Intuitive Probability
and Random
Processes using

MATLAB®

@ Springer



INTUITIVE PROBABILITY
AND

RANDOM PROCESSES
USING MATLAB®






INTUITIVE PROBABILITY
AND

RANDOM PROCESSES
USING MATLAB®

STEVEN M. KAY
University of Rhode Island

@ Springer



Author:

Steven M. Kay

University of Rhode Island

Dept. of Electrical & Computer Engineering
Kingston, RI 02881

ISBN 978-0-387-24157-9 e-ISBN 978-0-387-24158-6

Library of Congress Control Number: 2005051721

© 2006 Steven M. Kay (4" corrected version of the 5" printing (2012))

All rights reserved. This work may not be translated or copied in whole or in part without
the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring
Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or
scholarly analysis. Use in connection with any form of information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks and similar terms,
even if they are not identified as such, is not to be taken as an expression of opinion as to
whether or not they are subject to proprietary rights.

Printed on acid free paper
98765

springer.com



To my wife
Cindy,
whose love and support
are without measure

and to my daughters
Lisa and Ashley,
who are a source of joy



NOTE TO INSTRUCTORS

As an aid to instructors interested in using this book for a course, the solutions to
the exercises are available in electronic form. They may be obtained by contacting
the author at kay@ele.uri.edu.



Preface

The subject of probability and random processes is an important one for a variety of
disciplines. Yet, in the author’s experience, a first exposure to this subject can cause
difficulty in assimilating the material and even more so in applying it to practical
problems of interest. The goal of this textbook is to lessen this difficulty. To do
so we have chosen to present the material with an emphasis on conceptualization.
As defined by Webster, a concept is “an abstract or generic idea generalized from
particular instances.” This embodies the notion that the “idea” is something we
have formulated based on our past experience. This is in contrast to a theorem,
which according to Webster is “an idea accepted or proposed as a demonstrable
truth”. A theorem then is the result of many other persons’ past experiences, which
may or may not coincide with our own. In presenting the material we prefer to
first present “particular instances” or examples and then generalize using a defi-
nition/theorem. Many textbooks use the opposite sequence, which undeniably is
cleaner and more compact, but omits the motivating examples that initially led
to the definition/theorem. Furthermore, in using the definition/theorem-first ap-
proach, for the sake of mathematical correctness multiple concepts must be presented
at once. This is in opposition to human learning for which “under most conditions,
the greater the number of attributes to be bounded into a single concept, the more
difficult the learning becomes”!. The philosophical approach of specific examples
followed by generalizations is embodied in this textbook. It is hoped that it will
provide an alternative to the more traditional approach for exploring the subject of
probability and random processes.

To provide motivating examples we have chosen to use MATLAB?, which is a
very versatile scientific programming language. Our own engineering students at the
University of Rhode Island are exposed to MATLAB as freshmen and continue to use
it throughout their curriculum. Graduate students who have not been previously
introduced to MATLAB easily master its use. The pedagogical utility of using
MATLAB is that:

1. Specific computer generated examples can be constructed to provide motivation
for the more general concepts to follow.

'Eli Saltz, The Cognitive Basis of Human Learning, Dorsey Press, Homewood, IL, 1971.
Registered trademark of TheMathWorks, Inc.
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2. Inclusion of computer code within the text allows the reader to interpret the

mathematical equations more easily by seeing them in an alternative form.

3. Homework problems based on computer simulations can be assigned to illustrate
and reinforce important concepts.

4. Computer experimentation by the reader is easily accomplished.

ot

. Typical results of probabilistic-based algorithms can be illustrated.

=]

. Real-world problems can be described and “solved” by implementing the solution
in code.

Many MATLAB programs and code segments have been included in the book. In
fact, most of the figures were generated using MATLAB. The programs and code
segments listed within the book are available in the file probbook matlab_code. tex,
which can be found at http://www.ele.uri.edu/faculty /kay /New%20web/Books.htm.
The use of MATLAB, along with a brief description of its syntax, is introduced early
in the book in Chapter 2. It is then immediately applied to simulate outcomes of
random variables and to estimate various quantities such as means, variances, prob-
ability mass functions, etc. even though these concepts have not as yet been formally
introduced. This chapter sequencing is purposeful and is meant to expose the reader
to some of the main concepts that will follow in more detail later. In addition,
the reader will then immediately be able to simulate random phenomena to learn
through doing, in accordance with our philosophy. In summary, we believe that
the incorporation of MATLAB into the study of probability and random processes
provides a “hands-on” approach to the subject and promotes better understanding.

Other pedagogical features of this textbook are the discussion of discrete random
variables first to allow easier assimilation of the concepts followed by a parallel dis-
cussion for continuous random variables. Although this entails some redundancy, we
have found less confusion on the part of the student using this approach. In a similar
vein, we first discuss scalar random variables, then bivariate (or two-dimensional)
random variables, and finally N-dimensional random variables, reserving separate
chapters for each. All chapters, except for the introductory chapter, begin with a
summary of the important concepts and point to the main formulas of the chap-
ter, and end with a real-world example. The latter illustrates the utility of the
material just studied and provides a powerful motivation for further study. It also
will, hopefully, answer the ubiquitous question “Why do we have to study this?”.
We have tried to include real-world examples from many disciplines to indicate the
wide applicability of the material studied. There are numerous problems in each
chapter to enhance understanding with some answers listed in Appendix E. The
problems consist of four types. There are “formula” problems, which are simple ap-
plications of the important formulas of the chapter; “word” problems, which require
a problem-solving capability; and “theoretical” problems, which are more abstract
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and mathematically demanding; and finally, there are “computer” problems, which
are either computer simulations or involve the application of computers to facilitate
analytical solutions. A complete solutions manual for all the problems is available
to instructors from the author upon request. Finally, we have provided warnings on
how to avoid common errors as well as in-line explanations of equations within the
derivations for clarification.

The book was written mainly to be used as a first-year graduate level course
in probability and random processes. As such, we assume that the student has
had some exposure to basic probability and therefore Chapters 3-11 can serve as
a review and a summary of the notation. We then will cover Chapters 12-15 on
probability and selected chapters from Chapters 16-22 on random processes. This
book can also be used as a self-contained introduction to probability at the senior
undergraduate or graduate level. It is then suggested that Chapters 1-7, 10, 11 be
covered. Finally, this book is suitable for self-study and so should be useful to the
practitioner as well as the student. The necessary background that has been assumed
is a knowledge of calculus (a review is included in Appendix B); some linear/matrix
algebra (a review is provided in Appendix C); and linear systems, which is necessary
only for Chapters 18-20 (although Appendix D has been provided to summarize and
illustrate the important concepts).

The author would like to acknowledge the contributions of the many people who
over the years have provided stimulating discussions of teaching and research prob-
lems and opportunities to apply the results of that research. Thanks are due to my
colleagues L. Jackson, R. Kumaresan, L. Pakula, and P. Swaszek of the University
of Rhode Island. A debt of gratitude is owed to all my current and former graduate
students. They have contributed to the final manuscript through many hours of
pedagogical and research discussions as well as by their specific comments and ques-
tions. In particular, Lin Huang and Cuichun Xu proofread the entire manuscript and
helped with the problem solutions, while Russ Costa provided feedback. Lin Huang
also aided with the intricacies of LaTex while Lisa Kay and Jason Berry helped with
the artwork and to demystify the workings of Adobe Illustrator 10.> The author
is indebted to the many agencies and program managers who have sponsored his
research, including the Naval Undersea Warfare Center, the Naval Air Warfare Cen-
ter, the Air Force Office of Scientific Research, and the Office of Naval Research.
As always, the author welcomes comments and corrections, which can be sent to
kay@ele.uri.edu.

Steven M. Kay
University of Rhode Island
Kingston, RI 02881

3Registered trademark of Adobe Systems Inc.
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Chapter 1

Introduction

1.1 What Is Probability?

Probability as defined by Webster’s dictionary is “the chance that a given event will
occur”. Examples that we are familiar with are the probability that it will rain
the next day or the probability that you will win the lottery. In the first example,
there are many factors that affect the weather—so many, in fact, that we cannot be
certain that it will or will not rain the following day. Hence, as a predictive tool we
usually assign a number between 0 and 1 (or between 0% and 100%) indicating our
degree of certainty that the event, rain, will occur. If we say that there is a 30%
chance of rain, we believe that if identical conditions prevail, then 3 times out of 10,
rain will occur the next day. Alternatively, we believe that the relative frequency of
rain is 3/10. Note that if the science of meteorology had accurate enough models,
then it is conceivable that we could determine exactly whether rain would or would
not occur. Or we could say that the probability is either 0 or 1. Unfortunately, we
have not progressed that far. In the second example, winning the lottery, our chance
of success, assuming a fair drawing, is just one out of the number of possible lottery
number sequences. In this case, we are uncertain of the outcome, not because of the
inaccuracy of our model, but because the experiment has been designed to produce
uncertain results.

The common thread of these two examples is the presence of a random ezxperi-
ment, a set of outcomes, and the probabilities assigned to these outcomes. We will
see later that these attributes are common to all probabilistic descriptions. In the
lottery example, the experiment is the drawing, the outcomes are the lottery num-
ber sequences, and the probabilities assigned are 1/N, where N = total number of
lottery number sequences. Another common thread, which justifies the use of prob-
abilistic methods, is the concept of statistical regularity. Although we may never
be able to predict with certainty the outcome of an experiment, we are, nonethe-
less, able to predict “averages”. For example, the average rainfall in the summer in
Rhode Island is 9.76 inches, as shown in Figure 1.1, while in Arizona it is only 4.40
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I Avef'age = 9.'}6 inchesil
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Figure 1.1: Annual summer rainfall in Rhode Island from 1895 to 2002
[NOAA/NCDC 2003].
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Figure 1.2: Annual summer rainfall in Arizona from 1895 to 2002 [NOAA/NCDC
2003].

inches, as shown in Figure 1.2. It is clear that the decision to plant certain types
of crops could be made based on these averages. This is not to say, however, that
we can predict the rainfall amounts for any given summer. For instance, in 1999
the summer rainfall in Rhode Island was only 4.5 inches while in 1984 the summer
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rainfall in Arizona was 7.3 inches. A somewhat more controlled experiment is the
repeated tossing of a fair coin (one that is equally likely to come up heads or tails).
We would expect about 50 heads out of 100 tosses, but of course, we could not
predict the outcome of any one particular toss. An illustration of this is shown in
Figure 1.3. Note that 53 heads were obtained in this particular experiment. This

: heads :
1 B S

: tails :
e e - e e

Outcome
o

0 20 40 60 80 100
Toss

Figure 1.3: Outcomes for repeated fair coin tossings.

example, which is of seemingly little relevance to physical reality, actually serves as
a good model for a variety of random phenomena. We will explore one example in
the next section.

In summary, probability theory provides us with the ability to predict the be-
havior of random phenomena in the “long run.” To the extent that this information
is useful, probability can serve as a valuable tool for assessment and decision mak-
ing. Its application is widespread, encountering use in all fields of scientific endeavor
such as engineering, medicine, economics, physics, and others (see references at end
of chapter).

1.2 Types of Probability Problems

Because of the mathematics required to determine probabilities, probabilistic meth-
ods are divided into two distinct types, discrete and continuous. A discrete approach
is used when the number of experimental outcomes is finite (or infinite but count-
able as illustrated in Problem 1.7). For example, consider the number of persons
at a business location that are talking on their respective phones anytime between
9:00 AM and 9:10 AM. Clearly, the possible outcomes are 0,1,..., N, where N is
the number of persons in the office. On the other hand, if we are interested in the
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length of time a particular caller is on the phone during that time period, then the
outcomes may be anywhere from 0 to 7' minutes, where T' = 10. Now the outcomes
are infinite in number since they lie within the interval [0,7]. In the first case, since
the outcomes are discrete (and finite), we can assign probabilities to the outcomes
{0,1,...,N}. An equiprobable assignment would be to assign each outcome a prob-
ability of 1/(IN +1). In the second case, the outcomes are continuous (and therefore
infinite) and so it is not possible to assign a nonzero probability to each outcome
(see Problem 1.6).

We will henceforth delineate between probabilities assigned to discrete outcomes
and those assigned to continuous outcomes, with the discrete case always discussed
first. The discrete case is easier to conceptualize and to describe mathematically. It
will be important to keep in mind which case is under consideration since otherwise,
certain paradoxes may result (as well as much confusion on the part of the student!).

1.3 Probabilistic Modeling

Probability models are simplified approximations to reality. They should be detailed
enough to capture important characteristics of the random phenomenon so as to be
useful as a prediction device, but not so detailed so as to produce an unwieldy
model that is difficult to use in practice. The example of the number of telephone
callers can be modeled by assigning a probability p to each person being on the
phone anytime in the given 10-minute interval and assuming that whether one or
more persons are on the phone does not affect the probability of others being on
the phone. One can thus liken the event of being on the phone to a coin toss—
if heads, a person is on the phone and if tails, a person is not on the phone. If
there are N = 4 persons in the office, then the experimental outcome is likened to
4 coin tosses (either in succession or simultaneously—it makes no difference in the
modeling). We can then ask for the probability that 3 persons are on the phone
by determining the probability of 3 heads out of 4 coin tosses. The solution to this
problem will be discussed in Chapter 3, where it is shown that the probability of &
heads out of N coin tosses is given by

P = () a1 (1)

(+) = o=

for k =0,1,...,N, and where M! =1-2-3--- M for M a positive integer and by
definition 0! = 1. For our example, if p = 0.75 (we have a group of telemarketers)
and N = 4 a compilation of the probabilities is shown in Figure 1.4. It is seen that
the probability that three persons are on the phone is 0.42. Generally, the coin toss

where
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Figure 1.4: Probabilities for N = 4 coin tossings with p = 0.75.

model is a reasonable one for this type of situation. It will be poor, however, if the
assumptions are invalid. Some practical objections to the model might be:

1. Different persons have different probabilities p (an eager telemarketer versus a
not so eager one).

2. The probability of one person being on the phone is affected by whether his
neighbor is on the phone (the two neighbors tend to talk about their planned
weekends), i.e., the events are not “independent”.

3. The probability p changes over time (later in the day there is less phone activity
due to fatigue).

To accommodate these objections the model can be made more complex. In the
end, however, the “more accurate” model may become a poorer predictor if the
additional information used is not correct. It is generally accepted that a model
should exhibit the property of “parsimony”—in other words, it should be as simple
as possible.

The previous example had discrete outcomes. For continuous outcomes a fre-
quently used probabilistic model is the Gaussian or “bell”’-shaped curve. For the
modeling of the length of time T a caller is on the phone it is not appropriate to
ask for the probability that T will be ezactly, for example, 5 minutes. This is be-
cause this probability will be zero (see Problem 1.6). Instead, we inquire as to the
probability that T" will be between 5 and 6 minutes. This question is answered by
determining the area under the Gaussian curve shown in Figure 1.5. The form of
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the curve is given by

pr(t) = —\/12—_ﬂ_exp [—%(t - 7)2] o< t< oo (12)

and although defined for all ¢, it is physically meaningful only for 0 < ¢ < Thax,

0.5
0.45
0.4
0.35
&0.25
0.2
0.15
0.1

0.05

Figure 1.5: Gaussian or “bell”-shaped curve.

where Ti,,x = 10 for the current example. Since the area under the curve for times
less than zero or greater than T,,x = 10 is nearly zero, this model is a reasonable
approximation to physical reality. The curve has been chosen to be centered about
t = 7 to relect an “average” time on the phone of 7 minutes for a given caller. Also,
note that we let ¢ denote the actual value of the random time T'. Now, to determine
the probability that the caller will be on the phone for between 5 and 6 minutes we
integrate pr(t) over this interval to yield

6
PB<T <6 = / pr(t)dt = 0.1359. (1.3)
5

The value of the integral must be numerically determined. Knowing the function
pr(t) allows us to determine the probability for any interval. (It is called the proba-
bility density function (PDF) and is the probability per unit length. The PDF will
be discussed in Chapter 10.) Also, it is apparent from Figure 1.5 that phone usage
of duration less than 4 minutes or greater than 10 minutes is highly unlikely. Phone
usage in the range of 7 minutes, on the other hand, is most probable. As before,
some objections might be raised as to the accuracy of this model. A particularly
lazy worker could be on the phone for only 3 minutes, as an example.
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In this book we will henceforth assume that the models, which are mathematical
in nature, are perfect and thus can be used to determine probabilities. In practice,
the user must ultimately choose a model that is a reasonable one for the application
of interest.

1.4 Analysis versus Computer Simulation

In the previous section we saw how to compute probabilities once we were given
certain probability functions such as (1.1) for the discrete case and (1.2) for the
continuous case. For many practical problems it is not possible to determine these
functions. However, if we have a model for the random phenomenon, then we
may carry out the experiment a large number of times to obtain an approximate
probability. For example, to determine the probability of 3 heads in 4 tosses of a
coin with probability of heads being p = 0.75, we toss the coin four times and count
the number of heads, say £; = 2. Then, we repeat the experiment by tossing the
coin four more times, yielding o = 1 head. Continuing in this manner we execute
a succession of 1000 experiments to produce the sequence of number of heads as
{z1,2z2,...,21000}. Then, to determine the probability of 3 heads we use a relative
frequency interpretation of probability to yield

Number of times 3 heads observed
1000 ’

Indeed, early on probabilists did exactly this, although it was extremely tedious. It
1s therefore of utmost importance to be able to simulate this procedure. With the
advent of the modern digital computer this is now possible. A digital computer
has no problem performing a calculation once, 100 times, or 1,000,000 times. What
is needed to implement this approach is a means to simulate the toss of a coin.
Fortunately, this is quite easy as most scientific software packages have built-in
random number generators. In MATLAB, for example, a number in the interval
(0,1) can be produced with the simple statement x=rand(1,1). The number is
chosen “at random” so that it is equally likely to be anywhere in the (0, 1) interval.
As a result, a number in the interval (0,1/2] will be observed with probability 1/2
and a number in the remaining part of the interval (1/2,1) also with probability
1/2. Likewise, a number in the interval (0,0.75] will be observed with probability
p = 0.75. A computer simulation of the number of persons in the office on the
telephone can thus be implemented with the MATLAB code (see Appendix 2A for
a brief introduction to MATLAB):

P[3 heads] =

(1.4)

number=0;
for i=1:4 J set up simulation for 4 coin tosses
if rand(1,1)<0.75 % toss coin with p=0.75
x(i,1)=1; % head
else
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x(i,1)=0; % tail
end
number=number+x(i,1); % count number of heads
end

Repeating this code segment 1000 times will result in a simulation of the previous
experiment.

Similarly, for a continuous outcome experiment we require a means to generate
a continuum of outcomes on a digital computer. Of course, strictly speaking this is
not possible since digital computers can only provide a finite set of numbers, which
is determined by the number of bits in each word. But if the number of bits is
large enough, then the approximation is adequate. For example, with 64 bits we
could represent 264 numbers between 0 and 1, so that neighboring numbers would
be 2754 = 5 x 10720 apart. With this ability MATLAB can produce numbers that
follow a Gaussian curve by invoking the statement x=randn(1,1).

Throughout the text we will use MATLAB for examples and also exercises.
However, any modern scientific software package can be used.

1.5 Some Notes to the Reader

The notation used in this text is summarized in Appendix A. Note that boldface
type is reserved for vectors and matrices while regular face type will denote scalar
quantities. All other symbolism is defined within the context of the discussion. Also,
the reader will frequently be warned of potential “pitfalls”. Common misconcep-
tions leading to student errors will be described and noted. The pitfall or caution
symbol shown below should be heeded.

AN

The problems are of four types: computational or formula applications, word
problems, computer exercises, and theoretical exercises. Computational or formula
(denoted by f) problems are straightforward applications of the various formulas of
the chapter, while word problems (denoted by w) require a more complete assimi-
lation of the material to solve the problem. Computer exercises (denoted by c¢) will
require the student to either use a computer to solve a problem or to simulate the
analytical results. This will enhance understanding and can be based on MATLAB,
although equivalent software may be used. Finally, theoretical exercises (denoted by
t) will serve to test the student’s analytical skills as well as to provide extensions to
the material of the chapter. They are more challenging. Answers to selected prob-
lems are given in Appendix E. Those problems for which the answers are provided
are noted in the problem section with the symbol (- ).

The version of MATLAB used in this book is 5.2, although newer versions
should provide identical results. Many MATLAB outputs that are used for the
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text figures and for the problem solutions rely on random number generation. To
match your results against those shown in the figures and the problem solutions, the
same set of random numbers can be generated by using the MATLAB statements
rand(’state’,0) and randn(’state’,0) at the beginning of each program. These
statements will initialize the random number generators to produce the same set of
random numbers. Finally, the MATLAB programs and code segments given in the
book are indicated by the “typewriter” font, for example, x=randn(1,1).

There are a number of other textbooks that the reader may wish to consult.
They are listed in the following reference list, along with some comments on their
contents.

Davenport, W.B., Probability and Random Processes, McGraw-Hill, New York,
1970. (Excellent introductory text.)

Feller, W., An Introduction to Probability Theory and its Applications, Vols. 1,
2, John Wiley, New York, 1950. (Definitive work on probability—requires
mature mathematical knowledge.)

Hoel, P.G., S.C. Port, C.J. Stone, Introduction to Probability Theory, Houghton
MifHlin Co., Boston, 1971. (Excellent introductory text but limited to proba-
bility.)

Leon-Garcia, A., Probability and Random Processes for Electrical Engineering,
Addison-Wesley, Reading, MA, 1994. (Excellent introductory text.)

Parzen, E., Modern Probability Theory and Its Applications, John Wiley, New York,
1960. (Classic text in probability—useful for all disciplines).

Parzen, E., Stochastic Processes, Holden-Day, San Francisco, 1962. (Most useful
for Markov process descriptions.)

Papoulis, A., Probability, Random Variables, and Stochastic Processes, McGraw-
Hill, New York, 1965. (Classic but somewhat difficult text. Best used as a
reference.)

Ross, S., A First Course in Probability, Prentice-Hall, Upper Saddle River, NJ,
2002. (Excellent introductory text covering only probability.)

Stark, H., J.W. Woods, Probability and Random Processes with Applications to
Signal Processing, Third Ed., Prentice Hall, Upper Saddle River, NJ, 2002.
(Excellent introductory text but at a somewhat more advanced level.)
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Problems

1.1 () (w) A fair coin is tossed. Identify the random experiment, the set of
outcomes, and the probabilities of each possible outcome.

1.2 (w) A card is chosen at random from a deck of 52 cards. Identify the ran-
dom experiment, the set of outcomes, and the probabilities of each possible
outcome.

1.3 (w) A fair die is tossed and the number of dots on the face noted. Identify the
random experiment, the set of outcomes, and the probabilities of each possible
outcome.

1.4 (w) It is desired to predict the annual summer rainfall in Rhode Island for 2010.
If we use 9.76 inches as our prediction, how much in error might we be, based
on the past data shown in Figure 1.17 Repeat the problem for Arizona by
using 4.40 inches as the prediction.
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1.5 (--) (w) Determine whether the following experiments have discrete or contin-
uous outcomes:

a. Throw a dart with a point tip at a dartboard.
b. Toss a die.

Choose a lottery number.

e

Q.

. Observe the outdoor temperature using an analog thermometer.

e. Determine the current time in hours, minutes, seconds, and AM or PM.

1.6 (w) An experiment has N = 10 outcomes that are equally probable. What is
the probability of each outcome? Now let N = 1000 and also N = 1,000,000
and repeat. What happens as N — o0o?

1.7 (.- ) (f) Consider an experiment with possible outcomes {1,2,3,...}. If we
assign probabilities

Pkl=— k=1,2,3,...

to the outcomes, will these probabilties sum to one? Can you have an infinite
number of outcomes but still assign nonzero probabilities to each outcome?
Reconcile these results with that of Problem 1.6.

1.8 (w) An experiment consists of tossing a fair coin four times in succession. What
are the possible outcomes? Now count up the number of outcomes with three
heads. If the outcomes are equally probable, what is the probability of three
heads? Compare your results to that obtained using (1.1).

1.9 (w) Perform the following experiment by actually tossing a coin of your choice.
Flip the coin four times and observe the number of heads. Then, repeat this
experiment 10 times. Using (1.1) determine the probability for £ = 0,1,2,3,4
heads. Next use (1.1) to determine the number of heads that is most proba-
ble for a single experiment? In your 10 experiments which number of heads
appeared most often?

1.10 (.-) (w) A coin is tossed 12 times. The sequence observed is the 12-tuple
(H,H,TH,H,T,H,H, H H,T,H). Is this a fair coin? Hint: Determine
P[k = 9] using (1.1) assuming a probability of heads of p = 1/2.

1.11 (t) Prove that YN  P[k] = 1, where P[k] is given by (1.1). Hint: First prove
the binomial theorem

N
a+b Z( )akbN""c

k=0
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by induction (see Appendix B). Use Pascal’s “triangle” rule
MY\ _ (M-1), (M-1
k) \ k k-1

(A]jr):O k<0and k> M.

where

1.12 (t) If ff pr(t)dt is the probability of observing T in the interval [a, b], what is
[Zo0 pr(t)dt?

1.13 (.-) (f) Using (1.2) what is the probability of 7' > 77 Hint: Observe that
pr(t) is symmetric about t = 7.

1.14 (.-) (c) Evaluate the integral

3
1 1
/ ——=exp [——tQ] dt
-3 2w 2

by using the approximation
L
1 1
——exp |—-=(nA)?| A
> o |-gnar]

where L is the integer closest to 3/A (the rounded value), for A = 0.1, A =
0.01, A =0.001.

1.15 (¢) Simulate a fair coin tossing experiment by modifying the code given in
Section 1.4. Using 1000 repetitions of the experiment, count the number of
times three heads occur. What is the simulated probability of obtaining three
heads in four coin tosses? Compare your result to that obtained using (1.1).

1.16 (c¢) Repeat Problem 1.15 but instead consider a biased coin with p = 0.75.
Compare your result to Figure 1.4.



Chapter 2

Computer Simulation

2.1 Introduction

Computer simulation of random phenomena has become an indispensable tool in
modern scientific investigations. So-called Monte Carlo computer approaches are
now commonly used to promote understanding of probabilistic problems. In this
chapter we continue our discussion of computer simulation, first introduced in Chap-
ter 1, and set the stage for its use in later chapters. Along the way we will examine
some well known properties of random events in the process of simulating their
behavior. A more formal mathematical description will be introduced later but
careful attention to the details now, will lead to a better intuitive understanding of
the mathematical definitions and theorems to follow.

2.2 Summary

This chapter is an introduction to computer simulation of random experiments. In
Section 2.3 there are examples to show how we can use computer simulation to pro-
vide counterexamples, build intuition, and lend evidence to a conjecture. However,
it cannot be used to prove theorems. In Section 2.4 a simple MATLAB program is
given to simulate the outcomes of a discrete random variable. Section 2.5 gives many
examples of typical computer simulations used in probability, including probability
density function estimation, probability of an interval, average value of a random
variable, probability density function for a transformed random variable, and scat-
ter diagrams for multiple random variables. Section 2.6 contains an application of
probability to the “real-world” example of a digital communication system. A brief
description of the MATLAB programming language is given in Appendix 2A.



14 CHAPTER 2. COMPUTER SIMULATION

2.3 Why Use Computer Simulation?

A computer simulation is valuable in many respects. It can be used
a. to provide counterexamples to proposed theorems
b. to build intuition by experimenting with random numbers

c. to lend evidence to a conjecture.

We now explore these uses by posing the following question: What is the effect
of adding together the numerical outcomes of two or more experiments, i.e., what
are the probabilities of the summed outcomes? Specifically, if U; represents the
outcome of an experiment in which a number from 0 to 1 is chosen at random
and Us is the outcome of an experiment in which another number is also chosen at
random from 0 to 1, what are the probabilities of X = U; + U3? The mathematical
answer to this question is given in Chapter 12 (see Example 12.8), although at
this point it is unknown to us. Let’s say that someone asserts that there is a
theorem that X is equally likely to be anywhere in the interval [0, 2]. To see if this is
reasonable, we carry out a computer simulation by generating values of U; and Us
and adding them together. Then we repeat this procedure M times. Next we plot a
histogram, which gives the number of outcomes that fall in each subinterval within
[0,2]. As an example of a histogram consider the M = 8 possible outcomes for
X of {1.7,0.7,1.2,1.3,1.8,1.4,0.6,0.4}. Choosing the four subintervals (also called
bins) [0,0.5], (0.5,1], (1,1.5], (1.5,2], the histogram appears in Figure 2.1. In this
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Figure 2.1: Example of a histogram for a set of 8 numbers in [0,2] interval.

example, 2 outcomes were between 0.5 and 1 and are therefore shown by the bar
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centered at 0.75. The other bars are similarly obtained. If we now increase the
number of experiments to M = 1000, we obtain the histogram shown in Figure 2.2.
Now it is clear that the values of X are not equally likely. Values near one appear
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Figure 2.2: Histogram for sum of two equally likely numbers, both chosen in interval
[0,1].

to be much more probable. Hence, we have generated a “counterexample” to the
proposed theorem, or at least some evidence to the contrary.

We can build up our intuition by continuing with our experimentation. Attempt-
ing to justify the observed occurrences of X, we might suppose that the probabilities
are higher near one because there are more ways to obtain these values. If we con-
trast the values of X = 1 versus X = 2, we note that X = 2 can only be obtained
by choosing U; = 1 and U = 1 but X = 1 can be obtained from U; = Us = 1/2
or Uy = 1/4,Uy = 3/4 or Uy = 3/4,Us = 1/4, etc. We can lend credibility to this
line of reasoning by supposing that U; and Us can only take on values in the set
{0,0.25,0.5,0.75,1} and finding all values of U; + U,. In essence, we now look at a
simpler problem in order to build up our intuition. An enumeration of the possible
values is shown in Table 2.1 along with a “histogram” in Figure 2.3. It is clear
now that the probability is highest at X = 1 because the number of combinations
of Uy and U; that will yield X = 1 is highest. Hence, we have learned about what
happens when outcomes of experiments are added together by employing computer
simulation.

We can now try to extend this result to the addition of three or more exper-
imental outcomes via computer simulation. To do so define X3 = U; + Uy + Us
and X4y = Uy + Us + Us + Uy and repeat the simulation. A computer simulation
with M = 1000 trials produces the histograms shown in Figure 2.4. It appears to
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Uz
0.00 0.25 0.50 0.75 1.00
0.00 | 0.00 0.25 0.50 0.75 1.00
0.2510.25 0.50 0.75 1.00 1.25
U; 050 | 0.50 0.75 1.00 1.25 1.50
0.7510.75 1.00 1.25 1.50 1.75
1.00 | 1.00 1.25 1.50 1.75 2.00

Table 2.1: Possible values for X = U; + U, for intuition-building experiment.
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Figure 2.3: Histogram for X for intuition-building experiment.

bear out the conjecture that the most probable values are near the center of the
[0, 3] and [0, 4] intervals, respectively. Additionally, the histograms appear more like
a bell-shaped or Gaussian curve. Hence, we might now conjecture, based on these
computer simulations, that as we add more and more experimental outcomes to-
gether, we will obtain a Gaussian-shaped histogram. This is in fact true, as will be
proven later (see central limit theorem in Chapter 15). Note that we cannot prove
this result using a computer simulation but only lend evidence to our theory. How-
ever, the use of computer simulations indicates what we need to prove, information
that is invaluable in practice. In summary, computer simulation is a valuable tool
for lending credibility to conjectures, building intuition, and uncovering new results.
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Figure 2.4: Histograms for addition of outcomes.

A Computer simulations cannot be used to prove theorems.

In Figure 2.2, which displayed the outcomes for 1000 trials, is it possible that the
computer simulation could have produced 500 outcomes in [0,0.5], 500 outcomes in
[1.5,2] and no outcomes in (0.5,1.5)7 The answer is yes, although it is improbable.
It can be shown that the probability of this occuring is

1000
(15000(;)) (%) ~ 2.2 x 107604

(see Problem 12.27).

AN

2.4 Computer Simulation of Random Phenomena

In the previous chapter we briefly explained how to use a digital computer to simu-
late a random phenomenon. We now continue that discussion in more detail. Then,
the following section applies the techniques to specific problems ecountered in prob-
ability. As before, we will distinguish between experiments that produce discrete
outcomes from those that produce continuous outcomes.

We first define a random wvariable X as the numerical outcome of the random
experiment. Typical examples are the number of dots on a die (discrete) or the
distance of a dart from the center of a dartboard of radius one (continuous). The
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random variable X can take on the values in the set {1,2,3,4,5,6} for the first
example and in the set {r : 0 < r < 1} for the second example. We denote
the random variable by a capital letter, say X, and its possible values by a small
letter, say z; for the discrete case and z for the continuous case. The distinction is
analogous to that between a function defined as g(z) = z? and the values y = g(z)
that g(z) can take on.

Now it is of interest to determine various properties of X. To do so we use
a computer simulation, performing many experiments and observing the outcome
for each experiment. The number of experiments, which is sometimes referred to
as the number of trials, will be denoted by M. To simulate a discrete random
variable we use rand, which generates a number at random within the (0, 1) interval
(see Appendix 2A for some MATLAB basics). Assume that in general the possible
values of X are {z1,%2,...,2zN} with probabilities {p1,p2,...,pn}. As an example,
if N = 3 we can generate M values of X by using the following code segment (which
assumes M,x1,x2,x3,p1,p2,p3 have been previously assigned):

for i=1:M
u=rand(1,1);
if u<=pi
x(i,1)=x1;
elseif u>pl & u<=pl+p2
x(1,1)=x2;
elseif u>pl+p2
x(i,1)=x3;
end
end

After this code is executed, we will have generated M values of the random variable
X. Note that the values of X so obtained are termed the outcomes or realizations
of X. The extension to any number N of possible values is immediate. For a
continuous random variable X that is Gaussian we can use the code segment:

for i=1:M
x(i,1)=randn(1,1);
end

or equivalently x=randn(M,1). Again at the conclusion of this code segment we will
have generated M realizations of X. Later we will see how to generate realizations
of random variables whose PDF's are not Gaussian (see Section 10.9).

2.5 Determining Characteristics of Random Variables

There are many ways to characterize a random variable. We have already alluded to
the probability of the outcomes in the discrete case and the PDF in the continuous
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case. To be more precise consider a discrete random variable, such as that describing
the outcome of a coin toss. If we toss a coin and let X be 1 if a head is observed
and let X be 0 if a tail is observed, then the probabilities are defined to be p for
X =21 =1and 1—p for X = 2o = 0. The probability p of X = 1 can be thought
of as the relative frequency of the outcome of heads in a long succession of tosses.
Hence, to determine the probability of heads we could toss a coin a large number
of times and estimate p by the number of observed heads divided by the number
of tosses. Using a computer to simulate this experiment, we might inquire as to
the number of tosses that would be necessary to obtain an accurate estimate of the
probability of heads. Unfortunately, this is not easily answered. A practical means,
though, is to increase the number of tosses until the estimate so computed converges
to a fixed number. A computer simulation is shown in Figure 2.5 where the estimate

0 500 1000 . 1500 2000
Number of trials

Figure 2.5: Estimate of probability of heads for various number of coin tosses.

appears to converge to about 0.4. Indeed, the true value (that value used in the
simulation) was p = 0.4. It is also seen that the estimate of p is slightly higher
than 0.4. This is due to the slight imperfections in the random number generator
as well as computational errors. Increasing the number of trials will not improve
the results. We next describe some typical simulations that will be useful to us.
To illustrate the various simulations we will use a Gaussian random variable with
realizations generated using randn(1,1). Its PDF is shown in Figure 2.6.

Example 2.1 — Probability density function

A PDF may be estimated by first finding the histogram and then dividing the
number of outcomes in each bin by M, the total number of realizations, to obtain
the probability. Then to obtain the PDF px(z) recall that the probability of X
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S pf(w) - V%;?xp(—fl/2)ﬂi2)

0.05

Figure 2.6: Gaussian probability density function.

taking on a value in an interval is found as the area under the PDF of that interval
(see Section 1.3). Thus,

b
Pla<X < = [ px(o)is (2.1)

and if a = zg — Az/2 and b = z¢ + Az /2, where Az is small, then (2.1) becomes
Plzg — Az/2 < X < zp+ Az/2] = px(z0)Az
and therefore the PDF at x = x( is approximately

Plzg — Az/2 < X < zp+ Az/2]
Az '

px(20) =

Hence, we need only divide the estimated probability by the bin width Az. Also,
note that as claimed in Chapter 1, px(z) is seen to be the probability per unit length.
In Figure 2.7 is shown the estimated PDF for a Gaussian random variable as well
as the true PDF as given in Figure 2.6. The MATLAB code used to generate the
figure is also shown.

o

Example 2.2 — Probability of an interval
To determine Pla < X < b] we need only generate M realizations of X, then count
the number of outcomes that fall into the [a, b] interval and divide by M. Of course
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randn(’state’,0)
05 . : ; : ; 4 x=randn(1000,1) ;

T T S bincenters=[-3.5:0.5:3.5]7;
bins=length(bincenters);
h=zeros(bins,1);
for i=1:length(x)

for k=1:bins
if x(i)>bincenters(k)-0.5/2 ...
& x(i)<=bincenters(k)+0.5/2
h(k,1)=h(k,1)+1;
end
end
end
pxest=h/(1000%0.5) ;
xaxis=[-4:0.01:4]’;
px=(1/sqrt(2*pi))*exp(-0.5*xaxis."2);

Estimated and true PDF

Figure 2.7: Estimated and true probability density functions.

M should be large. In particular, if we let a = 2 and b = oo, then we should obtain
the value (which must be evaluated using numerical integration)

[e.e]
P[X > 2] = /2 \/%_Wexp (—(1/2)2?) dz = 0.0228
and therefore very few realizations can be expected to fall in this interval. The results
for an increasing number of realizations are shown in Figure 2.8. This illustrates the
problem with the simulation of small probability events. It requires a large number
of realizations to obtain accurate results. (See Problem 11.47 on how to reduce the
number of realizations required.)

o

Example 2.3 — Average value

It is frequently important to measure characteristics of X in addition to the PDF.
For example, we might only be interested in the average or mean or ezpected value
of X. If the random variable is Gaussian, then from Figure 2.6 we would expect X
to be zero on the average. This conjecture is easily “verified” by using the sample

mean estimate
M
1
3 2
1=1
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M | Estimated P[X > 2] | True P[X > 2] randn(*state’,0)
100 0.0100 0.0228 M=100; count=0;
1000 0.0150 ©0.0228 x=randn(¥,1);
10,000 0.0244 0.0288 for i=1:M
100,000 0.0231 0.0288 if x(1)>2
count=count+1;
end
end

probest=count/M

Figure 2.8: Estimated and true probabilities.

of the mean. The results are shown in Figure 2.9.

M | Estimated mean | True mean randn(’state’,0)
100 0.0479 0 M=100;
1000 —0.0431 0 meanest=0;
10,000 0.0011 0 x=randn(M,1);
100,000 0.0032 0 for i=1:M
meanest=meanest+(1/M)*x(i);
end
meanest

Figure 2.9: Estimated and true mean.

Example 2.4 — A transformed random variable

One of the most important problems in probability is to determine the PDF for
a transformed random variable, i.e., one that is a function of X, say X? as an
example. This is easily accomplished by modifying the code in Figure 2.7 from
=randn(1000,1) to x=randn(1000,1) ;x=x."2;. The results are shown in Figure
2.10. Note that the shape of the PDF is completely different than the original
Gaussian shape (see Example 10.7 for the true PDF). Additionally, we can obtain
the mean of X? by using

1 M
27 2%
i=1
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Figure 2.10: Estimated PDF of X2 for X Gaussian.

as we did in Example 2.3. The results are shown in Figure 2.11.

randn(’state’,0)

M | Estimated mean | True mean M=100;
100 0.7491 1 meanest=0;
1000 0.8911 1 x=randn(M,1);
10,000 1.0022 1 for i=1:M
100,000 1.0073 1 meanest=meanest+(1/M)*x(i)"2;
end
meanest

Figure 2.11: Estimated and true mean.

Example 2.5 — Multiple random variables

Consider an experiment that yields two random variables or the vector random
variable [ X1 X2]7, where T denotes the transpose. An example might be the choice
of a point in the square {(z,y) : 0 <z < 1,0 < y < 1} according to some procedure.
This procedure may or may not cause the value of zo to depend on the value of
z1. For example, if the result of many repetitions of this experiment produced an
even distribution of points indicated by the shaded region in Figure 2.12a, then we
would say that there is no dependency between X; and X5. On the other hand, if
the points were evenly distributed within the shaded region shown in Figure 2.12b,
then there is a strong dependency. This is because if, for example, z; = 0.5, then
xo would have to lie in the interval [0.25,0.75]. Consider next the random vector
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1.5 T T 1.5
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(a) No dependency (b) Dependency

Figure 2.12: Relationships between random variables.

X1
Xo
where each U; is generated using rand. The result of M = 1000 realizations is shown
in Figure 2.13a. We say that the random variables X; and X5 are independent. Of

course, this is what we expect from a good random number generator. If instead,
we defined the new random variables,

l:Xl [ Ui
X, | | v+ lioy

then from the plot shown in Figure 2.13b, we would say that the random variables
are dependent. Note that this type of plot is called a scatter diagram.

U1
U

O

2.6 Real-World Example — Digital Communications

In a phase-shift keyed (PSK) digital communication system a binary digit (also
termed a bit), which is either a “0” or a “1”, is communicated to a receiver by
sending either so(t) = Acos(2nFyt + m) to represent a “0” or s;(t) = Acos(2nFyt)
to represent a “1”, where A > 0 [Proakis 1989]. The receiver that is used to decode
the transmission is shown in Figure 2.14. The input to the receiver is the noise
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Figure 2.13: Relationships between random variables.

z(t) Lowpass ;: 3 | >0 — 1

filter <0 b— 0

Decision device
cos(2m Fyt)

Figure 2.14: Receiver for a PSK digital communication system.

corrupted signal or z(t) = s;(t) + w(t), where w(t) represents the channel noise.
Ignoring the effect of noise for the moment, the output of the multiplier will be

1
so(t) cos(2mFot) = Acos(2nFyt + ) cos(2nFyt) = —A (% —+ 5 cos(47rF0t)>

s1(t) cos(2nFot) = Acos(2mFyt) cos(2rFot) = A (% + %cos(47rF0t))

for a 0 and 1 sent, respectively. After the lowpass filter, which filters out the
cos(4mFyt) part of the signal, and sampler, we have

—é fora 0
§=
é for a 1.

The receiver decides a 1 was transmitted if £ > 0 and a 0 if ¢ < 0. To model the
channel noise we assume that the actual value of ¢ observed is

¢ = —%-l—W fora 0
B §+W foral
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where W is a Gaussian random variable. It is now of interest to determine how
the error depends on the signal amplitude A. Consider the case of a 1 having been
transmitted. Intuitively, if A is a large positive amplitude, then the chance that the
noise will cause an error or equivalently, £ < 0, should be small. This probability,
termed the probability of error and denoted by P,, is given by P[4/2 + W < 0].
Using a computer simulation we can plot P, versus A with the result shown in Figure
2.15. Also, the true P, is shown. (In Example 10.3 we will see how to analytically
determine this probability.) As expected, the probability of error decreases as the

0.5 . . T T

0.45F\n- - oo D SR —  Simulated P.|
04l M\ L L -—= True P

0.35 : ' 4 :

0.3
Al 0.25
0.2
0.15
0.1
0.05

Figure 2.15: Probability of error for a PSK communication system.

signal amplitude increases. With this information we can design our system by
choosing A to satisfy a given probability of error requirement. In actual systems
this requirement is usually about P, = 10~7. Simulating this small probability
would be exceedingly difficult due to the large number of trials required (but see
also Problem 11.47). The MATLAB code used for the simulation is given in Figure
2.16.

References

Proakis, J., Digitial Communications, Second Ed., McGraw-Hill, New York, 1989.

Problems

Note: All the following problems require the use of a computer simulation. A
realization of a uniform random variable is obtained by using rand(1,1) while a
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A=[0.1:0.1:5]7;
for k=1:length(A)
error=0;
for i=1:1000
w=randn(1,1);
if A(k)/2+w<=0
error=error+1;
end
end
Pe(k,1)=error/1000;
end

Figure 2.16: MATLAB code used to estimate the probability of error P, in Figure
2.15.

realization of a Gaussian random variable is obtained by using randn(1,1).

2.1 (--) (c¢) An experiment consists of tossing a fair coin twice. If a head occurs
on the first toss, we let 1 = 1 and if a tail occurs we let z1 = 0. The
same assignment is used for the outcome z, of the second toss. Defining the
random variable as Y = X; X, estimate the probabilities for the different
possible values of Y. Explain your results.

2.2 (c) A pair of fair dice is tossed. Estimate the probability of “snake eyes” or a
one for each die?

2.3 (->) (c) Estimate P[-1 < X < 1] if X is a Gaussian random variable. Verify
the results of your computer simulation by numerically evaluating the integral

1
1 1,
——exp | —=z° ) dz.
/—1 2T P ( 2 )
2.4 (c¢) Estimate the PDF of the random variable

12 1
1=

where U; is a uniform random variable. Then, compare this PDF to the
Gaussian PDF or

Hint: See Problem 1.14.
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2.5 (c) Estimate the PDF of X = U; — Us, where U; and U, are uniform random
variables. What is the most probable range of values?

2.6 (.-) (c) Estimate the PDF of X = U;U,, where U; and Us are uniform random
variables. What is the most probable range of values?

2.7 (¢) Generate realizations of a discrete random variable X, which takes on values
1, 2, and 3 with probabilities p; = 0.1, po = 0.2 and p3 = 0.7, respectively.
Next based on the generated realizations estimate the probabilities of obtaining
the various values of X.

2.8 (.-) (c) Estimate the mean of U, where U is a uniform random variable. What
is the true value?

2.9 (c¢) Estimate the mean of X +1, where X is a Gaussian random variable. What
is the true value?

2.10 (c) Estimate the mean of X2, where X is a Gaussian random variable.

2.11 (.. ) (c) Estimate the mean of 2U, where U is a uniform random variable.
What is the true value?

2.12 (c) It is conjectured that if X; and Xy are Gaussian random variables, then
by subtracting them (let Y = X; — X5), the probable range of values should
be smaller. Is this true?

2.13 (.») (c) A large circular dartboard is set up with a “bullseye” at the center of
the circle, which is at the coordinate (0,0). A dart is thrown at the center but
lands at (X,Y), where X and Y are two different Gaussian random variables.
What is the average distance of the dart from the bullseye?

2.14 (--) (c) It is conjectured that the mean of v/U, where U is a uniform random
variable, is vmean of U. Is this true?

2.15 (c) The Gaussian random variables X; and X5 are linearly transformed to the
new random variables

Yi = X;1+0.1X,
Y, = X;+40.2X,.

Plot a scatter diagram for Y; and Y2. Could you approximately determine the
value of Ys if you knew that Y7 = 17

2.16 (c,w) Generate a scatter diagram for the linearly transformed random vari-
ables

X1 = U
X = U1 +Uy
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where U; and Us are uniform random variables. Can you explain why the
scatter diagram looks like a parallelogram? Hint: Define the vectors

X1
X =
Xo

SN
- 1]

and express X as a linear combination of e; and es.




Appendix 2A

Brief Introduction to MATLAB

A brief introduction to the scientific software package MATLAB is contained in this
appendix. Further information is available at the Web site www.mathworks.com.
MATLAB is a scientific computation and data presentation language.

Overview of MATLAB

The chief advantage of MATLAB is its use of high-level instructions for matrix alge-
bra and built-in routines for data processing. In this appendix as well as throughout
the text a MATLAB command is indicated with the typewriter font such as end.
MATLAB treats matrices of any size (which includes vectors and scalars as special
cases) as elements and hence matrix multiplication is as simple as C=A*B, where
A and B are conformable matrices. In addition to the usual matrix operations of
addition C=A+B, multiplication C=A*B, and scaling by a constant c as B=c*A, certain
matrix operators are defined that allow convenient manipulation. For example, as-
sume we first define the column vector x = [1234]7, where T denotes transpose, by
using x=[1:4]’. The vector starts with the element 1 and ends with the element
4 and the colon indicates that the intervening elements are found by incrementing
the start value by one, which is the default. For other increments, say 0.5, we use
x=[1:0.5:4]’. To define the vector y = [12223242%]7 we can use the matrix ele-
ment by element exponentiation operator .~ to form y=x.~2 if x=[1:4]’. Similarly,
the operators .* and ./ perform element by element multiplication and division of
the matrices, respectively. For example, if

-3
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Character | Meaning

+ addition (scalars, vectors, matrices)

- subtraction (scalars, vectors, matrices)
multiplication (scalars, vectors, matrices)
division (scalars)

exponentiation (scalars, square matrices)
element by element multiplication

element by element division

element by element exponentiation

; suppress printed output of operation

specify intervening values

’ conjugate transpose (transpose for real vectors, matrices)
. line continuation (when command must be split)
% remainder of line interpreted as comment

== logical equals

| logical or

& logical and

~ = logical not

) N *

Table 2A.1: Definition of common MATLAB characters.

then the statements C=A.*B and D=A./B produce the results
1 4
C = [ 9 16 ]
11
> - |11
respectively. A listing of some common characters is given in Table 2A.1. MATLAB
has the usual built-in functions of cos, sin, etc. for the trigonometric functions,
sqrt for a square root, exp for the exponential function, and abs for absolute value,
as well as many others. When a function is applied to a matrix, the function is

applied to each element of the matrix. Other built-in symbols and functions and
their meanings are given in Table 2A.2.

Matrices and vectors are easily specified. For example, to define the column
vector ¢; = [1 2]7, just use c1=[1 2].’ or equivalently c1=[1;2]. To define the C
matrix given previously, the construction C=[1 4;9 16] is used. Or we could first
define c; = [4 16]7 by c2=[4 16].’ and then use C=[c1 c2]. It is also possible
to extract portions of matrices to yield smaller matrices or vectors. For example,
to extract the first column from the matrix C use c1=C(:,1). The colon indicates
that all elements in the first column should be extracted. Many other convenient
manipulations of matrices and vectors are possible.
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Function Meaning

pPi T

i V-1

j V-1

round (x) rounds every element in x to the nearest integer

floor(x) replaces every element in x by the nearest integer less than
or equal to x

inv(A) takes the inverse of the square matrix A

x=zeros(N,1)
x=ones (N,1)
x=rand(N,1)
x=randn(N,1)
rand(’state’,0)
randn(’state’,0)
M=length(x)
sum(x)

mean (x)
flipud(x)

abs

fft(x,N)

ifft(x,N)
fftshift(x)
pause
break

whos

help

assigns an N x 1 vector of all zeros to x

assigns an N x 1 vector of all ones to x

generates an N X 1 vector of all uniform random variables

generates an N x 1 vector of all Gaussian random variables

initializes uniform random number generator

initializes Gaussian random number generator

sets M equal to V if xis N x 1

sums all elements in vector x

computes the sample mean of the elements in x

flips the vector x upside down

takes the absolute value (or complex magnitude) of every
element of x

computes the FFT of length N of x (zero pads if
N>length(x))

computes the inverse FFT of length N of x

interchanges the two halves of an FFT output

pauses the execution of a program

terminates a loop when encountered

lists all variables and their attributes in current workspace

provides help on commands, e.g., help sqrt

Table 2A.2: Definition of useful MATLAB symbols and functions.



34 CHAPTER 2. COMPUTER SIMULATION

Any vector that is generated whose dimensions are not explicitly specified is
assumed to be a row vector. For example, if we say x=ones(10), then it will be
designated as the 1 x 10 row vector consisting of all ones. To yield a column vector
use x=ones(10,1).

Loops are implemented with the construction

for k=1:10
x(k,1)=1;
end

which is equivalent to x=ones(10,1). Logical flow can be accomplished with the
construction

if x>0
y=sqrt(x);
else
y=0;
end

Finally, a good practice is to begin each program or script, which is called an “m”
file (due to its syntax, for example, pdf.m), with a clear all command. This
will clear all variables in the workspace, since otherwise the current program may
inadvertently (on the part of the programmer) use previously stored variable data.

Plotting in MATLAB

Plotting in MATLAB is illustrated in the next section by example. Some useful
functions are summarized in Table 2A.3.

Function Meaning

figure opens up a new figure window

plot(x,y) plots the elements of x versus the elements of y
plot(x1l,y1,x2,y2) same as above except multiple plots are made
plot(x,y,’.”) same as plot except the points are not connected
title(’my plot’) puts a title on the plot

xlabel(’x’) labels the x axis

ylabel(’y’) labels the y axis

grid draws grid on the plot

axis([0 1 2 4]) plots only the points inrange 0 <z <land2<y <4
text(1,1,’curve 1°) | places the text “curve 1”7 at the point (1,1)

hold on holds current plot

hold off releases current plot

Table 2A.3: Definition of useful MATLAB plotting functions.
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An Example Program

A complete MATLAB program is given below to illustrate how one might compute
the samples of several sinusoids of different amplitudes. It also allows the sinusoids
to be clipped. The sinusoid is s(t) = Acos(2nFyt + 7/3), with A =1, A = 2, and
A=4,Fy=1,and t =0,0.01,0.02,...,10. The clipping level is set at 3, i.e., any
sample above +3 is clipped to +3 and any sample less than —3 is clipped to —3.

% matlabexample.m

A

% This program computes and plots samples of a sinusoid

% with amplitudes 1, 2, and 4. If desired, the sinusoid can be

% clipped to simulate the effect of a limiting device.

% The frequency is 1 Hz and the time duration is 10 seconds.

% The sample interval is 0.1 seconds. The code is not efficient but
% 1is meant to illustrate MATLAB statements.

clear all % clear all variables from workspace
delt=0.01; % set sampling time interval
FO=1; %, set frequency
t=[0:delt:10]’; % compute time samples 0,0.01,0.02,...,10
A=[1 2 4]’; % set amplitudes
clip=’yes’; % set option to clip
for i=1:length(A) 7 begin computation of sinusoid samples
s(:,i)=A(i)*cos(2*pi*FO*t+pi/3); % note that samples for sinusoid
% are computed all at once and
% stored as columns in a matrix
if clip==’yes’ % determine if clipping desired
for k=1:length(s(:,i)) % note that number of samples given as
% dimension of column using length command
if s(k,i)>3 % check to see if sinusoid sample exceeds 3
s(k,i)=3; % if yes, then clip
elseif s(k,i)<-3 % check to see if sinusoid sample is less
s(k,i)=-3; % than -3 if yes, then clip
end
end
end
end
figure % open up a new figure window
plot(t,s(:,1),t,s(:,2),t,s(:,3)) % plot sinusoid samples versus time
% samples for all three sinusoids
grid % add grid to plot
xlabel(’time, t’) % label x-axis
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ylabel(’s(t)’) % label y-axis
axis([0 10 -4 4]) % set up axes using axis([xmin xmax ymin ymax])
legend(’A=1’,’A=2’,’A=4’) 9, display a legend to distinguish

% different sinusoids

The output of the program is shown in Figure 2A.1. Note that the different graphs
will appear as different colors.

4 ! ! ! ? J ! ; ' ‘
— A1
8 I O SO SUUURUE VNN SUSUUURE U SO — A2
—— A4
2_. ............................................................................... —
1 "
% 0 ............................................................................................. -~
-1H -
1S V) FORE AVA oo SV AV AV AV AV LV M AV i
g U LU U B B ST PO (0 I 0 0 I S I i
» ; ; ; ; ; ; ; ; ;
0 1 2 3 4 5 6 7 8 9 10
time, t

Figure 2A.1: Output of MATLAB program matlabexample.m.



Chapter 3

Basic Probability

3.1 Introduction

We now begin the formal study of probability. We do so by utilizing the properties
of sets in conjunction with the aziomatic approach to probability. In particular, we
will see how to solve a class of probability problems via counting methods. These
are problems such as determining the probability of obtaining a royal flush in poker
or of obtaining a defective item from a batch of mostly good items, as examples.
Furthermore, the axiomatic approach will provide the basis for all our further studies
of probability. Only the methods of determining the probabilities will have to be
modified in accordance with the problem at hand.

3.2 Summary

Section 3.3 reviews set theory, with Figure 3.1 illustrating the standard definitions.
Manipulation of sets can be facilitated using De Morgan’s laws of (3.6) and (3.7).
The application of set theory to probability is summarized in Table 3.1. Using the
three axioms described in Section 3.4 a theory of probability can be formulated
and a means for computing probabilities constructed. Properties of the probability
function are given in Section 3.5. In addition, the probability for a union of three
events is given by (3.20). An equally likely probability assignment for a continuous
sample space is given by (3.22) and is shown to satisfy the basic axioms. Section 3.7
introduces the determination of probabilities for discrete sample spaces with equally
likely outcomes. The basic formula is given by (3.24). To implement this approach
for more complicated problems in which brute-force counting of outcomes is not
possible, the subject of combinatorics is described in Section 3.8. Permutations and
combinations are defined and applied to several examples for computing probabili-
ties. Based on these counting methods the hypergeometric probability law of (3.27)
and the binomial probability law of (3.28) are derived in Section 3.9. Finally, an
example of the application of the binomial law to a quality control problem is given
in Section 3.10.
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3.3 Review of Set Theory

The reader has undoubtedly been introduced to set theory at some point in his/her
education. We now summarize only the salient definitions and properties that are
germane to probability. A set is defined as a collection of objects, for example,
the set of students in a probability class. The set A can be defined either by the
enumeration method, i.e., a listing of the students as

A = {Jane, Bill, Jessica, Fred} (3.1)
or by the description method
A = {students: each student is enrolled in the probability class}

(1%

where the
numbers or

is read as “such that”. Another example would be the set of natural

B = {1,2,3,...} (enumeration) (3.2)
B = {I:1Iisan integer and I > 1} (description).

Each object in the set is called an element and each element is distinct. For example,
the sets {1,2,3} and {1,2,1,3} are equivalent. There is no reason to list an element
in a set more than once. Likewise, the ordering of the elements within the set
is not important. The sets {1,2,3} and {2,1,3} are equivalent. Sets are said to
be equal if they contain the same elements. For example, if C; = {Bill, Fred}
and Cy = {male members in the probability class}, then C; = Cy. Although the
description may change, it is ultimately the contents of the set that is of importance.
An element z of a set A is denoted using the symbolism z € A, and is read as “x
is contained in A”, as for example, 1 € B for the set B defined in (3.2). Some sets
have no elements. If the instructor in the probability class does not give out any
grades of “A”, then the set of students receiving an “A” is D = {}. This is called
the empty set or the null set. It is denoted by @) so that D = (). On the other hand,
the instructor may be an easy grader and give out all “A”s. Then, we say that
D = S, where S is called the universal set or the set of all students enrolled in the
probability class. These concepts, in addition to some others, are further illustrated
in the next example.

Example 3.1 — Set concepts
Consider the set of all outcomes of a tossed die. This is

A={1,2,3,4,5,6}. (3.3)

The numbers 1,2,3,4,5,6 are its elements, which are distinct. The set of integer
numbers from 1 to 6 or B = {I : 1 < I < 6} is equal to A. The set A is also
the universal set S since it contains all the outcomes. This is in contrast to the set
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C = {2,4,6}, which contains only the even outcomes. The set C is called a subset
of A. A simple set is a set containing a single element, as for example, C' = {1}.

¢

A Element vs. simple set

In the example of the probability class consider the set of instructors. Usually,
there is only one instructor and so the set of instructors can be defined as the
simple set A = {Professor Laplace}. However, this is not the same as the “element”
given by Professor Laplace. A distinction is therefore made between the instructors
teaching probability and an individual instructor. As another example, it is clear
that sometimes elements in a set can be added, as, for example, 2 + 3 = 5, but it
makes no sense to add sets as in {2} + {3} = {5}.

More formally, a set B is defined as a subset of a set A if every element in B is also
an element of A. We write this as B C A. This also includes the case of B = A. In
fact, we can say that A= B if A C B and B C A.

Besides subsets, new sets may be derived from other sets in a number of ways. If
S ={z: —00 <z < oo} (called the set of real numbers), then A = {z: 0 < z < 2}
is clearly a subset of S. The complement of A, denoted by A€, is the set of elements
in S but not in A. Thisis A° = {z : £ < 0 or £ > 2}. Two sets can be combined
together to form a new set. For example, if

A = {z:0<z2<2}
B = {z:1<z<3} (3.4)

then the union of A and B, denoted by AU B, is the set of elements that belong to
A or B or both A and B (so-called inclusive or). Hence, AUB = {z:0 < z < 3}.
This definition may be extended to multiple sets Aj, As,..., Ay so that the union
is the set of elements for which each element belongs to at least one of these sets.
It is denoted by

N
A1UA2UA2U--~UAN=UA,~.

1=1

The intersection of sets A and B, denoted by AN B, is defined as the set of elements
that belong to both A and B. Hence, ANB = {z : 1 < z < 2} for the sets of (3.4).
We will sometimes use the shortened symbolism AB to denote ANB. This definition
may be extended to multiple sets A1, As,..., Ay so that the intersection is the set
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of elements for which each element belongs to all of these sets. It is denoted by
N
AiNAsNAN---NAN = mA’
=1

The difference between sets, denoted by A — B, is the set of elements in A but not
in B. Hence, for the sets of (3.4) A— B = {z : 0 < z < 1}. These concepts can
be illustrated pictorially using a Venn diagram as shown in Figure 3.1. The darkly

[
|
|

(a) Universal set & (b) Set A (c) Set A°

| J i_“ TR c: ‘

(d) Set AUB (e) Set AN B (f) Set A— B

4

ey

Figure 3.1: Illustration of set definitions — darkly shaded region indicates the set.

shaded regions are the sets described. The dashed portions are not included in the
sets. A Venn diagram is useful for visualizing set operations. As an example, one
might inquire whether the sets A — B and A N B¢ are equivalent or if

A-B=AnNB" (3.5)

From Figures 3.2 and 3.1f we see that they appear to be. However, to formally
prove that this relationship is true requires one to let C = A — B, D = AN B¢ and
prove that (a) C' C D and (b) D C C. To prove (a) assume that € A — B. Then,
by definition of the difference set (see Figure 3.1f) z € A but z is not an element of
B. Hence, z € A and z must also be an element of B¢. Since D = A N B¢, x must
be an element of D. Hence, z € AN B¢ and since this is true for every z € A — B,
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Figure 3.2: Using Venn diagrams to “validate” set relationships.

we have that A — B C AN B°. The reader is asked to complete the proof of (b) in
Problem 3.6.

With the foregoing set definitions a number of results follow. They will be useful
in manipulating sets to allow easier calculation of probabilities. We now list these.

1. (A9)°=A

2. AUA=S, ANA° =10
3. AUD=A,An0=0
4. AUS=8,ANS =4
5. 8°=0,0°=S.

If two sets A and B have no elements in common, they are said to be disjoint.
The condition for being disjoint is therefore A N B = (. If, furthermore, the sets
contain between them all the elements of S, then the sets are said to partition the
universe. This latter additional condition is that AU B = S. An example of sets
that partition the universe is given in Figure 3.3. Note also that the sets A and A°

Figure 3.3: Sets that partition the universal set.

are always a partitioning of S (why?). More generally, mutually disjoint sets or sets
Ay, Aa, ..., AN for which A;NA; =0 for all ; # j are said to partition the universe
if § = UN, A; (see also Problem 3.9 on how to construct these sets in general). For
example, the set of students enrolled in the probability class, which is defined as the
universe (although of course other universes may be defined such as the set of all
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students attending the given university), is partitioned by

A; = {males} = {Bill, Fred}
Ay = {females} = {Jane, Jessica}.

Algebraic rules for manipulating multiple sets, which will be useful, are

1. AUB=BUA

ANB=BnNA commutative properties
2. AU(BUC)=(AuB)uC
AN(BNnC)=(AnB)NnC associative properties

3. AN(BUC)=(ANB)U(ANC)
AU(BNC)=(AUB)N(AUCQC) distributive properties.

Another important relationship for manipulating sets is De Morgan’s law. Referring

B |

(a) Set AUB (b) Set A° N B¢

Figure 3.4: Illustration of De Morgan’s law.

to Figure 3.4 it is obvious that
AUB = (A°N B%° (3.6)

which allows one to convert from unions to intersections. To convert from intersec-
tions to unions we let A = C° and B = D¢ in (3.6) to obtain

C°UD° = (CND)

and therefore
CNnD=(C°UD®". (3.7

In either case we can perform the conversion by the following set of rules:

1. Change the unions to intersections and the intersections to unions (AU B =
ANB)

2. Complement each set (AN B = A°N B°)
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3. Complement the overall expression (A° N B¢ = (A®N B°)°).

Finally, we discuss the size of a set. This will be of extreme importance in assign-
ing probabilities. The set {2,4,6} is a finite set, having a finite number of elements.
The set {2,4,6,...} is an infinite set, having an infinite number of elements. In
the latter case, although the set is infinite, it is said to be countably infinite. This
means that “in theory” we can count the number of elements in the set. (We do so
by pairing up each element in the set with an element in the set of natural numbers
or {1,2,3,...}). In either case, the set is said to be discrete. The set may be pic-
tured as points on the real line. In contrast to these sets the set {z : 0 <z < 1} is
infinite and cannot be counted. This set is termed continuous and is pictured as a
line segment on the real line. Another example follows.

Example 3.2 — Size of sets

The sets
111
A = <¢=-,-,-,1 i - di
{8 1 } finite set - discrete
111 P .
B = <1, IR countably infinite set - discrete
C = {z:0<z<1} infinite set - continuous
are pictured in Figure 3.5.
3rd ond st element
e o o " X I 1
1 ) g —+——.—.-——+— ¥ 1
0 1 0 1 0 1
(a) Finite set, A (b) Countably infinite (c) Infinite continuous
set, B set, C

Figure 3.5: Examples of sets of different sizes.

3.4 Assigning and Determining Probabilities

In the previous section we reviewed various aspects of set theory. This is because the
concept of sets and operations on sets provide an ideal description for a probabilistic
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model and the means for determining the probabilites associated with the model.
Consider the tossing of a fair die. The possible outcomes comprise the elements
of the set S = {1,2,3,4,5,6}. Note that this set is composed of all the possible
outcomes, and as such is the universal set. In probability theory S is termed the
sample space and its elements s are the outcomes or sample points. At times we may
be interested in a particular outcome of the die tossing experiment. Other times we
might not be interested in a particular outcome, but whether or not the outcome
was an even number, as an example. Hence, we would inquire as to whether the
outcome was included in the set Eeven = {2,4,6}. Clearly, Eeven is a subset of S
and is termed an event. The simplest type of events are the ones that contain only
a single outcome such as Ey = {1}, Ey = {2}, or Es = {6}, as examples. These are
called simple events. Other events are S, the sample space itself, and § = {}, the
set with no outcomes. These events are termed the certain event and the impossible
event, respectively. This is because the outcome of the experiment must be an
element of S so that S is certain to occur. Also, the event that does not contain any
outcomes cannot occur so that this event is impossible. Note that we are saying that
an event occurs if the outcome is an element of the defining set of that event. For
example, the event that a tossed die produces an even number occurs if it comes up
a 2 or a4 ora6. These numbers are just the elements of Eeye,. Disjoint sets such
as {1,2} and {3,4} are said to be mutually exclusive, in that an outcome cannot
be in both sets simultaneously and hence both events cannot occur. The events
then are said to be mutually exclusive. It is seen that probabilistic questions can
be formulated using set theory, albeit with its own terminology. A summary of the
equivalent terms used is given in Table 3.1.

Set theory | Probability theory Probability symbol
universe sample space (certain event) | S

element outcome (sample point) s

subset event E

disjoint sets | mutually exclusive events EiNEy=10

null set impossible event 0

simple set | simple event E = {s}

Table 3.1: Terminology for set and probability theory.

In order to develop a theory of probability we must next assign probabilities to
events. For example, what is the probability that the tossed die will produce an
even outcome? Denoting this probability by P[Eeyen], we would intuitively say that
it is 1/2 since there are 3 chances out of 6 to produce an even outcome. Note that P
is a probability function or a function that assigns a number between 0 and 1 to sets.
It is sometimes called a set function. The reader is familiar with ordinary functions
such as g(z) = exp(z), in which a number y, where y = g(z), is assigned to each z
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for —oo < x < 00, and where each z is a distinct number. The probability function
must assign a number to every event, or to every set. For a coin toss whose outcome
is either a head H or a tail T, all the events are E; = {H}, Es = {T}, E3 = S,
and E4 = (. For a die toss all the events are Ey = 0, E; = {1},...,Es = {6},
E12 ={1,2},...,E56 = {5,6}, ..., E12345 = {1,2,3,4,5}, ..., Eagss6 = {2,3,4,5,6},
Ei23456 = {1,2,3,4,5,6} = S. There are a total of 64 events. In general, if the
sample space has N simple events, the total number of events is 2V (see Problem
3.15). We must be able to assign probabilities to all of these. In accordance with
our intuitive notion of probability we assign a number, either zero or positive, to
each event. Hence, we require that

Axiom 1 P[E] >0 for every event FE.

Also, since the die toss will always produce an outcome that is included in S =
{1,2,3,4,5,6} we should require that

Axiom 2 P[S] =1.

Next we might inquire as to the assignment of a probability to the event that the
die comes up either less than or equal to 2 or equal to 3. Intuitively, we would say
that it is 3/6 since

P{L,2}U{3}] = P{1,2}]+ P[{3}]
2 1 1

676 2
However, we would not assert that the probability of the die coming up either less
than or equal to 3 or equal to 3 is

P[{1,2,3} U{3}]

P{1,2,3}] + P[{3}]
3 1 4

6 6 6

This is because the event {1,2,3} U {3} is just {1,2,3} (we should not count the
3 twice) and so the probability should be 1/2. In the first example, the events are
mutually exclusive (the sets are disjoint) while in the second example they are not.
Hence, the probability of an event that is the union of two mutually exclusive events
should be the sum of the probabilities. Combining this axiom with the previous ones
produces the full set of axioms, which we summarize next for convenience.

Axiom 1 P[E] >0 for every event F
Axiom 2 P[S] =1
Axiom 3 P[EUF] = P[E]+ P[F] for E and F mutually exclusive.

Using induction (see Problem 3.17) the third axiom may be extended to
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N
Axiom 3' P|UY,E]= ZP[E,] for all E;’s mutually exclusive.

i=1
The acceptance of these axioms as the basis for probability is called the aziomatic
approach to probability. It is remarkable that these three axioms, along with a fourth
axiom to be introduced later, are adequate to formulate the entire theory. We now
illustrate the application of these axioms to probability calculations.
Example 3.3 — Die toss
Determine the probability that the outcome of a fair die toss is even. The event
is Feven = {2,4,6}. The assumption that the die is fair means that each outcome
must be equally likely. Defining E; as the simple event {i} we note that

and from Axiom 2 we must have

6
P [U E;
i=1

But since each E; is a simple event and by definition the simple events are mutually
exclusive (only one outcome or simple event can occur), we have from Axiom 3’ that

6 6
P [U E,] =Y P[E)]. (3.9)

Next we note that the outcomes are assumed to be equally likely which means that
P[E;] = P[Ey] = --- = P[Eg] = p. Hence, we must have from (3.8) and (3.9) that

= P[S] =1. (3.8)

6
> PE]=6p=1
1=1

or P[E;] = 1/6 for all i. We can now finally determine P[Eeyen] since Eeyen =
E; U E4 U Eg. By applying Axiom 3’ once again we have

—

1 1 1
P[Eeven] = P[E2 U Ey UEG] = P[Ez] +P[E4] -l—P[Es] = 6 4+ = 6 = 5

(=2}

o

In general, the probabilities assigned to each simple event need not be the same,
i.e., the outcomes of a die toss may not have equal probabilities. One might have
weighted the die so that the number 6 comes up twice as often as all the others. The
numbers 1, 2,3, 4,5 could still be equally likely. In such a case, since the probabilities
of the all the simple events must sum to one, we would have the assignment P[{i}] =
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1/7 for i =1,2,3,4,5 and P[{6}] = 2/7. In either case, to compute the probability
of any event it is only necessary to sum the probabilities of the simple events that
make up that event. Letting P[{s;}] be the probability of the ith simple event we
have that

PIE]= Y Plsi}l (3.10)

{i:S;€E}

We now simplify the notation by omitting the { } when referring to events. Instead
of P[{1}] we will use P[1]. Another example follows.
Example 3.4 — Defective die toss
A defective die is tossed whose sides have been mistakenly manufactured with the
number of dots being 1,1,2,2,3,4. The simple events are s;1 = 1, 53 = 1, 53 = 2,
84 =2, S5 = 3, S¢ = 4. Even though some of the outcomes have the same number
of dots, they are actually different in that a different side is being observed. Each
side is equally likely to appear. What is the probability that the outcome is less
than 37 Noting that the event of interest is {s;,59,53,54}, we use (3.10) to obtain

4
P[E] = Ploutcome < 3] = ZP[Si] = %
1=1

o
The formula given by (3.10) also applies to probability problems for which the sample

space is countably infinite. Therefore, it applies to all discrete sample spaces (see
also Example 3.2).

Example 3.5 — Countably infinite sample space
A habitually tardy person arrives at the theater late by s; minutes, where

Si=i i=1,2,3....

If P[s;] = (1/2)%, what is the probability that he will be more than 1 minute late?
The event is E = {2,3,4,...}. Using (3.10) we have

P(E] =2(%)

Using the formula for the sum of a geometric progression (see Appendix B)

Za’ = for |a| < 1
i=k

l1—a
we have that

2
)

In the above example we have implicitly used the relationship
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P

[j E,} = i P|E;] (3.11)
1=1 =1

where E; = {s;} and hence the E;’s are mutually exclusive. This does not automat-
ically follow from Axiom 3’ since N is now infinite. However, we will assume for our
problems of interest that it does. Adding (3.11) to our list of axioms we have

o0
Axiom 4 P[J2, Ej] = ZP[El] for all E;’s mutually exclusive.

=1

See [Billingsley 1986] for further details.

3.5 Properties of the Probability Function

From the four axioms we may derive many useful properties for evaluating proba-
bilities. We now summarize these properties.

Property 3.1 — Probability of complement event

P[E°] =1 - P[E]. (3.12)

Proof: By definition £ U E¢ = S. Also, by definition £ and E°¢ are mutually
exclusive. Hence,

1 = P[] (Axiom 2)
= P[EU E?°] (definition of complement set)
P[E] + P[E] (Axiom 3)
from which (3.12) follows.
a

We could have determined the probability in Example 3.5 without the use of the
geometric progression formula by using P[E] =1— P[E°| =1 — P[1] =1/2.

Property 3.2 — Probability of impossible event

P[0] = 0. (3.13)

Proof: Since ) = S¢ we have

P[] = P[S9
= 1— P[S] (from Property 3.1)
= 1-1 (from Axiom 2)
= 0.
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We will see later that there are other events for which the probability can be zero.
Thus, the converse is not true.

Property 3.3 — All probabilities are between 0 and 1.

Proof:

§ = EUE° (definition of complement set)
P[S] = P[E]+ P[E°] (Axiom 3)
1 = P[E]+ P[E°] (Axiom 2)

But from Axiom 1 P[E¢] > 0 and therefore
P[E]=1- P[E]] < L. (3.14)

Combining this result with Axiom 1 proves Property 3.3.
a

Property 3.4 — Formula for P[E U F| where F and F are not mutually
exclusive

P|E U F)] = P[E] + P[F] — P[EF). (3.15)

(We have shortened EN F to EF.)

Proof: By the definition of E — F we have that EUF = (E — F) U F (see Figure
3.1d,f). Also, the events E— F and F are by definition mutually exclusive. It follows
that

P[EUF) = P[E — F] + P[F] (Axiom 3). (3.16)

But by definition £ = (E — F) U EF (draw a Venn diagram) and E — F and EF
are mutually exclusive. Thus,

P[E] = P[E — F|+ P[EF]  (Axiom 3). (3.17)

Combining (3.16) and (3.17) produces Property 3.4.

O
The effect of this formula is to make sure that the intersection EF is not counted
twice in the probability calculation. This would be the case if Axiom 3 were mis-
takenly applied to sets that were not mutually exclusive. In the die example, if we
wanted the probability of the die coming up either less than or equal to 3 or equal
to 3, then we would first define

E = {1,2,3)
F = {3}
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so that EF = {3}. Using Property 3.4, we have that

P[E U F) = P|E] + P[F] — P[EF] =

I
| w

| =
| =

+

[=23 L]

Of course, we could just as easily have noted that E U F = {1,2,3} = E and then
applied (3.10). Another example follows.

Example 3.6 — Switches in parallel

A switching circuit shown in Figure 3.6 consists of two potentially faulty switches in
parallel. In order for the circuit to operate properly at least one of the switches must

K

switch 1

R

switch 2

Figure 3.6: Parallel switching circuit.

close to allow the overall circuit to be closed. Each switch has a probability of 1/2 of
closing. The probability that both switches close simultaneously is 1/4. What is the
probability that the switching circuit will operate correctly? To solve this problem
we first define the events E; = {switch 1 closes} and Ey = {switch 2 closes}. The
event that at least one switch closes is E; U E,. This includes the possibility that
both switches close. Then using Property 3.4 we have

P[E1 U Eg] = P[El] + P[EQ] - P[ElEQ]
_ 1.1 1.3
T 22 47 4

Note that by using two switches in parallel as opposed to only one switch, the
probability that the circuit will operate correctly has been increased. What do you
think would happen if we had used three switches in parallel? Or if we had used N
switches? Could you ever be assured that the circuit would operate flawlessly? (See
Problem 3.26.)

%

Property 3.5 — Monotonicity of probability function
Monotonicity asserts that the larger the set, the larger the probability of that set.
Mathematically, this translates into the statement that if E C F', then P[E] < P[F).
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Proof: If E C F, then by definition F = E U (F — E), where E and F — E are
mutually exclusive by definition. Hence,
P[F| = P[E]+P[F—-E] (Axiom 3)
> P[E] (Axiom 1).
O
Note that since EF C F and EF C E, we have that P[EF] < P[E] and also that

P[EF] < P[F]. The probability of an intersection is always less than or equal to
the probability of the set with the smallest probability.

Example 3.7 — Switches in series
A switching circuit shown in Figure 3.7 consists of two potentially faulty switches in
series. In order for the circuit to operate properly both switches must close. For the

N N N

switch 1 switch 2

Figure 3.7: Series switching circuit.

same switches as described in Example 3.6 what is the probability that the circuit
will operate properly? Now we need to find P[E; E;]. This was given as 1/4 so that

1 1

Could the series circuit ever outperform the parallel circuit? (See Problem 3.27.)

¢

One last property that is often useful is the probability of a union of more than
two events. This extends Property 3.4. Consider first three events so that we wish
to derive a formula for P[E, U E; U E3], which is equivalent to P[(E; U E3) U Es] or
P[E, U (E2 U E3)] by the associative property. Writing this as P[E; U (E; U E3)],
we have

P[Ey\UEy;UE3] = P[E;U(FEyU E3)]

= P[El] + P[E2 U E3] — P[E1 (E2 U Eg)] (Property 34)

P[E,] + (P[Ey] + P[E3] — P[EyFE3))

—P[E;(Ey U E3)] (Property 3.4)
(3.18)
But E1(E,UE3) = E1Ey;UE) E3 by the distributive property (draw a Venn diagram)

so that
P[El (E2 U Eg)] = P[E1E2 U E1E3]

= P[ElEQ] + P[E1E3] - P[E1E2E3] (Property 34) (319)
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Substituting (3.19) into (3.18) produces

P[El UE, UEg] = P[El] +P[E2]+P[E3] —P[E2E3]—P[E1E2] —P[E1E3]+P[E1E2E3]

(3.20)
which is the desired result. It can further be shown that (see Problem 3.29)
P[ElEQ] + P[ElEg] + P[E2E3] > P[E1E2E3]
so that
P[E1 UEyU E3] < P[El] + P[EQ] + P[Eg] (3.21)

which is known as Boole’s inequality or the union bound. Clearly, equality holds if
and only if the E;’s are mutually exclusive. Both (3.20) and (3.21) can be extended
to any finite number of unions [Ross 2002].

3.6 Probabilities for Continuous Sample Spaces

We have introduced the axiomatic approach to probability and illustrated the ap-
proach with examples from a discrete sample space. The axiomatic approach is
completely general and applies to continuous sample spaces as well. However, (3.10)
cannot be used to determine probabilities of events. This is because the simple events
of the continuous sample space are not countable. For example, suppose one throws
a dart at a “linear” dartboard as shown in Figure 3.8 and measures the horizontal
distance from the “bullseye” or center at z = 0. We will then have a sample space

12 0 1/2

Figure 3.8: “Linear” dartboard.

S = {z: —1/2 <z < 1/2}, which is not countable. A possible approach is to assign
probabilities to intervals as opposed to sample points. If the dart is equally likely
to land anywhere, then we could assign the interval [a, b] a probability equal to the
length of the interval or

Pla<z<b=b-a -1/2<a<b<1/2 (3.22)

Also, we will assume that the probability of disjoint intervals is the sum of the
probabilities for each interval. This assignment is entirely consistent with our axioms
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PE] = Pla<z<b=b—a>0. (Axiom 1)
P[S] = P[-1/2<z<1/2]=1/2-(-1/2)=1. (Axiom 2)
P[EUF] = Pla<z<bUc<z<d
= (b—a)+(d-o) (assumption)
= Pla<z<b+ Plc<z<d]
P[E] + P[F] (Axiom 3)

for a < b < ¢ < d so that E and F are mutually exclusive. Hence, an equally
likely type probability assignment for a continuous sample space is a valid one and
produces a probability equal to the length of the interval. If the sample space does
not have unity length, as for example, a dartboard with a length L, then we should

use
PlE] = Length of interval ~ Length of interval.

~ Length of dartboard ~ L

(3.23)

A Probability of a bullseye

It is an inescapable fact that the probability of the dart landing at say z = 0 is
zero since the length of this interval is zero. For that matter the probability of
the dart landing at any one particular point z, is zero as follows from (3.22) with
a = b = zy. The first-time reader of probability will find this particularly disturbing
and argue that “How can the probability of landing at every point be zero if indeed
the dart had to land at some point?” From a pragmatic viewpoint we will seldom be
interested in probabilities of points in a continuous sample space but only in those of
intervals. How many darts are there whose tips have width zero and so can be said
to land at a point? It is more realistic in practice then to ask for the probability that
the dart lands in the bullseye, which is a small interval with some nonzero length.
That probability is found by using (3.22). From a mathematical viewpoint it is not
possible to “sum” up an infinite number of positive numbers of equal value and not
obtain infinity, as opposed to one, as assumed in Axiom 2. The latter is true for
continuous sample spaces, in which we have an uncountably infinite set, and also
for discrete sample spaces, which is composed of a infinite but countable set. (Note
that in Example 3.5 we had a countably infinite sample space but the probabilities

were not equal.)

Since the probability of a point event occurring is zero, the probability of any interval
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is the same whether or not the endpoints are included. Thus, for our example

Pla<z<b=Pla<z<b=Pla<z<b=Pla<z<b.

3.7 Probabilities for Finite Sample Spaces — Equally
Likely Outcomes

We now consider in more detail a discrete sample space with a finite number of
outcomes. Some examples that we are already familiar with are a coin toss, a die
toss, or the students in a class. Furthermore, we assume that the simple events
or outcomes are equally likely. Many problems have this structure and can be
approached using counting methods or combinatorics. For example, if two dice are
tossed, then the sample space is

S={(i,j):i=1,...,6;5=1,...,6}

which consists of 36 outcomes with each outcome or simple event denoted by an
ordered pair of numbers. If we wish to assign probabilities to events, then we need
only assign probabilities to the simple events and then use (3.10). But if all the
simple events, denoted by s;;, are equally likely, then

1 1
Pls;;] = — = —
[51]] NS 36
where Ns is the number of outcomes in S. Now using (3.10) we have for any event
that

PE] = > 3 Plsy]
{(G.9): Si;€E}
- Y %
{(.9): SiyeB)"°
Ng
Ns
Number of outcomes in F

~  Number of outcomes in S~ (3.24)

We will use combinatorics to determine Ng and Ng and hence P[E].

Example 3.8 — Probability of equal values for two-dice toss
Each outcome with equal values is of the form (4,7) so that

Number of outcomes with (z,1)

P[E] =
2] Total number of outcomes
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There are 6 outcomes with equal values or (i,i) for i = 1,2,...,6. Thus,
6 1
P[E]| = — = -.
2] 36 6

Example 3.9 — A more challenging problem - urns

An urn contains 3 red balls and 2 black balls. Two balls are chosen in succession.
The first ball is returned to the urn before the second ball is chosen. Each ball is
chosen at random, which means that we are equally likely to choose any ball. What
is the probability of choosing first a red ball and then a black ball? To solve this
problem we first need to define the sample space. To do so we assign numbers to the
balls as follows. The red balls are numbered 1, 2,3 and the black balls are numbered
4,5. The sample space is then S = {(¢,7) : 1 = 1,2,3,4,5;5 = 1,2,3,4,5}. The
event of interest is £ = {(¢,7) : 1 =1,2,3;5 = 4,5}. We assume that all the simple
events are equally likely. An enumeration of the outcomes is shown in Table 3.2.
The outcomes with the asterisks comprise E. Hence, the probability is P[E] = 6/25.
This problem could also have been solved using combinatorics as follows. Since there

j=11j=2|5=3]j=4 |j=5
i=11(1,1) | (L,2) | (1,3) | (1,4) | (1,5)"
1=21(21)1(22) |(23) | (24| (25"
1=310,1) 1 (32) | (33) | (3,4) | (3,5
i=4|(41) | (42 | (43) | (44 |45
i=5](51) |52 |63 | (54 |(55)

Table 3.2: Enumeration of outcomes for urn problem of Example 3.9.

are 5 possible choices for each ball, there are a total of 52 = 25 outcomes in the
sample space. There are 3 possible ways to choose a red ball on the first draw and 2
possible ways to choose a black ball on the second draw, yielding a total of 3-2 =6
possible ways of choosing a red ball followed by a black ball. We thus arrive at the
same probability.

&

3.8 Combinatorics

Combinatorics is the study of counting. As illustrated in Example 3.9, we often
have an outcome that can be represented as a 2-tuple or (21,22), where z; can take
on one of Ny values and z; can take on one of N values. For that example, the total
number of 2-tuples in S is NNy = 5-5 = 25, while that in E is N{Ny = 3-2 = 6, as
can be verified by referring to Table 3.2. It is important to note that order matters
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in the description of a 2-tuple. For example, the 2-tuple (1,2) is not the same as the
2-tuple (2, 1) since each one describes a different outcome of the experiment. We will
frequently be using 2-tuples and more generally r-tuples denoted by (21, 22, ..., 2;)
to describe the outcomes of urn experiments.

In drawing balls from an urn there are two possible strategies. One method is to
draw a ball, note which one it is, return it to the urn, and then draw a second ball.
This is called sampling with replacement and was used in Example 3.9. However, it
is also possible that the first ball is not returned to the urn before the second one is
chosen. This method is called sampling without replacement. The contrast between
the two strategies is illustrated next.

Example 3.10 — Computing probabilities of drawing balls from urns -
with and without replacement

An urn has £ red balls and N — k black balls. If two balls are chosen in succession
and at random with replacement, what is the probability of a red ball followed by a
black ball? We solve this problem by first labeling the k& red balls with 1,2,...,k
and the black balls with £+ 1,k +2,..., N. In doing so the possible outcomes of
the experiment can be represented by a 2-tuple (z1,22), where z; € {1,2,...,N}
and zo € {1,2,...,N}. A successful outcome is a red ball followed by a black one
so that the successful event is £ = {(z1,22) : 21 =1,...,k;22 = k+1,...,N}. The
total number of 2-tuples in the sample space is Ns = N2, while the total number of
2-tuples in F is Ng = k(N — k) so that

PE] = £

Note that if we let p = k/N be the proportion of red balls, then P[E] = p(1 — p).
Next consider the case of sampling without replacement. Now since the same ball
cannot be chosen twice in succession, and therefore, z; # 2o, we have one fewer
choice for the second ball. Therefore, Ngs = N(N — 1). As before, the number of
successful 2-tuples is Ng = k(N — k), resulting in

kN-k) kN-k N
NN-1) N N N-1
N

= r(l-py—7

The probability is seen to be higher. Can you explain this? (It may be helpful to
think about the effect of a successful first draw on the probability of a success on
the second draw.) Of course, for large N the probabilities for sampling with and
without replacement are seen to be approximately the same, as expected.

PlE] =
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¢
If we now choose r balls without replacement from an urn containing N balls, then
all the possible outcomes are of the form (21, 2,...,2;), where the z;’s must be

different. On the first draw we have N possible balls, on the second draw we have
N — 1 possible balls, etc. Hence, the total number of possible outcomes or number
of r-tuples is N(N —1)--- (N —r + 1). We denote this by (N),. If all the balls are
selected, forming an N-tuple, then the number of outcomes is

(N)y=N(N-1)---1

which is defined as N! and is termed N factorial. As an example, if there are 3
balls labeled A,B,C, then the number of 3-tuples is 3! =3-2-1 = 6. To verify this
we have by enumeration that the possible 3-tuples are (A,B,C), (A,C,B), (B,A,C),
(B,C,A), (C,A,B), (C,B,A). Note that 3! is the number of ways that 3 objects can
be arranged. These arrangements are termed the permutations of the letters A, B,
and C. Note that with the definition of a factorial we have that (N), = N!/(N —r)!.
Another example follows.

Example 3.11 — More urns - using permutations
Five balls numbered 1, 2, 3,4, 5 are drawn from an urn without replacement. What
is the probability that they will be drawn in the same order as their number? Each
outcome is represented by the 5-tuple (21,29, 23,24, 25). The only outcome in E
is (1,2,3,4,5) so that Ng = 1. To find Ns we require the number of ways that
the numbers 1,2,3,4,5 can be arranged or the number of permutations. This is
5! = 120. Hence, the desired probability is P[E] = 1/120.

¢
Before continuing, we give one more example to explain our fixation with drawing
balls out of urns.

Example 3.12 — The birthday problem

A probability class has N students enrolled. What is the probability that at least
two of the students will have the same birthday? We first assume that each student
in the class is equally likely to be born on any day of the year. To solve this
problem consider a “birthday urn” that contains 365 balls. Each ball is labeled with
a different day of the year. Now allow each student to select a ball at random, note
its date, and return it to the urn. The day of the year on the ball becomes his/her
birthday. The probability desired is of the event that two or more students choose
the same ball. It is more convenient to determine the probability of the complement
event or that no two students have the same birthday. Then, using Property 3.1

Plat least 2 students have same birthday] = 1—P[no students have same birthday].

The sample space is composed of Ns = 365" N-tuples (sampling with replacement).
The number of N-tuples for which all the outcomes are different is Ng = (365)y.
This is because the event that no two students have the same birthday occurs if
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the first student chooses any of the 365 balls, the second student chooses any of the
remaining 364 balls, etc., which is the same as if sampling without replacement were
used. The probability is then

(365)

365N

This probability is shown in Figure 3.9 as a function of the number of students. It is
seen that if the class has 23 or more students, there is a probability of 0.5 or greater
that two students will have the same birthday.

P|at least 2 students have same birthday] =1 —

)
0.9
0.8

5. 0.7
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—
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Figure 3.9: Probability of at least two students having the same birthday.

A Why this doesn’t appear to make sense.

This result may seem counterintuitive at first, but this is only because the reader

is misinterpreting the question. Most persons would say that you need about 180
people for a 50% chance of two identical birthdays. In contrast, if the question was
posed as to the probability that at least two persons were born on January 1, then
the event would be at least two persons choose the ball labeled “January 1” from the
birthday urn. For 23 people this probability is considerably smaller (see Problem
3.38). It is the possibility that the two identical birthdays can occur on any day
of the year (365 possibilities) that leads to the unexpected large probability. To
verify this result the MATLAB program given below can be used. When run, the
estimated probability for 10,000 repeated experiments was 0.5072. The reader may
wish to reread Section 2.4 at this point.
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% birthday.m
h
clear all
rand(’state’,0)
BD=[0:365]’;
event=zeros (10000,1); % initialize to no successful events
for ntrial=1:10000
for i=1:23

x(i,1)=ceil(365*rand(1,1)); % chooses birthdays at random

% (ceil rounds up to nearest integer)

end
y=sort(x); % arranges birthdays in ascending order
z=y(2:23)-y(1:22); % compares successive birthdays to each other
w=find(z==0); % flags same birthdays
if length(w)>0

event(ntrial)=1; % event occurs if one or more birthdays the same
end
end
prob=sum(event) /10000

AN

We summarize our counting formulas so far. Each outcome of an experiment
produces an r-tuple, which can be written as (z1,22,...,2,). If we are choos-
ing balls in succession from an urn containing N balls, then with replacement
each z; can take on one of N possible values. The number of possible r-tuples
is then N7. If we sample without replacement, then the number of r-tuples is only
(N)y = N(N —-1)--- (N —r +1). If we sample without replacement and r = N
or all the balls are chosen, then the number of r-tuples is N!. In arriving at these
formulas we have used the r-tuple representation in which the ordering is used in
the counting. For example, the 3-tuple (A,B,C) is different than (C,A,B), which is
different than (C,B,A), etc. In fact, there are 3! possible orderings or permutations
of the letters A, B, and C. We are frequently not interested in the ordering but only
in the number of distinct elements. An example might be to determine the number
of possible sum-values that can be made from one penny (p), one nickel (n), and
one dime (d) if two coins are chosen. To determine this we use a tree diagram as
shown in Figure 3.10. Note that since this is essentially sampling without replace-
ment, we cannot have the outcomes pp, nn, or dd (shown in Figure 3.10 as dashed).
The number of possible outcomes are 3 for the first coin and 2 for the second so
that as usual there are (3); = 3 -2 = 6 outcomes. However, only 3 of these are
distinct or produce different sum-values for the two coins. The outcome (p,n) is
counted the same as (n,p) for example. Hence, the ordering of the outcome does
not matter. Both orderings are treated as the same outcome. To remind us that
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P.
=~ 0 6 cents
d
11 cents
P_ 6 cents
<D,
A d
15 cents
P_ 11 cents
= 2 15 cents
\~~(1

choose first choose second

Figure 3.10: Tree diagram enumerating possible outcomes.

ordering is immaterial we will replace the 2-tuple description by the set description
(recall that the elements of a set may be arranged in any order to yield the same
set). The outcomes of this experiment are therefore {p,n}, {p,d}, {n,d}. In effect,
all permutations are considered as a single combination. Thus, to find the number
of combinations:

Number of combinations x Number of permutations = Total number of
r-tuple outcomes

or for this example,
Number of combinations x 2! = (3)s

which yields

(32 _ 3t _

2l T

The number of combinations is given by the symbol (3) and is said to be “3 things
taken 2 at a time”. Also, (g) is termed the binomial coefficient due to its appearance

in the binomial expansion (see Problem 3.43). In general the number of combinations
of N things taken k at a time, i.e., order does not matter, is

(JZ)Z(N)k: N!

Number of combinations =

K (N—k)k

Example 3.13 — Correct change

If a person has a penny, nickel, and dime in his pocket and selects two coins at
random, what is the probability that the sum-value will be 6 cents? The sample
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space is now S = {{p,n}, {p,d},{n,d}} and E = {{p,n}}. Thus,

P[6 cents] = P[{p,n}] = J;\;—j
1
= 3

Note that each simple event is of the form {-,-}. Also, Ns can be found from the
original problem statement as (g) =3.

&

Example 3.14 — How probable is a royal flush?

A person draws 5 cards from a deck of 52 freshly shuffled cards. What is the
probability that he obtains a royal flush? To obtain a royal flush he must draw an
ace, king, queen, jack, and ten of the same suit in any order. There are 4 possible
suits that will be produce the flush. The total number of combinations of cards
or “hands” that can be drawn is (552) and a royal flush will result from 4 of these
combinations. Hence,

4

(%)

Plroyal flush] = ~ 0.00000154.

& Ordered vs. unordered

It is sometimes confusing that (552) is used for Ng. It might be argued that the
first card can be chosen in 52 ways, the second card in 51 ways, etc. for a total of
(562)5 possible outcomes. Likewise, for a royal flush in hearts we can choose any of
5 cards, followed by any of 4 cards, etc. for a total of 5! possible outcomes. Hence,
the probability of a royal flush in hearts should be

Plroyal flush in hearts] =

(52.)5 '

But this is just the same as 1/ (‘?) which is the same as obtained by counting
combinations. In essence, we have reduced the sample space by a factor of 5! but
additionally each event is commensurately reduced by 5!, yielding the same proba-
bility. Equivalently, we have grouped together each set of 5! permutations to yield

a single combination.
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3.9 Binomial Probability Law

In Chapter 1 we cited the binomial probability law for the number of heads obtained
for N tosses of a coin. The same law also applies to the problem of drawing balls from
an urn. First, however, we look at a related problem that is of considerable practical
interest. Specifically, consider an urn consisting of a proportion p of red balls and the
remaining proportion 1 — p of black balls. What is the probability of drawing k red
balls in M drawings without replacement? Note that we can associate the drawing
of a red ball as a “success” and the drawing of a black ball as a “failure”. Hence,
we are equivalently asking for the probability of k successes out of a maximum of
M successes. To determine this probability we first assume that the urn contains
N balls, of which Ng are red and Np are black. We sample the urn by drawing M
balls without replacement. To make the balls distinguishable we label the red balls
as 1,2,..., Ngr and the black ones as Ng + 1, Ng +2,..., N. The sample space is

S ={(z1,22,...,2m) : zs =1,..., N and no two z;’s are the same}.

We assume that the balls are selected at random so that the outcomes are equally
likely. The total number of outcomes is Ns = (N)ys. Hence, the probability of
obtaining k red balls is
Ng

Plk] M (3.25)
NEg is the number of M-tuples that contain & distinct integers in the range from
1 to Ng and M — k distinct integers in the range Nr + 1 to N. For example, if
Nr =3, Np =4 (and hence N =7), M = 4, and k = 2, the red balls are contained
in {1,2, 3}, the black balls are contained in {4,5,6,7} and we choose 4 balls without
replacement. A successful outcome has two red balls and two black balls. Some
successful outcomes are (1,4,2,5), (1,4,5,2), (1,2,4,5), etc. or (2,3,4,6), (2,4,3,6),
(2,6,3,4), etc. Hence, Ng is the total number of outcomes for which two of the z;’s
are elements of {1,2,3} and two of the z;’s are elements of {4, 5,6,7}. To determine
this number of successful M-tuples we

1. Choose the k positions of the M-tuple to place the red balls. (The remaining
positions will be occupied by the black balls.)

2. Place the Np red balls in the k positions obtained from step 1.

3. Place the Np black balls in the remaining M — k positions.

Step 1 is accomplished in (A,:[ ) ways since any permutation of the chosen positions
produces the same set of positions. Step 2 is accomplished in (Ng)x ways and step
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3 is accomplished in (Ng)a— ways. Thus, we have that

Ng = (f) (NRr)k(NB) M-k (3.26)

M!

= (—M_—k)!k!(NR)k(NB)M—k

M (]Tf) (Mka>

so that finally we have from (3.25)

PlK] () (%)

= MEJ AU (3.27)

This law is called the hypergeometric law and describes the probability of k successes
when sampling without replacement is used. If sampling with replacement is used,
then the binomial law results. However, instead of repeating the entire derivation
for sampling with replacement, we need only assume that NN is large. Then, whether
the balls are replaced or not will not affect the probability. To show that this is
indeed the case, we start with the expression given by (3.26) and note that for N
large and M < N, then (N)p ~ NM. Similarly, we assume that M < Ng and

M < Np and make similar approximations. As a result we have from (3.25) and
(3.26)

M\ NkNM-k
Plk] = ( k ) —RNE

e

Letting Ng/N = p and Ng/N = (N — Ng)/N = 1—p, we have at last the binomial
law

H@=(f)wa—mM*. (3.28)

To summarize, the binomial law not only applies to the drawing of balls from urns
with replacement but also applies to the drawing of balls without replacement if the
number of balls in the urn is large. We next use our results in a quality control
application.
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3.10 Real-World Example — Quality Control

A manufacturer of electronic memory chips produces batches of 1000 chips for ship-
ment to computer companies. To determine if the chips meet specifications the
manufacturer initially tests all 1000 chips in each batch. As demand for the chips
grows, however, he realizes that it is impossible to test all the chips and so proposes
that only a subset or sample of the batch be tested. The criterion for acceptance
of the batch is that at least 95% of the sample chips tested meet specifications. If
the criterion is met, then the batch is accepted and shipped. This criterion is based
on past experience of what the computer companies will find acceptable, i.e., if the
batch “yield” is less than 95% the computer companies will not be happy. The
production manager proposes that a sample of 100 chips from the batch be tested
and if 95 or more are deemed to meet specifications, then the batch is judged to
be acceptable. However, a quality control supervisor argues that even if only 5 of
the sample chips are defective, then it is still quite probable that the batch will not
have a 95% yield and thus be defective.

The quality control supervisor wishes to convince the production manager that
a defective batch can frequently produce 5 or fewer defective chips in a chip sample
of size 100. He does so by determining the probability that a defective batch will
have a chip sample with 5 or fewer defective chips as follows. He first needs to
assume the proportion of chips in the defective batch that will be good. Since
a good batch has a proportion of good chips of 95%, a defective batch will have
a proportion of good chips of less than 95%. Since he is quite conservative, he
chooses this proportion as exactly p = 0.94, although it may actually be less. Then,
according to the production manager a batch is judged to be acceptable if the sample
produces 95,96,97,98,99, or 100 good chips. The quality control supervisor likens
this problem to the drawing of 100 balls from an “chip urn” containing 1000 balls.
In the urn there are 1000p good balls and 1000(1 — p) bad ones. The probability of
drawing 95 or more good balls from the urn is given approzimately by the binomial
probability law. We have assumed that the true law, which is hypergeometric due
to the use of sampling without replacement, can be approximated by the binomial
law, which assumes sampling with replacement. See Problem 3.48 for the accuracy
of this approximation.

Now the defective batch will be judged as acceptable if there are 95 or more
successes out of a possible 100 draws. The probability of this occurring is

100 100
Pk >95]= ) ( . )pk(l — p)l00—Fk
k=95

where p = 0.94. The probability P[k > 95] versus p is plotted in Figure 3.11.
For p = 0.94 we see that the defective batch will be accepted with a probability
of about 0.45 or almost half of the defective batches will be shipped. The quality
control supervisor is indeed correct. The production manager does not believe the
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Figure 3.11: Probability of accepting a defective batch versus proportion of good
chips in the defective batch — accept if 5 or fewer bad chips in a sample of 100.

result since it appears to be too high. Using sampling with replacement, which
will produce results in accordance with the binomial law, he performs a computer
simulation (see Problem 3.49). Based on the simulated results he reluctantly accepts
the supervisor’s conclusions. In order to reduce this probability the quality control
supervisor suggests changing the acceptance strategy to one in which the batch
is accepted only if 98 or more of the samples meet the specifications. Now the
probability that the defective batch will be judged as acceptable is

X /100
P[k > 98] = Z ( L >pk(1 _ p)loo-k
k=98

where p = 0.94, the assumed proportion of good chips in the defective batch. This
produces the results shown in Figure 3.12. The acceptance probability for a defective
batch is now reduced to only about 0.05.

There is a price to be paid, however, for only accepting a batch if 98 or more of
the samples are good. Many more good batches will be rejected than if the previous
strategy were used (see Problem 3.50). This is deemed to be a reasonable tradeoff.
Note that the supervisor may well be advised to examine his initial assumption
about p for the defective batch. If, for instance, he assumed that a defective batch
could be characterized by p = 0.9, then according to Figure 3.11, the production
manager’s original strategy would produce a probability of less than 0.1 of accepting
a defective batch.
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Figure 3.12: Probability of accepting a defective batch versus proportion of good
chips in the defective batch — accept if 2 or fewer bad chips in a sample of 100.
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Problems

3.1 () (w) The universal set is given by S = {z : —0o < = < 0o} (the real line).
If A={z:2>1} and B = {z:z <2}, find the following:
a. A¢ and B°
b. AUBand ANB
c. A-Band B—- A

3.2 (w) Repeat Problem 3.1 if § = {z : z > 0}.

3.3 (w) A group of voters go to the polling place. Their names and ages are Lisa,
21, John, 42, Ashley, 18, Susan, 64, Phillip, 58, Fred, 48, and Brad, 26. Find
the following sets:
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Voters older than 30

Voters younger than 30

Male voters older than 30

Female voters younger than 30

Voters that are male or younger than 30
Voters that are female and older than 30

IR - W B~ o Y

Next find any two sets that partition the universe.

3.4(w) Given the sets A; = {z: 0 <z <} fori =1,2,...,N, find UililAi and
NN A;. Are the A;’s disjoint?

3.5 (w) Prove that the sets A= {z:2 > —1} and B = {z : 2z + 2 > 0} are equal.
3.6 (t) Prove that if z € AN B¢, thenz € A — B.

3.7() (w) If § =1{1,2,3,4,5,6}, find sets A and B that are disjoint. Next find
sets C' and D that partition the universe.

38(w) IfS ={(z,y) :0<z<1land0 <y < 1}, find sets A and B that are
disjoint. Next find sets C and D that partition the universe.

3.9 (t) In this problem we see how to construct disjoint sets from ones that are not
disjoint so that their unions will be the same. We consider only three sets and
ask the reader to generalize the result. Calling the nondisjoint sets A, B, C
and the union D = AU BUC, we wish to find three disjoint sets E;, E», and
FE5 so that D = E; U E3 U E3. To do so let

E1 = A
Ey, = B-E
E3 = (C- (E1 UEQ).

Using a Venn diagram explain this procedure. If we now have sets A;, As,..., An,
explain how to construct N disjoint sets with the same union.

3.10 (=) (f) Replace the set expression AUBUC with one using intersections and
complements. Replace the set expression AN BNC with one using unions and
complements.

3.11 (w) The sets A, B, C are subsets of S = {(z,9) : 0 <z <land 0 <y < 1}.
They are defined as

A = {&y:s<1/20<y<1}
B = {(z,y):2>1/2,0<y<1}
C = {(&y):0<z<ly<1/2).
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Explicitly determine the set AU (BN C)¢ by drawing a picture of it as well as
pictures of all the individual sets. For simplicity you can ignore the edges of
the sets in drawing any diagrams. Can you represent the resultant set using
only unions and complements?

3.12 (.- ) (w) Give the size of each set and also whether it is discrete or continuous.

If the set is infinite, determine if it is countably infinite or not.

a. A = {seven-digit numbers}
b. B={z:2s =1}

c. C={z:0<z<land1/2<z<2}
d. D= {(z,y) :x2+ 4> =1}

e. E={z:2%+3z+2=0}

f.

F = {positive even integers}

3.13 (w) Two dice are tossed and the number of dots on each side that come up

are added together. Determine the sample space, outcomes, impossible event,
three different events including a simple event, and two mutually exclusive
events. Use appropriate set notation.

3.14 (=) (w) The temperature in Rhode Island on a given day in August is found

to always be in the range from 30° F to 100° F. Determine the sample space,
outcomes, impossible event, three different events including a simple event,
and two mutually exclusive events. Use appropriate set notation.

3.15 (t) Prove that if the sample space has size N, then the total number of events

(including the impossible event and the certain event) is 2. Hint: There are

(JZ ) ways to choose an event with k& outcomes from a total of N outcomes.

Also, use the binomial formula

N
a+b Z( )akbN_’c

k=0

which was proven in Problem 1.11.

3.16 (w) An urn contains 2 red balls and 3 black balls. The red balls are labeled

with the numbers 1 and 2 and the black balls are labeled as 3, 4, and 5. Three
balls are drawn without replacement. Consider the events that

A = {a majority of the balls drawn are black}
B = {the sum of the numbers of the balls drawn > 10}.

Are these events mutually exclusive? Explain your answer.
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3.17 (t) Prove Axiom 3' by using mathematical induction (see Appendix B) and
Axiom 3.

3.18 (--) (w) A roulette wheel has numbers 1 to 36 equally spaced around its
perimeter. The odd numbers are colored red while the even numbers are
colored black. If a spun ball is equally likely to yield any of the 36 numbers,
what is the probability of a black number, of a red number? What is the
probability of a black number that is greater than 247 What is the probability
of a black number or a number greater than 247

3.19 (--) (c) Use a computer simulation to simulate the tossing of a fair die. Based
on the simulation what is the probability of obtaining an even number? Does
it agree with the theoretical result? Hint: See Section 2.4.

3.20 (w) A fair die is tossed. What is the probability of obtaining an even number,
an odd number, a number that is even or odd, a number that is even and odd?

3.21 (.- ) (w) A die is tossed that yields an even number with twice the probability
of yielding an odd number. What is the probability of obtaining an even
number, an odd number, a number that is even or odd, a number that is even
and odd?

3.22 (w) If a single letter is selected at random from {A, B, C'}, find the probability
of all events. Recall that the total number of events is 2%V, where N is the

number of simple events. Do these probabilities sum to one? If not, why not?
Hint: See Problem 3.15.

3.23 (.-) (w) A number is chosen from {1,2,3,...} with probability

% 1=1
P[i]: % _ 1=2
(3)7" i>3

Find P[i > 4].
3.24 (f) For a sample space S = {0,1,2,...} the probability assignment
9
Pli] = exp(=2) =
is proposed. Is this a valid assignment?

3.25 (=) (w) Two fair dice are tossed. Find the probability that only one die
comes up a 6.
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3.26 (w) A circuit consists of N switches in parallel (see Example 3.6 for N = 2).
The sample space can be summarized as S = {(21,22,...,2~) : 2i = s or f},
where s indicates a success or the switch closes and f indicates a failure or
the switch fails to close. Assuming that all the simple events are equally
likely, what is the probability that a circuit is closed when all the switches are
activated to close? Hint: Consider the complement event.

3.27 (.-) (w) Can the series circuit of Figure 3.7 ever outperform the parallel cir-
cuit of Figure 3.6 in terms of having a higher probability of closing when both
switches are activated to close? Assume that switch 1 closes with probability

p, switch 2 closes with probability p, and both switches close with probability
2

pe.
3.28 (w) Verify the formula (3.20) for P[E; U EyU E3) if E, Eg, E3 are events that
are not necessarily mutually exclusive. To do so use a Venn diagram.

3.29 (t) Prove that

P[E1E2] + P[E1E3] + P[E2E3] > P[ElEzEg].

3.30 (w) A person always arrives at his job between 8:00 AM and 8:20 AM. He is
equally likely to arrive anytime within that period. What is the probability
that he will arrive at 8:10 AM? What is the probability that he will arrive
between 8:05 and 8:10 AM?

3.31 (w) A random number generator produces a number that is equally likely to
be anywhere in the interval (0,1). What are the simple events? Can you use
(3.10) to find the probability that a generated number will be less than 1/27
Explain.

3.32 (w) If two fair dice are tossed, find the probability that the same number will
be observed on each one. Next, find the probability that different numbers
will be observed.

3.33 (.= ) (w) Three fair dice are tossed. Find the probability that 2 of the numbers
will be the same and the third will be different.

3.34 (w,c) An urn contains 4 red balls and 2 black balls. Two balls are chosen at
random and without replacement. What is the probability of obtaining one
red ball and one black ball in any order? Verify your results by enumerating
all possibilities using a computer evaluation.

3.35 (=) (f) Rhode Island license plate numbers are of the form GR315 (2 letters
followed by 3 digits). How many different license plates can be issued?
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3.36 (f) A baby is to be named using four letters of the alphabet. The letters can
be used as often as desired. How many different names are there? (Of course,
some of the names may not be pronounceable).

3.37 (c) It is difficult to compute N! when N is large. As an approximation, we
can use Stirling’s formula, which says that for large N

N!' = V2r NN*1/2 exp(—N).

Compare Stirling’s approximation to the true value of N! for N = 1,2,...,100
using a digital computer. Next try calculating the exact value of N! for N =
200 using a computer. Hint: Try printing out the logarithm of N! and compare
it to the logarithm of its approximation.

3.38 (.-) (t) Determine the probability that in a class of 23 students two or more
students have birthdays on January 1.

3.39 (c) Use a computer simulation to verify your result in Problem 3.38.

3.40 (.- ) (w) A pizza can be ordered with up to four different toppings. Find the
total number of different pizzas (including no toppings) that can be ordered.
Next, if a person wishes to pay for only two toppings, how many two-topping
pizzas can he order?

3.41 (f) How many subsets of size three can be made from {4, B,C, D, E}?

3.42 (w) List all the combinations of two coins that can be chosen from the follow-
ing coins: one penny (p), one nickel (n), one dime (d), one quarter (q). What
are the possible sum-values?

3.43 (f) The binomial theorem states that

o -5 () k.

k=0

Expand (a + b)® and (a + b)* into powers of a and b and compare your results
to the formula.

3.44 (.-) (w) A deck of poker cards contains an ace, king, queen, jack, 10, 9, 8,
7, 6, 5, 4, 3, 2 in each of the four suits, hearts (h), clubs (c), diamonds (d),
and spades (s), for a total of 52 cards. If 5 cards are chosen at random from
a deck, find the probability of obtaining 4 of a kind, as for example, 8-h, 8-c,
8-d, 8-s, 9-c. Next find the probability of a flush, which occurs when all five
cards have the same suit, as for example, 8-s, queen-s, 2-s, ace-s, 5-s.
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3.45 (w) A class consists of 30 students, of which 20 are freshmen and 10 are
sophomores. If 5 students are selected at random, what is the probability that
they will all be sophomores?

3.46 (w) An urn containing an infinite number of balls has a proportion p of red
balls, and the remaining portion 1 — p of black balls. Two balls are chosen at
random. What value of p will yield the highest probability of obtaining one
red ball and one black ball in any order?

3.47 (w) An urn contains an infinite number of coins that are either two-headed or
two-tailed. The proportion of each kind is the same. If we choose M coins at
random, explain why the probability of obtaining £ heads is given by (3.28)
with p = 1/2. Also, how does this experiment compare to the tossing of a fair
coin M times?

3.48 (¢) Compare the hypergeometric law to the binomial law if N = 1000, M =
100, p = 0.94 by calculating the probability P[k] for £k = 95,96,...,100.
Hint: To avoid computational difficulties of calculating N! for large N, use
the following strategy to find z = 1000!/900! as an example.

1000 900

y = In(z) = In(1000!) — In(900!) = > In(s) — »  In(i)
=1 =1

and then z = exp(y). Alternatively, for this example you can cancel out the
common factors in the quotient of z and write it as z = (1000)199, which is
easier to compute. But in general, this may be more difficult to set up and
program.

3.49 (=) (c) A defective batch of 1000 chips contains 940 good chips and 60 bad
chips. If we choose a sample of 100 chips, find the probability that there will
be 95 or more good chips by using a computer simulation. To simpify the
problem assume sampling with replacement for the computer simulation and
the theoretical probability. Compare your result to the theoretical prediction
in Section 3.10.

3.50 (c) For the real-world problem discussed in Section 3.10 use a computer simu-
lation to determine the probability of rejecting a good batch. To simpify your
code assume sampling with replacement. A good batch is defined as one with
a probability of obtaining a good chip of p = 0.95. The two strategies are to
accept the batch if 95 or more of the 100 samples are good and if 98 or more
of the 100 samples are good. Explain your results. Can you use Figures 3.11
and 3.12 to determine the theoretical probabilities?



Chapter 4

Conditional Probability

4.1 Introduction

In the previous chapter we determined the probabilities for some simple experiments.
An example was the die toss that produced a number from 1 to 6 “at random”.
Hence, a probability of 1/6 was assigned to each possible outcome. In many real-
world “experiments”, the outcomes are not completely random since we have some
prior knowledge. For instance, knowing that it has rained the previous 2 days might
influence our assignment of the probability of sunshine for the following day. Another
example is to determine the probability that an individual chosen from some general
population weighs more than 200 lbs., knowing that his height exceeds 6 ft. This
motivates our interest in how to determine the probability of an event, given that we
have some prior knowledge. For the die tossing experiment we might inquire as to the
probability of obtaining a 4, if it is known that the outcome is an even number. The
additional knowledge should undoubtedly change our probability assignments. For
example, if it is known that the outcome is an even number, then the probability
of any odd-numbered outcome must be zero. It is this interaction between the
original probabilities and the probabilities in light of prior knowledge that we wish
to describe and quantify, leading to the concept of a conditional probability.

4.2 Summary

Section 4.3 motivates and then defines the conditional probability as (4.1). In do-
ing so the concept of a joint event and its probability are introduced as well as
the marginal probability of (4.3). Conditional probabilities can be greater than,
less than, or equal to the ordinary probability as illustrated in Figure 4.2. Also,
conditional probabilities are true probabilities in that they satisfy the basic axioms
and so can be manipulated in the usual ways. Using the law of total probability
(4.4), the probabilities for compound experiments are easily determined. When the
conditional probability is equal to the ordinary probability, the events are said to
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be statistically independent. Then, knowledge of the occurrence of one event does
not change the probability of the other event. The condition for two events to
be independent is given by (4.5). Three events are statistically independent if the
conditions (4.6)—(4.9) hold. Bayes’ theorem is defined by either (4.13) or (4.14).
Embodied in the theorem are the concepts of a prior probability (before the experi-
ment is conducted) and a posterior probability (after the experiment is conducted).
Conclusions may be drawn based on the outcome of an experiment as to whether
certain hypotheses are true. When an experiment is repeated multiple times and
the experiments are independent, the probability of a joint event is easily found
via (4.15). Some probability laws that result from the independent multiple experi-
ment assumption are the binomial (4.16), the geometric (4.17), and the multinomial
(4.19). For dependent multiple experiments (4.20) must be used to determine prob-
abilities of joint events. If, however, the experimental outcomes probabilities only
depend on the previous experimental outcome, then the Markov condition is satis-
fied. This results in the simpler formula for determining joint probabilities given by
(4.21). Also, this assumption leads to the concept of a Markov chain, an example of
which is shown in Figure 4.8. Finally, in Section 4.7 an example of the use of Bayes’
theorem to detect the presence of a cluster is investigated.

4.3 Joint Events and the Conditional Probability

In formulating a useful theory of conditional probability we are led to consider
two events. Event A is our event of interest while event B represents the event
that embodies our prior knowledge. For the fair die toss example described in the
introduction, the event of interest is A = {4} and the event describing our prior
knowledge is an even outcome or B = {2,4,6}. Note that when we say that the
outcome must be even, we do not elaborate on why this is the case. It may be
because someone has observed the outcome of the experiment and conveyed this
partial information to us. Alternatively, it may be that the experimenter loathes
odd outcomes, and therefore keeps tossing the die until an even outcome is obtained.
Conditional probability does not address the reasons for the prior information, only
how to accommodate it into a probabilistic framework. Continuing with the fair
die example, a typical sequence of outcomes for a repeated experiment is shown in
Figure 4.1. The odd outcomes are shown as dashed lines and are to be ignored.
From the figure we see that the probability of a 4 is about 9/25 = 0.36, or about
1/3, using a relative frequency interpretation of probability. This has been found
by taking the total number of 4’s and dividing by the total number of 2’s, 4’s, and
6’s. Specifically, we have that
Ny 9
Np 25

Another problem might be to determine the probability of A = {1,4}, knowing
that the outcome is even. In this case, we should use Ngnp/Np to make sure we
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Figure 4.1: Outcomes for repeated tossing of a fair die.

only count the outcomes that can occur in light of our knowledge of B. For this
example, only the 4 in {1,4} could have occurred. If an outcome is not in B, then
that outcome will not be included in AN B and will not be counted in Ng4np. Now
letting S = {1,2,3,4,5,6} be the sample space and Nj its size, the probability of
A given B is

Nangp
Nanp _ N5 . P[ANB]

Np N =~ P[B]

This is termed the conditional probability and is denoted by P[A|B] so that we have
as our definition
P[AN B]

PlAIB) = =55

. (4.1)
Note that to determine it, we require P[A N B] which is the probability of both A
and B occurring or the probability of the intersection. Intuitively, the conditional
probability is the proportion of time A and B occurs divided by the proportion of
time that B occurs. The event B = {2,4,6} comprises a new sample space and is
sometimes called the reduced sample space. The denominator term in (4.1) serves to
normalize the conditional probabilities so that the probability of the reduced sample
space is one (set A = B in (4.1)). Returning to the die toss, the probability of a 4,
given that the outcome is even, is found as

ANB {4} n{2,4,6} ={4} = A
B = {2,4,6}
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Wi Wa W3 Wy Wi P[H;]
100-130 130-160 160-190 190-220 220-250
H, 5-54" 0.08 0.04 0.02 0 0 0.14
H, 54"-58" | 0.06 0.12 0.06 0.02 0 0.26
Hs; 58— ¢ 0 0.06 0.14 0.06 0 0.26
H; 6-64" 0 0.02 0.06 0.10 0.04 0.22
Hs; 64'-6'8" |0 0 0 0.08 0.04 0.12

Table 4.1: Joint probabilities for heights and weights of college students.

and therefore

P[ANB] _ PlA]

PUIBL = =5 = Pip)
_1/6 1
ST

as expected. Note that P[A N B] and P[B] are computed based on the original
sample space, S. )

The event AN B is usually called the joint event since both events must occur
for a nonempty intersection. Likewise, P[A N B] is termed the joint probability, but
of course, it is nothing more than the probability of an intersection. Also, P[A]
is called the marginal probability to distinguish it from the joint and conditional
probabilities. The reason for this terminology will be discussed shortly.

In defining the conditional probability of (4.1) it is assumed that P[B] # 0. Oth-
erwise, theoretically and practically, the definition would not make sense. Another
example follows.

Example 4.1 — Heights and weights of college students

A population of college students have heights H and weights W which are grouped
into ranges as shown in Table 4.1. The table gives the joint probability of a student
having a given height and weight, which can be denoted as P[H;NW;]. For example,
if a student is selected, the probability of his/her height being between 54" and 5'8”
and also his/her weight being between 130 lbs. and 160 1bs. is 0.12. Now consider the
event that the student has a weight in the range 130-160 lbs. Calling this event A
we next determine its probability. Since A = {(H, W) : H = Hy,...,H5; W = Wy},
it is explicitly

A = {(H1,W2), (Hy, W), (Hs, Ws), (Hs, W5), (Hs, W)}

and since the simple events are by definition mutually exclusive, we have by Axiom
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3’ (see Section 3.4)

5
P[A] = Y P[(H;,W2)] = 0.04 +0.12 + 0.06 + 0.02 + 0
=1
= 0.24.

Next we determine the probability that a student’s weight is in the range of 130-160
lbs., given that the student has height less than 6. The event of interest A is the
same as before. The conditioning event is B = {(H,W) : H = Hy,H,H3; W =
Wi, ... ,W5} so that ANB = {(Hl, Ws), (HQ, WQ), (Hs, Wg)} and

_ P[AnB] 0.04+0.12+0.06
PAlB] = P[B]  0.14+0.26 +0.26
= 0.33.

We see that it is more probable that the student has weight between 130 and 160
Ibs. if it is known beforehand that his/her height is less than 6'. Note that in finding
P|[B] we have used

3 5
P[B] =" P[(H;,W;)] (4.2)

i=1 j=1

which is determined by first summing along each row to produce the entries shown
in Table 4.1 as P[H;]. These are given by

5
P[H;) = P[(H;, W;)] (4.3)
j=1

and then summing the P[H;]’s for i = 1,2,3. Hence, we could have written (4.2)
equivalently as

3
P[B] = Z P[Hj).

The probabilities P[H;] are called the marginal probabilities since they are written
in the margin of the table. If we were to sum along the columns, then we would
obtain the marginal probabilities for the weights or P[W;]. These are given by

5
PW;] = Y PI(H;, W)

It is important to observe that by utilizing the information that the student’s
height is less than 6, the probability of the event has changed; in this case, it
has increased from 0.24 to 0.33. It is also possible that the opposite may occur.
If we were to determine the probability that the student’s weight is in the range
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130-160 lbs., given that he/she has a height greater than 6, then defining the
conditioning event as B = {(H,W) : H = Hy,Hs;W = Wy,...,Ws} and noting
that AN B = {(H4,W2), (H5, W2} we have

0.02 4+ 0
PlAB] = 0.22 +0.12

= 0.058.

Hence, the conditional probability has now decreased with respect to the uncondi-
tional probability or P[A].

¢
In general we may have
P[A|B] > P[A]
P[A|B] < P[A]
P[A|B] = P[A].

See Figure 4.2 for another example. The last possibility is of particular interest since

v y
X
1/2 _ B
1/4 I
— .
(a) (b) ©

2/3=P[A|B] > P[A]=1/2 1/3=P[A|B]< P[A]=1/2 1/2 = P[A|B] = P[A] =1/2

Figure 4.2: Illustration of possible relationships of conditional probability to ordi-
nary probability.

it states that the probability of an event A is the same whether or not we know that
B has occurred. In this case, the event A is said to be statistically independent of
the event B. In the next section, we will explore this further.

Before proceeding, we wish to emphasize that a conditional probability is a true
probability in that it satisfies the axioms described in Chapter 3. As a result, all the
rules that allow one to manipulate probabilities also apply to conditional probabili-
ties. For example, since Property 3.1 must hold, it follows that P[A¢|B] = 1—P[A|B]
(see also Problem 4.10). To prove that the axioms are satisfied for conditional prob-
abilities we first assume that the axioms hold for ordinary probabilities. Then,
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Axiom 1 PIANB
P[A|B] = [_P[E—]—l >0

since P[AN B] > 0 and P[B] > 0.
Axiom 2
P[SNB] P[B]

P[S|B] = FE = Pl =

Axiom 3 If A and C are mutually exclusive events, then

P[(AUC) N B]

P[AUC|B] = B (definition)
_ P[(AnB)U(CnN B)] o
= PIB] (distributive property)
_ P[ANB]+ P[CNB] (Axiom 3 for ordinary probability,
- P[B] ANC=0=(ANnB)N(CNB)=10)
= P[A|B]+ P[C|B] (definition of conditional probability).

79

Conditional probabilities are useful in that they allow us to simplify probability
calculations. One particularly important relationship based on conditional proba-
bility is described next. Consider a partitioning of the sample space S. Recall that
a partition is defined as a group of sets By, Bs,..., By such that S = UY | B; and

B; N Bj = for i # j. Then we can rewrite the probability P[A] as

P[A] = P[ANS] =P [An (UX,B;)].

But by a slight extension of the distributive property of sets, we can express this as

P[A] = P[(ANBy)U(ANBy) U---U (AN By)].

Since the B;’s are mutually exclusive, then so are the A N B;’s, and therefore

N
P[A]=> P[ANB|]
=1

or finally
N
P[4] =) _ P[A|B]P[B;]

(4.4)

This relationship is called the law of total probability. Its utility is illustrated next.

Example 4.2 — A compound experiment

Two urns contain different proportions of red and black balls. Urn 1 has a pro-
portion p; of red balls and a proportion 1 — p; of black balls whereas urn 2 has
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proportions of po and 1 — p of red balls and black balls, respectively. A compound
experiment is performed in which an urn is chosen at random, followed by the se-
lection of a ball. We would like to find the probability that a red ball is selected.
To do so we use (4.4) with A = {red ball selected}, B; = {urn 1 chosen}, and
By = {urn 2 chosen}. Then

P[red ball selected] = Pred ball selected|urn 1 chosen]P[urn 1 chosen]
+P([red ball selected|urn 2 chosen]P[urn 2 chosen)]

= Pl% +P2% = %(Pl +p2).

A Do B; and Bs; really partition the sample space?

To verify that the application of the law of total probability is indeed valid for this

problem, we need to show that B; U By = S and B; N Bs = (. In our description
of By and Bz we refer to the choice of an urn. In actuality, this is shorthand for all
the balls in the urn. If urn 1 contains balls numbered 1 to N, then by choosing urn
1 we are really saying that the event is that one of the balls numbered 1 to N; is
chosen and similarly for urn 2 being chosen. Hence, since the sample space consists
of all the numbered balls in urns 1 and 2, it is observed that the union of B; and
B5 is the set of all possible outcomes or the sample space. Also, B; and By are
mutually exclusive since we choose urn 1 or urn 2 but not both.

Example 4.3 — Probability of error in a digital communication system

Some more examples follow.

In a digital communication system a “0” or “1” is transmitted to a receiver. Typi-
cally, either bit is equally likely to occur so that a prior probability of 1/2 is assumed.
At the receiver a decoding error can be made due to channel noise, so that a 0 may
be mistaken for a 1 and vice versa. Defining the probability of decoding a 1 when a
0 is transmitted as € and a 0 when a 1 is transmitted also as €, we are interested in
the overall probability of an error. A probabilistic model summarizing the relevant
features is shown in Figure 4.3. Note that the problem at hand is essentially the
same as the previous one. If urn 1 is chosen, then we transmit a 0 and if urn 2
is chosen, we transmit a 1. The effect of the channel is to introduce an error so
that even if we know which bit was transmitted, we do not know the received bit.
This is analogous to not knowing which ball was chosen from the given urn. The



4.3. JOINT EVENTS AND THE CONDITIONAL PROBABILITY 81

0 1-¢
Choose €

Oorl €
1 > 1
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Figure 4.3: Probabilistic model of a digital communication system.

probability of error is from (4.4)

Plerror] = Plerror|0 transmitted]P[0 transmitted]
+Plerror|1 transmitted]P[1 transmitted]

— L 1 _
= €; te; =¢

¢

Conditional probabilities can be quite tricky, in that they sometimes produce coun-
terintuitive results. A famous instance of this is the Monty Hall or Let’s Make a
Deal problem.

Example 4.4 — Monty Hall problem

About 40 years ago there was a television game show called “Let’s Make a Deal”.
The game show host, Monty Hall, would present the contestant with three closed
doors. Behind one door was a new car, while the others concealed less desireable
prizes, for instance, farm animals. The contestant would first have the opportunity
to choose a door, but it would not be opened. Monty would then choose one of the
remaining doors and open it. Since he would have knowledge of which door led to
the car, he would always choose a door to reveal one of the farm animals. Hence,
if the contestant had chosen one of the farm animals, Monty would then choose the
door that concealed the other farm animal. If the contestant had chosen the door
behind which was the car, then Monty would choose one of the other doors, both
concealing farm animals, at random. At this point in the game, the contestant was
faced with two closed doors, one of which led to the car and the other to a farm
animal. The contestant was given the option of either opening the door she had
originally chosen or deciding to open the other door. What should she do? The
answer, surprisingly, is that by choosing to switch doors she has a probability of 2/3
of winning the car! If she stays with her original choice, then the probability is only
1/3. Most people would say that irregardless of which strategy she decided upon,
her probability of winning the car is 1/2.
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Table 4.2: Joint probabilities (P[C;, M;] = P[M;|C;]P[C;]) for contestant’s initial
and Monty’s choice of doors. Winning door is 1.

To see how these probabilities are determined first assume she stays with her
original choice. Then, since the car is equally likely to be placed behind any
of the three doors, the probability of the contestant’s winning the car is 1/3.
Monty’s choice of a door is irrelevant since her final choice is always the same
as her initial choice. However, if as a result of Monty’s action a different door
is selected by the contestant, then the probability of winning becomes a condi-
tional probability. We now compute this by assuming that the car is behind door
one. Define the events C; = {contestant initially chooses door i} for i = 1,2,3 and
M; = {Monty opens door j} for j =1,2,3. Next we determine the joint probabili-
ties P[C;, M;] by using

P[C;, Mj] = P[M;|C;]P|[Ci.

Since the winning door is never chosen by Monty, we have P[M;|C;] = 0. Also,
Monty never opens the door initially chosen by the contestant so that P[M;|C;] = 0.
Then, it is easily verified that

P[M5|C3] = P[M;3|Cs] =1 (contestant chooses losing door)
1
P[M;5|Cy] = P[M|Cy] = 3 (contestant chooses winning door)

and P[C;] = 1/3. The joint probabilities are summarized in Table 4.2. Since
the contestant always switches doors, the winning events are (2,3) (the contestant
initially chooses door 2 and Monty chooses door 3) and (3,2) (the contestant initially
chooses door 3 and Monty chooses door 2). As shown in Table 4.2 (the entries with
asterisks), the total probability is 2/3. This may be verified directly using

P[final choice is door 1] = P[M3|C3]P[C5] + P[M>|C3]P[Cs]
= P[CQ,M3] + P[Cg,Mz].

Alternatively, the only way she can lose is if she initially chooses door one since she
always switches doors. This has a probability of 1/3 and hence her probability of
winning is 2/3. In effect, Monty, by eliminating a door, has improved her odds!

¢
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4.4 Statistically Independent Events

Two events A and B are said to be statistically independent (or sometimes just
independent) if P[A|B] = P[A]. If this is true, then
P[AN B]
P[B]
which results in the condition for statistical independence of
P[AN B]| = P[A]|P|B]. (4.5)

An example is shown in Figure 4.2c. There, the probability of A is unchanged if we
know that the outcome is contained in the event B. Note, however, that once we
know that B has occurred, the outcome could not have been in the uncross-hatched
region of A but must be in the cross-hatched region. Knowing that B has occurred
does in fact affect the possible outcomes. However, it is the ratio of P[A N B] to
P[B] that remains the same.

P[A]|B] = = P[A]

Example 4.5 — Statistical independence does not mean one event does
not affect another event.

If a fair die is tossed, the probability of a 2 or a 3 is P[4 = {2,3}] = 1/3. Now
assume we know that the outcome is an even number or B = {2,4,6}. Recomputing
the probability

P[ANnB]  P[{2}]
P[B]  P[{2,4,6}]
1
= 3= P[A].
Hence, A and B are independent. Yet, knowledge of B occurring has affected the
possible outcomes. In particular, the event AN B = {2} has half as many elements
as A, but the reduced sample space S’ = B also has half as many elements.

P[A|B]

%
The condition for the event A to be independent of the event B is P[AN B] =

P[A]P[B]. Hence, we need only know the marginal probabilities or P[A], P[B] to
determine the joint probability P[A N B]. In practice, this property turns out to be
very useful. Finally, it is important to observe that statistical independence has a
symmetry property, as we might expect. If A is independent of B, then B must be
independent of A since

P[B|A] % (definition)
P[ANB] .
W_ (commutative property)
_ P[A]P[B] -
= A (A is independent of B)

= P[B



84 CHAPTER 4. CONDITIONAL PROBABILITY

and therefore B is independent of A. Henceforth, we can say that the events A and
B are statistically independent of each other, without further elaboration.

A Statistically independent events are different than mutually ex-
clusive events.

If A and B are mutually exclusive and B occurs, then A cannot occur. Thus,
P[A|B] = 0. If A and B are statistically independent and B occurs, then P[A|B] =
P[A]. Clearly, the probabilities P[A|B] are only the same if P[A] = 0. In general
then, the conditions of mutually exclusivity and independence must be different
since they lead to different values of P[A|B]. A specific example of events that

B A

:

Figure 4.4: Events that are mutually exclusive (since AN B = @) and independent
(since P[AN B] = P[] =0 and P[A]P[B] =0- P[B] =0).

are both mutually exclusive and statistically independent is shown in Figure 4.4.
Finally, the two conditions produce different relationships, namely

P[AUB] = P[A]+ P[B] mutually exclusive events

P[ANB] = P[A]P[B] statistically independent events.

See also Figure 4.2c for statistically independent but not mutually exclusive events.
Can you think of a case of mutually exclusive but not independent events?

Consider now the extension of the idea of statistical independence to three events.
Three events are defined to be independent if the knowledge that any one or two
of the events has occurred does not affect the probability of the third event. For
example, one condition is that P[A|B N C] = P[A]. We will use the shorthand
notation P[A|B,C] to indicate that this is the probability of A given that B and
C has occurred. Note that if B and C has occurred, then by definition B N C has
occurred. The full set of conditions is

P[A|B] = P[A|C] = P[A|B,C] = P[A]
P[B|A] = P[B|C]= P|B|A,C] = P|B]
P[C|4] = P[C|B] = P[C|A, B] = P[C].
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These conditions are satisfied if and only if

P[AB] = P[A]P[B] (4.6)
P[AC] = P[A]P[C] (4.7)
P[BC] = P[BIP[C] (4.8)
P[ABC] = P[A]P[B]P|C]. (4.9)

If the first three conditions (4.6)—(4.8) are satisfied, then the events are said to be
pairwise independent. They are not enough, however, to ensure independence. The
last condition (4.9) is also required since without it we could not assert that

P[A|B,C] = P[A|BC] (definition of B and C occurring)
P[ABC] - . -
— 1
PIBC] (definition of conditional probability)
P[ABC]
= f .
PEIP[C] (from (4.8))
P[A]P[B]P[C]
PBIP[C] (from (4.9))
= P[A]
and similarly for the other conditions (see also Problem 4.20 for an example). In
general, events E1, Es, ..., Ey are defined to be statistically independent if
PIE;E;] = P[E]P[E;j] i#j

P|E;E;Ey] = P[E;|P|[E;|P[E] itj#tk

P[E\E,---Ey] = P|E||P[Ey)]--- P[Ey].

Although statistically independent events allow us to compute joint probabilities
based on only the marginal probabilities, we can still determine joint probabilities
without this property. Of course, it becomes much more difficult. Consider three
events as an example. Then, the joint probability is

P[ABC] = P[A|B,C]P[BC]
= P[A|B,C]P[B|C]P[C). (4.10)

This relationship is called the probability chain rule. One is required to determine
conditional probabilities, not always an easy matter. A simple example follows.
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Example 4.6 — Tossing a fair die - once again
If we toss a fair die, then it is clear that the probability of the outcome being 4 is
1/6. We can, however, rederive this result by using (4.10). Letting

A = {even number} = {2,4,6}
B = {numbers > 2} = {3,4,5,6}
C = {numbers < 5} ={1,2,3,4}

we have that ABC = {4}. These events can be shown to be dependent (see Problem
4.21). Now making use of (4.10) and noting that BC = {3,4} it follows that

P[ABC] = PJA|B,C)P[B|C]P[C]

(21) (i) (5) =5

4.5 Bayes’ Theorem

The definition of conditional probability leads to a famous and sometimes contro-
versial formula for computing conditional probabilities. Recalling the definition, we
have that

Pl =L P[‘[‘g] (4.11)
and PIAB
P[B|A] = f[’[A]] (4.12)
Upon substitution of P[AB] from (4.11) into (4.12)
pioys = PAELPLE) am

This is called Bayes’ theorem. By knowing the marginal probabilities P[A], P[B]
and the conditional probability P[A|B], we can determine the other conditional
probability P[B|A]. The theorem allows us to perform “inference” or to assess
(with some probability) the validity of an event when some other event has been
observed. For example, if an urn containing an unknown composition of balls is
sampled with replacement and produces an outcome of 10 red balls, what are we to
make of this? One might conclude that the urn contains only red balls. Yet, another
individual might claim that the urn is a “fair” one, containing half red balls and
half black balls, and attribute the outcome to luck. To test the latter conjecture we
now determine the probability of a fair urn given that 10 red balls have just been
drawn. The reader should note that we are essentially going “backwards” — usually
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we compute the probability of choosing 10 red balls given a fair urn. Now we are
given the outcomes and wish to determine the probability of a fair urn. In doing so
we believe that the urn is fair with probability 0.9. This is due to our past experience
with our purchases from urn.com. In effect, we assume that the prior probability of
B = {fair urn} is P[B] = 0.9. If A = {10 red balls drawn}, we wish to determine
P[B|A], which is the probability of the urn being fair after the experiment has been
performed or the posterior probability. This probability is our reassessment of the
fair urn in light of the new evidence (10 red balls drawn). Let’s compute P[B|A]
which according to (4.13) requires knowledge of the prior probability P[B] and the
conditional probability P[A|B]. The former was assumed to be 0.9 and the latter is
the probability of drawing 10 successive red balls from an urn with p = 1/2. From
our previous work this is given by the binomial law as

pie— 0 (¥ ) -

- ()G @ -6

We still need to find P[A]. But this is easily found using the law of total probability
as

P[A|B]

P[A] = P[A|B|P[B] + P|A|B|P[B|
P[A|B|P[B] + P[A|B°|(1 — P[B))

and thus only P[A|B¢] needs to be determined (and which is not equal to 1 — P[A|B]
as is shown in Problem 4.9). This is the conditional probability of drawing 10 red

balls from a unfair urn. For simplicity we will assume that an unfair urn has all red
balls and thus P[A|B¢] = 1. Now we have that

10
PlA] = (%) (0.9) + (1)(0.1)

and using this in (4.13) yields
(509
P[B|A] = = 0.0087.
A B 0s oy

The posterior probability (after 10 red balls have been drawn) that the urn is fair
is only 0.0087. Our conclusion would be to reject the assumption of a fair urn.

Another way to quantify the result is to compare the posterior probability of the
unfair urn to the probability of the fair urn by the ratio of the former to the latter.
This is called the odds ratio and it is interpreted as the odds against the hypothesis
of a fair urn. In this case it is

_ P[B°|A] _ 1-0.0087
~ P[B|A] ~  0.0087

odds =113.
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It is seen from this example that based on observed “data”, prior beliefs embodied
in P[B] = 0.9 can be modified to yield posterior beliefs or P[B|A] = 0.0087. This
is an important concept in statistical inference [Press 2003].

In the previous example, we used the law of total probability to determine the
posterior probability. More generally, if a set of B;’s partition the sample space,
then Bayes’ theorem can be expressed as

P[A|By]P[By]

P[B|A] = Zzl\;l P[A|B;]P|B;]

k=1,2,...,N. (4.14)

The denominator in (4.14) serves to normalize the posterior probability so that the
conditional probabilities sum to one or

N
> P[Bi|4] = 1.
k=1

In many problems one is interested in determining whether an observed event
or effect is the result of some cause. Again the backwards or inferential reasoning
is implicit. Bayes’ theorem can be used to quantify this connection as illustrated
next.

Example 4.7 — Medical diagnosis
Suppose it is known that 0.001% of the general population has a certain type of
cancer. A patient visits a doctor complaining of symptoms that might indicate the
presence of this cancer. The doctor performs a blood test that will confirm the
cancer with a probability of 0.99 if the patient does indeed have cancer. However,
the test also produces false positives or says a person has cancer when he does not.
This occurs with a probability of 0.2. If the test comes back positive, what is the
probability that the person has cancer?

To solve this problem we let B = {person has cancer}, the causitive event, and
A = {test is positive}, the effect of that event. Then, the desired probability is

P[A|B]P|B]
P[A|B]P[B] + P[A|B|P[B]
(0.99)(0.00001)

- = —5.
(0.99)(0.00001) + (0.2)(0.99999) > 1

P[B|A]

The prior probability of the person having cancer is P[B] = 10~° while the posterior
probability of the person having cancer (after the test is performed and found to
be positive) is P[B|A] = 4.95 x 1075. With these results the doctor might be hard
pressed to order additional tests. This is quite surprising, and is due to the prior
probability assumed, which is quite small and therefore tends to nullify the test
results. If we had assumed that P[B] = 0.5, for indeed the doctor is seeing a patient
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who is complaining of symptoms consistent with cancer and not some person chosen
at random from the general population, then

(0.99)(0.5)
(0.99)(0.5) + (0.2)(0.5)

P[B|A] = =0.83

which seems more reasonable (see also Problem 4.23). The controversy surrounding
the use of Bayes’ theorem in probability calculations can almost always be traced
back to the prior probability assumption. Bayes’ theorem is mathematically correct
— only its application is sometimes in doubt!

o

4.6 Multiple Experiments

4.6.1 Independent Subexperiments

An experiment that was discussed in Chapter 1 was the repeated tossing of a coin.
We can alternatively view this experiment as a succession of subexperiments, with
each subexperiment being a single toss of the coin. It is of interest to investigate the
relationship between the probabilities defined on the experiment and those defined
on the subexperiments. To be more concrete, assume a coin is tossed twice in
succession and we wish to determine the probability of the event A = {(H,T)}.
Recall that the notation (H,T) denotes an ordered 2-tuple and represents a head
on toss 1 and a tail on toss 2. For a fair coin it was determined to be 1/4 since
we assumed that all 4 possible outcomes were equally likely. This seemed like a
reasonable assumption. However, if the coin had a probability of heads of 0.99, we
might not have been so quick to agree with the equally likely assumption. How
then are we to determine the probabilities? Let’s first consider the experiment to
be composed of two separate subexperiments with each subexperiment having a
sample space S! = {H,T}. The sample space of the overall experiment is obtained
by forming the cartesian product, which for this example is defined as

S = S'xdst
{(G,5) ;i € S5 e 81}
{(#,H),(H,T),(T,H),(T,T)}.

It is formed by taking an outcome from S for the first element of the 2-tuple and an
outcome from S! for the second element of the 2-tuple and doing this for all possible
outcomes. It would be exceedingly useful if we could determine probabilities for
events defined on S from those probabilities for events defined on S'. In this way
the determination of probabilities of very complicated events could be simplified.
Such is the case if we assume that the subezperiments are independent. Continuing
on, we next calculate P[A] = P[(H,T)] for a coin with an arbitrary probability of
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heads p. This event is defined on the sample space of 2-tuples, which is S. We can,
however, express it as an intersection

{(H,T)} = {(# H),HT)}n{HT),(T,T)}
= {heads on toss 1} N {tails on toss 2}
= HiNT.

We would expect the events H; and T, to be independent of each other. Whether a
head or tail appears on the first toss should not affect the probability of the outcome
of the second toss and vice versa. Hence, we will let P[(H,T)] = P[H;]P[Ty] in
accordance with the definition of statistically independent events. We can determine
P[H,] either as P[(H,H),(H,T)], which is defined on S or equivalently due to the
independence assumption as P[H|, which is defined on S'. Note that P[H] is the
marginal probability and is equal to P[(H,H)| + P[(H,T)]. But the latter was
specified to be p and therefore we have that

PH,| = p
PTy] = 1-p

and finally,
P[(H,T)] = p(1 - p).
For a fair coin we recover the previous value of 1/4, but not otherwise.
Experiments that are composed of subexperiments whose probabilities of the
outcomes do not depend on the outcomes of any of the other subexperiments are
defined to be independent subexperiments. Their utility is to allow calculation of joint
probabilities from marginal probabilities. More generally, if we have M independent

subexperiments, with A; an event described for experiment 4, then the joint event
A=A NAsN---N Ay has probability

P[A] = P{A))P[A;]-- - P[An]. (4.15)

Apart from the differences in sample spaces upon which the probabilities are defined,
independence of subexperiments is equivalent to statistical independence of events
defined on the same sample space.

4.6.2 Bernoulli Sequence

The single tossing of a coin with probability p of heads is an example of a Bernoull
trial. Consecutive independent Bernoulli trials comprise a Bernoulli sequence. More
generally, any sequence of M independent subexperiments with each subexperiment
producing two possible outcomes is called a Bernoulli sequence. Typically, the
subexperiment outcomes are labeled as 0 and 1 with the probability of a 1 being p.
Hence, for a Bernoulli trial P[0] = 1—p and P[1] = p. Several important probability
laws are based on this model.
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Binomial Probability Law

Assume that M independent Bernoulli trials are carried out. We wish to determine
the probability of k 1’s (or successes). Each outcome is an M-tuple and a successful
outcome would consist of £ 1’s and M — k 0’s in any order. Thus, each successful
outcome has a probability of p*(1 — p)®—* due to independence. The total number

of successful outcomes is the number of ways k 1’s may be placed in the M-tuple.

This is known from combinatorics to be (]‘,;[ ) (see Section 3.8). Hence, by summing

up the probabilities of the successful simple events, which are mutually exclusive,
we have

Plk] = (]Zl)pk(l—p)M_k k=0,1,...,.M (4.16)

which we immediately recognize as the binomial probability law. We have previously
encountered the same law when we chose M balls at random from an urn with
replacement and desired the probability of obtaining k red balls. The proportion of
red balls was p. In that case, each subexperiment was the choosing of a ball and all
the subexperiments were independent of each other. The binomial probabilities are
shown in Figure 4.5 for various values of p.
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Figure 4.5: The binomial probability law for different values of p.

Geometric Probability Law

Another important aspect of a Bernoulli sequence is the appearance of the first
success. If we let k£ be the Bernoulli trial for which the first success is observed,
then the event of interest is the simple event (f,f,...,f,s), where s, f denote success
and failure, respectively. This is a k-tuple with the first £ — 1 elements all f’s. The
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probability of the first success at trial k is therefore
Pkl=(1-p*'p k=12, (4.17)

where 0 < p < 1. This is called the geometric probability law. The geometric
probabilities are shown in Figure 4.6 for various values of p. It is interesting to note
that the first success is always most likely to occur on the first trial or for & = 1.
This is true even for small values of p, which is somewhat counterintuitive. However,
upon further reflection, for the first success to occur on trial ¥ = 1 we must have
a success on trial 1 and the outcomes of the remaining trials are arbitrary. For a
success on trial k£ = 2, for example, we must have a failure on trial 1 followed by a
success on trial 2, with the remaining outcomes arbitrary. This additional constraint
reduces the probability. It will be seen later, though, that the average number of
trials required for a success is 1/p, which is more in line with our intuition. An

0.6 — T T T 0.6
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Figure 4.6: The geometric probability law for different values of p.

example of its use follows.

Example 4.8 — Telephone calling

A fax machine dials a phone number that is typically busy 80% of the time. The
machine dials it every 5 minutes until the line is clear and the fax is able to be
transmitted. What is the probability that the fax machine will have to dial the
number 9 times? The number of times the line is busy can be considered the number
of failures with each failure having a probability of 1 — p = 0.8. If the number is
dialed 9 times, then the first success occurs for £ = 9 and

P[9] = (0.8)8(0.2) = 0.0336.
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A useful property of the geometric probability law is that it is memoryless. Assume
it is known that no successes occurred in the first m trials. Then, the probability of
the first success at trial m+1 is the same as if we had started the Bernoulli sequence
experiment over again and determined the probability of the first success at trial
(see Problem 4.34).

4.6.3 Multinomial Probability Law

Consider an extension to the Bernoulli sequence in which the trials are still inde-
pendent but the outcomes for each trial may take on more than two values. For
example, let S' = {1,2,3} and denote the probabilities of the outcomes 1, 2, and
3 by p1, p2, and p3, respectively. As usual, the assignment of these probabilities
must satisfy Z?:l pi = 1. Also, let the number of trials be M = 6 so that a pos-
sible outcome might be (2,1, 3,1,2,2), whose probability is pap1p3p1p2p2 = pp3pi.
The multinomial probability law specifies the probability of obtaining k; 1’s, ko
2’s, and k3 3’s, where k1 + ko + k3 = M = 6. In the current example, k1 = 2,
ky = 3, and k3 = 1. Some outcomes with the same number of 1’s, 2’s’, and 3’s
are (2,1,3,1,2,2), (1,2,3,1,2,2), (1,2,1,2,2,3), etc., with each outcome having a
probability of p?p3pl. The total number of these outcomes will be the total number
of distinct 6-tuples that can be made with the numbers 1,1,2,2,2,3. If the numbers
to be used were all different, then the total number of 6-tuples would be 6! , or all
permutations. However, since they are not, some of these permutations will be the
same. For example, we can arrange the 2’s 3! ways and still have the same 6-tuple.
Likewise, the 1’s can be arranged 2! ways without changing the 6-tuple. As a result,
the total number of distinct 6-tuples is

6!

213!1! (4.18)

which is called the multinomial coefficient. (See also Problem 4.36 for another way
to derive this.) It is sometimes denoted by

6
2,3,1)"

Finally, for our example the probability of the sequence exhibiting two 1’s, three

2’s, and one 3 is
6!

213!
This can be generalized to the case of M trials with N possible outcomes for each
trial. The probability of k1 1’s, kg 2’s,..., ky N'’s is

Pip3p;.

P[kl,kz,...,kN]:( L >p’f1p’;2---p’;vN ki +ko+--+ky=M

ki, k2, .. kN @19)
4.19
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and where Zfil p; = 1. This is termed the multinomial probability law. Note that if
N = 2, then it reduces to the binomial law (see Problem 4.37). An example follows.

Example 4.9 — A version of scrabble

A person chooses 9 letters at random from the English alphabet with replacement.
What is the probability that she will be able to make the word “committee”? Here
we have that the outcome on each trial is one of 26 letters. To be able to make the
word she needs k. = 1,ke = 2,k; = 1,k = 2,k, = 1,k = 2, and kgtper = 0. We
have denoted the outcomes as c,e,i,m,0,t, and “other”. “Other” represents the
remaining 20 letters so that NV = 7. Thus, the probability is from (4.19)

P[kcz 17ke :2,]‘71' = 1akm =2,ko: lakt :2ak0ther:0] =

9 1\? /20\°
1,2,1,2,1,2,0 ) \ 26 26

since pe = pe = Pi = Pm = Po = Pt = 1/26 and pother = 20/26 due to the assumption
of “at random” sampling and with replacement. This becomes

Plkc =1,ke = 2,k = 1,km = 2,ko = 1, kt = 2, kother = 0] =

9! 1\? o
1121121112101 (%) =8.35x 107"

4.6.4 Nonindependent Subexperiments

When the subexperiments are independent, the calculation of probabilities can be
greatly simplified. An event that can be written as A = A; N A N---N A can be
found via

P[A] = P[A1]P[As] - - P[Ap]

where each P[A;] can be found by considering only the individual subexperiment.
However, the assumption of independence can sometimes be unreasonable. In the
absence of independence, the probability would be found by using the chain rule
(see (4.10) for M = 3)

P[A] = P[AM|AM_1, e ,Al]P[AM_1|AM_2, . ,Al] cee P[AQlAl]P[Al] (420)

Such would be the case if a Bernoulli sequence were composed of nonindependent
trials as illustrated next.

Example 4.10 — Dependent Bernoulli trials
Assume that we have two coins. One is fair and the other is weighted to have

a probability of heads of p # 1/2. We begin the experiment by first choosing at
random one of the two coins and then tossing it. If it comes up heads, we choose
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the fair coin to use on the next trial. If it comes up tails, we choose the weighted
coin to use on the next trial. We repeat this procedure for all the succeeding trials.
One possible sequence of outcomes is shown in Figure 4.7a for the weighted coin
having p = 1/4. Also shown is the case when p = 1/2 or a fair coin is always used,

: © heads : : \ heads ;
1 H ol A 4 1 fHe HHHH-HEE HHHHH - S H
<] . . . . (<] . . X .
g : : g : :
S { D otails : S ; tails
"5 O (i S - - "5 0 [tk H--Hi - -,
O . . . O . .
0 20 40 60 80 100 0 20 40 60 80 100
Trial Trial
(a) M =100, p = 0.25 (b) M =100, p=0.5

Figure 4.7: Dependent Bernoulli sequence for different values of p.

so that we are equally likely to observe a head or a tail on each trial. Note that in
the case of p = 1/4 (see Figure 4.7a), if the outcome is a tail on any trial, then we
use the weighted coin for the next trial. Since the weighted coin is biased towards
producing a tail, we would expect to again see a tail, and so on. This accounts for
the long run of tails observed. Clearly, the trials are not independent.

%

If we think some more about the previous experiment, we realize that the depen-
dency between trials is due only to the outcome of the (z — 1)t trial affecting the
outcome of the ith trial. In fact, once the coin has been chosen, the probabilities
for the next trial are either P[0] = P[1] = 1/2 if a head occurred on the pre-
vious trial or P[0] = 3/4, P[1] = 1/4 if the previous trial produced a tail. The
previous outcome is called the state of the sequence. This behavior may be sum-
marized by the state probability diagram shown in Figure 4.8. The probabilities
shown are actually conditional probabilities. For example, 3/4 is the probability
Pltail on ith toss|tail on ¢ — 15 toss] = P[0|0], and similarly for the others. This
type of Bernoulli sequence, in which the probabilities for trial < depend only on the
outcome of the previous trial, is called a Markov sequence. Mathematically, the
probability of the event A; on the ith trial given all the previous outcomes can be
written as

P[Ai|Ai_1, Ai_Q, ce ,Al] = P[AzlA,_l]
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Figure 4.8: Markov state probability diagram.

Using this in (4.20) produces
P[A] = P[Am|AMm—1)P[Apm—1|Ap—2] - - - P[A2|A1]P[A1]. (4.21)

The conditional probabilities P[A4;|A;_1] are called the state transition probabilities,
and along with the initial probability P[A;], the probability of any joint event can
be determined. For example, we might wish to determine the probability of N = 10
tails in succession or of the event A = {(0,0,0,0,0,0,0,0,0,0)}. If the weighted
coin was actually fair, then P[A] = (1/2)'° = 0.000976, but if p = 1/4, we have by
letting A; = {0} for i =1,2,...,10 in (4.21)

10

P[A] = (H P[A,-|A,-_1]> P[A).
=2

But P[A;|Ai—1] = P[0|0] = P[tails|weighted coin] = 3/4 for ¢ = 2,3,...,10. Since

we initially choose one of the coins at random, we have

P[A;] = P|0] = PJ[tail|weighted coin]P[weighted coin]
+ P/[tail|fair coin]P|[fair coin]

- (06)-6)6)-5

PlA] = <ﬁ Z-) (g) — 0.0469

=2
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