin of bonding states in molecules 
will be given. 

2 

,..., 0 ..... 
0 

~ 
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Fig. 9-3. Dependence of E101 

of the H2 molecule as a function of 

the interatomic distance (r"vl 
for various electron configurations 

eLlo == 1, ILls == 2,3Ll == 3, ILl; == 4). 

It remains to be added that the numerical results can be improved 
by the method of configuration interaction (cf. Section 5.4). On the basis of 
the arguments in Sections 5.4 and 5.5 the wave function of the ground 
state 'P can be sought in the form 

(9-33) 

where the variation principle is used for determination of the expansion 
coefficients. Other configurations of scheme (9-32) do not interact with 
the ground state configuration e .do} because of inconvenient space and 
spin symmetry properties (cf. Section 6.7). The matrix elements of the 
corresponding secular problem, leading to determination of the allowed 
energy values, can again be expressed by means of integrals of the 
type (9-30) and (9-31) [cf. Table 5-2 and Eqs. (5-33) and (5-34)]' 
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9.3 Calculation of the molecular integrals 

In all the problems solved so far, the results were expressed in terms 
of integrals whose integrand was composed of an operator surrounded 
by atomic orbitals. This was also true in the previous section for the 
discussion of the H2 molecule. The calculation of these integrals is actually 
only applied mathematics. Furthermore, a number of these integniIs 
can be found in tables (almost solely for Slater-type atomic orbitals), 
and the computer programmes for their calculation are available within 
the international exchange programme. Nonetheless, we consider it 
expedient to describe the calculation of at least the simplest integrals 
in order to give the reader an idea of the approach taken in the 
calculation of the molecular integrals. The integrals used in the calculation 
for the Hz molecule are particularly useful for this purpose. 

Similarly as in the previous section, it will be assumed that the 
molecular orbitals are a linear combination of Slater functions (Is), i.e. 

(9-34) 

where, for the time being, the centre to which the atomic orbital (Is) 
is related is not designated because one-centre integrals will be discussed 
first. In contrast to Eq. (9-29), the value of the exponential factor is not yet 
specified in Eq. (9-34). It is first necessary to show that orbital (9-34) 
is a normalized function. In spherical polar coordinates it holds, 

3 

«Is) I (Is) = ~-J e-zarrz sine d<l>de dr, (9-35) 
1t 

for the following integration. limits : 

<l> E <0, 21t) 

e E <0, 1t) 

,. E <0, co) 

After integration over angular variables, the expression 

is obtained. Integration by parts yields the relationship 

<Xl -ax n n! J e X dx = ---;;-:FT, 
o a 

(9-36) 

(9-37) 

(9-38) 

where (/ is a positive and 11 a non-negative integral constant. It then 
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follows from Eg. (9-38) that 

1 3 2 
«Is) (Is) = 40( (20()3 = 1 (9-39) 

The expression for the one-centre nuclear attraction integral can also 
be derived: 

(9-40) 

The one-centre kinetic energy integral can conveniently be expressed 
using the Laplace operator in spherical polar coordinates: 

Il--- r - +- ---- sme- +----1 0 [2 1 ] 1 (1 0 [. 0 ] 1 02
) 

- r2 or or r2 sin e oe oe sin2 e 01P2 (9-41) 

Because the (Is) function does not depend on the angular coordinates 
it follows that 

(9-42) 

and after substituting into expression (9-30a), 

«Is) 1 d 1 (Is) = 40(3 [0(2 J e - 2<%rr2 dr - 20( J e - 2<%rr drJ = - 0(2, (9-43) 

where Eq. (9-38) was employed. 
Now the one-centre two-electron integral expressing the Coulomb 

interaction between electrons occuring on the same atom can be 
calculated: 

«ls)1 (ls)21 g(1, 2) I (ls)1 (Ish) = 

where the dependence of the coordinates on the position of the first or 
second electron is denoted by the indices. As the interaction occurs 
between two spherically symmetric charge distributions, integration over 
angular variables can easily be carried out. If the integration is carried 
out stepwise, for example, first over the coordinates of the first electron, 
then the fact that the classical electrostatic potential outside the charge 
distribution of a spherical shell is equal to the potential caused by the 
same total charge located at the origin and that the potential inside 
a spherical shell is equal to its value on the surface can be used. 



181 

It therefore follows that 

(9-45) 

Integration by parts of the expressions inside the bracket yields 

1 '2 e - 2"'2 [r 1 1 ] 1 -- f e- 2"'lri dr1 = - --- __ 2 + -2 + --3 + --3 
r 2 0 2 r:J. r:J. 2r 2r:J. 4r 2r:J. 

(9-46) 

-2"'1 _ 00 e- 2"'2 [ 1 ] 1 e r1 dr1 - ~ r 2 +"2a (9-47) 

and substitution into Eq. (9-45) yields the relationship 

(9-48) 

where Eq. (9-38) has again been used. 
It therefore follows that the calculation of one-centre integrals 

can easily be performed if spherical polar coordinates are used. The 
calculation of two-centre integrals is more difficult. One approach to 
their solution lies in the introduction of ellipsoidal coordinates, where 
the centres on which the atomic orbitals are located act as foci for 
the ellipsoidal coordinate system. 

Fig. 9-4. Graphical representation of 
relationship of elliptical, rectangular 
and spherical polar coordinates for 

the two-centre problem. 

Let A and B be two centres and r A' r Band R be determined 
according to Fig. 9-4. The ellipsoidal coordinates ~, '1 and tP of the point 
given by the Cartesian coordinates x, y, z are defined as follows: 
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lP is the angle between the plane defined by the triangle A, B, [x, y, z] 
and the x-axis. 

It is obvious from the definition that the values of the ellipsoidal 
coordinates lie in the following intervals: 

~E<1, (0) 

'1 E < -1, 1) 

lP E <0, 21t) 

(9-49a) 

(9-49b)' 

(9-49c) 

The relationship of the ellipsoidal coordinate system to the Cartesian 
system, with its origin in the centre of the line connecting points A and B, 
can be derived on the basis of simple geometrical considerations. It 
follows from Fig. 9-4 that 

(9-50a) 

ri = v2 + (~ - zy, (9-50b) 

where v is the height of the (rotating) triangle A, B, [x, y, z], and, after 
substracting these equations, 

Because the remaining Cartesian coordinates depend simply on v, 

x = v cos lP 

y = v sin lP, 

it follows from Eqs. (9-50a) and (9-50b) that 

R 
x = 2J[(~2 - 1)(1 - '12)] cos lP 

Y = ~ J[(~2 - 1) (1 - '12)] sin lP 

(9-51a) 

(9-51b) 

(9-51c) 

All the relationships for the two-centre spherical polar and ellipsoidal 
coordinates can be obtained just as easily; in summarized form, 

(9-52a) 



183 

(9-52b) 

cose A = (9-52c) 

cose D = (9-52d) 

The volume element for integration in three-dimensional space can then 
be written as 

d-r == dx dy dz == ( ~ y (~2 - 1]2) d~ d1] dCP (9-53) 

The usefulness of the coordinate transformations can be demonstrated 
on the calculation of overlap integrals between (ls)-type Slater orbitals, 
one of which is located on centre A and the second on centre B, assuming 
that, in general, the atomic orbitals differ in their exponent; one will be 
denoted r:J. and the other (J. Therefore the integral 

«IS)A I (lS)D) = J(r:J.3(J3) S e-<zrA e-/lra d-r (9-54) 
1t 

must be calculated. By introducing relations (9-52a), (9-52b) and (9-53) 
into Eq. (9-54) and integrating over CP, the relationship 

2J(rx3f33) ( ~ y x 

x J [~2 e-~(R!2)(a.+/l) e-~(R/2)(<z-/l) - e-~(R/2)(<z+/l)1]2 e-~(R!2)(<z-/l)] d~ d1] = 

= 2J(rx3 (J3) ( ~) 3 [A~)Bt) - A~)B~)] (9-55) 

is obtained, where new constants 

and 
R 

b=-(rx-f3) 
2 

were introduced, as were the auxiliary integrals 

00 

A~a) = J ~"e-a~ d~ 
1 

and 
1 

B~) = J 1]" e - b~ d1] 
-\ 

(9-56a) 

(9-56b) 

(9.57a) 

(9-57b) 
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The introduction of various types of auxiliary integrals is common 
in calculations of molecular integrals, as it enables rational calculation 
or tabulation of the results (cr., for example, the tables by Miller, 
Gerhauser and Matsen3). Calculation of integrals of type A~a) and B~b) 

is simple and is carried out according to the value of parameters a or b 
either using recurrence formulas derived by integration by parts or 
numerically by expanding the exponential function into a power series. 
It is worth noting that even two-centre Coulomb integrals with spherically 
symmetrical charge distributions can be expressed by integrals of type 
A~a) and B~b). 

In conclusion it should be mentioned that the calculation of 
two-centre molecular integrals with charge distributions that are not 
characterized by spherical symmetry and, in particular, the calculation of 
many-centre (three- and four-centre) integrals are much more complicated 
than calculation of the integrals discussed in this section. An introduction 
to these problems and the respective references can be found in review 
articles (for example Ref. 4). 

9.4 General diatomic molecules 
and correlation diagrams 

First, the homonuclear diatomic molecules composed of elements of 
the first series of the periodic table of the elements will be discussed. 
On the two atoms, which will be denoted by A and B, Is, 2s, 2px' 2py and 2pz 
atomic orbitals are available. AO's of the same energy will be combined, 
taking their symmetry properties into consideration. The interaction 
between AO's corresponding to different energy levels will not be 
considered. By combination of two AO's, wto MO's are always obtained, 
of which one is bonding in relation to the initial AO's and the other is 
antibonding. It is necessary to be aware of the relativity of these 
concepts; for example, the antibonding MO formed from two Is AO's 
has a more favourable energy than the bonding MO derived from the 
2s AO's. The expressions for the MO in Fig. 9-5 have the form given by 
Eqs. (9-19) and (9-20). For illustration, the MO's formed by combination 
of the Is AO's can be given: 

I 
o-(ls) = J[2(1 + «IS)A I (ls)B>)] [(IS)A + (lS)BJ (9-58a) 

1 
o-*(ls) = J[2(1 _ «IS)A I (1S)B>)] [(IS)A - (1S)BJ (9-58b) 
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A(i) A(i)- A(2) A(2) 

Fig. 9-5. Formation of (J- and It-MO's by interactions between sand p atomic orbitals 
localized on atoms A(l) and A(2). 

The difference in the energies of the (J- and n-MO's formed by the 
overlap of p-type AO's is not, in practice, large and their energies 
can therefore lie in the opposite sequence, depending on the specific 
conditions in the individual molecule. The example given in Fig. 9-5 
corresponds, for example, to the O2 molecule, but it does not describe 
the conditions in the B2 molecule.* The oxygen molecule is correctly 
described inasmuch as the reason why the oxygen has a triplet ground 
state is evident (the presence of two electrons in degenerate orbitals with 
parallel spins). If the 16 electrons of the corresponding 02 molecule are 
placed in the MO's according to increasing energy (Aufbau principle), 
14 of them will completely occupy seven MO's and the 15th and 16th 
electron, in agreement with Hund's rule (cf. Section 10.6.2), will be placed, 
with parallel spins, in the degenerate n*(2pz)- and n*(2px)-MO's. 

Studies of correlation diagrams 5 - 8 provide useful information on 
the bonding conditions in diatomic molecules. A correlation diagram 
characterizes the gradual transition of one-electron states from a system 
of two infinitely distant atoms to a system where the atoms coincide 
(the united atom). The states of diatomic molecules obviously lie between 
these two extremes. 

Before discussing correlation diagrams, some preliminary considera­
tions on the symmetry of a system composed of two atoms on the y-axis 
will be mentioned. Three cases can be distinguished. 

* The B2 molecule has a triplet ground state, whereas it should have a singlet ground 
state according to Fig. 9-5. 
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a) If the atoms are infinitely far apart, each is spherically sym­
metrical and n, 1 and m are valid quantum numbers. 

b) If the nuclei approach each other, the spherical symmetry of the 
partial systems, the atoms, is lost. The system is invariant under arbitrary 
rotation about the y-axis, i.e. the formation is characterized by axial 
symmetry. Classical mechanics shows that, for such a system, the 
projection of the total angular momentum onto the y-axis is retained 
(termed the constant of motion). In quantum mechanics, this type of 
symmetry is manifested by quantization of the projection of the total 
angular momentum onto the y-axis (cf. Section 4.4). Because we are 
interested in classification of the one-electron levels, quantum number A 
is introduced to denote the value of the projection of the angular 
momentum of the electron (in multiples of h) in the given state. If 1 is 
the quantum number of the electron in the atom, it is evident that A 
can assume the values 

A = 1,1 - 1, ... ,2, 1,0, (9-59) 

where, e.g., it is sufficient to consider only the value ), = 1, as the 
state with A = -1 (momentum with the opposite orientation) has the 
same energy and thus corresponds to a doubly degenerate level. Levels 
with different values of qu'antum number A are usually denoted by small 
Greek letters; for states A = 0, 1, 2, 3, '" the notation cr, 1t, ~, <p, , .. is used. 

If the molecule is homonuclear, the symmetry of the system is further 
increased by inversion in the point which divides the line connecting 
the two atoms. This type of symmetry permits classification of the states 
of homonuclear molecules according to whether the inversion does or 
does not produce a change in the sign ofthe wave function (cf. Section 6.2); 
the symmetric states are denoted by g and the anti symmetric states by u. 

c) If the given atoms combine to form a single, united atom (it 
must be stressed that this is purely a mental process) a spherically 
symmetric system is again obtained for which the same classification 
of states applies as for the atom. 

If certain rules are taken into account, it is possible to ensure that 
the states in cases a) to c) are connected and are a continuous function 
of the distance between the atoms. Information on the energy distribution 
corresponding to the molecular orbitals in a diatomic molecule is 
obtained by connecting the levels at the two extremes by lines (infinitely 
remote and united atoms), The following rules must be obeyed: 

A, Symmetrr conservation is manifested in the fact that quantum 
number A and the u- or g-property of the orbital do not change. 

B. The non-crossing rule 7 , according to which it is inadmissible 
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for energy lines correspoding to orbitals of the same symmetry to cross, 
because interaction occurs between these states; no limitation applies 
on the other hand if levels of different symmetry intersect. 

The occupation of these one-particle states by electrons must obey 
the Pauli principle and, if the degenerate levels are incompletely occupied, 
Hund's rule of maximum multiplicit~ must be applied. 

B Y~ V3 ~ f y 

f1 
symmetry with 6 Jr 6 Jr respect to y 
symmetry with 9 u u u 

respect 
to inversion 

(6*) -0---<3 ~ 1[ 0 0 
(1[*) 

G 9 0 0 
(6)-C5-~ 1r 

+ ) 

U 
(1[) 

\( 
( - ) 

symmetry with respect 
to y and ta inversion 

Fig. 9-6. Classification of atomic orbitals and molecular orbitals according to their symmetry 
elements. 

The classification of some atomic and molecular orbitals based on 
their symmetry elements, according to point b) is depicted in Fig. 9-6. 
A number of useful conclusions can be obtained on the basis of graphical 
representation of orbitals. For example, the bonding and antibonding 
combinations of Is orbitals can be represented as follows: 

(IS)A + (ls)B ~ 

(ls)A - (ls)B ~ 

EB EB 

EB e 
(9-60a) 

(9-60b) 

Because the quantum number for separated atoms is I = 0, then 
A = 0, so that only 0' states can arise in both cases. The symmetrical 
combination (9-60a) remains spherically symmetric on united atom forma­
tion so that the transition, separated atoms~molecule~united atom, can 
be written as follows: 

(9-61a) 



188 

The antisymmetrical combination (9-60b) in the limiting transItIon to 
the united atom has the symmetry properties of a p orbital orientated 
in the direction of the y-axis. It therefore holds that 

O'u: Is -t O'*(ls)u -t (2p)u [i.e. (2p)v] (9-61b) 

All s-type orbitals behave analogously. It is, of course, more difficult to 
study the symmetry properties of orbitals with higher values of quantum 
number I. Evidently, however, for example, antibonding combinations of p 
orbitals orientated parallel to each other (for example, in the direction of 
the x-axis) have the symmetry properties of d orbitals (concretely of 
the dXY orbital) on transition to the united atom. 

6' u 
~ u 

rf q 

6' q 
11' 9 
(5 q 

6' u 
11' u 

6' q 

~ u 
(5 u 

(5 9 

o q 

united 
atom 

4Py 
4P •• 4pz 

4s 

3dy2-z2 
3d.y .3dyz 

Jdxz,3dl_.t 

3s 

2pz,2px 
2py 

MO AO 

~r----------P~--~~~~~2s 6' 9 

1s '------~---'--+-.,:_:_:_:-=----=-.I1s 0 q 

R-O R-oo 

Fig. 9-7. Qualitative correlation diagram for homonucIear diatomic molecules. Right ordinate: 
separated atoms, left ordinate: united atoms; the region between these extremes characterizes 

conditions in molecules. Examples : B2 , O2 (according to Heilbronner and BockS). 



189 

In Fig. 9-7 a qualitative correlation diagram for diatomic homo­
nuclear molecules is given. In contrast to Eqs. (9-61a) and (9-61b), the 
right-hand side of the diagram, corresponding to the separated atoms, 
represents the symmetry properties of the atomic orbitals of the partial 
systems. In the diagram the positions which correspond to the 02 
molecule and the B2 molecule are indicated. This procedure is most 
useful, as information on molecules is obtained from knowledge of the 
symmetry properties of the participating orbitals alone. In recent years 
correlation diagrams have been widely applied, for example, with complex 
compounds, in the analysis of the mechanism of some stereospecific 
cyclizations and in the interpretation of collision processes of atoms. 
It should be mentioned that correlation diagrams can also be constructed 
for heteronuclear molecules (cf., for example, Ref. 9). 
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10. CALCULATION METHODS IN THE 
THEORY OF THE CHEMICAL BOND 

10.1 Introductory remarks 

It was seen in Chapter 5 that the one-electron approximation represents 
a basic approach to the study of the electronic structure of atoms and 
molecules, either as a self-contained model or as a starting point for more 
accurate calculations. 

In analyzing the solvability of the Hartree-Fock equations, relations 
(S-S9a) to (S-S9d), which apply when the ground state is described 
by a Slater determinant of type (S-43) corresponding to a closed shell 
system, will be used as a starting point. Such systems are of particular 
interest here. From the viewpoint of the variation principle, the optimum 
one-electron functions (orbitals), depending on the space coordinates 
of the given electron, can be of two kinds (depending on whether atoms 
or molecules are considered). These are either a) atomic orbitals X, 
which are located on the selected atom establishing the origin of the 
local coordinate system in which the electronic coordinates are defined, 
or b) molecular orbitals cp, which are distributed on a greater number 
of centres in the many-nuclear system - the molecule. The construction 
of molecular orbitals by expansion in terms of atomic orbitals located on 
the atoms forming the molecule is most expedient [cf. Eq. (5-63)]; 
in other words, these atomic orbitals form a basis set for the expansion 
of the molecular orbitals. If the number of AO's is such that they describe 
(in a minimum number) only electrons of atoms in the ground state, 
we speak of a minimum basis set (d. Section 6.6). An example of 
an extended basis set is the Slater "double zeta" (DZ) basis set, where 
two Slater functions (see below) with different exponents correspond to 
one atomic orbital (the exponents denoted here by ~ are sometimes 
denoted by (). 

It was shown in Section S.6 that, within the framework of the 
Hartree-Fock scheme, the determination of the optimum linear combination 
of atomic orbitals (i.e. those fulfilling the variation principle) 
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((>i = L Cl'iXI' 
1'=1 

is connected with the solution of the Roothaan equations 
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(10-1) 

LCvi{JX:$'Xvd'tl-eiJX:Xvd'tl} =0, f.L= 1,2, ... ,m, (10-2) 

where $' is the Hartree-Fock operator. Because a non-trivial solution 
for coefficients Cl'i must be found, the calculation of the secular determinant 
[cf.Eq.(4-142)], . 

det II <xI'I $' Ix.> - e <xI'I X.> II = 0, (10-3) 

becomes necessary, where the notation used in Section 5.6 is again used. 
Considering Eqs. (5-59b) and (5-59c) and the expansion of the molecular 
orbitals in the form (10-1), the matrix element of operator $' from Eq. (10-3) 
can be written as 

Fl'v = <xI'I $' I Xv> = <XI' III I Xv> + 
m m { 1 } + ~~l "~l p~" (f.LV I (!CT) - 2(f.L(! I VCT) , (10-4) 

where the charge- and bond-order matrix was introduced, whose general 
element is defined by the expression 

nlZ 

p~" = 2 L C;laj (10-5) 
j=l 

(summation is carried out over the occupied molecular orbitals) and 
the shortened form for the two-electron integrals is given by 

(f.LV I (!CT) = H X:(l) X.(l) g(1, 2)x;(2) X,,(2) d't 1 d'tZ = 

= <XI'Xg I 9 I XvX,,> (10-6) 
[cf. Eq. (5-31b)]. 

Eqs. (10-2) to (10-4) represent the exact formulation of the Hartree­
Fock n-electron problem for a closed shell system in the MO-LCAO 
approximation. In principle the basis set of the atomic orbitals can be 
chosen extensive enough that the calculated value of the total energy 
is the lowest within the framework of the Hartree-Fock model, this 
value being referred to as the Hartree-Fock energy limit. When starting 
such a calculation, it is necessary to choose the AO basis set. As a rule, 
atomic orbitals are used which have identical angular parts (spherical 
harmonics) and different radial parts: 

a) hydrogen-type functions whose radial part forms a Laguerre 
polynomial (cf. wave functions for the hydrogen atom), 
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b) Slater functions whose radial part is a function of the type 

rn - 1 exp ( - ~r), 

where n is the principal quantum number of the orbital and ~ is a constant 
specific for the atom and its electronic shell characterized by n (cf. 
Section 8.1). 

c) Gaussian-type functions whose exponential factor is of the type 

When performing calculations in molecules, fixed combinations of 
Gaussian functions are frequently used and we then speak of a contracted 
basis set. Such a function often simulates an atomic orbital. Clementi 
and Davis optimized contracted basis sets using calculations on atoms. 

Each of the described types of atomic orbitals has its advantages 
and disadvantages. The first two types of orbitals satisfactorily describe 
the electron density near the atomic nuclei but lead to very complicated 
many-centre integrals of type (10-6). Gaussian functions in matrix 
elements can be much more easily integrated but they provide a poor 
description of the electron distribution in the close vicinity of and at 
a great distance from the atomic nuclei. This disadvantage is often 
compensated by increasing the number of atomic orbitals. 

The treatments which have been mentioned here are called "ab 
initio", sometimes also "absolute", as there is only a single step between 
the quantum mechanical formulation of the problem and the result of 
the calculation, consisting of the choice of the analytical form and 
the number of functions undergoing the optimization process. There 
is a number of difficulties hindering the extensive application of these 
methods to large molecules: 

a) The number of two-electron integrals of type (flV I (1(1) is proportion­
al to the fourth power of m, where m denotes the number of atomic 
orbitals, so that calculations performed with a relatively small atomic 
orbital basis set are the only practicable ones. 

b) The calculation of some integrals of type (flV I (1(1) was, until 
recently, rather difficult. 

c) Most serious is that the error in the calculated binding energies 
of molecules (the binding energy is defined as the energy of the mole­
cule less the energy of the atoms forming it) amounts to about 1 %, 
even if the Hartree-Fock equations are solved accurately. For chemical 
purposes - estimation of the equilibrium and the rate constants - an 
accuracy of one to two orders greater is needed. In the one-electron 
model each particle moves in the average field of all the other particles, 
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i.e., correlation of particle movements is not taken into consideration. 
Physically, it is evident that Coulomb repulsion between the electrons 
does not allow two particles to occur simultaneously at the same 
point in space; it is customary to describe this situation by saying 
that each electron is surrounded by a "Coulomb hole". In the Hartree-Fock 
scheme only the "Fermi hole" appears, so that in a given region the 
existence of two electrons with parallel spins is excluded [being against 
the Pauli principle, cf. Eq. (5-42) and below], where the same (space) 
molecular orbital may be occupied by electrons with different spins. 
This shortcoming in the model is termed the correlation error and 
a quantity called the correlation energy, Ecorr ' is introduced for its 
quantitative estimation. Ecorr is defined for a given system as the difference 
between the exact value of its total energy, Eexa,! ' and Hartree-Fock 
energy limit, EHF: 

(10-7) 

where the relativistic contributions are not included in the exact energy 
value. For example, the SCF treatment! for the total energy yields 
a value of - 2722.65 e V for the hydrogen fluoride molecule, while the 
experimental value is equal to - 2734.16 eV. This appears to be satis­
factory agreement. The dissociation energy, DE' of a molecule is defined 
as the difference between the energy of the molecule, DM , and the energy 
D AT of the individual atoms formed on dissociation of the molecule, 

(10-8) 

and for the SCF treatment it amounts to 

DE = -2722.65 + 2718.54 = -4.11eV 

The experimental DE value is - 6.08 e V; it therefore follows that, for 
chemically and physically important quantities, obtained as the difference 
of two large numbers, the error amounts to several tens of percent 
of the correct value and that "absolute" calculation on the level of 
the one-particle model is quite insufficient. The correlation energy then 
assumes values of the same order as the calculated quantities themselves; 
consequently, calculation of the .correlation energy is of particular interest 
in quantum chemistry today. 

Fortunately, semiempirical methods present a way of avoiding 
these difficulties. The use of these methods is accompanied by two 
characteristics. On the one hand, approximations are introduced which 
lead to a substantial decrease in the number of electron repulsion 
integrals (and complete elimination of the most difficult ones); on the 
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other hand, certain integrals are replaced by numerical values chosen 
so that the semi empirical theory describes the experimental characteristics 
of the substance (or of a small group of substances) chosen for adjusting 
the parameters. 

In the reduction of the number of repulsion integrals a very 
important part is played by the zero differential overlap approximation 
(denoted by the abbreviation ZDO, see below) which Pople in England 
and Pariser and Parr in the USA employed independently in 1953 
in two important semiempirical methods. The Pople approximation is 
a direct continuation of the Roothaan SCF method and represents 
a simplified self-consistent field method, whereas, in the Pariser and Parr 
method, the individual molecular states (the ground state and the excited 
states) are described using a linear combination of a certain number 
of Slater determinants. This is not an iteration method. Essentially the 
approximations employed and the evaluation of the integrals are very 
similar in these two methods. Both methods were elaborated in the form of 
1t-electron approximations. 

Survey of Semiempirical Methods Employed in Quantum Chemistry 

I. All electrons (or valence 
electrons) are included 

II. 1t-electron approximation 

Table 10-1 

1. Closed electron shell 2. Open electron shell 

CI Jaffe2 CI Craig12 ; Pariser, Parr13 CI Ishitani, Nagakura19 

Dewar3 SCF Roothaan 14 SCF Roothaan 20 
SCF Klopman4 SCF Pople15 SCF Longuet-Higgins, 

Pople, Santry, Segal5 Pople21 

Katagiri, Sandorfy6 
J ungen, La bhart 7 

Hoffmann8 

e; '" Sandorfy9 
.~"t) 
.l::..8 BrownlO 
0._ 

~ e Del Re ll 

Improved HMO (e.g. McLachlan22 

Coulson - GoJebiewski)16 HMO 1 7 

HM017 

Perturbation treatment18 

(within HMO formation) 

The Roothaan method forms a basis for various semiempirical 
methods, those considering all the valence electrons and the 1t-electron 
methods. The following survey summarizes these methods, starting with 
the more generally applicable ones (considering the .valence electrons), 
followed by the more special methods. 
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Before considering the evaluation of the F p.v expressions (matrix 
elements of the Hartree-Fock operator) it will be expedient to classify 
these methods into several groups: 

I. Methods which explicitly consider either all the electrons or 
at least all the valence electrons (as well as methods limited to the 
cr-electrons alone). 

II. Methods in which only 1t-electrons are explicitly considered. 
All the methods are further divided into two groups according to 

the type of electron configuration in the electronic ground state: 
1. methods suitable for systems with closed electron shells, 
2. methods suitable for systems with open electron shells. 
A more detailed survey is given in Table 10-1, where the level 

of sophistication of the individual methods is also taken into consideration. 
Tables 10-2 and 10-3 contain detailed data on the Hamiltonian, 

wave functions, matrix elements and the regions where the individual 
versions of the MO-LCAO method can be best employed. 

10.2 All-valence electron MO-LCAO methods 

10.2.1 Methods explicitly considering electron 
repulsion 

Semiempirical methods based on the SCF theory, suitable for studying 
large systems in which all the electrons in the valence shells are explicitly 
considered, were developed in 1965 to 1967. They are particularly 
attractive because they can be applied to a great variety of types of 
inorganic and organic systems. 

Pople, Santry and Segal5 studied the nature of these methods in 
detail and published a general analysis of semiempirical methods considering 
valence electrons. Among the proposed schemes, the CNDO (complete 
neglect of differential overlap) method was the first to be developed 
and employed for the calculation of charge distributions in some large 
organic molecules. Among further methods various modifications of this 
semiempirical method should be mentioned, such as the IND027 (inter­
mediate neglect of differential overlap) method, the MIND028 ,29 (modified 
intermediate neglect of differential overlap) method, the PND03 (partial 
neglect of differential overlap) method and related methods 30, which were 
mostly intended for the calculation of particular physical properties of 
molecules. 
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Among the large number of these highly related approximations, 
the CNDO method will be discussed in greater detail. Recognition and 
understanding of the sequence of approximations leading to the CNDO 
scheme will provide a basis for orientation amongst the other methods 
when the expressions for the respective matrix elements are known. 

Equations for the CNDO scheme can be derived from the expressions 
characterizing the general MO-LCAO version of the Hartree-Fock method 
and from Eqs. (10-1) to (10-6) by the following series of approximations: 

a) Of the total electron system of the molecule, only the electrons 
in the valence shells of all the participating atoms are explicitly considered. 
Therefore, for example, the hydrogen atom contributes an electron in 
the Is state to the total electronic system, first-row elements contribute 
electrons in the 2s and 2p states, etc. This assumption allows us to 
exclude electrons in the inner shells, which are assumed to electrostatically 
shield the atomic nuclei, from consideration. The remainder of the atom, 
by which we understand, for example, atom A deprived of nA valence 
electrons, is generally represented physically as a positive point charge 
nAe, where e is the proton charge; it is usual to call it the core. 

b) Each atom in the molecule contributes only atomic orbitals 
corresponding to the principal quantum number, which is related to 
the highest occupied orbital of the isolated atom, to the molecular 
orbitals of type (10-1). Thus a hydrogen atom supplies a Is orbital, 
first- row elements supply 2s and 2p orbitals, etc. It is assumed that 
the atomic orbitals form a set of orthonormalized functions. 

c) In order to decrease the number of two-electron integrals of type 
(/lV I Qa), the zero differential overlap assumption is introduced, according 
to which 

X:(I) Xv(l) = 0 (10-9) 

for /l =1= v. Relationship (10-9) is a stricter condition than the requirement 
of orthogonality of functions X/l and Xv and permits rearrangement of the 
double sum on the right-hand side of Eq. (10-4) in the form 

m m m 

L L: PQa(/lV I Qa) ----. { L: PQQ(/l/ll QQ)} (j/lV (1O-10a) 
Q=la=l Q=l 

1 m m 1 
- 2 1l~1 a~l PQa(1lQ I va) ----. - 2 P /lv(/l/ll vv) (to-lOb) 

Although neglecting the differential overlap might seem to be too 
great an interference with the general equations, its usefulness must be 
judged from the quality of the numerical calculations, which will be 
discussed below. It is sufficient here to note that a partial correction is 
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introduced by the NDD05 (neglect of diatomic differential overlap) 
scheme, according to which relation (10-9) applies only to orbitals 
located on different atoms. 

d) It is evident that the solution of the physical problem should not 
depend upon the choice of the coordinate system, which is arbitrary. 
Pople, Santry and Segal5 showed that the zero differential overlap 
approximation calls for additional approximations which are contingent 
on the requirement that the results be independent of the choice of the 
coordinate system (similarly as with the exact Hartree-Fock solution). 
An example will be useful here. 

Coulomb interaction will be assumed to exist between two electrons, 
of which one occupies the (2P)A orbital on atom A and the second, the 
(2S)B orbital on atom B; the orientation of the (2Px)A orbital is determined 
by the un primed coordinate system depicted in Fig. 6-1, where the origin 
of the coordinate system lies in the nucleus of atom A. We would have 
been equally justified in choosing the primed system of Cartesian coordi­
nates, which has a common origin with the original system but differs by 
rotation through angle IY. about the z-axis. Because the p orbitals have 
the same transformation properties as the axes of the Cartesian system, 
for the p' orbitals expressed with respect to the primed system and for 
the p orbitals expressed with respect to the non-primed system, the 
relationship 

II ~~::n = II-::s;,:~: IIII ~~::: II 
is valid. If the angle of rotation is rt = rr/4, for which 

rr . rr 1 
cos 4 = sm 4 = .}2' 

then the product is given by 

1 
(2pJ (2p,)' = 2" [(2p) + (2px)] [(2p) - (2px)] = 

1 
= "2 [(2p) (2p) - (2px) (2px)] 

(10-11) 

(10-12) 

(10-13) 

It is evident, furthermore, that because of its spherical symmetry the 
(2S)B orbital remains invariant to rotation through any angle. 

If zero differential overlap is introduced for the primed system, then 

((2px)~ (2p)~ I (2S)B (2S)B) = 0 

and therefore, considering Eq. (10-13), it follows that 

((2Px)A (2Px)A I (2S)B (2S)B) = ((2py)A (2p)A I (2S)B (2S)B) 

(10-14) 

(10-15) 
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This result indicates that the Coulomb integrals must not depend on the 
orientation of the p orbitals. For this reason Pople and co-workers 
introduced the assumption that the Coulomb two-electron integrals 
(J.lJ.l1 vv) depend only on the atoms on which the atomic orbitals XI' 
and Xv are located, thus being independent of the specific type of orbital. 
They denoted these integrals as 

(10-16) 

where XI' is the orbital located on atom M and Xv is the orbital located 
on atom N. This approximation corresponds to "averaging" of the 
interaction of the electrons located in valence states of different atoms 
of the molecule and also fulfills the requirement that the solution be 
invariant to a transformation which leads to combination of the 2s and 2p 
orbitals on one centre. The second kind of in variance called the "hybridiza­
tion invariance" is far less important and a number of semiempirical 
schemes do not even require its fulfilment (for example, the EHT method, 
see below). 

e) The approximations concerning one-electron integrals will be 
analyzed by discussing the diagonal and nondiagonal elements separately. 
If J.l = v, then, from Eq. (5-19a), it follows for the one-electron part of the 
matrix element F 1'1' [cf. Eq. (10-4)] that 

/ I h2 Z' e2 I) <XI' lit I XI'> = \XI' - 2m I:l - 41t6o I ; _ RM I XI' -

- rJM) \XI'141t60 I:e~ Rr II XI') , (10-17) 

where M denotes the atom on which the XI' orbital is located and Z~ is 
the core charge expressed in multiples of the proton charge. If we assume 
that atomic orbital XI" in accordance with the Goeppert-Mayer and 
Sklar3 ! approximation, is an eigenfunction of the one-electron atomic 
Hamiltonian 

( - ~~ I:l - 41t6o f;~ RM I) XI' = UI'XI" (10-18) 

then quantity U I' can be considered to be the energy of an electron which 
is in the atomic valence state XI" The value of U I' can either be determined 
by calculation or can be taken from the experimentally determined 
atomic energy levels. Pople and co-workers chose the latter and set U I' 
equal to the negative value of the ionization potential of the electron 
occurring in valence state XI" This second kind of parameter was used 
in the version of the method known as CNDO/l. It appears, however, 
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that the method yields better numerical results if U Il is determined from 
the average of the ionization potential III and the electron affinity All' 
where both quantities are related to valence state XIl ; this is obviously 
a better way of describing the energy conditions when loss of an electron 
and acceptance of an electron into the orbital XIl are equally probable. 
This alternative is used 5 in the CNDO/2 method. 

The expressions 

I =1= M, 

correspond to the electrostatic interaction between the electron, whose 
probability density is determined by function XIl located on atom M, 
and the remainder of the atom (the core) I. If the analytical form of XIl is 
given (for example, as a Slater orbital) it is relatively easy to calculate 
these integrals, as they are of the two-centre type (the coordinates of XIl 

are related to the nucleus of atom M, and the point charge of core I 
occurs at the nucleus of atom I). Similarly as in Coulomb two-electron 
integrals, the individual orbitals on the atom are also not differentiated 
in these integrals and the following average interaction is always intro­
duced : 

~2S)M 1 4rteo I:e~ RI II (2S)M) = VMI , 
(10-19) 

which again depends only on the type of participating atoms, M and I. 
This way of expressing the interaction is replaced in the CNDO/2 version 
by introducing the modified Goeppert-Mayer and Sklar potential. The core 
is then represented by a superposition of the neutral atom and the 
electron "holes", so that it is assumed that 

- (Xll1 4rteo I:e~ RIll XIl) = <xlll f~ I XIl> - Z~'hM (10-20) 

The first expression on the right-hand side of the equation represents the 
penetration integral corresponding to the interaction between the electron 
located (on atom M) in orbital XIl and neutral atom I, which is in the 
valence state. It can be assumed that the integral has a small value, which 
can therefore be neglected, so that 

(10-21) 

Because of approximation (10-9), the non-diagonal elements of h 
should be zero. It appears, however, that a semiempirical method using 
such an approximation would not yield physically reasonable results. 



204 

It is therefore assumed in the CNDO method that 

(10-22) 

where <X~ I X~) is the overlap integral and pO~{N is a parameter depending 
on atoms M and N on which the atomic orbitals are located. It is 
necessary to investigate only cases when M i= N, because the atomic 
orbitals of the valence shell located on the same atom are always 
orthogonal, so that the one-centre matrix elements (10-22) vanish. The 
actual form of the atomic orbitals on the right-hand side of Eq. (10-22) 
expresses an additional assumption for calculation of the matrix elements 
and is consequently not directly related to the basis set of the atomic 
orbitals [cf. approximation b)] in terms of which molecular orbitals 
are expressed. The introduction of primed orbitals into expression (10-22) 
permits the geometry of the molecule to be considered when calculating 
the matrix elements of A and ensures space and "hybridization" invariance 
of the solution. 

The introduction of approximations a) to e), i.e. Eqs. (10-lOa), 
(10-10b), (10-16), (10-18), (10-19) and (10-22), causes the secular determinant 
(10-3) and the matrix elements of the Hartree-Fock operator (10-4) to 
assume the following form in the CNDO/ 1 method: 

PM denotes the total electron charge on atom M: 

PM = I P/1/1' 
/1E(M) 

Jli=v 

(10-23) 

(10-25) 

(10-26) 

where the sum is carried out over atomic orbitals located on atom M. 
S/1V is an abbreviated notation for the overlap integral: 

S - < 'I ') /1V - X/1 Xv (10-27) 

NUl1}erical calculation according to this scheme also requires specification 
of the necessary integrals or matrix elements. Integrals S/1V' VMN and rMN 

are calculated using the Slater orbitals (with the Slater value of the 
exponential factor for all atoms except hydrogen for which the value 
1.2 was chosen). The experimentally determined values of the ionization 
potentials U /1 for the first and second row elements are given in Table 10-4. 
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Table 10-4 
Values of Parameter (- U.l in the CNDO/l Method (in eVj [from Ref. 5] 

Atom H Li Be B e.- N 0 F 

Is 13.06 
2s 5.39 9.32 14.05 19.44 25.58 32.38 40.20 
2p 3.54 5.96 8.30 10.67 13.19 15.85 18.66 

The arithmetical mean of the corresponding atomic parameters is used 
for the value of {3'lfN: 

(10-28) 

The values of the atomic parameters {3~ have been determined by com­
parison with the "ab initio" type of calculation for a number of small 
molecules to achieve optimum agreement of the electron charge distribu­
tion with the distribution resulting from semiempirical calculations. The 
choice of {3'lfN in form (10-28) keeps the number of semiempirical para­
meters used in the calculation scheme at an acceptable level. The {3~ 
values for various atoms are given in Table 10-5. 

Table 10-5 

Values of Parameter {J~ in the CNDO/ l Method (in eVl [from Ref. 5] 

Atom H Li Be B C N o F 

-{J~ 9 9 13 17 21 25 31 39 

The SCF treatment based on the definition of the matrix elements 
(10-24) and (10-25) can be numerically solved in a standard manner as 
described in Section 5.5. Pople and Segal5 proposed suitable expressions 
for construction of the zero approximation to the Hartree-Fock operator 
elements: 

(10-29) 

(10-30) 

Calculations at the SCF level are usually carried out to obtain 
theoretical information on the ground state of the electronic system. 
It was shown in Section 5.5 that the total electronic energy of a system 
can be simply expressed in terms of the eigenvalues of the SCF operator 
and of the interelectronic interaction energy [cf. Eq. (5-62)]' It is preferable 
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for some purposes to express the total energy Eiol of a molecule (differing 
from the total electronic energy by a constant contribution corresponding 
to the core repulsion) in terms of one-atom and two-atom contributions: 

(10-31) 

where 

EM = L P/l/lU/l + ~ L L (P/l/lP/l'/l' - ~ P;/l')'YMM (10-32) 
/le(M) /le(M) /l'e(M) 

EMN = L L [2P/lJ:J~NS/lV - ~ P;V'YMN] + 
/le(M) verN) 

[ Z' Z' e2 ] + 4 M'; - PMVMN - P NVNM + PMPN'YMN 
'/tco MN 

(10-33) 

In expression (10-33) it is assumed that the core interaction terms 
can be expressed in the form of Coulomb repulsion between point charges 
at a distance of R MN. 

As mentioned in Section 10.1, the semiempirical methods are 
accompanied by a considerable decrease in the number of integrals 
involved in the calculation. Table 10-6, taken from the paper by Klopman 
and O'Leary32, demonstrates this situation by comparing the CNDO 
method with the SCF "ab initio" t.e.:tment on the example of the propane 
molecule. 

Number of Molecular Integrals Necessary for Calculation 
of the Propane Molecule [from Ref. 32] 

Integrals 

one-centre 
two-centre 
three- and four-centre 
total 

SCF "ab initio" 
minimum basis set of 
atomic orbitals 

368 
6652 

31206 
38226 

Table 10-6 

CNDO 

11 

55 
o 

66 

The results originally achieved using the CNDOj2 method for more 
than twenty molecules (with 4 (BeH2) to 26 (NF 3) valence electrons) were 
very encouraging. The calculated quantities included dipole moments, 
valence angles and deformation vibrations. In recent years, methods of 
the CNDO type and related methods (INDO, MINDO) have been 
widely applied and proved satisfactory in calculation of various physical 
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properties for a variety of compounds. It might be added that Del Bene 
and Jaffe2 introduced new parameters into the CNDO scheme and thus 
succeeded in interpreting the electronic spectra of some hydrocarbons 
and their heteroanalogues. They utilized the limited configuration inter­
action in their method, which will be discussed in detail in Section 10.3.2 
on the theoretical treatment of 1t-electron systems. 

A semiempirical method involving valence electrons was also de­
veloped by Klopman33 • He applied it to more than 100 diatomic mole­
cules and to a number of triatomic molecules. A number of papers34 - 39 

are also concerned with these subjects. 

10.2.2 Methods using an effective Hamiltonian 

Hoffmann8 introduced a method using the effective Hamiltonian - similarly 
as in the HMO method - but involving all the valence electrons. Formally, 
this is the Hiickel method with an extended atomic orbital basis set, 
referred to as the EHT method ("extended Huckel theory") in the 
literature. The basis set for a hydrocarbon consists of carbon 2s and 2p 
orbitals and hydrogen Is orbitals; the method takes into account overlap 
and non-neighbouring interactions. The calculations are performed using 
the following values of the ionization potentials: 

HIl/C2p) = -11.4eV 

HIlIl(C 2s) = -21.4 eV 

HIlIl(H Is) = -13.6 eV 

For the hydrocarbon CnHm the following atomic orbitals basis set is used: 

m hydrogen Slater orbitals, exponent 1.0 

n 2s Slater orbitals for CarbOn} 1 625 
2 SI b· I r b exponent. 3n pater or Ita s lor car on 

These data are essential for calculation of the overlap integrals between 
Slater orbitals. 

The method is applicable to a great variety of organic and inorganic 
molecules. It has proven satisfactory in studies concerning conformation 
of cycles, internal rotation, geometric isomerism and distribution of (J 

and 1t electrons. It fails in the calculation of bond lengths (and valence 
vibrations) and it overestimates steric factors. 

Several methods1o•ll ,4o-44 operating on a similar level were intro­
duced earlier. They were mainly intended for studies of saturated hydro-
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carbons. Hoffmann's method has been described in greater detail because 
it is the most universal. It has also contributed to the formulation of 
a series of empirical rules (the Woodward-Hoffmann rules), which are 
used e.g. to predict the stereospecific course of various reactions of 
organic and inorganic compounds, and was particularly welcomed by 
chemists. 

The method proposed by Del Re11 is rather interesting for its 
simplicity. It solves the secular determinant for all localized bonds of the 
studied molecule (A): 

H p.p. - E, H p.v - ES p.v = 0 

Hp.v-ESp..,Hvv- E 
---.---.. ---

/1 v 
(A) 

(10-34) 

The overlap is neglected. The evaluation of H p.p.' H vv and H p.v (see 
Table 10-2), which depend on the nature of atoms /1 and v forming the 
bond, proceeds in the following way: it is assumed that quantities ep.v 

(Table 10-2) depend only on atoms /1 and v and not on the surroundings 
and that Jp. depends solely on the nature of the atoms directly bound to 
atom /1, so that 

f>p. = f>; + I Yp.p};. (10-35) 
;. (neighbours of 

orbital p.) 

Table 10-7 
Parameters of the Method According to Del Re 11 

Bond C-H C-C C-N C-O C-F N-H O-H C-Cl 

EAB 1.00 1.00 1.00 0.95 0.85 0.45 0.45 0.65 

YA(B) OJ 0.1 0.1 0.1 0.1 OJ OJ 0.2 

YB(A) 0.4 0.1 0.1 0.1 0.1 0.4 0.4 0.4 
.so 

A 0.07 0.07 0.07 0.07 0.07 0.24 0.40 0.07 
.so 

B 0.00 0.07 0.24 0.40 0.57 0.00 0.00 OJ5 

Equations of type (10-35) are set up in a number corresponding to 
the number of non-equivalent atoms in the system, giving a set of n 
equations for n unknown values, f>p.. The values of f>;, Yp.(v) and ep.v are 
given in Table 10-7. The secular equation can then be solved and the 
electron density and bond orders can be calculated in the usual manner. 
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10.3 1t-Electron theory 

10.3.1 1t-cr-Electron separation 

The 1t-electron approximation is based on the assumption that, in un­
saturated and aromatic compounds, only the 1t-electron system is con­
sidered explicitly in quantum mechanical calculations. The remaining 
electrons of the molecule, including the cr electrons, are considered to be 
a rigid skeleton, in the electrostatic field of which the 1t electrons move, 
and it is assumed that they are independent of changes in the 1t-electron 
system. Their effect is described semiempirically either by the values of 
parameters or by means of a potential, which is, for example, of a purely 
electrostatic nature in the Goeppert-Mayer and Sklar approximation. 
Within the framework of the 1t-electron theory, interpretations have been 
made with remarkable accuracy and a number of physical properties 
of aromatic and conjugated compounds, for example, their heats of 
formation and electronic spectra, have been predicted. 

Strictly speaking, as the electrons are indistinguishable we should 
speak of 1t states and cr states described by wave functions of suitable 
symmetry, instead of 1t electrons or cr electrons. However, concepts such 
as the 1t electron, etc., are already in common use and have an established 
place in quantum chemical terminology. 

The definition of states of 1t and cr symmetry is based on the fact 
that, in planar polyatomic molecules, it is possible to divide the atomic 
orbitals forming the basis set for the expansion of the molecular orbitals 
into two distinct groups. One group contains 1t orbitals, which are anti­
symmetric with respect to reflection in the molecular plane; the other 
group consists of cr orbitals, which are symmetric. For example, in the 
ethylene molecule, whose atoms lie in the xy-plane, it is possible to 
separate (2pz}1 and (2pz}2 orbitals located on the (1, 2) carbon atoms 
of the molecule, which are of the 1t type, from the minimum atomic 
orbital basis set (cr. Section 6.6). The other orbitals of this basis set are cr 
orbitals. The 1t atomic orbitals form the basis for the construction of the 
molecular orbitals of 1t symmetry, on which the description of 1t bonds 
is founded. In ethylene there are two electrons in the 1t bond (one double 
bond), benzene has six 1t electrons, etc. 

1t-Electrons differ from cr electrons not only in their symmetry 
properties. First, each group of electrons occurs in a different part of the 
molecule. A 1t electron has zero probability density in the molecular plane, 
whereas a (J electron occurs in this plane with maximum probability. 
Generally, 1t electrons are more weakly bound to the molecule than cr 
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electrons so that they are more easily ionized and more reactive and are 
therefore generally responsible for the chemical and physical properties 
of 1t-electron-containing compounds (electronic spectra, ionization poten­
tials etc.). A further difference between the two types of electrons consists 
in the fact that the 0' states can be localized in space. In this way we 
obtain a description for electrons in bonds between a pair of adjacent 
atoms, or for lone electron pairs on individual atoms, whereas the 
1t electrons form a delocalized system over the entire conjugated molecular 
skeleton. 

McWeeny45 and Lykos and Parr46 systematically studied the 
1t-electron approximation and the region of validity of 1t - 0' separability. 
They concluded that, under certain conditions, the 1t-electron Hamiltonian 
(i.e. the Hamiltonian which depends solely on the coordinates of the 
1t electrons) can be defined as 

"" "" 3en = L 3eC(i) + L U(i,j), (10-36) 
i= 1 i<j 

which, after substituting into the expression for the mean energy value, 

(10-37) 

where «1>n(l, 2, ... , nn) is the wave function describing the 1t electrons, 
yields the 1t-electron contribution to the total energy of the system 
including interaction with the other electrons and nuclei of the molecular 
system. :Ye c in Eq. (10-36) is the one-electron operator involving the 
kinetic energy of the 1t electrons and their interaction with the nuclei 
of the atoms and with all the 0' electrons. The conditions ensuring the 
validity of 0' -1t separability restrict the form of the wave function and 
can be summarized as follows: 

a) The normalized wave function «1> for the entire electron system 
can be written in the form of an antisymmetrized product, 

«1> = d ng «1>n(1, 2, ... , nn) «1>a(nn+ I' ... , nn + na)' (10-38) 

where «1> n is an antisymmetric function with respect to permutation of 
the 1t electrons, «1> a is antisymmetric with respect to permutation of the 
0' electrons and operator dna carries out permutations of 0' and 1t 
electrons in such a way that the total wave function also fulfils the Pauli 
principle [cf. Eqs. (4-91) and (4-93)]. 

b) Each of partial functions «1> nand «1> a is, in itself, normalized, i.e., 

<<<1>n I «1>n> = <<1>" 1«1>,,> = 1 (10-39) 
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c) Each of functions tP" and tPo can be expanded [cf. Eq. (5-28)] in 
a series of orthonormal Slater determinants, 

(10-40) 

(10-41) 

in which determinants L1~ and L1~ are built by means of rt and (j orbitals, 
respectively. It is assumed that the subsets of rt and (j orbitals possess 
no common elements - atomic orbitals. 

d) Wave function tP 0 is identical for the ground state and for all the 
excited states of the molecule. In other words, all changes in the molecule 
(excitation, ionization) occur only in the rt-electron system and the other 
electrons are not affected. 

On fulfillment of conditions a) to d), the total electronic energy of 
a molecule can be written in the form 

(10-42) 

where E~ denotes a constant energy value (common for the electronic 
ground state and for the electronically excited states of the molecule) 
which is contributed by electrons in (j states (including all the electrons 
in the inner, i.e. non-valence-atomic shells), and the rt-electron energy, 
E", is defined by Eq. (10-37). In agreement with this conclusion, the 
variation principle can be applied directly to expression (10-37) without 
considering the (j electrons, as they contribute only a constant value to 
the total energy. 

10.3.2 The Pople version of the SCF method 
for rt-electron systems 

Initially, it should be noted that similar approximations are employed 
in the calculation scheme of the Pople version 15 of the SCF method for rt­
electron systems as those encountered when deriving the equations 
characterizing the CNDO method. This is essentially because the SCF­
method for rt-electron systems had already been elaborated (in the early 
fifties), and had proven satisfactory; consequently, an attempt was later 
made to apply similar calculation schemes to the description of systems 
involving all the valence electrons. 

From the general LCAO-SCF expressions and Eqs. (10-1) to (10-6) 
it is possible to obtain the Pople version of the SCF method by introducing 
the following approximations: 
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a) The 1t electrons in the studied aromatic or conjugated molecule 
can be treated independently of the other electrons. Molecular orbitals 
(10-1) are expressed in the form of a linear combination of atomic 
orbitals of 1t symmetry, for example, in atoms with atomic numbers 
3 to 10, the 2p orbitals perpendicular to the molecular plane are 
considered. 

b) The zero differential overlap approximation expressed by Eq. 
(10-9) is used, enabling a considerable reduction of the number of two­
electron integrals [cf. Eqs. (1O-10a) and (lO-lOb)], as well as neglect of all 
overlap integrals. 

c) The one-centre Coulomb integrals are expressed using atomic 
spectroscopic data for the ionization potential I p. and electron affinity Ap. 
of an electron occurring in the 1t - orbital Xp. of the atom M: 

(10-43) 

where a similar notation as in Eq. (10-16) was introduced for the Coulomb 
integrals except that indices which simultaneously denote the atom are 
retained, which is possible because only one atomic orbital located on 
atom M can occur in molecular orbital (10-1). Relation (10-43) was 
introduced by Pariser47 and is based on the energy balance for the model 
reaction of a simple electron transfer process; the respective electron is 
assumed to occupy atomic valence state p. For two carbon atoms we 
can write 

c + C ---+ C + C+ (10-44) 

This type of charge transfer can be represented by the superposition 
of two processes: 

c ---+ C+ + e (ld 
C + e ---+ C (-Ad, 

whence 
Ie - Ae = AE = 'Yp.p. (10-45) 

On the left-hand side of Eq. (10-45) are quantities related to the carbon 
atom. Their numerical values are evident from Table 10-8. Analogous 
relations are also used for the determination of one-centre Coul~mb 
integrals for other atoms (cf. Table 10-8). 

d) The matrix elements of operator :Yfc are expressed similarly 
as in the CNDO scheme. 

The diagonal element <Xp.I:Yfc I Xp.) can be written as given by 
Eq. (10-17). Eqs. (10-18) to (10-21) yield 

(10-46) 



213 

Table 10-8 
Parameters I p' A p' If,.c (in e V) of the Pople SCF Method' 

Atom (P) Type of compound Ip Ap 

C conjugated planar 11.22 0.69 -2.318 
N pyridine 14.1 1.8 -2.318 

aniline, pyrrole 27.3 9.3 -1.854 
0 ketone, quinone 13.6 2.3 - 2.318 

phenol, furan 32.9 10.0 -2.318 
0- phenolate 21.0 9.5 -2.318 
S thiophene 20.0 9.16 -1.623 

a The same parameters are also used in the common PPP method (PPP is an abbreviation 
of Pariser, Parr and Pople), a limited configuration interaction method (LCI) utilizing the SCF 
molecular orbitals (i.e. LCI-SCF method, see below). 

where Zv denotes the number of electrons which the atom v (previously 
denoted by N) contributes to the rr-electron system. The Goeppert-Mayer 
and Sklar assumptions31 , represented by Eqs. (10-18) and (10-20), were 
originally introduced in a treatment of rr-electron systems. However, 
assumption (10-21) of negligibility of the penetration integrals, although 
used frequently in various versions of parametrization, is not always 
employed. 

The non-diagonal matrix elements are considered to be empirical 
parameters, which are usually chosen so that the calculation optimally 
reproduces the experimental data for one molecule or a group ofmolecules.* 
The "tight binding" approximation is very often introduced, according 
to which 

< l.Yec I > = {f3:v ~f Jl and v correspond to neighbouring atoms (10-47) 
XI' Xv 0 In all other cases. 

The rearrangement of the matrix elements of the Hartree-Fock 
operator (10-4) in the sense of approximations a) to d), i.e., Eqs. (10-10a), 
(10-10b), (10-43), (10-46) and (10-47), leads to the expressions 

(10-48) 

(Jl i= v) (10-49) 

* We speak of the adjustment of parameters to experimental data. The values thus 
obtained (for example, using heats of formation, and spectral transitions in ethylene and 
benzene) are then employed in the entire region of structurally related (in this case 
conjugated) compounds. 
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The secular determinant has the form given by expression (10-23). The 
charge-and bond-order matrix elements P/lv were defined by Eq. (10-5) 
and refer to m01ecular orbitals of 1t symmetry. Table 10-8 summarizes 
the values of I/l' A/l' as well as the core resonance integral P~v for 
a number of important atoms and bonds. It should be added when 
considering the numerical solution of the SCF equations, discussed in 
detail in Section 5.5, that the secular determinant of the zeroth iteration 
step is usually constructed using expansion coefficients obtained by the 
simple molecular orbital method (HMO, see below). 

The Pople method appears to be the most convenient semi­
empirical method for description of the properties of aromatic and 
conjugated organic molecules in the electronic ground state (heats of 
formation, dipole moments, bond lengths, chemical reactivity). The total 
electron energy at the SCF level can best be expressed in the form 
of Eq. (5-62). To determine the total energy of the molecule, Etol' it is 
necessary to add the core repulsion terms [cr. Eq. (10-33)]' 

The repulsion of electrons corresponding to atoms f1 and v in 
a neutral molecule with uniform electron charge distribution is approxi­
mately the same as the f1 and v core repulsion. so that the Coulomb term 
(the second term) in Eq. (5-62) is roughly compensated by the core 
repulsion and Eq. (5-62) therefore assumes the form 

E tot ~ 2 I Gi + II <<Pi<Pj I g I <P/p) (10-50) 
. i j 

If the eigenvalues Gi and the exchange integrals in Eq. (10-50) are 
expressed in terms of the expansion coefficients of the molecular orbitals, 
the relationship 

E tot = ~P/l/l(U/l + ~ P/l/lYIlIl ) + ~t~PIlV(P~V - ! P/lvY/lv) (10-51) 

is obtained. If the expressions in parentheses are replaced by the Coulomb 
(ex/l) and resonance (P/lv) integrals from the HMO method, the HMO 
expression for the total energy is obtained (Section 10.3.5). 

10.3.3 The Pariser-Parr method of limited 
configuration interaction 

Approximation of the wave function as a single-determinant function, is, 
as a rule, insufficient for the calculation of the electronic structure of 
molecules in excited states. A remedy for this situation can be found 
by describing the electronic states of the molecule in terms of a linear 
combination of Slater determinants (cf. Section 5.4). 
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Slater determinants can be constructed on the basis of either HMO 
(see below) or SCF molecular orbitals. In some systems (for example, 
benzenoid hydrocarbons) the HMO and SCF orbitals lead to practically 
the same results. In systems with heteroatoms, however, the application 
of SCF molecular orbitals is preferable; in addition, it is possible to use 
the fact that configurations of singly excited states do not interact witj1 the 
ground state configurations [the Brillouin theorem (cf. Section 5.5)]. 
The integrals which must be evaluated when employing the configuration 
interaction method are analogous to the integrals appearing in treatments 
using the SCF method. 

In the semiempirical method of Pariser and Parr l3, the expansion 
of the wave function involves, in addition to the determinant of the ground 
state, only the determinants of singly excited configurations, obtained 
from the ground state configuration (cf. Sections 5.4 and 5.5) by replacing 
the i-th occupied molecular orbital by the j-th unoccupied molecular 
orbital. Such a configuration will be denoted by the symbol (i, j). 

The wave function describing state (/ can then be written in the 
form 

'l'a = C Oa,1o + L C(i,j)a,1ij' (lO-52) 
(i,)) 

where expansion coefficients C are variation parameters. Expansion of 
the wave function using all the singly excited configurations is sometimes 
too tedious from the aspect of computation and then only some of them 
are considered. The general algorithm for the calculation has been 
described in Section 5.4. 

The expression for the charge distribution derived from the wave 
function described above warrants particular attention. Whereas the 
electron densities on atoms (q/l) and bond orders (P /lv) can be simply 
expressed within the single-determinant approximation (SCF or HMO; 
closed shell system) in the form 

P/lV = 2 L C:iC vi (lO-53a) 
i(occ.) 

(lO-53b) 

the expression for the bond orders in the limited configuration interaction 
(LCI) method involving singly excited configurations alone is defined 
in a far more complicated way24: 

ap~~cl) = P/lV + L [C(i,j)J 2 (c/l/Vj - C/liCvi) + 
(i,j) 

+·./(2)L (Co) (C(i,j)J (c/licvj + C/l/Vi) + 
(i,j) 

+ L (C(i,))J (C(k,I)J [(C/l/VI + C/lIC v) (jik - (C/liCvk + C/lkCvJ (jjlJ (l0-54) 
(i,j) < (k,l) 
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P flV is the bond-order matrix element of the ground state configuration 
[cf. Eq. (1O-53a)], indices i and k denote occupied molecular orbitals, 
j and I are unoccupied molecular orbitals and it is assumed that 
expansion coefficients are real numbers. The summation L is equi-

1 (i,}) < (k,l) 

valent to the summation 2 L over all the considered singly excited 
(i,j)1(k,l) 

configurations. The expression for the generalized bond order ap(LCI) 
flV 

follows from the expression for the first-order density matrix cor-
responding to wave function Pa , 

(10-55) 

(cf. Section 11.2.2). In this equation, the atomic orbitals are assumed to 
be real functions. 

10.3.4 A survey of semiempirical 1t-electron methods 

Having become acquainted with the most important types of semi­
empirical methods used for studies of conjugated systems, the most 
important approximations which have so far been employed will be 
surveyed (Table 10-9). In this connection, we will mention various 
possibilities for the approximation of integrals and describe the most 
important expressions. 

The neglecting of individual terms and approximations will be 
discussed systematically; the scheme given in Table 10-9 applies for the 
further discussion. 

Group A. 

The very numerous theoretical characteristics of planar (or almost 
planar) conjugated systems, which are interesting for chemists and 
physicists, are not significantly influenced by this group of approximations. 

Group B. 

Subgroup B.I. Within the Goeppert-Mayer and Sklar approxima­
tion, in instance (i), IX~ (c denotes core) will be approximated by the 
corresponding ionization potential of the atom in the valence state. 
In instance (ii) the penetration integrals are explicitly considered, but this 
is rather rare24,48 - 50. Their inclusion is manifested in two chief ways: 

a) in a non-uniform charge distribution in alternant hydrocarbons, 
b) in the fact that the theoretical transitions corresponding to IX 

bands in the electronic spectra of benzenoid hydrocarbons (see below) 
become allowed. 
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Table 10-9 

Survey of Neglected Terms and Approximations in 1t-Electron Semiempirical Methods 

Used for the Study of Conjugated Systems 

A.I. Neglect of relativistic corrections 

2. Born-Oppenheimer approximation 

3. Electron correlation i's included only 

in empirical parameters 

4. 1t-electron approximation 

E _ J ,1 0.tf,1 0 dr 
- J ,1~ dr 

.tf = IJf7 + II g(i,;) 
i i<j 

,1 o' .. normalized Slater determinant 

of the ground state (LCAO 

approximation, X denotes AO's) 

B.1. Jl = v 
(i) approximation through effective 

ionization potentials I (neglect of 
penetration integrals) 

(ii) calculation of penetration 

integrals 

2. Jl '" v 
(i) Jl and v are neighbours 

IX) studies with constant empirical 

values (2 to 3 e V) 

Pl values depend on the bond 

length [P~. = f(r ~.) or f(P ~.)] 
(ii) Jl and v are not neighbours 

IX) P~. = 0 (tight binding approxi­

mation) 

Pl P~. - S~. 

La) J x~(l) Jr(l) X.(l) dr(l) ... one- and two-centre core integrals 

h b) J Xi1) X.(l) g(l, 2) XQ(2) X a(2) dr(l) dr(2) == {Jlv I (10') •.. many-centre electron repulsion 
integrals 

c.l. "m4 catastrophe" [ZDO: zero differential overlap .. . (Jlv I (10') .5~ • .5Qa] 
2. One-centre electron repulsion integrals: (JlJlI JlJl) '= Y ~~ = I ~ - A ~ 

3. Two-centre electron repulsion integrals: (JlJlI vv) == y~. approximated using various 
formulas (see the text) 

Subgroup B.2. 
Case I: f1. and v are neighbouring atoms 

a) If constant quantities are employed, it is possible to use the 
values given in Table 10-8. 

b) In general it is necessary to include the dependence of these 
integrals on the bond lengths51 ,52. Several empirical formulas have 
been proposed for this purpose*, 1 and 6 are particularly important: 

1. f3;v = f3~ exp {a(1.397 - r I'v)} 

a is equal to either 4.5988 (reference 53), or 
3.2196 (reference 54) 

(10-56) 

* The formulae were taken directly from the quoted papers. The distances are mostly 
in 10- 10 m and the calculated quantities are in eV. Before using these formulae, it is 

recommended that the reader consult the original literature. 
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and further r /lV = b - cP /lV 
with b = 1.52, c = 0.19, or 

b = 1.50, c = 0.15 (cf. cited papers) 
f3~ denotes the core resonance integral of the standard C - C bond; 

the value f3~ = -2.318 eV is frequently used. 

2. f3~v = k/rZv (reference 55) 

kc=c = -17.464 

kC=N = -13.983 

kc=o = -8.8086 

(10-57) 

3. f3~v = -6442exp(-5.6864r/l.) (reference 13) (10-58) 

4. f3~v = -2524exp{-5.047(~/l; ~v - 2)2 - 5rl'v} (reference 56) 
·c (10-59) 

(~'s are the effective nuclear charges of the orbitals) 

5. f3~v = -1.60 + aPl'v + bP;v (reference 57) (10-60) 

6. Finally. Mulliken's relation between the resonance and overlap integrals 
must be mentioned: 

(10-61) 

(the quantities with index 0 refer to the reference bond) 

7. 
1 dS 

f3~v = --~d v (reference 58) 
r/lV r/lV 

Case I I: Jl and v are not neighbouring atoms 
a) f3~v = 0 ("tight binding" approximation; this approximation is 

used very frequently). 
b) If all fJ's are considered, then the greatest difficulty lies in finding 

a suitable function to correctly describe the interaction between more 
distant centres. Flurry and Be1l 59 tested several approximations: 

f3~v = f[ a exp ( - hr /l.)] 

The following relation appeared to them to be useful (although not 
optimal): 

f3 c = (2 - SIl.) S"v (H H )1 /2 
/lV 2 _ S2 /l/l vv 

/lV 
(10-62) 

(H /l/l is the ionization potential for the valence state.) 
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Flurry, Stout and Be1l56 employed the formula of Katagiri and 
Sandorfy6 in studies of phenols and related compounds. 

S 
p~v = - "4- {bJl + (JiJiI JiJi) + bv + (vv I vv) + 2(JiJiI vv)}, (10-63) 

where bJl and bv are empirical constants: 

Atom Type bJl 

C 7.56 
N pyridine 11.15 
N pyrrole 20.0 
0 carbonyl 9.0 
0 furan 38.0 

The following expression appeared to be particularly useful: 

RC - K 2ZJlZV S (2 S) 
I' JlV - Z + Z JlV - JlV' 

Jl v 

(10-64) 

where K is a numerical constant (0.5246), ZJl (Zv) are the core charges 
and SJlV is the overlap integral between Slater orbitals. 

Group C. 

Subgroup C.1. The zero differential overlap approximation (ZDO) 
reduces "catastrophe m4 " to "unpleasantness m2". It is almost universally 
applied. _ 

Subgroup C.2. Approximation 1- A [cf. Eq. (10-45)] of one-centre 
electron repulsion integrals, introduced by Pariser, has proven very 
satisfactory. 

Subgroup C.3. Two-centre electron repulsion integrals for 1t electrons 

located in the XJl and Xv AO's 

Y JlV == (JiJiI vv) = S x:(1)xi1)[ e2 /(41tBor 12)] X:(2)xv(2) dr(l) dr(2) 

must fulfill two conditions: 

lim y(r) = Yll 
r .... O 

(10-65) 

(10-66) 

Many formulae are used in the literature for approximating these integrals; 
several of them are given here for illustration; formula 4.* below has 
proven very useful. 

* The distances are substituted in multiples of 10- 10 m; Y., is in eV. 



220 

1. The expression given by Parr60 based on a model in which the 
distribution of the 1t charges is approximated by charged spheres: 

Y =--- 1+ /l v + 1+ /,L v 7.1975 {[ (R - R )2J-1/2 [ (R + R )2J-1/2} 
JlV rJlV 2rJlV 2rJlV 

(rJlV ~ 2.8 x 10- 10 m) (10-67) 

RJl (R.) denotes the diameter of a homogeneously charged sphere. For RJl 
it holds 

R = 4.597 10- 8 
/l Z cm 

Jl 
In addition, 

YJlV = t[YJlJl + Yv.J - arJlv - br;v 

2. The Pople approximation 15 

(r JlV < 2.8 x 10 -10 m) (10-68) 

YJlv = 14.399/rJlV (10-69) 

3. The Lowdin-Ohno approximation61 

(10-70) 

h 14.399 
were c = . 

O.5[YJlJl + YvvJ 
4. The Mataga-Nishimoto approximation for hydrocarbons48 

Y/lV = a + r 
JlV 

14.399 
(10-71) 

This completes the detailed discussion of parametrization in 1t-elec­
tron methods. There are several reasons for the extent of this information. 
First of all, when using semiempirical methods, the chemist frequently 
encounters many of the given formulae in the literature. Furthermore, 
the 1t-electron methods are not obsolete, as some authors believed in the 
early seventies. In spite of the development of theoretically more exact 
methods and the use of computers, it cannot be expected that, in the near 
future, these methods will yield better numerical results for planar 
conjugated systems than those based on the 1t-electron approximation; 
in addition, financial outlay connected with calculations on systems 
containing 20 to 50 atoms (50 to 120 electrons) would be unjustifiable. 
Furthermore, the parametrization of 1t-electron methods is sufficiently 
developed so that these methods are very suitable, not only for the 
interpretation of experimental data, but even for relatively safe predictions; 
they can also contribute to the solution of structural problems. 
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At present there is, however, a certain characteristic of semiempirical 
quantum chemical methods which should be mentioned; this could be 
termed a method and parameter explosion. The reader has probably 
noticed that the number of combinations of proposed approximations 
to the individual integrals (Table 10-9) amounts to several hundred. For 
the chemist who is not a quantum chemist, selection of a method for the 
interpretation of experimental data is not an easy task. It is obviously 
necessary to choose the optimum combination (i.e., the one best describing 
the experimental results). This choice is almost impossible. Confusion can 
be overcome by applying a version which has proven satisfactory in 
a well established laboratory. There is, however, also a second possibility: 
to investigate systematically, after sufficient theoretical consideration, the 
very numerous available possibilities. Though this is rather thankless 
work, it has led62 to useful results. It would be foolis4 to believe that it 
yields the best results for conjugated compounds of all known types and 
for all important physical characteristics. But we can safely claim that 
it yields good results for the characteristics of the ground state (heats of 
atomization, dipole moments, bond lengths) as well as for the charac­
teristics of electronically excited states (excitation energy, transition and 
dipole moments). This is a very positive result, because in the literature 
it is widely believed that description of the characteristics in ground and 
excited states can be achieved only by using two different sets of para­
meters. 

Because of its universal applicability, because of the possibility of 
considering the a-core polarization and because of its "objectiveness" 
(in the sense of "independence" of the person doing the calculation as far 
as the parametrization is concerned), the proposed procedure deserves 
more detailed description. The diagonal elements .Yt'~f.I are approximated 
by the formula 

(10-72) 

where the individual terms are defined as follows: 

(10-73) 

(10-74) 

(10-75) 

The second summation in Eq. (10-72) is carried out only over atoms 
bound by a bonds. 
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The change in the core charge, AZI" is calculated using the formula 

(10-76) 

where the summation is carried out over all the neighbours of position p" 

i.e., not only over all the atoms of the conjugated skeleton. XI' is the 
Mulliken electronegativity of atom p,; in references 62 are given tables 
of the optimal values of constants bl" cl" dl" f~, 8~ and .181' for elements 
of the first two periods of the periodic table of the elements and also 
for As, Se, Br, Sb, Te and I. The 8/1 terms appear in the expressions 
for the bond length 

rl'v = J[2.9 + ~175(~~ - Z~)J(1.523 - 0.19P/1v) nl'nv , (10-77) 
/1 + v nil + nv 

where nil and nv are the principal quantum numbers of the Slater orbitals 
of atoms p, and v [cf. Eqs. (8-6) and (8-7)]. 

Finally, the resonance integrals (all of them, the "tight binding" 
approximation is not used here) are approximated by the expression 

H:v = PIlV = 0.542 2(X,p .. v SIl.(2 - SIlV)' 
(Xil + (Xv 

(10-78) 

where SIlV is the overlap integral between the Slater orbitals of atoms p, 
and v. It remains to be added that the two-centre repulsion integrals have 
been evaluated using the formula introduced by Mataga and Nishimoto 
[Eq. (10-71)]. 

10.3.5 Very simple rc-electron 
version of the MO method 

One of the oldest versions of the MO method, the HUckel method 17 ,64-66 

(HMO), belongs in this group. It is characteristic for this method that 
various simplifications were taken to extremps: the introduction of any 
further simplification would result in the collapse of the whole method. 
Similarly as in the EHT method, here the electron repulsion is also not 
explicitly considered and it is assumed that the total Hamiltonian can be 
expressed as the sum of effective Hamiltonians, each of which depends 
on the coordinates of a single electron (cf. Section 5.5): 

"" Ye(I, 2, ... , nn) = L Ye:f (10-79) 
/1=1 

Consequently, the effective operator .yt'~f corresponds to the first electron, 
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etc. This need not be specified because all matrix elements in which these 
operators appear are - as mentioned below - considered to be empirical 
parameters. Therefore, in practice, these integrals are not calculated but 
are replaced by suitable numerical values (adjustment to the experimental 
data). 

The difference between the HMO method and the EHT method lies 
in that a) in the HMO method the overlap integrals (X/ll Xv> == S/lV 
(J1. =1= v) are neglected and b) while the Pz atomic orbitals of the carbon 
atoms alone establish the basis set for the MO's in the HMO method, 
all atomic orbitals corresponding to the valence electrons are considered 
in the EHT method. 

The optimum values of c/l i (J1. is the AO index, i is the MO index 
m 

in the molecular orbitals ({Ji = L c/liX/l) are determined as usual by the 
/l=1 

variation method. The system of linear equations for their determination 
has the form 

m 

L cv(H/lV - ES/l.) = 0; J1. = 1,2, ... , m (10-80) 
v=1 

and it must hold that 

det II H/lV - ES/lV II = 0 (10-81) 

The following types of matrix elements occur in the energy calculation 

(10-82) 

denoted by (X/l (Coulomb integral: J1. = v) and by P/lV (resonance integral: 
J1. =1= v; the atomic orbitals are considered to be real functions). 

In the Hi.ickel method, the following simplifying assumptions are 
made concerning these integrals: 

a} The (X/l for all centres (corresponding to all conjugated C atoms) 
have the same value, (X. 

b) P/l V is considered to equal zero if the carbon atoms in the J1. 

and v positions are not bound by a (J bond and to equal the uniform 
value P if the C atoms are bound to each other (the "tight binding" 
approximation). 

c} It is assumed that the atomic orbitals form an orthonormal basis, 
so that 

where b/1v is the Kronecker delta. 
The IX and P integrals are considered to be empirical parameters 

of the HMO method, so that numerical calculations can be carried out 
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within the framework of this method without specifying the expressions 
for the AO's and for the effective Hamiltonian. The total n-e1ectron 
energy [cf. Eqs. (5-40b) and (10-115)] obtained within the HMO scheme 
will be denoted by W. 

Several refinements have been introduced into the HMO method; 
a modification enables extension of the method to systems containing 
heteroatoms (Pauling). 

The first refinement (Wheland) concerns the introduction of non­
vanishing values for the overlap integrals between adjacent orbitals; it is 
usually assumed in cyclic systems that S /lV = 0.25, where Il and v designate 
the 2pz AO's on adjacent carbons connected by a (J bond. The introduction 
of this refinement does not lead to numerical complications and can be 
made after completion of the standard HMO calculation. It appears, 
however, that its introduction is not connected with increased quality 
of the theoretical data. Considerably more important are modifications 
which do not employ constant values of !X/l and P/lV but rather assume 
functional dependences either 

or 

P /lV = P /lv( P /lv)' 

or make both assumptions simultaneously. For more detailed information 
on the respective methods as well as their range of application, see 
Table 10-3. 

Many studies have been devoted to the selection of empirical 
parameters for heteroatoms and for heteroatom - carbon and hetero­
atom - heteroatom bonds. Streitwieser proposed a very useful series of 
values; we have also used similar values in our laboratory; Table 10-10 
indicates a set of values which proved satisfactory in various applications. 
These parameters are generally stated in the form 

!X/l = !X + h/lP 

P/lC = k/lCP' 

(10-83) 

(10-84) 

where Il denotes the heteroatom, IlC is the heteroatom - carbon bond, !X is 
the Coulomb integral of the 2pz carbon orbital and P is the resonance 
integral of the n carbon - carbon bond. 

It can be shown that, for some simple systems (for example polyenes, 
cyclopolyenes, polyacenes), expressions for the calculation of orbital 
energies and other quantities can be given in closed form (Table 10-11). 
For polyenes, the general expression of the orbital energy can be obtained 
in a manner which will be outlined briefly here using a polyene of m 
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Table 10-10 
HMO Parameters hp and k., [Eqs. (10-83) and (10-84)] 

Atom Example hp Bond kpc 

B (borazole) -1 B'-"'N, B'-"'C 0.7 

C (naphthalene, azulene) 0 C".!!.·C 

C (hexatriene) 0 C=C 1.1 

C-C 0.9 

N (pyridine) 0.5 C"-"'N 
+ + 
N (pyridine cation) 2.0 C=N 

N (pyrrole, aniline) 1.5 C-N 0.8 

N (nitrile) 0.5 CENI 1.4 

N (nitrobenzene) 2.0 C'-"'N 0.8 

N""O 
""0 

0.7 

0 (ketone, phenolate) 1.0 C=O, C-O- 1.0 

0 (furan, phenol) 2.0 c-o 0.8 

S (thioketone) 0.5 C=S 0.9 

S (thiophene, thiophenol) 1 C-S 0.7 

F (fluorobenzene) 3 C-F 0.7 

CI (chlorobenzene) 2 C-C1 0.4 

Br (bromobenzene) 1.5 C-Br 0.3 

(iodobenzene) 1.3 C-J 0.25 

Table 10-11 
General Formulas for Calculation of HMO Orbital Energies in Several Types of Systems 

Formula System k 
) 

in Fig. 10-1 

linear polyenes 
ire .i = 1,2, ... ,m 2cos-'-I; 

m+ 

2' 
II cyclic Hiickel polyenes 2cos~':; .i = 1,2, , .. ,m 

m 

III cyclic Mobius polyenes 
ire . <±(m - 1), m even 

2cos-' -; , = + 1, + 3, ... , dd 
m ' - - +171, m 0 

carbon atoms as an example. The construction of the determinant 
according to Eq. (10-81) including the HMO approximation is straight­
forward; for the sake of simplicity, the equation obtained will be divided 
by p and the substitution (IX - E)/P = k will be introduced, to give 
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k100 ... 0 
1k10 ... 0 
01k1 0 =0 (10-85) 

000 0 k 

This determinant of order m will be denoted Dm; expansion by co factors 
of the first row elements leads directly to the recurrence formula 

(10-86) 

It will be convenient to find a pair of numbers rand s which possess the 
following properties: 

r+s=k 

rs = 1 

Solving this system of equations gives 

r = k/2 + J(k 2/4 - 1) 

s = k/2 - J(k 2/4 - 1) 

The recurrence formula can be expressed in terms of rand s: 

Dm - sDm - 1 = r(Dm - 1 - sDm - 2) 

Dm - rDm _ 1 = s(Dm - 1 - rDm - 2) 

(10-87a) 

(1O-87b) 

(1O-88a) 

(10-88b) 

(10-89a) 

(10-89b) 

The left-hand sides of these equations are terms of geometric series with 
quotients rand s; it is therefore possible to write 

Dm - sDm - 1 = rm - 2(D2 - sD1) 

Dm - rDm - 1 = ~-2(D2 - rD1) 

(10-90a) 

(10-90b) 

Dm -1 can easily be eliminated from these equations and the following 
relation is then obtained: 

D = ,m-1(D2 - sD 1) - sm-l(D2 - rD 1) 

m r - s 
(10-91) 

Eq. (10-91) can be changed into a more convenient form by the substitution 

k = 2 cos q> 

Then for rand s it holds that 

r = cos q> + i sin q> 

s = cos q> - i sin q> 

(10-92) 

(10-93a) 

(1O-93b) 



Using the Moivre theorem and considering the expressions 

then 

D = sin (m + 1) qJ 

m sin qJ 

Now the equation Dm = 0 can be solved. From Eq. (10-94) 

sin (m + 1) qJ = 0, 
so that 

and therefore 
j1t 

k . = 2cos--
J m + 1 
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(10-94) 

(l0~95a) 

(10-95b) 

(10-96) 

It is evident from the course of the cosine that all the required solutions will 
be found by considering a total of m values for j: 1, 2, 3, ... , m. It is 
obvious that the expression obtained for kj is identical with that given 
in Table 10-11. It remains to be added that expressions are available 
in the literature64 which allow direct calculation of orbital energies 
for further systems: for cyclopolyenes in which conjugation is caused by 
overlap of the p and d orbitals (IV), for radialenes (V), dendralenes (VI) 
and polyacenes (VII) (Fig. 10-1). 

In systems I to VII (and similarly in all further periodic conjugated 
molecules), expressions for the expansion coefficients and for quantities 
derived from them can be stated in closed form. This fact can be 
illustrated by the expression for the bond orders in a polyene with m 
carbon atoms (where m is an even number), 

1 [ 1t -1 (2J1. + 1) 1t ] 
P 1l.1l + 1 = m + 1 cosec 2m + 2 + (-1 r cosec 2m + 2 ' (10-97) 

and by the expression for the 1t-electron energy of a cyclopolyene with m 
carbon atoms: 

W = ma + 2P (cosec 2m : 2 - 1} (10-98) 

where a and P denote the Coulomb and resonance integrals, respectively. 
It is desirable to briefly discuss the numerical part of the calculations. 

The HMO method is an ideal example because it provides very lucid 
results. It has, however, some important features in common with more 
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Fig. to-I. Schematic representation of some It-electron systems. I -linear polyenes, II - cyclic 
HUckel polyenes, III -cyclic Mobius polyenes, IV -cyclic p-d polyenes, V - radialenes, 

VI - dendralenes, VII - polyacenes. 

complicated methods. The solution of the secular determinant is, for 
example, met in the HMO, SCF and the CI methods. However, the 
difficulty of obtaining the matrix elements in the individual methods 
differs a great deal. 

For illustration, methylenecyclopropene (VIII) can be chosen. The 
following system of equations is then valid: 

VIII 

The substitution 

yields 

(a.-E)C 1 +C2P =0 

(a. - E)c2 + c1P + c3P + c4P = 0 

(a. - E) c3 + c2P + c4P = 0 

(a. - E) c4 + c2P + c3P = 0 

-(a. - E)/P = k 

=0 
-kc2 + c1 + c3 + c4 = 0 

-kc3 +C2 +C4 =0 

-kc4 + c2 + c3 = 0 

(10-99) 

(10-100) 

(10-101) 
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These equations have a non-trivial solution only if the determinant 
of the multiples of c is zero, i.e. 

-k 1 0 0 
1 -k 1 
o 1 -k 1 = 0 (10-102) 

o 1 -k 

Expansion of the determinant leads to a quartic algebraic equation, the 
solutions of which are 

kl = 2.170; k2 = 0.311; k3 = -1.000; k4 = -1.481 

Because of the relationship between k and the orbital energy E, it then 
holds that 

E = a + kP (10-103) 

Since the Coulomb (a) and resonance (f3) integrals are negative quantities, 
the lowest of the four values of the orbital energy can be written 
in the form 

El = a + 2.170P 

The energy of the least favourable level is evidently 

E4 = a - 1.481P 

(10-104) 

(10-105) 

By stepwise solution of system of Eqs. (10-101) for kl' k2' k3 and k4' 
the expansion coefficients of all four MO's are obtained. Their normalized 
values are given in Table 10-12. The procedure for the calculation 
is shown in detail, for example, in the collection of examples65 . Here 
it is sufficient to give the expression for ({J 1 corresponding to £1 : 

({Jl = 0.282Xl + 0.612X2 + 0.523X3 + 0.523X4 (10-106) 

Because errors occur very easily in the numerical computations, 
it is desirable to discuss the checking of the results in somewhat greater 
detail. 

First, the orbital energies (Ei = a + kiP) and molecular orbitals 
will be discussed; it can be shown that the sum of the eigenvalues 
of the HMO matrix (quantities ki) must equal the trace of the HMO 
matrix [cf. Eq. (4-130)] and that the sum of the squares of the eigen­
values equals the sum of the squares of all elements of the HMO 
matrix, i.e.: 

(10-107) 
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m m m 

L kf = L La;. (10-108) 
i=1 /l=1.=1 

Because of the orthonormality of the molecular orbitals it holds that 

(10-109) 

Because the AO's employed form an orthonormal set, the expansion 
coefficients evidently fulfil the condition 

(10-110) 

In the EHT method, where the overlap is not neglected, a different 
condition is, of course, valid. It can similarly be shown that, for orthogonal 
MO's (cf. Table 10-12) 

m 

L c/lic/lj = 0; i =l=J (10-111) 
/l=1 

In order to simplify checking of the correctness of the results given 
in Table 10-12, a table of the squares of values k i and c/l i is drawn up. 

Table 10-12 
HMO Orbital Energies and Expansion Coefficients of MethylenecycIopropene (VIII) 

Jl= 2 3 4 

kj Expansion coefficients (c.;) LCJliCJlj 

• 
2.170 0.282 0.612 0.523 0.523 } 0 

2 0.311 -0.815 -0.254 0.368 0.368 } 0 
3 -1.000 0 0 -0.707 0.707 } 

0 
4 -1.481 -0.506 0.749 0.302 0.302 

'f.kj= 0.000 

Jl= 2 3 4 

k2 
I Squares of expansion coefficients (c~j) LC;i 

• 
4.709 0.080 0.374 0.273 0.273 1.000 

2 0.097 0.664 0.065 0.135 0.135 0.999 
3 1.000 0 0 0.500 0.500 1.000 
4 2.193 0.256 0.561 0.091 0.091 0.999 

r.k; = 7.999 LC;j: 1.000 1.000 0.999 0.999 
j 



From the HMO matrix* of the investigated system 

it follows that 

o 1 0 0 

101 1 

010 1 

o 1 1 0 

4 4 

L L a;v = 8 
JL=lv=1 

The values of ki and CJLi are apparently correct. 
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Furthermore, in all the conjugated hydrocarbons, the sum of the 
squares of ki equals double the number of C-C bonds; this can easily 
be verified. 

It is also simple to check the correctness of the calculation of the 
electron charge densities. The sum of the electron charge densities in 
the individual positions (q" == P ",,) equals the total number of 11: electrons (nit): 

(10-112) 

The check-up on the correctness of the bond orders is more complicated. 
It can be shown that the orbital energies (the total energy) of the system 
are related to the expansion coefficients (bond orders). This relationship 
is obtained using the general expression for the energy. For the orbital 
energy, 

(10-113) 

m 

where <Pi = L CJLiX", Because of the orthonormality properties of the <Pi 
/l=1 

and the AO's it holds that 
m m m 

Ei = L C;iIXJL + 2 LL c"icvJ3"v (10-114) 
,,= 1 ,,<v 

Considering the definition of the 11:-electron energy, W (as the sum 
of the MO energies multiplied by the occupation numbers), valid in empirical 
methods, a transition from the expression for Ei to the expression for W 
can be made by summing over all the doubly occupied MO's: 

W = 2 L Ei = 2 L L C;ilX" + 2 L 2 LL C"iCviP/lV (10-115) 
i(occ) i(occ) " i(occ) JL < v 

* The HMO matrix is identical with the topological matrix, which has ones in the 
positions corresponding to C - C bonds and zeros in all the other positions. 
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The summation over the MO's can easily be performed employing 
the definition of the electron charge densities and bond orders, giving 
the relationship 

W= Lq"a" + 2LLP".P"v (10-116) 
" ,,<v 

It follows from Eqs. (10-114) and (10-116) that the orbital and 
total 1t-electron energy can be calculated using expansion coefficients; 
because W is determined simply by summing the corresponding orbital 
energies and because the correctness of q can be verified using relation 
(10-112), it follows that Eq. (10-116) can be used for checking of the bond 
order values. The expressions for Ei and W have an important role in the 
perturbation treatment. 

First it will be verified whether E 1 = a + 2.170P corresponds to qJ 1 

[Eq. (10-106)] in methylenecyclopropene. According to Eq. (10-113) 

E1 = J (0.282X1 + 0.612X2 + 0.523X3 + 0.523X4) x 

x Jf"'f(0.282X1 + 0.612X2 + 0.523X3 + 0.523X4) d .. = a + 2.170P 

Thus the previously quoted value of E1 is correct. The data will now be 
verified in the molecular diagram: 

First it holds that 
4 

00 
If) 

t-

0.877 

o 1.488 

0.818 

L q" = 1.488 + 0.877 + 0.818 + 0.818 = 4.001 
,,=1 

From the given orbital energy values it follows that 
2 

W = L 2Ei = 4a + 4.962p 
i=1 

W can be calculated using Eq. (10-116). Because uniform values of a and P 
are employed in the HMO method the relation 

W = 1.478a + 0.882a + 0.820a + 0.820a + 
+ 2(0.758p + 0.453P + 0.453P + 0.818p) = 4a + 4.962p 

is valid. The correctness of the data in the molecular diagram has 
therefore been verified. 
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10.3.6 Perturbation methods within the framework 
of the simple MO method 

Now a group of methods yielding values which can be considered as 
approximations to HMO values will be considered. Let us assume that 
the quantum-chemical (HMO) solution for a particular system is known 
(i.e., all the Ei'S and c,.;'s are known) and that the solution for a system 
differing only slightly from the initial system is required; the new 
system can differ in the value of the Coulomb integral in the J.l position 
or in the value of the resonance integral of the (}(J bond. This situation 
can be symbolically described as follows: 

Original system New (perturbed) system 

Ei ... E; = Ei + bEi 
W ... W' = W + c5W 

Known values q ... q' = q + c5q Values to be calculated 

p ... p' = p + c5P 

The characteristics of the new system could, of course, be obtained 
by the usual HMO procedure, i.e. by arranging and solving the respective 
secular equation. It is typical for the perturbation treatment that 
the approximate values of the required characteristics (of the new system) 
can be obtained from (known) characteristics of the original system. 
The function allowing calculation of the orbital energy E will be 
approximated by another function, this substitution being meaningful 
within a certain interval. A Taylor series is a suitable function for this 
purpose: 

oE(a) 1 02 E(a) 2 
E(ax) = E(a) + ---a;- (ax - a) + 2f oa2 (ax - a) + 

1 03 E(a) 3 · 
+ 3T oa3 (ax - a) + ... (10-117) 
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The expression for the total1t-electron energy can, of course, be expanded 
quite similarly. A rough estimate of the extent of the perturbation, 
which is expressed by the values Or:l.fl and JPflV ' is generally not difficult. 
For illustration, the perturbation can be imagined to represent the 
substitution of the = CH - group by a nitrogen atom, i.e. the formal 
formation of pyridine from benzene: 

rl + 0.5{3 

o o 
The change in the value of the Coulomb integral, Jrl, is then given 
by the expression 

Jrl = rl + O.5P - rl = O.5P 
'--v---' L 

new original 
Coulomb integral 

It remains to calculate the values of the partial derivatives. Eq. (10-114) 
leads to the result* 

From Eq. (10-116)* it follows that 

aw 
~=qfl 

fl 

aw 
a-p = 2PflV 

flY 

(10-118) 

(10-119) 

Thus, the first differential coefficient in expansion (10-117), corresponding 
to the change in the Coulomb and resonance integrals, is estimated 
for both the orbital energy and the total energy. The calculation of 
further differential coefficients will be discussed later. First, however, the 
number of terms in expansion (10-117) to be considered must be decided: 
it is necessary to compromise between accuracy (which demands as many 
terms as possible) and ease of calculation (which, of course, requires 
as few terms as possible). According to the number of derivatives 
considered, we speak of first-order, second-order, or higher-order per­
turbation calculations: 
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~E = 1st derivative + 2nd derivative + higher derivatives 

Perturbation calculation of 

first -order 

second order 

higher order 

Fortunately, it appears that the first-order derivative often suffices for 
qualitative or semiquantitative solution of problems. The energy expressions 
for the perturbed system are given in Table 10-13. 

Expressions for the Energy of a Perturbed System 

Energy 

orbital 

totaln 

Perturbation 

Coulomb integral 

E; + c~;<5cx. 
W+ q.<5cx. 

Table 10-13 

resonance integral 

E; + 2c.f.;<5P •• 

W + 2P •• <5P •• 

If changes in tx and p occur simultaneously, then the following 
relation holds for the total energy: 

(10-120) 

The perturbation can, of course, occur in several centres simultaneously; 
in the general case 

(10-121) 

where the summation is carried out over all "perturbed" atoms (Jl) 
and bonds (/Lv). Calculation of orbital energies is usually confined to the 
first-order perturbation theory (although higher terms can, of course, 
be included). In the calculation of the total eIi~rgy, it is interesting to 
consider the second-order derivatives, as they enable calculation of 
electron densities and bond orders. The expressions for the second-order 
derivatives can be written in the form 

02W = _O_(OW) = ~ 
ocx; atxp atxp acxp 

(10-122) 

02W __ 0_ (OW) _ 2 oPu> 

oP;> - app> app> - app> , (10-123) 

where relations (10-119) were employed. 
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The physical significance of quantity 8q,J8rxll is clear; it corresponds 
to the change in the electron density induced by a change in the 
Coulomb integral; quantity 8PllJ8Pll' has analogous meaning. These 
quantities are called66 polarizabilities and they are denoted by the 
symbol II. It is possible to generalize and to extend the definition 
of polarizability: 

polarizability 

atom-atom ... IIIl,' -~ - 8rx, 

atom - bond ... II 1l,~11 = ;;:11 

b d II - 8Poa on -atom... ~a,1l - 8 rxll 

bond - bond ... II~a'Il' = ~Ppoa 
Il' 

(10-124) 

The polarizabilities discussed so far in connection with the perturbation 
calculation are special cases and are called self-polarizabilities (atom - atom, 
II Illl; bond - bond II 1l',Il')' For the 1t-electron energy of the perturbed 
system, 

(10-125) 

(19-126) 

It should again be borne in mind that the energy W' of the new 
(perturbed) system is calculated solely in terms of characteristics of the 
original system (q, P, II); it remains, for general information, to give the 
expression for the II Il' polarizabilities: 

(10-127) 

where the kj values are defined by Eq. (10-100). The first summation is carried 
out over the occupied MO's, the second over the unoccupied MO's. 

Before giving a few examples, it should be noted that the polar­
izabilities are used for perturbation calculations of indices occurring in 
molecular diagrams; by rearranging the definitions, the relationships 

(10-128) 

are obtained. The numerical calculation of the polarizabilities in more 
extensive systems is rather lengthy; however, for hundreds of systems 
these data are available in the literature. It is also true, however, that 
polarizabilities are no longer used as much as they once were. 
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As an example, the orbital energies, the total energy and the 
1t-electron density distribution for cyclopropenone will be calculated by the 
perturbation method from the data for methylenecyclopropenone. In order 
to determine how closely the perturbation data approach the data obtained 
by solving the secular equation, the results obtained from the perturbation 
method will be compared with the accurate (HMO) calculation: 

Initial system Perturbed system 

Table 10-12 gives the HMO data for the initial system, the orbital energies 
and the expansion coefficients; the polarizability values are as follows: 

v 
2 3 4 

Jl 

1 0.402 
2 -0.247 0.311 
3 -0.078 -0.032 0.434 
4 -0.078 -0.032 -0.324 0.435 

IJCT 
1 2 2 3 2 4 3 4 

JlV 

1 2 0.265 
2 3 -0.201 0.329 
2 4 -0.201 -0.005 0.329 
3 4 0.137 -0.123 -0.123 0.110 

The polarizability matrices are symmetrical and the self-polarizabilities 
are the diagonal elements of these matrices. 

The values of the orbital energies [cr. Eqs. (10-100), (10-117) and 
(10-118)] can now be calculated: 

k~ = k 1 + (c 11)2 l5a 1 = 2.170 + (0.282)2 = 2.249 

k~ = k2 + (C I2 )2 c5a1 = 0.311 + (-0.81W = 0.976 

k~ = k3 + (C13)2 c5a1 = -1.000 + 0 = -1.000 
k~ = k4 + (C I4)2I5IX1 = -1.481 + (0.506)2 = -1.225 

For the 'It-electron energy 

W' = W + q 1 c5a1 = 4a + 4.962p + 1.488P = 4a + 6.450p 
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so that 

q~ = q 1 + II 11 i5rx 1 = 1.488 + 0.402 = 1.890 

q~ = q2 + II 12i5rxl = 0.877 - 0.247 = 0.630 

q~ = q3 + II13i5rxl = 0.818 - 0.078 = 0.740 

q~ = q4 + II14i5rx l = 0.818 - 0.078 = 0.740 

The characteristics of the original system (A) and those of the perturbed 
system (B) (perturbation model of cyclopropenone) can be compared with 
the HMO data for cyclopropenone (C) (Table 10-14). It is then interesting 
to investigate the extent to which the W' value approaches the W (HMO) 
value if the second-order perturbation calculation is used: 

W' = W + q 1 i5rx 1 + II 11 (i5rxl)2 (10-129) 

( = 4rx + 4.962{3 + 1.488{3 + 0.402{3 = 4rx + 6.852{3) 

Table 10-14 

Energy Characteristics of Cyc1opropenone 
(Expressed in Multiples of the fJ Value) and It-Electron Densities 

A B C 

kl 2.170 2.249 2.303 

k2 0.311 0.976 1.000 

k3 -1.000 -1.000 -1.000 

k4 -1.481 -1.225 -1.303 

w- 41X 4.962 6.450 6.606 

ql 1.488 1.890 1.759 

q2 0.877 0.630 0.723 

q3 0.818 0.740 0.759 

q4 0.818 0.740 0.759 

In the chapter on electronic spectroscopy, the very useful application 
of the perturbation method for estimation of the effect of substituents 
on the position of the longest wavelength bands is discussed. 

10.4 The FE-MO method67 - 70 

The free electron method is now used very little in practice. It seems 
unable to compete with the very flexible and universally applicable 
MO-LCAO method. For study of the theory of the chemical bond, 
however, it has several interesting features. The basic idea is very 
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simple: the conditions for the 1t-electrons in polyene (free mobility in 
the vicinity of the skeleton of C - C bonds and the "impossibility" 
of leaving this skeleton) are reminiscent of the conditions for a particle 
in a potential box. This model is undoubtedly very primitive; its 
advantage lies in that it leads to such a simple form for the Schrodinger 
equation that the solution can be achieved in a closed form (by direct 
integration). Except for the hydrogen atom, this is one of the few 
such cases. 

Transition to more complicated systems requires the following 
modification of the simple model: (i) transition to a two-dimensional 
box (this allows the treatment of planar conjugated systems), (ii) the 
possibility of introducing positions with changed potential values allows 
description of systems containing heteroatoms. In spite of these pos­
sibilities, the FE-MO method is unable to seriously compete with 
the M 0-LCA 0 method. 

10.5 Valence bond theory (VB method) 

The valence bond (VB) theory 71 and the molecular orbital theory are 
the two basic methods for construction of an approximate wave function, 
describing the electronic states in a molecule. Historically, the valence 
bond method evolved from the Heitler - London theory of the hydrogen 
molecule, published in 1927, i.e. one year after the appearance of the 
fundamental papers on quantum mechanics. The Heitler - London work 
was, in principle, the first successful attempt at quantum-mechanical 
interpretation of covalent bonding in a molecule. Because the VB 
theory represents an extension of the Heitler - London model of the 
hydrogen molecule, it will be useful to demonstrate the physical meaning 
of assumptions used in the VB method on this example. 

Let us start by considering two hydrogen atoms which are initially 
so far apart that interaction between them is impossible. The electronic 
states of the atoms are described by the wave functions XI'(I) and x.(2), 
where the indices of the functions (of atomic orbitals) denote the nuclei 
and the numbers denote the individual electrons (their coordinates). The 
system as a whole is described by the product of these functions, 

XI'( 1) X.(2), 

as it is assumed that, for non-interacting atoms, the relationships 

.te(I) XI'(I) = EI'XI'(I) 

.te(2) X.(2) = E.X.(2) 

(10-130) 

(to-131a) 

(to-BIb) 
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are valid, where JIt'(I) and JIt'(2) are the Hamiltonians for electron 1 and 
electron 2, respectively. The Hamiltonian of the entire system is then 

2 

Jlt'O = L JIt'(i); 
i= 1 

the wave function in the Schrodinger equation 

Jlt'ol['0 = EO 1['0 

can therefore be sought in the form 

1['0 = X,,(I)xv(2) 

and the total energy E of the system is given by 

EO = EO + EO 
" v 

(10-132) 

(10-133) 

(10-134) 

(10-135) 

[cf. Eq. (5-40b)]. This leads to the obvious result that the total electronic 
energy in the absence of mutual interaction equals the sum of the 
energies of the subsystems. 

When the hydrogen atoms gradually approach each other, interactions 
begin to occur between them, which are of three types depending on the 
kind of participating particles: 

a) electron -electron, 
b) electron - nucleus of the second atom, 
c) nucleus - nucleus. 
These interactions must be included in the total Hamiltonian 

of the system and their resultant leads to 'the formation of a stable 
hydrogen molecule when the hydrogen atoms reach the equilibrium 
distance. The construction of the complete Hamiltonian JIt' encounters 
no difficulties [cf. Eq. (5-18)] and therefore the principal problem lies in 
determination of the approximate wave function I[' for the system. 
It is plausible to demand that at large internuclear distances the wave 
function takes the form (10-134), describing two separate atoms. As 
the electrons are indistinguishable, functions XiI) x.(2) and X,,(2) Xv(1) 
are equally probable and therefore wave function I[' describing the 
hydrogen molecule can be written in the form (omitting the normalization 
factor) 

(10-136) 

Function 'P is, of course, still incomplete because it does not include the 
spin states of the electrons. The two-electron problem was discussed 
in Section 6.7, where it was found that the total wave function satisfies 
the Pauli principle in two instances: 
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a) if the part of the wave function that depends on the spatial 
coordinates is symmetrical and the spin part describes a singlet state, 

b) ifthe part of the wave function depending on the spatial coordinates 
is anti symmetrical and the spin part describes a triplet state. 

Thus the total electronic wave function can be written in the form 
[cf. Eq. (6-113)] 

(10-137) 

where the index g (gerade) indicates that the spatial part of the wave 
functions is symmetrical with respect to permutation of the electrons. 
A function of the following type is, of course, also admissible: 

1 
'Pu = NJx,,(I)X.(2) - xi2)x.(I)] J2 [a(l)p(2) + a(2)p(I)], (10-138) 

where the index u (ungerade) indicates that the spatial part of the wave 
function is anti symmetrical. N g and N u denote the normalization constants 
in the given equations. In Eq. (10-138), only one of the three possible spin 
functions of the triplet state is considered (cf. Section 6.7), as the remaining 
two correspond to the same (degenerate) energy level. 

We can determine which of the two functions, (10-137) or (10-138), 
describes a stable bond between hydrogen atoms. Calculation of the 
energy expectation value for 'I' g yields 

E = < 'I' g I .it' I 'I' g) = 
g < 'I' g I 'I' g) 

N;<xil) x.(2) + Xi2) X.(I) I .it' I XiI) x.(2) + x,i2) x.(I) 
2N;[1 + <x,,(2) I x.(2) <x.(l) I x,,(I)] 

J' + K' 
= 2 

1 + S". 

and similarly for 'I' u' 

(10-139) 

(10-140) 

where the normality of the spin functions was used and the following 
symbols were introduced; for the Coulomb integral 

J' = <XlIX. I .it' I x"x.), (10-141a) 

for the exchange integral 

K' = <XlIX. I .it' I x.x,,) (10-141b) 
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and for the overlap integral 

(iO-141c) 

The notation for the integrals has already been defined by Eqs. (5-31a) 
and (5-31b). 

The qualitative discussion of energy expressions (10-139) and (10-140) 
is simplified by neglecting the overlap integrals. Then the total energy 
of the hydrogen molecule, Etol' including the nuclear repulsion energy, 
Erep ' can be written in the form 

E(tot)g = J' + Erep + K' 

E(tot)u = J' + Erep - K' 

(10-142) 

(10-143) 

At large internuclear distances the value of K' is negligible and the 
expression (J' + Erep) represents the energy of the atoms and their 
Coulomb interaction. At smaller distances the value (J' + Erep) varies 
slowly and has a shallow minimum in the region of the equilibrium 
distan~ of the nuclei. In this region K' is a relatively large negative 
number and represents about 90% of the binding energy of the molecule, 
provided it is in the singlet state, corresponding to the wave function IJIg • 

For the triplet state corresponding to IJI u' the K' term leads to repulsion 
of the hydrogen atoms at all internuclear distances, causing spontaneous 
dissociation of the molecule into two hydrogen atoms. 

It should be pointed out that the overlap integral is particularly 
important and that this was not considered in the qualitative discussion. 
Neglect of this factor can lead to serious inconsistencies in the quantitative 
treatments and, therefore, generalizing the Heitler-London approach to a 
many-atom system leads to serious difficulties connected with the non­
orthogonality of the atomic orbital basis set. 

The important conclusions derived from the given solution for the 
hydrogen molecule form the basis for the logical structure of the valence 
bond method. The covalent bond between two atoms, depicted in the 
chemical formula by a dash, is described in the VB method by a function 
of type (10-137), corresponding to antiparallel spins for the electrons 
forming the bond. These functions are said to describe a "local singlet" 
state -local because it corresponds specifically to the bond between two 
atoms. The form of the wave function for the polyatomic molecule must 
then satisfy the condition of forming "local singlet" states in the respective 
bond regions. 

Although the Heitler-London theory yields qualitatively correct 
results, there is a considerable quantitative disagreement with the ex peri-
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mental values of physical quantities. Several modifications of this method 
have therefore been suggested, which are also suitable for the calculation 
of ~ther types of covalent bonds. Their use ~as led to a substantial 
improvement in the results. One of these procedures consists of using hybrid 
orbitals instead of atomic orbitals for construction of the spatial part 
of the function describing the bond. The hybrid orbitals (cf. Sections 6.6 
and 7.2) then have the advantage that their orientation can be chosen in 
the bond direction. In other instances, more accurate results were obtained 
when "a certain amount" of the ionic structure was included, i.e. functions 
of the type X/I) X/2) or X.(I) X.(2), so that the required VB function 
(without the spin part) would have the form 

[X,,(I) X.(2) + X,,(2) X.(I)] + l[X,,(I) X/2) + X.(I) x.(2)], (10-144) 

where coefficient l specifies the extent of inclusion of the ionic form and 
is usually considered to be a variation parameter. 

The expressions for the VB functions can be compared with the 
wave functions constructed on the basis of molecular orbitals (expressed 
as a linear combination of atomic orbitals). It is sufficient to investigate 
the part of the wave function which depends on the spatial coordinates 
ofthe electrons. The molecular orbital for the given problem, corresponding 
to the lowest occupied one-electron state, has the form 

<P '" [X" + X.], (10-145) 

where it is assumed that <p is expanded in terms of the AO minimum 
basis set. Two electrons with different spins can occupy this molecular 
orbital and the spatial part of the product wave function is then given 
by the expression 

<p(I) <p(2) '" [X,,(I) X.(2) + X,,(2) x.(1) + X/I) X,.(2) + x.(1) X.(2)], (10-146) 

allowing direct comparison with Eqs. (10-137) and (10-144). Com­
parison with the uncorrected VB function indicates that function (10-146) 
contains additional ionic contributions which can be physically interr 
preted as corresponding to the extreme electron density distribution when 
both electrons occur on the same nucleus, representing the H+H- ionic 
state. These states are known to be considerably less stable than the 
states corresponding to a uniform electron distribution and if this 
difference is not considered, the implications connected with the use of 
MO's in form (10-145) cannot be properly understood. At large inter­
atomic distances, the single-determinant MO theory fails completely, 
because a wave function of form (10-146) predicts the formation of ions 
(which is a process requiring energy consumption) with the same prob-
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ability as dissociation into two neutral atoms. The single-determinant 
MO theory then yields excessively high values for the total energy of 
the system. 

The whole problem can also be interpreted in terms of electron 
correlation, i.e. by the concept introduced in Section 10.1. Evidently the 
single-determinant MO theory underestimates electron correlation: the 
distribution of electrons 1 and 2 in a certain molecular orbital is quite 
independent, leading, for example, to the same probability for structures 
X,..X. and X,..X,... The VB method, on the other hand, overestimates 
correlation, because it admits only the possibility of complete separation 
of the electrons on the two atoms. It is therefore evident that (i) correct 
description would lead to results lying between the VB and MO data; 
when the two methods yield similar results, then the results can be 
considered to be reliable, (ii) in order to improve the VB description, it is 
necessary to consider ionic forms, i.e. wave functions of type (10-144). 

For a wave function constructed on a molecular orbital basis, 
improvement is possible using the configuration interaction method 
(cf. Section 5.4). If two electrons are placed in the antibonding orbital 

q/ '" [X,.. - X.J (10-147) 

(i.e. a doubly excited configuration; the symmetry of the singly excited 
configuration is unsuitable and therefore does not interact with the ground 
state configuration, cf. Section 6.7), a determinant function is obtained, 
which interacts with the ground state determinant. The spatial part of this 
wave function can be written in the (unnormalized) form 

q>(I) q>(2) + kq>'(I) q>'(2), (10-148) 

whence, after substituting Eqs. (10-145) and (10-147), multiplying and 
comparing with expression (10-144), it follows that the two functions 
(VB and el) are equivalent, as long as 

A.=~ 
1 - k 

(10-149) 

Generally, the two methods yield similar results in a broad region. 
To describe the general procedure for constructing the VB wave 

functions, it is advantageous to investigate a suitable model molecule. 
We shall choose the water molecule. It is preferable to choose a coordinate 
system with the nucleus of the oxygen atom lying in the origin and both 
0- H bonds in the xy-plane, forming equal angles with the x- and y-axes. 
It will be satisfactory in a rough model to assume that the OH bonds 
form a 90° angle, i.e. that the nuclei of the hydrogen atoms are located 
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on the x- and y-axes (the experimental value of this angle is 105° and 
refinement of the model could be achieved, for example, by introducing 
suitable hybrid orbitals). The atomic orbitals required here are the (ls), 
(2s), (2px)' (2py) and (2pz) orbitals located on the nucleus of the oxygen 
atom and the (ls)" and (ls}v orbitals corresponding to the hydrogen 
atoms, where the J.l atom lies on the x-axis and the v atom on the y-axis. 
To a first approximation it can be assumed that the bond is formed 
through the electron pairs described by the (2px) and (ls)" orbitals and 
the (2p) and (ls}v orbitals, and that the remaining orbitals are occupied 
by two electrons so that they are unable to contribute to the bonding 
in the molecule. The electron configurations of the participating atoms 
can therefore be written as follows: 

0: (ls}2, (2S}2, (2py, (2px)' (2p) 
H: (ls)" 
H: (ls}v 

Because electrons with opposite spins are responsible for the bond forma­
tion, the spin functions multiplying spatial (2px) and (ls)" orbitals must 
differ; the same must also be true for the (2p) and (ls}v orbitals. This 
condition is satisfied by the four combinations of functions indicated in 
Table 10-15 as cases 2 to 5, of which case 2 will be discussed in greater 
detail as an example: 

(2px) lX, (ls)" p, (2p) lX, (ls)v P 
Although the closed shells of the oxygen atom also play a certain 

part in the total wave function of the electron system of the water 
molecule, they are not given in Table 10-15, because their occupation is 
fixed and identical for all six possibilities indicated in the table. The wave 
functions must be antisymmetric with respect to the permutation of the 
electron coordinates - this property can easily be achieved by replacing 
the product functions with Slater determinants (cf. Sections 5.4 and 5.5). 

Table to-IS 
Valence Structures of the Electron System of the H20 Molecule 

Case (2px) (1s)~ (2py) (Is), Function 

0( 0( {J {J 'l'1 
2 0( P 0( P 'l'2 
3 {J 0( 0( {J 'l'3 
4 0( {J p 0( 'l'4 
5 {J 0( {J 0( 'l'5 
6 {J {J 0( 0( 'l'6 
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We can therefore assign a Slater determinant 'I' to each case given in 
Table 10-15, which will be illustrated again with case 2: 

'1'2 = I (Is) IX, (Is) {3, (2s) a, (2s) {3, (2pz) a, (2pz) {3, (2px) a, (ls)1' {3, 

(2p) a, (Is). {31 (10-150) 

So far, four determinants which are all eigenfunctions of the 
operator of the z-component of the total spin momentum ffz have been 
formed; in addition, the spin functions of the bonding orbitals are suitable 
for bond formation. A VB wave function can be formed from these four 
determinants if there exists a linear combination such that the resultant 
function 'I' is antisymmetric with respect· to interchange of the spins 
assigned to the (2px) and (ls)# orbitals, as well as to the (2p) and (ls)# 
orbital pair; the electrons in the bond regions then form "local singlet" 
states. In general, 

s 
'I' ~ " a.'P. 1..., , , (to-151a) 

;=2 

Since 'I' must be antisymmetric with respect to interchange of the spin 
functions assigned to orbitals (2px) and (ls)#, then 

and, because of the second condition also 

'I' ~ [-a2'P4 - a3'Ps - a4'P2 - as'P3] 

Equations (10-151a) to (10-151c) are fulfilled when 

(to-151b) 

(10-151c) 

giving for the unnormalized function describing the bonding situation 
in the water molecule, 

'I' ~ ['1'2 - '1'3 - '1'4 + 'Ps] (to-152) 

This function is sometimes referred to as an eigenfunction of the 
(2px) - (ls)# and (2p) - (Is). bonds corresponding to a certain valence 
structure. It can be shown that this function is an eigenfunction of the 
operator of the square of the total spin momentum ff2 with the eigen­
value S = o. 

Sometimes, a larger number of valence structures can be attributed 
to a certain molecule. It appears, for example, that in a system of 

2n 1t-electrons described, by 2n atomic functions there are ,/2n)! 1)' 
n. n + . 



247 

independent structures with covalent bonds of zero total spin. Con­
sequently, for benzene, five structures form a complete set of VB functions. 
It is obviously not sufficient to consider only the two Kekule structures, 
I and II, but it is necessary also to consider structures with long bonds 
(III - V), called Dewar structures. 

0 0 (1) 0 0 
(I) (II) (III) (IV) (V) 

The total VB wave function is considered in the form 

tp = C 1 (tpI + tpO) + C 2( tpllI + tplV + tpV) (10-153) 

The symmetry of the molecule is also taken into account here. The set 
of functions I - V is complete because any further structure can be 
expressed as a combination of these five structures. 

The calculation of VB functions and their energies is formally quite 
simple. In general, the VB function is assumed to have the form 

(10-154) 
j= 1 

where m is the number of valence structures. 
The variation method leads to the usual system of equations 

m 

L Cj(Hji - ESj ;) = 0; ,; = 1,2, ... , m (10-155) 
j= 1 

Similarly as in the MO-LCAO method, the values of the expansion 
coefficients can be calculated by solving system of equations (10-155); 
the allowed energy values are determined from the condition (10-156): 

det II H jj - ES jj II = 0 (10-156) 

The squares of coefficients (C~) represent the weight of the i-th structure 
in the VB wave function. Of course, tp appearing in Eq. (10-154) 
is a many-electron wave function. The matrix elements have the usual 
meaning 

H kl = J (tpk)* .7etpl d-r 

Ski = J (tpk)*tpl d-r, 

(10-157) 

(10-158) 

where .7e is the Hamiltonian of the studied electron system. The diagonal 
element Hu represents the energy of the k-th structure. 
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The following expression has proven useful for calculation of 
non-diagonal elements: 

Hkl - ESkl = 2}-i [J' - E + bK'], (10-159) 

where J' is Coulomb integral; K' is the exchange integral; i is the number 
of cyclic (closed) formations (called "islands") formed on superposition 
of the k-th and l-th structures, the matrix elements of which are 
calculated*, b = c - id; c is the number of pairs of neighbouring 
centres (chemically bonded) in the islands; and d is the number of 
neighbouring pairs of centers on neighbouring islands (bonded in the 
respective compound). 

As an example, the expression for the matrix element between the 
Kekule (k) and Dewar (I) structures of naphthalene can be derived: 

co 
k 

The 1t bonds of these structures: 

Superposition: 

1st 2nd 3rd island, consequently, i = 3 

Determination of c Determination of d 

a: liD 
c=6 d=4 

• Two 1t bonds connecting two centres are also considered to be an island. The 
number of islands is determined by investigating the pattern formed by superposition of the 
diagrams of the respective structure in which only 1t-bonds and long bonds are depicted. 



Substitution into Eq. (10-159) gives (2n = 1O) 

Hkl - ESkl = ~ [J' - E + (6 - ~ 4) K'J = 

= ~[J' - E + 4K'] 
4 
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(10-160) 

The non-diagonal elements can be determined by several different 
procedures. 

The lowest energy value obtained by solving the secular equation 
corresponds to the ground state; the other values correspond to the 
electronically excited states. The difference between the ground state 
energy and the energy of the Kekule structure equals the resonance 
energy. 

10.6 The crystal field and ligand field 
theories72 - 81 

10.6.1 Introductory comments 

These theories originated from the necessity of interpreting properties, 
mainly optic and magnetic, of numerous series of compounds in which 
the ion of an element (mostly of a transition element) is surrounded by 
a certain number of other molecules or ions which are called ligands. 
These compounds are termed complex compounds. The arrangement 
of the ligands around the central atom is regular and mostly corresponds 
to one of the three arrangements depicted in Fig. 10-2. In cases (a) and (b) 
the arrangements are of octahedral and tetrahedral symmetry, respectively. 
Case (c) represents a square complex. . 

The crystal field theory was established 80 as early as 51 years ago, 
shortly after quantum mechanics was introduced. It has the particularly 

0) b) c) 

Fig. 10-2. Octahedral, tetrahedral, and square complexes: central ion (e), ligands (0). 
In (a) and (b) the tetrahedron and the octahedron are, for lucidity, drawn in a cube. 
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interesting feature that, from mere knowledge of the symmetry of the 
ligand arrangement around the central ion, it is, for example, possible 
to predict that the (five-fold) degeneracy of the d orbitals will be removed 
tcf. Sections 6.6 and 6.8). In addition it is also possible to determine 
how the d orbitals will split and to find the degeneracy of the new levels. 
This is a valuable and interesting result. However, these considerations 
tell us nothing about the energy sequence of the individual orbitals 
or groups of degenerate orbitals. This is not particularly surprising 
and is a common feature of all descriptions based on symmetry 
considerations of molecular configurations, in other words on group 
theory. 

Now when various types of all valence electron methods (EHT, 
CNDO, INDO) are available, nothing, in principle, prevents quantitative 
solution of these problems. 

The fact that symmetry considerations alone can explain the splitting 
of degenerate d orbitals is particularly noteworthy and permits explanation 
of the absorbance by complexes of the first series of transition elements 
(as in higher series) in the visible region, i.e. in the electromagnetic 
radiation region with wa ven umbers of 12000 to 25000 cm - 1. Experience 
with conjugated compounds (as far as the relationship between structure 
and colour is concerned) does little to explain why "small" (and 
unconjugated) formations, such as different complexes in which the ion 
of the transition element (e.g. V2+, Fe2+ or Cu2+) is the central atom, 
are coloured (i.e. have absorption maxima in the visible region); yet 
similar compounds containing Ca2+ and Zn2+ are colourless. This 
observation can easily be explained qualitatively because a "suitable" 
energy gap between the d orbitals is formed on removal of the degeneracy. 
As the incomplete occupation of d orbitals is typical for complexes of 
transition elements, the reason for their colour is obvious. In Ca2 +, 

Table 10-16 
Ground State Terms of Free Atoms and the Corresponding Spectroscopic Notation 
[Ref. 77] 

4s K Ca 

'S' I' 'So 

3d 

4p Ga Ge As Se Br Kr 

'P'/2 'Po 4S'I' 'P, 'Pm 'So 

Sc Ti V Cr Mn Fe Co Ni Cu Zn 

'D3I, 3F, 4F31, 7S3 6S'I' 'D4 4F9i , 3F4 'S'/2 'So 
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Table 10-17 
Number of d Electrons in Atoms and Ions of the Transition Elements 

Sc Ti V Cr Mn Fe Co Ni Cu Zn 

Neutral atom (Me) 2 3 5a 5 6 7 8 10' 10 
Me 2 + 2 3 4 5 6 7 8 9 10 
Me3+ 0 2 3 4 5 6 7 8 9 

One electron only in the 4s atomic orbital. 

on the other hand, the d orbitals are unoccupied and in Zn2 + they 
are fully occupied. 

These phenomena can be considered more specifically, first, by 
finding which elements are involved (Table 10-16) and how many 
d electrons are available in the various ionic states (Table 10-17). 
This section will deal with the electron configurations of dipositive 
and tripositive ions of the transition elements. It has already been 
shown that these elements are typified by their incompletely filled d electron 
shells. The rare earth elements have similar properties as the transition 
metals and have incompletely filled f electron shells. There are three 
series of transition metals among the stable elements. To the first 
series belong elements of atomic numbers 21 to 30 with electron 
configurations 

(ls)2 (2S)2 (2p)6 (3S)2 (3p)6 (3dt(4s)k, 

where n has values from 1 to 10 and k the value 2, except for elements 
Cr and Cu, where k = 1. It is noteworthy that the (Is) to (3p) orbitals 
(inclusive) are fully occupied in these elements and that this partial 
configuration corresponds to the electron configuration of argon. These 
orbitals are only slightly influenced by the ligand environment and are 
usually not considered explicitly. Since the ionization of electrons, when 
divalent and trivalent ions of the transition elements are formed, occurs 
chiefly in the 4s atomic orbital, the ion of the transition metal in 
a complex compound is considered to be a d" ion perturbed by its 
immediate environment, the ligands. The data in Table 10-17 can be 
understood on this basis. The elements with atomic numbers 39 to 48 belong 
to the second series of transition metals and the elements with atomic 
numbers 72 to 80 to the third series. 

10.6.2 The electrostatic model (crystal field) 

The crystal field theory considers ligands replaced by point charges 
(or dipoles) and assumes solely electrostatic interaction between the 
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central atom and these point charges. It appears that this very simple 
model often leads to the same sequence of energy levels as more 
complicated models. Dubious results are, however, sometimes obtained, 
for example, for square complexes, if the formation of the covalent 
bond is completely ignored. The combination of the crystal field theory 
with the molecular orbital theory, known as the ligand field theory, does 
not have this drawback. It will be discussed later. 

From the aspect of the electron configuration of the central ion, 
the described model of the complex ion corresponds to the intramolecular 
Stark effect, with the metal ion located in an electrostatic field induced 
by the ligands, which are considered to be fixed and unpolarizable. 
It is expedient to assume that the nucleus of the central ion is located 
at the origin of the coordinate system. The ligand environment is assumed 
to have a certain symmetry corresponding to point group G. The 
electrostatic potential caused by the ligands has the same symmetry 
(cf. Section 6.2). The Hamiltonian of an ion located in the ligand 
field then has the form 

.if = ± { - 2h2 Ai - 4ze2 + ~(rJ!t'i'!/i + "Y(r i)} + 
i= 1 m neor; 

+ L9'(i,j), (10-161) 
i<j 

where, in addition to known symbols [cf. Eqs. (5-18), (5-19) and (4-88)], 
the term "Y(rJ, denoting the potential energy operator of the i-th electron 
in the ligand field,also appears. With the exception of "Y(rJ, .if therefore 
corresponds to the Hamiltonian of the free ion. Because the perturbation 
method will be used for solution of the problem, it will be important 
to know the ratio of the magnitudes of the different terms occurring 
in the Hamiltonian. The following cases are of practical importance: 

a) !t'!/ < "Y ::£ 9': weak field scheme 
b) "Y > 9' ~ !t'!/: strong field scheme 
c) "Y <!t'!/::£ 9': rare earth scheme 

Notation has been introduced here for the total effects of the spin-orbit 
interaction, !t'!/, of the crystal field, "Y, and of the intereletronic 
repulsion, 9" In the "accurate" solution of the problem (by means of 
a variation or perturbation calculation, taking into account a sufficient 
number of perturbation contributions) all three cases coincide and the 
final result is always the same. If only first-order perturbation contributions 
are considered, the results differ. A further reason for differentiating 
individual cases lies in an attempt to render the calculation more 
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convenient and also appears in the specification of the initial functions 
representing the unperturbed functions in the perturbation method. 
In case a), where, the effect of the electron interaction exceeds the 
electrostatic influence of the ligands, the calculation is begun with wave 
functions describing the terms of the ion to which perturbation "Y is 
applied and, to include the spin-orbit interaction, a further perturbation 
in the form of the respective operator is introduced. It should be noted 
that, in metals of the first series of transition elements, the effect of the 
spin-orbit interaction on the energy spectrum of the ions is comparatively 
small, and therefore it is not usually taken into consideration. In case b) 
it is assumed that the crystal field is so strong that it perturbs the I-I 
coupling and therefore the one-electron orbitals are taken directly as the 
basis for the perturbation treatment. To factorize the secular problem 
(cf. Section 6.6), suitable linear combinations of the atomic orbitals are 
usually used which simultaneously form the bases for the irreducible 
representations of symmetry group G. In case c) "Y is applied as the 
perturbation to the free ion energy levels in which the effect of the 1- s 
coupling is included. 

As will be seen below, qualitative changes in the term system 
of the free ion can be determined on the basis of the crystal field 
theory, which also provides a method for their quantitative determination. 
For this reason the procedure is carried out in two stages. 

Table 10-18 
Relationship between Terms of "Free" and "Complex" Ions in a Field of Octahedral Symmetry 

Term of free ion S p D F G 

Terms in complex ion 

Using the representation theory of finite groups, first the splitting 
of the terms of the free ion caused by the electrostatic field is determined. 
The paper by Bethe80 is of fundamental importance in this respect; 
it presents a method for decomposition of the irreducible representations 
of the full three-dimensional rotation group into irreducible representations 
of point groups of lower symmetry, especially for octahedral, hexagonal, 
tetragonal, and rhombic groups. The paper also demonstrates the derivation 
of the characters of the individual irreducible representations of the given 
symmetry groups. Thus, for example, in a field of octahedral symmetry, 
the term of the free ion is split in dependence on quantum number L 
in the way indicated in Table 10-18 (cf. Section 6.7). 
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In the further stage of the calculation, the extent of splitting 
or the shift of unsplit terms is determined by the perturbation method. 
The general procedure in the quantitative treatment of the crystal field 
problem was described in Section 6.8. It remains to describe the best 
way of adapting the perturbation operator (limited to cases when the 
spin-orbit interaction is negligible). If the ligands can be represented 
by charge density Q(R), the following expression can be written for the 
potential energy V(r) of the electron occuring in position r: 

1 Q(R) 
V(r) = - 41t8o J I R _ r I dR, (10-162) 

where R is the position vector of a general point in the charge cloud 
and the integration is performed over the entire charge distribution. 
If the ligands are approximated by point charges, as is frequently done, 
then the integration is reduced to summation over these point charges. 
An important step in the modification of expression (10-162) is formulation 
of the denominator of the integrand as follows: 

1 1 
I R - r I = (R2 + r2 - 2Rr cos w) = 

= ~ [1 +(;y -2; coswTl/2 (10-163) 

Here rand R are the magnitudes of the corresponding vectors and w 
is the angle lying between vectors rand R; it is assumed that r < R. 
It can be expected that the relationship 

I (; y -2 ; cos wi < 1, (10-164) 

is valid for this case, and therefore expression (10-163) can be rearranged 
by expansion in a binomial series of the type 

[ 1 ] - 1/2 1 1 3 2 +X = -2x+gX - ... (10-165) 

If the terms are arranged according to powers of rfR, it then follows that 

1 00 rk 
I R - r I = k~O Rk+l Pk(cosw), (10-166) 

where Pk(cos w) are Legendre polynomials which are sometimes defined 
as coefficients of the respective power series. It is preferable to write 
Eq. (10-166) in the form 

1 
(10-167) IR - rl 
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where, because of convergence of the series, the denominator on the 
right-hand side of the equation contains the magnitude of the larger of 
vectors rand R and the numerator contains the smaller of the two. 
A series of type (10-167) is known as the multipole expansion of a potential 
in the given point. 

As follows from the form of Hamiltonian (10-161), the operator 
of the potential energy of the electrons in the electrostatic field of the 
ligands has the form 

(10-168) 
i= 1 

As every wave function can be expressed in the form of an expansion 
in terms of Slater determinants (cf. Section 5.4), the calculation of 
matrix elements 

n 

<Ak I L: "Y(r;) I A) (10-169) 
i= 1 

becomes of principal importance. 
In Eq. (10-169) Ak and A j are determinant functions [cf. Eq. (5-29)] 

constructed on the basis of one-electron orbitals, here atomic orbitals Xp.' 
It has been shown [cf. Table 5-2 and Eqs. (5-33) and (5-34)] that matrix 
elements (10-169) can be expressed in terms of the integrals 

(10-170) 

where (specifically for this case) Xfl and Xv are two atomic orbitals 
lfor example, d orbitals) centered on the nucleus of the transition metal 
ion. Atomic orbitals can be expressed as the product of the radial and 
angular parts, the latter of which is, in principle, an associated Legendre 
function. The "Y(r 1) operator is invariant under all symmetry operations 
of point group G, which corresponds to the ligand environment. It also 
appears81 that if multipole expansion (10-167) is employed for expressing 
"Y(r1 ), the Legendre polynomials Pk(cosw) can be represented as an 
expansion of products of two associated Legendre polynomials, where 
one coefficient depends solely on the angular electron coordinates and the 
second on the angular coordinates related to the charge distribution 
of the ligands. The integrand of matrix element (10-170), which depends 
on the angular coordinates, therefore has, in principle, the form of the 
product of three associated Legendre polynomials and it is evident 
that, in view of the orthogonality relations between these types of functions, 
the infinite series is reduced to the sum of a few terms. Moreover, it is 
evident that the calculation will also be simplified by application of the 
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selection rules derived in Section 6.5. More details on this subject 
are provided in monographs devoted to the theory of the crystal and 
ligand fields (e.g. Ref. 81). 

It has already been noted that a number of interesting conclusions 
on the bonding conditions in complex compounds can be drawn on the 
basis of qualitative considerations and taking into account the symmetry 
of the problem. A single d electron located in an octahedral ligand field 
is an example. This model can be used to represent the aquo complex 
of trivalent titanium. Such a system, denoted as d 1, is characteristic in 
that the procedure for the solution is the same irrespective of whether 
a weak or a strong field scheme is employed. In Section 6.6 it was 
concluded that in a field of six ligands of octahedral symmetry (group 0), 
the five originally degenerate d orbitals are separated into two sets. 
One set consists of the dz2 and dx2 _ y2 orbitals, belonging to the ir­
reducible representation E (twofold degeneracy); the second set, consist­
ing of the dxy ' dyz , dxz orbitals, spans representation T2 (threefold 
degeneracy). Placing the d orbitals in a crystal field is manifested in 
general by an increase in their energy; this phenomenon is caused by 
the monopole contribution (k = 0) of expansion (10-167). Furthermore, 
splitting of the levels occurs which is characteristic for the symmetry 
of the ligand distribution around the central ion. The conditions in 
octahedral complexes can be understood on the basis of the geometry 
of the angular parts of the d orbitals; in Fig. 10-3 two of these 
orbitals (dz2 ' dX2 - y J are depicted in a model of the octahedral complex. 

z 

x 

y 

Fig. 10-3. Central ion (e) 
and ligands (0) 

in an octahedral complex. 

The dx' _ y' and do' orbitals are 
depicted (the latter hatched). 

These two orbitals will be discussed here, as they lie in the direction 
toward the ligands leading to the greatest interaction due to the repulsion 
between the electrons in the orbitals and the point charges (representing 
the ligands). This interaction is manifested by an increase in the energy 
of orbitals of E symmetry. The centre of gravity of the term must be 
preserved, however, and the energy of orbitals of T2 symmetry will 
consequently decrease. The monopole contribution of the ligand charge 
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Fig. 10-4. Effect of a crystal field of octahedral symmetry [b) and c)] formed by six ligands 
on the fivefold degenerate level corresponding to the d 1 states of the free atom [a)]. 

distribution has already been taken into account in the increase in the 
energy of all the d orbitals by the value Es (cf. Fig. 10-4). The second 
step concerning the removal of the degeneracy depends on the specific 
geometry of the ligand arrangement. The centre of gravity is preserved­
this property is connected with the invariance of the trace of the secular 
determinant matrix [cf. Eg. (4-130) and (4-160)] toward unitary trans­
formation. The resultant effect of the perturbation is graphically re­
presented in Fig. 10-4. Fig_ 10-? depicts the effect of the intensity of the 
electrostatic field on the extent of splitting of the E and T2 levels of 
the d 1 system; the figure represents the simplest possible Orgel diagram 
expressing the continuous transition from atomic states to states of the 
complex ion. It is evident from the figures that the energy difference 
corresponding to the new terms is important for spectroscopy. This 
difference, L1 = E(E) - E(T2 ), is a basic parameter for octahedral complexes 
and is usually denoted by L1 or 10Dg. If the energy of the terms of the 
complex ion is expressed relative to the centre of gravity of these 

Fig. 10-5. Diagram for the energy 
levels of the d 1 system. 

w 

t 

-.1 
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terms, the value i L1 is obtained for the energy of term E and -1 L1 
for the energy of term T2 • Transition between these terms (as a d - d 
transition) is forbidden by the selection rules in atomic electron spectroscopy, 
because it is a transition between states of equal parity. Owing to the 
interaction of the electronic and the nuclear motion during vibrations 
in the complex ion, the transition becomes partially allowed. This 
then explains the existence of the weak absorption band in the visible 
region of the spectrum of [Ti(H20)6r"+ ions. 

Many-electron systems are somewhat more complicated, as it 
becomes necessary to distinguish between weak and strong crystal fields. 
Consequently, for example, for the d2 system corresponding to the Ni2 + 

ion, under the influence of a weak crystal field, the terms of the 
free ion NiH, i.e. the functions corresponding to states 1 S, 3p, 1 D, 3F and 
IG, are employed as the unperturbed functions for the perturbation 
treatment. 

Use of a strong crystal field scheme allows lucid interpretation of 
the states of the complex ion, because diagrams similar to that in 
Fig. 10-5 can also be used for many-electron systems. When carrying 
out qualitative considerations, it is necessary to resort to Hund's rule 
of maximum multiplicity for the ground states of atomic systems. This 
rule expresses the empirically determined fact (which has also been 
theoretically confirmed) that an electron system is in the ground state 
when the maximum number of electrons have parallel spins. Then the 
maximum number of electron exchange integrals is nonzero; these integrals 
appear in the expression for the total energy with a negative sign 
[cf. Eq. (5-62)], thus decreasing the total value. In the strong crystal 
field approximation, the ground state of the d2 system in the octahedral 
field will therefore correspond to the triplet state of electron configuration 
(T2)2 and, similarly, the d3 system will correspond to quartet (T2)3. 
However, the dk configurations, where k assumes values k = 4, 5, 6, 7, 
are ambiguous because if L1 (the "strength" of the electrostatic 'field) 
is small, Hund's rule affects the entire d shell, corresponding to an 
attempt by the ion to attain maximum multiplicity. The complex ion 
will then be in the same spin state as the free ion. If tJ. is large, the 
electrons are forced into the energetically more favourable T2 level, 
accompanied by a gain in the "orbital energy" and a loss in the 
exchange energy. There is consequently a change in multiplicity during 
transition from the free ion to the complex bonded ion. Thus, for 
example, the Fe3+ ion, corresponding to the d5 configuration, can, 
according to this model, occur in two electron configurations in complex 
compounds: 
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(E)2(T2)3 (E)O(T2f 

E +f- E 

T2 1 1 I T2 H H 1 
These configurations can be distinguished on the basis of magnetic 
measurements. The first possibility, in the Pauling nomenclature, cor­
responds to an ionic complex (or a "high spin complex"); the second 
possibility, where a change in the multiplicity occurs on formation of 
the complex, corresponds to a covalent complex ("low spin complex"). 

10.6.3 Ligand field theory 

As mentioned in the previous section, the crystal field theory solves the 
bonding conditions in the complex compound using a model in which 
the electrostatic field of the ligands influences the electrons of the central 
ion. This model does not include charge transfer between the ligands and 
the central atom, in contradiction to a number of experimental results 
obtained using neutron diffraction, paramagnetic electron resonance and 
nuclear magnetic resonance. It is a further disadvantage of the crystal 
field theory that it does not sufficiently explain the relative stability 
of complexes in dependence on changes in the ligand environment 
and that it is unable to describe a double bond between a ligand and 
an ion, which often contributes to the stability of the complex. 

It was therefore necessary to include the possibility of charge 
transfer between the ligands and the central ion, which is fulfilled by 
a variety of methods in the molecular orbital theory. The ligand field 
theory is, in essence, a specific version of these methods for calculation of 
the properties of complex compounds. This theory proceeds from the 
assumption of the molecular orbital theory and passes into the electrostatic 
model in the limiting case of zero charge transfer. Jarrett 82 , for example, 
gave a general formulation of the problem. 

Using the molecular orbital theory, which explicitly considers 
the orbital structure of the ligands, one-electron orbitals can be written 
in the form 

qJ = IQ"x" + Ib,tX,t, (10-171) 
" ,t 

where index J1 denotes the orbitals located on the central ion and A 
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the orbitals located on the ligands; a" and b). are the corresponding 
expansion coefficients. It is obvious that any approach using an "ab initio" 
type of treatment leads to numerical problems in the form of many-centre 
integrals and high-order secular problems. Consequently, many semi­
empirical methods have been developed in this field, resembling those 
discussed in Section 10.2, involving all the valence electrons. The 
expression for the calculation of the otT-diagonal elements in the EHT 
method (cf. method 5 in Table 10-2) had already been used ten years 
prior to its formulation in calculation 83 of the electronic structure of the 
complex MnO';:- ion. 

It should be mentioned in this connection that a new approach 
to studies of the electronic structure of inorganic complexes, based on the 
application of the Slater expression of the exchange energy, has been 
introduced by Johnson84 and co-workers within the framework of the 
scattering model of the SCF theory (the method is denoted briefly 
SCF-XIX-SW). This treatment does not require the calculation of many­
centre integrals and the results of its application to several ionic 
molecules [e.g. to the (SO 4)2 - ion] are rather promising. 
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11. USE OF THE SOLUTION 
TO THE SCHRODINGER EQUATION 

11.1 Quantities related to the molecular 
energy (the total electron energy, 
ionization potential, electron affinity, 
excitation energy)! 

In methods in which electron repulsion is not considered explicitly 
(HMO, EHT), the relations are simple. For illustration it will be useful 
to consider a system described, say, by six molecular orbitals (<PI' <P2' ..• , <P6) 
and by the corresponding orbital energies (E1' E2 , .•. , E6 ) (Fig. 11-1). 
The total energy is given by [cf. Eq. (10-115)]' 

(11-1) 

where ni is the occupation number of the i-th MO (and can assume 
a value of 0, 1 or 2) and Ei is the orbital energy of the i-th MO for which 

Ei = rt.. + kJ3 (11-2) 

The Coulomb (rt..) and resonance (13) integrals in this formula can be 
expressed in the usual energy units. This does not imply that the 
corresponding integrals need be solved, but only that numerical values 
are assigned to them such that the theoretical quantities in which 

w E6 <P6 

E5 CPs 

E4 'P4 
ex -",~ .. ---- .. --- .. 

++ E3 4'3 

Fig. 11-1 Molecular orbitals !Pi ++ E2 <P2 
and their energies Ei for the studied ++ E1 <P1 

system. 
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these integrals appear give a true representation of different experimental 
characteristics for specimens of various classes of substances. In the 
HMO method energy characteristics are, as a rule, expressed in terms 
of quantities IX and p. When comparing theoretical (HMO) data with 
experimental results, an in congruency appears: for the standard resonance 
integral (the resonance integral corresponding to the carbon 2pz atomic 
orbitals on neighbouring atoms), a value of 20-200 kJ/mol is obtained 
according to the nature of the experimental data (instead of the 
expected constant value). It follows that the numerical value of p, 
corresponding to a certain characteristic and to a certain group of 
substances, cannot be used for another characteristic or another group 
of substances. 

In the considered methods, calculation of the electron energy (It 
or It + cr) is very simple; it is given by the sum of the occupied 
one-electron energy levels [cf. Eq. (11-1)]; this energy can also be expressed 
in terms of electron charge densities and bond orders and of the Coulomb 
and resonance integrals. The expression valid in the HMO theDry has 
already been given [cf. Eq. (10-116)J. 

The heats of formation* of non-conjugated organic compounds can 
be calculat-ed relatively accurately using group contributions. On the 
other hand, in conjugated (most frequently planar) compounds this is not 
true and the differences between experimental and calculated values are 
considerable. This difference is called the resonance energy. Theoretically, 
a similar quantity, called the delocalization energy (ED)' is defined as 
the difference between the It-electron energy of the system (W), whose 
delocalization energy is calculated, and the It-electron energy of the 
energetically most favourable Kekule structure (Wid; consequently (cf. 
Sections 10.5 and 15.2) 

(11-3) 

The ionization potential (I) represents the energy that must be added 
to a system to transfer an electron from the system to a site of zero 
potential. On the other hand, the energy which is liberated on the 
addition of one electron to a system is called the electron affinity (A). 
The most important of these quantities is connected with the highest 
occupied and the lowest unoccupied MO's (the first ionization potential 
and the first electron affinity). Fig. 11-2 illustrates changes in the occupa­
tion of MO's due to these two processes (b, c) as well as to the electron 

* The heat which is liberated on formation of I mol of a substance from the 
elements, where the reactants and products are in their standard states. This heat can be 

determined indirectly from the heat of combustion or of hydrogenation (see below). 
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6 6 

5 5 

4 --0- -0 4 

3 <>-0 ~ -0<>- -<>- J 

2 <>-0 -0-0- -0<>- <>-0 2 

-0<>- -0-0- -0<>- -0-0 

2fE. dEj+ E3 dEi +E4 dEi+ EJ+E4 
i-1 \ I-I 1-1 \-1 

0) b) c) d) 

Fig. 11-2. Ground state (a), state after ionization (radical cation) (b), state after attachment 
of an electron (radical anion) (c), state following the lowest energy excitation (d). The electronic 

energies of individual systems are given. 

excitation with the lowest energy requirement (called the N ~ VI excita­
tion, N and V being symbols for the "normal" and "valence" states). 
From the energies of these structures and from the energy of a molecule 
in the initial state very useful theoretical characteristics can be calculated 
from simple differences (cr. Fig. 11-2): 

I = Wb - w;, = - E3 

A = w., - Wa = E4 

E(N--+Vl) = Wd - w;, = E4 - E3 

(11-4) 

(11-5) 

(11-6) 

It follows that the i-th ionization potential (the i-th electron affinity) is, 
in general, equal to the orbital energy of the i-th MO (except for the 
sign of the ionization potential). In Fig. 11-3 the first ionization potentials 
are plotted against the HMO energies of the highest occupied MO's for 
a series of conjugated hydrocarbons (Table 11-1). Separation of data for 
hydrocarbons with markedly alternating bonds (polyenes) is not sur­
prising, since in these systems one of the HMO assumptions (assumption 
of equality of the resonance integrals) is not fulfilled. If various values 
of p, according to the lengths of the C - C bonds, are introduced into 
the calculation, quite satisfactory results are obtained. 

In methods where electron repulsion is considered explicitly (e.g. 
the Pople approximation of the Roothaan SCF method, CNDO methods), 
the relationships are more complex. In the expression for the total electron 
energy appear not only orbital energies ej> but also terms derived from 
electron repulsion [cr. Eq. (10-31)]' Electron Coulomb and exchange 
integrals are defined as follows [cr. Eqs. (5-59c) and (5-59d)]: 
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Fig. 11-3. Dependence of adiabatic ionization potentials on the HMO energy of the highest 
occupied 1t-molecular orbital for polyenes (.6.) and for benzenoid hydrocarbons (0). 

Table 11-1 
Theoretical and Experimental First Ionization Potentials and Electron Affinities 

Hydrocarbon ~ 
f3 

Ethylene 1.000 
1,3-Butadiene 0.618 
1,3,5-Hexatriene 0.445 
1,3,5,7-0ctatetraene 0.347 

Benzene 1.000 
Naphthalene 0.618 
Anthracene 0.414 

Tetracene 0.295 

Phenanthrene 0.605 

Benz[aJanthracene 0.452 

Pyrene 0.445 

Chrysene 0.520 
Diphenyl 0.705 

fa 

eV 

to.52 
9.07 
8.23 
7.80 
9.24 
8.14 
7.42 

6.94 
8.07 

7.52 
7.70 
7.82 
8.27 

0.148 

0.556 

0.307 

0.630 
0.591 
0.397 

a Ionization potential determined from photoionization and electron spectroscopy measure­
ments (from various sources). 

b R. S. Becker, E. Chen: J. Chern. Phys. 45, 2403 (1966). 
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(11-7) 

(11-8) 

The expressions for the individual energy characteristics are given in 
Table 11-2. The expression for the ionization energy (and also for the 
electron affinity) is particularly interesting, because it is formally the 
same as the expression appearing in the simple methods. This is a con­
sequence of the Koopmans theorem, according to which the SCF orbital 
energies B; of the parent system can also be used for calculation of the 
total energy of the ion derived (by removal or acceptance of an electron) 
from this system. At the same time the change in geometry which 
generally accompanies ionization is not considered, nor is the fact that 
the system formed is (in contrast to the parent system) a system with an 
open electron shell. These are undoubtedly rather drastic simplifications 
for which the use of Koopmans theorem has been repeatedly criticized. The 
correct procedure requires calculation of the SCF energy for the parent 
system with a closed shell and for the radical-ion with an open electron 
shell; in both systems it is necessary to take correct interatomic distanfes 
into account. Numerical values of ionization potentials obtained by the 
two procedures differ only slightly in rigid molecules (e.g. conjugated 
hydrocarbons), which supports the use of the Koopmans theorem in these 
systems. However, in small molecules, the difference in the results usually 
amount to about 1 eV. For radicals the Koopmans theorem leads to more 

MO-Energy Characteristics (Closed Shell Systems) 

Characteristics Methods 

semiempirical a 

ionization potential; 
ionization of the electron from the i-th MO Bj 

excitation energy; 

excitation of an electron from the i-th MO 

to the j-th MO 
(S-+S') 
(S-+T) 

Total electron energy 

BJ - 8 j - J jj + 2Kij 
8J - 8 j - Jij 

2~>j + LL(2J jj - Kij) 
i i j 

• For definition of integrals .I,j and K jJ see Eqs. (11-7) and (11-8). 

Table 11-2 

empiricar 
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MO-Energy Characteristics (Open Shell Systems)" 

Characteristics 

ionization potential; 
ionization of electron from the singly occupied moth MO 

ionization potential; 
ionization of electron from the doubly occupied i-th MO 

a) leading to a singlet state 

b) leading to a triplet state 

electron affinity (acceptance of an electron into 
the moth MO) 
excitation energy; 
excitation of an electron (0 ---+ 0') 
a) from a doubly occupied into a singly occupied MO 

(i---+m)b 

b) from a singly occupied into an unoccupied MO 
(m---+r)' 

Total electron energy 

Table 11-3 

SCF method of Longuet-Higgins 
and Pople 

1 
0; +2K; .. 

1 
0 .. + 21 .... 

1 
0 .. - 0; + 2 (K; .. + 1 .... - 21; .. ) 

1 
0, - 0 .. + 2 (K .. , + 1m .. - 21m,) 

II ~ P • .(F •• - H~.) - ! 1 .... 
• • 

a For definition of integrals Jij and K;j see Eqs. (11-7) and (11-8); m is a subscript of 
the singly occupied M 0 in the initial system. 

b Excitation of this type is designated as A-type excitation. 
, B-type excitation. 

complex expressions (Table 11-3). Some interesting information follows 
from this table, for example, that ionization from an arbitrary doubly 
occupied level leads to two different values for the ionization potential 
(according to the multiplicity of the system after ionization). Most important 
is that Table 11-3 points out the incorrectness of mechanical transfer 
of expressions from closed shell systems to systems with open shells. 

In calculations within the framework of many-electron methods (e.g. 
methods of configuration interaction), the theoretical intepretation of 
electronic excitation requires knowledge of the energy difference for two 
states of the molecule studied (the state before and after excitation); 
in ionization processes, the energy· difference for two-electron systems, 
differing in the number of electrons which the parent system loses or 
gains, must be found (cf. Sections 5.4 and 5.5). 

It will now be suitable to describe the experimental determination 
of ionization potentials. For several decades three methods have been 
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used: electron impact, photoionization, and optical spectroscopy. None 
of the methods is particularly simple, so that the number of experimentally 
determined ionization potentials was, until recently, not large. A few years 
ago an interesting and powerful method was developed permitting deter­
mination not only of the first, but also of a number of higher ionization 
potentials in a single experiment using a fairly simple procedure. This is 
the method of photoelectron spectroscopy (PES)2. In this method, the 
studied molecules in the gaseous phase are ionized by photons of a defined 
energy (photons of 21.21 eV from a helium discharge lamp are generally 
used), and the kinetic energy of the electrons liberated from the molecule 
is experimentally determined. A photoelectron spectrum is schematically 
depicted in Fig. 11-4. The maxima of the bands indicate directly the 
individual ionization potentials. From the reproduction of a real spectrum 
of carbon monoxide (Fig. 11-5) it is evident that the situation is more 
complicated and individual bands have a fine structure. The structure 
of the spectrum depends on the fact that, when ionized, the molecules 
are excited to a set of vibrational states of a molecular ion. In Fig. 11-6 
this situation is outlined for a diatomic molecule (polyatomic molecules 
are rather similar). 

20 10 
_E(eV) 

Fig. 11-4. Photoelectron 
spectrum - schematic 

representation. 

o CD CD 

vertical I adiabat. 
\I.P. ! 

! 
! 

t 

Fig. 11-5. Actual photoelectron 
spectrum: the 2nd and 3rd bands 

display vibrational structure. 

Ionization begins from the vibrational ground state of the parent 
system: transition into a set of vibrational states must be considered. 
The two most important, called the vertical and adiabatic transitions, are 
illustrated in Fig. 11-6. It is typical for the first that no change occurs 
in the interatomic distance; such a transition is called a Franck-Condon 
transition and it is the most intense (cr. the 2nd band in Fig. 11-5). The 
second important transition is that into the vibrational ground state of 
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ionization 
(radical cation) 

adiabat. pot. 

parent system 

-r 

Fig. 11-6. Potential energy curves of the parent system and of the radical cation produced 
by removing an electron. 

the molecular ion. This is obviously the transition with the lowest energy 
requirement (0-0 transition). 

It is necessary to add that the first ionization potentials determirted 
by electron impact are always several tenths of an eV higher than the 
values determined by photoionization. The difference is very likely due to 
the fact that, in the first method, vertical potentials are measured, 
whereas in the second method, adiabatic potentials are found. The reason 
that vertical transitions (transitions with no change in interatomic distances) 
are obtained in electron impact measurements is the very short duration 
of this process - after removal of the electron the molecule simply has not 
enough time to change its geometry. 

While calculation of electron affinities is as simple as calculation 
of ionization potentials, their experimental determination is more difficult. 
It is based on the ability of substances to absorb thermal electrons. 
The relative absorption is expressed by an absorption coefficient which 
can be shown to be related to the electron affinity of the molecule. 
Electron affinities have so far been determined in this way for only a few 
benzenoid hydrocarbons (Table 11-1) and for a number of their derivatives. 
Correlation of these affinities with HMO energies (of the orbitals which 
the thermal electron enters) is less satisfactory than correlation of ioniza­
tion potentials. 

With regard to the complexity of direct determination of electron 
affinities, it is useful to mention that polarographic half-wave potentials 
of reduction waves can be proportional to electron affinities. This is true 
of aprotic solvents where the radical-anion formed is not subject to 
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further conversions and where the polarographic process is reversible. 
The values obtained in this way, however, include the solvation energy 
of the ion formed. 

In the discussion of the possibilities of using one-electron energies, 
the simple calculation of localization energies is worth mentioning (which, 
however, must not be mistaken for delocalization energies). These quantities 
will be used later in the calculation of the 7t-electron contribution to the 
activation energy. The atomic localization energy of an atom in a con­
jugated planar system is defined as the difference between the energy of a 
system formed after removal of the ,u-th AO from a conjugated parent system 
and the energy of the parent system. This removed orbital (AO) can be 
occupied by none, one or two electrons. Similarly, the bond localization 
energy (also called ortholocalization energy) is defined as the energy of 
a double bond plus that of the remaining part of the original molecule 
reduced by the energy of the original system. Paralocalization and 
generally polycentric localization energies can be defined in a similar 
way. Apparently, the delocalization energy can be considered as a special 

0 
(bl /.I~ 
8 

(01 0 
atomic localization 

energy 

(AI 
(0) (b) 

(01 ( 
II(b) 

(O~ 

II (c) 

(bi' 

C"three-fold"IOCa I i zati on 
bond localization .energy) 

energy delocalizatlon enerqy 

(Aol 
(0) (b) 

( Eol 
(01 (b) (e) 

-0-.......... -0-................................ _ ..... . 

W: . ~IX + 5.4613 ex 
(remainders) Dex. + 5.4613 

~IX + 4.4713, 2rx + 2f} lex. + 213 2rx .+2(3 2ex. + 2/3 

DOC + 6.47(3 6ex. +6(3 

Fig. 11-7 Illustration of localization and delocalization energy calculations. 

Lu 
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case of "polybond" localization energy. For illustration*, the atomic 
localization (A), ortholocalization (Ao) and delocalization (ED) energies 
of benzene (cf. Fig. 11-7) can be calculated: 

A = 16ct + 5.46f3 - (6ct + 8f3) I = 2.54f3 

Ao = 16ct + 6.47f3 - (6ct + 8f3) I = 1.53f3 

ED = 16ct + 6f3 - (6ct + 8f3) I = 2f3 

11.2 Quantities derived 
from the wave function 

11.2.1 Introductory comments 

The object of any sufficiently general quantum-chemical calculation is to 
obtain a wave function for the studied molecule or for any other electron 
system. Knowledge of the wave function is a prerequisite for calculating 
the expectation values of physical quantities, among which energy assumes 
an exceptional position - because of its role in the Schrodinger equation 
and as a universal constant of motion. Among the other measurable 
physical and chemical quantities are a number of those which are indis­
pensable for characterization of molecules; the theoretical interpretation 
of these quantities is thus inevitably necessary. Calculation of the dipole 
moment of molecules in the text below will serve as an example for these 
quantities. 

The use of a wave function for the calculation of physical quantities 
alone is disadvantageous because a great deal of information contained 
in the wave function is lost. On the other hand, during the development 
of modern chemistry, a number of specific concepts were formed, which 
proved to be very useful for prognosis and interpretation of the chemical 
and physical properties of electron systems. This applies to terms such as 
the two-electron bond, lone electron pair and hybridization. In addition, 
the properties of molecules can be intepreted in terms of atomic properties, 
such as atomic charges. This fact motivated efforts to elaborate methods 
which would be capable of analyzing very complex wave functions in 
terms of these concepts. However, before describing these methods, it 
would be useful to introduce the density matrices, by means of which 
these methods can conveniently be classified. 

* The HMO energies of benzene and butadiene equal 60: + 6{J and 40: + 4.47{J, 
respectively. 
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11.2.2 Density matrix 

Let us start, for the sake of simplicity, from the definition of a spin 
orbital (5-32): 

A(X) = <p(r) f/(U), (11-9) 

where the symbols have the same meaning as in Section 5.4. From the 
statistical interpretation (cf. postulate 2 in Section 4.2) it follows that the 
expression 

1 A(X) 12 dx (11-10) 

gives the probability of occurrence of an electron in the space-spin element 
dx = dr du and thus 

y(x) = 1 A(X) 12 = 1 <p(r) 121 f/(u)j2 (11-11) 

is the electron probability density function. If we are not interested in the 
spin, then integration can be carried out over the spin variable to give 

Q(r) dr = dr Jy(x) du = 1 <p(r)i2 dr, (11-12) 

where Q(r) gives the probability density without reference to the spin. 
Generalization of the given relations for the many-electron system 

(where the number of electrons is n) is relatively easy considering that 
the expression 

(11-13) 

represents the probability of simultaneously finding electron 1 in element 
dx 1 , electron 2 in element dx 2 , .,. and finally electron n in element dxn • 

The probability of finding electron 1 in a space-spin element dX 1 with 
an arbitrary distribution of the other electrons is obtained by integration 
of expression (11-13) over the coordinate of the second to the n-th electron. 
We are, however, more interested in the probability of finding any of 
the n electrons in element dx 1 , as the electrons in the considered system 
are indistinguishable. Since the product '1''1'* is symmetrical in the 
variables of the n electrons, the desired probability is obtained by multi­
plication of the given integral by number n: 

(11-14) 

where x 1 denotes "point Xl" at which the probability density of any of 
the n electrons is evaluated. For the determination of the "spinless" 
density Eq. (11-12) is again valid. . 

The probabilities for configurations of any number of particles can 
also be found. The relationship 

n(n - 1) 2 
r(X 1 ,X2) = 2 SI'l'(Xl'x2 ,···,xn)1 dx 3 · .. dxn , (11-15) 
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giving the probability density of simultaneously finding one electron at 
"point Xl" and the second electron at "point x2", is of practical significance. 
Function (11-15) is connected with the so-called pair correlation function 

(11-16) 

which can be used for the study of correlation effects in electronic 
systems.4 

For illustration, functions y(x 1) and e(r 1) can be calculated for the 
two-electron system of the H2 molecule, described by the VB wave 
function [cf. Eq. (10-137)] 

1 1 
'I'(x 1, x2) = "J2 [xll(r1)x.(r2) + x.(r1)x,.{rZ)]"J2 [(X(u1) P(u2) - P(u1) rt(u2)] 

(11-17) 

where, for the sake of simplification, it is assumed that the atomic orbitals 
are orthonormal. Obviously it holds that 

y(x 1) = 2 ! f 1 xll(r1)x.(r2) + x.(rd xll(r2) 12 x 

X 1 (X(u 1) P(u 2) - P(u 1) (X(u 2) 12 dr 2 du 2 = 
1 

= 2" [I x,.{r1) 12 + 1 x.(r1)!2][1 (X(u 1) 12 + 1 P(u1) 12] 

and after integration over the spin variable u 1 , 

(11-18) 

(11-19) 

leading to the trivial result that e(r 1) is equal to superposition of partial 
densities produced by the atomic orbitals localized on centres J1. and v. 
Eqs. (11-18) and (11-19) permit expression of the probability e~(r1) of 
finding the electron in spin state (X (or p), whence 

e~(r 1) = l(r 1) = ~ e(r 1) (11-20) 

Expressions defined by Eqs. (11-14) and (11-15) [or by (11-12) and 
(11-16)] can be understood as diagonal elements of matrices with contin­
uous indices (matrices with continuous indices have already been des­
cribed in Section 4.5): 

)'(1; I') = n J lJI(l, 2, ... , n) lJI*(I', 2, ... , n) d't2 ... d'tn (11-21) 

T(1, 2; 1',2') = n(n ~ 1) f '1'(1,2,3, ... , n) lJI*(1', 2', 3, ... , n) d't3 ... d'tn , (11-22) 

where it is intentionally not specified whether the wave functions depend 
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on the space-spin or only on the space coordinates of the electrons, in 
order to include both possibilities. The given expressions define the density 
matrices of the first [Eq. (11-21)] and the second order [Eq. (11-22)J. 

The establishment of density matrices has the following practical 
importance. It has already been mentioned that theoretical expressions 
for physical quantities depend both on the wave function tp and on its 
complex conjugate tp*; moreover, these relations can be expressed by 
matrix elements in which integration is performed only over the co­
ordinates of a limited number of particles corresponding to the type of 
particle interaction. In applications, only two-particle interactions of 
coulombic character can occur and thus the number of coordinates 
(n - 2) is not of direct importance for the calculation of physical quantities. 
Establishment of density matrices removes these disadvantages and there­
fore simplifies descriptions of electron systems. 

Let us start from Eq. (5-18) for the Hamiltonian of a molecular 
electron system treated within the Born-Oppenheimer approximation. 
The energy expectation value of a molecule in a state defined by wave 
function tp can be expressed as 

n 

<tp 13f I tp> = f tp*(I, 2, ... , n) 0= A(i)] tp(1, 2, ... , n) d. + 
i~ 1 

+ f tp*(I, 2, ... , n) n: g:(i,j)] tp(1, 2, ... , n) d., (11-23) 
i<j 

where d. = d' l d'2 ... d.n • 

First the total energy contribution originating from matrix elements 
of the one-electron operator will be examined. Because the integration 
variable notation can be changed and because the product tptp* is 
invariant under an arbitrary permutation of the coordinates, then any 
of the addends can be modified so that n identical integrals are obtained, i.e. 

n 

f tp*(I, 2, ... , n) [L A(i)] tp(l, 2, ... , n) dt = 

= n f tp*(I, 2, ... , n) A(1) tp(l, 2, "" n) d. = 

= f [A(1)1'(1; 1')]1'~1 dt p (11-24) 

where definition (11-21) was used. Primed variables were introduced to 
indicate that the operator acts only on the non-conjugate component of 
the density matrix. After operating the primes are dropped (symbolically 
denoted 1'-d) and then it is necessary to carry out the integration. 
A similar modification can be made with the two-electron contributions 
of Eq. (11-23), to give 

<tp 13f I tp> = J [A(I)I'(I; 1')]1'-+1 dt1 + 
+ J g:(I, 2)T(1, 2; 1, 2)dt1 d.2 , (11-25) 
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where ~1, 2) in the second term on the right-hand side of Eq. (11-25) is 
only a multiplication operator and thus primed coordinates need not be 
introduced (in contrast to operator ~l), which, like other operators, 
also contains the Laplace operator involving differentiation). 

Density matrices assume particularly simple expressions when wave 
function IJI is represented by a single Slater determinant (cf. Section 5.5): 

1 
1JI(1,2, ... , n) = ,do(1, 2, ... , n) = J:Tdet IIAI (I), A2(2), ... , An(n) II 

yn: 
(11-26) 

This happens in the Hiickel and extended Hiickel methods and in all 
SCF procedures. It will be assumed that the spin orbitals, Ai' in Eq. (11-26) 
are orthonormal. Density matrices could be obtained by direct calculation. 
For the derivation, however, a method comparing known expressions will 
be employed. Using Table 5-2, the energy expectation value for Hamiltonian 
(5-18) and wave function (11-26) can be expressed by the relationship 

n 

<,do I j{' I ,do> = L 0;(1) I ~1) I All» + 
;= I 

1 n 

+ 2 ;,t; I [0;(1) AP) 19(1, 2) IA;(I) AP» -

- 0;(1) AP) 19(1,2) lAP) Al2»] (11-27) 

Comparison of Eq. (11-27) with Eq. (11-25) leads to the expressions 

n 

Y(x I ; X'I) = L: A;"(X'I).A.;(x l) (11-28) 
i= I 

r(XI' x2 ; x~, x~) = ~ t [A;"(X~).A.j(X~).A.;(XI).A.ix2) -
I , ) 

- A;"(X'I) Aj(X~) Aj(XI) A;(X2 )] = 

(11-29) 

for the density matrices (containing spin variables), so that, provided the 
first-order density matrix is known, the second-order density matrix can 
be constructed according to Eq. (11-29) (this conclusion is general enough 
to hold even for density matrices of higher orders and is one of the 
typical properties of the one-particle approximation). Therefore, the 
expression Y(x I; X'I) is denoted as the Fock-Dirac density matrix and is 
referred to as the ''fundamental invariant of the SCF solution" 3 . 

If a system with closed shells is under study [cf. Eq. (5-43)], it is 
advantageous to employ the "spinless" density matrix j, which can be 
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obtained from Eq. (11-28) by integration over the spin variable: 

n/2 

)'(r1' ,'1) = 2Lq>i(r~)q>i(rl)' (11-30) 
i= 1 

where q>i are orbitals depending on space variables alone. 
For further considerations, knowledge of some properties of the 

first-order density matrix, related to the one-determinant wave function, 
will be important. For derivation of the corresponding expressions, it will 
be useful to employ the matrix notation established in Section 4.5. In 
this notation, a set of spin orbitals can be written in matrix form 

(11-31) 

where the column index specifies spin orbitals arranged according to 
increasing relevant orbital energy Ei (or Gi)' and the row index (continuous) 
specifies the spin-space coordinates of the electron. It has already been 
mentioned that the property of orthonormality of a set of spin orbitals 
can be written [cf. Eq. (4-123)] as 

).H). = 1, (11-32) 

where 1 is a unit matrix of the same dimension as the spin-orbital space 
(given by the number of spin orbitals). Then density matrix (11-28) .can 
be written in the form 

(11-33) 

where In is a square matrix in the spin-orbital space with the first n 
diagonal elements equal to 1 and all the other elements equal to zero; 
index 0 signifies that matrix ).0 contains only occupied spin orbitals 
of number n. At the same time, number n gives the number of columns in ).O ~ 

Density matrix (11-33) has the following properties: 
a) "l is invariant to unitary transformation of occupied spin orbitals. 

If a new set of spin orbitals, ).~, is established, 

).~ = ).oU, 

where U is a unitary matrix, then 

(11-34) 

(11-35) 

Owing to this property, expectation values of physical quantities 
remain unchanged on transition from occupied molecular orbitals that 
are solutions of standard SCF equations to other orthogonal orbitals 
bound to the original occupied orbitals by a unitary transformation. 
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b) "I has the property of a projection operator, projecting an arbitrary 
function (defined in the spin-orbital space I.) into the space of the occupied 
orbitals. If the function f is of the type 

f = I.C, (11-36) 

where C is a column matrix of the form 

(11-37) 

Co (of dimension n) contains coefficients mUltiplying occupied spin orbitals 
and c,' denotes the contributions of the virtual functions, then it follows 
that, using Eqs. (11-32), (11-33), and (11-36), the equation 

(11-38) 

is valid. Therefore, after action of the density matrix on f, that part of the 
function lying in the space of occupied spin orbitals is obtained. 

In closed shell systems, a simplification occurs in that the dimension 
of the density matrix is effectively reduced from n to nl2 if the "spinless" 
density matrix (11-30) is employed. 

11.2.3 Localized orbitals 

The methods of wave function analysis to obtain localized functions 
describing individual groups of electrons have been elaborated almost 
solely for the one-electron modeI6 ,7 . Firstly, the properties of the Hartree­
Fock manifold, a) and b) in Section 11.2.2, provided a natural basis for 
these methods. Secondly, in accordance with the Lewis interpretation of 
the chemical bond, pairs of electrons can be considered to be elementary 
localized groups. The simplest description of these pairs can be effected 
using a single function of space coordinates, which can be combined 
with spin functions IX and /3; the concept of a one-electron function is 
connected with the one-electron model. 

To form localized one-electron functions describing bonds and lone 
pairs of molecules, properties a) and b) of the first-order density matrix 
can be employed. Therefore, methods applied in the analysis of wave 
functions will be divided into two groups. Both begin, of course, from the 
solved one-electron model of the problem and have molecular orbitals 
as input data for the calculation. 

In the localization methods based on the invariance of the density 
matrix [property a)], use is made of the fact that Eq. (11-34) combines 
two equivalent sets of one-electron functions. If transformation matrix U 
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is of order m, then it contains j-m(m - 1) independent parameters8 • This 
number of degrees of freedom can be utilized for the introduction of 
additional conditions depending on a suitably defined criterion, thus 
fixing the elements of the respective transformation matrix. Since in this 
connection closed shell systems are of particular interest and only the 
spatial part of the one-electron function [cf. Eq. (11-9)] participates in the 
transformation, it holds that m = nl2 for this type of system and it is 
sufficient to investigate the relationship between the molecular orbitals, 
<Pi' and the localized functions, <p;. 

Molecular orbitals are usually expressed as a linear combination 
of the atomic orbitals X,.., and it will be advantageous here to write the 
molecular orbitals as follows [cf. Eq. (5-63)]: 

_""II <Pi - L. L. C"iX", 
I "e(I) 

(11-39) 

where the sum is carried out over all the atomic orbitals (denoted by 
subscript (X) localized on atom I and over all atoms I forming the 
molecule. The molecular orbitals (the solution of the standard one-electron 
problem) has non-vanishing coefficients C!i over the entire molecule; from 
Theorem 6-1 of Section 6.4 it follows that the coefficients assume values 
such that <Pi is a component of the basis corresponding to one of the 
irreducible representations of the symmetry group of the molecule. On 
the other hand, function <P; must be localized in a certain part of the 
molecule. It is, for example, optimal for the orbital describing the bond 
between atoms A and B that only coefficients c~, (X E (A) and C:i , P E (B) 
differ substantially from zero, while the contributions from the remaining 
atoms are negligibly small. Similarly, when <P; describes the inner electron 
shell or the lone electron pair on atom A, considerable contributions to 
orbital <P; originate from atomic orbitals situated on the single atom, A. 
Coefficients c!, (X E (A), in both cases give information on the character 
of the hybrid orbital participating in the formation of the localized 
one-electron function. 

The criteria used for the determination of transformation matrix 
U remain to be mentioned. With symmetrical molecules such as methane, 
for instance, the fact that the molecule contains some equivalent atoms 
or bonds can be used. If the properties of the C - H bond (say, its dipole 
moment) in the CH4 molecule were of interest, the original set of 
molecular orbitals would have to be transformed to give four physically 
equivalent orbitals describing the C- H bonds in the methane molecule. 
It appears that, if the calculation is carried out by the MO-LCAO method 
with the minimum basis set of atomic orbitals (cf. the discussion of the 
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C2 H4 molecule in Section 6.6), the symmetry of the problem suffices for 
determination of all the parameters of the transformation matrix. 

Generally, of course, the symmetry of the problem is insufficient for 
determination of the transformation matrix; then other criteria based on 
particular physical concepts must be employed. For details, see Refs. 6-9. 

The localized functions calculated on the basis of the invariance 
property of the density matrix are in a certain sense equivalent to the 
molecular orbitals. The thus-defined localized orbitals are, of course, 
not localized only in certain parts of the molecule, but have a certain 
non-zero electron density over practically the entire molecule; therefore 
the electron pairs cannot be isolated so that each occupies a region 
defined exclusively either by one or by two centres, although this would 
be an ideal property for orbitals transferable, for example, for a certain 
bond from molecule to molecule. Experiments on Compton X-ray scat­
teringlO yielded persuasive proof of the possibility of localization and 
transferability of bonds in some molecules, and demonstrated that theoret­
ical analysis of molecular wave functions from this point of view is of 
practical importance. 

It has been found ll that the projection property of the Fock-Dirac 
matrix, i.e. property b) in Section 11.2.2, can be expediently utilized for 
the construction of functions localized only on a certain number of 
centres. For the sake of simplicity only closed shell electron systems will 
be considered. In view of Eqs. (11-38) and (11-30) the relationship 

o ~ k ~ 2, (11-40) 

holds for any normalized function 1] of type (11-36) (cf. notation in 
Section 4.5). It applies especially that, if 1] is identical with an occupied 
molecular orbital 1] == ({)p 1 ~ i ~ n/2, then k = 2; if 1] is a virtual orbital, 
then k = O. 1] can be considered to be a function of several undetermined 
parameters and to fulfil the localization condition in a certain region of 
the molecule (see below). These conditions can easily be realized if the 
one-electron functions are approximated in the LCAO form. With respect 
to the possible intepretation of quantity k as an occupation number, it is 
both physically and mathematically justified to require that the equation 

(11-41) 

expressing maximization of the corresponding functional, be valid for the 
optimum localized functions. 

If, for example, the bond between atoms A and B of the studied 
molecule is to be described, we can proceed in two ways: 
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a) We can assume that the bond orbital17AB is of the form 

17AB = q(17A + b17B)' (11-42a) 

where 17A = L Cp.Xp. is a fixed hybrid orbital ort atom A (i.e. its expansion 
p.E(A) 

coefficients cp. are known), q is the normalization constant and b - a para­
meter (characterizing the polarity of the bond) which is to be optimized. 

b) If the fixed hybrid assumption is abandoned, a more general 
problem can be solved, i.e. a function of the form 

(11-42b) 

can be sought, where DAB is a column matrix composed of linear 
coefficients multiplying the atomic orbitals localized on atoms A and B. 

When criterion (11-41) is employed, both cases can be solved 
exactly and version b) can be used for the determination of "optimal" 
hybrid orbitals in the sense of the best approximation to the SCF solution 
of the respective problem. The assumption of the number of centres 
appearing in Eq. (1l-42b) can, of course, be varied according to the type 
of prohlem. If an optimal hybrid describing a lone pair is sought, 17 is 
expanded in terms of the atomic orbitals localized on the corresponding 
atom. 

This method therefore characterizes the electron pair by two quanti­
ties: by the localized function 11 and the occupation number k, which can 
be considered to be a quantitative measure of the localization. Its value, 
for bond orbitals for example, usually lies in the range 1.98 to 2.00 for 
both semiempirical and "ab initio" wave functions. In comparison with 
other methods of analyzing wave functions from the viewpoint of their 
localizability, its advantage lies mainly in its simplicity and small demands 
on computer time and, furthermore, in the fact that it permits study of 
a specific part of the molecule without explicit consideration of the 
remainder. 

Let us summarize the results obtained by the analysis of wave 
functions from the point of view of orbital localizability. It has been 
shown that well-defined localized orbitals describe inner shell electrons, 
lone pairs and two-centre bonds. Localized functions exhibit a consider­
able degree of transferability between different (in a certain sense similar) 
molecules. The nature of hybridization of atomic orbitals which contribute 
to localized functions is also correlated with the position of the atom in 
the periodic table. Application to the wave functions of electron-deficient 
molecules confirmed the existence of three-centre two-electron bonds, 
BHB and BBB, in borohydrides. The application of the localization 
method to the It-electron systems of both butadiene isomers12 provided 
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interesting results. For the two-centre C1-C2 1t bond the occupation 
number k = 1.96 results, and although it is smaller than the occupation 
numbers for cr orbitals, the difference is not sufficient to justify suggesting 
that the degree of localization is a crucial factor differentiating 1t and cr 
systems. The occupation numbers for orbitals of the C2 - C3 and C1 - C4 
bonds are much smaller and the occupation number for the C1 - C3 
bond is the lowest, in agreement with Rumer's theorem, according to 
which valence schemes which exhibit bond crossing should be excluded 
from valence diagrams. 

So far, the analysis of wave functions has been discussed from the 
point of view of the possibility of obtaining localized functions directly 
related to the concepts of the classical theory of the chemical bond. The 
positive results of these calculations confirmed or initiated the formulation 
of approximate methods and models, in which the localization of electron 
groups was assumed. Among the simplest methods of this type are semi­
empirical one-electron methods describing the cr electron system by means 
of strictly localized orbitals and intended mostly for the calculation of 
the ground state physical properties of molecules, such as heats of 
atomization13 and dipole moments14 (cf. methods described in Section 
10.2.2). The same idea, although in a more precise version, has been 
utilized in models constructing the wave function from molecular frag­
ments. The approximation of separated electron groups4, the theory of 
"atoms15 (or molecules16) in molecules" and the method of molecular 
fragments 17 are of this type. Even within the framework of many­
electron theories, the application of localized orbitals is useful for 
simplification of the calculation and for improvement of the convergence 
of both perturbation approaches and different versions of the configuration 
interaction method18 . 

11.2.4 Electron distribution in molecules 

Analysis of the molecular wave function from the viewpoint of the 
charge distribution in the individual parts (atoms) of the molecule allows 
quantitative expression of changes in the electron distribution when 
forming molecules from fragments (atoms). It is then possible to establish 
a qualitative interpretation of the quantum chemical calculation, based 
on concepts such as "ionicity", polarity and covalency of the bonds. 
Hereafter all charge values will be given as multiples of the elementary 
electron charge. 

Electron redistribution during molecular formation can be studied 
using function <5(r), which was introduced by Roux and co-workers19. 
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This function is defined by the relationship 

c5(r) = (/(r) - L (/1(r), (11-43) 
1 

where the electron density function (/(r) is given by Eqs. (11-14) and (11-12) 
and (/ir) is the hypothetical free atom electronic density function un­
changed by bond formation and localized on atom I of the molecule. 
The difference between the electron density in the molecule and the sum 
of the electron densities in the system of free atoms (or ions) must be 
calculated for each poinUn space. Most convenient is graphical represen­
tation of function c5(r) in the form of curves corresponding to the same 
density values in characteristic planes intersecting the molecule. c5(r) as 
a difference function describes the change in the electron densities which 
occur on formation of the bond better than electron density contour 
maps (cf. e.g. Fig. 9-2). 

For some purposes the described representation of the electron 
distribution is unnecessarily detailed. Thus it is naturally sometimes 
necessary to condense the relevant information and to describe the 
charges localized on the atoms or to give data on the density of electrons 
in the individual bonds. The most common method for the calculation 
of atomic charges from a wave function of the MO-LCAO type is 
undoubtedly Mulliken's "population analysis,,20, which can be best il­
lustrated on a two-centre one-electron (or two-electron) system. For 
a normalized molecular orbital <p we have 

(11-44) 

where subscripts J1 and v denote the centres (the nuclei of atoms I and J), 
and the number of electrons, k, contained in this orbital is given by 

(11-45) 

where <X/l I xV> is the overlap integral between the two orbitals. The term 
containing the overlap, called the "overlap population", can be interpreted 
as a measure of the accumulation of the electron charge between the 
atomic partners and is therefore related to the strength of the corresponding 
bond. Assuming that the participating atoms influence the magnitude of 
this term to the same degree, the electron charge Q1 on atom I 
(whose nucleus is identical with centre J1) can be defined according 
to Mulliken20 by the relationship 

(11-46) 

Derivation of the general expression for the atomic charge can begin 
with Eq. (11-28) or (11-30) for the density matrix. After substituting 
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Eq. (11-39) into Eq. (11-30) and after integration over the space coordinates 
of the electron, the relationship 

n/2 

n = 2 L L L L L (c!J* (c~J <X! I X~) (11-47) 
I J ae(I) /le(J) i = 1 

is obtained for molecular orbitals in the form of (11-39) and for a closed 
shell system. Assuming that the atomic orbitals localized on a single centre 
are orthonormal «X! I x~) = ball)' the quantities QI can be introduced: 

(11-48) 

where 

which, in the sense of the introductory example, can be interpreted as 
electron charges localized in atomic orbital X!(QaI) and on atom I(Ql)' 
The condition 

(11-50) 

is, of course, valid. If Ql is known, the total charge on atom I can be 
calculated as the difference (ZI - Ql)' where ZI is the (effective) nuclear 
charge of the atom. 

It is obvious that, for zero atomic orbital overlap, the term 
involving the overlap between the atomic orbitals of different atoms 
in expressions (11-46) or (11-49) can be disregarded and the value 
k I Cp,12 is then a measure of the electron density on atom I, leading to 
the expression defined by Coulson21 within the Hiickel theory as the 
atomic charge for the 1t electrons. The electron density in the region 
of the bond, i.e. the bond order, is estimated from the value of the 
product kc:cv (the Coulson bond order). In molecules with several 
occupied molecular orbitals, the (total) electron densities and bond 
orders are given by the sum of the contributions from the individual 
molecular orbitals. 

Although the Mulliken definition of the atomic charge in a molecule 
is among the most frequently used, it has a number of shortcomings. 
First, the "overlap population" is equally distributed between atoms 
I and J, and is, in general, fulfilled only when the atoms are of the 
same kind. Further, the definitions given [cf. Eqs. (11-48) and (11-49)J 
do not exclude the possibility of negative electron densities if the 
contribution from the non-diagonal terms is negative and sufficiently 
large, and, on the contrary, it has even happened that the calculated 
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charge was greater than 2. The results of population analysis are not 
invariant under transformation of atomic orbitals and, in addition, the 
calculated charges depend markedly on the choice of the AO basis set. 

These drawbacks can best be illustrated on an example of calculation 
using expansion of the one-electron wave function (of the molecular 
orbitals) in the form of a linear combination of atomic orbitals, which are 
all localized on the nucleus of a single selected atom; one-centre methods 
seemed to afford good results in the calculation of physical quantities22 

for symmetrical molecules, such as the CH4 molecule. Population 
analysis would nonetheless attribute the total electron charge to a single 
atom, the nucleus of which is chosen as the origin for expansion 
of the wave function. However, population analysis provides physically 
reliable results as long as the basis set of the atomic orbitals is chosen 
consistently with the electronic structure of the atoms forming the 
molecule. 

The described shortcomings can be removed by the definition of 
the atomic charge proposed by Politzer et al23 , which sets out directly 
from the physical interpretation of the first-order density matrix. This 
method is based on the partition of the molecular space into regions 
corresponding to the individual atoms. The electron charge of atom I 
is given by the integral 

Qr = S Q(r) dr, 
r 

(11-51) 

where (I(r) is the electron probability density [cf. Eqs. (11-12) and (11-14)] 
and the integration is carried out over the region corresponding to 
atom I. It is evident that the method allows a certain amount of freedom 
in defining the spatial regions corresponding to the individual atoms 
forming the molecule. Nevertheless, the numerical application of this 
method has provided re~ults identical with experimental data even 
when other methods yielded worse results, for example, with fluorinated 
hydrocarbons. 

11.2.5 Dipole moment 

Although it would be ideal to gain experimental information on the 
electron distribution in the regions corresponding to the individual 
atoms and in regions between neighbouring atoms, nonetheless less 
detailed information on the charge distribution, namely, the dipole 
moment, is also very useful. In electroneutral systems (molecules) there are, 
of course, many regions with a local excess or deficiency of electrons. 
From the point of view of the molecule as a whole, this distribution is 
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equivalent to a distribution in which all the positive charges are con­
centrated in a single point charge (centre of charge); with negative 
charges the situation is analogous. The absolute magnitudes of these 
charges are, of course, identical (the electroneutrality condition). The 
dipole moment II is defined as follows (Fig. 11-8): 

11= ber 

Fig. 11-8. Dipole moment 
[Eq. (11-52)]. 

(11-52) 

In classical physics the dipole moment of a system of point charges 
n 

qp q2' .'" qn (where L qi = 0) equals 
i= 1 

(11-53) 

where r i is the position vector of a given point charge from an arbitrary 
origin. For continuous charge distribution integration must be carried out: 

II ;= J Q(r) r dr, (11-54) 

where Q(r) is the charge density (r expresses the dependence on the 
space coordinates) and dr is the volume element. In the study of molecules, 
both these expressions24 are used: for purposes of calculation, the molecule 
is split into a set of positively charged nuclei [which have quite definite 
positions, Eq. (11-53)] and a continuously distributed electron density 
[Eq. (11-54)]' If the nuclear charge is equal to Zle and if the electron 
charge density is expressed in terms of function Q(r) [cf. Eqs. (11-12), 
(11-14) and (11-24)] multiplied by the electron charge, it follows that 

II = e L ZIRI - e J Q(r) r dr, 
1 

where RI denotes the position vector of nucleus I. 

(11-55) 

The expression for the calculation of the dipole moment can, of 
course, also be used when the calculation is confined to only a certain 
portion of the electrons. The most important example is the 1t-electron 
approximation applied to conjugated systems. In expression (11-55) ZI 

then denotes the core charge of the I-th atom and the spinless density 
matrix Q(r) describes the 1t-electron distribution. In this way the 1t-electron 
component of the total dipole moment is obtained. 
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The introduction of molecular orbitals as a linear combination of 
atomic orhitals into Q(r), corresponding to a closed shell system [cf. 
Eqs. (11-12), (11-14) and (11-30)], can be written as follows (using the 
one-electron approximation): 

n/2 

Q(r) = 2 I x:(r) x.(r) I C:iCvi (11-56) 
/J,V i = 1 

If Eq. (11-56) is substituted into expression (11-54) the electronic part 
of the dipole moment (11-55) is obtained: 

Ilel= -eSQ(r)rdr= -eIIrl'vPl'v' (11-57) 
I' v 

where P is the charge- and bond-order matrix defined by Eq. (10-5) and 
the matrix element r I'V is given by the equation 

r I'V = S x:(r) ~x.(r) dr = <XI' I ~ I Xv), (11-58) 

where r == ~ denotes the position vector of the selected electron. All 
the position vectors are, of course, related to a particular origin of 
the coordinate system\(in classical electrostatics it has been shown that, 
for an electroneutral s)"Stem, the value of the dipole moment is invariant 
to the choice of the origin of the coordinate system). 

The values of matrix elements (11-58) will now be evaluated. The 
expression for their calculation is considerably simplified if the zero 
differential overlap approximation [cf. Eq. (10-9)] is used: 

X:XV = 0, Jl =F v, 

this being a typical feature of the 7t-electron approximation. Then all 
elements 'I'V' Jl =F v, are also equal to zero. For diagonal elements '1'1' 

it is expedient to express position vector , as the sum of two vectors, 

,= R[ + ,', (11-59) 

where R[ is a constant vector which gives the position of nucleus I 
on which XI' is centered with respect to the chosen origin and " is a new 
variable vector related to the nucleus of atom I. It therefore follows that 

(11-60) 

which is a vector equation representing three equations for the individual 
components. For example, for the x-component 

(11-61) 

The coefficient of X [ is the norm of atomic orbital and thus equals 1; 
from symmetry considerations it follows that the second integral equals 
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zero [cf. Eq. (6-70)]. Thus 

(11-62) 

and finally 

(11-63) 

because the indices of the atomic nuclei and orbitals can be identified, 
because in the 7t-electron approximation each atom contributes a single 
atomic orbital to the total basis set of atomic orbitals. Since in this 
approximation P Illl denotes the Coulson 7t-electron density Q/ on atom I, 
the final expression for the dipole moment can be written within the 
framework of the one-electron 7t electron approximation: 

(11-64) 

y 

_---j~--L----'-~x Fig. 11-9. Dipole moment vector and 
cUx its Jlx and Jl, components. 

Assuming that the studied system is planar (and lies in the x, y-plane), 
the absolute value of the dipole moment vector (cf. Fig. 11-9) is given by 

(11-65) 

where Jl. x and Jl.y are the respective components of the vector, for example 

(11-66) 

where X/is the x-coordinate of nucleus I with respect to the fixed origin. 
The dipole moment forms anglee with the positive part of the x-axis, 

for which it holds that 

tane =..&.. 
Jl.x 

(11-67) 

The total dipole moment of planar conjugated compounds can be 
expressed as the sum of the (J' and 7t components : 

Jl = Jla + Jl" (11-68) 

With some 7t-electron systems, the contribution of the (J' component is 
practically negligible in comparison with the contribution of the 7t 
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component. The dipole moment of the cr component can be expressed 
by superimposing the dipole moment of the individual cr bonds, which 
are tabulated in the literature. The contributions originating from non­
bonding atomic orbitals -lone pairs (for example on nitrogen in pyridine 
or oxygen in carbonyl compounds), which are more significant than the 
dipole moments of cr bonds - must also be included. If the n-electron 
density obtained by the HMO or SCF method is substituted into the 
expression for the dipole moment, the calculated values are too high. 
More correct values of /l are obtained if methods are employed for the 
calculation of the electron densities in which the r:t. (or r:t.C) values are 
corrected for the charge densities in the respective positions. This is done 
in the w-technique (the modified HMO method) and in the VESCF 
method (the modified SCF method). There are also very useful methods 
in which the electrons of the cr bonds are considered explicitly. In these cases, 
however, the simple relation (11-64) for the calculation of the dipole 
moment is not valid and it is necessary to employ a more complicated 
expression. Good agreement of theory and experiment has been achieved 
in a number of instances using the CNDOj2 method: the deviation of 
the calculated and experimental values is usually about 10%. 

11.2.6 Nodal planes of molecular orbitals: 
the Woodward-Hoffmann rules 

In the mid-sixties Woodward and Hoffmann published a method25 , 

which enabled prediction of the details of the stereochemical course of 
some cyclization reactions by means of the shape and nodal planes 
of the frontier molecular orbitals. It soon appeared, however, that the 
whole consideration must be given a more reliable physical basis, 
represented by correlation diagrams. Knowledge of the shape of molecular 
orbitals (the location of nodal planes) can, nevertheless, be used empirically 
for interpretation and prediction of the course of some reactions. 

Electrocyclic reactions, i.e. reactions in which a cr bond is formed 
or broken between the ends of a linear conjugated system, will be 
treated here in greater detail. Examples are the formation of cyc10butene 
from 1,3-butadiene and the formation of 1,3-butadiene from cyclobutene: 

" (11-69) 
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Woodward and Hoffmann represent this process schematically for a polyene 
with mt electrons as follows: 

(11-70) 

Rotation of the terminal atoms of the open system out of the plane 
can occur in two ways, as is clear if we assume that the ends of the 
chain consist of different atoms A, B, C and D. The two possible types 
of rotation are called disrotation and conrotation: 

Disrotation 

Conrotation 

A qr 
C 

A 

~'r '--f':r~ 
'{) 

(11-71) 

(11-72) 

It has been experimentally found for butadiene that disrotation 
occurs in the first excited state, whereas conrotation is decisive for the process 
in the ground state. For interpretation of this experimental data it 
is necessary to analyze the molecular orbitals of butadiene and cyclobutene 
which participate in the electrocyclic reaction. For butadiene these are 
four 1t-MO's, with cyclobutene two 1t-MO's and the two O"-MO's of 
the bond formed (Fig. 11-10). The cyclization can be followed using 
a correlation diagram which enables identification of orbitals with 
corresponding symmetry in the initial and final states. In addition to 
a two-fold symmetry axis, these states also have a symmetry plane 
(Fig. 11-11). The molecular orbitals of the initial and final states can be 
classified using symbols S (symmetric) and A (antisymmetric) (Fig. 11-11), 
depending on their behaviour on application of the particular symmetry 
operations. The symmetry of a molecular orbital is designated by two letters, 
where the first refers to reflection in the symmetry plane (0") and the 
second refers to rotation about the symmetry axis (C2) (Fig. 11-10). 

It should be noted that the transition states which occur in disrotation 
and conrotation are of lower symmetry: to the transition states in 
disrotation corresponds only a symmetry plane (0") and to the transition 
states in conrotation only a symmetry axis (Cz). The terminal atomic 
orbitals in the 1t-MO (cpt) of butadiene permit to occur these processes 
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Fig. 11-10. 1t- and a-molecular orbitals of butadiene (a) and cydobutene (b). 
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Fig.II-ll.Plane of symmetry (0') and two-fold symmetry axis (e2) in butadiene and cyc1obutene. 
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Fig. 11-12. Behaviour of the If! I molecular orbital of butadiene under disrotation and 
conrotation: only the p. atomic orbitals in positions 1 and 4 are indicated. The initial 

position (I, I'), position during rotation (2,2'), position after rotation (3, 3'). 
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(Fig. 11-12). If states of equal symmetry are connected (Fig. 11-13), taking 
into account the principles usual in the construction of correlation 
diagrams 25 ,26 (conservation of symmetry of the molecular orbitals in the 
initial, transition and final states, the non-crossing rule, cf. Section 9.4), it 
follows that for the electrocyclic reaction of butadiene (thermal reaction) 
conrotation is preferable, because the bonding MO's of the reactant pass 
into bonding orbitals of the product (Fig. 11-13). A further occurrence 
is the initiation of an electrocycIic reaction by a photon. Whereas in 
the former case the reaction occurred in the electronic ground state, 
here the reaction occurs in an electronically excited state. The reaction 
course can be interpreted in terms of disrotation (cf. Fig. 11-13). Further­
more, it is necessary to investigate the effect of the chain length on the 

plane of symmetry b 
A A 

CP4 -- --6* 

_5_ 6 

disrototion 

two - f91d symmetry 
aXIs C2 

CP4~6. 

CP3~'Jl* 
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CPl ~6 
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0' 
C 
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1) 
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1) 

Fig. 11-13. Correlation diagrams of conrotation and disrotation in butadiene. 
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~- ground state 

+ -
/- + " o con "0 

chain growth .. 
Fig. 11-14. The shape of frontier molecular orbitals in butadiene and hexatriene. 
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cyclization mechanism. First, however, it should be noted that the 
frontier MO's play a decisive role in these processes. This is usually 
the highest bonding orbital in the reaction in the ground state and the 
lowest antibonding orbital in photochemical reactions. It appears that, in 
order to determine the reaction course, it is sufficient to investigate 
whether, in the given type of rotation, the overlapping parts of the AO's 
have the same sign or whether the positive part of one terminal AO 
would overlap the negative part of the other. The situation can be 
clarified using the example of butadiene and hexatriene in the ground 
and excited states (Fig. 11-14). It is evident from the figure that knowledge 
of the nodal planes in the frontier MO is sufficient for formulation of 
the "selection rule". Thermally initiated electro cyclic reactions in systems 
with 4m 1t electrons in polyene (m = 1, 2, 3, ... ) proceed through 
conrotation, whereas in systems with 4m + 2 electrons dis rotation takes 
place. In similar photochemical processes the opposite is true. 
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12. EXAMPLES OF THE STUDY 
OF POLYATOMIC MOLECULES 

12.1 Introductory comments 

As far as quantum chemical studies of the electronic structure of 
molecules are concerned, modern techniques focus attention on semi­
empirical and nonempirical methods, in which all the valence electrons 
(CNDO-type methods) or all the electrons in general ("ab initio" methods) 
are explicitly considered. The semiempirical methods are rather easily 
applicable, but they sometimes fail quantitatively or even qualitatively, 
their chief -disadvantage being the limited region of application of the 
individual versions of the SCF method. It is evident, however, that 
there is a great number of problems in chemistry that can be successfully 
studied using simple empirical methods considering all the valence 
electrons or only the 1t electrons. 

12.2 Inorganic compounds 

More attention should be paid to the solid phase1,2, whose importance 
is not confined to heterogeneous catalysis alone. Much effort is being 
devoted to theoretical studies of the electronic structure of the solid 
phase, both in non-metals and metals. In non-metals, molecular crystals 
(for example solid pentane, bromine, numerous organic compounds), 
covalent t:rystals (e.g. diamond, germanium) and ionic crystals (e.g. NaCl, 
CuSO 4) can be distinguished: 

In molecular crystals, the individual molecules are held together 
by van der Waals forces (see Chapter 17). They are, roughly speaking, 
one to two orders of magnitude smaller than the forces responsible 
for chemical bonds. The heats of sublimation and melting roughly equal 
tens of kJ/mot. That the individuality of molecules is retained in the solid, 
liquid and gaseous phases is supported by the fact that vibrational 
spectra differ only insignificantly in these phases. 
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Covalent crystals represent giant molecules. It is expedient to 
describe them in terms of localized bonds, as the bonds in the crystal 
bulk greatly resemble bonds in normal covalent compounds. However, 
the bonding conditions in the surface layers often differ considerably 
from the conditions inside the crystal. It is rather interesting that both 
important types of hybridization known for carbon atoms in organic 
compounds, Sp3 and Sp2, are represented in covalent crystals, in diamond 
and graphite, respectively. Graphite can be considered to be a system 
of two-dimensional infinite benzenoid hydrocarbons. The distance between 
the individual layers is 0.335 nm, indicating the possibility that only van der 
Waals forces are operative. In graphite, the electrons originating from 
the Pz orbitals occupy MO's which extend over infinite areas: the high 
electrical conductivity of graphite is immediately evident from this 
description. It is a typical feature of all classifications of substances 
that, in addition to well-defined types, there are numerous transient types. 
This concept explains, in principle, the gradual transition to ionic 
crystals. Although zinc sulphide has a diamond lattice, it is certainly 
not a covalent crystal; the interaction between Zn2 + and S2 - participates 
in the bond formation to a considerable degree. There is even an almost 
ionic analogue of graphite, namely boron nitride, BN. 

Classical representatives of ionic crystals are the halogen ides of the 
alkaline metals. Cations M+ and anions X- are quite regularly arranged 
in cubic lattices: each anion is surrounded at distance r by six cations 
and vice versa. A further layer at a distance of r-./2 contains twelve 
anions and finally, at a distance of r -./3 there are eight cations. As a first 
approximation, the participation of the covalent bond can be neglected 
entirely and only the Coulomb interaction between M+ and X- need 
be considered. Whereas the potential energy of this interaction in a hypo­
thetical diatomic molecule M+X- amounts to e2/4m'or (where r is 
the distance M+ ... X-), the potential energy V of the interaction of 
ion M+ with the two closest layers of anions (6 and 8 ions) and with 

Table 12-1 
Contributions to the Total Lattice Energy of Sodium Chloride, 
in eV [Ref. I] 

Electrostatic energy 
Polarizability 
Repulsion energy 
Zero-point vibrational energy 

Total lattice energy 

8.92 
0.13 

-1.03 
-0.08 

7.94 
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the closest layer of cations (12 ions) amounts to 

e2 (6 12 8) 
V = - 41teo r - r )2 + 7J3 (12-1) 

Similar expressions apply to all further cations M + and anions X - . 
If all these contributions are summed and the result is divided by two 
(otherwise each interaction would be counted twice), the expression for 
the total electrostatic energy of this type of crystal is obtained; this 
is usually stated in the following simplified form: 

(12-2) 

where A is the Madelung constant, which has values roughly between 
1.7 and 5. In reality, however, the covalent bond always participates 
in the bonding in ionic crystals. If the participation of the covalent 
bond is estimated, the "ionicity" of the bond is also determined and 
thus the factor by which the electrostatic energy must be reduced is 
obtained [Eq. (12-2)]. In more precise calculations, it is also necessary 
to consider the polarizability of the ions (particularly of easily deformable 
anions), the repulsion effects between clouds of electrons and the 
vibrational energy at absolute zero. Table 12-1 gives the magnitude of 
the individual contributions in sodium chloride. The experimental lattice 
energy amounts to 7.86 eV; the theory agrees well with the experimental 
value. The scope of this book does not permit a more detailed description 
or even brief comments on metals. 

Among special illustrations, the results of MO studies in boranes3 

have an important place and have drawn the attention of both theoretical 
and experimental chemists for years. Several dozen boranes have been 
studied by different extended MO methods. Boranes are described as 
compounds with an electron deficit. This is not surprising, considering 
that formation of a normal cr bond requires two electrons. In the 
simplest borane B2H6, for example, there are eight atoms that are, in 
the extreme case, connected by seven bonds, which require 14 electrons. 
In diborane, however, only 12 valence electrons are available. However, 
if electron-deficient systems are considered to have unoccupied bonding 
MO's (as, for example, in many dications), then boranes cannot be 
included in this category since they have no such orbital. Many 
attempts have been made to interpret the nature of the bonding in 
boranes. For diborane (B2H6) the theory must take into account the 
experimentally determined structure (Fig. 12-1) which corresponds to the 
previous finding that only 4 of the 6 hydrogen atoms are equivalent 
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Fig. 12-1. Arrangement of atoms in diborane. 

and can be exchanged. Only two theoretical concepts that seem to be 
most justified will be treated here. The first is the original idea of Pitzer, 
according to which diborane is some sort of diprotonated "ethylene" (I). 

The similarity 

of the UV spectra of ethylene and diborane supports this hypothesis; 
it is contradicted, however, by the greater length of the B - B bond 
(0.18 nm), as well as by the fact that the diborane hydrogens exhibit 
no acidity. The other description originated with Longuet-Higgins4 , who 
suggested tricentre bonds either of the B - H - B type or of the B - B - B 
type (in other types of boranes). Employing symmetry considerations 
it can be shown that the central part of the molecule contains molecular 
orbitals formed by the overlap of the hybrid orbitals of boron with 
the Is orbital of hydrogen. The following hybrid orbitals are ascribed to 
the first boron atom: 

cr I = (J ~ ) s + ( J ~ ) [( J ~ ) px + ( J ~ ) pz] (12-3) 

cr2 = (J ~ ) s + (J ~) [( J ~) px - (J ~) pz] (124) 

Hybrid orbitals cr 3 and cr4 are formed on the second boron atom. 
Symmetry orbitals (cf. Section 6.6) in the LCAO form are formed from 
these four orbitals as well as from the pair of Is hydrogen orbitals (hI' h2 ) 

and the corresponding symbols of irreducible representations (Table 12-2) 
are assigned to them. The corresponding bonding and antibonding MO's 
will be formed by combination of AO's of the same symmetry (using 
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Table 12-2 
Group Orbitals in Diborane (II) and Their Symmetry 

Orbital Symmetry Orbital Symmetry 

(J ~) (hi + h2 ) A. 
1 

2(Gi +G2 -G3 -G4 ) B3u 

( J ~) (hi - h2) Biu 
1 
2 (G 1 - G 2 - G 3 + G 4) Biu 

1 
2(Gi + G2 + G3 + ( 4 ) A. 

1 
2(Gi - G2 + G3 - ( 4 ) B2g 

orbitals of symmetry Ag and BI ); the remaining B3u and B2g orbitals 
are non bonding. For characterization of bonds in diborane both bonding 
MO's are of interest: 

Ag: <PI = cl(h l + h2 ) + C2(0'1 + 0'2 + 0'3 + 0'4) 

BIu : <P2 = c3(h l - h2 ) + C4(0'1 - 0'2 - 0'3 + 0'4) 

(12-5) 

(12-6) 

It should be noted that the explanation of the bonding properties 
of boranes is, on the one hand, a problem of considerable importance in 
the theory of the chemical bond, and, on the other hand, it is important for 
interpretation of the physical properties and the reactivity of numerous 
compounds not only of boron, but also of beryllium and aluminium. 

Great attention has been paid in recent years to experimental 
and also theoretical studies of formally conjugated inorganic compounds5 . 

In addition to the already classical borazine (III), numerous cyclic 
compounds containing phosphorus and nitrogen or sulphur and nitrogen, 
often stabilized by fluorine bonded to phosphorus or sulphur, have been 
studied. 

IF 

N P ~ 
f~ 'w N~ '~ N'" ~N 

~~ /' /'~, ~~, N~ /,N 
8 N F N F 

III IV V 

In systems IV and V (examples of very extensive series of 
compounds) - considering possible conjugation - an atom with a Pz orbital 
(N) alternates with an atom with d orbitals (P, S). However, only dxz and 
dyz orbitals have suitable symmetry for overlap with a Pz orbital; 
dxy ' dx2- y2 and do2 orbitals are symmetrical with respect to the xy plane, 
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Fig. 12-2. Symmetry of dxz and dy, ·orbitals from the viewpoint of possible overlap with p, 
orbitals. 

so that their overlap with Pz orbitals is ineffective. Although dyz orbitals 
correspond to Pz orbitals (Fig. 12-2) even in symmetry with respect to 
rotation about the y axis, greater attention has been paid to models 
in which only the dxz orbital is assigned to phosphorus atoms. According 
to Craig5, such a system is called heteromorphous; a system of three Pz(N) 
orbitals and three dyz (P) orbitals, on the other hand, is described as 
homomorphous, because all the atomic orbitals have the same local sym­
metry. It is obvious that in a heteromorphous system (Fig. 12-3) there 
are two subsets of the same symmetry: three Pz orbitals and three dxz 

orbitals. Within the framework of these sets MO's can be formed on the 
basis of symmetry consideration alone. The expression for the orbital 
energies of such a cycle can be given in the closed form (ap = ad = a) 

Ej = a ± 2 sin (~ )p, (12-7) 

where j has the values 0, ± 1, ... ±m/2 or ±(m - 1)/2 for m even or odd 
and m is the number of AO's in the respective subset (here, 3). If the 
Coulomb integrals of the Pz and dxz orbitals differ by ~a, then the 
diagram of orbital energies depicted in Fig. 12-4 corresponds to the 
system represented in Fig. 12-3. Thus the sequence of degenerate and 
non-degenerate levels is the opposite to that in benzene (cf. Fig. 6-6). 
If the Coulomb integrals of the p and d orbitals are identical, the 
highest occupied level would be degenerate and only incompletely oc­
cupied. It is not expedient to develop such considerations further, 
because experimental experience (spectral, geometrical and also thermo­
chemical data) has shown that these systems do not have much in 
common with classical conjugated hydrocarbons. It should, however, 
be added that the theory leads to the result that, in general, for systems 
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in which d orbitals are available on some atoms, on the one hand, 
the Huckel "condition of aromaticity" from the theory of planar 
mono cyclic hydrocarbons (the number of electrons in the conjugation 
equals 4m + 2, where m = 0, 1, 2, ... ) is not valid and, on the other 
hand, even non-planar systems can, in principle, be conjugated. 

Fig. 12·3. Conjugated subsystems 
of the heteromorphous cycle. 

w 

t _·················-1 o -------*~.=~_=_ ... _~ 
+t- -H-

Fig. 12-4. Orbital energies 

of a six-member p-d cycle (lXp '" IXd)' 

Electronic spectra suggest that conjugation participates more signif­
icantly in non-substituted cycles composed of nitrogen and sulphur 
atoms. Several series of such compounds can be predicted theoretically 
and syntheses performed in recent years confirm that such considerations 
are justified. Firstly, cycles with an even number of atoms have been 
found; two subgroups can be distinguished here: that with an even 
number of nitrogen atoms and that with an odd number. Taking into 
account that nitrogen has five valence electrons (odd number), it follows 
that the neutral forms of systems of the second subgroup are radicals. 
Systems with an odd number of atoms have also been shown to exist. 
Experimental and also theoretical evidence tends to demonstrate that 
regularities common for conjugated hydrocarbons cannot be expected 
for these systems. On the contrary, often even formally very similar 
substances have different geometry and properties. In the S4N4 cycle, in 
agreement with X-ray analysis, EHT type calculations support the saddle 
form evident from Fig. 12-5. The system S4N3 was prepared in the 
cationic form and is obviously planar; its electronic spectrum was inter­
preted by means of the n-electron approximation, using the configuration 
interaction method (PPP method). The cation SsN;, which was prepared 
as the chloroaluminate, should also be mentioned. It results from the 
X -ray analysis that this is a nearly planar system, with the first absorption 
band in the region between the UV and visible regions (Fig. 12-6). The 
interpretation of both the physical properties and the reactivity of the 
system using the EHT and PPP theories proved successful. The heart-
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Fig. 12-5. Structure of S4N4' 
The average length of the N - S bond 

is 0.162nm. 

Fig. 12-6. Absorption curve of 

SsNt AICI4" in concentrated H 2S04 

(upper part) and LCI-SCF result of 
calculations performed by 

the standard LCI-SCF method (I) 
and by the method allowing for 

polarization of the a-skeleton (II). 
f denotes the oscillator strength; 

forbidden transitions are indicated by 

arrows. 

... '" 
'E 
u 

I B 
"0 

.: 3 
'-
w .... 

I 

12 

'+-

t 
0c+----~--~~+_--~~ 
2 method I 

50 40 30 20 
_ 1.1O-3(cm-1) 

shaped form of this cation is remarkable and can be seen in the EHT 
molecular diagram (Fig. 12-7). That it is a conjugated system tends to be 
proved by its electronic spectrum, by the fact that it can be qualitatively 
interpreted using the 1t-electron approximation and by the generally 
uniform overlap population between the individual Nand S atoms. 

Another pair of experimentally and theoretically studied systems 
(EHT, PPP, CNDO/2) are cycles VI and VII. To a certain extent these 
systems can also be considered as conjugated. 

VI 

/~" R-B B-R 
\ I 
S-S 

VII 

According to the results of X -ray analysis, the structure which does 
not have the highest possible symmetry exists in some complex compounds. 
Complexes of divalent copper (Cu2 +, d9 complex), for example, are not 
exactly octahedral but are somewhat prolonged in the direction of the 
z-axis. Jahn and Teller interpreted this observation. The unpaired copper 
electron seems to be located in one of the two degenerate Eg orbitals. 
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According to the Jahn-Teller theorem such a situation does not occur in 
real systems and the system can eliminate the degeneracy by a small 
change in the geometry: this is called a Jahn-Teller distortion. This 
distortion is manifested by removal of the degeneracy of incompletely 
occupied orbitals and it is accompanied by a decrease in the total energy 
compared with the original system. The prolongation (shortening) of the 
z-axis results in the dx2 _ y2 (dz2) orbital having the highest energy and it is 
thus only singly occupied. Although this phenomenon does not apply to 
inorganic complexes alone, it plays a very important role in them. 

Similarly, the final example can also be studied by the ligand field 
method; it concerns rhenium, which belongs in the third series of 
transition elements. The dianion Re2Cl~ - is characterized by a very 
short Re - Re bond, only about 0.22 nm, around which no rotation occurs: 
the chlorine atoms are held in an energetically disadvantageous "eclipsed" 
position (Fig. 12-8)6. The figure demonstrates why the Re-Re bond is so 
short: cr, IT and 0 bonds exist simultaneously between the rhenium atoms, 
so that this bond is of very high order. The participation of 0 overlap 
(leading to the 0 bond) requires an "eclipsed" position of the chlorines; 
the energy yield connected with the formation of this bond is obviously 
greater than the energy loss caused by repulsion of the chlorine atoms. 

Tfftfdl+ + 
- I 

I I I 
: I s I I 
I I U I I 

llJ21 
~ 

Fig. 12-8. Formation of cr (b), 1t (c), and I) (d) bonds in the dianion (a). 
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12.3 Organic compounds 

For decades (1930 -1960), bar some exceptions, the calculations of models 
of organic compounds were confined to 1t electron approximation in 
conjugated compounds. The breakthrough into the field of aliphatic 
compounds was made by the introduction of the extended Hiickel theory 
(EHT) by Hoffmann in 1963. The basic features of this method were 
mentioned in Chapter 10. Despite all of its known shortcomings, this 
method can also be applied for the estimation of molecular geometry, 
although the data obtained are usually of only qualitative significance. 

> 
CI.> 

w 

-120 

t -130 

-140 L.......L-'---'--'--'---'--'---.JL.J Fig. 12-9. Dependence of total energy 
o 0.2 0.4 on the bond length I 

_ 1 (nm) (according to Hoffmann 7). 

Fig. 12-9 gives the dependence of the total energy of methane on the 
length of the C - H bond. Use of the EHT method is, of course, not 
confined to aliphatic systems alone. An examples is the investigation 
of the effect of the orientation of the C - H bond in vinyl methylene (VIII). 
The shift of the "methylene" hydrogen is described by the ~ and f3 angles, 
angle ~ being a measure of the deviation of the C - H bond from the 
y-axis (in the arrangement in formula VIII, angle ~ equals 0). 

H : 

'" : C-C-H-·······y 

c-l' 
/ '"< '" x H H 

VIII 

Positive values of ~ correspond to the cis arrangement (or rather to the 
"approach" to this arrangement); angle f3 is a measure of the displacement 
of the C - H bond in the direction of the z-axis (which is vertical to the 
horizontal plane). The result of the EHT calculation is demonstrated in 
Fig. 12-10. 

Extended methods (methods in which all valence electrons are 
considered) allow further physical properties to be estimated in aliphatic 
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Fig. 12-10. EHT-energy contours in vinylmethylene: effect of orientation of the methylene 
bond (according to Ref. 8). 

systems such as, for example, the ionization potential, the rotation barrier 
and the wave number of deformation vibrations. 

Formaldehyde, for example, is a molecule in which both (J' and 11: 
molecular orbitals play an important role, so that description of this 
molecule by the 11:-electron approximation is insufficient, although it is 
rather tempting due to its simplicity. Considered from a wider aspect, the 
situation would not even be improved by considering the electron 
repulsion within the framework of the PPP method. The difficulty lies in 
the fact that description of the formaldehyde molecule using a model 
considering only two electrons (out of 16) is too rough. 

Fig. 12-11. The geometry of formal­
dehyde used in the calculation: x and y 

coordinates (1010 m). 

IY 
I 

(-0.95;0.54) I (0.95;0.54) 

H""-I/H 
---- C ------x 

I~ o (OJ -1.21) 
I 
I 

With a comparatively small molecule such as formaldehyde, the 
application of extended methods is particularly desirable. Fig. 12-11 shows 
the coordinates of the formaldehyde atoms which were used in calculation 
by the EHT, CNDO/2 and "ab initio" methods. The orbital energies 
obtained are plotted in Fig. 12-12. In another figure (Fig. 12-13) are 
given the calculated charges and the dipole moments. There is no doubt 
that the EHT method exaggerates the charge distribution characteristics. 

A great number of examples has convincingly shown that the 
different versions of the MO methods are suitable for interpreting the 
properties of conjugated systems. We should like to quote one example: 
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Fig. 12-12. EHT (a), CNDO/2 (b), and "ab initio" (DZ basis set) (c) orbital energies 
of formaldehyde. 

0.103 o.OOi 0.145 
H /H H H H"" /H o~c o~e/ 0.016 C 
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Fig. 12-13. EHT (a), CNDO/2 (b), and "ab initio" (DZ basis set) (c) charges and dipole 
moment of formaldehyde. The experimental dipole moment is 7.8 x 10- 30 C m. 

on the basis of knowledge of the HMO expansion coefficients of the 
frontier orbitals (HOMO, LFMO) and using first-order perturbation 
calculations, it is possible to draw qualitatively correct conclusions on 
the positions into which a substituent (of a chosen nature) should be 
introduced in order to increase (or decrease) the ionization potential or 
the electron affinity, or to induce a hypsochromic or bathochromic shift* 
of the first (longest wavelength) band in the electronic spectrum (cf. Section 
13.3.1). For rapid orientation it is expedient to indicate the values of the 
expansion coefficients in the individual positions in the structural formulae 
(Fig. 12-14). The calculation is then easily performed using the expressions 
from Table 10-13 and Eq. (12-104) and Table 13-7. In the papers by 
E. Heilbronner and co-workers, it is possible to find a number of cases 
of skillful utilization of the perturbation treatment. 

• Shift to shorter or longer wavelengths, respectively. 
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E (HOMOl = (t + 0.48 f3 E (LFMO) = (t - 0.40!3 

Fig. 12·14. The circles correspond to the squares of the HMO expansion coefficients 
in HOMO and LFMO. Positive (0) and negative (e) coefficients. 

The fact that MO calculations for dozens of systems and correct 
predictions of their stability were made prior to experimental proof is very 
encouraging. Amongst these systems are, for example, the molecules and 
ions designated IX - XIII. In recent years, quantum chemical methods 
have also begun to be used for structure elucidation in organic compounds. 

@) 
S 

@J 
s-s 

IX X XI XII XIII 

The theoretical explanation of the conditions in numerous non­
classical systems has often considerably influenced further experimental 
studies. This was true, for example, with paracyclophanes (XIV). Between 
the two benzene rings transannular interaction exists, which, on the whole, 
has no influence on the bonding conditions, but significantly affects the 
electronic spectrum. Mainly systems in which m = n were studied theoret­
ically; the influence of the CH2 bridges is especially pronounced when 
m = n = 2. The splitting of the original benzene energy levels is illustrated 
in Fig. 12-15. 

XIV XV 

The last example is ferrocene, which is one of the longest known 
representatives of a very extensive group of organometallic compounds. 
Metals have been found to act as donors or acceptors of electrons in 
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various organometallic compounds (Fig. 12-16). Using symmetry con­
siderations it is possible to directly construct a qualitative scheme of the 
orbital energy levels. Still, it must be borne in mind that the 1t molecular 
orbitals of cyclopentadienyl correspond to the symmetry species A l' E 1 
and E2 and the AO's of iron to A1i4s, 3dz2)' A2u(4pz)' E1Pdxz ' 3dyz )' 

E1u(4px' 4p) and E2PdXY ' 3dX2 _ Y2 ); of course, only orbitals of equal 
symmetry may be combined. 

w 

B 
B'" .. ~. B ~ •... -....u2d 

"::'" B1u ••• >~ 
"--ra:-" 

E2u .• ,.-.--....... . E2u 
--' ....... ~ ....... >--

Etn ••••..• ~ '. Efg 
~:" Efu .'--

"'Tu"" 
A2u ........ --....... Azu 

--'-....... ~ ....... >--

0) b) c) 

Fig. 12-15. Hartree-Fock orbital energies of 

benzene (a, c) and (n, n) paracyclophane (b). 
The levels are designated by the symbols of 
irreducible representations of the D6h group 

(according to Ref. 9). 

8 
... - C--C-········-C--C-········ 1 }{+ 

metal as +. metal as ~ ~ 
acceptor donor ~ 

+ of, -

Fig. 12-16. Interaction of the d orbitals of a 

transition metal M with bonding and 
anti bonding molecular orbitals 

(the occupied orbital is hatched). 

Although calculations performed by various methods led to some­
what contradictory results for the electron distribution, all of them 
explain the kinetic and thermodynamic stability of ferrocene quite well. 
The situation is similar for numerous organometallic compounds. 

12.4 Examples of systems studied 
in biochemistry 

It is surprising how often one encounters conjugated systems when 
investigating compounds which are interesting or even occupy key 
positions in biochemistry more closely. This is all the more remarkable 
since the chief components of living organisms, proteins, sugars and fats, 
are unconjugated systems. 

The conjugated components of nucleic acids (pyrimidines and purines), 
various coenzymes, porphyrines and bile pigments, pteridines and proteins 
belong among the most frequently studied components of living matter. 
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phosphate / " phosphate " /' carbohydrate - A ---- T - carbohydrate 
phosphate ( " phosphate 

carbohydrate - T ---- A - carbohydrate /' 
phosphate ( "phosphate 

carbohydrate - G ---- C - carbohydrate / 

/' " phosphate" / phosphate 
/ carbohydrate- C ---- G- carbohydrate" 

1. 2. 

Fig. 12-17. Designation: A -adenine, T -thymine, G -guanine, C -cytosine. The 1st and 2nd 
phosphate-sugar chains are denoted by numbers (cf. Fig. 12-18). 

From the classical point of view, proteins are, of course, unconjugated 
systems. If, however, we consider the possibility of hydrogen bond 
formation, the system hecomes in a certain sense conjugated. 

Two examples can be given for the sake of illustration. The first 
concerns calculation of the electronic structure of pairs of nucleic acid 
hases. Fig. 12-17 presents a scheme of the catenation of components of 
deoxyribonucleic acid (DNA): phosphate, sugar and bases (pyrimidines 
and purines). The Watson-Crick model of DNA (Fig. 12-18) shows the 
correct spatial arrangement (Fig. 12-18). The adenine-thymine and guanine­
cytosine pairs are the most important; it is evident from their molecular 
diagrams (Fig. 12-19) and from the molecular diagrams of the free com­
ponents that the interaction mediated by the hydrogen bonds is weak. 
This is true of the energy characteristics as well as of the electron 
distribution. In semiempirical calculations the presence of the hydrogen 
bond can be described in several ways: merely by considering mutual 

Fig. 12-18. The Watson-Crick DNA 1st and 2nd phosph\lte-
model. -carbohydrate chOin 
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polarizations (without intermolecular electron transfer), by a suitable 
change in the values of the Coulomb integrals of the atoms lying in the 
vicinity of a particular atom, by attributing small values (about 0.2/3) 
of the resonance integral of the hydrogen bond or, finally, by considering 
the hydrogen atom of a hydrogen bond explicitly in terms of its 2pz 
orbital (cxH = cx - 1.8/3); the same value as previously (0.2/3) is assigned 
to the H - X (and H ... X) bonds. It is rather interesting to note that the 
differences between the SCF and HMO molecular diagrams are not 
significant. 

O.B79 H3 
I 

1.072 C 

1.032 .692 0 ..................... 0.121 N.04B 1.4B7 

).j .......... 1.73B 
NH 

HN N 
1.759 ~.70z;........ H 0.715 

0.746 0.114 ................ 
.... N 

o 1.470l 1.487 

0.590 

N 
1.172 ~1.709 1.463 

08B4~ ............... H , I I 0.102 ......... '6501 

1.5~~T.5B7 1.~72 ........ H 0.707 
0.1OB ............... N 

o · J:1.644 

1.511 ................ H 

0.102~·~0 0.B1 N 
H 1.4B1 

1.343 
N 

f.230 
N 

>875 

>~ 
NH 

f.6f9 

Fig. 12·19. SCF·electron densities of pairs of bases ll . 

Hydrogen honds play an important role in protein molecules. As 
early as in the forties Szent-Gyorgyi explained their semiconductivity 
qualitatively using a model which Evans and Gergely processed semi­
quantitatively. It is assumed that the individual macromolecules are 
connected by hydrogen bonds in the peptide linkage region (Fig. 12-20) . 

. For years attempts have been made to utilize quantum chemical 
characteristics in molecular pharmacology and toxicology. The attempts 
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Fig. 12-20. Model of protein molecules. 

of B. and A. Pullman to correlate the carcinogenic activities of benzenoid 
hydrocarbons with indices of the K and L spheres (9 -10 bond in 
phenanthrene and the atom pair 9, 10 in anthracene) are amongst the 
oldest endeavours in this field . Theoretical characteristics have also been 
utilized for estimation of the carcinogenic activity of compounds of other 
structural types. The MO method has also been used for interpretation 
of the course of metabolism in vivo and in vitro. In recent years, the 
number of attempts to utilize theoretical characteristics in the search of 
biologically effective substances has been steadily increasing. 

The number of studies published in the field of quantum bio­
chemistry is increasing very rapidly. Great attention is being paid, e.g., 
to the conformation of biologically active substances and to the effects 
of the medium on the conformation. A large number of important works 
have been published in the Collections of Jerusalem Symposiums12 . 

REFERENCES 

I. Coulson C. A.: Valence. Clarendon Press, Oxford 1952. 

2. Kittel c. : Introduction to Solid State Physics. Wiley, New York 1956. 
3. Hoffmann R., Lipscomb W. N.: J. Chern. Phys. 37, 2872 (1962). 
4. Longuet-Higgins H. c. : Quart. Rev. 11, 121 (1957). 
5. Craig D. P.: Th eoretical Organic Chemistry. Butterworths, London 1959, p. 20. 

6. Pettit L. D.: Quart. Rev. 25, 1(1971}. 

7. Hoffmann R. : J. Chern . Phys. 39,1397 (1963). 
8. Hoffmann R. , Zeiss G. D ., Van Dine G. W.: J. Am. Chern. Soc. 90, 1485 (1968). 

9. Kou tecky J., Paldus J.: Collect . Czech . Chern . Commun. 27, 599 (1962). 
10. Pullman B. , Pullman A. : Quantum Biochemistry. Interscience, New York 1963. 
II. Pullman B., Weissbluth M. (ed.): Molecular Biophysics. Academic Press. New York 

1965. 
12. Pullman B. (ed.) : Environmental Effects on Molecular Structure and Properties. D. Reidel, 

Dordrecht 1976. (8-th volume of Jerusalem Symposia on Quantum Chemistry and Bio­
chemistry; cf. also other volumes.) 



13. MOLECULAR SPECTROSCOPY 

13.1 Phenomenological description 

13.1.1 In trod uctory commen ts 

In this chapter, the processes in which electromagnetic radiation plays 
a key role in addition to that played by the studied molecules will be 
discussed. We shall chiefly be interested in processes during which no 
structural changes occur in the molecule. Two types of processes will be 
considered: 

a) the molecules accept energy either from the electric or from the 
magnetic component of the radiation; these are absorption processes, 

b) molecules which are in an excited state (i.e., any state with energy 
higher than that of the ground state) return to the ground state with 
release of energy in the form of electromagnetic radiation; these are 
emission processes. 

Fig. 13-1. Absorption and emission 
processes, G and E denote ground 
and excited states. '1' and E denote 
the wave functions and energies of 

these states. 

These processes are schematically illustrated in Fig. 13-1. In order 
that the molecule be capable of absorbing energy in the form of radiation, 
it must possess at least one further state with higher energy, an excited 
state, in addition to the ground state. This is usually some sort of 
rotational, vibrational or electronic state, which is "inherent" to the 
molecule and is attainable under normal conditions. However, there also 
exist certain degenerate states which are incompletely occupied and un­
interesting from the point of view of absorption spectroscopy. It appears 
that this degeneracy can be removed by placing the studied molecule in 
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a sufficiently strong external electric or magnetic field. In such cases, 
which are of decisive importance in nuclear magnetic and electron spin 
resonance, the given basic condition concerning the existence of several 
states with different energy is fulfilled in the presence of the external field. 

13.1.2 U ni ts and the spectral regions 

In order that the system pass from the ground state G (described by-.!he 
wave function '1' a) to the excited state E (described by the wave function 
'1' E)' it must accept an amount of energy flE: 

(13-1) 

As long as radiation is considered to be of a corpuscular nature, the 
energy expression for the distance between the levels (G and E in 
Fig. 13-1) is appropriate; however, we are often obliged to characterize 
radiation as a propagated wave and it is then necessary to find a relation 
which would fit both the corpuscular and the wave characteristics; this 
is the common relationship 

E = hv, (13-2) 

where E is the energy, v is the frequency and h is Planck's constant. 

Fig. 13-2. Graphical representation 
of Eq. (13-3). 

y 

t 

It is sometimes expedient to characterize the propagation of a wave by 
its wavelength; it should simultaneously be borne in mind that the electric 
and magnetic components of electromagnetic radiation can be described 
similarly to other periodic processes by the equation (Fig. 13-2) 

. 21t 
y = A sm--t, 

r 
(13-3) 

where A denotes the amplitude, r is the time corresponding to one 
oscillation and t is time. According to the electromagnetic theory of light, 
the propagation of a light ray (in the direction of the t-axis in Fig. 13-3) 
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electric wave plane 

magnetic wove plane 

Fig. 13-3. Wave of plane polarized light. A denotes the wavelength. 

is connected with both the electric and the magnetic waves, where both 
are propagated in the same phase. The vectors of the electric (E) and 
magnetic (H) fields lie in mutually perpendicular planes; these vectors 
are simultaneously also perpendicular to the ray representing the direction 
of light propagation (cf. Fig. 13-3). We can now return to the original 
problem: for velocity v it holds by definition that v = I/t, where I denotes 
the path length and t time. The velocity of a periodical event can be 
expressed in terms of the frequency v and the wavelength A.. Here v 
denotes the velocity of electromagnetic radiation in a vacuum (e ~ 
~ 3 . 105 km/s): 

e = A.V 

Equation (13-2) can then be rewritten in the form 

he 
E = hv =;:-

(13-4) 

(13-5) 

In place of the wavelength A., its reciprocal value - the wave number 
(dimension length -1) - is often employed. If the molecule accepts a photon 
of frequency v, its energy increases by hv. On emission of a photon from 
the excited molecule, its energy decreases by the same value. The energy 
of one mole of photons (i.e. 6.023 x 1023 photons) is called an einstein. 

The kinetic energy, which is gained by an electron exposed to 
a potential of 1 V, is termed one electron volt (eV). If one mole of these 
elementary particles has this amount of energy, it corresponds to an 
energy of 96.49 kJ/mole. 

It is one of the chief tasks of spectroscopy to determine experi­
mentally and also theoretically the energy differences between the levels 

. corresponding to the ground and the excited states. It follows from the 
above discussion that these differences can be expressed in the usual 
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Table 13-1 

Wave number Wavelength 

cm - 1 

cm- 1 

nm(== 1O- 9 m) 

}lm (== 10- 6 m) 

energy units (joules, electron volts) or in the units of quantities that are 
proportional to the energy, i.e. in frequency units (Hz) or wave numbers 
(cm -1), possibly in units of reciprocal wave numbers, i.e. in wavelength 
units (nm). Physicists prefer energy units, physical chemists often work 
with wave numbers and chemists employ wavelengths. Here the energy or 
quantities directly proportional to it will be employed, as one of our aims 
is the confrontation of theoretical and experimental data, where energies 
are obtained by solving the Schrodinger equation for the ground and 
excited states. In different wavelength regions of electromagnetic radia­
tion, different quantities and different units are used for its characteriza­
tion. Table 13-1 is only orientative. 

O.3Ml1z 30MHz 36Hz 3DDGHz 

1000m 100m 10m 1m lDem 1cm 1mm 100~ 1Op.m lp.m l00nm IOnm lnm 

105 i} 103 102 101 lff 101 lit 103 10"" 105 106 107 106 1d'cni1 

IJ,!,lacirupole rotational vibrational electronic Miissbau 
spectra spectra spectra spectra spectra 

er 

ays 
microwave IR ran~ e QI UY range 

radio waves range far E vacuum x- rays or near g (radar ~a " E " waves) " E 'in Q) I:X 3-"> c: 

spectroscopy in magnetic field 

~~ 

spectroscopy in electric field 

~ 

Fig. 13-4. Survey of spectral regions. 
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Table 13-2 
Table of Equivalent Values of Energy, Wavenumber and Frequency 

eV cm- 1 kJ/mol MHz 

1 eV 8065.5 96.487 2.4180 x 108 

1 cm- 1 1.2399 x 10-4 1.1963 X 10- 2 2.9979 X 104 

1 kJ/mol 1.0364 x 10- 2 83.591 2.5060 x 106 

1 MHz 4.1357 x 10- 9 3.3356 x 10- 5 3.9904 X 10- 7 

It is necessary, of course, that equivalent quantities he quickly and 
reliably convertible; Table 13-2* serves this purpose. It would be un­
necessary to learn the values of these conversion factors by heart, but it is 
very useful to have such a table available; the same applies to the survey 
of spectral regions given in Fig. 13-4. 

13.1.3 Absorption and emission spectra, 
the population of excited states 

For the absorption of radiation by a molecule passing from state '1' G 

to state '1' E (Fig. 13-1), radiation of frequency v which fulfils the condition 

(13-6) 

must be employed. It might seem that the corresponding spectrum would 
consist of a single absorption line or of a number of lines, provided the 
system has a number of attainable excited states ('1' El> '1' E2' etc.). In 
reality, the absorption spectra of molecules are, for various reasons, 
composed of absorption bands and not of absorption lines. With mole­
cules, every electronic state corresponds to a number of vibrational states 
and each vibrational state again corresponds to a number of rotational 
states (Fig. 13-5). Thus, the bands corresponding to electronic excitations 
possess vibrational structure, the vibrational bands have rotational struc­
ture and the rotational bands quadrupole structure. According to relation­
ship (13-6) the frequency of the radiation is clearly determined, correspond­
ing to the energy emitted by the molecule in passing from state E to 
state G, provided the deactivation process is accompanied by emission. 
The excited state can also lose energy in another way; in the spectroscopy 
of solutions, collisions of excited molecules with molecules of the solvent 
are among the most important possibilities. Non-radiative deactivation 
then occurs. 

* In infrared spectroscopy a quantity with the dimension ofreciprocal length (i.e. the 

wave number) is sometimes called the frequency. 



Fig. 13-5. Vibrational and rotational 

states corresponding to the Eo and E 1 

electronic states. The three indicated 
transitions explain the vibrational 
structure of the band. v and J are 
vibrational and rotational quantum 

numbers, respectively. 
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Fulfillment of the condition represented by Eq. (13-6) is, in itself, 
not sufficient for inducing absorption. First, the value of the quantity 
called the transition moment (see below) must be investigated. Only when 
this transition moment is non-vanishing will an absorption band exist in 
the spectrum. The transition moment is a quantity which characterizes 
a change in the electronic distribution (and thus a change in the dipole 
moment) during electronic excitation. It must be borne in mind that the 
electric dipole moment of the molecule in the state described by wave 
function 'l' G is given by the expression [cf. Eq. (11-57)] 

(13-7) 

where e is the proton charge and p is the operator corresponding 
to the dipole moment of unit charge (which is the sum of the position 
vectors of the individual electrons, i.e. p = Ir.). For the electric dipole 
moment of the excited state, the relationship 

(13-8) 

similarly applies. Finally, the case in question (transition moment QG-+E) 
is described by the expression 

(13-9) 
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In summary: only when integral (13-9) is non-vanishing can the studied 
molecule accept energy from the electromagnetic radiation which is 
incident upon it. The greater the value of integral (13-9), the more 
effectively the studied molecule absorbs energy. In the majority of cases 
discussed here, interaction of the molecule with the electric component 
of the electromagnetic radiation occurs. In other words, the interaction 
considered here can be characterized as interaction between the radiation 
and the oscillating electric dipole. There exist cases when the studied 
moment contains two such dipoles (a quadrupole) orientated so that their 
dipole moments are cancelled; nonetheless this pair causes an electrostatic 
field. Interaction of this field with radiation impinging upon the molecule 
occurs and is manifested by quadrupole absorption or emission. Inter­
actions between the oscillating magnetic dipole and the impinging radiation 
also occur (magnetic dipole transition); both the above-mentioned types 
of transitions are less intense by several orders than electric dipole 
transitions and thus are encountered only rarely. 

elM) 

Jo . -=-_._- -_ . ---=-- J 

_ ._ .. -

Fig. 13-6. Passage of electromagnetic 
radiation through a homogeneous 
solution of concentration c placed in 

a cuvette of length 1. 

It is now necessary to clarify more precisely the manner in which 
the value of the transition moment is connected with the magnitude 
of the absorption band. This can be most simply done by directly 
utilizing the Lambert-Beer law, according to which (Fig. 13-6) the 
relationship 

(13-10) 

is valid, where J 0 is the intensity of the impinging radiation and J is the 
intensity of radiation emerging from the cuvette, c is the molarity of 
the investigated solution, I is the optical path length in cm, A is the 
absorptivity (optical density) and s is the molar absorption coefficient 
(formerly called the molar extinction coefficient). According to Eq. (13-10), 
A (whose value can often be read directly on the spectrophotometer) is 
directly proportional to the molarity of the studied substance and the 
optical path length. Although the Lambert - Beer law is very often 
fulfilled, this cannot be automatically assumed (especially in more 
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a) b) 

Fig. 13-7. Shapes of absorption bands in £ and v coordinates. 

concentrated solutions). In Fig. 13-7a the shape of the absorption band 
is given in e - v coordinates. The value of the molar absorption coefficient 
at the absorption maximum (emax) is frequently applied to characterize 
the absorptivity. The fact that this characteristic is not a very good 
measure of the band intensity is demonstrated in Fig. 13-7b, where 
three absorption bands with different shapes correspond to a maximum 
with the same emax value. Thus, a more correct measure of the transition 
intensity is the area enclosed by the absorption curve and the wave 
number axis; in Fig. 13-7a this area is shaded in. In fact, the classical 
theory of absorption affords an expression for the oscillator strength, f, 
in which the above-mentioned area is multiplied by a constant: 

f = 2.303 4~m~2 S e dv 
Ae v, 

(13-11) 

so that, after inserting the values of numerical constants, we obtain 

V2 

f = 4.319 X 10- 9 J edv, 
v, 

where the molar absorptivity e is expressed in I mol-1cm -1 and v in cm -1. 

In Eq. (13-11) eo denotes the permitivity of a vacuum, m is the electron 
mass, c is the velocity of light, N A is the Avogadro constant, e is the 
proton charge and the factor 2.303 transforms natural to decadic 
logarithms. With symmetrical absorption bands, according to the mean 
value theorem, the integral in the expression for f (13-11) can be 
replaced by the product containing the band half width ~ v (in cm -1), 
i.e. the width of the band at e = ema.l2 (cf. Fig. 13-7a): 

(13-12) 

The oscillator strength can also be calculated quantum mechanically 
and it then follows that it is proportional to the square of the transition 
moment. For transition from the ground state to the excited state it 
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holds that 

I' _ 81t2mc - IQ 12 -1085 10-3- IQG-+EI2 JG-+E - 3h 2 VG-+E G-+E -. X VG-+E 2 e . e (13-13) 

In this expression, VG-+E is the wave number of the absorption band 
maximum (cm -1) and the ratio 1 QG-+E/e 1 is expressed in nm. 

It is interesting that, even when using a very strong radiation 
source, the molecules cannot be quantitatively transferred from the ground 
state to the excited state. This is surprising since the transition from 
state G to state E appears to be an induced process (induced by 
radiation, which is absorbed by matter), whereas emission (transition E -+ G) 
seems to be a simple spontaneous process. However, emission is also 
a process induced by radiation. Strictly speaking, spontaneous excitation 
(G -+ E) should also be considered, but for the majority of the spectral 
transitions discussed here, the probability of this process is negligible. 

E ----r-----------r----------.--N£ 

G ----L-----------L---------~--NG 
,indo spont. 

.. . number 
emission of molecules absorption stote 

Fig. 13-8. Induced absorption and induced and spontaneous emission. 

The probability of the occurrence of a spontaneous or induced 
transition is proportional to the number of molecules in the state from 
which the transition starts (N G' N E) and also to the Einstein probability 
coefficient (A in spontaneous and B in induced phenomena); with induced 
processes, it is also proportional to the radiation density Q(v). The 
corresponding expressions are given in Fig. 13-8. At equilibrium the 
probability of excitation and emission is equal and therefore the relationship 

(13-14) 

is valid. Using the Boltzmann distribution law, the population of 
molecules Ni in the individual states i can be calculated. The equation 

(13-15) 

is then valid, where gi denotes the degeneracy of the i-th state (gi = 1 
if the state is non-degenerate), Ei is its energy, k is the Boltzmann 
constant and T is the absolute temperature. 



13.2 Excitation within a single electronic 
level 

13.2.1 Introductory comments on radiofrequency 
spectroscopy 
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The intrinsic angular momentum (spin), the magnetic moment and the 
distribution of the charge in atomic nuclei are of principal importance 
for all types of spectroscopy in the radiofrequency region. 

The intrinsic angular momentum is expressed in units of h/2rc, usually 
by means of the maximum value of its component in a certain direction - in 
the direction along some specified axis given, for instance, by an external 
field. In the expression Ih/2rc (== Iii), I denotes the nuclear spin quantum 
number. For about 140 of the 280 stable isotopes, its value is zero 
for the others it lies between ~ and t, assuming only half-integral or 
integral values. 

Similar to electron rotation, the rotation of the nucleus (rotation 
of a charged particle) is also connected with its magnetic moment, for 
the magnitude of which the relationship 

ylh 
Jl. = 2rc (13-16) 

holds, where }' is the gyromagnetic ratio; J1 is usually expressed in 
multiples of the nuclear magneton, f3N : 

f3 eh -27A 2 
N = -4-- = 5.050 x 10 m , 

rcmp 

where e is the proton charge and mp is the proton mass. 

0""·"" . ,,:, 

;. r • ~ 

0) b) c) 

f01\"'Jt:. \uW_ .. 
d) 

Fig, 13-9, Charge distribution in a nucleus with ellipsoidal symmetry. 

(13-17) 

The distribution of the charge is spherically symmetrical only in 
nuclei with zero spin or with spin equal to tli. Otherwise, the charge 
is generally distributed so that in some regions there is an excess of positive 
and in others of negative charge. The situation in nuclei in which the 
distribution of the charge is not spherically symmetrical is demonstrated 
in Fig. 13-9. The density of the dots indicates (Fig. 13-9a) non uniformity 
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of the charge distribution. This situation can be imagined as superposition 
of a uniform distribution of positive charges (Fig. 13-9b) and of a distribution 
in which an excess of positive charge lies at the poles and of negative 
charge in the region of the equator (Fig. 13-9<.;}. The centroids of the positive 
and negative charges are depicted in Fig. 13-9d. It can be seen that the 
system consists of two antiparallel dipoles, which form a quadrupole. 
Electric quadrupole moment eQ expresses the deviation of the real charge 
distribution from spherical symmetry: 

eQ = 41ebe, (13-18) 

where e is the dipole length, b is the absolute value of the charge and I 
is the distance between the centres of dipoles. In Eq. (13-18) it is 
assumed that the positive charge is concentrated around the poles; 
otherwise the quadrupole moment has a negative sign. 

In Table 13-3 the magnetic characteristics of some chemically 
important atomic nuclei are given. It is apparent that two of the 
most important nuclei, e12 and 0 16, possess zero magnetic moment 
and are, consequently, inactive as far as nuclear resonance is concerned. 
The H1, e13, F19 and p31 isotopes, with vanishing quadrupole moments, 

Table 13-3 

Characteristics of Atomic Nuclei 

Isotope Magnetic moment' Spin number 
Q. 1028 b 

----;nr-

HI 2.79268 I 0 2" 
H2 0.85738 1 2.77 x 10- 3 

C I2 0 0 0 

c13 0.70220 I 0 2" 
N I4 0.40358 1 7.1 x 10- 2 

N I5 -0.28304 I 0 2" 
0 16 0 0 0 

0 17 -1.8930 5 -4 x 10- 3 
2" 

FI9 2.6273 I 0 2" 
p31 1.1305 I 0 2" 
S33 0.64274 3 -5.3 x 10- 2 

2" 
Cl35 0.82091 3 -7.9 x 10- 2 

2" 
Br79 2.0991 3 0.34 2" 
Br81 2.2626 3 0.28 2" 
1127 2.7937 5 -0.75 2" 

a In multiples of nuclear magneton, Eq. (13-17). 

b The value Q characterizes the quadrupole moment, as this moment can be expressed 
as the product Qe (e denoting the proton charge). 
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belong among the most important active nuclei for nuclear magnetic 
resonance; they are characterized by especially sharp signals. For nuclear 
quadrupole resonance, the most important are the naturally occurring 
isotopes C13s, Br79, Br81 and 1127, which have large quadrupole moments. 

13.2.2 Nuclear quadrupole resonance (NQR) 

The ellipsoidal distribution of the charge of some nuclei can alternatively 
be described by means of a monopole and a negative or positive 
quadrupole. With an prolate (a) and oblate (b) ellipsoid, a possible 
resolution is indicated in Fig. 13-10. The quadrupole moment is a measure 
of the ellipsoidal deformation of the nucleus. The energy of a quadrupole 
situated in an asymmetrical electric field depends on its orientation. 

a) 8 C±) + ~ 
Fig. 13-10. Alternative description b)G) C±) ~ of conditions in a nucleus with + 

ellipsoidal charge distribution. 

Particularly important is the orientation of the nuclear quadrupole in 
the electric field of the electron in the p-type atomic orbital. The two 
extreme orientations are demonstrated in Fig. 13-11. If the studied 
nucleus has a spin of Ih, it follows that the nucleus can assume an 
orientation in relation to the p orbital only such that the quantum 
number of the spin component in the chosen direction acquires the value 
M, where M = I, 1 - 1, ... -(1 - 1), -I. Thus, a system consisting 
of a p elt.:ctron and a nuclear quadrupole exists only in (21 - 1) states of 
different energy. The chosen direction is represented by the direction 

Fig. 13-11. Two important 
orientations of p orbitals and of the 

nuclear quadrupole. 

p-orbital 
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ofthe asymmetrical electric field. For this reason, the number of orientations 
of the quadrupole in the electric field is limited; the individual "con­
figurations" differ in energy. A transition between them is connected 
with absorption or emission of energy: these are the basic facts necessary 
for understanding the origin of NQR spectra. The interaction of the 
quadrupole with the other types of orbitals (s, d, f) is not significant, 
either due to their unsuitable symmetry or due to their diffuse character. 

p-Type orbitals become ineffective as soon as they are completely 
occupied by electrons (altogether 6 electrons in npx' npy and npz orbitals) 
as such a formation is then spherically symmetrical. Therefore the Br atom, 
for example, is active in NQR spectra, whereas the Br- ion is ineffective. 
If it is considered that p orbitals in conjugated compounds are incompletely 
occupied, it seems the NQR offers unique possibilities, as far as the 
experimental determination of the electron distribution in various com­
pounds, especially in conjugated compounds, is concerned. For a number 
of reasons, the situation is, unfortunately, far less favourable. In the 
first place, there is only a small number of suitable (active) atoms. Most 
of the studies carried out so far concerned compounds containing CI 
and Br atoms and recently also N atoms. Furthermore, the signal connected 
with the transitions between the individual levels is so weak that 
work with solid samples is necessary, so that specific problems of work 
with a solid phase are added to the already quite complicated task. 

13.2.3 The elementary theory of magnetic resonance 

The nuclear angular momentum (spin, I) possesses similar properties as 
the electronic spin (5) except that the nuclear magnetic moment is usually 
parallel with the spin vector. With electrons, the opposite is true. 
To nuclei with a spin quantum number 1- correspond two eigenfunctions, 
IJ. and p, which possess the following properties: 

(13-19a, b) 

(13-20a, b) 

Here, J2 is the operator of the square of the nuclear spin momentum 
and Jz is the operator of the z-component of this momentum. Quite 
similarly as with electrons [cf. Eq. (13-41)], the operator of the magnetic 
moment of nuclei is given by the relationship 

(13-21) 
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where gN is the nuclear gyromagnetic ratio and PN is the nuclear magneton 
(5.050 x 10- 27 A m2). 

By placing a particle with a spin ih in the magnetic field, the 
degeneracy of the ex and P states is removed. The form of the Hamiltonian 
for the interaction of a magnetic dipole of magnitude Ji with a static 
magnetic field of induction B then becomes important. The classical 
expression for the energy corresponding to this interaction assumes the 
form 

E = -JiB (13-22) 

The direction of vector 8 is given by the direction of the z-axis, thus 
allowing us to treat this quantity as a scalar quantity; for enumeration 
of the scalar product, the projections of vectors S and I in the direction 
of vector 8 are then necessary. Operators Y z and $z can be used to 
construct the "magnetic" Hamiltonian for the electron, 3f e' and for the 
nucleus, 3f N: 

3fe = gPeBYz 

3fN = -gNPNB$z, 

(13-23) 

(13-24) 

where Pe and g are constants defined in Eq. (13-41). The form of the 
Hamiltonian is now known and the energy corresponding to the interaction 
of an electron and the nucleus with the magnetic field can then be 
calculated: 

(13-25) 

(13-26) 

For electrons and nuclei (with spin quantum number i) it can then be 

written that 

(13-27) 

(13-28) 

The upper signs apply to electrons (gi = g, Pi = Pe), the lower signs 
to nuclei (gi = gN' Pi = PN)· The energy difference of the ex and P 
states is proportional to the induction of the magnetic field. It is 
evident (cf. Fig. 13-12) that the energy which must be supplied to the 
electron (nucleus) during transition from the ground state to an excited 
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electrons nuclei 

a) b) 

} 
Ea Ea 

E-- --t/3 (I. 

Ea Ell: 

8=0 B = Bo 

Fig. 13-12. Degenerate levels corresponding to spin functions (a). Removal of degeneracy 
due to external magnetic field (b). 

state is given by the relationship 

(13-29) 

Equation (13-29) represents the condition which must be fulfilled for 
resonance to occur. The theoretical basis of both magnetic resonance 
methods, electron spin resonance (ESR) and nuclear magnetic resonance 
(NMR), is the same. 

13.2.4 Nuclear magnetic resonance (NMR) 

Only atoms having nuclei with spin quantum number -t will be discussed. 
These are mainly the HI, C13 and F19 isotopes; however, only proton 
magnetic resonance (PMR) will be treated in greater detail. The vector 
of the magnetic moment of a rotating nucleus can be orientated in an 
external magnetic field in two ways: either parallel or antiparallel to the 
vector of the induction of the magnetic field. The first possibility cor­
responds to a state with lower energy, the second to a state with higher 
energy. The energy difference between these two levels results from 
the resonance conditions (Fig. 13-13): 

Fig. 13-13. NMR resonance 
condition: Eq. (13-30). 

(13-30) 

The difference is so small (~E ~ kn that further discussion can be 
carried out within the framework of classical mechanics. In the classical 
description the expected precession motion of the studied system is 
characterized by the angular frequency (j) (Larmor precession frequency), 
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which is simply related to frequency v [Eq. (13-30)J, and the induction 
of the magnetic field: 

Q) = 21tv = yB (13-31) 

Combining Eqs. (13-30) and (13-31) leads to the relationship 

y = gNi3N 
h 

(13-32) 

Furthermore, it is evident that the magnitude of the energy gap (cf. 
Fig. 13-13) can be expressed by the equation 

(13-33) 

The actual magnetic field operating in the neighbourhood of the 
nucleus is, of course, given by the vector sum of the external and 
internal magnetic fields. The magnitude of the internal field depends, 
on one hand, on the diamagnetic electron shielding (leading to chemical 
shifts) and, on the other hand, on the influence of the magnetic 
moments of the neighbouring nuclei (via spin - spin coupling). The 
reason for the appearance of chemical shifts is indicated schematically 
in Fig. 13-14. 

Fig. 13-14. Qualitative indication of 
the origin of chemical shift. 

In (a) and (b), conditions 
hVl = (h/21t) Bl and hv = (h/21t) B2 , 

respectively, are satisfied. 

ttl ~ 
7 ~ 

~----------~~----B 
Bl 

a) bare nucteus 
B2 

b) nucleus screened 
by etectrons 

The chemical shift. The internal field caused by the electronic motion 
is orientated in the opposite direction to the external field (Bo) and is 
proportional to this field. Thus the following relationship holds for the 
magnitude of the magnetic field at the nucleus Bn' 

(13-34) 

where an is the shielding constant of the nucleus. For the transition 
frequency, the relationship 

(13-35) 

is valid, where y = y/21t. Since v and Bo cannot be determined inde­
pendently with sufficient accuracy, absolute vales of Un cannot be obtained. 
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Therefore, only relative measurements can be carried out and for this 
purpose the chemical shift, t5n , is defined as follows: 

t5 = Bm - Br lO6 
n B x , 

r 

(13-36) 

where Bm (B r ) is the induction of the magnetic field corresponding to 
the peak of the measured (reference) proton (Fig. 13-15). The differences in 
the inductions of magnetic fields Bm and Br are very small (with an order 
of magnitude of lO-6) and therefore the definition of c)ll includes the 
factor 106 (t5n then has values of the order of lOe). 

~' I I 
I I 
I I 

Bm Br .. B 

Fig. 13-15. NMR peak corresponding to the studied (m) and reference (r) protons. B denotes 
the induction of the magnetic field. 

The induction of the magnetic field is expressed in tesla units 
or is recalculated into frequency in Hz by the relationship v = yB. (The 
numerical value of this frequency, of course, bears no relation to the 
frequency to which the sample is exposed during the entire measurement.) 
Tetramethylsilane is nearly always used as a reference substance; by con­
vention, zero chemical shift is attributed to it. If the proton signal in the 
studied substance has lower B values, then t5 is positive and thus the 
proton in this substance is more shielded than in (CH3)4Si. On this 
scale. most protons lie at lower values of induction B. With an alternate 
formerly used scale a value of lO.OOO was conventionally attributed to 
protons in (CH3)4Si and the chemical shift was given in units of 
a dimensionless quantity r, defined as follows: 

r = 10.000 - t5 (13-37) 

Figure 13-16 gives the chemical shifts of protons of a number of solvents. 

10 8 6 
I I 
024 

H2104 I C~H6 
(d -1.857) CHel) 

6 8 10 "" 't' 

I dio!ane cJIO- I 
H20 hexane Si(CH3)" 

Fig. 13-16. Comparison of the 0 scale and the f scale; peak positions for several solvents 
are given. 
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Fig. 13-17. Scheme of the experimental arrangement for NMR measurements; magnet poles 
(N, S), sample (V), ammeter (A), high-frequency generator (G) emitting radiation offrequency v. 

Experimental arrangement. The resonance condition can be fulfilled 

either by exposing the specimen to a magnetic field of a given intensity and 
changing the radiation frequency or by irradiating the specimen at 
a constant frequency and changing the induction of the magnetic field 
until the resonance condition is fulfilled. The fulfillment of this condition 
is connected with significant absorption of energy from the high-frequency 
field and is manifested by an increasing current in the measuring instru­
ment, A (Fig. 13-17). It should be noted that the specimen inside the 
induction coil is exposed to an alternating high-frequency field of constant 
frequency v. The induction of the magnetic field increases; only if the 
resonance condition is fulfilled a sharp (temporary) increase in the current 

passing through the coil is observed. 

Fig. 13-18. NMR spectrum of an 
organic compound. Magnetic 

induction with respect to a standard 
(tetramethylsilane) is converted 

to frequency in Hz. The primary 
spectrum is denoted by a full line, 
the derivative recording is dashed. 

240 
! I I 

155 129 78 
LllJ!Hz ~ 

o 

Chemical applications of NMR spectroscopy. In Fig. 13-18 the NMR 
spectrum of 4-hydroxy-4-methylpentanone-2 is given. The assignment of 
peaks to the individual proton types is facilitated by the integral curve, 
which is, as a rule, recorded simultaneously. The ratios of the areas of the 
absorption bands are given by the ratios of the numbers of the individual 
types of protons. The observed chemical shifts, expressed in Hz, depend 
on the frequency of the applied electromagnetic field. 

Another rather instructive case is [18J annulene, whose NMR 
spectrum has two groups of bands with an intensity ratio of 2: 1. 
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The first corresponds to the external and the second to the internal 
protons (Fig. 13-19). The internal protons are strongly shielded, leading 
to the very considerable difference between the two groups. This strong 
shielding is attributed to the diamagnetic effect of the 1t electrons 
circulating under the influence of the external field in the carbon ring 
(ring current). The aromaticity of the annulene can be estimated from 
the position of the peripheral proton signal. 

0 benzene "" I ...; - ~ c for compor'lson TMS ,..,.'" 
A /:\. 
12.45 0 -2.70 

.1B/,;UT-
I I 

530 0 -115 Fig. 13-19. NMR spectrum 

.1v/Hz --- of (18] annulene . 

Interaction constants (spin - spin coupling). The interaction between 
the magnetic moments of active nuclei (which are also important in 
determining the value' of the "micro magnetic" field at the nuclei) 
complicates NMR spectra considerably, but simultaneously makes them 
far more interesting and valuable when studying small differences in the 
structures of substances. In analysis of spin - spin coupling peaks, it 
is necessary to begin from the fact that the splitting of the peak of the 
given protons depends on the number of equivalent protons in neighbouring 
positions; n protons bonded in the position next to the studied proton 
lead to splitting of the line of this proton into (n + 1) lines. 

The NMR spectrum of acetaldehyde can serve as an example. 
Fig. 13-20 illustrates recording of the spectrum at smaller and larger 

6CHJ ! 
: IE l 

; CH i 

1-A1S 

...: 

.5 

, , 
j 

! 
: 
iJ :;., ,,'11( 

I ," I 
I ,,, I 
, ,1" 
I I" I 
Ii II I , , 
1 : I 

dCH3 
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" ' , 
! 
I , 

1 T~S 
! 

Fig. 13-20. NMR spectrum of acetaldehyde recorded with low (left) and high (right) resolving 
power. Standard: tetramethylsilane (TMS). Numerical data refer to area ratios. 
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resolving powers. It is evident from the figure that hydrogen atoms 
neighbouring the H atom in the CHO group (i.e. the three hydrogens 
of the methyl group) lead to splitting of the original peak of the H atom 
in the CHO group into a quadruplet; the H atom of the aldehyde 
group, in turn, causes splitting of the CH3 band into a doublet. The 
chemical shift of the multiplet is given by the position of its centre; 
the distance of the multiplet lines in Hz equals the interaction constant J. 
The value of this constant does not depend on the intensity of the external 
field. The lines corresponding to different multiplets can be distinguished 
by recording the spectrum at two different field strengths. 

CHO Liz CH3 LIz 

+ -1/2 H+ -3/2 , 
+1/2 

tH -112 

}~ H+ -112 

Ht -112 

+H +112 
1/·pO";bili';., 

H+ +1/2 

H+ +1/2 

Hi +3/2 

Fig. 13-21. Spin orientation of protons in acetaldehyde. 

A group of equivalent protons forms a magnetic field proportional 
to L I z,i> where I z,i is the z-th component of the spin momentum of the 

i 

i-th nucleus. The proton spin orientation depicted in Fig. 13-21 for the 
proton in the CHO group and for the protons of the CH 3 group, is valid. 
It is evident that there are two fields by which the proton of the CHO 
group can influence the protons in the CH 3 group; these two fields 
correspond to two kinds of possible orientation of the nuclear spin. 
In the specimen of the studied substance these two forms are present 
in a ratio of 1 : 1. This leads to the splitting of the methyl peak into 
a doublet; both peaks of the doublet, of course, have the same intensity. 
The formation of the quadruplet and the ratio of the intensities of its 
peaks, 1 : 3 : 3 : 1, can be explained in a similar manner. 

Remarks on the analysis of N M R spectra. Spin - spin coupling makes 
NMR spectra very interesting, but very difficult or even impossible 
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to interpret under certain circumstances. This difficulty is decided by the 
ratio of the chemical shift () and the interaction constants J (both in Hz). 
If the chemical shift is comparatively large, compared to the interaction 
constant, then the spectrum can be interpreted (a first-order spectrum). 
This is true when the condition 

~210 
J - (13-38) 

is satisfied. The situation is much less favourable with higher-order 

spectra, when 
() 
-< 10 
J 

(13-39) 

Certain rules are valid for the interpretation of spectra of the first 
order. These rules will be demonstrated on the system AmXn' which 
has m + n interacting nuclei. All m nuclei of atom A are magnetically 

equivalent as are the n nuclei of atom X. 
It is important, first of all, that interaction among magnetically 

equivalent nuclei is not reflected in the NMR spectra. The multiplicity 

of the peaks of the nuclei of the A atoms depends both on the 
number of nuclei of atoms X, of which there are n, and on the nuclear 
spin quantum number, I A; this multiplicity is given by the expression 

2nIA + 1, (13-40) 

so that if the nuclei Hi, C 13, F19 and p3i (l = i) are responsible for 
the splitting, the number of lines in the multiplet equals n + 1. If the 
nuclei of atoms A interact with another group of nuclei Yp (which has p 

nuclei), then the multiplicity of the peak of nuclei A is given by the 
product (2nI x + 1)(2pIy + 1). 

The multiplet corresponding to the A atoms is symmetrical and is 
formed by a series of equidistant peaks, the intensity of which is given 
by the coefficients of the binomial series (provided that Ix = j-): 

n* ratio of the intensities of peaks in the multiplet 

1 
2 
3 
4 

5 

1 : 1 
1 : 2 : 1 

1 : 3 : 3 : 1 
1:4:6:4:1 

1 : 5 : 10 : 10 : 5 : 1 

* Number of equivalent protons (or nuclei with spin~) causing the splitting. 
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This simple situation becomes complicated when both multiplets 
lie relatively close together, i.e. when the first-order spectrum changes 
into a higher-order spectrum. 

, 
13.2.5 Electron spin resonance (ESR) 

The magnetic moment of an unpaired electron can be oriented in two 
ways with respect to the external magnetic field, parallel or antiparallel. 
The corresponding states have different energies; the transitions between 
them is manifested by the formation of peaks in electron spin (para­
magnetic) resonance (ESR or EPR) spectra. As a rule, these spectra 
have a fine structure, which is usually called a hyperfine structure. 
This is due to the interaction of an unpaired electron with other 
particles having a magnetic moment, for example, with protons. 

The magnetic moment of the electron is given by the relationship 

(13-41) 

where g is a constant analogous to the spectroscopic "splitting" factor 
(g = 2.0023 for the free electron), Pe is the Bohr magneton* and S is 
the spin with value of ii-h. 

maqnet poles 

-8 

Fig. 13-22. Schematic representation of ESR spectroscopy. 

In an external magnetic field of induction B the magnetic moment 
of the electron is orientated either parallel or antiparallel to this field; 
to the first state corresponds a lower energy level (E 1), to the second, 
a higher energy level (E 2 ). Before application of the magnetic field, the 
same energy corresponded to both spin states of the electron, which were 
thus degenerate. The application of the magnetic field results in splitting 
of the levels (Fig. 13-22). 

The energy of an electron is given by the product of the magnetic 
moment and the induction of the magnetic field: 

* Pe = eh/4nme = 9.273 x 10- 24 A m2 (e is the elementary charge and me the rest 
mass of the electron). 
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E1 = -gPeBS1 

E2 = -gPeBS2 , 

(13-42a) 

(13-42b) 

where S1 and S2 correspond to the two possible orientations in the 
magnetic field. For the excitation energy necessary for the transition 
of an electron from state E1 to state E2 in a magnetic field of induction B, 
the expression [cf. Eq . (13-29)] 

E2 - EJ = flE = hv = gPeB 

is valid. If, for example, B = 1 T, then resonance occurs in the presence of 
radiation with a wavelength of about 1 cm. Fig. 13-23 illustrates the 
way in which the magnitude of the excitation energy I1E depends on 
the induction of the external magnetic field. If electromagnetic radiation 
of a frequency which satisfies the resonance condition is applied to a radical 
placed in a sufficiently strong magnetic field (for example OJ T), a consider­
able increase in the current passing through the coil in which the 
specimen is placed results. In practice an arrangement is employed which 
works with a fixed frequency v and the specimen is placed in a magnetic 
field whose induction gradually increases; if the resonance condition is 
satisfied, a maximum (Fig. 13-24a) appears on the absorption curve. It is 
customary to record derivative curves; the usual shape of an ESR 
spectrum without hyperfine structure is depicted in Fig. 13-24b. For 
organic radicals the value of constant g is approximately the same as 
for free electrons. With ions of the transition metal elements (where there 
is an unpaired electron in the d orbital), however, the value of this 
constant is very different. If the ESR spectra of free radicals or organic 

w 

1 

o -8 

Fig. 13-23. Magnitude of splitting of 
the energy levels in ESR spectroscopy 

as a function of the magnetic 

induction. 

0) i 0) 

b) ~ 
dB 

b) 

-B 

Fig. 13-24. Primary (a) and derivative 
(b) recording to the ESR spectrum. 



Fig. 13-25. Allowed (--->.) and 
forbidden (- - - -» transitions in 

the ESR spectrum. M sand M I denote 
the spin quantum numbers of an 
electron and a proton, respectively. 
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compounds were not influenced by any other factors, it would be very 
simple and similar for all the substances and thus uninteresting. In reality, 
interaction between the magnetic moment of the unpaired electron and 
that of the nuclei of the atoms, with non-vanishing nuclear spin, occurs 
and this interaction is manifested in the formation of hyperfine structure 
in the ESR spectrum. For example, in the methine radical, C - H, the 
nuclear spin of Cl2 is zero and the proton spin quantum number 
equals it. The magnetic moment of the proton can also be orientated 
parallel or antiparallel to the external magnetic field. As a result of the 
interaction between the magnetic moments of the electron and of the 
nucleus, the magnetic field in the vicinity of the electron is somewhat 
changed - it is a little larger or smaller than the magnetic field of the 
free electron. Both possible magnetic moments of the electron and 
proton may combine and this leads to four states of different energy 
(Fig. 13-25). But only some of the transitions between these states are 
allowed (Fig. 13-25). The following selection rules are valid: 

t).Ms = ± 1 

t).M[ = 0, 

where Ms and M[ denote the quantum numbers characterizing the 
:.--components of the electron and the nuclear spin, respectively. In 
Fig. 13-25 the allowed transitions are depicted by full arrows and the 
forbidden transitions by dashed arrows. Due to this interaction, the 
ESR spectrum of CH consists of two bands. 

The interaction between the unpaired electron and the nucleus 
may be considered to be the interaction of two small magnets. The 
expression for the energy of this interaction has two terms. The first is 
the classical expression for interaction between the dipoles of the 
electronic and nuclear moments and is non-vanishing only in crystals. 
The second expression is non-classical and its value is proportional to 
the square of the electronic wave function at the atomic nucleus. 
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indo magnetic field 0 
numberof H atoms 0 
number of lines in 0 
the ESR spectrum 

Fig. 13-26. Energy spectrum produced by interaction of an unpaired electron with an increasing 

number of equivalent protons. Numbers beside the levels (left) denote the nuclear spin 
quantum number M[ and (right in circles) the degeneracy of the level. 

The combination of these two contributions leads to the complexity 
of the ESR spectra of solid substances. 

Let us return to the interaction of an unpaired electron with 
a certain number of equivalent protons. The interaction of an electron with 
one proton has already been discussed. The addition of each further 
proton leads to the splitting of all the existing levels; as the only allowed 
levels are those which have M[ values equal to a multiple of ±j, some 
levels are degenerate. When the selection rules are taken into account; 
the selection of the allowed transitions in the energy spectrum becomes 
a simple task (Fig. 13-26). It is evident that the number of lines is larger 
by 1 than the number of equivalent protons. The ratio of the intensities 
is given by the ratio of the number of degenerate levels between which 
the transitions occur. In this way, the reasons why the ESR spectrum 
of the CH2 radical consists of three lines in an intensity ratio of 1 : 2 : 1 
and why the spectrum of the (planar) CH 3 radical consists of four lines 
with intensities of 1 : 3 : 3 : 1 become apparent. During interaction of an 
unpaired electron with n equivalent protons, the number of lines 
generally equals n + 1 and the ratio of their intensities is given by the 
coefficients of the binomial series of order n. Fig. 13-27 schematically 
depicts the ESR spectrum of the benzene radical anion. The distance 
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between the lines is constant and is termed the hyperfine splitting constant 
(aH). This constant is sometimes denoted hfs (hyperfine splitting) and 
is given in teslas. 

a a a a a a 
I" aol 

Fig. 13-27. ESR spectrum of benzene 
radical anion. a is the constant of 
hyperfine splitting (hfs). Numbers 

below the picture indicate 
the intensity ratio. 
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The ESR spectrum becomes much more complicated if protons 
honded in non-equivalent positions are present in the studied radical. 
The naphthalene radical anion with 4 protons in the IX positions and 
-l protons in the f3 positions is a good example. In interaction ofthe unpaired 
electron with four IX protons, five lines (with intensity ratios of 1 : 4: 6: 4: 1) 
are obtained (Fig. 13-28a); each of these five lines is split by the interaction 
with the four f3 protons into a series of five lines (the ratio of their 
intensities is again 1: 4: 6 : 4: 1; see Fig. 13-28b); thus from general 
considerations it can be expected that the ESR spectrum will consist 
of 25 lines. The experimentally measured spectrum (Fig. 13-29a) confirms 
this expectation except that it is not as simple as might be expected, as 
the hfs constants are equal to 0.49 and 0.183 mT, so that overlapping 
of both the quintets occurs. As the spectrum is most complicated in the 
centre, its analysis is usually begun at the short or long wavelength 
parts. In Fig. 13-29b the reconstructed spectrum is represented; the values 
of the hfs constants given above were utilized here. 

(X-H 

a) 

hfs(2) 

III III .-.,......-.. 
I I 

I I I 1 I I 

/.3-H 

b) 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Fig. 13-28 Expected ESR spectrum of the naphthalene radical anion: (a) splitting due to 
ex-hydrogens, (b) splitting due to It-hydrogens. 
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Fig. 13-29. Measured ESR spectrum 
of the naphthalene radical anion (a); 

theoretical ESR spectrum constructed 
under the assumption that hfs 

constants are 0.490 mT and 0.183 mT 

for (J. and f3 positions, respectively (b). 

( . 
The hyperfine splitting constant is proportional to the spin density 

on the hydrogen causing the splitting. The extended methods (EHT, 
CNDO, and in particular INDO) allow calculation of these densities 
and there appears to he good correlation between the theoretical and 
experimental values. As the very numerous radicals and radical ions 
which have been studied are conjugated systems, the possibility of using 
the n-electron approximation is worth mentioning. The spin density 
on the hydrogen appears to be proportional to the electron density 
of the unpaired electron (i.e. the electron affecting the radical character 
of the studied system) on the carbon or some other atom to which 
this hydrogen is bonded. Using the HMO method and Pople's SCF 
method, calculation of this electron density is very simple: it equals 
the square of the expansion coefficient in the respective position in the MO 
occupied by an unpaired electron. In Table 13-4 are given data for 
a series of conjugated radical anions. The graphical representation 
of the data is based on McConnell's relationship, 

(13-43) 

where aH is the experimental hyperfine splitting constant (hfs), (] is the 
spin density, approximated successfully by the quantity c;m (c ilm is the HMO 
expansion coefficient, m denotes the singly occupied MO in the radical 
and J.! specifies the atom) and Q is a constant which is approximately equal 
to 2.5 mT (Fig. 13-30). Several thousand ESR spectra have been interpreted 
using HMO electron densities; this is considered to be one of the great 
successes of the simple MO theory, the usefulness of the HMO method 
is particularly remarkable. The situation in this area should, however, 
be taken as a warning that the applicability of the one-electron ap­
proximation has certain limitations, since the analysis of experimental 
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Table 13-4 
Comparison of Theoretical and Experimental ESR Data 

Radical-anion Position (Il) 

Naphthalene 

2 

Anthracene I 

Tetracene 

Pyrene 

Perylene 

Coronene 
Diphenyl 

2 

9 

2 

5 

2 
4 

1 

2 

3 
1 

2 

3 

4 

Fig. 13-30. Dependence of the 
experimental hyperfine splitting 

constants in ESR spectra on the HMO 

density of an unpaired rr-electron on 

carbons linked to the corresponding 

proton. 

Q./(mT) c2 .m 

0.495 0.181 

0.183 0.069 

0.274 0.097 

0.151 0.048 

0.534 0.193 

0.155 0.056 

0.115 0.034 

0.425 0.147 

0.475 0.136 
0.109 0 

0.208 0.087 

0.308 0.083 

0.046 0.013 

0.353 0.108 
0.147 0.056 

0.273 0.090 

0.043 0.020 

0.546 0.158 

B.-------..., 

6 

0.1 2 0.2 
-cl"m 

OJ 

ESR spectra sometimes tends to lead to negative spin densities. Since 
the smallest value of the square of the LCAO expansion coefficient 
is zero, it is obvious that the simple methods then fail qualitatively. 
If, however, spin densities are calculated using the configuration interaction 
method, correct results are obtained. McLachlan derived an expression 
which permits characterization even of negative spin densities using 
HMO quantities: 

(13-441 
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where c"m (cvm) are the HMO expansion coefficients in the m-th molecular 
orbital occupied by an unpaired electron in position fJ. (v), IT". is the 
atom - atom polarizability and A. is a parameter resulting from this 
theory. This expression has also frequently been successfully applied. 

13.2.6 Pure rotational spectra 

This type of transition occurs in the far IR region and in the microwave 
region. Rotational spectra are not yet of great importance in structural 
determinations in large molecules; they are, however, very important 
for ascertaining the geometry of small molecules. The analysis of the 
rotational spectrum permits determination of the moment of inertia 
of a molecule, i.e., of a quantity defined by the mass and coordinates of 
the atoms forming the molecule. Only simplest rotators will be discussed 
here, i.e. diatomic molecules. If we assume that such a molecule behaves 
as a rigid rotator, the above-described wave functions and their cor­
responding energies describing the rotation (cf. Section 3.3.4) can be 
employed. 

When a transition occurs from the state with quantum number J" 
to the state with quantum number J' (the quantities corresponding to the 
states with lower and higher energy are denoted by a double prime 
and a single prime, respectively) the transition energy can be described 
by the expression 

llE = E' - E" = ~ [J'(J' + 1) - J"(J" + 1)] 
81[2 I 

(13-45) 

The value of the transition moment decides whether the transition is 
allowed (cf. Section 6.5): 

(13-46) 

where Y 1m are the spherical harmonics and f1 is the dipole moment 
operator. Enumeration of integral (13-46) leads to the very simple selection 
rule that only those transitions are allowed during which the rotational 
quantum number changes by one, i.e. 

J' - J" = ± 1 

J" can thus be expressed in terms of J' so that 

llE = 8~~ I 2(J" + 1) 

(13-47) 

(13-48) 
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On dividing Eq. (13-48) by hc, the wave number expression is obtained: 

v = I1E = _h_2(JII + 1) = 2B(J" + 1) 
hc 8n2cI 

(13-49) 

Quantity B is a characteristic constant of the molecule and is called 
the rotational constant. According to Eq. (13-49), the rotational spectrum 
of a diatomic molecule consists of a series of equidistant lines at a distance 
of 2B. This value can be read from the spectrum and can be used for 
calculation of the moment of inertia, 

h 
I = 8n2cB' (13-50) 

from which the bond length of a diatomic molecule can be calculated: 

a = J~, (13-51) 

where Jl. is the reduced molecular mass. 
It follows, however, from analysis of the rotational spectra that 

the lines are not exactly equidistant, as their distance decreases somewhat 
with increasing J values. A better description employing the non-rigid 
rotator approximation interprets the experimental data very well. 

13.2.7 Vibrational spectroscopy 

The discussion will again begin with the investigation of a diatomic 
molecule, assuming that its vibrational behaviour can be described by 
the harmonic oscillator approximation. The solution (the wave functions 
and the corresponding energies) obtained above for the harmonic 
oscillator can then be used directly (cf. Section 3.3.3). 

First, the expression for the energy can again be written as 
[cf. Eq. (3-74)] 

It is evident that the vibrating molecule has an energy of ihv, ihv, j-hv etc. 
The calculation of the transition moment will be discussed in detail later. 
Here, it is sufficient to state that, similar to rotational spectra, transitions 
are only allowed between states whose quantum numbers differ by one: 

(13-52) 

Obviously, the distance between the energy levels between which the 
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transItIon can occur is constant and for this reason only a single line 
corresponds to the diatomic molecule in the vibrational spectrum, within 
the framework of the approximation. 

The transition moment can be calculated by means of the generally 
valid expression. During vibration, the dipole moment of a heteronuc1ear 
diatomic molecule must, of course, change. If the expression for the 
dipole moment is expanded into a Taylor series and if we neglect the 
terms containing higher derivatives, then 

P = Po + ( ~~ )0 q, (13-53) 

where Po is the permanent dipole moment and q is the vibrational 
coordinate. If excitation from state i to state j occurs, then the expression 

Ri _ j = J 'Pi [flo + (~~ )0"] 'Pjdq = 

= J 'Piflo 'P j dq + J 'Pi ( ~~ )0 ,,'Pj dq (13-54) 

can be written. Since flo is a constant and 'Pi and 'Pj are orthogonal 
functions, a non-zero change in the dipole moment during vibration is 
obviously a necessary condition for the transition to be allowed. 

If the vibrations in real molecules were harmonic, a single band in 
the spectrum would correspond to each vibrational mode. In the spectra, 
however, further bands (one or two) of smaller intensity and higher wave 
number occur in addition to these fundamental bands. These are called 
higher harmonic transitions; their wave numbers correspond to transition 
to states with a higher vibrational quantum number (usually 2 or 3). 
The anharmonicity of vibrations in the expression for the potential energy 
in the Hamiltonian must be taken into account when solving the problem 
for an oscillator. Taylor's expansion of potential energy V can be utilized 
for this calculation: 

(13-55) 

The subscript zero appears in expressions referring to the equilibrium 
state of the molecule, which is, of course, characterized by an energy 
minimum; the q/s represent the generalized coordinates and Vo denotes 
the potential energy of the equilibrium state of the molecule and is the 
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conventional zero of the energy scale. In the energy minimum the first 
derivative equals zero. The second derivatives represent the force (i = j) 
and the interaction (i =1= j) constants. If the partial derivatives (which are 
constants) are denoted as bij , bijk , which is common in the literature, 
the relationship 

V = ~ ~ b ijq iq j + ~ 4.k b ijkq iq ).q k + higher terms 
I) I) 

(13-56) 

IS obtained. For diatomic molecules the expression simplifies to give 

(13-57) 

It is apparent that, in the extreme case, expression (13-57) is reduced to 
the expression which was obtained assuming the validity of Hook's law 
(cf. Section 3.2.2). Solution of the Schr6dinger equation for an oscillator 
using expression (13-57) for the potential energy leads to eigenfunctions, 
which, after substitution in the expression for the transition moment, 
do not result in such strict selection rules. In other words, there are also 
some allowed transitions in which the change of the vibrational quantum 
number is not equal to ± 1. 

The eigenvalues can be written in simple form: 

En = (n + ~) hewe - (n + ~ y heweX + higher terms (13-58) 

In Eq. (13-58), X denotes the anharmonicity constant and we is the 
equilibrium frequency of the diatomic molecule. This expression permits 
calculation of the wave numbers of the fundamental and higher harmonic 
vibrations of a diatomic molecule. 

For a molecule containing N atoms, the relationships are rather 
more complicated. Here the procedure for calculating the fundamental 
frequencies will only be outlined. We are chiefly interested in calculation 
of the frequencies in connection with interpretation of infrared spectra 
and also for the purposes of statistical thermodynamics. In the expressions 
for the equilibrium and for the velocity constants, the vibrational partition 
function appears, among other factors. Of 3N degrees of freedom of the 
N-atomic molecule, 3 correspond to translation and 3 to rotation of the 
molecule (2 for a linear molecule). The remaining 3N - 6 (3N - 5) degrees 
of freedom correspond to vibrations. If the vibrations of the atoms 
correspond to harmonic oscillations and if all the atoms vibrate with 
the same frequency and in phase (in other words, if the all atoms pass 
through the equilibrium position simultaneously), normal modes of vibration 
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are involved. Their calculation requires knowledge of the interatomic 
forces (described by the force constants) and of the configuration of the 
molecule (valence angles and bond lengths). Wave number v (called the 
fundamental frequency here) is calculated from quantities A by means of 
the relationship 

(13-59) 

Quantities A are obtained by solving the determinant equation 

'L G liFil - A, 'LG1ljz , 'L G lkFkn 

'LGZlil' 'L GZl j2 - A, ... 'LGzkFkn =0 (13-60) 

'L GniFil' 'LGnl jZ ' 'LGnkFkn - A 

The indicated summations refer to the internal indices. Fij and Gij from 
Eq. (13-60) are elements of the potential and the kinetic energy matrices 
(F and G), defined as follows: 

F = UfUT, 

G = UgUT, 

(13-61) 

(13-62) 

where U is the transformation matrix between the symmetry and internal 
coordinates, f is the force constant matrix and g is the kinetic energy 
matrix (including masses of the atoms and configuration of the molecule). 

For enumeration of the symmetry coordinates, it is necessary to 
know the internal coordinates of the molecule, rk (which are of four 
types and describe changes in the bond length, bond angle and out-of-plane 
deformations and torsion angles). The symmetry coordinates Si are given 
by linear combinations of the internal coordinates: 

(13-63) 

Transformation matrix U is unitary (cf. Section 4.5). In solving Eq. (13-60), 
enumeration of the elements of the F and G matrices does not lead to 
particular difficulties. The diagonal elements of the matrix f, namely hi' 
are the force constants of the individual bonds and angles which occur 
in the studied molecule, and the non-diagonal elements, hj' are the 
so-called interaction constants. 

Spectroscopy in the infrared region is vibrational rotational spectros­
copy. It is of extraordinary importance for experimental chemistry and, 
until NMR was discovered, it was the only almost universally applicable 
and unusually effective method for structure determinations. Although 
the measured vibrational states are, of course, the result of the conditions 
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in the entire molecule, the individual functional groups have characteristic 
frequencies in regions which often are not too dependent on the structure 
of the remaining part of the molecule. The utilization of IR spectroscopy 
for structure determination is based on this observation. A great deal of 
attention has been paid to this subject in the literature. 

13.2.8 Raman spectroscopy 

For a certain vibration to be active in the Raman spectrum, a change 
in the induced dipole moment must occur as a result of excitation. The 
condition for this change is a change in the polarizability of the molecule. 

The induced dipole moment Jl is proportional to the electric field 
\ector E: 

(13-64) 

Proportionality constant rx is called the polarizability. Equation (13-64) 
is valid only for spherically symmetrical systems, such as atoms. Vector 
equation (13-64) can also be written for the individual components: 

Jix = rxEx 

Jiy = rxEy 

Jiz = rxEz 

(13-65) 

If a molecule in the vibrational ground state accepts an amount 
of energy which transfers it into a state which is unstable at laboratory 
temperature, the return to the ground state is often connected with 
Rayleigh scattering; the energy of the scattered photon is the same as 
the energy of the absorbed photon. The excited molecule can, however, 
also pass into one of the higher (excited) vibrational states. Fig. 13-31a 
indicates a transition into a vibrational state with quantum number 
v = 1 and also excitation of a molecule from this vibrational state into 
a metastable state and transfer back into the vibrational ground state. 
In the first case the energy of the scattered photon is obviously smaller 
and in the second case greater than the energy of the exciting radiation 
by a value exactly equal to the difference between the energies of the 
ground and the first excited (generally higher) vibrational states. 

In Raman spectroscopy, energy corresponding to the mercury line 
with a wave number of 22,945 cm -1 can be used for excitation; in the 
scattered radiation, in Raman spectra, lines of smaller and larger wave 
number occur, which are called Stokes and anti-Stokes lines; their energy 
differences (which possess the same value for both types of lines) represent 
the vibrational spectrum of the studied molecule (Fig. 13-31b). Since the 
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Fig. 13-31. (a) Origin of the Rayleigh scattering and of Raman lines. (b) Raman spectrum. 

vibrational state with v = 1 is not very strongly populated at laboratory 
temperature, the intensity of the Stokes lines (see below) is usually 
greater than the intensity of the anti-Stokes lines. For spherically asym­
metrical molecules the polarizability is a function of the direction. In the 
general case it holds for the components of the induced dipole moment that 

Ilx = (XxxEx + (XXyEy + (XxzEz 

Il y = (XyXEX + (XyyEy + (XYZEZ 

Ilz = (XzxEx + (XZyE y + (XzzEz 

The total polarizability is represented by the matrix 

(Xxx (XXY (Xxz 

IX == (Y,yx (Xyy (Y,yz 

(Y,zx (y'zy (y'zz 

(13-66) 

(13-67) 

This matrix is symmetrical ((Y,zx = (Xxz etc.). The matrix which mediates 
the linear relationship between two vectors is called a tensor. 

The intensity of the Raman scattering and also the selection rules 
are given by matrix elements of the type 

(13-68) 
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where IJI~ is the vibrational wave function of the n-th state. The intensity 
of the Raman transition, A, is proportional to the square of the matrix 
elements of the polarizability: 

(13-69) 

In conclusion, it should be mentioned that, in addition to vibrational 
spectra, there are also Raman rotational spectra. 

13.3 Excitation within the framework 
of several electronic levels 

13.3.1 Absorption spectra in the ultraviolet 
and visible regions 

The energy gap between the ground state and the first electronically 
excited state is usually greater by one-half to two orders of magnitude 
than the gap between the vibrational levels. The great majority of mole­
cules whose spectra will be of interest possess a singlet ground state. 
If the molecule accepts an amount of energy corresponding to the gap 
between the ground and the excited state, this process can be interpreted 
within the one-electron approximation as transition of the electron from 
one of the MO's occupied in the ground state into an unoccupied MO. 
The electronic excitation requiring the least energy is depicted in Fig. 13-32. 
In addition to the orbital one-electron representation of electronic transi­
tions, this figure also depicts a better representation of the ground state 

Fig. 13-32. Schematic representation 
of transitions with the lowest energy 
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and the excited states by means of a term scheme. The levels in this 
scheme correspond to the energies of n-electron functions of the individual 
states. The connection between the orbital and term representation is 
indicated by dotted lines. 

The approach based on the orbital scheme is justified in molecules 
with a variety of structural types. Therefore, expressions valid within 
the SCF theory for transitions of the system from the ground state to 
various excited states will be discussed first, followed by the physical 
chemical aspect of electronic spectroscopy and its application to com­
pounds of different structural types. 

For the excitation energy of transitions indicated in Fig. 13-32, the 
expression 

lliEi-+a = 1 Ei-+a - Eo 

3liEi-+a = 3 Ei-+a - Eo 

(13-70) 

(13-71) 

can be written for excitation from the i-th to the a-th MO. When using 
the term scheme, the relationships 

lliE = lEI - lEo 

3liE = 3EI - lEo 

(13-72) 

(13-73) 

can be written. Within the orbital description we can enumerate Eqs. 
(13-70) and (13-71) either at the SCF level (Roothaan, Pople) or at the 
level of simple MO methods. If we choose the SCF approximation, we 
must calculate the energy of the corresponding Slater determinant of the 
ground state I Eo and of the determinant (or the linear combination 
of two determinants) of the excited state eEl or 3E1) and find the 
difference between these two energies. The expression for the energy of 
a closed shell system has already been derived (in Section 5.5): 

1 Eo = 2 L Hi + L L (2J ij - Kij), 
i i j 

where J ij is the Coulomb integral and Kij is the exchange integral. 
For an excited state configuration, the possibility of transition of 

an electron with a spin function rJ. or f3 must be considered (Fig. 13-33). 
The corresponding determinants have the following form: 

LI A = I <PI' if51' ... , <Pi' ... , <P./2' if5./2 , if5a I 
LIB = I <PI' if5p ... , if5p ... , <P./2' if5n/2 , <Pa I 
LIe = I <PI' if5p ... , <Pi' ... , <Pn/2' if5n/2, <Pa I 
LID = I <P I' if51 , ..• , if5;. ..• , <Pn/2' if5n/2 , if5a I 

(13-74) 

(13-75) 

(13-76) 

(13-77) 
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Fig. 13-33. Schematic representation of singlet and triplet configurations. 

The absence of a bar indicates occupation of the orbital by an electron 
with spin IX and a bar refers to occupation by an electron with spin p. 

Investigation of determinants (13-74) to (13-77) shows that they 
correspond to the following eigenvalues of operator ffz: 0, 0, 1, -1. 
From the pair offunctions (13-74) and (13-75) (LI A> LIB)' linear combinations 
(cf. Section 6.7) can be formed : 

_ 1 
.1 = .}2 (.1 A - .1B) (13-78) 

+ 1 
.1 = .}2(.1A +.1 B) (13-79) 

(1/.}2 is the normalization factor). 
Function .1 - corresponds to the singlet state and functions .1 + , 

Lie, LID to the triplet state, as is evident from the eigenvalues of the 
operator ff2: 

The wave function of the excited singlet state formed by the i-+a 
transition is thus described by two determinants, similarly as with one 
of the three wave functions of the triplet state; one determinant to each 
of the two remaining functions belongs: 

(13-80) 
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3P i -+ a = Ae 

3P i -+ a = AD 

(13-81) 

(13-82) 

(13-83) 

The calculation of the energy corresponding to the Slater determi­
nant wave function has already been discussed in Section 5.4; the energies 
corresponding to the wave functions of triplet states are identical and 
generally lower than the energies of the singlet state. For 1 AEi-+a it is 
possible to write 

1 L1Ei-+a = 4 J (A A - AB) 3't'(A A - AB) dr - J Ao3't' Ao dr, (13-84) 

where Ao is the Slater determinant of the ground state. Calculation of 
the energy corresponding to a linear combination of the determinants 
leads to the expression 

1 Ei-+a = 2 L H j + L L (2J jk - K jk) + Hi + L (2Jij - Kij) + 
iti j k'fi iti 

+ Ha + L (2J ja - K ja) + J ia + Kia (13-85) 
ita 

In agreement with Eq. (13-84), the expression for Eo [cf. Eq. (5-60)] must 
be subtracted from this expression. To facilitate this process, those terms 
which allow completion of the summations are added to Eq. (13-85) 
(these terms must, of course, also be subtracted so that the value of the 
expression remains unchanged). Thus, the relationship 

lEi-+a = 2LHj + LL(2Jjk - K jk) - Hi - L(2Jij - Ki) + Ha + 
j j k j 

+ L (2J ja - KjJ - (Jia - KiJ + Kia (13-86) 
j 

is obtained. 
The energy of the excited triplet state can be calculated employing 

a similar procedure. For the SCF energy of the singlet-singlet (S - S) 
and singlet-triplet (S - T) transitions the relationships 

(13-87) 

(13-88) 

are obtained, where sa (sJ is the orbital energy of the a-th (i-th) MO and 
J ia and Kia denote the Coulomb and exchange integrals, respectively. 

As Kia is a positive quantity, in agreement with Hund's rule the S - S 
transition requires greater energy than the S - T transition; in the extreme 
case (Kia = 0) the energy of both transitions would be the same. The 
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magnitude of the S - T splitting is given by the difference between Eqs. 
(13-87) and (13-88): 

(13-89) 

Bearing in mind the definition of the Kia integral, 

Kia = IS cpi(1) CPa(1) 9(1, 2) cpi(2) cpi2) dr l dr2 , 

the condition which must be fulfilled for the splitting to be large or small 
then follows. Obviously, the larger the space in which both orbitals CPi 

and CPa simultaneously expand significantly, the greater the value of Kia 

and the greater the splitting. The opposite case is well illustrated by an 
example from molecular spectroscopy: in the n --+11:* transitions (see below) 
the corresponding integral has a very small value, because the non­
bonding atomic orbital and the antibonding 11: molecular orbital often 
occupy different regions in space (Fig. 13-34). It has also been ascertained 
experimentally that the S - T splitting is very small for n --+11:* transitions. 

Fig. 13-34. An example of a system 

with a low value of exchange integral 

K (Kn.> in pyridine). 

The expression for the excitation energy within the empirical MO 
methods can easily be obtained from Eqs. (13-87) and (13-88) by dropping 
the terms for the electron repulsion, i.e. integrals J ia and Kia' We thus 
arrive at the expression given above; at the same time it is immediately 
evident that, if the repulsion is neglected, there is no difference between 
the singlet and triplet transitions : 

(13-90) 

where Ea and Ei are the HMO or EHT energies of the orbitals between 
which the transition occurs. For HMO data, taking into consideration 
the form of the expression for the orbital energy (E j = IX + kI3), it can 
then be written that 

(13-91) 

Equality of the energy values for S--+S and S--+ T transitions is a qualitative 
shortcoming of theories which do not explicitly take the electron repulsion 
into account. 

Classification of transitions. In the near UV region (200 to 400 nm) 
and the visible region (400 to 800 nm), two chief groups of substances 
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manifest significant absorption. They are organic conjugated compounds 
and complex compounds which contain a transition element ion as the 
central atom. With compounds of the first type, the absorption of light 
is mainly caused by transitions between the bonding (1t) and antibonding 
(1t*) MO's, as well as by transitions between nonbonding AO's (e.g. the 
lone pair on the nitrogen atom in pyridine) and 1t* orbitals. These are 
termed 1t--+1t* (or N--+ V) and n--+1t* (or N--+Q) transitions (Fig. 13-35a). 
These two types can be distinguished experimentally, for example, by 
studying the influence of the permittivity of the solvent on the position 
of the band. Whereas an increase in the relative permittivity (for example. 
on changing from hexane to water) causes a relatively large shift to 
shorter wavelengths (the hypsochromic shift, 20 to 40 nm) of the n--+1t* 
band, in the 1t--+1t* bands it induces a small bathochromic shift to 
longer wavelengths (3 to 10 nm). In addition, the intensity of the n--+1t* 
bands is usually smaller (8 ~ 10 to 1000 I mol- 1 cm -1) than the intensity 
of the 1t--+1t* hands (8 ~ 500 to 100 000 I mol- 1 cm -1). 

0*--
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Fig. 13-35. Graphical representation of 1t-->1t* and n-->1t* transitions in conjugated compound 
(a). Intermolecular excitation: transition of an electron from the donor HOMO (D) to the 

acceptor LFMO (A), charge-transfer (CT) band (b). Transition from the T2g orbital of the 
transition element atom to the E. orbital. Splitting of the degenerate d levels is due to 

a ligand field of octahedral symmetry; d - d transition (c). 

Interaction of a substance having a low ionization potential (for 
example, anthracene) with a substance of a high electron affinity (for 
example, chloranil) is frequently connected with intermolecular excitation, 
which is maRifested by an absorption band at relatively long wavelengths 
which has no analogy in the spectra of the two components: this is termed 
a (intermolecular) "charge-transfer" band (Fig. 13-35b). These bands are 
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usually of relatively low intensity (6 ~ 100 I mol- 1 cm -1), flat and without 
vibrational structure. 

The absorption in the visible region by the complexes of transition 
metal ions (for example, Fe2+, Co3+) with different ligands (for example, 
H20, 0-) is dependent on transitions between the incompletely occupied 
d orbitals of the central ion, the degeneracy of which has been removed 
in part by the influence of interaction with ligands. These d - d transitions 
are usually of low intensity (Fig. 13-35c). 

The value of the transition moment (cf. Section 6.5) 

Qi--+ j = J lJI i --+ /1>1') lJI 0 dr (13-92) 
I' 

determines whether the transition is allowed theoretically. In Eq. (13-92) 
lJI i --+ j and lJIo denote the wave functions of the excited and ground states. 
L-tl' is obviously the operator of the dipole moment for a unit charge 
and r I' (Jl = 1, 2, ... , n) are the position vectors of the electrons. The 
direction of the transition moment Q i --+ j is called the direction of polariza­
tion of the electronic transition i -+}. 

If the mentioned integral vanishes, the transition is termed forbidden; 
otherwise it is called allowed. In symmetrical molecules it is possible to 
decide whether the transition is allowed or forbidden simply from knowl­
edge of the symmetry of the orbitals (or states) between which the 
transition occurs. The rules derived from this analysis are called selection 
rules. For comparison of the theoretical values with the experimental 
ones, a quantity called the oscillator strength f is introduced, which is 
proportional to the square of the transition moment: 

1; . = 1085 x 1O- 3v( I Qi--+; 1)2 
l--+J • e' (13-93) 

where v is the wave number in cm -1 of the absorption maximum and Q/e 
is expressed in nm. The oscillator strength can also be calculated from 
experimental data using the expression [cf. Eq. (13-11)J 

V2 
f(exp) = 4.319 x 10- 9 J 6 dv, (13-94) 

v, 

where the integral corresponds to the area of the absorption curve in 6 

(1 mol- 1 cm - 1) and v (cm - 1) coordinates. 
The situation is, in reality, far more complicated as several vibra­

tional states (corresponding to functions Xi v' where the first index denotes 
the electronic state and the second the vibrational state) are associated 
with each electronic state (corresponding to wave function lJIJ If excitation 
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occurs from the electronic (IF 0) and the vibrational (Xoo) ground states, 
then the expression 

(13-95) 

is valid for the transition moment of the vibronic transition (a transition 
which is simultaneously electronic and vibrational), where 

SOO~lk = J X60Xlk dr (13-96) 

is the overlap integral and Xlk denotes the wave function of the k-th 
vibrational state in the first excited electronic state and the integration 
is performed over the electron coordinates. The square of the overlap 
integral (13-96) then appears in the expression for the oscillator strength. 
In expression (13-96), functions Xoo and Xlk are not orthogonal because 
they do not pertain to the same electronic Hamiltonian. 
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Fig. 13-36. Vibrational wave functions superimposed on potential energy curves. Equilibrium 
distance (r) is the same as in the ground state (a) or larger (b). In case (a) the 0-0 vibrational 

transition will be most intense, in case (b) it will be the 0 - 2 transition. 

Equation (13-95) is a representation of the Franck-Condon principle. 
Analysis of the vibrational wave functions depicted in Fig. 13-36 aids in 
its clarification. Strictly speaking, this figure refers to a diatomic molecule; 
it appears, nevertheless, that the situation in polyatomic molecules is 
similar. The time required for excitation of an electron is short in 
comparison with the time required for changing the coordinates of the 
nuclei (the time of vibration) and thus immediately after the electronic 
excitation the molecule has the same geometry as before the excitation. 
If the minima of both potential curves (G, E) correspond to the same 
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Fig. 13-37. Vibrational structure of the electronic band (for the corresponding transitions 
see Fig. 13-36). In case (a) the vertical transition is the 0 -0 transition, in case (b) 

it is the 0 - 2 transition. 

interatomic distance, then the vertical transition (or the Franck-Condon 
transition, the transition with unchanged bond length) is identical with 
the 0-0 vibrational transition. It is clear from Fig. 13-36a that the overlap 
integral (13-96) has a maximum value for the 0-0 transition and the 
corresponding absorption curve assumes the form demonstrated in 
Fig. 13-37a. In turn, when the minimum of the potential energy curve E 
lies at a greater interatomic distance, then the vibration band with the 
longest wavelength (0-0 transition) is not the most intense. The most 
intense band is that corresponding to the vertical transition for which 
the overlap integral (13-96) acquires maximum values (Fig. 13-37b). 

In connection with the potential energy curves for the ground and 
excited states, a phenomenon called predissociation, which appears in the 
spectra of some polyatomic molecules, can be mentioned. It appears 
that, in a certain wavelength region, the rotational or vibrational band 
structure (the rotational structure of electronic bands is, of course, only 
detectable using an instrument with high resolving power) disappears in 
the absorption spectrum of a molecule in the gaseous phase and an 
absorption continuum results. This phenomenon is connected with the 
crossing of the potential curves of excited states, which occurs very 
frequently with large molecules. Fig. 13-38 indicates one of the possible 
situations which can occur during predissociation. The G~El transition 
is allowed and the G~E2 transition is forbidden. After the G~El 
transition the vibrating molecule can assume the configuration cor­
responding to point P, which is common to both the potential curves 
of the excited states. Because there is a finite probability of transition 
from state EI to state E2 at this point, dissociation of the molecule can 
obviously occur, as the dissociation energy in the E2 state is (presumed 
to be) considerably lower than in the EI state. This transition occurs in 
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a shorter time than that required for one rotation or vibration, so that 
these motions cease to be quantized and a continuum appears on the 
absorption curve. In the case demonstrated in Fig. 13-38, the condition 
for formation of a continuum is that the energy used for the excitation 
should be equal to or greater than the energy represented in the figure 
by the line segment. 

a. 
W 

-I 

Fig. 13-38. Predissociation caused by 
crossing of the potential energy curves 
of the I st and 2nd excited states 

(EI> E2 )· 

s - T and T - T transitions. The absorption bands in electronic 
spectra generally correspond to singlet-singlet (S - S) transitions. S - T 
transitions (between the singlet ground state and the excited triplet state) 
are forbidden, because the expression J IXfJ dO", which has zero value 
(orthogonality of spin functions), appears in the spin part of the transition 
moment integral. The spin multiplicity rule is rigorous, so that S - T 
transitions are not observed under normal conditions. Only when the spin 
quantization is disturbed do these transitions become allowed. This can 
be achieved either by adding paramagnetic substances to the solution 
or by introducing a heavy atom into the vicinity of the substance whose 
spectrum is being measured. Among the available paramagnetic sub­
stances, radicals (for example NO) and also biradicals (for example 02) 
are frequently used. Either a heavy atom can be introduced directly into 
the studied substance as a substituent (for example, by transforming 
naphthalene into l-iodonaphthalene), or the spectrum of the studied 
substance can be measured in a solvent containing a heavy atom (for 
example, in ethyl iodide). This is termed the internal or external heavy 
atom effect. 

When a heavy atom is present the spin quantization is disturbed 
by spin-orbit coupling. When describing this interaction, a term must 
appear in the Hamiltonian resulting from relativistic quantum mechanics 
and has the form [cf. Eq. (4-88)] 

.Yt'(SL) = e9' [1', (13-97) 
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where It' and [/ are the angular momentum operators of the orbital 
motion and spin, respectively, and quantity ~ 'is connected with the type 
of potential field in which the electron moves. It suffices here to investigate 
the matrix elements of the corresponding operator (13-97) using simple 
AO's: 

Xn,l,m,s = R(n, 1) CP(r'), (13-98) 

where R is the radial and cP is the angular part of the AO and r' denotes 
angular momentum quantum numbers. The matrix elements can be 
factorized: 

<Xn,l,m,s 1.1f(SL) I Xn,l,m,s) = <R I ~ I R) < cP I It' [/ I CP) (13-99) 

The most important contribution appears to come from the first term 
and has the following form: 

, Z4 

~n,l ::::; n31(l + 1)(1 + 1/2) , (13-100) 

where nand 1 are the quantum numbers and Z is the atomic number. 
From this discussion, the significance of spin-orbit coupling with heavy 
atoms becomes apparent. 

In contrast to S - T transitions, T - T transitions are spin allowed. 
These transitions can be measured as follows: very intense radiation is 
employed to establish a relatively high concentration of the first excited 
triplet state in the studied substance specimen (by means of the Sl --+ T 1 

intersystem crossing) and the measurement of absorption spectrum is then 
carried out in the usual way. Since the excitation energy for many T - T 
transitions is usually smaller than the energy of the first S - S transitions, 
identification of the longwave T - T transitions causes no difficulties. 
It ought to be added that development of flash photolysis in the pico­
second region has recently enabled measurement of spectral transitions 
between the first excited singlet state and higher excited single states 

(S 1 --+ Sx transition). 
Electronic spectra and their interpretation in compounds of different 

structural types will form the subject of the following section. Although 
we are, in principle, interested only in molecular spectroscopy, it will be 
useful in connection with the transition metal complexes to begin with 
atomic spectroscopy. 

Selection rules for atoms are easily formulated. The following selec­
tion rules must be fulfilled (in addition to satisfying the condition ~E = hv) 
for the transition to occur: 

flJ = 0 or ±1; flMJ = 0 or ±1 

(for definition of the symbols, see Chapter 8). 
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Provided that there is no perturbing influence of the external field 
and that the excitation can be described by transition of an electron 
from one AO to another AO-and this is frequently permitted-the 
following condition must be fulfilled: 

~l = ±1 
For illustration, transitions in the sodium atom (1S2 2S2 2p6 3s1) will be 
discussed. Transitions of the 3s valence electron are most important for 
optical spectroscopy. The quantum number I can acquire values of 0, 1, 2, 
corresponding to the s, p and d orbitals. The states of the atom as a whole 
are therefore S, P and 0, respectively. In order to arrive at symbols for 
the states, numbers L must be vectorially summed with spin numbers S: 

atom. 

L 0 2 

5 1 1 1 
2 2 2 

J 1 1 3 3 5 
2 2'2 2'2 

25 + 1 2 2 2 

Symbol of state 2S 1/2 2p 1/2' 2p 3/2 203/2 , 205/ 2 

In Fig. 13-39 are depicted the electronic transitions in the sodium 

symbol 
of state 

electron 
configuration 

free electron 
o ------------- level 

..-2P3121 - 11171l r 
- 11181 =:::::;;::+: 2 P1l2 . 

- 12271l 2D3/2 j 2D5/2 

- 15709 
251/2 

- 24415 
- 24492 

-41449 

4p 

3d 

45 

3p 

35 

Fig. 13-39. The excitation energies of allowed and forbidden transitions are given by 

differences in the energies of the individual states and the energy of the Na + + e system, 

set equal to zero. Allowed transitions are indicated by arrows. 
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Table 13-5 
Colour of Hydrates of Ions [Me(H20)6]"+ In Aqueous Solutions of Sulphates and 
Perchlorates of Transition Elements 

Number of Number of unpaired MetaIlic ion Colour of 
d electrons electrons the solution 

0 0 K + , Ca 2 + , Sc3 + colourless 
Ti3+ pink-violet 

2 2 V3+ green 
3 3 Cr3+ violet 
4 4 Cr2 + blue 
5 5 Mn2+ pale pink 
6 4 Fe2 + green 
7 3 Co2+ pink 
8 2 Ni2+ green 
9 1 Cu2+ blue 

10 0 Cu +, Zn2 +, Ga3 + colourless 

w - -E9------j W 

f ----------------- ~ 1 + - -129----

0) b) 

Fig. 13-40. Electronic transition in an octahedral complex of an ion with one d electron. 
(a) Energy of one-electron functions (/ = 2, s = i), (b) the term scheme. 

The interpretation of the electronic spectra of complexes provides 
an important task for quantum chemistry; in addition, the strength of 
the ligand field can be determined from spectral data. It is evident from 
Table 13-5 that the octahedral complexes of transition metal ions absorb 
in different parts of the visible region. 

In systems where only one d electron on the central atom is exposed 
to the field of octahedral symmetry (Fig. 13-40), the relations are very 
simple. The Ti(H20)~+ complex is an example of a d l complex; in d9 

complexes (for example Cu2+) the relationships are very similar. The Cu2+ 
spectrum is somewhat more complicated than the very simple Ti3+ 
spectrum, as a significant splitting of the levels results due to the Jahn­
Teller effect. 

Fig. 13-41 demonstrates the absorption curve of the Ti(H20)~ + 
complex with one band at 20000 cm - I in the visible region. The model 
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of this complex can be treated better using ligand field theory, which was 
established by combination of the crystal field theory with MO theory. 
In addition to the electrostatic ion-ligand interaction, it also takes the 
covalent components of the chemical bond into account (cf. Section 10.6.3). 
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Fig. 13-41. Electronic 
absorption spectrum 

ofTi(H20)~ +. 

metal ion 
AD 

complex 
MO 

liqand 
orbital 

Fig. 13-42. Correlation diagram: formation 
of the molecular orbitals of a complex from 
the atomic orbitals of the metal ion and the 
orbitals of the ligand. 12 electrons are located 

in the molecular orbitals. 

To a first approximation, our discussion will be confined to assumin!! 
one non-bonding orbital with two electrons in each of the 6 water 
molecules (ligands) and five 3d, one 4s and three 4p orbitals. Combining 
these 15 orbitals yields 15 MO's. The symmetries of the individual 
orbitals (cf. Section 6.6) are given in Fig. 13-42. The T orbitals are 
threefold degenerate and the E orbitals twofold. Twelve electrons forming 
six 0" bonds occupy the following MO's: A 19 (2 el.), Tlu (6 el.) and Eg (4 el.). 
the thirteenth electron (d electron) is in the non-bonding Tzg MO; on 
excitation it passes into the anti-bonding Eg MO. The relationships in the 
d lJ system are equally simple. In the other cases the situation is more 
complicated and thus the discussion will be confined to a number of 
generalizations: 

a) The !J. value (energy difference between the TZg and Eg levels) 
is similar in complexes of a given ligand with ions of elements of the 
same series in the periodic table and of the same valence. 

b) The ~ value increases rapidly with increasing valence of the metal 
ion [!J.(Me2+) ~ 20000 em-I, !J.(Me3+) ~ 30000 cm-l]. 

c) The !J. value increases (in the corresponding complexes) by about 
30 % on going from complexes of metals of the first transition series 
to complexes of the second series. 
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d) Ligands can be arranged in a series according to the relative 
magnitude of the ~ values which they produce. This sequence does 
not depend on the ion studied (spectrochemical series): 

1-, Br-, Cl-, F-, C2 HsOH, H 20, NH3 , H2NCH2CH2NH 2 , NO~, CN­

(1- corresponds to the minimum and CN- to the maximum ~ value). 

3 :42u 

W 3 
Fig. 13-43. Interpretation of the 3p I----::J~-""T'"- Tju 

absorption spectrum of the V(ox)~- f 3 

complex. The 1st and 2nd transitions 3r ~-----.+-- T2u 

(corresponding to the ligand field 
strength J = 17 800 cm - 1) are 

indicated; ox denotes the dianion of 
oxalic acid. 

For ions with two d electrons the situation is more complicated. 
The energy levels are not influenced by the ligand field alone, but 
also by the interaction of the d electrons. The y3 + ion is a good 
example. For the reasons given above, the ground state is a 3F state 
which splits in the octahedral field into three states: A 2u' Tl u' T2u ' In the 
visible region two absorption bands with maxima at 17000 and 24 000 cm- I 

were observed experimentally in the Y(ox)~- spectrum. If a value of 
17800 cm -I is attributed to the ligand field "strength" (Fig. 13-43), the first 
two bands can be interpreted as 3T1u --. 3T2u and 3T1u --. 3T1u transitions. 
It is then evident that some transitions which are forbidden in the free 
atom are allowed in the complex. These are the following: 

a) Transitions connected with a change of spin multiplicity [2S. + 1] 
are forbidden, i.e. the number of unpaired electrons must not change 
during excitation. Weak interaction between the spin and the orbital 
moments of the electrons results in transition, which would be strictly 
forbidden otherwise, being slightly allowed (see above). For example, 
with dS complexes in a weak field all the transitions are spin forbidden 
and yet occur (of course, the c values are small, equalling about 
11 mol-I cm -lor less). 

b) All transitions between d orbitals are forbidden, as t.t.l = 0 
(the condition ~l = ± 1 is the Laporte selection rule). This rule applies 
to atoms in the gaseous phase; with ions of transition elements in 
complexes, a certain mixing of d orbitals with p and f orbitals occurs; 
then d - d transitions occur in these complexes (c is relatively small. 
t: < 50 I mol-I cm -I). 
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Table 13-6 
Positions of the First Intense Bands and Colour of Conjugated Hydrocarbons 

Substance 
I. b 

Colour" Substance 
Ie b 

Colour " 
nm nm 

Ethylene 163 a Benzene 207 a 
1,3-Butadiene 217 a Naphthalene 285 a 
1,3,5-Hexatriene 251 a Anthracene 375 a 
1,3,5,7-0ctatetraene 304 a Tetracene 471 orange-yellow 
1,3,5,7,9-Decapentaene 334 a Pentacene 580 violet 

a Letter a means colourless. 

b Position of the first absorption band. 
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Fig. 13-44. Dependence of the wave numbers of the maxima of intense bands in electronic 
spectra of conjugated hydrocarbons and ions on the HMO energies of the N -> V 1 transitions. 
Designation: 1- polyenes, 2- IX, w-diphenylpolyenes, 3 - benzenoid hydrocarbons, 4 - odd 
polyenyl cations, 5 - odd IX, w-diphenylpolyenyl cations, 6- tropylium and its benzoderivatives. 



363 

Some further examples refer to electronic spectroscopy of conjugated 
organic compounds. The position of the first absorption band, which often 
determines the colour of the compound, generally (but not always) 
shifts to the longer wavelength region as the size of the conjugated 
system increases (Table 13-6). 

It has been found that, for correlation of the positions of the 
first intense (longest wavelength) absorption bands in structurally related 
systems HMO data (the energy of N -+ VI transitions) can be utilized 
successfully. Fig. 13-44 demonstrates how carefully the structural types 
have to be considered. Extensive material on this subject is available in 
the literature. It is therefore sufficient to stress that deviation from the 
theoretically expected, simple, linear dependence between v (cm - 1) and 
E(N -+ VI) is caused by neglecting electron repUlsion in the HMO 
theory. If, instead of the HMO excitation energies, the values resulting 
from SCF theory are employed [the expressions for the excitation 
energy are given by Eqs. (13-87) and (13-88)], a single linear dependence 
between the experimental and calculated excitation energies, with a slope 
equal to one and passing through the origin of the coordinates, is 
obtained. 

Fig. 13-45. Absorption curve 
of naphthalene in ethanol. 

The positions of the first three 
absorption bands are indicated. 
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It appears, however, that sometimes not only the HMO theory 
but even the SCF theory (in the Pople approximation) fails qualitatively. 
This occurs when more excited state configurations correspond to the 
same energy, i.e., if they are degenerate. This situation can also be 
illustrated by the HMO data, for example, for naphthalene. Fig. 13-45 
shows its absorption curve in which three distinct regions (1, 2, 3) can be 
distinguished, which can be assigned intuitively to the transitions from 
the ground state to the 1st, 2nd, and 3rd excited singlet states. This 
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assignment is, of course, only tentative and its correctness can be 
decided only after performing the approximate calculations. 

In Fig. 13-46 the HMO orbital energies of naphthalene are given 
and the occupation of the individual levels is depicted for the ground 
state and for the four singly excited configurations of lowest energy; 
in addition the figure also depicts the relative energies of these con­
figurations, where the energy of the ground state is set equal to zero 
by convention. It is obvious that the If' 2 -+ _ 1 and If' 1-+ _ 2 configurations 
are degenerate. A diagram constructed using SCF data looks quite 
similar. It thus seems that the band at 310 nm corresponds to the 
If' 0 -+ If' 1-+ -1 transition, the band at 280 nm to the two If' 0 -+ If' 2 -+ - 1 ; 

If' 0 -+ If' 1-+ _ 2 transitions, and finally the band at 220 nm to the transition 
If' 0 -+ If' 2-+ _ 2' It is, however, readily seen from quantitative comparison 
of the SCF excitation energies, ofthe oscillator strengths and of polarization 
directions of the individual transitions with experimentally determined 
quantities that this assignment is incorrect. 
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Fig. 13-46. Occupation of HMO levels in naphthalene in the ground state and in the first 

four singly excited configu;ations. In the right-hand part of figure the relative energies 

of these four singly excited configurations with respect to the ground state are given. 

Eo, EI, _ I' E2 . - 1' E 1.- 2 , and E2. - 2 energies correspond to determinants .do, .dl' .d 2 , .d 3 , 

and .d 4 • 

This difficulty can easily be overcome if the original degenerate 
functions are substituted by linear combinations of functions. If denotation 
according to Fig. 13-46 is employed, we can write 

(13-101) 
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(13-102) 

Thus, interaction between the configurations of degenerate states is 
considered, termed corifiguration interaction (CI). CI between degenerate 
functions is termed first-order configuration interaction. Without consider­
ing this CI, interpretation of the electronic spectrum is, in general, 
difficult. Within the Pariser - Parr limited configuration interaction method, 
interactions between a certain number of singly excited configurations are 
assumed. If the SCF-MO expansion coefficients are used for evaluation 
of the matrix elements, it can then be shown (cf. Section 5.5) that the matrix 
element between the ground and singly excited state is zero, thus 

Fig. 13-47. Effect of configuration 
interaction on degenerate SCF 

excitation energies. (a) The very 
intense CI effect results in that the 
1--> l' transition does not correspond 
to the 1 st band in the spectrum of 
naphthalene. (b) Moderate CI effect 

in the spectrum of anthracene. 

CI 
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For naphthalene, the interaction of the configurations is manifested 
very dramatically (Fig. 13-47a). It appears that data thus obtained 
interpret the experimental spectrum perfectly. In other cases the influence 
of the first order CI is not conspicuously manifested. With anthracene, 
for example, the first intense band in the spectrum corresponds to the 
1 ~ -1 transition and the result of the CI calculation can be seen 
in Fig. 13-47b. 

Figure 13-48 compares the result of LCI-SCF calculations with 
experimental data for the non-alternant hydrocarbon acenaphthylene. 

A few words should be added on the use of the simple perturbation 
treatment for investigation of influence of introducing a substituent 
into the conjugated system. It can easily be shown that, for the energy 
change of the N ~ VI transition caused by a change (jail' of the Coulomb 
integral in the J.l position it holds that 
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Fig. 13-48. Comparison of LCI-SCF 
calculations with the absorption curve 

of acenaphthylene in hexane. 
Experimentally determined relative 
polarization directions (iI, 1.) of the 

transitions (measured by the 
fluorescence method) are noted on the 
individual absorption bands. Below 
the figure data on the theoretical 
polarization directions (<--t, t) related 
to the axis given in the formula 
and data on participation of the 
configurations in LCI wa ve functions 
are listed. The circle below number 

50 indicates 100% contribution. 

Table 13-7 
Values of &~# -Constants Characterizing the Inductive Effect of Substituents (in cm -1)" 

Substituentb Non-alternant Alternant Substituentb Non-alternant Alternant 
systems systems systems systems 

OH 13 780 CN -3330 -6710 
OMe 11 870 COOH -4750 -11 850 

NH2 13750 13 880 CHO -5420 -17280 

Cl 3540 5370 N02 -8710 

Br 2960 5480 N' -18750 -17500 

CH3 3290 4290 

• From 1. M. Murrell: The Theory of the Electronic Spectra of Organic Molecules, Methuen, 

London 1963, p. 254. 
b Inductive effect of substituent considered. 
, This nitrogen atom replaced one = CH - group in the conjugated system. 
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(13-104) 

where indices j and i denote the MO's into which and from which 
the transition of the electron occurs, respectively. Table 13-7 gives 
the numerical values of constants recommended by Murrell for estimation 
of the influence of the substituent on the position of the N -+ V 1 

transition; only the inductive effect of the substituent is assumed in 
this approximation. 

13.3.2 Luminescence phenomena 
(fl uorescence, phosphorescence) 

So far, processes during which the studied molecule accepts a quantum 
of energy and passes from a state of lower energy into various states 
of higher energy have beeen discussed. Now deactivation processes 
in the electronically excited molecule will be treated. These are two 
types: radiative (fluorescence, phosphorescence) and non-radiative (internal 
conversion). With fluorescence, the multiplicity of the state does not 
change during emission (for example, during the Sl -+So transition); 
with phosphorescence, the multiplicity of the state changes. The most 
important transition of this type is the T 1 -+ So transition. 

For emission of radiation, by far the most important states are 
the first two excited states, Sl and T l' Transition from higher excited 
states (Sx' Tx) into these states is very rapid and occurs without 
radiation (except for some rare exceptions, for example, the S2-+S0 
fluorescence in azulene). With molecules in the singlet ground state, 
the T 1 state always lies lower than the Sl state; thus the phosphorescence 

Sz -n..-t----'r­

Sl - $ •..... # 

transitions 
~ ...J...r-~"'" 

} 

fluorescence ,.-' 

"" ...... T1- T. 
T1 transitions 

\ ... phosphorescence 

Fig. 13-49. The generalized Jablonski diagram indicating allowed (--) and forbidden 
( -' -' -) transitions and non-radiating (~) absorption and emission transitions. 



368 

band appears at longer wavelengths than the fluorescence band. Schemes 
of different types of absorption and deactivation processes are shown 
in Fig. l3-49. Fig. l3-50 depicts the So, Sl and T 1 states. In the figure 
can be seen the reason for the frequently observed symmetry of the 
vibrational structure of the SO~Sl (SO~Tl) absorption and the Sl ~So 
(Tl ~So) fluorescence (phosphorescence). Measurement of the absorption 
and emission curves facilitates localization of the 0-0 vibrational 
transition. 

4-----
3 --.--...----
2 --r-r-+---
1--,r++-t---

v1- 0 T1THTrr~-----·-r-----

4~r+~r+,.r-----+~rT----
3~~+-~~~----+~~---
24-~+-~~----~~~---
14-~+-~-----~~----

~-O~~~~~~~L--r------------~'---~~----
So - S1 fluorescence phosphorescence 

absorption 

Fig. 13·50. Vibrational structure of absorption (So- S.) and emission (fluorescence, 
phosphorescence) transitions. 

The first excited singlet and triplet states have very different life­
times - for S 1 this is usually 10 - 9 to 10 -7 S and for T l' 10 - 4 to 10 s. 
Fluorescence quenching proceeds according to the law of the first-order 
reactions. For the relation between the half-life of the fluorescence state 
(tF) and the rate constant of fluorescence quenching (kF) it holds that 

(l3-105) 

The observed half-life of the Sl (t) state is usually the result of different 
deactivation processes: fluorescence, the Sl ~So non-radiative transition 
and transition between the Sl and T 1 states (intersystem crossing). The 
intensity of phosphorescence also decreases exponentially with time. 

The great difference between the lifetimes of the S 1 and T 1 states 
can be understood by considering the relationship between the lifetime to 
and a quantity related to the oscillator strength, Einstein's coefficient 
of spontaneous emission A2~ 1: 

A2~1 = CJedv=_1 , 
to 

(l3-106) 



where 
8 N2 2 

C = 1[;: n x 2.303 
A 
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and c is the velocity of light, " is the wave number of the emission 
maxim urn (cm - 1), n is the refractive index of the medium, I> is the 
molar absorption coefficient and N A is the Avogadro constant. The small 
values of integral f I> d" in the T 1 --+ So transitions explain the relatively 
long lifetimes of the T 1 states. 

The last quantity to be mentioned is the quantum yield (qJF' qJp), 

which is defined as follows: 

nF(hv) 
qJF = nA(hv) , 

np(hv) 
qJp = nA(hv) ' 

(13-107) 

(13-108) 

where nF (np) is the number of quanta emitted during fluorescence 
(phosphorescence) and nA is the number of quanta absorbed during 
the So --+ Sl transition. 

Provided that the studied system does not decay photochemically 
and that the quantum yield of internal conversion (through vibrational 
deactivation) is small, the balance condition can be written as follows: 

(13-109) 

Thus fluorescence and phosphorescence are obviously interrelated 
processes. 

Measurement of the absolute values of quantum yields is very 
difficult. Far easier and also very useful is measurement of the relative 
quantum yields, for example, using rhodamine B solutions. 

It is necessary to add that, while fluorescence is often observed 
even in solutions at laboratory temperature, phosphorescence appears 
under these conditions only exceptionally. Thus measurement is usually 
performed in solid "glasses" (solidified transparent mixtures of several 
solvents) at the temperature of liquid nitrogen. 

13.3.3 Photochemistry 

Excitation from the ground state into the Sand T excited states is 
usually accompanied by extensive electronic redistribution. This is of 
utmost importance for photochemistry which follows the fates of excited 
molecules mainly in the first singlet and triplet states. The relationships 
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Fig. 13-51. LCI-SCF molecular diagrams for phenol: ground state (So) and excited states 
(SI and TI)· 

in phenol are noteworthy: Fig. 13-51 depicts the molecular diagrams for 
the So, S 1 and T 1 states. The higher excited states are less topical since 
they change very quickly (during a time interval of the order of 10- 14 s) 
via non-radiative transitions into the S1 and T 1 states. It is evident from 
data on the electron densities, bond orders and free valences that the 
changes in the electron distribution are very deep-seated. In general. 
in spite of the short lifetimes of the excited states, they correspond to 
definite particles whose physical and chemical properties differ from the 
properties of the same molecule in the ground state. This difference is 
frequently so great that it is impossible to transfer empirical rules concerning 
ground states into the region of excited states. For the sake of illustration 
it can be added that the values of the dissociation constants change up to 
a million fold, dipole moments change by orders of magnitude (excitation 
is sometimes also accompanied by a change in the orientation of the vector of 
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the dipole moment) and centres ofnuc1eophilic substitution become centres 
of electrophilic substitution and vice versa. The relatively short lifetime 
of excited particles, of course, does not usually permit application of 
classical methods to the determination of physical properties, but, 
fortunately, a number of indirect procedures have been developed. 

More detailed data on lifetimes, deactivation processes and other 
characteristics are given in the chapter on emission phenomena. A few 
remarks should be added here on selected physical properties (geometry 
of the molecule, dipole moment, spectroscopy) and on the reactivity of 
molecules in the excited state (equilibrium and rate processes). 

If we start from the general expression for the dipole moment, it is 
obvious that calculation for the excited state is just as simple as for the 
ground state. The experimental determination is usually more complicated. 
If the molecules possess a sufficiently large permanent dipole moment 
(f.-l > 3. 10- 30 em) they become orientated in a strong electric field and 
this is manifested by dichroism. The quantity Lx can be defined as 
follows: 

M 1 
Lx = - -1- 2 . 3srE2 (13-110) 

where X is the angle between the vector of the electric component of the 
linearly polarized light (used for spectroscopy) and the direction of the 
external electric field, M/I is the relative change in the luminous 
flux density under the influence of the field, Sr is the relative permittivity 
of the medium and E is the intensity of the applied electric field. 
Quantity Lx is a rather complex function of the change in the dipole 
moment (which accompanies the transition from the ground to any 
excited state) and thus, when the dipole moment in the ground state is 
known, it can be used for calculation of the value in the excited states. 
This technique also permits calculation of the polarizability of the studied 
molecule in the excited states. 

With a fluorescing molecule, even modest experimental equipment 
suffices for determination of the dipole moment of the first excited 
singlet state. The difference between the absorption and emission maxima 
(~V) in media with different relative permittivities depends on the change 
in the dipole moment: 

A- - - 2~f(.~)2 
LlV = Va - Vf = -h 3 Llf.-l + const, 

ca 
(13-111) 

where ~f.-l = f.-lE - f.-lG (E and G are the indices of the excited and the 
ground states, resp.), h is the Planck constant, c is the velocity of light, 
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a is the effective diameter of a sphere with the volume of the molecule 
and for AI it holds that 

e - 1 n2 - 1 
~I = 2:r + 1 - 2n2 + l' (13-112) 

where er is the relative permittivity and n is the refractive index of the 
solvent. According to Eq. (13-111) the dependence of .::\V on AI is linear 
and Ap can he calculated from its slope: 

0.45 

0.39 

0.45 

0.49 t lD. l.w-JDCm 

0.42 

0.55 
0.90 0.72 

1.05 

Ii 
1.02 

0.40 

0.53 

Fig. 13-52. LCI-SCF molecular diagram of acenaphthylene in the ground state (So) and excited 
states (SI and T 1). The It-electron contributions to the dipole moment and the orientation 

of its vector are also given. 
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(13-113) 

or 
(13-114) 

It is evident from the molecular diagrams of acenaphthylene 
(Fig. 13-52) that during excitation significant changes in the bond 
orders, and thus also changes in corresponding bond lengths, occur. 
The general shape of large molecules is retained whereas with small 
molecules excitation is accompanied by a marked change in their 
geometry. For example, numerous triatomic linear molecules are bent 
in the excited state, for example CO2 : 

120 

o C'==::IO 
O.llbnm 

hv 0<:::>0 
(So and S1 are symbols for the ground and first excited singlet states). 

With ethylene the CH2 planes are rotated: 

In spite of the short lifetime of the first excited triplet state (mostly 
10- 3 to 100 s), it is possible to measure the electronic absorption spectrum 
of these excited particles. It is essential, of course, that the concentration 
of excited particles (population of the triplet state) increases sufficiently 
in the studied solution. This increase in the concentration must be achieved 
in a very short time; flash photolysis introduced by Porter is very suitable 
for these purposes. The principle of the device is quite simple (Fig. 13-53). 
Spectrophotometry is, of course, begun only after termination of the flash. 
The demands on the device recording the spectrum are considerable. 

Fig. 13-53. Principle of a device for 
measurement of T - T spectra. 

10 
spectro­
photometry 

flash 

test 
solution I' 
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Numerous bands in the T - T spectrum are intense, as they are spin-allowed 
transitions. In Fig. 13-54 the triplet - triplet spectrum of anthracene is 
given for illustration together with the results of the semiempirical 
calculation. It remains to be added that, using picosecond flash photolysis, 
the absorption spectra of molecules (benzenoid hydrocarbons) have been 
measured in the first excited singlet state, the lifetime of which equals 
about 10-8 s. The differences in the energies of the excited states 
calculated by the PPP method can be used both for analysis of ordinary 
electronic spectra (So--+Sx transitions) and for intepretation of Sl--+Sx 
transitions. 

250 40 30 20 10 
_ Y. fO-:tcm- t) 

Fig. 13-54. Triplet-triplet absorption 
curve of anthracene 

(ethanol-methanol, 113 K) 
and the result of the LCI-SCF 

calculation (1 denotes a forbidden 
transition). For comparison the 

So - Sx ( . .... . ) and So - T ( - . - . - ) 
absorption curves are also given. 

The lifetime of excited states is sufficiently long for the establishment 
of acid-base equilibria. Forster proposed a procedure which allows 
calculation of pK values in excited states (pK*) using a simple thermo­
chemical equation. Calculation of pK* requires knowledge of pK (in 
the ground state) and of the excitation energy for transition into the 
first excited state (position of the first absorption band) of the acid 
and the conjugate base. Assuming that the change in the entropy of 
protonation is the same in the ground and excited states (8S = 8S*). 
the relationship for the dissociation constants can be written in the form 

K* 8H - 8H* _ 8EAH - tlEA-

log/( = RT - RT (13-115) 

where 8EAH (8EA - ) is the excitation energy of the first transition of the 
acid (conjugate base); the other symbols have the usual meaning. 
Equilibrium constant K refers to the process 

AH ~ A- + H+ 

K= (13-116) 
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The form of Eq. (13-115) becomes clear if we represent the process 
graphically (the Forster cycle) (Fig. 13-55). The determination of quantities 
~H, ~EAH and llEA- causes no difficulties; the required ~H* value 
follows from the condition 

(13-117) 

The pK changes are usually so large that, for example, very 
weak acids (comparable to phenol) become as strong as the mineral acids. 

The easy oxidations and reductions in the excited states of many 
substances (photooxidation, photoreduction) can be explained simply. 

dissociotion in the E stote .. 

AH--"--

dissociation in theG state 

electronic 
excitation 

Fig. 13-55. The Forster cycle for calculation of pK in the excited state. 
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Fig. 13-56. Ionization potential and electron affinity in the ground (So) and excited (SI) states. 
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It can be seen from the one-electron scheme in Fig. 13-56 that the 
ionization potential (J) usually decreases and the electron affinity (A) 
increases on excitation, thus facilitating both oxidation and reduction. 

Transition to electronically excited states is generally accompanied 
by a decrease in the bond orders (overlap populations) and thus also 
by an increase in the free valences and, consequently, in the chemical 
reactivity (cf. Section 16.5.1), which concerns not only conjugated substances. 
The dimerization of acenaphthylene in the excited state with formation 
of substance (I) can be understood by considering the significant increase 
in the free valences 

~ 
~ 

(I) 

of atoms 1 and 2. More interesting, however, is the fact that the region 
around the five-membered ring becomes a centre for nucleophilic reactions 
in the excited state, whereas in the ground state it is a centre for 
electrophilic reactions. This change of centres is an almost general 
phenomenon. It seems that in experimental chemistry - with a suitable 
experimental arrangement - remarkable possibilities can be expected. 

Finally, it is worth mentioning that the N ~ V 1 excitation in the 
HMO approximation is equivalent to the simultaneous formation of radical 
anions and radical cations. This fact explains some of the striking 
similarities of the chemistry of radical ions and the chemistry of particles 
in the excited state. 
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14. MAGNETIC PROPERTIES 
OF MOLECULES 

In this chapter some magnetic properties of systems with closed electronic 
shells 1 - 4, namely, the magnetic susceptibility and the anisotropy of this 
susceptibility will be discussed very briefly. Proton behaviour under NMR 
conditions has already been mentioned (Section 13.2.4). 

The external magnetic field induces electronic currents of various 
types: atomic or interatomic and diamagnetic or paramagnetic. The 
sensitivity of a system to magnetization is expressed by its susceptibility, 
most frequently by the specific value of the susceptibility, xsp: 

(14-1 ) 

where (l is the density of the measured substance and x is the magnetic 
susceptibility. x is defined as follows: 

M 
X=-

H 
(14-2) 

In Eq. (14-2), M denotes the magnetization and H, the intensity 
of the external magnetic field; for the sake of simplicity it is assumed 
that the direction of the external magnetic field is identical with the 
direction of one of the axes of the Cartesian coordinate system. Thus 
the problem can be formulated using scalar quantities without decreasing 
the generality of the conclusions. The product of the specific susceptibility, 
xsp [Eq. (14-1)] and the relative molecular weight is referred to as the 
molar susceptibility xm • Depending on the x value, we speak of dia­
magnetism (about 10 - 5), paramagnetism (about 10 - 3) and ferromagnetism 
(10- 1 to 105). 

In organic substances diamagnetism (ignoring in this chapter the 
behaviour of paramagnetic substances, radicals, under ESR conditions) 
and in inorganic substances (more accurately, in complexes of the transition 
elements) paramagnetism will be of greatest interest. 

In the latter group of substances, the connection between the 
experimentally detectable molar susceptibility and the magnetic moment 
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Iler, which can be calculated from theoretical characteristics, is important. 
For atoms and ions, whose electronic systems are in a state defined by 
quantum number J, it holds for Xm (m3 mol-I) that 

N Ag2 J(J + 1) f3;/lo 
xm = 3kT ' (14-3) 

where N A> k and T have the usual significance, f3e is the Bohr magneton 
[cf. Eq. (13-41)], 

(14-4) 

/lo is the permeability of a vacuum and 9 is the Lande factor.* If expression 
9 J[J(J + 1)], which is the effective magneton number, is denoted by 
/ler = Illef I, then Eq. (14-3) can be written in the form 

N 132 " X = Aero /l2 
m 3kT ef (14-5) 

However, it appears that the measured values never correspond to 
expression (14-5), due to cancelling out of the orbital contributions 
under the influence of the crystal field; consequently, /lef is usually 
described by a simpler expression, 

/ler ~ gJ[S(S + I)J = 2J[S(S + I)J, (14-6) 

which can easily be enumerated provided that the number of unpaired 
electrons in the atom is known. In the general case, however, quantum 
numbers Land S must be considered and thus the quantum mechanical 
rule for calculation of the magnetic moment of the electron in the free 
ion takes the form 

(14-7) 

where the AO, Xi' describes the state of the electron in the ion and 
the one-electron operator Il represents the vector quantity Il = L + 25. 
From deviations between the experimental values of the magnetic 
moments, and those calculated from expression (14-6), conclusions on 
the geometry of the studied systems can be drawn. 

Magnetic moment Il is induced in a substance placed in a static 
magnetic field of intensity H; the proportionality constant is the specific 

* This factor can be simply expressed for the free ion assuming the validity of 
R ussell- Saunders coupling in terms of its quantum numbers (L, S, J): 

_ 1 J(J + 1) - L(L + 1) + S(S + 1) 
g - + 2J(J + 1) 
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susceptibility (m being the mass of the specimen): 

(14-8) 

In Eq. (14-8), the possibility of different orientation of the substance 
with respect to the external field is taken into account. The magnitude 
of this moment can be determined, using a Gouy balance (Fig. 14-1), 
from the difference in the weight of the specimen with and without the 
external magnetic field. The greater the susceptibility of the specimen, the 
greater is the strength holding the specimen in the magnetic field. 
The balance is calibrated using substances whose susceptibilities are 
known with sufficient accuracy, for example, cupric sulphate or water. 
The molar susceptibility of molecules can be measured in the direction 
of the principal axes of the molecule, i.e. quantities xmx ' xmy and Xmz 

if x, y, and z denote the principal axes of the molecule. For simplicity 
these quantities will be denoted xx' Xy and xz • 

Fig. 14-1. Measurement of magnetic 
moment. Magnetic poles: N, S. 

The Pascal Constants "A of Selected Elements 

Atom 
xA ·I06 .(41t) - 1 

cm 3 mol 1 

H -2.93 
C -6.00 
N (aliphatic) -5.57 
N (cyclic) -4.61 
N (amide) -1.54 
N(imide) -2.11 
o (alcohol, ether) -4.61 
o (aldehyde, ketone) +1.72 
o (carboxyl, ester) -3.36 

Table 14-1 

Atom 
"A ' 106 . (41tr I 

cm3 mol t 

B -7.0 
F -11 .5 
CI -20.1 
Br -30.6 

S -15.0 
Se -23.0 
P -10.0 
Li -4.2 

Na -9.2 

Pascal showed that the molar susceptibility of substances can be 
expressed as the sum of the atomic susceptibilities, bond susceptibilities 
and structural contributions (Tables 14-1 and 14-2): 

(14-9) 

where A. are the Pascal structural parameters (Table 14-2). This equation 
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The Pascal Structural Parameters A 

Atom; bond 

-c""c-
"'" I I / 
/C=C-C=C"", 

-N=N-

-C""N 

Cacom. (in one cycle) 

Carom. (in two cycles) 

Carom. (in three cycles) 

A. 106 • (41t)-1 
cm3 moll 

+5.5 

+0.8 

+10.6 

+ 1.8 

+0.8 

-0.24 

-3.1 

-4.0 

Atom; bond 

~C-CJ 
/' 

~C-Br 
/' 

C3(11, 1', D, a)a 

C4(11, 1', D, a)a 

C3(P), C4 (P)a 

C (cyclic: 3) 

C (cyclic: 4)b 

C (cyclic: 5)b 

C (cyclic: 6)b 

Table 14-2 

A. 106 • (41t)-1 

cm3 moll 

+3.1 

+4.1 

-1.3 

-1.55 

-0.5 

+4.1 

+3.05 

-0.98 

+0.86 

a Cj (l1) denotes the carbon atom in the 11 position (with respect to oxygen) bonded 
to i other atoms (except for hydrogen, which is not considered). 

b In parentheses: number of carbon atoms in the non-aromatic cycle. 

has been used for structure elucidations. It is applicable when several 
structures which correspond to sufficiently different values of xm [calculated 
using Eg. (14-9)] can be attributed to a certain substance (whose 
experimental Xm value is known); that structure is considered most 
probable for which there is the best agreement of xm,exp with xm [Eg. (14-9)J. 
A considerable increase in the diamagnetic susceptibility and high 
anisotropy are typical for delocalized cyclic compounds. A peculiarity 
arises in that the absolute values of xm calculated for conjugated (aromatic) 
compounds for a single Kekule structure are much smaller than the 
experimental values. In benzene, for example, the values 
-503.1O- 6 cm3 mol- 1 and -691.1O- 6 cm3 mol-1, respectively, have 
been found. The anisotropy of the diamagnetic susceptibility L\xm of 
a planar molecule is defined as follows: 

(14-10) 

where Xz denotes the molar susceptibility in the direction of the axis 
perpendicular to the plane of the planar molecule. With benzene the 
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value of ~xm is approximately equal to -754. 1O- 6 cm3 mol- 1 ; in 
polynuclear benzenoid hydrocarbons the anisotropy values increase with 
increasing size of the molecule. In general, there is a parallel between 
these quantities and the respective delocalization energies. Pauling 
interpreted large anisotropy values (as well as large susb'Cptibility values 
in conjugated hydrocarbons) by suggesting electron flow between centres 
of the conjugated system under the influence of the external field. 
If an external magnetic field of intensity H is applied in the direction 
of the z-axis [Eq. (14-10)] directed upwards from the benzene ring, 
then the induced ring current flows clockwise (Fig. 14-2) around the 
.:-axis. To this ring current corresponds an induced moment that is 
also oriented in the direction of the z-axis but in the opposite sense. 
The extraordinary high anisotropy values in planar conjugated molecules 
can be explained by noting that to this induced moment corresponds 
a susceptibility (which represents the contribution to the "original" value) 
oriented perpendicular to the ring plane. 

Fig. 14-2. Orientation of external 
magnetic field H and direction 

of induced circular current. 

z 

To study the quantitative behaviour of an electron under the 
influence of an external magnetic field, it is necessary to use a Hamiltonian 
in the form of Eq. (14-12) (where A is the vector potential) in place of 
-the former Hamiltonian ;Y{' [Eq. (14-11)]: 

;Y{' = 2~ (2~i V Y + "Y (14-11) 

;Y{' = _1_(~ V + ~A)2 + "Y 
2m 2m c 

(14-12) 

The vector potential A is connected with the intensity of the magnetic 
field H by the relationship 

H = rotA (14-13) 

Using the thus-defined Hamiltonian, secular equations modified with 
respect to the external magnetic field can be obtained by a rather 
complicated procedure. The expression for the HMO orbital energies 
kj (E j = (J. + kjP), applicable to cyclic polyenes (the dashed quantities 
correspond to a molecule exposed to the external field), can be given 
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in the form 

kj = 2P cos [~ U + f)], (14-14) 

whereas, for cyclic polyenes in the absence of an external magnetic 
field, the usual expression is valid: 

21tj 
kj = 2pcos-, (14-15) 

m 

1 
._ /±T(m-1)fOrOddm 

where.J - 0, ± 1, ±2, ... "'" 1 
± Tm for even m 

For f in Eq. (14-14) it holds that 

f =~B 
h ' 

(14-16) 

where e is the elementary charge, h is the Planck constant, S is a quantity 
which has the dimension of area and B is the induction of the external 
magnetic field. By substituting numerical values into Eq. (14-16) a value of 
f ~ 10- 4 is obtained for a field of induction 1 T, which is obviously 
a very small value. 

The magnetic moment in a system with spin S, which has n 
unpaired electrons, is given for compounds of the transition elements 
by the simple expression 

fJ. = 2~[S(S + 1)] Pe = ~[n(n + 2)] Pe , (14-17) 

in which Pe is the Bohr magneton [Eq. (14-4)] and n is the number 
of unpaired electrons. The simplicity of expression (14-17) for fJ. results 
from the fact that, in these compounds, the contribution originating 
from the orbital motion of the electron is often negligible, so that it is 
sufficient to include only the spin contribution. The molar magnetic 
susceptibility xm can be determined from the magnetic moment: 

fJ.2 
xm = 3kT fJ.o N A (14-18) 
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15. THERMOCHEMICAL PROPERTIES 
AND MOLECULAR STABILITY 

15.1 Heats of formation and atomization 

The enthalpy of formation of one mole of compound AmBnCo from its 
elements under standard conditions is called the heat of formation (~.Hf): 

(15-1) 

The enthalpy of elements in their standard state is taken to be zero by 
convention. The standard state is the stable state of elements at a pressure 
of 101 kPa at the reaction temperature. For the formation of carbon 
dioxide from carbon and oxygen [Eq. (15-2)], molecular oxygen is 
considered to be the standard state of oxygen and graphite is the standard 
state of carbon. If the temperature is not stated, the data are considered 
to refer to 25°C. 

tlHf = -389.79 kJ/mol, (15-2) 

where (s) denotes the solid and (g) the gaseous state. 
Care must be taken when comparing these experimental quantities 

with the theoretical values, as the quantities obtained directly from the 
theoretical data are the heats of atomization (bonding energies). These 
heats are obtained from the total energy of the system by subtracting 
the energies of the isolated atoms. It is obvious, therefore, that the 
calculated heat of atomization must be reduced by the energy required 
for atomization of elements in the standard state; in other words the 
heats corresponding to the formation of the elements from the atoms 
must be subtracted. 

Theoretical calculation of the heats of formation is one of the 
most important tasks of quantum chemistry. The heats of formation of 
substances of different structural types can not yet be calculated with 
"chemical accuracy", i.e. accuracy which permits calculation of re­
action enthalpies which are suitable for calculation of sufficiently ac­
curate equilibrium constants (a plausible assumption is adopted that 
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the accuracy of the entropy values is not critical). The situation is, 
however, not as unfavourable as it might seem. All valence electron 
methods which take into account electronic and nuclear repulsion must 
be considered primarily. The EHT method is not suitable for these 
purposes; adapted versions of the CNDO method, on the other hand 
(for example, the Dewar MINDOj2 and MINDOj3 methods), afford 
promising results. For illustration, Table 15-1 compares a number of 
calculated and experimentally determined heats of formation. 

Satisfactory agreement between theory and experiment has been 
achieved with a number of conjugated compounds. For the heat of 
atomization of the conjugated hydrocarbon at temperature T [K] the 
relationshipl 

(15-3) 

is valid, where Wb is the n-electron contribution to the total binding 
energy of the molecule, Nc and NH are the number of C-C and C-H 
bonds in the hydrocarbon and D~c and D~H are the empirical energies 
of the C - C and C - H a-bonds (i.e., a-bonds in conjugated compounds). 
It is thus assumed that the C - C and C - H a-bonds can be described 
by universally applicable values, in agreement with the older finding that 
the heats of formation of aliphatic hydrocarbons can be calculated very 
accurately using the group contribution method. The empirically deter­
mined values of these energies amount to 3.812 eV for D~28 and 4.432 eV 
for D~~8. In more accurate calculations, however, the hybridization of the 
carbon atoms must not be ignored, because, for example, the difference 
in the energies of the C(Sp2) - Hand C(Sp3) - H bonds amounts to more 

Table 15-1 
Heats of Formation (in kJ/mol) Obtained in Experiments and by Calculation Using 
the Dewar Method MINDO/2 (25 °C) 

Substance Experiment 

H2 O -242 
CO2 -394 

NH3 -46.1 
CH4 -74.9 
Ethane -84.6 
Ethylene 52.3 
Acetone -216 
Nitromethane -51.1 
Aniline 87.1 

Calculation 

-247 
-389 
-46.9 
-67.8 
-90.9 

61.1 
-237 
-62.0 

99.7 

Relative error 

% 

- 2.0 

+ 1.3 
-1.7 

+10.5 
-6.9 

+14.4 
-8.9 

-17.6 
+12.6 
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than 8 kJ/mol. Some authors have calculated the energies of C - C bonds 
using the empirical relationship between this energy and the length of the 
C-Cbond. 

For the 1t-electronic binding energy, Wb , the relationship 

(15-4) 

is valid, where W is the total energy of the system of n 1t-electrons, - U" is 
the ionization potential of carbon atom in the valence state and Ecr is the 
repulsion energy of the positively charged cores. The enumeration of 
Eq. (15-4) is extremely simple on the HMO level, because the ionization 
potential has the value IX and Ecr is neglected; for the total energy 

~ 
(q" == P ",,) we have 

n 

W= L q,,1X + 2L'i,P"./3 = nIX + 2'i,'i,P"vP (15-5) ,,= 1 ,,<v ,, < v 

and for the binding energy we have 

Wb = -(nIX + 2'i,'i,P"vP - nIX) = -2'i,LP"vP (15-6) 
,,<v ,,<v 

The corresponding SCF expression (Pople) is, of course, more compli­
cated, but can be derived in a similar manner: 

Wb = - [2'i,LP"vP + ~ 'i,q;'Y"" + LL(q" - l)(qv - l)y"v-
IJ<V IJ<V 

- ~ L'i,P;v'Y"v] (15-7) 
,,<v 

The meaning of the symbols is the same as in Chapter 10. 
When the HMO estimation of the 1t-electron energy is sufficiently 

accurate (planar, conjugated, alternant systems, mainly benzenoid hydro­
carbons) the -AHa values calculated by the HMO and SCF methods 
differ only slightly. In systems with a single Kekule structure (for instance, 
in polyenes or fulvenes) calculation of Wb by both the HMO imd the Pople 
SCF method is dubious. In such cases the molecular geometry must be 
duly considered and only methods in which the dependence of P:v on the 
bond length is properly taken into account lead to good results. 

15.2 Delocalization energies 
of conjugated compounds 

The delocalization energy is a quantitative measure of the extent of 
delocalization of the 1t-electrons and thus also an indicator of "aromaticity". 
The question of aromaticity will not be discussed in detail here. However, 
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it should be mentioned that for years incorrect and confused ideas have 
been held in this field; one of them will be mentioned later. 

For calculation of delocalization energies from experimental data 
one of the two methods described below is usually used. The first (more 
accurate but seldom applied) compares the heat of hydrogenation of the 
conjugated molecule with the heat of hydrogenation of a fictitious molecule 
which has the same number of double bonds which, however, are not 
conjugated. The second method is based on comparison of the heat of 
formation calculated from the heat of combustion with that calculated 
by summing up the bond energies. The difference between the two heats 
of formation gives the experimental de localization energy. 

Before the MO delocalization energies (see Chapter 11) are compared 
with the values obtained from experimental data, it must be noted that 
the experimental delocalization energy (for example, for benzene) charac­
terizes the difference between the energy of benzene (I) and localized 
(fictitious) structure II. 

o o o 
II III 

This follows from the fact that the empirical contributions used in 
the calculation were obtained from the data for paraffinic and oleofinic 
hydrocarbons. The MO delocalization energies, in turn, characterize the 
energy difference between form I and fictitious form III, which is cyclo­
hexatriene with a uniform (benzene) bond length. The delocalization energy 
of the form III is called the vertical energy. In order to calculate these 
energies from experimental delocalization energies, it would be necessary 
to know the energy which would have to be supplied to system II for 
its conversion to system III. This is the energy required for shortening 
the single and elongating the double bonds of structure II to a uniform 
(benzene) bond length. This is called the distortion energy. Its values are 
not commonly available but there appears to be a close correlation 
between the MO and the experimental delocalization energies, as the 
distortion energies increase roughly parallel to the delocalization energies. 
Correlations between calculated and observed values afford the possibility 
of using the HMO delocalization energies for systems in which the 
approximations of the HMO method are justified. Generally, however, 
methods in which the molecular geometry is considered in more detail 
than in the HMO method and in the simple SCF method, i.e. methods 
containing the pc variation (Fig. 15-1), must be used. 
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Fig. 15-1. Dependence of experimental delocalization energies on (a) HMO quantities, 
(b) SCF quantities (including pc variation). Symbols: 0 alternant hydrocarbons and their 

derivatives; e non-alternant hydrocarbons with only one Kekule structure. 

For years, the opinion that the delocalization energy is a measure 
of the aromaticity of a molecule has prevailed. Chemists generally under­
stand the concept of aromaticity to refer to the stability of conjugated 
compounds in the sense of being a sort of "unwillingness" to react (in the 
sense which is characteristic for benzene). This "unwillingness" depends, 
of course, on the kinetic stability and not on the thermodynamic stability. 
The essence of this controversy lies in the fact that the delocalization 
energy is a thermodynamic characteristic which, in principle, gives no 
information on the height of the energy barriers (activation energies) for 
different reactions. It has been found empirically that systems with large 
delocalization energies often have large localization energies (cf. Section 
16.5.1) in the individual positions and are thus also kinetically stable. 
Consequently, delocalization energies have frequently yielded correct 
estimates of the kinetic stability of molecules. 

15.3 Stabilization of coordination 
compounds 

The difference between the energy of the free ion and the ion in the 
complex is called the stabilization energy (CFSE, crystal field stabilization 
energy). Accurate calculation using the method of configuration inter-
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Fig. 15-2. Splitting of degenerate d levels in fields of different symmetry and different strength. 

weak 

/ 
field 

\ 
strong 

--
+++-

+ + Eq 

+ + +T2q 

0 ~------------~~~-----
-- -- Eq 

+-++ 
Fig. 15-3. Occupation of the T2g and E.levels by electrons in weak and strong octahedral fields. 

actions is computer-time-consuming; however, the one-electron approach 
in terms of the simple crystal field method also leads to useful results. 

The most important types of complexes, octahedral and tetrahedral 
complexes, will be discussed (Fig. 15-2), along with complexes with strong 
and weak ligand fields (complexes with low and high spins). In complexes 
with a strong field the splitting of the d orbital levels (,1 = lODq) is 
relatively large and thus the levels with lower energy are occupied first. 
Conversely, if the splitting of the levels is small, they are occupied, as 
far as possible, by only one electron per orbital, corresponding to a high 
spin complex (cr. Section 10.6.2). For illustration, octahedral d3 and d 5 

complexes will be discussed (Fig. 15-3). In both d3 complexes the stabiliza­
tion energy amounts to -12Dq. In the second example, in the d5 

complex the conditions are quite different. If the 10Dq value is large, 
configuration T S is preferable, corresponding to a doublet; the stabilization 
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energy amounts to - 20Dq (5 x 4). In turn, if the value of 10Dq is small 
then the complex exists in the T3 E2 (sextet) configuration and the 
stabilization energy equals zero: the energy gain corresponding to three 
electrons located in the T2g orbitals is compensated by the loss of energy 
induced by the occupation of the Eg orbitals by two electrons. 

This conclusion can easily be generalized and the stabilization 
energy in octahedral complexes with n d electrons, of which x are in 
the T2g orbitals, can be expressed by the relationship 

L\E(CFSE) = - [4x - 6(n - x)] Dq 

Analogously, for tetrahedral complexes it holds that 

L\E(CFSE) = [6(n - x) - 4x] Dq 

(15-8) 

(15-9) 

In Tables 15-2 and 15-3 the stabilization energies of octahedral and 
tetrahedral complexes are given. The more correct procedure requires that, 
in complexes with low spin, an additional term be considered in the 
expressions for the stabilization energy, corresponding to the spin pairing 
energy. 

The stabilization energies obtained can be employed in the solution 
of thermodynamic and kinetic problems. The former can be illustrated 
by the heats of hydration of the ions of the transition metal elements; 
the latter is mentioned in the next chapter. 

Table \5-2 
Stabilization Energies (CFSE) of Octahedral Complexes Expressed in Multiples of Dq 

Number of 
d electrons 

I 

2 
3 
4 
5 
6 
7 
8 

9 

Complexes 

with high spin 

configuration 

Tl 
T2 a 

T3 
T3El 
T3E2 
T4E2 
T5E2 a 

T6E2 
T6E3 

CFSE 

-4 
- 8 

-12 
-6 

0 
-4 
-8 

-12 
-6 

with low spin 

configuration CFSE 

Tl - 4 
T2 -8 
T3 -12 
T4 -16 
T5 -20 
T6 -24 
T6El -18 
T6E2 -12 
T6E3 -6 

a The more accurate CI calculation leads to a value of - 6 to - 8Dq ; this more correct 
description shows that further configurations playa role in the ground state. 
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Table 15-3 

Stabilization Energies (CFSE) of Tetrahedral Complexes Expressed in Multiples of Dq 

Number of 

d electrons 

2 
3 

4 
5 
6 
7 
8 

9 

Complexes 

with high spin 

configuration 

EI 
E2 
E2T1a 

E2T2 
E2T3 
E3T3 
E4T3 
E4r a 

E4T3 

a See the note to Table 15-2. 

CFSE 

-6 
-12 
-8 
-4 

0 
-6 

-12 
-8 
-4 

with low spin 

configuration CFSE 

EI -6 
E2 -12 
E3 -18 
E4 -24 
E4TI -20 
E4T2 -16 
E4T3 -12 
E4T4 -8 
E4T3 -4 

By plotting the heats of hydration of divalent or trivalent ions, for 
example, in the series Ca2+ ... Zn2+ against the number of d electrons, 
in place of the linear dependence a curve with two extremes is obtained. 
If, however, the stabilization energies of the individual complexes are 
subtracted from the heats of hydration, the expected simple dependence 
is obtained. 
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16. CHEMICAL REACTIVITY 

16.1 Introductory comments 

Although theoretical studies of various physical properties of inorganic 
and organic compounds have been of particular interest in recent years, 
it is nevertheless evident that the theory of chemical reactivity is (in a 
narrower sense) the most important theory in chemistry 1 -11. 

Chemical reactivity includes both equilibria and the rates of processes. 
It should be noted that this part of the theory of the chemical bond has 
not yet been treated in sufficient detail. Although a great many experimental 
studies are published every year on equilibria and the rates of chemical 
processes, the amount of suitable and well-defined experimental data 
available for theoretical purposes is still small. 

theory of equilibrium ond rote processes 
I 

16.3 theoretical approach 

. I. 
qual,tatlve. 
conSiderations 

calculations of the absolute 
values of equilibrium and 
rate constants 

I 

I . 
quaqtitatlv.e 
conSiderations 

I 

16.4 calculations of relative 
equilibrium and rote 
constants 

calculations concerning 
both substrate and 
reagent 

calculations concerning 
only t~~ su.bs~rate 
(reactivity Indices) 

Fig. 16-1. Survey of approaches discussed (the numbers denote the sections of this chapter). 
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Analysis of the present state of the theory of chemical reactivity is 
comparatively complex and therefore the individual aspects will be 
discussed according to the arrangement in Fig. 16-1. 

Most topical from the theoretical point of view are attempts to 
calculate the absolute values of equilibrium and rate constants. In order 
to give a relatively wide survey of present possibilities and trends, also 
the calculation of relative values will be discussed in greater detail and, for 
the sake of completeness, empirical procedures and more recent theoretical 
methods, which might find wider use in the future, will also be mentioned. 

in the gaseous" 
phase 

reaction 

in solution 

a 

Fig. 16-2. State of theoretical studies 

in the field of chemical reactivity. 
a - Absolute values of equilibrium 

constants can be calculated. 
b - Regions which look promising for 

simple reactions. c - Calculations of 
absolute rate constants will be feasible 
only in the future; progress depends 

on advances in regions sub b. 

Before discussing the individual theories, it should be noted that 
the difficulties encountered when dealing with the rates of processes are 
qualitatively greater than with equilibria. The situation is similar when 
passing from the gaseous phase into solution; it has so far bet!n very 
difficult to calculate solvation energies, but now the outlook in this field 
is relatively favourable. The most topical field in chemistry, the kinetics 
of reactions in solutions, is, unfortunately, the most complicated from the 
theoretical point of view. The situation is surveyed in Fig. 16-2. The 
growing difficulty of theoretical processing is expressed by a darker shade 
for the corresponding field. 

Whereas the procedure to be employed in the calculation of equili­
brium constants in the gaseous phase (see below) is now clear, the 
calculation of the rate of processes is rather complicated. There are 
several theoretical possibilities and it is not always easy to decide which 
to choose. The procedures used so far can be divided into two large 
groups; those which use energy hypersurfaces and those which do not use 
them. At present only methods of the first group can be employed for 
numerical calculations. They can be divided according to whether an 
equilibrium between the reactants and the activated complex is assumed 
(relatively long-lived complexes; the theory of absolute reaction rates) 
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or not (short-lived intermediate complexes; direct processes). Although 
there have been certain objections to the theory of absolute reaction 
rates, it is at present the only theory suitable for quantitative studies of the 
reactions which are of the great interest to chemists. 

In the following sections the above-described classification will be 
employed. 

16.2 Empirical approach 

A relatively large number of empirical relations have been described, 
which, for some reactions in compounds of certain structural types, 
enable correlation of experimental equilibrium and rate constants, or of 
another quantity connected with them 12 - 18 . Relations of this type are 
only marginally interesting here; nevertheless, they are worth mentioning 
since they have · played a very interesting role in the last three decades, 
especially in organic chemistry, and they cannot be considered to have 
been surpassed in application even from the point of view of recent. 
theoretically better founded, procedures. They have not much in common 
with the actual, physically based theory, however. 

............ qHi ~--------- FUNCTTONAL GROUP 

:x: ~--------- SUBSTITUENT 

One of the oldest and probably also most important of these 
empirical equations is the Hammett equation; Hammett observed that 
a straight line is obtained when the logarithms of equilibrium (or rate) 
constants for one series of m-substituted and p-substituted benzene 
derivatives are plotted against data for another series. Functional groups 
and substituents which influence the property of the functional group 
will be distinguished. These are, of course, relative concepts; when studying, 
for example, the acidity of m-substituted and p-substituted benzoic acids, 
the carboxyl group is the functional group and the second group bonded 
to the benzene nucleus is a substituent. In Fig. 16-3 the original 
Hammett dependence14 between logarithms of the rate constants for the 
hydrolysis of the esters of the benzoic acids [alkaline hydrolysis of ethyl­
benzoates, 87.8 % ethanol, 30° C; Eq. (16-1)] and for the dissociation 
of the benzoic acids [water, 25° C; Eq. (16-2)] is depicted. 
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Fig. 16-3. Dependence of the 
logarithms of the rate constants for 

the hydrolysis of the esters of 
substituted benzoic acid on the 
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m- and p-substituted derivatives (0), 

o-derivatives (hatched area), 
aliphatic compounds (dotted area). 

A)--coos + C2HsOH 

(16-1 ) 

Aroe + uo 
(16-2) 

The reactions studied occur on the side chain. For the dependence given 
in Fig. 16-3, the relationship 

log ki = Q log Ki + A (16-3) 

is valid, where ki (Ki) denotes the rate (equilibrium) constant of reaction 
(16-1) or (16-2) for the i-th substituent and ko (Ko) are similar quantities 
for reference substances which are un substituted derivatives, i.e. benzoic 
acid and its ethyl ester; Q and A are constants. The expression Q log Ko 
is added to and subtracted from the right-hand side of Eq. (16-3): 

(16-4) 

The expression (A + Q log Ko) is equal to log ko and it is therefore valid that 

(16-5) 

where kj refers to the rate of ester hydrolysis. Hammett demonstrated 
that Eq. (16-5) is satisfied (with different values of constants Q) for many 
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series of equilibrium and rate data; apparently a reaction series can be 
chosen and then employed as reference series; in all further correlations 
the data for this series will serve as "universal constants". The dissociation 
constants of the benzoic acids (water, 25° C) were chosen for this purpose; 
the expression log K j - log Ko is then denoted a. Thus, Eq. (16-5) can 
be written in the form 

K . 
log_1.. = (!a 

Ko 
(16-6) 

Quantity a is called the substituent constant and its value depends upon 
the nature of the substituent and is independent of the reaction. (! is 
referred to as the reaction series constant and applies for all substituents 
and depends on the given reaction series. Examples of values of these 
constants are given in Tables 16-1 and 16-2. 

The Taft equation!7 is applied for similar correlations in aliphatic 
series and has the same form as the Hammett equation: 

K . 
log _1.. = (!*a* 

Ko 
(16-7) 

Table 16-1 

The Hammett Substituent Constants [Ref. 15] 

Substituent O'm O'p Substituent O'm O'p 

-N(CH3)2 -0.211 -0.83 -Cl 0.373 0.227 

-NH2 -0.16 -0.66 -Br 0.391 0.232 

-OCH3 0.115 -0.268 -CHO 0.381 1.13 

- CH 3 -0.069 -0.170 -CN 0.678 0.660 
-H 0 0 -COOCH3 0.37 0.45 

-F 0.337 0.062 -N02 0.710 0.778 

Table 16-2 
The Hammett Constants of Reaction Series (Equilibrium and Rate Data) [Ref. 14] 

Reaction !! log Ko 

Alkaline hydrolysis of ethylbenzoates, 87.8 % ethanol, 30 °C 2.498 -3.072 
Ionization of phenols, H20, 25 °c 2.008 -9.941 
Acid hydrolysis of benzamides, H20, 100 °c 0.118 -3.513 
Solvolysis of benzoylchlorides, ethanol, O°C 1.529 -4.071 
Reaction of ani lines with dinitrochloronaphthalene, ethanol, 25 °C -3.690 -1.641 
Reaction of phenyldiethylphosphines with ethyliodide, acetone, 

35 °C -1.088 -3.286 
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The meaning of the quantities is similar to those in Eq. (16-6); 0'* charac­
terizes the polar influence of the substituent. An additional term is 
introduced into Eq. (16-7) in order to describe the steric effect. 

A linear relation 18 has also been used for the correlation of bio­
logical activities; the "rx{J equation" is used for correlation in aliphatic 
series when a physical process determines the activity (for example, the 
partitioning of biologically active substances among various components 
of the biophase, passage through the cell wall): 

't'. 
log-' = rx{J, 

't'o 
(16-8) 

where 't'i is the biological activity of the i-th member of the series, {J is the 
constant of the i-th substituent and rx is a constant characterizing the 
respective biological system. 

16.3 Theoretical approach 

Here procedures which lead, at least in principle, to absolute values of 
equilibrium and rate constants will be treated. Initially, however, a proce­
dure which determines qualitatively (or semiquantitatively) whether or not 
a particular reaction can be realized under the given conditions will be 
discussed. Application of such a procedure also indicates the changes 
which have to be made in the reactant in order to make the reaction 
(which under the originally chosen conditions seemed impossible) more 
probable. 

16.3.1 Qualitative considerations 

If a given chemical transformation which does not occur spontaneously 
sufficiently rapidly under normal laboratory conditions (laboratory tem­
perature, pressure of about 100 kPa and dilute solutions) is to be carried 
out, an attempt can be made to influence it by increasing the temperature 
(thermal initiation) or by changing the solvent. In some cases this purpose 
is achieved, generally when the orbital and the spin parts of the wave 
functions of the reactants and products (or the activated complex) are 
correlated. 

With very many processes, however, this condition is not fulfilled. 
for example 

N 20 e~+) --+ N2e~:) + ° ep) 

N 20 e~+) --+ N (4S) + ·NO ell) 

(16-9) 

(16-10) 
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co (16-11) 

- (16-12) 

Reactions (16-9) and (16-10) are spin-forbidden; reactions (16-11) and 
(16-12) are spin-allowed; however, they are orbitally forbidden (cf. Section 
11.2.6). 

Nevertheless, if the transformation is to be realized, it can frequently 
be made possible by introducing certain agents which do not change the 
catenation of the atoms in the studied molecule and whose effect is 
reversible and is often manifested by a change in the symmetry of the 
frontier orbital and also by a change of the multiplicity of the state. 
Thus the principal obstacle in realizing the reaction by thermal initiation 
is supressed and the reaction often occurs. This effect can most frequently 
be produced by particles such as photons, electrons, protons or electron­
ically excited atoms. 

The most important products of these changes are radical ions 
(cations and anions) and electronically excited states which usually have 

Survey of Studied Types of Reactions: Table 16-3 
Parallelism between Non-catalytic and Catalytic Reactions 

Formation of 

radical cation 

radical anion 

electronically 
excited state 

Reactions 

non-catalytic 

1. Action 'of oxidants 
(e.g. Lewis acids) 

2. Electrooxidation 
3. Electron impact 

1. Action of reducing agents 
(e.g, alkali metals) 

2. Electrored uction 
3. A bsorption of thermal electrons 

Interaction with energy-rich 
particles: photons, electrons, 
electronically excited atoms 
(photosensitization) 

catalytic 

1. p-type semiconductor: 
depletive chemisorption 

2. n-type semiconductors: 
cumulative chemisorption 

1. n-type semiconductors: 
depletive chemisorption 

2. p-type semiconductors: 
cumulative chemisorption 

Interaction of the reacting substance 
with a transition element involving 
back donation 
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the character of biradicals. Influencing the reactivity of substrates or 
reagents in this respect has a long tradition in chemistry (radical and 
photochemical reactions). Quantum chemists have recently paid a great 
deal of attention to both of these types of reactions, as well as to the 
electronic structure of radical ions and electronically excited states. 

A further extensive and important field of chemical dynamics is 
catalysis, in which the transfer of electrons (with formation of radical ions 
or doubly charged ions, as well as states similar to electronically excited 
states) has a key position; it is therefore opportune to utilize experience 
with radicals and excited molecules for studies of catalytic processes. 
In Table 16-3 a survey of the types of processes studied is given. 

Before discussing these processes in greater detail, the requirements 
which must be fulfilled if the studied process is to proceed relatively 
easily should be noted: a) conservation of the total angular momentum, 
b) conservation of the total spin and c) conservation of orbital symmetry 
in all the concerned elementary steps of the reaction 1 9 . 

. +­
e 
++ -++ 

+e .. 

-+* 
+­-++ 
t + energy 

-e .. 
-H-
-++ 

A 

+­
-++ 

. 
~ 

Fig. 16-4. Electron configuration of initial system A, of the system after ionization (radical 
cation), of the system after acceptance of an electron (radical anion), and after electronic 

excitation (*). 
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Changes accompanying ionization, 
acceptance of an electron 
and electronic excitation 

It is usually not important whether simple (HMO, EHT) or more 
complicated (PPP, CNDO/2) methods are employed to obtain qualitative 
and semiquantitative information. 

In Fig. 16-4 the formation of radical cations (ionization), radical 
anions (acceptance of an electron) and excited states (the lowest possible, 
corresponding to the N ~ V 1 excitation) from system A are schematically 
represented: 

A A(fJ + e 

A + hv ~ A* 

(16-13) 

(16-14) 

(16-15) 

Table 16-4 
Common Properties of Radical Cation, Radical Anion and Electronically Excited State 
in Relation to the Singlet Ground State 
(EA is electron affinity, IP is ionization potential) 

Radical cation Electronically excited state 
(N~Vl) 

High EA (easy reducibility) High EA (easy reducibility) 

Low IP (easy oxidizability) 

Radical anion 

Low IP (easy oxidizability) 

+--- The longest wavelength transition is frequently located in the near IR region" ------+ 

+------- Numerous transitions in the visible (or near IR) region ------+ 

Weakening of bonding Weakening of bonding Weakening of bonding 
in molecule in molecule in molecule 

Elongation of some bondsb Elongation of the majority Elongation of some bondsb 

of bonds 

Great increase in reactivity Great increase in reactivity Great increase in reactivity 
towards nucleophilic towards electrophilic and towards electrophilic 
reagents nucleophilic reagents reagents 

Paramagnetism In T state - paramagnetism Paramagnetism 

Change of symmetry of Change of symmetry of Change of symmetry of 
the state the state the state 

Change of multiplicity In T state - change of Change of multiplicity 
multiplicity 

" In the frontier orbital theory, condition for an easy monomolecular decomposition. 
b Different bonds are elongated as a rule in anions and cations. 
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The orbital schemes given in Fig. 16-4 demonstrate the reasons for the 
similarity between radical ions and excited states. For instance, a radical 
anion has an electron located in the lowest antibonding MO, similarly 
for the lowest electronically excited state. The similarities are surveyed 
in Table 16-4. 

z 

LFMO 
(3.9 eVl 

HOMO 
(-12.7 eVl 

Fig. 16-5. Graphical representation of the CNDO/2 frontier orbitals in ketene, CH2CO: 
the highest occupied (HOMO) and the lowest free (LFMO) molecular orbital. The light 
and dark parts of the orbital denote positive and negative signs of the orbital, respectively. 
A bond which is weakened by ionization (HOMO) or by acceptance of an electron (LFMO) 

is indicated by an arrow. 

For illustration, the reactivity of ketene and of fulvene and of their 
radical ions, and excited states (including certain catalytic reactions 19 ) 

will be discussed. The frontier orbitals of ketene are depicted in Fig. 16-5. 
It is known from experimental studies that the different "forms" of ketene 
decompose to give carbene and carbon monoxide (or their ions) or 
atomic oxygen and C2 H2 (an isomer of acetylene or its ion): 

H 

\ 
C®(D) + COe1:) 

/ 
(16-16) 

H 

H 

\ 
C=C6(D) + Oep) 

/ 
(16-17) 

H 

H 

\ 
-+ ce 8 1) + COe1:) 

/ 
(16-18) 

H 
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In Fig. 16-5 it can be seen that the removal of an electron from the 
HOMO of ketene is connected with weakening of the C-C bond 
[cf. reaction (16-16)] and the acceptance of an electron into the LFMO, 
on the other hand, weakens the C = 0 bond [cf. reaction (16-17)]' The 
photochemical decomposition of ketene into car bene and CO suggests 
that the N -+ V 1 excitation is connected with a greater weakening of the 
C = C bond than of the C = 0 bond. 

The conditions for the decomposition of fulvene can be similarly 
examined, although the experimental data are not complete here. Whereas 
fulvene in the ground state can be considered to contain three weakly 
interacting double bonds (this feature might be important in thermally 
iniciated decomposition which could lead to two molecules of acetylene 

• • 
EB e * -2 

61---

A2---

-1 

S +- -+(or1) w 61--

f 
0 

A2++ +- ++ +-
61 ++ ++ ++ ++ 

2 
SI++ ++ ++ ++ 

state: !4 1 
2A 

2 
2S 

1 
ls-·3s-

2' z 

~hV ! hv 

2S- ZA· 
1 2 

Fig. 16-6. HMO energy offulvene Q (e2y), of its radical ions, and ofthe N-+ VI excited 

II 
C 

/"'" H H 
state. In the figure the symmetry of the molecular orbitals and symmetry of the corresponding 

states are given. 
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and vinylidene), a different structure and another decomposition path are 
to be expected with radical ions and in the N --+ V 1 excited state (Fig. 16-6) 
of fulvene. This is due to the fact that the changes discussed appear to be 
connected with a significant decrease in the bond orders of the bonds 
that, in the parent substance, have the character of double bonds 
(Fig. 16-7). The same decomposition can be expected on interaction of 
fulvene with a catalyst containing atoms of a transition element; the 
expected decomposition would lead to acetylene and methylenecyc1o­
propene (Fig. 16-8; cf. Fig. 16-7): 

+e 
-e 
+hv 
+catal. 6······· A ------ .====. + 

CIE=CH 

(16-19) 

Next, the influence of various changes will be discussed semi­
quantitatively. Under normal experimental conditions the cis-trans iso­
merisation of butene-2 [Eq. (16-20)] 

(16-20) 

is generally accompanied by migration of the double bond leading to 
butene-l [Eq. (16-21)]: 

CH2-CH3 

CH2=C{ (16-21) 

The activated complex in the model reaction (16-20) corresponds to 
"perpendicular" butene-2 

In Fig. 16-9 the results of EHT energy calculation for the cis and 
trans isomers as well as for the activated complex are given. The 
model considered for the interaction of the two forms of butene-2 with 
a metal atom can be seen in Fig. 16-10a. Course (a) corresponds to the 
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f. f8 • 

0.62 

HOMO LfMO 

pO.62/e 

a! 
1.05 

1.18 

0.73 

. . 
EB e 

Fig. 16-7. Molecular diagrams of the systems in Fig. 16-6 and electron distribution in frontier 
orbitals (HOMO, LFMO). 

thermally initiated reaction, in courses (b) and (c) the radical ion is the 
reactant, in course (d) we have the electronically excited state (N -+ V I' 
transition 12-+ 13) and finally (e) and (/) correspond to the reaction 
catalyzed by iron (cf. Fig. 16-10b) and to the reaction occurring in the 
presence of Ag+. The results are also characteristic for numerous other 
processes: the transition from the parent substance to the radical ion 
causes a substantial decrease in the activation energy for isomeration 
and the transition to the excited state is connected with an energy 
minimum on the potential energy curve, which corresponds to "per­
pendicular" butene-2. This is in agreement with the experimentally found 
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Fig. 16-8. Interaction of the frontier orbitals of fulvene with the d orbitals of a transition 
element located below the fulvene plane. (a) The dx'- y2 atomic orbital is free and accepts 
electrons from the HOMO of fulvene. (b) The dx: and dyz orbitals are occupied and electrons 
pass from them into the LFMO of fulvene. For convenience, the dxz orbital is not depicted 

in the figure but the xz plane is marked. 

b c 

f 
OOkJ/molf-----+------+----~ 

~ d e f 

Fig. 16-9. EHT energy of cis-butene-2 and trans-butene-2 and of the corresponding activated 
complex: cis;:::t [ ] t ;:::t trans. (a) Thermal initiation, (b) radical cation, (c) radical anion, 

(d) N -+ V 1 excited state, (e) effect of Fe, (f) effect of Ag. 

perpendicular arrangement in the first excited state of ethylene. Transition 
elements do not have such a strong influence; they have merely a catalytic 
effect or, more accurately, lead to a decrease in the energy barrier from 
104 to 42 kJ/mol. It should be added that the migration of the double 
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a) 

11'- _ _ _ -

b) 

Fig. 16-10. Model describing catalysis of the cis-trans isomerization of butene-2 by iron. 
(a) Mutual orientation of the components, (b) flow of electrons from the 1t-MO of the 
hydrocarbon into the dzl orbital of iron and back donation from the dxz orbital of iron 
into the 1t*-MO of the hydrocarbon. The direction of electron flow is indicated by thick arrows. 

The positive and negative parts of the orbitals are light and dark, respectively. 

bond, which usually accompanies cis-trans isomerisation, can be catalyzed 
in a similar manner, but this reaction has not yet been investigated 
semiquantitatively. 

The next example is also interesting from the catalytic point of view. 
This is the cyc1oaddition of ethylene leading to cyc1obutane. As demon­
strated by Hoffmann, this process20 is forbidden by symmetry in the ground 
state. It becomes allowed either through excitation or through catalysis21 

(Fig. 16-11). There is no doubt that the barrier for the thermally initiated 
process is decreased if one of the reactants is transformed into a radical 
ion or into the N ~ V 1 excited state. The application of semi empirical 
methods encounters certain difficulties and thus only a qualitative descrip­
tion (Fig. 16-11) based on the theory of the frontier orbitals will be given. 
In the upper part of Fig. 16-11 a diagram of orbital energies, for both 
ethylene molecules (1, 2) consisting of the 7t and 7t* levels, is given. 
It is evident from the figure that, when both molecules are in the ground 
state, significant donor-acceptor interaction cannot occur. If, however, 
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one of the molecules is in the form of a radical ion or in an electronically 
excited state, the situation changes considerably, due to the fact that 
a strong donor, a strong acceptor or even a system which is simul-

CD CD CD CD 
--- --- --- ---

a b 

-t-t -t-t -t- .. ++ 

+- .. --- -t- .. -
c d 

++ ++ -+ .. ++ 
CD CD CD CD 

CD 0 

l format ion of 6 

Fig. 16-11. Interaction between two molecules of ethylene (denoted by CD and Q)) in 
different forms leading to different forms of cyclobutane: (a) thermal initiation (orbitally 
forbidden reaction), (b) radical cation, (c) radical anion, (d) excited state, (e) catalysis by an 
atom of a transition element. Formation of cr* orbitals in cyclobutane depends on 
participation of the d orbital lying in the plane perpendicular to the C = C bond of ethylene, 
formation of the cr orbital is mediated by the d orbital located in the plane parallel to the 

C=C bond. 
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taneously a strong donor and a strong acceptor is involved in the 
interaction. The direction of the electron flow is represented by an 
arrow. In the bottom part of Fig. 16-11 the catalytic effect of an atom 
of a transition element with an occupied dyZ orbital and an unoccupied 
dx2 _ y2 orbital is depicted graphically. It can be seen in the left (lower) 
part of the figure that the electron flow from the occupied n orbitals of the 
two ethylene molecules into the empty dXLy2 orbital is connected with 
the formation of a 0'* orbital in cydobutane; in the right-hand (lower) 
part of the figure the formation of bonding 0' orbitals in cydobutane by 
electron flow from the dyz orbital into the antibonding n* orbitals of the 
two ethylene molecules is depicted. 

The last example is the decomposition of nitrogen monoxide19 . 

NzO is a relatively stable oxide; its decomposition into Nz and 0 begins 
only at temperatures of 800 to 900° C. The dissociation of the 1\1 - 0 and 
N - N bonds in the ground state (thermal initiation) is spin-forbidden: 

N=N=Oel:+) ~ Nzel:;) + Oep) 

N=N=Oel:+) ~ N(4S) + ·NOen) 

(16-22) 

(16-23) 

Decomposition in the sense of reaction (16-23) is also orbitally forbidden. 
The spin and orbital forbiddenness can be overcome by electronic 

excitation or by changing the molecule to the radical ion form. 
Before discussing the decomposition of electronically excited forms 

and of radical ions, the structure of the molecular orbitals in NzO must 
be described (Fig. 16-12). The following Wiberg indices* correspond 
to nitrogen monoxide: 

NZ.4ZN~O 

The semiempirical LCI-SCF theory of the CNDO/2 type aptly 
describes both excited singlet states at 150 and 120 nm; the CI data together 
with information on the nature of the individual MO's (Fig. 16-12) 
can be used to interpret the structure of the isolated decomposition 
products. It must be borne in mind that the removal of an electron 
from the bonding MO and the introduction of an electron into the 
antibonding MO leads to a weakening of the respective bond. 

The decomposition of NzO photosensitized by mercury will now 
be discussed: 

HgCP t ) + NzOel:+) ~ Nzel:;) + OCP) + HgeSo) (16-24) 

* In the framework of the CNDO/2 method, this index is defined by the expression 
ref. Eq. (10-26)] 
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0) 

.u 
- '-12 

b) 

N--N--O 

~~(~) 
~1 

~~) 

N--N--O 

c) 

nm 

147 

8-9 
1-ii 

8-«J 215 

1[+_ ground 
state 

Fig. 16-12. CNDO/2 characteristics of N 20 . (a) Orbital energies,(b) the 6th to lIth molecular 
orbitals (It states are degenerate), (c) LCI-CNDO/2 energies of the ground state and of 
excited singlet states. Symmetry data are given for the individual states; the positions of the 
excited states are characterized by the wavelength of theoretical transitions from the ground 

state into the excited states. 

This is a spin-and-orbital allowed process; the decomposition proceeds 
smoothly. 

Three experimentally studied N20 decomposition paths will be 
examined in their excited states. 

(i) Excitation in the 180 nm region. A transition into the first 
triplet state occurs. It can be expected from experience that the electron 
distribution will be similar as in the first excited singlet state and that 
similar products can therefore also be expected. It has been experimentally 
determined that the decomposition takes the following course: 

(16-25) 

(16-26) 

The N -> V 1 excitation is connected with a somewhat greater weakening 
of the N - N bond (cf. Fig. 16-12), which explains the disappearance of 
both the N - Nand N - ° bonds. 
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(ii) Excitation in the 147 nm region. This band corresponds to 
transitions 7 - 11 and 8 - 11 e IT -. 1 ~ +). It can be seen from the nature 
of the respective MO's (Fig. 16-12) that excitation affects the N - N 
bond a little more than the N - 0 bond; thus both decompositions 
can also be expected in this case, in agreement with experimental 
results: 

(16-27) 

(16-28) 

(iii) Excitation in the 124 nm region leads to the decomposition: 

N20 (the excited S-state, probably 1.::\) -. 'NOell) + Nep) (16-29) 

Theory attributes the band in this region to excitations 6 -9 and 6 -10 
(transition 1.::\ +-1 ~ +). This excitation corresponds in both MO's to more 
significant weakening of the N - N bond, in agreement with experimental 
results. 

With reaction on a catalyst, which acts simultaneously as an electron 
acceptor and donor (this type of donation ability is called "back donation"), 
breaking of the N - Nand N - 0 bonds can be expected. 

The N204l cations that are formed in the source of a mass 
spectrometer decompose according to the reaction 

N20<i>eTI) -. NOEBe~+) + N(4S) (16-30) 

This is a spin-forbidden process, which is apparently made possible 
by predissociation. It has also been found that decomposition according 
to reaction (16-31) does not occur: 

N20<i>eIT) -B N2e~:) + 04>(4S) (16-31) 

The observed dissociation course can be interpreted qualitatively from 
the form of the highest occupied MO (Fig. 16-12), which is also in agreement 
with the experimental and theoretical course of the ion-molecular reaction 

OEB + N2 -. [N20<i>(4~-)] -. NOEB + N (16-32) 

Ab initio CI calculations have shown that the N20<i>eIT) decomposition 
which occurs via the 4~ - excited state (crossing of surfaces) to give 
NOEEi and N requires 46 kJ/molless than decomposition to N2 and OEB. 

No such detailed calculations are available for the decomposition 
of radical ions which have been studied in pro tic and aprotic solvents 
by flash photolysis as well as catalytically on oxides acting as p-type 
semiconductors. Molecular nitrogen is formed in all cases: 

(16-33) 
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This is a spin-allowed decomposition, obviously energetically more favour­
able than further spin-allowed processes: 

(16-34) 

(16-35) 

It is worth noting that the Wiberg index for the N - 0 bond in the radical 
anion approaches values which are typical for single bonds: 

N 2.42 N 1.49 0 ±.f N2..&LN~Oe 

16.3.2 Quantitative considerations. 
Calculations of absolute values of equilibrium 
and rate constants 

Reactivity theory attempts to calculate absolute values of equilibrium 
and rate constants when the molecular geometry of the reactants, 
products and activated complexes are known, using universal constants 
and the methods of statistical and quantum mechanics. The expressions 
for the calculation of these constants have already been available for 
more than three decades, so that the lack of completed calculations is 
surprising. Analysis of the respective expressions can explain this apparent 
paradox. 

The results of chemical and statistical thermodynamics and reaction 
kinetics are used in the study of this entire problem. Consequently, 
for example, the expressions for equilibrium and rate constants are not 
derived here in terms of partition functions and enthalpy changes. 

It is interesting to study the problem simultaneously from the 
thermodynamic and kinetic aspects. It appears that, if the concept of 
the formation of an activated complex which is in equilibrium with the 
reactants (and is therefore comparatively long-lived*) is used when studying 
kinetic problems, then the expressions for calculation of the equilibrium 
and rate constants are very similar. However, the similarity of these 
expressions gives no information on a possible parallel between the 
equilibrium and the rate constants in a series of structurally similar 
substances. Yet these constants are very often correlated. That the parallel 
is not trivial follows from the fact that the rate of transformation of the 
reactants to the products depends on the Gibbs energy of activation (AG'f), 

* The lifetime of a complex is related as a rule to the time required for rotating 
the molecule through 21t (of the order of 10- 12 s). An activated complex is formed when 
the lifetime allows several rotations. 
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whereas the establishment of equilibrium is given by the Gibbs energy (~G) 
(cf. Fig. 16-13). 

Still more critical is the fact that the theories which are to be 
compared have different validities. Whereas the expressions for calculation 
of the equilibrium constant are very generally valid and have a very 
sound physical basis (they depend solely on the validity of the second 
law of thermodynamics and statistical mechanics), the validity of the 
theory of absolute reaction rates is more limited, as it depends on 
satisfying the rather uncertain assumption of equilibrium between the 
reactants and an activated complex. It has been demonstrated 
experimentally with crossed molecular beams (in a high vacuum with 
particles of defined velocity and quantum state) that there are also 
direct processes, i.e. reactions in which the lifetime of the complex 
formed by the collision of the reactants is very short (approximately 
10- 12 s or less). There is, of course, no justification for interpreting 
these processes in terms of the theory of absolute reaction rates. The 
discovery of direct reactions has lead to a revival of the classical and 
quantum collision theories. Expressions for calculation of equilibrium 
and rate constants will now be given. 

Fig. 16-13. Dependence of !J.G on 
the reaction coordinate for reactions 

A + B --> C + D. 

[A .... B]* 

- reaction coordinate 

Equilibrium processes. Reaction (16-36) can serve as an example: 
K 

aA + bB + ... ~ mM + nN + ... , (16-36) 

For equilibrium constant K the usual expression holds where the activities 
can be replaced by concentrations, assuming ideal behaviour of the 
reactants and products: 

K = [M]m[Nr .. . 
[A]U [B] .. . 

(16-37) 

~G = ~H - T~S = -RTlogK (16-38) 
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The equilibrium constant can be expressed in terms of statistical 
thermodynamics: 

K = Q~Q~ ... -Eo/RT 
QaQb e 

A B '" 

(16-39) 

(for the significance of the symbols see below). 
Similar expressions are valid in the theory 

rates (ART) for the rate constant. 
of absolute reaction 

Rate processes. 

A bB ~ [C]'" k d a + + ... <-'" -+ pro ucts (16-40) 

For the rate constant k (this denotation is used locally to avoid confusion 
with the Boltzmann constant) of process (16-40) the following expression 
is valid: 

(16-41) 

where x denotes the transmission coefficient. Furthermore, 

(16-42) 

Using statistical thermodynamics for calculation of the activation entropy 
change, it follows that 

k- kT Q'" e-E't/RT =x- b 
h Q~QB ' " 

(16-43) 

Most of the symbols in Eqs. (16-36)-(16-43) have the usual significance: 
Qx in Eq. (16-39) and (16-43) denotes the total partition function of 
substance X. The energy data in Eqs. (16-39) and (16-43) refer to 
absolute zero, the symbols without a double cross refer to calculation 
of the actual equilibrium, symbols with a double cross refer to description 
of rate processes. 

The total partition functions can be expressed as the product ·of 
the partition functions for the individual energy forms: 

(16-44) 

where symbols, t, r, ir and v denote the translation, rotation, internal 
rotation and vibration energies. Contributions with indices e and n are 
related to the energies of electrons and nuclei, respectively. 

Before repeating the expressions for calculation of these partial 
partition functions, known from statistical thermodynamics, it must be 
noted that their "average" numerical values differ considerably (Table 16-5). 



Order of Magnitude of the Partition Function Values 

Energy Degrees of freedom 

translation 3 
rotation" 3 
vibration (for each normal vibrational mode) 
hindered rotation 

electronic 
nuclear 

a Non-linear molecule. 
b At lower temperatures (up to 500 K) the values approach unity. 

For the individual partition functions it holds that 

(2rtmkT)3 /2 
Qt = h3 (per unit volume) 

Q = ( I I I )1/2 (8rt2kT)3/2 * 
r rc ABC h2 

(8rc 3 I'kT)1/2 2n 
Qjr = h S exp [ - f(o:)] do:, 

o 
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Table 16-5 

Numerical values 

1025 

102 _10 3 

I-lOb 

1-10 
1 

(16-45) 

(16-46) 

(16-47) 

where f(o:} is a function parametrically dependent upon the height of the 
potential barrier for internal rotation and 0: denotes the angle of rotation 
of the rotating groups. For free rotation, the integral in expression (16-47) 
equals unity. 

1 
(16-48) 1 - e hvi/kT 

Q =" g . e - e;/kT = 1 
e ~ e,l (16-49) 

i 

(16-50) 

For enumeration of these partial functions it is necessary to know 
the relative atomic (molecular) masses, the Boltzmann (k) and Planck (h) 
constants, the product of the moments of inertia with respect to three 
mutually perpendicular axes, IA/B/c (or the moment of inertia of internal 
rotation), and the normal modes of vibration, Vi. In the general case, 
Q. and Qn are not equal to unity but have this value in the majority of 
reactions interesting for chemists; two exceptions, however, are important: 

* The symmetry number is assumed to equal unity. 
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first, instances where the first electronically excited state lies relatively 
close to the ground state (i.e. dE < 0.5 e V), so that the excited state 
can be thermally populated even at "laboratory" temperatures. This is 
sometimes true for radicals and biradicals. In addition, there are cases 
where the value of dE is so large that the thermal population is not 
important and the excited state is populated through radiation supplied 
by an external source. 

It can be shown that the product of the moments of inertia, 
I A I BI c' is given by the determinantl 2 

Ixx -IXY -Ixz 
IAIBlc= -IXY Iyy -IyZ 

-Ixz -IyZ Izz 

The diagonal and off-diagonal elements have the form 

Ixx = Lmi(y; + z;) 
i 

IXY = I mixiYi 
i 

(16-51) 

(16-52) 

(16-53) 

In Eqs. (16-52) and (16-53) mi denotes the mass of the i-th atom and 
Xi' Yi' Zi are its coordinates in any system of Cartesian coordinates 
which has its origin at the centre of gravity of the molecule. The 
summation is carried out over all the atoms. 

The only remaining quantities to be mentioned are the normal 
modes of vibration. For numerous small molecules (containing 4 to 
5 atoms), these quantities can be determined by analysis of infrared 
spectra. For the majority of molecules, however, whose reactivity is 
important here, these data are unknown. These values can, of course, be 
obtained by quantum mechanical calculation, which has been discussed 
in the section on vibrational spectra. The values of the normal modes 
of vibration Ai were obtained there by solving the determinant equation 

(16-54) 
[cf. Eq. (13-60)]' 

The scheme in Fig. 16-14 indicates the procedure for the calculation 
to be performed for each reactant and product or activated complex. 
A method is sought which allows calculation in the whole indicated 
range with reasonable demands on computer time. In principle, semi­
empirical and non empirical methods come into consideration. There is 
a considerable number of problems still unsolved. The first step indicated 
in Fig. 16-14 concerns the calculation of minima on the energy hypersurface 
of each component. Minimization must be carried out with respect to all 
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E - E (~t' ~2"" "~n) 
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qrod E = 0 

v -~ (i-cos rnx) 

! 
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Fig. 16-14. Survey of quantum chemical and statistical thermodynamical calculations leading 
to absolute values of equilibrium and rate constants. The scheme suggests that the total 
energy (calculated by a chosen quantum chemical method) of each component is minimized 
with respect to all coordinates (~J The obtained optimized coordinates (~n serve for 
calculation of the enthalpies of formation (~HfT)' and of partial and total partition 

functions (Qj, QO) and finally also of entropy values (S~). 

coordinates ei (i = 1, 2, ... , n). For nonsymmetrical five-atom molecules 
this is already an extremely difficult task which could not be solved 
classically (i.e., by stepwise minimization with respect to the individual 
coordinates in larger molecules). In non empirical methods data on the 
experimentally determined geometry can be used for reactants and products. 
In semiempirical methods, on the other hand, calculations should be 
performed for optimized geometry found using one of the recently 
developed procedures, amongst which that introduced by Pancif28 appears 
to be particularly effective. In principle, it consists of a suitable combination 
of the SCF iterative method with calculation of the gradient of the total 
energy; at an energy minimum it holds that grad E = O. The ascertained 
optimal coordinates e7 (i = 1, 2, ... , n) permit calculation of the moments 
of inertia (and thus also Qr)' the force constants, the normal modes of 
vibrations (QJ and solution of the Schrodinger equation for the ground 
state (~H?) and for the electronically excited states (QJ The total 
partition function can easily be formed from the partial partition functions, 
thus giving the thermodynamic functions S~ and H~ - H~. All these 
considerations are related to equilibrium and rate processes in the 
gaseous phase. The absolute calculations for reactions in solutions 
cannot avoid calculations of the solvation energies, which is not easy. 
For methods which can be used to solve this task see Chapter 17. 
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Fig. 16-15. Energy hypersurface corresponding to decomposition of reactants A into products 
Al and A2 through activated complexes [AJ1 and [AJ 1:(a) two-dimensional representation 
of the hypersurface, (b) sections through the hypersurface in the direction of the reaction 

coordinates. 

With rate processes it was assumed that saddle points could be found 
on the potential energy hypersurface (cf. Fig. 16-15). This is numerically 
a very difficult task and can hardly be solved without chemical experience 
and a certain amount of imagination. Recently the Pancif procedure, which 
has proven satisfactory in the search for minima on energy hyper surfaces, 
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was adapted for studying the reaction coordinates and therefore was 
also made suitable for studies of activated complexes. Considering the 
short lifetime of these complexes, only theoretical investigations can be 
carried out; it is possible, however, that the development of extremely 
rapid spectroscopies (the most rapid technique so far works in the 
picosecond region) will make it possible, in some cases at least, to investigate 
them experimentally. 

16.4 Calculations of relative equilibrium 
and rate constants 

In theoretical studies in this field, the same relations for the equilibrium 
and rate constant are employed as a starting point as in the previous 
section i.e. Eqs. (16-38) and (16-42). 

Considerable simplification will be achieved if the reasonable 
assumption of a linear dependence of the enthalpy change on the 
entropy change10,11 is introduced: 

(16-55) 

where a and b are constants and the exponent in parentheses indicates 
that the relation is assumed to hold for both thermodynamic and 
activation quantities. The assumption expressed by Eq. (16-55) is more 
reasonable than the occasionally employed assumption that the (activation) 
entropy change is constant for all members of the series under study. 

Furthermore, for reactions of conjugated systems, the Dewar 
assumption that the total change in the (activation) enthalpy is composed 
of contributions originating from the 1t electrons, the cr electrons and 
the other electrons is employed: 

(16-56) 

A similar assumption is also introduced in studies of the reactivity of 
transition element complexes; i1H('t) is considered to consist of contributions 
originating from the d electrons and all the remaining electrons: 

(16-57) 

The justification of assumptions (16-56) and (16-57) is supported by 
experience from quantum chemistry on the separability of contributions 
originating from electrons of various types in planar conjugated systems 
and in some complexes of transitions elements; these systems will be 
discussed below. Finally, if in conjugated systems quantities i1H~'t) and 
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AH~f) are assumed to be constant with all members of the studied 
reaction series,* then Eqs. (16-38) and (16-42) can be substantially 
simplified. First, however, the term "reaction series" should be explained. 
If the studied process is characterized by the equation 

i = 1,2, ... ,n (16-58) 

then a reaction series (series of structurally related substances) is 
understood to refer to a group of substances RjX (i = 1, 2, ... , /1) 
whose individual members are investigated in relation to reaction (16-58). 
For conjugated compounds we consider only tho~-: Rj which differ (a) 
in the size of the conjugated skeleton (which must, however, be of a distinct 
type, i.e., for example, alternant or non-alternant), (b) in the number of 
heteroatoms in the skeleton, (c) in the number and type of substituents. 
With complexes, only cases where the members of the series differ 
in the number of electrons on the central atom are considered. 

Assumptions (16-55) and (16-56) allow Eqs. (16-38) and (16-42) 
to be written in the form 

log K = C 1 AH ~ + c 2 

log k = c3 AH! + c4 

for the reactions of conjugated systems and in the form 

log K = b 1 ilH d + b 2 

logk = b3 ilH! + b4 

(16-59) 

(16-60) 

(16-61) 

(16-62) 

for the reactions oftransiton metal complexes, where cj and bj (i = 1,2,3,4) 
are constants. 

The problem is formally simple: it is sufficient to calculate, using 
a suitable quantum chemical method, the respective changes in the 
7t-electron energy or in the d-electron energy. It appears, however, that 
interpretation of the results by comparing the theoretical data with 
experimental data is not quite so simple. In addition, from the broader 
viewpoint of the theory of chemical reactivity, it must be borne in mind 
that the problem formulated by the compromise approach concerns 
a relatively narrow group of reactions, which are, however, important 
for chemistry. 

• It is not certain whether this assumption is valid especially with the /lH~t) term; 
most probably, however, the more restricted assumption of a linear dependence of /lH~t) on 

/lH~t) is fulfilled, which is quite sufficient. 
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The majority of reactions mentioned in this chapter occur in solution. 
This is explicitly taken into account only exceptionally. Mostly no 
attempt is made to calculate the changes in the enthalpy of solvation, 
and this change is assumed to be either constant in the overall reaction 
series or to be proportional to the enthalpies calculated for the reactions 
in the gas phase. In some cases, of course, this assumption is qualitatively 
incorrect and then the expected correlation is not found. 

For equilibrium processes Eqs. (16-59) and (16-61) permit direct 
treatment of the problem. For rate processes the situation is complicated 
by the fact that, in the formally preferable approximation, the reagent 
is included explicitly in the activated complex, whereas in the simpler 
approximation calculation is confined to the substrate. In view of the 
nature of the models and approximations employed, the real gain from 
application of the first method is small; yet this first approach often 
involves a numerically far more difficult calculation than the second. 
Thus calculations including a reagent in addition to the substrate are 
described only superficially. 

16.5 Compromise approach: 
the quantum chemical treatment 

16.5.1 Reactions of conjugated compounds 

Some reactions for which the dependence of the equilibrium constants on 
quantum chemical quantities was studied will be discussed using the given 
simplifying assumptions. For reasons given below, the three acid-base 
reactions 

0+ 

will be discussed first. 

-->­.......-

-->­.......-

(16-63) 

(16-64) 

(16-65) 
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The free bases are neutral substances so that the conjugated acids 
are cations. There is, however, a delocalized charge solely for reaction 
product (16-63); the products of reactions (16-64) and (16-65) are systems 
with a charge which is essentially localized. It must, of course, be 
expected that use of a non-bonding AO for bonding purposes [Eq. (16-64)J 
will be manifested in a change in the electro negativity (and a corresponding 
change in the Coulomb integral); nevertheless, the protonation of the 
non-bonding AO in pyridine is not directly connected with the rc 
electrons of the system. [Realize the mutual orientation of the 2pz and 
Sp2 AO's and, furthermore, the difference between the nitrogens of the 
pyridine and pyrrole (aniline) types.J 

W 
1M 

reactant 

-4+ ++ (X + (.3 

++ ~+2!3 

50: + 8(.3 

product 

....... _ ... (X 

+r (X +(.3 

-4+ ~ + 1.732 t3 

50c + 5. 46ft (.3 

2.536/3 

Fig. 16-16. Protonation of benzene: HMO 1t-electronic energies of the reactant and product. 

From the viewpoint of the theory given in the previous section, 
It IS necessary to determine whether the expected linear dependence 
between the logarithms of the equilibrium constants (or pK) and the 
rc-electronic contributions to the total enthalpy change [cf. Eq. (16-59)], 
accompanying proton at ion, in fact, exists. The calculation can, of course, 
be performed on the HMO or SCF level23. For benzene the 7t-electronic 
energy for the two systems depicted in Fig. 16-16 must be calculated 
(HMO data). (These quantities, termed "localization energies", will be 
encountered when analyzing the rates of chemical reactions.) 

The formation of a conjugated acid is manifested in pyridine by 
an increase in the Coulomb integral for nitrogen (Fig. 16-17). 

If N-protonation is to occur in aniline, a change in the hybridization 
(Sp2-+ Sp3) must occur, leading to removal of the nitrogen orbital from 
the conjugation. Unless allowance is to be made for the inductive or 
hyperconjugative effect of the ammonium group (which appears to be un­
necessary), then evidently 1~.Hn is given by the difference in the 7t-electron 
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energies of the amine and of the corresponding parent hydrocarbon; 
for example, the conditions in aniline are indicated in Fig. 16-18. 

The 1t-electronic contribution to the enthalpy change can be cal­
culated easily for the entire series of substances and the theoretical and 
experimental data can be compared. The results of measurement of protona­
tion equilibria in hydrogen fluoride and the theoretical characteristics 
(HMO and SCF) are given in Table 16-6. 
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Fig. 16-17. Illustration of calculation of the change in the HMO n-electronic energy 
of pyridine during protonation. 
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Fig. 16-18. Illustration of calculation of the change in the HMO n-electronic energy of aniline 
during protonation. 
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Table 16-6 
Basicity of Benzenoid Hydrocarbons (0 °C, HF) 

Hydrocarbon Position logKa 
AHMO AscF 

p eV 

Benzene -5.6 2.536 25.715 
Naphthalene 0 2.299 24.643 
Phenanthrene 0.5 2.320 24.510 
Phenanthrene 9 0.5 2.299 24.497 
Anthracene 9 8.1 2.013 23.502 
Triphenylene -0.8 2.374 24.86b 

Pyrene 1 6.1 2.189 23.855 
Chrysene 6 2.6 2.248 24.20b 
Benz[a]anthracene 7 6.6 2.050 23.49 
Tetracene 5 9.8 1.932 23.07 
Perylene 3 8.4 2.139 23.64b 

Benz[a]pyrene 6 11.1 1.962 23.22b 

a E. L. Mackor, A. Hofstra, J. H. van der Waals: Trans. Faraday Soc. 54, 66 (1958). 
b Interpolated from the graph of the dependence of A~cF on AHMO. 

Fig. 16-19 depicts these data graphically. The result is interesting 
and dependences of the type shown in Fig. 16-19 are characteristic 
for numerous series of equilibrium and (as we shall see below) kinetic 
data23 • It is rather interesting that, while the SCF data lead to the 
expected result (Fig. 16-20), the points obtained using the HMO data 
are divided into three groups. This division corresponds to the three 
types of protonated positions in cyclic conjugated hydrocarbons: these 
are benzene-like, IX-naphthalene-like and mezoanthracene-like positions. 
By plotting the pK values of polynuclear pyridine derivatives, in both 
cases (using HMO and SCF data) data divided into three groups are 
obtained. With polynuclear amino compounds, on the other hand, data 
treatment leads in both cases to a single straight line. For reactions 
(16-63) and (16-65) the expected result was obtained (Le. a simple linear 
dependence) using SCF data. It must first be determined why the HMO 
method gives reasonable results for reaction (16-65) and fails with 
reaction (16-63). The following explanation can be given: quantity ~H1t 
in reaction (16-65) is given by the difference of neutral particle energies, 
whereas in reaction (16-63) it is the difference between the energies 
of the neutral and charged particles. The shortcomings of a method 
which does not allow for repUlsion (HMO) are comparable with reactants 
and products for reaction (16-65); they are, however, different for reaction 
(16-63). 
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Fig. 16-19. Dependence of the logarithms of 
proton at ion equilibrium constants for 
benzenoid hydrocarbons on the HMO 

localization energies. Designation 
(class of the position): t:,. (0), 0 (1), 0 (2). 
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Fig. 16-20. The same dependence as in 
Fig. 16-19, but for SCF electrophilic 

localization energies. Designation 
(class of the position): t:,. (0), 0 (1), 0 (2). 

A factor which plays an important part in many reactions in 
solution, the solvation energy, must now be mentioned. For the reactions 
of neutral particles in non-polar solvents the contribution of this quantity 
is, of course, small, but for the ions (or strongly polar molecules) it is 
considerable in polar solvents. Because of the limited knowledge on 
the theory of the liquid phase, no accurate calculation of the total 
solvation energy can be performed, but one of the contributions to the 
solvation energy can be estimated using the Born formula. For this 
purpose the electron charges on the atoms (qJ of the dissolved substance 
and the relative permittivity of the solvent (r.,) must be known: 

(16-66) 

In Eq. (16-66) r flV denotes the distance between the Il-th and v-th atoms; 
when Il = v, the effective atomic radius is used. 

It appears that neglecting the solvation energy when calculating the 
enthalpy of reaction (16-64) leads to the split of the dependence of pK 
on llHHMO and llHsCF. By including the solvation energies, the expected 
simple linear dependence is obtained for the protonation of pyridine. 
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Still another type of equilibrium reaction, the dismutation (dispro­
portionation) reaction of radicals warrants closer attention. These, are, 
for example, the following processes: 

2 + (16-67) 

More specifically, a dismutation reaction is disproportionation of a sub­
stance with a medium degree of oxidation (denoted by the symbol Sem) 
to two related substances with higher (Ox) and lower (Red) degrees of 
oxidation, i.e. reactions (16-67) and (16-68) proceed from left to right. 
Reversible reactions are called coproportionation reactions; generally it 
can be written that 

Ox + Red ~ 2 Sem 

For the dismutation constant the relationship 

[Sem] 2 

Kd = [Ox] [Red] 

(16-69) 

(16-70) 

is valid. If the assumptions given in Section 16.4 are accepted then the 
x-electronic contribution to the enthalpy can be written as 

(16-71) 

If the energies of the individual forms are calculated using the HMO 
method, then, after substituting into Eq. (16-71), it follows for all hydro­
carbon systems that 

llHHMO = 0 (16-72) 

Obviously this result is incorrect, since, in reality, the dismutation 
constants for various systems usually have very different values. 

This result represents one of the qualitative failures of the HMO 
method. If Win Eq. (16-71) is replaced by values Etot calculated considering 
the electron repulsion (SCF method), an interesting result is obtained: 

(16-73) 

The integral (16-73) can be easily interpreted as a measure of the repulsion 
of the electron pair occupying, in the reduc",d form, the MO which is 
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occupied in the radical by an unpaired electron (m-th MO). It is usually 
denoted by the symbol J mm' In view of the assumptions already made it 
obviously holds that 

log Kd = aJmm + b, (16-74) 

where a and b are empirical constants. According to Eq. (16-74) a straight 
line is obtained if the logarithms of the dismutation constants of a series 
of structurally related substances are plotted against integrals J mm' In 
Fig. 16-21 this dependence is shown for a number of radicals containing 
nitrogen and sulphur, for example I - III. 

Fig. 16-21. Dependence of the 
logarithms of dismutation constants 
of organic redox systems on the value 
of the electron repulsion integrals, 
J mm' m denotes the singly occupied 

molecular orbital in the radical. 
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The electronic repulsion integrals Jmm [Eq. (16-73)] can be easily 
calculated. If the MO is expressed in the LCAO form, then J mm can be 
written as 

(16-75) 

where cllm is the expansion coefficient for the m-th MO occurring at the 
Q-th AO and Y/Jv denotes the electronic repulsion integral within the AO 
basis set. Its empirical expression can be successfully carried out using 
the formula introduced by Mataga and Nishimoto (see Chapter 10). For 
estimation of the relative dismutation tendency in a series of structurally 
related substances it is sufficient to restrict the summation in Eq. (16-75) 
to one-centre contributions (J.l = v) and to contributions corresponding 
to the interaction between nearest neighbours (J.l and v are centres con­
nected by chemical bonds). For one-centre and two-centre y's the values 
10.53 and 5.20 eV, respectively, are obtained, so that, for the simplified 
form of Eq. (16-75), it holds that 

J mm = 10.53 L c~ + 5.20 L L c;mc;m (16-76) 
/J /J v 

(/J,v: neighbours) 

The dependence of the 1t-electronic energy in a conjugated system 
on the reaction coordinate will now be discussed in greater detail.25 

?!' 

1 

activated complex 
approximation 

- reaction coordinate 

Fig. 16-22. Dependence of the ll-electronic energy of a system (W.l on the reaction coordinate 
Explanation is given in the text. 
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Five regions can be distinguished on the curve of the dependence 
of W on the reaction coordinate (Fig. 16-22). With reactants (R) and 
products (P) the energy calculation is relatively simple since both systems 
are completely conjugated. The conjugation is weakened in regions 1 
and 3, and markedly weakened (if not completely absent) in region 2, 
this region corresponding to the activated complex. In this theory only 
the relative rates are calculated and therefore the difference in the energies 
of states Rand 1, Rand 2, Rand 2' or Rand 3 can be used as an 
estimate, unless, of course, there is no crossing of the courses for the 
individual members of the reaction series. For clarification, it is sufficient 
to choose two cases and to take into consideration only two members 
of the reaction series (Fig. 16-23). 

case 
I 

- reaction coordinate 

Fig. 16-23. Illustration of the "non-crossing" rule of chemical reactivity: detailed explanation 
is given in the text. 

Case I is favourable because prediction of the reactivity, based on 
energy difference L\ WI and L\ W2 leads to the same reactivity order for 
substances A and B. This is not so in case II, where the chemical 
"non-crossing" rule introduced by R. D. Brown4 is not fulfilled. 

The states of the system in regions 1 and 3 can be considered to 
be perturbed states of the reactant and product; state 2 corresponds to 
the actual activated complex and state 2' corresponds to a certain 
exaggerated model of the activated complex (see below). Although it is 
hardly possible to determine the structure of the activated complex 
experimentally, it is usually not too difficult to obtain a rather realistic 
idea of its geometry. It therefore seems simplest to calculate energy L\ W2 

in order to estimate the relative reactivity sequence. Due to difficulties 
with computers in the first half of the fifties and because of some 
complications which will be discussed below, this method has not been 
used and predictions have been based on the calculated values L\ WI 
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and L\ W2, . Let us start with L\ WI' It seems to be very easy to estimate 
energy differences in a system in regions Rand 1 using the perturbation 
calculation. Fig. 16-24 depicts the beginning of the interaction between 
the substituting chemical agent and the substrate. If the reagent is an 
electroneutral radical, then the hybridization of the substituted centre 
changes from Sp2 to Sp3 when the substrate - reagent bond starts to be 
formed, leading to weakening of the original bonds on the substituted 
centre. The first-order perturbation theory leads to the following expression 
for the change in energy connected with the change in the resonance 
integral: 

(16-77) 

the summation being carried out over all the bonds on the substituted 
centre J.l. The free valence of centre J.l can be defined as 

F/t = const - L P/tv (16-78) 

So that it follows for bW that 

bW = -2(F/t - const) bf3/tv = -2F/tbf3/tv + const (16-79) 

these bonds are weakened 

polar 

Fig. 16-24. Models of activated 
complexes during substitution 

of conjugated systems considered in 
application of the perturbation 

treatment. 

Due to the validity of relation (16-79), a linear dependence between 
log kexp,fl and F /t can be expected; it is also evident that large values of F 
correspond to relatively large negative changes b Wand an increase in 
the reactivity with increasing free valence can thus be expected. 

In polar reactions the effect of the substituent (cation or anion) is 
manifested at greater distance than in the previous instance because the 
effect of the reagent charge is effective at a distance where the new cr bond 
is not yet formed. The reagent induces a change in the Coulomb integral 
on the atom that it is approaching (Fig. 16-24); the first-order perturbation 
theory then leads to the following expression for the change in the 
7t-electronic energy: 

(16-80a) 
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Apparently the increase in the 1t-electronic energy is smallest for 
electrophilic (nucleophilic) substitution in the position with the maximum 
(minimum) 1t-electron density. The changes in energies induced by bonding 
of the reagent in different positions or approach to different positions 
need not be calculated, because of the assumption that the degree of 
perturbation (b{3p.., bap.) is constant at all positions; therefore only values 
of the free valences and 1t~electron densities, i.e. data found from the 
molecular diagram, need be known. For azulene, the expected sequence 
of electrophilic, nucleophilic and radical reactivities is as follows (HMO 
data): 

e: 1 > 2 > 5 > 6 > 4, 
since ql > q2 > qs > q6 > q4 

n: 4 > 6 > 5 > 2 > 1, 
since q4 < q6 < qs < q2 < ql 

r: 4 > 1 > 6 > 5 > 2, 
since F 4 > F 1 > F 6 > F s > F 2 

0.855 

0.482 

Predictions based on SCF data lead to a somewhat different sequence, 
but the positions of maximum reactivity are the same in both theories: 

n: 4 > 6 > 2 > 5 > 1 
r: 4 > 1 > 6 > 5 > 2 

This entire discussion is particularly important as it has been shown that 
the use of the electron density and free valence for reactivity estimation 
is justified because these quantities are proportional to the 1t-electronic 
contribution to fl.H (fl.H'i'). 

It appears that prediction of the course of polar substitution in 
altemant hydrocarbons cannot be based on the first-order perturbation 
theory because the electron densities are uniform and it is thus necessary 
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to employ the second-order perturbation theory: 

<5W= q,..<5t:x,.. +iII,..,..(<5a/ 
'-'-v-'-' 
constant term 
for altemant 
hydrocarbons 

(16-80b) 

In practice it is useful to be aware that the sequence of values of 
self-polarizabilities (II,..) and free valences (F,..) is the same and that the 
numerical values of II,..,.. and F,.. are almost identical (Table 16-7). 

Consequently it must be expected that the sequence of polar and 
non-polar reactivities in non-equivalent positions, for example in ben­
zenoid hydrocarbons, will be the same. This is in agreement with 
experimental data. 

mod e l 

more perfect more approximate 

Fig. 16-25. Models of an activated complex 
during substitution of aromatic systems 
considered in the localization approximation. 

atomic orbital taken 

?\~ 
(~) ~ ~ 
~ b 

conjugated port 
of the system 

G 

Fig. 16-26. Wheland complexes for 
electrophilic (a) radical (b) and 

nucleophilic (c) substitutions in benzene. 

Energy change AW2 , will now be calculated (Fig. 16-22). First it 
must be determined in which way the structure of the activated complex 
is exaggerated. In the activated complex (for example, an activated 
complex of benzene during electrophilic substitution, Fig. 16-25) the 
hybridization of the substituted carbon can be expected to approach 
the Sp3 state, so that the conjugation is weakened but not entirely absent. 
"Exaggeration" of this structure consists of predicting complete transition 
from Sp2 hybridization to Sp3 hybridization. Experience suggests that such 
a model is permissible (see below). The numerical calculation then becomes 
considerably simplified; for A W2 , it holds that 

(16-81) 

Wheland termed this difference the atomic localization energy (A~ as 
quantity 11 W2 , gives the energy that must be supplied to the conjugated 
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system for removal of one of the atomic orbitals from the conjugation, 
so that it is localized. This AO can be occupied by two, one, or no 
electrons; the situation with benzene is shown in Fig. 16-26. A complex 
of type a easily reacts with a positively charged reagent or with 
a reagent possessing an electron hole; this reagent is termed electrophilic. 

Chemical Reactivity Indices of Positions in Conjugated Hydrocarbons 

Hydrocarbon Struct ure Position if 

Benzene 

Naphthalene 

Anthracene 

(1)8 

(2)8 

(3)' 

Phenanthrene (4)' 

2 

2 
9 

2 
3 
4 
9 

F A, 

0.398 0.398 

0.453 0.443 
0.404 0.405 

0.459 0.454 
0.408 0.411 
0.520 0.526 

0.450 0.439 
0.403 0.403 
0.408 0.407 

0.441 0.429 
0.452 0.442 

Table 16-7 

A, 

2.536 

2.299 
2.479 

2.230 
2.423 
2.013 

2.320 
2.499 
2.454 

2.367 
2.299 

Azulene (5) 1.173 0.480 0.425 1.924 2.262 2.600 

Acenaphthylene (6) 

2 
4 
5 
6 

3 
4 

1.047 0.420 
0.855 0.482 
0.986 0.429 
0~870 0.454 

0.419 
0.438 
0.429 
0.424 

2.362 
2.551 
2.341 
2.730 

1.066 0.4 77 0.4 73 2.124 
0.909 0.469 0.447 2.525 
1.008 0.397 0.395 2.513 

2.362 2.362 
2.240 1.929 
2.341 2.341 
2.359 1.988 

2.124 2.124 
2.262 1.999 
2.513 2.513 

5 0.927 0.478 0.466 2.606 2.311 2.016 

, In alternant hydrocarbons A, = A, = An is valid. 

6 c6' cxx)' d=t;, 
(1) (2) (3) (4) 

(5) (6) 
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Similarly, a radical or nucleophilic reagent readily reacts with a complex 
of type b or c. Before beginning the numerical calculation of the 
localization energies, it must be noted that this model of the activated 
complex is non-specific inasmuch as it does not include more detailed 
data on the structure of the substituting reagent. The values of the 
localization energy are quite independent of the reagent performing the 
electrophilic substitution, e.g. <±lN02 , D<±l, Br<±l, or <±lSi(CH3)3' As, how­
ever, only relative rates are calculated, this fact is not generally important. 
This approximation is termed the localization approximation. This short­
coming is also characteristic for the isolated molecule approximation. 

IX - 1.732 I g 
~ 

IX - 1.000 ~ w 

f o (IX) IX (d) 

IX + 1.000 

IX, + 1.732 

Fig. 16-27. HMO orbital energies of the pentadienyl system. In the (d) cation, two bonding 
levels are occupied by four electrons. 

The electrophilic localization energy of benzene can now be calcul­
ated. By definition 

(16-82) 

WR denotes the 1t-electron energy in benzene, 61X + 8{3. The energy of 
localized structure (d) consists of two contributions. The first is equal 
to the energy of a pentadienyl cation; the orbital energies ofthe pentadienyl 
system are indicated in Fig. 16-27. Both bonding orbitals are occupied 
in the pentadienyl cation, so that its 1t-electron energy is given by 

W = 41X + 5.464{3 (16-83) 

The energy of an electron located in the carbon 2pz orbital equals IX; 
the energy of two electrons is 21X. Hence, energy W2 , will be given by 

W2 , = 41X + 5.464{3 + 21X = 61X + 5.464{3 (16-84) 

Substitution of Eqs. (16-83) and (16-84) into the expression for Ae yields 

Ae = 61X + 5.464{3 - (61X + 8.000{3) = - 2.536{3 
'----v--" • ' 

(16-85) 

Because the 1t-electronic energy of the localized structure is always higher 
than the energy of the initial system and because {3 is a negative quantity, 
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localization energies always have a negative sign. To simplify the treatment 
of the localization energies they are given in units of - /3 and the 
calculation is carried out only for binding energies. In agreement with 
this convention, the electrophilic localization energy of benzene can be 
written as 

A. = 5.464/3 - 8.000/3 = 2.536( - /3) (16-86) 

The n-electronic energies of the pentadienyl radical and anion are equal to 
51X + 5.464/3 and 61X + 5.464/3, respectively; the binding HMO energies of 

Calculation of Localization Energies 

Parent hydrocarbon 

t 
C=C=C=C 

4.472{3 

10.424{3 

n u 
4.000{3 

• 
00 
13.683{3 

13.683{3 

Localized structure 

c=c=c 
2.828{3 

8.000{3 

c=c=c 

2.828{3 

11.384{3 

(Y 
~ 
11.203{3 

Table 16-8 

A 

( - {3) 

c 

0{3 1.644 

c c 

0{3 0{3 2.424 

c 

0{3 1.172 

c 

0{3 2.299 

c 

0{3 2.480 
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all three systems derived from pentadienyl are the same, however, 
and to 5.464fJ. Consequently, the values of the eiectrophilic, nucleo­
philic, and radical localization energies of the "carbon atoms" in benzene 
are also eq ual: 

(16-87) 

This equality is, of course, satisfied for all the even altemant hydrocarbons. 
The positions of the different altemant hydrocarbons for which the 

localization energies are to be calculated and the numerical data necessary 
for this calculation are given in Table 16-8. 

16.5.2 Substitution reactions of complexes 
of the transition elements26,27 

Substitution reactions have been studied in a great variety of complexes. 
Nucleophilic reactiQns occur far more frequently than electrophilic re­
actions and follow similarly as organic compounds SN1 or SN2 mechanisms. 
In the former case, the monomolecular reaction is the rate-determining 
step, in the latter case, the bimolecular reaction. In both cases the 
structure of the transition state (of the activated complex) can be quite 
accurately predicted. If an octahedral complex undergoes substitution, 
then this complex is a square pyramid (SN1) or a pentagonal bipyramid 
(SN2) (cf. Fig. 16-28). 

Fig. 16-28. SN1 and SN2 substitutions in an octahedral complex. 

It should be mentioned that the transition state of the SN1 mechanism 
can also be a trigonal bipyramid. The stabilization energy values, however, 
suggest that a square pyramid is more probable. If only the energy 
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difference between the transition state and the reactant is to be calculated, 
then the crystal field theory is adequate for semi-quantitative purposes. 
It is assumed in the calculation that only the differences in the energies 
of the d electrons are important and that the energy changes of the other 
electrons are constant in the entire series of studied complexes. In order 
to calculate the crystal field stabilization energy (CFSE), it is necessary 
to know (in addition to the structures of the reactant and the transition 
state) the number of d-electrons and the nature of the crystal field 
(whether it is strong or weak). 

Table 16-9 

SN2 Reactions [Ref. 24] 

(1) Reactants: octahedral complex + substituting ligand. (2) Activated complex: pentagonal 
bipyramid (values are expressed in multiples of Dq) 

System Strong field Weak field 

(1 ) (2) IlE (1 ) (2) llE 

dO 0 0 0 0 0 0 
d l -4 -5.28 -1.28 -4 -5.28 -1.28 
d2 -8 -to.56 -2.56 -8 -10.56 -2.56 
d3 -12 -7.74 4.26 -12 -7.74 4.26 
d4 -16 -13.02 2.98 -6 -4.93 1.07 
d5 -20 -18.30 1.70 0 0 0 
d6 -24 -15.48 8.52 -4 -5.28 -1.28 
d7 -18 -12.66 5.34 -8 -10.56 -2.56 
dB -12 -7.74 4.26 -12 -7.74 4.26 
d9 -6 -4.93 1.07 -6 -4.93 1.07 
dlo 0 0 0 0 0 0 

Tables 16-9 and 16-10 summarize the results of calculations of the 
reactant energies and of the transition states for SN2 and SN1 reactions, 
which permits explanation of numerous experimental data. These data 
often reflect great differences in the kinetic stability of individual, often 
formally similar, complexes. Thus, for example, accepting a seventh ligand 
does not require much energy in a d5 ion with high spin [(T2g)3 (Eg)2] 
(the charge distribution is spherically symmetrical in these ions). Essentially, 
it suffices for this ligand to approach to a distance comparable with the 
distance characteristic of the original ligands. With the d6 ion with low 
spin [(T2l] the situation is different. The charge distribution differs 
considerably from spherical symmetry. If the substituting reagent is to be 
equivalent to the bonded ligands, transfer of one electron from orbital T2g 
to orbital Eg must occur. This process requires a relatively large amount 
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Table 16-10 
SNI Reactions [Ref. 24] 
(1) Reactant: octahedral complex. (2) Activated complex: square pyramid (values are expressed 
in multiples of Dq) 

System Strong field Weak field 

(1) (2) tlE (1) (2) IlE 

0 0 0 0 0 0 
-4 -4.57 -0.57 -4 -4.57 -0.57 
-8 -9.14 -1.14 -8 -9.14 -1.14 

-12 -10.00 2.00 -12 -10.00 2.00 
-16 -14.57 1.43 -6 -9.14 -3.14 
-20 -19.14 0.86 0 0 0 
-24 -20.00 4.00 -4 -4.57 -0.57 
-18 -19.14 -1.14 -8 -9.14 -1.14 
-12 -10.00 2.00 -12 -10.00 2.00 
-6 -9.14 -3.14 -6 -9.14 -3.14 

0 0 0 0 0 0 

of energy. d3 Complexes are similar [(T2g)3]; formation of an activated 
complex requires either transfer of an electron (T2g ~ Eg) or the coupling 
of two electrons in the T2g orbital. 

It is evident that the calculations described have some features in 
common with the HMO treatment of the Wheland complex in organic 
reactions: a) only electrons of a certain type (here d electrons) are explicitly 
considered, b) the model of the activated complex is not specific for the 
substituting reagent, c) electronic repulsion is neglected. 
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17. WEAK INTERACTIONS 

17.1 Introduction 

Interactions between atoms, ions and molecules leading to the formation 
(and breaking) of chemical bonds are of particular importance in chemistry. 
However, weak and very weak interactions between systems with closed 
electronic shells have already been studied for more than a century. 
No reaction in the chemical sense occurs between these systems under 
"normal" laboratory conditions. The existence of the liquid state and of 
molecular crystals is a consequence of the existence of attractive inter­
molecular forces. The equilibrium distance between molecules forming 
associates in the liquid and solid phases is dependent on the compensation 
of the attractive and repulsive forces. Repulsive forces have been shown 
to decrease very sharply with increasing intermolecular distances (ap­
proximately with the twelfth power of this distance); the increase in 
attractive forces, on the other hand, is not as rapid, as the distance 
decreases (it is roughly proportional to its sixth power). This has important 
consequences: whereas repulsive forces practically cease to be effective 
at distances greater than the length of chemical bonds, attractive forces 
are not negligible even at distances of about 0.4 nm; we therefore speak 
of long-range forces. A very important place is occupied by dispersion 
forces; in Section 17.2 the quantum mechanical derivation will therefore 
be discussed using a simple model. Expressions, resulting from the 
perturbation calculation, suitable for description of the intermolecular 
effects, will be introduced. Initially a few words will be said on the origin 
of Coulomb, induction and dispersion forces. Coulomb interaction is based 
essentially on the fact that the interacting systems are formally composed 
of a number of multipoles. Induction forces result from interaction between 
the permanent and induced multi poles of these systems. Interaction 
between systems without permanent multipoles characterizes dispersion 
forces. Multipole moments are also, however, formed in these systems as 
a result of electron fluctuations and their existence is, of course, limited 
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in time. The interaction between the time-limited multipole and the 
multipole induced in the second system is important in calculating the 
dispersion interaction. The energies of these three types of interactions 
are, in the simplest cases (interaction monopole - monopole, monopole­
induced dipole, time-variable dipole - induced dipole) indirectly propor­
tional to the square, fourth and sixth power of the distance between the 
interacting systems which, ideally, act as systems of point particles. 
In interaction between systems without permanent dipoles, the potential 
energy E(r) can be described by the empirical relationship introduced by 
Lennard-Jones, also called 6-12 potential: 

(17-1) 

where 6 and (J are empirical constants with the dimensions of energy and 
length, respectively. Concretely, 6 denotes the depth of the potential 
minimum and (J is the distance between the interacting systems at which 
energy E(r) is zero. It follows from the introduction to this section that 
a term with a positive sign in Eq. (17-1) describes repUlsion and a term 
with a negative sign describes attraction between the systems. 

17.2 van der Waals interaction 
between a pair of linear oscillators 

This case corresponds to the interaction of two diatomic molecules l •2 • 

Each is characterized by a dipole and, in addition, both will be considered 
to be harmonic oscillators. In Fig. 17-1 several symmetrical arrangements 
of interacting oscillators are shown. The linear model (Fig. 17-1a) will be 
discussed first. The total potential energy of this system which is to be 
substituted in the Schrodinger equation is composed of the potential 
energy of the dipole interaction and the energy of the oscillators. 

The first contribution, provided the absolute values of the charges 
in the dipole equal q, has the value 

I q2 (1 1 1 1) 
V = 41t60 -,: + r - Xl + x2 - r - Xl - r + x2 

(17-2) 

If we expand the individual terms in parentheses into a series and if r is 
much greater than Xl and x 2 ' we obtain the following simplified expression: 

V' = _ 2q2xlx2 
41t60 r 3 

(17-3) 
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a) 

b) 

c) 

d) 
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/ 

/ 
/ 

/ 

" 

,­,­
/ 

c.. 

Fig. 17-1. Symmetrical models of two interacting systems. Models a) to c) are planar, 
model d) is three-dimensional. Xl and x2 designate the length of dipoles, r the distance 

between them. 

If the force constant of both oscillators equals f, then it is valid for 
the second contribution that 

1 
V" = -f(x~ + xD 

2 

and the total potential energy has the form 

V= V' + V" = ~f(xi + x~) _ q2XIX2 
2 21t1'or3 

(17-4) 

(17-5) 
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By substituting this expression into the Schr6dinger equation and by 
introducing new variables Zl and Z2 [Zl = (Xl + x2)/~2; Z2 = (Xl - x2)/~2], 
we obtain 

(17-6) 

mass. 
In Eq. (17-6) it is possible to separate the variables: 

iJ2 '1' 81t2 J.l ( 1 ) 
azi 1 + ~ El - 2flZi '1'1 = ° (17-7) 

02'1' 81t2J.l ( 1 ) az~2 + ~ E2 - 2f2Z~ '1'2 = 0, (17-8) 

where '1' = '1'1 (z 1) '1' 2(Z2) and E = E 1 + E2. 
The analogy of Eqs. (17-7) and (17-8) with Eq. (3-14) is obvious; 

therefore, for the total energy of two linear dipole oscillators, the expression 

E = (nl + ~)hVl + (n2 + ~)hV2 (17-9) 

can be written, where for v, using Eq. (3-74) and the definitions for fl 
and f2' it is valid that 

( 2q2 )1/2 
V1 = Vo 1 - 41tBofr3 (17-10) 

( 2q2 )1/2 
V2 = Vo 1 + 41tBofr3 (17-11) 

Expression (17-9) can now be easily evaluated; for the ground state 
(nl = n2 = 0) the expression 

1 [( 2q2 )1/2 ( 2q2 )1 /2J 
Eo = 2" hvo 1 - 41tBofr3 + 1 + 41tBof r3 (17-12) 

is obtained. If the square roots in Eq. (17-12) are expanded using the 
binomial theorem and higher terms of the expansion are neglected, then 
the relationship 

Eo = hvo (1 - 2f2r6~:1tBO)2 ) (17-13) 

is valid. Since the total energy of the zero point of the two-oscillator 
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system equals hvo, the difference between Eo [Eq. (17-13)] and hvo 
indicates the interaction energy of the studied system 

hvoq4 1 1 
U(r) = - 2j2 7 (47t/;0)2 , (17-14) 

and represents the van der Waals energy of the pair of oscillators. The 
important feature of this result, i.e. the proportionality of the interaction 
energy to the sixth power of the reciprocal distance, is also preserved for 
the generalized three-dimensional case. This term appears in all expressions 
for the dispersion energy. 

17.3 Various means of calculating 
intermolecular interaction energies 

This is, in principle, a very common task which does not differ at first 
sight from those usual in the theory of chemical reactivity. Two sub­
systems, A and B, affect each other and establish a composed system. 
It is thus a matter of calculating the difference between the energies of 
system A - B and of the two sub-systems A and B. Two kinds of 
difficulties arise: quantitative and qualitative. 

The first difficulty is connected with the fact that the difference in 
energy which is to be calculated is usually smaller by roughly one order 
of magnitude than the analogous difference in chemical reactions. This 
difference usually amounts to 4 to 35 kllmol and is given as the difference 
of two large numbers. Thus, the demands on accuracy are extraordinarily 
high. However, the calculation can be based on the perturbation method 
instead of the variation method. 

The qualitative difficulty is related to the fact that the dispersion 
energy can only be calculated using a method describing the correlation 
energy. It is therefore impossible, in principle, to calculate the dispersion 
energy using the Hartree-Fock SCF method. On application of the 
variation treatment, a satisfactory result can be obtained using the non­
empirical SCF method combined with complete configuration interaction; 
the calculation can also be carried out using a Hamiltonian which 
includes the interelectronic coordinate. For rougher calculations, inclusion 
of doubly excited configuration suffices, but even here the calculation 
is very extensive, particularly for a molecule containing several atoms. 
Even proper study of the interaction of two hydrogen molecules is a rather 
difficult task at the present. The results of recent calculations are surveyed 
in Table 17-1. 
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Semiempirical SCF methods, in which the parameter values are 
chosen to cover the greatest possible part of the correlation energy, can 
also be used. It appears, however, that these methods are too rough for 
correct description of such fine effects. 

Table 17-1 
Interaction Energy of Two H2 Molecules 

Method 

"ab initio" + CCI" 
"ab initio" + limited Clb 

perturbation treatmentC 

experimental (molecular beamS)d 

-L1E 
Jmol I 

173.3 
304.5 
260.1 
274.4 

a C. F. Bender, H. F. Schaefer III : J. Chern. Phys. 57,217 (1972). 
b O. Tapia, G. Bessis: Theoret Chirn. Acta. 25, 130 (1972). 
C A. A. Evett, H. Margenau: Phys. Rev. 90, 1021 (1953). 
d J. M. Farrar, Y. T. Lee: J. Chern. Phys . 57, 5492 (1972). 

With the perturbation calculation, the treatment can be carried out 
as follows: a total Hamiltonian in the form 

(17-15) 

is introduced, where ;7(A (;7(B) is the Hamiltonian of subsystem A (B) 
and tl/J is a perturbation term which contains only intermolecular inter­
actions: 

(using the symbols introduced in Section 10.2.1). 
At large distances, it is assumed that the total wave function can 

be approximated by the product of the wave functions of the subsystems. 
At medium and small distances the overlap between the subsystems is not 
negligible, so that a properly anti symmetrized product of the wave 
functions must be considered: 

(17-17) 

where d is the antisymmetrizer and lJ'~ (lJ'~) is the wave function of 
subsystem A (B). 
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Application of the antisymmetrizer guarantees that wave function if> 
is an antisymmetrical function with respect to the transposition of an 
arbitrary pair of electrons irrespective of the system they come from. 

From the point of view of computation it is expedient to discuss 
three cases separately, according to the distance between the interacting 
subsystems. If the distance between subsystems A and B is sufficiently 
large, it is possible to work with the product function and the first-order 
perturbation treatment leads to the classical Coulomb interaction ec, 
which is either attractive or repulsive. The second order perturbation 
treatment leads to the induction (EI) and the dispersion (E~ interactions; 
both these energies reduce the energy of the total system. The perturbation 
calculations of the first and second order (cf. Section 4.6) lead to the 
following expressions for the energy: 

(17-18) 

(17-19) 

where summations K and L include all the excited configurations of 
subsystems A and B. One of the possible means of evaluation Eqs. (17-18) 
and (17-19) consists of the direct utilization of the perturbation Hamilto­
nian [Eq. (17-16)] and of replacing the respective Slater determinants for 
the wave functions ; these wave functions are the result of MO calculations 
for subsystems A and B. Within the framework of the CNDO/2, CI 
method (including only singly excited configurations) the following expres­
sions are valid: 

(17-20) 

(occ .) (unocc.) (occ.) (unocc.) (L L C,..rC,..sCy,CyuY,...)2 

ED = -4 1. s~ ~ Is /!e(~veE~-+s + ~E~-+u) (17-22) 

Here QI denotes the electron density on atom I (cf. Section 11.2.4), 
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ql (= Zl - QI) is the charge on atom I, y is the repulsion integral in the 
AO 'basis set, Z is the charge of the core, c is the expansion coefficient, 
dE, .... is the excitation energy corresponding to the transfer of an electron 
from molecular orbital r into molecular orbital s; the summations 
Land L are carried out over all the AO's of subsystems A and B; the 
/lEA vEB 

(occ.) (unocc.) (occ .) (unocc.) 

terms L L L L denote summations over the occupied and 
reA seA IEB ueB 

unoccupied virtual MO's of subsystems A and B and finally L L are 
lEA JeB 

summations over all the atoms of subsystems A and B. 
The first order perturbation calculation using Eq. (17-17) leads 

to the expression for repulsion energy (ER); this contribution is predominant 
at small distances. At medium distances an interesting effect can become 
important, namely, the transfer of an electron from one subsystem 
(the donor) to the second subsystem (the acceptor); this is referred to as 
charge-transfer (ECf). The two last contributions are of great importance; 
however, since the respective expressions are even more complicated 
than the previous expression [Eqs. (17-20) to (17-22)] they will not be 
discussed here; they can be found in the literature4 •s. 

It should be noted that expressions (17-20) to (17-22) permit calcula­
tions with a high degree of accuracy. The only difficulty is of a technical 
nature: these calculations, owing to the multiple summations involved in 
all the contributions, impose tremendous demands upon computation 
time for polyatomic molecules. Thus the majority of the calculations 
performed so far concern small molecules. 

It is often necessary for practical reasons to estimate the extent 
of the interaction energy in relatively large systems. Various empirical 
formulae have long been used for these purposes; one of them has 
already been mentioned [cf. Eq. (17-1)]. Buckingham introduced another 
important formula: 

E(r) = b exp (-ar) - cr- 6 - dr- 8 , (17-23) 

where E(r) is the interaction energy corresponding to the distance r 
between the point particle subsystems and a, b, c, d are constants. 
Both the given empirical formulae are applicable, however, only for 
non-polar spherically symmetrical molecules. Calculation of interaction 
energies in more complicated systems requires suitable modification of the 
empirical potential. Most frequently this is performed using the simplified 
Buckingham potential [Eq. (17-23)], in which the term containing r- 8 

is neglected and the total interaction is, in addition, considered as the 
sum of the interactions among all the atoms of subsystems A and B: 
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Table 17-2 
Constants in Eq. (17-24) 

Atom I 
C1 C2 C3 

SL 
kJmol I kJ mol I nm 

H 0.3957 145.61 13.587 0.120 
C 1.0078 370.95 13.587 0.170 
N 0.8952 329.35 13.587 0.150 
0 1.0928 402.15 13.587 0.140 

(17-24) 

where C l' C 2' C 3 are constants following from thermochemical or 
conformational data (Table 17-2), (h and (h are the van der Waals 
atomic radii. This potential is applicable to interactions between un­
charged non-polar .systems. The description of charged and polar systems 
must contain terms allowing for the Coulomb and induction interactions.4 

17.4 Application of weak interactions 
from the point of view of physical chemistry 

In Fig. 17-2 the regions are schematically represented in which weak 
intermolecular interactions are effective to a significant degree. It would 
not be reasonable to try to decide the sequence of importance of these 
interactions. It is, rather, important to be aware that Fig. 17-2 includes 
both cases in which, in essence, pair interaction occurs (for example, 
charge-transfer complexes in the gas phase), and cases in which interaction 
of a large group of molecules takes place (for example, the cohesion 
of molecules in a molecular crystal).1t appears, however, that also in this 
second case it is possible (for example, in the process of molecular 
crystal melting) to estiJIlate the change in the energy from knowledge 
of the pair interaction energy and from the coordination number of 
the individual molecules (see below). The complete theoretical treatment 
of the systems depicted in the scheme in Fig. 17-2 comprises not only 
calculation of the enthalpy term (the interaction energy following from 
theoretical or empirical expressions is the internal energy) but also 
calculation of the entropy term using the methods of statistical thermo-
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dynamics. It remains to be added that a gradual transition exists between 
interactions leading to chemical bonds and weak intermolecular inter­
actions: this can be demonstrated by the existence of the hydrogen bond. 
It can be assumed that in this case there is a significant contribution 
of the dispersion forces to the bonding effect. 

1 solvation energy 

,,,,too,, oft;,";d, f /1 ph";,,, Od"cpt;ool 

r~~S~~~;{a?! mOlecu-/weak inte ractio ns \_1 Henry's law 1 
determination of I' Nernst distr ibution . 
molecular conforma- low 
tion, steric effect L--_____ -' 

chorqe -transfer 
complexes 

lassociotion of a pair of systems I 

collis ion 
complexes 

Fig. 17-2. Survey of the regions in which weak interactions play an important role. 

For illustration, a few specific cases can be mentioned, beginning 
with pair interactions between homonuclear diatomic molecules. The 
results for hydrogen have already been given (Table 17-1). In heavier 
molecules (for example N 2 , 02' F 2 , 12) the interaction energies can 
be estimated most easily using the empirical potential (Table 17-3). 
This is the process: 

Enthalpy of Dimerization of Diatomic Molecules [Eq. (17-25)]: 
the Buckingham potential, Eliel parametrization [Eq. (17-24)] 

Product 

(02lz 
(Br 2)2 

(12)2 

T 
K 

70.8 
408.2 
605 

-/lH 
kJmol 1 

experiment 

1.13 
10.9 
12.1 

(17-25) 

Table 17-3 

calculation 

1.817 
5.950 
8.077 
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Optimization of the geometry in dependence on the mutual orientation 
leads to an "elongated" tetrahedron (the main axes of the two diatomic 
molecules lie in mutually perpendicular planes). Calculations by the more 

Table 17-4 
Experimental and Calculated6 Values of the Energy of Vaporization 
at the Boiling Point 

Substance 

Methane 
Ethane 
Propane 
Benzene 

5 

-LlU 
kJmol 1 

experiment calculation 

8.00 7.24 
13.98 13.19 
16.92 16.87 
25.00 27.84 

10 15 20 25 
---i"~ -llEtheor(kJ/mol) 

Fig. 17-3. Graph of the dependence of experimental enthalpies of vaporization on pair 
interaction energies. 
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accurate perturbation method lead to a linear configuration. The difference 
in the results is caused· by the fact that only the atomic distances are 
included in the potential term and thus the dispersion energy is calculated 
using an expression in which it is proportional to the sixth power of the 
reciprocal distance between the atoms. In reality, "the centres for 
dispersion energy" are located in the region of the bond centres, this 
being well characterized by the perturbation method but not by the 
empirical potential. 

The second case concerns heats of vaporization. In Table 17-4 
the experimental and calculated vaporization energies for several hydro­
carbons are given. This calculation requires a certain knowledge of the 
structure of liquids. The problem6 has been treated as the interaction 
of one molecule with a continuous medium and the numerical calculations 
were performed using spherical integrals. However, good agreement between 
the calculated and experimental data could not be achieved without 
the introduction of a scaling factor. The fact that there is a linear 
relationship between the pair interaction energies and the vaporization 
energies is useful not only from a practical point of view. The different 
values of the slopes of these dependencies are probably connected with 
the coordination numbers of the molecules (Fig. 17-3). 

In conclusion, the great possibilities of applying the formalism 
introduced in this chapter for studying solvation effects and energies should 
he mentioned. The calculation of these quantities represents a difficult 
point in theoretical studies of reactivity in solutions. Studies in thi~ 

tield have, however, already been initiated. (For additional reading see 
Ref. 7-9.) 
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ab initio calculation, 192 
absolute calculation, see ab initio calculation 
absolute reaction rates, theory of, 392, 412 

absorption band, 319 
absorption maximum, 319 
absorption process, 312 
absorption spectrum, 316 
absorptivity, 319 
acenaphthylene,431 

electronic spectrum, 366 
acetaldehyde, NMR spectrum, 330 
acetylene, 151 
acid-base reaction, 419 
actinoids, 165 
activated complex, extreme structure, 430 

lifetime, 410 
activation entropy, 412 
adiabatic approximation, 85 
adiabatic correction, 86 
adiabatic transition, 269 
all-valence electron methods, 195 
angular function, 31, 43 

complex, 41 
angular momenta, vector addition, 61, 166 
angular momentum, 58, 60, 110 

component, operator, 59 
general, 61 
quantum numbers, 38, 62, 63 

square of, operator, 59, 139 
total, 61, 63, 165 

operator, 63 
angular momentum operator, 58, 138 
anharmonicity constant, 343 
annulene, 330 
anthracene, 431 
antibonding state, 173 
anti-Stokes lines, 346 

antisymmetric state, 65 
antisymmetrizer,443 
AO, see atomic orbital 

angular part, 42, 44 
complex, 39 
graphical representation, 41 

radial part, 44, 162 
real, 41 
survey, 40 

AO overlap, 155 
aromaticity, 385 

HUckel rule, 301 
atomic charge in a molecule, 284 

Coulson definition, 284 
Mulliken definition, 284 
Politzer definition, 285 

atomic localization energy, 271, 430 
atomic nuclei, characteristics, 322 
atomic nucleus, charge distribution, 321 

ellipsoidal deformation, 323 
atomic orbital, 38, 40, 94, 150, 162 
atoms, electronic spectrum, 168 
"atoms-in-molecules" method, 282 
Aufbau principle, 163 
azulene, 431 

8 2 molecule, 185, 189 
basis, 66 

extended, 190 
orthonormal, 51, 69,116 
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basis for representation, 116, 118, 123, 125, 
129, 141 

basis function, 66 
basis set, contracted, 192 

double zeta, 190 
minimum, 133, 190 

bathochromic shift, 306 
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benzene, 380,431 
electron configurations, 143 
localization energy, 432 

radical anion, 336 
symmetry, 142 

benzenoid hydrocarbons, basicity, 422 
benzoic acid, diss0_ia tion, 393 
binding energy, 385 
bipyramid, pentagonal, 434 

trigonal,434 
Bohr magneton, 333, 378 
Bohr orbit, 38 
Boltzmann distribution law, 320 

It-bond, 153 
a-bond, 153 

bond, localizability, 280 
tricentre, 281, 298 

bond localization energy, 271 

bond order, 215, 284 
LCI method, 215 

bonding state, 173 
boranes, 297 
Born formula, 423 
Born-Oppenheimer approximation, 83, 86, 

110, 174 

boron nitride, 296 
Brillouin theorem, 95, 215 
Buckingham potential, 445 
butene-2, isomerization, 402 

carbene, 151 
carbon atom, 151 
carcinogenic activity, 311 
catalysis, 398 
catalytic reaction, 398 
character of a representation, 120 
character table, 120 
characteristic equation, 21,49 
characteristic function, 21, 49 
characteristic value, 21, 49 

Hermitian operator, 53 
charge- and bond-order matrix, 191 

charge distribution, 282 
charge transfer, 445 
charge-transfer spectrum, 352 
chemical reactivity, 391 

compromise approach, 419 
correlation with HMO data, 420 
correlation with SCF data, 420 

empirical approach, 393 

qualitative considerations, 396 
theoretical approach, 396 

chemical reactivity index, 431 

chemical shift, 327 
CI, see configuration interaction 
CI method, 72, 87, 95, 365 

hydrogen molecule, 178 
matrix elements, 91 

class of equivalent elements, 119 
classical mechanics, II, 50 
closed-shell system, 94, 190 

CNDO, 200, 206 

CNDO/ l , 196, 204 

CNDO/2, 196, 203,206 
CO2 molecule, 373 
commutator, 48 
complex, covalent, 259 

ionic, 259 

octahedral, 135, 154, 249,256,257. "s8, 436 
substitution reaction, 434 

square, 249 
tetrahedral, 249, 388 

complexes, Cu2 +, 302 
electronic spectra, 359 
inorganic, 148 

complexes of transition elements, magnetic 
moment, 382 
reactivity, 418 
substitution reactions, 434 

configuration, doubly excited, 143 
ground state, 95, 143,215 
singly excited, 215, 364 

configuration interaction, 87, 215, 365 
complete, 90 
Iimited,90 

configuration interaction method, see CI 

method 
conformation of biolbgically active substan­

ces,311 
conjugated hydrocarbons, first absorption 

bands, 362 

reactivity indices, 431 
conjugated system, reactivity, 418 
conrotation,290 
conservative system, 13 
constant of motion, 58, 64, 110 
coordinate operator, 50 
coordinates, elliptical, 181 



internal, 344 
rectangular, 36,181 
spherical polar, 36, 181 

core charge, 202 
core repulsion, 214 
correlation diagram, 185, 189,290 
correlation energy, 193, 443 
correlation error, 193 
Coulomb energy, 444 
Coulomb force, 438 
Coulomb hole, 193 

Coulomb integral, 172,202,214,241,263,348 
Coulomb interaction, 444 

Coulomb operator, 98 

Coulomb potential of a point charge, 44 
Coulson bond order, 284 

covalent bond, 155 
crossed molecular beams, 411 
crystal, covalent, 296 

ionic, 296 
molecular, 295 

crystal field, strong, 252, 388 

weak, 252, 388 
crystal field stabilization energy, 387, 435 

octahedral complexes, 389 

tetrahedral complexes, 390 
crystal field strength, 258 
crystal field theory, 148,251 
cyclic H Uckel polyenes, 225 
cyclic Mobius polyenes, 225 
cyclobutane,405 
cyclobutene, formation from 1,3-butadiene, 

289 
cyclopolyene, 224 
cyclopropenone, HMO characteristics, 238 

de Broglie relation, 15 

decomposition of a reducible representation, 
124 

degeneracy, 115, 119,325 
order of, 27, 46, 115 

degenerate level, 27, 77, 143 
degenerate state, 45 
Del Re method, 208 
delocalization energy, 264, 385, 386 
dendralenes, 228 
density matrix, 275 

first-order, 275, 276 
properties, 277 

second-order, 275, 276 
"spin less", 276 

deoxyribonucleic acid, 309 
Dewar structure, 247, 248 
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diamagnetic susceptibility, anisotropy, 380 
diamagnetism, 377 
diamond, 296 
diatomic molecules, 170, 184 
diborane, 297 
dichroism, 371 
dipole moment, 285, 317 

component, 287,288 
excited state, 317, 371 
induced, 345 
total,288 

Dirac notation, 91 
direct process, 411 
direct product of representations, 123, 144 
direct reaction, 411 
direct sum of representations, 118 
dismutation constant, 424 
dismutation reaction, 424 
dispersion energy, 444 
dispersion force, 438 
dispersion interaction, 444 
disproportionation reaction, 424 
disrotation, 290 
dissociation energy, 193 

ofH2 ,86 
distortion energy, 386 
double bond, 153 

EHT, 197,207,304 
eigenfuction, see characteristic function 
eigenvalue, see characteristic value 
einstein, 314 
Einstein probability coefficient, 320 

electric field vector, 314 
electrocyclic reaction, 289 
electromagnetic radiation, 313 
electromagnetic theory of light, 313 

dectron,14 
IT-electron, 209 

IT-eJectron,209 
electron acceptance, change of structure, 399 
electron affinity, 264 

data, 266 
experimental determination, 270 

It-electron approximation, 209 
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electron charge on an atom, 284 
electron configuration, 142 

hybridization, 137 
symmetry properties, 143, 147 

electron-deficient molecules, 281 
electron-deficient system, 297 

electron density, 215, 273, 283,429 
electron distribution, 282 
electron energy, 264 

total,214 
VB,241 

n-electron function, 89 
electron lone pair, 279, 281 
1t-electron method, 194, 216, 220 

semiempirical,216 
universal parametrization, 221 

a-electron method, semiempirical, 195, 282 
electron paramagnetic resonance, see EPR 

electron redistribution during excitation, 
369 

electron redistribution during molecular for­
mation, 282 

electron repulsion integral, 219 
theory of disproportionation, 426 

1t -a-electron separation, 209 
electron shell, inner, 279, 281 
electron spin resonance, see ESR 
1t-electron theory, 209 
electron volt, 314 
electronic and nuclear motion, separation, 83 
electronic excitation, 347 

change of electron distribution, 317 
change of structure, 399 

electronic spectrum, 347 
electronic transition, orbital representation, 

347 
electrophilic substitution, 429, 432 
electrostatic interaction, 92, 108, 148 
element, conjugate, (or equivalent), 119 

Eliel parametrization, 447 

emission process, 312 
emission spectrum, 316 
empirical molecular parameters, 213, 223 

CNDO/l method, 205 
Del Re method, 208 
HMO method, 225 
Pople 1t-electron method, 213 

energy, 13 
HMO,231 

perturbation calculation, 235 
quantization of, 23, 32 
statistical distribution, 57 
total, 83, 99 

CNDO,206 
1t-electron contribution, 210 
gradient calculation, 415 
minimization of, 101,414 

energy hypersurface, 392, 414 
analysis, 416 

energy level, 143, 168 
degenerate, 147 
splitting, 79, 148 

energy of intermolecular interaction, 442 
energy of vaporization, 448 
energy units, 315 

conversion factors, 316 
enthalpy of dimerization, 447 
enthalpy of elements, 383 

enthalpy of formation of a compound, 383 
EPR,333 
rx{J equation, 396 
equation of motion, 14 
equilibrium constant, 392, 410, 411 
equilibrium process, 392, 411 
ESR, 81, 333, 339 
ethylene, 151 

cycloaddition, 405 
determination ofMO's from symmetry, 133 

exchange integral, 241, 348 
exchange interaction, 98 
exchange operator, 98 
excitation energy, 73, 348 

electronic spectra, 350 
excited state, 313, 317, 397, 399 

popUlation of, 320 
excited state energy, 73, 317 
expansion coefficient, 57, 74, 154, 215 

calculation, 172 
expectation value of physical quantity, see 

mean value of physical quantity 

FEMO, see free electron method 
Fermi hole, 193 
ferrocene, 307 
ferromagnetism, 377 
first -order spectrum, 332 
flash photolysis, 357, 373 
fluorescence, 367 



Fock-Dirac density matrix, 276 
force constant, 19,344,415 
force constant matrix, 344 
formaldehyde, 305 
Forster cycle, 374 
Franck-Condon principle, 354 
Franck-Condon transition, 269,355 
free electron method, 27, 238 
frequency, 316 

characteristic, 345 
fundamental, 344 

fulvene, 40 I 
functional group, 393 

Gaussian type function, 192 
Gibbs energy, 411 
Gibbs energy of activation, 410 
Goeppert-Mayer and Sklar approximation, 

202,203 
Gouy balance, 379 
gradient of the total energy, 415 
graphite, 296 
ground state, 71, 312 

ground state determinant, 95, 215 
ground state energy, 71, 73 
group, continuous, 113 

cyclic, III 
definition,105 
dihedral, 111 
order, 105 
point, 105, 111, 113 

group element, 105 
group multiplication, 104 
gyromagnetic ratio, 321 

Hamiltonian, 16,51,55 
elTective, 207, 222 
n-electron, 210 

total,80 

non-relativistic, 82 
Hamiltonian function, 14, 16 

Hamiltonian of an ion in ligand field, 252 
Hamiltonian operator, see Hamiltonian 
Hammett constants of reaction series, 395 
Hammet equation, 393 
Hammett substituent constants, 395 
harmonic oscillator, 18, 27, 30, 33 
harmonic oscillator approximation, 341 
Hartree-F ock energy limit, 193 

Hartree-Fock equations, 96, 97, 192 
canonical form, 97 
general form, 97 

Hartree-Fock method,99 
Hartree-Fock operator, 98, 191 
heat of atomization, 383 

conjugated compounds, 384 
heat of combustion, 386 
heat of formation, 264, 383 
heat of hydration of ions, 389 

heat of sublimation, 295 
heat of vaporization, 449 
heavy atom elTect, external, 356 

internal, 356 
Heisenberg commutation relations, 59 
Heisenberg uncertainty principle, 21, 33 
Heitler-London method, 239 
Hermite function, 33 
Hermite equation, 33 
hfs constant, 337 
HMO, 198,222 

calculation, 228 

check of results, 229 
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comparison with experiment, 264 

comparison with perturbation calculation, 
238 

correlation with ESR data, 338 
correlation with spectral data, 363 
energy characteristics, 264 
excitation energy, 351 
matrix, 231 

H2 molecule, 174 
excited state configurations, 177 
ground state energy, 175 

H2 molecules, dispersion energy, 442 
interaction energy, 443 

HMO orbital energies, for a molecule in 
a magnetic field, 381 

polyenes, 225 
HolTmann method, see EHT 
HOMO, 400 
Hook's law, 343 
HUckel method, see HMO 
Hund rule of maximum multiplicity, 187, 

258,350 
hybrid orbital, 134, lSI 

optimum, 281 
hybridization, 134, 151,281 

carbon atom, lSI, 153 
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central atom, 153 
diagonal, 152 
octahedral, 136, 154 
tetragonal, 152 
trigonal, 152 

hybridization invariance, 202 
hydrates of ions, colour, 359 
hydrogen atom, 19,30,35,44 

constants of motion, 61 
hydrogen bond, 310 
hydrogen molecular ion, 19, 170 
hydrogen-type atom, 36, 37, 39 
hydrolysis, alkaline, 393 
hyperfine splitting constant, see hfs constant 
hyperfine structure, 333, 335 
hypsochromic shift, 306 

identity element, 105 
identity operation, 103 
identity operator, 48 
INDO, 197,206 
induced process, 320 
induction energy, 444 
induction force, 438 
induction interaction, 444 
induction of the magnetic field, 328 
infrared spectroscopy, 315, 344 
inorganic compounds, application of me­

thods, 295 
complex, 249, 302 
conjugated,299 

inorganic cycles, 299 
integral, one-centre, 179 

two-electron, 180,212 
one-electron, 176, 202 
two-centre, 181,219 
two-electron, 191 

intensity of magnetic field, 381 
interaction, interelectronic, 174 

intermolecular, 438 
weak,438 

interaction constant, 330, 332, 344 
interelectronic coordinate, 442 
intersystem crossing, 357, 368 
inverse (element), 105 
inversion operation, 103, 104, 107 
ionization, change of structure, 399 
ionization potential, 264, 306, 375 

adiabatic, 269 

data, 266 
excited state, 375 
experimental determination, 268 
first, 269 

Jablonski diagram, 367 
Jahn-Teller effect, 302, 359 

KekuU: structure, 247, 248 
ketene, 400 
kinetic energy, 14,82 
kinetic energy matrix, 344 
kinetic energy operator, 16, 82 
Koopmans theorem, 267 
Kronecker symbo~ 52 

Lagrange multipliers, method of, 72 
Laguerre function, 32 
Lambert-Beer law, 318 
Landi: factor, 378 
Laplace operator, 35, 108, 180 
Laporte selection rule, 361 
lattice energy, 296 
LCAO, 101, 154 
Legendre function, 32, 254 

associated, 32 
Lennard-lones potential, 439 
LFMO,400 
lifetime, excited states, 368 
ligand field theory, 252, 259 
ligands, 134, 154, 252, 361 
light ray, 313 
linear combination of atomic orbitals, see 

LCAO 
linear momentum, 14, 16 

operator, 16,50 
linear oscillators, van der Waals interaction, 

439 
linear polyenes, 225 
localization approximation, 432 
localization energy, 271 

alternant hydrocarbons, 434 
calculation, 272, 433 
polycentric, 271 

localized bond, 278, 296 
localized function, 278, 282 

one-electron, 278 
localized orbital, 278 
Lowdin-Ohno approximation, 220 
luminescence, 366 



Madelung constant, 297 
magnetic dipole, 81, 318 
magnetic dipole transition, 318 
magnetic field, 333, 377 
magnetic field vector, 314 

magnetic moment, 333, 377 
magnetic moment of the nucleus, 321 
magnetic properties, 322, 377, 378 
magnetic resonance, elementary theory, 324 

magnetic susceptibility, 377 
anisotropy, 377 

magneton number, 378 
many-electron atom, 161 

constants of motion, 61 
many-electron system, 92 
mass, reduced, 34 
Mataga-Nishimoto approximation, 220 
matrix, 66 

block,117 
complex conjugate, 67 
diagonal, 67 
dimension, 66 

F,344 
G,344 
Hermitian, 67 
Hermitian conjugate, 67 
inverse, 67 
null,67 
orthogonal, 67 
square, 66 
symmetrical, 67 
trace of, 69, 120 
transposed, 67 
unit, 67 
unitary, 67, 116 

matrix element, 66 
HMO,223 

matrix element of an operator, 66, 72, 196, 

198 
matrix element ofthe Hartree-Fock operator, 

191 
matrix element of the perturbation operator, 

76 
matrix formalism, 68, 277 
matrix multiplication, 66 
matrix representation, 116 

dimension of, 116 
matrix representation of an operator, 66, 72 
matrix summation, 66 

matrix transformation, 69 
maximum overlap principle, 155 
McConnell relation, 338 
McLachlan relation, 339 
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mean value of physical quantity, 51, 53, 65 
Mendeleev periodic system of elements, 163 

methane, 151, 304 
methine radical, 335 
methylenecyclopropene, HMO characteris-

tics, 230 
metric matrix, 68 

Millikan experimf'~'l, 14 
MIN DO, 206 
MINDOj2, 197 

heats of formation, 384 
MO, see molecular orbital 

calculation, 172 
8,158 
form of, 158 
normalization, 173 
n,158,209 
cr,158,209 

'.10 determination through symmetry con-
siderations, 132 

MO-LCAO method, 100, 132, 154, 160 
MO method, 100, 154 
Mobius polyene, 228 
mode of vibration, normal, 343, 413, 415 
model system, 80 
molecular diagram, check of, 229 

I excited state, 370, 372 
molecular fragments, method of, 282 
molecular'geometry, optimization, 415, 448 
molecular ion, Hi, 19, 170 
molecular orbital, 72, 94, 100, 154,279 
molecular orbital method, see MO method 
molecular spectroscopy, 312 

molecular structure determination; 344 
"molecules-in-molecules" method, 2R2 
moment of inertia, 35, 341, 414 
monopole - monopole interaction, 439 

monopole-monopole interaction, 439 
Mulliken population analysis, 283 
Mulliken relation, 218 
multiplicity of a state, 140, 142, 143, 167 
multipole expansion, 255 

nabla operator, 18 
NaCI crystal, lattice energy, 296 
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naphthalene, 431 
CI calculation, 364 
radical anion, 337 

NDDO,201' 

nitrogen, pyridine type, 420 
pyrrole type, 420 

nitrogen monoxide, 407 
NMR, 81, 326 

analysis of spectra, 331 
chemical applications, 329 

experimental arrangement, 329 
illustrations, 330 

nodal plane, 25, 44, 289 
nodal point, 25, 42 

non-crossing rule, 186,427 
non-electrostatic interaction, 81, 397 
norm of a function, 51, 68 
NQR,323 
nuclear gyromagnetic ratio, 325 
nuclear magnetic moment operator, 324 
nuclear magnetic resonance, see NMR 

nuclear magneton, 321, 325 
nuclear quadrupole moment, 322 
nuclear quadrupole resonance, see NQR 
nuclear spin, quantum numbers, 321 

nucleic acid bases, 309 
nucleophilic substitution, 429, 430 

02 molecule, 185 
observable, 50 
occupation number, 263, 281, 282 
one-electron approximation, 93, 154, 175, 

190 
one-electron function, 87, 93, 100, 154, 175 
one-electron operator, 98, 175 
one-electron states, classification, 186 

open-shell system, 94 

operator, 16,47,50 
Hermitian, 48, 49, 52, 55, 67 

linear, 47 
operator of infinitesimal rotations, 110 
operators, commutative, 48, 55 
orbital angular momentum, 61, 64, 165 
orbital configuration, 89 

ordered,89 
orbital energy, PN cycle, 299 
orbital energies, diagram, 263 
orbitallocalizability, 281 
orbitals, symmetry classification, 187 

organic compounds, application of methods, 
304 

organometallic compound, 307 
Orgel diagram, 257 

orthogonal functions, 51, 53, 160 
orthogonality relation for characters, 121 
orthogonalization, 53 
ortholocalization energy, 271 

oscillator strength, 319, 353 
overlap, effective, 156, 160 

ineffective, 156, 160 
overlap integral, 155, 242 

calculation, 155, 183 
neglect of, 171, 242 

overlap population, 283 

pair correlation function, 274 
paracyclophane, 307 
paralocalization energy, 271 
paramegnetism, 377 

parameter P~N' 204 
parameter~, 257 

parameter 10Dq, see parameter LI 
Pariser-Parr method, 215 

Pariser relation, 212 
particle, free, 20 
particle in a potential box, 18, 22 
partition function, 412, 413 

total, 412 
Pascal constants, 379 
Pascal struct ural parameters, 379 
Pauli exclusion principle, 65, 94,147,163,193 
Pauling approximation, 224 
penetration integral, 203 
perturbation approach, polar substitution, 

428 
reactivity of radicals, 428 

perturbation method, 74, 147 
application in spectroscopy, 365 

HMO level, 233 
intermolecular interactions, 443 
symmetrical systems, 147 

PES, 269 
pharmacology, molecular, 310 
phenanthrene, 431 
phenol, molecular diagrams, 370 
phosphorescence, 367 

measurement, 369 
photochemical reaction, 371, 374, 398, 399 



photochemistry, 369 
photoelectron spectroscopy, see PES 
photoelectron spectrum, 269 
photooxidation, 375 
photoreduction, 375 
pK, excited states, 374 
PMR,326 
PNDO,195 

polarizability, 236, 345 
polarizability matrix, 237 
polarizability tensor, 128,346 
polarized light, 314 
polarographic half-wave potential, 270 
polyacene, 224 
polyene, 224 

postulates of quantum mechanics, 50 
potential box, 22 
potential energy, 14, 82 
potential energy matrix, 344 
potential energy operator, 17, 82 
predissociation, 355 
principle of energy conservation, i 3 
probability density, 15,21,51,273,274 

electron, 273 
product function, symmetry properties, 141 
projection operator, 278 
propane, molecular integrals, 206 
proteins, 309 
purines, 309 
pyramid, square, 434 
pyrimidines, 309 

quantum mechanics, 15 
axiomatic foundation, 49 
logical structure, 50 

quantum number, 23, 32, 35, 186, 340 
azimuthal, 38 
magnetic, 38 
principal, 38, 162 

radial function, 31, 38, 42 
radialenes, 228 
radiation density, 320 
radical ion, 398 
radical reaction, 398 
radical substitution, 430 
radicals, disproportionation, 424 

ionization potential calculation, 267 
radiofrequency spectroscopy, 321 
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Raman scattering, intensity, 346 
Raman spectroscopy, 345 
Raman spectrum, 128, 346 
rate constant, 392,410 
rate process, 392, 412 

Rayleigh scattering, 346 
Rayleigh-SchrOdinger perturbation theory, 

75 
reaction, allowed, 397 

forbidden, 397 
reaction coordinate, 411, 417, 426 
reaction enthalpy, 383 

correlation with entropy, 417 
reaction kinetics, 410 
reaction series, 418 

Re2Cl~-, 303 
reflection in the plane, 103 
reflection operation, 103 
reflection plane, 112 

representation, equivalent, 117 
irreducible, 118, 124 
one-dimensional, 120 
reducible, 118, 124 
three-dimensional, 120 
two-dimensional, 120 

resonance energy, 249, 264 
resonance integral, 172, 214, 223, 263 
rigid rotator, 30, 33, 340 
Roothaan equations, 101, 191 
rotation, 412, 413 

improper, 111 
rotation axis, 111 

order, 111 
principal, 111 

rotation group, full three-dimensional, 111 
rotation operation, 103, 111 
rotation operator, 111 
rotational constant, 341 
rotational spectra, 33, 340 
rotational state, 316 
Rumer theorem, 282 
Russell-Saunders coupling, 167, 378 

S4N4,302 
SsNt, absorption curve, 302 
S - T splitting, 351 
SNI reaction mechanism, 434 
SN2 reaction mechanism, 434 
scalar product, 51, 76 
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SCF method, 94, 99, 161, 193 
covergence criterion, 99 
excitation energy, 350 
ionization potential, 268 
It-electron approximation, 211 
Pople version, 211 
scattering model, 260 

Schonfiies notation, 111 
Schrodinger equation, 13, 17, 20, 30, 51, 56, 

60,70,92,263 

approximate solution, 70 
time-dependent, 51,57 
time-independent, 56 

secular determinant, factorization of, 132 
secular equation, 73 

selection rules, 125 
atoms, 357 
electronic spectra, 353 
ESR,335 
Raman spectroscopy, 346 
spectroscopic transitions, 127 

self-consistent field method, see SCF method 
self-polarizability, 238, 430 
semiempirical methods, 94, 193, 195 

applications, 295 
approximations, 216 
survey, 194, 199,217 

set of functions, complete, 52, 87, 100 
orthonormal,52 

shielding constant of the nucleus, 327 
shift operator, 138 
singlet state, 141, 146 
Slater determinant, 90, 95, 140, 190 
Slater orbital, 163, 192,204 
Slater rules, 90, 163 
sodium atom, electronic transitions, 358 
solid phase, 295 

solvation effect, 449 
solvation energy, 392, 423 
space coordinates, 87 

space orbital, 91, 141 
spectral regions, survey, 315 
spectrochemical series, 361 
spheres K and L, 311 
spherical harmonics, 31, 35, 39, 61, 138 
spherically symmetric potential, 110 
spin, 62, 321 

nuclear, 322, 324 
total,62 

spin angular momentum, 62,166 
spin coordinates, 88 
spin density, 338 
spin function, 62, 91, 92 

degeneracy, 326 

spin momentum operator, 137 
spin quantization, violation, 356 
spin-orbit coupling, 64, 81, 167,253,356 
spin orbital, 87, 273 

spin-spin coupling, 81, 330 
spontaneous process, 320 
stability, kinetic, 387 

thermodynamic, 387 
stabilization of coordination compounds, 

387 

state of a particle system, 50 
states, classification, 110 
stationary state, 56, 83 

classification, 58 
statistical thermodynamics, 410 
stereographic projection, 113 
Stokes lines, 346 
subgroup, 111 

substituent, 393 
inductive effect, 367 

susceptibility, 377 
molar, 377 
specific, 377 

symmetric state, 65 
symmetrization of a function, 133 
symmetry, 103 
symmetry axis, 111 

order of, 111, 113 
symmetry conservation, 186 
symmetry coordinates, 344 
symmetry element, 111 
symmetry group, 110 

symmetry group ofthe Hamiltonian, 110, 119 
symmetry number, 413 
symmetry of complex compounds, 249 

symmetry of molecules, 110 
symmetry operation, 103 
symmetry operations of a rectangle, 104 
symmetry orbital, 128, 134 
symmetry plane, 103, 112 
symmetry transformation of a function, 108 
symmetry transformation of an operator, 108 
symmetry transformation of the Hamiltonian, 

106, 109 



Taft equation, 395 
tensor, 346 
term, 165 

centre of gravity of, 257 
term multiplicity, 167 
thermochemical properties, 383 
Ti3 +, spectrum, 258, 360 
tight binding approximation, 213 
time operator, 50 
topological matrix, 231 
total energy, operator, see Hamiltonian 
toxicology, molecular, 310 

transannular interaction, 307 
transferability of orbitals, 281 
transformation, inverse, 69,136 

unitary, 69 
transformation (space) invariance, 202 
transformation matrix, 106, 136, 279 
transformation of a basis, 69 
transformation of coordinates, 106 
transition, higher harmonic, 342 

n -+1t*, 351, 352 
N-+Q,352 

N-+ V, 265, 352 
It-+1t*, 352 
singlet-singlet, 350, 356 
singlet-triplet, 350, 356 
triplet-triplet, 356 
0-0,270,355 

transition, allowed, 353 
forbidden, 353 

transition element, 163 
energy terms, 250 
number of d electrons, 251 

transition moment, 127, 317, 353 
electronic spectrum, 353 
rotational transition, 340 
vibrational transition, 342 

transitions, classification, 352 
transmission coefficient, 412 

transposition operator, 64, 88 
triple bond, 153 
triplet state, 140, 146, 367 

lifetime, 368 
triplet-triplet spectrum, 373 

united atom, 186 
united atom model, 186 

valence, free, 428 
valance bond method, see VB method, 

valence electron, 200 

461 

van der Waals energy of the pair of oscil-

lators, 439, 442 
van der Waals forces, 295, 438 
van der Waals interaction, 439 
variation method, 70 
variation parameter, 100 
variation principle, 70 
variation problem, linear, 101 
VB method, 72, 154, 239, 274 

benzene molecule, 247 
comparison with MO method, 243 

H2 molecule, 239 
matrix elements, 247, 248 
water molecule, 244 

vertical transition, see Franck-Condon tran-

sition 
vibration anharmonicity, 342 
vibrational rotational spectroscopy, 344 
vibrational spectroscopy, 341 
vibrational state, 298 
vinylmethylene, 305 

Watson-Crick model, 309 
wave function, 15, 17, 50, 88 

analysis, 278 
angular, 38 
approximate, 90 
graphical representation, 41 
many-electron, 168 
norm, 15,51,68 
one-electron, 154 
physical interpretation, 15 
radial,37 
sign of, 44 

wave function localization, method of. 
278 

wave function of hydrogen-type atoms, 39, 

191 
wave function of singlet state, 349 

wave function of triplet state, 349, 350 
wave length, 313 
wave mechanics, 11 
wave number, 314 
wave number of the fundamental vibration, 

343 
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wave vector, 22 
Wheland approximation, 224 
Wheland complex, 430, 436 
Wiberg index, 407 

Woodward-Hoffmann rules, 289 
ZDO, 194,200 
zero differential overlap approximation, see 

ZDO 
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