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Introduction
Ondrej Majer, Ahti-Veikko Pietarinen, and Tero Tulenheimo

ix

1 Games and logic in philosophy
Recent years have witnessed a growing interest in the unifying methodolo-

gies over what have been perceived as pretty disparate logical ‘systems’, or
else merely an assortment of formal and mathematical ‘approaches’ to philo-
sophical inquiry. This development has largely been fueled by an increasing
dissatisfaction to what has earlier been taken to be a straightforward outcome
of ‘logical pluralism’ or ‘methodological diversity’. These phrases appear to
reflect the everyday chaos of our academic pursuits rather than any genuine
attempt to clarify the general principles underlying the miscellaneous ways in
which logic appears to us.

But the situation is changing. Unity among plurality is emerging in con-
temporary studies in logical philosophy and neighbouring disciplines. This is
a necessary follow-up to the intensive research into the intricacies of logical
systems and methodologies performed over the recent years.

The present book suggests one such peculiar but very unrestrained method-
ological perspective over the field of logic and its applications in mathematics,
language or computation: games. An allegory for opposition, cooperation and
coordination, games are also concrete objects of formal study.

As a metaphor for argumentation Aristotle’s Topics and its reincarnations
such as the scholastic Ars Obligatoria are set up as dialogical duels (Pietarinen,
2003a). Logics exploiting this idea resurface in the twentieth century attempts
to clarify the concepts of argument and proof. The game metaphor has re-
tained its strength in contemporary theories of computation (Pietarinen, 2003b,
Japaridze, this volume), in which computation is recast in terms of the symbio-
sis between the Computing System (‘Myself’) and its Environment (‘Nature’).
In mathematics, the benefits of doing so were noted decades ago by Stanislaw
Ulam (1960), who wrote how amusing it is “to consider how one can ‘gamize’
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various mathematical situations (or perhaps the verb should be ‘paizise’ from
the Greek word παιςιη, to play).”

Games as explications of the core philosophical questions concerning the
scientific methodologies were on the brink of being born in the writings of
the early unificators, including Rudolf Carnap, Otto Neurath, Charles Morris
and Carl Gustav Hempel. But they never operationalised the key notions. The
term ‘operationalisation’ is apt, since what was attempted was to give meaning
to ‘operationalisation’. According to operationalism, a concept is synonymous
with the set of operations correlated with it. Influenced by Percy Bridgman’s
and Alfred Einstein’s thoughts, the early workers on what was later to become
the Unity of Science Movement inherited the better parts of the Viennese veri-
ficationism in the methodology of science which, in turn, was allied to, though
also significantly different from, the pragmaticism of Charles Peirce. More-
over, Pietarinen and Snellman (2006) show that the kernel of pragmaticism is,
in turn, essentially game-theoretical in nature.

Accordingly, a sustained attempt has existed in the history and philosophy
of science to articulate the interactive, the strategic and the pragmatic in logic.
The chief reason for the failure of the early philosophers working on uniting the
foundations of scientific methodology was their stout belief in the explanatory
capacities of singular behaviour. In game theory, in contrast, the success lies in
the possibility of there being general, or strategic, habits of acting in a certain
way whenever certain kinds of situations are confronted.

How coincidental it must have been that many of the logicians working on
the operative definitions of logical concepts, including Hugo Dingler and Paul
Lorenzen, were not only champions of the Husserlian notion of Spielbedeutun-
gen (Pietarinen, 2008), but also immersed in the continental branch of opera-
tionalism, which in various forms had already been in vogue around the exiting
new projects emerging in the philosophy of science since the 1920s. Mean-
while, game theory proper was in the making, first in the urban atmospheres
of the continental triangle of Berlin, Vienna and Göttingen, and later on in the
singular intellectual concentrate of the ludic post-war Princeton Campus.

But these historical events constitute just the beginnings of the story, the
impact of which is only beginning to unravel. The present book itself con-
stitutes only a modest fragment of that narrative. The book consists of 12
chapters divided into four parts: Philosophical Issues (Part I), Game-Theoretic
Semantics (Part II), Dialogues (Part III), and Computation and Mathematics
(Part IV). The individual topics covered include, in Part I, the philosophy of
logical games (Chapter 1, Mathieu Marion), the epistemic characterisation re-
sults in game theory, scientific explanation and the philosophy of the social
sciences (Chapter 2, Boudewijn de Bruin), rationality, strategic interaction, fo-
cal points, radical interpretation and the selection of multiple Nash-equilibria
(Chapter 3, Hykel Hosni) and the notion of cognitive agency, cognitive economy
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and fallacies (Chapter 4, John Woods and Dov M. Gabbay). In Part II, the central
methodology is that of game-theoretic semantics, where the germane topics
are independence-friendly (IF) logic, imperfect-information games and weak
dominance (Chapter 5, Merlijn Sevenster), fuzzy logic (Chapter 6, Petr Cintula
and Ondrej Majer) and generalised quantifiers and natural-language seman-
tics (Chapter 7, Robin Clark). Part III is devoted to the method of dialogues,
and it deals with the relationships between the game-theoretic and dialogic
notions of truth and validity (Chapter 8, Shahid Rahman and Tero Tulen-
heimo), fuzzy logic, vagueness, supervaluation and betting (Chapter 9, Chris-
tian G. Fermüller) and epistemic and intuitionistic logic (Chapter 10, Manuel
Rebuschi). Part IV is on the application and use of games in computation and
mathematics. Topics covered have to do with computability logic, game se-
mantics and affine linear logic (Chapter 11, Giorgi Japaridze) and determinacy,
infinite games and intuitionism in mathematics (Chapter 12, Wim Veldman).

As is evident from this impressive list of topics, the method of games is so
widespread across studies in logic and the neighbouring disciplines—including
applications to linguistic semantics and pragmatics, the social sciences, philos-
ophy of science, epistemology, economics, mathematics and computation—
that it prompts us to take seriously the possibility that there is some “greater
conceptual rationale of what it is to be a bona fide science” (Margolis, 1987,
p. xv). Games, as applied to logic, philosophy, epistemology, linguistics, cog-
nition, computation or mathematics, provide at the same time a notably mod-
ern, rigorous and creative formal toolkit that lays bare the structures of logical
and cognitive processes—be they proofs, dialogues, inferences, models, argu-
ments, negotiations, bargaining, or computations—while being the product of
an age-old enquiring mind and human rational action.

To what extent such methods and tools are able ultimately to reconcile the
human and natural sciences (Margolis, 1987) remains to be seen. After all,
the first steps in any expansion over multiple disciplines must begin from the
beginning; in logic, it would begin from charting what the foundational per-
spectives are that logic provides to those fields of intellectual pursuit amenable
to fruitful formalisations. But we believe that the existence of methods in-
escapably linked with the ways in which human rational thought processes
and actions function supports the wider scenario.

Whether the unity holds in those nooks and corners of scientific and intellec-
tual pursuits covered in the present essays we leave for the readers to judge—it
is a question of not only method of logic but also ontology, history of ideas,
scientific practices, and, ultimately, of the fruits that the applications of games
to the multiplicity of intellectual tasks are capable of bearing.

In the remainder of this introduction, we outline the essentials of two major
approaches to how games have been used to explicate logical notions: game-
theoretical semantics and dialogical logic.
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2 Game-Theoretical Semantics
Hintikka (1968) introduced Game-Theoretical Semantics (GTS) for first-

order logic. From the very beginning, the idea was driven by philosophical
considerations. Hintikka’s goal was not merely to provide an alternative char-
acterisation of truth for first-order logic, but to lay down a theory of mean-
ing making use of—and sharpening—Wittgenstein’s idea of ‘language game’,
relating these considerations to Kantian thought and to the idea that logic has
to do with synthetic activity (Hintikka, 1973).

Hintikka extended the game-theoretic interpretation that Henkin (1961) had
in effect provided to quantified sentences in prenex normal form; this interpre-
tation will be discussed further below. He explained how a semantic game is
played with an arbitrary first-order sentence as input.1 He observed that con-
junctions and disjunctions can be treated on a par with universal and existential
quantifier, respectively. After all, (φ∧χ) holds if and only if all of the sentences
φ, χ hold, and (φ∨χ) holds if and only if at least one of the sentences φ, χ holds.
Accordingly, a game for (φ∧χ) proceeds by the “universal” player picking out
one of the conjuncts θ ∈ {φ, χ}, after which the play is continued with respect to
the sentence θ. Similarly, in connection with a game for (φ∨ χ), it is the “exis-
tential player” who makes a choice of a disjunct θ ∈ {φ, χ}. (The objects chosen
are syntactic items in connection with conjunction and disjunction, whereas the
moves for quantifiers involve choosing objects out there in the domain.)

What about negation, then? Hintikka observed that negation has the effect of
changing the roles of the players. After any sequence of moves that the players
have made while playing a game, one of the players has the role of ‘Verifier’
and the other that of ‘Falsifier’. Now a game corresponding to ¬φ continues
with respect to φ, with the players’ roles reversed: the player having the role
of ‘Verifier’ relative to ¬φ assumes relative to φ the role of ‘Falsifier’, and vice
versa.

GTS provides a game-theoretic counterpart to the model-theoretic notion of
truth. In this way, the notions of truth for a great variety of logics can be pro-
vided. Cases in point are propositional logic, first-order logic, modal and tem-
poral logics, independence-friendly logics (Hintikka, 1995, 1996; Sandu, 1993;
Hintikka and Sandu, 1989, 1997), logics with Henkin quantifiers (Henkin,
1961; Krynicki and Mostowski, 1995), infinitely deep languages (Hintikka and
Rantala, 1976; Karttunen, 1984; Hyttinen, 1990) and the logic of Vaught sen-
tences (Vaught, 1973; Makkai, 1977).

Semantic games are two-player games; we may call the two players Eloise
or the ‘initial Verifier’ and Abelard or the ‘initial Falsifier’. The truth of a sen-
tence ϕ in a model M corresponds to the existence of a winning strategy for

1The game interpretation goes back to Charles Peirce’s investigation in the algebra of logic and graphical
logic (Hilpinen, 1982; Pietarinen, 2006b).
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Eloise in the semantic game G(ϕ,M) correlated with ϕ and played onM. The
falsity of ϕ corresponds to the existence of a winning strategy for Abelard.
Intuitively, Eloise can be thought of as defending the claim “ϕ is true in M”
against any attempts of Abelard to refute this claim. Similarly, Abelard defends
the claim “ϕ is false inM” against any attempted refutations of this claim by
Eloise. The games G(ϕ,M) are so defined that ϕ is indeed true (false) in M
iff there exists a method for Eloise (Abelard) to win against all sequences of
moves by Abelard (Eloise).

The mathematical reality behind semantic games may be less picturesque
than the above description in terms of defences against refutations suggests.
Given a semantic game G(ϕ,M), the existence or non-existence of a winning
strategy for either player is an objective fact about the modelM. Whether the
players’ actions bear relevance to the truth or falsity of the sentence is thus
arguable.2

The roots of semantic games go back to the Tarskian definition of truth.
According to Tarski, to test whether a sentence such as ∀x∃yP(x, y) is true in
a model M, reference to objects a and b of the domain M of M is needed.
The sentence is true iff it is the case that for any a there is an object b such
that P(a, b) holds. Thus understood, the truth of the sentence ∀x∃yP(x, y) does
not require the existence of a function f : M → M such that b = f (a) for any
a ∈ M. It only requires the existence of a relation R ⊆ M × M such that for
every a there is at least one b with R(a, b) such that P(a, b) holds inM. To get
from the statement involving relations to the statement concerning functions,
the Axiom of Choice is, in general, needed (Hodges, 1997a). On the other
hand, assuming the Axiom of Choice, the truth-condition of ∀x∃yP(x, y) can
indeed be stated as the requirement that there be a function f such that for any
value a interpreting ∀x, the function produces a witness b = f (a) for ∃y. Such
functions, introduced by Skolem (1920), are known as Skolem functions.

Henkin (1961) considered logical systems in which infinitely long formulas
with infinitely many quantifier alternations are allowed; one of the examples
he mentions is the formula

∃x1∀x2∃x3∀x4 . . . P(x1, x2, . . .). (1)

In connection with such formulas, Henkin suggested that the procedure of pick-
ing up objects corresponds to moves in a game between two players, which
we might for simplicity call the universal player (Abelard) and the existential

2Hodges (2006a, b; Hodges and Krabbe, 2001) has levelled critique on the idea that logical games shed new
light on the semantics of quantifiers, or that logical games could actually have conceptually important roles
to play in justifying certain logical procedures or in defining meanings. But see the rejoinders in Pietarinen
(2006b, Chapter 9) and Hodges and Krabbe (2001) and Marion, this volume, as well as earlier discussion
in Hand (1989).
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player (Eloise). The former is responsible for choosing objects corresponding
to universally quantified variables while the latter similarly interprets existen-
tially quantified variables.

Admittedly, Henkin used the notion of game quite metaphorically. But he
pointed out that logical games are related to Skolem functions and observed
that winning strategies for the existential player are sequences of Skolem func-
tions. For instance, when evaluating the above formula (1) relative to a model
M, any sequence 〈 f1, f3, f5, . . .〉 of Skolem functions, one for each existential
quantifier ∃x2n+1 in (1), gives a winning strategy for the existential player in
the game correlated with the formula (1) in the modelM. In other words, the
formula (1) is true inM if and only if the following second-order formula is
true inM3:

∃ f1∃ f3∃ f5 . . .∀x2∀x4∀x6 . . . P( f1, x2, f3(x2), x4, f5(x2, x4), x6, . . .). (2)

Let us give a precise definition of semantic games for first-order logic. First
we agree on some terminology. If τ is a vocabulary, ψ is a first-order τ-formula
and c is an individual constant (not necessarily from the vocabulary τ), then
ψ[x/c] will stand for the (τ∪{c})-formula that results from substituting c for all
free occurrences of the variable x in ψ. WheneverM is a τ-structure (model),
by convention M will stand for the domain ofM. IfM is a τ-structure,M′ is a
τ′-structure, and τ ⊂ τ′, thenM′ is an expansion ofM, provided that M = M′

andM′ agrees withM on the interpretations of the symbols from τ.
With every vocabulary τ, τ-structureM and first-order τ-sentence ϕ, a two-

player, zero-sum game G(ϕ,M) of perfect information is associated. The games
are played with the following rules.

If ϕ = R(a1, . . . , an), the play has come to an end. If (aM1 , . . . , aMn ) ∈ RM,
the player whose role is ‘Verifier’ wins, and the one whose role is ‘Fal-
sifier’ loses. On the other hand, if (aM1 , . . . , aMn ) � RM, then ‘Falsifier’
wins and ‘Verifier’ loses.

If ϕ = (ψ ∨ χ), then ‘Verifier’ chooses a disjunct θ ∈ {ψ, χ}, and the play
continues as G(θ,M).

ϕ = (ψ ∧ χ), then ‘Falsifier’ chooses a conjunct θ ∈ {ψ, χ}, and the play
continues as G(θ,M).

3In order for the second-order sentence (2) to be equivalent to the sentence (1), the standard interpretation of
second-order logic in the sense of Henkin (1950) must be applied (the other requisite assumption being the
Axiom of Choice). In particular, n-ary function variables are taken to range over arbitrary n-ary functions on
the domain. Note that in (2) a Skolem function f2n+1 for the quantifier ∃x2n+1 is a function of type Mn → M.
Hence a Skolem function for ∃x1 is a zero-place function, that is, a constant.
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If ϕ = ∃xψ, then ‘Verifier’ chooses an element b ∈ M, gives it a name,
say nb, and the play goes on as G(ψ[x/nb],N), whereN is the (τ∪{nb})-
structure expandingM and satisfying nNb = b.

If ϕ = ∀xψ, then ‘Falsifier’ chooses an element b ∈ M, gives it a name,
say nb, and the play goes on as G(ψ[x/nb],N), whereN is the (τ∪{nb})-
structure expandingM and satisfying nNb = b.

If ϕ = ¬ψ, then the play continues as G(ψ,M), with the players’ roles
switched: the ‘Verifier’ of game G(¬ψ,M) is the ‘Falsifier’ of game
G(ψ,M), and vice versa.

In applying the above game rules, any play of G(ϕ,M) reaches an atomic
sentence and hence comes to an end after finitely many moves. These rules
follow Hintikka’s original definition (Hintikka, 1968); in particular, whenever
G(ϕ,M) is a game, ϕ is a sentence—formula with no free occurrences of
variables. However, no conceptual difficulties are involved in generalising the
definition so as to apply to first-order formulas with any number of free vari-
ables. This is accomplished by providing variable assignments γ as an extra
input when specifying games. Accordingly, for every τ-formula ϕ, τ-structure
M, and assignment γ mapping free variables of ϕ to the domain M, a game
G(ϕ,M, γ) can be introduced. The game rules for quantifiers become simpler
when phrased in terms of variable assignments. If for instance ϕ = ∃xψ, then
game G(ϕ,M, γ) proceeds by ‘Verifier’ choosing an element b ∈ M, where-
after the play continues as G(ψ,M, γ′), where γ′ is otherwise like γ but maps x
to b. Unlike in the games defined for sentences, now the vocabulary considered
is not extended by a name for the element b, and the modelM is not expanded.

To make proper use of games for semantic purposes, having laid down a set
of game rules is not enough. We also need the notion of strategy. To this end,
some auxiliary notions must be defined. A history (or, partial play) of game
G(ϕ,M) is any sequence of moves, made in accordance with the game rules.
A terminal history (or, play) is a history at which it is neither player’s turn
to move. The set of non-terminal histories can be partitioned into two classes
P∃ and P∀: those at which it is Eloise’s turn to move and those at which it is
Abelard’s turn to move.

Write O∃ for the set of those tokens of logical operators in ϕ for which it
is Eloise’s turn to move in G(ϕ,M), namely for all existential quantifiers and
disjunction signs with positive polarity, and for all universal quantifiers and
conjunction signs with negative polarity.4 Likewise, write O∀ for the set of the
tokens of operators for which it is Abelard’s turn to move. Then the histories in

4A logical operator has a positive polarity in a formula ϕ, if it appears in ϕ subordinate to n negation signs
with n ∈ {2m : m ∈ N}; otherwise it has a negative polarity.
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the set P∃ can be further partitioned according to the logical operator to which
they correspond: for each O ∈ O∃ there is a subset PO

∃ of P∃ of those histo-
ries at which Eloise must make a move to interpret O. The set P∀ is similarly
partitioned by PO

∀ with O ∈ O∀.
For each O ∈ O∃, Eloise’s strategy function is a function that provides a

move for her at each history belonging to PO
∃ . It is commonplace to stipulate

that at a history h ∈ PO
∃ , Eloise’s strategy function for O takes as its arguments

Abelard’s moves made in h.5 A strategy for Eloise is a set of her strategy func-
tions, one function for each operator in O∃. A strategy for Eloise is winning,
if it leads to a play won by Eloise against any sequence of moves by Abelard.
The notions of strategy function, strategy, and winning strategy are similarly
defined for Abelard.

Assuming the Axiom of Choice, it can then be shown that a first-order sen-
tence ϕ is true (false) in a model M in the usual Tarskian sense if and only
if there exists a winning strategy for Eloise (Abelard) in game G(ϕ,M), (see
Hodges, 1983; Hintikka and Kulas, 1985).6

The fact that any formula ϕ is either true or false in any given model M
manifests on the level of games in that all semantic games for first-order logic
are determined: in any game G(ϕ,M), either Eloise or Abelard has a winning
strategy. Semantic games are zero-sum, two-player games of perfect informa-
tion with finite horizon. The fact that they are determined follows from the
Gale-Stewart theorem (Gale and Stewart, 1953).

The framework of semantic games makes it possible to pursue research at
the interface of game theory and logic. Once a parallel between logical and
game-theoretic notions has been successfully drawn—as it has, for instance,
in connection with the notion of truth-in-a-model for first-order logic and the
game-theoretic notion of the existence of a winning strategy for Eloise in a
semantic game—one can meaningfully bring in further game-theoretic notions
and go on studying the resulting logical systems.

One such avenue is opened up by subjecting games to imperfect information.
The goal is then to study the ‘information flow’ in logical formulas, or the various
relations of dependence and independence between logical constants. This type
of research has led to the investigation of a family of independence-friendly
logics (IF logics), studied in various publications by Jaakko Hintikka, Gabriel
Sandu and many others (Hintikka, 1995, 1996; Hintikka and Sandu, 1989, 1997;
Hodges 1997a, b; Pietarinen, 2001b, 2006a; Sandu, 1993; Väänänen, 2007).

5Normally, allowing Eloise’s own moves as arguments of her strategy functions would not make it any
easier for Eloise to have a winning strategy.
6The Axiom of Choice could be avoided when formulating the relation of the game-theoretic truth-definition
to the Tarskian truth-definition, if strategies in the above sense, namely deterministic strategies, were re-
placed by nondeterministic strategies (Hodges, 2006b; Väänänen, 2006).
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The framework of semantic games with imperfect information has been applied
to a host of variants of IF logic, including IF propositional logic (Pietarinen,
2001a; Sandu and Pietarinen, 2001, 2003; Sevenster, 2006a), IF modal logic
(Bradfield, 2006; Bradfield and Fröschle, 2002; Hyttinen and Tulenheimo, 2005;
Pietarinen, 2001c, 2003c, 2004; Tulenheimo, 2003; Tulenheimo and Sevenster,
2006; Sevenster, 2006b), IF fixpoint logic (Bradfield, 2004) and IF fuzzy logics
(Cintula and Majer, this volume).

Another example of game-theoretic conceptualisations in connection with
logic is furnished by systematically investigating how far the common ground
between logic and game theory can be pushed (van Benthem, 2001). The paper
of Sevenster (this volume) belongs to that tradition.

3 Dialogical logic
Dialogical logic (a.k.a. dialogic) offers a game-theoretic approach to the log-

ical notions of validity and satisfiability. In so doing, it contributes to two of
the four objectives mentioned by Erik C. W. Krabbe in his apology of the di-
alogical standpoint, “Dialogue Logic Restituted” (Hodges and Krabbe, 2001):
the foundations of mathematics and the addition of a third approach to logic
next to model theory and proof theory. The two further objectives are related
to argumentation theory and systematic reconstruction of the language of sci-
ence and politics. Let us concentrate here on dialogical logic seen from the
logic-internal viewpoint.

Given a formula ϕ of, say, propositional logic, it is associated with a game
D(ϕ) referred to as dialogue about ϕ. Such games are between two players,
called the Proponent and the Opponent. Games are so defined that a formula
ϕ of classical propositional logic is valid under the usual criteria (that is, true
under all valuations) iff there is a winning strategy for the Proponent in the dia-
logue about ϕ. The framework is flexible—a game-theoretic characterisation is
obtained similarly, for instance, for validity in first-order logic and in various
modal logics. It has also been applied to paraconsistent, connexive and free
logics (Rahman et al., 1997; Rahman and Rückert, 2001; Rahman and Keiff,
2005). What is more, the contrast between classical and intuitionistic logic
has a clear-cut characterisation in terms of dialogues. Indeed, Paul Lorenzen’s
characterisation of validity in intuitionistic propositional logic in his 1959 talk
“Ein dialogisches Konstruktivitätskriterium” (Lorenzen, 1961) in terms of di-
alogues was of crucial importance to the very birth of dialogical logic. With
hindsight, we may observe that, given rules that define dialogues correspond-
ing to intuitionistic propositional logic, there is a systematic liberalisation that
can be effected with respect to these rules so as to yield classical propositional
logic (Lorenz, 1968).
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The rules of dialogues are divided into two groups—particle rules and struc-
tural rules. The former rules specify, for each logical operator (or ‘logical parti-
cle’), how a formula having this operator as its outmost form can be criticised,
and how such a critique can be answered. Structural rules, by contrast, lay
down the ways in which the dialogues can be carried out—they specify, for
instance, how the dialogue is begun, what types of attacks and defenses are al-
lowed, and what counts, for a given player, as a win of a play of a dialogue. As
it happens, dialogues for intuitionistic logic are obtained from those of classi-
cal logic by changing a single structural rule, while keeping the particle rules
intact. (In classical dialogues, a player may defend himself or herself against
any previously effected challenge, including those that the player has already
defended at least once; while in intuitionistic dialogues, the player may only
defend himself or herself against the most recent of those challenges that have
not yet been defended.)

Dialogical logicians tend to see dialogues as a sui generis approach to logic,
a third realm in addition to proof theory and model theory. Be that as it may,
there is a clear sense in which dialogical logic is naturally coupled with proof
theory, whereas game-theoretical semantics, in contrast, is coupled with the
study of model-theoretic properties. Think of a logic L that admits, as a matter
of fact, a sound and complete proof system, say classical propositional logic
or classical first-order logic. Dialogues provide such a proof system for L.
A winning strategy of the Proponent in a dialogue about ϕ counts as a proof of
ϕ. Crucially, dialogues for the logic L serve to recursively enumerate the set of
valid formulas of L. (Given a valid formula of L, the Opponent’s choices can
only give rise to finitely many moves before a play is reached which is won by
the Proponent and which cannot be further extended.) It is natural to consider
systems of semantic tableaux (Hintikka, 1955; Beth, 1959; Smullyan, 1968;
Fitting, 1969) as mediating the connection between proof theory and dialogues;
there is an important, yet straightforward connection between tableaux on the
one hand, and the totality of plays of dialogues on the other (Rahman and
Keiff, 2005). In particular, for a given refutable formula ϕ of, say, propositional
logic, there is a one-one correspondence between open maximal branches of a
tableau for the signed formula Fϕ and winning strategies of the Opponent in
the dialogue about ϕ. And for a given valid propositional formula ϕ, there is a
way of mechanically transforming the totality of closed branches of a tableau
for Fϕ to a winning strategy of the Proponent, and vice versa.

The moves in dialogues are formal, they do not involve objects out there
(elements of the domains of models). All that is involved is manipulation of lin-
guistic items, such as individual constants substituted for variables.
Hintikka (1973) has called his semantic games ‘games of seeking and finding’,
or ‘games of exploring the world’. Semantic games are ‘outdoor’ games, they
are related to the activities of verifying or falsifying (interpreted) formulas,
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while dialogues are ‘indoor’ games, related to proving—by suitably manipu-
lating sequences of symbols—that certain (uninterpreted) formulas are valid
(Hintikka, 1973, pp. 80–81). From Hintikka’s vantage point, only ‘outdoor’
games can build a bridge between logical concepts and the meaningful use of
language.

Naturally, the realism-antirealism dispute looms large here.7 As is typical in
connection with logics driven by proof theory, philosophically dialogical logic
tends to be associated with antirealism or justificationism, namely the idea
that semantic properties such as truth or validity can only be ascribed to sen-
tences which can be recognised as having this property. In the transition from
premises to conclusion, inference rules preserve assertibility rather than truth
in abstracto. Therefore, a dialogician would typically not accept Hintikka’s ar-
guments for the ‘semantic irrelevance’ of dialogues. Rather, he or she would
argue in favour of a justificationist theory of meaning, whereby an informal
notion of proof would become a central semantic notion. A dialogician might
further hold that dialogues capture such a notion of informal proof. It would
be possible, but not necessary, to combine this view with the conception that
dialogues actually introduce a third realm for logical theorising, adding to what
proof theory and model theory have on offer.

Without entering philosophical discussions on the fundamental nature of
dialogues, it can be observed that the notion of proof or inference to which
dialogues give rise is distinct from the fully formal notion of proof operative
in sound and complete proof systems. One may, at least so it seems, formulate
reasonable dialogues—and reasonable tableau systems—even for pathologi-
cally incomplete logics, namely logics which simply do not admit of any sound
and complete proof system. If so, the type of inference with which dialogues
are concerned is semantic inference—with no a priori claim to always yield a
recursive enumeration of the (uninterpreted) formulas of the language consid-
ered. If dialogues were all about formal proofs, it would be a contradiction in
terms to speak of formal dialogues for incomplete logics.8
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Abstract Game semantics has almost achieved the status of a paradigm in computer sci-
ence but philosophers are slow to take notice. One reason for this might be the
lack of a convincing philosophical account of logical games, what it means to
play them, for the proponent to win, etc., pointedly raised by Wilfrid Hodges as
the ‘Dawkins question’. In this paper, I critically examine two available answers:
after a brief discussion of an argument by Tennant against Hintikka games, I fo-
cus on Lorenzen’s attempt at providing a direct foundation for his game rules
in the life-world, showing some of the difficulties inherent to that project. I then
propose an alternative based on the theory of assertions developed by Dummett
and Brandom.

We owe to Paul Lorenzen an extraordinarily rich intuitive idea, first pre-
sented in his papers ‘Logik und Agon’ (Lorenzen, 1960) and ‘Ein dialogis-
ches Konstruktivitätskriterium’ (Lorenzen, 1961), the fruitfulness of which we
are barely encompassing today. In the language of game theory, it is the idea
of defining logical particles in terms of rules for non-collaborative, zero-sum
games with perfect information between two-persons, a proponent and an op-
ponent, and to define truth in terms of the existence of a winning strategy for
the proponent.1 In a nutshell,2 a ‘dialogical’ or ‘Lorenzen game’, as I shall call
them is always played in alternate moves between an opponent O and a pro-
ponent P, who begins the game by asserting a given statement; games are thus
always in the form of a finite sequence of alternate moves. Lorenzen distin-
guished between ‘particle’ and ‘structural’ rules for these games. Particle rules
provide the meaning of the logical connectives. One should distinguish here
between players and their role, as attacker or defender: in the initial round P

1The idea that one should use game theory here was not, however, Lorenzen’s, we owe it to his student,
Kuno Lorenz.
2Alas, there are no textbooks for dialogical logic, but one may find useful introductions in Felscher (1986),
Lorenz (1981) or Rückert (2001); I follow for the most part the latter presentation in this paper. A num-
ber of seminal papers are collected in Lorenzen and Lorenz (1978). As the point of this paper is purely
philosophical, I shall remain at an informal level throughout.
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has undertaken to be the defender, with O the attacker, hence the choice of their
names, but these roles might be inverted during the course of a play, as will be
pointed out shortly. Therefore, informally stated, for P as the defender and O
as the attacker, the rules are as follows: when P asserts ϕ & ψ, O chooses one
of the conjuncts and P must defend it, so the game continues for that conjunct.
Since O chooses, P has to have a defence of both conjuncts up her sleeve if she
hopes to win. When P asserts ϕ∨ψ, then O asks that P chooses and defends one
of the disjuncts; she can thus choose the disjunct for which she has a defence.
For an implication ϕ → ψ, O will assert ϕ thus forcing P to defend ψ (P also
has the possibility to attack ϕ). With ¬ϕ, roles are exchanged, as O has now
to defend ϕ against attacks from P. For quantifiers, when P asserts ∀xA(x), O
chooses a value for x and P must then show that it has the property A, and when
P asserts ∃xA(x), then O asks that P exhibits an x that has the property A.

Structural rules concern the structure of the games, e.g., the already-men-
tioned rule stating that players move alternatively or a rule forbidding delaying
tactics. One important rule concerns atomic formulas: P can only assert an
atomic formula if it had been previously asserted by O, so that the winning
strategy for P would be independent of any information about atomic facts.
This is known as the ‘formal rule’, which makes room for ‘formal’ as opposed
to ‘material’ games, and for a definition of logical validity. In material games,
this rule is replaced by a rule stating that only true atomic propositions may be
asserted, leading to a definition of validity as general truth. Lorenzen games
always terminate in a finite number of steps and the winning rule states that the
one who has no possible moves left has lost. Thus, if P has at least a move for
any move chosen by O, then P will win and a formula is valid if and only if P
has a (formal) winning strategy for that formula (Rückert, 2001, 173–174).

Another proposal for ‘logical games’, as they may generally be called,
was put forth by Jaakko Hintikka some years later (Hintikka, 1968, 1972),3

the heart of which being a game-semantic reading of the quantifiers first sug-
gested by Leon Henkin (Henkin, 1961).4 One should recall that in a formula
of the form:

∀x∃yA(x, y) (1)

the choice of (a value for) y depends on the prior choice of (a value for) x and
that one may replace it with a second-order formula, involving what is known
as a ‘Skolem function’:

3For an introduction to game-theoretic semantics, see Hintikka and Sandu (1997).
4It was found out later on that C. S. Peirce, one of the inventors of quantification theory, was actually the
first to propose a game-semantic interpretation of the quantifiers. See Hilpinen (1982) and Pietarinen (2006).
For an nice example of exegesis using game semantics, see Pietarinen and Snellman (2006). Incidentally,
Henkin’s paper appeared in the same volume as one of Lorenzen’s first papers (Henkin, 1961, Lorenzen,
1961). This coincidence is not so fortuitous, as they were both at the Institute for Advanced Studies in the
late 1950s, possibly being influenced by von Neumann and Morgenstern, both pioneers of game theory, as
well as from Tarski.
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∃F∀xA(x, F(x)) (2)

Hintikka’s suggestion was to follow Henkin in reading (1) in terms of a game
between an opponent, variously named ‘Nature’, ‘initial falsifier’, or ‘∀belard’,
and a proponent, ‘Myself’, ‘initial verifier’ or ‘∃loise’. In (1), the opponent
makes the first move and chooses an x, then the proponent must find for that
x a y such that A(x, y). If ∃loise finds a y for every x that ∀belard throws at
her, so to speak, then she wins the game, otherwise, she loses. Of course, if a
function such as F in (2) is available to the proponent, she only has to apply
it to find a y for any x chosen by the opponent and thus win the game; this
is why the existence of a Skolem function is equivalent to the existence of a
winning strategy for the proponent. Furthermore, the existence of a winning
strategy is necessary and sufficient for the sentence to be true. This reading
of the quantifiers has been extended by Hintikka to ‘branching’ or ‘Henkin
quantifiers’, first introduced by Henkin in the very same paper in which he
introduced his game-semantic interpretation (Henkin, 1961). I shall come back
to this briefly.

Hintikka’s next move was to extend this reading of the quantifiers to con-
junction and disjunction, by reading ϕ & ψ as ‘All the sentences ϕ and ψ . . . ’,
where the falsifier chooses one of ϕ and ψ and the game proceeds accordingly,
and ϕ ∨ ψ as ‘There is one of ϕ or ψ . . . ’, where the verifier chooses instead.
To obtain the complete set of rules, one must add a rule for negation as the
exchange of roles.5 There is, however, no specific rule for material implica-
tion ϕ → ψ, which is simply defined classically as ¬ϕ ∨ ψ. One can thus see
that Hintikka’s reading of the quantifiers is at the heart of his game semantics.
Another important semantic idea is the idea of negation as a ‘responsibility
shift’.

Hintikka has made numerous controversial claims on behalf of his game-
theoretical semantics, especially in connection with Independence-Friendly
Logic which covers the fragment of second-order logic involving branching
quantifiers, including an ambitious plea for re-thinking of the very nature of
logic in The Principles of Mathematics Revisited (Hintikka, 1996). I shall not
discuss these here. One should note, however, that Lorenzen also made radical
claims concerning his games. He was a logical monist and his original inten-
tion was to provide philosophical foundations for intuitionistic logic, i.e., the
‘Heyting calculus’ in the following quotation from his John Locke Lectures.6

Philosophically there is no reason to start with the historical fact that Heyting
published a certain calculus or to look for an interpretation of that calculus. It

5Hintikka’s approach is model-theoretic: games will terminate in a finite number of steps with atoms, then
one looks at the model, if the atom is valued as true, then the verifier wins, otherwise, she loses.
6More precisely, Lorenzen was expressly hoping to recover Beth’s tableaux rules for intuitionistic logic.
See Barth and Krabbe (1982, 12–13).
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is however, reasonable to start with material dialogues, to formalize this game,
to look for admissible rules for winning-positions; this procedure leads us di-
rectly to an interpretation of the Gentzen calculus and then indirectly to an in-
terpretation of the Heyting calculus. I would claim, therefore, that the dialogi-
cal approach justifies the logical intuitions of Brouwer and Heyting. (Lorenzen,
1969, 39)

His claim was thus that his dialogical approach justifies intuitionistic logic
and not, conversely, that intuitionistic logic justifies his choice of rules. This
is indeed a rather ambitious claim (to which I shall come back). The equiva-
lence theorem necessary between proofs in Gentzen’s natural deduction sys-
tem for intuitionistic logic and strategies for winning dialogues was obtained
only in 1985 by Walter Felscher (Felscher, 1985), at the end of a long search
for the right set of restrictions on structural rules for dialogues needed to ob-
tain intuitionistic provability. Kuno Lorenz had in the meantime realized that a
slight variation in one of the structural rules would give classical logic (Lorenz,
1968)—yet another point to which I shall come back.

After a period of neglect, dialogical logic has enjoyed a revival recently,
after Andreas Blass first proposed (Blass, 1992) to use Lorenzen’s ideas to
provide a semantics for the then newly invented linear logic of Jean-Yves
Girard (Girard, 1987). Blass’s paper sparked numerous developments, with
new competing semantics: Hyland-Ong games (Hyland, 1997; Hyland and
Ong, 2000), Abramsky games (Abramsky and Jagadeesan, 1994; Abramsky,
1997; Abramsky, 2006), Japaridze games (Japaridze, 1997), and even further
logical developments, with Japardize’s computability logic (Japaridze, 2003),
and Girard’s ‘ludics’ (Girard, 2001). Game semantics allows one to provide
semantics to a variety of logical systems and programming languages, and has
thus emerged as a new paradigm within computer science. However, while
computer scientists might have perfectly good reasons for turning to game se-
mantics, the idea is only slowly picking up within philosophical circles. The
obvious reason for this is that better-known paradigms, for example, truth-
conditional semantics, have more firmly established pedigrees. Philosophers
won’t budge until they are shown that, in some sense, game semantics is a bet-
ter alternative and they will only shrug their shoulders when pointed out that,
e.g., it allows for the construction of syntax-independent, ‘fully abstract’ mod-
els for programming languages. Some prejudices definitely need to be over-
come before game semantics is to displace its rivals in their minds. Some ob-
jections are devoid of any merit, such as the claim, often voiced, according
to which dialogical games are needlessly complicated: strategies for Lorenzen
games amount merely to reading proofs in Gentzen’s natural deduction systems
upside down (Lorenzen, 1987, 81, 96), and one can learn to do so probably as
easily as one learns how to drive on the left side of the road, once one has
learned to drive on the right side. From a philosophical point of view, however,
more reticence needs to be overcome, so the main task is to provide a coherent,
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believable story for seeing logic in terms of dynamic interaction between two
players. In other words, one must give not a contrived but a natural answer
to the question: Why play logical games? The point of playing a game is to
win, but what is a defender doing when trying to win a logical game? What is
the motivation for the attacker? These questions have been raised recently by
Wilfrid Hodges:

In most applications of logical games, the central notion is that of a winning
strategy for the [proponent]. Often these strategies (or their existence) turn out
to be equivalent to something of logical importance that could have been defined
without using games—for example a proof. But games are felt to give a better
definition because they quite literally supply some motivation: [the proponent] is
trying to win. This raises a question that is not of much interest mathematically,
but it should concern philosophers who use logical games. If we want [the pro-
ponent’s] motivation in a game G to have any explanatory value, then we need to
understand what is achieved if [the proponent] does win. In particular we should
be able to tell a realistic story of a situation in which some agent called [the pro-
ponent] is trying to do something intelligible, and doing it is the same thing as
winning in the game. (Hodges, 2004, § 2)

Hodges’ question is thus a request for a description of a realistic situation in
which the proponent is trying to do something which is the same as winning in
a logical game. An answer to it is rather important, as it is from this story that
the particle and structural rules should emerge, so to speak. It is also not just
the obvious prerequisite to any attempt at convincing sceptics about the value
of game semantics, it strikes right at the heart of claims made on the behalf
of logical games, such as Lorenzen’s claim that his games justify intuitionistic
logic, and not vice-versa, or Hintikka’s proposals to reform logic: if no good
answer is forthcoming, these claims will simply fail to convince, as they have
done so far. In the remainder of this paper, my task will be to assess available
answers and to provide a new one.

At the moment, there are only two answers to Hodges’ question in the liter-
ature, for Lorenzen games and for Hintikka games, and Hodges has provided
criticisms of both (Hodges, 2001, 2004, 2006). He took a rather stern view in
both cases, concluding some harsh comments on Hintikka with the remark “it
is a little disappointing that nobody took the trouble to look for a better story”
(Hodges, 2004, § 3). And Lorenzen does not fare better: “it turns out to be em-
barrassingly easy to make mincemeat out the fine details of Lorenzen’s claims”
(Hodges, 2001, 22). Hodges is at any rate not looking forward to be convinced:
“each claim of this kind needs its own deconstruction” (Hodges, 2001, 25). As
it is not possible fully to discuss both programmes here, the emphasis in what
follows will be on Lorenzen games, with remarks on Hintikka games, imme-
diately below, kept to a minimum. At all events, I have already given reasons
to reject Hintikka’s answer—especially concerning his use of Wittgenstein’s
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notion of ‘language-games’ in that context—, and I shall not repeat them here
(Marion, 2006).

In the case of Hintikka, the problem of finding a convincing story is reduced
to that of providing a story for the quantifiers, since, as I have shown, his central
semantic idea concerns the quantifiers (forgetting here the other crucial the-
sis about negation as ‘responsibility-shift’). This is why Hintikka introduced
his ‘language-games’ of ‘seeking and finding’ (Hintikka, 1973, Chapter 3). It
seems to me that the main objection to Hintikka’s answer was already put forth
by Neil Tennant in the 1970s (Tennant, 1979); I shall briefly rehearse it because
I wish to add a proviso. As I pointed out, Hintikka extended his game-semantic
reading to ‘branching’ or ‘Henkin quantifiers’. When we wish to say that for
all x there is a y and that for all z there is a w, such that A(x, y, z,w), if we
want the choice of y to depend on x and the choice of w to depend on z but
not on x, then the usual notation is inappropriate, since, according to the usual
conventions about scope, the expression

∀x∃y∀z∃wA(x, y, z,w) (3)

makes the choice of w depend not only on z but also on x. To express this, one
needs ‘branching’ quantifiers, for which Hintikka devised a ‘slash’ notation:

(∀x)(∀z)(∃y/∀z)(∃w/∀x)A(x, y, z,w) (4)

The slash in ‘∃w/∀x’ means that the choice of w is made independently of that
of x. Here too, there is a corresponding second-order formula:

∃F∃G∀x∀zA(x, F(x), z,G(z)) (5)

where functions F and G will provide the winning strategy for the proponent.
Again, I must skip here discussing further claims by Hintikka, e.g., about non-
compositionality, so that Tarski’s well-known truth definition for first-order
logic could not be extended to provide a semantics for Independence-Friendly
Logic, etc.7 One should merely note that the initial verifier’s winning strategy is
provided here by a set of Skolem functions for which one can merely claim ‘ex-
istence’ in the classical, non-constructive sense of the term. This means, there-
fore, that the initial verifier has no available knowledge of the set of functions
that would provide her with a winning strategy, she could only know that such a
set exists. Although Hintikka remains undeterred, e.g., at Hintikka (1998, 171,
n. 34), this means that, as Tennant pointed out, “no person could apply these
functions in a way that exhibits strategic intent” (Tennant, 1979, 305). This
does not mean that the initial verifier could not win a given game, as when one

7Hodges has given a compositional semantics in Hodges (1997), but see also Abramsky (2006). For a
discussion of this issue and further references, see Hodges (2006).
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plays chess, for example. Nevertheless, it thus seems hardly to make sense, in
light of Hodges question, to speak of asserting a sentence that is true in refer-
ence to a game for which a winning strategy exists but cannot be known to the
initial verifier. This point must be qualified, however, as the analogy with chess
already suggests: if one distinguishes properly between game level, where any-
one who has mastered the particle rules can go on playing—and can thus be
said to know their meaning—, and the strategy level, which should involve the
handling of some constructive procedure, the point at stake being that there is
none here to handle.8 So, Tennant’s argument only applies at the strategy level,
and this considerably weakens it.

This critique does not nullify Hintikka games in the least. If anything, it
shows that Hodges was right in finding Hintikka’s original motivation unsatis-
factory.9 It leaves the door open to other suggestions. For example, to a rather
promising approach, which looks at these games as modelling cases where
players have to cope with imperfect information, e.g., the proponent has to
make a choice without knowledge of the opponents previous move.10 This is
the direction in which Hintikka games have already evolved, in particular in the
work of Gabriel Sandu and Ahti-Veikko Pietarinen,11 and Johan van Benthem
has shown how it overlaps further with game theory and with recent develop-
ments in dynamic epistemic logic (van Benthem, 2003, 2006). There is thus a
different answer to Hodges’ question in gestation here, and this approach might
provide a better understanding of these games and their applications.

∗

The answer to Hodges’ question that can be garnered from Lorenzen’s writings
also has its own difficulties.12 Like many logicians, Lorenzen felt dissatisfied
with the usual Tarski-style semantical definitions, e.g, ‘A & B is true if and
only if A is true and B is true’ and ‘A & B is false if and only if A is false
or B is false’, since these presuppose the availability of a metalinguistic ‘and’
and ‘or’ (Lorenzen, 1987, 60, 88). As Jean-Yves Girard once put it: to under-
stand Tarski, you need ‘Mr. Metatarski’, and so on (Girard, 1999, Section 23).

8I owe this point to Helge Rückert.
9Not, however, for his stated reasons, e.g., his inability to make sense of the role of Nature as the initial
falsifier in Hodges (2004).
10There is a very brief suggestion to that effect in Marion (2006, 268).
11E.g., Sandu and Pietarinen (2003).
12The following remarks are not based on a exhaustive review of the literature, and I owe an apology to
German readers for my excessive reliance on a handful of English translations. (For example, Lorenzen
(1987) is a translation of Lorenzen (1968) and Lorenzen (1974), along with some papers, including Loren-
zen (1982). For a short overview and useful bibliography of the Erlangen school, see Gethman and Siegwart
(1994), one should also consult the papers collected in Butts and Brown (1989), but beware of the unsym-
pathetic, biased overview in Bubner (1981, 142–153).
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Lorenzen was thus looking around for a strict foundation13 and found what
seems to be his key idea (and that of the Erlangen School, which spawned
around his work), in the philosophy of Hugo Dingler.14 Dingler’s ideas can
be captured in terms of Hans Albert’s ‘Münchhausen Trilemma’, according
to which any attempt at a foundation is bound either to lead to an infinite
regress, to be circular (as one presupposes what one wishes to ground), or
to end arbitrarily, “in the middle” (Albert, 1985, 18). Dingler chose the last
option (Dingler, 1931, 21; Dingler, 1955, 97; Albert, 1985, 19n. and 41f.), and
Lorenzen followed him, using Neurath’s metaphor of the boat that has to be
rebuilt at the sea (Lorenzen, 1987, 16). Dingler asked indeed that our scien-
tific discourse be methodically reconstructed ‘from the ground up’, step by
step—to avoid circles, every step must be constructed only on the basis of
steps already carried out (Dingler, 1964, 26)—so that it could be open to ra-
tional discussion. But he rejected the sort of reductionist programmes typical
of his days, such as Carnap’s Aufbau,15 i.e., he rejected the idea that the vo-
cabulary of physics can be reduced to an empirical base vocabulary, be it a
phenomenal or physicalist language.16 And to begin ‘in the middle’ did not
mean, as implied by Albert, to begin at an arbitrary point: it meant for Dingler
that we have to start the reconstruction in the middle of our ‘civil life’, i.e., in
an hypothetical state of scientific innocence,17 where all we have is our con-
crete actions. Thus, according to Dingler, the buck stops at them: “all sciences
must have their ultimate basis in the theory of action” (Dingler, 1931, 32). To
take the example of geometry, what we know about space is said to depend on
operations performed within this life-world.18 The same goes for measuring
time or chronometry, and these operations will serve as the basis upon which

13That he ultimately succeeds or not in avoiding any recourse to the metalanguage in the rules for his games
is not an issue that can be discussed here, although it is implied below that he did not.
14For Dingler’s bibliography, see Schroeder-Heister (1981). Dingler’s collected works are now available in
electronic form as Dingler (2004).
15On the relation between Carnap and Dingler, see Wolters (1985).
16One should therefore note here the connection between Dingler and what Robert Brandom has recently
called the pragmatic challenge to the classical project of analysis (Brandom, 2008, 3). Brandom has in mind
primarily the later Wittgenstein and Wilfrid Sellars, but it is clear that Lorenzen and the Erlangen School
should be understood as belonging to that camp. See, for example, Gethmann (1979).
17One should note en passant that, although Dingler rejected attempts at a transcendental foundation, his
programme is here related to Husserl’s project in Appendice III to the Crisis of European Sciences on
the origins of geometry (Husserl, 1970), i.e., to Husserl’s claims about the possibility and the necessity
to re-activate the ‘evidences’ on which the first geometers build geometry—one would say: its ‘proto-
foundation’—, and whose validity is meant to trickle down the chain of inferences. On the relation between
Husserl and Dingler, see Wolters (1991). It is for reasons of this sort that the “constructive philosophy” of
Lorenzen and of the Erlangen School has been characterized as “phenomenology after the linguistic turn”
(Gethman and Siegwart, 1994, 228).
18Dingler speaks of a Lebensstandpunkt (Dingler, 1964, 42). However, one should not read too much in my
use here of my expression ‘life-world’. The connections with Husserl’s Lebenswelt (see preceding footnote)
has been noted many times, e.g., (Gethmann, 1979, 39) with the usual proviso.
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physics can be reconstructed. Dingler believed that he could thus show that the
axioms of Euclidean geometry are the only operationally true ones, hence his
life-long opposition to Einstein’s relativity theory, which requires the validity
of a non-Euclidean geometry.19

Influenced here by Oskar Becker as well as Hugo Dingler, Lorenzen orig-
inally proposed in Einführung in die operative Logik und Mathematik a re-
construction of mathematics on a partly formalist ‘operative’ basis, i.e., on
mechanical operations on strings of symbols in accordance to given rules
(Lorenzen, 1955). For example, the basic arithmetical operation is counting,
numerals being constructed by the operation schematized as follows:20

|
n→ n |

The domain of these rules of transition, to which one needs merely to add
the above rule for numerals in order to build mathematics (minus geometry)
(Lorenzen, 1987, 69–70), is called ‘protologic’ (Lorenzen, 1955, 1987, 61 and
67). Protologic is thus a theory of formal systems within which one studies
principles for the admissibility of inference rules. One of Lorenzen’s lasting
achievements in that book, to use Peter Schroeder-Heister’s words (Schroeder-
Heister, 2008, 229), is to have been the first to formulate an inversion principle
(Lorenzen, 1955, 30f.), and to apply it to infer elimination rules from intro-
duction rules. Indeed, Lorenzen was the first to introduce in proof-theory the
concept of admissibility: a rule is admissible if adding it to the set of rules of
a given system does not enlarge its set of derivable sentences (Lorenzen, 1955,
§ 2), and he further introduced a notion of elimination procedure in order to
give an operative meaning to the notion of admissibility: a rule is admissible if
every application of it from every derivation in the system to which it is added
can be eliminated (Lorenzen, 1955, § 3). This constitutes, as Schroeder-Heister
aptly notes, the true intuitionistic core of Lorenzen’s conceptions (Schroeder-
Heister, 2008, 217–218).

The inversion principle was taken up and generalized by Dag Prawitz in his
classical study, Natural Deduction; A Proof-Theoretical Study (Prawitz, 1965),
and used it further as the basis of a well-known argument which purports to
show the more natural character of intuitionistic logic, because the elimination

19Dingler mounted a failed challenge at the 86th Naturforschersammlung held at Bad Neuheim in 1920,
which was, as it turns out, a turning point in German physics, as relativity theory was then finally adopted
by the German physicists and Dingler became isolated; this is the beginning of numerous professional prob-
lems, that led eventually to his siding with Lenard’s Deutsche Physik, with all the obvious consequences. A
similar but slightly different operational reconstruction of geometry and chronometry was carried out in the
Erlangen school, see, e.g., Janich’s ‘proto-physics’ of time in Janich (1985), or, for geometry the essays in
Lorenzen (1987, Part vi).
20Since there are only operations on signs, and no impredicative definitions, the ‘operative’ mathematics
developed in Lorenzen (1955) and, further, in Lorenzen (1971) stands closest to Weyl’s predicativism.
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rule for double negation in classical logic does not respect this inversion princi-
ple.21 However, by the time these developments took place, Lorenzen had more
or less lost interest in the topic. Nevertheless, it should be noted that Lorenzen
had in the 1960s a parallel argument from the point of view of his protologic:

In fact, the usual logic can be operatively—that is on the basis of schematic
operations—interpreted this way. With the exception of negation, everything is
exactly as it is in the classical theory. For negation we have, in contrast, at first
only intuitionistic logic with which, however, we know that we can justify two-
valued logic as at least a fiction. (Lorenzen, 1987, 68)

One also should note on historical matters that Lorenzen did not have yet
his insight into the dialogical nature of logic at the time he introduced his
‘operative logic’ in Einführung in die operative Logik und Mathematik. After
publishing that book, he went to Princeton to meet Weyl (alas, Weyl died be-
fore Lorenzen’s arrival), and the idea of a game between a proponent and an
opponent (but not yet the idea of fully using game theory) came from discus-
sions with Tarski.22 It is difficult to make sense of the grafting of dialogical
games over the conceptions set forth in 1955 book.23

At all events, in later presentations of his dialogical games, Lorenzen ar-
gues that his particle rules are abstracted from what he called our practical
nonverbal activity (die Praxis unseres sprachfreien Handelns) or our prelogi-
cal speech practice (vorlogische Redepraxis) (Lorenzen, 1982, 29, 35, 1987,
83, 87), expressions which he obviously got from Dingler.24 So a rational
reconstruction of logic will have as a starting point the activities within a pre-
logical speech practice, from which one can eventually extract (after going
through steps concerning predication, etc.) the particle and structural rules of
the dialogical games for the only operationally true logic, intuitionistic logic.
As Lorenzen writes:

In the context of a specific practical activity any normal person can learn how to
use sentences of, say, the form N [does] P or N [is] Q [. . . ] We learn this kind
of sentence and the words that appear in them exemplarily. In this way we have
a speech practice that is justified within the context of practical activity. This is
what Bühler called empractic justification. Only by participating in an activity
do we acquire the speech appropriate to that activity. We learn by practice what
it is to assert propositions or to contest the affirmation or denial of propositions
(e.g., by nodding or shaking ones head.) We introduce a negator, ¬, where ¬a is
used to express that we are contesting a proposition a. (Lorenzen, 1987, 83)

21See Prawitz (1977) or Dummett (1991, Chapter 9) for a more recent restatement.
22On this, see Lorenz (2001).
23Of course, these will not be discussed here. For a careful study of Lorenzen’s earlier conceptions, see
Peter Schroder-Heister’s papers (Schroeder-Heister, 2007, 2008).
24There are of course many important differences between Dingler’s and Lorenzen’s programmes. See
Janich (1985, Chapter 2) for a detailed presentation.
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Lorenzen also presents his game rules as a ‘normalisation’ or ‘regimenta-
tion’ of conversational moves from the life-world. Now Hodges objected to
this that Lorenzen’s notions of ‘attack’ and ‘defense’ couldn’t be said to be
lifted from a ‘prelogical speech practice’. In support, he gave three arguments,
concerning particle rules, trying to show that what the opponent does in some
cases cannot be really construed as an attack: sometimes it looks as he is help-
ing instead.25 His third argument (I shall not discuss the first two) has to do
with the fact that in a dialogue, you can attack a claim either by arguing that it
is not true or that it is useless for further deductions; Lorenzen has supposedly
overlooked the latter case, which Hodges illustrates by quoting an exchange
from Strindberg’s Miss Julie:

Jean: If you take my advice, you’ll go to bed.
Julie: Do you think I’m going to be ordered about by you? (Hodges, 2001, 24)

Here, Julie simply refuses to take Jean’s advice, in other words, she replies to
Jean’s ϕ → ψ by rejecting ϕ. In view of this, for the opponent to concede ϕ
is not truly to attack ϕ → ψ but somehow to help the proponent in her task of
defending it. As a critique of Lorenzen’s rule for ϕ → ψ this would be rather
poor, as the rule is meant to capture the semantic content, for which the point
raised in the example from Miss Julie is irrelevant. The point of the rule is that,
when someone asserts ψ under the condition that ϕ—that is if ϕ is granted —
there is no attack possible on the semantic content other than to grant ϕ and
force the proponent to assert ψ and defend it.26 I do not wish to argue for or
against this point, but simply to note that the example from Miss Julie shows
that there are in our prelogical speech practice many ways to deal with the
conditional that are irrelevant to the particle rule itself, and this shows of itself
that the rule is not simply ‘lifted’ from our ‘prelogical speech practice’, the
element of ‘regimentation’ plays a crucial role. The very idea that the rules are
somewhat extracted from the ‘prelogical speech practice’ thus becomes vague
and ultimately unconvincing. (Recall that I am merely arguing here against
the suggestion that the rules are to be arrived at from some analysis of the
prelogical speech practice, not against the specific rules framed by Lorenzen.)

25There are suggestions that Lorenzen did not exactly see things the way Hodges portrays him, e.g., when
Kamlah and him point out that players are “not discoursing against one another in order to carry their
point, but rather with one another, so that in working together they may come up with true sentences”,
this being illustrated by the alleged move from the ‘eristics’ of the Sophists and the ‘dialectics’ of Socrates
(Kamlah and Lorenzen, 1984, 142). This is a very interesting suggestion in itself but it is not clear if this is a
correct representation of the difference between Socrates and the Sophists. At any rate, one should note that,
assuming the distinction between the level of games and the level of strategies (Rückert, 2001, 175–177),
any collaboration should occur at the level of strategies, while the games should remain fully agonistic. (I
owe this point to Helge Rückert.)
26I owe this point to Helge Rückert.
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The same goes for structural rules. As I already mentioned earlier, the dif-
ference between classical and intuitionistic logic hangs in Lorenzen’s games
merely on the difference between two structural rules. These are:

Intuitionistic rule: Each player can either attack a (complex) formula asserted
by his adversary or defend herself against the last attack that has not yet been
answered.

Classical rule: Each player can either attack a (complex) formula asserted by
his adversary or defend herself against any attack, including those already de-
fended (Rückert, 2001, 168).

Indeed, with help of this last rule, one can defend ϕ ∨ ¬ϕ, but it is as easy
to show that there is no defence when the first rule is applied. Here are two
games, the left-hand one uses the intuitionistic rule:

P : ϕ ∨ ¬ϕ
O : ?

P : ¬ϕ
O : ϕ

P : ϕ ∨ ¬ϕ
O : ?

P : ¬ϕ
O : ϕ

P : ϕ

Note that in both games, P answers the challenge choosing ¬ϕ as she cannot
assert an atomic formula. On the left-hand game, P ends up with no move and
loses, so there is no defence of ϕ∨¬ϕ. On the right-hand side, P is now allowed
to reply again to the first challenge by stating ϕ, as it is already asserted by O,
who has then no more moves and loses.

But how can this first rule be convincingly said to be anchored in our ‘pre-
logical speech practice’, as opposed to the second? If the difference between
classical and intuitionistic logic is the prohibition of repeated attacks, where
is a justification for this to be found? The mere possibility of such objections
shows at least this that one cannot so simply lift one set of rules from this hy-
pothetical state of ‘prelogical speech practice’. This much goes at least against
Lorenzen’s monism. (I shall come back to this point below.) But one could
push this point further: it is not clear how can one define a prelogical (let alone
preverbal) state where conversations take place from which one could extract
not just one specific set of rules but any set of rules. The notion of ‘prelogical’
conversations itself may very well be incoherent. The idea that logic is already
included into the bargain, so to speak, with the ability to deploy any language
or to controvert is tempting. But how one could cash it out in such foundational
terms for logic is simply not obvious.
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As it turns out, however, Lorenzen did not claim to lift so straightforwardly
his game rules for the prelogical, empractic context of the life-world, his
position is cleverer. He claimed instead that in protologic one learns rules
of transition which would legitimate in turn the introduction of the particle
rules:27

Rules of transition [his example here is the Modus Ponens] in which we must af-
firm the conclusion if we have affirmed the premises are not logical rules. They
are prelogical; they provide a set of practical linguistic activities, a set of lin-
guistic practices, which, under rather complicated circumstances, justify the in-
troduction of operators invented expressly for these linguistic practices, that is,
logical operators. (Lorenzen, 1987, 83)

We are here back to the domain of protologic, where, as we saw, Lorenzen had
accounted for the admissibility of rules in terms of eliminability. It appears
therefore, that Lorenzen saw candidates for the particle rules as extracted from
our ‘prelogical speech practice’ and then shown to be admissible by a proce-
dure of elimination. In a paper entitled ‘Protologic. A Contribution to the Foun-
dation of Logic’, Lorenzen illustrated how elimination is to proceed through
a dialogue performed by Fritz and Hans, with Hans failing in his attempt to
deduce a purely syntactic figure that Fritz could not deduce in turn from the
first two of the three rules available to Hans (Lorenzen, 1987, 64–66). One may
continue with our critical line of enquiry and ask in turn: Whence this exchange
between Fritz and Hans? It immediately becomes clear that the antecedent
proto- and pre-logical state in which Fritz and Hans play their eliminability
game, from which one could learn which logical rules are admissible, is some
sort of fiction or reconstruction. This is presumably, to use Lorenzen’s own
metaphor, what the rebuilding of our ship at sea amounts to. However, there
is a definite air of circularity since, in order even to get to learn the schematic
operations, Fritz and Hans do not start from scratch but already need logic, the
same way that, to use an example to be discussed below, in order to learn the
rule to be applied when ordering a coffee in a Viennese café, one already needs
to master the use of assertions, or, to use a well-known example from Wittgen-
stein, in order to learn word by ostension, one must have already mastered the
practice of definitions by ostension. Here, to ‘reconstruct step by step’ cannot
amount to giving the expected sort of ‘foundations’. Lorenzen was certainly
aware of this kind of difficulty, as he dismissed circularity arguments such as
the above as verbalen Nebel (Lorenzen, 1982, 29, 1987, 83). One wonders,
however, where the fog truly remains. Construing logical inference in dynamic
terms as action or operation is a pregnant idea, Lorenzen’s approach of rules
via admissibility and elimination is certainly one of his lasting achievements,
but it does not have to stand and fall with this Dinglerian attempt at anchoring
it in our life-world.

27This point seems to have been missed in Hodges (2001).
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As with Hintikka games, the above does not amount to an argument against
Lorenzen games as such but against the story he provided as a motivation for
them, i.e., against a possible answer to Hodges’ question that one could get
from his writings. I would like to give further emphasis to this critique by a
short digression concerning Karl Bühler’s notion of empractic speech, alluded
to by Lorenzen. Here is another allusion:

You can play ball without using words. In this prelinguistic activity we can
‘empractically’—as Bühler called it—define the use of simple words. [. . . ] I
trust you can easily imagine the sort of practical situations in which Leo would
utter imperative sentences like the following:
Throw!
Throw ball!
Mao! Throw ball!
or indicative sentences like:
Ball does fall
not: Mao does throw
[. . . ] The sentence forms that have been ‘empractically’ justified to this point
can be extended further in various ways before we introduce logical operators.
(Lorenzen, 1987, 139–141)

In his 1934 book, Theory of Language, Bühler put forth an extended version
of the ‘context principle’. It is ‘extended’ because Bühler’s notion of context
(Umfeld) is not merely linguistic (as it would be for, say, Frege), it is also non-
linguistic, in which case it is said to be either physical or behavioural; the latter
is called ‘empractic’. A typical case of empractic speech occurs when, sitting
in a Viennese café, I see a waiter coming towards me and utter to him: ‘einen
schwarzen’, and he comes back a minute later with a black coffee (Bühler,
1990, 178). One must be careful in delineating Bühler’s point here. In that
passage, Bühler argues that in uttering ‘einen schwarzen’ I do not mentally
go through a sentence such as ‘Please bring me a black coffee’.28 (This is a
point for which Wittgenstein is famous (Wittgenstein, 1997, §§ 19–20)). That
one can always construct such a sentence does not prove anything (Bühler,
1990, 178). He had already argued, with help of similar examples, that not
all language signs are ‘symbols’, some are ‘signals’ (Bühler, 1990, 122)—
in Wittgenstein’s words, they are a different tool in the tool-box of language
(Wittgenstein, 1997, § 11)—and that such forms of speech are neither impov-
erished, nor incomplete (Bühler, 1990, 122). (This is also a point made by
Wittgenstein (1997, § 18).) How could this relate to rules for Lorenzen games?
Let us, for the sake of the argument, grant these points made by Bühler (and
Wittgenstein). One will notice that they aim at showing that some utterances in

28Kevin Mulligan has shown in Mulligan (1997), that Bühler’s theory is indeed of great help to under-
stand properly the language-game of builders at the beginning of Philosophical Investigations (Wittgenstein,
1997, § 2).
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some contexts are not assertions of elliptic versions of declarative sentences—
although they might look like it—but of an altogether different nature from
assertions. But logical games are about assertions, so there is strictly noth-
ing that one would say about what is specific to ‘empractic’ forms of speech,
which do not count as assertions, that could count as grounding rules for logi-
cal games in a prelogical state. Furthermore, even if one recognizes the validity
of the Bühler–Wittgenstein point that, in uttering ‘einen schwarzen’ I do not
mentally go through a sentence such as ‘Please bring me a black coffee’, it
remains that such uses of language can be seen as parasitic, because they rely
on more fundamental ones such as the use of declarative sentences. Indeed it
is not clear how one could claim that the use of ‘einen schwarzen’ as ‘signal’
could stand on its own, without presupposing a convention for it, which was
already established with help of assertions. In these conditions, can the con-
vention of shaking one’s head really be said to be primary, i.e., can it be used
as the ground for the logical meaning or use of ¬? Lorenzen’s idea of found-
ing his game rules on an hypothetical prelogical or even preverbal state looks
dangerously like a hysteron proteron.

Of course, these remarks do not settle the debate but, as Hodges said, each
attempt at answering his question needs its own ‘deconstruction’—to avoid the
superfluous reference to Derrida: a simple critical examination—and Lorenzen’s
attempt at a ‘foundation’ in the life-world, with help of Bühler, does not appear
a very promising way to pass that test. Before leaving the issue, a brief remark
about logical monism. I have given reasons for being sceptical of Lorenzen’s
monism, but this is, again, not an argument against his games, only against
his philosophy. Indeed, recent work on Lorenzen games has moved into this
direction: Shahid Rahman and his collaborators29 has shown that one could
keep, on the one hand, the particle rules invariant and vary the structural rules,
on the other, and obtain a formalisation of numerous known logics. This is
known in the literature as the ‘Dosen principle’. Alternatively, one may sim-
ply introduce new connectives, as one does in relevance or in linear logic; the
principle here is sometimes known as ‘Girard’s principle’.30 The distinction
between ‘particle’ and ‘structural’ rules thus allows one to generate new log-
ics by systematic variation and combination of both types of rules. One can
thus see that, pace Lorenzen, the dialogical approach provides a framework for
logical pluralism.31

∗

29See, e.g., the papers collected in Rückert (2007), as well as Rahman and Keiff (2005).
30These two principles were framed in Rahman and Rückert (2001), see also Rahman and Keiff (2005,
Section 1).
31Logical pluralism is already advocated in Rahman and Keiff (2005) and (Rückert, 2001, 2007). For an-
other recent plea for logical pluralism, which is not from the standpoint of game semantics, see Beall and
Restall (2005).
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As Hodges also said: “If games don’t occupy quite the roles that Lorenzen
and Hintikka have sometimes claimed for them, then it behoves us to try to
find what roles they do occupy” (Hodges, 2001, 25). Consequently, I shall now
propose another answer (thus incurring the risk of a ‘deconstruction’) or at least
suggest what a proper answer might look like. I shall get to my answer first by
a brief historical detour, taking my cue from some other things Lorenzen said.

In his paper ‘Logik and Agon’ (Lorenzen, 1960, 187), as well as in a num-
ber of other places,32 Lorenzen referred en passant to the practice of refutation
or ‘dialectics’ in Ancient Greece as both the original motivation for the devel-
opment of logic and as a source for dialogical logic. This suggestion, which
looks merely like a rhetorical flourish, was not, as far as I know, followed by
the scholarly investigation that it clearly deserves.33 At all events, one should
merely recall here a few facts. The Ancient Greeks had indeed developed a
variety of sophisticated forms of question–answer dialogues in medical, le-
gal, political, scientific and philosophical contexts. In philosophy, the Socratic
method is well-known from Plato’s dialogues, but ‘dialectics’ was already de-
veloped and used by Eleatic philosophers (e.g., Parmenides and Zeno) and the
Sophists prior to Socrates. A set of rules was also described later by Aristo-
tle in Book VIII of the Topics. In one particularly well-known variant, which
fits Zeno’s arguments, a designated proponent had to defend a given thesis
ϕ, and the opponent’s task was to lead the proponent to admit successively a
number of claims ψ1, ψ2, . . . , ψi from which one could then force the pro-
ponent into an elenchus, i.e., to derive ¬ϕ and contradict himself. The point
is thus to refute ϕ by showing that it leads to a contradiction (or to an absur-
dity, or to a plainly false statement, in other variants). Assuming the principle
of non-contradiction, one can devise an indirect proof: for any assertion ϕ, if
propounding ¬ϕ leads to a contradiction, then ϕ must be true. This method
was used and the principle asserted, e.g., by Gorgias, well before Socrates and
Plato.

Now, why would such disputes take place? There seems to be a natural
answer to this, which is already stated in Aristotle’s definition of ‘dialectics’
in Topics, I, § 10 as a dispute concerning assertions not known to be true or
necessary—or as they were called, hypotheses. Assertions can be made that
are directly verified or that are at least verifiable in principle. But in the case of
metaphysical-cosmological truths or moral truths, as well as in mathematics,
no such direct verification is even in principle possible. To take only one basic
mathematical example, the observation that there are prime numbers spread

32E.g., Kamlah and Lorenzen (1984, 142) and Lorenzen (1987, 78).
33Indeed, numerous received views about the origins of logic are to be cast into doubt, and this should
provide further grist to Lorenzen’s mill. A programmatic presentation will be found in B. Castelnérac and
M. Marion, “‘Presocratic” philosophy and the Dialogical Origins of Logic’, to appear.
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throughout the natural number series as far as one can tell leads naturally to
the question of their infinity, but the assertion ‘there exists an infinity of prime
numbers’ is not verifiable by sifting through that infinite series, e.g., with help
of the sieve of Eratosthenes. But one could ascertain it by use of an indirect
proof, as Euclid famously did.34 In the case of Eleatic philosophy, the situation
was rendered even more acute by the proscription of appeals to verification
by the senses (probably dictated by the wish to refute Heraclitus); thus, simply
walking from one point to another could not count for an Eleatic as a refutation
of Zeno’s arguments against the reality of motion. (In Lorenzen’s terms, Eleatic
philosophers would only agree to play ‘formal games’.) The point of playing
these early forms of logical games was obviously to try and sort out good from
bad assertions. If the proponent of ϕ was publicly driven into an elenchus,
then ϕ would be dropped but if he successfully defended it, the result would
not merely be that his skills would be admired by all present, it would also
entitle them to adopt ϕ for themselves.35 So, for example, assertions such as
‘the “one” is indivisible’, became accepted as true, while the hypothesis that
the diagonal of a square is commensurable with its side was found to lead to a
contradiction and dropped.

There is a lot more to say here, one could have included as forerunners the
mediaeval practice on obligationes.36 One should note that, pace Dingler and
Lorenzen, these dialectical games were developed and used by the Greeks in
very sophisticated, specialized debating contexts (this is even more obvious for
obligationes); they cannot be said to have emerged from the life-world.37 At
all events, my point is merely to indicate that Greek dialectics already contain
elements of an answer to Hodges’ question. These elements can be system-
atized and given a more general foundation in the philosophy of language using
the theory of assertion developed in the chapter on ‘Assertion’ in Sir Michael
Dummetts’ Frege; Philosophy of Language (Dummett, 1981, Chapter 10) and
in Robert Brandom’s paper on ‘Asserting’ (Brandom, 1983). I shall not sum-
marize these here, but simply extract what seems to me the central point of
the Dummett–Brandom theory, within the context of this paper. The key idea
is that we act on assertions and that for this very reason they better be not
just true but be backed up with some justification. Of course, some are directly
verifiable from the context but the majority of our assertions aren’t. However

34One should not forget here the wealth of arguments provided by Arpad Szabo in his controversial study
The Beginnings of Greek Mathematics, devised to support the claim that Greek mathematics “grew out of
the more ancient subject of dialectic” (Szabo, 1978, 245).
35The democratic nature of these dialogues was first recognized by British radicals in the nineteenth-century,
George Grote and Henry Sidgwick. See, e.g., Mill (1991, 50).
36See Yrjönsuuri (1994, 11) and the recent study (Duthil Novaes, 2007, Part 3), which does for obligationes
what should be done for Greek dialectics.
37Strangely enough, there are textual indications that Lorenzen also believed this, e.g., at Lorenzen
(1987, 85).
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that does not mean that assertions cannot be made on no basis whatever, only
that they might require justification. According to Dummett:

we do not of course learn to make statements on no basis whatever, and, if we
did, such utterances would not constitute assertions [. . . ], because there would
not be such thing as acting on such statements. The process of learning to make
assertions, and to understand those of others, involves learning what grounds,
short of conclusive grounds, are regarded as justifying the making of an asser-
tion, and learning also the procedure of asking for, and giving, the grounds on
which an assertion is made. (Dummett, 1981, 355)

Robert Brandom also views expressing claims as “bringing them into the game
of giving and asking for reasons” (Brandom, 2000, 57) and he has extended this
analysis of assertions by introducing a distinction between the ‘commitments’
which a speaker takes on explicitly by making an assertion or by assenting to
someone else claim, and the commitments a speaker is ‘entitled’ to.38 Thus,
according to Brandom,

In asserting a claim one not only authorizes further assertions, but commits one-
self to vindicate the original claim, showing that one is entitled to make it. Failure
to defend one’s entitlement to an assertion voids its social significance as infer-
ential warrant for further assertions. It is only assertions one is entitled to make
that can serve to entitle others to its inferential consequences. Endorsement is
empty unless the commitment can be defended. (Brandom, 1983, 641)

Brandom on (Sellars on) Socratic method is also worth quoting in light of my
above remarks about Greek dialectics:

Socratic method is a way of bringing our practices under rational control by ex-
pressing them explicitly in a form in which they can be confronted with objec-
tions and alternatives, a form in which they can be exhibited as the conclusions of
inferences seeking to justify them on the basis of premises advanced as reasons,
and as premises in further inferences exploring the consequences of accepting
them. [. . . ]. Expressing [claims] is bringing them into the game of giving and
asking for reasons [. . . ] (Brandom, 2000, 56–57)

The central point of the Dummett–Brandom theory of assertions can thus
be stated as follows: an act of asserting a statement brings with it a commit-
ment to defend the assertion, if challenged, so to make an assertion is to make
a move in a game, in which one is asked for and must provide grounds or
reasons justifying the making of that assertion. In other words, the ‘game of
asking for and giving reasons’ is embedded in the very nature of assertions.
The notion of ‘game’ used here can be given precise logical content in terms
of the dialogue games first proposed by Lorenzen. My point is thus that the
Dummett–Brandom theory of assertions provides conceptual foundations for

38There are other innovations, such as the introduction of perspectival commitment stores or ‘deontic score-
boards’, into which we need not go here.
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game semantics of the style first laid out by Lorenzen and, conversely, that
game semantics can provide a logical precisification of this theory.

Of course, this proposal entails a considerable deviation for the projects
of both Dummett and Brandom. Very briefly, in the former case, one may
add, on the subject of the differences between Dummett–Prawitz semantics
and dialogical semantics,39 that, in the end, the particle rules of dialogical se-
mantics give only, in Gentzen’s terminology, elimination rules for the con-
nectives; a wrong-headed approach according to Dummett, who emphasizes,
following Gentzen and Prawitz, introduction rules (Dummett, 1981, 362, 1991,
280). As for Brandom, he couches indeed his argument for ‘inferentialism’ in
terms of what he calls ‘Dummett’s Model’ (Brandom, 1984, 116–118, 2000,
61–63), but he wishes in the end to do away with the requisite of ‘harmony’
(Brandom, 2000, 69–76), which means to do away with the inversion princi-
ple or admissibility, that are fundamental to, respectively, Dummett–Prawitz
proof-theoretical semantics and to Lorenzen-style dialogical semantics.

Nevertheless, the avenue for this kindred proposal seems open, as, to speak
in Brandom’s jargon, it is as a matter of fact through such games that we
make our reasons explicit. Indeed, ‘dialogical’ semantics can be reformulated
in terms of the ‘game of giving and asking for reasons’, so that ‘to attack’ be-
comes ‘to ask for reasons’ and ‘to defend’ becomes ‘to give reasons’.40 The
point is to win the game, which is the same as succeeding in ‘making explicit’
reasons for a given assertion. By playing these games against each other, we
entitle ourselves to some assertions, as if, for example, we would play chess
games in order to find out which claims we are entitled to. But, here ‘to make
explicit’ must mean ‘to construct’: the ultimate aim is, through reflection on the
games thus played, to construct a full justification, i.e., to provide ourselves,
whenever possible, with constructive winning strategies.

The idea of providing an answer to Hodges’ question along those lines
seems so obvious, once stated, that one wonders if anybody had seen it before.
A quick search of the literature shows, that Friedrich Kambartel, once member
of the Erlangen School, had already made a very similar proposal more than 25
years ago, by providing an account of the particle rules of Lorenzen in terms
of games of assertions (here in a paper with Hans-Julius Schneider):41

The need for assertions arises in situations where language competence is de-
veloped to the degree that action depends on correctly performed elementary
statements, and where the participants do not agree on the correctness of such

39About which, see Schroeder-Heister (2007, 2008).
40Incidentally, one should notice here that in the Erlangen school attacks are also considered as ‘rights’ and
defences as ‘duties’ (Lorenz, 1981, 120); we are thus not far from Brandom’s normative vocabulary since
equivalences obtain between ‘right to attack’ and ‘asking for reasons’ on the one hand and ‘duty to defend’
and ‘providing reasons’ on the other.
41See also Kambartel (1979, 1981).
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a performance. In this case one can either give up common orientation as pro-
vided by elementary statements, or one can try to overcome private opinions by
reaching a new level of transsubjectivity, by argumentation. With argumentation
we mean here, quite simply, all attempts to settle differences on the basis of pre-
viously or newly established agreements. [. . . ] Someone who now not only just
states something, but asserts what he is stating, must be prepared to establish
by argumentation a transsubjective agreement that his statement has been made
correctly. Assertions are, on our everyday and scientific life, one of the language
institutions, whereby we can rely on others in our orientations. [. . . ] Trivially the
reliability of assertions is undermined if people make assertions without hav-
ing the corresponding justifications at hand. (Kambartel and Schneider, 1981,
169–170)

So, Kambartel formulated Lorenzen’s particle rule in terms of attempting to
reach intersubjective agreement about the validity of assertions that are needed
for common orientation (Kambartel, 1979, 201–203, 1981, 406–408; Kambar-
tel and Schneider, 1981, Section 7). This corresponds essentially to my pro-
posal.42 However, would ‘assertion games’ simply look like Lorenzen games,
with another spin? This is a question that will have to be dealt with in another
paper.43
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Abstract It is argued that game-theoretic explanations of human actions make implausible
epistemological assumptions. A logical analysis of game-theoretic explanations
shows that they do not conform to the belief-desire framework of action expla-
nation. Epistemic characterization theorems (specifying sufficient conditions for
game-theoretic solution concepts to obtain) are argued to be the canonical way
to make game theory conform to that framework. The belief formation practices
implicit in epistemic characterization theorems, however, disregard all informa-
tion about players except what can be found in the game itself. Such a practice
of belief formation is implausible.

The main claim of this paper is that the epistemological presuppositions
non-cooperative game theory makes about players of games are unacceptably
narrow. Here, with ‘epistemological’ I do not intend to refer to the assumptions
about the players’ beliefs (about the game and about each others’ rationality)
that may or may not be sufficient to ensure that the outcome of the game sat-
isfies some solution concept.1 Rather, I use the term ‘epistemological’ in its
philosophical sense to refer to those aspects of the players that have to do with
the way in which they use evidence to form beliefs. The claim is then that
game theory makes unacceptable assumptions about how players form beliefs
about their opponents’ prospective choice of action. Here, I do not intend to
refer to the assumptions about how the players will or would change their be-
liefs during the game on the basis of information about the behavior of their

∗I am grateful to Johan van Benthem and Martin Stokhof for many inspiring discussions concerning the
topic of this paper, and to the participants of the 2004 Prague colloquium on Logic, Games, and Philosophy:
Foundational Perspectives for fruitful debate. Thanks, too, to two anonymous referees.
1The so-called ‘epistemic characterization’ results are, for instance, surveyed in (Battigalli and Bonanno,
1999).



28 On the Narrow Epistemology of Game-Theoretic Agents

opponents.2 Rather, I wish to consider on the basis of what sorts of informa-
tion the players form their beliefs and their belief revision policies. The claim
is then that the evidence that the players are assumed to use to form their be-
liefs as well as their belief revision policies are of a peculiarly restricted and
exclusive kind.

The structure of the paper is the following. First, I present a logical analy-
sis of rational choice-theoretic and game-theoretic explanations of actions. It
is then noted that game-theoretic explanations give rise to questions about the
role of the beliefs of players in action explanation. I argue that epistemic char-
acterization theorems are the only means to answer these questions adequately.
I conclude by showing that it is precisely this kind of theorems that reveal the
epistemological problems of game-theoretic agents. Throughout the paper, ‘ra-
tional choice’ theory is the theory of parametric interaction, of ‘games against
nature’, and ‘game theory’ is the theory of strategic interaction.

Some preliminary logical analysis first. Suppose a rational choice theorist
explains the action of some agent as maximizing expected utility. He—or, of
course, she—would say something like:

Agent S maximizes his expected utility in choice situation C by performing
action a.

What precisely does he say? Not aspiring completeness of analysis here, I
distinguish an ‘existential’ reading from a ‘universal’ one. According to the
existential reading, the theorist claims the existence of some rational choice-
theoretic model D of choice situation C. He claims that agent S was the owner
of some utility function u and some probability function P, and that S solved
the maximization problem corresponding to u and P by performing action a.3

Or formally,
∃D∃u∃P (RCT(D,C)∧

Ut(S ,C, u) ∧ VNM(u)∧
Prob(S ,C,P) ∧ Kolm(P)∧
Perf(S ,C, a)∧
Max(D, u,P, a)),

with notation as in Table 2.1. According to the universal reading, no existence
claims about models are being made. Only the hypothetical claim is being
made that if some rational choice-theoretic model D (with utility function u and
probability function P) is a model of C, then action a solves the corresponding
maximization problem. Or formally,

2The so-called ‘belief revision’ policies are studied in, for instance, Stalnaker (1996, 1998).
3A distinction can be made between available actions and actions the agent knows to be available. But in
order for a rational choice-theoretic or game-theoretic model to function properly, these two sets of actions
have to coincide. I argued for this claim in de Bruin (2004). Cf., e.g., Hintikka (1996, 214–215).
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Table 2.1: Abbreviations

RCT(D,C) D is a rational choice-theoretic model for C
GT(Γ,C) Γ is a game that models C
Ut(S ,C, u) u is S ’s utility function in C
VNM(u) u satisfies the von Neumann and Morgenstern axioms
Prob(S ,C,P) P is S ’s expectations in C
Kolm(P) P satisfies the Kolmogorov axioms
Perf(S ,C, a) S performed a in C
Max(D, u,P, a) a solves the maximization problem of u and P in D
Nash(Γ, u, a) a is part of a Nash equilibrium of Γ with utility function u

∀D∀u∀P ((RCT(D,C)∧
Ut(S ,C, u) ∧ VNM(u)∧
Prob(S ,C,P) ∧ Kolm(P)∧
Perf(S ,C, a))→ Max(D, u,P, a)).

I believe that the universal reading is hardly acceptable as a representation
of what a rational choice theorist does in explaining human action. It entails
that agents maximize their expected utility even in cases in which they are
motivated by completely different kinds of reasons. In cases where they fail
to have von Neumann and Morgenstern utilities and Kolmogorov probabilities
they make the antecedent vacuously true. In other words, the universal reading
makes the explanatory task of the theorist too easy. Although I will disregard
the universal reading in the sequel, the arguments presented in this paper would
work mutatis mutandis for the universal reading as well.

In a similar way we easily obtain a logical analysis of game-theoretic expla-
nations. Suppose a game-theorist describes an action of some agent in some
choice situation thus:

Agent S performs action a in choice situation C according to game theory with
the solution concept Nash.

Again an existential and a universal reading can be distinguished, and again
the universal reading is too weak to be interesting. According to the existential
reading, the game-theorist claims the existence of some game Γ that models
C, and of some utility function u of which agent S is the owner. Mentioning
the utility function separately is a bit superfluous here, as strictly speaking it is
already contained in the game. But I will stick to this redundancy to make the
comparison between rational choice theory and game theory more transparent.
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Further, apart from the triviality that S really carried out action a, the theorist
claims that it was part of a Nash equilibrium of Γ. Or formally,

∃Γ∃u (GT(Γ,C)∧
Ut(S ,C, u) ∧ VNM(u)∧
Perf(S ,C, a)∧
Nash(Γ, u, a)).

2.1 Game-theoretic agents
Assuming the belief-desire framework of action explanation, a clear differ-

ence between rational choice and game-theoretic explanations of action emer-
ges.4 Rational choice-theoretic explanations provide beliefs and desires. The
beliefs are the probability measures P; the desires, the utility functions u. Not
so for game-theoretic explanations. Quite clearly we learn something about
the desires of the players because the existence of some von Neumann and
Morgenstern utility function u is claimed by the game-theorist. But we are not
informed about the beliefs of the players. The question is whether this is a
problem. Let me survey some possible answers.

(i) The theorist might admit that indeed it would be nice if beliefs could be
specified. But, not having the means to accomplish that, we should be happy
that in the form of the utility structure we at least have something. This is
unacceptable because very often we do have information about beliefs.

(ii) The theorist might say that no extra reasons are needed because the situ-
ation he describes is one in which the players blunder into a Nash equilibrium.
This is unacceptable unless all game-theoretic aspirations are given up. What
would be the function of mentioning the solution concept if it only accidentally
fits the outcome?

(iii) One may say that, apart from his utility function, the fact that his ac-
tion is a Nash action forms a reason for the agent to perform it. But either that
is silly, or it is elliptic for the expression of some propositional attitude. It is
silly (and unacceptable) if taken literally, because the sole fact that something
is a Nash action cannot play a motivational role for the agent. This is so be-
cause motivations require propositional attitudes (desires to change the world
in certain respects, beliefs about what the world looks like in certain respects).
It is elliptic (and acceptable if ellipsis be removed adequately) if one takes it
to express that the agent believed that playing Nash is the best way to satisfy
his desires, or something like that. But this would have to be made more pre-
cise, and I will make it more precise below using epistemic characterization
theorems.

4Other ways of action explanation would be, for instance, an ‘existential phenomenology’ à la Merleau-
Ponty (see Merleau-Ponty, 1945) or a method based on neurophysiology (cf. Bennett and Hacker, 2003).
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(iv) The theorist might claim the existence of some dynamics and refer to
some theorem from evolutionary game theory relating this dynamics to the
Nash equilibrium. Although more sophisticated, this is again either silly, or
elliptic. It is silly (and unacceptable) if taken literally, because the sole fact
that some dynamics obtains cannot play a motivational role for the agent as
motivations require propositional attitudes. It is elliptic (and still unacceptable)
if one takes it to express that the agent believed that this dynamics obtained.

(v) The theorist would claim that evolution programs agents and that there-
fore no reference to reasons is needed. Agents as automata do not have reasons.
They only have ‘subpropositional’ dispositions. This is consistent. But it is un-
acceptable if we wish to explain actions in terms of the reasons of the agents.
One would have to doubt whether it is still actions that one explains. The dif-
ference between actions, reflexes, and so forth blurs.

(vi) The theorist could simply pick some probability distribution over the
actions of S ’s opponents and make sure that action a maximizes expected util-
ity (where the utility function is the one of which existence is being claimed).
This is unacceptable because it is entirely ad hoc. All game-theoretic aspira-
tions would be given up because the mentioning of an ad hoc probability distri-
bution would not show why the Nash equilibrium (rather than another solution
concept) figured in the explanation.

(vii) The theorist could pick some probability distribution over the actions
of S ’s opponents and make sure that action a maximizes expected utility. If
in addition the theorist could show that this probability distribution is not ad
hoc, he would have given additional reasons for S ’s performing a in C. This is
acceptable, but it has to be made more precise, and I will make it more precise
below using epistemic characterization theorems.

(viii) The idea now is that a game-theorist who explains some action as
an action that is part of a Nash equilibrium makes implicit reference to some
beliefs of the players that are not ad hoc. How to avoid being ad hoc? By
requiring some structural relation between the solution concept and the implicit
beliefs.

A very obvious candidate for such a structural relation is presented by epis-
temic characterization theorems. They provide sufficient conditions for a
solution concept to obtain. Epistemic characterization theorems are implica-
tions. The antecedent specifies conditions on the beliefs and desires of the play-
ers; the consequent states some conditions about the actions and the solution
concept. For instance, the epistemic characterization of the Nash equilibrium
is:

If (i) all players are rational, (ii) all players know their own utility function, and
(iii) all players know what their opponents are going to play, then they play a
Nash equilibrium.
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Another well known example characterizes common knowledge of rationality
and utility structure as sufficient for iterated strict dominance (in two-person
normal form games) and backward induction (in any extensive form game).5

The usual way to think about such theorems is that they can be used by the
game-theorist to justify the use of some solution concept in a specific explana-
tion. The theorist may defend, for example, his use of the concept of iterated
strict dominance to explain the behavior of some agent by stating that among
other things common knowledge of rationality and utility structure obtains in
the choice situation. What I suggest is that game-theoretic explanations should
be read in general as making such claims. Whenever a game-theorist uses some
solution concept, he should be taken to make the claim that the epistemic con-
ditions of the corresponding characterization theorem obtain. My argument is
that there is no alternative way to distill from a game-theoretic explanation the
right kind of reasons for the agents in a uniform way. All alternatives I dis-
cussed have some problems. Either something is wrong with the motivational
force of the alleged reasons (the issue about the propositional attitude), or they
are ad hoc and fail to account for the necessity of using a solution concept in
the first place.

It is important to point out that it is feasible or consistent to require to use
epistemic characterization results as the canonical way to the beliefs of the
players. The most elegant way uses characterization theorems that are spec-
ified in terms of Stalnaker’s ‘game models.’6 To use the example of iterated
strict dominance, it cannot only be shown that common knowledge of ratio-
nality implies iterated strict dominance, but also that every outcome of iterated
strict dominance of any game can result in a situation of common knowledge of
rationality. In other words, given an arbitrary outcome of iterated strict domi-
nance, the ‘game models’ approach enables us to sketch an epistemic setting in
which (i) rationality and utility structure are common knowledge, and (ii) this
very outcome is played. It is this converse direction that shows that the game-
theorist is not committed to something infeasible. If he explains an action as,
for instance, iteratively undominated, there is indeed a game playing situation
in which there is common knowledge of rationality. To take the epistemic char-
acterization results as the suppliers of beliefs then is a coherent assumption.

To sum up, the first claim is that the epistemic characterization theorems
are the canonical way to the beliefs of the players in game-theoretic action
explanation.

5The epistemic characterization of the Nash equilibrium is due to Aumann and Brandenburger (1995).
Iterated strict dominance was dealt with, in various degrees of formality, by Bernheim (1984), Pearce (1984),
and Spohn (1982). The locus classicus for backward induction is Aumann (1995). I am a bit sloppy in using
common knowledge instead of common belief. See de Bruin (2004) for details.
6First introduced in Stalnaker (1996).
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2.2 Epistemology
Game-theorists explain actions in terms of reasons. As reasons for some

action of some agent they give von Neumann and Morgenstern utility func-
tions and Kolmogorov probability measures. The former are given explicitly in
the game-theoretic representation of the agent’s choice situation. The latter are
implicit, but can be obtained via epistemic characterization results. The log-
ical analysis of game-theoretic explanations contains the element Ut(S ,C, u)
requiring that the utility function of which existence is claimed is in fact S ’s
utility function in choice situation C; he has to be the owner of u so to speak.
Of course, the same has to be true of the probability distribution implicitly
referred to, and, of course, the action that has to be explained has to be a solu-
tion to the corresponding maximization problem. The agent has to maximize
expected utility. Game-theoretic explanations and rational choice-theoretic ex-
planations do not seem to be different then in principle. Both involve utility
and probability, both involve maximization, and both involve the claims that
the utility is the agent’s utility, that the probability is the agent’s probability,
and that the agent solves a maximization problem. But these similarities are
very deceptive.

Rational choice theorists and game-theorists, although they do need to
bother addressing the ownership issue of the utility functions (the claim
Ut(S ,C, u), that is), do not need to explain such things as why S has the
preferences he has (for instance by referring to S ’s education, or bourgeois
background) or whether they are reasonable or not. Now compare in the same
way rational choice theorists and game-theorists with respect to the agent’s
beliefs P. Rational choice theorists as well as game-theorists need to bother
addressing the ownership of the probabilistic expectations (the claim Prob
(S ,C,P)). Rational choice theorists do not need to explain such things as why
S has the beliefs he has (for instance by referring to S ’s practices of belief
formation, his critical or narrow mind) or whether these beliefs are reasonable.
But game-theorists do need to bother thinking about these questions. In fact,
referring to epistemic characterization results to explain the very probability
measure P is to answer these questions. The epistemic characterization results
say that S has formed his beliefs on the basis of inspection of the game struc-
ture and on the basis of rationality considerations. And on the basis of nothing
else. Incidentally, this idea can be traced back to von Neumann and Morgen-
stern’s Theory of Games and Economic Behavior:

Every participant can determine the variables which describe his own actions
but not those of the others. Nevertheless those ‘alien’ variables cannot, from his
point of view, be described by statistical assumptions. This is because the others
are guided, just as he himself, by rational principles.7

7von Neumann and Morgenstern (1944, 11).
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To sum up, the second claim is that whenever the game theorist explains
the behavior of some agent in truly game-theoretic terms, he is implicitly com-
mitted to the view that the agent, to form the beliefs necessary for his strate-
gic deliberation, disregards all available information except what involves the
game structure and the rationality of the players. Epistemic characterization
theorems make this explicit.8

2.3 Narrowness
Yet the practice of discarding so much available information is an implausi-

ble, or simply bad, way of belief formation. It forbids players a large spectrum
of possible evidence to base their beliefs on. It is not adequate as a description
of how actual human beings reason, and it is even more inadequate as a the-
ory of knowledge or scientific methodology. I will structure the argument by
distinguishing these two cases, real and ideal agents.

The game-theorist’s call to allow only truly game-theoretic information in-
stead of exogenous or statistical data clearly puts a restriction on the possible
sources of evidence players are allowed to invoke as reasons for their beliefs.
The appeal of this call can be explained by looking at the abstract character
of game-theoretic modeling. Indeed, if we abstract away from everything ex-
cept the number of players, their possible actions, and their preferences, then
there is not much exogenous or statistical information to be found. The game-
theorist will not deny that the strategic choice situations he tries to model are
concrete, and that real agents can actually use a large spectrum of concrete data
for belief formation. Of course, all strategic choice situations game theory is
concerned with are concrete and all game-theoretic models abstract. Abstrac-
tion is what happens everywhere in science, but nowhere in science too high a
level of abstraction is good. The above logical analysis of game-theoretic ex-
planations and the considerations about the specification of reasons for actions
allow us to make precise statements about what it exactly is that gets lost in
abstraction. By abstracting away from everything except the possible actions,
the preferences, and the number of players, a game-theoretic model leaves un-
modeled much of the evidence or data or information that real players will
actually use to form beliefs about their opponents. This would not be a prob-
lem if, for instance, the origin of the beliefs did not matter. But, as we have
seen, the origin of the beliefs matters crucially because without specification

8The epistemic characterization of the Nash equilibrium allows for exogenous information. The antecedent
requires knowledge of the actions of the opponents, and it is not excluded that this knowledge is formed on
the basis of, for instance, statistical information. But this observation does not save the Nash equilibrium,
because it is now only right to use the solution concept in cases in which the players have knowledge, as
opposed to mere and possibly mistaken belief, about their opponents. And the role of knowledge, as opposed
to belief, in explanations of actions is highly disputed. See, for more details, de Bruin (2004).
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of the origin of the beliefs in terms of the epistemic characterization results
game-theoretic explanations of human actions do not provide the reasons for
actions in a systematic manner.

Let us briefly take stock. I started from the assumption that game-theoretic
explanations have to conform to the belief-desire framework. The desires are
clear. What about the beliefs? There are many ways to sneak in beliefs, but I
showed that only via epistemic characterization results a systematic commit-
ment to particular beliefs can be obtained. That is, I have argued that if you start
from the assumption that game-theoretic explanations have to conform to the
belief-desire framework, then there is no way, except by using epistemic char-
acterization results, to get the beliefs the theorist is committed to ascribe to the
players. The point now is that this entails a very specific origin of the beliefs.
For instance for iterated strict dominance: common knowledge of rationality
and nothing else.

As long as it stays within the realm of the game-theoretical, the specifica-
tion of the origin of the beliefs can only be phrased in terms of those aspects of
the strategic choice situation that survive the abstraction process. Clearly this
results in a distorted model of belief formation. Whereas there is no hope, then,
of dealing with belief formation in game theory in a way that does justice to
the concreteness of the evidence, it could still be the case that what game the-
ory assumes about belief formation is plausible from the perspective of some
theory of knowledge (for ‘ideal’ epistemic agents, so to speak). In fact, a rather
strange sort of theory would be the result: an interpretation of game theory
as descriptive (ex post or ex ante) of the actions of agents, but as prescriptive
about their beliefs. But this sounds too far fetched.

A feature that distinguishes knowledge from belief is that knowledge is nec-
essarily true, and belief not. Another, that knowledge meets very high evi-
dential standards, and belief not. This is the point of a hierarchy of ‘Gettier
examples’, but not dependent on such examples.9 This does not mean, how-
ever, that anyone can believe anything without further qualifications. Senseless
beliefs are no beliefs. If you say that you believe something, then you have
to be able to give an answer to the question why you do so. In general people
will try to answer such a question by presenting the interlocutor with what they
think is good evidence for the belief. All in all, beliefs need reasons.

Applied to game theory, how should players (players who are ideal from
the view point of some theory of knowledge) form beliefs? They should try to
inspect their strategic choice situation in the most penetrating way possible; in
particular, they should try to get as much information about their opponents
as possible. They should be interested to hear something about the tradition in

9Gettier (1963); and many articles along similar lines.
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which their opponents were raised or the training they have had. They should
try to determine the reliability of hearsay evidence and reported observations,
and to sort out how to weigh such evidence in relation to their own observa-
tions. If available, they should attempt to interpret statistical surveys and con-
sider other available exogenous data, and determine their relevance for their
purposes. And, of course, they should try to find out as much as possible about
the way their opponents try to form their beliefs. One thing, however, they
should not do: to disregard possible sources of information, to eschew sta-
tistical or exogenous data, to avoid going beyond what is immediate in the
situation, to be narrow-minded and uncritical.

To sum up, the third claim is that by denying players access to any infor-
mation except what is immediate from the game structure, game theory puts
forward an epistemological claim that is inadequate as a description of real
human beings, and implausible as a theory for epistemologically ideal agents.
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Abstract The aim of this paper is to investigate a very general problem of (radical) in-
terpretation in terms of a simple coordination game: the conformity game. We
show how, within our mathematical framework, the solution concept for the con-
formity game does indeed provide an algorithmic procedure facilitating triangu-
lation, in the sense of Davidson.

3.1 Introduction
Suppose that the robotic rovers I and II are conducting a joint operation on

a terrain about which nothing was known to their designer (say the units are
operating on Mars). Suppose further that communication among the units has
been lost and that the only way I and II have to restore it is to meet on some
location l, chosen from a finite set of possibilities equally accessible to both.
Assuming that any location is as good as any other, provided that I and II agree
on it, how could the robots reason and act so as to facilitate their meeting? That
is, how should they choose l?

We see situations of this sort as instantiations of interpretation problems.
After all, what I and II must do in order to restore communication is to (i)
attach a certain meaning to the representation they have of their environment,
(ii) form expectations about each other’s behaviour, and (iii) act accordingly.
More specifically, once the possible locations, say l1, . . . , lk, are identified,
given their common intention, agents must interpret each other relative to the
‘external world’—the environment in which they happen to operate—so as to
increase their chances of agreeing on the final choice of a location. Since I and
II do not share a language, in fact they cannot communicate, the problem they
face is one of radical interpretation.

At the same time, this situation is a clear example of strategic interaction:
what corresponds to the ‘rational’ or ‘commonsensical’ or even ‘logical’ or
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simply ‘best’ course of action for I depends on the course of action adopted
by II (and the other way round). This quite naturally suggests that game theory
might somehow provide us with precise and well-understood guidelines for the
mathematical solution of our problem. As will be shortly illustrated, however,
for the kind of strategic interaction that we shall be concerned with, the classi-
cal solution concepts studied in the theory of non-cooperative games are of no
use whatsoever.

The framework of Rationality-as-Conformity, recently introduced by Jeff
Paris and the present author (see Hosni and Paris, 2005; Hosni, 2005), attempts
to define, within an abstract mathematical setting, ‘rationality’ in situations
of strategic interaction of the sort mentioned above. It is the purpose of this
paper to illustrate how such a mathematical characterization of rationality can
be used to provide a solution concept for problems of (radical) interpretation,
whenever the latter is considered in terms of games of (pure) coordination.

The paper is organized as follows. First (Sections 3.1.2–3.1.4), we isolate
the fundamental aspects of radical interpretation problems in connection with
the interactive choice problem considered in the Rationality-as-Conformity
framework. Putting forward the intrinsic strategic nature of the problem of
radical interpretation leads us to formulate it mathematically in terms of the
conformity game, fully described in Section 3.2. Being a game of multiple
(indiscernible) Nash-equilibria, the conformity game is indeed a (pure) coor-
dination game and as such, it is generally regarded to be unsolvable within the
traditional game-theoretical framework of non-cooperative games. We discuss
in Section 3.2.1 the informal constraints that an adequate solution concept for
the conformity game should satisfy and move on towards formalising the so-
lution concept for the conformity game in Section 3.3. This is based on the
Minimum Ambiguity Reason, introduced in Honsi and Paris (2005) as part of
the Rationality-as-Conformity framework. We will then conclude by showing
that this solution concept indeed provides an algorithmic solution for estab-
lishing communication—triangulating—in problems of radical interpretation.

Radical interpretation helps in clarifying the issues and the assumptions un-
derlying a basic characterization of ‘rationality’ in communicationless scenar-
ios yet without immediately providing any effective procedure to achieve it.
Pure coordination games, on the other hand, help framing a variety of possible
solution concepts based on saliency, which however seem to lack of a general
formal structure allowing us to evaluate their ‘rational’ underpinnings. This
paper attempts to unify the fundamental aspects of both frameworks by means
of the mathematical abstraction provided by Rationality-as-Conformity.

Many connections between (linguistic) interpretation and (coordination)
games have been explored, from the classic investigation by Lewis (1969) to
the game-theoretic accounts of linguistic interpretation of Parikh (2000) and
van Rooy (2004). Though Lewis considers the ‘use of language’ as a particular
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kind of ‘coordination problem’ (Lewis, 1969), the present author has no knowl-
edge of any attempt to relate mathematically the structure of pure coordination
games with that of radical interpretation.

3.1.1 Why rationality-as-conformity?
As illustrated at length in Honsi and Paris (2005), we understand ‘confor-

mity’ as the adoption of a choice process facilitating the selection of the same
possible world (say a location l in the robotic rover example above) as another
like-minded yet otherwise inaccessible agent.

Within frameworks of this sort, solid arguments can be put forward support-
ing the view that commonsensical agents not only happen to be generally able
to conform, they should indeed aim at conforming if they are to be rational.

1. The members of a society have a natural inclination to coordinate suc-
cessfully. This is a conclusion of the numerous empirical investigations
that have been carried out during the last decades in the area of behav-
ioural game theory, following Schelling’s early intuitions about coordi-
nation games (Schelling, 1960) (see e.g. Mehta et al., 1994; Camerer,
2003). The common pattern of those investigations puts forward that,
whenever, say, pairs of agents face a strategic choice problem in which
they have a joint motivation (intention) to coordinate their solutions, they
will be able to adopt certain kinds of choice processes facilitating this
coordination. In other words, there are reasons to believe that principles,
strategies and patterns of choice behaviour exist which, if adhered to,
will result in agents having generally better chances to coordinate (and
never strictly worse) as they would have, should they adopt random pat-
terns of behaviour.

2. Agents satisfying probabilistic ‘commonsense’ should end up assigning
similar degrees of belief. This is a consequence of a number of a con-
tributions in the area of subjective probability logic. In the normative
framework developed by Paris and Vencovská (1990, 2001) and Paris
(1994) a small number of so-called commonsense principles are iden-
tified and it is shown that, if adhered to, those principles uniquely and
completely determine any further assignment of probabilities, i.e. de-
grees of belief. This distribution of probabilities, the one with the largest
possible entropy, is provably the only one jointly consistent with the
(probabilistic) knowledge possessed by an agent and those principles.
Hence, similar agents, possessing similar knowledge bases and applying
the inference process identified with commonsense, all assign similar
degrees of belief to the as yet undecided sentences.
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3. ‘Rationality is a social trait. Only communicators have it.’ This is the
conclusion of Davidson (2001). The idea here is that a necessary
condition for rationality is an adequate apparatus for communication,
which in turn requires agents to be able to move from a condition of
mutual inaccessibility (no shared language), to a condition in which
communication is being enabled. This transition implies that agents are
attaching similar meanings to the publicly accessible causes of their
reciprocal choice behaviour. This aspect of Rationality-as-Conformity,
which Donald Davidson calls triangulation, and its underlying structure
are the main topic at focus in the rest of this paper.

3.1.2 Radical translation and the Principle
of Charity

Put roughly, a problem of radical translation is one in which one agent—a
linguist in the field—is trying to build up a ‘translation manual’ accounting for
the utterances of a native speaker of a language about which the linguist has no
knowledge whatsoever. This complete lack of information, together with the
fact that the two agents are assumed not to share a third language, make the
translation problem radical.

The radicalness of the situation induces Quine to observe that a hypotheti-
cal theory of radical translation should start by relating the native’s linguistic
behaviour to the one the translator would adopt, were she to be in the same
‘observable situation’ as the native.

In his classic example Quine, who was the first to introduce this problem in
connection with the translation of logical constants (Quine, 1960, 2), imagines
that the native speaker utters the expression GAVAGAI in correspondence of
a rabbit passing by, causing—possibly on repetitions of similar events—the
translator to conjecture that GAVAGAI translates into ‘rabbit’.

There are many subtleties connected with this example, none of which being
of particular interest for present purposes. Rather, two issues involved in the
radical translation exercise are relevant for our present discussion:

1. What is it, if anything, that justifies (epistemologically) the translator in
the above conjecture?

2. How far can the translator go in relying on this conjecture?

Those questions are clearly not unrelated. The former calls for the observation
that a linguist may just introspect and conclude that “as a native speaker of
English, I would utter RABBIT were that kind of animal to pass by”. This sub-
junctive is clearly grounded on the assumption that the linguist and the native
speaker, though lacking of a shared language, are nonetheless like-minded indi-
viduals and hence inclined to adopt similar linguistic behaviours under similar
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(observable or conceivable) circumstances. Elevated to the status of a norma-
tive maxim, this is known as the Principle of Charity.

Any reasonable understanding of this principle, of course, asks for a clar-
ification of what is meant by ‘similar linguistic behaviour’ as well as ‘simi-
lar observable (conceivable) circumstances’ and in the natural language case
these are by no means trivial clarifications to do and many criticisms to the
adoption of the principle seem to pivot on this difficulty (see e.g. Feldman,
1998; Wachbroit, 1987; McGinn, 1977 for the role of the principle in the ex-
planation of rationality, and Nozick, 1993, 152–158; Glock, 2003, 194–199 for
more forceful criticisms). It turns out, however, that in the abstract and simpli-
fied mathematical framework of Rationality-as-Conformity, correlated notions
can be defined rigorously and put to work in the formal characterisation of ra-
tional choice behaviour in the absence of communication or learnt conventions.

The second crucial feature of radical translation problems relates to their
fundamental indeterminacy. Quine argues that there cannot be a unique trans-
lation manual which the linguist in the field may be able to construct. Rather,
there must be a plurality of manuals, all equally acceptable, that is to say,
equally supported by the available evidence. The only attempt that the lin-
guist can do to reduce this indeterminacy is the application of the Principle
of Charity, leading her to discard all those possible translation choices that
will make the native utterances systematically wrong (or incoherent), by the
translator’s lights. After this ‘rational’ refinement, the choice of a translation
manual may simply be underdetermined by the empirical evidence available to
the translator.

That ‘rationality’ might not always lead to a unique choice (without ran-
domisation) is a feature captured by the Rationality-of-Conformity framework
as well. Indeed, some problems might just be too hard to admit of a unique
solution.

3.1.3 Radical interpretation and triangulation
The issues of radical translation and charity are taken a step further by

Davidson’s investigations on radical interpretation. For the purposes of the
present discussion, the main points of departure of the situation described in
the radical interpretation problem with respect to the one discussed in con-
nection with radical translation can be outlined as follows. Davidson does not
assume that agents are native speakers of distinct languages. He rather assumes
that they do not have a shared language whatsoever and that their goal consists
in establishing communication.

The Principle of Charity is thus sharpened and indeed assumed to be a nec-
essary condition for the manifestation of rational behaviour tout court. More-
over, the interpretation problem is grounded on a fundamental symmetry which
need not hold in the translation case, that is that both agents share a common
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intention to communicate: the interpreter wants to understand the interpretee
who, in turn, wants to be understood by the interpreter.

Differences in the formulation of the problem lead to differences in the
proposed solutions. Quine’s major problem is that of locating the common
cause of the linguistic behaviour, which he identifies in the ‘stimulus-meaning’.
Davidson overcomes many of the difficulties related to this concept by intro-
ducing the metaphor of triangulation. While Davidson takes charity as a pre-
sumption of rationality upon which the possibility of interpretation and mu-
tual understanding themselves rest, he acknowledges that it can only provide
a ‘negative’ contribution, namely by guiding the interpreter towards discard-
ing possible interpretations which would systematically make the interpretee
wrong or incoherent to her own lights. Triangulation, on the other hand, is
the recognition that the similarities observed in each other’s linguistic behav-
iour find their common cause in the same portion of the external environment
shared by the agents. It is the location of those causes that results in getting a
clue about the other’s meanings.

Davidson introduces triangulation by considering a ‘primitive learning situ-
ation’, in which a child learns to associate the expression “table” to the actual
presence of a table in a room. The way the child can learn to do so, relies in
her ability to generalise, to discover and exploit similarities among situations.
Sharing similar generalisation patterns is what makes the child’s response to
the presence of a table—the utterance of the word “table”—meaningful to us.
This is the rational structure that agents must have in order for communication
to start.

The child finds tables similar; we find tables similar; and we find the child’s re-
sponses in the presence of tables similar. It now makes sense for us to call the
responses of the child responses to tables. Given these three patterns of response
we can assign a location to the stimuli that elicit the child’s responses. The rel-
evant stimuli are the objects or events we naturally find similar (tables) which
are correlated with responses of the child we find similar. It is a form of trian-
gulation: one line goes from the child in the direction of the table, one line goes
from us in the direction of the table, and the third line goes between us and the
child. Where the lines from child to table and us to table converge, ‘the’ stim-
ulus is located. Given our view of child and world, we can pick out ‘the’ cause
of the child’s responses. It is the common cause of our response and the child’s
response. (Davidson, 2001, 119)

A fundamental aspect of the triangulation process, then, consists in the recog-
nition of the role played by constraints imposed by the ‘external world’ on the
interpretational choices. In particular, the interpreter should ascribe ‘obvious
beliefs’ (e.g., the presence of a table) to the interpretee, and project onto her
the likewise ‘obvious’ consequences (that she will behave accordingly). Sup-
pose, for instance, that rover I in the initial example perceives the presence of
a perfectly round crater. According to this way of reasoning, I should expect II
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to be able to perceive the crater as a perfectly round one. At the same time II
should expect I to expect that II itself would perceive the crater as a perfectly
round one etc., and of course consider this as a relevant feature for the selection
of the rendez-vous location l. This ‘like-mindedness’ or ‘common reasoning’
of agents plays a fundamental role in the Rationality-as-Conformity framework
and constitutes the main conceptual fulcrum on which the present analysis of
interpretation, coordination and conformity pivots.

As for translation, in the case of interpreting natural language triangulation
presents several difficulties mostly related to the rigorous explanation of what
intervenes in the ‘recognition of the common causes’ of common linguistic
behaviour. A recent comprehensive discussion on the topic can be found in
Glock (2003). What is relevant for us here, however, is that the complication
of considering the full case of interpreting natural language is surely one of the
reasons why the theory of radical interpretation does not seem to allow for a
clear-cut procedure by means of which agents can achieve, or at least facilitate,
triangulation.

Within the mathematical framework of Rationality-as-Conformity we are
able to provide one such effective procedure. It goes without saying that the
structure therein considered (comparable to unary predicate languages) is much
weaker than the one required by Davidson for the construction of a theory of
meaning, namely the full first-order logic with equality. Our hope is, of course,
that of eventually extending the results obtained in this initial framework to
cover more ‘realistic’ situations.

3.1.4 Radical interpretation as coordination
Thomas Schelling is usually credited with the introduction of coordination

problems in the game-theoretical literature. Roughly speaking, a tacit coor-
dination game is a situation of interdependent, strategic choice characterised
by the absence of communication among players who nonetheless aim at per-
forming the same choice—i.e., coordinating. Schelling’s example concerns a
couple who get accidentally separated in a supermarket and want to rejoin.

Schelling calls this a problem of ‘tacit coordination’ with ‘common inter-
ests’ and notices that given the lack of communication—which indeed makes
the coordination tacit—all that agents can rely on are the assumption of like-
mindedness and the mutual expectations that this generates. What Schelling
intends to discuss is the characterisation of ‘rational rules’ accounting for the
ability humans have to coordinate in the complete absence of communication.

The situation described by Schelling is one of radical interpretation for
which a triangulation-like solution is advocated. Indeed, after introducing the
supermarket problem he goes on commenting as follows:

What is necessary is to coordinate predictions, to read the same message in the
common situation, to identify the one course of action that their expectation of
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each other can converge on. They must ‘mutually recognize’ some unique signal
that coordinates their expectations of each other. We cannot be sure that they will
meet, nor would all couples read the same signal; but the chances are certainly
a great deal better than if they pursued a random course of search. (Schelling,
1960, 54)

The analogies with the solution proposed by Davidson for the radical inter-
pretation problem stand out: both charity and triangulation appear clearly in
Schelling’s illustration of the fundamental features of the solution concepts ad-
equate for tacit coordination games. Entirely analogous remarks can be made
in relation to ‘tacit agreement’ as discussed by Lewis in his classic work on
conventions (Lewis, 1969).

3.1.5 Towards a solution concept
What facilitates conformity in coordination problems of the sort introduced

above is, according to the investigations initiated by Schelling, the selection
of those possible options—strategies—that would be perceived by agents as
focal points. Indeed, the many investigations that followed Schelling’s original
intuitions can be seen as attempts at providing an explanation for the ability that
human agents have in exploiting focal points for the purpose of coordinating.

The intuition underlying the use of focal points is that these correspond
to strategies which enjoy some degree of ‘saliency’ or ‘conspicuousness’, in
Schelling’s phraseology, which will lead agents to in fact focus on certain
options instead of others. Distinctions are made then, on what saliency can
be taken to be (see, e.g. Sugden, 1995; Kraus et al., 2000). For present pur-
poses we will concentrate on salience as given by the identification of a choice
process which an agent might adopt upon reflection about which choice process
another like-minded agent with a common intention to coordinate might her-
self adopt. In the literature this is usually referred to as Schelling’s salience.

The most distinctive feature of salience is the combination of uniqueness
and obviousness of focal points. These are thought of as options which some-
how stand out when considered in the context of the strategies available to the
agents in a given coordination problem. So, for example, the robotic rovers of
our initial example will base their choice on saliency if they will select a lo-
cation l which stands out in the set {l1, . . . , lk}. Naturally, if I can conclude
that the location lj does indeed stand out, the fact that II intends to conform
to the choice it expects I to make will lead, together with the assumption that I
and II are like-minded, to the conclusion that lj is the obvious choice for this
problem.

It is in this spirit that Schelling suggests that, in order for agents to coor-
dinate successfully, they must ‘mutually recognize a unique signal’. Intuitive
as it may be, however, a lighthearted resort to ‘uniqueness’ can prove to be
rather tricky. As it has been put forward by (Kraus et al., 2000), this becomes
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a major concern once we take into account the limitations (i.e., bounded rea-
soning capabilities) of the agents. Moreover, there could be circumstances in
which appeal to uniqueness may lead to undesirable conclusions, as we will
have occasion to notice below.

In what follows, we will rather attempt at formalizing the notion of a focal
point by characterising saliency in terms of the minimisation of the ambiguity
of the options available to the agents. In order to do this we shall firstly provide
a mathematical formalisation of the context within which focal points are to be
discerned. This will enable us to study the corresponding reasoning process,
that is to say an algorithm for the determination of the minimally ambiguous
strategies within the context.

3.2 The conformity game
In the spirit of the Rationality-as-Conformity approach, we tackle the knowl-

edge representation issue by considering the simple model in which options
are the possible worlds generated by mapping a finite set A to the binary set
2 = {0, 1}. Nothing else is assumed about the structure of the set A.

The domain of the game is ℘+(2A), the set of non-empty subsets of 2A which
denotes the set of all possible worlds. We attach to elements K ∈ ℘+(2A) an
epistemic value, namely we take players to have common knowledge of the
fact that the options they have to choose from are those in K, which includes
the possible world which will be eventually selected. Intuitively, then, the the
cardinality of K gives a quantitative measure of the agents’ uncertainty about
the other’s actual choice.

The conformity game is a two-person, non-cooperative game whose normal
form goes like this: Each player is to choose one strategy out of a set of possible
choices, identical for both agents up to permutations of A and 2, where each
strategy corresponds to one element of K = {s1, . . . , sk}, say. Strategies are
therefore represented in this game as finite binary strings. Players get a positive
payoff p if they play the same strategy, and nothing otherwise, all this being
common knowledge. (Figure 3.1 represents the conformity game for k = 3.)

Player I

Player II
s1 s2 s3

s1 p, p 0, 0 0, 0
s2 0, 0 p, p 0, 0
s3 0, 0 0, 0 p, p

Figure 3.1: The conformity game

Note that, for present purposes, we limit ourselves to the case in which each
identical pair of strategies yields a unique positive payoff p, so that any point in
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the diagonal would be as good as any other as far as the agents are concerned:
all that matters is that they conform on their world-view.

Being a game of multiple Nash-equilibria in which the players are assumed
to be inaccessible to each other, the conformity game is a typical example of a
(pure) coordination game, a kind of game which is generally considered to be
unsolvable within the traditional theory of non-cooperative games. (See, e.g.,
Camerer, 2003 for a discussion on coordination problems other than ‘pure’.)

Before going into any further details of the conformity game it will be useful
to introduce some ideas concerning the selection of multiple Nash-equilibria
in pure coordination games, and relate these to the intuitions underlying the
conformity game.

3.2.1 Multiple Nash-equilibria
and the conformity game

Traditional game theoretic solution concepts usually characterize distin-
guishability among options (strategies) in terms of the comparison of (or-
dinal) utilities, ‘rationality’ being defined in terms of utility maximization.
As an immediate consequence of this, whenever options are perceived by an
agent as being equally desirable—i.e., payoff-indistinguishable—the selection
of strategies usually referred to as ‘rational’ turns out to be unhelpful as solu-
tion concept.

Here is where the concept of ‘rationality’ pursued in the Rationality-as-
Conformity framework shows its most relevant point of departure from the
game theoretic tradition. In the former, in fact, rationality is not defined in
terms of maximisation of utility, but on the mutual expectations of agents shar-
ing a common intention. Hence the conformity game is characterized by a
complete symmetry with respect to both payoffs and players. Moreover, the
possibility of considering ‘extra structure’ in the game by focusing on its pre-
sentation can be ruled out by means of appropriate mathematical devices, to be
shortly introduced. Hence, in Schelling’s terminology, the conformity game is
a ‘clueless’, ‘genius-proof’ game.

To appreciate the point further, recall that the typical solution concept for
non-cooperative games introduces a notion of distinguishability among strat-
egy profiles—Nash-equilibrium—which is in fact weaker than simple pay-off
dominance. If a Nash-equilibrium exists, yet is not unique, then a natural way
of reducing the situation to the standard case would just involve selecting the
equilibrium, if one exists, with the the highest possible payoff. In particular,
it can happen that a strategic game admits of say two equilibria with dis-
tinct ordinal utilities, which nonetheless are, according to the theory of Nash-
equilibrium, undistinguishable. Due to its wide applicability, a largely studied
example is the following variant of the game known in the literature as the
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Battle of the sexes (see, e.g., Osborne, 2004). Two players are to choose be-
tween a pair of options for a night at the concert hall (say, B and S , for Bach
and Stravinsky) with the distinctive feature that whilst both players strictly
prefer the same option (say B), they are still entitled to choose (S , S ), a Nash-
equilibrium of this game. The idea here being that although they both prefer
going to the Bach concert, they still prefer going to the Stravinsky concert
together rather than going to different concerts. In games of this sort, the the-
ory of Nash-equilibrium gives agents exactly the same reasons for playing a
payoff-dominated strategy as for playing a payoff-dominant one.

The conformity game, as any pure coordination game, pushes this limitation
of the theory of Nash-equilibrium even further, given that the obvious refine-
ment which would lead agents to select, among the Nash-equilibria, the one
with the highest payoff (if this exists), cannot be applied due to the complete
symmetry of the payoffs. Similar considerations apply to risk-dominance, the
‘cautious’ dual of payoff-dominance (Harsanyi and Selten, 1988).

It follows that traditional solution concepts are generally inadequate for the
conformity game, and indeed for any other game of (pure) coordination. The
general feeling on the matter can be illustrated by recalling Schelling’s own
words (1960):

Poets might do better than logicians at this game, which is perhaps more like
‘puns and anagrams’ than like chess. (Schelling, 1960, 58)

An entirely similar attitude is shared (4 decades later) by Camerer, who indeed
argues in favour of the empirical (behavioural) investigation on the way players
choose among equilibria. As to the ‘logical’ approach, he remarks that

[t]his selection problem is unsolved by analytical theory and will only be solved
by observation. (Camerer, 2003)

Still, as noted by Schelling, players can generally do better than plain ran-
domization in pure coordination games. The extensive empirical investigations
that took place over the past decades (see, e.g., Mehta et al., 1994; Sugden,
1995; Janssen, 1998, as well as the results of computer simulations Kraus
et al., 2000, strongly support Schelling’s early insight that there are in fact
choice processes that can facilitate conformity [i.e., that lead agents to coordi-
nate their choice better than plain randomization]).

In the remainder of this paper we will provide a formalisation of a solu-
tion concept for the conformity game which is based on the considerations
about salience and is underpinned by the principle of charity discussed in
Section 3.1.3.

3.3 Solving the conformity game
Recall that the key element intervening in the representation of the con-

formity game is given by possible worlds, which in the present interpreta-
tion amount to the strategies available to the players. We clearly have two
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possibilities: either worlds (strategies) in K have no structure other than be-
ing distinct elements of a set, or worlds in K do have some structure and in
particular there are properties that might hold (be true) in (of) some worlds.
In the former case we seem to be forced to accept that agents have no better
way of playing the conformity game other than picking some world fi ∈ K at
random (i.e., according to the uniform distribution). In the latter case, however,
agents might use the information about the structure of the worlds in K to focus
on some particularly ‘distinguished’ option to be taken as a focal point.

Consider, for example, the simple case in which worlds (strategies) are maps
f : 4 −→ 2 and suppose K = { f1, f2, f3, f4, f5} ⊆ 24 is presented as the matrix
in Figure 3.2.

0 1 2 3
f1 0 0 0 1
f2 0 1 0 0
f3 0 1 1 0
f4 1 1 1 1
f5 0 0 1 0

Figure 3.2: A representation of the strategy set K

We know from the strategic representation of the conformity game that each
pair of identical strategies yields the same utility, so players who intend to
conform must look for salient properties to characterize some of the options
as those which are likely to be selected by another agent. At the same time,
however, we want to rule out the possibility that agents will take into account
inessential properties of the set K as being salient, so our first goal is that of
ensuring the complete symmetry of the representation. A way of achieving this
consists in informing each agent that it is being presented with a matrix K (for
instance the one illustrated in (2) which agrees to the one faced by the other
player only up to permutations of A and permutations of 2, that is to say, only
up to permutations of the columns (and of course rows) of the matrix as well
as the uniform transposition of 0’s and 1’s.

On the assumption of like-mindedness, i.e. common reasoning, if one of
those binary strings, say f j should stand out as having some distinguished prop-
erties, agents will conclude that such properties are indeed intersubjectively
accessible and hence select f j. In this way players will go about producing a
reason for selecting the option f j. We now move on to formalize this notion.

3.3.1 Introducing asymmetries with reasons
Given the inapplicability of the payoff-dominance principle to the confor-

mity game, the analogy with coordination games suggests that in order to
facilitate triangulation we need to introduce some asymmetries among the
strategies available to the players of the conformity game. We propose here
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to formalise this by means of a choice process derived from the Minimum Am-
biguity Reason introduced in Hosni and Paris (2005).

In a nutshell, the construction of this choice process, or Reason, takes place
by means of identifying certain selection principles that players of the con-
formity game might come to tacitly agree upon, given the goal of the game
and their common knowledge of it. This construction will adhere to the charity
principle recalled above, in that it is pivoted on the idea that the only clue avail-
able to the players about each others’ world view is that they share common
reasoning.

We define a Reason R to be a choice function from the domain of the con-
formity game ℘+(2A) to itself such that R(K) ⊆ K. The general intuition, as
discussed in connection with radical interpretation, is that agents should apply
Reasons to discard those possible strategies that will prevent them from con-
forming on their mutual expectations. Given the like-mindedness assumption
and the fact that the size of K is proportional to the uncertainty of the players
about each other’s behaviour, it can be immediately appreciated that a perfect
reason will be a choice function which always returns a singleton, a unique
strategy. It is likewise immediate to see, however, that we cannot expect this
to happen in general. As we learnt from radical translation and interpretation,
there can be real indeterminacy in the choice problem at hand.

Hence, if after applying their Reason players are left with a plurality of
strategies, they will conclude that the choice problem at hand is just underde-
termined with respect to the information they possess (the structure of their
binary matrix) and will go about to select at random from R(K). In the worst
possible case agents will find that R(K) = K. At this opposite extreme from the
perfect reason, agents will just realize that the strategies from which the choice
is to be made are—to their lights—absolutely undistinguishable.

The construction of the Minimum Ambiguity Reason, then, just amounts to
constraining the choice process R in such a way as to facilitate the identification
of focal points in the conformity game. This characterization will be provided
by means of an effective procedure.

3.3.2 The minimum ambiguity reason
Our first goal is constraining R in a way that will provide an adequate for-

malisation of the symmetries among the players and the possible strategies.
This will lead us to formulate the first requirement imposed on the algorithm
for computing R(K), namely that if f and g are, as elements of K, indistinguish-
able, then R(K) should not contain one of them, f , say, without also containing
the other, g. In other words, an agent should not give positive probability to
picking one of them but zero probability to picking the other. The argument
for this is that if they are ‘indistinguishable’ on the basis of K then another
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agent could just as well be making a choice of R(K) which included g but
not f . Since agents are trying to make the same ultimate choice of element
of K, taking that route may be worse, and will never be better, than avoiding
it. Indeed, this requirement can be further motivated by direct reference to the
radical interpretation problem. The ideal goal of translation as well as inter-
pretation, consists in individuating systematically synonymy among linguistic
expressions. In our abstract mathematical setting, synonymy can be understood
as “undistinguishability” among possible worlds. It, therefore, follows that ac-
cepting in R(K) only one of a pair of undistinguishable worlds amounts to
admitting the systematic violation of synonymy, a most undesirable situation
for any theory of interpretation.

The second requirement is that the players’ choice of R(K) should be as
small as possible (in order to maximize the probability of randomly picking
the same element as another agent) subject to the additional restriction that
this way of thinking should not equally permit another like-minded agent (so
also, globally, satisfying the first requirement) to make a different choice, since
in that case any advantage of picking from the small set is lost.

The first consequence of this is that initially the agent should be looking
to choose from those minimal subsets of K closed under indistinguishability,
‘minimal’ here in the sense that they do not have any proper non-empty subset
closed under indistinguishability. Clearly, if this set has a unique smallest ele-
ment then the elements of this set are the least ambiguous, most outstanding,
in K and this would be a natural choice for R(K). However, if there are two
or more potential choices X1, X2, . . . , Xk at this stage with the same number of
elements then the choice of one of these would be open to the obvious criticism
that another ‘like-minded agent’ could make a different (in this case disjoint)
choice. Faced with this revelation our agent would realise that the ‘smallest’
way open to reconcile these alternatives is to now permit X1 ∪ X2 ∪ · · · ∪ Xk as
a potential choice whilst dropping X1, X2, . . . , Xk.

The agent now looks again for a smallest element from the current set of po-
tential choices and carries on arguing and introspecting in this way until even-
tually at some stage a unique choice presents itself. We will understand this
unique choice as the required focal point, the center of agents’ triangulation.

In what follows, we shall give a formalisation of this procedure. All the
results to follow have appeared (or are straightforward generalisations of those
spelled out) in Hosni and Paris (2005) and Hosni (2005) and therefore the
proofs are omitted here.

3.3.3 Transformations
We begin by formalising the intended notion of undistinguishability among

worlds in K. In the current abstract mathematical framework this amounts to
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providing a formalisation of synonymy among possible options—with respect
to the radical interpretation problem—as well introducing a utility-free eval-
uation (pairwise comparison) of the strategies available to the agents in the
conformity game.

The central concept is that of a transformation of possible worlds. The in-
tuition to be formalised being that a transformation can act on a set of pos-
sible worlds by operating changes that agents should consider inessential to
the choice problem they are facing. Hence the possibility of transforming (for-
mally) one world into another one will lead agents to consider these to be
indistiguishable.

We define a function j : K → 2A a transformation of K if there is a permu-
tation σ of A and a permutation δ of {0, 1} such that j( f ) = δ fσ for all f ∈ K.
We shall say that a transformation j of K is a transformation of K to itself if
j(K) = K.

The intuition here is that a transformation j of K to itself produces a copy
of K— j(K)—in which the ‘essential structure’ of K is being preserved. To see
this in practice, simply take the matrix introduced above in Section 3.3, from
which the explicit mention of the set A and the labels of the binary strings are
omitted, as illustrated in Figure 3.3:

0 0 0 1
0 1 0 0
0 1 1 0
1 1 1 1
0 0 1 0

Figure 3.3: The matrix representing K

It can be easily seen that putting δ to be the identity function (id) and
σ = (1, 2) (the permutation transposing 1 and 2 in {0, 1, 2, 3}), we will obtain
the transformation transposing the ‘second’ and ‘third’ column of the above
matrix. Furthermore, by letting σ′ = id and δ′ = (0, 1) we obtain a matrix with
0’s and 1’s exchanged. These can be represented as:

0 0 0 1
0 0 1 0
0 1 1 0
1 1 1 1
0 1 0 0

and

1 1 1 0
1 1 0 1
1 0 0 1
0 0 0 0
1 0 1 1

let’s say j(K) and j′( j(K)), respectively.
Hence the requirement that the players’ choices should be invariant under

these ‘inessential’ transformations is captured by the following:
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Transformation principle
Let K ∈ ℘+(2A), and j be a transformation of K. Then

j(R(K)) = R( j(K)). (Tr)

Intuitively, the Transformation principle states that applying some transforma-
tion j to the set of best elements (according to R) of K is just the same as
choosing the R-best elements of the transformation of K by j.

The second step then in the construction of the Minimum Ambiguity Rea-
son consists in the formalization of the ‘ambiguity of worlds within K’, so
that agents, while satisfying the Transformation principle will go about select-
ing the most outstanding elements of K—the focal points. Notice that, as one
would clearly expect from the discussion on triangulation and focal points,
‘ambiguity’ is being characterized as a contextual notion, relative in fact to the
knowledge K.

So let K ∈ ℘+(2A). Then for f ∈ K, the ambiguity class of f within K at
level m is recursively defined by:

S0(K, f ) = {g ∈ K | ∃ trans. j of K such that j(K) = K and j( f ) = g}

Sm+1(K, f ) =

{
{g ∈ K | |Sm(K, f )| = |Sm(K, g)|} if |Sm(K, f )| ≤ m + 1;
Sm(K, f ) otherwise.

The intuition of the base case is that of grouping together those possible worlds
g which are in the range of a transformation j of K to itself taking f as argu-
ment, thus giving an initial measure of the ambiguity of f in K. The recursive
step, on the other hand, causes worlds with the same ambiguity to be grouped
in the same class, the purpose of the side condition being that of avoiding coa-
lescing classes ‘too quickly’ (and hence possibly losing some ‘natural’ features
of the relevant classes).

Define now, for f , g ∈ K, the relation

g ∼m f ⇔ g ∈ Sm(K, f ).

Recall that one of the requirements of the algorithm is that agents should avoid
selecting one but not both elements of a pair of undistinguishable options. In-
deed the following proposition ensures that as f ranges over K, ∼m induces a
partition on K.

Proposition 1. ∼m is an equivalence relation and the sets Sm(K, f ) are its
equivalence classes.

Moreover, this m-th partition is a refinement of the m + 1-st partition. In
other words, the sets Sm(K, f ) are increasing and so eventually constant fixed
at some set which we shall call S(K, f ).
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We are now ready to introduce the ambiguity of f within K, which is for-
mally defined by:

A(K, f ) =de f |S(K, f )|.

Finally, we can define the Minimum Ambiguity Reason RA(K) by letting:

RA(K) = { f ∈ K | ∀g ∈ K, A(K, f ) ≤ A(K, g)}. (1)

As an immediate consequence of the definition of RA we have the following
result:

Proposition 2. RA(K) = S(K, f ), for any f ∈ RA(K)

Recall that agents have to select a unique option from K, so as argued when
introducing the informal procedure, whenever the size of RA(K) is greater than
1, players will just randomize.

The following results show that the intuition that players of the conformity
game should select the ‘most distinguished’ worlds from a set K while satis-
fying closure under undistinguishability is indeed captured by the minimum
ambiguity reason.

Theorem 3. RA satisfies Transformation.

Theorem 4. A non-empty K′ ⊆ K is closed under transformations of K into
itself if and only if there exists a Reason R satisfying Transformation such that
R(K) = K′.

The importance of these results is that in the construction of RA(K) the
choices Sm(K, f ) which were eliminated (by coalescing) because of there cur-
rently being available an alternative choice of a Sm(K, g) of the same size are
indeed equivalently being eliminated on the grounds that there is a like-minded
agent, even one satisfying Transformation, who could pick Sm(K, g) in place of
Sm(K, f ). In other words it is not as if some of these choices are barred because
no agent could make them whilst still satisfying Transformation. Once a level
m is reached at which there is a unique smallest S m(K, f ) this will be the choice
for the informal procedure. It is also easy to see that this set will remain the
unique smallest set amongst all the subsequent S n(K, g), and hence will qualify
as RA(K). In this sense then our formal procedure fulfills the intentions of the
informal description given at the beginning of this section.

3.4 Concluding remarks
We conclude by evaluating the extent to which the Minimum Ambiguity

Reason contributes towards providing a formalization of the problems arising
in the process of triangulation and in the selection of multiple Nash-equilibria
in pure coordination games.
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RA and triangulation. The distinct level of abstraction stands out in the
comparison of the radical interpretation and the conformity game situations.
While with the radical interpretation problem it is attempted to lay down a the-
ory of interpretation for natural languages, the choice problem faced by the
agents in the conformity game is based on the selection of otherwise mean-
ingless binary strings. In both cases, however, agents should rationally aim
at performing disambiguating choices and the framework of Rationality-as-
Conformity provides agents with an algorithmic procedure to achieve this. It is
a matter of future research to investigate the disambiguation of options arising
in gradually more and more complicated structures.

Whilst the agents involved in the radical interpretation situation can appeal
to actual observations of their own reciprocal (non linguistic) behaviour, the
players of the conformity game can only conjecture about the expected behav-
iour of their fellows. Again, we see this as a difference of levels of abstraction,
yet not of kind, as we concentrate on the ‘t0’ of the triangulation process, when
the transition takes place from agents not sharing any communication devices,
to conforming on the use of some. This is being paralleled by the controlled ex-
periments in pure coordination games, as reported, e.g., in Mehta et al. (1994).

RA and focal points. How far the Minimum Ambiguity Reason goes
towards providing a solution to pure coordination games depends, in the first
place, on whether the uniqueness of the selection is considered a necessary
condition on the solution concept or not. Since the early investigations in fo-
cal points and salience, uniqueness has been given considerable importance. In
some recent, computationally-oriented investigations on the subject, however,
other properties of focal points have received attention, with the uniqueness
requirement being considerably relaxed (see Kraus et al. (2000) for a compre-
hensive study). The construction of the Minimum Ambiguity Reason makes
explicit the fact that certain coordination problems might be so nebulous that
agents cannot rationally go beyond the selection of ‘small’ sets of options, the
minimally ambiguous ones, if the closure under undistinguishability require-
ment is to be satisfied. The drawback for failing this being, as illustrated above,
the possibility of systematically missing coordination.
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Sometimes you had to say Stuff Logic and go with the flow.
—Reginald Hill, Good Morning Midnight

Abstract In its recent attention to reasoning that is agent-based and target-driven, logic
has re-taken the practical turn and recovered something of its historic mission.
In so doing, it has taken on in a quite general way a game-theoretic character,
precisely as it was with the theory of syllogistic refutation in the Topics and On
Sophistical Refutations, where Aristotle develops winning strategies for dispu-
tations. The approach that the present authors take toward the logic of practical
reasoning is one in which cognitive agency is inherently strategic in its orienta-
tion. In particular, as is typically the case, individual agents set cognitive targets
for themselves opportunistically, that is, in such ways that the attainment of those
targets can be met with resources currently or forseeably at their disposal. This
not to say that human reasoning is so game-like as to be utterly tendentious. But
it does make the point that the human player of the cognitive game has no general
stake in accepting undertakings that he has no chance of making good on.

Throughout its long history, the traditional fallacies have been characterized
as mistakes that are attractive, universal and incorrigible. In the present essay,
we want to begin developing an alternative understanding of the fallacies. We
will suggest that, when they are actually employed by beings like us, they are
defensible strategies in game-theoretically describable pursuit of cognitive (and
other) ends.

4.1 Introductory remarks
In its recent return to reasoning that is agent-based and target-driven, logic

has recovered something of its historic mission. In so doing, it has taken on
in a quite general way a game-theoretic character, precisely as it was with
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Aristotle’s theory of syllogistic refutation in the Topics and On Sophistical
Refutations. Aristotle here presents winning strategies for disputations. They
pivot on the refuter’s exploitation of his opponent’s concessions. While the op-
ponent must believe his concessions, the refuter need not. The approach that
the present authors take toward the logic of agent-based target-driven reason-
ing is one in which cognitive agency is inherently strategic in its orientation.
In particular, as is typically the case, individual agents set cognitive targets
for themselves opportunistically, that is, in such ways that the attainment of
those targets can be met with resources currently or forseeably at their dis-
posal. This not to say that human reasoning is so game-like as to be utterly
tendentious. But it does make the point that the human player of the cognitive
game has no general stake in accepting undertakings that he has no chance
of making good on. Throughout its long history, the traditional fallacies have
been characterized as mistakes that are attractive, universal and incorrigible.
In the present essay, we want to begin developing an alternative understand-
ing of the fallacies. We will suggest that, when they are actually employed by
beings like us, they are defensible strategies in game-theoretically describable
pursuit of cognitive (and other) ends. Needless to say, the generically game-
theoretic approach has developed several more specialized tendrils. Some of
these involve a re-writing of classical first order logic. Others are extensions or
adaptations of the mathematical theory of games. Still others refine the generic
notion into technically versatile models of dialogue. All of these are welcome
developments, and many are of enduring importance. In some of our writings
in progress, the more peculiarly game-theoretic aspects of practical reasoning
are developed. But we continue to think that the generic notion, embodying the
fundamental idea of strategies for the attainment of cognitive targets, is also of
lasting importance. This is something that we shall attempt to demonstrate in
this essay.

The present work is adapted from our book in progress, Seductions and
Shortcuts: Fallacies in the Cognitive Economy (Gabbay and Woods, 2009).
Our principal purpose here is to introduce readers to that work’s founding as-
sumption, and to identify some of the considerations that lend the idea support.
We also have it in mind to attend to an important ancillary matter. It is the task
of elucidating the role of what an agent is capable of in assessing whether his
performance is faulty or defective. The essay is structured as follows. In Part I
we discuss the question of cognitive agency. Part II illustrates our approach to
fallacies.

PART I: PRACTICAL AGENCY

We begin with the so-called Gang of Eighteen, the name given to a loose con-
federacy of presumed errors that are discussed with a considerable regularity
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in the contemporary literature on fallacies (Woods, 2004).1 In one recent treat-
ment (Woods et al., 2004), the Gang of Eighteen is represented by the following
list.

ad baculum
ad hominem
ad misericordiam
ad populum
ad verecundiam
affirming the consequent
amphiboly
begging the question
biased statistics
complex question
composition and division
denying the antecedent
equivocation
faulty analogy
gambler’s
hasty generalization
ignoratio elenchi
secundum quid

The Gang of Eighteen (GOE, for short) embeds a certain view of what it is to
be a fallacy. It sees fallacies as mistakes of reasoning (or arguing) that are at-
tractive, universal and incorrigible. So conceived of, fallacies retain a striking
kinship with Aristotle’s original definition, in which a fallacy is an argument
(or a piece of reasoning) that appears to be good in a certain way, but is not in
fact good in that way. It is easy to see that the first two marks of fallaciousness
are expressly caught by Aristotle’s definition. For a fallacy is not only an error
but, because it appears not to be an error, is a mistake that has a certain attrac-
tiveness. It is also clear that Aristotle intends the attractiveness of fallacies to
give them a kind of universal appeal: Fallacies are errors that people in general
are disposed to make, not just the logically challenged or the haplessly inatten-
tive. If their attractiveness grounds their general appeal, it also grounds their
incorrigibility. To say that a fallacy is an incorrigible error is to say that, even
when properly diagnosed, there is a general tendency to recidivize. The modern
notion incorporates these interdependencies. Accordingly, we have it that

1We emphasize the looseness of the grouping. In Copi (1986) 17 fallacies are discussed; in Carney-Scheer
(1980) the number is 18; Schipper-Schuh (1959) runs to 28; and Black (1946) limits itself to only 11. While
all these lists are pairwise inequivalent, there is nonetheless a considerable overlap among them.
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Proposition 1 (Fallacies). A fallacy is a generally attractive and compara-
tively incorrigible error of reasoning (or argument).

The negative thesis we wish to propose is that the general idea of fallacy
is correct but that there is something gravely defective about the Gang of
Eighteen and any of its standard variations. As we shall attempt to show, there
are two difficulties with these lists:

1. Some of their members aren’t fallacies.

2. Those that are errors aren’t usually mistakes committed by beings
like us.2

Our positive thesis is that

3. Several of the GOE are actually cognitive virtues.

To make good on these theses requires that

(a) We identify the members of the GOE of which the theses are true.

(b) Establish in each case that the relevant thesis is indeed true.

(c) Give some account of how it came to be the case that by our lights, the
defective inventory of fallacies took hold.

In proceeding with these tasks we want to make it clear at the beginning
that it is not our view that people don’t commit fallacies. Our view rather is
that the GOE has not managed to capture any of them in wholly convincing
ways. For either they are indeed fallacies which we happen not to commit, or
we do commit them, but they are not fallacies.

In its most usual meaning, a fallacy is a common misconception. It is an
attractive, widely held belief that happens to be untrue. In many cases, it is also
a belief that people have difficulty letting go of, even, after its falsity has been
acknowledged. So whereas the received idea among logicians has been that a
fallacy is an argument that is defective in the traditionally recognized ways,
the view of the layman is that it is a belief that has the requisitely counterpart
features. We may wish to take note of the point that if our present theses about
the Gang of Eighteen can be sustained, we will have shown that the logician’s
inventory of the fallacies is in the layman’s sense itself a fallacy.3 If this should

2Given one’s tendency to apply the word “incorrigible” to practices (or practitioners) one disapproves of,
this is very much the right word for the fallacies as traditionally conceived of. Since ours is a view of
the fallacies that rejects the traditional conception, we shall replace “incorrigible” with the more neutral-
sounding “irreversible”.
3A theme sounded by two recent writers. See Grootendorst (1987), which is entitled “Some fallacies about
fallacies”, and Hintikka (1987), which is entitled “The fallacy of fallacies”. For reservations see, in the first
instance, Woods (2004, Chapter 9) in the second, Woods and Hansen (1997), and for a rejoinder (Hintikka,
1997).
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prove to be the right sort of criticism to press against the GOE approach, then
something like the following argument schema must itself be defective. Let us
call it

The Fallacy of Fallacies Schema

1. Practice P is universal, attractive and incorrigible (irreversible).

2. Practice P lacks property Q (e.g. validity).

3. Therefore, practice P is a fallacy.

Our view is as follows. There are members of the Gang of Eighteen of which
(1) and (2) are true, but (3) is false. There are other members of which (3) and
(2) are true; and (1) is not true of us.

We are in no doubt about the burdens we have taken on in staking our case
against the Fallacy of Fallacies Schema. Certainly, there is no realistic prospect
of doing so in the space of a single chapter. So we shall proceed as best we can,
beginning with some issues we believe it necessary to explore in some detail
before moving on to the negative and positive theses about GOE. This will
leave us space enough to test these claims against only one class of fallacies,
known collectively as “hasty generalization”. The complete case against GOE
is the business of Seductions and Shortcuts.

4.2 Logic’s cognitive orientation
Since its inception 2,500 years go, logic has been thought of as a science

of reasoning. Aristotle held that the logic of syllogisms is the theoretical core
of the wholly general theory of argument called for in the Topics. Even cen-
turies later, when logic took its momentous turn toward the mathematical, the
idea persisted that the canons of logic regulate at least mathematical reasoning
which, in some versions, is reasoning at its best. One of the striking features
of mainstream mathematical logic is the distance at which it stands from the
behaviour of real-world reasoning agents. In its anti-psychologicism, context-
independency and agent-indifference, it is hardly surprising that mathematical
logic endorses principles which real-life reasoners do not, and often cannot,
conform to. Rather than taking this as outright condemnation of reasoning
as it actually occurs, mathematical logicians have sought a degree of miti-
gation in the idea that real-life reasoning is correct to the degree to which it
approximates to conformity to these ideal canons of strictness.4 Although the

4Cf. Matthen (2002, 344), whose mention of it is disapproving: “Human reasoning tries to instantiate logic,
but, because of the regrettable necessity of making do in the real world, it falls somewhat short. In this it is
something like human virtue as Aristotle describes it—a second-best life imposed on us by the exigencies
of the human condition.” The more nearly correct view is that “[o]ur capacity for reason is dictated by
symbolic complexity required for tasks other than truth maximization” (Matthen, 2002).
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approximation-to-the-ideal view has had its critics (e.g., Gabbay and Woods,
2003a), other reactions have been more constructive and conciliatory. They are
reactions linked together by the common purpose of extending and adapting
mainstream logic itself, so as to produce systems capable of modeling aspects
of actual reasoning which the standard systems of mathematical logic leave
out of account. Within the logic community these extensions or adaptations
include modal logics and their epistemic and deontic variations (von Wright,
1951; Hintikka, 1962; Kripke, 1963; Gabbay, 1976; Lenzen, 1978; Chellas,
1980; Hilpinen, 1981; Gochet and Gribomont, 2005), probabilistic and ab-
ductive logics (Magnani, 2001; Williamson, 2002; Gabbay and Woods, 2009),
dynamic logics (Harel, 1979; van Benthem, 1996; Gochet, 2002), situation
logics (Barwise and Perry, 1983), game-theoretic logics (Hintikka and Sandu,
1997), temporal and tense logics (Prior, 1967; van Benthem, 1983), time and
action logics (Gabbay et al., 1994), systems of belief dynamics (Alchourron et
al., 1985; Gabbay et al., 2002, 2004a, b) practical logics (Gabbay and Woods,
2003b, 2005), and various attempts to float the programme of informal logic.5

Work of considerable interest has also arisen in the computer science,
AI and cognitive psychology communities, with important developments in
defeasible, non-monotonic and autoepistemic reasoning, and logic program-
ming (Sandewall, 1972; Kowalski, 1979; McCarthy, 1980; Reiter, 1980; Moore,
1985; Pereira, 2002; Schlechta, 2004).

The net result of these considerable efforts is a marked reorientation of logic
to the ins-and-outs of reasoning as it actually occurs. It may be said that, if in
the aftermath of the mathematical turn it were ever in doubt, logic has now to
some extent reclaimed its historical mission of probing how human reasoning
does (and should) work.

This is a significant development. If logic is once more a science of reason-
ing, it is well to pause and take some note of what reasoning is for. It is clear
upon inspection that, in a rough and ready way, reasoning serves as an aid to
belief-change and decision. Certainly it seems true to say that is these aspects
of reasoning in which the new logic (if we might appropriate that term) seems
most to concentrate on (Gabbay and Woods, 2001b). This being so, an answer
to our present question becomes apparent. Reasoning is an aid to cognition.
Accordingly,

Proposition 2 (The new logic). Logic investigates reasoning in its role as an
aid to cognition. Or, as we might now say the new logic is an investigation of
(requisite aspects of) cognitive systems.

5The informal logic movement comprises three over-lapping orientations. One is argumentation theory
(Johnson, 1996, 2000; Freeman, 1991; Woods, 2003). Another is fallacy theory (Hamblin, 1970; Woods
and Walton, 1989; Hansen and Pinto, 1995; Walton, 1995; Woods, 2004). Completing the trio is dialogue-
logic (Hamblin, 1970; Barth and Krabbe, 1982; Hintikka, 1981; MacKenzie, 1990; Walton and Krabbe,
1995; Gabbay and Woods, 2001a, c).
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4.3 Practical agency
A consideration of agency is central to our task. Our view of agency is set

out in a PLCS—a practical logic of cognitive systems, which can be sketched
as follows:

A cognitively sensitive logic is a principled description of certain aspects
of the behaviour of a cognitive system, chiefly of those aspects that figure
centrally in belief and decision dynamics.

A cognitive system is a triple of an agent C, cognitive resources R and
cognitive tasks J performed in real time t.

A cognitive agent is an information-processing device capable, among
other things, of belief, inference and decision.

A cognitive agent is always an agent of a certain type, depending on
where he or it sits under a partial order that we will call “commanding
greater (cognitive) resources than”.

Such resources include, but are not exhausted by, information, time and
computational capacity.

A cognitive agent is a practical agent to the extent that it ranks low in
this ordering.

Accordingly, practical reasoning is the reasoning of a practical agent.

A cognitive agent is a theoretical agent to the extent that it sits high in
this same ordering.

Accordingly, theoretical reasoning is the reasoning done by theoretical
agents.

Practical agents include individuals.

Theoretical agents include institutions.

It cannot in general be supposed that practical and theoretical reasoning
are geared to the same goals or targets and subject to the same perfor-
mance standards.

Compared with what theoretical agency can achieve, practical reasoner’s
operate with fewer resources.

Compared with what theoretical agency can achieve, practical agents set
more modest cognitive targets.
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Accordingly,

Proposition 3 (Practical agency). Practical agency is triangulated by two
main factors. One is the factor of comparative resource-scantness. The other
is the factor of comparative target-modesty.

We accept that ours is a somewhat unusual use of the word “theoretical”.
In the account given by PLCS, when an individual is, for example, trying to
simplify a proof of the completeness of modal logic in time to meet an edi-
tor’s deadline, he is engaged in practical reasoning, even though, in one stan-
dard sense of the word, the completeness problem is a theoretical problem. In
putting the word to our uses here, we intend neither rivalry nor imperiousness.
Ours is but another sense of the word, which we’ve introduced as a technical
term. Even so, the gap between our use and other uses typified by the theo-
retical status of the completeness problem is not as large as one might think.
There are legions of theoretical problems (in the completeness-problem sense)
that demand the resources and epistemic standards that characterize theoretical
agency in our sense. Most of NASA’s scientific problems are theoretical in the
completeness-problem sense, and NASA is an exemplar of theoretical agency
in our sense. All the same, it is well to note that the word “practical” has no
wholly natural (non-negative) antonym in English. So any candidate we might
select is bound to strike the ear somewhat oddly.6

4.4 Cognitive economies
Seen in this way, practical agents operate in a cognitive economy. They seek

to attain their targets with the resources at hand and with due regard for what
they are naturally unfitted for. An individual agent’s resources are for the most
part available to him in low finite quantities. Given the multiplicity of his cog-
nitive ambitions and the sundry demands of maintaining his balance in a world
of constant change, there is an inevitable competition for the resources needed
for the advancement of cognitive agendas. In much of what he does, an agent
is a zero-sum consumer of his own resources. In lots of cases, he can also
seek to draw down his competitors’ resources as well. The zero-sum harshness
of resource-draw demands that in most cases an agent pay attention to costs
and benefits. This is not to say that his cognitive targets are economic (not
usually anyhow) but rather that, whatever they chance to be, handling them ra-
tionally requires that these economic factors be taken into account. This is true
of agents both practical and theoretical. Resources are finite for each and am-
bitions frequently outrun what resources are able to handle. The rationality of

6Various candidates have been proposed. We find that none generalizes in quite the desired way: special-
ized, alethic (or doxastic), formal, precise, strict, context-free, abstract and, of course, theoretical (in the
completeness proof sense). For further discussion, see Gabbay and Woods (2003a, 13–14).
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cognitive agency takes this factor of comparative resource-scantness into deep
account. In virtually all that they do as cognitive beings, agents of both stripes
must learn to economize.

Given these resource limitations, we may postulate for practical reasoners
various scant-resource compensation strategies.7 Leading the list, hardly sur-
prisingly, is the setting of targets of comparative modesty, itself an instance of
the adjustment of goals to the means available for their effective realization.
Other strategies include:

A propensity for hasty generalization

A facility with generic inference, and other forms of non-universal gen-
eralization

Ready discernment of natural kinds

A propensity for default reasoning

A capacity to evade irrelevance

A disposition toward belief-update and discourse economies, such as re-
liance ad verecundiam upon the assurance of others

A facility with conjecture (or, in plainer English, guessing)8

A talent for risk aversion

An architecture for inconscious or implicit cognition.9

We emphasize that scantness of resources is a comparative matter. By and
large individual agents have fewer of them than institutional agents such as
NASA or MI5. It is sometimes the case, though not uniquely or invariably, that
resource-paucity makes for resource-scarcity. But it would be quite wrong to
leave the suggestion that individual agents are resource-strapped by definition,
as it were.

There are two quite general attributes that are unique to the practical agent,
and which give him a clear advantage in the cognitive economy. One is the
emotional make-up of (human) practical agents—in particular their capacity
to feel fear, which plays a pivotal role in risk-averse inference. The other is
that, to a degree far greater than applies to institutional agents, practical agents
are capable of a timely response to feedback mechanisms. This is standing
occasion for the practical agent to correct damaging or potentially damaging

7See Gigerenzer and Selten (2001).
8See Peirce (1992, 1931–1958, 7.220).
9This on the analogy of implicit perception, concerning which see Rensink (2000).



66 Fallacies as Cognitive Virtues

errors before the harm they portend is done. It conduces toward what we might
call “an efficiently corrigible fallibility”. Institutional agents, on the other hand,
are notorious for their feedback-laggardness. It is a laggardness that routinely
compromises efficiency and often compromises correction.

It would appear that, on the face of it, the list of scarce-resource compensa-
tion strategies is rife with fallacy, what with its endorsement of hasty general-
izations and ad verecundiam and reasoning. Should we not conclude, therefore,
that practical agency and practical reasoning are intrinsically defective? It is the
business of Part II to deal with this question, at least in part.

4.5 Cognitive targets
We should now say a word about cognitive targets.

Proposition 4 (Cognitive targets). A target T for an agent X is a cognitive
target for him (or it) if and only if T is attainable only by way of a cognitive
state of X.

For example, if X wants to know whether Y will accompany him to the
movies, his target is met when he knows that Y will accompany him to the
movies. The desire to know whether is X ’s target. X’s knowledge—that en-
ables X to hit the target. T , then, is a cognitive target for X.

Not all cognitive targets expressly embed the desire to know; that is, they are
not always overt calls for knowledge. X may desire to make a decision between
options O1 and O2. Upon discovery of some new information, X may now be
in a state of knowledge in virtue of which he decides for O1 rather than O2. X’s
state of knowledge closed his decision-agenda. So his decisional target was a
cognitive target in our sense. Perhaps it might be said that in his desire to decide
between O1 and O2, X was implicitly calling for the knowledge that would
enable him to turn the trick. There is little point in semantic wrangles over
the purported equivalence between “wants to decide” and “wants knowledge
that will enable a decision”. A target is hit when X no longer has the desire
or disposition in terms of which it was constituted in the first place. This can
happen in one or other of two ways that can be regarded as cognitive. In one, X
is in a state of knowledge that causes X’s desire to be satisfied or his disposition
to be actualized. In the other, X is in a state of knowledge that kills X’s desire
or cancels his disposition. In the one case, X may desire to know whether
his companion will accompany him, to the movies and it may happen that
in coming to know that his companion will indeed accompany him that his
desire is fulfilled. It may also happen that X desires to know who is using
Department copier for personal purposes, and on coming to know that there
is some indication that the culprit is his brother, his desire may lapse and his
enquiry may cease.

In what follows, we focus on the first kind of case. Accordingly,
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Proposition 5 (Attainment). If T is a cognitive target, then T’s attainment
requires the satisfaction of the desire embodied in T (or the actualization of its
embedded cognitive disposition).

4.6 The logic of down–below
It is well to emphasize that this talk of cognitive desire is largely an expos-

itory device, as indeed is the idea of an agent’s cognitive targets. Targets can
be likened to agendas, to whose examination our (earlier) companion work,
Agenda Relevance, devotes a number of pages (Gabbay and Woods, 2003a,
37–40). This is not the place to repeat that discussion in detail, but there is
some advantage in touching briefly on a few of its principal claims. One is that
agendas (hence targets too) need not be consciously held or set, and need not
be attended by express recognition of the means of their attainment. Cognitive
targets are better understood as cognitive dispositions to be in certain kinds of
mental states. But this is much too general a description to capture them ade-
quately. Any cognitive agent, structured in approximately the way we ourselves
are, is at virtually all times causally primed to be in the states to which he (or
it) is, then and there, susceptible. Suffice it here to say that something counts
as a cognitive target when it is of a type that could be consciously held, openly
desired and deliberately advanced upon. That targets need not be thus held and
advanced is further indication of how much of our cognitive careers are set out
and dealt with subconsciously and (probably) sublinguistically. A short way
of saying this is that a good deal of human cognition occurs “down below”.10

Reasoning, like cognition itself, also occurs automatically, unconsciously, sub-
linguistically, hence “down below”. But logic investigates reasoning in its role
as an aid to cognition. If logic is to honour its pledge to reasoning, it must be
prepared in turn to probe the reasoning of down below. Given the constraints,
both ethical and mechanical, that inhibit the exposure of human subjects to the
vicissitudes of the experimental method, the logician is left with little choice
but to abduce and to analogize. Whereupon is surrendered the ancient conceit
that logic is the most certain and epistemically privileged of the sciences.11

10Other characterizations that have been used to capture the idea of reasoning down below are: unconscious,
automatic, inattentive, involuntary, non-semantic and deep. We note in passing the general inequivalence of
these descriptors (Gabbay and Woods, 2003a, 37–40).
11The logic of down-below is very much in its infancy. But already various ideas of how it might go have
started to stir rather attractively. For a connectionist approach, see Churchland (1989, 1995); a RWR (rep-
resentation without rules) orientation is discussed in (Horgan-Tienson, 1999a, b) and (Guarini, 2001); of-
fline anti-representationalism is discussed in (Wheeler, 2001); a semantic space orientation is developed by
Bruza et al. (2004, 2006) and connectionist neural net approaches are to be found in (d’Avila Garcez et al.,
2002; d’Avila Garcez and Lamb, 2004) and (Gabbay and Woods, 2005, Section 6.8). For a criticism of the
idea that logic imposes universal constraints on rationality, see (Matthen, 2002). (Bermúdez, 2004) explores
the cognitive wherewithal of young infants and animals.
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4.7 Generic reasoning
The identification of a practical agent as someone (or something) that per-

forms his (or its) cognitive tasks under conditions of resource-paucity in pur-
suit of comparatively modest cognitive targets is one that states a generic fact
about practical agents. What is claimed is that it is characteristic of the cogni-
tive actions of practical agents that they are performed under such conditions
in relation to such targets. It would be a mistake to ignore the plain fact that
there are specific cases in which practical agents complete a task without at
all depleting the resources required for its wholly satisfactory transaction. Nei-
ther is it the case that, in his generic thrall to comparative resource-paucity, the
practical agent is invariably at a disadvantage. Whether he is disadvantaged in
this way, or not, depends on the cognitive goals it would be appropriate for
him to set for himself and on the cognitive wherewithal available for achieving
them.

Unlike the universally quantified conditional sentences that inductive logi-
cians recognize as full-bore (or Hempelian) generalizations, generic general-
izations (if the pleonasm might be forgiven) are sub-universal in their reach.
There is a considerable difference here. The generalization, “For all x, if x is a
tiger, x is four-legged”, is brittle. It is overturned by a single true negative in-
stance. But the generic claim, “Tigers are four-legged”, is elastic. It can be true
even in the face of true counterinstances.12 This provides the practical agent
with further occasion to economize. If he ventures the generic claim rather
than the strictly universal claim, he can be wrong in particular without being
wrong in general—a nice advantage. Generic generalizations are less precise
than Hempelian generalizations; but what is lost in precision is made up for in
elasticity. Genericity, in turn, hooks up with the concept of default.

Proposition 6 (Genericity and default inference). Given the generic claim that
tigers are four-legged, together with the fact that Pussy is a tiger, the inference
to “Pussy is four-legged” is an inference to a default. What makes it a default
is precisely that “Pussy is a four-legged tiger” could be false without making
it false that tigers are four-legged.

Hasty generalization is intimately linked to genericity, which in turn is inti-
mately linked to natural kinds. To see a tiger as the kind of thing it is involves
having some grasp of properties it possesses as a thing of that kind. But this is
knowing something about what is characteristic of tigers, hence true of them
by and large. Seeing that Pussy is a tiger—that Pussy is of the tiger kind, rather
than, say, of the James Bond villainess kind—involves an appreciation of what
things of that kind are like; that things of that kind are by and large four-legged,

12For genericity Carlson and Pelletier (1995) is essential reading.
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for example. It is doubtless an over-simplification, but something like the fol-
lowing holds true: that appreciating that this thing is of the tiger kind involves
appreciating that various of this thing’s properties are by and large properties
of all things of that kind. So natural kind recognition involves hasty (generic)
generalization of kind-properties.

The distinctive advantage of generic generalizations is that they can be re-
tained without qualification even in the face of known counterinstances.

Hempelian generalizations are disabled by true counterinstances, and re-
quire, if not outright abandonment, nothing less than reformulation. There are
four basic ways of achieving such reformulations, each problematic. One is to
hit upon a principled means of exclusion, that is, a means that serves to ex-
clude the requisite class of the true counterinstances that is stateable without
making specific mention of them. Another is to restate the original general-
ization and append to it, one by one, classes of known exceptions. A virtue of
the first approach is that it avoids the ad hocness of the second. A drawback is
that it is often unknown as to what constitutes, with appropriate generality, the
qualification that transforms a defeated generalization into a live one. Attesting
to this difficulty is the liberal invocation of ceteris paribus considerations. A
dubious evasion if ever there were one, retention of the original generalization
is made possible only by the expedient of “paying in advance” for unspecified
counterexamples. A fourth remedy is the hoary old device of approximation,
in which a generalization, though defeated by counterinstance, is retained as
approximately true.

Let us consider these in order, beginning with the base case.

All tigers are four-legged.

Option one provides for something like

All properly made tigers are four-legged.

This is troublesome. If “properly made” here entails “four-legged”, the revi-
sion is vacuous. If it doesn’t entail “four-legged”, it is simply useless as things
stand how “properly made” achieves the desired exclusions. Of course, various
unpackings are possible. We might be invited to consider that properly made
tigers are those with the wherewithal to preserve four-leggedness in the descen-
dent class of tigers; but unfortunately this presupposes that all tigers (now) are
four-legged, or that one or other of the very reformulations currently under re-
view holds true of them, taking us again too close to circularity for comfort.
But circularity aside, the present means of saving this low-order generalization
also involves a considerable, and unwelcome, complexity.

A further option gives us

All tigers, except those with certain kinds of congenital effects or those
injured in certain ways, are four-legged.
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This is also problematic. The trouble is the unspecificity of “certain kinds of”
and “certain ways”. Left unspecified, there is reason to doubt the generaliza-
tion’s truth. But if the intended specificity is presumed, the generalization is
vacuously true. One way of achieving the exceptions without running foul of
these difficulties is to list the exceptions, one by one, as in

All tigers are four-legged except Pussy, Fred, Baby and Monster.

But this is hopeless. No one wanting to assert the generalization safely has the
foggiest idea as to how the completed list goes.

The ceteribus paribus option gives us

Other things being equal, all tigers are four-legged.

Here, too, the unspecificity of “other things being equal” threatens to falsify
the generalization, and its specificity threatens to trivialize it. The same is true
of

It is approximately the case that all tigers are four-legged.

If “approximately” means “except those that aren’t”, we have triviality. If it
means something less specific, it cannot be ruled out that it imposes the wrong
qualification. It would be a mistake to leave the impression that this brief
review of the options is decisive against the reformulation view of defeated
Hempelian generalizations. But enough has been said to indicate how difficult
and complex such repairs must prove to be. In plain English,

Proposition 7 (The economic advantage of genericity). Defeated Hempelian
generalizations are hard to fix. Generic claims with true negative instances
don’t have to be fixed.

4.8 Epistemology
Apart from its role in investigating reasoning in its role as an aid to cog-

nition, logic has always carried epistemological presuppositions. Even in the
comparatively small historical space of the century just past, one sees the pas-
sage from the apriorist, foundational, Platonized realism of Frege and Russell
to the pragmatism of Quine, with a concomitant explosion of logical plural-
ism.13 But once logic re-adopted agents as a central theoretical parameter, it
became necessary to pay some degree of attention to what agents are like, to

13It may be more accurate to characterize Frege’s realism as more Kantian than Platonic. Certainly Frege is
not a realist about sets (“courses of values”) in the way that Gödel is. Also, it must be acknowledged that
as early as 1907 Russell on occasion was quite openly a pragmatist about the justification of “recondite”
principles of logic. Strangely, this would later be a position taken up by Gödel. Concerning the first point
we are indebted to Ori Simchen for helpful suggestions. Concerning the second, see Irvine (1989). Rodych
examines whether Gödel’s Platonic ontology is reconcilable with his pragmatic epistemology.
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what their interests are and what they are capable of. If logic is to deal with
reasoning that advances (or retards) an agent’s cognitive agenda, it is neces-
sary that it take note of what the agenda is and how it relates to the agent’s
wherewithal for advancing it. Any such observation will be incomplete until it
is buttressed by an appreciation of the general conditions under which an agent
achieves epistemic fulfillment.

If we re-examine various of the conceptual skeins of the new logic, espe-
cially in its emphases on defeasibility, non-monotonicity and defaultedness, it
can be seen that at present the dominant epistemological presumption is falli-
bilism. Fallibilism is expressly endorsed in the present authors’ multi-volume
work, A Practical Logic of Cognitive Systems.14 In the present chapter we re-
establish that commitment. The idea that real-life cognizers are fallible agents
has a certain clear attraction. It expressly embeds the idea of error or mistake,
surely not an irrelevant circumstance for anyone writing about fallacies.

4.9 Fallibilism
Fallibilism is a philosophical thesis about error. Since fallacies are errors, it

might well be expected that the philosophical thesis that fallibilism is would
afford us some insight into the kind of error that fallacy is. Needless to say, the
fruitfulness of the connection cannot be guaranteed in advance. It may turn out
that there is less to it than we might have supposed. It cannot even be ruled out
that there is nothing to it. But if that were so, it would be very odd; it would
call out for an explanation.

In its most interesting form, fallibilism is a normative claim. It holds that

Proposition 8 (Fallibilism).
(i) Not only do actual agents sometimes make errors; but
(ii) even when operating at optimal levels occasional error is unavoidable;

and yet
(iii) it is wholly rational for a real-world cognitive agent to deploy cognitive

strategies (including the adoption of rules of inference) that he (or it) knows in
advance will on occasion lead him (or it) into error.

Examples abound. Deductive rules can lead us to false conclusions; induc-
tive strategies can induce the acceptance of defective generalizations; abductive
reasoning embodies the risk that attends conjecture; and on and on.

Clause (iii) encompasses two quite distinct notions of error; it is important
to give each its due. To mark this difference it helps to take note of another one.
It is the contrast between

14Of which volume 1 is Gabbay and Woods (2003a) and volume 2 is Gabbay and Woods (2005). Additional
volumes will appear in due course.
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(a) Error-elimination strategies

and

(b) Error-susceptible strategies

A good example of an error-susceptible strategy is a default inference from
generic premisses. As we have said, a generic claim is a form of general propo-
sition that remains true in the face of (certain classes) of true negative instances.
Since a default is a conclusion of an inference in which the “major” premiss
is generic, it imbibes this same feature, but in a particular way. Though some
classes of negative instances of a true generic claim, Fs G, are also true, it is
not an error to claim that Fs G, and it is not inconsistent to say that although
some Fs don’t G, Fs nevertheless G. But given that Fs do indeed G and that
this is an F, we have it as a default that this Gs. The genericity of “Fs G”
allows that “This F Gs” is false. If so, then the default that is our conclusion
in this case is an error. This is important. Although, as we have it here, the
premisses of the default inference are error-free, and the inference in question
is correct, the inference is not of a kind as to preserve freedom from error. So
in the absence of information to the contrary,

Proposition 9 (Default inference). It is reasonable to infer a default from a set
of premisses, of which the major is a generic claim and the default an instance
of it, notwithstanding that such inferences are not error-avoidance preserving,
and that the reasoner is aware of this.

4.10 Errors of logic
Standard approaches to deductive and inductive logic are wholly concerned

with error-elimination strategies. If, as in the case of deductive logic, the error
to avoid is invalidity,15 that error is voided whenever the deductive protocols
are applied properly. If, as in the case of inductive logic, the error to avoid is
inductive weakness, that error is avoided whenever the probability rules are ap-
plied properly. This carries the suggestion that no such error is possible for any
agent who deploys the requisite protocols correctly. Category (b) is different.
Its protocols include those for generic inference, as well as various procedures
for presumptive and default reasoning. Even if perfectly applied it cannot be
guaranteed that they will hit their respective targets. They are, therefore, error-
susceptible protocols. This bears on fallibilism in a twofold way. It provides
that

(iv) Actual agents are prone (and know it) to applying both error-elimination
and error-susceptible strategies incorrectly.

15For ease of exposition, we allow invalidity to stand in for the others: inconsistency and logical falsehood.
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and it reminds us that

(v) It is insufficient for the cognitive agendas that agents actually have to
deploy only strategies of type (a).

Accordingly, not only are actual agents destined to make application errors,
they are also drawn to the use of strategies whose entirely correct application
embodies the occasion of error; in other words, they are also prone to suscep-
tibility errors.

It lies at the heart of the present conception of fallibilism that errors cannot
be simply “wrong answers”. In an extended sense, this is precisely the view
that prevails in the error-avoidance precincts of standard logic. It allows us to
characterize an argument (i.e., a sequence of propositions) as erroneous simply
when it fails to be valid. It allows us to characterize an argument as erroneous
simply when it fails to achieve a certain degree of inductive strength. This is
plainly not the sense of error that fallibilism seeks to make something of, for
then a considerable abundance of perfectly reasonable inferences would have
to be classified as errors. What makes this so is that the great percentage of
reasonable inferences actually drawn by real-life agents are neither valid (in
the sense of deductive logic) nor inductively strong (in the sense of the calculus
of probability).

What these conceptions of error lack is an aspect central to the fallibilist ap-
proach to the matter. It is the factor of illusion, inapparency or agent-
unawareness. Accordingly,

Proposition 10 (Inapparency). It is fundamental to the conception of error that
an error is a failure or a defect of which its committor is unaware.

This, to be sure, is the common meaning of the term, as with its near-
synonym “mistake”. It is a conception that might well irritate those who believe
that logic has no business investigating states of mind, but it can hardly be re-
fused by a logic in which a central parameter is the real-life agent. Real-life
agents come equipped with states of mind, like it or not. The idea of error as
inapparent defectiveness is as old as logic itself. Aristotle expressly advances
the notion in On Sophistical Refutations. He called them fallacies.

Aristotle held that the most general thing to be said about a fallacy is that it
is an argument that appears to have a certain property which in fact does not
have it. In On Sophistical Refutations, Aristotle was more narrowly focused.
He wanted to characterize a certain kind of argument in which the notion of
syllogism plays an integral role. Aristotle defined a refutation as a syllogism
whose conclusion contradicts an opponent’s thesis and whose premisses are
drawn exclusively from the opponent’s own concessions. Accordingly, a so-
phistical refutation is an argument thus conceived that seems to be a syllogism
but it isn’t.
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In one of his first tasks as a logician, the founder of logic draws our attention
to this phenomenon of false inapparency. In one place, he tells us that it is
“the death of argument” (Woods, 2004, Prologue). On Sophistical Refutations
takes up the task of classifying these bad arguments. Aristotle’s list runs to
thirteen, though there is reason to believe that he didn’t think this an exhaustive
inventory. Many pages of this little treatise are given over to brief examinations
of where the fault of these bad arguments precisely lies. But no one, least of all
Aristotle, thinks that these diagnoses are complete.

It is well to note that in On Sophistical Refutations comes close to sharing an
assumption with modern formal logic. This is the assumption that the notion of
error that these logics adumbrate is one of deductive insufficiency. In the case
of modern logic, it is invalidity pure and simple. In the case of Aristotle, it is
either invalidity pure and simple or the failure of one or other of the further
conditions that Aristotle places on syllogisms. In other words, it is the error of
syllogistic invalidity. When one tests this nearly-enough common assumption
against actual argumentative practice, it is easy to see that there is something
wrong with it. Taking modern logic as our example (it easily extends to fit the
syllogistic case), it is no secret that validity is hardly ever an agent’s cognitive
target. Even in those relatively isolated instances in which a logician wants
to know whether an argument is valid, producing an argument that is valid is
neither necessary nor sufficient for the attainment of that target. To illustrate:

1. If an agent X wants to know whether 〈{P1, . . . , Pn},Q〉 is valid, then pro-
ducing the valid argument 〈{P}, P〉 doesn’t hit that target.

2. Neither is it hit just by producing the very argument 〈{P1, . . . , Pn},Q〉
(assuming it to be valid); for X may not know that it is valid.

3. X might hit the target by checking the Answers section in a logic text-
book. But then he hasn’t himself produced anything that is valid, and the
answer itself might well consist of the single word “Valid”.

Beyond these comparatively rare cases, an agent’s cognitive target is not
aimed at validity, even though validity may be the requisite standard that the
attainment of that target may require. If an agent desires a proof of a propo-
sition he will fail unless his reasoning meets the requisite standards, of which
validity is one. Clearly, then, one’s cognitive target might well be such that it
will not be attained unless the validity standard is met. But it is misleading to
say that validity is itself the agent’s target.

Although the validity standard is sometimes necessary for target attainment,
most cognitive targets neither require nor are advanced by fulfillment of the va-
lidity standard. We have it then, that invalidity is not, just so, an error, notwith-
standing our assumption paragraphs ago that if modern logic had a concept of
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error, it could only be invalidity. Invalidity is an error only in relation to cog-
nitive targets for whose attainment the validity standard applies. In so saying,
it may occur to us that this is not, in fact, contradicted by the presumptions of
modern logic. Whatever its targets, mainstream deductive logic makes it a con-
dition of attainment that the validity standard be met. If this is so, it is largely
implicit. It is not much talked about by logicians.

Suppose that we were satisfied with the suggestion that the targets that (how-
ever tacitly) call for deductive reasoning require that the validity standard be
met. This would be a good place to call attention to an impressive omission.

Proposition 11 (Accounting for error). Standard deductive logics embed a
notion of error, but no such system gives an account of it.

Why would this be so? Two reasons stand out. One is that, in its subscrip-
tion to formal languages, standard systems of deductive logic seek to elimi-
nate the linguistic confusions that give rise to fallacies (Frege, 1879; Peirce,
1992; Tarski, 1956; Quine, 1970). The other is that, in as much as deductive
logic lacks the capacity to produce a formal theory of invalidity for natural
languages, it may be thought that the concept of error lies beyond logic’s the-
oretical embrace (Johnson, 1967; Massey, 1981). We take up these issues in
(Gabbay and Woods, 2009).

Targets carry standards for their attainment. Something is an error if it fails
to meet the required standard. Again, not just any valid argument will meet
the validity standard of every cognitive target that embeds a validity standard.
Speaking this way relativizes standards to targets and imposes the same rela-
tivity on the concept of error. One can only wonder whether these things might
not be subject to further relativities. The answer is that they are.

An agent might wish to know the proof of the completeness of formal arith-
metic. If so, he would have made an error. His target is defective in a quite
particular way; it embodies a false presupposition. An agent might set himself
the target of acquiring a Ph.D. in quantum computation. But if he is 92 years of
age, a high school drop-out, and possessed of a modest I.Q., he too has made
a mistake. It is not that the target of getting a Ph.D. in quantum computation
is impossible to attain, but rather that it is impossible for him to attain. It was
the wrong thing to aim for, given this agent’s cognitive resources. Here, then,
is another pair of factors that bear on the issue of error.

Proposition 12 (Error relativity). Something may be an error in relation to the
standards required for target attainment, in relation to the legitimacy of the
target itself, or in relation to the agent’s cognitive wherewithal for attaining it.
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4.11 Parameters of the subpar
Let us tarry awhile with this idea of subpar cognitive performance. So again

we ask: What is it to judge that someone’s cognitive conduct is not up to snuff?
It is to find fault with the action in the light of various criterial considerations.
As we saw, one is what the agent’s target is. Another is the standard that he
needs to hit for that goal to be attained; in other words, the agent’s means to
that end. A third factor in judging an agent’s cognitive performance is his gen-
eral competence. In mentioning it, we reveal an interest in determining whether
this is a goal whose satisfaction by hitting that standard is something that he
is able to do. A fourth consideration has to do with collateral considerations.
An agent may have the general capacity to achieve a certain goal in a cer-
tain way, but, owing to present particularities, not be able to achieve it or to
achieve it in that way. In citing this factor, we are recognizing the importance,
beyond general competence and means-end adroitness, of cognitive resource-
contingencies such as (again) information, time and computational capacity.

Jointly, these factors give a blueprint of an agent’s performance of a cogni-
tive task. A cognitive target T is either attainable or not. (A proof of Fermat’s
Last Theorem is attainable; a proof of the joint consistency and completeness
of Peano-arithmetic is not.) If a goal is attainable, then for any agent X, it
falls within X’s general competence or not. (A proof of the completeness of
modal logic was within Ruth Barcan’s reach but not, we may suppose, Hannah
Arendt’s.) If X has an attainable goal that lies within her general competence,
the means she selects (or the standard she sets) may be appropriate for that
goal or not. If, for example, X undertakes to show for some proposition P that
P is something that might reasonably be believed, her standard may include
an argument for P that meets the standard of validity. In her quest to justify
a belief in P in this way, X would be at risk for two performance errors. Ei-
ther validity may be an inappropriate way of achieving this goal, or it may be
appropriate but beyond X’s reach. X might not know how to construct valid
arguments (perhaps she is a struggling student of First Year logic). If X has an
attainable goal that is within her general competence, for which an appropriate
means S is also within her grasp, X may lack additional resources R neces-
sary for the completion of her task. She might not have information enough to
command the desired means; or she may lack the time to achieve her objective
in this way; or she may lack the computational power to do the calculations
that her task requires of her. Alternatively, given the comparative scantness of
such resources for real-life individuals in actual situations of cognitive effort,
an agent may simply lack the means of achieving the goal. If, again, an agent’s
goal is to show that it is reasonable to believe that P, she may decide that an
axiomatic proof of P is not a means for which she is adequately resourced at
present; and she might try instead for a conditional proof relative to what is
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widely held by experts (wherewith the potential for ad verecundiam error may
present itself).

We may say, then, that

Proposition 13 (Further relativities). There are several basic ways in which
an agent X’s cognitive performance can go wrong:

1. X might set himself a simply unattainable target T .

2. X might set himself an attainable T that is not within his general com-
petence.

3. X may set himself an attainable T for which he is generally competent,
but his selected means (or goal-realization standard) S is either beyond
his reach or inappropriate to the task at hand.

4. X may set himself an attainable T for which he is generally competent
and set himself an appropriate S that lies within his reach, and yet he
might lack necessary collateral resources R.

When this last condition is met, we shall say that T is an attainable goal for
which X is generally competent, that S is a realizable and appropriate means
for X to set in relation to T , but that for lack of such things as information, time
and fire-power, T sets a task that is too big for X.

Ed Koch, on his walking tours of New York when he was mayor, famously
would ask, “How am I doing?” We daresay in inviting this assessment of his
performance as chief magistrate, he was unaware of all the details of the tem-
plate that structures a fair response. It is a template that calls for the assessment
in terms of T , S , R. These are the structural elements necessary for a finding
of “subpar” with respect to the ranges of cognitive performance that draw the
attention of fallacy theorists. They apply to Ed Koch. And they apply to the
rest of us as well.

4.12 Ought and can
No practical agent can be faulted for mismanaging a cognitive task that is

too big for him, although he might well bear some responsibility for having
acquiesced to such a task. Whatever we say about such (mis)performances,
they are not fallacious. In some sense, a principle of “ought”-implies-“can” is
at work here. There is, however, a certain confusion that we should try to avoid.
In saying that a better performance is not possible for agents of type so-and-so,
it is not always required that we deny its betterness. It is required only that
we resist the inference that a possible performance that is less than better for
agents of this type is subpar for them.

There is in these reflections occasion to consider a sister principle to
“ought”-implies-“can”. We could call it “can”-doesn’t-imply-“ought”; it has
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the virtue of being in general even more obviously true than its kin. It is
not, however, trivially or vacuously true; for especially in enquiries into hu-
man cognitive performance, exceptions to it are expressly countenanced, some
having the status of scientific postulates. In any account of human practice
in which optimization is held to trump satisficization, and it is also assumed
that it is always better to do one’s best, that “can”-doesn’t-imply-“ought” is
conspicuously disregarded. Variations of its opposite, “can”-implies-“ought”
flourish in standard accounts of belief dynamics and rational decision-making
(Alchourron et al., 1985; Raiffa, 1968). However, it is well-attested in actual
practice that practical reasoners often saticifice rather than optimize, even when
optimization is available to them as an achievable goal. In such practice there
is an important reciprocity between targets and standards. What a cognizer
needs to know and how he sets about to know it is a matter of what the knowl-
edge is wanted for. Peirce once quipped that we know who our parents are by
hearsay. Given the documentary thoroughness of modern life, to say nothing
of the identificatory capacities of DNA technology, one could know more of
one’s parentage—and know it more strictly—than the run-of the-mill offspring
has (as the saying goes) “time for”. It is not that this larger and more strictly
realized knowledge exceeds his reach. In the general case it exceeds his cogni-
tive goal (to know whom to call “Mum” and “Dad”) and imposes a cognitive
standard that he has no need of. For ranges of cases, “can” clearly does not
imply “ought”. When an agent pursues a target or a standard, or both, that is
bigger than it need be, we shall say that their pursuit by that agent is a case of
overkill.

Before leaving the suggestion that a version of “ought”-implies-“can” holds
for the assessment of cognitive performance, care needs to be taken not to
trample on the latitude underwritten by fallibilism. If fallibilism provides that
there are cognitive procedures that it is rational to execute even in the knowl-
edge that they are virtually certain to lead one to occasional error, and if it also
holds that there is a sense in which such procedures can’t be abandoned, then
fallibilism allows for a conception of error that a reasoner can’t help commit-
ting or can’t help committing without cost to his procedural rationality. So we
must not allow the sense in which “ought” implies “can” to trespass on this
provision.

Consider now a real-life individual who has set himself the task of ad-
vancing his cognitive agendas—of living his cognitive life—on the model of
NASA. Given his resources and the loftiness of his cognitive ambitions, his
cognitive life is a guaranteed disaster. Cognizing on the model of NASA is too
big a task for any individual. In one sense, it is quite right to “forgive” X his
cognitive failures. One can’t be expected to achieve what one hasn’t the means
of achieving. Even so, X didn’t have to set his targets so high. It was well within
his power to select his targets with a view to his ability to meet them. If this is
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so, his massive failures are subject to disapproval of higher order. They were
the inevitable outcome of unrealistic targets that he needn’t (and shouldn’t)
have pledged to.

Be that as it may be, there still remains the utterly central question of whe-
ther, and to what extent, an agent—any agent of whatever type—can be held
responsible for an error, given that an error is something that he cannot, then
and there, see as such. Take a case. Let X now set his targets more realistically.
Let us say that they are of a type for which he has the requisite competence
and the necessary resources. They are not too big for him. Even so, we have
it by the very idea of error that if X errs in his quest to attain T , his error is
something inapparent to him. And we have it by the meaning of fallibilism that
the best that is in X rationally to do involves him in cognitive procedures that
will on occasion expose him to error, that X knows this; and that knowing it
is no affront to his reasonableness in retaining those very procedures. Against
this, there is a strong disposition to find fault with at least those errors that have
acquired membership in GOE. As Douglas Walton has it, attributing such an
error to X is one of the harshest criticisms that can be leveled at X’s perfor-
mance (Walton, 1995). The literature also embeds the widely-held view that
fallacies are errors of a kind made avoidable by due care. But, as we see, nei-
ther of these views rests well with any view on which errors are undetectable,
especially when such a view is embedded in a fallibilist epistemology.

4.13 Inapparency
On the face of it, a theory of fallacy has a twofold task. Since a fallacy is an

error, a theory of fallaciousness should embed an account of error. Since a fal-
lacy is an inapparent error, a theory of fallaciousness should contain an account
of the factor of inapparency. There is, to be sure, an element of redundancy in
putting it this way, since inapparency is intrinsic to error. Accordingly, a the-
ory of error would also have the task of dealing with inapparency. But there
is no harm in listing the inapparency requirement as a separate theoretical re-
sponsibility, if only to lend it an emphasis to which the literature is largely
inattentive.

Inapparency, then, is intrinsic to error. In committing an error, there is some-
thing its committor has over-looked, something that he has failed to see. It
bears on this that in its most common meaning a fallacy is a “common mis-
conception”, a belief which, although false, is widely and confidently held. It
is an attractive belief whose falsity has escaped the committor’s attention. The
psychological literature draws a useful distinction between performance and
competence errors. A performance error arises from contingent factors such as
fatigue, intoxication or intention. Competence errors spring from more struc-
turally embedded kinds of inability. If a good night’s sleep might arouse a
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reasoner from yesterday’s performance errors, it will do him no good on the
score of incompetence. These are transgressions whose avoidance exceeds the
very design of the committor’s cognitive wherewithal. A particularly good ex-
ample of a competence error is one that arises in the treatment of a problem
whose solution requires an effort that exceeds the computational capacity of the
type of agent in question. Competence errors are not, however, a particularly
good example of the sort of inapparent misstep we are currently discussing.
The reason for this is that

Proposition 14 (Abiding competence). It is a compensation strategy among
beings like us to tend to avoid the employment of cognitive protocols that ex-
ceed their competence.

A case in point: An exhaustive check of our present web of belief for truth
functional consistency would involve us in a computational explosion vastly
beyond the reach of what we are built for. But there isn’t the slightest empirical
evidence that, when beings like us do attempt to reconcile their beliefs to some
standard of consistency, this involves anything like even an exhaustive search.

A further locus of inapparency has been held to be the argument (or piece
of reasoning) itself. So seen, an argument (or inference) that we erroneously
pledge to (or erroneously draw) is one whose defectiveness is inapparent even
to a well-rested and competent cognitive agent, arising from a kind of camou-
flage or disguise. Needless to say, these are rather anthropomorphic metaphors,
having a more literal application in cases of an interlocutor’s intention to de-
ceive his opponent. But the factor of disguise is, on this view, lodged not in
the committor’s malign intention but rather in his warp and woof of argument
or inference. Of the many theorists who subscribe to such a view, perhaps it is
Lawrence Powers who puts the point most clearly:

Proposition 15 (Powers’ inapparency principle). The false inapparency of an
erroneous argument or inference is an objective feature of the argument or
inference, rather than an interactive feature of them with a cognitive agent
(Powers, 1995).

We leave it to Powers to identify those objective features. We ourselves are
minded to look elsewhere—to the very structure of cognition itself—for an
especially important and, in its way, objective, locus of false inapparency.

Let us observe that in one of its most common meanings the word “believe”
(and its cognates) admits of a striking first-third person asymmetry. On this
usage, when Y says of X that X believes that p, X would say of himself that p.
Legions of philosophers have been right to observe that self -ascription of belief
constitute a kind of attenuated or qualified subscription to the proposition at
hand. But in the present meaning of the term, the other-ascriptions of a belief
that p leave it entirely open that the person to whom the belief is attributed
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holds to p (and is right to) assertively and without qualification. Accordingly,
for the sense of “believes” in question,

Proposition 16 (Belief as knowledge-claim). Whenever it is true for Y to say
of X that X believes that p, it is true that X takes himself as knowing p to be
true.

Proposition 16 is a blindspot context (Sorensen, 1988). Whenever it is true
for Y to say of X that X believes that p, then for X to say of himself

p, and I believe p

would constitute a blind-spot. That is to say, in the absence of further infor-
mation, any person to whom the bulleted admission were directed would lack
the means to ascertain just what the utterer’s epistemic state toward p has been
claimed to be. Is the utterer saying that he knows that p? Or is he saying that
he (merely) thinks that p?

Consider now an agent X’s cognitive target K. Suppose that K is such as
to be attainable only when X is in an epistemic state k. Let k be the state in
which it is true to say that X knows that p. X’s target T is occasion of a kind of
cognitive irritation.16 X is so constituted and so related to T that he aspires to
be in a state in which the irritation is relieved.17 We have known at least since
the presocratics that although being in k is the state that X is required to be in
for T to be attained, it is not required for X’s cognitive irritation to be relieved.
Irritation-relief is one thing. Cognitive attainment is another. From the third-
person perspective, this is not a difficult contrast to command. But from the
first-person perspective, it is a contrast that collapses, and is recoverable if at
all only in the person’s own reflective aftermath. When that reflective aftermath
is at hand, the first-person can now say what the third-person could have said
all along: X only believed that p, rather than knowing it. We have it, then, that
when X is in a state of belief that relieves the cognitive irritation occasioned
by T , he is in a state which he takes to constitute attainment of T . Not only is
that state, b, not the same as k, but X’s being in k, carries no phenomenological
markers over and above those carried by b. Accordingly,

Proposition 17 (Phenomenologically structured inapparency). By the phenom-
enological structure of individual cognitive agency, the difference between be-
ing in b and being in k is phenomenologically inapparent. So where one indeed
is not in k, being in b disguises that fact.

16We must take care with the metaphor of irritation. Not every irritation of the human system that is put right
by the requisite causal adjustments is something the human agent is either conscious of or openly desirous
of remedying. Given that cognition can be so deeply implicit, we require the same latitude be extended to
the idea of cognitive irritants.
17Such aspirations flow from what St. Augustine calls “the eros of the mind”. In Gabbay and Woods (2005)
it is called “cognitive yearning”.
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If this is right, then the capacity for, indeed the likelihood of, false apparency
is structured by the phenomenology of cognitive states. For one thing, it seems
not so much to be a property of a given argument or a given piece of reasoning,
but rather a factor intrinsic to the possession of b-states in relation to T ’s that
call for attainment by way of k-states. It bears repeating that cognitive relief is
not, just so, cognitive attainment; it is rather the appearance of it. Certainly in
our disposition to confuse relief with attainment, there need be not the slightest
hint of fatigue or intoxication. In other words, our present confusion seems not
to be, or to arise from, performance errors. Given that such confusions appear
to be intrinsic to the phenomenological structure of cognitive states, it lies more
in the ambit of the competence error, hence reflective of an objective fact about
how individually cognitive agents are constructed.

4.14 Valuing validity and inductive strength
Let there be no doubt, when truth-preservation is indeed an agent’s cognitive

target, validity is a necessary part of the standard for its attainment. However
since truth-preservation does not, just so, guarantee the proof of anything,18

truth-preservation rarely achieves the status of cognitive target, and rightly.
In realistic settings, truth-preservation is itself valued not as a target but as a
standard. In other words, in realistic settings, truth-preservation and validity
are the same standard.

Valuable though it is in some settings, it is easy to think too much of validity;
at least this is so when validity is monotonic. Let T be a target that calls for
a valid argument. Let V be such an argument. Let K be a proposition that
contradicts V’s conclusion and is not in V’s premiss-set. Let us also put it that
the discovery of K is a huge surprise for X. Let V∗ arise from V by addition of
K as premiss. Since V is valid, so is V∗. But it is clear that although V∗ is valid,
it is not of the slightest use to X. It is not of the slightest use notwithstanding
that it is a valid argument retaining all the premisses of V , which, until the
discovery of K, we may suppose to have been of considerable use to X. For it
was a valid argument none of whose premisses is a proposition that X then had
any reason to doubt. What we see, then, is that validity-preservation is not a
realistic standard even for targets for which validity is a necessary standard.

Validity is unresponsive to new information. In this respect, it is natural to
suppose that inductive strength is the more useful standard. Its usefulness is
a matter of its non-monotonicity. Its non-monotonicity makes it responsive to
new information. This is true but not especially availing. Let I be an argument
whose conclusion C has a requisite degree of conditional probability given its

18Save for the corresponding conditional of the argument that the target’s attainment standard requires to be
valid.
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premisses P1, . . . , Pn. I is an inductively strong argument. Suppose now that K
is new information that falsifies C. Since K is new, it is not in I’s premiss-set.
Let I∗ arise from I by addition of K as premiss. Notwithstanding that I is in-
ductively strong, I∗ is inductively impotent. It is clear that, even though new
information can collapse inductive strength, there is an inductively strong ar-
gument available to X that is wholly untouched by the new information. This
is argument I, and the reason that it is wholly untouched by K is that K is not
in its premiss-set. What this tells us is that, even where inductive strength is
part of a target’s attainment standard, it is a smaller part than might have been
supposed. As we now see, validity-preservation is not part of the standard of
any target whose attainment calls for validity. The reason for this is that va-
lidity provides it automatically. Validity-preservation is a free-rider. But with
induction we may say that the reverse is true. That is to say, given any target
for which inductive strength is part of the attainment standard, preservation of
inductive strength in the face of new information is also a requirement. It is
easy to see that this latter imposes on an agent’s inductive targets the weight-
ier requirement that the inductions be made from up-to-date information, i.e.,
that they not admit any information that collapses inductive strength. In the in-
ductive cases, falsifying new information matters inductively. In the deductive
cases, falsifying new information does not matter deductively. In both cases,
however, what matters more is the state of the information from which conclu-
sions are drawn.

PART II: FALLACIOUS COGNITIVE VIRTUES

This would be a good place to restate our principal theses about the fallacies.

Proposition 18 (The no-fallacy thesis). Not all of the Gang of Eighteen are
fallacies. Those that are are not characteristically committed by beings like us.

Proposition 19 (The cognitive virtue thesis). Several of the Gang of Eighteen
are cognitively virtuous scant-resource compensation strategies.

In what remains of this essay, we shall attempt to vindicate these claims as
they apply to hasty generalization.

Limiting the defence to just one might well strike the reader as favouring
our cause with an artificially small sample. But the reason is the want of space.

4.15 Hasty generalization
Hasty generalization, also known as thin-slicing,19 is an error when com-

mitted in response to a cognitive target T , whose attainment embeds the stan-
dard S of inductive strength. For example, T might be the goal of reaching a

19See Ambady and Rosenthal (1993) and Carrere and Gottman (1999).
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generalization about some subject with scientific accuracy. In that case, it is
reasonable to require that his (or its) reasoning rise to the standard of inductive
strength. It is easy to see that it is comparatively rare for individual agents to
set targets of such loftiness. If an agent is part of a drug assessment team for
Health Canada, we would certainly expect him and his colleagues to set them-
selves such a T and bind themselves to such an S . But an indication of how
comparatively rare this, even for this individual, is the comparatively generous
command he enjoys of Health Canada’s resources for T—time, information,
computational power, money, infrastructural and cultural encouragement, and
so on. To the extent that this is so, this person and his mates are not acting
as practical agents. They have teamed together and they have attracted levels
of support in ways that give their efforts the kick of theoretical agency. Most
practical agents lack the rudiments of scientific method, whether knowledge of
how to compose a stratified random sample or of how to calculate even low-
level conditional probabilities. What is more, if they did know, it would in very
large ranges of cases be beyond what they had either time or computational
capacity for (Harman, 1986). There is a widely received view that all of this is
true but beside the point. For even practical agents (it is said), limitations and
all, are performing at their ampliative best when they strain against these limits
and approximate to the behaviour called for by the methods of science.

This, of course, is scientism. Saying so doesn’t take us much beyond name-
calling. So something further must be said against the view that in matters am-
pliative it is best to conform one’s reasoning to the requirements of induction.
In preceding sections, we have given out part of what we take to be the cor-
rect treatment of hasty generalization. We have seen that when one generalizes
hastily, one often generalizes to a generic proposition rather than to a univer-
sally quantified conditional proposition (full-bore Hempelian generalizations,
as we called them). One of the chief virtues of proceeding in this way is that
even when as instantiated default is false, it is necessary to forgo the instanti-
ation but not to repair the generic generalization whence it sprang. There is a
considerable economy in this, needless to say; and that alone vests it with an
attractive advantage. A further point of importance—perhaps the fact of dom-
inating significance here—is that even when we seek the lofty goals of scien-
tifically pure induction, we tend to generalize hastily. In beings like us, hasty
generalization is as natural as breathing. The compliant scientific methodist
must struggle to stifle what his cognitive nature has already made him believe.
Doing so takes effort (and often time); so costs are necessarily levied.

Generic summations do not exhaust the class of non-universal generaliza-
tions. Normalic generalizations, of which statistical generalizations are a
particular case, also figure prominently in ampliative reasoning. Normalic gen-
eralizations are generalizations about what is the case nearly always, or for
the most part. There is a use of the word “normally” which is a synonym of
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“usually”, which our term “normalic” draws upon. Unlike generic generaliza-
tions, normalic generalizations embed quantifiers. This is not everyone’s un-
derstanding of genericity. But in light of the fact that some claims of the form
“Fs G” are true and “Most Fs are G” is false (Carlson and Pelletier, 1995),
we think it the correct understanding. Genericizations lack a quantificational
organization precisely where normalic generalizations have it essentially. It is
an important structural difference, carrying interesting semantic consequences.
Whereas “This F doesn’t G” can be true without “Fs G” ceasing to be true, it
remains the case that “This F doesn’t G” is a negative instance of “Fs G”, al-
beit a true one. Yet “This F doesn’t G” doesn’t come close to being a negative
instance of “Nearly all Fs G”. How to fill in these semantic differences is still
an open question in the logic of general propositions. Interesting and important
though the question is, we shall not press it here. It suffices to note that

Proposition 20 (Variable generality). Thin-slicing carries no intrinsic tie to
types of generalization.

Accordingly, one may hastily generalize to Hempelian generalizations, ge-
neric generalizations and normalic generalizations. We have pointed out the ad-
vantages of genericizing over Hempelianizing. Like advantages attach to nor-
malicizing rather than Hempelianizing. In each case, the truth of propositions
in the form “This F doesn’t G” needn’t disturb the truth of the respectively
generalization. This leaves the question as to what would differentially moti-
vate generic and normalic thin-slicing. The answer, broadly speaking, hinges
on the element of defectiveness. Negative instances of generic thin-slicing are
in some or other way defective cases of the subject term. There is no such
assumption to be made in the case of normalic thin-slicing.

Normalic thin-slicing is but one example of judgements of non-universal
quantification. If we allow that “Nearly all” as a quantifier, “Hardly any” can-
not be denied the same recognition. The difference between “Nearly all” and
“Hardly any” mimics the difference between “n% of” and m% of”, where n is
quite large and m is quite small. So statistical projections also have the general
character of non-universal quantification.

We see in these similarities and differences an important moral.

Proposition 21 (Low non-universality). “Fs are hardly ever G” is as much a
case of thin-slicing as is “Fs are G” or “Fs are nearly always G” when drawn
from a small (enough) sample.

Thin-slicing is largely automatic. To a considerable extent, it is part of what
goes on down below. Hasty generalization is also a belief-forming device; and,
as we have seen, belief from the inside perspective manifests itself as knowl-
edge. This would be an epistemic disaster if the hasty generalizations we ac-
tually are drawn to make were always or frequently mistaken. If so, we would
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be massively mistaken in what we are induced to think that we know. What is
so striking about hasty generalizations, as they are drawn in real life by beings
like us, is that they are by and large right, or right enough to allow us to survive
and prosper, to contribute to the replication of our cognitive devices in the hu-
man descendent class, and occasionally to build great civilizations. So we may
say that

Proposition 22 (The naturalness of hasty generalization). The hasty general-
izations actually drawn by practical agents are cheap, irresistible and typically
accurate enough to fulfil our interests.

We may hypothesize that the capacity for generally accurate generaliza-
tional haste is something that is hard-wired into beings like us, or that, in any
event, it is so primitive a skill that it must have been part of the yield of our
earliest learning. It doesn’t matter. Once the human individual is past his early
infancy, his life is saturated with generalizations that are both hasty and accu-
rate, and, when not accurate, efficiently corrigible. It is tempting to speculate
that it all springs from the mechanisms of flight and fight. Perhaps this is so.
But, again, what matters for the logicians are not the causes of such haste, but
the cognitive utilities of it.

For this unfolding apologia to be defensible, it must be the case that

Proposition 23 (Practicality and haste). The extent to which an agent is oper-
ating practically, is not by and large appropriate that his targets be such as to
impose the standard of inductive strength.

Let us pause to consider the view that we are trying to dispel.

1. Cognitive rationality is the system of thought prescribed by the deductive
and inductive logic and decision theory.

2. Human beings are naturally so constituted that they think in ways that
closely approximate to the canons prescribed by these systems.

3. Accordingly, a theory of rationality should provide an account of how the
state of affairs stated by (2) came to mirror the norm expressed by (1).

Our position is that the norm embodied in (1) is no norm and the fact ex-
pressed by (2) is no fact.20 If we want to be right in our rejection of the norm
purported by (1), we must discourage the idea that beliefs sanctioned by the
standard of inductive strength constitute a kind of global maximum. But, as
we have already pointed out, there are reasons to doubt any such claim. Unlike

20Matthen shares our scepticism about (2). He is rather more equivocal about (1). See Matthen (2002,
Section 6).



D.M. Gabbay and J. Woods 87

(classical) validity, which is wholly impervious to new information, inductive
strength is a veritable sitting duck. We can see this in an especially dramatic
way when C is a generalization and E is a sample. Like the universally quan-
tified conditional construal of generality, the property of inductive strength is
highly brittle. Let a given such argument be as inductively strong as may be.
If the next bit of information is a counterexample N to C, the original argu-
ment remains inductively strong and the result of supplementing its premisses
by addition of N is an inductive disaster. What this shows is that the inductive
strength of the original argument was no reason to think well of it, whereas the
catastrophe engineered by the present argument invests over-heavily in free-
dom from counterexample in inductive contexts. Thus the norm embodied in
(1) can’t be relied upon unless accompanied by reasonable assurances of the
non-existence of counterexamples. But this asks more from ampliative reason-
ing than it can possibly be expected to provide.

It is instructive to compare ampliative reasoning in an individual’s hands
and in NASA’s. NASA’s targets are such that it must pay for its counterexam-
ples with disasters. When an N comes along that topples a C, all bets are off
until, with considerable elaboration, C is reframed so as to tolerate N or N is
reformulated to take the pressure off C, or C is abandoned and hopes for a hap-
pier successor are launched. In actual practice, these accommodations are often
very difficult and very expensive. Individuals by and large simply aren’t up to
these levels of disaster-management. Accordingly, individuals do not typically
repose their ampliative burdens on so fickle a standard as inductive strength.
Rather they show their fondness for genericity and the like, which in turn is an
invitation to make do with small samples. This makes a nonsense of inductive
strength, needless to say. But it gives the practical reasoner a form of amplia-
tion that serves him well and that he can afford. For, again, he is not typically
wrong in the generic claims he wrests from small samples with such haste; and
when he is wrong, i.e., when a true negative instance N does present itself, he
is not, just so, faced with the burden and the cost of repairing C. As we said, C
is elastic; it can remain true in the face of true negative instances.

4.16 Risk aversion
Hasty generalization genericizes or quantifies from small samples. Doing so

would clearly be defective if the samples in question were unrepresentative. In
the literature on inductive logic, it is common to require of an agent that, before
he generalizes from a sample, he check it for, or otherwise assure himself of,
its representativeness. This is true but unhelpful. In generalizing from a small
sample, a reasoner implies that the sample is representative. To make it a con-
dition on such generalizations that they be grounded in the conviction that the
sample is representative is to require him to withhold his generalization until
he thinks that he has reason to think it correct.
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What counts here is that thin-slicers—that is, all of us—are adept at dis-
cerning representative samples among the very small. We have already made
the point that our facility with sample representativeness is linked to our fa-
cility with natural kinds. Doubtless this is so, but it doesn’t amount to much
of an explanation. Better that we explore the link with our danger-recognition
capacities. Hard-wired or not, one of the most primitive and successful of an
individual agent’s endowments is the wherewithal for the timely recognition of
danger even in the face of utterly scant evidence of it. The attendant protocols
of risk aversion are concomitantly conservative. They risk the effort of unnec-
essary evasions for the advantage of securing against the greater liabilities that
attach to the contrary. The flight-fight mechanisms of beings like us are acti-
vated by factors of apprehensiveness; fear is the third ‘f’ in this trio. They are
mechanisms that embed the fundamental structure of thin-slicing.

The fear factor is crucially important. When an individual runs from the
unknown creature with large fangs, it is not at all necessary to attribute to him
the tacit belief that such creatures are lethal biters but rather the anxiety that
they might be. Risk aversion turns on epistemic estimates of comparatively
low yield; not on the conviction that Fs G but on the worry that Fs might G.
Behaviour is risk-averse in this conservative way precisely when it grounds
non-trivial action on so slight and tentative an appreciation of what is the case.
We may see thin-slicing as an adaptation of conservative rise-averse behaviour,
in which the element of fear is replaced by that of belief and the estimate of
mere possibility is upgraded somewhat. Even so, the basic structure is retained.
When on the strength of a small sample one reasons that Fs G or (most do or
few do), one is tendering the projection with a requisite tentativeness. But if
this is so, thin-slicing cannot be judged by the standard of inductive strength.

4.17 Probabilistic reasoning
Given that an argument is inductively strong to the extent that its conclu-

sion is made more likely by the evidence cited in the premisses, a number of
additional assumptions are the life’s blood of mainstream inductive logic.

1. Likelihood is probability.

2. The relation of greater (or less) likelihood relative to a body of evidence
is the relation of conditional probability.

3. The concepts of probability and conditional probability are accurately
described by the theorems of the probability calculus.

4. Any set of premises that increases the conditional probability of a propo-
sition also confers some positive degree of confirmation on it.
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We have tried to make plain that the inductive strength standard is neither ap-
propriate nor required for a practical agent’s cognitive targets by and large.
What would count against this claim? Here is a point that might give us pause.
Everyone agrees that practical agents have an impressive command of proba-
bilistic reasoning. Suppose it turned out that the present assumptions are true,
and that actual probabilistic reasoning comported with them. If these things
were so, our real-life probabilistic reasoning would satisfy conditions under
which probabilistic success would indeed hit the standard of inductive strength.
Clearly, we must say something about probabilistic reasoning.

If the behaviour of individual agents is anything to go one, then the standard
accounts of inductive inference constitute significant distortion of the actual
record. Can the same be said for the linked issue of probabilistic reasoning in
the here-and-now? James Franklin sees in probability an interesting parallel
with continuity and perspective (Franklin, 2001). All three of these things took
a long time before yielding to mathematical formulation, and, before that hap-
pened, judgements of them tended to be unconscious and mistaken. We have
a somewhat different version of this story. Sometimes a conceptually inchoate
idea is cleaned up by a subsequent explication of it. Sometimes these clarifica-
tions are achieved by modelling the target notion mathematically. Sometimes
the clarification could not have been achieved save for the mathematics. We
may suppose that something like this proved to be the case with perspective
and continuity. To the extent that this is so, anything we used to think of these
things which didn’t make its way into the mathematical model could be con-
sidered inessential if not just mistaken. It is interesting to reflect on how well
this line of thought fits the case of probability.

In raising the matter, we are calling attention to two questions. (1) What was
probability like before Pascal? (2) How do we now find it to be? Concerning
the first of this pair of questions, We think that we may suppose that, in their
judgements under conditions of uncertainty, people routinely smudged such
distinctions as may have obtained between and among ‘it is probable that’,
‘it is plausible that’, and ‘it is possible that’. If we run a strict version of that
line over this trio, then not making it into the calculus of Probability leaves
all that is left of these blurred idioms in a probabilistically defective state.
There is a sense in which this is not the wrong thing to conclude, but it is a
trivial one. For if what we sometimes intend by ‘probability’ fails to find a
safe harbour in the probability calculus, then it is not a fact about probability
that the probability calculus honours. But unlike what may have been the case
with perspective and continuity, we must take care not to say without further
ado that those inferences that don’t make the Pascalian cut are mistakes of
reason or even mistakes of probabilistic reason. In this we cast our lot with
Cohen (1982) and Toulmin (1953) albeit for somewhat different reasons. With
Cohen we agree that some of the Kahneman and Tversky (1974) experimental
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results which show their subjects to have been bad Pascalians do so only if they
had undertaken to be good Pascalians. The alternative, of course, is that, even
though they were invited to be Pascalians and primed to make a workmanlike
job of it, their sole mistake is that they slid unawares into a non-Pascalian
disposition toward reasoning under conditions of uncertainty. Certainly had
they been drawn to the task of compounding plausibilities, it is far from clear
that the Kahneman-Tversky results show their efforts in a bad light.

We side with Toulmin in saying that not all judgements of probability, even
when made by working scientists, express or attempt to express the concept of
aleatory probability or to comport with its theorems. A similar moral can be
drawn from the sheer semantic sprawl of the idioms of possibility.

Let us take it that, unlike perspective and continuity, idioms of probabil-
ity (or probability/plausibility/possibility) that don’t cut the Pascalian mustard
leave residues of philosophically interesting usage. If this were so, there might
well be philosophically important issues, the successful handling of which re-
quires the wherewithal of this conceptual residue. Again, standard answers to
Kahneman-Tversky questions don’t cut the mustard of aleatory probability,
but they do comport with conditions on plausible reasoning. What, then, are
we to say? That these bright, well-educated subjects are Pascalian misfits or
that they are more comfortably at home (though unconsciously) with a plau-
sibility construal of their proferred tasks? If we say the second, we take on an
onus we might be unable to discharge, or anyhow discharge at will. It is the
task of certifying the conditions under which these non-Pascalian manoeuvres
are well-justified. In lots of cases, we won’t have much of a clue as to how
to achieve these elucidations. Small wonder, then, that what we call the Can
Do Principle beckons so attractively. This is the principle that bids the theorist
who is trying to solve a problem P to stick with what he knows and to make a
real effort to adapt what he knows to the requirements of P. One of the great
attractions of Pascalian probability is that we know how to axiomatize it. Can
Do is right to say that it would be advantageous if we could somehow bend
the probability calculus to the task to hand. But sometimes, the connection just
can’t be made.

Bas van Fraassen is spot on in pointing out that there “has been a sort of sub-
jective probability slum in philosophy, and its inhabitants, me included, have
not convinced many other philosophers that what happens there is anything
more than technical self-indulgence” (van Fraassen, 2005). This calls to mind
our Make Do Principle, which is the degenerate case of Can Do. Make Do is
just Can Do in circumstances in which the fit with P cannot be achieved sat-
isfactorily. If P is the problem of avoiding “the naı̈veté and oversimplification
inherent in much of traditional epistemology” (van Fraassen, 2005), then a de-
cision to deploy the theory of probability by brute force would be a case of
Make Do. It would capture the mood of the tasker who, not knowing what to
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do about P, settles for he knows how to do about Q, and wholly ignores that it
is all beside the point.

4.18 The link to abduction
If what we have been saying about thin-slicing is correct, hasty general-

ization bears a significant resemblance to abductive reasoning. Abductive rea-
soning is a response to an ignorance-problem. One has an ignorance-problem
when one has a cognitive target that cannot be attained on the basis of what one
currently knows. Ignorance problems trigger one or other of three responses.
In the one case, one overcomes one’s ignorance by attaining some additional
knowledge. In the second instance, one yields to one’s ignorance (at least for
the time being). In the third instance, one abduces. The general form of an ab-
ductive inference can be set out as follows, putting T for the agent’s target, K
for his (or its) knowledge-base, K∗ for an accessible successor-base of K,21 R
as the attainment relation relative to T , H as the agent’s hypothesis; K(H) as
K’s adaptation of H, and Rpres as the relation of presumptive attainment relative
to T :

1. ¬R(K, T ) [fact]
2. ¬R(K∗, T ) [fact]
3. Rpres(K(H), T ) [fact]
4. Therefore, C(H) [conclusion]
5. Therefore, Hc [conclusion]

What the schema tells us is this: T cannot be attained on the basis of Q. Neither
can it be attained on the basis of any successor K∗ of K that the agent knows
then and there how to construct. H is an hypothesis such that when reconciled
to K produces K(H). H is such that if it were true, then K(H) would attain
T . But since H is only hypothesized, its truth is not assured. Accordingly we
say that K(H) presumptively attains T . That is, having hypothesized that H,
the agent presumes that his target is now attained. But since presumptive at-
tainment isn’t attainment, the agent’s abduction must be seen as preserving
the ignorance that gave rise to his (or its) ignorance-problem in the first place.
Accordingly, abduction is not a solution of an ignorance problem, but rather
a response to it, in which the agent settles for presumptive attainment rather
than attainment. C(H) expresses the conclusion that it follows from the facts
of the schema that H is a worthy object of conjecture. Hc denotes the decision

21K∗ is an accessible successor to K to the degree that an agent has the know-how to construct it in a timely
way; i.e., in ways that are of service in the attainment of targets aimed at K. For example if I want to know
how to spell “accommodate”, and have forgotten, then my target can’t be hit on the basis of K what I now
know. But I might go to my study and consult the dictionary. This is K∗. It solves a problem originally
aimed at K.
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to release H for further promissory work in the domain of enquiry in which the
original ignorance-problem arose. The superscript is a label. It reminds us that
H has been let loose on sufferance. (For an exhaustive discussion of abduction,
see Gabbay and Woods, 2005.)

Abductions are a response to ignorance-problems intermediate between sol-
ving them and being defeated by them. Like the latter, successful abductions
do not solve the ignorance-problems that give them rise. Like the former, ab-
ductions authorize (albeit defeasibly) subsequent actions that the agent may
well have preferred to have seen grounded in a solution to his problem, rather
than in an ignorance-preserving accommodation of it. Even so, abductions do
license inferences, on which subsequent actions might reasonably be taken (al-
beit defeasibly, both times).

Thin-slicing resembles abduction in certain quite clear ways. Just as the
relation between K(H) and T is presumptive attainment for the abducer, so, for
the thin-slicer, is the inference from his small sample and his generalization
presumptive. Just as the abducer’s inference of C(H) itself only a plausible
inference, the thin-slicer’s instantiation of his generalization is a default.

What is less clear is whether it is invariably the case that whenever a thin-
slicer slices thinly he has (however tacitly) set himself an abductive target.
Certainly we may assume that when faced with a small sample, no hasty gen-
eralizer will take the view that this constitutes a knowledge-base that attains
the cognitive target (if that’s what it is) of knowing that the generalization is
true. But it is another thing entirely as to whether we might also assume that
in reaching his more qualified inference—presumptive generalization, as we
might call it,—there is an hypothesis H which, when added to the sample,
would indeed attain the generalization unqualifiedly. Of course, there is such
an H. It says that the sample is representative. But it won’t quite do for ab-
duction, since the proposition that the sample of Fs that G is representative
just is the generalization in question.

No doubt, these and other questions could be explored to advantage. But,
unless we are mistaken, we have already seen enough of the similarity be-
tween thin-slicing and abduction to be able to emphasize what is essential to
the making of hasty generalizations. They are made presumptively, and the in-
stantiations they sanction are defaults. This gives us what we want.

Proposition 24 (Confirming our thesis). Individual thin-slicers characteristi-
cally do not take on the standard of inductive strength. Given that an inductive
fallacy is one that fails the standard of inductive strength, the GOE fallacy
of hasty generalization is characteristically not a fallacy committed by beings
like us.
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What is more,

Proposition 25 (The virtue of haste). Given the generally good track record of
individual thin-slicers and the considerable economies that thin-slicing ach-
ieves, the practice of hasty generalization possesses, for beings like us, the
cognitive virtue of producing large stores of default propositions on which to
ground, with due regard for the attendant risks, the appropriate actions. In
other words, thin-slicing is a natural discouragement of paralyzing indecision.

As we have remarked, the slenderness of our own sample might well leave
the reasonable reader unmoved to accept our ambitious claim for all 18 mem-
bers of GOE. Certainly, we will not be so brazen as to suggest that sample
produced by thin-slicing is representative of all of GOE. Let us say it again. It
is a small sample. Perhaps we would have been better advised to entitle our pa-
per “Thin-slicing as a cognitive virtue”. Even so, we do think that some quite
general lessons can be drawn from our examinations of this sample. One is
that a piece of reasoning is a fallacy only in relation to what the agent has in
mind to achieve cognitively. So, at a minimum, before we can rightly accuse
an individual agent of committing a GOE-fallacy, we must have independent
reasons for supposing that his target T carries standards S that his reasoning
violates. In light of the forgoing discussion, we take it as given that it is often
far from obvious that such Ts and S s are actually in play in the cognitive lives
of beings like us.

We keep saying “beings like us”. This is because it matters. Beings like us
are individual agents. Individual agents tend to set for themselves moderate
targets. Moderate targets are those that can be attained (or as we may now
say, presumptively attained) by the deployment of scant-resources i.e., scant in
comparison to what NASA and MI5 command. Agents whose resource-draw
is greatly larger than ours certainly set themselves tougher targets governed
by higher standards. We don’t doubt for a minute that when NASA was in
process of generalizing about O-ring integrity, it was clearly targeted on scien-
tific certainty and clearly pledged to the standard of inductive strength. In such
circumstances, thin-slicing would have been cognitively defective; worse, it
would have been an ethical catastrophe. There is also a moral to be drawn
from this.

Proposition 26 (Vindication of the tradition). On the traditional view, a fal-
lacy is an inapparent error. Leaving aside the general point that all errors are
inapparent, we see that hasty generalization conforms to the traditional view.
For it is an error (when committed by NASA) and it looks not to be an error,
because it is not an error (when committed by beings like us).
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Finally, we should make brief mention of the Principle of Charity.22 The
Principle of Charity bids us not to interpret our interlocutors in ways that con-
vict them of error or irrationality; more carefully, we are not so to interpret
them except in default of strong indications to the contrary. The Principle of
Charity is itself hardly free from controversy, and we have no wish to rush to
judgement on its behalf (see Woods, 2004, Chapter 14). Suffice it to say that
if, when done by us, thin-slicing is indeed a fallacy, then beings like us are
massive inductive misfits. There is, apart from the soundness of the Charity
Principle, a further reason to doubt it. Suppose that we were indeed massive
inductive misfits. It would hardly matter. For we get things more right than
wrong. We survive, we prosper, and occasionally we build great civilizations.
What this would tell us, given the present assumption, is that it is not irrational
to be massive inductive misfits.
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Abstract Hintikka and Sandu’s Independence-friendly logic (Hintikka, 1996; Hintikka
and Sandu, 1997) has traditionally been associated with extensive games of im-
perfect information. In this paper we set up a strategic framework for the evalu-
ation of IF logic à la Hintikka and Sandu. We show that the traditional semantic
interpretation of IF logic can be characterized in terms of Nash equilibria. We
note that moving to the strategic framework we get rid of IF semantic games
that violate the principle of perfect recall. We explore the strategic framework
by replacing the notion of Nash equilibrium by other solution concepts, that are
inspired by weakly dominant strategies and iterated removal thereof, charting
the expressive power of IF logic under the resulting semantics.

5.1 Introduction
Game theory has proven to be a tool capable of covering the essentials of

established subjects in research areas such as logic, mathematics, linguistics
and computer science. Game-theoretic concepts have also been proposed in
cases where traditional machinery broke down. In this paper we will study the
game theory that functions as a verificational framework for independence-
friendly (IF) first-order logic, which is a generalization of standard first-order
logic (FOL).

As a semantics used for evaluating FOL, Tarski semantics is well-known
and widely agreed upon. Yet this semantics cannot be used to evaluate Hin-
tikka and Sandu’s IF first-order logic, see Cameron and Hodges (2001). IF
logic abstracts away from the Fregean assumption that syntactical scope and
semantical dependence of quantifier-variable pairs coincides. That is, in an IF
logical formula, if ‘∃x’ is in the syntactical scope of ‘∀y’, the variable x can be
made semantically independent of y by means of the slash operator. To evalu-
ate IF logical formulae, Hintikka and Sandu (in Hintikka, 1996; Hintikka and



102 A Strategic Perspective on IF Games

Sandu, 1997) introduce the notion of a semantic evaluation game. The inde-
pendence of two variables expressible in IF logic is typically reflected by the
corresponding semantic evaluation game being of imperfect information. This
is in contrast to the evaluation games related to first-order formulae, they are of
perfect information. Truth of an FOL or IF formula is defined in terms of its se-
mantic evaluation game. This semantics was coined game-theoretic semantics
(GTS) by Hintikka.

It has been noted in the literature (van Benthem, 2000, Dechesne, 2005) that
some IF evaluation games violate the game-theoretic principle of perfect recall.
In game theory, games without perfect recall have not been studied extensively,
one of the reasons being that it is hard to understand what real-life situations
they capture—put loosely, they are not ‘playable’. Thereby also the playability
of IF games is called into question.

In this paper, we set up a strategic game-theoretic framework in which IF
games can be defined. We will see that truth of IF under GTS can be char-
acterized in terms of Nash equilibria in the strategic framework. We observe
that the playability issues, concerning perfect recall, evaporate in the strategic
framework, yet we get so-called coordination problems in return.

We explore the strategic framework by replacing the notion of Nash equi-
librium by other solution concepts. That is, we also define truth for IF logic in
terms of weakly dominant strategies and iterated removal thereof. Naturally,
changing semantics affects the truth conditions of IF formulae, a phenom-
enon we study in terms of the expressive power of IF logic w.r.t. the resulting
semantics.

Section 5.2 recalls the basics of IF logic and GTS. In Section 5.3, we define
the strategic framework and establish the connection between GTS and truth
in terms of Nash equilibria. Sections 5.4 and 5.5 explore the notions of truth
that result after replacing the Nash equilibrium solution concept by different
ones, that are inspired by the game-theoretic notions of weak dominance and
iterated removal of strategies in strategic games.

The formal results are mostly given without proof. We hope to make an
extended version of this paper, containing full proofs, available soon.

5.2 IF logic and game-theoretic semantics
The program of quantifier independence, as founded by Henkin (1959) and

later Hintikka (1996), is concerned with abstracting away from the Fregean
assumption that the syntactical scope and binding of quantifiers in first-order
logic coincide. The syntax of independence-friendly first-order logic as pro-
posed by Hintikka (1996) extends FOL, in the sense that, for example, if

∀x1∃x2 . . .∀xn−1∃xn R(x1, . . . , xn)
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is a FOL sentence containing the n-ary predicate R, then

(∀x1/X1)(∃x2/X2) . . . (∀xn−1/Xn−1)(∃xn/Xn) R(x1, . . . , xn) (1)

is an IF sentence, provided that Xi ⊆ {x1, . . . , xi−1}. The variable xi is intuitively
meant to be independent of the variables in Xi, although it appears under their
syntactical scope.

Definition 1. In this paper FOL denotes the smallest set of first-order sen-
tences, that are in prenex normal form and in which every variable is quantified
exactly once. We will assume them being of the form

Q1x1 . . .Qnxn R(x1, . . . , xn), (2)

where Qi ∈ {∃,∀}. If no confusion arises we will abbreviate any string of
variables x1, x2, . . . using x̄.

The reader has noted that the language we call FOL is really a simple ver-
sion of first-order logic. This simplification streamlines notation considerably
when we define the IF language, without affecting the contention of this paper.
Analogously to Hintikka (1996) we define the syntax of IF logic in terms of
FOL, as follows.

Definition 2. The language IF is obtained from FOL by repeating the following
procedure a finite number of times: if φ ∈ FOL, then

If ‘Qixi ψ’ occurs in φ, then it may be replaced by ‘(Qixi/Xi) ψ’, where
Qi ∈ {∃,∀} and Xi ⊆ {x1, . . . , xi−1}.

Since sentences in FOL are assumed to be as in (2), sentences of IF will be of
the form

(Q1x1/X1) . . . (Qnxn/Xn) R(x1, . . . , xn), (3)

writing ‘Qixi’ instead of ‘(Qixi/∅)’.

In φ ∈ FOL containing the strings ‘Qixi’ and ‘Q jx j’, variable x j depends on
xi iff i < j. In IF this linear ordering of dependency is given up—the quantifiers
of IF sentences are partially ordered. The first partially ordered quantifier, also
known as Henkin quantifier, appeared in Henkin (1959). For later usage, we
formalize variable dependence by means of a binary relation. To this end let
the set Var(φ) = {x1, . . . , xn} denote the variables for the IF formula φ as in
(3). Then, Bφ ⊆ Var(φ)×Var(φ) is φ’s dependency relation, such that for every
xi, x j ∈ Var(φ)

(xi, x j) ∈ Bφ if i < j and xi � X j.

Truth of an IF sentence is evaluated relative to a suitable model M = (D, I, p) in
which we distinguish a domain D of objects; an interpretation function I, that
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determines the extension of relation symbols; and an assignment p that assigns
an object from the domain D to each variable. Hintikka and Sandu (1997)
associate with every φ ∈ IF and suitable model M a semantic evaluation game
g(φ, M). The game is played by two players, called E and A, that control the
existential and universal quantifiers in φ. In g(φ, M) the players and quantifiers
are associated through the player function P, that is, the function such that
P(∃) = E and P(∀) = A. Intuitively, g(φ, M) proceeds as follows:

g((Qi xi/Xi) ψ, M) triggers player P(Qi) choosing an object di ∈ D; the
game continues as g(ψ, M).

g(R(x̄), M) has no moves; E receives payoff 1 if d̄ ∈ I(R), and −1 other-
wise. A gets E’s payoff times −1.

The above rules regulate the behavior of the game g(φ, M). Hintikka and
Sandu (1997) do not provide a rigorous game-theoretic model for these games.
However, the formal treatments provided in the literature all take an exten-
sive stance towards these games, viz. van Benthem (2004); Pietarinen and
Tulenheimo (2004); Dechesne (2005) and Sandu and Pietarinen (2003) for a
propositional variant. In this paper the game g(φ, M)—with a lower-case ‘g’—
denotes a Hintikka-Sandu style, extensive semantic game. In these games in-
dependence is modeled by means of information sets imposed on the histo-
ries of the game tree. We omit rigorous definitions, but illustrate the idea by
means of the game tree of an IF sentence θ that reappears in our discussion
below,

θ = ∃x1(∃x2/{x1}) [x1 = x2], (4)

evaluated on the model ({a, b},=), depicted in Figure 5.1. From a game-theoretic
perspective, every node in a game tree corresponds to a history, and every leaf
to a complete history. On every complete history the players’ utility functions
are defined.

a b

E

E

1 −1 −1 1

b ba a

Figure 5.1: The game tree of g(θ, ({a, b},=)), containing seven histories. The top node corre-
sponds to the empty history; the histories on the intermediate layer are denoted by 〈a〉, 〈b〉; and
〈a, a〉, 〈a, b〉, 〈b, a〉, 〈b, b〉 are the terminal nodes. The fact that 〈a〉, 〈b〉 sit in the same information
set is reflected by the dashed line. The values 1 and −1 are payoffs for E
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To say that two histories are in the same information set means that the
player owning the set at hand cannot distinguish between the two histories
while at it. As a consequence any pure strategy for this player prescribes only
one action for all the histories in the information set.

We say that E has a winning strategy in g(φ, M) if there exists a strategy
that guarantees an outcome of 1, against every strategy played by A; and a
strategy is uniform with respect to the game’s information sets, if it assigns
to every information set in which E is to move exactly one object from the
domain. Note that here and henceforth we consequently mean ‘pure strategy’
when speaking of ‘strategy’. Truth under GTS is defined in terms of winning
strategies.

Definition 3. Let φ ∈ IF and let M be a suitable model. Then define truth under
GTS as follows:

φ is true under GTS on M, denoted by M |=GTS φ, if E has a winning
strategy in g(φ, M).

φ is false under GTS on M, if A has a winning strategy in g(φ, M).

φ is undetermined under GTS on M, if neither E nor A has a winning
strategy in g(φ, M).

In the realm of IF semantic evaluation games, information sets only partition
histories of equal length (cf. Sandu and Pietarinen, 2003). Pure strategies in IF
semantic games therefore coincide with tuples of Skolem functions, as we know
them from logic. We introduce Skolem functions by illustrative means. Let φ
be as in (1), then its Skolemization looks like

∃ f2 . . .∃ fn∀x1 . . .∀xn−1 R(x̄, f̄ ),

where fi is a Skolem function, being a function of type D{x1,...,xi−1}\Xi → D.
Walkoe (1970) showed that the truth condition of every formula with par-

tially ordered quantifiers can be expressed in the Σ1
1 fragment of second-order

logic. Later, the result, applied to IF, reappears in Sandu’s and Hintikka’s work
(for references see Hintikka and Sandu, 1997) hinging on the fact that for φ as
in (1)

M |=GTS φ iff M |=Tarski ∃ f2 . . .∃ fn∀x1 . . .∀xn−1 R(x̄, f̄ ),

since any tuple f2, . . . , fn witnessing the truth of φ’s Skolemization is a winning
strategy for E in g(φ, M) and the other way around, assuming the Axiom of
Choice. For Hintikka and Sandu (1997) it is the strategies that form the heart
of the game-theoretic apparatus involved.
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What is essential [about game-theoretic conceptualizations] is not the idea of
competition, winning and losing. . . . What is essential is the notion of strategy.
Game theory was born the moment John von Neumann formulated explicitly
this notion.

Having read this, the thought occurs that defining IF evaluation games in a
strategic way may be more in line with Sandu’s and Hintikka’s thinking. In
this paper we will set up such a strategic framework; discuss the ‘playability’
of IF games in this context; and start exploring the framework.

The issue of playability of IF games, mentioned above, arises when we ac-
tually want to play games for IF sentences φ. In a game for φ, the turn-taking
is governed by φ’s quantifier prefix and the epistemic qualities of the agents by
φ’s slash sets. However, defining the IF language, we took no special care that
our formulas would give rise to playable games. In fact, it has been observed
that certain IF sentences yield games that require agents with odd epistemic
features. That is, games that violate the game-theoretic principles of perfect
memory and action memory. Roughly speaking a game of imperfect informa-
tion has perfect memory if a player learning something (in our context: a pre-
vious move), implies it knowing this piece of information for the rest of the
game; and, a game has action memory if every player recalls at least it’s own
moves. We refer the reader to Sevenster (2006) for an elaborate treatment of
perfect recall and IF games.

For the sake of illustration, consider the extensive game g(θ, ({a, b},=)), with
θ as in (4).1 It is the case that ({a, b},=) |=GTS θ, since the tuple (play a, play a)
is a winning strategy. But also we have it that the histories 〈a〉 and 〈b〉 are in
E’s information set indicating that these histories are indistinguishable for E.
Thus, g(θ, ({a, b},=)) lacks both perfect memory and action memory.

The issue of the playability of g(θ, ({a, b},=)) evolves around the question
how E can understand that (play a, play a) is a winning strategy for E, despite
the fact that she is uninformed at the intermediate stage. That is, E seems to
forget her own move right after playing it!

One explanation may be that E is allowed to decide beforehand on a strat-
egy and consult it while playing the game, even if she is unsure about her
own moves at the intermediary stage. (This explanation appears in van Ben-
them (2000).) In particular, that (play a, play a) is a winning strategy can then
be understood as follows: First E picks a, thereafter she is uncertain about
what history she is actually in: 〈a〉 or 〈b〉. By consulting here winning strategy,
however, she derives that she actually is in 〈a〉 and not in 〈b〉. The imperfect
information evaporates!

1The formula θ also appears in Janssen (2002), as an argument against Hintikka’s claim of IF logic modeling
quantifier independence. Janssen argues that, since θ holds on the domain, it must be the case that x2 depends
on x1. However, in θ the choice for x2 is independent of x1, since X2 = {x1}. For more on IF logic and
intuitions on independence, consult Janssen (2002).
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This explanation requires more game-theoretic structure—i.e., consulting of
one’s strategy—than present in its description and would imply a non-game-
theoretic understanding of having imperfect information during the game.

Another explanation may be that E is an existential team, hence associat-
ing with every existential variable a member of the team. This would make
g(θ, ({a, b},=)) a two-player cooperative game. But then the very fact that θ
holds on the model at stake suggests to be interpreted in such a way that the
x1-player and the x2-player are allowed to settle on their strategies before the
game. Again, no such event can be found in the definition of g(θ, ({a, b},=))
and it seems such an event would violate the game-theoretic understanding of
information sets. Because, for instance in g(θ, ({a, b},=)) the second player in
the E-team would really know the move of the first player.

Below we shall reduce the puzzle that arises with θ to the question how Nash
equilibria are supposed to arise in strategic games. First we set up a strategic
framework, in which the notion of Nash equilibrium and other solution con-
cepts can be meaningfully employed.

5.3 Strategic framework for IF games
In this section we define IF games as strategic games. We characterize truth

of IF under GTS in terms of Nash equilibria.

Definition 4. Let φ ∈ IF and let M be a suitable model. Then, define the
strategic evaluation game of φ and M as

G(φ, M) =
(
Nφ, (S i,φ)i∈Nφ , (ui,φ,M)i∈Nφ

)
.

Nφ denotes the set of players, S i,φ the set of strategies for player i, and ui,φ,M

is player i’s utility function. We also call G(φ, M) an IF game.

Below we briefly introduce these ingredients componentwise and introduce
some notation involved. Note that strings in IF are assumed to be as in (3).
All definitions below are restricted to this assumption, but can be generalized
without much ado.

Players. The set Nφ = {i | xi ∈ Var(φ)} contains the players. The set Nφ

conveys the strong connection between variables in φ and players in G(φ, M).
In fact, if V ⊆ Var(φ), then we will use N(V) = {i | xi ∈ V} to denote the set of
players associated with the variables in V . Let Eφ (Aφ) be the set of existentially
(universally) quantified variables in φ. We have adopted the multi-player view
on IF games here, mainly because it is the framework that is most open to
generalizations with respect to, for instance, the utility functions. Moreover, it
allows for smoother terminology.

Strategies. For xi ∈ Var(φ), define Ui,φ ⊆ Var(φ) to be the set of variables
on which xi depends in φ. That is, Ui,φ = {x j | (x j, xi) ∈ Bφ}. In the context of
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the game and player i having control over xi, we often say that i sees Ui,φ. S i,φ

denotes the set of all player i’s strategies in G(φ, M), being (Skolem) functions
of type si : DUi,φ → D. If Ui,φ is empty, S i,φ only contains atomic strategy.

Manipulating strategies. Define a profile s in G(φ, M) as an object in
�

i∈N′
S i,φ,

for some N′ ⊆ Nφ. We call s existential (universal), if N′ ⊆ Eφ (Aφ); otherwise
we call it mixed. We call s complete, if N′ = Nφ; otherwise we call it partial.
If N′ = N(Eφ) (N(Aφ)), we call the profile completely existential (universal).
If no confusion arises we will drop as many of the terms as possible.

If s ∈
�

i∈N′ S i,φ for some N′ ⊆ Nφ and {1, . . . , j} ∈ N′, then s1,..., j denotes
the strategy profile s containing only player 1 to j’s strategies. We will often
discuss player j changing strategies with respect to a strategy profile s. We
write (s− j, t j) to denote the profile that is the result of replacing s j by t j. If
s ∈
�

i∈N′ S i,φ and s′ ∈
�

i∈N′′ S i,φ for disjoint N′,N′′ ⊆ Nφ, then ss′ is the
result of concatenating s and s′. If si is a strategy of type D{y1,...,yk} → D and
assignment p is defined over {y1, . . . , yk}, then we will write si(p) instead of
si(p(y1), . . . , p(yk)).

Finally, every profile s ∈
�

i∈{1,..., j} S i,φ in G(φ, M) gives rise to an assign-
ment [s] that is defined over {x1, . . . , x j} as below. Note that s1 is an atomic
strategy.

[s](x1) = s1

[s](xi) = si([s1,...,i−1]).

Utility functions. Let i ∈ Nφ. Then, i’s utility function in G(φ, (D, I, p)) is
defined over complete profiles s as follows:

ui,φ,(D,I,p)(s) =

{
ci if [s] ∈ I(R)
−ci if [s] � I(R),

where ci = 1 if i ∈ N(Eφ), and ci = −1 if i ∈ N(Aφ). As all utility functions
of the players in N(Eφ) and N(Aφ), respectively, are equivalent and the models
under consideration can be made up from the context we will simply denote
them by uE and uA.

Now that we switched from extensive to strategic semantic games, observe
that the notion of winning strategy in extensive games has a respectable strate-
gic counterpart: Nash equilibrium. We say that the strategy profile ŝ is a Nash
equilibrium in the strategic game G, if none of the players i gains from unilat-
eral deviation (see also Osborne and Rubinstein, 1994):

ui((ŝ−i, si)) ≤ ui(ŝ),
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Play a Play b

Play a 1 −1

Play b −1 1

Table 5.1: Every cell in the matrix corresponds to an assignment [s] over Var(θ). We filled in
the value uE ([s]) reflecting payoff for the members of the existential team

where si is any other strategy for player i and ui is player i’s utility function in
G. The following lemma can also be understood as a proof of effective equiv-
alence between g(φ, M) and G(φ, M).

Lemma 5. Let φ ∈ IF and let M be a suitable model. Then, the following are
equivalent:

M |=GTS φ.

There exists a Nash equilibrium s in G(φ, M), such that uE(s) = 1.

Technically this lemma is not deep. Yet it shows us that strategic games
can account for truth of IF logic. In the strategic framework the playability
issues concerning perfect recall, encountered in extensive IF games, evaporate
simply because the strategic games ignore the inner structure of games defined
by consecutive moves by the agents. By ignoring the inner structure of the
game, also the epistemic states of the agents—i.e., their information sets—are
ignored.

But the issue of playability pops up in the strategic framework under a differ-
ent guise. Revisit the game G(θ, ({a, b},=)). As is common usage in strategic
games, we draw its payoff matrix, see Table 5.1. The puzzle induced by the
truth of θ on ({a, b},=) in extensive contexts appears in the strategic context
as a coordination problem. There are two equally profitable Nash equilibria,
but which one to choose, without possibility to coordinate? How to understand
Nash equilibria is a problem central in game theory, see Osborne and Rubin-
stein (1994).

In the upcoming two sections we explore semantic interpretations for IF
logic that are motivated by solution concepts that are not subject to coordina-
tion problems.

5.4 Weak dominance semantics
In this section, we define a semantics based on the existence of weakly dom-

inant strategies. Intuitively, a strategy is weakly dominant for a player if it
outperforms any other strategy independently of the other players’ strategic
behavior.



110 A Strategic Perspective on IF Games

Definition 6. Fix some IF game G(φ, M). Then, ŝi is a weakly dominant strat-
egy in G(φ, M) for player i, if ŝi ∈ S i,φ and for every complete mixed profile s
it is the case that

uE((s−i, ŝi)) ≥ uE(s).

We call ŝi weakly dominant, because possibly it is exactly as good as player
i’s original strategy in s. Dually, we define strategy ti ∈ S i,φ to be strictly
dominated by ŝi in G(φ, M), if for every complete mixed profile s it is the case
that

uE((s−i, ŝi)) ≥ uE((s−i, ti)) and uE((r−i, ŝi)) > uE((r−i, ti))

for at least one complete mixed profile r.

The notion of weak dominance we employ is weaker than the one usually
adopted in game theory. For comparison we refer to Osborne and Rubinstein
(1994). We now come to our definition of truth in terms of weak dominance.

Definition 7. Let φ ∈ IF and let M be a suitable model. Then we define truth
of φ on M under weak dominance semantics (WDS) as follows

M |=WDS φ iff in G(φ, M) there exists a complete existential profile ŝ such
that ŝi is a weakly dominant strategy for every i ∈ N(Eφ), and uE(ŝt) = 1,
for any complete universal profile t.

Falsity and undeterminedness under WDS are defined similarly.

The question remains, of course, what remains of IF logic evaluated under
WDS. It becomes clear that GTS is less restrictive a semantics for IF logic than
WDS, after reformulating truth under GTS in multi-player terms, since we may
simply omit ŝi’s constraint of being weakly dominant:

M |=GTS φ iff in G(φ, M) there exists a complete existential profile s such
that uE(st) = 1, for any complete universal profile t.

Formally, our claim boils down to the claim that

M |=WDS φ implies M |=GTS φ, (5)

but not the other way around. Note that ({a, b},=) |=GTS θ, but θ does not hold
on this domain under WDS, see Table 5.1. As an example of WDS, observe
that, surprisingly, for any model M with more than one object in its domain it
is the case that for τ = ∃x1∃x2 [x1 = x2]:

M �|=WDS τ whereas M |=Tarski τ.

That τ is true under Tarski semantics is obvious. From Table 5.2 it becomes
clear that τ is not true under WDS on the model with two objects {a, b}.
Although player 2 has a weakly dominant strategy, player 1 has none.
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sa
2 sb

2 scopy
2 sinvert

2

sa
1 1 −1 1 −1

sb
1 −1 1 1 −1

Table 5.2: sd
i is the atomic strategy for player i ∈ {1, 2} assigning object d ∈ {a, b}. scopy

2 is
player 2’s strategy such that scopy

2 (d) = d, whereas sinvert
2 switches the object chosen by player 1

In the remainder of this section we will characterize the truth-conditions of
IF under WDS and see that very little is left the Σ1

1-expressiveness IF enjoyed
under GTS. We show in Theorem 10 that truth under WDS can be expressed
in a fragment of FOL (evaluated under Tarski semantics). Before we come to
a rigorous formulation, let us classify an IF sentence φ’s variables and charac-
terize one of the resulting classes.

Recall that we defined the dependency relation of φ’s variables as a binary
relation Bφ. The result of taking the transitive closure of Bφ we denote B∗φ.
That is, (xi, x j) ∈ B∗φ iff there exists a chain z0, . . . , zm of variables in Var(φ)
such that z0 = xi, zm = x j, and for every t ∈ {0, . . . ,m − 1} it is the case that
(zt, zt+1) ∈ Bφ. Such a chain of variables z0, . . . , zm we will call a Bφ-chain.
Note that B∗φ is irreflexive.

For every variable xi ∈ Var(φ), partition Var(φ)\{xi} as follows:

Ui,φ = {x j | (x j, xi) ∈ Bφ} (6)

Wi,φ = {x j | (xi, x j) ∈ B∗φ} (7)

Vi,φ = Var(φ)\(Ui,φ ∪ {xi} ∪Wi,φ). (8)

We encountered Ui,φ before, as it contains all variables seen by player i.
Wi,φ contains the variables that can (in)directly see xi. Vi,φ is the set of all
other variables in φ not containing xi. What is meant by ‘seeing (in)directly’ is
pinpointed by the following lemma, that characterizes the variables in Wi,φ.

Lemma 8. Let φ ∈ IF be as in (3) and let M be a suitable model. Let Wi,φ be
defined as in (7) for some sentence φ and i ∈ Nφ. Then, x j ∈ Wi,φ iff i � j and
in G(φ, M) there exists a complete strategy profile s and a strategy ti ∈ S i such
that [s](x j) � [(s−i, ti)](x j).

Intuitively, Wi,φ is the subset of Var(φ) consisting of variables that are sensi-
tive to xi changing assignments. The lemma, interpreted the other way around,
teaches that, if x j is not in Wi,φ, for every strategy profile, player i changing
strategies does affect the object assigned to x j.

Theorem 9. Let φ ∈ IF as in (3) and let M be a suitable model. The sets Ui,φ,
Wi,φ, Vi,φ are defined as in (6), (7) and (8), respectively. We also consider the
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set W ′i,φ = {x
′ | x ∈ Wi,φ}. The strings of variables in these respective sets will

be referred to by means of ū, v̄, w̄, and w̄′. Then, in G(φ, M) player i ∈ Nφ has
a weakly dominant strategy iff

M |=Tarski ∀ū∃x′i∀xi∀v̄∀w̄∀w̄′ [(i) ∧ (ii) ∧ (iii)→ (iv)], (9)

where

(i) = R(ū, xi, v̄, w̄)

(ii) = xi � x′i

(iii) =
∧

j�i∈N

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎜⎜⎜⎝
∧

xk∈U j,φ

xk = x∗k

⎞⎟⎟⎟⎟⎟⎟⎟⎠→ x j = x∗j

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(iv) = R(ū, x′i , v̄, w̄

′).

If U j,φ is empty, interpret (
∧

xk∈U j,φ
xk = x∗k) as �. Note that Var((i)) = Var(φ)

and that Var((iv)) = Ui,φ∪{x′i }∪Vi,φ∪W ′i,φ. Furthermore, ·∗ is a mapping from
Var((i)) to Var((iv)), as follows;

y∗ =

{
y if y ∈ Ui,φ ∪ Vi,φ

y′ if y ∈ {xi} ∪Wi,φ.

We will refer to the first-order formula in (9) as αi(φ).

Basically, αi(φ) states that if (i) there exists an assignment that satisfies R,
(ii) player i changes the object assigned to xi, but (iii) the other players j play
according to a Skolem function that is uniform with respect to what they can
see (i.e., the objects assigned to the variables in U j,φ), then (iv) there exists an
object di to assign to x′i that guarantees truth of R no matter what is played
by the players that can (in)directly see to xi. The strategy such that ŝi(ū) = di

for all ū that satisfy (i) is a weakly dominant strategy. It is a weakly dominant
strategy in G(φ, M) for player i, because ŝi ∈ S i,φ.

Theorem 9 characterizes the condition under which a player has a weakly
dominant strategy. To be true under WDS, however, slightly more is required.
The following theorem characterizes truth under WDS.

Theorem 10. Let φ ∈ IF be as in (3) and let M be a suitable model. Let Eφ and
Aφ partition Var(φ) in such a way that Eφ contains the existentially quantified
variables in φ. We abbreviate the string of all variables in Eφ and Aφ using ē
and ā. Then,

M |=WDS φ iff M |=Tarski α(φ) ∧ β(φ),

where α(φ) =
∧

i∈N(Eφ) αi(φ) and β(φ) = ∀ā∃ē R(ā, ē).
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Formula α(φ) being true on M is equivalent to every existential player i
having a weakly dominant strategy ŝi in G(φ, M). Yet this does not guarantee
that the existential players i playing according to ŝi will always get 1. For
instance, in G(ψ, M) every existential player has a weakly dominant strategy,
if ψ’s relational symbol is false for every suitable tuple of objects from M’s
domain. However, playing according to it will always yield an outcome of −1.
Truth of β(φ) is a sufficient and necessary condition for avoiding the latter
situations.

For future comparison we conclude this section with a meta-statement
about IF logic interpreted under WDS, that follows straightforwardly from
Theorem 10.

Theorem 11. IF under WDS has less than elementary expressive power.

5.5 Beyond WDS
From Theorem 9 we learn that for a player to have a weakly dominant strat-

egy it does not matter what is played by his team members. Even in the case
all its team members leave him and join the other team, this would not make
a difference with respect to him having a weakly dominant strategy. I.e., WDS
ignores the opportunities that might come with the notion of a team. In this
section we show by example that increasing the ‘powers’ of the involved play-
ers in IF games increases the expressive power of IF logic on the obtained
semantics, Theorem 14 as opposed to Theorem 11.

Let us revisit the sentence τ = ∃x1∃x2 [x1 = x2]. We observed that τ is
not true under WDS on any model M that has a domain with more than one
object (see Table 5.2). On the assumption that player 1 knows 2 is rational,
player 1 may infer that 2 plays scopy

2 , because playing this strategy is better
for it than any other strategy. That is, scopy

2 is weakly dominant. After this
inference, player 1 choosing a strategy in G(τ, M) then effectively boils down
to it choosing a strategy in the game

G′(τ, ({a, b},=)) =
(
{1, 2}, ({sa

1, sb
1}, {s

copy
2 }), {uE, uA}

)
.

G′’s trivial payoff matrix is depicted in Table 5.3.
In this spirit, the following definition hard-wires the procedure of players

calculating what other players will play. As such it bears strong similarity to

scopy
2

sa
1 1

sb
1 1

Table 5.3: The payoff matrix of G′(τ, ({a, b},=)) = ({1, 2}, ({sa
1, sb

1}, {s
copy
2 }), {uE , uA})
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the game-theoretic literature on iterated removal of dominated strategies, see
Osborne and Rubinstein (1994).2 The result of this procedure P as applied to
some IF game will be the game that is effectively played.

Definition 12. Let φ ∈ IF as in (3) and let M be a suitable model. Then, define

Gn(φ, M) = G(φ, M) = (N, (S 1, . . . , S n), {uE , uA})
Gi−1(φ, M) =

(
N, (S 1, . . . , S i−1, S

P
i , S

P
i+1, . . . , S

P
n ), {uE , uA}

)

where S 1, . . . , S i−1, S Pi+1 . . . , S
P
n are copied from Gi(φ, M) and

S Pi = {si ∈ S i | si weakly dominant in Gi(φ, M)}.

Finally, put the strategic evaluation game GP(φ, M) = G0(φ, M).

This vehicle we employ to define a semantics ‘on top’ of WDS.

Definition 13. Let φ ∈ IF and let M be a suitable model. Then we define truth
of φ on M under weak dominance semantics plus P as follows:

M |=PWDS φ iff in GP(φ, M) for every complete profile ŝ it is the case that
uE(ŝ) = 1.

We thus state the truth of an IF sentence φ on M in terms of the outcome of
playing the game GP(φ, M) by players that are empowered to reason according
to the procedure P. For instance, it is the case that ({a, b},=) |=PWDS τ.

First of all, note that, epistemically, player n needs to know nothing about
the other players in order to pick a weakly dominated strategy, i.e., to act in
accordance with P. Now, player n − 1 needs to know that player n is indeed
rational in order for it to be rational to consider game Gn(φ, M). In general, to
explain why the players would execute P, one has to assume that every player
i is rational and i knows that i+ 1 knows that . . . knows that n is rational. Now,
this is quite strong an assumption to make. Much stronger in any case than
WDS’s mere requirements that all the players are rational.

Secondly, we observe that for φ ∈ IF

M |=WDS φ implies M |=PWDS φ and M |=PWDS φ implies M |=GTS φ, (10)

but the converses do not hold, witnessing τ and θ on M = ({a, b},=),
respectively.

2It is tempting to clarify the inferences of the players by assuming common knowledge of rationality. (In fact
a weaker concept of knowledge would do to trigger the procedure.) In this paper we consider the procedures
simply as formal objects, leaving us space to define procedures that are not epistemologically justified (such
as ND, defined below). For much more on epistemological characterizations of game-theoretic solution
concepts we refer to de Bruin (2004).
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Thirdly, in Theorem 14 we observe that the expressive power increases when
switching from |=WDS to |=PWDS with respect to FOL. Also, we draw the conclu-
sion from this theorem that every FOL formula behaves under WDS plus P as
it does under Tarski semantics. What the expressive power of IF logic is under
WDS plus P is left open.

Theorem 14. Let φ ∈ FOL and let M be a suitable model. Then,

M |=Tarski φ iff M |=PWDS φ.

The procedure P turns out to be the strategic counterpart of the backwards
induction algorithm as applied to the extensive game tree of an FOL game. The
proof of Theorem 14 boils down to showing that a tuple of Skolem functions
f̄ is a witness of M |=Tarski φ iff it is contained in S P1 × · · · × S Pn .

5.6 Conclusion
In this paper, we set up a strategic framework for IF semantic games, which

are traditionally studied extensively. Naturally, by giving up the extensive struc-
ture that is traditionally given to IF games, we avoid conceptual issues that arise
with the playability of IF games (i.e., lack of perfect recall). We observed that
truth of IF logic under GTS can be characterized by the solution concept of
Nash equilibrium. We saw that other issues arise in the strategic framework:
how are players supposed to coordinate or, more eloquently, how are Nash
equilibria supposed to arise?

We used the strategic framework to define two semantic interpretations for
IF logic inspired by solution concepts related to weakly dominant strategies:
|=WDS and |=PWDS. The former does not require any of the involved players to
know anything about the other players. We showed that under |=WDS the ex-
pressive power of IF logic collapses to that of a fragment of first-order logic
(under Tarski semantics). The epistemic demands of |=PWDS were seen to be
higher than that of |=WDS. We showed that the expressive power of FOL (un-
der Tarski semantics) is left intact when evaluated under |=PWDS. Thus, all of IF
logic (under |=PWDS) has expressive power of at least FOL (under Tarski seman-
tics). Our findings can be summarized in the following table:

Solution concept S Expressive power |=S
Nash equilibrium High (=Σ1

1)
WDS + P Medium-high (≥FOL)
WDS Low (<FOL)

Further research will have to flesh out this table and determine what are the
dependencies between solution concepts and the expressive power of IF logic
evaluated under the associated solution concept. This enterprise would explore
correlations between notions of agency and semantic interpretations of logical
languages.
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Abstract The article provides two kinds of game-theoretical semantics for fuzzy logics
with special attention to Łukasiewicz logic. The first one is a generalization of
the evaluation games for classical logic. It is shown that it provides an interesting
contribution to the model theory of fuzzy logics as, unlike the standard seman-
tics, it can deal with the so-called non-safe models. The second kind of semantics
makes explicit the intuition about fuzzy logics as logics of partial truth and pro-
vides a semantics in the form of a bargaining game. Finally, a basic kind of logic
of informational independence of a Hintikka-Sandu style is introduced.

6.1 Introduction
Both the areas of mathematical fuzzy logics and game-theoretical seman-

tics have been extensively studied, but their intersection has received attention
only quite recently. The literature on games in fuzzy logics concentrates on
the proof-theoretical features of fuzzy logics and uses the framework of the
Lorenzen-style dialogue games (e.g. Fermüller, 2003). Other applications of
game-theory in fuzzy logics are Renyi-Ulam games used in Mundici (1993) to
provide an alternative semantics for finite-valued Łukasiewicz logics. The aim
of this article is to provide a game-theoretic semantics for the model theory of
fuzzy logics.

Our aim is to explore the game semantics for a general fuzzy logic. How-
ever, we find it useful to restrict ourselves in this paper to a particular system:

∗The work was supported by project 1M0545 of the Ministry of Education, Youth and Sports of the Czech
Republic.
†Partial funding provided by grant GA401/04/0117. We wish to thank Christian Fermüller, Tero Tulenheimo
and an anonymous referee for valuable comments on a previous version of this paper.
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the Łukasiewicz logic. Nice properties of this system illuminate motivations of
the game semantics in the many-valued setting and provide an intuitive mean-
ing to the rules of the game. The proposed semantics can be extended to the
remaining basic fuzzy logics—product and Gödel, as well as for some other
fuzzy logics. This extension is beyond the scope of the article and will be a
part of the future work.

After the necessary preliminaries (Section 6.2), we introduce in the
Section 6.3 an evaluation game of the Hintikka-Sandu style. It is a rather
straightforward generalization of the evaluation games for classical logic, how-
ever, it has several interesting features. The game-theoretic interpretation of
Łukasiewicz logic is in a certain sense more general than the usual Tarskian
one (e.g. Hájek, 1998). In particular, the standard interpretation has to be lim-
ited to the so-called safe models in which all the suprema and infima (required
by the standard interpretation of the existential and universal quantifiers) exist.
The requirement of safeness—a crucial point of the standard interpretation—
can be partially avoided by the proposed game semantics (this is discussed
in Section 6.4). In Section 6.5 we introduce the notion of the bargaining fuzzy
game—a non-zerosum version of the evaluation game that better captures some
game intuitions about fuzzy logics as the logics of partial truth.

In Section 6.6 we explore the notion of imperfect information in the context
of the bargaining fuzzy games. We do not discuss the full range of imperfection
as studied in the framework of independence-friendly logics (see Hintikka and
Sandu, 1989; Sandu, 1993). We restrict ourselves to the basic case of indepen-
dence of existential and general quantifiers (the quantified variable might be
independent of the quantifiers of the other kind to which it is syntactically sub-
ordinated). As in standard IF logics we obtain formulas lacking a truth value.
These formulas have a range of truth degrees (a subinterval of [0,1]), such that
none of the players has a winning strategy for the corresponding game (in a
sense we have a formula which is neither partially true nor partially false).

6.2 Preliminaries

6.2.1 Łukasiewicz propositional logic
Łukasiewicz propositional logic was introduced in Łukasiewicz (1920).

Here we survey its basic properties, for details about predicate logic see the
Appendix. Its formulas are built from the propositional variables using the
logical connectives in the usual way. There are various axiomatic systems for
Łukasiewicz logic, we present the usual one:

(Ł1) ϕ→ (ψ→ ϕ)
(Ł2) (ϕ→ ψ)→ ((ψ→ χ)→ (ϕ→ χ))
(Ł3) (¬ϕ→ ¬ψ)→ (ψ→ ϕ)
(Ł4) ((ϕ→ ψ)→ ψ)→ ((ψ→ ϕ)→ ϕ)
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In Hájek (1998) the Łukasiewicz logic was put into the context of fuzzy
logics. It was shown that the Łukasiewicz logic is the extension of the so-called
Basic Fuzzy Logic by one axiom (double negation law).

Now we introduce the algebraic semantics for this logic, for the sake of sim-
plicity we present just the so-called standard one (on the interval [0, 1]). The
semantics on more general algebraic structures will be given in the Appendix.
We start with the following basic operations: binary ⊕, unary ¬, and nullary 0;
their corresponding logical connectives are called strong disjunction, negation
and bottom. Other operations (logical connectives1) are defined in the follow-
ing way (we list them together with their standard semantics and the names of
the corresponding logical connectives):

x ⊗ y is ¬(¬x ⊕ ¬y) max(0, x + y − 1) strong conjunction
x ∨ y is (x � y) ⊕ y max(x, y) weak-disjunction
x ∧ y is ¬(¬x ∨ ¬y) min(x, y) weak-conjunction
x→ y is ¬x ⊕ y min(1, 1 − x + y) implication

1 is ¬0 1 top

Definition 1. The standard MV-algebra ([0, 1]S ) has the domain [0, 1] and the
operations:

x ⊕ y = min(1, x + y)
¬x = 1 − x
0 = 0

We define the basic syntactical and semantical notions (theory, proof, prov-
ability, evaluation, model, and tautology) as usual. A completeness theorem
with respect to the standard semantics can be proven.

Theorem 2 (Standard completeness theorem). Let ϕ a formula. Then ϕ is prov-
able in Łukasiewicz logic iff it is a tautology in standard MV-algebra.

6.2.2 Evaluation games for classical logic
Our point of departure is the standard evaluation game for the classical pred-

icate logic as described in Hintikka and Sandu (1997) and Sandu (1993). Eval-
uation games provide an alternative semantics for first-order formulas: it is a
zero-sum game of two players traditionally called Eloise and Abelard, who
take up the roles of Verifier (V) and Falsifier (F ) in the course of the game.
The goal of Eloise (the initial Verifier) is to show validity of the initial formula
in a fixed model M and an initial M-evaluation v. A history is any sequence of
moves starting from the initial position, and a strategy is a function from a set
of histories to the set of admissible moves corresponding to the last position in

1In this paper we will use the same symbols both for logical connectives and operations in the corresponding
algebraic semantics.
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the history. Admissible moves in a current position of the game are given by
the logical structure of the current subformula and evaluation:

Rules of the classical evaluation game—M-Game (ϕ, v).

ϕ = ψ1 ∨ ψ2:V chooses whether to play (ψ1, v) or (ψ2, v).

ϕ = ψ1 ∧ ψ2: F chooses whether to play (ψ1, v) or (ψ2, v).

ϕ = ¬ψ: role switch, the game continues as (ψ, v) with the roles reversed
(current V becomes F and vice-versa).

ϕ = (∀x)ψ: F chooses a ∈ M, the game continues as (ψ, v[x : a]).

ϕ = (∃x)ψ:V chooses a ∈ M, the game continues as (ψ, v[x : a]).

ϕ is an atomic formula: the end of the game—V wins if M |= ϕ[v],
otherwise F wins.

The evaluation game is a zero-sum game of finite depth with perfect infor-
mation, so it is determined according to the Zermelo’s theorem. Thus in any
evaluation game, either Eloise or Abelard has a winning strategy. We define the
game-theoretical truth as the existence of a winning strategy for the Eloise. It
is known that the game semantics corresponds with the standard Tarskian one.

Theorem 3. Assuming the Axiom of Choice the following holds: Eloise has a
winning strategy for the M-Game (ϕ, v) iffM |= ϕ[v].

6.3 Evaluation games for Łukasiewicz logic
Fuzzy logics can be seen as logics of partial truth—we are not just interested

if the formula is true, but “how much” it is true. In particular, we want to know
in which degree a formula is true in the given model (and evaluation). The
fuzzy evaluation game will be a generalization of the standard evaluation game
for the classical logic with an additional parameter representing the degree of
truth of the formula in question. We shall start with the evaluation game for
Łukasiewicz logic on the interval [0, 1], but our results can be generalized to
other fuzzy logics and more general structures.

We can give the fuzzy game a gambling motivation. Imagine the owner of
your local casino introduced a new game. The bookmaker (=Abelard) lets you
(=Eloise) bet on (the lower estimation of) the degree of truth of an assertion
(expressed in a formal language of Łukasiewicz logic). Then you play with the
bookmaker a game to justify your bet. If you win the play of the game, you get
the corresponding proportion of the stake of 100 €. If you lose, you get noth-
ing. What is the reasonable price for you to bet on the assertion? Obviously,
your price should not be higher than your possible gain, i.e., r · 100 €, where
r is your estimation of its truth degree.
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As in the classical evaluation game, the players take the roles of Verifier
and Falsifier during the course of the game. The rules of the fuzzy game are
a “conservative” extension of the rules of the classical evaluation game. It is
obvious that we need to take care of the parameter r. It is less obvious that the
procedural symmetry of the classical game is lost. In general, each round of
the fuzzy game consists of two moves. In the first moveV (possibly) modifies
r, the second one is a choice for F . For the classical connectives one of these
moves is trivial, so the rules for them turn out to be the classical ones, i.e., the
parameter r does not change.

Let us assume, more formally, that you play a game for a formula ϕ on a
model M and an M-evaluation v. In the beginning of the game you, as the
initial Verifier, claim that ||ϕ||LM,v ≥ r. To give an intuitive meaning to the rules
of the game we shall continue our gambling motivation. As r represents the
amount of money you are betting in the current subgame, we shall call it stake.

6.3.1 The rules of an evaluation game over [0, 1]S

We define rules of the game according to the logical form of ϕ. We could
confine ourselves to the basic set of connectives of Łukasiewicz logic, but we
prefer to have rules for all of them (except of →, ↔) in order to make game
intuitions behind the fuzzy games more transparent. Let M be a [0, 1]S -model.
M-Game (ϕ, v, r) is given by a formula ϕ, an M-evaluation v, and an element
r ∈ [0, 1]. The positions of this game are given by a triple (ϕ′, v′, r′) where ϕ′

is a subformula of ϕ.

Terminating rules. Atomic formulas are interpreted in the same way
as in the classical games. They correspond to the terminating positions of a
game, in which the corresponding action is a test of the current degree of truth
of the (atomic) formula (which is determined by the parameters of the game).
We have to take care of the zero value of the stake. As ||ϕ||M,v ≥ 0 is always
true for any formula ϕ, it is redundant to play the corresponding subgame.
According to our motivation, zero stake means win for the (current) Verifier in
the respective subgame. It is natural to consider this as a trivial win ofV.

(at) (ψ, v, r), where ψ is an atomic formula: the end of the game, if ||ψ||M,v ≥ r
(the current) V wins, otherwise F wins.

(0) (ϕ, v, 0): the end of the game, the current V wins.

Choice rules—disjunction. The moves for disjunction consist of the
distribution of the current stake between the disjuncts. The difference between
the classical (weak) and strong disjunction is that in the strong caseV distributes
the stake between the disjuncts and F chooses one of them while in the weak
case V just moves all the stake to one of the disjuncts. F does not really have
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a choice here as the choice of the disjunct with stake 0 means an immediate
loss for him. So the choice of the disjunct is in fact made by Verifiers’s move.
The move for the weak disjunction is a special case of the strong disjunction: it
corresponds to the fact that the classical connective is weaker (ϕ ∨ ψ→ ϕ ⊕ ψ
is a tautology of the Łukasiewicz logic).

(⊕) (ψ1 ⊕ ψ2, v, r):V chooses r′ ≤ r and F chooses whether to play (ψ1, v, r′)
or (ψ2, v, r − r′).

(∨) (ψ1 ∨ ψ2, v, r):V chooses whether to play (ψ1, v, r) or (ψ2, v, r).

Negation. Łukasiewicz negation as in the classical case corresponds to
the role switch. However, it includes a modification of the stake as well. This
should be no surprise if we consider r and 1 − r as the stakes of V and F
respectively. The same thing is to claim that ||ψ|| = r and ||¬ψ|| = 1 − r for
any ψ. If F disagrees that ||¬ϕ|| ≥ r, he has to claim not just that ||ϕ|| ≥ 1 − r
but that ||ϕ|| > 1− r, i.e., ||ϕ|| ≥ 1− r + r′ for some small r′. In gambling terms:
if F wants to take the role of V for the currently negated formula, he has to
increase his stake.

(¬) (¬ψ, v, r): F chooses r′, r ≥ r′ > 0, role switch, game continues as
(ψ, v, (1 − r) + r′)

Conjunction. Playing the weak conjunction V just waits for the choice
of the conjunct by F (as in the classical case) and the stake is unchanged. The
move for the strong conjunction is more tricky: V divides the Falsifier’s orig-
inal stake (in fact Falsifier’s bet on the negation of the conjunction) between
two conjuncts, F chooses one of them and adds the original Verifier’s stake to
the stake on the chosen conjunct. This move is, in fact, a dual to the dividing
stake by V in the strong disjunction move. The correspondence of the game
moves and the logical meaning of two conjunctions is reflected by the fact that
it is harder to play strong conjunction than the weak one as the player has to
bet more.

(⊗) (ψ1 ⊗ ψ2, v, r): V chooses r′ ≤ 1 − r and F chooses whether to play
(ψ1, v, r + r′) or (ψ2, v, r + (1 − r − r′)).

(∧) (ψ1 ∧ ψ2, v, r): F chooses whether to play (ψ1, v, r) or (ψ2, v, r).

Quantifiers. As in the classical game the move for the existentially quan-
tified formula (∃x)ψ consists of Verifier’s choice of an element from the do-
main of the model witnessing the claim ||(∃x)ψ||v ≥ r, which is equivalent to
sup(||ψ||v[x]) ≥ r (by sup(||ψ||v[x]) we mean the supremum of the set{||ψ||v[x:a] |
a ∈ M}). If the supremum is witnessed, i.e., there is an a′ such that ||ψ||v[x:a′ ] =
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sup(||ψ||v[x]) (the supremum is in fact a maximum), we could leave the classical
rule as it is. However, if the supremum is proper, i.e., ||ψ||v[x:a′ ] < sup(||ψ||v[x])
for all a′ ∈ M,V is, in principle, not able to find a witness for the existential
claim. As we want to make this case a win for V to keep the correspondence
with the standard semantics of fuzzy predicate logic, we have to do V a favor
and make the winning condition forV weaker: it is not necessary to give a wit-
ness for r, it suffices to do it for any r′ strictly smaller than r. In other words, we
let F to decrease Verifier’s stake (it is Falsifier’s interest to decrease it as little
as possible) and then V to find a witness in the domain to meet the weakened
condition. We keep Falsifier’s winning condition in the position ((∃x)ψ, v, r)
the same for r strictly greater than sup(||ψ||v[x]) (F can always win by choosing
r′ between the supremum and r).

(∃) ((∃x)ψ, v, r): F chooses r′ < r and V chooses a ∈ M, the game continues
as (ψ, v[x : a], r′).

For a witnessed structure we can keep the classical rule:

(∃′) ((∃x)ψ, v, r): V chooses a ∈ M, game continues as (ψ, v[x : a], r).

The position ((∀x)ψ, v, r) corresponds to Verifier’s claim that inf(||ψ||v[x]) ≥ r.
F is to move and he has to provide a counterexample, i.e., to find an a′ such
that (||ψ||v[x:a′ ] < r). It is clear that the existence of the witnessing element does
not influence Falsifier’s choice, so we need not include a change of the stake
in the rule for the universal quantifier and it turns out to be the same as in the
classical case.

(∀) ((∀x)ψ, v, r): F chooses a ∈ M, game continues as (ψ, v[x : a], r).

The asymmetry of the quantifier rules might be explained when defining
existential move from the general one using twice the negation rule.

6.3.2 The rules of an evaluation game
over an MV-algebra

The rules are a direct analogy of the corresponding rules for M-game, we
only replace operations on the unit interval with those in L. There is a small
problem, that the MV-chain L could be atomic and the rule (∃) would fail.
However, as we know that each structure over atomic MV-chain is witnessed
we use the rule (∃′) instead.

Let L = (L,⊕,¬, 0) be an MV-chain and M an L-structure. (M,L)-Game
(ϕ, v, r) is defined relative to a formula ϕ, an M-evaluation v, and an element
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r ∈ L. The following are the rules of (M,L)-Game for non-atomic MV-chain L:

(at) (ϕ, v, r), where ϕ is an atomic formula: V wins iff ||ϕ||LM,v ≥ r;

(0) (ϕ, v, 0):V wins;

(⊕) (ψ1 ⊕ ψ2, v, r):V chooses r′ ≤ r and F chooses whether to play (ψ1, v, r′)
or (ψ2, v, r � r′);

(∨) (ψ1 ∨ ψ2, v, r):V chooses whether to play (ψ1, v, r) or (ψ2, v, r);

(⊗) (ψ1 ⊗ ψ2, v, r):V chooses r′ ≤ ¬r and F chooses whether to play
(ψ1, v, r ⊕ r′) or (ψ2, v, r ⊕ (¬r � r′));

(∧) (ψ1 ∧ ψ2, v, r): F chooses whether to play (ψ1, v, r) or (ψ2, v, r);

(¬) (¬ψ, v, r): F chooses r′, r ≥ qr′ > 0, role switch, game continues as
(ψ, v,¬r ⊕ r′);

(∀) ((∀x)ψ, v, r): F chooses a ∈ M, game continues as (ψ, v[x : a], r);

(∃) ((∃x)ψ, v, r): F chooses r′ < r and V chooses a ∈ M, the game continues
as (ψ, v[x : a], r′).

The rules of (M,L)-Game for atomic MV-chain L are the some as above,
we only replace the rule (∃) by the rule (∃′):

(∃′) ((∃x)ψ, v, r): ((∃x)ψ, v, r): V chooses a ∈ M, game continues as
(ψ, v[x : a], r).

It will be obvious from the proof of the correspondence theorem that in
witnessed structures we can use the rule (∃′) instead of the rule (∃) and, on the
other hand, in games for atomic MV-chains we have to use the new rule.

Notice that we do not need to assume that M is a safe L-structure. The
rules introduced in the previous section work also for non-safe structures. In
particular, we do not have to change the existential rule. If a supremum does not
exist (we can think of it as of a gap in the interval of truth values), it cannot be
used neither by V nor by F . We can stay with the understanding of Verifier’s
winning strategy as an arbitrarily close approximation of the sup.

6.3.3 The correspondence theorem
Fuzzy evaluation games are zero-sum games of a finite depth, so by

Zermelo’s theorem they are determined. We can prove the correspondence be-
tween the existence of winning strategies in a fuzzy game and the standard
Tarskian truth.
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Theorem 4. Let L be an MV-chain, M be a safe L-structure, ϕ a formula, v
an M-valuation, and r ∈ L. Then Eloise has a winning strategy for the (M,L)-
Game (ϕ, v, r) iff ||ϕ||LM,v ≥ r.

Proof. We prove the claim by dual induction over the complexity of ϕ. We have
to prove both directions. As we have not showed any mutual interderivability
of the rules of (M,L)-Game, we have to prove it for all those rules. Step 0: If
ϕ is an atomic formula the claim is trivial. Step n→ n + 1,
• ϕ = ψ1 ∨ ψ2: if V has a winning strategy σ for the (M,L)-Game (ψ1 ∨

ψ2, v, r), then he has a winning strategy σ1 for the game (ψ1, v, r) or a winning
strategy σ2 for the games (ψ2, v, r). By induction property we get ||ψ1||v ≥ r or
||ψ2||v ≥ r. Obviously, ||ψ1 ∨ ψ2||v = ||ψ1||v ∨ ||ψ2||v ≥ r.

If ||ψ1 ∨ ψ2||v ≥ r, then ||ψ1||v ∨ ||ψ2||v ≥ r. Thus V can choose i ∈ {1, 2}
such that ||ψi||v ≥ r. By induction property V has a winning strategy σi for
(M,L)-Game (ψi, v, r). SoV has a winning strategy for (ϕ, v, r).
• ϕ = ψ1 ∧ ψ2: if V has a winning strategy σ for the (M,L)-Game (ψ1 ∧

ψ2, v, r), then he has a winning strategy σi for the game (ψi, v, r) for i ∈ {1, 2}.
By induction property we get ||ψ1||v ≥ r and ||ψ2||v ≥ r. Obviously, ||ψ1∧ψ2||v =
||ψ1||v ∧ ||ψ2||v ≥ r.

If ||ψ1 ∨ ψ2||v ≥ r, then ||ψ1||v ∨ ||ψ2||v ≥ r. Thus for i ∈ {1, 2} we have
||ψi||v ≥ r. By induction propertyV has a winning strategy σi for (M,L)-Game
(ψi, v, r) for i ∈ {1, 2}. SoV has a winning strategy for (ϕ, v, r).
• ϕ = ψ1 ⊕ ψ2: the winning strategy σ of V for the (M,L)-Game (ψ1 ⊕

ψ2, v, r) consists of a choice of an r′ ∈ L, r′ ≤ r and a pair of strategies σ1, σ2

which are winning for the games (ψ1, v, r′), (ψ2, v, r � r′) respectively. σ1 is a
response to Falsifier’s choice of the left disjunct, by induction property we get
||ψ1||v ≥ r′, similarly σ2 being winning strategy for the right conjunct implies
||ψ2||v ≥ r � r′. Obviously, ||ψ1 ⊕ ψ2||v = ||ψ1||v ⊕ ||ψ2||v ≥ r′ ⊕ (r � r′) ≥ r (the
last inequality follows from the properties of MV-algebras).

If ||ψ1 ⊕ ψ2||v ≥ r, then ||ψ1||v ⊕ ||ψ2||v ≥ r. V chooses r′ = ||ψ1||v. Since
r′ ⊕ ||ψ2||v ≥ r we get that ||ψ2||v ≥ r � r′. By induction property V has a
pair of winning strategies σ1, σ2 for (M,L)-Games (ψ1, v, r′) and (ψ1, v, r� r′)
respectively. So V has a response for any choice of F , thus he has a winning
strategy for (ϕ, v, r).
• ϕ = ψ1 ⊗ ψ2: analogous to the previous case.
• ϕ = ¬ψ: if V has a winning strategy σ for the (M,L)-Game (¬ψ, v, r),

then according to the rules of the fuzzy game he has a winning strategy σ′

as Falsifier in the (M,L)-Game (ψ, v,¬r ⊕ r′) for any r′ � 0 . By induction
property we get ||ψ||v < ¬r ⊕ r′ for each r′ > 0, thus ||ψ||v ≤ ¬r. Finally,
||¬ψ||v ≥ r.

If ||¬ψ||v ≥ r, then ||ψ||v ≤ ¬r. Thus ||ψ||v < ¬r ⊕ r′ for each r′ > 0. By the
induction property there is a winning strategy σ for the Falsifier in the game
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(ψ, v,¬r⊕ r′), which implies existence of a winning strategy σ′ for the Verifier
in the game (¬ψ, v, r).
• ϕ = ∀xψ(x): ifV has a winning strategy σ for the (M,L)-Game (∀xψ(x),

v, r) he must have for any a ∈ M a winning strategy σa in the (M,L)-Game
(ψ, v[x = a], r). Thus, we get ||ψ||v[x=a] ≥ r for each a (by induction property)
and so ||ϕ||v ≥ r.

If ||∀xψ(x)||v ≥ r, then for each a ∈ M we have ||ψ||v[x=a] ≥ r. By induc-
tion property we know that V has a winning strategy σa for the (M,L)-Game
(ψ, v[x = a], r) for any a ∈ M. Thus he has a winning strategy for the (M,L)-
Game (∀xψ(x), v, r).
• ϕ = ∃xψ(x) and L is not atomic: if V has a winning strategy σ for the

(M,L)-Game (∃xψ(x), v, r) he must be able to chose a ∈ M for each r′ < r
such that he has a winning strategy σr′ in the (M,L)-Game (ψ, v[x = a], r′) .
Thus, for each r′ < r we get ||ψ||v[x=a] ≥ r′ for some a (by induction property)
and so ||ϕ||v ≥ r′ for each r′ < r. This implies (as L is not atomic and so r is a
cumulative point) that ||ϕ||v ≥ r.

If ||∃xψ(x)||v ≥ r, then for each r′ < r there is ar′ ∈ M such that ||ψ||v[x=a] ≥ r′.
By induction property we know thatV has a winning strategyσr′ for the (M,L)-
Game (ψ, v[x = ar′], r′) for any r′ < r. Thus he has a winning strategy for the
(M,L)-Game (∃xψ(x), v, r).
• ϕ = ∃xψ(x) and L is atomic: ifV has a winning strategy σ for the (M,L)-

Game (∃xψ(x), v, r) he must be able to chose a ∈ M to have a winning strategy
σ in the (M,L)-Game (ψ, v[x = a], r) . Thus, we get ||ψ||v[x=a] ≥ r for some a
(by induction property) and so ||ϕ||v ≥ r.

If ||∃xψ(x)||v ≥ r, then there is a ∈ M such that ||ψ||v[x=a] ≥ r (as (M,L)
is witnessed model). By induction property we know that V has a winning
strategy σ for the (M,L)-Game (ψ, v[x = a], r). Thus he has a winning strategy
for the (M,L)-Game (∃xψ(x), v, r). �

It immediately follows that tautologies of Łukasiewicz logic correspond to
the strategies for r=1 in the respective game.

Corollary 5. Let ϕ be a formula, L be an MV-chain, M be a safe L-structure,
and an M-evaluation v. Then Eloise has a winning strategy for (M,L)-Game
(ϕ, v, 1) iff (M,L) |= ϕ[v].

As we have seen, winning strategies are based on players’ knowledge of
the values of subformulas and the operations in the corresponding algebras (as
they do in the classical games). This does not undermine our gambling moti-
vation, however. Players must know the meaning of the connectives, i.e., the
operations in the corresponding algebra. But they might not be able to calculate
the exact value of the subformulas (e.g., because of their complexity). Playing
the game allows a player to estimate the value of the formula in question.
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6.4 Winning strategies and safe structures
In games over safe structures (defined in the previous sections) we identi-

fied the (game-theoretical) value of a formula with the existence of Eloise’s
winning strategy for a certain value of a formula. We define two sets induced
by (non-)existence of winning strategies and use them for analyzing safeness
of fuzzy predicate structures.

Definition 6. Let L be an MV-chain, M be an L-structure, ϕ a formula, and v
an M-valuation. We define:
WS+(M,L, v, ϕ) =df {r | Eloise has a winning strategy for the (M,L)-

Game (ϕ, v, r)}.
WS−(M,L, v, ϕ) =df {r | Abelard has for any r′ > r a winning strategy for

the (M,L)-Game (ϕ, v, r′)}.

If L and M are clear from the context we will write WS+(v, ϕ) instead of
WS+(M,L, v, ϕ). Furthermore, if v is clear from the context we will write only
WS+(ϕ) (analogously forWS−(M,L, v, ϕ)). The definition ofWS− seems to
be slightly more complicated than necessary; we need it to obtain a duality of
the operations over theWS+,WS− defined below. Let us note that there is no
game (ϕ, v, r′) for r′ > r = 1, so it is always the case that 1 ∈ WS−(ϕ).

Lemma 7. Let L be an MV-chain, M be an L-structure, ϕ a formula, and v
an M-valuation. Then:

1. WS+(ϕ) is a lower set2;

2. WS−(ϕ) is an upper set;

3. WS−(ϕ) ∪WS+(ϕ) = L;

4. ||WS−(ϕ) ∩WS+(ϕ)|| ≤ 1;

5. For safe M:WS+(M,L, v, ϕ) ∩WS−(M,L, v, ϕ) = {||ϕ||LM,v}.

These claims are all rather trivial consequences of the definition of an
(M,L)-Game (ϕ, v, r); the last one is a direct consequence of Theorem 4. The
following theorem gives a game-theoretic characterization of the notion of a
safe structure.

Theorem 8. Let L be an MV-chain, M be an L-structure. Then M is safe iff
WS+(M,L, v, ϕ) ∩WS−(M,L, v, ϕ) � ∅ for each v and ϕ.

Proof. One direction is the last claim of the previous lemma. The reverse one
is proven by induction over the complexity of the formula. �

2Namely, if r ∈ WS+(ϕ) and r′ ≤ r, then r′ ∈ WS+(ϕ); analogously for the upper set.
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IfWS+(M,L, v, ϕ)∩WS−(M,L, v, ϕ) = {a}, we can call a the truth value of
the formula ϕ (in the L-structure M and M-evaluation e). Observe that in safe
structures this coincides with the usual terminology (by the above theorem).
However, it “works well” in non-safe structures as well, as demonstrated by
Example 11.

Definition 9. Let L be an MV-chain. We define the set operator Clo : P(L)→
P(L) in the following way:

Clo(X) =

{
X ∪ {sup(X)} ∪ {inf(X)} if sup(X), inf(X) exist,
X otherwise.

The following lemma shows how the setsWS+,WS− of a compound for-
mula can be expressed byWS+,WS− of its subformulas.

Lemma 10. Let L be an MV-chain, M be an L-structure, ϕ a formula, and v
an M-valuation. Then:

1. WS+(ϕ ⊕ ψ) = {r⊕ s | r ∈ WS+(ϕ) and s ∈ WS+(ψ)};WS−(ϕ ⊕ ψ) =
{r ⊕ s | r ∈ WS−(ϕ) and s ∈ WS−(ψ)};

2. WS+(ϕ ⊗ ψ) = {r⊗ s | r ∈ WS+(ϕ) and s ∈ WS+(ψ)};WS−(ϕ ⊗ ψ) =
{r ⊗ s | r ∈ WS−(ϕ) and s ∈ WS−(ψ)};

3. WS+(ϕ ∨ ψ) = WS+(ϕ) ∪ WS+(ψ); WS−(ϕ ∨ ψ) = WS−(ϕ) ∩
WS−(ψ);

4. WS+(ϕ ∧ ψ) = WS+(ϕ) ∩ WS+(ψ); WS−(ϕ ∧ ψ) = WS−(ϕ) ∪
WS−(ψ);

5. WS+(¬ϕ) = {¬r | r ∈ WS−(ϕ)};WS−(¬ϕ) = {¬r | r ∈ WS+(ϕ)};

6. WS+((∀x)ϕ) =
⋂

a∈M
WS+(v[x = a], ϕ);WS−((∀x)ϕ) =

Clo(
⋃

a∈M
WS−(v[x = a], ϕ));

7. WS+((∃x)ϕ) = Clo(
⋃

a∈M
WS+(v[x = a], ϕ));WS−((∃x)ϕ) =⋃

a∈M
WS−(v[x = a], ϕ).

Proof. These claims are rather trivial consequences of the definition of an
(M,L)-Game (ϕ, v, r). �

The next example illustrates the behavior of the sets WS+ andWS− in a
non-safe structure.

Example 11. Let L be the subalgebra of the standard MV-algebra with the
domain [0, 1] ∩ Q. Let q be an irrational number greater than 1

2 and let ai be a
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sequence of rationals descending to q. Let M be the L-structure of a predicate
language with one unary predicate P, where the domain of M is the set of
natural numbers and PM(i) = ai. Obviously M is not a safe L-structure—
the truth value of ∀xP(x) is undefined. Observe that WS+(∀xP(x)) = [0, q).
The truth value of ϕ = (∀x)P(x) ⊕ (∀x)P(x) is also undefined. However, from
the previous lemma we know that, WS+(ϕ) = [0, 1] and WS−(ϕ) = {1}.
Thus WS+(ϕ) ∩ WS−(ϕ) = {1}. Thus it seems reasonable to claim that the
formula ϕ holds (its truth value is 1). This issue (evaluation games on non-safe
structures) will be elaborated in future work.

6.5 Bargaining games for Łukasiewicz logic
A classical logical game can be seen as a quarrel about the ‘truth’, in par-

ticular about the full and indivisible ‘truth’. The player who has a winning
strategy is able to win the ‘truth’ in any play of the game and the formula is
correspondingly taken to be True or False. Fuzzy logics can be seen as logics
of partial ‘truth’. It seems quite natural to see a logical game from the fuzzy
perspective as bargaining the ‘truth’ between Eloise and Abelard. If the value
of a formula in a game is r then we can consider r as Eloise’s part of the ‘truth’
and the rest 1−r as belonging to Abelard. Obviously, each of them wants to get
as much ‘truth’ as possible. But in general none of them has a winning strategy
for the whole ‘truth’. The fuzzy game defined in the previous section is not
about bargaining ‘truth’. It is a standard zero-sum game, since the partiality of
‘truth’ is hidden in one of the parameters of the game. In this section we in-
troduce another kind of the fuzzy game which reflects the bargaining intuition
more straightforwardly.

Let us remember our gambling motivation for the standard fuzzy evaluation
game. Eloise bets on a value of the formula in question before the start of the
game. The stakes in the rest of the game (the current values of subformulas)
have just a technical auxiliary meaning, the payoff in the end of the game is
given by the initial bet. From the point of view of the bargaining motivation it
is more intuitive to let the players negotiate the value of the formula. The aim
of Eloise is to push the value of the formula up, while the aim of the Abelard
is the opposite one. Assuming the value of the formula is not determined from
the very beginning, the only kinds of moves where the players substantially
influence it are the quantifier moves. The moves for the other connectives just
modify the stake in a minimal way and redistribute it between subformulas. If
a game proceeds with an existential move for the formula ϕ = (∃x)ψ, Eloise
has to choose an object a ∈ M and the game continues as (ψ, v[x : a]). As she
wants to keep the value of the formula as high as possible, she shall choose a
so that ||ψ||v[x:a] = maxa′∈M ||ψ||v[x:a′ ], which is exactly the interpretation of the
existential quantifier in fuzzy logic (for witnessed models where the maxima



130 Towards Evaluation Games for Fuzzy Logics

exist). Similarly, Abelard minimizes y in the general move for the formula
ϕ = (∀y)ψ to keep the value of ϕ down.

If the formula in question is in prenex form or can be transformed into one
(this is the case of Łukasiewicz logic), we can modify the fuzzy evaluation
game in the following way: the value of the formula is not determined in the
beginning of the game; it starts with the quantifier moves consisting of choices
of witnesses in order to maximize (minimize) the value of the formula. Playing
quantifier prefix can be considered as a “negotiation” part of the game. After
the prefix part the value of the current (quantifier-free) formula is calculated
(by a judge or an oracle) and the game continues as the standard fuzzy evalua-
tion game without quantifiers moves. Let us for the sake of simplicity skip the
second part and compute the “payoffs” directly. Then the game reduces to the
play of the quantifier prefix. We shall call it bargaining fuzzy game. The term
bargaining game is used in game theory in a different meaning (see Osborne
and Rubinstein, 1994), we hope this will not lead to a clash of intuitions.

6.5.1 The rules of the bargaining fuzzy game
Assume that L is an MV-chain and M is a witnessed L-structure.

Definition 12. Let ϕ be a formula in a prenex form and v an M-evaluation.
The rules of the bargaining (M,L)pr-Game (ϕ, v) for two players are defined
as follows:

(∀x) ((∀x)ψ, v): Abelard chooses a ∈ M, game continues as (ψ, v[x:a]).

(∃x) ((∃x)ψ, v): Eloise chooses a′ ∈ M, game continues as (ψ, v[x:a′]).

term ϕ is open formula: Eloise wins ||ϕ||M,v and Abelard wins 1 � ||ϕ||M,v.

In general, none of the players wins “the whole truth”, so we cannot speak
about winning strategies, just about the strategies guaranteeing some payoff.

6.5.2 Properties of bargaining games
Definition 13 (strategies in prenex games). We say that σ is a player’s strategy
of the level r (r-strategy) for the (M,L)pr-game (ϕ, v) iff σ guarantees him a
win at least r in this game.

The following lemma is a consequence of the previous two definitions.

Lemma 14. Abelard has r-strategy iff Eloise has no r′-strategy for any r′ >
1 � r.

As one would expect, there is a straightforward way to relate bargaining
games to fuzzy evaluation games.
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Lemma 15. Let L be an MV-chain, M a witnessed L-structure, and ϕ a for-
mula in a prenex normal form. Then Eloise has a winning strategy for the
(M,L)-game (ϕ, v, r) iff Eloise has an r-strategy for (M,L)pr-game (ϕ, v).

Proof. Let ϕ = Q(x1, . . . , xn)ψ, where Q is a string of quantifiers and ψ is a
quantifier-free formula.

“→” Any winning strategy σ for the game (M,L)-Game (ϕ, v, r) starts with
strategy σQ containing all the quantifier moves. We show that σQ is Eloise’s
r-strategy for (M,L)pr-game (ϕ, v).

The strategy σQ consists of a sequence of choices xi1 := a1 . . . , xik = ak such
that xi1, . . . , xik are among x1, . . . , xn and Eloise has a winning strategy for the
(M,L)-game (ψ, v′, r), where v′ = v[xi1 := a1, . . . , xik := ak]. According to the
Theorem 4 we get ||ψ||LM,v′ ≥ r.

“←” Eloise has an r-strategy σ for the (M,L)pr-game (ϕ, v). It consists of
a sequence of choices xi1 := a1 . . . , xik = ak such that xi1, . . . , xik are among
x1, . . . , xn and ||ψ||LM,v′ ≥ r, where v′ = v[xi1 := a1, . . . , xik := ak]. According to
the Theorem 4, Eloise has a winning strategy σv′ in the (M,L)-game (ψ, v′, r).

Eloise’s strategy σ′ for (M,L)-game (ϕ, v, r) is as follows: start by strat-
egy σ, it yields an evaluation v′. Then follow strategy σv′ . Obviously, σ is a
winning strategy. �

We make use of our notions ofWS+ andWS− (introduced in Section 6.4)
for a convenient reformulation of the previous lemma. On the first view “pecu-
liar” definition ofWS− allows us to formulate it for Abelard’s strategies in a
nice dual way.

Theorem 16. Let L be an MV-chain, M a witnessed L-structure, and ϕ a
formula in a prenex normal form. Then:

WS+(ϕ) = {r | Eloise has an r-strategy for (M,L)pr-game (ϕ, v)}.

WS−(ϕ) = {1 � r | Abelard has an r-strategy for (M,L)pr-game (ϕ, v)}.
Proof. The first claim is a trivial consequence of the previous lemma and the
definition ofWS+. To prove the second claim we write a chain of equivalent
claims: Abelard has an r-strategy for (M,L)pr-game (ϕ, v) IFF Eloise has no
r′-strategy for any r′ > 1 � r IFF Eloise has no winning strategy for (M,L)-
game (ϕ, v, r′) for any r′ > 1 � r IFF Abelard has a winning strategy for
(M,L)-game (ϕ, v, r′) for any r′ > 1 � r IFF 1 � r ∈ WS−(ϕ). �

Theorem 17. Let σ be Eloise’s strategy of the level ||ϕ||M,v and γ be Abelard’s
strategy of the level 1� ||ϕ||M,v for the (M,L)pr-game (ϕ, v). Then < σ, γ > is a
Nash equilibrium of the (M,L)pr-Game (ϕ, v).

The proof is evident—according to the previous claims none of the players
can improve his payoff by deviating from the strategies σ, γ respectively. Ob-
serve that if we formulated bargaining game for non-witnessed structures we
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would lose both the previous theorem and Lemma 15. In fact, we could find a
setting (formula and evaluation) such that for each player’s r-strategy there is
an r′-strategy for that player for some r < r′.

We shall illustrate the fuzzy bargaining game with a simple example.

Example 18. Let us have a formula ϕ = ∃x∀yP(x, y), such that the predicate
P takes only finitely many values according to the following table:

P(x, y) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
0.2 0.6 0.1
0.6 0.7 0.2
0.4 0.5 0.6

⎞⎟⎟⎟⎟⎟⎟⎟⎠
The goal of Eloise in the bargaining game is to choose a row m to maximize
the value of ϕ, the goal of Abelard is to choose a column n to minimize it.
As Eloise moves first, she chooses m such that minjP(m, j) = maximin jP(i, j),
then Abelard replies by n such that P(m, n) = minjP(m, j). Hence the solution
of the game is a tuple < m, n > such that P(m, n) = maximin jP(i, j). In our
example this holds for m = 3, n = 1, the value of the game is P(3, 1) = 0.4,
henceWS+(ϕ) = [0, 0.4] andWS−(ϕ) = [0.4, 1].

6.6 Fuzzy games with imperfect information
Games of imperfect information have been a standard part of game theory

since the very beginning (see von Neumann and Morgenstern, 1994). Their
introduction in logic by Jaakko Hintikka and Gabriel Sandu (see Hintikka and
Sandu, 1997; Sandu, 1993) led to the birth of (the phenomenon of) indepen-
dence-friendly (IF) logics. In a classical evaluation game both players have
full information about all the previous moves at each position of the game. In
logical games with imperfect information, the full history of the game might
not be available at some positions.

We shall concentrate here on the prototypical case in which the indepen-
dence concerns quantifier moves: a player has to choose an element from the
domain independently of (i.e., without knowledge of) some of the previous
choices of the other player. The independence is in IF logics syntactically de-
noted by the slash notation. For example, in the formula ∃x∀y/xψ the choice
of y is independent of that of x. One might see an introduction of imperfect
information as an obvious move when creating game semantics. In fuzzy logic
we can find an independent motivation, however. There are formulas which are
neither true nor false in standard IF logics. It is possible to consider these for-
mulas as having the third truth value ’Undefined’ and so to move from classical
bivalent logic to a three valued logic (see Sandu and Pietarinen, 2001). If our
point of departure is a many valued logic, what will be the result of introduc-
ing independence into its game semantics? This section provides basic steps
toward answering this question.
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There are several options to introduce independence into the fuzzy games.
One possibility would be to use the definition of a two-move round in the fuzzy
evaluation game: we could make the choice made by Abelard independent of
the distribution of the stake made by Eloise. We can also introduce the usual
quantifier independence into the fuzzy evaluation game. In this section we shall
examine the most interesting case (in our opinion): the independence of the
quantifier moves in the bargaining game defined in the previous section. We
shall give a semantics for the formulas of Łukasiewicz logic in prenex normal
form, where the prefix possibly contains slashed quantifiers.

The introduction of imperfect information requires obviously a modification
of the game, but as we confine ourselves to a special kind of informational in-
dependence we do not have to introduce the full machinery of standard games
with imperfect information.

The game tree is of the same kind as in the bargaining fuzzy game (i.e.,
nodes are labelled by a subformula and a valuation). The difference is that
some positions are now indistinguishable from the point of view of some of
the players. Such a set of positions is called an information set. Indistinguish-
able positions correspond to the same subformula and they may differ in the
valuation of the slashed variables (if the leftmost quantifier is slashed).

Definition 19. Two positions (ϕ, v) and (ϕ, v′) of the (M,L)pr-Game (ϕ, v) are
in the same information set for Eloise (Abelard) iff

ϕ = ∃y/x1 ,...,xnψ (or ϕ = ∀y/x1 ,...,xnψ) for some n ≥ 0;

v and v′ agree on all variables with the possible exception of those from
the set x1, . . . , xn.

The rules of the bargaining game remain the same: a player has to pick an
object from the domain to fix the value of the quantified variable. The differ-
ence is in the information he can use, so we have to change the definition of a
strategy.

One option is to make strategy a function on sets of histories (those which
end in the same information set) rather than on a single history as in the previ-
ous case. As we want to let the strategies be of the same kind in both the games
of perfect and imperfect information, we shall use the second option—the re-
quirement of the uniformity of strategies. The uniform strategies must agree on
the histories which end in the same information set.

Definition 20 (Uniformity of strategies). Let σ be a strategy of the player
I ∈ {Abelard,Eloise} in the game (M,L)pr-Game (ϕ, v). Then σ is uniform
iff for any two histories h1, h2 such that their last positions are in the same
information set belonging to I, σ(h1) = σ(h2).
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The rules of the games with imperfect information.

Definition 21. Let ϕ be a formula in prenex form containing slashed quan-
tifiers of the form ∀x/y1 ,...,ym (∃y/x1 ,...,xn) such that y1, . . . , ym (x1, . . . , xn) are
existentially (universally) quantified variables preceding x (y) respectively. Let
v be an M-evaluation. The rules of the bargaining (M,L)pr-Game (ϕ, v) with
imperfect information are as follows:

(∀x/) (∀x/y1 ,...ymψ): Abelard chooses a ∈ M, game continues as (ψ, v[x:a]).

(∃y/) (∃y/x1 ,...xnψ): Eloise chooses a ∈ M, game continues as (ψ, v[x:a]).

We shall introduce the notion of a uniform r-strategy.

Definition 22 (Uniform strategies in fuzzy bargaining games). We say that σ
is a player’s uniform strategy of the level r (r-strategy) for the (M,L)pr-game
(ϕ, v) iff σ is uniform and guarantees him a win of at least r in this game.

It is evident that the fuzzy bargaining game defined in the previous section is
a special case of that with imperfect information—all the information sets are
singletons and hence any r-strategy is uniform. Thus without loss of generality
we omit the word “uniform”.

We adapt the notions ofWS+ andWS− and define:

WS+(ϕ) = {r | Eloise has an r-strategy for (M,L)pr-game (ϕ, v)}.

WS−(ϕ) = {1 � r | Abelard has an r-strategy for (M,L)pr-game (ϕ, v)}.

Theorem 16 tells us that in the special case of formulas without slashed
quantifiers the recently defined notions of WS+ and WS− correspond to
the ones from the bargaining game. Obviously, WS+(ϕ) is a lower set and
WS−(ϕ) is an upper set.

Lemma 23. Let ϕ be a formula. Then ||WS−(ϕ) ∩WS+(ϕ)|| ≤ 1.

Let us consider again the formula ϕ = ∃x∀yP(x, y) from the previous exam-
ple and explore how the setsWS+(ϕ) andWS−(ϕ) change when the second
quantifier becomes independent of the first one, i.e., we shall consider the for-
mula ϕ′ = ∃x∀y/xP(x, y). It is easy to see that Eloise keeps all her r-strategies
in the sense that WS+(ϕ′) = [0, 0.4] = WS+(ϕ) while Abelard loses some
of them as WS−(ϕ) ⊂ WS−(ϕ′) = [0.6, 1]. Neither player has a r-strategy
for r ∈ (0.4, 0.6). This example shows that in fuzzy bargaining games with im-
perfect informationWS+(ϕ) andWS−(ϕ) do not have in general to cover the
whole set of truth values.

The introduction of independence leads, as in the case of the classical IF
logics, to the existence of formulas without a definite truth value. We can say
that in the case of IF fuzzy logic we are more specific about the indefiniteness
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of the truth value. The classical “Indefinite” may be interpreted as “anywhere
between Truth and Falsity” (or between 0 and 1) in the many-valued setting.
In the case of fuzzy logics, the zone of indefiniteness does not extend to the
whole unit interval, but corresponds in general to a proper subinterval of [0, 1].

Definition 24. If there is a ∈ L such that WS+(ϕ) ∩WS−(ϕ) = {a} we say
that a is the truth value of ϕ.

Observe that for formulas without slashed quantifiers our notion of a truth
value coincides with the Tarskian one (compare with the analogous situation
in the non-safe structures—see Section 6.4). In cases where there is no such
element, the value of the formula cannot be characterized by a single element,
but it is given by sets of valuesWS+,WS−.

6.7 Conclusion
The aim of this article was to introduce evaluation games for fuzzy logics.

We concentrated on the Łukasiewicz logic and provided two kinds of game-
theoretic semantics. It is possible to generalize this semantics for a general
fuzzy logic (in particular for product and Gödel logic), however there is no
space to do so in this article.

From the philosophical point of view our game semantics provides an al-
ternative mode of presentation for fuzzy connectives. As Łukasiewicz logic
can be seen as a substructural logic (it does not have the contraction rule), we
can consider our definition as an example of a model-theoretic game semantics
for a substructural logic (proof-theoretic game semantics is provided by Blass
(1992)).

We have shown that, although the generalization of classical evaluation
games to the realm of fuzzy logics is rather straightforward, it gives us new
tools for finer analysis of various semantical issues. In particular, our interpre-
tation of formulas as setsWS+ allows us to interpret formulas lacking a truth
value in non-safe models under the Tarskian semantics. We showed that sets
WS+ behave compositionally, so they can serve as basis for a new semantics
over non-safe structures.

Finally, the notion of informational independence introduced in the last sec-
tion leaves many open questions. We propose to use setsWS+ to interpret IF
fuzzy formulas as well (it suggests the idea that formulas over non-safe mod-
els and IF fuzzy formulas are of a similar nature). We believe to obtain a full
semantics for at least some (kind of) IF fuzzy logic this way.

Appendix: Łukasiewicz predicate logic
In the Appendix we survey the basic properties of Łukasiewicz predicate logic. Unlike in the

propositional logic there is no standard completeness in the predicate case. So first we need to
introduce the general algebraic semantics.
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Definition 25. An MV-algebra is a structure L = (L,⊕,¬, 0) where:

1. (L,⊕, 0) is a commutative monoid,
2. ¬¬x = x,

3. x ⊕ ¬0 = ¬0,

4. ¬(¬x ⊕ y) ⊕ y = ¬(¬y ⊕ x) ⊕ x.

It can be shown that in each MV-algebra L= (L,⊕,¬, 0) the reduct (L,∨,∧, 0, 1) is a bounded
lattice.

Definition 26. Let L = (L,⊕,¬, 0) be an MV-algebra. We say that L is linearly ordered MV-
algebra (MV-chain) if (L,∨,∧, 0, 1) is linearly ordered lattice.

An MV-chain L is atomic if it contains an element a � 0 (called atom of L) such that for
each b � 0 is a ≤ b.

We define the basic semantical notions (L-evaluation, L-model, and L-tautology of MV-
algebra L) as usual:

Definition 27. Let L = (L,⊕,¬, 0) be an MV-algebra. We say that a mapping e from the set of
formulas to the set L is an L-evaluation if:

e(ϕ ⊕ ψ) = e(ϕ) ⊕ e(ψ)

e(¬ϕ ⊕ ψ) = ¬e(ϕ)

e(0) = 0

L-evaluation is L-model of theory T if e(ϕ) = 1 for each ϕ ∈ T . Formula ϕ is L-tautology if
e(ϕ) = 1 for each L-evaluation e.

We use the symbol |=L for the semantical consequence over given MV-algebra L (T |=L ϕ iff
for each L-model e of T we have e(ϕ) = 1). We can prove the following (strong) completeness
theorem:

Theorem 28 (Strong completeness theorem). Let T be a theory and ϕ a formula. Then the
following are equivalent:

T � ϕ.

T |=B ϕ for each MV-algebra B.

T |=B ϕ for each MV-chain B.

For finite theories we could add one more equivalent condition:

T |=[0,1]S ϕ.

We assume that the reader is familiar with the syntax and semantics of classical predicate
logic. Here we refresh the basic notions of Łukasiewicz predicate logic. As mentioned above,
we are forced to work with more general algebras of truth values than the standard interval
[0, 1]S , in particular with MV-chains. As shown in Hájek (1998) (originally in a slightly weaker
form in Belluce and Chang (1963), see also a recent survey (Hájek and Cintula, 2006) this logic
is strongly complete with respect to the class of all MV-chains (like in the propositional case).

For each MV-chain L, an L-structure for a predicate language Γ is M = (M, (PM)P∈Γ,

( fM) f∈Γ) where M � ∅ is the domain of the model, for each predicate P of arity n, PM is an
n-ary L-fuzzy relation on M (a mapping Mn → L), and for each function f , fM is a mapping
Mn → M. Having this, one defines for each formula ϕ (of the given language), the truth value



P. Cintula and O. Majer 137

‖ϕ‖LM,v of ϕ in M determined by the MV-chain L and the M-evaluation v of free variables of ϕ
in M in the usual (Tarskian) way.

Definition 29. Let Γ be a predicate language, L an MV-algebra, M an L-structure for Γ, v
an M-evaluation. The value of the term is defined as: ||x||M,v = v(x) and || f (t1, . . . , dn)||M,v =

fM(||t1||M,v, . . . , ||tn||M,v). A truth value of the formula ϕ in M for an evaluation v is defined3:

||P(t1, t2, . . . , tn)||LM,v = PM(||t1||M,v, ||t2||M,v, . . . , ||tn||M,v) ,
||ϕ ⊕ ψ||LM,v = ||ϕ||LM,v ⊕ ||ψ||LM,v ,

||¬ϕ||LM,v = ¬||ϕ||LM,v ,

||0||M,v = 0 ,
||(∀x)ϕ||M,v = inf{||ϕ||LM,v′ | v′ ≡x v} .
||(∃x)ϕ||M,v = sup{||ϕ||LM,v′ | v

′ ≡x v} .

If infimum (supremum) does not exist, we take its value as undefined.

As we can see, in the general case the truth assignment is a partial function. To overcome
this difficulty we define two classes of models:

Definition 30. Let Γ be a predicate language, L an MV-chain, M an L-structure for Γ. We say
that M is:

A safe L-structure, if ||ϕ||LM,v is defined for each ϕ and v.

A witnessed L-structure, if ||ϕ||LM,v is defined for each ϕ and v if we replace sup and inf
in Definition 29 by max and min.

Clearly, there are non-safe L-structures and each witnessed L-structure is safe, but not vice
versa. We can define witnessed structures more straightforwardly: M is a witnessed L-structure
iff for each formula ϕ and for each evaluation v there are a, b ∈ M such that ||(∃x)ϕ||LM,v =

||ϕ||LM,v[x:=a] and ||(∀x)ϕ||LM,v = ||ϕ||LM,v[x:=b]. By (M,L) |= ϕ we denote the fact ‖ϕ‖LM,v = 1 for
each M-evaluation v. Observe that in atomic MV-chain each element has the successor and
predecessor and so we get:

Lemma 31. Let L be an atomic MV-chain. Then each L-structure is witnessed.

Definition 32. The predicate Łukasiewicz logic has the axioms:

(P) the axioms resulting from the axioms of Łukasiewicz logic by the substitution of the
propositional variables by the formulas of Γ,

(∀1) (∀x)ϕ(x)→ ϕ(t), where t is substitutable4 for x in ϕ,

(∀2) (∀x)(χ→ ϕ)→ (χ→ (∀x)ϕ), where x is not free in χ,

The deduction rules are modus ponens and generalization: from ϕ infer (∀x)ϕ.

It is well known, that Łukasiewicz logic is complete with respect to the safe L-structures
over all MV-chains L.

Theorem 33 (Completeness Theorem). Let Γ be a predicate language and ϕ a formula. Then
the following are equivalent:

� ϕ.

3Recall we use the same symbols for both connectives and corresponding operations. By v ≡x v′ we mean
that v(y) = v′(y) for each object variable y different from x.
4The notions of substitutability, free and bounded occurrence of a variable are defined as usual.
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(M,L) |= ϕ for each MV-chain L and each safe L-structure M.

(M,L) |= ϕ for each MV-chain L and each witnessed L-structure M.

As in the propositional case we could formulate the strong completeness theorem. How-
ever, unlike in propositional case there is no standard completeness theorem. In fact, the set of
predicate tautologies of the standard MV-algebra is a Π2-complete set.
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Abstract Quantifiers in natural language contribute both to the truth conditions of a sen-
tence and to the discourse in which the sentence occurs. While a great deal of
attention has been paid to truth conditions, the contributions of quantifiers to the
discourse have been little studied. This paper seeks to rectify this by developing
a set of game rules that account both for the truth conditional and the discourse
contributions of quantified expressions.

7.1 Overview
In this paper, I would like to make some proposals on the treatment of quan-

tifiers and their consequences for discourse in Game Theoretic Semantics.1

For present purposes, I will mean by quantifier any noun phrase which con-
tains both a determiner and a head noun along any modifiers like adjectives
and relative clauses. The examples in (1) illustrate the sort of phrases I will be
interested in treating2:

(1) a. Aristoteleans: every dean, all deans, some faculty member, not all
students, no provost.

b. Cardinals and bounding determiners: at least five administrators, at
most four department chairs, between three and ten trustees.

∗The author wishes to acknowledge the support of the NIH, grant NS44266. Portions of this material were
presented at the 2004 Prague Colloquium; thanks to all for the many helpful comments.
1For general treatments of GTS, see Hintikka and Sandu (1997), Hintikka and Kulas (1985), and Hintikka
(1996), and the references cited there. For a treatment of some generalized quantifiers within GTS see
Pietarinen (2001, 2007).
2I will put aside definite descriptions like the dean and “polyadic quantifiers” like each. . .a different. . . as
in “each dean read a different comic book.” The former case requires a more detailed discussion of the
discourse model (see Clark (2005) for a game-theoretic treatment) and the latter case is too complex to treat
here; but see van Benthem (1989), Keenan (1992) and Pietarinen (2007).



140 Games, Quantification and Discourse Structure

c. Majorities: most monkeys, more than half of the department chairs,
more deans than faculty members, fewer provosts than trustees.

The expressions in (1) have long been studied by both linguists and philoso-
phers and a sophisticated and very useful theory of them already exists.3

Why bother to recast the project in terms of games? One good answer is that
it is always interesting and useful to rework a well-understood theory in a dif-
ferent way. I think, however, that there is a more interesting and telling reason
to investigate the game-theoretic properties of quantifiers in natural language.
To motivate things, let us consider a small text like the one in (2):

(2) Exactly three students took an exam. One passed it effortlessly. She
had clearly studied for it. The others struggled with it and barely
passed. They felt relief mixed with shame.

The first sentence in the text in (2) contains two quantifiers: exactly three stu-
dents and an exam. Clearly, the sentence is true in some models and false in
others. But the contribution of the quantifiers extends beyond the first sentence,
as the second sentence illustrates. The indefinite one in the second sentence
clearly depends on the discourse effects of the quantifier exactly three students
from the first sentence; equally, the pronoun it in the second sentence depends
upon the quantifier an exam in the first. Continuing to the third sentence, she
must refer (in the absence of other compelling discourse information) to the
student picked out by one in the second sentence, and so is ultimately contin-
gent on the first sentence. Consider, next, the contribution of the phrase the
others in the second to last sentence. This phrase is understood as referring
to the remaining two students. Its interpretation is contingent upon the inter-
action between the quantifier exactly three students and the discourse anaphor
one. Having interpreted the others correctly, these two students can become
the antecedent of the pronoun they in the last sentence.

Clearly, quantifiers make contributions to our understanding of and infer-
ences from texts, contributions that extend far beyond the level of the sentence.
Generalized quantifier theory, with its emphasis on truth conditions and the
functions that interpret quantifiers, has not been able to clearly address the con-
nections between quantifiers and their effects on the discourse.4 I will argue,
though, that Game Theoretic Semantics provides a natural framework for
investigating these relationships. I will be particularly concerned with how
quantifier games can establish new discourse entities. I will not, however,

3Generalized quantifiers, first proposed in Mostowski (1957), have played a central role in the development
of semantic theory. See, among many others, Barwise and Cooper (1981), van Benthem (1986), Keenan and
Stavi (1986), and Keenan and Westerståhl (1997).
4Indeed, Dynamic Semantics (Groenendijk and Stokhof, 1991; van den Berg, 1996; Beaver, 2001) and
Discourse Representation Theory (Kamp and Reyle, 1993) have attempted to address these connections.
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discuss reference tracking, the problem of following discourse entities through
a discourse. I take this to be a problem of the management of resources in the
discourse model, a problem that is amenable to a game treatment. For games
played on this level, the reader may consult Clark (2004, 2005).

Throughout this paper, I will make the standard assumptions about Game
Theoretic Semantics as applied to natural language. We will suppose that there
are two players, Eloı̈se and Abelard, the initial verifier and the initial falsifier,
respectively. They are playing a zero-sum game on a sentence S relative to a
model M. Eloı̈se wins if the sentence is verified relative to M while Abelard
wins if the sentence is counter-exemplified. See Hintikka and Sandu (1996) for
discussion and references.

7.2 Aristoteleans
The Aristotelean quantifiers are familiar from first-order logic. These in-

clude any quantifier synonymous with those in the familiar Aristotelean forms.
These quantifiers have been well-studied in GTS and I will restrict my atten-
tion to their effects on discourse anaphora. For present purposes, I will restrict
my attention to every/all and some/a, the other Aristoteleans being simple to
define on this basis.

I will follow the practice in GTS of allowing players to add entities and
sets of entities to a special set, the choice set IS . This set works as a discourse
model, a database of entities and sets of entities that have been invoked by
the discourse to date. When a pronoun, definite description or other anaphoric
element is encountered in the course of play, one player or the other must select
an entity or set from IS to serve as the target referent of the anaphoric element.
For example, in a sequence of games like:

(3) A boy was following a man. The man did not notice.

The verifier will choose elements from the model to act as witnesses for the
noun phrases in the first sentence. These elements will be placed in the choice
set at the end of a play of the first game. The second game begins with a definite
description, the man. The verifier is forced to make her choice of referent from
IS ; hence, the man in the second sentence is understood to refer to an entity
already invoked by the discourse. Compare (3) with:

(4) a. Every student thinks he’s smart. #He has enormous self-confidence.
b. Every student thinks he’s smart. They have enormous egos.

The sequence in (4)a is decidedly peculiar, while the sequence in (4)b is more
acceptable.5 To account for the differences between (3), (4)a and (4)b, we
must, first, partition the choice set into two parts. One member of the partition,

5See Clark (2004, 2005) for a game-theoretic treatment of such texts.



142 Games, Quantification and Discourse Structure

Icurrent, will contain the entities invoked by the current sentence. Certain types
of anaphora, an example might be reflexives like himself and herself constrain
the player to choose within Icurrent. The other, Idiscourse, will contain entities and sets
that have been invoked by previous games in the discourse. We can think of this
partition as the discourse model proper. Second, we will impose the following
constraint on the passing of discourse entities from Icurrent to Idiscourse:

(5) Choice Preservation
An entity is passed from Icurrent to Idiscourse just in case it was selected by
Eloı̈se. Otherwise, the set X from which the entity was selected is
placed in Idiscourse.

To demonstrate the system, let us turn to examples. Denoting a game played
on a sentence S relative to a model, M, as G(S ; M), then we have the following
rule for some:

(R.some)
If the game G(S ; M) has reached an expression of the form:

Z − some X who Y −W.

Then the verifier may choose an individual from the appropriate domain, say b.
The game is then continued as G(Z−b−W, b is an X and bY ; M). The individual
b is added to the set Icurrent.

Given the constraint in (5), if Eloı̈se is playing verifier when she chooses the
witness b, then b will survive in the discourse model and be added to the set
Idiscourse. Thus, the following text is acceptable:

(6) Mary saw some student. He jumped out from behind the door.

In (6), Eloı̈se, playing the initial verifier, selects a witness for some student
from the model in accord with the rule (R.some). After the first game, the
players move to the second sentence in (6). In order to interpret the pronoun,
he, Eloı̈se must pick an entity from Idiscourse. Since her choice of student survives
in Idiscourse, she can select it as the target referent of he.

If Abelard, the initial falsifier, is playing verifier, as would be the case under
negation, then his choice is forgotten, as (7) shows6:

(7) Mary didn’t see some student. {They were/#He was} hiding in the
corridor.

In (7), negation forces the verifier and the falsifier to exchange roles. Therefore,
at the point where (R.some) must be played on some student, Abelard will be
playing the verifier. His choice of student is dropped at the end of the game,
although the set of students is added to the discourse model.

6I will prefix pragmatically odd choices with a ‘#.’
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The rule (R.some) and Choice Preservation allow us to account for the es-
tablishment of discourse entities in this simple case. Let us contrast (R.some)
with another Aristotelean, every:

(R.every)
If the game G(S ; M) has reached an expression of the form:

Z − every X who Y −W.

Then the falsifier may choose an individual from the appropriate domain, say b.
The game is then continued as G(Z−b−W, b is an X and bY ; M). The individual
b is added to the choice set Icurrent.

Since the falsifier is playing, there is no question of the particular choice of
witness selected under (R.every) surviving into the next game, although the
set that contains witness does survive, according to Choice Preservation. We
expect to see the following pattern:

(8) a. Every student thinks he’s treated unfairly.
b. Every student passed the exam. #She studied very hard.
c. Every student passed the exam. They studied very hard.
d. Every student wrote an essay. One spelled most of the words cor-

rectly. He must have had a dictionary.

In (8)a, the falsifier selects an entity as a counterexample to the sentence. This
entity is placed into Icurrent and can act as an antecedent for any anaphor that
occurs within the game. Thus, the pronoun he in the embedded clause can
denote the falsifier’s choice. At the end of the game, however, the falsifier’s
particular choice is deleted and the set that falsifier chose from is placed in
Idiscourse. Thus, there is no singular referent for the pronoun she in (8)b and the
text is peculiar, all else being equal.

We can compare the peculiarity of (8)b with the unremarkable acceptabil-
ity of (8)c. Although the falsifier’s choice of witness is dropped, the set from
which he chose is placed in Idiscourse and can serve as the target for a plural pro-
noun. Consider, finally, the slightly longer text in (8)d. In the first sentence,
the falsifier selects a witness and the set he chose from is evoked; by Choice
Preservation, students is added to Idiscourse. The rule for interpreting one is ap-
proximately:

(R.one)
When a semantical game has reached a sentence of the form:

X − one − Y

an individual, say b, is selected by the verifier from a set in Idiscourse. The game is
continued with respect to:

X − b − Y.

The entity b is then added to Icurrent.



144 Games, Quantification and Discourse Structure

In accordance with (R.one), the verifier may find a set in Idiscourse and pick an
element from it to serve as the witness for one. Having done so, she establishes
a particular discourse entity—one of the students—who survives in Idiscourse and
can then serve as the antecedent for the pronoun in the third sentence.

7.3 Cardinals and bounding determiners
We turn now to the interesting cases of cardinals and bounding determiners,

as exemplified in:

(9) a. At least three students passed the exam.
b. At least one (= some) dean drank eau de vie.
c. At most ten graduate students wrote papers.
d. Between three and seven trustees take viagra.
e. Exactly five deans read at the sixth grade level.

These quantifiers involve explicit numeric quantities. In (9)a and (9)b the quan-
tifiers set a lower bound on the number of individuals with the property named
in the predicate. In (9)c an upper bound is placed on the number of individuals
and in (9)d and (9)e upper and lower limits are placed on the number of indi-
viduals. Thus, one might take exactly five to mean “more than four but less than
three.” Notice that we take at least one to be equivalent semantically to some,
although their pragmatic effects may differ. I will, again, restrict my attention
to some simple cases, the others being easy to define on their basis.

The game rules that follow differ in form from the rules for Aristoteleans
presented in Section 7.2. The games for the Aristoteleans all involve the choice
of a witness by one player or the other. I will propose that these quantifiers, as
well as the quantifiers that follow, involve two moves. In one move, a player
chooses a set of entities and, in the next move, his or her opponent selects a
witness from that set.

Consider a simple cardinal determiner like at least n, where n is a positive
integer. We can simulate this kind of a quantifier by allowing the verifier to
select a set of entities from the model, each of which could potentially witness
the relevant property. The falsifier is then allowed to select an individual from
this set as a counterexample. If he is unable to do so, then the sentence must
hold in the model and the verifier wins:

(R.at least n)
If the game G(S ; M) has reached an expression of the form:

Z − at least n X who Y −W

then the verifier may choose a set of entities from the domain M, call it ver(M),
such that |ver(M)| ≥ n. The falsifier then selects an entity d ∈ ver(M). Play
continues on Z − d −W, d is an X and d − Y. Both d and the contents of ver(M)
are placed in Icurrent.
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Notice that both the verifier’s choice of the set, ver(M), and the falsifier’s
choice from ver(M) are placed in Icurrent, although only ver(M) will survive in
the discourse model. This means that the falsifier’s choice of counterexample
and the verifier’s choice of the set should be available as targets for anaphora
within the current game. To motivate this consider the following:

(10) a. #At least three students think he’s smart.
(where he is one of the students.)

b. At least three students think they’re smart.

At first view, it would seem that a singular anaphor is ruled out in (10)a. That
is, we cannot utter (10)a intending to mean that each of the set of at least three
students believes of himself or herself “I am smart.” I submit, however, that
this is a fact about the morphosyntax of coreference; the problem is that the
pronoun does not agree in number with the antecedent noun phrase, so the
two cannot share reference at any level. Compare this with (10)b, which is at
least three ways ambiguous. On one reading, the students have a belief about
some set of individuals, namely that whose individuals are smart. We need not
concern ourselves with this reading. The other two readings involve whether
the students believe of the whole set of three or more students (that is, the
witness set) that they all are smart or whether each member of the set believes
“I am smart.” In the former case, the set ver(M) is the target of the anaphor
and in the latter case the falsifier’s choice of individual, d, is the target of the
anaphor.

When the contents of Icurrent are placed in Idiscourse, the falsifier’s choice of wit-
ness is, of course, deleted as required by Choice Preservation. We can imme-
diately account for the following range of texts:

(11) a. At least five deans smoked crack. They passed out.
b. At least five deans drank Mad Dog. #He passed out.
c. At least five deans dropped acid. One jumped out the window.

Example (11)a is acceptable because the plural pronoun they can denote the
verifier’s witness set, the set of deans that smoked crack. Example (11)b is odd
because, all else being equal, there is no entity in Idiscourse for the singular definite
pronoun to denote. Finally, (11)c is acceptable because the verifier can pick a
single element out of the witness set, now transfered to Idiscourse. The explanations
for each of the small texts in (11) is the same as those given for texts above
involving the Aristoteleans.

Let us turn, now, to examples involving at most n as in:

(12) At most three politicians smoke crack.

Following Keenan and Stavi (1986), we might try to exploit the boolean struc-
ture of the algebra in which natural language determiners take their denotations
and treat at most n(P,Q) as the boolean complement of at least n + 1(P,Q).
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That is, the falsifier and the verifier would exchange roles and play on at least
n + 1 when they encounter a sentence containing at most n. But consider the
discourse effects of a sentence containing at most n:

(13) At most five faculty members considered resorting to vegetarianism.
They changed their minds when they realized how much work it
would be.

The first sentence is true if three faculty members considered resorting to veg-
etarianism. Suppose that is the case. The pronoun in the next sentence refers
to just those three faculty members who considered resorting to vegetarianism
and to no others. Our method is to write rules that require the players to select
sets that will eventually serve as potential discourse entities; the problem with
exchanging roles and playing on at least n+1 is that it fails to create the needed
discourse entities. We must, therefore, reject this approach.

The following rule, however, will do the trick:

(R.at most n)
If the game G(S ; M) has reached an expression of the form:

Z − at most n X who Y −W

The verifier chooses a set of entities from the domain M, call it ver(M), such
that the cardinality of ver(M) is less than or equal to n. The falsifier chooses a
disjoint set of entities from M, call it fal(M), such that |ver(M) ∪ fal(M)| > n.
The game then continues on:

Z−every ver(M) −W, Z−no fal(M)−W, every ver(M) is an X who
Y , every fal(M) is an X who Y .

The set ver(M) is placed in Icurrent.

The rule (R.at most n) is based on the idea that the verifier must choose a maxi-
mal set of cardinality bounded by n. If she has a winning strategy, then she must
pick out every object so described and the falsifier should be unable to select an
object matching that description. Since Eloı̈se in her role as the verifier never
selects a single entity—play is carried by selecting sets and then playing on
every, where the falsifier chooses, and no, where Eloı̈se cannot be playing as
initial verifier—we do not expect definite singular discourse anaphora to be
licensed by at most n, although ver(M) will be in the choice set and available
for plural definites and indefinite anaphora. Thus, at most n should behave like
at least m, which it does:

(14) a. At most five trustees know how to play Candyland. #He studied it
at Harvard Business School.

b. At most five trustees drank Old Crow. They were trying to save
money.

c. At most five trustees performed on the kazoo. One did a passable
interpretation of Die Walkyrie.
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In (14)b, the pronoun they refers to the five or fewer trustees who drank Old
Crow; that is, the pronoun refers to the set selected by the verifier in the previ-
ous game. The game rule (R.at most n), when contrasted with the treatment of
at most n as the complement of at least n+ 1, brings out the strategic nature of
interpretation.

I will put aside bounding quantifiers as below (but see Clark, 2004); for the
present I will merely note some appropriate texts and leave the definition of
the game rules as a puzzle for the reader:

(15) a. Between three and seven department chairs exchanged flowers. #He
sneezed because he was allergic.

b. Between three and seven department chairs exchanged flowers.
They decorated their hats with them.

c. Between three and seven department chairs exchanged flowers. One
led a ceremonial procession down the Alps.

7.4 Majority determiners
By majority determiners I mean determiners like most, more/less than half

of the and n-ary determiners like more . . . than . . ., as illustrated in (15):

(16) a. Most faculty eat grubs in the winter.
b. More than half of the trustees dine on Andalucian dogs.
c. More deans than faculty resort to prostitution.

These determiners, being higher-order, are of greater complexity than those
we have considered up to now. most P’s are Q’s is true when the cardinality of
the set of things that are both P and Q is greater than that of the set of things
that are P but not Q. It may not be immediately obvious how to construct a
simple game rule, based on choice, that will yield the correct result; that is,
where verifier has a winning strategy just in case a majority of P’s have the
property Q.

In addition, the cardinalities involved might be infinite:

(17) Most integers are not divisible by five.

Although Abelard should win on (17), it is far from obvious how to encode
the meaning of (17) in a finite game, if such a thing is even possible. For the
moment, I will restrict my attention to games involving majorities over finite
sets.

We might try the following game rule for most:

(R.most)
If the game G(S : M) has reached an expression of the form:

Z −most CN who P1 −W
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where CN is a common noun and P1 is a predicate, then the verifier picks a set
of objects, call it ver(M), of cardinality at least:

|CN|
2
+ 1

The falsifier may choose an individual d ∈ ver(M) and the game continues as:

G(Z − d −W, d is a CN and d P1; M)

The set ver(M) is then added to the choice set IS .

The game rule (R.most) requires that the verifier select a set whose cardinality
is greater than half that of the set denoted by CN. The falsifier may then select
an element of that set to test the sentence on. If the falsifier cannot select a
counterexample from the set, then it must be that a majority of the elements
denoted by CN have the requisite property and the verifier wins. Notice that the
difference between (R.most) and the game rules for the cardinal determiners
resides in the requirement that ver(M) be of a particular size.

Finally, the rule requires that the set ver(M) be placed in the choice set. The
discourse effect of (R.most) should be similar to those of the cardinal deter-
miners. That is, singular pronouns will not match, but plurals and indefinites
will:

(18) a. Most deans practice fortune-telling. He is a reader of tarot cards.
b. Most deans are druids. They march about waving mistletoe.
c. Most deans hunt small game. One caught a pigeon.

Finally, let us turn now to examples of quantifiers with multiple heads like
“More doctors than lawyers eat pez.” Here is a candidate game rule:

(R.more-than)
If the game G(S ; M) has reached an expression of the form:

Z −more X who Q than Y who R −W

Then the verifier picks a set of entities ver(M) of cardinality n and the falsifier
likewise picks a set of entities fal(M) also of cardinality n. The falsifier picks
d ∈ ver(M) and the verifier picks c ∈ fal(M). The game continues on: Z − d −W
and not Z − c −W and d is an X and c is an Y and d Q and c R.
Both ver(M) and fal(M) are added to the choice set IS .

The effect of (R.more-than) on discourse anaphora is far less clear. As we
would expect, use of a singular definite pronoun is not allowed:

(19) More deans than faculty eat three square meals a day. #He is getting
fat that way.

The proper interpretation of plural definite pronouns is less clear:

(20) a. More deans than faculty eat three square meals a day. They need to
keep up their blood sugar.
(They being the deans)



R. Clark 149

b. More deans than faculty eat three squares a day. They want to keep
their weight down.
(They being the faculty)

It seems to me that (20)a is somewhat more comfortable than (20)b, but that
the latter is still possible. I have, therefore, added both ver(M) and fal(M) to
the choice set.

Equally, it seems to me that either argument of more-than can provide a
basis for indefinite singular anaphora:

(21) a. More deans than faculty eat three squares a day. One danced a merry
jig to taunt the assembled faculty.
(One being one of the deans.)

b. More deans than faculty eat three squares a day. One whined pite-
ously outside the deans meeting.
(One being one of the faculty.)

The game rules given in this section work for finite sets. Can they be adapted
for infinite sets? The treatment of generalized quantifiers given in Keenan and
Stavi (1986) uses infinitary means, in the guise of arbitrary meets and joins, to
derive higher-order quantifiers. For example, most is defined as the arbitrary
meet of an infinite family of generalized quantifier denotations, built from the
basic cardinal determiners.7

One might think that infinite would correspond to an infinite round of games
over finite samples. Thus, we might let the verifier pick a sample from the
model on which the game is played. These sub-games could be repeated infi-
nitely. But, of course, this will not work; the verifier could cheat infinitely. For
example, she will always be able to pick a biased set for:

(22) Most numbers are even.

and win each time. Thus, using an infinite round of finite games will not work.
Instead, Eloı̈se and Abelard must be locked in an infinite game, whatever that
means. To my mind, a better option would be for Eloı̈se to offer Abelard a
convincing proof (or vice versa) of the truth (or falsity) of the proposition.
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Abstract In this article two game-theoretically flavored approaches to logic are systemat-
ically compared: dialogical logic founded by Paul Lorenzen and Kuno Lorenz,
and the game-theoretical semantics of Jaakko Hintikka. For classical proposi-
tional logic and for classical first-order logic, an exact connection between ‘in-
tuitionistic dialogues with hypotheses’ and semantic games is established. Vari-
ous questions of a philosophical nature are also shown to arise as a result of the
comparison, among them the relation between the model-theoretic and proof-
theoretic approaches to the philosophy of logic and mathematics.

8.1 Introduction
The fact that game-theoretical semantics (GTS) and dialogic are sisters has

been widely acknowledged. The differences between the original approaches
have been discussed too: while GTS relates to the study of truth in a model,
dialogic has explored the possibilities of a certain type of proof-theoretic ap-
proach to validity. Despite the close relationship between the two approaches,
no detailed, thorough analysis of their interaction has yet been undertaken. The
insightful article of Saarinen (1978) is, however, a notable early attempt at a
comparison of the two viewpoints. The aim of this paper is to present, by means

∗Partially supported by a personal grant from Finnish Cultural Foundation; and partially carried out within
the project 207188 of the Academy of Finland. Work done in part at UMR Savoirs et Textes, Université
Lille 3.
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of analyzing the notion of validity, a systematic comparison of dialogical logic
and GTS, in the hope of stimulating a fruitful dialogue between and around the
two approaches.1

8.1.1 Characterization of semantic properties
Truth and validity—or material truth and logical truth, respectively—are

the two most important semantic properties that logics deal with. Semantically,
logics are used for making assertions about models, and a part of the specifi-
cation of a semantics for a logic is telling under which conditions a formula of
such-and-such logic is true, relative to a given model. Logical truth then means
truth with respect to all models relative to which the semantics is defined. Truth
is sometimes qualified as material truth, to convey the idea that this notion of
truth is relative to a contingent context. For some logics the notions of truth and
validity admit of generalization. Hence in first-order logic, truth (in a model) is
a special case of satisfaction (in a model and under a variable assignment); and
logical truth is an instance of satisfaction in every model and under all variable
assignments.

A logic for which a semantics is specified in some way, typically admits
of conceptually different ways of capturing the notions of truth and validity
appropriate to that logic. For instance, the most common way of defining the
semantics of first-order logic is by defining satisfaction conditions of its formu-
las relative to a model and a variable assignment, by recursion on the structure
of a formula. This was Tarski’s original approach in defining the semantics of
first-order logic (Tarski, 1933, Tarski and Vaught, 1956). An alternative to the
Tarskian way of specifying the semantics would be game-theoretical seman-
tics (Hintikka, 1968, 1973; Hintikka and Sandu 1997), which captures the very
same satisfaction conditions in terms of the existence of a winning strategy for
a certain player in a semantic game, associated with a formula, a model and a
variable assignment.2

Alternative ways of specifying a semantics are said to characterize the no-
tions defined by the specification of the logic. In this sense, GTS serves to
characterize the semantics of first-order logic that is defined by the Tarskian

1In linguistics, Lauri Carlson has formulated so-called ‘dialogue games’ in his studies of discourse analysis.
(See, e.g., Carlson [1983].) While he was inspired by Hintikka, the resulting analysis goes well beyond
game-theoretical semantics. It would be a possible further line of research to compare the three approaches
of Hintikka’s GTS, Lorenzen and Lorenz’s dialogic, and Carlson’s dialogue games, as applied to natural
language analysis.
2The characterization requires applying the standard interpretation of second-order logic in the sense of
Henkin (1950). Furthermore, if strategies are formulated as functions (‘deterministic strategies’), the char-
acterization is subject to assuming the Axiom of Choice. This assumption is not needed if strategies are
formulated as ‘non-deterministic’ (i.e., whenever the player is to make a move, his strategy is allowed to
offer him several options, instead of a single value); cf. Hodges (2006).
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semantics. Similarly, dialogues associated with first-order sentences serve to
characterize validity in first-order logic, i.e., the same property that under the
Tarskian approach is captured by the condition ‘true in every model’, or, proof-
theoretically, as derivability in a complete and sound proof system from the
empty set of premises. (As is well known, such a proof system exists for first-
order logic.) This means that the same logic would have been obtained, had any
of the characterizations been used in place of the original definition of truth or
validity for the logic in question.

Yet the different ways of capturing the same notions may make it possible
to pose questions that would otherwise not have appeared. For example, var-
ious questions whose original motivation derives from game theory, arise in
connection with logics whose semantics is defined game-theoretically. Cases
in point are issues of determinacy (whether always one of the players has a
winning strategy), imperfect information (whether a player is always fully in-
formed of a past course of a play), and strategic action (what are the different
ways in which a true sentence may be verified), which all have turned out to
function as grounds for interesting generalizations of first-order logic—as wit-
nessed by Hintikka’s so-called IF, or ‘independence-friendly’, logic (see, e.g.,
Hintikka, 1996, 2002; Hintikka and Sandu, 1997), and the research pursued
within the framework of the ‘Games and Logic’ paradigm of van Benthem and
other Dutch logicians (see, e.g., van Benthem, 2001a, b, 2002). The useful-
ness of the dialogical approach in initiating novel perspectives in connection
with linear logic is another example of the fruitfulness of the game-theoretical
approach (Blass, 1992). Thus alternative formulations of semantics may en-
able asking new questions; what is more, the requisite new conceptual tools
may actually make it possible to study logics that could not even be formu-
lated in terms of the traditional tools—or whose formulation using the received
tools would in any event be clumsier. Examples are logics with Henkin quanti-
fiers (Henkin, 1961; Krynicki and Mostowski, 1995), infinitely deep languages
(Hintikka and Rantala, 1976; Karttunen, 1984; Hyttinen, 1990) and Vaught
sentences (Vaught, 1973; Makkai, 1977), which all extend first-order logic.
They all are very naturally defined using games.

Dialogues and GTS: characterizing validity and truth. In this
paper we will be concerned with game-theoretical methods, used for defining
semantically important notions.

While GTS has been from the beginning clearly model-theoretically
oriented, the dialogical approach has a strong connection to proof theory—
historically, conceptually, and philosophically. For logics admitting a com-
plete proof system (such as propositional logic and first-order logic), the gap
between model theory and proof theory is of course bridgeable, but even so
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the two backgrounds lead easily to different types of development, so much
so that even the corresponding ultimate understanding of what semantics is
may be affected: there are constructivistically oriented philosophers who con-
sider proof-theoretic inference rules as meaning-constitutive and who speak of
proof-conditional semantics for logical operators (see Ranta, 1988; Sundholm,
2002), whereas from the viewpoint of classical model theory there is no proof-
theoretic component at all to the semantics of logical operators. A sense of
an existing common ground between GTS and the dialogical approach is still
unmistakable.

Specifically, we establish for classical propositional logic and classical
first-order logic an exact connection between ‘intuitionistic dialogues with
hypotheses’ and semantic games. Basically, we show how the existence of
a winning strategy for one of the players (called Proponent) in a dialogue
D(A; H1, . . . ,Hn) corresponding to a sentence A with a finite number of hy-
potheses Hi of a certain type, gives rise to a family of Eloise’s winning
strategies in semantic games G(A, M), one strategy for each model M; and,
conversely, how to construct a winning strategy for Proponent in the dialogue
D(A; H1, . . . ,Hn) out of Eloise’s winning strategies in games G(A, M). The
proofs are constructive in the sense that we explicitly show, by providing a
suitable explicit recipe, how a strategy for one type of game is built using a
strategy for the other type of game.3 In fact, these explicit sets of instructions
are the real content of our results—it is well known that abstractly, validity in
one sense (dialogic) coincides with validity in the other sense (GTS), simply
because they both characterize the notion ‘true in all models’.

8.1.2 The languages considered
The languages to be considered are propositional logic and first-order logic.

Propositional logic. Given a countable set prop of propositional atoms
(denoted p, q, . . . , p0, p1, . . .), we consider propositional logic (PL) with the
connectives conjunction (∧), disjunction (∨) and negation (¬). (By ‘countable’
we mean ‘finite or of size ℵ0’.) Semantics of PL is relative to models M :
prop −→ {true, false}. Such a model M partitions the set of propositional
atoms into two classes: those that are true in the model, and those that are false.
We assume that the reader is familiar with the semantics of propositional logic.

3In connection with propositional logic such recipes can be formulated as algorithms. On the other hand,
when discussing first-order logic, attention cannot be restricted to finite models. But then, infinite models
are not in general representable by finite means, wherefore in connection with first-order logic we cannot
even try to formulate the relevant instructions as algorithms.
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In our official syntax, the implication sign (→) does not appear.4 For classi-
cal propositional logic this is no restriction, as there implication can be defined
from disjunction and negation:

A → B := ¬A ∨ B.

For intuitionistic logic this is a genuine restriction, however, since intuition-
istically implication is not definable from the other connectives. In particular,
intutionistically A → B is weaker than ¬A ∨ B: from ¬A ∨ B it follows intu-
itionistically that A → B, but not vice versa. Mostly in this paper we consider
languages without implication. Sometimes, however, we phrase definitions for
the extended language involving implication, to give a fuller picture of the log-
ical situation.

The notion of (proper) subformula of a formula is defined in the usual way:
Sub(p) = ∅; Sub(B ∨ C) = Sub(B ∧ C) = {B,C} ∪ Sub(B) ∪ Sub(C); and
Sub(¬B) = {B} ∪ Sub(B). A propositional formula A is said to be in negation
normal form, if the negation sign (¬) appears in A only prefixed to atomic
subformulas: if ¬B is a subformula of A, then B ∈ prop. It is not difficult to
verify that every propositional formula has an equivalent in negation normal
form:

Fact 1. For every A ∈ PL there is B ∈ PL such that B is in negation normal
form, and A is logically equivalent to B.

First-order logic. Let τ be a countable vocabulary, i.e., a countable set
consisting of constants c0, c1, . . . and relation symbols R0,R1, . . ..5 Each rela-
tion symbol is associated with a positive natural number, called its arity. Let a
set of individual variables, Var = {x0, x1, . . .}, be fixed. Constants and variables
are jointly referred to as terms. Atomic first-order formulas are strings of the
form

Rit1 . . . tn,

where Ri ∈ τ is n-ary and each t j is a term.
The class of formulas of first-order logic of vocabulary τ, or FO[τ], is ob-

tained by closing the set of atomic formulas under conjunction (∧), disjunction
(∨), and negation (¬), as well as under universal (∀xi) and existential (∃xi)
quantification, xi ∈ Var. Sometimes we wish to consider an extension FO[τ,=]
of FO[τ] termed first-order logic with equality. It is obtained from FO[τ] by
introducing the identity symbol ‘=’ as an additional logical symbol (hence not

4The implication sign, “→”, is not to be confused with the sign “−→” used to indicate the domain and range
of a function, as when writing f : A −→ B.
5For simplicity we assume τ not to contain function symbols.
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included in the vocabulary τ, all of whose symbols are non-logical), and allow-
ing strings t1 = t2 as additional atomic formulas, for any terms t1, t2.

We use capital letters A, B,C, . . . from the beginning of the alphabet for ar-
bitrary (atomic or complex) formulas. The notion of (proper) subformula is
obtained by extending the definition of subformula of a PL-formula by the
clauses: Sub(∀xiB) = Sub(∃xiB) = {B} ∪ Sub(B). The set Free[B] of free vari-
ables of a formula is defined recursively as usual:

Free[Et1 . . . tn] = {t1, . . . , tn} ∩ Var, if E ∈ τ ∪ {=}.

Free[¬B] = Free[B].

Free[(B ∧C)] = Free[(B ∨C)] = Free[B] ∪ Free[C].

Free[∀xiB] = Free[∃xiB] = Free[B] \ {xi}.
Formulas whose set of free variables is empty, are sentences. Sometimes we
will write A(x1, . . . , xn) to indicate that the free variables of A are among
x1, . . . , xn. Semantics of FO[τ] is defined relative to τ-structures, i.e., struc-
turesM consisting of a non-empty domain M together with interpretations of
the symbols appearing in the vocabulary τ: interpretation cMj of a constant c j

is simply an element of the domain, while the interpretation RMi of an n-ary
relation symbol Ri is an n-ary relation on M, i.e., a subset of the product Mn. In
FO[τ,=], the identity symbol is rigidly interpreted by the identity relation. We
assume that the reader is familiar with the semantics of first-order logic, i.e.,
the recursive definition of the relation “(M, γ) |= A” for all FO[τ]-formulas,
τ-structuresM and variable assignments γ : Free[A] −→ M.

Note that the implication sign is not among the logical symbols of FO[τ].
However, like for classical propositional logic, also for classical first-order
logic implication could be introduced as a defined connective. We will write
FO[→, τ] for first-order logic with implication, i.e., the logic otherwise like
FO[τ] but having the definable symbol → as one of its logical constants. The
negation normal form result of Fact 1 extends straightforwardly to FO[→, τ]:

Fact 2. For every A ∈ FO[→, τ] there is B ∈ FO[→, τ] such that B is in
negation normal form, and A is logically equivalent to B (that is, is satisfied in
exactly the same τ-structures by precisely the same variable assignments).

8.2 Formal dialogues
Let us see what is at stake in dialogical logic by reconstructing in dialogi-

cal terms the notion of validity of first-order logic. (For a somewhat different
account, see Rahman and Keiff [2005].) We first define a language L[τ]; this
language will basically be obtained from first-order logic of vocabulary τ by
adding certain metalogical symbols. For the sake of fuller exposition we con-
sider first-order logic with implication, or FO[→, τ].
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We introduce special force symbols ? and !. An expression of L[τ] is either
a formula of FO[→, τ], or one of the following strings:

L,R,∨,∀xi/c j or ∃xi,

where xi is a variable and c j a constant. Expressions of the latter type are
referred to as attack markers. In addition to expressions and force symbols, for
L[τ] we have available labels O and P, standing for the players (Proponent,
Opponent) of dialogues. We will refer to P as ‘she’ and to O as ‘he’. Every
expression e of L[τ] can be augmented with labels P or O on the one hand,
and with force symbols ? and ! on the other, so as to yield the strings

P-!-e, O-!-e, P-?-e and O-?-e.

These strings are said to be (dialogically) signed expressions. Their role is to
signify that in the course of a dialogue, the move corresponding to the expres-
sion e is to be made by P or O, respectively, and that the move is made as a
defense (!) or as an attack (?). We will use X and Y as variables for P and O,
always assuming X � Y .

8.2.1 Particle rules
Dialogues have two types of rules: particle rules and structural rules. The

former are meant to provide a schematic description of the key semantic fea-
tures of logical operators. The latter, again, are chosen differently for different
purposes. In Section 8.2.2 a set of structural rules will be considered which
allows using dialogues for strictly proof-theoretic purposes (characterizing
validity).

An argumentation form or particle rule is an abstract schematic description
of the way a formula, according to its outmost form, can be criticized and how
the critique can be answered. It is abstract in the sense that this description
can be carried out without reference to a specified context. In dialogical logic,
these rules are said to state the local semantics: what is at stake is only the
critique and the answer corresponding to a given logical constant, rather than
the whole context where the logical constant is embedded—a context which
varies with the choice of structural rules.6 The particle rules fix the dialogical
semantics of the logical constants of L[τ] in the following way:

∧ ∨ →
Assertion X-!-A ∧ B X-!-A ∨ B X-!-A→ B

Attack Y-?-L or Y-?-R Y-?-∨ Y-!-A
Defense X-!-A resp. X-!-B X-!-A or X-!-B X-!-B

6There can be no particle rule corresponding to atomic formulas. On the other hand, we can consider dia-
logues in which Opponent is right at the beginning committed to a number of additional initial concessions;
such initial concessions may, in particular, be atomic. This is the case with ‘material dialogues’ explained
in Section 8.4, and in ‘dialogues with hypotheses’ that we will make extensive use of in the present paper.
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∀ ∃ ¬
Assertion X-!-∀xA X-!-∃xA X-!-¬A

Attack Y-?-∀x/c for any Y-?-∃x Y-!-A
c available to Y

Defense X-!-A[x/c] X-!-A[x/c] for any −
c available to X

In the diagram, A[x/c] stands for the result of substituting the constant c for
every free occurrence of the variable x in the formula A.

Note that particle rules themselves leave it open what types of entities the
objects c are which are chosen in connection with quantifier rules. Likewise
the particle rules need not specify which objects c are indeed available to the
relevant player at a given stage of a dialogue. In the internal division of labor
between particle and structural rules, these specifications are left for the lat-
ter. For example, the structural rules corresponding to characterizing validity
will specify that the entities c are individual constants from some specified set
{c0, c1, . . .}. The structural rules will also specify that when P defends an exis-
tentially quantified sentence, as well as when P attacks a universally quantified
sentence, the constant c must be chosen among constants already introduced
in the dialogue, while when O defends an existentially quantified sentence, as
well as when O attacks a universally quantified sentence, the constant c must
be fresh in the sense of not having been yet used in the dialogue.

A more thorough way to stress the sense in which the particle rules deter-
mine local semantics is to see these rules as defining state of a (structurally not
yet determined) game.

Definition 3 (State of a dialogue). Let A ∈ FO[→, τ], and let a countable set
{c0, c1, . . .} of individual constants be fixed. A state of the dialogue D(A) about
the formula A is a quintuple 〈B, X, f , e, σ〉 such that:

B is a (proper or improper) subformula of A.

X- f -e is a dialogically signed expression: X ∈ {O,P}, f ∈ {?, !}, and
e ∈ L[τ].

σ : Free[B] −→ {c0, c1, . . .} is a function mapping the free variables of
B to individual constants.

The component e is either a formula of FO[→, τ] or an attack marker. We
stipulate that in the former case, always e := B.

Given a force f , let us write f ′ for the opposite force, i.e., let f ′ ∈ {?, !}\ { f }.
Each state 〈B, X, f , e, σ〉 has an associated role assignment, indicating which
player occupies the role of Challenger (?) and which the role of Defender (!).
The role assignment is a function ρ : {P,O} −→ {?, !} such that ρ(X) = f and
ρ(Y) = f ′.
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State 〈B2, X2, f2, e2, σ2〉 is reachable from state 〈B1, X1, f1, e1, σ1〉 if it is a
result of X1 making a move in accordance with the appropriate particle rule in
the role f1. If the role is that of Challenger ( f1 = ?), the player states an attack,
whereas if the role is that of Defender ( f1 = !), the player poses a defense.

Let us take a closer look at the transitions from one state to another. Particle
rules determine which state S 2 of a dialogue is reachable from a given other
state S 1. Note that the player who defends need not be the same at both states.
In order for S 2 to be reachable from S 1 = 〈B, X, f , e, σ〉, it must satisfy the
following.

Particle rule for negation: If B = e, f = ! and B is of the form ¬C, then
S 2 = 〈C, Y, !,C, σ〉. So if P is Defender of ¬C at S 1, then O is Defender
of C at S 2, and P will challenge (counterattack) C; and dually, if P is
Challenger of ¬C at S 1.

Here state S 2 involves the claim that C can be defended; however, this claim
has been asserted in the course of an attack, and the whole move from S 1 to S 2

counts as an attack on the initial negated formula, i.e., an attack on C. Actually,
this follows from the fact that at S 2, the roles of the players are inverted as
compared with S 1. Counterattack may yield from S 2 a further state, S 3 =

〈C, X, ?, ∗, σ〉, where C is the formula considered, and the attack pertains to the
relevant logical constant of C, for which ∗ is a suitable attack marker.

Particle rule for conjunction: If B = e, f = ! and B is of the form C ∧D,
then S 2 = 〈C, X, !,C, σ〉 or S 2 = 〈D, X, !,D, σ〉, according to the choice
of Challenger between the attacks ?-L and ?-R. (Here Challenger is Y:
Y’s role is ? here.)

Particle rule for disjunction: If B = e, f = ! and B is of the form C ∨ D,
then S 2 = 〈C, X, !,C, σ〉 or S 2 = 〈D, X, !,D, σ〉, according to the choice
of Defender, reacting to the attack ?-∨ of Challenger. (Here Defender is
X: X’s role is ! here.)

Particle rule for implication: If B = e, f = ! and B is of the form C →
D, then S 2 = 〈C, Y, !,C, σ〉 and, further, state S 3 = 〈D, X, !,D, σ〉 is
reachable from S 2. So if P is Defender of C → D at S 1, and hence O is
Defender of C at S 2, it is P who will be Defender of D at S 3.

To attack an implication amounts to being prepared to defend its antecedent,
and so it should be noticed that the defense of C at state S 2 counts as an attack.
If P is Defender of C → D at S 1, at state S 3 reachable from S 2, either P
may defend D, or else P may counterattack C, thus yielding a further state,
S 4 = 〈C, X, ?, ∗, σ〉, where C is the formula considered, and the relevant logical
particle of C is attacked, ∗ being an appropriate attack marker.
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Particle rule for the universal quantifier: If B = e, f = ! and B is of
the form ∀xD(x), then S 2 = 〈D(x), X, !,D(x), σ[x/ci]〉, where ci is the
constant chosen by Challenger (who here is Y) as a response to the attack
?-∀x/ci.

As usual, the notation ‘σ[x/ci]’ stands for the function that is otherwise like σ,
but maps the variable x to ci. Hence if σ is already defined on x, σ[x/ci] is the
result of reinterpreting x by ci; otherwise it is the result of extending σ by the
pair (x, ci).

Particle rule for the existential quantifier: If B = e, f = ! and B is of
the form ∃xD(x), then S 2 = 〈D(x), X, !,D(x), σ[x/ci]〉, where ci is the
constant chosen by Defender (who is X here), reacting to the attack ?-∃x
of Challenger (that is, Y).

8.2.2 Structural rules
When analyzing dialogues, we will make use of the following notions: dia-

logue, dialogical game, and play of a dialogue. It is very important to keep
them conceptually distinct. Dialogical games are sequences of dialogically
signed expressions, i.e., expressions of the language L[τ] equipped with a pair
of labels, P-!, O-!, P-?, or O-?. The labels carry information about how the
dialogue proceeds. Dialogical games are a special case of plays: all dialogical
games are plays, but not all plays are dialogical games. However, all plays are
sequences of dialogical games. Finally, dialogues are simply sets of plays.

A complete dialogue is determined by game rules. They specify how dia-
logical games in particular, and plays of dialogues in general, are generated
from the thesis of the dialogue. Particle rules are among the game rules, but in
addition to them there are structural rules, which serve to specify the general
organization of the dialogue.

Different types of dialogues have different kinds of structural rules. When
the issue is to characterize validity—as it is for the dialogues considered in
the present paper—a dialogue can be thought of as a tree, whose (maximal)
branches are (finished) plays relevant for establishing the validity of the thesis.
The structural rules will be chosen so that Proponent succeeds in defending
the thesis against all allowed critique of Opponent if, and only if, the thesis is
valid in the standard sense of the term (‘true in every model’). In dialogical
logic the existence of such a winning strategy for Proponent is typically taken
as the definition of validity; however, this dialogical definition indeed captures
the standard notion (see the discussion in connection with Definition 5 below).

Each split into two branches—into two plays—in a dialogue tree should be
considered as the outcome of a propositional choice made by Opponent. Any
choice by O in defending a disjunction, attacking a conjunction, and react-
ing to an attack against a conditional, gives rise to a new branch: a new play.
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By contrast, Proponent’s choices do not generate new branches; and neither do
Opponent’s choices for quantifiers (defending an existential quantifier, attack-
ing a universal quantifier).

The participants P and O of the dialogues that we are here interested in—
the dialogues used for characterizing validity—are of course idealized agents.
If real-life agents took their place, it might happen that one of the players was
cognitively restricted to the point of following a strategy which would make
him lose against some, or even every sequence of moves by the opponent—
even if a winning strategy would be available to him. The idealized agents of
the dialogues are not hence restricted: their ‘having a strategy’ means simply
that there exists, by combinatorial criteria, a certain kind of function; it does
not mean that the agent possesses a strategy in any cognitive sense.

Plays of a dialogue are sequences of dialogically signed expressions. In par-
ticular, plays can always be analyzed into dialogical games: any play is of the
form 〈Δ1, . . . ,Δn〉, where the Δi are dialogical games. The case n := 0 yields
the empty sequence 〈〉, referred to as the empty play. By stipulation the empty
play is identified with the empty dialogical game. The members of plays other
than the first member (if any) are termed moves, the first member being termed
the thesis. A move is either an attack or a defense. The particle rules stipulate
which moves are to be counted as attacks. Exactly those moves X- f -e whose
expression component e is a first-order formula, are said to have propositional
content. Recall that in the case of implication and negation some moves with
propositional content count as attacks. (In the actual design of a dialogue there
usually is a notational device to differentiate between those moves with propo-
sitional content that are attacks and those that are not.)

We move on to introduce a number of structural rules for dialogues designed
for the language L[τ]. We will write D(A) for the dialogue about A, i.e., the
dialogue whose thesis is A. Further, we will write Δ[n] for the member of the
sequence Δ with the position n. Let A be a first-order sentence of vocabulary
τ. We have the following structural rules (SR-0) to (SR-6) regulating plays
Δ ∈ D(A), i.e., members of the dialogue D(A).

(SR-0) (Starting rule).

(a) If A is atomic, then D(A) = {〈〉}, i.e., the dialogue D(A) contains the
empty play and nothing else; cf. rule (SR-5). Otherwise the dialogically
signed expression 〈P-!-A〉 belongs to the dialogue D(A): the thesis A as
stated by Proponent constitutes a play in the dialogue about A.

(b) If Δ is any non-empty play in the dialogue D(A), then the thesis A has
position 0 in Δ: if Δ ∈ D(A), then Δ[0] = 〈P-!-A〉.

(c) At even positions P makes a move, and at odd positions it is O who
moves. That is, each Δ[2n] is of the form 〈P- f -B〉 for some f ∈ {?, !}
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and B ∈ Sub(A); and each Δ[2n + 1] is similarly of the form 〈O- f -B〉.
Every move after Δ[0] is a reaction to an earlier move made by the other
player, and is subject to the particle rules and the other structural rules.

(SR-1.I) (Intuitionistic round closing rule). Whenever player X
has a turn to move, he may attack any (complex) formula asserted by his oppo-
nent, Y , or he may defend himself against the last not already defended attack
(i.e., the attack by Y with the greatest associated natural number such that X
has not yet responded to that attack).

A player may postpone defending himself as long as he can perform attacks.
Only the latest attack that has not yet received a response may be answered:
If it is X’s turn to move at position n, and positions l and m both involve an
unanswered attack (l < m < n), then player X may not at position n defend
himself against the attack of position l.

(SR-1.C) (Classical round closing rule). Whenever player X has a
turn to move, he may attack any (complex) formula asserted by his opponent,
Y , or he may defend himself against any attack, including those which have
already been defended. That is, here even redoing earlier defenses is allowed.

(SR-2) (Branching rule for plays). If in a play Δ ∈ D(A) it is O’s
turn to make a propositional choice, that is, to defend a disjunction, attack a
conjunction, or react to an attack against a conditional, then Δ extends into two
plays Δ1,Δ2 ∈ D(A),7

Δ1 = Δ
�α and Δ2 = Δ

�β,

differing in the chosen disjunct, conjunct resp. reaction, α vs. β. More pre-
cisely: Let n ≤ max{m : Δ[m]}.

If Δ[n] = 〈O-!-B ∨C〉 and Δ[max] = 〈P-?-∨〉, then

α := 〈O-!-B〉 and β := 〈O-!-C〉.

If Δ[n] = Δ[max] = 〈P-!-B ∧ C〉, then

α := 〈O-?-L〉 and β := 〈O-?-R〉.

7If s̄ = (a0 , . . . , an) is a finite sequence and an+1 is an object, s̄�an+1 is by definition the sequence
(a0, . . . , an , an+1). Generally, if s̄ = (a0 , . . . , an) and s̄′ = (a′0, . . . , a

′
n′ ), then s̄� s̄′ := (a0 , . . . , an, a′0, . . . , a

′
n′ ).

If s̄ = s̄1
� s̄2, then s̄1 is said to be an initial segment of s̄, and, if the sequence s̄2 is not empty, its proper

initial segment.
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If Δ[n] = 〈O-!-B→ C〉 and Δ[max] = 〈P-!-B〉, then

α := 〈O -?-∗〉 and β := 〈O-!-C〉,

where ∗ is an attack marker corresponding to the logical form of the
formula B.

No moves other than propositional moves made by O will trigger branching.

(SR-3) (Shifting rule). When playing a dialogue D(A), O is allowed
to switch between ‘alternative’ plays Δ,Δ′ ∈ D(A). More exactly, if Δ involves
a propositional choice made by O, then O is allowed to continue by switching
to another play—existing by the Branching rule (SR-2). Concretely this means
that the sequence Δ�Δ′ will, then, be a play, i.e., an element ofD(A).

It is precisely the Shifting rule that introduces plays which are not plain
dialogical games. (Dialogical games are a special case of plays: those plays
that are unit sequences of dialogical games.) As an example of applying the
Shifting rule, consider a dialogueD(A) proceeding from the hypotheses B,¬C,
with the thesis A := B ∧ C. If O decides to attack the left conjunct, the result
will be the play

(〈P-!-B ∧C〉, 〈O-?-L〉, 〈P-!-B〉),

and O will lose. But then, by the Shifting rule, O may decide to have another
try. This time he wishes to choose the right conjunct. The result is the play

(〈P-!-B ∧ C〉, 〈O-?-L〉, 〈P-!-B〉, 〈P-!-B ∧C〉, 〈O-?-R〉, 〈P-!-C〉).

Observe that this play consists of two dialogical games, namely (〈P-!-B ∧
C〉, 〈O-?-L〉, 〈P-!-B〉) and (〈P-!-B∧C〉, 〈O-?-R〉, 〈P-!-C〉). By contrast, it is not
itself a dialogical game.

(SR-4) (Winning rule for plays). A dialogical game Δi is closed if in
Δi there appears the same positive literal in two positions, one stated by X and
the other one by Y . That is, Δi is closed if for some k,m < ω and some positive
literal � ∈ Sub(A), we have: Δi[k] = � = Δi[m], where k < m and furthermore,
k is odd if, and only if m is even. A play Δ = 〈Δ1, . . . ,Δn〉 ∈ D(A) whose most
recent dialogical game Δn is closed, is said to be closed as well.

A dialogical game Δi is maximal if either Δi is closed, or within Δi all rules
have been applied in a maximal fashion so that the play could only continue
if O applied the Shifting rule. A dialogical game is open if it is maximal but
not closed. In particular, the empty dialogical game 〈〉 is open. A play Δ =
〈Δ1, . . . ,Δn〉 is open if it is empty or its most recent dialogical game Δn is open.

A play is finished if it is either open, or else such that no further move is
allowed by the Shifting rule. Observe that whenever a play Δ ∈ D(A) is fin-
ished, there is no further play Δ′ ∈ D(A) such that Δ is an initial segment of Δ′.
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Winning and losing are attributes that apply to finished plays. If a finished play
is open, the player who stated the thesis (that is, P) loses the play, and O wins
it. If, again, a play is finished and closed, P wins the play and O loses it. In
dialogues—unlike in semantic games—there is no difference between ‘win-
ning a play’ and ‘having a winning strategy’: O has a winning strategy in a
dialogue iff the dialogue admits of an open dialogical game iff there is a fin-
ished play of the dialogue won by O; and P has a winning strategy in a dialogue
iff the dialogue admits of a play that is both finished and closed (and so won
by P).

(SR-5) (Formal use of atomic formulas). P cannot introduce pos-
itive literals: any positive literal must be stated by O first. From this it follows
that a dialogue about an atom cannot have non-empty plays. Positive literals
cannot be attacked.

In what follows we will consider, when speaking of first-order logic, intu-
itionistic dialogues with additional hypotheses of the following form:

∀x1 . . .∀xn(Ex1 . . . xn ∨ ¬Ex1 . . . xn),

where E is a relation symbol of a fixed vocabulary τ, or else the identity sym-
bol. That is, the relevant hypotheses are instances of (a universal closure of)
tertium non datur. In the presence of such hypotheses, we could use a more
general formulation of the rule (SR-5):

(SR-5∗). P cannot introduce literals: any literal (positive or not) must be
stated by O first. Positive literals cannot be attacked.

Before we can state the structural rule (SR-6), or the ‘No delaying tactics’
rule, we need some definitions.

Definition 4 (Strict repetition of an attack/a defense). (a) We speak of a strict
repetition of an attack if a move is being attacked although the same move has
already been challenged with the same attack before. (Note that even though
choosing the same constant is a strict repetition, the choices of ?-L and ?-R
are in this context different attacks.) In the case of moves where a universal
quantifier has been attacked with a new constant, moves of the following kind
must be added to the list of strict repetitions:

A universal quantifier move is being attacked using a new constant, although the
same move has already been attacked before with a constant which was new at
the time of that attack.

(b) We speak of a strict repetition of a defense if a challenging move (attack)
m1, which has already been defended with the defensive move (defense) m2 be-
fore, is being defended against the challenge m1 once more with the same de-
fensive move. (Note that the left and the right disjunct give rise to two different
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defenses in this context.) In the case of moves where an existential quantifier
has been defended with a new constant, moves of the following kind must be
added to the list of strict repetitions:

An attack on an existential quantifier is being defended using a new constant,
although the same quantifier has already been defended before with a constant
which was new at the time of that defense.

According to these definitions, neither a new defense of an existential quanti-
fier, nor a new attack on a universal quantifier, represents a strict repetition, if
it uses a constant that is not new but is however different from the one used in
the first defense (or in the first attack).

(SR-6) (‘No delaying tactics’ rule). This rule has two variants,
classical and intuitionistic, depending on whether the dialogue is played with
the classical structural rule (SR-1.C), or with the intuitionistic structural rule
(SR-1.I).

Classical: No strict repetitions are allowed.
Intuitionistic: If O has introduced a new atomic formula which can now

be used by P, then P may perform a repetition of an attack. No other strict
repetitions are allowed.

Definition 5 (Validity). A first-order sentence A is dialogically valid in the
classical (intuitionistic) sense if all finished plays belonging to the classical
(resp. intuitionistic) dialogue D(A) are closed.

It is possible to prove that the dialogical definition of validity coincides
with the standard definition, both in the classical and in the intuitionistic case.
First formulations of the proofs were given by Lorenz in his 1961 Ph.D. the-
sis Arithmetik und Logik als Spiele. Haas (1980) and Felscher (1985) proved
the equivalence for intuitionistic first-order logic (by proving the correspon-
dence between intuitionistic dialogues and intuitionistic sequent calculi), while
Stegmüller (1964) established the equivalence in the case of classical first-
order logic. Rahman (1994, 88–107) proved directly the equivalence between
the two types of dialogues and the corresponding semantic tableaux, from
which the result extends to the corresponding sequent calculi.

Let us take two examples of dialogues, one classical and the other
intuitionistic.

Example 6. Consider the classical dialogue D(p ∨ ¬p). Its thesis is p ∨ ¬p,
where p is an atomic sentence. In Figure 8.1, a dialogical game from dialogue
D(p ∨ ¬p) is described. This dialogical game is closed:
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O P
p ∨ ¬p 0

1 ?-∨ 0 ¬p 2
3 p 2 −

[1] [?-∨] [0] p 4

Figure 8.1: Classical rules, P wins

The outer columns indicate the position of the move inside the dialogical game,
while the inner columns state the position of the earlier move which is being
attacked. The defense is written on the same line with the corresponding attack:
an attack together with the corresponding defense constitutes a so-called closed
round. The sign “−” indicates that there is no possible defense against an attack
on a negation.

The dialogical game of the example is closed, because after O’s last attack in
move 3, P is allowed—according to the classical rule SR-1.C—to defend (once
more) herself against O’s attack made in move 1, and so the dialogical game
in question becomes closed. P states her new defense in move 4. (In reality
O does not repeat his attack of move 1: what we have written between square
brackets simply serves to remind of the attack against which P is re-acting.)

In fact the described dialogical game is a finished play of the dialogue
D(p∨¬p), and actually its only finished play: O could not prolong the play any
further by making different moves. Hence not only is the described particular
dialogical game closed—in fact P has a winning strategy in the dialogue, i.e.,
she is able to win no matter what O does. In other words, the sentence p ∨ ¬p
is dialogically valid in the classical sense (cf. Definition 5).

Example 7. Let us consider the intuitionistic variant of the dialogue of the
above example. In Figure 8.2, a dialogical game from the intuitionistic dialogue
D(p ∨ ¬p) is described. This dialogical game is open:

O P
p ∨ ¬p 0

1 ?-∨ 0 ¬p 2
3 p 2 −

Figure 8.2: Intuitionistic rules, O wins

The dialogical game constitutes a finished play, and it is O who wins the play
of the example: no further move by P is possible following the intuitionistic
structural rules, and the dialogical game is open. In particular remaking an
earlier move—as in the above example of a classical dialogue—is not possible.

In fact O has trivially a winning strategy in the intuitionistic dialogueD(p∨
¬p): P cannot prevent, by making different moves, O from generating precisely
the described play won by O. Observe, in particular, that the sentence p∨¬p is
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not dialogically valid in the intuitionistic sense. (This does not mean, of course,
that thereby the sentence ¬(p ∨ ¬p) would be intuitionistically valid!)

8.3 Game-theoretical semantics
Semantic games (sometimes referred to as evaluation games) provide a tool

for defining, or characterizing, truth of a sentence in a model. This contrasts
to the role of dialogues, used for defining, or characterizing, validity of a sen-
tence, that is, truth of a sentence in all models. The general tactics for the use
of games is basically the same in both cases: define games by laying down
the game rules, and then define the logical property of interest (truth, validity)
by reference to the existence of a winning strategy for a certain player of the
relevant two-player game.

In this section we will introduce semantic games for propositional logic and
first-order logic. By way of introduction, let us look at the case of propositional
logic without implication, and in negation normal form. We associate with
every formula A of PL, and every model M : prop −→ {true, false}, a
semantic game G(A, M) between two players (Abelard and Eloise). The game
rules of the games G(A, M) are defined as follows, by recursion on the structure
of the formula A.

(1+at) If A = p with p ∈ prop, a play of the game has come to an end. If
M(p) = true, Eloise wins G(A, M), and Abelard loses it. Otherwise
Abelard wins and Eloise loses.

(2−at) Also if A = ¬p, a play of the game has come to an end. If M(p) = false,
Eloise wins G(A, M), and Abelard loses it. Otherwise the payoffs are
reversed.

(3) If A = (B ∨ C), then Eloise chooses a disjunct D ∈ {B,C}, and the game
goes on as G(D, M).

(4) If A = (B ∧ C), then Abelard chooses a conjunct D ∈ {B,C}, and the
game goes on as G(D, M).

The above game rules do not, by themselves, suffice for defining truth and fal-
sity of propositional formulas. For this purpose, the notion of winning strategy
is needed. A function f is said to be a strategy for Eloise in G(A, M) if it pro-
vides a choice of a disjunct for every subformula of A of the form (B ∨ C),
depending on the choices for the conjunctions already made when playing
G(A, M). A strategy f is a winning strategy (in short, a w.s.) for Eloise if against
any sequence of moves made by Abelard following the game rules, making the
choices for disjuncts in accordance with f leads to a game G(D, M) won by
Eloise, with D a literal (i.e., a propositional atom or a negation of a proposi-
tional atom). We define:
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A is true in M, in symbols M |=+GTS A, if there exists a w.s. for Eloise in
G(A, M).

A is false in M, symbolically M |=−GTS A, if there exists a w.s. for Abelard
in G(A, M).

Note the following about the terminology: what really is won or lost is such
a sequence of moves made in accordance with the game rules that cannot be
further extended, i.e., which has reached a (negated) atomic formula. In tech-
nical terminology of game theory, such a sequence is called a terminal play
(or terminal history). Hence games are not things that can be won—terminal
plays are. On the other hand, it is for games that players have strategies. In the
above formulation of game rules, we broke against this distinction by declar-
ing, in rules (1+at) and (2−at), some games as being won or lost by one of the
players. However, the games we were speaking of were atomic games in the
sense of games G(�, M) with � = ±p for some p ∈ prop.8 For such games
there are no moves for either player, so who wins and who loses is entirely
dependent on the literal � and the model M. For these games having a winning
strategy or winning an individual play are actually one and the same thing, so
the deviation from the strict terminology is justified. In our more formal defin-
ition of semantic games for first-order logic below, we will stay with the usual
terminology.

8.3.1 Negation
We have now sketched the definition of semantic games for propositional

logic, assuming that the formulas are in negation normal form. This assump-
tion is by no means necessary. To avoid it, we introduce the notion of role
of a player. There are two roles available—Verifier and Falsifier—and always
exactly one player assumes the role of Verifier and the other player that of
Falsifier.

In propositional logic, role distribution ρ in a game G(A, M) is relative to
subformula tokens of A, and can be defined as follows. Let B ∈ {A} ∪ Sub(A).
Then:

If B is subordinate to an even number or zero negation signs in A, then
ρ(B,Eloise) = Verifier; and ρ(B,Abelard) = Falsifier.

Otherwise ρ(B,Eloise) = Falsifier; and ρ(B,Abelard) = Verifier.

Hence in particular Eloise is the initial verifier, and Abelard the initial fal-
sifier: ρ(A,Eloise) = Verifier and ρ(A,Abelard) = Falsifier. Having the role

8If A is a formula, we write ‘B = ±A’ as a shorthand notation for ‘B ∈ {A,¬A}’.
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distribution available, we may define semantic games G(A, M) for arbitrary
propositional formulas in the language without implication by replacing the
condition (2−at) for atomic negation by the following condition (2):

(2) If A = ¬B, then the game goes on as G(B, M). (Observe that by definition
ρ(A,Eloise) = ρ(B,Abelard).)

Furthermore, the payoffs of the players now depend on the role distribution;
these payoffs were specified for formulas in negation normal form in conditions
(1+AT) and (2−AT). Replace now the above condition (1+AT) by (1):

(1) If A = p with p ∈ prop, a play of the game has come to an end. If M(p) =
true, then the player whose current role is Verifier wins G(A, M), and
the player whose current role is Falsifier loses it. Otherwise the player
occupying the role of Falsifier wins and the one whose role is Verifier
loses. (The player carrying a given role is determined by the function ρ:
for each player P, see whether the value ρ(A,P) is Verifier or Falsifier.)

The rules (1), (2), (3) and (4) hence obtained define game rules for the full
language of propositional logic without implication.

In classical propositional logic implication B→ C is definable as ¬B∨ C. In
accordance with this, we might introduce a game rule for (classical) implica-
tion in GTS as follows. First the definition of role distribution must be defined
for the language with implication:

Definition 8 (Role distribution). If B ∈ {A} ∪ Sub(A), let nB be the number of
negation signs to which a subformula token B is subordinate in A; and let aB

be the number of those implication signs to which B is subordinate in A and
which will yield B if their antecedents are chosen.

If the number nB + aB is even or equal to zero, then ρ(B,Eloise) =
Verifier; and ρ(B,Abelard) = Falsifier.

Otherwise ρ(B,Eloise) = Falsifier; and ρ(B,Abelard) = Verifier.

(Mnemonics: ‘nB’ for ‘negation’, and ‘aB’ for ‘antecedent’.)

For example, if A := (B → C), then nB = 0 and aB = 1; and if A :=
¬(B→ C)→ D, then nB = 1 and aB = 2; whereas nC = 1 and aC = 1. Further,
nD = aD = 0. Now the game rule for (classical) implication is:

(5) If A = (B→ C), then Eloise chooses either the antecedent B or the con-
sequent C. (Observe that by definition she assumes in the former case the
current role of Abelard, while in the latter case she keeps her own current
role: ρ(B,Eloise) = ρ(A,Abelard), but ρ(C,Eloise) = ρ(A,Eloise).)
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8.3.2 Games in extensive form
We move on to describe semantic games for first-order logic. Attention will

be restricted to sentences in negation normal form. (Recall that by Fact 2 all
first-order sentences can be equivalently written in such a form.) We could
define the games in the semi-formal fashion in which the semantic games for
propositional logic were introduced above. To make things more explicit, how-
ever, we prefer to introduce them in what is termed in game theory the extensive
form of a game.9 That is, these games will be tuples 〈N,H, Z, P, 〈ui〉i∈N〉,where:

(i) N is the set of players of the game.

(ii) H is a set of sequences of elements from some given set A of actions.
The members of H are called histories, or plays of the game.

(iii) Z is the set of terminal histories of the game, which, in the case that all
histories are of finite length, are simply histories that cannot be extended
by any action so as to yield a further history.

(iv) P : H \ Z −→ N is the player function which assigns to every non-
terminal history the player whose turn it is to move.

(v) For each i ∈ N, ui is the payoff function for player i, that is, a function
that specifies the payoffs (win or loss) of player i at terminal histories.

Satisfaction of first-order formulas of vocabulary τ is defined relative to τ-
structures and variable assignments. Variable assignments can be taken to be
functions from the set of free variables of a formula to elements of the domain
of the relevant structure. Accordingly, systematically the most natural practice
in GTS is to associate a semantic game with every formula A ∈ FO[τ], τ-
structure M and a variable assignment γ : Free[A] −→ dom(M). In what
follows, attention will be restricted to models with a countable domain. By
the Downward Löwenheim-Skolem theorem a first-order formula is satisfied
in a countable model if it is satisfiable at all. Hence theoretically there is no
need for allowing models of larger than countable cardinality—given that our
interest is in the expressive power of first-order logic.

We will associate with every first-order formula A (in negation normal form
and written in vocabulary τ), every τ-structure M and every variable assign-
ment γ : Free[A] −→ dom(M), a game

G(A,M, γ)

9Explicitly introducing semantic games in extensive form was suggested in Sandu and Pietarinen (2001,
2003). The underlying idea is of course as old as game-theoretical semantics itself, cf. e.g. Saarinen (1978).
The distinction between the extensive and strategic (or ‘normalized’) form of a game was introduced in von
Neumann and Morgenstern, 1944, see esp. Sections 11, 12), where these two forms were also shown to be
strictly equivalent. What is at stake, then, is a familiar thing in a different, but obvious guise. This is not to
deny that heuristically the two presentations may serve different purposes.
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in extensive form. The set N of players of these games will be {Abelard,Eloise}.
Due to the way in which semantic games for first-order logic will be specified,
these games will be two-player zero-sum games of perfect information.

The related set of actions A consists of pairs (Ai, γi), where Ai is a sub-
formula of A and γi is an assignment whose domain is the set Free[Ai] of free
variables of Ai. Histories of G(A,M, γ) are defined recursively, simultaneously
with the player function:

1. (A, γ) ∈ H.

2. If h = 〈(A0, γ0), . . . , (An, γn)〉 ∈ H, then:

If An = (ψ ∧ φ), then P(h) = Abelard, and h�(ψ, γn) ∈ H and
h�(φ, γn) ∈ H. If again An = (ψ ∨ φ), then P(h) = Eloise, and
h�(ψ, γn) ∈ H and h�(φ, γn) ∈ H.

If An = ∀xψ, then P(h) = Abelard, and for all a ∈ dom(M):
h�(ψ, γn[x/a]) ∈ H. If, on the other hand, An = ∃xψ, then P(h) =
Eloise, and for all a ∈ dom(M): h�(ψ, γn[x/a]) ∈ H.

So elements of the set H will be precisely all combinatorially possible se-
quences that can be built given that a quantifier is ‘interpreted’ by an element
of the relevant domain, and a binary propositional connective by choosing its
left or right term. Because the depth of a first-order formula is always finite,10

all histories will likewise be of finite length.
Terminal histories are members h of H that cannot be further extended so as

to yield a history. Hence the last member of a terminal history is of the form
(Rx1 . . . xn, γi) or (¬Rx1 . . . xn, γi). The players’ payoffs (1 for win and −1 for
loss) on terminal histories h ∈ Z are determined as follows:

u∃(h) = 1, if (M, γn) |= �, where � is the (negated) atomic formula in the
last member of h; otherwise u∃(h) = −1.

u∀(h) = −u∃(h).

Note that since formulas were assumed to be in negation normal form, the
definition of payoff need not be made dependent on a role distribution. On the
other hand, the semantics is readily generalized to arbitrary first-order formulas
(in the language without implication) simply by associating all plays with a role
distribution and stipulating:

u∃(h, ρ) = 1, if [ρ(Eloise) = Verifier and (M, γn) |= �] or
[ρ(Eloise) = Falsifier and (M, γn) �|= �], where � is the (negated) atomic
formula in the last member of h; otherwise u∃(h, ρ) = −1.

10Depth of a first-order formula A is the maximum number of syntactically subordinate quantifiers and
propositional connectives appearing in A.
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u∀(h, ρ) = −u∃(h, ρ).

The definition of games G(A,M, γ) in extensive form is now complete. Ob-
serve that the specification of an extensive form of a game corresponds to lay-
ing down game rules as done above for propositional logic. We still must tell
what a (winning) strategy is, in order to be able to define (or characterize) the
satisfaction relation of first-order logic. This time we are in a position to do it
more explicitly than above.

A strategy for Eloise is any function f : P−1({Eloise}) −→ A such that if
P(h) = Eloise, then h� f (h) ∈ H. In other words, a strategy for Eloise yields
exactly one choice—in compliance with the game rules—for any history at
which Eloise is supposed to move. It is clear that there always exist strategies
for Eloise.11 A strategy f for Eloise is a winning strategy (w.s.), if there exists
a set W ⊆ H such that all of the following conditions hold: (a) (A, γ) ∈ W; (b)
whenever h ∈ W and P(h) = Abelard, then any h�(Ai, γi) which belongs to H
also belongs to W; (c) W is closed under applications of f , i.e., if h ∈ W and
P(h) = Eloise, then h� f (h) ∈ W; and (d) all terminal histories in W are wins
for Eloise. The idea behind defining the winning condition of a strategy f in
relation to a set W is that W is the set containing exactly those histories that are
of relevance for f being a winning strategy. In particular W contains no such
histories that cannot be realized given that Eloise follows the strategy f . The
set W may be referred to as a ‘plan of action’.12

The above definition of a w.s. incorporates one possible exact formulation of
the requirement that a w.s. of a player must yield a win against every sequence
of moves made by the opponent. The notion of (winning) strategy for Abelard
can be defined analogously. The satisfaction relation for first-order logic is now
definable as follows:

A is satisfied inM under γ, in symbols (M, γ) |=+GTS A, if there exists a
w.s. for Eloise in G(A,M, γ).

A is dissatisfied inM under γ, in symbols (M, γ) |=−GTS A, if there exists
a w.s. for Abelard in G(A,M, γ).

For sentences A—i.e., in the case that γ is empty—we speak of truth (fal-
sity) instead of satisfaction (dissatisfaction). It follows from the results of von
Neumann and Morgenstern (1944) that every two-player zero-sum game of

11Supposing the domain is a set, as opposed to a proper class—such as the universe V of set theory. Eval-
uated relative to V , there are for instance no strategies for Eloise in the game for ∀x∃y(x = y): no function
V −→ V is a set.
12The idea of defining winning strategies by reference to such sets W was proposed by G. Sandu (personal
communication), in his capacity of a Ph.D. supervisor of Tero Tulenheimo.
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perfect information with payoffs in the set {1,−1} is determined, i.e., such that
one of the players has a w.s. in the game.13 That is, we have:

(M, γ) |=−GTS A if and only if (M, γ) �|=+GTS A.

8.3.3 Skolem functions
It is useful to observe the connection between Eloise’s winning strategies

in semantic games G(A,M, γ) on the one hand, and Skolem functions of a
first-order formula on the other.14 If A is a first-order formula of vocabulary
τ in negation normal form, and such that no two occurrences of an existen-
tial quantifier in it are associated with the same variable, its Skolem form is a
second-order Σ1

1(τ)-formula15 obtained as follows:

1. For each existential quantifier ∃xi of A, introduce a second-order func-
tion variable, fi. Replace all occurrences of the first-order variable xi in
A by the term fi(t1, . . . , tni ), where the t j are first-order variables which
are obtained from those universal quantifiers ∀t j to which ∃xi is syntac-
tically subordinate in A. From the result of carrying out these replace-
ments for all i, erase all occurrences of existential quantifiers. Write ASk

for the resulting formula.

2. If the existential quantifiers of A are ∃x1, . . . ,∃xn, define the Skolem
form of A to be the Σ1

1(τ)-formula SK(A) := ∃ f1 . . .∃ fnASk.

If f1, . . . , fk are the function symbols appearing in ASk, and F1, . . . , Fk are func-
tions that interpret these function symbols so as to satisfy the formula ASk in
a τ-structureM, then these functions are termed Skolem functions, and the se-
quence (F1, . . . , Fk) is called a full array of Skolem functions for the formula A
relative to the structureM.

The syntactic requirement we imposed on A above, to the effect that in A no
two occurrences of an existential quantifier may be associated with the same
variable, is by no means necessary; it was only assumed to simplify the presen-
tation. On the other hand the requirement is no restriction from the viewpoint
of expressivity, since every first-order formula is logically equivalent to a for-
mula of that form. Not even the requirement that A be in negation normal form
is necessary—it could be avoided by making a distinction between positive

13This statement is usually taken to be a consequence of the so-called ‘Zermelo’s theorem’. However, the
theorem according to which all zero-sum games of perfect information are determined is not due to Zermelo.
For this piece of history, see Schwalbe and Walker (2001).
14What came to be known as Skolem functions were introduced in Skolem (1920).
15‘Σ1

1(τ)’ denotes the fragment of second-order logic of vocabulary τ, whose formulas are (logically equiv-
alent to formulas) of the form ∃X1 . . .∃Xn A or ∃ f1 . . .∃ fn B, where A is a first-order formula of the vocab-
ulary τ ∪ {X1, . . . , Xn} and B is a first-order formula of the vocabulary τ ∪ { f1 , . . . , fn}, the Xi being relation
symbols of any arity, and the fi function symbols of any arity.
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and negative occurrences of quantifiers, based on whether a quantifier appears
subordinate to an even or an odd number of negation signs.

Assuming the Axiom of Choice, it is possible to prove that if A is such a
first-order formula of vocabulary τ for which SK(A) is defined, then for all
τ-structuresM and all assignments γ:

(M, γ) |= A if and only if (M, γ) |= SK(A),

where for second-order logic, its standard interpretation in the sense of Henkin
(1950) is used.

8.4 Characterizing truth
The main issue to be discussed in this paper is how to build a bridge be-

tween GTS and dialogical logic from the viewpoint of characterizing validity
(in propositional logic, as well as in first-order logic). However, let us first dis-
cuss from the dialogical point of view the question of characterizing truth of a
sentence (or, more generally, satisfiability of a formula) relative to a model.

There are two rather straightforward approaches one can assume; they give
rise to what are known as ‘alethic’ and ‘material’ dialogues (see, e.g., Rahman
and Keiff, 2005). As dialogues are designed for dealing with validity, some
additional ingredient must be introduced into dialogues in order to make them
capable of dealing with material truth. Alethic dialogues are simply obtained
by relativizing a dialogue to a model. Hence a part of the specification of an
alethic dialogue in the case of propositional logic will be a valuation function,
and in the case of first-order logic a τ-structure for an appropriate vocabulary τ.

By contrast, the idea behind material dialogues is to avoid having an extra
component to dialogues (such as a specification of a model); they are meant
to do with the resources of dialogues designed for dealing with validity, and
the idea is to ‘approximate’ a characterization of truth by adding a sufficient
amount of additional hypotheses—taken to be initial concessions of Oppo-
nent—which will serve to specify a model by using the resources of the object
language only.

What is a sufficient amount, then? In the case of propositional logic, when
discussing the truth of a formula A, any relevant model can indeed be specified
in terms of PL-formulas, namely literals: atomic formulas or their negations.
What is more, it suffices to specify a finite number of such literals. The relevant
models are identified by going through all propositional atoms pi appearing in
A (there are only finitely many of these atoms) and choosing, for all i, either
pi itself or its negation ¬pi. In this way any relevant model—any truth-value
distribution on the relevant atoms—can be specified.

For first-order logic, this approach has the obvious downside that in general
there is no way of capturing a τ-structure in terms of a finite number of first-
order sentences. Take for example a {P}-structure M with an infinite domain
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M = {di : i < ω}, where P is unary. For one thing, to exhaustively describe
the interpretation of P in M in terms of first-order sentences, an infinite list
〈�i : i < ω〉 of literals is needed, where �i := Pci if di ∈ PM, and �i := ¬Pci if
di � PM. (By stipulation, the constant ci stands for the element di.) Mathemati-
cally there is of course nothing problematic with such infinite lists of hypothe-
ses. But one desideratum in designing dialogues typically is that it should be
possible to think of them as humanly manageable, ideally temporal processes.
Such a process cannot really begin by going through an infinite number of hy-
potheses. This is why material dialogues with an infinity of hypotheses should
be considered as something deeply unsatisfactory.

For another thing—even granting such an ‘unrealistic’ way of fixing the in-
terpretations of relation symbols—one should find a syntactic way of specify-
ing the domain of the model considered. In particular, the fact that the members
of the list 〈�i : i < ω〉 jointly mention the infinite set {c0, c1, . . .} of individual
constants only indicates that in the corresponding model there are individuals
(denoted by) c0, c1, . . .. In this framework nothing precludes that there are fur-
ther individuals, not named by any of the constants ci. As a matter of fact, the
straightforward idea of material first-order dialogues—formulated by adding
all (negated) atomic sentences true in the relevant model as additional hypothe-
ses of Opponent—is doomed to failure. The ultimate reason for this has been
pointed out by Hintikka (1987, 251–252). For, the idea could work only if it
was possible to obtain all sentences true in a given modelM as logical conse-
quences of the so-called diagram of that model: the set of atomic sentences and
negated atomic sentences true inM. However, it is a model-theoretic fact that
this is not generally possible—there are modelsM and (complex) sentences A
true inM such that A is not derivable from the diagram ofM using any sound
and complete proof system for first-order logic, say dialogues.

Below in Section 8.6.1 we will develop a novel approach for defining rea-
sonable material dialogues for first-order logic. For reasons just mentioned, the
additional hypotheses of Opponent in such dialogues cannot simply be sen-
tences indicating the interpretations of the relevant relation symbols relative
to a fixed set of individual constants. A part of the results obtained in Section
8.5 about propositional logic, and in Section 8.6 about first-order logic, is that
the appropriate formulations of material dialogues actually capture the notion
of truth, i.e., coincide with the usual definition of truth of sentences of these
logics.

8.5 Characterizing validity in propositional logic
We will establish an explicit correspondence result between dialogical

logic and GTS in characterizing validity in connection with classical propo-
sitional logic. The dialogues considered will be intuitionistic dialogues D(A)
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with hypotheses (initial concessions). These are simply intuitionistic dia-
logues about the thesis A, where Opponent concedes right from the beginning
some finite number of propositions B1, . . . , Bn. We denote these dialogues as
D(A; B1, . . . , Bn). (When the hypotheses are clear from the context, we allow
simply writing D(A) for the dialogue.)

The additional hypotheses of Opponent can be thought of as specific mate-
rial assumptions that Proponent is free to make use of and to which Opponent
remains committed. From the model-theoretic perspective they are naturally
viewed as giving rise to a partial specification of a model. In this paper we
will consider specified instances of the law of excluded middle as hypotheses
to which O is committed. Specifically, if the thesis is A, we assume that Oppo-
nent concedes p ∨ ¬p for all propositional atoms p appearing in A.

It will be shown how to turn a winning strategy of Proponent in an intuition-
istic dialogue D(A;H) with hypotheses,

H = {p ∨ ¬p : p is an atom appearing in A},

into a family of winning strategies of Eloise in games G(A, M), where M is an
arbitrary truth-value distribution; and conversely, we will show how to obtain a
winning strategy of Proponent in dialogue D(A;H) from a family of Eloise’s
winning strategies in games G(A, M). The fact that the correspondence result is
of this form has two notable features. Indirectly, it shows that the only classical
assumption relevant for GTS in connection with propositional logic is that the
models are total in the sense that every propositional atom is either true or
false (no propositional indeterminacy). Further, the result provides an explicit
method of constructing a winning strategy in one type of game from a family
of winning strategies in games of the other type, and vice versa.

Before moving to the general proof, let us take an example.

Example 9. Let A := (¬p ∧ q) ∨ (p ∨ ¬q). We show how to transform Propo-
nent’s winning strategy in the intuitionistic dialogue

D(A; p ∨ ¬p, q ∨ ¬q)

into a family of Eloise’s winning strategies in games G(A, M) with M :
{p, q} −→ {true, false}; and vice versa.

(=⇒) Suppose f is a w.s. for P in D(A). Let us assume that f first makes P
to pose questions about O’s initial concessions:

?-p ∨ ¬p and ?-q ∨ ¬q.

We may suppose that f is of such form without loss of generality, because
P might not finish any play of the dialogue without receiving an answer to at
least one such question, and by assumption P is able to finish all relevant plays.
Combinatorially, there are four possible pairs of answers by O:
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(p, q) or (¬p, q) or (p,¬q) or (¬p,¬q).

Since f is a winning strategy, the continuation of the dialogue must be as fol-
lows. In the first, third and fourth case, the strategy f tells to pick out the right
disjunct of A (i.e., p ∨ ¬q), whereas in the second case it makes P to choose
the left disjunct (that is, ¬p ∧ q).

In the first-mentioned cases f tells P to go on by picking a disjunct whose
truth O already had conceded: p in the first case, either p or ¬q in the third
case, and ¬q in the fourth case. By contrast, supposing O conceded (¬p, q),
P can reply by the relevant conjunct to either of the possible questions by O
concerning ¬p ∧ q.

Let us now see how such a w.s. of P transforms into a family of win-
ning strategies of Eloise, one strategy for each game G(A, M) with M :
{p, q} −→ {true, false}. Let M be an arbitrary truth-value distribution
{p, q} −→ {true, false}. M determines a particular set of answers by O to
P’s questions about O’s initial concessions in D(A):

O responds to ?-p ∨ ¬p by left, if M(p) = true, and
by right, if M(p) = false;

O responds to ?-q ∨ ¬q by left, if M(q) = true, and
by right, if M(q) = false.

We define a strategy g for Eloise making use of P’s winning strategy f in
dialogue D(A). Because f is a w.s., it tells what to do in particular in the case
that O has ‘specified the model M’ with his answers.

For the outmost disjunction in (¬p∧q)∨(p∨¬q), let g yield the same choice
(left or right) that f yields as a response to the corresponding question ?-∨
asked by O. Hence the choice provided by g is left precisely when the model
M makes p false and q true (since this is when f yields the choice left). In that
case there are no more moves in the play of G(A, M) and Eloise wins the play.
If Eloise chooses right for the outmost disjunction, let g make her choose as
follows for the inner disjunction: left if f tells to choose left when asked
about that disjunction, and right otherwise. Clearly this too leads to a play
won by Eloise. We may conclude, then, that g is a w.s. for Eloise in G(A, M).

(⇐=) Suppose that for every model M : {p, q} −→ {true, false}, there is a
w.s. (say gM) for Eloise in the corresponding game G(A, M). This means that
the strategy gM tells to choose left for the outmost disjunction of (¬p ∧ q) ∨
(p ∨ ¬q), if M(p) = false and M(q) = true, and otherwise makes Eloise
to choose right. In the right disjunct, gM then goes on to yield the choice
left, if M(p) = true, and the choice right, if M(q) = false. (If both
M(p) = true and M(q) = false, then gM yields one of the two choices.)

Let us define a strategy f for P in dialogue D(A) as follows. First f makes
O to answer both questions, ?-p ∨ ¬p and ?-q ∨ ¬q. These answers determine
a truth-value distribution M : {p, q} −→ {true, false}, and in particular for
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this model M, Eloise has—by assumption—a winning strategy (gM) in the
semantic game G(A, M). We use gM in defining how to continue in dialogue
D(A). Let f yield the same choice left for the outmost disjunct of A that gM

yields for that disjunction. In the case of choosing first right, let f further
provide the same choice for the inner disjunction that is provided by gM to the
inner disjunction. Obviously f then always leads to a choice of a (positive or
negative) literal already conceded by O. That is, f is a winning strategy for P
in dialogue D(A).

8.5.1 The correspondence result
Let us observe the following fact about tokens of subformulas B of a propo-

sitional formula A, and choices for disjunctions and conjunctions to which B is
syntactically subordinate in A.

Observation 10. In the case of propositional logic, tokens of subformulas B
of a given formula A unambiguously reveal the choices for conjunctions and
disjunctions made in order to arrive at B in a semantic game. For instance, the
innermost token of ‘p’ in the formula (p ∨ (p ∧ q)) is identified by the choices
right and left for ∨ and ∧, respectively.

On the one hand, in a dialogue one and the same token of a connective may
have been visited by Challenger several times. On the other hand, any subfor-
mula token B reveals only the most recent left/right choices for the conjunctions
and disjunctions that syntactically precede B, made by P and O in a dialogue
about the thesis A. Obviously for the continuation of a propositional dialogue
only the subformula reached matters: only those most recent choices matter.16

We now move on to state and prove a theorem linking GTS and dialogical
logic in view of characterization of validity in propositional logic.

Theorem 11. Let A be any formula of propositional logic. The following con-
ditions are equivalent:

(i) There is a w.s. for Proponent inD(A; p1 ∨ ¬p1, . . . , pn ∨ ¬pn);

(ii) For every M, there is a w.s. for Eloise in G(A, M);

where p1, . . . , pn are the propositional atoms appearing in A. Furthermore,
there is an algorithm turning Proponent’s winning strategy into a family of
Eloise’s winning strategies, and vice versa.

We prove Theorem 11 in two steps, by first establishing Lemma 12 and then
Lemma 14.

16The situation is more complicated in the case of first-order logic; Section 8.6.2 is devoted to discussing
this issue.
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Lemma 12. Condition (ii) of Theorem 11 implies its condition (i).

Proof. Let p1, . . . , pn be the propositional atoms that actually appear in A.
Consider the 2n different truth-value distributions (models)

M j : {p1, . . . , pn} −→ {true, false} ( j := 1, . . . , 2n).

Suppose that for every M j, there is a w.s. for Eloise in G(A, M j). We must show
that there is a w.s. for P in the intuitionistic dialogue D(A; p1 ∨ ¬p1, . . . , pn ∨
¬pn). O’s initial concessions are

pi ∨ ¬pi (i := 1, . . . , n).

We describe a strategy f of P inD(A).

(i) To begin with, f tells P to pose, for all i, the question

?-pi ∨ ¬pi.

O’s answers to these questions will, then, determine a truth-value dis-
tribution M : {p1, . . . , pn} −→ {true, false}. By assumption there is a
w.s. for Eloise in G(A, M), call it g. We go on to construct a continuation
of P’s strategy f in D(A) using the strategy g. Recall that the dialogue
D(A) will proceed intuitionistically.

(ii) We will first correlate recursively every subformula token B of A with a
play of the semantic game G(A, M). The thesis A is associated with the
empty sequence 〈〉. Suppose, then, that a subformula token B is already
associated with a play h. We will write �[B] for the number of negation
signs to which B is subordinate in A.

If B = C ∧ D and �[B] is even or equal to zero, or B = C ∨ D and
�[B] is odd, then C is associated with h�C and D with h�D.

If B = C ∨ D and �[B] is even or equal to zero, or B = C ∧ D
and �[B] is odd, and g(h) = C, then C is associated with h�g(h);
whereas if g(h) = D, then it is D that is associated with h�g(h).

If B = ¬C, then C is associated with h.

Define now f so that if O asks P to choose a disjunct of C ∨ D (the dis-
junction sign hence appearing under an even number of negation signs),
and the history associated with C ∨ D is h, then P chooses the uniquely
determined disjunct E ∈ {C,D} such that the disjunct in question is as-
sociated with a history—and hence by construction with a history of the
form h�g(h), where g(h) = E. (Observe that in order to have arrived at
the very subformula C ∨ D, P must have made exactly those choices for
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the connectives for which she has moved that are encoded in the history
h.) Similarly, if O asks to choose a conjunct of C ∧ D (the conjunc-
tion sign appearing under an odd number of negation signs), let f make
P choose the uniquely determined conjunct with an associated history;
such a history is then of the form h�g(h). In short, then, we define f so
that it ‘respects associated histories’.

Claim 13. The strategy f is a winning strategy for P in D(A; p1 ∨
¬p1, . . . , pn ∨ ¬pn).

Proof. Due to its definition, f leads to a literal � (or a conjunction of
literals �1, . . . , �l) true in M. This means that O has conceded p (if � = p),
or has conceded ¬p if � = ¬p. In the former case P is indeed in a position
to reply p (O has already conceded it); in the latter case O may only
challenge ¬p by contradicting himself. �

Let G = {gj : j < 2n} be a family of Eloise’s winning strategies, one for each
model M j : {p1, . . . , pn} −→ {true, false}. The algorithm for generating a
winning strategy for P in D(A; p1 ∨ ¬p1, . . . , pn ∨ ¬pn) consists, then, in first
making O to determine a model M j by his answers to questions ?-pi ∨ ¬pi.
The w.s. gj of Eloise in G(A, M j) then determines a labeling of subformulas by
plays of G(A, M j) as explained above. This, in turn, directly defines a winning
strategy for P, proceeding from O’s specific answers to P’s questions about
O’s initial concessions, as was shown above. �

It is important to observe the following fact about the definition of P’s strat-
egy f in the above proof. Actually, if the formula A considered is intuitionis-
tically valid, then from the point of view of dialogic there is no need to use
concessions of the form p ∨ ¬p. However, for the sake of our aims, it is con-
venient to assume that O explicitly makes concessions of that form, and that
P always starts by asking questions about these concessions. It is interesting
to note that the resulting games are of a kind that Kuno Lorenz has called
strenge Dialogspiele: games where not only defenses, but also attacks can be
performed only once (cf. Lorenzen and Lorenz, 1978, 120–126). Dialogues of
this type are related to the representation of certain connectives of linear logic
and could even be considered as having anticipated them. Furthermore, part of
the critique against the intuitionistic dialogic that Andreas Blass puts forward
on the first pages of his beautiful 1992 paper is pointing out the asymmetry be-
tween conjunction and disjunction. Now if one implements an algorithm which
stipulates to attack first the appropriate instances of the law of excluded mid-
dle, the alleged asymmetry will disappear: no question whether Proponent is
entitled to concede an atom or not will arise later in the same dialogical game.
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Lemma 14. Condition (i) of Theorem 11 implies its condition (ii).

Proof. Suppose P has a w.s. in the dialogue

D(A; p1 ∨ ¬p1, . . . , pn ∨ ¬pn),

and call it f . Such a strategy need not consist of first asking O about all hy-
potheses, but we may without loss of generality assume that f is such a strat-
egy. Let M : {p1, . . . , pn} −→ {true, false} be an arbitrary model. We must
show that Eloise has a w.s. in G(A, M). First consider a dialogical game be-
longing toD(A), where P has received such answers to her questions about O’s
initial concessions that these constitute precisely the model M: O has replied
pi if M(pi) = true, and otherwise has replied ¬pi.

Let us associate with every subformula B of A for which it is P who makes
a move inD(A), a subformula E of B, as follows.

If B = C ∨ D and �[B] is even or equal to zero, or B = C ∧ D and �[B]
is odd, and f gives E ∈ {C,D} as a response to the question ?-∨ (resp. as
the choice of a conjunct), let B be associated with E.

Define a strategy g for Eloise in the semantic game G(A, M) by putting

g(h) := f (B),

if B is the subformula of the form C ∨ D (under an even number of negation
signs, or none) or of the form C ∧ D (under an odd number of negation signs)
corresponding to which Eloise must make a move at the history h. By Obser-
vation 10 we may assume that the value of the strategy f only depends on the
subformula token B.

Claim 15. The strategy g is a w.s. for Eloise in G(A, M).

Proof. The last move by Eloise made in accordance with g leads to a
literal � (or a conjunction of literals). By the definition of g, if � = p,
then p is true in M (since in that case O must have conceded it before).
If, on the other hand, � = ¬p, then p is false in M, for then O must
contradict himself by conceding p. �

Let f be P’s w.s. in D(A). The algorithm for generating a family F
of Eloise’s winning strategies in games G(A, M), one for each model
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M : {p1, . . . , pn} −→ {true, false}, consists of transforming f into such
a winning strategy f0 which first asks O to reply to each of the n questions of
the form ?-pi ∨ ¬pi. O’s answers then determine a model M, relative to which
f0 further determines, as explained above, a labeling which defines a winning
strategy for Eloise in the semantic game G(A, M). �

8.6 Characterizing validity in first-order logic
Before moving on to formulate and prove the correspondence result between

dialogical logic and GTS in characterizing validity in connection with classi-
cal first-order logic, we will discuss conceptual issues that are forced upon us
by the dialogical framework. In particular, we think of dialogues as intrinsi-
cally ‘finitist’ processes; no dialogical game for instance may involve going
through an actual infinity of attacks and defenses. On the other hand, for our
correspondence result we need a way of representing τ-structures on the level
of dialogues. How are we, then, to deal with the fact that such structures can
have an infinite domain?

8.6.1 The framework
It was observed that in the case of propositional logic, a finite list of ini-

tial concessions pi ∨ ¬pi can be produced simply out of the propositional
atoms p1, . . . , pn appearing in the propositional formula considered. It was
noted that hence it is possible to determine any model M : {p1, . . . , pn} −→
{true, false} of propositional logic by a set of answers by means of which
Opponent can defend himself against Proponent’s attacks on these initial
concessions; and conversely, any such set of answers determines a model
M : {p1, . . . , pn} −→ {true, false}. On the other hand, it was seen in the be-
ginning of Section 8.4 that in the case of first-order logic, there is no straight-
forward way in which to represent first-order structures by finitary means in
dialogues. Is it, however, possible to find a new type of concession, so that a
finite set of Opponent’s concessions of such a type could, after all, be used for
specifying the relevant first-order structures?

First note that in order to identify a τ-structure, there are two things to de-
termine: (1) its domain, and (2) the interpretations of the relation symbols of
the vocabulary τ. To formulate a connection between dialogues and semantic
games in characterizing validity in first-order logic, a prerequisite is to be able
to reconstruct τ-structures within the dialogical framework. Any given seman-
tic game is played on a fixed τ-structure, and we must find a way of saying
to what having fixed such a τ-structure corresponds in a dialogue. To this end,
then, we must be able to reconstruct the notion of domain, as well as to deter-
mine interpretations of relation symbols on such domains, using dialogues—
despite the problems observed.
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Next recall that τ-structures can be taken to be of countable size (cf. Section
8.3.2). This is well suited from the proof-theoretic perspective, as in proof
theory we deal with at most countably many values of variables. Indeed, the
individuals of a proof theorist are defined in terms of linguistic symbols (in-
dividual constants), and in the dialogical framework it surely would be out of
purpose to have more than countably many such symbols. As vehicles of proof
theory, dialogues must not make reference to models at all. Proof theory is for-
mal—it must be possible to carry out proofs on the syntactic level. (This is so
notwithstanding any philosophical arguments to the effect that proofs or infer-
ence rules are constitutive of meaning and in this sense serve to link language
to what the language is about.)

We will proceed as follows. Let us fix a countably infinite stock {c0, c1, . . .}
of individual constants.17 We will be interested in arbitrary countable models,
wherefore a finite number of constants would not suffice as syntactic substi-
tutes for individuals. On the other hand, since we are, inter alia, interested in
finite models—in addition to countably infinite ones—we cannot simply take
the individual constants c0, c1, . . . themselves as representing individuals; oth-
erwise all models that we would manage to syntactically represent would have
{c0, c1, . . .} as their infinite domain. Instead, we will include in the dialogues
a mechanism that will mimic the semantic phenomenon of several individual
constants standing for the same object.

Representing domains. We include among Opponent’s initial conces-
sions in all dialogues that we will consider the following sentence:

∀x1∀x2(x1 = x2 ∨ x1 � x2).

Here the symbol ‘=’ is syntactically subject to equivalence relation axioms
(reflexivity, symmetry, transitivity), together with a substitution rule saying that
if O has conceded both ci = c j and A[x/ci], then P may ask O to concede
A[x/c j]; the only available defense for O being to concede indeed A[x/c j].18

Given that the constants to be substituted for quantified variables will be
taken from the set {c0, c1, . . .}, what type of question concerning the sentence
∀x1∀x2(x1 = x2 ∨ x1 � x2) should we pose in order for the answer to identify
a domain—which can be either finite or countably infinite? Simply putting
forward a question ?-∀x1/ci, followed by a question ?-∀x2/c j, followed by
a question ?-(c1 = c2 ∨ c1 � c2) would not do; this maneuver would lead
to identifying a domain in terms of constants ci (intuitively standing for its
elements) only if repeated infinitely many times. But starting a dialogue with

17Technically, fixing the set of available individual constants in this way may be construed as a specific
structural rule.
18The equivalence relation axioms can be construed either as metalogical rules or else, simply, as further
initial concessions by O. The substitution rule is a structural rule of its own.
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going through an infinity of hypotheses to get the model right would hardly
be in keeping with the idea of a dialogue as a (humanly manageable, ideally
temporal) process, as already noted.

Clearly, we should ask, once and for all, Opponent to choose a Skolem func-
tion for the disjunction symbol of the sentence

∀x1∀x2(x1 = x2 ∨ x1 � x2).

A Skolem function

f : {c0, c1, . . .} × {c0, c1, . . .} −→ {left, right}

expressly states, for each possible pair of values (ci, c j) chosen for the pair
of variables (x1, x2), whether Opponent considers ci and c j to be proof-
theoretically interchangable or not. Intuitively, then, if Opponent chooses the
left disjunct, ci and c j ‘stand for the same object’, whereas if he chooses the
right disjunct, ci and c j are taken to ‘stand for distinct objects’.

Technically, what Opponent’s choice of a Skolem function f accomplishes
is to induce an equivalence relation ∼ f among pairs of constants from the set
{c0, c1, . . .}: we have ci ∼ f c j if and only if f (ci, c j) = left. Now the index
of the equivalence relation ∼ f will be precisely the cardinality of the domain
represented by the Skolem function f .19 Clearly any countable cardinality can
be represented by a suitable choice of f . The domain corresponding to the
choice of f is simply the quotient set {c0, c1, . . .}/∼ f . The equivalence classes
of the set {c0, c1, . . .} are then representatives of model-theoretic individuals.

We must introduce a rule allowing to pose such ‘second-order’ questions,
with a Skolem function as the response. Before doing so, let us consider how
to determine interpretations of the relation symbols of a given vocabulary.

Representing interpretations. For a finite vocabulary τ, among Op-
ponent’s initial concessions will be included the sentences

∀x1 . . .∀xn(Rx1 . . . xn ∨ ¬Rx1 . . . xn),

one sentence for each R ∈ τ of arity n. Again, we must allow Proponent to ask,
once and for all, Opponent to choose a Skolem function for the disjunction
symbol of such a sentence. For instance, a Skolem function

f : {c0, c1, . . .} −→ {left, right}

for the disjunction symbol in the sentence ∀x(Px∨¬Px) expressly indicates, for
each possible constant ci that can be substituted for x, which of the disjuncts

19The index of an equivalence relation ∼ on a set X is by definition the cardinality of the quotient set X/∼,
i.e., the cardinality of the set of all equivalence classes of X under the relation ∼.
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Opponent considers being satisfied by ci. This is exactly what it means to spec-
ify the extension of the predicate P relative to a domain whose individuals are
all named by at least one constant in the set {c0, c1, . . .}.

Observe that if Opponent chooses his responses at random, the choice of a
Skolem function f for, say, a unary relation symbol P can contradict his choice
of a Skolem function i corresponding to the identity sign. That is, it can hap-
pen that i(ci, c j) = left, while f (ci) � f (c j). Hence ci and c j intuitively stand
for the same object, but yet only one of them serves to satisfy the predicate P.
However, evidently Opponent can always make his choices of Skolem func-
tions for the additional hypotheses in a coherent way—so that the choice of
the function corresponding to the identity sign does not lead to a contradic-
tion in view of his choices of functions corresponding to relation symbols. We
will subsequently always assume that Opponent indeed makes such coherent
choices.

Let us then move on to introduce a new mode of question, which enables to
ask about a Skolem function for an operator. In what follows, we sometimes
use a barred x, i.e., x̄, to stand for a finite sequence of variables, x1 . . . xn, and
∀x̄ to stand for the block ∀x1 . . .∀xn. When asked about a sentence of the form
∀x̄(Ex̄ ∨ ¬Ex̄) with E ∈ τ ∪ {=}, the question

??-∨
must be answered by providing a second-order object, namely a Skolem func-
tion f : {c0, c1, . . .}n −→ {left, right} for the unique token of the disjunction
symbol ∨ appearing in ∀x̄(Ex̄ ∨ ¬Ex̄). (We write the ‘?’ two times to indicate
that the answer should be a second-order object.) Suppose O asserts that f is
such a function. Then if E is the identity symbol, a domain is thereby deter-
mined (precisely the constants ci, c j with ci ∼ f c j will be thought of as standing
for the same object), while if E is a relation symbol from τ, the function f spec-
ifies which atomic sentences involving E are taken to be true (in the sense of
being conceded by O) and which false (in the sense that their negations are
conceded by O). The concession concerning the identity sign might be contra-
dictory with the concessions concerning the relation symbols, but as just noted
we may always assume that the concessions are in effect mutually coherent.
Then indeed, a model can be extracted from O’s replies to P’s questions ??-∨
about his initial concessions ∀x̄(Ex̄ ∨ ¬Ex̄). If O’s reply to the question about
the identity sign was i, then his replies to the questions about relation symbols
will serve to specify the interpretations of these relation symbols on the do-
main determined by the Skolem function i. For instance, if f is O’s reply to a
question concerning a unary relation symbol P, then P is taken to be satisfied
by precisely those equivalence classes ξ determined by the Skolem function i
for which f (c) = left for some (and hence all) c ∈ ξ.

Once O has laid down his choices of Skolem functions, P can draw all kinds
of inferences from them. For instance she can check whether a relation symbol
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R is satisfied by at least one tuple, by seeing whether left lies in the image of
the Skolem function corresponding to R.20

The questions ??-∨ give rise to the following new structural rule:

(SR-7) (Skolem function rule). If O has conceded that f is a Skolem
function for ∨ in ∀x̄(Ex̄ ∨ ¬Ex̄), then O must also, if asked, concede all in-
stances of this second-order concession. That is, for any tuple c̄ interpreting the
variables x̄, he must concede Ec̄, if f (c̄) = left, and ¬Ec̄, if f (c̄) = right.
Accordingly, once O has replied by some f to a question ??-∨, P is always
entitled to pose the question ?- f /c̄, for any tuple c̄, asking O to confirm that
indeed he concedes that the tuple c̄ satisfies the disjunct f (c̄). O has no real
choice for his answer: the reply is fully predetermined by his choice of f and
the requirement that O must be coherent in his replies.21

Remark 16. What we phrased above in terms of Skolem functions may look
like an ascent from the essentially syntactic approach of proof theory to a more
model-theoretic approach, where we speak of objects or sets of objects serv-
ing as denotations for such linguistic items as individual constants or relation
symbols. For, in the above approach it is not sufficient that O choose a function
symbol, f. In addition, he must commit himself to an infinity of identities of the
form

f(ci1 , . . . , cin ) = b

where b ∈ {left, right} and the ci j are arbitrary individual constants. When
saying that O chooses a Skolem function we hence mean that he makes at
one stroke a potentially infinite number of concessions of syntactic nature. The
concession is a ‘second-order concession’, but still an essentially syntactic or
formal one.

Furthermore, the language we are dealing with remains a first-order lan-
guage, where all quantification is over individuals only. In particular, the lan-
guage L[τ] itself does not involve quantification over functions. Having avail-
able the possibility of asking for Skolem functions is simply an addition to the
repertoire of questions that can be posed about concessions concerning formu-
las of the relevant first-order language. It does not add to what the formulas
themselves state.

Are such second-order questions as ??-∨ not quite far-fetched from the
dialogical viewpoint, anyway? There are two things to observe by way of

20If f : A −→ B is a function, we write Im( f ) for the image of f , that is, for the set { f (x) : x ∈ A}. Hence
Im( f ) is a (proper or improper) subset of B.
21Skolem functions could of course appear in dialogues more generally than as Skolem functions of dis-
junctions appearing in contexts like ∀x̄(Ex̄∨¬Ex̄). The name “Skolem function rule” is hence undeservedly
general. However, in the present paper no further use of Skolem functions is made, and we stay with the
terminology.



S. Rahman and T. Tulenheimo 189

answering this type of criticism. First, the reason why we are introducing this
device into dialogues in the first place is not motivated by the dialogues them-
selves, but our desire to prove a first-order analogue to Theorem 11. That is,
we wish to establish an explicit bidirectional link between dialogues on the
one hand, and semantic games on the other, in characterizing the validity of
first-order sentences. Given this background of generalizing Theorem 11, the
most important thing to take care of is that the only non-intuitionistic inputs to
dialogues come from the additional initial concessions of O. We must be able
to reconstruct τ-structures on the level of dialogues, and we must be able to
do it by asking only finitely many questions. Asking about Skolem functions
for finitely many disjunctions does the job, while asking about an infinity of
individual constants whether they serve to satisfy a given predicate does not.

Secondly, ironically perhaps, the question form ??-∨ is, arguably, more in
the spirit of intuitionism than first meets the eye—and therefore particularly
suitable in the dialogical approach, which was historically motivated precisely
by intuitionism. Namely, for an intuitionist, committing oneself to the truth of
a sentence ∀x(Px ∨ ¬Px), say, necessarily involves committing oneself to a
method of verifying the sentence. An intuitionist takes ∀x(Px ∨ ¬Px) as true
only if he not only knows it to be true (there is the epistemic dimension to the
notion of truth for an intuitionist), but also knows why it is true. In less pictorial
language, he must be in a possession of a function which for every value of x
chooses either the left or the right disjunct, according to whether the value
does or does not satisfy the predicate P. From this viewpoint, one could even
expect that intuitionistically, the questions about the concessions of a player
would need to be responded, first and foremost, by listing Skolem functions of
the operators appearing in the conceded sentence. We will not require this in
general in what follows, but take it that there are good enough reasons not to
consider our framework, in its intended context, as ad hoc (cf. here Hintikka,
1996, Chapter 11).

Example 17 (With implication in the language). Consider the intuitionistic di-
alogue for the first-order sentence ∃x(Qx→ ∀yQy), with the additional initial
concessions ∀x1∀x2(x1 = x2 ∨ x1 � x2) and ∀x(Qx ∨ ¬Qx) of O. That is, O
concedes that the interpretations of the symbols ‘=’ and ‘Q’ respect the law
of excluded middle. The following is a description of P’s winning strategy in
such a dialogue. First, P asks O to choose Skolem functions for the disjunction
symbols in the extra hypotheses. Suppose O chooses, respectively, functions

f : {c0, c1, . . .} × {c0, c1, . . .} −→ {left, right},
and

g : {c0, c1, . . .} −→ {left, right}.
If O’s choices involve a contradiction, i.e., if there are ci and c j such that
f (ci, c j) = left but g(ci) � g(c j), P may proceed as follows. By asking the
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question ?- f /c1c j about the concession concerning identity, and by asking the
questions ?-g/ci and ?-g/c j about the concession involving the relation symbol
Q, P will force O to concede ci = c j together with Qci and ¬Qc j (or with Qc j

and ¬Qci). By the relevant substitution rule P will then further be able to make
O to run into a plain contradiction, conceding both Qc j and ¬Qc j.

Suppose, then, that O’s choices of f and g are free from contradiction, i.e.,
meet the following condition:

if f (ci, c j) = left, then g(ci) = g(c j).

By having chosen such f and g, O has in effect determined a countable {Q}-
structure M with the domain {c0, c1, . . .}/∼ f and the following interpretation
of Q:

ξ ∈ QM ⇔def f (ci) = left,

where ξ := {c j : ci ∼ f c j} and ci is an arbitrarily chosen representative of ξ,
ci ∈ ξ. (This definition of QM is independent of the choice of the representa-
tive ci of the equivalence class ξ, precisely because f and g are not mutually
contradictory.) Then let P proceed as follows:

(1) If Im(g) = {left}, i.e., if O concedes Qci for all constants ci, then let
P choose c0 as a response to O’s question ?-∃x. O then attacks the im-
plication by conceding Qc0 and P must defend ∀yQy. Supposing O asks
?-∀x/ci, P first asks O to acknowledge that Qci (i.e., she asks ?- f /ci),
which the latter must do as he already conceded that g is a Skolem func-
tion for∨ in the hypothesis about Q. But then P may reply to O’s question
?-∀x/ci by Qci, which yields a finished play won by P.

(2) If right ∈ Im(g), let i be the smallest i such that g(ci) = right, and let
P ask O to concede ¬Qci, which the latter must do. Let then P answer
to O’s question ?-∃x by ci. O may only attack by conceding Qci, hence
contradicting himself. This yields a finished play won by P.

It is not difficult to see how the run of the above dialogue would change
if we had, in place of the sentence ∃x(Qx → ∀yQy) involving an implication
sign, its classical equivalent ∃x(¬Qx∨∀yQy). The construction of P’s winning
strategy would be essentially the same, the only difference being that in the
latter case P herself could choose the disjunct in ¬Pci ∨ ∀yPy, after having
chosen a constant ci as a value for x.

But what about the validity of the sentence ∃x(Qx → ∀yQy)? Why should
we think that P’s having a winning strategy in the above-described dialogue
would amount to this sentence being valid, i.e., true in all structures of vocab-
ulary {Q}? Let us first see why we should think it will be true in all countable
{Q}-structures.
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In our dialogical reconstructions of models, we obtain models whose do-
mains are partitions of the set of individual constants. Given a vocabulary τ,
let us write Cτ for the class of all τ-structures whose domain is a partition of
the set {c0, c1, . . .}. In these models, an n-ary relation symbol is interpreted by
an n-tuple 〈ξ1, . . . , ξn〉, where the ξi are cells of the partition that constitutes
the domain of the model. Now any countable {Q}-structure is isomorphic to a
{Q}-structure from the class C{Q}.

Because truth of a first-order sentence is trivially preserved under isomor-
phism,22 in order to determine whether such a sentence is valid relative to the
class of all countable models it suffices to consider models from the class Cτ.
But this means that the dialogical analysis of validity of the first-order sentence
∃x(Qx → ∀yQy) with respect to countable models will work if, and only if,
its analysis of truth of this sentence relative to models from the class Cτ will
work. Here its truth in a model M is analyzed as the existence of a w.s. for
P in the intuitionistic dialogue with the thesis ∃x(Qx → ∀yQy) and the extra
hypotheses ∀x1∀x2(x1 = x2 ∨ x1 � x2) and ∀x(Qx∨¬Qx), in particular such a
dialogue in which O has responded to P’s questions about the extra hypotheses
by Skolem functions f and g satisfying the following conditions: g(ci) = left
iff [ci] ∈ QM; and if f (ci, c j) = left, then g(ci) = g(c j). Finally, by Downward
Löwenheim–Skolem theorem, the generality of the analysis is not threatened
by the restriction to countable models.

The above remarks imply that the dialogical framework sketched here is in
principle well suited for our purpose. To see that it really is so, it essentially
remains to show that the dialogical analysis of truth of sentences relative to
models from the class Cτ works in the desired way. This will be shown in
Theorem 22. In anticipation, observe the following.

Remark 18. Consider a dialogue D(A;H) with additional hypotheses, in-
volving a hypothesis ∀x1∀x2(x1 = x2 ∨ x1 � x2) about identity. Let i be
O’s reply corresponding to this hypothesis, and write ∼i for the induced
equivalence relation on the set {c0, c1, . . .}. Let us say that P’s strategy f in
D(A;H) respects the Skolem function i, if the following holds: for any n-tuples
(x1, . . . , xn) and (x′1, . . . , x′n) on which f is defined, if x1 ∼i x′1, . . . , xn ∼i x′n,
then f (x1, . . . , xn) ∼i f (x′1, . . . , x′n). It is straightforward to prove that if P has
a winning strategy inD(A;H), she has a winning strategy respecting i therein.
Intuitively, this can be thought of as meaning that the values of the strategy
only depend on the objects used as its arguments, not on the names used to
refer to these objects.

22Isomorphism between structures is an extreme case of back-and-forth equivalence between them, and it is
well known that back-and-forth equivalence entails elementary equivalence, i.e., the fact that the structures
satisfy precisely the same first-order sentences. For details see e.g. Hodges (1997, Sections 3.2, 3.3).
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Observe that requiring O to choose a Skolem function for the disjunction
symbol of every sentence of the form ∀x̄(Ex̄ ∨ ¬Ex̄) with E ∈ τ ∪ {=} can be
seen as a straightforward generalization of what happens in the propositional
case. For, in the case of propositional logic, O had additional concessions of
the form pi ∨ ¬pi, one for each propositional atom appearing in the formula
under consideration, and P could make O to choose a disjunct, one for each
such sentence. Hence what P could ask O to choose was nothing else than
a Skolem function δi for the relevant disjunction, δi ∈ {left, right}. In the
propositional case the Skolem function happens to be a zero-place function
(i.e., a constant), but what is at stake is the same in both cases: determining
a disjunct for every instance of tertium non datur involved. For propositional
logic, we need not phrase O’s commitment in terms of Skolem functions, since
we can give a ‘finitist’ description of the relevant information even without
resorting to functions. This option being not in general available in first-order
case (due to the possibly infinite number of values of variables), we must there
ascend to the level of Skolem functions to get the analogy right.

Note that n initial concessions of O yield in the propositional case 2n ways
for O to take sides with respect to the disjuncts of the additional hypotheses,
while in the case of first-order logic n hypotheses yield in general a continuum
of possible reactions, as the are 2(ℵ0)mi different functions f : {c0, c1, . . .}mi −→
{left, right} corresponding to a hypothesis with an mi-ary relation symbol,
and

n∏
i:=1

2(ℵ0)mi
= (2ℵ0 )n = 2ℵ0 .

Furthermore, it may be noted that O also has a continuum of distinct ways
of reacting to the hypothesis involving the identity sign, and hence there is a
continuum of pairwise distinct domains built in terms of equivalence classes of
the set {c0, c1, . . .} corresponding to O’s different choices of Skolem function
for this hypothesis.

Before moving on to state and prove the correspondence theorem, we will
establish a normal form of winning strategies of P in intuitionistic dialogues
with additional hypotheses, for the language of first-order logic without impli-
cation.

8.6.2 History-insensitive strategies
In dialogues, players make moves in turns. The resulting sequences of

moves 〈s0, . . . , sn〉 differ from histories (plays) of semantic games most es-
sentially in that O is allowed to remake his earlier moves: (a) If an earlier
propositional move has turned out to lead to a loss for him, O may remake
that move. This possibility is granted by the Shifting rule, i.e., the structural



S. Rahman and T. Tulenheimo 193

rule (SR-3). And (b) O is always entitled to remake his attack on a universal
quantifier, and his defense of an existential quantifier.

Due to (a), sequences of moves in dialogues—plays of dialogues—are not
in general dialogical games. For instance, if first a closed dialogical game
〈s0, . . . , sn〉 is produced (a dialogical game which is hence lost by O), O
is allowed to reconsider any earlier propositional move si that he has made
(with i ≤ n) and remake it, hence in effect shifting to the dialogical game
〈s0, . . . , si−1〉, which may then continue, say by the moves 〈s′i , . . . , s′k〉. In the
end the play

〈s0, . . . , sn, s0, . . . , si−1, s′i , . . . , s′k〉

will have been constructed. This play is not a dialogical game. The earlier
moves are not literally undone by remaking an earlier move. This fact makes
it necessary to be careful when speaking of sequences of moves in dialogues,
and especially when speaking of strategies of the players in dialogues.

By the rules of dialogues, if O remakes his earlier move si—hence returning
to a subformula B of A superordinate to the subformula C appearing in the last
member sn of the play 〈s0, . . . , sn〉—the continuation of the play is determined
by that subformula B, and any moves s j with i < j ≤ n will be of no relevance
to the future course of the play. This is because making a different move instead
of si, all subformulas of B must now be gone through, regardless of whether
some of them already had received a corresponding move s j (i < j ≤ n).

At any given position in a play, the sequence of earlier moves is finite, and
hence for any subformula token concerning which a move is made in that se-
quence, there is in the sequence the last move made for that subformula token.
If s̄ is a play, we write up(s̄) for the reduct of s̄ consisting of the most re-
cent moves for given tokens of conjunctions, disjunctions, and universal and
existential quantifiers: the latest ‘updates’ of values given to the operators in-
volved. Obviously the length of up(s̄) is at most that of s̄. It is also clear that
up(s0, . . . , sm) is determined by the last remade move sn+1 in 〈s0, . . . , sm〉: if
sn+1 remakes the move si, then the sequence up(s0, . . . , sm) will consist of
the suffix 〈sn+1, . . . , sm〉 and the prefix up(s0, . . . , si−1), where up(s0, . . . , si−1)
again is determined by its latest revised move, and so on. Hence the sequence
up(s̄) can be computed in finitely many steps.

Note that for distinct plays s̄, s̄′ with possibly divergent lengths corre-
sponding to one and the same subformula token, we may, then, well have:
up(s̄) = up(s̄′). On the other hand, if s̄ � s̄′ and f is an arbitrary strategy of P,
we may of course still have: f (s̄) � f (s̄′). There is combinatorially no reason
why a strategy could not in principle give distinct values for distinct argument
sequences, no matter what those sequences have in common. This observation
motivates the following definition.
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Definition 19. A strategy f of P in a dialogue D(A) is history-insensitive, if
any plays s̄ and s̄′ belonging toD(A), which correspond to a move for one and
the same subformula token B of A, satisfy:

up(s̄) = up(s̄′) =⇒ f (s̄) = f (s̄′).

That is, the value of a history-insensitive strategy only depends on the most
recent choices made, during a play, for the operators interpreted in the course
of that play.

The idea behind the definition is this: In a dialogue, O may in one and the
same play revise his choices as he pleases—in cases (a) and (b) as listed in
the beginning of the present subsection. This gives rise to the possibility of a
multitude of distinct plays with the same most recent choices corresponding to
tokens of subformulas of the thesis A of the dialogue. The value of a history-
sensitive strategy only takes into account the most recent choice for any given
occurrence of an operator interpreted by O: it gives its value for a play s̄ as a
function of the reduct up(s̄) of s̄.

Observe that whenever plays s̄, s̄′ correspond to one and the same subfor-
mula token B of A, i.e., when their last member involves this token, they nec-
essarily have their most recent conjunctive/disjunctive choices in common (cf.
Observation 10). Still they may in general differ in their choices for quantifiers.

The following lemma will be of use later. It says that we may always assume
P’s winning strategy in an intuitionistic dialogue with hypotheses to be history-
insensitive in the sense of Definition 19.

Lemma 20. Let A be a sentence of FO[τ,=], and let τ[A] be the set of relation
symbols from τ appearing in A.23 If there is a winning strategy for P in the
intuitionistic dialogue D(A;H) with hypotheses,

H := {∀x̄(Ex̄ ∨ ¬Ex̄) : E ∈ τ[A] ∪ {=}},

then there is a history-insensitive winning strategy for P therein.

Proof. Suppose P has a w.s. inD(A;H), call it f . We may assume it first makes
O to choose a Skolem function for the disjunction in each hypothesis—relative
to the fixed set {c0, c1, . . .} of constants—hence in effect determining a model
M whose domain is the set {c0, c1, . . .}/∼i, where ∼i is the equivalence relation
induced by the reply i that O gives to the question concerning the hypothesis
about the identity sign. If the tokens of subformulas of A corresponding to
which it is P’s turn to make a move are B1, . . . , Bm, the strategy f induces
strategy functions f1, . . . , fm, each fi providing a move for Bi as a function of
O’s earlier moves.

23Recall that the syntax of FO[τ,=] does not involve the implication sign.



S. Rahman and T. Tulenheimo 195

Observe first that if s̄ is a play of D(A;H) won by P, it corresponds to a
literal � = ±Rci1 . . . cin that is true in M, in the sense that 〈[ci1 ] . . . [cin ]〉 ∈
RM resp. 〈[ci1 ] . . . [cin ]〉 � RM. Clearly, the truth of the literal only depends on
whether the tuple 〈[ci1 ] . . . [cin ]〉 indeed is contained in the interpretation of the
relation symbol R inM. But where do the relevant constants ci1 , . . . , cin come
from? They come from the most recent choices for quantifiers in the relevant
sequence of moves s̄. In other words, they come from up(s̄). So the winning
conditions in the dialogue are in terms of reducts up(s̄), not in terms of full
plays s̄.

Consider, then, different possible plays s̄, s̄′ at which a move corresponding
to Bi is to be made, and which satisfy: up(s̄) = up(s̄′). Now we may well have
that fi(s̄) � fi(s̄′). We must show that there is, however, a history-insensitive
strategy function gi for Bi, i.e., one that satisfies gi(s̄) = gi(s̄′) for all sequences
s̄, s̄′ at which a move corresponding to Bi is to be made and which satisfy
up(s̄) = up(s̄′).

Let us define strategy functions gi for P as follows. We first group plays
s̄ corresponding to Bi in equivalences classes, by putting in a class [s̄] all se-
quences s̄′ such that up(s̄) = up(s̄′). (These equivalence classes [s̄] must not be
confounded with the ∼i-equivalence classes such as the [cik ] above.) For each
equivalence class we choose a representative s̄, and then for each s̄′ ∈ [s̄], we
set

gi(s̄′) := fi(up(s̄)).

(Note that up(s̄) itself is a combinatorially possible play of D(A), so fi is de-
fined on it.)

We claim that g := (g1, . . . , gm) constitutes a winning strategy for P in
D(A;H). Suppose for contradiction that there is a play s̄ where P has moved
according to g but which is won by O. This means that s̄ corresponds to a lit-
eral � which is false inM: Either � = Rci1 . . . cin and P cannot concede it since
O has not conceded it earlier, or � = ¬Rci1 . . . cin and O has already chosen
ci1 . . . cin .

Consider, then, those cik that are chosen by P. Each such cik is chosen by
a strategy function gi of P, as a function of a fixed sequence of O’s earlier
moves, namely the sequence up(s̄) of the most recently made choices for the
operators of Bi. But then there is a play of D(A;H) where O makes exactly
those moves on the basis of which the moves cik of P are chosen: a play where
O never revises his moves. Then these moves of P are in fact made following
the winning strategy f , and yet P loses. This is a contradiction. �

Before stating and proving the theorem describing the connection between
GTS and dialogical logic in the case of first-order logic, let us consider a spe-
cific example.
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Example 21. Think of the sentence

A := ∀x∃yRxy ∨ ∃x∀y¬Rxy.

We show how to transform Proponent’s winning strategy in the dialogue
D(A;H) with H := {∀x∀y(x = y ∨ x � y),∀x∀y(Rxy ∨ ¬Rxy)} into a fam-
ily of Eloise’s winning strategies in games G(A,M) withM ∈ C{R}; and vice
versa.

(=⇒) Suppose f is a w.s. for P inD(A;H). We may assume, without loss of
generality, that following f , P first poses questions ??-∨ about O’s initial con-
cessions, that is, asks O to specify Skolem functions for the disjunction signs
of the sentences ∀x∀y(x = y∨ x � y) and ∀x∀y(Rxy∨¬Rxy). O’s reply to each
question is one out of 2ℵ0 distinct functions of type {c0, c1, . . .}×{c0, c1, . . .} −→
{left, right}, call these functions d1 and d2, respectively. As noted in Remark
18, we may assume, without loss of generality, that f respects d1.

The following reasoning applies to the Skolem function d2 corresponding to
the hypothesis about R. If for every ci there is c j such that d2(ci, c j) = left,
then the strategy f , being a winning strategy, makes P to choose the left dis-
junct, whereas if for some ci it holds that every c j satisfies d2(ci, c j) = right,
then f makes P to choose the right disjunct.

In the first-mentioned case, if O asks ?-∀x/ci and then further asks ?-∃y
concerning P’s concession ∃yRci x, P’s strategy f gives a constant f (ci) = ck

such that d2(ci, ck) = left (by assumption such ck exists), and then poses to O
the question ?-d2/cick, i.e., asks him explicitly to admit that indeed according
to the Skolem function d2, we have Rcick. Then P replies to the question ?-∃y
by conceding Rcick, which she can do, since O already conceded this literal.
Thereby P wins the play.

In the second case, i.e., if f guides P to the right disjunct, f further provides
a constant c0 so that P concedes ∀y¬Rc0x, and the constant satisfies d2(c0, c j) =
right for all c j. Then O picks out some ci and asks P to concede ¬Rc0ci,
which she can do. If, then, O attacks this concession by himself conceding
Rc0ci, P may put forward to O the question ?-d2/c0ci, i.e., ask him to admit
that indeed ¬Rc0ci. The Skolem function d2 commits O to this concession.
Hence O contradicts himself and P ends up winning the play.

Let us now see how such a w.s. f of P transforms into a family G of win-
ning strategies of Eloise, one strategy for each semantic game G(A,M), where
M ∈ C{R}. Let M be any such model. Hence there are uniquely determined
Skolem functions d′1 and d′2 for the disjunction signs appearing in the sen-
tences ∀x∀y(x = y∨ x � y) and ∀x∀y(Rxy∨¬Rxy), respectively, which jointly
identify precisely the modelM—namely, the functions d′1 and d′2 such that ci

and c j are members of the same element ξ of dom(M) iff d1(ci, c j) = left,
and

〈[ci], [c j]〉 ∈ RM iff d2(ci, c j) = left.
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We define a strategy g for Eloise making use of P’s w.s. f in D(A). Because
f is a winning strategy, it tells what to do in particular in the case that O has
‘specified the modelM’ with his answers to the questions ??-∨ about the initial
concessions.

For the disjunction in A, let g tell Eloise to choose the same disjunct that f
tells P to choose as a reply to the corresponding question ?-∨ by O. Hence g
chooses, by definition, left precisely when the model M satisfies ∀x∃yRxy
(since this is when f has P to make this choice of a disjunct). Then if Abelard
picks out an equivalence class ξ, fix ci ∈ ξ as its representative, and let Eloise
reply g(ξ) := [ f (ci)], i.e., to choose as witness the equivalence class generated
by the witness f (ci) that P chooses if O asks him about the existential quantifier
∃y, having just previously instantiated x by ci. (The definition of g does not
depend on the choice of the representative, because f respects d1.) Clearly
this leads to a play won by Eloise. If, again, g makes Eloise to choose right,
let g make Eloise to go on by picking out [c] if the constant that f picks out
whenever the play has led to the right disjunct is c. Again Eloise clearly wins
the resulting play. We may conclude, then, that g is a w.s. for Eloise in G(A,M).

(⇐=) Suppose that for everyM ∈ C{R}, Eloise has a w.s. (gM) in the seman-
tic game G(A,M). Since gM is a winning strategy, it makes Eloise to choose
the left disjunct in A, if M makes true ∀x∃yRxy, and otherwise makes her
to choose the right disjunct. In the left disjunct gM then goes on to dictate a
choice ζ = gM(ξ), as a function of Abelard’s choice of ξ; the values will satisfy
〈ξ, ζ〉 ∈ RM, since gM is a w.s. for Eloise. And in the right disjunct Eloise will
choose a constant ξ0 such that for all ζ, 〈ξ0, ζ〉 � RM.

Define a strategy f for P in the dialogue D(A;H) as follows. First f makes
O to answer to the questions ??-∨ about the additional hypotheses. O’s replies
yield Skolem functions d1 and d2, which jointly determine a structure M ∈
C{R}. For this structure M, in particular, Eloise has—by assumption—a w.s.
(gM) in the semantic game G(A,M). We use gM in defining how to continue
playing in D(A).

Let f provide the reply left to the question ?-∨, if gM chooses left for
the disjunction; otherwise let f reply right. In the former case, if ci is the
constant O chooses for the variable x, and gM(ξ) = [ζ] with ci ∈ ξ, let c j be a
representative of ζ and put f (ci) := c j. Then first make O to admit that Rci f (ci),
which he must do since f (ci) is chosen on the basis of Eloise’s winning strategy
relative to the model M that O himself fixed by his choices of the Skolem
functions d1 and d2; and finally let P concede the literal Rci f (ci). In the latter
case, let f interpret x on the basis of g. Namely, for each equivalence class
ξ0 choose a representative c0, and if g yields ξ0, let f yield c0 ∈ ξ0. Then
if O asks P to concede ¬Rc0ci, let P make O, in turn, concede ¬Rc0ci. The
latter must concede this negative literal, because the Skolem functions d1 and
d2 determine the modelM and 〈[c0], [ci]〉 � RM. Then P may freely concede
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¬Rc0ci, whereafter O can only attack P’s concession by contradicting himself.
Obviously f always leads to a play won by O. That is, f will be a w.s. for P in
dialogue D(A).

We are in a position to formulate and prove the correspondence result
between GTS and dialogical logic in characterizing validity of first-order
sentences.

8.6.3 The correspondence result
Theorem 22. Let A be any sentence of FO[τ], and let τ[A] be the set of relation
symbols from τ appearing in A. The following conditions are equivalent:

(i) There is a w.s. for Proponent in the intuitionistic dialogue D(A;H);

(ii) For every τ-structureM ∈ Cτ[A], there is a w.s. for Eloise in the semantic
game G(A,M);

where the setH of additional hypotheses consists of the sentence ∀x1∀x2(x1 =

x2 ∨ x1 � x2), together with the sentences of the form ∀x1 . . .∀xn(Rx1 . . . xn ∨
¬Rx1 . . . xn), one sentence for each relation symbol R ∈ τ[A], n being the ar-
ity of R. Furthermore, there is an explicit set of instructions turning a family
of Eloise’s winning strategies into Proponent’s winning strategy; and an ex-
plicit set of instructions turning Proponent’s winning strategy into a family of
Eloise’s winning strategies in games played on models from the class Cτ[A].

As in the case of propositional logic, we prove the correspondence theorem
in two steps: first we establish Lemma 23 and then Lemma 25.

Lemma 23. Condition (ii) of Theorem 22 implies its condition (i).

Proof. Suppose that for every model M ∈ Cτ[A], there is a w.s. for Eloise in
G(A,M). It must be shown that there is a w.s. for P in the intuitionistic dialogue
D(A;H). Let us move on to describe a strategy f of P in D(A;H).

To begin with, the strategy f tells P to ask, for every E ∈ τ[A] ∪ {=}, O
to reply to the question ??-∨ with regard to every hypothesis ∀x̄(Ex̄ ∨ ¬Ex̄).
O’s answers will, then, determine a τ[A]-structureM whose domain is a parti-
tion of the set {c0, c1, . . .}. (The specific partition is determined by the Skolem
function that O chooses in responding to the question about the hypothesis
∀x1∀x2(x1 = x2∨ x1 � x2), as indicated in Section 8.6.1.) By hypothesis, there
is in particular a w.s. (g) for Eloise in the game G(A,M) corresponding to this
modelM. We go on to construct a continuation of P’s strategy f in D(A;H)
using Eloise’s strategy g.

Let us first generate W as the class of those histories of the semantic
game G(A,M) that are realizable when Eloise follows the strategy g: First, let
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(A, 〈〉) ∈ W. Second, suppose we have h ∈ W, with (B, γ) as the last member
of h. Then:

If B = C ∧ D and ρ(B,Eloise) = Verifier, or
B = C ∨ D and ρ(B,Eloise) = Falsifier, then
for all E ∈ {C,D}: h�(E, γ) ∈ W.

If B = C ∨ D and ρ(B,Eloise) = Verifier, or
B = C ∧ D and ρ(B,Eloise) = Falsifier, then
h�( f (h), γ) ∈ W.

If B = ∀xD(x) and ρ(B,Eloise) = Verifier, or
B = ∃xD(x) and ρ(B,Eloise) = Falsifier, then
for all ξ: h�(D(x), γ[x/ξ]) ∈ W.

If B = ∃xD(x) and ρ(B,Eloise) = Verifier, or
B = ∀xD(x) and ρ(B,Eloise) = Verifier, then
h�(D(x), γ[x/ f (h)]) ∈ W.

If B = ¬C, then h�(C, γ) ∈ W. Observe that by definition of G(A,M),
ρ(C,Eloise) = ρ(B,Abelard).

Given that the initial hypotheses have already been processed, and that a
model M ∈ Cτ[A] has thereby been determined, plays of D(A;H) corre-
spond to plays of G(A,M) in a straightforward way. The only difference is
that whereas in the dialogue D(A;H) moves corresponding to quantifiers are
choices of individual constants, the quantifier moves in the semantic game
G(A,M) involve choosing an equivalence class consisting of individual con-
stants. Now if a play s̄ of D(A;H) has been reached, and O asks P to choose
a disjunct (conjunct) of a formula B, the strategy f is defined by letting it pick
out the unique disjunct (conjunct) E such that h�(E, γ) ∈ W, where h is the
play of G(A,M) determined by up(s̄), and the last member of h is (B, γ). (The
history h is obtained from up(s̄) by replacing each member of up(s̄) which is
an individual constant by the equivalence class generated by that individual
constant.)

Further, if, having arrived at a play s̄, O asks P to choose a value to the
existential quantifier ∃x appearing in a given subformula B := ∃xD(x) (the
quantifier hence appearing under an even number of negation signs), choose
for every ξ ∈ dom(M) a representative ci ∈ ξ, and let f tell P to choose ci ∈ ξ
with h�(D(x), γ[x/ξ]) ∈ W, where h is the play of G(A,M) determined by
up(s̄), and the last member of h is (B, γ). Define f similarly in the case that
the subformula ∀xD(x) appears under an odd number of negation signs. Hence
defined, the strategy f indeed respects the Skolem function i chosen by O
as a response to the question about the additional hypothesis concerning the
identity sign. This is because f is defined using fixed representatives of the



200 From Games to Dialogues and Back

equivalence classes determined by i (or, in other words, fixed representatives
of the elements of the domain of the model M determined by having chosen
this Skolem function).

Claim 24. The strategy f is a w.s. for P inD(A;H).

Proof. Due to its definition, f leads to a literal � = ±Rci1 . . . cin (or a
conjunction of literals �1, . . . , �l) true inM. This means that O has con-
ceded Rci1 . . . cin (positive literal), or has conceded ¬Rci1 . . . cin (nega-
tive literal). In the former case P is indeed in a position to reply � (O
has already conceded it); in the latter case the play continues so that O
concedes �, hence contradicting himself. �

Let G = {gi : i < λ} be a family of Eloise’s winning strategies in games
G(A,M) withM ∈ Cτ[A]. The explicit set of instructions for generating a win-
ning strategy for P in D(A;H) consists, then, of first making O to determine
a modelM by his answers to questions ??-∨ corresponding to the symbols in
τ[A] ∪ {=}. The w.s. gi of Eloise in G(A,M) then determines the construction
of the setW as explained above, which directly defines a winning strategy for
P proceeding from O’s answers to P’s questions concerning O’s initial conces-
sions. �

We move on to prove the other direction of the correspondence theorem.

Lemma 25. Condition (i) of Theorem 22 implies its condition (ii).

Proof. Suppose P has a w.s., f , in the intuitionistic dialogue D(A;H). As
in the propositional case, such a strategy need not consist of first asking O
about all hypotheses, but we may without loss of generality assume it does.
By Lemma 20, we may assume that f is history-insensitive. Further, we may
assume that if i is O’s reply to the question concerning the identity sign, the
strategy f respects i.

We must show that for all structures M ∈ Cτ[A], there is a w.s. for Eloise
in G(A,M). LetM ∈ Cτ[A] be arbitrary. First consider a play of D(A), where
P has received such answers to her questions about the initial concessions of
O that these constitute precisely the model M: The Skolem function i corre-
sponding to the hypothesis about identity sign satisfies: i(ci, c j) = left iff ci

and c j belong to the same cell of the partition of the set {c0, c1, . . .} (the partition
being given by the domain ofM); and for every R ∈ τ[A], the corresponding
Skolem function dR satisfies dR(ci1 , . . . , cin ) = left iff 〈[ci1 ], . . . , [cin ]〉 ∈ RM.

Let us construct a set V of pairs consisting of subformulas of B of A and
sequences up(s̄) of updated moves made by P and O in the course of the dia-
logueD(A;H). Note that it makes sense to apply a strategy of P to an updated
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sequence up(s̄), because such sequences are themselves possible plays of di-
alogues, namely plays where O has not revised any move once made. (Hence
they are, in particular, dialogical games.) As in Section 8.5.1, we denote here
by �[B] the number of negation signs to which the subformula token B is syn-
tactically subordinate in a given formula A. First, we put (A, 〈〉) ∈ V. Suppose,
then, that (B, s̄) ∈ V.

If B = C ∧D and �[B] is even or equal to zero, or B = C ∨D and �[B] is
odd, then (C, up(s̄)�left), (D, up(s̄)�right) ∈ V.

If B = C ∨ D and �[B] is even or equal to zero, or B = C ∧ D and �[B]
is odd, then (E, s̄� f (s̄)) ∈ V, where E ∈ {C,D} is the disjunct/conjunct
identified by the value f (s̄) ∈ {left, right}.

If B = ∀xD(x) and �[B] is even or equal to zero, or B = ∃xD(x) and �[B]
is odd, then for every ci, (D(x), up(s̄)�(x, ci)) ∈ V.

If B = ∃xD(x) and �[B] is even or equal to zero, or B = ∀xD(x) and �[B]
is odd, then (D(x), s̄� f (s̄)) ∈ V, where f (s̄) = (x, ci) is the assignment
of a constant to the variable x, as determined by the strategy f .

If B = ¬C, then (C, s̄) ∈ V. By the definition of the dialogue D(A;H),
we have that �[C] is even or equal to zero iff �[B] is odd.

By construction, the sequences s̄ appearing in pairs (B, s̄) ∈ V are not full
sequences of moves made by the players of the dialogue—but reducts of such
full sequences consisting of the most recent updates of the moves of the play-
ers. (It is of course only O’s moves that can have been updated.) However, by
the fact that we may assume f to be history-insensitive (Lemma 20), it makes
sense to apply f to these sequences.

We define a strategy g of Eloise in the semantic game G(A,M) as follows.
If h is a history of G(A,M) at which it is Eloise’s turn to move—hence corre-
sponding to a subformula B ∈ {C∨D,∃xD(x)} with �[B] even or equal to zero,
or to a subformula B ∈ {C∧D,∀xD(x)} with �[B] odd—consider the pair (B, s̄)
determined by the history h; the choice is unique up to the choice of representa-
tives of the relevant equivalence classes. (The sequence s̄ is obtained from h by
replacing each member of h which is an equivalence class of individual con-
stants by an arbitrarily chosen representative of the equivalence class.) Then
find the uniquely determined pair (B, s̄�a) in V, with a of the form (x, ci), or
left, or right, and let g make Eloise respond to the appropriate question by
choosing (x, [ci]), left, or right, respectively.

Claim 26. The strategy g is a w.s. for Eloise in G(A,M).

Proof. The last move of Eloise made in accordance with g leads to a
literal � (or a conjunction of literals). By the definition of g, if � =
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Rci1 . . . cin , then � is true in M (since then O must have chosen such
a Skolem function corresponding to R that it commits him to conceding
�). If, on the other hand, � = ¬Rci1 . . . cin , then � is false inM, for then
O must contradict himself by conceding Rci1 . . . cin . �

Let f be a winning strategy for P in D(A;H). The explicit set of instructions
for generating a family G of Eloise’s winning strategies in the semantic games
G(A,M) with M ∈ Cτ[A] consists, then, in first transforming f into such a
winning strategy g0 which first asks O to reply to the questions ??-∨ about
the hypotheses in H . O’s answers to those questions then determine a model
M ∈ Cτ[A], relative to which g0 further induces, as explained above, a set V
which defines a w.s. for Eloise in G(A,M). �

8.7 Concluding remarks
By way of conclusion, let us touch upon certain methodological issues, and

point to questions that remain for future research to tackle.

8.7.1 What to read into the two analyses?
Hintikka’s game-theoretical semantics was originally motivated by the wish

to see how to make formal sense of the later Wittgenstein’s idea of language
game. The connection is not merely verbal; Hintikka has on numerous oc-
casions made use of game-theoretical semantics in discussing the issue of
meaning constitution—and the role of Wittgensteinian language games as rule-
governed activities mediating the relation between language and reality (see,
e.g., Hintikka and Hintikka, 1986; Hintikka, 1993). Among other things he has
made it clear that, as he conceives them, his semantic games are not games
played by the language users; the above Abelard and Eloise are not Jack and
Jill having a conversation; they are idealized parties or poles of an equally ide-
alized activity which is constitutive of language–world relations.

The dialogical approach, on the other hand, was originally motivated
by considerations related to intuitionistic logic. This framework is typically
sympathetic to philosophical positions such as anti-realism about meaning,
and is related to constructivism and the conception that inference rules are
meaning-constitutive. Now, the interesting philosophical point here is that also
dialogical logic was conceived against the background of Wittgenstein’s lan-
guage games. Moreover, the so-called Erlangen–Konstruktivismus aimed ex-
plicitly at implementing language games in logic. Indeed, already in 1967
Kuno Lorenz, in his Habilitationsschrift,24 delved into the relation between
the first and the second Wittgenstein, challenging the standard intepretations

24Published in 1970 under the title Elemente der Sprachkritik.
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which understood Wittgenstein’s later work as a refutation of his earlier work.
This approach yielded several other publications, including an introductory
book Logische Propädeutik on the philosophy of language and logic, written
by Kamlah and Lorenzen (1973), and a more comprehensive book Konstruktive
Logik, Ethik und Wissenschaftstheorie by Paul Lorenzen and Oswald Schwem-
mer on logic, ethics and the philosophy of science (1975).

A research question that still remains open is that of comparing the dia-
logical interpretation of Wittgenstein with Hintikka’s interpretation. (Cf. the
suggestive tripartite paper by Dascal et al. [1995].) However, one important
difference must be pointed out. From the very beginnings language games
were understood in the dialogical school as delivering the semantic basis to
the proof-theoretic and anti-realist meaning theory of intuitionistic logic. This
opened a path to philosophers like Michael Dummett, who some time later de-
veloped these ideas further in the framework offered by Gentzen systems. It is
not difficult to read statements of adherents of the two approaches as implying
that in the dialogical framework, the lion’s share of importance is put on proof
theory, while the developments based on game-theoretical semantics virtually
ignore proof theory and put almost all weight on model theory.

Be that as it may, it is our conviction that it is perfectly possible and further-
more potentially very fruitful for both parties—GTS and dialogical logic—to
abstract away from any motivating factors, and to begin by concentrating on the
mathematically formulated theories themselves. This enables laying down var-
ious explicit correspondence results between the two approaches, as witnessed
by the present paper. Such results—once achieved—will then actually facili-
tate the philosophical assessment of the relative vices and virtues of the two ap-
proaches. The present results, for instance, lend themselves to the reading that
in the formulations of propositional logic and first-order logic discussed here
(logics without implication), the classical assumptions of GTS really are lim-
ited to the assumption that the atomic predicates obey the law of excluded mid-
dle—classical, that is, as opposed to intuitionistic. Otherwise semantic games
and intuitionistic dialogues proceed perfectly on a par.

8.7.2 Open questions
Various questions suggest themselves for future research. Among them is

the question whether the results of the present paper can be generalized to
languages of propositional logic and first-order logic with implication. The
problem is a genuine one, since implication is not reducible to the other con-
nectives in intuitionistic logic—which is the logical basis of the dialogues con-
sidered here.

As pointed out above, the main results of this paper can be understood as
saying that the classical import of GTS is in the assumption that the models
are ‘determinate’ in the sense that atomic formulas satisfy tertium non datur.
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In propositional logic this means that the relevant notion of negation (¬) sat-
isfies, for every propositional atom p: M |= ¬p iff M �|= p; and in first-order
logic thatM |= ¬(a1 = a2) iff aM1 � aM2 , and, if R ∈ τ,

M |= ¬Ra1 . . . an iff (aM1 , . . . , aMn ) � RM.

There are several ways to modify our framework. For one thing, we can con-
sider ‘partial’ models in connection with GTS, i.e., models where there are
atoms p such that neither p nor ¬p is true, or interpretations of relation sym-
bols R such that not all tuples (aM1 , . . . , aMn ) in the complement of RM serve to
make ¬Ra1 . . . an true. (For a game-theoretical study of partiality in connection
with propositional logic, see Sandu and Pietarinen, 2001.) For another thing, on
the side of dialogues we may drop the initial concessions of Opponent. Then,
considering logics with implication, we may study the interrelations of GTS
and dialogic. It should be noted that such a comparison cannot be begun be-
fore further conceptual decisions are made. Perhaps the single biggest question
that we leave for future research moving along the lines of this paper, is how
to represent intuitionistic implication in GTS. It is by no means evident how
to do it. Implication should be represented game-theoretically in such a way
that its relationships with other logical connectives (notably disjunction and
negation) would end up being correct from the intuitionistic viewpoint. For in-
stance, negation should be definable in terms of implication as ¬A := A → ⊥;
the disjunction ¬A ∨ B should have as its logical consequence intuitionistic
implication A → B, but not vice versa; and A should have as its logical conse-
quence the double negation ¬¬A (defined via implication), but not vice versa.
A brute-force solution would of course be to introduce an embedding t from
intuitionistic first-order logic into quantified modal logic S4 with expanding
first-order domains,25 and to formulate GTS relative to this modal logic, sys-
tematically considering modal formulas t(A) in place of first-order formulas A.
However, might there not be a game-theoretical formulation of intuitionistic
logic with less air of arbitrariness?

While it certainly serves the purpose of understanding the relations of the
two approaches of GTS and dialogical logic to abstract away from the philo-
sophical convictions that have historically motivated them, it is of conceptual
interest to see whether such increased understanding throws light on the un-
derlying philosophical views. In particular, attempting to formulate dialogues
characterizing validity in connection with incomplete logics—say second-
order logic, IF (‘Independence-Friendly’) first-order logic, and various incom-
plete modal logics26—would throw light on whether the dialogical approach is
ultimately proof-theoretic rather than model-theoretic.

25For intuitionistic first-order logic and S4, see, e.g., Kontchakov et al. (2005).
26For incomplete modal (and tense) logics, see Blackburn et al. (2002, 212–216).
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Moreover, such research would perhaps help to clarify the notion of for-
mal dialogue (or formal model) implicit in the dialogical approach—the notion
which was an answer of Paul Lorenzen and Kuno Lorenz to Alfred Tarski—in
fact, Tarski challenged the dialogicians to provide an adequate proof-theoretic
notion which could compete with the concept of truth in a model.27 Indeed,
in which way does incompleteness get manifested in dialogues? One possi-
ble argumentation path is the following: If the existence of a winning strategy
for Proponent means ultimately provability from the empty set of premises
rather than truth in every model, then for incomplete logics some valid sen-
tences should fail to be associated with Proponent’s winning strategy. On the
other hand, if it is truth in every model that is game-theoretically character-
ized by dialogues, then they are not first and foremost vehicles of proof theory.
A second possible kind of response would start with the notions of informal
and canonical proof, and proceed to distinguish between the proof-conditional
semantics of the logical connectives and the notion of validity, in a way analo-
gous to what is defended nowadays by some substructuralists.

In brief, incomplete logics are a good test case for the generality of the kinds
of correspondence results that we have studied in the present paper. Here, once
more, two types of argument follow. The first one will claim that if such re-
sults can be proven also for incomplete logics, dialogical logic is not ultimately
proof-theoretic by nature—while if they cannot, then the correspondence be-
tween GTS and dialogic breaks down precisely because the latter really deals
with proof theory and the former with semantics and model theory. The second
type of argument would insist that this only shows (i) that despite the differ-
ent approaches to meaning, GTS and dialogic have both an adequate notion to
handle conditional reasoning, i.e., reasoning proceeding from hypotheses; and
(ii) that the fact mentioned in (i) does not mean that one approach must reduce
to the other.

Certainly, it will be difficult to work out how exactly the wider philosophical
viewpoints associated with dialogic on the one hand (pragmatism, anti-realism
about meaning, logical pluralism), and with GTS on the other (meaning con-
stitution in terms of rule-governed human activities), are connected with the
technical details of the two approaches. Yet findings about the interconnection
between the two approaches, or about the lack thereof, will serve to clarify
even these philosophical positions, insofar as such results show to which extent
expectations of the logical repercussions of these views are perhaps underde-
termined by the views themselves.

We believe and wish to have indicated in the present paper, in particular, that
studying the interrelation of the two game-theoretically formulated approaches

27This happened in 1957–1958, when Lorenzen was visiting Princeton, cf. Lorenz (2001, 257).
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to logic—game-theoretical semantics and dialogical logic—promises to be
highly useful for the purpose of better understanding the logical nature of both
views, and, in general, to have sketched the import of such a comparative study
to the better understanding of the larger philosophical surroundings of these
views.
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Abstract We explain Giles’s characterization of Łukasiewicz logic via a dialogue game
combined with bets on results of experiments that may show dispersion. The
game is generalized to other fuzzy logics and linked to recent results in proof
theory. We argue that these results allow one to place t-norm based fuzzy logics
in a common framework with supervaluation as a theory of vagueness.

9.1 Introduction
Robin Giles (1974, 1977) has presented a strategic two-person game as a

formal model of reasoning in physical theories, in particular quantum theory.
Giles strictly separates the treatment of logical connectives from the problem
of assigning meaning to atomic propositions in the presence of uncertainty. For
the systematic stepwise reduction of arguments about compound statements to
arguments about their atomic subformulas he refers to Paul Lorenzen’s dia-
logue game rules (see, e.g., Lorenzen, 1960). Atomic formulas are interpreted
as assertions about (yes/no-)results of elementary experiments with dispersion.
(That is, the experiments may yield different results when repeated; only the
probability of a particular answer is known.) Finally, it is stipulated that each
player has to pay a fixed amount of money to the other player for every false
atomic assertion. Giles discovered that the propositions that a player can as-
sert initially in the sketched game without having to expect a loss of money
on average coincide with those that are valid in Łukasiewicz logic Ł, a logic
introduced for different purposes in the 1920s (Łukasiewicz, 1920).

∗Partly supported by the FWF grants P16539–N04 and P18563–N12.
We wish to thank Helge Rückert, George Metcalfe and Ondrej Majer for valuable comments on a previous
version of this paper.
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Giles’s remarkable result dates back to 1974; in more recent years Ł
has emerged as one of several fundamental fuzzy logics. (See, e.g., Hájek,
1998; Cignoli et al., 1999.) With hindsight, Giles has addressed an important
philosophical challenge concerning vagueness: how to derive a ‘fuzzy logic’
from first principles of approximate reasoning? (For alternative approaches to
this foundational problem, see, e.g., Cignoli et al., 1999; Paris, 1997; Ruspini,
1991.)

We aim at two different tasks. First, we want to place Giles’s theorem in the
context of recent results in the proof theory of fuzzy logics. In particular, we
indicate how Giles’s game can be generalized to other important fuzzy logics
and point out that strategies in the corresponding games are related to analytic
proofs in so-called r-hypersequent calculi (Ciabattoni et al., 2005). A sec-
ond task arises from a seeming paradox: the game-theoretic characterization
of fuzzy logics eliminates all reference to fuzziness. More exactly, instead of
talking about degrees of truth one talks about probabilities of success of el-
ementary experiments. So how does the game-based analysis of fuzzy logics
relate to their degree-theoretic semantics? This question is of particular signifi-
cance, since experts insist on the fundamental difference between probabilities
(degrees of belief) on the one hand, and degrees of truth (reflecting vagueness)
on the other. (See, e.g., Dubois and Prade, 1980; Hájek, 1998, 2002 for a clear
and concise explication of this difference.)

More generally, one may ask whether the game-based analysis can shed
light on the relation between truth-functional fuzzy logics and competing
models of approximate reasoning. Considering the highly contentious dis-
course on vagueness in analytic philosophy, our aim, although limited, is rather
ambitious. We claim that the relevant games provide a way to reconcile the in-
tuitions behind two prominent, but seemingly contradicting theories of vague-
ness: namely the degree-theoretic approach and supervaluation with respect
to admissible precisifications. We will interpret both approaches to vagueness
as combining a classical analysis of logical connectives with a non-classical
interpretation of the semantic status of atomic propositions. Towards this aim,
we show that not only supervaluation, but also degree-based fuzzy logics can
be analyzed in terms of admissible precisifications of vague propositions. The
dramatic difference in the respective judgements on logical validity does not
disappear, but will be seen to result from the different syntactic levels at which
supervaluation and fuzzy logics, respectively, refer to precisifications.

This paper is organized as follows. We begin with a short review of t-norm
based fuzzy logics, in particular Ł, P, and G (in Section 9.2). This is followed
by a presentation of Giles’s game for Ł (in Section 9.3). We then connect the
game with recent results in the proof theory of fuzzy logics (Section 9.4) and
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generalize these results to include the logics P, CHL, and G (Section 9.5).1

This will leave us with the challenge of interpreting the game based charac-
terization of fuzzy logics in terms of conceptions of vagueness (as explained
in Section 9.6). To address this challenge, we connect (in Section 9.7) the se-
mantic machinery of ‘supervaluation’ with that of t-norm-based fuzzy logics.
In the conclusion (Section 9.8), we hint at further topics for research.

We point out that, mainly due to lack of space, we confine our investigations
to propositional logic.

9.2 t-norm based fuzzy logics
Fuzzy logics arise by stipulating that, in the presence of vague notions and

propositions, truth comes in degrees. This view is very controversial among
philosophers of vagueness. (See, e.g., Keefe, 2000; Williamson, 1994; Keefe
and Smith, 1987 for an overview of the vagueness discourse in analytic phi-
losophy.) Although we think that serious reflections on the philosophical foun-
dation of logical formalisms are unavoidable in judging their adequateness,
one may profit from recognizing at the outset that the ‘degrees of truth’ ap-
proach leads to a mathematically sound, robust and non-trivial formalism. It is
not our intention to enter the debate on the significance of mathematical mod-
els in philosophical logic here, but we subscribe explicitly to the view that as
broad as possible a collection of mathematical structures and tools should be
available to every expert—whether philosopher, logician, computer scientist,
or technician—in the search for an adequate model of reasoning in a given
context.

The degree-theoretic approach to approximate reasoning has motivated do-
zens of different formalisms. Following Petr Hájek (1998, 2002), we cite some
‘design decisions’ that lead to the definition of a family of logics worth explor-
ing in this context:

1. The set of truth degrees (truth values) is represented by the real unit
interval [0, 1]. The usual order relation ≤ serves as comparison of truth
degrees; 0 represents absolute falsity, and 1 absolute truth.

2. The truth value of a compound statement shall only depend on the truth
values of its subformulas. In other words: the logics are truth functional.

3. The truth function for conjunction ( & ) should be a continuous, com-
mutative, associative, and (in both arguments) monotonically increasing
function ∗ : [0, 1]2 → [0, 1], where 0 ∗ x = 0 and 1 ∗ x = x. In other
words: ∗ is a continuous t-norm.

1Sections 9.3–9.5 extend the brief remarks in the final section of Ciabattoni et al. (2005).
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4. The residuum ⇒∗ of the t-norm ∗—i.e., the unique function ⇒∗:
[0, 1]2 → [0, 1] satisfying x ⇒∗ y = max{z | x ∗ z ≤ y}—serves as the
truth function for implication. The truth function for negation is defined
as λx[x ⇒∗ 0]. (Observe that this is analogous to the relation between
conjunction, implication and negation in classical logic.)

The three most fundamental continuous t-norms and their residua are:

t-norm associated residuum
Łukasiewicz x ∗Ł y = max(0, x + y − 1) x⇒Ł y = min(1, 1 − x + y)

Gödel x ∗G y = min(x, y) x⇒G y =

{
1 if x ≤ y
y otherwise

Product x ∗P y = x · y x⇒P y =

{
1 if x ≤ y
y/x otherwise

Any continuous t-norm is an ordinal sum construction of these three (see, e.g.,
Hájek, 1998). Note that the minimum and maximum of two values that serve as
alternative truth functions for conjunction (∧) and disjunction (∨), respectively,
can be expressed in terms of ∗ and⇒∗: min(x, y) = x∗(x⇒∗ y) and max(x, y) =
min((x⇒∗ y)⇒∗ y, (y⇒∗ x)⇒∗ x).

We arrive at the following definition of propositional logics associated with
a continuous t-norm:

Definition 1. For a continuous t-norm ∗ with residuum ⇒∗, we define a
logic L∗ based on a language with binary connectives →, & , constant ⊥,
and defined connectives ¬A =de f A → ⊥, A ∧ B =de f A & (A → B),
A ∨ B =de f ((A → B) → B) ∧ ((B → A) → A). A valuation for L∗ is a
function v assigning to each propositional variable a truth value from the real
unit interval [0, 1], uniquely extended to v∗ for formulas by:

v∗(A & B) = v∗(A) ∗ v∗(B), v∗(A→ B) = v∗(A)⇒∗ v∗(B), v∗(⊥) = 0.

A formula A is valid in L∗ iff v∗(A) = 1 for all valuations v∗ pertaining to the
t-norm ∗.

The logics L∗Ł , L∗G , and L∗P , are called Łukasiewicz logic Ł, Gödel logic G,
and Product logic P, respectively. Computational properties as well as seman-
tic aspects of these logics, including their relation to other important logics,
are well studied. (Again, Hájek, 1998 is the standard reference.) Various corre-
sponding proof systems have been presented. Below, we will refer to the very
recent systems HŁ of Metcalfe, Olivetti, and Gabbay (Metcalfe et al., 2005)
for Ł, and rH of Ciabattoni, Fermüller, and Metcalfe (Ciabattoni et al., 2005)
that provides a uniform treatment of Ł, G, and P.
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9.3 Giles’s game for Ł

As already mentioned, Giles (1974, 1977) arrived at his analysis of
Łukasiewicz logic irrespective of any reflections on vagueness or t-norms. His
corresponding game consists of two largely independent building blocks:

1. Betting for positive results of experiments. Two players—let us
say me and you—agree to pay 1€ to the opponent player for every false state-
ment they assert. By [p1, . . . , pm‖q1, . . . , qn] we denote an elementary state in
the game, where I assert each of the qi in the multiset {q1, . . . , qn} of atomic
statements (i.e., propositional variables), and you, likewise, assert each atomic
statement pi ∈ {p1, . . . , pm}.

Each propositional variable q refers to an experiment Eq with binary
(yes/no) result. The statement q can be read as ‘Eq yields a positive result’.
Things get interesting as the experiments may show dispersion; i.e., the same
experiment may yield different results when repeated. However, the results
are not completely arbitrary: for every run of the game, a fixed risk value
〈q〉r ∈ [0, 1] is associated with q, denoting the probability that Eq yields a
negative result.2

For the special atomic formula ⊥ (falsum) we define 〈⊥〉r = 1. The risk
associated with a multiset {p1, . . . , pm} of atomic formulas is defined as
〈p1, . . . , pm〉r =

∑m
i=1〈pi〉r. The risk 〈〉r associated with the empty multiset is

defined as 0. The risk associated with an elementary state
[p1, . . . , pm‖q1, . . . , qn] is calculated from my point of view. Therefore the
condition 〈p1, . . . , pm〉r ≥ 〈q1, . . . , qn〉r expresses that I do not expect any loss
(but possibly some gain) when betting on the truth of atomic statements, as
explained above.

2. A dialogue game for the reduction of compound formulas.
Giles follows Paul Lorenzen (see, e.g., Lorenzen, 1960) in constraining the
meaning of connectives by reference to rules of a dialogue game that proceeds
by systematically reducing arguments about compound formulas to arguments
about their subformulas.

For brevity, we will assume that formulas are built up from propositional
variables, the falsity constant ϕ, and the connective → only.3 The central dia-
logue rule can be stated as follows:

2Giles (1977) attempts to provide a tangible meaning to the basic notions that arise in formalizing physical
theories. Our use of Giles’s game is independent from this original motivation.
3Note that in Ł all other connectives can be defined from → and ϕ alone, since we may define A & B as
(A→ (B→ ϕ))→ ϕ. The other connectives are defined as indicated in Definition 1.



214 Revisiting Giles’s Game

(R) If I assert A→ B then, whenever you choose to attack this statement by
asserting A, I have to assert also B. (And vice versa, i.e., for the roles of
me and you switched.)

This rule reflects the idea that the meaning of implication is specified by the
principle that an assertion of ‘if A, then B’ (A → B) obliges one to assert B, if
A is granted.

In contrast to dialogue games for intuitionistic logic (Lorenzen, 1960;
Felscher, 1985; Krabbe, 1988; Fermüller, 2003a), no special regulations on
the succession of moves in a dialogue are required here. However, we assume
that each assertion is attacked at most once: this is reflected by the removal of
A → B from the multiset of all formulas asserted by a player during a run of
the game, as soon as the other player has either attacked by asserting A, or has
indicated that she will not attack A → B at all. Note that every run of the di-
alogue game ends in an elementary state [p1, . . . , pm‖q1, . . . , qn]. Given an as-
signment 〈·〉r of risk values to all pi and qi we say that I win the corresponding
run of the game if I do not expect any loss, i.e., if 〈p1, . . . , pm〉r ≥ 〈q1, . . . , qn〉r.

As an almost trivial example consider the game where I initially assert
p → q for some atomic formulas p and q; i.e., the initial state is [‖p → q].
In response, you can either assert p in order to force me to assert q, or explic-
itly refuse to attack p → q. In the first case, the game ends in the elementary
state [p‖q]; in the second case it ends in state [‖]. If an assignment 〈·〉r of risk
values gives 〈p〉r ≥ 〈q〉r, then I win, whatever move you choose to make. In
other words: I have a winning strategy for p → q in all assignments of risk
values where 〈p〉r ≥ 〈q〉r.

Theorem 2 (R. Giles (1974, 1977)). Every assignment 〈·〉r of risk values
to atomic formulas occurring in a formula F induces a valuation v〈·〉r for
Łukasiewicz logic Ł such that v〈·〉r (F) = 1 iff I have a winning strategy for F in
the game presented above.

Corollary 3. F is valid in Ł iff for all assignments of risk values to atomic
formulas occurring in F, I have a winning strategy for F.

9.4 Connecting strategies and proofs
There is a well-known correspondence between winning strategies in di-

alogue games and cut-free proofs in adequate versions of Gentzen’s sequent
calculus. For the case of Lorenzen’s original dialogue game and (a variant of)
Gentzen’s LJ for intuitionistic logic this has been demonstrated, for example,
in Felscher (1985). A similar, even more straightforward relation holds be-
tween Gentzen’s LK and Lorenzen-style dialogue games for classical logic.
Game-based characterizations have been presented for many other logics,
including modal logics, paraconsistent logics and substructural logics. To name
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just one result of relevance to our context, a correspondence between parallel
versions of Lorenzen’s game and so-called hypersequent calculi for interme-
diary logics, including the fuzzy logic G, has been established in Fermüller
(2003a) and Ciabattoni and Fermüller (2003).

Returning to the game presented in Section 9.3, we note that Giles proved
Theorem 2 without formalizing the concept of strategies. However, to reveal
the close relation to analytic proof systems we need to define structures that al-
low us to formally register possible choices for both players. These structures,
called disjunctive strategies or, for short, d-strategies appear at a different level
of abstraction to strategies. The latter are only defined with respect to given
assignments of risk values (and may be different for different assignments),
whereas d-strategies abstract away from particular assignments.

Definition 4. A d-strategy (for me) is a tree whose nodes are disjunctions of
states:

[A1
1, . . . , A

1
m1
‖B1

1, . . . , B
1
n1

]
∨

. . .
∨

[Ak
1, . . . , A

k
mk
‖Bk

1, . . . , B
k
nk

]

which fulfill the following conditions:

1. All leaf nodes denote disjunctions of elementary states.

2. Internal nodes are partitioned into I-nodes and you-nodes.

3. Any I-node is of the form [A → B, Γ‖Δ]
∨
G and has exactly one suc-

cessor node of the form [B, Γ‖Δ, A]
∨

[Γ‖Δ]
∨
G, where G denotes a

(possibly empty) disjunction of states, and Γ, Δ denote (possibly empty)
multisets of formulas.

4. For every state [Γ‖Δ] of a you-node and every occurrence of A → B in
Δ, the you-node has a successor of the form [A, Γ‖B,Δ′]

∨
G as well as

a successor of the form [Γ‖Δ′]
∨
G, where Δ′ is Δ after removal of one

occurrence of A → B. (The multiset of occurrences of implications at
the right hand sides is non-empty in you-nodes.)4

We call a d-strategy winning (for me) if, for all leaf nodes ν and for all
possible assignments of risk values to atomic formulas, there is a disjunct
[p1, . . . , pm‖q1, . . . , qn] in ν, such that 〈p1, . . . , pm〉r ≥ 〈q1, . . . , qn〉r.

In game theory, a winning strategy (for me) is usually defined as a function
from all possible states, where I have a choice, into the set of my possible
moves. Note that winning strategies in the latter sense exist for all assignments
of risk values if and only if a winning d-strategy exists.

4For a total of n occurrences of compound formulas on the right-hand sides of states in a you-node, there
are 2n successor nodes, corresponding to 2n possible moves for you.
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Strictly speaking, we have only defined d-strategies (and therefore, implic-
itly, also strategies) with respect to some given regulation that, for each possi-
ble state, determines who is to move next. Each consistent partition of internal
nodes into I-nodes and you-nodes corresponds to such a regulation. However,
it has been demonstrated by Giles (1974, 1977) that the order of moves is ir-
relevant for determining my expected gain. Therefore no loss of generality is
involved here.

The defining conditions for I-nodes and you-nodes clearly correspond to
possible moves for me and you, respectively, in the dialogue game. Thus
Giles’s theorem can be reformulated in terms of d-strategies. More interest-
ingly, conditions 3 and 4 also correspond to the introduction rules for implica-
tion in the hypersequent calculus HŁ for Ł, defined in Metcalfe et al. (2005).

Hypersequents, due to Pottinger and Avron (Avron, 1991), are a natural and
useful generalization of Gentzen’s sequents. A hypersequent is just a multiset
of sequents written as

Γ1 � Δ1 | · · · | Γn � Δn

The interpretation of component sequents Γi � Δi varies from logic to logic.
But the |-sign separating the individual components is always interpreted as
a classical disjunction (at the meta-level). The logical rules for introducing
connectives refer to single components of a hypersequent. The only difference
to sequent rules is that the relevant sequents live in a (possibly empty) context
H of other sequents, called side-hypersequent. The rules of HŁ for introducing
implication are:

B, Γ � Δ, A | H
A → B, Γ � Δ | H (→, l) A, Γ � Δ, B | H Γ � Δ | H

Γ � Δ, A → B | H (→, r)

Observe that rules (→, l) and (→, r) are just syntactic variants of the defining
conditions 3 and 4 for d-strategies. To sum up: the logical rules of HŁ can be
read as rules for constructing generic winning strategies in Giles’s game.

9.5 Other fuzzy logics: variants of the game
We have shown that a formalization of generic strategies for Giles’s game

(d-strategies) reveals a direct correspondence with the hypersequent system
HŁ for Ł. What about other fuzzy logics? Can one generalize the discovered
correspondence to include P, G, and related logics?

Giles’s characterization of Ł combines Lorenzen-style dialogue rules for the
analysis of connectives with bets on positive results of elementary experiments.
But note that the phrase ‘betting for positive results of (a multiset of) experi-
ments’ is ambiguous. As we have seen, Giles identifies the combined risk for
such a bet with the sum of risks associated with the single experiments. How-
ever, other ways of interpreting the combined risk are worth exploring. In par-
ticular, we are interested in a second version of the game, where an elementary
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state [p1, . . . , pm‖q1, . . . , qn] corresponds to my single bet that all experiments
associated with the qi, where 1 ≤ i ≤ n, show a positive result, against your
single bet that all experiments associated with the pi (1 ≤ i ≤ m) show a pos-
itive result. A third form of the game arises if one decides to perform only
one experiment for each of the two players, where the relevant experiment is
chosen by the opponent.

To achieve a direct correspondence between the three mentioned betting
schemes and the t-norm based semantics of the connectives in Ł, P, and G,
respectively, we invert risk values into probabilities of positive results (yes-
answers) of the associated experiments. More formally, the value of an atomic
formula q is defined as 〈q〉 = 1 − 〈q〉r; in particular, 〈⊥〉 = 0.

My expected gain in the elementary state [p1, . . . , pm‖q1, . . . , qn] in Giles’s
game for Ł is the sum of money that I expect you to have to pay me minus
the sum that I expect to have to pay you. This amounts to

∑m
i=1(1 − 〈pi〉) −∑n

i=1(1 − 〈qi〉)€. Therefore, my expected gain is greater or equal to zero iff
1 +
∑m

i=1(〈pi〉 − 1) ≤ 1 +
∑n

i=1(〈qi〉 − 1) holds. The latter condition is called
winning condition W∑.5

In the second version of the game, you have to pay me 1 € unless all experi-
ments associated with the pi test positively, and I have to pay you 1€ unless all
experiments associated with the qi test positively. My expected gain is there-
fore 1−

∏m
i=1〈pi〉− (1−

∏n
i=1〈qi〉)€; the corresponding winning condition W∏

is
∏m

i=1〈pi〉 ≤
∏n

i=1〈qi〉.
To maximize the expected gain in the third version of the game I will choose

a pi ∈ {p1, . . . , pm} where the probability of a positive result of the associated
experiment is least; and you will do the same for the qi’s that I have asserted.
Therefore, my expected gain is (1−min1≤i≤m〈pi〉)−(1−min1≤i≤n〈qi〉)€. Hence
the corresponding winning condition Wmin is min1≤i≤m〈pi〉 ≤ min1≤i≤n〈qi〉.

We thus arrive at the following definitions for the value of a multiset
{p1, . . . , pn} of atomic formulas, according to the three versions of the game:

〈p1, . . . , pn〉Ł = 1 +
∑n

i=1(〈pi〉 − 1) =
(∑n

i=1〈pi〉
)
− (n − 1)

〈p1, . . . , pn〉P =
∏n

i=1〈pi〉
〈p1, . . . , pn〉G =min1≤i≤n 〈pi〉 .

For the empty multiset we define 〈〉Ł = 〈〉P = 〈〉G = 1.
In contrast to Ł, the dialogue game rule (R) does not suffice to characterize

P and G. To see this, consider the state [p → ⊥‖q]. According to rule (R) I
may assert p in order to force you to assert ⊥. Since 〈⊥〉 = 0, the resulting
elementary state [⊥‖p, q] fulfills the winning conditions 〈⊥〉 ≤ 〈p〉 · 〈q〉 and

5The term ‘winning condition’ is slightly misleading here, since I can lose money in a particular run of the
game even if this condition holds; only a non-negative expected gain is guaranteed by what we choose to
call ‘winning condition’.
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〈⊥〉 ≤ min{〈p〉, 〈q〉}, that correspond to P and G, respectively. However, this
is at variance with the fact that for assignments where 〈p〉 = 0 and 〈q〉 < 1
you have asserted a statement (p → ⊥) that is definitely true (v(p → ⊥) = 1),
whereas my statement q is not definitely true (v(q) < 1).6

It is no accident that the above example involves the falsity constant ⊥ as
well as a value 〈p〉 = 0. If we remove ⊥ from the language and evaluate
formulas as in P—using multiplication for conjunction and its residuum for
implication—but over the left-open interval (0, 1] instead of [0, 1], then we ar-
rive at a well-investigated logic, known as cancellative hoop logic CHL (see,
e.g., Esteva et al., 2003; Metcalfe et al., 2004).7

It is easy to check8 that the logical rules of system HŁ are sound and in-
vertible not only for Ł, but also for CHL. Therefore, we can directly transfer
the connection, described in Section 9.4, between d-strategies for Giles’s game
and HŁ-rules, to obtain the following.

Corollary 5. F is valid in CHL iff for all assignments of values from (0, 1]
to the atomic formulas occurring in F, I have a winning strategy for F in the
variant of Giles’s game with the winning condition W∏.

We have thus arrived at a game based characterization of CHL, which uses
dialogue rules identical to those for Ł, but differs in the betting schemes deter-
mining the winning conditions.

We may justify the elimination of ⊥ and 0 by the observation that the
presence of elementary experiments, which invariably yield a negative result,
spoils the whole idea of combining bets on positive results according to the
schemes for P or G. On the other hand, however, the expressiveness of the
language is considerably reduced by removing ⊥, since negation is defined in
terms of ⊥. One may ask whether there is a characterization of P and G by
a Giles/Lorenzen-style game. To address this problem we analyze the rules
of the uniform calculus rH (Ciabattoni et al., 2005), mentioned at the end of
Section 9.2. In contrast to HŁ, the component sequents of hypersequents in rH
come in two versions: there are two different sequent signs, ‘≤’ and ‘<’, instead
of the one ‘�’ used in HŁ. More formally, an r-hypersequent is a finite multiset

Γ1 �1 Δ1 | . . . | Γn �n Δn

where �i ∈ {<,≤} and Γi and Δi are finite multisets of formulas for i =
1, . . . , n. The relational symbols indicate the intended semantics: the above

6The problem does not arise in logic Ł, since there the expected gain for state [⊥‖p, q] is 〈p, q〉Ł − 〈⊥〉Ł =
1− (〈p〉 − 1)− (〈q〉 − 1)− (1− 1) = 〈p〉+ 〈q〉 − 1 and therefore, indeed, negative, as expected, if 〈p〉 = 0 and
〈q〉 < 1.
7Note that CHL is different from ⊥-free P: e.g., (A→ (A & B))→ B is valid in CHL, but not in P.
8For the rule (→, l) it suffices to observe that for all a, b, ci, dj ∈ (0, 1]: (a⇒P b)·

∏
i gi ≤

∏
j d j iff b·

∏
i gi ≤∏

j d j · a. For the rule (→, r) the relevant fact is that
∏

i gi ≤
∏

i di · (a ⇒P b) iff both a ·
∏

i gi ≤
∏

j d j · b
and
∏

i gi ≤
∏

j d j.
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r-hypersequent is called valid for logic X ∈ {Ł,G,P} if for all valuations v, that
refer to the corresponding t-norm ∗X, there is some i, 1 ≤ i ≤ n, such that
#v

XΓi �i #v
XΔi, where #v

X∅ = 1 and where

#v
Ł(Γ) = 1 +

∑
A∈Γ
{v(A) − 1}, #v

G(Γ) = min
A∈Γ
{v(A)}, #v

P(Γ) =
∏
A∈Γ
{v(A)}.

This allows us to check that the following rH-rules for introducing implication
are sound and invertible for all three logics:

A, Γ � Δ, B | A ≤ B | H Γ � Δ | H
Γ � Δ, A → B | H (→, r)∗

B, Γ � Δ, A | Γ � Δ | H Γ � Δ | B < A | H
A→ B, Γ � Δ | H (→, l)∗

where � is either < or ≤, uniformly in each rule. Together with (also uniform,
even simpler) rules for the other connectives and appropriate initial atomic
r-hypersequents (that, of course, are different for each of the three logics) one
obtains a sound and complete analytic system for Ł, G, and P, respectively (see
Ciabattoni et al., 2005).

There are at least two different ways to translate these rules into rules for the
construction of winning strategies in versions of our game. A rather direct in-
terpretation of r-hypersequents in terms of disjunctions of states in a dialogue
game is obtained by distinguishing two different types of states: One, corre-
sponding to the sequent sign ≤, which is exactly as in the original game, and
one corresponding to the sequent sign <, in which an additional flag ¶ is raised
to announce that I will be declared the winner of the current run of the game,
only if the evaluation of the final elementary state yields a strictly positive (and
not just non-negative) expected gain for me.

Dialogue rules, replacing (R) in Giles’s game, but directly corresponding to
(→, r)∗ and (→, l)∗ can be formulated as follows:

(R∗r ) If I assert A → B then, whenever you choose to attack this statement by
asserting A, I have the following choice: either I assert B in reply or I
challenge your attack on A → B by replacing the current game with a
new one in which you assert A and I assert B.

Note that the right-hand side premise of the rule (→, l)∗ corresponds to the case
in which you choose not to attack the exhibited occurrence of A → B. As can
be seen, the newly introduced flag plays no direct role. It is only needed in the
rule corresponding to (→, l)∗:

(R∗l ) If you assert A → B then, whenever I choose to attack this statement by
asserting A, you have the following choice: either you assert B in reply
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or you challenge my attack on A → B by replacing the current game
with a new one in which the flag ¶ is raised and I assert A while you
assert B.

Note that I can also choose not to attack A→ B. This corresponds to the com-
ponent sequents Γ � Δ in the two premise r-hypersequents of rule (→, r)∗. The
flag ¶ is needed because the winning conditions are not fully complementary
for me and you: we may both have a non-negative expected gain. Your ‘attack-
challenging’ claim that I cannot win when starting in state [A‖B] is equivalent
to the claim that I can win when starting in state [B‖A] only if the flag ¶, sig-
nalling a strictly positive expected gain as winning condition, is raised in the
latter game.

The translation of the r-hypersequent rules for conjunction and disjunction
in Ciabattoni et al. (2005) into dialogue game rules is also straightforward.
Admittedly, these new versions of Lorenzen-style dialogue rules amount to ad
hoc regulations to circumvent the problematic effects of bets on elementary
results that always yield negative results. A different (but still ad hoc) way to
deal with this problem has been described in Ciabattoni et al. (2005). Instead
of using the additional flag, one imposes the following constraint on attacking
implicative formulas:

(Q) If I have a strategy for winning the run of the game starting in the state
[A‖B], then I am not allowed to attack your assertion of A → B. (And
vice versa, i.e., for the roles of you and me switched.)9

Imposing (Q) also results in a game that characterizes Ł, P, and G, if the corre-
sponding versions of the winning conditions are applied (cf. Ciabattoni et al.,
2005). Here we only point out that applying rule (Q) involves the systematic
development of full strategies for subformulas, before it can be judged whether
an attack to a formula according to rule (R) is permitted. Whether more satis-
fying Giles/Lorenzen style characterizations of P and G in the presence of ⊥
and 0 can be achieved remains an open problem.

9.6 Where is vagueness?
What has been achieved by the analysis of fuzzy logics in terms of dialogue

games? Note that the rules for the stepwise reduction of arguments about com-
pound formulas to arguments about their atomic subformulas are the same for
Ł, CHL, P, and G. This opens a unified view of reasoning in t-norm based fuzzy
logics. Moreover, the relation to classical logic is clarified: the dialogue part
of the game coincides with a version of Lorenzen’s original dialogue game

9Recall that the strategies mentioned in (Q) refer to a given assignment 〈·〉 of values and thus appear at a
more concrete level than d-strategies.



C.G. Fermüller 221

adapted to classical logic. If we trivialize the betting schemes by stipulating
that all assigned probabilities are either 0 or 1—i.e., if each elementary experi-
ment consistently shows the same result when repeated—then Giles’s game, as
well as the alternative games for P and G, discussed in Section 9.5, character-
ize classical validity. To see this, it suffices to check that for every elementary
state [p1, . . . , pm‖q1, . . . , qn] and X ∈ {Ł, P, G} we have:

〈p1, . . . , pm〉X ≤ 〈q1, . . . , qn〉X iff {p1, . . . , pm} ∩ {q1, . . . , qn} � ∅,

for all assignments 〈·〉 of values where 〈pi〉, 〈qj〉 ∈ {0, 1}. If we denote elemen-
tary states in sequent notation

p1, . . . , pm � q1, . . . , qn

it is clear that the latter condition corresponds to classical axiom sequents
p � p, up to (irrelevant) weakening. Moreover, it corresponds to the standard
winning condition for Lorenzen style dialogues: I win the dialogue if you at-
tack a statement that you have already asserted yourself (‘ipse dixisti rule’).
Indeed, it is straightforward to show that the winning of d-strategies for all
versions of the game, described above, corresponds to cut-free proofs in ver-
sions of hypersequent calculi that are sound and complete for classical logic,
if valuations are restricted to range over {0, 1}.

What is the significance of the betting schemes for the evaluation of atomic
formulas? Obviously, the betting schemes allow us to characterize the differ-
ences between Ł, P, and G: different underlying t-norms correspond to different
ways of combining bets on results of elementary experiments into a single bet.
However, a closer look at this setting reveals a serious foundational problem.
One would like to present the game based characterizations of Ł, CHL, P, and
G as a derivation of fuzzy logics from first principles about reasoning with
vague propositions, but all reference to vagueness and degrees of truth seems
to have disappeared. More exactly: it has been replaced by references to classi-
cal reasoning combined with a probabilistic semantics for atomic statements.
However, fuzziness should never be confused with probability (as has been em-
phasized in the literature, e.g., in Hájek, 1998, 2002; Dubois and Prade, 1980).
Whereas fuzzy logic takes vague propositions to refer to degrees of truth, prob-
ability theory formalizes degrees of rational belief. Even without engaging in
discussions on adequate interpretations of vagueness and probability, it should
be clear that

1. ‘The next throw of the die will result in 5 or 6’

is true only with some probability (1/3, if the die is fair), but does not involve
vagueness; whereas,

2. ‘Logicians are weird people’
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is vague, but does not refer to probability. (2) may meaningfully be said to be
true only to some degree (even in a fixed context), whereas (1), in the intended
context, is either definitely true or definitely false, even if it is (not yet) known
which of the two holds. Since Giles, in evaluating atomic statements, refers
to elementary experiments that are of the same (probabilistic, but non-fuzzy)
type as in statement (1), it might seem inadequate to interpret Giles’s game as
a model for proper reasoning with vague notions.

9.7 Connecting supervaluation, degrees of truth,
and bets on positive results of experiments

There is prolific discourse in analytic philosophy about the nature of rea-
soning in the presence of vagueness. This is not the place to comment on these
debates;10 however, in order to connect the game-based analysis of Ł, P, and
G with degrees of truth and to disentangle it from probabilistic logic, we re-
fer to a particular approach to understanding vagueness, called supervalua-
tionism—currently most popular among philosophers of vagueness (see, e.g.,
Keefe, 2000; Varzi, 2001; Weatherson, 2003).

Supervaluationism, as a theory of vagueness, is canonically developed by
Kit Fine (1975). Since we are only interested in propositional logic without
additional modal operators, only a simplified version of supervaluation will be
needed here. The central idea is to formalize reasoning in vague contexts by
reference to all admissible precisifications of vague expressions. More exactly,
formulas are evaluated in reference to a specification space S, which is sim-
ply a collection (multiset)11 of partial models. A partial model is a possibly
partial assignment of classical truth values, 0 or 1, to propositional variables.
An element w ∈ S is called a complete precisification of v ∈ S if w is total
and if v(p) = w(p) for all propositional variables p, for which v is defined. A
complete precisification of v is a classical model compatible with v. We are
only interested in those elements of S that are complete precisifications of a
fixed element (‘actual world’) a ∈ S. This sub-multiset of S is denoted by Ca

and is assumed to be non-empty. Three possibilities for the semantic status of
a formula F arise:

v(F) = 1 for all v ∈ Ca: in this case F is called supertrue in Ca.

v(F) = 0 for all v ∈ Ca: in this case F is called superfalse in Ca.

10For an overview of theories of vagueness and their problematic relation to fuzzy logic we refer to Keefe
(2000), Williamson (1994), Burns (1991) and Fermüller (2003b).
11As long as one is not interested in measuring the cardinality of precisifications that satisfy certain proper-
ties, the difference between precisifications spaces as sets and as multisets, respectively, disappears.
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∃v,w ∈ Ca such that v(F) = 0 and w(F) = 1: in this case the semantic
status of F remains undefined.

Proponents of supervaluationism often contend that, in contrast to claims made
by the degree-theorists, no revision of classical logic is necessary to cope with
vagueness. (However, see Kremer and Kremer, 2003 for a criticism of the claim
that supervaluationism does not deviate from classical logic.) Whereas, for ex-
ample, the formula A ∨ ¬A is not valid in Ł, P, G, and related logics, it is
evaluated true in all classical interpretations, and therefore is supertrue in all
precisification spaces S, even if A were evaluated true in some precisifications
and false in other precisifications of the actual world of S.

Given the coincidence of supertruth in all specification spaces and classical
validity, it is understandable that supervaluationism is usually seen as incom-
patible with fuzzy logic. In contrast, we claim that the game-based interpre-
tation reveals much common ground among these competing conceptions of
reasoning under vagueness. Both supervaluationists and defendants of Ł, P,
and G as logics of vagueness can agree on three principles:

1. An atomic statement is definitely true only if there is no admissible pre-
cisification of it that renders it false.

2. Arguments about compound statements F can be reduced to arguments
involving only subformulas of F.

3. The rules used for (2) should only depend on the outmost connective
of F and should be sound and complete for classical logic.

That the reduction rules should refer to classical logic seems, at a first glance,
to be at variance with the standard t-norm-based interpretation of our fuzzy
logics. However, the coincidence of the logical dialogue rules in Giles’s game
with those in versions of the game for classical logic makes shared intuitions
about the meaning of connectives explicit.

Obviously, essential differences between supervaluation and t-norm based
valuations remain. To facilitate a more detailed comparison, we interpret the
truth value ∈ [0, 1] that is assigned to a propositional variable p in fuzzy valu-
ation in terms of the proportion of those complete precisifications that make p
true. The simplest way to formalize this idea is to assume that the cardinality
of Ca ∈ S is finite. We may then define the ‘fuzzy valuation’ vS induced by a
precisification space S via Ca as

vS(p) =
|{v ∈ Ca : v(p) = 1}|

|Ca|

for all propositional variables p. In other words: with respect to a given precisi-
fication space, fuzzy valuations and supervaluation agree on the assignment of
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classical truth values 1 and 0 to atomic formulas; but in the remaining cases,
where supervaluation assigns no overall truth value, fuzzy logics assign a value
that ‘measures’ the fraction of verifying precisifications.12 For compound for-
mulas, the difference between supervaluation and fuzzy valuation may be de-
scribed in terms of the syntactic level at which a formula is tied to individual
precisifications. For supervaluation the whole formula F is evaluated in each
complete precisification to determine F’s semantic status. Following the game-
based characterization of Ł, P, and G, fuzzy valuation of F may be described
as consisting of three stages:

1. An analysis—following classical principles—of F into arguments about
its atomic components

2. A valuation of each of the resulting relevant occurrences of atomic for-
mulas in F in reference to a specification space

3. A synthesis of the resulting values of the atomic subformulas of F into
an overall value for F

The following table confronts the valuation function vsv
S resulting from super-

valuation with the valuation function vX
S of a t-norm based fuzzy logic X, where

all valuations refer to the specification space S via the multiset Ca of its com-
plete precisifications.

Supervaluation Valuation in logic X

vsv
S (p) = 1 (0)⇐⇒ ∀v ∈ Ca : v(A) = 1 (0) vX

S(p) =
|{v ∈Ca: v(p)=1}|

|Ca |

vsv
S (⊥) = 0 vX

S(⊥) = 0

vsv
S (F → G) = 1 (0)⇐⇒ vX

S(F → G) =
(
vX
S(F)⇒∗ vX

S(G)
)
,

∀v ∈ Ca :
(
v(F)⇒c v(G)

)
= 1 (0) where X = L∗

Remember that ⇒∗ is the residuum of the t-norm ∗ that defines the logic L∗.
We have used⇒c to denote the classical truth function for implication (which,
by the way, can be presented as the residuum of an arbitrary t-norm, restricted
to {0, 1}). Also remember that all other logical connectives can be defined in
terms of→ and ⊥, not only for Ł, but also for classical logic. Of course, one can
easily extend the above list by the corresponding definitions for conjunction
and disjunction (thus including also full P and G).

12At the propositional level, on which we focus here, it is not unreasonable to assume that only a finite
number of different plausible precisifications is relevant when evaluating a given statement in a fixed context.
Anyway, it is not difficult to extend the concept to more general situations. For example, one may wish to
weight precisifications according to some measure of their individual plausibility. One may also take into
account non-complete precisifications in different ways. In any case, an assignment of a truth value ∈ [0, 1]
to a propositional variable p in fuzzy logic can be interpreted as a way to quantify the information pertaining
to p that is contained in a given specification space.
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We think that supervaluation and fuzzy valuation capture contrasting, but
individually coherent intuitions about the role of logical connectives in vague
statements. Consider a sentence like

3. “The sky is blue and is not blue”.

When formalized as b∧¬b, (3) is superfalse in all specification spaces. This fits
Fine’s motivation (Fine, 1975) to capture ‘penumbral connections’ that prevent
any mono-colored object from having two colors at the same time. Accord-
ing to his intuition the statement “The sky is blue” absolutely contradicts the
statement “The sky is not blue”, even if neither statement is definitely true or
definitely false. Therefore (3) is judged as definitely false, even if admittedly
vague. On the other hand, by asserting (3) one may intend to convey the in-
formation that both component assertions are true only to some degree. Under
this reading (and a certain interpretation of ‘and’) b∧¬b is not definitely false,
unless b is supertrue or superfalse. The latter intuition is directly captured in
Łukasiewicz logic since b∧¬b may receive a value ∈ [0, 0.5], where ∧ denotes
the ‘weak conjunction’, i.e., the minimum operator.13

As already indicated, the difference between the two interpretations of (3)
can be described as a difference of the syntactic level at which the sentence is
projected to admissible precisifications. In supervaluation it is checked whether
the whole sentence b ∧ ¬b is true in every complete precisification, whereas
in fuzzy valuation each of the two occurrences of the subformula b is valuated
separately with respect to the proportion of complete precisifications that make
b true.

We claim that both kinds of intuitions should be accommodated in a full
account of approximate reasoning.14 Technically, supervaluation and various
forms of fuzzy valuation can easily be embedded in a common semantic
framework, as indicated above. For evaluating a formula F correspondingly,
it suffices to mark syntactically—e.g., by using two different types of impli-
cation, conjunction, negation, etc.—whether an occurrence of a subformula
of F should be supervaluated or valuated according to a certain t-norm-based
scheme. In both cases, the valuation may refer to the same specification space.

9.8 Conclusion
Our presentation of Giles’s game and its variants is meant to demonstrate

that t-norm based fuzzy logics can be derived from first principles about ap-
proximate reasoning. As we have seen in Sections 9.4 and 9.5, rules for the

13Note that b &¬b is always evaluated to 0, where & is the ‘strong conjunction’ (t-norm) of Ł. Thus one
may argue that Ł is capable of representing both interpretations of a sentence like (3). Also remember that
in P and G the value of ¬b is 0 if the value of b is not equal to 1. Therefore b ∧ ¬b is always evaluated to 0
in P and G.
14This is of particular significance for a successful analysis of Sorites paradoxa and the phenomena of
higher-order vagueness, as we shall argue elsewhere.
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systematic construction of winning strategies in the games for Ł, CHL, P, and
G correspond to the logical rules of analytic calculi for these logics. This also
partly clarifies the relation to classical logic: for all investigated logics the
(dialogue-based) meaning of connectives adheres to constraints pertaining to
classical logic. Moreover, the game-based analysis allows us to relate superval-
uation to the seemingly opposite concept of ‘degrees of truth’: both models of
approximate reasoning can be seen as referring to admissible precisifications
in a given specification space.

Many interesting topics for further investigation arise. We conclude by ex-
plicitly posing a few relevant questions. Is there a similar analysis of other
logics that have been suggested for approximate reasoning? In particular, can
Hájek’s ‘basic logic’ (Hájek, 1998)—the logic of all continuous t-norms—be
characterized by an adequate game? What about quantifiers? How does the
incompleteness of first-order Ł and P that contrasts with the existence of com-
plete calculi for G (and classical logic), bear on the game-based semantics
for these logics? How can we account for higher-order vagueness in dialogue
games? Can one extend the analysis to logics equipped with a definiteness op-
erator and other relevant modal operators? Can the game based characterization
of fuzzy logics shed light on the relation to further conceptions of vagueness,
like gap-theoretic, epistemic, pragmatic and information-based approaches?

References
Avron, A. (1991). Hypersequents, logical consequence and intermediate logics for concurrency.

Annals of Mathematics and AI, 4(3–4):225–248.
Burns, L. C. (1991). Vagueness: An Investigation Into Natural Language and the Sorites Para-

dox. Kluwer, Dordrecht.
Ciabattoni, A. and Fermüller, C. G. (2003). From intuitionistic logic to gödel-dummett logic via
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10.1 Introduction
Two main approaches to knowledge in logic can be distinguished

(van Benthem, 1991). The first one is an implicit way of encoding knowledge
and consists in an epistemic interpretation of usual propositional or first-order
logic. This is, for instance, the case of intuitionistic logics, especially of the
so-called Brouwer-Heyting-Kolmogorov (BHK) interpretation of it. There, as-
sertion is assimilated to provability, negation to the provability of the impli-
cation of a contradiction, etc. The second approach is what is known, since
Hintikka’s seminal work (Hintikka, 1962), as (modal) epistemic logic. In this
case, knowledge is explicitly supported by modal operators.

The aim of the present paper is to show the specific insight provided by di-
alogical games on this distinction. In Section 10.2, I will introduce dialogical
versions of classical and intuitionistic Propositional Logic (PL) and a dialogi-
cal version of modal epistemic logic. In Sections 10.3 and 10.4, two combina-
tions of implicit and explicit epistemic logics are accounted for: intuitionistic
modal logic, and a modal embedding of intuitionistic logic. In Section 10.5,
other issues connected with the implementation of epistemic logic in the dia-
logical frame are raised and briefly discussed.
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10.2 Dialogical epistemic logic (DEL)
in a nutshell

Thanks to a straightforward adaptation of Rahman and Rückert’s Dialogi-
cal Modal Logic (Rahman and Rückert, 1999), one obtains a Dialogical Epis-
temic Logic (hereafter DEL). For that purpose, several kinds of rules have to be
stated: structural and particle rules for propositional logic and for modal epis-
temic logic. As will be shown, modal logic only requires a simple extension of
rules for propositional logic.

10.2.1 Propositional logic
In a dialogical game, two players argue about a thesis: The proponent P

defends it against the attacks of the opponent O. As in game semantics, some-
thing interesting appears when the proponent has a winning strategy, i.e. when
she can defend the proposition against any attack from the opponent. Here the
interesting result is that one is guaranteed that the proposition is logically true
or valid—whereas in GTS, for instance, the existence of a winning strategy
means that the challenged proposition is true simpliciter (materially true) in a
given model.

Particle Rules. The meaning of each logical constant is given through
a particle rule which determines how to attack and defend a formula whose
main connective is the constant in question. The set, PartRules, of particle rules
for disjunction, conjunction, implication and negation is recapitulated in the
following table:

Attack Defence
A ∨ B ? A, or B

(The defender chooses)
A ∧ B ?L, or ?R A, or B

(The attacker chooses) (respectively)
A→ B A B
¬A A ⊗

(No possible defence)

The idea for disjunction is that the proposition A∨B, when asserted by a player,
is challenged by the question “Which one?”; the defender has then to choose
one of the disjuncts and to defend it against any new attack. The rule is the
same for the conjunction A ∧ B, except that the choice is now made by the
attacker: “Give me the left conjunct (?L)” or “Give me the right one (?R)”, and
the defender has to assume the conjunct chosen by his or her challenger. For
the conditional A→ B, the attacker assumes the antecedent A and the defender
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continues with B. Finally negated formulas are attacked by the cancellation
of negation, and cannot be defended. The defender in this case can thus only
counterattack (if he or she can).

Structural Rules. In addition to the particle rules connected to each
logical constant, one also needs structural rules to be able to play in such and
such a way at the level of the whole game.

(PL-0) Starting Rule: The initial formula (the thesis of the dialogical
game) is asserted by P. Moves are numbered and alternatively uttered
by P and O. Each move after the initial utterance is either an attack or a
defence.

(PL-1) Winning Rule: Player X wins iff it is Y’s turn to play and Y
cannot perform any move.

(PL-2) No Delaying Tactics Rule: Both players can only perform moves
that change the situation.

(PL-3) Formal Rule: (In a given context1) P cannot introduce any new
atomic formula; new atomic formulas must be stated by O first. Atomic
formulas can never be attacked.

These four rules are common to dialogical games for both classical and intu-
itionistic logics. The only difference resides in the following rule:

(PL-4c) Classical Rule: In any move, each player may attack a complex
formula uttered by the other player or defend him/herself against any
attack (including those that have already been defended).

(PL-4i) Intuitionistic Rule: In any move, each player may attack a
complex formula uttered by the other player or defend him/herself
against the last attack that has not yet been defended.

Now we can build two distinct sets of rules DialPLc and DialPLi, yielding re-
spectively classical propositional logic and intuitionistic propositional logic:

DialPLc := PartRules ∪ {PL-0, PL-1, PL-2, PL-3, PL-4c}
DialPLi := PartRules ∪ {PL-0, PL-1, PL-2, PL-3, PL-4i}

For any set of rules Σ, I will use the notation Σ � A to say that there is a winning
strategy for the proponent in the dialogical game about A played according
to the rules of Σ. As PL-4i is more restrictive than PL-4c, we have for any
propositional formula: DialPLi � A ⇒ DialPLc � A.

1In propositional logic contexts are not yet defined—this will be useful for dialogical games for modal
logics.
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As is shown in Rahman (1993), DialPLi � A iff A is intuitionistically valid,
whereas DialPLc � A iff A is valid in classical logic. The difference between
classical and intuitionistic logic is thus reducible to one structural rule, PL-4.

Example 1. As a first example of a dialogical game for propositional
logic, let us consider a formula that is valid according to both classical and
intuitionistic logic: ((a → b) ∧ a) → b. In the dialogical frame, it means that
there is a winning strategy for the proponent P when she plays according to
both sets of rules. The rounds and the corresponding arguments, attacks or de-
fences, are indicated by a number within brackets (n) in the external columns,
whereas the arguments attacked by the players are referred to by their number
m in the internal column. Defences are on the lines of the corresponding at-
tacks. The reader can check the following game and see what is the winning
strategy employed by P:

O P
((a→ b) ∧ a)→ b (0)

(1) (a→ b) ∧ a 0 b (8)
(3) a→ b 1 ?L (2)
(5) a 1 ?R (4)
(7) b 3 a (6)

Having stated the thesis (0), P cannot simply defend it against O’s first attack
(1) since she would have to assert b which is an atom not yet stated by the
opponent. But P can counterattack twice, with (2) and (4), and O is forced to
defend himself with (3) and (5) respectively. Thanks to (5), P can use a at round
(6) and attack O’s round (3) to oblige him to answer b (7). Now b is available
to P who can answer the first attack and win the play (no further move being
permitted for the opponent).

Example 2. The second example is provided by the dialogical games
associated with the formula: ¬¬a→ a. As can be expected, we will get DialPLc

� ¬¬a→ a, but DialPLi � ¬¬a→ a:

O P
¬¬a→ a (0)

(1) ¬¬a 0 a (4)
⊗ 1 ¬a (2)

(3) a 2 ⊗

The difference between the games becomes manifest after round (3). Following
the intuitionistic rule (PL-4i), the proponent should defend herself against the
last attack not yet defended, i.e. against (3); but she cannot, since (3) is an
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attack against a negation leaving no available defence. By contrast, according
to the classical rule, the proponent can defend herself against a former attack
of the opponent, so she can answer (4) to (1), and win the play.

10.2.2 (Modal) epistemic logic
As PL, also Modal Logic requires the introduction of particle and struc-

tural rules corresponding to the additional operators. We will moreover need
a convention to designate the different contexts (or possible worlds) where
propositions are stated by both players.

Particle Rules. The thesis of the dialogue is uttered in a given context
w. The particle rules for the epistemic operator K and for its dual P enable the
players to change the context.

Attack Defence
KA ?K/w′ A

(in context w) (The attacker chooses (in context w′)
an available context w′)

PA ?P A
(in context w) (in an available context w′

chosen by the defender)

Context numbering.

The initial context is numbered 1. The n immediate successors of m are
numbered m.1,m.2, . . . ,m.n.

An immediate successor m.n of a context m is said to be of rank +1
relative to m, and m is said to be of rank −1 relative to its immediate
successors. A successor m.n.p of a context m is said to be of rank +2
relative to m, etc.

Structural Rules. Modal structural rules correspond to restrictions on
the accessibility relation K between contexts (and thus determine which con-
texts are available to players). The first two rules are obviously incompatible
and should not be included together in the same set of rules.2

(ML-frc) Formal Rule for Contexts: P cannot introduce a new context;
new contexts must be introduced by O.

2Here I follow Rahman and Rückert’s formulation of rules associated with specific modal systems. Struc-
tural rules could also be formulated in accordance with the specific axioms involved in those systems: the
upshot would be the same.
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(ML-D) Axiom D rule: P can introduce a new context of rank +1 rela-
tive to the context she is playing in.

(ML-K) K Rule: P cannot stay in the context she is playing in (as she
attacks a formula of the form KA or defends a formula of the form PA).
P can choose a (given) context of rank +1 relative to the context she is
playing in.

(ML-T) T Rule: P can either choose a (given) context of rank +1 relative
to the context she is playing in, or stay in the context she is playing in.

(ML-B) B Rule: P can either choose a (given) context of rank −1/+1
relative to the context she is playing in, or stay in the context she is
playing in.

(ML-S4) S4 Rule: P can either choose any (given) context of rank +k
relative to the context she is playing in, or stay in the context she is
playing in.

(ML-S5) S5 Rule: P can choose any (given) context.

Dialogical Epistemic Systems. Combining these new rules with those
of DialPLc, one obtains sets of rules corresponding to different usual systems of
propositional modal logic:

DialK := DialPLc ∪ {ML-frc, ML-K}
DialD := DialPLc ∪ {ML-D, ML-K}
DialT := DialPLc ∪ {ML-frc, ML-T}
DialB := DialPLc ∪ {ML-frc, ML-B}

DialS4 := DialPLc ∪ {ML-frc, ML-S4}
DialS5 := DialPLc ∪ {ML-frc, ML-S5}

Example. Let us consider a substitution instance of the Positive Introspec-
tion Property (also known as Axiom 4): Kφ → KKφ, to be played according
to DialS4. What is interesting here is the fact that the proponent resorts to
the transitivity of K at round (6)—if the game was played in a non-transitive
structure, there would be no more winning strategies available to P.

O P
Ka→ KKa (0) 1

1 (1) Ka 0 KKa (2) 1
1 (3) ?K/1.1 2 Ka (4) 1.1

1.1 (5) ?K/1.1.1 4 a (8) 1.1.1
1.1.1 (7) a 1 ?K/1.1.1 (6) 1.1.1
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10.3 Intuitionistic DEL
Two kinds of intuitionistic epistemic logics can be provided using the dia-

logical frame. The first one is Intuitionistic Modal Logic to be sketched in this
section. The second one is a dialogical version of the modal ‘simulation’ of
intuitionistic logic, to be presented in the next section.

10.3.1 Intuitionistic modal logic
Within the Dialogical frame, Rahman and Rückert (1999) suggest just to

change DialPLc into DialPLi in the set of structural rules. For instance, an in-
tuitionistic version of S5 is directly obtained by replacing (PL-4c) by (PL-4i):
DialS5i := DialPLi ∪ {ML-frc, ML-S5}. For any dialogical system of modal
logic DialΣ, I will use the notation DialΣi to designate the corresponding intu-
itionistic version obtained in this way.

Is it really intuitionistic modal logic? Such dialogical systems are
obtained through a simple combinatorial step. It can be doubted that they
yield “real” intuitionistic modal logics. Let LM be the standard proposi-
tional language augmented by the modal connectives in a set M. Wolter and
Zakharyaschev’s general definition of an intuitionistic modal logic L in LM

is as follows (Wolter and Zakharyaschev, 1999): (1) L ⊂ LM; (2) L contains
propositional intuitionistic logic; (3) L is closed under: (i) Modus ponens, (ii)
Substitution, (iii) Regularity Rule (A → B /©A→ ©B, for every © ∈ M).

In the dialogical frame, it is easily seen that conditions (1) and (2) are au-
tomatically filled with the relations holding between the corresponding sets of
rules DialΣ and DialΣi. Now, one can simply check that any dialogical epistemic
system DialΣi is closed under the Regularity Rule:

O P
A→ B (0) 1

1 (1) A 0 B (2) 1
. . . . . .

A→ B is valid iff there is a winning strategy for P to end this game.

O P
KA→ KB (0) 1

1 (1) KA 0 KB (2) 1
1 (3) ?K/1.1 2 B (6) 1.1

1.1 (5) A 1 ?K/1.1 (4) 1.1
. . . . . .
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O P
PA→ PB (0) 1

1 (1) PA 0 PB (2) 1
1 (3) ?P 2 B (6) 1.1

1.1 (5) A 1 ?P (4) 1
. . . . . .

What follows immediately from the last two dialogues is that they are to be
continued in the same way as that corresponding to A → B. In other words: if
there is a winning strategy for P in the dialogue associated to A→ B, then there
is one for the corresponding dialogue associated to KA→ KB (or PA→ PB).

Moreover, the dialogical system DialKi at least encompasses Fischer Servi’s
intuitionistic modal logic FS (Fischer Servi, 1977), and the same for the corre-
sponding extensions S4, S5, and so forth. (For more details, see the Appendix.)

10.3.2 Application to epistemic modalities
Knowledge Generalization. The necessitation rule KG (i.e., � A /
� KA), applies only to intuitionistic validities, not to classical ones:

O P
K(a ∨ ¬a) (0) 1

1 (1) ?K/1.1 0 (a ∨ ¬a) (2) 1.1
. . . . . .

After (2), the play goes on (in context 1.1) according to DialPLi. Hence O wins!
Intuitionistic dialogical epistemic systems thus account for (explicit) knowl-
edge of intuitionist agents.

Intuitionistic K and P. In intuitionistic modal systems DialΣi, K
and P become genuine intuitionistic modal operators: they are no longer
interdefinable.

For instance, according to DialTi (i.e., with a reflexive accessibility relation),
one can see that: ¬K¬A � PA—the following dialogue stops at round (7)—,
whereas (as is expected): ¬K¬A ≈ PA within DialT—the play goes on.

O P
¬Ka→ P¬a (0) 1

1 (1) ¬Ka 0 P¬a (2) 1
1 (3) ?P 2 ¬a (4) 1
1 (5) a 4 ⊗

⊗ 1 Ka (6) 1
1 (7) ?K/1.1 6 a (10) 1.1

(3’) ?P 2 ¬a (8) 1.1
1.1 (9) a 8 ⊗
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It also can be shown that other properties of K and P still hold in DialTi, such
as the Consistency Property (D)3:

O P
Ka→ Pa (0) 1

1 (1) Ka 0 Pa (2) 1
1 (3) ?P 2 a (6) 1
1 (5) a 1 ?K/1 (4) 1

Advantages of Intuitionistic DEL. To conclude this section, let us
mention a few features of Intuitionistic DEL which make it a good tool for
epistemic logic:

1. Intuitionistic DEL provides an interesting account of modalities K and
P: ignoring a no longer implies considering ¬a as a possibility.

2. Implicit epistemic logic is made explicit: the epistemic agent is described
as an intuitionist agent (thanks to the aforementioned restriction of KG
to intuitionistic valid formulas). One could change the rules of the under-
lying propositional logic (e.g., for more strictly constructive ones) and
obtain a corresponding explicit epistemic version in the same straight-
forward manner.

3. With the intuitionistic operators K and P, not only the described agent
but the describing one too is (implicitly) grasped as a cognitive agent.
This may be illustrated by the rejection of the tertium non datur: KA ∨
¬KA, in DialS5i:

O P
Ka ∨ ¬Ka (0) 1

1 (1) ? 0 ¬Ka (2) 1
1 (3) Ka 2 ⊗
1 (5) a 3 ?K/1 (4) 1

10.4 Modal simulation of intuitionistic
(non-modal) logic

Let us turn again to implicit epistemic logic, namely intuitionistic propo-
sitional logic Int. In the first section, I presented the system DialPLi which is
the usual dialogical implementation of Int. In this section, I will propose a

3The Consistency Property is not valid according to DialKi, as can be seen at round (4): with no reflexive
accessibility relation, P cannot choose the current context to attack O’s assertion of Ka.
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new dialogical formulation of intuitionistic logic, grounded on Gödel’s 1933
S4 embedding of Int, and on Kripke’s 1965 modal semantics for Int.

Such a formulation is based on a dynamic conception of knowledge: The
accessibility relation between contexts corresponds to time and to the growth
of information—in contrast to Hintikka’s 1962 “static” conception of this
relation.

10.4.1 Gödel’s embedding and Kripke’s
semantics

Gödel’s translation of Int into S4. The idea of Gödel’s embedding
is closely related to the BHK interpretation of intuitionistic logic. When a for-
mula is known (one could say: ‘proved’), it will persist through time. The un-
derlying idea is that of an ever increasing knowledge with neither memory fail-
ure nor revision. Formally, the S4-translation AT of an intuitionistic formula A
is as follows:

aT := �a, for every atomic formula a
(A ∧ B)T := (AT ∧ BT )
(A ∨ B)T := (AT ∨ BT )

(¬A)T := �¬AT

(A→ B)T := �(AT → BT )

This translation leads to the expected equivalence: �Int A iff �S4 AT .

Kripke’s modal semantics for Int. Kripke’s structures (Kripke,
1965) involve a reflexive and transitive relation ≤ between contexts. The idea
is similar to Gödel’s translation: there is a temporal ordering of worlds, propo-
sitions being established once and for all whenever they are. So before being
known, a proposition is not true and neither is its negation.

Formally, a Kripke structure is thus a tuple K = 〈W,≤,�〉, where: (1) ≤ is a
pre-ordering on W (i.e., a binary reflexive and transitive relation); (2) the forc-
ing relation � is such that: (2.1) For all w ∈ W , w � ⊥ (2.2) For all w,w′ ∈ W ,
if w ≤ w′ and w � a, then w′ � a (where a is an atomic formula). The forc-
ing relation is then extended to complex formulas according to the following
requirements: (i) w � A ∧ B iff w � A and w � B; (ii) w � A ∨ B iff w � A or
w � B; (iii) w � A → B iff ∀w′ ∈ W , if w ≤ w′ and w′ � A, then w′ � B; (iv)
w � ¬A iff ∀w′ ∈ W , if w ≤ w′ then w′ � A.

Now we have the following equivalence:

�Int A iff K � A for any Kripke model K .

10.4.2 Dialogical simulation of Int

Can the modal simulation of Int be implemented in dialogical games? The
idea is to consider propositional intuitionistic formulas as if they were modal
formulas. A dialogical version of S4 can be formulated thanks to the usual
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structural rules. Of course, there will be a restriction on the formulas: we reach
a S4-like dialogical version for the propositional fragment only (i.e., not for
formulas including modal operators).

However, the usual S4 structural rules are not enough for this implemen-
tation: we must take into account the non-standard interpretation of atoms,
negation and implication. Eventually, our system IntS4 will essentially differ
from S4 at the level of particle rules.

Atoms. According to Gödel’s translation: aT := �a for every atomic for-
mula a. Let us consider the following part of game involving �a and played
with DialS4:

O P
m (j) �a . . .

. . . . . .
�a (k) n

n (k+1) ?�/n.1 k a (k+4) n.1
n.1 (k+3) a j ?�/n.1 (k+2) m

. . . . . .

Player P can defend her assertion of �a only if �a has been previously intro-
duced by O in any context m ≤ n (thanks to the transitivity of ≤ in S4). So (S4
translations of) Int atoms can be attacked since they are modal formulas. We
could thus add a special particle rule for atoms in IntS4, stating that if an atom
a is asserted in a context m, then it can be attacked by ?n where the attacker
chooses an available context n ≥ m, and defended by the assertion of a in the
context n. Consequently, the formal rule (PL-3) should be modified to enable
players to attack atomic formulas.

But we do not need to change the particle rule for atomic formula. A simple
look at the situation makes it clear that the whole modification can be restricted
to one structural rule:

(PL-3*) IntS4 Formal Rule: In a given context n P cannot introduce any
new atomic formula that has not been introduced by O in any context
m ≤ n; new atomic formulas must be stated by O first. Atomic formulas
can never be attacked.

Negation. Gödel’s translation (¬A)T := �¬AT indicates that a negated
formula asserted in a context m can be challenged in any context n ≥ m:
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O P
. . . . . .

�¬A (k) m
m (k+1) ?�/m.1 k ¬A (k+2) m.1

m.1 (k+3) A k+2 ⊗
. . . . . .

This leads naturally to the following Particle rule for negation in IntS4:

Attack Defence
¬A A ⊗

(in context m) (in an available context n ≥ m
chosen by the attacker)

Implication. The case of implication (A→ B)T := �(AT → BT ) is similar
to that of negation:

O P
. . . . . .

�(A→ B) (k) m
m (k+1) ?�/m.1 k A→ B (k+2) m.1

m.1 (k+3) A k+2 B (k+4) m.1
. . . . . .

It leads to the following modified Particle rule in IntS4:

Attack Defence
A→ B A B

(in context m) (The attacker chooses (in context n)
an available context n ≥ m)

Recapitulation. To sum up our new system, let us denote the new set
of particle rules by PartRulesS4: it is thus identical to PartRules concerning con-
junction and disjunction, and differs on implication and negation.

Now we get a new set of rules:

IntS4 := PartRulesS4 ∪ { PL-0, PL-1, PL-2, PL-3*, PL-4c} ∪ {ML-frc, ML-S4}

which is equivalent to DialPLi in the following sense:

IntS4 � A ⇔ DialPLi � A

for any propositional formula A.
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Example 1. IntS4
� a ∨ ¬a

O P
a ∨ ¬a (0) 1

1 (1) ? 0 ¬a (2) 1
1.1 (3) a 2 ⊗

Example 2. IntS4 � ¬¬(a ∨ ¬a)

O P
¬¬(a ∨ ¬a) (0) 1

1.1 (1) ¬(a ∨ ¬a) 0 ⊗
⊗ 1 a ∨ ¬a (2) 1.1

1.1 (3) ? 2 ¬a (4) 1.1
1.1.1 (5) a 4 ⊗

⊗ 1 a ∨ ¬a (6) 1.1.1
1.1.1 (7) ? 6 a (8) 1.1.1

10.5 Discussion
In Game-Theoretical Semantics (GTS), one can distinguish between two

types of “knowledge” depending on whether one is concerned about the inter-
pretation of the epistemic operators (i.e., the usual meaning of “knowledge”) or
about the knowledge of the players of evaluation games. Van Benthem (2001)
strongly stresses the epistemic features involved in GTS and IF Logic, even
though such an interpretation of imperfect information games is absent from
Hintikka’s original creation (about IF Logic, see Hintikka and Sandu, 1997).

A similar distinction can be made in the dialogical frame, between explicit
knowledge (that is embedded in the operators) and implicit knowledge (of the
players). However, the distinction is not exactly the same since the players of
dialogical games are not assumed to have particular information sets at their
disposal, but a set of action rules. The intuitionistic restriction (PL-4i) imposed
on the set of classical rules for PL therefore leads to a modeling of an abstract
agent with limited (i.e., intuitionistic) epistemic powers.

In the above sections, two competing accounts of knowledge using dialog-
ical games are provided. The two implementations resort to both implicit and
explicit knowledge. They consist of specific combinations of intuitionistic and
modal logics. Whereas systems DialΣi inoculate an intuitionistic variation to
standard dialogical systems of modal logic, IntS4 (implicitly) involves a modal
interpretation of intuitionistic logic.

The two approaches presented in this paper could be extended in several
ways. Among the possible developments of what should be called in general
Dialogical Epistemic Logic, we highlight the following:
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1. As was already stressed, IntS4 is only concerned with the propositional
fragment of S4. One could easily consider modal extensions IntS4

K of it, us-
ing the underlying Kripke-like modal structure, and consider assertions
about the S4-knowledge of an intuitionistic agent, such as, for example,
¬K(a ∨ ¬a).

2. Dialogical systems of doxastic logic, for example the system DialKD45.
Doxastic logic in the dialogical frame starts like a nice story. The struc-
tural rule (ML-D) which separates the logic of belief from the logic of
knowledge specifically enables the proponent to create new contexts. . .
In doxastic logic too, intuitionistic variations could be easily imple-
mented.

3. Multi-agent epistemic logic: such a development would be naturally
grounded in multi-modal dialogical logic.

4. Non-Normal Logics. These “deviant” modal logics are due to Lemmon
(1957) and Kripke (1965). They are based on the rejection of the axiom
K and/or of the Necessitation Rule (KG in epistemic logic: � A/ � KA).
A motivation for adopting such a logic is to escape logical omniscience.
Several authors have supplied epistemic logics using non-normal logic:

Duc (1997) uses normal action modalities and non-normal epis-
temic modalities, where KG is replaced by: � A/ � 〈Fi〉KA, 〈Fi〉
being a dynamic action-temporal modality.

Thomason’s theory (Thomason, 2000) is a combination of a nor-
mal (KD45) multi-agent frame and of a non-normal (E2) intra-agent
frame (between subagents).

Rahman and Keiff’s recent proposal of a dialogical implementation of
non-normal logics (Rahman 2003; Rahman and Keiff, 2004) leads to an
immediate epistemic interpretation. Their main idea consists in consid-
ering a kind of meta-modal logic, i.e., a frame in which it is possible to
consider different modal systems together. For example, an intuitionist
logician might want to consider the (possible) case where tertium non
datur were valid in his or her logic: the case in question amounts to a
context where another logic is assumed to hold. Transposing it to epis-
temic logic enables one to consider the following cases:

Standard interpretation of a deviant agent in multi-modal epistemic
logic, e.g. KiK jA where the agent j is crazy and the agent i is sane.

Deviant interpretations of standard epistemic agents.

Shifting positive introspection (this is made by a crazy agent who
knows he or she is crazy, like in Ksane

i Kcrazy
i A).
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Let us give a quick illustration of this non-normal frame with the dia-
logical game of the formula KcKi(a∨¬a)—stating that one knows clas-
sically that she knows intuitionistically that a or not a, which is surely
false. This is established according to S0.5:

O P
KK(a ∨ ¬a) (0) 1-PLc

1-PLc (1) ?K/1.1 0 K(a ∨ ¬a) (2) 1.1-PLc
1.1-PLc (3) ?K/1.1.1−PLi 2 a ∨ ¬a (4) 1.1.1-PLi

1.1.1-PLi (5) ? 4 ¬a (6) 1.1.1-PLi
1.1.1-PLi (7) a 6 ⊗

(An underlying logic, here DialPLc or DialPLi, is associated to each con-
text. For explanations of such dialogues, see the cited papers.)

10.6 Conclusion
The original formulation of dialogical logic by Lorenzen and Lorenz (1978)

was strongly related to intuitionistic logic. However, this connection may be
enriched as is shown by our implementation of Gödel’s S4 embedding of Int.
With the system IntS4 one gets a new version of intuitionistic logic where the
interpretation is directly linked to the connectives, at the level of the particle
rules—like in the BHK interpretation.

In this paper I have sketched two systems of epistemic logic, conceptually
very different but implementationally very close. While presenting systems
DialΣi, we have seen that genuine intuitionistic modal logics resulted easily.
However, lots of perspectives in the field of dialogical epistemic logic go far
beyond the scope of this paper, as for instance the exact delimitation of such
systems, extensions to multi-modal logics or to non-normal systems.

A new insight on the relationship between intuitionistic and modal logics
has been provided by dialogical logic. It is at least a confirmation of the fecun-
dity of dialogical logic as a frame to compare logical theories.

Appendix: Dialogical games and intuitionistic ML
DialKi and (FS). DialKi apparently encompasses the well-known system of intuition-
istic modal logic due to Fischer Servi (FS) (Fischer Servi, 1977): the axioms of (FS) are all valid
according to the dialogical set of rules DialKi. This is shown through dialogical games; a real
proof would require a demonstration exhibiting every possible strategy for the opponent–this
can be accomplished with Beth-Smullyan-like tableaux, where formulas are prefixed with the
name of the player, P or O. (See Fitting, 1969 and Rahman and Rückert, 1999 for details.)

The set of axioms of FS is the union of IntK� (the result of extending propositional Int with
the standard modal axioms K for �), IntK♦ (the same except that the standard modal axioms K
are given for ♦), and two specific axioms (see Celani, 2001; Wolter and Zakharyaschev, 1999).
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We will need to add the symbol ⊥ as a prime formula, and define ¬ and � in terms of it. Particle
rules for ⊥ and � immediately follow from these definitions:

¬A := A→ ⊥, so ⊥ can never be stated (if it could, negation would be defensible).

� := ¬⊥, so � can be stated by any player in any context (it is not an atomic formula)
and it cannot be attacked.

In what follows, the games corresponding to each axiom are written down without comment.
Every play is won by player P, according to some winning strategy. So for every axiom A of
FS, we get: DialKi � A.

IntK� : Int, ��, �(a ∧ b)↔ (�a ∧ �b).

O P
�� (0) 1

1 (1) ?�/1.1 0 � (2) 1.1

O P
�(a ∧ b)→ (�a ∧ �b) (0) 1

1 (1) �(a ∧ b) 0 �a ∧ �b (2) 1
1 (3) ?L 2 �a (4) 1
1 (5) ?�/1.1 4 a (10) 1.1

1.1 (7) a ∧ b 1 ?�/1.1 (6) 1
1.1 (9) a 7 ?L (8) 1.1

O P
(�a ∧ �b)→ �(a ∧ b) (0) 1

1 (1) �a ∧ �b 0 �(a ∧ b) (2) 1
1 (3) ?�/1.1 2 a ∧ b (4) 1.1

1.1 (5) ?L 4 a (10) 1.1
1 (7) �a 1 ?L (6) 1

1.1 (9) a 7 ?�/1.1 (8) 1

IntK♦ : Int, ¬♦⊥, ♦(a ∨ b)↔ (♦a ∨ ♦b)

O P
¬♦⊥ (0) 1

1 (1) ♦⊥ 0 ⊗
⊗ 1 ?♦ (2) 1

O P
♦(a ∨ b)→ (♦a ∨ ♦b) (0) 1

1 (1) ♦(a ∨ b) 0 ♦a ∨ ♦b (2) 1
1 (3) ? 2 ♦a (8) 1

1.1 (5) a ∨ b 1 ?♦ (4) 1
1.1 (7) a 5 ? (6) 1.1
1 (9) ?♦ 8 a (10) 1.1
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O P
(♦a ∨ ♦b)→ ♦(a ∨ b) (0) 1

1 (1) ♦a ∨ ♦b 0 ♦(a ∨ b) (2) 1
1 (3) ?♦ 2 a ∨ b (8) 1.1
1 (5) ♦a 1 ? (4) 1

1.1 (7) a 5 ?♦ (6) 1
1.1 (9) ? 8 a (10) 1.1

FS specific axioms: ♦(a→ b)→ (�a→ ♦b), (♦a→ �b)→ �(a→ b).

O P
♦(a→ b)→ (�a→ ♦b) (0) 1

1 (1) ♦(a→ b) 0 �a→ ♦b (2) 1
1 (3) �a 2 ♦b (4) 1
1 (5) ?♦ 4 b (12) 1.1

1.1 (7) a→ b 1 ?♦ (6) 1.1
1.1 (9) a 3 ?�/1.1 (8) 1
1.1 (11) b 7 a (10) 1.1

O P
(♦a→ �b)→ �(a→ b) (0) 1

1 (1) ♦a→ �b 0 �(a→ b) (2) 1
1 (3) ?�/1.1 2 a→ b (4) 1.1

1.1 (5) a 4 b (10) 1.1
1 (7) �b 1 ♦a (6) 1

1.1 (9) b 7 ?�/1.1 (8) 1
1 (11) ?♦ 6 a (12) 1.1

DialKi � DialK. This can be shown with the following game, played according to
both sets of rules. With the intuitionistic version the proponent cannot answer to (9) and loses,
whereas with the standard ones, she can go further and revise her defence against (3). Hence
DialK � �(a ∨ b)→ (�a ∨ ♦b) but DialKi � �(a ∨ b)→ (�a ∨ ♦b).

O P
�(a ∨ b)→ (�a ∨ ♦b) (0) 1

1 (1) �(a ∨ b) 0 �a ∨ ♦b (2) 1
1 (3) ? 2 �a (4) 1
1 (5) ?�/1.1 4

1.1 (7) a ∨ b 1 ?�/1.1 (6) 1
1.1 (9) b 7 ? (8) 1.1
1 (3′) ? 2 ♦b (10) 1
1 (11) ?♦ 10 b (12) 1.1

(Here (3′) is not a move but a repetition of (3) to let the reader see the attack the proponent
answers to at round (10).)
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Abstract This chapter presents an overview of computability logic—the game-semanti-
cally constructed logic of interactive computational tasks and resources. There
is only one non-overview, technical section in it, devoted to a proof of the sound-
ness of affine logic with respect to the semantics of computability logic.
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11.1 Introduction
In the beginning was Semantics, and Semantics was Game Semantics, and

Game Semantics was Logic.1 Through it all concepts were conceived; for it all
axioms are written, and to it all deductive systems should serve. . .

This is not an evangelical story, but the story and philosophy of computabil-
ity logic (CL), the recently introduced (Japaridze, 2003) mini-religion within
logic. According to its philosophy, syntax—the study of axiomatizations or any
other, deductive or nondeductive string-manipulation systems—exclusively
owes its right on existence to semantics, and is thus secondary to it. CL be-
lieves that logic is meant to be the most basic, general-purpose formal tool po-
tentially usable by intelligent agents in successfully navigating real life. And it
is semantics that establishes that ultimate real-life meaning of logic. Syntax is
important, yet it is so not in its own right but only as much as it serves a mean-
ingful semantics, allowing us to realize the potential of that semantics in some
systematic and perhaps convenient or efficient way. Not passing the test for
soundness with respect to the underlying semantics would fully disqualify any
syntax, no matter how otherwise appealing it is. Note—disqualify the syntax

∗This material is based upon work supported by the National Science Foundation under Grant No. 0208816,
and 2005 Summer Research Grant from Villanova University.
1“In the beginning was the Word, and the Word was with God, and the Word was God. . . Through him all
things were made; without him nothing was made that has been made.” — John’s Gospel.
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and not the semantics. Why this is so hardly requires any explanation: relying
on an unsound syntax might result in wrong beliefs, misdiagnosed patients or
crashed spaceships.

Unlike soundness, completeness is a desirable but not necessary condition.
Sometimes—as, say, in the case of pure second-order logic, or first-order ap-
plied number theory with + and ×—completeness is impossible to achieve in
principle. In such cases we may still benefit from continuing working with
various reasonably strong syntactic constructions. A good example of such
a “reasonable” yet incomplete syntax is Peano arithmetic. Another example,
as we are going to see later, is affine logic, which turns out to be sound but
incomplete with respect to the semantics of CL. And even when complete ax-
iomatizations are known, it is not fully unusual for them to be sometimes arti-
ficially downsized and made incomplete for efficiency, simplicity, convenience
or even esthetic considerations. Ample examples of this can be found in ap-
plied computer science. But again, while there might be meaningful trade-offs
between (the degrees of) completeness, efficiency and other desirable-but-not-
necessary properties of a syntax, the underlying semantics remains untouch-
able, and the condition of soundness unnegotiable. It is that very untouchable
core that should be the point of departure for logic as a fundamental science.

A separate question, of course, is what counts as a semantics. The model
example of a semantics with a capital ‘S’ is that of classical logic. But in the
logical literature this term often has a more generous meaning than what CL
is ready to settle for. As pointed out, CL views logic as a universal-utility tool.
So, a capital ‘S’ semantics should be non-specific enough, and applicable to
the world in general rather than some very special and artificially selected frag-
ment of it. Often what is called a semantics is just a special-purpose apparatus
designed to help analyze a given syntactic construction rather than understand
and navigate the outside world. The usage of Kripke models as a derivability
test for intuitionistic formulas, or as a validity criterion in various systems of
modal logic is an example. An attempt to see more than a technical, syntax-
serving instrument (which, as such, may be indeed very important and useful)
in this type of lowercase ‘s’ semantics might create a vicious circle: a deduc-
tive system L under question is “right” because it derives exactly the formulas
that are valid in a such and such Kripke semantics; and then it turns out that
the reason why we are considering the such and such Kripke semantics is that
. . . it validates exactly what L derives.

This was about why in the beginning was Semantics. Now a few words
about why Semantics was Game Semantics. For CL, game is not just a game.
It is a foundational mathematical concept on which a powerful enough logic
(=semantics) should be based. This is so because, as noted, CL sees logic as a
“real-life navigational tool”, and it is games that appear to offer the most com-
prehensive, coherent, natural, adequate and convenient mathematical models
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for the very essence of all “navigational” activities of agents: their interactions
with the surrounding world. An agent and its environment translate into game-
theoretic terms as two players; their actions as moves; situations arising in the
course of interaction as positions; and success or failure as wins or losses.

It is natural to require that the interaction strategies of the party that we
have referred to as an “agent” be limited to algorithmic ones, allowing us to
henceforth call that player a machine. This is a minimum condition that any
non-esoteric game semantics would have to satisfy. On the other hand, no re-
strictions can or should be imposed on the environment, who represents ‘the
blind forces of nature, or the devil himself’ (Japaridze, 2003). Algorithmic
activities being synonymous to computations, games thus represent computa-
tional problems—interactive tasks performed by computing agents, with com-
putability meaning winnability, i.e. existence of a machine that wins the game
against any possible (behavior of the) environment.

In the 1930s mankind came up with what has been perceived as an ulti-
mate mathematical definition of the precise meaning of algorithmic solvabil-
ity. Curiously or not, such a definition was set forth and embraced before
really having attempted to answer the seemingly more basic question about
what computational problems are—the very entities that may or may not have
algorithmic solutions in the first place. The tradition established since then
in theoretical computer science by computability simply means Turing com-
putability of functions, as the task performed by every Turing machine is noth-
ing but receiving an input x and generating the output f (x) for some function
f . Turing himself (Turing, 1936), however, was more cautious about making
overly broad philosophical conclusions, acknowledging that not everything one
would potentially call a computational problem might necessarily be a func-
tion, or reducible to such. Most tasks that computers and computer networks
perform are interactive. And nowadays more and more voices are being heard
(Goldin et al., 2004; Japaridze, 2006e; Milner, 1993; Wegner, 1998) point-
ing out that true interaction might be going beyond what functions and hence
ordinary Turing machines are meant to capture.

Two main concepts on which the semantics of CL is based are those of
static games and their winnability (defined later in Sections 11.5 and 11.6).
Correspondingly, the philosophy of CL relies on two beliefs that, together,
present what can be considered an interactive version of the Church-Turing
thesis:

Belief 1. The concept of static games is an adequate formal counter-
part of our intuition of (“pure”, speed-independent) interactive computational
problems.

Belief 2. The concept of winnability is an adequate formal counterpart of
our intuition of algorithmic solvability of such problems.
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As will be seen later, one of the main features distinguishing the CL games
from more traditional game models is the absence of procedural rules (van
Benthem, 2001)—rules strictly regulating which player is to move in any given
situation. Here, in a general case, either player is free to move. It is exactly this
feature that makes players’ strategies no longer definable as functions (func-
tions from positions to moves). And it is this highly relaxed nature that makes
the CL games apparently most flexible and general of all two-player, two-
outcome games.

Trying to understand strategies as functions would not be a good idea even
if the type of games we consider naturally allowed us to do so. Because, when
it comes to long or infinite games, functional strategies would be disastrously
inefficient, making it hardly possible to develop any reasonable complexity
theory for interactive computation (the next important frontier for CL or theo-
retical computer science in general). To understand this, it would be sufficient
to just reflect on the behavior of one’s personal computer. The job of your com-
puter is to play one long—potentially infinite—game against you. Now, have
you noticed your faithful servant getting slower every time you use it? Probably
not. That is because the computer is smart enough to follow a non-functional
strategy in this game. If its strategy was a function from positions (interaction
histories) to moves, the response time would inevitably keep worsening due to
the need to read the entire—continuously lengthening and, in fact, practically
infinite—interaction history every time before responding. Defining strategies
as functions of only the latest moves (rather than entire interaction histories)
in Abramsky and Jagadeesan’s (1994) tradition is also not a way out, as typi-
cally more than just the last move matters. Back to your personal computer, its
actions certainly depend on more than your last keystroke.

Computability in the traditional Church-Turing sense is a special case
of winnability—winnability restricted to two-step (input/output, question/
answer) interactive problems. So is the classical concept of truth, which is
nothing but winnability restricted to propositions, viewed by CL as zero-step
problems, i.e. games with no moves that are automatically won or lost de-
pending on whether they are true or false. This way, the semantics of CL is a
generalization, refinement and conservative extension of that of classical logic.

Thinking of a human user in the role of the environment, computational
problems are synonymous to computational tasks—tasks performed by a ma-
chine for the user/environment. What is a task for a machine is then a resource
for the environment, and vice versa. So the CL games, at the same time, for-
malize our intuition of computational resources. Logical operators are under-
stood as operations on such tasks/ resources/games, atoms as variables ranging
over tasks/resources/games, and validity of a logical formula as being “always
winnable”, i.e. as existence—under every particular interpretation of atoms—
of a machine that successfully accomplishes/provides/wins the corresponding
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task/resource/game no matter how the environment behaves. With this seman-
tics, ‘computability logic is a formal theory of computability in the same sense
as classical logic is a formal theory of truth’ (Japaridze, 2006c). Furthermore,
as mentioned, the classical concept of truth is a special case of winnability,
which eventually translates into classical logic’s being nothing but a special
fragment of computability logic.

CL is a semantically constructed logic and, at this young age, its syntax is
only just starting to develop, with open problems and unverified conjecture pre-
vailing over answered questions. In a sense, this situation is opposite to the case
with some other non-classical traditions such as intuitionistic or linear logics
where, as most logicians would probably agree, “in the beginning was Syn-
tax”, and really good formal semantics convincingly justifying the proposed
syntactic constructions are still being looked for. In fact, the semantics of CL
can be seen to be providing such a justification, although, for linear logic, this
is only in a limited sense explained below.

The set of valid formulas in a certain fragment of the otherwise more expres-
sive language of CL forms a logic that is similar to but by no means the same
as linear logic. The two logics typically agree on short and simple formulas
(perhaps with the exception for those involving exponentials, where disagree-
ments may start already on some rather short formulas). Say, both logics reject
P→ P ∧ P and accept P→ P % P, with classical-shape propositional connec-
tives here and later understood as the corresponding multiplicative operators
of linear logic, and square-shape operators as additives (%=“with”, &=“plus”).
Similarly, both logics reject P&¬P and accept P∨¬P. On the other hand, CL
disagrees with linear logic on many more evolved formulas. For example, CL
validates the following two principles rejected even by affine logic AL—linear
logic with the weakening rule:

((P ∧ Q) ∨ (R ∧ S ))→ ((P ∨ R) ∧ (Q ∨ S ));

(P∧ (R%S ))% (Q∧ (R%S ))% ((P%Q)∧R)% ((P%Q)∧S ) → (P%Q)∧ (R%S ).

Neither the similarities nor the discrepancies are a surprise. The philoso-
phies of CL and linear logic overlap in their striving to develop a logic of
resources. But the ways this philosophy is materialized are rather different. CL
starts with a mathematically strict and intuitively convincing semantics, and
only after that, as a natural second step, asks what the corresponding logic and
its possible axiomatizations are. On the other hand, it would be accurate to
say that linear logic started directly from the second step. Even though certain
companion semantics were provided for it from the very beginning, those are
not quite what we earlier agreed to call capital-‘S’. As a formal theory of re-
sources (rather than that of phases or coherent spaces), linear logic has been
motivated and introduced syntactically rather than semantically, essentially by
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taking classical sequent calculus and deleting the rules that seemed unaccept-
able from a certain intuitive, naive resource point of view. Hence, in the ab-
sence of a clear formal concept of resource-semantical truth or validity, the
question about whether the resulting system was complete could not even be
meaningfully asked. In this process of syntactically rewriting classical logic
some innocent, deeply hidden principles could have easily gotten victimized.
CL believes that this is exactly what happened, with the above formulas sepa-
rating it from linear logic—and more such formulas to be seen later—viewed
as babies thrown out with the bath water. Of course, many retroactive attempts
have been made to find semantical (often game-semantical) justifications for
linear logic. Technically it is always possible to come up with some sort of
a formal semantics that matches a given target syntactic construction, but the
whole question is how natural and meaningful such a semantics is in its own
rights, and how adequately it corresponds to the logic’s underlying philoso-
phy and ambitions. ‘Unless, by good luck, the target system really is “the right
logic”, the chances of a decisive success when following the odd scheme from
syntax to semantics could be rather slim’ (Japaridze, 2003). The natural scheme
is from semantics to syntax. It matches the way classical logic evolved and cli-
maxed in Gödel’s completeness theorem. And, as we now know, this is exactly
the scheme that computability logic, too, follows.

Intuitionistic logic is another example of a syntactically conceived logic.
Despite decades of efforts, no fully convincing semantics has been found for
it. Lorenzen’s game semantics (Felscher, 1985; Lorenzen, 1959), which has
a concept of validity without having a concept of truth, has been perceived
as a technical supplement to the existing syntax rather than as having in-
dependent importance. Some other semantics, such as Kleene’s realizability
(Kleene, 1952) or Gödel’s Dialectica interpretation (Gödel, 1958), are closer
to what we might qualify as capital-‘S’. But, unfortunately, they validate cer-
tain principles unnegotiably rejected by intuitionistic logic. From our per-
spective, the situation here is much better than with linear logic though. In
Japaridze (2006b), Heyting’s first-order intuitionistic calculus has been shown
to be sound with respect to the CL semantics. And the propositional fragment
of Heyting’s calculus has also been shown to be complete (Japaridze, 2007c, d,
2008b; Vereshchagin, 2006). This signifies success—at least at the propo-
sitional level—in semantically justifying intuitionistic logic, and a material-
ization of Kolmogorov’s (1932) well known yet so far rather abstract thesis
according to which intuitionistic logic is a logic of problems. Just as the re-
source philosophy of CL overlaps with that of linear logic, so does its algo-
rithmic philosophy with the constructivistic philosophy of intuitionism. The
difference, again, is in the ways this philosophy is materialized. Intuitionistic
logic has come up with a “constructive syntax” without having an adequate un-
derlying formal semantics, such as a clear concept of truth in some constructive
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sense. This sort of a syntax was essentially obtained from the classical one by
banning the offending law of the excluded middle. But, as in the case of linear
logic, the critical question immediately springs out: where is a guarantee that
together with excluded middle some innocent principles would not be expelled
as well? The constructivistic claims of CL, on the other hand, are based on
the fact that it defines truth as algorithmic solvability. The philosophy of CL
does not find the term constructive syntax meaningful unless it is understood
as soundness with respect to some constructive semantics, for only a semantics
may or may not be constructive in a reasonable sense. The reason for the fail-
ure of P & ¬P in CL is not that this principle . . . is not included in its axioms.
Rather, the failure of this principle is exactly the reason why this principle, or
anything else entailing it, would not be among the axioms of a sound system
for CL. Here “failure” has a precise semantical meaning. It is non-validity, i.e.
existence of a problem A for which A & ¬A is not algorithmically solvable.

It is also worth noting that, while intuitionistic logic irreconcilably defies
classical logic, computability logic comes up with a peaceful solution accept-
able for everyone. The key is the expressiveness of its language, that has (at
least) two versions for each traditionally controversial logical operator, and
particularly the two versions ∨ and & of disjunction. As will be seen later,
the semantical meaning of ∨ conservatively extends—from moveless games
to all games—its classical meaning, and the principle P ∨ ¬P survives as it
represents an always-algorithmically-solvable combination of problems, even
if solvable in a sense that some constructivistically-minded might fail—or pre-
tend to fail—to understand. And the semantics of &, on the other hand, formal-
izes and conservatively extends a different, stronger meaning which apparently
every constructivist associates with disjunction. As expected, then P &¬P turns
out to be semantically invalid. CL’s proposal for settlement between classical
and constructivistic logics then reads: ‘If you are open (=classically) minded,
take advantage of the full expressive power of CL; and if you are constructivis-
tically minded, just identify a collection of the operators whose meanings seem
constructive enough to you, mechanically disregard everything containing the
other operators, and put an end to those fruitless fights about what deductive
methods or principles should be considered right and what should be deemed
wrong’ (Japaridze, 2003).

Back to linear—more precisely, affine—logic. As mentioned, AL is sound
with respect to the CL semantics, a proof of which is the main new techni-
cal contribution of the present paper. This is definitely good news from the
“better something than nothing” standpoint. AL is simple and, even though in-
complete, still reasonably strong. What is worth noting is that our soundness
proof for AL, just as all other soundness proofs known so far in CL, includ-
ing that for the intuitionistic fragment (Japaridze, 2007d), or the CL4 fragment
(Japaridze, 2007a) that will be discussed in Section 11.9, is constructive. This
is in the sense that, whenever a formula F is provable in a given deductive
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system, an algorithmic solution for the problem(s) represented by F can be au-
tomatically extracted from the proof of F. The persistence of this phenomenon
for various fragments of CL carries another piece of good news: CL provides
a systematic answer not only to the theoretical question “what can be com-
puted?” but, as it happens, also to the more terrestrial question “how can be
computed?”.

The main practical import of the constructive soundness result for AL (just
as for any other sublogic of CL) is related to the potential of basing applied
theories or knowledge base systems on that logic, the latter being a reason-
able, computationally meaningful alternative to classical logic. The non-logical
axioms—or knowledge base—of an AL-based applied system/theory would
be any collection of (formulas representing) problems whose algorithmic so-
lutions are known. Then our soundness result for AL guarantees that every
theorem T of the theory also has an algorithmic solution and that, furthermore,
such a solution, itself, can be effectively constructed from a proof of T . This
makes AL a systematic problem-solving tool: finding a solution for a given
problem reduces to finding a proof of that problem in an AL-based theory. The
incompleteness of AL only means that, in its language, this logic is not as per-
fect/strong as a formal tool could possibly be, and that, depending on needs,
it makes sense to continue looking for further sound extensions (up to a com-
plete one) of it. As pointed out earlier, when it comes to applications, unlike
soundness, completeness is a desirable but not necessary condition.

With the two logics in a sense competing for the same market, the main—
or perhaps only—advantage of linear logic over CL is its having a nice and
simple syntax. In fact, linear logic is (rather than has) a beautiful syntax; and
computability logic is (rather than has) a meaningful semantics. At this point
it is not clear what a CL-semantically complete extension of AL would look
like syntactically. As a matter of fact, while the set of valid formulas of the
exponential-free fragment of the language of linear logic has been shown to be
decidable (Japaridze, 2007a), so far it is not even known whether that set in the
full language is recursively enumerable. If it is, finding a complete axiomati-
zation for it would most likely require a substantially new syntactic approach,
going far beyond the traditional sequent-calculus framework within which lin-
ear logic is constructed (a possible candidate here is cirquent calculus, briefly
discussed at the end of this section). And, in any case, such an axiomatization
would hardly be as simple as that of AL, so the syntactic simplicity advantage
of linear logic will always remain. Well, CL has one thing to say: simplicity is
good, yet, if it is most important, then nothing can ever beat . . . the empty logic.

The rest of this paper is organized as follows. Sections 11.2–11.8 provide a
detailed introduction to the basic semantical concepts of computability logic:
games and operations on them, two equivalent models of interactive computa-
tion (algorithmic strategies), and validity. The coverage of most of these con-
cepts is more detailed here than in the earlier survey-style papers (Japaridze,
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2003, 2006e) on CL, and is supported with ample examples and illustrations.
Section 11.9 provides an overview, without a proof, of the strongest techni-
cal result obtained so far in computability logic, specifically, the soundness
and completeness of system CL4, whose logical vocabulary contains negation
¬, parallel (“multiplicative”) connectives ∧,∨,→, choice (“additive”) connec-
tives %,& with their quantifier counterparts%,&, and blind (“classical”) quan-
tifiers ∀,∃. Section 11.10 outlines potential applications of computability logic
in knowledge base systems, systems for planning and action, and constructive
applied theories. There the survey part of the paper ends, and the following two
sections are devoted to a formulation (Section 11.11) and proof (Section 11.12)
of the new result—the soundness of affine logic with respect to the semantics
of CL. The final Section 11.13 outlines some possible future developments in
the area.

This paper gives an overview of most results known in computability logic
as of the end of 2005, by the time when the main body of the text was written.
The present paragraph is a last-minute addition made at the beginning of 2008.
Below is a list of the most important developments that, due to being very
recent, have received no coverage in this chapter:

As already mentioned, the earlier conjecture about the completeness of
Heyting’s propositional intuitionistic calculus with respect to the se-
mantics of CL has been resolved positively. A completeness proof for
the implicative fragment of intuitionistic logic was given in Japaridze
(2007c), and that proof was later extended to the full propositional in-
tuitionistic calculus in Japaridze (2007d). With a couple of months’ de-
lay, Vereshchagin (2006) came up with an alternative proof of the same
result.

In Japaridze (2009), the implicative fragment of affine logic has been
proven to be complete with respect to the semantics of computability
logic. The former is nothing but implicative intuitionistic logic with-
out the rule of contraction. Thus, both the implication of intuitionistic
logic and the implication of affine logic have adequate interpretations in
CL—specifically, as the operations � and →, respectively. Intuitively,
as will be shown later in Section 11.4, these are two natural versions of
the operation of reduction, with the difference between A�B and A→B
being that in the former A can be “reused” while in the latter it can-
not. Japaridze (2009) also introduced a series of intermediate-strength
natural versions of reduction operations.

Section 11.4.6 briefly mentions sequential operations. The recent pa-
per (Japaridze, 2008b) has provided an elaboration of this new group
of operations (formal definitions, associated computational intuitions,
motivations, etc.), making them full-fledged citizens of computability
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logic. It has also constructed a sound and complete axiomatization of
the fragment of computability logic whose logical vocabulary, together
with negation, contains three—parallel, choice and sequential—sorts of
conjunction and disjunction.

Probably the most significant of the relevant recent developments is the
invention of cirquent calculus in Japaridze (2007b, c). Roughly, this is a
deductive approach based on circuits instead of formulas or sequents. It
can be seen as a refinement of Gentzen’s methodology, and correspond-
ingly the methodology of linear logic based on the latter, achieved by
allowing shared resources between different parts of sequents and proof
trees. Thanks to the sharing mechanism, cirquent calculus, being more
general and flexible than sequent calculus, appears to be the only reason-
able proof-theoretic approach capable of syntactically taming the other-
wise wild computability logic. Sharing also makes it possible to achieve
exponential-magnitude compressions of formulas and proofs, whether it
be in computability logic or the kind old classical logic.

11.2 Constant games
The symbolic names used in CL for the two players machine and environ-

ment are � and ⊥, respectively. ℘ is always a variable ranging over {�,⊥},
with

¬℘
meaning ℘’s adversary, i.e. the player which is not ℘. Even though it is often
a human user that acts in the role of ⊥, our sympathies are with � rather than
⊥, and by just saying “won” or “lost” without specifying by whom we always
mean won or lost by �.

The reason why I should be a fan of the machine even—in fact especially—
when it is playing against me is that the machine is a tool, and what makes it
valuable as such is exactly its winning the game, i.e. its not being malfunctional
(it is precisely losing by a machine the game that it was supposed to win what
in everyday language is called malfunctioning). Let me imagine myself using
a computer for computing the “28% of x” function in the process of preparing
my federal tax return. This is a game where the first move is mine, consisting in
inputting a number m and meaning asking � the question “what is 28% of m?”.
The machine wins iff it answers by the move/output n such that n = 0.28m. Of
course, I do not want the machine to tell me that 27, 000 is 28% of 100,000.
In other words, I do not want to win against the machine. For then I could lose
the more important game against Uncle Sam.

Before getting to a formal definition of games, let us agree without loss of
generality that a move is always a string over the standard keyboard alphabet.
One of the non-numeric and non-punctuation symbols of this alphabet, denoted
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♠, is designated as a special-status move, intuitively meaning a move that is
always illegal to make. A labeled move (labmove) is a move prefixed with �
or ⊥, with its prefix (label) indicating which player has made the move. A run
is a (finite or infinite) sequence of labmoves, and a position is a finite run.

We will be exclusively using the letters Γ,Δ,Θ,Φ,Ψ,Υ,Λ,Σ,Π for runs,
α, β, γ, δ for moves, and λ for labmoves. Runs will be often delimited by “〈”
and “〉”, with 〈〉 thus denoting the empty run. The meaning of an expression
such as 〈Φ, ℘α, Γ〉 must be clear: this is the result of appending to position Φ
the labmove ℘α and then the run Γ. We write

¬Γ

for the result of simultaneously replacing every label ℘ in every labmove of Γ
by ¬℘.

Our ultimate definition of games will be given later in terms of the simpler
and more basic class of games called constant. The following is a formal defin-
ition of constant games combined with some less formal conventions regarding
the usage of certain terminology.

Definition 1. A constant game is a pair A = (LrA,WnA), where:

1. LrA, called the structure of A, is a set of runs not containing (whatever-
labeled) move ♠, satisfying the condition that a finite or infinite run is in
LrA iff all of its nonempty finite—not necessarily proper—initial seg-
ments are in LrA (notice that this implies 〈〉 ∈ LrA). The elements of
LrA are said to be legal runs of A, and all other runs are said to be
illegal runs of A. We say that α is a legal move for ℘ in a position Φ of
A iff 〈Φ, ℘α〉 ∈ LrA; otherwise α is an illegal move. When the last move
of the shortest illegal initial segment of Γ is ℘-labeled, we say that Γ is a
℘-illegal run of A.

2. WnA, called the content of A, is a function that sends every run Γ to one
of the players � or ⊥, satisfying the condition that if Γ is a ℘-illegal run
of A, then WnA〈Γ〉 � ℘. When WnA〈Γ〉 = ℘, we say that Γ is a ℘-won
(or won by ℘) run of A; otherwise Γ is lost by ℘. Thus, an illegal run is
always lost by the player who has made the first illegal move in it.

Let A be a constant game. A is said to be finite-depth iff there is a (smallest)
integer d, called the depth of A, such that the length of every legal run of
A is ≤ d. And A is perifinite-depth iff every legal run of it is finite, even
if there are arbitrarily long legal runs. Japaridze (2003) defines the depths of
perifinite-depth games in terms of ordinal numbers, which are finite for finite-
depth games and transfinite for all other perifinite-depth games. Let us call a
legal run Γ of A maximal iff Γ is not a proper initial segment of any other legal
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run of A. Then we say that A is finite-breadth if the total number of maximal
legal runs of A, called the breadth of A, is finite. Note that, in a general case,
the breadth of a game may be not only infinite, but even uncountable. A is said
to be (simply) finite iff it only has a finite number of legal runs. Of course, A
is finite only if it is finite-breadth, and when A is finite-breadth, it is finite iff it
is finite-depth iff it is perifinite-depth.

The structure component of a constant game can be visualized as a tree
whose arcs are labeled with labmoves, as shown in Figure 11.1. Every branch
of such a tree represents a legal run, specifically, the sequence of the labels of
the arcs of that branch in the top-down direction starting from the root. For
instance, the rightmost branch (in its full length) of the tree of Figure 11.1
corresponds to the run 〈⊥γ,�γ,�α〉. Thus the nodes of a tree, identified with
the (sub)branches that end in those nodes, represent legal positions; the root
stands for the empty position, and leaves for maximal positions.
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Figure 11.1: A structure

Notice the relaxed nature of our games. In the empty position of the above-
depicted structure, both players have legal moves. This can be seen from the
two (�-labeled and ⊥-labeled) sorts of labmoves on the outgoing arcs of the
root. Let us call such positions/nodes heterogenous. Generally any non-leaf
nodes can be heterogenous, even though in our particular example only the
root is so. As we are going to see later, in heterogenous positions indeed either
player is free to move. Based on this liberal attitude, our games can be called
free, as opposed to strict games where, in every situation, at most one of the
players is allowed to move. Of course, strict games can be considered special
cases of our free games—the cases with no heterogenous nodes. Even though
not having legal moves does not formally preclude the “wrong” player to move
in a given position, such an action, as we remember, results in an immediate
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loss for that player and hence amounts to not being permitted to move. There
are good reasons in favor of the free-game approach. Hardly many tasks that
humans, computers or robots perform in real life are strict. Imagine you are
playing chess over the Internet on two boards against two independent adver-
saries that, together, form the (one) environment for you. Let us say you play
white on both boards. Certainly the initial position of this game is not het-
erogenous. However, once you make your first move—say, on board #1—the
picture changes. Now both you and the environment have legal moves, and
who will be the next to move depends on who can or wants to act sooner.
Namely, you are free to make another opening move on board #2, while the
environment—adversary #1—can make a reply move on board #1. A strict-
game approach would have to impose some not-very-adequate supplemental
conditions uniquely determining the next player to move, such as not allowing
you to move again until receiving a response to your previous move. Let alone
that this is not how the real two-board game would proceed, such regulations
defeat the very purpose of the idea of parallel/distributed computations with all
the known benefits it offers.

While the above discussion used the term “strict game” in a perhaps some-
what more general sense, let us agree that from now on we will stick to the
following meaning of that term:

Definition 2. A constant game A is said to be strict iff, for every legal position
Φ of A, we have {α | 〈Φ,�α〉 ∈ LrA} = ∅ or {α | 〈Φ,⊥α〉 ∈ LrA} = ∅.

Figure 11.2 adds a content to the structure of Figure 11.1, thus turning it
into a constant game:
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Figure 11.2: Constant game = structure + content



262 In the Beginning Was Game Semantics

Here the label of each node indicates the winner in the corresponding po-
sition. For example, we see that the empty run is won by ⊥, and the run
〈�α,⊥γ,�β〉won by�. There is no need to indicate winners for illegal runs: as
we remember, such runs are lost by the player responsible for making them ille-
gal, so we can tell at once that, say, 〈�α,⊥γ,�α,�β,⊥γ〉 is lost by � because
the offending third move of it is �-labeled. Generally, every perifinite-depth
constant game can be fully represented in the style of Figure 11.2 by labeling
the nodes of the corresponding structure tree. To capture a non-perifinite-depth
game, we will need some additional way to indicate the winners in infinite
branches, for no particular (end)nodes represent such branches.

The traditional, strict-game approach usually defines a player ℘’s strategy
as a function that sends every position in which ℘ has legal moves to one
of those moves. As pointed out earlier, such a functional view is no longer
applicable in the case of properly free games. Indeed, if f� and f⊥ are the two
players’ functional strategies for the game of Figure 11.2 with f�(〈〉) = α and
f⊥(〈〉) = β, then it is not clear whether the first move of the corresponding run
will be �α or ⊥β. Yet, even if not functional, � does have a winning strategy
for that game. What, exactly, a strategy means will be explained in Section
11.6. For now, in our currently available ad hoc terms, one of �’s winning
strategies sounds as follows: “Regardless of what the adversary is doing or has
done, go ahead and make move α; make β as your second move if and when
you see that the adversary has made move γ, no matter whether this happened
before or after your first move”. Which of the runs consistent with this strategy
will become the actual one depends on how (and how fast) ⊥ acts, yet every
such run will be a success for �. It is left as an exercise for the reader to see
that there are exactly five possible legal runs consistent with�’s above strategy,
all won by �: 〈�α〉, 〈�α,⊥β〉, 〈�α,⊥γ,�β〉, 〈⊥β,�α〉 and 〈⊥γ,�α,�β〉. As
for illegal runs consistent with that strategy, it can be seen that every such run
would be ⊥-illegal and hence, again, won by �.

Below comes our first formal definition of a game operation. This opera-
tion, called prefixation, is somewhat reminiscent of the modal operator(s) of
dynamic logic. It takes two arguments: a (here constant) game A and a legal
position Φ of A, and generates the game 〈Φ〉A that, with A visualized as a
tree in the style of Figure 11.2, is nothing but the subtree rooted at the node
corresponding to position Φ. This operation is undefined when Φ is an illegal
position of A.

Definition 3. Let A be a constant game and Φ a legal position of A. The game
〈Φ〉A is defined by:

Lr〈Φ〉A = {Γ | 〈Φ, Γ〉 ∈ LrA}.

Wn〈Φ〉A〈Γ〉 =WnA〈Φ, Γ〉.
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Intuitively, 〈Φ〉A is the game playing which means playing A starting (con-
tinuing) from position Φ. That is, 〈Φ〉A is the game to which A evolves (will
be “brought down”) after the moves of Φ have been made.

11.3 Games in general, and nothing but games
Computational problems in the traditional, Church-Turing sense can be seen

as strict, depth-2 games of the special type shown in Figure 11.3. The first-
level arcs of such a game represent inputs, i.e., ⊥’s moves; and the second-
level arcs represent outputs, i.e., �’s moves. The root of this sort of a game is
always �-labeled as it corresponds to the situation when there was no input,
in which case the machine is considered the winner because the absence of
an input removes any further responsibility from it. All second-level nodes,
on the other hand, are ⊥-labeled, for they represent the situations when there
was an input but the machine failed to generate any output. Finally, each group
of siblings of the third-level nodes has exactly one �-labeled member. This is
so because traditional problems are about computing functions, meaning that
there is exactly one “right” output per given input. What particular nodes of
those groups will have label �—and only this part of the game tree—depends
on what particular function is the one under question. The game of Figure 11.3
is about computing the successor function.
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Figure 11.3: The problem of computing n + 1

Once we agree that computational problems are nothing but games, the dif-
ference in the degrees of generality and flexibility between the traditional ap-
proach to computational problems and our approach becomes apparent and
appreciable. What we see in Figure 11.3 is indeed a very special sort of game,
and there is no good call for confining ourselves to its limits. In fact, staying
within those limits would seriously retard any more or less advanced and sys-
tematic study of computability. First of all, one would want to get rid of the
“one �-labeled node per sibling group” restriction for the third-level nodes.
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Many natural problems, such as the problem of finding a prime integer between
n and 2n, or finding an integral root of x2 − 2n = 0, may have more than one
as well as less than one solution. That is, there can be more than one as well as
less than one “right” output on a given input n. And why not further get rid of
any remaining restrictions on the labels of whatever-level nodes and whatever-
level arcs. One can easily think of natural situations when, say, some inputs
do not obligate the machine to generate an output and thus the corresponding
second-level nodes should be �-labeled. An example would be the case when
the machine is computing a partially-defined function f and receives an input
n on which f is undefined. So far we have been talking about generalizations
within the depth-2 restriction, corresponding to viewing computational prob-
lems as very short dialogues between the machine and its environment. Permit-
ting longer-than-2 or even infinitely long branches would allow us to capture
problems with arbitrarily high degrees of interactivity and arbitrarily complex
interaction protocols. The task performed by a network server is a tangible
example of an infinite dialogue between the server and its environment—the
collection of clients, or let us just say the rest of the network. Notice that such
a dialogue is usually a properly free game with a much more sophisticated in-
terface between the interacting parties than the simple input/output interface
offered by the ordinary Turing machine model, where the whole story starts by
the environment asking a question (input) and ends by the machine generating
an answer (output), with no interaction whatsoever in-between these two steps.

Removing restrictions on depths yields a meaningful generalization not only
in the upward, but in the downward direction as well: it does make perfect sense
to consider “dialogues” of lengths less than 2. Constant games of depth 0 we
call elementary. There are exactly two elementary constant games, for which
we use the same symbols � and ⊥ as for the two players (Figure 11.4):

game �
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Figure 11.4: Elementary constant games

We identify these with the two propositions of classical logic: � (true) and
⊥ (false). “Snow is white” is thus a moveless game automatically won by the
machine, while “Snow is black” is automatically lost. So, not only traditional
computational problems are special cases of our games, but traditional proposi-
tions as well. This is exactly what eventually makes classical logic a natural—
elementary—fragment of computability logic.
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As we know, however, propositions are not sufficient to build a reasonably
expressive logic. For higher expressiveness, classical logic generalizes proposi-
tions to predicates. Let us fix two infinite sets of expressions: the set {v1, v2, . . .}
of variables and the set {1, 2, . . .} of constants. Without loss of generality here
we assume that this collection of constants is exactly the universe of discourse
in all cases that we consider. By a valuation we mean a function e that sends
each variable x to a constant e(x). In these terms, a classical predicate p can
be understood as a function that sends each valuation e to either � (meaning
that p is true at e) or ⊥ (meaning that p is false at e). Propositions can thus be
thought of as special, constant cases of predicates—predicates that return the
same proposition for every valuation.

The concept of games that we define below generalizes constant games in
exactly the same sense as the above classical concept of predicates generalizes
propositions:

Definition 4. A game is a function from valuations to constant games.
We write e[A] (rather than A(e)) to denote the constant game returned by

game A for valuation e. Such a constant game e[A] is said to be an instance
of A.

We also typically write LrA
e and WnA

e instead of Lre[A] and Wne[A].

Throughout this paper, x, y, z will be usually used as metavariables for vari-
ables, c for constants and e for valuations.

Just as this is the case with propositions versus predicates, we think of con-
stant games in the sense of Definition 1 as special, constant cases of games in
the sense of Definition 4. In particular, each constant game A′ is the game A
such that, for every valuation e, e[A] = A′. From now on we will no longer
distinguish between such A and A′, so that, if A is a constant game, it is its own
instance, with A = e[A] for every e.

The notion of elementary game that we defined for constant games naturally
generalizes to all games by stipulating that a given game is elementary iff all
of its instances are so. Hence, just as we identified classical propositions with
constant elementary games, classical predicates from now on will be identified
with elementary games. For instance, Even(x) is the elementary game such that
e[Even(x)] is the game � if e(x) is even, and the game ⊥ if e(x) is odd. Many
other concepts originally defined only for constant games—including the prop-
erties strict, finite, (peri)finite-depth and finite-breadth—can be extended to all
games in a similar way.

We say that a game A depends on a variable x iff there are two valuations
e1, e2 which agree on all variables except x such that e1[A] � e2[A]. Constant
games thus do not depend on any variables. A is said to be finitary iff there is a
finite set �x of variables such that, for every two valuations e1 and e2 that agree
on all variables of �x, we have e1[A] = e2[A]. The cardinality of (the smallest)
such �x is said to be the arity of A. So, “constant game” and “0-ary game” are
synonyms.
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To generalize the standard operation of substitution of variables to games,
let us agree that by a term we mean either a variable or a constant. The domain
of each valuation e is extended to all terms by stipulating that,

for any constant c, e(c) = c.

Definition 5. Let A be a game, x1, . . . , xn pairwise distinct variables, and
t1, . . . , tn any (not necessarily distinct) terms. The result of substituting
x1, . . . , xn by t1, . . . , tn in A, denoted A(x1/t1, . . . , xn/tn), is defined by stipu-
lating that, for every valuation e, e[A(x1/t1, . . . , xn/tn)] = e′[A], where e′ is the
valuation for which we have:

1. e′(x1) = e(t1), . . . , e′(xn) = e(tn);
2. For every variable y � {x1, . . . , xn}, e′(y) = e(y).

Intuitively A(x1/t1, . . . , xn/tn) is A with x1, . . . , xn remapped to t1, . . . , tn,
respectively. For instance, if A is the predicate/elementary game x < y, then
A(x/y, y/x) is y < x, A(x/y) is y < y, A(y/3) is x < 3, and A(z/3)—where z is
different from x, y—remains x < y because A does not depend on z.

Following the standard readability-improving practice established in the lit-
erature for predicates, we will often fix a tuple (x1, . . . , xn) of pairwise distinct
variables for a game A and write A as A(x1, . . . , xn). It should be noted that
when doing so, by no means do we imply that x1, . . . , xn are all of (or only)
the variables on which A depends. Representing A in the form A(x1, . . . , xn)
sets a context in which we can write A(t1, . . . , tn) to mean the same as the more
clumsy expression A(x1/t1, . . . , xn/tn). So, if the game x < y is represented as
A(x), then A(3) will mean 3 < y and A(y) mean y < y. And if the same game is
represented as A(y, z) (where z � x, y), then A(z, 3) means x < z while A(y, 3)
again means x < y.

The entities that in common language we call games are at least as often
non-constant as constant. Chess is a classical example of a constant game. On
the other hand, many of the card games—including solitaire games where only
one player is active—are more naturally represented as non-constant games:
each session/instance of such a game is set by a particular permutation of the
card deck, and thus the game can be understood as a game that depends on
a variable x ranging over the possible settings of the deck. Even the game of
checkers—another “classical example” of a constant game—has a natural non-
constant generalization Checkers (x) (with x ranging over {8, 10, 12, 14, . . .}),
meaning a play on the board of size x× x where, in the initial position, the first
3
2 x black cells are filled with white pieces and the last 3

2 x black cells with black
pieces. Then the ordinary checkers can be written as Checkers (8). Further-
more, the numbers of pieces of either color also can be made variable, getting
an even more general game Checkers (x, y, z), with the ordinary checkers being
the instance Checkers (8, 12, 12) of it. By further allowing rectangular- (rather
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than just square-) shape boards, we would get a game that depends on four vari-
ables, etc. Computability theory texts also often appeal to non-constant games
to illustrate certain complexity-theory concepts such as alternating computa-
tion or PSPACE-completeness. The Formula Game or Generalized Geography
(Sipser, 2006, Section 8.3) are typical examples. Both can be understood as
games that depend on a variable x, with x ranging over quantified Boolean for-
mulas in Formula Game and over directed graphs in Generalized Geography.

A game A is said to be unistructural in a variable x—or simply
x-unistructural—iff, for every two valuations e1 and e2 that agree on all vari-
ables except x, we have LrA

e1
= LrA

e2
. And A is (simply) unistructural iff

LrA
e1
= LrA

e2
for any two valuations e1 and e2. A unistructural game is thus a

game whose every instance has the same structure (the Lr component). And
A is unistructural in x iff the structure of any instance e[A] of A does not de-
pend on how e evaluates the variable x. Of course, every constant or elemen-
tary game is unistructural, and every unistructural game is unistructural in all
variables. While natural examples of non-unistructural games exist such as the
games mentioned in the above paragraph, all examples of particular games
discussed elsewhere in the present paper are unistructural. In fact, every non-
unistructural game can be rather easily rewritten into an equivalent (in a certain
reasonable sense) unistructural game. One of the standard ways to convert a
non-unistructural game A into a corresponding unistructural game A′ is to take
the union (or anything bigger) U of the structures of all instances of A to be
the common-for-all-instances structure of A′, and then extend the (relevant part
of the) Wn function of each instance e[A] of A to U by stipulating that, if Γ ∈
(U−LrA

e ), then the player who made the first illegal (in the sense of e[A]) move
is the loser in e[A′]. So, say, in the unistructural version of generalized check-
ers, an attempt by a player to move to a non-existing cell would result in a loss
for that player but otherwise considered a legal move. The class of naturally
emerging unistructural games is very wide. All elementary games are trivially
there, and Theorem 14.1 of Japaridze (2003) establishes that all of the game
operations studied in CL preserve the unistructural property of games. In view
of these remarks, if the reader feels more comfortable this way, without much
loss of generality (s)he can always understand “game” as “unistructural game”.

What makes unistructural games nice is that, even when non-constant, they
can still be visualized in the style of Figures 11.2 and 11.3. The difference
will be that whereas the nodes of a game tree of a constant game are always
labeled by propositions (� or ⊥), now such labels can be any predicates. The
constant game of Figure 11.3 was about the problem of computing n+1. We can
generalize it to the problem of computing n+ z, where z is a (the only) variable
on which the game depends. The corresponding non-constant game then can
be drawn by modifying the labels of the bottom-level nodes of Figure 11.3 as
follows:
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Figure 11.5: The problem of computing n + z

Denoting the above game by A(z), the game of Figure 11.3 becomes the
instance A(1) of it. The latter results from replacing z by 1 in the tree of
Figure 11.5. This replacement turns every label n + z = m into the constant
game/proposition n + 1 = m, i.e.—depending on its truth value—into � or ⊥.

Let A be an arbitrary game. We say that Γ is a unilegal run (position if finite)
of A iff, for every valuation e, Γ is a legal run of e[A]. The set of all unilegal
runs of A is denoted by LRA. Of course, for unistructural games, “legal” and
“unilegal” mean the same. The operation of prefixation defined in Section 11.2
only for constant games naturally extends to all games. For 〈Φ〉A to be defined,
Φ should be a unilegal position of A. Once this condition is satisfied, we define
〈Φ〉A as the unique game such that, for every valuation e, e[〈Φ〉A] = 〈Φ〉e[A].
For example, where A(z) is the game of Figure 11.5, 〈⊥1〉A(z) is the subtree
rooted at the first (leftmost) child of the root, and 〈⊥1,�2〉A(z) is the subtree
rooted at the second grandchild from the first child, i.e. simply the predicate
1 + z = 2.

Computability logic can be seen as an approach that generalizes both the
traditional theory of computation and traditional logic, and unifies them on the
basis of one general formal framework. The main objects of study of the tra-
ditional theory of computation are traditional computational problems, and the
main objects of study of traditional logic are predicates. Both of these sorts
of objects turn out to be special cases of our games. So, one can characterize
classical logic as the elementary—non-interactive—fragment of computabil-
ity logic. And characterize (the core of) the traditional theory of computation
as the fragment of computability logic where interaction is limited to its sim-
plest, two-step— input/output, or question/answer—form. The basic entities
on which such a unifying framework needs to focus are thus games, and noth-
ing but games.
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11.4 Game operations
As we already know, logical operators in CL stand for operations on games.

There is an open-ended pool of operations of potential interest, and which of
those to study may depend on particular needs and taste. Yet, there is a core
collection of the most basic and natural game operations, to the definitions of
which the present section is devoted: the propositional connectives2 ¬, ∧, ∨,
→, %, &, ∧| , ∨| , ∧ | , ◦| , ◦| ,� and the quantifiers%,&,∧,∨, ∀, ∃. Among these
we see all operators of classical logic, and our choice of the classical notation
for them is no accident. It was pointed out earlier that classical logic is nothing
but the elementary, zero-interactivity fragment of computability logic. Indeed,
after analyzing the relevant definitions, each of the classically-shaped opera-
tions, when restricted to elementary games, can be easily seen to be virtually
the same as the corresponding operator of classical logic. For instance, if A and
B are elementary games, then so is A ∧ B, and the latter is exactly the classical
conjunction of A and B understood as an (elementary) game. In a general—not-
necessarily-elementary—case, however, ¬,∧,∨,→ become more reminiscent
of (yet not the same as) the corresponding multiplicative operators of linear
logic. Of course, here we are essentially comparing apples with oranges for, as
noted earlier, linear logic is a syntax while computability logic is a semantics,
and it may be not clear in what precise sense one can talk about similarities
or differences. In the same apples and oranges style, our operations %,&,%,&
can be perceived as relatives of the additive connectives and quantifiers of lin-
ear logic, ∧,∨ as “multiplicative quantifiers”, and ∧| , ∨| , ◦| , ◦| as “exponentials”,
even though it is hard to guess which of the two groups—∧| , ∨| or ◦| , ◦| —would be
closer to an orthodox linear logician’s heart. The quantifiers ∀,∃, on the other
hand, hardly have any reasonable linear-logic counterparts.

Let us agree that in every definition of this section x stands for an arbitrary
variable, A, B, A(x), A1, A2, . . . for arbitrary games, e for an arbitrary valuation,
and Γ for an arbitrary run. Note that it is sufficient to define the content (Wn
component) of a given constant game only for its legal runs, for then it uniquely
extends to all runs. Furthermore, as usually done in logic textbooks and as we
already did with the operation of prefixation, propositional connectives can be
initially defined just as operations on constant games; then they automatically
extend to all games by stipulating that e[. . .] simply commutes with all of those
operations. That is, ¬A is the unique game such that, for every e, e[¬A] =
¬e[A]; e[A1∧A2] is the unique game such that, for every e, e[A1∧A2] = e[A1]∧
e[A2], etc. With this remark in mind, in each of our definitions of propositional

2The term “propositional” is not very adequate here, and we use it only by inertia from classical logic.
Propositions are very special—elementary and constant—cases of games. On the other hand, our “proposi-
tional” operations are applicable to all games, and not all of them preserve the elementary property of their
arguments, even though they do preserve the constant property.
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connectives that follow in this section, games A, B, A1, A2, . . . are implicitly
assumed to be constant. Alternatively, this assumption can be dropped; all one
needs to change in the corresponding definitions in this case is to write LrA

e
and WnA

e instead of simply LrA and WnA.
For similar reasons, it would be sufficient to define QxA (where Q is a quan-

tifier) just for 1-ary games A that only depend on x. Since we are lazy to explain
how, exactly, Qx would then extend to all games, our definitions of quantifiers
given in this section, unlike those of propositional connectives, neither explic-
itly nor implicitly assume any conditions on the arity of A.

11.4.1 Negation
Negation ¬ is the role-switch operation: it turns �’s wins and legal moves

into ⊥’s wins and legal moves, and vice versa. For instance, if Chess is the
game of chess from the point of view of the white player, then ¬Chess is the
same game as seen by the black player. Figure 11.6 illustrates how applying
¬ to a game A generates the exact “negative image” of A, with � and ⊥ inter-
changed both in the nodes and the arcs of the game tree.
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Figure 11.6: Negation

Notice the three different meanings that we associate with symbol ¬. In
Section 11.2 we agreed to use ¬ as an operation on players (turning � into ⊥
and vice versa), and an operation on runs (interchanging � with ⊥ in every
labmove). Below comes our formal definition of the third meaning of ¬ as an
operation on games:

Definition 6. Negation ¬A:

Γ ∈ Lr¬A iff ¬Γ ∈ LrA.

Wn¬A〈Γ〉 = � iffWnA〈¬Γ〉 = ⊥.
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Even from the informal explanation of ¬ it is clear that ¬¬A is always the
same as A, for interchanging in A the payers’ roles twice brings the players
to their original roles. It would also be easy to show that we always have
¬(〈Φ〉A) = 〈¬Φ〉¬A. So, say, if α is �’s legal move in the empty position
of A that brings A down to B, then the same α is ⊥’s legal move in the empty
position of ¬A, and it brings ¬A down to ¬B. Test the game A of Figure 11.6
to see that this is indeed so.

11.4.2 Choice operations
%,&,% and & are called choice operations. A1 % A2 is the game where,

in the initial position, ⊥ has two legal moves (choices): 1 and 2. Once such
a choice i is made, the game continues as the chosen component Ai, meaning
that 〈⊥i〉(A1 % A2) = Ai; if a choice is never made, ⊥ loses. A1 & A2 is simi-
lar/symmetric, with � and ⊥ interchanged; that is, in A1&A2 it is � who makes
an initial choice and who loses if such a choice is never made. Figure 11.7 helps
us visualize the way % and & combine two games A and B:
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Figure 11.7: Choice propositional connectives

The game A of Figure 11.6 can now be easily seen to be (�&⊥)%(⊥&�), and
its negation be (⊥%�)& (�%⊥). The symmetry/duality familiar from classical
logic persists: we always have ¬(A % B) = ¬A &¬B and ¬(A & B) = ¬A%¬B.
Similarly for the quantifier counterparts % and & of % and &. We might have
already guessed that %xA(x) is nothing but the infinite %-conjunction A(1) %
A(2)% A(3)% . . . and&xA(x) is A(1)& A(2)& A(3)& . . ., as can be seen from
Figure 11.8.

%xA(x)

��

��

�
	

	
		
⊥1









⊥3⊥2

�
�

�. . .

A(1) A(2) A(3)

&xA(x)

��

��

⊥
	

	
		
�1









�3�2

�
�

�. . .

A(1) A(2) A(3)

Figure 11.8: Choice quantifiers
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So, we always have 〈⊥c〉%xA(x) = A(c) and 〈�c〉&xA(x) = A(c). The
meaning of such a labmove ℘c can be characterized as that player ℘ se-
lects/specifies the particular value c for x, after which the game continues—and
the winner is determined—according to the rules of A(c).

Now we are already able to express traditional computational problems us-
ing formulas. Traditional problems come in two forms: the problem of com-
puting a function f (x), or the problem of deciding a predicate p(x). The former
can be captured by %x&y( f (x) = y), and the latter (which, of course, can be
seen as a special case of the former) by %x

(
p(x) & ¬p(x)

)
. So, the game of

Figure 11.3 will be written as %x&y(x + 1 = y), and the game of Figure 11.5
as%x&y(x + z = y).

The following Definition 7 summarizes the above-said, and generalizes %,&
from binary to any ≥ 2-ary operations. Note the perfect symmetry in it: the
definition of each choice operation can be obtained from that of its dual by just
interchanging � with ⊥.

Definition 7. In clauses 1 and 2, n is 2 or any greater integer.
1. Choice conjunction A1 % . . . % An:

LrA1%...%An = {〈〉} ∪ {〈⊥i, Γ〉 | i ∈ {1, . . . , n}, Γ ∈ LrAi}.

WnA1%...%An〈〉 = �;
where i ∈ {1, . . . , n}, WnA1%...%An〈⊥i, Γ〉 =WnAi〈Γ〉.

2. Choice disjunction A1 & . . . & An:

LrA1&...&An = {〈〉} ∪ {〈�i, Γ〉 | i ∈ {1, . . . , n}, Γ ∈ LrAi}.

WnA1&...&An〈〉 = ⊥;
where i ∈ {1, . . . , n}, WnA1&...&An〈�i, Γ〉 =WnAi〈Γ〉.

3. Choice universal quantification %xA(x):

Lre[%xA(x)] = {〈〉} ∪ {〈⊥c, Γ〉 | c ∈ {1, 2, 3, . . .}, Γ ∈ Lre[A(c)]}.

Wne[%xA(x)]〈〉 = �;
where c ∈ {1, 2, 3, . . .}, Wne[%xA(x)]〈⊥c, Γ〉 =Wne[A(c)]〈Γ〉.

4. Choice existential quantification &xA(x):

Lre[&xA(x)] = {〈〉} ∪ {〈�c, Γ〉 | c ∈ {1, 2, 3, . . .}, Γ ∈ Lre[A(c)]}.

Wne[&xA(x)]〈〉 = ⊥;
where c ∈ {1, 2, 3, . . .}, Wne[&xA(x)]〈�c, Γ〉 =Wne[A(c)]〈Γ〉.
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11.4.3 Parallel operations
The operations ∧,∨,∧,∨ combine games in a way that corresponds to

our intuition of parallel computations. For this reason we call such operations
parallel. Playing A1 ∧ A2 (resp. A1 ∨ A2) means playing the two games si-
multaneously where, in order to win, � needs to win in both (resp. at least
one) of the components Ai. Back to our chess example, the two-board game
¬Chess ∨ Chess can be easily won by just mimicking in Chess the moves that
the adversary makes in ¬Chess, and vice versa. This is very different from the
situation with ¬Chess&Chess, winning which is not easy at all: there � needs
to choose between ¬Chess and Chess (i.e. between playing black or white),
and then win the chosen one-board game. Technically, a move α in the kth ∧-
conjunct or ∨-disjunct is made by prefixing α with ‘k.’. For instance, in (the
initial position of) (A & B) ∨ (C % D), the move ‘2.1’ is legal for ⊥, meaning
choosing the first %-conjunct in the second ∨-disjunct of the game. If such a
move is made, the game will continue as (A & B) ∨ C. The player �, too, has
initial legal moves in (A & B)∨ (C % D), which are ‘1.1’ and ‘1.2’. As we may
guess, ∧xA(x) is nothing but A(1) ∧ A(2) ∧ A(3) ∧ . . ., and ∨xA(x) is nothing
but A(1) ∨ A(2) ∨ A(3) ∨ . . ..

The following formal definition summarizes this meaning of parallel op-
erations, generalizing the arity of ∧,∨ to any n ≥ 2. In that definition and
throughout the rest of this paper, we use the important notational convention
according to which, for a string/move α,

Γα

means the result of removing from Γ all (lab)moves except those of the form
℘αβ, and then deleting the prefix3 ‘α’ in the remaining moves, i.e. replacing
each such ℘αβ by ℘β. For example, where Γ is the leftmost branch of the tree
for (�%⊥)∨(⊥&�) shown in Figure 11.9, we have Γ1. = 〈⊥1〉 and Γ2. = 〈�1〉.
Intuitively, we view this Γ as consisting of two subruns, one (Γ1.) being a run
in the first ∨-disjunct of (� % ⊥) ∨ (⊥ & �), and the other (Γ2.) being a run in
the second disjunct.

Definition 8. In clauses 1 and 2, n is 2 or any greater integer.
1. Parallel conjunction A1 ∧ . . . ∧ An:

Γ ∈ LrA1∧...∧An iff every move of Γ has the prefix ‘i.’ for some i ∈
{1, . . . , n} and, for each such i, Γi. ∈ LrAi.

Whenever Γ ∈ LrA1∧...∧An, WnA1∧...∧An〈Γ〉 = � iff, for each i ∈ {1, . . . , n},
WnAi〈Γi.〉 = �.

3Here and later, when talking about a prefix of a labmove ℘γ, we do not count the label ℘ as a part of the
prefix.
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2. Parallel disjunction A1 ∨ . . . ∨ An:

Γ ∈ LrA1∨...∨An iff every move of Γ has the prefix ‘i.’ for some i ∈
{1, . . . , n} and, for each such i, Γi. ∈ LrAi.

Whenever Γ ∈ LrA1∨...∨An, WnA1∨...∨An〈Γ〉 = ⊥ iff, for each i ∈ {1, . . . , n},
WnAi〈Γi.〉 = ⊥.

3. Parallel universal quantification∧xA(x):

Γ ∈ Lre[∧xA(x)] iff every move of Γ has the prefix ‘c.’ for some c ∈
{1, 2, 3, . . .} and, for each such c, Γc. ∈ Lre[A(c)].

Whenever Γ ∈ Lre[∧xA(x)], Wne[∧xA(x)]〈Γ〉 = � iff, for each c ∈
{1, 2, 3, . . .}, Wne[A(c)]〈Γc.〉 = �.

4. Parallel existential quantification∨xA(x):

Γ ∈ Lre[∨xA(x)] iff every move of Γ has the prefix ‘c.’ for some c ∈
{1, 2, 3, . . .} and, for each such c, Γc. ∈ Lre[A(c)].

Whenever Γ ∈ Lre[∨xA(x)], Wne[∨xA(x)]〈Γ〉 = ⊥ iff, for each c ∈
{1, 2, 3, . . .}, Wne[A(c)]〈Γc.〉 = ⊥.

As was the case with choice operations, we can see that the definition of
each of the parallel operations can be obtained from the definition of its dual
by just interchanging � with ⊥. Hence it is easy to verify that we always have
¬(A∧B) = ¬A∨¬B, ¬(A∨B) = ¬A∧¬B, ¬∧xA(x) = ∨x¬A(x), ¬∨xA(x) =
∧x¬A(x).

Note also that just like negation (and unlike choice operations), parallel op-
erations preserve the elementary property of games and, when restricted to
elementary games, the meanings of ∧ and ∨ coincide with those of classical
conjunction and disjunction, while the meanings of ∧ and ∨ coincide with
those of classical universal quantifier and existential quantifier. The same con-
servation of classical meaning is going to be the case with the blind quantifiers
∀,∃ defined later; so, at the elementary level, ∧ and ∨ are indistinguishable
from ∀ and ∃.

A strict definition of our understanding of validity—which, as we may
guess, conserves the classical meaning of this concept in the context of elemen-
tary games—will be given later in Section 11.7. For now, let us adopt an in-
tuitive explanation according to which validity means being “always winnable
by a machine”. While all classical tautologies automatically remain valid when
parallel operators are applied to elementary games, in the general case the class
of valid principles shrinks. For example, ¬P∨ (P∧P) is not valid. Proving this
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might require some thought, but at least we can see that the earlier “mimick-
ing” (“copy-cat”) strategy successful for ¬Chess∨Chess would be inapplicable
to ¬Chess∨(Chess∧Chess). The best that � can do in this three-board game is
to pair ¬Chess with one of the two conjuncts of Chess ∧ Chess. It is possible
that then ¬Chess and the unmatched Chess are both lost, in which case the
whole game will be lost.

When A and B are finite (or finite-depth) games, the depth of A∧B or A∨B
is the sum of the depths of A and B, which signifies an exponential growth of
the breadth. Figure 11.9 illustrates this growth, suggesting that once we have
reached the level of parallel operations—let alone recurrence operations that
will be defined shortly—continuing drawing trees in the earlier style becomes
no fun. Not to be disappointed though: making it possible to express large- or
infinite-size game trees in a compact way is what our game operators are all
about after all.
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Figure 11.9: Parallel disjunction

An alternative approach to graphically representing A ∨ B (or A ∧ B) would
be to just draw two trees—one for A and one for B—next to each other rather
than draw one tree for A ∨ B. The legal positions of A ∨ B can then be visu-
alized as pairs (Φ,Ψ), where Φ is a node of the A-tree and Ψ a node of the
B-tree; the “label” of each such position (Φ,Ψ) will be � iff the label of at
least one (or both if we are dealing with A ∧ B) of the positions/nodes Φ,Ψ in
the corresponding tree is �. For instance, the root of the (�%⊥)∨ (⊥&�)-tree
of Figure 11.9 can just be thought of as the pair consisting of the roots of the
(� % ⊥)- and (⊥ & �)-trees; child #1 of the root of the (� % ⊥) ∨ (⊥ & �)-tree
as the pair whose first node is the left child of the root of the (� % ⊥)-tree and
the second node is the root of the (⊥ & �)-tree, etc. It is true that, under this
approach, a pair (Φ,Ψ) might correspond to more than one position of A ∨ B.
For example, grandchildren #1 and #5 of the root of the (�%⊥)∨ (⊥&�)-tree,
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i.e. the positions 〈⊥1.1,�2.1〉 and 〈�2.1,⊥1.1〉, would become indistinguish-
able. This, however, is OK, because such two positions would always be equiv-
alent, in the sense that

〈⊥1.1,�2.1〉((� % ⊥) ∨ (⊥ & �)) = 〈�2.1,⊥1.1〉((� % ⊥) ∨ (⊥ & �)).

Whether trees are or are not helpful in visualizing parallel combinations of
games, prefixation is still very much so if we think of each (uni)legal position
Φ of A as the game 〈Φ〉A. This way, every (uni)legal run Γ of A becomes a
sequence of games.

Example 9. To the legal run 〈⊥2.7,�1.7,⊥1.49,�2.49〉—call it Γ—of game
&x%y(y � x2) ∨ %x&y(y = x2)—call it A—corresponds the following
sequence, showing how things evolve as Γ runs, i.e. how the moves of Γ
affect/modify the game that is being played:

A0: &x%y(y � x2) ∨%x&y(y = x2), i.e. A,
i.e. 〈〉A;

A1: &x%y(y � x2) ∨&y(y = 72), i.e. 〈⊥2.7〉A0,
i.e. 〈⊥2.7〉A;

A2: %y(y � 72) ∨&y(y = 72), i.e. 〈�1.7〉A1,
i.e. 〈⊥2.7,�1.7〉A;

A3: 49 � 72 ∨&y(y = 72), i.e. 〈⊥1.49〉A2,
i.e. 〈⊥2.7,�1.7,⊥1.49〉A;

A4: 49 � 72 ∨ 49 = 72, i.e. 〈�2.49〉A3,
i.e. 〈⊥2.7,�1.7,⊥1.49,�2.49〉A.

The run hits the true proposition A4, and hence is won by �.

When visualizing ∧,∨-games in a similar style, we are better off repre-
senting them as infinite conjunctions/disjunctions. Of course, putting infinitely
many conjuncts/disjuncts on paper would be no fun. But, luckily, in every po-
sition of∧xA(x) or∨xA(x) only a finite number of conjuncts/disjuncts would
be “activated”, i.e. have a non-A(c) form, so that all of the other, uniform, con-
juncts can be combined into blocks and represented, say, through an ellipsis,
or through expressions such as∧m≤ x≤nA(x) or∧x≥mA(x).

Example 10. Let Odd(x) be the predicate “x is odd”. The �-won legal run
〈�7.1〉 of∨x

(
Odd(x) & ¬Odd(x)

)
will be represented as follows:

∨x ≥ 1
(
Odd(x) & ¬Odd(x)

)
;

∨1≤ x≤6
(
Odd(x) & ¬Odd(x)

)
∨ Odd(7) ∨∨x≥8

(
Odd(x) & ¬Odd(x)

)
.

And the infinite legal run Γ = 〈�1.1,�2.2,�3.1,�4.2,�5.1,�6.2, . . .〉 of
∧x
(
Odd(x) & ¬Odd(x)

)
will be represented as follows:
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∧x≥1
(
Odd(x) & ¬Odd(x)

)
;

Odd(1) ∧∧x≥2
(
Odd(x) & ¬Odd(x)

)
;

Odd(1) ∧ ¬Odd(2) ∧∧x≥3
(
Odd(x) & ¬Odd(x)

)
;

Odd(1) ∧ ¬Odd(2) ∧ Odd(3) ∧∧x≥4
(
Odd(x) & ¬Odd(x)

)
;

. . . etc.

Note that Γ is won by � but every finite initial segment of it is lost.

11.4.4 Reduction
What we call reduction→ is perhaps most interesting of all operations, yet

we do not introduce→ as a primitive operation as it can be formally defined by

B→ A = (¬B) ∨ A.

From this definition we see that, when applied to elementary games,→ has its
ordinary classical meaning, because so do ¬ and ∨.

Intuitively, B → A is (indeed) the problem of reducing A to B: solving
B→ A means solving A while having B as a computational resource. Re-
sources are symmetric to problems: what is a problem to solve for one player
is a resource that the other player can use, and vice versa. Since B is negated
in ¬B ∨ A and negation means switching the roles, B appears as a resource
rather than problem for � in B→ A. For example, the game of Example 9 can
be written as %x&y(y = x2) → %x&y(y = x2). For �, %x&y(y = x2) is the
problem of computing square, which can be seen as a task (telling the square
of any given number) performed by � for ⊥. But in the antecedent it turns into
a square-computing resource—a task performed by ⊥ for �. In the run Γ of
Example 9, � took advantage of this fact, and solved problem %x&y(y = x2)
in the consequent using ⊥’s solution to the same problem in the antecedent.
That is, � reduced %x&y(y = x2) to %x&y(y = x2).

To get a better appreciation of → as a problem reduction operation, let us
look a less trivial—already “classical” in CL—example. Let A(x, y) be the
predicate “Turing machine (whose code is) x accepts input y”, and H(x, y) the
predicate “Turing machine x halts on input y”. Note that then %x%y

(
A(x, y) &

¬A(x, y)
)

expresses the acceptance problem as a decision problem: in order to
win, � should be able to tell which of the disjuncts—A(x, y) or ¬A(x, y)—is
true for any particular values for x and y selected by the environment. Simi-
larly, %x%y

(
H(x, y) & ¬H(x, y)

)
expresses the halting problem as a decision

problem. No machine can (always) win%x%y
(
A(x, y) & ¬A(x, y)

)
because the

acceptance problem, just as the halting problem, is known to be undecidable.
Yet, the acceptance problem is algorithmically reducible to the halting prob-
lem. Into our terms, this fact translates as existence of a machine that always
wins the game

%x%y
(
H(x, y) & ¬H(x, y)

)
→ %x%y

(
A(x, y) & ¬A(x, y)

)
. (1)
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A successful strategy for such a machine (�) is as follows. At the beginning,
� waits till ⊥ specifies some values m and n for x and y in the consequent,
i.e. makes the moves ‘2.m’ and ‘2.n’. Such moves, bringing the consequent
down to A(m, n)&¬A(m, n), can be seen as asking � the question “does Turing
machine m accept input n?”. To this question � replies by the counterques-
tion “does m halt on n?”, i.e. makes the moves ‘1.m and ‘1.n’, bringing the
antecedent down to H(m, n) & ¬H(m, n). The environment has to answer this
counterquestion, or else it loses. If it answers “no” (i.e. makes the move ‘1.2’
and thus further brings the antecedent down to ¬H(m, n)), � also answers
“no” to the original question in the consequent (i.e. makes the move ‘2.2’),
with the overall game having evolved to the true and hence �-won proposi-
tion/elementary game ¬H(m, n) → ¬A(m, n). Otherwise, if the environment’s
answer is “yes” (move ‘1.1’), � simulates Turing machine m on input n until
it halts, and then makes the move ‘2.1’ or ‘2.2’ depending whether the simu-
lation accepted or rejected. Of course, it is a possibility that such a simulation
goes on forever and thus no moves will be made by � in the consequent. This,
however, will only happen when H(m, n)—the &-disjunct selected by the envi-
ronment in the antecedent—is false, and having lied in the antecedent makes
⊥ the loser no matter what happens in the consequent.

Again, what the machine did in the above strategy indeed was a reduction:
it used an (external) solution to the halting problem to solve the acceptance
problem. There are various natural concepts of reduction, and a strong case
can be made in favor of the thesis that the sort of reduction captured by→ is
most basic among them, with a great variety of other reasonable concepts of
reduction being expressible in terms of →. Among those is Turing reduction.
It will be discussed a little later when we get to recurrence operations. An-
other frequently used concept of reduction is mapping reduction that we are
going to look at in the following paragraph. And yet some other natural con-
cepts of reduction expressible in terms of→ may or may not have established
names. For example, from the above discussion it can be seen that a certain
reducibility-style relation holds between the predicates A(x, y) and H(x, y) in
an even stronger sense than the algorithmic winnability of (1). In fact, not only
(1) is winnable, but also the generally harder-to-win game

%x%y
(
H(x, y) & ¬H(x, y)→ A(x, y) & ¬A(x, y)

)
. (2)

This is so because �’s above-described strategy for (1) did not use (while could
have used) any values for x and y others than the values chosen for these vari-
ables by ⊥ in the consequent. So, the %x%y prefix can be just made external
as this is done in (2). It will be seen later that semantically our approach treats
free variables as if they were (externally) bound by %. Hence, the winnability
of (2), in turn, is the same as simply the winnability of

H(x, y) & ¬H(x, y)→ A(x, y) & ¬A(x, y).
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A predicate p(�x ) is said to be mapping reducible4 to a predicate q(�y ) iff
there is an effective function f such that, for any constants �c, p(�c ) is true iff
q( f (�c )) is so. Here �x abbreviates any n-tuple of pairwise distinct variables, �c
any n-tuple of constants, �y any m-tuple of pairwise distinct variables, and f
is a function that sends n-tuples of constants to m-tuples of constants. Using
A ↔ B as an abbreviation for (A → B) ∧ (B → A) and %�z for %z1 . . .%zk

where �z = z1, . . . , zk (and similarly for &�z ), it is not hard to see that mapping
reducibility of p(�x ) to q(�y ) means nothing but existence of an algorithmic
winning strategy for

%�x&�y (p(�x ) ↔ q(�y )
)
.

Our acceptance predicate A(x, y) can be shown to be mapping reducible to the
halting predicate H(x, y), i.e. the game

%x%y&x′&y′(A(x, y) ↔ H(x′, y′))

shown to be winnable by a machine. An algorithmic strategy for � is the fol-
lowing. After ⊥ selects values m and n for x and y, select the values m′ and
(the same) n for x′ and y′, and rest your case. Here m′ is the Turing machine
that works exactly as m does, with the only difference that whenever m enters
its reject state, m′ goes into an infinite loop instead, so that m accepts if and
only if m′ halts. Such an m′, of course, can be effectively constructed from m.

Notice that while the standard approaches only allow us to talk about
(a whatever sort of) reducibility as a relation between problems, in our ap-
proach reduction becomes an operation on problems, with reducibility as a re-
lation simply meaning computability of the corresponding combination (such
as %�x&�y (p(�x ) ↔ q(�y )) or A → B) of games. Similarly for other relations
or properties such as the property of decidability. The latter becomes the op-
eration of deciding if we define the problem of deciding a predicate (or any
computational problem) p(�x ) as the game%�x (p(�x )&¬p(�x )

)
. So, now we can

meaningfully ask questions such as “is the reduction of the problem of decid-
ing p(x) to the problem of deciding q(x) reducible to the mapping reduction
of p(x) to q(x)?”. This question would be equivalent to whether the following
game has an algorithmic winning strategy:

(
%x&y

(
p(x) ↔ q(y)

))
→(

%x
(
q(x) & ¬q(x)

)
→ %x

(
p(x) & ¬p(x)

))
.

(3)

This problem is indeed algorithmically solvable no matter what particular pred-
icates p(x) and q(x) are, which means that mapping reduction is at least as

4This term is adopted from Sipser (2006). The more common but less adequate name for what we call
mapping reducibility is many-one reducibility.
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strong as reduction. Here is a strategy for �: Wait till ⊥ selects a value k for x
in the consequent of the consequent of (3). Then specify the same value k for x
in the antecedent of (3), and wait till ⊥ replies there by selecting a value n for
y. Then select the same value n for x in the antecedent of the consequent of (3).
⊥ will have to respond by 1 or 2 in that component of the game. Repeat that
very response in the consequent of the consequent of (3), and celebrate victory.

We are going to see in Section 11.9 that (3) is a legal formula of the language
of system CL4, which, according to Theorem 34, is sound and complete with
respect to the semantics of computability logic. So, had our ad hoc methods
failed to find an answer (and this would certainly be the case if we dealt with
a more complex computational problem), the existence of a successful algo-
rithmic strategy could have been established by showing that (3) is provable in
CL4. Moreover, by the first clause of Theorem 34, after finding a CL4-proof
of (3), we would not only know that an algorithmic solution for (3) exists, but
we would also be able to constructively extract such a solution from the proof.
On the other hand, the fact that reduction is not as strong as mapping reduction
could be established by showing that CL4 does not prove

(
%x
(
q(x) & ¬q(x)

)
→ %x

(
p(x) & ¬p(x)

))
→(

%x&y
(
p(x) ↔ q(y)

))
.

(4)

This negative fact, too, can be established effectively as, according to
Theorem 32, the relevant fragment of CL4 is decidable. In fact, the com-
pleteness proof for CL4 given in Japaridze (2007a) shows a way how to ac-
tually construct particular predicates—p(x) and q(x) in our case—for which
the problem represented by a given CL4-unprovable formula has no algorith-
mic solution.

11.4.5 Blind operations
Another group of core game operations, called blind, comprises ∀ and

its dual ∃. Intuitively, playing ∀xA(x) or ∃xA(x) means just playing A(x)
“blindly”, without knowing the value of x. In ∀xA(x), � wins iff the play it
generates is successful for every possible value of x, while in ∃xA(x) being
successful for just one value is sufficient. ∀ and ∃ thus essentially produce what
is called games with imperfect information (see Pietarinen, 2002). This sort of
a blind play is meaningful or possible—and hence ∀xA(x), ∃xA(x) defined—
only when what moves are available (legal) does not depend on the unknown
value of x; in other words, when A(x) is unistructural in x.

Definition 11. Assume A(x) is unistructural in x.
1. Blind universal quantification ∀xA(x):

Lre[∀xA(x)] = Lre[A(x)].
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Wne[∀xA(x)]〈Γ〉 = � iff, for every constant c, Wne[A(c)]〈Γ〉 = �.

2. Blind existential quantification ∃xA(x):

Lre[∃xA(x)] = Lre[A(x)].

Wne[∃xA(x)]〈Γ〉 = ⊥ iff, for every constant c, Wne[A(c)]〈Γ〉 = ⊥.

As with the other pairs of quantifiers, one can see that we always have
¬∀xA(x) = ∃x¬A(x) and ¬∃xA(x) = ∀x¬A(x).

To feel the difference between ∀ and %, compare the games

%x
(
Even(x) & Odd(x)

)
and

∀x
(
Even(x) &Odd(x)

)
.

Both are about telling whether a given number is even or odd; the difference is
only in whether that “given number” is specified (made as a move by ⊥) or not.
The first problem is an easy-to-win, depth-2 game of a structure that we have
already seen. The depth of the second game, on the other hand, is 1, with only
by the machine to make a move—select the “true” disjunct, which is hardly
possible to do as the value of x remains unspecified.

Figure 11.10 shows trees for Even(x) & Odd(x) and ∀x
(
Even(x) & Odd(x)

)
next to each other. Notice that applying ∀x does not change the structure of a
(unistructural) game. What it does is that it simply prefixes every node with a
∀x (we do not explicitly see such a prefix on the root because ∀x⊥ = ⊥). This
means that we always have 〈Φ〉∀xA(x) = ∀x〈Φ〉A(x). Similarly for ∃x.
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Figure 11.10: Blind universal quantification

Of course, not all nonelementary ∀-games will be unwinnable. Here is an
example:

∀x
(
Even(x) &Odd(x) → %y

(
Even(x × y) &Odd(x × y)

))
.
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Solving this problem, which means reducing the consequent to the antecedent
without knowing the value of x, is easy: � waits till ⊥ selects a value n for y.
If n is even, then � selects the first &-disjunct in the consequent. Otherwise,
if n is odd, � continues waiting until ⊥ selects one of the &-disjuncts in the
antecedent (if ⊥ has not already done so), and then � makes the same move 1
or 2 in the consequent as ⊥ made in the antecedent. One of the possible runs
such a strategy can yield is 〈⊥1.2,⊥2.5,�2.2〉, which can be visualized as the
following sequence of games:

∀x
(
Even(x) & Odd(x)→ %y

(
Even(x × y) & Odd(x × y)

))
;

∀x
(
Odd(x)→ %y

(
Even(x × y) &Odd(x × y)

))
;

∀x
(
Odd(x)→ Even(x × 5) & Odd(x × 5)

)
;

∀x
(
Odd(x)→ Odd(x × 5)

)
.

By now we have seen three—choice, parallel and blind—natural sorts of
quantifiers. The idea of a forth—sequential—sort, which we will not discuss
here, was outlined in Japaridze (2006e). It is worthwhile to take a brief look
at how different quantifiers relate. Both ∀xA(x) and ∧xA(x) can be shown
to be properly stronger than %xA(x), in the sense that ∀xP(x) → %xP(x)
and ∧xP(x) → %xP(x) are valid while %xP(x) → ∀xP(x) and %xP(x) →
∧xP(x) are not. On the other hand, the strengths of ∀xP(x) and ∧xP(x) are
mutually incomparable: neither ∀xP(x) → ∧xP(x) nor ∧xP(x) → ∀xP(x)
is valid. The big difference between ∀ and ∧ is that, while playing ∀xA(x)
means playing one “common” play for all possible A(c) and thus ∀xA(x) is a
one-board game, ∧xA(x) is an infinitely-many-board game: playing it means
playing, in parallel, game A(1) on board #1, game A(2) on board #2, etc. When
restricted to elementary games, however, the distinction between the blind and
the parallel groups of quantifiers disappears as already noted and, just like ¬, ∧,
∨,→, ∧, ∨, the blind quantifiers behave exactly in the classical way. Having
this collection of operators makes CL a conservative extension of classical
first-order logic: the latter is nothing but CL restricted to elementary problems
and the logical vocabulary ¬, ∧, ∨,→, ∀ (and/or ∧), ∃ (and/or ∨).

11.4.6 Recurrence operations
What is common to the members of the family of game operations called re-

currence operations is that, when applied to A, they turn it into a game play-
ing which means repeatedly playing A. In terms of resources, recurrence oper-
ations generate multiple “copies” of A, thus making A a reusable/recyclable re-
source. The difference between various sorts of recurrences is how “reusage” is
exactly understood. Imagine a computer that has a program successfully play-
ing Chess. The resource that such a computer provides is obviously something
stronger than just Chess, for it permits to play Chess as many times as the user
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wishes, while Chess, as such, only assumes one play. The simplest operating sys-
tem would allow to start a session of Chess, then—after finishing or abandoning
and destroying it—start a new play again, and so on. The game that such a system
plays—i.e. the resource that it supports/provides—is∧| Chess, which assumes an
unbounded number of plays of Chess in a sequential fashion. We call∧| sequen-
tial recurrence. A more advanced operating system, however, would not require
to destroy the old sessions before starting new ones; rather, it would allow to run
as many parallel sessions as the user needs. This is what is captured by ∧| Chess,
meaning nothing but the infinite parallel conjunction Chess ∧ Chess ∧ Chess ∧
. . .. Hence ∧| is called parallel recurrence. As a resource, ∧| Chess is obviously
stronger than ∧| Chess as it gives the user more flexibility. But ∧| is still not the
strongest form of reusage. A really good operating system would not only allow
the user to start new sessions of Chess without destroying old ones; it would also
make it possible to branch/replicate each particular stage of each particular ses-
sion, i.e. create any number of “copies” of any already reached position of the
multiple parallel plays of Chess, thus giving the user the possibility to try dif-
ferent continuations from the same position. What corresponds to this intuition
is◦| Chess, where◦| is called branching recurrence.5 As all of the operations (ex-
cept¬,→) seen in this section, each sort of recurrence comes with its dual opera-
tion, called corecurrence. Say, the branching corecurrence ◦| A of A is nothing
but ◦| ¬A as seen by the environment, so ◦| A can be defined as¬◦| ¬A; similarly for
parallel corecurrence ∨| and sequential corecurrence∨| . ∨| A thus means the infi-
nite parallel disjunction A∨A∨A∨ . . .. The sequential recurrence and sequential
corecurrence of A, on the other hand, can be defined as infinite sequential con-
junction A ) A ) A ) . . . and infinite sequential disjunction A * A * A * . . .,
respectively. An idea of the sequential versions of conjunction/disjunction, quan-
tifiers and recurrence/corecurrence was informally outlined in a footnote of Sec-
tion 8 of Japaridze (2006e), and then fully elaborated in Japaridze (2008b). Out
of laziness, in this paper we are not going to go any farther than the above intuitive
explanation of sequential recurrence, just as we have not attempted and will not
attempt to define the sequential versions of propositional connectives or quan-
tifiers.6 Only the parallel and branching sorts of recurrence will receive our full
attention.

Definition 12.
1. Parallel recurrence ∧| A:

Γ ∈ Lr∧
|

iff every move of Γ has the prefix ‘i.’ for some i ∈ {1, 2, 3, . . .}
and, for each such i, Γi. ∈ LrA.

5The term “branching recurrence” and the symbol �were established in Japaridze (2006e). The earlier (foun-
dational) paper (Japaridze, 2003) uses “branching conjunction” and ! instead. Similarly, Japaridze (2003)
uses the term “branching disjunction” instead of our present “branching corecurrence”, and symbol ? instead
of ◦| . Finally, to our present symbol� in Japaridze (2003) corresponds ⇒.
6There are similar and even more serious reasons for not attempting to introduce blind versions of conjunc-
tion and disjunction.
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Whenever Γ ∈ Lr∧
| A, we have

Wn∧
| A〈Γ〉 = � iff, for each i ∈ {1, 2, 3, . . .}, WnA〈Γi.〉 = �.

2. Parallel corecurrence ∨| A:

Γ ∈ Lr
∨| A iff every move of Γ has the prefix ‘i.’ for some i ∈ {1, 2, 3, . . .}

and, for each such i, Γi. ∈ LrA.

Whenever Γ ∈ Lr
∨| A, we have

Wn
∨| A〈Γ〉 = ⊥ iff, for each i ∈ {1, 2, 3, . . .}, WnA〈Γi.〉 = ⊥.

Thus, from the machine’s perspective, ∧| %x&y(y = x2) is the problem of
computing the square function, and—unlike the case with %x&y(y = x2)—
doing so repeatedly, i.e. as many times as the environment asks a question
“what is the square of m?”. In the style of Example 10, a unilegal position of
∧| A (resp. ∨| A) can be represented as an infinite parallel conjunction (resp. dis-
junction), with the infinite contiguous block of “not-yet-activated” conjuncts
(resp. disjuncts) starting from item #n combined together and written as ∧| nA
(resp. ∨| nA). Below is an illustration.

Example 13. The �-won run 〈⊥1.3,�1.9,⊥2.1,�2.1〉 of the game ∧| %x&y
(y = x2) generates the following sequence:

∧| %x&y(y = x2) (or ∧| 1%x&y(y = x2));
&y(y = 32) ∧ ∧| 2%x&y(y = x2);
9 = 32 ∧ ∧| 2%x&y(y = x2);
9 = 32 ∧&y(y = 12) ∧ ∧| 3%x&y(y = x2);
9 = 32 ∧ 1 = 12 ∧ ∧| 3%x&y(y = x2).

Among the best known and most natural concepts of reducibility in tradi-
tional computability theory is that of Turing reducibility of a problem A to
a problem B, meaning existence of a Turing machine that solves A with an
oracle for B. In this definition “problem”, of course, is understood in the tradi-
tional sense, meaning a two-step, question-answer problem such as computing
a function or deciding a predicate. This is so because both the oracle and the
Turing machine offer a simple, question-answer interface, unable to handle
problems with higher degrees or more sophisticated forms of interactivity. Our
approach allows us to get rid of the “amateurish” concept of an oracle, and re-
formulate the above definition of Turing reducibility of A to B as computability
of B ∧ | A, where ∧ | is defined by

B ∧ | A = (∧| B)→ A.
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This newborn concept of ∧ | -reducibility then not only adequately rephrases
Turing reducibility, but also generalizes it, for ∧ | -reducibility is defined for all
games A and B rather than only those representing traditional computational
problems.

To get a better feel of ∧ | and appreciate the difference between it and the
ordinary reduction →, remember our example of →-reducing the acceptance
problem to the halting problem. The reduction that � used in its successful
strategy for

%x%y(H(x, y) & ¬H(x, y)) → %x%y(A(x, y) & ¬A(x, y))

was in fact a Turing reduction, as �’s moves 1.m and 1.n can be seen as
querying an oracle (with the environment acting in the role of such) regard-
ing whether m halts on n. The potential usage of an “oracle”, however, was
limited there, as it could be employed only once. If, for some reason, � needed
to repeat the same question with some different parameters m′ and n′, it would
not be able to do so, for this would require having two “copies” of the resource
%x%y(H(x, y) & ¬H(x, y)) in the antecedent, i.e. having

%x%y(H(x, y) & ¬H(x, y)) ∧%x%y(H(x, y) & ¬H(x, y))

rather than %x%y(H(x, y) & ¬H(x, y)) there. On the other hand, Turing re-
duction assumes an unlimited oracle-querying capability. Such a capability is
precisely accounted for by prefixing the antecedent with a ∧| , i.e. replacing →
with ∧ | . As an example of a problem ∧ | -reducible but not→-reducible to the
halting problem, consider the relative Kolmogorov complexity problem. It can
be expressed as %x%y&zK(x, y, z), where K(x, y, z) is the predicate “z is the
Kolmogorov complexity of x relative to y”, i.e. “z is the smallest (code of a)
Turing machine that returns x on input y”. The problem of Turing-reducing the
relative Kolmogorov complexity problem to the halting problem translates into
our terms as

∧| %x%y(H(x, y) & ¬H(x, y)) → %x%y&zK(x, y, z).

Seeing the antecedent as an infinite ∧-conjunction, here is�’s algorithmic win-
ning strategy for the above game. � waits till ⊥ selects some values m and n
for x and y in the consequent, signifying asking � about the Kolmogorov com-
plexity of m relative to n. Then, starting from i = 1, � does the following. In
the ith ∧-conjunct of the antecedent, it makes two consecutive moves by spec-
ifying x and y as i and n, respectively, thus asking ⊥ whether machine i halts
on input n. If ⊥ responds there by “no”, � increments i by one and repeats the
step. Otherwise, if ⊥ responds by “yes”, � simulates machine i on input n until
it halts; if the simulation shows that machine i on input n returns m, � makes
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the move i in the consequent, thus saying that i is the Kolmogorov complexity
of m relative to n; otherwise, � increments i by one and repeats the step.

Turing reducibility has well-justified claims to be a formalization of our
weakest intuition of algorithmic reducibility of one traditional problem to an-
other, and ∧ | -reducibility, as we now know, conservatively extends Turing
reducibility to all games. This may suggest that ∧ | -reducibility could be an
adequate formal counterpart of our weakest intuition of algorithmic reducibil-
ity of one interactive problem to another. Such a guess would be wrong though.
As claimed earlier, it is ◦| A rather than ∧| A that corresponds to our strongest in-
tuition of using/reusing A. This automatically translates into another claim: it
is�-reducibility rather than ∧ | -reducibility that (in full interactive generality)
captures the weakest form of reducibility. Here� is defined by

B� A = (◦| B)→ A.7

It was mentioned in Section 11.1 that Heyting’s intuitionistic calculus is sound
and, in the propositional case, also complete with respect to the semantics of
computability logic. This is so when intuitionistic implication is understood as
�, and intuitionistic conjunction, disjunction, universal quantifier and existen-
tial quantifier as %,&,% and &, respectively. With intuitionistic implication
read as ∧ | , intuitionistic calculus is unsound as, for example, it proves

(P ∧ | R) % (Q ∧ | R) ∧ | (P & Q ∧ | R)

which fails to be a valid principle of computability.
∧ | -reducibility and�-reducibility, while being substantially different in the

general case, turn out to be equivalent when restricted to certain special sorts
of problems with low degrees of interactivity such as what we have been re-
ferring to as “traditional problems”, examples of which being the halting, ac-
ceptance or relative Kolmogorov complexity problems. For this reason, both

∧ | -reducibility and�-reducibility are equally adequate as (conservative) gen-
eralizations of the traditional concept of Turing reducibility.

It is now time to get down to a formal definition of branching recurrence ◦| .
This is not just as easy as defining ∧| , and requires a number of auxiliary con-
cepts and conventions. Let us start with a closer look at the associated intu-
itions. One of the ways to view both ∧| A and ◦| A is to think of them as games
where ⊥ is allowed to restart A an unlimited number of times without termi-
nating the already-in-progress runs of A, creating, this way, more and more
parallel plays of A with the possibility to try different strategies in them and
become the winner as long as one of those strategies succeeds. What makes ◦| A

7Now we may guess that, if it ever comes to studying the sequential-recurrence-based reduction (∧| B)→ A,
the symbol for it would be >>–.



G. Japaridze 287

stronger (as a resource) than ∧| A, however, is that, as noted earlier, in ◦| A,⊥ does
not have to really restart A from the very beginning every time it “restarts” it;
rather, it can select to continue A from any of the previous positions, thus de-
priving � of the possibility to reconsider the moves it has already made. A little
more precisely, at any time ⊥ is allowed to replicate (backup) any of the cur-
rently reached parallel positions of A before further modifying it, which gives
it the possibility to come back later and continue playing A from the backed-up
position. This way, we get a tree of labmoves (each branch spelling a legal run
of A) rather than just multiple parallel sequences of labmoves. Then ∧| A can be
thought of as a weak version of ◦| A where only the empty position of A can
be replicated, that is, where branching in the tree only happens at its root. A
discussion of how ◦| relates to Blass’s (1972, 1992) repetition operator is given
in Section 13 of Japaridze (2003).

To visualize the scheme that lies under our definition of ◦| , consider a play
over ◦| Chess. The play takes place between a computer (�) and a user (⊥), and
its positions are displayed on the screen. In accordance with the earlier elabo-
rated intuitions, we think of each such position Φ as the game 〈Φ〉Chess, and
vice versa. At the beginning, there is a window on the screen—call it Window
ε—that displays the initial position of Chess:

Window ε

Chess

We denote this position by Chess, but the designer would probably make
the window show a colorful image of a chess board with 32 chess pieces in
their initial locations. The play starts and proceeds in an ordinary fashion: the
players are making legal moves of Chess, which correspondingly update the
position displayed in the window. At some (any) point, when the current po-
sition in the window is 〈Φ〉Chess, ⊥ may decide to replicate the position, per-
haps because he wants to try different continuations in different copies of it.
This splits Window ε into two children windows named 0 and 1, each contain-
ing the same position 〈Φ〉Chess as the mother window contained at the time of
split. The mother window disappears, and the picture on the screen becomes

Window 1
〈Φ〉Chess

Window 0
〈Φ〉Chess

(again, let us try to imagine a real chess position colorfully depicted in the two
windows instead of the bleak expression “〈Φ〉Chess”).

From now on the play continues on two boards/in two windows. Either
player can make a legal move in either window. After some time, when
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the game in Window 0 has evolved to 〈Φ,Ψ〉Chess and in Window 1 to
〈Φ,Θ〉Chess,⊥ can, again, decide to split one of the windows—say, Window 0.
The mother window 0 will be replaced by two children windows: 00 and 01,
each having the same content as their mother had at the moment of split, so
that now the screen will be showing three windows:

Window 1
〈Φ,Θ〉Chess

Window 00
〈Φ,Ψ〉Chess

Window 01
〈Φ,Ψ〉Chess

If and when, at some later moment, ⊥ decides to make a third split—say, in
Window 01—the picture on the screen becomes

Window 1
〈Φ,Θ,Π〉Chess

Window 00
〈Φ,Ψ,Λ〉Chess

Window 010
〈Φ,Ψ,Σ〉Chess

Window 011
〈Φ,Ψ,Σ〉Chess

etc. At the end, the game will be won by � if and only if each of the windows
contains a winning position of Chess.

The above four-window position can also be represented as the following
binary tree, where the name of each window is uniquely determined by its
location in the tree:

〈Φ,Θ,Π〉Chess〈Φ,Ψ,Λ〉Chess 〈Φ,Ψ,Σ〉Chess 〈Φ,Ψ,Σ〉Chess

Figure 11.11: A position of ◦| Chess
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Window names will be used by the players to indicate in which of the win-
dows they are making a move. Specifically, ‘w.α’ is the move meaning making
move α in Window w; and the move (by ⊥) that splits/replicates Window w
is ‘w:’. Sometimes the window in which a player is trying to make a move
may no longer exist. For example, in the position preceding the position of
Figure 11.11, � might have decided to make move α in Window 01. How-
ever, before � actually made this move, ⊥made a replicative move in the same
window, which took us to the four-window position of Figure 11.11. � may
not notice this replicative move and complete its move 01.α by the time when
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Window 01 no longer exists. This kind of a move is still considered legal, and
its effect is making the move α in all (in our case both) of the descendants of
the no-longer-existing Window 01. The result will be

Window 1
〈Φ,Θ,Π〉Chess

Window 00
〈Φ,Ψ,Λ〉Chess

Window 010
〈Φ,Ψ, Σ,�α〉Chess

Window 011
〈Φ,Ψ, Σ,�α〉Chess

The initial position in the example that we have just discussed was one-
window. This, generally, is not necessary. The operation ◦| can be applied to
any construction in the above style, such as, say,

Window 1
Checkers

Window 0
Chess

A play over this game, which our later-introduced notational conventions
would denote by ◦| (Chess ◦ Checkers), will proceed in a way similar to what
we saw, where more and more windows can be created, some (those whose
names are 0-prefixed) displaying positions of chess, and some (with 1-prefixed
names) displaying positions of checkers. In order to win, the machine will have
to win all of the multiple parallel plays of chess and checkers that will be gen-
erated.

As the dual of ◦| , ◦| can be characterized in exactly the same way as ◦| , only,
in a ◦| -game, it is � who has the privilege of splitting windows, and for whom
winning in just one of the multiple parallel plays is sufficient.

To put together the above intuitions, let us agree that by a bitstring we mean
a string of 0s and 1s, including infinite strings and the empty string ε. We will
be using the letters w, u, v as metavariables for bitstrings. ε will exclusively
stand for the empty bitstring. The expression uw, meaningful only when u is
finite, will stand for the concatenation of strings u and w. We write u + w to
mean that u is an initial segment of w. And u ≺ w means that u is a proper
initial segment of w, i.e. that u + w and u � w.

Definition 14.
1. A bitstring tree (BT) is a nonempty set T of bitstrings, called the

branches of the tree (with finite branches also called nodes), such that, for
all bitstrings w, u, the following three conditions8 are satisfied:

(a) If w ∈ T and u ≺ w, then u ∈ T.
(b) w0 ∈ T iff w1 ∈ T (finite w).
(c) If w is infinite and all u with u ≺ w are in T , then so is w.

8Due to a mechanical error, the third condition was lost in the published version of Japaridze (2003).
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2. A complete branch of a BT T is a branch w of T such that for no
bitstring u with w ≺ u do we have u ∈ T. A finite complete branch of T is also
said to be a leaf of T . Notice that T (as a set of strings) is finite iff all of its
branches (as strings) are so. Hence, the terms “complete branch” and “leaf”
are synonymic for finite BTs, as are “branch” and “node”.

3. A decoration for a finite BT T is a function d that sends each leaf of T
to some game.

4. A decorated bitstring tree (DBT) T is a pair (T, d), where T—called
the BT-structure of T—is a finite BT, and d— called the decoration of T—is
a decoration for T . Such a T is said to be a singleton iff T = {ε}. We identify
each singleton DBT ({ε}, d) with the game d(ε), and vice versa: think of each
game A as the singleton DBT ({ε}, d) with d(ε) = A. In some contexts, on the
other hand, we may identify a DBT T with its treestructure T , and say “branch
(leaf, etc.) of T” to mean “branch (leaf, etc.) of T”.

In Figure 11.11 we see an example of a DBT whose BT-structure is
{ε, 0, 1, 00, 01, 010, 011} and whose decoration is the function d given by
d(00) = 〈Φ,Ψ,Λ〉Chess, d(010) = d(011) = 〈Φ,Ψ,Σ〉Chess, d(1) =
〈Φ,Θ,Π〉Chess.

Drawing actual trees for DBTs is not very convenient, and an alternative
way to represent a DBT T = (T, d) is the following:

If T is a singleton with d(ε) = A, then T is simply written as A.

Otherwise, T is written as E0 ◦ E1, where E0 and E1 represent the sub-
DBTs of T rooted at 0 and 1, respectively.

For example, the DBT of Figure 11.11 will be written as
((
〈Φ,Ψ,Λ〉Chess

)
◦
(
(〈Φ,Ψ,Σ〉Chess) ◦ (〈Φ,Ψ,Σ〉Chess)

))
◦
(
〈Φ,Θ,Π〉Chess

)
.

We are going to define ◦| and ◦| as operations applicable not only to games,
i.e. singleton DBTs, but to any DBTs as well.

Definition 15. Let T = (T, d) be DBT. We define the notion of a prelegal
position of ◦| T (resp. ◦| T ), together with the function Tree �T (resp. Tree

�

T )
that associates a BT Tree �T 〈Φ〉 (resp. Tree

�

T 〈Φ〉) with each such position Φ,
by the following induction:

(a) 〈〉 is a prelegal position of ◦| T (resp. ◦| T ), and

Tree �T 〈〉 = T
(resp. Tree

�

T 〈〉 = T ).

(b) 〈Φ, λ〉 is a prelegal position of ◦| T (resp. ◦| T ) iff Φ is so and one of the
following two conditions is satisfied:
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1. λ = ⊥w: (resp. λ = �w:) for some leaf w of Tree �T 〈Φ〉 (resp. Tree
�

T 〈Φ〉).
We call this sort of a labmove λ or move w: replicative. In this case

Tree �T 〈Φ,⊥w:〉 = Tree �T 〈Φ〉 ∪ {w0,w1}
(resp. Tree

�

T 〈Φ,�w:〉 = Tree

�

T 〈Φ〉 ∪ {w0,w1}).

2. λ = ℘w.α for some node w of Tree �T 〈Φ〉 (resp. Tree
�

T 〈Φ〉), player ℘ and
move α. We call this sort of a labmove λ or move w.α nonreplicative. In
this case

Tree �T 〈Φ, ℘w.α〉 = Tree �T 〈Φ〉
(resp. Tree

�

T 〈Φ, ℘w.α〉 = Tree

�

T 〈Φ〉).

As mentioned earlier, with a visualization in the style of Figure 11.11
in mind, the meaning of a replicative labmove ℘w: is that player ℘ splits
leaf/window w into two children windows w0 and w1; and the meaning of a
nonreplicative labmove ℘w.α is that ℘makes the move α in all windows whose
names start with w. Prelegality is a minimum condition that every legal run of
a ◦| - or ◦| -game should satisfy. In particular, prelegality means that new win-
dows have only been created by the “right player” (i.e. ⊥ in a ◦| -game, and �
in a ◦| -game), and that no moves have been made in not-yet-created windows.
As for Tree �T 〈Φ〉 or Tree

�

T 〈Φ〉, it shows to what we will be referring as the
underlying BT-structure of the position to which Φ brings the game down.
Note that, as can be seen from the definition, whether Φ is a prelegal position
of ◦| T or ◦| T and what the value of Tree �T 〈Φ〉 or Tree

�

T 〈Φ〉 is, only depends
on the BT-structure of T and not on its decoration.

The concept of a prelegal position of ◦| T can be generalized to all runs by
stipulating that a prelegal run of ◦| T is a run whose every finite initial segment
is a prelegal position of ◦| T . Similarly, the function Tree �T can be extended to
all prelegal runs of ◦| T by stipulating that Tree �T 〈λ1, λ2, λ3, . . .〉 is the smallest
BT containing all elements of the set

Tree �T 〈〉 ∪ Tree �T 〈λ1〉 ∪ Tree �T 〈λ1, λ2〉 ∪ Tree �T 〈λ1, λ2, λ3〉 ∪ . . . (5)

of bitstrings. In other words, Tree �T 〈λ1, λ2, λ3, . . .〉 is the result of adding to
(5) every infinite bitstring w such that all finite initial segments of w are in (5).
The concept of a prelegal position of ◦| T and the function Tree

�

T generalize to
infinite runs in a similar way.

We now introduce an important notational convention that should be re-
membered. Let u be a bitstring and Γ any run. Then

Γ+u

will stand for the result of first removing from Γ all labmoves except those
that look like ℘w.α for some bitstring w with w + u, and then deleting this
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sort of prefixes ‘w.’ in the remaining labmoves, i.e. replacing each remaining
labmove ℘w.α (where w is a bitstring) by ℘α. Example: If u = 101000 . . . and
Γ = 〈�ε.α1,⊥ε:,⊥1.α2,�0.α3,⊥1:,�10.α4〉, then Γ+u = 〈�α1,⊥α2,�α4〉.

Being a prelegal run of ◦| T is a necessary but not a sufficient condition for
being a legal run of this game. For simplicity, let us consider the case when
T is singleton DBT A, where A is a constant game. It was noted earlier that a
legal run Γ of ◦| A can be thought of as consisting of multiple legal runs of A.
In particular, these runs will be the runs Γ+u, where u is a complete branch of
Tree �A〈Γ〉. The labmoves of Γ+u for such a u are those ℘α that emerged as a
result of making (nonreplicative) labmoves of the form ℘w.α with w + u. For
example, to branch 010 in Figure 11.11 corresponds run 〈Φ,Ψ,Σ〉, where the
labmoves of Φ originate from the nonreplicative labmoves of the form ℘ε.α
(i.e. ℘.α) made before the first replicative move, the labmoves of Ψ originate
from the nonreplicative labmoves of the form ℘w.α with w + 0 made between
the first and the second replicative moves, and the labmoves of Σ originate from
the nonreplicative labmoves of the form ℘w.α with w + 01 made between the
second and the third replicative moves. Generally, for a prelegal run Γ of ◦| A
to be a legal run, it is necessary and sufficient that all of the runs Γ+u, where u
is a complete branch of Tree �A〈Γ〉, be legal runs of A. And for such a Γ to be
a �-won run, it is necessary and sufficient that all of those Γ+u be �-won runs
of A.

When T is a non-singleton DBT, the situation is similar. For example,
for Γ to be a legal (resp. �-won) run of ◦| (Chess ◦ Checkers), along with
being a prelegal run, it is necessary that, for every complete branch 0u of
Tree �(Chess◦Checkers)〈Γ〉, Γ+0u be a legal (resp. �-won) run of Chess and, for every
complete branch 1u of the same tree, Γ+1u be a legal (resp. �-won) run of
Checkers.

Finally, the case with ◦| T , of course, is symmetric to that with ◦| T .
All of the above intuitions are summarized in the following formal defin-

itions of ◦| and ◦| , with Definition 16 being for the simpler case when T is a
singleton, and Definition 17 generalizing it to all DBTs. In concordance with
the earlier remark that considering constant games is sufficient when defining
propositional connectives, Definition 16 assumes that A is a constant game,
and Definition 17 assumes that T is a constant DBT, meaning a DBT whose
decoration sends every leaf of its BT-structure to a constant game.

Definition 16. Assume A is a constant game.
1. Branching recurrence ◦| A:

Γ ∈ Lr �A iff Γ is a prelegal run of ◦| A, and Γ+u ∈ LrA for every complete
branch u of Tree �A〈Γ〉.

Whenever Γ ∈ Lr �A, Wn �A〈Γ〉 = � iffWnA〈Γ+u〉 = � for every complete
branch u of Tree �A〈Γ〉.
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2. Branching corecurrence ◦| A:

Γ ∈ Lr

�

A iff Γ is a prelegal run of ◦| A, and Γ+u ∈ LrA for every complete
branch u of Tree

�

A〈Γ〉.

Whenever Γ ∈ Lr

�

A, Wn

�

A〈Γ〉 = ⊥ iffWnA〈Γ+u〉 = ⊥ for every complete
branch u of Tree

�

A〈Γ〉.

Definition 17. Assume T = (T, d) is a constant DBT.
1. Branching recurrence ◦| T :

Γ ∈ Lr �T iff Γ is a prelegal run of ◦| T , and Γ+wu ∈ Lrd(w) for every
complete branch wu of Tree �T 〈Γ〉 where w is a leaf of T .

Whenever Γ ∈ Lr �T , Wn �T 〈Γ〉 = � iff Wnd(w)〈Γ+wu〉 = � for every
complete branch wu of Tree �T 〈Γ〉 where w is a leaf of T .

2. Branching corecurrence ◦| T :

Γ ∈ Lr

�

T iff Γ is a prelegal run of ◦| T , and Γ+wu ∈ Lrd(w) for every
complete branch wu of Tree

�

T 〈Γ〉 where w is a leaf of T .

Whenever Γ ∈ Lr

�

T , Wn

�

T 〈Γ〉 = ⊥ iff Wnd(w)〈Γ+wu〉 = ⊥ for every
complete branch wu of Tree

�

T 〈Γ〉 where w is a leaf of T .

Let us not forget to make our already routine observation that the definition
of either operation ◦| , ◦| can be obtained from the definition of its dual by just
interchanging � with ⊥.

Now it would be interesting to see how the moves of unilegal runs affect
◦| - and ◦| -games. In fact, being able to describe the effect of such moves was
our main motivation for defining ◦| and ◦| in the general form as operations on
DBTs. We need two preliminary definitions here.

Definition 18. Suppose T = (T, d) is a DBT and w is a leaf of T . We define
Repw[T ] as the following DBT (T ′, d′):

1. T ′ = T ∪ {w0,w1}.
2. d′ is the decoration for T ′ such that:
(a) d′(w0) = d′(w1) = d(w);
(b) For every other (� w0,w1) leaf u of T ′, d′(u) = d(u).

Examples:

1. Rep0[A ◦ (B ◦ C)] = (A ◦ A) ◦ (B ◦C);
2. Rep10[A ◦ (B ◦ C)] = A ◦

(
(B ◦ B) ◦C

)
;

3. Rep11[A ◦ (B ◦ C)] = A ◦
(
B ◦ (C ◦ C)

)
.
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Definition 19. Suppose T = (T, d) is a DBT, w is a node of T and, for every
leaf u of T with w + u, 〈λ〉 is a unilegal position of d(u). We define Nonrepλw[T ]
as the DBT (T, d′), where d′ is the decoration for T such that:

(a) For every leaf u of T with w + u, d′(u) = 〈λ〉d(u);
(b) For every other leaf u of T , d′(u) = d(u).

Examples (assuming the appropriate unilegality conditions on 〈λ〉):
1. Nonrepλ10[A ◦ (B ◦ C)] = A ◦ (〈λ〉B ◦ C);
2. Nonrepλ1[A ◦ (B ◦ C)] = A ◦ (〈λ〉B ◦ 〈λ〉C);
3. Nonrepλε [A ◦ (B ◦ C)] = 〈λ〉A ◦ (〈λ〉B ◦ 〈λ〉C).

The following theorem is a combination of Propositions 13.5 and 13.8
proven in Japaridze (2003):

Theorem 20. Suppose T = (T, d) is a DBT, and λ any labmove.
1. 〈λ〉 ∈ LR �T iff one of the following conditions holds:
(a) λ is (the replicative labmove) ⊥w:, where w is a leaf of T . In this case

〈⊥w:〉◦| T = ◦| Repw[T ].
(b) λ is (the nonreplicative labmove) ℘w.α, where ℘ is either player, w is a

node of T and, for every leaf u of T with w + u, 〈℘α〉 is a unilegal position of
d(u). In this case 〈℘w.α〉◦| T = ◦| Nonrep℘αw [T ].

2. 〈λ〉 ∈ LR
�

T iff one of the following conditions holds:
(a) λ is (the replicative labmove) �w:, where w is a leaf of T . In this case

〈�w:〉◦| T = ◦| Repw[T ].
(b) λ is (the nonreplicative labmove) ℘w.α, where ℘ is either player, w is a

node of T and, for every leaf u of T with w + u, 〈℘α〉 is a unilegal position of
d(u). In this case 〈℘w.α〉◦| T = ◦| Nonrep℘αw [T ].

This theorem allows us to easily test whether a given run is a (uni)legal run
of a given ◦| - or ◦| -game, and if it is, to write out the corresponding sequence of
games.

Example 21. Let Γ = 〈⊥ε:,⊥0.3,�0.9,⊥1:,⊥10.1,�10.1〉, and A0 = ◦| %x&y
(y = x2). In view of Theorem 20, Γ is legal for A0, and it brings the latter down
to game A6 as shown below:

A0: ◦|
(
%x&y(y = x2)

)
;

A1: ◦|
(
%x&y(y = x2) ◦ %x&y(y = x2)

)
, i.e. 〈⊥ε:〉A0;

A2: ◦|
(
&y(y = 32) ◦ %x&y(y = x2)

)
, i.e. 〈⊥0.3〉A1;

A3: ◦|
(
(9 = 32) ◦ %x&y(y = x2)

)
, i.e. 〈�0.9〉A2;

A4: ◦|
(
(9 = 32) ◦

(%x&y(y = x2) ◦ %x&y(y = x2)
))
, i.e. 〈⊥1:〉A3;

A5: ◦|
(
(9 = 32) ◦

(&y(y = 12) ◦ %x&y(y = x2)
))
, i.e. 〈⊥10.1〉A4;

A6: ◦|
(
(9 = 32) ◦

(
(1 = 12) ◦ %x&y(y = x2)

))
, i.e. 〈�10.1〉A5.
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The empty run 〈〉 is a �-won run of each of the three ◦-components of A6.
It can be easily seen that then (and only then) 〈〉 is a �-won run of A6, for
◦| (. . . ◦ . . .) essentially acts as parallel conjunction. Hence Γ is a �-won run
of A0.

The run that we see in the above example, though technically different,
is still “essentially the same” as the one from Example 13. Indeed, as noted
earlier, ◦| and ∧| are equivalent when applied to traditional, low-interactivity
problems such as %x&y(y = x2). What makes the resource ◦| A stronger than
∧| A is ⊥’s ability to try several different responses to a same move by �. In
◦| %x&y(y = x2), however, ⊥ cannot take advantage of this flexibility because
there are no legal runs of %x&y(y = x2) where ⊥’s moves follow �’s moves.

To get a feel of the substantial difference between ◦| and ∧| , let us consider,
for simplicity, the bounded versions ◦| b, ◦| b, ∧| b, ∨| b of our recurrence operations.
Here b is a positive integer, setting the bound on the number of parallel plays
of game A that can be generated in a legal run of ◦| A (◦| A, ∧| A, ∨| A). That is,
∧|

bA and ∨| bA are nothing but the parallel conjunction and parallel disjunction
of b copies of A, respectively. And ◦| bA and ◦| bA are defined as ◦| A and ◦| A, with
the only difference that, in a legal run Γ, a replicative move can be made at

most b − 1 times, so that Tree �

bA〈Γ〉 or Tree

�

bA〈Γ〉 will have at most b complete
branches.

We want to compare ◦| 2D with ∨| 2D, i.e. with D ∨ D, where

D = (Chess & ¬Chess) % (Checkers & ¬Checkers).

Winning D ∨ D is not easy for � unless � is a champion in either chess or
checkers. Indeed, a smart environment may choose the left %-conjunct in the
left occurrence of D in D ∨ D while choose the right %-conjunct in the right
occurrence. This will bring the game down to

(Chess & ¬Chess) ∨ (Checkers & ¬Checkers).

� in trouble now. It can, say, make the moves ‘1.1’ and ‘2.2’, bringing the
game down to Chess∨¬Checkers. This will not help much though, as winning
Chess ∨ ¬Checkers, unlike Chess ∨ ¬Chess, is not any easier than winning
either disjunct in isolation.

On the other hand, � does have a nice winning strategy for ◦| 2D. At the be-
ginning, � waits till ⊥ chooses one of the two %-conjuncts of D. This brings
the game down to, say, ◦| 2(Chess & ¬Chess). Then and only then, � makes a
replicative move, thus creating two copies of Chess & ¬Chess. In one copy �
chooses the left &-disjunct, and in the other copy chooses the right &-disjunct.
Now the game will have evolved to ◦| 1(Chess◦¬Chess). With ◦| 1(A◦¬A) essen-
tially being nothing but A ∨ ¬A, mimicking in Chess the moves made by ⊥ in
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¬Chess and vice versa guarantees a success for �. Among the runs consistent
with this strategy is

〈⊥.1,�ε:,�0.1,�1.2,⊥1.α1,�0.α1,⊥0.α2,�1.α2,⊥1.α3,�0.α3, . . .〉,

to which corresponds the following sequence of games:

◦| 2((Chess & ¬Chess) % (Checkers & ¬Checkers));
◦| 2(Chess & ¬Chess);
◦| 1((Chess & ¬Chess) ◦ (Chess & ¬Chess));
◦| 1(Chess ◦ (Chess & ¬Chess));
◦| 1(Chess ◦ ¬Chess);
◦| 1(Chess ◦ 〈⊥α1〉¬Chess);
◦| 1(〈�α1〉Chess ◦ 〈⊥α1〉¬Chess);
◦| 1(〈�α1,⊥α2〉Chess ◦ 〈⊥α1〉¬Chess);
◦| 1(〈�α1,⊥α2〉Chess ◦ 〈⊥α1,�α2〉¬Chess);
◦| 1(〈�α1,⊥α2〉Chess ◦ 〈⊥α1,�α2,⊥α3〉¬Chess);
◦| 1(〈�α1,⊥α2,�α3〉Chess ◦ 〈⊥α1,�α2,⊥α3〉¬Chess);
· · ·
As we are going to see later, affine logic is sound with respect to the seman-

tics of computability logic no matter whether the exponential operators !, ? of
the former are understood as ∧| , ∨| or ◦| , ◦| . Thus, affine logic cannot distinguish
between the two groups of recurrence operations. But computability logic cer-
tainly sees a difference. As noted earlier, it validates

(P� R) % (Q� R)� (P & Q� R)

while makes

(P ∧ | R) % (Q ∧ | R) ∧ | (P & Q ∧ | R)

fail. Here are two other examples of principles that can be shown to be valid
with one sort of recurrence while invalid with the other sort:

◦| (P & Q)→ ◦| P & ◦| Q is valid;
∧| (P & Q)→ ∧| P & ∧| Q is not.

P ∧ ∧| (P→ Q ∧ P)→ ∧| Q is valid;
P ∧ ◦| (P → Q ∧ P)→ ◦| Q is not.

As for how the strengths of ◦| and ∧| relate, as we may guess, the situation is:

◦| P→ ∧| P is valid;
∧| P→ ◦| P is not.
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11.5 Static games
Our games are obviously general enough to model anything that one would

call a (two-agent, two-outcome) interactive problem. However, they are a bit
too general. There are games where the chances of a player to succeed es-
sentially depend on the relative speed at which its adversary acts. A simple
example would be the following game:

��

��

�
	

	
		
�α









⊥β

��

��

�
��

��

⊥

Figure 11.12: A non-static game

One cannot ask which player has a winning strategy here, for this game is a
contest of speed rather than intellect: the winner will be whoever is fast enough
to move first. CL does not want to consider this sort of games meaningful
computational problems, and restricts its attention to the subclass of games
that it calls static. Intuitively, static games are ones where speed is irrelevant:
in order to win, for either player only matters what to do (strategy) rather than
how fast to do (speed). ‘These are games where, roughly speaking, it never
hurts a player to postpone making moves’.9

Static games are defined in terms of the auxiliary concept of ℘-delay. The
notation Γ� used below means the result of deleting from Γ all ⊥-labeled
(lab)moves. Symmetrically for Γ⊥.

Definition 22. Let ℘ be either player, and Γ,Δ arbitrary runs. We say that Δ is
a ℘-delay of Γ iff the following two conditions are satisfied:

1. Δ� = Γ� and Δ⊥ = Γ⊥;
2. For any k, n ≥ 1, if the kth ¬℘-labeled move is made earlier than (is to

the left of) the nth ℘-labeled move in Γ, then so is it in Δ.

Intuitively, “Δ is a ℘-delay of Γ” means that in Δ both players have played
the same way as in Γ (condition 1), only, in Δ, ℘ might have been acting with
some delay, i.e. slower than in Γ (condition 2). In more technical terms, Δ
is the result of shifting in Γ some (maybe all, maybe none) ℘-labeled moves
to the right; in the process of shifting, ℘-labeled moves can jump over ¬℘-
labeled moves, but a ℘-labeled move can never jump over another ℘-labeled

9From the American Mathematical Society review of Japaridze (2003) by Andreas Blass.
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move. For example, the run Γ = 〈�α,⊥β,�γ,⊥δ〉 has exactly the following
five �-delays:

Δ1 = 〈�α,⊥β,�γ,⊥δ〉 (= Γ);
Δ2 = 〈⊥β,�α,�γ,⊥δ〉;
Δ3 = 〈�α,⊥β,⊥δ,�γ〉;
Δ4 = 〈⊥β,�α,⊥δ,�γ〉;
Δ5 = 〈⊥β,⊥δ,�α,�γ〉.

Definition 23. A constant game A is said to be static iff, for any player ℘ and
any runs Γ,Δ such that Δ is a ℘-delay of Γ, we have:

if WnA〈Γ〉 = ℘, then WnA〈Δ〉 = ℘.

This definition generalizes to all games by stipulating that a not-necessarily-
constant game is static iff every instance of it is so.

Looking at the game of Figure 11.12, 〈⊥β,�α〉 is a �-delay of 〈�α,⊥β〉.
The latter is �-won while the former is not. So, that game is not static. On
the other hand, all of the other examples of games we have seen or will see
in this paper are static. This is no surprise. In view of the following theorem,
the closure of the set of all strict games—including all predicates—under all
of our game operations forms a natural family of static games:

Theorem 24.
1. Every strict game (and hence every elementary game) is static.
2. Every game operation defined in this paper preserves the static property

of games.

Proof. That all strict games are static has been proven in Japaridze (2003)
(Proposition 4.8); and, of course, every elementary game is trivially strict. This
takes care of clause 1. As for clause 2, it is a part of Theorem 14.1 of Japaridze
(2003). Even though the operations ∧| , ∨| ,∧,∨ were not officially introduced in
Japaridze (2003), they can be handled in exactly the same way as ∧,∨. �

See Section 4 of Japaridze (2003) for arguments in favor of the belief
that static games are adequate formal counterparts of our intuition of “pure”,
speed-independent interactive computational problems. Based on that belief,
CL uses the terms “static game” and (interactive) “computational problem”
as synonyms. We have been informally using the concept of validity, which in
intuitive terms was characterized as being a scheme of “always computable”
problems. As will be seen from the formal definition of validity given in
Section 11.7, the exact meaning of a “problem” is a static—rather than any—
game.

All of the examples of winning strategies that we have seen so far shared one
feature: for every position, the strategy had a strict prescription for a player re-
garding whether it should move or wait till the adversary makes a move. This
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might have given us the wrong illusion of being a common case, somehow
meaning that static games, even when properly free, still can always be “ade-
quately” modeled as strict games. Not really. Below is an example, borrowed
from Japaridze (2003), of an inherently free static game. The winning strategy
for it substantially takes advantage of the flexibility offered by the free-game
approach: the fact that it is not necessary for a player to precisely know whether
in a given position it needs to move or wait. Any attempt to model such a game
as a strict game would signify counterfeiting the true essence of the interactive
computational problem that it represents.

Example 25. Let A(x, z) be a decidable arithmetical predicate such that the
predicate ∀zA(x, z) is undecidable, and let B(x, y) be an undecidable arithmeti-
cal predicate. Consider the following computational problem:

%x
(
%y
(∀zA(x, z) ∧ B(x, y)

)
%%zA(x, z) → ∀zA(x, z) ∧%yB(x, y)

)
.

After ⊥ specifies a value m for x, � will seemingly have to decide what
to do: to watch or to think. The ‘watch’ choice is to wait till ⊥ specifies
a value k for y in the consequent, after which � can select the %-conjunct
%y
(∀zA(m, z) ∧ B(m, y)

)
in the antecedent and specify y as k in it, thus bring-

ing the play down to the always-won elementary game ∀zA(m, z) ∧ B(m, k)→
∀zA(m, z)∧B(m, k). While being successful if ∀zA(m, z) is true, the watch strat-
egy is a bad choice when ∀zA(m, z) is false, for there is no guarantee that ⊥
will indeed make a move in%yB(m, y), and if not, the game will be lost. When
∀zA(m, z) is false, the following ‘think’ strategy is successful: Start looking for
a number n for which A(m, n) is false. This can be done by testing A(m, z), in
turn, for z = 1, z = 2, ... After you find n, select the %-conjunct %zA(m, z)
in the antecedent, specify z as n in it, and you are the winner. The trouble is
that if ∀zA(m, z) is true, such a number n will never be found. Thus, which
of the above two choices (watch or think) would be successful depends on
whether ∀zA(m, z) is true or false, and since ∀zA(x, z) is undecidable, � has no
effective way to make the right choice. Fortunately, there is no need to choose.
Rather, these two strategies can be pursued simultaneously: � starts looking
for a number n which makes A(m, n) false and, at the same time, periodically
checks if ⊥ has made a move in %yB(m, y). If the number n is found before
⊥ makes such a move, � continues as prescribed by the think strategy; if vice
versa, � continues as prescribed by the watch strategy; finally, if none of these
two events ever occur, which, note, is only possible when ∀zA(m, z) is true (for
otherwise a number n falsifying A(m, n) would have been found), again � will
be the winner. This is so because, just as in the corresponding scenario of the
watch strategy, � will have won both of the conjuncts of the consequent.
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11.6 Winnability
Now that we know what computational problems are, it is time to explain

what computability, i.e. algorithmic solvability, i.e. existence of an algorithmic
winning strategy exactly means. The definitions given in this section are semi-
formal. The omitted technical details are rather standard or irrelevant, and can
be easily restored by anyone familiar with Turing machines. If necessary, the
corresponding detailed definitions can be found in Part II of Japaridze (2003).

As we remember, the central point of our philosophy is to require that player
� (here identified with its strategy) be implementable as a computer program,
with effective and fully determined behavior. On the other hand, the behavior of
⊥, including its speed, can be arbitrary. This intuition is captured by the model
of interactive computation where � is formalized as what we call HPM.10

An HPMH is a Turing machine which, together with an ordinary read/write
work tape, has two additional, read-only tapes: the valuation tape and the run
tape. The presence of these two tapes is related to the fact that the outcome
of a play over a given game depends on two parameters: (1) the valuation that
tells us which instance of the game is played, and (2) the run that is generated
in the play. H should have full access to information about these two para-
meters, and this information is provided by the valuation and run tapes: the
former spells a (the “actual”) valuation e by listing constants in the lexico-
graphic order of the corresponding variables, and the latter spells, at any given
time, the current position, i.e. the sequence of the (labeled) moves made by
the two players so far. Thus, both of these two tapes can be considered input
tapes. The reason for our choice to keep them separate is the difference in the
nature of the input that they provide. Valuation is a static input, known at the
very beginning of a computation/play and remaining unchanged throughout
the subsequent process. On the other hand, the input provided by the run tape
is dynamic: every time one of the players makes a move, the move (with the
corresponding label) is appended to the content of this tape, with such content
being unknown and hence blank at the beginning of interaction. Technically the
run tape is read-only: the machine has unlimited read access to this (as well as
to the valuation) tape, but it cannot write directly on it. Rather, H makes a
move α by constructing it at the beginning of its work tape, delimiting its end
with a blank symbol, and entering one of the specially designated states called
move states. Once this happens, �α is automatically appended to the current
position spelled on the run tape. While the frequency at which the machine can
make moves is naturally limited by its clock cycle time (the time each com-
putation step takes), there are no limitations to how often the environment can

10HPM stands for ‘Hard-Play Machine’. See Japaridze (2003) for a (little long) story about why “hard”.
The name EPM for the other model defined shortly stands for “Easy-Play Machine”.



G. Japaridze 301

make a move, so, during one computation step of the machine, any finite num-
ber of any moves by the environment can be appended to the content of the
run tape. This corresponds to the earlier-pointed-out intuition that not only the
strategy, but also the relative speed of the environment can be arbitrary. For
technical clarity, we assume that the run tape remains stable during a clock
cycle, and is updated only on a transition from one cycle to another. Specif-
ically, where 〈Φ〉 is the position spelled on the run tape during a given cycle
and α1, . . . , αn (possibly n = 0) is the sequence of the moves made by the
environment during the cycle, the content of the run tape throughout the next
cycle will be either 〈Φ,⊥α1, . . . ,⊥αn,�β〉 or 〈Φ,⊥α1, . . . ,⊥αn〉, depending on
whether the machine did or did not make a move β during the previous cycle.
Such a transition is thus nondeterministic, with nondeterminism being related
to the different possibilities for the above sequence α1, . . . , αn.

A configuration of an HPM H is defined in the standard way: this is a full
description of the (“current”) state of the machine, the locations of its three
scanning heads and the contents of its tapes, with the exception that, in order
to make finite descriptions of configurations possible, we do not formally in-
clude a description of the unchanging (and possibly essentially infinite) content
of the valuation tape as a part of configuration, but rather account for it in our
definition of computation branch as this will be seen below. The initial config-
uration is the configuration where H is in its start state and the work and run
tapes are empty. A configuration C′ of H is said to be an e-successor of con-
figuration C if, when valuation e is spelled on the valuation tape, C′ can legally
follow C in the standard sense, based on the transition function (which we as-
sume to be deterministic) of the machine and accounting for the possibility of
the above-described nondeterministic updates of the content of the run tape.
An e-computation branch of H is a sequence of configurations of H where
the first configuration is the initial configuration and each other configuration is
an e-successor of the previous one. Thus, the set of all e-computation branches
captures all possible scenarios (on valuation e) corresponding to different be-
haviors by ⊥. Each e-computation branch B ofH incrementally spells—in the
sense that must be clear—a run Γ on the run tape, which we call the run spelled
by B.

Definition 26. For games A and B we say that:
1. An HPMH wins A on a valuation e iff, whenever Γ is the run spelled by

some e-computation branch ofH , Wne[A]〈Γ〉 = �.
2. An HPMH (simply) wins A iff it wins A on every valuation.
3. A is winnable iff there is an HPM that wins A. Such an HPM is said to

be a solution for A.
4. A is reducible to B iff B → A is winnable. An HPM that wins B → A is

said to be a reduction of A to B.
5. A and B are equivalent iff A is reducible to B and vice versa.
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The HPM model of interactive computation seemingly strongly favors the
environment in that the latter may be arbitrarily faster than the machine. What
happens if we start limiting the speed of the environment? The answer is noth-
ing as far as computational problems, i.e. static games, are concerned. The
alternative model of computation called EPM takes the idea if limiting the
speed of the environment to the extreme by always letting the machine to de-
cide when the environment can move and when it should wait; yet, as it turns
out, the EPM model yields the same class of winnable static games as the HPM
model does.

An EPM is a machine defined in the same way as an HPM, with the only
difference that now the environment can (but is not obligated to) make a move
only when the machine explicitly allows it to do so, the event called granting
permission. Technically permission is granted by entering one of the specially
designated states called permission states. The only requirement that the ma-
chine is expected to satisfy is that, as long as the adversary is playing legal, the
machine should grant permission every once in a while; how long that “while”
lasts, however, is totally up to the machine. This amounts to having full control
over the speed of the adversary.

The above intuition is formalized as follows. After correspondingly redefin-
ing the ‘e-successor’ relation—in particular, accounting for the condition that
now a (one single) ⊥-labeled move may be appended to the contents of the
run tape only when the machine is in a permission state—the concepts of an
e-computation branch of an EPM, the run spelled by such a branch, etc. are de-
fined in exactly the same way as for HPMs. We say that a computation branch
B of an EPM is fair iff permission is granted infinitely many times in B.

Definition 27. For a game A and an EPM E, we say that:
1. E wins A on a valuation e iff, whenever Γ is the run spelled by some

e-computation branch B of E, unless Γ is a ⊥-illegal run of e[A], B is fair and
Wne[A]〈Γ〉 = �.

2. E (simply) wins A iff it wins A on every valuation.

We will be using the expressions {HPMs} and {EPMs} for the sets of all
HPMs and all EPMs, respectively.

The following fact, proven in Japaridze (2003) (Theorem 17.2), establishes
equivalence between the two models of computation for static games:

Theorem 28. There is an effective function f : {EPMs}−→{HPMs} such that,
for every EPM E and static game A (and valuation e), whenever E wins
A (on e), so does f (E). And vice versa: there is an effective function f :
{HPMs}−→{EPMs} such that, for every HPMH and static game A (and valu-
ation e), whenever H wins A (on e), so does f (H).

The philosophical significance of this theorem is that it reinforces the
belief according to which static games are games that allow us to make full
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abstraction from speed. Its technical importance is related to the fact that the
EPM-model is much more convenient when it comes to describing interac-
tive algorithms/strategies, as we will have a chance to see later. The two mod-
els also act as natural complements to each other: as shown in Section 20 of
Japaridze (2003), we can meaningfully talk about the (uniquely determined)
play between a given HPM and a given EPM, while this is impossible if
both players are EPMs or both are HPMs. This fact has been essentially ex-
ploited in the completeness theorems for logic CL4 and its fragments proven
in Japaridze, (2006a, c, d, 2007a), where environment’s strategies for the games
represented by unprovable formulas were described as EPMs and then it was
shown that no HPM can win against such EPMs.

In view of Theorem 28, winnability of a static game A can be equivalently
defined as existence of an EPM (rather than HPM) that wins A. Since we are
only concerned with static games, from now on we will treat either definition
as an equally official definition of winnability. And we extend the usage of the
terms solution and reduction (Definition 26) from HPMs to EPMs. For a static
game A, valuation e and HPM or EPMM, we write

M |=e A, M |= A and |= A

to mean that M wins A on valuation e, that M (simply) wins A and that A
is winnable, respectively. Also, we will be using the terms “computable” or
“algorithmically solvable” as synonyms of “winnable”.

One might guess that, just as the ordinary Turing machine model, our HPM
and EPM models are highly rigid with respect to reasonable technical varia-
tions. For example, the models where only environment’s moves are visible to
the machine yield the same class of winnable static games. Similarly, there is
no difference between whether we allow the scanning heads on the valuation
and run tapes to move in either or only one (left to right) direction. Another
variation is the one where an attempt by either player to make an illegal move
has no effect: such moves are automatically rejected and/or filtered out by some
interface hardware or software and thus illegal runs are never generated. Ob-
viously in such a case a minimum requirement would be that the question of
legality of moves be decidable (which is indeed “very easily decidable” for
naturally emerging games, including all games from the closure of the set of
predicates under all of our game operations). This again yields models equiva-
lent to HPM and/or EPM.

11.7 Validity
While winnability is a property of games, validity is a property of logical

formulas, meaning that the formula is a scheme of winnable static games. To
define this concept formally, we need to agree on a formal language first. It is
going to be an extension of the language of classical predicate calculus without
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identity or functional symbols. Our language is more expressive than the lat-
ter not only because it has non-classical operators in it such as %,%, ◦| etc.,
but also due to the fact that we now have two sorts of atoms: elementary and
general. Elementary atoms represent elementary games, i.e. predicates, while
general atoms represent any computational problems, i.e. any (not-necessarily-
elementary) static games. The point is that elementary problems are interesting
and meaningful in their own right, and validate principles that may not be valid
in the general case. We want to be able to analyze games at a reasonably fine
level, which is among the main reasons for our choice to have the two sorts of
atoms in the language.

More formally, for each integer n ≥ 0, our language has infinitely many
n-ary elementary letters and n-ary general letters. Elementary letters are
what is called predicate letters in ordinary logic. We will consistently use
the lowercase p, q, r, s as metavariables for elementary letters, and the up-
percase P,Q,R, S as metavariables for general letters. A nonlogical atom is
L(t1, . . . , tn), where L is an n-ary elementary or general letter, and each ti is a
term, i.e. one of the variables v1, v2, v3, . . . or one of the constants 1, 2, 3, . . ..
Such an atom L(t1, . . . , tn) is said to be L-based. When L is 0-ary, the only
L-based atom will be usually written as L rather than L(). An L-based atom is
said to be elementary, general, n-ary, etc. if L is so. We also have two logical
atoms � and ⊥. Formulas are constructed from atoms and variables in the
standard way applying to them the unary connectives ¬, ∧| , ∨| , ◦| , ◦| , the binary
connectives →, ∧ | ,�, the variable- (≥2) arity connectives ∧,∨,%,&, and the
quantifiers ∀,∃,%,&,∧,∨. Throughout the rest of this paper, unless other-
wise specified, “formula” will always mean a formula of this language, and
letters E, F,G,H will be used as metavariables for formulas. We also continue
using x, y, z as metavariables for variables, c for constants and t for terms.

The definitions of a bound occurrence and a free occurrence of a variable
are standard. They extend from variables to all terms by stipulating that an
occurrence of a constant is always free. When an occurrence of a variable x is
within the scope of Qx for several quantifiers Q, then x is considered bound by
the quantifier “nearest” to it. For instance, the occurrence of x within Q(x, y)
in ∀x(P(x) ∨ %x∧yQ(x, y)) is bound by %x rather than ∀x, for the latter is
overridden by the former. An occurrence of a variable that is bound by ∀x or
∃x is said to be blindly bound.

In concordance with a similar notational practice established earlier for
games, sometimes we represent a formula F as F(x1, . . . , xn), where the xi

are pairwise distinct variables. In the context set by such a representation,
F(t1, . . . , tn) will mean the result of simultaneously replacing in F all free oc-
currences of each variable xi (1 ≤ i ≤ n) by term ti. In case each ti is a variable
yi, it may be not clear whether F(x1, . . . , xn) or F(y1, . . . , yn) was originally
meant to represent F in a given context. Our disambiguating convention is that
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the context is set by the expression that was used earlier. That is, when we
first mention F(x1, . . . , xn) and only after that use the expression F(y1, . . . , yn),
the latter should be understood as the result of replacing variables in the for-
mer rather than vice versa. It should be noted that, when representing F as
F(x1, . . . , xn), we do not necessarily mean that x1, . . . , xn are exactly the vari-
ables that have free occurrences in F.

An interpretation is a function ∗ that sends each n-ary elementary (resp.
general) letter L to an elementary (resp. static) game with a fixed attached
n-tuple x1, . . . , xn of variables. We denote such a game by L∗(x1, . . . , xn), and
call the tuple (x1, . . . , xn) the canonical tuple of L∗. When we do not care
about the canonical tuple, simply L∗ can be written instead of L∗(x1, . . . , xn).
According to our earlier conventions, x1, . . . , xn have to be neither all nor the
only variables on which the game L∗ = L∗(x1, . . . , xn) depends; in fact, L∗

does not even have to be finitary here. The canonical tuple is only used for
setting a context, in which L∗(t1, . . . , tn) can be conveniently written later for
L∗(x1/t1, . . . , xn/tn). This eliminates the need to have a special syntactic con-
struct in the language for the operation of substitution of variables.

Interpretations are meant to turn formulas into games. Not every inter-
pretation is equally good for every formula though, and some precaution is
necessary to avoid confusing collisions of variables, as well as to guarantee
that ∀x,∃x are only applied to games for which they are defined, i.e. games
unistructural in x. For this reason, we restrict interpretations to “admissible”
ones. We say that an interpretation ∗ is admissible for a formula F, or simply
is F-admissible iff, for every n-ary (general or elementary) letter L occurring
in F, the following two conditions are satisfied:

(i) L∗ does not depend on any variables that are not among its canonical tuple
but occur in F.

(ii) If the ith (1 ≤ i ≤ n) term of an occurrence of an L-based atom in F is
blindly bound, then L∗ is unistructural in the ith variable of its canonical
tuple.

Every interpretation ∗ extends from letters to formulas for which ∗ is admis-
sible in the obvious way:

Where L is an n-ary letter with L∗ = L∗(x1, . . . , xn) and t1, . . . , tn are any
terms,

(
L(t1, . . . , tn)

)∗
= L∗(t1, . . . , tn).

∗ respects the meanings of logical operators (including logical atoms as
0-ary operators) as the corresponding game operations; that is: �∗ = �;
(¬G)∗ = ¬(G∗); (G % H)∗ = (G∗) % (H∗); (∀xG)∗ = ∀x(G∗); etc.

When F∗ = A, we say that ∗ interprets F as A, and that F∗ is an interpretation
of F.
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Notice that condition (ii) of admissibility is automatically satisfied when
L is an elementary letter, because an elementary problem (i.e. L∗) is always
unistructural and hence unistructural in all variables. In most typical cases we
will be interested in interpretations ∗ where L∗ is unistructural and does not
depend on any variables other than those of its canonical tuple, so that both
conditions (i) and (ii) will be automatically satisfied. With this remark in mind
and in order to relax terminology, henceforth we may sometimes omit “F-
admissible” and simply say “interpretation”; every time an expression F∗ is
used in a context, it should be understood that the range of ∗ is restricted to
F-admissible interpretations.

Definition 29. We say that a formula F is valid—and write �� F—iff, for every
F-admissible interpretation ∗, the game F∗ is winnable.

The main technical goal of CL at this stage of its development is to find
axiomatizations for the set of valid formulas or various nontrivial fragments of
that set. A considerable progress has already been achieved in this direction;
more is probably yet to come in the future.

11.8 Uniform validity
If we disabbreviate “F∗ is winnable” as ∃M(M |= F∗) where M ranges

over HPMs or EPMs, validity in the sense of Definition 29 can be written as
∀∗∃M(M |= F∗). Reversing the order of quantification yields the following
stronger property of uniform validity:

Definition 30. We say that a formula F is uniformly valid—and write ��� F—
iff there is an HPM or (equivalently) EPMM such that, for every F-admissible
interpretation ∗,M |= F∗.

Such an HPM or EPMM is said to be a uniform solution for F, andM��� F
is written to express thatM is a uniform solution for F.

Intuitively, a uniform solution M for a formula F is an interpretation-
independent winning strategy: since, unlike valuation, the “intended” or “ac-
tual” interpretation ∗ is not visible to the machine, M has to play in some
standard, uniform way that would be successful for any possible interpretation
of F.

The term “uniform” is borrowed from Abramsky and Jagadeesan (1994)
as this understanding of validity in its spirit is close to that in Abramsky and
Jagadeesan’s tradition. The concepts of validity in Lorenzen (1959) tradition,
or in the sense of Japaridze (2000, 2002), also belong to this category. Com-
mon to those uniform-validity-style notions is that validity there is not defined
as being “always true” (true = winnable) as this is the case with the classical
understanding of this concept; in those approaches the concept of truth is of-
ten simply absent, and validity is treated as a basic concept in its own rights.
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As for simply validity, it is closer to validities in the sense of Blass (1992)
or Japaridze (1997), and presents a direct generalization of the correspond-
ing classical concept in that it indeed means being “true” in every particular
setting.

Which of our two versions of validity is more interesting depends on the
motivational standpoint. It is validity rather than uniform validity that tells us
what can be computed in principle. So, a computability-theoretician would fo-
cus on validity. Mathematically, non-validity is generally by an order of mag-
nitude more informative—and correspondingly harder to prove—than non-
uniform-validity. Say, the non-validity of p & ¬p means existence of solvable-
in-principle yet algorithmically unsolvable problems11—the fact that became
known to mankind only as late as in the twentieth century. As for the non-
uniform-validity of p&¬p, it is trivial: of course there is no way to choose one
of the two disjuncts that would be true for all possible values of p because, as
the Stone Age intellectuals were probably aware, some p are true and some are
false.

On the other hand, it is uniform validity rather than validity that is of inter-
est in more applied areas of computer science such as knowledge base systems
or systems for planning and action (see Section 11.10). In this sort of applica-
tions we want a logic on which a universal problem-solving machine can be
based. Such a machine would or should be able to solve problems represented
by logical formulas without any specific knowledge of the meanings of their
atoms, i.e. without knowledge of the actual interpretation. Remembering what
was said about the intuitive meaning of uniform validity, this concept is exactly
what fits the bill.

Anyway, the good news is that the two concepts of validity appear to yield
the same logic. This has been conjectured for the full language of CL in
Japaridze (2003) (Conjecture 26.2), and by now, as will be seen from our
Theorem 35, successfully verified for the rather expressive fragment of that
language—the language of logic CL4.

11.9 Logic CL4

The language of logic CL4 is the fragment of the language of Section 11.7
obtained by forbidding the parallel group of quantifiers and the recurrence
group of propositional connectives. This leaves us with the operators ¬, ∧, ∨,

11Well, saying so is only accurate with the Strong Completeness clause of Theorem 34 (which, as conjec-
tured in Japaridze (2003), extends from CL4 to any other complete fragments of CL) in mind, according
to which the non-validity of p & ¬p implies the existence of a finitary predicate A for which A & ¬A has
no algorithmic solution. As will be pointed out in a comment following Theorem 34, without the finitarity
restriction, a machine may fail to win A & ¬A not (only) due to the fundamental limitations of algorith-
mic methods, but rather due to the fact that it can never finish reading all necessary information from the
valuation tape to determine the truth status of A.
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→, %, &, ∀, ∃,%,&, along with the logical atoms �,⊥ and the two sorts (ele-
mentary and general) of nonlogical atoms. Furthermore, for safety and without
loss of expressive power, we agree that a formula cannot contain both bound
and free occurrences of the same variable. We refer to the formulas of this
language as CL4-formulas.

Our axiomatization of CL4 employs the following terminology. Under-
standing F → G as an abbreviation for ¬F ∨ G, a positive (resp. negative)
occurrence of a subformula is one that is in the scope of an even (resp. odd)
number of occurrences of ¬. A surface occurrence of a subformula is an oc-
currence that is not in the scope of any choice operators. A CL4-formula not
containing general atoms and choice operators—i.e. a formula of the language
of classical first-order logic—is said to be elementary. The elementarization
of a CL4-formula F is the result of replacing in F all surface occurrences of
each subformula of the form G1&. . .&Gn or&xG by⊥, all surface occurrences
of each subformula of the form G1% . . .%Gn or%xG by �, all positive surface
occurrences of each general atom by ⊥, and all negative surface occurrences
of each general atom by �. A CL4-formula is said to be stable iff its ele-
mentarization is classically valid, i.e. provable in classical predicate calculus.
Otherwise it is instable.

With P -→ C meaning “from premise(s) P conclude C”, logic CL4 is given
by the following four rules where, as can be understood, both the premises and
the conclusions range over CL4-formulas:

A �H -→ E, where E is stable and �H is a set of formulas satisfying the
following conditions:

(i) Whenever E has a positive (resp. negative) surface occurrence of a
subformula G1%. . .%Gn (resp. G1&. . .&Gn), for each i ∈ {1, . . . , n},
�H contains the result of replacing that occurrence in E by Gi.

(ii) Whenever E has a positive (resp. negative) surface occurrence of a
subformula %xG(x) (resp. &xG(x)), �H contains the result of re-
placing that occurrence in E by G(y) for some variable y not occur-
ring in E.

B1 H -→ E, where H is the result of replacing in E a negative (resp. positive)
surface occurrence of a subformula G1 % . . . %Gn (resp. G1 & . . . &Gn)
by Gi for some i ∈ {1, . . . , n}.

B2 H -→ E, where H is the result of replacing in E a negative (resp. positive)
surface occurrence of a subformula %xG(x) (resp. &xG(x)) by G(t) for
some term t such that (if t is a variable) neither the above occurrence of
%xG(x) (resp.&xG(x)) in E nor any of the free occurrences of x in G(x)
are in the scope of ∀t, ∃t,%t or&t.
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C H -→ E, where H is the result of replacing in E two—one positive and
one negative—surface occurrences of some n-ary general letter by an
n-ary elementary letter that does not occur in E.

Axioms are not explicitly stated, but note that the set of premises of Rule A
sometimes can be empty, in which case the conclusion acts as an axiom. Look-
ing at a few examples should help us get a syntactic feel of this most unusual
deductive system.

The following is a CL4-proof of %x&y
(
P(x)→ P(y)

)
:

1. p(z) → p(z) (from {} by Rule A);
2. P(z)→ P(z) (from 1 by Rule C);
3. &y

(
P(z)→ P(y)

)
(from 2 by Rule B2);

4. %x&y
(
P(x)→ P(y)

)
(from {3} by Rule A).

On the other hand, CL4 � &y%x
(
P(x) → P(y)

)
. Indeed, obviously this in-

stable formula cannot be the conclusion of any rule but B2. If it is derived by
this rule, the premise should be %x

(
P(x) → P(t)

)
for some term t different

from x. %x
(
P(x) → P(t)

)
, in turn, could only be derived by Rule A where,

for some variable z different from t, P(z) → P(t) is a (the) premise. The latter
is an instable formula and does not contain choice operators, so the only rule
by which it can be derived is C, where the premise is p(z) → p(t) for some
elementary letter p. Now we deal with a classically non-valid and hence in-
stable elementary formula, and it cannot be derived by any of the four rules
of CL4.

Note that, in contrast, the “blind version” ∃y∀x
(
P(x) → P(y)

)
of&y%x

(
P(x)→ P(y)

)
is provable:

1. ∃y∀x
(
p(x)→ p(y)

)
(from {} by Rule A);

2. ∃y∀x
(
P(x)→ P(y)

)
(from 1 by Rule C).

‘There is y such that, for all x, P(x)→ P(y)’ is true yet not in a constructive
sense, thus belonging to the kind of principles that have been fueling contro-
versies between the classically- and constructivistically-minded. As noted in
Section 11.1, computability logic is offering a peaceful settlement, telling the
arguing parties: “There is no need to fight at all. It appears that you simply
have two different concepts of ‘there is’/‘for all’. So, why not also use two
different names: ∃/∀ and &/%. Yes, ∃y∀x

(
P(x) → P(y)

)
is indeed right; and

yes, &y%x
(
P(x) → P(y)

)
is indeed wrong.” Clauses 1 and 2 of Exercise 31

illustrate a similar solution for the law of the excluded middle, the most con-
troversial principle of classical logic.

The above-said remains true with p instead of P, for what is relevant there is
the difference between the constructive and non-constructive versions of logi-
cal operators rather than how atoms are understood. Then how about the dif-
ference between the elementary and non-elementary versions of atoms? This
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distinction allows computability logic to again act in its noble role of a rec-
onciliator/integrator, but this time between classical and linear logics, telling
them: “It appears that you have two different concepts of the objects that logic
is meant to study. So, why not also use two different sorts of atoms to repre-
sent such objects: elementary atoms p, q, . . . , and general atoms P,Q, . . . . Yes,
p → p ∧ p is indeed right; and yes, P → P ∧ P (Exercise 31(4)) is indeed
wrong”. However, as pointed out in Section 11.1, the term “linear logic” in
this context should be understood in a very generous sense, referring not to the
particular deductive system proposed by Girard (1987) but rather to the gen-
eral philosophy and intuitions traditionally associated with it. The formula of
clause 3 of the following exercise separates CL4 from linear logic. That for-
mula is provable in affine logic though. Switching to affine logic, i.e. restoring
the deleted (from classical logic) rule of weakening, does not however save the
case: the CL4-provable formulas of clauses 10, 11 and 18 of the exercise are
provable in neither linear nor affine logics.

Exercise 31. In clauses 14 and 15 below, “CL4 � E ⇔ F” stands for “CL4 �
E → F and CL4 � F → E”. Verify that:
1. CL4 � P ∨ ¬P.
2. CL4 � P & ¬P. Compare with 1.
3. CL4 � P ∧ P→ P.
4. CL4 � P → P ∧ P. Compare with 3,5.
5. CL4 � P → P % P.
6. CL4 � (P & Q) ∧ (P & R)→ P & (Q ∧ R).
7. CL4 � P & (Q ∧ R)→ (P & Q) ∧ (P & R). Compare with 6,8.
8. CL4 � p & (Q ∧ R)→ ( p & Q) ∧ ( p & R).
9. CL4 � p % (Q ∧ R)→ ( p % Q) ∧ ( p % R). Compare with 8.
10. CL4 � (P ∧ P) ∨ (P ∧ P)→ (P ∨ P) ∧ (P ∨ P).
11. CL4 � (P ∧ (R % S )) % (Q ∧ (R % S )) % ((P % Q) ∧ R) % ((P % Q) ∧ S ) →
(P % Q) ∧ (R % S ).
12. CL4 � ∀ xP(x)→ %xP(x).
13. CL4 � %xP(x)→ ∀ xP(x). Compare with 12.
14. CL4 � ∃xP(x) % ∃xQ(x)⇔ ∃x

(
P(x) % Q(x)

)
.

Similarly for & instead of %, and/or ∀ instead of ∃.
15. CL4 � %x∃yP(x, y) ⇔ ∃y%xP(x, y).
Similarly for & instead of%, and/or ∀ instead of ∃.
16. CL4 � ∀ x

(
P(x) ∧ Q(x)

)
→ ∀ xP(x) ∧ ∀ xQ(x).

17. CL4 � %x
(
P(x) ∧ Q(x)

)
→ %xP(x) ∧%xQ(x). Compare with 16.

18. CL4 � %x
((

P(x) ∧%xQ(x)
)
%
(%xP(x) ∧ Q(x)

))
→%xP(x) ∧%xQ(x).

19. CL4 � formula (3) of Section 11.4.4.
20. CL4 � formula (4) of Section 11.4.4. Compare with 19.
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Taking into account that classical validity and hence stability is recursively
enumerable, from the way CL4 is axiomatized it is obvious that the set of the-
orems of CL4 is recursively enumerable. Not so obvious, however, may be the
following theorem proven in Japaridze (2007a). As it turns out, the choice/con-
structive quantifiers %,& are much better behaved than their blind/classical
counterparts ∀,∃, yielding a decidable first-order logic:

Theorem 32. The ∀,∃-free fragment of (the set of theorems of) CL4 is decid-
able.

Next, based on the straightforward observation that elementary formulas
are derivable in CL4 (in particular, from the empty set of premises by Rule A)
exactly when they are classically valid, we have:

Theorem 33. CL4 is a conservative extension of classical predicate logic:
the latter is nothing but the elementary fragment (i.e. the set of all elementary
theorems) of the former.

Remember that a predicate A is said to be of arithmetical complexity Δ2 iff
A = ∃x∀yB1 and ¬A = ∃x∀yB2 for some decidable predicates B1 and B2.

The following Theorem 34 is the strongest soundness and completeness re-
sult known so far in computability logic. Its proof has taken about half of the
volume of Japaridze (2006a) and almost entire Japaridze (2007a). A similar
theorem for the propositional version CL2 of CL4 was proven in Japaridze
(2006c, d).

Theorem 34. CL4 � F iff F is valid (any CL4-formula F). Furthermore:

Uniform-Constructive Soundness: There is an effective procedure that
takes a CL4-proof of an arbitrary CL4-formula F and constructs a uniform
solution for F.

Strong Completeness: If a CL4-formula F is not provable in CL4, then
F∗ is not computable for some F-admissible interpretation ∗ that interprets all
elementary atoms as finitary predicates of arithmetical complexity Δ2, and in-
terprets all general atoms as %,&-combinations of finitary predicates of arith-
metical complexity Δ2.

A non-finitary game generally depends on infinitely many variables, and ap-
pealing to this sort of games in a completeness proof could seriously weaken
such a result: the reason for incomputability of a non-finitary game could be
just the fact that the machine can never finish reading all the relevant informa-
tion from its valuation tape. Fortunately, in view of the Strong Completeness
clause, it turns out that the question whether non-finitary games are allowed or
not has no effect on the (soundness and) completeness of CL4; moreover, fini-
tary games can be further restricted to the sort as simple as %,&-combinations
of finitary predicates.
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Similarly, the Uniform-Constructive Soundness clause dramatically strength-
ens the soundness result for CL4 and, as will be argued in the following
section, opens application areas far beyond logic or the pure theory of com-
putation. First of all, notice that it immediately implies a positive verification
of the earlier-mentioned Conjecture 26.2 of Japaridze (2003) restricted to the
language of CL4, according to which validity and uniform validity are exten-
sionally equivalent. Indeed, if a CL4-formula F is uniformly valid, then it is
automatically also valid, as uniform validity is stronger than validity. Suppose
now F is valid. Then, by the completeness part of Theorem 34, CL4 � F. But
then, by the Uniform-Constructive Soundness clause, F is uniformly valid.
Thus, we have:

Theorem 35. A CL4-formula is valid if and only if it is uniformly valid.

But CL4 is sound in an even stronger sense. Knowing that a solution for
a given problem exists might be of little practical importance without being
able to actually find such a solution. No problem: according to the Uniform-
Constructive Soundness clause, a uniform solution for a CL4-provable formula
F automatically comes with a CL4-proof of F. The earlier-mentioned sound-
ness theorem for Heyting’s intuitionistic calculus proven in Japaridze (2006b)
comes in the same uniform-constructive form, and so does the soundness the-
orem for affine logic (Theorem 37) proven later in this paper.

11.10 Applied systems based on CL
The original motivations behind CL were computability-theoretic: the ap-

proach provides a systematic answer to the question ‘what can be computed?’,
which is a fundamental question of computer science. Yet, the above discus-
sion of the uniform-constructive nature of the known soundness theorems for
various fragments of CL reveals that the CL paradigm is not only about what
can be computed. It is equally about how problems can be computed/solved,
suggesting that CL should have potential utility, with its application areas not
limited to the theory of computation. In the present section we will briefly ex-
amine why and how CL is of interest in some other fields of study, specifically,
knowledge base systems and constructive applied theories.

The reason for the failure of p&¬p as a computability-theoretic principle is
that the problem represented by this formula may have no effective solution—
that is, the predicate p∗ may be undecidable. The reason why this principle
would fail in the context of knowledge base systems, however, is much sim-
pler. A knowledge base system may fail to solve the problem Female(Dana)&
¬Female(Dana) not because the latter has no effective solution (of course it
has one), but because the system simply lacks sufficient knowledge to deter-
mine Dana’s gender. On the other hand, any system would be able to “solve”
the problem Female(Dana) ∨ ¬Female(Dana) as this is an automatically won
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elementary game so that there is nothing to solve at all. Similarly, while
∀y∃xFather (x, y) is an automatically solved elementary problem express-
ing the almost tautological knowledge that every person has a father, abil-
ity to solve the problem %y&xFather (x, y) implies the nontrivial knowledge
of everyone’s actual father. Obviously the knowledge expressed by A & B
or &xA(x) is generally stronger than the knowledge expressed by A ∨ B or
∃xA(x), yet the formalism of classical logic fails to capture this difference—
the difference whose relevance hardly requires any explanation. The tradi-
tional approaches to knowledge base systems (Konolige, 1988; Levesque and
Lakemeyer, 2000; Moore, 1985 etc.) try to mend this gap by augmenting
the language of classical logic with special epistemic constructs, such as the
modal “know that” operator � , after which probably �A ∨ �B would be sug-
gested as a translation for A & B and ∀y∃x�A(x, y) for %y&xA(x, y). Leaving
it for the philosophers to argue whether, say, ∀y∃x�A(x, y) really expresses
the constructive meaning of %y&xA(x, y), and forgetting that epistemic con-
structs often yield unnecessary and very unpleasant complications such as
messiness and non-semidecidability of the resulting logics, some of the ma-
jor issues still do not seem to be taken care of. Most of the actual knowl-
edge base and information systems are interactive, and what we really need
is a logic of interaction rather than just a logic of knowledge. Furthermore, a
knowledge base logic needs to be resource-conscious. The informational re-
source expressed by %x(Female (x) & ¬Female(x)) is not as strong as the one
expressed by %x(Female(x) & ¬Female(x)) ∧ %x(Female (x) & ¬Female (x)):
the former implies the resource provider’s commitment to tell only one (even
though an arbitrary one) person’s gender, while the latter is about telling any
two people’s genders. A reader having difficulty in understanding why this
difference is relevant, may try to replace Female(x) with Acid(x), and then
think of a (single) piece of litmus paper. Neither classical logic nor its standard
epistemic extensions have the ability to account for such differences. But CL
promises to be adequate. It is a logic of interaction, it is resource-conscious,
and it does capture the relevant differences between truth and actual ability to
find/compute/know truth.

When CL is used as a logic of knowledge bases, its formulas represent in-
teractive queries. A formula whose main operator is & or& can be understood
as a question asked by the user, and a formula whose main operator is % or
% as a question asked by the system. Consider the problem %x&yHas(x, y),
where Has(x, y) means “patient x has disease y” (with Healthy counting as one
of the possible “diseases”). This formula is the following question asked by
the system: “Who do you want me to diagnose?” The user’s response can be
“Dana”. This move brings the game down to &yHas (Dana, y). This is now a
question asked by the user: “What does Dana have?”. The system’s response
can be “flu”, taking us to the terminal position Has(Dana,Flu). The system
has been successful iff Dana really has a flu.
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Successfully solving the above problem %x&yHas(x, y) requires having all
relevant medical information for each possible patient, which in a real diagnos-
tic system would hardly be the case. Most likely, such a system, after receiving
a request to diagnose x, would make counterqueries regarding x’s symptoms,
blood pressure, test results, age, gender, etc., so that the query that the system
will be solving would have a higher degree of interactivity than the two-step
query %x&yHas(x, y) does, with questions and counterquestions interspersed
in some complex fashion. Here is when other computability-logic operations
come into play. ¬ turns queries into counterqueries; parallel operations gener-
ate combined queries, with→ acting as a query reduction operation; ◦| , ∧| allow
repeated queries, etc. Here we are expanding our example. Let Sympt(x, s)
mean “patient x has (set of) symptoms s”, and Pos(x, t) mean “patient x tests
positive for test t”. Imagine a diagnostic system that can diagnose any par-
ticular patient x, but needs some additional information. Specifically, it needs
to know x’s symptoms; plus, the system may require to have x taken a test t
that it selects dynamically in the course of a dialogue with the user depending
on what responses it received. The interactive task/query that such a system is
performing/solving can then be expressed by the formula

%x
(
&sSympt(x, s) ∧%t

(
Pos(x, t) & ¬Pos(x, t)

)
→ &yHas(x, y)

)
. (6)

A possible scenario of playing the above game is the following. At the be-
ginning, the system waits until the user specifies a patient x to be diagnosed.
We can think of this stage as systems’s requesting the user to select a particular
(value of) x, remembering that the presence of %x automatically implies such
a request. After a patient x—say x = X—is selected, the system requests to
specify X’s symptoms. Notice that our game rules make the system successful
if the user fails to provide this information, i.e. specify a (the true) value for
s in &sSympt (X, s). Once a response—say, s = S —is received, the system
selects a test t = T and asks the user to perform it on X, i.e. to choose the true
disjunct of Pos(X, T )&¬Pos(X, T ). Finally, provided that the user gave correct
answers to all counterqueries (and if not, the user has lost), the system makes
a diagnostic decision, i.e. specifies a value Y for y in &yHas(X, y) for which
Has(X, Y) is true.

The presence of a single “copy” of %t
(
Pos(x, t) & ¬Pos(x, t)

)
in the an-

tecedent of (6) means that the system may request testing a given patient only
once. If n tests were potentially needed instead, this would be expressed by tak-
ing the ∧-conjunction of n identical conjuncts %t

(
Pos(x, t) &¬Pos(x, t)

)
. And

if the system potentially needed an unbounded number of tests, then we would
write ∧| %t

(
Pos(x, t)&¬Pos (x, t)

)
, thus further weakening (6): a system that per-

forms this weakened task is not as good as the one performing (6) as it requires
stronger external (user-provided) informational resources. Replacing the main
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quantifier %x by ∀x, on the other hand, would strengthen (6), signifying the
system’s ability to diagnose a patent purely on the basis of his/her symptoms
and test result without knowing who the patient really is. However, if in its
diagnostic decisions the system uses some additional information on patients
such their medical histories stored in its knowledge base and hence needs to
know the patient’s identity, %x cannot be upgraded to ∀x. Replacing %x by
∧x would be a yet another way to strengthen (6), signifying the system’s abil-
ity to diagnose all patients rather than any particular one; obviously effects of
at least the same strength would be achieved by just prefixing (6) with ∧| or ◦| .

As we just mentioned system’s knowledge base, let us make clear what it
means. Formally, this is a finite ∧-conjunction KB of formulas, which can also
be thought of as the (multi)set of its conjuncts. We call the elements of this set
the internal informational resources of the system. Intuitively, KB represents
all of the nonlogical knowledge available to the system, so that (with a fixed
built-in logic in mind) the strength of the former determines the query-solving
power of the latter. Conceptually, however, we do not think of KB as a part of
the system properly. The latter is just “pure”, logic-based problem-solving soft-
ware of universal utility that initially comes to the user without any nonlogical
knowledge whatsoever. Indeed, built-in nonlogical knowledge would make it
no longer universally applicable: Dana can be a female in the world of one po-
tential user while a male in the world of another user, and ∀x∀y(x × y = y × x)
can be false to a user who understands × as Cartesian rather than number-
theoretic product. It is the user who selects and maintains KB for the system,
putting into it all informational resources that (s)he believes are relevant, cor-
rect and maintainable. Think of the formalism of CL as a highly declarative
programming language, and the process of creating KB as programming in it.

The knowledge base KB of the system may include atomic elemen-
tary formulas expressing factual knowledge, such as Female(Dana), or non-
atomic elementary formulas expressing general knowledge, such as ∀x

(∃y
Father (x, y) → Male(x)

)
or ∀x∀y

(
x × (y + 1) = (x × y) + x

)
; it can also

include nonclassical formulas such as ◦| %x
(
Female(x) &Male(x)

)
, expressing

potential knowledge of everyone’s gender, or ◦|%x&y(x2 = y), expressing abil-
ity to repeatedly compute the square function, or something more complex and
more interactive, such as formula (6). With each resource R ∈ KB is associated
(if not physically, at least conceptually) its provider—an agent that solves the
query R for the system, i.e. plays the game R against the system. Physically
the provider could be a computer program allocated to the system, or a net-
work server having the system as a client, or another knowledge base system
to which the system has querying access, or even human personnel servicing
the system. For example, the provider for ◦| %x&yBloodpressure (x, y) would
probably be a team of nurses repeatedly performing the task of measuring the
blood pressure of a patient specified by the system and reporting the outcome
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back to the system. Again, we do not think of providers as a part of the system
itself. The latter only sees what resources are available to it, without knowing
or caring about how the corresponding providers do their job; furthermore, the
system does not even care whether the providers really do their job right. The
system’s responsibility is only to correctly solve queries for the user as long as
none of the providers fail to do their job. Indeed, if the system misdiagnoses a
patient because a nurse-provider gave it wrong information about that patient’s
blood pressure, the hospital (ultimate user) is unlikely to fire the system and
demand refund from its vendor; more likely, it would fire the nurse. Of course,
when R is elementary, the provider has nothing to do, and its successfully play-
ing R against the system simply means that R is true. Note that in the picture
that we have just presented, the system plays each game R ∈ KB in the role
of ⊥, so that, from the system’s perspective, the game that it plays against the
provider of R is ¬R rather than R.

The most typical internal informational resources, such as factual knowl-
edge or queries solved by computer programs, can be reused an arbitrary
number of times and with unlimited branching capabilities, i.e. in the strong
sense captured by ◦| , and thus they would be prefixed with a ◦| as we did with
%x
(
Female(x) & Male(x)

)
and %x&y(x2 = y). There was no point in ◦| -

prefixing Female(Dana), ∀x
(∃yFather (x, y) → Male(x)

)
or ∀x∀y

(
x× (y+1) =

(x × y)+ x
)

because every elementary game A is equivalent to ◦| A and hence
remains “recyclable” even without recurrence operators. As noted in Sec-
tion 11.4.6, there is no difference between ◦| and ∧| as long as “simple” re-
sources such as %x&y(x2 = y) are concerned. However, in some cases—
say, when a resource with a high degree of interactivity is supported by
an unlimited number of independent providers each of which however al-
lows to run only one single “session”—the weaker operator ∧| will have
to be used instead of ◦| . Yet, some of the internal informational resources
could be essentially non-reusable. A single provider possessing a single item
of disposable pregnancy test device would apparently be able to support
the resource %x(Pregnant(x) & ¬Pregnant (x)

)
but not ◦| %x(Pregnant (x) &

¬Pregnant (x)
)

and not even%x(Pregnant (x)&¬Pregnant (x)
)
∧%x(Pregnant

(x)&¬Pregnant (x)
)
. Most users, however, would try to refrain from including

this sort of a resource into KB, and rather make it a part (antecedent) of pos-
sible queries. Indeed, knowledge bases with non-recyclable resources would
tend to weaken from query to query and require more careful maintenance and
updates. Whether recyclable or not, all of the resources of KB can be used in-
dependently and in parallel. This is exactly what allows us to identify KB with
the ∧-conjunction of its elements.

Assume KB= R1 ∧ . . .∧Rn, and let us now try to visualize a system solving
a query F for the user. The designer would probably select an interface where
the user only sees the moves made by the system in F, and hence gets the
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illusion that the system is just playing F. But in fact the game that the system
is really playing is KB→ F, i.e. ¬R1 ∨ . . . ∨ ¬Rn ∨ F. Indeed, the system is
not only interacting with the user in F, but—in parallel—also with its resource
providers against whom, as we already know, it plays ¬R1, . . . ,¬Rn. As long as
those providers do not fail to do their job, the system loses each of the games
¬R1, . . . ,¬Rn. Then our semantics for ∨ implies that the system wins its play
over the “big game” ¬R1 ∨ . . . ∨ ¬Rn ∨ F if and only if it wins it in the F
component, i.e. successfully solves the query F.

Thus, the system’s ability to solve a query F reduces to its ability to gener-
ate a solution for KB→ F, i.e. a reduction of F to KB. What would give the
system such an ability is built-in knowledge of CL—in particular, a uniform-
constructively sound axiomatization of it, by which we mean a deductive
system S (with effective proofs of its theorems) that satisfies the Uniform-
Constructive Soundness clause of Theorem 34 with “S ” in the role of CL4.
According to the uniform-constructive soundness property, it would be suffi-
cient for the system to find a proof of KB→ F, which would allow it to (effec-
tively) construct a machine M and then run it on KB → F with a guaranteed
success.

Notice that it is uniform-constructive soundness rather than simple sound-
ness of the built-in (axiomatization of the) logic that allows the knowledge base
system to function. Simple soundness just means that every provable formula
is valid. This is not sufficient for two reasons.

One reason is that validity of a formula E only implies that, for every inter-
pretation ∗, a solution for the problem E∗ exists. It may be the case, however,
that different interpretations require different solutions, so that choosing the
right solution requires knowledge of the actual interpretation, i.e. the meaning,
of the atoms of E. Our assumption is that the system has no nonlogical knowl-
edge, which, in more precise terms, means nothing but that it has no knowledge
of the interpretation ∗. Thus, a solution that the system generates for E∗ should
be successful for any possible interpretation ∗. In other words, it should be a
uniform solution for E. This is where uniform-constructive soundness of the
underlying logic becomes critical, by which every provable formula is not only
valid, but also uniformly valid. Going back to the example with which this sec-
tion started, the reason why p&¬p fails in the context of computability theory
is that it is not valid. On the other hand, the reason for the failure of this prin-
ciple in the context of knowledge base systems is that it is not uniformly valid:
a solution for it, even if such existed for each interpretation ∗, would depend
on whether p∗ is true or false, and the system would be unable to figure out the
truth status of p∗ unless this information was explicitly or implicitly contained
in KB. Thus, for knowledge base systems the primary semantical concept of
interest is uniform validity rather than validity.
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The other reason why simple soundness of the built-in logic would not be
sufficient for a knowledge base system to function—even if every provable for-
mula was known to be uniformly valid—is the following. With simple sound-
ness, after finding a proof of E, even though the system would know that a
solution for E∗ exists, it might have no way to actually find such a solution. On
the other hand, uniform-constructive soundness guarantees that a (uniform)
solution for every provable formula not only exists, but can be effectively ex-
tracted from a proof.

As for completeness of the built-in logic, unlike uniform-constructive
soundness, it is a desirable but not necessary condition. So far a complete
axiomatization has been found only for the fragment of CL limited to the lan-
guage of CL4. We hope that the future will bring completeness results for more
expressive fragments as well. But even if not, we can still certainly succeed
in finding ever stronger axiomatizations that are uniform-constructively sound
even if not necessarily complete. Extending CL4 with some straightforward
rules such as the ones that allow to replace ◦| F by F∧◦| F and ∧| F by F∧∧| F, the
rules F -→ ◦| F, F -→ ∧| F, etc. would already immensely strengthen the logic.
Our soundness proof for the incomplete affine logic given later is another result
in a similar direction. It should be remembered that, when it comes to practical
applications in the proper sense, the logic that will be used is likely to be far
from complete anyway. For example, the popular classical-logic-based systems
and programming languages are incomplete, and the reason is not that a com-
plete axiomatization for classical logic is not known, but rather the unfortunate
fact of life that often efficiency only comes at the expense of completeness.

But even CL4, despite the absence of recurrence operators in it, is already
very powerful. Why don’t we see a simple example to get the taste of it as a
query-solving logic. Let Acid(x) mean “solution x contains acid”, and Red(x)
mean “litmus paper turns red in solution x”. Assume that the knowledge base
KB of a CL4-based system contains ∀x

(
Red(x) ↔ Acid(x)

)
and %x

(
Red(x) &

¬Red(x)
)
, accounting for knowledge of the fact that a solution contains acid iff

the litmus paper turns red in it, and for availability of a provider who possesses
a piece of litmus paper that it can dip into any solution and report the paper’s
color to the system. Then the system can solve the acidity query%x

(
Acid(x)&

¬Acid(x)
)
. This follows from the fact, left as an exercise for the reader to verify,

that CL4 � KB→ %x
(
Acid(x) & ¬Acid(x)

)
.

Section 26 of Japaridze (2003) outlines how the context of knowledge
base systems can be further extended to systems for planning and action.
Roughly, the formal semantics in such applications remains the same, and
what changes is only the underlying philosophical assumption that the truth
values of predicates and propositions are fixed or predetermined. Rather, those
values in CL-based planning systems are viewed as something that interact-
ing agents may be able to manage. That is, predicates or propositions there
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stand for tasks rather than facts. For example Pregnant(Dana)—or, perhaps,
Impregnate(Dana) instead—can be seen as having no predetermined truth
value, with Dana or her mate being in control of whether to make it true or
not. And the nonelementary formula%xHit(x) describes the task of hitting any
one target x selected by the environment/commander/user. Note how naturally
resource-consciousness arises here: while %xHit(x) is a task accomplishable
with one ballistic missile, the stronger task%xHit(x)∧%xHit(x) would require
two missiles instead. All of the other operators of CL, too, have natural inter-
pretations as operations on physical (as opposed to just informational) tasks,
with→ acting as a task reduction operation. To get a feel of this, let us look at
the task

Give me a wooden stake % Give me a silver bullet
→ Destroy the vampire % Kill the werewolf .

This is a task accomplishable by an agent who has a mallet and a gun as well
as sufficient time, energy and bravery to chase and eliminate any one (but not
both) of the two monsters, and only needs a wooden stake and/or a silver bullet
to complete his noble mission. Then the story told by the legal run 〈⊥2.2,�1.2〉
of the above game is that the environment asked the agent to kill the werewolf,
to which the agent replied by the counterrequest to give him a silver bullet.
The task will be considered eventually accomplished by the agent iff he indeed
killed the werewolf as long as a silver bullet was indeed given to him.

The fact that CL is a conservative extension of classical logic also makes
the former a reasonable and appealing alternative to the latter in its most tradi-
tional and unchallenged application areas. In particular, it makes perfect sense
to base applied theories—such as, say, Peano arithmetic (axiomatic number
theory)—on CL instead of classical logic. Due to conservativity, no old infor-
mation would be lost or weakened this way. On the other hand, we would get
by an order of magnitude more expressive, constructive and computationally
meaningful theories than their classical-logic-based versions. Let us see a little
more precisely what we mean by a CL-based applied theory. For simplicity,
here we restrict our considerations to the cases when the set AX of nonlog-
ical axioms of the applied theory is finite. As we did with KB, we identify
AX with the ∧-conjunction of its elements. From (the problem represented by)
AX—or, equivalently, each conjunct of it—we require to be computable in our
sense, i.e. come with an HPM or EPM that solves it. So, notice, all axioms of
the old, classical-logic-based version of the theory could be automatically in-
cluded into the new set AX because they represent true and hence computable
elementary problems. Many of those old axioms can be constructivized by, say,
replacing blind or parallel operators with their choice equivalents. For exam-
ple, we would want to rewrite the axiom ∀x∃y(y = x + 1) of arithmetic as
the more informative %x&y(y = x + 1). And, of course, to the old axioms
or their constructivized versions could be added some essentially new axioms
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expressing basic computability principles specific to (the particular interpreta-
tion underlying) the theory. Provability (theoremhood) of a formula F in such
a theory we understand as provability of the formula AX → F in the under-
lying axiomatization of CL which, as in the case of knowledge base systems,
is assumed to be uniform-constructively sound. The rule of modus ponens has
been shown in Japaridze (2003) (Proposition 21.3)12 to preserve computability
in the following constructive sense:

Theorem 36. There is an effective function h: {EPMs}×{EPMs} −→ {EPMs}
such that, for any EPMs E,C, static games A,B and valuation e, if E |=e A and
C |=e A→ B, then h(E,C) |=e B.

This theorem, together with our assumptions that AX is computable and that the
underlying logic is uniform-constructively sound, immediately implies that the
problem represented by any theorem F of the applied theory is computable and
that, furthermore, a solution for such a problem can be effectively constructed
from a proof of F. So, for example, once a formula %x&y p(x, y) has been
proven, we would know that, for every x, a y with p(x, y) not only exists, but can
be algorithmically found; furthermore, we would be able to actually construct
such an algorithm. Similarly, a reduction—in the sense of Definition 26(4)—of
the acceptance problem to the halting problem would automatically come with
a proof of %x%y

(
H(x, y) & ¬H(x, y)

)
→ %x%y

(
A(x, y) & ¬A(x, y)

)
in such a

theory. Is not this exactly what the constructivists have been calling for?

11.11 Affine logic
Linear logic and its variations such as affine logic have only one group !, ?

of exponential operators. The semantics of CL induces at least two equally
natural “counterparts” of !, ?: the parallel group ∧| , ∨| and the branching group
◦| , ◦| of recurrence operators. Hence, when rewritten in terms of computability
logic, each (!, ?)-involving rule of linear logic produces two identical versions:
one with (∧| , ∨| ) and one with (◦| , ◦| ).

Precisely, the language of what we here call affine logic AL is obtained from
the more expressive language of Section 11.7 by forbidding nonlogical elemen-
tary atoms (but not the logical elementary atoms � and ⊥), and restricting the
operators of the language to ¬, ∧, ∨, %, &, ∧| , ∨| , ◦| , ◦| ,%,&. For simplicity, this
list does not officially include → or other definable operators such as ∧ | and
�. If we write F → G, it should be understood as an abbreviation of ¬F ∨G.
Furthermore, without loss of expressive power, we allow ¬ to be applied only
to nonlogical atoms, in all other cases understanding ¬F as an abbreviation de-
fined by: ¬� = ⊥; ¬⊥ = �; ¬¬F = F; ¬(F1 ∧ . . .∧ Fn) = ¬F1 ∨ . . .∨¬Fn;

12In the official formulation of Proposition 21.3 in Japaridze (2003), the first argument of h was an HPM.
In view of Theorem 28, however, replacing “HPM” with “EPM” is perfectly legitimate.
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¬(F1 ∨ . . . ∨ Fn) = ¬F1 ∧ . . . ∧ ¬Fn; ¬(F1 % . . . % Fn) = ¬F1 & . . . & ¬Fn;
¬(F1 & . . .& Fn) = ¬F1 % . . .%¬Fn; ¬∧| F = ∨| ¬F; ¬∨| F = ∧| ¬F; ¬◦| F = ◦| ¬F;
¬◦| F = ◦| ¬F; ¬%xF = &x¬F; ¬&xF = %x¬F. The formulas of this lan-
guage will be referred to as AL-formulas.

Let x be a variable, t a term and F(x) a formula. We say that t is free for x in
F(x) iff none of the free occurrences of x in F(x) is in the scope of Qt for some
quantifier Q. Of course, when t is a constant, this condition is always satisfied.

A sequent is a nonempty finite sequence of AL-formulas. We think of each
sequent F1, . . . , Fn as the formula F1 ∨ . . . ∨ Fn. This allows us to automat-
ically extend the concepts of validity, uniform validity, free occurrence, etc.
from formulas to sequents. A formula F is considered provable in AL iff F,
understood as a one-element sequent, is provable.

Deductively logic AL is given by the following 16 rules, where: G,H are
arbitrary (possibly empty) sequences of AL-formulas; ∨|G is an arbitrary (pos-
sibly empty) sequence of ∨| -prefixed AL-formulas; ◦|G is an arbitrary (possibly
empty) sequence of ◦| -prefixed AL-formulas; n ≥ 2; 1 ≤ i ≤ n; x is any
variable; E, F, E1, . . . , En, E(x) are any AL-formulas; y is any variable not
occurring (whether free or within %y or&y) in the conclusion of the rule; and
t is any term free for x in E(x).

Identity Axiom:
¬E, E

�-Axiom:
�

G, E, F,H
Exchange:

G, F, E,H

G
Weakening:

G, E

G, ∨| E, ∨| E
∨| -Contraction:

G, ∨| E

G, ◦| E, ◦| E◦| -Contraction:
G, ◦| E
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G, Ei
&-Introduction:

G, E1 & . . . & En

G, E1 • • • G, En
%-Introduction:

G, E1 % . . . % En

G, E1, . . . , En
∨-Introduction:

G, E1 ∨ . . . ∨ En

G1, E1 • • • Gn, En
∧-Introduction:

G1, . . . ,Gn, E1 ∧ . . . ∧ En

G, E
∨| -Introduction:

G, ∨| E

G, E◦| -Introduction:
G, ◦| E

∨|G, E
∧| -Introduction:

∨|G, ∧| E

◦|G, E
◦| -Introduction:

◦|G, ◦| E

G, E(t)
&-Introduction:

G,&xE(x)

G, E(y)
%-Introduction:

G,%xE(x)

Unlike any other results that we have surveyed so far, the soundness and
completeness of affine logic, while claimed already in Japaridze (2003), has
never been officially proven. For this reason, the following theorem comes with
a full proof, to which most of the remaining part of this paper is devoted.



G. Japaridze 323

Theorem 37. If AL � S , then �� S (any sequent S ). Furthermore:

Uniform-Constructive Soundness: There is an effective procedure that
takes any AL-proof of any sequent S and constructs a uniform solution for S .

As mentioned earlier, a similar (uniform-constructive) soundness theorem
for Heyting’s intuitionistic calculus has been proven in Japaridze (2006b),
with intuitionistic implication understood as�, and intuitionistic conjunction,
disjunction and quantifiers as %,&,%,&.

11.12 Soundness proof for affine logic
This technical section is devoted to a proof of Theorem 37. It also contains

a number of useful lemmas that could be employed in other proofs.

11.12.1 CL4-derived validity lemmas
In our proof of Theorem 37 we will need a number of lemmas concern-

ing uniform validity of certain formulas. Some of such validity proofs will be
given directly in Sections 11.12.3 and 11.12.4. But some proofs come “for
free”, based on the already known soundness of CL4. In fact, here we will
only exploit the propositional fragment CL2 of CL4. The former is obtained
from the latter by mechanically restricting its language to 0-ary letters, and dis-
allowing the (now meaningless) usage of quantifiers. Let us call the formulas
of such a language CL2-formulas. Restricting the language to CL2-formulas
simplifies the formulation of CL4: Rule B2 disappears, and so does clause (ii)
of Rule A. CL4 is a conservative extension of CL2, so, for a CL2-formula F,
it does not matter whether we say CL4 � F or CL2 � F.

In Section 11.11 we started using the notation G for sequences of formulas.
We also agreed to identify sequences of formulas with ∨-disjunctions of those
formulas. So, from now on, an underlined expression such as G will mean an
arbitrary formula G1 ∨ . . . ∨Gn for some n ≥ 0. The expression G ∨ E should
be read as G1 ∨ . . .∨Gn ∨ E rather than as (G1 ∨ . . .∨Gn)∨ E. The number of
disjuncts in G may be empty. When this is a possibility, G will usually occur as
a disjunct within a bigger expression such as G ∨ E or G → E, both of which
simply mean E.

As we agreed that p, q, r, s (with no tuples of terms attached) stand for non-
logical elementary atoms and P,Q,R, S for general atoms, p, q, r, s will cor-
respondingly stand for ∨-disjunctions of elementary atoms, and P,Q,R, S for
∨-disjunctions of general atoms.

We will also be underlining complex expressions such as G → H, &xG(x)
or ◦|G. G → H should be understood as (G1 → H1)∨. . .∨(Gn → Hn), &xG(x)
as &xG1(x) ∨ . . . ∨ &xGn(x) (note that only the Gi vary but not x), ◦|G as
◦|G1 ∨ . . . ∨ ◦|Gn, ◦| ◦|G as ◦| (◦|G1 ∨ . . . ∨ ◦|Gn), etc.
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A CL2-formula E is said to be general-base iff it does not contain any
elementary atoms. A substitution is a function σ that sends every general
atom P of the language of CL2 to a (not necessarily CL2-) formula σ(P).
This mapping extends to all general-base CL2-formulas by stipulating that σ
commutes with each operator: σ(¬E) = ¬σ(E), σ(E1 % . . . % Ek) = σ(E1) %
. . . % σ(Ek), etc. We say that a formula F is a substitutional instance of a
general-base CL2-formula E iff F = σ(E) for some substitution σ. Thus, “F
is a substitutional instance of E” means that F has the same form as E.

In the following lemma, we assume n ≥ 2, and 1 ≤ i ≤ n. Note that the
expressions given in clauses (d)–(k) are schemata of formulas rather than for-
mulas, for the lengths of their underlined expressions, as well as i and n, may
vary. Strictly speaking, the expressions of clauses (a)–(c) are so as well, be-
cause P,Q,R are metavariables for general atoms rather than particular general
atoms.

Lemma 38. All substitutional instances of all CL2-formulas given by the fol-
lowing schemata are uniformly valid. Furthermore, there is an effective proce-
dure that takes any particular formula matching a given scheme and constructs
an EPM that is a uniform solution for all substitutional instances of that for-
mula.

(a) ¬P ∨ P;
(b) P ∨ Q→ Q ∨ P;
(c) (P→ Q) ∧ (Q → R)→ (P→ R);
(d) (Q1 ∨ P1) ∧ . . . ∧ (Qn ∨ Pn)→ Q1 ∨ . . . ∨ Qn ∨ (P1 ∧ . . . ∧ Pn);
(e) (P→ Q)→ (R ∨ P ∨ S → R ∨ Q ∨ S );
(f) Q ∨ R ∨ S → Q ∨ (R) ∨ S ;
(g) Q ∨ (R) ∨ S → Q ∨ R ∨ S ;
(h)
(
P1 ∧ P2 ∧ . . . ∧ Pn → Q

)
→
(
P1 → (P2 → . . . (Pn → Q) . . .)

)
;

(i) Q→ Q ∨ P;
(j) Pi → P1 & . . . & Pn;
(k) (Q ∨ P1) ∧ . . . ∧ (Q ∨ Pn)→ Q ∨ (P1 % . . . % Pn).

Proof. In order to prove this lemma, it would be sufficient to show that all
formulas given by the above schemata are provable in CL4 (in fact, CL2).
Indeed, if we succeed in doing so, then an effective procedure whose existence
is claimed in the present lemma could be designed to work as follows. First, the
procedure finds a CL4-proof of a given formula E. Then, based on that proof
and using the procedure whose existence is stated in Theorem 34, it finds a
uniform solution E for that formula. It is not hard to see that the same E will
automatically be a uniform solution for every substitutional instance of E as
well. So, now it remains to do the simple syntactic exercise of checking CL4-
provabilities for each clause of the lemma.



G. Japaridze 325

Notice that every formula E given by one of the clauses (a)–(h) has—more
precisely, we may assume that it has—exactly two, one negative and one pos-
itive, occurrences of each (general) atom, with all occurrences being surface
ones. For such an E, let E′ be the result of rewriting each general atom P of E
into a nonlogical elementary atom p in such a way that different general atoms
are rewritten as different elementary atoms. Then E follows from E′ in CL4
by a series of applications of Rule C, specifically, as many applications as the
number of different atoms of E. In turn, observe that for each of the clauses
(a)–(h), the formula E′ would be a classical tautology. Hence E′ follows from
the empty set of premises by Rule A. Thus, CL4 � E.

For clause (i), let q be the result of replacing in Q all atoms by pairwise
distinct nonlogical elementary atoms. The formula q → q ∨ P is stable and
choice-operator-free, so it follows from {} by Rule A. From the latter, applying
Rule C as many times as the number of disjuncts in Q, we obtain the desired
Q→ Q ∨ P.

For clause (j), the following is a CL4-proof of the corresponding formula(s):

1. pi → pi (from {} by Rule A);
2. Pi → Pi (from 1 by Rule C);
3. Pi → P1 & . . . & Pn (from 2 by Rule B1).

For clause (k), note that (Q ∨ P1) ∧ . . . ∧ (Q ∨ Pn) → Q ∨ (P1 % . . . % Pn)
is stable. Hence it follows by Rule A from n premises, where each premise is
(Q ∨ P1) ∧ . . . ∧ (Q ∨ Pn) → Q ∨ Pi for one of the i ∈ {1, . . . , n}. Each such
formula, in turn, can be obtained by a series of applications of Rule C from

(Q ∨ P1) ∧ . . . ∧ (Q ∨ Pi−1) ∧ (q ∨ pi) ∧ (Q ∨ Pi+1) ∧ . . . ∧ (Q ∨ Pn)→ q ∨ pi,

where pi is an elementary nonlogical atom and q is obtained from Q by re-
placing its general atoms by pairwise distinct (and distinct from pi) elemen-
tary nonlogical atoms. In turn, the above formula can be seen to be stable and
hence, as it does not contain choice operators, derivable from the empty set of
premises by Rule A. �

11.12.2 Closure lemmas
In this section we let n range over positive integers, x over any variables,

E, F,G (possibly with subscripts) over any AL-formulas, and E, C,D (possibly
with subscripts) over any EPMs. Unless otherwise specified, in each context
these metavariables are assumed to be universally quantified.

First two of the following three lemmas have been proven in Section 21 of
Japaridze (2003). Here we provide a proof only for the third, never officially
proven, one.
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Lemma 39. For any static game A, if |= A, then |= ◦| A.
Moreover, there is an effective function h : {EPMs} −→ {EPMs} such that,

for any EPM E, static game A and valuation e, if E |=e A, then h(E) |=e ◦| A.

Lemma 40. For any static game A, if |= A, then |= %xA.
Moreover, there is an effective function h : {EPMs} −→ {EPMs} such that,

for any EPM E and static game A, if E |= A, then h(E) |= %xA.

Lemma 41. For any static game A, if |= A, then |= ∧| A.
Moreover, there is an effective function h : {EPMs} −→ {EPMs} such that,

for any EPM E, static game A and valuation e, if E |=e A, then h(E) |=e ∧
| A.

Proof. Intuitively the idea here is simple: if we (machine E) know how to win
A, then, applying the same strategy to each conjunct separately, we (machine
h(E)) can win the infinite conjunction ∧| A = A ∧ A ∧ A ∧ . . . as well.

To give a detailed description of the machine h(E) that materializes this idea,
we need some preliminaries. Remember the e-successor relation between HPM
configurations from Section 11.6. In the context of a fixed HPM H , valuation
e and configuration C, the transition from C to a successor (e-successor) con-
figuration C′ is nondeterministic because it depends on the sequence Ψ of the
moves (labeled with ⊥) made by the environment while the machine was in
configuration C. Once such a Ψ is known, however, the value of C′ becomes
determined and can be calculated from C, (the relevant finite part of) e and (the
transition function of)H . We call the e-successor of C uniquely determined by
such Ψ the (e,Ψ)-successor of C (inH).

On the way of constructing the EPM h(E), we first turn E into an HPM H
such that, for every static game A and valuation e, H |=e A whenever E |=e A.
According to Theorem 28, such anH can be constructed effectively. Now, us-
ing H , we define h(E) to be the EPM which, with a valuation e spelled on
its valuation tape, acts as follows. Its work consists in iterating the following
procedure ITERATION(k) infinitely many times, starting from k = 1 and in-
crementing k by one at every new step. During each ITERATION(k) step, h(E)
maintains k − 1 records C1, . . . ,Ck−1 and creates one new record Ck, with each
such Ci holding a certain configuration of H . Here is how ITERATION(k)
proceeds:

Procedure ITERATION(k):
1. Grant permission. Let Ψ = 〈⊥α〉 if the adversary responds by a move α, and
Ψ = 〈〉 if there is no response.
2. For i = 1 to i = k − 1, do the following:

(a) IfH makes a move β in configuration Ci, make the move i.β;
(b) Update Ci to the (e,Ψi.)-successor13 of Ci.

13For Ψi., remember the notation Γα from page 273.
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3. Let C be the initial configuration of H , and Φ the position currently spelled
on the run tape.

(a) IfH makes a move β in configuration C, make the move k.β.
(b) Create the record Ck and initialize it to the (e,Φk.)-successor of C.

Obviously (the description of) h(E) can be effectively obtained fromH and
hence from E, so that, as promised, h is indeed an effective function. What
remains to verify is that, whenever E wins a static game A on a valuation e,
we have h(E) |=e ∧

| A. Consider any such A and e, and suppose h(E) �|=e ∧
| A. We

want to show that then E �|=e A. Let B be an arbitrary e-computation branch of
h(E), and let Γ be the run spelled by B. Permission is granted at the beginning
of each of the infinitely many routines ITERATION(k), so B is fair. Therefore,

h(E) �|=e A simply means that Wn∧
| A
e 〈Γ〉 = ⊥. The latter, in turn, implies that

for some n ∈ {1, 2, 3, . . .}, WnA
e 〈Γn.〉 = ⊥. This can be easily seen from the fact

that every move that h(E) makes starts with an ‘n.’ for some n. But an analysis
of the procedure followed by h(E) can convince us that Γn. is the run spelled
by some e-computation branch ofH . This means that H �|=e A. Remembering
thatH |=e A whenever E |=e A, we find that E �|=e A. �

Lemma 42. If ���E, then ��� ∧| E.
Moreover, there is an effective function h : {EPMs} −→ {EPMs} such that,

for any E and E, if E ���E, then h(E) ��� ∧| E.

Proof. As Lemma 41 asserts (or rather implies), there is an effective function
h : {EPMs} −→ {EPMs} such that, for any EPM E and any static game A,
if E |= A, then h(E) |= ∧| A. We now claim for that very function h that, if
E ���E, then h(E) ��� ∧| E. Indeed, assume E ���E. Consider any ∧| E-admissible
interpretation ∗. Of course, the same interpretation is also E-admissible. Hence,
E ���E implies E |= E∗. But then, by the known behavior of h, we have h(E) |=
∧| E∗. Since ∗ was arbitrary, we conclude that h(E) ��� ∧| E. �

Lemma 43. If ���E, then ��� ◦| E.
Moreover, there is an effective function h : {EPMs} −→ {EPMs} such that,

for any E and E, if E ���E, then h(E) ��� ◦| E.

Proof. Similar to Lemma 42, only use Lemma 39 instead of Lemma 41. �

Lemma 44. If ���E, then ���%xE.
Moreover, there is an effective function h : {EPMs} −→ {EPMs} such that,

for any E, x and E, if E ��� E, then h(E) ���%xE.

Proof. Similar to Lemma 42, only use Lemma 40 instead of Lemma 41. �

Lemma 45. (Modus ponens) If ��� F and ��� F → E, then ��� E.
Moreover, there is an effective function h : {EPMs} × {EPMs} −→ {EPMs}

such that, for any E, C, F and E, if E ���F and C��� F → E, then h(E,C) ��� E.
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Proof. According to Theorem 36, there is an effective function h: {EPMs}×
{EPMs} → {EPMs} such that, for any static games A,B, valuation e and EPMs
E and C,

if E |=e A and C |=e A→ B, then h(E,C) |=e B. (7)

We claim that such a function h also behaves as our lemma states. To see this,
assume E ���F and C��� F → E, and consider an arbitrary valuation e and an
arbitrary E-admissible interpretation ∗. Our goals is to show that h(E,C) |=e E∗,
which obviously means the same as

h(E,C) |=e e[E∗]. (8)

We define the new interpretation † by stipulating that, for every k-ary letter L
with L∗ = L∗(x1, . . . , xk), L† is the game L†(x1, . . . , xk) such that, for any tuple
c1, . . . , ck of constants,

L†(c1, . . . , ck) = e[L∗(c1, . . . , ck)].

Unlike L∗(x1, . . . , xk) that may depend on some “hidden” variables (those that
are not among x1, . . . , xk), obviously L†(x1, . . . , xk) does not depend on any
variables other that x1, . . . , xk. This makes † admissible for any AL-formula,
including F and F → E. Then our assumptions E ��� F and C��� F → E im-
ply E |=e F† and C |=e F† → E†. Consequently, by (7), h(E,C) |=e E†, i.e.
h(E,C) |=e e[E†]. Now, with some thought, we can see that e[E†] = e[E∗].
Hence (8) is true. �

Lemma 46. (Generalized modus ponens) If ��� F1, . . . , ���Fn and ��� F1∧ . . .∧
Fn → E, then ��� E.

Moreover, there is an effective function h : {EPMs}n+1 −→ {EPMs} such
that, for any E1,. . . ,En,C,F1,. . . ,Fn,E, if E1 ��� F1, . . . , En ��� Fn and C���F1 ∧
. . . ∧ Fn → E, then h(E1, . . . ,En,C) ��� E. Such a function, in turn, can be
effectively constructed for each particular n.

Proof. In case n = 1, h is the function whose existence is stated in Lemma
45. Below we will construct h for the case n = 2. It should be clear how to
generalize that construction to any greater n.

Assume E1 ���F1, E2 ��� F2 and C��� F1 ∧ F2 → E. By Lemma 38(h), the
formula (F1 ∧ F2 → E) → (F1 → (F2 → E)) has a uniform solution. Lemma
45 allows us to combine that solution with C and find a uniform solutionD1 for
F1 → (F2 → E). Now applying Lemma 45 to E1 and D1, we find a uniform
solution D2 for F2 → E. Finally, applying the same lemma to E2 and D2, we
find a uniform solution D for E. Note that D does not depend on F1, F2, E,
and that we constructed D in an effective way from the arbitrary E1, E2 and C.
Formalizing this construction yields the function h whose existence is claimed
by our present lemma. �
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Lemma 47. (Transitivity) If ��� F → E and ��� E → G, then ��� F → G.
Moreover, there is an effective function h : {EPMs} × {EPMs} −→ {EPMs}

such that, for any E1, E2, F, E and G, if E1 ���F → E and E2 ��� E → G, then
h(E1,E2) ��� F → G.

Proof. Assume E1 ���F → E and E2 ��� E → G. By Lemma 38(c), we also have
C���(F → E) ∧ (E → G) → (F → G) for some C. Lemma 46 allows us to
combine the three uniform solutions and construct a uniform solution D for
F → G. Formalizing this construction yields the function h whose existence is
claimed by our lemma. �

11.12.3 More validity lemmas
In this section we will prove a number of winnability facts by describing

winning strategies in terms of EPMs. When trying to show that a given EPM
wins a given game, it is always safe to assume that the runs that the machine
generates are never ⊥-illegal, i.e. that the environment never makes a (first)
illegal move, for if it does, the machine automatically wins. This assumption,
that we call the clean environment assumption, will always be explicitly or
implicitly present in our winnability proofs.

We will often employ a uniform solution for P → P called the copy-cat
strategy (CCS). This strategy, sketched for ¬Chess ∨Chess in Section 11.4.3,
consists in mimicking, in the antecedent, the moves made by the environment
in the consequent, and vice versa. More formally, the algorithm that CCS fol-
lows is an infinite loop, on every iteration of which CCS keeps granting permis-
sion until the environment makes a move 1.α (resp. 2.α), to which the machine
responds by the move 2.α (resp. 1.α). As shown in the proof of Proposition
22.1 of Japaridze (2003), this strategy guarantees success in every game of
the form A ∨ ¬A and hence A → A. A perhaps important detail is that CCS
never looks at the past history of the game, i.e. the movement of its scanning
head on the run tape is exclusively left-to-right. This guarantees that, even if
the original game was something else and it only evolved to A → A later as
a result of making a series of moves, switching to CCS after the game has
been brought down to A → A ensures success no matter what happened in
the past.

Throughout this section, E and F (possibly with indices and attached tuples
of variables) range over AL-formulas, x and y over variables, t over terms,
n, k, i, j over nonnegative integers, w over bitstrings, and α, γ over moves.
These metavariables are assumed to be universally quantified in each context
unless otherwise specified. In accordance with our earlier convention, ε stands
for the empty bitstring.

Next, ∗ always means an arbitrary but fixed interpretation admissible for
the formula whose uniform validity we are trying to prove. For readability, we
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will sometimes omit this parameter and write, say, E instead of E∗. From the
context it will be usually clear whether “E” stands for the formula E or the
game E∗. Similarly, in our winnability proofs e will always stand for an arbi-
trary but fixed valuation—specifically, the valuation spelled on the valuation
tape of the machine under question. Again, for readability, we will typically
omit e when it is irrelevant, and write E∗ (or just E) instead of e[E∗].

Lemma 48. ��� E → ∨| E.
Moreover, there is an EPM E such that, for any E, E ���E → ∨| E.

Proof. The idea of a uniform solution E for E → ∨| E is simple: seeing the
consequent as the infinite disjunction E ∨ E ∨ E ∨ . . . . . . , ignore all of its
disjuncts but the first one, and play E → ∨| E as if it was just E → E.

In more precise terms, E follows the following procedure LOOP which,
notice, only differs from CCS in that the move prefix ‘2.’ is replaced by ‘2.1.’:

Procedure LOOP: Keep granting permission until the environment makes
a move ‘1.α’ or ‘2.1.α’; in the former case respond by the move ‘2.1.α’, and in
the latter case respond by the move ‘1.α’; then repeat LOOP.

Consider an arbitrary e-computation branch B of E, and let Θ be the run
spelled by B. Obviously permission is granted infinitely many times in B, so
B is fair. Hence, in order to show that E wins E∗ → ∨| E∗ (on the irrelevant
valuation e which we, according to our conventions, are omitting and pretend
that E∗ is a constant game so that e[E∗] = E), it would suffice to show that
WnE∗→∨| E∗ 〈Θ〉 = �.

Let Θi denote the initial segment of Θ consisting of the (lab)moves made
by the players by the beginning of the ith iteration of LOOP in B (if such an
iteration exists). By induction on i, based on the clean environment assumption
and applying a routine analysis of the behavior of LOOP, one can easily find
that

(a) Θi ∈ LrE∗→∨| E∗ ;
(b) ¬Θ1.

i = Θ
2.1.
i .

(9)

If LOOP is iterated infinitely many times, then the above obviously extends
from Θi to Θ, because every initial segment of Θ is an initial segment of some
Θi, and similarly for Θ1. and Θ2.1.. Suppose now LOOP is iterated only a finite
number m of times. Then Θ = 〈Θm, Γ〉, where Γ entirely consists of ⊥-labeled
moves none of which has the prefix ‘1.’ or ‘2.1’. This is so because the envi-
ronment cannot make a move 1.α or 2.1.α during the mth iteration (otherwise
there would be a next iteration) and, since E’s moves are only triggered by the
above two sorts of moves, E does not move during the mth iteration of LOOP.
But then, in view of the clean environment assumption, Θ inherits condition
(a) of (9) from Θm, because there are no �-labeled moves in Γ; and the same
is the case with condition (b), because 〈Θm, Γ〉1. = Θ1.

m and 〈Θm, Γ〉2.1. = Θ2.1.
m .
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Thus, no matter whether LOOP is iterated a finite or infinite number of times,
we have:

(a) Θ ∈ LrE∗→∨| E∗ ;
(b) ¬Θ1. = Θ2.1..

(10)

Since Θ ∈ LrE∗→∨| E∗ , in order to show that WnE∗→∨| E∗ 〈Θ〉 = �, i.e. show
that Wn¬E∗∨∨| E∗ 〈Θ〉 = �, by the definition of ∨, it would suffice to verify

that either Wn¬E∗ 〈Θ1.〉 = � or Wn
∨| E∗ 〈Θ2.〉 = �. So, assume Wn¬E∗ 〈Θ1.〉 �

�, i.e. Wn¬E∗〈Θ1.〉 = ⊥, i.e. WnE∗ 〈¬Θ1.〉 = �. Then, by clause (b) of (10),

WnE∗ 〈Θ2.1.〉 = �. But then, by the definition of ∨| , Wn
∨| E∗ 〈Θ2.〉 = �.

Thus, E |= E∗ → ∨| E∗. Since ∗ was arbitrary and the work of E did not
depend on it, we conclude that E ��� E → ∨| E. �

Lemma 49. ��� E → ◦| E.
Moreover, there is an EPM E such that, for any E, E ���E → ◦| E.

Proof. Again, the idea of a uniform solution E for E → ◦| E is simple: just act
as CCS, never making any replicative moves in the consequent and pretending
that the latter is E rather than (the easier-to-win) ◦| E. The following formal
description of the interactive algorithm that E follows is virtually the same as
that of CCS, with the only difference that the move prefix ‘2.’ is replaced by
‘2.ε.’.

Procedure LOOP: Keep granting permission until the environment makes
a move ‘1.α’ or ‘2.ε.α’; in the former case respond by the move ‘2.ε.α’, and in
the latter case respond by the move ‘1.α’; then repeat LOOP.

Consider an arbitrary e-computation branch B of E. Let Θ be the run spelled
by B. As in the proof of the previous lemma, clearly permission will be granted
infinitely many times in B, so this branch is fair. Hence, in order to show that
E wins the game, it would suffice to show that WnE∗→

�

E∗ 〈Θ〉 = �.
Let Θi denote the initial segment of Θ consisting of the (lab)moves made by

the players by the beginning of the ith iteration of LOOP in B. By induction on
i, based on the clean environment assumption and applying a routine analysis
of the behavior of LOOP and the definitions of the relevant game operations,
one can easily find that

(a) Θi ∈ LrE∗→

�

E∗ ;
(b) ¬Θ1.

i = Θ
2.ε.
i ;

(c) All of the moves in Θ2.
i have the prefix ‘ε.’.

If LOOP is iterated infinitely many times, then the above obviously extends
from Θi to Θ, because every initial segment of Θ is an initial segment of some
Θi, and similarly for Θ1. andΘ2.ε.. And if LOOP is iterated only a finite number
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m of times, then Θ = Θm. This is so because the environment cannot make a
move 1.α or 2.ε.α during the mth iteration (otherwise there would be a next it-
eration), and any other move would violate the clean environment assumption;
and, as long as the environment does not move during a given iteration, neither
does the machine. Thus, no matter whether LOOP is iterated a finite or infinite
number of times, we have:

(a) Θ ∈ LrE∗→

�

E∗ ;
(b) ¬Θ1. = Θ2.ε. ;
(c) All of the moves in Θ2. have the prefix ‘ε.’.

(11)

Since Θ ∈ LrE∗→

�

E∗ , in order to show that WnE∗→

�

E∗ 〈Θ〉 = �, it would
suffice to verify that either Wn¬E∗ 〈Θ1.〉 = � or Wn

�

E∗ 〈Θ2.〉 = �. So, assume
Wn¬E∗ 〈Θ1.〉 � �, i.e. Wn¬E∗〈Θ1.〉 = ⊥, i.e. WnE∗ 〈¬Θ1.〉 = �. Then, by clause
(b) of (11), WnE∗ 〈Θ2.ε.〉 = �. Pick any complete branch w of Tree

�

E∗ 〈Θ2.〉. In
view of clause (c) of (11), we obviously have Θ2.ε. = (Θ2.)+w (in fact, w = ε).
Hence WnE∗ 〈(Θ2.)+w〉 = �. Then, by the definition of ◦| , Wn

�

E∗ 〈Θ2.〉 = �.
Thus, E |= E∗ → ◦| E∗ and, as ∗ was arbitrary and the work of E did not

depend on it, we conclude that E ��� E → ◦| E. �

Having already seen two examples, in the remaining uniform validity proofs
we will typically limit ourselves to just constructing interactive algorithms,
leaving routine verification of their correctness to the reader. An exception will
be the proof of Lemma 57 given separately in Section 11.12.4 where, due to
the special complexity of the case, correctness verification will be done even
more rigorously than we did this in the proofs of Lemmas 48 and 49.

Lemma 50. ��� ∧| (E → F)→ (∧| E → ∧| F).
Moreover, there is an EPM E such that, for every E and F,

E ��� ∧| (E → F)→ (∧| E → ∧| F).

Proof. Here is a strategy for E to follow:

Procedure LOOP: Keep granting permission until the adversary makes a
move γ. Then:

If γ = 1.i.1.α (resp. γ = 2.1.i.α), then make the move 2.1.i.α (resp. 1.i.1.α),
and repeat LOOP;

If γ = 1.i.2.α (resp. γ = 2.2.i.α), then make the move 2.2.i.α (resp. 1.i.2.α),
and repeat LOOP. �

Lemma 51. ��� ◦| (E → F)→ (◦| E → ◦| F).
Moreover, there is an EPM E such that, for every E and F,

E ��� ◦| (E → F)→ (◦| E → ◦| F).
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Proof. A relaxed description of a uniform solution E for ◦| (E → F) → (◦| E →
◦| F) is as follows. In ◦| (E∗ → F∗) and ◦| E∗ the machine is making exactly the
same replicative moves (moves of the form w:) as the environment is making in
◦| F∗. This ensures that the underlying BT-structures of the three ◦| -components
of the game stay identical, and now all the machine needs for a success is to
win the game (E∗ → F∗)→ (E∗ → F∗) within each branch of those trees. This
can be easily achieved by applying copy-cat methods to the two occurrences
of E and the two occurrences of F.

In precise terms, the strategy that E follows is described by the following
interactive algorithm.

Procedure LOOP: Keep granting permission until the adversary makes a
move γ. Then:

If γ = 2.2.w:, then make the moves 1.w: and 2.1.w:, and repeat LOOP;
If γ = 2.2.w.α (resp. γ = 1.w.2.α), then make the move 1.w.2.α (resp.

2.2.w.α), and repeat LOOP;
If γ = 2.1.w.α (resp. γ = 1.w.1.α), then make the move 1.w.1.α (resp.

2.1.w.α), and repeat LOOP. �

Lemma 52. ��� ∨| (E1 ∨ . . . ∨ En)→ ∨| E1 ∨ . . . ∨ ∨| En.
Moreover, there is an effective procedure that takes any particular value of n

and constructs an EPM E such that, for any E1, . . . , En, E ��� ∨| (E1∨. . .∨En)→
∨| E1 ∨ . . . ∨ ∨| En.

Proof. We let E act as the following strategy prescribes, with i ranging over
{1, 2, 3, . . .} and j over {1, . . . , n}:

Procedure LOOP: Keep granting permission until the adversary makes a
move 1.i. j.α (resp. 2. j.i.α); then make the move 2. j.i.α (resp. 1.i. j.α), and re-
peat LOOP. �

Lemma 53. ��� ◦| (E1 ∨ . . . ∨ En)→ ◦| E1 ∨ . . . ∨ ◦| En.
Moreover, there is an effective procedure that takes any particular value of n

and constructs an EPM E such that, for any E1, . . . , En, E ��� ◦| (E1∨ . . .∨En)→
◦| E1 ∨ . . . ∨ ◦| En.

Proof. Here is the algorithm for E:

Procedure LOOP: Keep granting permission until the adversary makes a
move γ. Then:

If γ = 1.w:, then make the n moves 2.1.w:, . . . , 2.n.w:, and repeat LOOP;
If γ = 1.w. j.α (resp. γ = 2. j.w.α) where 1 ≤ j ≤ n, then make the move

2. j.w.α (resp. 1.w. j.α), and repeat LOOP. �

Lemma 54. ��� ∨| E ∨ ∨| E → ∨| E.
Moreover, there is an EPM E such that, for any E, E ��� ∨| E ∨ ∨| E → ∨| E.
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Proof. We let E work as the following strategy prescribes:

Procedure LOOP: Keep granting permission until the adversary makes a
move γ. Then act depending on which of the following cases applies, and after
that repeat LOOP:

If γ = 1.1.i.α, then make the move 2. j.α where j = 2i − 1;
If γ = 1.2.i.α, then make the move 2. j.α where j = 2i;
If γ = 2. j.α where j = 2i − 1, then make the move 1.1.i.α;
If γ = 2. j.α where j = 2i, then make the move 1.2.i.α. �

Lemma 55. ��� ◦| E ∨ ◦| E → ◦| E.
Moreover, there is an EPM E such that, for any E, E ��� ◦| E ∨ ◦| E → ◦| E.

Proof. The idea of a strategy for E is to first replicate the consequent turning it
into ◦| (E∗ ◦E∗), which is essentially the same as ◦| E∗∨◦| E∗, and then switch to a
strategy that is essentially the same as the ordinary copy-cat strategy. Precisely,
here is how E works: it makes the move 2.ε: (replicating the consequent), after
which it follows the following algorithm:

Procedure LOOP: Keep granting permission until the adversary makes a
move γ. Then:

If γ = 2.0α (resp. γ = 1.1.α), then make the move 1.1.α (resp. 2.0α), and
repeat LOOP;

If γ = 2.1α (resp. γ = 1.2.α), then make the move 1.2.α (resp. 2.1α), and
repeat LOOP;

If γ = 2.ε.α, then make the moves 1.1.ε.α and 1.2.ε.α, and repeat LOOP. �

Lemma 56. ��� ∨| ∨| E → ∨| E.
Moreover, there is an EPM E such that, for any E, E ��� ∨| ∨| E → ∨| E.

Proof. We select any effective one-to-one function f from the set of all pairs
of nonnegative integers onto the set of all nonnegative integers. Below is the
interactive algorithm that E follows:

Procedure LOOP: Keep granting permission until the adversary makes a
move γ. Then:

If γ = 1.i. j.α, then make the move 2.k.αwhere k = f (i, j), and repeat LOOP;
If γ = 2.k.α, then make the move 2.i. j.α where k = f (i, j), and repeat

LOOP. �

Lemma 57. ��� ◦| ◦| E → ◦| E.
Moreover, there is an EPM E such that, for any E, E ��� ◦| ◦| E → ◦| E.

Proof. Our proof of this lemma, unlike that of the “similar” Lemma 56, is
fairly long. For this reason, it is given separately in Section 11.12.4. �
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In what follows, we will be using the expressions E∗(x), E∗(t), etc. to
mean the same as the more clumsy

(
E(x)
)∗, (E(t)

)∗, etc. Also, remember from
Section 11.3 that, when t is a constant, e(t) = t.

Lemma 58. ���%x
(
E(x)→ F(x)

)
→
(%xE(x) → %xF(x)

)
.

Moreover, there is an EPM E such that, for any E(x) and F(x),

E ���%x
(
E(x)→ F(x)

)
→
(%xE(x) → %xF(x)

)
.

Proof. Strategy: Wait till the environment makes the move ‘2.2.c’ for some
constant c. This brings the %xF∗(x) component down to F∗(c) and hence the
entire game to

%x
(
E∗(x)→ F∗(x)

)
→
(%xE∗(x)→ F∗(c)

)
.

Then make the same move c in the antecedent and in %xE∗(x), i.e. make the
two moves ‘1.c’ and ‘2.1.c’. The game will be brought down to

(
E∗(c) →

F∗(c)
)
→
(
E∗(c)→ F∗(c)

)
. Finally, switch to CCS. �

Lemma 59. Assume t is free for x in E(x). Then ���E(t)→ &xE(x).
Moreover, there is an effective function that takes any t and constructs an

EPM E such that, for any E(x), whenever t is free for x in E(x), E ���E(t) →
&xE(x).

Proof. Strategy: Let c = e(t). Read c from the valuation tape if necessary
(i.e. if t is a variable). Then make the move ‘2.c’, bringing the game down to
E∗(c)→ E∗(c). Then switch to CCS. �

Lemma 60. Assume E does not contain x. Then ���E → %xE.
Moreover, there is an EPM E such that, for any E and x, as long as E does

not contain x, E ��� E → %xE.

Proof. In this case we prefer to explicitly write the usually suppressed parame-
ter e. Consider an arbitrary E not containing x, and an arbitrary interpretation ∗

admissible for E → %xE. The formula E → %xE contains x yet E does not.
Therefore, from the definition of admissibility and with a little thought we can
see that E∗ does not depend on x. In turn, this means—as can be seen with
some additional thought—that the move c by the environment (whatever con-
stant c) in e[%xE∗] brings this game down to e[E∗]. With this observation in
mind, the following strategy can be seen to be successful: Wait till the environ-
ment makes the move ‘2.c’ for some constant c. Then read the sequence ‘1.α1’,
. . . , ‘1.αn’ of (legal) moves possibly made by the environment before it made
the above move ‘2.c’, and make the n moves ‘2.α1’, . . . , ‘2.αn’. It can be seen
that now the original game e[E∗] → e[%xE∗] will have been brought down to
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〈Φ〉e[E∗] → 〈Φ〉e[E∗], where Φ = 〈�α1, . . . ,�αn〉. So, switching to CCS at
this point guarantees success. �

Lemma 61. Assume E(x) does not contain y. Then ���%yE(y) → %xE(x). In
fact, CCS���%yE(y) → %xE(x).

Proof. Assuming that E(x) does not contain y and analyzing the relevant de-
finitions, it is not hard to see that, for any interpretation ∗ admissible for
%yE(y) → %xE(x), we simply have

(%yE(y)
)∗
=
(%xE(x)

)∗. So, we deal
with a game of the form A → A, for which the ordinary copy-cat strategy is
successful. �

11.12.4 Iteration principle for branching
recurrence

The computability principles expressed by the formulas ∨| ∨| E → ∨| E and
◦| ◦| E → ◦| E, that can be equivalently rewritten as ∧| E → ∧| ∧| E and ◦| E → ◦| ◦| E,
we call iteration principles (for ∧| and ◦| , respectively). This section is entirely
devoted to a proof of Lemma 57, i.e. the iteration principle for ◦| . We start with
some auxiliary definitions.

A colored bit b is a pair (c, d), where c, called the content of b, is in {0, 1},
and d, called the color of b, is in {blue,yellow}. We will be using the notation
c (“blue c”) for the colored bit whose content is c and color is blue, and c
(“yellow c”) for the bit whose content is c and color is yellow. The four colored
bits will be treated as symbols, from which, just as from ordinary bits, we can
form strings.

A colored bitstring is a finite or infinite string of colored bits. Consider a
colored bitstring v. The content of v is the result of “ignoring the colors” in
v, i.e. replacing every bit of v by the content of that bit. The blue content of
v is the content of the string that results from deleting in v all but blue bits.
Yellow content is defined similarly. We use v, v and v to denote the content,
blue content and yellow content of v, respectively. Example: if v = 10001, we
have v = 10001, v = 10 and v = 001. As in the case of ordinary bitstrings,
ε stands for the empty colored bitstring, and u + w means that u is a (not
necessarily proper) initial segment of w.

Definition 62. A colored bitstring tree (CBT) is a set T of colored bitstrings,
called its branches, such that the following conditions are satisfied:

(a) The set {v | v ∈ T }, which we denote by T , is a BT in the sense of
Definition 14.

(b) For any w, u ∈ T, if w = u, then w = u.
(c) For no (finite) v ∈ T do we have {v0, v1} ⊆ T or {v0, v1} ⊆ T.

A colored bitstring v is said to be a leaf of T iff v is a leaf of T .
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When represented in the style of (the underlying tree of) Figure 11.11 of
Section 11.4.6, a CBT will look like an ordinary BT, with the only difference
that now every edge will have one of the colors blue or yellow. Also, by condi-
tion (c), both of the outgoing edges (“sibling” edges) of any non-leaf node will
have the same color.

Lemma 63. Assume T is a CBT, and w, u are branches of T with w + u and
w + u. Then w + u.

Proof. Assume T is a CBT, w, u ∈ T , and w � u. We want to show that then
w � u or w � u. Let v be the longest common initial segment of w and u, so
we have w = vw′ and u = vu′ for some w′, u′ such that w′ is nonempty and
w′ and u′ do not have a nonempty common initial segment. Assume the first
bit of w′ is 0 (the cases when it is 1, 0 or 1, of course, will be similar). If u′ is
empty, then w obviously contains more blue bits than u does, and we are done.
Assume now u′ is nonempty, in particular, b is the first bit of u′. Since w′ and u′

do not have a nonempty common initial segment, b should be different from 0.
By condition (b) of Definition 62, the content of b cannot be 0 (for otherwise
we would have v0 = vb and hence b = 0). Consequently, b is either 1 or 1.
The case b = 1 is ruled out by condition (c) of Definition 62. Thus, b = 1.
But the blue content of v0 is v0 while the blue content of v1 is v1. Taking into
account the obvious fact that the former is an initial segment of w and the latter
is an initial segment of u, we find w � u. �

The uniform solution E for ◦| ◦| E → ◦| E that we are going to construct essen-
tially uses a copy-cat strategy between the antecedent and the consequent. Of
course, however, this strategy cannot be applied directly in the form of CCS.
The problem is that while a position of ◦| E∗ is a decorated tree T in the style of
Figure 11.11 of Section 11.4.6, in the case of ◦| ◦| E∗ it is a tree T ′ of trees such
as, say, the one shown below:

〈Φ3〉E∗ 〈Φ4〉E∗ 〈Φ5〉E∗
�

�
�

��

�
�

�
�

�
��

0 1

0 1

〈Φ1〉E∗ 〈Φ2〉E∗
�

��
�

��0 1

〈Φ6〉E∗

�������������

�������

�������������

0 1

0 1

Figure 11.13: A position T ′ of ◦| ◦| E∗
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The trick that E uses is that it sees the BT -structure of T as a colored bit-
string tree, letting such a T “simulate” T ′. Specifically, E tries to maintain a
one-to-one correspondence between the leaves (windows) of T and the leaves
of the leaves (small windows) of T ′, with the positions of E∗ in each pair
of corresponding windows being identical. Figure 11.14 shows a possible T ,
whose six windows, as we see, have the same contents as the six small win-
dows of T ′, even if some permutation in the order of windows has taken place.

〈Φ1〉E∗ 〈Φ3〉E∗ 〈Φ4〉E∗ 〈Φ2〉E∗ 〈Φ5〉E∗ 〈Φ6〉E∗
���������������

���������������

�� �����

���
����������

0 1 0 1
0 1

0 1

0 1

Figure 11.14: A possible corresponding position T of ◦| E∗

The way this mapping works is that to a leaf y of a leaf x of T ′ corresponds a
(the) leaf of T whose yellow content is y and blue content is x, and vice versa.
For example, look at the small window containing 〈Φ3〉E∗ in Figure 11.13.
It is leaf 00 of leaf 01 of T ′; and the window containing the same 〈Φ3〉E∗ in
Figure 11.14 is leaf 0010 of T , whose yellow content is indeed 00 and blue
content is indeed 01. E has a way to maintain such a correspondence. Let us
see how it acts when the antecedent and the consequent of ◦| ◦| E∗ → ◦| E∗ have
evolved to the positions shown in Figures 11.13 and 11.14, respectively. If, say,
the environment makes a non-replicative move α in the 〈Φ3〉E∗ component of
T ′ (resp. T ), E responds by the same move α in the 〈Φ3〉E∗ component of
T (resp. T ′). This ensures that the positions of E∗ in the two components
remain identical. Of course, the environment can make a move α in several
components at once. For example, the move 1.00.ε.α by the environment would
amount to making move α in the two components 〈Φ1〉E∗ and 〈Φ2〉E∗ of T ′.
No problem, E can respond by the two consecutive moves 2.000.α and 2.010.α.
Now let us see how E handles replicative moves. If the environment replicates
a small window of T ′, E replicates the corresponding window of T , and colors
the two newly emerged edges into yellow. In fact, the environment can replicate
several small windows at once, as, say, would be the case if it makes the move
0.1: in the antecedent, amounting to replicating the two windows containing
〈Φ2〉E∗ and 〈Φ5〉E∗. But, again, this is not a problem, for E can respond by two
(or whatever number of small windows of the antecedent have been replicated)
consecutive replicative moves in the consequent. Suppose now the environment
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replicates a large window of T ′, such as, say, window 00. Then E responds by
replicative moves in all leaves of T whose blue content is 00, specifically,
leaves 000 and 010, and colors the newly emerged edges into blue. With some
thought one can see that, with this strategy, it is guaranteed that to any leaf y
of any leaf x of the updated T ′ again corresponds the leaf of the updated T
whose yellow content is y and blue content is x, and vice versa.

In an attempt to understand what replicative moves (ignoring all non-repli-
cative moves in-between) could have resulted in the tree of Figure 11.13 and
the corresponding tree of Figure 11.14, we find the following. First, the envi-
ronment made the replicative move ε: in the antecedent of ◦| ◦| E∗ → ◦| E∗. To
this E responded by the replicative move ε: in the consequent. Then the en-
vironment made the (“deep”) replicative move 0.ε: in the antecedent. To this
E responded by 0: in the consequent. Next the environment made the replica-
tive move 0: in the antecedent. E responded by 00: and 01: in the consequent.
Finally, the environment made (the “deep”) replicative move 01.0: in the an-
tecedent, and E responded by 001: in the consequent.

Keeping, according to the above scenario, all runs of E∗ in the branches
of branches of the antecedent identical with runs of E∗ in the corresponding
branches of the consequent can be eventually seen to guarantee a win for E.

Now we describe E in precise terms. At the beginning, this EPM creates a
record T of the type ‘finite CBT’, and initializes it to {ε}. After that, E follows
the following procedure:

Procedure LOOP: Keep granting permission until the adversary makes a
move γ. If γ satisfies the conditions of one of the following four cases, act
as the corresponding case prescribes. Otherwise go to an infinite loop in a
permission state.

Case (i): γ = 1.w: for some bitstring w. Let v1, . . . , vk be14 all of the leaves
v of T with w = v. Then make the moves 2.v1:, . . . , 2.vk:, update T to T ∪
{v10, v11, . . . , vk0, vk1}, and repeat LOOP.

Case (ii): γ = 1.w.u: for some bitstrings w, u. Let v1, . . . , vk be all of the
leaves v of T such that w + v and u = v. Then make the moves 2.v1:, . . . , 2.vk:,
update T to T ∪ {v10, v11, . . . , vk0, vk1}, and repeat LOOP.

Case (iii): γ = 1.w.u.α for some bitstrings w, u and move α. Let v1, . . . , vk

be all of the leaves v of T such that w + v and u + v. Then make the moves
2.v1.α, . . . , 2.vk.α, and repeat LOOP.

Case (iv): γ = 2.w.α for some bitstring w. Let v1, . . . , vk be all of the leaves
v of T with w + v. Then make the moves 1.v1.v1.α, . . . , 1.vk.vk.α, and repeat
LOOP.

14In each of the four cases we assume that the list v1, . . . , vk is arranged lexicographically.
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Pick an arbitrary interpretation ∗ admissible for ◦| ◦| E → ◦| E, an arbitrary
valuation e and an arbitrary e-computation branch B of E. Let Θ be the run
spelled by B. The work of E does not depend on e. And, as e is going to be
fixed, we can safely omit this parameter (as we usually did in the previous
section) and just write E∗ instead of e[E∗]. Of course, E is interpretation-blind,
so, as long as it wins ◦| ◦| E∗ → ◦| E∗, it is a uniform solution for ◦| ◦| E → ◦| E.

From the description of LOOP it is immediately clear that B is a fair.
Hence, in order to show that E wins, it would be sufficient to verify that
Wn

� �

E∗→

�

E∗ 〈Θ〉 = �.
Let N = {1, . . . ,m} if LOOP is iterated the finite number m of times in B,

and N = {1, 2, 3, . . .} otherwise. For i ∈ N, we let Ti denote the value of record
T at the beginning of the ith iteration of LOOP. Next, Θi will mean the initial
segment of Θ consisting of the (lab)moves made by the beginning of the ith
iteration of LOOP. Finally, Ψi will stand for ¬Θ1.

i and Φi for Θ2.
i .

From the description of LOOP it is obvious that, for each i ∈ N, Ti is a finite
colored tree, and that T1 ⊆ T2 ⊆ . . . ⊆ Ti. In our subsequent reasoning we will
implicitly rely on this fact.

Lemma 64. For every i with i ∈ N, we have:

(a) Φi is a prelegal position of ◦| E∗, and Tree

�

E∗ 〈Φi〉 = Ti.
(b) Ψi is a prelegal position of ◦| ◦| E∗.
(c) For every leaf x of Tree

� �

E∗ 〈Ψi〉, Ψ+x
i is a prelegal position of ◦| E∗.

(d) For every leaf z of Ti, z is a leaf of Tree

� �

E∗ 〈Ψi〉 and z is a leaf of

Tree
�

E∗ 〈Ψ+z
i 〉.

(e) For every leaf x of Tree

� �

E∗ 〈Ψi〉 and every leaf y of Tree

�

E∗ 〈Ψ+x
i 〉, there is

a leaf z of Ti such that x = z and y = z. By Lemma 63, such a z is unique.

(f) For every leaf z of Ti, Φ
+z
i = (Ψ+z

i )+z.
(g) Θi is a legal position of ◦| ◦| E∗ → ◦| E∗; hence, Φi ∈ Lr

�

E∗ andΨi ∈ Lr

� �

E∗ .

Proof. We proceed by induction on i. The basis case with i = 1 is rather
straightforward for each clause of the lemma and we do not discuss it. For
the inductive step, assume i + 1 ∈ N, and the seven clauses of the lemma are
true for i.

Clause (a): By the induction hypothesis, Φi is a prelegal position of ◦| E∗
and Tree

�

E∗ 〈Φi〉 = T i. Assume the ith iteration of LOOP deals with Case
(i), so that Φi+1 = 〈Φi,�v1:, . . . ,�vk:〉.15 Each of v1, . . . , vk is a leaf of T i,
i.e. a leaf of Tree

�

E∗ 〈Φi〉. This guarantees that Φi+1 is a prelegal position
of ◦| E∗. Also, by the definition of function Tree, we have Tree

�

E∗ 〈Φi+1〉 =
Tree

�

E∗ 〈Φi〉 ∪ {v10, v11, . . . , vk0, vk1}. But the latter is nothing but T i+1 as can

15With v1 , . . . , vk here and in later cases being as in the corresponding clause of the description of LOOP.
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be seen from the description of how Case (i) updates Ti to Ti+1. A similar
argument applies when the ith iteration of LOOP deals with Case (ii). As-
sume now the ith iteration of LOOP deals with Case (iii). Note that the moves
made in the consequent of ◦| ◦| E∗ → ◦| E∗ (the moves that bring Φi to Φi+1)
are nonreplicative—specifically, look like v.α where v ∈ T i = Tree

�

E∗ 〈Φi〉.
Such moves do not destroy prelegality nor do they change the value of Tree,
so Tree

�

E∗ 〈Φi〉 = Tree

�

E∗ 〈Φi+1〉. It remains to note that T is not updated in this
subcase, so that we also have T i+1 = T i. Hence Tree

�
E∗ 〈Φi+1〉 = T i+1. Finally,

suppose the ith iteration of LOOP deals with Case (iv). It is the environment
who moves in the consequent of ◦| ◦| E∗ → ◦| E∗, and does so before the machine
makes any moves (in the antecedent). Then the clean environment assump-
tion, in conjunction with the induction hypothesis for clause (g), implies that
such a move by the environment cannot bring Φi to an illegal and hence non-
prelegal position of ◦| E∗. So, Φi+1 remains a prelegal position of ◦| E∗. As for
Tree

�

E∗ 〈Φi+1〉 = T i+1, it holds for the same reason as in the previous case.
Clause (b): If the ith iteration of LOOP deals with Case (i), (ii) or (iii), it is

the environment who moves in the antecedent of ◦| ◦| E∗ → ◦| E∗, and does so be-
fore the machine makes any moves. Therefore the clean environment assump-
tion, with the induction hypothesis for clause (g) in mind, guarantees that Ψi+1

is a legal and hence prelegal position of ◦| ◦| E∗. Assume now that the ith iteration
of LOOP deals with Case (iv), so that Ψi+1 = 〈Ψi,⊥v1.v1.α, . . . ,⊥vk.vk.α〉. By
the induction hypothesis, Ψi is a prelegal position of ◦| ◦| E∗. And, by the induc-
tion hypothesis for clause (d), each v j (1 ≤ j ≤ k) is a leaf of Tree

� �

E∗ 〈Ψi〉, so
adding the (lab)moves ⊥v1.v1.α, . . . ,⊥vk.vk does not bring Ψi to a non-prelegal
position. Ψi+1 thus remains a prelegal position of ◦| ◦| E∗. As an aside, note also
that those moves, being nonreplicative, do not modify Tree

� �

E∗ 〈Ψi〉.
Clause (c): Just as in the previous clause, when the ith iteration of LOOP

deals with Case (i), (ii) or (iii), the desired conclusion follows from the
clean environment assumption in conjunction with the induction hypothe-
sis for clause (g). Assume now that the ith iteration of LOOP deals with
Case (iv). Consider any leaf x of Tree

� �

E∗ 〈Ψi+1〉. As noted at the end of our
proof of Clause (b), we have Tree

� �

E∗ 〈Ψi〉 = Tree

� �

E∗ 〈Ψi+1〉, so x is also a
leaf of Tree

� �

E∗ 〈Ψi〉. Therefore, if Ψ+x
i+1 = Ψ

+x
i , the conclusion that Ψ+x

i+1 is a
prelegal position of ◦| E∗ follows from the induction hypothesis. Suppose now
Ψ+x

i+1 � Ψ
+x
i . Note that then, in view of the induction hypothesis for clause

(d), Ψ+x
i+1 looks like 〈Ψ+x

i ,⊥y1.α, . . . ,⊥ym.α〉, where for each y j (1 ≤ j ≤ m)
we have z = x and z = y j for some leaf z of Ti, with y j being a leaf of
Tree

�

E∗ 〈Ψ+x
i 〉. By the induction hypothesis for the present clause, Ψ+x

i is a
prelegal position of ◦| E∗. Adding to such a position the nonreplicative labmoves
⊥y1.α, . . . ,⊥ym.α—where the y j are leaves of Tree

�

E∗ 〈Ψ+x
i 〉—cannot bring it to

a non-prelegal position. Thus, Ψ+x
i+1 remains a prelegal position of ◦| E∗.
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Clauses (d) and (e): If the ith iteration of LOOP deals with Cases (iii) or (iv),
Ti is not modified, and no moves of the form x: or x.y: (where x, y are bitstrings)
are made in the antecedent of ◦| ◦| E∗ → ◦| E∗, so Tree

� �

E∗ 〈Ψi〉 and Tree
�

E∗ 〈Ψ+x
i 〉

(any leaf x of Tree

� �

E∗Ψi) are not affected, either. Hence Clauses (d) and (e) for
i+1 are automatically inherited from the induction hypothesis for these clauses.
This inheritance also takes place—even if no longer “automatically”—when
the ith iteration of LOOP deals with Case (i) or (ii). This can be verified by
a routine analysis of how Cases (i) and (ii) modify Ti and the other relevant
parameters. Details are left to the reader.

Clause (f): Consider any leaf z of Ti+1. When the ith iteration of LOOP deals
with Case (i) or (ii), no moves of the form x.α are made in the consequent of
◦| ◦| E∗ → ◦| E∗, and no moves of the form x.y.α are made in the antecedent
(any bitstrings x, y). Based on this, it is easy to see that for all bitstrings x, y
we have Φ+x

i+1 = Φ
+x
i and (Ψ+x

i+1)+y = (Ψ+x
i )+y. Hence clause (f) for i + 1 is

inherited from the same clause for i. Now suppose the ith iteration of LOOP
deals with Case (iii). Then Ti+1 = Ti and hence z is also a leaf of Ti. From
the description of Case (iii) one can easily see that if w � z or u � z, we have

Φ
+z
i+1 = Φ

+z
i and (Ψ+z

i+1)+z = (Ψ+z
i )+z, so the equation Φ

+z
i+1 = (Ψ+z

i+1)+z is true by

the induction hypothesis; and if w + z and u + z, then Φ
+z
i+1 = 〈Φ

+z
i ,�α〉 and

(Ψ+z
i+1)+z = 〈(Ψ+z

i )+z,�α〉. But, by the induction hypothesis, Φ
+z
i = (Ψ+z

i )+z.

Hence Φ
+z
i+1 = (Ψ+z

i+1)+z. A similar argument applies when the ith iteration of
LOOP deals with Case (iv).

Clause (g): Below we implicitly rely on the induction hypothesis, according
to which Θi ∈ Lr

� �

E∗→

�

E∗ and hence Φi ∈ Lr

�

E∗ and Ψi ∈ Lr

� �

E∗ . Note that,
with the clean environment assumption in mind, all of the moves made in any
of Cases (i)–(iv) of LOOP have the prefix ‘1.’ or ‘2.’, i.e. are made either in
the antecedent or the consequent of ◦| ◦| E∗ → ◦| E∗. Hence, in order to show
that Θi+1 is a legal position of ◦| ◦| E∗ → ◦| E∗, it would suffice to verify that
Φi+1 ∈ Lr

�

E∗ and Ψi+1 ∈ Lr

� �

E∗ .
Suppose the ith iteration of LOOP deals with Case (i) or (ii). The clean

environment assumption guarantees that Ψi+1 ∈ Lr

� �

E∗ . In the consequent of
◦| ◦| E∗ → ◦| E∗ only replicative moves are made. Replicative moves can yield an
illegal position (Φi+1 in our case) of a ◦| -game only if they yield a non-prelegal
position. But, by clause (a), Φi+1 is a prelegal position of ◦| E∗. Hence it is also
a legal position of ◦| E∗.

Suppose now the ith iteration of LOOP deals with Case (iii). Again, that
Ψi+1 ∈ Lr

� �

E∗ is guaranteed by the clean environment assumption. So, we only
need to verify that Φi+1 ∈ Lr

�

E∗ . By clause (a), this position is a prelegal
position of ◦| E∗. So, it remains to see that, for any leaf y of Tree

�

E∗ 〈Φi+1〉,
Φ
+y
i+1 ∈ LrE∗ . Pick an arbitrary leaf y of Tree

�

E∗ 〈Φi+1〉—i.e., by clause (a), of

T i+1. Let z be the leaf of Ti+1 with y = z. We already know that Ψi+1 ∈ Lr

� �

E∗ .
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By clause (d), we also know that z is a leaf of Tree

� �

E∗ 〈Ψi+1〉. Consequently,
Ψ+z

i+1 ∈ Lr

�

E∗ . Again by clause (d), z is a leaf of Tree

�

E∗ 〈Ψ+z
i+1〉. Hence, (Ψ+z

i+1)+z

should be a legal position of E∗. But, by clause (f), Φ
+z
i+1 = (Ψ+z

i+1)+z. Thus,

Φ
+z
i+1 ∈ LrE∗ , i.e. Φ+y

i+1 ∈ LrE∗ .
Finally, suppose the ith iteration of LOOP deals with Case (iv). By the clean

environment assumption, Φi+1 ∈ Lr

�

E∗ . Now consider Ψi+1. This position is a
prelegal position of ◦| ◦| E∗ by clause (b). So, in order for Ψi+1 to be a legal po-
sition of ◦| ◦| E∗, for every leaf x of Tree

� �

E∗ 〈Ψi+1〉 we should have Ψ+x
i+1 ∈ Lr

�

E∗ .
Consider an arbitrary such leaf x. By clause (c), Ψ+x

i+1 is a prelegal position of
◦| E∗. Hence, a sufficient condition for Ψ+x

i+1 ∈ Lr

�

E∗ is that, for every leaf y of
Tree

�

E∗ 〈Ψ+x
i+1〉, (Ψ+x

i+1)+y ∈ LrE∗ . So, let y be an arbitrary such leaf. By clause
(e), there is a leaf z of Ti+1 such that z = x and z = y. Therefore, by clause (f),

Φ
+z
i+1 = (Ψ+x

i+1)+y. But we know that Φi+1 ∈ Lr

�

E∗ and hence (with clause (a) in

mind) Φ
+z
i+1 ∈ LrE∗ . Consequently, (Ψ+x

i+1)+y ∈ LrE∗ . �

Lemma 65. For every finite initial segment Υ of Θ, there is i ∈ N such that Υ
is a (not necessarily proper) initial segment of Θi and hence of every Θ j with
i ≤ j ∈ N.

Proof. The statement of the lemma is straightforward when there are infinitely
many iterations of LOOP, for each iteration adds a nonzero number of new
moves to the run and hence there are arbitrarily long Θis, each of them being
an initial segment of Θ. Suppose now LOOP is iterated a finite number m of
times. It would be (necessary and) sufficient to verify that in this case Θ = Θm,
i.e. no moves are made during the last iteration of LOOP. But this is indeed
so. From the description of LOOP we see that the machine does not make any
moves during a given iteration unless the environment makes a move γ first.
So, assume ⊥ makes move γ during the mth iteration of LOOP. By the clean
environment assumption, we should have 〈Θm,⊥γ〉 ∈ Lr

� �

E∗→

�

E∗ . It is easy
to see that such a γ would have to satisfy the conditions of one of the Cases
(i)–(iv) of LOOP. But then there would be an (m + 1)th iteration of LOOP,
contradicting out assumption that there are only m iterations. �

Let us use Ψ and Φ to denote ¬Θ1. and Θ2., respectively. Of course, the
statement of Lemma 65 is true for Φ and Ψ (instead of Θ) as well. Taking
into account that, by definition, a given run is legal iff all of its finite initial
segments are legal, the following fact is an immediate corollary of Lemmas 65
and 64(g):

Θ ∈ Lr

� �

E∗→

�

E∗ . Hence, Ψ ∈ Lr

� �

E∗ and Φ ∈ Lr

�

E∗ . (12)
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To complete our proof of Lemma 57, we need to show that

Wn

� �

E∗→

�

E∗ 〈Θ〉 = �.

With (12) in mind, if Wn

� �

E∗ 〈Ψ〉 = ⊥, by the definition of →, we are done.
Assume now Wn

� �

E∗ 〈Ψ〉 = �. Then, by the definition of ◦| , there is a complete
branch x of Tree

� �

E∗ 〈Ψ〉 such that Wn

�

E∗ 〈Ψ+x〉 = �. This, in turn, means that,
for some complete branch y of Tree �E

∗ 〈Ψ+x〉,

WnE∗ 〈(Ψ+x)+y〉 = �. (13)

Fix these x and y. For each i ∈ N, let xi denote the (obviously unique) leaf
of Tree

� �

E∗ 〈Ψi〉 such that xi + x; and let yi denote the (again unique) leaf of
Tree

�

E∗ 〈Ψ+xi
i 〉 such that yi + y. Next, let zi denote the leaf of Ti with zi = xi and

zi = yi. According to Lemma 64(e), such a zi exists and is unique.
Consider any i with i+ 1 ∈ N. Clearly xi + xi+1 and yi + yi+1. By our choice

of the z j, we then have zi + zi+1 and zi + zi+1. Hence, by Lemma 63, zi + zi+1.
Let us fix z as the shortest (perhaps infinite if N is infinite) colored bitstring
such that for every i ∈ N, zi + z. Based on the just-made observation that we
always have zi + zi+1, such a z exists. And, in view of Lemma 64(a), it is not
hard to see that z is a complete branch of Tree

�

E∗ 〈Φ〉.
With Lemma 65 in mind, Lemma 64(f) easily allows us to find that Φ+z =

(Ψ+x)+y. Therefore, by (13), WnE∗ 〈Φ+z〉 = �. By the definition of ◦| , this means
that Wn

�
E∗ 〈Φ〉 = �. Hence, by the definition of → and with (12) in mind,

Wn
� �

E∗→

�

E∗ 〈Θ〉 = �. Done.

11.12.5 Finishing the soundness proof
for affine logic

Now we are ready to prove Theorem 37. Consider an arbitrary sequent S
provable in AL. By induction on the AL-derivation of S , we are going to show
that S has a uniform solution E. This is sufficient to conclude that AL is ‘uni-
formly sound’. The theorem also claims ‘constructive soundness’, i.e. that such
an E can be effectively built from a given AL-derivation of S . This claim of the
theorem will be automatically taken care of by the fact that our proof of the ex-
istence of E is constructive: all of the uniform-validity and closure lemmas on
which we rely provide a way for actually constructing a corresponding uniform
solution. With this remark in mind and for the considerations of readability, in
what follows we only talk about uniform validity without explicitly mentioning
uniform solutions for the corresponding formulas/sequents and without explic-
itly showing how to construct such solutions.

There are 16 cases to consider, corresponding to the 16 possible rules that
might have been used at the last step of an AL-derivation of S , with S being the
conclusion of the rule. In each non-axiom case below, “induction hypothesis”
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means the assumption that the premise(s) of the corresponding rule is (are)
uniformly valid. The goal in each case is to show that the conclusion of the
rule is also uniformly valid. “Modus ponens” should be understood as Lemma
45, “generalized modus ponens” as Lemma 46, and “transitivity” as Lemma
47. Also, clauses (f) and (g) of Lemma 38, in combination with modus ponens,
always allow us to rewrite a statement ���G1 ∨ H ∨ G2 as ���G1 ∨ (H) ∨ G2,
and vice versa. We will often explicitly or implicitly rely on this fact, which
we call associativity (of ∨).

Identity Axiom: By Lemma 38(a).

�-Axiom: Of course, ����.

Exchange: By Lemma 38(b), ���E ∨ F → F ∨ E. And, by Lemma 38(e),

���(E ∨ F → F ∨ E)→ (G ∨ E ∨ F ∨ H → G ∨ F ∨ E ∨ H).

Hence, by modus ponens,

���G ∨ E ∨ F ∨ H → G ∨ F ∨ E ∨ H.

But, by the induction hypothesis, ���G ∨ E ∨ F ∨ H. Hence, by modus ponens,
���G ∨ F ∨ E ∨ H.

Weakening: Similar to the previous case, using Lemma 38(i) instead of
Lemma 38(b).

∨| -Contraction: By Lemma 38(e) (with empty S ),

���(∨| E ∨ ∨| E → ∨| E)→ (G ∨ ∨| E ∨ ∨| E → G ∨ ∨| E).

And, by Lemma 54, ��� ∨| E ∨ ∨| E → ∨| E. Hence, by modus ponens, ���G ∨ ∨| E ∨
∨| E → G ∨ ∨| E. But, by the induction hypothesis, ���G ∨ ∨| E ∨ ∨| E. Hence, by
modus ponens, ���G ∨ ∨| E.

◦| -Contraction: Similar to ∨| -contraction, using Lemma 55 instead of Lemma
54.

&-Introduction: By Lemma 38(j), ��� Ei → E1 & . . . & En; and, by Lemma
38(e),

���(Ei → E1 & . . . & En)→
(
G ∨ Ei → G ∨ (E1 & . . . & En)

)
.

Modus ponens yields ���G ∨ Ei → G ∨ (E1 & . . . & En). But, by the induction
hypothesis, ���G ∨ Ei. So, by modus ponens, ���G ∨ (E1 & . . . & En).



346 In the Beginning Was Game Semantics

%-Introduction: By the induction hypothesis,

���G ∨ E1, . . . , ���G ∨ En.

And, from Lemma 38(k),

���(G ∨ E1) ∧ . . . ∧ (G ∨ En)→ G ∨ (E1 % . . . % En).

Generalized modus ponens yields ���G ∨ (E1 % . . . % En).

∨-Introduction: In view of associativity, this rule is trivial.

∧-Introduction: By the induction hypothesis,

���G1 ∨ E1, . . . , ���Gn ∨ En.

And, from Lemma 38(d),

���(G1 ∨ E1) ∧ . . . ∧ (Gn ∨ En)→ G1 ∨ . . . ∨Gn ∨ (E1 ∧ . . . ∧ En).

Generalized modus ponens yields ���G1 ∨ . . . ∨Gn ∨ (E1 ∧ . . . ∧ En).

∨| -Introduction: By the induction hypothesis, ���G∨E. And, by Lemma 48,
���E → ∨| E. So, by Lemma 38(e) and modus ponens applied twice, ���G ∨ ∨| E.

◦| -Introduction: Similar to ∨| -introduction, using Lemma 49 instead of
Lemma 48.

∧| -Introduction: By the induction hypothesis, ��� ∨|G∨E. If ∨|G is empty, then
∨|G∨E = E and thus ���E. Hence, by Lemma 42, ��� ∧| E, i.e. ��� ∨|G∨∧| E. Suppose
now ∨|G is not empty. Associativity allows us to rewrite ��� ∨|G∨E as (���(∨|G)∨E
and thus) ��� ¬∨|G → E. Then, by Lemma 42, ��� ∧| (¬∨| G → E). From here, by
Lemma 50 and modus ponens, we get ��� ∧| ¬∨|G → ∧| E, which can be rewritten
as ��� ∨| ∨|G ∨ ∧| E. But, by Lemma 52, ��� ∨| ∨|G → ∨| ∨|G and, by Lemma 38(e),

���(∨| ∨|G → ∨| ∨|G)→ (∨| ∨|G ∨ ∧| E → ∨| ∨|G ∨ ∧| E).

Applying modus ponens twice yields ��� ∨| ∨|G ∨ ∧| E. From here, using Lemmas
56, 38(e) and modus ponens as many times as the number of disjuncts in ∨| ∨|G,
we get ��� ∨|G ∨ ∧| E.

◦| -Introduction: Similar to ∧| -introduction, using Lemmas 43, 51, 53 and 57
instead of Lemmas 42, 50, 52 and 56, respectively.

&-Introduction: By Lemma 59, ��� E(t)→&xE(x). And, by Lemma 38(e),

���(E(t)→ &xE(x)) → (G ∨ E(t)→ G ∨&xE(x)).
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Modus ponens yields ���G ∨ E(t) → G ∨ &xE(x). But, by the induction hy-
pothesis, ���G ∨ E(t). Hence, by modus ponens, ���G ∨&xE(x).

%-Introduction: First, consider the case when G is nonempty. By the in-
duction hypothesis, we have ���G ∨ E(y), which can be rewritten as ��� ¬G →
E(y). Therefore, by Lemma 44, ���%y

(
¬G → E(y)

)
and, by Lemma 58

and modus ponens, ���%y¬G → %yE(y). At the same time, by Lemma 60,
���¬G → %y¬G. By transitivity, we then get ��� ¬G → %yE(y). But, by Lemma
61, ���%yE(y) → %xE(x). Transitivity yields ���¬G → %xE(x), which can be
rewritten as ���G ∨ %xE(x). The case when G is empty is simpler, for then
���G ∨ %xE(x), i.e. ���%xE(x), can be obtained directly from the induction
hypothesis by Lemmas 44, 61 and modus ponens.

11.13 What could be next?
As a conclusive remark, the author wants to point out that the story told

in this chapter was, in fact, only about the tip of the iceberg. Even though
the phrase “the language of CL” was used in some semiformal contexts, such a
language has no official boundaries and, depending on particular needs or taste,
remains open to various interesting extensions. In a broad sense, CL is not a
particular syntactic system or a particular semantics for a particular collection
of operators, but rather a platform and ambitious program for redeveloping
logic as a formal theory of computability, as opposed to the formal theory of
truth which it has more traditionally been.

The general framework of CL is also ready to accommodate any reasonable
weakening modifications of its absolute-strength computation model HPM,
thus keeping a way open for studying logics of sub-Turing computability and
developing a systematic theory of interactive complexity. Among modifica-
tions of this sort, for example, might be depriving the HPM of its infinite work
tape, leaving in its place just a write-only buffer where the machine constructs
its moves. In such a modification the exact type of read access to the run and
valuation tapes becomes relevant, and a reasonable restriction would appar-
ently be to allow—perhaps now multiple—read heads to move only in one
direction. An approach favoring this sort of machines would try to model Tur-
ing (unlimited) or sub-Turing (limited) computational resources such as mem-
ory, time, etc. as games, and then understand computing a problem A with re-
sources represented by R as computing R → A, thus making explicit not only
trans-Turing (incomputable) resources as we have been doing in this paper,
but also all of the Turing/sub-Turing resources needed or allowed for comput-
ing A—the resources that the ordinary HPM or Turing machine models take
for granted. So, with T representing the infinite read/write tape as a computa-
tional resource, computability of A in the old sense would mean nothing but
computability of T → A in the new sense: having T in the antecedent would
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amount to having infinite memory, only this time provided externally (by the
environment) via the run tape rather than internally via the work tape.

Complexity and sub-Turing computability aside, there are also good philo-
sophical reasons for questioning the legitimacy of the presence of an infinite
work tape, whether it be in our HPM model or in the ordinary Turing machine
(TM) model. The point is that neither HPMs nor TMs can be implemented—
even in principle—as actual physical beings. This is so for the simple reason
that no real mechanical device will ever have an infinite (even if only poten-
tially so) internal memory. The reason why this fact does not cause much frus-
tration and usually remains unnoticed is that the tape can be easily thought of as
an external resource, and thus TMs or HPMs can be identified only with their
finite control parts; then and only then, they indeed become implementable
devices. Yet, the standard formal treatment of TMs or our treatment of HPMs
does not account for this implicit intuition, and views the infinite work tape as a
part of the machine. Computability logic, with its flexibility and ability to keep
an accurate and explicit count of all resources, makes it possible to painlessly
switch from TMs or HPMs to truly finite devices, and make things really what
they were meant to be.

An alternative or parallel direction for CL to evolve with a focus shift
from computability to complexity, could be extending its vocabulary with
complexity-conscious operators. For example, winning a complexity-conscious
version%px&pyA(x, y) of%x&yA(x, y) could mean existence of a polynomial-
time function f such that, to any move m by the environment, the machine
responds with a move n within time f (m), and then wins the game A(m, n).

Time has not yet matured for seriously addressing complexity or sub-Turing
computability issues though, and in the nearest future CL will probably re-
main focused on just computability: as it happens, there are still too many
unanswered questions here. The most important and immediate task is find-
ing axiomatizations for incrementally expressive fragments of CL—first of all,
fragments that involve recurrence operators, for which practically no progress
has been made so far (with the intuitionistic fragment of CL being one mod-
est exception). It is also highly desirable to fully translate CL4-style ad hoc
axiomatizations into some systematic and nice proof theory, such as cirquent
calculus. So far this has only been done in Japaridze (2007b, 2008a) for the
¬,∧,∨-fragment.
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Abstract Taking Brouwer’s intuitionistic standpoint, we examine finite and infinite games
of perfect information for players I and II. If one understands the disjunction oc-
curring in the classical notion of determinacy constructively, even finite games
are not always determinate. We therefore suggest an intuitionistically different
notion of determinacy and prove that every subset of Cantor space is determi-
nate in the proposed sense. Our notion is biased and considers games from the
viewpoint of player I. In Cantor space, both player I and player II have two al-
ternative possibilities for each move. It turns out that every subset of a space,
where player II has, for each one of his moves, no more than a finite number
of alternative possibilities while player I perhaps has infinitely many choices, is
determinate in the proposed sense from the viewpoint of player I.

‘We must have a bit of a fight, but I don’t care about going on long,’
said Tweedledum. ‘What’s the time now?’
Tweedledee looked at his watch, and said, ‘Half-past four.’
‘Let’s fight till six, and then have dinner,’ said Tweedledum.

—Lewis Carroll, [1865, page 190]

12.1 Intuitionistic determinacy: the problem,
and the case of two-move-games

12.1.1 N is the set of natural numbers, and Baire space N is the set of all
infinite sequences of natural numbers. We use m, n, p, q, . . . as variables over
the set N and α, β, . . . as variables over the set N .
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Let A be a subset ofN . We describe the game for A, sometimes called G(A).
There are two players, I and II, who, each time they play the game, together
build an infinite sequence α in N , as follows:

Player I chooses α(0) Player I chooses α(2) . . .
↘ ↗ ↘ ↗
Player II chooses α(1) Player II chooses α(3)

The sequence α is called a play in the game for A. Player I is the winner if
and only if α belongs to A. The set A is sometimes called the payoff set of the
game.

Following the classical definition, we say that the set A is determinate if and
only if either player I has a method to secure that he wins every play in the
game for A, or player II has a method to prevent that player I wins any play in
the game for A.

We take the intuitionistic point of view advocated by L. E. J. Brouwer. He
insisted that every mathematical statement should be considered as a report on
what we have been able to prove and that connectives and quantifiers and the
corresponding set-theoretic operations should be interpreted constructively. In
particular, a disjunctive statement P ∨ Q is considered proven if and only if
we either have a proof of P or a proof of Q. We not only follow the rules
of intuitionistic logic but also make use of some of the new axioms Brouwer
proposed as a result of his reflection on the problem how to handle the concept
of the continuum. Some of these axioms, the so-called continuity principles,
are classically unacceptable but our main result, Theorem 3.5, does not depend
on any axiom that does not stand a classical reading.

12.1.2 We not only want to study games in Baire spaceN but also games
that are played in certain subspaces of Baire space N , traditionally called
spreads in intuitionistic mathematics. To this end we introduce some notations
and some terminology.
N
∗ is the set of finite sequences of natural numbers. We suppose that a bi-

jective mapping (a0, a1, . . . , an−1) -→ 〈a0, a1, . . . , an−1〉 from N∗ to N is given,
a function coding the finite sequences of natural numbers by means of natural
numbers. There is a function, length, from N to N such that, for every natural
number a, m := length(a) is the length of the finite sequence coded by a.

Let a be a number of length m. We consider a as a function from the set
{0, 1, . . . ,m − 1} to N, and, for each n, if n < m, we define a(n) to be the value
of this function at n.
∗ is the binary function onNwhich, via the coding, corresponds to the opera-

tion of concatenating finite sequences. We assume that for each a, n, a ≤ a∗〈n〉.
For each infinite sequence of natural numbers α, and each natural num-

ber n, we define α(n) to be (the code number of) the finite sequence 〈α(0), . . . ,
α(n − 1)〉. If confusion seems unlikely, we write αn rather than α(n).
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For each infinite sequence of natural numbers α, for each natural number s,
we define: α passes through s if and only if there exists n such that αn = s.

Let σ belong to N . σ is called a spread-law if and only if σ(〈 〉) = 0 and,
for each a, σ(a) = 0 if and only if, for some n, σ(a ∗ 〈n〉) = 0. If σ(a) = 0, we
will say that a is admitted by σ.

Let σ be a spread-law and let α belong toN . We say: σ admits α, if and only
if, for each n, σ(αn) = 0. The set of all infinite sequences of natural numbers
α admitted by the spread-law σ is called a spread and this set is also named σ.
The statements “σ admits α” and “α belongs to σ” are equivalent.

Observe that a subset X of N coincides with a spread if and only if (i) X is
(sequentially) closed, that is, every α such that, for each n, some element of X
passes through αn, belongs itself to X, and (ii) X is located, that is, there exists
σ inN such that for every s, s contains an element of X if and only if σ(s) = 0.

Let σ be a spread and let A be a subset of σ. We describe the game for A
in σ. There are again two players, I and II, who, each time they play the game,
join up to build an infinite sequence α in N , but they have to take care that the
infinite sequence α will belong to the spread σ:

Player I chooses α(0) such that σ(α(1)) = 0 · · ·
↘ ↗
Player II chooses α(1) such that σ(α(2)) = 0

Player I is the winner if and only if the infinite sequence α belongs to the set A.
Given some spread σ, we want to call a subset A of σ determinate if and

only if either player I has a sure method to win the game for A in σ, or player
II has a sure method to prevent player I from winning the game for A in σ.

12.1.3 In order to make the notion of determinacy more precise, we in-
troduce the concept of a strategy.

Let σ be a spread. We let StratI(σ), the set of strategies in σ for player I, be
the set of all functions γ in N such that for each a, if σ admits a and length(a)
is even, then σ admits a∗ 〈γ(a)〉, and, if σ does not admit a or length(a) is odd,
then γ(a) = 0. Observe that StratI(σ) itself is a spread.

Let α belong to σ and γ to StratI(σ). We define: α I-obeys γ, if and only if,
for each n, α(2n) = γ(α(2n)).

Similarly, we let StratII(σ), the set of strategies for player II in σ, be the set
of all functions γ in N such that for each a, if σ admits a and length(a) is odd,
then σ admits a ∗ 〈γ(a)〉, and, if σ does not admit a or length(a) is even, then
γ(a) = 0.

Let α belong to σ and γ to StratII(σ). We define: α II-obeys γ, if and only if,
for each n, α(2n + 1) = γ(α(2n + 1)).
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Let A be a subset of σ. We define: A is strongly determinate in σ if and only
if either there is a strategy γ for player I, such that every α in σ I-obeying γ
belongs to A, or there is a strategy δ for player II in σ such that every α in σ
II-obeying δ does not belong to A.

Let A be a subset of σ and let γ be strategy for player I in σ. We say: γ wins
A for player I if and only if every α in σ I-obeying γ belongs to A.

12.1.4 Even games in which players I, II make only finitely many moves,
and each move is a choice from finitely many alternatives, need not be strongly
determinate.

Consider for instance the game with no moves at all that is won by player
I if and only if Riemann’s hypothesis holds. To say that this game is strongly
determinate is equivalent to deciding Riemann’s hypothesis.

Fortunately, the language of intuitionistic mathematics is more refined than
the language of classical mathematics, and we may consider formulations of
the notion of determinacy that, from a classical point view, would be equivalent
to the first formulation, but, from an intuitionistic point of view, are weaker.
Here is such a notion.

Let σ be a spread and A a subset of σ. We define: A is determinate in σ
from the viewpoint of player I if and only if: if every strategy for player II in
σ is II-obeyed by at least one element of A, then there is a strategy γ for player
I in σ such that every α in σ I-obeying γ belongs to A.

We took the disjunctive formulation of strong determinacy, P ∨ Q, changed
it into (¬Q)→ P, and then replaced the negative antecedent ¬Q by a stronger,
positive statement.

The definition is biased, as it considers the problem of the determinacy of
A from the viewpoint of player I. It is easy to guess when we want to call
a subset A of σ determinate from the viewpoint of player II. We will see, in
Section 12.1.8, that there exist a spread σ and a subset A of σ such that A is
determinate from the viewpoint of player I, while we are unable to prove that
A is determinate from the viewpoint of player II.

12.1.5 We interrupt our discussion of the notion of determinacy and ask
attention for one of the axioms of intuitionistic analysis.

Let σ be a spread and let ζ belong to N . We define: ζ codes a continuous
function from σ to N if and only if, for all n, for all α in σ, there exists m such
that α(〈n〉 ∗ αm) � 0.

Suppose that σ is a spread, and that ζ codes a continuous function from σ
to N . For each α in σ we define ζ |α to be the sequence β such that, for all n, p
in N, if p is the least m such that ζ(〈n〉 ∗ αm) � 0, then ζ(〈n〉 ∗ αp) = β(n) + 1.

The following axiom, occurring under its present name in Veldman (2006a),
and called Brouwer’s principle for functions in Kleene and Vesley (1965),
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GAC1,1 in Gielen et al. (1981), and C-C in Troelstra and van Dalen (1988),
is incompatible with a classical reading of the quantifiers. It seems to be the
strongest possible formulation of a principle Brouwer is using in his intuition-
istic papers.

Second Axiom of Continuous Choice: Let σ be a spread and let R be a subset
of σ × N . If, for all α in σ, there exists β such that αRβ, then there exists ζ
coding a continuous function from σ to N such that, for all α in σ, αR(ζ |α).

(We write “αRβ” while intending “(α, β) belongs to R”.)

12.1.6 We now continue the discussion of the notion of determinacy.
Let σ be a spread, let A be a subset of σ and suppose that every strategy

for player II in σ is II-obeyed by at least one element of A. Using the Second
Axiom of Continuous Choice we find some ζ coding a continuous function
from StratII(σ) to N such that, for every γ in StratII(σ), ζ |γ II-obeys γ and
belongs to A.

An element ζ of N coding a continuous function from StratII(σ) to σ such
that for every γ in StratII(σ), ζ |γ belongs to σ and II-obeys γ will be called an
anti-strategy for player I. If, in addition, for every γ in StratII(σ), ζ |γ belongs
to A we say that ζ secures the set A for player I.

Suppose that there exists an anti-strategy ζ for player I that secures the set
A for player I. What use can player I make of it, when actually playing the
game? Observe that, when playing the game, player I does not know which
strategy his opponent is following. In order to win, he should be able, while
producing, together with his opponent, a play α, to conjecture a strategy δ for
player II such that ζ |δ = α. At first sight, that does not seem to be a very easy
task. Observe however that, if ζ |δ = α, then, for each n there exists m such
that for every strategy γ for player II, if δm = γm, then (ζ |δ)(2n) = (ζ |γ)(2n).
This means that, for a given n, player I may be sure that ζ |δ passes through
α(2n), while he has only a finite piece of information on the strategy player
II is following. Everyone who has a nephew and once played chess with him,
should now imagine this nephew to be player I. Player I, each time he has to
make a move, first asks a number of questions: “What will be your reply if
I should make this move? And if I should continue so-and-so and make that
move?” Somehow knowing how to make his opponent answer his questions,
he collects information and ponders, consulting ζ, and then, at some point,
he triumphantly takes his decision. Knowing also how to compel player II to
act according to the given answers, he is sure that the resulting play α will
belong to A.

If you are a grown-up, such questioning is no longer allowed, and you have
lost the power of making your opponent do as you like. But might not player I,
by studying his anti-strategy ζ, find a strategy γ, such that every α I-obeying γ
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belongs to A, that is, might he not develop, by some hard thinking, a successful
way of playing the game without asking unlawful questions and intimidating
player II? That question is the main subject of this paper.

12.1.7 Let σ be a spread, let A be a subset of σ. We define: A is pre-
determinate in σ from the viewpoint of player I if and only if, if there is an
anti-strategy for player I in σ that secures the set A for player I, then there is a
strategy for player I in σ that wins the set A for player I.

Observe that every subset of σ that is determinate in σ from the viewpoint
of player I, is also predeterminate in σ from the viewpoint of player I.

The Second Axiom of Continuous Choice implies the converse: every sub-
set of σ that is predeterminate in σ from the viewpoint of player I, is also
determinate in σ from the viewpoint of player I.

12.1.8 Disappointingly, if we allow player II to choose from countably
many alternatives, there exist two-move games that are not determinate from
the viewpoint of player I in the new weak sense.

We consider games of the following kind: Player I chooses either 0 or 1,
player II chooses a natural number, and the game is over.
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A strategy for player I in a game of this kind consists of a single number, viz.
his first and only move which is either 0 or 1.

A strategy for player II is a pair (p, q) of natural numbers, p being the answer
player II will give to a first move 0, and q being the answer player II will give
to a first move 1.

A subset A of {0, 1} ×N is determinate from the viewpoint of player I in the
sense of Section 12.1.4 if and only if: if, for all p, for all q, either (0, p) belongs
to A or (1, q) belongs to A, then: either, for all p, (0, p) belongs to A, or, for all
q, (1, q) belongs to A.

A subset A of {0, 1} × N is predeterminate from the viewpoint of player I
in the sense of Section 12.1.7 if and only if: if there exists α such that for all
p, for all q, either α(〈p, q〉) = 0 and (0, p) belongs to A, or α(〈p, q〉) = 1 and
(1, q) belongs to A, then: either for all p, (0, p) belongs to A, or, for all q, (1, q)
belongs to A.
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The following axiom, called ∗2.2 in Kleene and Vesley (1965) and AC0,0
in Gielen et al. (1981), and a weak consequence of the Second Axiom of
Continuous Choice, implies that every subset of {0, 1} × N that is determinate
from the viewpoint of player I is also predeterminate from the viewpoint of
player I.

First Axiom of Countable Choice: For each subset R of N × N , if for all m
there exists n such that mRn, then there exists α such that, for all m, mR(α(m)).

The intuitionistic mathematician will judge this axiom to be true because he
allows himself to build an infinite sequence α = α(0), α(1), . . . step by step,
by successive free choices. He does not demand that the future course of the
sequence be prescribed by means of an algorithm.

A classical mathematician would say that, if we have a proof that for all m
there exists n such that mRn, a suitable α may be defined, as follows: let, for
each m, α(m) be the least n such that mRn. It may occur, however, that we have
a proof of 0R1 and are uncertain if 0R0 is true or not. In such a case the given
rule is useless for the constructive mathematician.

The unwelcome truth is that not every subset A of {0, 1} × N is predeter-
minate from the viewpoint of player I, as we may learn from the following
counterexample in Brouwer’s style:

Let p : N→ {0, 1, . . . , 9} be the decimal expansion of π. We let A be the
subset of {0, 1} ×N consisting of all pairs (i, n) such that either i = 0 and
if there exists j < n such that, for all k < 99, p( j + k) = 9, then the first
such j is odd, or i = 1 and if there exists j < n such that, for all k < 99,
p( j+ k) = 9, then the first such j is even. For all p, for all q, either (0, p)
belongs to A or (1, q) belongs to A.

Assuming that A is predeterminate we obtain the conclusion that either
for all p, (0, p) belongs to A, or for all q, (1, q) belongs to A. In the first
case we must have a proof that, if there exists j such that, for all k < 99,
p( j + k) = 9, then the first such j is odd, and in the second case we must
have a proof that, if there exists j such that, for all k < 99, p( j + k) = 9,
then the first such j is even.

The assumption that A is predeterminate from the viewpoint of player I
thus leads to a conclusion for which we have no evidence.

A subset C of N is a decidable subset of N if and only if there exists α
such that, for every n, n belongs to C if and only if α(n) = 1. The intuitionistic
mathematician does not require that α is given by means of an algorithm.

It will be clear how to extend this notion to subsets of {0, 1}×N. Observe that
the set A in the counterexample just given is a decidable subset of {0, 1} × N.
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Also note that an anti-strategy for player II in {0, 1} × N is the same as a
strategy for player II in {0, 1} × N. Therefore, every game in {0, 1} × N is
determinate from the viewpoint of player II. We may conclude that there are
subsets of {0, 1} ×N that are determinate from the viewpoint of player II while
we are unable to prove that they are determinate from the viewpoint of player I.

12.1.9 In Section 12.1.10 we intend to discuss a second class of two-
move-games. We will be led to use the Fan Theorem. In the literature, the
expression “Fan Theorem” is not used unequivocally, and, for this reason, we
introduce two precise versions of the theorem in Section 12.1.9.1. In Section
12.1.9.2 we prove a small combinatorial lemma that will be useful in Section
12.1.10.

12.1.9.1 Let σ be a spread-law. σ is called a finitary spread-law or a fan-
law if and only if for each a, if σ admits a, then there are only finitely many
numbers n such that σ admits a ∗ 〈n〉. The set of all infinite sequences obeying
a fan-law is called a fan.

Let X be a subset of N and let B be a subset of N. We say: B is a bar in X
if and only if every infinite sequence in X has an initial part in B. We say: B is
bounded if and only if there exists n such that, for each b in B, length(b) ≤ n.
Here are two versions of Brouwer’s Fan Theorem:

Unrestricted Fan Theorem: Let σ be a fan and let B be a subset of N that is
a bar in σ. There exists a bounded subset B′ of B that is a bar in σ.

Strict Fan Theorem: Let σ be a fan and let B be a decidable subset of N that
is a bar in σ. There exists a bounded subset B′ of B that is a bar in σ.

(The second version occurs as ∗26.6a in Kleene and Vesley (1965) and as FAND

in Troelstra and van Dalen (1988).)
Brouwer’s philosophical argument for the bar theorem seems to establish

the unrestricted as well as the strict version of the Fan Theorem, see Veldman
(2006b). Sometimes, one derives the Unrestricted Fan Theorem from the Strict
Fan Theorem by means of the First Axiom of Continuous Choice, a special
case of the Second Axiom of Continuous Choice. From a classical point of
view, both versions of the Fan Theorem are reformulations of König’s lemma.
The usual formulation of König’s lemma (“Every infinite finitely-branching
tree has an infinite branch”) is not valid intuitionistically.

12.1.9.2 For all natural numbers m, p we let S (p,m) be the set of all num-
bers a such that length(a)= m and for each i < m, a(i) < p.
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Lemma: For all m, p, for each subset A of N × N, if for all a in S (p,m) there
exists i < m such that (i, a(i)) belongs to A, then there exists i < m such that,
for all q < p, (i, q) belongs to A.

Proof. The proof uses induction on m. The case m = 1 is obvious.
Suppose that m is a natural number and that the case m has been established.

Let p be a natural number and let A be a subset of N × N such that for all a in
S (p,m + 1) there exists i < m + 1 such that (i, a(i)) belongs to A.

Let a belong to S (p,m). Observe that for each q < p, either for some i < m,
(i, a(i)) belongs to A, or (m, q) belongs to A. Therefore, either, for some i < m,
(i, a(i)) belongs to A, or, for all q < p, (m, q) belongs to A. Let B be the set of
all pairs (i, j) of natural numbers such that either (i, j) belongs to A, or, for all
q < p, (m, q) belongs to A. Observe that for all a in S (p,m) there exists i such
that (i, a(i)) belongs to B. Applying the induction hypothesis we find i < m
such that for all q < p, (i, q) belongs to B, that is, either for all q < p, (i, q)
belongs to A, or for all q < p, (m, q) belongs to A.

12.1.10 We consider two-move-games of the following kind: Player I
chooses a natural number, player II chooses 0 or 1, and the game is over.
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A strategy for player I in a game like this consists of a single number, player
I’s first and only move. A strategy for player II, on the other hand, is a function
from N to {0, 1}, assigning to each natural number p the answer player II will
give if player I opens the game with p. The set of strategies for player II is
the set of all functions from N to {0, 1}. This set is a finitary spread, called: the
binary fan, or: (intuitionistic) Cantor space C.

It turns out that every subset of N × {0, 1} is determinate from the viewpoint
of player I in the sense of Section 12.1.4:

Let A be a subset of N × {0, 1} such that for all α in C there exists n such
that (n, α(n)) belongs to A.

Using the unrestricted Fan Theorem, we find m such that for all α in C
there exists n ≤ m such that (n, α(n)) belongs to A. Therefore, for all a
in S (2,m + 1) there exists n < m + 1 such that (n, a(n)) belongs to A.
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Using the combinatorial lemma from Section 12.1.9.2 we find n such
that both (n, 0) and (n, 1) belong to A, and this number obviously is a
winning strategy for player I.

In the special case that A is a decidable subset of N × {0, 1}, we obtain the
conclusion without using the Fan Theorem, as follows:

Let A be a decidable subset of N × {0, 1}. We use the First Axiom of
Countable Choice and define α such that for every n, α(n) := 1 if (n, 0)
belongs to A and α(n) := 0, if (n, 0) does not belong to A. We determine
n such that (n, α(n)) belongs to A and conclude that α(n) = 1 and that
both (n, 0) and (n, 1) belong to A.

The next case to consider is that A is not a decidable, but an enumerable
subset of N × {0, 1}, that is, there exists a function β in N such that, for each
n, i, (n, i) belongs to A if and only if there exists p such that β(〈n, i, p〉) = 0.
The statement that every enumerable subset of N × {0, 1} is determinate in the
above sense is an equivalent of the strict Fan Theorem, see Veldman (2005),
that is, in a weak formal system BIM for basic intuitionistic analysis introduced
in Veldman (2005) the strict Fan Theorem is equivalent to the statement that
every enumerable subset of N × {0, 1} is determinate from the viewpoint of
player I. The stronger statements we are to prove in this paper, Lemma 2.2,
Corollaries 2.4, 2.5, Lemma 3.3 and Theorem 3.5 also are equivalents of the
strict Fan Theorem, see Veldman (2005).

The result that the Fan Theorem implies that every subset of N × {0, 1} is
determinate from the viewpoint of player I in the sense of 12.1.4 occurs already
in Section 4 of Veldman (1982). Following a suggestion by J.R. Moschovakis
(see Moschovakis, 1980a), we gave here a slightly different proof.

12.1.11 We describe the contents of the remaining sections. In Section
12.2 we introduce II-finitary spreads, that is, spreads in which player II has
only finitely many possibilities for each one of his moves. Using the Fan Theo-
rem, we show that in such spreads, closed sets and open sets are predeterminate
from the viewpoint of player I (in the sense of Section 12.1.7).

In Section 12.3 we prove the much stronger result that every subset of a
II-finitary spread is predeterminate from the viewpoint of player I. A slightly
different version of this main result occurs already in Chapter 16 of Veldman
(1981). In Section 12.4, we give two applications of the main result.

The reader who wants to enjoy the classical story of the notion of determi-
nacy may consult Moschovakis (1980b) and Kechris (1995).
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12.2 The safe-move-lemma and the determinacy
of closed sets and open sets in II-finitary
spreads

12.2.1 In this subsection we introduce some notations and some termi-
nology.

Let σ be a spread and let a be a natural number admitted by σ, that is, such
that σ(a) = 0. We define the spread-law σ↓a by: for all b in N, (σ↓a)(b) =
σ(a ∗ b).

Let σ be a spread, and let γ be a strategy for player II in σ. Let a be a natural
number such that σ(a) = 0 and length(a) is even, and let δ be a strategy for
player II in σ↓a. We define: γ extends δ, or: δ extends to γ, if and only if, a
II-obeys γ and, for each b in N, if (σ↓a)(b) = 0 and length(b) is odd, then
δ(b) = γ(a ∗ b).

Let σ be a spread and let ζ be an anti-strategy for player I in σ. Let a be
a natural number such that σ(a) = 0 and length(a) is even. We define: a is
ζ-safe if and only if every strategy δ for player II in the spread σ↓a extends to
a strategy γ for player II in the spread σ such that ζ |γ passes through a.

Let σ be a spread. We define: σ is II-finitary if and only if, for each a, if σ
admits a and length(a) is odd, then there exists n such that, for every m, if σ
admits a ∗ 〈m〉, then m < n.

Observe that, if σ is a II-finitary spread, then player II has only finitely many
possibilities for each one of his moves. Therefore, for each strategy γ for player
II in σ, for each a in N, if σ(a) � 0 or length(a) is even, then γ(a) = 0, and if
σ(a) = 0 and length(a) is odd, then there are finitely many possible values for
γ(a). This shows that, if σ is a II-finitary spread, then StratII(σ) is a fan.

12.2.2 The safe-move-lemma. Let σ be a II-finitary spread and let ζ be
an anti-strategy for player I in σ. Then:

(i) The set of all natural numbers a such that σ(a) = 0 and length(a) is even
and a is ζ-safe is a decidable subset of N.

(ii) For every natural number a, if σ(a) = 0, length(a) is even and a is
ζ-safe, then there exists n such that σ(a ∗ 〈n〉) = 0 and, for all m, if
σ(a ∗ 〈n,m〉) = 0, then a ∗ 〈n,m〉 is ζ-safe.

Proof: Let σ, ζ fulfill the conditions of the lemma.
(i) Let a be a natural number such that σ(a) = 0 and length(a) is even.

Using the strict Fan Theorem, we calculate a natural number N such that for
all strategies γ, δ for player II in σ, if γN = δN, then, for each i < length(a),
(ζ |γ)(i) = (ζ |δ)(i).

Consider the set B consisting of all natural numbers γN, where γ is a strategy
for player II in σ, and observe that B is a finite set of natural numbers.
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Let δ be a strategy for player II in the spread σ↓a. Considering the number
δN and the set B we may decide whether δ extends to a strategy γ for player
II in σ such that ζ |γ passes through a, or not. If δ does so indeed, we say that
δ fits a. Observe that, for all strategies δ, ε for player II in the spread σ↓a, if δ
fits a and δN = εN, then ε fits a.

Also observe that the set of all natural numbers δN, where δ is a strategy for
player II in the spread σ↓a, is a finite set of natural numbers. Therefore, we
may decide if it is true that every strategy δ for player II in the spread σ↓a fits
a, or not. If so, then a is ζ-safe, and, if not, then a is not ζ-safe.

(ii) Let a be a natural number such that σ(a) = 0, length(a) is even and a
is ζ-safe. Using the strict Fan Theorem we calculate a natural number N such
that for each strategy γ for player II in σ, (ζ |γ)(length(a)) < N. Observe that
for each n,m, if n ≥ N, then a ∗ 〈n,m〉 is not ζ-safe.

We have to prove that there exists n < N such that σ admits a ∗ 〈n〉 and, for
all m, if σ admits a ∗ 〈n,m〉, then a ∗ 〈n,m〉 is ζ-safe. Because of (i) we may
argue by contradiction.

Let us assume that, for every n, if n < N and σ admits a ∗ 〈n〉, then there
exists m such that a∗〈n,m〉 is not ζ-safe. Let n0, n1, . . . , nk−1 be an enumeration
of the natural numbers n such that n < N and σ admits a ∗ 〈n〉. Determine
m0,m1, . . . ,mk−1 inN such that, for all i < k,σ(a∗〈ni,mi〉) = 0 and a∗〈ni,mi〉 is
not ζ-safe. Determine, for each i < k, a strategy δi for player II inσ↓(a∗〈ni,mi〉)
such that δi does not fit a ∗ 〈ni,mi〉. Let γ be a strategy for player II in σ↓a be
such that, for each i < k, γ extends δi and γ(a ∗ 〈ni〉) = mi.

As a is ζ-safe, we may determine a strategy γ′ for player II in σ, extending
the strategy γ, and such that ζ |(γ′) passes through a. But then there exists i < k
such that ζ |(γ′) passes through a ∗ 〈ni,mi〉 and this contradicts the fact that γ′

extends δi and δi does not fit a ∗ 〈ni,mi〉.
We thus see that there exists n < N such that σ admits a ∗ 〈n〉 and, for all m,

if σ admits a ∗ 〈n,m〉, then a ∗ 〈n,m〉 is ζ-safe.

12.2.3 Let σ be a spread and let A be a subset of σ. We define: A is an
open subset of σ if and only if there exists a decidable subset C of N such that
for every α in σ, α belongs to A if and only if, for some n, αn belongs to C.

We define: A is a closed subset of σ if and only if there exists a decidable
subset C of N such that for all α, α belongs to A if and only if, for each n, αn
belongs to C.

If A itself is a spread, then A is a closed subset of σ, but not every closed
subset of σ is a spread, see Veldman (1981). The reason is that, given a decid-
able subset C of N, it is not always possible to decide if there exists α such that
for every n, αn belongs to C.

For each a, n such that n ≤ length(a), we let a(n) be the code number of the
finite sequence (a(0), a(1), . . . , a(n − 1)).
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For each a, for each γ, we define: a I-obeys γ, if and only if, for each n, if
2n < length(a), then a(2n) = γ(a(2n)).

Similarly, for each a, for each γ, we define: a II-obeys γ, if and only if, for
each n, if 2n + 1 < length(a), then a(2n + 1) = γ(a(2n + 1)).

12.2.4 Corollary. In II-finitary spreads, closed sets are predeterminate
from the viewpoint of player I.

Proof: Let σ be a II-finitary spread and let A be a closed subset of σ. Let C be
a decidable subset of N such that for all α, α belongs to A if and only if, for
all n, αn belongs to C. Let ζ be an anti-strategy for player I in σ such that for
every strategy γ for player II in σ, ζ |γ belongs to A.

We apply the safe-move-lemma 3.6 and determine a strategy γ for player
I in σ such that for every a, if σ admits a and length(a) is even and a is
ζ-safe, then σ admits a ∗ 〈γ(a)〉, and, for each m, if σ admits a ∗ 〈γ(a),m〉,
then a ∗ 〈γ(a),m〉 is ζ-safe.

As the empty sequence 〈 〉 is ζ-safe, every α that I-obeys γ will have the
property that, for each n, α(2n) is ζ-safe. Observe that, for each a, if length(a)
is even and a is ζ-safe, then every initial part of a belongs to C. It follows that
every α that I-obeys γ belongs to A.

12.2.5 Corollary. In II-finitary spreads, open sets are determinate from
the viewpoint of player I.

Proof: Let σ be a II-finitary spread and let A be an open subset of σ. Let C
be a decidable subset of N such that, for every α in σ, α belongs to A if and
only if, for some n, αn belongs to C. Suppose that every strategy for player II
in σ II-governs at least one element of A. Note that, for every strategy γ for
player II in σ,v there exists a in C such that a II-obeys γ. Applying the strict
Fan Theorem, we find N in N such that for every strategy γ for player II in σ,
there exist a such that a ≤ N and a belongs to C and a II-obeys γ.

Let B be the set of all α in σ such that, for some n, αn ≤ N and αn belongs
to C. observe that B is a closed subset of σ and a subset of A. We now define
an anti-strategy ζ for player I in σ, as follows. Let γ be a strategy for player
II in σ. Let b be the least a such that a II-obeys γ and a belongs to C. Let ζ |γ
be the sequence β passing through b such that β II-obeys γ and for each n, if
2n ≥ length(b), then β(2n) is the least p such that σ admits β(2n) ∗ 〈p〉.

It will be clear that, for each strategy γ for player II in σ, the sequence ζ |γ
II-obeys γ and belongs to B. Applying Corollary 2.4 we conclude that there is
a strategy for player I in σ that wins the set B for player I, and therefore also
the set A.
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12.3 The safe-conjecture-lemma and the
intuitionistic determinacy theorem

12.3.1 In Section 12.2 we have seen that, in a II-finitary spread σ, if the
payoff set A is closed or open, every anti-strategy securing the set A for player
I may be effectively transformed in a strategy winning the set A for player I.

In this section, we will strengthen this result considerably: we show that,
in any II-finitary spread σ, any anti-strategy ζ for player I may be effectively
transformed in a strategy γ for player I with the property that to any play α in
σ I-obeying γ one may effectively construct a strategy δ for player II such that
α = ζ |δ.

It is not difficult to see that this result solves the determinacy problem for
II-finitary spreads: every subset of a II-finitary spread is predeterminate from
the viewpoint of player I.

12.3.2 Let σ be a spread and let ζ be an anti-strategy for player I in σ. We
want to refine the notion of a “ζ-safe position”, introduced in Section 12.2.1.

Let a be a natural number admitted by σ such that length(a) is even, and let
c be a natural number. We define: a is ζ-safe with conjecture c if and only if
each strategy for player II in the spread σ↓a extends to a strategy γ for player
II in the spread σ passing through c such that ζ |γ passes through a.

12.3.3 The safe-conjecture-lemma. Let σ be a II-finitary spread and
let ζ be an anti-strategy for player I in σ.

(i) For each c, the set of all natural numbers a such that length(a) is even
and σ(a) = 0 and a is ζ-safe with conjecture c is a decidable subset
of N.

(ii) For all natural numbers a, c, if σ(a) = 0, length(a) is even and a is ζ-safe
with conjecture c, then there exists n such that σ(a ∗ 〈n〉) = 0 and, for all
m, if σ(a ∗ 〈n,m〉) = 0, then a ∗ 〈n,m〉 is ζ-safe with conjecture c.

(iii) For all natural numbers a, c, if σ(a) = 0, length(a) is even and a is ζ-safe
with conjecture c, then, for every strategy δ for player II in the spread
σ↓a there exists d, n such that length(d) is even and d II-obeys δ and a∗d
is ζ-safe with conjecture c ∗ 〈n〉.

Proof: Let σ, ζ fulfill the conditions of the lemma.
(i), (ii): We omit the proofs, as they are similar to the proofs of the corre-

sponding statements in Lemma 2.2.
(iii) Let a, c be natural numbers such that σ(a) = 0 and length(a) is even and

a is ζ-safe with conjecture c. Let δ be a strategy for player II in the spread σ↓a.
We determine a strategy γ for player II in the spread σ such that γ extends δ
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and γ passes through c and ζ |γ passes through a. We determine p such that
for every strategy ε for player II in σ, if ε passes through γp, then ζ |ε passes
through a.

We now consider n := γ(length(c)). Observe that γ passes through c ∗ 〈n〉.
Let m be the greatest one of the two numbers p, length(c) + 1. Observe that

for every strategy β for player II in the spread σ↓a, if β passes through δm,
then there exists a strategy η for player II in the spread σ such that η extends β
and η passes through γm.

We define k := 2m + length(a). We let B be the set of all numbers (ζ |η)k,
where η is a strategy for player II in the spread σ passing through γm and
extending a strategy δ′ for player II in the spread σ↓a with the property: for
each e, if σ(a∗ e) = 0 and length(e) < 2m, then δ′(e) = δ(e). The set of all such
strategies η is a fan and it follows from the strict Fan Theorem that B is a finite
subset of N. Remark that for each b in B there exists d such that b = a ∗ d and
length(d) is even and d II-obeys δ.

We claim that some member of B must be ζ-safe with conjecture c ∗ 〈n〉.
Because of (i) we may argue by contradiction.

Assume that no member of B is ζ-safe with conjecture c ∗ 〈n〉. We then
choose for each b in B a strategy δb for player II in the spread σ↓b such that
δb does not extend to a strategy η for player II in σ with the property that η
passes through c ∗ 〈n〉 and ζ |η passes through b. We then form a strategy β for
player II in σ↓a passing through δm such that, for each b in B, β extends δb,
and, for each e, if σ(a ∗ e) = 0 and length(e) < 2m, then β(e) = δ(e). We let
ε be a strategy for player II in σ extending β and passing through c ∗ 〈n〉 such
that ζ |ε passes through a.

Consider b := (ζ |ε)(k) and remark: b belongs to B and ε extends δb and ε
passes through c ∗ 〈n〉 and ζ |ε passes through b. Contradiction.

We conclude that some element of B must be ζ-safe with conjecture c ∗ 〈n〉.
Let b be such an element of B. Determine d such that b = a ∗ d. Observe
that length(d) is even and d II-obeys δ and that we have obtained the desired
conclusion.

12.3.4 For each α, for each n, we let αn be the element β of N such that,
for all m, β(m) = α(〈n,m〉). In the proof of our main theorem, we use the
following axiom:

Second Axiom of Countable Choice: For each subset R of N ×N , if for each
n there exists α such that nRα, then there exists α such that, for each n, nRαn.

This axiom, occurring as ∗2.1 in Kleene and Vesley (1965), as AC01 in Gielen
et al. (1981) and as AC-NF in Troelstra and van Dalen (1988), is a consequence
of the Second Axiom of Continuous Choice, that we mentioned in Section
12.1.5.
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Unlike the Second Axiom of Continuous Choice, the Second Axiom of
Countable Choice is, from a classical point of view, a sensible assumption.

12.3.5 Intuitionistic Determinacy Theorem. Let σ be a II-finitary
spread. Every subset of σ is predeterminate from the viewpoint of player I.

Proof: Let σ be a II-finitary spread. Let A be a subset of σ and let ζ be an
anti-strategy for player I in σ securing the set A for player I. We prove that
there exist a strategy for player I in σ with the property that, for every α in
σ, if α I-obeys γ, then there exists a strategy δ for player II in σ such that α
coincides with ζ |δ. Obviously, the strategy γ then wins the set A for player I.

According to Lemma 3.3 and Corollary 2.5 we may determine, for each
a, c such that σ(a) = 0, length(a) is even and a is ζ-safe with conjecture c, a
strategy γ for player I in σ↓a with the property that for every α in σ I-obeying
γ there exist p, n such that a ∗ α(2p) is ζ-safe with conjecture c ∗ 〈n〉.

Let B be the set of all numbers 〈a, c〉 in N such that σ(a) = 0, length(a)
is even and a is ζ-safe with conjecture c. According to Lemma 3.3, B is a
decidable subset of N.

Using the Second Axiom of Countable Choice we determine ε in N with
the property that, for each 〈a, c〉 in B, ε〈a,c〉 is a strategy for player I in σ↓a
such that for every α in σ↓a I-obeying ε〈a,c〉 there exist p, n such that a ∗α(2p)
is ζ-safe with conjecture c ∗ 〈λ(〈a, c〉)〉.

We now describe informally the strategy γ that player I should obey in σ.

Observe that 〈 〉 is ζ-safe with conjecture 〈 〉. Define δ(0) = λ(〈〈 〉, 〈 〉〉).
Follow the strategy ε〈〈 〉,〈 〉〉, until, in cooperation with player II a position
α(2n0) is reached such that n0 > 0 and, for some n, α(2n0) is ζ-safe with
conjecture 〈n〉. Let δ(0) be the least such n.

Follow the strategy ε〈α(2n0), 〈δ(0)〉〉 until, in cooperation with player II, a
position α(2n1) is reached such that n1 > n0 and, for some n, α(2n1) is
ζ-safe with conjecture 〈δ(0), n〉. Let δ(1) be the least such n.

And so on.

Lemma 3.2(ii) ensures that it is indeed possible for player I to ensure that
n1 > n0 and n2 > n1, and so on.

Suppose that α belongs to σ and is played by player I according to this
strategy and that δ is the sequence of conjectures formed by player I during the
play. Observe that, for all n, there exists a strategy β for player II in σ passing
through δn such that ζ |β passes through α(2n). It follows that δ is a strategy for
player II in σ with the property: ζ |δ = α.
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12.4 Two applications
12.4.1 For each a, b in N we define: the finite sequence (coded by) a is
an initial part of the finite sequence (coded by) b , notation: a 1 b, if and only
if there exists n ≤ length(b) such that a = bn.

For each a, b in N we define: a, b form a branching, notation: a⊥b, if and
only if a is not an initial part of b and b is not an initial part of a.

Let A be a subset of N . We consider the following game, sometimes called
G∗(A), that has been devised by Morton Davis in Davis (1964).

Player I chooses 〈�0, r0〉 in N × N such that �0⊥r0.
↘

Player II chooses i0 in {0, 1}.
We define a0 := �0 if i0 = 0, and

a0 := r0 if i0 = 1.
↙

Player I chooses 〈�1, r1〉 in N × N such that a0 1 �1, a0 1 r1 and �1⊥r1.
↘

Player II chooses i1 in {0, 1}.
We define : a1 := �1 if i1 = 0, and

a1 := r1 if i1 = 1.
↙

Player I chooses 〈�2, r2〉 in N × N such that a1 1 �2, a1 1 r2 and �2⊥r2.
↘

Player II chooses i2 in {0, 1}
We define a2 := �2 if i2 = 0, and

a2 := r2 if i2 = 1.
And so on.

In the end, we determine α inN such that, for all n, α passes through an. Player
I wins if and only if α belongs to A.

It will be clear that G∗(A) may be described as a game in a II-finitary spread
σ. It follows that for every subset A of N , the game G∗(A) is predeterminate
from the viewpoint of player I.

One may prove constructively that player I has a winning strategy in the
game G∗(A) if and only if there exists an embedding of Cantor space C into A,
that is: an element ζ of N coding a continuous function from C into A such
that for all α, β in C, if there exists n such that α(n) � β(n), then there exists p
such that (ζ |α)(p) � (ζ |β)(p).

One may prove constructively that, if the set A is enumerable, that is, if there
exists an element α of N such that every element of A occurs in the sequence
α0, α1, α2, . . ., then player II has a strategy ensuring that the result of a play in
G∗(A) will not belong to A: he makes his n-th move such that the result will
differ from αn.
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Classically, it is also true that if player II has a successful strategy in G∗(A),
then the set A is at most enumerable. The argument is unconstructive, but, as
we hope to show in a future paper, one may prove an intuitionistic counterpart
to this result, using Brouwer’s Thesis on bars.

The statement that all gamesG∗(A) are predeterminate from the viewpoint of
player I is an intuitionistic theorem that is in some sense related to the contin-
uum hypothesis, like the different theorem in Section 2 of Gielen et al. (1981),
to which it forms a kind of counterpart.

12.4.2 Let A be a subset of the set Q of rational numbers. We consider
the following game that we callH(A), the letter H honouring F. Hausdorff.

Player I chooses q0 in Q.
↘

Player II chooses i0 in {0, 1}.
We define H0 := {q ∈ Q | q < q0} if i0 = 0, and

H0 := {q ∈ Q | q > q0} if i0 = 1.
↙

Player I chooses q1 in H0.
↘

Player II chooses i1 in {0, 1}.
We define H1 := H0 ∩ {q ∈ Q | q < q1} if i1 = 0, and

H1 := H0 ∩ {q ∈ Q | q > q1} if i1 = 1.
↙

Player I chooses q2 in H1.
↘

Player II chooses i2 in {0, 1}.
We define H2 := H1 ∩ {q ∈ Q | q < q2} if i2 = 0, and

H2 := H1 ∩ {q ∈ Q | q > q2} if i2 = 1.

and so on.

In the end, player I wins if and only if, for each n, qn belongs to A.

The gameH(A) may be described as a game in a II-finitary spread σ. Thus,
Theorem 3.3 applies, and, for every subset A of Q, the gameH(A) is predeter-
minate from the viewpoint of player I.

Observe that player I has a winning strategy in H(A) if and only if there
exists an order-preserving embedding of (Q, <) into (A, <).

From a classical point of view, the gameH(A) is determinate as it is a closed
game, and the class of all subsets A of Q such that player II has a winning
strategy in the game H(A) coincides with the class of all scattered subsets of
Q, that is, the class of all subsets A of Q such that it is impossible to embed
(Q, <) into (A, <).



W. Veldman 369

Intuitionistically, it seems wise to restrict oneself to decidable subsets A
of Q. The statement “player II has a strategy in the game H(A), such that,
for any resulting sequence q0, q1, q2, . . ., some n may be found with the prop-
erty qn � A” turns out to be equivalent to “A is very discrete”, as we hope
to show in a future paper. The argument uses Brouwer’s Thesis on bars,
see Veldman (2006a). The notion of a very discrete subset of Q is defined
inductively, see Rosenstein (1982). A subset A of Q is very discrete if ei-
ther A = ∅ or A contains exactly one number, or there exists a sequence
. . . , A−2, A−1, A0, A1, A2, . . . of very discrete sets such that, for each i in Z, for
each q in Ai, for each r in Ai+1, q < r, and A =

⋃
i∈Z

Ai. Scattered sets were first

studied by F. Hausdorff (see Hausdorff, 1908) and Rosenstein (1982).
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Hausdorff, F. (1908). Grundzüge einer theorie der geordneten mengen. Math. Ann., 65:435–505.
Kechris, A. S. (1995). Classical Descriptive Set Theory. Springer, New York.
Kleene, S. C. and Vesley, R. E. (1965). The Foundations of Intuitionistic Mathematics, Espe-

cially in Relation to Recursive Functions. Studies in Logic and the Foundations of Mathe-
matics. North Holland, Amsterdam.

Moschovakis, J. R. (1980a). Review of Veldman, 1982. In Mathematical Reviews, MR
85g:03089.

Moschovakis, Y. N. (1980b). Descriptive Set Theory, volume 100 of Studies in Logic and the
Foundations of Mathematics. North Holland, Amsterdam.

Rosenstein, J. G. (1982). Linear Orderings. Academic, New York.
Troelstra, A. S. and van Dalen, D. (1988). Constructivism in Mathematics, an Introduction.

Volumes I and II, volumes 121 and 123 of Studies in Logic and the Foundations of Mathe-
matics. North Holland, Amsterdam.

Veldman, W. (1981). Investigations in intuitionistic hierarchy theory. PhD thesis, Katholieke
Universiteit Nijmegen, Nijmegen.

Veldman, W. (1982). On the contraposition of two axioms of countable choice. In Troelstra,
A. S. and van Dalen, D., editors, Brouwer Centenary Symposium, volume 110, pages 513–
523, North Holland, Amsterdam.



370 The Problem of Determinacy of Infinite Games

Veldman, W. (2005). The fan theorem as an axiom and as a contrast to Kleene’s alternative.
Report no. 0509, Department of Mathematics, Radboud University, Nijmegen.

Veldman, W. (2006a). The borel hierarchy and the projective hierarchy from Brouwer’s intu-
itionistic perspective. Report no. 0604, Department of Mathematics, Radboud University,
Nijmegen.

Veldman, W. (2006b). Brouwer’s real thesis on bars. Philosophia Scientiæ, 6:21–42.



Symbol Index

371

℘ 258
Nonrep 294
LRA 268
LrA 259
LrA

e 265
ε 289
Rep 293
Tree··· 〈 · · · 〉 290
WnA 259
WnA

e 265
� (as a game) 264
� (as a player) 258
⊥ (as a game) 264
⊥ (as a player) 258
¬ (as an operation on games) 270
¬ (as an operation on players) 258
¬ (as an operation on runs) 259
∧ (as an operation on games) 273
∨ (as an operation on games) 274
∧ (as an operation on games) 274
∨ (as an operation on games) 274
→ (as an operation on games) 277
∀ (as an operation on games) 280
∃ (as an operation on games) 281
% 272
& 272�

272⊔
272

) 283
* 283
∧| 283
∨| 284∧ | 284

� 292�

293
� 286
∧| 283
∨| 283
>>– 286
◦ 290
♠ 259
〈〉 259
+ 289
|= 303
�� 306
��� 306
-→ 308
v 336
v 336
v 336
T 336
e[A] 265
〈Φ〉A 262
A(x1/t1 , . . . , xn/tn) 266
Γα 273
Γ+u 291
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abduction, 91
action memory, 106
admissible interpretation, 305
affine logic (AL), 253, 320
algorithmically solvable, 303
analysis

intuitionistic, 360
anaphora, 142, 143, 145

discourse anaphora, 141
approximate reasoning, 211
arity of a letter, 304
arity of a relation symbol, 157
arity of an atom, 304
atom, 304
attack markers, 159

backward induction, 32
backwards induction algorithm, 115
bar, 358
bargaining game, 129, 130, 134
bitstring, 289
bitstring tree (BT), 289
blind conjunction and disjunction, 283
blind existential quantification, 281
blind operations, 280
blind universal quantification, 280
blindly bound, 304
blue content, 336
bounding determiners, 144
branch of a BT, 289
branching corecurrence, 283, 293
branching recurrence, 283, 292
Brouwer’s principle for functions, 354
BT-structure, 290

canonical tuple, 305
Cantor space, 359
capital ‘S’ semantics, 250
choice conjunction, 272
choice disjunction, 272
choice existential quantification, 272
choice operations, 271
choice universal quantification, 272
Church-Turing thesis, 251

cirquent calculus, 258
CL2, 323
CL4, 308
clean environment assumption, 329
color (of a bit), 336
colored bit, 336
colored bitstring, 336
colored bitstring tree (CBT), 336
complete branch of a BT, 290
computability logic (CL), 6
computable, 303
computation branch, 301, 302
computational problem, 251, 298
computational resource, 252, 277
configuration, 301
conformity game, 37, 38
consistency property, 237
constant, 265, 304
constant DBT, 292
content (of a colored bit), 336
content (of a colored bitstring), 336
continuity principles, 352
continuous choice

second axiom of, 355, 366
continuum hypothesis, 368
cooperative game, 107
coordination game, 38, 46
coordination problems, 102, 109
copy-cat strategy (CCS), 329
countable choice

first axiom of, 357
second axiom of, 366

decorated bitstring tree (DBT), 290
decoration, 290
delay, 297
depend (a game on a variable), 265
determinacy, 155, 352, 353, 360

strong, 354
determinacy theorem

intuitionistic, 366
determiner, 145

majority determiner, 147
dialogically signed expressions, 159
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dialogue, 162
play of, 162
state of, 160
structural rules of, 162

dialogue game, see game

elementarization, 308
elementary atom, 304
elementary formula, 308
elementary letter, 304
empty string, 289
environment, 251
epistemic characterization theorems, 28, 31
epistemic logic, 62

dialogical, 230, 241
explicit, 229
implicit, 229, 237
intuitionistic dialogical, 237
modal, 230

EPM, 302
evaluation game, 102, 119, 121, 135, 169, 241

fuzzy, 120
semantic, 104
strategic, 107, 114

evolutionary game theory, 31
excluded middle, 178, 255
existential team, 107

fair computation branch, 302
fallacies, 58
fan, 358

binary, 359
fan theorem, 358, 363
fan-law, 358
force symbols, 159
forcing relation, 238
fuzzy logic, 119, 120, 129, 135, 210, 211, 224

Gödel logic, 135, 212
Gödel’s Dialectica interpretation, 254
game, 265

arity of, 265
breadth of, 260
constant, 259
content of, 259
depend on a variable, 265
depth of, 259
dialogical, 3, 162
dialogue, 209, 213, 214
elementary, 264, 265
equivalent, 301
finitary, 265
finite, 260
finite-breadth, 260
finite-depth, 259
free, 260
instance of, 265

perifinite-depth, 259
static, 298
strict, 261
structure of, 259
unistructural, 267

game theory, 3, 27
game-theoretical semantics, 139–141, 169, 241
general atom, 304
general letter, 304
general-base formula, 324
generalized quantifier theory, 140
granting permission, 302

Hempelian generalization, 68, 69
heterogeneous position, 260
Heyting’s intuitionistic calculus, 254
HPM, 300

configuration of, 301
hypersequent, 216, 218
hypersequent calculus, 215

imperfect information, 107, 132, 134
independence-friendly logic, 5, 101–103, 118,

241
information sets on game tree histories, 104
initial configuration, 301
instable formula, 308
internal informational resource, 315
interpret, 305
interpretation (as a function), 305
interpretation (as a game), 305
intuitionistic logic, 5, 156, 167, 229, 254, 352
iterated strict dominance, 32
iteration principle, 336

König’s lemma, 358
Kleene’s realizability, 254
knowledge base, 315
Kolmogorov complexity, 285
Kolmogorov probability, 29, 33
Kolmogorov’s thesis, 254
Kripke model, 238, 250

label, 259
leaf, 290
linear logic, 6, 155, 182, 253
local semantics, 159
logical atom, 304
logical omniscience, 242
Lorenzen game, 4
Lorenzen’s game semantics, 254
lowercase ‘s’ semantics, 250
ludics, 6
Łukasiewicz logic, 117, 118, 135, 209, 212

machine, 251
mapping reducibility, 279
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modal logic, 62, 204, 250
intuitionistic, 235

move, 258
illegal, 259
labeled (labmove), 259
legal, 259
nonreplicative, 291
replicative, 291

move state, 300
MV-algebra, 123, 136

Nash equilibrium, 30, 31, 46, 107–109, 115, 131
negation (operation on games), 270
negative occurrence, 308
node of a BT, 289
non-logical atom, 304

paradeterninacy, 356
parallel conjunction, 273
parallel corecurrence, 284
parallel disjunction, 274
parallel existential quantification, 274
parallel operations, 273
parallel recurrence, 283
parallel universal quantification, 274
partially ordered quantifiers, 105
particle rule, 159, 161
perfect memory, 106
perfect recall, 115
permission state, 302
player function, 104
position, 259
positive occurrence, 308
predeterminacy, 363
predicate, 265
predicate letter, 304
prefixation, 262
prelegal position, 290
Principle of Charity, 40, 41, 94
probability, 210, 221
procedural rule, 252
product logic, 212
profile, 114
proof-conditional semantics, 156
provider, 315

quantifier, 139, 140
quantifier (game operation), 269

sequential, 282
quantifier independence, 102

recurrence operations, 282
reducible, 301
reduction (as a game operation), 277
reduction (as an EPM), 303
reduction (as an HPM), 301
run, 259

¬, 259

℘-illegal, 259
empty, 259
illegal, 259
legal, 259
lost, 259
maximal, 259
prelegal, 291
spelled by a computation branch, 301
unilegal, 268
won, 259

run tape, 300

S4, 204, 238
safe model, 135
safe structure, 124, 125, 127, 128
sequent, 321
sequent calculus, 258
sequential conjunction and disjunction, 283
sequential corecurrence, 283
sequential recurrence, 283
singleton DBT, 290
Skolem function, 105, 112, 175
Skolem function rule, 188
solution (as an EPM), 301, 303
solution (as an HPM), 301
solution concept, 27
spread, 352, 353

II-finitary, 360
spread-law, 353

finitary, 358
stable formula, 308
static game, 251
strategy, 107, 262

anti-strategy, 355
copy-cat, 329
pure, 105
uniform, 105, 133
weakly dominant, 109, 112, 113, 115
weakly dominated, 114
winning, 105, 127, 154, 218

strict repetition, 166
strong completeness, 311
strong conjunction, 119, 122
strong disjunction, 122
structure (of a game), 259
substitution, 324
substitution of variables, 266
substitutional instance, 324
successor configuration, 301
supervaluation, 210, 222, 224
surface occurrence, 308

Tarski semantics, 101, 110, 115
term, 158, 266, 304
Transformation principle, 52
triangulation, 37, 40
Turing reducibility, 284



376 Subject Index

underlying BT-structure, 291
uniform solution, 306
uniform-constructive soundness, 311
uniform-constructively sound axiomatization, 317
uniformly valid, 306
uniformly valid (formula), 306
utility function, 108

vagueness, 210, 220
valid (formula), 306
valuation, 265

valuation tape, 300
variable, 265, 304
von Neumann and Morgenstern utility, 29, 33

win, 301
winnability, 251
winnable, 301
work tape, 300

yellow content, 336



Name Index

377

Abramsky, Samson, 306
Aristotle, ix, 18, 59, 61, 73
Avron, Arnon, 216

Becker, Oskar, 11
van Benthem, Johan, 9, 155, 241
Blass, Andreas, 6, 182, 287, 307
Brandom, Robert, 19
Brideman, Percy, x
Brouwer, L. E. J., 6, 229, 352, 358
de Bruin, Boudewijn, x

Carnap, Rudolf, x, 10
Cintula, Petr, xi
Clark, Robin, xi

Davidson, Donald, 40, 41, 94
Dingler, Hugo, x, 10
Dummett, Michael, 19, 20, 203

Einstein, Albert, x

Felscher, Walter, 6, 167
Fermüller, Christian, xi
Fine, Kit, 222
Fischer Servi, Gisèle, 243
Frege, Gottlob, 16, 70

Gabbay, Dov, xi
Gentzen, Gerhard, 258
Giles, Robin, 209, 216
Girard, Jean-Yves, 6, 9

Hájek, Petr, 211, 226
Haas, Gerrit, 167
Hausdorff, Felix, 368
Hempel, Gustav, x
Henkin, Leon, xii, 4, 154
Heyting, Arend, 6, 229, 254
Hintikka, Jaakko, xii, 4, 106, 132, 202, 229, 241
Hodges, Wilfrid, 7
Hosni, Hykel, x
Husserl, Edmund, x, 10

Jagadeesan, Radha, 306
Japaridze, Giorgi, xi

Kamlah, Wilhem, 203
Kant, Immanuel, xii
Keiff, Laurent, 242
Kolmogorov, Andrey, 29, 229, 254
Kripke, Saul, 238

Lorenz, Kuno, 6, 167, 182, 205
Lorenzen, Paul, x, 3, 11, 205, 209, 306

Majer, Ondrej, xi
Marion, Mathieu, x
Metcalfe, George, 212
Morris, Charles, x
Moschovakis, Joan Rand, 360

Neurath, Otto, x

Olivetti, Nicola, 212

Peirce, Charles S., x, 4, 78
Pietarinen, Ahti-Veikko, 9
Plato, 18
Pottinger, Garrell, 216

Quine, W. V. O., 40, 70, 94

Rahman, Shahid, xi, 17, 167, 230, 242
Rebuschi, Manuel, xi, 206
Rückert, Helge, 22, 230
Russell, Bertrand, 70

Saarinen, Esa, 153
Sandu, Gabriel, 9, 106, 132, 174
Schelling, Thomas, 39
Schwemmer, Oswald, 203
Sevenster, Merlijn, xi
Skolem, Thoralf, 175
Stalnaker, Robert, 32
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