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NOTE TO INSTRUCTORS

As an aid to instructors interested in using this book for a course, the solutions to

the exercises are available in electronic form. They may be obtained by contacting

the author at kay@ele.urLedu.



Preface

The subject of probability and random processes is an important one for a variety of

disciplines. Yet, in the author's experience, a first exposure to this subject can cause

difficulty in assimilating the material and even more so in applying it to practical

problems of interest. The goal of this textbook is to lessen this difficulty. To do

so we have chosen to present the material with an emphasis on conceptualization.

As defined by Webster, a concept is "an abstract or generic idea generalized from

particular instances." This embodies the notion that the "idea" is something we

have formulated based on our past experience. This is in contrast to a theorem,

which according to Webster is "an idea accepted or proposed as a demonstrable

truth". A theorem then is the result of many oth er persons' past experiences, which

mayor may not coincide with our own. In presenting the material we prefer to

first present "part icular instances" or examples and then generalize using a defi­

nition/theorem. Many textbooks use the opposite sequence, which undeniably is

cleaner and more compact, but omits the motivating examples that initially led

to the definition/theorem. Furthermore, in using the definition/theorem-first ap­

proach, for the sake of mathematical correctness multiple concepts must be presented

at once. This is in opposition to human learning for which "under most conditions,

the greater the number of attributes to be bounded into a single concept , the more

difficult the learning becomes" 1 . The philosophical approach of specific examples

followed by generalizations is embodied in this textbook. It is hoped that it will

provide an alternative to the more traditional approach for exploring the subject of

probability and random processes.

To provide motivating examples we have chosen to use MATLAB2
, which is a

very versatile scientific programming language. Our own engineering students at the

University of Rhode Island are exposed to MATLAB as freshmen and continue to use

it throughout their curriculum. Graduate students who have not been previously

introduced to MATLAB easily master its use. The pedagogical utility of using

MATLAB is that:

1. Specific computer generated examples can be constructed to provide motivation

for the more general concepts to follow.

lEli Sal t z, Th e Cogniti ve Basis of Human Learning, Dorsey Press, Homewood, IL, 1971.

2Registered trademark of TheMathWorks, Inc.
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2. Inclusion of computer code within the text allows the reader to interpret the

mathematical equations more easily by seeing them in an alternative form.

3. Homework problems based on computer simulations can be assigned to illustrate

and reinforce important concepts.

4. Computer experimentation by the reader is easily accomplished.

5. Typical results of probabilistic-based algorithms can be illustrated.

6. Real-world problems can be described and "solved" by implementing the solution

in code.

Many MATLAB programs and code segments have been included in the book. In

fact, most of the figures were generated using MATLAB . The programs and code

segments listed within the book are available in the file pr'obbook.matLab.code . tex,

which can be found at http://www.ele.uri.edu/faculty/kay/New%20web/Books.htm.

The use of MATLAB, along with a brief description of its syntax, is introduced early

in the book in Chapter 2. It is then immediately applied to simulate outcomes of

random variables and to estimate various quantities such as means, variances, prob­

ability mass functions, etc. even though these concepts have not as yet been formally

introduced. This chapter sequencing is purposeful and is meant to expose the reader

to some of the main concepts that will follow in more detail later. In addition,

the reader will then immediately be able to simulate random phenomena to learn

through doing, in accordance with our philosophy. In summary, we believe that

the incorporation of MATLAB into the study of probability and random processes

provides a "hands-on" approach to the subject and promotes better understanding.

Other pedagogical features of this textbook are the discussion of discrete random

variables first to allow easier assimilation of the concepts followed by a parallel dis­

cussion for continuous random variables. Although this entails some redundancy, we

have found less confusion on the part of the student using this approach. In a similar

vein, we first discuss scalar random variables, then bivariate (or two-dimensional)

random variables, and finally N-dimensional random variables, reserving separate

chapters for each. All chapters, except for the introductory chapter, begin with a

summary of the important concepts and point to the main formulas of the chap­

ter, and end with a real-world example. The latter illustrates the utility of the

material just studied and provides a powerful motivation for further study. It also

will, hopefully, answer the ubiquitous question "Why do we have to study this?" .

We have tried to include real-world examples from many disciplines to indicate the

wide applicability of the material studied. There are numerous problems in each

chapter to enhance understanding with some answers listed in Appendix E. The

problems consist of four types. There are "formula" problems, which are simple ap­

plications of the important formulas of the chapter; "word" problems, which require

a problem-solving capability; and "theoretical" problems, which are more abstract
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and mathematically demanding; and finally, there are "computer" problems, which

are either computer simulations or involve the application of computers to facilitate

analytical solutions. A complete solutions manual for all the problems is available

to instructors from the author upon request. Finally, we have provided warnings on

how to avoid common errors as well as in-line explanations of equations within the

derivations for clarification.

The book was written mainly to be used as a first-year graduate level course

in probability and random processes. As such, we assume that the student has

had some exposure to basic probability and therefore Chapters 3-11 can serve as

a review and a summary of the notation. We then will cover Chapters 12-15 on

probability and selected chapters from Chapters 16-22 on random processes. This

book can also be used as a self-contained introduction to probability at the senior

undergraduate or graduate level. It is then suggested that Chapters 1-7, 10, 11 be

covered. Finally, this book is suitable for self-study and so should be useful to the

practitioner as well as the student. The necessary background that has been assumed

is a knowledge of calculus (a review is included in Appendix B) ; some linear/matrix

algebra (a review is provided in Appendix C); and linear systems, which is necessary

only for Chapters 18-20 (although Appendix D has been provided to summarize and

illustrate the important concepts).

The author would like to acknowledge the contributions of the many people who

over the years have provided stimulating discussions of teaching and research prob­

lems and opportunities to apply the results of that research. Thanks are due to my

colleagues L. Jackson, R. Kumaresan, L. Pakula, and P. Swaszek of the University

of Rhode Island. A debt of gratitude is owed to all my current and former graduate

students. They have contributed to the final manuscript through many hours of

pedagogical and research discussions as well as by their specific comments and ques­

tions. In particular, Lin Huang and Cuichun Xu proofread the entire manuscript and

helped with the problem solutions, while Russ Costa provided feedback. Lin Huang

also aided with the intricacies of LaTex while Lisa Kay and Jason Berry helped with

the artwork and to demystify the workings of Adobe Illustrator 10.3 The author

is indebted to the many agencies and program managers who have sponsored his

research, including the Naval Undersea Warfare Center, the Naval Air Warfare Cen­

ter, the Air Force Office of Scientific Research, and the Office of Naval Research.

As always, the author welcomes comments and corrections, which can be sent to

kay@ele.uri.edu.

Steven M. Kay

University of Rhode Island

Kingston, RI 02881

3Registered trademark of Adobe Systems Inc.
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Chapter 1

Introduction

1.1 What Is Probability?

Probability as defined by Webster's dictionary is "the chance that a given event will

occur" . Examples that we are familiar with are the probability that it will rain

the next day or the probability that you will win the lottery. In the first example,

there are many factors that affect the weather-so many, in fact, that we cannot be

certain that it will or will not rain the following day. Hence , as a predictive tool we

usually assign a number between 0 and 1 (or between 0% and 100%) indicating our

degree of certainty that the event, rain, will occur. If we say that there is a 30%

chance of rain, we believe that if identical conditions prevail, then 3 times out of 10,

rain will occur the next day. Alternatively, we believe that the relative frequency of

rain is 3/10. Note that if the science of meteorology had accurate enough models,

then it is conceivable that we could determine exactly whether rain would or would

not occur. Or we could say that the probability is either 0 or 1. Unfortunately, we

have not progressed that far. In the second example, winning the lottery, our chance

of success, assuming a fair drawing, is just one out of the number of possible lottery

number sequences. In this case, we are uncertain of the outcome, not because of the

inaccuracy of our model, but because the experiment has been designed to produce

uncertain results.

The common thread of these two examples is the presence of a random experi­

m ent, a set of outcomes, and the probabilities assigned to these outcomes. We will

see later that these attributes are common to all probabilistic descriptions. In the

lottery example, the experiment is the drawing, the outcomes are the lottery num­

ber sequences, and the probabilities assigned are liN, where N = total number of

lottery number sequences. Another common thread, which justifies the use of prob­

abilistic methods, is the concept of statistical regularity. Although we may never

be able to predict with certainty the outcome of an experiment, we are, nonethe­

less, able to predict "averages". For example, the average rainfall in the summer in

Rhode Island is 9.76 inches, as shown in Figure 1.1, while in Arizona it is only 4.40
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Average = 9.76 inches :
.... . . . . . . . .. ............. . ; : :.

· . .· . .· . .

20 ..--r- - - ,--- - -,----,,....-- - ,-- - -n

18 .......

16 . · .. . . ., .

14 .

200019801940 1960
Year

1920

4

2
1900

6

8

'"lj 12
u

.=i 10 HP.-'ftJ-'-i-++H+"'-H-'fH-

Figure 1.1: Annual summer rainfall in Rhode Island from 1895 to 2002

[NOAAjNCDC 2003].
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Figure 1.2: Annual summer rainfall in Arizona from 1895 to 2002 [NOAAjNCDC

2003].

inches, as shown in Figure 1.2. It is clear that the decision to plant certain types

of crops could be made based on these averages. This is not to say, however, that

we can predict the rainfall amounts for any given summer. For instance, in 1999

the summer rainfall in Rhode Island was only 4.5 inches while in 1984 the summer
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rainfall in Arizona was 7.3 inches. A somewhat more controlled experiment is the

repeated tossing of a fair coin (one that is equally likely to come up heads or tails).

We would expect about 50 heads out of 100 tosses, but of course, we could not

predict the outcome of anyone particular toss. An illustration of this is shown in

Figure 1.3. Note that 53 heads were obtained in this particular experiment. This

heads
+fff++f. +.+ ++-t+4++fH-.. I I 1 IIi 11111 II II II 111111 ..... ++

Q)

§ tails
u
;; 0 . .... 1111111111111+++ oftf+++++ . ~+++ : . +*

o

o 20 40
Toss

60 80 100

Figure 1.3: Outcomes for repeated fair coin tossings.

example, which is of seemingly little relevance to physical reality, actually serves as

a good model for a variety of random phenomena. We will explore one example in

the next section.

In summary, probability theory provides us with the ability to predict the be­

havior of random phenomena in the "long run." To the extent that this information

is useful, probability can serve as a valuable tool for assessment and decision mak­

ing. Its application is widespread, encountering use in all fields of scientific endeavor

such as engineering, medicine, economics, physics, and others (see references at end

of chapter) .

1.2 Types of Probability Problems

Because of the mathematics required to determine probabilities, probabilistic meth­

ods are divided into two distinct types, discrete and continuous. A discrete approach

is used when the number of experimental outcomes is finite (or infinite but count­

able as illustrated in Problem 1.7). For example, consider the number of persons

at a business location that are talking on their respective phones anytime between

9:00 AM and 9:10 AM. Clearly, the possible outcomes are 0,1, ... , N , where N is

the number of persons in the office. On the other hand, if we are interested in the
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length of time a particular caller is on the phone during that time period, then the

outcomes may be anywhere from °to T minutes, where T = 10. Now the outcomes

are infinite in number since they lie within the interval [0,T]. In the first case, since

the outcomes are discrete (and finite), we can assign probabilities to the outcomes

{O, 1, ... ,N}. An equiprobable assignment would be to assign each outcome a prob­

ability of l/(N +1). In the second case, the outcomes are continuous (and therefore

infinite) and so it is not possible to assign a nonzero probability to each outcome

(see Problem 1.6).

We will henceforth delineate between probabilities assigned to discrete outcomes

and those assigned to continuous outcomes, with the discrete case always discussed

first. The discrete case is easier to conceptualize and to describe mathematically. It

will be important to keep in mind which case is under consideration since otherwise,

certain paradoxes may result (as well as much confusion on the part of the student!).

1.3 Probabilistic Modeling

Probability models are simplified approximations to reality. They should be detailed

enough to capture important characteristics of the random phenomenon so as to be

useful as a prediction device, but not so detailed so as to produce an unwieldy

model that is difficult to use in practice. The example of the number of telephone

callers can be modeled by assigning a probability p to each person being on the

phone anytime in the given lO-minute interval and assuming that whether one or

more persons are on the phone does not affect the probability of others being on

the phone. One can thus liken the event of being on the phone to a coin toss­

if heads, a person is on the phone and if tails, a person is not on the phone. If

there are N = 4 persons in the office, then the experimental outcome is likened to

4 coin tosses (either in succession or simultaneously-it makes no difference in the

modeling). We can then ask for the probability that 3 persons are on the phone

by determining the probability of 3 heads out of 4 coin tosses. The solution to this

problem will be discussed in Chapter 3, where it is shown that the probability of k

heads out of N coin tosses is given by

(1.1)

where

(N) N!
k - (N - k)!k!

for k = 0,1, ... , N , and where M! = 1 · 2· 3 · ·· M for M a positive integer and by

definition O! = 1. For our example, if p = 0.75 (we have a group of telemarketers)

and N = 4 a compilation of the probabilities is shown in Figure 1.4. It is seen that

the probability that three persons are on the phone is 0.42. Generally, the coin toss
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Figure 1.4: Probabilities for N = 4 coin tossings with p = 0.75.

model is a reasonable one for this type of situation. It will be poor, however , if the

assumptions are invalid. Some practical objections to the model might be:

1. Different persons have different probabilities p (an eager telemarketer versus a

not so eager one) .

2. The probability of one person being on the phone is affected by whether his

neighbor is on the phone (the two neighbors tend to talk about their planned

weekends), i.e., the events are not "independent".

3. The probability p changes over time (later in the day there is less phone activity

due to fatigue).

To accommodate these objections the model can be made more complex. In the

end, however, the "more accurate" model may become a poorer predictor if the

additional information used is not correct. It is generally accepted that a model

should exhibit the property of "parsimony"-in other words, it should be as simple

as possible.

The previous example had discrete outcomes. For continuous outcomes a fre­

quently used probabilistic model is the Gaussian or "bell"-shaped curve. For the

modeling of the length of time T a caller is on the phone it is not appropriate to

ask for the probability that T will be exactly, for example, 5 minutes. This is be­

cause this probability will be zero (see Problem 1.6). Instead, we inquire as to the

probability that T will be between 5 and 6 minutes. This question is answered by

determining the area under the Gaussian curve shown in Figure 1.5. The form of
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the curve is given by

1 [1 2]PT(t) = - exp --(t - 7)
V2ir 2

-oo<t<oo (1.2)

and although defined for all t , it is physically meaningful only for 0 ~ t ~ Tm ax ,
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o
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Figure 1.5: Gaussian or "bell"-shaped curve.

where Tm ax = 10 for the current example. Since the area under the curve for times

less than zero or greater than Tmax = 10 is nearly zero , this model is a reasonable

approximation to physical reality. The curve has been chosen to be centered about

t = 7 to relect an "average" time on the phone of 7 minutes for a given caller. Also,

note that we let t denote the actual value of the random time T. Now, to determine

the probability that the caller will be on the phone for between 5 and 6 minutes we

integrate PT(t) over this interval to yield

P[5 ~ T ~ 6] = 16

PT(t)dt = 0.1359. (1.3)

The value of the int egral must be numerically determined. Knowing the function

PT(t) allows us to determine the probability for any interval. (It is called the proba­

bility density function (PDF) and is the probability per unit length. The PDF will

be discussed in Chapter 10.) Also, it is apparent from Figure 1.5 that phone usage

of duration less than 4 minutes or greater than 10 minutes is highly unlikely. Phone

usage in the range of 7 minutes, on the other hand, is most probable. As before,

some objections might be raised as to the accuracy of this model. A particularly

lazy worker could be on the phone for only 3 minutes, as an example.
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(1.4)

In this book we will henceforth assume that the models, which are mathematical

in nature, are perfect and thus can be used to determine probabilities. In practice,

the user must ultimately choose a model that is a reasonable one for the application

of interest.

1.4 Analysis versus Computer Simulation

In the previous section we saw how to compute probabilities once we were given

certain probability functions such as (1.1) for the discrete case and (1.2) for the

continuous case. For many practical problems it is not possible to determine these

functions . However, if we have a model for the random phenomenon, then we

may carry out the experiment a large number of times to obtain an approximate

probability. For example, to determine the probability of 3 heads in 4 tosses of a

coin with probability of heads being p = 0.75, we toss the coin four times and count

the number of heads, say Xl = 2. Then, we repeat the experiment by tossing the

coin four more times, yielding X2 = 1 head. Continuing in this manner we execute

a succession of 1000 experiments to produce the sequence of number of heads as

{Xl, X2, · ··, XlOOO}. Then, to determine the probability of 3 heads we use a relative

frequency interpretation of probability to yield

P[ h d J Number of times 3 heads observed
3 ea s = 1000 .

Indeed, early on probabilists did exactly this, although it was extremely tedious. It

is therefore of utmost importance to be able to simulate this procedure. With the

advent of the modern digital computer this is now possible. A digital computer

has no problem performirig a calculation once , 100 times, or 1,000,000 times. What

is needed to implement this approach is a means to simulate the toss of a coin.

Fortunately, this is quite easy as most scientific software packages have built-in

random number generators. In MATLAB, for example, a number in the interval

(0,1) can be produced with the simple statement x=rand(1, 1). The number is

chosen "at random" so that it is equally likely to be anywhere in the (0,1) interval.

As a result, a number in the interval (0,1/2J will be observed with probability 1/2

and a number in the remaining part of the interval (1/2,1) also with probability

1/2. Likewise, a number in the interval (0,0.75J will be observed with probability

p = 0.75. A computer simulation of the number of persons in the office on the

telephone can thus be implemented with the MATLAB code (see Appendix 2A for

a brief introduction to MATLAB):

nurnber=O;

for i=1:4 %set up simulation for 4 coin tosses

if rand(1,1)<O.75 %toss coin with p=O.75

x(i,1)=1; % head

else
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x(i,1)=O; %tail

end

number=number+x(i,1); %count number of heads

end

Repeating this code segment 1000 times will result in a simulation of the previous

experiment.

Similarly, for a continuous outcome experiment we require a means to generate

a continuum of outcomes on a digital computer. Of course, strictly speaking this is

not possible since digital computers can only provide a finite set of numbers, which

is determined by the number of bits in each word. But if the number of bits is

large enough, then the approximation is adequate. For example, with 64 bits we

could represent 264 numbers between 0 and 1, so that neighboring numbers would

be 2-64 = 5 X 10-20 apart. With this ability MATLAB can produce numbers that

follow a Gaussian curve by invoking the statement x=randn C1 , 1) .

Throughout the text we will use MATLAB for examples and also exercises.

However, any modern scientific software package can be used.

1.5 Some Notes to the Reader

The notation used in this text is summarized in Appendix A. Note that boldface

type is reserved for vectors and matrices while regular face type will denote scalar

quantities. All other symbolism is defined within the context of the discussion. Also,

the reader will frequently be warned of potential "pitfalls". Common misconcep­

tions leading to student errors will be described and noted. The pitfall or caution

symbol shown below should be heeded.

The problems are of four types: computational or formula applications, word

problems, computer exercises, and theoretical exercises. Computational or formula

(denoted by f) problems are straightforward applications of the various formulas of

the chapter, while word problems (denoted by w) require a more complete assimi­

lation of the material to solve the problem. Computer exercises (denoted by c) will

require the student to either use a computer to solve a problem or to simulate the

analytical results. This will enhance understanding and can be based on MATLAB,

although equivalent software may be used. Finally, theoretical exercises (denoted by

t) will serve to test the student's analytical skills as well as to provide extensions to

the material of the chapter. They are more challenging. Answers to selected prob­

lems are given in Appendix E. Those problems for which the answers are provided

are noted in the problem section with the symbol ( ~ ) .

The version of MATLAB used in this book is 5.2, although newer versions

should provide identical results. Many MATLAB outputs that are used for the



REFERENCES 9

text figures and for the problem solutions rely on random number generation. To

match your resul ts against those shown in the figures and the problem solutions, the

same set of random numb ers can be generated by using the MATLAB statement s

rand ( , state' ,0) and randn ( 'state' ,0) at the beginning of each program. These

statements will ini ti alize the random number generators to produce the same set of

random numbers . Finally, the MAT LAB programs and code segment s given in the

book are indicated by the "typewriter" font , for example, x=randnO, 1).

There are a number of ot her textboo ks that the reader may wish to consult .

They are listed in the following reference list , along with some comments on their

contents .

Davenport , W.B. , Probability and Random Processes, McGraw-Hill, New York ,

1970. (Excellent introductory text.)

Feller , W. , An Introdu ction to Probability Th eory and its Applications, Vols. 1,

2, John Wiley, New York , 1950. (Definitive work on probability-requires

mature mathematical knowledge.)

Hoel, P.G. , S.C. Port , C.J. Stone, Introduction to Probability Th eory, Houghton

Mifflin Co., Boston , 1971. (Excellent introductory text but limited to proba­

bility.)

Leon-G arcia , A. , Probability and Random Processes for Electrical Engineering,

Addison-Wesley, Reading, MA, 1994. (Excellent introductory text .)

Parzen, E. , Modern Probabilit y Theory and It s Applications, John Wiley, New York ,

1960. (Classic text in pr obability-useful for all disciplines).

Parzen , E. , Sto chastic Processes, Holden-D ay, San Francisco, 1962. (Most useful

for Markov process descriptions. )

Pap oulis, A. , Probability, Random Variables, and Stochast ic Processes, McGraw­

Hill , New York , 1965. (Classic but somewhat difficult text. Best used as a

reference.)

Ross, S., A First Course in Probability, Prentice-Hall , Upper Saddle River , NJ ,
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Problems

1.1 c.:.:J (w) A fair coin is tossed. Identify the random experiment, the set of

outcomes, and the probabilities of each possible outcome.

1.2 (w) A card is chosen at random from a deck of 52 cards. Identify the ran­

dom experiment, the set of outcomes, and the probabilities of each possible

outcome.

1.3 (w) A fair die is tossed and the number of dots on the face noted. Identify the

random experiment , the set of outcomes, and the probabilities of each possible

outcome.

1.4 (w) It is desired to predict the annual summer rainfall in Rhode Island for 2010.

If we use 9.76 inches as our prediction, how much in error might we be , based

on the past data shown in Figure 1.1? Repeat the problem for Arizona by

using 4.40 inches as the prediction.
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1.5 L..:J (w) Determine whether the following experiments have discrete or contin­

uous outcomes:

a. Throw a dart with a point tip at a dartboard.

b. Toss a die.

c. Choose a lottery number.

d. Observe the outdoor temperature using an analog thermometer.

e. Determine the current time in hours, minutes, seconds, and AM or PM.

1.6 (w) An experiment has N = 10 outcomes that are equally probable. What is

the probability of each outcome? Now let N = 1000 and also N = 1, 000, 000

and repeat. What happens as N ---r oo?

1. 7 c.:~) (f) Consider an experiment with possible outcomes {I, 2, 3, ... }. If we

assign probabilities

P[k] = 21k k = 1,2,3, ...

to the outcomes, will these probabilties sum to one? Can you have an infinite

number of outcomes but still assign nonzero probabilities to each outcome?

Reconcile these results with that of Problem 1.6.

1.8 (w) An experiment consists of tossing a fair coin four times in succession. What

are the possible outcomes? Now count up the number of outcomes with three

heads. If the outcomes are equally probable, what is the probability of three

heads? Compare your results to that obtained using (1.1).

1. 9 (w) Perform the following experiment by actually tossing a coin of your choice.

Flip the coin four times and observe the number of heads. Then, repeat this

experiment 10 times. Using (1.1) determine the probability for k = 0,1,2,3,4

heads. Next use (1.1) to determine the number of heads that is most proba­

ble for a single experiment? In your 10 experiments which number of heads

appeared most often?

1.10 L...:... ) (w) A coin is tossed 12 times. The sequence observed is the 12-tuple

(H, H, T, H, H, T, H, H, H, H ,T, H). Is this a fair coin? Hint: Determine

P[k = 9] using (1.1) assuming a probability of heads of p = 1/2.

1.11 (t) Prove that 2:f=o P[k] = 1, where P[k] is given by (1.1) . Hint: First prove

the binomial theorem
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by induction (see Appendix B). Use Pascal's "triangle" rule

where

( ~ ) = o k < a and k > M.

1.12 (t) If f: PT(t)dt is the probability of observing T in the interval [a, b], what is

f~ooPT(t)dt?

1.13 C.:,,) (f) Using (1.2) what is the probability of T > 7? Hint: Observe that

PT(t) is symmetric about t = 7.

1.14 L ~ ) (c) Evaluate the integral

r3

_1_ exp [_~t2] dt
} -3 "ffff 2

by using the approximation

L 1 [1 ]L - exp --(n.6)2 .6
"ffff 2

n=-L

where L is the integer closest to 3/.6 (the rounded value), for .6 = 0.1, .6 =

0.01, .6 = 0.001.

1.15 (c) Simulate a fair coin tossing experiment by modifying the code given in

Section 1.4. Using 1000 repetitions of the experiment, count the number of

times three heads occur. What is the simulated probability of obtaining three

heads in four coin tosses? Compare your result to that obtained using (1.1).

1.16 (c) Repeat Problem 1.15 but instead consider a biased coin with P = 0.75.

Compare your result to Figure 1.4.



Chapter 2

Computer Simulation

2 .1 Introduction

Computer simulation of random phenomena has become an indispensable tool in

modern scientific investigations. So-called Monte Carlo computer approaches are

now commonly used to promote understanding of probabilistic problems. In this

chapter we continue our discussion of computer simulation, first introduced in Chap­

ter 1, and set the stage for its use in later chapters. Along the way we will examine

some well known properties of random events in the process of simulating their

behavior. A more formal mathematical description will be introduced later but

careful attention to the details now, will lead to a better intuitive understanding of

the mathematical definitions and theorems to follow.

2.2 Summary

This chapter is an introduction to computer simulation of random experiments. In

Section 2.3 there are examples to show how we can use computer simulation to pro­

vide counterexamples, build intuition, and lend evidence to a conjecture. However,

it cannot be used to prove theorems. In Section 2.4 a simple MATLAB program is

given to simulate the outcomes of a discrete random variable. Section 2.5 gives many

examples of typical computer simulations used in probability, including probability

density function estimation, probability of an interval, average value of a random

variable, probability density function for a transformed random variable, and scat­

ter diagrams for multiple random variables . Section 2.6 contains an application of

probability to the "real-world" example of a digital communication system. A brief

description of the MATLAB programming language is given in Appendix 2A.
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2.3 Why Use Computer Simulation?

A computer simulation is valuable in many resp ects. It can be used

a . to provide counterexamples to proposed theorems

b. to build intuition by experimenting with random numbers

c. to lend evidence to a conjecture.

We now explore these uses by posing the following question: What is the effect

of adding together the numerical outcomes of two or more experiments, i.e., what

are the probabilities of the summed outcomes? Specifically, if U1 represents the

outcome of an experiment in which a number from 0 to 1 is chosen at random

and U2 is the outcome of an experiment in which another number is also chosen at

random from a to 1, what are the probabilities of X = Ul + U2? The mathematical

answer to this question is given in Chapter 12 (see Example 12.8) , although at

this point it is unknown to us. Let 's say that someone asserts that there is a

theorem that X is equally likely to be anywhere in the interval [0,2]. To see if this is

reasonable, we carry out a computer simulation by generating values of Ul and U2

and adding them together. Then we repeat this procedure M times. Next we plot a

histogram, which gives the number of outcomes that fall in each subinterval within

[0,2] . As an example of a histogram consider the M = 8 possible outcomes for

X of {1.7 ,0.7, 1.2, 1.3, 1.8, 1.4, 0.6, 0.4} . Choosing the four subintervals (also called

bins) [0, 0.5]' (0.5,1], (1,1.5], (1.5,2]' the histogram appears in Figure 2.1. In this
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Figure 2.1: Example of a histogram for a set of 8 numbers in [0,2] interval.

example, 2 outcomes were between 0.5 and 1 and are therefore shown by the bar
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centered at 0.75. T he other bars are similarly obtained. If we now increase the

number of experiments to M = 1000, we obtain the histogram shown in Figure 2.2.

Now it is clear that the values of X are not equally likely. Values near one appear
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Figure 2.2: Histogram for sum of two equally likely numbers, both chosen in interval

[0,1].

to be much more probable. Hence , we have generated a "counterexample" to the

proposed theorem, or at least some evidence to the contrary.

We can build up our intuition by continuing with our experimentation. Attempt­

ing to justify the observed occurrences of X, we might suppose that the probabilities

are higher near one because there are more ways to obtain these values . If we con­

trast the values of X = 1 versus X = 2, we note that X = 2 can only be obtained

by choosing U1 = 1 and U2 = 1 but X = 1 can be obtained from Ul = U2 = 1/2

or U1 = 1/4, U2 = 3/4 or U1 = 3/4, U2 = 1/ 4, etc. We can lend credibility to this

line of reasoning by supposing that Ul and U2 can only take on values in the set

{O, 0.25, 0.5, 0.75, I} and finding all values of U1 + U2 . In essence, we now look at a

simpler problem in order to build up our intuit ion . An enumeration of the poss ible

values is shown in Table 2.1 along with a "histogram" in Figure 2.3. It is clear

now that the probability is highest at X = 1 because the number of combinations

of U1 and U2 that will yield X = 1 is highest . Hence, we have learned about what

happens when outcomes of experiments are added together by employing computer

simulation.

We can now try to extend this result to the addition of three or more exper­

imental outcomes via computer simulation. To do so define X 3 = U1 + U2 + U3

and X 4 = Ul + U2 + U3 + U4 and repeat the simulation. A computer simulation

with M = 1000 trials produces the histograms shown in Figure 2.4. It appears to
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U2

0.00 0.25 0.50 0.75 1.00

0.00 0.00 0.25 0.50 0.75 1.00

0.25 0.25 0.50 0.75 1.00 1.25

UI 0.50 0.50 0.75 1.00 1.25 1.50

0.75 0.75 1.00 1.25 1.50 1.75

1.00 1.00 1.25 1.50 1.75 2.00

Table 2.1: Possible values for X = UI + U2 for intuition-building experiment.
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Figure 2.3: Histogram for X for intuition-building experiment.

bear out the conjecture that the most probable values are near the center of the

[0,3J and [0,4J intervals, respectively. Additionally, the histograms appear more like

a bell-shaped or Gaussian curve. Hence, we might now conjecture, based on these

computer simulations, that as we add more and more experimental outcomes to­

gether, we will obtain a Gaussian-shaped histogram. This is in fact true, as will be

proven later (see central limit theorem in Chapter 15). Note that we cannot prove

this result using a computer simulation but only lend evidence to our theory. How­

ever , the use of computer simulations indicates what we need to prove , information

that is invaluable in practice. In summary, computer simulation is a valuable tool

for lending credibility to conjectures, building intuition, and uncovering new results.



2.4. COMPUTER SIMULATION OF RANDOM PHENOMENA 17

: : : :
r-'-

: •...:.2..:. :

; ;

'n' ·n·

r-e-

: : : : : :

,...:...
: : : : :

r-'-

,

; ; .:..:..: ;

·n· r-,

350
~
8 300
o
o
-;; 250
o
'0200
....

] 150

8
~ 100

50

o
0.5 1.5 2 2.5

Value of X3

(a) Sum of 3 U's

350

~
8300

8
-;; 250
o
'0200
....

] 150

8
~ 100

50

o
0.5 1.5 2 2.5 3 3.5

Value of X4

(b) Sum of 4 U's

Figure 2.4: Histograms for addition of outcomes.

C omp uter simulatio ns cannot be u sed t o p r ove t h eorems.

In Figure 2.2, which displayed the outcomes for 1000 trials, is it possible that the

computer simulation could have produced 500 outcomes in [0,0.5], 500 outcomes in

[1.5,2] and no outcomes in (0.5,1.5)? The answer is yes, although it is improbable.

It can be shown that the probability of this occuring is

(see Problem 12.27) .

2.4 Computer Simulation of R andom Phenomena

In the previous chapter we briefly explained how to use a digital computer to simu­

late a random phenomenon. We now continue that discussion in more detail. Then,

the following section applies the techniques to specific problems ecountered in prob­

ability. As before, we will distinguish between experiments that produce discrete

outcomes from those that produce continuous outcomes.

We first define a random variable X as the numerical outcome of the random

experiment . Typical examples are the number of dots on a die (discrete) or the

distance of a dart from the center of a dartboard of radius one (continuous). The
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random variable X can take on the values in the set {I, 2, 3, 4, 5, 6} for the first

example and in the set {r : 0 :s: r :s: I} for the second example. We denote

the random variable by a capital letter, say X, and its possible values by a small

letter, say Xi for the discrete case and x for the continuous case. The distinction is

analogous to that between a function defined as g(x) = x 2 and the values y = g(x)

that g(x) can take on.

Now it is of interest to determine various properties of X. To do so we use

a computer simulation, performing many experiments and observing the outcome

for each experiment. The number of experiments, which is sometimes referred to

as the number of trials, will be denoted by M. To simulate a discrete random

variable we use rand, which generates a number at random within the (0,1) interval

(see Appendix 2A for some MATLAB basics). Assume that in general the possible

values of X are {Xl,X2, .. . , X N } with probabilities {PI, P2 , ... ,PN }. As an example,

if N = 3 we can generate M values of X by using the following code segment (which

assumes M, x1 , x2 , x3 ,P1 ,p2 ,p3 have been previously assigned):

for i=1:M

u=rand(1,1);

if u<=p1

x Ci , 1)=x1;

elseif u>p1 & u<=p1+p2

x(i,1)=x2;

elseif u>p1+p2

x(i,1)=x3;

end

end

After this code is executed, we will have generated M values of the random variable

X. Note that the values of X so obtained are termed the outcomes or realizations

of X. The extension to any number N of possible values is immediate. For a

continuous random variable X that is Gaussian we can use the code segment:

for i=1:M

x(i,1)=randn(1,1);

end

or equivalently x=randn(M, 1). Again at the conclusion of this code segment we will

have generated M realizations of X. Later we will see how to generate realizations

of random variables whose PDFs are not Gaussian (see Section 10.9).

2.5 Determining Characteristics of Random Variables

There are many ways to characterize a random variable. We have already alluded to

the probability of the outcomes in the discrete case and the PDF in the continuous
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case. To be more precise consider a discrete random variable, such as that describing

the outcome of a coin toss. If we toss a coin and let X be 1 if a head is observed

and let X be 0 if a tail is observed, then the probabilities are defined to be p for

X = Xl = 1 and 1 - p for X = X2 = O. The probability p of X = 1 can be thought

of as the relative frequency of the outcome of heads in a long succession of tosses.

Hence, to determine the probability of heads we could toss a coin a large number

of times and estimate p by the number of observed heads divided by the number

of tosses. Using a computer to simulate this experiment, we might inquire as to

the number of tosses that would be necessary to obtain an accurate estimate of the

probability of heads. Unfortunately, this is not easily answered. A practical means,

though, is to increase the number of tosses until the estimate so computed converges

to a fixed number. A computer simulation is shown in Figure 2.5 where the estimate

0.9 ,

>.0.8
o
>::
~ 0.7
0'
Ji 0.6
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Figure 2.5: Estimate of probability of heads for various number of coin tosses.

appears to converge to about 0.4. Indeed, the true value (that value used in the

simulation) was p = 0.4. It is also seen that the estimate of p is slightly higher

than 0.4. This is due to the slight imperfections in the random number generator

as well as computational errors. Increasing the number of trials will not improve

the results. We next describe some typical simulations that will be useful to us.

To illustrate the various simulations we will use a Gaussian random variable with

realizations generated using randn(1, 1). Its PDF is shown in Figure 2.6.

Example 2.1 - Probability density function

A PDF may be estimated by first finding the histogram and then dividing the

number of outcomes in each bin by M, the total number of realizations, to obtain

the probability. Then to obtain the PDF px(x) recall that the probability of X
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Figure 2.6: Gaussian probability density function.

taking on a value in an interval is found as the area under the PDF of that interval

(see Section 1.3). Thus,

P[a :S X :S b] = l b

px(x)dx (2.1)

and if a = XQ - b.x/2 and b = XQ + b.x/2, where b.x is small, then (2.1) becomes

P[XQ - b.x/2 :S X :S XQ + b.x/2] ~ px(xQ)b.x

and therefore the PDF at x = XQ is approximately

( )
P[xQ - b.x/2 :S X :S XQ + b.x/2]

PX XQ ~ b.x .

Hence, we need only divide the estimated probability by the bin width b.x. Also,

note that as claimed in Chapter 1, px(x) is seen to be the probability per unit length.

In Figure 2.7 is shown the estimated PDF for a Gaussian random variable as well

as the true PDF 'as given in Figure 2.6. The MATLAB code used to generate the

figure is also shown.

Example 2.2 - Probability of an interval

To determine P[a :S X :S b] we need only generate M realizations of X, then count

the number of outcomes that fall into the [a, b] interval and divide by M. Of course
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randn('state',O)

x=randn (1000 , 1) j

bincenters=[-3 .5 :0.5:3 .5]'j

bins=length(bincenters) j

h=zeros(bins,l)j

for i=1:1ength(x)

for k=l:bins

if x(i»bincenters(k)-0.5/2

& x(i)<=bincenters(k)+0.5/2

h(k,l)=h(k,l)+lj

end

end

end

pxest=h/(1000*0.5)j

xaxis=[-4:0.01:4]'j

px=(1/sqrt(2*pi))*exp(-0.5*xaxis.-2)j

Figure 2.7: Estimated and true probabili ty dens ity functions.
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M should be lar ge. In particular, if we let a = 2 and b = 00 , then we shou ld obtain

the value (which must be evaluated using numerical integration)

1
00 1

P [X > 2] = /iL exp (-{1/2)x2
) dx = 0.0228

2 v 21r

and therefore very few realizations can be expected to fall in this inte rval. T he resul ts

for an increasing number of realizations are shown in Figure 2.8. This illustrates the

problem wit h the simulation of small probabili ty events. It requires a large number

of realizations to obtain accurate results. (See P roblem 11.47 on how to reduce the

number of realizations required.)

Example 2.3 - A verage value

It is frequently impor tant to measure characteristics of X in addit ion to the PDF.

For example, we might only be interested in the average or m ean or expected value

of X. If the random var iab le is Gaussian, t hen from Figure 2.6 we would expect X

to be zero on the average. This conjecture is easily "verified" by using the sample

m ean estimate
1 M

ML xi

i=l
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0.0228

0.0228

0.0288

0.0288

True P[X > 2]
randn('state' ,0)

M=100;count=0;

x=randn (M ,1) ;

for i=l:M

if x(i»2

count=count+l;

end

end

probest=count/M

Figure 2.8: Estimated and true probabilities.

0.0100

0.0150
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0.0231

Estimated P[X > 2]M

100

1000

10,000

100,000

of the mean. The results are shown in Figure 2.9.

M Estimated mean True mean

100 0.0479 0

1000 -0.0431 0

10,000 0.0011 0

100,000 0.0032 0

r andn I ' state' ,0)

M=100;

meanest=O;

x=randn(M,l);

for i=l:M

meanest=meanest+(l/M)*x(i);

end

meanest

Figure 2.9: Estimated and true mean.

Example 2.4 - A transformed random variable

One of the most important problems in probability is to determine the PDF for

a transformed random variable, i.e., one that is a function of X, say X 2 as an

example. This is easily accomplished by modifying the code in Figure 2.7 from

x=randn(1000,1) to x=randn(1000, 1) ;x=x. -2;. The results are shown in Figure

2.10. Note that the shape of the PDF is completely different than the original

Gaussian shape (see Example 10.7 for the true PDF). Additionally, we can obtain

the mean of X 2 by using

1 M

MLx~
i= l



M Estimated mean True mean

100 0.7491 1

1000 0.8911 1

10,000 1.0022 1

100,000 1.0073 1
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Figure 2.10: Estimated PDF of X 2 for X Gaussian.

as we did in Example 2.3. The results are shown in Figure 2.11.

randn C'state' ,0)

M=100j

meanest=Oj

x=randn(M,l)j

for i=l:M

m e a n e s t = m e a n e s t + ( 1 / M ) * x ( i ) ~ 2 ;

end

meanest

Figure 2.11: Estimated and true mean.

Example 2.5 - Multiple random variables

Consider an experiment that yields two random variables or the vector random

variable [Xl x 2]T , where T denotes the transpose. An example might be the choice

of a point in the square {(x, y) : 0 ::; x ::; 1, 0 ::; y ::; 1} according to some procedure.

This procedure mayor may not cause the value of X2 to depend on the value of

Xl . For example, if the result of many repetitions of this experiment produced an

even distribution of points indicated by the shaded region in Figure 2.12a , then we

would say that there is no dependency between Xl and X2. On the other hand, if

the points were evenly distributed within the shaded region shown in Figure 2.12b,

then there is a strong dependency. This is because if, for example, Xl = 0.5, then

X2 would have to lie in the interval [0.25,0.75]. Consider next the random vector
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Figure 2.12: Relationships between random variables.

where each U, is generated using rand. The result of M = 1000 realizations is shown

in Figure 2.13a. We say that the random variables Xl and X 2 are independent. Of

course, this is what we expect from a good random number generator. If instead,

we defined the new random variables,

[~:] [
then from the plot shown in Figure 2.13b, we would say that the random variables

are dependent. Note that this type of plot is called a scatter diagram.

2.6 Real-World Example - Digital Communications

In a phase-shift keyed (PSK) digital communication system a binary digit (also

termed a bit) , which is either a "0" or a "1" , is communicated to a receiver by

sending either so(t) = A cos(211"Fot + 11") to represent a "0" or Sl(t) = Acos(211"Fot)

to represent a "1" , where A > 0 [Proakis 1989]. The receiver that is used to decode

the transmission is shown in Figure 2.14. The input to the receiver is the noise
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Figure 2.13: Relationships between random vari ables.
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Decision device
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o

cos(211"Fot)

Figure 2.14: Receiver for a PSK digit al communicat ion system.

corrupted signal or x (t ) = Si(t ) + w(t ), where w(t ) represents the channel noise.

Ignoring the effect of noise for the moment, the out put of the multiplier will be

so(t) cos(211"Fot ) A cos(21rFot + 11") cos(211"Fot) = -A ( ~ + ~ cos(411"Fot ))

Sl(t ) cos (211"Fot ) A cos(21rFot) cos (211"Fot) = A (~+ ~ C OS(411"Fot))

for a 0 and 1 sent, respecti vely. After the lowpass filter , which filters out the

cos(411"Fot) part of the signal , and sampler, we have

{

_ £1 for a 0
e= ~

'2 for a 1.

The receiver decides a 1 was transmi tted if e> 0 and a 0 if e::; O. To model the

channel noise we assume that the actual value of eobserved is

~={
- 4+ W for a 0

4+ W for a 1
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where W is a Gaussian random variable. It is now of interest to determine how

the error depends on the signal amplitude A. Consider the case of a 1 having been

transmitted. Intuitively, if A is a large positive amplitude, then the chance that the

noise will cause an error or equivalently, ~ ~ 0, should be small. This probability,

termed the probability of error and denoted by Pe , is given by P[A/2 + W ~ OJ.
Using a computer simulation we can plot P; versus A with the result shown in Figure

2.15. Also, the true P; is shown. (In Example 10.3 we will see how to analytically

determine this probability.) As expected, the probability of error decreases as the

54

Simulated Pe .

True r,

32

oL_-----.i__-.i.__ ~ __ - - = : : : : : ~ ~ d

o

0.1

0.05 .

0.15 .

0.2 .

0.35 .

0.3 .

c..."0.25 .

A

Figure 2.15: Probability of error for a PSK communication system.

signal amplitude increases. With this information we can design our system by

choosing A to satisfy a given probability of error requirement. In actual systems

this requirement is usually about P; = 10-7
. Simulating this small probability

would be exceedingly difficult due to the large number of trials required (but see

also Problem 11.47). The MATLAB code used for the simulation is given in Figure

2.16.

References

Proakis, J., Digitial Communications, Second Ed., McGraw-Hill, New York, 1989.

Problems

Note: All the following problems require the use of a computer simulation. A

realization of a uniform random variable is obtained by using rand Ct , 1) while a
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A= [0. 1 :0.1: 5] , ;

for k=1:1ength(A)

error=O;

for i=1 :1000

w=randnC1,1) ;

if A(k)/2+w<=0

error=error+l;

end

end

Pe(k,1)=error/l000j

end

27

Figure 2.16: MATLAB code used to est imate the probability of error P; in Figure

2.15.

realization of a Gaussian random variable is obtained by using randn (1 , 1) .

2.1 C : . . ~ ) (c) An experiment consists of tossing a fair coin twice. If a head occurs

on the first toss, we let X l = 1 and if a tail occurs we let Xl = O. The

same assignment is used for the outcome X 2 of the second toss. Defining the

random variable as Y = X IX2 , estimate the probabilities for the different

possible values of Y. Explain your results.

2.2 (c) A pair of fair dice is tossed. Estimate the probability of "snake eyes" or a

one for each die?

2.3 C:..:....> (c) Estimate P[-l ::; X ::; 1] if X is a Gaussian random variable. Verify

the results of your computer simulation by numerically evaluating the integral

t' _1 exp (_~x 2) dx.
t, y'2;i 2

Hint: See Problem 1.14.

2.4 (c) Estimate the PDF of the random variable

where U, is a uniform random variable. Then, compare this PDF to the

Gaussian PDF or

1 (1 2)px(x) = -- exp --X .
y'2;i 2
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2.5 (c) Estimate the PDF of X = Ul - U2, where U l and U2 are uniform random

variables. What is the most probable range of values?

2.6 C..:J (c) Estimate the PDF of X = U1U2, where U; and U2 are uniform random

variables. What is the most probable range of values?

2.7 (c) Generate realizations of a discrete random variable X, which takes on values

1, 2, and 3 with probabilities Pl = 0.1, P2 = 0.2 and P3 = 0.7, respectively.

Next based on the generated realizations estimate the probabilities of obtaining

the various values of X.

2.8 L..:J (c) Estimate the mean of U , where U is a uniform random variable. What

is the true value?

2.9 (c) Estimate the mean of X +1, where X is a Gaussian random variable. What

is the true value?

2.10 (c) Estimate the mean of X 2
, where X is a Gaussian random variable.

2.11 t.:...:,J (c) Estimate the mean of 2U, where U is a uniform random variable.

What is the true value?

2.12 (c) It is conjectured that if Xl and X 2 are Gaussian random variables, then

by subtracting them (let Y = Xl - X 2 ) , the probable range of values should

be smaller. Is this true?

2.13 C.:') (c) A large circular dartboard is set up with a "bullseye" at the center of

the circle, which is at the coordinate (0,0). A dart is thrown at the center but

lands at (X, Y), where X and Yare two different Gaussian random variables.

What is the average distance of the dart from the bullseye?

2.14 C..:J (c) It is conjectured that the mean of VTJ, where U is a uniform random

variable, is Jmean of U. Is this true?

2.15 (c) The Gaussian random variables Xl and X 2 are linearly transformed to the

new random variables

Yl Xl + 0.IX2

Y2 Xl + 0.2X2 .

Plot a scatter diagram for Yl and Y2 . Could you approximately determine the

value of Y2 if you knew that Yl = I?

2.16 (c,w) Generate a scatter diagram for the linearly transformed random vari­

ables
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where Ul and U2 are uniform random variables. Can you explain why the

scatter diagram looks like a parallelogram? Hint: Define the vectors

x [;:]

., [:]

., [ ~ ]
and express X as a linear combination of el and e2.



Appendix 2A

Brief Introduction to MATLAB

A brief introduction to the scient ific software package MATLAB is contained in this

appendix . Further information is available at the Web sit e www.mathworks.com.

MATLAB is a scientific computation and data presentation language.

Overview of MATLAB

The chief advantage of MATLAB is its use of high-level instructions for matrix alge­

bra and built-in routines for data processing. In this appendix as well as throughout

the text a MATLAB command is indicated with the typewriter font such as end.

MATLAB treats matrices of any size (which includes vectors and scalars as special

cases) as elements and hence matrix multiplication is as simple as C=A*B, where

A and B are conformable matrices. In addition to the usual matrix operations of

addition C=A+B, multiplication C=A*B, and scaling by a constant c as B=c*A, certain

matrix operators are defined that allow convenient manipulation. For example, as­

sume we first define the column vector x = [1 23 4jT, where T denotes transpose, by

using x= [1: 4] ' . The vector starts with the element 1 and ends with the element

4 and the colon indicates that the intervening elements are found by incrementing

the start value by one , which is the default. For other increments, say 0.5, we use

x= [1 : 0 . 5 :4] ' . To define the vector y = [12 22 32 42jT, we can use the matrix ele­

ment by eleme nt exponentiation operator. - to form y=x. -2 if x= [1: 4] '. Similarly,

the operators . * and . / perform element by element multiplication and division of

the matrices, respectively. For example, if

A [~~ ]

B [~~ ]
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Character

+

*
/

*
./

%

I
&
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Meaning

addit ion (scalars , vectors, matrices)

subtraction (scalars , vectors, matrices)

mul tiplication (scalars, vectors, matrices)

divi sion (scalars)

exponent iation (scalars, square matrices)

element by element multiplication

element by element division

element by element exponent iation

suppress printed output of operation

spec ify intervening values

conjuga te transpose (transpose for real vectors, matrices)

line cont inua tion (when command must be split)

remainder of line int erpreted as comment

logical equa ls

logical or

logical and

logical not

Table 2A.1: Definition of common MAT LAB characters .

then the statements C=A. *B and D=A. /B produce the results

c [~1~]

D [~~ ]

respectively. A listing of some common charac ters is given in Table 2A.1. MAT LAB

has the usual built-in functions of cos , sin, etc. for the trigonometric functions,

sqrt for a square root , exp for the exponent ial function, and abs for absolute value,

as well as many ot hers . When a function is applied to a matrix, the function is

applied to each element of the matrix. Other built-in symbo ls and fun ctions and

their meanings are given in Table 2A.2.

Matrices and vectors are easily specified. For example, to define the column

vecto r Cl = [1 2V, just use el=[1 2].' or equivalently cl=[1;2] . To define the C

matrix given previously, the construction C= [1 4; 9 16] is used . Or we could first

define C2 = [4 16V by e2= [4 16].' and then use C= [el e2]. It is also possible

to extract portions of matrices to yield smaller matrices or vectors. For example,

to extrac t the first column from the matrix C use e l=C ( : ,1). The colon indicates

that all elements in the first column should be extrac ted. Many other convenient

manipulations of matrices and vectors are possible.
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Function

pi

i

j

round (x)

floor(x)

inv(A)

x=zeros(N,l)

x=ones(N,l)

x=rand(N,l)

x=randn(N,l)

rand( 'state' ,0)

randn('state' ,0)

M=length(x)

sum(x)

mean (x)

flipud(x)

abs

fft(x,N)

ifft (x ,N)

fftshift (x)

pause

break

whos

help

Meaning

tt

A
A
rounds every element in x to the nearest integer

replaces every element in x by the nearest integer less t ha n

or equa l to x

takes the inverse of the square matrix A

assigns an N x 1 vector of all zeros to x

ass igns an N x 1 vector of all ones to x

generates an N x 1 vector of all uniform random variables

generates an N x 1 vector of all Gau ssian random variables

ini ti alizes uniform random number generator

ini ti alizes Gaussian random number generator

sets M equal to N if x is N x 1

sums all elements in vecto r x

computes t he sample mean of the elements in x

flips the vecto r x upside down

takes the absolute value (or complex magnit ude) of every

element of x

computes t he FFT of length N of x (zero pads if

N>length(x) )

computes the inverse FFT of length N of x

interchanges the two halves of an FFT output

pauses the execut ion of a program

terminates a loop when encountered

list s all variabl es and their attributes in current workspace

provides help on commands , e.g., help sqrt

Table 2A.2: Definit ion of useful MATLAB symbols and functions.
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Any vector that is generated whose dimensions are not explicit ly specified is

assumed to be a row vector. For example, if we say x=ones (10) , then it will be

designated as the 1 x 10 row vector consist ing of all ones. To yield a column vector

use x=ones (10,1).

Loops are implemented with the construction

for k=1: 10

x(k,1)=1j

end

which is equivalent to x=ones (10 , 1). Logical flow can be accomplished with the

construct ion

if x>O

y=sqrt(x)j

else

y=Oj

end

Finally, a good practice is to begin each program or script , which is called an "m"

file (due to its syntax, for example, pdf .m), with a clear all command. This

will clear all vari ables in the workspace, since ot herwise the cur rent program may

inad vertently (on the par t of the programmer) use previously stored variab le data.

Plotting in MATLAB

Plot ting in MATLAB is illustrated in the next secti on by example. Some useful

fun ctions are summarized in Table 2A.3.

Function

figure

plot(x,y)

plot(x1,y1,x2,y2)

plot (x , y , , . ' )

title ('my plot')

x'label C' x ")

ylabel( , y')

grid

axis ([0 1 2 4])

text(1,1,'curve 1')

hold on

hold off

Meaning

opens up a new figur e window

plots the elements of x versus the elements of y

same as above except multiple plots are made

same as plot except the points are not connected

pu ts a title on the plot

lab els the x axis

lab els the y axis

draws grid on the plot

plots only the points in range 0 ::; x ::; 1 and 2 ::; Y ::; 4

places the text "curve I" at t he point (1,1)

holds cur rent plot

releases current plot

Table 2A.3: Definition of useful MAT LAB plotting fun ctions.
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A comp lete MAT LAB program is given below to illustrate how one might compute

the samples of several sinusoids of different amplitudes. It also allows the sinusoids

to be clipped. The sinusoid is s(t) = A cos(271'Fot + 71'/3), with A = 1, A = 2, and

A = 4, Fo = 1, and t = 0,0.01,0.02, . . . , 10. The clipping level is set at ± 3, i.e., any

sample above +3 is clipped to + 3 and any sample less than -3 is clipped to -3.

% matlabexample.m

%
% This program computes and plots samples of a sinusoid

% with amplitudes 1, 2, and 4. If desired, the sinusoid can be

% clipped to simulate the effect of a limiting device.

% The frequency is 1 Hz and the time duration is 10 seconds.

% The sample interval is 0.1 seconds. The code is not efficient but

% is meant to illustrate MATLAB statements.

%
clear all %clear all variables from workspace

delt=O.Ol; %set sampling time interval

FO=l ; % set frequency

t=[0:delt:l0]'; %compute time samples 0,0.01,0.02, ... ,10

A=[l 2 4]'; %set amplitudes

clip='yes'; %set option to clip

for i=l:length(A) %begin computation of sinusoid samples

s(:,i)=A(i)*cos(2*pi*FO*t+pi/3); %note that samples for sinusoid

%are computed all at once and

%stored as columns in a matrix

if clip=='yes' %determine if clipping desired

for k=l:length(s( :, i)) %note that number of samples given as

%dimension of column using length command

if s(k,i»3 %check to see if sinusoid sample exceeds 3

s(k,i)=3j %if yes, then clip

elseif s(k,i)<-3 %check to see if sinusoid sample is less

s(k,i)=-3j %than -3 if yes, then clip

end

end

end

end

figure %open up a new figure window

plot(t,s(:,l),t,s(: ,2),t,s(:,3)) %plot sinusoid samples versus time

% samples for all three sinusoids

grid %add grid to plot

xlabel('time, t') % label x-axis
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ylabel('s(t)') 'l. label y-axis
axis([O 10 -4 4]) 'l. set up axes using axis([xmin xmax ymin ymax])

legend('A=1' ,'A=2 ','A=4 ') 'l. display a legend to distinguish

'l. different s inusoids

The output of the program is shown in Figure 2A.1. Note that the different graphs
will appear as different colors.

4,-- --,----,-- -.---- - .---- ----,.-- ----,-- - ---.-- - -,-- - ,--- ---,

3

2

~ 0 . .

-1

-3 ..

2 3 4 5 6 7 8 9 10
time,!

Figure 2A.l : Output of MATLAB program matlabexample .m,



Chapter 3

Basic Probability

3.1 Introduction

We now begin the formal st udy of probability. We do so by utilizing the properties

of sets in conjunction with the axiomatic approach to probability. In particular , we

will see how to solve a class of probability problems via counting methods. These

are problems such as determining the probability of obtaining a royal flush in poker

or of obtaining a defective item from a batch of mostly good items , as examples.

Furthermo re, the axiomatic approach will provide the basis for all our further studies

of probability. Only the methods of determining the probabilities will have to be

mod ified in accordance wit h the problem at hand.

3.2 Summary

Section 3.3 reviews set theory, with Figure 3.1 illustrating the standard definitions.

Manipulation of sets can be facilitated using De Morgan 's laws of (3.6) and (3.7) .

The applicat ion of set theory to probability is summarized in Table 3.1. Using the

three axioms described in Section 3.4 a theory of probability can be formulated

and a means for computing probabilities constructed. Properties of the probability

functi on are given in Section 3.5. In addition, the probability for a union of three

events is given by (3.20). An equally likely probability assignment for a cont inuous

sample space is given by (3.22) and is shown to satisfy the basic axioms. Section 3.7

introduces the determination of probabilities for discrete sample spaces with equally

likely outcomes. The basic formula is given by (3.24). To implement this approach

for more complicated problems in which brute-force count ing of outcomes is not

possible, the subject of combina torics is describ ed in Section 3.8. Permutations and

combinations are defined and applied to severa l examples for computing probabili­

ties. Based on these counting methods the hypergeometric probability law of (3.27)

and the binomial probability law of (3.28) are der ived in Section 3.9. Finally, an

example of the applicat ion of the binomial law to a quality control problem is given

in Section 3.10.
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3.3 Review of Set Theory

The reader has undoubtedly been introduced to set theory at some point in his/her

education. We now summarize only the salient definitions and properties that are

germane to probability. A set is defined as a collection of objects, for example,

the set of students in a probability class. The set A can be defined either by the

enumeration method, i.e., a listing of the students as

A = {Jane, Bill, Jessica, Fred}

or by the description method

A = {students: each student is enrolled in the probability class}

(3.1)

where the '':" is read as "such that". Another example would be the set of natural

numbers or

B

B

{I, 2, 3, ...}

{I: I is an integer and I ~ I}

(enumeration)

(description).

(3.2)

Each object in the set is called an element and each element is distinct. For example,

the sets {I, 2, 3} and {I , 2, 1, 3} are equivalent. There is no reason to list an element

in a set more than once. Likewise, the ordering of the elements within the set

is not important. The sets {I, 2, 3} and {2, 1, 3} are equivalent. Sets are said to

be equal if they contain the same elements. For example, if C1 = {Bill , Fred}

and C2 = {male members in the probability class}, then C1 = C2 • Although the

description may change, it is ultimately the contents of the set that is of importance.

An element x of a set A is denoted using the symbolism x E A, and is read as "x

is contained in A" , as for example, 1 E B for the set B defined in (3.2) . Some sets

have no elements. If the instructor in the probability class does not give out any

grades of "A", then the set of students receiving an "A" is D = {}. This is called

the empty set or the null set. It is denoted by 0 so that D = 0. On the other hand,

the instructor may be an easy grader and give out all "A" s. Then, we say that

D = S, where S is called the universal set or the set of all students enrolled in the

probability class. These concepts, in addition to some others, are further illustrated

in the next example.

Example 3.1 - Set concepts

Consider the set of all outcomes of a tossed die. This is

A = {1,2,3,4,5,6}. (3.3)

The numbers 1,2,3,4,5,6 are its elements, which are distinct. The set of integer

numbers from 1 to 6 or B = {I : 1 ~ I ~ 6} is equal to A. The set A is also

the universal set S since it contains all the outcomes. This is in contrast to the set
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C = {2, 4, 6}, which contains only the even outcomes. The set C is called a subset

of A. A simple set is a set containing a single element, as for example, C = {I }.

.ffi Element vs. simple set

In the example of the prob abili ty class consider the set of ins tructors. Usually,

there is only one inst ructor and so the set of instructors can be defined as the

simple set A = {Professor Laplace}. However , this is not the same as the "element"

given by Professor Laplace. A distinction is therefore made between the instructors

teaching probability and an individual instructor. As another example, it is clear

that somet imes elements in a set can be added, as, for example, 2 + 3 = 5, but it

makes no sense to add sets as in {2} + {3} = {5}.

More form ally, a set B is defined as a subset of a set A if every element in B is also

an element of A. We write this as B c A . This also includes the case of B = A . In

fact , we can say that A = B if A c Band Be A.

Besides subsets, new sets may be derived from other set s in a number of ways. If

S = {x : - 00 < x < oo} (called the set of real numbers) , then A = {x : 0 < x ~ 2}

is clearl y a subset of S . The complement of A , denoted by AC, is the set of elements

in S but not in A . This is AC= {x : x ~ 0 or x > 2}. Two sets can be combined

together to form a new set. For example, if

A

B

{x: 0 ~ x ~ 2}

{x : 1 ~ x ~ 3} (3.4)

then the union of A and B , denoted by A U B, is the set of elements that belong to

A or B or both A and B (so-called inclusive or). Hence, AU B = {x : 0 ~ x ~ 3}.

This definition may be extended to multiple sets AI , A2 , ••• , AN so that the union

is the set of elements for which each element belongs to at least one of these sets .

It is denoted by

N

Al U A2 U A2 U . .. U AN = UAi.

i= l

The intersection of sets A and B , denoted by An B , is defined as the set of elements

that belong to both A and B. Hence, An B = {x : 1 ~ x ~ 2} for the sets of (3.4) .

We will somet imes use the shortened symbolism AB to denote AnB. This definition

may be extended to multiple sets AI , A2 , ... , AN so that the intersection is the set
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of elements for which each element belongs to all of these sets. It is denoted by

N

Al n A2 n A2 n ... nAN = nAi·

i=I

The difference between sets, denoted by A - B , is the set of elements in A but not

in B. Hence , for the sets of (3.4) A - B = {x : 0 ::; x < I}. These concepts can

be illustrated pictorially using a Venn diagram as shown in Figure 3.1. The darkly

(a) Universal set S

(d) Set AU B

(b) Set A

(e) Set An B

(c) Set AC

(f) Set A - B

Figure 3.1: Illustration of set definitions - darkly shaded region indicates the set.

shaded regions are the sets described. The dashed portions are not included in the

sets. A Venn diagram is useful for visualizing set operations. As an example, one

might inquire whether the sets A - B and An B C are equivalent or if

A-B = AnBc
. (3.5)

From Figures 3.2 and 3.1£ we see that they appear to be. However, to formally

prove that this relationship is true requires one to let C = A - B, D = A n BC and

prove that (a) C C D and (b) Dee. To prove (a) assume that x E A-B. Then,

by definition of the difference set (see Figure 3.1£) x E A but x is not an element of

B. Hence, x E A and x must also be an element of B C. Since D = An B C, x must

be an element of D. Hence , x E A n B C and since this is true for every x E A - B ,
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n =

Figure 3.2: Using Venn diagrams to "validate" set relationships.

we have that A - B cAn B C
• The reader is asked to complete the proof of (b) in

Problem 3.6.

With the foregoing set definitions a number of results follow. They will be useful

in manipulating sets to allow easier calculation of probabilities. We now list these.

3. A U 0 = A, A n 0 = 0

4. AUS=S,AnS=A

5. S C= 0, 0c = S.

If two sets A and B have no elements in common, they are said to be disjoint.

The condition for being disjoint is therefore An B = 0. If, furthermore, the sets

contain between them all the elements of S, then the sets are said to partition the

universe. This latter additional condition is that AU B = S. An example of sets

that partition the universe is given in Figure 3.3. Note also that the sets A and AC

= U

Figure 3.3: Sets that partition the universal set.

are always a partitioning of S (why?). More generally, mutually disjoint sets or sets

AI, A 2 , . . . ,AN for which Ai n Aj = 0 for all i i- j are said to partition the universe

if S = U~IAi (see also Problem 3.9 on how to construct these sets in general). For

example, the set of students enrolled in the probability class, which is defined as the

universe (although of course other universes may be defined such as the set of all
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students attending the given university), is partitioned by

Al = {males} = {Bill, Fred}

A2 = {females} = {Jane, Jessica}.

Algebraic rules for manipulating multiple sets, which will be useful, are

1. AUB=BuA

AnB=BnA

2. A U (B U C) = (A U B) U C

An (B n C) = (A n B) n C

3. An (B U C) = (A n B) U (A n C)

Au (B n C) = (A U B) n (A U C)

commutative properties

associative properties

distributive properties.

Another important relationship for manipulating sets is De Morgan's law. Referring

(a) Set Au B

Figure 3.4: Illustration of De Morgan's law.

to Figure 3.4 it is obvious that

(3.6)

(3.7)

which allows one to convert from unions to intersections. To convert from intersec­

tions to unions we let A = CC and B = DC in (3.6) to obtain

and therefore

cnD = (CCUDC)c.

In either case we can perform the conversion by the following set of rules:

1. Change the unions to intersections and the intersections to unions (A U B =}

AnB)

2. Complement each set (A n B =} AC nBC)
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3. Complement the overall express ion (ACn B C
::::} (ACn BC)C).

43

Finally, we discuss the size of a set. This will be of ext reme importance in assign­

ing probabili t ies. The set {2,4, 6} is a finite set , having a finit e number of elements .

The set {2,4, 6, ... } is an infinite set , having an infini te number of elements. In

the lat ter case, although the set is infinite, it is said to be countably infinite . This

means that "in theory" we can count the number of elements in the set . (We do so

by pairing up each element in the set with an element in the set of natural numbers

or {I , 2, 3, .. .}). In eit her case, the set is said to be discrete. The set may be pic­

ture d as points on t he real line. In contras t to these sets the set {x : 0 ::; x ::; I} is

infinite and cannot be counted. This set is termed continuous and is pictured as a

line segment on the real line. Another example follows.

Example 3.2 - Size of sets

The sets

A

B

G

{
I I II} finit e set _ discrete
8 ' 4' 2 '

{ 1, ~ , l,~ , ...} countably infinite set - discret e

{x : 0 ::; x ::; I} infinite set - cont inuous

are pictured in Figure 3.5.

3rd 2nd 1st element

1-· •
o

+
1

\ t t
I.. ·• • +
o 1 o 1

(a) Finite set , A (b) Countably infinit e

set, B

(c) Infinite cont inuous

set, C

Figure 3.5: Examples of sets of different sizes.

3.4 Assigning and Determining Probabilities

In the previous section we reviewed various aspects of set theory. This is because the

concept of set s and operations on sets provide an ideal description for a probabilistic
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model and the means for determining the probabilites associated with the model.

Consider the tossing of a fair die . The possible outcomes comprise the elements

of the set S = {I , 2, 3, 4, 5, 6}. Note that this set is composed of all the possible

outcomes, and as such is the universal set . In probability theory S is t ermed the

sample space and its elements s are the out comes or sample points. At times we may

be interest ed in a particular outcome of the die tossing exper iment . Other times we

might not be interested in a particular outcome, but whether or not the outcome

was an even number , as an example. Hence, we would inquire as to whether the

outcome was included in the set Eeven = {2, 4, 6}. Clearly, E even is a subset of S

and is termed an event. The simplest type of events are the ones that contain only

a single outcome such as E 1 = {I}, E2 = {2}, or E 6 = {6}, as examples. These are

called simple events. Other events are S , the sample space itself, and 0 = {}, the

set with no outcomes. These events are termed the certain event and the impossible

event, respectively. This is because the outcome of the experiment must be an

element of S so that S is certain to occur. Also, the event that does not contain any

outcomes cannot occur so that this event is impossible. Note that we are saying that

an event occurs if the outcome is an eleme nt of the defining set of that event. For

example, the event that a tossed die produces an even number occurs if it comes up

a 2 or a 4 or a 6. These numbers are just the elements of E even . Disjoint sets such

as {I , 2} and {3,4} are said to be mutually exclusive , in that an outcome cannot

be in both sets simultaneously and hence both events cannot occur. The events

then are said to be mutually exclusive. It is seen that probabilistic questions can

be formulated using set theory, albeit with its own terminology. A summary of the

equivalent terms used is given in Table 3.1.

Set theory Probability theory Probability symbol

universe sample space (certain event ) S

element outcome (sample point) s

subset event E

disjoint sets mutually exclusive events E 1 nE2 = 0
null set impossible event 0
simple set simple event E = {s}

Table 3.1: Terminology for set and probability theory.

In order to develop a theory of probability we must next assign probabilities to

events. For example, what is the probability that the tossed die will produce an

even outcome? Denoting this probability by P[Eeven}, we would intuitively say that

it is 1/2 since there are 3 chances out of 6 to produce an even outcome. Note that P
is a probability function or a func tion that assigns a number between 0 and 1 to sets.

It is sometimes called a set function. The reader is familiar with ordinary functions

such as g(x ) = exp( x) , in which a number y , where y = g(x) , is assigned to each x
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for - 00 < x < 00, and where each x is a distinct num ber. The probability function

must assign a number to every event , or to every set. For a coin toss whose outcome

is eit her a head H or a tail T , all the events are E 1 = {H} , E2 = {T} , E3 = S ,

and E4 = 0. For a die toss all t he events are Eo = 0, E 1 = {I}, . . . , E6 = {6},

E 12 = {I , 2}, . . . , E56 = {5, 6}, . . ., E 12345 = {I , 2, 3, 4, 5}, .. . , E23456 = {2, 3, 4, 5, 6},

E123456 = {I , 2, 3, 4, 5, 6} = S . There are a total of 64 event s. In general , if the

sample space has N simple events , t he total number of events is 2N (see Problem

3.15). We must be able to assign probabilities to all of these. In accordance with

our intuitive notion of probability we assign a number , eit her zero or positive, to

each event . Hence, we require that

Axiom 1 prE] ~ 0 for every event E.

Also, since the die toss will always produce an outcome that is included in S =

{I, 2, 3, 4, 5, 6} we should require that

Axiom 2 P[S] = 1.

Next we might inquire as to the assignment of a probability to the event that the

die comes up either less than or equa l to 2 or equal to 3. Intuitively, we would say

that it is 3/ 6 since

P[{l ,2} U {3}] = P[{1,2} ] + P[{3}]
2 1 1
(; + (; = 2·

However , we would not assert that the probability of the die coming up either less

than or equa l to 3 or equal to 3 is

P[{l ,2,3} U{3}] P[{l ,2, 3}] + P[{3}]
31 4
- + - = - .
6 6 6

This is because the event {I , 2, 3} U {3} is just {I , 2, 3} (we should not count the

3 twice) and so the probability should be 1/2. In the first example, the events are

mutually exclusive (the sets are disjoint) while in the second example they are not.

Hence, the probability of an event that is the union of two mutually exclusive events

should be the sum of the probabilities. Combining this axiom with the previous ones

produces the full set of axioms, which we summarize next for convenience.

Axiom 1 prE] ~ 0 for every event E

Axiom 2 P[S] = 1

Axiom 3 prE U F ]= prE ]+ P[F] for E and F mutually exclusive.

Using induction (see Problem 3.17) the third axiom may be extended to
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N

Axiom 3' P [Ui:1 Ei] = LP[Ei] for all Ei 's mutually exclusive.

i=l

The acceptance of these axioms as the basis for probability is called the axiomatic

approach to probabilit y. It is remarkable that these three axioms, along with a fourth

axiom to be introduced lat er , are adequate to formulate the entire theory. We now

illustrate the application of these axioms to probability calculat ions.

Example 3.3 - Die toss

Determine the probability that the outcome of a fair die toss is even. The event

is Eeven = {2, 4, 6}. The assumption that the die is fair means that each outcome

must be equally likely. Defining E; as the simple event {i} we note that

and from Axiom 2 we must have

P [,Q, E,] = PIS] = 1. (3.8)

But since each Ei is a simple event and by definition the simple events are mutually

exclusive (only one outcome or simple event can occur ), we have from Axiom 3' that

(3.9)

Next we note that the outcomes are assumed to be equally likely which means that

prEll = P[E2 ] = ... = P[E6 ] = p. Hence, we must have from (3.8) and (3.9) that

6

LP[Ei] = 6p = 1

i= l

or P[Ei] = 1/6 for all i. We can now finally det ermine P[Eeven ] since Eeven

E2 U E4 U E6 • By applying Axiom 3' once again we have

<:;
In general, the probabilities assigned to each simple event need not be the same,

i.e., the outcomes of a die toss may not have equal probabilities. One might have

weighted the die so tha t the number 6 comes up twice as ofte n as all the others. The

numbers 1,2,3, 4,5 could still be equally likely. In such a case , since the probabilities

of the all the simple events must sum to one, we would have the assignment P[{i }] =
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1/7 for i = 1,2, 3, 4, 5 and P[{6}] = 2/7. In either case, to compute the probabili ty

of any event it is only necessary to sum the probabili ties of the simple events that

make up that event . Let ti ng P[{sill be the probability of the it h simple event we

have that

prE] = L P[{sd ]· (3.10)

{i :SiE E }

We now simplify the notation by omitting the { } when referring to events . Instead

of P[{I }] we will use P[I ]. Anot her example follows.

Example 3.4 - Defective die toss

A defective die is to ssed whose sides have been mistakenly manufactured with the

number of dots being 1,1 ,2,2,3,4. The simple events are S 1 = 1, S 2 = 1, S 3 = 2,

S 4 = 2, S 5 = 3, S6 = 4. Even though some of the outcomes have the same number

of dot s, they are actually different in that a different side is being observed . Each

side is equa lly likely to appear. What is the probability that the outcome is less

than 3? Noting that the event of interest is {S1 , S 2 ,S3 , S 4} , we use (3.10) to obtain

4 4
prE] = P[outcome < 3] = L P[Si] = -.

i =::1 6

o
The formula given by (3.10) also applies to probabil ity problems for which the sample

space is count ably infini t e. T herefore, it applies to all discre te sample spaces (see

also Example 3.2).

Example 3.5 - Countably infinite sample space

A habitually tardy person ar rives at the theater late by s, minutes, where

Si = i i = 1,2,3 .. . .

If P[Si] = (1/ 2)i, what is the probability that he will be more than 1 minute late?

The event is E = {2, 3, 4, ... }. Using (3.10) we have

PIE] = t, G)'
Using the formula for the sum of a geometric progression (see Appendix B)

00 k

L
· aa l - __

I- a
i =::k

for lal < 1

we have that

p rE] = ( ~) : = ~.
1- 2" 2

In the above example we have implicitly used the relationship
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(3.11)

where E; = {Si} and hence the Ei'S are mutually exclusive. This does not automat­

ically follow from Axiom 3' since N is now infinite. However, we will assume for our

problems of interest that it does. Adding (3.11) to our list of axioms we have

00

Axiom 4 P[U~l Ei] = LP[Ei] for all Ei's mutually exclusive.
i=l

See [Billingsley 1986] for further details.

3.5 Properties of the Probability Function

From the four axioms we may derive many useful properties for evaluating proba­

bilities. We now summarize these properties.

Property 3.1 - Probability of complement event

P[E C
] = 1 - prE]. (3.12)

Proof: By definition E U E C = S. Also, by definition E and E C are mutually

exclusive. Hence,

1 P[S]

P[EUEC
]

prE] +P[EC
]

(Axiom 2)

(definition of complement set)

(Axiom 3)

from which (3.12) follows.

o
We could have determined the probability in Example 3.5 without the use of the

geometric progression formula by using prE] = 1 - P[EC
] = 1 - P[l] = 1/2.

Property 3.2 - Probability of impossible event

P[0] = o.
Proof: Since 0 = SCwe have

(3.13)

P[0] P[SC]

= 1-P[S]

1- 1

O.

(from Property 3.1)

(from Axiom 2)

o



3.5. PROPERTIES OF THE PROBABILITY FUNCTION 49

We will see later that t here are other events for which the probability can be zero.

Thus, t he converse is not tru e.

Property 3.3 - All probabilities are between 0 and 1.

S E U E C (definit ion of complement set)

P[S] p rE ] + P[E C
] (Axiom 3)

1 prE] + P[EC
] (Axiom 2)

But from Axiom 1 P[EC
] 2: 0 and therefore

(3.14)

Combining this result with Axiom 1 proves Property 3.3.

o

Property 3.4 - Formula for prE U F ] where E and F are not mutually

exclusive

p rE U F] = p rE] + P[F] - P[EF]. (3.15)

(We have shortened En F to E F .)

P roof: By the definition of E - F we have that E U F = (E - F ) U F (see Figure

3.1d,f) . Also, t he events E - F and F are by definition mutu ally exclusive. It follows

that

prE U F ] = prE - F] + P[F] (Axiom 3). (3.16)

But by definition E = (E - F ) U EF (draw a Venn diagram) and E - F and EF

are mutua lly exclusive. Thus,

prE] = prE - F] + P[EF]

Combining (3.16) and (3.17) produces Property 3.4.

(Axiom 3). (3.17)

o
The effect of this formula is to make sure that the intersection E F is not counted

twice in the probability calculation. This would be the case if Axiom 3 were mis­

takenly applied to sets that were not mutually exclusive. In the die example, if we

wanted the probability of the die coming up eit her less than or equal to 3 or equal

to 3, then we would first define

E {1,2,3}

F {3}
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so that EF = {3}. Using Property 3.4, we have that

311 3
P[E U F] = P[E] + P[F] - P[EF] = "6 + 6 - "6 = 6·

Of course, we could just as easily have noted that E U F = {I, 2, 3} = E and then

applied (3.10). Another example follows.

Example 3.6 - Switches in parallel

A switching circuit shown in Figure 3.6 consists of two potentially faulty switches in

parallel. In order for the circuit to operate properly at least one of the switches must

switch 1

switch 2

Figure 3.6: Parallel switching circuit.

close to allow the overall circuit to be closed. Each switch has a probability of 1/2 of

closing. The probability that both switches close simultaneously is 1/4. What is the

probability that the switching circuit will operate correctly? To solve this problem

we first define the events E 1 = {switch 1 closes} and E 2 = {switch 2 closes}. The

event that at least one switch closes is E 1 U E2. This includes the possibility that

both switches close. Then using Property 3.4 we have

P[E1] + P[E2 ] - P[E1E2 ]

1 1 1 3
2: + 2: - 4 = 4·

Note that by using two switches in parallel as opposed to only one switch, the

probability that the circuit will operate correctly has been increased. What do you

think would happen if we had used three switches in parallel? Or if we had used N

switches? Could you ever be assured that the circuit would operate flawlessly? (See

Problem 3.26.)

Property 3.5 - Monotonicity of probability function

Monotonicity asserts that the larger the set , the larger the probability of that set.

Mathematically, this translates into the statement that if E c F , then P[E] ~ P[F].
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Proof: If E c F , then by definition F = E U (F - E) , where E and F - E are

mutually exclusive by definition. Hence,

P[F] prE] + P [F - E]

> p rE]

(Axiom 3)

(Axiom 1).

o
Note that since EF c F and EF c E , we have that P[EF] ::; prE] and also that

P [EF ] ::; P[F]. The probability of an intersection is always less than or equal to

t he probability of t he set with the smallest probability.

Example 3.7 - Switches in series

A switching circuit shown in Figure 3.7 consist s of two potentially faulty switches in

series. In order for the circuit to operate properly both switches must close. For the

switch 2
• ~----~

switch 1

Figure 3.7: Series switching circuit .

same switches as described in Example 3.6 what is the probability that t he circuit

will operate properly? Now we need to find P[E1E2]. This was given as 1/4 so that

1 1
"4 = P [E1E2] ::; p rEll = 2"

Could t he series circuit ever outperform t he parallel circuit? (See Problem 3.27.)

o
One last property that is often useful is the probability of a union of more than

two events. This extends P roperty 3.4. Cons ider first three events so that we wish

to derive a formula for P[El U E2 U E3], which is equivalent to P [(El U E2) U E3] or

P[El U (E2 U E3)] by the associat ive property. Writing this as P[El U (E2 U E3)],
we have

P[El U (E2 U E3)]

prEll + P[E2 U E3] - P[EdE2 U E3)]

prEll + (P [E2]+ P[E3] - P[E2E3])

- P [E l (E2 U E3)]

(Property 3.4)

(Proper ty 3.4)

(3.18)

But E l (E2UE3) = E1E2UE1E3 by t he distributive property (draw a Venn diagram )

so that

P [El (E2 U E3)] = P [E1E2 U E1E3]

P [E1E2] + P[E1E3] - P [E1E2E3] (Property 3.4). (3.19)
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Substituting (3.19) into (3.18) produces
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P[E1UE2UE3] = P[El]+P[E2]+P[E3]-P[E2E3]-P[ElE2]-P[ElE3]+P[ElE2E3]

(3.20)

which is the desired result. It can further be shown that (see Problem 3.29)

so that

(3.21)

which is known as Bool e's inequality or the union bound. Clearly, equality holds if

and only if the Ei's are mutually exclusive. Both (3.20) and (3.21) can be extended

to any finite number of unions [Ross 2002].

3.6 Probabilities for Continuous Sample Spaces

We have introduced the axiomatic approach to probability and illustrated the ap­

proach with examples from a discrete sample space. The axiomatic approach is

completely general and applies to continuous sample spaces as well. However, (3.10)

cannot be used to determine probabilities of events. This is because the simple events

of the continuous sample space are not countable. For example, suppose one throws

a dart at a "linear" dartboard as shown in Figure 3.8 and measures the horizontal

distance from the "bullseye" or center at x = O. We will then have a sample space

- 1/2 o 1/ 2

x

Figure 3.8: "Linear" dartboard.

s = {x : -1/2 :s; x :s; 1/2}, which is not countable. A possible approach is to assign

probabilities to intervals as opposed to sample points. If the dart is equally likely

to land anywhere, then we could assign the interval [a, b] a probability equal to the

length of the interval or

P[a :s; x :s; b] = b - a - 1/2 :s; a :s; b :s; 1/2. (3.22)

Also, we will assume that the probability of disjoint intervals is the sum of the

probabilities for each interval. This assignment is entirely consistent with our axioms
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since
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= P [a ~ x ~ b] = b - a ~ O.p rE]

P [S] =

P[E UF]

P [-1/2 ~ x ~ 1/2] = 1/2 - (- 1/ 2) = 1.

P [a ~ x ~ b U e ~ x ~ d]

(b -a)+(d -e)

P[a ~ x ~ b] + P[e ~ x ~ d]

P[E]+P[F]

(Axiom 1)

(Axiom 2)

(assumption)

(Axiom 3)

for a ~ b < e ~ d so that E and F are mutually exclusive. Hence, an equally

likely type probability assignment for a continuous sample space is a valid one and

produces a probability equal to the length of the interval. If the sample space does

not have unity length, as for example, a dartboard with a length L, then we should

use
p rE] = Length of int erval = Length of interval.

Length of dartboard L

Probability of a bullseye

(3.23)

It is an inescapable fact that the prob ability of the dar t landing at say x = 0 is

zero since the length of this interval is zero. For that matter the prob ability of

the dart landing at anyone particular point XQ is zero as follows from (3.22) with

a = b = XQ . The first- time reader of probability will find this particularly disturbing

and argue that "How can the probability of landing at every point be zero if indeed

the dart had to land at some point?" From a pragmatic viewpoint we will seldom be

interested in probabilities of points in a cont inuous sample space but only in those of

intervals. How many dar ts are there whose tips have width zero and so can be said

to land at a point? It is more realistic in practice then to ask for the probability that

the dart lands in the bullseye, which is a small int erval with some nonz ero length.

That probability is found by using (3.22). From a mathematical viewpoint it is not

possible to "sum" up an infinite number of positive numbers of equal value and not

obtain infinity, as opposed to one, as assumed in Axiom 2. The latter is true for

cont inuous sample spaces , in which we have an uncountably infinite set, and also

for discrete sample spaces, which is composed of a infinite but countable set. (Note

that in Example 3.5 we had a countably infini te sample space but the probabilities

were not equal.)

Lfl
Since the probability of a point event occur ring is zero, the probability of any interval
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is the same whether or not the endpoints are included . Thus, for our example

P[a :S x :S b] = P[a < x :S b] = P [a :S x < b] = P[a < x < b].

3.7 Probabilities for Finite Sample Spaces - Equally

Likely Outcomes

We now consider in more detail a discrete sample space with a finit e number of

outcomes. Some examples that we are already familiar with are a coin toss , a die

toss, or the students in a class. Furthermore, we assume that the simple events

or outcomes are equally likely. Many problems have this structure and can be

approached using counting m ethods or combinatorics. For example, if two dice are

tossed , then the sample space is

s = {( i , j) : i = 1, .. . , 6; j = 1, . .. , 6}

which consists of 36 outcomes with each outcome or simple event denoted by an

ordered pair of numbers. If we wish to assign probabilities to events, then we need

only assign probabilities to the simple events and then use (3.10). But if all the

simple event s, denoted by Si j , are equa lly likely, t hen

where Ns is the number of outcomes in S. Now using (3.10) we have for any event

that

prE] = LL P[Si j]

{ (i ,j ): Sij EE}

1

.L L Ns
{(t,J) : Si jEE}

N E

Ns

Number of outcomes in E

Number of outcomes in S·

We will use combina torics to det ermine N E and Ns and hence p rE].

Example 3.8 - Probability of equal values for two-dice toss

Each outcome with equa l values is of the form (i , i ) so that

p rE] = Number of outcomes with (i, i) .

Total number of outcomes

(3.24)
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There are 6 outcomes with equal values or (i , i ) for i = 1,2, . .. , 6. Thus,

P[E] = ~ = ~ .
36 6

55

E xample 3.9 - A m ore challenging problem - urns

An urn contains 3 red balls and 2 black balls. Two balls are chosen in succession.

The first ball is returned to the urn before the second ball is chosen. Each ball is

chosen at random, which means that we are equally likely to choose any ball. What

is the probability of choosing first a red ba ll and then a black ball? To solve this

problem we first need to define the sample space. To do so we ass ign numbers to the

balls as follows. T he red balls are numbered 1, 2, 3 and the black balls are numbered

4,5. The sample space is then S = {(i , j) : i = 1,2,3,4,5; j = 1, 2, 3, 4, 5}. The

event of interest is E = {(i , j) : i = 1, 2, 3; j = 4, 5}. We assume that all the simple

events are equally likely. An enumeration of the outcomes is shown in Table 3.2.

The outcomes with the aste risks comprise E. Hence, the probability is P[E] = 6/25.

This problem could also have been solved using combinatorics as follows. Since there

j = 1 j=2 j=3 j =4 j=5

i = 1 (1,1) (1,2) (1,3) (1, 4)* (1,5)*

i = 2 (2,1) (2,2) (2,3) (2, 4)* (2,5)*

i = 3 (3,1) (3,2) (3,3) (3,4)* (3,5)*

i =4 (4,1 ) (4,2) (4,3) (4,4) (4,5)

i = 5 (5,1) (5,2) (5,3) (5,4) (5,5)

Table 3.2: Enumeration of outcomes for urn problem of Example 3.9.

are 5 poss ible choices for each ball, there are a total of 52 = 25 outcomes in the

sample space. T here are 3 possible ways to choose a red ball on the first draw and 2

possible ways to choose a black ball on the second draw, yielding a total of 3 ·2 = 6

possible ways of choos ing a red ba ll followed by a black ball. We thus arrive at the

same probability.

3.8 Combinatorics

Combinatorics is the study of counting. As illustrated in Example 3.9, we often

have an outcome that can be represented as a 2-tuple or ( Zl , Z2 ) , where Zl can take

on one of N 1 values and Z2 can take on one of N 2 values. For that example, the total

number of 2-tuples in S is N 1N2 = 5·5 = 25, while that in E is N 1N2 = 3·2 = 6, as

can be verified by referring to Table 3.2. It is important to note that order matters
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P[E] =

in the description of a 2-tuple. For example, the 2-t up le (1,2) is not the same as the

2-tuple (2, 1) since each one describes a different outcome of the experiment. We will

frequ ently be using 2-tuples and more generally r -tuples denoted by ( Zl , Z2, ' " ,zr )

to describe the outcomes of urn experiments.

In drawing balls from an urn there are two possible strategies. One met hod is to

draw a ball, note which one it is, return it to the urn, and then draw a second ball.

This is called sampling with replacement and was used in Example 3.9. However , it

is also possible that the first ball is not returned to the urn before the second one is

chosen. This method is called sampling without replacement. The contrast between

the two strategies is illustrated next .

E xample 3.10 - Computing probabilities of d rawing balls from urns ­

with and without replacement

An urn has k red balls and N - k black balls. If two balls are chosen in succession

and at random with replacem ent, what is the probability of a red ball f ollowed by a

black ball? We solve this problem by first labeling the k red balls with 1, 2, . . . ,k

and the black balls with k + 1, k + 2, . . . , N . In doing so the poss ible outcomes of

the experiment can be represented by a 2-tuple ( Zl ' Z2) , where Zl E {1, 2, .. . ,N }
and Z2 E {1, 2, ... , N }. A successful outcome is a red ball followed by a black one

so that the successful event is E = {(Zl ' Z2 ) : Zl = 1, .. . , k ;Z2 = k + 1, .. . ,N}. The

total number of 2-tuples in the sample space is N s = N 2
, while the total number of

2-tuples in E is NE = k(N - k) so that

NE

N s
k(N - k)

N2

= ~ (1- ~ ) .

Not e that if we let p = kiN be the proport ion of red balls, then P[E] = p( 1 - p) .

Next consider the case of sampling without replacement. Now since the same ball

cannot be chosen twice in succession, and therefore, Zl i= Z2, we have one fewer

choice for the second ball. Therefore, N s = N (N - 1). As before, t he number of

successful 2-tuples is NE = k(N - k) , resu lting in

P[E] = k(N-k) ~ N - k ~
N(N - 1) N N N - 1

N
= p(1 - p) N - l '

T he probability is seen to be higher. Can you explain this? (It may be helpful to

think about the effect of a successful first draw on the probability of a success on

the second draw.) Of course, for large N the probabilities for sampling with and

without replacement are seen to be approximately the same, as expected.
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<>
If we now choose r ball s without replacement from an urn containing N balls, then

all t he possible ou t comes are of t he form (Zl, Z2, ... , zr ), where t he Zi ' S must be

different . On t he first draw we have N possible balls, on the second draw we have

N - 1 possible balls, etc. Hence, t he total number of possible outcomes or number

of r -tuples is N (N - 1) .. . (N - r + 1). We denote this by (N) r. If all the balls are

selected , forming an N-tuple, then the number of out comes is

(N )N = N(N - 1)···1

whi ch is defined as N! and is termed N fact orial. As an example, if there are 3

balls labeled A,B,C , t hen the number of 3-tuples is 3! = 3 . 2 . 1 = 6. To verify this

we have by enumerat ion that the possible 3-tuples are (A,B,C) , (A,C,B) , (B,A,C) ,

(B,C,A), (C ,A,B) , (C ,B,A). Note that 3! is the number of ways that 3 objects can

be arranged. These arrangements are termed the permutations of the letters A, B,

and C. Note that with the definition of a factorial we have that (N)r = N!/(N -r)!.

Another example follows.

Example 3.11 - More urns - using permutations

Five balls numbered 1,2,3, 4, 5 are dr awn from an urn without replacem ent. What

is the probability t hat t hey will be drawn in t he same order as their number ? Each

outcome is represent ed by t he 5-tuple (Zl' Z2 , Z3 , Z4, zs ). The only ou t come in E

is (1, 2, 3,4, 5) so t hat N E = 1. To find Ns we require t he number of ways that

t he nu mb ers 1, 2,3, 4,5 can be arranged or the number of permutations. This is

5! = 120. Hence, the desir ed probability is prE] = 1/120.

<>
Before cont inuing, we give one more example to explain our fixation with drawing

balls out of urns.

Example 3.12 - The birthday problem

A probability class has N students enrolled . What is the probability that at leas t

two of the students will have the same birthday? We first ass ume that each st udent

in the class is equally likely to be born on any day of the year. To solve this

problem consider a "birt hday urn" that contains 365 balls. Each ball is labeled with

a different day of the year. Now allow each student to select a ball at random, note

it s date, and return it to the urn. The day of the year on the ball becomes his/her

birthday. The probability desired is of the event that two or more students choose

the same ball. It is more convenient to determine the probability of the complement

event or that no two st udents have the same birthday. Then , using Prop erty 3.1

P lat leas t 2 students have same birthday] = I -P[no st udents have same birthday].

The sample space is composed of Ns = 365N N-tuples (sampling with replacement) .

T he number of N-tuples for whi ch all the outcomes are different is N E = (365)N.

This is because t he event t hat no two students have the same birthday occurs if
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the first student chooses any of the 365 balls , the second student chooses any of the

remaining 364 balls, etc ., which is the same as if sampling without replacement were

used. The probability is then

(365)N
Plat least 2 students have same birthday] = 1 - 365N

This probability is shown in Figure 3.9 as a function of the number of students. It is

seen that if the class has 23 or more students, there is a probability of 0.5 or greater

that two students will have the same birthday.

5010 20 30 40
Number of students, N

0'--"""------'-----'-----'------'------'
o

0.3 .

0.1 .

>,0.7 .
.~
] 0.6 .

ro
..g 0.5 .
....

p.... 0.4 . .,

0.8 .

0.9 .

Figure 3.9: Probability of at least two students having the same birthday.

Why this doesn't appear to make sense.

This result may seem counterintuitive at first, but this is only because the reader

is misinterpreting the question. Most persons would say that you need about 180

people for a 50% chance of two identical birthdays. In contrast, if the question was

posed as to the probability that at least two persons were born on January 1, then

the event would be at least two persons choose the ball labeled "January I" from the

birthday urn. For 23 people this probability is considerably smaller (see Problem

3.38). It is the possibility that the two identical birthdays can occur on any day

of the year (365 possibilities) that leads to the unexpected large probability. To

verify this result the MATLAB program given below can be used. When run, the

estimated probability for 10,000 repeated experiments was 0.5072. The reader may

wish to reread Section 2.4 at this point.
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%birthday.m

%
clear all

rand ( 'state' ,0)

BD= [0 :365] , ;

event=zeros(10000,1); %initialize to no successful events

for ntrial=1:10000

for i=1:23

x(i,1)=ceil(365*rand(1,1)); %chooses birthdays at random

% (ceil rounds up to nearest integer)

end

y=sort(x); %arranges birthdays in ascending order

z=y(2:23)-y(1:22); %compares successive birthdays to each other

w=find(z==O); %flags same birthdays

if Lengt.h Cc) >0

event(ntrial)=l; %event occurs if one or more birthdays the same

end

end

prob=sum(event)/10000

~
We summarize our counting formulas so far . Each outcome of an experiment

produces an r-tuple, which can be written as (Zl, Z2,'" , zr ). If we are choos­

ing balls in succession from an urn containing N balls , then with replacement

each Zi can take on one of N possible values. The number of possible r-tuples

is then N", If we sample without replacement, then the number of r-tuples is only

(N)r = N(N - 1) ... (N - r + 1). If we sample without replacement and r = N

or all the balls are chosen, then the number of r-tuples is NL In arriving at these

formulas we have used the r-tuple representation in which the ordering is used in

the counting. For example, the 3-tuple (A,B,C) is different than (C,A,B), which is

different than (C,B,A), etc. In fact, there are 3! possible orderings or permutations

of the letters A, B, and C. We are frequently not interested in the ordering but only

in the number of distinct elements. An example might be to determine the number

of possible sum-values that can be made from one penny (p), one nickel (n), and

one dime (d) if two coins are chosen . To determine this we use a tree diagram as

shown in Figure 3.10. Note that since this is essentially sampling without replace­

ment, we cannot have the outcomes pp, nn, or dd (shown in Figure 3.10 as dashed).

The number of possible outcomes are 3 for the first coin and 2 for the second so

that as usual there are (3h = 3 . 2 = 6 outcomes. However, only 3 of these are

distinct or produce different sum-values for the two coins. The outcome (p,n) is

counted the same as (n,p) for example. Hence, the ordering of the outcome does

not matter. Both orderings are treated as the same outcome. To remind us that
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6 cents

11 cents

6 cents

15 cents

11 cents

15 cents

r " ' ~ , ·
choose second

Figure 3.10: Tree diagram enumerating possible outcomes.

ordering is immaterial we will replace the 2-tuple description by the set description

(recall that the elements of a set may be arranged in any order to yield the same

set). The outcomes of this experiment are therefore {p,n}, {p,d}, {n,d} . In effect,

all permutations are considered as a single combination. Thus, to find the number

of combinations:

Number of combinations x Number of permutations

or for this example,

Number of combinations x 2! = (3h

which yields

Total number of

r-tuple outcomes

b f
.. (3h 3!

Num er 0 combinations = -,- = -'-I = 3.
2. 1.2.

The number of combinations is given by the symbol ( ~ ) and is said to be "3 things

taken 2 at a time" . Also, (~) is termed the binomial coefficient due to its appearance

in the binomial expansion (see Problem 3.43) . In general the number of combinations

of N things taken k at a time, i.e., order does not matter, is

(
N ) (N)k N!
k = ~ = (N -k)!k!'

Example 3.13 - Correct change

If a person has a penny, nickel, and dime in his pocket and selects two coins at

random, what is the probability that the sum-value will be 6 cents? The sample
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space is now S = {{p, n}, [p,d} , {n , d}} and E = {{p, n}}. Thus,

61

P[6 cents] =
N E

P [{p ,n}] = Ns

1

3·

Note that each simple event is of the form {.,.} . Also, Ns can be found from the

original problem statement as ( ~) = 3.

Example 3.14 - How probable is a royal flush?

A person draws 5 cards from a deck of 52 freshly shuffled cards. What is the

probability that he obtains a royal flush? To obtain a royal flush he must draw an

ace, king, queen, jack, and ten of the same suit in any order. There are 4 possible

sui ts that will be produce the flush. The total number of combinations of cards

or "hands" that can be dr awn is (5;) and a royal flush will result from 4 of these

combinations. Hence,

4
P[royal flush] = en ~ 0.00000154.

& Ordered vs. unordered

It is somet imes confusing that (5n is used for Ns - It might be argued that the

first card can be chosen in 52 ways, the second card in 51 ways, et c. for a total of

(52)5 possible outcomes. Likewise, for a royal flush in hearts we can choose any of

5 cards, followed by any of 4 cards, et c. for a total of 5! possible outcomes. Hence,

the probability of a royal flush in hearts should be

P[royal flush in hearts] = _(5!) .
52 5

But this is just the same as 1/ (5n which is the same as obtained by counting

combinat ions. In essence , we have redu ced the sample space by a factor of 5! but

addit ionally each event is commensura tely reduced by 5!, yielding the same proba­

bility. Equivalently, we have grouped toget her each set of 5! permutations to yield

a single combination.
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3.9 Binomial Probability Law

In Chapter 1 we cited the binomial probability law for the number of heads obtained

for N tosses of a coin. The same law also applies to the problem of drawing balls from

an urn. First, however, we look at a related problem that is of considerable practical

interest. Specifically, consider an urn consisting of a proportion p of red balls and the

remaining proportion 1 - p of black balls. What is the probability of drawing k red

balls in M drawings without replacement? Note that we can associate the drawing

of a red ball as a "success" and the drawing of a black ball as a "failure" . Hence ,

we are equivalently asking for the probability of k successes out of a maximum of

M successes. To determine this probability we first assume that the urn contains

N balls, of which N R are red and N B are black. We sample the urn by drawing M

balls without replacement. To make the balls distinguishable we label the red balls

as 1,2, . .. ,NR and the black ones as NR + 1,NR + 2, . . . ,N. The sample space is

s = {(Zl , Z2, • • • , ZM) : Zi = 1, ... ,N and no two Zi'S are the same}.

We assume that the balls are selected at random so that the outcomes are equally

likely. The total number of outcomes is Ns = (N) M. Hence, the probability of

obtaining k red balls is

NE
P[k] = (N)M' (3.25)

NE is the number of M -tuples that contain k distinct integers in the range from

1 to N Rand M - k distinct integers in the range N R + 1 to N. For example, if

NR = 3, NB = 4 (and hence N = 7), M = 4, and k = 2, the red balls are contained

in {I, 2, 3}, the black balls are contained in {4, 5, 6, 7} and we choose 4 balls without

replacement. A successful outcome has two red balls and two black balls. Some

successful outcomes are (1,4,2,5) , (1,4,5,2) , (1,2,4,5), etc. or (2,3,4,6) , (2,4,3,6),

(2,6,3,4) , etc. Hence, NE is the total number of outcomes for which two of the Zi 'S

are elements of {I , 2, 3} and two of the Zi'S are elements of {4, 5, 6, 7}. To determine

this number of successful M-tuples we

1. Choose the k positions of the M-tuple to place the red balls. (The remaining

positions will be occupied by the black balls.)

2. Place the N R red balls in the k positions obtained from step 1.

3. Place the N B black balls in the remaining M - k positions.

Step 1 is accomplished in (!If) ways since any permutation of the chosen positions

produces the same set of positions. Step 2 is accomplished in (NR)k ways and step
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3 is accomplished in (NB)M-k ways. Thus, we have that

NE = (~) (NR)k(NB)M-k

M'
(M - ~)!k! (NRh(NB)M-k

= M! (~R) (:~k)

so that finally we have from (3.25)
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(3.26)

P[k]
M! (~R) (:!!k)

(N)M

( ~ R ) (:!!k)
(t;)

(3.27)

This law is called the hypergeometric law and describes the probability of k successes

when sampling without replacement is used. If sampling with replacement is used,

then the binomial law results. However, instead of repeating the entire derivation

for sampling with replacement, we need only assume that N is large. Then, whether

the balls are replaced or not will not affect the probability. To show that this is

indeed the case , we start with the expression given by (3.26) and note that for N

large and M « N , then (N)M ;::j N M. Similarly, we assume that M « NR and

M « N B and make similar approximations. As a result we have from (3.25) and

(3.26)

P[k] ;::j

Letting NR/N = p and NB/N = (N - NR)/N = 1- p, we have at last the binomial

law

(3.28)

To summarize, the binomial law not only applies to the drawing of balls from urns

with replacement but also applies to the drawing of balls without replacement if the

number of balls in the urn is large. We next use our results in a quality control

application.
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3.10 Real-World Example - Quality Control

A manufacturer of electronic memory chips produces batches of 1000 chips for ship­

ment to computer companies. To determine if the chips meet specifications the

manufacturer initially tests all 1000 chips in each batch. As demand for the chips

grows, however, he realizes that it is impossible to test all the chips and so proposes

that only a subset or sample of the batch be tested. The criterion for acceptance

of the batch is that at least 95% of the sample chips tested meet specifications. If

the criterion is met, then the batch is accepted and shipped. This criterion is based

on past experience of what the computer companies will find acceptable, i.e., if the

batch "yield" is less than 95% the computer companies will not be happy. The

production manager proposes that a sample of 100 chips from the batch be tested

and if 95 or more are deemed to meet specifications, then the batch is judged to

be acceptable. However, a quality control supervisor argues that even if only 5 of

the sample chips are defective, then it is still quite probable that the batch will not

have a 95% yield and thus be defective.

The quality control supervisor wishes to convince the production manager that

a defective batch can frequently produce 5 or fewer defective chips in a chip sample

of size 100. He does so by determining the probability that a defective batch will

have a chip sample with 5 or fewer defective chips as follows. He first needs to

assume the proportion of chips in the defective batch that will be good. Since

a good batch has a proportion of good chips of 95%, a defective batch will have

a proportion of good chips of less than 95%. Since he is quite conservative, he

chooses this proportion as exactly p = 0.94, although it may actually be less. Then,

according to the production manager a batch is judged to be acceptable if the sample

produces 95,96,97,98,99, or 100 good chips. The quality control supervisor likens

this problem to the drawing of 100 balls from an "chip urn" containing 1000 balls.

In the urn there are 1000p good balls and 1000(1 - p) bad ones. The probability of

drawing 95 or more good balls from the urn is given approximately by the binomial

probability law. We have assumed that the true law, which is hypergeometric due

to the use of sampling without replacement, can be approximated by the binomial

law, which assumes sampling with replacement. See Problem 3.48 for the accuracy

of this approximation.

Now the defective batch will be judged as acceptable if there are 95 or more

successes out of a possible 100 draws. The probability of this occurring is

where p = 0.94. The probability P[k 2: 95] versus p is plotted in Figure 3.11.

For p = 0.94 we see that the defective batch will be accepted with a probability

of about 0.45 or almost half of the defective batches will be shipped. The quality

control supervisor is indeed correct. The production manager does not believe the
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Figure 3.11: Probability of accepting a defective batch versus proportion of good

chips in the defective batch - accept if 5 or fewer bad chips in a sample of 100.

result since it appears to be too high. Using sampling with replacement, which

will produce results in accordance with the binomial law, he performs a computer

simulation (see Problem 3.49). Based on the simulated results he reluctantly accepts

the supervisor's conclusions. In order to reduce this probability the quality control

supervisor suggests changing the acceptance strategy to one in which the batch

is accepted only if 98 or more of the samples meet the specifications. Now the

probability that the defective batch will be judged as acceptable is

where p = 0.94, the assumed proportion of good chips in the defective batch. This

produces the results shown in Figure 3.12. The acceptance probability for a defective

batch is now reduced to only about 0.05.

There is a price to be paid, however, for only accepting a batch if 98 or more of

the samples are good. Many more good batches will be rejected than if the previous

strategy were used (see Problem 3.50). This is deemed to be a reasonable tradeoff.

Note that the supervisor may well be advised to examine his initial assumption

about p for the defective batch. If, for instance, he assumed that a defective batch

could be characterized by p = 0.9, then according to Figure 3.11, the production

manager's original strategy would produce a probability of less than 0.1 of accepting

a defective batch.
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Figure 3.12: Probability of accepting a defective batch versus proportion of good

chips in the defective batch - accept if 2 or fewer bad chips in a sample of 100.
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Problems

3.1 C:.:... ) (w) The universal set is given by S = {x : -00 < x < oo} (the real line).

If A = {x : x > I} and B = {x : x ~ 2}, find the following:

b. AUB and AnB

c. A - Band B - A

3.2 (w) Repeat Problem 3.1 if S = {x : x 2: O}.

3.3 (w) A group of voters go to the polling place. Their names and ages are Lisa ,

21, John, 42, Ashley, 18, Susan , 64, Phillip, 58, Fred , 48, and Brad, 26. Find

the following sets:
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a. Voters older than 30

b. Vot ers younger than 30

c. Male vote rs older than 30

d. Female voters younger than 30

e. Vote rs that are male or younger than 30

f. Voters that are female and older than 30
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Next find any two sets that partition the uni verse.

3.4 (w) Given the sets Ai = {x : 0 ~ x ~ i} for i = 1,2, ... , N , find U ~IA and
N A A h A ' di . . ?n i= l i . re t e i s isjoint:

3.5 (w) P rove that the sets A = {x : x ;::: -I} and B = {x : 2x + 2;::: O} are equal.

3.6 (t) Prove that if x E A n B e, then x E A-B.

3.7 C:...:.J (w) If S = {I , 2, 3, 4, 5, 6}, find sets A and B that are disjoint. Next find

sets C and D that partition the universe.

3.8 (w) If S = {(x ,y) : 0 ~ x ~ 1 and 0 ~ y ~ I} , find sets A and B that are

disjoint. Next find sets C and D that par ti tion the universe.

3.9 (t) In this problem we see how to construct disjoint sets from ones that are not

disjoint so that their unions will be the same. We consider only three sets and

ask the reader to generalize the result. Calling the nondisjoint sets A , B , C

and the union D = AU B U C , we wish to find three disjoint sets E I , E2 , and

E 3 so that D = E I U E 2 U E3 . To do so let

E I A

E2 B - E I

E3 C - (E I U E2 ) .

Using a Venn diagram explain this procedure. Ifwe now have set s A I , A2 , . •. , AN,

explain how to construct N disjoint sets with the same union.

3.10 c.:..:.,) (f) Replace the set expression AUBU C with one using intersections and

complements . Replace the set expression A n B nC with one using uni ons and

complements .

3.11 (w) The sets A , B , C are subsets of S = {(x ,y) : 0 ~ x ~ 1 and 0 ~ y ~ I}.

They are defined as

A { ( x , y) : x~I/2 ,0~ y~l }

B { ( x , y ): x;:::I/2 , 0~ y~l}

C {(x ,y) : 0 ~ x ~ l ,y ~ 1/2}.



68 CHAPTER 3. BASIC PROBABILITY

Explicitly determine the set AU (B nC)Cby drawing a picture of it as well as

pictures of all the individual sets. For simplicity you can ignore the edges of

the sets in dr awing any diagrams. Can you represent the resultant set using

only unions and complements?

3.12 L..:J (w) Give the size of each set and also whether it is discrete or cont inuous.

If the set is infinite, determine if it is countably infinite or not.

a. A = {seven-digit numbers}

b. B = {x : 2x = I}

c. C = {x : 0 ::; x ::; 1 and 1/2 ::; x ::; 2}

d. D = {(x ,y): x2 +y2 = I}

e. E = {x : x2 + 3x + 2 = O}

f. F = {positive even integers}

3.13 (w) Two dice are tossed and the number of dots on each side that come up

are ad ded together. Det ermine the sample space, outcomes, impossible event ,

three different event s including a simple event, and two mutually exclusive

events . Use appropriate set notation.

3.14 t.:..:..-) (w) The temperature in Rhode Island on a given day in August is found

to always be in the range from 30° F to 100° F . Determine the sample space,

outco mes, impossible event, three different events including a simple event,

and two mutually exclusive events. Use appropriate set notation.

3 .15 (t) Prove that if the sample space has size N , then the to tal number of events

(including the imp ossible event and the certain event) is 2N
. Hint: There are

( ~ ) ways to choose an event with k outcomes from a total of N outcomes.

Also, use the binomial formul a

which was proven in Problem 1.11.

3.16 (w) An urn contains 2 red balls and 3 black balls. The red balls are lab eled

with the numbers 1 and 2 and the black balls are lab eled as 3, 4, and 5. Three

balls are drawn without replacement. Consider the events that

A {a majority of the balls drawn are black}

B = {the sum of the numbers of the balls drawn ~ 1O}.

Are these events mutually exclusive? Explain your answer.
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3.17 (t) Prove Axiom 3' by using mathematical induction (see Appendix B) and

Axiom 3.

3.18 C:..:...) (w) A roulette wheel has numbers 1 to 36 equally spaced around its

perimeter. The odd numbers are colored red while the even numbers are

colored black. If a spun ball is equally likely to yield any of the 36 numbers,

what is the probability of a black number, of a red number? What is the

probability of a black number that is greater than 24? What is the probability

of a black number or a number greater than 24?

3.19 C:..:...) (c) Use a computer simulation to simulate the tossing of a fair die. Based

on the simulation what is the probability of obtaining an even number? Does

it agree with the theoretical result? Hint: See Section 2.4.

3.20 (w) A fair die is tossed. What is the probability of obtaining an even number,

an odd number, a number that is even or odd, a number that is even and odd?

3.21 C.:....) (w) A die is tossed that yields an even number with twice the probability

of yielding an odd number. What is the probability of obtaining an even

number, an odd number, a number that is even or odd, a number that is even

and odd?

3.22 (w) If a single letter is selected at random from {A , B ,e} , find the probability

of all events. Recall that the total number of events is 2N
, where N is the

number of simple events. Do these probabilities sum to one? If not, why not?

Hint: See Problem 3.15.

3.23 C ~ ) (w) A number is chosen from {I , 2, 3, ... } with probability

Find P[i ~ 4J.

P[iJ = { :
7 .

(kr-2

i = 1

i=2

i ~ 3

3.24 (f) For a sample space S = {a, 1,2, ... } the probability assignment

2i

P[iJ = exp( -2)1"
2.

is proposed. Is this a valid assignment?

3.25 C:.:....) (w) Two fair dice are tossed. Find the probability that only one die

comes up a 6.
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3.26 (w) A circuit consists of N switches in parallel (see Example 3.6 for N = 2).

The sample space can be summarized as S = {(Zl, Z2, ... , ZN) : Zi = S or f},

where s indicates a success or the switch closes and f indicates a failure or

the switch fails to close. Assuming that all the simple events are equally

likely, what is the probability that a circuit is closed when all the switches are

activated to close? Hint: Consider the complement event.

3.27 c.:..:.-) (w) Can the series circuit of Figure 3.7 ever outperform the parallel cir­

cuit of Figure 3.6 in terms of having a higher probability of closing when both

switches are activated to close? Assume that switch 1 closes with probability

p, switch 2 closes with probability p , and both switches close with probability
p2.

3.28 (w) Verify the formula (3.20) for P[El UE2 UE 3J if e; E2, E 3 are events that

are not necessarily mutually exclusive. To do so use a Venn diagram.

3.29 (t) Prove that

3.30 (w) A person always arrives at his job between 8:00 AM and 8:20 AM. He is

equally likely to arrive anytime within that period. What is the probability

that he will arrive at 8:10 AM? What is the probability that he will arrive

between 8:05 and 8:10 AM?

3.31 (w) A random number generator produces a number that is equally likely to

be anywhere in the interval (0,1). What are the simple events? Can you use

(3.10) to find the probability that a generated number will be less than 1/2?

Explain.

3.32 (w) If two fair dice are tossed, find the probability that the same number will

be observed on each one. Next , find the probability that different numbers

will be observed.

3.33 ( ~ ) (w) Three fair dice are tossed. Find the probability that 2 of the numbers

will be the same and the third will be different.

3.34 (w,c) An urn contains 4 red balls and 2 black balls. Two balls are chosen at

random and without replacement. What is the probability of obtaining one

red ball and one black ball in any order? Verify your results by enumerating

all possibilities using a computer evaluation.

3.35 C:...:.-) (f) Rhode Island license plate numbers are of the form GR315 (2 letters

followed by 3 digits). How many different license plates can be issued?
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3.36 (f) A baby is to be named using four letters of the alphabet. The letters can

be used as often as desired. How many different names are there? (Of course,

some of the names may not be pronounceable).

3.37 (c) It is difficult to compute N! when N is large . As an approximation, we

can use Stirling's formula, which says that for large N

Compare Stirling's approximation to the true value of N! for N = 1,2, ... , 100

using a digital computer. Next try calculating the exact value of N! for N =

200 using a computer. Hint: Try printing out the logarithm of N! and compare

it to the logarithm of its approximation.

3.38 c.:..:...) (t) Determine the probability that in a class of 23 students two or more

students have birthdays on January 1.

3.39 (c) Use a computer simulation to verify your result in Problem 3.38.

3.40 c.:..:...) (w) A pizza can be ordered with up to four different toppings. Find the

total number of different pizzas (including no toppings) that can be ordered.

Next, if a person wishes to pay for only two toppings, how many two-topping

pizzas can he order?

3.41 (f) How many subsets of size three can be made from {A , B , C, D , E}?

3.42 (w) List all the combinations of two coins that can be chosen from the follow­

ing coins: one penny (p) , one nickel (n) , one dime (d), one quarter (q) . What

are the possible sum-values?

3.43 (f) The binomial theorem states that

Expand (a + b)3 and (a + b)4 into powers of a and b and compare your results

to the formula.

3.44 C:..:,,) (w) A deck of poker cards contains an ace, king, queen, jack, 10, 9, 8,

7, 6, 5, 4, 3, 2 in each of the four suits, hearts (h) , clubs (c) , diamonds (d),

and spades (s), for a total of 52 cards. If 5 cards are chosen at random from

a deck, find the probability of obtaining 4 of a kind, as for example, 8-h, 8-c,

8-d , 8-s, 9-c. Next find the probability of a flush, which occurs when all five

cards have the same suit , as for example, 8-s, queen-s, 2-s, ace-s , 5-s.
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3.45 (w) A class consists of 30 students, of which 20 are freshmen and 10 are

sophomores. If 5 students are selected at random, what is the probability that

they will all be sophomores?

3.46 (w) An urn containing an infinite number of balls has a proportion p of red

balls, and the remaining portion 1 - p of black balls. Two balls are chosen at

random. What value of p will yield the highest probability of obtaining one

red ball and one black ball in any order?

3.47 (w) An urn contains an infinite number of coins that are either two-headed or

two-tailed. The proportion of each kind is the same. If we choose M coins at

random, explain why the probability of obtaining k heads is given by (3.28)

with p = 1/2. Also, how does this experiment compare to the tossing of a fair

coin M times?

3.48 (c) Compare the hypergeometric law to the binomial law if N = 1000, M =

100, p = 0.94 by calculating the probability P[k] for k = 95,96, ... ,100.

Hint: To avoid computational difficulties of calculating N! for large N, use

the following strategy to find x = 1000!/900! as an example.

1000 900

Y = In(x) = In(1000!) -In(900!) = L In(i) - L In(i)

i= l i = l

and then x = exp(y). Alternatively, for this example you can cancel out the

common factors in the quotient of x and write it as x = (1000hoo , which is

easier to compute. But in general, this may be more difficult to set up and

program.

3.49 C:.:.,) (c) A defective batch of 1000 chips contains 940 good chips and 60 bad

chips. If we choose a sample of 100 chips , find the probability that there will

be 95 or more good chips by using a computer simulation. To simpify the

problem assume sampling with replacement for the computer simulation and

the theoretical probability. Compare your result to the theoretical prediction

in Section 3.10.

3.50 (c) For the real-world problem discussed in Section 3.10 use a computer simu­

lation to determine the probability of rejecting a good batch. To simpify your

code assume sampling with replacement. A good batch is defined as one with

a probability of obtaining a good chip of p = 0.95. The two strategies are to

accept the batch if 95 or more of the 100 samples are good and if 98 or more

of the 100 samples are good. Explain your results. Can you use Figures 3.11

and 3.12 to determine the theoretical probabilities?



Chapter 4

Conditional Probability

4.1 Introduction

In the previous chapter we determined the probabilities for some simple experiments.

An example was the die toss that produced a number from 1 to 6 "at random".

Hence , a probability of 1/6 was assigned to each possible outcome. In many real­

world "experiments", the outcomes are not completely random since we have some

prior knowledge. For instance, knowing that it has rained the previous 2 days might

influence our assignment of the probability of sunshine for the following day. Another

example is to determine the probability that an individual chosen from some general

population weighs more than 200 lbs ., knowing that his height exceeds 6 ft. This

motivates our interest in how to determine the probability of an event, given that we

have some prior knowledge. For the die tossing experiment we might inquire as to the

probability of obtaining a 4, if it is known that the outcome is an even number. The

additional knowledge should undoubtedly change our probability assignments. For

example, if it is known that the outcome is an even number, then the probability

of any odd-numbered outcome must be zero. It is this interaction between the

original probabilities and the probabilities in light of prior knowledge that we wish

to describe and quantify, leading to the concept of a conditional probability.

4.2 Summary

Section 4.3 motivates and then defines the conditional probability as (4.1). In do­

ing so the concept of a joint event and its probability are introduced as well as

the marginal probability of (4.3). Conditional probabilities can be greater than,

less than, or equal to the ordinary probability as illustrated in Figure 4.2. Also,

conditional probabilities are true probabilities in that they satisfy the basic axioms

and so can be manipulated in the usual ways. Using the law of total probability

(4.4) , the probabilities for compound experiments are easily determined. When the

conditional probability is equal to the ordinary probability, the events are said to
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be statist ically independent. Then, knowledge of the occurrence of one event does

not change the probability of the other event. The condit ion for two events to

be independent is given by (4.5). Three events are statistically independent if the

condit ions (4.6)-(4.9) hold. Bayes' theorem is defined by either (4.13) or (4.14).

Embodied in the theorem are the concepts of a prior probability (before the experi­

ment is conducted) and a posterior probability (aft er the exp eriment is conducted).

Conclusions may be dr awn based on the outcome of an exp eriment as to whether

certain hypotheses are true. When an experiment is repeated multiple times and

the experiments are independent , the probability of a joint event is easily found

via (4.15). Some probability laws that result from the independent multiple experi­

ment assumption are the binomial (4.16) , the geometric (4.17) , and the multinomial

(4.19). For dependent multiple experiments (4.20) must be used to determine prob­

abilities of joint events. If, however, the experimental outcomes probabilities only

depend on the previous experimental outcome, then the Markov condition is satis­

fied. This results in the simpler formula for determining joint probabilities given by

(4.21). Also , this assumption leads to the concept of a Markov chain, an example of

which is shown in Figure 4.8. Finally, in Section 4.7 an example of the use of Bayes '

theorem to detect the presence of a cluster is investigated.

4.3 Joint Events and the Conditional Probability

In formulating a useful theory of conditional probability we are led to consider

two events. Event A is our event of interest while event B represents the event

that embodies our prior knowledge. For the fair die toss example described in the

introduction, the event of interest is A = {4} and the event describing our prior

knowledge is an even outcome or B = {2, 4, 6}. Note that when we say that the

outcome must be even, we do not elaborate on why this is the case. It may be

because someone has observed the outcome of the experiment and conveyed this

partial information to us. Alternatively, it may be that the experimenter loathes

odd outcomes, and therefore keeps tossing the die until an even outcome is obtained.

Conditional probability does not address the reasons for the prior information, only

how to accommodate it into a probabilistic framework . Continuing with the fair

die example, a typical sequence of outcomes for a repeated experiment is shown in

Figure 4.1. The odd outcomes are shown as dashed lines and are to be ignored.

From the figure we see that the probability of a 4 is about 9/25 = 0.36, or about

1/3, using a relative frequency interpretation of probability. This has been found

by taking the total number of 4's and dividing by the total number of 2's , 4's , and

6's. Specifically, we have that
N A 9

N B 25

Another problem might be to det ermine the probability of A = {I , 4}, knowing

that the outcome is even. In this case, we should use N AnB / N B to make sure we
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F igure 4.1: Outcomes for repeated tossing of a fair die.

only count the outcomes that can occur in light of our knowledge of B. For this

example, only the 4 in {1,4} could have occurred. If an outcome is not in B, then

that outcome will not be included in An B and will not be counted in NAnB. Now

let t ing S = {I, 2, 3, 4,5, 6} be the sample space and Ns its size, the probability of

A given B is

NAnB _ Ntr2
B ~ P[A n B]

NB - & ~ P[B]
Ns

This is termed the conditi onal probability and is denoted by P[AIB] so that we have

as our definition

P[AIB] = P[A n B]
P[B] .

(4.1)

Note that to determine it , we require P[A n B] which is the probability of both A
and B occurring or the probability of the intersection. Intuit ively, the conditional

probability is the proportion of time A and B occurs divided by the proportion of

time that B occurs. The event B = {2, 4, 6} comprises a new sample space and is

sometimes called the reduced sample space. The denominator term in (4.1) serves to

normalize the conditional probabilities so that the probability of the reduced sample

space is one (set A = B in (4.1)). Returning to the die toss , the probability of a 4,

given that the out come is even , is found as

A n B

B

{4} n {2,4,6} = {4} = A

{2,4,6}
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WI W2 W3 W4 W5 P[Hi]

100-130 130- 160 160-190 190-220 220-250

H I 5 - 5 4" 0.08 0.04 0.02 0 0 0.14

H 2 5'4" - 5'8" 0.06 0.12 0.06 0.02 0 0.26

H 3 5' 8"- 6' 0 0.06 0.14 0.06 0 0.26

H 4 6'- 6' 4" 0 0.02 0.06 0.10 0.04 0.22

H 5 6'4"- 6'8" 0 0 0 0.08 0.04 0.12

Table 4.1: Joint probabilit ies for heights and weights of college students.

and therefore

P[AIB]
p[AnB]

P[B]

1/6 1
= - -

3/6 3

P[A]

P[B]

as expected. Note that P[A n B] and P[B] are computed based on the original

sample space, S. .

The event A n B is usually called the joint event sin ce both events must occur

for a nonempty intersection. Likewise, P[A n B] is termed the j oint probability, but

of course, it is nothing more than the probability of an intersection. Also, P[A]

is called the marg inal probabilit y to distinguish it from the joint and conditional

probabilities. The reason for this terminology will be discussed shortly.

In defining the condit ional pr obability of (4.1) it is assume d that P[B] f:. O. Oth­

erwise, t heoretically and pract ically, t he definition would not make sense. Another

example follows.

Example 4.1 - Heights and weights of college students

A population of college student s have heights H and weights W which are grouped

into ranges as shown in Table 4.1. The table gives the joint pr obability of a student

having a given height and weight , which can be denoted as P[Hi nWj]. For example,

if a st udent is selected, the probabili ty of his/her height being between 5'4" and 5' 8"

and also his/her weight being between 130 lbs. and 160 lbs. is 0.12. Now consider the

event that the student has a weight in the ra nge 130-160 lbs. Calling this event A

we next determine its probability. Since A = {( H , W) : H = HI , ... , H 5 ; W = W2} ,

it is explicitly

and since the simple events are by definition mutually exclusive, we have by Axiom
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3' (see Section 3.4)

5

P[A] L P[(Hi ,W2)] = 0.04 + 0.12 + 0.06 + 0.02 + 0

i=1

= 0.24.
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Next we determine the probability that a student 's weight is in the range of 130-160

lbs. , given that the student has height less than 6' . The event of interest A is the

same as before. The conditioning event is B = {(H,W) : H = H I ,H2,H3;W =

WI , ... , W5} so that An B = {(HI ,W2), (H2,W2), (H3' W2)} and

P[AIB]
p[AnB]

P[B]

= 0.33.

0.04 + 0.12 + 0.06

0.14 + 0.26 + 0.26

We see that it is more probable that the student has weight between 130 and 160

lbs. if it is known beforehand that his/her height is less than 6'. Not e that in finding

P[B] we have used
3 5

P[B] = L L P[(Hi , Wj)]
i=1 j=l

(4.2)

which is determined by first summing along each row to produce the entries shown

in Table 4.1 as P[Hi] ' These are given by

5

P[Hi] = LP[(Hi ' Wj)]
j=1

(4.3)

and then summing the P [Hi] 's for i = 1,2,3. Hence , we could have written (4.2)

equivalent ly as
3

P[B] = LP[Hi].

i=1

The probabilities P[Hi] are called the marginal probabilities since they are written

in the margin of the table. If we were to sum along the columns, then we would

obtain the marginal probabilities for the weights or P[Wj]. These are given by

5

P[Wj] = LP[(Hi , Wj)].

i= 1

It is important to observe that by utilizing the information that the student 's

height is less than 6', the probability of the event has changed; in this case, it

has increased from 0.24 to 0.33. It is also possible that the opposite may occur.

If we were to determine the probability that the student's weight is in the range
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130-160 lbs., given that he/she has a height greater than 6', then defining the

conditioning event as B = {(H, W) : H = H4, Hs; W = Wi, " " Ws} and noting

that An B = {(H4 , W2) , (Hs,W2} we have

P[AIB]
0.02 + 0

0.22 + 0.12
0.058.

Hence, the conditional probability has now decreased with respect to the uncondi­

tional probability or P[A].

In general we may have

P[AIB]

P[AIB]

P[AIB]

> P[A]

< P[A]

P[A].

See Figure 4.2 for another example. The last possibility is of particular interest since

1

y

B

A

x

(a)

2/3 = P[AIB] > P[A] = 1/2

y

' ~ '+-- B

A
x

(b)

1/3 = P[AjB] < P[A] = 1/2

y

A

(c)

1/2 = P[AIB] = P[A] = 1/2

Figure 4.2: Illustration of possible relationships of conditional probability to ordi­

nary probability.

it states that the probability of an event A is the same whether or not we know that

B has occurred. In this case, the event A is said to be statistically independent of

the event B. In the next section, we will explore this further.

Before proceeding, we wish to emphasize that a conditional probability is a true

probability in that it satisfies the axioms described in Chapter 3. As a result, all the

rules that allow one to manipulate probabilities also apply to conditional probabili­

ties. For example, since Property 3.1 must hold, it follows that P[ACIB] = 1-P[AIB]
(see also Problem 4.10). To prove that the axioms are satisfied for conditional prob­

abilities we first assume that the axioms hold for ordinary probabilities. Then,
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P[AIB] = P [A n B] > 0
P[B] -

since P[A n B] ~ 0 and P[B] ~ O.
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Axiom 2
P[SIB] = P[S n B] = P[B] = 1

P[B] P[B] .

Axiom 3 If A and C are mutually exclusive events, then

=

P[AUOIB]
P[(A U 0) nB]

P[B]

P[(A n B) U (C n B)]

P[B]

P[A n B] + P[O n B]

P[B]

= P[AIB] + P[OIB]

(definition)

(distributive property)

(Axiom 3 for ordinary probability,

An 0 = 0* (A n B) n (0 n B) = 0)
(definition of conditional probability).

Conditional probabilities are useful in that they allow us to simplify probability

calculat ions. One particularly important relationship based on conditional proba­

bility is described next . Consider a partitioning of the sample space S. Recall that

a partition is defined as a group of sets B I , B2 , . •• ,BN such that S = U~I B, and

e, n e, = 0 for i i= j. Then we can rewrite the probability P[A] as

Bu t by a slight extension of the distributive property of sets, we can express this as

P[A] = P[ (A n Bd U (A n B2 ) U ... U (A n BN )] .

Since the Bi's are mutually exclusive, then so are the An Bi 'S , and therefore

N

P[A] = L P[A n Bi]
i=1

or finall y
N

P[A] = L P[A IBi]P[Bi]'
i = 1

(4.4)

This relationship is called the law of total probability. Its utility is illustrated next.

Example 4.2 - A compound experiment

Two urns contain different proportions of red and black balls. Urn 1 has a pro­

portion PI of red balls and a proportion 1 - PI of black balls whereas urn 2 has
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proportions of P2 and 1 - P2 of red balls and black balls, respectively. A compound

experiment is performed in which an urn is chosen at random, followed by the se­

lection of a ball. We would like to find the probability that a red ball is selected.

To do so we use (4.4) with A = {red ball selected}, B I = {urn 1 chosen}, and

B 2 = {urn 2 chosen}. Then

P[red ball selected] = P[red ball selectedjurn 1 chosen]P[urn 1 chosen]

+P[red ball selectedIurn 2 chosen]P[urn 2 chosen]

PI ~ + P2~ = ~(PI +P2).

&. Do B I and B2 really partition the sample space?

To verify that the application of the law of total probability is indeed valid for this

problem, we need to show that B I U B 2 = Sand B I n B 2 = 0. In our description

of B I and B 2 we refer to the choice of an urn. In actuality, this is shorthand for all

the balls in the urn. If urn 1 cont ains balls numbered 1 to N I , then by choosing urn

1 we are really saying that the event is that one of the balls numbered 1 to N I is

chosen and similarly for urn 2 being chosen. Hence, since the sample space consists

of all the numbered balls in urns 1 and 2, it is observed that the union of B I and

B 2 is the set of all possible outcomes or the sample space. Also , B I and B 2 are

mutually exclusive since we choose urn 1 or urn 2 but not both.

Some more examples follow.

Example 4.3 - Probability of error in a digital communication system

In a digital communication system a "0" or "I" is transmitted to a receiver. Typi­

cally, either bit is equally likely to occur so that a prior probability of 1/2 is assumed.

At the receiver a decoding error can be made due to channel noise, so that a 0 may

be mistaken for a 1 and vice versa. Defining the probability of decoding a 1 when a

o is transmitted as E and a 0 when a 1 is transmitted also as E, we are interested in

the overall probability of an error. A probabilistic model summarizing the relevant

features is shown in Figure 4.3. Note that the problem at hand is essentially the

same as the previous one . If urn 1 is chosen, then we transmit a 0 and if urn 2

is chosen, we transmit a 1. The effect of the channel is to introduce an error so

that even if we know which bit was transmitted, we do not know the received bit.

This is analogous to not knowing which ball was chosen from the given urn. The
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Choose

oor 1

P[O] = P[l] = 1/2

t
transmit

t
receive

Figure 4.3: Probabilistic model of a digital communication system.

probability of error is from (4.4)

P[error] = P[errorlO transmitted]P[O transmitted]

+P [error I1 transmitted]P[l transmitted]
1 1

EZ + EZ = E.

o
Conditional probabilities can be quite tricky, in that they sometimes produce coun­

terintuitive results. A famous instance of this is the Monty Hall or Let 's Make a

Deal problem.

Example 4.4 - Monty Hall problem

About 40 years ago there was a television game show called "Let's Make a Deal".

The game show host , Monty Hall , would present the contestant with three closed

doors. Behind one door was a new car, while the others concealed less desireable

prizes, for instance, farm animals. The contestant would first have the opportunity

to choose a door, but it would not be opened. Monty would then choose one of the

remaining doors and open it. Since he would have knowledge of which door led to

the car, he would always choose a door to reveal one of the farm animals. Hence,

if the contestant had chosen one of the farm animals, Monty would then choose the

door that concealed the other farm animal. If the contestant had chosen the door

behind which was the car , then Monty would choose one of the other doors, both

concealing farm animals, at random. At this point in the game, the contestant was

faced with two closed doors, one of which led to the car and the other to a farm

animal. The contestant was given the option of either opening the door she had

originally chosen or deciding to open the other door. What should she do? The

answer, surprisingly, is that by choosing to switch doors she has a probability of 2/3

of winning the car! If she stays with her original choice, then the probability is only

1/3. Most people would say that irregardless of which strategy she decided upon,

her probability of winning the car is 1/2.
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M ·J
1 2 3

1 0 .!. .!.
6 6

Ci 2 0 0 1*
3'

3 0 1* 0:l

Table 4.2: Joint probabilities (P[Ci ,M j] = P[Mj!Ci]P[Ci]) for contestant's initial

and Monty's choice of doors. Winning door is 1.

To see how these probabilities are determined first assume she stays with her

original choice . Then, since the car is equally likely to be placed behind any

of the three doors, the probability of the contestant's winning the car is 1/3.

Monty's choice of a door is irrelevant since her final choice is always the same

as her initial choice. However, if as a result of Monty's action a different door

is selected by the contestant , then the probability of winning becomes a condi­

tional probability. We now compute this by assuming that the car is behind door

one. Define the events C; = {contestant initially chooses door i} for i = 1,2,3 and

Mj = {Monty opens door j} for j = 1,2,3. Next we determine the joint probabili­

ties P[Ci , M j ] by using

Since the winning door is never chosen by Monty, we have P[M1ICi ] = O. Also,

Monty never opens the door initially chosen by the contestant so that P[MiICi] = O.

Then, it is easily verified that

P[MzIC3]

P[M3IC1]

P[M3ICz]= 1

1
= P[MzIC1] = '2

(contestant chooses losing door)

(contestant chooses winning door)

and P[Ci ] = 1/3. The joint probabilities are summarized in Table 4.2. Since

the contestant always switches doors, the winning events are (2,3) (the contestant

initially chooses door 2 and Monty chooses door 3) and (3,2) (the contestant initially

chooses door 3 and Monty chooses door 2). As shown in Table 4.2 (the entries with

asterisks) , the total probability is 2/3. This may be verified directly using

P[final choice is door 1] P[M3ICz]P[Cz]+ P[MzIC3]P[C3]

P[Cz,M 3] + P[C3 , M z].

Alternatively, the only way she can lose is if she initially chooses door one since she

always switches doors. This has a probability of 1/3 and hence her probability of

winning is 2/3. In effect , Monty, by eliminating a door, has improved her odds!
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4.4 Statistically Independent Events
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T wo events A and B are said to be statistically independent (or sometimes just

independent) if P[AIB] = P[A]. If this is t rue, t hen

P[AIB] = P[A n B] = P[A]
P[B]

which results in the condition for statistical independence of

P[A n B] = P [A]P[B]. (4.5)

P [AIB]

An example is shown in Figure 4.2c. There, the probability of A is unchanged if we

know that the outcome is contained in the event B. Note, however , that once we

know that B has occur red, t he outcome could not have been in the un cross-hat ched

region of A but must be in the cross-hatched region. Knowing that B has occur red

does in fact affect the possible outcomes. However , it is the ratio of P[A n B] to

P[B] t hat remains the same.

Example 4.5 - Statistical independence does not mean one event does

not affect another event.

If a fair die is tossed , the probability of a 2 or a 3 is P[A = {2,3}] = 1/3. Now

assume we know that t he outcome is an even number or B = {2, 4, 6}. Recomputing

the probability

p [AnB] P[{2}]
=

P[B ] P[{2,4,6}]
1
3 = P [A].

Hence, A and B are independent . Yet , knowledge of B occurring has affected the

possible outcomes. In particular, the event A n B = {2} has half as many elements

as A , but the reduced sample space S' = B also has half as many elements.

c
The condit ion for the event A to be independent of the event B is P[A n B] =

P[A]P[B] . Hence, we need only know the marginal probabilit ies or P[A], P[B] to

det ermine the jo in t probabilit y P[A n B]. In practice, this property turns out to be

very useful. Finally, it is imp ortant to observe th at stat ist ical independence has a

symmetry property, as we might expect . If A is independ ent of B , t hen B must be

independent of A since

P[B IA] =
p[BnA]

P[A]

p[A nB]
=

P[A]

P[A]P[B]

P [A]

= P[B ]

(definition)

(commutative property)

(A is independent of B )
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and therefore B is independent of A. Henceforth, we can say that the events A and

B are statistically independent of each other, without further elaboration.

~ Statistically independent events are different than mutually ex­

clusive events.

If A and B are mutually exclusive and B occurs, then A cannot occur. Thus,

P[AIB] = O. If A and B are statistically independent and B occurs, then P[AIB] =
P[A]. Clearly, the probabilities P[AIB] are only the same if P[A] = O. In general

then, the conditions of mutually exclusivity and independence must be different

since they lead to different values of P[AIB]. A specific example of events that

B A

+•

Figure 4.4: Events that are mutually exclusive (since An B = 0) and independent

(since P[A n B] = P[0] = 0 and P[A]P[B] = o· P[B] = 0).

are both mutually exclusive and statistically independent is shown in Figure 4.4.

Finally, the two conditions produce different relationships, namely

P[A U B] = P[A] + P[B]

P[A n B] = P[A]P[B]

mutually exclusive events

statistically independent events.

See also Figure 4.2c for statistically independent but not mutually exclusive events.

Can you think of a case of mutually exclusive but not independent events?

~
Consider now the extension of the idea of statistical independence to three events.

Three events are defined to be independent if the knowledge that anyone or two

of the events has occurred does not affect the probability of the third event. For

example, one condition is that P[AIB n C] = P[A]. We will use the shorthand

notation P[AIB, C] to indicate that this is the probability of A given that Band
C has occurred. Note that if Band C has occurred, then by definition B n C has

occurred. The full set of conditions is

P[AJB]

P[BIA] =

P[CIA] =

P[AIC] = P[AIB, C] = P[A]

P[BIG] = P[BIA, G] = P[B]

P[CIB] = P[GIA,B] = P[G].
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These conditions are satisfied if and only if
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P[AB]

P[AC]

P[BC]

P[ABC]

P[A]P[B]

P[A]P[C]

P[B]P[C]

P[A]P[B]P[C].

(4.6)

(4.7)

(4.8)

(4.9)

If the first three conditions (4.6)-(4.8) are satisfied, then the events are said to be

pairwise independent. They are not enough, however, to ensure independence. The

last condition (4.9) is also required since without it we could not assert that

P[AIB, C] P[AIBC]

P[ABC]
=

P[BC]

P[ABC]

P[B]P[C]

P[A]P[B]P[C]

P[B]P[C]

P[A]

(definition of Band C occurring)

(definition of conditional probability)

(from (4.8))

(from (4.9))

and similarly for the other conditions (see also Problem 4.20 for an example). In

general, events E 1 , E 2 , ... , EN are defined to be statistically independent if

P[EiEj]

P[EiEjEk]

P[Ei]P[Ej]

P[Ei]P[Ej ]P[Ek]

i=l=j

i=l=j=l=k

Although statistically independent events allow us to compute joint probabilities

based on only the marginal probabilities, we can still determine joint probabilities

without this property. Of course, it becomes much more difficult. Consider three

events as an example. Then, the joint probability is

P[ABC] P[AIB, C]P[BC]

= P[AIB, C]P[BIC]P[C]. (4.10)

This relationship is called the probability chain rule. One is required to determine

conditional probabilities, not always an easy matter. A simple example follows.
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Example 4.6 - Tossing a fair die - once again

If we toss a fair die, then it is clear that the probability of the outcome being 4 is

1/6. We can, however, rederive this result by using (4.10). Letting

A {even number} = {2,4,6}

B = {numbers>2}={3,4,5,6}

C {numbers < 5} = {1,2,3,4}

we have that ABC = {4}. These events can be shown to be dependent (see Problem

4.21). Now making use of (4.10) and noting that BC = {3, 4} it follows that

P[ABC]

4.5 Bayes' Theorem

P[AIB ,C]P[BjC]P[C]

(
1/ 6 ) (2/6) (i) = ~.
2/6 4/6 6 6

The definition of conditional probability leads to a famous and sometimes contro­

versial formula for computing conditional probabilities. Recalling the definition, we

have that

P[AIB] = P[AB]
P[B]

and

P[BIA] = P[AB]
P[A] .

Upon substitution of P[AB] from (4.11) into (4.12)

P[BIA] = P[AIB]P[B]
P[A] .

(4.11)

(4.12)

(4.13)

This is called Bayes' theorem. By knowing the marginal probabilities P[A], P[B]

and the conditional probability P[AIB], we can determine the other conditional

probability P[BIA]. The theorem allows us to perform "inference" or to assess

(with some probability) the validity of an event when some other event has been

observed. For example, if an urn containing an unknown composition of balls is

sampled with replacement and produces an outcome of 10 red balls, what are we to

make of this? One might conclude that the urn contains only red balls. Yet, another

individual might claim that the urn is a "fair" one , containing half red balls and

half black balls, and attribute the outcome to luck. To test the latter conjecture we

now determine the probability of a fair urn given that 10 red balls have just been

drawn. The reader should note that we are essentially going "backwards" - usually
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we compute the probability of choosing 10 red balls given a fair urn. Now we are

given the outcomes and wish to determine the probability of a fair urn. In doing so

we believe that the urn is fair with probability 0.9. This is due to our past experience

with our purchases from urn.com. In effect, we assume that the prior probability of

B = {fair urn} is P[B] = 0.9. If A = {10 red balls drawn}, we wish to determine

P[B IA], which is the probability of the urn being fair after the experiment has been

performed or the posterior probability. This probability is our reassessment of the

fair urn in light of the new evidence (10 red balls drawn). Let 's compute P[BJA]

which according to (4.13) requires knowledge of the prior probability P[B] and the

conditional probability P[AJB]. The former was assumed to be 0.9 and the latter is

the probability of drawing 10 successive red balls from an urn with p = 1/2. From

our previous work this is given by the binomial law as

P[AIB] = P[k = 10] = (~) pk(l _ p)M-k

= (~~) (~) 10 (~) 0 = (~) 10

We still need to find P[A]. But this is easily found using the law of total probability

as

P[A] = P[AIB]P[B] + P[AJBC]P[BC]

= P[AIB]P[B] + P[AIBC](l - P[B])

and thus only P[AIBC] needs to be determined (and which is not equal to 1- P[AIB]

as is shown in Problem 4.9). This is the conditional probability of drawing 10 red

balls from a unfair urn. For simplicity we will assume that an unfair urn has all red

balls and thus P[AJB C] = 1. Now we have that

P[A] = (~) 10 (0.9) + (1)(0.1)

and using this in (4.13) yields

(1) 10 (0 9)
P[BIA] = 2 . = 0.0087.

(~)10 (0.9) + (1)(0.1)

The posterior probability (after 10 red balls have been drawn) that the urn is fair

is only 0.0087. Our conclusion would be to reject the assumption of a fair urn.

Another way to quantify the result is to compare the posterior probability of the

unfair urn to the probability of the fair urn by the ratio of the former to the latter.

This is called the odds ratio and it is interpreted as the odds against the hypothesis

of a fair urn. In this case it is

odds = P[BCIA] = 1 - 0.0087 = 113.
P[BIA] 0.0087



88 CHAPTER 4. CONDITIONAL PROBABILITY

It is seen from this example that based on observed "data", prior beliefs embodied

in P[B] = 0.9 can be modified to yield posterior beliefs or P[B\AJ = 0.0087. This

is an important concept in statistical inference [Press 2003].

In the previous example, we used the law of total probability to determine the

posterior probability. More generally, if a set of Bi's partition the sample space,

then Bayes' theorem can be expressed as

k = 1,2, . .. , N . (4.14)

The denominator in (4.14) serves to normalize the posterior probability so that the

conditional probabilities sum to one or

N

L P[BkIA] = 1.

k=l

In many problems one is interested in determining whether an observed event

or effect is the result of some cause. Again the backwards or inferential reasoning

is implicit. Bayes' theorem can be used to quantify this connection as illustrated

next.

Example 4.7 - Medical diagnosis

Suppose it is known that 0.001% of the general population has a certain type of

cancer. A patient visits a doctor complaining of symptoms that might indicate the

presence of this cancer. The doctor performs a blood test that will confirm the

cancer with a probability of 0.99 if the patient does indeed have cancer. However,

the test also produces false positives or says a person has cancer when he does not.

This occurs with a probability of 0.2. If the test comes back positive, what is the

probability that the person has cancer?

To solve this problem we let B = {person has cancer}, the causitive event, and

A = {test is positive}, the effect of that event. Then, the desired probability is

P[BIA] =
P[AIB]P[B]

P[AIB]P[B] + P[AIBc]P[Bc]

(0.99) (0.00001)

(0.99)(0.00001) + (0.2)(0.99999)

The prior probability of the person having cancer is P[B] = 10-5 while the posterior

probability of the person having cancer (after the test is performed and found to

be positive) is P[BIA] = 4.95 x 10-5
. With these results the doctor might be hard

pressed to order additional tests. This is quite surprising, and is due to the prior

probability assumed, which is quite small and therefore tends to nullify the test

results. If we had assumed that P[B] = 0.5, for indeed the doctor is seeing a patient
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who is complaining of symptoms consistent with cancer and not some person chosen

at random from the general population, then

(0.99)(0 .5)
P [B IA] = (0.99)(0.5) + (0.2)(0.5) = 0.83

which seems more reasonable (see also P roblem 4.23). The controversy surrounding

the use of Bayes ' theorem in probability calculations can almost always be traced

back to the prior probability assumption. Bayes' theorem is mathematically correct

- only its application is sometimes in doubt!

4 .6 Multiple Experiments

4 .6 .1 Independent Subexperiments

An experiment that was discussed in Chapter 1 was the repeated tossing of a coin.

We can alternatively view this experiment as a succession of subexperiments, with

each sub experiment being a single toss of the coin. It is of interest to invest igate the

relationship between the probabilities defined on the experiment and those defined

on the subexperiments. To be more concrete, assume a coin is tossed twice in

succession and we wish to determine the probability of the event A = {(H,Tn.
Recall that t he notation (H,T) denotes an ordered 2-tuple and represents a head

on toss 1 and a tail on toss 2. For a fair coin it was determined to be 1/4 since

we assumed that all 4 possible outcomes were equally likely. This seemed like a

reasonable assumption. However, if the coin had a probability of heads of 0.99, we

might not have been so quick to agree with the equally likely assumption. How

then are we to determine the probabilities? Let 's first consider the experiment to

be composed of two separate sub experiments with each subexperiment having a

sample space S1 = {H,T }. The sample space of the overall experiment is obtained

by forming the cartesian product, which for this example is defined as

S S1 X S1

{(i ,j) : i E S\ j E S1}

= {(H,H ), (H, T ), (T ,H) , (T, T)} .

It is formed by taking an outcome from S1 for the first element of the 2-tuple and an

outcome from S1 for the second element of the 2-tup le and doing this for all possib le

outcomes. It would be exceedingly useful if we could determine probabilities for

events defined on S from those probabilities for events defined on S1 . In this way

the determination of probabilities of very complicated events could be simplified.

Such is the case if we assume that the subexperiments are independent. Continuing

on , we next calculate P[A] = P[(H,T) ] for a coin with an arbitrary probability of
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heads p. This event is defined on the sample space of 2-tuples, which is S. We can,

however , express it as an intersection

{(H,T)} {(H,H) , (H,T)} n {(H,T) , (T ,T)}

{heads on toss 1} n {tails on toss 2}

= HI nT2·

We would expect the events HI and T2 to be independent of each other. Whether a

head or tail appears on the first toss should not affect the probability of the outcome

of the second toss and vice versa. Hence, we will let P[(H,T)] = P[Hl]P[T2] in

accordance with the definition of statistically independent events. We can determine

P[Hl] either as P[(H, H), (H, T)], which is defined on S or equivalently due to the

independence assumption as P[H], which is defined on SI. Note that P[H] is the

marginal probability and is equal to P[(H, H)] + P[(H, T)]. But the latter was

specified to be p and therefore we have that

P[Hl ] = p

P[T2] = 1- p

and finally ,

P[(H,T)] = p(1 - p).

For a fair coin we recover the previous value of 1/4, but not otherwise.

Experiments that are composed of subexperiments whose probabilities of the

outcomes do not depend on the outcomes of any of the other subexperiments are

defined to be independent subexperiments. Their utility is to allow calculation of joint

probabilities from marginal probabilities. More generally, if we have M independent

subexperiments, with Ai an event described for experiment i , then the joint event

A = Al n A 2 n .. . n AM has probability

(4.15)

Apart from the differences in sample spaces upon which the probabilities are defined,

independence of subexperiments is equivalent to statistical independence of events

defined on the same sample space.

4.6.2 Bernoulli Sequence

The single tossing of a coin with probability p of heads is an example of a Bernoulli

trial. Consecutive independent Bernoulli trials comprise a Bernoulli sequence. More

generally, any sequence of M independent subexperiments with each subexperiment

producing two possible outcomes is called a Bernoulli sequence. Typically, the

subexperiment outcomes are labeled as 0 and 1 with the probability of a 1 being p.

Hence , for a Bernoulli trial prO] = 1-p and P[1] = p. Several important probability

laws are based on this model.
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Binomial Probability Law

Assume that M independent Bernoulli trials are carried out. We wish to determine

the probability of k l 's (or successes) . Each outcome is an M -tuple and a successful

outcome would consist of k 1's and M - k O's in any order. T hus, each successful

outcome has a probability of pk( l - p)M-k due to independence. T he total number

of successful outcomes is the number of ways k l 's may be placed in the M-tuple.

This is known from combinatorics to be ( ~) (see Section 3.8). Hence, by summing

up the probabilities of the successful simple events, which are mutually exclusive ,

we have

k = O, l , . . . , M (4.16)

which we immediately recognize as the binomia l probability law. We have previously

encountered the same law when we chose M balls at random from an urn with

replacement and desired the probability of obtaining k red ba lls. The proportion of

red balls was p . In that case, each subexperiment was the choosing of a ball and all

the subexperiments were independent of each other. The binomial probabilit ies are

shown in Figure 4.5 for var ious values of p.
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Figure 4.5: The binomial probability law for different values of p.

Geometric Probability Law

Another impor tant aspect of a Bernoulli sequence is the appearance of the first

success. If we let k be the Bernoulli trial for which the first success is observed,

then the event of interest is the simple event (f, f , ... , f , s) , where s, f denote success

and failure, respectively. This is a k-tuple with the first k - 1 elements all f 's. The
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probability of the first success at trial k is therefore

P[k] = (1 _ p)k-lp k = 1,2, ... (4.17)

where 0 < p < 1. This is called the geometric probability law. The geometric

probabilities are shown in Figure 4.6 for various values of p. It is interesting to note

that the first success is always most likely to occur on the first trial or for k = 1.

This is true even for small values of p, which is somewhat counterintuitive. However,

upon further reflection, for the first success to occur on trial k = 1 we must have

a success on trial 1 and the outcomes of the remaining trials are arbitrary. For a

success on trial k = 2, for example, we must have a failure on trial 1 followed by a

success on trial 2, with the remaining outcomes arbitrary. This additional constraint

reduces the probability. It will be seen later, though, that the average number of

trials required for a success is lip, which is more in line with our intuition. An
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Figure 4.6: The geometric probability law for different values of p.

example of its use follows.

Example 4.8 - Telephone calling

A fax machine dials a phone number that is typically busy 80% of the time. The

machine dials it every 5 minutes until the line is clear and the fax is able to be

transmitted. What is the probability that the fax machine will have to dial the

number 9 times? The number of times the line is busy can be considered the number

of failures with each failure having a probability of 1 - p = 0.8. If the number is

dialed 9 times, then the first success occurs for k = 9 and

P[9] = (0.8)8(0.2) = 0.0336.

c



4.6. MULTIPLE EXPERIMENTS 93

(4.18)

A useful property of the geometric probability law is that it is memoryless. Assume

it is known that no successes occurred in the first m trials. Then, the probability of

the first success at trial m + l is the same as if we had started the Bernoulli sequence

experiment over again and determined the probability of the first success at trial l

(see Problem 4.34) .

4.6.3 Multinomial Probability Law

Consider an extension to the Bernoulli sequence in which the trials are still inde­

pendent but the outcomes for each trial may take on more than two values. For

example, let Sl = {I , 2, 3} and denote the probabilities of the outcomes 1, 2, and

3 by P1, P2, and P3, respectively. As usual, the assignment of these probabilities

must satisfy :z=f=l Pi = 1. Also, let the number of trials be M = 6 so that a pos­

sible outcome might be (2,1,3,1 ,2,2), whose probability is P2P1P3P1P2P2 = PIP~P!,

The multinomial probability law specifies the probability of obtaining k1 1's , k2

2's , and k3 3's , where k1 + k2 + k3 = M = 6. In the current example, k1 = 2,

k2 = 3, and k3 = 1. Some outcomes with the same number of 1's , 2's ' , and 3's

are (2,1 ,3,1 ,2,2) , (1,2,3,1 ,2,2) , (1,2 ,1 ,2,2,3), etc ., with each outcome having a

probability of PIP~P!. The total number of these outcomes will be the total number

of distinct 6-tuples that can be made with the numbers 1,1,2,2,2,3. If the numbers

to be used were all different, then the total number of 6-tuples would be 6! , or all

permutations. However , since they are not , some of thes e permutations will be the

same. For example, we can arrange the 2's 3! ways and still have the same 6-tuple.

Likewise , the l 's can be arranged 2! ways without changing the 6-tuple. As a result ,

the total number of distin ct 6-tuples is

6!

2!3!l!

which is called the multinomial coefficient. (See also Problem 4.36 for another way

to derive this.) It is sometimes denoted by

Finally, for our example the probability of the sequence exhibiting two 1's, three

2's , and one 3 is
6! 2 3 1

2!3!l!P1P2P3'

This can be generalized to the case of M trials with N possible outcomes for each

trial. The probability of k1 l 's , k2 2's ,..., kN N 's is

k1 + k2 + ... + kN = M

(4.19)
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and where L ~l Pi = 1. This is te rmed the multinomial probability law. Note that if

N = 2, t hen it reduces to the binomi al law (see Problem 4.37) . An example follows .

Example 4.9 - A version of scrabble

A person chooses 9 letters at random from the English alphabet with replacement.

What is the probability that she will be able to make the word "commit tee" ? Here

we have t hat the outcome on each trial is one of 26 letters. To be able to make the

word she needs kc = 1, ke = 2, ki = 1, km = 2, ko = 1, kt = 2, and kother = O. We

have denoted the outcomes as c, e, i, m , 0 , t, and "ot her" . "Other" represents the

rem aining 20 let ters so t hat N = 7. Thus, the probability is from (4.19)

P[kc = l , ke = 2,ki = l ,km = 2,ko = l ,kt = 2, kother = 0] =

(1 ,2 ,1 ,~ ,1 ,2 ,0) (2

16)9

( ~ ~ ) O
since Pc = Pe = Pi = Pm = Po = Pt = 1/26 and Pother = 20/26 due to the assumption

of "at rando m" sampling and with replacement . This becomes

P [kc = l , ke = 2, ki = l ,km = 2, ko = l ,kt = 2,kother = 0] =

9! ( 1 ) 9 -9

112'1'211'2'01 26 = 8.35 x 10 .

4.6.4 Nonindependent Subexperiments

When the subexpe riment s are indep endent, the calcula t ion of probabilities can be

greatly simplified . An event that can be wri t ten as A = Al n A2 n ... n AM can be

found via

P[A] = P[AI]P[A2] · · · P[AM]

where each P[Ai] can be found by considering only the individual subexperiment.

However , the assumption of indep endence can somet imes be unreasonable. In the

ab sence of independence, the probability would be found by using the chain rule

(see (4.10) for M = 3)

P [A] = P [AM IAM- I , .. . ,AI ]P [AM -IIAM-2 , . .. , A I ] .. . P [A 2IA dP[AI ]. (4.20)

Such would be the case if a Bernoulli sequence were composed of nonindependent

trials as illustrated next.

Example 4.10 - Dependent Bernoulli trials

Assume that we have two coins. One is fair and the ot her is weighted to have

a probability of heads of P =1= 1/2. We begin the experime nt by first choosing at

random one of the two coins and then tossing it. If it comes up heads, we choose
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the fair coin to use on the next t rial. If it comes up tails, we choose the weighted

coin to use on the next trial. We repeat this procedure for all the succeeding trials.

One possible sequence of outcomes is shown in Figure 4.7a for the weighted coin

having p = 1/4. Also shown is the case when p = 1/2 or a fair coin is always used ,

heads :
1 I'IIII!I - - ~ ... - - - ...... -* ~ - -

Q)

s
8 : tails : :
~ 0 1I11111111111Iillofllllllllo~ ...............

o

. heads : .
1 ft+~+fIIo III !II I I - ' + + + H + - ' ~ - H -

Q)

S -
8 . : tails :
~ oj+lt- --tt++iH+ 11111:1 I ..11111111 ..... ~ : t + I . . . - t ~
o .

o 20 40 60

Trial
80 100 o 20 40 60

Trial
80 100

(a) M = 100, P = 0.25 (b) M = 100, p = 0.5

Figure 4.7: Dependent Bernoulli sequence for different values of p .

so that we are equally likely to observe a head or a tail on each trial. Note that in

the case of p = 1/4 (see Figure 4.7a), if t he outcome is a tail on any trial, then we

use the weighted coin for the next t rial. Since the weight ed coin is biased towards

producing a tail, we would expect to again see a tail, and so on. This accounts for

the long run of tails observed. Clearl y, t he trials are not independent.

o
If we think some more about the previous experiment, we realize that the depen­

dency between trials is due only to the outcome of the (i - 1)st trial affect ing the

outcome of the ith trial. In fact , once the coin has been chosen, the probabilities

for the next trial are eit her prO] = P[l] = 1/2 if a head occurred on the pre­

vious trial or prO] = 3/4, P [1] = 1/4 if the previous trial produced a tail. The

previous outcome is called the state of the sequence. This behavior may be sum­

marized by the state probability diagram shown in Figure 4.8. The probabilities

shown are actually condit ional probabilities. For example, 3/4 is the probability

P[tail on ith tossltail on i - 1st toss] = P[OIO], and similarly for the others. This

type of Bernoulli sequence, in which the probabilities for t rial i depend only on the

outcome of the previous t rial, is called a M arkov sequence . Mathematically, the

probability of the event Ai on the ith trial given all t he previous outcomes can be

writ ten as



96 CHAPTER 4. CONDITIONAL PROBABILITY

1
4

3
4

1
2

1
2

Figure 4.8: Markov state probability diagram.

Using this in (4.20) produces

P[A] = P[AMIAM-1]P[AM-1IAM-2]··· P[A2\A1]P[A1]. (4.21)

The conditional probabilities P[AiIAi-1] are called the state transition probabilities,

and along with the initial probability P[A1l, the probability of any joint event can

be determined. For example, we might wish to determine the probability of N = 10

tails in succession or of the event A = {(O, 0, 0, 0, 0, 0, 0, 0, 0, On. If the weighted

coin was actually fair , then P[A] = (1/2)10 = 0.000976, but if p = 1/4, we have by

letting Ai = {O} for i = 1,2, ... ,10 in (4.21)

PIA] ~ (fiPIAM,-l]) PIA,].

But P[AiIAi-1] = P[OIO] = P[tailslweighted coin] = 3/4 for i = 2,3, . . . , 10. Since

we initially choose one of the coins at random, we have

P[A1] = prO] = P[taillweighted coin]P[weighted coin]

+P[taillfair coin]P[fair coin]

(~) (~) + (~) (~) =~.
Thus, we have that

PIA] ~ (fi ~) m~ 0.0469

or about 48 times more probable than if the weighted coin were actually fair. Note

that we could also represent the process by using a trellis diagram as shown in Figure

4.9. The probability of any sequence is found by tracing the sequence values through

the trellis and multiplying the probabilities for each branch together, along with the

initial probability. Referring to Figure 4.9 the sequence 1,0,°has a probability of

(3/8)(1/2)(3/4). The foregoing example is a simple case of a Markov chain. We will

study this modeling in much more detail in Chapter 22.
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Figure 4.9: Trellis diagram.

4.7 Real-World Example - Cluster Recognition

In many areas an important problem is the detection of a "cluster." Epidemiology

is concerned with the incidence of a greater than expected number of disease cases

in a given geographic area. If such a situation is found to exist, then it may indicate

a problem with the local water supply, as an example. Police departments may wish

to focus their resources on areas of a city that exhibit an unusually high incidence

of crime. Portions of a remotely sensed image may exhibit an increased number of

noise bursts. This could be due to a group of sensors that are driven by a faulty

power source. In all these examples, we wish to determine if a cluster of events

has occurred. By cluster, we mean that more occurrences of an event are observed

than would normally be expected. An example could be a geographic area which

is divided into a grid of 50 x 50 cells as shown in Figure 4.10. It is seen that

an event or "hit", which is denoted by a black square, occurs rather infrequently.

In this example, it occurs 29/2500 = 1.16% of the time. Now consider Figure

4.11. We see that the shaded area appears to exhibit more hits than the expected

145 x 0.0116 = 1.68 number. One might be inclined to call this shaded area a cluster.

But how probable is this cluster? And how can we make a decision to either accept

the hypothesis that this area is a cluster or to reject it? To arrive at a decision we

use a Bayesian approach. It computes the odds ratio against the occurrence of a

cluster (or in favor of no cluster), which is defined as

odds = P[no clusterlobserved data] .

P[clusterlobserved data]

If this number is large, typically much greater than one, we would be inclined to

reject the hypothesis of a cluster, and otherwise, to accept it. We can use Bayes' the­

orem to evaluate the odds ratio by letting B = {cluster} and A = {observed data}.

Then,
P[BCIA]

odds = P[BIA]
P[AIBC]P[BC]

P[AIB]P[B] .
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Figure 4.10: Geographic area with incidents shown as black squares - no cluster

present.

Note that P[A] is not needed since it cancel outs in the ratio. To evaluate this we

need to determine P[B], P[AIB C
] , P[AIB]. The first probability P[B] is the prior

probability of a cluster. Since we believe a cluster is quite unlikely, we assign a

probability of 10-6 to this. Next we need P[AIB C
] or the probability of the observed

data if there is no cluster. Since each cell can take on only one of two values,

either a hit or no hit, and if we assume that the outcomes of the various cells are

independent of each other, we can model the data as a Bernoulli sequence. For this

problem, we might be tempted to call it a Bernoulli array but the determination

of the probabilities will of course proceed as usual. If M cells are contained in the

supposed cluster area (shown as shaded in Figure 4.11 with M = 145), then the

probability of k hits is given by the binomial law

Next must assign values to p under the hypothesis of a cluster present and no

cluster present. From Figure 4.10 in which we did not suspect a cluster, the relative
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Figure 4.11: Geographic area with incidents shown as black squares - possible cluster

pr esent.

frequency of hits was about 0.0116 so that we assume Pnc = 0.01 when there is

no cluster. When we believe a cluster is present, we assume that Pc = 0.1 in

accordance wit h the relative frequency of hits in the shaded area of Figure 4.11,

which is 11/145=0.07. Thus,

P [AIBC
] = P [observed datalno cluster] = ( ~) P~c(1 - Pnc)M-k

P [k = Ll jno cluster] = (1:1
5

) (0.01)11 (0.99)134

P[AIB] P[observed datalcluster] = (~ ) p~(l - Pc)M-k

P[k = Lljcluster] = ( 11
4
1
5)

(0.1)11 (0.9)134

which results in an odds ratio of

(0.01)11(0.99)134(1 - 10- 6 )

odds = (0.1)11(0.9)134(10-6 ) = 3.52 .
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Since the posterior probability of no cluster is 3.52 times larger than the posterior

probability of a cluster, we would reject the hypothesis of a cluster present. However,

the odds against a cluster being present are not overwhelming. In fact, the computer

simulation used to generate Figures 4.11 employed p = 0.01 for the unshaded region

and p = 0.1 for the shaded cluster region. The reader should be aware that it is

mainly the influence of the small prior probability of a cluster, P[B] = 10-6
, that

has resulted in the greater than unity odds ratio and a decision to reject the cluster

present hypothesis.

References

S. Press, Subjective and Objective Bayesian Statistics, John Wiley & Sons, New

York, 2003.

D. Salsburg, The Lady Tasting Tea: How Statistics Revolutionized Science in the

Twentieth Century, W.H. Freeman, New York, 2001.

Problems

4.1 (f) If Be A, what is P[AIB]? Explain your answer.

4.2 (...:..:...) (f) A point x is chosen at random within the interval (0,1). If it is known

that x ~ 1/2, what is the probability that x ~ 7/S?

4.3 (w) A coin is tossed three times with each 3-tuple outcome being equally likely.

Find the probability of obtaining (H,T, H) if it is known that the outcome

has 2 heads. Do this by 1) using the idea of a reduced sample space and 2)

using the definition of conditional probability.

4.4 (w) Two dice are tossed. Each 2-tuple outcome is equally likely. Find the

probability that the number that comes up on die 1 is the same as the number

that comes up on die 2 if it is known that the sum of these numbers is even.

4.5 (..:..:...) (f) An urn contains 3 red balls and 2 black balls. If two balls are chosen

without replacement, find the probability that the second ball is black if it is

known that the first ball chosen is black .

4.6 (f) A coin is tossed 11 times in succession. Each 11-tuple outcome is equally

likely to occur. If the first 10 tosses produced all heads, what is the probability

that the 11t h toss will also be a head?

4.7 (...:..:...) (w) Using Table 4.1, determine the probability that a college student will

have a weight greater than 190 lbs. if he/she has a height exceeding 5'S". Next,

find the probability that a student 's weight will exceed 190 lbs.
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4.8 (w) Using Table 4.1 , find the probability that a student has weight less than

160 lbs . if he/she has height greater than 5' 4". Also, find the probability that

a student 's weight is less than 160 lbs . if he/she has height less than 5' 4". Are

these two results related?

4.9 (t) Show that the statement P[AIB] +P[AIBC
] = 1 is false. Use Figure 4.2a to

provide a counterexample.

4.10 (t) Prove that for the events A , B, G, which are not necessarily mutually ex­

clusive,

P[A U BIG] = P[AIG] + P[BIG] - p[ABle].

4.11 c . : ~ . - > (w) A group of 20 patients afflicted with a disease agree to be part of a

clinical drug trial. The group is divided up into two groups of 10 subjects each,

with one group given the drug and the other group given sugar water, i.e., this

is the control group. The drug is 80% effective in curing the disease. If one

is not given the drug, there is still a 20% chance of a cure due to remission.

What is the probability that a randomly selected subject will be cured?

4.12 (w) A new bus runs on Sunday, Tuesday, Thursday, and Saturday while an

older bus runs on the other days. The new bus has a probability of being on

time of 2/3 while the older bus has a probability of only 1/3. If a passenger

chooses an arbitrary day of the week to ride the bus, what is the probability

that the bus will be on time?

4.13 (w) A digital communication system transmits one of the three values -1, 0, 1.

A channel adds noise to cause the decoder to sometimes make an error. The

error rates are 12.5% if a -1 is transmitted, 75% if a 0 is transmitted, and

12.5% if a 1 is transmitted. If the probabilities for the various symbols being

transmitted are P[-1] = P[1] = 1/4 and prO] = 1/2, find the probability of

erro r. Repeat the problem if P[-l] = p rO] = P[1] and explain your results.

4.14 C:.:,) (w) A sample space is given by S = {(x,y) : 0 ~ x ~ 1,0 ~ y ~ 1}.

Determine P[AIB] for the events

A {(x, y) : y ~ 2x ,0 ~ x ~ 1/2 and y ~ 2 - 2x , 1/2 ~ x ~ 1}

B {( x ,y):1/2~x~1 ,0~y~1}.

Are A and B independent?

4.15 (w) A sample space is given by S = {(x ,y) : 0 ~ x ~ 1,0 ~ y ~ 1}. Are the

events

A {(x,y):y~x}

B {(x,y):y~1-x}

independent? Repeat if B = {(x ,y) : x ~ 1/4}.
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4.16 (t) Give an example of two events that are mutually exclusive but not inde­

pendent. Hint: See Figure 4.4.

4.17(t) Consider the sample space 5 = {(x ,y ,z) : 0:::; x:::; 1,0:::; y:::; 1,0:::; z:::;
I} , which is the unit cube. Can you find three events that are independent?

Hint: See Figure 4.2c.

4.18 (t) Show that if (4.9) is satisfied for all possible events, then pairwise inde­

pendence follows. In this case all events are independent.

4.19 C:...:....) (f) It is known that if it rains, there is a 50% chance that a sewer will

overflow. Also, if the sewer overflows, then there is a 30% chance that the road

will flood. If there is a 20% chance that it will rain, what is the probability

that the road will flood?

4.20 (w) Consider the sample space 5 = {I, 2, 3, 4}. Each simple event is equally

likely. If A = {I , 2}, B = {I , 3}, C = {I, 4}, are these events pairwise indepen­

dent? Are they independent?

4.21 C.:..:J (w) In Example 4.6 determine if the events are pairwise independent.

Are they independent?

4.22 C:..:....) (w) An urn contains 4 red balls and 2 black balls. Two balls are chosen

in succession without replacement. If it is known that the first ball drawn is

black, what are the odds in favor of a red ball being chosen on the second

draw?

4.23 (w) In Example 4.7 plot the probability that the person has cancer given that

the test results are positive, i.e., the posterior probability, as a function of the

prior probability prE]. How is the posterior probability that the person has

cancer related to the prior probability?

4.24 (w) An experiment consists of two subexperiments. First a number is chosen

at random from the interval (0, 1). Then, a second number is chosen at random

from the same interval. Determine the sample space 52 for the overall exper­

iment. Next consider the event A = {(x, y) : 1/4 :::; x :::; 1/2,1/2 :::; Y :::; 3/4}

and find P[A]. Relate P[A] to the probabilities defined on 8 1 = {u : 0 < u <
I} , where 51 is the sample space for each subexperiment.

4.25 (w ,c) A fair coin is tossed 10 times. What is the probability of a run of exactly

5 heads in a row? Do not count runs of 6 or more heads in a row. Now verify

your solution using a computer simulation.

4.26 C:...:....) (w) A lady claims that she can tell whether a cup of tea containing

milk had the tea poured first or the milk poured first . To test her claim an

experiment is set up whereby at random the milk or tea is added first to an
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empty cup. This experiment is repeated 10 times. If she correctly identifies

which liquid was poured first 8 times out of 10, how likely is it that she is

guessing? See [Salsburg 2001] for a further discussion of this famous problem.

4.27 (f) The probability P[k] is given by the binomial law. If M = 10, for what

value of pis P[3] maximum? Explain your answer.

4.28 c.:..:..-) (f) A sequence of independent subexperiments is conducted. Each subex­

periment has the outcomes "success", "failure", or "don' t know". IfP[success] =

1/2 and P[failure] = 1/4, what is the probability of 3 successes in 5 trials?

4.29 (c) Verify your results in Problem 4.28 by using a computer simulation.

4.30 (w) A drunk person wanders aimlessly along a path by going forward one step

with probability 1/2 and going backward one step with probability 1/2. After

10 steps what is the probability that he has moved 2 steps forward?

4.31 (f) Prove that the geometric probability law (4.17) is a valid probability as­

signment.

4.32 (w) For a sequence of independent Bernoulli trials find the probability of the

first failure at the kth trial for k = 1,2, . . ..

4.33 c.:..:J (w) For a sequence of independent Bernoulli trials find the probability

of the second success occurring at the kth trial.

4.34 (t) Consider a sequence of independent Bernoulli trials. If it is known that

the first m trials resulted in failures , prove that the probability of the first

success occurring at m + l is given by the geometric law with k replaced by

l. In other words, the probability is the same as if we had started the process

over again after the mth failure. There is no memory of the first m failures.

4.35 (f) An urn contains red, black, and white balls. The proportion of red is 0.4,

the proportion of black is 0.4, and the proportion of white is 0.2. If 5 balls

are drawn with replacement, what is the probability of 2 red, 2 black, and 1

white in any order?

4.36 (t) We derive the multinomial coefficient for N = 3. This will yield the number

of ways that an M-tuple can be formed using k1 l's, k2 2's and k3 3's. To do

so choose k1 places in the M-tuple for the l 's. There will be M - k1 positions

remaining. Of these positions choose k2 places for the 2's. Fill in the remaining

k3 = M - k1 - k2 positions using the 3's. Using this result , determine the

number of different M digit sequences with k1 l 's, k2 2's, and k3 3's.

4 .37 (t) Show that the multinomial probability law reduces to the binomial law for

N=2.
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4.38 C.:..) (w,c) An urn contains 3 red balls, 3 black balls, and 3 white balls. If

6 balls are chosen with replacement, how many of each color is most likely?

Hint: You will need a computer to evaluate the probabilities.

4.39 (w,c) For the problem discussed in Example 4.10 change the probability of

heads for the weighted coin from p = 0.25 to p = 0.1. Redraw the Markov state

probability diagram. Next, using a computer simulation generate a sequence

of length 100. Explain your results.

4.40 C..:..) (f) For the Markov state diagram shown in Figure 4.8 with an initial

state probability of prO] = 3/4, find the probability of the sequence 0,1,1, O.

4.41 (f) A two-state Markov chain (see Figure 4.8) has the state transition probabil­

ities P[OIO] = 1/4,P[011] = 3/4 and the initial state probability of prO] = 1/2.

What is the probability of the sequence 0,1,0,1 , O?

4.42 (w) A digital communication system model is shown in Figure 4.12. It consists

of two sections with each one modeling a different portion of the communi­

cation channel. What is the probability of a bit error? Compare this to the

probability of error for the single section model shown in Figure 4.3, assuming

that E< 1/2, which is true in practice. Note that Figure 4.12 is a trellis.

1-E 1-E
0

2<J8:
0

Choose

oor 1
1 1

prO] = P[l] = 1/2 1-E 1-E

Figure 4.12: Probabilistic model of a digital communication system with two sec­

tions.

4.43 t:..:..) (f) For the trellis shown in Figure 4.9 find the probability of the event

A = {(O, 1,0,0), (0,0,0, On.



Chapter 5

Discrete Random Variables

5.1 Introduction

Having been introduced to the basic probabilistic concepts in Chapters 3 and 4,

we now begin their application to solving problems of interest. To do so we define

the random variable. It will be seen to be a function , also called a mapping, of the

outcomes of a random experiment to the set of real numbers. With this association

we are able to use the real number description to quantify items of interest. In

this chapter we describe the discrete random variable, which is one that takes on

a finit e or countably infinite number of values. Later we will extend the definition

to a random variable that takes on a continuum of values , the continuous random

vari able. The mathematics associated with a discrete random variable are inherently

simpler and so conceptualization is facilitated by first concentrating on the discrete

problem. The reader has already been introduced to the concept of a random

vari able in Chapter 2 in an informal way and hence may wish to review the computer

simulation methodology described therein.

5.2 Summary

The random variable, which is a mapping from the sample space into the set of

real numbers, is formally discussed and illustrated in Section 5.3. In Section 5.4

the probability of a random variable taking on its possible values is given by (5.2).

Next the probability mass function is defined by (5.3). Some important probability

mass functions are summarized in Section 5.5. They include the Bernoulli (5.5), the

binomial (5.6) , the geometric (5.7) , and the Poisson (5.8). The binomial probability

mass function can be approximated by the Poisson as shown in Figure 5.8 if M --+ 00

and p --+ 0, with M p remaining constant. This motivates the use of the Poisson

probability mass function for traffic modeling. If a random variable is transformed

to a new one via a mapping, then the new random variable has a probability mass

fun ction given by (5.9). Next the cumulative distribution function is introduced and
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is given by (5.10). It can be used as an equivalent description for the probability

of a discrete random variable. Its properties are summarized in Section 5.8. The

computer simulation of discrete random variables is revisited in Section 5.9 with the

estimate of the probability mass function and the cumulative distribution function

given by (5.14) and (5.15),(5.16), respectively. Finally, the application of the Poisson

probability model to determining the resources required to service customers is

described in Section 5.10.

5.3 Definition of Discrete Random Variable

We have previously used a coin toss and a die toss as examples of a random ex­

periment. In the case of a die toss the outcomes comprised the sample space

S = {I , 2, 3, 4, 5, 6}. This was because each face of a die has a dot pattern con­

sisting of 1, 2, 3, 4, 5, or 6 dots. A natural description of the outcome of a die toss

is therefore the number of dots observed on the face that appears upward. In effect,

we have mapped the dot pattern into the numb er of dots in describing the outcome.

This type of experiment is called a numerically valued random phenomenon since the

basic output is a real number. In the case of a coin toss the outcomes comprise the

nonnumerical sample space S = {head, tail}. We have, however , at times replaced

the sample space by one consisting only ofreal numbers such as Sx = {O, I}, where

a head is mapped into a 1 and a tail is mapped into a O. This mapping is shown

in Figure 5.1. For many applications this is a convenient mapping. For example, in

x
X 2 = 1

Sx = {O, I}

X l = 0

X(5d

S

Figure 5.1: Mapping of the outcome of a coin toss into the set of real numbers.

a succession of M coin tosses, we might be interested in the total number of heads

observed. With the defined mapping of

{
0 51 = tail

X(5i) = 1 52 = head
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we could represent the number of heads as L~1 X(5i), where s, is the outcome of

the ith toss. The function that maps S into Sx and which is denoted by X(·) is

called a random variable. It is a function that takes each outcome of S (which may

not necessarily be a set of numbers) and maps it into the subset of the set of real

numbers. Note that as previously mentioned in Chapter 2, a capital letter X will

denote the random variable and a lowercase letter x its value. This convention for

the coin toss example produces the assignment

i = 1,2

where 51 = tail and thus Xl = 0, and 52 = head and thus X2 = 1. The name

random variable is a poor one in that the function X (.) is not random but a known

one and usually one of our own choosing. What is random is the input argument s,
and hence the output of the function is random. However, due to its long-standing

usage in probability we will retain this terminology.

Sometimes it is more convenient to use a particular random variable for a given

experiment. For example, in Chapter 2 we described a digital communication system

called a PSK system. A bit is communicated using the transmitted signals

s(t) = { -Acos27fFot
A cos 27fFot

for a 0

for a 1.

Usually a 1 or a 0 occurs with equal probability so that the choice of a bit can be

modeled as the outcome of a fair coin tossing experiment. If a head is observed, then

a 1 is transmitted and a 0 otherwise. As a result, we could represent the transmitted

signal with the model

where 51 = tail and 52 = head and hence we have the defined random variable

X(5i) = {-1 51 = tail
+1 52 = head.

This random variable is a convenient one for this application.

In general, a random variable is a function that maps the sample space S into a

subset of the real line. The real line will be denoted by R (R = {x : -00 < x < oo}).

For a discrete random variable this subset is a finite or countably infinite set of

points. The subset forms a new sample space which we will denote by Sx , and

which is illustrated in Figure 5.2. A discrete random variable may also map multiple

elements of the sample space into the same number as illustrated in Figure 5.3. An

example would be a die toss experiment in which we were only interested in whether

the outcome is even or odd. To quantify this outcome we could define

X() {
0 if s, = 1,3,5 dots

s, = 1
if s, = 2,4, 6 dots.
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•

S2----;r-- _

Sl_---,,I-----

x

Figure 5.2: Discrete random variable as a one-to-one mapping of a countably infinite

sample space into set of real numbers.

Sl_-.f-----

x

Figure 5.3: Discrete random variable as a many-to-one mapping of a countably

infinite sample space into set of real numbers.

This type of mapping is usually called a many-to-one mapping while the previous

one is called a one-to-one mapping. Note that for a many-to-one mapping we cannot

recover the outcome of S if we know the value of X(s). But as already explained,

this is of little concern since we initially defined the random variable to output the

item of interest. Lastly, for numerically valued random experiments in which s is

contained in R, we can still use the random variable approach if we define X (s) = s

for all s. This allows the concept of a random variable to be used for all random

experiments, with either numerical or nonnumerical outputs.

5.4 Probability of Discrete Random Variables

We would next like to determine the probabilities of the random variable taking on

its possible values. In other words , what is the probability P[X(sd = Xi] for each
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Xi E S X? Since the sample space S is discrete, the random variable can take on at

most a count ably infinite number of values or X(Si) = Xi for i = 1,2, .. .. It should

be clear that if X (· ) maps each Si into a different Xi (or X( ·) is one-to-one) , then

because s, and Xi are just two different names for the same event

(5.1)

or we assign a probability to the value of the random variable equal to that of the

simple event in S that yields that value. If, however , there are multiple outcomes

in S t ha t map into the same value Xi (or X(·) is many-to-one) then

P[X (S) = Xi ] P[{Sj : X(Sj) = xd]

L P[{Sj}]
{j :X(Sj)=Xi}

(5.2)

since the s1's are simple events in S and are therefore mutually exclusive. It is said

that the events {X = xd, defined on Sx , and {s, : X(Sj) = xd, defined on S, are

equivalent events. As such they are assigned the same probability. Not e that the

probability assignment (5.2) subsumes that of (5.1) and that in either case we can

summarize the probabilities that the random variable values take on by defining the

probabilit y mass function (PMF) as

(5.3)

and use (5.2) to evaluate it from a knowledge of the mapping. It is important to

observe that in the notation pX [X i] the subscript X refers to the random variable and

also the [.] not ation is meant to remind the reader that the argument is a discrete

one. Later , we will use (-) for continuous arguments. In summary, the probability

mass fun ction is the probability that the random variable X takes on the value Xi

for each possible Xi . An example follows.

Example 5.1 - Coin toss - one-to-one mapping

The experiment consists of a single coin toss with a probability of heads equal to

p. The sample space is S = {head, tail} and we define the random variable as

X(sd = {O s, = tail
1 s, = head.

The PMF is therefore from from (5.3) and (5.1)

PX [O] P[X(s) = 0] = 1 - P

px [1 ] P[X(s) = 1] = p.
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Example 5.2 - Die toss - many-to-one mapping

The experiment consists of a single fair die toss. Wi th a sample space of S =

{I , 2, 3, 4,5, 6} and an int erest only in whether the outcome is even or odd we define

the random variable

X(sd = {O ~f ~ = 1,3,5
1 Ifz = 2,4,6.

Thus, using (5.3) and (5.2) we have the PMF

PX[O]

px[l]

3
P[X(s) = 0] = '"' P[{Sj}] = -

.~ 6
3=1 ,3,5

3
P[X(s) = 1] = L P[{S j}] = -.

j=2,4,6 6

c
The use of (5.2) may seem familiar and indeed it should. We have summed the

probabilities of simple events in S to obtain the probability of an event in S using

(3.10). Here, the event is just the subset of S for which X(s) = Xi holds. The

int roduction of a random variable has quantified the events of interest!

Finally, because PMFs PX[Xi] are just new names for the probabilities P[X(s) =

Xi ] they must satisfy the usual properties:

Property 5.1 - Range of values

o

Property 5.2 - Sum of values

M

LPX[Xi] = 1 if Sx consists of M outcomes

i=l

00

LPX[Xi] = 1 if Sx is countably infinite.

i= l

o
We will frequently omit the S argument of X to write PX[Xi] = P[X = Xi ].

Once the PMF has been specified all subsequent probability calculations can be

based on it , without referring back to the original sample space S. Specifically, for

an event A defined on SX the probability is given by

P[X E A] = L PX[Xi].
{i :Xi EA}

(5.4)
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An example follows.

Example 5.3 - Calculating probabilities based on the PMF

Consider a die whose sides have been labeled with two sides having 1 dot, two

sides having 2 dots , and two sides having 3 dots. Hence, S = {51 , 52 , ... , 56} =

{side 1, side 2, side 3, side 4, side 5, side 6}. Then if we are interested in the prob­

abilities of the outcomes displaying either 1, 2, or 3 dots, we would define a random

variable as

{

I i = 1,2

X(5i) = 2 ~ = 3,4

3 2 = 5,6.

It easily follows then that the PMF is from (5.2)

1
px[l] = px[2] = px[3] = 3'

Now assume we are interested in the probability that a 2 or 3 occurs or A = {2,3}.

Then from (5.4) we have

2
P[X E {2,3}] = px[2] +px[3] = 3'

There is no need to reconsider the original sample space S and all probability cal­

culations of interest are obtainable from the PMF.

5.5 Important Probability Mass Functions

We have already encountered many of these in Chapter 4. We now summarize these

in our new notation. Since the sample spaces SX consist of integer values we will

replace the notation Xi by k, which indicates an integer.

5.5.1 Bernoulli

[k] = { 1 - P k = 0
PX P k = 1.

(5.5)

The PMF is shown in Figure 5.4 and is recognized as a sequence of numbers that is

nonzero only for the indices k = 0, 1. It is convenient to represent the Bernoulli PMF

using the shorthand notation Ber(p). With this notation we replace the description

that "X is distributed according to a Bernoulli random variable with PMF Ber(p)"

by the shorthand notation X '" Ber(p), where r- means "is distributed according

to" .
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Figure 5.4: Bernoulli probability mass function for p = 0.25.

5.5.2 Binomial

px[k] = ( ~) pk( l _ p)M -k k = 0,1, .. . , M . (5.6)

The PMF is shown in Figure 5.5. The shorthand notat ion for the binomial PMF is

-. ..- . ..-

'. -. -. ' . '

l
-' : '.

;

0.3

0.35

0.05

0.1

o
o 2 3 4 5 6 7 8 9 10

k

0.25

~>< 0.2

~

0.15

Figure 5.5: Binomial probabili ty mass function for M = 10,p = 0.25.

bin(M,p) . The location of the maximum of the PMF can be shown to be given by

[(M + l)p], where [x] denotes the largest int eger less than or equal to x (see Problem

5.7).
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5.5.3 G eometric

k = 1, 2, .. . . (5.7)

The PMF is shown in Figure 5.6. T he shorthand notation for the geometric P MF

is geom(p) .

., ., .. . ,

., - ... ., .,

.. .. '"

.. ' "

r
.' ' "

f T T ;
o
o 2 3 4 5 6 7 8 9 10

k

0.6

0.1

0.2

0.4

~
:><
&:l., 0.3

0.5

Figure 5.6: Geometric probability mass funct ion for M = 10, p = 0.25.

5.5.4 Poisson

k = 0,1 ,2, ... (5.8)

where A > O. The PMF is shown in Figure 5.7 for several values of A. Note that

the maximum occurs at [A] (see Problem 5.11). The shorthand notation is Pois(A).

5.6 Approximation of Binomial PMF by Poisson PMF

The binomial and Poisson P MFs are related to each other under certain cond i­

tions. This relationship helps to explain why the Poisson PMF is used in var ious

applications, primarily traffic modeling as described further in Section 5.10. The re­

lationship is as follows. If in a binomial PMF, we let M -r 00 as p -r 0 such that the

product A = Mp remains constant , then bin(M,p) -r PoisfX) . Not e that A = Mp

represents the expected or average number of successes in M Bernoulli trials (see

Chapter 6 for definition of exp ectation). Hence, by keeping the average number of

successes fixed but assuming more and more trials with smaller and smaller prob­

ab ilities of success on each trial, we are led to a Poisson PMF. As an example, a

comparison is shown in Figure 5.8 for M = 1O,p = 0.5 and M = 100,p = 0.05. This
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Figure 5.7: The Poisson probability mass function for different values of A.
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Figure 5.8: The Poisson approximation to the binomial probability mass function.

result is primarily useful since Poisson PMFs are easier to manipulate and also arise

in the modeling of point processes as described in Chapter 21.

To make this connection we have for the binomial PMF with p = >.jM -+ 0 as
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M -t 00 (and >. fixed)

px [k] ( ~ ) pk(l _ p)M-k

( M ~ ~ ) ! k ! ( ~ ) k (1- ~) M - k
(Mh >.k (1 - >.jM) M

~ Mk (1 - >./M)k

>.k (M)k (1 - >./M)M

k! M k (1 - >./M)k .

But for a fixed k, as M -t 00, we have that (M)k/Mk -t 1. Also, for a fixed k,

(1 - >./M)k -t 1 so that we need only find the limit of g(M) = (1 - >.jM)M as

M -t 00. This is shown in Problem 5.15 to be exp(->') and therefore

>.k
px[k] -t k! exp(->.).

Also, since the binomial PMF is defined for k = 0,1 , ... , M, as M -t 00 the limiting

P MF is defined for k = 0,1 , .. .. This result can also be found using charac terist ic

funct ions as shown in Chapter 6.

5.7 Transformation of Discrete Random Variables

It is frequently of interest to be able to det ermine the PMF of a transform ed random

variable. Mathematically, we desire the P MF of the new random variable Y = g(X ),

where X is a discrete random vari able. For example, consider a die whose faces are

labeled with the numbers 0,0,1 ,1 ,2,2. We wish to find the PMF of the number

observed when the die is tossed, assuming all sides are equa lly likely to occur. If

t he original sample space is composed of the possible cube sides that can occur, so

that Sx = {I , 2, 3, 4, 5, 6}, then the transformation appears as shown in Figure 5.9.

Specifically, we have that

{

YI = ° if x = X l = 1 or x = X2 = 2

Y = Y2 = 1 ~f x = X3 = 3 or x = X4 = 4

Y3 = 2 If x = Xs = 5 or x = X6 = 6.

Note that the transformation is many-to- one. Since events such as {y : Y = YI = O]
and {x : x = Xl = 1, x = X2 = 2}, for example, are equivalent, they should be

assigned the same probability. Thus, using the property that the events {X = Xi}

are simple events defined on Sx , we have that

{

px [l] + px [2] = ! i = 1

PY[Yi] = px[3] + px [4]= ! i = 2

px[5]+ px[6] =! i = 3.
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11 22 3 4 5 6

SX = cube sides

x y

SY = numbers on sides

0

Figure 5.9: Transformation of discrete random variable.

In general, we have that

pY [yi] =
∑

{j:g(xj)=yi}
pX [xj]. (5.9)

We just sum up the probabilities for all the values of X = xj that are mapped
into Y = yi. This is reminiscent of (5.2) in which the transformation was from
the objects Sj defined on S to the numbers xi defined on SX . In fact, it is nearly
identical except that we have replaced the objects that are to be transformed by
numbers, i.e., the xj’s. Some examples of this procedure follow.

Example 5.4 – One-to-one transformation of Bernoulli random variable

If X ∼ Ber(p) and Y = 2X − 1, determine the PMF of Y . The sample space for X
is SX = {0, 1} and consequently that for Y is SY = {−1, 1}. It follows that x1 = 0
maps into y1 = −1 and x2 = 1 maps into y2 = 1. As a result, we have from (5.9)

pY [−1] = pX [0] = 1 − p

pY [1] = pX [1] = p.

Note that this mapping is particularly simple since it is one-to-one. A slightly more
complicated example is next.

♦

Example 5.5 – Many-to-one transformation

Let the transformation be Y = g(X) = X2 which is defined on the sample space
SX = {−1, 0, 1} so that SY = {0, 1}. Clearly, g(xj) = x2

j = 0 only for xj = 0.
Hence,

pY [0] = pX [0].

However, g(xj) = x2
j = 1 for xj = −1 and xj = 1. Thus, using (5.9) we have

pY [1] =
∑

{xj :x2

j=1}
pX [xj ]

= pX [−1] + pX [1].
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Note that we have determined PY[Yi] by summing the probabilities of all the xi's
that map into Yi via the transformation Y = g(x). This is in essence the meaning of

(5.9) .

Example 5.6 - Many-to-one transformation of Poisson random variable

Now consider X "" Pois(A) and define the transformation Y = g(X) as

Y={
To find the PMF for Y we use

1 if X = k is even

-1 if X = k is odd.

y[k] = pry = k] = { P[X ~ s even] k = 1
P P[X IS odd] k = -1.

We need only determine py[l] since py[-I] = 1 - py[I] . Thus, from (5.9)

py[l] =
00

L px[j]
j=O and even

00 Aj

L exp(-A)---:-;-.
j=O and even J.

To evaluate the infinite sum in closed form we use the following "trick"

00
Aj

L .,
j=O and even J .

~~Aj ~~(-A)j
2 LJ ., + 2 LJ .,

j=O J. j=O J.

1 1
2exp(X] + 2exp( -A)

since the Taylor expansion of exp(x) is known to be "f:.f=o x j fj! (see Problem 5.22).

Finally, we have that

py[l]

py[-I]

[
1 1 ] 1exp(-A) 2 exp(A) + 2 exp( -A) = 2(1 + exp( -2A))

1
1 - py[l] = 2(1- exp(-2A)).

5.8 Cumulative Distribution Function

An alternative means of summarizing the probabilities of a discrete random variable

is the cumulative distribution function (CDF). It is sometimes referred to more
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succinctly as the distribution function. The CDF for a random variable X and

evaluated at x is given by P[{real numbers x' : x' ~ x}], which is the probability

that X lies in the semi-infinite interval (-00, x]. It is therefore defined as

Fx(x) = P[X ~ x] - 00 < x < 00. (5.10)

It is important to observe that the value X = x is included in the interval. As an

example, if X '" Ber(p) , then the PMF and the corresponding CDF are shown in

Figure 5.10. Because the random variable takes on only the values 0 and 1, the CDF

12 . - - - ~ ~ - ~ - ~ - - ~ - - - , 12 r - - ~ ~ - ~ - ~ - - ~ - - - - - '

02 .

0.4 - - .

~OB

~
~0.6

.. .1.~.p.

1 . . . . .

0.4

02

1 : 1
i :p

m· I

..... ..••••••••••••• ••••

u ~ v .
·1·· ··· ·· · · ·· .

I
.. j . .

1

o 2
k

(a) PMF

4 6 8
x

(b) CDF

Figure 5.10: The Bernoulli probability mass function and cumulative distribution

function for p = 0.25.

changes its value only at these points, where it jumps. The CDF can be thought of

as a "running sum" which adds up the probabilities of the PMF starting at -00 and

ending at +00. When the value x of Fx(x) encounters a nonzero value of the PMF,

the additional mass causes the CDF to jump, with the size of the jump equal to the

value of the PMF at that point. For example, referring to Figure 5.10b, at x = 0 we

have Fx(O) = px[O] = I-p = 3/4 and at x = 1 we have Fx(l) = px[O] +px[l] = 1,

with the jump having size px[l] = p = 1/4. Another example follows.

Example 5.7 - CDF for geometric random variable

Since px[k] = (1- p)k-lp for k = 1,2, ... , we have the CDF

{

0
[z]

Fx(x) = ~(1 _ p)i-lp

x<l

x"21
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where [x] denotes the largest int eger less than or equal to x. This evaluates to

{

0

F x - p
x() - p+ (l-p )p

etc .

x < l

1 :Sx < 2

2:S x<3

The PMF and CDF are plot ted in Figure 5.11 for p = 0.5. Since the CDF jumps at

0.4 , .

7 8602345
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~0 .6

(a) PM F (b) CDF

Figure 5.11: The geometric probability mass fun ction and cumulative distribution

funct ion for p = 0.5.

each nonzero value of the PMF and the jump size is that value of the PMF, we can

recover the PMF from the CDF. In particular, we have that

where x + denotes a value just slight ly larger than x and x" denotes a value just

slightly smaller than x . Thus, if Fx(x) does not have a discontinuity at x the

value of the PMF is zero. At a discontinuity the value of the PMF is just the

jump size as previously asserted. Also, becaus e of the definition of the CDF, i.e.,

that Fx(x ) = P[X :s x] = P[X < x or X = x ], the value of Fx(x) is the value

after the jump. The CDF is said to be right-continuous which is sometimes stated

mathematically as limx-tx+ Fx(x) = Fx(xo) at the point x = xo.
o

o
From the previous example we see that the PMF and CDF are equivalent descrip­

t ions of the probability assignment for X. Either one can be used to find the

pro bability of X being in an interval (even an interval of length zero). For example,
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to determine P [3/2 < X ::; 7/2] for the geometric random variable

P [~ < X ::;~] = px[2] +px[3]

Fx ( ~ ) - Fx ( ~ )

as is evident by referring to Figure 5.11b. We need to be careful, however, to

note whether the endpoints of the interval are included or not. This is due to the

discontinuities of the CDF. Because of the definition of the CDF as the probability

of X being within the interval (-00, x], which includes the right-most point , we have

for the interval (a, b]

(5.11)

Also, the other intervals (a, b), [a, b) , and [a ,b] will in general have different prob­

abilities than that given by (5.11). From Figure 5.11b and (5.11) we have as an

example that

but

From the definition of the CDF and as further illustrated in Figures 5.10 and

5.11 the CDF has several important properties. They are now listed and proven.

Property 5.3 - CDF is between 0 and 1.

0::; Fx(x) ::; 1 -oo< x<oo

Proof: Since by definition Fx(x) = P[X ::; x] is a probability for all x, it must lie

between 0 and 1.

o

Property 5.4 - Limits of CDF as x -7 -00 and as x -7 00

lim Fx(x) 0
x-t-oo

lim Fx(x) = l.
x-t+oo

Proof:

lim Fx(x) = P[{s: X(s) < -oo}] = P[0] = 0
x-t -oo
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since the values that X(s) can take on do not include -00. Also,

lim Fx(x) = P[{s : X(s) < + oo}] = P[S ] = 1
x -++oo

since the values that X(s) can take on are all included on the real line.
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o

Property 5.5 - CDF is m onot onically increasing.

A monotonically increasing function g(.) is one in which for every X l and X2 with

X l ~ X2, it follows that g(xd ~ g(X2) or the function increases or stays the same as

the argument increases (see also Problem 5.29).

Proof:

P[ X ~ X2 ]

P[(X ~ X l ) U (X l < X ~ X2) ]

P [X ~ Xl] + P[XI < X ~ X2]

Fx(xd + P[ XI < X ~ X2] ~ Fx(xd.

(definition)

(Axiom 3)

(definition and Axiom 1)

Alternatively, if A = {-oo < X ~ X l } and B = {-oo < X ~ X2} with X l ~ X2,

then A c B. From Property 3.5 (montonicity) FX( X2) = P[B] ~ P [A] = Fx(xd .

o

P rop er t y 5.6 - CDF is r ight -continuou s.

By right-continuous it is meant that as we approach the point Xo from the right,

the limiting value of the CDF should be the value of the CDF at that point. Math­

ematically, it is expressed as

lim Fx(x) = Fx(xo).
x -+xci

Proof:

The proof relies on the continuity property of the probability function . It can be

found in [Ross 2002].

o

P roperty 5.7 - Probabilit y of interval found using t he CDF

P[a < X ~ b] = Fx(b) - Fx(a)

or more explicitly to remind us of possible discontinuities

(5.12)

(5.13)
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Proof:

Since for a < b

{-(X) < X ~ b} = {-(X) < X ~ a} U {a < X ~ b}

and the intervals on the right-hand-side are disjoint (mutually exclusive events) , by

Axiom 3

P[-00 < X ~ b] = P[-00 < X ~ a] + P[a < X ~ b]

or rearranging terms we have that

P[a < X ~ b] = P[-oo < X ~ b] - P[-oo < X ~ a] = Fx{b) - Fx{a).

o

5.9 Computer Simulation

In Chapter 2 we discussed how to simulate a discrete random variable on a digital

computer. In particular, Section 2.4 presented some MATLAB code. We now

continue that discussion to show how to simulate a discrete random variable and

estimate its PMF and CDF. Assume that X can take on values in Sx = {I, 2,3}
with a PMF

{

P I = 0.2 if x = Xl = 1

px[x] = P2 = 0.6 if x = X2 = 2

P3 = 0.2 if x = X3 = 3.

The PMF and CDF are shown in Figure 5.12. The code from Section 2.4 for gener­

ating M realizations of X is

for i=1:M

u=randO, 1) ;

if u<=O.2

xCi,0=1;

elseif u>O.2 &u<=O.8

xCi,1)=2;

elseif u>O.8

xCi ,0=3;

end

end

(5.14)k = 1,2,3.

Recall that U is a random variable whose values are equally likely to fall within the

interval (0,1). It is called the uniform random variable and is described further in

Chapter 10. Now to estimate the PMF px[k] = P[X = k] for k = 1,2,3 we use the

relative frequency interpretation of probability to yield

px[k] = Number of outcomes equal to k
M
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Figure 5.12: The probability mass function and cumulative distribution fun ction for

compute r simulation example.

For M = 100 this is shown in Figure 5.13a. Also, the CDF is estimated for all x via

Fx(x) = Number of outcomes ~ x

M
(5.15)

or equivalently by

(5.16)Fx (x ) = L px[k]

{k :k:Sx}

and is shown in Figure 5.13b. For finite sample spaces this approach to simulate

a discret e random variable is adequate . But for infinite sample spaces such as for

the geomet ric and Poisson random variables a different approach is needed. See

Problem 5.30 for a fur ther discussion.

Before concluding our discussion we wish to point out a useful property of CDFs

that simplifies the computer generation of random variable outcomes. Not e from

Figure 5.12b with u = Fx(x) that we can define an inverse CDF as x = FX1(u)

where

{

1 if 0 < u < 0.2

x = FX1(u) = 2 ifO.2<u~0.8

3 if 0.8 < u < 1

or we choose the value of x as shown in Figure 5.14. But if u is the outcome

of a uniform random variable U on (0, 1), then this procedure is identi cal to that

implemented in the previous MAT LAB program used to generate realizations of

X. A more general program is given in App endix 6B as PMFdata.m. This is not

merely a coincidence but can be shown to follow from the definition of the CDF.
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Value of u is mapped into value of x.

Alt hough little more than a cur iousity now, it will become important when we

simulate cont inuous random variables in Chap ter 10.

5.10 Real-World Example - Servicing Customers

A standard problem in many disciplines is the allocation of resources to service

customers . It occurs in determining the number of cash iers needed at a store,

the computer capacity needed to service download requests, and the amount of

equipment necessary to service phone customers , as examples. In order to service
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these customers in a timely manner, it is necessary to know the distribution of

arrival times of their requests. Since this will vary depending on many factors

such as time of day, popularity of a file request, etc. , the best we can hope for is

a determination of the probabilities of these arrivals. As we will see shortly, the

Poisson probability PMF is particularly suitable as a model. We now focus on the

problem of determining the number of cashiers needed in a supermarket.

A supermarket has one express lane open from 5 to 6 PM on weekdays (Monday

through Friday). This time of the day is usually the busiest since people tend to

stop on their way home from work to buy groceries. The number of items allowed in

the express lane is limited to 10 so that the average time to process an order is fairly

constant at about 1 minute. The manager of the supermarket notices that there is

frequently a long line of people waiting and hears customers grumbling about the

wait. To improve the situation he decides to open additional express lanes during

this time period. If he does, however, he will have to "pull" workers from other jobs

around the store to serve as cashiers. Hence, he is reluctant to open more lanes than

necessary. He hires Professor Poisson to study the problem and tell him how many

lanes should be opened. The manager tells Professor Poisson that there should be

no more than one person waiting in line 95% of the time. Since the processing time

is 1 minute, there can be at most two arrivals in each time slot of 1 minute length.

He reasons that one will be immediately serviced and the other will only have to

wait a maximum of 1 minute. After a week of careful study, Professor Poisson tells

the manager to open two lanes from 5 to 6 PM. Here is his reasoning.

First Professor Poisson observes the arrivals of customers in the express lane

on a Monday from 5 to 6 PM. The observed arrivals are shown in Figure 5.15,

where the arrival times are measured in seconds. On Monday there are a total of

+ + ++++++ : ++ +.f+ .. II( 111111111. +fifo ++tw-* :.,

o 500 1000 1500 2000 2500 3000 3500

Time (sec)

Figure 5.15: Arrival times at one express lane on Monday (a '+' indicates an arrival).
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80 arrivals. He repeats his experiment on the following 4 days (Tuesday through

Friday) and notes total arrivals of 68, 70, 59, and 66 customers, respectively. On

the average there are 68.6 arrivals, which he rounds up to 70. Thus, the arrival rate

is 1.167 customers per minute. He then likens the arrival process to one in which

the 5 to 6 PM time interval is broken up into 3600 time slots of 1 second each . He

reasons that there is at most 1 arrival in a given time slot and there may be no

arrivals in that time slot. (This of course would not be valid if for instance, two

friends did their shopping together and arrived at the same time.) Hence, Professor

Poisson reasons that a good arrival model is a sequence of independent Bernoulli

trials, where 0 indicates no arrival and 1 indicates an arrival in each l-second time

slot. The probability P of a 1 is estimated from his observed data as the number

of arrivals from 5 to 6 PM divided by the total number of time slots in seconds.

This yields p = 70/3600 = 0.0194 for each I-second time slot. Instead of using the

binomial PMF to describe the number of arrivals in each l-minute time slot (for

which P = 0.0194 and M = 60), he decides to approximate it using his favorite

PMF, the Poisson model. Therefore, the probability of k arrivals (or successes) in

a time interval of 60 seconds would be

k = 0,1 , . . . (5.17)

where the subscripts on X and A are meant to remind us that we will initially

consider the arrivals at one express lane. The value of Al to be used is Al = Mp,

which is estimated as '\1 = Mp = 60(70/3600) = 7/6. This represents the expected

number of customers arriving in the I-minute interval. According to the manager's

requirements, within this time interval there should be at most 2 customers arriving

95% of the time. Hence , we require that

2

P[X1 :S 2] = LPXl [k] 2: 0.95.
k=O

But from (5.17) this becomes

P[X1 :S 2] = exp(-Ad (1 + Al + ~Ai) = 0.88

using Al = 7/6. Hence, the probability of 2 or fewer customers arriving at the

express lane is not greater than 0.95. If a second express lane is opened, then the

average number of arrivals at each lane during the I-minute time interval will be

halved to 35. Therefore, the Poisson PMF for the number of arrivals at each lane

will be characterized by A2 = 7/12. Now, however, there are two lanes and two sets

of arrivals. Since the arrivals are modeled as independent Bernoulli trials, we can
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assert that

127

P[2 or fewer arrivals at both lanes]

so that

P[2 or fewer arrivals at both lanes]

P[2 or fewer arrivals at lane 1]

.P[2 or fewer arrivals at lane 2]

P[2 or fewer arrivals at lane IF
P[X1 :::; 2F

(t,px, [kl) 2

[exp( ->'2) (1 + >'2 + ~>.~) r= 0.957

which meets the requirement. An example is shown for one of the two express lanes

with an average number of customer arrivals per minute of 7/12 in Figures 5.16 and

5.17, with the latter an expanded version of the former. The dashed vertical lines

+++ + +++ ++~ .+ + +

o 500 1000 1500 2000 2500 3000 3500

Time (sec)

Figure 5.16: Arrival times at one of the two express lanes (a '+' indicates an arrival).

in Figure 5.17 indicate l-minute intervals. There are no l-minute intervals with

more than 2 arrivals, as we expect.
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Figure 5.17: Expanded version of Figure 5.16 (a '+' indicates an arrival) . Time

slot s of 60 seconds are shown by dashed lines.
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Problems

5.1 (w) Draw a picture depicting a mapping of the outcome of a die toss , i.e., the

pat tern of dots that appear, to the numbers 1,2,3, 4, 5,6.

5.2 (w) Repeat Problem 5.1 for a mapping of the sides that display 1, 2, or 3 dots

to the number °and the remaining sides to the numb er 1.

5.3 (w) Consider a random experiment for which S = {s, : s, = i , i = 1,2, .. . , 10}

and the outcomes are equally likely. If a random vari able is defined as X{Si) =

sl, find SX and the PMF.

5.4 C..:...) (w) Consider a random experimentfor whichS = {Si: s, = -3,-2,-1,0,

1,2,3} and the outcomes are equally likely. If a random variable is defined as

X{ Si ) = sl, find Sx and the PMF.

5.5 (w) A man is late for his job by s, = i minutes, where i = 1,2, .... If P [SiJ =
{1 /2) i and he is fined $0.50 per minute, find the P MF of his fine. Next find

the probability that he will be fined more than $10.



PROBLEMS 129

5.6 (..:.:.-) (w) If px[k] = apk for k = 2,3, . .. is to be a valid PMF, what are the

possible values for a and p?

5.7 (t) The maximum value of the binomial PMF occurs for the unique value k =
[(M + 1)p], where [x] denotes the largest integer less than or equal to x, if

(M + 1)p is not an integer. If, however, (M + 1)p is an integer, then the PMF

will have the same maximum value at k = (M + 1)p and k = (M + 1)p - l.

For the latter case when (M + 1)p is an integer you are asked to prove this

result. To do so first show that

(M+1)p-k
px[k]/px[k - 1] = 1 + k(1 _ p) .

5.8 C:..:.-) (w) At a party a large barrel is filled with 99 gag gifts and 1 diamond ring,

all enclosed in identical boxes. Each person at the party is given a chance to

pick a box from the barrel, open the box to see if the diamond is inside, and if

not, to close the box and return it to the barrel. What is the probability that

at least 19 persons will choose gag gifts before the diamond ring is selected?

5.9 (f,c) If X is a geometric random variable with p = 0.25, what is the probability

that X 2: 4? Verify your result by performing a computer simulation.

5.10 (c) Using a computer simulation to generate a geom(0.25) random variable,

determine the average value for a large number of realizations. Relate this to

the value of p and explain the results.

5.11 (t) Prove that the maximum value of a Poisson PMF occurs at k = [>.]. Hint:

See Problem 5.7 for the approach.

5.12 (w,c) If X,...., PoisfX), plot P[X 2: 2] versus>' and explain your results.

5.13 (..:...:.-) (c) Use a computer simulation to generate realizations of a PoisfX) ran­

dom variable with>. = 5 by approximating it with a bin(100,0.05) random

variable. What is the average value of X?

5.14 (..:.:.-) (w) If X ,...., bin(100,0.01), determine px[5]. Next compare this to the

value obtained using a Poisson approximation.

5.15 (t) Prove the following limit:

lim g(M) = lim (1 + ~)M = exp(x).
M -too M -too M

To do so note that the same limit is obtained if M is replaced by a continuous

variable, say u, and that one can consider In g(u) since the logarithm is a

continuous function. Hint: Use L'Hospital's rule.
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5.16 (f,e) Compare the PMFs for Pois(1) and bin(100,0.01) random variables.

5.17 (c) Generate realizations of a Pois(1) random variable by using a binomial

approximation.

5.18 C:...:...) (c) Compare the theoretical value of P[X = 3] for the Poisson random

variable to the estimated value obtained from the simulation of Problem 5.17.

5.19 (f) If X rv Ber(p) , find the PMF for Y = -X.

5.20 C:..:...) (f) If X rv Pois(>.), find the PMF for Y = 2X.

5.21 (f) A discrete random variable X has the PMF

! Xl = -1

i X2 = -!
PX[Xi] = k xa =°

1 _ 1
16 X4 - 2"

l6 Xs = 1.

If Y = sin 7fX, find the PMF for Y.

5.22 (t) In this problem we derive the Taylor expansion for the function g(x) =

exp(x). To do so note that the expansion about the point X = °is given by

00 g(n)(0)
g(x) = ""' z"

6 n!
n=O

where g(O) (0) = g(O) and g(n)(o) is the nth derivative of g(x) evaluated at

X = 0. Prove that it is given by

00 n

exp(x) = L;'
n.

n=O

5.23 (f) Plot the CDF for

{

i k = 1

px[k] = ! k = 2

i k = 3.

5.24 (w) A horizontal bar of negligible weight is loaded with three weights as shown

in Figure 5.18. Assuming that the weights are concentrated at their center

locations, plot the total mass of the bar starting at the left end (where X = °
meters) to any point on the bar. How does this relate to a PMF and a CDF?



PROBLEMS

~ kg

131
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Figure 5.18: Weightless bar supporting three weights.

5.25 (f) Find and plot the CDF of Y = - X if X'" Ber(i).

5. 26 k :') (w ) Fi nd the PMF if X is a discret e random variable with the CDF

{

O x < 0

Fx(x) = ~ 0 ~ x s 5

1 x> 5.

5.27 (w ) Is the following a valid CDF? If not, why not, and how could you modify

it to become a valid one?

0 x < 2
1
2~ x~3

Fx(x) =
2"
3
3< x~44:

1 x ~4 .

5 .28 C:.:J (f) If X has the CDF shown in Figure 5.11b, determine P[2 ~ X ~ 4]

from the CDF.

5 .2 9 (t) Prove that the fun ction g(x) = exp( x) is a monotonically increasing func­

t ion by showing that g(X2) ~ g(Xl) if X2 ~ X l .

5.30 (c) Estimate the PMF for a geom(0.25) random variable for k = 1,2, . .. ,20

using a computer simulation and compare it to the true P MF. Also, est imate

the CDF from your computer simulation.

5.31 C:.:J (f,c) The arrival rate of calls at a mob ile switching station is 1 per second.

The probability of k calls in a T second interval is given by a Poisson PMF

with A = arrival rate x T . What is the probability that there will be more

than 100 calls placed in a l-rninute interval?



Chapter 6

Expected Values for Discrete

Random Variables

6 .1 Introduction

The probability mass function (PMF) discussed in Chapter 5 is a complete de­

scription of a discrete random variable. As we have seen, it allows us to determine

probabilities of any event. Once the probability of an event of interest is determined,

however , the question of its interpretation arises. Consider, for example, whether

there is adequate rainfall in Rhode Island to sustain a farming endeavor. The past

history of yearly summer rainfall was shown in Figure 1.1 and is repeated in Figure

6.1a for convenience. Along with it, the estimated PMF of this yearly data is shown

in Figure 6.1b (see Section 5.9 for a discussion on how to estimate the PMF). For

a particular crop we might need a rainfall of between 8 and 12 inches. This event

has probability 0.5278, obtained by Lk:sPx[kj for the estimated PMF shown in

Figure 6.1b. Is this adequate or should the probability be higher? Answers to such

questions are at best problematic. Rather we might be better served by ascertaining

the average rainfall since this is closer to the requirement of an adequate amount

of rainfall. In the case of Figure 6.1a the average is 9.76 inches, and is obtained by

summing all the yearly rainfalls and dividing by the number of years. Based on the

given data it is a simple matter to estimate the average value of a random variable

(the rainfall in this case). Some computer simulation results pertaining to averages

have already been presented in Example 2.3. In this chapter we address the topic of

the average or expected value of a discrete random variable and study its properties.

6.2 Summary

The expected value of a random variable is the average value of the outcomes of

a large number of experimental trials. It is formally defined by (6.1). For discrete
random variables with integer values it is given by (6.2) and some examples of its
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(a) Annual summer rainfall (b) Estimated PMF

Figure 6.1: Annual summer rainfall in Rhode Island and its estimated probability

mass function.

determination given in Section 6.4. The expected value does not exist for all PMFs

as illustrated in Section 6.4. For functions of a random variable the expected value

is easily computed via (6.5). It is shown to be a linear operation in Section 6.5.

Another interpretation of the expected value is as the best predictor of the outcome

of an experiment as shown in Example 6.3. The variability of the values exhibited by

a random variable is quantified by the variance. It is defined in (6.6) with examples

given in Section 6.6. Some properties of the variance are summarized in Section

6.6 as Properties 1 and 2. An alternative way to determine means and variances of

a discrete random variable is by using the characteristic function. It is defined by

(6.10) and for integer valued random variables it is evaluated using (6.12), which is

a Fourier transform of the PMF. Having determined the characteristic function, one

can easily determine the mean and variance by using (6.13). Some examples of this

procedure are given in Section 6.7, as are some further important properties of the

characteristic function. An important property is that the PMF may be obtained

from the characteristic function as an inverse Fourier transform as expressed by

(6.19). In Section 6.8 an example is given to illustrate how to estimate the mean

and variance of a discrete random variable. Finally, Section 6.9 describes the use of

the expected value to reduce the average code length needed to store symbols in a

digital format. This is called data compression.

6.3 Determining Averages from the PMF

We now discuss how the average of a discrete random variable can be obtained from

the PMF. To motivate the subsequent definition we consider the following game of
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chance. A barrel is filled with US dollar bills with denominations of $1, $5, $10,

and $20. The proportion of each denomination bill is the same. A person playing

the game gets to choose a bill from the barrel, but must do so while blindfolded. He

pays $10 to play the game, which consists of a single draw from the barrel. After he

observes the denomination of the bill , the bill is returned to the barrel and he wins

that amount of money. Will he make a profit by playing the game many times?

A typical sequence of outcomes for the game is shown in Figure 6.2. His average

504020 30
Play number

10

.. . . . . . . . . ...

. . . . ... .

. . . .... "' . . . ... .

..

I' I'
,

I' I"" I;, I'
, ITo

o

5

25

'"
~a 10
o

20

Figure 6.2: Dollar winnings for each play.

winnings per play is found by adding up all his winnings and dividing by the number

of plays N. This is computed by

1 N

x = - ""' XiNL.J
z=l

where Xi is his winnings for play i. Alternatively, we can compute x using a slightly

different approach. From Figure 6.2 the number of times he wins k dollars (where

k = 1,5,10,20) is given by N k , where

N l 13

Ns 13

NlO 10

N20 = 14.
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As a result, we can determine the average winnings per play by

1 . N 1 + 5 . Ns + 10 . NlO + 20 . N 20

N 1 + N s + N lO + N 20

N 1 Ns N lO N20
1 · N + 5· N + 10· N + 20· N

13 13 10 14
1 . - + 5 . - + 10 . - + 20 . -

50 50 50 50
= 9.16

since N = N 1 + Ns + N lO + N 20 = 50. If he were to play the game a large number

of times, then as N -+ 00 we would have Nk/N -+ px[k], where the latter is just

the PMF for choosing a bill with denomination k, and results from the relative

frequency interpretation of probability. Then, his average winnings per play would

be found as

x -+ 1· px[l] + 5 . px[5] + 10 · px[10] + 20· px[20]

1 1 1 1
1 . :4 + 5 . :4 + 10 . :4 + 20 . :4
9

where px[k] = 1/4 for k = 1,5,10,20 since the proportion of bill denominations in

the barrel is the same for each denomination. It is now clear that "on the average"

he will lose $1 per play. The value that the average converges to is called the expected

value of X , where X is the random variable that describes his winnings for a single

play and takes on the values 1,5,10,20. The expected value is denoted by E[X].

For this example, the PMF as well as the expected value is shown in Figure 6.3.

The exp ected value is also called the expectation of X, the average of X, and the

mean of X. With this example as motivation we now define the expected value of a

discrete random variable X as

(6.1)

where the sum is over all values of Xi for which PX[Xi] is nonzero. It is determined

from the PMF and as we have seen coincides with our notion of the outcome of an

experiment in the "long run" or "on the average." The expected value may also be

intepreted as the best prediction of the outcome of a random experiment for a single

trial (to be described in Example 6.3). Finally, the expected value is analogous to

the center of mass of a system of linearly arranged masses as illustrated in Problem

6.1.
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Figure 6.3: PMF and expected value of dollar bill denomination chosen.

6.4 Expected Values of Some Important Random

Variables

T he definition of the expected value was given by (6.1). When the random variable

takes on only integer values, we can rewrite it as

00

E[X] = L kpx[k] .
k=-oo

(6.2)

We next determine the expected values for some important discrete random variables

(see Chapter 5 for a definition of the PMFs).

6 .4. 1 B ernoulli

If X '"" Ber(p) , then the expected value is

1

E[X] L kpx[k]
k=O

= O· (1 - p) + 1 . p

p.

Note that E[X] need not be a value that the random variab le takes on . In this case,

it is between X = 0 and X = 1.
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6.4.2 Binomial

If X '" bin(M,p) , then the expected value is

M

E[X] = Lkpx[k]

k=O
M

~ k (~) pk(l _ p)M-k.

To evaluate this in closed form we will need to find an expression for the sum.

Continuing, we have that

M

'"' M! k M-k
E[X] = L..Jk (M _ k)!k!P (1 - p)

k=O

M (M -1)'M '"' . k-l(l _ )M-l-(k-l)
p L..J (M - k)!(k - l)!P P

k=l

and letting M' = M - 1, k' = k - 1, this becomes

M'
'"' M'! k' M'-k'

Mp L..J (M' _ k'!)k'!P (1 - p)
k'=O
M'

= Mp L (~') pk'(1- p)M'-k'

k'=O
Mp

since the summand is just the PMF of a bin(M',p) random variable. Therefore, we

have that E[X] = Mp for a binomial random variable. This derivation is typical in

that we attempt to manipulate the sum into one whose summands are the values of

a PMF and so the sum must evaluate to one. Intuitively, we expect that if p is the

probability of success for a Bernoulli trial, then the expected number of successes

for M independent Bernoulli trials (which is binomially distributed) is Mp.

6.4.3 Geometric

If X '" geom(p), the the expected value is

00

E[X] = L k(l - p)k-lp.

k=l

To evaluate this in closed form , we need to modify the summand to be a PMF,

which in this case will produce a geometric series. To do so we use differentiation
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by first letting q = 1 - P to produce

139

E[X]

But since a < q < 1 we have upon using the formula for the sum of a geometric

series or l:~l qk = q/(l - q) that

E[X] = p:q (1 ~ q)
(1- q) - q(-l)

P (1 - q)2

1

=

The expected number of Bernoulli trials until the first success (which is geometrically

distributed) is E[X] = l/p. For example, if p = 1/10, then on the average it takes

10 trials for a success, an intuitively pleasing result.

6.4.4 Poisson

If X r-.J PoisfX} , then it can be shown that E[X] = >.. The reader is asked to

verify this in Problem 6.5. Note that this result is consistent with the Poisson

approximation to the binomial PMF since the approximation constrains M p (the

expected value of the binomial random variable) to be >. (the expected value of the

Poisson random variable).

N at all PMFs have expected values.

Discrete random vari ables with a finite number of values always have expected

values. In the case of a countably infinite number of values , a discrete random

variable may not have an expected value. As an example of this , consider the PMF

k = 1,2, .... (6.3)

This is a valid PMF since it can be shown to sum to one. Attempting to find the
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expected value produces

E[X] =

∞
∑

k=1

kpX [k]

=
4

π2

∞
∑

k=1

1

k
→ ∞

since 1/k is a harmonic series which is known not to be summable (meaning that
the partial sums do not converge). Hence, the random variable described by the
PMF of (6.3) does not have a finite expected value. It is even possible for a sum
∑∞

k=−∞ kpX [k] that is composed of positive and negative terms to produce different
results depending upon the order in which the terms are added together. In this
case the value of the sum is said to be ambiguous. These difficulties can be avoided,
however, if we require the sum to be absolutely summable or if the sum of the
absolute values of the terms is finite [Gaughan 1975]. Hence we will say that the
expected value exists if

E[|X|] =

∞
∑

k=∞
|k|px[k] < ∞.

In Problem 6.6 a further discussion of this point is given.

Lastly, note the following properties of the expected value.

1. It is located at the “center” of the PMF if the PMF is symmetric about some
point (see Problem 6.7).

2. It does not generally indicate the most probable value of the random variable
(see Problem 6.8).

3. More than one PMF may have the same expected value (see Problem 6.9).

6.5 Expected Value for a Function of a Random

Variable

The expected value may easily be found for a function of a random variable X if the
PMF pX [xi] is known. If the function of interest is Y = g(X), then by the definition
of expected value

E[Y ] =
∑

i

yipY [yi]. (6.4)

But as shown in Appendix 6A we can avoid having to find the PMF for Y by using
the much more convenient form

E[g(X)] =
∑

i

g(xi)pX [xi]. (6.5)
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Otherwise, we would be forced to determine PY[Yi] from PX[Xi] and g(X) using (5.9) .

This result proves to be very useful , especially when the function is a complicat ed

one such as g(x ) = sin[Crr/ 2)x] (see Problem 6.10). Some examples follow.

Example 6.1 - A linear function

If g(X) = aX + b, where a and b are constants, t hen

E[g(X)] E [aX + b]

:L)axi + b)PX[Xi] (from (6.5))

= aE[X] +b (definition of E[X] and PMF values sum to one.)

In particular , if we set a = 1, then E[X + b] = E[X] + b. This allows us to set the

expec ted value of a random variable to any desired value by adding the appropriate

constant to X. Finally, a simple extension of this example produces

for any two constants a1 and a2 and any two funct ions gl and g2 (see Problem 6.11).

It is said tha t t he expecta tion operator E is lin ear.

Example 6.2 - A nonlinear function

Assume that X has a PMF given by

1
px[k] =:5 k = 0,1 ,2 ,3 , 4

and determine E [Y] for Y = g(X ) = X 2. Then , using (6.5) produces

4

E[X
2

] = L k2px[k]

k=O

4

Lk2~
k=O

6.

& It is not true that E [g (X)] = g(E[X]).

From the previous example with g(X) = X 2, we had tha t E [g (X)] = E [X 2] = 6 but

g(E [X ]) = (E[X])2 = 22 = 4 =1= E[g(X)]. It is said that the expectation operator
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does not commute (or we cannot just take E[g(X)] and interchange the E and g) for

nonlinear functions. This manipulation is valid , however, for linear (actually affine)

functions as Example 6.1 demonstrates. Henceforth, we will use the notation E2[X]

to replace the more cumbersome (E[X])2.

Example 6.3 - Predicting the outcome of an experiment

It is always of great interest to be able to predict the outcome of an experiment

before it has occurred. For example, if the experiment were the summer rainfall in

Rhode Island in the coming year, then a farmer would like to have this information

before he decides upon which crops to plant. One way to do this is to check the

Farmer's almanac, but its accuracy may be in dispute! Another approach would be

to guess this number based on the PMF (statisticians, however , use the more formal

term "predict" or "est imate" which sounds better). Denoting the prediction by the

number b, we would like to choose a number so that on the average it is close to the

true outcome of the random variable X. To measure the error we could use x - b,

where x is the outcome, and to account for positive and negative errors equally we

could use (x - b)2 . This squared error may at times be small and at other times

large, depending on the outcome of X. What we want is the average value of the

squared error. This is measured by E[(X - bf] , and is termed the mean square

error (MSE). We denote it by mse(b) since it will depend on our choice of b. A

reasonable method for choosing b is to choose the value that minimizes the MSE.

We now proceed to find that value of b.

mse(b) E[(X - b)2]

_ E[X2 - 2bX + b2]

- E[X2] - 2bE[X] + E[b2] (linearity of E(·))

= E[X2] - 2bE[X] + b2 (expected value of constant is the constant).

To find the value of b that minimizes the MSE we need only differentiate the MSE,

set the derivative equal to zero, and solve for b. This is because the MSE is a

quadratic function of b whose minimum is located at the stationary point. Thus,

we have

dmse(b) = -2E[X] + 2b = 0
db

which produces the minimizing or optimal value of b given by bopt = E[X]. Hence,

the best predictor of the outcome of an experiment is the expected value or mean

of the random variable. For example, the best predictor of the outcome of a die

toss would be 3.5. This result provides another interpretation of the expected value.

The expected value of a random variable is the best predictor of the outcome of the

experiment, where "best" is to be interpreted as the value that minimizes the MSE.

o
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6.6 Variance and Moments of a Random Variable

143

Another function of a random variable that yields important information about its

behavior is that given by g(X) = (X - E[X]) 2
. Whereas E[X] measures the mean

of a random variable, E[(X - E[X])2] measures the average squared deviation from

the mean. For example, a uniform discrete random variable whose PMF is

1
px[k] = 2M + 1 k = -M,-M + 1, ... ,M

is easily shown to have a mean of zero for any M. However, as seen in Figure 6.4 the

variability of the outcomes of the random variable becomes larger as M increases.

This is because the PMF for M = 10 can have values exceeding those for M = 2.

The variability is measured by the variance which is defined as

var(X) = E[(X - E[X])2]. (6.6)

var(X)

Note that the variance is always greater than or equal to zero. It is determined from

the PMF using (6.5) with g(X) = (X - E[X])2 to yield

var(X) = :~:)X i - E[X])2pX [Xi]. (6.7)

For the current example, E[X] = 0 due to the symmetry of the PMF about k = 0

so that

But it can be shown that

tk2 = M(M + 1)(2M + 1)

k=l 6

which yields

2 M(M + 1)(2M + 1)

2M +1 6

M(M + 1)

3

Clearly, the variance increases with M, or equivalently with the width of the PMF, as

is also evident from Figure 6.4. We next give another example of the determination

of the variance and then summarize the results for several important PMFs.



144 CHAPTER 6. EXPECTED VALUES FOR DISCRETE RAND. VAR.

:

0.25 .-~-~-~---.---~---,

~
~ O .1 5 . . '; ; , ; ; .

I;:l., . .

..... . . .. . . . . . . . . ......... . .
. .

0.1 ; ; .

0.2 .. , . . . .

105o
k

- 5-10
o

0.2

0.1

0.05

0.25

~
~ 0 . 1 5

I;:l.,

(a) Uniform P MF, M = 2 (b) Uniform PMF, M = 10

10 . . . . . . . . . · ..

5 . .

en
Q)

S
o
u...,

- 10 "" " -'. - 10 . .. . . . . •. .. . ..

o 10 20 30 40
Trial number

50 o 10 20 30 40
Tr ial number

50

(c) Typ ical outcomes, M = 2 (d) Typical outcomes, M = 10
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Example 6.4 - Variance of Bernoulli random variable

If X "" Ber(p), then since E [X] = p, we have

1

= 2)k - p)2px [k]
k=O

(0 - p)2(1 - p) + (1- p)2p

p(1 - p) .
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Values PMF E[X] var(X) φX(ω)

Uniform k=−M,...,M
1

2M+1 0 M(M+1)
3

sin[(2M+1)ω/2]
(2M+1) sin[ω/2]

Bernoulli k=0,1 pk(1 − p)1−k p p(1−p) p exp(jω)+(1−p)

Binomial k=0,1,...,M

(

M
k

)

pk(1 − p)M−k Mp Mp(1−p) [p exp(jω)+(1−p)]M

Geometric k=1,2,... (1 − p)k−1p 1
p

1−p
p2

p
exp(−jω)−(1−p)

Poisson k=0,1,... exp(−λ)λk

k! λ λ exp[λ(exp(jω)−1)]

Table 6.1: Properties of discrete random variables.

It is interesting to note that the variance is minimized and equals zero if p = 0 or
p = 1. Also, it is maximized for p = 1/2. Can you explain this? Important PMFs
with their means, variances, and characteristic functions (to be discussed in Section
6.7) are listed in Table 6.1. The reader is asked to derive some of these entries in
the Problems.

An alternative useful expression for the variance can be developed based on the
properties of the expectation operator. We have that

var(X) = E[(X − E[X])2]

= E[X2 − 2XE[X] + E2[X]]

= E[X2] − 2E[X]E[X] + E2[X]

where the last step is due to linearity of the expectation operator and the fact that
E[X] is a constant. Hence

var(X) = E[X2] − E2[X]

and is seen to depend on E[X] and E[X2]. In the case where E[X] = 0, we have
the simple result that var(X) = E[X2]. This property of the variance along with
some others is now summarized.

Property 6.1 – Alternative expression for variance

var(X) = E[X2] − E2[X] (6.8)

�
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Property 6.2 - Variance for random variable modified by a constant

For c a constant

var(c)

var(X + c)

var(cX)

o
var(X)

c2var(X)

o
The reader is asked to verify Property 6.2 in Problem 6.21.

The expectations E[X] and E[X2] are called the first and second moments of

X, respectively. The term moment has been borrowed from physics, where E[X]

is called the center of mass or moment of mass (see also Problem 6.1). In general,

the nth moment is defined as E[Xn
] and exists (meaning that the value can be

determined unambiguously and is finite) if E[IXln] is finite. The latter is called the

n absolute moment. It can be shown that if E[X S
] exists, then E[XT

] exists for

r < s (see Problem 6.23). As a result, if E[X2] is finite, then E[X] exists and by

(6.8) the variance will also exist. In summary, the mean and variance of a discrete

random variable will exist if the second moment is finite.

A variant of the notion of moments is that of the central moments. They are

defined as E[(X - E[x])n], in which the mean is first subtracted from X before the

n moment is computed. They are useful in assessing the average deviations from

the mean. In particular, for n = 2 we have the usual definition of the variance. See

also Problem 6.26 for the relationship between the moments and central moments.

Variance is a nonlinear operator.

The variance of a random variable does not have the linearity property of the

expectation operator. Hence , in general

var(gl (X) + g2(X)) = var(gl (X)) + var(g2(X)) is not true.

Just consider var(X + X), where E[X] = 0 as a simple example.

J1
As explained previously, an alternative interpretation of E[X] is as the best predictor

of X. Recall that this predictor is the constant bopt = E[X] when the mean square

error is used as a measure of error. We wish to point out that the minimum mse is

then

msemin = E[(X - bopt )2]

E[(X - E[X])2]

= var(X). (6.9)
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Thus, how well we can predict the outcome of an experiment depends on the variance

of the random variable. As an example, consider a coin toss with a probability of

heads (X = 1) of p and of tails (X = 0) of 1 - p , i.e., a Bernoulli random variable.

We would predict the outcome of X to be bopt = E[X] = p and the minimum mse is

the variance which from Example 6.4 is msemin = p(1 - p). This is plotted in Figure

6.5 versus p. It is seen that the minimum mse is smallest when p = a or p = 1 and

largest when p = 1/2, or most predictable for p = 0 and p = 1 and least predictable

for p = 1/2. Can you explain this?

0.3

0.25 ..

Q)

'" 0.2S
S
;:::I

0.15S
'2

~ 0.1

0.05 .... ~ . .

0.2

p

Figure 6.5: Measure of predictability of the outcome of a coin toss .

6.7 Characteristic Functions

Determining the moments E [Xn
] of a random var iab le can be a difficult task for

some P MFs. An alternative method that can be considerably easier is based on

the characteristic function . In addition, the characterist ic func tion can be used to

examine convergence of PMFs, as, for example, in the convergence of the binomial

PMF to the Poisson PMF, and to determine the PMF for a sum of independent

random variables, which will be examined in Chapter 7. In this sect ion we discuss the

use of the characteristic function for the calcu lation of moments and to investigate

the convergence of a PMF.

The characteristic function of a random variable X is defined as

</>x(w) = E[exp(jwX) ] (6.10)

where j is the square root of -1 and where w takes on a suitable range of values .

Not e that the function g(X) = exp(jwX) is complex but by defining E[g(X)] =
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E[cos(wX) + j sin(wX)] = E[cos(wX)] + jE[sin(wX)], we can apply (6.5) to the real

and imaginary parts of c/Jx (w) to yield

c/Jx(w) E[exp(jwX)]

= E[cos(wX) + j sin(wX)]

E[cos(wX)] + jE[sin(wX)]

L COS(WXi )pX[Xi] + j L sin(wxi)px[xi]

(6.11)

To simplify the discussion, yet still be able to apply our results to the important

PMFs, we assume that the sample space Sx is a subset of the integers. Then (6.11)

becomes
00

c/Jx(w) = L exp(jwk)px[k]

k=-oo

or rearranging
00

c/Jx(w) = L px[k] exp(jwk)

k=-oo

(6.12)

where px[k] = 0 for those integers not included in Sx- For example, in the Poisson

PMF the range of summation in (6.12) would be k 2': O. In this form, the char­

acteristic function is immediately recognized as being the Fourier transform of the

sequence px[k] for -00 < k < 00. Its definition is slightly different than the usual

Fourier transform, called the discrete-time Fourier transform, which uses the func­

tion exp(-jwk) in its definition [Jackson 1991]. As a Fourier transform, it exhibits

all the usual properties. In particular, the Fourier transform of a sequence is pe­

riodic with period of 21r (see Property 6.4 for a proof). As a result , we need only

examine the characteristic function over the interval -1r ~ W ~ 1r, which is defined

to be the fundamental period. For our purposes the most useful property is that we

can differentiate the sum in (6.12) "term by term" or

dc/Jx(w)

dw

d 00

dw L px[k] exp(jwk)
k=-oo

00 d
L px[k]dw exp(jwk).

k=-oo

The utility in doing so is to produce a formula for E[X]. Carrying out the differen­

tiation

dc/Jx(w) ~ . .
dw = LJ px[kJJkexp(Jwk)

k=-oo
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so that
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! dt/Jx(w) I
j dw w= O

00

L kpx[k]
k=-oo

= E[X].

In fact , repeated differentiation produces the formula for the nth moment as

(6.13)

All the moments that exist may be found by repeated differentiation of the charac­

teristic function. An example follows.

Example 6.5 - First two moments of geometric random variable

Since the PMF for a geometric random variable is given by px[k] = (1 - p)k-lp for

k = 1,2, . . ., we have that

00

t/Jx(w) Lpx[k] exp(jwk)

k=l
00

= L(1- p)k-lpexp(jwk)

k=l
00

= pexp(jw) L [(1 - p) exp(jw)]k- l .

k=l

But since 1(1 - p) exp(jw)1 < 1, we can use the result

00 00 1
'"'" zk-l = '"'" zk = __
LJ LJ 1- z
k=l k=O

for z a complex number with Izi < 1 to yield the characterist ic function

t/Jx(w) =
pexp(jw)

1 - [(1 - p) exp(jw)]
p

exp( -jw) - (1 - p)'
(6.14)

(6.15)

(6.16)

Note that as claimed the characteristic function is periodic with period 211". To find

the mean we use (6.13) with n = 1 to produce

E[X] = ! d¢>x(w) I
j dw w= O

!p( -1) -j exp( -jw) I
j [exp(-jw) - (1 - p)J2 w= O

1 j 1
= -p- =-

j p2 P
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which agrees with our earlier results based on using the definition of expected value.

To find the second moment and hence the variance using (6.8)

~ d2cPx(w) I
P dw

2
w=o

p d exp( -jw) I (f (6 15))rom .
j dw [exp(-jw) - (1 - p)J2 w=o

'£. D2(-j) exp( -jw) - exp( -jw)2D(-j) exp(-jw) I
. D4

J w=o

where D = exp(-jw) - (1 - p). Since Dlw=o = p, we have that

E[X
2
J = (5) (-jp:~ 2

jP)

2p _p2

p3

2 1
p2 - P

so that finally we have

var(X) E[X2J - E2[XJ

2 1 1
= p2- p- p2

I-p
----p;:-.

As a second example, we consider the binomial PMF.

Example 6.6 - Expected value of binomial PMF

We first determine the characteristic function as

00

cPx(w) = L px[kJ exp(jwk)
k=-oo

to (~) pk(l_ p)M-k exp(jwk)

to (~) [rex~(jW),nyr-k (617)

(a+ b)M (binomial theorem)

[pexp(jw) + (1 - p)JM. (6.18)
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The expected value then follows as
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E[X] = ! d</>x(w) I
j dw w=O

yM [pexp(jw) + (1 - p)]M-lpj exp(jw) Iw=o

Mp

which is in agreement with our earlier results. The variance can be found by using

(6.8) and (6.13) for n = 2. It is left as an exercise to the reader to show that (see

Problem 6.29)

var(X) = Mp(l - p).

o
The characteristic function for the other important PMFs are given in Table 6.1.

Some important properties of the characteristic function are listed next.

Property 6.3 - Characteristic function always exists since l</>x(w)1 < 00

Proof:

l</>x(w)1

00

L px[k] exp(jwk)

k= - oo

00

< L Ipx[k] exp (j wk)I
k= - oo

00

L Ipx [k]1
k=-oo

00

L px[k]
k=-oo

1.

(magnitude of sum of complex numbers

cannot exceed sum of magnitudes)

(I exp(jwk)I = 1)

(Px[k] ~ 0)

o

Property 6.4 - Characteristic function is periodic with period 27f.

Proof: For m an integer

00

</>x(w + 27fm) = L px [k] exp[j(w + 27fm)k]

k=-oo

00

L px[k] exp[jwk] exp[j27fmk]

k= -oo

00

L px [k]exp[jwk]
k= - oo

= </>x(w).

(since exp(j27fmk) = 1

for mk an integer)

o
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Property 6.5 – The PMF may be recovered from the characteristic
function.

Given the characteristic function, we may determine the PMF using

pX [k] =

∫ π

−π
φX(ω) exp(−jωk)

dω

2π
−∞ < k < ∞. (6.19)

Proof: Since the characteristic function is the Fourier transform of a sequence (al-
though its definition uses a +j instead of the usual −j), it has an inverse Fourier
transform. Although any interval of length 2π may be used to perform the integra-
tion in the inverse Fourier transform, it is customary to use [−π, π] which results in
(6.19).

�

Property 6.6 – Convergence of characteristic functions guarantees
convergence of PMFs.

This property says that if we have a sequence of characteristic functions, say φ
(n)
X (ω),

which converges to a given characteristic function, say φX(ω), then the correspond-

ing sequence of PMFs, say p
(n)
X [k], must converge to a given PMF say pX [k], where

pX [k] is given by (6.19). The importance of this theorem is that it allows us to
approximate PMFs by simpler ones if we can show that the characteristic functions
are approximately equal. An illustration is given next. This theorem is known as
the continuity theorem of probability. Its proof is beyond the scope of this text but
can be found in [Pollard 2002].

�

We recall the approximation of the binomial PMF by the Poisson PMF under the
conditions that p → 0 and M → ∞ with Mp = λ fixed (see Section 5.6). To show
this using the characteristic function approach (based on Property 6.6) we let Xb

denote a binomial random variable. Its characteristic function is from (6.18)

φXb
(ω) = [p exp(jω) + (1 − p)]M

and replacing p by λ/M we have

φXb
(ω) =

[

λ

M
exp(jω) +

(

1 − λ

M

)]M

=

[

1 +
λ(exp(jω) − 1)

M

]M

→ exp[λ(exp(jω) − 1)]
(see Problem 5.15, results are also
valid for a complex variable)
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as M -+ 00. For a Poisson random variable X» we have that
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00 ,\ k

L exp (-,\) k! exp(jwk)
k=O

(
_ ' ) ~ ['\ exp(jw)]k

exp /\ LJ k!
k=O

exp (- ,\) exp[,\ exp(jw)]

exp['\ (exp (jw) - 1)].

(using results from Problem

5.22 which also hold for a

complex variable)

Since cPXb(W) -+ cPxp(w) as M -+ 00, by Property 6.6, we must have that pXb[k]-+

pXp[k] for all k. Hence, under the stated conditions the binomial PMF becomes the

Poisson PMF as M -+ 00 . This was previously proven by other means in Section

5.6. Our derivation here though is considerably simpler.

6.8 Estimating Means and Variances

As alluded to earlier , an imp ortant aspect of the mean and variance of a PMF is

that they are easily est imated in practice. We have alrea dy briefly discussed this in

Chapter 2 where it was demonstrated how to do this with computer simulated data

(see Example 2.3). We now cont inue that discussion in more detail. To illustrate

the approach we will consider the PMF shown in Figure 6.6a. Since the theoretical

0 .5r---~-~-~-~-~------, 6r---~ --~-~--~-____r,

0.4
5

. .
.. . .... .. . . .

~
~0 .3

>:l..

0.2 .

0 .1 . l ······...
2 3

k

(a) PMF

4

'r
5 6

ff:J
Q) 4
S
o
~ 3
;:j

o
2

o
o 10 20 30

Tri al number

(b) Simulated dat a

40 50

Figure 6.6: PMF and computer generated data used to illustrate estimation of mean

and variance.
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expected value or mean is given by

5

E[X] = L kpx[k]

k=1

then by the relative frequency interpretation of probability we can use the approxi­

mation
Nk

px[k];:::: ]Ii

where Nk is the number of trials in which a k was the outcome and N is the total

number of trials. As a result , we can estimate the mean by

5

EfXj = Lk;k.

k=1

The "hat" will always denote an estimated quantity. But kNk is just the sum of all

the k outcomes that appear in the N trials and therefore 2:%=1 kNk is the sum of

all the outcomes in the N trials. Denoting the latter by 2:~1 Xi, we have as our

estimate of the mean
___ 1 N

E[X] = - '" Xi
N ~ t=1

(6.20)

where Xi is the outcome of the ith trial. Note that we have just reversed our line of

reasoning used in the introduction to motivate the use of E[X] as the definition of

the expected value of a random variable. Also, we have previously seen this type of

estimate in Example 2.3 where it was referred to as the sample mean. It is usually

denoted by ii , For the data shown in Figure 6.6b we plot the sample mean in Figure---6.7a versus N. Note that as N becomes larger, we have that E[X] -+ 3 = E[X].
The true variance of the PMF shown in Figure 6.6a is computed as

var(X) E[X2
] - E2[X]

5

Lk2px[k] - E 2[X]

k=1

which is easily shown to be var(X) = 1.2. It is estimated as

and by the same rationale as before we use
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so that our estimate of the variance becomes
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(6.21)

This estimate is shown in Figure 6.7b as a function of N . Note that as the number of

6 2

5 . ........... . . . . . . ....

1.5 . .. . ....,. . . .

4

( ~ 1( ~ 3
:>

2
0.5 .

0 0
0 10 20 30 40 50 0 10 20 30 40 50

N, Number of trials N, Number of trials

(a) Estimated mean (b) Estimated variance

Figure 6.7: Estimated mean and variance for computer data shown in Figure 6.6.

trials increases the estimate of variance converges to the true value of var(X) = 1.2.

The MATLAB code used to generate the data and estimate the mean and variance

is given in Appendix 6B. Also, in that appendix is listed the MATLAB subprogram

PMFdata. m which allows easier generation of the outcomes of a discrete random

variable. In practice, it is customary to use (6.20) and (6.21) to analyze real-world

data as a first step in assessing the characteristics of an unknown P MF .

6.9 Real-World Example - Data Compression

The digital revolution of the past 20 years has made it commonplace to record and

store information in a digital format . Such information consists of speech data in

te lephone transmission, music data stored on compact discs, video data stored on

digital video discs, and facsimile data, to name but a few. The amount of data

can become quite large so that it is important to be able to reduce the amount of

storage required. The process of storage reduction is called data compression. We

now illustrate how this is done. To do so we simplify the discussion by assuming

that the data consists of a sequence of the letters A, B, C, D. One could envision

these letters as representing the chords of a rudimentary musical instrument, for
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example. The extension to the entire English alphabet consisting of 26 letters will

be apparent. Consider a typical sequence of 50 letters

AAAAAAAAAAABAAAAAAAAAAAAA

AAAAAACABADAABAAABAAAAAAD.

To encode these letters for storage we could use the two-bit code

A -t 00

B -t 01

C -t 10

D -t 11

(6.22)

(6.23)

which would then require a storage of 2 bits per letter for a total storage of 100

bits. However, as seen above the typical sequence is characterized by a much larger

probability of observing an "A" as opposed to the other letters. In fact, there are

43 A's, 4 B's, 1 C, and 2 D's. It makes sense then to attempt a reduction in storage

by assigning shorter code words to the letters that occur more often, in this case, to

the "A" . As a possible strategy, consider the code assignment

A -t 0

B -t 10

C -t 110

D -t 111. (6.24)

Using this code assignment for our typical sequence would require only 1 ·43 + 2 .

4 + 3 . 1 + 3 . 2 = 60 bits or 1.2 bits per letter. The code given by (6.24) is called

a Huffman code. It can be shown to produce less bits per letter "on the average"

[Cover, Thomas 1991].

To determine actual storage savings we need to determine the average length of

the code word per letter. First we define a discrete random variable that measures

the length of the code word . For the sample space S = {A, B, C, D} we define the

random variable

{

I 81 = A

X(8i) = 2 82 = B
3 83 = C

3 84 = D

which yields the code length for each letter. The probabilities used to generate the

sequence of letters shown in (6.22) are P[A] = 7/8, P[B] = 1/16, P[e] = 1/32,

P[D] = 1/32. As a result the PMF for X is

px[k] = { ::

16

k=l

k=2

k = 3.
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The average code length is given by

3

E[X] = 'Lkpx[k]
k=l

7 1 1
1 . S+ 2 . 16 + 3 . 16

1.1875 bits per letter.

(6.25)bits per letter.

This results in a compression ratio of 2: 1.1875 = 1.68 or we require about 40% less

storage.

It is also of interest to note that the average code word length per letter can be

reduced even further. However, it requires more complexity in coding (and of course

in decoding). A fundamental theorem due to Shannon, who in many ways laid the

groundwork for the digital revolution, says that the average code word length per

letter can be no less than [Shannon 1948]

4 1
H = 'LP[Si] log2 -[-.]

i=l P S1

This quantity is termed the entropy of the source. In addition, he showed that a

code exists that can attain, to within any small deviation, this minimum average

code length. For our example, the entropy is

H
7 11 11 11 1
Slog2 7/8 + 16 log2 1/16 + 32 log2 1/32 + 32 log2 1/32

= 0.7311 bits per letter.

bits per letter.

Hence , the potential compression ratio is 2 : 0.7311 = 2.73 for about a 63% reduc­

tion.

Clearly, it is seen from this example that the amount of reduction will depend

critically upon the probabilities of the letters occuring. If they are all equally likely

to occur, then the minimum average code length is from (6.25) with P[Si] = 1/4

H = 4 (~log2 1~ 4) = 2
In this case no compression is possible and the original code given by (6.23) will be

optimal. The interested reader should consult [Cover and Thomas 1991] for further

details.
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Problems

6.1 (w) The center of mass of a system of masses situated on a line is the point at

which the system is balanced. That is to say that at this point the sum of

the moments, where the moment is the distance from center of mass times the

mass , is zero. If the center of mass is denoted by CM, then

M

2:)Xi - CM)mi = 0
i= l

where Xi is the position of the ith mass along the x direction and m i is its

corresponding mass. First solve for CM. Then, for the system of weights

shown in Figure 6.8 determine the center of mass. How is this analogous to

the expected value of a discrete random variable?

10 kg 10 kg 10 kg 10 kg

center of mass

20 x (meters)

k = 0,1 , . . . ,9

Figure 6.8: Weightless bar supporting four weights.

6.2 C:.:,) (f) For the discrete random variable with PMF

1
px[k] = 10

find the expected value of X.

6.3 (w) A die is tossed. The probability of obtaining a I , 2, or 3 is the same. Also,

the probability of obtaining a 4, 5, or 6 is the same. However, a 5 is twice as

likely to be observed as a 1. For a large number of tosses what is the average

value observed?
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6.4 L_:J (f) A coin is tossed with the probability of heads being 2/3. A head is

mapped into X = 1 and a tail into X = 0. What is the expected outcome of

this experiment?

6.5 (f) Determine the expected value of a Poisson random variable. Hint: Differ­

entiate 'Lr'=o >..k /k! with respect to x.

6.6 (t) Consider the PMF px[k] = (2/7r)/k 2 for k = ... , -1 ,0,1 , .... The expected

value is defined as
00

E[X] = L kpx[k]
k=-oo

which is actually shorthand for

Nu

E[X] = N l ~ ~oo I: kpx[k]
NU->oo k=NL

where the Land U represent "lower" and "upper" , respectively. This may be

written as
-1 Nu

E[X] = lim I: kpx[k] + lim I: kpx[k]
NL -t -OO N u-too

k=NL k=l

where the limits are taken independently of each other. For E[X] to be un­

ambiguous and finite both limits must be finite. As a result , show that the

expected value for the given PMF does not exist. If, however , we were to con­

strain NL = Ni] , show that the expected value is zero. Note that if NL = Nij ,

we are reordering the terms before performing the sum since the partial sums

become 'Lk=-l kpx[k], ' L ~ = - 2 kpx[k], etc. But for the expected value to be
unambiguous, the value should not depend on the ordering. If a sum is abso­

lutely summable, any ordering will produce the same result [Gaughan 1975],

hence our requirement for the existence of the expected value.

6.7 (t) Assume that a discrete random variable takes on the values k = ... , -1, 0, 1, ...

and that its PMF satisfies px[m + i] = px[m - i], where m is a fixed integer

and i = 1,2, .... This says that the PMF is symmetric about the point x = m.

Prove that the expected value of the random variable is E[X] = m.

6.8 L...:,) (t) Give an example where the expected value of a random variable is not

its most probable value.

6.9 (t) Give an example of two PMFs that have the same expected value.

6.10 (f) A discrete random variable X has the PMF px[k] = 1/5 for k = 0, 1,2,3,4.

If Y = sin[(7r/2)X], find E[Y] using (6.4) and (6.5). Which way is easier?
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6.11 (t) Prove the linearity property of the expectation operator

where al and a2 are constants.

6.12 L..:...) (f) Determine E[X2
] for a geom(p) random variable using (6.5). Hint:

You will need to differentiate twice.

px[k] =

6.13 (..:...:...) (t) Can E[X2
] ever be equal to E2[X]? If so, when?

6.14 (..:...:...) (w) A discrete random variable X has the PMF

k k = 1

~ k = 2

t k = 3

k k = 4.

If the experiment that produces a value of X is conducted, find the minimum

mean square error predictor of the outcome. What is the minimum mean

square error of the predictor?

6.15 (..:...:...) (c) For Problem 6.14 use a computer to simulate the experiment for

many trials. Compare the estimate to the actual outcomes of the computer

experiment. Also, compute the minimum mean square error and compare it

to the theoretical value obtained in Problem 6.14.

6.16 (w) Of the three PMFs shown in Figure 6.9, which one has the smallest vari­

ance? Hint: You do not need to actually calculate the variances.

2 k 4-2

rr l

0.6

~0 .5

~04
0.3

0.2
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0.7
0.6f · · · · · · · : . •

0 .7h=~== ===""l

~0 .5

~04f · · . · · · · · · ; · · · · · · · ; · ·, · · . · · · · · · · · ; · ·

0.3

2 k 4-2

7

6

4

2

1

I
...

I
0

o.

~05

~o
0.3

o.

o.

o.

(a) (b) (c)

Figure 6.9: PMFs for Problem 6.16.

6.17 (w) If Y = aX + b, what is the variance of Y in terms of the variance of X?
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6 .18 (f) Find the variance of a Poisson random variable. See the hint for Problem

6.12.

6 .19 (f) For the PMF given in Problem 6.2 find the variance.

6.20 C : ~ J (f) Find the second moment for a Poisson random variable by using the

characterist ic fun ction, which is given in Table 6.1.

6.21 (t) If X is a discrete random variable and c is a constant, prove the following

properties of the variance:

var(c)

var(X + c) =

var(cX)

°var(X)

c2var(X).

6. 22 (t) If a discret e random variable X has var(X) = 0, prove that X must be

a constant c. This provides a converse to the property that if X = c, then

var(X) = 0.

6 .23 (t) In this problem we prove that if E[XS] exists, meaning that E [!X IS] < 00,

then E[XT
] also exists for 0< r < s. Provide the explanations for the following

steps:

a. For Ixl ~ 1, Ixl T ~ 1

b . For Ixl > 1, [z]" ~ Ixls

c. For all [z] , Ixl T
~ Ixl s + 1

d. E[ IXn = L:i IXiITpx[xi] ~ L:i( lxi IS+ 1)pX[XiJ= E[lX IS] + 1 < 00.

6.24 (f) If a discrete random variable has the PMF px[k] = 1/4 for k = -1 and

p X [k] = 3/4 for k = 1, find the mean and variance.

6 .25 (t) A symmetric PMF satisfies the relationship px[-k] = px[k] for k =
... , -1 ,0, 1,.. .. P rove that all the odd order moments, E[Xn

] for n odd,

are zero .

6 .26 C : ~ J (t ) A central moment of a discrete random variable is defined as

E[(X - E[x])n], for n a posi tive int eger. Derive a formu la that relates the

central moment to the usual moments. Hint: You will need the binomial

formula.

6.2 7 C.':"' ) (t) If Y = aX + b, find the characteristic function of Y in terms of that

for X. Next use your result to prove that E[Y] = aE[X] + b.

6.28 C..:... ) (f) Find the characteristic funct ion for the P MF px [k] = 1/5 for k =

-2, -1, 0,1 ,2.
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6.29 (f) Determine the variance of a binomial random variable by using the prop­

erties of the characteristic function. You can assume knowledge of the char­

acteristic function for a binomial random variable.

6.30 (f) Determine the mean and variance of a Poisson random variable by using

the properties of the characteristic function. You can assume knowledge of

the characteristic function for a Poisson random variable.

6.31 (f) Which PMF px[k] for k = ... ,-1,0,1, ... has the characteristic function

<Px(w) = cosw?

6.32 c.:..:..-) (c) For the random variable described in Problem 6.24 perform a com­

puter simulation to estimate its mean and variance. How does it compare to

the true mean and variance?
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Derivation of E[g(X)] Formula

Assume that X is a discrete random variable taking on values in Sx = {Xl,X2, •• .}

with PMF PX[Xi]. Then, if Y = g(X) we have from the definit ion of expected value

(6A. l)

(6A.2)

where the sum is over all Yi E Sy. Note that it is assumed that the Yi are distinct

(all different). But from (5.9)

PY[Yi] = L pX [Xj].
{Xj :g(Xj )=Yi}

To simplify the notation we will define the indicator junction , which indicates

whether a number X is within a given set A , as

{
I x E A

I A (x) = 0 otherwise.

T hen (6A.2) can be rewritten as

00

PY[Yi] = L px[xj]I{o}(Yi - g(Xj))
j=l

since the sum will include the term pX [Xj ] only if Yi - g(Xj) = O. Using this, we

have from (6A.l)

00

E [Y] L Yi L px [xj]I{o}(Yi - g(Xj))
j=l

~ ~ [ ~ Y i I { O } ( Y i - g(Xj))] pX[XjJ.
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Now for a given i , g(Xj) is a fixed number and since the Yi'S are distinct, there is

only one Yi for which Yi = g(Xj). Thus, we have that

LYiI{O}(Yi - g(Xj)) = g(Xj)
i

and finally
00

E[Y] = E[g(X)] = Lg(Xj)px[Xj].
j=l



Appendix 6B

MATLAB Code Used to

Estimate Mean and Variance

Figures 6.6 and 6.7 are based on the following MATLAB code.

This program generates the outcomes for N trials

of an experiment for a discrete random variable.

Uses the method of Section 5.9.

It is a function subprogram.

- number of trials desired

values of x_i's of discrete random variable (M x 1 vector)

- PMF of discrete random variable (M x 1 vector)

- outcomes of N trials (N x 1 vector)x

pX

xi

N

'I. PMFdata.m

'I.
'I.
'I.
'I.
'I.
'I.
'I. Input parameters:

'I.
'I.
'I.
'I.
'I.
'I. Output parameters:

'I.
'I.
'I.
function x=PMFdata(N,xi,pX)

M=length(xi);M2=length(pX) ;

if W=M2

message='xi and pX must have the same dimension'

end

for k=1:M ; 'I. see Section 5.9 and Figure 5.14 for approach used here

if k==1
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bin(k,l)=pX(k); %set up first interval of COF as [O,pX(l)]

else

bin(k,l)=bin(k-l,l)+pX(k); %set up succeeding intervals

%of COF

end

end

u=rand(N,l); %generate N outcomes of uniform random variable

for i=l :N %determine which interval of COF the outcome lies in

%and map into value of xi

if u(i»O&u(i)<=bin(l)

x Ci, l)=xi(U ;

end

for k=2:M

if u(i»bin(k-l)&u(i)<=bin(k)

x(i, l)=xiCk) ;

end

end

end



Chapter 7

Multiple Discrete Random

Variables

7 .1 Introduction

In Chapter 5 we introduced the concept of a discrete random variable as a mapping

from the sample space S = {sil to a countable set of real numbers (either finite

or countably infinite) via a mapping X(Si)' In effect, the mapping yields useful

numerical information about the outcome of the random phenomenon. In some

instances, however, we would like to measure more than just one attribute of the

outcome. For example, consider the choice of a student at random from a population

of college students. Then, for the purpose of assessing the student's health we might

wish to know his/her height, weight, blood pressure, pulse rate, etc. All these

measurements and others are used by a physician for a disease risk assessment.

Hence, the mapping from the sample space of college students to the important

measurements of height and weight , for example, would be H(Si) = hi and W(Si) =

Wi , where Hand W represent the height and weight of the student selected. In Table

4.1 we summarized a hypothetical set of probabilities for heights and weights. The

table is a two-dimensional array that lists the probabilities P[H = hi and W = Wj].
This information can also be displayed in a three-dimensional format as shown in

Figure 7.1, where we have associated the center point of each interval of height and

weight given in Table 4.1 with the probability displayed. These probabilities were

termed joint probabilities. In this chapter we discuss the case of multiple random

variables. For example, the height and weight could be represented as a 2 x 1 random

vector

and as such, its value is located in the plane (also called R 2
) . We will initially

describe the simplest case of two random variables but all concepts are easily ex-
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Figure 7.1: Joint probabilities for heights and weights of college students.

tended to any finite number of random variables (see Chapter 9 for this extension).

As we will see throughout our discussions, the new and very important concept

will be the dependencies between the multiple random variables. Questions such

as "Can we predict a person 's height from his weight?" naturally arise and can be

addresse d once we extend our description of a single random variable to multiple

random variables.

7.2 Summary

The concept of jointly distributed discrete random vari ables is illustrated in Figure

7.2. Two random variables can be thought of as a random vector and assigned a joint

PMF PX,y[Xi ,Yj] as described in Section 7.3, and which has Properties 7.1 and 7.2.

The joint PMF may be obtained if the probabilities on the original experimental

sample space is known by using (7.2), and is illustrated in Example 7.1. Once

the joint PMF is specified, the probability of any event concerning the random

variables is determined via (7.3). The marginal PMFs of the two random variables,

which are the probabilities of each random variable taking on its possible values , is

obtained from the joint PMF using (7.5) and (7.6) . However , the joint PMF is not

uniquely determined from the marginal PMFs. The joint CnF is defined by (7.7)

and evaluated using (7.8). It has the usual properties as summarized via Properties

7.3-7.6. Random variables are defined to be independent if the probabilities of

all t he joint events can be found as the product of the probabilities of the single

events. If the random variables are independent , then the joint PMF factors as in

(7.11). Given a joint PMF, independence can be established by determining if the

PMF factors. Conversely, if we know the random variables are independent , and
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we are given the marginal PMFs, then the joint PMF is found as the product of

the marginals. The joint PMF of a transformed vector random variable is given by

(7.12) and illustrated in Example 7.6. The PMF for the sum of two independent

discrete random variables can be found using (7.22) or via characteristic functions

using (7.24). The expected value of a function of two random variables is found

from (7.28). Also, the variance of the sum of two random variables is given by

(7.33) and involves the covariance, which is defined by (7.34). The interpretation of

the covariance is given in Section 7.8 and is seen to provide a quantification of the

knowledge of the outcome of one random variable on the probability of the other.

Independent random variables have a covariance of zero, but the converse is not

true. In Section 7.9 linear prediction of one random variable based on observation

of another random variable is explored. The optimal linear predictor is given by

(7.41). A variation of this prediction equation results in the important parameter

called the correlation coefficient (7.43). It quantifies the relationship of one random

variable with another. However, a nonzero correlation does not indicate a causal

relationship. The joint characteristic function is introduced in Section 7.10 and

is defined by (7.45) and evaluated by (7.46). It is shown to provide a convenient

means of determining the PMF for a sum of independent random variables. In

Section 7.11 a method to simulate a random vector is described. Also, methods to

estimate joint PMFs, marginal PMFs, and other quantities of interest are given.

Finally, in Section 7.12 an application of the methods of the chapter to disease risk

assessment is described.

7.3 Jointly Distributed Random Variables

We consider two discrete random variables that will be denoted by X and Y. As

alluded to in the introduction, they represent the functions that map an outcome

of an experiment s, to a value in the plane. Hence, we have the mapping

for all s, E S. An example is shown in Figure 7.2 in which the experiment consists

of the simultaneous tossing of a penny and a nickel. The outcome in the sample

space S is represented by a TH, for example, if the penny comes up tails and the

nickel comes up heads. Explicitly, the mapping is
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- - - - - " ' ~ - - _ - L Y

r---:::::::I.....---It---.. x

SX,y C R2

Figure 7.2: Example of mapping for jointly distributed discrete random variables.

[:] if s, = TT

[ Xls,) ] [ ~ ] if s, = TH

Y(sd [~ ] if s, = HT

[:] if s, = HH.

Two random variables that are defined on the same sample space S are said to be

jointly distributed. In this example, the random variables are also discrete random

variables in that the possible values (which are actually 2 x 1 vectors) are countable.

In this case there are just four vector values. These values comprise the sample

space which is the subset of the plane given by

SX,Y = { [ : ] , [ : ] , [ ~ ] , [ : ]}

We can also refer to the two random variables as the single random vector [X YjT,
where T denotes the vector transpose. Hence, we will use the terms multiple random

variables and random vector interchangeably. The values of the random vector will

be denoted either by (x, V), which is an ordered pair or a point in the plane, or by

[xyjT, which denotes a two-dimensional vector. These notations will be synonomous.

The size of the sample space for discrete random variables can be finite or count­

ably infinite. In the example of Figure 7.2, since X can take on 2 values, denoted
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by Nx = 2, and Y can take on 2 values , denoted by Ny = 2, the total number

of elements in SX ,y is NxNy = 4. More generally, if X can take on values in

Sx = { Xl , X2, · · ·, XNx } and Y can take on values in Sy = {YI , Y2 ,. · · ,YNy} , then

the random vector can take on values in

SX,y = Sx x S y = {(Xi ,Yj) : i = 1,2, .. . , Nx; j = 1,2, . . . , N y }

for a total of NX,y = Nx Nv values. This is shown in Figure 7.3 for the case of

N x = 4 and Ny = 3. The notation A x B , where A and B are sets, denotes a

cartesian product set. It consists of all ordered pairs (ai , bj) , where ai E A and

bj E B. If either Sx or Sy is countably infinite, then the random vector will also

have a countably infinite set of values .

Y Y

Y3 • • • •
Y2 • • • • SX ,y = Sx x Sy

S y

YI • • • •
X

Xl X2 X3 X4

I • • • • • X

Sx

Figure 7.3: Example of sample space for jointly distributed discrete random vari­

ables.

Just as we defined the PMF for a single discrete random variable in Chapter 5

as PX[Xi] = P [X (s ) = Xi], we can define the joint PMF (or sometimes called the

bivariate PMF) as

i = 1,2, . . . ,Nx;j = 1, 2, . . . ,Ny.

Note that the set of all outcomes s for which X(s) = Xi,Y(s) = Yj is t he same as

the set of outcomes for which

[
X(s) ] = [ Xi ]

Y(s) Yj

so that for the random vector to have the value [XiYjjT , both X(s) = Xi and Y(s) =

Yj must be satisfied. Thus, the comma used in the statement X(s) = Xi, Y( s) = Yj is

to be read as "and" . An example of the joint PMF for students ' heights and weights

is given in Figure 7.1 in which we set X = height and Y = weight and the vertical
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axis represents PX,y[Xi,Yj]. To verify that a set of probabilities as in Figure 7.1 can

be viewed as a joint PMF we need only verify the usual properties of probability.

Assuming NX and Nv are finite, these are:

Property 7.1 - Range of values of joint PMF

i = 1,2, ... , NXij = 1,2, .. . , Nv .

o

Property 7.2 - Sum of values of joint PMF

Nx Ny

L LPX,y[Xi' Yj] = 1
i=l j=l

o
and similarly for a countably infinite sample space. For the coin toss example of

Figure 7.2 we require that

°:S PX,y[O, 0] :S 1

°:S PX,y[O, 1] :S 1°:S px,y[l, 0] :S 1

°:S px,y[l, 1] :S 1

and
1 1

LLPx,Y[i,j] = 1.
i = O j=O

Many possibilities exist. For two fair coins that do not interact as they are tossed

(i.e., they are independent) we might assign px,y[i,j] = 1/4 for all i and j. For two

coins that are weighted but again do not interact with each other as they are tossed,

we might assign

{

(I - p)2 i = O,j = °
. . (1 - p)p i = O,j = 1

PX,y[z,J] = p(1 - p) i = l,j = °
p2 i = l,j = 1

if each coin has a probability of heads of p. It is easily shown that the joint PMF

satisfies Properties 7.1 and 7.2 for any °:s P :s 1. In obtaining these values for

the joint PMF we have used the concept of equivalent events, which allows us to

determine probabilities for events defined on SX,y from those defined on the original

sample space S. For example, since the events TH and (0,1) are equivalent as seen
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in Figure 7.2, we have that

173

px,y[O,I] = P[X(s) = 0, Y(s) = 1]

= P[{Si: X(Si) = 0,Y(sd = I}]

= P[Si = TH]

(1 - p)p

(equivalent event in S)

(mapping is one-to-one)

(independence)

where we have assumed independence of the penny and nickel toss subexperiments

as described in Section 4.6.l.

In general, the procedure to determine the joint PMF from the probabilities

defined on S depends on whether the random variable mapping is one-to-one or

many-to-one. For a one-to-one mapping from S to SX,y we have

PX,y[Xi, Yj] P[X(s) = Xi, Y(s) = Yj]

= P[{s: X(s) = Xi,Y(s) = Yj}]

P[{sd] (7.1)

where it is assumed that Sk is the only solution to X(s) = Xi and X(s) = Yj. For a

many-to-one transformation the joint PMF is found as

PX,y[Xi,Yj] = L P[{sd]·

{k:X(Sk)=Xi,Y(Sk)=Yj}

(7.2)

This is the extension of (5.1) and (5.2) to a two-dimensional random vector. An

example follows.

Example 7.1 - Two dice toss with different colored dice

A red die and a blue die are tossed. The die that yields the larger number of dots

is chosen. If they both display the same number of dots, the red die is chosen. The

numerical outcome of the experiment is defined to be 0 if the blue die is chosen and

1 if the red die is chosen, along with its corresponding number of dots. The random

vector is therefore defined as

x {O blue die chosen
1 red die chosen

Y = number of dots on chosen die.

The outcomes of the experiment can be represented by (i,j) where i = 0 for blue,

i = 1 for red, and j is the number of dots observed. What then is px,y[l , 3], for

example? To determine this we first list all outcomes in Table 7.1 for each number of

dots observed on the red and blue dice. It is seen that the mapping is many-to-one.

For example, if the red die displays 6 dots, then the outcome is the same, which is

(1,6), for all possible blue outcomes. To determine the desired value of the PMF,



174 CHAPTER 7. MULTIPLE DISCRETE RANDOM VARIABLES

blue=1 blue=2 blue=3 blue=4 blue=5 blue=6

red=1 (1,1) (0,2) (0,3) (0,4) (0,5) (0,6)

red=2 (1,2) (1,2) (0,3) (0,4) (0,5) (0,6)

red=3 (1,3) (1,3) (1,3) (0,4) (0,5) (0,6)

red=4 (1,4) (1,4) (1,4) (1,4) (0,5) (0,6)

red=5 (1,5) (1,5) (1,5) (1,5) (1,5) (0,6)

red=6 (1,6) (1,6) (1,6) (1,6) (1,6) (1,6)

Table 7.1: Mapping of outcomes in S to outcomes in SX,Y. The outcomes of (X, Y)

are (i,j), where i indicates the color of the die with more dots (red=1, blue=O), j

indicates the number of dots on that die.

we assume that each outcome in S is equally likely and therefore is equal to 1/36.

Then, from (7.2)

=

pX'y[1 , 3] L P[{Sk}]

{k:X(Sk)=1 ,Y(Sk)=3}

1

L 36
{k:X(Sk)=1 ,Y(Sk)=3}

3 1
= - -

36 12

(7.3)

since there are three outcomes of the experiment in S that map into (1,3). They

are (red=3,blue=1), (red=3,blue=2), and (red=3,blue=3).

<:;
In general, as in the case of a single random variable we can use the joint PMF

to compute probabilities of all events defined on SX,Y = Sx x Sv . For the event

A c SX,y, the probability is

P[(X, Y) E A] = L PX,y[Xi, Yj].

{(i,j) :(Xi,Yj )EA}

Once we have knowledge of the joint PMF, we no longer need to retain the underlying

sample space S of the experiment. All our probability calculations can be made

concerning values of (X, Y) by using (7.3).

7.4 Marginal PMFs and CDFs

If the joint PMF is known, then the PMF for X, i.e., PX[Xi], and the PMF for Y,

i.e., PY[Yj], can be determined. These are termed the marginal PMFs. Consider

first the determination of PX[Xi]' Since {X = Xi} does not specify any particular

value for Y, the event {X = Xi} is equivalent to the joint event {X = Xi, Y E Sy}.
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To determine the probability of the latter event we assume the general case of a

countably infinite sample space. Then, (7.3) becomes

P[(X,Y) E A] =
00 00

L L PX,y[Xi , Yj]· (7.4)

i = l j=l

{(i, j ):(X i, Yj )EA}

Next let A = {xd x Sy , which is illustrated in Figure 7.4 for k = 3. Then, we have

Y

Y3 • •

Y2 • •

Yl • •

•
•

•

• •••

• •••

• •••

_ - - + - + - - - + _ ~ I - - _ I - - - _ ~ x

Figure 7.4: Determination of marginal PMF value PX[X3] from joint PMF

PX,Y[Xi , Yj] by summing along Y direction.

P[(X,Y) E {xd x Sy] P[X = Xk, Y E Sy]

= P[X = Xk]

PX[Xk]

so that from (7.4) with i = k only

00

PX[Xk] = LPX,Y[Xk, Yj]

j=l

(7.5)

and is obtained for k = 3 by summing the probabilities along the column shown

in Figure 7.4. The terminology "marginal" PMF originates from the process of

summing the probabilities along each column and writing the results in the margin

(below the x axis) , much the same as the process for computing the marginal prob­

ability discussed in Section 4.3. Likewise, by summing along each row or in the x

direction we obtain the marginal PMF for Y as

00

PY[Yk] = LPX,y[Xi ,Yk].

i= l

(7.6)

In summary, we see that from the joint PMF we can obtain the marginal PMFs.

Another example follows.
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pX,y[i,j] =

Example 7.2 - Two coin t oss

As before we toss a penny and a nickel and map the outcomes into a 1 for a head

and a 0 for a tail. The random vector is (X,Y) , where X is the random variable

representing the penny outcome and Y is the random variable representing the nickel

outcome. The mapping is shown in Figure 7.2. Consider the joint PMF

k i = O,j = °
k i = O,j = 1

i i=l ,j=O

~ i = 1,j = 1.

Then, the marginal PMFs are given as

px[i] ~ t,Px,Y[i,j] ~ {

py[j] ~ t,PX,Y[i,j] ~ {

1 1 1 . 0
8+8=4 2=

i + ~ = i i=l

k+i=i j=O

k + ~ = i j=1.

As expected, L : ~ = o p x [ i ] = 1 and L:}=opy[j] = 1. We could also have arranged the

joint PMF and marginal PMF values in a table as shown in Table 7.2. Note that

j=O j=l px[i]

i=O 1 1 1
8 8 4

i = 1 1 1 3
4 2 4

py[j] 3 5
8 8

Table 7.2: Joint P MF and marginal PMF values for Examples 7.2 and 7.4.

the marginal P MFs are found by summing across a row (for px) or a column (for

py) and are written in the "margins".

Joint P M F cannot be d etermined fr om m arginal P MFs.

Having obtained the marginal PMFs from the joint PMF, we might suppose we

could reverse the process to find the joint P MF from the marginal PMFs. However,

this is not possible in general. To see why, consider the joint PMF summarized in

Table 7.3. The marginal PMFs are the same as the ones shown in Table 7.2. In
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j =O j = l px [i]

i =O 1 3 1
16 16 4"

i = 1 5 7 3
16 16 4"

py[j] 3 5
8" 8"

Table 7.3: Joint P MF values for "caut ion" example.
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fact, there are an infinite number of joint PMFs that have the same ma rginal PMFs.

Hence,

joint PMF =} marginal PMFs

but

marginal PMFs =/? joint PMF.

L1h
A joint cumulative distribution function (CDF) can also be defined for a random

vecto r. It is given by

Fx ,Y( x , y) = P [X :s x ,Y :s y]

and can be found exp licitly by summing the joint PMF as

Fx ,Y( x , y) = L L PX,y[Xi, Yj].

{(i,j) :Xi :-S: x,Yj:-S:Y}

(7.7)

(7.8)

An example is shown in Figure 7.5, along with the joint P MF. The marginal CDFs

can be easily found from the joint CDF as

Fx (x )

Fy (y)

P[X :s x] = P[X :s x ,Y < 00] = Fx,Y(x, 00)

p ry :s y] = P[X < 00,Y :s y] = Fx ,y (oo, y).

T he joint CDF has the usual propert ies which are :

Property 7.3 - Range of values

o:s Fx ,Y (x ,y) :s 1

o

P roperty 7.4 - Values at "endpoints"

Fx,y(-oo, - 00) 0

Fx,y(oo, 00) 1

o
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Property 7.5 - Monotonically increasing

Fx,y(x, y) monotonically increases as x and/or y increases.
o

Property 7.6 - "Right" continuous

As expected, the joint CDF takes the value after the jump. However, in this case

the jump is a line discontinuity as seen, for example, in Figure 7.5b. After the jump

means as we move in the northeast direction in the x-y plane.

.1
1

:--1

1
:.:.:.::

" ' , " , ".

. .

~1. ~ . ..

;:...

~O .5 . . . . .

o
4

J 2

o 0

. .. .. . . . . ...... . . . . .

. : .

2

(a) Joint PMF

3 4

'""£1
~

;:...

~O .5~ . . .

y

x

(b) Joint CDF

4

Figure 7.5: Joint PMF and corresponding joint CDF.

o
The reader is asked to verify some of these properties in Problem 7.17. Finally, to

recover the PMF we can use

The reader should verify this formula for the joint CDF shown in Figure 7.5b. In

particular, consider the joint PMF at the point (Xi,Yj) = (2,2) to see why we need

four terms.

7.5 Independence of Multiple Random Variables

Consider the experiment of tossing a coin and then a die. The outcome of the coin

toss is denoted by X and equals 0 for a tail and 1 for a head. The outcome for the

die is denoted by Y, which takes on the usual values 1,2,3,4,5,6. In determining
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the probability of the random vector (X,Y) taking on a value , there is no reason

to believe that the probability of Y = Yj should depend on the outcome of the coin

toss. Likewise, the probability of X = Xi should not depend on the outcome of the

die toss (especially since the die toss occurs at a later time). We expect that these

two events are independent. The formal definition of independent random variables

X and Y is that they are independent if all the joint events on SX,Y are independent.

Mathematically X and Yare independent random variables if for all events A C Sx
and B C Sy

P[X E A,Y E B] = P[X E A]P[Y E B]. (7.10)

The probabilities on the right-hand-side of (7.10) are defined on Sx and Sy, respec­

tively (see Figure 7.3 for an example of the relationship of Sx ,Sy to SX,y). The

utility of the independence property is that the probabilities of joint events may

be reduced to probabilities of "marginal events" (defined on Sx and Sy), which

are always easier to determine. Specifically, if X and Yare independent random

variables, then it follows from (7.10) that

(7.11)

as we now show. If A

becomes

{Xi} and B = {Yj} , then the left-hand-side of (7.10)

P[X E A ,Y E B] P[X = Xi, Y = Yj]

= PX,y[Xi ,Yj]

and the right-hand-side of (7.10) becomes

P[X E A]P[Y E B] = PX[Xi]Py[Yj].

Hence , if X and Yare independent random variables, the joint PMF factors into

the product of the marginal PMFs. Furthermore, the converse is true-if the joint

PMF factors, then X and Yare independent. To prove the converse assume that

the joint PMF factors according to (7.11). Then for all A and B we have

P[X E A, Y E B] = ~ ~ PX,y[Xi, Yj]

{i :XiEA} {j:YjEB}

= ~ ~ PX[Xi]PY[Yj]

{i:XiEA} {j:YjEB}

~ PX[Xi] ~ PY[Yj]

{i:XiEA} {j :YjEB}

P[X E A]P[Y E B].

(from (7.3))

(assumption)

We now illustrate the concept of independent random variables with some examples.
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Example 7.3 - Two coin toss - independence

Assume that we toss a penny and a nickel and that as usual a tail is mapped into

a 0 and a head into a 1. If all outcomes are equally likely or equivalently the joint

PMF is given in Table 7.4, then the random variables must be independent. This is

j=O j = 1 px[i]

i=O 1 1 1
4" 4" 2"

i = 1 1 1 1
4" 4" 2"

py[j] 1 1
2" 2"

Table 7.4: Joint PMF and marginal PMF values for Example 7.3.

because we can factor the joint PMF as

px,Y[i,j] = (~) (~) = px[i]py[j]

for all i and j for which px,y[i,j] is nonzero. Furthermore, the marginal PMFs

indicate that each coin is fair since px[O] = px[l] = 1/2 and py(O] = py(l] = 1/2.

o

Example 7.4 - Two coin toss - dependence

Now consider the same experiment but with a joint PMF given in Table 7.2. We

see that PX,y[O,O] = 1/8 =I- (1/4)(3/8) = px[O]py[O] and hence X and Y cannot

be independent. If two random variables are not independent, they are said to be
dependent.

Example 7.5 - Two coin toss - dependent but fair coins

Consider the same experiment again but with the joint PMF given in Table 7.5.

Since PX,y[O, 0] = 3/8 =I- (1/2)(1/2) = px[O]py[O] , X and Yare dependent. However,

j=O j=1 px[i]

i=O 3 1 1
8" 8" 2"

i = 1 1 3 1
8" 8" 2"

py[j] 1 1
2" 2"

Table 7.5: Joint PMF and marginal PMF values for Example 7.5.
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by examining the marginal PMFs we see that the coins are in some sense fair since

P[heads] = 1/2, and therefore we might conclude that the random variables were

independent. This is incorrect and underscores the fact that the marginal PMFs

do not tell us much about the joint PMF. The joint PMF of Table 7.4 also has the

same marginal PMFs but there X and Y were independent.

<)

Finally, note that if the random variables are independent, the joint CDF factors

as well. This is left as an exercise for the student (see Problem 7.20). Intuitively, if

X and Yare independent random variables, then knowledge of the outcome of X

does not change the probabilities of the outcomes of Y. This means that we cannot

predict Y based on knowing that X = X i. Our best predictor of Y is just E[Y], as

described in Example 6.3. When X and Yare dependent , however, we can improve

upon the predictor E[Y] by using the knowledge that X = Xi. How we actually do

this is described in Section 7.9.

7.6 Transformations of Multiple Random Variables

In Section 5.7 we have seen how to find the PMF of Y = g(X) if the PMF of X is

given. It is determined using

PY[Yi] = L pX[Xj].

{j :g(Xj )=Yi}

We need only sum the probabilities of the xi's that map into Vi. In the case of two

discrete random variables X and Y that are transformed into W = g(X, Y) and

Z = h(X, Y) , we have the similar result

i = 1,2, ... .Nw; j = 1,2, ... ,Nz

(7.12)

where Nw and/or Nz may be infinite. An example follows.

Example 7.6 - Independent Poisson random variables

Assume that the joint PMF is given as the product of the marginal PMFs, where

each marginal PMF is a Poisson PMF. Then,

>..k >..1
px,y[k,l] = exp[-(>..x + >..y)] ~zr k = 0,1 , ... j l = 0,1, ... (7.13)

Note that X rv Pois(>..x) , Y rv Pois(>..y) , and X and Yare independent random

variables. Consider the transformation

W

Z

g(X,Y) = X

h(X, Y) = X + Y. (7.14)
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The possible values of Ware those of X, which are a, 1, ... , and the possible values

of Z are also a, 1, .... According to (7.12), we need to determine all (k, l) so that

g(Xk' Yl) ui;

h(Xk, Yl) = Zj. (7.15)

But Xk and Yl can be replaced by k and l, respectively, for k = a, 1, ... and l =

a, 1, .... Also, Wi and Zj can be replaced by i and j, respectively, for i = a, 1, ... and

j = a,1, .... The transformation equations become

g(k, l) i

h(k, l) j

which from (7.14) become

Z k

J k + l.

Solving for (k,l) for the given (i,j) desired, we have that k = i and l = j - i ~ a,
which is the only solution. Note that from (7.13) the joint PMF for X and Y is

nonzero only if l = a, 1, .... Therefore, we must have l ~ a so that l = j - i ~ a.
From (7.12) we now have

pw,z[i,j]

00 00

L L px,y[k, l]
k=OI=O

{(k,l) :k=i,l=j - i ~ O }

px,y[i,j - i]u[i]u[j - i] (7.16)

where urn] is the discrete unit step sequence defined as

urn] = { ~

Finally, we have upon using (7.13)

n= ... ,-2,-1

n= a,l, ....

pW,z[i,j] =
Ai Aj - i

exp[-(AX + Ay)] 'It ! .),u[i]U[j - i]
z. J Z.

'i ,j-i . a 1
[( ' )]AXAy Z= " ...

exp - AX + Ay " ( ' _ ')'
z: J z. j = i, i + 1, ...

(7.17)

(7.18)
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&. Use the discrete unit step sequence to avoid mistakes.

As we have seen in the preceding example, the discrete unit step sequence was

introduced to designate the region of the w-z plane over which pw,z[i , j) is nonzero.

A common mistake in problems of this type is to disregard this region and assert

that the joint PMF given by (7.18) is nonzero over i = 0,1, ... ; j = 0,1 , . ... Note,

however , that the transformation will generally change the region over which the

new joint PMF is nonzero. It is as important to determine this region as it is to

find the analytical form of Pw,z. To avoid possible errors it is advisable to replace

(7.13) at the outset by

>..k >..1
px,y[k, l) = exp[-(>..x + >..y») :!lr u[k)u[l).

Then, the use of the unit step functions will serve to keep track of the nonzero PMF

regions before and after the transformation. See also Problem 7.25 for another

example.

&.
We sometimes wish to determine the PMF of Z = heX, Y) only, which is a trans­

formation from (X, Y) to Z. In this case, we can use an auxiliary random variable.

That is to say, we add another random variable W so that the transformation be­

comes a transformation from (X,Y) to (W, Z) as before. We can then determine

PW,Z[Wi ,Zj) by once again using (7.12), and then tiz , which is the marginal PMF,

can be found as

pZ[Zj] = L PW,Z[Wi, Zj).
{i :WiESw}

(7.19)

As we have seen in the previous example, we will first need to solve (7.15) for Xk and

YI. To facilitate the solution we usually define a simple auxiliary random variable

such as W = X.

Example 7.7 - PMF for sum of independent Poisson random variables

(continuation of previous example)

To find the PMF of Z = X + Y from the joint PMF given by (7.13), we use (7.19)

with W = X. We then have Sw = Sx = {O, I, ... } and

00

pz[j) = LPw,z[i ,j) (from (7.19» (7.20)
i=O

00 >..i >..j-it;exp[-(>..x + >..y») i!(j !i)! u[i)u[j - i) (from (7.17»



184 CHAPTER 7. MULTIPLE DISCRETE RANDOM VARIABLES

j = 0,1, . ...

pz[j]

and since uri] = 1 for i = 0,1, ... and u[j - i] = 1 for i = 0,1 , ... .i and u[j - i] = °
for i > i , this reduces to

j >..i >..j-i

pz[j] = ~exp[-(>..x + >"Y)]i!(~ !i)!

Note that Z can take on values j = 0,1 , ... since Z = X + Y and both X and Y

take on values in {O, 1, ... }. To evaluate this sum we can use the binomial theorem

as follows:

[ ( ' ')] 1 ~ j! d d-i
exp - /IX + /lY 1 LJ ( . _ ')1" /lX/ly

J. i=O J 2 .2.

1 j (j) . . .
exp[-(>..x + >..y)] j! ~ i >"x>..Fz

1 .
exp[-(>..x + >..y)] 1 (>..x + >..y)J (use binomial theorem)

J.
>..j

exp(->..)~ (let X = >"x + >..y)
J.

for j = 0,1, .... This is recognized as a Poisson PMF with X = >"x + >"y. By this

example then, we have shown that if X rv Pois(>..x), Y rv Pois(>..y), and X and

Yare independent, then X + Y rv Pois(>..x + >..y). This is called the reproducing

PMF property. It is also extendible to any number of independent Poisson random

variables that are added together.

<)

The formula given by (7.20) when we let pW,z[i,j] = px,y[i,j - i] from (7.16) is

valid for the PMF of the sum of any two discrete random variables, whether they

are independent or not. Summarizing, if X and Yare random variables that take

on integer values from -00 to +00, then Z = X + Y has the PMF

00

pz[j] = L px,y[i,j - i].
i= - oo

(7.21)

This result says that we should sum all the values of the joint PMF such that the

x value, which is i, and the y value, which is j - i, sums to the z value of j. In

particular, if the random variables are independent, then since the joint PMF must

factor, we have the result

00

pz[j] = L px[i]py[j - i].
i= - oo

(7.22)

But this summation operation is a discrete convolution [Jackson 1991]. It is usually

written succinctly as pz = PX *py, where * denotes the convolution operator. This
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result suggests that the use of Fourier transforms would be a useful tool since a

convolution can be converted into a simple multiplication in the Fourier domain.

We have already seen in Chapter 6 that the Fourier transform (defined with a +j)

of a PMF px[k] is the characteristic function ¢x(w) = E[exp(jwX)] . Therefore,

taking the Fourier transform of both sides of (7.22) produces

¢z(w) = ¢x(w)¢y(w)

and by converting back to the original sequence domain, the PMF becomes

pz[j] = F- 1 {¢x(w)¢y(w)}

(7.23)

(7.24)

where F- 1 denotes the inverse Fourier transform. An example follows.

Example 7.8 - PMF for sum of independent Poisson random variables

using characteristic function approach

From Section 6.7 we showed that if X,...., Pois(A), then

¢x(w) = exp [A(exp(jw) - 1)]

and thus using (7.23) and (7.24)

pz[j] F- 1 {exp [AX (exp(jw) - 1)] exp [Ay(exp(jw) - I)]}

F-1 {exp [(AX + Ay)(exp(jw) - I)]} .

But the characteristic function in the braces is that of a Poisson random variable.

Using Property 6.5 we see that z,...., Pois(Ax + AY). The use of characteristic func­

tions for the determination of the PMF for a sum of independent random variables

has considerably simplified the derivation.

\!
In summary, if X and Yare independent random variables with integer values, then

the PMF of Z = X + Y is given by

pz[k] F- 1 {¢x(w)¢y(w)}

t' dwJ-1r ¢x(w)¢y(w) exp( -jwk) 21r ' (7.25)

When the sample space SX,y is finite, it is sometimes possible to obtain the

PMF of Z = g(X, Y) by a direct calculation, thus avoiding the need to use (7.19).

The latter requires one to first find the transformed joint PMF Pw,z. To do so we

1. Determine the finite sample space Sz.

2. Determine which sample points (Xi,Yj) in SX,y map into each Zk E Sz-

3. Sum the probabilities of those (Xi,Yj) sample points to yield PZ[Zk] '
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Mathematically, this is equivalent to

PZ[Zk] = L L PX,y[Xi, Yj]·

{( i ,j) :Zk=9(Xi ,Yj)}

(7.26)

Px,y[i,j] =

An example follows.

Example 7.9 - Direct computation of PMF for transformed random

variable, Z = g(X, Y)

Consider the transformation of the random vector (X,Y) into the scalar random

variable Z = X 2 + y 2
. The joint PMF is given by

i i = O,j = 0

k i=l,j=O

k i = O,j = 1

i i = 1,j = 1.

To find the PMF for Z first note that (X, Y) takes on the values (i, j) = (0,0), (1,0) ,

(0,1) , (1, 1). Therefore, Z must take on the values Zk = i 2 + j2 = 0,1,2. Then from

(7.26)

PZ[O] L L pX,y(i,j]
{(i,j) :O=i2 + j2 }

o 0

L LPx,y[i,j]
i=O j=O

3
PX,y[O, 0] = 8

and similarly

pz[l]

pz[2]

7.7 Expected Values

2
PX,y[O, 1] +px,y[l , 0] = 8

3
px,y[l,l] = 8'

In addition to determining the PMF of a function of two random variables, we

are frequently interested in the average value of that function. Specifically, if Z =

g(X, Y), then by definition its expected value is

E[Z] = L ZiPZ[ziJ. (7.27)
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To determine E[Z] according to (7.27) we need to first find the PMF of Z and

then perform the summation. Alternatively, by a similar derivation to that given in

Appendix 6A, we can show that a more direct approach is

E[Z] = I:I: g(Xi, Yj)PX,Y[Xi, Yj]·
j

(7.28)

To remind us that we are using PX,Y as the averaging PMF, we will modify our

previous notation from E[Z] to Ex,y[Z], where of course, Z depends on X and Y .

We therefore have the useful result that the expected value of a function of two

random variables is

Ex,y[g(X,Y)] = I:I: g(Xi ,Yj)pX,Y[Xi ,Yj]·
j

Some examples follow.

Example 7.10 - Expected value of a sum of random variables

If Z = g(X,Y) = X + Y, then

(7.29)

Ex,y[X + Y] = I:I:(Xi + Yj)pX,Y[Xi, Yj]
j

I:I:XiPX,y [Xi, Yj] +I:I:YjPX,y[Xi, Yj]
j j

I:Xi I:PX,y[Xi ,Yj] +I:Yj I:PX,Y[Xi' Yj] (from (7.6))
j j,

v

PX[Xi]

Ex[X] + Ey[Y]

v

PY[Yj]

(definition of expected value).

Hence , the expected value of a sum of random variables is the sum of the expected

values. Note that we now use the more descriptive notation Ex [X] to replace E[X]

used previously.

Similarly

Ex,y[aX + bY] = aEx[X] + bEy[Y]

and thus as we have seen previously for a single random variable, the expectation

Ex,y is a linear operation.

Example 7.11 - Expected value of a product of random variables

If g(X, Y) = XY, then

Ex,y[XY] = I:I:XiYjPX,y[Xi ,Yj].
i j
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We cannot evaluate this further without specifying PX,y. If, however, X and Yare

independent, then since the joint PMF factors, we have

Ex,y[XY) 2: 2: XiYjPX [Xi)PY [Yj)
j

2: XiPX[Xi) 2: YjPY[Yj)
j

= Ex [X)Ey(Y). (7.30)

More generally, we can show by using (7.29) that if X and Yare independent, then

(see Problem 7.30)

Ex,y(g(X)h(Y)) = Ex [g(X))Ey(h(Y)). (7.31)

<>

(definition of variance)

(from (7.28))

Example 7.12 - Variance of a sum of random variables

Consider the calculation of var(X + Y). Then, letting Z = g(X,Y) = (X + Y ­

Ex,y[X + y))2 , we have

var(X + Y)

Ez[Z)

Ex,y[g(X,Y))

Ex,y[(X + Y - Ex,y[X + y])2)

= Ex,y[[(X - Ex [X)) + (Y - Ey[Y))f)

Ex,y[(X - Ex [X]) 2 + 2(X - Ex[X))(Y - Ey[Y))

+ (Y _ E y [y ])2)

Ex[(X - Ex[X)f] + 2Ex,y((X - Ex[X])(Y - Ey[YJ)]

+ Ey[(Y - Ey[y])2] (linearity of expectation)

var(X) + 2Ex,y[(X - Ex[X])(Y - Ey[YJ)] + var(Y) (definition of variance)

where we have also used Ex,y[g(X)] = Ex[g(X)] and Ex,y(h(Y)] = Ey[h(Y)] (see

Problem 7.28). The cross-product term is called the covariance and is denoted by

cov(X,Y) so that

cov(X,Y) = Ex,y[(X - Ex[X])(Y - Ey[YJ)] . (7.32)

Its interpretation is discussed in the next section. Hence, we finally have that the

variance of a sum of random variables is

var(X + Y) = var(X) + var(Y) + 2cov(X, Y). (7.33)
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Unlike the expected value or mean, the variance of a sum is not in general the sum

of the variances. It will only be so when cov(X, Y) = O. An alternative expression

for the covariance is (see Problem 7.34)

cov(X, Y) = Ex,y[XY] - Ex [X]Ey[Y] (7.34)

which is analogous to Property 6.1 for the variance.

7.8 Joint Moments

Joint PMFs describe the probabilistic behavior of two random variables completely.

At times it is important to answer questions such as "If the outcome of one random

variable is a given value, what can we say about the outcome of the other random

variable? Will it be about the same or have the same magnitude or have no relation­

ship to the other random variable?" For example, in Table 4.1, which lists the joint

probabilities of college students having various heights and weights, there is clearly

some type of relationship between height and weight. It is our intention to quantify

this type of relationship in a succinct and meaningful way as opposed to a listing

of probabilities of the various height-weight pairs. The concept of the covariance

allows us to accomplish this goal. Note from (7.32) that the covariance is a joint

central moment. To appreciate the information that it can provide we refer to the

three possible joint PMFs depicted in Figure 7.6. The possible values of each joint

PMF are shown as solid circles and each possible outcome has a probability of 1/2.

In Figure 7.6a if X = 1, then Y = 1, and if X = -1, then Y = -1. The relationship

---+--,f--+--__ X

y y

,
-1,1'

",' -1

, ,, ,

''''', 1 ,,_'
, ,, ,, ,
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-1

-1

,

"." 1
,,,

---+--+.--+--__ X

1

,,
,.'

,,,,
,

-1 ",
,,'- -1

(a) pX,Y[ -1, -1] =
px,Y[l, 1] = 1/2

(b) px,y[l, -1]

PX,Y[ - 1,1] = 1/2

(c) px,y[l,l] =
px,y[l, -1] = 1/2

Figure 7.6: Joint PMFs depicting different relationships between the random vari­

ables X and Y.

is Y = X. Note, however, that we cannot determine the value of Y until after the

experiment is performed and we are told the value of X. If X = Xl , then we know

that Y = X = Xl. Likewise, in Figure 7.6b we have that Y = -X and so if X = Xl,
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then Y = -Xl. However, in Figure 7.6c if X = 1, then Y can equal either +1 or

-1. On the average if X = 1, we will have that Y = 0 since Y = ± 1 with equal

probability. To quantify these relationships we form the product XY, which can

take on the values +1 , -1, and ±1 for the joint PMFs of Figures 7.6a, 7.6b, and

7.6c, respectively. To determine the value of XY on the average we define the joint

moment as Ex,y[XY]. From (7.29) this is evaluated as

Ex,y[XY] = LLxiYjPX,Y[Xi ,Yj] .

j

(7.35)

The reader should compare the joint moment with the usual moment for a single

random variable Ex[X] = Li XiPX[Xi]. For the joint PMFs of Figure 7.6 the joint

moment is

Ex,y[XY]

2 2

L L XiYjPX,Y[Xi , Yj]

i = l j = l

1 1
(1)(1)2" + (-1)( -1)2" = 1

(1)( -1)~ + (-1)(1)~ = -1
2 2
1 1

(1)(-1)2" + (1)(1)2" = 0

(for PMF of Figure 7.6a)

(for PMF of Figure 7.6b)

(for PMF of Figure 7.6c)

as we might have expected.

In Figure 7.6a note that Ex[X] = Ey[Y] = O. If they are not zero, as for the

joint PMF shown in Figure 7.7 in which Ex,y[XY] = 2, then the joint moment will

Y

2

1

.',,,,,,,,,,,
---Jf--+---f--+X,,,, 1 2

Figure 7.7: Joint PMF for nonzero means with equally probable outcomes.

depend on the values of the means. It is seen that even though the relationship

Y = X is preserved, the joint moment has changed. To nullify this effect of having

nonzero means influence the joint moment it is more convenient to use the joint

central moment

Ex,y[(X - Ex [X]) (Y - Ey[Y])] (7.36)
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which will produce the desired +1 for the joint PMF of Figure 7.7. This quantity

is recognized as the covariance of X and Y so that we denote it by cov(X, Y). As

we have just seen, the covariance may be positive, negative, or zero. Note that the

covariance is a measure of how the random variables covary with respect to each

other. If they vary in the same direction, i.e., both positive or negative at the same

time, then the covariance will be positive. If they vary in opposite directions, the

covariance will be negative. This explains why var(X + Y) may be greater than

var(X) + var(Y), for the case of a positive covariance. Similarly, the variance of

the sum of the random variables will be less than the sum of the variances if the

covariance is negative.

If X and Yare independent random variables, then from (7.31) we have

cov(X, Y) Ex,y[(X - Ex [X])(Y - Ey[Y])]

Ex[X - Ex[X]]Ey[Y - Ey[Y]] = 0. (7.37)

Hence, independent random variables have a covariance of zero. This also says that

for independent random variables the variance of the sum of random variables is the

sum of the variances, i.e., var(X + Y) = var(X) +var(Y) (see (7.33)). However, the

covariance may still be zero even if the random variables are not independent - the

converse is not true. Some other properties of the covariance are given in Problem

7.34.

~ Independence implies zero covariance but zero covariance does

not imply independence.

Consider the joint PMF which assigns equal probability of 1/4 to each of the four

points shown in Figure 7.8. The joint and marginal PMFs are listed in Table 7.6.

y

(0,1)

------t--.....--..... x
(-1,0) (1,0)

(0, -1)

Figure 7.8: Joint PMF of random variables having zero covariance but that are

dependent.

For this joint PMF the covariance is zero since

Ex [X] = -1 ( ~ ) +°(~) + 1 (~) = °
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j =-1 j=O j = 1 px[i]

i =-1 0 1 0 1
4 4

i=O 1 0 1 1
4 4 2

i = 1 0 1 0 1
4 4

py[j] 1 1 1
4 2 4

Table 7.6: Joint PMF values.

(7.38)

and thus from (7.34)

cov(X, Y) = Ex,y[XY]

1 1

= L L ijpx,y[i,j] = 0
i=-lj=-l

since either x or Y is always zero. However, X are Yare dependent because

px,y[l,O] = 1/4 but px[l]py[O] = (1/4)(1/2) = 1/8. Alternatively, we may ar­

gue that the random variables must be dependent since Y can be predicted from X.

For example, if X = 1, then surely we must have Y = O.

More generally the joint k-lth moment is defined as

EX,y[Xky
l]

= L L xfY;PX,Y[Xi, Yj]

j

for k = 1,2, ... ;1 = 1,2, ... , when it exists. The joint k-lth central moment is

defined as

Ex,y[(X - Ex[X])k(y - Ey[y])l] = L L(Xi - Ex [X])k(Yj - Ey[y])lpX,Y[Xi, Yj]

i j

(7.39)

for k = 1,2, .. . ;1= 1,2, ... , when it exists.

7.9 Prediction of a Random Variable Outcome

The covariance between two random variables has an important bearing on the

predictability of Y based on knowledge of the outcome of X. We have already seen

in Figures 7.6a,b that y can be perfectly predicted from X as Y = X (see Figure

7.6a) or as Y = -X (see Figure 7.6b). These are extreme cases. More generally, we

seek a predictor of Y that is linear (actually affine) in X or

Y = aX +b
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where the "hat" indicates an estimator. The constants a and b are to be chosen so

that "on the average" the observed value of Y, which is ax + b if the experimental

outcome is (x , y) , is close to the observed value of Y, which is y. To determine these

constants we shall adopt as our measure of closeness the mean square error (MSE)

criterion described previously in Example 6.3. It is given by

mse(a, b) = Ex,Y[(Y - Y)2]. (7.40)

Note that since the predictor Y depends on X, we need to average with respect

to X and Y. Previously, we let Y = b, not having the additional information of

the outcome of another random variable. It was found in Example 6.3 that the

optimal value of b, i.e., the value that minimized the MSE, was bopt = Ey[Y] and

therefore Y = Ey[Y]. Now, however, we presume to know the outcome of X. With

the additional knowledge of the outcome of X we should be able to find a better

predictor. To find the optimal values of a and b we minimize (7.40) over a and b.

Before doing so we simplify the expression for the MSE. Starting with (7.40)

mse(a,b) Ex,y[(Y - aX - b)2]

Ex,y[(Y - aX)2 - 2b(Y - aX) + b2]

Ex,y[y2 - 2aXY + a2X 2 - 2bY + 2abX + b2]

Ey[y2] - 2aEx,y[XY] + a2Ex[X2]- 2bEy[Y] + 2abEx[X] + b2.

To find the values of a and b that minimize the function mse(a, b), we determine a

stationary point by partial differentiation. Since the function is quadratic in a and

b, this will yield the minimizing values of a and b. Using partial differentiation and

setting each partial derivative equal to zero produces

8mse(a , b)

8a
8mse(a, b)

8b

-2Ex,y[XY] + 2aEx[X2] + 2bEx[X] = 0

= -2Ey[Y] + 2aEx[X] + 2b = 0

and rearranging yields the two simultaneous linear equations

Ex [X
2]a + Ex [X]b

Ex[X]a+b =

The solution is easily shown to be

Ex,y[XY]

Ey[Y].

aopt

bopt

Ex,y[XY] - Ex [X]Ey[Y] cov(X, Y)

EX[X2]- El[X] var(X)

cov(X,Y)
Ey [Y]- aoptEx[X] = Ey[Y] - var(X) Ex [X]
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so that the optimal linear prediction of Y given the outcome X = x is

Y aoptx + bopt

cov(X, Y) x + Ey[Y) _ cov(X, Y) Ex [X)
var(X) var(X)

or finally

Y = E [Y) cov(X, Y) ( - E [X))
y + var(X) x X .

(7.41)

Note that we refer to Y= aX + b as a predictor but Y= ax + b as the prediction,

which is the value of the predictor. As expected, the prediction of Y based on X = x

depends on the covariance. In fact , if the covariance is zero , then Y = Ey[Y], which

is the best linear predictor of Y without knowledge of the outcome of X. In this

case, X provides no information about Y. An example follows.

Example 7.13 - Predicting one random variable outcome from knowledge

of second random variable outcome

Consider the joint PMF shown in Figure 7.9a as solid circles where all the outcomes

are equally probable. Then, SX,y = {(O, 0), (1, 1), (2,2), (2, 3)} and the marginals

43012

(x-Ex [XD/v!var(X)

I ~ 3

2

: . ' : : : : .. . . . . • .> ..
~ ·· .:·.. ~·,~·<t · :·
::::::: 1 ;... : 1.:..
~ .. . Y:

s
:.....

rS 0 / .

I .. ~ :

~-1/ 'r :
.... :

-2'----'---~-~-~-~----'

-2 -14321

X

o-1

2

3

o

,

" ' ~ ' / / l :. / .
~ .

/ ' .
. ."., :

~/ y
. . . . /..
". /..

/ .
/

-1 : ., .,
-2 L.-_-'--_~_---'-_--'-_~_----l

-2

(a) Nonstandardized X and Y (b) Standardized X and Y

Figure 7.9: Joint PMF (shown as solid circles having equal probabilities) and best

linear prediction of Y when X = x is observed (shown as dashed line).
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are found by summing along each direction to yield

195

py[j] =

px[i] ~ U
1
4
1
4
1
4
1
4

i=O

i = 1

i=2

j=O

j=1

j=2

j = 3.

Y =

As a result , we have from the marginals that Ex[X] = 5/4, Ey[Y] = 3/2, Ex[X2
] =

9/4, and var(X) = Ex[X2
] - El[X] = 9/4 - (5/4)2 = 11/16. From the joint PMF

we find that Ex,y[XY] = (0)(0)1/4 + (1)(1)1/4 + (2)(2)1/4 + (2)(3)1/4 = 11/4,

which results in cov(X, Y) = Ex,y[XY] - Ex [X] Ey[Y] = 11/4 - (5/4)(3/2) = 7/8.

Substituting these values into (7.41) yields the best linear prediction of Y as

3 7/8 ( 5)
2" + 11/16 x -:4
14 1
- x-­
11 11

which is shown in Figure 7.9a as the dashed line . The line shown in Figure 7.9a is

referred to as a regression line in statistics. What do you think would happen if the

probability of (2,3) were zero , and the remaining three points had probabilities of

1/3?

c
The reader should be aware that we could also have predicted X from Y = Y

by interchanging X and Y in (7.41). Also, we note that if cov(X,Y) = 0, then

Y = Ev [Y] or X = x provides no information to help us predict Y. Clearly, this

will be the case if X and Yare independent (see (7.37)) since independence of two

random variables implies a covariance of zero. However, even if the covariance is

zero , the random variables can still be dependent (see Figure 7.8) and so prediction

should be possible. This apparent paradox is explained by the fact that in this

case we must use a nonlinear predictor, not the simple linear fun ction aX + b (see

Problem 8.27).

The optimal linear prediction of (7.41) can also be expressed in standardized

form. A standardized random variable is defined to be one for which the mean is

zero and the variance is one. An example would be a random variable that takes

on the values ±1 with equal probability. Any random variable can be standardized

by subtracting the mean and dividing the result by the square root of the variance

to form
x, = X -Ex[X]

vvar(X)
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(see Problem 7.42). For example, if X f'J Pois(A), then X; = (X - A)/.JX, which is

easily shown to have a mean of zero and a variance of one. We next seek the best

linear prediction of the standardized Y based on a standardized X = x. To do so we

define the standardized predictor based on a standardized X , = X s as

~ Y - Ey[Y]
Ys = .

Jvar(Y)

Then from (7.41), we have

Y - Ey[Y] cov(X, Y) x - Ex [X]
=

Jvar(Y) Jvar(Y)var(X) Jvar(X)

and therefore
Y

s
= cov(X, Y) X

S

'

Jvar(X)var(Y)

Example 7.14 - Previous example continued

For the previous example we have that

x - 5/4

Jll/16

Y -3/2

074
and

cov(X, Y) 7/8
---;====;:::::::::::::;=====;=:=.::: = ~ 0.94
Jvar(X)var(Y) J(1l/16)(5/4)

so that

and is displayed in Figure 7.9b.

The factor that scales X s to produce Ys is denoted by

cov(X, Y)
px y = ----r=~=='=7.==:;:;:

, Jvar(X)var(Y)

(7.42)

(7.43)

and is called the correlation coeffi cient. When X and Y have PX,y i- 0, then X and

Yare said to be correlated. If, however, the covariance is zero and hence PX ,y = 0,

then the random variables are said to be uncorrelated. Clearly, independent ran­

dom variables are always uncorrelated, but not the other way around. Using the

correlation coefficient allows us to express the best linear prediction in its standard­

ized form as Ys = PX,yxs ' The correlation coefficient has an important property
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in that it is always less t han one in magnitude. In t he pr evious example, we had

PX,y ~ 0.94.

Property 7.7- Correlation coefficient is always less than or equal to one

in magnitude or Ipx ,y I ::S 1.

Proof: The proof relies on the Cauchy-Schwar z inequ ality for random vari ables.

This inequ ality is analogous to t he usual one for the dot product of Euclidean vectors

v and w , wh ich is

Iv.w] ::S llvllllwll

where llvll denotes t he length of the vector. Equality holds if and only if the vectors

are collinear . Collinearity means that w = cv for c a constant or t he vect ors point in

the same direction. For random vari ables V an d W the Cau chy-Schwarz inequ ality

says that

(7.44)

with equality if and only if W = cV for c a constant . See Appendix 7A for a

derivation . Thus letting V = X - Ex [X] and W = Y - Ey[Y], we have

Ipx,yl =
Icov(X, Y)I

J var (X )var (Y )

IEv,w[VW]1 < 1

J Ev [V2] J Ew [W2] -

using (7.44). Equality will hold if and only if W = cV or equivalent ly if Y -Ey [Y] =
c(X - Ex [Xj) , which is eas ily shown to imply t hat (see Problem 7.45)

{
1 if Y = aX + b with a > 0

PX ,y = -1 if Y = aX + b with a < 0

for a and b constants.

o
Note that when PX ,y = ±1, Y can be perfectly predicted from X by using Y =
aX + b. See also Figures 7.6a and 7.6b for examples of when PX,y = +1 and

PX ,Y = -1 , resp ectively.

.& Correlation between random variables does not imply a causal

relationship between the random variables.

A frequ ent misappl ication of probability is to assert t hat two qu anti ties t hat are

correlated (pX ,y =I 0) are such because one causes the other. To dis pe l this myth

consider a survey in which all individuals older than 55 years of age in the U.S. are

asked whet her t hey have ever had prostate cancer and also t heir height in inches.

T hen , for each height in inches we compute t he average number of indi viduals per
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Figure 7.10: Incidence of prostate cancer per 1000 individuals older than age 55

versus height.

1000 who have had cancer. If we plot the average number , also called the incidence

of cancer, versus height, a typical result would be as shown in Figure 7.10. This

indicates a strong positive correlation of cancer with height. One might be tempted

to conclude that growing taller causes prostate cancer. This is of course nonsense.

What is actually shown is that segments of the population who are tall are associated

with a higher incidence of cancer. This is because the portion of the population of

individuals who are taller than the rest are predominately male. Females are not

subject to prostate cancer , as they have no prostates! In summary, correlation

between two variables only indicates an association, i.e., if one increases, then so

does the other (if positively correlated). No physical or causal relationship need

exist .

7.10 Joint Characteristic Functions

The characteristic function of a discrete random variable was introduced in Section

6.7. For two random variables we can define a joint characteristic function. For the

random variables X and Y it is defined as

¢X,y(WX,wy) = Ex,y[exp[j(wx X +WyY)]] . (7.45)
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Assuming both random variables take on integer values , it is evaluated using (7.29)

as
00 00

¢X,y(wx,wy) = L L px,y[k,l]exp[j(wxk+wyl)] .

k=-ool=-oo

(7.46)

It is seen to be the two-dimensional Fourier transform of the two-dimensional se­

quence px,y[k, l] (note the use of +j as opposed to the more common -j in the

exponent ial). As in the case of a single random variable, the characteristic function

can be used to find moments. In this case, the joint moments are given by the

formula

E [Xmyn] = _1_ 8
m+n¢x

,y(wx,wy) I .
X,Y 'm+n 8wm8wn

J X Y wx=wy=O

In particular, the first joint moment is found as

Ex,y[XY] = _ 8
2¢x

,y(wx ,wy) I .
8wx8wy wx =wy = O

(7.47)

(joint PMF factors)

Another important application is to finding the PMF for the sum of two independent

random variables. This application is based on the result that if X and Yare

independent random variables, the joint characteristic function factors due to the

property Ex,y[g(X)h(Y)] = Ex[g(X)]Ey[h(Y)] (see (7.31)). Before deriving the

PMF for the sum of two independent random variables, we prove the factorization

result, and then give a theoretical application. The factorization of the characteristic

function follows as

00 00

¢X,y(wx,wy) = L L px,y[k,l]exp[j(wxk+wyl)]

k=-ool=-oo

00 00

L L PX [k]py [l] exp[jwx k] exp[jwyl]

k=-ool=-oo

00 00

L px[k] exp[jwxk] L py[l] exp[jwyl]

k=-oo 1=-00

¢x(wx)¢y(wy). (definition of characteristic function (7.48)

for single random variable).

The converse is also true-if the joint characteristic function factors, then X and

Yare independent random variables. This can easily be shown to follow from the

inverse Fourier transform relationship. As an application of the converse result,

consider the tranformed random variables W = g(X) and Z = h(Y) , where X and

Yare independent. We prove that Wand Z are independent as well, which is to

say junctions o] independent random variables are independent. To do so we show
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that the joint characteristic function factors. The joint characteristic function of the

transformed random variables is

4>w,z(ww,wz) = Ew,z[exp[j(wwW + wzZ)]].

But we have that

4>w,z(ww, wz) Ex,y[exp[j(wwg(X) + wzh(Y)]]

Ex [exp(jww g(X)) ]Ey [exp(jwz h(Y))]

Ew[exp(jwwW)]Ez[exp(jwz Z)]

4>w(ww)4>z(wz)

(slight extension of (7.28))

(same argument as used to

yield (7.31))

(from (6.5))

(definition)

and hence Wand Z are independent random variables. As a general result, we can

now assert that if X and Yare independent random variables, then so are g(X)

and h(Y) for any functions 9 and h.

Finally, consider the problem of determining the PMF for Z = X +Y, where X

and Yare independent random variables. We have already solved this problem using

the joint PMF approach with the final result given by (7.22). By using characteristic

functions, we can simplify the derivation. The derivation proceeds as follows.

Ez[exp(jwzZ)]

Ex,y[exp(jwz(X + Y)]

Ex,y[exp(jwzX) exp(jwzY)]

Ex [exp(jwzX)]Ey[exp(jwzY)]

4>x (wz )4>y(wz).

(definition)

(from (7.28) and (7.29))

(from (7.31))

To find the PMF we take the inverse Fourier transform of 4>z(wz) , replacing wz by

the more usual notation w, to yield

pz[k] = i: 4>x (w)4>y (w) exp( -jwk) ~ ~
00

L px[i]py[k - i]
i=-oo

which agrees with (7.22). The last result follows from the property that the Fourier

transform of a convolution sum is the product of the Fourier transforms of the

individual sequences.

7.11 Computer Simulation of Random Vectors

The method of generating realizations of a two-dimensional discrete random vector

is nearly identical to the one-dimensional case. In fact, if X and Yare independent,



7.11 . COMPUTER SIMULATION OF RANDOM VECTORS 201

then we generate a realization of X, say Xi , according to PX[Xi] and a realization ofY,

say Yj, according to py[Yj] using the method of Chapter 5. Then we concatenate the

realizations together to form the realization of the vector random variable as (Xi,Yj).
Furthermore, independence reduces the problems of estimating a joint PMF, a joint

CDF, etc. to that of the one-dimensional case. The joint PMF, for example, can be

estimated by first estimating PX[Xi] as PX[Xi], then estimating PY[Yj] as PY[Yj], and

finally forming the estimate of the joint PMF as PX,y[Xi,Yj] = PX[Xi]PY[Yj] .

When the random variables are not independent, we need to generate a realiza­

tion of (X, Y) simultaneously since the value obtained for X is dependent on the

value obtained for Y and vice versa. If both Sx and Sy are finite , then a simple

procedure is to consider each possible realization (Xi, Yj) as a single outcome with

probability PX,y[Xi,Yj]· Then, we can apply the techniques of Section 5.9 directly.

An example is given next.

Example 7.15 - Generating realizations of jointly distributed random

variables

Assume a joint PMF as given in Table 7.7. A simple MATLAB program to generate

j=O j=1

i=O 1 1
8" 8"

i = 1 1 1
4 2

Table 7.7: Joint PMF values for Example 7.15.

a set of M realizations of (X,Y) is given below.

for m=l:M

u=randC1, 1) j

if u<=1/8

x(m,l)=Ojy(m,l)=O;

elseif u>1/8&u<=1/4

x(m,l)=O;y(m,l)=l;

elseif u>1/4&u<=1/2

x(m,l)=l;y(m,l)=O;

else

x(m,l)=l;y(m,l)=l;

end

end

Once the realizations are available we can estimate the joint PMF and marginal
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PMFs as
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i = 0, 1

j = 0,1

px,y[i ,j]

px[i]

py[j]

Number of outcomes equal to (i,j)

M

= px,y[i ,O] +px,y[i , 1]

= PX,y[O,j] +px,y[l,j]

i = 0, 1; j = 0, 1

and the joint moments are estimated as

where (xrn , Yrn) is the mth realization. Other quantities of interest are discussed in

Problems 7.49 and 7.51.

7.12 Real-World Example - Assessing Health Risks

An increasingly common health problem in the United States is obesity. It has been

found to be associated with many life-threatening illnesses, especially diabetes. One

way to define what constitutes an obese person is via the body mass index (BMI)

[CDC 2003]. It is computed as

BMI = 703W
H2

(7.49)

where W is the weight of the person in pounds and H is the person's height in inches.

BMls greater than 25 and less than 30 are considered to indicate an overweight

person, and 30 and above an obese person [CDC 2003]. It is of great importance to

be able to estimate the PMF of the BMI for a population of people. For example,

in Chapter 4 we displayed a table of the joint probabilities of heights and weights

for a hypothetical population of college students. For this population we would

like to know the probability or percentage of obese persons. This percentage of the

population would then be at risk for developing diabetes. To do so we could first

determine the PMF of the BMI and then determine the probability of a BMI of 30

and above. From Table 4.1 or Figure 7.1 we have the joint PMF for the random

vector (H, W). To find the PMF for the BMI we note that it is a function of Hand

W or in our previous notation, we wish to determine the PMF of Z = g(X, Y), where

Z denotes the BMI, X denotes the height, and Y denotes the weight. The solution

follows immediately from (7.26). One slight modification that we must make in

order to fit the data of Table 4.1 into our theoretical framework is to replace the

height and weight intervals by their midpoint values. For example, in Table 4.1 the

probability of observing a person with a height between 5' 8" and 6' and a weight of

between 130 and 160 lbs. is 0.06. We convert these intervals so that we can say that
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the probability of a person having a height of 5'10/1 and a weight of 145 lbs, is 0.06.

Next to determine the PMF we first find the BMI for each height and weight using

(7.49), rounding the result to the nearest integer. This is displayed in Table 7.8.

WI W 2 W 3 W4 Ws

115 145 175 205 235

HI 52 21 27 32 37 43
H

25'6/1 19 23 28 33 38
H

3
5'10/1 16 21 25 29 34

H46'2/1 15 19 22 26 30
Hs 6'6/1 13 17 20 24 27

Table 7.8: Body mass indexes for heights and weights of hypothetical college stu­

dents.

353025
BMI

20

lI"o
15

0.02

0.04

0.16

0.06

~ 0.1

:=:E
0.. 0.08

0.12

0.14

Figure 7.11: Probability mass function for body mass index of hypothetical college

population.

Then, we determine the PMF by using (7.26). For example, for a BMI = 21, we

require from Table 7.8 the entries (H, W) = (5'2" ,115) and (H, W) = (5'10/1 ,145).

But from Table 4.1 we see that

P[H = 5'2", W = 115] 0.08

P[H = 5'10/1 , W = 145] 0.06

and therefore P[BMI = 21] = 0.14. The other values of the PMF of the BMI

are found similarly. This produces the PMF shown in Figure 7.12. It is seen that
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the probability of being obese as defined by the BMI (BMI ;::: 30) is 0.08. Stated

another way 8% of the population of college students are obese and so are at risk

for diabetes.
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Problems

7.1 (w) A chess piece is placed on a chessboard, which consists of an 8 x 8 array

of 64 squares. Specify a numerical sample space SX,Y for the location of the

chess piece.

7.2 (w) Two coins are tossed in succession with a head being mapped into a +1 and

a tail being mapped into a -1. If a random vector is defined as (X, Y) with

X representing the mapping of the first toss and Y representing the mapping

of the second toss , draw the mapping. Use Figure 7.2 as a guide. Also, what

is SX,Y?

7.3 C.:....) (w) A woman has a penny, a nickel, and a dime in her pocket. If she

chooses two coins from her pocket in succession, what is the sample space S

of possible outcomes? If these outcomes are next mapped into the values of

the coins , what is the numerical sample space SX,Y?

7.4 (w) If Sx = {1,2} and Sy = {3,4}, plot the points in the plane comprising

Sx y = Sx x Sy. What is the size of Sx y?, ,

7.5 (w) Two dice are tossed. The number of dots observed on the dice are added

together to form the random variable X and also differenced to form Y. De­

termine the possible outcomes of the random vector (X, Y) and plot them in

the plane. How many possible outcomes are there?

7.6 (f) A two-dimensional sequence is given by

i = 1,2, . .. ; j = 1,2, ...

where 0 < PI < 1, 0 < P2 < 1, and c is a constant. Find c to make PX ,y a

valid joint PMF.
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px,y[i,j] = "2

a valid joint PMF?

i = O,l, ... ;j = 0,1, .. .

205

7.8 C...:...) (w) A single coin is tossed twice. A head outcome is mapped into a 1 and

a tail outcome into a 0 to yield a numerical outcome. Next, a random vector

(X, Y) is defined as

X outcome of first toss + outcome of second toss

Y outcome of first toss - outcome of second toss.

Find the joint PMF for (X, Y), assuming the outcomes (Xi,Yj) are equally

likely.

7.9 (f) Find the joint PMF for the experiment described in Example 7.1. Assume

each outcome in S is equally likely. How can you check your answer?

7.10 (...:..:...) (f) The sample space for a random vector is SX,y = {(i, j) : i = 1,2,3,4, 5j

j = 1,2,3, 4}. If the outcomes are equally likely, find P[(X, Y) E A], where

A = {(i,j) : 1 5: i 5: 2; 35: j 5: 4}.

7.11 (f) A joint PMF is given as px,y[i,j] = (1/2)i+j for i = 1,2, ... .i = 1,2, ....

If A = {(i,j): 15: i 5: 3jj ~ 2}, find P[A].

7.12 (f) The values of a joint PMF are given in Table 7.9. Determine the marginal

PMFs.

j=O j=l j=2

i=O 1 0 1
8" 4"

i = 1 0 1 1
8" 4"

i=2 1 0 1
8" 8"

Table 7.9: Joint PMF values for Problem 7.12.

7.13 C..:...) (f) If a joint PMF is given by

px,y[i,j] = p2(1 _ p)i+j
- 2

find the marginal PMFs.

7.14 (f) If a joint PMF is given by px,y[i,j]

1,2,3,4,5,6, find the marginal PMFs.

i = 1,2, ... ; j = 1,2, ...

1/36 for i = 1,2,3,4,5,6jj
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7.15 (w) A joint PMF is given by

(
10) (1) 10pX,y(i,j] = e j "2 i = O,l;j = 0,1 , ... , 10

where e is some unknown constant. Find c so that the joint PMF is valid and

then determine the marginal PMFs. Hint: Recall the binomial PMF.

7.16 L..:.,) (w) Find another set of values for the joint PMF that will yield the same

marginal PMFs as given in Table 7.2.

7.17 (t) Prove Properties 7.3 and 7.4 for the joint CDF by relying on the standard

properties of probabilities of events.

7.18 (w) Sketch the joint CDF for the joint PMF given in Table 7.2. Do this by

shading each region in the x-y plane that has the same value.

7.19 (..:.:..-) (w) A joint PMF is given by

Px,y[i,j] =

Are X and Y independent?

~ (i,j) = (0,0)

~ (i,j) = (1,1)

~ (i,j) =(1,0)

~ (i,j) = (1, -1)

7.20 (t) Prove that if the random variables X and Yare independent, then the

joint CDF factors as Fx,Y(x, y) = Fx(x)Fy(y).

7.21 (t) If a joint PMF is given by

{

a (i,j) =(0,0)
b (i ,j) = (0,1)

px,y[i,j] = e (i,j) = (1,0)

d (i,j) = (1,1)

where of course we must have a+b+c+d = 1, show that a necessary condition

for the random variables to be independent is ad = be. This can be used to

quickly assert that the random variables are not independent as for the case

shown in Table 7.5.

7.22 (f) If X '" Ber(px) and Y '" Ber(py), and X and Yare independent, what is

the joint PMF?
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7.23 C.:,.,) (w) If the joint PMF is given as

(
10 ) (11) (1)21px,y[i,j] = i j "2 i = 0,1, ... , 10;j = 0,1, ... , 11
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are X and Y independent? What are the marginal PMFs?

7.24 (t) Assume that X and Yare discrete random variables that take on all integer

values and are independent. Prove that the PMF of Z = X - Y is given by

00

pz[l] = L px[k]py[k -l]

k= -oo

l= ... ,-l,O,l, ...

by following the same procedure as was used to derive (7.22). Note that the

transformation from (X, Y) to (W, Z) is one-to-one. Next show that if X and

Y take on nonnegative integer values only, then

00

pz[l] = L px[k]py[k -l]

k=max(O,I)

l = ... ,-1,0,1, ...

7.25 (f) Using the result of Problem 7.24 find the PMF for Z = X - Y if X '"

Pois(.\x) , Y '" Pois(.\y) , and X and Yare independent. Hint: The result will

be in the form of infinite sums.

7.26 (w) Find the PMF for Z = max(X, Y) if the joint PMF is given in Table 7.5.

7.27 C..:',) (f) If X '" Ber(1/2)' Y '" Ber(1/2) , and X and Yare independent , find

the PMF for Z = X + Y. Why does the width of the PMF increase? Does

the variance increase?

7.28 (t) Prove that Ex,y[g(X)] = Ex[g(X)]. Do X and Y have to be independent?

7.29 (t) Prove that

Ex,y[ag(X) + bh(Y)] = aEx[g(X)] + bEy[h(Y)].

7.30 (t) Prove (7.31).

7.31 (t) Find a formula for var(X - Y) similar to (7.33). What can you say about

the relationship between var(X + Y) and var(X - Y) if X and Yare uncor­

related?

7.32 (f) Find the covariance for the joint PMF given in Table 7.4. How do you

know the value that you obtained is correct?

7.33 C:..:,.,) (f) Find the covariance for the joint PMF given in Table 7.5.
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7.34 (t) Prove the following properties of the covariance:

cov(X, Y)

cov(X,X)

cov(Y, X)

cov(cX, Y)

cov(X,cY)

cov(X,X + Y)

cov(X + Y,X)

for c a constant.

= Ex,Y[XY] - Ex [X]Ey[Y]

var(X)

cov(X,Y)

c [cov(X, Y)]

c [cov(X ,Y)]

= cov(X, X) + cov(X, Y)

cov(X, X) + cov(Y, X)

7.35 (t) If X and Y have a covariance of cov(X, Y) , we can transform them to a

new pair of random variables whose covariance is zero. To do so we let

w X

Z aX+Y

where a = -cov(X, Y)/var(X). Show that cov(W, Z) = O. This process is

called decorrelatinq the random variables. See also Example 9.4 for another

method.

7.36 (f) Apply the results of Problem 7.35 to the joint PMF given in Table 7.5.

Verify by direct calculation that cov(W, Z) = O.

7.37 C.:...:.J (f) If the joint PMF is given as

(

1 )i+j
px,y[i,j] = 2

compute the covariance.

i = 1,2, . . . ; j = 1,2, ...

7.38 C:.:J (f) Determine the minimum mean square error for the joint PMF shown

in Figure 7.9a. You will need to evaluate Ex,y[(Y - ((14/11)X - 1/11))2] .

7.39 (t,f) Prove that the minimum mean square error of the optimal linear predic­

tor is given by

msemin = Ex,y[(Y - (aoptX + bopt ))2] = var(Y) (1 - p~ ,y) .

Use this formula to check your result for Problem 7.38.

7.40 C.:....:... ) (w) In this problem we compare the prediction of a random variable with

and without the knowledge of a second random variable outcome. Consider

the joint PMF shown below. First determine the optimal linear prediction of Y
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j=O j=l

i=O 1 1
"8 4

i = 1 1 3
4 "8

Table 7.10: Joint PMF values for Problem 7.40.
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without any knowledge of the outcome of X (see Section 6.6). Also, compute

the minimum mean square error. Next determine the optimal linear prediction

of Y based on the knowledge that X = x and compute the minimum mean

square error. Plot the predictions versus x in the plane. How do the minimum

mean square errors compare?

7.41 C:..:...) (w,c) For the joint PMF of height and weight shown in Figure 7.1 deter­

mine the best linear prediction of weight based on a knowledge of height. You

will need to use Table 4.1 as well as a computer to carry out this problem.

Does your answer seem reasonable? Is your prediction of a person's weight if

the height is 70 inches reasonable? How about if the height is 78 inches? Can

you explain the difference?

7.42 (f) Prove that the transformed random variable

X -Ex[X]

Jvar(X)

has an expected value of 0 and a variance of 1.

7.43 L..:.J (w) The linear prediction of one random variable based on the outcome

of another becomes more difficult if noise is present. We model noise as the

addition of an un correlated random variable. Specifically, assume that we wish

to predict X based on observing X + N, where N represents the noise. If X

and N are both zero mean random variables that are uncorrelated with each

other, determine the correlation coefficient between W = X and Z = X + N.

How does it depend on the power in X, which is defined as Ex[X2
], and the

power in N, also defined as EN[N
2 ]?

7.44 (w) Consider var(X + Y), where X and Yare correlated random variables.

How is the variance of a sum of random variables affected by the correlation

between the random variables? Hint: Express the variance of the sum of the

random variables using the correlation coefficient.

7.45 (f) Prove that if Y = aX + b, where a and b are constants, then PX,Y = 1 if

a> 0 and PX,Y = -1 if a < O.
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7.46 C..:..) (w) If X rv Ber(1/2) , Y rv Ber(1/2), and X and Yare independent, find

the PMF for Z = X + Y. Use the characteristic function approach to do so.

Compare your results to that of Problem 7.27.

7.47 (w) Using characteristic functions prove that the binomial PMF has the re­

producing property. That is to say, if X rv bin(Mx,p), Y rv bin(My,p), and

X and Yare independent, then Z = X + Y rv bin(Mx + My,p) . Why does

this make sense in light of the fact that a sequence of independent Bernoulli

trials can be used to derive the binomial PMF?

7.48 C:.:..) (c) Using the joint PMF shown in Table 7.7 generate realizations of the

random vector (X,Y) and estimate its joint and marginal PMFs. Compare

your estimated results to the true values.

7.49 (-.:...:...) (c) For the joint PMF shown in Table 7.7 determine the correlation coef­

ficient. Next use a computer simulation to generate realizations of the random

vector (X,Y) and estimate the correlation coefficient as

1 "",M -­
M wm=l XmYm - xy

V( 1"",M 2 -2) (1"",M 2 -2)
M wm=l X m - X M wm=l Ym - Y

PX,y = -,===:::::::::=================

where

1 M

X = M L Xm
m=l

1 M

fj M LYm
m=l

and (xm, Ym) is the mth realization.

7.50 (w,c) If X rv geom(p), Y rv geom(p), and X and Yare independent, show

that the PMF of Z = X + Y is given by

k = 2,3, . ...

To avoid errors use the discrete unit step sequence. Next, for p = 1/2 gen­

erate realizations of Z by first generating realizations of X, then generating

realizations of Y and adding each pair of realizations together. Estimate the

PMF of Z and compare it to the true PMF.

7.51 (w,c) Using the joint PMF given in Table 7.5 determine the covariance to

show that it is nonzero and hence X and Yare correlated . Next use the

procedure of Problem 7.35 to determine transformed random variables Wand
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Z that are uncorrelated. Verify that Wand Z are uncorrelated by estimating

the covariance as
__ 1 M

cov(W, Z) = M 2: WmZm - wE
m=l

where

1 M

M 2: W
m

m=l

1 M

M 2: Z
m

m=l

and (wm, zm) is the mth realization. Be sure to generate the realizations of W

and Z as W m = Xm and Zm = aXm +Ym, where (xm , Ym) is the mth realization

of (X, Y) .



Appendix 7A

Derivation of the

Cauchy-Schwarz Inequality

The Cauchy-Schwarz inequality was given by

IEv,w[VW] I :::; J EV[V2]JEw[W2] (7A.1)

with equality holding if and only if W = cV, for c a constant. To prove this , we

first note that for all a =1= 0 and f3 =1= 0

If we let

a = JEw [W2]

f3 = J EV[V2]

then we have that

(7A.2)

Ev,w[( JEW[W2]V - JEV[V2]W)2] > 0

Ev,w[Ew[W2]V2 - 2JEw[W2]JEV[V2]VW + Ev[V2]W2] > 0

Ew[W2]Ev[V2] - 2JEw[W2]JEv[V2]Ev,w[VW] + EV[V2]Ew[W2] > 0

since Ev,w[g(W)] = Ew[g(W)], etc. , which results in

Ew[W2]Ev[V2] - JEw [W2] JEv [V2]Ev,w[VW] 2: O.

Dividing by Ew[W2]Ev[V2] produces

1- Ev,w[VW] > 0

J EW[W2] J EV[V2] -
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or finally, upon rearranging terms we have that

Ev,w[VW] < 1

JEV[V2] JEW[W2] -

or

By replacing the negative sign in (7A.2) by a positive sign and proceeding in an

identical manner, we will obtain

and hence combining the two results yields the desired inequality. To determine

when the equal sign will hold, we note that

Vi Wj

which can only equal zero when (avi-{3Wj)2 = 0 for all i and j since PV,W[Vi, Wj] > O.

Thus, for equality to hold we must have

all i and j

which is equivalent to requiring

aV = {3W

or finally dividing by {3 (asssumed not equal to zero), we obtain the condition for

equality as
a

W= -V=cV
{3

for c a constant.



Chapter 8

Conditional Probability Mass

Functions

8.1 Introduction

In Chapter 4 we discussed the concept of conditional probability. We recall that a

conditional probability P[AIB] is the probability of an event A, given that we know

that some other event B has occurred . Except for the case when the two events are

independent of each other , the knowledge that B has occurred will change the prob­

ability P[A]. In other words, P[AIB] is our new probability in light of the addit ional

knowledge. In many practical situations, two random mechanisms are at work and

are described by events A and B . An example of such a compound experiment was

given in Example 4.2. To compute probabilities for a compound experiment it is

usually convenient to use a condit ioning argument to simplify the reasoning. For

example, say we choose one of two coins and toss it 4 times. We might inquire

as to the probability of observing 2 or more heads. However , this probability will

depend upon which coin was chosen, as for example in the situation where one coin

is fair and the other coin is weighted. It is therefore convenient to define conditional

probability mass fun ctions, px[klcoin 1 chosen] and px[klcoin 2 chosen] , since once

we know which coin is chosen, we can easily specify the PMF. In particular, for

this example the conditional PMF is a binomial one whose value of p depends upon

which coin is chosen and with k denoting the number of heads (see (5.6)). Once

the condit ional PMFs are known, we have by the law of total probability (see (4.4))

that the probability of observing k heads for this experiment is given by the PMF

px [k] px [klcoin 1 chosen]P[coin 1 chosen]

+px[k lcoin 2 chosen]P[coin 2 chosen].
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Therefore, the desired probability of observing 2.or more heads is

4

P[X ~ 2] = Lpx[k]
k=2

4

= L(Px[klcoin 1 chosen]P[coin 1 chosen]

k = 2

+ px[klcoin 2 chosen]P[coin 2 chosen]) .

The PMF that is required depends directly on the conditional PMFs (of which there

are two). The use of conditional PMFs greatly simplifies our task in that given

the event, i.e., the coin chosen, the PMF of the number of heads observed readily

follows. Also, in many problems, including this one, it is actually the conditional

PMFs that are specified in the description of the experimental procedure. It makes

sense, therefore, to define a conditional PMF and study its properties. For the most

part , the definitions and properties will mirror those of the conditional probabillity

P[AIB]' where A and B are events defined on SX ,Y.

8.2 Summary

The utility of defining a conditional PMF is illustrated in Section 8.3. It is especially

appropriate when the exp eriment is a compound one, in which the second part of

the experiment depends upon the outcome of the first part. The definition of the

conditional PMF is given in (8.7) . It has the usual properties of a PMF, that of

being between 0 and 1 and also summing to one. Its properties and relationships

are summarized by Properties 8.1-8.5. The conditional PMF is related to the joint

PMF and the marginal PMFs by these properties. They are also depicted in Figure

8.4 for easy reference. If the random variables are independent , then the conditional

PMF reduces to the usual marginal PMF as shown in (8.22). For general probability

calculat ions based on the conditional PMF one can use (8.23). In Section 8.5 it is

shown how to use conditioning arguments to simplify the derivation of the PMF for

Z = g(X, Y). The PMF can be found using (8.24), which makes use of the condi­

tional PMF. In particular, if X and Yare independent, the procedure is especially

simplified with examples given in Section 8.5. The mean of the conditional PMF is

defined by (8.30). It is computed by the usual procedures but uses the conditional

PMF as the "averaging" PMF. It is next shown that the mean of the unconditional

PMF can be found by averaging over the means of the conditional PMFs as given

by (8.35). This simplifies the computation. Generation of realizations of random

vectors (X,Y) can be simplified using conditioning arguments. An illustration and

MATLAB code segment is given in Section 8.7. Finally, an application of condi­

tioning to the modeling of human learning is described in Section 8.8. Utilizing the

posterior PMF, which is a condit ional PMF, one can demonstrate that "learn ing"
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takes place as the result of observing the outcomes of repeated experiments. The

degree of learning is embodied in the posterior PMF.

8.3 Conditional Probability Mass Function

We continue with the introductory example to illustrate the utility of the conditional

probability mass function. Summarizing the introductory problem, we have an

experimental procedure in which we first choose a coin, either coin 1 or coin 2. Coin

1 has a probability of heads of PI, while coin 2 has a probability of heads of P2. Let

X be the discrete random variable describing the outcome of the coin choice so that

X = {1 if coin 1 is chosen
2 if coin 2 is chosen.

Since Sx = {1, 2}, we assign a PMF to X of

{
a i = 1

px[i] = 1 - a i = 2 (8.1)

where 0 < a < 1. The second part of the experiment consists of tossing the chosen

coin 4 times in succession. Call the outcome of the number of heads observed

as Y and note that Sy = {O, 1,2,3, 4}. Hence, the overall set of outcomes of the

compound experiment is SX,y = Sx x Sy, which is shown in Figure 8.1. The overall

y

4
.-----,
,. • I

I :~A
3

I,. ••
I

,
2

I
,I· ••------

SX,y
1 • •

x
1 2

Figure 8.1: Mapping for coin toss example, x denotes the coin chosen while y denotes

the number of heads observed.

outcome is described by the random vector (X, Y), where X is the coin chosen and

Y is the number of heads observed for the 4 coin tosses. If we wish to determine

the probability of 2 or more heads, then this is the probability of the set A shown
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in Figure 8.1. It is given mathematically as

P[A] = 2: px,y[i,j]

{(i,j) :(i ,j)EA}

2 4

= 2:2:PX,y[i,j].
i = 1 j=2

(8.2)

Hence , we need only specify the joint PMF to determine the desired probability. To

do so we make use of our definition of the joint PMF as well as our earlier concepts

from conditional probability (see Chapter 4). Recall from Chapter 7 the definitions

of the joint PMF and marginal PMF as

pX,y[i,j]

px[i]

P[X = i , Y =j]

P[X = i].

By using the definition of conditional probability for events we have

Px,y[i,j] P[X = i,Y =j]

pry = jlX = i]P[X = i]

pry = jlX = i]px[i]

(definition of joint PMF)

(definition of conditional prob.)

(definition of marginal PMF). (8.3)

From (8.1) we have px[i] and from the experimental description we can determine

pry = jlX = i]. When X = 1, we toss a coin with a probability of heads PI, and

when X = 2, we toss a coin with a probability of heads P2. Also, we have previously

shown that for a coin with a probability of heads Pi that is tossed 4 times, the

number of heads observed has a binomial PMF. Thus, for i = 1,2

pry = j!X = i] = (;) Pi (1 - Pi)4-
j j = 0,1 ,2,3,4. (8.4)

Note that the probability depends on the outcome X = i via Pi. Also, for a given

value of X = i, the probability has all the usual properties of a PMF. These prop­

ert ies are

°:S pry = jlX = i] :S 1
4

2:P[Y = jlX = i] = 1.
j=O

It is therefore appropriate to define pry = jlX = i] as a conditional PMF. We will

denote it by

pYlx[jli] = pry = j!X = i] j = 0,1,2,3,4.

Examples are plotted in Figure 8.2 for PI = 1/4 and P2 = 1/2. Returning to our
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(a) i = 1, PI = 1/4 (b)i=2 ,P2=1/2

Figure 8.2: Conditional PMFs given by (8.4).

problem we can now determine the joint PMF. Using (8.3) we have

px,y[i,j] = PYlx[j!i]px[i] (8.5)

and using (8.4) and (8.1) the joint PMF is

px,y[i,j] (;) Pi (1 - PI)4-
j
a

(;) ~ ( 1 - P2)4-
j
(1 - a)

i = l;j = 0,1,2,3,4

i = 2;j = 0,1 ,2,3,4.

Finally the desired probability is from (8.2)

4 4

P[A] = LPx,y[l ,j] + LPX,y[2,j]
j=2 j=2

4 4

L (~) Pi (1- pd
4- ja +L (~) ~(1 - P2)4-

j
(1 - a).

j=2 J j=2 J

As an example, if PI = 1/4 and P2 = 3/4, we have for a = 1/2, that P[A] = 0.6055,

but if a = 1/8, then P[A] = 0.8633. Can you explain this?

Note from (8.5) that the conditional PMF is also expressed as

[ '1'] - px,Y[i,jJ
PYIX J 't - ["J

Px't
(8.6)
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and is only a renaming for the conditional probability of the event that Aj = {s :
Y(s) = j} given that B, = {s : X(s) = i}. To make this connection we have

PYlx[jli] = pry = jlX = i] = P[Xp[;-i':i] j]

P[Aj n B i ]
=

P[Bi ]

P[AjIB i ]

and hence PYIX[jli] is a conditional probability for the events A j and Bi.

8.4 Joint, Conditional, and Marginal PMFs

As evidenced by (8.6), there are relationships between the joint, conditional, and

marginal PMFs. In this section we describe these relationships. To do so we rewrite

the definition of the conditional PMF in slightly more generality as

[ I ]
PX,y[Xi,Yj]

PYIX Yj Xi = []
PX Xi

(8.7)

for a sample space SX ,Y which may not consist solely of integer two-tuples. It is

always assumed that PX[Xi] i= O. Otherwise, the definition does not make any sense .

The conditional PMF, although appearing to be a function of two variables, Xi and

Yj , should be viewed as a family or set of PMFs. Each PMF in the family is a valid

PMF when Xi is considered to be a constant. In the example of the previous section,

we had PYlxb l1] and PYlxbI2]. The family is therefore {PYlxbI1],PYlx[jI2]} and
each member is a valid PMF, whose values depend on j . Hence, we would expect

that (see Problem 8.4)

00

L PYlx[jll] 1

j=-oo

00

L PYlx[jI2] 1

j=-oo

but not I:~_ooPYlx[jli] = 1 (see also Problem 4.9). Before proceeding to list the

relationships between the various PMFs, we give an example of the calculation of

the conditional PMF based on (8.7).

Example 8.1 - Two dice toss

Two dice are tossed with all outcomes assumed to be equally likely. The number of

dots observed on each die are added together. What is the conditional PMF of the

sum ifit is known that the sum is even? We begin by letting Y be the sum and define

X = 1 if the sum is even and X = 0 if the sum is odd. Thus, we wish to determine
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PYlx[jI1] and PYlx[jIO] for all j. The sample space for Y is Sy = {2, 3, . . . ,12}

as can be seen from Table 8.1, which lists the sum of the two dice outcomes as a

function of the outcomes for each die. The boldfaced entries are the ones for which

j=l j=2 j=3 j=4 j=5 j=6

i = 1 2 3 4 5 6 7

i=2 3 4 5 6 7 8

i=3 4 5 6 7 8 9

i=4 5 6 7 8 9 10

i=5 6 7 8 9 10 11

i=6 7 8 9 10 11 12

Table 8.1: The sum of the number of dots observed for two dice - boldface indicates

an even sum.

the sum is even and therefore comprise the sample space for PYlx[jI1]. Note that

each outcome (i,j) has an assumed probability of occurring of 1/36. Now, using

(8.7)

[ '11] - px,y[l,j]
PYIX J - px[l] j = 2,4,6,8,10,12 (8.8)

where px,y[l , j] is the probability of the sum being even and also equaling j. Since we

assume in (8.8) that j is even (otherwise PYlx[jI1] = 0), we have that pX,y[l,j] =

py[j] for j = 2,4,6,8,10,12. Also, there are 18 even outcomes, which results in

px[l] = 1/2. Thus, (8.8) becomes

py[j]

1/2

N j(1/36)
=

1/2

1

18
Nj

where N j is the number of outcomes in SX,y for which the sum is j. From Table

8.1 we can easily find Nj so that

1 j=218
3

j=418
5

j=6
pYlxUl1] =

18 (8.9)
5 j=818
3

j = 1018
1 j = 12.18



222 CHAPTER 8. CONDITIONAL PROBABILITY MASS FUNCTIONS

Note that as expected L: j PYlx [j ll ] = 1. The reader is asked to verify by a similar

calculation that (see Problem 8.7)

2 j = 318
4 j = 518

PYlx [j!O] =
6 j = 7 (8.10)
18
4 j = 918
2 j = 11.18

These condit ional PMFs are shown in Figure 8.3. Also, note that PYlx[j IO] =J.

'00.4

7 8 9 10 11 12

t j

123456

· .

0.1 "':"':"l
o . .

~

~3
::...
I;:l., . .

02 . . .; ;. .. ; . .; " ' ; .
· .· .

1 2 3 4 5 6 7 8 9 10 11 12

tJ

'. .'

.' '. '. "

t to

0.1

05

Mean of condit ional PMF Mean of condit ional PMF

(a) (b)

Figure 8.3: Conditional PMFs for Example 8.1.

1 - PYlx[jll]. Each condit ional PMF is generally different.

o
There are several relationships between the joint, marginal, and conditional PMFs.

We now summariz e these as properties.

Property 8.1 - Joint PMF yields conditional PMFs.

If the joint PMF PX,y[Xi ,Yj] is known , then the condit ional PMFs are found as

PX'y[Xi ,Yj]

L:j PX,y[Xi ,Yj]

PX,y[ Xi ,Yj]

L: i PX,y[Xi ,Yj]"

(8.11)

(8.12)



8.4. JOINT, CONDITIONAL, AND MARGINAL PMFS 223

Proof: Since the marginal PMF PX[Xi] is found as L jPX,y[Xi ,Yj], the denominator

of (8.7) can be replaced by this to yield (8.11) . The equation (8.12) is similarly

proven .

o
Hence, we see that the conditional PMF is just the joint PMF with Xi fixed and then

normalized by LjPX,y[Xi ,Yj] so that it sums to one. In Figure 8.3a, the conditional

PMF PYlxbl1] evaluated at j = 8 is just px ,y [l , 8] = 5/36 divided by the sum of

the probabilities px,y[l ,'] = 18/36, where "." indicates all possible values of j. This

yields PYlx[811] = 5/18.

Property 8.2 - Conditional PMFs are related.

[ I]
PYlx[Yjlxi]PX[Xi]

PXIY Xi Yj = [ ]
PY Yj

Proof: By interchanging X and Y in (8.7) we have

[ I ] PY,X[Yj , Xi]
PXIY Xi Yj = []

PY Yj

but

(8.13)

PY,X[Yj , Xi] = pry = Yj ,X = Xi ]

P[X = Xi ,Y = Yj]

PX,y[Xi ,Yj]

and therefore

(since A n B = B n A)

(8.14)[ I ] PX,y(Xi ,Yj]
PX IY Xi Yj = [].

PY Yj

Using PX,y(Xi ,Yj] = PYIX [YjI Xi]pX [Xi] from (8.7) in (8.14) yields the desired result
(8.13).

o

Property 8.3 - Conditional PMF is expressible using Bayes' rule.

[ I]
PXIY [Xi IYj]pY[Yj]

PYIX Yj Xi =
L j PX IY[x i IYj]pY[Yj]

Proof: From (8.11) we have that

and using (8.14) we have

(8.15)

(8.16)

(8.17)
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which when substituted into (8.16) yields the desired result.
o

Property 8.4 - Conditional PMF and its corresponding marginal PMF

yields the joint PMF.

PX,y[Xi, Yj] = PYIX[Yj!Xi]PX[Xi]

PX,Y[Xi ,Yj] = PXIY [XiIYj]py [Yj]

(8.18)

(8.19)

Proof: (8.18) follows from definition of conditional PMF (8.7) and (8.19) is just

(8.17).

o

Property 8.5 - Conditional PMF and its corresponding marginal PMF

yields the other marginal PMF.

(8.20)

Proof: This is just the law of total probability in disguise or equivalently just

Py[Yj] = :EiPX,y[Xi ,Yj] (marginal PMF from joint PMF) .

o
These relationships are summarized in Figure 8.4. Notice that the joint PMF can

be used to find all the marginals and conditional PMFs (see Figure 8.4a). The

conditional PMF and its corresponding marginal PMF can be used to find the

joint PMF (see Figure 8.4b). Finally, the conditional PMF and its corresponding

marginal PMF can be used to find the other conditional PMF (see Figure 8.4c). As

emphasized earlier, we cannot determine the joint PMF from the marginals. This

is only possible if X and Yare independent random variables since in this case

(8.21)

(8.22)

In addition, for independent random variables, the use of (8.21) in (8.7) yields

[ ]
PX[Xi]PY[Yj]

PY\X YjlX i = [] = Py[Yj]
PX Xi

or the conditional PMF is the same as the unconditional PMF. There is no change

in the probabilities of Y whether or not X is observed. This is of course consistent

with our previous definition of statistical independence.

Finally, for more general conditional probability calculations we sum the appro­

priate values of the condit ional PMF to yield (see Problem 8.14)

pry E AIX = Xi] = L PYlx[YjlxiJ.

{j :YjEA}

(8.23)
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PX = :LyPX,Y PY = :LxPX,Y PX PY

_ PX.Y

PYIX - L y PX ,Y

(a)

_ PX,Y

PXIY - L xPX,Y

PX

PYIX

(b)

PY

PXIY

PYjX

(c) (Can also interchange X

and Y for similar results)

_ PY IXPX
PXIY - PY

Figure 8.4: Conditional PMF relationships.

8.5 Simplifying Probability Calculations using

Conditioning

As alluded to in the introduction, conditional PMFs can be used to simplify prob­

ability calculations. To illustrate the use of this approach we once again consider

the determination of the PMF for Z = X + Y, where X and Yare independent

discrete random variables that take on integer values. We have already seen that the

solution is pz = Px*py , where * denotes discrete convolution {see (7.22)). To solve

this problem using conditional PMFs, we ask ourselves the question: Could I find

the PMF of Z if X were known? If so, then we should be able to use conditioning

arguments to first find the conditional PMF of Z given X , and then uncondition
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the result to yield the PMF of Z. Let us say that X is known and that X = i. As

a result , we have that conditionally Z = i + Y, where i is just a constant. This is

sometimes denoted by ZI(X = i). But this is a transformation from one discrete

random variable Y to another discrete random variable Z . We therefore wish to

determine the PMF of a random variable that has been summed with a constant.

It is not difficult to show that if a discrete random variable U has a PMF pu[j],

then U + i has the PMF pu[j - i] or the PMF is just shifted to the right by i units.

Thus, the conditional PMFof Z evaluated at Z = j iSPzlx[jli] = PYlx[j -iii]. Now

to find the unconditional PMF of Z we use (8.20) with an appropriate change of

variables to yield
00

pz[j] = L PZlx [jli]px [i]
i=-oo

and since PZlx[jli] = PYlx[j - iii], we have

00

pz[j] = L PYlx[j - ili]px[i].
i=-oo

But X and Yare independent so that PYIX = PY and therefore we have the final

result
00

PZ[j] = L py[j - i]px[i]
t=-oo

which agrees with our earlier one. Another example follows.

Example 8.2 - PMF for Z = max(X, Y)

Let X and Y be discrete random variables that take on integer values. Also, assume

independence of the random variables X and Y and that the marginal PMFs of X

and Yare known. To find the PMF of Z we use (8.20) or the law of total probability

to yield
00

pz[k] = L PZlx[kli]px[i].
i=-oo

(8.24)

Now PX is known so that we only need to determine PZlx for X = i. But given that

X = i, we have that Z = max(i, Y) for which the PMF is easily found. We have

thus reduced the original problem, which is to determine the PMF for the random

variable obtained by transforming from (X, Y) to Z, to determining the PMF for

a function of only one random variable. Letting g(Y) = max(i, Y) we see that the

function appears as shown in Figure 8.5. Hence, using (5.9) for the PMF of a single

transformed discrete random variable we have

PZlx[kli] = L PYlx[jli].
{j :g(j)=k}
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g(y) = max(i, y)

227

i

y

Figure 8.5: Plot of the function g(y) = max(i, y).

Solving for j in g(j) = k (refer to Figure 8.5) yields no solution for k < i, the

multiple solutions j = ... ,i-I, i for k = i, and the single solution j = k for

k = i + 1, i + 2, .... This produces

PZlx[kli] = { b~=-ooPY'X[jli]
PYlx[kli]

Using this in (8.24) produces

k = . .. , i - 2,i-I

k = i

k = i + 1, i + 2, ....

(8.25)

(use (8.25))

k-l 00

pz[k] = L PZlx[kli]px[i] +PZlx[klk]px[k] + L PZlx[kli]px[i] (break up sum)
i=-oo i=k+l
k-l k

L PYlx[kli]px[i] + L PYlx[jlk]px[k] + 0
i=-oo j=-oo

k-l k

L py[k]px[i] + L PY [j]px [k] (since X and Yare independent)

i=- oo j=-oo

k-l k

py[k] L px[i] +px[k] L py[j].
i=-oo j=-oo

Note that due to the independence assumption this final result can also be written

as
k-l k

pz[k] = L px,y[i, k] + L px,y[k,j]
i=- oo j=-oo

so that the PMF of Z is obtained by summing all the points of the joint PMF

shown in Figure 8.6 for k = 2, as an example. These point comprise the set {(x, y) :

max(x, y) = 2 and x = i, y = j}. It is now clear that we could have solved this

problem in a more direct fashion by making this observation. As in most problems,

however , the solution is usually trivial once it is known!
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Y

• • • • 2 • • (2,2)

1 •
x

1 2
•
•

Figure 8.6: Points of joint PMF to be summed to find PMF of Z = max(X, Y) for

k = 2.

o
As we have seen, a general procedure for determining the PMF for Z = g(X, Y)

when X and Yare independent is as follows:

1. Fix X = Xi and let ZI(X = Xi ) = g(Xi,Y)

2. Find the PMF for ZIX by using the techniques for a transformation of a single

random variable Y into another random variable Z. The formula is from (5.9),

where the PMFs are first converted to conditional PMFs

PZIX[Zklxi] = L PY!X[YjIXi]
{j :9(X i ,Yj )=zd

L PY[Yj]
{j :9(X i ,Yj )=zd

for each Xi

for each Xi (due to independence) .

3. Uncondition the conditional PMF to yield the desired PMF

PZ[Zk] = LPzlx[Zklxi]PX[Xi].
i

In general, to compute probabilities of events it is advantageous to use a condi­

tioning argument, whether or not X and Yare independent. Where previously we

have used the formula

pry E A] = L PY[Yj]

{j :YjEA}

to compute the probability, a conditioning approach would replace Py[Yj] by

L iPYlx[Yjl xi]PX[Xi] to yield

pry E A] = L LPYlx[Yjlxi]PX[Xi]
{j :YjEA} i

(8.26)
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to determine the probability. Equivalently, we have that

pry E A] = ~ [ r,L PYIX[YjIXi]] ~
z , {J ·Y3EA} , unconditioning

v

condit ioning

In this form we recognize the conditional probability of (8.23), which is

pry E AIX = Xi] = L PYlx[Yjlxi]

{j:YjEA}

and the unconditional probability

with the latter being just a restatement of the law of total probability.

8.6 Mean of the Conditional PMF

229

(8.27)

(8.28)

Since the conditional PMF is a PMF, it exhibits all the usual properties. In particu­

lar, we can determine attributes such as the expected value of a random variable Y,

when it is known that X = Xi. This expected value is the mean of the conditional

PMF PYlx, Its definition is the usual one

L YjPYIX [Yj IXi]
j

(8.29)

where we have replaced PY by PYlx , It should be emphasized that since the con­

ditional PMF depends on Xi, so will its mean. Hence, the mean of the conditional

PMF is a constant when we set Xi equal to a fixed value . We adopt the notation for

the mean of the conditional PMF as EYlx[Ylxi] . This notation includes the sub­

script "Y jX " to remind us that the averaging PMF is the conditional PMF PYlx ,

Also, the use of "Y lxi" as the argument will remind us that the averaging PMF is

the conditional PMF that is specified by X = Xi in the family of conditional PMFs.

The mean is therefore defined as

EYIX[Ylxi] = LYjPYlx[Yjlxi].
j

(8.30)

Although we have previously asserted that the mean is a constant, here it is to be

regarded as a function of Xi. An example of its calculation follows.
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Example 8.3 - Mean of conditional PMF - continuation of Example 8.1

We now compute all the possible values of EYlx [Ylxi] for the problem described

in Example 8.1. There Xi = 1 or Xi = °and the corresponding conditional PMFs

are given by (8.9) and (8.10) , resp ectively. The means of the conditional PMFs are

therefore

EYlx [Y 11] 2 (118) + 4 (1
38)

+ 6 (1
58)

+ 8 (1
58)

+ 10 (1
38)

+ 12 (118) = 7

Ey \x[YIO] = 3 (1
28)

+ 5 (1~) + 7 (1
68)

+ 9 (1~) + 11 (1
28)

= 7

and are shown in Figure 8.3. In this example the means of the conditional PMFs

are the same, but will not be in general. We can expect that g(xd = Ey1x[Ylxi]

will vary with Xi.

We could also compute the variance of the conditional PMFs. This would be

var(Ylxi) = :L (Yj - Ey1x[Ylxi])2 PYlx[Yjl xiJ.
j

(8.31)

The reader is asked to do this in Problem 8.22. (See also Problem 8.23 for an

alternate expression for var(Ylxi)') Note from Figure 8.3 that we do not expect

these to be the same.

&. What is the "conditional expectation"?

The fun ction g(Xi) = EYlx[Ylxi] is the mean of the conditional PMF PYlx[YjlxiJ.
Alternatively, it is known as the conditional mean. This terminology is widespread

and so we will adhere to it , although we should keep in mind that it is meant to

denote the usual mean of the conditional PMF. It is also of interest to determine

the expectation of other quantities besides Y with respect to the conditional PMF.

This is called the conditional expectation and is symbolized by EYlx[g(Y)lxi]. The

latter is called the conditional expect at ion of g(Y). For example, if g(Y) = y 2,

then it becomes the conditional expectation of y 2 or equivalently the conditional

second moment. Lastly, the reader should be aware that the conditional mean is the

optimal predictor of a random variable based on observation of a second random

variable (see Problem 8.27) .

We now give another example of t he computation of the conditional mean.

Example 8.4 - Toss one of two dice.

There are two dice having different numbers of dots on their faces. Die 1 is the

usual type of die with faces having 1,2,3,4,5, or 6 dots. Die 2 has been mislabled



8.6. MEAN OF THE CONDITIONAL PMF 231

with its faces having 2,3,2,3,2, or 3 dots. A die is selected at random and tossed.

Each face of the die is equally likely to occur. What is the expected number of dots

observed for the tossed die? To solve this problem first observe that the outcomes

will depend upon which die has been tossed. As a result, the conditional expectation

of the number of dots will depend upon which die is initially chosen. We can view

this problem as a conditional one by letting

X = {I if die 1 is chosen
2 if die 2 is chosen

and Y is the number of dots observed. Thus, we wish to determine EYlx[Yll] and

EY1x[Y12]. But if die 1 is chosen, the conditional PMF is

and if die 2 is chosen

j = 1,2,3,4,5,6

j = 2,3.

(8.32)

(8.33)

The latter conditional PMF is due to the fact that for die 2 half the sides show 2

dots and the other half of the sides show 3 dots. Using (8.30) with (8.32) and (8.33),

we have that

6

LjpYlx[jI1] = ~
j=l

3

EYlx[Y12] = LjpYlx[jI2] = ~.
j=2

(8.34)

An example of typical outcomes for this experiment is shown in Figure 8.7. For

50 trials of the experiment Figure 8.7a displays the outcomes for which die 1 was

chosen and Figure 8.7b displays the outcomes for which die 2 was chosen. It is

interesting to note that the estimated mean for Figure 8.7a is 3.88 and for Figure

8.7b it is 2.58. Note that from (8.34) the theoretical conditional means are 3.5 and

2.5, respectively.

(;

In the previous example, we have determined the conditional means, which are the

means of the conditional PMFs. We also might wish to determine the unconditional

mean, which is the mean of Y. This is the number of dots observed as a result

of the overall experiment, without first conditioning on which die was chosen. In

essence , we wish to determine Ey [Y]. Intuitively, this is the average number of

dots observed if we combined Figures 8.7a and 8.7b together (just overlay Figure

8.7b onto Figure 8.7a) and continued the experiment indefinitely. Hence , we wish

to determine Ey [Y] for the following experiment:
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(a) Outcomes when die 1 chosen (b) Outcomes when die 2 chosen

Figure 8.7: Computer simulated outcomes ofrandomly selected die toss experiment.

1. Choose die 1 or die 2 with probability of 1/2.

2. Toss the chosen die.

3. Count the number of dots on the face of tossed die and call this the outcome of

the random variable Y .

A simple MATLAB program to simulate this exp eriment is given as

for m=1:M

if rand(1,1)<O.5

y(m,1)=PMFdata(1,[12 3 4 5 6]',[1/6 1/6 1/6 1/6 1/6 1/6]');

else

y(m,1)=PMFdata(1,[2 3]',[1/2 1/2]');

end

end

where the subprogram PMFdata.m is listed in Appendix 6B. After the code is ex­

ecuted there is an array y, which is M x 1, containing M realizations of Y. By

taking the sample mean of the elements in the array y, we will have estimated

Ey[Y). But we expect about half of the realizations to have used the fair die and

the other half to use the mislabled die. As a result , we might suppose that the

unconditional mean is just the average of the two conditional means. This would be

(1/2)(7/2) + (1/2)(5/2) = 3, which turns out to be the true result. This conjecture

is also strengthened by the results of Figure 8.7. By overlaying the plots we have

50 outcomes of the experiment for which the sample mean is 3.25. Let 's see how to

verify this.
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To determine the theoretical mean of Y, i.e., the unconditional mean, we will

need py[j]. But given the conditional PMF and the marginal PMF we know from

Figure 8.4c that the joint PMF can be found. Hence, from (8.32) and (8.33) and

px[i] = 1/2 for i = 1,2, we have

Px,y[i ,j]

To find py [j] we use

pYlx[jli]px[i]

{
4

{2 i = 1; j = 1,2,3,4,5,6

i = 2;j = 2,3.

2

py[j] = LPx,Y[i,j]

i=l

{
px,y[1 ,j] = 112 j = 1,4,5,6

px,y[1 ,j] +px,y[2,j] = 112 + ~ =! j =2,3.

Thus, the unconditional mean becomes

6

Ey[Y] = Ljpy[j]

j=l

1 (112) + 2 (t) + 3 (t) + 4 (112) + 5 (112) + 6 (112)

3.

This value is sometimes called the unconditional expectation. Note that for this

example, we have upon using (8.34)

or the unconditional mean is the average of the conditional means. This is true in

general and is summarized by the relationship

To prove this relationship is straightforward. Starting with (8.35) we have

(8.35)
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L EYIX[YI Xi]PX [Xi]
i

~ ~ ( ~ YiPYIX[YiIX;I) px[x;] (definition of condit ional mean)

L LYjPX'Y[fi,tj] PX[Xi] (definition of conditional PMF)
. , PX Xi
Z J

= LYj LPX,Y[Xi' Yj]
j

LYjpy[Yj] (marginal PMF from joint PMF)

j

= Ey[Y] .

In (8.35) we can consider g(xd = EYjX[y!Xi] as the transformed outcome of the

coin choice part of the experiment, where X = Xi is the outcome of the coin choice.

Since before we choose the coin to toss , we do not know which one it will be , we

can consider g(X) as a transformed random variable whose values are g(Xi)' By this

way of viewing things, we can define a random variable as g(X) = EYlx[YIX] and

therefore rewrite (8.35) as

Ey [Y] = Ex[g(X)]

or explicit ly we have that

(8.36)

In effect , we have computed the expectation of a random variable in two steps.

Step 1 is to compute a conditional expectation EYlx while step 2 is to undo the

conditioning by averaging the result with respect to the PMF of X. An example is

the previous coin tossing experiment. The utility in doing so is that the conditional

PMFs were easily found and hence also the means of the conditional PMFs, and

finally the averaging with respect to Px is easily carried out to yield the desired

result. We illustrate the use of (8.36) with another example.

Example 8.5 - Random number of coin tosses

An experiment is conducted in which a coin with a probability of heads P is tossed

M times. However, M is a random variable with M '" PoisfX]. For example, if a

realization of M is generated, say M = 5, then the coin is tossed 5 times in succes­

sion. We wish to determine the average number of heads observed. Conditionally

on knowing the value of M , we have a binomial PMF for the number of heads Y.

Hence, for M = i we have upon using the binomial PMF (see (5.6))

j = 0,1, ... , i; i = 0,1, . . , .
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Now using (8.36) and replacing X with M we have

and for a binomial PMF we know that EYIM[Yli] = ip so that

But for a Poisson random variable EM[M] = .x, which yields the final result

Ey[Y] = .xp.
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It can be shown more generally that Y '" Pois(.xp) (see Problem 8.26) so that our

result for the mean of Y follows directly from knowledge of the mean of a Poisson

random variable.

8.7 Computer Sim ulation B ased on Con d ition ing

In Section 7.11 we discussed a simple method for generating realizations of jointly

distributed discrete random variables (X,Y) using MATLAB. To do so we required

the joint PMF. Using conditioning arguments, however, we can frequently simplify

the procedure. Since PX,y[Xi ,Yj] = PYlx[Yjl x i ]PX[Xi ], a realization of (X,Y) can

be obtained by first generating a realization of X according to its marginal PMF

PX[Xi]. Then, assuming that X = Xi is obtained, we next generate a realization of

Y according to the condit ional PMF PYIX[Yj!Xi]. (Of course, if X and Yare inde­

pendent , we replace the second step by the generation of Y according to PY[Yj] since

in this case PYlx[Yj lx i] = PY[Yj] .) This is also advantageous when the problem de­

scription is formulated in terms of conditional PMFs, as in a compound experiment .

To illustrate this approach with the one described previously we repeat Example

7.15.

Example 8.6 - Generat ing rea lizat ions of joint ly d istributed ra ndom

variables - E x ample 7.15 (continued)

The joint PMF of Example 7.15 is shown in Figure 8.8, where the solid circles

represent the sample points and the values of the joint PMF are shown to the right

of the sample points. To use a conditioning approach we need to find PX and PYlx ,

But from Figure 8.8, if we sum along the columns we obtain

{

I i = 0
px [i] = i

4
- i = 1
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Figure 8.8: Joint PMF for Example 8.6.

and using the definition of the condit ional PMF, we have

PYlxUIO] =
pX,y[O,j]

px[O]

{~ -l j = O1/4 - 2

1 8 1

* =2 j=l

and .

PYlx [jl l ]
pX,y[ l , j ]

px [l ]

{.'L' _l j =O3/4 - 3

~ _2 j = 1.3/4 - 3

The MATLAB segment of code shown below generates M realizat ions of (X ,Y )

using this condit ioning approach.

for m=1:M

ux=rand(1, 1) ;

uy=rand (1 ,1) ;

if ux<=1/4; I. Refer to px[i]
x(m,1)=O;

i f uy<=1/2 I. Refer to pylx[j IO]

y(m,1)=O;

else

y(m,1)=1;

end

else

x(m,1)=1; I. Refer to px[i]
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i f uy<=1/3 %Refer t o pyl x [ jI 1]

y(m, 1)=0;

else

y(m, 1)=1;

end

end

end

The reader is asked to test this program in Problem 8.29.

8.8 Real-World Example - Modeling Human Learning

A 2 year-old child who has learned to walk can perform tasks that not even the

most sophisticated robots can match. For example, a 2 year-old child can easily

maneuver her way to a favorite toy, pick it up, and start to play with it. Robots,

powered by machine vision and mechanical grippers, have a hard time performing

this supposedly simple task. It is not surprisingly, therefore, that one of the holy

grails in cognitive science and also machine learning is to figure out how a child

does this. If we were able to understand the thought processes that were used

to successfully complete this task, then it is conceivable that a machine might be

built to do the same thing. Many models of human learning employ a Bayesian

framework [Tenenbaum 1999]. This approach appears to be fruitful in that using

Bayesian modeling we are ab le to discriminate with more and more accuracy as

we repeatedly perform an experiment and observe the outcome. This is analogous

to a child attempting to pick up the toy, dropping it , picking it up again after

having learned something about how to pick it up , dropping it , etc., until finally

she is successful. Each time the experiment, attempting to pick up the toy, is

repeated the child learns something or equivalently narrows down the number of

possible strategies. In Bayesian analysis, as we will show next, the width of the

PMF decreases as we observe more outcomes. This is in some sense saying that

our uncertainty about the outcome of the experiment decreases as it is performed

more times. Although not a perfect analogy, it does seem to possess some critical

elements of the human learning process. Therefore, we illustrate this modeling with

the simple example of coin tossing.

Suppose we wish to "learn" whether a coin is fair (p = 1/2) or is weighted

(p 1'= 1/2). One way to do this is to repeatedly toss the coin and count the number

of heads observed. We would expect that our certainty about the conclusion, that

the coin is fair or not, would increase as the number of trials increases. In the

Bayesian model we quantify our knowledge about the value of p by assuming that

p is a random variable. Our particular coin, however, has a fixed probability of

heads. It is just that we do not know what it is and hence our belief about the value
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of p is embodied in an assumed PMF. This is a slightly different interpretation of

probability than our previous relative frequency interpretation. To conform to our

previous notation we let the probability of heads be denoted by the random variable

Y and its values by Yj' Then, we determine its PMF. Our state of knowledge will be

high if the PMF is highly concentrated about a particular value, as for example in

Figure 8.9a. If, however, the PMF is spread out or "diffuse", our state of knowledge

will be low, as for example in Figure 8.9b. Now let's say that we wish to learn the

0.8 0.8

.'"
.i:?o 6 .>-.
~

0.4 . .

~
~0.6

~

0.4

0.2 0.2 .

1.50.5

Yj
o

o'----__--'----L...J..--'----.l..-J.--'----.l..-J.--L.-.L.-__-J

-0.51.5

• t ,
0.5

Yj
o

(a) Y = probability of heads - state of

knowledge is high.
(b) Y = probability of heads - state of

knowledge is low.

Figure 8.9: PMFs reflecting state of knowledge about coin 's probability of heads.

value of the probability of heads. Before we toss the coin we have no idea what it

is, and therefore it is reasonable to assume a PMF that is uniform, as , for example,

the one shown in Figure 8.9b. Such a PMF is given by

£ - 0 1 2 M -l 1
or Yj - 'M' M " " ' ~ ' (8.37)

for some large M (in Figure 8.9b M = 11). This is also called the prior PMF since

it summarizes our state of knowledge before the experiment is performed. Now

we begin to toss the coin and examine our state of knowledge as the number of

tosses increases. Let N be the number of coin tosses and X denote the number of

heads observed in the N tosses. We know that the PMF of the number of heads

is binomially distributed. However, to specify the PMF completely, we require

knowledge of the probability of heads. Since this is unknown, we can only specify

the PMF of X conditionally or if Y = Yj is the probability of heads, then the

conditional PMF of the number of heads for X = i is

i = 0,1, ... , N . (8.38)
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Since we are actually interested in the probability of heads or the P MF of Y after

observing the outcomes of N coin tosses, we need to determine the conditional PMF

PYlx[Yjli]. T he latter is also called the posterior PMF, since it is to be determined

after the experiment is peformed. The reader may wish to compare this terminology

with that used in Chapter 4. The posterior P MF contains all the informat ion about

the probability of heads that results from our prior knowledge, summarized by PY,

and our "data" knowledge, summarized by PXIY ' T he posterior P MF is given by

Bayes' rule (8.15) with X i = i as

Using (8.37) and (8.38) we have

Yj = O, l /M, ... , 1;i = 0,1 , .. . , N

or finally,

Yj = 0, 11M, . .. , 1; i = 0, 1, ... , N . (8.39)
. YJ(l - Yj)N-i

PYlx[Yjlz] = " M i(l _ .)N- i
6j=O Yj Y]

Note that the posterior PMF depends on the number of heads observed, which is

i. To understand what this PMF is saying about our state of knowledge, assume

that we toss the coin N = 10 times and observe i = 4 heads. The posterior PMF

is shown in Figure 8.10a . For N = 20, i = 11 and N = 40, i = 19, the posterior

PMFs are shown in Figures 8.10b and 8.lOc, respectively. Note that as the number

0.4 , ,

1.50.5

Yj

1

a

6

, ; ..

0
. l

0.4

0.2

.1 l
0.2

0.5

Yj

0,2 .

0.4 .

..,..
'£'!,a

><:;:u.6 .
."

(a) N = 10, i = 4 (b) N = 20, i = 11 (c) N = 40, i = 19

Figure 8.10: Posterior PMFs for coin toss ing analogy to human learning - coin

appears to be fair . The yj's are possible probability values for a head.
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(a) N = 10, i = 2 (b) N = 20, i = 5 (c) N = 40, i = 7

Figure 8.11: Posterior PMFs for coin tossing analogy to human learning - coin

appears to be weighted. The Yj'S are possible probability values for a head.

of tosses increases the posterior PMF becomes narrower and centered about the

value of 0.5. The Bayesian model has "learned" the value of p, with our confidence

increasing as the number of trials increases. Note that for no trials (just set N = 0

and hence i = 0 in (8.39)) we have just the uniform prior PMF of Figure 8.9b.

From our experiments we could now conclude with some certainty that the coin

is fair. However , if the outcomes were N = 10, i = 2, and N = 20, i = 5, and

N = 40, i = 7, then the posterior PMFs would appear as in Figure 8.11. We would

then conclude that the coin is weighted and is biased against yielding a head, since

the posterior PMF is concentrated about 0.2. See [Kay 1993] for futher descriptions

of Bayesian approaches to estimation.
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Problems

8.1 (w) A fair coin is tossed. If it comes up heads, then X = 1 and if it comes

up tails, then X = O. Next, a point is selected at random from the area A

if X = 1 and from the area B if X = 0 as shown in Figure 8.12. Note that

the area of the square is 4 and A and B both have areas of 3/2. If the point

selected is in an upper quadrant, we set Y = 1 and if it is in a lower quadrant,
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we set Y = O. Find the conditional PMF PYlx[jli] for all values of i and j .

Next, compute pry = 0].

y

1

A

1
r---+--+ X

Figure 8.12: Areas for Problem 8.1.

8 .2 C..:..) (w) A fair coin is tossed with the outcome mapped into X = 1 for a head

and X = 0 for a tail. If it comes up heads, then a fair die is tossed. The

outcome of the die is denoted by Y and is set equal to the number of dots

observed. If the coin comes up tails, then we set Y = O. F ind the conditional

PMF PYlx[jl i] for all values of i and j . Next, compute p ry = 1].

8.3 (w) A fair coin is tossed 3 times in succession. All the outcomes (i.e., the

3-tuples) are equally likely. The random vari ab les X and Yare defined as

X = {O if outcome of first toss is a tail
1 if outcome of first toss is a head

Y = number of heads observed for the three tosses

Determine the conditional PMF PYlx[j li] for all i and j.

8.4 (t ) Prove that L : ~ _ o o P Y l x [ Y j l x i ] = 1 for all Xi .

8.5 (-.:..:.-) (w) Are the following functions valid conditional PMFs

a . PYlx [jlxi]= (1- Xi)jxi j = 1,2 , . . . ;Xi = 1/4,1/2,3/4

b . PYlx[j lxi] = (~) xl (1 - Xi)N- j j = 0,1 , .. . , N; Xi = -1/2,1/2

c. PYIX[j!Xi] = ex{ j = 2,3, . . . ; Xi = 2 for e some constant?

8.6 (-.:..:.- ) (f) If

px ,y[i ,j] =

i i = O,j = 0

l i = O,j = 1

l i = 1,j = 0

i i = 1,j = 1
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find PYIX and PXIY'

8.7 (f) Verify the conditional PMF given in (8.10).

8.8 C..:..) (f) For the sample space shown in Figure 8.1 determine PYIX and PXIY if

all the outcomes are equally likely. Explain your results.

8.9 (w) Explain the need for the denominator term in (8.11) and (8.12).

8.10 (w) IfPYIX and PY are known, can you find PX,y?

8.11 c.:..:..) (w) A box contains three types of replacement light bulbs. There is an

equal proportion of each type. The types vary in their quality so that the

probability that the light bulb fails at the jth use is given by

PYlx[jll]

PYlx[jI2]

PYlx[jI3]

(0.99)j-10.01

(0.9)j- 10.1

(0.8)j- 10.2

for j = 1,2, .... Note that PYlx[jli] is the PMF of the bulb failing at the jth

use if it is of type i. If a bulb is selected at random from the box, what is the

probability that it will operate satisfactorily for at least 10 uses?

8.12 (f) A joint PMF px,y[i,j] has the values shown in Table 8.2. Determine the

conditional PMF PYlx, Are the random variables independent?

j=1 j=2 j=3

i = 1 ...!. ...i ~
10 10 10

i=2 1 1 1
20 20 10

i=3 3 1 1
10 20 20

Table 8.2: Joint PMF for Problem 8.12.

8.13 c.:..:..) (w) A random vector (X, Y) has a sample space shown in Figure 8.13

with the sample points depicted as solid circles . The four points are equally

probable. Note that the points in Figure 8.13b are the corners of the square

shown in Figure 8.13a after rotation by +450
• For both cases compute PYIX

and PY to determine if the random variables are independent.

8.14 (t) Use the properties of conditional probability and the definition of the con­

ditional PMF to prove (8.23). Hint: Let A = Uj{s : yes) = Yj} and note that

the events {s : yes) = Yj} are mutually exclusive.
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Figure 8.13: Joint PMFs - each point is equally probable.

8.15 (w) If X and Yare independent random variables, find the PMF of Z =

IX - YI· Assume that Sx = {a, I , ... } and Sy = {a, I , ... }. Hint: The answer

is

[k] = { l:~opx[i]py[i]
pz l:~o (py[i]px[i + k] +px[i]py(i + k))

As an intermediate step show that

k=O

k = 1,2, . . .

. {PY[i] k = °
PZlx[klz] = py[i + k] +py(i - k] k i= 0.

8.16 (w) Two people agree to meet at a specified time. Person A will be late by

i minutes with a probability px[i] = (1/2)i+l for i = 0,1, ... , while person B

will be late by j minutes with a probability of py(j] = (1/2)i+ 1 for j = 0,1, ....

The persons arrive independently of each other. The first person to arrive will

wait a maximum of 2 minutes for the second person to arrive. If the second

person is more than 2 minutes late, the first person will leave. What is the

probability that the two people will meet? Hint: Use the results of Problem

8.15.

8.17 C:..:...) (w) If X and Yare independent random variables, both of whose PMFs

take on values {a, 1, ... }, find the PMF of Z = min(X, Y).

8.18 (w) If X and Y have the joint PMF

i = 0,1 , ... .i = 0,1 , ...

where °< PI < 1, °< P2 < 1, find pry > X] using a conditioning argument.

In particular, make use of (8.23) and pry > XIX = i] = pry > ilX = i].
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8.19 (f) If X and Y have the joint PMF given in Problem 8.6 , find Ey1x[Ylxi].

8.20 (f) If X and Y have the joint PMF

(1)i+1 ),J
px,y[i,j] = 2 exp(-.-\) j!

find EYlx[Yli] for all i.

8.21 C:..:..) (f) Find the conditional mean of Y given X if the joint PMF is uniformly

distributed over the points SX,Y = {(O,0), (1,0), (1, 1), (2,0), (2, 1), (2, 2)}.

8.22 C:..:..) (f) For the joint PMF given in Problem 8.21 determine var(Ylxi) for all

Xi. Explain why your results appear to be reasonable.

8.23 (t) Prove that var(Ylxi) = EYlx[y2Ixi] - E?lx[Ylxi] by using (8.31).

8.24 (f) Find Ey[Y] for the joint PMF given in Problem 8.21. Do this by using

the definition of the expected value and also by using (8.36).

8.25 (t) Prove the extension of (8.36) which is

Ey[g(Y)] = Ex [Ey1x[g(Y)IX]]

where heX) = EYlx[g(Y)IX] is a function of the random variable X which

takes on values

h(x i) = EYlx[g(Y)lxi] = Lg(Yj)PYlx[YjlxiJ,
j

This says that Ey[g(Y)] can be computed using the formula

8.26 (t) In this problem we prove that if M f'J Poisf X) and Y conditioned on M

is a binomial PMF with parameter P, then the unconditional PMF of Y is

Pois(.-\p). This means that if

and

then

.-\m
PM[m] = exp(-'-\)-,

m .

PYIM[jlm] = (7) pi(l - p)m-
j

. (.-\p)j
py[j] = exp(-.-\p)-.,­

J.

m = 0,1, ...

j = O,l, .. . , m

j = 0, 1, ....
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To prove this you will need to derive the characteristic function of Y and show

that it corresponds to a Pois('xp) random variable. Proceed as follows, making

use of the results of Problem 8.25

¢y(w)

and complete the derivation.

Ey[exp(jwY)]

EM [EyIM[exp(jwY)IM]

EM [[pexp(jw) + (1 - p)]M]

px,y[i,j] =

8.27 (t) In Chapter 7 the optimal linear predictor of Y based on X = Xi was found.

The criterion of optimality was the minimum mean square error, where the

mean square error was defined as Ex,y[(Y - (aX + b))2]. In this problem we

prove that the best predictor, now allowing for nonlinear predictors as well, is

given by the conditional mean Ey1x[Ylxi]. To prove this we let the predictor

be Y = g(X) and minimize

Ex,y[(Y - g(X))2] = L L(Yj - g(xd)2pX,Y[Xi,Yj]
j

~ ~ [~(Yi - 9(Xi))2PYIX[YiIXiJ] PX[XiJ .

But since PX[Xi] is nonnegative and we can choose a different value of g(xd

for each Xi , we can equivalently minimize

where we consider g(Xi) = C as a constant. Prove that this is minimized for

g(xd = Ey1x[Ylxi]. Hint: You may wish to review Section 6.6.

8.28 (..:..:,..) (f) For random variables X and Y with the joint PMF

i (i,j) =(-1,0)

i (i,j) = (0, -1)

i (i ,j) = (0,1)

i (i,j) = (1,0)

we wish to predict Y based on our knowledge of the outcome of X. Find the

optimal predictor using the results of Problem 8.27. Also, find the optimal

linear predictor for this problem (see Section 7.9) and compare your results.

Draw a picture of the sample space using solid circles to indicate the sample

points in a plane and then plot the prediction for each outcome of X = i for

i = -1,0, 1. Explain your results.
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8.29 (c) Test out the MATLAB program given in Section 8.7 to generate realiza­

tions of the vector random variable (X, Y) whose joint PMF is given in Figure

8.8. Do so by estimating the joint PMF or px,y[i,j]. You may wish to review

Section 7.11.

8.30 t.:..:..) (w,c) For the joint PMF given in Figure 8.8 determine the conditional

mean EYIXUli] and then verify your results using a computer simulation. Note

that you will have to separate the realizations (xm , Ym) into two sets, one in

which X m = °and one in which X m = 1, and then use the sample average of

each set as your estimator.

8.31 (w,c) For the joint PMF given in Figure 8.8 determine Ey[Y] . Then, verify

(8.36) by using your results from Problem 8.30, and computing

- - -Ey[Y] = EYlx[YIO]px[O] + Ey1x[Y11]px[1]

- -where EYlx[YIO] and Ey1x[Yll] are the values obtained in Problem 8.30. Also,

the PMF of X ,which needs to be estimated, can be done so as described in

Section 5.9.

8.32 (w,c) For the posterior PMF given by (8.39) plot the PMF for i = N/2 ,

M = 11 and increasing N , say N = 10,30,50,70. What happens as N becomes

large? Explain your results. Hint: You will need a computer to evaluate and

plot the posterior PMF.



Chapter 9

Discrete N-Dimensional

Random Variables

9.1 Introduction

In this chapter we extend the results of Chapters 5-8 to N-dimensional random vari­

ables, which are represented as an N x 1 random vector. Hence, our discussions will

apply to the 2 x 1 random vector previously studied. In fact , most of the concepts

introduced earlier are trivially extended so that we do not dwell on the conceptu­

alization. The only exception is the introduction of the covariance matrix, which

we have not seen before. We will introduce more general notation in combination

with vector/matrix representations to allow the convenient manipulation of N x 1

random vectors. This representation allows many results to be easily derived and is

useful for the more advanced theory of probability that the reader may encounter

later. Also, it lends itself to straightforward computer implementations, particularly

if one uses MATLAB, which is a vector-based programming language. Since many

of the methods and subsequent properties rely on linear and matrix algebra, a brief

summary of relevant concepts is given in Appendix C.

9.2 Summary

The N-dimensional joint PMF is given by (9.1) and satisfies the usual properties of

(9.3) and (9.4). The joint PMF of any subset of the N random variables is obtained

by summing the joint PMF over the undesired ones. If the joint PMF factors as

in (9.7) , the random variables are independent and vice versa. The joint PMF

of a transformed random vector is given by (9.9). In particular, if the transformed

random variable is the sum of N independent random variables with the same PMF,

then the PMF is most easily found from (9.14). The expected value of a random

vector is defined by (9.15) and the expected value of a scalar function of a random
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vector is found via (9.16). As usual, the expectation operator is linear with a special

case given by (9.17). The variance of a sum of N random variables is given by (9.20)

or (9.21). If the random variables are uncorrelated, then this variance is the sum of

the variances as per (9.22). The covariance matrix of a random vector is defined by

(9.25) . It has many important properties that are summarized in Properties 9.1­

5. Particularly useful results are the covariance matrix of a linearly transformed

random vector given by (9.27) and the ability to decorrelate the elements of a

random vector using a linear transformation as explained in the proof of Property

9.5. An example of this procedure is given in Example 9.4. The joint moments and

characteristic function of an N-dimensional PMF are defined by (9.32) and (9.34) ,

respectively. The joint moments are obtainable from the characteristic function by

using (9.36). An important relationship is the factorization of the joint PMF into

a product of conditional PMFs as given by (9.39). When the random variables

exhibit the Markov property, then this factorization simplifies even further into the

product of first-order conditional PMFs as given by (9.41). The estimates of the

mean vector and the covariance matrix of a random vector are given by (9.44) and

(9.46), respectively. Some MATLAB code for implementing these estimates is listed

in Section 9.8. Finally, a real-world example of the use of transform coding to

store/transmit image data is described in Section 9.9. It is based on decorrelation

of random vectors and so makes direct use of the properties of the covariance matrix.

9.3 Random Vectors and Probability Mass Functions

Previously, we denoted a two-dimensional random vector by either of the equivalent

notations (X, Y) or [X YV. Since we now wish to extend our results to an N x 1

random vector, we shall use (X1,X2 , ... ,XN) or X = [X1X2 ... XNV. Note that

a boldface character will always denote a vector or a matrix, in contrast to a scalar

variable. Also, all vectors are assumed to be column vectors. A random vector

is defined as a mapping from the original sample space S of the experiment to a

numerical sample space, which we term SXl,X2 ,oo .,XN' The latter is normally referred

to as R N
, which is the N-dimensional Euclidean space. Hence, X takes on values

in RN so that

will have values

X(s) =
[

Xl(S) ]
X2 (s)

XN(S)
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where x is a point in the N-dimensional Euclidean space R N
. A simple example is

S = {all lottery tickets} with X(s) representing the number printed on the ticket.

Then , X 1(s) is the first digit of the number, X 2 (s) is the second digit of the number,

... , and X N(S) is the Nth digit of the number.

We are, as usual, interested in the probability that X takes on its possible values.

This probability is P[X1 = Xl, X 2 = X2, . .. , X N = XN] and it is defined as the joint

PMF. The joint PMF is therefore defined as

PX1 ,X2,...,XN [Xl , X2, · · ·, XN] = P[X1 = Xl, X 2 = X2, · ··, X N = XN] (9.1)

or more succinctly using vector notation as

px[x] = P[X = x]. (9.2)

When x consists of integer values only, we will replace Xi by ki. Then, the joint

PMF will be PX1,X2,...,XN[k1, k2, ... , kN] or more succintly as Px[k], where k =
[k1k2 ... kN]T. An example of an N-dimensional joint PMF, which is of consid­

erable importance, is the multinomial PMF (see (4.19)). In our new notation the

joint PMF is

[k k k] - ( M ) kl k2 kNPX1 ,X2,...,XN 1, 2, · · ·, N - k k k P1 P2 .. ,PN
1, 2, .. · , N

where ki ~ 0 with 2 : ~ 1 ki = M , and 0 ::; Pi ::; 1 for all i with 2 : ~ 1 Pi = 1. That
this is a valid joint PMF follows from its adherence to the usual properties

O::;P X1,X2,,,,,XN[k1,k2, , kN ] < 1

LL ... LPX1 ,X2"" ,XN[k1,k2, , kN] = 1.
k l k2 kN

(9.3)

(9.4)

To prove (9.4) we need only use the multinomial expansion, which is (see Problem

9.3)

where 2 : ~ 1 ki = M.
The marginal PMFs are obtained from the joint PMF by summing over the other

variables. For example, if PX
1
[Xl] is desired, then

PX1 [X1] = L L

{X2:X2ESX 2} {X3:X3ESX3}

L PX1 ,X2,,,,,XN[X1,X2, .. . , XN] (9.6)
{XN: XNESx N}

and similarly for the other N - 1 marginals. This is because the right-hand side of

(9.6) is
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When the random vector is composed of more than two random variables, we can

also obtain the joint PMF of any subset of the random variables. We do this by

summing over the variables that we wish to eliminate. If, say, we wish to determine

the joint PMF of Xl and X N , we have

PXl ,XN[XI, XN] = 2:2: ... 2: PXl ,X2"",XN[XI , X2, ... , XN].
X2 X3 XN - l

As in the case of N = 2 the marginal PMFs do not determine the joint PMF,

unless of course the random variables are independent. In the N-dimensional case

the random variables are defined to be independent if the joint PMF factors or if

Hence, if (9.7) holds, the random variables are independent, and if the random

variables are independent (9.7) holds. Unlike the case of N = 2, it is possible that

the joint PMF may factor into two or more joint PMFs. Then, the subsets of random

variables are said to be independent of each other. For example, if N = 4 and the

joint PMF factors as PXl ,X2,X3,X4[XI , X2 , X3 ,X4] = PXl ,X2[XI ,X2]PX3,X4[X3, X4], then
the random variables (Xl , X 2 ) ar e independent of the random variables (X3 , X 4 ) .

An example of the determination of a joint PMF follows.

Example 9.1 - Joint PMF for independent Bernoulli trials

Consider an experiment in which we toss a coin with a probability of heads P,

N times in succession. We let X i = 1 if the ith outcome is a head and X i = 0

if it is a tail. Furthermore, assume that the trials are independent. As defined

in Chapter 4, this means that the probability of the outcome on any trial is not

affected by the outcomes of any of the other trials. Thus, the experiment is a

sequence of independent Bernoulli trials. The sample space is N -dimensional and

is given by SXl ,X2,...,XN = {(k l , k2, ... , kN) : ki = 0,1 ; i = 1,2, ... , N} , and since
pXi[ki] = pki(1 - p)l-ki , we have the joint PMF from (9.7)

N

PXl ,X2,...,XN[kl , k2, ... , kN] = IIpx;[ki]

i=l

N

IIpki(1 _ p)l-ki

i = l

p2: f:l ki(l _ p)N-2: f:l ki. (9.8)

o
A joint cumulative distribution function (CDF) can be defined in the N-dimensional

case as
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It has the usual properties of being between 0 and 1, being monotonically increasing

as any of the variables increases, and being "right continuous" . Also ,

FX1,X2,...,XN ( -00, -00, , -00) 0

FX1,X2" " ,X N (+00, +00, , +00) 1.

The marginal CDFs are easily found by letting the undesired variables be evaluated

at +00. For example, to determine the marginal CDF for Xl , we have

9.4 Transformations

Since X is an N x 1 random vector, a transformation or mapping to a random vector

Y can yield another N x 1 random vector or an M x 1 random vector with M < N.

In the former case the formula for the joint PMF of Y is an extension of the usual

one (see (7.12)). If the transformation is given as y = g(x), where g represents an

N-dimensional function or more explicitly

YI gl(XI , X2 , ,XN )

Y2 g2(XI , X2 , , XN)

then

PY1 ,Y2,...,YN [YI, Y2, ... , YN ] = LL'" L PX1 ,X2,,,,,XN[XI ,X2 , ... , X N ] . (9.9)

{(Xl " " ,XN ):

91 (Xl , ,XN )=Yl ,.. .,

9N(Xl, ,XN )= YN }

In the case where the transformation is one-to-one, there is only one solution for

x in the equation y = g(x), which we denote symbolically by x = g -l(y). The

transformed joint PMF becomes from (9.9) py[y] = PX[g -l(y)], using vector no­

tation. A simple example of this is when the transformation is linear and so can

be represented by y = Ax, where A is an N x N nonsingular matrix. Then, the

solution is x = A -ly and the transformed joint PMF becomes

(9.10)

The other case, in which Y has dimension less than N, can be solved using the

technique of auxiliary random variables. We add enough random variables to make

the dimension of the transformed random vector equal to N , find the joint PMF via
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(9.9) , and finally sum the N-dimensional PMF over the auxiliary random variables.

More specifically, ifY is M x 1 with M < N , we define a new N x 1 random vector

Z = [YI Y2 · · · YM Z M+l = X M+l Z M+2 = X M+2'" Z N = x Nf

so that the transformation becomes one-to-one, if possible. Once the joint PMF of

Z is found, we can determine the joint PMF of Y as

PYl,Y2"" ,YM[YI ,Y2,·· · , YM] = L L . . . LPZl ,Z2,...,ZN[ZI, Z2, · · · , ZN].

ZM+ l ZM+2 ZN

The determination of the PMF of a transformed random vector is in general not an

easy task. Even to determine the possible values of Y can be quite difficult. An

example follows that illustrates the work involved.

Example 9.2 - PMF for one-to-one transformation of N-dimensional

random vector

In Example 9.1 X has the joint PMF given by (9.8). We define a transformed

random vector as

Xl

Xl +X2

Xl +X2 +X3 •

This is a linear transformation that maps a 3 x 1 random vector X into another

3 x 1 random vector Y . It can be represented by the 3 x 3 matrix

Note that the transformed random variables are the sums of the outcomes of the first

Bernoulli trial, the first and second Bernoulli trials, and finally the sum of the first

three Bernoulli trials. As such the values of the transformed random variables must

take on certain values. In particular, YI :::; Y2 :::; Y3 or the outcomes must increase

as the index i increases. This is sometimes called a counting process and will be

studied in more detail when we discuss random processes. Some typical realizations

of the random vector Yare shown in Figure 9.1. To determine the sample space

for Y we enumerate the possible values , making sure that the values in the vector

increase or stay the same and that the increase is at most one unit from Yi to Yi+l.

The sample space is composed of integer 3-tuples (LI, la, l3), which is given by

SYl ,Y2,Y3 = {(O, 0, 0), (0,0,1 ), (0, 1, 1), (1, 1, 1), (0, 1,2)' (1, 1,2) , (1,2 ,2) , (1,2, 3)}.
(9.11)

These are the values of y for which PYl,Y2,Y3 is nonzero and are seen to be integer­

valued. Next, we need to solve for x according to (9.10). It is easily shown that the
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3 .. 3 .. 3 ....

;:;.:'2 . . ;:;.:'2 . . ;:;.:'2 .. .. .. .... .......

1 1 1

0 0 0
0 2

i
0 2

i
0

(a) (b) (c)

Figure 9.1: Typical realizations for sum of outcomes of independent Bernoulli trials.

linear transformation is one-to-one since A has an inverse (note that the determinant

of A is nonzero since det(A) = 1, and so A has an inverse), which is

This says that x = A -ly or Xl = YI, X 2 = Y2 - YI, X3 = Y3 - Y2. Thus, we can use

(9.10) and then (9.8) to find the joint PMF of Y , which becomes from (9.10)

and since from (9.8)

PX l ,X 2,X 3 [k l , ka, k 3] = pk1+k2+k3(1 _ p)3-(k1+k2+k3)

we have that

(9.12)

Note that the joint PMF is nonzero only over the sample space SYl ,Y2,Y3 given in

(9.11).

Always make sure PMF values sum to one.

The result of the previous example looks strange in that the joint PMF of Y does

not depend on hand [2. A simple check that should always be made when working

these types of problems is to verify that the PMF values sum to one. If not, then
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there is an error in the calculation. If they do sum to one , then there could still

be an error but it is not likely. For the previous example, we have from (9.11) 1

outcome for which 13 = 0, 3 outcomes for which 13 = 1, 3 outcomes for which 13 = 2,

and 1 outcome for which 13 = 3. If we sum the probabilities of these outcomes we

have from (9.12)

and hence we can assert with some confidence that the result is correct.

A transformation that is not one-to-one but that frequently is of interest is the

sum of N independent discrete random variables. It is given by

(9.13)

where the Xi 'S are independent random variables with integer values. For the case

of N = 2 and integer-valued discrete random variables we saw in Section 7.6 that

py = PXl *PX2' where * denotes discrete convolution. This is most easily evaluated
using the characteristic functions and the inverse Fourier transform to yield

1
~ ~

py[k] = </JXl (W)</JX2(w) exp( -jwk)-.
_ ~ 2w

For a sum of N independent random variables we have the similar result

r N d
py[k] = J-~D </JXi(w)exp(-jwk)2~

and if all the Xi'S have the same PMF and hence the same characteristic function,

this becomes

r dw
py[kJ = J-~ </J~(w)exp(-jwk)2w (9.14)

where </Jx(w) is the common characteristic function. An example follows (see also

Problem 9.9).

Example 9.3 - Binomial PMF derived as PMF of sum of independent

Bernoulli random variables

We had previously derived the binomial PMF by examining the number of successes

in N independent Bernoulli trials (see Section 4.6.2). We can rederive this result by

using (9.14) with Xi = 1 for a success and Xi = 0 for a failure and determining the



9.5. EXPECTED VALUES 255

k = 0,1 , . . . , N .

P MF of Y = 2:~1 Xi. The random variable Y will be the number of successes in

N trials. The characteristic function of X is for a single Bernoulli trial

<px(w) = Ex [exp(jwX)]

= exp(jw(l))p + exp(jw(O))(l - p)

= pexp(jw) + (1 - p).

Now using (9.14) we have

py[k] = i: [pexp(jw) + (1 - p)]N exp(-jwk) ~

j 1r N (N) . . dw
-1r ~ i [pexp(jw)]t(1 - »":' exp( -jwk) 21f

(use binomial theorem)

;-., (N ) . N 'j1r dw~ ~ pt(l - p) - t exp[jw(i - k)]- .
i=O • -1r 21f

But the integral can be shown to be 0 if i i- k and 1 if i = k (see Problem 9.8) .

Using this result we have as the only term in the sum being nonzero the one for

which i = k , and therefore

py[k] = (~ ) pk(l _ »":'

The sum of N independent Bernoulli random variables has the PMF bin(N,p) in

accordance with our earlier results.

9 .5 Expected Values

The expected value of a random vector is defined as the vector of the expected values

of the elements of the random vector. This is to say that we define

[ [

~ :.~ ]] = [ ~~: :. f~~l ].Ex[X] = EX1,X2,...,XN

X N EXN[XN]

(9.15)

We can view this definition as "passing" the expectation "through" the left bracket

of the vector since E X1,X2"" ,XN[Xi] = Ex; [Xi ]'

A particular exp ectation of interest is that of a scalar function of Xl , X 2, . . . , X N ,

say g(X1 , X 2 , • . . ,X N). Similar to previous results (see Section 7.7) this is deter­

mined by using
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E XI ,X 2,...,X N [g (X I , X 2 , " " X N )]

= 2:2: ... 2:g(XI , X2, ·· ·, XN )PXI ,X2, ,,, ,XN [Xl,X2, " " X N ]. (9.16)
Xl X2 XN

As an example, if g(XI , X 2 , ... , XN) = 2: ~1 X i , then

= 2: 2: ... 2:(XI+ X2 + ...+ XN )PXI,X2 ,,, ,,XN [XI,X2, ... ,XN]

Xl X2 XN

2: 2: ...2: XIP X I,X2, ...,XN [Xl,X2, · · ·, X N ]

Xl X2 XN

+2: 2: ... 2: X2P XI,X2 ,...,X N [Xl,X2, "" XN]

X l X2 XN

+ ... +2: 2: ...2: XNPX I ,X 2,...,X N [X I , X2 , . " ,XN]

X l X2 XN

By a slight modification we can also show that

(9.17)

which says that t he expectat ion is a linear operator . It is also possible to write

(9.17) more succinctly by defining t he N x 1 vector a = [a I a2 ... aN jT to yield

(9.18)

We next determine the variance of a sum of random variables. Previously it was

shown that

var(XI + X 2 ) = var(Xd + var(X2 ) + 2cov(X I , X 2 ) . (9.19)

Our goal is to extend this to v ar (2: ~1 Xd for any N. To do so we proceed as

follows.

var (t,x,) = Ex [(t,x,-Ex [t,x,]) ']

Ex [(t,(X'-EX.lX,])) '] (since Ex[X,1 ~ Ex,[X,])
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Ex [(tu;)'J
Ex [ t ~ u ; U j ]
N N

LLEx[UiUj].
i = l j=l

But

EX[(Xi - EX;[Xi])(Xj - EXj [Xj])]

EXiXj[(Xi - EXi [Xi]) (Xj - EXj[Xj])]

COV(Xi, Xj)

so that we have as our final result

(9.20)

(9.21)

Noting that since COV(Xi, Xd = var(Xd and cov(Xj, Xd = COV(Xi ,Xj) , we have

for N = 2 our previous result (9.19). Also, we can write (9.20) in the alternative

form

var (t,x;) ~ t,var(X;) + t,~ cov(X;,Xj ) .

{(i ,j ):i#j}

As an immediate and important consequence, we see that if all the random variables

are uncorrelated so that COV(Xi, Xj) = 0 for i f:. i , then

(9.22)

which says that the variance of a sum of un correlated random variables is the sum

of the variances.

We wish to explore (9.20) further since it embodies some important concepts

that we have not yet touched upon. For clarity let N = 2. Then (9.20) becomes

2 2

var(X1 + X 2 ) = L L COV(Xi,Xj) .
i = l j =l

(9.23)
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If we define a 2 x 2 matrix C X as

Cx = [ var(Xt}
COV(X2, X t}

then we can rewri te (9.23) as

cov(XI, X 2) ]
var(X2)

var(X l + X,) ~ [1 1] ex [ : ] (9.24)

as is easily verified . The matrix Cx is called the covariance matrix. It is a matrix

with the variances along the main diagonal and the covariances off the main diagonal.

For N = 3 it is given by

and in general it becomes

cov(XI, X 2)

var(X2)
cov(X3 , X 2 )

[

var (XI)

cov(X:.2' X l)
Cx=

COV(XN,Xt}

cov(X I, X 2 )

var (X2 )

cov (XI, XN ) ]
coV(X 2,X N)

. .

COV(XN ,XN)

(9.25)

The covariance matrix has many important properties, which are discussed next.

Property 9.1 - Covariance matrix is symmetric, i.e., Ck = Cx-

Proof:

(Why?)

o

Property 9.2 - Covariance matrix is positive semidefinite.

Being positive semidefinite means that if a is the N x 1 column vector a =

[al a2··· aN]T , then aTCxa ~ 0 for all a . Note that aTCxa is a scalar and is

referred to as a quadratic fo rm (see Appendix C).

Proof: Consider the case of N = 2 since the extension is immediate. Let U, =

Xi - Ex ; [Xi ], which is zero mean , and therefore we have



9.5. EXPECTED VALUES 259

var(alUl + a2U2) (since alXl + a2X2 = alUl + a2U2 + c for c a constant)

Ex[(alUl + a2U2)2] (EX[Ul] = EX[U2] = 0)

a~Ex[Ul] + a~Ex[Ui] + ala2Ex[UlU2] + a2alEx[U2Ul] (linearity of Ex)

a ~ v a r ( X t } + a~var(X2) + ala2cov(Xl, X 2) + a2alcov(X2, Xt}

[al a2] [ var(Xl) coV(Xl,X2) ] [ al ]
cov(X2, Xt} var(X2) a2

= aTCxa.

Since var(alXl +a2X2) :2: 0 for all al and a2, it follows that Cx is positive semidef­

inite.

o
Also, note that the covariance matrix of random variables that are not perfectly

predictable by a linear predictor is positive definite. A positive definite covariance

matrix is one for which aTCxa > 0 for all a i- O. If, however, perfect prediction

is possible, as would be the case if for N = 2 we had alXl + a2X2 + c = 0, for c

a constant and for some al and a2, or equivalently if X2 = -(aI/a2)Xl - (c/a2),

then the covariance matrix is only positive semidefinite. This is because var(alXl +
a2X2) = aTCxa = 0 in this case.

Finally, with the general result that (see Problem 9.14)

(9.26)

we have upon letting a = 1 = [11 ... IV be an N x 1 vector of ones that

which is another way of writing (9.20) (the effect of premultiplying a matrix by IT

and postmultiplying by 1 is to sum all the elements in the matrix).

The fact that the covariance matrix is a symmetric positive semidefinite matrix

is important in that it must exhibit all the properties of that type of matrix. For

example, if a matrix is symmetric positive semidefinite, then it can be shown that

its determinant is nonnegative. As a result, it follows that the correlation coefficient

must have a magnitude less than or equal to one (see Problem 9.18). Some other

properties of a covariance matrix follow.

Property 9.3 - Covariance matrix for uncorrelated random variables is

a diagonal matrix.

Note that a diagonal matrix is one for which all the off-diagonal elements are zero.

Proof: Let COV(Xi ,Xj) = 0 for i i- j in (9.25).

o
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Before listing the next property a new definition is needed. Similar to the definition

that the expected value of a random vector is the vector of expected values of the

elements, we define the expectation of a random matrix as the matrix of expected

values of its elements. As an example, if N = 2 the definition is

E [gn(X)' g12(X)] _ [Ex[gn(X)] EX[g12(X)]]
X g21(X) g22(X) - Ex [g21 (X)] Ex [g22 (X)] .

Property 9.4 - Covariance matrix of Y = AX, where A is an M x N

matrix (with M :::; N), is easily determined.

The covariance matrix of Y is

(9.27)

Proof:

To prove this result without having to explicitly write out each element of the various

matrices requires the use of matrix algebra. We therefore only sketch the proof and

leave some details to the problems. The covariance matrix of Y can alternatively

be defined by (see Problem 9.21)

Cv = Ey [(Y - Ey[Y])(Y - Ey[Y]f] .

Therefore,

Cy Ex [(AX - Ex [AX]) (AX - Ex [AX])T]

Ex [A(X - Ex [X])(A(X - EX[X]))T]

= AEx [(X - Ex [X])(X - Ex[X]f] AT

= ACXA T.

(see Problem 9.22)

(see Problem 9.23)

o
This result subsumes many of our previous ones (try A = IT = [11 ... 1] and note

that Cy = var(Y) if M = 1, for example!).

Property 9.5 - Covariance matrix can always be diagonalized.

The importance of this property is that a diagonalized covariance matrix implies

that the random variables are uncorrelated. Hence , by transforming a random

vector of correlated random variable elements to one whose covariance matrix is

diagonal, we can decorrelate the random variables. It is exceedingly fortunate that

this transformation is a linear one and is easily found . In summary, if X has a

covariance matrix C x , then we can find an N x N matrix A so that Y = AX has

the covariance matrix

o
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The matrix A is not unique (see Problem 7.35 for a particular method). One possible

determination of A is contained within the proof given next.

Proof:

We only sketch the proof of this result since it relies heavily on linear and matrix

algebra (see also Appendix C). More details are available in [Noble and Daniel

1977]. Since Cx is a symmetric matrix, it has a set of N orthonormal eigenvectors

with corresponding real eigenvalues. Since C X is also positive semidefinite, the

eigenvalues are nonnegative. Hence, we can find N x 1 eigenvectors {VI, V2, ... , V N }

so that

i = 1,2, ... , N

where v[Vj = 0 for i i- j (orthogonality) , v[Vi = 1 (normalized to unit length),

and Ai ~ O. We can arrange the N x 1 column vectors CXVi and also AiVi into

N x N matrices so that

(9.28)

But it may be shown that for an N x N matrix A and N x 1 vectors bj , b 2, dj , d2,

using N = 2 for simplicity (see Problem 9.24),

[Ab i Ab2

[cid l C2d2

A [b i b 2 ]

[d i d2 ] [~ ~].

(9.29)

(9.30)

Using these relationships (9.28) becomes

or

C x [ VI
,

V2 ...

v

V

'V

A

~ ]
,

CxY=YA.

(The matrix Y is known as the modal matrix and is invertible.) Premultiplying

both sides by y-I produces

Next we use the property that the eigenvectors are orthonormal to assert that y-I =

vr (a property of orthogonal matrices), and therefore

yTCxY=A (9.31)
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Now recall from Property 9.4 that if Y = AX, then C y = ACxAT. Thus, if we

let Y = AX = VTX , we will have

(from Property 9.4)

(from (9.31))

and the covariance matrix of Y will be diagonal with it h diagonal element var (Yi ) =
Ai ~ O.

o
This important result is used ext ensively in many disciplines. Later we will see that

for some typ es of continuous random vectors, the use of this linear transformation

will make the random variables not only un correlated but independent as well (see

Example 12.14). An example follows.

Example 9.4 - Decorrelation of random variables

We consider a two-dimensional example whose joint PMF is given in Table 9.1. We

X2 =-8 X2 = 0 X2 = 2 X2 = 6 p Xl[xd

X l =-8 0 I 0 0 I
4 4

x l = 0 I 0 0 0 I
4 4

X l = 2 0 0 0 I I
4 4

X l = 6 0 0 I 0 I
4 4

PX2 [X 2 ]
I I I I
4 4 4 4

Table 9.1: Joint P MF values.

first det ermine the covariance matrix C X and then A so that Y = AX consists of

uncorrelated random variables. From Table 9.1 we have that

E Xl[Xd

E Xl[Xf] =

E XIX2[XIX2]

and therefore we have tha t

var(X I )

cov(XI , X 2 ) =

yielding a covariance matrix

EX 2 [X2] = 0

EX 2[Xi] = 26

6

[
26 6]

Cx = 6 26 .
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To find the eigenvectors we need to first find the eigenvalues and then solve (Cx ­

AI)v = 0 for each eigenvector v. To determine the eigenvalues we need to solve for

A in the equation det(Cx - AI) = O. This is

( [
26 - A 6 ])

det 6 26 _ A = 0

or

(26 - A)(26 - A) - 36 = 0

and has solutions Al
eigenvectors yields

20 and A2 = 32. Then, solving for the corresponding

which yields after normalizing the eigenvector to have unit length

Similarly,

(ex - A2I)v2 ~ [~6 ~6] [: ] ~ [ ~ ]
which yields after normalizing the eigenvector to have unit length

The modal matrix becomes

and therefore

A = V
T

= [~ - ~ ] .

V2 V2

Hence, the transformed random vector Y = AX is explicitly
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and Y1 and Y2 are uncorrelated random variables with

Ey[Y] = Ey [AX] = AEx [X] = 0

c - = ACxAT = VTCxV = A = [2
00

3
02].

It is interesting to note in this example, and in general, that A is a rotation matrix

or

A = [ C?s0 - sin 0 ]
sin e' cos 0

where 0 = 1r/4. The effect of multiplying a 2 x 1 vector by this matrix is to rotate

the vector 45° in the counterclockwise direction (see Problem 9.27). As seen in

Figure 9.2 the values of X , indicated by the small circles and also given in Table

9.1, become the values of Y , indicated by the large circles. One can easily verify

the rotation.

10 .---,---r-----r--,--,---,---r-----r----.-------,

. : I . .
8 . . .. :. . . . .:... .. :. . . . 0..:: ......--....... -'-". :.... . / . . . . : . . . . ~ . . . .

6

4

2

~ 0

-2

-4

-6

-8 . . . .:.....:. . . . .:. . . .",.- A-- . "". :.... .:. ... .: .. .. , . . . .

- 10 L..---'-_--'-----'-_--'-_"----'-_--'-----'-_--'------'

-1 0 -8 -6 -4 -2 0 2 4 6 8 10
x

Figure 9.2: Sample points for X (small circles) and Y (large circles). The dashed

lines indicate a 45° rotation.
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9.6 Joint Moments and the Characteristic Function

The joint moments corresponding to an N-dimensional PMF are defined as

E [Xh X I2 XI N ] - ~~ ~ 11 /2 IN [ ]
X I,X2, . ..,XN I 2 ' " N - L..J L..J'" L..J X l X 2 .. . X N P XI ,X 2,.. .,X N X l , X2, ···, XN .

Xl X2 XN

(9.32)

As usual if the random vari ables are independent, the joint PMF factors and there­

fore

(9.33)

The joint characteristic function is defined as

<PXI,X2, .. .,X N (W I , W2 , ... , W N ) = EXI,X2", .,XN [exp[j(wIXI + W2 X2 + ... + WNXN)]]

(9.34)

and is evaluated as

<PXI ,X2" " ,XN (WI , W2 ,··· , W N)

= L L '" Lexp[j(WIXI +W2X 2 + ... +WN XN)]PXI ,X 2,... ,X N [X I , X 2 , ... ,XN].

Xl X2 XN

In particular, for independent random variables, we have (see Problem 9.28)

Also, if X takes on integer values , the joint PMF can be found from the joint

characterist ic function using the inverse Fourier transform or

(9.35)

All the properties of the 2-dimensional characteristic function extend to the general

case. Not e that once <PXI ,X2 ,.. .,XN(WI ,W2 , ... , WN ) is known, the characteristic func­

tion for any subset of the X i 'S is found by setting Wi equal to zero for the ones not

in the subset. For example, to find PXI ,X2[XI , X2 ], we let W3 = W4 = .. . = W N = 0 in
the joint characterist ic function to yield

j
7r j 7r . dwl dw2

P XI ,X 2[kl ,k2] = -7r _7r 1X I , X2, ,, ,,XN ( W ~ W 2' O, O, .. . , O), exp[- J (wl kl + W2k2)] 21f 21f'

t/lX I ,X 2 (WI ,W2)
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As seen previously, the joint moments can be obtained from the characteristic func­

tion. The general formula is

EX 1,X 2,o,o,X N [X i
1 X~ 2 ... x ~ n

9.7 Conditional Probability Mass Functions

When we have an N-dimensional random vector, many different conditional PMFs

can be defined. A straightforward extension of the conditional PMF PYIX encoun­

tered in Chapter 8 is the conditional PMF of a single random variable conditioned

on knowledge of the outcomes of all the other random variables. For example, it is

of interest to study PXNlxl ,X2, ... ,XN - l ' whose definition is

Then by rearranging (9.37) we have upon omitting the arguments

(9.38)

If we replace N by N - 1 in (9.37) , we have

or

Inserting this into (9.38) yields

Continuing this process results in the general chain rule for joint PMFs (see also

(4.10))

(9.39)

A particularly useful special case of this relationship occurs when the conditional

PMFs satisfies

for n = 3,4, ... ,N (9.40)
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or X n is independent of Xl .. " X n - 2 if Xn - l is known for all n ~ 3. If we view n

as a time index, then this says that the probability of the current random variable

X n is independent of the past outcomes once the most recent past outcome X n - l

is known. This is called the Markov property, which was described in Section 4.6.4.

When the Markov property holds , we can rewrite (9.39) in the particularly simple

form

(9.41)

which is a factorization of the N-dimensional joint PMF into a product of first-order

conditional PMFs. It can be considered as the logical extension of the factorization

of the N-dimensional joint PMF of independent random variables into the product

of its marginals. As such it enjoys many useful properties, which are discussed

in Chapter 22. A simple example of when (9.40) holds is for a "running" sum of

independent random variables or X n = :L~=l Ui, where the Ui'S are independent.

Then, we have

= UI

UI + U2 = X I + U2

UI + U2 + U3 = X 2 + U3

For example, X 2 is known, the PMF of X3 = X2 +U3 depends only on U3 and not on

Xl. Also, it is seen from the definition of the random variables that U3 and U I = Xl

are independent. Thus, once X2 is known, X3 (a function of U3 ) is independent of

Xl (a function of UI ). As a result , PX3Ix2 ,Xl = PX31x2 and in general

for n = 3,4, ... , N

or (9.40) is satisfied. It is said that "the PMF of X n given the past samples depends

only on the most recent past sample" . To illustrate this we consider a particular

running sum of independent random variables known as a random walk.

Example 9.5 - Random walk

Let U, for i = 1,2, ... ,N be independent random variables with the same PMF

[k] = { 1- p k = -1
PU P k = 1

and define
n
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(9.42)

At each "t ime" n t he new ra ndom variable X n changes from the old random variable

X n- l by ±1 since X n = X n- l + Un. The joint P MF is from (9.41)

N

PX1,X2,...,XN = II PXnlXn-l

n=l

where P Xl lx o is defined as Px1 • But P XnlXn- l can be found by noting that X n =
X n- l + Un and therefore if X n- l = Xn- l we have that

PUnlXn- l [xn - xn-I lxn- d

PUn[xn - Xn- l ]

pu[x n - Xn- l ]

(step 1 - transform PMF)

(step 2 - independence)

(Un's have same PMF) .

(9.43)

Step 1 results from the transformed random vari able Y = X + c, where c is a con­

stant , having a PMF PY[Yi] = PX[Yi - c]. Step 2 results from Un being independent

of X n- l = E?:l Ui since all t he Ui'S are independent. Finally, we have from (9.42)

N

PX1,X2,...,XN[Xl, X2, · · ·, XN] = II PU[Xn - x n- d·

n=l

A realizati on of the random variables for P = 1/2 is shown in Figure 9.3. As justified

by the character of the outcomes in Figure 9.3b , t his random process is termed a

random walk. We will say more about this later in Chap ter 16. Note that the

. .
........• .. . .. . ... . . . . .. ...

5.---~-~-~-~- ~--r,

4

3

2

5 ..

302520105

-1 .

-2

-3 :

-4

- 5 ' - - - ~ - ~ - ~ - ~ - ~ - - - - ' - '

o

-2 : ' ; : .

-3 .. . .

-4 """ " ' ""

-5'---~-~-~-~ -~----'-'

o 5 10 15 20 25 30

n

(a) Realization of Un's (b) Realizat ion of X n's

Figure 9.3: Typical realization of a random walk .

probability of the realization in Figure 9.3b is from (9.43)

30 30 1 (1) 30

PX1 ,X2,...,x3o[l ,0, ... , - 2] = II PU[Xn - xn -d = II 2" = 2"
n=l n=l
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since pu[-l] = pu[l] = 1/2.

9.8 Com puter Simulat ion of Random Vectors

269

To generate a realization of a random vector we can use the direct method described

in Section 7.11 or the conditional approach of Section 8.7. The latter uses the general

chain rule (see (9.39)) . We will not pursue this further as the extension to an N xl

random vector is obvious. Instead we concentrate on two important descriptors of

a random vector, those being the mean vector given by (9.15) and the covariance

matrix given by (9.25) . We wish to see how to estimate these quantities. In practice,

the N -dimensional PMF is usually quite difficult to estimate and so we settle for

the estimation of the means and covariances. The mean vector is easily estimated

by est imat ing each element by its sample mean as we have done in Section 6.8. Here

we assume to have M realizations of the N x 1 random vector X , which we denote

as {xj , X2 , . . . , X M }. The mean vector estimate becomes

__ 1 M

Ex[X] = M LXm

m=l

(9.44)

which is the same as estimating the ith component of Ex [X] by (11M) 2::;;=1 [Xm]i,
where [eli denotes the ith component of the vector e. To estimate the N x N

covariance matrix we first recall that the vectorImatrix definition is

ex = Ex [(X - Ex[X]) (X - Ex[X])T] .

This can also be shown to be equivalent to (see Problem 9.31)

ex = Ex [XX T] - (Ex [X])(Ex [X]f . (9.45)

We can now replace Ex [X] by the est imate of (9.44) . To est imate the N x N matrix

we replace it by (11M) 2::;;=1 X mX ~ since it is easily shown that the (i ,j) element

of Ex [X X T
] is

and
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Thus we have that

__ 1 M T (1 M ) (1 M )T
Cx= Ml;XmXm- Ml;Xm Ml;Xm

which can also be written as

M

-- 1 ( --) ( __ )T
CX = M L X m -Ex[X] X m - Ex[X]

m=l

(9.46)

--where Ex[X] is given by (9.44). The latter form of the covariance matrix estimate

is also more easily implemented. An example follows.

Example 9.6 - Decorrelation of random variables - continued

In Example 9.4 we showed that we could decorrelate the random variable compo­

nents of a random vector by applying the appropriate linear transformation to the

random vector. In particular, if the 2 x 1 random vector X whose joint PMF is

given in Table 9.1 is transformed to a random vector Y, where

Y = [ ~ - ~ ] X
V2 V2

then the covariance matrix for X

becomes the diagonal covariance matrix for Y

[
20 0]

Cy = 0 32 .

To check this we generate realizations of X, as explained in Section 7.11 and then use

the estimate of the covariance matrix given by (9.46). The results are for M = 1000

realizations

--Cy =

[
25.9080

6.1077

[
19.7742

0.0261

6.1077 ]
25.8558

0.0261 ]
31.9896

and are near to the true covariance matrices. The entire MATLAB program is given

next.
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% covexample.m
clear all % clears out all previous variables from workspace

rand('state',O); % sets random number generator to initial value

M=1000;

for m=1:M % generate realizations of X (see Section 7.11)

u=randC1, 1) ;
if u<=O. 25

x(1,m)=-8;x(2,m)=0;

elseif u>0.25&u<=0.5
x(1,m)=0;x(2,m)=-8;

elseif u>0.5&u<=0.75

x(1,m)=2;x(2,m)=6;

else
x(1,m)=6;x(2,m)=2;

end

end

meanx=[O 0]'; % estimate mean vector of X
for m=l:M

meanx=meanx+x( :,m)/M;

end

meanx

CX=zeros(2,2);

for m=1 :M % estimate covariance matrix of X
xbar C: ,m)=x(: ,m)-meanx;

CX=CX+xbar(:,m)*xbar( :,m)'/M;

end
CX

A=[1/sqrt(2) -1/sqrt(2);1/sqrt(2) 1/sqrt(2)];

for m=1:M % transform random vector X

y(: ,m)=A*x(: .m) ;

end

meany=[O 0]'; %estimate mean vector or Y

for m=1:M

meany=meany+y(:,m)/M;

end

meany

CY=zeros(2,2);

for m=1:M % estimate covariance matrix of Y

ybar(: ,m)=y(: ,m)-meany;

CY=CY+ybar(:,m)*ybar(:,m)'/M;

end

CY

271
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9.9 Real-World Example - Image Coding

The methods for digital storage and transmission of images is an important consid­

eration in the modern digital age. One of the st andard procedures used to convert

an image to its digital representation is the JPEG encoding format [Sayood 1996].

It makes the observation that many images contain portions that do not change

significantly in content. Such would be the case for the image of a house in which

the color and texture of the siding, whether it be aluminum siding or clapboards,

is relatively constant as the image is scanned in the horizontal direction. To store

and transmit all this redundant information is costly and time consuming. Hence,

it is desirable to reduce the image to its basic set of information. Consider a gray

scale image for simplicity. Each pixel, which is a dot of a given intensity level, is

modeled as a random variable. For the house image example, note that for the

siding pixels, the random variables are heavily correlated. For example, if X I and

X2 denote neighboring pixels in the horizontal direction, then we would expect the

correlation coefficient Px 1 ,x 2 = 1. If this is the case, then we know from Section

7.9 that Xl = X 2, assuming zero mean random variables in our model. There is no

economy in storing/transmitting the values Xl = Xl and X2 = X2 = Xl. We should

just store/transmit Xl = Xl and when it is necessary to reconstruct the image let

X2 = Xl = Xl. In this case , there is no image degradation in doing so. If, however,

!PX 1,X 21 < 1, then there will be an error in the reconstructed X 2 . If the correlation

coefficient is close to ±1, this error will be small. Even if it is not, for many images

the errors introduced are perceptually unimportant. Human visual perception can

tolerate gross errors before the image becomes unsatisfactory.

To apply this idea to image coding we will consider a simple yet illustrative

example. The amount of correlation between random variables is quantified by

the covariances. In particular, for multiple random variables this information is

embodied in the covariance matrix. For example, if N = 3 a covariance matrix of

indicates that

but

[
4 0 0]

ex = 0 4 3.8

o 3.8 4
(9.47)

3.8
PX 2,X 3 = J4. 4 = 0.95.

Clearly, then (XI, X 2) or (XI, X 3) contain most of the information. For more com­

plicated covariance matrices these relationships are not so obvious. For example,

if

[
41 5]

ex = 1 4 5

5 5 10

(9.48)
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it is not obvious that X 3 = Xl + X 2 (assuming zero mean random variables). (This

is verified by showing that E[(X3 - (Xl + X 2))2] = 0 (see Problem 9.33)) .

The technique of transform coding [Sayood 1996] used in the JPEG encoding

scheme takes advantage of the correlation between random variables. The particular

version we describe here can be shown to be an optimal approach [Kramer and

Mathews 1956]. It is termed the Karhunen-Loeve transform and an approximate

version is used in the JPEG encoding. Transform coding operates on a random

vector X and proceeds as follows:

1. Transform the random variables into uncorrelated ones via a linear transforma­

tion Y = AX, where A is an invertible N x N matrix.

2. Discard the random variables whose variance is small relative to the others by

setting the corresponding elements of Y equal to zero. This yields a new N x 1

random vector Y. T his vector would be stored or transmitted. (Of course,

the zero vecto r elements would not require encoding, thereby effecting data

compression. Their locations, though, would need to be specified.)

3. Transform back to X = A - IY to recover an approximation to the original ran­

dom variables (if the values Y were stored then this would occur upon retrieval

or if they were transmitted, this would occur at the receiver) .

By decorrelating the random variables first it becomes obvious which components

can be discarded without significantly affecting the reconstructed vector. To accom­

plish the first step we have already determined that a suitable decorrelation matrix

is v", where Y is the matrix of eigenvectors of Cx - T hus, we have that

C y AC XAT

y TCx Y

[ var(YIl 0 0

]A= 0 var(Y2) 0

0 0 var (Y3 )

We now carry out the transform coding procedure for the covariance matrix of

(9.48). This is done numerically using MAT LAB. The statement [V Lambda] =eig(CX)

will produce the matrices Y and A, as

[ 0.4082 -0.7071 0.5774 ]
v = 0.4082 -0.7071 0.5774

0.8165 0 - 0.5774

[15 0

•
A o 3

o 0
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Hence , var(Ya) = .Aa = 0 so that we discard it by setting -Va = 0 and therefore

Y ~ [ ~ ] ~ l i i l l [ ~ ] ·
B '---v----'"

y

The reconstructed random vector becomes with A = yT

X=A-Iy vv

YBY

= YByTX

and since

we have that

[

jXI - ~X2 + ~Xa ]

X -~XI + jX2 + ~Xa

~XI + ~X 2 + jXa

= [ ~: ] (using Xa = Xl + X 2 , see Problem 9.33)

Xl +X2

[;: ].

Here we see that the reconstructed vector X is identical to the original one. Gen­

erally, however, there will be an error. For the covariance matrix of (9.47) there

will be an error since X2 and Xa are not perfectly correlated. For that covariance

matrix the eigenvector and eigenvalue matrices are

y =

A

[
0.707~
0.7071

[

7.8 0

o 4
o 0

~ 0.707~ ]
o -0.7071

O ~ 2 ]
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and it is seen that the decorrelated random variables all have a nonzero variance

(recall that var(Yi) = Ad . This indicates that no component of Y can be discarded

without causing an error upon reconstruction. By discarding Y3, which has the

smallest variance, we will incur the least amount of error. Doing so produces the

reconstructed random vector

X VBVTX

[ ~ ~ ~ ]x
o 1 1

2 2

which becomes
Xl

X2 + X 3

X= 2

X 2+X3

2

It is seen that the components X2 and X 3 are replaced by their averages. This is due

to the nearly unity correlation coefficient coefficient (PX2,X3 = 0.95) between these

components. As an example, we generate 20 realizations of X as shown in Figure

9.4a , where the first realization is displayed in samples 1,2,3; the second realization

in samples 4,5,6, etc. The reconstructed realizations are shown in Figure 9.4b.

4 r--~ --r--~----. --~ -...,.,

2 2 .

<>< 0

- 2

605020 30 40

Sample
10

-4 ' - - - ~ - - ' - - - - - ' - - - - ' - - " ' - - - - ' - '
o605020 30 40

Sample
10

-4 ' - - - ~ - - ' - - - - - ' - - - - ' - - " ' - - - - ' - '

o

(a) Original (b) Reconstruction

Figure 9.4: Realizations of original random vector { Xl , x2 , . .. , X20} and recon­

structed random vectors {Xl, X2 , ... , X20}. The displayed samples shown are com­

ponents of xj , followed by components of X2, etc.

Finally, the error between the two is shown in Figure 9.5. Note that the total average
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4.-------.-----.----r------.---.,---"

3 . _..

2

<>< 1 . '" .

~ 0 .,~.,~.rl:'~.l.Tl.lT.lT.lr.lT-~'.lT.Tl-lT-,,-
. .

-1 : : : :
. . . .. .

-2 .

-3 . .
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-4 L--_----'-__---'-__...1....-_---''--_----'-__---'-'

o

Figure 9.5: Error between original random vector realizations and reconstructed

ones shown in Figure 9.4.

squared error or the total mean square error (MSE) is given by 2:~=1 Ex [(Xi - Xi )2]
which is

Total mse
A 2 A 2 A 2

E[(XI - Xl) + (X2 - X 2) + (X3 - X 3) ]

= E[(X2 - (X2+ X 3)/2)2] + E[(X3 - (X2+ X 3)/2)2]

= E[((X2 - X 3)/2)2] + E[((X3 - X 2)/2) 2]

1 2
= 2E [(X 2 - X3) ]

1
= 2[var(X2 ) + var(X3) - 2cov(X2 , X 3 ) ]

1
2[4 + 4 - 2(3.8)] = 0.2.

This total MSE is estimated by taking the sum of the squares of the values in Figure

9.5 and dividing by 20, the number of vector realizations. Also, note what the total

MSE would have been if PX 2,X a = 1.

Finally, to appreciate the error in terms of human vision perception, we can

convert the realizations of X and X into an image. This is shown in Figure 9.6.

The grayscale bar shown at the right can be used to convert the various shades of

gray into numerical values. Also, note that as expected (see ex in (9.47)) Xl is

uncorrelated with X 2 and X 3, while X 2 and X 3 are heavily correlated in the upper

image. In the lower image X 2 and X3 have been replaced by their average.
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2 4 6 8 10 12 14 16 18 20

Figure 9.6: Realizations of original random vector and reconstructed random vectors

displayed as gray-scale images. The upper image is the original and the lower image

is the reconstructed image.
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Problems

9.1 C:.:J (w) A retired person gets up in the morning and decides what to do that

day. He will go fishing with probability 0.3, or he will visit his daughter with

probability 0.2, or else he will stay home and tend to his garden. If the decision
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that he makes each day is independent of the decisions made on the other days,

what is the probability that he will go fishing for 3 days, visit his daughter for

2 days, and garden for 2 days of the week?

9.2 (f,c) Compute the values of a multinomial PMF if N = 3, M = 4, PI = 0.2,

and P2 = 0.4 for all possible kl , k2, k3. Do the sum of the values equal one?

Hint: You will need a computer to do this.

9.3 (t) Prove the multinomial formula given by (9.5) for N = 3 by the following

method, Use the binomial formula to yield

Then let b = a2 + a3 so that upon using the binomial formula again we have

Finally, rearrange the sums and note that k3 = M - kl - k2 so that there is

actually only a double sum in (9.5) for N = 3 due to this constraint.

9.4 C:..:..J (f) Is the following function a valid PMF?

kl = 0,1 " "
k2 = 0,1" ..
k3 = -1,0,1.

9.5 (w) For the joint PMF

kl = 0,1""

k2 = 0,1" "
k3 = 0, 1,."

where °< a < 1, °< b < 1, and °< c < 1, find the marginal PMFs P XllPX 2

and PXs'

9.6 C.:..:.-) (w) For the joint PMF given below are there any subsets of the random

variables that are independent of each other?

kl = O,I, .. " M

k2 = M - kl

k3 = 0,1 , .. ,

where °< PI < 1, P2 = 1 - PI, and °< P3 < 1.
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9.7 (f) A random vector X with the joint PMF

is transformed according to Y = AX where

Find the joint PMF of Y.

9.8 (t) Prove that

kl = 0,1 , .

k2 = 0,1 , .

k3 = 0,1 , .

279

I' . dw {O k:f: 0
J-1r exp(Jwk) 271" = 1 k = O.

Hint: Expand exp(jwk) into its real and imaginary parts and note that J(g(w)+

jh(w))dw = Jg(w)dw + j Jh(w)dw.

9.9 (t) Prove that the sum of N independent Poisson random variables with X i '"

POiS(Ai) for i = 1,2, ... , N is again Poisson distributed but with parameter

A= L~l x, Hint: See Section 9.4.

9.10 t.:.,:.,) (w) The components of a random vector X = [Xl X 2 ••• X NV all have

the same mean Ex[X] and the same variance var(X). The "sample mean"

random variable
1 N

X=- LXi
N .

z=l

is formed. If the Xi'S are independent, find the mean and variance of X. What

happens to the variance as N -+ oo? Does this tell you anything about the

PMF of X as N -+ oo?

9.11 (w) Repeat Problem 9.10 if we know that each X i '" Ber(p). How can this

result be used to motivate the relative frequency interpretation of probability?

9.12 (f) If the covariance matrix of a 3 x 1 random vector X is
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9.13 C..:..) (w) A 2 x 1 random vector is given by

where var(U) = 1. Find the covariance matrix for X. Next find the correlation

coefficient PX 1,X 2' Finally, compute the determinant of the covariance matrix.

Is the covariance matrix positive definite? Hint: A positive definite matrix

must have a positive determinant.

9.14 (t) Prove (9.26) by noting that

N N

aTCxa = L L aiaj cov(Xi , Xj).
i=l j=l

9.15 (f) For the covariance matrix given in Problem 9.12, find var(XI + X 2 + X 3 ) .

9.16 (t) Is it ever possible that var(XI + X 2 ) = var(XI ) without X 2 being a con­

stant?

9.17 (..:..:..) (w) Which of the following matrices are not valid covariance matrices

and why?

a. [~ ~] [-1 0]
b. 0 -1 c. [~ ~] d. [~ ~]

9.18 (f) A positive semidefinite matrix A must have det(A) ~ O. Since a covari­

ance matrix must be positive semidefinite, use this property to prove that the

correlation coefficient satisfies Ipx 1 ,x 21 ::; 1. Hint: Consider a 2 x 2 covariance

matrix.

9.19 (f) If a random vector X is transformed according to

YI Xl

Y2 = XI+X2

and the mean of X is

[ 4

3 ]Ex [X] =

find the mean of Y = [YI Y2V.

9.20 (..:..:..) (f) If the random vector X given in Problem 9.19 has a covariance matrix

ex = [~ ~]
find the covariance matrix for Y = [YI Y2V.
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9.21 (t) For N = 2 show that the covar iance matrix may be defined as

Cx = Ex [(X - Ex [X])(X - Ex[Xlf ] .
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Hint: Recall that the expected value of a matrix is the matrix of the expected

values of its elements.

9.22 (t) In this problem you are asked to prove that ifY = AX, where both X and

Y are N x 1 random vecto rs and A is an N x N matrix, then Ey [Y] = AEx [X].

If we let [ALj be the (i ,j) element of A , then you will need to prove that

N

[EY[Y]]i = L[A]ij[Ex[X]Ji.
j=l

This is because if b = Ax, then bi = L:f=l aijXj, for i = 1,2, ... , N where bi

is the ith element of band aij is the (i ,j) element of A.

9.23 (t) In this problem we prove that

Ex[AG(X)AT
] = AEx[G(X)]AT

where A is an N x N matrix and G(X) is an N x N matrix whose elements

are all fun ctions of X . To do so we note tha t if A , B , C , D ar e all N x N

matrices then D = ABC is an N x N matrix with (i , l ) element

N

[Dl il = L [ABlik[C] kl
k=l

f;; (t, [A]ij [B]i ' ) [Cl.,

N N

L L[Alij[Bljk[C]kl.
k=l j=l

Using this result and replacing A by itself, B by G(X) , and C by AT will

allow the desired result to be proven.

9.24 (f) Prove (9.29) and (9.30) for the case of N = 2 by letting

A =
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and multiplying out all the matrices and vectors. Then, verify that the re­

lationships are true by showing that the elements of the resultant N x N

matrices are identical.

9. 25 (c) Using MATLAB, find the eigenvectors and corresponding eigenvalues for

the covariance matrix .

C X = [266 2
66]

To do so use the statement [V Lambda] =eig( CX) .

9 .26 C:..:..-) (f,c) Find a linear transformation to decorrelate the random vector X =

[X l x 2 ]T that has the covariance matrix

[10 6]
C x = 6 20 .

What are the variances of the decorrelated random variables?

9. 27 (t) Prove that an orthogonal matrix, i.e., one that has the property U T =

U - I
, rotat es a vector x to a new vector y . Do this by letting y = Ux and

showing that the length of y is the same as the length of x. The length of a

vector is defined to be Ilxll = v'xTx = v x ~ + x ~ + ... + x ~ .

9.28 (t) Prove that if the random variables Xl , X 2 , . .• , X N are independent, then

the joint characteristic function factors as

Alt ernatively, if the joint characteristic func tion factors, what does this say

about the random variables and why?

9.29 (f) For the random walk described in Example 9.5 find the mean and the

var iance of X n as a function of n if p = 3/4. What do they indicate about the

probable outcomes of X I,X2 , . . . ,XN?

9.30 (c) For the random walk of Problem 9.29 simulate several realizations of the

random vector X = [X l X 2 ••• XN]T and plot these as X n versus n for n =

1,2, ... ,N = 50. Does the appearance of the outcomes corroborate your

results in Problem 9.29? Also, compare your results to those shown in Figure

9.3b .

9 .31 (t) Prove the relationship given by (9.45) as follows. Consider the (i, j) ele­

ment of C x , which is cov(Xi, Xj ) = E X;,x j[XiXj] - Ex; [Xi]Ex j [Xj]. Then,

show that the lat ter is just the (i ,j) element of the right-hand side of (9.45).

Recall the definition of the expected value of a matrix/vector as the ma­

trix/vector of expected values.
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9.32 (c) A random vector is defined as X = [Xl X 2. . . XNV, where each compo­

nent is X i ......, Ber(1/2) and all the random variables are independent. Since

the random variables are independent, the covariance matrix should be di­

agonal. Using MATLAB, generate realizations of X for N = 10 by using

x=floor(rand(10,1)+O.5) to generate a single vector realization. Next gen­

erate multiple random vector realizations and use them to estimate the covari­

ance matrix. Presumably the random numbers that MATLAB produces are

"pseudo-independent" and hence "pseudo-uncorrelated". Does this appear to

be the case? Hint: Use the MATLAB command mesh(CXest) to plot the

estimated covariance matrix CXest.

9.33 (w) Prove that if Xl, X 2 , X 3 are zero mean random variables, then E[(X3 ­

(Xl + X2))2] = 0 for the covariance matrix given by (9.48).

9.34 (t) In this problem we explain how to generate a computer realization of a

random vector with a given covariance matrix. This procedure was used to

produce the realizations shown in Figure 9.4a. For simplicity the desired N xl

random vector X is assumed to have a zero mean vector. The procedure is

to first generate an N x 1 random vector U whose elements are zero mean,

uncorrelated random variables with unit variances so that its covariance matrix

is I. Then transform U according to X = BU, where B is an appropriate

N x N matrix. The matrix B is obtained from the N x N matrix .JA whose

elements are obtained from the eigenvalue matrix A of C x by taking the

square root of the elements of A, and V , where V is the eigenvector matrix of

ex , to form B = v.JA. Prove that the covariance matrix of BU will be C x .

9.35 t:..:..-) (f) Using the results of Problem 9.34 find a matrix transformation B of

U = [UI U2V, where Cu = I , so that X = BU has the covariance matrix

9.36 (..:...:,,) (c) Generate 30 realizations of a 2 x 1 random vector X that has a zero

mean vector and the covariance matrix given in Problem 9.35. To do so use

the results from Problem 9.35. For the random vector U assume that UI and

U2 are uncorrelated and have the same PMF

{

~ k = -1
pu[k] = ~ k = 1.

Note that the mean of U is zero and the covariance matrix of U is I. Next

estimate the covariance matrix ex using your realizations and compare it to

the true covariance matrix.



Chapter 10

Continuous Random Variables

10.1 Introduction

In Chapters 5-9 we discussed discrete random variables and the methods employed

to describe them probabilistically. The principal assumption necessary in order to

do so is that the sample space, which is the set of all possible outcomes, is finite or

at most countably infinite. It followed then that a probability mass function (PMF)

could be defined as the probability of each sample point and used to calculate the

probability of all possible events (which are subsets of the sample space). Most

physical measurements, however, do not produce a discrete set of values but rather

a continuum of values such as the rainfall measurement data previously shown in

Figures 1.1 and 1.2. Another example is the maximum temperature measured during

the day, which might be anywhere between 20°F and 60°F. The number of possible

temperatures in the interval [20,60] is infinite and uncountable. Therefore, we cannot

assign a valid PMF to the temperature random variable. Of course, we could always

choose to "round off" the measurement to the nearest degree so that the possible

outcomes would then become {20, 21, ... , 60}. Then, many valid PMFs could be

assigned. But this approach compromises the measurement precision and so is to

be avoided if possible. What we are ultimately interested in is the probability of

any interval, such as the probability of the temperature being in the interval [20,25]

or [55,60] or the union of intervals [20,25] U [55,60]. To do so we must extend our

previous approaches to be able to handle this new case. And if we later decide that

less precision is warranted, such that the rounding of 20.6° to 21° is acceptable, we

will still be able to determine the probability of observing 21°. To do so we can

regard the rounded temperature of 21° as having arisen from all temperatures in

the interval A = [20.5,21.5). Then, P[rounded temperature = 21] = P[A], so that

we have lost nothing by considering a continuum of outcomes (see Problem 10.2).

Chapters 10-14 discuss continuous random variables in a manner similar to

Chapters 5-9 for discrete random variables. Since many of the concepts are the

same, we will not belabor the discussion but will concentrate our efforts on the al-
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gebraic manipulations required to analyze continuous random variables. It may be

of interest to note that discrete and continuous random variables can be subsumed

under the topic of a general random variable. There exists the mathematical ma­

chinery to analyze both types of random variables simultaneously. This theory is

called measure theory [Capinski, Kopp 2004]. It requires an advanced mathematical

background and does not easily lend itself to intuitive interpretations. An alterna­

tive means of describing the general random variable that appeals more to engineers

and scientists makes use of the Dirac delta function. This approach is discussed

later in this chapter under the topic of mixed random variables .

In the course of our discussions we will revisit some of the concepts alluded to in

Chapters 1 and 2. With the appropriate mathematical tools we will now be able to

define these concepts. Hence , the reader may wish to review the relevant sections

in those chapters.

10.2 Summary

The definition of a continuous random variable is given in Section 10.3 and illus­

trated in Figure 10.1. The probabilistic description of a continuous random variable

is the probability density function (PDF) px(x) with its interpretation as the prob­

ability per unit length. As such the probability of an interval is given by the area

under the PDF (10.4). The properties of a PDF are that it is nonnegative and

integrates to one, as summarized by Properties 10.1 and 10.2 in Section 10.4. Some

important PDFs are given in Section 10.5, such as the uniform (10.6), the exponen­

tial (10.5), the Gaussian or normal (10.7), the Laplacian (10.8) , the Cauchy (10.9),

the Gamma (10.10), and the Rayleigh (10.14). Special cases of the Gamma PDF

are the exponential, the chi-squared (10.12), and the Erlang (10.13). The cumu­

lative distribution function (CDF) for a continuous random variable is defined the

same as for the discrete random variable and is given by (10.16). The corresponding

CDFs for the PDFs of Section 10.5 are given in Section 10.6. In particular, the

CDF for the standard normal is denoted by <p(x) and is related to the Q function

by (10.17). The latter function cannot be evaluated in closed form but may be

found numerically using the MATLAB subprogram Q.m listed in Appendix lOB. An

approximation to the Q function is given by (10.23). The CDF is useful in that

probabilities of intervals are easily found via (10.25) once the CDF is known. The

transformation of a continuous random variable by a one-to-one function produces

the PDF of (10.30). If the transformation is many-to-one, then (10.33) can be used

to determine the PDF of the transformed random variable. Mixed random variables,

ones that exhibit nonzero probabilities for some points but are continuous otherwise,

are described in Section 10.8. They can be described by a PDF if we allow the use

of the Dirac delta function or impulse. For a general mixed random variable the

PDF is given by (10.36). To generate realizations of a continuous random variable

on a digital computer one can use a transformation of a uniform random variable
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as summarized in Theorem 10.9.1. Examples are given in Section 10.9. Estimation

of the PDF and CDF can be accomplished by using (10.38) and (10.39). Finally, an

example of the application of the theory to the problem of speech clipping is given

in Section 10.10.

10.3 Definition of a Continuous Random Variable

A continuous random variable X is defined as a mapping from the experimental

sample space S to a numerical (or measurement) sample space Sx , which is a subset

of the real line R l
. In contrast to the sample space of a discrete random variable,

Sx consists of an infinite and uncountable number of outcomes. As an example,

consider an experiment in which a dart is thrown at the circular dartboard shown in

Figure 10.1. The outcome of the dart-throwing experiment is a point Sl in the circle

S

X(sd

x

1

Sx = [0,1]

Figure 10.1: Mapping of the outcome of a thrown dart to the real line (example of

continuous random variable).

of radius one. The distance from the bullseye (center of the dartboard) is measured

and that value is assigned to the random variable as X(sd = Xl. Clearly then,

the possible outcomes of the random variable are in the interval [0, 1], which is an

uncountably infinite set. We cannot assign a nonzero probability to each value of

X and expect the sum of the probabilities to be one. One way out of this dilemma

is to assign probabilities to intervals, as was done in Section 3.6. There we had a

one-dimensional dartboard and we assigned a probability of the dart landing in an

interval to be the length of the interval. Similarly, for our problem if each value of

X is equally likely so that intervals of the same length are equally likely, we could

assign

P[a ~ X ~ b] = b - a (10.1)

for the probability of the dart landing in the interval [a, b]. This probability assign­

ment satisfies the probability axioms given in Section 3.6 and so would suffice to

calculate the probability of any interval or union of disjoint intervals (use Axiom 3

for disjoint intervals). But what would we do if the probability of all equal length

intervals were not the same? For example, a champion dart thrower would be more
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likely to obtain a value near x = 0 than near x = 1. We therefore need a more

general approach. For discrete random variables it was just as easy to assign PMFs

that were not uniform as ones that were uniform. Our goal then is to extend this

approach to encompass continuous random variables. We will do so by examining

the approximation afforded by using the P MF to calculate interval probabilities for

continuous random variables.

Consider first a possible approximation of (10.1) by a uniform PMF as

Xi = ib..x for i = 1,2, ... ,M

where b..x = 11M , so that Mb..x = 1 as shown in Figure 10.2. Then to approximate

i

I

I

i
I

I

i
r
r i
f i
1 I

I 1

f i
I I

I

0.12

0.1

~ 0 . 0 8

~
~ 0 . 0 6

0.04

0.02

o
o 0.380.52

X

0.12

0.1

~ 0. 0 8

~
~ 0 . 06

0.04

0.02

o
o 0.38 0.52

X

(a) M = 10, ~x = 0.1 (b) M = 20, ~x = 0.05

Figure 10.2: Approximating the probability of an interval for a cont inuous random

variable by using a PMF.

the probability of the outcome of X in the interval [a, b] we can use

P[a ::; X ::; b] = (10.2)

For example, referring to Figure 1O.2a, if a = 0.38 and b = 0.52, then there are two

values of X i that lie in that interval and therefore P[0.38 ::; X ::; 0.52] = 21M = 0.2,

even though we know that the true value from (10.1) is 0.14 . To improve the

quality of our approximation we increase M to M = 20 as shown in Figure 1O.2b.

Then, we have three values of X i that lie in the interval and therefore P [0.38 ::; X ::;

0.52] = 31M = 0.15, which is closer to the true value. Clearly, if we let M -+ 00 or

equivalently let b..x -+ 0, our approximation will become exact. Considering again
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(10.2) with .6..x = l/M, we have

P [a ::; X ::; b] = L 1 . .6..x

{ i : a ~ x i 9}

and defining px (x) = 1 for 0 < x < 1 and zero otherwise, we can write this as

289

P[a ::; X ::; b] = L PX(Xi).6..X.

{ i :a ~ x i ~b}

(10.3)

Finally, letting .6..x -t 0 to yield no error in the approximation, the sum in (10.3)

b ecomes an integral and PX(Xi) -t px(x) so that

P[a ::; X ::; b] = l b

px(x)dx (10.4)

which gives the same result for the probability of an interval as (10.1). Note that

Px (x) is defined to be 1 for all 0 < x < 1. To interpret this new function Px (x) we

have from (10.3) with Xo = k.6..x for k an integer

P[xo - .6..x/2 ::; X ::; Xo + .6..x/2]

L px(xd.6..x

{ i : x o-b. x/ 2 ~ X i ~ x o +b. x / 2}

which yields

L PX( Xi).6..x

{i :Xi= XO}

px(xo).6..x

(only one value of Xi within interval)

( )
_ P[xo - .6..x/2 ::; X ::; Xo+ .6..x/2]

PX Xo - .6..x .

This is the probability of X being in the interval [xo - .6..x/2,Xo + .6..x/2] divided

by the interval length .6..x. Hence, px(xo) is the probability per unit length and is

termed the probability density function (PDF). It can be used to find the probability

of any interval by using (10.4). Equivalently, since the value of an integral may be

interpreted as the area under a curve, the probability is found by determining the

area under the PDF curve. This is shown in Figure 10.3. The PDF is denoted

by px(x) , where we now use parentheses since the argument is no longer discrete

but continuous. Also , for the same reason we omit the subscript i , which was used

for the PMF argument. Hence, the PDF for a cont inuous random variable is the

extension of the PMF that we sought. Before continuing we examine this example

further.
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Figure 10.3: Example of probability density function and how probability is found

as the area under it .

Exam p le 10 .1 - PDF for a uniform random varia b le and t h e MAT L A B

co m mand rand

The PDF given by

{
I O<x< l

px(x) = 0 otherwise

is known as a uniform P DF. Equivalently, X is said to be a uniform random vari­

able or we say that X is uniformly distributed on (0,1) . The shorthand notation is

X f'J U(O , 1). Observe that this is the continuous random variable for which MAT­

LAB uses rand to produce a realization. Hence , in simulating a coin toss with a

probability of heads of p = 0.75, we use (lOA) to obtain

P [a ::; X ::; b] = l b

px(x)dx

l b

1dx

= b - a = 0.75

and choose a = 0 and b = 0.75. The probability of obtaining an outcome in the

interval (0,0.75] for a random variable X f'J U(O, 1) is now seen to be 0.75. Hence,

the code below can be used to generate the outcomes of a repeated coin tossing

experiment with p = 0.75.

f or i=1 :M

u=randO , 1) ;
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if u<=O.75

x(i,1)=1; Yo head mapped into 1

else

x(i,1)=O; Yo tail mapped into 0

end

end

Could we have used any other values for a and b?
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(;

Now returning to our dart thrower, we can acknowledge her superior dart-throwing

ability by assigning a nonuniform PDF as shown in Figure 10.4. The probability of

px(x) = 2(1 - x )
. . . .. . . .

2 .; : -: ..
· . .· . .· . .

1.5 .
.........
~.......,
~
~

1 .

0.5 .

Ol--_-L...---I... - - l . . . ~ _ - - - - l

o 0.1
x

0.9 1

Figure 10.4: Nonuniform PDF.

throwing a dart within a circle of radius 0.1 or X E [0,0.1] will be larger than for

the region between the circles with radii 0.9 and 1 or X E [0.9,1]. Specifically, using

(10.4)

r: °1prO ~ X ~ 0.1] Jo 2(1 - x )dx = 2(x - x
2
/ 2) lo' = 0.19

P[0.9 ~ X ~ 1] = 1.: 2(1 - x )dx = 2(x - x
2 /2)1~ .9 = 0.01.

Note that in this example px(x) ~ 0 for all x and also J ~ oopx(x)d x = 1. These

are properties that must be satisfied for a valid PDF. We will say more about these

properties in the next section.

It may be helpful to consider a mass an alogy to the PDF. An example is shown

in Figure 10.5. It can be thought of as a slice of Jarlsberg cheese with length 2
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xQ

x

• 2

Figure 10.5: Jarlsberg cheese slice used for mass analogy to PDF.

meters, height of 1 meter, and depth of 1 meter, which might be purchased for a

New Year 's Eve party (with a lot of guests!) . If its mass is 1 kilogram (it is a new

"lite" cheese) , then its overall density D is

D = mass = M = 1 kg = 1 kg/rn".
volume V 1 m3

However, its linear density or mass per meter which is defined as D.M/ D.x will change

with x. If each guest is allowed to cut a wedge of cheese of length D.x as shown in

Figure 10.5, then clearly the hungriest guests should choose a wedge near x = 2 for

the greatest amount of cheese . To determine the linear density we compute D.M/ D.x

versus x. To do so first note that D.M = DD.V = D.V and D.V = 1 . (area of face),

where the face is seen to be trapezoidal. Thus,

D.V = ~D.x (xQ - D.x/2 + XQ + D.X/2) = ~XQD.x.
2 2 2 2

Hence, D.M/ D.x = D.V / D.x = XQ /2 and this is the same even as D.x -+ O. Thus,

dM 1
-=-x
dx 2

and to obtain the mass for any wedge from x = a to x = b we need only integrate

dM/ dx to obtain the mass as a function of x. This yields

l
b

1 l b

M([a, b)) = a "2 xdx = a m(x)dx

where m(x) = x/2 is the linear mass density or the mass per unit length. It is

perfectly analogous to the PDF which is the probability per unit length. Can you

find the total mass of cheese from M([a , b))? See also Problem 10.3.
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10.4 The PDF and Its Properties
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The PDF must have certain properties so that the probabilities obtained using (lOA)

satisfy the axioms given in Section 304. Since the probability of an interval is given

by

P[a ~ X ~ b] = l b

px(x)dx

the PDF must have the following properties.

Property 10.1 - PDF must be nonnegative.

px(x) 2: 0 - 00 < x < 00.

Proof: If px(x) < 0 on some small interval [xo - !:1x/2, Xo + !:1x/2]' then

l
XO+ b. X/ 2

P[xo - !:1x/2 ~ X ~ Xo + !:1x/2] = px(x)dx < 0
xo-b.x/2

which violates Axiom 1 that prE] 2: 0 for all events E.
o

Property 10.2 - PDF must integrate to one.

i: px(x)dx = 1

1 = P[X E Sx] = P[-oo < X < 00] =i: px(x)dx

o
Hence, any nonnegative function that integrates to one can be considered as a PDF.

An example follows.

Example 10.2 - Exponential PDF

Consider the function

( ) _ {..\exp(-..\x) x 2: 0
PX x - 0 x < 0 (10.5)

for ..\ > O. This is called the exponential PDF and is shown in Figure 10.6. Note

that it is discontinuous at x = O. Hence, a PDF need not be continuous (see also

Figure 10.3a for the uniform PDF which also has points of discontinuity) . Also , for

..\ > 1, we have px(O) = ..\ > 1. In contrast to a PMF, the PDF can exceed one in
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Figure 10.6: Exponential PDF.

value. It is the area under the PDF that cannot exceed one . As expected px(x) ~ 0

for -00 < x < 00 and

i:PX(X)dX 100

Aexp(-Ax)dx

- exp( -Ax)lgo = 1

for A > O. This PDF is often used as a model for the lifetime of a product. For

example, if X is the failure time in days of a lightbulb, then P[X > 100] is the

probability that the lightbulb will fail after 100 days or it will last for at least 100

days. This is found to be

P[X> 100] = roo Aexp(-Ax)dx
1100

- exp (- AX)I~o
= exp(-lOOA)

{
0.367 A = 0.01

- 0.904 A = 0.001.

The probability of a sample point is zero.

If X is a continuous random variable, then it was argued in Section 3.6 that the

probability of a point is zero. This is consistent with our definition of a PDF. If the
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width of the interval shrinks to zero, then the area under the PDF also goes to zero.

Hence , P[X = x] = O. This is true whether or not px(x) is continuous at the point

of interest (as long as the discontinuity is a finite jump). In the previous example

of an exponential PDF P[X = 0] = 0 even though px(O) is discontinuous at x = O.

This means that we could, if desired, have defined the exponential PDF as

( )
_ {>.exp(->.x) x> 0

PX x - 0 x:::; 0

for which px(O) is now defined to be O. It makes no difference in our probability

calculations whether we include x = 0 in the interval or not. Hence, we see that

rb
px(x)dx = r px(x)dx = r px(x)dx

Jo- Jo+ Jo
and in a similar manner if X is a continuous random variable, then

P[a :::; X :::; b] = P[a < X :::; b] = P[a :::; X < b] = P[a < X < b].

In summary, the value assigned to the PDF at a discontinuity is arbitrary since

it does not affect any subsequent probability calculation involving a continuous

random variable. However, for discontinuities other than step discontinuities (which

are jumps of finite magnitude) we will see in Section 10.8 that we must be more

careful.

10.5 Important PDFs

There are a multitude of PDFs in use in various scientific disciplines. The books

by [Johnson, Kotz, and Balakrishnan 1994] contain a summary of many of these

and should be consulted for further information. We now describe some of the more

important PDFs.

10.5.1 Uniform

We have already encountered a special case of the uniform PDF in Figure 10.3.

More generally it is defined as

{

I a< x<b
px(x) = Ob-a

otherwise
(10.6)

and examples are shown in Figure 10.7. It is given the shorthand notation X '"

U(a,b). If a = 0 and b = 1, then an outcome of a U(O , 1) random variable can be

generated in MATLAB using rand.
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Figure 10.7: Examples of uniform PDF.

10.5.2 Exponential

This was previously defined in Example 10.2. The shorthand notation is X rv

exp(X).

10.5.3 Gaussian or Normal

This is the famous "bell-shaped" curve first introduced in Section 1.3. It is given by

-oo< x<oo (10.7)

where u2 > 0 and -00 < J..L < 00. Its application in practical problems is ubiquitous.

It is shown to integrate to one in Problem 10.9. Some examples of this PDF as well

as some outcomes for various values of the parameters (J..L, u2
) are shown in Figures

10.8 and 10.9. It is characterized by the two parameters J..L and u 2
. The parameter

J..L indicates the center of the PDF which is seen in Figures 1O.8a and 1O.8c. It depicts

the "average value" of the random variable as can be observed by examining Figures

10.8b and 10.8d. In Chapter 11 we will show that J..L is actually the mean of X. The

parameter u2 indicates the width of the PDF as is seen in Figures 1O.9a and 1O.9c.

It is related to the variability of the outcomes as seen in Figures 1O.9b and 10.9d. In

Chapter 11 we will show that u2 is actually the variance of X. The PDF is called the

Gaussian PDF after the famous German mathematician K.F. Gauss and also the

normal PDF, since "normal" populations tend to exhibit this type of distribution.

A standard normal PDF is one for which J..L = 0 and u2 = 1. The shorthand notation

is X rv N(J..L , u2
) . MATLAB generates a realization of a standard normal random

variable using randn. This was used extensively in Chapter 2.
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Figure 10.8: Examples of Gaussian PDF with different j.t's.

To find the probability of the outcome of a Gaussian random variable lying within

an interval requires numerical integrat ion (see Problem 1.14) since the integral

I
b 1

fie exp( - (1/2 )x 2 )dx
a y27f

cannot be evaluated analytically. A MAT LAB subprogram will be provided and

described short ly to do this. The Gaussian PDF is commonly used to model noise in

a communication system (see Section 2.6), as well as for numerous ot her applications.

We will see in Chapter 15 that the PDF arises qui te naturally as the PDF of a large

number of independent random variables that have been added together.
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Figure 10.9: Examples of Gaussian PDF with different (j2 ,s.

10.5.4 Laplacian

This PDF is named after Laplace, the famous French mathematician. It is similar

to the Gaussian except that it does not decrease as rapidly from its maximum value .

Its PDF is

-oo< x<oo (10.8)

where (j2 > O. Again the parameter (j2 specifies the width of the PDF, and will be

shown in Chapter 11 to be the variance of X. It is seen to be symmetric about x = O.

Some examples of the PDF and outcomes are shown in Figure 10.10. Not e that for
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Figure 10.10: Examples of Laplacian PDF with different O'
2 ,s.

the same 0'2 as the Gaussian PDF, the outcomes are larger as seen by comparing

Figure 10.10b to Figure 10.9b. This is due to the larger probability in the "tails" of

the PDF. The "tail" region of the PDF is that for which Ixl is large. The Laplacian

PDF is easily integrated to find the probability of an interval. This PDF is used as

a model for speech amplitudes [Rabiner and Schafer 1978].

10.5.5 Cauchy

The Cauchy PDF is named after another famous French mathematician and is

defined as
1

px(x) = 71"(1 + x2) - 00 < X < 00. (10.9)
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It is shown in Figure 10.11 and is seen to be symmetric about x = O. The Cauchy

PDF can easily be integrated to find the probability of any interval. It arises as the

PDF of the ratio of two independent N(o, 1) random variables (see Chapter 12).

0.5 r------~-----_____,

0.4 .

5o
x

o"-------~--------=
-5

0.1

-----~
~0 .3

~

0.2

Figure 10.11: Cauchy PDF.

10.5.6 Gamma

The Gamma PDF is a very general PDF that is used for nonnegative random vari­

ables. It is given by

{

),'" a-I (')
Px(X) = r(a)X exp -AX X ~ 0

o x<O
(10.10)

where .\ > 0, a> 0, and I'(z] is the Gamma function which is defined as

r(z) = 100

tz
-

1 exp( -t)dt. (10.11)

Clearly, the I'(o] factor in (10.10) is the normalizing constant needed to ensure that

the PDF integrates to one. Some examples of this PDF are shown in Figure 10.12.

The shorthand notation is X ,.... I'(o, .\). Some useful properties of the Gamma

function are as follows.

Property 10.3 - I'( z + 1) = zr(z )

Proof: See Problem 10.16.

o
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Figure 10.12: Examples of Gamma PDF.

Property 10.4 - f(N) = (N - 1)!

P roof: Follows from Property 10.3 with z = N - 1 since

f(N) = (N - 1)f(N - 1)

(N - 1)(N - 2)f( N - 3) (let z = N - 2 now)

(N - 1)(N - 2) . .. 1 = (N - 1)!

o

Property 10.5 - f(1/2) = .j7i

P roof:

f(1/2) = 100

r 1
/

2 exp(-t)dt

(Note t hat near t = 0 the integrand becomes infinite bu t C 1/ 2 exp( - t ) ~ C 1/ 2

which is integrab le.) Now let t = u2/2 and thus dt = udu which yields

f( 1/2) = 1
00 1

JU272 exp( _ u
2
/2 )udu

o u 2/2

100

J2exp(_ u2 /2 )du

V2joo2 -00 exp( _ u
2
/2 )du (integrand is symmetric about u = 0)

v

=J27r why?

y'-i.

o
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The Gamma PDF reduces to many well known PDFs for appropriate choices of

the parameters a and A. Some of these are :

1. Exponential for a = 1

From (10.10) we have

px(x) = { ort1)exp( -AX) X 2: 0
x < O.

But I'{l ) = O! = 1, which results from Property 10.4 so that we have the

exponential PDF.

2. Chi-squared PDF with N degrees of freedom for a = N /2 and A= 1/2

From (10.10) we have

{

1 N /2-1 ( /2) > 0
px(x) = 02N / 2r(N/2)x exp -x x -

x < O.
(10.12)

This is called the chi-squared PDF with N degrees of freedom and is important

in statistics. It can be shown to be the PDF for the sum of the squares of N

independent random variables all with the same PDF N(O, 1) (see Problem

12.44). The shorthand notation is X '" X ~ .

3. Erlang for a = N

From (10.10) we have

{

>.N N 1 (A)
px(x) = f(N)x - exp - x x 2: 0

o x < O

and since r(N) = (N - I)! from Property 10.4, this becomes

{

>.N N-l ( )
px(x) = (N_l)!x exp -AX x 2: 0

o x < o.
(10.13)

(10.14)

This PDF arises as the PDF of a sum of N independent exponential random

variables all with the same A (see also Problem 10.17).

10.5.7 Rayleigh

The Rayleigh PDF is named after the famous British physicist Lord Rayleigh and

is defined as

{

X (1 X
2

)
px(x) = ~ exp -2~ x 2: 0

o x < O.

It is shown in Figure 10.13. The Rayleigh PDF is easily integrated to yield the
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Figure 10.13: Rayleigh PDF with 0-
2 = 1.

probability of any interval. It can be shown to arise as the PDF of the square root

of the sum of the squares of two independent N(O, 1) random variables (see Example

12.12).

Finally, note that many of these PDFs arise as the PDFs of transformed Gaussian

random variables. Therefore, realizations of the random variable may be obtained

by first generating multiple realizations of independent standard normal or N(O,1)

random variables, and then performing the appropriate transformation. An alterna­

tive and more general approach to generating realizations of a random variable, once

the PDF is known, is via the probability integral transformation to be discussed in

Section 10.9.

10.6 Cumulative Distribution Functions

The cumulative distribution function (CD F) for a continuous random variable is

defined exactly the same as for a discrete random variable. It is

Fx(x) = P[X ~ x]

and is evaluated using the PDF as

Fx(x) = i: px(t)dt

-oo<x<oo

- 00 < x < 00.

(10.15)

(10.16)

Avoiding confusion in evaluating CDFs

It is important to note that in evaluating a definite integral such as in (10.16) it

is best to replace the variable of integration with another symbol. This is because
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the upper limit depends on x which would conflict with the dummy variable of

integration. We have chosen to use t but of course any other symbol that does not

conflict with x can be used.

Some examples of the evaluation of the CDF are given next.

10.6.1 Uniform

Using (10.6) we have

Fx(x) ~ { [: b ~ a d t
x ~ a

a<x<b

x?b

which is

{

O x ~ a

Fx(x) = 1b~a (x - a) a < x < b

x? b.

An example is shown in Figure 10.14 for a = 1 and b = 2.

1.2.--~-~-~-~-~---,

Eo.s
~
~0 .6

0.4

0.2 .

4321

X

o
o '---_~_~_..L..-_~ _ __'_____ ___l

-2 -1

Figure 10.14: CDF for uniform random variable over interval (1,2).

10.6.2 Exponential

Using (10.5) we have

F {O x<O
x(x) = fox Aexp(-At)dt x? o.

But

l X

Aexp(-At)dt = -exp(-At)l~ = 1- exp(-Ax)
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so that

{
O x < 0

Fx(x)= 1-exp(-Ax) x ~ O.

An example is shown in F igure 10.15 for A = 1.

1 . 2 r-- --~--~--- ~--___,

.--..
H 0.8

'-"

><
~ 0 .6

0.4

0.2

64o
O'-----'------ ~---~- --'

-2

Figure 10.15: CDF for exponent ial random variable with A = 1.

Note that for the uniform and exponent ial random variables the CDFs are con­

tinuous even though the PDFs are discontinuous. This property motivates an al­

ternative definition of a continuous random variable as one for which the CnF is

continuous. Recall that the CDF of a discrete random variable is always discontin­

uous, displaying multiple jumps.

10. 6. 3 Gaussian

Consider a st andard normal PDF, which is a Gaussian PDF with J-L = 0 and (J2 = 1.

(If J-L ::J 0 and / or (J2 ::J 1 the CDF is a simple modification as shown in Problem

10.22.) Then from (10.7) we have

Fx(x) = i: vk exp ( _~t 2 ) dt - 00 < x < 00 .

This cannot be evaluated further but can be found numerically and is shown in

Figure 10.16. The CDF for a standard normal is usually given the special symbol

~ ( x ) so that

Hence, ~(x) represents the area under the P DF to the left of the point x as seen

in Figure 1O.17a. It is sometimes more convenient, however, to have knowledge of

the area to the right instead. This is called the right- tail probability of a standard
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normal and is given the symbol Q(x) . It is termed the "Q" function and is defined

as the area to the right of x , an example of which is shown in Figure 1O.17b. By its

definition we have

Q(x) = 1 - <I> (x)

= 100

_1_ exp (_~ t 2) dt - 00 < x < 00

x V2ir 2

(10.17)

(10.18)

and is shown in Figure 10.18, plot ted on a linear as well as a logarithmic vert ical

scale. Some of the properties of the Q function that are easily verified are (see
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Problem 10.25)

Q(-(0)

Q(oo) =

Q(O)

Q(-x)

1

o
1

2

1 - Q(x) .

(10.19)

(10.20)

(10.21)

(10.22)

Although the Q function cannot be evaluated analytically, it is related to the well

known "error function". Thus, making use of the latter function a MATLAB sub­

program Q.m, which is listed in Appendix lOB, can be used to evaluate it. An

example follows.

Example 10.3 - Probability of error in a communication system

In Section 2.6 we analyzed the probability of error for a PSK digital communication

system. The probability of error P; was given by

r; = P[A/2 + W ~ 0]

where W "J N(O , 1). (In the MATLAB code we used w=randn(1, 1) and hence the

random variable representing the noise was a standard normal random variable.)
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To explicitly evaluate Pe we have that

Pe P[A/2 + W ::; 0]

1 - P[A/2 + W > 0]

= 1 - P[W > - A/2]

1 - Q(- A/2) (definition)

= Q(A/2) (use (10.22)).

Hence , the true P; shown in Figure 2.15 as the dashed line can be found by using

the MATLAB subprogram Q.m, which is listed in Appendix lOB, for the argument

A/2 (see Problem 10.26). It is also sometimes important to determine A to yield

a given Pe. This is found as A = 2Q-1(Pe), where Q-1 is the inverse of the Q

function. It is defined as the value of x necessary to yield a given value of Q(x).

It too cannot be expressed analytically but may be evaluated using the MATLAB

subprogram Qinv .m, also listed in Appendix lOB.

o
The Q function can also be approximated for large values of x using [Abramowitz

and Stegun 1965]

Q(x) ~ _1_ exp (_~x2) x> 3. (10.23)
.;'Fix 2

A comparison of the approximation to the true value is shown in Figure 10.19. If

10'6 ..

10,7
o 0.5

. . .. . . . . . . . .. , ~ .

1.5 2 2.5 3 3.5 4 4.5 5
X

Figure 10.19: Approximation of Q function - true value is shown dashed.

x "'" N(Il , 0-
2

) , then the right-tail probability becomes

P[X > x] = Q(x;;) (10.24)
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(see Problem 10.24). Finally, note that the area under the standard normal Gaussian

PDF is mostly contained in the interval [-3,3] . As seen in Figure 10.19 Q(3) ~
0.001, which means that the area to the right of x = 3 is only 0.001. Since the PDF

is symmetric, the total area to the right of x = 3 and to the left of x = -3 is 0.002 or

the area in the [-3,3] interval is 0.998. Hence, 99.8% of the probability lies within

this interval. We would not expect to see a value greater than 3 in magnitude very

often. This is borne out by an examination of Figure 10.8b. How many realizations

would you expect to see in the interval (1, oo)? Is this consistent with Figure 1O.8b ?

As we have seen, the CDF for a continuous random variable has certain prop­

erties. For the most part they are the same as for a discrete random variable: the

CDF is 0 at x = -00, 1 at x = 00, and is monotonically increasing (or stays the

same) between these limits. However, now it is continuous, having no jumps. The

most important property for practical purposes is that which allows us to compute

probabilities of intervals. This follows from the property

P[a s X ::; b] = P[a < X ::; b] = Fx(b) - Fx(a) (10.25)

which is easily proven (see Problem 10.35). It can be seen to be valid by referring to

Figure 10.20. Using the CDF we no longer have to integrate the PDF to determine

px(x)

area = Fx (b) area = Fx (a)

x

=

a b

P [a s X s b]

x

Figure 10.20: Illustration of use of CDF to find probability of interval.

probabilities of intervals. In effect, all the integration has been done for us in finding

the CDF. Some examples follow.

Example 10.4 - Probability of interval for exponential PDF

Since Fx(x) = 1 - exp( ->.x) for x 2: 0, we have for a > 0 and b > 0

P[a ::; X::; b] = Fx(b) - Fx(a)

(l-exp(->.b)) - (l-exp(->.a))

= exp( ->.a) - exp(->.b)

which should be compared to

lb

xexp( ->.x)dx.
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Since we obtained the CDF from the PDF, we might suppose that the PDF

could be recovered from the CDF. For a discrete random variable this was the case

since PX[Xi] = Fx(xi) - Fx(x:;). For a continuous random variable we consider a

small interval [xo - !:i.x/2, Xo + !:i.x/2] and evaluate its probability using (10.25) with

Fx(x) = i: px(t)dt.

Then, we have

Fx(xo + !:i.x/2) - Fx(xo - !:i.x/2)

j

XO+t:>.X/ 2 jXO-t:>.X/2

-00 px(t)dt - -00 px(t)dt

c: px(t)dt
xo-t:>.x/2

c:~ px(xo) 1 dt (Px(t) ~ constant as !:i.x --+ 0)
xo-t:>.x/2

px(xo)!:i.x

so that

Fx(xo + !:i.x/2) - Fx(xo - !:i.x/2)

!:i.x

as !:i.x --+ O.--+ dF;x(X)l.,
Hence, we can obtain the PDF from the CDF by differentiation or

( )
_ dFx(x)

PX x - dx . (10.26)

This relationship is really just the fundamental theorem of calculus [Widder 1989].

Note the similarity to the discrete case in which PX[Xi] = Fx(xi) - Fx(x:;). As an

example, if X '" expfX), then

Fx(x) = { 1 - exp( -AX) x ~ 0
o x < O.

For all x except x = 0 (at which the CDF does not have a derivative due to the

change in slope as seen in Figure 10.15) we have

px(x) = dFx(x) = 0
dx

Aexp( - AX)

and as remarked earlier, px(O) can be assigned any value.

x<O

x>O
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(10.27)

In discussing transformations for discrete random variables we noted that a trans­

formation can be either one-to-one or many-to-one. For example, the function

g(x) = 2x is one-to-one while g(x) = x2 is many-to-one (in this case two-to-one

since - x and + x both map into x2
) . The determination of the PDF of Y = g(X)

will depend upon which type of transformation we have. Initially, we will consider

the one-to-one case , which is simpler. For the transformation of a discrete random

vari able we saw from (5.9) that the PMF of Y = g(X) for any 9 could be found

from the PMF of X using

pY[Yi] = L pX[Xj].

{j :g(Xj)=Yi}

But if 9 is one-to-one we have only a single solution for g( Xj) = Yi, so that Xj =
g-l (Yi) and therefore

and we are done. For example, assume X takes on values {1,2} with a PMF px[l]

and px[2] and we wish to determine the PMF of Y = g(X) = 2X, which is shown

in Figure 10.21. Then from (10.27)

Y = g(x) = 2x

x

Figure 10.21: Transformation of a discrete random variable.

py[2 ] px [g-1(2)] = px [l ]

py [4] px[g-1(4)J = px [2J.

Because we are now dealing with a PDF, which is a dens ity function, and not a

PMF, which is a probability function, the simple relationship of (10.27) is no longer

valid . To see what happens instead, consider the problem of determining the PDF

of Y = 2X, where X "-J U(1,2) . Clearly, Sx = { x : 1 < x < 2} and therefore

Sy = {y : 2 < Y < 4} so that py(y) must be zero outside the interval (2,4) . The

results of a MATLAB computer simulation are shown in Figure 10.22. A total of

50 realizations were obtained for X and Y. The generated X outcomes are shown

on the x-axis and the resultant Y outcomes obtained from Y = 2x are shown on the
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Figure 10.22: Computer generated realizations of X and Y = 2X for X ~ U(l , 2).

A 50% expanded version of the realizations is shown to the right.

y-axis. Also , a 50% expanded version of the points is shown to the right. It is seen

that the density of points on the y-axis is less than that on the x-axis. After some

t hought the reader will realize that this is the result of the scaling by a factor of 2

due to the transformation. Since the P DF is probability per unit length, we should

expect py = trx /2 for 2 < y < 4. To prove that this is so, we note that a small

interval on the z-axis, say [xo - b.x/2, Xo+b.x/2], will map into [2xo - b.x, 2xo+b.x]

on the y-axis. However , the intervals are equivalent events and so their probabilities

must be equal. It follows then that

l
XO+ A X/ 2 12xo+AX

px(x)dx = py(y)dy
xo- Ax/ 2 2xo-Ax

and as b.x -+ 0, we have that px(x) -+ px(xo) and py(y) -+ py(2xo) in the small

intervals so that

px(xo)b.x = py(2xo)2b.x

or
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As expected, the PDF of Y is scaled by 1/2. If we now let Yo = 2xo, then this

becomes

or for any arbitrary value of y

1
py(y) = px(y/2) "2 2 < y < 4. (10.28)

This results in the final PDF using px(x) = 1 for 1 < x < 2 as

y ={ ~ 2<y<4
p (y) 0 otherwise (10.29)

and thus if X f'V U(l , 2), then Y = 2X f'V U(2, 4). The general result for the PDF of

Y = g(X) is given by

(10.30)

For our example, the use of (10.30) with g(x) = 2x and therefore g-1(y) = y/2

results in (10.29). The absolute value is needed to allow for the case when 9 is

decreasing and hence g-1 is decreasing since otherwise the scaling term would be

negative (see Problem 10.57). A formal derivation is given in Appendix lOA. Note

the similarity of (10.30) to (10.27). The principal difference is the presence of the

derivative or Jacobian factor dg- 1(y)/dy. It is needed to account for the change in

scaling due to the mapping of a given length interval into an interval of a different

length as illustrated in Figure 10.22. Some examples of the use of (10.30) follow.

Example 10.5 - PDF for linear (actually an affine) transformation

To determine the PDF of Y = aX + b, for a and b constants first assume that

Sx = {x : -00 < x < oo} and hence Sy = {y : -00 < y < oo}. Here we have

g(x) = ax + b so that the inverse function g-1 is found by solving y = ax + b for x.

This yields x = (y - b) / a so that

and from (10.30) the general result is

py(y) = pX (y : b) I~ I· (10.31)

As a further example, consider X f'V N(O, 1) and the transformation Y = ~X +J.1..
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Then, letting a = .jdi > 0 we have

and therefore Y '" N(J.L, a 2
) . A linear transformation of a Gaussian random vari ­

able results in another Gaussian random variable whose Gaussian PDF has dif­

ferent values of the parameters. Because of this property we can easily gener­

ate a realization of a N(J.L, a 2
) random variable using the MATLAB construction

y=sqrt Csigma2) *randn(1, l)+mu, since randn(1, 1) produces a realization of a

standard normal random variable (see Problem 10.60).

Example 10.6 - PDF of Y = exp(X) for X '" N(O, 1)

Here we have that Sy = {y : y > O}. To find g-l(y) we let y = exp(x) and solve

for x, which is x = In(y). Thus, g-l(y) = In(y) . From (10.30) it follows that

( ) = (1 ( )) Idln(y) I= {px(ln(y))i y > 0
py y pX n Y d 0 < 0

Y y-

or

()
{

'F
l exp [-~(ln(y))2] y > 0

py y = V~7[Y

o y::;O.

This PDF is called the log-normal PDF. It is frequently used as a model for a

quantity that is measured in decibels (dB) and which has a normal PDF in dB

quantities [Members of Technical Staff 1970].

&. Always determine the possible values for Y before using (10.30).

A common error in determining the PDF of a transformed random variable is

to forget that py (y) may be zero over some regions. In the previous example of

y = exp(x), the mapping of -00 < x < 00 is into y > O. Hence, the PDF ofY must

be zero for y ::; 0 since there are no values of X that produce a zero or negative
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value of Y. Nonsensical results occur if we attempt to insert values in py(y) for

y ~ O. To avoid this potential problem, we should first determine Sy and then use

(10.30) to find the PDF over the sample space.

When the transformation is not one-to-one, we will have multiple solutions for x in

y = g(x). An example is for y = x2 for which the solutions are

Xl -.,fY = gl l (y)

x2 +.,fY = g2"l(y).

This is shown in Figure 10.23. In this case we use (10.30) but must add the PDFs

g(x) = x2

y

Xl =--IV

Figure 10.23: Solutions for X in y = g(x) = x 2.

(since both the x-intervals map into the same y-interval and the x-intervals are

disjoint) to yield

(10.32)

Example 10.7- PDF of Y = X 2 for X"" N(O, 1)

Since -00 < X < 00, we must have Y ~ O. Next because gl l (y) = --IV and

g2"l(y) = -IV we have from (10.32)
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which reduces to

py(y) = {~},;; exp( -y/2)] 2F. + [},;; exp(-y/2)] 2F.

= { k exp( -y/2) u e: 0

o y < O.

y:2:0

y<O

This is shown in Figure 10.24 and should be compared to Figure 2.10 in which this

PDF was estimated (see also Problem 10.59). Note that the PDF is undefined at

0.8,---,---.-----,----,.,---,.-----.-----,-----,

0.7 '" .

0.6 . . .

432

oL.-_-'--_...L...-_....L.-_--'--_-'-_----'-_~_---'
-4 -3 -2 -1 o

y

Figure 10.24: PDF for Y = X 2 for X rv N(o,1).

0.2 . .. . .

0.1 .

:§O.s ..

. .
0.3 : : : . .

. .

>. .
R.OA : .

y = 0 since py(O) -7 00, although the total area under the PDF is finite and of

course is equal to 1. Also, Y rv X ~ as can be seen by referring to (10.12) with

N=1.

In general, ify = g(x) has solutions Xi = g;l(y) for i = 1,2, ... ,M, then

(10.33)

An alternative means of finding the PDF of a transformed random variable is to first

find the CDF and then differentiate it (see (10.26)) . We illustrate this approach by

redoing the previous example.
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Example 10.8 - CDF approach to determine PDF of Y = X 2 for

X rv N(O , 1)

First we determine the CDF of Y in terms of the CDF for X as

317

Fy(y) pry :::; y]

P[X2 :::;y]

P[-v'Y :::; X :::; JY]

= Fx(v'Y) - Fx(-v'Y).

Then , differentiating we have

(from (10.25))

py(y) =
dFy(y)

dy

d
dy [Fx(v'Y) - Fx(-v'Y)]

dyIY d(-ylY)
= px(v'Y) dy - px(-v'Y) dy (from (10.25) and chain rule of calculus)

1 1
px(v'Y) 2yIY + px(-v'Y) 2yIY

{
px(yIY) Jy y ~ 0 (since px(- x) = px (x) for X rv N(O , 1))
o y<O

{

k exp(-y/2) y ~ 0

o y < O.

10. 8 Mixed R an dom Variables

We have so far described two types of random variables, the discrete random vari­

able and the continuous random variable. The sample space for a discrete random

variable consists of a countable (either finite or infinite) set of points while that for a

cont inuous random variable has an infinite and uncountable set of points. The points

in Sx for a discrete random variable have a nonzero probability while those for a

cont inuous random variable have a zero probability. In some physical situations,

however , we wish to assign a nonzero probability to some points but not others. As

an example, consider an experiment in which a fair coin is tossed. If it comes up

heads, we generate the outcome of a continuous random variable X rv N(O, 1) and

if it comes up tails we set X = O. Then, the possible outcomes are - 00 < x < 00

and the probability of any point except x = 0 has a zero probability of occurring.

However , the point x = 0 occurs with a probability of 1/2 since the probability of

a tail is 1/2. A typical sequence of outcomes is shown in Figure 10.25. One could
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Figure 10.25: Sequence of outcomes for mixed random variable - X = 0 with nonzero

probability.

define a random variable as

X N(O, 1)

X = 0

if heads

if tails

which is neither a discrete nor a continuous random variable. To find its CDF we

use the law of total probability to yield

Fx(x) = P[X ~ x]

= P[X ~ x lheads]P[heads] + P[X ~ x ltails]P [tails]

{

<I>(x)~ + O(~) x < 0

<I>(x)~ + 1(~) x;::: 0

which can be written more succinctly using the unit step function. The unit step

function is defined as u(x) = 1 for x;::: 0 and u(x) = 0 for x < O. With this definition

the CDF becomes

1 1
Fx(x) = 2<I>(x) + 2u(x) - 00 < x < 00.

The CDF is shown in Figure 10.26. Note the jump at x = 0, indicative of the

contribution of the discrete part of the random variable. The CDF is continuous for

all x i= 0 but has ajump at x = 0 of 1/2. It corresponds to neither a discrete random

variable, whose CDF consists only of jumps, nor a continuous random variable,

whose CDF is continuous everywhere. Hence , it is called a mixed random variable.
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Figure 10.26: CDF for mixed random variable.

Its CDF is in general continuous except for a countable number of jumps (either

finite or infinite). As usual it is right-continuous at the jump.

Strictly speaking, a mixed random variable does not have a PMF or a PDF.

However , by the use of the Dirac delta function (also called an impulse), we can

define a PDF which may then be used to find the probability of an interval via

integration by using (lOA). To first find the PDF we attempt to differentiate the

CDF

d [1 1]px(x) = dx "2<P(x) + "2u(x) .

The difficulty encountered is that u(x) is discontinuous at x = 0 and thus formally its

derivative does not exist there. We can, however, define a derivative for the purposes

of probability calculations as well as for conceptualization. To do so requires the

introduction of the Dirac delta function 8(x) which is defined as (see also Appendix

D)

8(x) = d~~X).

The function 8(x) is usually thought of as a very narrow pulse with a very large

amplitude which is centered at x = O. It has the property that 8(t) = 0 for all t =1= 0

but

iff 8(t)dt = 1

for € a small positive number. Hence , the area under the narrow pulse is one. Using

this definition we can now differentiate the CDF to find that

1 1 (1 2) 1px(x) = -- exp --x + -8(x)
2V27f" 2 2

(10.34)
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which is shown in Figure 10.27. This may be thought of as a generalized PDF. Note
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~
~
~0.15
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Figure 10.27: PDF for mixed random variable.

that it is the strength, which is defined as the area under the approximating narrow

pulse, that is equal to 1/2. The amplitude is theoretically infinite. The CDF can

be recovered using (10.16) and the result that

j
X+

u(x) = - 00 8(t)dt

where x+ means that the integration interval is (-00, x + €] for € a small positive

number. Thus, the impulse should be included in the integration interval if x = 0

so that u(O) = 1 according to the definition of the unit step function.

& When do we include the impulse in the integration interval?

For a mixed random variable the presence of impulses in the PDF requires a mod­

ification to (10.4). This is because an endpoint of the interval can have a nonzero

probability. As a result , the probabilities prO < X < 1] and pro ~ X < 1] will be

different if there is an impulse at x = O. Specifically, consider the computation of

prO ~ X < 1] and note that the probability of X = 0 should be included. Therefore,

if there is an impulse at x = 0, the area under the PDF should include the contri­

bution of the impulse. Thus, the integration interval should be chosen as [0-, 1] so

that

prO ~ X < 1] = 1 ~ px(x)dx.
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The more general modifications to (lOA) are

l
b+

P[a ::; X ::; b] a- px(x)dx

l
b+

P[a < X ::; b] px(x)dx
a+

b-

P[a ::; X < b] 1- px(x)dx

b-

P[a < X < b] = 1 px(x)dx
a+

321

where x" is a number slightly less than x and x+ is a number slightly greater than

x. Of course, if the PDF does not have any impulses at x = a or x = b, then all the

integrals above will be the same and, therefore there is no need to choose between

them. See also Problem 10.51.

L1h
Continuing with our example, let's say we wish to determine P[- 2 ::; X ::; 2]. Then,

using (lOA) since the impulse does not occur at one of the interval endpoints, and

our generalized PDF of (10.34) yields

P[-2 ::; X ::; 2] = i: px(x)dx

= 12

[~_1 exp (_~x2) + ~8(X)] dx
-2 2 ~ 2 2

~ 12

_1_ exp (_~x2) dx + ~ 12

8(x)dx
2 -2 ~ 2 2 -2

1 1
= 2 [Q(-2) - Q(2)] + 2

1 1
2 [1 - 2Q(2)] + 2 = 1 - Q(2).

Alternatively, we could have obtained this result using P[-2 ::; X ::; 2] = Fx(2) ­

Fx( -2) with Fx(x) = (1/2)(1 - Q(x)) + (1/2)u(x).

Mixed random variables often arise as a result of a transformation of a continuous

random variable. A final example follows.

Example 10.9 - PDF for amplitude-limited Rayleigh random variable

Consider a Rayleigh random variable whose PDF is given by (10.14) that is input

to a device that limits its output. One might envision a physical quantity such as

temperature and the device being a thermometer which can only read temperatures

up to a maximum value. All temperatures above this maximum value are read as the
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X max

maximum. Then the effect of the device can be represented by the transformation

()
{

X 0 ~ x < X max
y =g X =

X max X ~ X max

which is shown in Figure 10.28. The PDF of Y is zero for y < 0 since X can only

y =g(x)

region 3 t..
region 2

--'---f'-----+-----..X

region 1 l
Figure 10.28: Amplitude limiter.

take on nonnegative values. For 0 ~ y < X max it is seen from Figure 10.28 that

g-l(y) = y. Finally, for y ~ X max we have from Figure 10.28 the infinite number of

solutions x E [Xmax , 00). Thus, we have for region 1 or for y < 0 that py(y) = O.

For region 2 or for 0 ~ y < X max where g-l(y) = y, we have from (10.30)

py(y) = PX(g-l(y)) Id9~~(Y) I

px(y).

For region 3 which is y ~ Xmax , we note that Y cannot exceed Xmax and so y = Xmax

is the only possible value for y in region 3. The probability of Y = X max is equal to

the probability that X ~ xmax . In particular, it is

pry = X max ] = r
XJ

px(x)dx
i.:

(10.35)

since from Figure 10.28 the x-interval [xmax , 00) is mapped into the y-point given by

y = X max . Since the probability of Y at the point y = X max is nonzero, we represent

its contribution to the PDF by using an impulse as

py(y) = [l:xpx(X)dX] 8(y - xmax ) y = X max .
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In summary, the PDF of the transformed random variable is

pY (y) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0 y < 0
pX(y) 0 ≤ y < xmax
[

∫ ∞
xmax

pX(x)dx
]

δ(y − xmax) y = xmax

0 y > xmax .

It is seen to be the PDF of a mixed random variable in that it contains an impulse.
Finally, for x ≥ 0 the Rayleigh PDF is for σ2 = 1

pX(x) = x exp

(

−1

2
x2

)

so that the PDF of Y becomes

pY (y) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0 y < 0
y exp

(

−1
2y2

)

0 ≤ y < xmax
[

∫ ∞
xmax

x exp
(

−1
2x2

)

dx
]

δ(y − xmax) y = xmax

0 y > xmax .

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 y < 0
y exp

(

−1
2y2

)

0 ≤ y < xmax

exp
(

−1
2x2

max

)

δ(y − xmax) y = xmax

0 y > xmax.

This is plotted in Figure 10.29b.
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(b) PDF of Y = g(X) – mixed random variable

Figure 10.29: PDFs before and after transformation of Figure 10.28.
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In general , if a random variable X can take on a continuum of values as well

as discrete values {Xl ,X2" '} with corresponding nonzero probabilities {Pl,p2," .},
then the PDF of the mixed random variable X can be wri t ten in the succinct form

00

px(x ) = Pc(x) + LPi8(X - xd
i=l

(10.36)

where Pc(x) rep resents the cont ribution to the PDF of the cont inuous par t (its

int egral must be < 1) and must sat isfy Pc(x) ~ O. To be a valid PDF we require

that

1
00 00

- 00 Pc(x)dx + ~P i = 1.

For solely discrete random variables we can use the generalized PDF

00

px(x) = LPi8(X - Xi )
i= l

or equivalently the PMF

i = 1,2, . . .

to perform probability calculations .

10.9 Computer Simulation

In simulating the outcome of a discrete random variable X we saw in Figure 5.14 that

first an outcome of a U rv U(O, 1) random variable is generated and then mapped

into a value of X . The mapping needed was the inverse of the CDF. This result

is also valid for a continuous random variable so that X = Fi l (U) is a random

variable with CDF Fx(x) . Stat ed another way, we have that U = Fx(X) or if

a random variable is transformed according to its CDF, the transformed random

variable U rv U(O, 1). This latter transformation is termed the probability integral

transformation. The transformation X = Fi l (U) is called the inverse probability

in tegral transformation. Before proving these results we give an example.

Example 10 .10 - Probability integral transformation of exponential ran­

dom variable

Since the exponent ial PDF is given for A = 1 by

( )
_ { exp( - x) x ~ 0

ti x x - 0 x < 0

the CDF is from (10.16)

{
0

Fx x -
( ) - 1 - exp(- x)

x ~ O

x > O.
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The probability integral transformation asserts that Y = g(X) = Fx(X) has a

U(O, 1) PDF. Considering the transformation g(x) = 1- exp(-x) for x > 0 and zero

otherwise, we have that y = 1 - exp(-x) and, therefore the unique solution for x is

x = -In(l - y) for 0 < Y < 1 and zero otherwise. Hence,

g-l(y) = { o-ln(l - y) 0 < Y < 1
otherwise

and using (10.30), we have for 0 < Y < 1

py(y) = PX(g-l(y») I d 9 ~ ~ ( Y ) I

exp [- (-In(l _ y)] 1_1_1

1-y

1.

Finally, then

{
1 O<y<l

py (y) = 0 otherwise

which is the PDF of a U(O, 1) random variable.

To summarize our results we have the following theorem.

Theorem 10.9.1 (Inverse Probability Integral Transformation) If a contin­

uous random variable X is given as X = FX
1(U), where U rv U(O, 1), then X has

the PDF px(x) = dFx(x)/dx.

Proof:

Let V = FX
1(U) and consider the CDF of V.

Fv(v) P[V ::; v] = P[FX
1(U) ::; v]

P[U::; Fx(v)] (Fx is monotonically increasing - see Problem 10.58)

rFx(v)

io pu(u)du

l
FX (V)

1du
o

Fx(v).

Hence, the CDFs of V and X are equal and therefore the PDF of V = FX
1(U) is

px(x).

Another example follows.
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Example 10.11 - Computer generation of outcome of Laplacian random

variable

The Laplacian random variable has a PDF

-oo<x<oo

and therefore its CDF is found as

Fx(x) = (X ~ exp [- n:1tl] dt.
J-00 v 20-2 V-;;2

For x < 0 we have

Fx(x)

and for x ~ 0 we have

Fx(x) = {a ~ exp [ n:t ]·dt + {X ~ exp [- n:t ] dt
J-00 v 20-2 V-;;2 Ja v 20-2 V-;;2

~ ~ - ~ exp [-[!;t]: (first integral is 1/2 since px(-x) ~ px(x))

1- ~ e x p [-[!;x]

By letting y = Fx(x), we have

x<O

x ~ O.

We note that if x < 0, then 0 < y < 1/2, and if x ~ 0, then 1/2 ::; y < 1. Thus,

solving for x to produce Fi 1(y) yields

{
J0-2 /2In(2y) 0 < y < 1/2

x = J0-2/21n ( 2 ( 1 ~ Y ) ) 1/2::; Y < 1.
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Finally to generate the outcome of a Laplacian random variable we can use

{

J(J2/2In(2u) 0 < u < 1/2

x = J(J2/2In ( 2 ( 1 ~ U ) ) 1/2 ~ u < 1
(10.37)

where u is a realization of a U(O, 1) random variable. An example of the outcomes

of a Laplacian random variable with (J2 = 1 is shown in Figure 1O.30a. In Figure

10.30b the true PDF (the solid curve) along with the estimated PDF (the bar plot) is

shown based on M = 1000 outcomes. The estimate of the PDF was accomplished by

2 3 4

. . . ~ ' " - .· . . .· . . .· . . .· . . .· . . .· . . .· . . .· . . .

-4 -3 -2 -1 0
X

~ 0.8 .-- -.-- --,----.--.----.-~-,.- -, ~--,

o
p...

E! 0.6 .. .. ~ ....:.. .. ~ .... ~ .. . .. . .. ~ .. .. :.. .. ~ .... ~ . .. .

~

"0 .
~ .

"0 0.4 . .. .: . ...; : : ..

Q}
~

.~ 0.2 . . ) .. .. :... . ~ .... :

~

· . . . .· . . . .
4 : ~ ~ : :

3 : ; ~ : :

5.------.---.,....- - -..---~ -_..,

· . . . .
Q} 2 ~ ; : : :

J=~ II~tl·lel.n}tl1u·~f.1~T.!'Y.t., .•1
- 3 : : : : :

· . . . .
- 4 ;. .; ( .; :

- 5 L-_--i....__ - ' - - _ ~ __"""--_-----..J

o 10 20 30 40 50
Trial number

(a) First 50 outcomes (b) True PDF and estimated PDF based

on 1000 outcomes

Figure 10.30: Computer generation of Laplacian random variable outcomes using

inverse probability integral transformation.

the procedure described in Example 2.1 (see Figure 2.7 for the code for a Gaussian

PDF). We can now justify that procedure. Since from Section 10.3 we have

( )
P[XQ - !::i.x/2 ~ X ~ XQ + !::i.x/2]

PX XQ ~ !::i.x

and

P[xQ _ !::i.x/2 ~ X ~ XQ + !::i.x/2] ~ Number of outcomes i~XO - tlx/2, Xo + tlx/2)

we use as our PDF estimator

~ ( ) _ Number of outcomes in [xo - tlx/2 ,xo + tlx/2)
PX XQ - M!::i.x . (10.38)

In Figure 10.30b we have chosen the bins or intervals to be [-4.25, -3.75]' [-3.75, -3.25],

... , [3.75,4.25] so that Az = 0.5. We have therefore estimated pv]-4) ,px(-3.5) , ... ,
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px (4). To est imate the PDF at more points we would have to decrease the binwidth

or b.x. However , in doing so we cannot make it too small. This is because as the

binwidth decreases, the probability of an outcome falling within the bin also de­

creases. As a result , fewer of the outcomes will occur within each bin, resulting in

a poor est imate. The only way to remedy this situation is to increase the number

of trials M. What do you suppose would happen if we wanted to est imate px(5)?

The MATLAB code for producing the PDF est imate is given below.

Yo Assume outcomes are in x, which is M x 1 vector

M=1000j

bincenters=[-4:0.5:4]'j Yo set binwidth = 0 .5

bins=length(bincenters)j

h=zeros(bins,l)j

for i=1:1ength(x) Yo count outcomes in each bin

for k=l:bins

if x(i»bincenters(k)-0 .5/2.

& x(i)<bincenters(k)+0.5/2

h(k,l)=h(k,l)+lj

end

end

end

pxest=h/(M*0 .5)j i. see (10.38)

The CDF can be estimated by using

Fx(x ) = Number of outco mes ~ x

M
(10.39)

and is the same for either a discrete or a continuous random var iable. See also

P roblems 10.60-62.

10.10 Real-World Example - Setting Clipping Levels for

Speech Signals

In order to communicate speech over a transmission channel it is important to make

sure that the equipment does not "clip" the speech signal. Commercial broadcast

stations commonly use VU meters to monitor the power of the speech. If the power

becomes too large, then the amplifier gains are manually decreased. Clipped speech

sounds distorted and is objectionable. In other sit uat ions, the amplifier gains must

be set automatically, as for example, in telephone speech transmission. This is

necessary so that the speech, if transmitted in an analog form, is not distorted at

the receiver, and if transmitted in a digital form is not clipped by an analog-to­

digital convertor. To determine the highest amplit ude of the speech signal that can
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be expected to occur a common model is to use a Laplacian PDF for the amplitudes

[Rabiner and Schafer 1978]. Hence, most of the amplitudes are near zero but larger

level ones are possible according to

- 00 < x < 00.

(10040)

As seen in Figure 10.10, the width of the PDF increases as (J2 increases. In effect,

(J2 measures the width of the PDF and is actually its variance (to be shown in

Problem 11.34). The parameter (J2 is also a measure of the speech power. In order

to avoid excessive clipping we must be sure that an amplifier can accommodate a

high level, even if it occurs rather infrequently. A design requirement might then be

to transmit a speech signal without clipping 99% of the time. A model for a clipper

is shown in Figure 10.31. As long as the input signal, i.e., x, remains in the interval

g(x)

--+---f------1t----1~ X

Figure 10.31: Clipper input-output characteristics.

- A ::; x ::; A, the output will be the same as the input and no clipping takes place.

However, if x> A, the output will be limited to A and similarly if x < -A. Clipping

will then occur whenever [z] > A. To satisfy the design requirement that clipping

should not occur for 99% of the time, we should choose A (which is a characteristic

of the amplifier or analog-to-digital convertor) so that Pclip ::; 0.01. But

Pclip = P[X > A or X < -A]

and since the Laplacian PDF is symmetric about x = 0 this is just

Pclip ~ 2P[X > A] ~ 2 /.00 "':<7
2

exp [-{!;x] dx

2 Hexp [-{!;x] ]
= exp [-{!;A] .
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Hence, if this probability is to be no more than 0.01, we must have

or solving for A produces the requirement that

A > [;;2 In (_1).- V2 0.01
(10.41)

It is seen that as the speech power (T2 increases, so must the clipping level A. If the

clipping level is fixed, then speech with higher powers will be clipped more often. As

an example, consider a speech signal with (T2 = 1. The Laplacian model outcomes

are shown in Figure 10.32 along with a clipping level of A = 1. According to (10.40)

5.----.,..------,---,..----,..--------"

4 .

3 .

2 '.. .. . .. .. . . . ' , '.

J~~ -.~ r ~ · ! F l j l ! l ~ l i j ~ ~ ~ ' ! I ~ { . ~ . ~ ~
-3 :. .. . . • : , :.

-4 .. .. .. .

504010

-5 '--__--'-__--.L -'---__----'--__--J...J

o

Figure 10.32: Outcomes of Laplacian random variable with (T2 = 1 - model for

speech amplitudes.

the probability of clipping is exp( -J2) = 0.2431. Since there are 50 outcomes in

Figure 10.32 we would expect about 50· 0.2431 ~ 12 instances of clipping. From the

figure we see that there are exactly 12. To meet the specification we should have

that

A ~ Jlj21n ( 0.~1) = 3.25.

As seen from Figure 10.32 there are no instances of clipping for A = 3.25. In order

to set the appropriate clipping level A, we need to know (T2. In practice, this too

must be estimated since different speakers have different volumes and even the same

speaker will exhibit a different volume over time!
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Problems

10.1 (w) Are the following random variables continuous or discrete?

a. Temperature in degrees Fahrenheit

b. Temperature rounded off to nearest 1◦

c. Temperature rounded off to nearest 1/2◦

d. Temperature rounded off to nearest 1/4◦

10.2 (
⌣

. . ) (w) The temperature in degrees Fahrenheit is modeled as a uniform ran-
dom variable with T ∼ U(20, 60). If T is rounded off to the nearest 1/2◦ to
form T̂ , what is P [T̂ = 30◦]? What can you say about the use of a PDF versus
a PMF to describe the probabilistic outcome of a physical experiment?

10.3 (w) A wedge of cheese as shown in Figure 10.5 is sliced from x = a to x = b .
If a = 0 and b = 0.2, what is the mass of cheese in the wedge? How about if
a = 1.8 and b = 2?

10.4 (
⌣

. . ) (w) Which of the functions shown in Figure 10.33 are valid PDFs? If a
function is not a PDF, why not?

10.5 (f) Determine the value of c to make the following function a valid PDF

g(x) =

{

c(1 − |x/5|) |x| < 5
0 otherwise.
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°o'---L----L----'
2
X

-:
/

17

0 .4

o
o

0.2

O.B
,..-.....,
---....0.s
0)

(a) (b) (c)

Figure 10.33: Possible PDFs for Problem lOA.

10.6 L...:J (w) A Gaussian mixture PDF is defined as

px (x ) = a l ~ exp (-2\ x
2)

+ a2 ~ exp (-2\ x
2)

27T(ll (11 27T(l2 (12

for (If f:. (I ~ . What are the possible values for al and a2 so that this is a valid

PDF?

10.7 (w) Find the area under the cur ves given by the following functions:

92(X)

{
x O:S x<l

l+ x 1:S x :S2

0 otherwise

{
x 0 :S x:S1

l+ x 1< x:S2

0 otherwise

and explain your results.

10.8 (w) A memory chip has a pr ojected lifetime X in days that is modeled as

X rv exp(O.OOl) . What is the probability that it will fail within one year ?

10.9 (t) In this problem we prove tha t the Gaussian PDF integrates to one. First

we let

] = {'Xl _1_ exp (_ ~ x 2) dx
J-00 .../'irr 2

and write ] 2 as the iterated integral

] 2 = roo roo _1_ exp (_~ x 2) _1_ exp (_~ y2) dydx .
J-00 J- 00 .../'irr 2.../'irr 2

Next, convert (x, y) into polar coordinates and evaluate the expression to prove

that ] 2 = 1. Finally, you can conclude tha t ] = 1 (why? ).
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10.10 (f,c) If X ∼ N (μ, σ2), find P [X > μ + aσ] for a = 1, 2, 3, where σ =
√

σ2.

10.11 (t) The median of a PDF is defined as the point x = med for which P [X ≤
med] = 1/2. Prove that if X ∼ N (μ, σ2), then med = μ.

10.12 (
⌣

. . ) (w) A constant or DC current source that outputs 1 amp is connected
to a resistor of nominal resistance of 1 ohm. If the resistance value can vary
according to R ∼ N (1, 0.1), what is the probability that the voltage across
the resistor will be between 0.99 and 1.01 volts?

10.13 (w) An analog-to-digital convertor can convert voltages in the range [−3, 3]
volts to a digital number. Outside this range, it will “clip” a positive voltage
at the highest positive level, i.e., +3, or a negative voltage at the most negative
level, i.e., −3. If the input to the convertor is modeled as X ∼ N (μ, 1), how
should μ be chosen to minimize the probability of clipping?

10.14 (
⌣

. . ) (f) Find P [X > 3] for the two PDFs given by the Gaussian PDF with
μ = 0, σ2 = 1 and the Laplacian PDF with σ2 = 1. Which probability is larger
and why? Plot both PDFs.

10.15 (f) Verify that the Cauchy PDF given in (10.9) integrates to one.

10.16 (t) Prove that Γ(z + 1) = zΓ(z) by using integration by parts (see Appendix
B and Problem 11.7).

10.17 (
⌣

. . ) (f) The arrival time in minutes of the Nth person at a ticket counter
has a PDF that is Erlang with λ = 0.1. What is the probability that the
first person will arrive within the first 5 minutes of the opening of the ticket
counter? What is the probability that the first two persons will arrive within
the first 5 minutes of opening?

10.18 (f) A person cuts off a wedge of cheese as shown in Figure 10.5 starting at
x = 0 and ending at some value x = x0. Determine the mass of the wedge as
a function of the value x0. Can you relate this to the CDF?

10.19 (
⌣

. . ) (f) Determine the CDF for the Cauchy PDF.

10.20 (f) If X ∼ N (0, 1) find the probability that |X| ≤ a, where a = 1, 2, 3. Also,
plot the PDF and shade in the corresponding areas under the PDF.

10.21 (f,c) If X ∼ N (0, 1), determine the number of outcomes out of 1000 that
you would expect to occur within the interval [1, 2]. Next conduct a computer
simulation to carry out this experiment. How many outcomes actually occur
within this interval?

10.22 (
⌣

. . ) (w) If X ∼ N (μ, σ2), find the CDF of X in terms of Φ(x).
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10.23 (t) If a PDF is symmetric about x = 0 (also called an even function) , prove

that Fx (-x) = 1 - Fx (x). Does this property hold for a Gaussian PDF with

J.L = O? Hint: See Figure 10.16.

10.24 (t) Prove that if X rv N(J.L ,u2
) , then

P[X > a] = Q ( a : J.L )

where a = V7li.

10.25 (t) Prove the properties of the Q function given by (10.19)-(10.22).

10.26 (f) Plot the function Q(A/2) versus A for 0 :::; A :::; 5 to verify the true

probability of error as shown in Figure 2.15.

10.27 (c) If X rv N(O,l), evaluate P[X > 4] and then verify your results using

a computer simulation. How easy do you think it would be to determine

P[X > 7] using a computer simulation? (See Section 11.10 for an alternative

approach.)

10.28 C...:...) (w) A survey is taken of the incomes of a large number of people in

a city. It is determined that the income in dollars is distributed as X rv

N(50000,108
) . What percentage of the people have incomes above $70,000?

10.29 (w) In Chapter 1 an example was given of the length of time in minutes

an office worker spends on the telephone in a given 10-minute period. The

length of time T was given as N(7, 1) as shown in Figure 1.5. Determine the

probability that a caller is on the telephone more than 8 minutes by finding

P[T > 8].

10.30 C..:...) (w) A population of high school students in the eastern United States

score X points on their SATs, where X rv N(500, 4900). A similar population

in the western United States score X points, where X rv N(525, 3600). Which

group is more likely to have scores above 700?

10.31 (f) Verify the numerical results given in (1.3).

10.32 (f) In Example 2.2 we asserted that P[X > 2] for a standard normal random

variable is 0.0228. Verify this result.

10.33 C..:...) (w) Is the following function a valid CDF?

1
Fx(x) = --.....,.----,­

1 + exp( -x)
- 00 < x < 00.

10.34 (f) If Fx(x) = (2/,rr) arctan(x) for 0 :::; x < 00, determine prO :::; X :::; 1].
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10.35 (t) Prove that (10.25) is true.

335

10.36 C:.:,) (w) Professor Staff always scales his test scores. He adds a number of

points c to each score so that 50% of the class get a grade of C. A C is given if

the score is between 70 and 80. If the scores have the distribution N(65 , 38),

what should c be? Hint: There are two possible solutions to this problem but

the students will prefer only one of them.

10.37 (w) A Rhode Island weatherman says that he can accurately predict the

temperature for the following day 95% of the time. He makes his prediction

by saying that the temperature will be between T1Fahrenheit and T2Fahren­

heit. If he knows that the actual temperature is a random variable with PDF

N(50, 10), what should his prediction be for the next day?

10.38 (f) For the CDF given in Figure 10.14 find the PDF by differentiating. What

happens at x = 1 and x = 2?

10.39 (f,c) If Y = exp(X) , where X '" U(O, 1), find the PDF of Y. Next generate

realizations of X on a computer and transform them according to exp(X) to

yield the realizations of Y . Plot the x's and y's in a similar manner to that

shown in Figure 10.22 and discuss your results.

10.40 c.:....:...) (f) Find the PDF of Y = X 4 + 1 if X '" exp (A).

10.41 (w) Find the constants a and b so that Y = aX + b, where X '" U(O, 1),

yields Y '" U(2 , 6).

10.42 (f) If Y = aX, find the PDF of Y if the PDF of X is px(x). Next, assume

that X '" exp(l) and find the PDFs of Y for a > 1 and 0 < a < 1. Plot these

PDFs and explain your results .

10.43 L...:...) (f) Find a general formula for the PDF ofY = IXI. Next, evaluate your

formula if X is a standard normal random variable.

10.44 (f) If X '" N(o, 1) is transformed according to Y = exp(X), determine py(y)

by using the CDF approach. Compare your results to those given in Example

10.6. Hint: You will need Leibnitz 's rule

d 19(y) dg(y)
~ p(x)dx =p(g(y»--d---'
YaY

10.45 (w) A random voltage X is input to a full wave rectifier that produces at its

output the absolute value of the voltage. If X is a standard normal random

variable, what is the probability that the output of the rectifier will exceed 2?
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10.46 L..:.-) (f,c) If Y = X 2
, where X ""' U(O, 1), determine the PDF of Y . Next

perform a computer simulation using the realizations of Y (obtained as Ym =

x;', where X m is the mth realization of X) to estimate the PDF py(y). Do

your theoretical results match the simulated results?

10.47 (w) If a discrete random variable X has a Ber(p) PMF, find the PDF of X

using impulses. Next find the CDF of X by integrating the PDF.

10.48 (t) In this problem we point out that the use of impulses or Dirac delta

functions serves mainly as a tool to allow sums to be written as integrals. For

example, the sum

can be written as the integral

s = i: g(x)dx

if we define g(x) as
N

g(x) = L aio(x - i) .

i= l

Verify that this is true and show how it applies to computing probabilities of

events of discrete random variables by using integration.

10.49 (f) Evaluate the expression

r (1 3 1 )il 2o(x - 2) + So(x - 4) + So(x - 3/2) dx.

Could the integrand represent a PDF? If it does, what does this integral rep­

resent?

10.50 (w) Plot the PDF and CDF if

1 1 1
px(x) = 2exp( - x)u( x) + 4o(x + 1) + 4o(x - 1).

10.51 C ~ . . : . . . ) (w) For the PDF given in Problem 10.50 determine the following:

P[-2 ::; X ::; 2J, P[-l ::; X ::; 1]' P[-l < X ::; 1]' P[-l < X < 1]'

P[-l ::; X < 1J.

10.52 (f) Find and plot the PDF of the transformed random variable

Y = {22X 0::; X < 1
X :2: 1

where X ""' exp(L).
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10.53 (f) Find the PDF representation of the PMF of a bin(3 , 1/2) random variable.

Plot the PMF and the PDF.

10.54 C:.:.-) (f) Determine the function 9 so that X = g(U), where U ,....., U(O, 1), has

a Rayleigh PDF with (j2 = 1.

10.55 (f) Find a transformation so that X = g(U) , where U ,....., U(O , 1), has the

PDF shown in Figure 10.34.

1 . . ...

0.5 ... ..

21.50.5
OL--~_......Jo,------J

a

Figure 10.34: PDF for Problem 10.55

10.56 (c) Verify your results in Problem 10.55 by generating realizations of the

random variable whose PDF is shown in Figure 10.34. Next estimate the

PDF and compare it to the true PDF.

10.57 (t) A monotonically increasing function g(x) is defined as one for which if

X2 2: Xl , then g(X2) 2: g(xt}. A monotonically decreasing function is one

for which if X2 2: Xl, then g(X2) ::; g(xt}. It can be shown that if g(x)

is differentiable, then a function is monotonically increasing (decreasing) if

dg(x)/dx 2: 0 (dg(x)/dx ::; 0) for all x. Which of the following functions are

monotonically increasing or decreasing: exp(x), In(x), and l/x?

10.58 (t) Explain why the values of X for which the inequality X 2: Xo is true do not

change if we take the logarithm of both sides to yield In(x) 2: In(xo). Would

the inequality still hold if we inverted both sides or equivalently applied the

function g(x) = l/x to both sides? Hint: See Problem 10.57.

10.59 (w) Compare the true PDF given in Figure 10.24 with the estimated PDF

shown in Figure 2.10. Are they the same and if not, why not?

10.60 (c) Generate on the computer realizations of the random variable X ,.....,

N(1 ,4). Estimate the PDF and compare it to the true one.
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10.61 (c) Determine the PDF ofY = X 3 if X rv U(O, 1). Next generate realizations

of X on the computer, apply the transformation g(x) = x3 to each realiza­

tion to yield realizations of Y , and finally estimate the PDF of Y from these

realizations. Does it agree with the true PDF?

10.62 (c) For the random variable Y described in Problem 10.61 determine the

CDF. Then, generate realizations of Y , estimate the CDF, and compare it to

the true one.



Appendix IDA

Derivation of PDF of a

Transformed Continuous

Random Variable

The proof uses the CDF approach as described in Section 10.7. It assumes that 9

is a one-to-one funct ion. If Y = g(X) , where 9 is a one-to-one and monotonically

increasing function, then there is a single solution for x in y = g(x) . Thus,

Fy(y) = P [g(X ) ::; y]

= P [X::; g-l(y)]

FX(g -l(y)].

But py(y) = dFy(y)jdy so that

py(y)
d 1

= dy Fx(g- (y))

= dFx(x) I dg-
1(y

)

dx x=g- l (y ) dy

( - 1( ))dg-
1(y)

= Px 9 Y dy '

(chain rule of calculus )

If g(x) is one-to-one and monotonically decreasing, then

Fy(y) P [g(X ) ::; y]

= P[X ~ g-l(y)]

1 - P[X ::; g-l(y)] (since P [X = g-l(y)] = 0)

= 1 - FX(g -l(y))
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py(y)

Note that if 9 is montonically decreasing, then g-l is also montonically decreasing.

Hence , dg-1(y)/dy will be negative. Thus, both cases can be subsumed by the

formula

-1 Id9-
1
(y) Ipy(y) = px(g (y)) dy .
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MATLAB Subprograms to

Compute Q and Inverse Q
Functions

Input Parameters :

Output Parameters:

Verification Test Case:

x - Real column vector of x values

y - Real column vector of right-tail probabilities

The input x=[O 1 2]'; should produce y=[0.5 0.1587 0 .0228]'.

This program computes the right-tail probability

(complementary cumulative distribution function) for

a N(0,1) random variable.

'I. Q.m

'I.
'I.
'I.
'I.
'I.
'I.

'I.
'I.

'I.
'I.

'I.
'I.
'I.
'I.
'I.

'I.

'I.
function y=Q(x)

y=0 .5*erfc(x/sqrt(2)); 'I. complementary error function

'I. Qinv.m
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Input Parameters:

Output Parameters:

Verification Test Case:

y - Real column vector of values of random variable

x - Real column vector of right-tail probabilities
(in interval [0,1])

The input x=[0.5 0.1587 0.0228]'; should produce
y=[O 0 .9998 1.9991]'.

y.
Y. This program computes the inverse Q function or the value

Y. which is exceeded by a N(O,l) random variable with a

Y. probability of x.

Y.

Y.

Y.

Y.

Y.

Y.
%

Y.

Y.

%

%

Y.

%
%
%

function y=Qinv(x)

y=sqrt(2)*erfinv(1-2*x); Y. inverse error function



Chapter 11

Expected Values for Continuous

Random Variables

11.1 Introduction

We now define the expectation of a continuous random variable. In doing so we

parallel the discussion of expected values for discrete random variables given in

Chapter 6. Based on the probability density function (PDF) description of a con­

tinuous random variable, the expected value is defined and its properties explored.

The discussion is conceptually much the same as before , only the particular method

of evaluating the expected value is different. Hence, we will concentrate on the

manipulations required to obtain the expected value.

11.2 Summary

The expected value E[X] for a continuous random variable is motivated from the

analogous definition for a discrete random variable in Section 11.3. Its definition is

given by (11.3). An analogy with the center of mass of a wedge is also described.

For the expected value to exist we must have E[IXI] < 00 or the expected value of

the absolute value of the random variable must be finite. The expected values for

the common continuous random variables are given in Section 11.4 with a summary

given in Table 11.1. The expected value of a function of a continuous random

variable can be easily found using (11.10) , eliminating the need to find the PDF of

the transformed random variable. The expectation is shown to be linear in Example

11.2. For a mixed random variable the expectation is computed using (11.11). The

variance is defined by (11.12) with some examples given in Section 11.6. It has

the same properties as for a discrete random variable, some of which are given in

(11.13) , and is a nonlinear operation. The moments of a continuous random variable

are defined as E[Xn
] and can be found either by using a direct integral evaluation as
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in Example 11.6 or by using the characteristic function (11.18). The characteristic

fun ction is the Fourier transform of the PDF as given by (11.17) . Central moments,

which are the moments about the mean, are related to the moments by (11.15).

The second central moment is just the variance. Although the probability of an

event cannot in general be determined from the mean and variance, the Chebyshev

inequality of (11.21) provides a formula for bounding the probability. The mean and

variance can be estimated using (11.22) and (11.23). Finally, an application of mean

estimation to test highly reliable software is described in Section 11.10. It is based

on importance sampling, which provides a means of estimating small probabilities

with a reasonable number of Monte Carlo trials.

11.3 Determining the Expected Value

The expected value for a discrete random variable X was defined in Chapter 6 to

be

(11.1)

where PX[Xi] is the probability mass function (PMF) of X and the sum is over all i

for which the PMF PX[Xi] is nonzero. In the case of a continuous random variable,

the sample space Sx is not countable and hence (11.1) can no longer be used . For

example, if X /'oJ U(O , 1), then X can take on any value in the interval (0,1) , which

consists of an uncountable number of values. We might expect that the average

value is E[X] = 1/2 since the probability of X being in any equal length interval

in (0,1) is the same. To verify this conjecture we employ the same strategy used

previously, that of approximating a uniform PDF by a uniform PMF, using a fine

partitioning of the interval (0,1). Letting

Xi = il::i.x

for i = 1,2, . .. ,M and with l::i.x = I/M, we have from (11.1)

E[X] t, x;PX[X;] = t,(i~X) (~)
M . 1 M

= L~2 = M2Li.
i = l i = l

But I: ~1 i = (M/2)(M + 1) so that

E[X] = ~(M + 1) =! _1_
M2 2 + 2M

(11.2)
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and as M --+ 00 or the partition of (0,1) becomes infinitely fine, we have E[X] --+ 1/2,

as expected. To extend these results to more general PDFs we first note from (11.2)

that

M

E[X] L XiP [Xi - b..x/2 ::; X ::; Xi + b..x/2]

i =1

~ P[Xi - b..x/2 ::; X ::; Xi + b..x/2] J\

= L...J Xi b.. is»,

i=1 X

But
P[Xi - b..x/2 ::; X ::; Xi + b..x/2] = l/M = 1

b..x b..x

and as b..x --+ 0, this is the probability per unit length for all small intervals centered

about Xi, which is the PDF evaluated at X = Xi. In this example, PX(Xi) does not

depend on the interval center, which is Xi, so that the PDF is uniform or px(x) = 1

for 0 < X < 1. Thus, as b..x --+ 0

M

E[X] --+ L XiPX(Xi)b..x

i=1

and this becomes the integral

E[X] = 11

xpx(x)dx

where px(x) = 1 for 0 < X < 1 and is zero otherwise. To confirm that this integral

produces a result consistent with our earlier value of E[X] = 1/2, we have

E[X] = 11

xpx(x)dx

t' ai- 1dx = ~x211
io 2 0

1

2

In general, the expected value for a continuous random variable X is defined as

E[X] =I: xpx(x)dx (11.3)

where px(x) is the PDF of X. Another example follows.

Example 11.1 - Expected value for random variable with a nonuniform

PDF

Consider the computation of the expected value for the PDF shown in Figure ll.la.

From the PDF and some typical outcomes shown in Figure 11.1b the expected value
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12 . - - - - r - - - ~ - - ~ - - ~ - ~ _ _ ,

px(x) = x / 2

' " '"
.,

' " .'

11 T
302510 15 20

Trial number
5

o
o

05

2

15
Cl)

S 1.33
o
u...,
::I
o

2

~ r5

E[X] = 1.33

05

H OB
"-'"

~
~ 0 . 6

0.4

02

0
0

(a) PDF (b) Typical outcomes and expected value of

1.33

Figure 11.1: Example of nonuniform PDF and its mean.

should be between 1 and 2. Using (11.3) we have

which appears to be reasonable.

<)

As an analogy to the exp ected value we can revisit our Jarlsberg cheese first de­

scribed in Section 10.3, and which is shown in Figure 11.2. The integral

CM = 12

xm(x )dx (11.4)

is t he center of m ass, assuming that the total mass or J; m (x )dx, is one. Here ,

m(x) is the linear mass densi ty or mass per uni t length. The center of mass is the

point at which one could balance the cheese on the point of a pencil. Recall t hat

the linear mass density is m(x) = x / 2 for which CM = 4/ 3 from Example 11.1. To

show that CM is the balance point we first note that J02m(x)dx = 1 so that we can
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1
1

1
/

1

center of mass
at x =4/3

2

Figure 11.2: Center of mass (CM) analogy to average value.

write (11.4) as

12

xm(x)dx - CM = 0

12

xm(x)dx - CM12

m(x)dx 0

r
2

(x - CM) m(x)dx = o.
J0 ------ '----"

'-v-'moment arm mass
sum

347

Since the "sum" of the mass times moment arms is zero, the cheese is balanced at

x = CM = 4/3.
By the same argument the expected value can also be found by solving

i: (x - E[X])px(x)dx = 0 (11.5)

for E[X]. If, however, the PDF is symmetric about some point x = a, which is to

say that px(a + u) = px(a - u) for -00 < u < 00, then (see Problem 11.2)

i: (x - a)px(x)dx = 0 (11.6)

and therefore E[X] = a. Such was the case for X ,...., U(O, 1), whose PDF is symmetric

about a = 1/2. Another example is the Gaussian PDF which is symmetric about

a = J-L as seen in Figures lO.8a and lO.8c. Hence, E[X] = J-L for a Gaussian random

variable (see also the next section for a direct derivation). In summary, if the PDF

is symmetric about a point, then that point is E[X]. However, the PDF need not

be symmetric about any point as in Example 11.1.
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L1h Not all PDFs have expected values.

Before computing the expected value of a random vari able using (11.3) we must

make sure that it exists (see similar discussion in Section 6.4 for discrete random

variables). Not all integrals of the form I ~ oo xpx (x )dx exist, even if I ~ oop x(x)d x =

1. For example, if

{

1
-- x > 1

px (x) = 2x 3/ 2 -

o X < 1

then

but

1
00 1

x -x- 3
/

2dx = y!xTXl
-+ 00 .

1 2 1

A more subtle and somewhat surprising example is the Cauchy PDF. Recall that it

is given by
1

px(x) = 7r(1 + x2 ) - 00 < x < 00.

Since the PDF is symmetric about x = 0, we would expect that E[X] = O. However,

if we are careful about our definition of expected value by correctly interpreting the

region of integration in a limiting sense , we would have

E[X] = lim [0 xpx(x)dx + lim [ u xpx (x )dx.
L ~ - O O J L u ~ o o h

But for a Cauchy PDF

E[X] =

=

f o 1 l U
1lim x dx + lim x dx

L~- oo L 7r(1 + x 2
) Us-vco ° 7r(1 + x 2

)

1 1° 1 I

U

lim -In(1 + x 2
) + lim -In(1 + x 2

)
L ~-oo 27r L U ~ oo 27r °

lim -~ In(1 + L 2
) + lim ~ In(1 + U2

)
E--r-ccx: 27r U ~oo 27r

-00 + 00 =?

Hence , if the limits are taken independently, then the result is indeterminate. To

make the expected value useful in practice the independent choice of limits (and not

L = U) is necessary. The indeterminancy can be avoided, however, if we require

"absolute convergence" or

i:Ixlpx (x )dx < 00.
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Hence , E[X] is defined to exist if E[IXIl < 00. This surprising result can be "ver­

ified" by a computer simulation, the results of which are shown in Figure 11.3. In

40 .---~--~--~-~-----, 10.---~--~--~-~-----,

20 . 5 : -

It-l

2000 4000 6000 8000 10000
Total number of trials

_ 1 0 L - . - ~ - - ~ - - ~ - ~ - - - - - - '

o5010 20 30 40
Trial number

- 4 0 L - . - ~ - - ~ - - ~ - ~ - - - '

o

(a) First 50 outcomes (b) Sample mean

Figure 11.3: Illustration of nonexistence of Cauchy PDF mean.

Figure 11.3a the first 50 outcomes of a total of 10,000 are shown. Because of the

slow decay of the "tails" of the PDF or since the PDF decays only as 1/x2
, very

large outcomes are possible. As seen in Figure 11.3b the sample mean does not

converge to zero as might be expected because of these infrequent but very large

outcomes (see also Problem 12.41). See also Problem 11.3 on the simulation used in

this example and Problems 11.4 and 11.9 on how to make the sample mean converge

by truncating the PDF.

L1h
Finally, as for discrete random variables the expected value is the best guess of the

outcome of the random variable. By "best" we mean that the use of b = E[X] as

our estimator. This estimator minimizes the mean square error, which is defined as

mse = E[(X - b)2] (see Problem 11.5).

11.4 Expected Values for Important PDFs

We now determine the expected values for the important PDFs described in Chapter

10. Of course, the Cauchy PDF is omitted.

11.4.1 Uniform

If X ,..., U(a,b), then it is easy to prove that E[X] = (a + b)/2 or the mean lies at

the midpoint of the interval (see Problem 11.8).
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11.4.2 Exponential

If X", exp(X), then

E[X] = 100

x>..exp(->..x)dx

[-xexp(->..x) - ~exp(->..x)] [ =~. (11.7)

Recall that the exponential PDF spreads out as >.. decreases (see Figure 10.6) and

hence so does the mean.

11.4.3 Gaussian or Normal

If X '" N(j.L, 0"2), then since the PDF is symmetric about the point x = u, we know

that E[X] = u, A direct appeal to the definition of the expected value yields

E[X]

=

Letting u = x - j.L in the first integral we have

E[X] =100

u ~ exp [- 212u
2
] du +j.L100

~ exp [-2\ (x - j.L)2] dx = p:
-00 27r0"2 0" -00 27r0"2 0", , , .,

v v

o =1

The first integral is zero since the integrand is an odd function (g(-u) = - 9 (u), see

also Problem 11.6) and the second integral is one since it is the total area under the

Gaussian PDF.

11.4.4 Laplacian

The Laplacian PDF is given by

-oo<x<oo (11.8)

and since it is symmetric about x = 0 (and the expected value exists - needed to

avoid the situation of the Cauchy PDF), we must have E[X] = O.
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11.4.5 Gamma

If X I'J r(a, x), then from (10.10)

(X) >,,0
E[X] = Jo xr(a) x

o
-

1
exp( ->..x)dx.

To evaluate this integral we attempt to modify the integrand so that it becomes the

PDF of a r(a' , >..') random variable. Then, we can immediately equate the integral

to one. Using this strategy

>,,0 roo >..0+1 0 f(a + 1)
E[X] = r(a) Jo r(a + 1) x exp( ->..x)dx >"0+1

f(a + 1)

>"f(a)

af(a)
=

>"f(a)
a

>..'

(integrand is r(a + 1, x) PDF)

(using Property 10.3)

11.4.6 Rayleigh

It can be shown that E[X] = J(-rra2 )j 2 (see Problem 11.16).

The reader should indicate on Figures 10.6-10.10, 10.12, and 10.13 where the

mean occurs.

11.5 Expected Value for a Function of a Random Vari­

able

If Y = g(X), where X is a continuous random variable, then assuming that Y is

also a continuous random variable with PDF py(y), we have by the definition of

expected value of a continuous random variable

E[Y] = I: ypy(y)dy. (11.9)

Even if Y is a mixed random variable, its expected value is still given by (11.9) ,

although in this case py (y) will contain impulses. Such would be the case if for

example, Y = max(O, X) for X taking on values -00 < x < 00 (see Section 10.8).

As in the case of a discrete random variable, it is not necessary to use (11.9) directly,

which requires us to first determine py(y) from px(x). Instead, we can use for

Y = g(X) the formula

E[g(X)] =I: g(x)px(x)dx. (11.10)
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(integrand is symmetric about x = 0).

A partial proof of this formula is given in Appendix llA. Some examples of its use

follows.

Example 11.2 - Expectation of linear (affine) function

If Y = aX + b, then since g(x) = ax + b, we have from (11.10) that

E[g(X)] = i:(ax + b)px(x)dx

ai:xpx (x )dx + bi:px(x)dx

aE[X] +b

or equivalently

E[aX + b] = aE[X] + b.

It indicates how to easily change the expectation or mean of a random variable. For

example, to increase the mean value by b just replace X by X + b. More generally,

it is easily shown that

This says that the expectat ion operator is lin ear.

Example 11.3 - Power of N(O, 1) random variable

If X ,...., N(o ,1) and Y = X 2, consider E[Y] = E[X2]. The quantity E[X2] is the

average squared value of X and can be interpreted physically as a power. If X is

a voltage across a 1 ohm resistor , then X 2 is the power and therefore E[X2] is the

average power. Now according to (11.10)

E[X2] = 100
x2_1_

exp (_~x2) dx
-00...;2; 2

= 2 roo x2_
1
_ exp (_~x2) dx

io...;2; 2

To evaluate this integral we use integration by parts UUdV = UV - JV dU, see

also Problem 11.7) with U = x, dU = dx , dV = (1/...;2;)xexp[-(1/2) x2]dx and

therefore V = -(1/...;2;) exp[-(1/2)x2
] to yield

E[X2] = 2 [-x _1 exp (_~x 2) 1

00

_ r oo __1 exp (_~x2) dX]
...;2; 2 0 io...;2; 2

= 0+1=1.

The first term is zero since

1· ( 1 2) l' x u 1im x exp - - x = im = im = 0
x-too 2 x-too exp Ux2) x-too Xexp ( ~ x 2 )
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using L’Hospital’s rule and the second term is evaluated using
∫ ∞

0

1√
2π

exp

(

−1

2
x2

)

dx =
1

2
(Why?).

♦

Example 11.4 – Expected value of indicator random variable

An indicator function indicates whether a point is in a given set. For example, if
the set is A = [3, 4], then the indicator function is defined as

IA(x) =

{

1 3 ≤ x ≤ 4
0 otherwise

and is shown in Figure 11.4. The subscript on I refers to the set of interest. The

0 1 2 3 4 5 6
0

0.5

1

1.5

2

I A
(x

)

x

Figure 11.4: Example of indicator function for set A = [3, 4].

indicator function may be thought of as a generalization of the unit step function
since if u(x) = 1 for x ≥ 0 and zero otherwise, we have that

I[0,∞)(x) = u(x).

Now if X is a random variable, then IA(X) is a transformed random variable that
takes on values 1 and 0, depending upon whether the outcome of the experiment lies
within the set A or not, respectively. (It is actually a Bernoulli random variable.)
On the average, however, it has a value between 0 and 1, which from (11.10) is

E[IA(X)] =

∫ ∞

−∞
IA(x)pX(x)dx

=

∫

{x:x∈A}
1 · pX(x)dx (definition)

=

∫

{x:x∈A}
pX(x)dx

= P [A].
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(11.11)

Therefore, the expected value of the indicator random variable is the probability of the

set or event. As an example of its utility, consider the estimation of P[3 ~ X ~ 4].

But this is just E[IA(X)] when IA(x) is given in Figure 11.4. To estimate the

expected value of a transformed random variable we first generate the outcomes of X ,

say X l, X2, , X M, then transform each one to the new random variable producing

for i = 1,2, , M

I () {
1 3 ~ Xi ~ 4

A Xi = o otherwise

and finally compute the sample mean for our estimat e using

However, since P[A] = E[IA(X)], we have as our estimate of the probability

But this is just what we have been using all along, since 2 : ~ 1 IA(Xi) counts all

the outcomes for which 3 ~ x ~ 4. Thus, the indicator fun ction provides a means

to connect the expected value with the probability. This is a very useful for later

theoretical work in probability.

Lastly, if the random variable is a mixed one with PDF

00

px(x) = Pc(x) + LPi8( X - Xi)

i= l

where Pc(x) is the continuous part of the PDF, then the expected value becomes

E[X] = i: x (p,(X) + t,PiO(X- Xi)) da:

i: xpc(x)dx +i:Xt,Pi8(X - xi)dx

= i:x pc(x )dx + t,Pii:x8(x - x i)dx

i: xp, (x )dx +t, x,P,

since J ~ o o g(x)8(x - x i)dx = g(x d for g(x) a function continuous at X = Xi. This

is known as the sifting property of a Dirac delta function (see Appendix D). A
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Values PDF E [X ] var(X) 1Jx(w)

Uniform a<x <b
1

~( a+ b)
(b-a)2 exp(jwb)- exp(jw a)

b-a -1-2- j w(b-a)

Exponential x~ O ..\exp (- ..\x)
1 1 x
x )0 ..\ - j w

Gaussian - oo<x <oo
exp[ - ( I( 2a2))(X- /l)2j

J.L
(J2 exp(jw JL- a2w2( 2]

v'27ra 2

Laplacian - oo<x <oo ~ex P(- V2( a2 Ixl) 0 (J2 2( a2

2a w2+2(a2

Gamma x ~ O
..\" a - I a a 1

r(a ) x exp( - ..\x) x )0 (l -jw( ..\)"

{if
[Johnson

Rayleigh x ~ O 5-exp[-x2(2a 2)J (2-7r(2 )a2 et a11994]
a

Table 11.1: Properties of cont inuous random variables.

summary of the means for the important PDFs is given in Tab le 11.1. Lastly, note

that the expected value of a random var iab le can also be determined from the CDF

as shown in P roblem 11.28.

11.6 Variance and Moments of a Continuous

Random Variable

The var iance of a cont inuous random variab le, as for a discrete random variable,

measures the average squared deviation from the mean . It is defined as var (X ) =

E[(X - E[X]) 2] (exactly the same as for a discret e random variab le) . To evaluate

the var ian ce we use (11.10) to yield

var(X) = i:(x - E [X]) 2pX( x)dx . (11.12)

As an example, consider a N(J.L , (J2) random variable. In Figure 10.9 we saw that

the width of the P DF increases as (J2 increases. This is because the parameter (J2

is actually the variance, as we now show. Using (11.12) and the definition of a

Gaussian P DF

var(X) =
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Let ting u = (x - J.L)/(j produces (recall that a = .Jdi> 0)

var(X) = / 00 (j2u2 ~ exp [- 2\ u
2
] odu

- 00 2w(j2 (j

= (j2/ 00 u2_ 1_ exp [_~ u 2] du-00 .j2; 2
, '

v
=1

(see Example 11.3)

Hence, we now know t hat a N(J.L , (j2) random variable has a mean of J.L and a var ian ce
of (j2.

It is common to refer to the square-root of the vari ance as the standard deviat ion.

For a N(J.L, (j2) random variable it is given by a, The standard deviation indicates

how closely outcomes tend to cluster about the mean. (See Problem 11.29 for an

alte rn at ive interpretation.) Again if the random variable is N(J.L, (j2), then 68.2%

of the outcomes will be within the int erval [J.L - a, J.L + (j], 95.5% will be within

[J.L - 2(j, J.L + 2(j], and 99.8% will be within [J.L - 3(j, J.L + 3(j]. This is illustrated in

Figure 11.5. Of course, ot her PDFs will have concentrations that are different for

E[X] ± k J var (X) . Another example follows.

0.5,.-----.---.---.---.-----.,...-,. . . . . . . . .. .. : : : : : : : :?. . .
~ .
~0 .3 · · , : :. , :

R. .'
0.2 ... .; ...;.

0.1 .... ~ .... ~ .

(a) 68.2% for 1 standard

deviati on

0.5,.-----.---.---.---.-----.,...-,

:?. ...(...(.j... j ...;..

~0.3 .

R.
0.2

~~ -4--3 ~ - ~ 2 '-I- I

(b) 95.5% for 2 standard

deviations

: : : : : : : : :. : : : : : : . :

:? ~ · ..t·r ..( .~ ... .t· .. j""(·
~0 .3 ; :.....:.•: .... ;

0.2 1 · .. ; :· .. ·,·

~ ~ - 4 - - 3 - ' - - " ' 2 --I

(c) 99.8% for 3 standard

deviations

Figure 11.5: Percentage of outcomes of N(l , 1) random variable that are within

k = 1,2, and 3 standard deviations from the mean. Shad ed regions denote area

within interval J.L - ko ::; x ::; J.L + ka .

Example 11.5 - Variance of a uniform random variable

If X "'-J U(a,b), then

var(X ) i:(x - E [X ]) 2pX (x )dx

I
b (1 )2 1x - - (a +b) --dx

a 2 b - a
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and letting u = x - (a + b)/2, we have

357

var(X) = 1 c:----- u2du

b - a -(b-a}/2

___1__ !
u 3

1(b- a}/ 2

b - a 3 -(b-a}/2

(b - a)2

12

o
A summary of the variances for the important PDFs is given in Table 11.1. The

variance of a continuous random variable enjoys the same properties as for a discrete

random variable. Recall that an alternate form for variance computation is

and if c is a constant then

var(c)

var(X + c)

var(cX)

o
var(X)

c2var(X). (11.13)

Also, the variance is a nonlinear type of operation in that

(see Problem 11.32). Recall from the discussions for a discrete random variable that

E[X] and E[X2
] are termed the first and second moments, respectively. In general,

E[Xn] is termed the nth moment and it is defined to exist if E[!x!n] < 00. If it

is known that E[XS] exists, then it can be shown that E[X r
] exists for r < s (see

Problem 6.23). This also says that if E[X r
] is known not to exist, then E[XS] cannot

exist for s > r, An example is the Cauchy PDF for which we saw that E[X] does

not exist and therefore all the higher order moments do not exist. In particular,

the Cauchy PDF does not have a second-order moment and therefore its variance

does not exist. We next give an example of the computation of all the moments of

a PDF.

Example 11.6 - Moments of an exponential random variable

Using (11.10) we have for X '" exp('x) that

E[Xn
] = 100

xn'xexp(-'xx)dx.

To evalute this we first show how the nth moment can be written recursively in terms

of the (n - l)st moment. Since we know that E[X] = 1/,X, we can then determine
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all the moments using the recursion. We can begin to evaluate the integral using

integration by parts. This will yield the recursive formula for the moments. Letting

U = x n and dV = >.exp(->.x)dx so that dU = nxn-1dx and V = -exp(->.x), we

have

E[Xn] - x n exp( ->,x)lgo -100

- exp( ->.x)nxn-1dx

0+ n100

x
n-1

exp(->.x)dx

= ~ 100

x n- 1>. ex p(- >.x )dx

~E[xn-l].

Hence, the nth moment can be written in term of the (n - l)st moment. Since we

know that E[X] = 1/>', we have upon using the recursion that

etc.

and in general

(11.14)

The variance can be found to be var(X) = 1/>.2 using these results.

<>
In the next section we will see how to use characteristic functions to simplify the

complicated integration process required for moment evaluation.

Lastly, it is sometimes important to be able to compute moments about some

point. For example, the variance is the second moment about the point E[X]. In

general, the nth central moment about the point E[X] is defined as E[(X - E[x])n].
The relationship between the moments and the central moments is of interest. For

n = 2 the central moment is related to the moments by the usual formula E[ (X ­
E[X])2] = E[X2] - E2[X]. More generally, this relationship is found using the

binomial theorem as follows.

E[(X - E[X]t] E l~ G) X'(-EIXD
n

- , ]

n

L (~) E[Xk](-E[X])n-k (linearity of expectation operator)

k=O
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or finally we have that

n

E[(X - E[X)t ) = 2)-lt-k (~) (E[X])n-k E[Xk) .

k=O

11.7 Characteristic Functions

359

(11.15)

As first introduced for discrete random variables, the characteristic function is a

valuable tool for the calculation of moments. It is defined as

1Jx(w) = E[exp(jwX)) (11.16)

and always exists (even though the moments of a PDF may not). For a continuous

random variable it is evaluated using (11.10) for the real and imaginary parts of

E[exp(jwX)), which are E[cos(wX)] and E[sin(wX)). This results in

1Jx(w) = i: exp(jwx)px(x)dx

or in more familiar form as

1Jx(w) =i:px(x) exp(jwx)dx. (11.17)

The characteristic function is seen to be the Fourier transform of the PDF, although

with a +j in the definition as opposed to the more common - j. Once the charac­

teristic function has been found, the moments are given as

1Jx(w)

An example follows.

Example 11.7 - Moments of the exponential PDF

Using the definition of the exponential PDF (see (10.5)) we have

100

Aexp( -AX) exp(jwx)dx

100

Aexp[-(A - jw)x)dx

A exp[-(A - jw)x) 1
00

-(A - jw) 0

A
A . (exp[-(A - jw)oo) - 1) .

-JW

(11.18)
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But exp[-(>. - jw)x] -+ 0 as x -+ 00 since>' > 0 and hence we have

x
¢x(w) = >. .

-JW
(11.19)

To find the moments using (11.18) we need to differentiate the characteristic function

n times. Proceeding to do so

and therefore

d¢x(w)

dw
= ~>.(>. _ jw)-l

dw
>'(-1)(>' - jw)-2(_j)

>.( -1)(-2)(>' - jw)-3( _j)2

= >.(-1)(-2) ... (-n)(>. - jw)-n-l(_j)n

= >.jnn!(>. _ jw)-n-l

~ dn¢x(w) I
jn dwn w=o

>'n! (>. - jw) -n-l L=o
n!

>.n

which agrees with our earlier results (see (11.14)) .

Moment formula only valid if moments exist

Just because a PDF has a characterist ic function, and all do, does not mean that

(11.18) can be applied. For example, the Cauchy PDF has the characteristic function

(see Problem 11.40)

¢x(w) = exp(-Iwl)

(although the derivative does not exist at w = 0). However , as we have already

seen , the mean does not exist and hence all higher order moments also do not exist.

Thus, no moments exist at all for the Cauchy PDF.

&
The characteristic function has nearly the same properties as for a discrete random

variable, namely
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1. The characteristic function always exists.

2. The PDF can be recovered from the characteristic function by the inverse Fourier

transform, which in this case is

i" dw
px(x) = J-oo </>x(w) exp(-jwx) 21f' (11.20)

3. Convergence of a sequence of characteristic functions </>c;) (w) for n = 1, 2, .. . to a

given characteristic function </>(w) guarantees that the corresponding sequence

of P DFs p ~ ) ( x ) for n = 1,2, . . . converges to p(x), where from (11.20)

1
00 dw

p(x) = ¢(w) exp( -jwx) - .
-00 21f

(See Problem 11.42 for an example.) This property is also essential for proving

the central limit theorem described in Chapter 15.

A slight difference from the characteristic function of a discrete random variable

is that now </>x(w) is not periodic in w. It does, however, have the usual proper­

ties of the continuous-time Fourier transform [Jackson 1991]. A summary of the

characteristic functions for the important PDFs is given in Table 11.1.

11.8 P robability, Moments, and the Chebyshev Inequal­

ity

The mean and variance of a random variable indicate the average value and variabil­

ity of the outcomes of a repeated experiment. As such, they summarize important

information about the PDF. However, they are not sufficient to determine proba­

bilities of events. For example, the PDFs

px(x) = vh exp ( _ ~ x 2)

px(x) = ~ exp ( - h"lx l)

(Gaussian)

(Laplacian)

both have E[X] = 0 (due to symmetry about x = 0) and var(X) = 1. Yet, the

probability of a given interval can be very different. Although the relationship

between the mean and variance, and the probability of an event is not a direct one ,

we can still obtain some information about the probabilities based on the mean and

variance. In particular, it is possible to bound the probability or to be able to assert

that

P[IX - E [Xli > ,] ~ B
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where B is a number less than one. This is especially useful if we only wish to

make sure the probability is below a certain value, without explicitly having to find

the probability. For example, if the probability of a speech signal of mean 0 and

variance 1 exceeding a given magnitude, (see Section 10.10) is to be no more than

1%, then we would be satisfied if we could determine a , so that

P[lX - E[XJI > ,] :::; 0.01.

We now show that the probability for the event IX - E[XJI > , can be bounded if

we know the mean and variance. Computation of the probability is not required and

therefore the PDF does not need to be known. Estimating the mean and variance is

much easier than the entire PDF (see Section 11.9). The inequality to be developed

is called the Chebyshev inequality. Using the definition of the variance we have

var(X) = i: (x - E[X])2pX (x )dx

r (x - E [X])2pX (x)dx + r (x - E[X])2pX (x )dx
J{x:lx-E[XlI>'Y} J{x:lx-E[XlI:S'Y}

> r (x - E[X])2pX (x )dx (omitted integral is nonnegative)
J{x:lx-E[XlI>'Y}

> r ,2px (x )dx (since for each x, Ix - E[XJI > ,)
J {x :lx-E[XlI>'Y}

,2 r px(x)dx
J{x:lx-E[XlI>'Y}

,2P[IX - E[X]I >,]

so that we have the Chebyshev inequality

P[lX - E[X] I > ,] :::; var~X) ., (11.21)

Hence, the probability that a random variable deviates from its mean by more

than, (in either direction) is less than or equal to var(X) /,2. This agrees with

our intuition in that the probability of an outcome departing from the mean must

become smaller as the width of the PDF decreases or equivalently as the variance

decreases. An example follows.

Example 11.8 - Bounds for different PDFs

Assuming E[X] = 0 and var(X) = 1, we have from (11.21)

1
P[IXI >,] :::; "2',

If, = 3, then we have that P[IXI > 3] :::; 1/9 ~ 0.11. This is a rather "loose"

bound in that if X "" N(O, 1), then the actual value of this probability is P[lXI >
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3] = 2Q(3) = 0.0027. Hence , the actual probability is indeed less than or equal to

the bound of 0.11, but quite a bit less. In the case of a Laplacian random variable

with mean 0 and variance 1, the bound is the same but the actual value is now

P[lXI > 3] = r-
3

~ exp ( -hlxl) dx + I " ~ exp (-hlxl) dx
1-00 y2 13 y2

(Xl 1
2 13 J2 exp ( -hx) dx (PDF is symmetric about x = 0)

- exp (-hx) I:
exp ( -3h) = 0.0144.

Once again the bound is seen to be correct but provides a gross overestimation of

the probability. A graph of the Chebyshev bound as well as the actual probabilities

of P[!X! > ,] versus, is shown in Figure 11.6. The reader may also wish to consider

4.5 53.5 4

.. ...Chebyshev inequality ~ ~
· .
· .
· .

. . . . . . . . . . . . ..

~0.7

;D 0.6
ell

.g 0.5
I-<

P-. 0.4

03
Gaussian

02 .., :, .. , , . .

Laplacian ---f-'" ~
0.1 : , .- ~ .

. ........-.-- ":"':.,--

0.9

OB

Figure 11.6: Probabilities P[IXI > ,] for Gaussian and Laplacian random variables

with zero mean and unity variance compared to Chebyshev inequality.

what would happen if we used the Chebyshev inequality to bound P[!XI > 0.5] if

X "J N(o,1).

11.9 Estimating the Mean and Variance

The mean and variance of a continuous random variable are estimated in exact ly

the same way as for a discrete random variable (see Section 6.8). Assuming that we
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have the M outcomes {Xl, X2, . .. , XM} of a random variable X the mean estimate

is
___ 1 M

E[X] = -~X i
MLJ

t=l

(11.22)

(11.23)

and the variance estimate is

var(X) E[X2j _ (E[Xj) 2

= ~ t x1- (~ t x;)'

An example of the use of (11.22) was given in Example 2.6 for a N(o,1) random

variable. Some practice with the estimation of the mean and variance is provided

in Problem 11.46.

11.10 Real-World Example - Critical Software Testing

Using Importance Sampling

Computer software is a critical component of nearly every device used today. The

failure of such software can range from being an annoyance, as in the outage of a

cellular telephone, to being a catastrophe, as in the breakdown of the control system

for a nuclear power plant. Testing of software is of course a prerequisite for reliable

operation, but some events, although potentially catastrophic, will (hopefully) occur

only rarely. Therefore, the question naturally arises as to how to test software that is

designed to only fail once every 107 hours ( ~ 1400 years). In other words, although

a theoretical analysis might predict such a low failure rate, there is no way to test

the software by running it and waiting for a failure. A technique that is often used in

other fields to test a system is to "stress" the system to induce more frequent failures,

say by a factor of 105 , then estimate the probability of failure per hour, and finally

readjust the probability for the increased stress factor. An analogous approach

can be used for highly reliable software if we can induce a higher failure rate and

then readjust our failure probability estimate by the increased factor. A proposed

method to do this is to stress the software to cause the probability of a failure to

increase [Hecht and Hecht 2000]. Conceivably we could do this by inputting data

to the software that is suspected to cause failures but at a much higher rate than is

normally encountered in practice. This means that if T is the time to failure, then

we would like to replace the PDF of T so that P[T > ,] increases by a significant

factor . Then, after estimating this probability by exercising the software we could

adjust the estimate back to the original unstressed value. This probabilitic approach

is called importance sampling [Rubinstein 1981].

As an example of the use of importance sampling, assume that X is a continuous

random variable and we wish to estimate P[X > ,]. As usual, we could generate
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realizations of X , count the number that exceed 'Y, and then divide this by the

total number of realizations. But what if the probability sought is 1O-7? Then we

would need about 109 realizations to do this. As a specific example, suppose that

X ,....., N(O ,l) , although in practice we would not have knowledge of the PDF at

our disposal, and that we wish to estimate P[X > 5] based on observed realization

values. The true probability is known to be Q(5) = 2.86 x 10-7
. The importance

sampling approach first recognizes that the desired probability is given by

and is equivalent to

1
00 _1_ exp (- ! x 2 )

I = ,j'j;i () 2 PX'(x)dx
s Px' x

where PXI(X) is a more suitable PDF. By "more suitable" we mean that its prob­

ability of X' > 5 is larger, and therefore, generating realizations based on it will

produce more occurrences of the desired event. One possibility is X' ,....., exp(l) or

px,(x) = exp( -x)u(x) for which P[X > 5] = exp(-5) = 0.0067. Using this new

PDF we have the desired probability

1
00 _1_ exp (_!x2 )

I = ,j'j;i ( ~ exp( - x)dx
s exp -x

or using the indicator function, this can be written as

I =100

I(s,oo) (x) vb: exp ( _~ x2 + x) pXI(x)dx.
, ~

v

g(x)

Now the desired probability can be interpreted as E[g(X')]' where X' ,....., expfl). To

estimate it using a Monte Carlo computer simulation we first generate M realizations

of an exp(l) random variable and then use as our estimate

1 M

i = MLg(xd
i=1

= ~ t I(s,oo)(xd ~exp (_!x; + Xi) .
i=1 Y 27r 2 ,

v

weight with value « 1
for Xi » 5

The advantage of the importance sampling approach is that the realizations whose

values exceed 5, which are the ones contributing to the sum, are much more proba­

ble. In fact, as we have noted P[X' > 5] = 0.0067 and therefore with N = 10,000
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realizations we would expect about 67 realizations to contribute to the sum. Con­

trast this with a N(O,l) random variable for which we would expect NQ(5) =

(104)(2.86 x 10-7
) ~ 0 realizations to exceed 5. The new PDF px! is called the

importance function and hence the generation of realizations from this PDF, which

is also called sampling from the PDF, is termed importance sampling. As seen from

(11.24), its success requires a weighting factor that downweights the counting of

threshold exceedances.

In software testing the portions of software that are critical to the operation of

the overall system would be exercised more often than in normal operation, thus

effect ively replacing the operational PDF or px by the importance function PDF

or Px', The ratio of these two would be needed as seen in (11.24) to adjust the

weight for each incidence of a failure. This ratio would also need to be estimated in

practice. In this way a good estimate of the probability of failure could be obtained

by exercising the software a reasonable number of times with different inputs. Oth­

erwise, the critical software might not exhibit a failure a sufficient number of times

to estimate its probability.

As a numerical example, if X' "" exp(l), we can generate realizations using the

inverse probability transformation method (see Section 10.9) via X' = -In(l - U) ,

where U "" U(O, 1). A MATLAB computer program to estimate I is given below.

rand('state',O) % sets random number generator to

% initial value

M=10000;gamma=5;% change Mfor different estimates
u=rand(M,l); % generates MU(O,l) realizations

x=-log(l-u); % generates M exp(l) realizations
k=O;

for i=l:M % computes estimate of P[X>gamma]

if x(i»gamma

k=k+l;

y ( k , 1 ) = ( 1 / s q r t ( 2 * p i ) ) * e x p ( - 0 . 5 * x ( i ) ~ 2 + x ( i ) ) ; % computes weights

% for estimate
end

end

Qest=sum(y)/M % final estimate of P[X>gamma]

The results are summarized in Table 11.2 for different values of M , along with the

true value of Q(5). Also shown are the number of times 'Y was exceeded. Without

the use of importance sampling the number of exceedances would be expected to be

MQ(5) ~ 0 in all cases.
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M Estimated P[X > 5]

1.11 X 10-7

2.96 X 10-7

2.51 X 10-7

2.87 X 10- 7

True P[X > 5]

2.86 X 10-7

2.86 X 10-7

2.86 X 10-7

2.86 X 10-7

Exceedances

4

66

630

6751

367

Table 11.2: Importance sampling approach to estimation of small probabilities.
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Problems

11.1 C:..:.,) (f) The block shown in Figure 11.7 has a mass of 1 kg. Find the center

of mass for the block, which is the point along the x-axis where the block

could be balanced (in practice the point would also be situated in the depth

direction at 1/2).

_ "-_ x

Figure 11.7: Block for Problem 11.1.
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11.2 (t) Prove that if the PDF is symmetric about a point x = a, which is to say

that it satisfies px(a+u) = px(a-u) for all-oo < u < 00, then the mean will

be a. Hint: Write the integral I ~ o o xpx(x)dx as I~oo xpx(x)dx+ Iaoo
xpx(x)dx

and then let u = x - a in the first integral and u = a - x in the second integral.

11.3 (c) Generate and plot 50 realizations of a Cauchy random variable. Do so by

using the inverse probability integral transformation method. You should be

able to show that X = tan(7r(U - 1/2», where U '" U(O, 1), will generate the

Cauchy realizations.

11.4 (c) In this problem we show via a computer simulation that the mean of

a truncated Cauchy PDF exists and is equal to zero. A truncated Cauchy

random variable is one in which the realizations of a Cauchy PDF are set to

x = Xmax if x > Xmax and x = -Xmax if x < -Xm ax ' Generate realizations

of this random variable with Xmax = 50 and plot the sample mean versus the

number of realizations. What does the sample mean converge to?

11.5 (t) Prove that the best prediction of the outcome of a continuous random

variable is its mean. Best is to be interpreted as the value that minimizes the

mean square error mse(b) = E[(X - b)2].

11.6 (t) An even function is one for which g(-x) = g(x) , as for example cos(x).

An odd function is one for which g( -x) = -g(x), as for example sin(x). First

prove that I ~ o o g(x)dx = 2 Iooo
g(x)dx if g(x) is even and that I ~ o o g(x)dx = 0

if g(x) is odd. Next, prove that if px(x) is even, then E[X] = 0 and also that

Iooo
px(x)dx = 1/2.

11.7 (f) Many integrals encountered in probability can be evaluated using integra­

tion by parts. This useful formula is

IUdV = UV - IV dU

where U and V are functions of x. As an example, if we wish to evaluate

I xexp(ax)dx, we let U = x and dV = exp(ax)dx. The function U is easily

differentiated to yield dU = dx and the differential dV is easily integrated to

yield V = (l/a) exp(ax). Continue the derivation to determine the integral of

the function x exp (ax).

11.8 (f) Find the mean for a uniform PDF. Do so by first using the definition and

then rederive it using the results of Problem 11.2.

11.9 (t) Consider a continuous random variable that can take on values Xmin ~

x ~ Xm ax ' Prove that the expected value of this random variable must satisfy

Xmin ~ E[X] ~ Xm ax' Hint: Use the fact that if M i ~ g(x) ~ M 2 , then

Mia ~ I: g(x)dx ~ M 2b.
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11.10 C..:...) (w) The signal-to-noise ratio (SNR) of a random variable quantifies the

accuracy of a measurement of a physical quantity. It is defined as E 2 [X]/var(X)

and is seen to increase as the mean, which represents the true value, increases

and also as the variance, which represents the power of the measurement error,

i.e., X - E [X], decreases. For example, if X rv N(I-", (J'2), then SNR = 1-"2 /(J'2 .

Determine the SNR if the measurement is X = A + U, where A is the true

value and U is the measurement error with U rv U( -1/2,1/2). For an SNR of

1000 what should A be?

11.11 Coo:,,} (w) A toaster oven has a failure time that has an exponential PDF. If

the mean time to failure is 1000 hours, what is the probability that it will not

fail for at least 2000 hours?

11.12 (w) A bus always arrives late. On the average it is 10 minutes late. If the

lateness time is an exponential random variable, determine the probability

that the bus will be less than 1 minute late.

11.13 (w) In Section 1.3 we described the amount of time an office worker spends

on the phone in a 10-minute period. From Figure 1.5 what is the average

amount of time he spends on the phone?

11.14 c.:..:...) (f) Determine the mean o f a x ~ PDF. See Chapter 10 for the definition

of this PDF.

11.15 (f) Determine the mean of an Erlang PDF using the definition of expected

value. See Chapter 10 for the definition of this PDF.

11.16 (f) Determine the mean of a Rayleigh PDF using the definition of expected

value. See Chapter 10 for the definition of this PDF.

11.17 (w) The mode of a PDF is the value of x for which the PDF is maximum. It

can be thought of as the most probable value of a random variable (actually

most probable small interval). Find the mode for a Gaussian PDF and a

Rayleigh PDF. How do they relate to the mean?

11.18 (f) Indicate on the PDFs shown in Figures 10.7-10.13 the location of the

mean value.

11.19 ( ~ ) (w) A dart is thrown at a circular dartboard. If the distance from the

bullseye is a Rayleigh random variable with a mean value of 10, what is the

probability that the dart will land within 1 unit of the bullseye?

11.20 (f) For the random variables described in Problems 2.8-2.11 what are the

means? Note that the uniform random variable is U(O , 1) and the Gaussian

random variable is N(O , 1).
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11.21 C..:.,) (w) In Problem 2.14 it was asked whether the mean of v1J, where U '"

U(O, 1), is equal to Jmean of U. There we relied on a computer simulation to

answer the question. Now prove or disprove this equivalence.

11.22 L.:.,) (w) A sinusoidal oscillator outputs a waveform s(t) = cos(27rFot + ¢),
where t indicates time, Fo is the frequency in Hz, and ¢ is a phase angle

that varies depending upon when the oscillator is turned on. If the phase is

modeled as a random variable with ¢ '" U(O, 27r), determine the average value

of s(t) for a given t = to. Also, determine the average power, which is defined

as E[s2(t)] for a given t = to. Does this make sense? Explain your results.

11.23 (f) Determine E[X2] for a N(/-L, (T2) random variable.

11.24 (f) Determine E[(2X + 1)2] for a N(/-L, (T2) random variable.

11.25 (f) Determine the mean and variance for the indicator random variable IA(X)

as a function of P[A].

11.26 C..:...) (w) A half-wave rectifier passes a zero or positive voltage undisturbed

but blocks any negative voltage by outputting a zero voltage. If a noise sample

with PDF N(o,(T2) is input to a half-wave rectifier, what is the average power

at the output? Explain your result.

11.27 C..:...) (w) A mixed PDF is given as

1 1 (1)px(x) = -2b"(x) + ~exp --2x2 u(x).
27r(T2 2(T

What is E[X2
] for this PDF? Can this PDF be interpreted physically? Hint:

See Problem 11.26.

11.28 (t) In this problem we derive an alternative formula for the mean of a non­

negative random variable. A more general formula exists for random variables

that can take on both positive and negative values [Parzen 1960]. If X can

only take on values x ~ 0, then

E[X] = 100

(1 - Fx(x)) dx.

First verify that this formula holds for X '" exp[A). To prove that the formula

is true in general, we use integration by parts (see Problem 11.7) as follows.

E[X] = 100

(1 - Fx(x)) dx

100100

p x ( t ) d t ~ .
O ~ d V

u
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Finish the proof by using limx-too x Jxoo
pX (t)dt = 0, which must be true if the

expected value exists (see if this holds for X rv exp(>..)) .

11.29 (t) The standard deviation a of a Gaussian PDF can be interpreted as the

distance from the mean at which the PDF curve goes through an inflection

point. This means that at the points x = J.L ± a the second derivative of px(x)

is zero. The curve then changes from being concave (shaped like a n) to being

convex (shaped like a U). Show that the second derivative is zero at these

points.

11.30 (...:.,:.,) (w) The office worker described in Section 1.3 will spend an average of

7 minutes on the phone in any lO-minute interval. However, the probability

that he will spend exactly 7 minutes on the phone is zero since the length of

this interval is zero. If we wish to assert that he will spend between Tmin and

T max minutes on the phone 95% of the time, what should Tmin and T max be?

Hint: There are multiple solutions - choose any convenient one.

11.31 (w) A group of students is found to weigh an average of 150 lbs. with a stan­

dard deviation of 30 lbs. If we assume a normal population (in the probabilis­

tic sense!) of students, what is the range of weights for which approximately

99.8% of the students will lie? Hint: There are multiple solutions - choose

any convenient one.

11.32 (w) Provide a counterexample to disprove that var(gr(X) + g2(X)) =

var(gr(X)) + var(g2(X)) in general.

11.33 (w) The SNR of a random variable was defined in Problem 11.10. Determine

the SNR for exponential random variable and explain why it doesn't increase

as the mean increases. Compare your results to a N(J.L ,( 2
) random variable

and explain.

11.34 (f) Verify the mean and variance for a Laplacian random variable given in

Table 11.1.

11.35 (...:.,:.,) (f) Determine E[X3
] if X rv N(J.L, ( 2

) . Next find the third central

moment.

11.36 (f) An example of a Gaussian mixture PDF is

1 1 [1 2] 1 1 [1 2]px(x) = -- exp --(x -1) +-- exp --(x + 1) .
2 J21r 2 2 J21r 2

Determine its mean and variance.

11.37 (t) Prove that if a PDF is symmetric about x = 0, then all its odd-order

moments are zero.
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11.38 C:...:.... ) (f) For a Laplacian PDF with (12 = 2 determine all the moments. Hint:

Let

1 1 (1 1)
w2 + 1 = 2j w - j - w + j .

11.39 (f) If X rv N(O, (12), determine E[X2
] using the characteristic function ap­

proach.

11.40 (t) To determine the characteristic function of a Cauchy random variable we

must evaluate the integral

1
00 1

( 2) exp(jwx )dx.
-00 7f 1 + x

A result from Fourier transform theory called the duality theorem asserts that

the Fourier transform and inverse Fourier transform are nearly the same if we

replace x by wand w by x. As an example, for a Laplacian PDF with (12 = 2

we have from Table 11.1 that

1
00 100 1 1

px(x) exp(jwx)dx = - exp(-Ixl) exp(jwx)dx = --2'-00 -00 2 1 + w

The inverse Fourier transform relationship is therefore

/

00 1 dw 1
1 2 exp( -jwx)-2 = - exp(-Ixl).

-00 + w 7f 2

Use the latter integral, with appropriate modifications (note that x and ware

just variables which we can redefine as desired), to obtain the characteristic

function of a Cauchy random variable.

11.41 (f) If the characteristic function of a random variable is

find the PDF. Hint: Recall that when we convolve two functions together the

Fourier transform of the new function is the product of the individual Fourier

transforms. Also, see Table 11.1 for the characteristic function of a U (-1, 1)

random variable.

11.42 C:...:....) (w) If x(n) rv N(f-L, lin), determine the PDF of the limiting random

variable X as n -+ 00. Use characteristic functions to do so.

11.43 (f) Find the mean and variance ofaXJv random variable using the charac­

teristic function.
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11.44 C:..:.-) (f) The probability that a random variable deviates from its mean by

an amount, in either direction is to be less than or equal to 1/2. What should

, be?

11.45 (f) Determine the probability that IXI > , if X '" U[-a ,a]. Next compare

these results to the Chebyshev bound for a = 2.

11.46 C:.:.-) (c) Estimate the mean and variance of a Rayleigh random variable with

a 2 = 1 using a computer simulation. Compare your estimated results to the

theoretical values.

11.47 (c) Use the importance sampling method described in Section 11.10 to de­

termine Q(7). If you were to generate M realizations of a N(O, 1) random

variable and count the number that exceed , = 7 as is usually done to esti­

mate a right-tail probability, what would M have to be (in terms of order of

magnitude)?



Appendix llA

Partial Proof of Expected Value

of Function of Continuous

Random Variable

For simplicity assume that Y = g(X) is a continuous random variable with PDF

py(y) (having no impulses) . Also, assume that y = g(x) is monotonically increasing

so that it has a single solution to the equation y = g(x) for all y as shown in Figure

llA.1. Then

g(x)

--f-----r-- --f-- - - x

Figure llA.1: Monotonically increasing function used to der ive E [g(X )].

E[Y] = 1:ypy(y)dy

1:YPX(g-l(y)) Id9~~(Y) Idy (from (10.30).

Next change variables from y to x using x = g-l(y) . Since we have assumed that

g(x) is monotonically increasing, the limits for y of ±oo also become ±oo for x.
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(g is monotonically increasing,

implies «: is monotonically increasing,

implies derivative is positive)

Then, since x = g-l(y), we have that YPX(g-l(y)) becomes g(x)px(x) and

Idg~~(y) Idy = dg~~(y) dy

dx
= dydy = dx

from which (11.10) follows. The more general result for nonmonotonic functions

follows along these lines.



Chapter 12

Multiple Continuous Random

Variables

12.1 Introduction

In Chapter 7 we discussed multiple discrete random variables. We now proceed to

parallel that discussion for multiple continuous random variables. We will consider

in this chapter only the case of two random variables, also called bivariate random

variables, with the extension to any number of continuous random variables to be

presented in Chapter 14. In describing bivariate discrete random variables, we used

the example of height and weight of a college student. Figure 7.1 displayed the

probabilities of a student having a height in a given interval and a weight in a given

interval. For example, the probability of having a height in the interval [5'8" ,6']

and a weight in the interval [160,190] lbs. is 0.14 as listed in Table 4.1 and as seen

in Figure 7.1 for the values of H = 70 inches and W = 175 lbs. For physical

measurements such as height and weight , however, we would expect to observe a

continuum of values. As such, height and weight are more appropriately modeled

by multiple continuous random variables. For example, we might have a population

of college students, all of whose heights and weights lie in the intervals 60 ::; H ::; 80

inches and 100 ::; W ::; 250 lbs. Therefore, the continuous random variables (H, W)

would take on values in the sample space

SH,W = {(h, w) : 60 ::; h ::; 80,100::; w ::; 250}

which is a subset of the plane, i.e., R2
• We might wish to determine probabilities

such as P[61 ::; H ::; 67.5,98.5 ::; W ::; 154], which cannot be found from Figure 7.1.

In order to compute such a probability we will define a joint PDF for the continuous

random variables Hand W. It will be a two-dimensional function of hand w. In the

case of a single random variable we needed to integrate to find the area under the

PDF as the desired probability. Now integration ofthe joint PDF, which is a function

of two variables, will produce the probability. However, we will now be determining
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the volume under the joint PDF. All our concepts for a single continuous random

variable will extend to the case of two random variables. Computationally, however,

we will encounter more difficulty since two-dimensional integrals, also known as

double integrals, will need to be evaluated. Hence, the reader should be acquainted

with double integrals and their evaluation using iterated integrals.

12.2 Summary

The concept of jointly distributed continuous random variables is introduced in Sec­

tion 12.3. Given the joint PDF the probability of any event defined on the plane

is given by (12.2). The standard bivariate Gaussian PDF is given by (12.3) and is

plotted in Figure 12.9. The concept of constant PDF contours is also illustrated

in Figure 12.9. The marginal PDF is found from the joint PDF using (12.4). The

joint CDF is defined by (12.6) and is evaluated using (12.7) . Its properties are

listed in P12.1-P12.6. To obtain the joint PDF from the joint CDF we use (12.9).

Independence of jointly distributed random variables is defined by (12.10) and can

be verified by the factorization of either the PDF as in (12.11) or the CDF as in

(12.12) . Section 12.6 addresses the problem of determining the PDF of a function

of two random variables-see (12.13), and that of determining the joint PDF of

a function which maps two random variables into two new random variables. See

(12.18) for a linear transformation and (12.22) for a nonlinear transformation. The

general bivariate Gaussian PDF is defined in (12.24) and some useful properties

are discussed in Section 12.7. In particular, Theorem 12.7.1 indicates that a linear

transformation of a bivariate Gaussian random vector produces another bivariate

Gaussian random vector, although with different means and covariances. Exam­

ple 12.14 indicates how a bivariate Gaussian random vector may be transformed to

one with independent components. Also, a formula for computation of the expected

value of a function of two random variables is given as (12.28) . Section 12.9 discusses

prediction of a random variable from the observation of a second random variable

while Section 12.10 summarizes the joint characteristic function and its properties.

In particular, the use of (12.47) allows the determination of the PDF of the sum

of two continuous and independent random variables. It is used to prove that two

independent Gaussian random variables that are added together produce another

Gaussian random variable in Example 12.15. Section 12.11 shows how to simulate

on a computer a random vector with any desired mean vector and covariance ma­

trix by using the Cholesky decomposition of the covariance matrix-see (12.53).

If the desired random vector is bivariate Gaussian, then the procedure provides a

general method for generating Gaussian random vectors on a computer. Finally, an

application to optical character recognition is described in Section 12.12.
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12.3 Jointly Distributed Random Variables

379

We consider two continuous random variables that will be denoted by X and Y. As

alluded to in the introduction, they represent the functions that map an outcome s
of an experiment to a point in the plane. Hence , we have that

[
X(S)] [ x ]

Y(s) y

for all s E S . An example is shown in Figure 12.1 in which the outcome of a dart

toss S, which is a point within a unit radius circular dartboard, is mapped into a

point in the plane, which is within the unit circle. The random variables X and Y

y

X(S) ,Y(s)

S

---l------::,.f----+~ x

Figure 12.1: Mapping of the outcome of a thrown dart to the plane (example of

jointly continuous random variables).

are said to be jointly distributed continuous random variables. As before, we will

denote the random variables as (X,Y) or [X Y]T , in either case referring to them as

a random vector. Note that a different mapping would result if we chose to represent

the point in SX,Y in polar coordinates (r,O). Then we would have

SR,8 = {(r,O) : 0::; r::; 1,0::; 0 < 27l"}.

This is a different random vector but is of course related to (X, Y). Depending

upon the shape of the mapped region in the plane, it may be more convenient to

use either rectangular coordinates or polar coordinates for probability calculations

(see also Problem 12.1).

Typical outcomes of the random variables are shown in Figure 12.2 as points in

SX,Y for two different players. In Figure 12.2a 100 outcomes for a novice dart player

are shown while those for a champion dart player are displayed in Figure 12.2b. We

might be interested in the probability that ";X2 + y2 ::; 1/4, which is the event

that a bullseye is attained. Now our event of interest is a two-dimensional region as

opposed to a one-dimensional interval for a single continuous random variable. In
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o 0.5
X

-1 -0.5

-1

0.5

. . .
-0.5 .. , :- , :- , . .

. . . . .

-1 -0.5 0 0.5
X

- 1 ~ . .-....._.-:-

;l) 0 · ·

(a) Novice (b) Champion

Figure 12.2: Typical outcomes for novice and champion dart player.

the case of the novice dart player the dart is equally likely to land anywhere in the

unit circle and hence the probability is

P[bullseye]

=

Area of bullseye

Total area of dartboard

7f(1/4)2 1

7f(1)2 16

However , for a champion dart player we see from Figure 12.2b that the probability of

a bullseye is much higher. How should we compute this probability? For the novice

dart player we can interpret the probability calculation geometrically as shown in

Figure 12.3 as the volume of the inner cylinder since

P[bullseye]
1

7f(1/4)2 X -
7f

= Area of bullseye x
, "....

Area of event

1

7f
'-v-"

Height

If we define a function

{

I x 2 + y2 ~ 1
px,y(x ,y) = 07r

otherwise
(12.1)

then this volume is also given by

P[A] = Jipx,Y(x ,Y)dXdY (12.2)
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PX ,y(x,y)

SX,Y

bullseye = A

y

381

Figure 12.3: Geometric interpretation of bullseye probability calculation for novice

dart thrower.

since then

P[A]

1

16

In analogy with the definition of the PDF for a single random variable X , we define

PX ,y(x, y) as the joint PDF of X and Y. For this example, it is given by (12.1) and

is used to evaluate the probability that (X, Y) lies in a given region A by (12.2).

The region A can be any subset of the plane. Note that in using (12.2) we are

determining the volume under PX,Y, hence the need for a double integral. Another

example follows.

Example 12.1 - Pyramid-like joint PDF

A joint PDF is given by

( ) {
4(1 -12x - 11)(1 -12y - 11)

PX ,Y x ,y = 0
o ~ x ~ 1, 0 ~ y ~ 1

otherwise.

We wish to first verify that the PDF integrates to one. Then, we consider the

evaluation of P[I/4 ~ X ~ 3/4, 1/4 ~ Y ~ 3/4J. A three-dimensional plot of the

PDF is shown in Figure 12.4 and appears pyramid-like. Since it is often difficult to

visualize the PDF in 3-D, it is helpful to plot the contours of the PDF as shown
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...

. .

xo 0

. . . . .

y

- ~ -

. . . . .

..... .. . . . . - _. . ,

o
1

Figure 12.4: Three-dimensional plot of joint PDF.

0.9 . . .. ..

0.8 . . . .:..

0 .7

0.6

;;Jl0.5

0.4 . . .

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X

Figure 12.5: Contour plot of joint PDF.

in Figure 12.5. As seen in the contour plot (also called a topographical map) the

innermost contour consists of all values of (x ,y) for which PX,Y(x, y) = 3.5. This

contour is obtained by slicing the solid shown in Figure 12.4 with a plane parallel

to the x-y plane and at a height of 3.5 and similarly for the other contours. These

contours are called contours of constant PDF.

To verify that PX,Y is indeed a valid joint PDF, we need to show that the volume

under the PDF is equal to one. Since the sample space is SX,Y = {(x ,y) : 0 ~ x ~
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1, 0 ~ y ~ I} we have that

P[SX ,Y] = ~1 ~1 4(1-12x -11)(1-12y -ll)dxdy

= ~1 2(1 -12x _ 11)dx ~1 2(1 -12y - 11)dy.

383

The two definite integrals are seen to be identical and hence we need only evaluate

one of these. But each integral is the area under the function shown in Figure 12.6a

which is easily found to be 1. Hence, P[SX,Y] = 1·1 = 1, verifying that PX,Y is a

· . . . .
2 ; ; ; ; .

· . . . .· . . . .· . . . .· . . . .· . . . .· . . . .
1.5 ; ;. : .; : .

H........
01

. . .
0.5 .. .. .. :.. . . . . .:--- ... .. :-- . . . ...;. . .. ... : . .. .. .

· . . . .· . . . .· . . . .· . . . .· . . . .· . . .o '-----<.-~---'--- - -'-- -~---'

o 0.25 0.5 0.75
x

(a)

. . . . .
2 ; ; : ; .
.. "

:: :.:. . . .. . . .
1.5 ; ;. .

H........
01

1 : .

o 0.25 0.5 0.75
x

(b)

Figure 12.6: Plot of function g(x) = 2(1 - 12x - 11).

valid PDF. Next to find P[1/4 ~ X ~ 3/4, 1/4 ~ Y ~ 3/4] we use (12.2) to yield

i
3/4i3/4

P[A] = 4(1 -12x - 11)(1 -12y - 11)dxdy.
1/4 1/4

By the same argument as before we have

[

3/4 ] 2

P[A] = 1/4 2(1 - 12x - 11)dx

and referring to Figure 12.6b, we have that each unshaded triangle has an area of

(1/2)(1/4)(1) = 1/8 and so

[ 1 1] 2 (6) 2 9
P[A] = 1 - 8 - 8 = 8 = 16'
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In summary, a joint PDF has the expected properties of being a nonnegative two­

dimensional function that integrates to one over R2
.

For the previous example the double integral was easily evaluated since

1. The integrand PX,Y(x, y) was separable (we will see shortly that this property

will hold when the random variables are independent).

2. The integration region in the x-y plane was rectangular.

More generally this will not be the case. Consider, for example, the computation

of P[Y :::; X]. We need to integrate PX,Y over the shaded region shown in Figure

12.7. To do so we first integrate in the y direction for a fixed z , shown as the darkly

1.2 r---'~-"""'------'---"-----'-- ""

1 : ~ : ..; .
· . . .· . . .· . . .

0.8 : ~ : :.

;::l)0.6 : ~ : ..

0.2 ...... : .. .. .

o '-- ~'-- --'-:.L-__-'-_....J

o 0.25 0.5 0.75
x

Figure 12.7: Integration region to determine P[Y :::; X].

shaded region. Since 0 :::; y :::; x for a fixed x, we have the limits of a to x for the

integration over y and the limits of 0 to 1 for the final integration over x. This

results in

P[Y :::; X] = II lX PX,y(x, y)dy dx

II l X4(1 -12x - 11)(1 -12y - 11)dydx.

Although the integration can be carried out, it is tedious. In this illustration the

joint PDF is separable but the integration region is not rectangular.

Zero probability events are more complex in two dimensions.

Recall that for a single continuous random variable the probability of X attaining

any value is zero. This is because the area under the PDF is zero for any zero length
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interval. Similarly, for jointly continuous random variables X and Y the probability

of any event defined on the x-y plane will be zero if the region of the event in the

plane has zero area. Then, the volume under the joint PDF will be zero. Some

examples of these zero probability events are shown in Figure 12.8.

y y y

---+--_X--f---+---+-_x

•

----+--_x

(a) Point (b) Line (c) Curve

Figure 12.8: Examples of zero probability events for jointly distributed continuous

random variables X and Y. All regions in the x-y plane have zero area.

~
An important joint PDF is the standard bivariate Gaussian or normal PDF, which

is defined as

-00 < x < 001 [1 2 2]
PX,Y(x, y) = 21rV1 _ p2 exp - 2(1 _ p2) (x - 2pxy + y )

-00 < Y < 00

(12.3)

where p is a parameter that takes on values -1 < P < 1. (The use of the term

standard is because as is shown later the means of X and Yare 0 and the variances

are 1.) The joint PDF is shown in Figure 12.9 for various values of p. We will see

shortly that p is actually the correlation coefficient PX,Y first introduced in Section

7.9. The contours of constant PDF shown in Figures 12.9b,d,f are given by the

values of (x ,y) for which

where r is a constant. This is because for these values of (x, y) the joint PDF takes

on the fixed value

If p = 0, these contours are circular as seen in Figure 12.9d and otherwise they are

elliptical. Note that our use of r2, which implies that x2 - 2pxy + y2 > 0, is valid
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Figure 12.9: Three-dimensional and constant PDF conto ur plots of standard bivari­

at e Gaussian PDF.

since in vector/matrix notation
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which is a quadratic form. Because -1 < p < 1, the matrix is positive definite

(its principal minors are all positive-see Appendix C) and hence the quadratic

form is positive. We will frequently use the standard bivariate Gaussian PDF and

its generalizations as examples to illustrate other concepts. This is because its

mathematical tractability lends itself to easy algebraic manipulations.

12.4 Marginal PDFs and the Joint CDF

The marginal PDF px(x) of jointly distributed continuous random variables X and

Y is the usual PDF which yields the probability of a :s; X :s; b when integrated over

the interval [a, b]. To determine px(x) if we are given the joint PDF PX,y(x , y), we

consider the event .

A = {(x ,y): a:S; x:S; b,-oo < y < oo}

whose probability must be the same as

Ax={x:a:S;x:S;b}.

Thus, using (12.2)

v

px(x)

P[a :s; X :s; b]

Clearly then, we must have that

P[Ax] = P[A]

Ji PX,y(x, y)dx dy

i: l b

PX,y(x, y)dx dy

= l bi: px,y(x, y)dy dx.
,

px(x) = i: PX,y(x , y)dy (12.4)

PX(xo) =

as the marginal PDF for X. This operation is shown in Figure 12.10. In effect, we

"sum" the probabilites of all the y values associated with the desired x, much the

same as summing along a row to determine the marginal PMF PX[Xi] from the joint

PMF PX,y[Xi, yj]. The marginal PDF can also be viewed as the limit as b..x -7 0 of

P[xo - b..x/2 :s; X :s; Xo + b..x/2 , -00 < Y < 00]

b..x

f
xo+t>. X/ 2 Joo ()
xo- t>.x/2 -00 PX,y x ,Y dy dx

b..x
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(a) Curveispx,Y(-l,y) (b) Area under curve is px (-1)

Figure 12.10: Obtaining the marginal PDF of X from the joint PDF of (X, Y).

for a small .6.x. An example follows.

Example 12.2 - Marginal PDFs for Standard Bivariate Gaussian PDF

From (12.3) and (12.4) we have that

px(x) = i: 21l'R exp [- 2(1 ~ p2) (x
2

- 2pxy + y2)] dy. (12.5)

To carry out the integration we convert the integrand to one we recognize, i.e.,

a Gaussian, for which the integral over (-00,00) is known. The trick here is to

"complete the square" in y as follows:

Q y2 _ 2pxy + x 2

y2 _ 2pxy + p2x2 + x 2 -lx2

= (y_px)2+(1_ p2)x2.

Substituting into (12.5) produces

where J-L = px and (12 = 1 - p2, so that we have
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or X '" N(0,1) . Hence, the marginal PDF for X is a standard Gaussian PDF.

By reversing the roles of X and Y, we will also find that Y '" N(O, 1). Note that

since the marginal PDFs are standard Gaussian PDFs, the corresponding bivariate

Gaussian PDF is also referred to as a standard one.

o
In the previous example we saw that the marginals could be found from the joint

PDF. However, in general the reverse process is not possible-given the marginal

PDFs we cannot determine the joint PDF. For example, knowing that X '" N(O, 1)

and Y '" N(O, 1) does not allow us to determine p, which characterizes the joint

PDF. Furthermore, the marginal PDFs are the same for any p in the interval (-1,1).

This is just a restatement of the conclusion that we arrived at for joint and marginal

PMFs. In that case there were many possible two-dimensional sets of numbers, i.e.,

specified by a joint PMF, that could sum to the same one-dimensional set, i.e.,

specified by a marginal PMF.

We next define the joint CDF for continuous random variables (X, Y). It is given

by

Fx,y(x, y) = P[X ~ x, Y ~ y].

From (12.2) it is evaluated using

Fx,y(x,y) = i~i:PX ,y(t ,U)dtdU.

Some examples follow.

Example 12.3 - Joint CDF for an exponential joint PDF

If (X ,Y) have the joint PDF

(12.6)

(12.7)

( )
_ { exp[-(x + y)]

PX,y x ,y - 0

then for x ~ 0, y ~ 0

x ~ O,y ~ 0

otherwise

Fx,y(x ,y) ~ y ~ x exp[-(t + u)]dtdu

~ y exp( -u) ~ x exp( -t)dt du
, ~

V'

l-exp(-x)

~ y [1 - exp( -x)] exp( -u)du

[1 - exp( -x)] ~ y exp(-u)du

so that
F ( )_{ [1-exp(-x)][1 -exp(-y)] x ~ O , y ~ O

X,y x, Y - 0 otherwise. (12.8)
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Figure 12.11: Joint exponential PDF and CDF.

The joint CDF is shown in Figure 12.11 along with the joint PDF. Once the joint

CDF is obtained the probability for any rectangular region is easily found.

Example 12.4 - Probability from CDF for exponential random variables

Consider the rectangular region A = {( x,y) : 1 < x ~ 2, 2 < y ~ 3}. Then referring

y

A = {(x, y) : 1 < x ~ 2,2 < y ~ 3}

Figure 12.12: Evaluation of probability of rectangular region A using joint CDF.

to Figure 12.12 we determine the probability of A by determining the probability of

the shaded region, then subtracting out the probability of each cross-hatched region

(one running from south-east to north-west and the other running from south-west

to north-east) , and finally adding back in the probability of the double cross-hatched
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region (which has been subtracted out twice). This results in

P[A] P[-oo < X ::; 2, -00 < Y ::; 3] - P[-oo < X ::; 2, -00 < Y ::; 2]

-P[-oo < X ::; 1, -00 < Y ::; 3] + P[-oo < X ::; 1, -00 < Y ::; 2]

Fx,y[2, 3] - Fx,y[2, 2] - Fx,y[l, 3] + Fx,y[l, 2].

For the joint CDF given by (12.8) this becomes

P[A] = [1 - exp( -2)][1 - exp(-3)] - [1 - exp(_2)]2

-[1- exp(-l)][l- exp(-3)] + [1- exp(-l)][l - exp(-2)].

Upon simplication we have the result

P[A] = [exp(-1) - exp(-2)][exp(-2) - exp( -3)]

which can also be verified by a direct evaluation as

P[A] = 1312

exp[-(x + y)]dxdy.

We see that the advantage here is that no integration is required. However, the

event A must be a rectangular region.

c
The joint PDF can be recovered from the joint CDF by partial differentiation as

( ) _ a
2
Fx,y(x, y) (12.9)

PX,y x, Y - axay

which is the two-dimensional version of the fundamental theorem of calculus. As an

example we continue the previous one.

Example 12.5 - Obtaining the joint PDF from the joint CDF for expo­

nential random variables

Continuing with the previous example we have from (12.8) that

{

82[I-exp(-x)][l-exp(-y)] X > 0 > °
PX,y(x, y) = 8x8y - ,~-

o otherwise,

For x > O,y > 0

PX,y(x, y)
a a[l - exp( -x)][l - exp( -y)]

ax ay

a[l - exp( -x)] a[l - exp( -y)]

ax ay

exp(-x) exp(-y) = exp[-(x + y)].

c
Finally, the properties of the joint CDF are for the most part identical to those for

the CDF (see Section 7.4 for the properties of the joint CDF for discrete random

variables). They are (see Figure 12.11b for an illustration):
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P12.1 Fx,y(-00, -00) = 0

P12.2 Fx,Y(+00 , +00) = 1

P12.3 Fx,y(x , oo) = Fx(x)

P12.4 Fx,y(oo , y) = Fy(y)

P12.5 Fx,y(x, y) is monotonically increasing, which means that if Xz 2:: Xl and

in 2:: YI, then Fx,y(xz , yz) 2:: FX,Y(Xl ' yd·

P12.6 Fx,Y(x , y) is continuous with no jumps (assuming that X and Yare jointly

continuous random variables). This property is different from the case of

jointly discrete random variables.

12.5 Independence of Multiple Random Variables

The definition of independence of two continuous random variables is the same as for

discrete random variables. Two continuous random variables X and Yare defined

to be independent if for all events A E Rand B E R

P[X E A,Y E B] = P[X E A]P[Y E B].

Using the definition of conditional probability this is equivalent to

(12.10)

pry E BIX E A]
P[X EA,Y EB]

=
P[XEA]

P[YEB]

and similarly P[X E AIY E B] = P[X E A]. It can be shown that X and Yare

independent if and only if the joint PDF factors as (see Problem 12.20)

pX,Y(x, y) = px(x)py(y).

Alternatively, X and Yare independent if and only if (see Problem 12.21)

Fx,y(x, y) = Fx(x)Fy(y).

An example follows.

Example 12.6 - Independence of exponential random variables

From Example 12.3 we have for the joint PDF

(12.11)

(12.12)

( ) {
exp[-(x + y)]

PX,y x,y = 0
X 2:: 0, y 2:: 0

otherwise.
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Recalling that the unit step function u(x) is defined as u(x) = 1 for x ~ 0 and

u(x) = 0 for x < 0, we have

PX,y(x, y) = exp[-(x + y)]u(x)u(y)

since u(x)u(y) = 1 if and only if u(x) = 1 and u(y) = 1, which will be true for

x ~ 0, y ~ O. Hence, we have

PXy(x, y) = exp( -x)u(x) exp( -y)u(y).
, '-v-""-....-'

px(x) py(y)

To assert independence we need only factor PX,y(x,y) as g(x)h(y), where 9 and h

are nonnegative functions . However, to assert that g(x) is actually px(x) and h(y)

is actually py(y), each function, 9 and h, must integrate to one. For example, we

could have factored PX,y(x, y) into (1/2) exp(-x)u(x) and 2 exp( -y)u(y), but then

we could not claim that px(x) = (1/2) exp(-x)u(x) since it does not integrate to

one. Note also that the joint CDF given in Example 12.3 is also factorable as given

in (12.8) and in general, factorization of the CDF is also necessary and sufficient to

assert independence.

Assessing independence - careful with domain of PDF

The joint PDF given by

( )
_ { 2exp[-(x + y)]

PX,y x,y - 0
x ~ 0, y ~ 0, and y < x

otherwise

is not factorable, although it is very similar to our previous example. The reason is

that the region in the x-y plane where px,y(x,y) =I- 0 cannot be written as u(x)u(y)
or for that matter as any g(x)h(y). See Figure 12.13.

y

x ~ 0, y ~ 0, and y < x

x

Figure 12.13: Nonfactorable region in x-y plane.
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Example 12 .7 - Standard bivariate Gaussian PDF

From (12.3) we see that PX,y(x, y) is only factorable if p = 0. From Figure 12.9d

this corresponds to the case of circular PDF contours. Specifically, for p = 0, we

have

PX,y(x, y) 2~ exp [_~(x2 +y2)] - 00 < x < 00, -00 < Y < 00

vk exp [_~x2] vk exp [_~y2] .
, J' J

"V 'Y

px(x) py(y)

Hence, we observe that if p = 0, then X and Yare independent. Furthermore, each

marginal PDF is a standard Gaussian (normal) PDF, but as shown in Example 12.2

this holds regardless of the value of p.

o
Finally, note that if we can assume that X and Yare independent, then knowledge

of px(x) and py(y) is sufficient to determine the joint PDF according to (12.11). In

practice, the independence assumption greatly simplifies the problem of joint PDF

estimation as we need only to estimate the two one-dimensional PDFs px(x) and

py(y).

12.6 Transformations

We will consider two types of transformations. The first one maps two continuous

random variables into a single continuous random variable as Z = g(X,Y) , and the

second one maps two continuous random variables into two -new continuous random

variables as W = g(X, Y) and Z = h(X, Y) . The first type of transformation

Z = g(X, Y) is now discussed. The approach is to find the CDF of Z and then

differentiate it to obtain the PDF. The CDF of Z is given as

Fz( z) P[Z~ z]

P[g(X, Y) ~ z]

j"r PX,y(x, y)dx dy
} {(x ,y) :g(x ,y):Sz}

(definition of CDF)

(definition of Z)

(from (12.2)). (12.13)

We see that it is necessary to integrate the joint PDF over the region in the plane

where g( x, y) ~ z. Depending upon the form of g, this may be a simple task or

unfortunately a very complicated one. A simple example follows. It is the continuous

version of (7.22), which yields the PMF for the sum of two independent discrete

random variables.
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Example 12.8 - Sum of independent U(O , 1) random variables

In Section 2.3 we inquired as to the distribution of the outcomes of an experiment

that added Ul, a number chosen at random from 0 to 1, to U2, another number

chosen at random from 0 to 1. A histogram of the outcomes of a computer simulation

indicated that there is a higher probability of the sum being near 1, as opposed to

being near 0 or 2. We now know that U1 ,...., U(O,l), U2 ,...., U(O,l) . Also, in the

experiment of Section 2.3 the two numbers were chosen independently of each other.

Hence , we can determine the probabilities of the sum random variable if we first find

the CDF of X = Ul + U2, where U; and U2 are independent, and then differentiate

it to find the PDF of X. We will use (12.13) and replace x, y, z, and g(x, y) by

Ul ,U2,X, and g(Ul ,U2), respectively. Then

To determine the possible values of X, we note that both Ul and U2 take on values in

(0,1) and so 0 < X < 2. In evaluating the CDF we need two different intervals for x

as shown in Figure 12.14. Since U1 and U2 are independent, we have PU1,u2 = PU1PU2

,

(a) 0:::; x < 1 (b) 1 s x s 2

Figure 12.14: Shaded areas are regions of integration used to find CDF.

and therefore PU1,u2(Ul, U2) = 1 for 0 < Ul < 1 and 0 < U2 < 1, which results in

Hence , the CDF is given by

Fx(x) ~ {

x < O

O:S;x<l

1:S;x:S;2

x> 2.



396 CHAPTER 12. MULTIPLE CONTINUOUS RANDOM VARIABLES

and the PDF is finally

PX(x)
dFx(x)

dx

u- x

x<O

O:S;x<l

1:S;x:S;2

x> 2.

This PDF is shown in Figure 12.15. This is in agreement with our computer results

px(x)

1

-+---+--~~-- x

1 2

Figure 12.15: PDF for the sum of two independent U(O, 1) random variables.

shown in Figure 2.2. The highest probability is at x = 1, which concurs with our

computer generated results of Section 2.3. Also, note that px(x) = PUj (x) *PU2(X),

where * denotes integral convolution (see Problem 12.28).

<:)

More generally, we can derive a useful formula for the PDF of the sum of two

independent continuous random variables. According to (12.13), we first need to

determine the region in the plane for which x+y :s; z. This inequality can be written

as y :s; z - x, where z is to be regarded for the present as a constant. To integrate

PX,y(x, y) over this region, which is shown in Figure 12.16 as the shaded region, we

can use an iterated integral. Thus,

Fz(z) i: iZ~x PX,y(x, y)dy dx

i: iZ~x PX(x)py (y)dy dx

= i:px(x) i Z ~ x py(y)dydx

i: px(x)Fy(z - x)dx

(independence)

(definition of CDF) .
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x

397

Figure 12.16: Iterated integral evaluation - shaded region is y ~ z - x. Integrate

first in y direction for a fixed x and then integrate over -00 < x < 00.

If we now differentiate the CDF, we have

(chain rule with u = z - x )

(assume interchange is valid)

d 100

pz(z) = dz -00 px(x)Fy(z - x)dx

1
00 d

-00 px(x) dz Fy(z - x)dx

I: px(x) d ~ Fy(u)lu=z_x ~~ dx

so that finally we have our formula

pz(z) = I: px(x)py(z - x)dx. (12.14)

This is the analogous result to (7.22). It is recognized as a convolution integral,

which we can express more succinctly as pz = vx * py , and thus may be more

easily evaluated by using characteristic functions. The latter approach is explored

in Section 12.10.

A second approach to obtaining the PDF of g(X,Y) is to let W = X , Z =

g(X,Y), find the joint PDF of Wand Z, i.e. , pw,z(w, z), and finally integrate

out W to yield the desired PDF for Z. This method was encountered previously

in Chapter 7, where it was used for discrete random variables, and was termed the

method of auxiliary random variables. To implement it now requires us to determine

the joint PDF of two new random variables that result from having transformed two

random variables. This is the second type of transformation we were interested in.

Hence, we now consider the more general transformation

W g(X, Y)

Z h(X,Y).
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The final result will be a formula relating the joint PDF of (W,Z) to that of the

given joint PDF of (X,Y). It will be a generalization of the single random variable

transformation formula

(12.15)

for Y = g(X).

To understand what is involved, consider as an example the transformation

[ ~: ] = [ (U, :~2)/2 ]
(12.16)

where UI ,....., U(O, 1), U2 ,....., U(O, 1), and UI and U2 are independent. In Figure 2.13

we plotted realizations of [UI U2]T and [Xl X2]T. Note that the original joint PDF

PUl,U2 is nonzero on the unit square while the transformed PDF is nonzero on a

parallelogram. In either case the PDFs appear to be uniformly distributed. Similar

observations about the region for which the PDF of the transformed random variable

is nonzero were made in the one-dimensional case for Y = g(X), where X ,....., U(O, 1),

in Figure 10.22. In general, a linear transformation will change the support area of

the joint PDF, which is the region in the plane where the PDF is nonzero. In Figure

2.13 it is seen that the area of the square is 1 while that for the parallelogram is 1/2.

It can furthermore be shown that if we have the linear transformation (see Problem

12.29)

then

(12.17)

Area in w-z plane

Area in x-y plane
Idet(G)1

lad - bel·

It is always assumed that G is invertible so that det(G) i- 0. In the previous example

of (12.16) for which in our new notation we have W = X and Z = (X +Y)/2, the

linear transformation matrix is

G=[~ !]
and it is seen that Idet(G)1 = 1/2. Thus, the PDF support region is decreased by

a factor of 2. We therefore expect the joint PDF of [X (X +Y)/2]T to be uniform

with a height of 2 (as opposed to a height of 1 for the original joint PDF). Hence,

the transformed PDF should have a factor of 1/1det(G)1 to make it integrate to one.
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This amplification factor, which is 1/1 det(G)1 = Idet(G-1)1 must be included in the

expression for the transformed joint PDF. Also, we have that [xyjT = G-1[wzjT.
Hence, it should not be surprising that for the linear transformation of (12.17) we

have the formula for the transformed joint PDF

PW,z(w, z) = PX,Y ( G-
1

[ : ]) Idet(G-1)1· (12.18)

An example follows.

Example 12.9 - Linear transformation for standard bivariate Gaussian

PDF

Assume that (X, Y) has the PDF of (12.3) and consider the linear transformation

Then,

and

[
w/ow ]

z/az

1

(12.20)

so that from (12.3) and (12.18)

pw,z(w,z)

nexp [-2(1 1 2) ((w/aw)2-2pwz/(awaz) + (z/az)2)] _1_
211" 1 - p2 - P awaz

1

211"V(1 - p2)arva~

. exp [ 2(1 ~ P') (c:)'-2p (;:) (:z) + (:J)]. (12.19)

Note that since -00 < x < 00, -00 < y < 00, we have that the region of support

for PW,z is -00 < w < 00, -00 < z < 00. Also, the joint PDF can be written in

vector/matrix form as (see Problem 12.31)

pW,z(w,z) = 21rdet~/2(C) exp (-~ [ : rC-
1

[ : ])
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(12.21)c = [ a~ pa~az] .
pazaw az

The matrix C will be shown later to be the covariance matrix of Wand Z (see Sec­

tion 9.5 for the definition of the covariance matrix, which is also valid for continuous

random variables).

o
For nonlinear transformations a result similar to (12.18) is obtained. This is because

a two-dimensional nonlinear function can be linearized about a point by replacing

the usual tangent or derivative approximation for a one-dimensional function by a

tangent plane approximation (see Problem 12.32). Hence, if the transformation is

given by

where

W g(X,Y)

Z h(X, Y)

then a given point in the ui-z plane is obtained via w = g(x, y) , z = h(x, y). Assume

that the latter set of equations has a single solution for all (w,z), say

X g-l(w, z)

Y h-1(w,z).

Then it can be shown that

(12.22)

where

8(x ,y)

8(w,z)
(12.23)

is called the Jacobian matrix of the inverse transformation from [w zjT to [x yjT and

is sometimes referred to as J- 1
. It represents the compensation for the amplifica­

tion/reduction of the areas due to the transformation. For a linear transformation

G it is given by J = G (see also (12.15) for a single random variable). We now

illustrate the use of this formula.

Example 12.10 - Affine transformation for standard bivariate Gaussian

PDF

Let (X, Y) have a standard bivariate Gaussian PDF and consider the affine trans­

formation

[: ] ~ [a~ :z] [; ]+ [ :: ] .
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Then using (12.22) we first solve for (x,y) as

w - J.Lw
x

o-w
z -J.Lz

Y =
o-z

The inverse Jacobian matrix becomes

8(x, y) = [l/o-W 0 ]

8(w, z ) 0 l/o-z

and therefore, since

1 [1 2 2]
PX,Y(X, y) = 21rV1 _ p2 exp - 2(1 _ p2) (x - 2pxy + Y )

we have from (12.22)
1

pW,z(w,z) = ~
21rV1- p2

401

. exp [ - 2(1 ~ p') ( (w ~:w)' -2p ( w~w) (z :;z) + (z :;zn]a:az
or finally

. exp [_ 2(1 ~ p') ( (w ~:w )' _2p ( w~w) (z :;z) + ( z:;z)')].
(12.24)

This is called the bivariate Gaussian PDF. If J.Lw = J.Lz = 0 and o-w = oz = 1, then

it reverts back to the usual standard bivariate Gaussian PDF. If J.Lw = J.Lz = 0, we

have the joint PDF in Example 12.9. An example of the PDF is shown in Figure

12.17.

c
The bivariate Gaussian PDF can also be written more compactly in vector/matrix

form as

( [
T )

1 1 w - J.Lw w - J.Lw
pwz(w, z) = 1 2 exp -- C-1

, 21l'det / (C) 2 Z-I'Z] [Z-I'z ] (12.25)

where C is the covariance matrix given by (12.21) . It can also be shown that

the marginal PDFs are W ""' N(J.Lw ,o-?v) and Z ""' N(J.Lz , o-~) (see Problem 12.36).
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Figure 12.17: Example of bivariate Gaussian PDF with /-Lw = 1, /-Lz = 1, (T~ =

3, (T~ = 1, and p = 0.9.

Hence, the marginal PDFs of the bivariate Gaussian PDF are obtained by inspection

(see Problem 12.37).

Example 12.11 - Transformation of independent Gaussian random vari­

ables to a Cauchy random variable

Let X rv N(O, 1), Y rv N(O, 1), and X and Y be independent. Then consider the

transformation W = X, Z = YjX. To determine Sw,z note that w = x so that

-00 < w < 00 and since z = yjx with -00 < x < 00,-00 < y < 00, we have

-00 < z < 00. Hence, Sw,z is the entire plane. To find the joint PDF we first solve

for (x , y) as x = wand y = xz = wz. The inverse Jacobian matrix is

8(x, y) = [1 0]
8(w ,z) z w

so that Idet(8(x, y)j8(w, z))1 = Iwl. Using (12.22), we have

pw,z(w,z) = 2~ exp [_~(x2 +y2)] Ix=w,y=wz Iwl

= 2~ exp [_~(W2 + w
2z2)J jwl

2~ exp [-~(1 + z2)w
2

] Iwl·

It is of interest to determine the marginal PDFs. Clearly, the marginal of W = X

is just the original PDF N(O , 1). The marginal PDF for Z , which is the ratio of two
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independent N(o,1) random variables, is found from (12.4) as

403

pz(z) = I: pW,z(w, z)dw

I: 2~ exp [-~(1 + z2)w
2]

Iwldw

~ 100

wexp [ - ~ ( 1 + z 2 ) w 2 ] dw

.!. exp[-(1/2)(1 + z2)w2]
1

00

1f -(1 + z2) a

1

(integrand is even function)

-oo<z<oo

which is recognized as the Cauchy PDF. Hence, the PDF of Y/X, where X and Y

are independent standard Gaussian random variables is Cauchy. We have implicitly

used the method of auxiliary random variables to derive this result . Finally, the

observation that the denominator of Y / X is a standard Gaussian random variable,

with significant probability of being near zero, may help to explain why the outcomes

of a Cauchy random variable are as large as they are. See Figure 11.3.

\/
The next example is of great importance in many fields of science and engineering.

Example 12.12 - Magnitude and angle of jointly Gaussian distributed

random variables

Let X '" N(o,(72), Y '" N(o, (72), and X and Y be independent random variables.

Then, it is desired to find the joint PDF when X and Y, considered as Cartesian

coordinates, are converted to polar coordinates via

R

e
JX2 + y2 R ~ °

Y
arctan X °~ e < 21f . (12.26)

It is common in many engineering disciplines, for example, in radar, sonar, and

communications, to transmit a sinusoidal signal and to process the received signal

by a digital computer. The received signal will be given by s(t) = A cos(21fFat) +
B sin(21fFat) for a transmit frequency of Fa Hz. However, because the received signal

is due to the sum of multiple reflections from an aircraft, as in the radar example,

the values of A and B are generally not known. Consequently, they are modeled

as continuous random variables with marginal PDFs A '" N(o, (72), B '" N(o, (72),

and where A and B are independent. Since the received signal can equivalently be

written in terms of a single sinusoid as (see Problem 12.42)

s(t) = JA2 + B2 cos(21fFat - arctan(B/A))
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the amplitude is a random variable as is the phase angle. Thus, the transformation of

(12.26) is of interest in order to determine the joint PDF of the sinusoid's amplitude

and phase. This motivates our interest in this particular transformation.

We first solve for (x,y) as x = rcos8, y = rsin8. Then using (12.22) and

replacing w by rand z by 8 we have the inverse Jacobian

8(x,y) = [COS8 -rsin8]
8(r, 8) sin 8 r cos 8

and thus

(
8(x,y) )

det 8(r,8) = r ~ O.

Since

1 [1 2 2]PX,Y(x, y) = px(x)py(y) = 21m2 exp - 2(12 (x +Y )

we have upon using (12.22)

r ~ 0, 0::; 8 < 211".

r 2:: 0, 0 ::; 8 < 211"PR,e(r,8) = _1_ exp [_ _1_r 2] r
21m2 2(12

r: exp [_ _1_r 2] ~
(12 2(12 211"

, J '-v-"

PR(r) pe(O)

Here we see that R has a Rayleigh PDF with parameter (12 , e has a uniform PDF,

and Rand e are independent random variables.

12.7 Expected Values

The expected value of two jointly distributed continuous random variables X and Y,

or equivalently the random vector [X YjT, is defined as the vector of the expected

values. That is to say

Ex Y [[ X ]] [ Ex[X] ] .
' y Ey[Y]

Of course this is equivalent to the vector of the expected values of the marginal

PDFs. As an example, for the bivariate Gaussian PDF as given by (12.24) with

W, Z replaced by X ,Y, the marginals are N(/-lX, (1~) and N(/-lY, (1}) and hence the

expected value or equivalently the mean of the random vector is



12.7. EXPECTED VALUES 405

as shown in Figure 12.17 for /-Lx = /-LY = l.

We frequently require the expected value of a function of two jointly distributed

random variables or of Z = g(X, Y). By definition this is

E[Z] = i: zpz(z)dz.

But as in the case for jointly distributed discrete random variables we can avoid the

determination of pz(z) by employing instead the formula

E[Z] = E[g(X, Y)] = i: i: g(x, y)PX,y(x, y)dx dy.

To remind us that the averaging PDF is PX,y(x, y) we usually write this as

Ex,y[g(X, Y)] = i: i: g(x, y)PX,y(x, y)dx dy.

If the function 9 depends on only one of the variables, say X, then we have

Ex,y[g(X)] = i: i: g(x)pX,y(x,y)dxdy

i: g(x) i:PX,y(x,y)dYdX

v

px(x)

Ex[g(X)].

(12.27)

(12.28)

As in the case of discrete random variables (see Section 7.7), the expectation has

the following properties:

1. Linearity

Ex,y[aX + bY] = aEx[X] + bEy[Y]

and more generally

Ex,y[ag(X, Y) + bh(X, Y)] = aEX,y[g(X, Y)] + bEx,y[h(X, Y)].

2. Factorization for independent random variables

If X and Yare independent random variables

Ex,y[XY] = Ex[X]Ey[Y]

and more generally

Ex,y[g(X)h(Y)] = Ex[g(X)]Ey[h(Y)].

(12.29)

(12.30)
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Also, in determining the variance for a sum of random variables we have

var(X + Y ) = var(X) + var(Y ) + 2cov(X,Y ) (12.31)

where cov(X,Y ) = EX,Y [(X − EX [X])(Y − EY [Y ])]. If X and Y are independent,
then by (12.30)

cov(X,Y ) = EX,Y [(X − EX [X])(Y − EY [Y ])]

= EX [(X − EX [X])]EY [(Y − EY [Y ])]

= 0.

The covariance can also be computed as

cov(X,Y ) = EX,Y [XY ] − EX [X]EY [Y ] (12.32)

where

EX,Y [XY ] =

∫ ∞

−∞

∫ ∞

−∞
xypX,Y (x, y)dx dy. (12.33)

An example follows.

Example 12.13 – Covariance for standard bivariate Gaussian PDF

For the standard bivariate Gaussian PDF of (12.3) we now determine cov(X,Y ).
We have already seen that the marginal PDFs are X ∼ N (0, 1) and Y ∼ N (0, 1) so
that EX [X] = EY [Y ] = 0. From (12.32) we have that cov(X,Y ) = EX,Y [XY ] and
using (12.33) and (12.3)

cov(X,Y ) =

∫ ∞

−∞

∫ ∞

−∞
xy

1

2π
√

1 − ρ2
exp

[

− 1

2(1 − ρ2)
(x2 − 2ρxy + y2)

]

dx dy.

To evaluate this double integral we use iterated integrals and complete the square
in the exponent of the exponential as was previously done in Example 12.2. This
results in

Q = y2 − 2ρxy + x2 = (y − ρx)2 + (1 − ρ2)x2

and produces
cov(X,Y )

=

∫ ∞

−∞

∫ ∞

−∞
xy

1

2π
√

1 − ρ2
exp

[

− 1

2(1 − ρ2)
(y − ρx)2

]

exp

[

−1

2
x2

]

dx dy

=

∫ ∞

−∞
x

1√
2π

exp

[

−1

2
x2

]
∫ ∞

−∞
y

1
√

2π(1 − ρ2)
exp

[

− 1

2(1 − ρ2)
(y − ρx)2

]

dy dx.

The inner integral over y is just EY [Y ] =
∫ ∞
−∞ ypY (y)dy, where Y ∼ N (ρx, 1 − ρ2).

Thus, EY [Y ] = ρx so that

cov(X,Y ) =

∫ ∞

−∞
ρx2 1√

2π
exp

[

−1

2
x2

]

dx

= ρEX [X2]
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where X "-' N(O, 1). But Ex[X2
] = var(X) + E1-[X] = 1 + 02 = 1 and therefore we

have finally that

cov(X, Y) = p.

o
With the result of the previous example we can now determine the correlation

coefficient between X and Y for the standard bivariate Gaussian PDF. Since the

marginal PDFs are X rv N(O, 1) and Y rv N(O , 1), the correlation coefficient between

X and Y is

PX,y
cov(X, Y)

vvar(X)var(Y)

P

VG1
= p.

We have therefore established that in the standard bivariate Gaussian PDF, the pa­

ram eter p is the correlation coefficient. This explains the orientation of the constant

PDF contours shown in Figure 12.9. Also, we can now assert that if the correlation

coefficient between X and Y is zero , i.e., p = 0, and X and Yare jointly Gaussian

distributed (i.e. , a standard bivariate Gaussian PDF), then

and X and Yare independent. This also holds for the general bivariate Gaussian

PDF in which the marginal PDFs are X "-' N(/-Lx ,a1-) and Y "-' N(/-LY, an. This

result provides a partial converse to the theorem that if X and Yare independent,

then the random variables are uncorrelated, but only for this particular joint PDF.

Finally, since p = PX,Y we have from (12.21) upon replacing W by X and Z by

Y , that

c [
a1- poxcv ]

payaX a ~

[
a1- oxroxov ]

oxrovox a~

[
var(X) cov(X, Y) ]

cov(Y, X) var(Y)

(12.34)
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is the covariance matrix. We have now established that C as given by (12.34) is

actually the covariance matrix. Hence, the general bivariate Gaussian PDF is given

in succinct form as (see (12.24))

(

T ])
1 1 x - }.Lx x - tix

PX,y(x,y) = 2?rdet l / 2(C) exp -2 [ y -I'y] c: [ y -I'Y
(12.35)

where C is given by (12.34) and is the covariance matrix (see Section also 9.5)

C _ [var(x) cov(X, Y) ]
- cov(Y, X) var(Y) .

(12.36)

As previously mentioned, an extremely important property of the bivariate Gaussian

PDF is that uncorrelated random variables implies independent random variables.

Hence , if the covariance matrix in (12.36) is diagonal, then X and Yare inde­

pendent. We have shown in Chapter 9 that it is always possible to diagonalize a

covariance matrix by transforming the random vector using a linear transforma­

tion. Specifically, if the random vector [X YV is transformed to a new random

vector yT[X YV, where Y is the modal matrix for the covariance matrix C, then

the transformed random vector will have a diagonal covariance matrix. Hence, the

transformed random vector will have uncorrelated components. If furthermore, the

transformed random vector also has a bivariate Gaussian PDF, then its component

random variables will be independent. It is indeed fortunate that this is true-a

linearly transformed bivariate Gaussian random vector produces another bivariate

Gaussian random vector, as we now show. To do so it is more convenient to use a

vector/matrix representation of the PDF. Let the linear transformation be

where G is an invertible 2 x 2 matrix. Assume for simplicity that tix = }.Ly = O.

Then, from (12.35)

PX,y(x,y) ~ 2 ? r d e t ~ / 2 ( C ) exp ( -~ [ : rC-
1

[ : ])

and using (12.18)

pw,z(w,z) ~ PX,y ( G-
1

[ : ]) Idet(G-1)1

= ~ /2 exp (--21[ w ] T G-1TC-1G-1 [ W ]) Idet(G-1)I.
27f det (C) z z
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But it can be shown that (see Section C.3 of Appendix C for matrix inverse and

determinant formulas)

and

so that

=

1

Idet(G)1

1

(det(G) det(G))1 /2

1

(det(G) det(GT))1/2

!det(G-1)I
det1/2(C)

1

det1/2(C)(det(G) det(GT))1/2

1
=

(det(C) det(G) det(GT))l/2

1

(det(G) det(C) det(GT))1/2

1

Thus, we have finally that the PDF of the linearly transformed random vector is

(

T )
1 1 W W

W Z - ex -- GCGT -1
PW,Z( , ) - 2ndct'/2(GCGT) p 2 [ z] ( ) [ z]

which is recognized as a bivariate Gaussian PDF with zero means and a covariance

matrix GCGT
. This also agrees with Property 9.4. We summarize our results in a

theorem.

Theorem 12.7.1 (Linear transformation of Gaussian random variables)

If (X, Y) has the bivariate Gaussian PDF

(

T )
1 1 x - ux x - /-lx

PX,y(x, y) ~ 2n dct'/2(C) cxp -2 [ y _/ty ] c-
1

[ Y -!'Y ]

and the random vector is linearly transformed as

(12.37)
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where G is invertible, then

(
T [ ])

1 1 W - /-Lw W - /-Lw
W z - ex -- GCGT -1

PW,Z( , ) - 2ndet
'/

2(GCGT) p 2 [ z -/'z ] ( ) z -/'z

where

is the transformed mean vector.

The bivariate Gaussian PDF with mean vector p, and covariance matrix C is denoted

by N(p" C). Hence, the theorem may be paraphrased as follows-if [X YjT f'V

N(p" C), then G[X YjT f'V N(Gp" GCGT
) . An example, which uses results from

Example 9.4, is given next.

Example 12.14 - Transforming correlated Gaussian random variables to

independent Gaussian random variables

Let tix = /-Ly = 0 and

c = [26 6]6 26
in (12.37) . The joint PDF and its constant PDF contours are shown in Figure 12.18.

Now transform X and Y according to

where G is the transpose of the modal matrix V, which is given in Example 9.4.

Therefore

so that

We have that

w

z

1 1
-X--Y
V'i V'i
1 1

V'i X + V'iY
.
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Figure 12.18: Example of joint PDF for correlated Gaussian random variables.
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Figure 12.19: Example of joint PDF for transformed correlated Gaussian random
variables. The random variables are now uncorrelated and hence independent.

pW,Z(w, z) =
1

2π
√

20 · 32
exp

⎛

⎝−1

2

[

w

z

]T
[

1/20 0
0 1/32

]

[

w

z

]

⎞

⎠

=
1√

2π · 20
exp

[

−1

2

w2

20

]

· 1√
2π · 32

exp

[

−1

2

z2

32

]
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which is the factorization of the joint PDF of Wand Z into the marginal PDFs

W rv N(0,20) and Z rv N(0,32). Hence, Wand Z are now independent random

variables, each with a marginal Gaussian PDF. The joint PDF Pw,z is shown in

Figure 12.19. Note the rotation of the contour plots in Figures 12.18b and 12.19b.

This rotation was asserted in Example 9.4 (see also Problem 12.48).

12.8 Joint Moments

For jointly distributed continuous random variables the k-lth joint moments are

defined as EX,y[Xkyl]. They are evaluated as

(12.38)

An example for k = l = 1 and for a standard bivariate Gaussian PDF of Ex,y[XY]

was given Example 12.13. The k-lth joint central moments are defined as Ex,Y[(X ­

Ex [X])k(Y - Ey[y])l] and are evaluated as

Ex,Y[(X-Ex [X])k(y _Ey[y])l] = i:i: (x-Ex [X])k (y-Ey[y])lpX,y(x, y)dx dy.

(12.39)

Of course, the most important case is for k = l = 1 for which we have the cov(X, Y).

For independent random variables the joint moments factor as

and similarly for the joint central moments.

12.9 Prediction of Random Variable Outcome

In Section 7.9 we described the prediction of the outcome of a discrete random

variable based on the observed outcome of another discrete random variable. We now

examine the prediction problem for jointly distributed continuous random variables,

and in particular, for the case of a bivariate Gaussian PDF. First we plot a scatter

diagram of the outcomes of the random vector [X Y]T in the x-y plane. Shown in

Figure 12.20 is the result for a random vector with a zero mean and a covariance

matrix

C = [1 0.9]
0.9 1 .

Note that the correlation coefficient is given by

(12.40)

PX,y =
cov(X, Y)

vvar(X)var(Y)

0.9
r;--:;- = 0.9.

v 1·1
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Figure 12.20: 100 outcomes of bivariate Gaussian random vector with zero means

and covariance matrix given by (12.40). The best prediction of Y when X = x is

observed is given by the line.

It is seen from Figure 12.20 that knowledge of X should allow us to predict the

outcome of Y with some accuracy. To do so we adopt as our error criterion the

minimum mean square error (MSE) and use a linear predictor or Y = aX +b. From

Section 7.9 the best linear prediction when X = x is observed is

(12.41)

For this example the best linear prediction is

A 0.9
Y = 0 + T(x - 0) = 0.9x (12.42)

and is shown as the line in Figure 12.20. Note that the error to = Y - 0.9X is also

a random variable and can be shown to have the PDF to '" N(O,0.19) (see Problem

12.49) . Finally, note that the predictor, which was constrained to be linear (actually

affine but the use of the term linear is commonplace) , cannot be improved upon by

resorting to a nonlinear predictor. This is because it can be shown that the optimal

predic tor, among all predictors, is linear if (X, Y) has a bivariate Gaussian PDF

(see Section 13.6). Hence, in this case the prediction of (12.42) is optimal among all

linear and nonlinear predictors.
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12.10 Joint Characteristic Functions

T he joint characterist ic function for two jointly continuous random variables X and

Y is defined as

¢X,y (WX, wy) = Ex ,y[exp[j(wxX +wyY)].

It is evaluated as

¢X,y(wx ,wy) =i:i:PX,y(x,y) exp [j(wx x + wyy)] dxdy

(12.43)

(12.44)

(12.45)

and is seen to be the two-dimensional Fourier transform of the PDF (with a +j

instead of the more common -j in the exponential). As in the case of discrete

random variables, the joint moments can be found from the characteristic function

using the formula

E [Xkyl] __1_ aHl¢X,y(wx,wy) I
X,y - 'Hl awk awl .

J x y wx =wy=o

Another important application is in determining the PDF for the sum of two inde­

pendent cont inuous random variables. As shown in Section 7.10 for discrete random

variables and also true for jointly continuous random variables, if X and Y are

indep endent, then the charact eristic function of the sum Z = X + Y is

¢z (w) = ¢x(w)¢y (w). (12.46)

If we were to take the inverse Fourier t ransform of both sides of (12.46) , then the

PDF of X +Y would result. Hence, the pro cedure to det ermine the PDF of X +Y ,

where X and Yare independent random variables, is

1. Find the characteristic function ¢x(w) by evaluating the Fourier transform

J ~ o o P x ( x ) exp(jwx)dx and similarly for ¢y(w).

2. Multiply ¢x(w) and ¢y(w) together to form ¢x(w)¢y(w).

3. Finally, find the inverse Fourier transform to yield the PDF for the sum Z =

X+Yas
roo dw

pz(z) = J- 00 ¢x(w)¢y(w) exp( - jwz) 271"' (12.47)

Alternatively, one could convolve the PDFs of X and Y using the convolution integral

of (12.14) to yield the PDF of Z. However, the convolution approach is seldom easier.

An example follows.

Example 12.15 - PDF for sum of independent Gaussian random variables

If X "J N(J.l x ,a3c) and Y "J N(J.lY ,a}) and X and Yare independent, we wish

to det ermine the PDF of Z = X + Y. A convolut ion approach is explored in
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Problem 12.51. Here we use (12.47) to accomplish the same task. First we need the

characteristic function of a Gaussian PDF. From Table 11.1 if X ,....., N(J.L, 0'2), then

Thus, the characteristic function for X + Y is

(
. 1 2 2) (. 1 2 2)exp JWJ.Lx - 2"O'XW exp JWJ.Ly - 2"O'YW

exp (iW(J.LX + J.LY) - ~(O'l + 0'~)w2) .

Since this is again the characteristic function of a Gaussian random variable, albeit

with different parameters, we have that X +Y ,....., N(J.Lx+J.LY, O'l+O'O. (Recognizing

that the characteristic function is that of a known PDF allows us to avoid inverting

the characteristic function according to (12.47).) Hence, the PDF of the sum of

independent Gaussian random variables is again a Gaussian random variable whose

mean is J.L = J.Lx + J.Ly and whose variance is 0'2 = O'l + O'~. The Gaussian PDF

is therefore called a reproducing PDF. By the same argument it follows that the

sum of any number of independent Gaussian random variables is again a Gaussian

random variable with mean equal to the sum of the means and variance equal to the

sum of the variances. In Problem 12.53 it is shown that the Gamma PDF is also a

reproducing PDF.

c
The result of the previous example could also be obtained by appealing to Theorem

12.7.1. If we let

then by Theorem 12.7.1, Wand Z = X +Yare bivariate Gaussian distributed. Also,

we know that the marginals of a bivariate Gaussian PDF are Gaussian PDFs and

therefore the PDF of Z = X +Y is Gaussian. Its mean is J.Lx + J.Ly and its variance

is O'l + O'~, the latter because X and Yare independent and hence uncorrelated.

12.11 Computer Simulation of Jointly Continuous

Random Variables

For an arbitrary joint PDF the generation of continuous random variables is most

easily done using ideas from conditional PDF theory. In Chapter 13 we will see

how this is done. Here we will consider only the generation of a bivariate Gaussian

random vector. The approach is based on the following properties:
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1. Any affine transformation of two jointly Gaussian random variables results in

two new jointly Gaussian random variables. A special case, the linear trans­

formation, was proven in Section 12.7 and the general result summarized in

Theorem 12.7.1. We will now consider the affine transformation

(12.48)

2. The mean vector and,covariance matrix of [W zjT transform according to

E [[ : ]] GE [[ ~ ]] + [ : ] (see Problem 9.22) (12.49)

Cw,z = GCX,yGT (see (Theorem 12.7.1))(12.50)

where we now use subscripts on the covariance matrices to indicate the random

variables.

The approach to be described next assumes that X and Yare standard Gaussian and

independent random variables whose realizations are easily generated. In MATLAB

the command randn(1, 1) can be used . Otherwise, if only U(O , 1) random variables

are available, one can use the Box-Mueller transform to obtain X and Y (see Problem

12.54). Then, to obtain any bivariate Gaussian random variables (W, Z) with a given

mean [tLw tLz]T and covariance matrix Cw,z, we use (12.48) with a suitable G and

[a bjT so that

Cw,z
pawaz]

2 .
az

(12.51)

Since it is assumed that X and Yare zero mean, from (12.49) we choose a = tLw

and b = tsz- Also, since X and Yare assumed independent, hence uncorrelated,

and with unit variances, we have

CX,y = [~ ~] = I.

It follows from (12.50) that Cw,z = GGT. To find G if we are given Cw,z, we could

use an eigendecomposition approach based on the relationship yTCw,zY = A (see

Problem 12.55). Instead, we next explore an alternative approach which is somewhat

easier to implement in practice. Let G be a lower triangular matrix
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Then, we have that

417

[
a 0] [a b] [ a

2

ab ]
b c 0 c = ab b2 + c2 .

(12.52)

The numerical procedure of decomposing a covariance matrix into a product such as

GGT
, where G is lower triangular, is called the Cholesky decomposition [Golub and

Van Loan 1983]. Here we can do so almost by inspection. We need only equate the

elements of Cw,z in (12.51) to those of GGT as given in (12.52). Doing so produces

the result

a aw

b paz

c azV1 - p2.

Hence, we have that

G = [ aw 0 ]
paz a z ~ .

In summary, to generate a realization of a bivariate Gaussian random vector we first

generate two independent standard Gaussian random variables X and Y and then

transform according to

(12.53)

As an example, we let J.Lw = J.Lz = 1, aw = oz = 1, and p = 0.9. The constant

PDF contours as well as 500 realizations of [W zV are shown in Figure 12.21. To

verify that the mean vector and covariance matrix are correct, we can estimate these

quantities using (9.44) and (9.46) which are

~[[:]]=~j;[::]

c;,; ~ ~ tl ([: ]-~ [[ :]]) ([:: ]-~ [[ :]]f
where [wmzmV is the mth realization of [W zV. The results and the true values

for M = 2000 are

~ [[ •• [::::::] Ew,z [[ : ]] [ : ]

C;-,z = [0.9958 0.9077] C = [1 0.9]
0.9077 1.0166 W,z 0.9 1 .

The MATLAB code used to generate the realizations and to estimate the mean

vector and covariance matrix is given next.
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Figure 12.21: 500 outcomes of bivariate Gaussian random vector with mean [lljT
and covariance matrix given by (12.40).

randn('state',O) %set random number generator to initial value
G=[l 0;0.9 s q r t ( 1 - 0 . 9 ~ 2 ) ] ; %define G matrix

M=2000; %set number of realizations

for m=l:M

x=randn(l,l);y=randn(l,l); %generate realizations of two

% independent N(O,l) random variables

wz=G*[x y]'+[l 1]'; %transform to desired mean and covariance
WZ(:,m)=wz; %save realizations in 2 x Marray

end

Wmeanest=mean(WZ(l,:)); %estimate mean of W
Zmeanest=mean(WZ(2,:)); %estimate mean of Z

WZbar(l,:)=WZ(l,:)-Wmeanest; %subtract out mean of W

WZbar(2,:)=WZ(2,:)-Zmeanest; %subtract out mean of Z

Cest=[O 0;0 0];

for m=l:M

Cest=Cest+(WZbar(:,m)*WZbar(:,m)')/M; %compute estimate of

%covariance matrix
end

Wmeanest %write out estimate of mean of W

Zmeanest %write out estimate of mean of Z

Cest %write out estimate of covariance matrix
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12.12 Real-World Example - Optical Character

Recognition

419

An important use of computers is to be able to scan a document and automatically

read the characters. For example, bank checks are routinely scanned to ascertain

the account numbers, which are usually printed on the bottom. Also, scanners are

used to take a page of alphabetic characters and convert the text to a computer

file that can later be edited in a computer. In this section we briefly describe how

this might be done. A more comprehensive description can be found in [Trier, Jain,

and Taxt 1996]. To simplify the discussion we consider recognition of the digits

0,1 ,2, ... , 9 that have been generated by a printer (as opposed to handwritten, the

recognition of which is much more complex due to the potential variations of the

characters) . An example of these characters is shown in Figure 12.22. They were

obtained by printing the characters from a computer to a laser printer and then

scanning them back into a computer. Note that each digit consists of an 80 x 80
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Figure 12.22: Scanned digits for optical character recognition.

ar ray of pixels and each pixel is eit her black or white. This is termed a binary image.

A magnified version of the digit "I" is shown in Figure 12.23, where the "pixelat ion"

is clearly evident . Also, some of the black pixels have been omitted due to errors in
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the scanning process. In order for a computer to be able to recognize and decode

10

20

30

m40

50

60

(12.54)

m = 1,2, ... , 80jn = 1,2, ... , 80

70

n

Figure 12.23: Magnified version of the digit "1" .

the digits it is necessary to reduce each 80 x 80 image to a number or set of numbers

that characterize the digit. These numbers are called the features and they compose

a feature vector that must be different for each digit . This will allow a computer to

distinguish between the digits and be less susceptible to noise effects as is evident

in the "I" image. For our example, we will choose only two features, although in

practice many more are used. A typical feature based on the geometric character of

the digit images is the geometric moments. It attempts to measure the distribution

of the black pixels and is completely analogous to our usual joint moments. (Recall

our motivation of the expected value using the idea of the center of mass of an object

in Section 11.3.) Let g[m, n] denote the pixel value at location [m, n] in the image,

where m = 1,2, ... ,80, n = 1,2, ... ,80 and either g[m, n] = 1 for a black pixel or

g[m, n] = 0 for a white pixel. Note from Figure 12.23 that the indices for the [m, n]
pixel are specified in matrix format, where m indicates the row and n indicates the

column. The geometric moments are defined as

,,80 ,,80 k I [ ]
'lk l] = Lim=l Lin=l m n 9 m, n

J.L, ,,80 80
Lim=l I:n=l g[m,n]

If we were to define

g[m ,n]
p[m,n] = 80 80

I:m=l I:n=l g[m, n]

then p[m,n] would have the properties of a joint PMF, in that it is nonnegative and

sums to one. A somewhat better feature is obtained by using the central geometric
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moments which will yield the same number even as the digit is translated in the

horizontal and vertical directions. This may be seen to be of value by referring to

Figure 12.22, in which the center of the digits do not all lie at the same location. Us­

ing central geometric moments alleviates having to center each digit. The definition

is

(12.55)

where

iii '[1 0] - 2:~-1 2:~~1 mg[m,n]
= J.L , - ",,80 80 [ ]

wm=l 2:n=l 9 m, n

n- '[0 1] _ 2:~=1 2:~~1 ng[m, n]
J.L , - 80 80

2:m=l 2:n=l g[m, n]

The coordinate pair (m, 71,) is the center of mass of the character and is completely

analogous to the mean of the "joint PDF" p[m, n].
To demonstrate the procedure by which optical character recognition is accom­

plished we will add noise to the characters. To simulate a "dropout", in which a

black pixel becomes a white one (see Figure 12.23 for an example), we change each

black pixel to a white one with a probability of 0.4, and make no change with prob­

ability of 0.6. To simulate spurious scanning marks we change each white pixel to a

black one with probability of 0.1, and make no change with probability of 0.9. An

example of the corrupted digits is shown in Figure 12.24. As a feature vector we will

use the pair (J.L [I, 1], J.L[2 , 2]). For the digits "I" and "8", 50 realizations of the feature

vector are shown in Figure 12.25a. The black square indicates the center of mass

(m,71,) for each digit 's feature vector. Note that we could distinguish between the

two characters without error if we recognize an outcome as belonging to a "I" if we

are below the line boundary shown and as a "8" otherwise. However, for the digits

"I " and "3" there is an overlap region where the outcomes could belong to either

character as seen in Figure 12.25b. For these digits we could not separate the digits

without a large error. The latter is more typically the case and can only be resolved

by using a larger dimension feature vector. The interested reader should consult

[Duda, Hart, and Stork 2001] for a further discussion of pattern recognition (also

called pattern classification). Also, note that the digits "3" and "8" would produce

outcomes that would overlap greatly. Can you explain why? You might consider

some typical scanned digits as shown in Figure 12.26 that have been designed to

make recognition easier!
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Figure 12.24: Realization of corru pted digits.
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Figure 12.25: 50 realizations of feature vector for two competing digits.
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Figure 12.26: Some scanned digits typically used in optical character recognition.

They were scanned into a computer, which accounts for the obvious errors.
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Problems

12.1 L . ~ ) (w) For the dartboard shown in Figure 12.1 determine the probability

that the novice dart player will land his dart in the outermost ring, which has

radii 3/4 :S r :S 1. Do this by using geometrical arguments and also using

double integrals. Hint: For the latter approach convert to polar coordinates

(r, B) and remember to use dx dy = rdr dB.

12.2 (c) Reproduce Figure 12.2a by letting X rv U(-1 ,1) and Y rv U(-1,1),

where X and Yare independent. Omit any realizations of (X, Y) for which

J X2 + y2 > 1. Explain why this produces a uniform distribution of points in

the unit circle. See also Problem 13.23 for a more formal justification of this

procedure.

12.3 C::-) (w) For the novice dart player is prO :S R :S 0.5] = 0.5 (R is the distance

from the center of the dartboard)? Explain your results.

12.4 (w) Find the volume of a cylinder of height h and whose base has radius r by

using a double integral evaluation.

12.5 L:-) (c) In this problem we estimate 1r using probability arguments. Let X rv

U( -1,1) and Y rv U( -1,1) for X and Y independent. First relate P[X2+Y2 :S
1] to the value of tt . Then generate realizations of X and Y and use them to

estimate n,
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12.6 (f) For the joint PDF

{

I X2 + y2 ~ 1
PX,y(x , y) = On:

otherwise

find P [lXJ ~ 1/2]. Hint: You will need

J~ dx = ~ xJl - x2 + ~arc sin(x).

12.7 (...:..:.-) (f) If a joint PDF is given by

{

_c_ 0 ~ x ~ 1, 0 ~ Y ~ 1
PX,y(x , y) = oVXY

otherwise

find c.

12.8 (w) A point is chosen at random from the sample space S = {(x ,y) : 0 ~ x ~

1,0 ~ Y ~ I}. Find pry ~ X].

12.9 (f) For the joint PDF PX,y(x, y) = exp[-(x + y)]u(x)u(y) , find pry ~ X].

12.10 (...:..:.-) (w,c) Two persons playa game in which the first person thinks of a

number from 0 to 1, while the second person tries to guess player one 's number.

The second player claims that he is telepathic and knows what number the

first player has chosen. In reality the second player just chooses a number

at random. If player one also thinks of a number at random, what is the

probability that player two will choose a number whose difference from player

one's number is less than 0.1? Add credibility to your solution by simulating

the game and estimating the desired probability.

12.11 (...:..:.-) (f) If (X, Y) has a standard bivariate Gaussian PDF, find P[X2 +y 2 =

10].

12.12 (f,c) Plot the values of (x, y) for which x2 - 2pxy + y2 = 1 for p = -0.9,

p = 0, and p = 0.9. Hint: Solve for y in terms of x .

12.13 (w,c) Plot the standard bivariate PDF in three dimensions for p = 0.9. Next

examine your plot if p -+ 1 and determine what happens. As p -+ 1, can you

predict Y based on X = x?

12.14 (f) If px,y(x , y) = exp[- (x + y)]u(x)u(y) , determine the marginal PDFs.

12.15 (...:..:.-) (f) If

PX,y(x , y) = { ~

find the marginal PDFs.

0< x < 1,0 < Y < x
otherwise
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12.16 (t) Assuming that (x , y) 1= (0,0), prove that x2 - 2pxy + y2 > 0 for -1 <
p<l.

12.17 (f) If px(x) = (1/2) exp[-(1/2)x]u(x) and py(y) = (1/4) exp[-(1/4)y]u(y),

find the joint PDF of X and Y.

12.18 C....:.,) (f) Determine the joint CDF if X and Yare independent with

px(x) = { J

py(y) = { !

0<x<2

otherwise

0<y<4
otherwise.

x ~ O,y ~ 0
otherwise.

12.19 (f) Determine the joint CDF corresponding to the joint PDF

( )
_ { xyexp [ _ ~ ( x 2 +y2)]

PX,y x,y - 0

Next verify Properties 12.1-12.6 for the CDF.

12.20 (t) Prove that (12.10) is true if (12.11) is true and vice versa. Hint: Let

A = {a ~ x ~ b} and B = {y : c ~ y ~ d} for the first part and let A = {x :

Xo - 6.x/2 ~ x ~ Xo +6.x/2} and B = {y : Yo - 6.y/2 ~ y ~ Yo + 6.y/2} with

Xo and Yo arbitrary for the second part.

12.21 (t) Prove that (12.11) and (12.12) are equivalent.

12.22 (w) Two independent speech signals are added together. If each one has a

Laplacian PDF with parameter (j2, what is the power of the resultant signal?

12.23 C.":") (w) Lightbulbs fail with a time to failure modeled as an exponential

random variable with a mean time to failure of 1000 hours. If two lightbulbs

are used to illuminate a room, what is the probability that both bulbs will fail

before 2000 hours? Assume that the failure time of one bulb does not affect

the failure time of the other bulb.

12.24 (f) If a joint PDF is given as PX,Y(x, y) = 6 exp[-(2x + 3y)]u(x)u(y), what

is the probability of A = {(x,y) : 0 < x < 2,0 < y < I}? Are the two random

variables independent?

12.25 C...:J (w) A joint PDF is uniform over the region {(x , y) : 0 ~ y < x ,0 ~ x <

I} and zero elsewhere. Are X and Y independent?

12.26 C:...:.,) (w) The temperature in Antarctica is modeled as a random variable

X '" N(20 , 1500) degrees Fahrenheit, while that in Ecuador is modeled also

as a random variable with Y '" N(lOO , 100) degrees Fahrenheit. What is the

probability that it will be hotter in Antarctica than in Ecuador? Assume the

random variables are independent.
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12.27 (w,c) In Section 2.3 we discussed the outcomes resulting from adding to­

gether two random variables uniform on (0,1). We claimed that the proba­

bility of 500 outcomes in the interval [0,0.5] and 500 outcomes in the interval

[1.5, 2] resulting from a total of 1000 outcomes is

(150~00) (~) 1000 ~ 2.2 X 10- 604
.

Can you now justify this result? What assumptions are implicit in its calcula­

tion? Hint: For each trial consider the 3 possible outcomes (0,0.5), [0.5,1.5),

and [1.5,2). Also, see Problem 3.48 on how to evaluate expressions with large

factorials.

12.28 (f) Find the PDF of X = UI + U2, where UI '" U(O,l), U2 '" U(O, 1), and

UI, U2 are independent. Use a convolution integral to do this.

12.29 (w) In this problem we show that the ratio of areas for the linear transfor­

mation

[:] [~:H:J
---------'-v--'"G e

is Idet(G)I. To do so let e = [xyjT take on values in the region {(x,y)

o ~ x ~ 1, 0 ~ y ~ 1} as shown by the shaded area in Figure 12.27. Then,

consider a point in the unit square to be represented as e = ael +{3e2, where

o ~ a ~ 1, 0 ~ {3 ~ 1, ei = [10jT, and e2 = [OljT. The transformed vector is

Ge = G(ael + (3e2)

aGel + (3Ge2

~ a[:]+p[:]
It is seen that the natural basis vectors ej , e2 map into the vectors [a ejT,
[b d]T, which appear as shown in Figure 12.27. The region in the w-z plane

that results from mapping the unit square is shown as shaded. The area of the

parallelogram can be found from Figure 12.28 as BH. Determine the ratio of

areas to show that

Area ~ n w- z plane = ad _ be = det(G).
Area III x-y plane

The absolute value is needed since if for example a < 0, b < 0, the parallelo­

gram will be in the second quadrant and its determinant will be negative. The

absolute value sign takes care of all the possible cases.
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Figure 12.27: Mapping of areas for linear transformation.
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Figure 12.28: Geometry to determine area of parallelogram.

12.30 L..:..) (w,c) The champion dart player described in Section 12.3 is able to

land his dart at a point (x, y) according to the joint PDF

with some outcomes shown in Figure 12.2b. Determine the probability of a

bullseye. Next simulate the game and plot the outcomes. Finally estimate the

probability of a bullseye using the results of your computer simulation.
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12.31 (t) Show that (12.19) can be written as (12.20).

12.32 (t) Consi der the nonlinear transformation w = g(x ,y) , z = h(x ,y). Use a

tangent approximation to both functions about the point (xo,YO) to express

[w zjT as an approximat e affine function of [x yjT, and use matrix/vector na­

tation. For example,

Ogl Ogl
w = g(x,y) ~ g(xo,YO) + ox x =xo (x - xo) + oy x =xo (y - YO)

Y=Yo Y= Yo

and similarly for z = h(x, y). Compare the matrix to the J acobian matrix of

(12.23).

12.33 (f) If a joint PDF is given as PX,y(x, y) = (1/4)2 e x p [ -~ ( Ix l + Iyl)] for

- 00 < x < 00, - 00 < y < 00, find the joint PDF of

12.34 (f) If a joint PDF is given as pX,Y(x,y) = exp[-(x + y)]u(x)u(y) , find the

joint PDF of W = XY, Z = Y/X .

12.35 (w,c) Consider the nonlinear transformation

W X 2+5y2

Z = -5X2 + y2 .

Write a compute r program to plot in the x-y plane the points ( X i , Yj) for

Xi = 0.95 + (i - 1)/100 for i = 1,2, .. . , 11 and Yj = 1.95 + (j - 1)/100 for

j = 1,2, . . . , 11. Next transform all these points into the w-z plane using

the given nonlinear t ransformation. What kind of figure do you see? Next

calculate the area of the figure (you can use a rough approximat ion based on

the computer generated figure output) and finally take the ratio of the areas

of the figures in the two planes. Does this ratio agree with the Jacobian factor

I
det (o(w,z»)I

o(x,y)

when evaluated at x = 1, y = 2?

12.36 C:...:./ ) (f) Find the marginal PDFs of the joint PDF given in (12.25).

12.37 (f) Determine the marginal PDFs for the joint PDF given by
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12.38 t.:.:J (f) If X and Y have the joint PDF

find the joint PDF of the transformed random vector

429

pz(z) = i: px(x)py(xz)lxldx.

12.39 (t) Prove that the PDF of Z = Y/X, where X and Y are independent, is

given by

12.40 (t) Prove that the PDF of Z = XY, where X and Yare independent is given

by
reX) 1

pz(z) = 1-00 px(x)py(z/x)r;rdx.

12.41 (c) Generate outcomes of a Cauchy random variable using Y/ X, where X '"

N(O,I) , Y ,...., N(O , 1) and X and Yare independent. Can you explain what

happens when the Cauchy outcome becomes very large in magnitude?

12.42 (t) Prove that set) = Acos(27fFot) + Bsin(27fFot) can be written as set) =

JA2 + B2cos(27fFot - arctan (B/A)). Hint: Convert (A,B) to polar coordi­

nates.

12.43 L..:-) (w) A particle is subject to a force in a random force field. If the

velocity of the particle is modeled in the x and y directions as Vx '" N(O, 10)

and Vy '" N(o, 10) meters/sec, and Vx and Vy are assumed to be independent,

how far will the particle move on the average in 1 second?

12.44 (f) Prove that if X and Y are independent standard Gaussian random vari­

ables, then X 2 + y 2 will have a X~ PDF.

12.45 C:...:.-) (w,f) Two independent random variables X and Y have zero means and

variances of 1. If they are linearly transformed as W = X + Y, Z = X - Y,

find the covariance between the transformed random variables. Are Wand Z

uncorrelated? Are Wand Z independent?

12.46 (f) If

determine the mean of X + Y and the variance of X + Y.
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12.47 c.:..:....) (w) The random vector [X YjT has a covariance matrix

Find a 2 x 2 matrix G so that G[X y]T is a random vector with uncorrelated

components.

12.48 (t) Prove that if a random vector has a covariance matrix

c = [ ~ ~ ]

then the matrix

G = [ ~ - ~ ]
Vi Vi

can always be used to diagonalize it. Show that the effect of this matrix

transformation is to rotate the point (x, y) by 45° and relate this back to the

contours of a standard bivariate Gaussian PDF.

12.49 (f) Find the MMSE estimator of Y based on observing X = x if (X,Y) has

the joint PDF

1 [1 2 2]PX,y(x, y) = 27fyl[19 exp - 2(0.19) (x - 1.8xy + y) .

Also, find the PDF of the error Y - Y = Y - (aX + b), where a, b are the

optimal values. Hint: See Theorem 12.7.1.

12.50 (w,c) A random signal voltage V rv N(l, 1) is corrupted by an independent

noise sample N, where N rv N(O, 2), so that V + N is observed. It is desired

to estimate the signal voltage as accurately as possible using a linear MMSE

estimator. Assuming that V and N are independent, find this estimator. Then

plot the constant PDF contours for the random vector (V +N, V) and indicate

the estimated values on the plot.

12.51 (f) Using a convolution integral prove that if X and Yare independent stan­

dard Gaussian random variables, then X + Y rv N(O, 2).

12.52 C..:....) (f) If

find P[X + Y > 2].
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12.53 (t) Prove that if X rv r(ax, A) and Y rv I'(oy , A) and X and Yare inde­

pendent, then X + Y rv r(ax +ay,A).

12.54 (f) To generate two independent standard Gaussian random variables on a

computer one can use the Box-Mueller transform

X =
Y

J -21n Ul cOS(27l"U2)

J -21n o. sin(27l"U2)

where U1 , U2 are both uniform on (0,1) and independent of each other. Prove

that this result is true. Hint: To find the inverse transformation use a polar

coordinate transformation.

12.55 (t) Prove that by using the eigendecomposition of a covariance matrix or

v"C'V = A that one can factor Case = GGT
, where G = Y..fA, and ..fA

is defined as the matrix obtained by taking the positive square roots of all the

elements. Recall that A is a diagonal matrix with positive elements on the

main diagonal. Next find G for the covariance matrix

C = [26 6]
6 26

and verify that GGT does indeed produce C.

12.56 (c) Simulate on the computer realizations of the random vector

[ : ] ~ N ([ : ] , [-~.9 -~.9]) .

Plot these realizations as well as the contours of constant PDF on the same

graph.



Chapter 13

Conditional Probability Density

Functions

13.1 Introduction

A discussion of conditional probability mass functions (PMFs) was given in Chapter

8. The motivation was that many problems are stated in a conditional format so

that the solution must naturally accommodate this conditional structure. In addi­

tion, the use of conditioning is useful for simplifying probability calculations when

two random variables are statistically dependent. In this chapter we formulate the

analogous approach for probability density functions (PDFs). A potential stum­

bling block is that the usual conditioning event X = x has probability zero for a

continuous random variable. As a result the conditional PMF cannot be extended

in a straightforward manner. We will see, however, that using care, a conditional

PDF can be defined and will prove to be useful.

13.2 Summary

The conditional PDF is defined in (13.3) and can be used to find conditional proba­

bilities using (13.4). The conditional PDF for a standard bivariate Gaussian PDF is

given by (13.5) and is seen to retain its Gaussian form. The joint, conditional, and

marginal PDFs are related to each other as summarized by Properties 13.1-13.5. A

conditional CDF is defined by (13.6) and is evaluated using (13.7). The use of condi­

tioning can simplify probability calculations as described in Section 13.5. A version

of the law of total probability is given by (13.12) and is evaluated using (13.13). An

optimal predictor for the outcome of a random variable based on the outcome of a

second random variable is given by the mean of the conditional PDF as defined by

(13.14). An example is given for the bivariate Gaussian PDF in which the predictor

becomes linear (actually affine). To generate realizations of two jointly distributed
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continuous random variables the procedure based on conditioning and described in

Section 13.7 can be used. Lastly, an application to determining mortality rates for

retirement planning is described in Section 13.8.

13.3 Conditional PDF

(13.1)j = 1,2, ....

Recall that for two jointly discrete random variables X and Y , the conditional PMF

is defined as

[ I ] PX,y[Xi , Yj]
PYIX Yj Xi = []

PX Xi

This formula gives the probability of the event Y = Yj for j = 1,2, ... once we have

observed that X = Xi. Since X = Xi has occurred, the only joint events with a

nonzero probability are {( x , y) : x = Xi, Y = Yl, Y2,"'}' As a result we divide the

joint probability PX,y[Xi , Yj] = P[X = Xi, Y = Yj] by the probability of the reduced

sample space, which is PX[Xi] = P[X = Xi, Y = vil + P[X = Xi, Y = Y2] + ... =
I: ~l PX,Y[Xi , Yj]· This division assures us that

00

LPYlx[Yjl xi]
j = l

f PX,Y[Xi ,Yj]

j = l PX[Xi]

I:~l PX,Y[Xi , Yj]
=

PX[Xi]

I:~l PX,y[Xi , Yj] = 1

I:~lP X , Y [ Xi ,Y j] .

In the case of continuous random variables X and Y a problem arises in defining

a conditional PDF. If we observe X = x, then since P[X = x] = 0, the use of a

formula like (13.1) is no longer valid due to the division by zero. Recall that our

original definition of the conditional probability is

P[AIB] = P[A nB]
P[B]

which is undefined if P[B] = O. How should we then proceed to extend (13.1) for

continuous random variables?

We will motivate a viable approach using the example of the circular dartboard

described in Section 12.3. In particular, we consider a revised version of the dart

throwing contest. Referring to Figure 12.2 the champion dart player realizes that the

novice presents little challenge. To make the game more interesting the champion

proposes the following modification. If the novice player's dart lands outside the

region Ixi ~ t1x/2 , then the novice player gets to go again. He continues until his

dart lands within the region Ixi ~ t1x/2 as shown cross-hatched in Figure 13.1a.

The novice dart player even gets to pick the value of t1x. Hence, he reasons that it
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-b.x/2
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radius = 1/4

(b) Sample space

Figure 13.1: Revised dart throwing game. Only dart outcomes in the cross-hatched

region are counted.

should be small to exclude regions of the dart board that are outside the bullseye

circle. As a result , he chooses a 6.x as shown in Figure 13.1b, which allows him

to continue throwing darts until one lands within the cross-hatched region. The

champion, however , has taken a course in probability and so is not worried. In fact,

in Problem 12.30 the probability of the champion's dart landing in the bullseye area

was shown to be 0.8646. To find the probability of the novice player obtaining a

bullseye, we recall that his dart is equally likely to land anywhere on the dartboard.

Hence , using conditional probability we have that

P[b 11 I
_ A /2 X A /2] = P[bullseye, -6.x/2 ~ X ~ 6.x/2]

u seye u X ~ ~ uX P[-6.x/2 ~ X ~ 6.x/2] .

Since 6.x/2 is small, we can assume that it is much less than 1/4 as shown in Figure

13.1b. Therefore, we have that the cross-hatched regions can be approximated by

rectangles and so

P[bullseyel - 6.x /2 ~ X ~ 6.x /2]

P[double cross-hatched region]

(probability = rectangle area/dartboard area)=

P[double cross-hatched region] + P[single cross-hatched region]

6.x{1/2)/7r

. 6.x(2)/7r

0.25 < 0.865. (13.2)

Hence , the revised strategy will still allow the champion to have a higher probability

of winning for any 6.x , no matter how small it is chosen. Even though P[X = 0] = 0,
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the conditional probability is well defined even as .6.x --7 0 (but not equal 0). Some

typical outcomes of this game are shown in Figure 13.2, where it is assumed the

novice player has chosen .6.x/2 = 0.2. In Figure 13.2a are shown the outcomes of X

OB · .

0.6

0.4

-0.6

-0.4

. .. ... . .

!~: II tNrl'~ ~I
-0.8 .

1008040 60
Trial number

20

-1 '--__--'-__----J. --'--__--'-__-"'

o

(a) All x outcomes - those with Ixl ::; 0.2 are shown as dark
lines

0.8

0.6 : .

0.4

o

0.2
Q)

§
u...,
;::l

o -0.2
<:ll

1008020

-0.6

-0.8 .

-1 '-=-__--'-__----J. --'----'----_--'-__-"'

o

(b) Dark lines are y outcomes for which [z] ::; 0.2, b indicates

a bullseye (";x 2 + y2 ::; 1/4) for the outcomes with [z] ::; 0.2

Figure 13.2: Revised dart throwing game outcomes.
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for the novice player. Only those for which [z] :::; !:i.x/2 = 0.2, which are shown as

the darker lines , are kept. In Figure 13.2b the outcomes of Yare shown with the

kept outcomes shown as the dark lines. Those outcomes that resulted in a bullseye

are shown with a "b" over them. Note that there were 27 out of 100 outcomes that

had [z] values less than or equal to 0.2 (see Figure 13.2a), and of these, 8 outcomes

resulted in a bullseye (see Figure 13.2b) . Hence, the estimated probability of landing

in either the single or double cross-hatched region of Figure 13.1b is 27/100 = 0.27,

while the theoretical probability is approximately !:i.x(2)/7r = 0.4(2)/7r = 0.254.

Also, the estimated conditional probability of a bullseye is from Figure 13.2b , 8/27 =
0.30 while from (13.2) the theoretical probability is approximately equal to 0.25.

(The approximations are due to the use of rectangular approximations to the cross­

hatched regions, which only become exact as !:i.x --+ 0.) We will use the same

strategy to define a conditional PDF. Let A = {(x , y) : Jx2+ y2 :::; 1/4}, which is

the bullseye region. Then

P[AIIXI :::; !:i.x/2]

=

P[A , IXI :::; !:i.x/2]

P[IXI :::; !:i.x/2]

P[{ (x, y) : Ixl :::; !:i.x/2, Iyl :::; J1/16 - x2}]

P[{(x,y) : Ixl :::; !:i.x/2, Iyl :::; I}]

P[{( x , y) : Ixl :::; !:i.x/2, Iyl :::; J1/16 - x2}]

P[{x : Ixl :::; !:i.x/2}]

f l:>.X/2 fJ1/16-x2 ()d d
-l:>.x/2 -J1/16-x2PX,Y x, Y Y x

f~~~~2PX(x)dx

(definition of condo prob.)

(
double cross-hatched area)

cross-hatched area

As !:i.x --+ 0, we can write

P[AIIXI :::; !:i.x/2]

f
l:>.X/2 f1/4
-l:>.x/2 -1/4 PX,Y(x , y)dy dx

f~~~~2PX(x)dx

f
1/4
-1 /4PX,Y(O, y)!:i.xdy

Px(O)!:i.x

1
1/4 PX,y(O,y) d

-1 /4 Px(O) y.

(since J1/16 - x2 ~ 1/4 for Ixl :::; !:i.x/2)

(since PX,y(x, y) ~ PX,y(O,y) for Ixl :::; !:i.x/2)

We now define PX,y /px as the conditional PDF

PX,y(x, y)
PYlx(ylx) = ().

PX x
(13.3)
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Note that it is well defined as long as px(x) i= 0. Thus, as ~x -+ °

1
1/ 4

P[AIIXI ~ ~ x / 2 ] = PYlx(yIO)dy.
-1/4

More generally, the conditional PDF allows us to compute probabilities as (see

Problem 13.6)

P[a ~ Y ~ blx - ~x/2 ~ X ~ x + ~x/2] = lb PYlx(ylx)dy.

This probability is usually written as

P[a ~ y ~ blX = x]

but the conditioning event should be understood to be {x : x-~x/2 ~ X ~ x+~x/2}

for ~x small. Finally, with this understanding, we have that

P[a ~ y ~ blX = x] = lb PYlx(ylx)dy (13.4)

where PYIX is defined by (13.3) and is termed the conditional PDF. The condi­

tional PDF PYlx(ylx) is the probability per unit length of Y when X = x (actually

x - ~x/2 ~ X ~ x + ~x/2) is observed. Since it is found using (13.3), it is seen

to be a function of y and x . It should be thought of as a family of PDFs with y as

the independent variable, and with a different PDF for each value x. An example

follows.

Example 13.1 - Standard bivariate Gaussian PDF

Assume that (X, Y) have the joint PDF

-00 < x < 00

-00 < Y < 00

and note that the marginal PDF for X is given by

1 [1 2]px(x) = V2ii exp -2"x .

The conditional PDF is found from (13.3) as

21r~ exp [_~(x2 - 2pxy + y2)]

vh- exp [-!x 2
]

J27f(~ _ p2) exp ( -~Q)
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where

439

Q =
x2 - 2pxy + y2

1- p2

y2 _ 2pxy + p2x2

1- p2

(y _ px)2

1- p2 .

As a result we have that the conditional PDF is

1 [1 2]
PYlx(ylx) = J27r(I _ p2) exp - 2(1 _ p2) (y - px) (13.5)

and is seen to be Gaussian. This result, although of great importance, is not true

in general. The form of the PDF usually changes from py(y) to PYlx(ylx). We will

denote this conditional PDF in shorthand notation as YI(X = x) '" N(px, 1 _ p2).

As expected, the conditional PDF depends on x, and in particular the mean of the

conditional PDF is a function of x. It is a valid PDF in that for each x value, it is

nonnegative and integrates to 1 over -00 < Y < 00. These properties are true in

general. In effect , the conditional PDF depends on the outcome of X so that we use a

different PDF for each X outcome. For example, if p = 0.9 and we observe X = -1 ,

then to compute P[-I ::; Y ::; -0.8IX = -1] and P[-O.I ::; Y ::; O.IIX = -1], we

first observe from (13.5) that YI(X = -1) '" N( -0.9,0.19). Then

P[-I ::; Y ::; -0.8IX = -1]

P[-O.I ::; Y ::; O.I!X = -1]

(
- 1 - (-0.9)) (-0.8 - (-0.9))

Q 0U9 - Q 0U9 = 0.1815
0.19 0.19

Q (-0.1- (-0.9)) _ Q (0.1- (-0.9)) = 0.0223.
0U9 JO.I9

Can you explain the difference between these values? (See Figure I3.3b where the

dark lines indicate y = 0 and y = -0.9.) In Figure I3.3b the cross-section of the

joint PDF is shown. Once the cross-section is normalized so that it integrates to

one, it becomes the conditional PDF PYlx(y l - 1). This is easily verified since

PYlx(yl- 1) =
px,y(-I,y)

px(-1)

px,y(-I,y)
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: ':-' ,

. ~ . . -

. . . .
. ~ - . .

. ... . .

.. .... ..

o

(a) (b)

Figure 13.3: Standard bivari at e Gaussian PDF and its cross-sect ion at x = -1. The

normalized cross-sect ion is the condit ional PDF.

13.4 J oint, Conditional, and Marginal PDFs

T he relationships between the joint , conditional, and marginal PMFs as describ ed

in Sect ion 8.4 also hold for the corresponding PDFs. Hence, we just summarize the

properties and leave the proofs to the reader (see Problem 13.11).

Property 13.1 - Joint PDF yields conditional PDFs.

PXIY(xly )

PX,y(x, y)

J~ ooPX,y(x, y)dy

PX,y(x, y)

D

P roperty 13.2 - Conditional PDFs are related.

( I )
- PYlx(y lx )px (x)

PXIY x y - ( )
PY Y

D
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Property 13.3 - Conditional PDF is expressible using Bayes' rule.

( I )
PXIY(xly)py(y)

PYIX y x = foo
-00 PXIY(xly)py(y)dy

441

o

Property 13.4 - Conditional PDF and its corresponding marginal PDF

yields the joint PDF

PX,y(x, y) = PYlx(ylx)px(x) = PXIY(xly)py(y)

o

Property 13.5 - Conditional PDF and its corresponding marginal PDF

yields the other marginal PDF

py(y) = i:PYIX (ylx)p x (x)dx

o
A conditional CDF can also be defined. Based on (13.4) we have upon letting

a = -00 and b = y

pry s ylX = x] = i~ PYlx(tlx)dt.

As a result the conditional CDF is defined as

Fy1x(yl x) = pry s ylX = x]

and is evaluated using

(13.6)

(13.7)

As an example, if YI(X = x) '" N(px, 1 - p2) as was shown in Example 13.1, we

have that

(
y-px )

FYlx(ylx) = 1- Q ~ .
1 _p2

(13.8)

Finally, as previously mentioned in Chapter 12 two continuous random variables

X and Yare independent if and only if the joint PDF factors as PX,y(x , y) =

px(x)py(y) or equivalently if the joint CDF factors as Fx,y(x , y) = Fx(x)Fy(y) .
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T his is consistent with our definition of the conditional PDF since if X and Yare

independent

PX,y(x , y)
=

px(x)

px(x)p y(y) _ ()
= () - PY Y

PX x
(13.9)

(and similarly PXIY = px). Hence, the condit ional PDF no longer depends on the

observed value of X , i.e., x. This means that the knowledge that X = x has occurred

does not affect the PDF of Y (and thus does not affect the probability of events

defined on Sy). Similarly, from (13.7), if X and Yare independent

FYIX(ylx) = 1:00 PYlx(tl x)dt

i ~ Py(t)dt (from (13.9))

Fy(y).

An example would be if p = 0 for the standard bivariate Gaussian PDF. Then since

Y I(X = x) "" N(px , 1 - p2) = N (O , 1), we have that PYlx(yl x) = py(y). Also, from

(13.8)

1- Q ( y - px )
\/1- p2

1 - Q(y) = Fy(y) .

Another example follows.

Example 13.2 - Lifetime PDF of spare lightbulb

A professor uses the overhead projector for his class. The time to failure of a new

bulb X has the exponential PDF px(x) = >.exp(->.x)u(x), where x is in hours. A

new spare bulb also has a time to failure Y that is modeled as an exponential PDF.

However , the time to failure of the spare bulb depends upon how long the spare

bulb sits unused. Assuming the spare bulb is act ivated as soon as the original bulb

fails, the time to activation is given by X. As a result , the expected time to failure

of the spare bulb is decreased as

1 1
=----

>.y >'(1 + ax)

where 0 < a < 1 is some factor that indicates the degradation of the unused bulb

with st orage time. The expected t ime to failure of the spare bulb decreases as the
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Figure 13.4: Conditional PDF for lifetime of spare bulb. Dependence is on time to

failure x of original bulb.

original bulb is used longer (and hence the spare bulb must sit unused longer). Thus,

we model the time to failure of the spare bulb as

PYlx(ylx) = .xy exp( -.xyy)u(y)

= .x(1+ ax) exp [-.x(1 + ax)y] u(y).

This conditional PDF is shown in Figure 13.4 for 1/.x = 5 hours and a = 0.5. We

now wish to determine the unconditional PDF of the time to failure of the spare

bulb which is Py(y). It is expected that the probability of failure of the spare bulb

will increase than if the spare bulb were used rightaway or for x = O. Note that if

x = 0, then PYIX = Fx , which says that the spare bulb will fail with the same PDF

as the original bulb. Using Property 13.5 we have

py(y) = i: PYlx(yl x)px(x)dx

100

.x(1+ ax) exp [-.x(1 + ax)y].x exp( -.xx)dx

.x
2

exp( -.xy)100

(1 + ax) exp [-.x(ay + 1)x]dx

.x
2

exp( -.xy) [100

exp(ax)dx + a 100

xexp(ax)dx] (let a = -.x(1 + ay))

.x
2exp(-.xy) [ e x p ~ a x ) [ +a ( ~ x e x p ( a x ) - :2 exp(aX)) [ ]

.x
2

exp( -.xy) [ - ~ + ~]

.x
2

exp( -.xy) [.x(a:+ 1) + [.x(aya+ 1)]2] .
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or finally

pY (y) = λ2 exp(−λy)

[

1

λ(αy + 1)
+

α

[λ(αy + 1)]2

]

u(y).

This is shown in Figure 13.5 for 1/λ = 5 hours and α = 0.5 along with the PDF
pX(x) of the time to failure of the original bulb. As expected the probability of the

−2 0 2 4 6 8 10
0

0.5

1

1.5

pY (y)

pX(x)

Time to failure (hours)

Figure 13.5: PDFs for time to failure of original bulb X and spare bulb Y .

spare bulb failing before 2 hours is greatly increased.
♦

Finally, note that the conditional PDF is obtained by differentiating the conditional
CDF. From (13.7) we have

pY |X(y|x) =
∂FY |X(y|x)

∂y
. (13.10)

13.5 Simplifying Probability Calculations

Using Conditioning

Following Section 8.5 we can easily find the PDF of Z = g(X,Y ) if X and Y are
independent by using conditioning. We shall not repeat the argument other than to
summarize the results and give an example. The procedure is

1. Fix X = x and let Z|(X = x) = g(x, Y ).

2. Find the PDF of Z|(X = x) using the standard approach for a transformation
of a single random variable from Y to Z.

3. Uncondition the conditional PDF to yield the desired PDF pZ(z).
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Example 13.3 - PDF for ratio of independent random variables

Consider the function Z = Y/X where X and Yare independent random variables.

In Problem 12.39 we asserted that

PZ(z) = i: px(x)py(xz)lxldx.

We now derive this using the aforementioned approach. First recall that if Z = aY

for a a constant, then pz(z) = py(z/a)/Ial (see Example 10.5). Now we have that

ZI(X = x) = ~ I(X = x) = ~ I(X = x)

so that with a = l/x and noting the independence of X and Y, we have

PZlx(zlx) = PYlx(zx)lxl = py(zx)lxl

and thus

(13.11)

PZ(z) [: pZ,x(z,x)dx

i:PZlx(zjx)px(x)dx

[: py(zx)lxlpx(x)dx

[: px(x)py(xz)lxldx.

(marginal PDF from joint PDF)

(definition of conditional PDF)

(from (13.11))

Note that without the independence assumption, we could not assert that PYIX = py

in (13.11).

c
In general to compute probabilities of events it is advantageous to use conditioning

arguments whether or not X and Yare independent. The analogous result to (8.28)

is (see Problem 13.15)

pry E A] = i: pry E AIX = x]px(x)dx. (13.12)

This is another form of the theorem of total probability. It can also be written as

pry E A] = i: [i PY1x(Y1X)dY] px(x)dx (13.13)

where we have used (13.4) and replaced {y : a :s; Y :s; b} by the more general set

A. The formula of (13.13) is analogous to (8.27) for discrete random variables. An

example follows.
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Example 13.4 - Probability of error for a digital communication system

Consider the PSK communication system shown in Figure 2.14. The probability of

error was shown in Section 10.6 to be

P; = P[W ::; -A/2] = Q(A/2)

since the noise sample W rv N(O, 1). In a wireless communication system such

as is used in cellular telephone, the received amplitude A varies with time due to

multipath propagation [Rappaport 2002]. As a result, it is usually modeled as a

Rayleigh random variable whose PDF is

()
{
~ exp (- 2=2

1
a

2
) a 2: 0

PAa = (TA (TA

o a < O.

We wish to determine the probability of error if A is a Rayleigh random variable.

Thus, we need to evaluate P[W +A/2 ::; 0] if W rv N(O , 1), A is a Rayleigh random

variable, and we assume Wand A are independent. A straightforward approach is

to first find the PDF of Z = W + A/2, and then to integrate pz(z) from -00 to O.

Alternatively, it is simpler to use (13.12) as follows.

r; P[W ::; -A/2]i: P[W ::; -A/2IA = a]PA(a)da (from (13.12))

i: P[W ::; -a/2IA = a]PA(a)da (since A = a has occurred).

But since Wand A are independent, P[W ::; -a/2IA = a] = P[W ::; -a/2] and

thus

r; = i: P[W ::; -a/2]PA(a)da.

Using P[W ::; -a/2] = Q(a/2) we have

r; = roo Q(a/2)-; exp (_~a2) da .
io aA 2aA

Unfortunately, this is not easily evaluated in closed form .

13.6 Mean of Conditional PDF

For a conditional PDF the mean is given by the usual mean definition except that

the PDF now depends on x . We therefore have the definition

(13.14)
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which is analogous to (8.29) for discrete random variables. We also expect and it
follows that (see Problem 13.19 and also the discussion in Section 8.6)

EX [EY |X [Y |X]] = EY [Y ] (13.15)

where EY |X [Y |X] is given by (13.14) except that the value x is now replaced by
the random variable X. Therefore, EY |X [Y |X] is viewed as a function of the ran-
dom variable X. As an example, we saw that for the bivariate Gaussian PDF
Y |(X = x) ∼ N (ρx, 1 − ρ2). Hence, EY |X [Y |x] = ρx, but regarding the mean
of the conditional PDF as a function of the random variable X we have that
EY |X [Y |X] = ρX. To see that (13.15) holds for this example

EX [EY |X [Y |X]] = EX [ρX] = ρEX [X] = 0

since the marginal PDF of X for the standard bivariate Gaussian PDF was shown
to be N (0, 1). Also, since Y ∼ N (0, 1) for the standard bivariate Gaussian PDF,
EY [Y ] = 0, and we see that (13.15) is satisfied.

The mean of the conditional PDF arises in optimal prediction, where it is proven
that the minimum mean square error (MMSE) prediction of Y given X = x has been
observed is EY |X [Y |x] (see Problem 13.17). This is optimal over all predictors, linear
and nonlinear. For the standard Gaussian PDF, however, the optimal prediction
turns out to be linear since EY |X [Y |x] = ρx. More generally, it can be shown that
if X and Y are jointly Gaussian with PDF given by (12.35), then

EY |X [Y |x] = EY [Y ] +
cov(X,Y )

var(X)
(x − EX [X])

= μY +
ρσXσY

σ2
X

(x − μX)

= μY +
ρσY

σX
(x − μX).

(See also Problem 13.20.)

13.7 Computer Simulation of Jointly Continuous

Random Variables

In a manner similar to that described in Section 8.7 we can generate realizations of
a continuous random vector (X,Y ) using the relationship

pX,Y (x, y) = pY |X(y|x)pX(x).

(Of course, if X and Y are independent, we can generate X based on pX(x) and Y
based on pY (y)). Consider as an example the standard bivariate Gaussian PDF. We
know that Y |(X = x) ∼ N (ρx, 1 − ρ2) and X ∼ N (0, 1). Hence, we can generate
realizations of (X,Y ) as follows.
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Step 1. Generate X = x according to N(o,1).

Step 2. Generate Y!(X = x ) according to N(px , 1 - p2).

This procedure is conceptually simpler than what we implemented in Section 12.11

and much more general. There we used (12.53). Referring to (12.53) , if we let

J1.w = J1.z = 0, (j ~ (j ~ = 1 and make the replacements of W, Z , X , Y with

X ,Y, U, V , we have

(13.16)

where U '" N(o,1), V'" N(O, 1), and U and V are independent. The transformation

of (13.16) can be used to generate realizations of a standard bivariate Gaussian

random vector. It is interesting to note that in this special case the two procedures

for generating bivariate Gaussian random vectors lead to the identical algorithm.

Can you see why from (13.16)?

As an example of the condit ional PDF approach, if we let p = 0.9, we have the

plot shown in Figure 13.6. It should be compared with Figure 12.21 (note that in

Figure 12.21 the means of X and Yare 1). The MATLAB code used to generate

. .. . .3 .

. :

1 : . . . .

~ 0 : .

~. . . . .

-2

2 : .

-3 : .

2 3 4
-4 ' - - - - - - ' - _ . . . L . - ~ _ ~ _ . L . . - - - ' - _ ~ - - - J

-4 -3 -2 -1 0

X

Figure 13.6: 500 outcomes of standard bivariate Gaussian random vector with p =

0.9 generated using conditional PDF approach.

realizations of a standard bivariate Gaussian random vector using conditioning is

given below.

randn('state',O) 'l. set random number generator to initial value

rho=O.9;

M=500; 'l. set number of realizations to generate

for m=1:M

x(m,1)=randn(1,1); 'l. generate realization of N(O,1) random

'l. variable (Step 1)
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ygx(m,1)=rho*x(m)+sqrt(1-rho-2)*randn(1,1)j %generate
%YI(X=x) (Step 2)

end

13.8 Real-World Example - Retirement Planning

449

Professor Staff, who teaches too many courses a semester , plans to retire at age 65.

He will have accumulated a total of $500,000 in a retirement account and wishes to

use the money to live on during his retirement years. He assumes that his money

will earn enough to offset the decrease in value due to inflation. Hence , if he lives to

age 75 he could spend $50,000 a year and if he lives to age 85, then he could spend

only $25,000 a year. How much should he figure on spending per year?

Besides the many courses Professor Staff has taught in history, English, math­

ematics, and computer science, he has also taught a course in probability. He

therefore reasons that if he spends s dollars a year and lives for Y years during his

retirement, then the probability that 500,000 - sY < 0 should be small. Here sY

is the total money spent during his retirement. In other words , he desires

P[500 ,000 - sY < 0] = 0.5. (13.17)

He chooses 0.5 for the probability of outliving his retirement fund. This acknowl­

edges the fact that choosing a lower probability will lead to an overly conservative

approach and a small amount of expendable funds per year as we will see shortly.

Equivalently, he requires that

(13.18)

As an example, if he spends s = 50,000 per year , then the probability he lives more

than 500, 000/s = 10 years should be 0.5.

It should now be obvious that (13.18) is actually the right-tail probability or

complementary CDF of the years lived in retirement. This type of information is of

great interest not only to retirees but also to insurance companies who pay annuities.

An annuity is a payment that an insurance company pays annually to an investor for

the remainder of his/her life. The amount of the payment depends upon how much

the investor originally invest s, the age of the investor, and the insurance company's

belief that the investor will live for so many years. To quantify answers to questions

concerning years of life remaining, the mortality rate, which is the distribution of

years lived past a given age is required. If Y is a continuous random variable that

denotes the years lived past age X = X , then the mortality rate can be described by

first defining the conditional CDF
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For example, the probability that a person will live at least 10 more years if he is

cur rent ly 65 years old is given by

P[Y> lO!X = 65] = 1 - FY lx (10165)

which is the complementary CDF or the right-tail probability of the conditional PDF

PYlx(ylx). It has been shown that for Canadian citizens the conditional CDF is well

modeled by [Milevsky and Robinson 2000]

FYlx(ylx) = 1 - exp [exp (x ~ m) (1 - exp (¥))] y2:0 (13.19)

where m = 81.95, l = 10.6 for males and m = 87.8, l = 9.5 for females. As an

example, if FYlx(ylx) = 0.5, then you have a 50% chance of living more than y

years if you are currently x years old. In other words, 50% of the population who

are x years old will live more than y years and 50% will live less than y years. The

number of years y is the median number of years to live. (Recall that the median is

the value at which the probability of being less than or equal to this value is 0.5.)

From (13.19) this will be true when

0.5 = exp [exp ( x ~ m) (1 - exp (T) )]

which results in the remaining number of years lived by 50% of the population who

are currently x years old as

y = lIn [1 - exp ( _ (x ~ m))In 0.5] . (13.20)

This is plotted in Figure 13.7a versus the current age x for males and females. In

Figure 13.7a the median number of years left is shown while in Figure 13.7b the

median life expectancy (which is x + y) is given.

Returning to Professor Staff, he can now determine how much money he can

afford to spend each year. Since the probability of outliving one's retirement funds

is a conditional probability based on current age, we rewrite (13.18) as

where we allow the probability to be denoted in general by PL. Since he will retire

at age x = 65, we have from (13.19) that he will live more than y years with a

probability of PL given by

PL = exp [exp (65 ~ m) (1 - exp (¥))]. (13.21)
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Figure 13.8: Probability PL of exceeding Y years in retirement for male who retires

at age 65.

Assuming Professor Staff is a male , we use m = 81.95, l = 10.6 in (13.21) to produce

a plot PL versus y as shown in Figure 13.8. If the professor is overly conservative,

he may want to assure himself that the probability of outliving his retirement fund

is only about 0.1. Then, he should plan on living another 27 years, which means

that his yearly exp enses should not exceed $500,000/27 = $18,500. If he is less

conservat ive and chooses a probability of 0.5, then he can plan on living about 15

years. Then his yearly expenses should not exceed $500,000/15 ::::; $33,000.
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Problems

13.1 (w,c) In this problem we simulate on a computer the dartboard outcomes of

the novice player for the game shown in Figure 13.1a. To do so, generate

two independent U (-1, 1) random variables to serve as the x and y outcomes.

Keep only the outcomes (x,y) for which J x2+ y2 :s; 1 (see Problem 13.23 for

why this produces a uniform joint PDF within the unit circle). Then, of the

kept outcomes retain only the ones for which fj.xj2 :s; 0.2 (see Figure 13.2a) .

Finally, estimate the probability that the novice player obtains a bullseye and

compare it to the theoretical value. Note that the theoretical value of 0.25

as given by (13.2) is actually an approximation based on the areas in Figure

13.1b being rectangular.

13.2 C:..:..-) (w) Determine if the proposed conditional PDF

P (Ix) = {cexp(-yjx) y 2: o,x > 0
YIX Y 0 otherwise

is a valid conditional PDF for some c. If so, find the required value of c.

13.3 (w) Is the proposed conditional PDF

1 [1 2]PYlx(ylx) = V27i exp -2(y - x ) - 00 < y < 00, -00 < x < 00

valid? If so, and if X '" N(o, 1), design an experiment that will produce the

random variables X and Y.

13.4 C:..:,,) (f) If

( )
_ { 2exp[-(x + y)]

PX,Y x,y - 0

find PYlx(ylx).

13.5 (w) Plot the joint PDF

o :s; y :s; x, x 2: 0

otherwise

{

2x
PX,y(x, y) = 0

0< x < 1,0 < y < 1

otherwise.
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Next determine by inspection the conditional PDF PYlx(ylx). Recall that the

conditional PDF is just the normalized cross-section of the joint PDF.

13.6 (t) In this problem we show that

lim P[a:S Y :S blx - b.x/2 :S X :S x + b.x/2] = r PYlx(ylx)dy.
.6.x-tO l,

To do so first show that

l ~ o P[a :S Y :S blx - b.x/2 :S X :S x + b.x/2]

f
X+ b.X/ 2 ( )

j b . x-b.x/2 PX,Y x, Y dx
= lim dy.

.6.x-tO f x+ .6.X/ 2 ()d
a x - b. x / 2 PX X X

13.7 (f) Determine pry > ~IX = 0] if the joint PDF is given as

{
2x 0 < x < 1,0 < y < 1

PX,y(x ,y) = 0 otherwise.

13.8 (..:.:,) (f) If X ~ U(O, 1) and YI(X = x) ~ U(O, x), find the joint PDF for X

and Y and also the marginal PDF for Y.

13.9 (f,t) For the standard bivariate Gaussian PDF find the conditional PDFs PYIX

and PXIY and compare them. Explain your results. Are your results true in

general?

13.10 (..:.:,) (f) If the joint PDF PX,Y is uniform over the region 0 < y < x and

0< x < 1 and zero otherwise, find the conditional PDFs PYIX and PXIY'

13.11 (t) Prove Properties P13.1-13.5.

13.12 (f) Determine the PDF of Y/X if X ~ N(O, 1), Y ~ N(O, 1) and X and Y

are independent. Do so by using the conditioning approach.

13.13 (t) Prove that the PDF of X +Y, where X and Yare independent is given as

a convolution integral (see (12.14». Do so by using the conditioning approach.

13.14 (..:.:,) (w) A game of darts is played using the linear dartboard shown in

Figure 3.8. If two novice players throw darts at the board and each one's dart

is equally likely to land anywhere in the interval (-1/2,1/2)' prove that the

probability of player 2 winning is 1/2. Hint: Let Xl and X2 be the outcomes

and use Y = IX21-IXII and X = Xl in (13.12).

13.15 (t) Prove (13.12) by starting with (13.4).
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13.16 c . : ~ ) (w) A resistor is chosen from a bin of 10 ohm resistors whose distri­

bution satisfies R ,....., N(10, 0.25). A i = 1 amp cur rent source is applied to

the resistor and the subsequent voltage V is measured with a voltmeter. The

voltmeter has an error E that is modeled as E ,....., N(o, 1). Find the probability

that V > 10 volts if an 11 ohm resistor is chosen. Note that V = iR + E.

What assumption do you need to make about the dependence between Rand

E?

13.17 (t) In this problem we prove that the minimum mean square error estimate

of Y based on X = x is given by EYlx[ylx]. First let the estimate be denoted

by Y( x) since it will depend in general on the outcome of X. Then note that

the mean square error is

mse Ex,y[(Y - Y(X))2]

= i:i: (y - Y(x))2pX,y(x, y)dx dy

i:i: (y - Y(x))2 py1x(y!x)px(x)dxdy

i: [I: (y - Y(X))2pYIX(YIX)dY] px(x)dx.
, ,

v

J(Y(x»

Now we can minimize J(Y(x)) for each value of x since px(x) ~ O. Complete

the derivation by differentiating J(Y(x)) and setting the result equal to zero.

Consider Y(x) as a constant (since x is assumed fixed inside the inner integral)

in doing so. Finally justify all the steps in the derivation.

13.18 (f) For the joint PDF given in Problem 13.10 find the minimum mean square

error estimate of Y given X = x. Plot the region in the x-y plane for which

the joint PDF is nonzero and also the estimated value of Y versus x.

13.19 (t) Prove (13.15).

13.20 (w,c) If a bivariate Gaussian PDF has a mean vector [J,lx J,lyjT = [12jT and

a covariance matrix

c = [ ~ ~ ]
plot the contours of constant PDF. Next find the minimum mean square error

prediction of Y given X = x and plot it on top of the contour plot. Explain

the significance of the plot.

13.21 ( ..:.:J (w) A random variable X has a Laplacian PDF with variance a 2
• If

the variance is chosen according to a 2
,....., U(O, 1), what is average variance of

the random variable?
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13.22 (c) In this problem we use a computer simulation to illustrate the known

result that E y lX [YlxJ = px for (X, Y) distributed according to a standard

bivariate Gaussian PDF. Using (13.16) generate M = 10,000 realizations of

a standard bivariate Gaussian random vector with p = 0.9. Then let A =
{x : XQ - b..x/2 ::; x ::; XQ + b..x/2} and discard the realizations for which x

is not in A. Finally, estimate the mean of the conditional PDF by taking the

sample mean of the remaining realizations. Choose b..x/2 = 0.1 and XQ = 1

and compare the theoretical value of EYlx[YlxJ to the estimated value based

on your computer simulation.

13.23 (t) We now prove that the procedure described in Problem 13.1 will produce

a random vector (X, Y) that is uniformly distributed within the unit circle.

First consider the polar equivalent of (X, Y), which is (R, e), so that the

conditional CDF is given by

P[R::; r, e ::; OIR ::; 1J

But this is equal to

P[R ::; r, R ::; 1, e ::; OJ
P[R::; 1J

(Why?) Next show that

o::; r ::; 1, 0 ::; 0 < 21r.

P[R ::; r, e ::; OJ
P[R::; 1J

P[R ::; r,e ::; OIR ::; 1J = ~:

and differentiate with respect to r and then 0 to find the joint PDF PR,e(r, 0)

(which is actually a conditional joint PDF due to the conditioning on the value

of R being r ::; 1). Finally, transform this PDF back to that of (X,Y) to verify

that it is uniform within the unit circle. Hint: You will need the result

d (
8(r,O») 1

et - -----:--~:-

8(x, Y) - det (8(X,y ) .
a r,e

13.24 C:..:.,,) (f,c) For the conditional CDF of years left to live given current age,

which is given by (13.19) , find the conditional PDF. Plot the conditional PDF

for a Canadian male who is currently 50 years old and also for one who is 75

years old. Next find the average life span for each of these individuals. Hint:

You will need to use a computer evaluation of the integral for the last part.

13.25 (t) Verify that the conditional CDF given by (13.19) is a valid CDF.



Chapter 14

Continuous N-Dimensional

Random Variables

14.1 Introduction

This chapter extends the results of Chapters 10-13 for one and two continuous

random variables to N continuous random variables. Our discussion will mirror

Chapter 9 quite closely, the difference being the consideration of continuous rather

than discrete random variables. Therefore, the descriptions will be brief and will

serve mainly to extend the usual definitions for one and two jointly distributed con­

t inuous random variables to an N-dimensional random vector. One new concept

that is introduced is the orthogonality principle approach to prediction of the out­

come of a random variable based on the outcomes of several other random variables.

This concept will be useful later when we discuss prediction of random processes in

Chapter 18.

14.2 Summary

The probability of an event defined on an N-dimensional sample space is given by

(14.1). The most important example of an N-dimensional PDF is the multivariate

Gaussian PDF, which is given by (14.2). If the components of the multivariate

Gaussian random vector are uncorrelated, then they are also independent as shown

in Example 14.2. Transformations of random vectors yield the transformed PDF

given by (14.5). In particular, linear tranformations of Gaussian random vectors

preserve the Gaussian nature but change the mean vector and covariance matrix as

discussed in Example 14.3. Expected values are described in Section 14.5 with the

mean and variance of a linear combination of random variables given by (14.8) and

(14.10), respectively. The sample mean random variable is introduced in Example

14.4. The joint moment is defined by (14.13) and the joint characteristic function
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by (14.15). Joint moments can be found from the characteristic function using

(14.17) . The PDF for a sum of independent and identically distributed random

variables is conveniently determined using (14.22). The prediction of the outcome

of a random variable based on a linear combination of the outcomes of other random

variables is given by (14.24) . The linear prediction coefficients are found by solving

the set of simultaneous linear equations in (14.27). The orthogonality principle

is summarized by (14.29) and illustrated in Figure 14.3. Section 14.9 describes

the computer generation of a multivariate Gaussian random vector. Finally, section

14.10 applies the results of this chapter to the real-world problem of signal detection

with the optimal detector given by (14.33).

14.3 Random Vectors and PDFs

An N-dimensional random vector will be denoted by either (Xl, X 2 , • • • , XN) or

X = [Xl X 2... xNjT. It is defined as a mapping from the original sample space of

the experiment to a numerical sample space SXl ,X2,...,XN = R N
. Hence, X takes on

values in the N-dimensional Euclidean space RN so that

will have values

[
~~~:~ ]X(s) =

XN(s)

x = [ ~ U
where x is a point in RN

. The number of possible values is uncountably infinite. As

an example, we might observe the temperature on each of N successive days . Then,

the elements ofthe random vector would be Xl (s) = temperature on day 1, X 2(s) =

temperature on day 2, .. ., XN(s) = temperature on day N , and each temperature

measurement would take on a continuum of values.

To compute probabilities of events defined on SXl,X2" " ,XN we will define the
N -dimensional joint PDF (or more succinctly just the PDF) as

and sometimes use the more compact notation px(x). The usual properties of a

joint PDF must be valid
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Then the probability of an event A defined on R N is given by

459

(14.1)

The most important example of an N-dimensional joint PDF is the multivariate

Gaussian PDF. This PDF is the extension of the bivariate Gaussian PDF described

at length in Chapter 12 (see (12.35)). It is given in vector/matrix form as

1 [ 1 T -1 ]
px(x) = (27r)N/2 det l / 2(C) exp -2"(x - JL) C (x - JL)

where JL = [/-l1/-l2 .. . /-IN]T is the N x 1 mean vector so that

(14.2)

Ex[X] =
[

EXl [Xl] ]
EX2[X2 ]

EXN[XN]

=JL

and C is the N x N covariance matrix defined as

[

var(Xd

C = COV(~2 ' Xl)

COV(XN ,Xl)

cov(Xl , X 2 )

var(X2 )

cov(Xl , XN) ]
coV(X2,XN )

. .

var(XN )

Note that C is assumed to be positive definite and so it is invertible and has det(C) >
o (see Appendix C). If the random variables have the multivariate Gaussian PDF,

they are said to be jointly Gaussian distributed. Note that the covariance matrix

can also be written as (see (Problem 9.21))

To denote a multivariate Gaussian PDF we will use the notation N(JL, C). Clearly,

for N = 2 we have the bivariate Gaussian PDF. Evaluation of the probability of

an event using (14.1) is in general quite difficult. Progress can, however, be made

when A is a simple geometric region in RN and C is a diagonal matrix. An example

follows.

Example 14.1 - Probability of a point lying within a sphere

Assume N = 3 and let X "-' N(O, a 2I). We will determine the probability that

an outcome falls within a sphere of radius R. The event is then given by A =
{(Xl,X2 , X3) : xi + X§ + X~ ::; R2

} . This event might represent the probability that

a particle with mass m and random velocity components Vx , Vy , V; has a kinetic

energy £ = (1/2)m(V; + V; + V}) less than a given amount. This modeling is
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used in the kinetic theory of gases [Resnick and Halliday 1966] and is known as the

Maxwellian distribution. From (14.2) we have with I.t = 0, C = (J2I, and N = 3

P[A] =

since det(CT2I) = ((J2) 3 and ((J2I)-1 = (lj(J2)I. Next we notice that the region of

integration is the inside of a sphere. As a result of this and the observation that

the integrand only depends on the squared-distance of the point from the origin, a

reasonable approach is to convert the Cartesian coordinates to spherical coordinates.

Doing so produces the inverse transformation

Xl rcosOsin¢

X 2 r sin 0 sin ¢

X 3 rcos¢

where r 2': 0, 0 ~ 0 < 21l", 0 ~ ¢ ~ tt, We must be sure to include in the integral over

r, 0,¢ the absolute value of the Jacobian determinant of the inverse transformation

which is r 2sin¢ (see Problem 14.5). Thus,

To evaluate the integral

l
R

r2 (1 )1= -exp __r2 dr
o (J2 2(J2

we use integration by parts (see Problem 11.7) with U = r and hence dU = dr and
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I = - r exp [_~r 2 /a
2] I~ + lR exp [_~r 2 /a

2]
dr

-R exp [_!R2/a2] + J21ra2 (R ~ exp [_!r2/a2] dr
2 Jo 21ra2 2

-Rexp [ _ ~ R 2 /a
2] + J21ra2 [Q(O) - Q(R/a)].

Finally, we have that

P[A] = J1r~2 [-Rexp [_~R2 /a
2] + J21ra2 [Q(O) - Q(R/a)]]

1- 2Q(R/a) - J1r~2Rexp (_~R2/a2) .
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c
The marginal PDFs are found by integrating out the other variables. For exam­

ple, if PXl (Xl) is desired, then

As an example, for the multivariate Gaussian PDF it can be shown that X i

N(J.Li ,al) , where al = var(Xd (see Problem 14.16). Also, the lower dimensional

joint PDFs are similarly found. To determinepx l,xN(XI,XN) for example, we use

The random variables are defined to be independent if the joint PDF factors into

the product of the marginal PDFs as

(14.3)

An example follows.

Example 14.2 - Condition for independence of multivariate Gaussian

random variables

If the covariance matrix for a multivariate Gaussian PDF is diagonal, then the

random variables are not only uncorrelated but also independent as we now show.

Assume that

C = diag (ai , a~ , ... ,a'Jv )
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then it follows that

N

det(C) IIa;
i = l

C-
1

= diag(~ ,~ , ... , ~ ) .
a 1 a2 aN

Using these results in (14.2) produces

where X i rv N(J.Li,an. Hence , if a random vector has a multivariate Gaussian PDF

and the covariance matrix is diagonal, which means that the random variables are

un correlated, then the random variables are also independent.

L1h U ncorrelated implies independence only for multivariate Gaus­

sian PDF even if marginal PDFs are Gaussian!

Consider the counterexample of a PDF for the random vector (X,Y) given by

PX,y(x, y) 1 1 [1 2 2]2 27r~ exp - 2(1 _ p2) (x - 2pxy + y )

1 1 [1 2 2]+2 27r~ exp - 2(1 _ p2) (x + 2pxy + y ) (14.4)

for 0 < P < 1. This PDF is shown in Figure 14.1 for p = 0.9. Clearly, the random

variables are not independent. Yet, it can be shown that X rv N(O, 1), Y rv N(O, 1),

and X and Yare uncorrelated (see Problem 14.7). The difference here is that the

joint PDF is not a bivariate Gaussian PDF.
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(a) Joint PDF (b) Constant PDF contours

Figure 14.1: Uncorrelated but not independent random variables with Gaussian

marginal PDFs.

A joint cumulative distribution function (CDF) can be defined in the N-dimensional

case as

It has the usual properties of being between 0 and 1, being monotonically increasing

as any of the variables increases, and being "right continuous". Also,

FX1 ,X2,... ,XN (-00, -00, , -00) 0

FX1,X2,,,,,XN (+00 , +00, , +00) 1.

The marginal CDFs are easily found by letting the undesired variables be evaluated

at +00 . For example, to determine the marginal CDF for Xl, we have

14.4 Transformations

We consider the transformation from X to Y where

YI 9I(XI , X2, , XN)

Y2 92(XI, X2, , XN )
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and the transformation is one-to-one. Hence Y is a continuous random vector having

a joint PDF (due to the one-to-one property). If we wish to find the PDF of a subset

of the Yi's, then we need only first find the PDF of Y and then integrate out the

undesired variables. The extension of (12.22) for obtaining the joint PDF of two

transformed random variables is

where
ax! ax! ax!
ay! aY2 aYN

O(Xl,X2, ... ,XN) ~ ~ aX2
ay! aY2 aYN

O(Yl,Y2,···,YN)
aXN aXN aXN
ay! aY2 aYN

(14.5)

is the inverse Jacobian matrix. An example follows.

Example 14.3 - Linear transformation of multivariate Gaussian random

vector

If X", N(J-L, C) and Y = GX, where G is an invertible N x N matrix, then we

have from y = Gx that

x

ox
oy

Hence, using (14.5) and (14.2)

py(y)

=

(see Section 12.7 for details of matrix manipulations) so that Y '" N(GJ-L, GCGT
) .

This result is the extension of Theorem 12.7 from 2 to N jointly Gaussian random

variables. See also Problems 14.8 and 14.15 for the case where G is M x N with

M < N. It is shown there that the same result holds.
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14.5 Expected Values
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The expected value of a random vector is defined as the vector of the expected values

of the elements of the random vector. This says that we define

II
Xl]] [EXl[XI]]X2 EX2[X2]
· .· .· .

X N EXN[XN]

(14.6)

We can view this definition as "passing" the expectation "through" the left bracket

of the vector since EXl,X2"",XN[Xi ] = EXi[XiJ. A particular expectation of interest

is that of a scalar function of X I,X2, ... ,XN, say g(XI,X2, ... ,XN). Similar to

previous results (see (12.28)) this is determined using

EXl,X2,,,,,XN [g(XI , X 2, ... ,X N)]

=100 100

...100

g(XI,X2, ... ,XN)PXl,X2"" ,XN(XI,X2, . .. ,XN)dxldx2 . . . da:» ,
-00 -00 -00

(14.7)

Some specific results of interest are the linearity of the expectation operator or

(14.8)

and in particular if ai = 1 for all i , then we have

(14.9)

The variance of a linear combination of random variables is given by

(14.10)

where Cx is the covariance matrix of X and a = [al a2 .. . aNjT. The derivation of

(14.10) is identical to that given in the proof of Property 9.2 for discrete random

variables. If the random variables are uncorrelated so that the covariance matrix is

diagonal or

Cx = diag(var(XI), var(X2) ... , var(XN ) )

then (see Problem 14.10)

N

= L arvar(Xi)'
i=l

(14.11)
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If furthermore, ai = 1 for all i, then

(14.12)

An example follows.

Example 14.4 - Sample mean of independent and identically distributed

random variables

Assume that X I, X 2, ... , X N are independent random variables and each ran­

dom variable has the same marginal PDF. When random variables have the same

marginal PDF, they are said to be identically distributed. Hence, we are assuming

that the random variables are independent and identically distributed (lID). As a

consequence of being identically distributed, Ex; [Xi] = fJ. and var(Xi ) = cr2 for all

i. It is of interest to examine the mean and variance of the random variable that we

obtain by averaging the Xi'S together. This averaged random variable is

1 N
X= - ~ Xi
N~

t=l

and is called the sample mean random variable. We have previously encountered

the sample mean when referring to an average of a set of outcomes of a repeated

experiment, which produced a number. Now, however, X is a function of the random

variables Xl, X 2 , ... , XN and so is a random variable itself. As such we may consider

its probabilistic properties such as its mean and variance. The mean is from (14.8)

with ai = liN

_ 1 N

EXl ,x2,...,x N[X] = N L Ex;[Xi ] = fJ.

i=l

and the variance is from (14.11) with ai = liN (since Xi'S are independent and

hence uncorrelated)

var(X)
N 1

L N2 var(Xd

i=l

1 N

N2 Lcr2

i=l

Note that on the average the sample mean random variable will yield the value fJ.,

which is the expected value of each Xi. Also as N -+ 00, var(X) -+ 0, so that the

PDF of X will become more and more concentrated about u. In effect, as N -+ 00,

we have that X -+ u: This says that the sample mean random variable will converge
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to the true expected value of Xi. An example is shown in Figure 14.2 in which the

mar ginal PDF of each X i is N (2, 1). In the next chapter we will pr ove that X does

indeed converge to Ex ; [Xi] = J.L .

0.5 : ~ .

1 : ~ .

. .

2,....-~-~-~- -~-~ -,

~ ..
Cl 1.5 : ~ : : : .
c,
"0

Q)

~

.5...,
~

~
Cl 1.5 : ~.. . .
c,
"0

~ 1 : ~ .

.5...,
~ 0.5 : ~ .

o 2
X

4 o
n

2
X

In
3 4

(a) N = 10 (b) N = 100

Figure 14.2: Esti mated PDF for sample mean random vari able, X.

14.6 Joint Moments and the Characteristic Function

The joint moments corresponding to an N-dimensional PDF are defined as

= roo roo ... roo XilX~ 2 ... X ~ P X l , X 2 , ...,XN (X l,X2, .. . ,XN )dx l dx2 ... d x N.

i : t: i :
(14.13)

As usu al , if the random vari ables are independent, the joint PDF factors and there­

fore

(14.14)

The joint charac te rist ic fun ction is defined as

¢Xl ,X2" " ,XN (Wl , W2 ,' " , WN ) = E X l ,X 2"" ,X N [exp [j (w1X1+W2X2 + ... + WNXN)]]

(14.15)

and is evaluated as
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= 1:1:···1:exp [j(WIXI +W2X2 + .. .+ WN X N )]

PX l ,X 2,.. .,XN (Xl , X2 , .. · , XN )dXI d X 2 .. . d X N ·

In particular, for independent random variables , we have (see Problem 14.13)

Also, the joint PDF can be found from t he joint characteristic fun ction using the

inverse Fourier transform as

(14.16)

All the proper ties of the 2-di mensional characterist ic funct ion extend to the general

case . Note that once <PXl,X2 " " ,XN (WI, W2 , . . . , WN ) is known, t he characteristic fun c­

t ion for any subset of the X i 'S is found by setting Wi equal to zero for t he ones not in

t he subset. For example, to find PX l ,X 2( X I , X2) , we can let W3 = W4 = ... = WN = 0

in the joint characteristic function to yield (see Problem 14.14)

As seen previously, the joint mome nts can be obtained from t he characteristic fun c­

t ion . T he general formula is

EX 1,X 2" " ,X N [Xfl X~2 ... X ~ n

1 a h +12+ ··+1N

·h + 12+ ·+ 1N a ha 12 a IN <PX 1,X2,...,XN (W I, W2, ... , WN )

J WI W2··· WN Wl=W2="'=WN = O

(14.17)

An example follows.

Example 14.5 - Second-order joint moments for multivariate Gaussian

PDF

In this example we derive t he second-order mome nts E X i X j [XiXj ] if X rv N(O, C ).

T he charac teristic fun ction can be shown to be [Muirhead 1982]



14.6. JOINT MOMENTS AND THE CHARACTERISTIC FUNCTION 469

where w = [WI W2 . . . WNV. We first let

N N

Q(w) = wTCw = L LWmwn[Clmn
m=1 n=1

(14.18)

and note that it is a quadratic form (see Appendix C) . Also, we let [Clmn = Cmn to

simplify the notation. Then from (14.17) with li = lj = 1 and the other l's equal to

zero, we have

Carrying out the partial differentiation produces

But

8 exp[-(1/2)Q(w )]

8Wi

82 exp[-(1/2)Q(w)]

8Wi8wj

18Q(w) (1 )-- exp --Q(w)
2 8Wi 2

~ 8Q(w) 8Q(w) (_~Q())
4 8Wi 8wj exp 2 w

18
2Q(w) (1 )- - exp --Q(w) .

28wi8wj 2
(14.19)

N N

""' ""' 8wmwn
LJ LJ 8Wi Cmn (from (14.18))
m=ln=1 w=o

~ ~ [8wn 8Wm]
LJ LJ Wma:cmn +Wn ~Cmn
m=1 n=1 Wt Wt w=o

o (14.20)

and also

But

8
2
Q(w) I

8Wi8wj w=o

N N 82

LL
wmwn

cmn
8Wi8w '

m=1 n=1 J w=o

(14.21)

where Oij is the Kronecker delta, which is defined to be 1 if i = j and 0 otherwise.

Hence
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and bmjbni equals 1 if (m, n) = (j, i) and equals 0 otherwise, and 8nj8mi equals 1 if

(m ,n) = (i, j) and equals 0 otherwise. Thus,

~2~~W~ I = Cji + Cij (from (14.21))
W t wJ w=o

= 2Cij (recall that C T = C).

Finally, we have the expected result from (14.19) and (14.20) that

Ex;,xj[XiXj] = ~ [_! 8
2
Q(w)exp (_!Q(W))] I

)2 2 8Wi8wj 2 w=o

f2 (-~) (2Cij ) = Cij = [C]ij.

o
Lastly, we extend the characteristic function approach to determining the PDF for

a sum of IID random variables. Letting Y = Z=~l Xi , the characteristic function of

Y is defined by

ifJy(w) = Ey[exp(jwY)]

and is evaluated using (14.7) with g(X1,X2 , ... ,XN) = exp[jwZ=~ lX i] (the real

. and imaginary parts are evaluated as separate integrals) as

¢y(w) = Ex"x" ...x; [exp (iwt x;) ]

= Ex"x" ...,X N [fi eXP(jWX;)] .

Now using the fact that the Xi'S are IID, we have that

N

epy(w) = IIEx;[exp(jwXd]

i=l

(identically distributed)

(14.22)

where epx(w) is the common characteristic function of the random variables. To

finally obtain the PDF of the sum random variable we use an inverse Fourier trans­

form to yield

1
00 dw

py(y) = [epX(w)]N exp(-jwy)-.
-00 211"

This formula will form the basis for the exploration of the PDF of a sum of IID

random variables in Chapter 15. See Problems 14.17 and 14.18 for some examples

of its use .
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14.7 Conditional PDFs
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The discussion of Section 9.7 of the definitions and properties of the conditional PMF

also hold for the conditional PDF. To accommodate continuous random variables we

need only replace the PMF notation of the "bracket" with that of the PDF notation

of the "parenthesis." Hence, we do not pursue this topic further.

14.8 Prediction of a Random Variable Outcome

We have seen in Section 7.9 that the optimal linear prediction of the outcome of Y

when X = x is observed to occur is

(14.23)

If (X,Y) has a bivariate Gaussian PDF, then the linear predictor is also the optimal

predictor, amongst all linear and nonlinear predictors. We now extend these results

to the prediction of a random variable after having observed the outcomes of several

other random variables. In doing so the orthogonality principle will be introduced.

Our discussions will assume only zero mean random variables, although the results

are easily modified to yield the prediction for a nonzero mean random variable. To

do so note that (14.23) can also be written as

A cov(X,Y)
Y - Ey[Y] = var(X) (x - Ex [X)).

But if X and Y had been zero mean, then we would have obtained

y = cov(X,Y) x
var(X) .

It is clear that the modification from the zero mean case to the nonzero mean case

is to replace each Xi by Xi - EXi [Xi] and also Y by Y - Ey[Y].

Now consider the p + 1 continuous random variables {Xl, X2, .. . , X p , X p+l }

and say we wish to predict X p+l based on the knowledge of the outcomes of

X I,X2 ,""Xp , Letting Xl = XI,X2 = X2""Xp = xp be those outcomes, we

consider the linear prediction

P

Xp+ l = Laixi
i=l

(14.24)

where the ai's are the linear prediction coefficients, which are to be determined. The

optimal coefficients are chosen to minimize the mean square error (MSE)
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or written more explicitly as

mse = Ex"x" ...,x ,+, [ ( X p+1 - t,a;x;) '] . (14.25)

We have used L:f=l aiXi , which is a random variable, as the predictor in order that

the error measure be the average over all predictions. If we now differentiate the

MSE with respect to a1 we obtain

oEX1,X2 ,...,Xp+l [(XP+l - L:f=l aiXi)2]

oa1

(interchange integration

and differentiation)[ o ~ (Xp+1 - t aiXd2]
1 i=l

[- 2(X p+l - t aiXi)X1] = O.
2=1

(14.26)

This produces

or

EX1,X2 " ",Xp+l [X1Xp+1] = EX1,X2"" ,Xp+l [t aiX1 X i]
2=1

k = 1,2, ... ,p

p

EX1,Xp+l[X1Xp+1] = L aiE X1,x ;[X 1X i].

i=l

Letting Cij = Ex; ,xj [XiXj] denote the covariance (since the Xi'S are zero mean) we

have the equation
p

L C1i ai = C1 ,p+1'
i=l

If we differentiate with respect to the other coefficients, similar equations are ob­

tained. In all, there will be p simultaneous linear equations given by

p

L Ckiai = Ck,p+1
i=l

that need to be solved to yield the ai's. These equations can be written in vec­

tor/matrix form as

[ ~ : ~ : ~:] [::] [~: :::: ]
Cp1 Cp2 Cpp ap Cp,p+l

, v J ~

C c

(14.27)
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We note that C is the covariance matrix of the random vector [Xl X 2 •.• xp]T and

c is the vector of covariances between X p+ l and each Xi used in the predictor.

The linear prediction coefficients are found by solving these linear equations. An

example follows.

Example 14.6 - Linear prediction based on two random variable out­

comes

Consider the prediction of X3 based on the outcomes of Xl and X2 so that X3 =

alXI + a2X2, where p = 2. If we know the covariance matrix of X = [Xl X 2 x 3]T

say ex, then all the Cij'S needed for (14.27) are known. Hence, suppose that

[

cu Cl2 C13] [1 2/3 1/3]
Cx = C21 C22 C23 = 2/3 1 2/3 .

C31 C32 C33 1/3 2/3 1

Thus, X 3 is correlated with X 2 with a correlation coefficient of 2/3 and X3 is

correlated with Xl but with a smaller correlation coefficient of 1/3. Using (14.27)

with p = 2 we must solve

[
1 2/3] [ al ] = [ 1/3 ] .

2/3 1 a2 2/3

By inverting the covariance matrix we have the solution

1 [1 -2/3 ] [ 1/3 ]
1 - (2/3)2 -2/3 1 2/3

[-n
Due to the larger correlation of X 3 with X 2, the prediction coefficient a2 is larger.

Note that if the covariance matrix is Cx = (121, then Cl3 = C23 = 0 and alo pt =

a2
0p

t = O. This results in X3 = 0 or more generally for random variables with

nonzero means, X3 = EX3 [X3], as one might expect. See also Problem 14.24 to see

how to determine the minimum value of the MSE.

\/
As another simple example, observe what happens if p = 1 so that we wish to

predict X 2 based on the outcome of Xl. In this case we have that X2 = alxl and

from (14.27), the solution for al is alo pt = CI2/Cll = cov(XI, X2)/var(Xd. Hence ,

X2 = [cov(XI, X2)/var(Xd]xI and we recover our previous results for the bivariate

case (see (14.23) and let Ex[X] = Ey[Y] = 0) by replacing Xl with X, Xl with X,

and X 2 with Y.

An interesting and quite useful interpretation of the linear prediction procedure

can be made by reexamining (14.26). To simplify the discussion let p = 2 so that
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the equations to be solved are

EX1,X2,X3[(X3 - alXI - a2X2)XI]

EX1,X2,X3[(X3 - alXI - a2X2)X2]

o
O. (14.28)

Let the predictor error be denoted by €, which is explicitly € = X 3 - alXI - a2X2.

Then (14.28) becomes

EX1,X2,X3[€XI]

EX1,X2,X3[€X 2]

o
o (14.29)

which says that the optimal prediction coefficients aI, a2 are found by making the

predictor error uncorrelated with the random variables used to predict X 3 • Presum­

ably if this were not the case, then some correlation would remain between the error

and Xl , X 2 , and this correlation could be exploited to reduce the error further (see

Problem 14.23).

A geometric interpretation of (14.29) becomes apparent by considering Xl, X 2 ,

and X 3 as vectors in a Euclidean space as depicted in Figure 14.3a. Since X3 =

(a)

X3

(b)

Figure 14.3: Geometrical interpretation of linear prediction.

alXI +a2X2, X3 can be any vector in the shaded region, which is the XI-X2 plane,

depending upon the choice of al and a2. To minimize the error we should choose

X3 as the orthogonal projection onto the plane as shown in Figure 14.3b. But this

is equivalent to making the error vector € orthogonal to any vector in the plane. In

particular, then we have the requirement that

(14.30)
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where..l denotes orthogonality. To relate these conditions back to those of (14.29) we

define two zero mean random variables X and Y to be orthogonal if Ex,y[XY] = O.

Hence, we have that (14.30) is equivalent to

EX1,X2,X3[EXI] 0

EXl ,X2,X3[EX2] 0

or just the condition given by (14.29). (Since E depends on (Xl, X 2 , X 3 ) , the ex­

pectation reflects this dependence.) This is called the orthogonality principle. It

asserts that to minimize the MSE the error "vector" should be orthogonal to each of

the "data vectors" used to predict the desired "vector". The "vectors" X and Yare

defined to be orthogonal if Ex,y[XY] = 0, which is equivalent to being uncorrelated

since we have assumed zero mean random variables. See also Problem 14.22 for the

one-dimensional case of the orthogonality principle.

14.9 Computer Simulation of Gaussian

Random Vectors

The method described in Section 12.11 for generating a bivariate Gaussian random

vector is easily extended to the N-dimensional case. To generate a realization of

X""' N(J.L , C) we proceed as follows:

1. Perform a Cholesky decomposition of C to yield the N x N nonsingular matrix

G , where C = GGT
.

2. Generate a realization u of an N x 1 random vector U whose PDF is N(o ,I).

3. Form the realization of X as x = Gu + J.L.

As an example, if J.L = 0 and

then

C = [ 2~3
1/3

2/3
1

2/3

1/3 ]
2/3

1

(14.31)

G = [0.6~67 0.7~54 ~ ] .
0.3333 0.5963 0.7303

We plot 100 realizations of X in Figure 14.4. The MATLAB code is given next.
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4
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2
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Figure 14.4: Realizations of 3 x 1 multivariate Gaussian random vector.

C=[1 2/3 1/3;2/3 1 2/3;1/3 2/3 1];

G=chol(C)'; %perform Cholesky decomposition

%MATLAB produces C=A'*A so G=A'

M=200;

for m=1:M %generate realizations of x

u=[randn(1,1) randn(1,1) randn(1,1)]';

x(:,m)=G*u; %realizations stored as columns of 3 x 200 matrix

end

14.10 Real-World Example - Signal Detection

An important problem in sonar and radar is to be able to determine when an object,

such as a submarine in sonar or an aircraft in radar, is present. To make this decision

a pulse is transmitted into the water (sonar) or air (radar) and one looks to see if a

reflected pulse from the object is returned. Typically, a digital computer is used to

sample the received waveform in time and store the samples in memory for further

processing. We will denote the received samples as Xl, X 2 , . . . , X N. If there is no

reflection, indicating no object is present, the received samples are due to noise only.

If, however, there is a reflected pulse, also called an echo, the received samples will

consist of a signal added to the noise. A standard model for the received samples is to

assume that X i = Wi, where Wi""'" N(O, (T2) for noise only present and Xi = Si+Wi

for a signal plus noise present. The noise samples Wi are usually also assumed to be

independent and hence they are IID. With this modeling we can formulate the signal
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detection problem as the problem of deciding between the following two hypotheses

llw

lls+w

Xi =Wi

Xi = Si + Wi

i = 1,2, ,N

i = 1,2, ,N.

It can be shown that a good decision procedure is to choose the hypothesis for which

the received data samples have the highest probability of occurring. In other words,

if the received data is more probable when lls+w is true than when llw is true,

we say that a signal is present. Otherwise, we decide that noise only is present. To

implement this approach we let px(x;llw) be the PDF when noise only is present

and px(x; lls+w) be the PDF when a signal plus noise is present. Then we decide

a signal is present if

px(x; lls+w) > px(x;llw) . (14.32)

But from the modeling we have that X = W <"V N(o ,(J2I) for no signal present and

X = s + W <"V N(s, (J2I) when a signal is present. Here we have defined the signal

vector as s = [Sl S2 ... sN]T. Hence, (14.32) becomes from (14.2)

1 N exp [-~(x -s)T(x - S)] > 1 N exp [_~xT x]
(21f(J2) "2 2(J (21f(J2) "2 2(J

An equivalent inequality is

_(X-S)T(X-S) > -xTx

since the constant 1/(21f(J2)N/2 is positive and the exponential function increases

with its argument. Expanding the terms we have

_xTx + xTS + sTx - sTS > _xTX

and since sTx = xTs we have

or finally we decide a signal is present if

N 1 N

LXiSi> 2Lst.
i=l i=l

(14.33)

This detector is called a replica correlator [Kay 1998] since it correlates the data

Xl , X2 , .. . , XN with a replica of the signal S1,S2, . . . , SN. The quantity on the right­

hand-side of (14.33) is called the threshold. If the value of 2:~1 XiSi exceeds the

threshold, the signal is declared as being present.

As an example, assume that the signal is a "DC level" pulse or s; = A for

i = 1,2, . . . ,N and that A > O. Then (14.33) reduces to

N 1
ALxi > -NA

2

i=l 2
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and since A > 0, we decide a signal is present if

Hence, the sample mean is compared to a threshold of A/2. To see how this detector

performs we choose A = 0.5 and (J2 = 1. The received data samples are shown in

Figure 14.5a for the case of noise only and in Figure 14.5b for the case of a signal plus

noise. A total of 100 received data samples are shown. Note that the noise samples

3 r - - ~ - ~ - - ~ - ~ - - - - - - , 3 . - - - ~ - ~ - - ~ - ~ - - - - - - ,

- 2 - 2 .

10040 60 80
Sample, i

20
- 3 L-_--'---_~ __....i..__ ____'__----'

o1008040 60
Sample, i

20
- 3 L-_~_~ __ ~ _ ~ _ - - - - '

o

(a) Noise only (b) Signal plus noise

Figure 14.5: Received data samples. Signal is Si = A = 0.5 and noise consists of

IID standard Gaussian random vari ables.

generated are different for each figure. The value of the sample mean (1/N) 2 : ~ 1 Xi

is shown in Figure 14.6 versus the number of dat a samples N used in the averaging.

For example, if N = 10, then the value shown is (1/10) 2 : i ~ l Xi, where Xi is found

from the first 10 samples of Figure 14.5. To more easily observe the results they

have been plotted as a cont inuous curve by connecting the points with straight lines.

Also, the threshold of A/2 = 0.25 is shown as the dashed line. It is seen that as the

number of data samples averaged increases , the sample mean converges to the mean

of X i (see also Example 14.4). When noise only is pr esent , this becomes Ex [X] = 0

and when a signal is present , it becomes Ex [X] = A = 0.5. Thus by comparing the

sample mean to the threshold of A/2 = 0.25 we should be able to decide if a signal

is present or not most of the time (see also Problem 14.26).



REFERENCES 479

0.5 ,..--~-~-,.---,.---,.------,

O'---~-~-~-~-~---'

ro ~ 00 ~ 00 M 100
Number of samples, N

§ 0.4 .
Q)

8
Q) 0.3 ..

~ ..

§ 0.2 ; ; .
if) ..

100

. - . ~ .

noise only

20 40 60 80
Number of sam ples, N

-2'---~-~--~ -~ ------'

o

- 1.5

0.5 :Signal pluS·noise· · . . .-
~L:-F--
8
~ - 1 .

(a) Total view (b) Expand ed view for 70 :::; N :::; 100

Figure 14.6: Value of sample mean versus the number of dat a samples averaged.
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Problems

14.1 c.:.:...) (w ,f) If Y = Xl + X 2 + Xs, where X '" N(J-L , C) and

C

1/2
1

1/2

1/4 ]
1/2

1

find the mean and vari ance of Y.

14.2 (w ,c) If [Xl x 2 ]T '" N (O ,0-
21), find P [Xf + Xi > R2

]. Next , let 0-
2 = 1 and

R = 1 and lend credence to your result by performing a computer simulation

to est imate the probabili ty.
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14.3 (f) Find the PDF of Y = Xl + X~ +xj if X,...., N(O, I). Hint: Use the results

of Example 14.1. Note that you should obtain the PDF for a X~ random

variable.

14.4 (w) An airline has flights that depart according to schedule 95% of the time.

This means that they depart late 1/2 hour or more 5% of the time due to

mechanical problems, traffic delays, etc. (for less than 1/2 hour the plane is

considered to be "on time"). The amount of time that the plane is late is

modeled as an exp(X] random variable. If a person takes a plane that makes

two stops at intermediate destinations, what is the probability that he will

be more than 1 1/2 hours late? Hint: You will need the PDF for a sum of

independent exponential random variables.

14.5 (f) Consider the transformation from spherical to Cartesian coordinates. Show

that the Jacobian has a determinant whose absolute value is equal to r 2 sin e.

14.6 C..:....) (w) A large group of college students have weights that can be modeled

as a N(150, 30) random variable. If 4 students are selected at random, what

is the probability that they will all weigh more than 150 lbs?

14.7 (t) Prove that the joint PDF given by (14.4) has N(O, 1) marginal PDFs and

that the random variables are uncorrelated. Hint: Use the known properties

of the standard bivariate Gaussian PDF.

14.8 (t) Assume that X,...., N(O, C) for X an N x 1 random vector and that Y =

GX, where G is an M x N matrix with M < N. If the characteristic function

of X is ¢x (w) = exp (- ~wT Cw), find the characteristic function of Y. Use

the following

Based on your results conclude that Y ,...., N(O, GCGT
) .

14.9 C.:.,) (f) If Y = Xl + X 2 + X 3 , where X ,...., N(o, C) and C = diag(ar, ai, aj),

find the PDF of Y. Hint: See Problem 14.8.

14.10 (f) Show that if Cx is a diagonal matrix, then aTCxa = 2:~1 a[Var(Xi)'

14.11 (c) Simulate a single realization of a random vector composed of IID random

variables with PDF Xi ,...., N(l, 2) for i = 1,2, ... ,N. Do this by repeating an

experiment that successively generates X ,...., N(l, 2). Then, find the outcome

of the sample mean random variable and discuss what happens as N becomes

large.

14.12 c.:.:.,,) (w,c) An Nx 1 random vector X has EX;[Xi] = J-l and var(Xi ) = ia2 for

i = 1,2, ... ,N. The components of X are independent. Does the sample mean
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random variable converge to /-L as N becomes large? Carry out a computer

simulation for this problem and explain your results.

14.13 (t) Prove that if X 1,X2 , ... ,XN are independent random variables, then

<PX1,X2 ,...,XN(W1,W2,'" ,WN) = rr~l <Px;(wd·

14.15 (t) If X'" N(p" C) with X an N x 1 random vector, prove that the charac­

teristic function is

<Px(w) = exp (jWTp, - ~wTCw ) .

To do so note that the characteristic function of a random vector distributed

according to N(o, C) is exp (_~wTCw). With these results show that the

PDF of Y = GX for G an M x N matrix with M < N is N(Gp" GCGT
) .

14.16 (t) Prove that if X '" N(p" C) for X an N x 1 random vector, then the

marginal PDFs are Xi '" N(/-Li, an. Hint: Examine the PDF of Y = eTX,
where e, is the N x 1 vector whose elements are all zeros except for the ith

element, which is a one. Also, make use of the results of Problem 14.15.

14.17 (f) Prove that if Xi '" N(O, 1) for i = 1,2 ... ,N and the Xi'S are IID, then

L ~ l Xl '" X~· To do so first find the characteristic function of Xl. Hint:
You will need the result that

/

00 1 (1 x
2

)--exp --- dx = 1
-00 ..j21fc 2 C

for c a complex number. Also, see Table 11.1.

14.18 (t) Prove that if Xi '" exp().) and the Xi'S are IID, then L ~ l Xi has an

Erlang PDF. Hint: See Table 11.1.

14.19 (...:.:,) (w,c) Find the mean and variance of the random variable

12

Y = l:(Ui - 1/2)
i=l

where U; '" U(O, 1) and the Ui'S are IID. Estimate the PDF of Y using a

computer simulation and compare it to a standard Gaussian PDF. See Section

15.5 for a theoretical justification of your results.
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14.20 (w) Three different voltmeters measure the voltage of a 100 volt source. The

measurements can be modeled as random variables with

lfl }{(100,1)

lf2 f'.J }{(100,1O)

lf3 f'.J }{(100, 5).

Is it better to average the results or just use the most accurate voltmeter?

14.21 C:.:J (f) If a 3 x 1 random vector has mean zero and covariance matrix

find the optimal prediction of X 3 given that we have observed X I

X 2 = 2.

1 and

14.22 (t) Consider the prediction of the random variable Y based on observing that

X = x. Assuming (X, Y) is a zero mean random vector, we propose using the

linear prediction Y = ax. Determine the optimal value of a (being the value

that minimizes the MSE) by using the orthogonality principle. Explain your

results by drawing a diagram.

14.23 (f) If a 3 x 1 random vector X has a zero mean and covariance matrix

determine the optimal linear prediction of X3 based on the observed outcomes

of Xl and X2. Why is alopt = O? Hint: Consider the covariance between

E = X 3- pX2 , which is the predictor error for X 3 based on observing only X2 ,

and Xl.

14.24 C...:...) (t,f) Explain why the minimum MSE of the predictor X3 = aloptXI +
a2optX2 is

msemin = E X 1,X2,X3 [(X 3 - aloptXI - a2optX 2)2]

= EXI ,X2,X3 [(X3 - aloptXI - a2optX2)X3 ]

C33 - aloptcl3 - a2optC23·

Next use this result to find the minimum MSE for Example 14.6.
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14.25 (...:....:..-) (c) Use a computer simulation to generate realizations of the random

vector X described in Example 14.6. Then, predict X 3 based on the outcomes

of Xl and X2 and plot the true realizations and the predictions. Finally,

estimate the average predictor error and compare your results to the theoretical

minimum MSE obtained in Problem 14.24.

14.26 (w) For the signal detection example described in Section 14.9 prove that

the probability of saying a signal is present when indeed there is one goes to

1 as A -+ 00.

14.27 (c) Generate on a computer 1000 realizations of the two different random

variables Xw rv N{o, 1) and X s+w rv N{0.5, 1). Next plot the outcomes of

the sample mean random variable versus N, the number of successive samples

averaged, or XN = (liN) L ~ l Xi· What can you say about the sample means

as N becomes large? Explain what this has to do with signal detection.



Chapter 15

Probability and Moment

Approximations Using Limit

Theorems

15.1 Introduction

So far we have described the methods for determining the exact probability of events

using probability mass functions (PMFs) for discrete random variables and proba­

bility density functions (PDFs) for continuous random variables. Also of importance

were the methods to determine the moments of these random variables. The proce­

dures employed were all based on knowledge of the PMF/PDF and the implementa­

tion of its summation/integration. In many practical situations the PMF/PDF may

be unknown or the summation/integration may not be easily carried out. It would

be of great utility, therefore, to be able to approximate the desired quantities using

much simpler methods. For random variables that are the sum of a large number of

independent and identically distributed random variables this can be done. In this

chapter we focus our discussions on two very powerful theorems in probability-the

law of large numbers and the central limit theorem. The first theorem asserts that

the sample mean random variable, which is the average of lID random variables and

which was introduced in Chapter 14, converges to the expected value, a number, of

each random variable in the average. The law of large numbers is also known collo­

quially as the law of averages. Another reason for its importance is that it provides

a justification for the relative frequency interpretation of probability. The second

theorem asserts that a properly normalized sum of lID random variables converges

to a Gaussian random variable.

The theorems are actually the simplest forms of much more general results.

For example, the theorems can be formulated to handle sums of nonidentically

distributed random variables [Rao 1973] and dependent random variables [Brockwell

and Davis 1987].
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Summary

The Bernoulli law of large number is introduced in Section 15.4 as a prelude to the

more general law of large numbers. The latter is summarized in Theorem 15.4.1 and

asserts that the sample mean random variable of IID random variables will converge

to the expected value of a single random variable. The central limit theorem is

described in Section 15.5 where it is demonstrated that the repeated convolution of

PDFs produces a Gaussian PDF. For continuous random variables the central limit

theorem, which asserts that the sum of a large number of lID random variables has a

Gaussian PDF, is summarized in Theorem 15.5.1. The precise statement is given by

(15.6) . For the sum of a large number ofIID discrete random variables it is the CDF

that converges to a Gaussian CDF. Theorem 15.5.2 is the central limit theorem for

discrete random variables. The precise statement is given by (15.9). The concept

of confidence intervals is introduced in Section 15.6. A 95% confidence interval for

the sample mean estimate of the parameter p of a Ber(p) random variable is given

by (15.14). It is then applied to the real-world problem of opinion polling.

15.3 Convergence and Approximation of a Sum

Since we will be dealing with the sum of a large number of random variables, it is

worthwhile first to review some concepts of convergence. In particular, we need to

understand the role that convergence plays in approximating the behavior of a sum

of terms. As an illustrative example, consider the determination of the value of the

sum

for some large value of N. We have purposedly chosen a sum that may be evaluated

in closed form to allow a comparison to its approximation. The exact value can be

found as

Examples of SN versus N are shown in Figure 15.1. The values of SN have been

connected by straight lines for easier viewing. It should be clear that as N ~ 00,

SN ~ 1 if lal < 1. This means that if N is sufficiently large, then SN will differ from 1

by a very small amount. This small amount, which is the error in the approximation

of SN by 1, is given by
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Figure 15.1: Convergence of sum to 1.

and will depend on a as well as N . For example, if we wish to claim that the error

is less than 0.1, then N would have to be 10 for a = 0.5 but N would need to be 57

for a = 0.85, as seen in Figure 15.1. Thus, in general the error of the approximation

will depend upon the particular sequence (value of a here). We can assert , without

actually knowing the value of a as long as lal < 1 and hence the sum converges, that

S N will eventually become close to 1. The error can be quite large for a fixed value

of N (consider what would happen if a = 0.999). Such are the advantages (sum will

be close to 1 for aUlal < 1) and disadvantages (how large does N have to be?) of

limit theorems. We next describ e the law of large numbers.

15 .4 Law of Large N umbers

When we began our study of probability, we argued that if a fair coin is tossed N

times in succession, then the relative frequency of heads, i.e., the number of heads

observed divided by the number of coin tosses, should be close to 1/2. This was

why we intuitively accepted the assignment of a probability of 1/2 to the event that

the outcome of a fair coin toss would be a head. If we continue to toss the coin,

then as N -T 00, we expect the relative frequency to approach 1/2. We can now

prove that this is indeed the case under certain assumptions. First we model the

repeated coin toss experiment as a sequence of N Bernoulli subexperiments (see

also Section 4.6.2). The result of the it h subexperiment is denoted by the discrete

random variable X i, where

1 if heads

o if tails.
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We can then model the overall experimental output by the random vector X =

[Xl X 2 ... XNV. We next assume that the discrete random variables Xi are lID

with marginal PMF

{

~ k = 0
px[k] = ~ k = 1

or the experiment is a sequence of independent and identical Bernoulli subexperi­

ments. Finally, the relative frequency is given by the sample mean random variable

1 N

XN= NLXi
i=l

which was introduced in Chapter 14, although there it was used for the average of

continuous random variables. We subscript the sample mean random variable by N

to remind us that N coin toss outcomes are used in its computation. Now consider

what happens to the mean and variance of XN as N --+ 00. The mean is

1 N

Ex [XN ] = N L Ex [Xi]
i=l

1 N

= NLEx;[Xi]
i=l

1 N 1

NL 2
i=l

1
= for all N .

2

The variance is

var ( ~ tXi)
1 N

N2 L var(Xd (Xi'S are independent ~ uncorrelated)
i = l

(Xi'S are identically distributed

~ have same variance).

But for a Bernoulli random variable, Xi '" Ber(p), the variance is var(Xd = p(l-p).

Since p = 1/2 for a fair coin,

p(l- p)

N
1

4N --+ 0 as N --+ 00.
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Therefore the width of the PMF of XN must decrease as N increases and eventually

go to zero . Since the variance is defined as

we must have that as N --+ 00, X N --+ Ex [XN] = 1/2. In effect the random

variable XN becomes not random at all but a constant. It is called a degenerate

random variable. To further verify that the PMF becomes concentrated about its

mean, which is 1/2, we note that the sum of N IID Bernoulli random variables is a

binomial random variable. Thus,

and therefore the PMF is

k = 0,1, ... ,N.

- - N -
To find the PMF of XN we let X N = (1/N) Li=l Xi = SN/ N and note that XN

can take on values Uk = kiN for k = 0,1 , . . . ,N. Therefore, using the formula for

the transformation of a discrete random variable, the PMF becomes

Uk = kiN; k = 0,1, ... , N (15.2)

which is plotted in Figure 15.2 for various values of N. Because as N increases XN

0,05 ...
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'-::;; 0.2 . . . . .. . . , .. . • .. .. ,.
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, ~. 1 5 ..
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0,1 f ....;....... .. :... .... ..;.... ·.... ·: ·.... · · 1
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O.lf·········:···· ·····'HIIII

0.25.----,---,-- .,-----,---,

~ O . 2 ,

2..
,~15 ..

R.

,l T,

0.1

o
o 0.2 0.4 0,6 0.8

Uk

0.25

0.05

'-::;; 0.2

2..

,~ .15
R.

(a) N = 10 (b) N = 30 (c) N = 100

Figure 15.2: PMF for sample mean random variable of N IID Bernoulli random

variables with p = 1/2. It models the relative frequency of heads obtained for N

fair coin tosses.
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takes on values more densely in the interval [0, 1], we do not obtain a PMF with

all its mass concentrated at 0.5, as we might expect. Nonetheless, the probability

that the sample mean random variable will be concentrated about 1/2 increases.

As an example, the probability of being within the interval [0.45,0.55] is 0.2461 for

N = 10, 0.4153 for N = 30, and 0.7287 for N = 100, as can be verified by summing

the values of the PMF over this interval. Usually it is better to plot the CDF since

as N -+ 00, it can be shown to converge to the unit step beginning at u = 0.5

(see Problem 15.1). Also, it is interesting to note that the PMF appears Gaussian,

although it changes in amplitude and width for each N. This is an observation that

we will focus on later when we discuss the central limit theorem. The preceding

results say that for large enough N the sample mean random variable will always

yield a number, which in this case is 1/2. By "always" we mean that every time we

perform a repeated Bernoulli experiment consisting of N independent and fair coin

tosses, we will obtain a sample mean of 1/2, for N large enough. As an example,

we have plotted in Figure 15.3 five realizations of the sample mean random variable

or XN versus N. The values of XN have been connected by straight lines for easier

viewing. We see that

0.9 .

0.8 . . .. . . . . . . . . . . . . . . .

0.3

500400300200100

0.2

0.1

o"-__----'- -'--__----L --'-__---'

o
N

Figure 15.3: Realizations of sample mean random variable of N lID Bernoulli ran­

dom variables with p = 1/2 as N increases.

- 1
XN -+"2 = Ex [X] . (15.3)

This is called the B ernoulli law of large numbers, and is known to the layman as

the law of averages. More generally for a Bernoulli subexperiment with probability

p , we have that

XN -+P = Ex [X].

The sample mean random variable converges to the expected value of a single ran­

dom variable. Note that since XN is the relative frequency of heads and p is the
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probability of heads, we have shown that the probability of a head in a single coin

toss can be interpreted as the value obtained as the relative frequency of heads in a

large number of independent and identical coin tosses. This observation also justifies

our use of the sample mean random variable as an estimator of a moment since

__ 1 N

Ex[X] = N z=Xi -+ Ex [X]

i=l

asN-+oo

and more generally, justifies our use of (liN) L:f::l xr as an estimate of the nth

moment E[Xn
] (see also Problem 15.6).

A more general law of large numbers is summarized in the following theorem. It

is valid for the sample mean of IID random variables, either discrete, continuous, or

mixed.

Theorem 15.4.1 (Law of Large Numbers) If Xl, X 2 , . .. , XN are lID random

variables with mean Ex[X] and var(X) = (72 < 00, then limN-tooXN = Ex [X].

Proof:

Consider the probability of the sample mean random variable deviating from the

expected value by more than E, where E is a small positive number. This probability

is given by

P [IXN - Ex [X]I > E] = P [IXN - Ex [XN]! > E] .

Since var(XN) = (721N, we have upon using Chebyshev's inequality (see Section

11.8)

and taking the limit of both sides yields

2

lim P [IXN - Ex [X] I > E] :S lim ~ = O.
N-too N-too N E

Since a probability must be greater than or equal to zero, we have finally that

lim P [IXN - Ex [X]I> E] = 0
N-too

(15.4)

which is the mathematical statement that the sample mean random variable con­

verges to the expected value of a single random variable.

o
The limit in (15.4) says that for large enough N, the probability of the error

in the approximation of XN by Ex[X] exceeding E (which can be chosen as small

as desired) will be exceedingly small. It is said that XN -+ Ex[X] in probability

[Grimmett and Stirzaker 2001].
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& Convergence in probability does not mean all realizations will

converge.

Referring to Figure 15.3 it is seen that for all realizations except the top one, the

error is small. The statement of (15.4) does allow some realizations to have an

error greater than E for a given large N. However, the probability of this happening

becomes very small but not zero as N increases. For all practical purposes, then, we

can ignore this occurrence. Hence , convergence in probability is somewhat different

than what one may be familiar with in dealing with convergence of deterministic

sequences. For deterministic sequences, all sequences (since there is only one) will

have an error less than E for all N 2:: N f , where N, will depend on E (see Figure 15.1).

The interested reader should consult [Grimmett and Stirzaker 2001] for further

details. See also Problem 15.8 for an example.

We conclude our discussion with an example and some further comments.

Example 15.1 - Sample mean for lID Gaussian random variables

Recall from the real-world example in Chapter 14 that when a signal is present we

have

X S+W i '" N(A, a
2

) i = 1,2, ... ,N.

Since the random variables are lID, we have by the law of large numbers that

XN -+ Ex[X] = A.

Thus, the upper curve shown in Figure 14.6 must approach A = 0.5 (with high

probability) as N -+ 00.

\/
In applying the law of large numbers we do not need to know the marginal PDF.

If in the previous example, we had XS+Wi '" U(O, 2A), then we also conclude that

XN -+ A. As long as the random variables are lID with mean A and a finite

variance, XN -+ A (although the error in the approximation will depend upon the

marginal PDF-see Problem 15.3).

15.5 Central Limit Theorem

By the law of large numbers the PMF/PDF of the sample mean random variable

decreases in width until all the probability is concentrated about the mean. The

theorem, however, does not say much about the PMF/PDF itself. However, by con­

sidering a slightly modified sample mean random variable, we can make some more

definitive assertions about its probability distribution. To illustrate the necessity

of doing so we consider the PDF of a continuous random variable that is the sum
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of N continuous liD random variables. A particularly illustrative example is for

Xi rvU(-1/2 ,1/2).

Example 15.2 - PDF for sum of lID U(-1/2 , 1/2) random variables

Consider the sum
N

8N = 2:Xi
i=l

where the X i'S are liD random variables with Xi rv U( -1/2,1/2). If N = 2, then

82 = Xl + X 2 and the PDF of 82 is easily found using a convolution integral as

described in Section 12.6. Therefore,

PS2(X) = px(x) *px(x) = i:px(u)px(x - u)du

where * denotes convolution. The evaluation of the convolution integral is most

easily done by plotting px(u) and px(x - u) versus u as shown in Figure 15.4a.

This is necessary to determine the regions over which the product of px(u) and

px(x - u) is nonzero and so contributes to the integral. The reader should be able

to show, based upon Figure 15.4a, that the PDF of 8 2 is that shown in Figure 15.4b.

More generally, we have from (14.22) that

1
__.L...-__ I - - _ ~ __ ~ x

1-xl+x

_ _ ___ u

(a) Cross-hatched region con­

tributes to integral
(b) Result of convolution

Figure 15.4: Determining the PDF for the sum of two independent uniform random

variables using a convolution integral evaluation.

PS
N

(x) = (Xi <p~(w) exp( -jwx) dw
1-00 2~

= px(x) *px(x) * ... *px(x).
, #

v

(N-I) convolutions

Hence to find ps3(x) we must convolve ps2(x) with px(x) to yield px(x) *px(x) *

px(x) since PS2(X) = px(x) *Px(x). This is

PS3(X) = 1:ps2(u)px(x - u)du
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but since px(-x) = px(x), we can express this in the more convenient form as

The integrand may be determined by plotting P82 (u) and the right-shifted version

px(u - x) and multiplying these two functions. The different regions that must be

considered are shown in Figure 15.5. Hence, referring to Figure 15.5 we have

J~ • u -~C----f--'----+-'''''--'--'' u

1
x

-11-1

• u

1-1

(a) -3/2::; x ::; -1/2 (b) -1/2 < x ::; 1/2 (c) 1/2 < x ::; 3/2

Figure 15.5: Determination of limits for convolution integral.

rX +I
/

2

i-I P82(U) ·ldu

1 2 3 9
-x + -x+-
2 2 8

.:P82(U) . Idu
x - I/2

2 3
-x +-

4

t' P82(U) . Idu
iX-I /2

1 2 3 9
-x - -x+­
2 2 8

3 1
- - < x <-­

2 - - 2

1 1
--<x<-

2 - 2

1 3
-<x<­
2 - 2

and P83 (x) = °otherwise. This is plotted in Figure 15.6 versus the PDF of a

N(0,3/12) random variable. Note the close agreement. We have chosen the mean

and variance of the Gaussian approximation to match that of P83(X) (recall that

var(X) = (b - a)2/12 for X "" U(a, b) and hence var(Xi) = 1/12). If we continue

the convolution process , the mean will remain at zero but the variance of SN will

be N/12.

o
A MATLAB program that implements a repeated convolution for a PDF that is

nonzero over the interval (0,1) is given in Appendix 15A. It can be used to verify
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Figure 15.6: PDF for sum of 3 lID U( -1/2,1/2) random variables and Gaussian

approximation.

analytical results and also to tryout other PDFs. An example of its use is shown in

Figure 15.7 for the repeated convolution of a U(O, 1) PDF. Note that as N increases

the PDF moves to the right since E[SN] = NEx[X] = N/2 and the variance also

increases since var(SN) = Nvar(X) = N/12. Because of this behavior it is not

possible to state that the PDF converges to any PDF. To circumvent this problem

it is necessary to normalize the sum so that its mean and variance are fixed as N

increases. It is convenient, therefore, to have the mean fixed at °and the variance

fixed at 1, resulting in a standardized sum. Recall from Section 7.9 that this is easily

accomplished by forming

SN - E[SN]

y'var(SN)

SN-NEx[X]

y'Nvar(X)
(15.5)

By doing so, we can now assert that this standardized random variable will converge

to a N(O , 1) random variable. An example is shown in Figure 15.8 for Xi rv U(O, 1)

and for N = 2,3,4. This is the famous central limit theorem, which says that the

PDF of the standardized sum of a large number of continuous IID random variables

will converge to a Gaussian PDF. Its great importance is that in many practical

situations one can model a random variable as having arisen from the contributions

of many small and similar physical effects. By making the lID assumption we can

assert that the PDF is Gaussian. There is no need to know the PDF of each random

variable or even if it is known, to determine the exact PDF of the sum, which may

not be possible. Some application areas are:
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Figure 15.7: PDF of sum of N lID U(O, 1) random variables. The plots were obtained

using clLdemo.m listed in Appendix 15A.

1. Polling (see Section 15.6) [Weisburg, Krosnick, Bowen 1996]

2. Noise characterization [Middleton 1960]

3. Scattering effects modeling [Urick 1975]

4. Kinetic theory of gases [Reif 1965]

5. Economic modeling [Harvey 1989]
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Figure 15.8: PDF of standardized sum of N IID U(O, 1) random variables.

(15.6)

and many more.

We now state the theorem for continuous random variables.

Theorem 15.5.1 (Central limit theorem for continuous random variables)

If Xl , X2, ... , XN are continuous lID random variables, each with mean Ex [X] and

variance var(X) , and SN = 2:i:1 Xi , then as N -+ 00

SN - E[SN] _ 2:i:1 Xi - NEx[X] N( )
- -+ 0,1 .

..jvar(SN) ..jNvar(X)

(15.7)

Equivalently, the CDF of the standardized sum converges to <p(x) or

p [SN - E[SN] :s; X] -+ [X ~ exp (_~t2) dt = <p(x).
Jvar(SN) J-OOV21f 2

The proof is given in Appendix 15B and is based on the properties of characteristic

functions and the continuity theorem. An example follows.

Example 15.3 - PDF of sum of squares of independent N(O,1) random

variables

Let Xi rv N(O, 1) for i = 1,2, .. . , N and assume that the Xi'S are independent.

We wish to determine the approximate PDF of YN = 2:i:1 Xl as N becomes large.

Note that the exact PDF for YN is a X'jy PDF so that we will equivalently find

an approximation to the PDF of the standardized X'jy random variable. To apply

the central limit theorem we first note that since the Xi'S are IID so are the Xl's

(why?). Then as N -+ 00 we have from (15.6)

2:i:1 xs : NEx[X2] N( )
-+ 0,1 .

..jNvar(X2)
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But X 2
rv xi so that Ex[X2

] = 1 and var(X2
) = 2 (see Section 10.5.6 and Table

11.1 for a x~ = f(N/2, 1/2) PDF) and therefore

I:f--l X?- N -+ N(O 1).
V2N '

Noting that for finite N this result can be viewed as an approximation, we can use

the approximate result
N

YN = LX? rv N(N,2N)

i=l

in making probability calculations. The error in the approximation is shown in

Figure 15.9, where the approximate PDF (shown as the solid curve) of YN, which

is a N(N, 2N), is compared to the exact PDF, which is a x~ (shown as the dashed

curve). It is seen that the approximation becomes better as N increases.

0.1 ,---:--~--~--~--_____, 0.05,----~--~--~--_____,

806040
X

20

-'I
. .. J

I
I

.... . . .. . . .: /
/
t

0.04 .

~
0 0.03

0...

0.02

0.01

0
80 06040

X

20

(a) N = 10 (b) N = 40

Figure 15.9: x~ PDF (dashed curve) and Gaussian PDF approximation of

N(N,2N) (solid curve).

<>
For the previous example it can be shown directly that the characteristic function of

the standardized x ~ random variable converges to that of the standardized Gaussian

random variable, and hence so do their PDFs by the continuity theorem (see Section

11.7 for third property of characteristic function and also Problem 15.17). We next

give an example that quantifies the numerical error of the central limit theorem

approximation.
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Example 15.4 - Central limit theorem and computation of probabilities­

numerical results

Recall that the Erlang PDF is the PDF of the sum of N lID exponential random

variables, where Xi ,....., exp(>.) for i = 1,2, ... , N (see Section 10.5.6). Hence, letting

YN = L:~l Xi the Erlang PDF is

y;:::o

y < O.
(15.8)

Its mean is N / >. and its variance is N / >.2 since the mean and variance of an exp (>')
random variable is 1/>. and 1/>.2, respectively. If we wish to determine P[YN > 10],
then from (15.8) we can find the exact value for>. = 1 as

] F" 1 N-l
P[YN> 10 = 110 (N _ I)! Y exp(-y)dy.

But using

J
n k

yn exp( -y)dy = -n! exp( -y) 2:: ~!
k=O

[Gradshteyn and Ryzhik 1994], we have

P[YN > 10] = (N ~ I)! [-(N - I)! exp( _y) ~ ~ ~ 00]
k=O 10

N-l 10k

= exp(-lO) 2:: kf'
k=O

A central limit theorem approximation would yield YN ,....., N(N/>' ,N/ >.2) = N(N,N)

so that

where the P denotes the approximation of P. The true and approximate values

for this probability are shown in Figure 15.10. The probability values have been

connected by straight lines for easier viewing.

o
For the sum of lID discrete random variables the situation changes markedly. Con­

sider the sum of N lID Ber(p) random variables. We already know that the PMF

is binomial so that

k = 0,1 , ... , N - 1.
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Figure 15.10: Exact and approximate calculation of probability that YN > 10 for YN

an Erlang PDF. Exact value shown as dashed cur ve and Gaussian approximation

as solid cur ve.

Hence, this example will allow us to compare t he true P MF against any approxima­

tio n . For reasons already explained we need to consider the P MF of the standardized

sum or
SN -E[SN]

v var(SN)

SN - Np

VN p(l - p)

The P MF of t he standardized binomial random variable P MF with p = 1/2 is shown

in Figure 15.11 for various values on N. Note that it does not converge to any given
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(a) N = 10 (b) N = 30 (c) N = 100

Fi gure 15.11: P MF for standardized binomial random variable with p = 1/2.

P MF, alt hough the "envelope" , whose amplit ude decreases as N increases, appears
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to be Gaussian. The lack of convergence is because the sample space or values that

the standardized random variable can take on changes with N . The possible values

k = 0,1 , ... , N
k - N p k - N/2

Xk = JNp(1 - p) = IN/4

which become more dense as N increases. However , what does converge is the CDF

as shown in Figure 15.12. Now as N --+ 00 we can assert that the CDF converges,

are

12,-------,----- -, 1.2,--------,------ - ----, 1.2,---- - - -,--------,

1 ·

Ii< 0 8 ..
Q'
0 0.6 .. . .

0.4 . . . .

0.2 ..

1 ·
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. 0 0.6 "

0.4 . . . .
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~ 0 8
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0.4 . .
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(a) N = 10 (b) N = 30 (c) N = 100

Figure 15.12 : CDF for standardized binomial random vari able with p = 1/2.

and fur thermore it converges to the CDF of a N (O, 1) random variable. Hence, the

cent ral limit t heorem for discrete random variables is stated in terms of its CDF. It

says that as N --+ 00

[
SN - E[SN] ] j X 1 (1 2)P ~ x --+ ;;=;-= exp - -t dt = ll>(x)
J var(SN) - ooy211" 2

and is also known as the DeMoivre-Laplace theorem. We summarize the central

limit theorem for discret e random variables next .

Theorem 15.5.2 (Central limit theorem for discrete random variables)

If Xl , X 2 , .. . , X N are lID discrete random variables, each with mean Ex[X] and

variance var (X ), and SN = L: ~ l X i, then as N --+ 00

[
SN - E [SN] ] I. 1 (1 2)P ~ x --+ ;;=;-= exp --t dt = ll>(x)
Jvar(SN) - 00 y 211" 2

(15.9)

An example follows.

Example 15.5 - Computation of binomial probability

Assume that YN ,...., bin(N, 1/2), which may be viewed as the PMF for the number of

heads obtained in N fair coin tosses , and consider the probability P [k l ~ YN ~ k2 ].



(15.10)
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Then the exact probability is

P[k 1 ~ YN ~ k2] = I: (~) (~) N
k=kl

A central limit theorem approximation yields

P [ k l ~ Y N ~ k 2 ] = p[k1-N/2<YN-N/2<k2-N/2]

IN/4 - IN/4 - IN/4

~ <p (k2 - N/2) _ <p (k1 - N/2) (from (10.25))
IN/4 IN/4

sInce

P[490 ~ YN ~ 510]

(15.11)

is the standardized random variable for p = 1/2. For example, if we wish to compute

the probability of between 490 and 510 heads out of N = 1000 tosses, then

~ <p (510 - 500) _ <p (490 - 500)
)250 )250

1 - Q ( )~~O) - ( 1 - Q ( ;21~0) )

1 - 2Q ()~~O) = 0.4729.

The exact value, however, is from (15.10)

P[490 ~ YN ~ 510] = ~ (~) (~) N = 0.4933
k=490

(see Problem 15.24 on how this was computed). A slightly better approximation

using the central limit theorem can be obtained by replacing P[490 ~ Y ~ 510] with

P[489.5 ~ Y ~ 510.5], which will more closely approximate the discrete random

variable CDF by the continuous Gaussian CDF. This is because the binomial CDF

has jumps at the integers as can be seen by referring to Figure 15.12. By taking a

slighter larger interval to be used with the Gaussian approximation, the area under

the Gaussian CDF more closely approximates these jumps at the endpoints of the

interval. With this approximation we have

P[489.5 < Y < 510.5] ~ Q (489.5 - 500) _ Q (510.5 - 500)
- - )250 )250

= 0.4934

which is quite close to the true value!
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A frequent news topic of interest is the opinion of people on a major issue. For

example, during the year of a presidential election in the United States, we hear

almost on a daily basis the percentage of people who would vote for candidate A,

with the remaining percentage voting for candidate B. It may be reported that 75%

of the population would vote for candidate A and 25% would vote for candidate

B. Upon reflection, it does not seem reasonable that a news organization would

contact the entire population of the United States, almost 294,000,000 people, to

determine their voter preferences. And indeed it is unreasonable! A more typical

number of people contacted is only about 1000. How then can the news organization

report that 75% of the population would vote for candidate A? The answer lies in

the polling error - the results are actually stated as 75% with a margin of error

of ±3%. Hence , it is not claimed that exactly 75% of the population would vote

for candidate A, but between 72% and 78% would vote for candidate A. Even so,

this seems like a lot of information to be gleaned from a very small sample of the

population.

An analogous problem may help to unravel the mystery. Let's say we have a

coin with an unknown probability of heads p. We wish to estimate p by tossing the

coin N times. As we have already discussed, the law of large numbers asserts that

we can determine p without error if we toss the coin an infinite number of times

and use as our est imate the relative frequency of heads. However, in practice we are

limited to only N coin tosses. How much will our estimate be in error? Or more

precisely, how much can the true value deviate from our estimate? We know that

the number of heads observed in N independent coin tosses can be anywhere from

o to N . Hence, our estimate of p for N = 1000 can take on the possible values

A 1 2
p = 0, 1000' 1000' ... , l.

Of course, most of these estimates are not very probable. The probability that the

estimate will take on these values is

P[p = k/1000] = (10;0) pk(l_ p)lOOO-k k = 0,1, ... , 1000

which is shown in Figure 15.13 for p = 0.75. The probabilities for p outside the

interval shown are approximately zero . Note that the maximum probability is for

the true value p = 0.75. To assess the error in the estimate of p we can determine the

interval over which say 95% of the p's will lie. The interval is chosen to be centered

about p = 0.75. In Figure 15.13 it is shown as the interval contained within the

dashed vertical lines and is found by solving

t (10;0) (0.75)k (0.25) lOOO-k = 0.95

k=kl' Jv

P[k heads]
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yielding kl = 724 and k2 = 776, which results in PI = 0.724 and P2 = 0.776. Hence,
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Figure 15.13: PMF for estimate of p for a binomial random variable. Also, shown

as the dashed vertical lines are the boundaries of the interval within which 95% of

the estimates will lie.

for p = 0.75 we see that 95% of the time (if we kept repeating the 1000 coin toss

experiment), the value of P would be in the interval [0.724, 0.776]. We can assert

that we are 95% confident that for p = 0.75

p - 0.026 ~ P ~ p + 0.026

or

-p + 0.026 ~ -P ~ -p - 0.026

or finally

P- 0.026 ~ p ~ P+ 0.026.

The interval [p-0.026,p+0 .026] is called the 95% confidence interval. It is a random

interval that covers the true value of p = 0.75 for 95% of the time. As an example

a MATLAB simulation is shown in Figure 15.14. For each of 50 trials the estimate

of p is shown by the dot while the confidence interval is indicated by a vertical line.

Note that only 3 of the intervals fail to cover the true value of p = 0.75. With 50

trials and a probability of 0.95 we expect 2.5 intervals not to cover the true value.

Instead of having to compute k l and k2 using (15.12), it is easier in practice to

use the central limit theorem. Since P= 2:~1 (Xi/N), with Xi '" Ber(p), is a sum

of IID random variables we can assert from Theorem 15.5.2 that

P [-b ~ ~ ~ b] ~ <I>(b) - <I> (-b).
var(p)
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Figure 15.14: 95% confidence interval for estimate of p = 0.75 for a binomial random

variable. The estimates are shown as dots.

Noting that Xi '" Ber(p), E[P] = E[L:f::l Xi/N] = Np/N = p and var(p) =
var(L:f::l Xi/N) = Np(l - p)/N2 = p(l - p)/N, we have

P [-b < P- p < b] ~ <I>(b) - <I> (-b).
- Vp(l - p)/N -

For a 95% confidence interval or <I>(b) - <I> (-b) = 0.95, we have b= 1.96, as may be

easily verified . Hence, we can use the approximation

-1.96 < P- p < 1.96
- Vp(l- p)/N -

which after the same manipulation as before yields the confidence interval

p - 1.96JP(1;; p) ~ p ~ p+ 1.96JP(l;; p). (15.13)

The only difficulty in applying this result is that we don't know the value of p, which

arose from the variance of p. To circumvent this there are two approaches. We can

replace p by its estimate to yield the confidence interval

p- 1.96Jp(1;; p) ~ p ~ p+ 1.96Jp(1;; p). (15.14)

A more conservative approach is to note that p(l - p) is maximum for p = 1/2.

Using this number yields a larger interval than necessary. However, it allows us to
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determine before the experiment is performed and the value of p revealed, the length

of the confidence interval. This is useful in planning how large N must be in order

to have a confidence interval not exceeding a given length (see Problem 15.25). If

we adopt the latter approach then the confidence interval becomes

p± 1.96VP
(1;; p) = p± 1.96V1~4 ~ P± ~.

In summary, if we toss a coin with a probability p of heads N times, then the interval

[p - l/VN,p + l/VN] will contain the true value of p more than 95% of the time.

It is said that the error in our estimate of pis ±l/VN.
Finally, returning to our polling problem we ask N people if they will vote for

candidate A. The probability that a person chosen at random will say "yes" is p,

because the proportion of people in the population who will vote for candidate A

is p. We liken this to tossing a single coin and noting if it comes up a head (vote

"yes") or a tail (vote "no"). Then we continue to record the responses of N people

(continue to toss the coin N times). Assume, for example, 750 people out of 1000 say

"yes". Then p= 750/1000 = 0.75 and the margin of error is ±l/VN ~ 3%. Hence,

we report the results as 75% of the population would vote for candidate A with a

margin of error of 3%. (Probabilistically speaking, if we continue to poll groups of

1000 voters, estimating p for each group, then about 95 out of 100 groups would

cover the true value of lOOp % by their estimated interval [lOOp - 3, lOOp + 3]%.)
We needn't poll 294,000,000 people since we assume that the percentage of the 1000

people polled who would vote for candidate A is representative of the percentage of the

entire population. Is this true? Certainly not if the 1000 people were all relatives of

candidate A. Pollsters make their living by ensuring that their sample (1000 people

polled) is a representative cross-section of the entire United States population.
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Problems

15.1 (f) For the PMF given by (15.2) plot the CDF for N = 10, N = 30, and

N = 100. What function does the CDF appear to converge to?

15.2 (c) If Xi '" N(l, 1) for i = 1,2 ... ,N are lID random variables, plot a real­

ization of the sample mean random variable versus N. Should the realization

converge and if so to what value?

15.3 (w,c) Let Xli'" U(O , 2) for i = 1,2 . . . , N be lID random variables and let

X 2i '" N(l, 4) for i = 1,2 ... ,N be another set of lID random variables. If the

sample mean random variable is formed for each set of lID random variables,

which one should converge faster? Implement a computer simulation to check

your results.

15.4 (-:.:.,) (w) Consider the weighted sum of N lID random variables YN = 2:f::1 «.x;
If Ex[XJ = 0 and var(X) = 1, under what conditions will the sum converge

to a number? Can you give an example, other than cq = liN, of a set of ai's

which will result in convergence?

15.5(w) A random walk is defined as XN = XN-I + UN for N = 2,3, ... and

Xl = UI , where the Ui'S are lID random variables with P[Ui = -lJ = P[Ui =

+lJ = 1/2. Will X N converge to anything as N --+ oo?

15.6 (w) To estimate the second moment of a random variable it is proposed to

use (liN) 2:f::1 Xl. Under what conditions will the estimate converge to the

true value?

15.7 C:..:J (w) If Xi for i = 1,2 ... ,N are lID random variables, will the random

variable (l/VN) 2 : ~ 1 Xi converge to a number?

15.8 (t,c) In this problem we attempt to demonstrate that convergence in prob­

ability is different than standard convergence of a sequence of real numbers.
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Consider the sequence of random variables

YN =
XN√

N
+ u

(

XN√
N

− 0.1

)

where the XN ’s are IID, each with PDF XN ∼ N (0, 1) and u(x) is the unit
step function. Prove that P [|YN | > ǫ] → 0 as N → ∞ by using the law of
total probability as

P [|YN | > ǫ] = P [|YN | > ǫ|XN/
√

N > 0.1]P [XN/
√

N > 0.1]

+ P [|YN | > ǫ|XN/
√

N ≤ 0.1]P [XN/
√

N ≤ 0.1].

This says that YN → 0 in probability. Next simulate this sequence on the
computer for N = 1, 2, . . . , 200 to generate 4 realizations of {Y1, Y2, . . . , Y200}.
Examine whether for a given N all realizations lie within the “convergence
band” of [−0.2, 0.2]. Next generate an additional 6 realizations and overlay all
10 realizations. What can you say about the convergence of any one realiza-
tion?

15.9 (w) There are 1000 resistors in a bin labeled 10 ohms. Due to manufacturing
tolerances, however, the resistance of the resistors are somewhat different.
Assume that the resistance can be modeled as a random variable with a mean
of 10 ohms and a variance of 2 ohms 2. If 100 resistors are chosen from the
bin and connected in series (so the resistances add together), what is the
approximate probability that the total resistance will exceed 1030 ohms?

15.10 (w) Consider a sequence of random variables X1,X1,X2,X2,X3,X3, . . ., where
X1,X2,X3 . . . are IID random variables. Does the law of large numbers hold?
How about the central limit theorem?

15.11 (w) Consider an Erlang random variable with parameter N . If N increases,
does the PDF become Gaussian? Hint: Compare the characteristic functions
of the exponential random variable and the Γ(N,λ) random variable in Table
11.1.

15.12 (f) Find the approximate PDF of Y =
∑100

i=1 X2
i , if the Xi’s are IID with

Xi ∼ N (−4, 8).

15.13 (
⌣

. . ) (f) Find the approximate PDF of Y =
∑1000

i=1 Xi, if the Xi’s are IID
with Xi ∼ U(1, 3).

15.14 (f) Find the approximate probability that Y =
∑10

i=1 Xi will exceed 7, if the
Xi’s are IID with the PDF

pX(x) =

{

2x 0 < x < 1
0 otherwise.
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15.15 (c) Modify the computer program clt_demo.m listed in Appendix 15A to

display the repeated convolution of the PDF

px(x) = { O~ sin(7rx) 0 < x < 1
otherwise.

and examine the results.

15.16 (c) Use the computer program clt_demo.m listed in Appendix 15A to display

the repeated convolution of the PDF U(O, 1). Next modify the program to

display the repeated convolution of the PDF

{
12 - 4xl 0 < x < 1

px(x) = 0 otherwise.

Which PDF results in a faster convergence to a Gaussian PDF and why?

15.17 (t) In this problem we prove that the PDF of a standardized X7v random

variable converges to a Gaussian PDF as N -+ 00. To do so let YN ,...., X7v and

show that the characteristic function is

1
</JYN(W) = (1- 2jw)N/2

by using Table 11.1. Next define the standardized random variable

ZN = YN - E[YN]

Jvar(YN)

and note that the mean and variance ofax7v random variable is Nand 2N,

respectively. Show the characteristic function of ZN is

exp( -jw..jNfi)

</JZN(w) = (1 _ jwJ2/N)N/2'

Finally, take the natural logarithm of </JzN(w) and note that for a complex

variable x with Ixl « 1, we have that lnf l - x) ~ -x - x2 /2. You should be

able to show that as N -+ 00, In</JzN(w) -+ -w2/2.

15.18 (w) A particle undergoes collisions with other particles. Each collision causes

its horizontal velocity to change according to a N(O,0.1) em/sec random vari­

able. After 100 independent collisions what is the probability that the parti­

cle's velocity will exceed 5 em/sec if it is initially at rest? Is this result exact

or approximate?

15.19 C:..:.-) (f) The sample mean random variable of N IID random variables with

Xi ,...., U(O , 1) will converge to 1/2. How many random variables need to be

averaged before we can assert that the approximate probability of an error of

not more than 0.01 in magnitude is 0.99?
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15.20 t:...:J (w) An orange grove produces oranges whose weights are uniformly

distributed between 3 and 'i oz«. If a truck can hold 4000 lbs. of oranges, what

is the approximate probability that it can carry 15,000 oranges?

15.21 (w) A sleeping pill is effective for 75% of the population. If in a hospital 160

patients are given a sleeping pill, what is the approximate probability that 125

or more of them will sleep better?

15.22 (...:..:.-) (w) For which PDF will a sum of IID random variables when added

together have a PDF that converges to a Gaussian PDF the fastest?

15.23 ( . . ~ . : . - ) (w) A coin is tossed 1000 times, producing 750 heads. Is this a fair

coin?

15.24 (f,c) To compute the probability of (15.11) we can use the following approach

to compute each term in the summation. Each term can be written as

[k] = (N) ( ~ ) N = N(N - 1)· ·· (N - k + 1) (~) N

PYN k 2 1(2)(3)··· (k) 2

Taking the natural logarithm produces

N k

InpYN[k] = L In(i) - Lln(i) - Nln(2)
i=N-k+l i=l

which is easily done on a computer. Next, exponentiate to find PYN [k] and add

each of the terms together to finally implement the summation. Carry this

out to verify the result given in (15.11). What happens if you try to compute

each term directly?

15.25 (f) In a poll of candidate preferences for two candidates, we wish to report

that the margin of error is only ±1%. What is the maximum number of people

whom we will need to poll?

15.26 t:...:... ) (w) A clinical trial is performed to determine if a particular drug is

effective . A group of 100 people is split into two equal groups at random. The

drug is administered to group 1 while group 2 is given a placebo. As a result

of the study, 40 people in group 1 show a marked improvement while only

30 people in group 2 do so. Is the drug effective? Hint: Find the confidence

intervals (using (15.14» for the percentage of the people in each group who

show an improvement.



This program demonstrates the central limit theorem. It determines

the PDF for the sum S_N of N IID random variables . Each marginal PDF

is assumed to be nonzero over the interval (0,1). The repeated

convolution integral is implemented using a discrete convolution. The

plots of the PDF of S_N as N increases are shown successively

(press carriage return for next plot).

Appendix 15A

MATLAB Program to Compute

Repeated Convolution of PDFs

%
%

%
%

%

%
%
%clt_demo .m

clear all

delu=0.005;

u=[O:delu:l-delu]'; %p_X defined on interval [0,1)

p_X=ones(length(u),l); %try p_X=abs(2-4*u) for really strange PDF

x=[u;u+l]; % increase abcissa values since repeated

%convolution increases nonzero width of output
p_S=zeros(length(x),l);

N=12; %number of random variables summed

for j=l:length(x) %start discrete convolution approximation

%to continuous convolution
for i=l:length(u)

if j-i>O&j-i<=length(p_X)

p_S(j)=p_S(j)+p_X( i)*p_X(j-i)*delu;

end

end

end

plot(x,p_S) %plot results for N=2

grid
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axis([O N 0 1]) ;. set axes lengths for plotting
xlabel( , x ")

ylabel( 'p_S')

title('PDF for S_N')

text(0.75*N,0.85,'N = 2') ;. label plot with the

;. number of convolutions

for n=3:N

pause
x=[xju+n-1] j ;. increase abcissa values since

;. repeated convolution increases

;. nonzero width of output

p_S=[p_Sjzeros(length(u),1)] j

g=zeros(length(p_S),1)j

for j=1:length(x) ;. start discrete convolution

for i=1:length(u)

if j-i>O

g(j,1)=g(j,1)+p_X(i)*p_S(j -i)*deluj

end

end

end

p_S=gj ;. plot results for N=3,4, ... ,12

plot(x,p_S)

grid

axis ([0 N 0 1])

xlabel ( , x ' )

ylabel ('p_S')

title('PDF for S_N')

text(0.75*N,0.85,['N = , num2str(n)])

end



Appendix 15B

Proof of Central Limit Theorem

In this appendix we prove the central limit theorem for continuous random variables.

Consider the characteristic function of the standardized continuous random variable

ZN = SN - NEx[X]

JNvar(X)

where SN =: I:~1 Xi and the Xi 'S are IID. By definition of ZN the characteristic

function becomes

EZN [exp(jwZN)]

Ex [exp (jwl:~~:ar~:;[XI)]

Ex [IT exp (jW Xi - Ex [X] )]
i=l JNvar(X)

rr
N

E [ (. Xi - EX[X])]x. exp JW---;========;:~

i=l' JNvar(X)

[
Ex [exp (jW X - Ex [X] )]] N

JNvar(X)

(independence of Xi'S)

(identically distributed Xi'S).

(see Problem 5.22).

But for a complex variable ~ we can write its exponential as a Taylor series yielding

00 ~ k

exp(e) = I: k!
k=O

Thus,
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Ex [f (jw)k (X - EX[Xl)k]
k=O k! JNvar(X)

= f (jw)kEx [(X - EX[Xl)k] (assume interchange valid)
k=O k! JNvar(X)

= l+jwEx [ ~ - E x [ X l ] +-2
1(jw)2

Ex [(~-EX[Xl)2] + Ex[R(X)l
Nvar(X) Nvar(X)

where R(X) is the third-order and higher terms of the Taylor expansion. But

and so

E [X - Ex[Xl] =
x JNvar(X)

E [(X - Ex[Xl) 2]
x JNvar(X)

Ex[Xl - Ex [Xl = 0

JNvar(X)

Ex[(X - EX[X])2] 1

Nvar(X) N

</JZN(w) = [1 _;~ + Ex [R(X)]] N

The terms comprising R(X) are

R(X) = (jW)3 Ex [(X - EX[Xl)3] + ...
3! JNvar(X)

[( )
3]1 (jw)3 E X - Ex [X]

N3/23! x Jvar(X) + ...

(see Problem 5.15)

which can be shown to be small, due to the division of the successive terms by

N 3/2, N 2, ... , relative to the _w2/(2N) term. Hence as N -+ 00, they do not

contribute to </JZN (w) and therefore

</JZN(W) -+ (1- ;~) N

-+ exp ( _~w2) = </Jz(w)

where Z '" N(o,1). Since the characteristic function of ZN converges to the char­

acteristic function of Z, we have by the continuity theorem (see Section 11.7) that

the PDF of ZN must converge to the PDF of Z. Therefore, we have finally that as

N-+oo

1 (1 2)PZN (z) -+ Pz(z) = .../2if exp -'2z .



Chapter 16

Basic Random Processes

16.1 Introduction

So far we have studied the probabilistic description of a finite number of random

variables. This is useful for random phenomena that have definite beginning and

end times. Many physical phenomena, however, are more appropriately modeled as

ongoing in time. Such is the case for the annual summer rainfall in Rhode Island

as shown in Figure 1.1 and repeated for convenience in Figure 16.1. This physical

20 ,.........- - - -r-- - --r-- - ----,r--- - -,.-- - ---r>

200019801940 1960
Year

1920
2
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Average = 9.76 inches :
18 . . ; , , -: ; -:. . . . . .· . . . . .· . . . . .
16 .. : : : : : :

· . . . . .· . . . . .. . . . .
" ,14 .. : .... .... .

~ 12
-5
.s 10 Ftr."fIt-rl"-'f-II:t""it'1H

8

6

Figure 16.1: Annual summer rainfall in Rhode Island from 1895 to 2002.

process has been ongoing for all time and will undoubtedly continue into the future.

It is only our limited ability to measure the rainfall over several lifetimes that has

produced the data shown in Figure 16.1. It therefore seems more reasonable to

attempt to study the probabilistic characteristics of the annual summer rainfall in
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Rhode Island for all time. To do so let X[n] be a random variable that denotes

the annual summer rainfall for year n. Then, we will be interested in the behav­

ior of the infinite tuple of random variables (... , X [- l ], X [O], X [l ], ... ), where the

corresponding year for n = 0 can be chosen for convenience (maybe according to

the Christian or Hebrew calendars, as examples). Note that we cannot employ our

previous probabilistic methods directly since the number of random variables is not

finite or N-dimensional.

Given our interest in the annual summer rainfall, what types of questions are

pertinent? A meterologist might wish to determine if the rainfall totals are increas­

ing with time. Hence , he may question if the average rainfall is really constant. If it

is not constant with time, then our estimate of the average, obtained by taking the

sample mean of the values shown in Figure 16.1, is meaningless. As an example,

we would also have obtained an average of 9.76 inches if the rainfall totals were in­

creasing linearly with time, starting at 7.76 inches and ending at 11.76 inches. The

meterologist might argue that due to global warming the rainfall totals should be

increasing. We will return to this question in Section 16.8. Another question might

be to assess the probability that the following year the rainfall will be 12 inches or

more if we know the entire past history of rainfall totals. This is the problem of

prediction, which is a fundamental problem in many scientific disciplines.

A second example of a random process, which is of intense interest, is a man­

made one: the Dow-Jones industrial average (DJIA) for stocks. At the end of each

trading day the average of the prices of a representative group of stocks is computed

to give an indication of the health of the U.S. stock market. Its usefulness is that

this value also gives an indication of the overall health of the U.S. economy. Some

recent weekly values are shown in Figure 16.2. The overall trend beginning at week

10 is upward until about week 60, at which point it fluctuates up and down. Some

questions of interest are whether the index will go back up again after week 92

and to what degree is it possible to predict the movement of the stock market, of

which the DJIA is an indicator. The financial industry and in fact the health of the

U.S. economy depends in a large degree upon the answers to these questions! In the

remaining chapters we will describe the theory and application of random processes.

As always, the theory will serve as a foundation upon which we will be able to analyze

random processes. In any practical situation, however, the ideal theoretical analysis

must be tempered with the constraints and additional complexities of the real world.

16.2 Summary

A random process is defined in Section 16.3. Four different types of random pro­

cesses are described in Section 16.4. They are classified according to whether they

are defined for all time or only for uniformly spaced time samples, and also accord­

ing to their possible values as being discrete or continuous. Figure 16.5 illustrates

the various types. A stationary random process is one for which its probabilistic
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Figure 16.2: Dow-Jones industrial average at the end of each week from January 8,

2003 to September 29, 2004 [DowJones.com 2004] .

description does not change with the chosen time origin, which is expressed mathe­

matically by (16.3) . An lID random process is stationary as shown in Example 16.3.

The concept of a random process having stationary and independent increments is

described in Section 16.5 with an illustration given in Example 16.5. Some more

examples of random processes are given in Section 16.6. The most useful moments

of a random process, the mean sequence and the covariance sequence, are defined

by (16.5) and (16.7) , respectively. Finally, in Section 16.8 an application of the

est imat ion of the mean sequence to predicting average rainfall totals is described.

The least squares estimator of t he slope and intercept of a straight line is found

using (16.9) and is commonly used in data analysis problems.

16.3 What Is a Random Process?

To define the concept of a random process we will begin by considering our usual

example of a coin tossing experiment. Assume that at some start time we toss

a coin and then repeat this subexperiment at one second intervals for all time.

Letting n denote the time in seconds, we therefore generate successive outcomes

at times n = 0,1 ,... . The experiment continues indefinitely. Since there are

two possible outcomes for each coin toss and we will assume that the tosses are

independent, we have an infinite sequence of Bernoulli trials. This is termed a

Bernoulli random process and extends the finite Bernoulli set of random variables

first introduced in Section 4.6.2, in which a finite number of trials were carried

out. As usual, we let the probability of a head (X = 1) be p and the prob-
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ability of a tail (X = 0) be 1 - p for each trial. With this setup, a random

process can be defined as a mapping from the original experimental sample space

S = {(H,H,T, ),(H,T,H, . . .),(T,T,H, ), ... } to the numerical sample space

Sx = {(I , 1,0, ), (1,0,1 , .. .) , (0,0,1 , ... ), }. Note that each simple event or el-

ement of S is an infinite sequence of H's and T 's which is then mapped into an

infinite sequence of 1's and O's , which is the corresponding simple event in SX . One

may picture a random process as being generated by the "random process gener­

ator" shown in Figure 16.3. The random process is composed of the infinite (but

..
r

Random process

generator
r

+ PMF description

(X [0], X[I], ... )
.....;..-...~

Figure 16.3: A conceptual random process generator. The input is an infinite se­

quence of random variables with their probabilistic description and the output is an

infinite sequence of numbers.

countable) "vector" of random variables (X[O] ,X[I] , .. .), each of which is a Bernoulli

random variable, and each outcome of the random process is given by the infinite

sequence of numerical values (x[O] ,x[I] , .. .). As usual, uppercase letters are used for

the random variables and lowercase letters for the values they take on . Some typical

outcomes of the Bernoulli random process are shown in Figure 16.4. They were

generated in MATLAB using x=floor(rand(31,1)+O.5) for each outcome. Each

sequence in Figure 16.4 is called an outcome or by its synonyms of realization or

sample sequence. We will prefer the use of the term "realizat ion" . Each realization

is an infinite sequence of numbers. Hence , the random process is a mapping from S,

which is a set of infinite sequential experimental outcomes, to Sx , which is a set of

infinite sequences of 1's and O's or realizations. The total number of realizations is

not countable (see Problem 16.3) . The set of all realizations is sometimes referred

to as the ensemble of realizations. Just as for the case of a single random variable,

which is a mapping from S to SX and therefore is represented as the set function

X(5) , a similar notation is used for random processes. Now, however, we will use

X[n ,5] to represent the mapping from an element of S to a realization x[n]. In

Figure 16.4 we see the result of the mapping for 5 = 51, which is X[n ,51] = xdn] ,
as well as others. It is important to note that if we fix n at n = 18, for example,

then X[18 ,5] is a random variable that has a Bernoulli PMF. Three of its outcomes

are shown highlighted in Figure 16.4 with dashed boxes. Hence, all the methods

developed for a single random variable are applicable. Likewise, if we fix two sam­

ples at n = 20 and n = 22, then X[20,5] and X[22, 5] becomes a bivariate random

vector. Again all our previous methods for two-dimensional random vectors apply.

To summarize, a random process is defined to be an infinite sequence of random
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Figure 16.4: Typical outcomes of Bernoulli random process with p = 0.5. The

realization starts at n = 0 and continues indefinitely. The dashed box indicates the

realizations of the random variable X[18,s].

variables (X(O), X(1) , . . .), with one random variable for each time instant, and

each realization of the random process takes on a value that is represented as an

infinite sequence of numbers or (x[O], x[I]' ... ). We will denote the random process

more succinctly by X[n] and the realization by x[n] but it is understood that the n

denotes the values n = 0,1, .... If we wish to indicate the random process at a fixed

time instant, then we will use n = no or n = nI, etc. so that X[no] is the random

process at n = no (which is just a random variable) and its realization at that time

is x [no] (which is a number). Finally, we have used the [.] notation to remind us

that X[n] is defined only for discrete integer times. This type of random process is

known as a discrete-time random process. In the next section the continuous-time

random process will be discussed. Before continuing, however , we look at a typical

probability calculation for a random process.

Example 16.1 - Bernoulli random process

For the infinite coin tossing example, we might ask for the probability of the first
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5 tosses coming up all heads. Thus, we wish to evaluate

P[X[O] = 1, X[I] = 1, X[2] = 1, X[3] = 1, X [4] = 1, X[5] = 0 or 1, X[6] = 0 or 1, ...].

It would seem that since we don 't care what the outcomes of X[n] for n = 5,6, ...

are, then the probability expression could be replaced by

P[X[O] = I ,X[I] = I ,X[2] = I ,X[3] = I,X[4] = 1]

and indeed this is the case, although it is not so easy to prove [Billingsley 1986].

Then, by using the assumption of independence of a Bernoulli random process we

have

4

P[X[O] = I,X[I] = I,X[2] = I,X[3] = 1, X [4] = 1] = II P[X[n] = 1] =p5.

n=O

A related question is to determine the probability that we will ever observe 5 ones

in a row. Intuitively, we expect this probability to be 1, but how do we prove this?

It is not easy! Such is the difficulty encountered when we make the leap from a

random vector, having a finite number of random variables, to a random process,

having an infinite number of random variables.

16.4 Types of Random Processes

The previous example of an infinite number of coin tosses produced a random process

X[n] for n = 0,1 , .... In some cases , however, we wish to think of the random

process as having started sometime in the infinite past. If X[n] is defined for n =

... , -1 ,0,1 , ... or equivalently -00 < n < 00, where it is assumed that n is an

integer, then X[n] is called an infinite random process. In contrast, the previous

example is referred to as a semi-infinite random process. Another categorization

of random processes involves whether the times at which the random variables are

defined and the values that they take on are either discrete or continuous. The

infinite coin toss example is a discrete-time random process, since it is defined for n =

0,1 , ... , and is a discrete-valued random process, since it takes on values 0 and 1 only.

It is referred to as a discrete-time/discrete valued (DTDV) random process. Other

types ofrandom processes are discrete-time/continuous-valued (DTCV) , continuous­

time/discrete-valued (CTDV), and continuous-time/continuous-valued (CTCV). A

realization of each type is shown in Figure 16.5. In Figure 16.5a a realization of

the Bernoulli random process, as previously described, is shown while in Figure

16.5b a realization of a Gaussian random process with Y[n] rv N(O,I) is shown.

The Bernoulli random process is defined for n = 0,1 , ... (semi-infinite) while the

Gaussian random process is defined for -00 < n < 00 and n an integer (infinite).
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Figure 16.5: Typical realizations of different types of random processes.

Both these random processes are discrete-time with the first one taking on only the

values 0 and 1 and the second one taking on all real values. In Figure 16.5c is shown

a random process, also known as a cont inuous-time binomial random process, which

is defined as W(t) = E ~ ~o X [n]' where X[n] is a Bernoulli random process and [t]
denotes the largest integer less than or equal to t . This process effectively counts

the number of successes or ones of the Bernoulli random process (compare Figure

16.5c with Figure 16.5a) . It is defined for all ti me; hence, it is a continuous-time

random process, and it takes on only integer values in the range {O, 1, ... }; hence,

it is discrete-valued. Finally, in Figure 16.5d is shown a realization of anot her
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Gaussian process but with Z(t) rv N(O, 1) for all time t. This is a continuous-time

random process that takes on all real values; hence, it is continuous-valued. We

will generally use a discrete-time random process, with either discrete or continuous

values, to introduce new concepts. This is because a continuous-t ime random process

introduces a host of mathematical subtleties which in many cases are beyond the

scope of this text. When possible, however, we will quote the analogous results for

continuous-time random processes. Note finally that a realization of X[n], which is

x [n], is also called a sample sequence, while a realization of X(t), which is x(t) , is

also called a sample function. We will , however , reserve the use of the word sample

to refer to a time sample of the random process. Hence, a time sample will refer

to either the random variable X[no] (X(to» or the realization x [no] (x(to» of the

random process, with the meaning determined by the context of the discussion. We

next revisit the random walk of Example 9.5.

Example 16.2 - Random walk (continued from Example 9.5)

Recall that
n

n = 1,2, . . .

where

Pu[kJ ~ {

n

X[n] = LU[i]
i= O

k =-1

k=1

n = 0,1, ...

(16.1)

where the U[i]'s are IID random variables having the PMF of (16.1). We also

assume that the random walk starts at time n = 0. The U[i]'s comprise the random

variables of a Bernoulli random process but with values of ±1, instead of the usual

°and 1. As such, we can view the U[i]'s as comprising a Bernoulli random process

Urn] for n = 0,1, .... Realizations of Urn] and X[n] are shown in Figure 16.6. One

question that comes to mind is the behavior of the random walk for large n. For

example, we might be interested in the PDF of X[n] for large n. Relying on the

central limit theorem (see Chapter 15), we can assert that the PDF is Gaussian,

and therefore we need only determine the mean and variance. This easily follows

from the definition of the random walk as

n

E[X[n]] = L E[U[i]] = (n + I)E[U[O]] =°
i=O
n

var(X[n]) = L var(U[i]) = (n + l)var(U[O]) = n + 1

i=O
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Figure 16.6: Typical realization of a random walk.

since E[U[i]] = °and var{U[i]) = 1. (Note that since the U[i]'s are identically

distributed, they all have the same mean and variance. We have arbitrarily chosen

U[O] in the expression for the mean and variance of a single sample.) Hence, for

large n we have approximately that X[n] I'V N{o,n+ 1). Does this appear to explain

the behavior of x[n] shown in Figure 16.6b?

16.5 The Important Property of Stationarity

The simplest type of random process is an IID random process. The Bernoulli

random process is an example of this. Each random variable X[no] is independent

of all the others and each random variable has the same marginal PMF. As such,

the joint PMF of any finite number of samples can immediately be written as

N

PX[nI) ,X[n2],...,X [nN][Xl , X2,···, XN] = IIPX[ni] [Xi]

i= l

(16.2)

and used for probability calculations. For example, for a Bernoulli random process

with values 0,1 the probability of the first 10 samples being 1,0,1,0,1,0,1,0,1,°is

p5(1 - p)5. Note that we are able to specify the joint PMF for any finite number

of sample times. This is sometimes referred to as being able to specify the finite

dimensional distribution (FDD) . It is the most complete probabilistic description

that we can manage for a random process and reduces the analysis of a random

process to the analysis of a finite but arbitrary set of random variables.
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A generalization of the lID random process is a random process for which the

FDD does not change with the time origin. This is to say that the PMF or PDF

of the samples {X[nl], X[n2],"" X[nNn is the same as for {X[ni + no] , X[n2 +
no], ... ,X[nN + non , where no is an arbitrary integer. Alternatively, the set of

samples can be shifted in time, with each one being shifted the same amount, without

affecting the joint PMF or joint PDF. Mathematically, for the FDD not to change

with the time origin, we must have that

(16.3)

for all no, and for any arbitrary choice of Nand nl, n2, ... , nN. Such a random

process is said to be stationary. It is implicit from (16.3) that all joint and marginal

PMFs or PDFs must have probabilities that do not depend on the time origin. For

example, by letting N = 1 in (16.3) we have that PX [nl +no] = PX[nI] and setting

ni = 0, we have that PX[no] = PX[O] for all no. This says that the marginal PMF or

PDF is the same for every sample in a stationary random process. We next prove

that an lID random process is stationary.

Example 16.3 - lID random process is stationary.

To prove that the lID random process is a special case of a stationary random

process we must show that (16.3) is satisfied. This follows from

N

IlPx[ni+no]

i= 1

N

IlPX[ni]

i=1

(by independence)

(by identically distributed)

(by independence).

(;

If a random process is stationary, then all its joint moments and more generally all

expected values of functions of the random process, must also be stationary since

EX[nl+no] ,...,X[nN+no][·] = EX[nl], ...,X [nN] [·]

which follows from (16.3). Examples then of random processes that are not station­

ary are ones whose means and/or variances change in time, which implies that the

marginal PMF or PDF change with time. In Figure 16.7 we show typical realiza­

tions ofrandom processes whose mean in Figure 16.7a and whose variance in Figure

16.7b change with time. They were generated using the MATLAB code:

randn('state',O)

N=51;

x=randn(N,1)+O.1*[O:N-1]'; %for Figure 16.7a

y=sqrt(O.95.-[O :50] ').*randn(N,1); %for Figure 16.7b
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(a) Mean increasing with n (b) Variance decreasing with n

Figure 16.7: Random processes that are not stationary.

In Figure 16.7a the true mean increases linearly from 0 to 5 while in Figure 16.7b the

variance decreases exponentially as 0.95n
. It is clear then that the samples all have

different moments and therefore PX[nl+no] -=I PX[nll which violates the condition for
stationarity.

.ffi It is impossible to determine if a random process is stationary

from a single realization.

A realization of a random process is a single outcome of the random process. This is

analogous to observing a single outcome of a coin toss. We cannot determine if the

coin is fair by observing that the outcome was a head. What is required are multiple

realizations of the coin tossing experiment. So it is with random processes. In Figure

16.7b, although we generated the realization using a variance that decreased with

time, and hence the random process is not stationary, the realization shown could

have been generated with a constant variance. Then, the values of the realization

near n = 50 just happen to be smaller than the ones near n = 0, which is possible,

although maybe not very probable. To better discern whether a random process is

stationary we require multiple realizations.

Another example of a random process that is not stationary follows.

Example 16.4 - Sum random process

A sum random process is a slight generalization of the random walk process of
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Example 16.2. As before, X[n] = L:?=o U[i], where the U[i]'s are lID but for the

general sum process, the U[i]'s can have any, although the same, PMF or PDF.

Thus, the sum random process is not stationary since

E[X[n]]

var(X[n])

= (n + l)Eu[U[O]]

(n + l)var(U[O])

both of which change with n. Hence, it violates the condition for stationarity.

<>
A random process that is not stationary is said to be nonstationary. In light of

the fact that an lID random process lends itself to simple probability calculations,

it is advantageous, if possible, to transform a nonstationary random process into a

stationary one (see Problem 16.12 on transforming the random processes of Figure

16.7 into stationary ones). As an example, for the sum random process this can be

done by "reversing" the summing operation. Specifically, we difference the random

process. Then X[n] - X[n - 1] = U[n] for n 2: 0, where we define X[-l] = O.

This is an lID random process. The differences or increment random variables U[n]

are independent and identically distributed. More generally, for the sum random

process any two increments of the form

n2

L U[i]
i=nl+l

n4

X[n4] - X[n3] = L U[i]
i= n 3+ l

are independent if n4 > n3 2: n2 > nl. Thus, nonoverlapping increments for a sum

random process are independent. (Recall that functions of independent random

variables are themselves independent.) If furthermore, n4 - n3 = n2 - nl, then they

also have the same PMF or PDF since they are composed of the same number of lID

random variables. It is then said that for the sum random process, the increments

are independent and stationary (equivalent to being identically distributed) or that

it has stationary independent increments. The reader may wish to ponder whether

a random process can have independent but nonstationary increments (see Problem

16.13). Many random processes (an example of which follows) that we will encounter

have this property and it allows us to more easily analyze the probabilistic behavior.

Example 16.5 - Binomial counting random process

Consider the repeated coin tossing experiment where we are interested in the num­

ber of heads that occurs. Letting U[n] be a Bernoulli random process with U[n] = 1

with probability p and U[n] = 0 with probability 1-p , the number of heads is given
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by the binomial counting or sum process

527

n

X[n] = 2:Uri]
i=O

or equivalently

n = 0,1, .. .

X n _ { U[O] n = 0
[ ] - X[n - 1] + Urn] n ~ 1.

A typical realization is shown in Figure 16.8. The random process has stationary

20 .----.----~-~-~-~-,...,

15 .

~

t'l10 .

:"rrl11I
o 5 10 15 20 25 30

n

Figure 16.8: Typical realization of binomial counting random process with p = 0.5.

and independent increments since the changes over two nonoverlapping intervals

are composed of different sets of identically distributed U[i]'s. We can use this

property to more easily determine probabilities of events. For example, to determine

PX[lj,x[2J[1,2] = P[X[l] = 1, X[2] = 2]' we can note that the event X[l] = 1, X[2] =
2 is equivalent to the event Yl = X[l] - X[-l] = 1, Y2 = X[2] - X[l] = 1, where

X[-l] is defined to be identically zero. But Yl and Y2 are nonoverlapping increments

(but of unequal length), making them independent random variables. Thus,

P[X[l] = 1, X[2] = 2] = P[Yl = 1,Y2 = 1] = P[Yl = I]P[Y2 = 1]

P[U[O] + U[I] = I]P[U[2] = 1]
'--.---"

bin(2 ,p)

(~) pl(1 _ p)l . P

2p2(1 - p).
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16.6 Some More Examples

We continue our discussion by examining some random processes of practical interest.

Example 16.6 - White Gaussian noise

A common model for physical noise, such as resistor noise due to electron motion

fluctuations in an electric field, is termed white Gaussian noise (WGN) . It is assumed

that the noise has been sampled in time to yield a DTCV random process X[n]. The

WGN random process is defined to be an IID one whose marginal PDF is Gaussian

so that X[n] rv N(O,O'2 ) for -00 < n < 00. Each random variable X[no] has a

mean of zero , consistent with our notion of a noise process, and the same variance

or because the mean is zero, the same power E[X 2 [no]] . A typical realization is

shown in Figure 16.5b for 0'2 = 1. The WGN random process is stationary since it

is an IID random process. Its joint PDF is

=

N

IIPX[n;J(xi)
i=l

N 1 (1 2)II ~ e x p --22 xi
. 21m2 a
~=l

1 (1 N )
(21rO'2)N/2 exp - 20'2 ~ x; . (16.4)

Note that the joint PDF is N(o, 0'
21), which is a special form of the multivariate

Gaussian PDF (see Problem 16.15). The terminology of "white" derives from th e

property that such a random process may be synthesized from a sum of different

frequency random sinusoids each having the same power, much the same as white

light is composed of equal contributions of each visible wavelength of light. We will

justify this property in Chapter 17 when we discuss the power spectral density.

Example 16.7 - Moving average random process

The moving average (MA) random process is a DTCV random process defined as

X[n] = ~(U[n] + Urn - 1]) -oo<n<oo

where Urn] is a WGN random process with variance O ' ~ . (To avoid confusion with

the variance of other random variables we will sometimes use a subscript on 0'2 , in

this case o'~, to refer to the variance of the U[no] random variable.) The terminology

of moving average refers to the averaging of the current random variable Urn] with

the previous random variable urn - 1] to form the current moving average random
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variable. Also, this averaging "moves" in time, as for example,

X[O] =

X[I] =

X[2]

~(U[O] + U[-I])

~ ( U [ I ] + U[O])

~(U[2] + U[I])

etc.

A typical realization of X[n] is shown in Figure 16.9 and should be compared to

the realization of Urn] shown in Figure 16.5b. It is seen that the moving average

random process is "smoother" than the WGN random process, from which it was

obtained. Further smoothing is possible by averaging more WGN samples together

(see Problem 16.17). The MATLAB code shown below was used to generate the

realization.

randn('state' ,0)

u=randn(21,1);

for i=1:21

if i==1

x(i,1)=0.5*(u(1)+randn(1,1)); %needed to initialize sequence

else

x(i,1)=0.5*(u(i)+u(i-1)) ;

end

end

3 . - - - - ~ - - ~ - - ~ - - - - - - - ,

2 · · · · · · · · · · . .. . .

~ _:II'r.lr.,.,.n.l1.r
-2 .

20155
_3L-.--~--~--~ __-----l

o

Figure 16.9: Typical realization of moving average random process. The realization

of the Urn] random process is shown in Figure 16.5b.

The joint PDF of X[n] can be determined by observing that it is a linearly trans­

formed version of Urn]. As an example, to determine the joint PDF of the random
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vector [X [0] X[I]]T, we have from the definition of the MA random process

[

U[-I] ]

[
X[O] ] = [! ! 0] U[O]
X[I] O!!

U[I]

or in matrix/vector notation X = GU. Now recalling that U is a Gaussian random

vector (see (16.4)) and that a linear transformation of a Gaussian random vector

produces another Gaussian random vector, we have from Example 14.3 that

Explicitly, since each sample of Urn] is zero mean with variance a ~ and all samples

are independent, we have that E[U] = 0 and Cu = ap. This results in

X = [ X[O] ] ""' N(o, a~GGT)
X[I]

where

GG
T

= [: n-
It can furthermore be shown that the MA random process is stationary (see Example

20.2 and Property 20.2).

Example 16.8 - Randomly phased sinusoid (or sine wave)

Consider the DTCV random process given as

X[n] = cos(27f(0.I)n + 8) -oo<n<oo

where 8 ""' U(O, 27f). Some typical realizations are shown in Figure 16.10. The MAT­

LAB statements n= [0: 31] , and x=cos (2*pi*0 .1*n+2*pi*rand(1, 1)) can be used

to generate each realization. This random process is frequently used to model an

analog sinusoid whose phase is unknown and that has been sampled by an analog-to­

digital convertor. It is nearly a deterministic signal, except for the phase uncertainty,

and is therefore perfectly predictable. This is to say that once we observe two suc­

cessive samples, then all the remaining ones are known (see Problem 16.20). This is

in contrast to the WGN random process, for which regardless of how many samples

we observe, we cannot predict any of the remaining ones due to the independence

of the samples. Because of the predictability of the randomly phased sinusoidal

process, the joint PDF can only be represented using impulsive functions. As an ex­

ample, you might try to find the PDF of (X,Y) if (X,Y) has the bivariate Gaussian
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(a) () = 5.9698 (b) ()= 1.4523 (c) () = 3.8129

Figure 16.10: Typical realizations for randomly phased sinusoid.

PDF with p = 1. We will not pursue this further . However, we can determine the

marginal PDF PX[n]' To do so we use the transformation formula of (10.30), where

the Y random variable is X[noJ (considering the random process at a fixed time)

and the X random variable is 8. The transformation is shown in Figure 16.11 for

no = O. Note that there are two solutions for any given x[noJ = y (except for the

15 r-----,------r-----,--------,

1
Y -- 1 - ~ - - - - - : - - - - - - - - : - - - - - - - : - - - " ' 7 I ' " ' - - - - 1

05

-1

7r
()

1
-1 .5 '---'---+----'------:t------'----;:;!

o

Figure 16.11: Function transforming 8 into X[noJ for the value no
X[noJ = cos(27r(0.1)no + 8).

0, where

point at () = 7r, which has probability zero). We denote the solutions as () = Xl,X2.

Using our previous notation of y = g(x) for a transformation of a single random
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variable we have that

y = cos(27f(0.1)no + x)

so that the solutions are

X l = arccos(y) - 27f(0.1)no = 911 (y)

X2 = 27f - [arccos(y) - 27f(0.1)no] = 92"I(y)

for -1 < y < 1 and thus 0 < arccos(y) < 7f. Using darccos(y)/dy = 1/~, we

have

py(y) PX(91
1(y)) Id9~~(Y) 1+ PX(92"I(y)) Id9~~(Y) I

1 1 1 1
= - +-

27f ~ 27f ~

1

7f~'

Finally, in our original notation we have the marginal PDF for X[n] for any n

{

I -1 < x < 1
PX[ ](x ) = 1rVI -x

2

n 0 otherwise.

This PDF is shown in Figure 16.12. Note that the values of X[n] that are most

probable are near x = ±1. Can you explain why? (Hint: Determine the values of ()

for which 0.9 < cos() < 1 and also 0 < cos() < 0.1 in Figure 16.11.)

2.5r----,-----.-------.------,

2 .

0.5o
x

-0.5
O'------'-------L-------'--------'
-1

Figure 16.12: Marginal PDF for randomly phased sinusoid.
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16.7 Joint Moments
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The first and second moments or equivalently the mean and variance of a random

process at a given sample time are of great practical importance since they are easily

determined. Also, the covariance between two samples of the random process at two

different times is easily found. At worst, the first and second moments can always

be estimated in practice. This is in contrast to the joint PMF or joint PDF, which

in practice may be difficult to determine. Hence , we next define and give some

examples of the mean, variance, and covariance sequences for a DTCV random

process. The mean sequence is defined as

J-tx[n] = E[X[n]]

while the variance sequence is defined as

CTk[n] = var(X[n])

-oo<n<oo

-oo<n<oo

(16.5)

(16.6)

and finally the covariance sequence is defined as

cov(X[nlJ, X [n2])

E[(X[nl] - ux [nl]) (X[n2] - J-tx[n2])] -00 < nl < 00 (16.7)
-00 < n2 < 00.

The expectations for the mean and variance are taken with respect to the PMF or

PDF PX[n] for a particular value of n. Similarly, the expectation needed for the

evaluation of the covariance is with respect to the joint PMF or PDF PX[nl],X[n2]
for particular values of nl and n2. Since the required PMF or PDF should be clear

from the context, we henceforth do not subscript the expectation operator as we

have done so previously. Note that the usual symmetry property of the covariance

holds, which results in cx[n2, nl] = cx[nl, n2]. Also, it follows from the definition

of the covariance sequence that cx[n,n] = CTk[n]. The actual evaluation of the

moments proceeds exactly the same as for random variables.

If the random process is a continuous-time one, then the corresponding defini­

tions are

p x (t)

CTk(t)

CX(tl' t2)

E[X(t)]

= var(X(t))

E[(X(td - J-tx(td) (X(t2) - J-tX(t2))]'

These are called the mean junction, variance junction, and covariance junction,

respectively. We next examine the moments for the examples of the previous section.

Noting that the variance is just the covariance sequence evaluated at nl = n2 = n,

we need only determine the mean and covariance sequences.
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Example 16.9 - White Gaussian noise

Since X[n] ,...., N(O, a2) for all n, we have that

flx[n] = 0 - 00 < n < 00

ak[n] = a2 - 00 < n < 00.

The covariance sequence for nl i= n2 must be zero since the random variables are

all independent. Recalling that the covariance between X[n] and itself is just the

variance, we have that

This can be written in more succinct form by using the discrete delta function as

In summary, for a WGN random process we have that flx[n] = 0 for all nand

cx[nl ,n2] = a28[n2 - nl]'

Example 16.10 - Moving average random process

The mean sequence is

flx[n] = E[X[n]] = E[!(U[n] + Urn - 1])] = 0 -oo<n<oo

since Urn] is white Gaussian noise, which has a zero mean for all n. To find the

covariance sequence using X[n] = (U[n] + Urn - 1])/2, we have

ex[nl ,n2] E[(X[nl] - ux [nl])(X[n2] - ux [n2])]

E[X[nl]X[n2]]
1

= :4E[(U[nl] + U[nl - 1])(U[n2]+ U[n2 - 1])]

1
= :4 (E[U[nl]U[n2]] + E[U[nl]U[n2 - 1]]

+E[U[nl - I]U[n2]] + E[U[nl - I]U[n2 - 1]]) .

But E[U[k]U[l]] = a~8[l - k] since Urn] is WGN , and as a result

ex [nl ,n2] ~ (a~8[n2 - nd + a~8[n2 - 1 - nd + a~8[n2 - nl + 1] + a~8[n2 - nd)

a2 a2 a2
~ 8[n2 - nl] + : 8[n2 - nl - 1] + : 8[n2 - nl + 1].

This is plotted in Figure 16.13 versus tln = n2 - nl. It is seen that the covariance

sequence is zero unless the two samples are at most one unit apart or tln = n2-nl =
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Figure 16.13: Covariance sequence for moving average random process.

±l. Note that the covariance between any two samples spaced one unit apart is the

same. Thus, for example, X[I] and X[2] have the covariance ex[I ,2] = ab/4,

as do X[9] and X[10] since ex [9, 10] = ab/4, and as do X[-3] and X[-2] since

ex [- 3, -2] = ab/4 (see Figure 16.13). Any samples that are spaced more than one

unit apart are uneorrelated. This is because for In2 - nIl> 1, X[nI] and X[n2]
are independent, being composed of two sets of different WGN samples (recall that

functions of independent random variables are independent). In summary, we have

that

I-tx[n] 0

{
a 2
:::rL ni = n22

ex[nI, n2] a 2

In2 - nIl = 1:::rL
4

0 In2 -nIl> 1.

and the variance is ex[n, n] = ab/2 for all n. Also, note from Figure 16.13 that the

covariance sequence is symmetric about tln = O.

Example 16.11 - Randomly phased sinusoid

Recalling that the phase is uniformly distributed on (0,27f) we have that the mean
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sequence is

(use (11.10))

J-lx[n] E[X[n]] = E[cos(211"(0.I)n + 8)]

121r

cos(211"(0.I)n + B) 2~ dB

1 121r
- sin(211"(0.I)n + B) = 0
211" 0

for all n. Noting that the mean sequence is zero , the covariance sequence becomes

Once again the covariance sequence depends only on the spacing between the two

0,6 r-----,-----...,..-------.-------,

0,5

::: ... . .. . . .. . '. :. "

-0.4 . . .

10

-0,5 .. , ...

_0.6l...----...1....------'----------'------'
-10

Figure 16.14: Covariance sequence for randomly phased sinusoid.

samples or on n2 - nl. The covariance sequence is shown in Figure 16.14. The

reader should note the symmetry of the covariance sequence about 6.n = O. Also,

the variance follows as a-;',[n] = cx [n,n] = 1/2 for all n. It is interesting to observe

that in this example the fact that the mean sequence is zero makes intuitive sense.
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To see this we have plotted 50 realizations of the random process in an overlaid

fashion in Figure 16.15. This representation is called a scatter diagram. Also is

1.5r-----.-----.-----,---,---,---,-,

302520105

-1.5 L-__'--__.L..-__.L..-__.L..-__.L..-__.!-J

o

Figure 16.15: Fifty realizations of randomly phased sinusoid plotted in an overlaid

format with one realization shown with its points connected by straight lines.

plotted the first realization with the values connected by straight lines for easier

viewing. The difference in the realizations is due to the different values of phase

realized. It is seen that for a given time instant the values are nearly symmetric

about zero, as is predicted by the PDF shown in Figure 16.12 and that the majority

of the values are near ±1, again in agreement with the PDF. The MATLAB code

used to generate Figure 16.15 (but omitting the solid curve) is given below.

clear all

rand ( 'state' ,0)

n=[0:31]' ;

nreal=50;

for i=l:nreal

x(:,i)=cos(2*pi*0.1*n+2*pi*rand(1,1));

end

plot (n , x ( : , 1) • ' . ')

grid

hold on

for i=2:nreal

plot(n,x(: ,i),'. ')

end

axis([O 31 -1.5 1.5])
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In these three examples the covariance sequence only depends on In2 - nIl. This is

not always the case, as is illustrated in Problem 16.26. Also, another counterexample

is the random process whose realization is shown in Figure 16.7b . This random

process has var(X[n]) = cx[n, n] which is not a function of n2 - nl = n - n = °
since otherwise its variance would be a constant for all n,

16.8 Real-World Example - Statistical Data Analysis

It was mentioned in the introduction that some meterologists argue that the annual

summer rainfall totals are increasing due to global warming. Referring to Figure

16.1 this supposition asserts that if X[n] is the annual summer rainfall total for year

n, then J.Lx[n2] > {Lx[nl] for n2 > nl ' One way to attempt to confirm or dispute

this supposition is to assume that J.Lx [n] = an + b and then determine if a > 0, as

would be the case if the mean were increasing. From the data shown in Figure 16.1

we can estimate a. To do so we let the year 1895, which is the beginning of our data

set , be indexed as n = °and note that an + b when plotted versus n is a straight

line. We estimate a by fitting a straight line to the data set using a least squares

procedure [Kay 1993]. The least squares estimate chooses as estimates of a and b

the values that minimize the least squares error

N-l

J(a ,b) = L (x[n] - (an + b))2

n=O

(16.8)

where N = 108 for our data set. This approach can be shown to be an optimal

one under the condition that the random process is actually given by X[n] = an +
b+ Urn], where Urn] is a WGN random process [Kay 1993]. Note that if we did

not suspect that the mean rainfall totals were changing, then we might assume that

J.Lx[n] = b and the least squares estim?,te of b would result from minimizing

N-l

J(b) = L (x[n] - b)2 .

n=O

If we differentiate J(b) with respect to b, set the derivative equal to zero, and solve

for b, we obtain (see Problem 16.32)

N-l
A 1 ~
b= N LJx[n]

n=O

or b = x, where x is the sample mean, which for our data set is 9.76. Now, however,

we obtain the least squares estimates of a and b by differentiating (16.8) with respect
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to b and a to yield

oj
ob

oj
oa

N-1

-2 :L (x[n] - an - b) = 0
n=O

N-1

-2:L (x[n] - an - b)n = O.
n=O

This results in two simultaneous linear equations

N-1

bN+a :Ln
n=O

N-1 N-1

b :Ln+a :Ln2
n=O n=O

In vectorjmatrix form this is

N-1

:Lx[n]
n=O

N-1

:Lnx[n].
n=O

(16.9)[":-1 ~5:~1 n
2

] [ b ] = [ L5~~1 x[n] ]
L..m=O n L..m=O n a Ln:=:o nx[n]

which is easily solved to yield the estimates band a. For the data of Figure 16.1

the estimates are a = 0.0173 and b = 8.8336. The data along with the estimated

mean sequence itx[n] = 0.0173n + 8.8336 are shown in Figure 16.16. Note that the

20 r-r- - - ,-- - ,..--- - --,-- - ---r- - ---n

<Il
QJ 12 .
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Figure 16.16: Annual summer rainfall in Rhode Island and the estimated mean

sequence, itx[n] = 0.0173n + 8.8336, where n = 0 corresponds to the year 1895.

mean indeed appears to be increasing with time. The least squares error sequence,
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which is defined as ern] = x[n] - (im + b), is shown in Figure 16.17. It is sometimes

referred to as the fitting error. Note that the error can be quite large. In fact, we

10.--------r-----"T---,----,-------r---,

2

· . . . .· . . . .
8 ; ; : : : . .
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Figure 16.17: Least squares error sequence for annual summer rainfall in Rhode

Island fitted with a straight line.

have that (liN) ~ ~ ' : O l e2[n] = 10.05.

Now the real question is whether the estimated mean increase in rainfall is

significant. The increase is it = 0.0173 per year for a total increase of about 1.85

inches over the course of 108 years. Is it possible that the true mean rainfall has

not changed, or that it is really J.tx[n] = b with the true value of a being zero?

In effect, is the value of it = 0.0173 only due to estimation error? One way to

answer this question is to hypothesize that a = 0 and then determine the probability

density function of it as obtained from (16.9). This can be done analytically by

assuming X[n] = b+Urn], where Urn] is white Gaussian noise (see Problem 16.33).

However, we can gain some quick insight into the problem by resorting to a computer

simulation. To do so we assume that the true model for the rainfall data is X[n] =

b+ Urn] = 9.76 + Urn] , where Urn] is white Gaussian noise with variance (72. Since

we do not know the value of (72, we estimate it by using the results shown in Figure

16.17. The least squares error sequence ern], which is the original data with its

estimated mean sequence subtracted, should then be an estimate of Urn]. Therefore,

we use ;2 = (liN) ~ ~ ' : O l e2[n] = 10.05 in our simulation. In summary, we generate

20 realizations of the random process X[n] = 9.76 + Urn]' where Urn] is WGN with

(72 = 10.05. Then, we use (16.9) to estimate a and b and finally we plot our mean

sequence estimate, which is flx[n] = itn+b for each realization. Using the MATLAB

code shown at the end of this section, the results are shown in Figure 16.18. It is

seen that even though the true value of a is zero , the estimated value will take on

nonzero values with a high probability. Since some of the lines are decreasing, some
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Figure 16.18: Twenty realizations of the estimated mean sequence {tx[n] = an + b
based on the random process X[n] = 9.76 + Urn] with Urn] being WGN with 0'2 =
10.05. The realizations are shown as dashed lines . The estimated mean sequence

from Figure 16.16 is shown as the solid line .

of the estimated values of a are even negative. Hence, we would be hard pressed to

say that the mean rainfall totals are indeed increasing. Such is the quandry that

scientists must deal with on an everyday basis. The only way out of this dilemma is

to accumulate more data so that hopefully our estimate of a will be more accurate

(see also Problem 16.34).

clear all

randn('state' ,0)

years=[1895:2002]';

N=length(years);

n=[0:N-1]';

A=[N sum(n);sum(n) sum(n.-2)]; %precompute matrix (see (16 .9))

B=inv(A); % invert matrix

for i=1:20

xn=9.76+sqrt(10 .05)*randn(N,1); %generate realizations

baest=B*[sum(xn);sum(n .*xn)]; %estimate a and busing (16.9)
aest=baest(2);best=baest(1);

meanest(:,i)=aest*n+best; %determine mean sequence estimate

end

figure %plot mean sequence estimates and overlay

plot(n,meanest(:,l))

grid

xlabel('n')
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ylabel('Estimated mean')

axis([O 107 5 15])

hold on

for i=2:20

plot(n,meanest(:,i))

end
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Problems

16.1 C:..:.-) (w) Describe a random process that you are likely to encounter in the

following situations:

a. listening to the daily weather forecast

b. paying the monthly telephone bill

c. leaving for work in the morning

Why is each process a random one?

16.2 (w) A single die is tossed repeatedly. What are Sand Sx? Also, can you

determine the joint PMF for any N sample times?

16.3 (t) An infinite sequence of O's and l 's, denoted as bl , b2,"" can be used to

represent any number x in the interval [0, 1] using the binary representation

formula
00

x = 2:biTi .

i=1

For example, we can represent 3/4 as 0.bIb2 ..• = 0.11000 ... and 1/16 as

0.bIb2 • . • = 0.0001000 .... Find the representations for 7/8 and 5/8. Is the

total number of infinite sequences of O's and l 's countable?

16.4 C:...:...) (w) For a Bernoulli random process determine the probability that we

will observe an alternating sequence of 1's and O's for the first 100 samples

with the first sample being a 1. What is the probability that we will observe

an alternating sequence of l's and O's for all n?
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16.5 (w) Classify the following random processes as either DTDV, DTCV, CTDV,

or CTCV:

a. temperature in Rhode Island

b. outcomes for continued spins of a roulette wheel

c. daily weight of person

d. number of cars stopped at an intersection

16.6 (c) Simulate a realization of the random walk process described in Example

16.2 on a computer. What happens as n becomes large?

16.7 C:...:..-) (c,f) A biased random walk process is defined as X[n] = L:?=o Uri], where

Uri] is a Bernoulli random process with

{
t k =-1

pu[k] = i k = 1.

What is E[X[n]] and var(X[nJ) as a function of n? Next, simulate on a

computer a realization of this random process. What happens as n -+ 00 and

why?

16.8 (w) A random process X[n] is stationary. If it is known that E[X[10J] = 10

and var(X[10J) = 1, then determine E[X[100J] and var(X[100J).

16.9 (..:.:.,,) (f) The IID random process X[n] has the marginal PDF

px(x) = exp( -x)u(x). What is the probability that X [0],X[I], X[2] will all

be greater than I?

16.10 (w) If an IID random process X[n] is transformed to the random process

Y[n] = X 2[n], is the transformed random process also IID?

16.11 (w) A Bernoulli random process X[n] that takes on values 0 or 1, each with

probability of p = 1/2, is transformed using Y[n] = (_I)nX[n]. Is the random

process Y[n] IID?

16.12 (w,f) A nonstationary random process is defined as X[n] = a1nIU[n] , where

o< a < 1 and Urn] is WGN with variance crb. Find the mean and covariance

sequences of X[n]. Can you transform the X[n] random process to make it

stationary?

16.13 (..:.:.,,) (w) Consider the random process X[n] = L:?=o Uri], which is defined

for n ~ O. The Urn] random process consists of independent Gaussian ran­

dom variables with marginal PDF Urn] ,...... N(O, (1/2)n). Are the increments

independent? Are the increments stationary?
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16.14 (c) Plot 50 realizations of a WGN random process X[n] with (J2 = 1 for

n = 0, 1, . . . , 49 using a scatter diagram (see Figure 16.15 for an example). Use

the MATLAB commands plot (x , y , ' . ') and hold on to plot each realization

as dots and to overlay the realizations on the same graph, respectively. For a

fixed n can you explain the observed distribution of the dots?

16.15 (f) Prove that
1

---------:--;::-- exp (_1x T C -Ix)
(21r)N/2 detI/2(C) 2

where x = [Xl X2 ••• xN]T and C = (J21 for I an N x N identity matrix, reduces

to (16.4).

16.16 C..:.,) (f) A "white" uniform random process is defined to be an IID random

process with X[n] rv U( -y'3, y'3) for all n. Determine the mean and covari­

ance sequences for this random process and compare them to those of the

WGN random process. Explain your results.

16.17 (w) A moving average random process can be defined more generally as one

for which N samples of WGN are averaged, instead of only N = 2 samples as

in Example 16.7. It is given by X[n] = (liN) I:{':c/ Urn - i] for all n, where

Urn] is a WGN random process with variance ( J ~ . Determine the correlation

coefficient for X[O] and X[I] . What happens as N increases?

16.18 C..:.,,) (f) For the moving average random process defined in Example 16.7

determine P[X[n] > 3] and compare it to P[U[n] > 3]. Explain the difference

in terms of "smoothing". Assume that ( J ~ = 1.

16.19 (c) For the randomly phased sinusoid defined in Example 16.8 determine the

mean sequence using a computer simulation.

16.20 (t) For the randomly phased sinusoid of Example 16.8 assume that the real­

ization x[n] = cos(21r(0.I)n+0) is generated. Prove that if we observe only the

samples x[O] = 1 and x[l] = cos(21r(0.1)) = 0.8090, then all the future samples

can be found by using the recursive formula x[n] = 2cos(21r(0.1))x[n - 1] ­

x[n - 2] for n ~ 2. Could you also find the past samples or x[n] for n :s; -I?

See also Problem 18.25 for prediction of a sinusoidal random process.

16.21 (c) Verify the PDF of the randomly phased sinusoid given in Figure 16.12

by using a computer simulation.

16.22 C:..:,/) (f,c) A continuous-time random process known as the random am­

plitude sinusoid is defined as X(t) = A cos(21rt) for -00 < t < 00 and

A rv N(O,I). Find the mean and covariance functions. Then, plot some

realizations of X (t) in an overlaid fashion.
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16.23 (f) A random process is the sum of WGN and a deterministic sinusoid and is

given as X[n] = Urn] +sin(27rfon) for all n, where Urn] is WGN with variance

O"b. Determine the mean and covariance sequences.

16.24 ( . . . : . ~ ) (w) A random process is IID with samples X[n] '" N(J.L , 1). It is desired

to remove the mean of the random process by forming the new random process

Y [n] = X [n] - X [n- 1]. First determine the mean sequence of Y [n]. Next find

cov(Y[O], Y[l]). Is Y[n] an lID random process with a zero mean sequence?

16.25 (f) If a random process is defined as X[n] = h[0]U[n]+h[1]U[n-1], where h[O]
and h[l] are constants and Urn] is WGN with variance O"b , find the covariance

for X[O] and X[l]. Repeat for X[9] and X[lO]. How do they compare?

16.26 C : . ~ ) (f) If a sum random process is defined as X[n] = 2::~=0 Uri] for n ~ 0,

where E[U[i]] = 0 and var(U[i]) = O"b for i ~ 0 and the Uri] are lID, find the

mean and covariance sequences of X [n].

16.27 C:...:J (c) For the MA random process defined in Example 16.7 find cx[l, 1],
cx[1,2] and cx[1,3] if O"b = 1. Next simulate on a computer M = 10,000

realizations of the random process X[n] for n = 0,1, . . . ,10 . Estimate the pre­

vious covariance sequence samples using cx[n1' n2] = (11M) 2::~ 1 xi[n1]xi[n2],
where xi [n] is the ith realization of X[n]. Note that since X[n] is zero mean,

cx[n1' n2] = E[X[n1]X[n2]].

16.28 (w) For the randomly phased sinusoid described in Example 16.11 determine

the minimum mean square estimate of X[10] based on observing x[O]. How

accurate do you think this prediction will be?

16.29 (f) For a random process X[n] the mean sequence J.Lx[n] and covariance

sequence cx[n1,n2] are known. It is desired to predict k samples into the

future. If x[no] is observed, find the minimum mean square estimate of X[no+
k]. Next assume that J.Lx[n] = cos(27rfon) and cx[n1' n2] = 0.9 In 2-

n l! and

evaluate the estimate. Finally, what happens to your prediction as k -+ 00

and why?

16.30 (f) A random process is defined as X[n] = As[n] for all n, where A", N(o, 1)
and s[n] is a deterministic signal. Find the mean and covariance sequences.

16.31 C:..:J (f) A random process is defined as X[n] = AU[n] for all n, where A '"
N(O, O"~) and Urn] is WGN with variance O"b, and A is independent of Urn] for

all n . Find the mean and covariance sequences. What type of random process

is X[n]?

16.32 (f) Verify that by differentiating 2::::01(x[n] - b)2 with respect to b, setting

the derivative equal to zero , and solving for b, we obtain the sample mean.



546 CHAPTER 16. BASIC RANDOM PROCESSES

16.33 (t) In this problem we show how to obtain the variance of a as obtained

by solving (16.9). The variance of a is derived under the assumption that

X[n] = b+ Urn], where Urn] is WGN with variance a
2

. This says that we

assume the true value of a is zero. The steps are as follows:

a. Let
1 0 X [0]

1 1 X[l]

H= 1 2 X= X[2]

1 N-1 X[N-1]

where H is an N x 2 matrix and X is an N x 1 random vector. Now

show that that the equations of (16.9) can be written as

b. The solution for b and a can now be written symbolically as

Since X is a Gaussian random vector, show that [ba]T is also a Gaussian

random vector with mean [b 0]T and covariance matrix a 2 (HTH) -1 .

c. As a result we can assert that the marginal PDF of a is Gaussian with

mean zero and variance equal to the (2,2) element of a 2(H T H )- 1. Show

then that a rv N(o, var(a)), where

Next assume that a 2 = 10.05, N = 108 and find the probability that a >
0.0173. Can we assert that the estimated mean sequence shown in Figure

16.16 is not just due to estimation error?

16.34 C:..:...) (f) Using the results of Problem 16.33 determine the required value of

N so that the probability that a> 0.0173 is less than 10-6 .



Chapter 17

Wide Sense Stationary Random

Processes

17.1 Introduction

Having introduced the concept of a random process in the previous chapter, we

now wish to explore an important subclass of stationary random processes. This is

motivated by the very restrictive nature of the stationarity condition, which although

mathematically expedient, is almost never satisfied in practice. A somewhat weaker

type of stat ionarity is based on requiring the mean to be a constant in time and

the covariance sequence to depend only on the separation in time between the two

samples. We have already encountered these types of random processes in Examples

16.9-16.11. Such a random process is said to be stationary in the wide sense or wide

sense stationary (WSS). It is also termed a weakly stationary random process to

distinguish it from a stationary process, which is said to be strictly stationary. We

will use the form er terminology to refer to such a process as a WSS random process.

In addition, as we will see in Chapter 19, if the random process is Gaussian, then

wide sense stationarity implies stationarity. For this reason alone , it makes sense

to explore WSS random processes since the use of Gaussian random processes for

modeling is ubiquitous.

Once we have discussed the concept of a WSS random process, we will be able

to define an extremely important measure of the WSS random process-the power

spectral density (PSD). This function extends the idea of analyzing the behavior of a

deterministic signal by decomposing it into a sum of sinusoids of different frequencies

to that of a random process. The difference now is that the amplitudes and phases

of the sinusoids will be random variables and so it will be convenient to quantify the

average power of the various sinusoids. This description of a random phenomenon

is important in nearly every scientific field that is concerned with the analysis of

time series data such as systems control [Box and Jenkins 1970], signal processing

[Schwartz and Shaw 1975], economics [Harvey 1989], geophysics [Robinson 1967],
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vibration testing [McConnell 1995], financial analysis [Taylor 1986], and others. As

an example, in Figure 17.1 the Wolfer sunspot data [Tong 1990] is shown, with the

data points connected by straight lines for easier viewing. It measures the average

number of sunspots visually observed through a telescope each year. The importance

of the sunspot number is that as it increases, an increase in solar flares occurs. This

has the effect of disrupting all radio communications as the solar flare particles reach

the earth. Clearly from the data we see a periodic type property. The estimated

PSD of this data set is shown in Figure 17.2. We see that the distribution of power

versus frequency is highest at a frequency of about 0.09 cycles per year. This means

that the random process exhibits a large periodic component with a period of about

1/0.09 ~ 11 years per cycle, as is also evident from Figure 17.1. This is a powerful

prediction tool and therefore is of great interest. How the PSD is actually estimated

will be discussed in this chapter, but before doing so, we will need to lay some

groundwork.
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Figure 17.1: Annual number of sunspots - Wolfer sunspot data.

Summary

A less restrictive form of stationarity, termed wide sense stationarity, is defined by

(17.4) and (17.5). The conditions require the mean to be the same for all n and the

covariance sequence to depend only on the time difference between the samples. A

random process that is stationary is also wide sense stationary as shown in Section

17.3. The autocorrelation sequence is defined by (17.9) with n being arbitrary. It

is the covariance between two samples separated by k units for a zero mean WSS

random process. Some of its properties are summarized by Properties 17.1-17.4.

Under certain conditions the mean of a WSS random process can be found by using
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Figure 17.2: Estimated power spectral density for Wolfer sunspot data of Figure

17.1. The sample mean has been computed and removed from the data prior to

estimation of the PSD.

the temporal average of (17.25). Such a process is said to be ergodic in the mean. For

this to be true the variance of the temporal average given by (17.28) must converge

to zero as the number of samples averaged becomes large. The power spectral

density (PSD) of a WSS random process is defined by (17.30) and can be evaluated

more simply using (17.34). The latter relationship says that the PSD is the Fourier

transform of the autocorrelation sequence. It measures the amount of average power

per unit frequency or the distribution of average power with frequency. Some of its

properties are summarized in Properties 17.7-17.12. From a finite segment of a

realization of the random process the autocorrelation sequence can be estimated

using (17.43) and the PSD can be estimated by using the averaged periodogram

estimate of (17.44) and (17.45). The analogous definitions for a continuous-time

WSS random process are given in Section 17.8. Also, an important example is

described that relates sampled continuous-time white Gaussian noise to discrete­

time white Gaussian noise. Finally, an application of the use of PSDs to random

vibration testing is given in Section 17.9.

17.3 Definition of WSS Random Process

Consider a discrete-time random process X[n] , which is defined for -00 < n < 00

with n an integer. Previously, we defined the mean and covariance sequences of



X[n] to be

JLx[n] E[X[n]] - 00 < n < 00

cx[nI' n2] = E[(X[nI] - JLx [nI])(X[n2] - JLx[n2])]
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(17.1)

-00 < ni < 00 (17.2)
-00 < n2 < 00

where nI, n2 are integers. Having knowledge of these sequences allows us to assess

important characteristics of the random process such as the mean level and the

correlation between samples. In fact, based on only this information we are able to

predict X[n2] based on observing X[nI] = x[nI] as

(17.3)

which is just the usual linear prediction formula of (7.41) with x replaced by x[nI]
and Y replaced by X[n2], and which makes use of the mean and covariance sequences

defined in (17.1) and (17.2), respectively. However, since in general the mean and

covariance change with time, i.e., they are nonstationary, it would be exceedingly

difficult to estimate them in practice. To extend the practical utility we would like

the mean not to depend on time and the covariance only to depend on the separation

between samples or on In2 - nIl. This will allow us to estimate these quantities as

described later. Thus, we are led to a weaker form of stationarity known as wide

sense stationarity. A random process is defined to be WSS if

JLx[n]

cx[nI ,n2] =

JL (a constant)

g(ln 2 - nIl)

- 00 < n < 00 (17.4)

- 00 < ni < 00, -00 < n2 < 00 (17.5)

for some function g. Note that since

these conditions are equivalent to requiring that X[n] satisfy

E[X[n]] =

E[X[nI]X[n2]]

-oo<n<oo

- 00 < ni < 00, -00 < n2 < 00

for some function h. The mean should not depend on time and the average value

of the product of two samples should depend only upon the time interval between

the samples. Some examples of WSS random processes have already been given in

Examples 16.9-16.11. For the MA process of Example 16.10 we showed that

JLx[n] 0 -oo<n<oo

{
1(J2 In2 - nIl = 02 U

cx[nI , n2] = 1(J2 In2 - nIl = 14 U

0 jn2 - nIl> 1.
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It is seen that every random variable X[n] for -00 < n < 00 has a mean of zero

and the covariance for two samples depends only on the time interval between the

samples, which is In2 - nIl . Also, this implies that the variance does not depend

on time since var(X[n]) = cx [n, n] = (j~/2 for -00 < n < 00. In contrast to this

behavior consider the random processes for which typical realizations are shown in

Figure 16.7. In Figure 16.7a the mean changes with time (with the variance being

constant) and in Figure 16.7b the variance changes with time (with the mean being

constant). Clearly, these random processes are not WSS.

A WSS random process is a special case of a stationary random process. To see

this recall that if X[n] is stationary, then from (16.3) with N = 1 and nl = n, we

have

PX[n+no] = PX[n] for all n and for all no.

As a consequence, if we let n = 0, then

PX[no] = PX[O] for all no

and since the PDF does not depend on the particular time no, the mean must not

depend on time. Thus,

/-lx[n] = /-l

Next, using (16.3) with N = 2, we have

- 00 < n < 00. (17.6)

PX[nl +no],X[n2+nol = PX[nI] ,X[n2]

Now ifno = -nl we have from (17.7)

(17.7)

and if no = -n2, we have

This results in

which leads to

PX[nI],X[n21

PX[nI] ,X[n21

PX[O] ,X[n2-nI]

PX[nl-n2] ,X[O]

E[X[nl]X[n2]]

E[X[nl]X[n2]]

E[X[0]X[n2 - nl]]

E[X[nl - n2]X[0]] = E[X[O]X[nl - n2]].

Finally, these two conditions combine to give

(17.8)
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which along with the mean being constant with t ime yields the second condit ion for

wide sense stat ionarity of (17.5) that

cx [n l ' nz] = E [X [n l ]X [nz]] - E[X[nl]]E[X[nz]] = E[X[O]X[lnz - n Il] - J-Lz .

This proves the assert ion that a st ationary random process is WSS but the converse

is not generally true (see Problem 17.5).

17.4 Autocorrelation Sequence

If X[n] is WSS , then as we have seen E[X[nl]X[nz]] depends only on the separa t ion

in t ime between the samples. We can therefore define a new joint moment by letting

nl = n and nz = n + k to yield

r x [k] = E[X[n]X[n + k]] (17.9)

which is called the autocorrelation sequence (ACS). It depends only on the t ime

difference between samples which is Inz -nIl = I(n+k) -nl = Ikl so that the value

of n used in the definition is arbitrary. It is termed the autocorrelation sequence

(ACS) since it measures the correlation between two samples of the same random

process. Later we will have occasion to define correlat ion between two different

random processes (see Section 19.3). Note that the time interval between samples

is also called the lag. An example of the computation of the ACS is given next .

Example 17.1 - A Differencer

Define a random pro cess as X[n] = Urn] - urn - 1]' where Urn] is an IID random

process with mean J-L and vari ance 1Jf; . A realization of this random process for which

U rn] is a Gaussian random vari able for all n is shown in Figure 17.3. Although

U rn] was chosen here to be a sequence of Gaussian random variables for the sake

of displaying the realization in Figure 17.3, the ACS to be found will be the same

regardless of the PDF of Urn] . This is because it relies on only thefirst two moments

of Urn] and not its PDF. The ACS is found as

r x [k] E[X[n]X[n + k]]

E[(U[n] - Urn - l]) (U[n + k] - Urn + k - 1])]

E[U[n]U[n + k]] - E[U[n]U[n + k - 1]]

- E[U[n - l]U[n + k]] + E[U[n - l] U[n + k - 1]] .

and for nl = nz = n

E[U[nl]]E[U[nz]]

J-Lz

(independence)

E[U[n l]U[nz]] = E[Uz[n]] = E[Uz[O]] = 1Jf; + J-Lz (identic ally distributed) .
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Figure 17.3: Typical realization of a differenced IID Gaussian random process with

U[n] '" N(l , 1).

Combining these results we have that

and therefore the ACS becomes

(17.10)

This is shown in Figure 17.4. Several observations can be made. The only nonzero

correlat ion is between adjacent samples and this correlation is negative. This ac­

counts for the observation that the realization shown in Figure 17.3 exhibits many

adjacent samples that are opposite in sign. Some other observations are that

rx[O] > 0, Irx[k]I ~ rx[O] for all k, and finally rx[-k] = rx[k]. In words, the

ACS has a maximum at k = 0, which is positive, and is a symmetric sequence about

k = 0 (also called an even sequence). These properties hold in general as we now

prove.

Property 17.1 - ACS is positive for the zero lag or rx[O] > O.

Proof:

rx[k] = E[X[n]X[n + k]] (definition)

so that with k = 0 we have rx[O] = E[X2[n]] > O.

D

Note that rx[O] is the average power of the random process at all sample times

n. One can view X[n] as the voltage across a 1 ohm resistor and hence x2 [n]/ 1
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Figure 17.4: Autocorrelation sequence for differenced random process.

is the power for any particular realization of X[n] at time n. The average power

E[X2[n]] = r x [O] does not change with time.

Property 17.2 - ACS is an even sequence or rx[-k] = r x [k].

Proof:

r x [k]

r x [- k]

E[X[n]X[n + k]]

E[X[n]X[n - k]]

(definition)

and letting n = m + k since the choice of n in the definit ion of the ACS is arbit rary,

we have

r x [- k] E[X[m + k]X[m]]

E[X[m]X[m + k]]

E[X[n]X[n + k]] (ACS not dependent on n)

rx[k] .

D

Property 17.3 - Maximum absolute value of ACS is at k = 0 or Irx[k]l :S
r x [O] .

Note that it is possible for some values of rx[k] for k =1= 0 to also equal r x [O]. As an

example, for the randomly phased sinusoid of Example 16.11 we had ex [nI, n2] =
! cos[21T(0.1)(n2 - nl)] with a mean of zero. Thus, rx[k] = ! cos [21T(0.1)k] and

therefore rx[lO] = r x [O]. Hence, the property says that no value of the ACS can

exceed rx [0], although there may be multiple values of the ACS that are equal to

rx [O].
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Proof: The proof is based on the Cauchy-Schwarz inequality, which from Appendix

7A is

IEv,w[VW]I::; J EV[V2]JEw[W2]

with equality holding if and only if W = cV for c a constant. Letting V = X[n] and

W = X[n + k], we have

IE[X[n]X[n + k]]1 ::; JE[X2[n]]JE[X2[n + k]]

from which it follows that

Irx[k]1 < Jrx[O]Jrx[O] = Irx [0] I = rx[O] (since rx[O] > 0).

Note that equality holds if and only if X[n + k] = cX[n] for all n. This implies

perfect predictability of a sample based on the realization of another sample spaced

k units ahead or behind in time (see Problem 17.10 for an example involving periodic

random processes).

o

Property 17.4 - ACS measures the predictability of a random process.

The correlation coefficient for two samples of a zero mean WSS random process is

rx[k]
PX[n],X[n+k) = rx[O] (17.11)

For a nonzero mean the expression is easily modified (see Problem 17.11).

Proof: Recall that the correlation coefficient for two random variables V and W

is defined as
cov(V, W)

pv: w = -r=:;:::::'=.=:::;::::===.=
, vvar(V)var(W)

Assuming that V and Ware zero mean, this becomes

_ Ev,w[VW]
pv,w - J EV[V2]Ew[W2]

and letting V = X[n] and W = X[n + k], we have

(from Property 17.1).

PX[n),X[n+k] =
E[X[n]X[n + k]]

JE[X2[n]]E[X2[n + k]]

rx[k]

.s: [O]rx [0]

rx[k]

Irx [0] I
rx[k]

rx[O]

o
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As an example, for the differencer of Example 17.1 we have from Figure 17.4

{

I k = 0

PX[n],X[n+k] = -~ k = ±1
o otherwise.

As mentioned previously, the adjacent samples are negatively correlated and the

magnitude of the correlation coefficient is now seen to be 1/2.

We next give some more examples of the computation of the ACS.

Example 17.2 - White noise

White noise is defined as a WSS random process with zero mean, identical variance

0'2, and uncorrelated samples. It is a more general case of the white noise random

process first described in Example 16.9. There we assumed the stronger condition

of zero mean lID samples (hence they must have the same variance due to the

identically distributed assumption and also be uncorrelated due to the independence

assumption) . In addition, it was assumed there that each sample had a Gaussian

PDF. Note, however, that the definition given above for white noise does not specify

a particular PDF. To find the ACS we note that from the definition of the white

noise random process

rx[k] E[X[n]X[n + k]]

= E[X[n]]E[X[n + k]] = 0 k =I 0

Therefore, we have that

rx[k] = O'
28[k].

Could you predict X[l] from a realization of X[O]?

(uncorrelated and

zero mean samples)

(equal variance samples).

(17.12)

o
As an aside, for WSS random processes, we can find the covariance sequence from

the ACS and the mean since

E[X[nl]X[n2]] - tsx [nl]J,tx [n2]

rx[n2 - nIl - J,t2. (17.13)

Another property of the ACS that is evident from (17.13) concerns the behavior of

the ACS as k -t 00. Letting nl = nand n2 = n + k, we have that

rx[k] = cx[n,n + k] + J,t2. (17.14)

If two samples becomes uncorrelated or cx[n, n + k] -t 0 as k -t 00, then we see

that rx[k] -+ J,t2 as k -t 00. Thus, as another property of the ACS we have the

following.
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Property 17.5 - ACS approaches J.L2 as k -t 00

This assumes that the samples become uncorrelated for large lags, which is usually

the case.
o

If the mean is zero , then from (17.14)

rx[k] = cx[n,n + k] (17.15)

and the ACS approaches zero as the lag increases. We continue with some more

examples.

Example 17.3 - MA random process

This random process was shown in Example 16.10 to have a zero mean and a

covariance sequence

{

(72

T nI = n2

cx[nl ,n2] = ~ In2 - nIl = 1

o otherwise.

(17.16)

Since the covariance sequence depends only on In2 - nIl, X[n] is WSS from (17.15).

Specifically, the ACS follows from (17.15) and (17.16) with k = n2 - ni as

{

~ k=O

rx[k] = O~ k = ±1

otherwise.

See Figure 16.13 for a plot of the ACS (replace Don with k.) Could you predict X[l]
from a realization of X[O]?

Example 17.4 - Randomly phased sinusoid

This random process was shown in Example 16.11 to have a zero mean and a covari­

ance sequence cx[nI ' n2] = ~ cos[21r(O.1)(n2 - nI)J. Since the covariance sequence

depends only on In2 - nIl, X[n] is WSS. Hence , from (17.15) we have that

1
rx[k] = 2" cos[21r(O.1)k].

See Figure 16.14 for a plot of the ACS (replace Don with k.) Could you predict X[l]

from a realization of X[O]?
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In determining predictability of a WSS random process, it is convenient to consider

the linear predictor, which depends only on the first two moments. Then, the MMSE

linear prediction of X[no + k] given x[no] is from (17.3) and (17.13) with nl = no

and n2 = no + k

A rx[k] - /-L2
X[no + k] = /-L + [0] 2 (x[no] - /-L) for all k and no·

r x -/-L

For a zero mean random process this becomes

X[no + k]
rx[k]
rx[O] x[no]

PX[noJ,X[no+k]x[no] for all k and no.

One last example is the autoregressive random process which we will use to illustrate

several new concepts for WSS random processes.

Example 17.5 - Autoregressive random process

An autoregressive (AR) random process X[n] is defined to be a WSS random process

with a zero mean that evolves according to the recursive difference equation

X[n] = aX[n - 1] + Urn] -oo<n<oo (17.17)

where lal < 1 and Urn] is WGN. The WGN random process Urn] (see Example

16.6) , has a zero mean and variance ab for all nand its samples are all independent

with a Gaussian PDF. The name autoregressive is due to the regression of X[n] upon

X[n - 1]' which is another sample of the same random process, hence, the prefix

auto. The evolution of X[n] proceeds, for example, as

X[O] aX[-I] + U[O]

X[I] aX[O] + U[I]

X[2] aX [1] + U[2]

Note that X[n] depends only upon the present and past values of Urn] since for

example

X[2] = aX[I] + U[2] = a(aX[O] + U[I]) + U[2] = a2X[O] + aU[I] + U[2]

a
2(aX[-I] + U[O]) + aU [1] + U[2] = a3X[-I] + a2U[0] + aU [1] + U[2]

(17.18)
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where the term involving ak U[2 - k] decays to zero as k -t 00 since lal < 1. We

see that X[2] depends only on {U[2],U[l], ... } and it is therefore uncorrelated with

{U[3], U[4], ... }. More generally, it can be shown that (see also Problem 19.6)

E[X[n]U[n + k]] = 0 k ~ 1. (17.19)

It is seen from (17.18) that in order for the recursion to be stable and hence X[n] to

be WSS it is required that lal < 1. The AR random process can be used to model

a wide variety of physical random processes with various ACSs, depending upon

the choice of the parameters a and ( J ~ . Some typical realizations of the AR random

process for different values of a are shown in Figure 17.5. The WGN random process

Urn] has been chosen to have a variance ( J ~ = 1 - a2
. We will soon see that this

choice of variance results in rx[O] = 1 for both AR processes shown in Figure 17.5.

The MATLAB code used to generate the realizations shown is given below.

3 r - - ~ - ~ - ~ - ~ - ~ - - - , 3 r - - - ~ - ~ - ~ - ~ - ~ - - - ,

2 2

~ ~: -rlr'r).HI\pll'lll'jl·l1.
~

"_: llUFUWljIlI.III.·•••.T...

. . . . .
-2 .

30252015

n
105

_3L-..-~-~-~-~--,"----'

o30252015

n
105

-3 ' - - - ~ - ~ - ~ - ~ - ~ - - - - '
o

(a) a = 0.25, u~ = 1 - a
2

(b) a = 0.98, u~ = 1 - a
2

Figure 17.5: Typical realizations of autoregressive random process with different

parameters.

clear all

randn C'state' ,0)

al=0.25;a2=0.98;
varul=1-al-2;varu2=1-a2-2;

varxl=varul/(1-al-2);varx2=varu2/(1-a2-2); 'l. this is r_X[O]

xl(l ,l)=sqrt(varxl)*randn(l,l); 'l. set initial condition X[-l]

'l. see Problems 17.17, 17.18
x2(1,1)=sqrt(varx2)*randn(1,1);

for n=2:31

xl(n,l)=al*xl(n-l)+sqrt(varul)*randn(l,l);

x2(n,1)=a2*x2(n-l)+sqrt(varu2)*randn(1,1);

end



560 CHAPTER 17. WIDE SENSE STATIONARY RANDOM PROCESSES

(17.20)

We next derive the ACS. In Chapter 18 we will see how to alternatively obtain

the ACS using results from linear systems theory. Using (17.17) we have for k ~ 1

r x[k] = E[X[n]X[n + k]]

= E[X [n](aX[n + k -1] + Urn + k])]

aE[X[n]X[n + k - 1]] (using (17.19))

arx[k - 1] .

(17.21)- 00 < k < 00.

(52

r x [O] = -1 U 2
-a

so that for all k ~ 0, rx[k] = rx[O]ak becomes

2

[ ]
(5u k

rx k = -1--2a .
-a

Finally, noting that rx[-k] = r x[k] from Property 17.2, we obtain the ACS as

(52

rx [k] = __U_ alkl
1 - a2

(See also Problem 17.16 for an alternative derivation of the ACS.) The ACS is

plotted in Figure 17.6 for a = 0.25 and a = 0.98 and ( 5 ~ = 1- a2
• For both values of

a the value of (5~ has been chosen to ensure that r x[O] = 1. Note that for a = 0.25

the ACS dies off very rapidly which means that the random process samples quickly

become uncorrelated as the separation between them increases. This is consistent

with the typical realization shown in Figure 17.5a. For a = 0.98 the ACS decays

very slowly, indicating a strong positive correlation between samples, and again

being consistent with the typical realization shown in Figure 17.5b . In either case

the samples become uncorrelated as k -+ 00 since lal < 1 and therefore, rx[k] -+ 0

as k -+ 00 in accordance with Property 17.5. However, the random process with the

slower decaying ACS is more predictable.

c
One last property that is necessary for a sequence to be a valid ACS is the property

of positive definiteness. As its name implies, it is related to , the positive definite

property of the covariance matrix. As an example, consider the random vector

X = [X [0] X[I]jT. Then we know from the proof of Property 9.2 (covariance matrix

is positive semidefinite) that if Y = aoX[O] + a1X[I] cannot be made equal to a

constant by any choice of ao and aI , then

The solution of this recursive linear difference equation is readily seen to be rx[k] =

cak , for c any constant and for k ~ 1. For k = 1 we have that rx [1] = ca and so

from (17.20) rx[l] = arx[O], which implies c = rx[O]. In Problem 17.15 it is shown

that

_ [ ] [ cov(X [0],X [0]) cov(X [0],X[I]) ] [ ao ]
var(Y) - ~, cov(X[I],X[O]) cov(X[I],X[I]) J al > O.

aT '" ~
ex a
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Figure 17.6: The autocorrelation sequence for autoregressive random processes with

different parameters.

Since this holds for all a i= 0, the covariance matrix C x is by definition positive

definite (see Appendix C). (If it were possible to choose ao and al so that Y = c,

for c a constant, then X[I] would be perfectly predictable from X[O] as X[I] =
-(aolal)X[O] + (clal)' Therefore, we could have var(Y) = aTCxa = 0, and Cx

would only be positive semidefinite.) Now if X[n] is a zero mean WSS random

process

and the covariance matrix becomes

Cx = [ rx[O]
rx[-I]

rx[l] ] = [rx[o] rx[I]]
rx[O] rx[l] rx[O] .

, .,
v

Rx

Therefore, the covariance matrix, which we now denote by Rx and which is called

the autocorrelation matrix, must be positive definite. This implies that all the

principal minors (see Appendix C) are positive. For the 2 x 2 case this means that

rx[O] > 0

r~[O] - r~[I] > 0 (17.22)

with the first condition being consistent with Property 17.1 and the second condition

producing rx[O] > Irx[I]I. The latter condition is nearly consistent with Property

17.3 with the slight difference, that Irx[lJ1 may equal rx[O] being excluded. This is

because we assumed that X[I] was not perfectly predictable from knowledge of X[O].

If we allow perfect predictability, then the autocorrelation matrix is only positive
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semidefinite and the> sign in the second equation of (17.22) would be replaced

with 2. In general the N x N autocorrelation matrix Rx is given as the covariance

matrix of the zero mean random vector X = [X [0] X[I] ... X[N - I]V as

Rx=
[

rx[O]
rx[l]

r x [ ~ -1]

rx[l]
rx[O]

rx[N - 2]

rx[2] rx[N - 1] ]
rx[l] rx[N - 2]

· . .· . .· . .
rx[N - 3] ... rx[O]

(17.23)

For a sequence to be a valid ACS the N x N autocorrelation matrix must be positive

semidefinite for all N = 1,2, ... and positive definite if we exclude the possibility of

perfect predictability [Brockwell and Davis 1987]. This imposes a large number of

constraints on rx[k] and hence not all sequences satisfying Properties 17.1-17.3 are

valid ACSs (see also Problem 17.19). In summary, for our last property of the ACS

we have the following.

Property 17.6 - ACS is a positive semidefinite sequence.

Mathematically, this means that rx[k] must satisfy

aTRxa 20

for all a = lao al ... aN_dT and where Rx is the N x N autocorrelation matrix

given by (17.23). This must hold for all N 2 1.

o

17.5 Ergodicity and Temporal Averages

When a random process is WSS, its mean does not depend on time. Hence, the

random variables ... , X [-1], X [0], X [1], ... all have the same mean. Then, at least

as far as the mean is concerned, when we observe a realization of a random process,

it is as if we are observing multiple realizations of the same random variable. This

suggests that we may be able to determine the value of the mean from a single

infinite length realization. To pursue this idea further we plot three realizations of

an lID random process whose marginal PDF is Gaussian with mean J.Lx[n] = J.L = 1

and a variance o}[n] = a2 = 1 in Figure 17.7. If we let xi[18] denote the ith

realization at time n = 18, then by definition of E[X[18]]

1 M
lim - L x m [18] = E[X[18]] = J.Lx[18] = J.L = 1.

M-too M
m=l

(17.24)

This is because as we observe all realizations of the random variable X[18] they will

conform to the Gaussian PDF (recall that X[n] rv N(I ,1)). In fact , the original

definition of expected value was based on the relationship given in (17.24). This
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Figure 17.7: Several realizations of WSS random process with j.tx[n] = j.t = 1.

Vertical dashed line indicates "ensemble averaging" while horizontal dashed line

indicates "temporal averaging."

type of averaging is called "averaging down the ensemble" and consequently is just a

restatement of our usual notion of the expected value of a random variable. However,

if we are given only a single realization such as xI[n], then it seems reasonable that

N-l

P,N = ~ L xI[n]
n=O

should also converge to j.t as N -+ 00. This type of averaging is called "temporal

averaging" since we are averaging the samples in time. If it is true that the temporal

average converges to u, then we can state that

1 N-l 1 M

lim - L xl[n] = j.t = E[X[18]] = lim - L xm [18]
N-+oo N M-+oo M

n=O m=l
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and it is said that temporal averaging is equivalent to ensem ble averaging or that

the random process is ergodic in the mean. This property is of great practical

importance since it assures us that by averaging enough samples of the realization,

we can determine the mean of the random process. For the case of an lID random

process ergodicity holds due to the law of large numbers (see Chapter 15). Recall

that if Xl , X2 , ••• , XN are lID random variables with mean J.L and variance 0-
2

, then

the sample mean random variable has the property that

1 N

N L Xi ---+ E[X] = J.L

i= l

as N ---+ 00.

Hence, if X[n] is an lID random process, the conditions required for the law of large

numbers to hold are satisfied, and we can immediately conclude that

N-I

fi,N = ~ L X[n] ---+ J.L.

n=O

(17.25)

Now the assumptions required for a random process to be lID are overly restrictive

for (17.25) to hold. More generally, if X[n] is a WSS random process, then since

E[X[n]] = J.L , it follows that E[fi,N] = (l/N) ' E - ~ : O l E[X[n]] = J.L. Therefore, the only

fur ther condition required for ergodicity in the mean is that

lim var(fi,N) = O.
N -+oo

In the case of the lID random process it is easily shown that var(fi,N) = 0-
2

/ N ---+ 0

as N ---+ 00 and the condition is satisfied. More generally, however , the random

process samples are correlated so that evaluation of this variance is slightly more

complicated. We illustrate this computation next.

Example 17.6 - General MA random process

Consider the general MA random process given as X[n] = (U[n] + U[n - 1])/2,

where E[U[n]] = J.L and var(U[n]) = o-~ for -00 < n < 00 and the U[nJ's are

all uncorrelated. This is similar to the MA process of Example 16.10 but is more

general in that the mean of U[n] is not necessarily zero, the samples of U[n] are only

uncorrelated, and hence , not necessarily independent, and the PDF of each sample

need not be Gaussian. The general MA process X[n] is easily shown to be WSS

and to have a mean sequence JLx[n] = JL (see Problem 17.20) . To determine if it is

ergodic in the mean we must compute the var(fi,N) and show that it converges to

zero as N ---+ 00. Now

(

N -I )

var(fi,N) = var ~ ~ X[n] .
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Since the X[n]'s are now correlated, we use (9.26), where a = lao al ... aN-IV with

an = liN, to yield

The covariance matrix has (i ,j) element

(17.26)

[CX]ij = E[(X[i]-E[X[i]])(X[j]-E[X[j]])]

But

i = 0,1, ... ,N-1jj = 0, 1, ... ,N-l.

X[n] - E[X[n]]
1 1

= 2(U[n] + Urn - 1]) - 2(J.L + J.L)

1
= 2[(U[n] - J.L) + (U[n - 1] - J.L)]

1 - -
2[U[n] + Urn -1]]

where Urn] is a zero mean random variable for each value of n. Thus,

1 - - - -
4E[(U[i] + Uri - 1])(U[j] + U[j - 1])]

l (E[U[i]U[j]] + E[U[i]U[j - 1]] + E[U[i - l]U[j]] + E[U[i - l]U[j - 1]])

and since E[U[nl]U[n2]] = cov(U[nlJ, U[n2]) = ab8[n2 - nl] (all the U[n]'s are

uncorrelated), we have

1
[CX]ij = 4 (ab8[j - i] + ab8[j - 1 - i] + ab8[j - i + 1] + ab8[j - in·

Finally, we have the required covariance matrix

%=J

Ii - jl = 1

otherwise.

(17.27)

Using this in (17.26) produces
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=

=

u2 U2

0 0 0 0 0::IL ::IL
2 4

u 2 u2 u 2

0 0 0 0 [I]
::IL ::IL ::IL
4 2 4

1 1 1
N N N

0 0 0
u 2 u 2 u 2

0 ::IL ::IL ::IL
4 2 4

0 0 0 0 0
u 2 u2
::IL ::IL

4 2

N-l 2 N-2 2 N-l 2
1 L (Ju 1 L (Ju 1 L (Ju

N2 T+N2 4""+N2 4""
i=O i=O i=l

(J2 (J2 N 1 (J2 N 1u u - u - 0 as N -7 00 .
2N +4""N2+4""N2 -7

Finally, we see that the genera l MA random process is ergodic in the mean.

<:;
In general, it can be shown that for a WSS random process to be ergodic in the

mean, the variance of the sample mean

1 N-l ( Ikl)
var(flN) = N L 1 - N (rx[k] - J-L2)

k=-(N-l)

(17.28)

must converge to zero as N -t 00 (see Problem 17.23 for the derivation of (17.28)).

For this to occur, the covariance sequence rx[k] - J-L2 must decay to zero at a fast

enough rate as k -7 00, which is to say that as the samples are spaced further

and further apart , they must eventually become uncorrelated. A little reflection on

the part of the reader will reveal that ergodicity requires a single realization of the

random process to display the behavior of the entire ensemble of realizations. If not,

ergodicity will not hold. Consider the following simple nonergodic random process.

Example 17 .7 - Random DC level

Define a random process as X [n] = A for -00 < n < 00, where A rv N (O, 1). Some

realizations are shown in Figure 17.8. T his random process is WSS since

J-Lx[n]

rx[k]

- E[X[n]] = E[A] = 0 = J-L

E[X[n]X[n + k]] = E[A2] = 1

-oo <n <oo (not dependent on n)

(not dependent on n).

However , it should be clear that flN will not converge to J-L = O. Referring to the

realization xdn] in Figure 17.8, the sample mean will produce - 0.43 no matter how

large N becomes. In addition, it can be shown that var(flN) = 1 (see Problem

17.24) . Each rea lization is not representative of the ensem ble of realizations.
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Figure 17.8: Several realizations of the random DC level process.

17.6 The Power Spectral Density

The ACS measures the correlat ion between samples of a WSS random process. For

example, the AR random process was shown to have the ACS

a 2

rx [kJ= __U_ alkJ
1 - a2

which for a = 0.25 and a = 0.98 is shown in Figure 17.6, along with some typical

realizations in Figure 17.5. Note that when the ACS dies out rapidly (see Figure

17.6a) , the realization is more rapidly varying in time (see Figure 17.5a). In contrast,

when the ACS decays slowly (see Figure 17.6b) , the realization varies slowly (see

Figure 17.5b). It would seem that the ACS is related to the rate of change of the

random process. For deterministic signals the rate of change is usually measured

by examining a discrete-time Fourier transform [Jackson 1991J. Signals with high

frequency content exhibit rapid fluctutations in time while signals with only low

frequency content exhibit slow variations in time. For WSS random processes we

will be interested in the pow er at the various frequencies. In particular , we will

introduce the measure known as the pow er spectral density (PSD) and show that it
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quantifies the distribution of power with frequency. Before doing so, however, we

consider the following deterministically motivated measure of power with frequency

based on the discrete-time Fourier transform

N-l 2
A I ",

Px(f) = N L.J X[n]exp(-j27fJn)

n=O

(17.29)

This is a normalized version of the magnitude-squared discrete-time Fourier trans­

form of the random process over the time interval 0 ~ n ~ N - 1. It is called the

periodogram since its original purpose was to find periodicities in random data sets

[Schuster 1898]. In (17.29) J denotes the discrete-time frequency, which is assumed

to be in the range -1/2 ~ J ~ 1/2 for reasons that will be elucidated later. The l/N

factor is required to normalize Px (f) to be interpretable as a power spectral density

or power per unit frequency. The use of a "hat" is meant to convey the notion that

this quantity is an estimator. As we now show, the periodogram is not a suitable

measure of the distribution of power with frequency, although it would be for some

deterministic signals (such as periodic discrete-time signals with period N) . As an

example, we plot Px(f) in Figure 17.9 for the realizations given in Figure 17.5. We

8 . 8 .

4 ... .:.

.........-.
~ 6 .... :.

<Q., :

4 . . . . :. . . . .... ... . . ... . . . ... . . ... .. . .

2

o'-"""'............L.JoL.JL.~~--..:e'-~~ ........~ ...........LJ

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

J

(a) a = 0.25, u~ = 1 - a
2

2 ... .; ....:... ..:.

-0.5 -0.4 -0.3 -0.2 - 0.1 0 0.1 0.2 0.3 0.4 0.5

J

(b) a = 0.98, u~ = 1 - a
2

Figure 17.9: Periodogram for autoregressive random process with different param­

eters. The realizations shown in Figure 17.5 were used to generate these estimates.

see that the periodogram in Figure 17.9a exhibits many random fluctuations. Other

realizations will also produce similar seemingly random curves. However, it does

seem to produce a reasonable result-for the periodogram in Figure 17.9a there is

more high frequency power than for the periodogram in Figure 17.9b. The reason

for the random nature of the plot is that (17.29) is a function of N random variables

and hence is a random variable itself for each frequency. As such, it exhibits the
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variability of a random process for which the usual dependence on time is replaced

by frequency. What we would actually like is an average measure of the power dis­

tribution with frequency, suggesting the need for an expected value. Also, to ensure

that we capture the entire random process behavior, an infinite length realization is

required. We are therefore led to the following more suitable definition of the PSD

(17.30)

The function Px(J) is called the power spectral density (PSD) and when integrated

provides a measure of the average power within a band of frequencies. It is com­

pletely analogous to the PDF in that to find the average power of the random process

in the frequency band h ::; f ::; 12 we should find the area under the PSD curve.

Fourier analysis of a random process yields no phase information.

In our definition of the PSD we are using the magnitude-squared of the Fourier

transform. It is obvious then, that the PSD does not tell us anything about the

phases of the Fourier transform of the random process. This is in contrast to a

Fourier transform of a deterministic signal. There the inverse Fourier transform can

be viewed as a decomposition of the signal into sinusoids of different frequencies

with deterministic amplitudes and phases. For a random process a similar decom­

position called the spectral representation theorem [Brockwell and Davis 1987] yields

sinusoids of different frequencies with random amplitudes and random phases. The

PSD is essentially the expected value of the power of the random sinusoidal ampli­

tudes per unit of frequency. No phase information is retained and therefore no phase

information can be extracted from knowledge of the PSD.

We next give an example of the computation of a PSD.

Example 17.8 - White noise

Assume that X[n] is white noise (see Example 17.2) and therefore, has a zero mean
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and ACS rx[k] = 0-28[k]. Then,

Px(f) ~ , J i ~ = 2M\ 1E [ntM X[n] exp(j2~fnl mtMX[mJexp(-j2n f m l]

1 M M

= lim 2M '" '" E[X[n]X[m]] exp[-j27rj(m - n)] (17.31)
M~oo +1 LJ LJ ~

n=-Mm=-M [ I
r x m -n

=

=

M M

lim 1 '" '" 0-28[m - n]exp[-j27rj(m - n)]
M ~oo 2M + 1 LJ LJ

n=-Mm=-M

1 M

lim '" 0-
2

M~oo 2M + 1 LJ
n=-M

lim 0-2 = 0-2. (17.32)
M~oo

Hence , for white noise the PSD is

- 1/2 ~ j ~ 1/2.

As first mentioned in Chapter 16 white noise contains equal contributions of average

power at all frequencies.

c
A more straightforward approach to obtaining the PSD is based on knowledge of

the ACS. From (17.31) we see that

1 M M

Px(J) = lim 2M 1 2: 2: rx[m - n]exp[-j27rj(m - n)].
M~oo +

n=-Mm=-M

This can be simplified using the formula (see Problem 17.26)

M M 2M

2: 2: g[m - n] = 2: (2M + 1 -Ikl)g[k]
n=-M m=-M k=-2M

(17.33)

which results from considering g[m - n] as an element of the (2M + 1) x (2M + 1)

matrix G with elements [G]mn = g[m-n] for m = -M, ... , M and n = -M, ... , M

and then summing all the elements. Using this relationship in (17.33) produces

Px(J) =
1 2M

lim 2M 1 2: (2M + 1 -Ikl)rx[k] exp( -j27rjk)
M ~ o o +

k=-2M

lim ~ (1- 2 ~ k l ) rx[k]exp(-j27rjk) .
M~oo + 1

k=-2M
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Assuming that L ~ = - o o Irx[kJl < 00, the limit can be shown to produce the final

result (see Problem 17.27)

00

Px(f) = L rx[k] exp (-j27rfk)
k=-oo

(17.34)

which says that the power spectral density is the discrete-tim e Fourier transform

of the ACS. This relationship is known as the Wiener-Khinchin e theorem. Some

examples follow.

Example 17.9 - White noise

From Example 17.2 rx[k] = a28[k] and so

00

Px(f) = L rx[k]exp(-j27rfk)
k=-oo

00

L a
28[k] exp( -j27rfk)

k=-oo

= a 2
.

This is shown in Figure 17.10. Note that the total average power in X[n], which is

rx [O] = a2
, is given by the area under the PSD curve.

Px(f)

_ . . . L . . - _ ~ __---L._", f
1
"2

Figure 17.10: PSD of white noise.

Example 17.10 - AR random process

From (17.21) we have that

-oo<k<oo
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and from (17.34)

00

Px(J) = L rx[k] exp( -j21fjk)

k=-oo

2 00

---.!!.JL ~ a1k1exp(-j21fjk)
1- a2 LJ

k=-oo

Since laexp(±j21fJ)1 = lal < 1, we can use the formula 2 : ~ k o zk = zko /(1 - z) for

z a complex number with Izi < 1 to evaluate the sums. This produces

(17.35)
11 - aexp(-j21fj)J2.

(1[; ( a exp(j21fJ) 1)
1- a2 1- aexp(j21fJ) + 1 - aexp(-j21fJ)

(1[; aexp(j21fj)(l- aexp(-j21fJ)) + (1- aexp(j21fJ))

1- a2 (1 - aexp(j21fJ))(1 - aexp(-j21fJ))

(1[; 1 - a2

1- a2 11 - a exp(-j21fJ) 1
2

(12
U=

Px(J) =

This can also be written in real form as

2

Px(J) = (1u
1 + a2 - 2a cos(21fJ)

- 1/2 '5:. j '5:. 1/2. (17.36)

For a = 0.25 and a = 0.98 and (1[; = 1 - a2
, the PSDs are plotted in Figure

17.11. Note that the total average power in each PSD is the same, being rx[O] =

(1[;/(1 - a2
) = 1. As expected the more noise-like random process has a PSD (see

Figure 17.11a) with more high frequency average power than the slowly varying

random process (see Figure 17.11b) which has all its average power near j = 0 (or

at DC).

o
From the previous example, we observe that the PSD exhibits the properties of

being a real nonnegative function of frequency, consistent with our notion of power

as a nonnegative physical quantity, of being symmetric about j = 0, and of being

periodic with period one (see (17.36)). We next prove that these properties are true

in general.
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Px(O) = 99
8

4

2

OL.-~~~-~~~~-~~---J

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
j

(a) a = 0.25, ab = 1 - a2

8

4 .

2 . . . .

(b) a = 0.98, ab = 1 - a2

Figure 17.11: Power spectral densities for autoregressive random process with differ­

ent parameters. The periodograms, which are estimated PSDs, were given in Figure

17.9.

Property 17.7 - PSD is a real function.

The PSD is also given by the real function

Proof:

Px(f)

00

Px(f) = L rx[k]cos(27fjk) .

k=-oo

00

L rx[k] exp( -j2n}k)
k=-oo

00

L rx[k](cos(27fjk) - jsin(27fjk))

k=-oo

(17.37)

00 00

But

L rx[k] cos(27fjk) - j L rx[k] sin(27fjk) .

k=-oo k=-oo

00 -1 00

L rx[k] sin(27fjk) = L rx[k] sin(27fjk) +L rx[k] sin(27fjk)

k=-oo k=-oo k=l
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since the k = 0 term is zero , and letting l = -k in the first sum we have

00

L rx [k] sin(21rfk)

k=-oo

from which (17.37) follows.

00 00

L r x [-l ]sin(21rf (-l )) + L r x[k]sin(21rfk)

1=1 k=l

00

L r x [k](-sin(21rfk) + sin(21rf k)) = 0 (r x [-l ] = rx[l])

k= l

o

Property 17.8 - PSD is nonnegative.

Px(J) ~ 0

Proof: Follows from (17.30) but can also be shown to follow from the positive

semidefinite property of the ACS [Brockwell and Davis 1987]. (See also Problem

17.19.)

o

Property 17.9 - PSD is symmetric about f = O.

Pxi: - J) = Px(J )

Proof: Follows from (17.37).

o

Property 17 .10 - PSD is periodic with period one.

Px(J + 1) = Px(J)

Proof: From (17.37) we have

00

Px(J + 1) = L r x[k] cos(21r(J + 1)k)

k= -oo

00

= L rx [k] cos(21rfk + 21rk)

k= - oo

00

L r x [k] cos(21rfk)

k=-oo

Px (J )

(cos(21rk) = 1, sin(21rk) = 0)

o
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Property 17.11 - ACS recovered from PSD using inverse Fourier trans­

form

1

rx[k] t.Px(f) exp(j21fjk)dj - 00 < k < 00

2

1

= i: Px(f) cos(21fjk)dj - 00 < k < 00

2

(17.38)

(17.39)

(17.40)

Average physical power in [0,1/2] =

Proof: (17.38) follows from properties of discrete-time Fourier transform [Jackson

1991]. (17.39) follows from Property 17.9 (see Appendix B.5 and also Problem

17.49).

o

Property 17.12 - PSD yields average power over band of frequencies.

To obtain the average power in the frequency band II ::; j ::; 12 we need only find

the area under the PSD curve for this band. The average physical power is obtained

as twice this area since the negative frequencies account for half of the average power

(recall Property 17.9). Hence,

Average physical power in [II,12] = 2 rh Px (f)dj.
1ft

The proof of this property requires some concepts to be described in the next chapter ,

and thus, we defer the proof until Section 18.4. Note, however , that if II = 0 and

12 = 1/2, then the average power in this band is

r1
/
2

2 10 Px(f)dj

1i: Px(J)dj (due to symmetry of PSD)
2

1

i: Px(J) exp(j21fj (0))dj
2

= rx[O] (from (17.38))

which we have already seen yields the total average power since r x[O] = E[X2[n]] .

Hence , we see that the total average power is obtained by integrating the PSD over

all frequencies to yield
1

r x[O] = i 2

1 Px(J)dj.
2

(17.41)
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o

.Lit. Definitions of PSD are not consistent.

In some texts, especially ones describing the use of the PSD for physical measure­

ments, the definition of the PSD is slightly different . The alternative definition relies

on the relationship of (17.40) to define the PSD as Gx(J) = 2Px(J). It is called the

one-sided PSD and its advantage is that it yields directly the average power over a

band when integrated over the band. As can be seen from (17.40)

~
h

Average physical power in [!l ,12] = GX (J)df.
h

.Lit.
A final comment concerns the periodicity of the PSD. We have chosen the fre­

quency interval [-1/2,1/2] over which to display the PSD. The rationale for this

choice arises from the practical situation in which a continuous-time WSS random

process (see Section 17.8) is sampled to produce a discrete-time WSS random pro­

cess. Then, if the continuous-time random process X (t) has a PSD that is bandlim­

ited to W Hz and is sampled at Fs samples/sec, the discrete-time PSD Px(J) will

have discrete-time frequency units of W / F s • For Nyquist rate sampling of F; = 2W,

the maximum discrete-time frequency will be f = W/Fs = 1/2. Hence, our choice

of the frequency interval [-1/2,1/2] corresponds to the continuous-time frequency

interval of [-W , W] Hz. The discrete-time frequency is also referred to as the nor­

mali zed frequency, the normalizing factor being Fs .

17.7 Estimation of the ACS and PSD

Recall from our discussion of ergodicity that in the problem of mean estimation

for a WSS random process, we were restricted to observing only a finite number of

samples of one realization of the random process. If the random process is ergodic

in the mean, then we saw that as the number of samples increases to infinity, the

temporal average flN will converge to the ensemble average u, To apply this result

to estimation of the ACS consider the problem of estimating the ACS for lag k = ko
which is

rx[ko] = E[X[n]X[n + ko]].

Then by defining the product random process Y[n] = X[n]X[n + ko] we see that

rx [ko] = E[Y[n]] -oo<n<oo
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or the desired quantity to be estimated is just the mean of the random process Y[n].
The mean of Y[n] does not depend on n. This suggests that we replace the observed

values of X[n] with those of Y[n] by using y[n] = x[n]x[n + ko], and then use a

temporal average to estimate the ensemble average. Hence, we have the temporal

average estimate

rx[ko]
1 N-l

NLy[n]
n=O

1 N-l

= N L x[n]x[n + ko].
n=O

(17.42)

(17.43)k = 0,1, ... , N - 1.

Also, since rx[-k] = rx[k], we need only estimate the ACS for k ~ O. There

is one slight modification that we need to make to the estimate. Assuming that

{x[O] ,x[I] , ... ,x[N -I]} are observed, we must choose the upper limit on the sum­

mation in (17.42) to satisfy the constraint n +ko :s; N -1. This is because x[n + ko]
is unobserved for n + ko > N - 1. With this modification we have as our estimate

of the ACS (and now replacing the specific lag of ko by the more general lag k)

A 1 N-l-k

rx[k] = N _ k L x[n]x[n + k]
n=O

rx[O]

rx[l]

rx[2]

rx[3]

We have also changed the liN averaging factor to I/(N - k). This is because the

number of terms in the sum is only N - k. For example, if N = 4 so that we observe

{x[0],x[l],x[2],x[3]}, then (17.43) yields the estimates

1
4" (x2[0] + x2[1] + x2[2] + x2[3))

1
3(x[O]x[l] + x[l]x[2] + x[2]x[3))

1
"2(x[0]x[2] + x[l]x[3))

x[0]x[3].

k=O,I, ...

As k increases, the distance between the samples increases and so there are less

products available for averaging. In fact, for k > N -1, we cannot estimate the value

of the ACS at all. With the estimate given in (17.43) we see that E[rx[k)) = rx[k]
for k = 0,1 , .. . , N - 1. In order for the estimate to converge to the true value as

N -+ 00, i.e, for the random process to be ergodic in the autocorrelation or

N-l-k

lim rx[k] = lim N 1 k '" x[n]x[n + k] = rx[k]
N -too N -too - L.J

n=O

we require that var(rx[k)) -+ 0 as N -+ 00. This will generally be true if rx[k] -+ 0

as k -+ 00 for a zero mean random process but see Problem 17.25 for a case where
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this is not required. To illustrat e the est imation performance consider the AR

random process described in Example 17.5. The true ACS and the estimated one

using (17.43) and based on the realizations shown in Figure 17.5 are shown in

Figure 17.12. The est imated ACS is shown as the dark lines while the true ACS as

given by (17.21) is shown as light lines, which are slightly displ aced to the right for

eas ier viewing. Note that in Figure 17.12 the est imated values for k large exhibit

0.5 . ~ 0: j,jjWJJWJJjjjjJJjjjjUJJI

-0.5 -0.5 .

15 20 25 30
k

105
-1 '--_~_~_~_~_~_---.....J

o15 20 25 30
k

105
-1 L...-_~_~_~_~_~_-'-'

o

(a) a = 0.25, a ~ = 1 - a2
(b) a = 0.98, a ~ = 1 - a

2

Figure 17.12: Estimated ACSs (dark lines) and the t rue ACSs given in Figure 17.6

(light lines) for the AR random process realizations shown in Figure 17.5.

a large error. This is due to the fewer number of products, i.e., N - k = 31 - k ,

that are available for averaging in (17.43). In the case of k = 30 the estimate is

fx [30] = x [0]x[30], which as you might expect is very poor since there is no averaging

at all! Clearly, for accurate est imates of the ACS we require that km ax « N . The

MATLAB code used to est imate the ACS for Figure 17.12 is given below.

n=[O:30]';N=length(n);

a1=O.25;a2=O.98;
v a r u 1 = 1 - a 1 ~ 2 ; v a r u 2 = 1 - a 2 ~ 2 ;

r 1 t r u e = ( v a r u 1 / ( 1 - a 1 ~ 2 » * a l . ~ n ; %see (17.21)

r 2 t r u e = ( v a r u 2 / ( 1 - a 2 ~ 2 » * a 2 . ~ n ;

for k=O:N-1

r1est(k+1,1)=(1/(N-k»*sum(xl(1:N-k).*x1(1+k :N»;

r2est(k+1,1)=(1/(N-k»*sum(x2(1:N-k).*x2(1+k:N»;

end

To est imate the PSD requires somewhat more care than the ACS. We have

already seen that the periodogra m est imate of (17.29) is not suitable. There are

many ways to est imate the PSD based on eit her (17.30) or (17.34). We illus trate
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one approach based on (17.30). Others may be found in [Jenkins and Watts 1968,

Kay 1988]. Since we only have a segment of a single realization of the random

process, we cannot implement the expectation operation required in (17.30). Note

that the operation of E[·] represents an average down the ensemble or equivalently

an average over multiple realizations. To obtain some averaging, however , we can

break up the data {x[O] , x[I], . . . , x [N -I]} into I nonoverlapping blocks, with each

block having a total of L samples. We assume for simplicity that there is an integer

number of blocks so that N = I L. The implicit assumption in doing so is that each

block exhibit s the statistical characteristics of a single realization and so we can

mimic the averaging down the ensemble by averaging temporally across successive

blocks of data. Once again, the assumption of ergodicity is being employed. Thus,

we first break up the data set into the I nonoverlapping data blocks

Yi[n] = x[n + iLl n = 0, 1, . .. ,L - 1; i = 0, 1, ... ,I - 1

where each data block has a length of L samples. Then, for each data block we

compute a periodogram as

L-l 2

A (i) 1 '"Px (J) = L L.J Yi[n] exp( -j21rIn)
n=O

(17.44)

and then average all the periodograms together to yield the final PSD estimate as

1-1
A _ 1 '" A (i)

Pav(J) - I L.J Px (J) .
i= O

(17.45)

This est imate is called the averaged periodogram. It can be shown that under some

condit ions, limN-too Av(J) = Px(J). Once again we are calling upon an ergodicity

type of property in that we are averaging the periodograms obtained in time instead

of the theoretical ensemble averaging. Of course , for convergence to hold as N -+ 00,

we must have L -+ 00 and I -+ 00 as well.

As an example, we examine the averaged periodogram estimates for the two AR

processes whose PSDs are shown in Figure 17.ll. The number of data samples was

N = 310, which was broken up into I = 10 nonoverlapping blocks of data with

L = 31 samples in each one. By comparing the spectral estimates in Figure 17.13

with those of Figure 17.9, it is seen that the averaging has yielded a better estimate.

Of course, the price paid is that the data set needs to be I = 10 times as long!

The MATLAB code used to implement the averaged periodogram estimate is given

next. A fast Fourier transform (FFT) is used to compute the Fourier transform of

the Yi[n] sequences at the frequencies I = -0.5 + k.6.j, where k = 0,1 , ... , 1023 and

.6. j = 1/1024 (see [Kay 1988] for a more detailed description).
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Figure 17.13: Power spectral density estimates using the averaged periodogram

method for autoregressive processes with different parameters. The true PSDs are

shown in Figure 17.11.

Nfft=1024; % set FFT size

Pav1=zeros(Nfft,1);Pav2=Pav1; %set up arrays with desired dimension

f=[O:Nfft-1] '/Nfft-O.5; % set frequencies for later plotting

%of PSD estimate

for i=0:I-1

nstart=1+i*L;nend=L+i*L; %set up beginning and end points

%of ith block of data

y1=x1(nstart:nend);

y2=x2(nstart:nend);

%take FFT of block, since FFT outputs samples of Fourier

%transform over frequency range [0,1), must shift FFT outputs

%for [1/2,1) to [-1/2, 0), then take complex magnitude-squared,

%normalize by L and average

P a v 1 = P a v 1 + ( 1 / ( I * L ) ) * a b s ( f f t s h i f t ( f f t ( y 1 , N f f t ) ) ) . ~ 2 ;

P a v 2 = P a v 2 + ( 1 / ( I * L ) ) * a b s ( f f t s h i f t ( f f t ( y 2 , N f f t ) ) ) . ~ 2 ;

end

17.8 Continuous-Time WSS Random Processes

In this section we give the corresponding definitions and formulas for continuous­

time WSS random processes. A more detailed description can be found in [Papoulis

1965]. Also, an important example is described to illustrate the use of these formulas.

A continuous-time random process X(t) for -00 < t < 00 is defined to be WSS
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J.L x(t) = E[X(t )] = J.L -oo <t <oo (17.46)

which is to say it is constant in t ime and an autocorrelation function (ACF) can be

defined as

rX(7) = E [X(t)X(t + 7)] - 00<7< 00 (17.47)

which is not dependent on the value of t. Thus, E[X(tr)X(t2)] depends only on

It2 - ttl . Not e the use of the "parentheses" indicates that the argument of the ACF

is cont inuous and serves to distinguish rx[k]from rX(7 ). The ACF has the following

prop erties.

Property 17.13 - ACF is positive for the zero lag or rx(O) > o.
The total average power is rx(O) = E[X2(t)].

o

Property 17.14 - ACF is an even function or rx(-7) = rX(7).

o

Property 17.15 - Maximum value of ACF is at 7 = 0 or IrX(7) 1 ~ rx(O).

o

Property 17.16 - ACF measures the predictability of a random process.

The correlat ion coefficient for two samples of a zero mean WSS random process is

rX(7)
PX(t),X(t+r) = rX (0) .

o

Property 17.17 - ACF approaches J.L2 as 7 -+ 00 .

This assumes that the samples become uncorrelat ed for large lags , which is usually

the case .

o

Property 17.18 - rX (7) is a positive semidefinite function.

See [Pap oulis 1965] for the definition of a positive semidefinite func tion. This

property assumes that the some samples of X(t) may be perfectly predictable. If it

is not, then the ACF is pos it ive definite.

o
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The PSD is defined as

[

T/2 2]
Px(F) = lim T

1
E f X(t) exp( -j27rFt)dt

T-too -T/2
-oo<F<oo (17.48)

where F is the frequency in Hz. We use a capital F to denote continuous-time

or analog frequency. By the Wiener-Khinchine theorem this is equivalent to the

continuous-time Fourier transform of the ACF

Px(F) = i: rx(r) exp(-j27rFr)dr

i: rx(r) cos (27rFr)dr.

(17.49)

(17.50)

(See also Problem 17.49.) The PSD has the usual interpretation as the average

power distribution with frequency. In particular, it is the average power per Hz.

The average physical power in a frequency band [Fl , F2] is given by

j
F2

Average physical power in [Fl , F2 ] = 2 Px(F)dF
Fl

where again the 2 factor reflects the additional contribution of the negative frequen­

cies. The properties of the PSD are as follows:

Property 17.19 - PSD is a real function.

The PSD is given by the real function

o

Property 17.20 - PSD is nonnegative.

Px(F) 2:: 0

o

Property 17.21 - PSD is symmetric about F = O.

Px(-F) = Px(F)

o
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Property 17.22 - ACF recovered from PSD using inverse Fourier trans­

form

i: Px(F) exp(j27fP7)dF

i: Px(F) cos(21rF7)dF

(See also Problem 17.49.)

-00<7<00

- 00 < 7 < 00.

(17.51)

(17.52)

o
Unlike the PSD for a discrete-time WSS random process, the PSD for a continuous­

time WSS random process is not periodic. We next illustrate these definitions and

formulas with an example of practical importance.

Example 17.11 - Obtaining discrete-time WGN from continuous-time

WGN

A common model for a continuous-time noise random process X(t) in a physical

system is a WSS random process with a zero mean. In addition, due to the origin of

noise as microscopic fluctuations of a large number of electrons, or molecules, etc.,

a central limit. theorem can be employed to assert that X(t) is a Gaussian random

variable for all t. The average power of the noise in a band of frequencies is observed

to be the same for all bands up to some upper frequency limit, at which the average

power begins to decrease. For instance, consider thermal noise in a conductor due to

random fluctuations of the electrons about some mean velocity. The average power

versus frequency is predicted by physics to be constant until a cutoff frequency of

about Fc = 1000 GHz at room temperature [Bell Telephone Labs 1970]. Hence,

we can assume that the PSD of the noise has a PSD shown in Figure 17.14 as

the true PSD. To further simplify the mathematically modeling without sacrificing

the realism of the model, we can observe that all physical systems will only pass

frequency components that are much lower than Fc-typically the bandwidth of

the system is W Hz as shown in Figure 17.14. Any frequencies above W Hz will

be cut off by the system. Therefore, the noise output of the system will be the

same whether we use the true PSD or the modeled one shown in Figure 17.10. The

modeled PSD is given by

Px(F) = No
2

- 00 < F < 00.

This is dearly a physically impossible PSD in that the total average power is

rx(O) = J~oo Px(F)df = 00. However, its use simplifies much systems analysis

(see Problem 17.50). The corresponding ACF is from (17.51) the inverse Fourier

transform, which is

(17.53)
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Figure 17.14: True and modeled PSDs for continuous-time white Gaussian noise.

and is seen to be an impulse at T = O. Again the nonphysical nature of this model

is manifest by the value rx(O) = 00. A continuous-time WSS Gaussian random

process with zero mean and the ACF given by (17.53) is called continuous-time

white Gaussian noise (WGN) (see also Example 20.6) . It is a standard model in

many disciplines.

Now as was previously mentioned, all physical systems are bandlimited to W Hz,

which is typically chosen to ensure that a desired signal with a bandwidth of W Hz

is not distorted. Modern signal processing hardware first bandlimits the continuous­

time waveform to a maximum of W Hz using a lowpass filter and then samples the

output of the filter at the Nyquist rate of F, = 2W samples/sec. The samples are

then input into a digital computer. An important question to answer is: What are

the statistical characterist ics of the noise samples that are input to the computer?

To answer this question we let ~t be the time interval between successive samples.

Also, let X(t) be the noise at the output of an ideal lowpass filter (H(F) = 1 for

IFI ~ Wand H(F) = 0 for IFI > W) over the system passband shown in Figure

17.14. Then, the noise samples can be represented as

X(t)lt=nllt = X[n] for - 00 < n < 00.

Since X(t) is bandlimited to W Hz and prior to filtering had the modeled PSD

shown in Figure 17.14, its PSD is

P (F) = {~ IFI ~ W
x 0 IFI > W.

The noise samples X[n] comprise a discrete-time random process. Its characteristics

follow those of X(t). Since X(t) is Gaussian, then so is X[n] (being just a sample).

Also, since X(t) is zero mean, so is X[n] for all n. Finally, we inquire as to whether

X[n] is WSS , i.e. , can we define an ACS? To answer this we first note that X[n] =

X(n~d and recall that X(t) is WSS. Then from the definition of the ACS

E[X[n]X[n + k]] = E[X(n~dX((n + k)~d]

= rx(k~d (definition of continuous-time ACF)
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which does not depend on n, and so X[n] is a zero mean discrete-time WSS random

process with ACS

rx[k] = rx(k.6.t}. (17.54)

It is seen to be a sampled version of the continuous-time ACF. To explicitly evaluate

the ACS we have from (17.51)

rX(T) = i: Px(F) exp(j21rFT)dF

(w No exp(j21rFT)dF
J-w 2

N, jW~ cos(21rFT)dF
2 -w

No sin(21rFT) IW
2 21rT -w

W
sin(21rWT)

No 21rWT

(sine component is odd function)

(17.55)

which is shown in Figure 17.15. Now since rx[k] = rx(k.6.t} = rx(k/(2W)), we

1 .

0.5

a

. .. . .. . . . . . . . . . ..

-0.5 . . ... , . . . , ... . . , . . .. . , . . . .. , ...

-1

o
T

1 2 3
2W 2W 2W

Figure 17.15: ACF for bandlimited continuous-time WGN with NoW = 1.

see from Figure 17.15 that for k = ±1, ±2, ... the ACS is zero, being the result of

sampling the continuous-time ACF at its zeros. The only nonzero value is for k = 0,

which is r x [0] = r x (0) = NoW from (17.55). Therefore, we finally observe that the

ACS of the noise samples is

rx[k] = NoWJ[k]. (17.56)
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The discrete-time noise random process is indeed WSS and has the ACS of (17.56).

The PSD corresponding to this ACS has already been found and is shown in Figure

17.10, where (]"2 = NoW. Therefore, X[n] is a discrete-time white Gaussian noise

random process. This example justifies the use of the WGN model for discrete-time

systems analysis.

&. Sampling faster gives only marginally better performance.

It is sometimes argued that by sampling the output of a system lowpass filter whose

cutoff frequency is W Hz at a rate greater than 2W, we can improve the performance

of a signal processing system. For example, consider the estimation of the mean /-L

based on samples Y[n] = /-L + X[n] for n = 0,1, ... , N - 1 where E[X[n]] = 0,

var(X[n]) = (]"2, and the X[n1 samples are uncorrelated. The obvious estimate is

the sample mean or (l/N) Ln':Ol Y[n], whose expectation is /-L and whose variance

is (]"2/N. Clearly, if we could increase N, then the variance could be reduced and a

better estimate would result. This suggests sampling the continuous-time random

process at a rate faster than 2W samples/sec. The fallacy, however, is that as

the sampling rate increases, the noise samples become correlated as can be seen by

considering a sampling rate of 4W for which the time interval between samples

becomes T = b..tl2 = 1/(4W). Then, as observed from Figure 17.15, the correlation

between successive samples is rx(1/(4W)) = 0.6. In effect, by sampling faster we

are not obtaining any new realizations of the noise samples but nearly repetitions

of the same noise samples. As a result , the variance will not decrease as l/N but at

a slower rate (see also Problem 17.51).

17.9 Real-World Example - Random Vibration Testing

Anyone who has ever traveled in a jet knows that upon landing, the cabin can

vibrate greatly. This is due to the air currents outside the cabin which interact with

the metallic aircraft surface. These pressure variations give rise to vibrations which

are referred to as turbulent boundary layer noise. A manufacturer that intends to

attach an antenna or other device to an aircraft must be cognizant of this vibration

and plan for it. It is customary then to subject the antenna to a random vibration

test in the lab to make sure it is not adversely affected in flight [McConnell 1995] .

To do so the antenna would be mounted on a shaker table and the table shaken in

a manner to simulate the turbulent boundary layer (TBL) noise. The problem the

manufacturer faces is how to provide the proper vibration signal to the table, which



17.9. REAL-WORLD EXAMPLE - RANDOM VIBRATION TESTING 587

presumably will then be transmitted to the antenna. We now outline a possible

solution to this problem.

The National Aeronautics and Space Administration (NASA) has determined

PSD models for the TBL noise through physical modeling and experimentation.

A reasonable model for the one-sided PSD of TBL noise upon reentry of a space

vehicle , such as the space shuttle, into the earth's atmosphere is given by [NASA

2001]

{

Gx(500) 0 ~ F < 500 Hz

Gx(F) = 9 xlO
14r2 500 < F < 50000 Hz

F+11364 --

where r represents a reference value which is 20J.lPa. A J.lPa is a unit of pressure

equal to 10-6 nt/m2
• This PSD is shown in Figure 17.16 referenced to the standard

unit so that r = 1. Note that it has a lowpass type of characteristic. In order

X 10'0
8 ,------,.-------,-----.------r--------,

2 .. .•. . . ...... .

7 .

6 . . . .
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'--"

~ 5
Cj

4 .

3 ..

. ,', ,' .

42 3
F (Hz)

1'---------'--------'----'--------1.-------.J
o

Figure 17.16: Continuous-time one-sided PSD for TBL noise.

to provide a signal to the shaker table that is random and has the PSD shown

in Figure 17.16, we will assume that the signal is produced in a digital computer

and then converted via a digital-to-analog convertor to a continuous-time signal.

Hence , we need to produce a discrete-time WSS random process within the computer

that has the proper PSD. Recalling our discussion in Section 17.8 we know that

rx[k] = rx(k~d and since the highest frequency in the PSD is W = 50,000 Hz, we

choose ~t = 1/(2W) = 1/100,000. This produces the discrete-time PSD shown in

Figure 17.17 and is given by Px(J) = (1/(2~t))Gx(J I ~t). (We have divided by two

to obtain the usual two-sided PSD. Also, the sampling operation introduces a factor

of II ~ t [Jackson 1991].) To generate a realization of a discrete-time WSS random

process with PSD given in Figure 17.17 we will use the AR model introduced in
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Figure 17.17: Discrete-time PSD for TBL noise.

Example 17.5. From the ACS we can determine values of a and ( 7 ~ if we know rx [0]
and rx[l] since

a
rx[l]

rx[O]

2 [(rx[l ] ) 2]rx[O](l - a ) = rx[O] 1 - rx[O] .

(17.57)

(17.58)

Knowing a and ( 7 ~ will allow us to use the defining recursive difference equation,

X[n] = aX[n -1] + Urn], of an AR random process to generate the realization. To

obtain the first two lags of the ACS we use (17.39)

1

rx[O] = [21Px(J)df
2

1

rx[l] = [21Px(J) cos(21rf)df
2

where Px(J) is given in Figure 17.17. These can be evaluated numerically by re­

placing the integrals with approximating sums to yield rx[O] = 1.5169 x 1015 and

rx[l] = 4.8483 x 1014
. Then, using (17.57) and (17.58) , we have the AR parame­

ters a = 0.3196 and ( 7 ~ = 1.362 X 1015
. With these parameters the AR PSD (see

(17.36)) and the true PSD (shown in Figure 17.17) are plotted in Figure 17.18. The

agreement between them is fairly good except near f = O. Hence, with these values

of the parameters a random process realization could be synthesized within a digital

computer and then converted to analog form to drive the shaker table.
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Problems

17.1 C..:..) (w) A Bernoulli random process X[n] for -00 < n < 00 consists of

independent random variables with each random variable taking on the values

+1 and -1 with probabilities p and 1 - p , respectively. Is this random process

WSS? If it is WSS, find its mean sequence and autocorrelation sequence.

17.2 (w) Consider the random process defined as X[n] = aoU[n] + alU[n - 1] for

-00 < n < 00, where ao and al are constants, and Urn] is an IID random

process with each Urn] having a mean of zero and a variance of one. Is this

random process WSS? If it is WSS, find its mean sequence and autocorrelation

sequence.

17.3 (w) A sinusoidal random process is defined as X[n] = A cos(27110n) for -00 <
n < 00, where 0 < fo < 0.5 is a discrete-time frequency, and A rv N(O, 1). Is

this random process WSS? If it is WSS, find its mean sequence and autocor­

relation sequence.

17.4 (f) A WSS random process has E[X[O]] = 1 and a covariance sequence cx[nl' n2] =

2<5[n2 - nl]' Find the ACS and plot it.

17.5 t.:.:') (w) A random process X[n] for -00 < n < 00 consists of independent

random variables with

X[n] rv { N(O,l) for n even
U(-V3,V3) for n odd.

Is this random process WSS? Is it stationary?
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(17.59)

17.6 (w) The random processes X[n] and Y[n] are both WSS. Every sample of

X [n] is independent of every sample of Y[n]. Is Z[n] = X[n] + Y[n] WSS? If

it is WSS , find its mean sequence and autocorrelation sequence.

17.7 (w) The random processes X[n] and Y[n] are both WSS. Every sample of

X[n] is independent of every sample of Y[n]. Is Z[n] = X[n]Y[n] WSS? If it

is WSS , find its mean sequence and autocorrelation sequence.

17.8 (f) For the ACS rx[k] = {1/2)k for k ~ 0 and rx[k] = (1/2)-k for k < 0,

verify that Properties 17.1-17.3 are satisfied.

17.9 L..:.J (w) For the sequence rx[k] = ab1kl for -00 < k < 00, determine the

values of a and b that will result in a valid ACS.

17.10 (w) A periodic WSS random process with period P is defined to be a random

process X[n] whose ACS satisfies rx[k + P] = rx[k] for all k, An example

is the randomly phased sinusoid of Example 17.10 for which P = 10. Show

that the correlation coefficient for two samples of a zero mean periodic random

process that are separated by P samples is one. Comment on the predictability

of X[n + P] based on X[n] = x[n].

17.11 (w) A WSS random process has an ACS rx[k] and mean J.L. Find the corre­

lation coefficient for two samples of the random process that are separated by

k samples.

17.12 c.:.:..-) (w) Which of the sequences in Figure 17.19 cannot be valid ACSs? If

the sequence cannot be an ACS, explain why not.

17.13 (w) For the randomly phased sinusoid described in Example 17.4 find the

optimal linear prediction of X[l] based on observing X[O] = x[O], and also of

X[10] based on observing X[O] = x[O]. Can either of these samples be perfectly

predicted? Explain why or why not.

17.14 (w) For the AR random process described in Example 17.10 find the optimal

linear prediction of X[no+ko] based on observing X[no] = x[no]. How accurate

is your prediction in terms of MSE as ko increases?

17.15 (t) In this problem we derive rx[O] for the AR random process described in

Example 17.5. To do so assume that X[n] can be written as

00

X[n] = I: akU[n - k].

k=O

This was shown to be true in Example 17.5. Then verify that rx[O] can be

written as
00 00

rx[O] = I:I: akaIE[U[n - k]U[n -I]]
k=OI=O
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Figure 17.19: Possible ACSs for Problem 17.12.

and use the properties of the Urn] random pro cess to finish the derivation.

17.16 (t) Using a similar approach to the one used in Problem 17.15 derive the

ACS for the AR random process described in Example 17.5. Hint: Start with

the definition of the ACS and use (17.59).

17.17 C.:,) (w) To generate a realization of an AR process on the computer we

can use the recursive difference equation X[n] = aX[n - 1] + Urn] for n ;:::
O. However, in doing so, we soon realiz e that the initial condition X[-I]
is required. Assume that we set X[-I] = 0 and use the recursion X[O] =

U[O], X[I] = aX[O] + U[I] , .... Determine the mean and variance of X[n] for

n ~ 0, where as usual Urn] consists of uncorrelated random variables with

zero mean and variance (7[;. Does the mean depend on n? Does the variance

depend on n? What happens as n -+ oo? Hint: First show that X[n] can be

written as X[n] = L:~=o akU[n - k] for n ~ O.

17.18 (w) This problem continues Problem 17.17. Instead ofletting X [-I] = 0, set

X[-I] equal to a random variable with mean 0 and a variance of (7[;/(1- a2
)

and that is uncorrelated with Urn] for n ;::: O. Find the mean and variance of
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X[O] . Explain your results and why this makes sense.

17.19 C.:J (w) An example of a sequence that is not positive semidefinite is r[O] =
1, r[-l] = r[l] = -7/8 and equals zero otherwise. Compute the determinant

of the 1 x 1 principal minor, the 2 x 2 principal minor, and the 3 x 3 principal

minor of the 3 x 3 autocorrelation matrix Rx using these values. Also, plot

the discrete-time Fourier transform of r[k]. Why do you think the positive

semidefinite property is important?

17.20 C.':") (w) For the general MA random process of Example 17.6 show that the

process is WSS.

17.21 (f) Use (17.28) to show that the MA random process defined in Example

17.6 is ergodic in the mean.

17.22 (t,f) Show that a WSS random process whose ACS satisfies rx[k] = f-l2 for

k > ko ~ 0 must be ergodic in the mean.

17.23 (t) Prove (17.28) by using the relationship

N-IN-l N-l

L L g[i - j] = L (N -Ikl)g[k].
i=O j=O k=-(N-l)

Try verifying this relationship for N = 3.

17.24 (f) For the random DC level defined in Example 17.7 prove that var(ji,N) = 1.

17.25 (f) Explain why the randomly phased sinusoid defined in Example 17.4 is

ergodic in the mean. Next show that it is ergodic in the ACS in that

N-l-k

lim rx[k] = lim N 1 k '" X[n]X[n+k] = ! cos(21l"(O.1)k) = rx[k] k ~ 0
N -too N -too - L....J 2

n=O

by computing rx[k] directly. Hint: Use the fact that

limN-too(1/(N - k» L:,:':Ol-k cos(21l"fn + ¢) = 0 for any 0 < f < 1 and any

phase angle ¢. This is because the temporal average of an infinite duration

sinusoid is zero.

17.26 (t) Show that the formula

M M 2M

L L g[m -n] = L (2M + 1-lkl)g[k]
m=-M n=-M k=-2M

is true for M = 1.
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17.27 (t) Argue that

lim ~ (1- Ikl ) rx[k]exp(-j271-jk) = ~ rx[k]exp(-j27l"fk)
M-+oo LJ 2M + 1 LJ

k=-2M, , k=-oo
v

w[k]

by drawing pictures of rx[k], which decays to zero, and overlay it with w[k]

as M increases.

17.28 C:.:") (w) For the differenced random process defined in Example 17.1 deter­

mine the PSD. Explain your results.

17.29 (f) Determine the PSD for the randomly phased sinusoid described in Exam­

ple 17.4. Is this result reasonable? Hint: The discrete-time Fourier transform

of exp(j27l"fon) for -1/2 < fa < 1/2 is o(f - fa) over the frequency interval

-1/2 ::; f ::; 1/2.

17.30 C:.:J (w) A random process is defined as X[n] = AU[n], where A rv N(O, O"~)
and Urn] is white noise with variance O"b. The random variable A is indepen­

dent of all the samples of Urn]. Determine the PSD of X[n].

17.31 (w) Find the PSD of the random process X[n] = (1/2)lnIU[n] for -00 < n <
00, where Urn] is white noise with variance O"b.

17.32 (w) Find the PSD of the random process X[n] = aoU[n] +alU[n-1]' where

ao ,al are constants and Urn] is white noise with variance O"b = 1.

17.33 (w) A Bernoulli random process consists of lID Bernoulli random variables

taking on values +1 and -1 with equal probabilities. Determine the PSD and

explain your results.

17.34 C:..:..-) (w) A random process is defined as X[n] = Urn] + f-l for -00 < n < 00,

where Urn] is white noise with variance O"b. Find the ACS and PSD and plot

your results.

17.35 (w,c) Consider the AR random process defined in Example 17.5 and de­

scribed further in Example 17.10 with -1 < a < 0 and for some O"b > O. Plot

the PSD for several values of a and explain your results.

17.36 (f,c) Plot the corresponding PSD for the ACS

{

1 k = 0

1/2 k = ±1
rx[k] = 1/4 k = ±2

o otherwise.
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17.37 (w) If a random process has the PSD Px (J) = 1+cos(27fJ) , are the samples

of the random process uncorrelated?

17.38 C...:....) (f) If a random process has the PSD Px(J) = 11 + exp(-j27fJ) +
(1/2) exp( -j47fJ)12

, determine the ACS.

17.39 (c) For the AR random processes whose ACSs are shown in Figure 17.6

generate a realization of N = 2000 samples for each process. Use the MATLAB

code segment given in Section 17.4 to do this. Then, estimate the ACS for

k = 0,1 , ... , 30 and plot the results. Compare your results to those shown in

Figure 17.12 and explain.

17.40 C..:.,,) (w) A PSD is given as Px(J) = a+bcos(27fJ) for some constants a and

b. What values of a and b will result in a valid PSD?

17.41 (f) A PSD is given as

Px(J) = { 2
0

- 8f os f :S 1/4
1/4 < f :S 1/2.

Plot the PSD and find the total average power in the random process.

17.42 C:_:J (c) Plot 50 realizations of the randomly phased sinusoid described in

Example 17.4 with N = 50, and overlay the samples in a scatter diagram plot

such as shown in Figure 16.15. Explain the results by referring to the PDF of

Figure 16.12. . Next est imate the following quantities: E[X[10]],E[X[12]],
E[X[10]X[12]],E[X[12]X[14]] by averaging down the ensemble, and compare

your simulated results to the theoretical values.

17.43 (c) In this problem we support the results of Problem 17.18 by using a com­

puter simulation. Specifically, generate M = 10,000 realizations of the AR

random process X[n] = 0.95X[n -1] +Urn] for n = 0,1 , ... ,49, where Urn] is

WGN with <7D = 1. Do so two ways: for the first set ofrealizations let X[-I] =

oand for the second set of realizations let X [-1] '"'" N (0, <7D / (1 - a2
) ) , using a

different random variable for each realization. Now estimate the variance for

each sample time n, which is rx[O], by averaging X 2[n] down the ensemble of

realizations. Do you obtain the theoretical result of rx[O] = <7D/(l - a2 )?

17.44 C..:.,,) (c) Generate a realization of discrete-time white Gaussian noise with

variance <7i = 1. For N = 64, N = 128, and N = 256, plot the periodogram.

What is the true PSD? Does your estimated PSD get closer to the true PSD

as N increases? If not , how could you improve your estimate?

17.45 (c) Generate a realization of an AR random process of length N = 31,000

with a = 0.25 and <7D = 1-a2
. Break up the data set into 1000 nonoverlapping

blocks of data and compute the periodogram for each block. Finally, average
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the periodograms together for each point in frequency to determine the final

averaged periodogram estimate. Compare your results to the theoretical PSD

shown in Figure 17.11a.

17.46 (f) A continuous-time randomly phased sinusoid is defined by X(t) =
cos(211"Fot + 8), where 8 '" U(O , 211"). Determine the mean function and ACF

for this random process.

17.47 c.:...:J (f) For the PSD Px(F) = exp( -IF!), determine the average power in

the band [10, 100] Hz.

17.48 (w) If a PSD is given as Px(F) = exp( -IF/Fo!), what happens to the ACF

as Fo increases and also as Fo --7 oo?

17.49 (t) Based on (17.49) derive (17.50), and also based on (17.51) derive (17.52).

17.50 k.:...) (w) A continuous-time white noise random process U(t) whose PSD is

given as Pu(F) = No/2 is integrated to form the continuous-time MA random

process

X(t) = T
1 r

t

U(~)d~.
It-T

Determine the mean function and the variance of X(t) . Does X(t) have infinite

total average power?

17.51 c.:...:.-) (w,c) Consider a continuous-time random process X(t) = J-L + U(t),

where U(t) is zero mean and has the ACF given in Figure 17.15. If X(t) is

sampled at twice the Nyquist rate, which is F, = 4W, determine the ACS of

X[n]. Next using (17.28) find the variance of the sample mean estimator [J,N

for N = 20. Is it half of the variance of the sample mean estimator if we had

sampled at the Nyquist rate and used N = 10 samples in our estimate? Note

that in either case the total length of the data interval in seconds is the same,

which is 20/(4W) = 10/(2W).

17.52 (f) A PSD is given as

Model this PSD by using an AR PSD as was done in Section 17.9. Plot the

true PSD and the AR model PSD.



Chapter 18

Linear Systems and Wide Sense

Stationary Random Processes

18.1 Introduction

Most physical systems are conveniently modeled by a linear system. These include

electrical circuits, mechanical machines, human biological functions, and chemical

reactions, just to name a few. When the system is capable of responding to a

continuous-time input , its effect can be described using a linear differential equation.

For a system that responds to a discrete-time input a linear difference equation

can be used to characterize the effect of the system. Furthermore, for systems

whose characteristics do not change with time, the coefficients of the differential or

difference equation are constants. Such a system is termed a linear time invariant

(LTI) system for continuous-time inputs/outputs and a linear shift invariant (LSI)

system for discrete-time inputs/outputs. In this chapter we explore the effect of these

systems on wide sense stationary (WSS) random process inputs. The reader who is

unfamiliar with the basic concepts of linear systems should first read Appendix D for

a brief introduction. Many excellent books are available to supplement this material

[Jackson 1991, Oppenheim, Willsky, and Nawab 1997, Poularikas and Seely 1985].

We will now consider only discrete-time systems and discrete-time WSS random

processes. A summary of the analogous concepts for the continuous-time case is

given in Section 18.6.

The importance of LSI systems is that they maintain the wide sense stationarity

of the random process. That is to say, if the input to an LSI system is a WSS

random process, then the output is also a WSS random process. The mean and ACS,

or equivalently the PSD, however, are modified by the action of the system. We will

be able to obtain simple formulas yielding these quantities at the system output. In

effect, the linear system modifies the first two moments of the random process but

in an easily determined and intuitively pleasing way. This allows us to assess the

effect of a linear system on a WSS random process and therefore provides a means
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to produce a WSS random process at the output with some desired characteristics.

Furthermore, the theory is easily extended to the case of multiple random processes

and multiple linear systems as we will see in the next chapter.

18.2 Summary

For the linear shift invariant system shown in Figure 18.1 the output random process

is given by (18.2). If the input random process is WSS, then the output random

process is also WSS. The output random process has a mean given by (18.9), an ACS

given by (18.10), and a PSD given by (18.11). If the input WSS random process

is white noise , then the output random process has the ACS of (18.15). In Section

18.4 the PSD is interpreted, using the results of Theorem 18.3.1, as the average

power in a narrow frequency band divided by the width of the frequency band. The

application of discrete-time linear systems to estimation of samples of a random

process is explored in Section 18.5. Generically known as Wiener filtering, there are

four separate problems defined, of which the smoothing and prediction problems

are solved. For smoothing of a random process signal in noise the estimate is given

by (18.20) and the optimal filter has the frequency response of (18.25). A specific

application is given in Example 18.4 to estimation of an AR signal that has been

corrupted by white noise. The minimum MSE of the optimal Wiener smoother

is given by (18.27) . One-step linear prediction of a random process sample based

on the current and all past samples as given by (18.21) leads to the optimal filter

impulse response satisfying the infinite set of linear equations of (18.28). The general

solution is summarized in Section 18.5.2 and then illustrated in Example 18.6. For

linear prediction based on the current sample and a finite number of past samples

the optimal impulse response is given by the solution of the Wiener-Hopf equations

of (18.36). The corresponding minimum MSE is given by (18.37). In particular, if

the random process is an AR random process of order p, the Wiener-Hopf equations

are the same as the Yule-Walker equations of (18.38) and the minimum mean square

error equation of (18.37) is the same as for the white noise variance of (18.39). In

Section 18.6 the corresponding formulas for a continuous-time random process that

is input to a linear time invariant system are summarized. The mean at the output

is given by (18.40), the ACF is given by (18.41), and the PSD is given by (18.42).

Example 18.7 illustrates the use of these formulas. In Section 18.7 the application

of AR random process modeling to speech synthesis is described. In particular, it

is shown how a segment of speech can first be modeled, and then how for an actual

segment of speech, the parameters of the model can be extracted. The model with

its estimated parameters can then be used for speech synthesis.

18.3 Random Process at Output of Linear System

We wish to consider the effect of an LSI system on a discrete-time WSS random

process. We will from time to time refer to the linear system as a filter, a term that
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is synonomous. In Section 18.6 we summarize the results for a continuous-time WSS

random process that is input to an LTI system. To proceed, let Urn] be the WSS

random process input and X[n] be the random process output of the system. We

generally represent an LSI system schematically with its input and output as shown

in Figure 18.1. Previously, in Chapters 16 and 17 we have seen several examples

Linear shift
Urn] invariant

n= ... ,-I,O,I, ... system

1-----1~ X [n]

n= ... ,-I,O,I, .. .

(18.1)

Figure 18.1: Linear shift invariant system with random process input and output.

of LSI systems with WSS random process inputs. One example is the MA random

process (see Example 16.7) for which X[n] = (U[n] +Urn -1])/2, with Urn] a white

Gaussian noise process with variance ( J ~ . (Recall that discrete-time white noise is

a zero mean WSS random process with ACS ru[k] = (J~8[k].) We may view the

MA random process as the output X[n] of an LSI filter excited at the input by the

white Gaussian noise random process Urn]. (In this chapter we will be considering

only the first two moments of X[n]. That Urn] is a random process consisting of

Gaussian random variables is of no consequence to these discussions. The same

results are obtained for any white noise random process Urn] irregardless of the

marginal PDFs. In Chapter 20, however, we will consider the joint PDF of samples

of X[n] , and in that case, the fact that Urn] is white Gaussian noise will be very

important.) The averaging operation can be thought of as a filtering by the LSI

filter having an impulse response

{

~ k = °
h[k] = ~ k = 1

° otherwise.

(Recall that the impulse response h[n] is the output of the LSI system when the

input urn] is a unit impulse 8[n].) This is because the output of an LSI filter is

obtained using the convolution sum formula

00

X[n] = L h[k]U[n - k]

k=-OQ

so that upon using (18.1) in (18.2) we have

X[n] h[O]U[n] + h[I]U[n - 1]
1 1
2"U[n] + 2"U[n - 1]

1
2"(U[n] + Urn - 1]).

(18.2)
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In general, the LSI system will be specified by giving its impulse response h[k] for

-00 < k < 00 or equivalently by giving its system function, which is defined as the

z-t ransform of the impulse response. The system function is thus given by

00

1i(z) = L h[k]z-k.

k=-oo

(18.3)

(18.4)

In addition, we will have need for the frequency responseof the LSI system, which is

defined as the discrete-time Fourier transform of the impulse response. It is therefore

given by
00

H(J) = L h[k]exp(-j27ffk).

k=-oo

This function assesses the effect of the system on a complex sinusoidal input sequence

urn] = exp(j27f fan) for -00 < n < 00. It can be shown that the response of the

system to this input is x[n] = H(Jo) exp(j27f fan) = H(Jo)u[n] (use (18.2) with the

deterministic input urn] = exp(j27f fan)). Hence, its name derives from the fact that

the system action is to modify the amplitude of the complex sinusoid by IH(Jo)I and

the phase of the complex sinusoid by L.H(Jo), but otherwise retains the complex

sinusoidal sequence. It should also be noted that the frequency response is easily

obtained from the system function as H(J) = 1i(exp(j27fJ)) . For the MA random

process we have upon using (18.1) in (18.3) that the system function is

1i(z) = ~ + ~z-l
2 2

and the frequency response is the system function when z is replaced by exp(j27f J) ,

yielding
1 1

H(J) ="2 + "2 exp (- j 27fJ) .

It is said that the system function has been evaluated "on the unit circle in the

z-plane" .

We next give an example to determine the characteristics of the output random

process of an LSI system with a WSS input random process. The previous example

is generalized slightly to prepare for the theorem to follow.

Example 18.1 - Output random process characteristics

Let Urn] be a WSS random process with mean J.Lu and ACS ru[k]. This random

process is input to an LSI system with impulse response

{

h[O] k = 0

h[k] = h[l] k = 1

o otherwise.

This linear syst em is called a finite impulse response (FIR) filter since its impulse

response has only a finite number of nonzero samples. We wish to determine if
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a. the output random process is WSS and if so

b. its mean sequence and ACS.

The output of the linear system is from (18.2)

X[n] = h[O]U[n] + h[I]U[n - 1] .

The mean sequence is found as

E[X[n]] h[O]E[U[n]] + h[I]E[U[n - 1]]

= h[O]/-Lu + h[I]/-Lu

= (h[O] + h[I])/-Lu

so that the mean is constant with time and is given by

ux = (h[O] + h[I])/-Lu.

It can also be written from (18.4) as

00

p-x = L h[k]exp(-j21rfk) uo = H(O)/-Lu.

k= - oo 1=0

The mean at the output of the LSI system is seen to be modified by the frequency

response evaluated at f = O. Does this seem reasonable? Next, if E[X[n]X[n+k]] is

found not to depend on n, we will be able to conclude that X[n] is WSS. Continuing

we have

E[X[n]X[n + k]] E[(h[O]U[n] + h[I]U[n - 1])(h[O]U[n + k] + h[I]U[n + k - 1])]

h2[0]E[U[n]U[n + k]] + h[O]h[I]E[U[n]U[n + k - 1]]

+ h[l]h[O]E[U[n - I]U[n + k]] + h2[I]E[U[n - I]U[n + k - 1]]

(h2[0] + h2 [1]) ru [k] + h[O]h[l]ru[k - 1] + h[l]h[O]ru[k + 1]

and is seen not to depend on n. Hence , X[n] is WSS and its ACS is

rx[k] = (h2[0] + h2 [1])ru[k] + h[O]h[l]ru[k - 1] + h[l]h[O]ru[k + 1]. (18.5)

c
Using the previous example for sake of illustration, we next show that the ACS of the

output random process of an LSI system can be written as a multiple convolution

of sequences. To do so consider (18.5) and let

g[O] h2[0] + h2[1]

g[l] h[O]h[l]

g[-1] h[1]h[O]



(18.8)
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and zero otherwise. Then

rx[k] = g[O]ru[k] + g[l]ru[k - 1] + g[-l]ru[k + 1]
1

L g[j]ru[k - j]
j=-l

g[k] * ru[k] (definition of convolution sum) (18.6)

where * denotes convolution. Also, it is easily shown by direct computation that

o

g[k] L h[-j]h[k - j]
j=-l

h[-k] * h[k] (18.7)

and therefore from (18.6) and (18.7) we have the final result

rx[k] = (h[-k] * h[k])* ru[k]

= h[-k] * h[k] * ru[k].

The parentheses can be omitted in (18.8) since the order in which the convolu­

tions are carried out is immaterial (due to associative and commutative property of

convolution) .

To find the PSD of X[n] we note from (18.4) that the Fourier transform of the

impulse response is the frequency response and therefore

F{h[k]} = H(J)

F{h[-k]} = H*(J)

where F indicates the discrete-time Fourier transform. Fourier transforming (18.8)

produces

Px(J) = H*(J)H(J)Pu(J)

or finally we have

Px(J) = IH(J)12 Pu(J).

This is the fundamental relationship for the PSD at the output of an LSI system-the

output PSD is the input PSD multiplied by the magnitude-squared of the frequency

response. We summarize the foregoing results in a theorem.

Theorem 18.3.1 (Random Process Characteristics at LSI System Output)

If a WSS random process Urn] with mean J.Lu and ACS ru[k] is input to an LSI

system which has an impulse response h[k] and frequency response H(J), then the

output random process X[n] = 2:~-00 h[k]U[n - k] is also WSS and

00

rx[k]

Px(J)

L h[k]J.Lu = H(O)J.Lu
k=-oo

= h[-k] * h[k] * ru[k]

IH(J)12
Pu(J).

(18.9)

(18.10)

(18.11)
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Proof: The mean sequence at the output is

~x[n] = E[X[n]] ~ E li=oo h[k]U[n - k]]

00

= L h[k]E[U[n - k]]
k=-oo

00

L h[k]j.lu = H(O)j.lu
k=-oo

(U[n] is WSS)

Tu[k-j+i]
i=-ooj=-oo

and is not dependent on n. To determine if an ACS can be defined, we consider

E[X[n]X[n + k]]. This becomes

E[X[n]X[n + k]] ~ E [,too h[i]U[n - i] ;tooh[j]U[n + k - j]]

00 00

L L h[i]h[j] ~[U[n - i]U[n + k - jn
v

since Urn] was assumed to be WSS. It is seen that there is no dependence on nand

hence X[n] is WSS. The ACS is

00 00

rx[k] = L L h[i]h[j]ru[(k + i) - j]
i=-ooj=-oo

00 00

= L h[i] L h[j]ru[(k + i) - j]

v

g[k+i]

i=-oo j=-oo
'''---------

where

g[m] = h[m] * ru[m]. (18.12)

Now we have
00

rx[k] = L h[i]g[k + i]
i=-oo

00

L h[-l]g[k -l]
1=-00

(let l = -i)

h[-k] *g[k].

But from (18.12) g[k] = h[k]* ru[k] and therefore

rx[k] h[-k] * (h[k] * ru[k])

= h[-k] * h[k] * ru[k] (18.13)
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due to the associate and commutative properties of convolution. The last re­

sult of (18.11) follows by taking the Fourier transform of (18.13) and noting that

F{h[-k]} = H*(J).
6

A special case of particular interest occurs when the input to the system is white

noise. Then using Pu(J) = (]" ~ in (18.11), the output PSD becomes

(18.14)

Using r u[k] = (]"~8[k] in (18.10), the output ACS becomes

rx[k] = h[-k] * h[k] * (]" ~8[k]

and noting that h[k] * 8[k] = h[k]

r x[k] = (]"~h[-k] * h[k]
00

( ] " ~ L h[-i]h[k - i].
i=-oo

Finally, letting m = - i we have the result

00

rx[k] = (]" ~ L h[m]h[m + k]
m=-oo

- 00 < k < 00. (18.15)

This formula is useful for determining the output ACS, as is illustrated next.

Example 18.2 - AR random process

In Examples 17.5 and 17.10 we derived the ACS and PSD for an AR random

process. We now rederive these quantities using the linear systems concepts just

described. Recall that an AR random process is defined as X[n] = aX[n -1] +Urn]
and can be viewed as the output of an LSI filter with system function

1
1-l(z) = 1 - 1

-az

with white Gaussian noise Urn] at the input. This is shown in Figure 18.2 and

follows from the definition of the system function 1-l(z) as the z-transform of the

output sequence divided by the z-transform of the input sequence. To see this

let urn] be a deterministic input sequence with z-transform U(z) and x[n] be the

corresponding deterministic output sequence with z-transform X(z). Then we have

by the definition of the system function

1-l(z) = X( z)
U(z)
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1-l(z)---i.~I ----1~~ X[n]Urn]

1-l(z) = I-dz- I

Figure 18.2: Linear system model for AR random pro cess. The input random

process Urn] is white Gaussian noise with variance (J&.

and therefore for the given system function

X( z) 1-l(z)U(z)

1
1 _ az-1 U(z) .

Thus,

X(z) - az-1X( z) = U(z)

and taking the inverse z-t ransform yields the recursive difference equation

x[n] - ax[n - 1] = urn] (18.16)

which is equivalent to our AR random process definition when the input and output

sequences are replaced by random processes.

The output PSD is now found by using (18.14) to yield

Px(J)

11- aexp(-j27fjW
(18.17)

which agrees with our previous results. To determine the ACS we can either take the

inverse Fourier transform of (18.17) or use (18.15). The latter approach is generally

easier . To find the impulse response we can use (18.16) with the input set to 6[n] so

that the output is by definition h[n]. Since the LSI system is assumed to be causal,

we need to determine the solution of the difference equation h[n] = ah[n - 1]+ 6[n]
for n ~ 0 with initial condit ion h[-1] = O. The reason that the initial condition is

set equal to zero is our assumption that the LSI system is causal. A causal system

cannot produce an output which is nonzero, in this case h[-1] , before the input is

applied, in this case at n = 0 since the input is 6[n]. This produces h[n] = anus[n] ,
where we now use us[n] to denote the unit step in order to avoid confusion with

the random process realization urn] (see Appendix D.3). Thus, (18.15) becomes for
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00

rx[k] = a~ L amus[m]am+kus[m + k]
m=-oo

00

= a~ak L a
2m

m=O

2 a
k

aU 1 _ a2

and therefore for all k

(m 2: 0 and m + k 2: 0 for nonzero term in sum)

(since lal < 1)

2 a1kl
rx[k] = aU--2.

I-a

Again the ACS is in agreement with our previous results. Note that the linear

system shown in Figure 18.2 is called an infinite impulse response (IIR) filter. This

is because the impulse response h[n] = anus[n] is infinite in length.

& Fourier and z-transforms of WSS random process don't exist.

To determine the system function in the previous example we assumed the input

to the linear system was a deterministic sequence urn]. The corresponding output

x[n], therefore, was also a deterministic sequence. This is because formally the z­
transform (and also the Fourier transform) cannot exist for a WSS random process.

Existence requires the sequence to decay to zero as time becomes large. But of

course if the random process is WSS, then we know that E[X2 [n]] is constant as

n --+ ±oo and so we cannot have IX[n]1 --+ 0 as n --+ ±oo.

Example 18.3 - MA random process

In Example 17.3 we derived the ACS for an MA random process. We now show

how to accomplish this more easily using (18.15). Recall the definition of the MA

random process in Example 17.3 as X[n] = (U[n] + Urn - 1])/2, with Urn] being

white Gaussian noise. This may be interpreted as the output of an LSI filter with

white Gaussian noise at the input. In fact , it should now be obvious that the system

function is ll(z) = 1/2 + (1/2)z-1 and therefore the impulse response is h[m] = 1/2
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for m = 0,1 and zero otherwise. Using (18.15) we have

00

rx[kJ = a ~ L h[mJh[m + kJ
m=-oo

1

a ~ L h[mJh[m+ kJ
m = O

and so 'for k 2: 0

607

k=O

k=l

k 2: 2.

Finally, we have

k=O

k=l

k2:2

which is the same as previously obtained.

18.4 Interpretation of the PSD

We are now in a position to prove that the PSD, when integrated over a band of

fr equen cies yields th e average power within that band. In doing so, the PSD may

then be interpreted as the average power per unit frequency. We next consider

a method to measure the average power of a WSS random process within a very

narrow band of frequencies. To do so we filter the random process with an ideal

narrowband filter whose frequency response is

{
f Y- f f, Y- f, Y- f f !=1H(f) = 1 - 0 - . 2 ~ ~ - 0 + 2' 0 - 2 ~ ~ 0 + 2

o otherwise

and which is shown in Figure 18.3a. The width of the passband of the filter /).f is

assumed to be very small. If a WSS random process X[nJ is input to this filter , then

the output WSS random process Y[nJ will be composed of frequency components

within the /).f frequency band, the remaining ones having been "filtered out" . The

total average power in the output random process Y[nJ (which is WSS by Theorem

18.3.1) is ry[O] and represents the sum of the average powers in X[n] within the

bands [- fo - /).f /2, - fo + /).f /2] and [fo - /).f /2, fo + /).f /2J. It can be found from

1

r y[O] = i: Py(f)df (from (17.38)).
2
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H(J)

1

X[n]

f
1 -fo 1

- 2 2

fo-!¥- fo+!¥-

(a)

-~'I H(f) ~ Yin]

(b)

Figure 18.3: Narrowband filtering of random process to measure power within a

band of frequencies.

Now using (18.11) and the definition of the narrowband filter frequency response we

have

1

ry[O] i :Py(J)df
2

1

i : IH(J)1
2
Px(J)df (from (18.11))

2

1
-10+6.1/2 ~/ 0+6.1 /2

= 1· Px(J)df + 1· Px(J)df
- 10-6.// 2 10-6.//2

~
/ 0 + 6. 1 / 2

= 2 1· Px(J)df (since Px'; - J) = Px(J)).
10-6.//2

If we let ilf --+ 0, so that Px(J) --+ Px(Jo) within the integration interval, this

becomes approximately

ry[O] = 2Px(Jo)ilf

or

P (f) = ~ ry [0]
X 0 2 ilf .

Since ry [0] is the total average power due to the frequency components within the

bands shown in Figure 18.3a, which is twice the total average power in the positive

frequency band, we have that

P (+) = Total average power in band [fo - ilf /2, fo + ilf /2]
x JO ilf . (18.18)
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This says that the PSD Px(Jo) is the average power of X[n] in a small band of

frequencies about f = fo divided by the width of the band. It justifies the name of

power spectral density. Furthermore, to obtain the average power within a frequency

band from knowledge of the PSD, we can reverse (18.18) to obtain

Total average power in band [/0 - b..f /2, fo + b..f /2] = Px(Jo)b..f

which is the area under the PSD curve. More generally, we have for an arbitrary

frequency band

~
h

Total average power in band [II,12] = Px(J)df
t.

which was previously asserted.

18.5 Wiener Filtering

Armed with the knowledge of the mean and ACS or equivalently the mean and

PSD of a WSS random process, there are several important problems that can be

solved . Because the required knowledge consists of only the first two moments of

the random process (which in practice can be estimated), the solutions to these

problems have found widespread application. The generic approach that results is

termed Wiener filtering, although there are actually four slightly different problems

and corresponding solutions. These problems are illustrated in Figure 18.4 and are

referred to as filtering, smoothing, prediction, and interpolation [Wiener 1949]. In

the filtering problem (see Figure 18.4a) it is assumed that a signal S[n] has been

corrupted by additive noise W[n] so that the observed random process is X[n] =
S[n]+W[n]. It is desired to estimate S[n] by filtering X[n] with an LSI filter having

an impulse response h[k]. The filter will hopefully reduce the noise but pass the

signal. The filter estimates a particular sample of the signal, say S[noJ, by processing

the current data sample X[no] and the past data samples {X[no -1], X[no - 2], ... }.

Hence, the filter is assumed to be causal with an impulse response h[k] = 0 for

k < O. This produces the estimator

00

S[no] = L h[k]X[no - k]
k=O

(18.19)

which depends on the current sample, containing the signal sample of interest, and

past observed data samples. Presumably, the past signal samples are correlated

with the present signal sample and hence the use of past samples of X[n] should

enhance the estimation performance. This type of processing is called filtering and

can be implemented in real time.
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•

I

I
I

•

x[n] = s[n] + w[n] Estimate s[noJ

,/... , ...
I

___ " T " T _ + L _ _ _ L . L . . - T ' T " _ _ _ L . L . . - . . L L _ ~ n

Estimate s[noJ

'/I

no

••

x[n] = s[n] + w[n]

• • •

---"T"T-+L---LL.-TT"........L.------l~ n

II------ Data used ------.--- Data used ---

(a) Filtering (true signal shown dashed and

displaced to right)

(b) Smoothing (true signal shown dashed and

displaced to right)

I
Data _
used

Estimate x[noJ

/• • ••
I

no

x[n]

___ _ _ _ L _ + - ~ - .......---L-....... -~ n

------ Data I
used

no + 1

• • •

7 mate x[no+lJ

,
x[n]

...
___ _ _ _ L _ + - ~- . L - ........-.L-----l~ n

--- Data used ------1

(c) Prediction (d) Interpolation

Figure 18.4: Definition of Wiener "filtering" problems .

W hat are we really estimating here?

In Section 7.9 we attempted to estimate the outcome of a random variable, which

was unobserved, based on the outcome of another random var iab le, which was ob­

served. The correlation between the two random variables allowed us to do this.

Here we have essentially the same problem, except that the outcome of interest to

us is of the random variable S[no]. The random variables that are observed are

{X[no],X[no -I]' . .. } or we have access to the realization (another name for out­

come) {x[no ],x[no - 1], ... }. Thus, we are attempting to estimate the realization of

S[no] based on the realization {x[no],x[no -I], .. .}. This should be kept in mind

since our notation of S[no] = L:~o h[k]X[no - k] seems to indicate that we are

attempting to est imate a random variable S[no] based on other random variables

{X[no],X[no - 1]' . . .}. What we are actually trying to accomplish is a procedure of
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estimating a realization of a random variable based on realizations of other random

variables that will work for all realizations. Hence, we employ the capital letter

notation for random variables to indicate our interest in all realizations and to allow

us to employ expectation operations on the random variables.

Lfl
The second problem is called smoothing (see Figure 18.4b). It differs from

filtering in that the filter is not constrained to be causal. Therefore, the estimator

becomes
00

S[no] = L h[k]X[no - k]
k=-oo

(18.20)

(18.21)

where S[no] now depends on present, past, and future samples of X[n]. Clearly,

this is not realizable in real time but can be approximated if we allow a delay

before determining the estimate. The delay is necessary to accumulate the samples

{X[no + 1], X[no + 2], ... } before computing S[no]. Within a digital computer we

would store these "future" samples.

For problems three and four we observe samples of the WSS random process X[n]

and wish to estimate an unobserved sample. For prediction, which is also called ex­

trapolation and forecasting, we observe the current and past samples {X [no]' X[no­

I], ... } and wish to estimate a future sample, X[no + L], for some positive integer

L. The prediction is called an L-step prediction. We will only consider one-step

prediction or L = 1 (see Figure 18.4c). The reader should see [Yaglom 1962] for

the more general case and also Problem 18.26 for an example. The predictor then

becomes
00

X[no + 1] = L h[k]X[no - k]
k=O

which of course uses a causal filter. For interpolation (see Figure 18.4d) we observe

samples {... , X [no- l ], X [no+ l ], . . .} and wish to estimate X[no]. The interpolator

then becomes
00

X[no] = L h[k]X[no - k]
k=-oo

k,eO

(18.22)

which is a noncausal filter. For practical implementation of (18.19)-(18.22) we must

truncate the impulse responses to some finite number of samples.

To determine the optimal filter impulse responses we adopt the mean square error

(MSE) criterion. Estimators that consist of LSI filters whose impulses are chosen

to minimize a MSE are generically referred to as Wiener filters [Wiener 1949]. Of

the four problems mentioned, we will solve the smoothing and prediction problems.

The solution for the filtering problem can be found in [Orfanidis 1985] while that for

the interpolation problem is described in [Yaglom 1962] (see also Problem 18.27).
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18.5.1 Wiener Smoothing

We observe X[n] = S[n] + W[n] for -00 < n < 00 and wish to estimate S[no]
using (18.20). It is assumed that S[n] and W[n] are both zero mean WSS random

processes with known ACSs (PSDs). Also, since there is usually no reason to assume

otherwise, we assume that the signal and noise random processes are uncorrelated.

This means that any sample of S[n] is uncorrelated with any sample of W[n] or

E[S[nl]W[n2]] = 0 for all nl and n2. The MSE for this problem is defined as

mse = E[E2[no]]
= E[(S[no] - S[no])2]

where E[nO] = S[no] - S[no] is the error. To minimize the MSE we utilize the

orthogonality principle described in Section 14.7 which states that the error should

be orthogonal, i.e., uncorrelated, with the data. Since the data consists of X[n] for

all n, the orthogonality principle produces the requirement

Thus, we have that

E[E[no]X[no - l]] = 0 - 00 < l < 00.

E[(S[no] - S[no])X[no - l]]

E [ (s[no] - .f;oo h[k]X[no - k]) X[no - I]]

which results in

00

o

o (from (18.20))

But

E[S[no]X[no -l]] = L h[k]E[X[no - k]X[no -l]].
k=-oo

(18.23)

and

E[S[no]X[no - l]] E[S[no](S[no -l] + W[no -l])]

E[S[no]S[no -l]] (S[n] and W[n] are

uncorrelated and zero mean)

= rs[l]

E[X[no - k]X[no -l]] E[(S[no - k] + W[no - k])(S[no -l] + W[no -l])]

E[S[no - k]S[no - l]] + E[W[no - k]W[no - l]]

= rs[l - k] + rw[l - k].

The infinite set of simultaneous linear equations becomes from (18.23)

00

rs[l] = L h[k](rs[l - k] + rw[l- k])
k=-oo

- 00 < l < 00. (18.24)
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Note that the equations do not depend on no and therefore the solution for the

optimal impulse response is the same for any no. This is due to the WSS assumption

coupled with the LSI assumption for the estimator, which together imply that a shift

in the sample to be estimated results in the same filtering operation but shifted. To

solve this set of equations we can use transform techniques since the right-hand side

of (18.24) is seen to be a discrete-time convolution. It follows then that

rs[l] = h[l] * (rs[l] + rw[l])

and taking Fourier transforms of both sides yields

Ps(f) = H(f)(Ps(f) + Pw(f))

or finally the frequency response of the optimal Wiener smoothing filter is

Ps(f)
Hopt(f) = Ps(f) + Pw(f)' (18.25)

The optimal impulse response can be found by taking the inverse Fourier transform

of (18.25). We next give an example.

Example 18.4 - Wiener smoother for AR signal in white noise

Consider a signal that is an AR random process corrupted by additive white noise

with variance a?v. Then, the PSDs are

Ps(f)

Pw(f)

11- a exp(-j27fJ) 12

2= aw·

The PSDs and corresponding Wiener smoother frequency responses are shown in

Figure 18.5. In both cases the white noise variance is the same, a?v = 1, and the

AR input noise variance is the same, a ~ = 0.5, but the AR filter parameter a has

been chosen to yield a wide PSD and a very narrow PSD. As an example, consider

the case of a = 0.9, which results in a lowpass signal random process as shown in

Figure 18.5b. Then, the results of a computer simulation are shown in Figure 18.6.

In Figure 18.6a the signal realization s[n] is shown as the dashed curve and the

noise corrupted signal realization x[n] is shown as the solid curve. The points have

been connected by straight lines for easier viewing. Applying the Wiener smoother

results in the estimated signal shown in Figure 18.6b as the solid curve. Once

again the true signal realization is shown as dashed. Note that the estimated signal

shown in Figure 18.6b exhibits less noise fluctuations but having been smoothed,

also exhibits a reduced ability to follow the signal when the signal changes rapidly

(see the estimated signal from n = 25 to n = 35). This is a standard tradeoff in

that noise smoothing is obtained at the price of poorer signal following dynamics.

<:;
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(d ) a = 0.9

Figure 18.5: Power spectral densities of the signal and noise and corresponding

frequency responses of Wiener smoother.

In order to implement the Wiener smoother for the previous example the data was

filtered in the frequency domain and converted back into the time domain. This was

done using the inverse discrete-time Fourier transform

1

A 12 Ps(J) .
s[n] = 1 P (J) 2 XN(J) exp(J27fJn)dJ

- 2 S +O'w
n = 0,1 , ... , N - 1

where X N(J) is the Fourier transform of the available data {x[0], x[I ], ... ,x[N -In,



18.5. WIENER FILTERING 615
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(a) True (dashed) and noisy (solid) signal (b) True (dashed) and estimated (solid)

signal

Figure 18.6: Example of Wiener smoother for additive noise corrupted AR signal.

The true PSDs are shown in Figure 18.5b. In a) the true signal is shown as the

dashed curve and the noisy signal as the solid curve and in b) the true signal is

shown as the dashed curve and the Wiener smoothed signal estimate (using the

Wiener smoother shown in Figure 18.5d) as the solid curve.

which is
N-l

XN(f) = :L x[n]exp(-j21fJn)

n=O

(N = 50 for the previous example). The actual implementation used an inverse FFT

to approximate the integral as is shown in the MATLAB code given next. Note that

in using the FFT and inverse FFT to calculate the Fourier transform and inverse

Fourier transform, respectively, the frequency interval has been changed to [0, 1].

Because the Fourier transform is periodic with period one, however, this will not

affect the result.

clear all

r andnf ' state' ,0)
a=0.9;varu=0.5;vars=varu/(1-a-2);varw=1;N=50; %set up parameters

for n=0:N-1 %generate signal realization
nn=n+1;

if n==O %use Gaussian random processes

s(nn,1)=sqrt(vars)*randn(1,1); %initialize first sample

%to avoid transient

else

s(nn,1)=a*s(nn-1)+sqrt(varu)*randn(1,1);
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end

end
x=s+sqrt(varw)*randn(N,l)j %add white Gaussian noise

Nfft=1024j %set up FFT length

%compute PSD of signal, frequency interval is [0,1]

Ps=varu./(abs(1-a*exp(-j*2*pi*[0:Nfft-l]'/Nfft)).A2)j

Hf=Ps./(Ps+varw)j %form Wiener smoother

sestf=Hf.*fft(x,Nfft)j %signal estimate in frequency domain,

%frequency interval is [0,1]

sest=real(ifft(sestf,Nfft))j %inverse Fourier transform

One can also determine the minimum MSE to assess how well the smoother

performs. This is

msemin E[(S[no] - S[no])2]

E[(S[no] - S[no])S[no]] - E[(S[no] - S[no])S[no]] .

k=-oo

But the second term is zero since by the orthogonality principle

00

L hopt[k] E[€[no]X[no - k]] = O., '....
=0

Thus, we have

k=-oo

msemin E[(S[no] - S[no])S[no]]

rs[O] - E l~= hopt[k]X[no - kls[no]]

00

rs[O] - L hopdk]E[(S[no - k] + W[no - k])S[no]]
, "

v

=E[S[no-k]S[no]]=rs[k]

since S[nl] and W[n2] are uncorrelated for all nl and n2 and also are zero mean.

The minimum MSE becomes

00

msemin = rs[O] - L hopt[k]rs[k].
k=-oo

(18.26)

This can also be written in the frequency domain by using Parseval's theorem to
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yield

1 1

msemin i: Ps(f)df - i: Hopt(f)Ps(f)df
2 2

1

i: (1 - Hopt(f))Ps(f)df
2

= t. (1 - Ps(ff:~w(f)) Ps(f)df
2

1

( 2 Pw(f)

J_1 Ps(f) + Pw(f) Ps(f)df
2

((17.38) and Parseval)

617

and finally letting p(f) = Ps (f) / Pw (f) be the signal-to-noise ratio in the frequency

domain we have
1

(2 Ps(f)
msemin = J_1 1 + p(f) df.

2

(18.27)

It is seen that the frequency bands for which the contribution to the minimum MSE

is largest, are the bands for which the signal-to-noise ratio is smallest or for which

p(f) « 1.

18.5.2 Prediction

We consider only the case of L = 1 or one-step prediction. The more general case

can be found in [Yaglom 1962] (see also Problem 18.26). As before, the criterion of

MSE is used to design the predictor so that from (18.21)

mse E[(X[no + 1] - X[no + 1])2]

E [ ( X [no + n- t, h[k]X [no _ k]) ']

is to be minimized over h[k] for k 2:: 0. Invoking the orthogonality principle leads

to the infinite set of simultaneous linear equations

l = 0,1, ....

These equations become

00

E[X[no + l]X[no -i]] = z= h[k]E[X[no - k]X[no -i]]
k=O
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or finally
00

rx[l + 1] = L h[k]rx[l - k] l = 0,1 ,. .. . (18.28)

k=O

Note that once again the optimal impulse response does not depend upon no so

that we obtain the same predictor for any sample. Although it appears that we

should be able to solve these simultaneous linear equations using the previous Fourier

transform approach, this is not so. Because the equations are only valid for l 2: 0

and not for l < 0, a z-transform cannot be used. Consider forming the z-transform

of the left-hand-side as 2:~o rx[l + 1]z-l and note that it is not equal to zP(z).
(See also Problem 18.15 to see what would happen if we blindly went ahead with

this approach.)

The minimum MSE is evaluated by using a similar argument as for the Wiener

smoother

msemin

00

= rx[O] - L hoptlk]rx[k + 1]
k=O

(18.29)

where hopt[k] is the impulse response solution from (18.28). A simple example for

which the equations of (18.28) can be solved is given next.

Example 18.5 - Prediction of AR random process

Consider an AR random process for which the ACS is given by rx[k] = (a~/(1 ­

a2))a1k\ = rx[0]a1kl. Then from (18.28)

00

rx[0]all+11= L h[k]rx[0]a1l- kl

k=O

l = 0,1, ...

and if we let h[k] = 0 for k 2: 1, we have

ailH I = h[O]a ll l l = 0,1 , . . ..

Since l 2: 0, the solution is easily seen to be

al+1

hopt[O] = -l = a
a

or finally

X[no + 1] = aX[no].

Also, since this is true for any no, we can replace the specific sample by a more

general sample by replacing no by n - 1. This results in

X[n] = aX[n - 1]. (18.30)
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Recalling that the AR random process is defined as X[n] = aX[n - 1]+ Urn], it is

now seen that the optimal one-step linear predictor is obtained from the definition

by ignoring the term Urn]. This is because Urn] cannot be predicted from the

past samples {X[n -1],X[n - 2] , ... }, which are uncorrelated with Urn] (see also

Example 17.5). Furthermore, the prediction error is E[n] = X[n] - X[n] = X[n] ­
aX[n-l] = Urn]. Finally, note that the prediction only depends on the most recent

sample and not on the past samples of X[n]. In effect, to predict X[no + 1] all

the past information of the random process is embodied in the sample X[no]. To

illustrate the prediction solution consider the AR random process whose parameters

and realizations were shown in Figure 17.5. The realizations, along with the one-step

predictions, shown as the "*"s, are given in Figure 18.7. Note the good predictions

3 .---~-~-~-~-~------, 3 .---~-~-~-~-~------,

2 2

1 . . . . . . . . . . .

~

"_: HlWUl!f!!U1ftn:••••tt••
-2 : . . ... . : .

30252015
n

105
-3 ' - - - - ~ - ~ - ~ - ~ - ~ - - - - '

o302515 20
n

105
-3 ' - - - - - - ~ - ~ - ~ - ~ - ~ - - - '

o

(a) a = 0.25, a ~ = 1 - a
2

(b) a = 0.98, a~ = 1 - a
2

Figure 18.7: Typical realizations of autoregressive random process with different

parameters and their one-step linear predictions indicated by the ,,*"s as X[n+ 1] =

ax[n].

for the AR random process with a = 0.98 but the relatively poor ones for the AR

random process with a = 0.25. Can you justify these results by comparing the

minimum MSEs? (See Problem 18.17.)

<)

The general solution of (18.28) is fairly complicated. The details are given in Ap­

pendix 18A. We now summarize the solution and then present an example.

1. Assume that the z-transform of the ACS, which is

00

'Px(z) = I: rx[k]z-k

k=-oo
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can be written as

(18.31)

where
00

A(z) = 1- La[k]z-k.

k=l

It is required that A(z) have all its zeros inside the unit circle of the z-plane,

i.e., the filter with z-t ransform 1/A(z) is a stable and causal filter [Jackson

1991].

2. The solution of (18.28) for the impulse response is

hopdk] = ark + 1]

and the minimum MSE is

k = 0,1, . ..

A 2 2
msemin = E[(X[no + 1] - X[no + 1]) ] = (1u.

3. The optimal linear predictor becomes from (18.21)

00

X[no+ 1] = L ark + l]X [no - k]
k=O

and has the minimum MSE , msemin = (1 ~ .

(18.32)

Clearly, the most difficult part of the solution is putting Px(z) into the required

form of (18.31) . In terms of the PSD the requirement is

Px(J) = Px(exp(j27ff)) =

=

A(exp(j27ff) )A(exp(- j27ff))

( 1 ~

A(exp(j27ff))A*(exp(j27ff))

( 1 ~

IA(exp(j27ff)) 1
2

(1 ~
=

11- 2 : ~ 1 ark] exp(-j27fjk) 1
2.

But the form of the PSD is seen to be a generalization of the PSD for the AR

random process. In fact , if we truncate the sum so that the required PSD becomes

(12

Px(J) = u 2

11 - 2:~=1 a[k] exp(-j27fjk) I
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then we have the PSD of what is referred to as an AR random process of order p,

which is also denoted by the symbolism AR(P). In this case, the random process is

defined as
p

X[n] = L a[k]X[n - k] + Urn] (18.33)
k=l

where as usual Urn] is white Gaussian noise with variance a ~ . Of course, for p = 1 we

have our previous definition of the AR random process, which is an AR(l) random

process with a[l] = a. Assuming an AR(p) random process so that all] = 0 for

l > p, the solution for the optimal one-step linear predictor is from (18.32)

p-l

X[no + 1] = La[l + l]X[no -l]
1=0

and letting k = l + 1 produces

p

X[no + 1] = L a[k]X[no + 1 - k]
k=l

(18.34)

and the minimum MSE is a~. Another example follows.

Example 18.6 - One-step linear prediction of MA random process

Consider the zero mean WSS random process given by X[n] = Urn] - bUrn - 1],

where Ibl < 1 and Urn] is white Gaussian noise with variance a ~ (also called an MA

random process). This random process is a special case of that used in Example

18.1 for which h[O] = 1 and h[l] = -b and Urn] is white Gaussian noise. To find the

optimal linear predictor we need to put the a-t ransform of the ACS into the required

form. First we determine the PSD. Since the system function is easily shown to be

ll(z) = 1- bz-1, the frequency response follows as H(J) = 1- bexp( -j21r f). From

(18.14) the PSD becomes

Px(J) = H(J)H*(J)a~ = (1- bexp(-j21rf))(1 - bexp(j21rf))a~

and hence replacing exp(j21r f) by z, we have

Px(z) = (1 - bz-1)(1 - bz)a~. (18.35)

By equating (18.35) to the required form for Px(z) given in (18.31) we have

1
A(z) = 1 _ bz-1 .

To convert this to 1 - E~l a[k]z-k, we take the inverse z-transform, assuming a

stable and causal sequence, to yield
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and so ark] = _bk for k ~ 1. (Note why Ibl < 1 is required or else a[n] would not be

stable.) The optimal predictor is from (18.32)

00

X[no + 1] = L ark + l]X[no - k]

k=O
00

L( -bk+l)X[no - k]

k=O

-bX[no] - b2X [no - 1] - b3X[no - 2] - ...

and the minimum MSE is
2msemin = (7U.

c
As a special case of practical interest, we next consider a finite length one-step

linear predictor. By finite length we mean that the prediction can only depend

on the present sample and past M - 1 samples. In a derivation similar to the

infinite length predictor it is easy to show (see the discussion in Section 14.8 and

also Problem 18.20) that if the predictor is given by

M-l

X[no + 1] = L h[k]X[no - k]

k=O

which is just (18.21) with h[k] = 0 for k ~ M , then the optimal impulse response

satisfies the M simultaneous linear equations

M - l

rx[l + 1] = L h[k]rx[l- k]

k=O

1= 0,1 , ... , M - 1.

(If M -+ 00, these equations are identical to (18.28)). The equations can be written

in vector/matrix form as

rx[l]

rx[O]

rx[M -2]
v

Rx

(18.36)

The corresponding minimum MSE is given by

M-l

msemin = rx[O] - L hopdk]rx[k + 1].

k=O

(18.37)
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These equations are called the Wiener-Hop! equations. In general, they must be

solved numerically but there are many efficient algorithms to do so [Kay 1988].

The algorithms take advantage of the structure of the matrix which is seen to be

an autocorrelation matrix Rx as first described in Section 17.4. As such, it is

symmetric, positive definite, and has the Toeplitz property. The Toeplitz property

asserts that the elements along each northwest-southeast diagonal are identical.

Another important connection between the linear prediction equations and an AR(p)

random process is made by letting M = p in (18.36). Then, since for an AR(p)

process, we have that h[n] = a[n+ 1] for n = 0,1 , ... ,p -1 (recall from (18.34) that

X[no + 1] = 2:~=1 a[k]X[no + 1 - k]) the Wiener-Hopf equations become

[

rx[O]
rx[I]

rX~-I]

rx[l]

rx[O]

rx[p - 2]

... rx[p - 1] ] [a[l] ] [ rx[l] ]... rx[p - 2] a[2] rx[2]
- .. . . .. . . .'. . .

... rx[O] a[p] rx[P]

(18.38)

It is important to note that for an AR(p) random process, the optimal one-step linear

predictor based on the infinite number of samples {X [no], X[no -I], } is the same

as that based on only the finite number of samples {X[no],X [no -1]' , X [no- (p-

I)]} [Kay 1988]. The equations of (18.38) are now referred to as the Yule- Walker

equations. In this form they relate the ACS samples {rx[O], rx[I], . . . rx[P]} to the

AR filter parameters {a[I] , a[2] , .. . ,a[p] }. If the ACS samples are known, then the

AR filter parameters can be obtained by solving the equations. Furthermore, once

the filter parameters have been found from (18.38) , the variance of the white noise

random process Urn] is found from

p

a'fJ = msemin = rx[O] - La[k]rx[k]
k=l

(18.39)

which follows by letting hopt[k] = ark+ 1] with M = pin (18.37). In the real-world

example of Section 18.7 we will see how these equations can provide a method to

synthesize speech.

18.6 Continuous-Time Definitions and Formulas

For a continuous-time WSS random process as defined in Section 17.8 the linear

system of interest is a linear time invariant (LTI) system. It is characterized by its

impulse response h(T). If a random process U(t) is input to an LTI system with

impulse response h(T), the output random process X(t) is

X(t) = i: h(T)U(t - T)dT.
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The integral is referred to as a convolution integral and in shorthand notation the

output is given by X(t) = h(t) * U(t). If U(t) is WSS with constant mean J.Lu

and ACF rU(T), then the output random process X(t) is also WSS. It has a mean
f u o c t i ~ .

where

J.Lx = (1: h(T)dT) J.Lu = H(O)J.Lu (18.40)

H(F) = 1: h(T) exp( -j21rFT)dT

is the frequency response of the LTI system. The ACF of the output random process

X(t) is

and therefore the PSD becomes

Px(F) = IH(F)12Pu(F).

(18.41)

(18.42)

An example follows.

Example 18.7 - Inteference rejection filter

A signal, which is modeled as a WSS random process S(t), is corrupted by an

additive interference I(t) , which can be modeled as a randomly phased sinusoid

with a frequency of Fo = 60 Hz. The corrupted signal is X(t) = S(t) + I(t) . It

is desired to filter out the interference but if possible, to avoid altering the PSD

of the signal due to the filtering. Since the sinusoidal interference has a period of

T = 1/Fo = 1/60 seconds, it is proposed to filter X(t) with the differencing filter

Y(t) = X(t) - X(t - T). (18.43)

The motivation for choosing this type of filter is that a periodic signal with period

T will have the same value at any two time instants separated by T seconds. Hence,

the difference should be zero for all t . We wish to determine the PSD at the filter

output. We will assume that the interference is uncorrelated with the signal. This

assumption means that the ACF of X(t) is the sum of the ACFs of S(t) and I(t)

and consequently the PSDs sum as well (see Problem 18.33). The differencing filter

is an LTI system and so its output can be written as

Y(t) = 1: h(T)X(t - T)dT (18.44)

for the appropriate choice of the impulse response. The impulse response is obtained

by equating (18.44) to (18.43) from which it follows that

h(T) = 8(T) - 8(T - T) (18.45)
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as can easily be verified. By taking the Fourier transform, the frequency response

becomes

H(F) = 1:(8(7) -8(7 - T)) exp(-j21rF7)d7

1 - exp(-j21rFT) . (18.46)

To determine the PSD at the filter output we use (18.42) and note that for the

randomly phased sinusoid with amplitude A and frequency Fa, the ACF is (see

Problem 17.46)

and therefore its PSD, which is the Fourier transform, is given by

The PSD at the filter input is Px(F) = Ps(F) + P[(F) (the PS Ds add due to the

uncorrelated assumption) and therefore the PSD at the filter output is

Py(F) IH(F)12
Px(F) = IH (F W (Ps (F ) + P[(F))

= 11- exp(-j21rFTW(Ps(F) + P[(F)) .

The magnitude-squared of the frequency response of (18.46) can also be written in

real form as

IH(F)1 2 = 2 - 2 cos(21rFT)

and is shown in Figure 18.8. Note that it exhibits zeros at multiples of F = liT =

5 .--~-~--~ - ~----r----,

N 4 . . . .:..

&;
~3 · < · ·

2 .

1 ..

T T

Figure 18.8: Magnitude-squared frequency response of interference canceling filter

with Fa = liT.
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Fo. Hence, IH(FoW = 0 and so the interfering sinusoid is filtered out. The PSD at

the filter output then becomes

Py(F) IH(F)12Ps(F)

2(1 - cos(27f-FT))Ps(F).

Unfortunately, the signal PSI? has also been modified. What do you think would

happen if the signal were periodic with period 1/(2Fo)?

18.7 Real-World Example - Speech Synthesis

It is commonplace to hear computer generated speech when asking for directory

assistance in obtaining telephone numbers, in using text to speech conversion pro­

grams in computers, and in playing with a multitude of children's toys. One of the

earliest applications of computer speech synthesis was the Texas Instruments Speak

and Spelll
. The approach to producing intelligible, if not exactly human sounding,

speech, is to mimic the human speech production process. A speech production

model is shown in Figure 18.9 [Rabiner and Schafer 1978]. It is well known that

speech sounds can be delineated into two classes-voiced speech such as a vowel

sound and unvoiced speech such as a consonant sound. A voiced sound such as

"ahhh" (the 0 in "lot" for example) is produced by the vibration of the vocal cords,

while an unvoiced sound such as "sss" (the s in "runs" for example) is produced

by passing air over a constriction in the mouth. In either case, the sound is the

output of the vocal tract with the difference being the excitation sound and the

subsequent filtering of that sound. For voiced sounds the excitation is modeled as

a train of impulses to produce a periodic sound while for an unvoiced sound it is

modeled as white noise to produce a noise-like sound (see Figure 18.9). The excita-

¥h
voiced

-I 1l y (z)

1

x[n]

~ D/A 1

~
~ speech, x(t)

unvoiced

-I
1

x[n] I
1lUY (z)

Figure 18.9: Speech production model.

tion is modified by the vocal tract, which can be modeled by an LSI filter. Knowing

1Registered trademark of Texas Instruments
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1

lluAz) = 1 - L:~=l a[k]z-k

which is an all-pole filter. Typically, the order of the filter p, which is the number

of poles, is chosen to be p = 12. The output of the filter X[n] for a white Gaussian

noise random process input Urn] with variance CTb is given as the WSS random

process

the excitation waveform and the vocal tract system function allows us to synthesize

speech. For the unvoiced sound we pass discrete white Gaussian noise through an

LSI filter with system function llU Y (z). We next concentrate on the synthesis of

unvoiced sounds with the synthesis of voiced sounds being similar.

It has been found that a good model for the vocal tract is the LSI filter with

system function

(18.47)

... rx[p - 1] ] [a[l] ] [ rx[l] ]... rx[p - 2] a[2] rx[2]

. . . .. . . .
'. . .

... rx[O] a[p] rx[P]

rx[l]
rx[O]

p

X[n] = L a[k]X[n - k] + Urn]
k=l

which is recognized as the defining difference equation for an AR(P) random process.

Hence , unvoiced speech sounds can be synthesized using this difference equation for

an appropriate choice of the parameters {a[l] ,a[2] , ... ,a[p] ,CTb }. The parameters

will be different for each unvoiced sound to be synthesized. To determine the pa­

rameters for a given sound, a segment of the target speech sound is used to estimate

the ACS. Estimation of the ACS was previously described in Section 17.7. Then,

the parameters ark] for k = 1,2, ... ,p can be obtained by solving the Yule-Walker

equations (same as Wiener-Hopf equations). The theoretical ACS samples required

are replaced by estimated ones to yield the set of simultaneous linear equations from

(18.38) as

[
~~f~~

rx[p: - 1] rx[p - 2]

which are solved to yield the a[k]'s. Then, the white noise variance estimate is found

from (18.39) as

(18.49)k=O,l, ... ,p

p

a-b = rx[O] - L a[k]rx[k] (18.48)
k=l

where ark] is given by the solution of the Yule-Walker equations of (18.47). Hence, we

estimate the ACS for lags k = 0,1 , ... ,p based on an actual speech sound and then

solve the equations of (18.47) to obtain {a[l] ,0,[2], ... ,a[p]} and finally, determine

a-b using (18.48). The only modification that is commonly made is to the ACS

estimate, which is chosen to be

N -l-k

rx[k] = ~ L x[n]x[n + k]
n=O
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and which differs from the one given in Section 17.7 in that the normalizing factor

is N instead of N - k . For N » p this will have minimal effect on the parameter

estimates but has the benefit of ensur ing a stable filter est imate, i.e. , the poles of

1£uv(z) will lie inside the unit circle [Kay 1988]. This method of estimating the

AR parameters is called the autocorrelation method oj linear prediction. The entire

pro cedure of modeling speech by an AR(p) model is referred to as linear predictive

coding (LPC). The name originated with the connection of (18.47) as a set of linear

prediction equations, although the ultimate goal here is not linear prediction but

speech modeling [Makhoul 1975].

To demonstrate the modeling of an unvoiced sound consider the spoken word

"seven" shown in Figure 18.10. A portion of the "sss" utterance is shown in Figure

OB

0.6

0.4

I
-0.2 · · · · · · : "1'1

-0.4 ;.1..1 .
: I I

-0.6 .

-0.8 ' :'5 : n

0.60503 0.4

t (sec)
020.1

-1 L.---'----'-__...1...L..__-'---l-_J.l--_..l.......L__--l--J

o

Figure 18.10: Waveform for the utterance "seven" [Allu 2005].

(18.50)

18.11 and as expected is noise-like. It is composed of the samples indicated between

the dashed vertical lines in Figure 18.10. Typically, in analyzing speech sounds to

estimate its AR parameters, we sample at 8 KHz and use a block of data 20 msec

(about 160 samples) in length. The samples of x(t) in Figure 18.10 from t = 115

msec to t = 135 msec are shown in Figure 18.11. With a model order ofp = 12 we use

(18.49) to estimate the ACS lags and then solve the Yule-Walker equations of (18.47)

and also use (18.48) to yield the estimated parameters {a[l], 0,[2], ... ,a[P] , a~}. If

the model is reasonably accur ate, then the synthesized sound should be perceived

as being similar to the original sound. It has been found through experimentation

that if the PSDs are similar, then this will be the case. Hence , the estimated PSD

A2

?x(J) = (Ju

11 - I:~=l a[k] exp (- j 27rj k) 1
2

should be a good match to the normalized and squar ed-magnitude of the Fourier
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Figure 18.11: A 20 msec segment of the waveform for "sss". See Figure 18.10 for

segment extracted as indicated by the vertical dashed lines.

transform of the speech sound. The latter is of course the periodogram. We need

only consider the match in power since it is well known that the ear is relatively

insensitive to the phase of the speech waveform [Rabiner and Schafer 1978].

As an example, for the portion of the "sss" sound shown in Figure 18.11 a

periodogram as well as the AR PSD model of (18.50), is compared in Figure 18.12.

Both PSDs are plotted in dB quantities, which is obtained by taking 10 loglO of the

PSD. Note that the resonances, i.e., the portions of the PSD that are large and

which are most important for intelligibility, are well matched by the model. This

verifies the validity of the AR model. Finally, to synthesize the "sss" sound we

compute
p

x[n] = L a[k]x[n - k] + urn]
k=l

where urn] is a pseudorandom Gaussian noise sequence [Knuth 1981] with variance

a-b, for a total of about 20 msec. Then, the samples are converted to an analog

sound using a digital-to-analog (D/A) convertor (see Figure 18.9). The TI Speak

and Spell used p = 10 and stored the AR parameters in memory for each sound.

The MATLAB code used to generate Figure 18.12 is given below.

N=length(xseg); %xseg is the data shown in Figure 18.11

Nfft=1024; %set up FFT length for Fourier transforms

freq=[O:Nfft-1] '/Nfft-O.5; %PSD frequency points to be plotted

P_per=(1/N)*abs(fftshift(fft(xseg,Nfft))).-2j %compute periodogram

p=12; %dimension of autocorrelation matrix

for k=1:p+1 %estimate ACS for k=O,1, ... ,p (MATLAB indexes
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Figure 18.12: Periodogram, shown as the light line , and AR PSD model, shown as

the darker line for sp eech segment of Figure 18.11.

i. must start at 1)

rX(k,1)=(1/N)*sum(xseg(1:N-k+1).*xseg(k:N));

end

r=rX(2:p+1); i. fill in right-hand-side vector

for i=1:p i. fill in autocorrelation matrix

for j=1:p

R(i,j)=rX(abs(i-j)+1);

end

end

a=inv(R)*r; i. solve linear equations to find AR filter parameters

varu=rX(1)-a'*r; i. find excitation noise variance

den=abs(fftshift(fft([1;-a],Nfft))).-2; i. compute denominator of AR PSD

P_AR=varu./den; i. compute AR PSD

See also Problem 18.34 for an application of AR modeling to spectral est imat ion

[Kay 1988].
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Problems

18.1 C:.:... ) (f) An LSI system with system function 1i(z) = 1 - z-l - z-2 is used

to filter a discrete-time white noise random process with variance a ~ = 1.

Det ermine the ACS and PSD of the output random process.

18.2 (f) A discrete-time WSS random process with mean /-Lu = 2 is input to an LSI

system with impulse response h[n] = (1/2)n for n 2: °and h[n] = °for n < 0.
Find the mean sequence at the system output.

18.3 (w) A discrete-time white noise random process Urn] is input to a system to

produce the output random process X[n] = a1nIU[n] for [c] < 1. Determine

the output PSD.

18.4 c.:..:..-) (w) A randomly phased sinusoid X[n] = cos(21f(0.25)n + 8) with 8 "-J

U(0,21f) is input to an LSI system with system function 1i(z) = 1 - b1 z-1 ­

b2z- 2. Determine the filter coefficients bl , b2 so that the sinusoid will have

zero power at the filter output.
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18.5 (f,c) A discrete-time WSS random process X[n] is defined by the difference

equation X[n] = aX[n - 1] + Urn] - bUrn - 1], where Urn] is a discrete-time

white noise random process with variance (J'b = 1. Plot the PSD of X[n] if

a = 0.9, b = 0.2 and also if a = 0.2, b = 0.9 and explain your results.

18.6 (f) A discrete-time WSS random process X[n] is defined by the difference

equation X[n] = O.5X[n - 1] + Urn] - O.5U[n - 1], where Urn] is a discrete­

time white noise random process with variance (J'b = 1. Find the ACS and

PSD of X[n] and explain your results.

18.7 (..:..:.,) (f) A differencer is given by X[n] = Urn] - U[n-1] . If the input random

process Urn] has the PSD Pu(f) = 1- cos(271}), determine the ACS and PSD

at the output of the differencer.

18.8 (t) Verify that the discrete-time Fourier transform of rx[k] given in (18.15) is

(J'bI H (f )12 .

18.9 (w) A discrete-time white noise random process is input to an LSI system

which has h[O] = 1 with all the other impulse response samples nonzero. Can

the output power of the filter ever be less than the input power?

18.10 (w) A random process with PSD

1
Px(f) = 2

11 - ~ exp( - j21rJ) I

is to be filtered with an LSI system to produce a white noise random process

Urn] with variance (J'b = 4 at the output. What should the difference equation

of the LSI system be?

18.11 (w,c) An AR random process of order 2 is given by the recursive difference

equation X[n] = 2r cos(21rfo)X[n -1] - r2X[n - 2]+Urn], where Urn] is white

Gaussian noise with variance (J'b = 1. For r = 0.7, fo = 0.1 and also for

r = 0.95, fo = 0.1 plot the PSD of X[n]. Can you explain your results? Hint:

Determine the pole locations of ll(z).

18.12 (w) A signal, which is bandlimited to B cycles/sample with B < 1/2, is

modeled as a WSS random process with zero mean and PSD Ps(f). If white

noise is added to the signal with ( J ~ = 1, find the frequency response of the

optimal Wiener smoother. Explain your results.

18.13 (..:..:.,) (f,c) A zero mean signal with PSD Ps(f) = 2 - 2 cos(21rJ) is embedded

in white noise with variance ( J ~ = 1. Plot the frequency response of the

optimal Wiener smoother. Also, compute the minimum MSE. Hint: For the

MSE use a "sum" approximation to the integral (see Problem 1.14).
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18.14 (c) In this problem we simulate the Wiener smoother. First generate N = 50

samples of a signal 8[n], which is an AR random process (assumes that U[n]
is white Gaussian noise) with a = 0.25 and a ~ = 0.5. Remember to set the

initial condition 8[-1] "-' N(O, a~j(1 - a2
) . Next add white Gaussian noise

W[n] with a ~ = 1 to the AR random process realization. Finally, use the

MATLAB code in the chapter to smooth the noise-corrupted signal. Plot the

true signal and the smoothed signal. How well does the smoother perform?

18.15 (w) To see that the linear prediction equations of (18.28) cannot be solved

directly using z-transforms, take the z-transform of both sides of the equation.

Next solve for ll(z) = Z{h[k]}. Explain why the solution for the predictor

cannot be correct.

18.16 (t) In this problem we rederive the optimal one-step linear predictor for the

AR random process of Example 18.5. Assume that X[no+1] is to be predicted

based on observing the realization of {X[no] ,X[no - 1], ...}. The random

process X[n] is assumed to be an AR random process described in Example

18.5. Prove that X[no + 1] = aX[no] satisfies the orthogonality principle,

making use of the result that E[U[no + l]X[no - k]] = 0 for k = 0,1, .... The

latter result says that "future" samples of U[n] must be uncorrelated with the

present and past samples of X[n]. Explain why this is true. Hint: Recall that

for an AR random process X[n] can be rewritten as X[n] = 2:~o alU[n -l].

18.17 (w) For the AR random process described in. Example 18.5 show that the

minimum MSE for the optimal predictor X[no + 1] = aX[no] is given by

msemin = rx[O](l - a2
) . Use this to explain why the results shown in Figure

18.7 are reasonable.

18.18 C:....:J (w) Express the minimum MSE given in the previous problem in terms

of rx[O] and the correlation coefficient between X[no] and X[no + 1]. What

happens to the minimum MSE if the correlation coefficient magnitude ap­

proaches one and also if it is zero?

18.19 (c) Consider an AR(2) random process given by X[n] = _r2X[n - 2]+U[n],
where Urn] is white Gaussian noise with variance a ~ and 0 < r < 1. This

random process follows from (18.33) with p = 2 and a[l] = 0, a[2] = _r2 .

The ACS for this random process can be shown to be rx[k] = (a~j(1 ­
r 4»r1kl cos(k1rj2) [Kay 1988]. Find the optimal one-step linear predictor based

on the present and past samples of X[n]. Next perform a computer simulation

to see how the predictor performs. Consider the two cases r = 0.5, a~ = 1- r 4

and r = 0.95, a~ = 1 - r
4 so that the average power in each case is the

same (rx[O] = 1). Generate 150 samples of each process and discard the first

100 samples to make sure the generated samples are WSS. Then, plot the

realization and its predicted values for each case. Which value of r results in

a more predictable process?
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18.20 (t) Derive the Wiener-Hopf equations given by (18.36) and the resulting min­

imum MSE given by (18.37) for the finite length predictor.

18.21 (f) For M = 1 solve the Wiener-Hopf equations given by (18.36) to find h[O].
Relate this to cov(X,Y)jvar(X) used in the prediction of Y given X = x .

18.22 C:..:...) (f) The MA random process described in Example 18.6 and given by

X[n] = Urn] - bUrn - 1] has as its ACS for ab = 1

{

l+b2 k=O

rx[k] = -s k = 1

o k ~ 2.

For M = 2 solve the Wiener-Hopf equations to find this finite length predictor

and then determine the minimum MSE. Compare this minimum MSE to that

of the infinite length predictor given in Example 18.6.

18.23 (f) It is desired to predict white noise. Solve the Wiener-Hopf equations for

rx[k] = ai-o[k] and explain your results.

18.24 C:..:...) (f,c) For the MA random process X[n] = Urn] - iU[n - 1] where Urn]
is white Gaussian noise with ab = 1 find the optimal finite length predictor

X[no + 1] = h[O]X[no] + h[I]X[no -1] and the corresponding minimum MSE.

Next simulate the random process and compare the estimated minimum MSE

with the theoretical one. Hint: Use your results from Problem 18.22.

18.25 (f) Consider the prediction of a randomly phased sinusoid whose ACS is

rx[k] = cos(21rfok). For M = 2 solve the Wiener-Hopfequations to determine

the optimal linear predictor and also the minimum MSE. Hint: You should be

able to show that the minimum MSE is zero. Use the trigonometric identity

cos(20) = 2cos2(O) - 1.

18.26 (t) In this problem we consider the L-step infinite length predictor of an AR

random process. Let the predictor be given as

00

X[no + L] = L h[k]X[no - k]
k=O

and show that the linear equations to be solved to determine the optimal h[kl's
are

00

rx[l + L] = L h[k]rx[l - k]
k=O

Next show that the minimum MSE is

l = 0,1, ....

00

msemin = rx[O]- L hopdk]rx[k + L].

k=O
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Finally, for an AR random process with ACS rx[k] = (O"bl(l - a2»a1kl show

that

X[no + L] = aL X [no]

msemin = rx[O](l - a2L
)

for a predictor based on {X[no] ,X[no -1], ... } . To do so assume that h[k] = 0

for k 2: 1 and show that the equations can be satisfied by choosing h[O).
Explain what happens to the quality of the prediction as L increases and why.

18.27 (..:.:,) (t) In this problem we consider the interpolation of a random process

using a sample on either side of the sample to be interpolated. We wish to

estimate or interpolate X[no] using X[no] = h[-l)X[no +1] +h[l]X[no -1] for

some impulse response values h[-1], h[l]. Find the optimal impulse response

values by minimizing the MSE of the interpolated sample if X[n] is the AR

random process given by X[n] = aX[n - 1) + Urn). Does your interpolator

average the samples on either side of X[no)? What happens as a -+ 1 and as

a -+ O?

18.28 (f) An LTI system has the impulse response h(r) = exp(-r) for r 2: 0 and is

zero for r < O. If continuous-time white noise with ACF ru(r) = (No/2)5(r)

is input to the system, what is the PSD of the output random process? Sketch

the PSD.

18.29 (..:.:,) (f) An LTI system has the impulse response h(r) = 1 for 0 :::; r :::; T

and is zero otherwise. If continuous-time white noise with ACF ru(r) =
(No/2)5(r) is input to the system, what is the PSD of the output random

process? Sketch the PSD.

18.30 (f) A filter with frequency response H(F) = exp( -j21rFro) is used to filter a

WSS random process with PSD Px(F). What is the PSD at the filter output

and why?

18.31 (t) Prove that if a continuous-time white noise random process with ACF

ru(r) = (No/2)5(r) is input to an LTI system with impulse response h(r),
then the ACF of the output random process is

IV, roo
rx(r) = T J-oo h(t)h(t + r)dt.

18.32 (..:.:,) (w) An RC electrical circuit with frequency response

H(F) _ 11RC
- 11RC+ j21rF

is used to filter a white noise random process with ACF ru(r) = (No/2)5(r).

Find the total average power at the filter output. Is it infinite? Hint: See

previous problem.
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18.33 (t) Two continuous-time WSS zero mean random processes X(t) and Y(t)

are uncorrelated, which means that E[X(tl)Y(t2)] = 0 for all tl and ta- Is the

sum random process Z(t) = X(t) +Y(t) also WSS , and if so, what is its ACF

and PSD?

18.34 (c) In this problem we compare the periodogram spectral estimator to one

based on an AR(2) model. This assumes, however, that the AR model is

an accurate one for the random process. First generate N = 50 samples of

a realization of the AR(2) random process described in Problem 18.19 with

r = 0.5 and ab = 1 - r4
• Next plot the periodogram of the realization (see

Section 17.6). Using the estimate of the ACS given in (18.49) solve the Yule­

Walker equations of (18.47) for p = 2 and then find a-b from (18.48). Finally,

plot the estimated PSD given by (18.50) and compare it to the periodogram

as well as the true PSD. You may also wish to print out a[l ] and a[2] and

compare them to the theoretical values of a[l] = 0 and a[2] = _r2 = - 0.25.

Hint: You can use the MATLAB code given in Section 18.7.



Appendix 18A

Solution for Infinite Length

Predictor

The equations to be solved for the one-step predictor are from (18.28)

00

rx [l + 1] = L h[k]rx[l - k]
k=O

l = 0,1 , . .. (18A.1)

and the minimum MSE can be writ t en from (18.29) as

00

msemin = rx[O] - L hopdk]rx [-l - k].
k=O

Now let n = l + 1 in (18A.1) so that

(18A.2)

00

rx[n] = Lh[k]rx[n -1- k]
k=O
00

Lh[j -l]rx[n - j]
j= l

and also let j = k + 1 in (18A.2) to yield

00

n=1 ,2, ...

(let j = k + 1) (18A.3)

(18A.4)rx [O] = L h[j - l]rx[-j] + msemin
j=l

where we drop the "opt" on hopdk] since h[k] and msemin are unknowns that we

wish to solve for. Then combining (18A.3) and (18A.4) we have

00

rx[n] = L h[j - l ]rx [n - j ] + msemin8nO

j=l

n = 0,1 , ...
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where 8no = 1 for n = 0 and 8no = 0 for n ~ 1. Next divide both sides by msemin to

yield

Let

rx[n] _ ~ h[j - 1] [ .] s
--=-=- - L...J rx n - J + UnO
msemin 0 mSemin

3=1

n = 0, 1, . ...

[0] {l /msem in j = 0
9 J = -h[j - 1]/msem in j = 1,2, ...

so that the equations become

00

rx[n]g[O] = - Lg[j]rx[n - j] + 8no
j=1

or

(18A.5)

(18A.6)

00

Lg[j]rx[n - j] = 8no n = 0,1, ....

j=O

Now if (18A.6) can be solved for g[j], then h[j], msemin can then be found from

(18A.5). Note that (18A.6) is a discrete-time convolution that holds for n ~ O. We

therefore need to find a causal sequence g[n] (since the sum in (18A.6) is only over

j ~ 0), which when convolved with rx[n] yields 1 for n = 0 and 0 for n > O. Note

that the values of g[n]* rx[n] for n < 0 are unspecified by the equations. Hence,

g[n] * rx[n] must be an anticausal sequence to be a solution of (18A.6). This can

easily be solved if
00

Px(z) = L rx[n]z-n
k=-oo

can be written as

(18A.7)

where
00

A(z) = 1 - L a[k]z-k

k=1

has all its zeros within the unit circle of the z plane. Now IIA(z) is the z-transform

of a causal sequence. This is because if all the zeros of A(z) are within the unit

circle, then all the poles of l/A(z) are within the unit circle. Thus, the z-transform

1IA( z) must converge on and outside of the unit circle. Also, then 1IA(z-1) is the

z-transform of an anticausal sequence. Assuming this is possible (18A.6) becomes

Z-1{9(z)Px(z)} = { 2}1 (7u
Z- 9(z) A(z)A(z-1)

{
I n = 0

On> 0
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where 9(z) is the z-t ransform of g[n] and Z-l denotes the inverse z-t ransform. Now

if we choose

then

9(z) = A(z)
a 2

U

{ 2}1 au
Z- 9(z) A(z)A(z-l) Z-l { A ( ~ - l ) }

{
I n = 0

On> 0

(18A.8)

since 1/A(z-l) is the z-transform of an anticausal sequence , and the equations are

satisfied. The inverse z-t ransform for n = 0 has been obtained by using the initial

value theorem [Jackson 1991] which says that for an anticausal sequence x[n]

Z -l { t x[n]z- n} = lim t x[n]z- n = x[O].
z-tO

n=-oo n=O n=-oo

Therefore , we have that

Z-l { A ( ~ - l ) } In=o = l~ A(~-l ) = 1.

The solution for g[n] is from (18A.8)

g[n] = Z-l {Aa~ u Z)} = { l/a ~ n = 0
-a[ n]/a ~ n ~ 1

and using (18A.5)

1

msemin

h[j -1]

msemin

Finally, we have the result that

1
g[0]=2

au

g[j] = _ aU]
a 2

U

j ~ 1.

h[n]

msemin

= a[n + 1]
2

au·

n = 0,1 , . . .



Chapter 19

Multiple Wide Sense Stationary

Random Processes

19 .1 Introduction

In Chapters 7 and 12 we defined multiple random variables X and Y as a mapping

from the sample space S of the experiment to a point (x, y) in the x-y plane. We

now extend that definition to be a mapping from S to a point in the x-y plane that

evolves with time, and denote that point as (x[n],y[n]) for -00 < n < 00. The

mapping, denoted either by (X[n], Y[n]) or equivalently by [X[n] Y[n]V , is called a

jointly distributed random process. An example is the mapping from a point at some

geographical location, where the possible choices for the location constitute S, to the

daily temperature and pressure at that point or (T[n], P[n]). Instead of treating the

random processes, which describe temperature and pressure, separately, it makes

more sense to analyze them jointly. This is especially true if the random processes

are correlated. For example, a drop in barometric pressure usually indicates the

onset of a storm, which in turn will cause a drop in the temperature. Another

example of great interest is the effect of a change in the Federal Reserve discount

rate, which is the percentage interest charged to banks by the federal government,

on the rate of job creation. It is generally assumed that by lowering the discount

rate, companies can borrow money more cheaply and thus invest in new products

and services, thus increasing the demand for labor. The jointly distributed random

processes describing this situation are I[n], the daily discount interest rate, and

J[n], the daily number of employed Americans. Many other examples are possible,

encompassing a wide range of disciplines.

In this chapter we extend the concept of a wide sense stationary (WSS) ran­

dom process to two jointly distributed WSS random processes. The extension to

any number of WSS random processes can be found in [Bendat and Piersol 1971,

Jenkins and Watts 1968, Kay 1988, Koopmans 1974, Robinson 1967]. Multiple

random process theory is known by the synonymous terms multivariate random
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processes, multichannel random processes, and vector random processes. Also, the

characterization of the random processes at the input and output of an LSI system

is explored. We will find that the extensions are much the same as in going from a

single random variable to two random variables, especially since the definitions are

based on samples of the random process, which themselves are random variables.

As in previous chapters our focus will be on discrete-time random processes but

the analogous concepts and formulas for continuous-time random processes will be

summarized later.

19.2 Summary

Two random processes are jointly WSS if they are individually WSS (satisfy (19.1)­

(19.4)) and also the cross-correlation given by (19.5) does not depend on n. The se­

quence given by (19.5) is called the cross-correlation sequence. The cross-correlation

sequence has the properties given in Property 19.1-19.4, which differ from those of

the ACS. Jointly WSS random processes are defined to be uncorrelated if (19.12)

holds. The cross-power spectral density is defined by (19.13) and is evaluated using

(19.14). It has the properties given by Property 19.5-19.9, which differ from those

of the PSD. The correlation between two jointly WSS random processes can be mea­

sured in the frequency domain using the coherence function defined in (19.20). The

ACS and PSD for the sum of two jointly distributed WSS random processes is given

in Section 19.5. If the random processes are uncorrelated, then the ACS and PSD

of the sum random process are given by (19.25) and (19.26), respectively. For the

filtering operation shown in Figure 19.2a the cross-correlation sequence is given by

(19.27) and the cross-power spectral density by (19.28). For the filtering operation

shown in Figure 19.2b the cross-correlation sequence is given by (19.29) and the

cross-power spectral density by (19.30). The corresponding definitions and formulas

for continuous-time random processes are given in Section 19.6. Estimation of the

cross-correlat ion sequence is discussed in Section 19.7 with the estimate given by

(19.46). Finally, an application of cross-correlation to brain physiology research is

described in Section 19.8.

19.3 Jointly Distributed WSS Random Processes

We will denote the two discrete-time random processes by X[n] and Y[n] for -00 <
n < 00. Of particular interest will be the extension of the concept of wide sense

stationarity from one to two random processes. To do so we first assume that each

random process is individually WSS, which is to say that

px [n]

rx[k]

J-ly [n]

ry[k] =

E[X[n]] = ux

E[X[n]X[n + k]]

E[Y[n]] = J-ly

E[Y[n]Y[n + k]]

(19.1)

(19.2)

(19.3)

(19.4)
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or the first two moments do not depend on n. For the concept of wide sense sta­

tionarity to be useful in the context of two random processes, we require a further

definition. To motivate it , consider the situation in which we add the two ran­

dom processes together and wish to determine the overall average power. Then, if

Z[n] = X[n] + Y[n] , we need to find E[Z2[n]]. Proceeding we have

E[Z2[n]] E[(X[n] + Y[n])2]

= E[X2[n]] + E[X[n]Y[n]] + E[Y[n]X[n]] + E[y2[n]]

= rx[O] + 2E[X [n]Y[n]] + ry[O].

To complete the calculation we require knowledge of the joint moment E[X[n]Y[n]].
If it does not depend on n, then E[Z2[n]] will likewise not depend on n. More

generally, if we were to compute E[Z[n]Z[n + k]], then we would require knowledge

of E[X[n]Y[n + k]] and so we will assume that the latter does not depend on n.
Therefore, with this assumption we can now define

rx,y[k] = E[X[n]Y[n + k]] k= ... , - I ,O, I , .... (19.5)

This new sequence is called the cross-correlation sequence (eeS). Returning to our

average power computation we can now write that

E[Z2[n]] = rx[O] + 2rx,Y[O] + ry[O]

and the average power is seen not to depend on n. Note also from the definition of

the ees, that the ACS is just rx,x[k] .
If X[n ] and Y[n] are WSS random processes and a ces can be defined

(E[X[n]Y[n + k]] not dependent on n), then the random processes are said to be

jointly wide sense stationary. In summary, for the two random processes to be

jointly WSS we require the conditions (19.1)-(19.5) to hold. An example follows.

Example 19.1 - ecs for WSS random processes delayed with respect to

each other

Let X[n] be a WSS random process and let Y[n] be a delayed version of X[n] so

that Y[n] = X[n - no]. Then, to determine if the random processes are jointly WSS

we have

E[X[n]]

E[Y[n]]

E[X[n]X[n + k]] =

E[Y[n]Y[n + k]] =
E[X[n]Y[n + k]]

/-Lx

E[X[n - no]] = ux

rx[k]

E[X[n - no]X[n + k - no]] = rx[k]

E[X[n]X[n + k - no]] = rx[k - no] (19.6)

all of which follow from our definition of Y[n] and the assumption that X[n] is WSS.

Note that E[X[n]Y[n + k]] does not depend on n and so a ees can be defined. It

is given by (19.6) as

rx,y[k] = rx[k - no]. (19.7)
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Since all the first and second moments do not depend on n, the random processes

are jointly WSS.

<>
We will henceforth assume that X[n] and Y[n] are jointly WSS unless stated oth-

erwise. From the previous example it is observed that the ees has very different

properties than the AeS. Unlike the AeS, the CCS does not necessarily have its

maximum value at k = O. In the previous example, the maximum of the ees oc­

curs at k = no (see (19.7)). Also, in general we do not have rx,y[-k] = rx,y[k]

or the CCS is not symmetric about k = O. In the previous example, we have from

(19.7)

rx,y[-k] rx[-k - no]

= rx[k + no] i= rx[k - no] = rx,y[k].

Furthermore, even though the ees is symmetric about k = no in the previous

example, it need not be symmetric at all.

ees asymmetry requires vigilance.

Since the ees is not symmetric, in contrast to the AeS, one must be careful.

The cross-second moment E[X[m]Y[n]] , where X[n] and Y[n] are jointly WSS, is

expressed in terms of the ees as rx,y[n - m], not rx,y[m - n]. To determine the

argument k of the ees for rx,y[k], always take the index of the Y random variable

and subtract the index of the X random variable. For example, E[X[3]Y[I]] =
rx,y[1 - 3] = rx,y[-2]. This is especially important in light of the fact that the

definition of the ees is not standard. Some authors use rx,y[k] = E[X[n]Y[n - k]],

which will produce a ees that is "flipped around" in k, relative to our definition.

We give one more example and then summarize the properties of the ees.

Example 19.2 - Another calculation of the CCS

Assume that X[n] = Urn] and Y[n] = Urn] + 2U[n - 1], where Urn] is white noise

with variance ( J ~ = 1. Thus, X[n] is a white noise random process and Y[n] is a

general MA random process, i.e. , no Gaussian assumption is made. Then, it is easily

shown that JLx[n] = JLy[n] = 0, rx[k] = 8[k], and

{

5 k = 0

ry[k] = 2 k = ±1

o otherwise

so that X[n] and Y[n] are individually WSS. Now computing the cross-second mo-
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ment, we have
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E[X[n]Y[n + k]] E[U[n](U[n + k] + 2U[n+ k - 1])]

ru[k] + 2ru[k - 1]

8[k] + 28[k - 1]

and it is seen to be independent of n. Hence, the CCS is

rx,y[k] = 8[k] + 28[k - 1]

and the random processes are jointly WSS. The ACSs and the CCS are shown in

Figure 19.1. We observe that rx,y[-k] i- rx,y[k] and that the maximum does not

occur at k = O. We can assert, however , that the maximum must be less than or

equal to vrx[O]ry[O] since by the Cauchy-Schwarz inequality (see Appendix 7A)

Irx,y[k]l IE[X[n]Y[n + k]]1

< VE[X2 [n]]E[y2[n+ k]]

Vrx[O]ry[O].

For this example we see that

Irx,y[k]j ::; ~ = vIS.

o
We now summarize the properties (or more appropriately the nonproperties) of the

CCS.

Property 19.1 - CCS is not necessarily symmetric.

rx,y[-k] i- rx,y[k] (19.8)

o

Property 19.2 - The maximum of the CCS can occur for any value of k.

o

Property 19.3 - The maximum value of the CCS is bounded.

Irx,y[k] I ::; vrx[O]ry[O] (19.9)

o
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Figure 19.1: Autocorrelation and cross-correlation sequences for Example 19.2.

A fourth property that is useful arises by considering E[Y[n]X[n + k]], which is

the cross-second moment with X[n] and Y[n] interchanged. Assuming jointly WSS

random processes, this moment becomes

E[Y[n]X[n + k]] E[X[n + k]Y[n]]

= E[X[m]Y[m - k]]

rx,y[-k]

(let m = n + k)

(from definition of CCS).

Therefore, E[Y[n]X[n + k]] does not depend on n and so we can define another

cross-correlation sequence as

rY,x[k] = E[Y[n]X[n + k]] (19.10)
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and it is seen to be equal to rx,y[-k]. Thus, as our last property we have

Property 19.4 - Interchanging X[n] and Y[n] flips the ecs about k = O.

rY,x[k] = rx,y[-k] (19.11)

o
Next, we define the concept of un correlat ed jointly WSS random processes. Two

zero m ean jointly WSS random processes are said to be uncorrelated if

rx,y[k] = 0 for - 00 < k < 00 (19.12)

including k = O. (For nonzero mean random processes the definition of uncorrelated

random processes is that rx,y[k] = /-Lx/-Ly for -00 < k < 00.) Of course, if the

random processes are independent so that E[X[n]Y[n + k]] = 0 does not depend on

n, then they must be jointly WSS as well. It also follows from Property 19.4 that

if the random processes are uncorrelated, then rY,x[k] = 0 for all k. An example

follows.

Example 19.3 - Uncorrelated sinusoidal random processes

Let X[n] = cos(21rfon + 8 1) and Y[n] = cos(21rfon + 8 2 ) , where 81 '" U(O , 21r) ,

8 2 '" U(O, 21r), and 8 1 and 8 2 are independent random variables. Then, we have

seen previously that X[n] and Y[n] are individually WSS (see Example 17.4) and

E[X[n]Y[n + k]]

Eel ,e2[COs(21rfon + 8 1) cos(21rfo(n + k) + 8 2 ) ]

Eel [cos(21rfon + 8d]Ee2 [cos(21r fo(n + k) + 8 2 ) ] (independent random

variables and (12.30))

= 0

since each random sinusoid has a zero mean (see Example 16.11). Thus, the random

processes are uncorrelated and jointly WSS. Can you interpret this result physically?

o

19.4 The Cross-Power Spectral Density

The PSD of a WSS random process was seen earlier to describe the distribution of

average power with frequency. Also, the average power of the random process in a

band of frequencies is obtained by integrating the PSD over that frequency band.

In a similar vein to the definition of the PSD, we can define the cross-power spectral

density (CPSD) of two jointly WSS random processes as

PX,Y (I) ~ , , ) ~ = 2M!+ ! E [ CtM X[n] exp( - j21rfn)rCtM Yin] exp( -j21r f n)) ]

(19.13)
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which results in the usual PSD if Y[n] = X[n]. Using a similar derivation as the one

that resulted in the Wiener-Khinchine theorem, it can be shown that (see Problem

19.8)
00

PX,y(J) = 2: rx,y[k] exp(-j27l"fk).
k=-oo

(19.14)

It is less clear than for the PSD what the physical significance of the CPSD is. From

(19.13) it appears that the CPSD will be large when the Fourier transforms of X[n]

and Y[n] at a given frequency are large and are in phase. Conversely, when the

Fourier transforms are either small or out of phase, the CPSD will be small. This is

confirmed by the results of Example 19.3 in which the sinusoidal processes have all

their power at f = ±fo since Px(J) = Py(J) = ~o(J + fa) + ~o(J - fa). However,

because they have phases that are independent of each other and can take on values

in (0,27l") uniformly, rx,y[k] = 0 and therefore, PX,y(J) = O. On the other hand,

if the phase random variables were statistically dependent, say 8 1 = 8 2 , then the

CPSD would be large (see Problem 19.9). Another example follows.

Example 19.4 - ees for WSS random processes delayed with respect to

each other (continued)

We continue Example 19.1 in which Y[n] = X[n - no] and X[n] is WSS. We saw

that the CCS is given by rx,y[k] = rx[k - no]. Using (19.14) the CPSD is

00

PX,y(J) = 2: rx[k - no]exp(-j27l"fk)
k=-oo

and letting l = k - no produces

00

PX,y(J) = 2: rx[l] exp[-j27l"f(l + no)]
1=-00

00

2: r x [l] exp( - j27l"ft) exp( -j27l"fno)
1=-00

Px(J) exp( -j27l"fno).

It is seen that the CPSD is a complex function and that PX,y( - f) =I PX,y(J).

It does appear, however, that PX,y(- f) = PX,y(J) so that it has the symmetry

properties

IPx,Y(-f) I
L.PX,y(- f) =

IPx,y(J)!

-L.PX,y(J) (19.15)

or the magnitude of the CPSD is an even function and the phase of the CPSD is an

odd function. This result is indeed true as we will prove in Property 19.6.
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(19.16)

One way to think about the CPSD is as a correlation between the normalized Fourier

transforms of X[n] and Y[n] at a given frequency. From (19.13) we see that if

1 M
L X[n] exp( -j27rfn)

.j2M + 1 n=-M

1 M

L Y[n] exp( -j27rfn)
.j2M + 1 n=-M

then

PXy(J) = lim E[X2M+1(J)Y2M+l (J)] .
, M--+oo

(19.17)

This is a correlation between the two complex random variables X2M+l (J) and

Y2M+l (J). In fact, a normalized version of the CPSD is a complex correlation coef­

ficient. Indeed, from the Cauchy-Schwarz inequality for complex random variables

(see Appendix 7A for real random variables) , we have that (recall that if X = U+jV,

then E[X] is defined as E[X] = E[U] + jE[V])

(19.18)

and therefore as M --7 00, this becomes from (19.17) and (17.30)

(19.19)

Thus, if we normalize the CPSD to form the complex function of frequency

( )
PX,y(J)

'Yx,y f = Jpx(J)Py(J)
(19.20)

then we have that l'Yx,y(J) I ~ 1. The complex function of frequency 'Yx,y(J) is

called the coherence function and it is a complex correlation coefficient. It measures

the correlation between the Fourier transforms of two jointly WSS random processes

at a given frequency. As an example, consider the random processes of Example

19.4. Then

Jpx(J)Py(J)

Px(J) exp( -j27rfno)
=

Jpx(J)Px(J)

exp( -j27rfno) (since Px(J) ~ 0).

The magnitude of the coherence is unity for all frequencies , meaning that the Fourier

transform of Y[n] at a given frequency can be perfectly predicted from the Fourier

transform of X[n] at the same frequency since Y[n] = X[n - no]. It follows that
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Y2M+l(f) = exp(-j2n}nO)X2M+l(f) and therefore Y2M+l(f) = ')'x,y(f)X2M+l(f)
for all f. Furthermore, since the coherence magnitude is unity for all frequencies,

the prediction of the frequency component of Y[n] is perfect for all frequencies as

well. This says finally that Y[n] can be perfectly predicted from X[n]. To do so

just let Y[n] = X[n + no]. In general, we will see later that if Y[n] is the output of

an LSI system whose input is X[n], then the coherence magnitude is always unity.

Can you interpret Y[n] = X[n - no] as the action of an LSI system? Finally, in

contrast to perfect prediction, consider the CPSD if X[n] and Y[n] are zero mean

and uncorrelated. Then since rx,y[k] = 0, we have that PX,y(f) = 0 for I , and of

course the coherence will be zero as well. We now summarize the properties of the

CPSD.

Property 19.5 - CPSD is Fourier transform of the ecs.

00

PX,y(f) = L rx,y[k] exp(-j21rfk)
k=-oo

Proof: See Problem 19.8.

o

Property 19.6 - CPSD is a hermitian function.

A complex function g(f) is hermitian if its real part is an even function and its

imaginary part is an odd function about f = O. This is equivalent to saying that

g(- 1) = g*(f). Thus,

PX,y( - 1) = PX,y(f)

(see also (19.15) which is valid for a hermitian function).

Proof:

(19.21)

00

L rx,y[k]exp(-j21rfk)
k=-oo

00

Px ,y(-1) = L rx,y[k]exp(j21rfk)
k=-oo

00 00

L rx,y[k] cos(21rfk) + j L rx,y[k] sin(21rfk)
~-oo ~-oo

C~ rx,y[k] cos(2~ f k) - j k~OO rx,y [k] sin(2~ f k)) •

= C~oorx,vlk]exP(-jhfk))'
PX,y(f)

o
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Property 19.7 - CPSD is bounded.

IPx,y(f)! :::; y'Px(f)Py(f)

Proof: See argument leading to (19.20).
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(19.22)

o

Property 19.8 - CPSD is zero for zero mean uncorrelated random pro­

cesses.

If X[n] and Y[n] are jointly WSS random processes that are zero mean and uncor­

related, then PX,y(f) = 0 for all j.

Proof: Since the random processes are zero mean and uncorrelated, rx,y[k] = 0 by

definition. Hence, the CPSD is zero as well, being the Fourier transform of the CCS.

o

Property 19.9 - CPSD of (Y[n], X[n]) is the complex conjugate of the

CPSD of (X[n] ,Y[n]).

Proof:

pY,x(f)

pY,x(f) = PX,y(f)

00

L rY,x[k] exp( -j27l"jk)

k=-oo

00

L rx,y[-k] exp(-j27l"jk)

k=-oo

00

L rx,y[1]exp(j27l"jl)
1=-00

= PX,y(-j)

PX,y(f)

(using (19.11))

(let 1= -k)

(using (19.21))

(19.23)

o
We conclude this section with one more example.

Example 19.5 - MA Random Process

Let Y[n] = X[n] - bX[n -1], where X[n] is white Gaussian noise with variance (Tk.
We wish to determine the CPSD between the input X[n] and output Y[n] random

processes (assuming they are jointly WSS, which will be borne out shortly). (Are

X[n] and Y[n] individually WSS?) To do so we first find the CCS and then take the
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Fourier transform of it. Proceeding we have

rx ,y[k] E[X[n]Y [n + k]]

E[X[n](X[n + k] - bX[n + k - 1])]

= E [X[n ]X[n + k]] - bE[X[n]X [n + k - 1]]

rx[k] - brx[k - 1]

which does not depend on n and hence X[n] and Y[n] are jointly WSS with the

CCS

rx,y[k] = aJe8[k] - baJe8[k - 1].

The CPSD is found as the Fourier transform to yield

PX,y(J) aJe - baJe exp( - j21rf)

aJe(1- bexp(-j21rf)).

<I
Note that in the previous example we can view Y[n] as the output of an LSI filter

with frequency response H (J) = 1 - bexp( - j21rf). Therefore, we have the result

Px,Y(f) = H(J)aJe. (19.24)

More generally, we will prove in the next section that if X[n] is the input to an LSI

system with Y [n] as its corresponding output, then X[n] and Y[n] are jointly WSS

and PX,y(J) = H(J)Px(J). As an application note, if the input to the LSI system is

white noise with aJe = 1, then PX,y(J) = H(J). To measure the frequency response

of an unknown LSI syst em one can input white noise with a variance equal to one

and then estimate the CCS from the input and observed output (see Section 19.7).

Up on Fourier transforming that est imate one obtains an estimate of the frequency

response. Lastly, since PX,y(J) = H(J) for Px(J) = 1, it is clear that the properties

of the CPSD should mirror those of a frequency response, i.e., complex in general,

hermitian, etc.

19.5 Transformations of Multiple Random Processes

We now consider the effect of some transformations on jointly WSS random pro­

cesses. As a simple first example, we add the two random processes together.

Hence, assume X[n] and Y[n] are jointly WSS random processes, and Z[n] =

X[n] + Y[n]. We next compute the first two moments. Clearly, we will have

flz[n] = fl x[n] + fl y[n] = tix + fly and

r z [k] = E[Z[n]Z[n + k]]

E[(X[n] + Y[n]) (X[n + k] +Y[n + k])]

= rx[k] + rx,y [k] + rY,x [k] + ry[k] (assumed jointly WSS)
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and hence Z[n] is a WSS random process. Its PSD is found by taking the Fourier

transform of the ACS to yield

Pz(f) = Px(f) + PX,y(f) + PY,x(f) + Py(f).

If in particular X[n] and Y[n] are zero mean and uncorrelated, so that rx,y[k] = 0

and hence rY,x[k] = rx,y[-k] = 0 as well, we have

rz[k]

Px(f)

rx[k] + ry[k]

Px(f) + Py(f) .

(19.25)

(19.26)

Another frequently encountered transformation is that due to filtering of a WSS

random process by one or two LSI filters. These transformations are shown in Figure

19.2. For the transformation shown in Figure 19.2a we already know from Chapter

x [ n ] - ~ · I H(f) ~ Yin]

(a)

Urn]

HI(J)

-

H 2(f)

(b)

X[n]

Y[n]

Figure 19.2: Common filtering operations.

18 that if X[n] is WSS, then Y[n] is also WSS and its mean and ACS are easily

found. The question arises, however, as to whether X[n] and Y[n] are jointly WSS.

To answer this we compute E[X[n]Y[n + k]] to see if it depends on n. Proceeding,

we have for the filtering operation shown in Figure 19.2a with h[k] denoting the

impulse response

E[X[n]Y[n + k]] E [xln] ,t;oo hll]Xln + k -IJ]
00

L h[l]E[X[n]X[n + k -l]]
1=-00

00

L h[l]rx[k -l]

1=-00

and we see that it does not depend on n . Hence, if X[n] is the input to an LSI

system and Y[n] is its corresponding output, then X[n] and Y[n] are jointly WSS.



654 CHAPTER 19. MULTIPLE WSS RANDOM PROCESSES

Also , we have for the ees

00

rx,y[k] = L h[l]rx[k -I]
1=-00

(19.27)

which can be seen to be a discrete convolution or rx,y[k] = h[k]*rx[k]. As a result,

by Fourier transforming the ees we obtain the epSD as

PX,y(f) = H(f)Px(f) (19.28)

which agrees with our earlier result of (19.24). As previously asserted, we can also

now prove that if X[n] is a WSS random process that is input to an LSI system and

Y[n] is the output random process, then the coherence magnitude is one. This says

that Y[n] is perfectly predictable from X[n], which upon reflection just says that to

predict Y[n] we need only pass X[n] through the same filter! To verify the assertion

about the coherence magnitude

(using (19.28) and (18.11))

Px,y(j)

Jpx(f)Py(f)

H(f)Px(f)

J Px(f)IH(f)12Px(f)

H(f)

IH(f)1

= exp(j¢(f))

=

,X,y(f) =

where ¢(f) is the phase response of the LSI system or ¢(f) = LH(f) Thus,

I,x,y(f)! = 1 (assuming H(f) f:. 0) and Y[n] is perfectly predictable from X[n]

as

00

Y[n] = L h[k]X[n - k]
k=-oo

for all n

where h[k] is the impulse response of H(f). Also , X[n] can be perfectly predicted

from Y[n] as one might expect from the analogous result of the symmetry of the

correlation coefficient, which is PX,y = PY,X (see Problem 19.21).

Next consider the transformation depicted in Figure 19.2b. The input random

process Urn] is WSS so that X[n] and Y[n] are individually WSS according to Theo­

rem 18.3.1. To determine if they are jointly WSS we again compute E[X[n]Y[n +k]]

to see if it depends on n. Therefore, with hI [k], h2 [k] denoting the impulse responses,
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and H1(J) , H2(J) denoting the corresponding frequency responses

E[X[n]Y [n+ kIJ ~ E [,t=h,[i]U[n - i]j'f;= h2[i]U[n+ k - j]]

00 00

= L L hI[i]h2[j]E[U[n - i]U[n + k - j]]
i= -ooj= -oo

00 00

= L L hI[i]h2[j]ru[k + i - j]
i= - oo j = - oo

and does not depend on n. Hence, X[n] and Y[n] are jointly WSS and the CCS is

00 00

rx,y[k] = L h1[i] L h2[j]ru[k + i - j]
i=-oo j=-oo,

V'

g[k+i]

where g[n] = h2[n] * ru[n]. Continuing we have

00

rx ,y[k] = L hI [i]g[k + i]
i= - oo

00

L h1[-l]g[k -l]
1= - 00

so that

(let 1= -i)

rx,y[k] = hI[-k] * h2[k] *ru[k] (19.29)

(this should be reminscent of another relationship that results if h1[k] = h2[k] =

h[k]). Upon Fourier transforming both sides we have the CPSD

PX,y(J) = H;(J)H2(J)PU(J). (19.30)

An int eresting observation from (19.30) is that if the two filters have nonoverlapping

passbands, as shown in Figure 19.3, then

-1<1<1
2 - - 2

and PX,y(J) = O. Taking the inverse Fourier transform of the CPSD produces the

CCS , which is rx,y[k] = 0 for all k. Hence, for nonoverlapping passband filters as

shown in Figure 19.3 the X[n] and Y [n] random processes are uncorrelated. (Note

that because of the nonoverlapping passbands we must have J.Lx = 0 or J.Ly = 0.)

Since this holds for any filters satisfying the nonoverlapping constraint , it also holds



656 CHAPTER 19. MULTIPLE WSS RANDOM PROCESSES

Figure 19.3: Nonoverlapping passband filters.

in particular for any narrowband filters with nonoverlapping passbands. What this

says is that the the Fourier transform of a WSS random process Urn] is uncorre­

lated at two different frequencies. (Actually, it is the truncated Fourier transform

or U2M+l(f) = (I/J2M + 1) L~-M Urn] exp(-j2nJn) , which is required for ex­

istence, that is uncorrelated at different frequencies as M -+ 00.) This is because

the Fourier transform can be thought of as resulting from filtering the random pro­

cess with a narrowband filter and then determining the amplitude and phase of the

resulting sinusoidal output. The spectral representation of a WSS random process

is based upon this interpretation (see [Brockwell and Davis 1987] and also Problem

19.22).

L1h
wss.

Two random processes can be individually WSS but not jointly

All the examples thus far of individually WSS random processes have also resulted

in jointly WSS random processes. To dispel the notion that this is true in general

consider the following example. Let X[n] = A and Y[n] = (_1)n A, where A is a

random variable with E[A] = 0 and var(A) = 1. Then, I-lx[n] = I-ly[n] = 0 and it is

easily shown that rx[k] = 1 for all k and ry[k] = (-I)k for all k. Therefore, X[n]

and Y[n] are individually WSS random processes but they are not jointly WSS since

which depends on n. For example, since X[O] = Y[2] = A and X[I] = -Y[3] = A,
we have that

E[X[O]Y[2]]

E[X[I]Y[3]]

E[A2
] = 1

E[A(-A)] =-1

so that the cross-correlation between two samples spaced two units apart depends

on n.
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19.6 Continuous-Time Definitions and Formulas

Two continuous-time random processes X(t) and Y (t) for −∞ < t < ∞ are jointly

WSS if X(t) is WSS, Y (t) is WSS, and we can define the cross-correlation function
(CCF) as

rX,Y (τ) = E[X(t)Y (t + τ)] −∞ < τ < ∞ (19.31)

which does not depend on t. Some properties (actually nonproperties) of the CCF
are

Property 19.10 – CCF is not necessarily symmetric about τ = 0.

rX,Y (τ) 	= rX,Y (−τ) (19.32)

�

Property 19.11 – The maximum of the CCF can occur for any value
of τ .

�

Property 19.12 – The maximum value of the CCF is bounded.

|rX,Y (τ)| ≤
√

rX(0)rY (0) (19.33)

�

Property 19.13 – Interchanging X(t) and Y (t) flips the CCF about τ = 0.

rY,X(τ) = rX,Y (−τ) (19.34)

�

Two zero mean jointly WSS continuous random processes are said to be uncorrelated
if rX,Y (τ) = 0 for −∞ < τ < ∞.

The CPSD for two jointly WSS random processes is defined as

PX,Y (F ) = lim
T→∞

1

T
E

[(

∫ T/2

−T/2
X(t) exp(−j2πFt)dt

)∗ (

∫ T/2

−T/2
Y (t) exp(−j2πFt)dt

)]

(19.35)
and is evaluated as

PX,Y (F ) =

∫ ∞

−∞
rX,Y (τ) exp(−j2πFτ)dτ. (19.36)

Some properties of the CPSD follow. The proofs are similar to those for the discrete-
time case.
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Property 19.14 – CPSD is a complex and hermitian function.

The hermitian property is

PX,Y (−F ) = P ∗
X,Y (F ) (19.37)

�

Property 19.15 – CPSD is bounded.

|PX,Y (F )| ≤
√

PX(F )PY (F ) (19.38)

�

Property 19.16 – CPSD of (Y (t),X(t)) is the complex conjugate of the
CPSD of (X(t), Y (t)).

PY,X(F ) = P ∗
X,Y (F ) (19.39)

�

The formulas for the linear system configuration corresponding to that shown in Fig-
ure 19.2a are (continuous-time system is assumed to be LTI with impulse response
h(τ) and frequency response H(f))

rX,Y (τ) = h(τ) ⋆ rX(τ) (19.40)

PX,Y (F ) = H(F )PX (F ) (19.41)

and for the configuration of Figure 19.2b (continuous-time systems are assumed to
be LTI with impulse responses h1(τ), h2(τ), and corresponding frequency responses
H1(f), H2(f))

rX,Y (τ) = h1(−τ) ⋆ h2(τ) ⋆ rU (τ) (19.42)

PX,Y (F ) = H∗
1 (F )H2(F )PU (F ). (19.43)

An example of great practical importance is given next to illustrate the concepts
and formulas.

Example 19.6 – Measurement of Channel Delay

It is frequently of interest to be able to measure the propagation time of a signal
through a channel. This allows one to determine distance if the speed of propaga-
tion is known. This idea forms the basis for the global positioning system (GPS)
[Hofmann-Wellenhof, Lichtenegger, Collins 1992]. See also Problem 19.28 for an-
other application. To do so we transmit a WSS random process X(t), that is ban-
dlimited to W Hz (meaning that PX(F ) = 0 for |F | > W ) through a channel and
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observe the output of the channel Y(t). We furthermore assume that the channel is

modeled as an LTI system with frequency response

H(F) = exp(-j21TP to)
1+j27fF .

(19.44)

Note that the numerator term represents a delay of to seconds, sometimes called the

propagation or bulk delay, and the term HLP (F) = 1/(1 + j27fF) represents a low­

pass filter response since HLP (0) = 1 and HLP (F) -+ 0 as F -+ 00. A question arises

as to how to choose the transmit random process X (t) so that we can accurately

measure the delay to through the channel. In the ideal case in which Y(t) is just a

delayed replica of X(t) or Y(t) = X(t - to), we know that the CCF is

E[X(t)Y(t + r)]

E[X(t)X(t + r - to)]

rx(r - to).

Since the ACF has a maximum at lag zero, there will be maximum of rx,y(r)

at r = to, suggesting that the location of this maximum can be used to measure

the delay. But when the channel has the frequency response given by (19.44) the

maximum of the CCF may no longer be located at r = to. To see why, first compute

the CCF as

i: Px,y(F) exp(j27fFr)dF

i: H(F)Px(F) exp(j27fFr)dF

1
00 exp(-j27fF to)

1 '2 F Px(F) exp(j27fFr)dF
-00 + J 7f

1
00 1

1 '2 FPx(F) exp(j27fF(r - to))dF
-00 + J 7f

(inverse Fourier transform)

(from (19.41))

(from (19.44))

and since X(t) is assumed to be bandlimited to W Hz, we have

l
w 1

rx,y(r) = 1 '2 FPx(F) exp(j27fF(r - to))dF.
-w + J 7f

(19.45)

If, as an example, we choose X(t) to be bandlimited white noise (see Example 17.11)

or Px(F) = No/2 for IFI ~ Wand Px(F) = 0 for IFI > W, then

N, l w
1rx,y(r) = -f -w 1 + j27fF exp(j27fF(r - to))dF.
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To evaluate this we first note that

{ I } 100 1 .;:-1 . = . F exp(J21rFt)dF = exp( -t)u(t)
1 + J21rF -00 1 + J21r

so that if we define the frequency window function

G(F) = {I IFI:::; W
o IFI > W

(convolution in time yields

multiplication in frequency).

then

No100

G(F) : exp(j21rF(T - to))dF
2 -00 1 + J21rF

No
= 2 g(t) *exp(-t)u(t)lt=T_to

where g(t) is the inverse Fourier transform of G(F). We have chosen to express

the integral in the time domain since its physical significance becomes clearer. In

particular, note that the convolution in time results in a wider pulse. But

(t ) = 2W sin(21rWt)

9 21rWt
(see Example 17.11)

so that using a convolution integral, we have

This is shown in Figure 19.4 for the case when W = 1 and to = 2 as the light line

and has been normalized to have a maximum value of 1. The integral has been

evaluated numerically. Note that the maximum does not occur at to = 2 because

the phase response of the channel has added a time delay. To remedy this problem

we can insert an equalizing filter at the channel output whose frequency response is

H (F) = { 1 + j21rF IFI:::; W
eq 0 IFI > W.

Then, we have for the CPSD between the input X(t) and output random process of

the equalizer Y (t)

P (F) = H (F)H(F)P (F) = { J¥o- exp(-j21rF to) IFI:::; W
X,Y eq X 0 IFI > W.

The CCF is found as before by using the inverse Fourier transform
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Figure 19.4: Cross-correlation functions for W = 1 and to = 2. Both curves are

normalized to yield one at their peak. The light line is for no equalization while the

dark line incorporates equalization. The dashed line indicates T = 2, the true delay.

j
w N,
~ exp(j2n-F(T - to))dF

-w 2

N, W sin(27fW(T - to))
o 27fW(T - to)

which is shown in Figure 19.4 as the dark line. As before it has been normalized to

yield one at its peak. Note that the maximum now occurs at the correct location

and also the width of the maximum peak is narrower. This allows a better location

of the maximum in the presence of noise.

19.7 Cross-correlation Sequence Estimation

The estimation of the CCS is similar to that for the ACS (see Section 17.7). The

main difference between the two stems from the fact that the ACS is guaranteed to

have a maximum at k = 0 while the maximum for the CCS can be located anywhere.

Furthermore, two samples of a WSS random process tend to become less correlated

as the spacing between them increases. This implies that it is only necessary to

estimate the ACS r x [k] for k = 0,1, ... ,M if we assume that r x [k] ~ 0 for k > M.

For the CCS , however, we must estimate rx,Y[k] for k = -MI , ... , 0, ... , M 2 (recall

that rX'y[-k] =1= rx,y[k]) for which rx,Y[k] ~ 0 if k < -MI or k > M 2• In

practice, it is not clear how M I and M 2 should be chosen. Frequently, a preliminary

est imate of rx,y[k] is made, followed by a search for the maximum location. Then,

the data records used to estimate the CCS are shifted relative to each other to

place the maximum at k = O. This is called time alignment [Jenkins and Watts



· 662 CHAPTER 19. MULTIPLE WSS RANDOM PROCESSES

(19.46)

1968]. We assume that this has already been done. Then , we est imate the CCS for

Ikl ~ M assuming that we have observed the realizations for X[n] and Y [n], both

for n = 0,1, .. . ,N - 1. The est imate becomes

A { N ~k Lt: ';Ol-k x[n]y[n + k] k = 0,1 , . . . , M
rx,y[k] = 1 N -l

N- Ikl Ltn=lklx[n]y[n + k] k = - M ,-(M - 1), . . . , - 1.

rx,Y[O]

rX,y[ I ]

rx,y[- I ]

rx ,y [- 2]

rX,y[2] =

Note that the summation limi ts have been chosen to make sure that all the available

products x[n]y[n + k] are used. Similar to the est imation of the ACS, there will

be a different number of products for each k . For example, if N = 4 so that

{x [0], x[I] ,x [2],x[3]} and {y[O], y[l ]' y[2], y[3]} are observed, and we wish to compute

the CCS est imate for Ikl ~ M = 2, we will have

1 3 1
2L x[n]y[n - 2] = 2(x[2]y[0] + x[3]y[l ])

n=2

1 3 1
3L x[n]y[n - 1] = 3(x[l ]y[0] + x[2]y[l ] + x[3]y[2])

n =l

1 3 1
4L x[n]y[n] = 4(x[0]y[0] + x[l ]y[l ] + x[2]y[2] + x[3]y[3])

n=O

1 2 1
3L x[n]y[n + 1] = 3(x[0] y[l] + x[l ]y[2] + x[2]y[3])

n=O

1 1 1
"2 L x[n]y[n + 2] = "2 (x[0]y[2] + x[l ]y[3]).

n=O

As an example, consider the jointly WSS random processes described in Example

19.2, where X[ n] = Urn], Y [n] = Urn] + 2U[n - 1] and Urn] is white noise with

vari ance (j ~ = 1. We fur ther assume that Urn] has a Gaussian PDF for each n
for the purpose of computer simulation (although we could use any PDF or PMF).

Recall that the theoretical CCS is rx,y[k] = 8[k] + 28[k - 1]. The estimated CCS

using N = 1000 data samples is shown in Figure 19.5. The MATLAB code used

to est imate the CCS is given below.

%assume realizations are x[n] , yEn] for n=1,2, ... ,N

for k=O:M %compute zero and positive lags, see (19.46)

% compute values for k=O,1, ... ,M

rxypos(k+1,1)=(1!(N-k))*sum(x(1 :N-k).*y(1+k:N));

end

for k=1:M %compute negative lags, see (19 .46)

%compute values for k=-M,-(M-1), ... ,-1

rxyneg(k+1,1)=(1!(N-k))*sum(x(k+1:N) .*y(1:N-k));

end

rxy=[flipud(rxyneg(2:M+1,1));rxypos]; %arrange values from k=-M to k=M
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Figure 19.5: Estimated CCS using realizations for X[n] and Y[n] with N = 1000

samples. The theoretical CCS is rx,y[k] = 8[k] + 28[k - 1].

Finally, we note that estimation of the CPSD is more difficult and so we refer the

interested reader to [Jenkins and Watts 1968, Kay 1988].

19.8 Real-World Example - Brain Physiology Research

Understanding the operation of the human brain is one of the most important goals

of physiological research. Currently, there is an enormous effort to decipher its

inner workings. At a very fundamental level is the study of its cells or neurons,

which when working in unison form the basis for our behavior. Their electrical

activity and the transmission of that activity to neighboring neurons yields clues

as to the brain's operation. When an individual neuron "fires" it produces a spike

or electrical pulse that propagates to nearby neurons. The connections between

the neurons that allow this propagation to occur are called synapses and it is this

connectivity that is the focus of much research. A typical spike train that might

be recorded is shown in Figure 19.6a for a neuron at rest and in Figure 19.6b for a

neuron that has been excited by some stimulus. Clearly, the firing rate increases in

response to a stimulus. The model used to produce this figure is an IID Bernoulli

random process with p = Pq = 0.1 for Figure 19.6a and p = Ps = 0.6 for Figure

19.6b. The subscripts "q" and "s" are meant to indicate the state of the neuron,

eit her quiescent or stimulated. Now consider the question of whether two neurons

are connected via a synapse. If they are , and a stimulus is applied to the first

neuron, then the electrical pulse will propagate to the second neuron and appear

some time later. Then, we would expect the second neuron electrical activity to

change from that in Figure 19.6a to that in Figure 19.6b. It would be fairly simple
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(a) Quiescent, pq = 0.1 (b) Stimulated, P» = 0.6

Figure 19.6: Typical spike trains for neurons.

then to estimate the p for each possible connected neuron and choose the neuron or

neurons (there may be multiple connections with the stimulated neuron) for which

p is large. Unfortunately, it is not easy to stimulate a single neuron so that when

a st imulus is applied, many neurons may be activated. Thus, we need a method

to associate one stimulated neuron with its connected ones. Ideally, if we record

the elect rical activity at two neurons under considerat ion, denoted by Xdn] and

X2[n], then for connected neurons X2[n] = X1[n - no]. Since we have assumed that

the spike train for the first neuron X1[n] is an IID random process, it is therefore

WSS and we know from Example 19.1, the two random processes are jointly WSS.

Therefore, we have as before

rX l ,X2[k] E[Xdn]X2[n + k]]

E[Xdn]Xdn - no + k]]

= rXl[k-no]

and therefore the CCS will exhibit a maximum at k = no. Otherwise, if the neu­

rons ar e not connected, we would expect a much smaller value of the maximum or

no discernible maximum at all. For example, for unconnected but simultaneously

stimulated neurons it is reasonable to assume that X1[n] and X2[n] are uncorrelated

and hence rXl ,X2[k] = E[Xdn]]E[X2[n + k]] = p; ,which presumably will be less

than rXl [k - no] at its peak. Note that for connected neurons

if the covariance is positive.

Specifically, we assume that a neuron output is modeled as an IID Bernoulli

random process that takes on the values 1 and 0 with probabilities Ps and 1 - Ps,
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resp ectively. For two neurons that are connected we have that rXl ,X2[k] = rXl[k­

no] . But

rXl[k] E[Xdn]Xdn + k]]

{
E[Xf[n]]
E [X1[n]]E[X1 [n + k]]

= {ps k = 0
p ~ k:l: 0

= Ps(l - Ps)<5[k] + p; .

k=O
k:l:0

Hence, for two connected neurons the CCS is

For two neurons that are not connected, so that their outputs are uncorrelated (even

if both are stimulated) , the CCS is

E[Xdn]]X2[n + k]]

E[Xdn]]E[X2[n + k]]

P; for all k.

As a result , t he maximum is p ~ for unconnected neurons but Ps(1-ps)+P; = Ps > P;

for connected neurons. The two different cess are shown in Figure 19.7 for Ps = 0.6

and no = 2. As an example, for Ps = 0.6 we show realizations of three neuron

2 34
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(a) Unconnected (b) Connected with no = 2

Figure 19.7: CCS for unconnected and connected stimulated neurons with Ps = 0.6.

outputs in Figure 19.8, where only neuron 1 and neuron 3 are connected. There is
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Figure 19.8: Spike trains for three neurons with neuron 1 connected to neuron 3

with a delay of two samples. The spike train of neuro n 2 is uncorrelated with those

for neurons 1 and 3.

a two sample delay between neurons 1 and 3. Neuron 2 is not connected to either

of the other neurons and hence its spike train is uncorrelated with the others. The

theoretical CCS between neurons 1 and 2 is given in Figure 19.7a while that between

neurons 1 and 3 is given in Figure 19.7b. The est imated CCS for the spike trains

shown in Figure 19.8 and based on the est imate of (19.46) is shown in Figure 19.9.
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(b) Connected neurons 1 and 3 wit h no = 2

Figure 19.9: Estimated CCS for unconnected and connected stimulated neurons

wit h Ps = 0.6.

It is seen that as expected there is a maximum at k = no = 2. The interested reader

should consult [Univ . Pennsylvannia 2005] for further details.
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Problems

19.1 t.:..:,,) (w) Two discrete-time random processes are defined as X[n] = Urn] and

Y[n] = (-l)nU[n] for -00 < n < 00, where Urn] is white noise with variance

abo Are the random processes X[n] and Y[n] jointly WSS?

19.2 (w) Two discrete-time random processes are defined as X[n] = aiUi[n] +
a2U2[n] and Y[n] = biUdn] +b2U2[n] for -00 < n < 00, where Ui[n] and U2[n]

are jointly WSS and ai, a2,bi , b: are constants. Are the random processes X[n]

and Y[n] jointly WSS?

19.3 (f) If the CCS is given as rx,y[k] = (1/2) lk- il for -00 < k < 00, plot it and

describe which properties are the same or different from an ACS.

19.4 (f) IfY[n] = X[n] +W[n], where X[n] and W[n] are jointly WSS , find rx,y[k]

and PX,y(J).

19.5 C:.:..-) (w) A discrete-time random process is defined as Y[n] = X[n]W[n] ,

where X[n] is WSS and W[n] is an lID Bernoulli random process that takes on

values ±1 with equal probability. The random processes X[n] and W[n] are
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independent of each other, which means that X[ntJ is independent of W[n2]
for all n1 and n2. Find rx,y[k] and explain your results.

19.6 (...:.:,) (w) In this problem we show that for the AR random process X[n] =
aX[n - 1] + Urn]' which was described in Example 17.5, the cross-correlation

sequence E[X[n]U[n + k]] = 0 for k > O. Do so by evaluating E[X[n](X[n +
k] - aX[n + k -1])]. Determine and plot the CCS rX ,u[k] for -00 < k < 00 if

a = 0.5 and CT& = 1. Hint: Refer back to Example 17.5 for the ACS of an AR

random process.

19.7 (f) If X[n] and Y[n] are jointly WSS with ACSs

(1)lk
l

rx[k] = 4 2"

ry[k] = 38[k] + 28[k + 1] + 28[k - 1]

determine the maximum possible value of rx,y[k].

19.8 (t) Derive (19.14). To do so use the relationship ~ ~ = - M ~ ~ - M g[m - n] =

~%~_2M(2M + 1 - Ikl)g[k].

19.9 (f) For the two sinusoidal random processes X[n] = cos(27rJon + 8d and

Y[n] = cos(21rfon + 82) , where 8 1 = 8 2 '" U(0,21r) find the CPSD and

explain your results versus the case when 8 1 and 8 2 are independent random

variables.

19.10 (...:..:.-) (f,c) If rX,y[k] = 8[k] + 28[k - 1] , plot the magnitude and phase of the

CPSD. You will need a computer to do this.

19.11 (f) For the random processes X[n] = Urn] and Y[n] = Urn] - bUrn - 1],

where Urn] is discrete white noise with variance CT& = 1, find the CPSD and

explain what happens as b -t O.

19.12 (...:..:.-) (w) If a random process is defined as Z[n] = X[n] - Y[n], where X[n]
and Y[n] are jointly WSS, determine the ACS and PSD of Z[n].

19.13 (w) For the random processes X[n] and Y[n] defined in Problem 19.11 find

the coherence function. Explain what happens as b -t O.

19.14 (f) Determine the CPSD for two jointly WSS random processes if rx,y[k] =

8[k] - 8[k - 1]. Also, explain why the coherence function at f = 0 is zero.

Hint: The random processes X[n] and Y[n] are those given in Problem 19.11

if b = 1.

19.15 (...:..:.-) (f) If Y[n] = -X[n] for -00 < n < 00, determine the coherence func­

tion and relate it to the predictability of Y[no] based on observing X[n] for

-00 < n < 00.
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19.16 (t) A cross-spectral matrix is defined as

[
Px(f) PX,y(j)]

PY,x(f) Py(f) .

669

Prove that the cross-spectral matrix is positive semidefinite for all f. Hint:

Show that the principal minors of the matrix are all nonnegative (see Appendix

C for the definition of principal minors). To do so use the properties of the

coherence function.

19.17 (w) The random processes X[n] and Y[n] are zero mean jointly WSS and

are uncorrelated with each other. If rx[k] = 2t5[k] and ry[k] = (1/2)lkl for

-00 < k < 00, find the PSD of X[n] +Y[n].

19.18 C:...:..) (t) In this problem we derive an extension of the Wiener smoother (see

Section 18.5.1). We consider the problem of estimating Y[no] based on ob­

serving X[n] for -00 < n < 00. To do so we use the linear estimator

00

Y[no] = L h[k]X[no - k].
k=-oo

To find the optimal impulse response we employ the orthogonality principle

to yield the infinite set of simultaneous linear equations

E [(Y[nol- ,t;oo h[kIX[no - k])X[no -II] ~ 0 - 00 < 1< 00.

Assuming that X[n] and Y[n] are jointly WSS random processes, determine

the frequency response of the optimal Wiener estimator. Then, show how the

Wiener smoother, where Y[n] represents the signal S[n] and X[n] represents

the signal S[n] plus noise W[n] (recall that S[n] and W[n] are zero mean and

uncorrelated random processes), arises as a special case of this solution.

19.19 (f) For the random processes defined in Example 19.2 determine the CPSD.

Next, find the optimal Wiener smoother for Y[no] based on the realization of

X[n] for -00 < n < 00.

19.20 (t) Prove that if X[n] is a WSS random process that is input to an LSI system

and Y[n] is the corresponding random process output, then the coherence

function between the input and output has a magnitude of one.

19.21 (t) Consider a WSS random process X[n] that is input to an LSI system with

frequency response H(f), where H(f) t= 0 for IfI ~ 1/2, and let Y[n] be the

corresponding random process output. It is desired to predict X[no] based on

observing Y[n] for -00 < n < 00. Draw a linear filtering diagram (similar to

that shown in Figure 19.2) to explain why X[no] is perfectly predictable by

passing Y[n] through a filter with frequency response 1/H(f).
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19.22 (t) In this problem we argue that a Fourier transform is actually a narrow­

band filtering operation. First consider the Fourier transform at f = fo for

the truncated random process X[n], n = -M, . . . ,0, . . . , M which is X(Jo) =

L:~-M X [k] exp (-j27110k). Next show that this may be written as

00

X(Jo) = L X[k]h[n - k]
k=-oo n =O

where

h[k] = { exp(j21f fok) k = -M, ... , 0, . .. , M
o Ikl >M.

Notice that this is a convolution sum so that h[k] can be considered as the

impulse response, although a complex one, of an LSI filter. Finally, find and

plot the frequency response of this filter. Hint: You will need

~ . ( .kB) = sin«2M + 1)B/2)
k ~ M exp J sin(B/2)·

19.23 c.:.:.... ) (w) Consider the continuous-time averager

Y(t) = ~it X(~)d~
t-T

where the random process X(t) is continuous-time white noise with PSD

Px(F) = No/2 for -00 < F < 00. Determine the CCF rX,y(7) and show

that it is zero for 7 outside the interval [0,T]. Explain why it is zero outside

this interval.

19.24 (f) Ifa continuous-time white noise process X(t) with ACF rX(7) = (No/2)o(7)

is input to an LTI system with impulse response h(7) = exp( -7)u(7), deter­

mine rX,Y(7) .

19.25 (t) Can the CPSD ever have the same properties as the PSD in terms of being

real and symmetric? If so, give an example. Hint: Consider the relationship

given in (19.43).

19.26 c.:..:...) (f,c) Consider the random processes X[n] = U[n] and Y[n] = U[n] ­
bU[n - 1]' where U[n] is white Gaussian noise with variance ( j ~ = 1. Find

r x ,y [k] and then to verify your results perform a computer simulation. To do

so first generate N = 1000 samples of X[n] and Y[n]. Then, estimate the CCS

for b = -0.1 and b = -1. Explain your results.



PROBLEMS 671

19.21 (f,c) An AR random process is given by X[n] = aX[n -1] +Urn], where Urn]
is white Gaussian noise with variance ( ] ' ~ . Find the ees rx,u[k] and then to

verify your results perform a computer simulation using a = 0.5 and ( ] ' ~ = 1.

To do so first generate N = 1000 samples of Urn] and X[n]. Then, estimate the

ees. Hint: Remember to set the initial condition X[-I] f',J N(O, (]'~/(1- a2».

19.28 (w) In this problem we explore the use of the eeF to determine the direction

of arrival of a sound source. Referring to Figure 19.10, a sound source emits a

pulse that propagates to a set of two receivers. Because the distance from the

source to the receivers is large, it is assumed that the wavefronts are planar

as shown. If the source has the angle () with respect to the x axis as shown,

it first reaches receiver 2 and then reaches receiver 1 at a time to = dcos((})/c

seconds later, where d is the distance between receivers and c is the propagation

speed. Assume that the received signal at receiver 2 is a WSS random process

X 2(t) = U(t) with a PSD

Pu(F) = { /V,o0/2 IFI:::; W
IFI > W

and therefore the received signal at receiver 1 is Xl (t) = U(t - to). Determine

the eeF rXl ,X2(T) and describe how it could be used to find the arrival angle
().

planar

wavefronts

dcos((}) ",7 ..,...,

Figure 19.10: Geometry for sound source arrival angle measurement (figure for

Problem 19.28).



Chapter 20

Gaussian Random Processes

20.1 Introduction

There are several types of random processes that have found wide application be­

cause of their realistic physical modeling yet relative mathematical simplicity. In

this and the next two chapters we describe these important random processes. They

are the Gaussian random process, the subject of this chapter; the Poisson random

process, described in Chapter 21; and the Markov chain, described in Chapter 22.

Concentrating now on the Gaussian random process, we will see that it has many

important properties. These properties have been inherited from those of the N­

dimensional Gaussian PDF, which was discussed in Section 14.3. Specifically, the

important characteristics of a Gaussian random process are:

1. It is physically motivated by the central limit theorem (see Chapter 15).

2. It is a mathematically tractable model.

3. The joint PDF of any set of samples is a multivariate Gaussian PDF, which

enjoys many useful properties (see Chapter 14).

4. Only the first two moments, the mean sequence and the covariance sequence, are

required to completely describe it. As a result,

a. In practice the joint PDF can be estimated by estimating only the first two

moments.

b. If the Gaussian random process is wide sense stationary, then it is also

stationary.

5. The processing of a Gaussian random process by a linear filter does not alter

its Gaussian nature, but only modifies the first two moments. The modified

moments are easily found.
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In effect, the Gaussian random process has so many useful properties that it is always

the first model to be proposed in the solution of a problem. It finds application

as a model for electronic noise [Bell Labs 1970], ambient ocean noise [Urick 1975],

scattering phenomena such as reverberation of sound in the ocean or electromagnetic

clutter in the atmosphere [Van Trees 1971], and financial time series [Taylor 1986],

just to name a few. Any time a random process can be modeled as due to the sum of

a large number of independent and similar type effects, a Gaussian random process

results due to the central limit theorem. One example that we will explore in detail

is the use of the scattering of a sound pulse from a school of fish to determine their

numbers (see Section 20.9). In this case, the received waveform is the sum of a large

number of scattered pulses that have been added together. The addition occurs

because the leading edge of a pulse that is reflected from a fish farther away will

coincide in time with the trailing edge of the pulse that is reflected from a fish that

is nearer (see Figure 20.14). If the fish are about the same size and type, then the

average intensity of the returned echos will be relatively constant. However, the

echo amplitudes will be different due to the different reflection characteristics of

each fish, i.e., its exact position, orientation, and motion will all determine how the

incoming pulse is scattered. These characteristics cannot be predicted in advance

and so the amplitudes are modeled as random variables. When overlapped in time,

these random echos are well modeled by a Gaussian random process. As an example,

consider a transmitted pulse s(t) = cos(21rFot) , where Fo = 10 Hz, over the time

interval 0 ~ t ~ 1 second as shown in Figure 20.1. Assuming a single reflection

0.5

- 0.5 .

0.2 0.4 0.6
t (sec)

0.8 2 4 6
t (sec)

8 10

(a) Transmit pulse (b) Transmit pulse shown in receive wave­

form observation window

Figure 20.1: Transmitted sinusoidal pulse.

for every 0.1 second interval with the starting time being a uniformly distributed

random variable within the interval and an amplitude A that is a random variable
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with A '" U{O, 1) to account for the unknown reflection coefficient of each fish, a

typical received waveform is shown in Figure 20.2. If we now estimate the marginal

108642

-3 L.-__--'- -'-__----'- --'-__----l

o
t (sec)

Figure 20.2: Received waveform consisting of many randomly overlapped and ran­

dom amplitude echos.

PDF for x{t) as shown in Figure 20.2 by assuming that each sample has the same

marginal PDF, we have the estimated PDF shown in Figure 20.3 (see Section 10.9

on how to estimate the PDF). Also shown is the Gaussian PDF 'with its mean

and variance estimated from uniformly spaced samples of x{t). It is seen that the

Gaussian PDF is very accurate as we would expect from the central limit theorem.

The MATLAB code used to generate Figure 20.2 is given in Appendix 20A. In

Section 20.3 we formally define the Gaussian random process.

20.2 Summary

Section 20.1 gives an example of why the Gaussian random process arises quite

frequently in practice. The discrete-time Gaussian random process is defined in

Section 20.3 as one whose samples comprise a Gaussian random vector as charac­

terized by the PDF of (20.1). Also, some examples are given and are shown to

exhibit two important properties, which are summarized in that section. Any linear

transformation of a Gaussian random process produces another Gaussian random

process. In particular for a discrete-time WSS Gaussian random process that is

filtered by an LSI filter , the output random process is Gaussian with PDF given

in Theorem 20.4.1. A nonlinear transformation does not maintain the Gaussian

random process but its effect can be found in terms of the output moments using

(20.12). An example of a squaring operation on a discrete-time WSS Gaussian ran­

dom process produces an output random process that is still WSS with moments
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Figure 20.3: Marginal PDF of samples of received waveform shown in Figure 20.2

and Gaussian PDF fit.

given by (20.14). A continuous-time Gaussian random process is defined in Sec­

tion 20.6 and examples are given. An important one is the Wiener random process

examined in Example 20.7. Its covariance matrix is found using (20.16). Some

special continuous-time Gaussian random processes are described in Section 20.7.

The Rayleigh fading sinusoid is described in Section 20.7.1. It has the ACF given

by (20.17) and corresponding PSD given by (20.18). A continuous-time bandpass

Gaussian random process is described in Section 20.7.2. It has an ACF given by

(20.21) and a corresponding PSD given by (20.22). The important example of band­

pass "white" Gaussian noise is discussed in Example 20.8. The computer generation

of a discrete-time WSS Gaussian random process realization is described in Section

20.8. Finally, an application of the theory to estimating fish populations using a

sonar is the subject of Section 20.9.

20.3 Definition of the Gaussian Random Process

We will consider here the discrete-time Gaussian random process, an example of

which was given in Figure 16.5b as the discrete-time/continuous-valued (DTCV)

random process. The continuous-time/continuous-valued (CTCV) Gaussian ran­

dom process, an example of which was given in Figure 16.5d, will be discussed in

Section 20.6. Before defining the Gaussian random process we briefly review the

N-dimensional multivariate Gaussian PDF as described in Section 14.3. An N X 1

random vector X = [Xl X2 . . . XNV is defined to be a Gaussian random vector if
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its joint PDF is given by the multivariate Gaussian PDF

1 [ 1 T -1 )]
PX(x) = (2rr) N/2 det1/ 2(C) exp -2(x - p,) C (x - p,

where p, = [JL1 JL2 ... JLN]T is the mean vector defined as

677

(20.1)

p, = Ex[X] =

[

EXl[Xtl ]
EX2[X2]

EXN[XN]

(20.2)

and C is the N x N covariance matrix defined as

[

var(Xt}

C = COV(~2 ' Xl)

COV(XN, X t}

cov(X1 , X 2 )

var(X2)
cov(X1, XN) ]
coV(X2,XN)

. .

var(XN)

(20.3)

In shorthand notation X '" N(p" C). The important properties of a Gaussian

random vector are:

1. Only the first two moments p, and C are required to specify the entire PDF.

2. If all the random variables are uncorrelated so that [C]ij = 0 for i f:. i . then they

are also independent.

3. A linear transformation of X produces another Gaussian random vector. Specif­

ically, if Y = GX, where G is an M x N matrix with M ::; N , then

Y '" N(Gp" GCGT
) .

Now we consider a discrete-time random process X[n] , where n 2: 0 for a semi­

infinite random process and -00 < n < 00 for an infinit e random process. The

random process is defined to be a Gaussian random process if all finite sets of sam­

ples have a multivariate Gaussian PDF as per (20.1). Mathematically, if X =

[X[n1]X[n2] ... X[nK]]T has a multivariate Gaussian PDF (given in (20.1) with N

replaced by K) for all {n1 ' n2, . . . ,nK} and all K , then X[n] is said to be a Gaussian

random process. Some examples follow.

Example 20.1 - White Gaussian noise

White Gaussian noise was first introduced in Example 16.6. We revisit that exam­

ple in light of our formal definition of a Gaussian random process. First recall that

discrete-time white noise is a WSS random process X[n] for which E[X[n]] = JL = 0

for -00 < n < 00 and rx [k] = (/28[k]. This says that all the samples are zero mean,

uncorrelated with each other , and have the same variance (/2. If we now further­

more assume that the samples are also independent and each sample has a Gaussian
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PDF, then X[n] is a Gaussian random process. It is referred to as white Gaussian

noise (WGN). To verify this we need to show that any set of samples has a mul­

tivariate Gaussian PDF. Let X = [X[nl] X[n2]'" X[nK]V and note that the joint

K-dimensional PDF is the product of the marginal PDFs due to the independence

assumpt ion. Also, each marginal PDF is X[n i] rv N(O ,a2
) by assumption. This

produces the joint PDF

K

px(x) = IIPX[nil(x[ni])
i= 1

or X rv N(O , a 21) , where 1 is the K x K identity matrix. Note also that since WGN

is an lID random process, it is also stationary (see Example 16.3).

Example 20.2 - Moving average random process

Consider the MA random process X[n] = (U[n] + U[n -1])/2, where U[n] is WGN

with variance ab. Then, X[n] is a Gaussian random process. This is because U[n]
is a Gaussian random process (from previous example) and X[n] is just a linear

transformation of U[n]. For instance, if K = 2, and nl = 0, n2 = 1, then

and thus X rv N(o ,GCuGT) = N(O,abGGT). The same argument applies to any

number of samples K and any samples times nl , n2 , ... ,nK. Note here that the MA

random process is also stationary. If we were to change the two samples to nl = no
and n2 = no + 1, then

[
X[no] ] [1

X[no + 1] = ~
I ° [u[no- 1] ]

~ !] Urn,]

U[no + 1]
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and the joint PDF will be the same since the U vector has the same PDF. Again

this result remains the same for any number of samples and sample times. We will

see shortly that a Gaussian random process that is WSS is also stationary. Here,

the Urn] random process is WSS and hence X[n] is WSS, being the output of an

LSI filter (see Theorem 18.3.1).

As a typical probability calculation let (J~ = 1 and determine P[X[l] - X[O] >
1]. We would expect this to be less than P[U[l] - U[O] > 1] = Q(l/v'2) (since

U[l] - U[O] '" N(O,2)) due to the smoothing effect of the filter (ll(z) = ! + !z-l).
Thus, let Y = X[l] - X[O] or

Y = [-1 1] [ X[O] ] .
~ X[l]

A '"'-...-'
X

Then, since Y is a linear transformation of X, we have Y '" N(O,var(Y)), where

var(Y) = ACAT
. Thus,

var(Y) = [-I I] C [ ~ 1 ]

[-I I] GG
T [ ~I ] (C = ,,~GGT = GGT)

[-I I] [ ~ : ;] [! t][ ~I ]

1

2

so that Y '" N(o ,1/2). Therefore,

P[X[I]- X[O] > I] ~ Q ("':/2) = Q(V2) = 0.0786 < Q (~) = 0.2398

and is consistent with our notion of smoothing.

Example 20.3 - Discrete-time Wiener random process or Brownian mo­

tion

This random process is basically a random walk with Gaussian "steps" or more

specifically the sum process (see also Example 16.4)

n

X[n] = 2:U[i] n ~ 0
i=O
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where Urn] is WGN with variance a ~ . Note that the increments X[n2] - X[nl] are

independent and stationary (why?). As in the previous example, any set of samples

of X[n] is a linear transformation of the U[i]'s and hence has a multivariate Gaussian

PDF. For example,

[ ~:~~ ] = [; ~ ] [ ~:~; ]
'--v--'

G

and therefore the Wiener random process is a Gaussian random process. It is clearly

nonstationary, since , for example, the variance increases with n (recall from Example

16.4 that var(X[nD = (n + l)a~).

c
In Example 20.1 we saw that if the samples are uncorrelated, and the random

process is Gaussian and hence the multivariate Gaussian PDF applies, then the

samples are also independent. In Examples 20.1 and 20.2, the random processes

were WSS but due to the fact that they are also Gaussian random processes, they

are also stationary. We summarize and then prove these two properties next.

Property 20 .1 - A Gaussian random process with uncorrelated samples

has independent samples.

Proof:

Since the random process is Gaussian, the PDF of (20.1) applies for any set of

samples. But for uncorrelated samples, the covariance matrix is diagonal and hence

the joint PDF factors into the product of its marginal PDFs. Hence, the samples

are independent.

o

Property 20.2 - A WSS Gaussian random process is also stationary.

Proof:

Since the random process is Gaussian, the PDF of (20.1) applies for any set of

samples. But if X[n] is also WSS , then for any no

and

E[X[ni + no]] = J.lx[ni + no] = J.l i = 1,2, ... , K

[GJij = cov(X[ni + no],X[nj + noD
E[X[ni + no]X[nj + no]] - E[X[ni + no]]E[X[nj + no]]

= rx[nj - nil - J.l2 (due to WSS)

for i = 1,2, ... , K and j = 1,2, ... , K. Since the mean vector and the covariance

matrix do not depend on no, the joint PDF also does not depend on no. Hence, the

WSS Gaussian random process is also stationary.

o
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20.4 Linear Transformations

Any linear transformation of a Gaussian random process produces another Gaus­

sian random process. In Example 20.2 the white noise random process Urn] was

Gaussian, and the MA random process X[n], which was the result of a linear

transformation, is another Gaussian random process. The MA random process

in that example can be viewed as the output of the LSI filter with system function

H(z) = 1/2 + (1/2)z-1 whose input is Urn]. This result, that if the input to an

LSI filter is a Gaussian random process, then the output is also a Gaussian random

process, is true in general. The random processes described by the linear difference

equations

aX[n - 1] + Urn]

Urn] - bUrn -1]

aX[n - 1] + Urn] - bUrn - 1]

X[n]

X[n]

X[n]

AR random process (see Example 17.5)

MA random process (see Example 18.6)

ARMA random process

(This is the definition.)

can also be viewed as the outputs of LSI filters with respective system functions

H(z)

H(z)

H(z)

1

1 - az-1

= 1 - bz-1

1 - bz-1

1 - az-1 '

As a result , since the input Urn] is a Gaussian random process, they are all Gaussian

random processes. Furthermore, since it is only necessary to know the first two

moments to specify the joint PDF of a set of samples of a Gaussian random process,

the PDF for the output random process of an LSI filter is easily found. In particular,

assume we are interested in the filtering of a WSS Gaussian random process by an

LSI filter with frequency response H(J) . Then, if the input to the filter is the WSS

Gaussian random process X[n], which has a mean of ux and an ACS of rx[k], then

we know from Theorem 18.3.1 that the output random process Y[n] is also WSS and

its mean and A CS are

f..Ly

Py(J)

f..LxH(O)

IH(J)1
2
Px(J)

(20.4)

(20.5)

and furthermore Y[n] is a Gaussian random process (and is stationary according to

Property 20.2). (See also Problem 20.7.) The joint PDF for any set of samples of

Y[n] is found from (20.1) by using (20.4) and (20.5). An example follows.

Example 20.4 - A differencer

A WSS Gaussian random process X[n] with mean ux and ACS rx[k] is input to

a differencer. The output random process is defined to be Y[n] = X[n] - X[n - 1].
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What is the PDF of two successive output samples? To solve this we first note that

the output random process is Gaussian and also WSS since a differencer is just an

LSI filter whose system function is ll(z) = 1- z-l. We need only find the first two

moments of Y[n]. The mean is

E[Y[n]] = E[X[n]] - E[X[n - 1]] = tsx - ux = 0

and the ACS can be found as the inverse Fourier transform of Py(f). But from

(20.5) with H(f) = 1l(exp(j21rf) = 1- exp(-j21rf), we have

Py(f) H(f)H*(f)Px(f)

[1 - exp( -j21r f)][1 - exp(j21r f)]Px (f)

2Px(f) - exp(j21rf)Px(f) - exp( -j21rf)Px(f).

Taking the inverse Fourier transform produces

ry[k] = 2rx[k] - rx[k + 1] - rx[k - 1]. (20.6)

For two successive samples, say Y[O] and Y[1], we require the covariance matrix of

Y = [Y[O] Y[1]]T. Since Y[n] has a zero mean, this is just

c = [ry[O] rY[1]]
y ry[1] ry[O]

and thus using (20.6), it becomes

Cy - [ 2(rx[0] - rx[1]) 2rx[1] - rx[2] - rx[O] ]
- 2rx[1] - rx[2] - rx[O] 2(rx[0] - rx[1]) .

The joint PDF is then

PY[O] ,Y[l] (y[OJ, y[1]) = 21r det11/2 (Cy) exp( _~yTCyly)

where y = [y[O] y[1]jT. See also Problem 20.5.

We now summarize the foregoing results in a theorem.

Theorem 20.4.1 (Linear filtering of a WSS Gaussian random process)

Suppose that X[n] is a WSS Gaussian random process with mean ux and ACS rx[k]

that is input to an LSI filter with frequency response H(f). Then, the PDF of N

successive output samples Y = [Y[O] Y[1] ... Y[N - 1]jT is given by

(20.7)
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where

[

~X~. (0) ]

/-Ly =

~xH(O)

683

(20.8)

[CY]mn = ry[m - n] - (~XH(0)) 2 (20.9)
1i : IH(f)12Px(f) exp(j21rf(m - n))df - (~XH(0))2
2

(20.10)

for m = 1,2, ... ,N; n = 1,2, ... ,N. The same PDF is obtained for any shifted set

of successive samples since Y[n] is stationary.

Note that in the preceding theorem the covariance matrix is a symmetric Toeplitz

matrix (all elements along each northwest-southeast diagonal are the same) due to

the assumption of successive samples (see also Section 17.4) .

Another transformation that occurs quite frequently is the sum of two inde­

pendent Gaussian random processes. If X[n] is a Gaussian random process and

Y[n] is another Gaussian random process, and X[n] and Y [n] are independent, then

Z [n] = X[n] + Y [n] is a Gaussian random process (see Problem 20.9). By inde­

pendence of two random processes we mean that all sets of samples of X[n] or

{X[nl ], X [n2], ... , X [nK]} and of Y[n] or {Y[ml ],Y[m2]," " Y[mL]} are indepen­

dent of each other. This must hold for all n I , . .. , n K , m I , ... , m L and for all K and

L. If this is the case then the PDF of the entire set of samples can be written as

the product of the PDFs of each set of samples.

20.5 Nonlinear Transformations

The Gaussian random process is one of the few random processes for which the

moments at the output of a nonlinear transformation can easily be found . In par­

ticular, a polynomial transformation lends itself to output moment evaluation. This

is because the higher-order joint moments of a multivariate Gaussian PDF can be

expressed in terms of first- and second-order moments. In fact , this is not sur­

prising in that the multivariate Gaussian PDF is characterized by its first- and

second-order moments. As a result , in computing the joint moments, any integral of

the form J ~ oo" . J ~ oo xil ... x~ PXl ,...,XN (Xl, . .. , XN)dXI . .. dXN must be a fun ction

of the mean vector and covariance matrix. Hence , the joint moments must be a

function of the first- and second-order moments. As a particular case of interest,

consider the fourth-order moment E[XIX2X3X4] for X = [Xl X2 X3 X 4]T a zero
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mean Gaussian random vector. Then, it can be shown that (see Problem 20.12)

E[XIX2X3X4] = E[XIX2]E[X3X4] + E[XIX3]E[X2X4] + E[XIX4]E[X2X3]
(20.11)

and this holds even if some of the random variables are the same (try Xl = X2 =

X3 = X4 and compare it to E[X4] for X", N(O,1)). It is seen that the fourth-order

moment is expressible as the sum of products of the second-order moments, which

are found from the covariance matrix. Now if X[n] is a Gaussian random process

with zero mean, then we have for any four samples (which by the definition of a

Gaussian random process has a fourth-order Gaussian PDF)

E[X[ntJX[n2]X[n3]X[n4]] = E[X[ntJX[n2]]E[X[n3]X[n4]]

+E[X[nl]X[n3]]E[X[n2]X[n4]]

+E[X[nl]X[n4]]E[X[n2]X[n3]] (20.12)

and iffurthermore, X[n] is WSS, then this reduces to

E[X[nl]X[n2]X[n3]X[n4]] = rx[n2 - nl]rx[n4 - n3] + rx[n3 - nl]rx[n4 - n2]

+rx[n4 - ntJrx[n3 - n2]' (20.13)

This formula allows us to easily calculate the effect of a polynomial transformation

on the moments of a WSS Gaussian random process. An example follows.

Example 20.5 - Effect of squaring WSS Gaussian random process

Assuming that X[n] is a zero mean WSS Gaussian random process, we wish to

determine the effect of squaring it to form Y[n] = X 2[n]. Clearly, Y[n] will no

longer be a Gaussian random process since it can only take on nonnegative values

(see also Example 10.8). We can, however, show that Y[n] is still WSS. To do so

we calculate the mean as

E[Y[n]] = E[X2[n]]
= rx[O]

which does not depend on n, and the covariance sequence as

E[Y[n]Y[n + k]] = E[X2[n]X2[n + k]]

d·[O] + 2r~[k] (using nl = n2 = n

and n3 = n4 = n + kin (20.13))

which also does not depend on n. Thus, at the output of the squarer the random

process is WSS with

/-Ly

ry[k]

= rx[O]

r~[O] + 2r~[k]. (20.14)
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Note that if the PSD at the input to the squarer is Px(f), then the output PSD is

obtained by taking the Fourier transform of (20.14) to yield

Py(f) = d·[0]8(f) + 2Px(f) *Px(f) (20.15)

where
1

Px(f) *Px(f) = i: Px(v)Px(f - v)dv
2

is a convolution integral. As a specific example, consider the MA random process

X[n] = (U[n]+U[n-1])/2, where Urn] is WGN with variance ( 1 ~ = 1. Then, typical

realizations of X[n] and Y[n] are shown in Figure 20.4. The MA random process

3 .----~-~-~-~-~-----,

2 .

; : r•••L...J1.II•••,J•.I1
-1 .

-2 -2

10 15 20 25 30

n
5

-3'---'---~-~-~-~----'

o10 15 20 25 30

n
5

_3L--~-~-~-~-~----'

o

(a) MA random process (b) Squared MA random process

Figure 20.4: Typical realization of a Gaussian MA random process and its squared

realization.

has a zero mean and ACS rx[k] = (1/2)8[k] + (1/4)8[k + 1] + (1/4)8[k - 1] (see

Example 17.3). Because of the squaring, the output mean is E[Y[n]] = rx[O] = 1/2.

The PSD of X[n] can easily be shown to be Px(f) = (1 +COS(21TJ))/2 and the PSD

of Y[n] follows most easily by taking the Fourier transform of ry[k]. From (20.14)

we have

ry[k] r1-[O] + 2r1-[k]

1 (1 1 1 )24 + 2 2"8[k] + 48[k + 1] + 48[k - 1]

1 (1 1 1 )4 + 2 48[k] + 16 8[k + 1]+ 16 8[k -1]

since all the cross-terms must be zero and 82[k - ko] = 8[k - ko]. Thus, we have

1 1 1 1
ry[k] = 4+ 2"8[k] + 88[k + 1] + 88[k - 1]
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and taking the Fourier transform produces the PSD as

1 1 1
Py(J) = "4 c5(J ) + 2+ "4 cos(27fJ).

The PSDs are shown in Figure 20.5. Note that the squaring has produced an impulse
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(a) MA random process (b) Squared MA random process

Figure 20.5: PSDs of Gaussian MA random process and the squared random process.

at f = 0 of strength 1/4 that is due to the nonzero mean of the Y[n] random process.

Also, the squaring has "widened" the PSD, the usual consequence of a convolution

in frequency.

20.6 Continuous-Time Definitions and Formulas

A continuous-time random process is defined to be a Gaussian random process if the

random vector X = [X(tl) X(t2)' " X(tK)V has a multivariate Gaussian PDF for

all {tl' t2, .. . , tK} and all K. The properties of a continuous-time Gaussian random

process are identical to those for the discrete-time random process as summarized

in Properties 20.1 and 20.2. Therefore, we will proceed directly to some examples

of interest.

Example 20.6 - Continuous-time WGN

The continuous-time version of discrete-time WGN as defined in Example 20.1

is a continuous-time Gaussian random process X(t) that has a zero mean and an

ACF rX(T) = (No/2)c5(T). The factor of No/2 is customarily used, since it is the

level of the corresponding PSD (see Example 17.11). The random process is called

continuous-time white Gaussian noise (WGN). This was previously described in



20.6. CONTINUOUS-TIME DEFINITIONS AND FORMULAS 687

t 2: o.

0.4 0.6 0.8
t (sec)

Example 17.11. Note that in addition to the samples being uncorrelated (since

rX(T) = 0 for T # 0), they are also independent because of the Gaussian assump­

tion. Unfortunately, for continuous-time WGN , it is not possible to explicitly write

down the multivariate Gaussian PDF since rx(O) -+ 00. Instead, as explained in

Example 17.11 we use continuous-time WGN only as a model, reserving any proba­

bility calculations for the random process at the output of some filter , whose input

is WGN. This is illustrated next.

Example 20.7 - Continuous-time Wiener random process or Brownian

motion

Let U(t) be WGN and define the semi-infinite random process

X(t) = it U(~)d~

This random process is called the Wiener random process and is often used as a

model for Brownian motion. It is the continuous-time equivalent of the discrete­

time random process of Example 20.3. A typical realization of the Wiener random

process is shown in Figure 20.6 (see Problem 20.18 on how this was done). Note that

0.8

0.6 .

0.4

_____ 0.2 . ....,
'-"

~ 0

-0.2 .

-0.4

-0.6

-0.8 .
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o 0.2

Figure 20.6: Typical realization of the Wiener random process.

because of its construction as the "sum" of independent and identically distributed

random variables (the U(t)'s), the increments are also independent and stationary.

To prove that X(t) is a Gaussian random process is somewhat tricky in that it is

an uncountable "sum" of independent random variables U ( ~ ) for 0 :::; ~ :::; t. We will

take it on faith that any integral, which is a linear transformation, of a continuous­

time Gaussian random process produces another continuous-time Gaussian random
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process (see also Problem 20.16 for a heuristic proof). As such, we need only deter­

mine the mean and covariance functions. These are found as

E[X(t)] = E [I t

U(Od~]

= I t

E[U(~)]d~ = 0

E[X(td X(t2)] = E [l t 1

U(6)d61t2U(6)d6]

= l t1lt 2

!J[U(6JU(6)l d6d6

ru(6-{I)=(No/2)5(6 - ~ l )

~ O l t 1

(l
t2

8(6 - 6)d6) d6.

To evaluate the double integral we first examine the inner integral and assume that

t2 > tl. Then, the function 8(6 - 6) with 6 fixed is integrated over the interval

o ~ 6 ~ t2 as shown in Figure 20.7. It is clear from the figure that if we fix 6

integrate along here first

Figure 20.7: Evaluation of double integral of Dirac delta function for the case of

t2 > ti -

and integrate along 6 , then we will include the impulse in the inner integral for all

6 . (This would not be the case if t2 < tl as one can easily verify by redrawing the

rectangle for this condition.) As a result , if t2 > t l , then

for all 0 ~ 6 ~ tl

and therefore
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and similarly ift2 < tl , we will have E[X(tl)X(t2)] = (No/2)t2. Combining the two

results produces

(20.16)

which should be compared to the discrete-time result obtained in Problem 16.26.

Hence, the joint PDF of the samples of a Wiener random process is a multivariate

Gaussian PDF with mean vector equal to zero and covariance matrix having as its

(i ,j)th element

[Ch = ~o min(ti, tj).

Note that from (20.16) with tl = t2 = t, the PDF of X(t) is N(o, (No/2)t). Clearly,

the Wi en er random process is a nonstationary correlated random process whose mean

is zero, variance increases with time, and marginal PDF is Gaussian.

<:;
In the next section we explore some other important continuous-time Gaussian ran­

dom processes often used as models in practice.

20.7 Special Continuous-Time

Gaussian Random Processes

20.7.1 Rayleigh Fading Sinusoid

In Example 16.11 we studied a discrete-time randomly phased sinusoid. Here we

consider the continuous-time equivalent for that random process, which is given by

X(t) = A cos (27rFot + 8) , where A > 0 is the amplitude, Fo is the frequency in Hz,

and 8 is the random phase with PDF U(0 ,27r). We now further assume that the

amplitude is also a random variable. This is frequently a good model for a sinu­

soidal signal that is subject to multipath fading. It occurs when a sinusoidal signal

propagates through a medium, e.g., an electromagnetic pulse in the atmosphere or a

sound pulse in the ocean, and reaches its destination by several different paths. The

constructive and destructive interference of several overlapping sinusoids causes the

received waveform to exhibit amplitude fluctuations or fading. An example of this

was given in Figure 20.2. However, over any short period of time, say 5 ::; t ::; 5.5

seconds, the waveform will have approximately a constant amplitude and a constant

phase as shown in Figure 20.8. Because the amplitude and phase are not known in

advance, we model them as realizations of random variables. That the waveform

does not maintain the constant amplitude level and phase outside of the small inter­

val will be of no consequence to us if we are only privy to observing the waveform

over a small time interval. Hence, a reasonable model for the random process (over

the small time interval) is to assume a random amplitude and random phase so that

X(t) = Acos(27rFot+8), where A and 8 are random variables. A more convenient
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Figure 20.8: Segment of waveform shown in Figure 20.2 for 5 ::; t ::; 5.5 seconds .

form is obtained by expanding the sinusoid as

X(t) Acos(27TFot + 8)

= A cos(8) cos(27TFot ) - Asin(8) sin(27TFot )

= U COS(27TFot) - V sin(27TFot)

where we have let A cos(8 ) = U, Asin(8) = V. Clearly, since A and 8 are random

variables, so are U and V. Since the physical waveform is due to the sum of many

sinusoids, we once again use a central limit theorem argument to assume that U and

V are Gaussian. Furthermore, if we assume that they are independent and have the

same PDF of N(o, (12), we will obtain PDFs for the amplitude and phase which are

found to be valid in practice. With the Gaussian assumptions for U and V, the

random amplitude becomes a Rayleigh distributed random variable, the random

phase becomes a uniformly distributed random variable, and the amplitude and

phase random variables are independent of each other. To see this note that since

U = Acos(8), V = Asin(8), we have A = JU2 + V 2 and 8 = arctan(V/U). It

was shown in Example 12.12 that if X f',J N(O, (12), Y f',J N(O, (12), and X and Yare

independent , then R = JX2 + y2 is a Rayleigh random variable, 8 = arctan(Y/X)

is a uniformly distributed random variable, and Rand 8 are independent. Hence , we

have that for the random amplit ude/ random phase sinusoid X(t) = Acos{27TFot +
8) , the amplitude has the PDF

PA(a) = { ~exp (-~~) a ~ 0
o a<O

and the phase has the PDF 8 f',J U{0,27T) , and A and 8 are independent. This

model is usually referred to as the Rayleigh fading sinusoidal model. It is also a
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Gaussian random process since all sets of K samples can be written as

[

X(tl) ]
X(t2)

X(tK)
[

cos(27rFotl) - sin(27rFotd ]
cos(27rFot2) - sin(27rFot2)

= · .· .· .
cos(27rFotK) -sin(27rFotK)

[ ~ ]
which is a linear transformation of the Gaussian random vector [Uvy, and so has

a multivariate Gaussian PDF. (For K > 2 the covariance matrix will be singular,

so that to be more rigorous we would need to modify our definition of the Gaussian

random process. This would involve the characteristic function which exists even

for a singular covariance matrix.) Furthermore, X(t) is WSS, as we now show. Its

mean is zero since E[U] = E[V] = 0 and its ACF is

rX(T)

E[X(t)X(t + T)]

= E[[Ucos(27rFot) - V sin(27rFot)][U cos(27rFo(t + T)) - V sin(27rFo(t + T))))

E[U2] cos (27rFot) cos(27rFo(t +T)) + E[V 2] sin(27rFot) sin(27rFo(t + T))

(J2[cos(27rFot) cos(27rFo(t + T)) + sin(27rFot) sin(27rFo(t + T))]

(J2 cos(27rFoT) (20.17)

where we have used E[UV] = E[U]E[V] = 0 due to independence. Its PSD is

obtained by taking the Fourier transform to yield

(20.18)

and it is seen that all its power is concentrated at F = Fo as expected.

20.7.2 Bandpass Random Process

The Rayleigh fading sinusoid model assumed that our observation time was short.

Within that time window, the sinusoid exhibits approximately constant amplitude

and phase. If we observe a longer time segment of the random process whose typ­

ical realization is shown in Figure 20.2, then the constant in time (but random

amplitude/random phase) sinusoid is not a good model. A more realistic but more

complicated model is to let both the amplitude and phase be random processes so

that they vary in time. As such, the random process will be made up of many fre­

quencies, although they will be concentrated about F = Fo. Such a random process

is usually called a narrowband random process. Our model, however, will actually

be valid for a bandpass random process whose PSD is shown in Figure 20.9. Hence ,

we will assume that the bandpass random process can be represented as

X(t) A(t) cos(27rFot + 8(t))

A(t) cos(8(t)) cos (27rFot) - A(t) sin(8(t)) sin(27rFot)
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Px(F)
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Figure 20.9: Typical PSD for bandpass random process. The PSD is assumed to be

symmetric about F = Fo and also that Fo > W /2.

where A(t) and 8(t) are now random processes. As before we let

U(t) = A(t) cos(8(t))

V(t) = A(t) sin(8(t))

so that we have as our model for a bandpass random process

X(t) = U(t) cos(21rFot) - V(t) sin(21rFot). (20.19)

The X(t) random process is seen to be a modulated version of U(t) and V(t) (mod­

ulation meaning that U(t) and V(t) are multiplied by cos(21rFot) and sin(21rFot),

resp ectively). This modulation shifts the PSD of U(t) and V(t) to be centered about

F = Fo. Therefore, U(t) and V(t) must be slowly varying or lowpass random pro­

cesses. As a suitable description of U(t) and V(t) we assume that they are each zero

mean lowpass Gaussian random processes, independent of each other, and jointly

WSS (see Chapter 19) with the same ACF, rU(T) = rv(T). Then, as before X(t) is

a zero mean Gaussian random process, which as we now show is also WSS. Clearly,

since both U(t) and V(t) are zero mean, from (20.19) so is X(t), and the ACF is

rX(T) E[X(t)X(t + T)] (20.20)

E[[U(t) cos (21rFot) - V(t) sin(21rFot)]

·[U(t + T) cos(21rFo(t + T)) - V(t + T) sin(21rFo(t + T))]

rU(T) cos(21rFot) cos(21rFo(t + T)) + rV(T) sin(21rFot) sin(21rFo(t + T))

= rU(T) cos(21rFoT) (20.21)

since E[U(tt}V(t2)] = 0 for all tl and t2 due to the independence assumption, and

rU(T) = rV(T) by assumption. Note that this extends the previous case in which

U(t) = U and V(t) = V and rU(T) = (}2 (see (20.17)) . The PSD is found by taking

the Fourier transform of the ACF to yield

1 1
Px(F) = -Pu(F + Fo) + -Pu(F - Fo).

2 2
(20.22)
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If U(t) and V(t) have the lowpass PSD shown in Figure 20.10, then in accordance

with (20.22) Px(F) is given by the dashed curve . As desired, we now have a repre-

Pu(F) = Pv(F)

-, ,, ,, ,, ,, ,

Px(F)

/, ,, ,, ,, ,, ,

-Fo - ~ w
""2 Fo

Figure 20.10: PSD for lowpass random processes U(t) and V(t). The PSD for the

bandpass random process X(t) is shown as the dashed curve.

sentation for a bandpass random process. It is obtained by modulating two lowpass

random processes U(t) and V(t) up to a center frequency of Fo Hz. Hence, (20.19)

is called the bandpass random process representation and since the random process

may either represent a signal or noise, it is also referred to as the bandpass signal

representation or the bandpass noise representation. Note that because Pu(F) is

symmetric about F = 0, Px(F) must be symmetric about F = Fo. To represent

bandpass PSDs that are not symmetric requires the assumption that U(t) and V(t)

are correlated [Van Trees 1971].

In summary, to model a WSS Gaussian random process X(t) that has a zero

mean and a bandpass PSD given by

where Pu(F) = 0 for IFI > Wj2 as shown in Figure 20.10 by the dashed curve, we

use

X(t) = U(t) cos(27fFot) - V(t) sin(27fFot).

The assumptions are that U(t), V(t) are each Gaussian random processes with zero

mean, independent of each other and each is WSS with PSD Pu(F). The random

processes U(t), V(t) are lowpass random processes and are sometimes referred to

as the in phase and quadrature components of X(t) . This is because the "carrier"

sinusoid cos(27fFot) is in phase with the sinusoidal carrier in U(t) cos(27fFot) and 900

out of phase with the sinusoidal carrier in V(t) sin(27fFot). See Problem 20.24 on how

to extract the lowpass random processes from X(t). In addition, the amplitude of

X(t) , which is JU2(t) + V2(t) is called the envelope of X(t). This is because if X(t)

is written as X(t) = JU2(t) + V2(t) cos(27fFot + arctan(V(t)jU(t))) (see Problem

12.42) the envelope consists of the maximums of the waveform. An example of a
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deterministic bandpass signal, given for sake of illustration, is s(t) = 3t cos(27r20t) ­

4t sin(27r20t) for 0 ::; t ::; 1, and is shown in Figure 20.11. Note that the envelope

is V(3t)2 + (4t)2 = 51tl. For a bandpass random process the envelope will also be a

... .. . . . . . . ....
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Figure 20.11: Plot of the deterministic bandpass signal s(t) = 3tcos(27r20t) ­

4t sin(27r20t) for 0 ::; t ::; 1. The envelope is shown as the dashed line.

random process. Since U(t) and V(t) both have the same ACF, the characteristics of

the envelope depend directly on rU(T). An illustration is given in the next example.

Example 20.8 - Bandpass random process envelope

Consider the bandpass Gaussian random process whose PSD is shown in Figure

20.12. This is often used as a model for bandpass "white" Gaussian noise. It results

from having filtered WGN with a bandpass filter. Note that from (20.22) the PSD

Px(F)

!!.sl.
2

-Fo Fo

Fo - If Fo+ If

Figure 20.12: PSD for bandpass "white" Gaussian noise.
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of U(t) and V(t) must be

{

No
Pu(F) = Pv(F) = 0

and therefore by taking the inverse Fourier transform, the ACF becomes (see also

(17.55) for a similar calculation)

sin(7rWT)
rU(T) = rV(T) = NoW W . (20.23)

7r T

The correlation between two samples of the envelope will be approximately zero when

T > l/W since then rU(T) = rV(T) ~ O. Examples of some bandpass realizations

are shown for Fo = 20 Hz, W = 1 Hz in Figure 20.13a and for Fo = 20 Hz, W = 4

Hz in Figure 20.13b. The time for which two samples must be separated before they

become uncorrelated is called the correlation time Te . It is defined by rX(T) ~ 0 for

T > Te. Here it is Tc ~ l/W, and is shown in Figure 20.13.

20 20

:. 1 .: -1JrI-W

10 . 10 . .

,.-... ,.-........, .....,
"--" "--"

t-1 0 t-1 0

-10 -10 .

-20 -20
0 0.5 1 1.5 2 0 0.5 1 1.5 2

t (sec) t (sec)

(a) Fo = 20 Hz, W = 1 Hz (b) Fo = 20 Hz, W = 4 Hz

Figure 20.13: Typical realizations of bandpass "white" Gaussian noise. The PSD is

given in Figure 20.12.

A typical probability calculation might be to determine the probability that the

envelope at t = to exceeds some threshold 'Y. Thus, we wish to find P[A(to) > 'Y],
where A(to) = JU2(tO) + V2(tO). Since the U(t) and V(t) are independent Gaussian

random processes with U(t) '" N(O, a2) and V(t) '" N(O,a2), it follows that A(to)

is a Rayleigh random variable. Hence, we have that

P[A(to) > 'Y] = 100

~ exp (_l~) da
a 2 217

'Y

exp (-~~) .
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To complete the calculation we need to determine 0-
2

• But 0-
2 = E[U 2(to)] = ru[O] =

NoW from (20.23). Therefore, we have that

P[A(to) > ,] = exp ( -~ N~~ ) .

20.8 Computer Simulation

We now discuss the generation of a realization of a discrete-time Gaussian ran­

dom process. The generation of a continuous-time random process realization can

be accomplished by approximating it by a discrete-time realization with a suffi­

ciently small time interval between samples. We have done this to produce Figure

20.6 (see also Problem 20.18). In particular, we wish to generate a realization

of a WSS Gaussian random process with mean zero and ACS rx[k] or equiva­

lently a PSD Px (f). For nonzero mean random processes we need only add the

mean to the realization. The method is based on Theorem 20.4.1, where we use a

WGN random process Urn] as the input to an LSI filter with frequency response

H(f). Then, we know that the output random process will be WSS and Gaus­

sian with a PSD Px(f) = IH (f)1 2Pu(f). Now assuming that Pu(f) = o-~ = 1,

so that Px(f) = IH(fW , we see that a filter whose frequency response magni­

tude is IH(f)1 = Jpx(f) and whose phase response is arbitrary (but must be

an odd function) will be required. Finding the filter frequency response from the

PSD is known as spectral factorization [Priestley 1981]. As special cases of this

problem, if we wish to generate either the AR, MA, or ARMA Gaussian random

processes described in Section 20.4, then the filters are already known and have

been implemented as difference equations. For example, the MA random pro­

cess is generated by filtering Urn] with the LSI filter whose frequency response

is H(f) = 1 - bexp(-j271-j) . This is equivalent to the implementation using the

difference equation X[n] = Urn] - bUrn - 1]. For higher-order (more coefficients)

AR, MA, and ARMA random processes, the reader should consult [Kay 1988] for

how the appropriate coefficients can be obtained from the PSD. Also, note that the

problem of designing a filter whose frequency response magnitude approximates a

given one is called digital filter design. Many techniques are available to do this

[Jackson 1996]. We next give a simple example of how to generate a realization of

a WSS Gaussian random process with a given PSD.

Example 20.9 - Filter determination to produce Gaussian random pro­

cess with given PSD

Assume we wish to generate a realization of a WSS Gaussian random process with

zero mean and PSD Px(f) = (1+cos(41rJ))/2. Then, for Pu(f) = 1 the magnitude

of the frequency response should be

IH(f)1 = J~(1 + cos(41rJ)).



20.8. COMPUTER SIMULATION 697

We will choose the phase response or L.H(J) = O(J) to be any convenient function.

Thus, we wish to determine the impulse response h[k] of the filter whose frequency

response is

H(J) = J~(1 + cos(47fJ)) exp(jO(J))

since then we can generate the random process using a convolution sum as

00

X[n] = L h[k]U[n - k].
k=-oo

(20.24)

The impulse response is found as the inverse Fourier transform of the frequency

response

1

h[n] = i: H(J)exp(j27fjn)dj
2

1i: J~(1 + cos(47fJ)) exp(jO(J)) exp(j27fjn)dj
2

- 00 < n < 00.

This can be evaluated by noting that cos(2a) = cos2(a) - sin2(a) and therefore

Thus,

J ~ ( 1 + cos(47fJ)) J~(1 + cos2(27fJ) - sin2(27fJ))

J cos2 (27fJ)

1 cos(27fJ) I·

1

h[n] = i: Icos(27fJ)I exp(jO(J)) exp(j27fjn)dj
2

and we choose exp(jO(J)) = 1 if cos(27fJ) > 0 and exp(jO(J)) = -1 if cos(27fJ) < O.

This produces
1

h[n] = i: cos(27fJ) exp(j27f jn)dj
2

which is easily shown to evaluate to

h[n] = { ~

Hence, from (20.24) we have that

n= ±1

otherwise.

1 1
X[n] = "2U[n + 1] + "2U[n - 1].
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Note that the filter is noncausal. We could also use X[n] = ~U[n] + ~U[n - 2]

if a causal filter is desired and still obtain the same PSD (see Problem 20.28).

o
Finally, it should be pointed out that an alternative means of generating successive

samples of a zero mean Gaussian WSS random process is by applying a matrix

transformation to a vector of independent N(O, 1) samples. If a realization of X =

[X [0] X[l] ... X[N - l]V, where X '" N(O, Rx) and Rx is the N x N Toeplitz

autocorrelation matrix given in (17.23) is desired, then the method described in

Section 14.9 can be used. We need only replace C by Rx. For a nonzero mean WSS

Gaussian random process, we add the mean J.L to each sample after this procedure

is employed. The only drawback is that the realization is assumed to consist of

a fixed number of samples N, and so for each value of N the procedure must be

repeated. Filtering, as previously described, allows any number of samples to be

easily generated.

20.9 Real-World Example - Estimating Fish Popula­

tions

Of concern to biologists, and to us all, is the fish population. Traditionally, the

population has been estimated using a count produced by a net catch. However,

this is expensive, time consuming, and relatively inaccurate. A better approach

is therefore needed. In the introduction we briefly indicated how an echo sonar

would produce a Gaussian random process as the reflected waveform from a school

of fish. We now examine this in more detail and explain how estimation of the fish

population might be done. The discussion is oversimplified so that the interested

reader may consult [Ehrenberg and Lytle 1972, Stanton 1983, Stanton and Chu

1998] for more detail. Referring to Figure 20.14 a sound pulse, which is assumed

to be sinusoidal, is transmitted from a ship. As it encounters a school of fish, it

will be reflected from each fish and the entire waveform, which is the sum of all the

reflections, will be received at the ship. The received waveform will be examined

for the time interval from t = 2Rmin/c to t = 2Rmax/c, where Rmin and R max are

the minimum and maximum ranges of interest, respectively, and c is the speed of

sound in the water. This corresponds to the time interval over which the reflections

from the desired ranges will be present. Based on the received waveform we wish

to estimate the number of fish in the vertical direction in the desired range window

from Rmin to R max. Note that only the fish within the nearly dashed vertical lines,

which indicate the width of the transmitted sound energy, will produce reflections.

For different angular regions other pulses must be transmitted. As discussed in the

introduction, if there are a large number of fish producing reflections, then by the

central limit theorem, the received waveform can be modeled as a Gaussian random

process. As shown in Figure 20.14 the sinusoidal pulse first encounters the fish

nearest in range, producing a reflection, while the fish farthest in range produces
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the last reflection. As a result, the many reflected pulses will overlap in time, with

two of the reflected pulses shown in the figure. Hence, each reflected pulse can be

Figure 20.14: Fish counting by echo sonar.

represented as

(20.25)

where Fo is the transmit frequency in Hz and Ti = 2I4./c is the time delay of the

pulse reflected from the i th fish. As explained in the introduction, since Ai, ei will

depend upon the fish 's position, orientation, and motion, which are not known a

priori, we assume that they are realizations of random variables. Futhermore, since

the ranges of the individual fish are unknown, we also do not know Ti. Hence , we

replace (20.25) by

where e ~ = e i - 211"FoTi (which is reduced by multiples of 211" until it lies within the

interval (0,211")) , and model e ~ as a new random variable. Hence , for N reflections

we have as our model

N

X(t) LXi(t)
i= l

N

L Ai cos(211"Fot + eD
i=l
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and letting U; = Ai cos(8D and Vi = Ai sin(8~), we have

N

X(t) = 2)Ui cos(21fFot) - Vi sin(21fFot))
i=l

(tU;) cos(2"Fot) ~ (tVi) sin(2"Fot)

U cos(21fFot) - V sin(21fFot)

where U = I:I::1 U, and V = I:I::1 Vi. We assume that all the fish are about the

same size and hence the echo amplitudes are about the same. Then, since U and V

are the sums of random variables that we assume are independent (reflection from

one fish does not affect reflection from any of the others) and identically distributed

(fish are same size), we use a central limit theorem argument to postulate a Gaussian

PDF for U and V. We furthermore assume that U and V are independent so that if

E[Ui] = E[Vi] = 0 and var(Ui) = var(Vi) = a 2
, then we have that U '" N(o, N a

2
) ,

V", N(o, Na2
) , and U and V are independent. This is the Rayleigh fading sinusoid

model discussed in Section 20.7. As a result , the envelope of the received waveform

X(t), which is given by A = v'U2 + V2 has a Rayleigh PDF. Specifically, it is

PA (a) = { N~2 exp ( - ~ ;;2) a ~ 0

o a < O.

Hence, if we have previously measured the reflection characteristics of a single fish,

then we will know a2
• To estimate N we recall that the mean of the Rayleigh

random variable is

E[A] = ViNa2
so that upon solving for N, we have

To estimate the mean we can transmit a series of M pulses and measure the en­

velope for each received waveform Xm(t) for m = 1,2 ... ,M. Calling the envelope

measurement for the mth pulse Am, we can form the estimator for the number of

fish as

(20.26)

See Problem 20.20 on how to obtain Am = JUJ." + V~ from Xm(t). It is shown

there that Um = [2Xm(t) cos(21fFot)]LPF and Vm = [-2Xm(t) sin(21fFot)]LPF, where

the designation "LPF" indicates that the time waveform has been lowpass filtered.
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Problems

20.1. (w) Determine the probability that 5 successive samples {X[O], X[I], X[2], X [3],

X[4]} of discrete-time WGN with (Jb = 1 will all exceed zero. Then, repeat

the problem if the samples are {X[lO], X[l1], X[12], X[13],X[14]}.

20.2 c.:.:J (w) If X[n] is the random process described in Example 20.2, find P[X[O] >
0, X[3] > 0] if (Jb = 1.

20.3 (w) If X[n] is a discrete-time Wiener random process with var(X[n]) = 2(n+
1), determine P [-3 ::; X[5] ::; 3].

20.4 (w) A discrete-time Wiener random process X[n] is input to a differencer to

generate the output random process Y[n] = X[n] - X[n - 1]. Describe the

characteristics of the output random process.
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20.5 (..:....:..-) (w) If discrete-time WGN X[n] with 01- = 1 is input to a differencer to

generate the output random process Y[n] = X[n] - X[n - 1], find the PDF of

the samples Y[O] ,Y[I]. Are the samples independent?

20.6 (w) If in Example 20.4 the input random process to the differencer is an

AR random process with parameters a and o ~ = 1, determine the PDF of

Y[O], Y[I]. What happens as a -+ 17 Explain your results.

20.7 (t) In this problem we argue that if X[n] is a Gaussian random process

that is input to an LSI filter so that the output random process is Y[n] =

2:~- oo h[i]X[n - i], then Y[n] is also a Gaussian random process. To do

so consider a finite impulse response filter so that Y[n] = 2:{::J h[i]X[n - i]
with I = 4 (the infinite impulse response filter argument is a bit more com­

plicated but is similar in nature) and choose to test the set of output samples

nl = 0, n2 = 1, n3 = 2 so that K = 3 (again the more general case pro­

ceeds similarly). Now prove that the output samples have a 3-dimensional

Gaussian PDF. Hint: Show that the samples of Y[n] are obtained as a linear

transformation of X[n].

20.8 (w) A discrete-time WGN random process is input to an LSI filter with system

function 1i(z) = z - z- I . Determine the PDF of the output samples Y[n] for

n = 0,1 , . .. , N - 1. Are any of these samples independent of each other?

20.9 (t) In this problem we prove that if X[n] and Y[n] are both Gaussian random

processes that are independent of each other, then Z[n] = X[n] +Y[n] is also a

Gaussian random process. To do so we prove that the characteristic function

of Z = [Z[nl] Z[n2] ... Z[nK]V is that of a Gaussian random vector. First not e

that since X = [X[nl] X[n2]' " X[nK]V and Y = [Y[nl] Y[n2]'" Y[nK]]T are
both Gaussian random vectors (by definition of a Gaussian random process) ,

then each one has the characteristic function

</>(w) = exp (jwTJ.L - ~wT Cw )

where w = [WI W2... WKV. Next use the property that the characteristic func­

tion of a sum of independent random vectors is the product of the characteristic

functions to show that Z has a K-dimensional Gaussian PDF.

20.10 (..:....:..-) (w) Let X[n] and Y[n] be WSS Gaussian random processes with zero

mean and independent of each other. It is known that Z[n] = X[n]Y[n] is not

a Gaussian random process. However, can we say that Z[n] is a WSS random

process, and if so, what is its mean and PSD?

20.11 (w) An AR random process is described by X[n] = ~X[n -1] +Urn], where

Urn] is WGN with o ~ = 1. This random process is input to an LSI filter with

system function 1i(z) = 1- ~ z - I to generate the output random process Y[n].
Find P[Y 2[0] + y 2 [1] > 1]. Hint: Consider X[n] as the output of an LSI filter.
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= -4>x(w)Lk

20.12 (t) We prove (20.11) in this problem by using the method of characteris­

tic functions. Recall that for a multivariate zero mean Gaussian PDF the

characteristic function is

4>x(w) = exp (_~wTCw)

and the fourth-order moment can be found using (see Section 14.6)

f)44>X(w) I
E[X1X2X3X4] = f) f) f) f) .

WI W2 W3 W4 w=o

Although straightforward, the algebra is tedious (see also Example 14.5 for the

second-order moment calculations). To avoid frustration (with P[frustration] =
1) note that

4 4

wTCw = LLWiWjE[XiXj]
i=1 j=1

and let L; = 2:J=1 WjE[XiXj]. Next show that

f)4>x(w)

f)Wk

ei;

f)wk

and finally note that Lilw=o = 0 to avoid some algebra in the last differenti­

ation.

20.13 (w) It is desired to estimate rx[O] for X[n] being WGN. If we use the esti­

mator, rx[O] = (liN) 2:;;';;01X 2 [n], determine the mean and variance ofrx[O].
Hint: Use (20.13).

20.14 C:..:..-) (f) If X[n] = Urn] + urn - 1], where Urn] is a WGN random process

with a ~ = 1, find E[X[0]X[1]X[2]X[3]].

20.15 (f) Find the PSD of X 2[n] if X[n] is WGN with ai- = 2.

20.16 (t) To argue that the continuous-time Wiener random process is a Gaussian

random process, we replace X(t) = J~ U(e)de, where U(O is continuous-time

WGN, by the approximation

[ t / ~ t ]

X(t) = L Z(nb.t)b.t
n=O

where [x] indicates the largest integer less than or equal to x and Z(t) is a

zero mean WSS Gaussian random process. The PSD of Z(t) is given by

P (F) = {l!f IFI ~ w
z 0 IFI > W
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where W = 1/(2~t). Explain why X(t) is a Gaussian random process. Next

let ~t -+ 0 and explain why X(t) becomes a Wiener random process.

20 .17 c.:.:,,) (w) To extract A from a realization of the random process X(t) =

A + U(t), where U(t) is WGN with PSD Pu(F) = 1 for all F, it is proposed

to use

A. = ~ t' X(Ode.
T 10

How large should T be chosen to ensure that P[IA. - AI :s; 0.01] = 0.99?

20.18 (w) To generate a realization of a continuous-time Wiener random process on

a computer we must replace the continuous-time random process by a sampled

approximation. To do so note that we can first describe the Wiener random

process by breaking up the integral into integrals over smaller time intervals.

This yields

X(t) It U(Ode

~ l it~l U(e)de
- '-v-"

Xi

where ti = i~t with ~ t very small, and t« = n~t = t. It is assumed that t] ~t
is an integer. Thus, the samples of X(t) are conveniently found as

n

X(tn ) = X(n~t) = LXi
i=l

and the approximation is completed by connecting the samples X(tn ) by

straight lines. Find the PDF of the Xi 'S to determine how they should be

generated. Hint: The Xi'S are increments of X(t).

20.19 C..:,,) (f) For a continuous-time Wiener random process with var(X(t» = t,

determine P[IX(t)1 > 1]. Explain what happens as t -+ 00 and why.

20.20 (w) Show that if X(t) is a Rayleigh fading sinusoid, the "demodulation" and

lowpass filtering shown in Figure 20.15 will yield U and V, respectively. What

should the bandwidth of the lowpass filter be?

20.21 (c) Generate 10 realizations of a Rayleigh fading sinusoid for 0 :s; t :s; 1. Use

Fo = 10 Hz and (72 = 1 to do so. Overlay your realizations. Hint: Replace

X(t) = U cos(21l"Fot) - V sin(21l"Fot) by X[n] = X(n~t) = U cos(21l"Fon~t) ­

V sin(21l" Fon~t) for n = 0,1, ... ,N ~ t , where ~ t = 1/Nand N is large.
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X(t) Lowpass U
X(t) Lowpass V

filter filter

H(F) H(F)

2COS(
21rF::m-. -2Sin(21r~

w w F w w F
-2 2 -2 2

(a) (b)

Figure 20.15: Extraction of Rayleigh fading sinusoid lowpass components for Prob­

lem 20.20.

20.22 ( . ~ ) (w) Consider Xl (t) and X 2(t ), which are both Rayleigh fading sinusoids

with frequency Fa = 1/2 and which are independent of each other. Each

random process has the total average power (]"2 = 1. If Y (t) = X I (t) + X 2 (t) ,

find the joint PDF of Y(O) and Y(I/4).

20.23 (f) A Rayleigh fading sinusoid has the PSD Px(F) = 8(F + 10) +8(F -10).
Find the PSDs of U(t) and V(t) and plot them.

20.24 (w) Show that if X(t) is a bandpass random process, the "demodulat ion" and

lowpass filtering given in Figure 20.16 will yield U(t) and V(t), respectively.

X(t)
Lowpass 1--_.

filter

H(F)

2 cos(27fFat) r-fl,.

--=±-t-i- F
-2 2

(a)

U(t) X(t) Lowpass 1"--.. V (t)
filter

H(F)

- 2 sin(27fFat)r-fl,

--=±-t-i- F
-2 2

(b)

Figure 20.16: Extraction of bandpass random process lowpass components for Prob­

lem 20.24.

20.25 (..:..:..-) (f) If a bandpass random process has the PSD shown in Figure 20.17,

find the PSD of U(t) and V(t).
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Px(F)

4

F

90 110

Figure 20.17: PSD for bandpass random process for Problem 20.25.

20.26 (c) The random process whose realization is shown in Figure 20.2 appears

to be similar in nature to the bandpass random processes shown in Figure

20.13b. We have already seen that the marginal PDF appears to be Gaussian

(see Figure 20.3). To see if it is reasonable to model it as a bandpass random

process we estimate the PSD. First run the code given in Appendix 20A to

produce the realization shown in Figure 20.2. Then, run the code given below

to estimate the PSD using an averaged periodogram (see also Section 17.7

for a description of this). Does the estimated PSD indicate that the random

process is a bandpass random process? If so, explain how you can give a

complete probabilistic model for this random process.

Fs=100; %set sampling rate for later plotting

L=50;I=20; %L = length of block, I = number of blocks
n=[O:I*L-l], ; %set up time indices

Nfft=1024; %set FFT length for Fourier transform
Pav=zeros(Nfft,l);

f=[O:Nfft-l] '/Nfft-O.5; %set discrete-time frequencies

for i=O:I-l

nstart=l+i*L;nend=L+i*L; %set start and end time indices

%of block
y=x(nstart:nend); %extract block of data

P a v = P a v + ( 1 / ( I * L ) ) * a b s ( f f t s h i f t ( f f t ( y , N f f t ) ) ) . ~ 2 ;

%compute periodogram

%and add to average

%of periadograms
end

F=f*Fs; %convert to continuous-time (analog) frequency in Hz

Pest=Pav/Fs; %convert discrete-time PSD to continuous-time PSD

plot(F,Pest)



PROBLEMS

20.27 (f) For the Gaussian random process with mean zero and PSD

P (F) = {4 90::; I ~ I ::; 110
x 0 otherwise

707

find the probability that its envelope will be less than or equal to 10 at t = 10

seconds. Repeat the calculation if t = 20 seconds.

20.28 (w) Prove that XI[n] = ~U[n+l]+~U[n-l] andX2[n] = ~U[n]+~U[n-2],

where Urn] is WGN with ab = 1, both have the same PSD given by Px(F) =

~ (1 + cos(4'1I}».

20.29 (w) It is desired to generate a realization of a WSS Gaussian random process

by filtering WGN with an LSI filter. If the desired PSD is Px(f) = 11 ­

~ exp( - j27rJ) 12, explain how to do this.

20.30 C:.:-) (w) It is desired to generate a realization of a WSS Gaussian random

process by filtering WGN with an LSI filter. If the desired PSD is Px(f) =

2 - 2 cos(27rJ), explain how to do this.

20.31 c.:....:.,) (c) Using the results of Problem 20.30, generate a realization of X[n] .
To verify that your data generation appears correct, estimate the ACS for

k = 0,1 , . . . , 9 and compare it to the theoretical ACS.



set up transmit pulse time interval

for each 0.1 sec interval

%time delay for each 0.1 sec interval

%is uniformly distributed - round

%time delay to integer

Appendix 20A

MATLAB Listing for Figure

20.2

clear all
rand ( , state' ,0)

t=[0:0.01:0.99]'j %
FO=10j

s=cos(2*pi*FO*t)j % transmit pulse

ss=[sjzeros(1000-length(s),1)]j %put transmit pulse in receive vindov

tt=[0:0.01:9.99]'j %set up receive vindov time interval

x=zeros(1000,1)j

for i=1:100 %add up all echos, one

tau=round(10*i+l0*(rand(1,1)-O.5))j

x=x+rand(l,l)*shift(ss,tau)j

end

shift .m subprogram

This function SUbprogram shifts the given sequence by Ns points.

Zeros are shifted in either from the left or right.

Input parameters:

x - array of dimension Lxl

Ns - integer number of shifts

% shift.m

%
function y=shift(x,Ns)

%
%
%
%
%
%

% vhere Ns>O means a shift to the
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right and Ns<O means a shift to the left and if Ns=O, then

the sequence is not shifted
I.
I.
I.
% Output parameters:

% y - array of dimension Lx1 containing the
I. shifted sequence
L=length(x)j

if abs(Ns»L
y=zeros(L,1)j

else
if Ns>O

y (1 : Ns , 1) =0 j

y(Ns+1:L,1)=x(1:L-Ns)j

elseif Ns<O

y(L-abs(Ns)+1:L,1)=Oj

y(1:L-abs(Ns),1)=x(abs(Ns)+1:L)j

else

y=Xj

end

end



Chapter 21

Poisson Random Processes

21.1 Introduction

A random process that is useful for modeling events occurring in time is the Poisson

random process. A typical realization is shown in Figure 21.1 in which the events,

indicated by the "x"s, occur randomly in time. The random process, whose real-

N(t)

5 ...-
I

I

4 • ,
I

I

3 f--'
I

2 , ,

1 •I
I

t

X X X X X ~

Figure 21.1: Poisson process events and the Poisson counting random process N(t).

ization is a set of times, is called the Poisson random process. The random process

that counts the number of events in the time interval [0, t], and which is denoted

by N(t), is called the Poisson counting random process. It is clear from Figure

21.1 that the two random processes are equivalent descriptions of the same random

phenomenon. Note that N(t) is a continuous-time/discrete-valued (CTDV) random

process. Also, because N(t) counts the number of events from the initial time t = 0

up to and including the time t, the value of N(t) at a jump is N(t+). Thus, N(t) is

right-continuous (the same property as for the CDF of a discrete random variable).

The motivation for the widespread use of the Poisson random process is its ability
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to model a wide range of physical and man-made random phenomena. Some of

these are the distribution in time of radioactive counts, the arrivals of customers

at a cashier, requests for service in computer networks, and calls made to a central

location, to name just a few. In Chapter 5 we gave an example of the application

of the Poisson PMF to the servicing of customers at a supermarket checkout. Here

we examine the characteristics of a Poisson random process in more detail, paying

particular attention not only to the probability of a given number of events in a time

interval but also to the probability for the arrival times of those events. In order to

avoid confusing the probabilistic notion of an event with the common usage, we will

refer to the events shown in Figure 21.1 as arrivals.

The Poisson random process is a natural extension of a sequence of independent

and identically distributed Bernoulli trials (see Example 16.1). The Poisson counting

random process N (t) then becomes the extension of the binomial counting random

process discussed in Example 16.5. To make this identification, consider a Bernoulli

random process, which is defined as a sequence of IID Bernoulli trials, with Urn] = 1

with probability p and Urn] = 0 with probability 1 - p. Now envision a Bernoulli

trial for each small time slot of width tlt in the interval [0, t] as shown in Figure

21.2. Thus, we will observe either a 1 with probability p or a 0 with probability

1 -,..

I I I

I I

t:.t 2t:.t

I I I I

I I I I

t=Mt:.t

k = 0,1, ... ,M.

Figure 21.2: IID Bernoulli random process with one trial per time slot.

1 - p for each of the M = tftlt time slots. Recall that on the average we will

observe Mp ones. Now if tlt -+ 0 and M -+ 00 with t = M tlt held constant, we

will obtain the Poisson random process as the limiting form of the Bernoulli random

process. Also, recall that the number of ones in M IID Bernoulli trials is a binomial

random variable. Hence, it seems reasonable that the number of arrivals in a Poisson

random process should be a Poisson random variable in accordance with our results

in Section 5.6. We next argue that this is indeed the case. For the binomial counting

random process, thought of as one trial per time slot, we have that the number of

ones in the interval [0,t] has the PMF

P[N(t) = k] = (~) pk(l _ p)M-k

But as M -+ 00 and p -+ 0 with E[N(t)] = Mp being fixed, the binomial PMF
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becomes the Poisson PMF or N(t) '" Pois(A'), where A' = E[N(t)] = Mp . (Note

that as the number of time slots M increases, we need to let p -+ 0 in order to

maintain an average number of arrivals in [0, t].) Thus, replacing A' by E[N(t)], we

write the Poisson PMF as

P[N(t) = k] = exp( -E[N(t)]) E k [ ~ ( t ) ] k = 0,1, .... (21.1)

To determine E[N(t)] for use in (21.1), where t may be arbitrary, we examine Mp

in the limit. Thus,

E[N(t)] = lim Mp
M-+ =

P-+O

1· t 1· p
im -p=t 1m-

tl.t-+o bot tl.t-+O bot
P-+ o P-+o

At

where we define A as the limit of pibot. Since A = E[N(t)]lt, we can interpret A as

the average number of arrivals per second or the rate of the Poisson random process.

This is a parameter that is easily specified in practice. Using this definition we have

that
(At)k

P[N(t) = k] = exp(-At)~ k = 0,1, ... . (21.2)

As mentioned previously, N (t) is the Poisson counting random process and the

probability of k arrivals from t = 0 up to and including t is given by (21.2) . It is a

semi-infinite random process with N(O) = 0 by definition.

It is possible to derive all the properties of a Poisson counting random process

by employing the previous device of viewing it as the limiting form of a binomial

counting random process as bot -+ O. However, it is cumbersome to do so and

therefore, we present an alternative derivation that is consistent with the same basic

assumptions. One advantage of viewing the Poisson random process as a limiting

form is that many of its properties become more obvious by consideration of a

sequence of lID Bernoulli trials. These properties are inherited from the binomial,

such as, for example, the increments N(t2) - N(tt} must be independent. (Can you

explain why this must be true for the binomial counting random process?)

21.2 Summary

The Poisson counting random process is introduced in Section 21.1. The probability

of k arrivals in the time interval [0, t] is given by (21.2). This probability is also

derived in Section 21.3 based on a set of axioms that the Poisson random process

should adhere to. Some examples of typical problems for which this probability is

useful are also described in that section. The times between arrivals or interarrival
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times is shown in Section 21.4 to be independent and exponentially distributed as

given by (21.6). The arrival times of a Poisson random process are described by an

Erlang PDF given in (21.8). An extension of the Poisson random process that is

useful is the compound Poisson random process described in Section 21.6. Moments

of the random process can be found from the characteristic function of (21.12).

In particular, the mean is given by (21.13). A Poisson random process is easily

simulated on a computer using the MATLAB code listed in Section 21.7. Finally,

an application of the compound Poisson random process to automobile traffic signal

planning is the subject of Section 21.8.

21.3 Derivation of Poisson Counting Random Process

We next derive the Poisson counting random process by appealing to a set of axioms

that are consistent with our previous assumptions. Clearly, since the random process

starts at t = 0, we assume that N(O) = O. Next, since the binomial counting

random process has increments that are independent and stationary (Bernoulli trials

are IID), we assume the same for the Poisson counting random process. Thus,

for two increments we assume that the random variables h = N(t2) - N(tl) and

h = N(t4) - N(t3) are independent if t4 > t3 > t2 > tl and also have the same

PDF if additionally t4- t3 = t2 - ti- Likewise, we assume this is true for all possible

sets of increments. Note that t4 > t3 > t2 > tl corresponds to nonoverlapping time

intervals. The increments will still be independent if t2 = t3 or the time intervals

have a single point in common since the probability of N(t) changing at a point

is zero as we will see shortly. As for the Bernoulli random process, there can be

at most one arrival in each time slot. Similarly, for the Poisson counting random

process we allow at most one arrival for each time slot so that

P[N(t + ~t) - N(t) = k] = { pI - p k = 0
k=1

and recall that

lim L =,\
Ll.t-+o ~ t
p-tO

so that for ~t small, p = '\~t and

P[N(t + Ll<t) - N(t) ~ k] = {

Therefore, our axioms become

Axiom 1 N(O) = O.

1 - '\~t

'\~t

o

k=O
k=1
k ? 2.

Axiom 2 N(t) has independent and stationary increments.
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. { 1 - Ab.t k = 0
AXIOm 3 P[N(t + b.t) - N(t) = k] = Ab.t k = 1

for all t.

With these axioms we wish to prove that (21.2) follows. The derivation is indica­

tive of an approach commonly used for analyzing continuous-time Markov random

processes [Cox and Miller 1965] and so is of interest in its own right.

21.3.1 Derivation

To begin, consider the determination of P[N(t) = 0] for an arbitrary t > O. Then

referring to Figure 21.3a we see that for no arrivals in [0, t], there must be no arrivals

in [0, t - b.t] and also no arrivals in (t - b.t, t]. Therefore,

oarrivals 1 arrival
oarrivals oarrivals 1 arrival oarrivals

[ I ] [ I ]
0 t - b.t t 0 t - b.t t

(a) N(t) = 0 (b) N(t) = 1

Figure 21.3: Possible number of arrivals in indicated time intervals.

P[N(t) = 0] P[N(t - b.t) = 0, N(t) - N(t - b.t) = 0]

P[N(t - b.t) = O]P[N(t) - N(t - b.t) = 0]

P[N(t - b.t) = O]P[N(t+ b.t) - N(t) = 0]

P[N(t - b.t) = 0](1 - Ab.t)

If we let Po(t) = P[N(t) = 0] , then

Po(t) = Po(t - b.t)(l - Ab.t)

or

(Axiom 2 - independence)

(Axiom 2 - stationarity)

(Axiom 3).

Po(t) - Po(t - b.t) = -APO(t _ b.t)
b.t .

Now letting b.t -t 0, we arrive at the linear differential equation

dPo(t) = -APo(t)
dt

for which the solution is Po(t) = cexp(-At), where c is an arbitrary constant. To

evaluate the constant we invoke the initial condition that Po(O) = P[N(O) = 0] = 1

by Axiom 1 to yield c = 1. Thus, we have finally that

P[N(t) = 0] = Po(t) = exp( -At) .
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Next we use the same argument to find a differential equation for PI (t) = P[N(t) =
1] by referring to Figure 21.3b. We can either have no arrivals in [0,t - .6.t] and one

arrival in (t - .6.t, t] or one arrival in [0,t - .6.t] and no arrivals in (t - .6.t, t]. These

are the only possibilities since there can be at most one arrival in a time interval of

length .6.t. The two events are mutually exclusive so that

P[N(t) = 1] = P[N(t - .6.t) = 0,N(t) - N(t - .6.t) = 1]

+P[N(t - .6.t) = 1,N(t) - N(t - .6.t) = 0]

P[N(t - .6.t) = O]P[N(t) - N(t - .6.t) = 1]

+P[N(t - .6.t) = l]P[N(t) - N(t - .6.t) = 0]

P[N(t - .6.t) = O]P[N(t + .6.t) - N(t) = 1]

+P[N(t - .6.t) = l]P[N(t + .6.t) - N(t) = 0].

Using the definition of PI(t) and Axiom 3,

PI (t) = Po(t - .6.t)A.6.t + PI (t - .6.t)(l - A.6.t)

or

Pdt) - PI(t - .6.t) = -API(t _ .6.t) + APo(t - .6.t)
.6.t

and as .6.t --+ 0, we have the differential equation

(independence)

(stationarity)

dPI(t)
~ + API(t) = APo(t).

In like fashion we can show (see Problem 21.1) that if Pk(t) = P[N(t) = k], then

(21.3)

where we know that Po(t) = exp(-At). This is a set of simultaneous linear differen­

tial equations that fortunately can be solved recursively. Since Po(t) is known, we

can solve for PI(t). Once PI(t) has been found, then P2(t) can be solved for, etc.

It is shown in Problem 21.2 that by using Laplace transforms, we can easily solve

these equations. The result is

(At)k
Pk(t) = exp(-At)~ k = 0,1 , ...

so that finally we have the desired result

P[N(t) = k] = exp( -At) ( ~ t k = 0,1, ... (21.4)

which is the usual Poisson PMF. The only difference from that described in Section

5.5.4 is that here A represents an arrival rate. Since if X "" Pois(A'), then E[X] = A',
we have A' = At. Hence, A = A'it = E[N(t)]/t, which is seen to be the average
number of arrivals per second.
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21.3.2 Some Examples

Before proceeding with some examples it should be pointed out that the Poisson

counting random process is not stationary or even WSS. This is evident from the

PMF of N(t) since E[N(t2)] = )..t2 f- )..tl = E[N(tt}] for tz f- tl. As its properties

are inherited from the binomial counting random process, it exhibits the properties

of a sum random process (see Section 16.4). Also, in determining probabilities of

events, the fact that the increments are independent and stationary will greatly

simplify our calculations.

Example 21.1 - Customer arrivals

Customers arrive at a checkout lane at the rate of 0.1 customers per second ac­

cording to a Poisson random process. Determine the probability that 5 customers

will arrive during the first minute the lane is open and also 5 customers will arrive

the second minute it is open. During the time interval [0,60] the probability of 5

arrivals is from (21.4)

P[N(60) = 5] = exp[-0.1(60)] [ ( 0 . 1 ) 5 ~ 6 0 ) ] 5 = 0.1606.

This will also be the probability of 5 customers arriving during the second minute

interval or for anyone minute interval [t, t + 60] since

P[N(t + 60) - N(t) = 5] P[N(60) - N(O) = 5]

P[N(60) = 5]

(increment stationarity)

(N(O) = 0)

which is not dependent on t. Hence, the probability of 5 customers arriving in the

first minute and 5 more arriving in the second minute is

P[N(60) - N(O) = 5, N(120) - N(60) = 5]

P[N(60) - N(O) = 5]P[N(120) - N(60) = 5] (increment independence)

P[N(60) - N(O) = 5]P[N(60) - N(O) = 5] (increment stationarity)

p 2[N (60) = 5] = 0.0258 (N(O) = 0)

Example 21.2 - Traffic bursts

Consider the arrival of cars at an intersection. It is known that for any 5 minute

interval 50 cars arrive on the average. For any 5 minute interval what is the prob­

ability of 20 cars in the first minute and 30 cars in the next 4 minutes? Since the

probabilities of the increments do not change with the time origin due to stationar­

ity, we can assume that the 5 minute interval in question starts at t = 0 and ends

at t = 300 seconds. Thus, we wish to determine the probability of a traffic burst

PB, which is

PB = P[N(60) = 20, N(300) - N(60) = 30].
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Since the increments are independent, we have

PB = P[N(60) = 20]P[N(300) - N(60) = 30]

and because they are also stationary

PB = P[N(60) = 20]P[N(240) - N(O) = 30]

P[N(60) = 20]P[N(240) = 30]

(60A)20 (240A)30
exp( -60A) 20! exp( -240A) 30!

Finally, since the arrival rate is given by A = 50/300 = 1/6, the probability of a

traffic burst is

(10)20 (40)30
PB = exp( -10) -20' exp( -40)--I = 3.4458 X 10-

5
.

. 30.

o
In many applications it is important to assess not only the probability of a number

of arrivals within a given time interval but also the distribution of these arrival

times. Are they evenly spaced or can they bunch up as in the last example? In the

next section we answer these questions.

21.4 Interarrival Times

Consider a typical realization of a Poisson random process as shown in Figure

21.4. The times tl , tz , ts , ... are called the arrival times while the time intervals

N(t)

5

4

3

2

1

.....­
I

-Zs-'. '
I

Z4 ....-

,.-'
....-- Z3-----""

, I

-Z2---... '
I

Zl~

t

)( )( )( )(

ts

Figure 21.4: Definition of arrival times ti's and interarrival times Zi 'S.

Zl , Z2, Z3 ,· .. are called the interarrival times. The interarrival times shown in Fig­

ure 21.4 are realizations of the random variables Zl, Z2, Z3,.... We wish to be
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able to compute probabilities for a finite set , say ZI, Z2, . . " ZK. Since N(t) is a

continuous-time random process, the time between arrivals is also continuous and

so a joint PDF is sought. To begin we first determine PZ
1
(zd. Note that ZI = TI ,

where TI is the random variable denoting the first arrival. By the definition of the

first arrival if ZI > 6, then N(6) = 0 as shown in Figure 21.4. Conversely, if

N(6) = 0, then the first arrival has not occurred as of time 6 and so ZI > 6·

This argument shows that the events {ZI > 6} and {N(6) = O} are equivalent

and therefore

P[ZI > 6] = P[N(6) = 0]

exp(->'6) 6 ~ 0

where we have used (21.4). As a result , the PDF is for ZI ~ 0

(21.5)

and finally the PDF of the first arrival is

(21.6)

or ZI rv exp(X]. An example follows.

Example 21.3 - Waiting for an arrival

Assume that at t = 0 we start to wait for an arrival. Then we know from (21.6)

that the time we will have to wait is a random variable with ZI rv exp(>.). On the

average we will have to wait E[ZI] = 1/>. seconds. This is reasonable in that>' is

average arrivals per second and therefore 1/>. is seconds per arrival. However, say

we have already waited 6 seconds-what is the probability that we will have to wait

more than an additional 6 seconds? In probabilistic terms we wish to compute the

conditional probability P[ZI > 6 +61ZI > 6]. This is found as follows.

P[ZI > 6 +6,ZI > 6]
P[ZI > 6]

P[ZI > 6 +6]
P[ZI > 6]

since the arrival time will be greater than both 6 + 6 and 6 only if it is greater
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than the former. Now using (21.5) we have that

exp[-.\(6 +6)]

exp(-.\6)

exp(-.\6)

= P[ZI > 6] · (21.7)

Hence, the conditional probability that we will have to wait more than an additional

6 seconds given that we have already waited 6 seconds is just the probability that

we will have to wait more than 6 seconds. The fact that we have already waited

does not in any way affect the probability of the first arrival. Once we have waited

and observed that no arrival has occured up to time 6, then the random process in

essence starts over as if it were at time t = O. This property of the Poisson random

process is referred to as the memoryless property. It is somewhat disconcerting to

know that the chances your bus will arrive in the next 5 minutes, given that it is

already 5 minutes late, is not any better than your chances it will be late by 5

minutes. However, this conclusion is consistent with the Poisson random process

model. It is also evident by examining the similar result of waiting for a fair coin

to comes up heads given that it has already exhibited 10 tails in a row. In Problem

21.12 an alternative derivation of the memoryless property is given which makes use

of the geometric random variable.

<:;
We next give the joint PDF for two or more interarrival times. It is shown in

Appendix 2IA that the interarrival times Zl, Z2,' . . , ZK are lID random variables

with each one having Zl rv exp(X]. This result may also be reconciled in light of

the Poisson random process being the limiting form of a Bernoulli random process.

Consider a Bernoulli random process {X[O] = 0, X[I]' X [2]' .. .}, where X[O] = 0 by

definition, and assume interarrival times of k: and k2, where k1 2:: 1, k2 2:: 1. For

example, if X[I] = 0, X[2] = 1, X[3] = 0, X [4] = 0, and X[5] = 1, then we would

have k1 = 2 and k2 = 3. In general,

P[first interarrival time = k1 , second interarrival time = k2 ]

P[X[n] = 0 for 1:::; n:::; k1 -I,X[k1] = I ,X[n] = 0

for k1 + 1 :::; n :::; k1 + kz - 1, X[k1 + k2 ] = 1]

[(1 - p)kl- lp][(1 _ p)k2 - 1p].

Hence , the joint PMF factors so that the interarrival times are independent and

furthermore they are identically distributed (let k 1 = k2 ) . An example follows.

Example 21.4 - Expected time for calls

A customer call service center opens at 9 A.M. The calls received follow a Poisson

random process at the average rate of 600 calls per hour. The 20th call comes in

at 9:01 A.M. At what time can we expect the next call to come in? Let Z21 be
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(21.8)

the elapsed time from 9:01 A.M. until the next call comes in. Since the interarrival

times are independent, they do not depend upon the past history of arrivals. Hence,

Z21 = T21 - T20 ,......, exp[A]. Since the mean of an exponential random variable Z

is just 1/A and from the information given A = 600/3600 = 1/6 calls per second,

we have that E[Z21] = 1/(1/6) = 6 seconds. Hence, we can expect the next call to

come in at 9:01:06 A.M.

21.5 Arrival Times

The kth arrival time Tk is defined as the time from t = 0 until the kth arrival occurs.

The arrival times are illustrated in Figure 21.4, where Tk is also referred to as the

waiting time until the kth arrival. In this section we will determine the PDF of Tk.

It is seen from Figure 21.4 that tk = 2:7=1 Zi so that the random variable of interest

is

But we saw in the last section that the Zi'S are IID with Zl ,......, exn(X]. Hence, the

PDF of Tk is obtained by determining the PDF for a sum of IID random variables.

This is a problem that has been studied in Section 14.6, and is solved most readily by

the use of the characteristic function. Recall that if Xl, X 2 , .•• ,Xk are IID random

variables, then the characteristic function for Y = 2:7=1 Xi is ¢y(w) = ¢'X(w).

Thus, the PDF for Y , assuming that Y is a continuous random variable, is found

from the continuous-time inverse Fourier transform (defined to correspond to the

Fourier transform used in the characteristic function definition, and uses a - j and

radian frequency w) as

/

00 dw
py(y) = ¢'X(w) exp(-jwY)-2 .

- 00 1r

From Table 11.1 we have that ¢Zl (w) = A/(A - jw) and therefore

¢Tk(W) = (A:jw)k = (l_~W/A)k
Again referring to Table 11.1, we see that this is the characteristic function of a

Gamma random variable with a = k so that Tk ,......, r(k, A). Specifically, this is the

Erlang random variable described in Section 10.5.6 . Hence, we have that

A
k

k-l
PTk (t) = (k _ 1)! t exp( -At).

(See also Problem 21.15 for the derivation for k = 2 using a convolution integral and

Problem 21.16 for an alternative derivation for the general case.) Note that for a
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I'(o, >') random variable the mean is a/>. so that with a = k, we have the expected

time for the kth arrival as

(21.9)

or equivalently

(21.10)

On the average the time to the kth arrival is just k times the time to the first arrival,

a somewhat pleasing result. An example follows.

Example 21.5 - Computer servers

A computer server is designed to provide downloaded software when requested. It

can honor a total of 80 requests in each hour before it becomes overloaded. If the

requests are made in accordance with a Poisson random process at an average rate

of 60 requests per hour, what is the probability that it will be overloaded in the first

hour? We need to determine the probability that the 81st request will occur at a

time t ::; 3600 seconds. Thus, from (21.8) with k = 81

P[overloaded in first hour] P[TS1 ::; 3600]

r3600 >.SI
= 10 80! tSO exp( ->.t)dt.

Here the arrival rate of the requests is >. = 60/3600 = 1/60 per second and therefore

1 13600
1 (t) soP[overloaded in first hour] = - -, - exp(-t/60)dt

60 0 80. 60

Using the result

! (at)n exp( -at)dt = _ exp( -at) ~ (a.t)i
n! a L...J z!

i=O

it follows that

= ~ [_ exp(-t/60) so (t/60)i 1

3600
]

P[overloaded in first hour] 60 1/60 t; i! 0

[

SO (60)i ]
= - exp(-60) t; i!-1

so (60)i
1 - exp( -60) L -.-, = 0.0056.

i=O z.
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21.6 Compound Poisson Random Process
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A Poisson counting random process increments its value by one for each new arrival.

In some applications we may not know the increment in advance. An example would

be to determine the average amount of all transactions within a bank for a given

day. In this case the amount obtained is the sum of all deposits and withdrawals.

To model these transactions we could assume that customers arrive at the bank

according to a Poisson random process. If, for example, each customer deposited

one dollar , then at the end of the day, say at time to, the total amount of the

transactions X(to) could be written as

N(to)

X(to) = I: 1 = N(to).

i=l

This is the standard Poisson counting random process. If, however, there are with­

drawals, then this would no longer hold. Furthermore, if the deposits and with­

drawals are unknown to us before they are made, then we would need to model

each one by a random variable, say Ui. The random variable would take on positive

values for deposits and negative values for withdrawals and probabilities could be

assigned to the possible values of Ui. The total dollar amount of the transactions at

the end of the day would be
N(to)

I: u;
i=l

With this motivation we will consider the more general case in which the Ui'S are

either discrete or continuous random variables, and denote the total at time t by

the random process X(t). This random process is therefore given by

N(t)

X(t) = I: o,
i=l

t ~ O. (21.11)

It is a continuous-time random process but can be either continuous-valued or

discrete-valued depending upon whether the Ui'S are continuous or discrete random

variables. We furthermore assume that the Ui'S are IID random variables. Hence,

X(t) is similar to the usual sum of IID random variables except that the number

of terms in the sum is random and the number of terms is distributed according

to a Poisson random process. This random process is called a compound Poisson

random process.

In summary, we let X(t) = L:~(i) U, for t ~ 0, where the Ui'S are IID random

variables and N(t) is a Poisson counting random process with arrival rate A. Also,

we define X(O) = 0, and furthermore assume that the Ui'S and N(t) are independent

of each other for all t.
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We next determine the marginal PMF or PDF of X(t). To do so we will use

characteristic functions in conjunct ion with conditioning arguments. The key to

success here is to turn the sum with a random number of terms into one with a fixed

number by conditioning. Then , the usual characteristic function approach described

in Section 14.6 will be applicable. Hence, consider for a fixed t = to the random

variable X(to) and write its characteristic function as

cPX(to)(W) = E[exp(jwX(to))]

E[exp (jW ~) U;)]

(definition)

~ EN(") [Eu" ....a, IN(t,) [exp (jWtU;) N(to) ~ k] ]
(see Problem 21.18)

EN(,,) [EU,, u, [exp (jWt u;) ]] (Uis independent of N (to))

EN(,,) [EU" u, [g expuwu;)]]

EN (,,) [g Eu, (exPUWU;)I] (U;'s are independent]

= EN(") [g q,u,(w)] (definition of char. function)

EN(to) [cPtl (w)] (Ui'S identically dist .)

00

L cPtl(w)PN(to)[k]
k=O

00 k (Ato)k
[; cPUl (w) exp ( -AtO)~

exp( -Ato) f (AtOcP~~ (w))k

k=O

exp( -Ato) exp(AtOcPUl (w))

so that finally we have the characteristic function

cPX(to)(w) = exp[AtO(cPUl (w) - 1)]. (21.12)

To determine the PMF or PDF of X(to) we would need to take the inverse Fourier

transform of the characteristic fun ction. As a check , if we let U, = 1 for all i so that
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from (21.11) X(to) = N(to), then since

cPu! (w) = E[exp(jwU1)] = exp(jw)

725

we have the usual characteristic function of a Poisson random variable (see Table

6.1)

cPX(to)(w) = exp[Ato(exp(jw) - 1)].

(The derivation of (21.12) can be shown to hold for this choice of the Ui'S, which

are degenerate random variables.) An example follows.

Example 21.6 - Poisson random process with dropped arrivals

Consider a Poisson random process in which some of the arrivals are dropped. This

means for example that a Geiger counter may not record radioactive particles if their

intensity is too low. Assume that the probability of dropping an arrival is 1 - p,

and that this event is independent of the Poisson arrival process. Then, we wish to

determine the PMF of the number of arrivals within the time interval [0, to]. Thus,

the number of arrivals can be represented as

N(to)

X(to) = L o.
i=l

where U; = 1 if the ith arrival is counted and U, = 0 if it is dropped. Assuming that

the Ui'S are IID, we have a compound Poisson random process. The characteristic

function of X(to) is found using (21.12) where we note that

E[exp(jwUd]

pexp(jw) + (1 - p)

so that from (21.12)

exp[Ato(pexp(jw) + (1 - p) - 1)]

exp[pAto(exp(jw) - 1)].

But this is just the characteristic of a Poisson counting random process with arrival

rate of p); Hence, by dropping arrivals the arrival rate is reduced but X(t) is still

a Poisson counting process, a very reasonable result.

c
Since the characteristic function of a compound Poisson random process is available,

we can use it to easily find the moments of X(to). In particular, we now determine

the mean, leaving the variance as a problem (see Problem 21.22). Using (21.12) we
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have

E[X(to) ]
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! d</>x( to )(w) I (using (6.13))
j dw w= O

~'\to d</>Udwl(w) exp[,\to(</>Ul (w) - 1)]1
J w=O

\ 1 d</>Ul(W) \/\to- --'--~:........:..

j dw w=O

since </>Ul (0) = 1. But

so that the average value is

(21.13)

It is seen that the average value of X(to) is just the average value of U1 times

- the expected number of arrivals. This result also holds even if the Ui 'S only have

the same mean, without the IID assumption (see Problem 21.25 and the real-world

problem). An example follows.

Example 21. 7 - Expected number of points scored in basketball game

A basketball player, dubbed the "Poisson pistol Pete" of college basketball, shoots

the ball at an average rate of 1 shot per minute according to a Poisson random

process. He shoots a 2 point shot with a probability of 0.6 and a 3 point shot with a

probability of 0.4. If his 2 point field goal percentage is 50% and his 3 point field goal

percentage is 30%, what is his expected total number of points scored in a 40 minute

game? (We assume that the referees "let them play" so that no fouls are called and

hence no free throw points.) The average number of points is E[N(to)]E[Ul], where

to = 2400 seconds and Ul is a random variable that denotes his points made for the

first shot (the distribution for each shot is identical). We first determine the PMF

for Ul , where we have implicitly assumed that the Ui'S are IID random variables.

From the problem description we have that

if 2 point shot attempted and made

if 3 point shot attempted and made

otherwise.

Hence,

PUI [2] P [2 point shot attempted and made]

- P[2 point shot made I 2 point shot attempted]P[2 point shot attempted]

= 0.5(0.6) = 0.3
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and similarly PUI [3] = 0.3(0.4) = 0.12 and therefore, PUI [0] = 0.58. The expected

value becomes E[Ul] = 2(0.3) + 3(0.12) = 0.96 and therefore the expected number

of points scored is

E[N(to)]E[Ul] ,\toE[Ul]

6
10

(2400)(0.96)

38.4 points per game.

21.7 Computer Simulation

To generate a realization of a Poisson random process on a computer is relatively

simple. It relies on the property that the interarrival times are lID exp('\) random

variables. We observe from Figure 21.4 that the ith interarrival time is Z; = Ti ­

Ti-l, where T; is the ith arrival time. Hence,

i = 1,2, ...

where we define To = O. Each Z, has the PDF exp('\) and the Zi'S are lID. Hence,

to generate a realization of each Zi we use the inverse probability integral transfor­

mation technique (see Section 10.9) to yield

1 1
Zi=,ln-

UA 1- i

where Ui '" U(O, 1) and the Ui'S are lID. A typical realization using the following

MATLAB code is shown in Figure 21.5a for ,\ = 2. The arrivals are indicated now

by + 's for easier viewing. If we were to increase the arrival rate to ,\ = 5, then a

typical realization is shown in Figure 21.5b.

clear all
rand ( )state) ,0)

lambda=2; %set arrival rate

T=5; %set time interval in seconds

for i=1:1000

z(i,l)=(l/lambda)*log(l/(l-rand(l,l))); %generate interarrival times

if i==l %generate arrival time
t (i , 1) =z (i) ;

else

t(i,l)=t(i-l)+z(i,l);

end

if t(i»T %test to see if desired time interval has elapsed
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Figure 21.5: Realizations of Poisson random process.

break

end

end

M=length(t)-l; I. number of arrivals in interval [O,T]

arrivals=t(l:M); I. arrival times in interval [O,T]

21.8 Real-World Example - Automobile Traffic Signal

Planning

An important responsibility of traffic engineers is to decide which intersections re­

quire traffic lights. Although general guidelines are available [Federal Highway Ad.

1988], new situations constantly arise that warrant a reassessment of the situation­

principally an unusually high accident rate [Imada 2001]. In this example, we sup­

pose that a particular intersection, which has two stop signs, is prone to accidents.

The situation is depicted in Figure 21.6, where it is seen that the two intersecting

streets are one-way streets with a stop sign at the corner of each one. A traffic

engineer believes that the high accident rate is due to motorists who ignore the stop

signs and proceed at full speed through the intersection. If this is indeed the case,

then the installation of a traffic light is warranted. To determine if the accident rate

is consistent with his belief that motorists are "running" the stop signs , he wishes

to det ermine the average number of accidents that would occur if this is true. As

shown in Figure 21.6, if 2 vehicles arrive at the intersection within a given time

interval, an accident will occur. It is assumed the two cars are identical and move

with the same speed. The traffic engineer then models the arrivals as two indepen-
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Figure 21.6: Intersection with two automobiles approaching at constant speed.

dent Poisson random processes, one for each direction of travel. A typical set of car

arrivals based on this assumption is shown in Figure 21.7. Specifically, an accident

· · -EW· -: .

*++...+..ff . ++:* ..++ .-t:+ .+

NS

++ *."

o 500 1000 1500 2000 2500 3000 3500
t (sec)

Figure 21.7: Automobile arrivals.

will occur if any two arrivals satisfy ITEW
- TNsl ~ T, where T EW and T NS refer

to the arrival time at the center of the intersection from the east-west direction and

the north-south direction, respectively, and T is some minimum time for which the

cars can pass each other without colliding. The actual value of T can be estimated

using T = d]c, where d is the length of a car and c is its speed. As an example,

if we assume that d = 22 ft and c = 44 ft/sec (about 30 mph), then T = 0.5 sec.

An accident will occur if two arrivals are within one-half second of each other. In

Figure 21.7 this does not occur, but there is a near miss as can be seen in Figure

21.8, which is an expanded version. The east-west car arrives at t = 2167.5 seconds

while the north-south car arrives at t = 2168.4 seconds.
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(21.14)

Figure 21.8: Automobile arrivals-expanded version of Figure 21.7. There is a near

miss at t = 2168 seconds , shown by the dashed vertical line.

We now describe how to determine the average number of accidents per day.

This can be obtained by defining a set of indicator random variables (see Example

11.4) as

1- = {I if there is at least one NS arrival with ITi
EW

- TNS I :::; T

z 0 otherwise.

Here T NS can be any NS arrival time and T i
EW is the ith arrival time for the EW

traffic. (More explicitly, the event for which the indicator random variable is 1

occurs when minj=1,2,... ITi
EW

- TfSI :::; T , where Tfs is the jth arrival for the NS

traffic.) Now the number of accidents in the time interval [0, t] is

N(t)

X(t) = L t,
i=l

where N(t) is the Poisson counting random process for the EW traffic. To find

the expected value of X(t) we note that the equation (21.13) , although originally

derived under the assumption that the Ui 'S are lID, is also valid under the weaker

assumption that the means of the Ui'S are the same as shown in Problem 21.25.

Since the Ii'S will be seen shortly to have the same mean, the expected value of

(21.14) is from (21.13) with Us = t,

E[X(t)] = >.tE[/r].

Now to evaluate E[Ii], we note that

E[Ii] = P[ITi
EW

- T NSI :s; T]

(21.15)
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and the probability can be found using a conditioning approach (see (13.12)). This

produces

P[ITpw - TNSI :s; T] =100

P[ITi
EW

- TNSI :s; TITi
EW = t]PT;(t)dt.

Proceeding we have that

P[ITi
EW

- TNSI :s; T] 100

P[lt - TNSI :s; TITi
EW

= t]PT;(t)dt

= 100

P[lt - TNSI :s; T]PTi(t)dt (Ti
EW

, T N S are independent)

1
00

P[t - T :s; T NS :s; t +T]PTi (t)dt. (21.16)

Note that t - T :s; T NS :s; t + T is the event that the NS traffic will have at least one

arrival (and hence an accident) in the interval [t - T, t + T]. Its probability is just

P[t - T :s; T NS :s; t + T] Prone or more arrivals in [t - T, t + T]]

1 - P[no arrival in [t - T, t + T]]

= 1 - P[no arrivals in [0,2T]] (increment stationarity)

= 1 - P[N(2T) = 0]

1 - exp( -2.XT) (from (21.2))

and is not dependent on t. Thus,

E[Ii] P[ITi
EW

- TNSI :s; T]

= 1°O(1-exP(-2AT))PTi(t)dt

= 1 - exp( -2AT)

(from (21.16))

for all i, and therefore all the Ii'S have the same mean. From (21.15)

E[X(t)] = At(l - exp(-2AT)).

For the same example as before with T = 0.5, the average number of accidents per

second is

E[X(t)] = A(l - exp( -A)).
t

For a more meaningful measure we convert this to the average number of accidents

per hour, which is (E[X(t)]jt)3600. This is plotted versus X, where X is in arrivals

per hour, in Figure 21.9. Specifically, it is given by

3600
E[X(t)]

= 3600A(1 - exp( -A))
t
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Figure 21.9: Average number of accidents per hour versus arrival rate (in per hour

units) .

where X' = arrivals per hour = 3600>'. As seen in Figure 21.9 for about 1 arrival

every 3 minutes or 20 arrivals per hour, we will have an average of 0.1 accidents

per hour or about an average of one accident every two days. This assumes a

busy intersection for about 5 hours per day. Thus, if the traffic engineer notices an

accident nearly every other day, he will request that a traffic light be put in.
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Problems

21.1 (t) Prove that the differential equation describing Pk(t) = P[N(t) = k] for a

Poisson counting random process is given by (21.3) . To do so use Figure 21.3

with either k arrivals in [0, t - .6.t] and no arrivals in (t - .6.t,t] or k - 1 arrivals

in [0, t - .6.t] and one arrival in (t - .6.t,t]. Since there can be at most one

arrival in a time interval of length .6.t, these are the only possibilities.
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21.2 (t) Solve the differential equation of (21.3) by taking the (one-sided) Laplace

transform of both sides, noting that Pk(O+) = O. Explain why the latter

condition is consistent with the assumptions of a Poisson random process.

You should be able to show that the Laplace transform of Pk(t) is

by finding PI (s) from Po(s ), and then P2(s) from PI (s), etc. The desired in­

verse Laplace transform is found by referring to a table of Laplace transforms.

21.3 L.:..) (f) Find the probability of 6 arrivals of a Poisson random process in the

time interval [7,12] if A = 1. Next determine the average number of arrivals

for the same time interval.

21.4 (w) For a Poisson random process with an arrival rate of 2 arrivals per second,

find the probability of exactly 2 arrivals in 5 successive time intervals of length

1 second each.

21.5 (f) What is the probability of a single arrival for a Poisson random process

with arrival rate A in the time interval [t, t + .6.t] if .6.t -+ O?

21.6 (w) Telephone calls come into a service center at an average rate of one per 5

seconds. What is the probability that there will be more than 12 calls in the

first one minute?

21. 7 C:.:..) (f,c) For a Poisson random process with an arrival rate of A use a com­

puter simulation to estimate the arrival rate if A = 2 and also if A = 5. To do

so relate A to the average number of arrivals in [0,t]. Hint: Use the MATLAB

code in Section 21.7.

21.8 (w) Two independent Poisson random processes both have an arrival rate of

A. What is the expected time of the first arrival observed from either of the

two random processes? Explain your results. Hint: Let this time be denoted

by T and note that T = min(Tp) ,Ti
2)),

where Ti
i
) is the first arrival time of

the ith random process. Then, note that P[T > t] = P[TP) > t, Ti
2) > t].

21.9 (t) In this problem we prove that the sum of two independent Poisson counting

random processes is another Poisson counting random process whose arrival

rate is the sum of the arrival rates of the two random processes. Let the Poisson

counting random processes be NI(t) and N2(t) and consider the increments

N(t2) - N(tl) and N(t4) -N(t3) for nonoverlapping time intervals. Argue that

the corresponding increments for the sum random process are independent

and stationary, knowing that this is true for each individual random process.

Then, use characteristic functions to prove that if NI(t) f'V POiS(AIt) and
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N 2(t) f"V Pois(-\2t) and NI(t) and N 2(t) are independent, then NI(t) +N2(t) f"V

POiS«-\1 + -\2)t).

21.10 C:.:,,) (w) If N(t) is a Poisson counting random process, determine E[N(t2)­

N(tl)] and var(N(t2) - N(tl)).

21.11 (w) Commuters arrive at a subway station that has 3 turnstyles with the

arrivals at each turnstyle characterized by an independent Poisson random

process with arrival rate of -\ commuters per second. Determine the probability

of a total of k arrivals in the time interval [0,t]. Hint: See Problem 21.9.

21.12 (t) In this problem we present an alternate proof that the Poisson random

process has no memory as described by (21.7). It is based on the observation

that a Poisson random process is the limiting form of a Bernoulli random

process as explained in Section 21.1. Consider first the geometric PMF of the

first success or arrival which is P[X = k] = (1 - p)k-Ip for k = 1,2, .... Then

show that

P[X > kl + k21X > k l ] = (1- p)k 2
•

Next let p = -\tlt and k l = 6/tlt and k2 = 6/tlt and prove that as tlt --+ 0

Hint: As x --+ 0, (1 - ax) l/x --+ exp( -a).

21.13 (...:..:,) (w) Taxi cabs arrive at the rate of 1 per minute at a taxi stand. If a

person has already waited 10 minutes for a cab, what is the probability that

he will have to wait less than 1 additional minute?

21.14 (w) A computer memory has the capacity to store 106 words. If requests

for word storage follow a Poisson random process with a request rate of 1

per millisecond, how long on average will it be before the memory capacity is

exceeded?

21.15 (t) If Xl f"V exp'(X}, X 2 f"V exp[X}, and Xl and X2 are independent random

variables, derive the PDF of the sum by using a convolution integral.

21.16 (t) We give an alternate derivation of the PDF for the kth arrival time of a

Poisson random process. This PDF can be expressed as

Use the fact that the event {t - tlt ~ Tk ~ t} can only occur as tlt --+ 0 if

there are k - 1 arrivals in [0,t - tlt] and 1 arrival in (t - tlt, t].
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21.17 C:...:...) (w) People arrive at a football game at a rate of 100 per minute. If

the 1000th person is to receive a seat at the 50th yard line (which is highly

desirable), how long should you wait before entering the stadium?

21.18 (t) Prove that if X, Y, Z are jointly distributed continuous random variables,

then EX,Y,z[g(X,Y,Z)] = Ez [Ex,YIZ[g(X ,Y,Z)lz]] by expressing the expec­

tations using integrals. You may wish to refer back to Section 13.6.

21.19 (t) The Poisson random process exhibits the Markov property. This says

that the conditional probability of N(t) based on past samples of the random

process only depends upon the most recent sample. Mathematically, if ts >
t2 > ts , then

Prove that this is true by making use of the property that the increments are

independent. Specifically, consider the equivalent probability

and also explain why this probability is equivalent.

21.20 C:...:,.,) (c) Use a computer simulation to generate multiple realizations of a

Poisson random process with >.. = 1. Then, use the simulation to estimate

P[T2 ::; 1]. Compare your result to the true value. Hint: Use the MATLAB

code in Section 21.7.

21.21 (w) An airport has two security screening lines . An employee directs the

incoming travelers to one of the two lines at random. If the incoming travelers

arrive at the airport with a rate of >.. travelers per second, what is the arrival

rate at each of the two security screening lines? What assumptions are implicit

in arriving at your answer?

21.22 (t) Prove that the variance of a compound Poisson random process is

var(X(to)) = >..toE[Uf]. If you guessed that the result would be >..tovar(Ut},

then evaluate your guess for a Poisson random process (let U, = 1).

21.23 C:...:...) (f) A compound Poisson random process X(t) is composed of random

variables U; that can take on the values ±1 with P[Ui = 1] = p. What is the

expected value of X(t)?

21.24 (c) Perform a computer simulation to lend credibility to the expected number

of points scored in the basketball game described in Example 21.7.
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21.25 (t) Derive (21.13) for the case where the Ui 'S have the same mean and are

independent of N(to) . Start your derivation with the expression

and then follow the same approach as given in Section 21.6. You do not need

the characteristic function to do this.
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Joint PDF for Interarrival

Times

We prove in this appendix that the first two interarrival times Zl, Z2 are lID with

Z; f"Vexp(),) . The general case of any number of interarrival times can similarly be

proven to be lID with an exp(),) PDF. We now refer to Figure 21.4 and prove that

the joint CDF factors and each marginal CDF is that corresponding to the exp(),)

PDF. The joint CDF is given as

(21A.1)

which follows from (13.12) where A = {Z2 : Z2 ~ 6}. But if Zl = Zl, then Z2 ~ 6 if

and only if N (Zl +6) - N (Zl) ~ 1 since an arrival must have occurred in [Zl, Zl+6].
Hence,

and because the event Zl = Zl is equivalent to the increment N(Zl) - N(O) = 1,

and the increments are independent and stationary, we have

P[Z2 ~ 61Zl = Zl] P[N(Zl + 6) - N(Zl) ~ 11Zl = Zl]

P[N(Zl + 6) - N(zd ~ 1]

= P[N(6) ~ 1]

Using this in (21A.1) produces

(independence)

(stationarity) .
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P[ZI ~ 6, Z2 ~ 6] 16
P[N(6) ~ l]pz1 (zl)dz1

1~1 [1 - P[N(6) < 1]]pzl (zl)dz1

16
(1 - P[N(6) = O])PZl (zl)dz1

16
(1 - exp( -)..6))PZl (zt}dz1

= [1 - exp( -)..6)]16
PZl(zl)dz1

[1- exp(-)..6)]P[Zl ~ 6]

[1 - exp( -)..6)]P[N(6) ~ 1]

= [1- exp(-)..6)][1 - P[N(6) < 1]]

[1 - exp( -)..6)][1 - exp(-)..6)]

= P[ZI ~ Zl]P[Z2 ~ Z2]:

It is seen that the joint CDF factors into the product of the marginal CDFs, where

each marginal is the CDF of an exp()..) random variable. Thus, the first two inter­

arrival times are IID with PDF exp()..) .



Chapter 22

Markov Chains

22.1 Introduction

We have seen in Chapter 16 that an important random process is the lID random

process. When applicable to a specific problem, it lends itself to a very simple

analysis. A Bernoulli random process, which consists of independent Bernoulli trials,

is the archetypical example of this. In practice, it is found , however, that there is

usually some dependence between samples of a random process. In Chapters 17 and

18 we modeled this dependence using wide sense stationary random process theory,

but restricted the modeling to only the first two moments. In an effort to introduce a

more general dependence into the modeling of a random process, we now reconsider

the Bernoulli random process but assume dependent samples. We briefly introduced

this extension in Example 4.10 as a sequence of dependent Bernoulli trials. The

dependence of the PMF that we will be interested in is dependence on the previous

trial only. This type of dependence leads to what is generically referred to as a

Markov random process. A special case of this for a discrete-time/discrete-valued

(DTDV) random process is called a Markov chain. Specifically, it has the property

that the probability of the random process X[n] at time n = no only depends upon

the outcome or realization of the random process at the previous time n = no - 1. It

can then be viewed as the next logical step in extending an lID random process to a

random process with statistical dependence. Recall from Chapter 8 that for discrete

random variables statistical dependence is quantified using conditional probabilities.

The reader should review Example 4.10 and also Chapter 8 in preparation for our

discussion of Markov chains.

Although we will restrict our description to a DTDV Markov random process,

i.e., the Markov chain, there are many generalizations that are important in practice.

The interested reader can consult the excellent books by [Bharucha-Reid 1988],

[Cox and Miller 1965], [Gallagher 1996] and [Parzen 1962] for these other random

processes. Before proceeding with our discussion we present an example to illustrate

typical concepts associated with a Markov chain.
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In the game of golf it is very desirable to be a good putter. The best golfers

in the world are able to hit a golf ball lying on the green into the hole using only

a few strokes, called putting the ball. At times they can even "one-putt" the ball,

in which they require only a single stroke to hit the ball into the hole. Of course,

their chances of doing so rely heavily on how far the ball is from the hole when

they first reach the green. If the ball is say 3 feet from the hole, then they will

almost always one-putt. If, however, it is near the edge of the green, possibly 20

feet from the hole, then their chances are small. For our hypothetical golfer we will

assume that her chance of a one-putt is 50% at the start of a round of golf, i.e., at

hole one. If she one-putts on hole one, then her chances on hole two will remain at

50%. If not, she becomes somewhat discouraged which reduces her chances at hole

two to only 25%. Hence , at each hole her chances of a one-putt are 50% if she has

one-putted the previous hole and 25% if she has not. To model this situation we

let X[n] = 1 for a one-putt at hole nand X[n] = 0 otherwise. We label hole one

by n = O. A round of golf, which consists of 18 holes, produces a sequence of 18

1's and O's with a 1 indicating a one-putt. For the probabilities assumed a typical

set of outcomes is shown in Figure 22.1. Note that she has played three rounds of

2,------.--------.----.------,--------.------.

1.5 .

~ o·: ...ll..I..lff..Il.!..I..........I..Il..I...ffl.......

-0.5

504020 30

Hole, n
10

-1 '--__--'-__---'- '--__--'-__---'------J

o

Figure 22.1: Outcomes of three rounds of golf. A 1 indicates a one-putt on hole n.

golf or 54 holes , of which 18 were one-putts. It appears that her probability of a

one-putt is closer to 1/3 than either 1/2 or 1/4. Also, it is of interest to determine

the average number of holes played between one-putts. The actual number varies

as seen in Figure 22.1 and is {4, 1,3,3,1,1,3,1 ,2,3,11,3,1,3,4,1,1} for an average

of 46/17 = 2.70. It would seem that the expected number of holes played between

one-putts, about 3, is the reciprocal of the probability of a one-putt, about 1/3.

This suggests a geometric-type PMF, which we will confirm in Section 22.6.

Probabilistically, we are observing a sequence of dependent Bernoulli trials. The
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Prone-putt at hole nlone-putt at hole n - 1] =

P[X[n] = 11X[n -1] = 1]

P[X[n] = OIX[n - 1] = 0]

P[X[n] = 11X[n - 1] = 1]

P[X[n] = OIX[n - 1] = 1] =

dependence arises (in contrast to the usual Bernoulli random process which had

independent trials) due to the probability of a one-putt at hole n being dependent

upon the outcome at hole n - 1. We can model this dependence using conditional

probabilities to say that

1
prone-putt at hole nino one-putt at hole n - 1] = 4

1

2

or

1
P[X[n] = 11X[n - 1] = 0] = 4

1

2

Completing the conditional probability description, we have

3

4
1

P[X[n] = 11X[n -1] = 0] = 4

1

2
1

2

Note that we have assumed that the conditional probabilities do not change with

"time" (actually hole number) . Lastly, we require the initial probability of a one­

putt for the first hole. We assign this to be P[X[O] = 1] = 1/2. In summary, we

have two sets of conditional probabilities and one set of initial probabilities which

can be arranged conveniently using a matrix and vector to be

and

p = [
P[X[n] = OIX[n - 1] = 0] P[X[n] = 11X[n - 1] = 0] ]
P[X[n] = OIX[n -1] = 1] P[X[n] = 11X[n -1] = 1]

[i n
(22.1)

prO]
[

P[X[O] = 0] ]

P[X[O] = 1]

[:J.
(22.2)
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1
4

3 1
4 2

I 1

: 2
initial probabili ty - - - - .J

Figure 22.2: Markov state probability diagram for putting example.

The probabilities can also be summarized using the diagram shown in Figure 22.2,

where for example the conditional probability of a one-putt on hole n given that the

golfer has not one-putted on hole n - 1 is 1/4. We may view this diagram as one

in which we are in "state" 0, which corresponds to the previous outcome of no one­

putt and will move to "state" 1, which corresponds to a one-putt, with a conditional

probability of 1/4. If we do move to a new state, it means the outcome is a 1 and

otherwise, the outcome is a O. In int erpreting the diagram one should visualize that

a 0 or 1 is emit ted as we enter the 0 or 1 state, respectively. Then, the current state

becomes the last value emitted. Also, our initial un conditional probabilities of 1/2

and 1/2 of entering state 0 or state 1 are shown as dashed lines. The diagram is called

the Markov state probability diagram. The use of the term "state" is derived from

physics in that the future evolution (in terms of probabilities) of the process is only

dependent upon the cur rent state and not upon how the process arrived in that state.

The probabilistic structure summarized in Figure 22.2 is called a Markov chain.

As mentioned previously, it is a DTDV random process. Although we have used a

dependent Bernoulli random process as an example, it easily generalizes to any finite

number of states. It is common in the discussion of Markov chains to term the matrix

of conditional probabilities P in (22.1) as the state transition probability matrix or

more succinctly the transition probability matrix. The initial probability vector prO]
in (22.2) is called the initial state probability vector or more succinctly the initial

probability vector. Note that in using the state probability diagram to summarize

the Markov chain we will henceforth omit the initial probability assignment in the

diagram but it should be kept in mind that it is necessary in order to complete the

description.

As an example of a typical probability computation, consider the probability of

X[O] = 0, X[I] = 1, X[2] = 1 versus X [O] = 1, X[I] = 1, X[2] = 1. Then, using the

chain rule (see (4.10)) we have

P[X[O] = 0,X[1] = 1,X[2] = 1] = P[X[2] = 1IX[1] = 1,X[0] = 0]

·P[X[1] = 1IX[0] = O]P[X[O] = 0].
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But due to the assumption that the probability of X[n] only depends upon the

out come at time n - 1, which is called the M arkov property, we have

P[X[2 ] = lIX[I] = I ,X[O] = 0] = P[X [2] = l IX[I] = 1]

and therefore

P[X[O] = 0, X [I ] = 1, X[2] = 1] P[X[2] = l IX[I] = I ]P[X[I] = lIX[O] = 0]

. P[X[O] = 0] .

But from Figure 22.2 this is

P[X[O] = O,X[I] = I ,X[2] = 1] = (~) (~) (~) = 11
6

,

Similary,

P[X[O] = I ,X[I] = I ,X[2] = 1] = P[X[2] = lIX[I] = I]P[X[I] = lIX[O] = 1]

.P[X[O] = 1] = (~) (~) (~) = ~ .

We see that joint probabilities are easily det ermined from the initial probabilities

and the transit ion probabilities. If we are only interested in the mar ginal PMF at a

given t ime say P[X [n] = k] for k = 0,1 , as , for example, P[X[2] = 1], we need only

sum over the other vari ables of the joint P MF . This produces

1 1

P[X [2 ] = 1] = LLP[X[O] = i ,X[I] = j ,X[2] = 1]
i=O j =O

1 1

LLP[X[2] = lIX[O] = i ,X[I] = j]P[X[I] =jIX[O] = i]
i=O j=O

. P[X[O] = i]
1 1

L L P[X[2] = lIX[I] = j]P[X[I] = jIX[O] = i]P[X[O] = i]
i = O j=O

(Markov property)

v

P[X [l ]=j]

1 1

LP[X[2] = lIX[I ] = j ]LP[X[I] = j IX[O] = i]P[X[O] = i].
j=O i =O

,"---------...,,---------'

Note that P[X [I ] = j] can be found and then used to find P[X [2] = 1]. Of course,

t his is get ting somewhat messy algebra ically but as shown in the next sect ion the

use of vectors and matrices will simplify the computation.

Finally, some questions of interest to the golfer are:
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1. After playing many holes , will the probability of a one-putt settle down to some

constant value? Mathematically, will P[X[n] = k] converge to some constant

PMF as n -+ oo?

2. Given that the golfer has just one-putted, how many holes on the average will she

have to wait until the next one-putt? Or given that she has not one-putted,

how many holes on the average will she have to wait until she one-putts? In

the first case, mathematically we wish to det ermine if given X[no] = 1 and

X[no + 1] = 0, . .. , X[no + N - 1] = 0, X[no + N] = 1, what is E[N]?

We will answer both these questions shortly, but before doing so some definitions

are necessary.

22.2 Summary

A motivating example of a Markov chain is given in Section 22.1. A Markov chain is

defined by the property of (22.3). The state transition probabilities, which describe

the probabilities of movements between states, is given by (22.4). When arranged

in a matrix it is equivalent to (22.5) for a two-state Markov chain and is called

the transition probability matrix. The probabilities of the states are defined in

(22.6) and succinctly summarized by the vector of (22.7) for a two-state Markov

chain. Table 22.1 summarizes the notational conventions. The state probability

vector can be found for any time by using (22.9). To evaluate a power of the

transition probability matrix (22.12) can be used if the eigenvalues of the matrix

are distinct. For a two-state Markov chain the state probabilities are explicitly found

in Section 22.4 with the general transition probability matrix given by (22.14). For

an ergodic Markov chain the state probabilities approach a constant value as time

increases and this value is found by solving (22.17). Also, the value of the n-step

transition probability matrix approaches the steady-state value given by (22.19). In

Section 22.6 the occupation time of a state for an ergodic Markov chain is shown

to be given by the steady-state probabilities and also , the mean recurrence time

is the inverse of the occupation time. An explicit solution for the steady-state

or stationary probabilities can be found using (22.22). The MATLAB code for

a computer simulation of a 3-state Markov chain is given in Section 22.8 while a

concluding real-world example is given in Section 22.9.

22.3 Definitions

We restrict ourselves to a discrete-time random process X[n] with K possible values

or states. In the introduction K = 2 and the values were 0,1. This is a DTDV

random process that starts at n = °(semi-infinite). We define X[n] as a Markov

chain if given the entire past set of outcomes, the PMF of X[n] depends on only the
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outcome of the previous sample X[n - 1] so that

745

P[X[n] = jlX[n - 1] = i , X[n - 2] = k, ... , X[O] = l] = P[X[n] = j lX[n - 1] = i].

Using the concept of a PMF this is equivalent to

PX[nllX[n-I] ,...,X [O] = PX[nllX[n-I ]' (22.3)

This implies that the joint PMF only depends on the product of the first-order

conditional PMFs and the initial probabilities, for example

PX[0] ,X [I] ,X[2]

=

PX[211X[1 ],X[O]PX[l] IX[O]PX [0]

PX[211X[I] PX[lllX[O]
'-..--" '-..--"

conditional conditional
probability probability

PX[O]
~

initial
probability

As mentioned previously, this is an extension of the idea of independence in that

it asserts a type of conditional independence. Most importantly, the joint PMF is

obtained as the product of first-order conditional PMFs. An example follows.

Example 22.1 - A coin with memory

Assume that a coin is tossed three times with the outcome of a head represented by

a 1 and a tail by a O. If the coin has memory and is modeled by the state probability

diagram of Figure 22.2, determine the probability of the sequence HTH. Note that

the conditional probabilities are equivalent to those in Example 4.10. Writing the

joint probability in the more natural order of increasing time, we have

P[X[O] = 1, X[l] = 0, X [2] = 1] = P[X[O] = l]P[X[l] = OIX[O] = 1]

·P[X[2] = lIX[l] = 0]

( ~) (~) (~) = 116,

Hence, the sequence HTH is less probable than for a fair coin without memory for

which 3 independent tosses would yield a probability of 1/8. Can you explain why

this is less probable?

o
We will now use the terminology of the introduction to refer to the conditional

probabilities P[X[n] = jlX[n - 1] = i] as the state transition probabilities. Note

that they are assumed not to depend on n and therefore the Markov chain is said

to be homogeneous. To simplify the notation further and to prepare for subsequent

probability calculations we denote the state transition probabilities as

Pij = P[X[n] = jlX[n - 1] = i] i = 0,1 , ... ,K - 1; j = 0,1 , ... ,K - 1. (22.4)

This is the conditional probability of observing an outcome j given that the previous

outcome was i. It is also said that Pij is the probability of the chain moving from
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state i to state j, but keep in mind that it is a conditional probability. In the case

of a two-state Markov chain or K = 2, we have i = 0, 1; j = 0, 1 and the state

transition probabilities are most conveniently arranged in a matrix P. From (22.1)

we have

P = [POO POI] (22.5)
P lO Pn

which as previously mentioned is the transition probability matrix. Note that the

sum of the elements along each row must be one since they represent all the values

of a conditional PMF. In accordance with the assumption of homogeneity P is a

constant matrix. Finally, we define the state probabilities at time n as

pi[n] = P[X[n] = i] i = 0, 1, ... ,K - 1. (22.6)

(22.7)

This is the probability of observing an outcome i at time ri or equivalently the PMF

of X[n]. This notation is somewhat at odds with our previous notation, which would

be PX[n][i], but is a standard one. The PMF depends on n and it is this PMF that

we will be most concerned. In particular, how the PMF changes with n will be of

interest. Hence, a Markov chain is in general a nonstationary random process. For

ease of notation and later computation we also define the state probability vector for

K = 2 as

p[n] = [ porn] ] .
PI[n]

A summary of these definitions and notation is given in Table 22.1. An exam­

ple is given next to illustrate the utility of definitions (22.4) and (22.6) and their

vector/matrix representations of (22.5) and (22.7).

Example 22.2 - Two-state Markov chain

Consider the computation of P[X[n] = j] for a two-state Markov chain (K = 2).

Then,

P[X[n] =j]

I

L P[X[n -1] = i , X[n] = j]
i=O

I

L P[X[n] = jlX[n - 1] = i]P[X[n - 1] = i]
i=O

which can now be written as

I

pj[n] = LPijPi[n -1]
i=O

j = 0,1.

In vector/matrix notation we have

Jporn] ..PI[n] J, = Jporn - 1] v PI[n - 1] l [;~~ ;~~]
pT[n] pT[n-l] ~



22.3. DEFINITIONS 747

Terminology Description Notation

Random process DTDV X[n] n = 0,1, ...

State Sample space k = 0,1, ... ,J( - 1

State
probability PMF of X[n] p[n] = [porn] ... PK-dn]V
vector

pdn] = P[X[n] = k]

[ P

oo POI ...
PO,K-l ]

State transition PlO Pn ... PI K-I

probability matrix
Conditional prob. p=

P K ~ ; ' K - lP K ~ I , O PK-I,l ...

Pi j = P[X[n] = jlX[n - 1] = i]

Initial state
PMF of X[O] prO]probability vector

Table 22.1: Markov chain definitions and notation.

or

(22.8)

The evolution of the state probability vector in time is easily found by post-multiplying

the previous state probability vector (in row form) by the transition probability ma­

trix.

<:;
Note that we have defined p[n] as a column vector in accordance with our usual

convention. Other textbooks may use row vectors. A numerical example follows.

Example 22.3 - Golfer one-putting

From Figure 22.2 we have the transition probability matrix and initial state prob­

ability vector as



748

To find p[l] we use (22.8) to yield

pT[l]

CHAPTER 22. MARKOV CHAINS

pT[O]p

[
3 n1

~ ] 4
2 1

2
5 i ].8"

As expected the elements of p[l] sum to one. Also, note that pill] = 3/8 < 1/2,

which means that initially the probability of a one-putt is 1/2 but after the first

hole, it is reduced to 3/8. Can you explain why? We can continue in this manner

to compute the state probability vector for n = 2 as

and so forth for all n.

22.4 Computation of State Probabilities

We are now in a position to determine p[n] for all n. The key of course is the

recursion of (22.8). In a slightly more general form where we wish to go from p[nIJ

to p[n2], the resulting equations are known as the Chapman-Kolmogorovequations.

For example, if n2 = nl + 2, then

pT[n2 -l]P

(pT[n2 - 2]P)P

pT[nl]p2.

The matrix p 2 is known as the two-step transition probability matrix. It allows the

state probabilities for two steps into the future to be found if we know the state

probabilities at the current time. In general, then we see that

as is easily verified, where P" is the n-step transition probability matrix. In partic­

ular, if nl = 0, then

n = 1,2, .. . (22.9)

which can be used to find the state probabilities for all time. These probabilities can

exhibit markedly different behaviors depending upon the entries in P. To illustrate
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1 - a 1- f3

f3

Figure 22.3: General two-st ate probability diagram.

this consider the two-state Markov chain with the state probability diagram shown

in Figure 22.3. This corresponds to the transition probability matrix

p=[l- a a ]
f3 1- f3

(22.10)

where 0 ~ a ~ 1 and 0 ~ f3 ~ 1. As always the rows sum to one. We give an

example and then genera lize the results.

Example 22.4 - State probability vector computation for all n

Let a = f3 = 1/2 and pT[O] = [10] so that we are intially in st ate 0 and the

transition to eit her of the st ates is equally probable. Then from (22.9) we have

pT [n] = pT[O]pn

[ 1 o ] [ : :r
pT[l] = [ 1 o ] [ : !J ~ [1 1]2

pT[2] [ 1 o] [:tr= [
1 1]2

Clearly, pT[n ] = [ 1 1] for all n ~ 1. The Markov cha in is said to be in steady­

sta te for n ~ 1. In addit ion, for n ~ 1, the PMF pT[n] = [1 1] is called the

steady-state PMF.

o
More generally, t he st ate probabilities of a Markov chain mayor may not approach

a steady-state value. It dep end s upon the form of P. To study the behavior more

thoroughly we require a means of det ermining P ". To do so we next review the

diagonalizat ion of a matrix using an eigenanalysis (see also Appendix D).
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Computing Powers of P

CHAPTER 22. MARKOV CHAINS

Assuming that the eigenvalues of P are distinct, it is possible to find eigenvectors

Vi that are linearly independent. Arranging them as the columns of a matrix and

assuming that K = 2, we have the modal matrix Y = [VI V2] which is a nonsingular

matrix since the eigenvectors are linearly independent. Then we can write that

y-1py = A (22.11)

where A = diag(Al ' A2) and Ai is the eigenvalue corresponding to the ith eigenvector

of P . Now from (22.11) we have that P = YAy-1 and therefore, the powers of P

can be found as follows.

p 2 (YAy-1)(YAy-l ) = YA2y-1

p 3 p 2p = (YA2y-I)YAy-1 = YA3y-1

and in general we have that

(22.12)

But since A is a diagonal matrix its powers are easily found as

and finally we have that

(22.13)

It should be observed that the eigenvectors need not be normalized to unity length

for (22.13) to hold . As an example, if

P=[~ t]
then the eigenvalues are found from the characteristic equation as the solutions of

det(P - AI) = O. This yields the equation (1/2 - A)(1 - A) = 0 which produces

Al = 1/2 and A2 = 1. The eigenvectors are found from

(P - AII)VI ~ [ ~ t] VI = 0 =} V, = [ ~ ]

(P - A2I)V2 = [-01 3] V2 ~ 0 =} V2 ~ [ : ]
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and hence the modal matrix and its inverse are

v [VI V2] = [~ ~]

V-I [~~1 ].
Finally, for n ~ 1 we can easily find the powers of P from (22.13) as

This can easily be verified by direct multiplication of P .
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Now returning to the problem of determining the state probability vector for

the general two-state Markov chain, we need to first find the eigenvalues of (22.10).

The characteristic equation is

[
l - O: - A 0: ]

det (P - AI) = det [3 1 _ [3 _ A = 0

which produces (1 - 0: - A)(l - [3 - A) - 0:[3 = 0 or

A2 + (0:+ [3 - 2)A + (1 - 0: - (3) = O.

Letting r = 0:+ [3 , which is nonnegative, we have that A2 + (r - 2)A + (1 - r) = 0

for which the solution is

-(r - 2) ± J(r - 2)2 - 4(1 - r)

2
-(r-2)±r

2
1 and 1 - r .

Thus, the eigenvalues are Al = 1 and A2

corresponding eigenvectors as

1 - 0: - [3. Next we determine the

{P - AjI)vj ~ [fi" ~f3] vi ~ 0 => vi = [ : ]

{P - A2I)v2 ~ [~ :] V2 = 0 => V2 ~ [ _1~ ]
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and therefore the modal matrix and its inverse are

v

V -I -1 ]
1 .

With the matrix

we have

(22.14)

pn _ _ 1 [1 1] [ 1 0 ] [_fi -11]
- 1+f3/a 1 -~ 0 (l-a-f3)n -1

and after some algebra

pn = [ar a : ~] + (1 - a - f3t [:i -~~ ~ ].
a+ ~ a+ f3 a+ f3 a+f3

We now examine three cases of interest. They are distinguished by the value that

>'2 = l-a- f3 takes on. Clearly, as seen from (22.14) this is the factor that influences

the behavior of P" with n. Since a and f3 are both conditional probabilities we must

have that 0::; a+ f3::; 2 and hence -1 ::; >'2 = l-a- f3 ::; 1. The cases are delineated

by whether this eigenvalue is st rictly less than one in magnitude or not.

Case 1. -1 < 1 - a - f3 < 1

Here 11 - a - f31< 1 and therefore from (22.14) as n -+ 00

pn -+ [01 a:
f3].

a+f3 a+ f3

As a result ,

= [~ a~ {3]

(22.15)

for any p[O]. Hence, the Markov chain approaches a steady-state irregardless

of the initial state probabilities. It is said to be an ergodic Markov chain,

the reason for which we will discuss later. Also , the state probability vector

approaches the steady-state probability vector pT[oo], which is denoted by

T_[ J-[JL a]7r - 7fo 7fl - a+f3 a+f3 .

Finally, note that each row of P" becomes the same as n -+ 00.

(22.16)
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Case 2. 1 - a - (3 = 1 or a = (3 = 0

If we draw the state probability diagram in this case, it should become clear

what will happen. This is shown in Figure 22.4a, where the zero transition

probability branches are omitted from the diagram. It is seen that there is no

chance of leaving the initial state so that we should have p[n] = p[O] for all n.

To verify this , for a = (3 = 0, the eigenvalues are both 1 and therefore A = I.

Hence, P = I and P" = I. Here the Markov chain also attains steady-state

and 1T" = p[O] but the steady-state PMF depends upon the initial probability

vector, unlike in Case 1. Note that the only possible realizations are 0000 ...

and 1111 ....

a=l

cG
1-a=1

(a) 0: = f3 = 0

GD
1-(3=1 (3=1

(b) 0: = f3 = 1

Figure 22.4: State probability diagrams for anomalous behaviors of two-state

Markov chain.

Case 3. 1 - a - (3 = -lor a = (3 = 1

It is also easy to see what will happen in this case by referring to the state

probability diagram in Figure 22.4b. The outcomes must alternate and thus

the only realizations are 0101 ... and 1010 ... , with the realization generated

depending upon the initial state. Unlike the previous two cases, here there are

no steady-state probabilities as we now show. From (22.14) we have

pn = [t n+ (_1)n [!! -l]
[0

1
01 ]= furne~n

[~ ~] for n odd.

Hence, the state probability vector is
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pT[n] pT[O]pn = [pO[O] PI[O]] pn

{

[ pO[0] PI[0]] for n even

[PI[O] Po [0] ] for n odd.

As an example, if pT[O] = [1/4 3/4], then

T {[ i i] for n even
p [n] =

[i i] for n odd

as shown in Figure 22.5. It is seen that the state probabilities cycle between

two PMFs and hence there is no steady-state.

.'0.8

>:: 0.6
o
~

0.4

0.2

n

0.8

>:: 0.6

~

0.4

0.2

o
o 2 4

n
6 8 10

(a) porn] = P[X[n] = 0] (b) pI[n] = P[X[n] = 1]

Figure 22.5: Cycling of state probability vector for Case 3.

The last two cases are of little practical importance for a two-state Markov chain

since we usually have 0 < Q < 1 and 0 < f3 < 1. However, for a K-state Markov

chain it frequently occurs that some of the transition probabilities are zero (corre­

sponding to missing branches of the state probability diagram and an inability of the

Markov chain to transition between certain states). Then, the dependence upon the

initial state and cycling or periodic PMFs become quite important. The interested

reader should consult [Gallagher 1996] and [Cox and Miller 1965] for further details.

We next return to our golfing friend.

Example 22.5 - One-putting

Recall that our golfer had a transition probability matrix given by

h[i n
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It is seen from (22.10) that a = 1/4 and {3 = 1/2 and so this corresponds to Case

1 in which the same steady-state probability is reached regardless of the initial

probability vector. Hence , as n ~ 00, P " will converge to a constant matrix and

therefore so will p [n]. After many rounds of golf the probability of a one-putt or

of going to state 1 is found from the second element of the stationary probability

vector zr. This is from (22.16)

7r
T = [ 1ro 1rl] [ (Jp o:~ p

= [m m]
[~ ~]

so that her probability of a one-putt is now only 1/3 as we surmised by examination

of Figure 22.1. At the first hole it was pdO] = 1/2. To determine how many holes

she must play until this steady-state probability is attained we let this be n = n ss

and determine from (22.14) when (1 - a - (3 )nss = (1/4)n ss ~ O. This is about

n ss = 10 for which (1/4)10 = 10- 6
. The actual state probability vector is shown in

Figure 22.6 using an initial state probability of pT[O] = [1/2 1/2]. The steady-state

values of 7r = [2/3 1/3]T are also shown as dashed lines.

f-- - - ..., - - - - >-- - - -

.'.

- - ..J - - - - >---< - - -
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~ 0.6
o
I::l..

0.4

0.2

o
o 2 4

n
6 8 10

0.8

~ 0.6

~

0.4

0.2

o
o 2 4

n
6 8 10

(a) porn] = P[X[n] = 0] (b) pI(n] = P[X[n] = 1]

Figure 22.6: Convergence of state probability vector for Case 1 with a = 1/4 and

{3 = 1/2.
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22.5 Ergodic Markov Chains

We saw in the previous section that as n -+ 00, then for some P the state probability

vector approaches a steady-state value irregardless of the initial state probabilities.

This was Case 1 for which each element of P was nonzero or

[
I - a a ]

P= (3 1-(3 >0

where the "> 0" is meant to indicate that every element of P is greater than zero.

Equivalently, all the branches of the state probability diagram were present. A

Markov chain of this type is said to be ergodic in that a temporal average is equal

to an ensemble average as we will later show. The key requirement for this to be

true for any K-state Markov chain is that the K x K transition probability matrix

satisfies P > O. The matrix P then has some special properties. We already have

pointed out that the rows must sum to one; a matrix of this type is called a stochastic

matrix, and for ergodicity, we must have P > 0; a matrix satisfying this requirement

is called an irreducible stochastic matrix. The associated Markov chain is known

as an ergodic or irreducible Markov chain. A theorem termed the Perron-Frobenius

theorem [Gallagher 1996] states that ifP > 0, then the transition probability matrix

will always have one eigenvalue equal to 1 and the remaining eigenvalues will have

magnitudes strictly less than 1. Such was the case for the two-state probability

transition matrix of Case 1 for which Al = 1 and IA21 = 11 - a - (31 < 1. This

condition on P assures convergence of P" to a constant matrix. Convergence may

also occur if some of the elements of P are zero but it is not guaranteed. A slightly

more general condition for convergence is that P" > 0 for some n (not necessarily

n = 1). An example is

(see Problem 22.13).

We now assume that P > 0 and determine the steady-state probabilities for a

general K-state Markov chain. Since

pT[n] = pT[n - I]P

and in steady-state we have that pT[n - 1] = pT[n] = pT[oo] , it follows that

pT[oo] = pT[oo]P.

Letting the steady-state probability vector be 1T" = p[oo], we have

1T"T = 1T"T p

and we need only solve for 1T" . An example follows.

(22.17)
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E xample 22.6 - T wo-state Markov chain

We solve for the steady-state probability vector for Case 1. From (22.17) we have

[7fO 7f1] = [7fO 7f1] [ 1 ~ a 1 ~ (3 ]

so that

7fo (1 - a)7fo + (37f1

7f1 = a7fo + (1 - (3)7f1

or

o -a7fo + (37f1

o a7fo - (37f1.

The yields 7f1 = (a j (3)7fo since the two linear equations are identical. Of course, we

also require that 7fo + 7f1 = 1 and so this forms the second linear equation. The

solution then is

7fo
(3

a+(3
a

a+(3
(22.18)

and agrees with our previous results of (22.16).

c
It can further be shown that if a steady-state probability vector exists (which will be

the case if P > 0) , then the solution for 7r is unique [Gallagher 1996]. Finally, note

that if we intialize the Markov chain with prO] = zr, then since pT[l ] = pT[O]p =
7r

T p = 7r
T

, the state probability vector will be 7r for n ~ O. T he Markov chain

is then stationary since the state probability vector is the same for all nand 7r is

therefore refer red to as the stationary probability vector. We will henceforth use this

terminology for zr.

Another observation of importance is that if P > 0, then P " converges, and

it converges to P ?", whose rows are identical. This was borne out in (22.15) and

is true in general (see Problem 22.17) . (Note that this is not true for Case 2 in

which although P " converges , it converges to I , whose rows are not the same.) As

a result of this property, the steady-state value of the state probability vector does

not depend upon the initial probabilities since

pT[n] pT[O]pn

= [ polO] PliO] ] [ +.~ P ]+ pT[OJ(1 -" - fJ)n [ _.~ g -p~P ]
a+13 a+13 a+13 a+13,

v
,

-tOT as n-too

--+ [ 13 ~ ] = 7r
T

a+13 a+13
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independent of pT[O] . Also, as previously mentioned, if P > 0, then as n -+ 00

p n -+ [ aip

a+p

a~ p ]

a+p

whose rows are identical. As a result , we have that

j = 0,1 , . .. , J( - 1. (22.19)

Hence, the stationary probabilities may be obtained either by solving the set of

linear equations as was done for Example 22.6 or by examining a row of P" as

n -+ 00. In Section 22.7 we give the general solution for the stationary probabilities.

We next give another example.

Example 22.7 - Machine failures

A machine is in operation at the beginning of day n = O. It may break during

operation that day in which case repairs will begin at the beginning of the next

day (n = 1). In this case , the machine will not be in operation at the beginning

of day n = 1. There is a probability of 1/2 that the technician will be able to

repair the machine that day. If it is repaired, then the machine will be in operation

for day n = 2 and if not, the technician will again attempt to fix it the next day

(n = 2). The probability that the machine will operate without a failure during the

day is 7/8. After many days of operation or failure what is the probability that the

machine will be working at the beginning of a day? Here there are two states, either

X[nJ= 0 if the machine is not in operation at the beginning of day n, or X[nJ = 1 if

the machine is in operation at the beginning of day n. The transition probabilities

are given as

POI

Pn

P[machine operational on day nlmachine nonoperational on day n - IJ = ~

= P[machine operational on day nlmachine operational on day n - IJ = ~
8

7rO

and so the state transition probability matrix is

p~ [: n
noting that POO = 1 - POI = 1/2 and PIO = 1 - Pn = 1/8. This Markov chain is

shown in Figure 22.7. Since P > 0, a steady-state is reached and the stationary

probabilities are from (22.18)

(3 1 1
__ =_8 _

a+(3 ~ + l 5

4
7r1 = 1 - 7ro = 5'
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l-a= ~ I - f 3 = ~

f3 - 1
-8

o- machine nonoperational at beginning of day

1 - machine operational at beginning of day

Figure 22.7: State probability diagram for Example 22.7.

The machine will be in operation at the beginning of a day with a probability of

0.8.

o
Note that in the last example the states of 0 and 1 are arbitrary labels. They could

just as well have been "nonoperat ional" and "operat ional" . In problems such as

these the state description is chosen to represent meaningful attributes of inter­

est . One last comment concerns our apparent preoccupation with the steady-state

behavior of a Markov chain. Although not always true, we are many times only

interested in this because the choice of a starting time, i.e. , at n = 0, is not easy

to specify. In the previous example, it is conceivable that the machine in question

has been in operation for a long time and it is only recently that a plant manager

has become interested in its failure rate. Therefore, its initial starting time was

probably some time in the past and we are now observing the states for some large

n. We continue our discussion of steady-state characteristics in the next section.

22.6 Further Steady-State Characteristics

22.6.1 State Occupation Time

It is frequently of interest to be able to determine the percentage of time that a

Markov chain is in a particular state, also called the state occupation time. Such

was the case in Example 22.7, although a careful examination reveals that what we

actually computed was the probability of being operational at the beginning of each

day. In essence we are now asking for the relative frequency (or percentage of time)

of the machine being operational. This is much the same as asking for the relative

frequency of heads in a long sequence of independent fair coin tosses. We have

proven by the law of large numbers (see Chapter 15) that this relative frequency
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must approach a probability of 1/2 as the number of coin tosses approaches infinity.

For Markov chains the trials are not independent and so the law of large numbers

does not apply directly. However , as we now show, if steady-state is attained, then

the fraction of time the Markov chain spends in a particular state approaches the

steady-state probability. This allows us to say that the fraction of time that the

Markov chain spends in state j is just 'Trj.

Again consider a two-state Markov chain with states 0 and 1 and assume that

p > O. We wish to determine the fraction of time spent in state 1. For some large

n this is given by
1 n+N-I

N L X[j]
j=n

which is recognized as the sample mean of the N state outcomes for {X[n], X[n +
1], ... ,X[n + N - I]}. We first determine the expected value as

But

Ex!o] [E [ ~ n};l XiiI X[O] = i]]

[

1 n+N-I ]

Ex [0] N ~ E[X[j]IX[O] = i] . (22.20)

E[X[j]IX[O] = i] P[X[j] = 1IX[0] = i]

[Pj]il -+ 'Trl

as j ~ n -+ 00 which follows from (22.19). The expected value does not depend

upon the initial state i, Therefore, we have from (22.20) that

[
1n+N-I] [1 n+N-I ]

E N ~ X[j] -+ Ex[o] N ~ 'Trl = 'Trl·

Thus, as n -+ 00, the expected fraction of time in state 1 is 'Trl. Furthermore, although

it is more difficult to show, the variance of the sample mean converges to zero as

N -+ 00 so that the fraction of time (and not just the expected value) spent in state

1 will converge to 'TrIor
1 n+N-I

N L X[j] -+ 'Trl·
j=n

(22.21)

This is the same result as for the repeated independent tossing of a fair coin. The re­

sult stated in (22.21) is that the temporal mean is equal to the ensemble mean which

says that for large n , i.e. , in steady-state, ~ 'Lj::/:-l X[j] -+ 'Trl as N -+ 00. This
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is the property of ergodicity as previously described in Chapter 17. Thus, a Markov

chain that achieves a steady-state irregardless of the initial state probabilities is

called an ergodic Markov chain.

Returning to our golfing friend, we had previously questioned the fraction of

the time she will achieve one-putts. We know that her stationary probability is

7fl = 1/3. Thus, after playing many rounds of golf, she will be one-putting about

1/3 of the time.

22.6.2 Mean Recurrence Time

Another property of the ergodic Markov chain that is of interest is the average

number of steps before a state is revisited. For example, the golfer may wish to

know the average number of holes she will have to play before another one-putt

occurs, given that she has just one-putted. This is equivalent to determining the

average number of steps the Markov chain will undergo before it returns to state

1. The time between visits to the same state is called the recurrence time and the

average of this is called the mean recurrence time. We next determine this average.

Let TR denote the recurrence time and note that it is an integer random variable

that can take on values in the sample space {I , 2, ... }. For the two-state Markov

chain shown in Figure 22.3 we first assume that we are in state 1 at time n = no.

Then, the value of the recurrence time will be 1, or 2, or 3, etc. if X[no + 1] = 1,

or X[no + 1] = O,X[no + 2] = 1, or X[no + 1] = O,X[no + 2] = O,X[no + 3] = 1,
etc., respectively. The probabilities of these events are 1 - {3, {3a., and {3(1 - a)a,

respectively as can be seen by referring to Figure 22.3. In general, the PMF is given

as

P[T kl' " 11 . 1] {I - {3 k = 1
R = initia y III state = {3a(l _ a)k-2 k 2:: 2

which is a geometric-type PMF (see Chapter 5). To find the mean recurrence time

we need only determine the expected value of TR. This is

00

E[TRlinitially in state 1] = (1 - (3) + L k [{3a(l - a)k-2]

k=2
00

(1 - (3) + a{3 L(l + 1)(1 - a)l-l (let l = k - 1)

1=1

(1 - (3) + [a{3 f(1 -a)l-l + {3f l ?(1 - ... a.)I_l~]
1=1 1=1 geom(a) PMF

1 1
(1 - (3) + a{31 _ (1 _ a) + {3-;; (from Section 6.4.3)

a+{3
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so that we have finally

CHAPTER 22. MARKOV CHAINS

E[TRlinitially in state 1] = ~.
11"1

It is seen that mean recurrence time is the reciprocal of the stationary state prob­

ability. This is much the same result as for a geometric PMF and is interpreted as

the number of failures (not returning to state 1) before a success (returning to state

1). For our golfer , since she has a stationary probability of one-putting of 1/3, she

must wait on the average 1/(1/3)=3 holes between one-putts. This agrees with our

simulation results shown in Figure 22.1.

22.7 K-State Markov Chains

Markov chains with more than two states are quite common and useful in practice

but their analysis can be difficult . Most of the previous properties of a Markov

chain apply to any finite number K of states. Computation of the n-step transition

probability matrix is of course more difficult and requires computer evaluation. Most

importantly, however, is that steady-state is still attained if P > O. The solution

for the stationary probabilities is given next. It is derived in Appendix 22A.

The stationary probability vector for a K-state Markov chain is 7r
T = [11"011"1 . . .

1I"K-1]. Its solution is given as

(22.22)

currently cloudy (state 1)

currently raining (state 0)

currently sunny (state 2) :

where I is the K x K identity matrix and 1 = [11 .. . IV, which is a K x 1 vector

of ones. We next give an example of a 3-state Markov chain.

Example 22.8 - Weather modeling

Assume that the weather for each day can be classified as being either rainy (state

0) , cloudy (state 1), or sunny (state 2). We wish to determine in the long run

(steady-state) the percentage of sunny days. From the discussion in Section 22.6.1

this is the state occupation time, and is equal to the stationary probability 11"2. To

do so we assume the conditional probabilities

431
Poo = 8'POI = 8'P02 = 8

323
P lO = 8'Pn = 8'P12 = 8

134
P20 = 8 ,P21 = 8 ,P22 = 8'

This says that if it is currently raining, then it is most probable that the next day

will also have rain (4/8). The next most probable weather condition will be cloudy

for the next day (3/8), and the least probable weather condition is sunny for the
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next day (1/8) . See if you can rationalize the other entries in P . T he complete state

transition probability matrix is

p ~ [!!n
and the state probability diagram is shown in Figure 22.8. We can use this to

1
'8

4
'8

4
'8

0: rainy

1 : cloudy
2: sunny

1
'8

Figure 22.8: Three-state probability diagram for weather example.

determine the probability of the weather conditions on any day if we know the

weather on day n = O. For example, to find the probability of the weather on

Saturday knowing that it is raining on Monday, we use

pT [n] = pT [O]pn

with n = 5 and pT [O] = [1 0 0]. Using a computer to evalute this we have that

[

0.3370 ]

p[5] = 0.3333

0.3296

and it appears that the possible weather conditions are nearly equiprobable. To find

the stationary probabilities for the weather conditions we must solve 1r
T = 1r

T p .

Using the solution of (22.22) , we find that
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As n -+ 00, it is equiprobable that the weather will be rainy, cloudy, or sunny.

Furthermore, because of ergodicity the fraction of days that it will be rainy, or be

cloudy, or be sunny will all be 1/3.

<>
The previous result that the stationary probabilities are equal is true in general for

the type of transition probability matrix given. Note that P not only has all its rows

summing to one but also its column entries sum to one for all the columns. This is

called a doubly stochastic matrix and always results in equal stationary probabilities

(see Problem 22.27).

22.8 Computer Simulation

The computer simulation of a Markov chain is very simple. Consider the weather

example of the previous section. We first need to generate a realization of a random

variable taking on the values 0,1,2 with the PMF po[0],pI[0],P2[0]. This can be

done using the approach of Section 5.9. Once the realization has been obtained,

say x[O] = i, we continue the same procedure but must choose the next PMF, which

is actually a conditional PMF. If x[O] = i = 1 for example, then we use the PMF

p[Oll] = PlO,p[111] = Pn,p[211] = P12, which are just the entries in the second row

of P. We continue this procedure for all n 2:: 1. Some MATLAB code to generate a

realization for the weather example is given below.

clear all
rand ( , state' ,0)

N=1000; %set number of samples desired

pO=[1/3 1/3 1/3]'; %set initial probability vector

P=[4/8 3/8 1/8;3/8 2/8 3/8;1/8 3/8 4/8]; % set transition prob. matrix
xi=[O 1 2]'; %set values of PMF

XO=PMFdata(1,xi,pO); %generate X[O] (see Appendix 6B for PMFdata.m

%function subprogram)

i=XO+1; %choose appropriate row for PMF

X(1,1)=PMFdata(1,xi,P(i,:)); %generate X[1]

i=X(1,1)+1; %choose appropriate row for PMF

for n=2:N %generate X[n]

i=X(n-1,1)+1; %choose appropriate row for PMF

X(n,1)=PMFdata(1,xi,P(i,:));

end

The reader may wish to modify and run this program to gain some insight into the

effect of the conditional probabilities on the predicted weather patterns.
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22.9 Real-World Example - Strange Markov

Chain Dynamics

765

It is probably fitting that as the last real-world example, we choose one that ques­

tions what the real-world actually is. Is it a place of determinism, however complex,

or one that is subject to the whims of chance events? Random, as defined by Web­

ster's dictionary, means "lacking a definite plan, purpose, or pattern". Is this a valid

definition? We do not plan to answer this question, but only to present some "food

for thought". The seemingly random Markov chain provides an interesting example.

Consider a square arrangement of 101 x 101 points and define a set of states

as the locations of the integer points within this square. The points are therefore

denoted by the integer coordinates (i,j), where i = 0,1, ... , 100;j = 0,1, ... ,100.

The number of states is K = 1012
. Next define a Markov chain for this set of states

such that the nth outcome is a realization of the random point X[n] = [I[n] J[n]V,
where I[n] and J[n] are random variables taking on integer values in the interval

[0,100]. The initial point is chosen to be X[O] = [1080V and succeeding points

evolve according to the random process:

1. Choose at random one of the reference points (0,0), (100,0), (50, 100).

2. Find the midpoint between the initial point and the chosen reference point and

round it to the nearest integer coordinates (so that it becomes a state output).

3. Replace the initial point with the one found in step 2.

4. Go to step 1 and repeat the process, always using the previous point and one of

the reference points chosen at random.

This procedure is equivalent to the formula

X[n] = [~(x[n -1] + R[nD]
round

(22.23)

where R[n] = h[n]r2[n]V is the reference point chosen at random and [']round

denotes rounding of both elements of the vector to the nearest integer. Note that

this is a Markov chain. The points generated must all lie within the square at integer

coordinates due to the averaging and rounding that is ongoing. Also, the current

output only depends upon the previous output X[n - 1], i.e., justifying the claim

of a Markov chain. The process is "random" due to our choice of R[n] from the

sample space {(O, 0), (100,0) , (50, 100)} with equal probabilities.

The behavior of this Markov chain is shown in Figure 22.9, where the successive

output points have been plotted with the first few shown with their values of n.

It appears that the chain attains a steady-state and its steady-state PMF is zero

over many triangular regions. It is interesting to note that the pattern consists of

3 triangles-one with vertices (0,0), (50,0), (25,50), and the others with vertices
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(50,0), (100,0), (75,50), and (25,50), (75,50), (50, 100). Within each of these trian­

gles resides an exact replica of the whole pattern and within each replica resides

another replica, etc.! Such a figure is called a fractal with this particular one termed

a Sierpinski triangle. The MATLAB code used to produce this figure is given below.

Figure 22.9: Steady-state Markov chain.

%sierpinski.m

%

clear all
rand ( , state' ,0)

r(:,l)=[O 0]'; %set up reference points

r ( : ,2) =[100 0]';

r(:,3)=[50 100]';

xO=[10 80]'; %set initial state

plot(xO(1),xO(2),'.') %plot state outcome as point
axis([O 100 0 100])

hold on
xn_l=xO;
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for n=1:10000 %generate states

j=floor(3*rand(1,1)+1); %choose at random one of three

%reference points

xn=round(O.5*(r(:,j)+xn_l)); %generate new state

plot(xn(1),xn(2),'.') %plot state outcome as point

xn_l=xn; %make current state the previous one for

%next transition

end
grid

hold off
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The question arises as to whether the Markov chain is deterministic or random.

We choose not to answer this question (because we don't know the answerl). Instead

we refer the interested reader to the excellent book [Peitgen, Jurgens, and Saupe

1992] and also the popular layman's account [Gleick 1987] for further details. As

a more practical application, it is observed that seemingly complex figures can be

generated using a simple algorithm. This leads to the idea of data compression in

which the only information needed to store a complex figure is the details of the

algorithm. A field of sunflowers is such an example for which the reader should

consult [Barnsley 1988] on how this is done.
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Problems

22.1 (w) A Markov chain has the states "A" and "B" or equivalently 0 and 1. If

the conditional probabilities are P[AIB] = 0.1 and P[BIA] = 0.4, draw the
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state probability diagram. Also, find the transition probability matrix.

22.2 C...:...) (f) For the state probability diagram shown in Figure 22.2 find the prob­

ability of obtaining the outcomes X[n] = 0,1 ,0,1 ,1 for n = 0,1 ,2,3,4, respec­

tively.

22.3 (f) For the state probability diagram shown in Figure 22.3 find the probabil­

ities of the outcomes X[n] = 0,1 ,0,1 ,1 ,1 for n = 0,1 ,2,3,4,5, respectively

and also for X[n] = 1,1 ,0,1 ,1 ,1 for n = 0,1 ,2,3,4,5, respectively. Compare

the two and explain the difference.

22.4 (w) In some communication systems it is important to determine the percent­

age of time a person is talking. From measurements it is found that if a person

is talking in a given time interval, then he will be talking in the next time in­

terval with a probability of 0.75. If he is not talking in a time interval, then

he will be talking in the next time interval with a probability of 0.5. Draw the

state probability diagram using the states "talking" and "not talking" .

22.5 C:.:....) (t) In this problem we give an example of a random process that does

not have the Markov property. The random process is defined as an exclusive

OR logical function. This is Y[n] = X[n] ED X[n - 1] for n ~ 0, where X[n]
for n ~ 0 takes on values 0 and 1 with probabilities 1 - p and p, respectively.

The X[n],s are lID. Also, for n = 0 we define Y[O] = X[O]. The definition

of this operation is that Y[n] = 0 only if X[n] and X [n - 1] are the same

(both equal to 0 or both equal to 1), and otherwise Y[n] = 1. Determine

P[Y[2] = 1IY[1] = 1, Y[O] = 0] and P[Y[2] = 1IY[1] = 1] to show that they

are not equal in general.

22.6 (f) For the transition probability matrix given below draw the corresponding

state probability diagram.

22.7 (w) A fair die is tossed many times in succession. The tosses are independent

of each other. Let X[n] denote the maximum of the first n + 1 tosses. De­

termine the transition probability matrix. Hint: The maximum value cannot

decrease as n increases.

22.8 (w) A particle moves along the circle shown in Figure 22.10 from one point

to the other in a clockwise (CW) or counterclockwise (CCW) direction. At

each step it can move either CW 1 unit or CCW 1 unit. The probabilities

are P[CCW] = p and P[CW] = 1 - p and do not depend upon the current
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2
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Figure 22.10: Movement of particle along a circle for Problem 22.8.

location of the particle. For the states 0, 1,2,3 find the transition probability

matrix.

22.9 c.:..:..) (w,c) A digital communication system transmits a 0 or a 1. After 10

miles of cable a repeater decodes the bit and declares it either a 0 or a 1. The

probability of a decoding error is 0.1 as shown schematically in Figure 22.11.

It is then retransmitted to the next repeater located 10 miles away. If the

repeaters are all located 10 miles apart and the communication system is 50

miles in length, find the probability of an error if a 0 is initially transmitted.

Hint: You will need a computer to work this problem.

0.9
o ~--.--~

1
0.9

o

1

Figure 22.11: One section of a communication link.

22.10 (w,c) If a = (3 = 1/4 for the state probability diagram shown in Figure 22.3,

determine n so that the Markov chain is in steady-state. Hint: You will need

a computer to work this problem.

22.11 (;..:..) (w) There are two urns filled with red and black balls. Urn 1 has 60%

red balls and 40% black balls while urn 2 has 20% red balls and 80% black

balls. A ball is drawn from urn 1, its color noted, and then replaced. If it is

red , the next ball is also drawn from urn 1, its color noted and then replaced.

If the ball is black, then the next ball is drawn from urn 2, its color noted

and then replaced. This procedure is continued indefinitely. Each time a ball

is drawn the next ball is drawn from urn 1 if the ball is red and from urn 2

if it is black. After many trials of this experiment what is the probability of



770 CHAPTER 22. MARKOV CHAINS

drawing a red ball? Hint: Define the states 1 and 2 as urns 1 and 2 chosen.

Also, note that P[red drawn] = P[red drawnlurn 1 chosen]P[urn 1 chosen] +
P[red drawnlurn 2 chosen]P[urn 2 chosen].

22.12 C.':"') (w) A contestant answers questions posed to him from a game show

host. If his answer is correct, the game show host gives him a harder question

for which his probability of answering correctly is 0.01. If however, his answer

is incorrect, the contestant is given an easy question for which his probability

of answering correctly is 0.99. After answering many questions, what is the

probability of answering a question correctly?

22.13 (f) For the transition probability matrix

p ~ [~ ; n
will P" converge as n -+ oo? You should be able to answer this question

without the use of a computer. Hint: Determine p2.

22.14 C:.:J (w,c) For the transition probability matrix

1 1 0 02 2
1 3 0 0

p= 4: 4:
1 1 1 1
4: 4: 4: 4:
1 1 1 1
4: 4: 4: 4:

does the Markov chain attain steady-state? If it does, what are the steady­

state probabilities? Hint: You will'need a computer to evaluate the answer.

22.15 (w,c) There are three lightbulbs that are always on in a room. At the begin­

ning of each day the custodian checks to see if at least one lightbulb is working.

If all three lightbulbs have failed , then he will replace them all. During the day

each lightbulb will fail with a probability of 1/2 and the failure is independent

of the other lightbulbs failing. Letting the state be the number of working

lightbulbs draw the state probability diagram and determine the transition

probability matrix. Show that eventually all three bulbs must fail and the

custodian will then have to replace them. Hint: You will need a computer to

work this problem.

22.16 (f) Find the stationary probabilities for the transition probability matrix

p=[: n
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22.17 (t) In this problem we discuss the proof of the property that if P > 0, the

rows of P" will all converge to the same values and that these values are the

stationary probabilities. We consider the case of K = 3 for simplicity and

assume distinct eigenvalues. Then, it is known from the Perron-Frobenius

theorem that we will have the eigenvalues Al = 1, IA21 < 1, and IA31 < 1.

From (22.12) we have that P" = V Any-I which for K = 3 is

[ 1 ,00n2 ,OO~] [W::~I ]pn = [VI V2 V3] ~ A A

--...-­
w

where W = V-I and W[ is the ith row of W. Next argue that as n -t 00,

P" -t VI wf. Use the relation POOl = 1 (why?) to show that VI = el, where

c is a constant. Next use 7t"Tpoo = 7t"T (why?) to show that WI = dst , where

d is a constant. Finally, use the fact that w[VI = 1 since WY = I to show

that cd = 1 and therefore, poo = 17t"T. The latter is the desired result which

can be verified by direct multiplication of 1 by 7t"T.

22 .18 (f,c) For the transition probability matrix

[

0.1 0.4 0.5]
P = 0.2 0.5 0.3

0.3 0.3 0.4

find plOD using a computer evaluation. Does the form of plOD agree with the

theory?

22.19 t:...:.,,) (f,c) Using the explicit solution for the stationary probability vector

given by (22.22), determine its value for the transition probability matrix given

in Problem 22.18. Hint: You will need a computer to evaluate the solution.

22.20 (w) The result of multiplying two identical matrices together produces the

same matrix as shown below.

[

0.2 0.1 0.7] [0.2 0.1 0.7] [0.2 0.1 0.7]
0.2 0.1 0.7 0.2 0.1 0.7 = 0.2 0.1 0.7 .

0.2 0.1 0.7 0.2 0.1 0.7 0.2 0.1 0.7

Explain what this means for Markov chains.

22.21 (f) For the transition probability matrix

p = [0.99 0.01]
0.01 0.99
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solve for the stationary probabilities. Compare your probabilities to those ob­

tained if a fair headed coin is tossed repeatedly and the tosses are independent.

Do you expect the realization for this Markov chain to be similar to that of

the fair coin tossing?

22.22 (c) Simulate on the computer the Markov chain described in Problem 22.21.

Use pT[O] = [1/2 1/2] for the initial probability vector. Generate a realization

for n = 0, 1, ... ,99 and plot the results. What do you notice about the real­

ization? Next generate a realization for n = 0,1, .. . ,9999 and estimate the

stationary probability of observing 1 by taking the sample mean of the real­

ization. Do you obtain the theoretical result found in Problem 22.21 (recall

that this type of Markov chain is ergodic and so a temporal average is equal

to an ensemble average).

22.23 (w) A person is late for work on his first day with a probability of 0.1. On

succeeding days he is late for work with a probability of 0.2 if he was late the

previous day and with a probability of 0.4 if he was on time the previous day.

In the long run what percentage of time is he late to work?

22.24 (...:....:..-) (f,c) Assume for the weather example of Example 22.8 that the transi­

tion probability matrix is

What is the steady-state probability of rain? Compare your answer to that

obtained in Example 22.8 and explain the difference. Hint: You will need a

computer to find the solution.

22.25 (w,c) Three machines operate together on a manufacturing floor, and each

day there is a possibility that any of the machines may fail. The probability of

their failure depends upon how many other machines are still in operation. The

number of machines in operation at the beginning of each day is represented by

the state values of 0, 1,2,3 and the corresponding state transition probability

matrix is

[

1 0 0 0]
p = 0.5 0.5 0 0

0.1 0.3 0.6 0

0.4 0.3 0.2 0.1

First explain why P has zero entries. Next determine how many days will pass

before the probability of all 3 machines failing is greater than 0.8. Assume

that intially all 3 machines are working. Hint: You will need a computer to

find the solution.
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22.26 L...:..) (w,c) A pond holds 4 fish. Each day a fisherman goes fishing and his

probability of catching k = 0,1,2,3,4 fish that day follows a binomial PDF

with p = 1/2. How many days should he plan on fishing so that the probability

of his catching all 4 fish exceeds 0.9? Note that initially, i.e., at n = 0, all 4

fish are present. Hint : You will need a computer to find the solution.

22.27 (t) In this problem we prove that a doubly stochastic transition probability

matrix with P > 0 produces equal stationary probabilities. First recall that

since the columns of P sum to one, we have that pTl = 1 and therefore argue

that pooT 1 = 1. Next use the results of Problem 22.17 that poo = I1t"T to

show that 1t" = 1/K .

22.28 C:..:,,) (c) Use a computer simulation to generate a realization of the golf ex­

ample for a large number of holes (very much greater than 18). Estimate the

percentage of one-putts from your realization and compare it to the theoretical

results.

22.29 (c) Repeat Problem 22.28 but now estimate the average time between one­

putts. Compare your results to the theoretical value.

22.30 (c) Run the program sierpinski.m given in Section 22.9 but use instead the

initial position X[O] = [5030V. Do you obtain similar results to those shown

in Figure 22.9? What is the difference, if any?
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Solving for the Stationary PMF

We derive the formula of (22.22). The set of equations to be solved (after transpo­

sition) is pT7r = rr or equivalently

(I - pT)7r = O. (22A.l)

Since we have assumed a unique solution, it is clear that the matrix 1 - pT cannot

be invertible or else we would have 7r = O. This is to say that the linear equations

are not all independent. To make them independent we must add the constraint

equation 2 : ~ ( / 1ri = 1 or in vector form this is IT7r = 1. Equivalently, the constraint

equation is lITtt = 1. Adding this to (22A.l) produces

or

(I - pT + 11T )7r = 1.

It can be shown that the matrix 1 - pT + 11T is now invertible and so the solution

is



Appendix A

Glossary of Symbols and

Abbrevations

Symbols

Boldface characters denote vectors or matrices. All others are scalars. All vec­

tors are column vectors. Random variables are denoted by capital letters such as

U, V, w,X ,Y, Z and random vectors by U , V , W , X, Y , Z and their values by corre­

sponding lowercase letters.

*
*

[x]
x +

x

AxB

[A]ij

A(z)
[b]i
Ber(p)

bin(M,p)

xIv
(~)
c

cov(X,Y)

C

angle of

complex conjugate

convolut ion operator, either convolution sum or integral

denotes est imator

denotes is distributed according to

denotes the largest integer ::; x

denotes a number slightly larger than x

denotes a number slightly smaller than x

cartesian product of sets A and B

(i ,j)th element of A

z-transform of a[n] sequence

ith element of b

Bernoulli random variable

binomial random variable

chi-squared distribution with N degrees of freedom

number of combinations of N things taken k at a time

complement of set

covariance of X and Y

covariance matrix
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ex
CX,y

cx [nl , n2]

CX(tl, t2)

o(t)

o[n]
s.,
b.1
b.t

b.x

b.t
det(A)

diag(al1, ... ,aNN)

e i

'fJ
E[·]
E[Xn

]

E[(X - E[x])n]

Ex[·]

Ex,Y[']

Ex[·]

Ey1x[YIX]
Ey1x[Yl xi]

Ey1x[Ylx]
E[X]

E

exp('x')

1
F

Fx(x)

FX1(x)

Fx,y(x,y)

FX1 ,...,XN(Xl,'" , X N )

FYlx(ylx)

covariance matrix of X

covariance matrix of X and Y

covariance sequence of discrete-time random process X[n]

covariance function of continuous-time random process X (t)

Dirac delta function or impulse function

discrete-time unit impulse sequence

Kronecker delta

small interval in frequency 1
small interval in t
small interval in x

time interval between samples

determinant of matrix A

diagonal matrix with elements aii on main diagonal

natural unit vector in ith direction

signal-to-noise ratio

expected value

nth moment

nth central moment

expected value with respect to PMF or PDF of X

expected value with respect to joint PMF or

joint PDF of (X, Y)

expected value with respect to

N-dimensional joint PMF or PDF

shortened notation for EX1,X2,...,XN [.]

conditional expected value considered as random variable

expected value of PMF PYlx[Yjlxi]

expected value of PDF PYIX (ylx)

expected value of random vector X

element of set

exponential random variable

discrete-time frequency

continuous-time frequency

cumulative distribution function of X

inverse cumulative distribution function of X

cumulative distribution function of X and Y

cumulative distribution function of Xl, ... , X N

cumulative distribution function of Y conditioned

onX=x

Fourier transform

inverse Fourier transform

general notation for function of real variable

general notation for inverse function of g(.)



r(X)
r(a, A)

rX,y(J)

geom(p)

h[n]
h(t)

H(J)

H(F)

1-l(z)

IA(x)
I

n
J
8(w,z)

8(x,y)
8(Xl ,...,XN )

8(Yl ,·..,YN )

A

mse

p

px[n]

px(t)

J,I,

i..:.. ,kN )

n

N!

(N)r

NA
N(p, (J2)

N(J,I" C)

Ilxll
(/)

opt

1

Pois(A)

PX[Xi]

px[k]

PX,Y[Xi, Yj]

PX1 " ",XN[XI, ... , XN]

px[x]

PX1 ,,,,,XN[kl, ... , kN]

779

Gamma function

Gamma random variable

coherence function for discrete-time random processes

X[n] and Y[n]
geometric random variable

impulse response of LSI system

impulse response of LTI system

frequency response of LSI system

frequency response of LTI system

system function of LSI system

indicator function for the set A

identity matrix

intersection of sets

A
Jacobian matrix of transformation of w = g(x, y), z = h(x, y)

Jacobian matrix of transformation from y to x

diagonal matrix with eigenvalues on main diagonal

mean square error

mean

mean sequence of discrete-time random process X[n]
mean function of continuous-time random process X (t)
mean vector

multinomial coefficient

discrete-time index

N factorial

equal to N(N - 1)··· (N - r + 1)

number of elements in set A

normal or Gaussian random variable with mean p and variance (J2

multivariate normal or Gaussian random vector with mean J,I,

and covariance C

Euclidean norm or length of vector x

null or empty set

optimal value

vector of all ones

Poisson random variable

PMF of X

PMF of integer-valued random variable X (or px[i], px[j])
joint PMF of X and Y

joint PMF of Xl,· .. , XN

shortened notation for PX1,,,,,XN[XI, ... ,XN]

joint PMF of integer-valued random variables Xl, ... , XN
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PYIX[Yj!Xi]

PXNlxl, ...,X N - l [xNI
Xl,···, XN-l]

PX,y[i ,j]

PYIXUli]

PX(X)

PX,y(X, y)

PXl, oo .,XN(Xl, ... ,XN)

PX(X)

PYlx(ylx)

prE]
r;
Px(f)

PX(z)

Px(F)

Px,y(F)

<PX(W)

<PX,Y(WX,wy)

<PXl ,oo. ,XN(Wl,'" ,WN)
<I> (x)

Q(x)
Q-l(u)

PX,Y
rx[k]

conditional PMF of Y given X = Xi

conditional PMF of XN given Xl, . . ·, XN-l

joint PMF of integer-valued random variables X and Y

conditional PMF of integer-valued random variable Y

given X = i

PDF of X

joint PDF of X and Y

joint PDF of Xl , ... ,XN

shortened notation for PXl,oo.,XN (Xl , .. . ,XN)

conditional PDF of Y given X = X

probability of the event E

probability of error

power spectral density of discrete-time

random process X[n]
z-transform of autocorrelation sequence rx[k]
power spectral density of continuous-time

random process X(t)

cross-power spectral density of discrete-time

random processes X[n] and Y[n]
cross-power spectral density of continuous-time

random processes X (t) and Y (t)

characteristic function of X

joint characteristic function of X and Y

joint characteristic function of Xl, .. ' ,XN

cumulative distribution function of N(o ,1) random variable

probability that a N(o,1) random variable exceeds X

value of N(o,1) random variable that is exceeded

with probability of u

correlation coefficient of X and Y

autocorrelation sequence of discrete-time

random process X[n]
autocorrelation function of continuous-time

random process X(t)

cross-correlation sequence of discrete-time

random processes X[n] and Y[n]
cross-correlation function of continuous-time

random processes X(t) and Y(t)

denotes real line

denotes N-dimensional Euclidean space

autocorrelation matrix

sample space



Sx

SX,Y

SX1,X2" " ,XN

Si

S

0'2

O ' ~
O ' ~ [ n ]

O ' ~ ( t )

s[n]
s

s(t)

t

T

U(a ,b)

U

urn]
u(x)
U(z)

V

var(X)

var(YIXi)

X s

X[n]
x[n]
X(t)

X(t )

X( z)

X
x
X

x

YI(X = Xi)

z
Z-l

o

781

sample space of random variable X

sample space of random variables X and Y

sample space of random variables Xl, X 2 , ..• , XN

element of discrete sample space

element of continuous sample space

variance

variance of random variable X

variance sequence of discrete-time random process X[n]
variance function of continuous-time random process X(t)

discrete-time signal

vector of signal samples

continuous-time signal

continuous time

transpose of matrix

uniform random variable over the interval (a, b)

union of sets

discrete unit step function

unit step function

z-transform of urn] sequence

modal matrix

variance of X

variance of conditional PMF or of PY\X [Yj IXi]

value of discrete random variable

value of continuous random variable

standardized version of random variable X

value for X;

discrete-time random process

realization of discrete-time random process

continuous-time random process

realization of continuous-time random process

z-t ransform of x[n] sequence

sample mean random variable

value of X
random vector (XI,X2 , • •• ,XN)

value (Xl, X2, . · · , XN) of random vector X

random variable Y conditioned on X = Xi

z-transform

inverse z-transform

vector or matrix of all zeros
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Abbreviations

ACF
ACS
AR

AR(p)

ARMA

CCF
CCS
CDF
CPSD
CTCV
CTDV
D/A
dB

DC
DFT
DTCV
DTDV
FFT
FIR

GHz

Hz

IID

IIR

KHz

LSI

LTI

MA

MHz

MSE

PDF
PMF

PSD
SNR

WGN

WSS

autocorrelation function

autocorrelation sequence

autoregressive

autoregressive process of order p

autoregressive moving average

cross-correlation function

cross-correlation sequence

cumulative distribution function

cross-power spectral density

continuous-time/ continuous-valued

continuous-time/ discrete-valued

digital-to-analog

decibel

constant level (direct current)

discrete Fourier transform

discrete-time/ continuous-valued

discrete-time/ discrete-valued

fast Fourier transform

finite impulse response

giga-hertz

hertz

independent and identically distributed

infinite impulse response

kilo-hertz

linear shift invariant

linear time invariant

moving average

mega-hertz

mean square error

probability density function

probability mass function

power spectral density

signal-to-noise ratio

white Gaussian noise

wide sense stationary



Appendix B

Assorted Math Facts and

Formulas

An extensive summary of math facts and formulas can be found in [Gradshteyn and

Ryzhik 1994].

B.l Proof by Induction

To prove that a statement is true, for example,

N N
l:i = 2(N + 1)
i=1

by mathematical induction we proceed as follows:

1. Prove the statement is true for N = 1.

(B.1)

2. Assume the statement is true N = n and prove that it therefore must be true

for N = n + 1.

Obviously, (B.1) is true for N = 1 since 2:;=1 i = 1 and (N/2)(N+1) = (1/2)(2) = 1.

Now assume it is true for N = n. Then for N = n + 1 we have

n+1 n

l:i l:i+(n+1)
i=1 i=1

n
"2(n+ 1) + (n + 1) (since it is true for N = n)

n+1
-2-(n+2)

(n; 1) [(n + 1) + 1]
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which proves that it is also true for N = n + 1. By induction, since it is true for

N = n = 1 from step 1, it must also be true for N = (n + 1) = 2 from step 2. And

since it is true for N = n = 2, it must also be true for N = n + 1 = 3, etc.

B.2 Trigonometry

Some useful trigonometric identities are:

Fundamental

Sum of angles

(B.2)

sin(a + (3)

cos(a + (3)

Double angle

sin(2a)

cos(2a)

Squared sine and cosine

Euler identities For j = yCT

sin a cos (3 + cos a sin (3

cos a cos (3 - sin a sin (3

2sinacosa

cos2 a - sin2 a = 2 cos2 a - 1

1 1
- - - cos(2a)
2 2
1 1
2+ 2cos(2a)

(B.3)

(B.4)

(B.5)

(B.6)

(B.7)

(B.8)

exp(ja) = cos a + j sin a (B.9)

B.3 Limits

cos a

sin o

exp(ja) + exp(-ja)

2
exp(ja) - exp(-ja)

=
2j

(B.lO)

(B.ll)

Alternative definition of exponential function

lim (1 + ~)M = exp(x)
M-too M

(B.12)
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Taylor series expansion about the point x = xo

00 g(i) (xo) .
g(x) = L ., (x - XO)2

z.
i= O

785

(B.13)

where g(i)(xo) is the ith derivative of g(x) evaluated at x = Xo and g(O) (xo) =
g(xo). As an example, consider g(x) = exp(x) , which when expanded about

x = Xo = 0 yields
00 .

x 2

exp( x) = L 1
z.

i= O

B.4 Sums

Integers

Real geometric series

i=O

N(N -1)

2

N(N - 1)(2N - 1)

6

(B.14)

(8.15)

If Ixl < 1, then
00 k

L
·· Xx 2 _

I-x
i = k

(x is real) (B.16)

(8.17)

Complex geometric series

(z is complex) (8.18)

A special case is when z = exp(jO) . Then

N-l

L exp(jO)
i=O

1 - exp(jNO)

1 - exp(jO)

[.(N -1) oJ sin (¥)
exp J 2 . (8)

sm 2
(B.19)
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If Izi = Ix+ j yl = Jx2+ y2 < 1, then as N ---+ 00 (B.I8) becomes

Double sums

00 k

L
· ZZl _

I- z
i= k

(B.20)

(B.2I)

B.5 Calculus

Convergence of sum to integral

If g(x) is a continuous function over [a, b], then

M b

lim Lg(xd.6.x = r g(x)dx
~ x ~O J a

i=O

(B.22)

where Xi = a + i.6.x and X M = b. Also, this shows how to approximate an

integral by a sum.

Approximation of integral over small interval

i
X O + ~ X / 2

g(x)dx ~g( xo).6. x
xo - ~x /2

Differentiation of composite function

dg(h(x)) I = dg(u) I dh(x) I
dx x=xo du u=h(xo) dx x=xo

Change of integration variable

If u = h(x), then

(chain rule)

(B.23)

(B.24)

b h-1(b)

r g(u)du = r g(h(x))h'(x)dx
l; Jh-1 (a)

(B.25)

where h'(x) is the derivative of h(x) and h-1( .) denotes the inverse function.

This assumes that there is one solution to the equation u = h(x) over the

interval a ~ u ~ b.

Fundamental theorem of calculus

d r
dx J-co g(t)dt = g(x) (B.26)
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Integration of even and odd functions An even function is defined as having

the property 9(- x) = 9(x), while an odd function has the property 9(- x) =
-g(x). As a result,

2 ~M g(x)dx

o

for g(x) an even function

for g(x) an odd function

Integration by parts

If U and V are both functions of x , then

! UdV = UV - ! V dU (B.28)

Dirac delta "function" or impulse

Denoted by 8(x) it is not really a function but a symbol that has the definition

{
O x # 0

8(x) = oo X = 0

and

l
b

{ 1 0 E [a-,b+]
a 8(x)dx = 0 otherwise

Some properties are for u(x) the unit step function

Double integrals

du(x)
dx

= 8(x)

u(x)

l d l b

g(x)h(y)dxdy = (l b

9(X)dX) (l d

h(y)dY)

References

(B.29)

Gradshteyn, 1.S., 1.M. Ryzhik, Tables of Integrals, Series, and Products, Fifth Ed.,

Academic Press, New York, 1994.
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Linear and Matrix Algebra

Important results from linear and matrix algebra theory are reviewed in this ap­

pendix. It is assumed that the reader has had some exposure to matrices. For

a more comprehensive treatment the books [Noble and Daniel 1977] and [Graybill

1969] are recommended.

C.l Definitions

Consider an M x N matrix A with elements aij, i = 1,2, ... , M; j = 1,2, ... , N. A

shorthand notation for describing A is

[A]·· -a"X) - X),

Likewise a shorthand notation for describing an N x 1 vector b is

An M x N matrix A may multiply an N x 1 vector b to yield a new M x 1 vector

c whose ith element is

N

Ci = Laijbj
j=l

i = 1,2, ... ,M.

Similarly, an M x N matrix A can multiply an N x L matrix B to yield an M x L

matrix C = AB whose (i,j) element is

N

Cij = L aikbkj

k=l

i = 1,2, ... ,M;j = 1,2, ... ,L.

Vectors and matrices that can be multiplied together are said to be conformable.
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[A T].. -a "
X) - )X'

The transpose of A, which is denoted by AT, is defined as the N x M matrix

with elements aji or

A square matrix is one for which M = N. A square matrix is symmetric if

AT = A or aji = aij'

The inverse of a square N x N matrix is the square N x N matrix A -1 for which

A-1A = AA-1 = I

where I is the N x N identity matrix. If the inverse does not exist, then A is

singular. Assuming the existence of the inverse of a matrix, the unique solution to

a set of N simultaneous linear equations given in matrix form by Ax = b, where A

is N x N, x is N x 1, and b is N x 1, is x = A -lb.

The determinant of a square N x N matrix is denoted by det(A). It is computed

as
N

det(A) = L aijCij

j=l

where

Cij = (_l)i+j D ij.

Dij is the determinant of the submatrix of A obtained by deleting the ith row and

jth column and is termed the minor of aij' Cij is the cofactor of aij' Note that any

choice of i for i = 1,2, . .. , N will yield the same value for det(A). A square N x N

matrix is nonsingular if and only if det(A) i= O.

A quadratic form Q, which is a scalar, is defined as

N N

Q = L L aijXiXj.
i=l j=l

In defining the quadratic form it is assumed that aji = aij. This entails no loss in

generality since any quadratic function may be expressed in this manner. Q may

also be expressed as

Q = xTAx

where x = [Xl X2 ... XNV and A is a square N x N matrix with aji = aij or A is a

symmetric matrix.

A square N x N matrix A is positive semidefinite if A is symmetric and

for all x. If the quadratic form is strictly positive for x i= 0, then A is positive

definite. When referring to a matrix as positive definite or positive semidefinite, it

is always assumed that the matrix is symmetric.
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A partitioned M x N matrix A is one that is expressed in terms of its submatrices.

An example is the 2 x 2 partitioning

Each "element" A i j is a submatrix of A. The dimensions of the partitions are given

as

[
K x L K x (N - L) ]

(M - K) xL (M - K) x (N - L) .

C.2 Special Matrices

A diagonal matrix is a square N x N matrix with aij = 0 for i =1= j or all elements

not on the principal diagonal (the diagonal containing the elements aii) are zero.

The elements aij for which i =1= j are termed the off-diagonal elements. A diagonal

matrix appears as

A = [a~l a~ ~] .
o 0 aNN

A diagonal matrix will sometimes be denoted by diag(all, a22, . . . , aNN)' The in­

verse of a diagonal matrix is found by simply inverting each element on the principal

diagonal, assuming that aii =1= 0 for i = 1,2, ... ,N (which is necessary for invertibil­

ity) .

A square N x N matrix is orthogonal if

For a matrix to be orthogonal the columns (and rows) must be orthonormal or if

where a, denotes the ith column, the conditions

T . _ {O for i =1= j
ai aJ - 1 f . .

or Z = J

must be satisfied. Other "matrices" that can be constructed from vector operations

on the N x 1 vectors x and yare the inner product, which is defined as the scalar

N

xTy = 2: Xi Yi

i= l
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and the outer product, which is defined as the N x N matrix

[

XIYl

X2Yl

X ~ Y l XNY2

XIYN ]
X2YN

XN:YN .

C.3 Matrix Manipulation and Formulas

Some useful formulas for the algebraic manipulation of matrices are summarized in

this section. For N x N matrices A and B the following relationships are useful.

(AT )- 1

(AB)-1 =

det(AT
)

det(eA) =

det(AB)

det(A-1)

(A-If

B-1A-I

det(A)

eN det(A) (e a scalar)

det(A) det(B)

1

det(A) .

Also, for any conformable matrices (or vectors) we have

It is frequently necessary to determine the inverse of a matrix analytically. To do so

one can make use of the following formula. The inverse of a square N x N matrix is

A-I = aT
det(A)

where C is the square N x N matrix of cofactors of A. The cofactor matrix is

defined by

[C]ij = (-l)i+jDij

where Dij is the minor of aij obtained by deleting the ith row and jth column of

A .

Partitioned matrices may be manipulated according to the usual rules of matrix

algebra by considering each submatrix as an element . For multiplication of parti­

tioned matrices the submatrices that are multiplied together must be conformable.

As an illustration, for 2 x 2 partitioned matrices

AB = [~~~ ~~~] [:~~ :~~]
= [A l1B l1 + A 12B21 A l1B 12 + A 12B22 ]

A 21Bl1 + A 22B21 A 21B12 + A 22B22 •
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Other useful relationships for partitioned matrices for an M x N matrix A and N x 1

vectors Xi are

(C.l)

which is a M x N matrix and

[

an

[auxl a22X2 ... aNNxN] = [Xl X2 ... XN] ~

which is an N x N matrix.

C.4 Some Properties of Positive Definite

(Semidefinite) Matrices

o

o JJ
(C.2)

Some useful properties of positive definite (semidefinite) matrices are:

1. A square N x N matrix A is positive definite if and only if the principal minors

are all positive. (The ith principal minor is the determinant of the submatrix

formed by deleting all rows and columns with an index greater than i.) If the

principal minors are only nonnegative, then A is positive semidefinite.

2. If A is positive definite (positive semidefinite) , then

a. A is invertible (singular).

b. the diagonal elements are positive (nonnegative).

c. the determinant of A, which is a principal minor, is positive (nonnegative).

C.5 Eigendecomposition of Matrices

An eigenvector of a square N x N matrix A is an N x 1 vector v satisfying

Av = >'v (C.3)

for some scalar >., which may be complex. >. is the eigenvalue of A corresponding

to the eigenvector v. To determine the eigenvalues we must solve for the N >.'s in

det(A - >'1) = 0, which is an Nth order polynomial in >.. Once the eigenvalues are

found, the corr esponding eigenvectors are determined from the equation (A->'I)v =

o. It is assumed that the eigenvector is normalized to have unit length or v T v = 1.

If A is symmetric, then one can always find N linearly independent eigenvectors,

although they will not in general be unique. An example is the identity matrix for
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which any vector is an eigenvector with eigenvalue 1. If A is symmetric, then the

eigenvectors corresponding to distinct eigenvalues ar e orthonormal or v[vj = 0 for

i =1= j and v[vj = 1 for i = i , and the eigenvalues are real. If, furthermore, the

matrix is positive definite (positive semidefinite) , then the eigenvalues are positive

(nonnegative).

The defining relation of (C.3) can also be written as (using (C.1) and (C.2))

[AV1 AV2 ... AVN] = [A1V1 A2V2 ... ANVn ]

or

where

AY=YA

Y [V1 V2 v n ]

A diag(A1' A2 , , An).

(C.4)

If A is symmetric so that the eigenvectors corresponding to distinct eigenvalues

are orthonormal and the remaining eigenvectors are chosen to yield an orthonormal

eigenvector set, then Y is an orthogonal matrix. As such, its inverse is vr, so that

(C.4) becomes

A=YAyT

Also, the inverse is easily determined as

A -1 y T- 1 A -ly-1

YA-1yT .
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Appendix D

Summary of Signals, Linear

Transforms, and Linear Systems

In this appendix we summarize the important concepts and formulas for discrete­

time signal and system analysis. This material is used in Chapters 18-20. Some

examples are given so that the reader unfamiliar with this material should try to

verify the example results. For a more comprehensive treatment the books [Jackson

1991], [Oppenheim, Willsky, and Nawab 1997], [Poularikis and Seeley 1985] are

recommended.

D.1 Discrete-Time Signals

A discrete-time signal is a sequence x[n] for n = ... , -1, 0,1 , . . .. It is defined only

for the integers. Some important signals are:

a. Unit impulse - x[n] = 1 for n = 0 and x[n] = 0 for n i- o. It is also denoted by

8[n] .

b. Unit step - x[n] = 1 for n 2: 0 and x[n] = 0 for n < O. It is also denoted by urn].

c. Real sinusoid - x [n] = A cos(21ffon + ()) for -00 < n < 00, where A is the

amplitude (must be nonnegative), fo is the frequency in cycles per sample and

must be in the interval 0 < fo < 1/2, and () is the phase in radians.

d. Complex sinusoid - x[n] = A exp(j21f fon + ()) for -00 < n < 00, where A is the

amplitude (must be nonnegative), fo is the frequency in cycles per sample and

must be in the interval -1/2 < fo < 1/2, and () is the phase in radians.

e. Exponential - x[n] = anu[n]
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Note that any sequence can be written as a linear combination of unit impulses that

are weighted by x[k] and shifted in time as o[n - k] to form

00

x[n] = L x[kJo[n - k].

k=-oo

(D.1)

For example, anu[n] = o[n] + ao[n - 1J + a2o[n - 2] + ....
Some special signals are defined next.

a. A signal is causal if x[n] = °for n < 0, for example, x[n] = urn].

b. A signal is anticausal if x[n] =°for n > 0, for example, x[n] = u[-nJ .

c. A signal is even if x[-n] = x[n] or it is symmetric about n = 0, for example,

x[n] = cos(27rfon).

d. A signal is odd if x[-n] = -x[n] or it is antisymmetric about n = 0, for example,

x[n] = sin(27rfon).

e. A signal is stable if 2:~=-00 Ix[n]1 < 00 (also called absolutely summable) , for

example, x[n] = (1/2)n u[n].

D.2 Linear Transforms

D.2.1 Discrete-Time Fourier Transforms

The discrete-time Fourier transform XU) of a discrete-time signal x[n] is defined

as 00

XU) = L x[n]exp(-j27rfn)
n=-oo

- 1/2 '.5: f '.5: 1/2. (D.2)

An example is x[n] = (1/2)n u[n] for which XU) = 1/(1 - (1/2)exp(-j27rJ)).

It converts a discrete-time signal into a complex function of f, where f is called

the frequency and is measured in cycles per sample. The operation of taking the

Fourier transform of a signal is denoted by F {x[n]} and the signal and its Fourier

transform are referred to as a Fourier transform pair. The latter relationship is

usually denoted by x[nJ {:} XU). The discrete-time Fourier transform is periodic in

frequency with period one and for this reason we need only consider the frequency

interval [-1/2,1/2]. Since the Fourier transform is a complex function offrequency,

it can be represented by the two real functions

IXU)I = C~OO x[n]COS(21rjnl) 2 + C~OO X[n]Sin(21r jn)) 2

"'(f) - 2:~=-00 x[n] sin(27rfn)
'+' = arctan - : : : : : : : = . : o o O : : = - - - . . : : : . = - - : - - = - : - - = - - - - - : ~ - , . . . : . . .

2:n=-oo x[nJ cos(27r fn)
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Signal name x[n] X(J) ( - ~ : S f:S ~ )

Unit impulse o[n] = { ~ n=O
I

n#O

Real sinusoid cos(21rfon) ~0(J + fa) + ~0(J - fa)

Complex sinusoid exp(j21r fan) 0(J - fa)

Exponential anu[n] 1 lal < Il-aexp(-j27rj)

Double-sided exponential a1nl l-a2

lal < I1+a2-2acos(27rJ)

Table D.I: Discrete-time Fourier transform pairs.

which are called the magnitude and phase, respectively. For example, if x[n] =

(1/2)n u[n], then

I

1>(J) =

IX(J)I
")5/4 - cos(21rf)

~ sin(21rf)
- arctan .

I - ~ cos(21rf)

Note that the magnitude is an even function or IX( - f)1 = IX(J)I and the phase

is an odd function or 1>( - f) = -1>(J). Some Fourier transform pairs are given in

Table D.l. Some important properties of the discrete-time Fourier transform are:

a. Linearity - F{ax[n] + by[n]} = aX(J) + bY(J)

b. Time shift - F{x[n - no]} = exp( -j21rfno)X(J)

c. Modulation - F{cos(21rfon)x[n]} = ~X(J + fa) + ~X(J - fa)

d. Time reversal- F{x[-n]} = X*(J)

e. Symmetry - if x[n] is even, then X(J) is even and real, and if x[n] is odd, then

X (J) is odd and purely imaginary.

f. Energy - the energy defined as L:~=-oo x2[n] can be found from the Fourier

transform using Parseval's theorem

00 1

L x
2[n]

= i: IX(J)1
2dj.

n=-oo 2
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g. Inner product - as an extension of Parseval's theorem we have

00 1

L x[n]y[n] = i: X*(J)Y(J)dj.
n=-oo 2

Two signals x[n] and y[n] are said to be convolved together to yield a new signal

z[n] if
00

z[n] = L x[k]y[n - k]
k=-oo

- 00 < n < 00.

As an example, if x[n] = urn] and y[n] = urn], then z[n] = (n+1)u[n]. The operation

of convolving two signals together is called convolution and is implemented using a

convolution sum. It is denoted by x[n] *y[n]. The operation is commutative in that

x[n] * y[n] = y[n] * x[n] so that an equivalent form is

00

z[n] = L y[k]x[n - k]

k=-oo

- 00 < n < 00.

As an example, if y[n] = o[n - no], then it is easily shown that x[n] * o[n - no] =

o[n- no] *x[n] = x[n - no]. The most important property of convolution is that two

signals that are convolved together produce a signal whose Fourier transform is the

product of the signals' Fourier transforms or

F{x[n] *y[n]} = X(J)Y(J).

Two signals x[n] and y[n] are said to be correlated together to yield a new signal

z[n] if
00

z[n] = L x[k]y[k+ n]
k=-oo

- 00 < n < 00.

The Fourier transform of z[n] is X*(J)Y(J). The sequence z[n] is also called the

deterministic cross-correlation. If x[n] = y[n], then z[n] is called the deterministic

autocorrelation and its Fourier transform is IX(JW .

The discrete-time signal may be recovered from its Fourier transform by using

the discrete-time inverse Fourier transform

1

x[n] = i: X(J) exp(j21rfn)df
2

- 00 < n < 00. (D.3)

As an example, if X(J) = ~o(J + fa) + ~o(J - fo), then the integral yields x[n] =

cos(21rfon). It also has the interpretation that a discrete-time signal x[n] may be

thought of as a sum of complex sinusoids X(J) exp(j21rfn)b.f for -1/2 :s: f :s: 1/2

with amplitude IX(J)Ib.f and phase LX(J). There is a separate sinusoid for each

frequency i , and the total number of sinusoids is uncountable.
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D.2.2 Numerical Evaluation of Discrete-Time Fourier Transforms

(D.4)- 1/2 ::; f ::; 1/2.

The discrete-time Fourier transform of a signal x[n], which is nonzero only for n =

0, 1, ... ,N - 1, is given by

N-l

X(f) = L x[n] exp( -j271-jn)

n=O

Such a signal is said to be time-limited. Since the Fourier transform is periodic

with period one, we can equivalently evaluate it over the interval °::; f ::; 1. Then,

if we desire the Fourier transform for -1/2 ::; f' < 0, we use the previously eval­

uated X(f) with f = f' + 1. To numerically evaluate the Fourier transform we

therefore can use the frequency interval [0, 1] and compute samples of X (f) for

f = 0, l/N, 2/N, ... ,(N - l)/N. This yields the discrete Fourier transform (DFT)

which is defined as

N-l

X[k] = X(f)lf=k jN = L x [n]exp (-j21r(k/N)n)
n=O

k = 0,1, ... , N - 1.

Since there are only N time samples, we may wish to compute more frequency

samples since X (f) is a continuous function of frequency. To do so we can zero

pad the time samples with zeros to yield a new signal x' [n] of length M > N with

samples {x[O] , x[l], ... , x [N -1],0,0, . .. ,O}. This new signal x' [n ] will consist of N

time samples and M - N zeros so that the DFT will compute more finely spaced

frequency samples as

M-l

X[k] = X(f)lf=kjM = L x' [n]exp (-j21r(k/M)n)
n=O

k = 0, 1, ... ,M-1

N-l

L x [n]exp (-j21r(k/M)n)

n=O

k = 0, 1, ... ,M - 1.

The actual DFT is computed using the fast Fourier transform (FFT) , which is an

algorithm used to reduce the computation.

The inverse Fourier transform of an infinite length causal sequence can be ap­

proximated using an inverse DFT as

1 1

x [n] = i: X(f) exp(j21rfn)df = faX(f) exp(j21rfn)df
2

M -l

~ ~ L X[k] exp (j21r(k/M)n) n = 0,1, ... ,M - 1. (D.5)

k=O

One should choose M large. The actual inverse DFT is computed using the inverse

FFT.
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D.2.3 z-Tra n sfo r m s

The z-transform of a discrete-time signal x[n] is defined as

00

X( z) = L x[n]z-n
n=-oo

(D.6)

where z is a complex variable that takes on values for which IX(z)1 < 00. As an

example, if x[n] = (1/2)n u[n], then

1
X(z) = 1 -1

1- 2"z

1
Izi > 2' (D.7)

The operation of taking the z-transform is indicated by Z{x[n]} . Some important

properties of the z-transform are:

a . Linearity - Z{ax[n] + by[n]} = aX(z) + bY(z)

b. Time shift - Z{x[n - no]} = z-nox(z)

c. Convolution - Z{x[n] *y[n]} = X(z)Y(z) .

Assuming that the z-transform converges on the unit circle, the discrete-time Fourier

transform is given by

XU) = X(z)lz=exp(j21rf) (D.8)

as is seen by comparing (D.6) to (D.2). As an example, if x[n] = (1/2)n u[n], then

from (D.7)

XU) = 1 1 .
1 - 2" exp( -J2nJ)

since X(z) converges for Izl = Iexp(j2nJ) I = 1 > 1/2.

D.3 Discrete-Time Linear Systems

A discrete-time system takes an input signal x[n] and produces an output signal y[n].

The transformation is symbolically represented as y[n] = £{x[n]}. The system is

linear if £{ax[n] + by[n]} = a£{x[n]} + b£{y[n]}. A system is defined to be shift

invariant if £{x[n - no]} = y[n - no]. If the system is linear and shift invariant

(LSI) , then the output is easily found if we know the output to a unit impulse. To
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see this we compute the output of the system as

y[n] £{ x[n]}

= c {J==x[k]o[n - kJ}

00

L x[k]£{8[n - k]}
k=-oo

00

L x[k] £{8[n]}ln--+n_k
k=-oo

00

L x[k]h[n - k]
k=-oo

(using (D.l))

(linearity)

(shift invariance)

801

where h[n] = £{ 8[n]} is called the impulse response of the system. Note that

y[n] = x[n]* h[n] = h[n]*x[n] and so the output of the LSI system is also given by

the convolution sum
00

y[n] = L h[k]x[n - k].
k=-oo

(D.9)

(D.10)

A causal system is defined as one for which h[k] = 0 for k < 0 since then the output

depends only on the present input x[n] and the past inputs x[n - k] for k ~ 1. The

system is said to be stable if
00

L Ih[k]1 < 00.

k=-oo

If this condition is satisfied, then a bounded input signal or Ix[n]l < 00 for -00 <
n < 00 will always produce a bounded output signal or Iy[n]l < 00 for -00 < n < 00.

As an example, the LSI system with impulse response h[k] = (l/2)ku[k] is stable

but not the one with impulse response h[k] = u[k]. The latter system will produce

the unbounded output y[n] = (n + l)u[n] for the bounded input x[n] = urn] since

urn] * urn] = (n + 1)u[n].
Since for an LSI system y[n] = h[n]* x[n], it follows from the properties of z­

transforms that Y( z) = ll(z)X(z), where ll(z) is the z-transform of the impulse

response. As a result, we have that

ll(z) = Y(z) = Output z-transform

X(z) Input z-transform

and ll(z) is called the system function. Note that since it is the z-transform of the

impulse response h[n] we have

00

ll(z) = L h[n]z-n.

k=-oo

(D.ll)
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If the input to an LSI system is a complex sinusoid, x[n] = exp(j2nIon), then

the output is from (D.9)

00

y[n] = 2:= h[k]exp[j27rfo(n - k)]
k=-oo

00

v

H(fo)

2:= h[k]exp(-j27rfok) exp(j27rfon).
k=-oo,

(D.12)

It is seen that the output is also a complex sinusoid with the same frequency but

multiplied by the Fourier transform of the impulse response evaluated at the sinu­

soidal frequency. Hence, H(f) is called the frequency response. Also, from (D.12)

the frequency response is obtained from the system function (see (D.ll)) by let­

ting z = exp(j27rf) . Finally, note that the frequency response is the discrete-time

Fourier transform of the impulse response. As an example, if h[n] = (1/2)nu[n],
then

1
1i(z) = 1 -1

1- 2z

and

H(f) = 1i(exp(j27rf)) = 1 1 . .
1- 2exp(-J27rf)

The magnitude response of the LSI system is defined as IH(f)1 and the phase re­

sponse as L.H(f).

As we have seen, LSI systems can be characterized by the equivalent descriptions:

impulse response, system function, or frequency response. This means that given
one of these descriptions the output can be determined for any input. LSI systems

can also be characterized by linear difference equations with constant coefficients.

Some examples are

Y1[n] x[n] - bx[n - 1]

Y2[n] aY2[n - 1] + x[n]

Y3[n] aY3[n - 1] + x[n] - bx[n -1]

and more generally

p q

y[n] = 2:= a[k]y[n - k] + x[n] - ~ b[k]x[n - k].
k=l k=l

(D.13)

The system function is found by taking the z-transform of both sides of the difference
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equations and using (D.lO) to yield

803

Y3(Z)

X(z) - bz-IX(z) "* 1-l1(Z) = 1- bz- I

1
az-

I
Y2(Z) + X(z) "* 1-l2(Z) = 1 _ az- I

1 -bz- I

az-
I
Y3(Z) + X(z) - bz-

I
X(z) "* 1-l3(Z) = 1 _ az- I

and the frequency response is obtained using H(f) = 1-l(exp(j2nJ)) . More generally,

for the LSI system whose difference equation description is given by (D.13) we have

1 - "q b[k]z-k
1-l( ) L..Jk=1

Z = 1 - L~=I a[k]z-k'
(D.14)

The impulse response is obtained by taking the inverse z-transform of the system

function to yield for the previous examples

{

I n = 0

-b n = 1

o otherwise

anu[n]

anu[n] - ban-Iu[n - 1]

(assuming system is causal)

(assuming system is causal).

The impulse response could also be obtained by letting x[n] = 8[n] in the difference

equations and setting y[-l] = 0, due to causality, and recursing the difference

equation. For example, if the difference equation is y[n] = (1/2)y[n -1] + x[n], then

by definition the impulse response satisfies the equation h[n] = (1/2)h[n - 1]+ 8[n].

By recursing this we obtain

h[O] ~h[-l] + 8[0] = 1

h[l] = ~h[O] + 8[1] = ~

h[2] ~h[l] = i
etc.

(since h[-l] = 0 due to causality)

(since 8[n] = 0 for n 2: 1)

and so in general we have the impulse response h[n] = (1/2)n u[n]. The system with

impulse response hI [n] is called a finite impulse response (FIR) system while those of

h2[n] and h3[n] are called infinite impulse response (IIR) systems. The terminology

refers to the number of nonzero samples of the impulse response.

For the system function H3(Z) = (1- bz- I)/(1 - az- I) , the value of z for which

the numerator is zero is called a zero and the value of z for which the denominator is

zero is called a pole. In this case the system function has one zero at z = b and one

pole at z = a. For the system to be stable, assuming it is causal, all the poles of the

system function must be within the unit circle of the z-plane. Hence, for stability
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we require lal < 1. The zeros may lie anywhere in the z-plane. For a second-order

system function (let p = 2 and q = 0 in (D.14)) given as

1£ (z) __----=--=----:-l_ ___=_=_~
- 1 - a[l] z-l - a[2]z-2

the poles, assuming they are complex, are located at z = r exp(±jO). Hence, for

stability we require r < 1 and we note that since the poles are the z values for which

the denominator polynomial is zero, we have

1 - a[l]z-l - a[2]z-2 = z-2(z - rexp(jO))(z - r exp( -jO)).

Therefore, the coefficients are related to the complex poles as

all] 2r cos(O)

a[2] _r2

which puts restrictions on the possible values of all] and a[2]. As an example, the

coefficients all] = 0, a[2] = -1/4 produce a stable filter but not all] = 0, a[2] = -2.

An LSI system whose frequency response is

H(f) = {I IfI '.5: B
o IfI> B

is said to be an ideal lowpass filter. It passes complex sinusoids undistorted if their

frequency is IfI '.5: B but nullifies ones with a higher frquency. The band of positive

frequencies from f = 0 to f = B is called the passband and the band of positive

frequencies for which f > B is called the stopband.

D.4 Continuous-Time Signals

A continuous-time signal is a function of time x(t) for -00 < t < 00. Some impor­

tant signals are:

a. Unit impulse - It is denoted by 8(t). An impulse 8(t), also called the Dirac delta

function, is defined as the limit of a very narrow pulse as the pulsewidth goes

to zero and the pulse amplitude goes to infinity, such that the overall area

remains at one. Therefore, if we define a very narrow pulse as

XT(t) = {o~ ItI '.5: T/2
ItI > T/2

then the unit impulse is defined as

8(t) = lim XT(t).
T--+O
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The impulse has the important sifting property that if x{t) is continuous at

t = to , then

i : x {t )8{t - to)dt = x{to).

b. Unit step - x {t ) = 1 for t ~ 0 and x{t) = 0 for t < O. It is also denoted by u{t).

c. Real sinusoid - x {t ) = A cos{27fFot + 0) for -00 < t < 00, where A is the

amplitude (must be nonnegative) , Fo is the frequency in Hz (cycles per second) ,

and 0 is the phase in radians.

d. Complex sinusoid - x{t) = Aexp{j27fFot + 0) for -00 < t < 00, with the

amplitude, frequency, and phase taking on same values as for real sinusoid.

e. Exponential - x{t) = exp{at)u{t)

f. Puls e - x{t) = 1 for ItI :::; T /2 and x{t) = 0 for ItI> T /2.

Some special signals are defined next.

a. A signal is causal if x{t) = 0 for t < 0, for example, x {t ) = u{t) .

b. A signal is anticausal if x {t ) = 0 for t > 0, for example, x{t) = u{ -t).

c. A signal is even if x {-t) = x {t ) or it is symmetric about t = 0, for example,

x {t ) = cos{27fFot).

d. A signal is odd if x {-t) = -x{t) or it is antisymmetric about t = 0, for example,

x {t ) = sin{27fFot).

e. A signal is stabl e if J~ oo Ix{t )ldt < 00 (also called absolutely integrable), for ex­

ample, x{t) = exp{-t)u{t).

D.5 Linear Transforms

D.5.! Continuous-Time Fourier Transforms

The continuous-time Fouri er transform X(F) of a continuous-time signal x{t) is

defined as

X{F) = i: x(t)exp(-j27fFt)dt -oo<F<oo. (D.15)

An example is x(t) = exp( -t)u(t) for which X(F) = 1/(1 + j27fF). It converts a

continuous-t ime signal into a complex function of F , where F is called the frequency

and is measured in Hz (cycles per second). The operation of taking the Fourier

transform of a signal is denoted by F{x{t)} and the signal and its Fourier trans­

form are referred to as a Fourier transform pair. The latter relationship is usually
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Signal name x(t) X(F)

Unit impulse 8(t) ={~ t=O
1

t#O

Real sinusoid cos(211"Fot) ~8(F + Fo) + ~8(F - Fo)

Complex sinusoid exp(j211"Fot) 8(F - Fo)

Exponential exp( -at)u(t) 1 a>Oa+j27rF

Pulse = { ~ ItI 5:. T /2 T sin(1TF T )

ItI> T/2 1TFT

Table D.2: Continuous-time Fourier transform pairs.

denoted by x(t) {:} X(F). Note that the magnitude of X(F) is an even function

or IX( -F)I = IX(F)I and the phase is an odd function or ¢( -F) = -¢(F). Some

Fourier transform pairs are given in Table D.2.

Some important properties of the continuous-time Fourier transform are:

a. Linearity - F{ax(t) + by(t)} = aX(F) + bY(F)

b. Time shift - F{x(t - to)} = exp(-j211"Fto)X(F)

c. Modulation - F{cos(211"Fot) x(t)} = ~X(F + Fo) + ~X(F - Fo)

d. Time reversal- F{x( -t)} = X*(F)

e. Symmetry - if x(t) is even, then X(F) is even and real, and if x(t) is odd, then

X (F) is odd and purely imaginary.

f. Energy - the energy defined as J~oo x2 (t )dt can be found from the Fourier trans­

form using Parseval's theorem

g. Inner product - as an ext ension of Parseval's theorem we have

i: x(t)y(t)dt = i: X *(F)Y(F)dF.

Two signals x(t) and y(t) are said to be convolved together to yield a new signal

z(t) if

z(t) = i: x(r)y(t - r)dr - 00 < t < 00.
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- 00 < t < 00.

As an example, if x(t) = u(t) and y(t) = u(t), then z(t) = tu(t). The operation

of convolving two signals together is called convolution and is implemented using a

convolution integral. It is denoted by x(t) * y(t). The operation is commutative in

that x(t) * y(t) = y(t) * x(t) so that an equivalent form is

z(t) = i: y(r)x(t - r)dr

As an example, if y(t) = o(t - to), then it is easily shown that x(t) * o(t - to) =

o(t - to)* x(t) = x(t - to). The most important property of convolution is that two

signals that are convolved together produce a signal whose Fourier transform is the

product of the signals' Fourier transforms or

F{x(t) *y(t)} = X(F)Y(F).

The continuous-time signal may be recovered from its Fourier transform by using

the continuous-time inverse Fourier transform

x(t) = i: X(F) exp(j21rFt)dF - 00 < t < 00. (D.16)

As an example, if X(F) = ~o(F + Fo)+ ~o(F - Fo), then the integral yields x(t) =
cos(21rFot). It also has the interpretation that a continuous-time signal x(t) may be

thought of as a sum of complex sinusoids X(F) exp(j21rFt)b.F for -00 < F < 00

with amplitude IX(F)Ib.F and phase L.X(F). There is a separate sinusoid for each

frequency F, and the total number of sinusoids is uncountable.

D.6 Continuous-Time Linear Systems

A continuous-time system takes an input signal x(t) and produces an output signal

y(t). The transformation is symbolically represented as y(t) = L:{x(t)}. The system

is linear if L:{ax(t) + by(t)} = aL:{x(t)} + bL:{y(t)}. A system is defined to be time

invariant if L:{x(t-to)} = y(t-to). If the system is linear and time invariant (LTI),

then the output is easily found if we know the output to a unit impulse. It is given

by the convolution integral

y(t) = i: h(r)x(t - r)dr (D.17)

where h(t) = L:{o(t)} is called the impulse response of the system. A causal system

is defined as one for which h(r) = 0 for r < 0 since then the output depends only

on the present input x(t) and the past inputs x(t - r) for r > O. The system is said

to be stable if
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(D.18)

If this condition is satisfied, then a bounded input signal or Ix(t)1 < 00 for -00 <
t < 00 will always produce a bounded output signal or ly(t)1 < 00 for -00 < t <
00. As an example, the LTI system with impulse response h(r) = exp( rrT' )u( r) is

stable but not the one with impulse response h(r) = u(r). The latter system will

produce the unbounded output y(t) = tu(t) for the bounded input x(t) = u(t) since

u(t) * u(t) = tu(t).

If the input to an LTI system is a complex sinusoid, x(t) = exp(j211"Fot) , then

the output is from (D.17)

y(t) = i: h(r) exp[j211"Fo(t - r)]dr

i: h(r) exp (-j211"For)drexp(j211"Fot).
, .,...

H(Fo)

It is seen that the output is also a complex sinusoid with the same frequency but

multiplied by the Fourier transform of the impulse response evaluated at the si­

nusoidal frequency. Hence, H (F) is called the frequency response. Finally, note

that the frequency response is the continuous-time Fourier transform of the impulse

response. As an example, if h(t) = exp( -at)u(t), then for a > 0

H(F) _ 1
a + j211"F

The magnitude response of the LSI system is defined as IH(F)j and the phase re­

sponse as LH(F).

An LTI system whose frequency response is

H(F) = {1 IFI ~ W
o IFI > W

is said to be an ideal lowpass filter. It passes complex sinusoids undistorted if their

frequency is IFI ~ W Hz but nullifies ones with a higher frquency. The band of

positive frequencies from F = 0 to F = W is called the passband and the band of

positive frequencies for which F > W is called the stopband.
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Appendix E

Answers to Selected Problems

Note: For problems based on computer simulations the number of realizations used

in the computer simulation will affect the numerical results. In the results listed

below the number of realizations is denoted by N rea1. Also, each result assumes

that rand('state' ,0) and/or randn('state' ,0) have been used to initialize the

random number generator (see Appendix 2A for further details).

Chapter 1

1. exp eriment: toss a coin; outcomes: {head, tail}; probabilities: 1/2,1/2

5. a. continuous; b. discrete; c. discrete; d. continuous; e. discrete

7. yes, yes

10. P[k = 9] = 0.0537, probably not

13. 1/2

14. 0.9973 for .6. = 0.001

Chapter 2

1. P[Y = 0] = 0.7490, P[Y = 1] = 0.2510 (Nreal = 1000)

3. via simulation: P[-1 ~ X ~ 1] = 0.6863; via numerical integration with .6. =
0.01, P[-1 ~ X ~ 1] = 0.6851 (Nreal = 10,000)

6. values near zero

8. estimated mean = 0.5021; true mean = 1/2 (Nreal = 1000)

11. estimated mean = 1.0042; true mean = 1 (Nreal = 1000)

13. 1.2381 (Nrea1 = 1000)
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14. no; via simulation: mean of ..;u = 0.6589; via simulation: Jmean of U =

0.7125 (Nreal = 1000)

Chapter 3

1. a. AC = {x : x ~ I} , B C = {x : x > 2}

b. AU B = {x: -00 < x < oo} = 5, An B = {x: 1 < x < 2}

c. A - B = {x: x > 2}, B - A = {x : x ~ I}

7. A = {1,2,3}, B = {4,5}, C = {1,2,3}, D = {4,5,6}

12. a. 107
, discrete b. 1, discrete c. 00 (uncountable), continuous d. 00 (uncount­

able) , continuous e. 2, discrete f. 00 (countable), discrete

14. a. 5 = {t : 30 ~ t ~ 100} b. outcomes are all t in interval [30,100] c. set of

outcomes having no elements, i.e., {negative temperatures} d. A = {t : 40 ~

t ~ 60}, B = {t : 40 ~ t ~ 50 or 60 ~ t ~ 70}, C = {100} (simple event) e.

A = {t : 40 ~ t ~ 60}, B = {t : 60 ~ t ~ 70}

18. a. 1/2 b. 1/2 c. 6/36 d. 24/36

19. Peven = 1/2, Peven = 0.5080 (Nrea1 = 1000)

21. a. even, 2/3 b. odd, 1/3 c. even or odd, 1 d. even and odd, 0

23. 1/56

25. 10/36

27. no

33. 90/216

35. 676,000

38. 0.00183

40. total number = 16, two-toppings = 6

44. a. 4 of a kind

b. flush

13·48

( 55
2)

4· C;)
(5n
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49. P[k 2: 95] = 0.4407, P[k 2: 95] = 0.4430 (Nreal = 1000)

Chapter 4

2. 1/4

5. 1/4

7. a. 0.53 b. 0.34

11. 0.5

14. yes

19. 0.03

21. a. no b. no

22.4

26. 0.0439

28. 5/16

33. P[k] = (k - 1)(1 - p)k-2p2, k = 2,3, ... ,

38. 2 red , 2 black, 2 white

40. 3/64

43. 165/512

Chapter 5

4. Sx = {O, 1,4, 9}

~ Xi = 0

~ Xi = 1

~ Xi = 4

~ Xi = 9

6. 0 < P < 1, a = (1 _ p) / p2

8. 0.99 19

13. Average value = 5.0310, true value shown in Chapter 6 to be ).. = 5 (Nreal =
1000)

14. px[5] = 0.0029, px[5] = 0.0031 (from Poisson approximation)
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18. P[X = 3] = 0.0613, P[X = 3] = 0.0607 (Nreal = 10,000)

20. py[k] = exp( _>..»,k/2 /k! for k = 0,2,4, ...

26. px[k] = 1/5 for k = 1,2,3,4,5

28. 0.4375

31. 8.68 x 10-7

Chapter 6

2. 9/2

4. 2/3

8. geometric PMF

13. yes, if X = constant

14. predictor = E[X] = 21/8, msemin = 47/64 = 0.7343

15. estimated msemin = 0.7371 (Nreal = 10,000)

20. >..2 + >..

26. L ~ = o ( _ 1 ) n - k ( ~ ) En-k[X]E[Xk]

27. </Jy(w) = exp (jwb)</Jx (aw)

28. (1+ 2cos(w) + 2cos(2w))/5

32. true mean = 1/2, true variance = 3/4 ; estimated mean = 0.5000, estimated

variance = 0.7500 (Nrea1= 1000)

Chapter 7

3. S = {(p,n), (p.d), (n,p), (n,d), (d.p), (d,n)}

SX,y = {(I, 5), (1, 10), (5, 1), (5, 10), (10, 1), (10, 5)}

8.

{

1/4 (i,j) = (0,0)

. . _ 1/4 (i,j) = (1, -1)
PX,y[z ,)] - 1/4 ( ~ , ~ ) = (1,1)

1/4 (z,)) = (2,0)

10. 1/5
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13. pX [i] = (1 − p)i−1p for i = 1, 2, . . . and same for pY [j]

16. pX,Y [0, 0] = 1/4, pX,Y [0, 1] = 0, pX,Y [1, 0] = 1/8, pX,Y [1, 1] = 5/8

19. no

23. yes, X ∼ bin(10, 1/2), Y ∼ bin(11, 1/2)

27. pZ [0] = 1/4, pZ [1] = 1/2, pZ [2] = 1/4, variance always increases when uncorre-
lated random variables are added

33. 1/8

37. 0

38. 3/22

40. minimum MSE prediction = EY [Y ] = 5/8 and minimum MSE = var(Y ) =
15/64 for no knowledge
minimum MSE prediction = Ŷ = −(1/15)x + 2/3 and minimum MSE =
var(Y )(1 − ρ2

X,Y ) = 7/30 based on observing outcome of X

41. Ŵ = 5.4109h − 205.0344

43. ρW,Z =
√

η/(η + 1), where η = EX [X2]/EN [N2]

46. see solution for Problem 7.27

48. pX,Y [0, 0] = 0.1190, pX,Y [0, 1] = 0.1310, pX,Y [1, 0] = 0.2410, pX,Y [1, 1] = 0.5090
(Nreal = 1000)

49. ρX,Y =
√

5/15 = 0.1490, ρ̂X,Y = 0.1497 (Nreal = 100, 000)

Chapter 8

2. pY |X [j|0] = 1 for j = 0
pY |X [j|1] = 1/6 for j = 1, 2, 3, 4, 5, 6
P [Y = 1] = 1/12

5. no, no, no

6. pY |X [j|0] = 1/3 for j = 0 and = 2/3 for j = 1
pY |X [j|1] = 2/3 for j = 0 and = 1/3 for j = 1
pX|Y [i|0] = 1/3 for i = 0 and = 2/3 for i = 1
pX|Y [i|1] = 2/3 for i = 0 and = 1/3 for i = 1

8. pY |X [j|i] = 1/5 for j = 0, 1, 2, 3, 4; i = 1, 2
pX|Y [i|j] = 1/2 for i = 1, 2; j = 0, 1, 2, 3, 4
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11. 0.4535

13. a. PYlx[YjIO] = 0,1,°for Yj = -1/V2, 0, 1/V2, respectively

PYlx[Yjll/V2] = 1/2,0 ,1/2 for Yj = -1/V2, 0, 1/V2, respectively

PYlx[YjlV2] = 0, 1,°for Yj = -1/V2, 0, 1/V2, respectively
not independent (conditional PMF depends on Xi)

b. PYlx[YjIO] = 1/2,1/2 for Yj = 0,1 , respectively

PYlx[Yjll] = 1/2,1/2 for Yj = 0,1, respectively
independent

17. pz[k] = px[k] L : ~ k P y [ j ] +Py[k] L:~k+lPX[j]

21. EYlx[YIO] = 0, Ey 1x[Y!I] = 1/2, EYlx [Y12] = 1

22. var(YIO) = 0, var(Yll) = 1/4, var(YI2) = 2/3

28. optimal predictor: Y = °for X = -1, Y = 1/2 for x = 0, and Y = °for x = 1
optimal linear predictor: Y = 1/4 for x = -1,0,1

-- --30. Ey1x[YIO] = 0.5204, EYlx [Yll ] = 0.6677 (Nrea1 = 10,000)

Chapter 9

1. 0.0567

4. yes

6. (Xl , X 2 ) independent of X3

10. E[X] = Ex[X], var(X) = var(X)/N

13. Cx = [~ ~], det(Cx) = 0, no

17. a. no, b. no , c. yes, d. no

20. Cx = [~ ~]

[
0.9056 0.4242]

26. A = -0.4242 0.9056 for MATLAB 5.2

[
-0.9056 0.4242]

A = 0.4242 0.9056 for MATLAB 6.5, R13

var(Yl ) = 7.1898, var(Y2 ) = 22.8102

35. B = [ V3fi J5/2]
- V3fi /5f2



A [4.0693 0.9996]
36. ex = 0.9996 3.9300 (Nreal = 1000)

Chapter 10

2. 1/80

4. a. no b. yes c. no

12. 0.0252

14. Gaussian: 0.0013 Laplacian: 0.0072

17. first person probability = 0.393, first two persons probability = 0.090

19. Fx(x) = 1/2 + (llrr) arctan(x)

22 . Fx(x) = cI> (~)

28. 2.28%

30. eastern U.S.

33. yes

36. c ~ 14

40.

py(y) = { ~(Y_~)3/4 exp[-.\(y - 1)1/4] Y 2: 1

y<l

43. py(y) = px(Y) + px(-Y)

46.

{

_1_ O<y<l
py(y) = 02.,fY

otherwise

51.

815

P[-2:::; X:::; 2]

P[-l :::; X:::; 1]

P[-l < X:::; 1]

P[-l < X < 1]

P[-l:::; X < 1]

1- kexp(-2)

1- kexp(-l)

i - kexp(-l)

k- kexp (- l )

~ - kexp (- l )
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54. g(U) = J21n(1/(1 - U))

Chapter 11

1. 7/6

10. ±9.12

11. 0.1353

14. N

19. 0.0078

21. JE[U] = ..fl72,E[VU] = 2/3

22. E[s(to)] = 0, E[s2(tO)] = 1/2

26. CJ2/2

27. CJ2/2

30. Tmin = 5.04, T max = 8.96

38. E[Xn
] = 0 for n odd, E[Xn

] = n! for n even

42. 8(x - J.l)

44. J2var(X)

--- --46. E[X] = 1.2533, E[X] = 1.2538; var(X) = 0.4292, var(X) = 0.4269 (Nrea1 =
1000)

Chapter 12

1. 7/16

3. no, probability is 1/4

5. 1r = 4P[X2 + y2 ~ 1], -n- = 3.1140 (Nrea1 = 10,000)

7. 1/4

10. P = 0.19, P = 0.1872 (Nrea1 = 10,000)

11. 0
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15. px(x) = 2x for 0 < x < 1 and zero otherwise, py(y) = 2(1 - y) for 0 < y < 1

and zero otherwise

18.
o x < 0 or y < 0

kxy 0::; x < 2,0 ::; y < 4

Fx,Y(x,y) = ~y x ~ 2,0::; Y < 4

~x 0 ::; x < 2, Y ~ 4

1 x ~ 2,y ~ 4

23. (1- exp(-2)f

25. no

26. Q(2)

30. P[bullseye] = 1 - exp(-2) = 0.8646, P[bullseye] = 0.8730 (Nreal = 1000)

36. W rv N(J-lw, a~), Z rv N(J-lZ, a~)

38. [:] - N(/L, C), where

43. vr;:;r

45. uncorrelated but not necessarily independent

47.

52. Q(l)

Chapter 13

2. yes, c = l/x

4. PYlx(yl x) = exp(-y)/(l - exp( - x)) for 0 ::; y ::; x , x ~ 0
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8. Px, Y(x, y) = 1/x for 0 < Y < x, 0 < x < 1; PY(y) = - In y for 0 < Y < 1

10. PYlx(ylx) = l/x for 0 < y < x, 0 < x < 1; PXly(xly) = 1/(1- y) for y < x < 1,

O<y<1

1

14. Use P = J!l P[IXzl-IXII < 0IXI = XI]PXl (XI)dxI and note independence of
2

1

Xl and Xz so that P = J!l P[lXzl :s XI]dxI
2

16. Q(-I), assume Rand E are independent

21. 1/2

24. Use E(x+Y)lx[X + Ylx] = EYlx[Ylx] + x to yield E(x+Y)lx[X + YIX = 50] =
77.45 and E(x+Y)lx[X + YIX = 75] = 84.57

Chapter 14

1. Ey[Y] = 6, var(Y) = 11/2

6. 1/16

9. Y '" N(o, (J"I + (J"~ + (J"~)

12. no since var(X) -+ (J"z /2 as N -+ 00

19. Ey[Y] = 0, var(Y) = 1

21. X3 = 7/5

24. msemin = 8/15 = 0.5333

25. IDSemin = 0.5407 (Nreal = 5000)

Chapter 15

7. no since the variance does not converge to zero

13. Y '" N(2000 , 1000/3)

19. N = 5529

20. 1 - Q(-77.78) ~ 0

22. Gaussian, "converges" for all N ;::: 1

23. no since approximate 95% confidence interval is [0.723,0.777]
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26. drug group has approximate 95% confidence interval of [0.69,0.91] and placebo

group has [0.47,0.73]. Can't say if drug is effective since true value of p could

be 0.7 for either group.

Chapter 16

1. a. temperature at noon b. expense in dollars and cents c. time left in hours and

minutes

4. p50(1 - p) 50 , 0

7. E[X[n]] = (n + 1)/2, var(X[n]) = (3/4)(n + 1)

9. exp( -3)

13. independent but not stationary

16. p,x[n] = 0, cx[nl, n2] = 6[n2 - nIl, exactly the same as for WGN with ( 5 ~ = 1

18. P[X[n] > 3] = 0.000011, P[U[n] > 3] = 0.0013

22. E[X(t)] = 0, CX(tI, t2) = cos(21rtI) cOS(21rt2)

24. E[Y[n]] = 0, cov(Y[Ol,Y[l]) = -1, not lID since samples are not independent

26. E[X[n]] = 0, cx[nl,n2] = (5~min(nl,n2)

27. cx[l ,l] = 1/2, cx[l ,2] = 1/4, cx[l, 3] = 0, ex[l, 1] = 0.5057, ex[l, 2] = 0.2595,

ex [1,3] = -0.0016 (Nreal = 10,000)

31. p,x[n] = 0, cx[nl ,n2] = (5~(5~6[n2 - nIl, white noise

34. N = 209

Chapter 17

1. yes, p,x[n] = P, = 2p - 1, rx[k] = 1 for k = 0 and rx[k] = p,2 for k =/:- 0

5. WSS but not stationary since PX[O] =/:- PX[I]

9. a > 0, Ibl ::; 1

12. b,d,e

17. E[X[n]] = 0, var(X[n]) = (5~(1 - a2(n+l ))/ (1 - a2); as n -+ 00 , var(X[n]) -+

(5;/(1- a2
)

19. Principal minors are 1, 15/64, and -17/32 for 1 X 1, 2 X 2 and 3 X 3, respectively.

Fourier transform is 1 - (7/4) cos(21r1) which can be negative.
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20. J.Lx[n] = J.L , rx[k] = (1/2)ru[k] + (1/4)ru[k - 1] + (1/4)ru[k + 1]

28. Px(J) = 2o-b(1- cos(2n}))

30. Px(J) = o-~o-b

34. rx[k] ~ o-b8[k] + J.L2
, Px(J) = o-b + J.L28(J)

38. rx[k] = 9/4,3/2,1/2 for k = 0,1,2, resp ectively, and zero otherwise

40. a:2: Ibl

42. E1X[n]] = 0, E[X[10]] = -Q.0105, E[X[12]] = 0.0177; rx[2] = 0.1545,

E[X[10]X[12]] = 0.1501, E[X[12]X[14]] = 0.1533 (Nreal = 1000)

44. Px(J) = 1, increasing N does not improve estimate - must average over en­

semble of periodograms

47. 2(exp(-10) - exp( -100))

50. J.Lx(t) = 0, var(X(t)) = No/(2T) , no

51. var(fJ,N) = (I/N) L:f';!(N-i)(1 - Ikl/N)NoW sin(7rk/2)/(7rk/2) for N = 20.
It is 0.9841 times that of the variance of the sample mean for Nyquist rate

sampled data.

Chapter 18

1. rx[k] = 3 for k = 0, rx[k] = -1 for k = ±2, and equals zero otherwise; Px(J) =

3 - 2 cos(47rJ)

4. bi = 0, bz = -1

7. rx[k] = 3 for k = 0, rx[k] = -2 for k = ±1, rx[k] = 1/2 for k = ±2, and equals

zero otherwise; Px(J) = 3 - 4 cos(27rJ) + cos(47rJ)

13. H opt = (2 - 2cos(27rJ))/(3 - 2cos(27rJ)); msemin = 0.5552

18. msemin = rx[O](1 - Pi-[no],x[no+l])

22. X[no + 1] = -[b(1 + b2 )/ (1 + b2 + b4 )]X [no] - [b2 / (1 + b2 + b4 )]X [no - 1];

msemin = 1 + b6/(1 + b2 + b4
)

24. msemin = 1 + [b6/(1 + b2 + b4
) ] = 85/84 = 1.0119, mASemin = 1.0117 (Nreal =

10,000)

27. X[no] = [a/(1 + a2)](X[no + 1] + X[no - 1])

29. Px(F) = (NoT2/2)[(sin(7rFT))/(7rFT)j2
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32. rx(O) = No/(4RC), no

Chapter 19

1. E[X[n]Y[n + k]] = (-1)n+k(1~8[k], no

5. rx,y[k] = 0

6. rX,u[k] = 0 for k > 0 and rx,y[k] = (1/2)(-k) for k < 0

10. IPx,y(J)! = )5 + 4 cos(27rJ), LPx,y(J) = arctan 1 ~ ; S ~ ~ ; 2 ; ! f

12. rz[k] = rx[k] -rx,y[k] -rY,x[k] +ry[k], Pz(J) = Px(J) -PX,y(J) -Py,x(J) +

Py(J)

15. rX,y(J) = -1, perfectly predictable using Y[no] = -X[no]

18. Hopt(J) = PX,y(J)/Px(J)

23. rX,y(T) = N o/ (2T ) for 0 ~ T ~ T and zero otherwise

26. rx,y[k] = 8[k] - M[k - 1], for b = -1

k rx,y[k] rx,y[k] k rx,y[k] rx,y[k]

-5 0 -0.0077 0 1 0.9034

-4 0 -0.0242 1 1 0.9031

-3 0 0.0259 2 0 -0.0064

-2 0 0.0004 3 0 -0.0007

-1 0 -0.0062 4 0 0.0267

5 0 -0.0238

Chapter 20

2. 1/4

5. Y = [Y[O] Y[l]]T '" N(o, Cy), where

Cy = [~1 -;1]
not independent

10. WSS with t-z = tixuv , Pz(J) = Px(J) *Py(J)

14. 1
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17. T = 66,347

19. 2Q(1/vIT)

22. Y = [Y(O) Y(1/4)jT '" N(O, Cy), where

Cy = [~ ~]

25. Pu(F) = Pv(F) = 8(1 - IFI/1O) for IFI ::; 10 and zero otherwise

30. X[n] = Urn] - Urn - 1], where Urn] is WGN with ( Y ~ = 1

31. rx[O] = 2, rx[O] = 1.9591; rx[l] = -1, rx[l] = -0.9614; rx[2] = 0, rx[2] =

-0.0195; rx[3] = 0, rx[3] = -0.0154

Chapter 21

3. probability = 0.1462, average = 5

7. A = 2,5. = 1.9629; A = 5,5. = 4.9072 (based on 10,000 arrivals with 5. =
E[N(t)]/t)

10. E[N(t2) - N(td] = var(N(t2) - N(tl)) = A(t2 - tl),

13. 0.6321

17. 10 minutes

20. P[T2::; 1] = 1- 2exp(-1) = 0.2642, P[T2::; 1] = 0.2622 (Nreal = 10,000)

23. Ato(2p - 1)

Chapter 22

2. 1/128

5. P[Y[2] = 1IY[1] = 1, Y[O] = 0] = 1 - p , P[Y[2] = 1IY[1] = 1] = 1/2 for all p

9. r; = 0.3362

11. P[red drawn] = 1/3

12. 1/2

14. yes, 7("T = [i ~ 0 0]

19. 7("T = [0.2165 0.4021 0.3814]

24. P[rain] = 0.6964

26. n = 6

28. 1rl = 1/3, ih = 0.3240 (based on playing 1000 holes)
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Abbreviations , 782
ACF (see Autocorrelation function)

ACS (see Autocorrelation sequence)

Affine transformation, 313, 400
AR (see Autoregressive)
ARMA (see Autoregressive moving average)

Arrival angle measurement , 671

Arrival rate of Poisson pro cess, 713
Arri val times of Poi sson process, 721, 734

Aut ocorrelation functi on:
definition, 581

propert ies, 581, 624
Autocorrelation matrix , 561
Autocorrelation method of LP C, 628

Autocorrelat ion sequence:
definition, 552

properties, 553
est imator , 577, 627

LSI system output , 602, 604

MATLAB code for est imat ion, 578
for deterministic signal , 798

Autoregressive:

definition, 558, 633, 681
autocorre lat ion sequence, 560
power spectral density, 572

linear prediction, 618
generat ion of realization, 592, 595

for mod eling of PSD , 588,628

cross-corre lat ion of filter

input/output , 668
Autoregressive moving average , 681
Auxiliary random variab le, 183, 251, 403

Average d periodogram:
definition, 579
MATLAB code for , 580

Averages:

ensemble, 563

temporal, 563

Average power , 553, 575, 582

Average value (see Expected value)

Bandpass random process:
definition, 691
representat ion, 692
"white" Gaussian noise , 694

Bayes' theorem, 86

Bayes' theorem for condit ional PDF, 223

Bernoulli law of large numbers, 490
Bernoulli tri al:

independent , 90
dependent , 94
Markov chain, 739

Bernoulli probability law (mass function), 111

Bernoulli random pro cess, 517
Bernoulli sequence, 90

Binomial coefficient (see Combinati ons)

Binomial counting random pro cess, 526

Binomial prob ability law (mass function):

definition , 4, 63, 91, 112

maximum value, 129
approximation by Poisson, 113, 152, 712
approximation by Gaussian, 501

Binomial theorem, 11,68, 71
Bins , 21

Birthday problem, 57
Bivariate Gaussian PDF :

definition, 401, 408

standardized version , 385

Bivariate PMF (see Joint PMF)

Body mass index, 202
Boole's inequality, 52

Box-Mueller t ransform, 431
Brownian motion (see Wien er

random process)

Cartesian product of set s, 89

Cauchy PDF, 299,402

Cauchy-Schwarz inequality, 197, 213, 645
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Causal signal, 796

Causal syst em, 605, 801, 807
CCF (see Cross-correlation function)

CCS (see Cross-correlation sequence)
CDF (see Cumulative distribution function)

Central limit theorem:
description, 495, 497, 501

proof,513
using to compute binomial

probabilities, 501

using to compute chi-squared

probabilities, 497
used as justification for modeling, 674

Central moments , 146, 190

Certain set , 44
Chain rule (probability) , 85, 266
Chain rule for Markov chains, 745
Channel delay measurement , 658
Chapman-Kolmogorov equations, 748

Characteristic function:

scalar definition, 147, 359
joint definition, 198, 265, 414, 467

properties, 151
finding PMF from, 185
finding PDF from, 361
finding moments from, 149, 199, 266, 468
convergence of sequence, 152, 361

table of, 145, 355
for multivariate Gaussian , 481

Chebyshev inequali ty, 362

Chi-squared PDF, 302, 429, 480, 498, 509

Cholesky decomposition, 417, 475

Clut ter , 674
Coherence function , 649

Combinations, 60

Combinatorics, 54
Communications:

phase shift keying, 24

channel modeling, 104

model of link, 81

error probability, 308

Compl ement set , 39

Compound Poisson random process:

definition, 723

characterist ic function , 724
mean function, 726
variance function , 735

Computer data generat ion:

INDEX

discret e random variables, 122

discrete random vectors, 200
conditioning approach, 235, 447

given covariance matrix, 283

AR random process, 592, 595, 633

Cauchy, 368

exponential, 366
Gaussian , 18, 27, 33, 431
bivariate Gaussian , 416, 448

multivariate Gaussian , 475

Gaussian from sum of uniforms , 481

Uniform , 26, 33

Laplacian, 326
WSS with given PSD , 696

cont inuous-t ime Wiener
random process, 704

Poisson random process, 727

Markov chain, 764
Conditional expe ctation:

definition, 229, 446

properties, 233, 447

Conditional mean

(see Condi tional expectation)
Condi tional probabili ty, 75
Conditional PDF:

definition, 437
properties, 440
of bivariate Gaussian , 439

Conditional PMF:

definition , 218, 266

properti es, 222

and independence, 224
and Markov property, 745

Confidence interval , 504
Continuity theorem for characteristic

functions, 152, 361

Contours of constant PDF, 382, 386
Convergence in probability, 491

Convergence of random variables, 507

Convolution:

integral, 396, 493, 624, 685, 806

sum , 200, 599, 798

to compute PMF, 184
to compute PDF, 493

MATLAB program to compute, 511

Correlation:

definition, 196
and causality, 197
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Correlation coefficient:

definition, 196
for prediction, 196

estimation of, 210

for standard bivariate Gaussian, 407
for random processes, 555, 649

Correlation of signals, 798
Correlation time, 695
Countable set , 43

Countably infinite set, 43
Counting methods, 37, 54

Covariance:

definition, 188

properties, 208

of independent random variables, 191

est imat ion of, 211, 545
for bivariate Gaussian PDF, 406

Covariance function , 533
Covariance matrix:

definition, 258, 281

properties, 258, 561

for uncorrelated random
variables, 259, 465

diagonalization, 260
eigenanalysis, 261, 431

est imat ion of, 270
for Gaussian PDF, 408, 459

Covariance sequence, 533
CPSD (see Cross-power spectral density)
Cross-correlation function:

definition, 657

properties, 657

Cross-correlation sequence:

definition, 643

properties, 645

estimation of, 662

MATLAB program for
estimation, 662

for deterministic signals, 798
Cross-power spectral density:

discrete-time definition, 647, 648

continuous-time definition, 657

properties, 650

at input/output of filter , 654

Cross-spectral matrix, 669

CTCV (see Continuous-time/continuous­
valued under random process)

CTDV (see Continous-time/ discrete-

825

valued under random process)

Cumulative distribution function :

discrete random variable, 118, 250

continuous random variable, 303, 389, 463

condit ional, 441, 449
mixed random variable, 319

D/ A (see Digital-to-analog)
Data generation (see Computer

data generation)

Data compression via Markov chain , 767
Data compression via source encoding, 155

dB (see Decibel)

DC (see Direct current)
Decibel , 629

Decorrelation of

random variables, 208, 260, 410
Demodulation, 705
DeMoivre-Laplace theorem, 501
De Morgan 's laws, 42
Dependent sub experiments, 94

DFT (see Discrete Fourier transform)
Differencer, 552, 681

Digital-to-analog convertor, 629

Dirac delta function, 319, 336, 787, 804

Direct current (DC level) signal, 477, 566
Discrete Fourier transform:

definition, 799

use in spectral analysis , 580
to approximate inverse

Fourier transform, 616, 799
Disjoint sets , 41, 44, 67

Dow-Jones industrial average, 517

DTCV(see Discrete-time/continuous-

valued under random process)

DTDV(see Discrete-time/discrete­

valued under random process)

Dyad (see Outer product)

Eigenanalysis (eigendecomposition):

definition, 261, 793

used to find powers of matrix, 750

Eigenvalue/eigenvector, 793

Empty set , 38

Ensemble average for Markov chain, 563

Entropy, 157

(see also Real-world example­

data compression)

Envelope of random process, 693, 705
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Ergodic:

definition , 564
mean , 564

autocorrelat ion, 577

Markov chain, 752, 761
Erlang PDF, 302, 721

Estimation:
autocorre lat ion sequence, 577
autoregressive par ameters, 623

CDF ,123
correlat ion coefficient, 210

covariance matrix, 270
cross-correlat ion sequence, 662

interval , 20

least squares, 538, 546

mean , 21, 154,364

moments, 154, 202

PDF, 14, 19
PMF, 122, 202
power spectral density, 568, 579

probabili ty of heads, 7, 19
probability of error , 27
variance , 154, 364

Even function , 334, 368, 787,805

Even sequence, 554, 796

Events :
definition, 44

imp ossible, 44
joint , 76, 458
simple, 44
zero probability, 48, 53, 384

Expected value:
scalar , 136, 345

vector , 255, 459

matrix, 260, 281

center of mass analogy, 158, 346

est imation of, 154, 364
nonexist ence of, 139, 159, 348

properties, 159, 160

of sum, 187,405,465
of product , 187,405

for function of, 140, 187, 351, 405

table of, 145, 355
of conditional PMF, 229

of condit ional PDF, 446

and condit ional expectation, 230

using conditioning, 234, 447

bounds on , 368

INDEX

from CDF , 370
Experiments:

description, 1

subexperiments, 89

independence of subexperiments , 89

dependence of subexperiments, 94

Exponential function:

as limit , 784
as infinite series, 785

Exp onential PDF, 296, 302
Extrap olation (see Prediction)

Factorial:

definition, 4, 57

computing, 72

and Gamma function, 301

Fast Fourier transform , 33, 579, 615

FFT (see Fast Fouri er transform)
Filtering:

all-pole, 627

bandpass, 694
digital filter design , 696

interference rejection , 624

of jointly WSS random pro cesses, 653

lowpass, 25, 659, 804, 808

passband , 656, 804, 808
stopband, 804, 808

Wiener , 613
Fini te dimensional distribution , 523
Finite impul se response filter , 600, 803
Finite set , 43
FIR (see Fini te impulse response filter)
Fish population measurement , 698

Forecasting (see Prediction)

Fourier transform:

discrete-time Fourier transform:

definition , 796, 798
table of, 797

continuous-t ime Fourier transform:

definition , 805
table of, 806

as narrowband filter , 670

Frequency response, 600, 802, 808
Functions:

even, 334, 368, 787

hermi tian, 650

monotone, 337

odd, 368, 787
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Fundamental theorem of calculus, 310, 786

Gamma function, 300

Gamma PDF, 300
Gaussian PDF, 5, 20, 296, 459
Gaussian mixture PDF, 332, 371

Gaussian random variable, 296
Gaussian random process:

definition, 677

linear filtering of, 682
(see also Bandpass random process)

Geometric probability law

(mass function) , 91, 113, 720

Geometric series, 47, 785

Histogram, 14
Homogeneous transition probabilities, 745

Huffman code , 156
Hypergeometric probability law

(mass function) , 63

IID (see Independent and

identically distributed)
IIR (see Infinite impulse response filter)
Image coding, 272

Image signal pro cessing, 419
Importance sampling, 364
Impossible event , 44

Impulse (discrete-time), 795
Impulses (for continuous-time

see Dirac delta function)

Impulse response, 599, 801, 807
Increment of random process:

definition, 526
independent, 526

stationary, 526

for Poisson random process, 714
for Wiener random process, 679, 687

Independent events, 78, 83

Ind ependent increments, 526

Independent and identically

distributed, 466, 678

Independent random variables:

definition, 24, 179

factorization of CDF, 392

factorization of PDF, 392, 462
factorization of PMF, 179, 224
factorization of characteristic

827

function, 282, 468
transforming Gaussian random

variables, 410
functions of, 199

Independent sub experiments, 90
Indicator random variable, 353

Induction, proof by, 783
Infinite impulse response filter , 803
Infinite set , 43

Inn er product, 791, 798

In-phase component, 693

Integration by parts, 368, 787

Integration using approximating sum, 12, 786

Interarrival times of Poisson process, 718
Interference suppression, 624

Interpolation, 611
Intersection of sets, 39
Inverse probability integral

transformation, 324

Inverse Q function , 308

Irreducible Markov chain, 756

Joint CDF:

discrete-time random variables, 177
continuous-time random variables, 389
computing probability from, 391

Joint moments, 189, 192, 266, 412
Joint probability, 76

Jointly distributed random variables, 170,379
Jointly WSS, 642

Joint PDF:

definition, 381, 458
bivariate Gaussian, 385

from joint CDF, 391
Joint PMF:

definition, 171

estimation of, 202
Joint sample space , 170

Karhunen-Loeve transform, 273

Laplacian PDF, 298

Law of averages (see Law of large numbers)

Law of large numbers, 491

Least squares, 538, 546

Leibnitz rule, 335, 787
Linear predictive coding, 628

Linear prediction equat ions, 618
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(see also Prediction )

Linear shift invari ant system:

definition, 599, 800
effect on WSS random process, 602, 654

describ ed by difference equation, 605, 802

Linear systems (see Appendix D)
Linear t ime invariant system:

definition , 623, 807
effect on WSS random process, 624

Linear transformation:
of Gaussian random variable, 314

joint PDF, 399
of Gaussian random vector , 399, 408, 464

Line fitting, 538
Lowpass filter (see Filtering)

Lowpass random process, 693
LPC (see Linear predicti ve coding)

LSI (see Linear shift invari ant system)
LTI (see Linear time invar iant system)

MA (see Moving average)
Magnitude response of linear

system, 802, 808
Mappings:

one-to-one, 108

many-to-one, 108

Marginal CDF, 392
Marginal characteristic function, 265
Marginal PDF, 387, 441, 461
Marginal P MF , 174,224,249
Marginal probability, 76

Markov chain , 96, 742

Markov property, 267, 735

Markov random process, 715, 739

Markov sequence , 95

Markov state probability, 742

MATLAB overview, 31
MATLAB programs:

simulat ion of heads for four coin tosses, 7

simulation of three random outcomes, 18
genera t ion of Gaussian noise, 18

est imated PDF, 21

est imated probability, 22

est imated mean, 22

est imated mean of squared Gaussian

random variable, 23

est imated probability of error in digital

communication system, 27

INDEX

tutorial MATLAB program, 35

simulat ion of birthday problem, 59

generation of discrete random variable, 122

general program for discrete

random variable generation , 165
generation of multiple discrete

random variabl es, 201
simulat ion of die experiment

(dependent Bernoulli trials) , 232

generation of discrete random vector
using condit ioning, 236

decorrelation of random vector, 271

simulation of repeated coin tossing

experiment , 290

est imat ion of PDF using histogram, 328

calculation of Q function , 341
calculat ion of inverse Q function, 341

calculat ion of tail probability, 366
generati on of Gaussian random vector and

estimation of mean
and covari ance, 418

generation of Gaussian random vector

using condit ioning, 448

generation of Gaussian random vector

using Cholesky decomp osition, 476

demonstration of cent ral limit theorem, 511

simulat ion of nonstationary random
processes, 524

generat ion of MA random process, 529
scatter diagram for randomly

phased sinusoid, 537

line fitting of summer rainfall, 541

generation of AR random process, 559

estimation of ACS of AR

random process, 578

averaged periodogram

spectral est imator, 580
Wiener smoother, 615

AR and periodogram
spectra l est imators, 629

cross-corre lation est imator, 662

reverb eration spectral estimation, 706

reverb eration simulation, 709

Poisson random pro cess simulation, 727

three-state Markov chain simulation, 764

Sierpinski triangle, 766

Matrix:

autocorrelation, 561
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cofactor, 790
conformable, 789

determinant, 790, 792
diagonal, 791

doubly stochastic, 764, 773

eigenanalysis, 793

inversion:

definition, 790
formula, 792, 794

irreducible, 756
minor , 790
modal,261
orthogonal, 261, 282, 791

partitioned, 791, 792

positive definite (semidefinite), 259, 280,

790, 793
rotation, 264, 282, 430

square, 790
stochastic, 756
symmetric, 790
Toeplitz, 623
transpose, 790, 792

Mean of random variable (see

Expected value)

Mean function, 533, 581

Mean recurrence time, 761
Mean sequence, 533

Mean square error:
definition, 142, 193, 208, 471
estimator, 194

(see also Prediction)

Median, 333, 450
Memoryless property of Poisson process, 720

Mixed random variables, 317, 354

Mode, 369
Modulation property of Fourier

transform, 797, 806
Moments:

definition, 146, 355, 467

exponential PDF, 357, 359
geometrical PMF, 149
multivariate Gaussian, 468, 684

table of, 145, 355
central vs. noncentral , 146, 358

from characteristic function, 149, 199

existence of, 161

Monotonically increasing function , 337

Monte Carlo method, 13, 365
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Monty Hall problem, 81

Moving average :
definition, 528, 681

general form, 544

miscellaneous, 534, 557, 564, 606, 621,

651, 678, 697
MSE (see Mean square error)

Multinomial coefficient, 93, 103
Multinomial probability law

(mass function), 93, 249
Multinomial theorem, 249, 278

Multipath fading (see Rayleigh
fading sinusoid)

Mutually exclusive events, 44, 84

Narrowband representation (see Bandpass

random process)

n-step transition probability matrix, 748
Nonstationarity, 526, 689, 711, 746
Normal (see Gaussian)

Notational conventions, 777
Null set (see Empty set)
Nyquist rate sampling, 584

Odd function, 368, 787, 805

Odd sequence, 796

Odds ratio, 87, 97
Opinion polling, 503
Optical character recognition, 419

Outcome, 38, 44, 518 (see also Realization)
Outer product, 792
Orthogonality, 791
Orthogonality principle:

definition, 474

for linear prediction, 474

geometric interpretation, 474, 482

Parseval's theorem, 797, 806

Partitioning of set, 41

Pascal triangle, 12

Pattern recognition, 421
PDF (see Probability density function)

Periodic random process, 591
Periodogram, 568

(see also Averaged periodogram)

Permutations, 57

Phase of random process, 569

Phase response of linear system, 802, 808
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Phase shift keying, 24
P MF (see Probability mass function)
Poisson count ing random process, 126, 711
Poisson probability law (mass function), 113

Poisson random pro cess, 711

Poles of linear system, 803

Positive semidefinite sequence, 562

Posterior P MF , 239
Posterior probability, 87

Power (average):
of random variable, 553

from PSD , 575
Power spect ral density :

cont inuous-t ime definition , 582

discrete-time definition, 569, 571

properties, 573
AR random process, 572

used for physical modeling, 587, 628

est imation of, 568, 579
MATLAB code for est imation, 580

at out put of LSI system, 602
at out put of nonlinear system, 685
one-sided version, 576
physical interpret at ion , 608
of t hermal noise, 583

P rediction:
definition , 142, 471

linear , 192, 413, 471

mean square error, 142, 208, 276
nonlinear , 195, 245, 447, 454
for bivari ate Gaussian , 413, 447

of sinusoid, 544, 634
of WSS random process, 618, 622
L-step for WSS random process, 611

for AR random process, 618, 634

for MA random process, 621

(see also Line fitting)

Prior PMF, 238
Prior probabili ty, 80, 87

Probability:

definition , 44

axioms, 45

of poin t , 53, 294
of un ion , 49

monotonicity, 50

of interval , 121, 309

zero probability events, 384

Probabili ty calculations via

INDEX

condit ioning, 444
Probabili ty density function:

definit ion, 6, 20, 289, 381, 458
properties, 293, 458

Cauchy:

definition, 299

from ratio of Gaussians, 402

chi-squared, 302

Erl ang ,302
exponent ial, 293, 296, 302

gamma, 300
Gaussian :

scalar, 296
bivariate, 401

multivariate, 459

Gaussian mixture, 332, 371
Lapl acian, 298

normal (see Gaus sian)

Rayleigh:

definition , 302
from square root of Gaussians, 403, 690

table of, 355
uniform:

definition, 290, 295
from angle of Gaussians, 403, 690

condit ional, 437
est imation of, 14, 19

from CDF, 310

mass analogy, 292
of mixed random variables, 317, 354

approximating by PMF, 288
Probabili ty of error, 26, 80, 308, 446
Probability function, 44
Probability integral t ransformation, 324
Probability mass function:

definition, 109, 171

Bernoulli, 111
Binomi al , 112

Geometric, 113
Poisson , 113

table of, 145

mass analogy, 130

est imation of, 122, 202
using Dirac delta function , 324

Probabili ty of point , 53

Problem designations, 8

Projection theorem, 474

PSD (see Power spectral density)
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Pseudorandom noise, 629
PSK (see Phase shift keying)

Q function:
definition, 306
approx imation of, 308
evaluation of, 341

Quadrati c form, 280, 790

Quadrature component, 693

Random numb er generator, 7

Random process:

definition , 518
Bernoulli , 519

binomial counting, 526
Gaussian, 677
Markov chain, 744

Poisson , 711
sum, 525, 702

infinite, 520

semi-infinite , 520
stationary, 524, 551

nonst at ionary, 526
discrete-t ime/ discrete-valued, 520
discrete-time/ conti nuous-valued , 520
continuous-time/ discrete-valued, 520
continuous-time/ cont inuous-valued , 520

Random variable:

discrete, 17, 107, 169
cont inuous , 287, 377

mixed, 317

Random vectors:
definit ion, 23, 170, 248, 458
Gaussian , 459

Random walk, 267, 522
Rayleigh fading sinusoid, 403, 689

Rayleigh PDF, 302,403

Realization, 18, 518

Real-world examples:

digital communications, 24

quality cont rol, 64

cluster recognition , 97

servicing customers, 124
data compression , 155

assessing health risks, 202
model ing human learning, 237

image coding, 272

setting clipping levels, 328

831

crit ical software tes t ing, 364

optical character recognition, 419
ret irement planning, 449

signal detection , 476

opinion polling, 503
statistical data analysis, 538

random vibration test ing, 586

speech synt hesis, 626

brain physiology research, 663

estimating fish populations, 698

automobile traffic signal planning, 728
st range Markov chain dynamics, 765

Relative frequency, 1, 7, 19, 759
(see also Law of large numbers)

Replica corre lator, 477
Reproducting property, 184, 279, 414

Reverberation, 674

Sampl e mean:

definit ion, 21, 154, 279, 466

in detection, 478
law of large numbers, 490
(see also Ergodic)

Sample space :
general, 44, 518
discrete, 47, 54
cont inuous, 52

reduced, 75

numerical vs. nonnumerical , 106
multiple random variables, 248, 458

Sampling with (without replacement) , 56

Scat ter diagram , 24, 537
Sets, 38
Sierp inski t riangle, 766
Signals (see Appendix D)

Signal detection, 476

Signal-t o-noise ratio, 369
Simple set, 39

Sinusoidal signal:

cont inuous-t ime definition, 805

discrete-time definition, 795

as random process:

ran dom phase, 370, 530, 536, 591, 596
random amplitude, 544

random amplitude/ phase, 403
(see also Rayleigh fading)

PDF of random phase, 530

recursive generation of, 544
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prediction of, 544

miscellaneous, 557

Size of set, 43
Smoothing, Wiener:

definition, 611
MATLAB code for, 615

SNR (see Signal-to-noise ratio)

Source encoding, 155
Spectral estimation, 568, 579

Spectral factorization, 696
Spectral representation theorem, 569

Speech synthesis, 626

Stable linear system, 801, 807
Stable sequence, 796

Standard bivariate Gaussian, 385, 394

Standard deviation, 356, 371
Standardized random variable, 195
Standard normal random variable, 296, 305
Standardized sum, 495

State, 742

State occupation time, 759

State probabilities, 742

State probability diagram, 95, 742
State transition matrix, 742

Stationarity:
definition, 524
relation to lID, 524

for WSS random process, 680
Stationary increments, 526
Stationary probabilities for Markov chain,

definition, 749, 757

computing, 750, 762, 771
Steady-state probabilities (see Stationary

probabilities for Markov chain)

Step function, 805
Step sequence, 795

Stirling's formula, 71
Sub experiments, 89

Symbols, 777

System function, 600, 604, 681, 801

Sum of Poisson random processes, 733

Sum of random number of

random variables , 234, 723

Sum of random processes, 653

Sum of random variables:

finding PMF, 254

finding PDF, 397, 470

binomial from Bernoulli, 254

INDEX

finding variance, 257

of uniform random variables, 395

of Gaussian random variables, 414

of Poisson random variables, 279

Tail probability, 305
(see also Importance sampling)

Taylor expansion, 130, 785

Temporal average, 563
Temporal average for Markov chain, 760

Total probability:

for probability of event, 79

for PMFs, 229
for PDFs, 445

Transforms (see Appendix D)

Transform coding, 273

Transformations:
of discrete random variable, 115
of continuous random

variable, 22, 313, 316

of multiple random

variables, 181, 251, 400, 464

sum of random variables, 184, 397

general funcion of, 464
using CDF approach, 317
PDF of product, 429
PDF of quotient, 402, 429, 445
using conditioning approach, 225
nonlinear-Gaussian

random processes, 684

Trellis, 96
Tuples, 55

Uncorrelated random variables:
definition, 196

and independence, 462

Uncorrelated WSS random processes, 647
Uncountable set, 43, 285
Union, 39

Union bound (see Boole's inequality)

Uniform PDF, 290, 295

Uniform PMF, 145

Unit step function, 320

Unit step sequence, 183

Universal set, 38

Variance:

definition, 143, 355
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properties, 145

table of, 145

est imat ion of, 154, 364

sequence, 533

function , 533

of sum, 188,257,465

conditional, 230

Venn diagram, 40

Vibration analysis, 586

Waiting times (see Arrival times

of Poisson process)

WGN (see White Gaussian noise)

White Gaussian noise:

discrete-time definition, 528

continuous-time definition, 686

obtaining discrete-time from

continuous-time, 583

bandpass version, 584, 694

miscellaneous, 534, 677

Whitening (preemphasis) , 661

White noise , 556, 569, 571

Wide sense stationary:

definition, 550

jointly distributed, 642

generating realization of, 681

Wiener filtering:

definition, 609

filtering, 609

smoothing, 611

prediction, 611

interpolation, 611

Wiener-Hopf equations, 623

Wiener-Khinchine theorem, 571

Wiener random process:

discrete-time, 679

continuous-time, 687, 703

computer generation of realization, 704

Wolfer sunspot data, 548

WSS (see Wide sense stationary)

Yule-Walker equations, 623

z-t ransform, 800
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