ENGLISH SYNTAX: Andrew Radford

Radford, A. (2004) English Syntax: An Introduction, Cambridge University Press, Cambridge, ISBN 0521542758 (paperback)

1. Grammar

1.1 Overview

In broad terms, this book is concerned with aspects of grammar. Grammar is traditionally subdivided into two different but inter-related areas of study - morphology and syntax. Morphology is the study of how words are formed out of smaller units (called morphemes), and so addresses questions such as 'What are the component morphemes of a word like antidisestablishmentarianism, and what is the nature of the morphological operations by which they are combined together to form the overall word?' Syntax is the study of the way in which phrases and sentences are structured out of words, and so addresses questions like 'What is the structure of a sentence like What's the president doing? and what is the nature of the grammatical operations by which its component words are combined together to form the overall sentence structure?' In this chapter, we take a look at the approach to syntax adopted by Chomsky.

1.2 Universal Grammar

Within traditional grammar, the syntax of a language is described in terms of a taxonomy (i.e. classificatory list) of the range of different types of syntactic structures found in the language. The central assumption underpinning syntactic analysis in traditional grammar is that phrases and sentences are built up of a series of constituents (i.e. syntactic units), each of which belongs to a specific grammatical category and serves a specific grammatical function. Given this assumption, the task of the linguist analysing the syntactic structure of any given type of sentence is to identify each of the constituents in the sentence, and (for each constituent) to say what category it belongs to and what function it serves. For example, in relation to the syntax of a simple sentence like:

Students protested vehemently
it would traditionally be said that each of the three words in the sentence belongs to a specific grammatical category (students being a plural noun, protested a past tense verb, and vehemently an adverb) and that each serves a specific grammatical function (protested being a predicate, students being its sole argument and functioning as the subject of protested, and yesterday being an adjunct - i.e. an expression which provides additional information about the time, place or manner of an event). The overall sentence Students protested yesterday has the categorial status of a clause which is finite in nature (by virtue of denoting an event taking place at a specific time), and has the semantic function of expressing a proposition which is declarative in force (in that it is used to make a statement rather than e.g. ask a question).

In contrast to the taxonomic approach adopted in traditional grammar, Chomsky takes a cognitive approach to the study of grammar. For Chomsky, the goal of the linguist is to determine what it is that native speakers know about their native language which enables them to speak and understand the language fluently: hence, the study of language is part of the wider study of cognition (i.e. what human beings know). In a fairly obvious sense, any native speaker of a language can be said to know the grammar of his or her native language. For example, any native speaker of English can tell you that the negative counterpart of I like syntax is I don't like syntax, and not e.g. *I no like syntax: in other words, native speakers know how to combine words together to form expressions (e.g. negative sentences) in their language. Likewise, any native speaker of English can tell you that a sentence like She loves me more than you is ambiguous and has two interpretations which can be paraphrased as 'She loves me more than she loves you' and 'She loves me more than you love me': in other words, native speakers also know how to interpret (i.e. assign meaning to) expressions in their language. However, it is important to emphasise
that this grammatical knowledge of how to form and interpret expressions in your native language is tacit (i.e. subconscious) rather than explicit (i.e. conscious): so, it's no good asking a native speaker of English a question such as 'How do you form negative sentences in English?', since human beings have no conscious awareness of the processes involved in speaking and understanding their native language. To introduce a technical term devised by Chomsky, we can say that native speakers have grammatical competence in their native language: by this, we mean that they have tacit knowledge of the grammar of their language - i.e. of how to form and interpret words, phrases and sentences in the language.

In work dating back to the 1960s, Chomsky has drawn a distinction between competence (the fluent native speaker's tacit knowledge of his or her language) and performance (what people actually say or understand by what someone else says on a given occasion). Competence is 'the speaker-hearer's knowledge of his language', while performance is 'the actual use of language in concrete situations' (Chomsky, 1965, p. 4). Very often, performance is an imperfect reflection of competence: we all make occasional slips of the tongue, or occasionally misinterpret something which someone else says to us. However, this doesn't mean that we don't know our native language or that we don't have competence in it. Misproductions and misinterpretations are performance errors, attributable to a variety of performance factors like tiredness, boredom, drunkenness, drugs, external distractions, and so forth. A grammar of a language tells you what you need to know in order to have native-like competence in the language (i.e. to be able to speak the language like a fluent native speaker): hence, it is clear that grammar is concerned with competence rather than performance. This is not to deny the interest of performance as a field of study, but merely to assert that performance is more properly studied within the different - though related - discipline of psycholinguistics, which studies the psychological processes underlying speech production and comprehension.

In the terminology adopted by Chomsky (1986a, pp. 19-56), when we study the grammatical competence of a native speaker of a language like English we're studying a cognitive system internalised within the brain/mind of native speakers of English; our ultimate goal in studying competence is to characterise the nature of the internalised linguistic system (or I-language, as Chomsky terms it) which makes native speakers proficient in English. Such a cognitive approach has obvious implications for the descriptive linguist who is concerned to develop a grammar of a particular language like English. Accordingly to Chomsky (1986a, p.22) a grammar of a language is 'a theory of the I-language ... under investigation'. This means that in devising a grammar of English, we are attempting to uncover the internalised linguistic system (= I-language) possessed by native speakers of English - i.e. we are attempting to characterise a mental state (a state of competence, and thus linguistic knowledge). See Smith (1999) for more extensive discussion of the notion of I-language.

Chomsky's ultimate goal is to devise a theory of Universal Grammar/UG which generalises from the grammars of particular I-languages to the grammars of all possible natural (i.e. human) I-languages. He defines UG (1986a, p.23) as 'the theory of human I-languages ...that identifies the I-languages that are humanly accessible under normal conditions'. (The expression 'are humanly accessible' means 'can be acquired by human beings'.) In other words, UG is a theory about the nature of possible grammars of human languages: hence, a theory of Universal Grammar answers the question: 'What are the defining characteristics of the grammars of human I-languages?'

There are a number of criteria of adequacy which a Theory of Universal Grammar must satisfy. One such criterion (which is implicit in the use of the term Universal Grammar) is universality, in the sense that a theory of UG must provide us with the tools needed to provide a descriptively adequate grammar for any and every human I-language (i.e. a grammar which correctly describes how to form and interpret expressions in the relevant language). After all, a theory of UG would be of little interest if it enabled us to describe the grammar of English and French, but not that of Swahili or Chinese.

However, since the ultimate goal of any theory is explanation, it is not enough for a theory of Universal Grammar simply to list sets of universal properties of natural language grammars; on the contrary, a theory of UG must seek to explain the relevant properties. So, a key question for any adequate theory of UG to answer is: 'Why do grammars of human I-languages have the properties they do?' The requirement that a theory should explain why grammars have the properties they do is conventionally referred to as the criterion of explanatory adequacy.

Since the theory of Universal Grammar is concerned with characterising the properties of natural (i.e. human) I-language grammars, an important question which we want our theory of UG to answer is: 'What are the defining characteristics of human I-languages which differentiate them from, for example, artificial
languages like those used in mathematics and computing (e.g. Java, Prolog, C etc.), or from animal communication systems (e.g. the tail-wagging dance performed by bees to communicate the location of a food source to other bees)?' It therefore follows that the descriptive apparatus which our theory of Universal Grammar allows us to make use of in devising natural language grammars must not be so powerful that it can be used to describe not only natural languages, but also computer languages or animal communication systems (since any such excessively powerful theory wouldn't be able to pinpoint the criterial properties of natural languages which differentiate them from other types of communication system). In other words, a third condition which we have to impose on our theory of language is that it be maximally constrained: that is, we want our theory to provide us with technical devices which are so constrained (i.e. limited) in their expressive power that they can only be used to describe natural languages, and are not appropriate for the description of other communication systems. A theory which is constrained in appropriate ways should enable us to provide a principled explanation for why certain types of syntactic structure and syntactic operation simply aren't found in natural languages. One way of constraining grammars it to suppose that grammatical operations obey certain linguistic principles, and that any operation which violates the relevant principles leads to ungrammaticality: see the discussion below in $\S 1.5$ for a concrete example.

A related requirement is that linguistic theory should provide grammars which make use of the minimal theoretical apparatus required: in other words, grammars should be as simple as possible. Much earlier work in syntax involved the postulation of complex structures and principles: as a reaction to the excessive complexity of this kind of work, Chomsky in work over the past 10 years or so has made the requirement to minimise the theoretical and descriptive apparatus used to describe language the cornerstone of the Minimalist Program for Linguistic Theory which he has been developing (in work dating back to Chomsky 1993, 1995). In more recent work, Chomsky (1998, 1999, 2001, 2002) has suggested that language is a perfect system with an optimal design in the sense that natural language grammars create structures which are designed to interface perfectly with other components of the mind - more specifically with speech and thought systems. (For discussion of the idea that language is a perfect system of optimal design, see Lappin, Levine and Johnson 2000a/2000b/2001, Holmberg 2000,
Piattelli-Palmarini 2000, Reuland 2000/2001a, Roberts 2000/2001a, Uriagereka 2000/2001, Freidin and Vergnaud 2001 and Atkinson 2003.)

To make this discussion rather more concrete, let's suppose that a grammar of a language is organised as follows. One component of a grammar is a Lexicon (= dictionary = list of all the lexical items/words in the language and their linguistic properties), and in forming a given sentence out of a set of words, we first have to take the relevant words out of the Lexicon. Our chosen words are then combined together by a series of syntactic computations in the syntax (i.e. in the syntactic/computational component of the grammar), thereby forming a syntactic structure. This syntactic structure serves as input into two other components of the grammar. One is the semantic component which maps (i.e. 'converts') the syntactic structure into a corresponding semantic representation (i.e. to a representation of linguistic aspects of its meaning): the other is a PF component, so called because it maps the syntactic structure into a PF representation (i.e. a representation of its Phonetic Form, giving us a phonetic spellout for each word, telling us how it is pronounced). The semantic representation interfaces with systems of thought, and the PF representation with systems of speech - as shown in diagrammatic form below:

In terms of the model in (2), an important constraint is that the (semantic and PF) representations which are 'handed over' to the (thought and speech) interface systems should contain only elements which are legible by the appropriate interface system - so that the semantic representations handed over to thought systems contain only elements contributing to meaning, and the PF representations handed over to speech systems contain only elements which contribute to phonetic form (i.e. to determining how the sentence is pronounced).

The neurophysiological mechanisms which underlie linguistic competence make it possible for young children to acquire language in a remarkably short period of time. Accordingly, a fourth condition which any adequate linguistic theory must meet is that of learnability: it must provide grammars which are learnable by young children in a short period of time. The desire to maximise the learnability of natural language grammars provides an additional argument for minimising the theoretical apparatus used to describe languages, in the sense that the simpler grammars are, the simpler it is for children to acquire them.

1.3 The Language Faculty

Mention of learnability leads us to consider the related goal of developing a theory of
language acquisition. An acquisition theory is concerned with the question of how children acquire grammars of their native languages. Children generally produce their first recognisable word (e.g. Mama or Dada) by the age of 12 months. For the next 6 months or so, there is little apparent evidence of grammatical development in their speech production, although the child's productive vocabulary typically increases by about five words a month until it reaches around 30 words at age 18 months. Throughout this single-word stage, children's utterances comprise single words spoken in isolation: e.g. a child may say Apple when reaching for an apple, or $U p$ when wanting to climb up onto her mother's knee. During the single-word stage, it is difficult to find any clear evidence of the acquisition of grammar, in that children do not make productive use of inflections (e.g. they don't add the plural $-s$ ending to nouns, or the past tense $-d$ ending to verbs), and don't productively combine words together to form two- and three-word utterances.

At around the age of 18 months (though with considerable variation from one child to another), we find the first visible signs of the acquisition of grammar: children start to make productive use of inflections (e.g. using plural nouns like doggies alongside the singular form doggy, and inflected verb forms like going/gone alongside the uninflected verb form $g o$), and similarly start to produce elementary two- and three-word utterances such as Want Teddy, Eating cookie, Daddy gone office, etc. From this point on, there is a rapid expansion in their grammatical development, until by the age of around 30 months they have typically acquired most of the inflections and core grammatical constructions used in English, and are able to produce adult-like sentences such as Where's Mummy gone? What's Daddy doing? Can we go to the zoo, Daddy? etc. (though occasional morphological and syntactic errors persist until the age of four years or so - e.g. We goed there with Daddy, What we can do? etc.).

So, the central phenomenon which any theory of language acquisition must seek to explain is this: how is it that after a long drawn-out period of many months in which there is no obvious sign of grammatical development, at around the age of 18 months there is a sudden spurt as multiword speech starts to emerge, and a phenomenal growth in grammatical development then takes place over the next 12 months? This uniformity and (once the spurt has started) rapidity in the pattern of children's linguistic development are the central facts which a theory of language acquisition must seek to explain. But how?

Chomsky maintains that the most plausible explanation for the uniformity and rapidity of first language acquisition is to posit that the course of acquisition is determined by a biologically endowed innate Language Faculty (or language acquisition program, to borrow a computer software metaphor) within the brain, which provides children with a genetically transmitted algorithm (i.e. set of procedures) for developing a grammar, on the basis of their linguistic experience (i.e. on the basis of the speech input they receive). The way in which Chomsky visualises the acquisition process can be represented schematically as in (3) below (where L is the language being acquired):

Children acquiring a language will observe people around them using the language, and the set of expressions in the language which a child hears (and the contexts in which they are used) in the course of acquiring the language constitute the child's linguistic experience of the language. This experience serves as input to the child's language faculty, which provides the child with a procedure for (subconsciously) analysing the experience and devising a grammar of the language being acquired. Thus, the input to the
language faculty is the child's experience, and the output of the language faculty is a grammar of the language being acquired.

The hypothesis that the course of language acquisition is determined by an innate language faculty is known popularly as the innateness hypothesis. Chomsky maintains that the ability to speak and acquire languages is unique to human beings, and that natural languages incorporate principles which are also unique to humans and which reflect the nature of the human mind:

Whatever evidence we do have seems to me to support the view that the ability to acquire and use language is a species-specific human capacity, that there are very deep and restrictive principles that determine the nature of human language and are rooted in the specific character of the human mind. (Chomsky 1972, p. 102)

Moreover, he notes, language acquisition is an ability which all humans possess, entirely independently of their general intelligence:

Even at low levels of intelligence, at pathological levels, we find a command of language that is totally unattainable by an ape that may, in other respects, surpass a human imbecile in problem-solving activity and other adaptive behaviour. (Chomsky 1972, p. 10)

In addition, the apparent uniformity in the types of grammars developed by different speakers of the same language suggests that children have genetic guidance in the task of constructing a grammar of their native language:

We know that the grammars that are in fact constructed vary only slightly among speakers of the same language, despite wide variations not only in intelligence but also in the conditions under which language is acquired. (Chomsky 1972, p. 79)
Furthermore, the rapidity of acquisition (once the grammar spurt has started) also points to genetic guidance in grammar construction:

Otherwise it is impossible to explain how children come to construct grammars...under the given conditions of time and access to data. (Chomsky 1972, p. 113)
(The sequence 'under...data' means simply 'in so short a time, and on the basis of such limited linguistic experience.') What makes the uniformity and rapidity of acquisition even more remarkable is the fact that the child's linguistic experience is often degenerate (i.e. imperfect), since it is based on the linguistic performance of adult speakers, and this may be a poor reflection of their competence:

A good deal of normal speech consists of false starts, disconnected phrases, and other deviations from idealised competence. (Chomsky 1972, p. 158)

If much of the speech input which children receive is ungrammatical (because of performance errors), how is it that they can use this degenerate experience to develop a (competence) grammar which specifies how to form grammatical sentences? Chomsky's answer is to draw the following analogy:

Descartes asks: how is it when we see a sort of irregular figure drawn in front of us we see it as a triangle? He observes, quite correctly, that there's a disparity between the data presented to us and the percept that we construct. And he argues, I think quite plausibly, that we see the figure as a triangle because there's something about the nature of our minds which makes the image of a triangle easily constructible by the mind. (Chomsky 1968, p. 687)
The obvious implication is that in much the same way as we are genetically predisposed to analyse shapes (however irregular) as having specific geometrical properties, so too we are genetically predisposed to analyse sentences (however ungrammatical) are having specific grammatical properties. (For evaluation of this kind of degenerate input argument, see Pullum and Scholz 2002, Thomas 2002, Sampson 2002, Fodor and Crowther 2002, Lasnik and Uriagereka 2002, Legate and Yang 2002, Crain and Pietroski 2002, and Scholz and Pullum 2002.)

A further argument Chomsky uses in support of the innateness hypothesis relates to the fact that language acquisition is an entirely subconscious and involuntary activity (in the sense that you can't consciously choose whether or not to acquire your native language - though you can choose whether or not you wish to learn chess); it is also an activity which is largely unguided (in the sense that parents don't
teach children to talk):
Children acquire...languages quite successfully even though no special care is taken to teach them and no special attention is given to their progress. (Chomsky 1965, pp. 200-1)
The implication is that we don't learn to have a native language, any more than we learn to have arms or legs; the ability to acquire a native language is part of our genetic endowment - just like the ability to learn to walk.

Studies of language acquisition lend empirical support to the innateness hypothesis. Research has suggested that there is a critical period for the acquisition of syntax, in the sense that children who learn a given language before puberty generally achieve native competence in it, whereas those acquire a (first or second) language after the age of 9 or 10 years rarely manage to achieve native-like syntactic competence: see Lenneberg (1967), Hurford (1991) and Smith (1998, 1999) for discussion. A particularly poignant example of this is a child called Genie (See Curtiss 1977, Rymer 1993), who was deprived of speech input and kept locked up on her own in a room until age 13. When eventually taken into care and exposed to intensive language input, her vocabulary grew enormously, but her syntax never developed. This suggests that the acquisition of syntax is determined by an innate 'language acquisition programme' which is in effect switched off (or gradually atrophies) at the onset of puberty. (For further discussion of the innateness hypothesis, see Antony and Hornstein 2002.)

1.4 Principles of Universal Grammar

If (as Chomsky claims) human beings are biologically endowed with an innate language faculty, an obvious question to ask is what is the nature of the language faculty. An important point to note in this regard is that children can in principle acquire any natural language as their native language (e.g. Afghan orphans brought up by English-speaking foster parents in an English-speaking community acquire English as their first language). It therefore follows that the language faculty must incorporate a theory of Universal Grammar/UG which enables the child to develop a grammar of any natural language on the basis of suitable linguistic experience of the language (i.e. sufficient speech input). Experience of a particular language L (examples of words, phrases and sentences in L which the child hears produced by native speakers of L in particular contexts) serves as input to the child's language faculty which incorporates a theory of Universal Grammar providing the child with a procedure for developing a grammar of L.

If the acquisition of grammatical competence is indeed controlled by a genetically endowed language faculty incorporating a theory of UG, then it follows that certain aspects of child (and adult) competence are known without experience, and hence must be part of the genetic information about language with which we are biologically endowed at birth. Such aspects of language would not have to be learned, precisely because they form part of the child's genetic inheritance. If we make the (plausible) assumption that the language faculty does not vary significantly from one (normal) human being to another, those aspects of language which are innately determined will also be universal. Thus, in seeking to determine the nature of the language faculty, we are in effect looking for UG principles (i.e. principles of Universal Grammar) which determine the very nature of language.

But how can we uncover such principles? The answer is that since the relevant principles are posited to be universal, it follows that they will affect the application of every relevant type of grammatical operation in every language. Thus, detailed analysis of one grammatical construction in one language could reveal evidence of the operation of principles of Universal Grammar. By way of illustration, let's look at question-formation in English. In this connection, consider the following dialogue:
(4) SPEAKER A: He had said someone would do something

SPEAKER B: He had said who would do what?
In (4), speaker B largely echoes what speaker A says, except for replacing someone by who and something by what. For obvious reasons, the type of question produced by speaker B in (4) is called an echo
question. However, speaker B could alternatively have replied with a non-echo question like that below:
(5) Who had he said would do what?

If we compare the echo question He had said who would do what? in (4) with the corresponding non-echo question Who had he said would do what? in (5), we find that (5) involves two movement
operations which are not found in (4). One is an auxiliary inversion operation by which the past tense auxiliary had is moved in front of its subject he. (As we shall see in chapter 2, an auxiliary is a word like had/would in (5) which carries grammatical properties such as tense/aspect/mood/modality.) The other is a wh-movement operation by which the wh-word who is moved to the front of the overall sentence, and positioned in front of had.

A closer look at questions like (5) provides evidence that there are UG principles which constrain the way in which movement operations may apply. An interesting property of the questions in (4/5) is that they contain two auxiliaries (had and would) and two wh-expressions (who and what). Now, if we compare (5) with the corresponding echo-question in (4), we find that the first of the two auxiliaries (had) and the first of the wh-words (who) is moved to the front of the sentence in (5). If we try inverting the second auxiliary (would) and fronting the second wh-word (what), we end up with ungrammatical sentences, as we see from ($6 \mathrm{c}-\mathrm{e}$) below (the key items are highlighted, and the corresponding echo question is given in parentheses; 6 a is repeated from the echo question in 4B, and 6 b is repeated from 5):
(6)(a) He had said who would do what? (= echo question)
(b) Who had he said would do what? (cf. He had said who would do what?)
(c) *Who would he had said do what? (cf. He had said who would do what?)
(d) *What had he said who would do? (cf. He had said who would do what?)
(e) * What would he had said who do? (cf. He had said who would do what?)

If we compare (6b) with its echo-question counterpart (6a) He had said who would do what? we see that (6b) involves preposing the first wh-word who and the first auxiliary had, and that this results in a grammatical sentence. By contrast, (6c) involves preposing the first wh-word who and the second auxiliary would; (6d) involves preposing the second wh-word what and the first auxiliary had; and (6e) involves preposing the second wh-word what and the second auxiliary would. The generalisation which emerges from the data in (6) is that auxiliary inversion preposes the closest auxiliary had (i.e. the one nearest the beginning of the sentence in (6a) above) and likewise wh-fronting preposes the closest wh-expression who. The fact that two quite distinct different movement operations (auxiliary inversion and wh-movement) are subject to the same locality condition (which requires preposing of the most local expression of the relevant type - i.e. the one nearest the beginning of the sentence) suggests that one of the principles of Universal Grammar incorporated into the language faculty is a Locality Principle which can be outlined informally as:

(7) Locality Principle

Grammatical operations are local
In consequence of (7), auxiliary inversion preposes the closest auxiliary, and wh-movement preposes the closest wh-expression. It seems reasonable to suppose that (7) is a principle of Universal Grammar (rather than an idiosyncratic property of question-formation in English). In fact, the strongest possible hypothesis we could put forward is that (7) holds of all grammatical operations in all natural languages, not just of movement operations; and indeed we shall see in later chapters that other types of grammatical operation (including agreement and case assignment) are subject to a similar locality condition. If so, and if we assume that abstract grammatical principles which are universal are part of our biological endowment, then the natural conclusion to reach is that (7) is a principle which is biologically wired into the language faculty, and which thus forms part of our genetic make-up.

A theory of grammar which posits that grammatical operations are constrained by innate principles of UG offers the important advantage that it minimises the burden of grammatical learning imposed on the child (in the sense that children do not have to learn e.g. that auxiliary inversion affects the first auxiliary in a sentence, or that wh-movement likewise affects the first wh-expression). This is an important consideration, since we saw earlier that learnability is a criterion of adequacy for any theory of grammar i.e. any adequate theory of grammar must be able to explain how children come to learn the grammar of their native language(s) in such a rapid and uniform fashion. The UG theory developed by Chomsky provides a straightforward account of the rapidity of the child's grammatical development, since it posits that there are a universal set of innately endowed grammatical principles which determine how grammatical operations apply in natural language grammars. Since UG principles which are innately endowed are wired into the language faculty and so do not have to be learned by the child, this minimises the learning load placed on the child, and thereby maximises the learnability of natural language
grammars.

1.5 Parameters

Thus far, we have argued that the language faculty incorporates a set of universal principles which guide the child in acquiring a grammar. However, it clearly cannot be the case that all aspects of the grammar of languages are universal; if this were so, all natural language grammars would be the same and there would be no grammatical learning involved in language acquisition (i.e. no need for children to learn anything about the grammar of sentences in the language they are acquiring), only lexical learning (viz. learning the lexical items/words in the language and their idiosyncratic linguistic properties, e.g. whether a given item has an irregular plural or past tense form). But although there are universal principles which determine the broad outlines of the grammar of natural languages, there also seem to be languageparticular aspects of grammar which children have to learn as part of the task of acquiring their native language. Thus, language acquisition involves not only lexical learning but also some grammatical learning. Let's take a closer look at the grammatical learning involved, and what it tells us about the language acquisition process.

Clearly, grammatical learning is not going to involve learning those aspects of grammar which are determined by universal (hence innate) grammatical operations and principles. Rather, grammatical learning will be limited to those parameters (i.e. dimensions or aspects) of grammar which are subject to language-particular variation (and hence vary from one language to another). In other words, grammatical learning will be limited to parametrised aspects of grammar (i.e. those aspects of grammar which are subject to parametric variation from one language to another). The obvious way to determine just what aspects of the grammar of their native language children have to learn is to examine the range of parametric variation found in the grammars of different (adult) natural languages.

We can illustrate one type of parametric variation across languages in terms of the following contrast between the Italian examples in ($8 \mathrm{a} / \mathrm{b}$) below, and their English counterparts in ($8 \mathrm{c} / \mathrm{d}$):
Maria parla francese
(b) Parla francese
(c) Maria speaks French
(d) *Speaks French

As (8a) and (8c) illustrate, the Italian verb parlare and its English counterpart speak (as used here) have a subject like Maria and an object like francese/French: in both cases, the verb is a present tense form which agrees with its subject Maria (and hence is a third person singular form). But what are we to make of Italian sentences like (8b) Parla francese (= 'Speaks French') in which the verb parla 'speaks' has the overt object francese 'French' but has no overt subject? The answer suggested in work over the past few decades is that the verb in such cases has a null subject which can be thought of as a silent or invisible counterpart of the pronouns he/she which appear in the corresponding English translation 'He/She speaks French'. This null subject is conventionally designated as pro, so that (8 b) has the structure pro parla francese 'pro speaks French', where pro is a null subject pronoun.

There are two reasons for thinking that the verb parla 'speaks' has a null subject in (8b). Firstly, parlare 'speak' (in the relevant use) is a verb which requires both a subject and an object: under the null subject analysis, its subject is pro (a null pronoun). Secondly, finite verbs (i.e. verbs which carry tense and agreement properties) agree with their subjects in Italian: hence, in order to account for the fact that the present-tense verb parla 'speaks' is in the third person singular form in (8 b), we need to posit that it has a third person singular subject; under the null subject analysis, we can say that parla 'speaks' has a null pronoun (pro) as its subject, and that pro (if used to refer to Maria) is a third person feminine singular pronoun.

The more general conclusion to be drawn from our discussion is that in languages like Italian, finite (tense- and agreement-inflected) verbs like parla 'speaks' can have either an overt subject like Maria or a null pro subject. But things are very different in English. Although a finite verb like speaks can have an overt subject like Maria in English, a finite verb cannot normally have a null pro subject - hence the ungrammaticality of (8d) *Speaks French. So, finite verbs in a language like Italian can have either overt or null subjects, but in a language like English, finite verbs can generally have only overt subjects, not null subjects. We can describe the differences between the two types of language by saying that Italian is a null subject language, whereas English is a non-null subject language. More generally, there appears to be parametric variation between languages as to whether or not they allow finite verbs to have null
subjects. The relevant parameter (termed the Null Subject Parameter) would appear to be a binary one, with only two possible settings for any given language L , viz. L either does or doesn't allow finite verbs to have null subjects. There appears to be no language which allows the subjects of some finite verbs to be null, but not others - e.g. no language in which it is OK to say Drinks wine (meaning 'He/she drinks wine') but not OK to say Eats pasta (meaning 'He/she eats pasta'). The range of grammatical variation found across languages appears to be strictly limited to just two possibilities - languages either do or don't systematically allow finite verbs to have null subjects. (A complication glossed over here is posed by languages in which only some finite verb forms can have null subjects: see Vainikka and Levy 1999 and the collection of papers in Jaeggli and Safir 1989 for illustration and discussion.)

A more familiar aspect of grammar which appears to be parametrised relates to word order, in that different types of language have different word orders in specific types of construction. One type of word order variation can be illustrated in relation to the following contrast between English and Chinese questions:
(9)(a) What do you think he will say?
(b) Ni xiangxin ta hui shuo shenme

You think he will say what?
In simple wh-questions in English (i.e. questions containing a single word beginning with wh- like what/where/when/why) the wh-expression is moved to the beginning of the sentence, as is the case with what in (9a). By contrast, in Chinese, the wh-word does not move to the front of the sentence, but rather remains in situ (i.e. in the same place as would be occupied by a corresponding non-interrogative expression), so that shenme 'what' is positioned after the verb shuo 'say' because it is the (direct object) complement of the verb, and complements of the relevant type are normally positioned after their verbs in Chinese. Thus, another parameter of variation between languages is the wh-parameter - a parameter which determines whether wh-expressions can be fronted (i.e. moved to the front of the overall interrogative structure containing them) or not. Significantly, this parameter again appears to be one which is binary in nature, in that it allows for only two possibilities - viz. a language either does or doesn't allow wh-movement (i.e. movement of wh-expressions to the front of the sentence). Many other possibilities for wh-movement just don't seem to occur in natural language: for example, there is no language in which the counterpart of who undergoes wh-fronting but not the counterpart of what (e.g. no language in which it is OK to say Who did you see? but not What did you see?). Likewise, there is no language in which wh-complements of some verbs can undergo fronting, but not wh-complements of other verbs (e.g. no language in which it is OK to say What did he drink? but not What did he eat?). It would seem that the range of parametric variation found with respect to wh-fronting is limited to just two possibilities: viz. a language either does or doesn't allow wh-expressions to be systematically fronted. (However, it should be noted that a number of complications are overlooked here in the interest of simplifying exposition: e.g. some languages like English allow only one wh-expression to be fronted in this way, whereas others allow more than one wh-expression to be fronted; see Bošković 2002a for a recent account. An additional complication is posed by the fact that wh-movement appears to be optional in some languages, either in main clauses, or in main and complement clauses alike: see Denham 2000, and Cheng and Rooryck 2000.)

Let's now turn to look at a rather different type of word-order variation, concerning the relative position of heads and complements within phrases. It is a general (indeed, universal) property of phrases that every phrase has a head word which determines the nature of the overall phrase. For example, an expression such as students of Philosophy is a plural noun phrase because its head word (i.e. the key word in the phrase whose nature determines the properties of the overall phrase) is the plural noun students: the noun students (and not the noun Philosophy) is the head word because the phrase students of Linguistics denotes kinds of student, not kinds of Philosophy. The following expression of Philosophy which combines with the head noun students to form the noun phrase students of Philosophy functions as the complement of the noun students. In much the same way, an expression such as in the kitchen is a prepositional phrase which comprises the head preposition in and its complement the kitchen. Likewise, an expression such as stay with me is a verb phrase which comprises the head verb stay and its complement with me. And similarly, an expression such as fond of fast food is an adjectival phrase formed by combining the head adjective fond with its complement of fast food.

In English all heads (whether nouns, verbs, prepositions, or adjectives etc.) normally precede their complements; however, there are also languages like Korean in which all heads normally follow their
complements. In informal terms, we can say that English is a head-first language, whereas Korean is a head-last language. The differences between the two languages can be illustrated by comparing the English examples in (10) below with their Korean counterparts in (11):
(10)(a) Close the door
(b) desire for change
(11)(a) Muneul dadara
Door close
(b) byunhwa-edaehan galmang change-for desire

In the English verb phrase close the door in (10a), the head verb close precedes its complement the door; if we suppose that the door is a determiner phrase, then the head of the phrase (= the determiner the) precedes its complement (= the noun door). Likewise, in the English noun phrase desire for change in (10b), the head noun desire precedes its complement for change; the complement for change is in turn a prepositional phrase in which the head preposition for likewise precedes its complement change. Since English consistently positions heads before complements, it is a head-first language. By contrast, we find precisely the opposite ordering in Korean. In the verb phrase muneul dadara (literally 'door close') in (11a), the head verb dadara 'close' follows its complement muneul 'door'; likewise, in the noun phrase byunhwa-edaehan galmang (literally 'change-for desire') in (11b) the head noun galmang 'desire' follows its complement byunhwa-edaehan 'change-for'; the expression byunhwa-edaehan 'change-for' is in turn a prepositional phrase whose head preposition edaehan 'for/about' follows its complement byunhwa 'change' (so that edaehan might more appropriately be called a postposition; prepositions and postpositions are differents kinds of adposition). Since Korean consistently positions heads after their complements, it is a head-last language. Given that English is head-first and Korean head-last, it is clear that the relative positioning of heads with respect to their complements is one word-order parameter along which languages differ; the relevant parameter is termed the Head Position Parameter.

It should be noted, however, that word-order variation in respect of the relative positioning of heads and complements falls within narrowly circumscribed limits. There are many logically possible types of word order variation which just don't seem to occur in natural languages. For example, we might imagine that in a given language some verbs would precede and others follow their complements, so that (e.g.) if two new hypothetical verbs like scrunge and plurg were coined in English, then scrunge might take a following complement, and plurg a preceding complement. And yet, this doesn't ever seem to happen: rather all verbs typically occupy the same position in a given language with respect to a given type of complement. (A complication overlooked here in the interest of expository simplicity is that some languages position some types of head before their complements, and other types of head after their complements: German is one such language, as you will see from exercise II.)

What this suggests is that there are universal constraints (i.e. restrictions) on the range of parametric variation found across languages in respect of the relative ordering of heads and complements. It would seem as if there are only two different possibilities which the theory of Universal Grammar allows for: a given type of structure in a given language must either be head-first (with the relevant heads positioned before their complements), or head-last (with the relevant heads positioned after their complements). Many other logically possible orderings of heads with respect to complements appear not to be found in natural language grammars. The obvious question to ask is why this should be. The answer given by the theory of parameters is that the language faculty imposes genetic constraints on the range of parametric variation permitted in natural language grammars. In the case of the Head Position Parameter (i.e. the parameter which determines the relative positioning of heads with respect to their complements), the language faculty allows only a binary set of possibilities - namely that a given kind of structure in a given language is either consistently head-first or consistently head-last.

We can generalise our discussion in this section in the following terms. If the Head Position Parameter reduces to a simple binary choice, and if the Wh-Parameter and the Null Subject Parameter also involve binary choices, it seems implausible that binarity could be an accidental property of these particular parameters. Rather, it seems much more likely that it is an inherent property of parameters that they constrain the range of structural variation between languages, and limit it to a simple binary choice. Generalising still further, it seems possible that all grammatical variation between languages can be characterised in terms of a set of parameters, and that for each parameter, the language faculty specifies a binary choice of possible values for the parameter.

1.6 Parameter setting

The theory of parameters outlined in the previous section has important implications for a theory of language acquisition. If all grammatical variation can be characterised in terms of a series of parameters with binary settings, it follows that the only grammatical learning which children have to undertake in relation to the syntactic properties of the relevant class of constructions is to determine (on the basis of their linguistic experience) which of the two alternative settings for each parameter is the appropriate one for the language being acquired. So, for example, children have to learn whether the native language they are acquiring is a null subject language or not, whether it is a wh-movement language or not, and whether it is a head-first language or not...and so on for all the other parameters along which languages vary. Of course, children also face the formidable task of lexical learning - i.e. building up their vocabulary in the relevant language, learning what words mean and what range of forms they have (e.g. whether they are regular or irregular in respect of their morphology), what kinds of structures they can be used in and so on. On this view, the acquisition of grammar involves the twin tasks of lexical learning and parameter-setting.

This leads us to the following view of the language acquisition process. The central task which the child faces in acquiring a language is to construct a grammar of the language. The innate Language Faculty incorporates (i) a set of universal grammatical principles, and (ii) a set of grammatical parameters which impose severe constraints on the range of grammatical variation permitted in natural languages (perhaps limiting variation to binary choices). Since universal principles don't have to be learned, the child's syntactic learning task is limited to that of parameter-setting (i.e. determining an appropriate setting for each of the relevant grammatical parameters). For obvious reasons, the theory outlined here (developed by Chomsky at the beginning of the 1980s and articulated in Chomsky 1981) is known as Principles-and-Parameters Theory/PPT.

The PPT model clearly has important implications for the nature of the language acquisition process, since it vastly reduces the complexity of the acquisition task which children face. PPT hypothesises that grammatical properties which are universal will not have to be learned by the child, since they are wired into the language faculty and hence part of the child's genetic endowment: on the contrary, all the child has to learn are those grammatical properties which are subject to parametric variation across languages. Moreover, the child's learning task will be further simplified if it turns out (as research since 1980 has suggested) that the values which a parameter can have fall within a narrowly specified range, perhaps characterisable in terms of a series of binary choices. This simplified parameter-setting model of the acquisition of grammar has given rise to a metaphorical acquisition model in which the child is visualised as having to set a series of switches in one of two positions (up/down) - each such switch representing a different parameter. In the case of the Head Position Parameter, we can imagine that if the switch is set in the up position (for particular types of head), the language will show head-first word order in relevant kinds of structure, whereas if it is set in the down position, the order will be head-last. Of course, an obvious implication of the switch metaphor is that the switch must be set in either one position or the other, and cannot be set in both positions (This would preclude e.g. the possibility of a language having both head-first and head-last word order in a given type of structure).

The assumption that acquiring the grammar of a language involves the relatively simple task of setting a number of grammatical parameters provides a natural way of accounting for the fact that the acquisition of specific parameters appears to be a remarkably rapid and error-free process in young children. For example, young children acquiring English as their native language seem to set the Head Position Parameter at its appropriate head-first setting from the very earliest multiword utterances they produce (at around age 18 months of age), and seem to know (tacitly, not explicitly, of course) that English is a head-first language. Accordingly, the earliest verb phrases and prepositional phrases produced by young children acquiring English consistently show verbs and prepositions positioned before their complements, as structures such as the following indicate (produced by a young boy called Jem/James at age 20 months; head verbs are italicised in (12a) and head prepositions in (12b), and their complements are in non-italic print):
(12)(a) Touch heads. Cuddle book. Want crayons. Want malteser. Open door. Want biscuit. Bang bottom. See cats. Sit down
(b) On Mummy. To lady. Without shoe. With potty. In keyhole. In school. On carpet. On box. With crayons. To mummy

The obvious conclusion to be drawn from structures like those in (12) is that children like Jem consistently
position heads before their complements from the very earliest multiword utterances they produce. They do not use different orders for different words of the same type (e.g. they don't position the verb see after its complement but the verb want before its complement), or for different types of words (e.g. they don't position verbs before and prepositions after their complements).

A natural question to ask at this point is how we can provide a principled explanation for the fact that from the very onset of multiword speech we find English children correctly positioning heads before their complements. The Principles-and-Parameters model enables us to provide an explanation for why children manage to learn the relative ordering of heads and complements in such a rapid and error-free fashion. The answer provided by the model is that learning this aspect of word order involves the comparatively simple task of setting a binary parameter at its appropriate value. This task will be a relatively straightforward one if the language faculty tells the child that the only possible choice is for a given type of structure in a given language to be uniformly head-first or uniformly head-last. Given such an assumption, the child could set the parameter correctly on the basis of minimal linguistic experience. For example, once the child is able to parse (i.e. grammatically analyse) an adult utterance such as Help Daddy and knows that it contains a verb phrase comprising the head verb help and its complement Daddy, then (on the assumption that the language faculty specifies that all heads of a given type behave uniformly with regard to whether they are positioned before or after their complements), the child will automatically know that all verbs in English are canonically (i.e. normally) positioned before their complements.

1.7 Evidence used to set parameters

One of the questions posed by the parameter-setting model of acquisition outlined here is just how children come to arrive at the appropriate setting for a given parameter, and what kind(s) of evidence they make use of in setting parameters. As Chomsky notes (1981, pp. 8-9), there are two types of evidence which we might expect to be available to the language learner in principle, namely positive evidence and negative evidence. Positive evidence comprises a set of observed expressions illustrating a particular phenomenon: for example, if children's speech input is made up of structures in which heads precede their complements, this provides them with positive evidence which enables them to set the head parameter appropriately. Negative evidence might be of two kinds - direct or indirect. Direct negative evidence might come from the correction of children's errors by other speakers of the language. However, (contrary to what is often imagined) correction plays a fairly insignificant role in language acquisition, for two reasons. Firstly, correction is relatively infrequent: adults simply don't correct all the errors children make (if they did, children would soon become inhibited and discouraged from speaking). Secondly, children are notoriously unresponsive to correction, as the following dialogue (from McNeill 1966, p. 69) illustrates:

CHILD: Nobody don't like me
ADULT: No, say: 'Nobody likes me’
CHILD: Nobody don't like me
(8 repetitions of this dialogue)
ADULT: No, now listen carefully. Say 'Nobody likes me’
CHILD: Oh, nobody don't likes me

As Hyams (1986, p.91) notes: 'Negative evidence in the form of parental disapproval or overt corrections has no discernible effect on the child's developing syntactic ability.' (See McNeill 1966, Brown, Cazden and Bellugi 1968, Brown and Hanlon 1970, Braine 1971, Bowerman 1988, Morgan and Travis 1989, and Marcus 1993 for further evidence in support of this conclusion.)

Direct negative evidence might also take the form of self-correction by other speakers. Such selfcorrections tend to have a characteristic intonation and rhythm of their own, and may be signalled by a variety of fillers (such as those italicised in (14) below):
(14)(a) The picture was hanged...or rather hung...in the Tate Gallery
(b) The picture was hanged...sorry hung...in the Tate Gallery
(c) The picture was hanged...I mean hung...in the Tate Gallery

However, self-correction is arguably too infrequent a phenomenon to play a major role in the acquisition process.

Rather than say that children rely on direct negative evidence, we might instead imagine that they learn from indirect negative evidence (i.e. evidence relating to the non-occurrence of certain types of structure). Suppose that a child's experience includes no examples of structures in which heads follow their complements (e.g. no prepositional phrases like *dinner after in which the head preposition after follows its complement dinner, and no verb phrases such as *cake eat in which the head verb eat follows its complement cake). On the basis of such indirect negative evidence (i.e. evidence based on the non-occurrence of head-last structures), the child might infer that English is not a head-last language.

Although it might seem natural to suppose that indirect negative evidence plays some role in the acquisition process, there are potential learnability problems posed by any such claim. After all, the fact that a given construction does not occur in a given chunk of the child's experience does not provide conclusive evidence that the structure is ungrammatical, since it may well be that the non-occurrence of the relevant structure in the relevant chunk of experience is an accidental (rather than a systematic) gap. Thus, the child would need to process a very large (in principle, infinite) chunk of experience in order to be sure that non-occurrence reflects ungrammaticality. It seems implausible to suppose that children store massive chunks of experience in this way and search through it for negative evidence about the non-occurrence of certain types of structure. In any case, given the assumption that parameters are binary and single-valued, negative evidence becomes entirely unnecessary: after all, once the child hears a prepositional phrase like with Daddy in which the head preposition with precedes its complement Daddy, the child will have positive evidence that English allows head-first order in prepositional phrases; and given the assumptions that the head parameter is a binary one and that each parameter allows only a single setting, then it follows (as a matter of logical necessity) that if English allows head-first prepositional phrases, it will not allow head-last prepositional phrases. Thus, in order for the child to know that English doesn't allow head-last prepositional phrases, the child does not need negative evidence from the nonoccurrence of such structures, but rather can rely on positive evidence from the occurrence of the converse order in head-first structures (on the assumption that if a given structure is head-first, UG specifies that it cannot be head-last). And, as we have already noted, a minimal amount of positive evidence is required in order to identify English as a uniformly head-first language (i.e. a language in which all heads precede their complements). Learnability considerations such as these have led Chomsky (1986a, p.55) to conclude that 'There is good reason to believe that children learn language from positive evidence only.' The claim that children do not make use of negative evidence in setting parameters is known as the no-negative-evidence hypothesis; it is a hypothesis which is widely assumed in current acquisition research. (See Guasti 2002 for a technical account of language acquisition within the framework used here.)

1.8 Summary

We began this chapter in $\S 1.2$ with a brief look at traditional grammar, noting that this is a taxonomic (i.e. classificatory) system in which the syntax of a language is essentially described in terms of a list of phrase, clause and sentence types found in the language. We noted that Chomsky adopts a very different cognitive approach to the study of language in which a grammar of a language is a model of the internalised grammatical competence (or I-language) of the fluent native speaker of the language. We saw that Chomsky's ultimate goal is to develop a theory of Universal Grammar/UG which characterises the defining properties of the grammars of natural languages - a theory which is universal, explanatory and constrained, and which provides descriptively adequate grammars which are minimally complex and hence learnable. In $\S 1.3$, we went on to look at the nature of language acquisition, and argued that the most fundamental question for a theory of language acquisition to answer is why it should be that after a period of a year and a half during which there is little evidence of grammatical development in the child's speech output, most of the grammar of the language is acquired by children during the course of the following year. We outlined the innateness hypothesis put forward by Chomsky, under which the course of language acquisition is genetically predetermined by an innate language faculty. In $\S 1.4$, we noted Chomsky's claim that the language faculty incorporates a set of universal grammatical principles that determine the ways in which grammatical operations work; and we saw that the syntax of questions in English provides evidence for postulating that syntactic operations are constrained by a universal Locality Principle. In $\S 1.5$, we went on to argue that the grammars of natural languages vary along a number of parameters. We looked at three such parameters - the Wh-Parameter, the Null Subject Parameter, and the Head Position Parameter, arguing that each of these parameters is binary in nature by virtue of
having two alternative settings. In §1.6, we argued that the grammatical learning task which children face involves parameter-setting - i.e. determining which of two possible settings is the appropriate one for each parameter in the language being acquired. We further argued that if the only syntactic learning involved in language acquisition is parameter-setting, we should expect to find evidence that children correctly set parameters from the very onset of multiword speech: and we presented evidence to suggest that from their very earliest multiword utterances, children acquiring English as their mother tongue correctly set the Head Position Parameter at the head-first value appropriate for English. We concluded that the acquisition of grammar involves the twin tasks of lexical learning (i.e. acquiring a lexicon/ vocabulary) and parameter-setting. In $\S 1.7$, we asked what kind of evidence children use in setting parameters, and concluded that they use positive evidence from their experience of the occurrence of specific types of structure (e.g. head-first structures, or null-subject structures, or wh-movement structures).

WORKBOOK SECTION

Exercise 1.1

Below are examples of utterances produced by a girl called Lucy at age 24 months. Comment on whether Lucy has correctly set the three parameters discussed in the text (the Head Position Parameter, the Wh-Parameter, and the Null Subject Parameter). Discuss the significance of the relevant examples for the parameter-setting model of acquisition.

CHILD SENTENCE

What doing?
Want bye-byes
Mummy go shops
Me have yoghurt?
Daddy doing?
Think Teddy sleeping
What me having?
No me have fish
Where Daddy gone?
Gone office
11 Want bickies
What Teddy have?
Where going?
Me go shops
Daddy drinking coffee
What Nana eating?
Want choc'ate
Dolly gone?
Watch te'vision
Me have more
In kitchen
Me play with Daddy
Open door

ADULT COUNTERPART

'What are you doing?'
'I want to go to sleep'
'Mummy went to the shops'; this was in reply to 'Where did Mummy go?'
'Can I have a yoghurt?'
'What's Daddy doing?'
'I think Teddy's sleeping'; this was in reply to 'What d' you think Teddy's doing?’
'What am I having?'; this followed her mother saying 'Mummy's having fish for dinner'
'I'm not going to have fish'
'Where's Daddy gone?'
'He's gone to his office'
'She wants some biscuits'; this was her reply to 'What does Dolly want?'
'What can Teddy have?'
'Where are you going?'
'I want to go to the shops'
'Daddy's drinking coffee'
'What's Grandma eating?'
'He wants some chocolate'; this was her reply to 'Teddy wants some meat, does he?'
'Where's Dolly gone?'
'I'm going to watch television'
'I want to have some more'
'In the kitchen' (reply to 'Where's Mummy?')
'I want to play with Daddy'
'Open the door!'

Helpful hints

If Lucy has correctly set the Wh-Parameter, we should expect to find that she systematically preposes wh-expressions and positions them sentence-initially. If she has correctly set the Head Position Parameter, we should expect to find (e.g.) that she correctly positions the complement of a verb after the verb, and the
complement of a preposition after the preposition; however, where the complement is a wh-expression, we expect to find that the complement is moved into sentence-initial position in order to satisfy the requirements of the Wh-Parameter (if the Wh-Parameter in some sense over-rides the Head Position Parameter). If Lucy has correctly set the Null Subject Parameter, we should expect to find that she does not use null subjects in finite clauses: however, it seems clear that many of the sentences produced by two-year old English children like Lucy do indeed have null subjects - and this led Nina Hyams in influential research $(1986,1992)$ to conclude that English children go through a null subject stage in which they use Italian-style null (pro) subjects in finite clauses. If Hyams is right, this implies that children may sometimes start out with incorrect settings for a given parameter, and then later have to $r e-s e t$ the parameter - a conclusion which (if true) would provide an obvious challenge to the simple parameter-setting model of acquisition outlined in the main text.

However, the picture relating to the use of null subjects is complicated by the fact that in addition to finite null subjects (i.e. the pro subject found in finite clauses in languages like Italian but not English), there are three other types of null subject which occur in adult English (and other languages). One are imperative null subjects, found in imperatives such as Shut up! and Don't say anything! (Imperatives are sentences used to issue orders; they are the kind of sentences you can put please in front of - as in Please don't say anything!) Another are nonfinite null subjects which are found in a range of nonfinite clauses in English (i.e. clauses containing a verb which is not marked for tense and agreement), including main clauses like Why worry? and complement clauses like those bracketed in I want [to go home] and I like [playing tennis]: the kind of null subject found in nonfinite clauses in English is usually designated as $P R O$ and called 'big PRO' (whereas the kind of null subject found in a finite clause in a null subject language like Italian is designated as pro and called 'little pro'. The terms big and little here simply reflect the fact that PRO is written in 'big' capital letters, and pro in 'small' lower-case letters). A third type of null subject found in English are truncated null subjects - so called because English has a process of truncation which allows one or more words at the beginning of a sentence to be truncated (i.e. omitted) in certain types of style (e.g. diary styles of written English and informal styles of spoken English). Hence in colloquial English, a question like Are you doing anything tonight? can be reduced (by truncation) to You doing anything tonight? and further reduced (again by truncation) to Doing anything tonight? Truncation is also found in abbreviated written styles of English: for example, a diary entry might read Went to a party. Had a great time. Got totally smashed (with the subject I being truncated in each of the three sentences). An important constraint on truncation is that it can only affect words at the beginning of a sentence, not e.g. words in the middle of a sentence: hence, although we can truncate are and you in Are you doing anything tonight?, we can't truncate them in What are you doing tonight? (as we see from the ungrammaticality of *What doing tonight?) since here are and you are preceded by what and hence occur in the middle of the sentence.

What all of this means is that in determining whether Lucy has mis-set the Null Subject Parameter and has misanalysed English as a null subject language (i.e. a language which allows finite null 'little pro' subjects), you have to bear in mind the alternative possibility that the null subjects used by Lucy may represent one or more of the three kinds of null subject permitted in adult English (viz. imperative null subjects, truncated null subjects, and nonfinite null subjects).

Since truncation occurs only sentence-initially (at the beginning of a sentence), but finite null (little pro) subjects in a genuine null subject language like Italian can occur in any subject position in a sentence, one way of telling the difference between a finite null subject and a truncated null subject is to see whether children omit subjects only when they are the first word in a sentence (which could be the result of truncation), or whether they also omit subjects in the middle of sentences (as is the case in a genuine null subject language like Italian). Another way of differentiating the two is that in null-subject languages like Italian with null finite pro subjects, we find that overt pronoun subjects are only used for emphasis, so that in an Italian sentence like L'ho fatto io (literally 'It have done I') the subject pronoun io 'I' has a contrastive interpretation, and the relevant sentence is paraphraseable in English as ' I was the one who did it' (where italics indicate contrastive stress): by contrast, in a non-null-subject language like English, subject pronouns are not intrinsically emphatic - e.g. he doesn't necessarily have a contrastive interpretation in an English diary-style sentence such as Went to see Jim. Thought he might help). A third way of telling whether truncation is operative in Lucy's grammar or not is to see whether expressions other than subjects can be truncated, as can happen in adult English (e.g. What time is it? can be reduced to Time is it? via truncation in rapid spoken English).

At first sight, it might seem unlikely that (some of) Lucy's null subjects could be nonfinite ('big PRO') null subjects, since all the clauses she produces in the data given above occur in finite contexts (i.e. in contexts where adults would use a finite clause). Note, however, that two-year-old children typically go through a stage which Wexler (1994) calls the Optional Infinitives/OI stage at which (in finite contexts) they sometimes produce finite clauses, and sometimes nonfinite clauses (the relevant nonfinite clauses typically containing an infinitive form like go or a participle like going/gone). Hence, an additional possibility to bear in mind is that some of Lucy's clauses may be nonfinite and have nonfinite ('big PRO') null subjects.

In relation to the sentences in 1-23, make the following assumptions. In 1 doing is a verb which has a null subject and the complement what; in 2 want is a verb which has a null subject and the complement bye-byes; in 3 go is a verb which has the subject Mummy and the complement shops; in 4 have is a verb which has the subject me and the complement yoghurt; in 5 doing is a verb which has the subject Daddy, and its complement is a null counterpart of what; in 6 think is a verb with a null subject and its complement is Teddy sleeping (with Teddy serving as the subject of the verb sleeping); in 7, having is a verb which has the subject me and the complement what; in 8 no is a negative particle which has the complement me have fish (assume that no is the kind of word which doesn't have a subject), and have is a verb which has the subject me and the complement fish; in 9 gone is a verb which has the subject Daddy and the complement where; in 10 gone is a verb which has a null subject and the complement office; in 11 want is a verb which has a null subject and the complement bickies; in 12 have is a verb which has the subject Teddy and the complement what; in 13 going is a verb which has a null subject and the complement where; in 14 go is a verb which has the subject me and the complement shops; in 15 drinking is a verb which has the subject Daddy and the complement coffee; in 16 eating is a verb which has the subject Nana and the complement what; in 17 want is a verb which has a null subject and the complement choc'ate; in 18 gone is a verb which has the subject Dolly and its complement is a null counterpart of where; in 19 watch is a verb which has a null subject and the complement te'vision; in 20 have is a verb which has the subject $m e$ and the complement more; 21 is a prepositional phrase in which the preposition in has the complement kitchen (Assume that phrases don't have subjects); in 22 play is a verb which has the subject $m e$ and the complement with Daddy (and in turn Daddy is the complement of the preposition with); and in 23 open is a verb whose subject is null and whose complement is door.

Model answer for 1

In What doing? the verb doing has an overt object what and a null subject of some kind. Since the object what does not occupy the normal postverbal position associated with objects in English (cf. the position of the object something in Do something!), what has clearly undergone wh-movement: this suggests that Lucy has correctly set the wh-parameter at the 'requires wh-movement' value appropriate for English. Because the object complement what has undergone wh-movement, we cannot tell (from this sentence) whether Lucy generally positions (unmoved) complements after their heads: in other words, this particular sentence provides us with no evidence of whether Lucy has correctly set the Head Position Parameter or not (though other examples in the exercise do). Much more difficult to answer is the question of whether Lucy has correctly set the Null Subject Parameter at the value appropriate to English, and hence (tacitly) 'knows' that finite clauses do not allow a null finite pro subject in English. At first sight, it might seem as if Lucy has wrongly analysed English as a null subject language (and hence mis-set the Null Subject Parameter), since What doing? has a null subject of some kind. But the crucial question here is: What kind of null subject does the verb doing have? It clearly cannot be an imperative null subject, since the sentence is interrogative in force, not imperative. Nor can it be a truncated null subject, since truncated subjects only occur in sentence-initial position (i.e. as the first word in a sentence), and what is the first word in the sentence in What doing? (since preposed wh-words occupy sentence-initial position in questions). This leaves two other possibilities. One is that the null subject in What doing? is the 'little pro' subject found in finite clauses in genuine null-subject languages like Italian: since the verb doing is nonfinite, this would entail positing that the sentence What doing? contains a null counterpart of the finite auxiliary are (raising questions about why the auxiliary is null rather than overt); this in turn would mean that Lucy has indeed mis-set the Null Subject Parameter (raising questions about how she comes to do so, and why she doesn't mis-set the other two parameters we are concerned with here). However, an alternative possibility is that the structure What doing? is a nonfinite clause (like adult questions such as Why worry?) and has the kind of nonfinite ('big PRO') null subject found in nonfinite clauses in many languages (English included). If
so (i.e. if What doing is a nonfinite clause which has the structure What PRO doing?), there would be no evidence that Lucy has mis-set the the Null Subject Parameter - i.e. no evidence that she ever produces finite clauses with a 'little pro' subject. This in turn would mean that we can maintain the hypothesis put forward in the main text that children correctly set parameters at their appropriate value from the very earliest stages of the acquisition of syntax. The error Lucy makes in producing sentences like What doing? would be in not knowing that main clauses generally have to be finite in English, and that main clause questions generally have to contain a finite auxiliary.

Exercise 1.2

In the text, we noted that the Head Position Parameter has a uniform head-first setting (in the sense that all heads precede their complements) in English, and a uniform head-last setting (in the sense that all heads follow their complements) in Korean. However, we also noted that there are languages in which some heads precede their complements (giving rise to head-first structures), and others follow them (giving rise to head-last structures). German is argued by some to be a language of this latter type, in which (e.g.) prepositions, determiners and complementisers canonically precede their complements, but (auxiliary and main) verbs canonically follow their complements. Discuss the extent to which German sentences like those in 1-5 below (kindly provided for me by Harald Clahsen) bear out this claim, and say which examples prove problematic and why.

1 | Hans muss stolz auf seine Mutter sein |
| :--- |
| Hans must proud of his mother be |
| 'Hans must be proud of his mother' |

$3 \quad$| Hans geht den Fluss entlang |
| :--- |
| |
| Hans goes the river along |
| 'Hans goes along the river' | Hans must proud of his mother be 'Hans must be proud of his mother'

Hans goes the river along
'Hans goes along the river'
5 Ich glaube dass Hans die Aufgaben lösen muss
I think that Hans the exercises do must
'I think that Hans must do the exercises'
Likewise, in the text we claimed that the Wh-Parameter has a uniform setting in that languages either do or don't systematically prepose wh-expressions. Discuss the potential problems posed for this claim by colloquial French interrogative structures such as those below:

```
6 Où tu vas?
Where you go?
'Where are you going?'
```


8 Dis-moi où tu vas
 Tell-me where you go
 'Tell me where you are going'

7 Tu vas où?
You go where?
'Where are you going?'
9 *Dis-moi tu vas où
Tell-me you go where
(intended as synonymous with 8)

Helpful hints

In relation to the German sentences in 1-5, make the following assumptions about their structure. In 1 and 2 muss is a finite (modal) verb, Hans is its subject and stolz auf seine Mutter sein is its complement; sein is an infinitive verb-form and stolz auf seine Mutter is its complement; stolz is an adjective, and auf seine Mutter is its complement; auf is a preposition and seine Mutter is its complement; seine is a determiner, and Mutter is its complement. In 3 geht is a verb, Hans is its subject and den Fluss entlang is its complement; entlang is a preposition (or, more precisely, a postposition) and den Fluss is its complement; den is a determiner and Fluss is its complement. In 4 muss is a finite verb, Hans is its subject and die Aufgaben lösen is its complement; lösen is a non-finite verb in the infinitive form, and die Aufgaben is its complement; die is a determiner and Aufgaben is its complement. In 5 glaube is a finite verb, ich is its subject and dass Hans die Aufgaben lösen muss is its complement; dass is a complementiser (i.e. a complement-clause introducing particle or conjunction) and Hans die Aufgaben lösen muss is its complement; muss is a finite verb, Hans is its subject, and die Aufgaben lösen is its complement; lösen is a non-finite verb in the infinitive form and die Aufgaben is its complement; die is a determiner and

Aufgaben is its complement.
In relation to the examples in 1-5, identify all the prepositions, complementisers and determiners you can find in the sentences, and say whether (as claimed above) these precede their complements. Likewise, identify all the (auxiliary and main) verbs found in the sentences and say whether they do (or do not) follow their complements, as claimed above. Pay particular attention to heads which are exceptions to the relevant generalisations about head-position. Assume that exceptional word order can be accounted for either in lexical terms (e.g. that the lexical entry for a particular preposition may say that it does not occupy the canonical head-first position found in typical prepositional phrases), or in structural terms (in that a particular kind of head may undergo a movement operation which moves it out of its canonical position). In relation to possible structural factors which mask the underlying word order in German, bear in mind that German is traditionally claimed to be a verb-second/V2 language - i.e. a language in which a finite verb $(=\mathrm{V})$ in a main clause is moved out of its canonical position into second position in the clause - e.g. into a position where it immediately follows a subject expression like Hans or ich 'I'. In addition, comment on the problems posed by determining the canonical setting of the Head Position Parameter for adjectival phrases in German.

In relation to the French sentences in 6-9, bear in mind that Où tu vas and Tu vas où are main clauses in 6/7 and complement clauses in 8/9 (in that they serve as the complement of the imperative verb dis 'tell' in $8 / 9$). Is there an asymmetry between how wh-movement works in main clauses and in complement clauses? Does this suggest that it may be too simplistic to posit a Wh-Parameter under which wh-expressions either are or aren't systematically preposed? Why?

Model answer for 1

In 1, the determiner seine 'his' precedes its complement Mutter 'mother', and the preposition auf 'of' precedes its complement seine Mutter 'his mother', in accordance with the suggested generalisation that determiners and prepositions in German show canonical head-first order and hence are typically positioned before their complements. The adjective adjective stolz 'proud' also precedes its complement auf seine Mutter 'of his mother' in 1. By contrast, the verb sein 'be' follows its complement stolz auf seine Mutter 'proud of his mother'. One possible generalisation which this might suggest is the following:
(i) In German, verbs are canonically positioned after their complements, but other heads are canonically positioned before their complements

However, an apparent exception to the claim made in (i) is posed by the fact that the finite verb muss 'must' in the main clause precedes its own complement stolz auf seine Mutter sein 'proud of his mother be'. This apparently exceptional word order is arguably attributable to the status of German as a so-called verb-second language - i.e. a language which has a verb-fronting operation which moves a finite verb in a main clause out of the canonical clause-final position occupied by verbs (including by the verb muss in 5) into second position within the clause: as a result of this movement operation, the verb muss comes to follow the main clause subject Hans. (For a discussion of the structure of verb-second clauses in German, see Radford et al 1999, pp.349-354 - though some of the material there may not be clear to you until you have read the first 6 chapters in this book.)

2.

Words

2.1 Overview

In this chapter, we look at the grammatical properties of words. We begin by looking at the categorial properties of words and at how we determine what grammatical category a given word belongs to (in a given use): in the course of our discussion we introduce some new categories which will not be familiar from traditional grammar. We go on to show that categorial information alone is not sufficient to describe the grammatical properties of words, ultimately concluding that the grammatical properties of words must be characterised in terms of sets of grammatical features.

2.2 Grammatical categories

Words are traditionally assigned to grammatical categories on the basis of their shared morphological and syntactic properties. The morphological criteria for categorising words concern their inflectional and derivational properties. Inflectional properties relate to different forms of the same word (e.g. the plural form of a noun like cat is formed by adding the plural inflection $-s$ to give the form cats); derivational properties relate to the processes by which a word can be used to form a different kind of word by the addition of an affix of some kind (e.g. by adding the suffix -ness to the adjective sad we can form the noun sadness). Although English has a highly impoverished system of inflectional morphology, there are nonetheless two major categories of word which have distinctive inflectional properties - namely nouns and verbs. We can identify the class of nouns in terms of the fact that they generally inflect for number, and thus have distinct singular and plural forms - cf. pairs such as dog/dogs, man/men, ox/oxen, etc. Accordingly, we can differentiate a noun like fool from an adjective like foolish by virtue of the fact that only (regular) nouns like fool - not adjectives like foolish - can carry the noun plural inflection $-s$: cf.

(1) They are fools [noun]/*foolishes [adjective]

There are several complications which should be pointed out, however. One is the existence of irregular nouns like sheep which are invariable and hence have a common singular/plural form (cf. one sheep, two sheep). A second is that some nouns are intrinsically singular (and so have no plural form) by virtue of their meaning: only those nouns (called count nouns) which denote entities which can be counted have a plural form (e.g. chair - cf. one chair, two chairs); some nouns denote an uncountable mass and for this reason are called mass nouns or non-count nouns, and so cannot be pluralised (e.g. furniture - hence the ungrammaticality of *one furniture, *two furnitures). A third is that some nouns (e.g. scissors and trousers) have a plural form but no countable singular form. A fourth complication is posed by noun expressions which contain more than one noun; only the head noun in such expressions can be pluralised, not any preceding noun used as a modifier of the head noun: thus, in expressions such as car doors, policy decisions, skate boards, horse boxes, trouser presses, coat hangers, etc. the second noun is the head noun and can be pluralised, whereas the first noun is a modifier some kind and cannot be pluralised.

In much the same way, we can identify verbs by their inflectional morphology in English. In addition to their uninflected base form (= the citation form under which they are listed in dictionaries), verbs typically have up to four different inflected forms, formed by adding one of four inflections to the appropriate stem form: the relevant inflections are the perfect/passive participle suffix $-n$, the past tense suffix $-d$, the third person singular present tense suffix $-s$, and the progressive participle/gerund suffix -ing. Like most morphological criteria, however, this one is complicated by the irregular and impoverished nature of English inflectional morphology; for example, many verbs have irregular past or perfect forms, and in some cases either or both of these forms may not in fact be distinct from the (uninflected) base form, so that a single form may serve two or three functions (thereby neutralising or syncretising the relevant distinctions), as the table in (2) below illustrates:

(2) TABLE OF VERB FORMS

BASE	PERFECT	PAST	PRESENT	PROGRESSIVE			
show	shown	showed	shows	showing			
go	gone	went	goes	going			
speak	spoken	spoke	speaks	speaking			
see	seen	saw	sees	seeing			
wait	come	comes	coming				
meet	waited	waits	waiting				
met						meets	meeting

(The largest class of verbs in English are regular verbs which have the morphological characteristics of wait, and so have past, perfect and passive forms ending in the suffix $-d$.) The picture becomes even more complicated if we take into account the verb be, which has eight distinct forms (viz. the base form be, the perfect form been, the progressive form being, the past forms was/were, and the present forms am/are/is). The most regular verb suffix in English is -ing, which can be attached to the base form of almost any verb (though a handful of defective verbs like beware are exceptions).

The obvious implication of our discussion of nouns and verbs here is that it would not be possible to provide a systematic account of English inflectional morphology unless we were to posit that words belong to grammatical categories, and that a specific type of inflection attaches only to a specific category of word. The same is also true if we wish to provide an adequate account of derivational morphology in English (i.e. the processes by which words are derived from other words): this is because particular derivational affixes can only be attached to words belonging to particular categories. For example, the negative prefixes un- and in- can be attached to adjectives to form a corresponding negative adjective (cf. pairs such as happy/unhappy and flexible/inflexible) but not to nouns (so that a noun like fear has no negative counterpart *unfear), nor to prepositions (so that a preposition like inside has no negative antonym *uninside). Similarly, the adverbialising (i.e. adverb-forming) suffix -ly in English can be attached only to adjectives (giving rise to adjective/adverb pairs such as sad/sadly) and cannot be attached to a noun like computer, or to a verb like accept, or to a preposition like with. Likewise, the nominalising (i.e. noun-forming) suffix -ness can be attached only to adjective stems (so giving rise to adjective/noun pairs such as coarse/coarseness), not to nouns, verbs or prepositions (Hence we don't find -ness derivatives for a noun like boy, or a verb like resemble, or a preposition like down). In much the same way, the comparative suffix -er can be attached to adjectives (cf. tall/taller) and some adverbs (cf. soon/sooner) but not to other types of word (cf. woman/*womanner); and the superlative suffix -est can attach to adjectives (cf. tall/tallest) but not other types of word (cf. e.g. down/*downest; donkey/*donkiest, enjoy/*enjoyest). There is no point in multiplying examples here: it is clear that derivational affixes have categorial properties, and any account of derivational morphology will clearly have to recognise this fact (See e.g. Aronoff 1976, and Fabb 1988).

As we noted earlier, there is also syntactic evidence for assigning words to categories: this essentially relates to the fact that different categories of words have different distributions (i.e. occupy a different range of positions within phrases or sentences). For example, if we want to complete the four-word sentence in (3) below by inserting a single word at the end of the sentence in the --- position:
(3) They have no ---
we can use an (appropriate kind of) noun, but not a verb, preposition, adjective, or adverb, as we see from:
(4)(a) They have no car/consciencelfriends/ideas [nouns]
(b) *They have no went [verb]/for [preposition]/older [adjective]/conscientiously [adverb]

So, using the relevant syntactic criterion, we can define the class of nouns as the set of words which can terminate a sentence in the position marked --- in (3).

Using the same type of syntactic evidence, we could argue that only a verb (in its infinitive/base form) can occur in the position marked --- in (5) below to form a complete (non-elliptical) sentence:
(5) They/it can ---

Support for this claim comes from the contrasts in (6) below:
(6)(a) They can stay/leave/hide/die/starve/cry [verb]
(b) *They can gorgeous [adjective]/happily [adverb]/down [preposition]/door [noun]

And the only category of word which can occur after very (in the sense of extremely) is an adjective or adverb, as we see from (7) below:
(7)(a) He is very slow [very+adjective]
(b) He walks very slowly [very+adverb]
(c) *Very fools waste time [very+noun]
(d) *He very adores her $[$ very + verb $]$
(e) *It happened very after the party [very+preposition]
(But note that very can only be used to modify adjectives/adverbs which by virtue of their meaning are gradable and so can be qualified by words like very/rather/somewhat etc; adjectives/adverbs which denote an absolute state are ungradable by virtue of their meaning, and so cannot be qualified in the same way - hence the oddity of !Fifteen students were very present, and five were very absent, where! marks semantic anomaly.)

Moreover, we can differentiate adjectives from adverbs in syntactic terms. For example, only adverbs can be used to end sentences such as He treats her ---, She behaved ---, He worded the statement ---: cf.
(8)(a) He treats her badly [adverb]/*kind [adjective]/*shame [noun]/*under [preposition]
(b) She behaved abominably [adverb]/*appalling [adjective]/*disgrace [noun]/*down [preposition]
(c) He worded the statement carefully [adverb]/*good [adjective]/*tact [noun]/*in [preposition]

And since adjectives (but not adverbs) can serve as the complement of the verb be (i.e. can be used after $b e$), we can delimit the class of (gradable) adjectives uniquely by saying that only adjectives can be used to complete a four-word sentence of the form They are very ---: cf.
(9)(a) They are very tall/pretty/kind/nice [adjective]
(b) *They are very slowly [adverb]/gentlemen [noun]/astonish [verb]/outside [preposition]

Another way of differentiating between an adjective like real and an adverb like really is that adjectives are used to modify nouns, whereas adverbs are used to modify other types of expression: cf.
(10)(a) There is a real crisis [real+noun]
(c) He walks really slowly [really+adverb]
(e) He must really squirm [really+verb]
(b) He is really nice [really+adjective]
(d) He is really down [really+preposition]

Adjectives used to modify a following noun (like real in There is a real crisis) are traditionally said to be attributive in function, whereas those which do not modify a following noun (like real in The crisis is real) are said to be predicative in function.

As for the syntactic properties of prepositions, they alone can be intensified by right in the sense of 'completely', or by straight in the sense of 'directly':
(11)(a) Go right up the ladder
(b) He went right inside
(c) He walked straight into a wall
(d) He fell straight down

By contrast, other categories cannot be intensified by right/straight (in Standard English): cf.
(12)(a) *He right/straight despaired [right/straight+verb]
(b) *She is right/straight pretty [right/straight+adjective]
(c) *She looked at him right/straight strangely [right/straight+adverb]
(d) *They are right/straight fools [right/straight+noun]

It should be noted, however, that since right/straight serve to intensify the meaning of a preposition, they can only be combined with those (uses of) prepositions which express the kind of meaning which can be intensified in the appropriate way (so that He made right/straight for the exit is OK , but *He bought a present right/straight for Mary is not).

A further syntactic property of some prepositions (namely those which take a following noun or pronoun expression as their complement - traditionally called transitive prepositions) which they share in common with (transitive) verbs is the fact that they permit an immediately following accusative pronoun as their complement (i.e. a pronoun in its accusative form, like me/us/him/them): cf.
(13)(a) She was against him [transitive preposition+accusative pronoun]
(b) She was watching him [transitive verb+accusative pronoun]
(c) *She is fond him [adjective + accusative pronoun]
(d) *She works independently him [adverb+accusative pronoun]
(e) *She showed me a photo him [noun+accusative pronoun]

Even though a preposition like with does not express the kind of meaning which allows it to be intensified by right or straight, we know it is a (transitive) preposition because it is invariable (so not e.g. a verb) and permits an accusative pronoun as its complement, e.g. in sentences such as He argued with me/us/him/ them. (For obvious reasons, this test can't be used with prepositions used intransitively without any complement, like those in $11 \mathrm{~b} / 11 \mathrm{~d}$ above.)

2.3 Categorising words

Given that different categories have different morphological and syntactic properties, it follows that we can use the morphological and syntactic properties of a word to determine its categorisation (i.e. what category it belongs to). The morphological properties of a given word provide an initial rough guide to its categorial status: in order to determine the categorial status of an individual word, we can ask whether it has the inflectional and derivational properties of a particular category of word. For example, we can tell that happy is an adjective by virtue of the fact that it has the derivational properties of typical adjectives: it can take the negative prefix un- (giving rise to the negative adjective unhappy), the comparative/superlative suffixes -er/-est (giving rise to the forms happier/happiest), the adverbialising suffix -ly (giving rise to the adverb happily), and the nominalising suffix -ness (giving rise to the noun happiness).

However, we cannot always rely entirely on morphological clues, owing to the fact that morphology is sometimes irregular, sometimes subject to idiosyncratic restrictions, and sometimes of limited productivity. For example, although regular adverbs (like quickly, slowly, painfully etc.) generally end in the derivational suffix -ly, this is not true of irregular adverbs like fast (e.g. in He walks fast); moreover, when they have the comparative suffix -er added to them, regular adverbs lose their -ly suffix because English is a monosuffixal language (in the sense of Aronoff and Fuhrhop 2002), so that the comparative form of the adverb quickly is quicker not *quicklier. What all of this means is that a word belonging to a given class may have only some of the relevant morphological properties. For example, although the adjective fat has comparative/superlative forms in -er/-est (cf. fat/fatter/fattest), it has no negative uncounterpart (cf. *unfat), and no adverb counterpart in -ly (cf. *fatly).

So, given the potential problems which arise with morphological criteria, it is unwise to rely solely on morphological evidence in determining categorial status: rather, we should use morphological criteria in conjunction with syntactic criteria (i.e. criteria relating to the range of positions that words can occupy within phrases and sentences). One syntactic test which can be used to determine the category that a particular word belongs to is that of substitution - i.e. seeing whether (in a given sentence), the word in question can be substituted by a regular noun, verb, preposition, adjective, or adverb etc. We can use the substitution technique to differentiate between comparative adjectives and adverbs ending in -er, since they have identical forms. For example, in the case of sentences like:

(14)(a) He is better at French than you

(b) He speaks French better than you
we find that better can be replaced by a more+adjective expression like more fluent in (14a) but not (14b), and conversely that better can be replaced by a more + adverb expression like more fluently in (14b) but not in (14a): cf.
(15)(a) $\quad \mathrm{He}$ is more fluent/*more fluently at French than you
(b) He speaks French more fluently/*more fluent than you

Thus, the substitution test provides us with syntactic evidence that better is an adjective in (14a), but an adverb in (14b).

The overall conclusion to be drawn from our discussion is that morphological evidence may sometimes be inconclusive, and has to be checked against syntactic evidence. A useful syntactic test which can be employed is that of substitution: e.g. if a morphologically indeterminate word can be substituted by a regular noun wherever it occurs, then the relevant word has the same categorial status as the substitute word which can replace it, and so is a noun.

2.4 Functional categories

Thus far, we have looked at the five major grammatical categories of English (i.e. the five categories with the largest membership), viz. noun, verb, preposition, adjective and adverb. For typographical convenience, it is standard practice to use capital-letter abbreviations for categories, and so to use N for noun, V for verb, P for preposition, A for adjective and ADV for adverb. The words which belong to these five categories are traditionally said to be contentives (or content words), in that they have substantive descriptive content. However, in addition to content words languages also contain functors (or function words) - i.e. words which serve primarily to carry information about the grammatical function of particular types of expression within the sentence (e.g. information about grammatical properties such as person, number, gender, case, etc.). The differences between contentives and functors can be illustrated by comparing a (contentive) noun like car with a (functional) pronoun like they. A noun like car has obvious descriptive content in that it denotes an object which typically has four wheels and an engine, and it would be easy enough to draw a picture of a typical car; by contrast, a pronoun such as they has no descriptive content (e.g. you can't draw a picture of they), but rather is a functor which (as we shall see shortly) simply encodes a set of grammatical (more specifically, person, number and case) properties in that it is a third person plural nominative pronoun.

One test of whether words have descriptive content is to see whether they have antonyms (i.e. opposites): if a word has an antonym, it is a contentive (though if it has no antonym, you can't be sure whether it is a functor or a contentive). For example, a noun/ \mathbf{N} such as loss has the antonym gain; a verb/V such as rise has the antonym fall; an adjective/A such as tall has the antonym short; an adverb/ADV such as early (as in He arrived early) has the antonym late; and a preposition/P such as inside has the antonym outside. This reflects the fact that nouns, verbs, adjectives, adverbs and prepositions typically have substantive descriptive content, and so are contentives. By contrast, a particle like infinitival to, or an auxiliary like $d o$ (cf. 'Do you want to smoke?'), or a determiner like the, or a pronoun like they, or a complementiser (i.e. complement-clause introducing particle) like that (as used in a sentence like 'I said that I was tired') have no obvious antonyms, and thus can be said to lack descriptive content, and so to be functors. Using rather different (but equivalent) terminology, we can say that contentives have substantive lexical content (i.e. idiosyncratic descriptive content which varies from one lexical item/word to another), whereas functors have functional content. We can then conclude that nouns, verbs, adjectives, adverbs and prepositions are lexical or substantive categories (because the words belonging to these categories have substantive lexical/descriptive content) whereas particles, auxiliaries, determiners, pronouns and complementisers are functional categories (because words belonging to these categories have an essentially grammatical function). In the sections that follow, we take a closer look at the main functional categories found in English.

2.5 Determiners and quantifiers

The first type of functional category which we shall deal with is the category of determiner (abbreviated to D, or sometimes DET). Items such as those bold-printed in (16) below (as used there) are traditionally said to be (referential) determiners (because they determine the referential properties of the italicized noun expression which follows them):
(16)(a) The village store is closed
(b) This appalling behaviour has got to stop
(c) That dog of yours is crazy

Referential determiners are used to introduce referring expressions: an expression like the car in a sentence such as Shall we take the car? is a referring expression in the sense that it is typically used to refer to a specific car which is assumed to be familiar to the hearer/addressee.

A related class of words are those which belong to the category quantifier (abbreviated to Q), and this is traditionally said to include items like those bold-printed below:
(17)(a) Most good comedians tell some bad jokes
(b) Many students have no money
(c) Every true Scotsman hates all Englishmen
(d) Each exercise contains several examples

Such items are termed quantifiers because they serve to quantify the italicised noun expression which follows them.

Since determiners and quantifiers are positioned in front of nouns (cf. the boys and many boys), and adjectives can similarly be positioned in front of nouns (cf. tall boys), an obvious question to ask at this point is why we couldn't just say that the determiners/quantifiers in $(16 / 17)$ have the categorial status of adjectives. The answer is that any attempt to analyse determiners or quantifiers as adjectives in English runs up against a number of serious descriptive problems. Let's see why.

One reason for not subsuming determiners/quantifiers within the category of adjectives is that they are syntactically distinct from adjectives in a variety of ways. For example, adjectives can be iteratively (i.e. repeatedly) stacked in front of a noun they modify, in the sense that you can go on putting more and more adjectives in front of a given noun (as in handsome strangers, dark handsome strangers, tall dark handsome strangers, sensitive tall handsome strangers, etc.). By contrast, neither determiners nor quantifiers can be stacked in this way (so that although we can have a quantifier+determiner+noun expression like both the twins, we cannot have a multiple determiner expression like *the these books or a multiple quantifier expression such as *all both twins). Moreover, determiners, quantifiers and adjectives can be used together to modify a noun, but when they do so, any determiner or quantifier modifying the noun has to precede any adjective(s) modifying the noun: cf. e.g.
(18)(a) the same old excuses [determiner+adjective+adjective + noun]
(b) *same the old excuses [adjective+determiner+adjective + noun]
(c) *same old the excuses [adjective+adjective+determiner+noun]

Thus, determiners and quantifiers seem to have a different distribution (and hence to be categorially distinct) from adjectives.

A further difference between determiners/quantifiers and adjectives can be illustrated in relation to what speaker B can - and cannot - reply in the following dialogue:

```
SPEAKER A: What are you looking for?
SPEAKER B: *Chair/*Comfortable chair/A chair/Another chair/The chair/That chair
```

As noted earlier, nouns like chair have the property that they are countable (in the sense that we can say one chair, two chairs, etc.), and in this respect they differ from mass nouns like furniture which are uncountable (hence we can't say *one furniture, *two furnitures, etc). We see from (19) that a singular count noun like chair cannot stand on its own as a complete noun expression, nor indeed can it function as such even if modified by an adjective like comfortable; rather, a singular count noun requires a modifying determiner or quantifier like a/another/the/that etc. This provides us with clear evidence that determiners and quantifiers in English have a different categorial status from adjectives.

It seems reasonable to suppose that determiners and quantifiers are functional categories whereas adjectives are a lexical/substantive category. After all, there is an obvious sense in which adjectives (e.g. thoughtful) have descriptive content but determiners and quantifiers do not - as we can illustrate in terms of the following contrast (? and ! are used to denote increasing degrees of semantic/pragmatic anomaly):

(20)(a) a thoughtful friend/?cat/??fish/?!pan/!problem

(b) a/another/every/the/this friend/cat/fish/pan/problem

As (20a) illustrates, an adjective like thoughtful can only be used to modify certain types of noun; this is because its descriptive content is such that it is only compatible with (e.g.) an expression denoting a rational (mind-possessing) entity. By contrast, determiners/quantifiers like those bold-printed in (20b) lack specific descriptive content, and hence can be used to modify any semantic class of noun (the only restrictions being grammatical in nature - e.g. a(n)/another can only be used to modify a singular count noun expression). Thus, it seems appropriate to conclude that determiners and quantifiers are functional categories, and adjectives a lexical category.

2.6 Pronouns

Traditional grammars posit a category of pronoun (which we can abbreviate as PRN) to denote a class of words which are said to 'stand in place of' (the meaning of the prefix pro-) or 'refer back to' noun expressions. However, there are reasons to think that there are a number of different types of
pronoun found in English and other languages (See Déchaine and Wiltschko 2002). One such type is represented by the word one in the use illustrated below:
(21)(a) John has a red car and Jim has a blue one
(b) I'll take the green apples if you haven't got any red ones

From a grammatical perspective, one behaves like a regular count noun here in that it has the s-plural form ones and occurs in a position (after an adjective like blue/red) in which a count noun could occur. However, it is a pronoun in the sense that it has no descriptive content of its own, but rather takes its descriptive content from its antecedent (e.g. one in (21a) refers back to the noun car and so one is interpreted as meaning 'car'). Let's refer to this kind of pronoun as an \mathbf{N}-pronoun (or pronominal noun).

By contrast, in the examples in (22) below, the bold-printed pronoun seems to serve as a pronominal quantifier. In the first (italicised) occurrence in each pair of examples, it is a prenominal (i.e. nounpreceding) quantifier which modifies a following noun expression (viz. guests/miners/protesters/son/ cigarettes/bananas); in the second (bold-printed) occurrence it has no noun expression following it and so functions as a pronominal quantifier:
(22)(a) All guests are welcome/All are welcome
(b) Many miners died in the accident/Many died in the accident
(c) Several protesters were arrested/Several were arrested
(d) Each son was envious of the other/Each was envious of the other
(e) I don't have any cigarettes/I don't have any
(f) We have no bananas/We have none

We might therefore refer to pronouns like those bold-printed in (22) as Q-pronouns (or pronominal quantifiers).

A third type of pronoun are those bold-printed in the examples below:

(23)(a) I prefer this tie/I prefer this

(b) I haven't read that book/I haven't read that
(c) I don't particularly like these hats/I don't particularly like these
(d) Have you already paid for those items/Have you already paid for those?

Since the relevant items can also serve (in the italicised use) as prenominal determiners which modify a following noun, we can refer to them as D-pronouns (i.e. as pronominal determiners).

A further type of pronoun posited in traditional grammar are so-called personal pronouns like I/me/we/us/you/he/him/she/her/it/they/them. These are called personal pronouns not because they denote people (the pronoun it is not normally used to denote a person), but rather because they encode the grammatical property of person. In the relevant technical sense, I/me/my/we/us/our are said to be first person pronouns, in that they are expressions whose reference includes the person/s speaking; you/your are second person pronouns, in that their reference includes the addressee/s (viz. the person/s being spoken to), but excludes the speaker/s; he/him/his/she/her/it/its/they/them/their are third person pronouns in the sense that they refer to entities other than the speaker/s and addressee/s. Personal pronouns differ morphologically from nouns and other pronouns in modern English in that they generally have (partially) distinct nominative, accusative and genitive case forms, whereas nouns have a common nominative/accusative form and a distinct genitive 's form - as we see from the contrasts below:
(24)(a) John snores/He snores
(b) Find John!/Find him!
(c) Look at John's trousers!/Look at his trousers!

Personal pronouns like he/him/his and nouns like John/John's change their morphological form according to the position which they occupy within the sentence, so that the nominative forms he/John are required as the subject of a finite verb like snores, whereas the accusative forms him/John are required when used as the complement of a transitive verb like find (or when used as the complement of a transitive preposition), and the genitive forms his/John's are required (inter alia) when used to express possession: these variations reflect different case forms of the relevant items.

Personal pronouns are functors by virtue of lacking descriptive content: whereas a noun like dogs denotes a specific type of animal, a personal pronoun like they denotes no specific type of entity, but has
to have its reference determined from the linguistic or nonlinguistic context. Personal pronouns encode the grammatical properties of (first, second or third) person, (singular or plural) number, (masculine, feminine or neuter/inanimate) gender and (nominative, accusative or genitive) case, as shown in the table in (25) below:
(25) Table of personal pronoun forms

PERSON	NUMBER	GENDER	NOMINATIVE	ACCUSATIVE	GENITIVE
1	SG	M / F	I	me	my/mine
1	PL	M / F	we	us	our/ours
2	SG/PL	M / F	you	you	your/yours
3	SG	M	he	him	his
3	SG	F	she	her	her/hers
3	SG	N	it	it	its
3	PL	$\mathrm{M} / \mathrm{F} / \mathrm{N}$	they	them	their/theirs

($\mathrm{SG}=$ singular; $\mathrm{PL}=$ plural; $\mathrm{M}=$ masculine; $\mathrm{F}=$ feminine; $\mathrm{N}=$ neuter. Note that some genitive pronouns have separate weak and strong forms, the weak form being used prenominally to modify a following noun expression - as in 'Take my car' - and the strong form being used pronominally - as in 'Take mine'.) On the nature of gender features in English, see Namai (2000).

But what grammatical category do personal pronouns belong to? Studies by Postal (1966), Abney (1987), Longobardi (1994) and Lyons (1999) suggest that they are D-pronouns. This assumption would provide us with a unitary analysis of the syntax of the bold-printed items in the bracketed expressions in sentences such as ($26 \mathrm{a} / \mathrm{b}$) below:
(26)(a) [We republicans] don't trust [you democrats] (b) [We] don't trust [you]

Since we and you in (26a) modify the nouns republicans/democrats and since determiners like the are typically used to modify nouns, it seems reasonable to suppose that welyou function as prenominal determiners in (26a). But if this is so, it is plausible to suppose that we and you also have the categorial status of determiners (i.e. D-pronouns) in sentences like (26b). It would then follow that welyou have the categorial status of determiners in both (26a) and (26b), but differ in that they are used prenominally (i.e. with a following noun expression) in (26a), but pronominally (i.e. without any following noun expression) in (26b). Note, however, that third person pronouns like he/she/it/they are typically used only pronominally - hence the ungrammaticality of expressions such as *they boys in standard varieties of English (though this is grammatical in some non-standard varieties of English - e.g. that spoken in Bristol in South-West England). Whether or not such items are used prenominally, pronominally or in both ways is a lexical property of particular items (i.e. an idiosyncratic property of individual words).

Because a number of aspects of the syntax of pronouns remain to be clarified and because the category pronoun is familiar from centuries of grammatical tradition, the label PRN/pronoun will be used throughout the rest of this book to designate pronouns. It should, however, be borne in mind that there are a number of different types of pronoun (including N-pronouns, Q-pronouns and D-pronouns), so that the term pronoun does not designate a unitary category. Some linguists prefer the alternative term proform (so that e.g. when used pronominally, one could be described as an \mathbf{N}-proform or pro-N).

2.7 Auxiliaries

Having looked at the nominal functional category pronoun, we now turn to look at the verbal functional category auxiliary. Traditional grammarians posit that there is a special class of items which once functioned simply as verbs, but in the course of the evolution of the English language have become sufficiently distinct from main verbs that they are now regarded as belonging to a different category of auxiliary (conventionally abbreviated to AUX).

Auxiliaries differ from main verbs in a number of ways. Whereas a typical main verb like want may take a range of different types of complement (e.g. an infinitival to-complement as in I want [(you) to go home], or a noun expression as in I want [lots of money]), by contrast auxiliaries typically allow only a verb expression as their complement, and have the semantic function of marking grammatical properties associated with the relevant verb, such as tense, aspect, voice, or mood. The items italicised in (27) below
(in the use illustrated there) are traditionally categorised as auxiliaries taking a [bracketed] complement containing a bold-printed non-finite verb:
(27)(a) He has/had [gone]
(c) They are/were [taken away for questioning]
(e) You can/could [help us]
(g) He will/would [get upset]
(i) You must [finish your assignment]
(b) She is/was [staying at home]
(d) He really does/did [say a lot]
(f) They may/might [come back]
(h) I shall/should [return]
(j) You ought [to apologise]

In the uses illustrated here, have/be in (27a/b) are (perfect/progressive) aspect auxiliaries, be in (27c) is a (passive) voice auxiliary, do in (27d) a (present/past) tense auxiliary, and can/could/may/might/will/ would/shall/should/must/ought in (27e-j) modal auxiliaries. As will be apparent, ought differs from other modal auxiliaries like should which take an infinitive complement in requiring use of infinitival to.

There are clear syntactic differences between auxiliaries and verbs. For example (as we saw in §1.5), auxiliaries can undergo inversion (and thereby be moved into pre-subject position) in questions such as (28) below, where the inverted auxiliary is italicised and the subject is bold-printed:
(28)(a)
Can you speak Japanese?
(b) Does he smoke?
(c) Is it raining?

By contrast, typical verbs do not themselves permit inversion, but rather require what is traditionally called DO-support (i.e. they have inverted forms which require the use of the auxiliary DO): cf.
(29)(a) *Intends he to come?
(b) Does he intend to come?
(c) *Saw you the mayor?
(d) Did you see the mayor?
(e) *Plays he the piano?
(f) Does he play the piano?

A second difference between auxiliaries and verbs is that auxiliaries can generally be directly negated by a following not (which can usually attach to the auxiliary in the guise of its contracted form n ' t): cf.
(30)(a) John could not/couldn't come to the party
(c) He is not/isn't working very hard
(b) I do not/don't like her much
(d) They have not/haven't finished

By contrast, verbs cannot themselves be directly negated by not/n't, but require indirect negation through the use of DO-support: cf.
(31)(a) *They like not/liken't me
(b) They do not/don't like me
(c) *I see not/seen't the point
(d) I do not/don't see the point
(e) *You came not/camen't
(f) You did not/didn't come

And thirdly, auxiliaries can appear in sentence-final tags, as illustrated by the examples below (where the part of the sentence following the comma is traditionally referred to as a tag): cf.
(32)(a) You don't like her, do you?
(b) He won't win, will he?
(c) She isn't working, is she?
(d) He can't drive, can he?

In contrast, verbs can't themselves be used in tags, but rather require the use of do-tags: cf.
(33)(a) You like her, $d o{ }^{*}$ like you?
(b) They want one, do/* want they?

So, on the basis of these (and other) syntactic properties, we can conclude that auxiliaries constitute a different category from verbs.

2.8 Infinitival to

A fourth type of functor found in English is the infinitive particle to - so called because the only kind of complement it allows is one containing a verb in the infinitive form (The infinitive form of the verb is its uninflected base form, i.e. the citation form found in dictionary entries). Typical uses of infinitival to are illustrated in (34) below:
(34)(a) I wonder whether to [go home]
(b) Many people want the government to [change course]
(c) We don't intend to [surrender]

In each example in (34), the [bracketed] complement of to is an expression containing a verb in the infinitive form (viz. the infinitives go, change, and surrender). But what is the status of infinitival to?

In the late 1970s, Chomsky suggested that there are significant similarities between infinitival to and a typical auxiliary like should. For example, they occupy a similar position within the clause: cf.
(35)(a) It's vital [that John should show an interest]
(b) It's vital [for John to show an interest]

We see from (35) that to and should are both positioned between the subject John and the verb show. Moreover, just as should requires after it a verb in the infinitive form (cf. 'You should show/*showing/ *shown more interest in syntax'), so too does infinitival to (cf 'Try to show/*showing/*shown more interest in syntax'). Furthermore, infinitival to behaves like typical auxiliaries (e.g. should) but unlike typical nonauxiliary verbs (e.g. want) in allowing ellipsis/omission of its complement: cf.
(36)(a) I don't really want to go to the dentist's, but I know I should
(b) I know I should go to the dentist's, but I just don't want to
(c) *I know I should go to the dentist's, but I just don't want

The fact that to patterns like the auxiliary should in several respects strengthens the case for regarding infinitival to and auxiliaries as belonging to the same category. But what category?

Chomsky (1981, p. 18) suggested that the resulting category (comprising finite auxiliaries and infinitival to) be labelled INFL or Inflection, though (in accordance with the standard practice of using single-letter symbols to designate word categories) in later work (1986b, p.3) he replaced INFL by the single-letter symbol I. The general idea behind this label is that finite auxiliaries are inflected forms (e.g. in 'He doesn't know', the auxiliary doesn' t carries the third person singular present tense inflection $-s$), and infinitival to serves much the same function in English as infinitive inflections in languages like Italian which have overtly inflected infinitives (so that Italian canta-re = English to sing). Under the INFL analysis, an auxiliary like should is a finite I/INFL, whereas the particle to is an infinitival I/INFL.

However, in work since the mid 1990s, a somewhat different categorisation of auxiliaries and infinitival to has been adopted. As a glance at the examples in (27a-h) will show, finite auxiliaries typically have two distinct forms - a present tense form, and a corresponding past tense form (cf. pairs such as does/did, is/was, has/had, can/could etc.). Thus, a common property shared by all finite auxiliaries is that they mark (present/past) Tense. In much the same way, it might be argued that infinitival to has Tense properties, as we can see from the examples below:
(37)(a) We believe [the President may have been lying]
(b) We believe [the President to have been lying]

In (37a), the bracketed complement clause has a present tense interpretation (paraphraseable as 'We believe it is possible that the president has been lying'): this is because it contains the present-tense auxiliary may. However, the bracketed infinitive complement clause in (37b) can also have a present-tense interpretation, paraphraseable as 'We believe the President has been lying.' Why should this be? A plausible answer is that infinitival to carries Tense in much the same way as an auxiliary like may does. In a sentence like (37b), to is most likely to be assigned a present tense interpretation. However, in a sentence such as (38) below:

The Feds believed [the junkies to have already stashed the hash in the trash-can by the time they were caught]
infinitival to seems to have a past tense interpretation, so that (38) is paraphraseable as 'The Federal Agents believe the junkies had already stashed the hash in the trash-can by the time they were caught'. What this suggests is that to has abstract (i.e. invisible) tense properties, and has a present tense interpretation in structures like (37b) when the bracketed to-clause is the complement of a present-tense verb like believe, and a past tense interpretation in structures like (38) when the bracketed to-clause is the complement of a past tense verb like believed. If finite auxiliaries and infinitival to both have (visible or invisible) tense properties, we can assign the two of them to the same category of T/Tense-marker - as is done in much contemporary work. The difference between them is sometimes said to be that auxiliaries carry finite tense (i.e. they are overtly specified for tense, in the sense that e.g. does is overtly marked as a present tense form and did as a past tense form) whereas infinitival to carries nonfinite tense (i.e. it has an unspecified tense value which has to be determined from the context; for a more technical discussion of tense, see Julien 2001.)

2.9 Complementisers

The last type of functional category which we shall look at in this chapter is that of complementiser (abbreviated to COMP in earlier work and to \mathbf{C} in more recent work): this is a term used to describe the kind of (italicised) word which is used to introduce complement clauses such as those bracketed below:
(39)(a) I think [that you may be right]
(b) I doubt [if you can help me]
(c) I'm anxious [for you to receive the best treatment possible]

Each of the bracketed clauses in (39) is a complement clause, in that it functions as the complement of the word immediately preceding it (think/doubt/anxious); the italicised word which introduces each clause is known in work since 1970 as a complementiser (but was known in more traditional work as a particular type of subordinating conjunction).

Complementisers are functors in the sense that they encode particular sets of grammatical properties. For example, complementisers encode (non)finiteness by virtue of the fact that they are intrinsically finite or nonfinite. More specifically, the complementisers that and if are inherently finite in the sense that they can only be used to introduce a finite clause (i.e. a clause containing a present or past tense auxiliary or verb), and not e.g. an infinitival to-clause; by contrast, for is an inherently infinitival complementiser, and so can be used to introduce a clause containing infinitival to, but not a finite clause containing a tensed auxiliary like (past tense) should; compare the examples in (39) above with those in (40) below:
(40)(a) *I think [that you to be right]
(b) *I doubt [if you to help me]
(c) *I'm anxious [for you should receive the best treatment possible]
$(40 \mathrm{a} / \mathrm{b})$ are ungrammatical because that/if are finite complementisers and so cannot introduce an infinitival to clause; (40c) is ungrammatical because for is an infinitival complementiser and so cannot introduce a finite clause containing a past tense auxiliary like should.

Complementisers in structures like (39) serve three grammatical functions. Firstly, they mark the fact that the clause they introduce is an embedded clause (i.e. a clause which is contained within another expression - in this case, within a main clause containing think/doubt/anxious). Secondly, they serve to indicate whether the clause they introduce is finite or nonfinite (i.e. denotes an event taking place at a specified or unspecified time): that and if serve to introduce finite clauses, while for introduces nonfinite (more specifically, infinitival) clauses. Thirdly, complementisers mark the force of the clause they introduce: typically, if introduces an interrogative (i.e. question-asking) clause, that introduces a declarative (statement-making) clause and for introduces an irrealis clause (i.e. a clause denoting an 'unreal' or hypothetical event which hasn't yet happened and may never happen).

However, an important question to ask is whether we really need to assign words such as for/that/if (in the relevant function) to a new category of C/complementiser, or whether we couldn't simply treat (e.g.) for as a preposition, that as a determiner, and if as an adverb. The answer is 'No', because there are significant differences between complementisers and other apparently similar words. For example, one difference between the complementiser for and the preposition for is that the preposition for has substantive lexical semantic content and so (in some but not all of its uses) can be intensified by straight/right, whereas the complementiser for is a functor and can never be so intensified: cf.
(41)(a) He headed straight/right for the pub [for = preposition]
(b) The dog went straight/right for her throat [for $=$ preposition]
(c) *He was anxious straight/right for nobody to leave [for = complementiser]
(d) *It is vital straight/right for there to be peace [for = complementiser]

Moreover, the preposition for and the complementiser for also differ in their syntactic behaviour. For example, a clause introduced by the complementiser for can be the subject of an expression like would cause chaos, whereas a phrase introduced by the preposition for cannot: cf.
(42)(a) For him to resign would cause chaos [=for-clause]
(b) *For him would cause chaos [=for-phrase]

What makes it even more implausible to analyse infinitival for as a preposition is the fact that (bold-
printed) prepositions in English aren't generally followed by a [bracketed] infinitive complement, as we see from the ungrammaticality of:
(43)(a) *She was surprised at [there to be nobody to meet her]
(b) *I'm not sure about [you to be there]
(c) *I have decided against [us to go there]

On the contrary, as examples such as (44) below illustrate, the only verbal complements which can be used after prepositions are gerund structures containing a verb in the -ing form:
(44)(a) I am against capitulating/*capitulate
(b) Try and do it without complaining/*complain
(c) Think carefully before deciding/*decide

The fact that for in sentences like (39c) I'm anxious for you to receive the best treatment possible is followed by a verb in the infinitive form receive (and not in the gerund form receiving) provides us with clear evidence that for is an infinitival complementiser in sentences like (39c).

A further difference between the complementiser for and the preposition for is that the noun or pronoun expression following the preposition for (or a substitute interrogative expression like who?/what?/which one?) can be preposed to the front of the sentence (with or without for) if for is a preposition, but not if for is a complementiser. For example, in (45) below, for functions as a preposition and the (distinguished) nominal Senator Megabucks functions as its complement, so that if we replace Senator Megabucks by which senator? the wh-expression can be preposed either on its own (in informal styles of English) or together with the preposition for (in formal styles): cf.
(45)(a) I will vote for Senator Megabucks in the primaries
(b) Which senator will you vote for in the primaries? [= informal style]
(c) For which senator will you vote in the primaries? [= formal style]

However, in (46a) below, the italicised expression is not the complement of the complementiser for (the complement of for in (46a) is the infinitival clause Senator Megabucks to keep his cool) but rather is the subject of the expression to keep his cool; hence, even if we replace Senator Megabucks by the interrogative wh-phrase which senator, the wh-expression can't be preposed (with or without for):
(46)(a) They were anxious for Senator Megabucks to keep his cool
(c) *Which senator were they anxious for to keep his cool?
(b) *For which senator were they anxious to keep his cool?

Hence, preposing provides a further way of differentiating between the two types of for.
Furthermore, when for functions as a complementiser, the whole for-clause which it introduces can often (though not always) be substituted by a clause introduced by another complementiser; for example, the italicised for-clause in (47a) below can be replaced by the italicised that-clause in (47b):
(47)(a) Is it really necessary for there to be a showdown?
(b) Is it really necessary that there (should) be a showdown?

By contrast, the prepositional for-phrase italicised in (48a) below cannot be replaced by a that-clause, as we see from the ungrammaticality of (48b):
(48)(a) We are heading for a general strike
(b) *We are heading that there (will) be a general strike

So, there is considerable evidence in favour of drawing a categorial distinction between the preposition for and the complementiser for: they are different lexical items (i.e. words) belonging to different categories.

Consider now the question of whether the complementiser that could be analysed as a determiner. At first sight, it might seem as if such an analysis could provide a straightforward way of capturing the apparent parallelism between the two uses of that in sentences such as the following:
(49)(a) I refuse to believe that [rumour]
(b) I refuse to believe that [Randy Rabbit runs Benny's Bunny Bar]

Given that the word that has the status of a prenominal determiner in sentences such as (49a), we might
suppose that it has the function of a preclausal determiner (i.e. a determiner introducing the following italicised clause Randy Rabbit runs Benny's Bunny Bar) in sentences such as (49b).

However, there is evidence against a determiner analysis of the complementiser that. Part of this is phonological in nature. In its use as a complementiser (in sentences such as (49b) above), that typically has the reduced form /ðat/, whereas in its use as a determiner (e.g. in sentences such as (49a) above), that invariably has the unreduced form /ðæt/: the phonological differences between the two suggest that we are dealing with two different lexical items here (i.e. two different words), one of which functions as a complementiser and typically has a reduced vowel, the other of which functions as a determiner and always has an unreduced vowel.

Moreover, that in its use as a determiner (though not in its use as a complementiser) can be substituted by another determiner (such as this/the): cf.
(50)(a) Nobody else knows about that incident/this incident/the incident (= determiner that)
(b) I'm sure that it's true/*this it's true/*the it's true (= complementiser that)

Similarly, the determiner that can be used pronominally (without any complement), whereas the complementiser that cannot: cf.
(51)(a) Nobody can blame you for that mistake (prenominal determiner)
(b) Nobody can blame you for that (pronominal determiner)
(52)(a) I'm sure that you are right (preclausal complementiser)
(b) *I'm sure that (pronominal complementiser)

The clear phonological and syntactic differences between the two argue that the word that which serves to introduce complement clauses is a different item (belonging to the category C/complementiser) from the determiner/D that which modifies noun expressions.

The third item which we earlier suggested might function as a complementiser in English is interrogative if. At first sight, it might seem that there is a parallelism between if and interrogative wh-adverbs like when/where/whether, since they appear to occupy the same position in sentences like:
(53) I don't know [where/when/whether/if he will go]

Hence we might be tempted to analyse if as an interrogative adverb.
However, there are a number of reasons for rejecting this possibility. For one thing, if differs from interrogative adverbs like where/when/whether not only in its form (it isn't a wh-word, as we can see from the fact that it doesn't begin with $w h$), but also in the range of syntactic positions it can occupy. For example, whereas typical wh-adverbs can occur in finite and infinitive clauses alike, the complementiser if is restricted to introducing finite clauses -cf .
(54)(a) I wonder [when/where/whether/if I should go] [= finite clause]
(b) I wonder [when/where/whether $*$ if to go] [= infinitive clause]

Moreover, if is different from interrogative wh-adverbs (but similar to other complementisers) in that it cannot be used to introduce a clause which serves as the complement of a (bold-printed) preposition: cf.
(55)(a) I'm not certain about [whether/when/where he'll go]
(b) *I'm concerned over [if taxes are going to be increased]
(c) *I'm puzzled at [that he should have resigned]
(d) *I'm not very keen on [for you to go there]

Furthermore, some verbs (like discuss) can have a following complement introduced by whether or another wh-word, but not one introduced by if: cf.
(56)(a) They were discussing [whether/when/where he should go]
(b) *They were discussing [if he should go]

Finally, whereas a wh-adverb can typically be immediately followed by or not, this is not true of if: cf.
(57)(a) I don't know [whether or not he'll turn up]
(b) *I don't know [if or not he'll turn up]

For reasons such as these, it seems more appropriate to categorise if as an interrogative complementiser,
and whether/where/when as interrogative adverbs. More generally, our discussion in this section highlights the need to posit a category C of complementiser, to designate clause-introducing items such as if/that/for which serve the function of introducing specific types of finite or infinitival clause.

2.10 Labelled bracketing

Having looked at the characteristics of the major substantive/lexical and functional categories found in English, we are now in a position where we can start to analyse the grammatical structure of expressions. An important part of doing this is to categorise each of the words in the expression. A conventional way of doing this is to use the traditional system of labelled bracketing: each word is enclosed in a pair of square brackets, and the lefthand member of each pair of brackets is given an appropriate subscript category label to indicate what category the word belongs to. To save space (and printer's ink), it is conventional to use the following capital-letter abbreviations:

$$
\begin{align*}
& \mathrm{N}=\text { noun } \tag{58}\\
& \mathrm{A}=\text { adjective } \\
& \mathrm{P}=\text { preposition } \\
& \mathrm{Q}=\text { quantifier } \\
& \mathrm{C} / \mathrm{COMP}=\text { complementiser }
\end{align*}
$$

$$
\begin{aligned}
& \mathrm{V}=\text { verb } \\
& \mathrm{ADV}=\text { adverb } \\
& \mathrm{D} / \mathrm{DET} \text { = determiner } \\
& \mathrm{T}=\text { Tense-marker }(\text { e.g. auxiliary/infinitival } \text { to }) \\
& \text { PRN = pronoun }
\end{aligned}
$$

Adopting the abbreviations in (58), we can represent the categorial status of each of the words in a sentence such as (59)(a) below in the manner shown in (59)(b):
(59)(a) Any experienced journalist knows that he can sometimes manage to lure the unsuspecting politician into making unguarded comments
(b) [Q Any] [A experienced] [N journalist] [v knows] [C that] [PRN he] [T can] [adv sometimes]
[v manage] [${ }_{\mathrm{T}}$ to] [v lure] [D the] [${ }_{\mathrm{A}}$ unsuspecting] [N_{N} politician] [P_{P} into] [v making]
[${ }_{\mathrm{A}}$ unguarded] [N comments]
What (59b) tells us is that the words journalist/politician/comments belong to the category $\mathrm{N} /$ noun, the to the category D/determiner, he to the category PRN/pronoun (though if personal pronouns like he are analysed as D-pronouns, he would be assigned to the category D), any to the category $\mathrm{Q} / q u a n t i f i e r$, experienced/unsuspecting/unguarded to the category A/adjective, sometimes to the category ADV/adverb, into to the category $\mathrm{P} /$ preposition, knows/manage/lure/making to the category $\mathrm{V} / \mathrm{verb}$, can/to to the category T/Tense-marker and that to the category C/complementiser. It is important to note, however, that the category labels used in (59b) tell us only how the relevant words are being used in this particular sentence. For example, the N label on comments in (59b) tells us that the item in question functions as a noun in this particular position in this particular sentence, but tells us nothing about the function it may have in other sentences. So, for example, in a sentence such as:
(60) The president never comments on hypothetical situations
the word comments is a verb - as shown in (61) below:
(61) [D The] [N president] [adv never] [v comments] [P on] [${ }_{\mathrm{A}}$ hypothetical] [N_{N} situations]

Thus, a labelled bracket round a particular word is used to indicate the grammatical category which the word belongs to in the particular position which it occupies in the phrase or sentence in question, so allowing for the possibility that (what appears to be) the same word may have a different categorial status in other positions in other structures.

2.11 Grammatical features

In the previous section, we suggested that we can assign words in sentences to categories on the basis of their grammatical properties. However, it should be pointed out that simply specifying what category a particular word in a particular sentence belongs to does not provide a full description of the grammatical properties of the relevant word. For example, categorising he as a pronoun in (59) doesn't tell us in what ways he differs from other pronouns like e.g. I/us/you/her/it/them - i.e. it doesn't tell us about the (third) person, (singular) number, (masculine) gender and (nominative) case properties of he. In other
words, there is a great deal of additional grammatical information about words which is not represented by simply attaching a category label to the word - information which provides a finer level of detail than relatively coarse categorial descriptions. This information is generally described in terms of sets of grammatical features; by convention, features are enclosed in square brackets and often abbreviated (to save space). Using grammatical features, we can describe the person/number/gender/case properties of the pronoun $h e$ in terms of the features [3-Pers, Sg-Num, Masc-Gen, Nom-Case] i.e. ‘Third-Person, Singular-Number, Masculine-Gender, Nominative-Case'. Each of these features comprises an attribute (i.e. a property like person, number, gender or case) and a value (which can be first/secondlthird for person, singular/plural for number, masculinelfeminine/neuter for gender, and nominative/accusativel genitive for case).

An adequate description of syntax also requires us to specify the selectional properties of individual words (e.g. what kinds of complement they can take). We can illustrate the importance of selectional information by considering what kinds of word can occupy the position marked by --- in the sentences below:
(62)(a) He might --- to Paris (b) He is --- to Paris (c) He has --- to Paris

A categorial answer would be 'A verb'. However, we can't just use any verb: e.g. it's OK to use verbs like go/fly, but not verbs like find/stay. This is because different verbs select (i.e. 'take') different types of complement, and verbs like go/fly select a to-expression as their complement but verbs like find/stay do not. But the story doesn't end there, since each of the structures in (62) requires a different form of the verb: in (62a) we can use the infinitive form go, but not other forms of the verb (cf. He might go/*going/ *gone/*goes/*went to Paris); in (62b) we can only use the progressive participle form going (cf. He is going/*go/*gone/*goes/*went to Paris); and in (62c) we can only use the perfect participle form gone (cf. He has gone/*go/*going/*goes/*went to Paris). This in turn is because the auxiliary might selects (i.e. 'takes') an infinitive complement, the progressive auxiliary is selects a progressive participle complement, and the perfect auxiliary has selects a perfect participle complement. In other words, a full description of the grammatical properties of words requires us to specify not only their categorial and subcategorial properties, but also their selectional properties. It is widely assumed that the selectional properties of words can be described in terms of selectional features. For example, the fact that progressive be selects a progressive participle complement might be described by saying that it has the selectional feature [V-ing] - a notation intended to signify that it selects a complement headed by a verb carrying the -ing suffix.

As far back as his 1965 book Aspects of the Theory of Syntax, Chomsky argued that all the grammatical properties of a word (including its categorial properties) can be described in terms of a set of grammatical features. In work in the 1970s, he argued that the categorial distinction between nouns, verbs, adjectives and prepositions can be handled in terms of two sets of categorial features, namely $[\pm \mathrm{V}]$ 'verbal/nonverbal' and $[\pm \mathrm{N}]$ 'nominal/non-nominal'. More specifically, he suggested that the categorial properties of nouns, verbs, adjectives and prepositions could be described in terms of the sets of features in (63) below:

$$
\begin{equation*}
\text { verb }=[+\mathrm{V},-\mathrm{N}] \quad \text { adjective }=[+\mathrm{V},+\mathrm{N}] \quad \text { noun }=[-\mathrm{V},+\mathrm{N}] \quad \text { preposition }=[-\mathrm{V},-\mathrm{N}] \tag{63}
\end{equation*}
$$

What (63) claims is that verbs have verbal but not nominal properties, adjectives have both nominal and verbal properties, nouns have nominal but not verbal properties, and prepositions have neither nominal nor verbal properties. This analysis was designed to capture the fact that some grammatical properties extend across more than one category and so can be said to be cross-categorial. For example, Stowell (1981, p. 57 fn .17) notes that verbs and adjectives in English share the morphological property that they alone permit un-prefixation (hence we find verbs like undo and adjectives like unkind, but not nouns like *unfriend or prepositions like *uninside): in terms of the set of categorial features in (63), we can account for this by positing that $u n$ - can only be prefixed to words which have the categorial feature $[+\mathrm{V}]$. Likewise, as the following example (kindly provided for me by Andrew Spencer) shows, in Russian nouns and adjectives inflect for case, but not verbs or prepositions: cf.

Krasivay a dyevushk a vsunula chornuy u koshk u v pustuy u korobk u Beautiful girl put black cat in empty box
'The beautiful girl put the black cat in the empty box'
Thus, the nouns and adjectives in (64) carry (italicised) case endings ($-a$ is a nominative suffix and $-u$ an accusative suffix), but not the verb or preposition. In terms of the set of categorial features in (63) we can
account for this by positing that case is a property of items which carry the categorial feature $[+\mathrm{N}]$.
Although many details remain to be worked out, it seems clear that in principle, all grammatical properties of words (including their categorial properties) can be described in terms of sets of grammatical features (See Ramat 1999 on categories and features). However, in order to simplify our exposition, we shall continue to make use of traditional category labels throughout much of the book, gradually introducing specific features in later chapters where some descriptive purpose is served by doing so.

2.12 Summary

In this chapter, we have looked at the role played by categories in characterising the grammatical properties of words. In $\S 2.2$, we looked at the criteria used for categorising words, noting that these include morphological criteria (relating to the inflectional and derivational properties of words) and syntactic criteria (relating to the range of positions which words can occupy within phrases and sentences). In $\S 2.3$ we suggested that we can determine the categorial status of a word from its morphological and syntactic properties, with substitution being used as a test in problematic cases. In $\S 2.4$ we went on to draw a distinction between substantive/lexical categories (whose members have substantive lexical/descriptive content) and functional categories (whose members have no substantive lexical content and serve only to mark grammatical properties such as number, person, case, etc.). We then looked at a number of different types of functional category found in English. We began in $\S 2.5$ with determiners ($=\mathrm{D}$) and quantifiers ($=\mathrm{Q}$), arguing that they are categorially distinct from adjectives since they precede (but don't follow) adjectives, and can’t be stacked. In $\S 2.6$, we looked at pronouns and argued that English has at least three distinct types of pronoun, namely N-pronouns (like one), Q-pronouns (like several) and D-pronouns (like this). We went on to note that many linguists also take personal pronouns like he to be D-pronouns. In $\S 2.7$ we looked at the functional counterparts of verbs, namely auxiliaries: we argued that these are functors in that (unlike lexical verbs) they describe no specific action or event, but rather encode verb-related grammatical properties such as tense, mood, voice and aspect; we noted that auxiliaries are syntactically distinct from verbs in that (e.g.) they undergo inversion. In $\S 2.8$ we discussed the nature of infinitival to: we showed that it shares a number of properties in common with finite auxiliaries (e.g. auxiliaries and infinitival to allow ellipsis of their complements). We noted the assumption made in much research over the past three decades that finite auxiliaries and infinitival to are different exponents of the same category (labelled $\mathbf{I} / \mathbf{I N F L} /$ Inflection in earlier work and T/Tensemarker in more recent work), with an auxiliary like will marking finite tense, and infinitival to marking non-finite tense. In $\S 2.9$ we argued that complementizers (= C or COMP) like thatlifffor are a further category of functors, and that they mark the force of a complement clause (e.g. indicate whether it is interrogative, declarative or irrealis), and that (e.g.) $i f$ is distinct from interrogative adverbs like how/when/whether in that it can only introduce a finite clause, and cannot introduce a clause which is used as the complement of a preposition. In $\S 2.10$, we showed how the labelled bracketing technique can be used to categorise words in particular phrases and sentences. Finally, in §2.11 we noted that assigning words to grammatical categories provides a description of only some of their grammatical properties, and that a fuller description requires the use of grammatical features to describe their other grammatical properties. We went on to note Chomsky's claim that the categorial properties of words can also be described in terms of a set of grammatical features - bringing us to the conclusion that all grammatical properties of words can be characterised in terms of sets of features.

WORKBOOK SECTION

Exercise 2.1

Discuss the grammatical properties and categorial status of the highlighted words in each of the following examples, giving arguments in support of your analysis:
1a Nobody need/dare say anything
b Nobody needs/dares to ask questions
c John is working hard
d John may stay at home
e John has done it
f John has to go there
g John used to go there quite often
2a Executives like to drive to work
b I look forward to learning to drive
c It's difficult to get him to work
d I've never felt tempted to turn to taking drugs
e Better to yield to temptation than to submit to deprivation!
f Failure to achieve sometimes drives people to drink
g Try to go to sleep.
3a It is important for parents to spend time with their children
b It would be disastrous for me for my driving-license to be withdrawn
c He was arrested for being drunk
d We are hoping for a peace agreement to be signed
e Ships head for the nearest port in a storm
f Congress voted for the treaty to be ratified
g It would be unfortunate for the students to fail their exams

Helpful hints

A particular problem arises (in the case of some of the examples in 3) in relation to words which allow a prepositional phrase complement (comprising a preposition and a noun or pronoun expression) in one use, and a for-infinitive clause in another - as with arrange in the examples below
(i)(a) I can arrange for immediate closure of the account
(b) I can arrange for the account to be closed immediately

In (ia) for is used with the noun expression immediate closure of the account as its complement, and is clearly a preposition - as we can see from the fact that (like the complement of a typical preposition) the relevant noun expression can be moved to the front of the sentence to highlight it:
(ii) Immediate closure of the account, I can certainly arrange for

By contrast, for in (iib) seems to be a complementiser rather than a preposition. For one thing, prepositions don't allow an infinitival complement, as we see from examples like (43) in the main text. Moreover, the complement of for in (iib) cannot be preposed - as we see from the ungrammaticality of:
(iii) *The account to be closed immediately, I can certainly arrange for

What we might have expected to find is two occurrences of for, one serving as an (italicised) preposition introducing the complement of arrange, and the other serving as a (bold-printed) complementiser introducing the infinitive complement - much as we find in:
(iv) What I can certainly arrange for is for the account to be closed immediately

But the expected for for sequence isn't grammatical in sentences like:
(v) *I can certainly arrange for for the account to be closed immediately

The reason seems to be that words which take a prepositional complement generally drop the preposition when the (italicised) preposition has a complement introduced by a (bold-printed) complementiser: cf.
(vi)(a) What you can't be sure of is that he is telling the truth
(b) *You can't be sure of that he is telling the truth
(c) You can't be sure that he is telling the truth

Hence, although we might in principle expect to find a preposition+complementiser structure in (v), what seems to happen in practice is that the preposition is dropped in such structures - hence in (ib) the for which we find is the complementiser for rather than the (dropped) preposition for.

Model answer for 1a, 2a and 3a

The main problem raised by the examples in 1 is whether the highlighted items have the categorial status of verbs or auxiliaries as they are used in each example - or indeed whether some of the items in some of
their uses have a dual verb/auxiliary status (and so can function either as verbs or as auxiliaries). The words need/dare in 1a resemble modal auxiliaries like will/shall/can/may/must in that they lack the third person singular $-s$ inflection, and take a bare infinitive complement (i.e. a complement containing the infinitive verb-form say but lacking the infinitive particle to). They behave like auxiliaries (in Standard English) in that they undergo inversion in questions, can appear in tags, and can be negated by not/n't: cf.
(i)(a) Need/Dare anyone say anything?
(b) He needn't/daren't say anything, need/dare he?

Conversely, they are not used with $d o$-support in any of these three constructions in Standard English: cf.
(ii)(a) *Does anyone need/dare say anything?
(b) *He doesn't need/dare say anything, does he?

Thus, need/dare when followed by a bare infinitive complement seem to have the status of (modal) auxiliaries.

In 2a, the first to is an infinitive particle, and the second to is a preposition. Thus, the second to (but not the first) can be modified by the prepositional intensifier straight (cf. Executives like to drive straight to work, but not *Executives like straight to drive to work). Moreover, the second to is a contentive preposition which has the antonym from (cf. Executives like to drive from work), whereas the first has no obvious antonym since it is an infinitive particle (cf. *Executives like from drive/driving to work). In addition, like a typical transitive preposition, the second to (but not the first) can be followed by an accusative pronoun complement like them - cf. Executives think the only way of getting to their offices is to drive to them). Conversely, the first (infinitival) to allows ellipsis of its complement (cf. Executives like to), whereas the second (prepositional) to does not (cf. *Executives like to drive to). Thus, in all relevant respects the first to behaves like an infinitive particle, whereas the second to behaves like a preposition.

In 3a, for could be either a complementiser (introducing the infinitival clause parents to spend time with their children), or a preposition (whose complement is the noun parents). The possibility that for might be used here as a preposition is suggested by the fact that the string for parents (or an interrogative counterpart like for how many parents?) could be preposed to the front of its containing sentence, as in:
(iv)(a) For parents, it is important to spend time with their children
(b) For how many parents is it important to spend time with their children?

The alternative possibility that for might be used as a complementiser (with the infinitival clause parents to spend time with their children serving as its complement) is suggested by the fact that the for-clause here could be substituted by a that-clause, as in:
(v) It is important that parents should spend time with their children

Thus, 3a is structurally ambiguous between one analysis on which for functions as a transitive preposition, and a second on which for functions as an infinitival complementiser which is irrealis in force.

Exercise 2.2

Use the labelled bracketing technique to assign each word in each of the sentences below to a grammatical category which represents how it is being used in the position in which it occurs in the sentence concerned. Give reasons in support of your proposed categorisation, highlight any words which are not straightforward to categorise, and comment on any interesting properties of the relevant words.
1 He was feeling disappointed at only obtaining average grades in the morphology exercises
2 Student counsellors know that money troubles can cause considerable stress
3 Opposition politicians are pressing for election debates to receive better television coverage
4 Seasoned press commentators doubt if the workers will ever fully accept that substantial pay rises lead to runaway inflation
5 Students often complain to their high school teachers that the state education system promotes universal mediocrity
6 Some scientists believe that climatic changes result from ozone depletion due to excessive carbon dioxide emission

7 Linguists have long suspected that peer group pressure shapes linguistic behaviour patterns in very young children
8 You don't seem to be too worried about the possibility that many of the shareholders may now vote against your revised takeover bid

Model answer for 1

(i) [PRN He] [T was] [v feeling] [A disappointed] [P at] [ADV only] [v obtaining] [A average] [N_{N} grades]
[${ }_{P}$ in] [D the] [${ }_{\mathrm{N}}$ morphology] [${ }_{\mathrm{N}}$ exercises]
An issue of particular interest which arises in (i) relates to the status of the words average and morphology. Are these nouns or adjectives - and how can we tell? Since nouns used to modify other nouns are invariable in English (e.g. we say skate boards, not *skates boards), we can't rely on morphological clues here. However, we can use syntactic evidence. If (as assumed here), the word average functions as an adjective in 1 , we should expect to find that it can be modified by the kind of adverb like relatively which can be used to modify adjectives (cf. relatively good); by contrast, if morphology serves as a noun in 1, we should expect to find that it can be modified by the kind of adjective (e.g. inflectional) which can be used to modify such a noun. In the event, both predictions are correct:
(ii) He was feeling disappointed at only obtaining relatively average grades in the inflectional morphology exercises

Some additional evidence that average can function as an adjective comes from the fact that it has the -ly adverb derivative averagely, and (for some speakers at least) the noun derivative averageness - cf. The very averageness of his intellect made him the CIA's choice for president. Moreover (like most adjectives), it can be used predicatively in sentences like His performance was average. (Note, however, that in structures such as morphology exercises, you will not always find it easy to determine whether the first word is a noun or adjective. Unless there is evidence to the contrary - as with average in (ii) above assume that the relevant item is a noun if it clearly functions as a noun in other uses.)

3

Structure

3.1 Overview

In this chapter, we introduce the notion of syntactic structure, looking at how words are combined together to form phrases and sentences. We shall see that phrases and sentences are built up by a series of merger operations, each of which combines a pair of constituents together to form a larger constituent. We show how the resulting structure can be represented in terms of a tree diagram, and we look at ways of testing the structure of phrases and sentences.

3.2 Phrases

To put our discussion on a concrete footing, let's consider how an elementary two-word phrase such as that produced by speaker B in the following mini-dialogue is formed:

(1) SPEAKER A: What are you trying to do?
 SPEAKER B: Help you

As speaker B's utterance illustrates, the simplest way of forming a phrase is by merging (a technical term meaning 'combining') two words together: for example, by merging the word help with the word you in (1), we form the phrase help you. The resulting phrase help you seems to have verb-like rather than noun-like properties, as we see from the fact that it can occupy the same range of positions as the simple verb help, and hence e.g. occur after the infinitive particle to: cf.
(2)(a)
We are trying to help
(b) We are trying to help you

By contrast, the phrase help you cannot occupy the kind of position occupied by a pronoun such as you, as we see from (3) below:
(3)(a) You are very difficult
(b) *Help you are very difficult

So, it seems clear that the grammatical properties of a phrase like help you are determined by the verb help, and not by the pronoun you. Much the same can be said about the semantic properties of the expression, since the phrase help you describes an act of help, not a kind of person. Using the appropriate technical terminology, we can say that the verb help is the head of the phrase help you, and hence that help you is a verb phrase: and in the same way as we abbreviate category labels like verb to \mathbf{V}, so too we can abbreviate the category label verb phrase to VP. If we use the traditional labelled bracketing technique to represent the category of the overall verb phrase help you and of its constituent words (the verb help and the pronoun you), we can represent the structure of the resulting phrase as in (4) below:
[vp [v help] [pRN you]]

An alternative (equivalent) way of representing the structure of phrases like help you is via a labelled tree diagram such as (5) below (which is a bit like a family tree diagram - albeit for a small family):

What the tree diagram in (5) tells us is that the overall phrase help you is a verb phrase (VP), and that its two constituents are the verb (V) help and the pronoun (PRN) you. The verb help is the head of the overall phrase (and so is the key word which determines the grammatical and semantic properties of the phrase help you); introducing another technical term at this point, we can say that conversely, the VP help you is a projection of the verb help - i.e. it is a larger expression formed by merging the head verb help with another constituent of an appropriate kind. In this case, the constituent which is merged with the verb
help is the pronoun you, which has the grammatical function of being the complement (or direct object) of the verb help. The head of a projection/phrase determines grammatical properties of its complement: in this case, since help is a transitive verb, it requires a complement with accusative case (e.g. a pronoun like me/us/him/them), and this requirement is satisfied here since you can function as an accusative form (as you can see from the table of pronoun forms given in (25) in §2.6).

The tree diagram in (5) is entirely equivalent to the labelled bracketing in (4), in the sense that the two provide us with precisely the same information about the structure of the phrase help you. The differences between a labelled bracketing like (4) and a tree diagram like (5) are purely notational: each category is represented by a single labelled node in a tree diagram (i.e. by a point in the tree which carries a category label like VP, V or PRN), but by a pair of labelled brackets in a labelled bracketing. In each case, category labels like V/verb and PRN/pronoun should be thought of as shorthand abbreviations for the set of grammatical features which characterise the overall grammatical properties of the relevant words (e.g. the pronoun you as used in (5) carries a set of features including [second-person] and [accusative-case], though these features are not shown by the category label PRN).

Since our goal in developing a theory of Universal Grammar is to uncover general structural principles governing the formation of phrases and sentences, let's generalise our discussion of (5) at this point and hypothesise that all phrases are formed in essentially the same way as the phrase in (5), namely by a binary (i.e. pairwise) merger operation which combines two constituents together to form a larger constituent. In the case of (5), the resulting phrase help you is formed by merging two words. However, not all phrases contain only two words - as we see if we look at the structure of the phrase produced by speaker B in (6) below:

SPEAKER A: What was your intention?
SPEAKER B: To help you
The phrase in (6B) is formed by merging the infinitive particle to with the verb phrase help you. What's the head of the resulting phrase to help you? A reasonable guess would be that the head is the infinitival tense particle/T to, so that the resulting expression to help you is an infinitival TP (= infinitival tense projection $=$ infinitival tense phrase). This being so, we'd expect to find that TPs containing infinitival to have a different distribution (and so occur in a different range of positions) from VPs/verb phrases - and this is indeed the case, as we see from the contrast below:
(7)(a) They ought to help you (= ought + TP to help you)
(b) *They ought help you (= ought + VP help you)
(8)(a) They should help you (= should + VP help you)
(b) *They should to help you (= should + TP to help you)

If we assume that help you is a VP whereas to help you is a TP, we can account for the contrasts in (7) and (8) by saying that ought is the kind of word which selects (i.e. 'takes') an infinitival TP as its complement, whereas should is the kind of word which selects an infinitival VP as its complement. Implicit in this claim is the assumption that different words like ought and should have different selectional properties which determine the range of complements they permit (as we saw in §2.11).

The infinitive phrase to help you is formed by merging the infinitive particle to with the verb phrase help you. If (as we argued in the previous chapter) infinitival to is a nonfinite tense particle (belonging to the category T) and if to is the head of the phrase to help you, the structure formed by merging the infinitival T-particle to with the verb phrase/VP help you in (5) will be the TP (i.e. nonfinite/infinitival tense projection/phrase) in (9) below:

The head of the resulting infinitival tense projection to help you is the infinitive particle to, and the verb phrase help you is the complement of to; conversely, to help you is a projection of to. In keeping with our earlier observation that 'The head of a projection/phrase determines grammatical properties of its
complement', the non-finite tense particle to requires an infinitival complement: more specifically, to requires the head V of its VP complement to be a verb in its infinitive form, so that we require the infinitive form help after infinitival to (and not a form like helping/helped/helps). Refining our earlier observation somewhat, we can therefore say that 'The head of a projection/phrase determines grammatical properties of the head word of its complement'. In (9), to is the head of the TP to help you, and the complement of to is the VP help you; the head of this VP is the V help, so that to determines the form of the V help (requiring it to be in the infinitive form help).

More generally, our discussion here suggests that we can build up phrases by a series of binary merger operations which combine successive pairs of constituents to form ever larger structures. For example, by merging the infinitive phrase to help you with the verb trying, we can form the even larger phrase trying to help you produced by speaker B in (10) below:

(10) SPEAKER A: What are you doing?

SPEAKER B: Trying to help you
The resulting phrase trying to help you is headed by the verb trying, as we see from the fact that it can be used after words like be, start or keep which select a complement headed by a verb in the -ing form (cf. They were/started/kept trying to help you). This being so, the italicised phrase produced by speaker B in (10) is a VP (= verb phrase) which has the structure (11) below:

(11) tells us (amongst other things) that the overall expression trying to help you is a verb phrase/VP; its head is the verb/V trying, and the complement of trying is the TP/infinitival tense phrase to help you: conversely, the VP trying to help you is a projection of the V trying. An interesting property of syntactic structures illustrated in (11) is that of recursion - that is, the property of allowing a given structure to contain more than one instance of a given category (in this case, more than one verb phrase/VP - one headed by the verb help and the other headed by the verb trying).

Since our goal in developing a theory of Universal Grammar/UG is to attempt to establish universal principles governing the nature of linguistic structure, an important question to ask is whether there are any general principles of constituent structure which we can abstract from structures like (5/9/11). If we look closely at the relevant structures, we can see that they obey the following two (putatively universal) constituent structure principles:

(12) Headedness Principle

Every syntactic structure is a projection of a head word

Binarity Principle

Every syntactic structure is binary-branching
(The term syntactic structure is used here as an informal way of denoting an expression which contains two or more constituents.) For example, the structure (11) obeys the Headedness Principle (12) in that the VP help you is headed by the V help, the TP to help you is headed by the T to, and the VP trying to help you is headed by the V trying. Likewise, (11) obeys the Binarity Principle (13) in that the VP help you branches into two immediate constituents (in the sense that it has two constituents immediately beneath it, namely the V help and the PRN you), the TP to help you branches into two immediate constituents (the non-finite tense particle T to and the VP help you), and the VP trying to help you likewise branches into two immediate constituents (the V trying and the TP to help you). Our discussion thus leads us towards a principled account of constituent structure - i.e. one based on a set of principles of Universal Grammar.

There are several reasons for trying to uncover constituent structure principles like (12) and (13). From a learnability perspective, such principles reduce the range of alternatives which children have to choose between when trying to determine the structure of a given kind of expression: they therefore help us
develop a more constrained theory of syntax. Moreover, additional support for the Binarity Principle comes from evidence that phonological structure is also binary, in that (e.g.) a syllable like bat has a binary structure, consisting of the onset $|\mathrm{b}|$ and the rhyme $|\mathrm{at}|$, and the rhyme in turn has a binary structure, consisting of the nucleus $|\mathrm{a}|$ and the coda $|\mathrm{t}|$ (See Radford et al. 1999, pp. 88ff. for an outline of syllable structure). Likewise, there is evidence that morphological structure is also binary: e.g. (under the analysis proposed in Radford et al 1999, p.164) the noun indecipherability is formed by adding the prefix $d e$ - to the noun cipher to form the verb decipher; then adding the suffix -able to this verb to form the adjective decipherable; then adding the prefix in- to this adjective to form the adjective indecipherable; and then adding the suffix -ity to the resulting adjective to form the noun indecipherability. It would therefore seem that binarity is an inherent characteristic of the phonological, morphological and syntactic structure of natural languages. There is also a considerable body of empirical evidence in support of a binary-branching analysis of a range of syntactic structures in a range of languages (See e.g. Kayne 1984) - though much of this work is highly technical and it would not be appropriate to consider it here.

3.3 Clauses

Having considered how phrases are formed, let's now turn to look at how clauses and sentences are formed. By way of illustration, suppose that speaker B had used the simple (single-clause) sentence italicised in (14) below to reply to speaker A, rather than the phrase used by speaker B in (10):

(14)

SPEAKER A: What are you doing?
SPEAKER B: We are trying to help you
What's the structure of the italicised clause produced by speaker B in (14)?
In work in the 1960s, clauses were generally taken to belong to the category \mathbf{S} (Sentence/Clause), and the sentence produced by B in (14) would have been taken to have a structure along the following lines:

However, a structure such as (15) violates the two constituent structure principles which we posited in (12) and (13) above. More particularly, the S analysis of clauses in (15) violates the Headedness

Principle (12) in that the S we are trying to help you is a structure which has no head of any kind. Likewise, the S analysis in (15) also violates the Binarity Principle (13) in that the S constituent We are trying to help you is not binary-branching but rather ternary-branching, because it branches into three immediate constituents, namely the PRN we, the T are, and the VP trying to help you. If our theory of Universal Grammar requires every syntactic structure to be a binary-branching projection of a head word, it is clear that we have to reject the S-analysis of clause structure in (15) as one which is not in keeping with UG principles.

Let's therefore explore an alternative analysis of the structure of clauses which is consistent with the headedness and binarity requirements in (12) and (13). More specifically, let's make the unifying assumption that clauses are formed by the same binary merger operation as phrases, and accordingly suppose that the italicised clause in (14B) is formed by merging the (present) tense auxiliary are with the verb phrase trying to help you, and then subsequently merging the resulting expression are trying to help you with the pronoun we. Since are belongs to the category T of tense auxiliary, it might at first sight seem as if merging are with the verb phrase trying to help you will derive (i.e. form) the tense projection/tense phrase/TP are trying to help you. But this can't be right, since it would provide us with no obvious account of why speaker B's reply in (16) below is ungrammatical:

If are trying to help you is a complete TP, how come it can't be used to answer A's question in (16), since we see from sentences like (6B) that TP constituents like to help you can be used to answer questions.

An informal answer we can give is to say that the expression are trying to help you is somehow 'incomplete', and that only 'complete' expressions can be used to answer questions. In what sense is Are trying to help you incomplete? The answer is that finite T constituents require a subject, and the finite auxiliary are doesn't have a subject in (16). More specifically, let's assume that when we merge a tense auxiliary (= T) with a verb phrase (= VP), we form an intermediate projection which we shall here denote as T' (pronounced 'tee-bar'); and that only when we merge the relevant T-bar constituent with a subject like we do we form a maximal projection - or, more informally a 'complete TP'. Given these assumptions, the italicised clause in (14B) will have the structure (17) below:

What this means is that a tense auxiliary like are has two projections: a smaller intermediate projection (T^{\prime}) formed by merging are with its complement trying to help you to form the T-bar (intermediate tense projection) are trying to help you; and a larger maximal projection (TP) formed by merging the resulting T^{\prime} are trying to help you with its subject we to form the TP We are trying to help you. Saying that TP is the maximal projection of are in (17) means that it is the largest constituent headed by the auxiliary are.

Why should tense auxiliaries require two different projections, one in which they merge with a following complement to form a T-bar, and another in which the resulting T-bar merges with a preceding subject to form a TP? Following a suggestion made by Chomsky (1982, p.10), the requirement for auxiliaries to have two projections (as in (17) above) was taken in earlier work to be a consequence of a principle of Universal Grammar known as the Extended Projection Principle (conventionally abbreviated to EPP), which can be outlined informally as follows:

Extended Projection Principle/EPP

A finite tense constituent T must be extended into a TP projection containing a subject
Given that (as we noted at the end of the previous chapter) the grammatical properties of words are described in terms of sets of grammatical features, we can say that tense auxiliaries like are carry an [EPP] feature which requires them to have an extended projection into a TP which has a subject. If we posit that all tense auxiliaries carry an [EPP] feature, it follows that any structure (like that produced by speaker B in (16) above) containing a tense auxiliary which does not have a subject will be ungrammatical by virtue of violating the Extended Projection Principle (18).

The EPP requirement (for a finite auxiliary to have a subject) would seem to be essentially syntactic (rather than semantic) in nature, as we can see from sentences such as (19) below:
(19)(a) It was alleged that he lied under oath
(b) There has been no trouble

In structures like (19), the italicised subject pronouns $i t / t h e r e$ seem to have no semantic content (in particular, no referential properties) of their own, as we see from the fact that neither can be questioned by the corresponding interrogative words what?/where? (cf. the ungrammaticality of $*$ What was alleged that he lied under oath? and *Where has been no trouble?), and neither can receive contrastive focus (hence it/there cannot be contrastively stressed in sentences like (19) above). Rather, they function as expletive pronouns - i.e. pronouns with no intrinsic meaning which are used in order to satisfy the syntactic requirement for a finite auxiliary like was/has to have a subject (in order to satisfy the Extended Projection Principle/EPP). For example, the expletive subject it in (19a) might be argued to serve the syntactic
function of providing a subject for the auxiliary was to agree with in person and number. (We deal with agreement in chapter 8 and so will have nothing more to say about it for the time being.)

An interesting implication of the analysis of clause structure we have presented here is that heads can have more than one kind of projection: e.g. the tense auxiliary are in (17) above has an intermediate (T-bar) projection into are trying to help you and a maximal (TP) projection into We are trying to help you. The same is true of other types of head, as can be illustrated by the italicised expressions below:
(20)(a) American intervention in Vietnam caused considerable controversy
(b) She arrived at the solution quite independently of me
(c) He has gone straight to bed
(d) Nobody expected the film to have so dramatic an ending

In (20a) the noun intervention merges with its complement in Vietnam to form the intermediate projection (N -bar) intervention in Vietnam, and the resulting N -bar in turn merges with the adjective American to form the maximal projection (NP) American intervention in Vietnam. In (20b) the adverb independently merges with its complement of $m e$ to form the intermediate projection (ADV-bar) independently of me, and this in turn merges with the adverb quite to form the maximal projection (ADVP) quite independently of $m e$. In (20c) the preposition to merges with its complement bed to form the intermediate (P-bar) projection to bed, and this in turn merges with the adverb straight to form the maximal (PP) projection straight to bed. In (20d), the determiner (indefinite article) an merges with its complement ending to form the intermediate (D-bar) projection an ending which in turn merges with the expression so dramatic to form the maximal projection (DP) so dramatic an ending.

In clause structures like (17) above, the pronoun we which merges with the intermediate T-bar projection are trying to help you to form the maximal TP projection We are trying to help you has the function of being the subject of the TP. However, the expressions which merge with the relevant intermediate projections to form maximal projections in (20) don't all seem to have the function of being subjects. If we take a fairly flexible view of what a subject is, we could perhaps say that the adjective American is the 'subject' of the expression intervention in Vietnam in (20a). But we certainly wouldn't want to say that quite is the subject of independently of me in (20b), or that straight is the subject of to bed in (20c), or that so dramatic is the subject of an ending in (20d). Rather, the expressions which precede the head word in the examples in (20b-d) seem to have the function of being modifiers of the expression that follows them - so that quite modifies independently of me, straight modifies to bed and so dramatic modifies an ending (and perhaps American modifies intervention in Vietnam in 20a).

What our discussion here illustrates is that it is important to draw a distinction between the position occupied by an expression in a given structure, and its function. In order to get a clearer view of the distinction, let's take a closer look at the derivation of (20c) He has gone straight to bed. As we noted earlier, the preposition to merges with its noun complement bed to form the P-bar to bed which in turn is merged with the adverb straight to form the PP straight to bed. The resulting PP is then merged with the verb gone to form the VP gone straight to bed. This in turn is merged with the present-tense auxiliary has to form the T-bar has gone straight to bed. This T-bar merges with the pronoun he to form the TP below:

In a fairly obvious sense, the pronoun he occupies the same kind of position within TP as the adverb straight does within PP: more specifically, he merges with an intermediate T-bar projection to form a
maximal TP projection in the same way as quite merges with an intermediate ADV-bar projection to form a maximal ADVP projection. Since it's useful to have a term to designate the position they both occupy, let's say that they both occupy the specifier position within the expression containing them. More specifically, let's say that he occupies the specifier position within TP (conventionally abbreviated to spec-TP) and that quite occupies the specifier position within ADVP (= spec-ADVP). However, although he and quite occupy the same specifier position within the expressions containing them, they have different functions: he is the subject of the T-bar expression has gone to bed, whereas straight is a modifier of the P-bar expression to bed. In much the same way, we can say that American occupies the specifier position within the Noun Phrase American intervention in Vietnam in (20a), quite occupies the specifier position within the Adverbial Phrase quite independently of me in (20b), and so dramatic occupies the specifier position within the Determiner Phrase so dramatic an ending in (20d).

3.4 Clauses containing complementisers

A question which we have not so far asked about the structure of clauses concerns what role is played by complementisers like that, for and if, e.g. in speaker B's reply in (22) below:

SPEAKER B: That we are trying to help you
Where does the C/complementiser that fit into the structure of the sentence? The answer suggested in work in the 1970s was that a complementiser merges with an S constituent like that in (15) above to form an S'/S-bar (pronounced 'ess-bar') constituent like that shown below (simplified by not showing the internal structure of the VP trying to help you, which is as in (11) above):

However, the claim that a clause introduced by a complementiser has the status of an S-bar constituent falls foul of the Headedness Principle (12), which requires that a syntactic structure be a projection of a head word. The principle is violated because S-bar in (21) is analysed as a projection of the S constituent we are trying to help you, and S is clearly not a word (but rather a string of words).

An interesting way round the headedness problem is to suppose that the head of a clausal structure introduced by a complementiser is the complementiser itself: since this is a single word, there would then be no violation of the Headedness Principle (12) requiring every syntactic structure to be a projection of a head word. Let's therefore assume that the complementiser that merges with the TP we are trying to help you (whose structure is as shown in (17) above) to form the $\mathbf{C P} /$ complementiser phrase in (24) below:

(24) tells us that the complementiser that is the head of the overall clause that we are trying to help you (and conversely, the overall clause is a projection of that) - and indeed this is implicit in the traditional
description of such structures as that-clauses. (24) also tells us that the complement of that is the TP/tense phrase we are trying to help you. Clauses introduced by complementisers have been taken to have the status of CP/complementiser phrase constituents since the pioneering work of Stowell (1981) and Chomsky (1986b).

An interesting aspect of the analyses in (17) and (24) above is that clauses and sentences are analysed as headed structures - i.e. as projections of head words (in conformity with the Headedness Principle). In other words, just as phrases are projections of a head word (e.g. a verb phrase like help you is a projection of the verb help), so too a sentence like We will help you is a projection of the auxiliary will, and a complement clause like the bracketed that-clause in I can't promise [that we will help you] is a projection of the complementiser that. This enables us to arrive at a unitary analysis of the structure of phrases, clauses and sentences, in that clauses and sentences (like phrases) are projections of head words. More generally, it leads us to the conclusion that clauses/sentences are simply particular kinds of phrases (e.g. a that-clause is a complementiser phrase).

A further assumption which is implicit in the analyses which we have presented here is that phrases and clauses are derived (i.e. formed) in a bottom-up fashion (i.e. they are built up from bottom to top). For example, the clause structure in (24) involves the following sequence of merger operations: (i) the verb help is merged with the pronoun you to form the VP help you; (ii) the resulting VP is merged with the nonfinite T/tense particle to to form the TP to help you; (iii) this TP is in turn merged with the verb trying to form the VP trying to help you; (iv) the resulting VP is merged with the T/tense auxiliary are to form the T-bar are trying to help you; (v) this T-bar is merged with its subject we to form the TP we are trying to help you; and (vi) the resulting TP is merged with the complementiser that to form the CP that we are trying to help you, whose structure is shown in (24) above. By saying that the structure (24) is derived in a bottom-up fashion, we mean that lower parts of the structure nearer the bottom of the tree are formed before higher parts of the structure nearer the top of the tree. (An alternative top-down model of syntax is presented in Phillips 2003.)

3.5 Testing structure

Thus far, we have argued that phrases and sentences are built up by merging successive pairs of constituents into larger and larger structures, and that the resulting structure can be represented in terms of a labelled tree diagram. The tree diagrams which we use to represent syntactic structure make specific claims about how sentences are built up out of various different kinds of constituent (i.e. syntactic unit): hence, trees can be said to represent the constituent structure of sentences. But this raises the question of how we know (and how we can test) whether the claims made about syntactic structure in tree diagrams are true. So far, we have relied mainly on intuition in analysing the structure of sentences - we have in effect guessed at the structure. However, it is unwise to rely on intuition in attempting to determine the structure of a given expression in a given language. For, while experienced linguists over a period of years tend to acquire fairly strong intuitions about structure, novices by contrast tend to have relatively weak, uncertain, and unreliable intuitions; moreover, even the intuitions of supposed experts may ultimately turn out to be based on little more than personal preference.

For this reason, it is more satisfactory (and more accurate) to regard constituent structure as having the status of a theoretical construct. That is to say, it is part of the theoretical apparatus which linguists find they need to make use of in order to explain certain data about language (just as molecules, atoms and subatomic particles are constructs which physicists find they need to make use of in order to explain the nature of matter in the universe). It is no more reasonable to rely wholly on intuition to determine syntactic structure than it would be to rely on intuition to determine molecular structure. Inevitably, then, much of the evidence for syntactic structure is of an essentially empirical character, based on the observed grammatical properties of particular types of expression. The evidence typically takes the form 'Unless we posit that such-and-such an expression has such-and-such a constituent structure, we shall be unable to provide a principled account of the observed grammatical properties of the expression.' Thus, structural representations ultimately have to be justified in empirical terms, i.e. in terms of whether or not they provide a principled account of the grammatical properties of phrases and sentences.

In order to make our discussion more concrete, we'll look at how we can test the structure of the following sentence:

The chairman has resigned from the board

Let's suppose that (25) is derived as follows. The determiner the is merged with the noun board to form the DP the board. This DP is merged with the preposition from to form the PP from the board. The resulting PP is merged with the verb resigned to form the VP resigned from the board. This VP is then merged with the auxiliary has to form the T-bar has resigned from the board. This T-bar is in turn merged with its subject specifier the chairman (which is a DP formed by merging the determiner the with the noun chairman), thereby forming the TP shown in (26) below:

The tree diagram in (26) is a representation of (what we take to be) the structure of (25) The chairman has resigned from the board.

However, a tree diagram like (26) has the status of a hypothesis (i.e. untested and unproven assumption) about the structure of the relevant sentence. How can we test our hypothesis and determine whether (26) is or isn't an appropriate representation of the structure of the sentence? The answer is that there are a number of standard heuristics (i.e. 'tests') which we can use to determine structure. One such test relates to the phenomenon of co-ordination. English and other languages have a variety of coordinating conjunctions like and/but/or which can be used to co-ordinate (= conjoin = join together) expressions such as those bracketed below:
(27)(a) [fond of cats] and [afraid of dogs]
(b) [slowly] but [surely]
(c) [to go] or [to stay]

In each of the expressions in (27), an italicised co-ordinating conjunction has been used to conjoin the bracketed pairs of expressions. Clearly, any adequate grammar of English will have to provide a principled answer to the question: 'What kinds of strings (i.e. sequences of words) can and cannot be coordinated?'

Now, it turns out that we can't just co-ordinate any random set of strings, as we see by comparing the grammatical reply produced by speaker B in (28) below:

SPEAKER A: What does he do to keep fit?
SPEAKER B: Run up the hill and up the mountain
with the ungrammatical reply produced by speaker B in (29) below:
SPEAKER A: What did he do about his bills?
SPEAKER B: *Ring up the phone company and up the electricity company
Why should it be possible to co-ordinate the string up the hill with the string up the mountain in (28), but not possible to co-ordinate the string up the phone company with the string up the electricity company in (29)? We can provide a principled answer to this question in terms of constituent structure: the italicised string up the hill in (28) is a constituent of the phrase run up the hill (up the hill is a prepositional phrase, in fact), and so can be co-ordinated with another similar type of prepositional phrase (e.g. a PP such as up the mountain, or down the hill, or along the path, etc.). Conversely, however, the string up the phone company in (29) is not a constituent of the phrase ring up the phone company, and so cannot be co-ordinated with another similar string like up the electricity company. (Traditional grammarians say that $u p$ is associated with ring in expressions like ring up someone, and that the expression ring up forms a kind of complex verb which carries the sense of 'telephone'.) On the basis of contrasts such as these, we can formulate the following generalisation:
(30) Only constituents of the same type can be co-ordinated

A constraint (i.e. principle imposing restrictions on certain types of grammatical operation) along the lines of (30) is assumed in much work in traditional grammar.

Having established the constraint (30), we can now make use of it as a way of testing the tree diagram in (26) above. In this connection, consider the data in (31) below (in which the bracketed strings have been coordinated by and):
(31)(a) The chairman has resigned from [the board] and [the company]
(b) The chairman has resigned [from the board] and [from the company]
(c) The chairman has [resigned from the board] and [gone abroad]
(d) The chairman [has resigned from the board] and [is living in Utopia]
(e) *The [chairman has resigned from the board] and [company has replaced him]
(f) [The chairman has resigned from the board] and [the company has replaced him]
(31a) provides us with evidence in support of the claim in (26) that the board is a determiner phrase constituent, since it can be co-ordinated with another DP like the company; similarly, (31b) provides us with evidence that from the board is a prepositional phrase constituent, since it can be co-ordinated with another PP like from the company; likewise, (31c) provides evidence that resigned from the board is a verb phrase constituent, since it can be co-ordinated with another VP like gone abroad; in much the same way, (31d) provides evidence that has resigned from the board is a T-bar constituent, since it can be co-ordinated with another T' like is living in Utopia (thereby providing interesting empirical evidence in support of the binary-branching structure assumed in the TP analysis of clauses, and against the ternarybranching analysis assumed in the S analysis of clauses); and in addition, (31f) provides evidence that the chairman has resigned from the board is a TP constituent, since it can be co-ordinated with another TP like the company have replaced him. Conversely, however, the fact that (31e) is ungrammatical suggests that (precisely as (26) claims) the string chairman has resigned from the board is not a constituent, since it cannot be co-ordinated with a parallel string like company have replaced him (and the constraint in (30) tells us that two string of words can only be co-ordinated if both are constituents - and more precisely, if both are constituents of the same type). Overall, then, the co-ordination data in (31) provide empirical evidence in support of the anal ysis in (26).

There are a variety of other ways of testing structure, but we will not attempt to cover them all here (See Radford 1997a, pp. 102-116 for more detailed discussion). However, we will briefly mention two, one of which is already familiar from earlier discussion. In $\S 2.3$, we noted that substitution is a useful tool for determining the categorial status of words. We can also use substitution as a way of testing whether a given string of words is a constituent or not, by seeing whether the relevant string can be replaced by (or serve as the antecedent of) a single word. In this connection, consider:
(32)(a) The chairman has resigned from the board, and he is now working for a rival company
(b) The press say that the chairman has resigned from the board, and so he has
(c) If the Managing Director says the chairman has resigned from the board, he must have done
(d) If the chairman has resigned from the board (which you say he has), how come his car is still in the company car park?
The fact that the expression the chairman in (32a) can be substituted (or referred back to) by a single word (in this case, the pronoun $h e$) provides evidence in support of the claim in (26) that the chairman is a single constituent (a DP/determiner phrase, to be precise). Likewise, the fact that the expression resigned from the board in ($32 \mathrm{~b} / \mathrm{c} / \mathrm{d}$) can serve as the antecedent of soldone/which provides evidence in support of the claim in (26) that resigned from the board is a constituent (more precisely, a VP/verb phrase).

A further kind of constituent structure test which we made use of in $\S 3.5$ above relates to the possibility of preposing a maximal projection in order to highlight it in some way (i.e. in order to mark it out as a topic containing familiar/old information, or a focused constituent containing unfamiliar/new information). This being so, one way we can test whether a given expression is a maximal projection or not is by seeing whether it can be preposed. In this connection, consider the following sentence:
(33) The press said that the chairman would resign from the board, and resigned from the board he has

The fact that the italicised expression resigned from the board can be preposed in (33) indicates that it
must be a maximal projection: this is consistent with the analysis in (26) which tells us that resigned from the board is a verb phrase which is the maximal projection of the verb resigned.

However, an important caveat which should be noted in relation to the preposing test is that particular expressions can sometimes be difficult (or even impossible) to prepose even though they are maximal projections. This is because there are constraints (i.e. restrictions) on such movement operations. One such constraint can be illustrated by the following contrast:
(34)(a) I will certainly try to give up smoking (b) Give up smoking I will certainly try to
(c) *To give up smoking, I will certainly try

Here, the VP/verb phrase give up smoking can be highlighted by being preposed, but the TP/infinitival tense phrase to give up smoking cannot - even though it is a maximal projection (by virtue of being the largest expression headed by infinitival to). What is the nature of the restriction on preposing to+infinitive expressions illustrated by the ungrammaticality of (34c)? The answer is not clear, but may be semantic in nature. When an expression is preposed, this is in order to highlight its semantic content in some way (e.g. for purposes of contrast - as in e.g. 'Syntax, I don't like but phonology I do'). It may be that its lack of intrinsic lexical content makes infinitival to an unsuitable candidate for highlighting, and this may in turn be reflected in the fact that infinitival to cannot carry contrastive stress - as we see from the ungrammaticality of *'I don't want TO', where capitals mark contrastive stress). What this suggests is that:
(35) The smallest possible maximal projection is moved which contains the highlighted material

So, if we want to highlight the semantic content of the VP give up smoking, we prepose the VP give up smoking rather than the TP to give up smoking because the VP is smaller than the TP containing it.

However, this is by no means the only constraint on preposing, as we see from (36) below (where FBA is an abbreviation for the Federal Bureau of Assassinations - a purely fictitious body, of course):
(36)(a) Nobody had expected that the FBA would assassinate the king of Ruritania
(b) *King of Ruritania, nobody had expected that the FBA would assassinate the
(c) The king of Ruritania, nobody had expected that the FBA would assassinate
(d) *The FBA would assassinate the king of Ruritania, nobody had expected that (NB. that $=$ ðдt)
(e) That the FBA would assassinate the king of Ruritania, nobody had expected

The ungrammaticality of ($36 \mathrm{~b} / \mathrm{d}$) tells us that we can't prepose the NP King of Ruritania or the TP the FBA would assassinate the King of Ruritania. Why should this be? One possibility (briefly hinted at in Chomsky 1999) is that there may be a constraint on movement operations to the effect that a DP can be preposed but not an NP contained within a DP, and likewise that a CP can be preposed but not a TP contained within a CP. One implementation of this idea would be to posit a constraint like (37) below:

(37) Functional Head Constraint/FHC

The complement of a certain type of functional head F (such as a determiner or complementiser) cannot be moved on its own (without also moving F)
Suppose, then, that we want to highlight the NP king of Ruritania in (36) by preposing. (37) tells us to move the smallest possible maximal projection containing the highlighted material, and hence we first try to move this NP on its own: but the Functional Head Constraint tells us that it is not possible to prepose this NP on its own, because it is the complement of a functional head (by virtue of being the complement of the determiner the). We therefore prepose the next smallest maximal projection containing the highlighted NP king of Ruritania - namely the DP the king of Ruritania; and as the grammaticality of (36c) shows, the resulting sentence is grammatical.

Now suppose that we want to highlight the TP the FBA would assassinate the king of Ruritania. (35) tells us to move the smallest maximal projection containing the highlighted material - but FHC (37) tells us that we cannot prepose a TP which is the complement of a complementiser). Hence, we prepose the next smallest maximal projection containing the TP we want to highlight, namely the CP that the FBA would assassinate the King of Ruritania - as in (36e).

It is interesting to note that alongside sentences like (36) above in which a phrase has been highlighted by being preposed, we also find sentences like (38) below in which a single word has been preposed:
(38)(a)
Surrender, I never will
(b) Surrender, he resolutely refused to

In (38) the verb surrender has been preposed on its own. At first sight, this might seem to contradict our earlier statement that only maximal projections can undergo preposing. However, more careful reflection shows that there is no contradiction here: after all, the maximal projection of a head H is the largest expression headed by H; and in a sentence like I never will surrender, the largest expression headed by the verb surrender is the verb surrender itself - hence, surrender in (38) is indeed a maximal projection. More generally, this tells us that an individual word is itself a maximal projection if it has no complement or specifier of its own.

The overall conclusion to be drawn from our discussion here is that the preposing test has to be used with care. If an expression can be preposed in order to highlight it, it is a maximal projection; if it cannot, this may either be because it is not a maximal projection, or because (even though it is a maximal projection) a syntactic constraint of some kind prevents it from being preposed, or because its head word has insufficient semantic content to make it a suitable candidate for highlighting.

3.6 Syntactic relations

Throughout this chapter, we have supposed that phrases and sentences are formed by a series of binary merger operations, and that the resulting structures can be represented in the form of tree diagrams. Because they mark the way that words are combined together to form phrases of various types, tree diagrams are referred to in the relevant technical literature as phrase-markers (abbreviated to P-markers). They show us how a phrase or sentence is built up out of constituents of various types: hence, a tree diagram provides a visual representation of the constituent structure of the corresponding expression. Each node in the tree (i.e. each point in the tree which carries a category label like $\mathrm{N}, \mathrm{V}, \mathrm{T}^{\prime}$, PP, CP etc.) represents a different constituent of the sentence; hence, there are as many different constituents in any given phrase marker as there are nodes carrying category labels. Nodes at the very bottom of the tree are called terminal nodes, and other nodes are non-terminal nodes: so, for example, all the D, N, T, V and P nodes in (26) are terminal nodes, and all the DP, PP, VP, T' and TP nodes are non-terminal nodes. The topmost node in any tree structure (i.e. TP in the case of (26) above) is said to be its root. Each terminal node in the tree carries a single lexical item (i.e. an item from the lexicon/ dictionary, like $d o g$ or $g o$ etc.): lexical items are sets of phonological, semantic and grammatical features (with category labels like N, V, T, C etc. being used as shorthand abbreviations for the set of grammatical features carried by the relevant items).

It is useful to develop some terminology to describe the syntactic relations between constituents, since these relations turn out to be central to syntactic description. Essentially, a P-marker is a graph comprising a set of points (= labelled nodes), connected by branches (= solid lines) representing containment relations (i.e. telling us which constituents contain or are contained within which other constituents). We can illustrate what this means in terms of the following abstract tree structure (where A, B, C, D, E, F, G, H and J are different nodes in the tree, representing different constituents):

In (39), G immediately contains H and J (and conversely H and J are the two constituents immediately contained within G, and hence are the two immediate constituents of G): this is shown by the fact that H and J are the two nodes immediately beneath G which are connected to G by a branch (solid line).
Likewise, E immediately contains F and G; B immediately contains C and D; and A immediately contains B and E. We can also say that E contains F, G, H and J; and that A contains B, C, D, E, F, G, H and J (and likewise that G contains H and J ; and B contains C and D). Using equivalent kinship terminology, we can say that A is the mother of B and E (and conversely B and E are the two daughters of A); B is the mother of C and D ; E is the mother of F and G ; and G is the mother of H and J). Likewise, B and E are sisters (by virtue of both being daughters of A) - as are C and $\mathrm{D} ; \mathrm{F}$ and G ; and H and J .

A particularly important syntactic relation is that of c-command (a conventional abbreviation of
constituent-command), which provides us with a useful way of determining the relative position of two different constituents within the same tree (in particular, whether one is lower in the tree than the other or not). We can define this relation informally as follows (where X, Y and Z are three different nodes):

C-command

A constituent X c-commands its sister constituent Y and any constituent Z which is contained within Y

A more concrete way of visualising this is to think of a tree diagram as representing a network of train stations, with each of the labelled nodes representing the name of a different station in the network, and the branches representing the rail tracks linking the stations. We can then say that one node X c-commands another node Y if you can get from X to Y on the network by taking a northbound train, getting off at the first station, changing trains there and then travelling one or more stops south on a different line.

In the light of the definition of c-command given above, let's consider which constituents each of the nodes in (39) c-commands. A doesn't c-command any of the other nodes, since A has no sister. B c-commands E, F, G, H and J because B's sister is E, and E contains F, G, H and J. C c-commands only D, because Cs sister is D , and D does not contain any other constituent; likewise, D c-commands only C . E c-commands B, C and D because B is the sister of E and B contains C and D. F c-commands G, H and J, because G is the sister of F and G contains H and J. G c-commands only F, because G's sister is F, and F does not contain any other constituents. H and J likewise c-command only each other because they are sisters which have no daughters of their own.

We can illustrate the importance of the c-command relation in syntactic description by looking at the distribution of a class of expressions which are known as anaphors. These include reflexives (i.e. self/selves forms like myself/yourself/themselves etc.), and reciprocals like each other and one another. Such anaphors have the property that they cannot be used to refer directly to an entity in the outside world, but rather must by bound by (i.e. take their reference from) an antecedent elsewhere in the same phrase or sentence. Where an anaphor has no (suitable) antecedent to bind it, the resulting structure is ungrammatical - as we see from contrasts such as that in (41) below:

(41)(a) He must feel proud of himself

(b) *She must feel proud of himself
(c) *Himself must feel proud of you

In (41a), the third person masculine singular anaphor himself is bound by a suitable third person masculine singular antecedent (he), with the result that (41a) is grammatical. But in (41b), himself has no suitable antecedent (the feminine pronoun she is not a suitable antecedent for the masculine anaphor himself), and so is unbound (with the result that (41b) is ill-formed). In (41c), there is no antecedent of any kind for the anaphor himself, with the result that the anaphor is again unbound and the sentence ill-formed.

There are structural restrictions on the binding of anaphors by their antecedents, as we see from:
(42)(a) The president may blame himself
(b) *Supporters of the president may blame himself
(43)(a) They may implicate each other
(b) *The evidence against them may implicate each other

As a third person masculine singular anaphor, himself must be bound by a third person masculine singular antecedent like the president; similarly, as a plural anaphor, each other must be bound by a plural antecedent like they/them. However, it would seem from the contrasts above that the antecedent must occupy the right kind of position within the structure in order to bind the anaphor or else the resulting sentence will be ungrammatical. The question of what is the right position for the antecedent can be defined in terms of the following structural condition:

C-command condition on binding

A bound constituent must be c-commanded by an appropriate antecedent
The relevant bound constituent is the reflexive anaphor himself in (42a), and its antecedent is the president; the bound constituent in (43a) is the reciprocal anaphor each other, and its antecedent is they. Sentence (42a) has the structure (45) below:

The reflexive pronoun himself can be bound by the DP the president in (45) because the sister of the DP node is the T-bar node, and the pronoun himself is contained within the relevant T-bar node (by virtue of being one of the grandchildren of T-bar): consequently, the DP the president c -commands the anaphor himself and the binding condition (44) is satisfied. We therefore correctly predict that (42a) The president may blame himself is grammatical, with the president interpreted as the antecedent of himself.

But now consider why a structure like (46) below is ungrammatical (cf. (42b) above):

The answer is that the DP node containing the president doesn't c-command the PRN node containing himself, because the sister of the DP node is the P node of, and himself is not contained within (i.e. not a daughter, granddaughter, or great-granddaughter etc. of) the preposition of. Since there is no other appropriate antecedent for himself within the sentence (e.g. although the NP supporters of the president c-commands himself, it is not a suitable antecedent because it is a plural expression, and himself requires a singular antecedent), the anaphor himself remains unbound - in violation of the binding requirement on anaphors. This is the reason why (42b) *Supporters of the president may blame himself is ungrammatical.

Our brief discussion of anaphor binding here highlights the fact that the relation c-command has a central role to play in syntax. It also provides further evidence for positing that sentences have a hierarchical constituent structure, in that the relevant restriction on the binding of anaphors in (44) is characterised in structural terms. There's much more to be said about binding, though we shan't pursue the relevant issues here: for technical discussion, see Reuland (2001a) and Reuland and Everaert (2001).

3.7 Bare phrase structure

In this chapter, we have used a system of category labels based on the bar notation which has been widely adopted since the 1970s. Within this framework, a sentence like (the title of Gloria Gaynor's immortal song) I will survive has the structure (47) below:

The bar notation used in (47) posits that there are three different levels of projection (i.e. types of expression): (i) heads (also called minimal projections) like the T/tense auxiliary will; (ii) intermediate projections like the T-bar will survive; and (iii) maximal projections like the TP I will survive. However, Chomsky (1999, p.2) argues that a system of category labels which posits three different types of category label for projections of a given head H (viz. H, H-bar and HP) violates a UG principle which he terms the

Inclusiveness Condition - outlined informally below:

Inclusiveness Condition

No new information can be introduced in the course of the syntactic derivation
The reason why the bar notation used in trees like (47) violates inclusiveness is as follows. When the word will is taken out of the lexicon, its lexical entry specifies that it has a set of properties which include the grammatical properties represented by the category label T in (47). But the tree in (47) tells us that when will is merged with its complement survive, the resulting string will survive belongs to the category T-bar - in other words, it is an intermediate projection of will. Likewise, the tree in (47) also tells us that the larger string I will survive is a TP - in other words, it is the maximal projection of will. But this information about intermediate and maximal projections is not part of the lexical entry for will, and hence must be added in the course of the syntactic computation. However, adding such information about projection levels violates the Inclusiveness Condition (48).

One way of avoiding violation of inclusiveness is to remove all information about projection levels from trees, and hence replace a tree like (47) above by one like (49) below:

What our revised tree (49) says is that will, will survive and I will survive are all projections of the tense auxiliary will and hence are all tense expressions. Information about projections levels is omitted in (49) because it is predictable from looking at the relative positions of constituents within a given structure. Simply by looking at the positions they occupy in the tree (49) we can tell that will is the minimal projection of will (i.e. it is the smallest expression headed by will), that will survive is an intermediate projection of will (by virtue of being neither the smallest nor the largest expression headed by will) and that I will survive is the maximal projection of will (by virtue of being the largest expression headed by will). Similarly, we can tell that the V survive is both a minimal and a maximal projection, in that it is both the smallest and the largest expression headed by survive: hence (e.g.) it can behave like a maximal projection and undergo preposing (as in Survive, I will). In much the same way, we know from looking at the structure in (49) that the pronoun I is likewise both a minimal and a maximal projection: given their status as maximal projections, it follows that pronouns can undergo preposing (as with the pronoun him in Him, I would never trust). Since the information about projection levels in the bar notation is redundant, Chomsky reasons, such information should not be represented in the system of category labels used in tree diagrams: after all, the goal of Minimalism is to reduce theoretical apparatus to the minimum which is conceptually necessary.

Given the possibility (mentioned in §2.11) that categorial information (i.e. information about the category that an item belongs to) can be represented in terms of grammatical features (and hence subsumed within the set of features which characterise the idiosyncratic properties of individual words), a further possibility is that category labels like those in (49) can be entirely replaced by sets of features, so opening up the possibility of developing a theory of bare phrase structure - i.e. a theory in which there are no category labels in syntactic trees. An even more radical possibility along these lines would be for the structure of I will survive to be represented in terms of an unlabelled tree diagram like (50) below:

An unlabelled tree diagram like (50) tells us that the constituents of (50) are I, will, survive, will survive and I will survive. The lexical entries for the items I, will and survive comprise sets of features which include information about their grammatical and selectional properties: e.g. the entry for will tells us that it
is a finite auxiliary which selects an infinitival complement. The fact that will selects an infinitive complement (and that survive is an infinitive form and is the sister of will) means that survive must be the complement of will and hence that will survive is a projection of will. Likewise, the fact that will has an [EPP] feature requiring it to project a subject means that the nominative pronoun I must be the subject of will, and hence that I will survive is an extended projection of will. As before, the relative position of the relevant constituents within the overall structure tells us that will is a minimal projection (of itself), will survive is an intermediate projection of will, and that I will survive is the maximal projection of will. The overall conclusion we arrive at is that the information about category labels and projection levels in a conventional labelled tree diagram like (47) above may well be redundant.

If the kind of reasoning outlined here is along the right lines, it opens up the possibility of developing a theory of bare phrase structure such as that outlined in a skeletal form in Chomsky (1995) and Uriagereka (1998) - though it should be noted that the relevant discussion in these two works is highly technical and not suitable for those who don't have some mathematical background in set theory. However, we shall continue to use traditional labelled trees and the bar notation to represent structure, category membership and projection levels throughout the rest of this book, since this remains the notation most widely used in contemporary work in syntax.

3.8 Summary

In this chapter, we have looked at how words are combined together to form phrases and sentences. In $\S 3.2$ we showed how more and more complex phrases can be built up by successive binary merger operations, each of which combines a pair of constituents to form a larger constituent. In $\S 3.3$ we argued that clauses containing a finite tense auxiliary are formed by merging the tense auxiliary with a verbal complement to form an intermediate T-bar projection which is then merged with a subject to form an extended TP/tense phrase projection. On this view, a sentence like It may rain would be formed by merging the present-tense auxiliary may with the verb rain to form the T-bar constituent may rain, and then merging the resulting T-bar with the pronoun it to derive the TP It may rain. We also noted the claim made by Chomsky in earlier work that the requirement for tense auxiliaries to have a subject is a consequence of a principle of Universal Grammar called the Extended Projection Principle/EPP, which requires a finite T to have an extended projection into a TP containing a subject; and we noted that this subject-requirement can be described by saying that a finite T has an [EPP] feature requiring it to have an extended projection into a TP containing a subject. Introducing a new term, we said that the subject occupies the specifier position within TP, and that specifiers are constituents which merge with an intermediate projection to form a maximal projection. We noted that other kinds of constituent can also have specifiers, so that (e.g.) straight occupies the specifier position within a prepositional phrase like straight to bed. In $\S 3.4$ we argued that clauses introduced by a complementiser/C are formed by merging C with a TP complement to form a CP/complementiser phrase. In $\S 3.5$, we looked at ways of testing constituent structure, outlining tests relating to co-ordination, substitution, and preposing. We noted that a variety of factors can sometimes prevent constituents from being preposed in order to highlight them; for example, items with little or no substantive lexical content generally cannot be preposed, and there are also syntactic restrictions on preposing - e.g. such movement operations are subject to a Functional Head Constraint which bars the complement of a determiner or complementiser from being moved on its own. In $\S 3.6$, we looked at the syntactic relations between constituents within tree diagrams, noting that the relation c-command plays a central role in syntax, e.g. in relation to anaphor binding. In $\S 3.7$ we discussed the potential redundancy in the system of labels used to represent categories and projection levels in traditional phrase structure trees, and noted that Chomsky has been seeking to develop a theory of bare phrase structure in recent work.

For those of you familiar with work in traditional grammar, it will be clear that the assumptions made about syntactic structure within the Minimalist framework are somewhat different from those made in traditional grammar. Of course, there are some similarities: within both types of framework, it is assumed that lexical categories project into phrases, so that by combining a noun with one or more other constituents we can form a noun phrase, and likewise by combining a verb/preposition/adjective/adverb with one or more other constituents we can form a verb phrase/prepositional phrase/adjectival phrase/adverbial phrase. But there are two major differences between the two types of framework. One is that Minimalism (unlike Traditional Grammar) assumes that function words also project into phrases (so
that by combining a determiner with a noun expression we form a determiner phrase, by combining a (present or past tense) auxiliary/T with a complement and a subject we form a Tense Projection/TP, and by combining a complementiser with a TP we form a complementiser projection/CP. This in some cases results in an analysis which is rather different from that found in traditional grammar (e.g. in that the nose would be considered a noun phrase in traditional grammar, but is taken to be a determiner phrase within the framework adopted here). A further difference between the two frameworks is that Minimalism assumes that all syntactic structure is binary-branching, whereas traditional grammar (implicitly) does not.

WORKBOOK SECTION

Exercise 3.1

Discuss the derivation of the following sentences, showing how their structure is built up in a pairwise fashion by successive binary merger operations.
1 He has become fond of Mary
2 She must be pleased to see you
3 He may need to ask for help
4 They are expecting to hear from you
5 You should try to talk to the president
6 Inflation is threatening to undermine the growth of the economy
7 Nobody could believe that Sam was working for the government
8 He may refuse to admit that he was defrauding the company
Show how evidence from co-ordination and pronominalisation can be used in support of your analysis. In addition, say which constituents can (and cannot) be preposed - and why.

Helpful hints

Assume that the sentences are derived in a bottom-up fashion by first merging the last two words in the sentence to form a constituent, then merging the constituent thereby formed with the third-from-last word to form an even larger constituent, then merging this even larger constituent with the fourth-from-last word...and so on. (It should be noted, however, that while this simple procedure will work for most of the sentences in the two exercises in this chapter, it requires modification to handle more complex sentences e.g. those with phrasal subjects like sentences $3,4,7,18$ and 20 in exercise 3.2.)

Model answer for 1

Merging the preposition of with the noun Mary which serves as its complement derives the PP (prepositional phrase) in (i) below:
(i)

Merging the adjective fond with the resulting PP (which is the complement of fond) forms the AP (adjectival phrase) fond of Mary in (ii) below:
(ii)

Merging the verb become with the AP fond of Mary which serves as the complement of become forms the VP/verb phrase in (iii) below:
(iii)

Merging the tense auxiliary (T constituent) has with its VP complement become fond of Mary forms the intermediate T-bar projection (iv) below:
(iv)

Merging the T-bar in (iv) with the pronoun he which serves as its subject will derive the TP:
(v)

The subject he occupies the specifier position within TP and so can be said to be in spec-TP.
Evidence in support of the analysis in (v) comes from co-ordination data in relation to sentences such as:
(vi)(a) He has become fond [of Mary] and [of her sister]
(b) He has become [fond of Mary] and [proud of her achievements]
(c) He has [become fond of Mary] and [grown used to her mother]
(d) He [has become fond of Mary] and [is hoping to marry her]

The fact that each of the italicised strings can be co-ordinated with another similar (bold-printed) string is consistent with the claim made in (v) that of Mary is a PP, fond of Mary is an AP, become fond of Mary is a VP and has become fond of Mary is a T-bar.

Additional evidence in support of the analysis in (v) comes from the use of the proforms so/which in:
(vii)(a) He is apparently fond of Mary, though nobody expected him to become so
(b) If he has become fond of Mary (which he has), why doesn't he ask her out?

The fact that fond of Mary is the antecedent of so in (vii)(a) is consistent with the claim made in (v) that fond of Mary is an AP; likewise, the fact that become fond of Mary is the antecedent of which in (vii)(b) is consistent with the claim made in (vi) that become fond of Mary is a VP.

If we look at the question of which expressions in the sentence can and cannot be preposed in order to highlight them, we find the following picture (? indicates questionable grammaticality):
(viii)(a) Mary, he (certainly) has become fond of
(c) Fond of Mary, he (certainly) has become
(e) *Has become fond of Mary, he certainly
(b) ??Of Mary, he (certainly) has become fond
(d) Become fond of Mary, he (certainly) has
(Adding the adverb certainly improves the acceptability of some of the relevant sentences, for discourse reasons which need not concern us.) In (35) in the main text, we suggested that highlighting involves preposing the smallest possible maximal projection containing the focused material. Suppose that we want to highlight Mary via preposing. Since Mary is a maximal projection in (v) by virtue of being the largest expression headed by the word Mary, preposing Mary in (viii)(a) yields a grammatical outcome, as expected. By contrast, preposing the prepositional phrase of Mary yields a somewhat degraded sentence, as we see from (viii)(b): this may be because if we want to highlight Mary alone, we prepose the smallest maximal projection containing Mary, and this is clearly the N Mary not the PP of Mary. There would only be some point in preposing of Mary if we wanted to highlight of as well as Mary; but since the preposition of (rather like infinitival to) has little or no semantic content (some linguists suggesting that it is a genitive case particle in this kind of use and hence a functor), an of-phrase is not a good candidate for highlighting. The string fond of Mary can be preposed in (viii)(c) by virtue of its status as the maximal projection of fond (i.e. the largest expression headed by fond). In (viii)(d) we see that become fond of Mary can also be preposed by virtue of being the maximal projection of the verb become. By contrast, the string has become fond of Mary cannot be preposed in (viii)(e) because of its status as an intermediate (T-bar) projection of has - the corresponding maximal projection of has being the TP He has become fond of Mary.

Exercise 3.2

In §3.7, we showed how the relation c-command plays an important role in accounting for the use of reflexive and reciprocal anaphors. The same can be argued to be true of two other types of expression, namely non-anaphoric pronominals like he/him/her/it/them etc. and referential noun expressions like John or the president. Chomsky (1981) and much subsequent work saw the development of a Theory of Binding which incorporated the three binding principles outlined informally below:
(1) Binding Principles

Principle A: an anaphor must be bound within its local domain
Principle B: a (non-anaphoric) pronominal (expression) must be free within its local domain
Principle C: an R-expression (i.e. referring noun expression) must be free within the overall structure containing it
Although there is controversy about how best to define the notion of local domain in relation to binding, for present purposes assume that this corresponds to the notion of TP, and that the three binding principles in (1) thus amount to the following:

A: An anaphor (like himself) must be bound by (i.e. must refer to) a c-commanding constituent within the closest TP containing it
B: A pronominal (like him) must not be bound by (i.e. must not refer to) any c-commanding constituent within the closest TP containing it
C: An R-expression (i.e. a referring noun expression like John/the president) must not be coferential to (i.e. must not refer to the same entity as) any c-commanding expression within the overall tree structure containing it

In the light of the Binding Principles outlined informally in (2), discuss the binding properties of the expressions Fred, John, he/him and himself in sentences 3-8 below, drawing trees to represent the structure of the sentences.

3a The rumours about Fred have upset him
b *The rumours about Fred have upset himself
4a The rumours about him have upset Fred
b *The rumours about himself have upset Fred

5a John must feel that Fred has disgraced himself
b *John must feel that himself has disgraced Fred
6a John must feel that he has disgraced Fred
b John must feel that Fred has disgraced him
7a John may wonder if the rumours about Fred will affect him
b John may wonder if the rumours about him will affect Fred
8a John may suspect that Fred has taken some pictures of him
b John may suspect that Fred has taken some pictures of himself
In addition to its role in Binding Theory, the notion c-command has traditionally been assumed to play an important part in accounting for the syntax of so-called (negative/interrogative) polarity expressions i.e. expressions which are said to be restricted to occurring in negative or interrogative contexts. One way of characterising this restriction is to suppose that the relevant expressions are restricted to occurring in a position where they are c-commanded by what Klima (1964) termed an affective constituent (e.g. a negative, interrogative or conditional expression - conditional expressions including if/unless in structures like 'I will shut him up if he tries to say says anything'). Polarity expressions include the partitive quantifier any (and related compounds like anyonelanything), the items need and dare when serving as auxiliaries which don't take third person singular $-s$ in the present tense and which have a bare (to-less) infinitive complement, and idioms like lift a finger. Show how the c-command condition accounts for the (un)grammaticality of the following:

9	You mustn't talk to anyone	10	Nobody need do anything
11	Who dare blame anyone?	12	She has refused to sign anything
13	She should know if anyone has made any changes	14	I don't think that anyone dare lift a finger
15	He may have no desire to change anything	16	Nobody will think that anything has changed
17	He may feel unable to do anything		18

In relation to 19 (intended to be synonymous with There isn't anyone helping me) show how the traditional ternary-branching analysis of clauses as S-constituents (whereby 19 would be analysed as an S constituent comprising the pronoun/PRN anyone, the present-tense auxiliary/T isn't and the verb phrase/VP helping me) would be unable to provide a principled account of the ungrammaticality of 19 in terms of the c-command condition on polarity items. In relation to 21-22, consider why some linguists (e.g. Landau 2002) have claimed that it is not the verb deny which is negative in $19 / 20$, but rather the complementiser that, and say why sentences like $23 / 24$ cast doubt on this. Consider an alternative account of data like 21-24 under which we assume that a polarity item must be asymmetrically c-commanded by an affective item, and we define asymmetric c-command as follows:

25 X asymmetrically c-commands Y if X c-commands Y but Y does not c -command X

Helpful hints

Assume that need/dare (when they take a bare to-less infinitive complement) are modal auxiliaries which occupy the head T position of TP, and that they take a VP complement: assume also that they are polarity items in this use. Assume that no in $15 / 18$ is a quantifier ($=\mathrm{Q}$) which heads a quantifier phrase (= QP) constituent and has a noun phrase as its complement: assume that when the head Q of QP is negative, the overall QP is negative as well (because a phrase carries the same features as its head by virtue of being a projection of the relevant head). In addition, assume that mustn't/don't/isn't are (inherently negative) T/tense auxiliaries. Finally, assume that anyone/anything/nobody/nothing are pronouns (more specifically, they are Q-pronouns, i.e. pronominal quantifiers). [A descriptive detail which you might care to note is that the quantifier any has two uses. It can serve as a universal or 'free choice' quantifier with a meaning similar to every (as in He'll do anything for a laugh): in this use, the initial a - of any is stressed, and the relevant word is not a polarity item - i.e. is not restricted to occurring in affective contexts. The second use of any is as a partitive (or existential) quantifier: in this use, it has a meaning similar to some and can be unstressed (with its initial vowel reduced to schwa or even being truncated in rapid colloquial
speech styles - e.g. He wouldn't do 'nything), and is indeed a polarity item restricted to occurring in affective contexts. Assume that in the examples in 9-24 above, you are dealing with partitive any, and that this is a polarity item.]

Model answer for 1

Although we will not attempt to argue this here, there are good reasons for thinking that sentence 1a has the structure (i) below:
(i)

Him is a pronominal (i.e. a non-anaphoric pronoun), and hence subject to Principle B of Binding Theory. This specifies that a pronominal like him cannot refer to any expression c-commanding it within the closest TP containing it; and from this it follows that such a pronominal can (a) refer to an expression contained in a different TP within the same sentence, or (b) refer to an expression within the same TP as long as that expression does not c-command him, or (c) refer to some entity in the domain of discourse (e.g. some person not mentioned in the relevant sentence, but present in the discourse context). The second of these possibilities (b) allows for him to refer to Fred in (i), since although him and Fred are contained within the same TP, Fred does not c-command him (the only constituent which Fred c-commands being the preposition about) so that principle B is satisfied if him refers to Fred (or if indeed him refers to some other person not mentioned in the sentence).

The noun Fred is an R-expression by virtue of being a referring noun expression, and hence is subject to Principle C of Binding Theory. This specifies that an R-expression like Fred cannot be coreferential to any expression which c-commands it anywhere within the overall structure containing it. However, there is no violation of Principle C in (i) if Fred and him are coreferential, since Fred is not c-commanded by him. (The only constituent which him c-commands is the V upset). There is likewise no violation of Principle C if Fred refers to some person not mentioned within the sentence. Overall, then, principles B and C allow for the twin possibilities that him can either refer to Fred or refer to someone other than Fred who is not directly mentioned in the sentence.

Model answer for 9

Given the assumptions made in the text, 9 will have the structure (ii) below:
(ii)

The T node containing the negative auxiliary mustn't here c-commands the PRN node containing the polarity item anyone because the sister of [${ }_{\mathrm{T}}$ mustn't] is [vp talk to anyone], and anyone is contained within this VP, since the PRN node is one of the grandchildren of the VP node. If you prefer to use the alternative train metaphor suggested in $\S 3.7$ (under which X c-commands Y if you can get from X to Y on a train by
going one stop north, then taking a southbound train on a different line and travelling as many stops south as you choose), you can say that [${ }_{\mathrm{T}}$ mustn't] c-commands [PRN anyone] because if you travel one stop north from the T station you arrive at the T-bar station, and if you then change trains at the T-bar station you can get a southbound train on a different line which will take you to the PRN station containing anyone (at the end of the line) via the VP and PP stations. Since the polarity item anyone is c-commanded by the negative auxiliary mustn't, the c-command condition on the use of polarity items is satisfied, and sentence 1 is therefore grammatical.

4

Null constituents

4.1 Overview

So far, our discussion of syntactic structure has tacitly assumed that all constituents in a given structure are overt (in the sense that they have overt phonetic features, as well as grammatical and semantic features). However, in this chapter we argue that syntactic structures may also contain null constituents (also known as empty categories) - i.e. constituents which have grammatical and semantic features but lack phonetic features (and so are 'silent' or 'inaudible').

4.2 Null subjects

We are already familiar with one kind of null constituent from the discussion of the Null Subject Parameter in §1.6. There, we saw that alongside finite clauses like that produced by SPEAKER A in the dialogue in (1) below with an overt subject like Maria, Italian also has finite clauses like that produced by SPEAKER B, with a null subject pronoun conventionally designated as pro (and referred to affectionately as 'little pro'):

> SPEAKER A: Maria è tornata? Maria is returned? ('Has Maria returned?')
> SPEAKER B: Sì, pro è tornata
> Yes, pro is returned ('Yes, she has returned')

One reason for positing pro in (1B) is that it captures the intuition that the sentence has an 'understood' subject (as is clear from the fact that its English translation contains the subject pronoun she). A second reason relates to the agreement morphology carried by the auxiliary \grave{e} ' is' and the participle tornata 'returned' in (1). Just as the form of the (third person singular) auxiliary e ' is' and the (feminine singular) participle tornata is determined via agreement with the overt (third person feminine singular) subject Maria in (1A), so too the auxiliary and participle agree in exactly the same way with the null pro subject in (1B), which (as used here) is third person feminine singular by virtue of referring to Maria. If the sentence in (1B) were subjectless, it is not obvious how we would account for the relevant agreement facts. Since all finite clauses in Italian allow a null pro subject, we can refer to pro as a null finite subject.

Although English is not an Italian-style null subject language (in the sense that it is not a language which allows any and every kind of finite clause to have a null pro subject), it does have three different types of null subject (briefly discussed in exercise I). One such are imperative null subjects. As the examples in (2) below illustrate, an imperative sentence in English can have an overt subject which is either a second person expression like you, or a third person expression like anyone:
(2)(a) Don't you dare lose your nerve!
(b) Don't anyone dare lose their nerve!

However, imperative null subjects are intrinsically second person, as the contrast in (3) below shows:
(3)(a) Don't lose your nerve!
(b) *Don't lose their nerve!

In other words, imperative null subjects seem to be a silent counterpart of you. One way of describing this is to say that the pronoun you can have a null spellout (and thereby have its phonetic features not spelled out - i.e. deleted/omitted) when it is the subject of an imperative sentence.

A second type of null subject found in English are truncated null subjects. In cryptic styles of colloquial spoken English (and also in diary styles of written English) a sentence can be truncated (i.e. shortened) by giving a subject pronoun like I/you/he/we/they a null spellout if it is the first word in a sentence. So, in sentences like those in (4) below:
(4)(a) I can't find my pen
(b) I think I left it at home
(c) Why do I always lose things?
the two italicised occurrences of the subject pronoun I can be given a null spellout because in each case I is the first word in the sentence, but not other occurrences of I - as we see from (5) below:
(5)(a) Can't find my pen
(b) Think I left it at home/*Think left it at home
(c) *Why do always lose things?

However, not all sentence-initial subjects can be truncated (e.g. we can't truncate $H e$ in a sentence like $H e$ is tired, giving *Is tired): the precise nature of the constraints on truncation are unclear.

A third type of null subject found in English are nonfinite null subjects, found in nonfinite clauses which don't have an overt subject. In this connection, compare the structure of the bracketed infinitive clauses in the (a) and (b) examples below:
(6)(a) We would like [you to stay] (7)(a) We don't want [anyone to upset them]
(b) We would like [to stay] (b) We don't want [to upset them]

Each of the bracketed infinitive complement clauses in the (a) examples in (6) and (7) contains an overt (italicised) subject. By contrast, the bracketed complement clauses in the (b) examples appear to be subjectless. However, we shall argue that apparently subjectless infinitive clauses contain a null subject. The particular kind of null subject found in the bracketed clauses in the (b) examples has the same grammatical and referential properties as a pronoun, and hence appears to be a null pronoun. In order to differentiate it from the null ('little pro') subject found in finite clauses in null subject languages like Italian, it is conventionally designated as PRO and referred to as 'big PRO'. Given this assumption, a sentence such as (6b) will have a parallel structure to (6a), except that the bracketed TP has an overt pronoun you as its subject in (6a), but a null pronoun PRO as its subject in (6b) - as shown below:

Using the relevant technical terminology, we can say that the null PRO subject in (8) is controlled by (i.e. refers back to) the subject we of the matrix (= containing = next highest) clause - or, equivalently, that we is the controller or antecedent of PRO: hence, a structure like 'We would like PRO to stay' has an interpretation akin to that of 'We would like ourselves to stay'. Verbs (such as like) which allow an infinitive complement with a PRO subject are said to function (in the relevant use) as control verbs; likewise, a complement clause with a null PRO subject is known as a control clause.

An obvious question to ask at this juncture is why we should posit that apparently subjectless infinitive complements like those bracketed in (6b/7b) above have a null PRO subject. Part of the motivation comes from the intuition that the verb stay in (6b) above has an understood subject - and positing a PRO subject for the stay clause captures this intuition. The null PRO subject of a control infinitive becomes overt if the infinitive clause is substituted by a finite clause, as we see from the paraphrases for the (a) examples given in the (b) examples below:
(9)(a) I am sorry [PRO to have kept you waiting]
(10)(a) Jim promised [$P R O$ to come to my party]
(b) I am sorry [I have kept you waiting]

The fact that the bracketed clauses in the (b) examples contain an overt (italicised) subject makes it plausible to suppose that the bracketed clauses in the synonymous (a) examples have a null PRO subject.

Further evidence in support of positing a null PRO subject in such clauses comes from the syntax of
reflexive anaphors (i.e. selffselves forms such as myselffyourselffhimselffthemselves etc.). As examples such as the following indicate, reflexives generally require a local antecedent (the reflexive being italicised and its antecedent bold-printed):

(11)(a) They want [John to help himself] (b) *They want [John to help themselves]

In the case of structures like (11), a local antecedent means 'an antecedent contained within the same [bracketed] clause/TP as the reflexive'. (11a) is grammatical because it satisfies this locality requirement: the antecedent of the reflexive himself is the noun John, and John is contained within the same (bracketed) help-clause as himself. By contrast, (11b) is ungrammatical because the reflexive themselves does not have a local antecedent (i.e. it does not have an antecedent within the bracketed clause containing it); its antecedent is the pronoun they, and they is contained within the want clause, not within the [bracketed] help clause. In the light of the requirement for reflexives to have a local antecedent, consider now how we account for the grammaticality of the following:

(12)

John wants [PRO to prove himself]
Given the requirement for reflexives to have a local antecedent, it follows that the reflexive himself must have an antecedent within its own [bracketed] clause. This requirement is satisfied in (12) if we assume that the bracketed complement clause has a PRO subject, and that PRO is the antecedent of himself. Since PRO in turn is controlled by John (i.e. John is the antecedent of PRO), this means that himself is coreferential to (i.e. refers to the same individual as) John.

A further argument in support of positing that control clauses have a silent PRO subject can be formulated in theoretical terms. In the previous chapter, we noted that finite auxiliaries have an [EPP] feature which requires them to have a subject specifier. Since finite auxiliaries belong to the category T of tense-marker, we can generalise this conclusion by positing that all finite T constituents have an [EPP] feature requiring them to have a subject. However, since we argued in chapter 2 that infinitival to also belongs to the category T (by virtue of its status as a nonfinite tense-marker), we can suggest the broader generalisation that not only a finite T but also a nonfinite T containing the infinitive particle to has an [EPP] feature and hence must likewise project a subject. The analysis in (8) above is consistent with this generalisation, since it posits that stay clause either has an overt you subject or a null PRO subject, with either type of subject satisfying the [EPP] feature of to.

The overall conclusion which our discussion here leads us to is that just as infinitive complements like you to stay in (6a) have an overt subject (you), so too seemingly subjectless infinitive complements like to stay in (6b) have a null PRO subject - as shown in (8) above. In structures like (8), PRO has an explicit controller, which is the subject of the matrix clause (i.e. of the clause which immediately contains the control verb). However, this is not always the case, as we can see from structures like (13) below:
(13)(a) It is important [PRO to take regular exercise]
(b) It's difficult [PRO to learn a foreign language]
(c) It's unwise [PRO to mix business with pleasure]

It is clear from examples like (14) below that apparently subjectless clauses like those bracketed in (13/14) must have a null PRO subject:
(14)(a) It's important [PRO to prepare myself properly for the exam]
(b) It's important [PRO not to take oneself too seriously]
since the reflexives myself/oneself require a local antecedent within the bracketed clause containing them, and PRO serves the function of being the antecedent of the reflexive. However, PRO itself has no explicit antecedent in structures like (13/14). In such cases (where PRO lacks an explicit controller), PRO can either refer to some individual outside the sentence (e.g. the speaker in 14a) or can have arbitrary reference (as in 14b) and refer to 'any arbitrary person you care to mention' and hence have much the same interpretation as arbitrary one in sentences like 'One can't be too careful these days'. (See Landau 1999/2001 for further discussion of control structures.)

4.3 Null auxiliaries

So far, all the clauses we have looked at in this chapter and the last have contained a TP projection headed by a finite auxiliary or infinitival to. The obvious generalisation suggested by this is that
all clauses contain TP. An important question begged by this assumption, however, is how we are to analyse finite clauses which contain no overt auxiliary. In this connection, consider the construction illustrated in (15) below:
(15) He could have helped her, or [she have helped him]

Both clauses here (viz. the he clause and the bracketed she clause) appear to be finite, since both have nominative subjects (he/she). If all finite clauses contain a TP projection headed by a finite T constituent, it follows that both clauses in (15) must be TPs containing a finite T. This is clearly true of the he clause, since this contains the finite modal auxiliary could; however, the she clause doesn't seem to contain any finite auxiliary constituent, since have is an infinitive form in (15) (the corresponding finite form which would be required with a third person subject like she being has). How can we analyse finite clauses as projections of a finite T constituent when clauses like that bracketed in (15) contain no finite auxiliary?

An intuitively plausible answer is to suppose that the string she have helped him in (15) is an elliptical (i.e. abbreviated) variant of she could have helped him, and that the T constituent could in the second clause undergoes a particular form of ellipsis called gapping. (Gapping is a grammatical operation by which the head of a phrase is given a null spellout - and so has its phonetic features deleted - when the same item occurs elsewhere within the sentence, and is so called because it leaves an apparent 'gap' in the phrase where the head would otherwise have been.) If so, the second clause will have the structure (16) below (where could marks an ellipsed counterpart of could, and have is treated as a non-finite AUX/Auxiliary heading an AUXP/Auxiliary Phrase - the rationale for AUXP will be discussed in §5.7):

The head T position of TP in a structure like (16) filled by the ellipsed auxiliary eotld. Although an ellipsed item loses its phonetic features, it retains its grammatical and semantic features, so that could in (16) is a silent counterpart of could. The null T analysis in (16) provides a principled account of three observations. Firstly, the bracketed clause in (15) is interpreted as an elliptical form of she could have helped him: this can be straightforwardly accounted for under the analysis in (16) since T contains a null counterpart of could. Secondly, the subject is in the nominative case form she: this can be attributed to the fact that the T position in (16) is filled by a 'silent' counterpart of the finite auxiliary could, so that (like other finite auxiliaries) it requires a nominative subject. Thirdly, the perfect auxiliary have is in the infinitive form: this is because could (being a null copy of could) has the same grammatical properties as could, and so (like could) requires a complement headed by a word (like have) in the infinitive form.

A further argument in support of the null T analysis in (16) comes from facts relating to cliticisation (a process by which one word attaches itself in a leech-like fashion to another). The perfect auxiliary have has a range of variant forms in the spoken language. When unstressed, it can lose its initial $/ \mathrm{h} /$ segment and have its vowel reduced to schwa $/ \partial /$, and so be pronounced as $/ \partial v /$ e.g. in sentences such as You should have been there. (Because of is also pronounced / $\partial \mathrm{v} / \mathrm{when}$ unstressed, some people mistakenly write this as You should of been there - not you, of course!) However, when have is used with a pronominal subject ending in a vowel or diphthong (e.g. a pronoun like I/we/you/they), it can lose its vowel entirely and be contracted down to $/ \mathrm{v} /$; in this weak form, it is phonetically too insubstantial to survive as an independent word and encliticises onto (i.e. attaches to the end of) its subject, resulting in structures such as:
$\begin{array}{ll}\text { (17)(a) You've done your duty } & \text { (b) They've retired General Gaga } \\ \text { (c) I've forgotten to lock the door } & \text { (d) We've saved you a place }\end{array}$
However, note that have cannot cliticise onto she in (18) below:
(18) *He could have helped her or she've helped him
so that she've is not homophonous with the invented word sheeve. Why should cliticisation of have onto she be blocked here? A plausible answer is that cliticisation of have onto a pronoun is only possible when the two are immediately adjacent, and there is no (overt or null) constituent intervening between the two. But under the null T analysis proposed here, the second clause in (18) contains a null variant of could as shown in (16) above and in simplified form in (19) below:
(19) He could have helped her or she could have helped him

It would then follow that the presence of the intervening null auxiliary eould blocks cliticisation of have onto she in (19), thereby accounting for the ungrammaticality of (18) *He could have helped her or she've helped him. Turning this conclusion on its head, we can say that the ungrammaticality of (18) provides us with empirical evidence that the bracketed clause in (15) contains a null counterpart of could intervening between she and have - as is claimed in the analysis in (16) above.

4.4 Null T in auxiliariless finite clauses

Our claim in $\S 4.3$ that clauses with ellipsed auxiliaries are TPs headed by a null T constituent raises the possibility of generalising the null T analysis and supposing that:

All finite clauses are TPs headed by an (overt or null) T constituent

Such a hypothesis has interesting implications for finite clauses such as the following which contain a finite verb but no auxiliary:
(21)(a)
He enjoys syntax
(b) He enjoyed syntax

It implies that we should analyse auxiliariless finite clauses like those in (21a/b) above as TP constituents which have the respective structures shown in (22a/b) below:
(22)(a)

(b)

Structures like those in (22) would differ from null-auxiliary structures like (19) He could have helped her, or she have helped him in that they don't contain a silent counterpart of a specific auxiliary like could, but rather simply don't contain any auxiliary at all.

However, there's clearly something very odd about a null T analysis like (22) if we say that the relevant clauses are TPs which are headed by a T constituent which contains absolutely nothing. For one thing, a category label like T is an abbreviation for a set of features carried by a lexical item - hence, if we posit that structures like (22) are TPs, the head T position of TP has to be occupied by some kind of lexical item. Moreover, the structures which are generated by the syntactic component of the grammar are eventually handed over to the semantic component to be assigned a semantic interpretation, it seems reasonable to follow Chomsky (1995) in requiring all constituents in a syntactic structure to play a role in determining the meaning of the overall structure. If so, it clearly has to be the case that the head T of TP contains some item which contributes in some way to the semantic interpretation of the sentence. But what kind of item could T contain?

In order to try and answer this question, it's instructive to contrast auxiliariless structures like those in (22) above with auxiliary-containing structures like those in (23) below:

The head T position in TP is occupied by the present-tense auxiliary does in (23a), and by the past tense auxiliary did in (23b). If we examine the internal morphological structure of these two words, we see that does contains the present tense affix $-s$, and that did contains the past tense affix $-d$ (each of these affixes being attached to an irregular stem form of the auxiliary DO). In schematic terms, then, we can say that the head T constituent of TP in structures like (23) is of the form auxiliary+tense affix.

If we now look back at the auxiliariless structures in (22), we see that the head V position of VP in these structures is occupied by the verbs enjoys and enjoyed, and that these have a parallel morphological structure, in that they are of the form verb+tense affix. So, what finite clauses like (22) and (23) share in common is that in both cases they contain an (auxiliary or main) verb carrying a tense affix. In structures like (23) which contain an auxiliary like DO, the tense affix is attached to the auxiliary; in structures like (22) which contain no auxiliary, the tense affix attaches instead to the main verb enjoy. If we make the reasonable assumption that (as its label suggests) T is the locus of the tense properties of a finite clause (in the sense that T is the constituent which carries its tense features), an interesting possibility to consider is that the relevant tense affix (in both types of clause structure) originates in the head T position of TP. Since tensed verbs agree with their subjects in person and number, let us suppose that the Tense affix (below abbreviated to Tns) also carries person and number properties. On this view, sentences like He does enjoy syntax and He enjoys syntax would have the respective syntactic structures indicated in (24a/b) below, where $[3 S g P r]$ is an abbreviation for the features [third-person, singular-number, present-tense]:

(b)

The two structures share in common the fact that they both contain a tense affix (Tns) in T ; they differ in that the tense affix is attached to the auxiliary DO in (24a), but is unattached in (24b) because there is no auxiliary in T for the affix to attach to.

Under the analysis in (24), it is clear that T in auxiliariless clauses like (24b) would not be empty, but rather would contain a tense/agreement affix whose semantic contribution to the meaning of the overall sentence is that it marks tense. But what about the phonetic spellout of the Tense affix? In a structure like (24a), it is easy to see why the (third person singular present) Tense affix is ultimately spelled out as an s-inflection on the end of the auxiliary does, because the affix is directly attached to the auxiliary DO in T. But how come the affix ends up spelled out as an s-inflection on the main verb enjoys in a structure like (24b)? We can answer this question in the following terms. Once the syntax has formed a clause structure like (24), the relevant syntactic structure in then sent to the semantic component to be assigned a semantic interpretation, and to the PF component to be assigned a phonetic form. In the PF component, a number of morphological and phonological operations apply. One of these morphological operations is traditionally referred to as Affix Hopping, and can be characterised informally as follows:

Affix Hopping

In the PF component, an unattached affix in T is lowered onto the head immediately below T (provided that the relevant head is a verb, since tense affixes require a verbal host to attach to)
Since the head immediately below T in (24b) is the verb enjoy (which is the head V of VP), it follows that
(in the PF component) the unattached affix in T will be lowered onto the verb enjoy via the morphological operation of Affix Hopping, in the manner shown by the arrow in (26) below:

Since inflections in English are suffixes, we can assume that the Tense affix will be lowered onto the end of the verb enjoy, to derive the structure $\left[\right.$ enjoy $\left.+T n s_{3 S_{g} P r}\right]$. Since enjoy is a regular verb, the resulting structure will ultimately be spelled out in the phonology as the form enjoys.

What we have done so far in this section is sketch out an analysis of auxiliariless finite clauses as TPs headed by a T constituent containing an abstract Tense affix which is subsequently lowered onto the verb by an Affix Hopping operation in the PF component (so resulting in a clause structure which looks as if it contains no T constituent). However, an important question to ask at this juncture is why we should claim that auxiliariless clauses contain an abstract T constituent. From a theoretical point of view, one advantage of the abstract T analysis is that it provides a unitary characterisation of the syntax of clauses, since it allows us to say that all clauses contain a TP projection, that the subject of a clause is always positioned within TP, that a finite clause always contains an (auxiliary or main) verb carrying a Tense Affix, and so on. Lending further weight to theory-internal considerations such as these is a substantial body of empirical evidence, as we shall see.

One argument in support of the Tense Affix analysis comes from coordination facts in relation to sentences such as:
(27)(a) He enjoys syntax, and has learned a lot
(b) He enjoyed syntax, and is taking a follow-up course

In both sentences, the italicised string enjoys syntax/enjoyed syntax has been co-ordinated with a boldprinted constituent which is clearly a T-bar in that it comprises a present-tense auxiliary (has/is) with a verb phrase complement (learned a lot/taking another course). On the assumption that only the same kinds of constituent can be conjoined by and, it follows that the italicised (seemingly T-less) strings enjoys syntax/enjoyed syntax must also be T-bar constituents; and since they contain no overt auxiliary, this mean they must contain an abstract T constituent of some kind - precisely as the Tense Affix analysis in (24b) claims.

A direct consequence of the Tense Affix analysis of finite clauses in (24) is that finite auxiliaries and finite main verbs occupy different positions within the clause: finite auxiliaries occupy the head T position of TP, whereas finite main verbs occupy the head V position of VP. An interesting way of testing this hypothesis is in relation to the behaviour of items which have the status of auxiliaries in some uses, but of verbs in others. One such word is HAVE. In the kind of uses illustrated in (28) below, HAVE marks perfect aspect (and requires the main verb to be in the perfect participle form seen/been):
(28)(a) They have seen the ghost (b) They had been warned about syntax

However, in the uses illustrated in (29) below, HAVE is causative or experiential in sense (and so has much the same meaning as cause or experience):
(29)(a) The doctor had an eye-specialist examine the patient
(b) The doctor had the patient examined by an eye-specialist
(c) The teacher had three students walk out on her
(d) I've never had anyone send me flowers

By traditional tests of auxiliarihood, perfect have is an auxiliary, and causative/experiential have is a main
verb: e.g. perfect have can undergo inversion (Has she gone to Paris?) whereas causative/experiential have cannot (*Had the doctor an eye specialist examine the patient?). In terms of the assumptions we are making here, this means that finite forms of HAVE are positioned in the head T position of TP in their perfect use, but in the head V position of VP in their causative or experiential use.

Evidence in support of this claim comes from facts about cliticisation. We noted earlier that the form have can cliticise onto an immediately adjacent pronoun ending in a vowel/diphthong. In the light of this, consider contrasts such as the following:
(30)(a) They've seen a ghost (= perfect have)
(b) *They've their car serviced regularly (= causative have).
(c) *They've students walk out on them sometimes (= experiential have)

How can we account for this contrast? If we assume that perfect have in (30a) is a finite (present tense) auxiliary which occupies the head T position of TP, but that causative have in (30b) and experiential have in (30c) are main verbs occupying the head V position of a VP complement of a null T , then prior to cliticisation the three clauses will have the respective simplified structures indicated by the partial labeled bracketings in (31a-c) below (where Tns is an abstract Tense affix):
(31)(a) [тр They [T have + Tns] [vp [v seen] a ghost $]]$
(b) [TP They $\left.{ }_{[\mathrm{T}} T n s\right][\mathrm{vp}$ [v have] their car serviced regularly $]$]
(c) [те They [т Tns] [vp [v have] students walk out on them sometimes]]
(Here and throughout the rest of the book, partial labelled bracketings are used to show those parts of the structure most relevant to the discussion at hand, omitting other parts. In such cases, we generally show relevant heads and their maximal projections but omit intermediate projections, as in (31) above where we show T and TP but not T-bar.) Since cliticisation of have onto a pronoun is blocked by the presence of an intervening (overt or null) constituent, it should be obvious why have can cliticise onto they in (31a) but not in (31b/c): after all, there is no intervening constituent separating the pronoun they from have in (31a), but they is separated from the verb have in (31b/c) by an intervening T constituent containing a Tense affix (Tns), so blocking contraction. It goes without saying that a crucial premise of this account is the assumption that (in its finite forms) have is positioned in the head T position of TP in its use as a perfect auxiliary, but in the head V position of VP in its use as a causative or experiential verb. In other words, have cliticisation facts suggest that finite clauses which lack a finite auxiliary are TPs headed by an abstract T constituent containing a Tense affix.

In this section, we have argued that a finite T always contains a tense affix. In clauses containing an auxiliary, the auxiliary is directly merged with the tense affix to form an auxiliary+affix structure; in auxiliariless clauses, the tense affix is lowered onto the main verb by an Affix Hopping operation in the PF component, so forming a verb+affix structure.

4.5 Null T in bare infinitive clauses

In the previous section, we argued that auxiliariless finite clauses are TP constituents headed by an abstract T containing a Tense affix. Given that clauses containing a finite auxiliary are also TPs, a plausible conclusion to draw is that all finite clauses are TPs. Since to infinitive clauses are also TPs (with to serving as a nonfinite tense particle) we can generalise still further and say that all finite and infinitival clauses are TPs. This in turn has implications for how we analyse bare (i.e. to-less) infinitive complement clauses such as those bracketed below (where the italicised verb is infinitival in form):
(32)(a) I have never known [Tom criticise anyone]
(b) A reporter saw [Senator Sleaze leave Benny's Bunny Bar]
(c) You mustn't let [the pressure get to you]

If (as we are suggesting) all finite and infinitival clauses are indeed TPs, bare infinitive clauses like those bracketed in (32) will be TPs headed by a null T constituent. Since the relevant null T constituent resembles infinitival to in requiring the (italicised) verb in the bracketed complement clause to be in the infinitive form, we can take it to be a null counterpart of infinitival to (below symbolised as $\#$). This in turn will mean that the bracketed infinitive clause in (32a) has the structure (33) below:
(33)

We could then say that verbs like know, see and let (as used in (32) above) take an infinitival TP complement headed by an infinitive particle with a null spellout, whereas verbs like expect, judge, report, believe etc. take a TP complement headed by an infinitive particle which is overtly spelled out as to in structures like those below:
(34)(a) I expect [him to win]
(b) I judged [him to be lying]
(c) They reported [him to be missing]
(d) I believe [him to be innocent]

This means that all infinitive clauses are TPs headed by an infinitival T which is overtly spelled out as to in infinitive clauses like those bracketed in (34), but which has a null spellout in infinitive clauses like those bracketed in (32).

The null T analysis in (33) is lent plausibility by the fact that some bare infinitive clauses have to infinitive counterparts in present-day English: cf.
(35)(a) I've never known [Tom (to) criticise anyone]
(b) Tom has never been known [to criticise anyone]
(36)(a) A reporter saw [Senator Sleaze leave Benny's Bunny Bar]
(b) Senator Sleaze was seen [to leave Benny's Bunny Bar]

The infinitive particle in the bracketed TPs in (35/36) must be overtly spelled out as to when the relevant TP is used as the complement of a passive participle like known in (35b) or seen in (36b), but can have a null spellout when the relevant TP is the complement of an active transitive verb like the perfect participle known in (35a) or the past tense form saw in (36a) - a key difference being that a null spellout for the infinitive particle is optional in structures like (35a) but obligatory in structures like (36a). Although data like (35-36) are suggestive rather than conclusive, they make it plausible to suppose that bare infinitive clauses are TPs headed by a null variant of infinitival to.

Additional support for the null infinitive particle analysis of bare infinitive clauses comes from cliticisation facts in relation to sentences such as the following:
(37)(a) I can't let [you have my password]
(b) *I can't let [you've my password]

If we suppose that the bracketed infinitive complement in (37b) is a TP headed by a null variant of infinitival to as in:
(38) I can't let [те you [т $t \theta$] have my password]
we can account for that fact that have cannot cliticise onto you by positing that the presence of the null infinitive particle to intervening between you and have blocks cliticisation of have onto you.

Our discussion here leads us to the wider conclusion that both to infinitive clauses and bare (to-less) infinitive clauses are TP constituents headed by an infinitive particle which has the overt spellout to in most types of infinitive clause, but has a null spellout in bare infinitive clauses. Given that we earlier argued that all finite clauses contain a TP projection (headed by a T which contains a Tense affix, and may or may not also contain an auxiliary), the overall conclusion which we reach is that all finite and infinitival clauses contain a TP, and that T is overt in clauses containing a finite auxiliary or infinitival to, but is null elsewhere (because to in bare infinitive clauses has a null spellout, and the Tns affix in auxiliariless finite clauses is lowered onto the main verb in the PF component). One advantage of this analysis is that it enables us to attain a uniform characterisation of the syntax of (finite and infinitival) clauses as TP structures headed by a T with a V or VP complement. (For alternative analyses of the types of structure discussed in this section, see Felser 1999a/b and Basilico 2003.)

4.6 Null C in finite clauses

The overall conclusion to be drawn from our discussion in $\S 4.3$ - $\S 4.5$ is that all finite and infinitive clauses contain an overt or null T constituent which projects into TP. However, given that clauses can be introduced by complementisers such as iffthat/for, a natural question to ask is whether apparently complementiserless clauses can likewise be argued to be CPs headed by a null complementiser. In this connection, consider the following:
(39)(a) We didn't know [if he had resigned]
(b) We didn't know [that he had resigned]
(c) We didn't know [he had resigned]

The bracketed complement clause is interpreted as interrogative in force in (39a) and declarative in force in (39b), and it is plausible to suppose that the force of the clause is determined by force features carried by the italicised complementiser introducing the clause: in other words, the bracketed clause is interrogative in force in (39a) because it is introduced by the interrogative complementiser if, and is declarative in force in (39b) because it is introduced by the declarative complementiser that.

But now consider the bare (i.e. seemingly complementiserless) clause in (39c): this can only be interpreted as declarative in force (not as interrogative), so that (39c) is synonymous with (39b) and not with (39a). Why should this be? One answer is to suppose that the bracketed bare clause in (39c) is a CP headed by a null variant of the declarative complementiser that (below symbolised as that), and that the bracketed complement clauses in ($39 \mathrm{a} / \mathrm{b} / \mathrm{c}$) have the structure (40) below:

Given the analysis in (40), we could then say that the force of each of the bracketed complement clauses in (39) is determined by the force features carried by the head C of the overall CP ; in (40a) the clause is a CP headed by the interrogative complementiser if and so is interrogative in force; in (40b) it is a CP headed by the declarative complementiser that and so is declarative in force; and in (40 c) it is a CP headed by a null variant of the declarative complementiser that and so is likewise declarative in force. More generally, the null C analysis would enable us to arrive at a uniform characterisation of all finite clauses as CPs in which the force of a clause is indicated by force features carried by an (overt or null) complementiser introducing the clause.

Empirical evidence in support of the null C analysis of bare complement clauses like that bracketed in (39c) comes from co-ordination facts in relation to sentences such as:

(41) We didn't know [he had resigned] or [that he had been accused of corruption]

In (41), the italicised bare clause has been co-ordinated with a bold-printed clause which is clearly a CP since it is introduced by the overt complementiser that. If we make the traditional assumption that only constituents of the same type can be co-ordinated, it follows that the italicised clause he had resigned in (41) must be a CP headed by a null counterpart of that because it has been co-ordinated with a boldprinted clause headed by the overt complementiser that - as shown in simplified form in (42) below:

We didn't know [that he had resigned] or [that he had been accused of corruption]

What such an analysis implies is that the complementiser that can optionally be given a null phonetic spellout by having its phonetic features deleted in the PF component under certain circumstances: such an analysis dates back in spirit more than 30 years (see e.g. Stockwell, Schachter and Partee 1973, p.599).

The null \mathbf{C} analysis can be extended from finite embedded clauses to main (= root = principal = independent) clauses like those produced by speakers A and B in (43) below:

SPEAKER A: I am feeling thirsty
SPEAKER B: Do you feel like a Coke?

The sentence produced by speaker A is declarative in force (by virtue of being a statement). If force is marked by a force feature carried by the head C of CP , this suggests that such declarative main clauses are CPs headed by a null complementiser carrying a declarative force feature. And indeed, theoretical considerations require us to assume this, if we follow Rizzi (2000, p.288) in positing that the set of UG principles wired into the Language Faculty include a Categorial Uniformity Principle to the effect that all expressions of the same type belong to the same category (and, more specifically, all clauses with the same force belong to the same category): since a declarative that-clause like that bracketed in (39b) is clearly a CP, it follows from the Categorial Uniformity Principle that all other declarative clauses (including declarative main clauses) must be CPs. This leads to the conclusion that a declarative main clause like that produced by speaker A in (43) is a CP headed by a null declarative complementiser. But what is the nature of the relevant null complementiser?

It seems unlikely that the null complementiser introducing declarative main clauses is a null counterpart of that, since that in English can only be used to introduce complement clauses, not main clauses. Let's therefore suppose that declarative main clauses in English are introduced by an inherently null complementiser (below symbolised as \emptyset), and hence that the sentence produced by speaker A in (43) has the structure shown in (44) below:

Under the CP analysis of main clauses in (44), the declarative force of the overall sentence is attributed to the fact that the sentence is a CP headed by a null complementiser ϕ which carries a declarative force feature which we can represent as [Dec-Force].

There is evidence that main-clause questions are also CPs, and that inverted auxiliaries occupy the head C position of CP in questions (as we will argue in more detail in $\S 5.2$). Support for this claim comes from the replies given by speaker B in the dialogue below:

> SPEAKER A: What were you going to ask me?
> SPEAKER B: (a) If you feel like a Coke
> (b) Do you feel like a Coke?
> (c) *If do you feel like a Coke?

The fact that the inverted auxiliary $d o$ in (45b) occupies the same pre-subject position (in front of the boldprinted subject you) as the complementiser if in (45a), and the fact that if and $d o$ are mutually exclusive (as we see from the fact that structures like (45c) are ungrammatical) suggests that inverted auxiliaries (like complementisers) occupy the head C position of CP . This in turn means that main-clause questions are CPs headed by a C which is interrogative in force by virtue of containing an interrogative force feature which can be represented as [Int-Force].

Interestingly, an interrogative main clause can be co-ordinated with a declarative main clause, as we see from sentences like (46) below:
(46) [I am feeling thirsty], but [should I save my last Coke till later]?

In (46) we have two (bracketed) main clauses joined together by the co-ordinating conjunction but. The second (italicised) conjunct should I save my last Coke till later? is an interrogative CP containing an inverted auxiliary in the head C position of CP . Given the traditional assumption that only constituents which belong to the same category can be co-ordinated, it follows that the first conjunct I am feeling thirsty must also be a CP; and since it contains no overt complementiser, it must be headed by a null complementiser - precisely as we assumed in (44) above.

The overall conclusion which our discussion in this section leads us to is that all finite clauses have the
status of CP constituents which are introduced by a complementiser. Finite complement clauses are CPs headed either by an overt complementiser like that or if or by a null complementiser (e.g. a null variant of that in the case of declarative complement clauses). Finite main clauses are likewise CPs headed by a C which contains an inverted auxiliary if the clause is interrogative, and an inherently null complementiser otherwise.

4.7 Null C in non-finite clauses

The conclusion we reached in the previous section is that all finite clauses (whether main clauses or complement clauses) are CPs headed by an (overt or null) complementiser which marks the force of the clause. But what about non-finite clauses? It seems clear that for-to infinitive clauses such as that bracketed in (47) below are CPs since they are introduced by the infinitival complementiser for:

I will arrange [for them to see a specialist]

But what about the type of (bracketed) infinitive complement clause found after verbs like want in sentences such as (48) below?
(48) She wanted [him to apologise]

At first sight, it might seem as if the bracketed complement clause in sentences like (48) can't be a CP, since it isn't introduced by the infinitival complementiser for. However, it is interesting to note that the complement of want is indeed introduced by for when the infinitive complement is separated from the verb want in some way - e.g. when there is an intervening adverbial expression like more than anything as in (49a) below, or when the complement of want is in focus position in a pseudo-cleft sentence as in (49b): cf.
(49)(a) She wanted more than anything for him to apologise
(b) What she really wanted was for him to apologise
(Pseudo-cleft sentences are sentences such as 'What John bought was a car', where the italicised expression is said to be focused and to occupy focus position within the sentence.) This makes it plausible to suggest that the complement of want in structures like (48) is a CP headed by a null variant of for (below symbolised as for), so that (48) has the structure showin in simplified form in (50) below:
(50) She wanted [CP [C for] [TP him [T to apologise]]

For speakers of varieties of English such as mine, the complementiser for is given a null spellout in structures like (50) where for immediately follows want, but is given an overt spellout in structures like (49) where for does not immediately follow want. For convenience, we can refer to verbs like want as for-deletion verbs: the precise conditions under which for is given an overt or null spellout with such verbs varies from one type of verb to another, and from one variety of English to another.

Having looked at for-deletion verbs which select an infinitival complement with an accusative subject, let's now consider the syntax of control infinitive clauses with a null PRO subject like that bracketed in (51) below:
(51) I will arrange [PRO to see a specialist]

What we shall argue here is that control clauses which have a null PRO subject are introduced by a null infinitival complementiser. However, the null complementiser introducing control clauses differs from the null complementiser found in structures like want/prefer someone to do something in that it never surfaces as an overt form like for, and hence is inherently null. There is, however, parallelism between the structure of a for infinitive clause like that bracketed in (50) above, and that of a control infinitive clause like that bracketed in (51), in that they are both CPs and have a parallel internal structure, as shown in (52a/b) below (simplified by not showing the internal structure of the verb phrase see a specialist):

The two types of clause thus have essentially the same $\mathrm{CP}+\mathrm{TP}+\mathrm{VP}$ structure, and differ only in that a for infinitive clause like (52a) with an overt for complementiser has an overt accusative subject like them, whereas a control infinitive clause like (52b) with a null ϕ complementiser has a null PRO subject.

Some evidence in support of claiming that a control clause with a null PRO subject is introduced by a null complementiser comes from co-ordination facts in relation to sentences such as the following:

(53) I will arrange [to see a specialist] and [for my wife to see one at the same time]

The fact that the italicised control infinitive can be conjoined with the bold-printed CP headed by for suggests that control infinitives must be CPs (if only the same types of constituent can be conjoined).

Further evidence in support of the CP status of control infinitives comes from the fact that they can be focused in pseudo-cleft sentences. In this connection, consider the contrast below:
(54)(a) What I'll try and arrange is [for you to see a specialist]
(b) *What I'll try and arrange for is [you to see a specialist]
(c) What I'll try and arrange is [PRO to see a specialist]

The grammaticality of (54a) suggests that a CP like for you to see a specialist can occupy focus position in a pseudo-cleft sentence, whereas conversely the ungrammaticality of (54b) suggests that a TP like you to see a specialist cannot. If CP can be focused in pseudo-clefts but TP cannot, then the fact that a control infinitive like PRO to see a specialist can be focused in a pseudo-cleft like (54c) suggests that it must have the same CP status as (54a) - precisely as the analysis in (52b) above claims.

Overall, the conclusion which our analysis in this section leads us to is that infinitive complements containing the complementiser for (or its null counterpart for) are CPs, and so are control infinitives (which contain a null complementiser as well as a null subject).

4.8 Defective Clauses

In $\S 4.6$, we argued that all finite clauses are CPs, and in $\S 4.7$ we went on to argue that $f o r$ infinitives with accusative subjects and control infinitives with null PRO subjects are likewise CPs. These two assumptions lead us to the more general conclusion that:
All canonical (i.e. 'normal') clauses are CPs

And indeed this is an assumption made by Chomsky in recent work. However, there is one particular type of clause which is exceptional in that it lacks the CP layer found in canonical clauses - namely infinitival complement clauses like those bracketed in (56) below which have (italicised) accusative subjects:
(56)(a) They believe [him to be innocent]
(b) We didn't intend [you to get hurt]

Complement clauses like those bracketed in (56) are exceptional in that their subjects are assigned accusative case by the transitive verb (believe/intend) immediately preceding them: what's exceptional about this is that the verb is in a different clause from the subject which it assigns accusative case to. For this reason, such clauses are known as exceptional case-marking clauses (or ECM clauses); and verbs (like believe) when used with an ECM clause as their complement are known as ECM verbs.

ECM complement clauses seem to be TPs which lack the CP layer found in canonical clauses, and for this reason Chomsky (1999) terms them defective clauses. One reason for thinking that the bracketed ECM clauses in sentences like (56) are not full CPs is that they cannot readily be co-ordinated with for-infinitives, as we see from the ungrammaticality of (57) below:
*We didn't intend [you to hurt him] or [for him to hurt you]

Although (for speakers like me) the verb intend can take either a bare ECM infinitive complement or a for infinitive complement, the fact that the two cannot be conjoined suggests that the bare ECM infinitive clauses have the status of TPs while for-to infinitive clauses have the status of CPs.

Further evidence that ECM infinitive clauses like those bracketed in (56) are TPs rather than CPs comes from the fact that they cannot occur in focus position in pseudo-clefts, as we see from the ungrammaticality of the sentences below:
(58)(a) *What they believe is [him to be innocent]
(b) *What we hadn't intended was [you to get hurt]

If ECM clauses are TPs, this follows from the restriction noted in (54) that only CP (not TPs) can occur in focus position in a pseudo-cleft sentence. Moreover, a further property of sentences like (56) which would be difficult to account for if the bracketed complement clause were a CP is the fact that its (italicised) subject can be passivised and thereby made into the subject of the main clause, as in (59) below:
(59)(a) He is believed to be innocent (b) You weren't intended to get hurt

This is because it is a property of the subject of an infinitival CP complement clause like that bracketed in (60a) below that its subject cannot be passivised - as we see from the ungrammaticality of (60b):
(60)(a) We didn't intend [for you to get hurt]
(b) *You weren't intended [for to get hurt]

Likewise, the subject of the infinitival CP complement of a for-deletion verb like want cannot be passivised either: cf.
(61)(a)
She wanted [John to apologise]
(b) *John was wanted [to apologise]

- and indeed this is precisely what we expect if the subjects of CPs cannot passivise, and if the bracketed complement clauses in (61) are CPs headed by a null counterpart of for, as claimed in §4.7. However, the fact that the passive sentences in (59) are grammatical suggests that the bracketed complement clauses in (56) are TPs rather than CPs (since the subject of an infinitival TP can be passivised, but not the subject of an infinitival CP). Hence, complement clauses like those bracketed in (56) above are defective clauses which have no CP layer, and (56a) They believe him to be innocent accordingly has the structure (62) below:

The particular aspect of the analysis in (62) most relevant to our discussion in this section is the claim that the complement clause him to be innocent is an infinitival TP headed by to.

We can extend the analysis of ECM predicates like believe proposed in this section to verbs like those discussed in $\S 4.5$ which select a bare infinitive complement. On this view, a sentence like I have never known him be rude to anyone would be analysed as containing a transitive perfect participle known which selects a TP complement headed by a null counterpart of infinitival to - as shown in skeletal form below:

I have never known [TP him [${ }_{\mathrm{T}} \mathrm{t}_{\mathrm{\theta}}$] be rude to anyone]

Since the subject of a TP complement can passivise, the analysis in (63) predicts that the subject of the bracketed infinitive complement can passivise, and this is indeed the case as we see from examples like:

He has never been known to be rude to anyone
Because infinitival to can only have a null spellout when the TP complement it heads is the complement of an active transitive verb-form like the perfect participle known in (63) and not when the relevant TP is the complement of a passive participle like known in (64), it follows that infinitival to has an overt spellout in sentences like (64).

4.9 Case properties of subjects

A question which we haven't addressed so far is how subjects are case-marked. In this connection, consider how the italicised subject of the bracketed infinitive complement clause in (65) below is assigned accusative case:
(65) She must be keen [for him to meet them]

Since for is a transitive complementiser, it seems plausible to suppose that the infinitive subject him is assigned accusative case by the transitive complementiser for - but how? Let's suppose that accusative case is assigned in accordance with the condition in (66) below:
(66) Accusative Case Assignment Condition

A transitive head assigns accusative case to a noun or pronoun expression which it c-commands
In addition, let's follow Pesetsky (1995) in positing the following UG principle governing the application of grammatical (and other kinds of linguistic) operations:

Earliness Principle

Operations apply as early in a derivation as possible
In the light of (66) and (67), let's look at the derivation of the bracketed complement clause in (65). The first step is for the verb meet to be merged with its pronoun complement them to form the VP below:

Meet is a transitive verb which c-commands the pronoun them. Since the Accusative Case Assignment Condition (66) specifies that a transitive head assigns accusative case to a pronoun which it c-commands, and since the Earliness Principle specifies that operations like case assignment must apply as early as possible in a derivation, it follows that the pronoun them will be assigned accusative case by the transitive verb meet at the stage of derivation shown in (68).

The derivation then continues by merging the infinitive particle to with the VP in (68), so forming the T-bar to meet them. The resulting T-bar is merged with its subject him to form the TP him to meet them. This TP in turn is merged with the complementiser for to form the CP shown in (69) below:

For is a transitive complementiser and c-commands the infinitive subject him. Since the Accusative Case Assignment Condition (66) tells us that a transitive head assigns accusative case to a pronoun which it
c-commands, and since the Earliness Principle (67) specifies that operations like case assignment must apply as early as possible in a derivation, it follows that the pronoun him will be assigned accusative case by the transitive complementiser for at the stage of derivation shown in (69). This account of the casemarking of infinitive subjects can be extended from accusative subjects of for infinitive structures like (69) to accusative subjects of ECM infinitives in structures like (62) They believe [him to be innocent], since the transitive verb believe c-commands the infinitive subject him in (62).

Having looked at how accusative subjects are case-marked, let's now turn to look at the case-marking of nominative subjects. In this connection, consider the case-marking of the italicised subjects in (70) below:

He may suspect [that she is lying]
Let's look first at how the complement clause subject she is assigned case. The bracketed complement clause in (70) has the structure (71) below:

If we are to develop a unitary theory of case-marking, it seems plausible to suppose that nominative subjects (just like accusative subjects) are assigned case under c-command by an appropriate kind of head. Since the finite complementiser that in (71) c-commands the subject she, let's suppose that she is assigned nominative case by the complementiser that (in much the same way as the infinitive subject him in (69) is assigned accusative case by the transitive complementiser for). Although some languages (e.g. Arabic) have transitive finite complementisers which assign accusative case to subjects, finite complementisers in English never have accusative subjects and so can be assumed to be intransitive. If only intransitive complementisers are nominative case-assigners, we can suppose that nominative case is assigned in accordance with the condition below:

Nominative Case Assignment Condition

An intransitive finite complementiser assigns nominative case to a noun or pronoun expression which it c-commands
In (71), the only noun or pronoun expression c-commanded by the intransitive finite complementiser that is the clause subject she, which is therefore assigned nominative case in accordance with (72).

But how can we account for the fact that the main clause subject he in (70) is also assigned nominative case? The answer is that (as we argued in §4.6) all canonical clauses - including all main clauses - are CPs introduced by a complementiser, and that if the clause contains no overt complementiser, it is headed by a null complementiser. This being so, the main clause in (70) will have the structure shown below:

Since all finite complementisers are intransitive in English, the null declarative complementiser ϕ in (73) assigns nominative case to the subject he in accordance with the Nominative Case Assignment Condition (72), since the complementiser ϕ c-commands the pronoun $h e$. (On the possibility of a finite C being a
nominative case assigner, see Chomsky 1999, p.35, fn.17.)
Having looked at accusative and nominative subjects, let's now turn to consider the null PRO subjects found in control clauses. If we suppose that it is a defining characteristic of all pronouns that they carry case, then PRO too must carry case. But what case? Chomsky and Lasnik (1995, pp. 119-120) suggest that the subject of a control clause carries null case. The morphological effect of null case is to ensure that a pronoun is unpronounced - just as the morphological effect of nominative case is to ensure that (e.g.) a third person masculine singular pronoun is pronounced as he. But how is PRO assigned null case? Given our earlier assumption that the subjects of for infinitives are assigned accusative case by the complementiser for and that the subjects of that clauses are assigned nominative case by the complementiser that, a plausible answer is to suppose that PRO is assigned null case by the null complementiser introducing the clause containing it. Since a transitive null complementiser like the null counterpart of for in structures like (50) She wanted for him to apologise assigns accusative case to the infinitive subject him, it seems reasonable to suppose that the null complementiser which assigns null case to PRO is intransitive, and hence that null case is assigned in accordance with the condition below:

Null Case Assignment Condition
A null intransitive non-finite complementiser assigns null case to a pronoun which it c-commands
It follows from (74) that PRO in a structure like (52b) above will be assigned null case by the null (non-finite, intransitive) complementiser which c-commands PRO.

4.10 Null determiners

In §4.2-§4.9, we argued that null constituents play an important role in the syntax of clauses in that clauses may contain a null subject, a null T constituent and a null C constituent. We end this chapter by arguing that the same is true of the syntax of nominals (i.e. noun expressions), and that many bare nominals (i.e. noun expressions which contain no overt determiner or quantifier) are headed by a null determiner or null quantifier. The assumption that bare nominals contain a null determiner/quantifier has a long history - for example, Chomsky (1965, p. 108) suggests that the noun sincerity in a sentence such as Sincerity may frighten the boy is modified by a null determiner. Chomsky's suggestion was taken up and extended in later work by Abney (1987), Longobardi $(1994,1996,2001)$ and Bernstein (2001).

In this connection, consider the syntax of the italicised bare nominals in (75) below:
Italians love opera
As we see from (76)(a) below, the French counterpart of the bare nominals in (75) are DPs headed by the determiner les/l' ('the') - and indeed as (76b) shows, this type of structure is also possible in English:
(76)(a) Les Italiens adorent l'opéra

The Italians adore th'opera (= 'Italians love opera')
(b) The Italians love the opera

This suggests that bare nominals like those italicised in (75) above are DPs headed by a null determiner, so that the overall sentence in (76) has the structure (77) below:

Given the analysis in (77), there would be an obvious parallelism between the syntax of clauses and
nominals, in that just as canonical clauses are CPs headed by an overt or null C constituent, so too canonical nominals are DPs headed by an overt or null D constituent. The assumption that canonical nominals are DPs is known as the DP hypothesis.

One piece of empirical evidence in support of analysing bare nouns as DPs comes from sentences like:
(78)(a) Italians and [the majority of Mediterraneans] love opera
(b) Italians love [opera] and [the finer things in life]

The fact that the bare nouns Italians and opera can be co-ordinated with determiner phrase/DP like the majority of Mediterraneans/the finer things in life (both headed by the determiner the) provides us with empirical evidence that bare nouns must be DPs, if only similar kinds of categories can be co-ordinated.

If (as we are suggesting here) there are indeed a class of null determiners, we should expect these to have specific grammatical, selectional and semantic properties of their own: and, as we shall see, there is indeed evidence that this is so. For one thing, the null determiner carries person properties - in particular, it is a third person determiner. In this respect, consider sentences such as:
(79)(a) We linguists take ourselves/*yourselves/*themselves too seriously, don't we/*you/*they?
(b) You linguists take yourselves/*ourselves/*themselves too seriously, don't you/*we/*they?
(c) Linguists take themselves/*ourselves/*yourselves too seriously, don't they/*we/*you
(79a) shows that a first person expression such as we linguists can only bind (i.e. serve as the antecedent of) a first person reflexive like ourselves, and can only be tagged by a first person pronoun like we. (79b) shows that a second person expression like you linguists can only bind a second person reflexive like yourselves, and can only be tagged by a second person pronoun like you. (79c) shows that a bare nominal like linguists can only bind a third person reflexive like themselves and can only be tagged by a third person pronoun like they. One way of accounting for the relevant facts is to suppose that the nominals we linguists/you linguists/linguists in ($79 \mathrm{a} / \mathrm{b} / \mathrm{c}$) are DPs with the respective structures shown in $(80 \mathrm{a} / \mathrm{b} / \mathrm{c})$:
(80)(a)

(b)

(c)

and that the person properties of a DP are determined by the person features carried by its head determiner. If we is a first person determiner, you is a second person determiner and ϕ is a third person determiner, the grammaticality judgments in $(79 \mathrm{a} / \mathrm{b} / \mathrm{c}$) above are precisely as the analysis in ($80 \mathrm{a} / \mathrm{b} / \mathrm{c}$) would lead us to expect.

In addition to having specific person properties, the null determiner ϕ also has specific selectional properties - as can be illustrated by the following set of examples:
(81)(a) I wrote poems
(b) I wrote poetry
(c) *I wrote poem

If each of the italicised bare nouns in (81) is the complement of a null (quantifying) determiner ϕ, the relevant examples show that ϕ can select as its complement an expression headed by a plural count noun like poems, or by a singular mass noun like poetry - but not by a singular count noun like poem. The complement-selection properties of the null determiner ϕ mirror those of the overt quantifier enough: cf.
(82)(a) I've read enough poetry
(b) I've read enough poems
(c) *I've read enough poem

The fact that ϕ has much the same selectional properties as a typical overt (quantifying) determiner such as enough strengthens the case for positing the existence of a null determiner ϕ, and for analysing bare nominals as DPs headed by a null determiner (or QPs headed by a null quantifier).

Moreover, there is evidence that the null determiner ϕ has specific semantic properties of its own - as we can illustrate in relation to the interpretation of the italicised nominals in the sentences below:
(83)(a) Eggs are fattening
(b) Bacon is fattening
(c) I had eggs for breakfast
(d) I had bacon for breakfast

The nouns eggs and bacon in (83a/b) have a generic interpretation, paraphraseable as 'eggs/bacon in general'. In ($83 \mathrm{c} / \mathrm{d}$) eggs and bacon have a partitive interpretation, paraphraseable as 'some eggs/bacon'. If we say that the relevant bare nominals are DPs/determiner phrases headed by a null determiner, as
shown below:

we can say that the null determiner has the semantic property of being a generic or partitive quantifier, so that bare nominals are interpreted as generic or partitive expressions.

The claim that null determiners have specific semantic properties is an important one from a theoretical perspective in the light of the principle suggested by Chomsky (1995) that all constituents (or at any rate, all heads and maximal projections) must be interpretable at the semantics interface (i.e. must be able to be assigned a semantic interpretation by the semantic component of the grammar, and hence must contribute something to the meaning of the sentence containing them). This principle holds of null constituents as well as overt constituents, so that e.g. a seemingly null T constituent contains an abstract affix carrying an interpretable tense feature, and a null C constituent contains an abstract morpheme carrying an interpretable force feature. If the null D constituent found in structures like (83/84) is interpreted as a (universal or partitive) quantifier, the null D analysis will satisfy the relevant requirement.

We have argued in this section that canonical nominal expressions are DPs headed by an (overt or null) determiner. However (as Longobardi 1994 notes), nominals which have a vocative, predicative or exclamative use (like those italicised below) can be N -expressions lacking a determiner:
(85)(a) Do all syntacticians suffer from asteriskitis, doctor?
(b) Dr Dolittle is head of department
(c) Poor fool! He thought he'd passed the syntax exam

The italicized nominal expression serves a vocative function (i.e. is used to address someone) in (85a), a predicative function in (85 b) (in that the property of being head of department is predicated of the unfortunate Dr Dolittle), and an exclamative function in (85c). It would seem that just as there are a class of defective clauses lacking the CP layer found in canonical clauses, so too there are a class of defective nominals lacking the DP projection found in canonical nominals.

4.11 Summary

In this chapter, we have seen that null constituents (i.e. constituents which have no overt phonetic form but have specific grammatical and semantic properties) play a central role in syntax. We began by looking at null (finite, imperative, truncated and nonfinite) subjects in $\S 4.2$, arguing in particular that control infinitive clauses have a null PRO subject which can refer to some expression within a higher clause, or refer to some entity in the domain of discourse, or have arbitrary reference. In $\S 4.3$ we showed that elliptical clauses like that bracketed in He could have helped her or [she have helped him] are TPs headed by a null (ellipsed) tense auxiliary. In $\S 4.4$ we extended this null T analysis to auxiliariless finite clauses like He enjoys syntax, arguing that they contain a TP headed by an abstract Tense affix which is lowered onto the main verb by the morphological operation of Affix Hopping in the PF component. In $\S 4.5$ we argued that bare (to-less) infinitive clauses like that bracketed in I have never known him [tell a lie] are TPs headed by a null variant of infinitival to. We concluded that all finite and infinitive clauses contain a TP headed by an overt or null T constituent carrying finite or nonfinite tense. In $\S 4.6$, we argued that all finite clauses are CPs, and that those which are not introduced by an overt complementiser are CPs headed by a null complementiser which encodes the force of the clause (so that a sentence like He enjoys syntax is declarative in force by virtue of being a CP headed by a null declarative C). In $\S 4.7$ we saw that for infinitives, the infinitive complements of want-class verbs, and control infinitives are also CPs, and went on to posit that all canonical clauses are CPs. However, in $\S 4.8$ we argued that ECM (Exceptional Case Marking) clauses with accusative subjects like that bracketed in I believe [him to be innocent] are defective clauses which have the status of TPs rather than CPs. In $\S 4.9$ we examined case-marking, arguing that a transitive head assigns accusative case to a noun or pronoun expression which it ccommands, an intransitive finite complementiser assigns nominative case to a noun or pronoun expression which it c-commands, and a null intransitive non-finite complementiser assigns null case to a pronoun which it c-commands. We also noted that in consequence of Pesetsky's Earliness Principle, noun and
pronoun expressions are case-marked as early as possible in the derivation. In $\S 4.10$, we looked briefly at the syntax of nominals, arguing that some bare nominals (like Italians and opera in Italians love opera) are DPs headed by a null determiner which has the grammatical property of being a third person determiner, the selectional property of requiring as its complement a nominal headed by a singular mass noun or plural count noun, and the semantic property that it has a generic or partitive interpretation. We concluded that canonical nominals are DPs headed by an overt or null determiner; however, we noted that there are a class of defective (vocative, exclamative and predicate nominals) which are defective in that they lack the DP projection found in canonical nominals.

WORKBOOK SECTION

Exercise 4.1

Draw tree diagrams to represent the structure of the following sentences, presenting arguments in support of your analysis and commenting on any null constituents they contain and the reasons for positing them. In addition, say how each of the noun or pronoun expressions is case-marked.

1	Students enjoy the classes	2	We have fun
3	Voters know politicians lie	4	John promised to behave himself
5	She sees no need for him to apologise	6	They prefer students to do exams
7	Economists expect salaries to rise	8	He might like you to talk to her
9	I have known you have a tantrum	10	John wanted to help him

In addition, say why have-cliticisation is or is not permitted in $11 \mathrm{~b} / 12 \mathrm{~b} / 13 \mathrm{~b} / 14 \mathrm{~B}$ below:

11a	They have suffered hardship	b	They've suffered hardship
12a	The Sioux have suffered hardship	b *The Sioux've suffered hardship	
13a	Sioux have suffered hardship	b *Sioux've suffered hardship	
14	SPEAKER A: How are students coping with your Fantasy Syntax course?		
	SPEAKER B: *Two've given up		

Helpful hints

Bear in mind that in the main text we argued that all clauses other than nonfinite clauses used as the complement of an ECM verb are CPs, and that canonical nominals are DP or QP constituents headed by a null determiner or quantifier. Assume that have can cliticise onto a preceding word c-commanding have if the word ends in a vowel or diphthong and if there is no (overt or null) constituent intervening between the two. In relation to 3 , consider what case politicians has, and how you can use this to determine whether the complement of know is a TP or a CP. In 4, use Binding Principle A from Exercise 3.2 to help you account for why himself is coreferential to John. In 5, assume that $n o$ is a negative quantifier which has a noun phrase complement. In 9, assume that won't is a negative auxiliary which occupies the head T position of TP. In 10, use Binding Principle B from Exercise 3.2 to help you account for why him cannot be coreferential to John. In relation to the (b/B) examples in 11-14, draw trees to represent the structure of the sentences immediately prior to cliticisation, and then show whether or not the analysis of havecliticisation given here predicts that cliticisation is possible; note that the noun Sioux is pronounced |su:|. Show how the ungrammaticality of 13 b can be used to evaluate the hypothesis that a bare noun like Sioux in 13 is a DP headed by a null determiner. In addition, say how sentences like 11 b can be used to evaluate the plausibility of analyses (such as that proposed by Freidin and Vergnaud 2001) which take pronouns like they to be determiners which have a nominal complement whose phonetic features are given a null spellout in the PF component, so that e.g. if they refers to Sioux, the pronoun they would be a DP with the structure shown in 15 below:

15

Would it be any more or less plausible to suppose that the (numeral) quantifier two in sentences like that
produced by speaker B in 14 has an N complement containing a null copy of the noun students?

Model answer for 1

Given the arguments in the main text that all finite clauses contain a TP headed by a T constituent containing an Affix which encodes Tense and (Person and Number) agreement features, the sentence Students enjoy the classes will contain a TP headed by a Tense affix which carries the features [third-person, plural-number, present-tense], which we can abbreviate to Tns ${ }_{3 \text { PIPR. }}$ Likewise, given the arguments in the main text that ordinary finite clauses are CPs headed by an (overt or null) complementiser which marks the force of the clause, the overall sentence will be a CP headed by a null finite declarative complementiser [C \varnothing]. Finally, assuming the DP hypothesis, both nominals containing an overt determiner (like the classes) and bare nominals like students will be determiner phrases, differing only in whether they are headed by the overt third person determiner the or the null third person determiner $[\mathrm{D} \varnothing]$. Given these assumptions, sentence 1 will have the structure shown below:
(i)

Because there is no auxiliary in T for it to attach to, the Tns affix in T is lowered onto the verb enjoy by the morphological operation of Affix Hopping in the PF component, forming enjoy+Tns $s_{3 P L P R}$ (which is ultimately spelled out as the third person plural present tense form enjoy).

Evidence that the overall clause Students enjoy the classes is a CP headed by a null complementiser comes from co-ordination facts in relation to sentences such as:

(ii) [Students enjoy the classes] but [do they like the lectures]?

In (ii) the declarative clause Students enjoy the classes has been co-ordinated with the interrogative clause do they like the lectures? which contains the inverted auxiliary do. If (as claimed in the main text) inverted auxiliaries occupy the head C position of CP , it follows that the second of the two co-ordinate clauses in (ii) must be a CP ; and if only constituents of the same type can be co-ordinated, it follows that the first clause must also be a CP - as in (i) above. Evidence in support of positing a null present-tense T constituent in (i) comes from the fact that the T-bar ϕ enjoy the classes can be co-ordinated with another T-bar like don't like the lectures, as we see from (iii) below:

(iii) Students enjoy the classes, but don't like the lectures

Evidence that the bare nominal students is a DP headed by a null third person determiner [D \varnothing] comes from the fact that sentence 1 can only be tagged by a third person pronoun like they:
(iv) Students enjoy the lectures, don't they/*wel*you?

The null determiner is interpreted as a generic quantifier in (i).
The DP the classes in (i) is assigned accusative case by virtue of being c-commanded by the transitive verb enjoy. Accordingly, the DP the classes can be substituted by an accusative pronoun, as in:
(v) Students enjoy them

By contrast, the DP ϕ students is assigned nominative case by virtue of being c-commanded by the intransitive finite complementiser ϕ. We therefore correctly predict that this DP can be substituted by a nominative pronoun, as in:

They enjoy the classes

Exercise 4.2

Account for the (un)grammaticality of the bracketed infinitive complement clause structures in the following sentences in standard varieties of English:

1a They were planning [to escape]
2a We consider [him to be unsuitable]
3a He would like [me to leave]
4a She seems keen [for them to participate]
5a I received a request [to resign]
6a It was agreed [to review the policy]
7a Congress decided [to ratify the treaty]
8a She expected [to win the nomination]
9a He should let [you have a break]
10a *He said [her to like oysters]
b *They were planning [him to escape]
b *It is considered [him to be unsuitable]
b He would like [to leave]
b *She seems keen [for to participate]
b *I received a request [him to resign]
b *It was agreed [us to review the policy]
b *Congress decided [for him to ratify the treaty]
b She expected [him/*he to win the nomination]
b *He should let [have a break]
b *He said [to like oysters]

Helpful hints

Note that (1b) is intended to have an interpretation paraphraseable as 'They were planning for him to escape', (9b) to have an interpretation paraphraseable as 'He should let himself have a break', (10a) to have an interpretation paraphraseable as 'He said she liked oysters', and (10b) to have an interpretation paraphrasable as 'He said he liked oysters' (where the two occurrences of he refer to the same individual). Assume that each of the italicised words in the above examples has its own idiosyncratic selectional properties, and that the selectional properties of any word W are described by saying: ' W selects as its complement an expression headed by ...' (where in place of the dots you insert the features characterising the relevant head). So, you might say e.g. that a verb like arrange can select a complement headed by an infinitival complementiser (either the transitive infinitival complementiser for or the null intransitive infinitival complementiser ϕ), whereas an ECM verb like believe selects a complement headed by the infinitival T to. By contrast, other verbs (it might turn out) don't select a particular kind of infinitive complement - or indeed any kind of infinitive complement. Assume that the seemingly subjectless clauses in 1-10 (whether grammatical or not) have a null PRO subject. Pay attention (i) to the selectional properties of the italicised words and (ii) to the case properties of the subjects of the bracketed complement clauses. In the case of the ungrammatical examples, consider whether the ungrammaticality is attributable to a selectional error (in that the italicised word is used with a kind of complement which it does not select/allow) or a case error (in that the subject of the bracketed complement clause has a case which it cannot be assigned in accordance with the case assignment conditions given in the main text) - or both.

Model answer for (1)

Given the CP analysis of finite clauses and control clauses in the text, 1a will have the structure (i) below:
(i)

The null complementiser introducing the CP complement of the verb planning is intransitive and non-finite, and accordingly assigns null case to the PRO subject which it c-commands. Support for the CP analysis of the bracketed complement clause to escape in 1a comes from the fact that (like other CPs, but unlike TPs) it can serve as the focused constituent in pseudo-cleft sentences like:
(ii) What they were planning (to do) was to escape

The fact that it is also possible to say:
(iii) They were planning for him to escape
suggests that plan can also select a complement headed by the transitive infinitival complementiser for. This leads to the greater generalisation that plan can select a CP complement headed by an infinitival complementiser (either the transitive infinitival complementiser for or the null intransitive infinitival complementiser ϕ). The ungrammaticality of 1 b *They were planning him to escape could be attributable to a case error (if the null complementiser heading the complement clause is intransitive and so assigns null case to the infinitive subject), or to a spellout error (if the complementiser heading the complement clause is the kind of for complementiser which can never be given a null spellout - unlike the for introducing an infinitival complement of a verb like want).

5

Head Movement

5.1 Overview

So far, we have examined a range of syntactic structures which are derived by a series of merger operations. We now go on to look at structures whose derivation involves not only merger but also a specific type of movement operation called head movement. In this chapter, we focus mainly on two specific types of head movement operation, one which affects auxiliaries in present-day English, and another which affected main verbs in earlier stages of English; we also look briefly at how head movement can apply to nouns.

5.2 T-to-C movement

In chapters 3 and 4, we saw that complementisers are positioned in front of subjects in the clauses they introduce. More specifically, we suggested that complementisers head a separate projection in clauses which we termed a complementiser phrase/CP, with the head C position of CP being filled by a complementiser like thatfforlif. However, complementisers are not the only kind of word which can precede subjects in clauses. As we saw in our brief discussion of questions in $\S 4.6$, auxiliaries can also precede subjects in yes-no questions such as Do you feel like a Coke? In this respect, inverted auxiliaries seem to resemble complementisers - as the following (love-struck, soap-operesque) dialogue illustrates:
(1) SPEAKER A: Honey-buns, there's something I wanted to ask you

SPEAKER B: What, sweetie-pie?
SPEAKER A: If you will marry me
SPEAKER B: (pretending not to hear): What d'you say, darlin'?
SPEAKER A: Will you marry me?
What's the structure of the two bold(-printed) proposals which speaker A makes in (1)? The answer is straightforward enough in the case of If you will marry me: it's a clause introduced by the interrogative complementiser/ C if, and so is a complementiser phrase/CP constituent with the structure (2) below:

But now consider the structure of the second proposal Will you marry me? What position is occupied by the inverted auxiliary will? Since will appears to occupy the same pre-subject position that the complementiser if occupies in (2), a plausible suggestion to make is that the inverted auxiliary actually occupies the head C position of CP. If this is so, we'd expect will and if to be mutually exclusive (on the assumption that we can only insert one word in a given head-position like C , not two words): in other words, if both complementisers and inverted auxiliaries occupy the head C position of CP , we'd expect to find that a question can be introduced either by a complementiser or by a preposed auxiliary - but not by the two together. This is indeed the case, as we see from the ungrammaticality of speaker B's reply in (3) below:

SPEAKER A: What d'you want to ask me?
SPEAKER B: *If will you marry me
The fact that questions can't contain both a complementiser and an inverted auxiliary provides us with empirical evidence that inverted auxiliaries occupy the same structural position as complementisers - i.e. that both occupy the head C position of CP.

But how can a finite auxiliary (which normally occupies the head T position of TP) come to be positioned in the head C position of CP ? The conventional answer is that auxiliaries in questions move out of their normal post-subject position into pre-subject position by a movement operation which in chapter 1 we referred to as auxiliary inversion. Given our assumption that an inverted auxiliary occupies the head C position of CP , this means that the auxiliary moves from the head T position in TP into the head C position in CP , as shown by the arrow in (4) below:
(4)

Hence, auxiliary inversion in questions involves T-to-C movement.
An important question which is begged by the T-to-C movement analysis is why auxiliaries should move from T to C in questions. Using a metaphor adopted by Chomsky (1995), we can say that C is a strong head in questions in English and that a strong head position has to be filled (i.e. occupied) by an overt constituent of an appropriate kind. In a complement-clause yes-no question like that bracketed in:

(5) He asked [if I would marry him]

C is filled by the complementiser if - and indeed speaker A's first proposal in (1) might be regarded as an elliptical form of I wanted to ask you [if you will marry me], with if introducing the bracketed complement clause, and constituents other than those of the bracketed clause undergoing ellipsis. However, complementisers like if can't be used to introduce main clauses in English, so some other way has to be found of filling the strong C position in main-clause questions. Adapting an analysis dating back to Baker (1970), let's suppose that in main clauses, an interrogative C is filled by a null question particle \mathbf{Q}, and that Q attracts an auxiliary like will to move from T to C to attach to it, so filling the strong C position.

But why should the null interrogative complementiser Q attract an auxiliary to move from T to C ? One possibility is to follow Chomsky (1995) in supposing that Q is affixal in nature, and attracts an overt head to attach to it. Since affixes generally only attach to a particular kind of word (e.g. the past tense $-d$ affix can attach to verbs but not nouns, prepositions or adjectives), and since only tensed (i.e. present or past tense) auxiliaries move to C, one implementation of this idea (suggested in Chomsky 1993) is to suppose that Q carries a strong tense feature, and hence attracts the head T constituent of TP to move from T to C . On this view, the tensed auxiliary will in (4) moves from T to attach to the invisible Q affix in C - as shown in (6) below:

The auxiliary will moves from T to C in order to satisfy the requirement for the null question-affix Q to be have an appropriate kind of item (i.e. a present or past tense T constituent) affixed to it. The Q-affix analysis is far from implausible from a cross-linguistic point of view: for example, yes-no questions in Latin could be formed using the overt question suffix -ne. If we adopt the question-affix analysis, we can say that it is the affixal status of an interrogative C (viz. the fact that C in main clause questions contains a null affix Q) which triggers T-to-C movement. Given that English is a largely suffixal language (in that it mainly utilises derivational and inflectional suffixes), we can take Q to be suffixal in nature, so that the attracted auxiliary will end up positioned to the left of Q .

5.3 Movement as copying and deletion

An interesting question which arises from the T-to-C movement analysis is what it means for the auxiliary to move out of T. If movement of an auxiliary from T to C were to result in the head T position of TP vanishing without trace, a sentence such as Will you marry me? would have the structure below:

But a structure such as (7) is problematic in that it violates two constituent structure principles which we posited in §3.2, namely:
(8) Headedness Principle

Every syntactic structure is a projection of a head word
(9) Binarity Principle

Every syntactic structure is binary-branching
A tree such as (7) would violate the headedness requirement (8) in that neither TP nor T-bar has a head T constituent; (7) would also violate the binarity requirement (9) in that T-bar is not binary-branching (since T-bar does not have two daughters) but rather unary-branching (since T-bar has only one daughter).

It seems clear, then, that movement of an auxiliary from T to C cannot result in the loss of the original T constituent which heads TP: so, T must remain in place in the form of a null constituent of some kind. But what kind of item could the relevant null T constituent contain? Our discussion of gapping (i.e. head ellipsis) in the previous chapter suggests a possible answer. In $\S 4.4$ we suggested that ellipsis of the second (italicised) occurrence of could in a sentence such as (10a) below results in a structure such as (10b) containing a null occurrence of could (designated as could):
(10)(a) He could have helped her, or she could have helped him
(b) He could have helped her, or she could have helped him

This raises the possibility that T-to-C movement could be a composite operation by which a copy of an auxiliary in T is first moved into C , and then the original occurrence of the auxiliary in T is deleted (by which we mean that that its phonetic features are given a null spellout and so are unpronounced), leaving a null copy of the auxiliary in T. The assumption that movement is a composite operation involving two suboperations of copying and deletion is the cornerstone of Chomsky's copy theory of movement.

If we consider the copying component of movement more carefully, we see that it involves a form of merger operation by which a copy of a constituent which has already been merged in one position is subsequently merged in another position. To see what this means, let's look rather more closely at the derivation of Will you marry me? The first stage of derivation involves merging the verb marry with the pronoun me to form the VP marry me; the tense auxiliary will then merges with this VP to form the T-bar will marry me; this in turn merges with the subject you to form the TP you will marry me; the resulting TP
merges with a C constituent containing the null question suffix Q, so that at this stage of derivation we have the simplified structure (11) below:

A copy of the T constituent will is then merged with the interrogative complementiser, so forming a complex C constituent which comprises both the original C constituent (containing Q) and the T constituent containing will. Subsequent deletion of the phonetic features of the original occurrence of will in T derives the structure (12) below:

On this view, the inverted auxiliary will undergoes two separate merger operations in (12): first of all it is merged in T with its VP complement marry me, forming the T-bar will marry me; then (a copy of) will is merged with the null question particle Q in C , deriving Will $+Q$ you will marry me; subsequent deletion of the phonetic features of the original occurrence of will in T in turn derives Will $+Q$ you will marry me. The resulting structure (12) satisfies both the Headedness Principle (8) and the Binarity Principle (9).

An interesting source of evidence in support of the copy theory of movement comes from the study of language acquisition. Young children sometimes produce auxiliary copying structures like the following (produced by a boy called Sam at age 2 years and 9 months: thanks to Ian Crookston for the data):
(13)(a) Can its wheels can spin?
(b) Did the kitchen light did flash?
(c) Is the steam is hot?
(d) Was that was Anna?

What is Sam doing here? The answer seems to be that he has mastered the copy-merge component of auxiliary inversion and so is able to merge a copy of will in C : but he has not yet mastered the copy deletion component of auxiliary inversion and so fails to delete the phonetic features of the original occurrence of the auxiliary in T. Accordingly, (13a) above has the simplified structure (14) below for Sam (in which the structure of the DP its wheels is not shown because it is irrelevant to the point at hand):

The fact that Sam seems to have mastered the merger operation involved in auxiliary inversion (i.e. merging an auxiliary in T and then merging a copy of the auxiliary in C) but not the copy deletion operation (in that he fails to delete the original occurrence of the auxiliary in T) suggests that it is plausible to analyse a movement operation like auxiliary inversion as a composite operation involving the two separate operations of copy-merge (i.e. merging a copy of a T-auxiliary in C) and copy-deletion.

In addition to evidence from child grammars we also have evidence from adult grammars in support of
the claim that a moved auxiliary leaves behind a null copy of itself. Part of this evidence comes from the phenomenon of have-cliticisation which we touched on in §4.3. In this connection, note that have cannot cliticize onto the pronoun I/welyoulthey in inversion structures such as:
(15)(a) Should they have/*they've called the police?
(b) Will we have/*we've finished the rehearsal by 9 pm ?
(c) Would you have/*you've come with me?
(d) Could I have ${ }^{*}$ I've done something to help?
('ve represents the vowel-less clitic form /v/ here.) The sequence they've in (15a) does not rhyme with grave in careful speech styles, since it is pronounced /ठerəv/ not/סerv/. Likewise, the sequence we've in (15b) is not homophonous with weave in careful speech styles, since we have in (15a) can be reduced to /widv/ but not /wi:v/. Similarly, you've doesn't rhyme with groove in (15c), nor I've with hive in (15d). Why should cliticisation of have onto the pronoun be blocked in sentences like (15)? We can give a straightforward answer to this question if we posit that when an inverted auxiliary moves from T to C , it leaves behind a null copy of itself in the T position out of which it moves. Given this assumption, (15a) will have the structure shown in highly simplified form below:
[cP [c Should+Q] [тp they [T should] have called the police]]

We can then suppose that the presence of the null T constituent should intervening between have and they prevents have from cliticising onto they, thereby accounting for the ungrammaticality of (15a) *Should they've called the police? Note that a crucial plank in the argumentation here is the assumption that T-to-C movement leaves behind a null copy of the moved auxiliary in the head T position of TP, and this null auxiliary serves to block have-cliticisation.

Our discussion of auxiliary inversion here has interesting implications for the derivation of sentences. In this connection, consider how we derive a sentence such as:

Can you swim?
The first stage is to go to the lexicon (= dictionary) and choose a lexical array (i.e. a selection of lexical items out of which the sentence is going to be built). In the case of (17), the lexical array will consist of the verb swim, the pronoun you, the auxiliary can, and the null interrogative complementiser Q. The next stage is for the auxiliary can and the verb swim to be taken out of the lexical array and merged, so deriving the T-bar can swim. The pronoun you is then taken from the lexical array, and merged with the T-bar can swim to form the TP you can swim. The null interrogative complementiser Q is then taken from the lexical array and merged with the TP you can swim to form the $\mathrm{CP} Q$ you can swim. Since Q is affixal and has a tense feature attracting a tensed head, Q triggers merger of a copy of the present tense auxiliary can with Q , forming Can $+Q$ you can swim. Subsequent deletion of the original occurrence of can in T derives $C a n+Q$ you can swim.

5.4 V-to-T movement

Having looked at T-to-C movement in English, we now turn to look at a rather different kind of movement operation, which involves V-to-T movement - more specifically, movement of a finite main verb from the head V position of VP into the head T position of TP. We shall see that this kind of V movement operation was productive in Elizabethan English (i.e. the English used during the reign of Queen Elizabeth I, when Shakespeare was writing), but is no longer productive in present-day English. Since part of the evidence for V-to-T movement involves negative sentences, we begin by looking at the syntax of negation.

In Elizabethan English, clauses containing a finite auxiliary are typically negated by positioning the negative adverb not between the (italicised) auxiliary and the (bold-printed) main verb: cf.
(18)(a) Thou hast not left the value of a cord (Gratiano, Merchant of Venice, 4.i)
(b) She shall not see me (Falstaff, Merry Wives of Windsor, 3.iii)
(c) I will not think it (Don Pedro, Much Ado About Nothing, 3.ii)

In negative questions, the auxiliary is positioned in front of the subject, and not remains in front of the verb: cf.
(19)(a) Have I not heard the sea rage like an angry boar? (Petruchio, Taming of the Shrew, I.ii)
(b) Didst thou not hear somebody? (Borachio, Much Ado About Nothing, III.iii)
(c) Will you not dance? (King, Love's Labour's Lost, V.ii)

Assuming that (as in present-day English) questions involve movement of a finite auxiliary from T to C , a sentence such as (19a) will involve the T-to-C movement operation shown in simplified form below:

The auxiliary have is first merged in T and then moved to C (i.e. a copy of the auxiliary is merged with the question suffix Q in C), leaving behind a copy of have in T which is ultimately deleted.

However, an interesting aspect of negative sentences in Shakespearean English is that in auxiliariless finite clauses like those in (21) below, the (bold-printed) main verb is positioned in front of not: cf.
(21)(a) I care not for her (Thurio, Two Gentlemen of Verona, V.iv)
(b) He heard not that (Julia, Two Gentlemen of Verona, IV.ii)
(c) My master seeks not me (Speed, Two Gentlemen of Verona, I.i)

Since not in Elizabethan English is positioned in front of the main verb in sentences like (18/19) above, how can we account for the fact that the verb ends up positioned in front of not in sentences like (21)? The answer we shall give here is that when a finite T in Elizabethan English contains no auxiliary, the verb moves out of the head V position of VP into the head T position of TP in order to fill T . If so, a sentence like (21a) I care not for her will involve the V-to-T movement operation shown in a simplified skeletal form in (22) below:

```
[TP I [T care] not [vp [v eare] for her]]
```

Thus, the verb care is first merged in the head V position within VP, and then moves into the head T position in TP , thereby ending up positioned in front of not, with the original occurrence of care in V being given a null spellout. (An incidental detail is that the resulting TP will subsequently be merged with a null complementiser which marks the declarative force of the sentence and assigns nominative case to the subject I.)

A question posed by the verb-movement analysis in (22) is why the verb care should move from V to T. Using Chomsky's strength metaphor, we can suppose that a finite T is strong in Elizabethan English and so must be filled: this means that in a sentence in which the T position is not filled by an auxiliary, the verb moves from V to T in order to fill the strong T position. One way of characterising what it means for T to be strong is to suppose that T contains a Tns affix with a strong V-feature which requires it to have an (auxiliary or nonauxiliary) verb attached to it as its host. Let's suppose that a strong affix is one which can find a host either by merger, or by movement of an appropriate item to attach to the affix. In a structure containing an auxiliary in T , the tense affix will be directly attached to the auxiliary in T , so that (e.g.) the tense auxiliary hast in (18a) Thou hast not left the value of a cord has the more abstract structure [т have $+T n s]$. But in a verb-movement structure like (22), the strong Tns affix in T attracts the main verb to attach to the Tns affix in $\mathrm{T}-$ as shown in (23) below:

(Pending a re-analysis of negation in $\S 5.7$, we can take the negative adverb not to occupy the specifier position within the verb phrase in (23), since it modifies care for her.) By contrast, T in present-day English contains a weak Tns affix (more specifically, an affix with a weak V-feature), and a weak tense affix cannot trigger movement of a verb from V to T, but rather can only be attached to a verbal host either by merger of an auxiliary like have directly with a null Tns affix in T, or by lowering of the tense affix onto the main verb, e.g. in auxiliariless finite clauses such as He enjoys the classes. In such auxiliariless clauses (as we saw in §4.4), the weak Tns affix in T undergoes the morphological operation of Affix Hopping in the PF component, lowering the affix onto the main verb in the manner shown below:

On this view, both strong and weak Tense affixes can be directly merged with an auxiliary in T; the two differ in how the affix comes to be attached to a main verb; a strong Tense affix (like that found in Elizabethan English) triggers movement of the verb from V to T in structures like (23) above; a weak Tense affix (like that found in present-day English) is lowered onto the main verb in the PF component by Affix Hopping in structures like (24) above.

5.5 Head movement

There seem to be significant parallels between the kind of movement operation involved in T-to-C movement in (20) on the one hand, and V-to-T movement in (23) on the other. Both operations involve movement of a word from the head position in one phrase into the head position in a higher phrase. Accordingly, in (20) the auxiliary have moves from the head T position of TP into the head C position of CP; and in (23) the verb care moves from the head V position of VP into the head T position of TP. This suggests that T-to-C movement and V-to-T movement are two different instances of a more general head movement operation by which an item occupying the head position in a lower phrase is moved into the head position in a higher phrase.

As we see from sentences like (19) above, questions in Elizabethan English involved the same inversion operation as in present-day English. Given our assumption that inversion involves movement from T to C , an obvious prediction made by the assumption that verbs move from V to T in Elizabethan English is that they can subsequently move from T to C in interrogatives - and this is indeed the case, as we see from the fact that the (italicised) moved verb ends up positioned in front of its (bold-printed)
subject in questions like:
(25)(a) Saw you my master? (Speed, Two Gentlemen of Verona, I.i)
(b) Speakest thou in sober meanings? (Orlando, As you Like It, V.ii)
(c) Know you not the cause? (Tranio, Taming of the Shrew, IV.ii)

On the account given here, the derivation of a negative question such as (25c) Know you not the cause? will involve the two head movement operations shown in simplified form in (26) below:

(The structure in (26) is simplified for expository purposes by not showing the verb know attaching to a strong Tns affix in T, and by not showing movement of the resulting know+Tns structure to attach to a strong Q affix in C , forming the structure know $+T n s+Q$.) The verb know moves from V to T because a finite T is strong in Elizabethan English, by virtue of containing a Tense affix with a strong V-feature; and know subsequently moves from T to C because an interrogative C is likewise strong by virtue of containing a Question particle Q with a strong T-feature. Consequently, know moves through T into C by two successive applications of head movement (numbered (1) and (2) above): know is first merged in V, then moved to T and from there moved to C. In structures like (26), head movement is said to apply in a successive-cyclic fashion, moving the verb know (in successive cycles or steps) first from V to T , and then from T to C. Each time the verb moves, it leaves behind a copy of itself which is eventually deleted.

A key assumption made in (26) is that the verb know moves to C via the intermediate step of moving to T. This raises the question of why know can't move directly from V to C in the manner shown in simplified form in (27) below:

```
[cp [c Know] [тр you [т ø] [vp not [v know] the cause]]]
```

One way of ruling out the kind of long-distance head-movement operation illustrated in (27) is in terms of a locality principle suggested by Travis (1984), which we can outline informally as follows

Head Movement Constraint/HMC

Movement from one head position to another is a local operation which is only possible between a given head and the next highest head in the structure

If we look at the two movement operations in (26), we see that both obey HMC: operation (1) involves local movement of the verb know from the head V position of VP into the next highest head position in the structure, namely the head T position of TP; and operation (2) involves local movement of know from the head T position of TP into the next highest head position in the structure, namely the head C position of CP. Since both head movement operations are strictly local, there is no violation of HMC. By contrast, direct movement of know from V to C in (27) is non-local and violates HMC in that the verb know moves from the head V position of VP directly into the head C position of CP , in spite of the fact that C is not the next highest head above V. (On the contrary, T is the next highest head above V.) HMC therefore provides a principled account of why (25c) Know you not the cause? is ungrammatical in present-day English: the verb know cannot move directly to C (because this would violate the HMC requirement for movement to be local), and cannot move through T into C (because verbs can no longer move from V to T in presentday English).

However, such an analysis raises the question of why finite verbs should be able to move from V to T
in Elizabethan English, but not in present-day English. Using Chomsky's strength metaphor, we can say that the Tns affix carried by a finite T was strong in Elizabethan English, but is weak in present day English. Because the affix was strong in finite clauses in Elizabethan English, it could attract a verb to move from V to T; but because the affix is weak in present-day English, T can only be filled by an auxiliary which is directly merged in T , not by a verb moving from V to T . More generally, we can suppose that there is parametric variation with respect to the relative strength of a given type of head, so that (e.g.) a finite T was strong in Elizabethan English but is weak in present-day English. We can refer to the relevant parameter as the Head Strength Parameter. Note that the parameter may have different settings for different types of head in a given language: e.g. a finite T is weak in present-day English, but a finite C is strong in interrogative main clauses.

5.6 Have/Be Raising

Although we assumed in the previous section that no verbs in present-day English can move from V to T , the picture is complicated by the behaviour of be in examples like (29) below:
(29)(a) She may not be suitable
(b) She is not suitable

In (29a) the copular verb be seems to occupy the head V position in VP, and so follows not: but in (29b) is precedes not and so seems to occupy the head T position of TP. This suggests that the copula be originates as a main verb (in the head V position of VP) and remains in situ when non-finite as shown in simplified form in (30a) below, but moves into the head T position of TP when finite as shown in (30b):

(b) $[$ cР $[\mathrm{c} \varnothing][\mathrm{TP}$ she $[\mathrm{T} i s][\mathrm{vp}$ not $[\mathrm{v}$ is $]$ suitable $]]]$

A similar conclusion is suggested by examples such as the following:
(31)(a) She may not be enjoying syntax (b) She is not enjoying syntax

In (31a), the head T position of TP is occupied by the modal auxiliary may, and the head V position of VP is occupied by the verb enjoying; be therefore seems to occupy some intermediate position between the two. Since be (in this use) is an aspectual auxiliary (marking progressive aspect), let's suppose that be in (31) occupies the head AUX/Auxiliary position of an AUXP (i.e. Auxiliary Phrase). However, in (31b) progressive is occupies the head T position of TP and hence precedes not. One analysis of the relevant data is to suppose that aspectual be originates as the head AUX constituent of AUXP and remains in situ when non-finite as shown in (32a) below, but moves from AUX to T when finite - as shown in (32b) (where not is taken to occupy a position to the left of AUXP - see the discussion in the next section):
(32)(a) [cr [C $\varnothing]$ [TP she [T may] not [auxp [aux $b e]$ [vp [v enjoying] syntax] $]$]

On this view, present-day English would have a be-raising operation moving finite forms of be from the head V position in VP (or the head AUX position in AUXP) into the head T position in TP (an idea which dates back to Klima 1964). This would mean that present-day English retains a last vestige of raising-to-T.

The different positions occupied by finite and nonfinite forms of be are mirrored by the perfect auxiliary have - as the examples below illustrate:
(33)(a) She may not have enjoyed syntax (b) She has not enjoyed syntax

The head T position of TP in (33a) is occupied by may and the head V position of VP by enjoyed; hence the infinitive form have must occupy some position intermediate between the two, e.g. the head AUX position of an AUXP/Auxiliary Phrase, as in (34a) below. However the fact that the finite form has in (33b) is positioned in front of not suggests that finite forms of the perfect auxiliary have raise from AUX to T in the manner shown informally in (34b) below:
(34)(a) [c尺 [C \varnothing] [TP She [T may] not [auxp [Aux have] [vp [v enjoyed] syntax]]]]
(b) [сР [с $\varnothing]$ [TP She [т has] not [auxp [aux hast] [vp [v enjoyed] syntax]]]]

If finite forms of be (in all uses) and have (in some uses - e.g. its use as a perfect auxiliary) both raise to T, it is clear that the suggestion made in the previous section that T in present-day English is a weak head which does not trigger any form of V-raising is untenable. Rather, the appropriate generalisation would appear to be that in present-day English, only verbs like have and be can raise to T. What do have and be have in common which differentiates them from other verbs? An answer given by many traditional grammars is that they have little if any inherent lexical content (and for this reason are sometimes called light verbs), and in this respect they resemble auxiliaries. Adopting this intuition, we can say that a finite T in present-day English can trigger movement of an auxiliary verb like have/be to T (but not movement of a lexical verb to T). One mechanism by which we can describe the relevant phenomenon is to suppose that whereas a finite V in Elizabethan English had a strong V-feature enabling it to attract a finite auxiliary or nonauxiliary verb, a finite T in present-day English has a strong AUX-feature which enables it to attract an auxiliary like have/be to raise to T, but not a lexical verb. This means that if the head immediately beneath T is have or be (as in ($30 \mathrm{~b} / 32 \mathrm{~b} / 34 \mathrm{~b}$) above), the affix attracts it; but if the head beneath T is a main verb (as in (24) above), the affix is instead lowered onto the main verb in the PF component by Affix Hopping.

5.7 Another look at Negation

In $\S 5.4$ and $\S 5.5$ we assumed that the negative particle not is a VP-specifier which occupies initial position within VP. However, this assumption is problematic in a number of respects, as should be apparent if you look back at structures like (32) and (34) above. For example, in a sentence such as (31a) She may not be enjoying syntax, it is clear that not does not occupy a VP-initial position immediately in front of the verb enjoying: on the contrary, not appears to occupy some position between the modal auxiliary may and the aspectual auxiliary be - as shown in (32a). It is clear, therefore, that we need to rethink our earlier analysis of negation. One alternative analysis which has been proposed in work dating back to Pollock (1989) is that not is contained within a separate NEGP/Negation Phrase projection, and that it serves as the specifier of NEGP (and hence is positioned in spec-NEGP): this has subsequently become a standard analysis of negation. (See Ingham 2000 for evidence of a NEGP constituent in Late Middle English; and see Haegeman 1995 for a wide-ranging account of the syntax of negation.)

Such an analysis is far from implausible from a historical perspective: in earlier varieties of English, sentences containing not also contained the negative particle ne (with ne arguably serving as the head NEG constituent of NEGP and not as its specifier). This can be illustrated by the following Middle English example taken from Chaucer's Wife of Bath's Tale:

A lord in his houshold ne hath nat every vessel al of gold (lines 99-100)
'A lord in his household does not have all his vessels made entirely of gold'
A plausible analysis of a sentence like (35) is to suppose that ne originates as the head NEG constituent of NEGP, with nat ($=$ 'not') as its specifier: the verb hath originates in the head V position of VP and from there moves to the head NEG position of NEGP, attaching to the negative prefix ne to form the complex head ne+hath as shown in simplified form in (36) below:
[nEGP nat [NEG ne+hath] [vp [v hath] every vessel al of gold]]

The resulting complex head ne + hath then attaches to a present-tense affix Tns in T, as shown in simplified (and abbreviated) form in (37) below:

Merger of the TP in (37) with a null declarative complementiser will derive the CP structure associated with (35) A lord in his houshold ne hath nat every vessel al of gold.

By Shakespeare's time, ne had dropped out of use, leaving the head NEG position of NEGP null (just as in ne...pas 'not....at.all' negatives in present-day French, $n e$ has dropped out of use in colloquial styles). Positing that not in Elizabethan English is the specifier of a NEGP headed by a null NEG constituent
opens up the possibility that V moves through NEG into T, so that (21a) I care not for her has the derivation shown (in simplified form) in (38) below:

This would mean that head movement applies in a successive-cyclic (two-step) fashion. Each of the two head movement operations in (38) - movement of care from V to NEG, and then from NEG to T - is local in the sense that it satisfies the Head Movement Constraint (28), since in each case movement is from one head position into the next highest head position in the structure. If head movement is driven by affixal properties of heads, and if both T and NEG contain an affix with a strong V-feature which can trigger movement of a lexical verb, the verb care will first move from V to NEG in order to attach to a null negative affix (in much the same way as the verb hath in (36) moves from V to Neg to attach to the overt negative affix ne), and the resulting complex NEG head (comprising a null negative affix with a verb attached to it) in turn will move from NEG to T in order to attach to a strong tense affix in T .

An important question posed by the analysis in (38) is why sentences like (21a) I care not for her are ungrammatical in present-day English. The answer is that neither T nor NEG has a strong V-feature in present day English, and so they are unable to attract a main verb like care to move through NEG into T. Still, this assumption in turn raises the question of why we can't simply leave the present tense verb care in situ (in the head V position of VP) in present-day English - as in (39) below:

One answer is the following. Let's suppose that (just like syntactic operations), morphological and phonological operations in the PF component apply in a bottom-up fashion, and process structures in a cyclic fashion (i.e. in a stepwise fashion, one projection at a time). What this means is that when the syntax hands over the structure in (39) to the PF component, the lowest maximal projection in the structure (the VP care for her) will be processed first, then the next lowest maximal projection (the NEGP not ϕ care for her), then the next lowest maximal projection (the TP I Tns not ϕ care for her) and finally the overall CP (ϕ I Tns not ϕ care for her). Let's also posit that all operations (whether syntactic, morphological, or phonological) are subject to Pesetsky's (1995) Earliness Principle, which we outlined informally in $\S 4.9$ as follows:

Earliness Principle

Operations must apply as early as possible in a derivation
All of this means that Affix Hopping will apply to the Tns affix in (39) on the TP cycle - i.e. at the point where we have already processed VP and NEGP, and are now beginning to process TP. The structure which the PF component can 'see' on the TP cycle is (41) below:
(41) [tт I [т Tns] [negr not [neg \varnothing] [vp [v care] for her]]]

At this point, we might expect Affix Hopping to apply to lower the Tns affix in T onto the verb care. There are two possible ways in which we might seek to achieve this. One is by lowering the affix directly from T onto V as in (42a) below, and the other is to lower the affix first onto null NEG head and then onto V in the manner shown in (42b):

```
[tr I [TT Tns] [negp not [neg g] [vp [v care] for her]]]
    -------------------------
```


However, a movement operation like (42a) which lowers the affix directly from T onto V would violate the Head Movement Constraint (28), since it involves lowering the head T of TP onto the head V of VP; and yet V is not the next lowest head in the structure (rather, NEG is), and HMC only allows a head to be lowered onto the head immediately beneath it in the structure. Accordingly, we might suppose that Affix Hopping applies in a successive-cyclic fashion, lowering the affix first from T onto NEG, and then from NEG onto V - as in (42b). However, there are two problems posed by any such successive-cyclic lowering operation. The first is that NEG doesn't seem to be the kind of head which is an appropriate host for a Tense affix (at least, if we assume that a tense affix attaches to an overt verb, since NEG is neither overt nor a verb): hence, the first step of the two-step movement arrowed in (42b) - namely lowering the Affix onto NEG - may perhaps be ruled out for this reason. To make matters worse, the second step of lowering the Tns affix from NEG onto V in (42b) is also ruled out, because it violates a UG principle traditionally referred to as the Strict Cyclicity Principle, outlined informally below:
(43) Strict Cyclicity Principle/SCP

At a stage of derivation where a given projection HP is being cycled/processed, only operations affecting the head H of HP and some other constituent of HP can apply

Lowering the Tns affix from T onto NEG in (42b) does not violate SCP, since T-to-NEG lowering clearly affects T (by moving the Tns affix in T) and also affects a NEG constituent which is contained within TP (since this ends up having a Tns affix attached to it). But the subsequent operation of lowering the affix from NEG onto V is anticyclic, since NEG-to-V lowering does not affect T (in violation of SCP), but rather affects only NEG and V. We therefore correctly predict that sentences like *I not care for her are ungrammatical in present-day English. (See Lasnik 1995/2000 and Ochi 1999.)

A final point to be made here is that we have excluded from our discussion negative interrogatives like Shouldn't you be at work? Cormack and Smith (2000a) argue that in such sentences the negative particle n 't has scope over the modal (so that the sentence has a meaning paraphraseable as 'Is it not the case that you should be at work?') and hence originates in a position above TP. One proposal along these lines would be to suppose that NEGP in such sentences is positioned between CP and TP, and that the auxiliary should raises from T through NEG into C, with n't cliticising onto the auxiliary. This would allow for the possibility of two types of negation occurring in a sentence such as Mightn't he not have seen her? where not originates within a NEGP immediately above VP, and n ' t within a NEGP immediately above TP.

5.8 Do-support

In present-day English, the negative counterpart of a sentence like I care for her requires $d o$-support, as we see from (44) below:

(44) I do not care for her

But how does do come to be introduced into the derivation - and why? In order to answer this question, let's look rather more closely at the derivation of sentence (44). Suppose that (as before) the syntactic component of our grammar generates the structure (39) above. Suppose (again as before) that this structure is then handed over to the PF component (where morphological and phonological operations apply in a bottom-up, cyclic fashion) and that we reach the point where the TP shown in (41) above (and repeated as (45) below) is being cycled in the PF component:

$$
\begin{equation*}
\text { [TP I [т Tns] [negr not [neG } \varnothing][\mathrm{vp}[\mathrm{v} \text { care] for her]]] } \tag{45}
\end{equation*}
$$

Since T contains an unattached Tns affix with a weak V-feature, we would expect the affix to be lowered onto an overt verbal stem by Affix Hopping. But if Affix Hopping is a purely local operation which lowers an unattached Tense affix onto the closest head below T (hence onto the head word of the expression which is the complement of T), then it follows that all Affix Hopping can do is lower the affix
onto the head NEG constituent of NEGP. But, as we have already seen, NEG is arguably not an appropriate host for the affix, since it is neither overt nor verbal. In order to avoid the derivation crashing, the 'dummy' auxiliary DO is merged with the unattached affix in T, forming the structure:
(46)

$$
\begin{equation*}
\text { [TP I [т DO+Tns] [nEGP not [nEG } \varnothing \text {] [vp [v care] for her]]] } \tag{46}
\end{equation*}
$$

If (as here) the Tns affix carries the features [first-person, singular-number, present-tense], the string $D O+T n s$ will eventually be spelled out as $d o$.

What is implicitly being assumed here is that Affix Hopping and Do-Support are complementary PF operations which provide two different ways of ensuring that an affix attaches to an appropriate host. We can therefore see them as two types of affix attachment operation, as in (47) below:

Affix Attachment

When the PF component processes a structure whose head H contains an (undeleted) verbal affix which is not attached to a verb
(i) if H has a complement headed by an overt verb, the affix is lowered onto the relevant verb [= Affix Hopping]
(ii) if not (i.e. if H does not have a complement headed by an overt verb), the expletive (i.e. semantically contentless) stem DO is attached to the Tense affix [= DO-support]

We can illustrate how (47) works in terms of the italicised structures below:
(48)(a) He won the race
(b) He said he would win the race, and he did
(c) He said he would win the race, and win the race, he did
(d) Did he win the race?
(e) Didn't he win the race?
(f) Some people don't believe he won the race, but he DID win it

Consider first (48a), which is derived as follows. The determiner the merges with the noun race to form the DP the race; the verb win merges with this DP to form the VP win the race. This VP is merged with a T constituent containing a (past tense) affix Tns to form the T-bar Tns win the race. This T-bar merges with the pronoun he to form the TP he Tns win the race; and the resulting TP in turn is merged with a null declarative complementiser ϕ to form the CP shown in skeletal form in (49) below:
(49)

The syntactic structure (49) is then sent to the PF component (and the semantic component) to be processed. PF operations apply in a bottom-up, cyclic fashion. On the TP cycle, the Tns affix in T is lowered onto the verb win in accordance with (47i), so that the verb has the form win + Tns: since the lexical entry for the irregular verb win specifies that it is spelled out as won when it has a past tense affix attached to it, the overall structure is eventually spelled out as (48a) He won the race.

Now consider why do is used in the elliptical clause he did in (48b). This would appear to have the syntactic structure shown in (50) below, with the italicised material undergoing ellipsis:

(50)

$$
\text { [CP }[\mathrm{C} \varnothing][\text { TP he }[\mathrm{T} \text { Tns }][\mathrm{vP}[\mathrm{v} \text { win] the race }]]]
$$

The Tns affix in T cannot subsequently be lowered onto the verb win in the PF component via the Affix Hopping operation (47i) because the verb is not overt (by virtue of having undergone ellipsis); hence the Do Support operation in (47ii) has to apply, attaching DO to the Tns affix, with the resulting DO+Tns string eventually being spelled out as did.

Now consider the clause Win the race, he did in (47c). Let's suppose that (in the syntax) the VP win the race undergoes preposing in order to highlight it, and is thereby moved to the front of the overall clause (to become the specifier of the null complementiser), and that the phonetic features of the original occurrence of the VP win the race are given a null spellout, as shown informally in (51) below:

(51)

$$
\text { [cР }\left[\mathrm{vp} \text { win the race] }[\mathrm{C} \emptyset]\left[{ }_{\mathrm{TP}} \text { he }[\mathrm{T} \text { Tns] }[\mathrm{vp} \text { in the race }]]\right]\right.
$$

Once again, in the PF component the Tns affix cannot be lowered onto the verb win because the complement of T is a VP which contains a null copy of the verb win (the overall VP having moved to the front of the sentence, leaving a null copy behind). Accordingly, Do Support (47ii) applies once again, and

T is eventually spelled out as did.
Let's turn now to look at the derivation of the yes-no question (47d) Did he win the race? Let's suppose that a series of syntactic merger operations have applied to generate the structure (52) below:

$$
\begin{equation*}
\text { [cp [c } \left.\mathrm{Q}]\left[{ }_{\mathrm{TP}} \text { he [}{ }_{\mathrm{T}} \text { Tns] [} \mathrm{vp}_{\mathrm{v}}[\mathrm{v} \text { win] the race }]\right]\right] \tag{52}
\end{equation*}
$$

Let's further suppose that the Question particle/Q which occupies the head C position of CP has a strong T-feature and hence attracts whatever is contained within T to adjoin to Q. Since T in (52) contains only a Tns affix, this affix will adjoin to Q (and the original occurrence of the Affix in T will be deleted), so deriving the structure (53) below:

$$
\begin{equation*}
\text { [}{ }_{\text {CP }}[\mathrm{C} \text { Tns }+\mathrm{Q}]\left[\mathrm{TP} \text { he [} \mathrm{T}_{\mathrm{T}}\right. \text { Tns] [vp [v win] the race]]] } \tag{53}
\end{equation*}
$$

The resulting syntactic structure is then sent to the PF component to undergo morphological and phonological processing. Since the Tns affix in T gets deleted, it does not undergo Affix Hopping. By contrast, the Tense affix in C is not deleted and is unattached (in the sense that it is not attached to an overt verbal stem), and hence must undergo Affix Attachment (47). However, since the complement of the C constituent which contains the tense affix is not a VP headed by an overt verb (but rather is a TP headed by a null T), Affix Hopping (47i) cannot apply; consequently, Do Support (47ii) must apply instead, attaching the dummy stem DO to the unattached affix, to form the string $d o+T n s+Q$, which is eventually spelled out as did.

Now, consider the negative question Didn't he win the race? In keeping with the NEGP analysis of negation outlined in the previous section, let's suppose that after the VP win the race has been formed, it is merged with a null NEG head ϕ to form a NEG-bar constituent, and that this in turn is merged with a negative adverb $n^{\prime} t$ which serves as its specifier, forming the NEGP $n^{\prime} t \phi$ win the race. This NEGP is then merged with a T containing an abstract Tns affix, forming the T-bar Tns n't ϕ win the race. Suppose that the clitic negative $n^{\prime} t$ then attaches to the end of the Tns affix, with the original occurrence of $n^{\prime} t$ in spec-NEGP being deleted, so forming the string Tns $+n^{\prime} t n^{\prime} t \emptyset$ win the race. The resulting T-bar is in turn merged with the subject $h e$, forming the TP He Tns $+n^{\prime} t n^{\prime} t \emptyset$ win the race. This is then merged with an interrogative C constituent containing a Q morpheme, forming the $\mathrm{CP}(54)$ below:

$$
\begin{equation*}
\text { [cp [c Q] [тp he [т Tns } \left.+n^{\prime} t\right]\left[\text { negp } n^{\prime} \neq[\text { neg } \varnothing][\mathrm{vp}[\mathrm{v} \text { win] the race] }]]\right] \tag{54}
\end{equation*}
$$

Since Q has a strong T -feature, it attracts all the material contained in T to adjoin to Q , so deriving:

The resulting syntactic structure is then handed over to the PF component. On the CP cycle, the Tns affix in C will be subject to Affix Attachment (47). However, since the complement of C is not a VP headed by an overt verb, Affix Hopping (47i) cannot apply, and Do-Support (47ii) applies instead, creating the complex head $D O+T n s+n^{\prime} t+Q$, which is ultimately spelled out as didn't.

An interesting descriptive implication of the analysis presented in (55) is that it is in principle possible that the interrogative form of some auxiliaries may have a different spellout from their non-interrogative counterparts. This is because in their interrogative form they attach to a null question complementiser Q , whereas in their non-interrogative form they do not. A case in point is $b e$. When used with a first person singular subject $(=I)$, this has the negative interrogative form aren't - a form which is not found with an I subject (in varieties of English like mine) in non-interrogative uses, as the following contrast shows:
(56)(a) Aren't I entitled to claim social security benefits?
(b) *I aren't entitled to claim social security benefits (= I'm not...)

This can be accounted for by positing that the string $b e+T n s_{I_{s} P r}+n^{\prime} t+Q$ found in (56a) can be spelled out as aren't - but not the Q-less string be $+T n s_{I_{g} P_{r}+}+n^{\prime} t$ in (56b) because this is not interrogative (by virtue of having no Q affix attached to it).

Finally, let's turn to consider the clause He DID win it in (48f), where capitals mark contrastive stress (and the utterance is used to deny any suggestion that he didn't win the race). One way of handling the relevant phenomenon is to suppose that T is the locus of contrastive stress in such structures, and hence contains an abstract EMP(hasis) marker of some kind which is spelled out as contrastive stress, and which must be attached to a verbal stem - so requiring Do Support in contrastive structures like (48f). Such an analysis would require us to suppose that EMP (perhaps by virtue of having phonological but not
morphological content) is not an affix and so cannot be lowered from T onto V . An alternative possibility is that EMP is a clitic-like constituent which originates within the complement of T and (rather like the negative clitic n 't) requires the use of Do Support to provide a host for the clitic EMP. We shall not speculate further on these (and other) analyses here of emphatic do here. (On DO-support, see Halle and Marantz 1993, Lasnik 1995, Bobaljik 2002; see also Embick and Noyer 2001 for a different view.)

The analysis of DO-support outlined here has interesting theoretical implications. The structures generated by the syntactic component of the grammar are sent not only to the PF component (where they are assigned a phonetic form) but also to the semantic component (where they are assigned a semantic interpretation). Chomsky in recent work $(1995,1998,1999,2001)$ has proposed a constraint on grammars to the effect that syntactic structures must not contain constituents which are not legible at the semantics interface or at the PF interface (i.e. grammars must not contain constituents which do not contribute to determining the phonetic form or meaning of expressions). Under the analysis of Do-Support presented here, the dummy auxiliary $d o$ is analysed as a meaningless 'chunk' of morphology which is not present in the syntax, but rather is added in the PF component in order to provide a host for an unsupported Tense affix. Since syntactic structures which contain 'meaningless' constituents will cause the derivation to crash at the semantics interface (because meaningless constituents cannot be assigned any semantic interpretation), this is a welcome result since if the dummy auxiliary DO is not present in the syntax, it will not be processed by the semantic component: all the semantic component 'sees' in DO-support structures is a Tense affix which is clearly interpretable by virtue of the fact that it encodes present or past tense.

5.9 Head-movement in nominals

Our discussion so far has focussed entirely on head-movement in clauses. To end this chapter, we look briefly at head-movement in nominals - more particularly, at \mathbf{N}-movement (i.e. the movement of a noun out of the head N position of NP into a higher head position within the nominal expression containing it). In this connection, consider the syntax of the English nominal (57a) below and its Italian counterpart (57b) (from Cinque 1994, p.86):
(57)(a) the Italian invasion of Albania
(b) l'invasione italiana dell' Albania the invasion Italian of.the Albania

If the adjective Italian is the specifier of the noun invasion, (57a) will have the simplified structure:

On this view, the noun invasion merges with its PP complement of Albania to form the N-bar (intermediate nominal projection) invasion of Albania, and this in turn merges with the adjectival specifier Italian to form the NP (maximal nominal projection) Italian invasion of Albania; the resulting NP is then merged with the determiner the to form the DP the Italian invasion of Albania. The adjective Italian in (58) can be thought of as being (in an informal sense) the 'subject' of invasion, since it identifies the people who are doing the invading - and if subjects are typically specifiers, it is appropriate to analyse the kind of adjective found in (58) as the specifier of the N invasion, of the N -bar invasion of Albania and of the NP Italian invasion of Albania.

In the corresponding Italian structure (57b) l'invasione italiana dell'Albania, the head noun invasione ends up occupying a position to the left of the adjective italiana. Cinque (1994) argues that this is the result of the noun moving out of the head N position within NP into some higher head position within the nominal (via Head Movement). At first sight, it might seem as if the noun attaches to the right of the head D constituent of DP: but - argues Cinque - any such assumption is falsified by nominals like (59) below:

> la grande invasione italiana dell'Albania
> the great invasion Italian of.the Albania (= 'the great Italian invasion of Albania')

The fact that the noun invasione ends up positioned after the adjective grande 'great' in (59) suggests that the noun cannot move to some position immediately to the right of the determiner $l a$ 'the'. Instead, the noun must 'move to a head intermediate between N and D' (Cinque 1994, p.87). If this intervening head is the locus of the number properties of nominals (as suggested by Picallo 1991 and Ritter 1991), we can label this intermediate head Num (= Number). If the adjective grande 'great' serves as the specifier of Num, this will mean that the derivation of (59) involves the movement operation shown in (60) below:

The noun invasione originates in the head N position of NP and then (via head movement) moves into the head Num position of NumP, with the original occurrence of invasione in N being deleted. An assumption embodied in the analysis in (60) is that adjectives serve as specifiers of the expressions they modify, and that different types of adjective serve as specifiers to different types of constituent (e.g. italiana in (60) is the specifier of NP, and grande is the specifier of NumP): see Cinque (1994) for a more extensive implementation of this idea, and Cinque (1999) for a parallel analysis of clausal adverbs.

While the kind of N -movement operation found in Italian is not found in present-day English, it did occur in earlier varieties of English. For example, in Chaucer's Troilus and Criseyde we find nominals such as those in (61) below where the italicised noun precedes the bold-printed adjective:
(61)(a) hire own brother dere (= her own brother dear)
(b) a thing immortal (= a thing immortal)
(c) blosmy bowes grene (= blossomy branches green)
(d) hire hornes pale (= her horns pale)

The italicised noun in such structures has moved from the head N position of NP into the head Num position of NumP, so moving in front of the bold-printed adjective. (See Kishimoto 2000 for arguments that present-day structures like something nice are a last vestige of this once-productive N -to-Num movement operation, deriving from some nice thing via movement of thing from N to Num .)

Although nouns generally move only as far as Num in Italian, in some other languages nouns can move above Num into the head D position of DP (if the head D of DP is strong/affixal in nature). Consider in this regard the following Norwegian examples (from Taraldsen 1990):
(62)(a) hans bøker om syntaks
his books about syntax
(b) bøkene hans om syntax
books+the his about syntax
Taraldsen argues that (62b) is derived via movement of the noun bøker 'books' from the head N position of NP to the head D position of DP, where it attaches to the left of the affixal determiner +ne 'the'.

Longobardi (1994, p.623) argues that proper nouns (i.e. names) in Italian can raise from N to D across an intervening adjective (like the possessive adjective mio) in structures like (63b) below:

Il mio Gianni ha finalmente telefonato
The my Gianni has finally phoned
'My Gianni has finally phoned'
(b) Gianni mio ha finalmente telefonato

Gianni mine has finally phoned
'My Gianni has finally phoned'

In (63a) the head D position of DP is filled by the determiner il 'the', and there is no movement of the
proper noun Gianni from N to D. However, in (63b) the head D position of DP is filled by a null affixal determiner, and the proper noun Gianni raises from N to D to attach to the null determiner, in the process crossing the possessive adjective mio. In earlier varieties of English, a similar type of movement operation seems to be found in vocative expressions used to address someone, as the italicised vocative in (64b) below illustrates (from Chaucer's Troilus and Criseyde):
(64)(a) 'Iwis, myn uncle,' quod she
'Certainly, my uncle,' said she
(b) 'And whi so, uncle myn? whi so?' quod she
'And why so, uncle mine, why so?' said she

As these examples show, the noun uncle can be positioned either before or after the possessive myn in vocative expressions. How can we account for this? One possibility (suggested in relation to Italian vocatives like mio caro Gianni ‘my dear Gianni' and Gianni mio caro ‘Gianni my dear' by Longobardi 1994, p.626) is that vocative structures like uncle myn are DPs in which the noun uncle has raised from N to D, whereas structures like myn uncle are 'smaller' nominals which lack a DP projection and hence cannot trigger N-to-D movement. (See Longobardi 1994, 1996, 2001 for an insightful discussion of the syntax and semantics of N-to-D movement in nominals. See also Vikner 1995 and Roberts 2001b for more general discussion of head movement.)

The general conclusion to be drawn from this section is that we find evidence from languages other than present-day English (and from earlier varieties of English) that head movement may apply in nominal as well as clausal structures. In particular, we find evidence of two types of N -movement operation: (i) movement of a noun to a Num position intermediate between D and N ; and (ii) movement of a noun to the head D position of DP (with the noun first moving to Num before moving to D, in order for movement of the noun to be successive-cyclic and thereby satisfy the Head Movement Constraint).

5.10 Summary

In this chapter, we have been concerned with the syntax of head movement. We began by looking at auxiliary inversion in questions in English in §5.2, arguing that this involves a T-to-C movement operation whereby an auxiliary moves from the head T position of TP into the head C position of CP . We suggested that auxiliaries move to C in main clause questions because C in such structures is strong (perhaps by virtue of containing a null question particle Q which is affixal and has a strong tense feature) and so attracts an auxilary in T to move to C . In $\S 5.3$ we argued that movement operations like auxiliary inversion involve two separate copying and deletion operations: a copy of the auxiliary in T is merged with an affixal question particle Q in C , and then the original occurrence of the auxiliary in T is deleted. In $\S 5.4$ we saw that finite main verbs in Elizabethan English could move from V to T by an operation of V-to-T movement (as is shown by word-order in negative sentences like I care not for her), but that this kind of movement is no longer possible in present-day English. We suggested that a null finite T was strong in Elizabethan English (perhaps containing an abstract Tns affix with a V-feature triggering the raising of verbs to T) but that its counterpart in present-day English is weak (so that a Tns affix in T is lowered onto the main verb by the morphological operation of Affix Hopping). In $\S 5.5$ we argued that T-to-C movement and V-to-T movement are two different reflexes of a more general head movement operation, and that head movement is subject to a strict locality condition (imposed by the Head Movement Constraint) which requires it to apply in a successive cyclic (stepwise) fashion, so that head movement is only possible between a given head and the next highest head within the structure containing it. In $\S 5.6$ we argued that present-day English has a last vestige of V-to-T raising in finite clauses whereby be and have raise from a lower position into the head T position of TP. We suggested that a finite T in present-day English contains a Tns affix which can only attract an auxiliary-like light verb to move to T, not a lexical verb: we noted that one implementation of this idea would be that a finite T has a strong AUX-feature in present-day English. In §5.7, we took another look at negation. Revising our earlier analysis of not as a VP-specifier, we outlined an alternative analysis under which not is the specifier of a NEGP constituent which was headed by ne in Chaucerian English, but which is null in present-day English. On this view, Shakespearean negatives like He heard not that involve movement of the verb from V through NEG into T. Because NEG and T don't have a strong V-feature in present-day English, they can no longer trigger movement of a lexical verb. In $\S 5.8$ we outlined a morphological account of Affix Hopping and Do-Support. We suggested that once the syntactic component of the grammar has generated a given syntactic structure (e.g. a complete CP), the relevant structure is then sent to the PF
component for morphological and phonological processing. If a structure being processed by the PF component contains an unattached Tns affix, this is lowered onto head immediately below by Affix Hopping if this is an overt verb; if not, the dummy item $d o$ is attached to the affix by Do-Support. In §5.9, we presented evidence that head movement can also apply in nominal structures. We argued that nouns in Italian raise to a head Num(ber) position intermediate between D and N in structures like $l a$ grande invasione italiana dell'Albania 'the great Italian invasion of Albania'. We noted that in some languages, nouns can raise still further to attach to $\mathrm{D}-\mathrm{e} . \mathrm{g}$. in Norwegian nominals such as bøkene hans 'books.the his'.

WORKBOOK SECTION

Exercise IX

Discuss the derivation of each of the following (declarative or interrogative) sentences, drawing a tree diagram to represent the structure of each sentence and saying why the relevant structure is (or is not) grammatical (in the case of 4, saying why it is ungrammatical as a main clause):

1	He helps her	2	*He d's help her	3
4	*Helps he her?			
7	*I he helps her?	5	Does he help her?	6
I wonder if he helps her				
10	*He not helps her	8	*I wonder if helps he her	9
*He helps not her				
13	Doesn't he help her?	11	He does not help her	12

(Note that d 's in 2 represents unstressed does, /dzz/.) Say what is unusual about the syntax of 14 below (the second line of the nursery rhyme Baa Baa Black Sheep) - and why such structures are no longer grammatical in many varieties of English:
14 Have you any wool?
Then, discuss the derivation of each of the following questions produced by a number of different children aged 2-4 years, and identify the nature of the child's error in each case:

15	Is the clock is working?	16
17	Does it opens?	
18	18	Does it doesn't move? don't want one?

Consider, also, the derivation of the following questions reported (by Akmajian and Heny 1975, p. 17) to have been produced by an unnamed three-year-old girl:

19 Is I can do that? $\quad 20$ Is you should eat the apple?
21 Is the apple juice won't spill?
And finally, say why you think negative imperatives like 22 (which were grammatical in Elizabethan English) are ungrammatical in present-day English, and why we find 23 instead:
22 *Be not afraid!
23
Don't be afraid!

Helpful hints

In 13, account for the fact that the sentence is ambiguous between one interpretation paraphraseable as 'Is it the case that he doesn't help her' and another paraphraseable as 'Isn't it the case that he helps her?' In 15-18, consider the possibility that children sometimes fail to delete the original occurrence of a moved T constituent. In relation to 17 and 18 , consider also the possibility that (in the relevant child grammars) attachment of the clitic n ' t to a Tns affix in T may either be treated by the child as a syntactic operation, or as a PF operation which applies in the PF component after the relevant syntactic structure has been formed. In relation to 23 , consider the possibility that although a T in finite declarative and interrogative clauses has a strong AUX feature, T in imperatives is weak and so can attract neither main verbs nor auxiliaries.

Model answer for 1

Given the assumptions made in the text, 1 will have the simplified syntactic structure (i) below:
(i)

The overall clause is a CP headed by a null declarative complementiser ϕ which has a TP complement headed by a T constituent which carries a present-tense Tns affix which is third person singular by agreement with the subject $h e$, and which needs an overt verb stem to attach to. Since T does not have a strong V-feature in present-day English, the verb help cannot be raised to provide a host for the affix in T. After the syntactic structure in (i) has been formed, it is handed over to the PF component, where it is processed in a bottom-up, cyclic fashion. On the TP cycle, The Tns affix in T is lowered onto the end of the verb help by Affix Hopping, which specifies that a weak affix in T is lowered onto the head V of a VP complement of T. Affix Hopping results in the form [help+Tns $\left.S_{3 S g P r}\right]$, which is ultimately spelled out as helps. The complement pronoun her is assigned accusative case in the syntax by the c-commanding transitive verb help, and the subject pronoun he is assigned nominative case by the c-commanding null intransitive finite complementiser ϕ.

Exercise X

Discuss the derivation of the following Shakespearean sentences:

```
Thou marvell'st at my words (Macbeth, Macbeth, III.ii)
Macbeth doth come (Third Witch, Macbeth, I.iii)
He loves not you (Lysander, Midsummer Night's Dream, III.ii)
You do not look on me (Jessica, Merchant of Venice, II.vi)
Wilt thou use thy wit? (Claudio, Much Ado About Nothing, V.i)
Wrong I mine enemies? (Brutus, Julius Caesar, IV.ii)
Knows he not thy voice? (First Lord, All's Well That Ends Well, IV.i)
Didst thou not say he comes? (Baptista, Taming of the Shrew, III.ii)
Canst not rule her? (Leontes, Winter's Tale, II.iii)
Hath not a Jew eyes? (Shylock, Merchant of Venice, III.i)
Do not you love me? (Benedick, Much Ado About Nothing, V.iv)
Buy thou a rope! (Antipholus, Comedy of Errors, IV.i)
Fear you not him! (Tranio, Taming of the Shrew, Iv.iv)
Speak not you to him! (Escalus, Measure for Measure, V.i)
Do not you meddle! (Antonio, Much Ado About Nothing, V.i)
She not denies it (Leonato, Much Ado About Nothing, IV.i)
```


Helpful hints

Assume that 9 has a null finite pro subject. Assume also that the sentences in 12-15 are imperative in force, and consider the possibility that V raises to C in imperatives in Elizabethan English (See Han 2001), perhaps attaching to a strong imperative affix Imp. Consider also the possibility that not had a dual status and could either function as an independent word (like present-day English not) or could serve as an enclitic particle (like present-day English n ' t) which attached to an immediately adjacent finite T constituent. Finally, say in what way(s) sentence 16 proves problematic in respect of the assumptions made in the main text (and in the model answer below), and see if you can think of possible solutions (e.g. What if the verb raised as far as NEG but not as far as T?).

Model answer for 1 and 2

Relevant aspects of the derivation of 1 (here presented in simplified form) are as follows. The verb marvel merges with its PP complement at my words to form the VP marvel at my words. This in turn is merged
with a T constituent containing a present tense Tns affix to form the T-bar Tns marvel at my words, which is in turn merged with its subject thou. The Tns affix agrees with thou and thus carries the features [second-person, singular-number, present-tense], below abbreviated to $2 \operatorname{Sg} \operatorname{Pr}$. The resulting TP is merged with a null intransitive finite C which marks the declarative force of the sentence and which assigns nominative case to thou. 1 thus has the syntactic structure shown in simplified form in (i) below, with the dotted arrow indicating movement of the verb marvel from V to T :
(i)

The string marvel $+T n s_{2 S_{g} P r}$ is ultimately spelled out as marvell'st in the PF component.
Sentence 2 is derived as follows. The verb come merges with a weak Tns affix in T, forming the T-bar Tns come. This will in turn be merged with its subject Macbeth, which we can take to be a DP headed by a null determiner, in accordance with the DP hypothesis (and indeed, proper names in many languages can be premodified by an overt determiner - cf. e.g. Italian la Callas, literally 'the Callas'). Merging the resulting DP with a null declarative complementiser will derive the syntactic structure shown in (ii) below:
(ii)

It would seem that the Tns affix undergoes DO-support in the PF component, and is ultimately spelled out as doth (which is a dialectal variant of does). What is surprising about this is that the dummy auxiliary do is used only to support a Tns affix which is unable to find a host by any other means. So what we'd expect to happen when the structure in (ii) is handed over to the PF component is for the Tns affix to be lowered onto the verb come in the PF component by Affix Hopping, with the resulting verb being spelled out as cometh (a dialectal variant of comes). However, this is clearly not what happens. Why not?

One possibility is that the Tns affix in a finite T in a structure like (ii) could be either strong or weak in Elizabethan English. Where it is strong, the Tns affix will trigger raising of the main verb from V to T; where it is weak, the verb will remain in situ, and the tense affix will remain unattached in the syntax. The resulting structure (ii) will then be handed over to the PF component, where it is processed in a bottom-up fashion. Although in present-day English Do-Support is only used where Affix Hopping cannot apply, let's suppose that in Shakespearean English the two are in free variation, in the sense that either can be used as a way of providing a host for an unattached affix in T. Applying Affix Hopping will lower the (third person singular present tense) affix in (ii) onto the verb deriving the string come $+\operatorname{Tn~}_{3 S_{S g} P r}$ (which is ultimately spelled out as cometh). Applying Do-Support instead will result in the dummy stem do being attached to the Tns affix in T, so forming the string $d o+T n s_{3 S g P r}$ (which is ultimately spelled out as doth). If an analysis along the lines outlined here is tenable, it implies that there was considerably more morphosyntactic variation in Shakespearean English than we find in present-day varieties of Standard English - for example, in respect of a finite Tns affix being either strong or weak, and an unattached Tns affix either being lowered onto the verb, or having do attached to it. Given that Shakespeare's writing contains a mixture of different dialect forms (as we see from the alternation between dialectal variants like comes/cometh and does/doth), this may not be implausible. However, as noted by Tieken-Boon van Ostade (1988), the origin of $d o$ is 'one of the great riddles of English linguistic history'.

6.

Wh-movement

6.1 Overview

In the previous chapter, we looked at the head movement operation by which a head can move into the next highest head position within the structure containing it. In this chapter, we look at a very different kind of movement operation traditionally termed wh-movement, by which a wh-expression like who or what languages moves into the specifier position within CP. We begin by looking at the syntax of wh-questions, and then go on to probe the syntax of two other types of wh-clause, namely exclamative clauses and relative clauses.

6.2 Wh-questions

So far, we have implicitly assumed that CP comprises a head C constituent (which can be filled by a complementiser or a preposed auxiliary) and a TP complement. However, one question which such an analysis begs is what position is occupied by the bold-printed constituent which precedes the italicised auxiliary in root interrogatives (i.e. main-clause questions) such as (1) below:
(1)(a) What languages can you speak?
(b) Which one would you like?
(c) Who was she dating?
(d) Where are you going?

Each of the sentences in (1) contains an italicised inverted auxiliary occupying the head C position of CP , preceded by a bold-printed interrogative wh-expression - i.e. an expression containing an interrogative word beginning with wh-like what/which/who/where/when/why. (Note that how in questions like How are you? How well did he behave? etc. is also treated as a wh-word because it exhibits the same syntactic behaviour as interrogative words beginning with wh-.) Each of the wh-expressions in (1) functions as the complement of the verb at the end of the sentence - as we see from the fact that each of the examples in (1) has a paraphrase like that in (2) below in which the wh-expression occupies complement position after the italicised verb: cf.
(2)(a) You can speak what languages?
(b) You would like which one?
(c) She was dating who?
(d) You are going where?

Structures like (2) are termed wh-in-situ questions, since the bold-printed wh-expression does not get preposed, but rather remains in situ (i.e. 'in place') in the canonical position associated with its grammatical function (e.g. what languages in (2a) is the direct object complement of speak, and complements are normally positioned after their verbs, so what languages is positioned after the verb speak). In English, wh-in-situ questions are used primarily as echo questions, to echo and question something previously said by someone else - as we can illustrate in terms of the following dialogue:
(3) SPEAKER A: I just met Lord Lancelot Humpalot

SPEAKER B: You just met who?
Echo questions such as that produced by speaker B in (3) suggest that the wh-expressions in (1) originate as complements of the relevant verbs, and subsequently get moved to the front of the overall clause. But what position do they get moved into?

The answer is obviously that they are moved into some position preceding the inverted auxiliary. Since inverted auxiliaries occupy the head C position of CP, let's suppose that preposed wh-expressions are moved into a position preceding the head C of CP . Given that specifiers are positioned before heads, a plausible suggestion to make is that preposed wh-expressions move into the specifier position within CP (= spec-CP). If so, a sentence like (2c) Who was she dating? will involve the arrowed movement operations shown in (4) below:

(To be more precise, interrogative pronouns like who are Q-pronouns and hence pronominal quantifiers.) Two different kinds of movement operation (indicated by the numbered arrows) are involved in (4): the movement arrowed in (1) involves the familiar operation of head movement by which the bold-printed auxiliary was moves from the head T position of TP into the head C position of CP ; by contrast (2) involves movement of an italicised wh-expression from the complement position within VP into the specifier position in CP, and this very different kind of movement operation is known as wh-movement. Note that unlike head movement (which, as its name suggests, moves only heads), wh-movement moves maximal projections; for instance, in (1a) What languages can you speak? wh-movement moves the quantifier phrase what languages which is the maximal projection of the interrogative quantifier what? by virtue of being the largest expression headed by the word what; and in (1c) Who was she dating? it moves the interrogative Q-pronoun who (which is a maximal projection by virtue of being the largest expression headed by the word who). Following Cheng (1997), we might suppose that every clause must be typed (i.e. identified as declarative or interrogative etc. in type) in the syntax, and that a clause is typed as interrogative if it contains an interrogative head or specifier: on this view, movement of the interrogative pronoun who to spec-CP serves to type the CP in (4) as interrogative.

Evidence in support of the assumption that preposed wh-expressions move into spec-CP comes from varieties of English in which a preposed wh-expression can precede a complementiser like that. This is true, for example, of interrogative complement clauses like those bracketed below in Belfast English (from Henry 1995, p.107):
(5)(a) I wonder [which dish that they picked]
(b) They didn't know [which model that we had discussed]

Since the complementiser that occupies the head C position in the bracketed CP , it seems reasonable to suppose that the wh-expressions which dish/which model in front of that occupy the specifier position within CP, and this is what Alison Henry argues. (See Seppänen and Trotta 2000 and Zwicky 2002 for discussion of the syntax of wh+that structures.)

6.3 Wh-movement as copying and deletion

A tacit assumption made in our analysis of wh-movement in (4) is that just as a moved head (e.g. an inverted auxiliary) leaves behind a null copy of itself in the position out of which it moves, so too a moved wh-expression leaves behind a copy at its extraction site (i.e. in the position out of which it is extracted/moved). In earlier work in the 1970s and 1980s, moved constituents were said to leave behind a trace in the positions out of which they move (informally denoted as t), and traces of moved nominal constituents were treated as being like pronouns in certain respects. A moved constituent and its trace(s) were together said to form a (movement) chain, with the highest member of the chain (i.e. the moved constituent) being the head of the movement chain, and the lowest member being the foot of the chain. Within the framework of Chomsky's more recent copy theory of movement, a trace is taken to be a full copy (rather than a pronominal copy) of a moved constituent. Informally, however, we shall sometimes refer to the null copies left behind by movement as traces or trace copies in later sections and chapters.

The assumption that moved wh-expressions leave a copy behind can be defended not only on theoretical grounds (in terms of our desire to develop a unified theory of movement in which both minimal and maximal projections leave behind copies when they move), but also on empirical grounds. One relevant piece of empirical evidence that wh-movement involves a copying operation comes from sentences such as those below:
(6)(a) What hope of finding survivors could there be?
(b) What hope could there be of finding survivors?
(7)(a) What proof that he was implicated have you found?
(b) What proof have you found that he was implicated?

In order to try and understand what's going on here, let's take a closer look at the derivation of (6). The expression what hope of finding survivors is a QP comprising the quantifier what and an NP complement which in turn comprises the noun hope and its PP complement of finding survivors. The overall QP what hope of finding survivors is initially merged as the complement of the verb be, but ultimately moves to the front of the overall sentence in (6a): this is unproblematic, since it involves wh-movement of the whole QP. But in (6b), it would seem as if only part of this QP (= the string what hope) undergoes wh-movement, leaving behind the PP of finding survivors. The problem with this is that the string what hope is not a constituent, only a subpart of the overall QP what hope of finding survivors. Given the standard assumption that only complete constituents can undergo movement, we clearly cannot maintain that the non-constituent string what hope gets moved on its own. So how can we account for sentences like (6b)? Copy theory provides us with an answer, if we suppose that wh-movement places a copy of the complete QP what hope of finding survivors at the front of the overall sentence, so deriving the structure shown in skeletal form in (8) below:
(8) What hope of finding survivors could there be what hope of finding survivors

If we further suppose that the PP of finding survivors is spelled out in its original position (i.e. in the italicised position it occupied before wh-movement applied) but the remaining constituents of the QP (the quantifier what and the noun hope) are spelled out in the superficial (bold-printed) position in which they end up after wh-movement, (6b) will have the superficial structure shown in simplified form below after copy-deletion has applied (with strikethrough indicating constituents which receive a null spellout):
(9) What hope of finding survivors could there be what hope of finding survivors

As should be obvious, such an analysis relies crucially on the assumption that moved constituents leave behind full copies of themselves. It also assumes the possibility of split spellout/discontinuous spellout, in the sense that (in sentences like (6/7) above) a PP or CP which is the complement of a particular type of moved constituent can be spelled out in one position (in the position where it originated), and the remainder of the constituent spelled out in another (in the position where it ends up). More generally, it suggests that (in certain structures) there a choice regarding which part of a movement chain gets deleted (an idea developed in Bobaljik 1995, Brody 1995, Groat and O'Neil 1996, Pesetsky 1997/1998, Richards 1997, Roberts 1997, Runner 1998, Nunes 1999, Cormack and Smith 1999, and Bošković 2001). A further possibility which this opens up is that wh-in-situ structures may involve a moved wh-expression being spelled out in its initial position (at the foot of the movement chain) rather than in its final position (at the head of the movement chain): see Pesetsky (2000) and Reintges, LeSourd and Chung (2002) for analyses of this ilk, and Watanabe (2001) for a more general discussion of wh-in-situ structures.

Further evidence that wh-movement leaves behind a copy which is subsequently deleted comes from speech errors involving wh-copying, e.g. in relative clauses such as that bracketed below:
(10) It's a world record [which many of us thought which wasn't on the books at all] (Athletics commentator, BBC2 TV)
What's the nature of the speech error made by the tongue-tied (or brain-drained) BBC reporter in (10)? The answer is that when moving the relative pronoun which from its initial italicised position to its subsequent bold-printed position, our intrepid reporter successfully merges a copy of which in the bold-printed position, but fails to delete the original occurrence of which in the italicised position. Such speech errors provide us with further evidence that wh-movement is a composite operation involving both copying and deletion.

A different kind of argument in support of positing that a moved wh-expression leaves behind a null copy comes from the semantics of wh-questions. Chomsky (1981, p.324) argues that a wh-question like (11a) below has a semantic representation (more precisely, a Logical Form/LF representation) which can be shown informally as in (11b) below, with (11b) being paraphraseble as 'Of which x (such that x is a person) is it true that she was dating x ?':
(11)(a) Who was she dating? (b) Which x (x a person), she was dating x

In the LF representation (11b), the quantifier which functions as an interrogative operator which serves to bind the variable x. Since a grammar must compute a semantic representation for each syntactic structure which it generates/forms, important questions arise about how syntactic representations are to be mapped/converted into semantic representations. One such question is how a syntactic structure like (11a) can be mapped into an LF-representation like (11b) containing an operator binding a variable. If a moved wh-expression leaves behind a copy, (11a) will have the syntactic structure shown in highly simplified form in (12) below (where whe is a null trace copy of the preposed wh-word who):
(12) Who was she dating whe?
(See (4) above for a fuller representation of the relevant structure.) The LF-representation for (11a) can be derived from the syntactic representation (12) in a straightforward fashion if the copy whe in (12) is given an LF interpretation as a variable bound by the wh-quantifier which.

A further semantic argument in support of the copy theory of movement is formulated by Chomsky (1995) in relation to the interpretation of sentences such as:

(13)

Joe wonders which picture of himself Jim bought

In (13), the reflexive anaphor himself can refer either to Joe or to Jim. An obvious problem posed by the latter interpretation is that a reflexive has to be c-commanded by a local antecedent (one contained within the same TP, as we saw in §3.7), and yet Jim does not c-command himself in (13). How can we account for the dual interpretation of himself? Chomsky argues that the copy theory of movement provides a principled answer to this question. The QP which picture of himself is initially merged as the complement of the verb bought but is subsequently moved to front of the bought clause, leaving behind a copy in its original position, so deriving the structure shown in skeletal form in (14) below:
(14) [СС [TP Joe wonders [${ }_{C P}$ which picture of himself [${ }_{\text {TP }}$ Jim bought which picture of himself]]]]

Although the italicised copy of the QP which picture of himself gets deleted in the PF component, Chomsky argues that copies of moved constituents remain visible in the semantic component, and that binding conditions apply to LF representations. If (14) is the LF representation of (13), the possibility of himself referring to Jim can be attributed to the fact that the italicised occurrence of himself is c-commanded by (and contained within the same TP as) Jim in the relevant LF-representation. On the other hand, the possibility of himself referring to Joe can be attributed to the fact that the bold-printed occurrence of himself is c-commanded by (and occurs within the same TP as) Joe.

In this section, we have seen that there is a range of empirical evidence which supports the claim that a constituent which undergoes wh-movement leaves behind a copy at its extraction site. This copy is normally given a null spellout in the PF component, though we have seen that copies may sometimes have an overt spellout, or indeed part of a moved phrase may be spelled out in one position, and part in another. We have also seen that copies of moved wh-constituents are visible in the semantic component, and play an important role in relation to the interpretation of anaphors.

6.4 Wh-movement and EPP

An important question raised by the analysis outlined above is what triggers wh-movement. Chomsky $(1998,1999,2001)$ suggests that an [EPP] feature is the mechanism which drives movement of wh-expressions to spec-CP. More specifically, he maintains that just as T in finite clauses carries an [EPP] feature requiring it to be extended into a TP projection containing a subject as its specifier, so too C in wh-questions carries an [EPP] feature requiring it to be extended into a CP projection containing a wh-expression as its specifier.

We can illustrate how the EPP analysis of wh-movement works by looking at the derivation of the bracketed interrogative complement clause in (15) below:

(15)

He wants to know [where you are going]
The bracketed wh-question clause in (15) is derived as follows. The verb going is merged with its complement where to form the VP going where. The present tense auxiliary are is then merged with the resulting VP to form the T-bar are going where. The pronoun you is in turn merged with this T-bar to form the TP you are going where. A null complementiser $[\mathrm{C} \varnothing]$ is subsequently merged with the resulting TP. Since the relevant clause is a wh-question, C contains a [WH] feature. In addition, since English (unlike Chinese) is the kind of language which requires wh-movement in ordinary wh-questions, C also has an [EPP] feature requiring it to have a specifier. Accordingly, merging C with its TP complement will form the C-bar in (16) below (features being CAPITALISED and enclosed in square brackets):

(A minor descriptive detail is that the locative adverbial pronoun where is here categorised here as a PRN/pronoun, though could equally be assigned to the category ADV/adverb.) The [WH] feature of C allows C to attract a wh-expression. The [EPP] feature of C requires C to project as its specifier an expression which has a feature which matches some feature of C: since C carries a [WH] feature, this amounts to a requirement that C must project a wh-specifier. On the assumption that the wh-pronoun where carries a $[\mathrm{WH}]$ feature, this means that C will attract the wh-pronoun where to move from the VPcomplement position which it occupies in (16) above to CP-specifier position. If we suppose that the [WH] and [EPP] features carried by C are deleted (and thereby inactivated) once their requirements are satisfied (deletion being indicated by strikethrough), we derive the structure (17) below (assuming, too, that the phonological features of the trace of the moved wh-constituent where are also deleted):

There is no auxiliary inversion (hence no movement of the auxiliary are from T to C) because (17) is a complement clause, and an interrogative C does not carry a [TNS] feature triggering auxiliary inversion in complement clauses.

By contrast, main-clause wh-questions involve auxiliary inversion as well as wh-movement, as we see from sentences like (18) below:
(18) Who were you phoning?

Let's suppose that the derivation of (18) proceeds as follows. The wh-pronoun who merges with the verb phoning to form the VP phoning who. The resulting VP is subsequently merged with the past tense auxiliary were to form the T-bar were phoning who, which is itself merged with the pronoun you to form the TP you were phoning who. This TP is then merged with a null interrogative C. Since (18) is a
wh-question, C will carry a [WH] feature and an [EPP] feature. Since (18) is also a main-clause question, C will additionally carry a [TNS] feature which triggers movement of a tensed auxiliary from T to C. Given these assumptions, merging C with the TP you were phoning who will derive the following structure:

The [TNS] feature of C attracts the present-tense auxiliary have to move to C (attaching to a null question affix in C). The [WH, EPP] features of C require C to have a wh-expression as its specifier, and hence trigger movement of the wh-pronoun who to spec-CP, so deriving the structure shown below:

And (20) is the superficial syntactic structure of (18) Who were you phoning?
Chomsky (2001) maintains that movement is simply another form of merger. He refers to merger operations which involve taking an item out of the lexical array and merging it with some other constituent as external merge, and to movement operations by which an item contained within an existing structure is moved to a new position as internal merge. Accordingly, the structure (19) is created by a series of external merger operations, and is then mapped into (20) by two internal merger operations (namely head-movement and wh-movement).

6.5 Attract Closest Principle

The EPP analysis of wh-movement outlined in the previous section has interesting implications for the syntax of multiple wh-questions which contain two or more separate wh-expressions. (See Dayal 2002 for discussion of the semantic properties of such questions.) A salient syntactic property of such questions in English is that only one of the wh-expressions can be preposed - as we can illustrate in relation to an echo question such as:
(21) He might think who has done what?

If we try and prepose the highlighted wh-words in (21), we find that only one of the two can be preposed (not both of them), and moreover the preposed item has to be who and not what:
(22)(a) Who might he think has done what?
(c) *Who what might he think has done?
(b) *What might he think who has done?
(d) *What who might he think has done?

Why should this be? In order to get a clearer idea of what's going on where, consider what happens when we reach the stage of derivation shown below:

[TNS, WH, EPP]

The affixal [TNS] feature carried by the main-clause C at the top of the tree attracts the auxiliary might to move from T to C . The [WH, EPP] features of C in turn mean that the topmost C attracts a wh-expression to move to spec-CP. But (23) contains two wh-words, namely who and what. Since it is who rather than what which must be preposed in (21) and since who is closer to C than what, let's suppose that C attracts the closest wh-word which it c-commands. This requirement is a consequence of a principle of Universal Grammar (adapted from Chomsky 1995, p.297) which we can outline informally as follows:

Attract Closest Principle/ACP

A head which attracts a given kind of constituent attracts the closest constituent of the relevant kind
Since who is closer to the main-clause C than what in (23), it follows from ACP that C attracts who to move into spec-CP, so deriving the structure shown in simplified form below:

As before, we assume that wh-movement and head movement lead to deletion of the [TNS, WH, EPP] features of C , and of the trace copies of the moved constituents who and might. In short, the assumption that C carries [WH, EPP] features which attract a wh-expression to move to spec-CP, in conjunction with the Attract Closest Principle (24) and the ancillary assumption that the [EPP] and [WH] features of C are deleted (and thereby inactivated) once a wh-expression has been moved to spec-CP, accounts for the pattern of grammaticality found in multiple wh-questions like (22).

6.6 Pied-piping and convergence

Most of the wh-questions we have analysed so far have involved movement of a wh-word to spec-CP. However, sometimes it's more than just a wh-word which gets preposed under wh-movement. For example, if we look at the wh-movement counterpart of a wh-in-situ question like (26a) below, we find that when the wh-quantifier which is moved to the front of the sentence, the noun assignment has to be moved together with it:
(26)(a) You have done which assignment?
(b) *Which have you done assignment?
(c) Which assignment have you done?

To use the relevant technical term, when a wh-quantifier is moved to spec-CP, its complement has to be pied-piped (i.e. dragged) along with it, so that the whole quantifier phrase which assignment moves to spec-CP - as in (26c). (The pied-piping metaphor was coined by Ross 1967, based on a traditional fairy story in which the pied-piper in the village of Hamelin enticed a group of children to follow him out of a rat-infested village by playing his pipe.) Why should this be? In order to try and answer this question, let's consider how (26c) is derived.

The quantifier which merges with the noun assignment to form the QP which assignment. This in turn is merged with the verb done to form the VP done which assignment. The resulting VP is subsequently merged with the present tense auxiliary have to form the T-bar have done which assignment, which is itself merged with the pronoun you to form the TP you have done which assignment. TP is then merged with a null interrogative C. Since (26c) is a main-clause wh-question, C will carry [TNS, WH, EPP] features. Consequently, merging C with the TP you have done which assignment will derive the following structure:

The [TNS] feature of C attracts the present-tense auxiliary have to move to C , attaching to the null question affix in C. Given the Attract Closest Principle (24), the [WH, EPP] features of C attract the closest wh-word to move to the specifier position within CP. The closest wh-word to C in (27) - and indeed the only wh-word contained in (27) - is the wh-quantifier which. However, a specifier position is a position which can only be occupied by a maximal projection. Because which is the head Q of QP (and so not a maximal projection), which cannot move on its own to spec-CP. Instead, let's suppose that C triggers movement of a maximal projection containing a wh-word. Since the QP which assignment is a maximal projection containing a wh-word (by virtue of being the largest expression headed by the wh-quantifier which), we therefore correctly predict that C can trigger movement of the QP which assignment to spec-CP, so deriving the structure associated with (26c) Which assignment have you done?

But the situation is not quite as straightforward as we might have hoped. After all, the VP done which assignment is also a maximal projection containing a wh-word, since it is the maximal projection of the verb done and contains the wh-word which. And yet C can't trigger movement of the VP done which assignment to spec-CP in (27), as we see from the ungrammaticality of:
(28) *Done which assignment has he?

So how come the QP which assignment can undergo wh-movement, but not the VP done which assignment, when both are maximal projections containing the wh-word which?

The answer lies in a UG principle which we can formulate informally as follows (the quoted material being from Chomsky 1995, p.262)

Convergence Principle

When an item moves, it carries along with it 'just enough material for convergence'
Since a convergent derivation is one which results in a grammatical structure which can be assigned an appropriate semantic and phonetic representation, the phrase 'just enough material for convergence' in effect means 'just enough material to ensure that the resulting structure is grammatical'. Let's look at how (29) works.

The [WH] feature of C in (27) means that C looks for the closest wh-word which it c-commands, and hence targets which. But preposing which on its own will not lead to convergence/grammaticality, since its [EPP] feature requires C to have a maximal projection as its specifier. Hence the smallest maximal projection containing the wh-word which is moved instead, namely the QP which assignment. Moving this to spec-CP (and moving the auxiliary have from T to C) results in the structure shown in simplified form below:

Which assignment

The resulting derivation is convergent (in that it doesn't violate any syntactic constraints) and hence the corresponding sentence (26c) Which assignment have you done? is grammatical. Because preposing the maximal projection which assignment leads to a convergent derivation, and the Convergence Principle tells us to move as little material as possible, it is not possible to prepose the larger maximal projection done which assignment - so accounting for the ungrammaticality of (28) *Done which assignment has he?

The conclusion which emerges from our discussion in this section and the last is the following. It follows from the Attract Closest Principle that a C carrying [WH, EPP] features targets the closest wh-word within the structure containing C. However, the [EPP] feature of C requires the wh-word to move into the specifier position within CP, and only a maximal projection can occupy a specifier position. Hence, in accordance with the Convergence Principle, the moved wh-word pied-pipes along with it the minimal material which will ensure convergence. What this in effect means in the case of structures like those discussed in this section is that the smallest maximal projection containing the relevant wh-word will move to spec-CP.

6.7 Pied-piping in prepositional and possessive structures

The conclusion we reached at the end of the previous section is summarised informally below:
When C carries [WH, EPP] features, it locates the closest wh-word to C, and moves the smallest possible maximal projection containing the wh-word into spec-CP
An interesting question raised by the assumptions in (31) is how we account for what happens in clauses like those bracketed in (32) below where an (italicised) wh-expression is the complement of a (boldprinted) preposition:
(32)(a) They asked [who he was referring to]
(b) They asked [to whom he was referring]

In these examples, the wh-pronoun who/whom is the complement of the preposition to (whom being the
accusative form of the pronoun in formal styles, who in other styles). In informal styles, the wh-pronoun who is preposed on its own, leaving the preposition to stranded or orphaned at the end of the bracketed complement clause - as in (32a). However, in formal styles, the preposition to is pied-piped along with the wh-pronoun whom, so that the whole PP to whom moves to spec-CP position within the bracketed clause - as in (32b). Let's look at what's going on here.

Given the assumptions made here, the bracketed interrogative complement clause in (32a) will be derived as follows. The preposition to merges with its pronoun complement who to form the PP to who. This in turn is merged with the verb referring to form the VP referring to who. This VP is then merged with the past tense auxiliary was, forming the T-bar was referring to who which in turn is merged with its subject he to form the TP he was referring to who. Merging the resulting TP with a null interrogative complementiser carrying [WH, EPP] features will derive the structure shown in (33) below:

Given what is said in (31), we'd expect the [WH, EPP] features of C to trigger movement of the smallest maximal projection containing a wh-word to the specifier position within CP. Since the wh-pronoun who is a maximal projection containing a wh-word (by virtue of being the largest expression headed by the wh-word who) it follows that who can move to spec-CP (thereby deleting the [WH] and [EPP] features of C), so deriving the CP shown in simplified form below:

And (34) is the structure of the bracketed interrogative complement clause in (32a).
But what about the derivation of the bracketed complement clause in the formal-style sentence (32b) They asked [to whom he was referring]? Why should the whole prepositional phrase to whom be moved to the front of the complement clause in (32b), with the preposition to being pied-piped along with the wh-pronoun whom? The answer suggested by Chomsky (1995, p.264) is that in formal styles of English, there is a Stranding Constraint which 'bars preposition stranding'. This constraint means that (in formal styles) the wh-pronoun whom cannot be preposed on its own, since this would leave the preposition to stranded and thus lead to violation of the Stranding Constraint. So, in accordance with the Convergence Principle (29), the next smallest maximal projection containing the wh-word is preposed instead, namely the PP to whom, resulting in the structure shown in highly simplified form below:

And (35) is the structure of the bracketed clause in (32b) They asked [to whom he was referring].
A further instance of pied-piping is found in possessive structures such as the following:
(36)(a) You have borrowed whose car? (b) *Whose have you borrowed car?
(c) Whose car have you borrowed?

In the echo-question (36a), the wh-phrase whose car remains in situ in complement position within the verb phrase. In the corresponding non-echo questions in ($36 \mathrm{~b} / \mathrm{c}$), the genitive pronoun whose undergoes wh-movement on its own in (36b) but leads to an ungrammatical outcome, whereas the larger expression whose car undergoes wh-movement in (36b) and results in a grammatical sentence. So, it would seem that movement of whose to the front of the overall sentence requires the noun car to be pied-piped along with whose. Why should this be?

In order to answer this question, we need to understand the structure of the wh-expression whose car. At first sight, it might seem as if whose is the head of whose car. However, closer reflection suggests that this cannot be so because whose carries genitive case and yet whose car is the complement of the transitive verb borrow in (36) and so must be accusative. Moreover, whose in (36) can be substituted by a phrasal genitive (as in 'Which of the men's car did you borrow?'); and since phrases can occupy the specifier (but not the head) position within a projection, it seems more likely that genitives are the specifiers of the expressions containing them. Furthermore, whose car is definite in interpretation (in the sense that it has a meaning paraphraseable as 'the car belonging to who?'), suggesting that it must be a DP headed by a definite determiner. Since there is no overt determiner in a structure like whose car, we can follow Abney (1987) in assuming that its head must be a null counterpart of the definite D constituent the.

Given these assumptions, (36c) Whose car have you borrowed? will be derived as follows. The noun $c a r$ is merged with a null definite determiner, forming the D-bar ϕ car. This in turn is merged with its pronoun specifier whose forming the DP whose \varnothing car. This DP is merged with the verb borrowed, forming the VP borrowed whose \varnothing car. The resulting VP is merged with the present tense auxiliary have, forming the T-bar have borrowed whose \varnothing car, which in turn is merged with its subject you forming the TP you have borrowed whose \varnothing car. This TP is then merged with an interrogative C carrying [TNS, WH, EPP] features, so forming the C-bar in (37) below:

The affixal [TNS] feature of C triggers movement of the auxiliary have from T to C , and the [WH, EPP] features of C attract the smallest possible maximal projection containing a wh-word to move to spec-CP. Now, the smallest maximal projection containing a wh-word in (37) is the genitive pronoun whose itself, which is a maximal projection by virtue of being the largest expression headed by whose. Hence, we might expect whose to move to spec-CP on its own, so deriving the structure associated with (36b) *Whose have you borrowed car? But the resulting sentence is ungrammatical. Why?

The answer lies in a constraint identified by Ross which we can formulate loosely as in (38) below:

Left Branch Condition/LBC

In languages like English, the leftmost constituent of a nominal, adjectival, or adverbial expression cannot be extracted out of the expression containing it
(Nominal expressions can be taken to include DP and QP.) If we look at (37), we see that the genitive pronoun whose is the leftmost constituent of the DP whose ϕ car. Consequently, the Left Branch Condition (38) prevents whose from being extracted out of the DP containing it, so accounting for the ungrammaticality of (36b) *Whose have you borrowed car? In accordance with the Convergence Principle (29), we therefore try preposing the next smallest maximal projection containing whose, namely the DP whose \varnothing car. Moving this DP to spec-CP has the effect of pied-piping the noun car along with the wh-word whose, and derives the structure shown in (39) below (simplified by showing only overt constituents and not showing the internal structure of TP or DP):

This leads to a convergent derivation, as we see from the grammaticality of (36c) Whose car have you borrowed?

6.8 Yes-no questions

Implicit in our discussion hitherto is the following assumption about wh-questions in English: Main-clause questions are CPs headed by a C which carries [TNS, WH, EPP] features.
This assumption has interesting implications for the syntax of yes-no questions such as:
(41) Is it raining?

It implies that not only wh-questions but also yes-no questions are CPs containing an interrogative specifier. But what kind of specifier could yes-no questions contain? The answer suggested in Grimshaw (1993) and Roberts (1993) is that they contain a null question operator which is directly generated in spec-CP (i.e. which is positioned in spec-CP by simple merger rather than movement). From a historical perspective, the null operator analysis is by no means implausible, since in Elizabethan English we found main-clause yes-no questions introduced by the overt question word whether, as illustrated below:
(42)(a) Whether had you rather lead mine eyes or eye your master's heels? (Mrs Page, Merry Wives of Windsor, III.ii)
(b) Whether dost thou profess thyself a knave or a fool? (Lafeu, All's Well That Ends Well, IV.v)

Given the null operator analysis of yes-no questions, we can posit that yes-no questions have essentially the same syntax in present-day English as in Elizabethan English, save that yes-no questions could be introduced by the overt interrogative operator whether in Elizabethan English, but are introduced by a null interrogative operator (a null counterpart of whether) in present-day English.

A second piece of evidence in support of the null operator analysis comes from the fact that yes-no questions can be introduced by whether when they are transposed into reported speech (and so occur in a complement clause), as we see from the examples below:
(43)(a)
'Are you feeling better?' he asked
(b) He asked whether I was feeling better

A third piece of evidence is that yes-no questions with auxiliary inversion resemble whether questions in that in both cases yes/no are appropriate answers: cf.
(44)(a) When he asked 'Did you vote for Larry Loudmouth?', I said 'Yes' and you said 'No'
(b) When he asked whether we voted for Larry Loudmouth, I said 'Yes' and you said 'No'

A fourth argument is that main-clause yes-no questions can be tagged by or not in precisely the same way as complement-clause whether questions: cf.
(45)(a)
Has he finished or not?
(b) I can't say whether he has finished or not

If yes-no questions are CPs containing a null yes-no question operator (a null counterpart of whether) in spec-CP, we can arrive at a unitary characterisation of questions as CPs with an interrogative specifier.

What all of this means is that (41) Is it raining? will be derived as follows. The present tense auxiliary is merges with the verb raining to form the T-bar is raining. The resulting T-bar merges with the subject it to form the TP it is raining. This TP in turn merges with a null C which has [TNS, WH, EPP] features. The [TNS] feature of C attracts (a copy of) the T constituent is to merge with C ; the requirement imposed by the [WH, EPP] features of C for CP to contain a wh-specifier is satisfied by merging a null yes-no question operator in spec-CP (which, for concreteness, we can take to be a null counterpart of the adverb whether, below symbolised as whether), ultimately deriving the structure shown below (after deletion of the features of C and of the original occurrence of $i s$):

If we take the yes-no question operator to be a null counterpart of whether, the lexical entry for whether will need to specify that it receives a null spellout in main clauses but is spelled out as |weðot elsewhere.

6.9 Wh-exclamatives

Although we have so far concentrated on interrogative clauses, there are a number of other types of wh-clause found in English. One of these are exclamative clauses like:
(47)(a)
What fun we have had!
(b) What a pain in the neck he must be!
(c) How badly he is behaving!
(d) How he longed to see her again!

These show wh-movement of an (italicised) exclamative wh-expression (containing what! or how!) but no auxiliary-inversion. Within the framework adopted here, one way of accounting for this is to suppose that wh-exclamative clauses are CPs headed by an exclamative C - i.e. by a C containing an exclamative force feature, [EXCL-FORCE] - and that an exclamative C carries [WH] and [EPP] features but no [TNS] feature (because the only kind of wh-clause whose head C contains a [TNS] feature is a main-clause question). This means that when C merges with its TP complement, (47a) will have the following structure:

The [WH] feature of C attracts the smallest accessible maximal projection containing a wh-word (i.e. the QP what fun) and moves it into spec-CP, simultaneously deleting the [WH, EPP] features on C. The resulting derived structure is that shown in simplified form below:

The auxiliary have remains in situ in the head T position of TP, since C in (48/49) does not have a [TNS] feature and hence cannot attract have to move from T to C .

6.10 Relative clauses

A further type of wh-construction are relative clauses like those bracketed below:
(50)(a) It's hard to find someone [who you can relate to]
(b) It's hard to find someone [to whom you can relate]
(c) Can you think of things [which she might need]?
(d) Is there anybody [whose car I can borrow]?

They are called relative clauses because they contain a relative pronoun (who/whose/which) that 'relates to' (i.e. refers back to) an italicised antecedent in a higher clause (generally one which immediately precedes the bold-printed relative wh-expression). Each of the bracketed relative clauses in (50) contains a bold-printed wh-expression which has undergone wh-movement and thereby been positioned at the front of the bracketed relative clause. In (50b) the preposition to has been pied-piped along with the (relative) wh-pronoun whom, so that to whom is preposed rather than whom on its own; likewise in (50d) the noun $c a r$ is pied-piped along with the genitive wh-pronoun whose.

Relative wh-clauses resemble exclamative wh-clauses in that they too show wh-movement without auxiliary inversion. We can therefore analyse them in a similar way, namely as CPs containing a C with [WH, EPP] features but no [TNS] feature. On this view, the bracketed relative clause in (50a) would have the simplified structure shown below at the point where C is merged with its TP complement:

(51)

$$
\text { [c } \left.\emptyset_{\text {wh, epp }}\right][\text { tr you [t can] [vp [v relate] [pp [p to who }] \text {] }
$$

The [WH, EPP] features of the null C attract the smallest maximal projection containing a wh-word - i.e. the bold-printed relative pronoun who (which is the maximal projection of the wh-word who). Who then moves to spec-CP, thereby deleting the [WH, EPP] features of C and so forming the CP (52) below:

$$
\begin{equation*}
\text { [cp who [c } \left.\varnothing_{\text {wH, }} \text { हpp }\right][\text { Tp you [t can] [vp [v relate] [pp [p to] whe]] }] \tag{52}
\end{equation*}
$$

In more formal styles, whom is used in place of who and the Stranding Constraint prevents the preposition to from being stranded at the end of the relative clause. Consequently, the preposition to has to be pied-pied along with the relative pronoun in order to ensure convergence, so that the whole PP to whom is moved to spec-CP, deriving the structure shown in simplified form below:

$$
\begin{equation*}
\text { [cР to whom [c } \left.\emptyset_{\text {wh, }} \text {, }\right] \text { [TP you [T can] [vp [v relate] } \tag{53}
\end{equation*}
$$

And (53) is the structure of the bracketed relative clause in (50b).
Although the relative pronoun is overtly spelled out as who/whom in structures like (52/53) above, relative pronouns in English can also be given a null spellout, so resulting in bare relative clauses (i.e. relative clauses which contain no overt relative pronoun) like those bracketed in the (b) examples below:
(54)(a) It's hard to find people [who you can trust]
(b) It's hard to find people [you can trust]
(55)(a) This is something [which I will treasure]
(b) This is something [I will treasure]
(56)(a) I know a place [where you can stay]
(b) I know a place [you can stay]
(57)(a) I remember the time [when we first met]
(b) I remember the time [we first met]

Although the bare relative clauses in the (b) examples in (54-58) don't contain an overt relative pronoun, there is reason to believe that they contain a null relative pronoun - and hence (e.g.) that (54b) contains a null counterpart of who. For one thing, the verb trust in (54b) is transitive and so requires a noun or pronoun expression as its complement: since trust has no overt object, it must have a null object of some kind. On the assumption that all relative clauses contain a relative pronoun, the object must be a relative pronoun (or relative operator, to use alternative technical terminology). For concreteness, let's suppose that the object of the verb trust in (54b) is the relative pronoun who. If so, the bracketed relative clauses in $(54 \mathrm{a} / \mathrm{b})$ will both have the structure shown below at the point where the null complementiser C is merged with its TP complement:

$$
\begin{equation*}
\text { [с } \emptyset_{\mathrm{wh}, \mathrm{EPP}} \text {] [те you [т can] [vp [v trust] who]] } \tag{59}
\end{equation*}
$$

The [WH, EPP] features of the complementiser will attract the relative pronoun who to move to spec-CP and are thereby deleted (along with the trace copy of the moved pronoun who), so deriving the CP (60) below:
(60) [CP who [C $\emptyset_{\text {WH, ЕеP }}$] [TP you [T can] [vp [v trust] whe]]]

If we further suppose that the PF component permits a relative pronoun which occupies spec-CP position in a relative clause to be given a null spellout, then who in (60) can be given a null spellout in the PF component, so deriving:
(61) [CP who [c $\emptyset_{\text {wН, }}$ ерр $]$ [тР you [т can] [vp [v trust] whe]]]

One reason why the relative pronoun can be given a null spellout may be that its person/number/gender properties can be identified by its antecedent: e.g. who refers back to people in (54a) and so is identifiable as a third person plural animate pronoun even if deleted.

While the analysis of bare relative clauses sketched above is plausible, an important question to ask is whether there is any empirical evidence in support of the key assumption that bare relative clauses contain a relative pronoun which undergoes wh-movement in the same way as overt relative pronouns do. An interesting piece of evidence in support of a wh-movement analysis comes from islandhood effects. Ross (1967) noted that certain types of syntactic structures are islands - i.e. they are structures out of which no subpart can be moved via any kind of movement operation (the general idea behind his metaphor being that any constituent which is on an island is marooned there and can't be removed from the island by any movement operation of any kind). One type of island identified by Ross are wh-clauses (i.e. clauses beginning with a wh-expression). In this connection, note the ungrammaticality of sentences like:
(62) *He is someone [who nobody knows [what the FBA did to]]
(intended to have a meaning which can be paraphrased somewhat clumsily as 'He is someone such that nobody knows what the FBA did to him'). In (62), the relative pronoun who is the object of the preposition to, and is moved out of the bracketed did-clause to the front of the knows clause. However, the did-clause is a wh-clause (by virtue of being introduced by what) and wh-clauses are islands: this means that moving who out of the did-clause will lead to violation of Ross's wh-island constraint (forbidding any constituent from being moved out of a wh-clause: See Sabel 2002 for a more detailed account of the constraint).

What is of more immediate relevance to our claim that bare relative clauses contain a relative pronoun which undergoes wh-movement is that bare relative clauses exhibit the same islandhood effect, as we see from the ungrammaticality of:
(63) *He is someone [nobody knows [what the FBA did to]]

How can we account for this? Given our assumption that bare relative clauses contain a relative pronoun which moves to spec-CP and is subsequently given a null spellout in the PF component, (63) will have the structure (64) below (simplified in numerous respects, including by not showing trace copies of moved constituents):
(64) *He is someone [${ }_{C P}$ whe [${ }_{C} \varnothing$] nobody knows [${ }_{C P}$ what [${ }_{C} \varnothing$] they did to]]

The relative pronoun who is initially merged as the complement of the preposition to and is then moved
out of the did-clause to the front of the knows clause, and receives a null spellout in the PF component. But since the did clause is a wh-clause (by virtue of containing the preposed wh-word what) and since wh-clauses are islands, movement of the relative pronoun out of the did-clause will lead to violation of the wh-island constraint. Thus, our assumption that bare relative clauses contain a relative pronoun which undergoes wh-movement provides a principled account of the ungrammaticality of structures like (63/64).

In addition to wh-relatives like the (a) examples in (54-58) above and bare relatives like the corresponding (b) examples we also find relative clauses introduced by that like those bracketed below:
(65)(a) It's hard to find people [that you can trust]
(b) There is little [that anyone can do]
(c) We now have computers [that even a child can use]

What's the status of that in such clauses? One answer (suggested by Sag 1997) is that the word that is a relative pronoun which behaves in much the same way as other relative pronouns like who and which. However, an alternative analysis which we will adopt here is to take that to be a relative clause complementiser (= C). The C analysis accounts for several properties of relative that. Firstly, it is homophonous with the complementiser that found in declarative clauses like that bracketed in:
(66) I said [that you were right]
and has the same phonetically reduced exponent /ðat/. Secondly, (unlike a typical wh-pronoun) it can only occur in finite relative clauses like those bracketed in (65) above, not in infinitival relative clauses like those bracketed below:
(67)(a) The director is looking for locations [in which to film a documentary about the FBA]
(b) *The director is looking for locations [that to film a documentary about the FBA in]

Thirdly, unlike a typical wh-pronoun such as who (which has the formal-style accusative form whom and the genitive form whose), the relative pronoun that is invariable and has no variant case-forms - e.g. it lacks the genitive form that's in standard varieties of English, as we see from (68) below:
(68)(a) Lord Lancelot Humpalot is someone [whose ego is even bigger than his libido]
(b) *Lord Lancelot Humpalot is someone [that's ego is even bigger than his libido]

Fourthly, unlike a typical wh-pronoun, that does not allow pied-piping of a preposition: cf.
(69)(a) There are still diseases [for which there is no cure]
(b) *There are still diseases [for that there is no cure]

Observations such as these suggest that relative that is a complementiser rather than a relative pronoun, and hence that it occupies the head C position in the relative clause CP which it introduces.

However, given the assumption that all relative clauses contain a relative pronoun, relative clauses headed by that will also contain a relative pronoun which moves to spec-CP and which is ultimately given a null spellout in the PF component. Evidence in support of this claim comes from the fact that relative clauses containing that show the same wh-island sensitivity as relative clauses containing an overt wh-pronoun like who: cf.
(70)(a) *He is someone [who nobody knows [what the FBA did to]]
(b) *He is someone [that nobody knows [what the FBA did to]]

This parallelism suggests that the derivation of that-relatives involves a relative pronoun moving to the spec-CP position within the relative clause and subsequently being given a null spellout at PF , with the ungrammaticality of $(70 \mathrm{a} / \mathrm{b})$ being attributed to the fact that the relative pronoun originates as the complement of the preposition to and is extracted out of the bracketed what-clause in violation of the wh-island constraint.

This being so, the bracketed relative clause in (65a) It's hard to find people [that you can trust] will involve merging a relative pronoun like who as the object of the verb trust, so that the relative clause has the structure shown below at the point where the complementiser that is merged with its TP complement:

$$
\begin{equation*}
\text { [С that }{ }_{\mathrm{wh}, \mathrm{EPP}} \text {] [те you [т can] [vp [v trust] who]] } \tag{71}
\end{equation*}
$$

The [WH, EPP] features of the complementiser that will attract the relative pronoun who to become the
specifier of that and are thereby deleted (along with the trace copy of the moved pronoun who), so deriving the CP (72) below:

Since a relative pronoun in spec-CP can be given a null spellout, the relative pronoun who can be given a null spellout in the PF component, so deriving:

$$
\begin{equation*}
\text { [cP whe [C that }{ }_{\mathrm{WH}, \mathrm{EPP}} \text {] [TP you [T can] [vP [v trust] whe]]] } \tag{73}
\end{equation*}
$$

and (73) is the structure of the bracketed relative clause in (65a).
A minor complication which arises, however, is that whereas a relative pronoun in spec-CP can optionally be given a null spellout in that-less relatives like those in (54-58) above, it is obligatory for a relative pronoun to have a null spellout in that-relatives - as we see from the ungrammaticality of relative clause structures like (72). Why should this be? The answer given by Chomsky and Lasnik (1977) is that wh+that structures like (72) violate a constraint operating in present-day Standard English which they call the Multiply Filled COMP Filter/MFCF, and which we can outline informally as follows:
(74) Multiply Filled COMP Filter/MFCF

Any CP containing an overt complementiser (that/if/for) with an overt specifier is ungrammatical
In consequence of MFCF, it is obligatory for either who or the complementiser that (or both) to receive a null spellout in relative clause structures like (72).

6.11 Summary

We began this chapter in $\S 6.2$ by arguing that main-clause wh-questions are CPs headed by a C constituent which attracts a tensed auxiliary to move to C via head movement and a wh-expression to move into spec-CP via wh-movement. In $\S 6.3$ we argued that a moved wh-expression leaves behind a null copy of itself at its extraction site (i.e. in the position out of which it is extracted/moved); and we noted that in earlier work, copies were analysed as traces. In §6.4 we outlined an analysis of wh-questions, under which C carries [WH] and [EPP] features which attract a maximal projection carrying a wh-word to move to spec-CP; we noted that in main-clause questions, C also carries an affixal [TNS] feature which triggers auxiliary inversion. In §6.5, we argued that in consequence of the Attract Closest Principle, C in multiple wh-questions attracts the closest wh-word c-commanded by C. In $\S 6.6$ we noted that in sentences like Which assignment have you done? wh-movement involves pied-piping/dragging the noun assignment along with the moved wh-word which. We outlined Chomsky's convergence account under which wh-movement involves preposing the smallest possible expression containing a wh-word which will lead to convergence (i.e. which will ensure a grammatical outcome): since a fronted wh-expression moves to spec-CP and a specifier position can only be filled by a maximal projection, this means wh-movement preposes the smallest possible maximal projection containing a wh-word. In §6.7 we noted that in formal styles of English, a wh-expression which is the complement of a preposition may pied-pipe a preposition along with it when it undergoes wh-movement, so that the whole prepositional phrase moves to spec-CP in sentences like To whom was he referring? We suggested that this is because in formal styles of English there is a Stranding Constraint which prevents prepositions from being stranded, and the Convergence Principle therefore requires the whole prepositional phrase to move to spec-CP. We noted that the Left Branch Constraint prevents genitive possessors like whose from being extracted out of the DP containing them, with the result that the Convergence Principle requires the whole DP containing whose to be preposed in sentences such as Whose car have you borrowed? In $\S 6.8$ we looked at the syntax of yes-no questions, arguing that these contain a null question operator (a null counterpart of whether) in spec-CP. In §6.9 we discussed the syntax of exclamative clauses, arguing that these are CPs in which the head C constituent carries [WH, EPP] features, but no [TNS] feature: hence, exclamative clauses involve wh-movement without auxiliary inversion. In §6.10, we looked at the derivation of relative clauses, arguing that this involves movement of a wh-expression containing a relative pronoun to spec-CP, with a relative pronoun able to receive a null spellout when occupying spec-CP. We noted that in consequence of the Multiply Filled COMP Filter (which bars an overt complementiser from having an overt specifier), the complementiser or the relative pronoun (or both) must receive a null spellout in relative clauses.

Overall, the main main point of this chapter has been to look at the syntax of preposed (interrogative, exclamative and relative) wh-expressions. All three types of expression end up (via movement) in an A-bar position - i.e. a specifier position which can be occupied by either an argument or an adjunct. Because it moves wh-expressions into spec-CP and spec-CP is an A-bar position, wh-movement can be regarded as a particular instance of a more general A-bar movement operation.

WORKBOOK SECTION

Exercise XI

Discuss the derivation of the interrogative clauses below, drawing tree diagrams to show their superficial structure and saying why they are grammatical or ungrammatical in standard varieties of English.

1a Which film have you seen?
2a Dare anyone say anything?
3a Who/?Whom were you talking to?
$4 \mathrm{a} \quad$ Who have they spoken to?
c ?To who have they spoken?
5a Which picture of who have you chosen?
c Which picture have you chosen of who?
6a What excuse has he given?
c *What excuse he has given?
7a How many places has he hidden in?
c *How has he hidden in many places?
b *Which have you seen film?
b What can anyone do?
b To whom/?To who were you talking?
b Who've they spoken to?
d *To who've they spoken?
b *Who have you chosen which picture of?
b *What has he given excuse?
d *What he has given excuse?
b In how many places has he hidden?
d *In how many has be hidden places?

In addition, comment on relevant aspects of the syntax of the Shakespearean interrogative sentences in (8) below, the African American English interrogatives in (9) (from Green 1998, pp.98-99), and the bracketed interrogative complement clauses in Belfast English (adapted from Henry 1995) in (10/11):

```
8a What sayst thou?(Olivia,Twelfth Night, III.iv)
    b What dost thou say? (Othello, Othello, III.iii)
    c What didst not like? (Othello,Othello, III.iii)
    9a What I'm gon' do? (= 'What am I going to do?')
    b How she's doing? (= 'How is she doing?')
10a They wondered [which one that he chose]
    b They wondered [which one did he choose]
    c *They wondered [which one that did he choose]
11a They wondered [if/whether (*that) we had gone]
    b *They wondered [if/whether had we gone]
    c They wondered [had we gone]
```


Helpful hints

In 2, assume that dare, anyone and anything are polarity items (in a sense made precise in exercise 3.2), and so must be c-commanded by an interrogative (or negative) constituent; assume also that dare originates in T. In 3/4, the prefixed question mark? indicates that the use of $w h o(m)$ in the relevant sentence (for speakers like me) leads to stylistic incongruity (in that the accusative form whom and preposition pied-piping are used in more formal styles, and the accusative form who and preposition stranding in less formal styles). In 4, assume that have can cliticise onto a preceding word W if W ends in a vowel or diphthong, if W c-commands have and if there is no (overt or null) constituent intervening between W and have. In 5, take which picture of who to be a QP formed by merging the quantifier which with the NP picture of who. In 7, take how many places to be a QP formed by merging the Q many with the N places to form the Q-bar many places and assume that this Q-bar is then merged with the wh-
marked degree adverb how to form the QP how many places (so that how is the specifier of this QP). Take how in all the examples in 7 to be a degree adverb modifying many. (Irrelevantly, 7c is grammatical on a different interpretation on which how is a manner adverb with a meaning paraphraseable as 'In what way?') In 11, consider the possibility that both if and whether are complementisers in Belfast English (though only if is a complementiser in Standard English).

Model answer for (1)

(1a) is derived as follows. The quantifier which is merged with the noun film to form the QP which film. This in turn is merged with the (perfect participle) verb seen to form the VP seen which film. This is merged with the (present) tense auxiliary have to form the T-bar have seen which film. The resulting T-bar is in turn merged with the pronoun you to form the TP you have seen which film. This is merged with a null C constituent containing [TNS, WH, EPP] features, so forming the C -bar in (i) below:
(i)

The affixal [TNS] feature of C attracts the present tense auxiliary have to move from T to C . The [WH, EPP] features of C attract the smallest possible maximal projection containing a wh-word to move to spec-CP. Since the smallest maximal projection containing the wh-quantifier which is the QP which film and since preposing this QP on its own leads to a convergent derivation which does not violate any syntactic constraints, the QP which film moves to spec-CP. Assuming that the features of C are deleted once their requirements are satisfied, the structure which results after head-movement and wh-movement have applied is that shown in simplified form below:

Exercise XII

Discuss the derivation of the bracketed relative clauses in 1-6 below and the exclamative clauses in 7-8. Draw tree diagrams to show the structure of each of the relative/exclamative clauses and say why they are grammatical or ungrammatical in standard present-day varieties of English:

1a
2a
3a someone [that you can talk to]
4a the way [he behaved]
b someone [you can talk to]
b *someone [to whom can you talk]
b *someone [who that you can talk to]
b *the way [how he behaved]

5a the man [whose son she has confided in]
c *the man [whose she has confided in son]
b the man [in whose son she has confided]
d *the man [in whose she has confided son]

6 this ever-changing world [in which we live in]
7a What courage he has shown!
c *What courage has he shown!
(Sir Paul McCartney, Live and Let Die)
b *What he has shown courage!
d *What has he shown courage!

8 What visions have I seen! (Shakespeare: Titania, Midsummer Night's Dream, 5.i)

Helpful hints

In relation to 4, assume that how is a pronominal manner adverb which originates as the complement of the verb behave: try and identify the way in which how differs from other relative pronouns like who/which/where/why. In relation to 6, say how the type of (non-standard) relative clause produced by Sir Paul differs from its Standard English counterpart, and how relative clauses like that in 6 appear to lend support to the copy theory of movement.

Model answer for (1a/b)

1a is derived as follows. The preposition to merges with the wh-pronoun who to form the PP to who. This is merged with the verb talk to form the VP talk to who. The resulting VP is merged with the present tense auxiliary can to form the T-bar can talk to who, and this is then merged with the subject you to form the TP you can talk to who. This TP is subsequently merged with a null complementiser (perhaps a null counterpart of that) which carries [WH, EPP] features, so deriving the structure shown in (i) below:
(i)

The [WH, EPP] features of C attract the smallest possible maximal projection containing a wh-word to move to spec-CP. The smallest such maximal projection is the pronoun who, which is a maximal projection containing a wh-word by virtue of being the largest expression headed by the wh-word who. Hence, who moves to spec-CP, and thereby erases the [WH, EPP] features of C, so deriving the structure shown in simplified form below, which is the superficial structure of the bracketed relative clause in 1a:
(ii)

Given that a relative pronoun occupying the specifier position in a relative clause can have a null spellout in the PF component, an alternative possibility is for the relative pronoun who in spec- CP to be given a null spellout at PF, so deriving (iii) below, which is the superficial structure associated with the bracketed relative clause in 1 b :

7.

A movement

7.1 Overview

In this chapter, we look at the syntax of subjects. So far, we have assumed that subjects originate in the specifier position within TP and remain in situ (except where the subject undergoes wh-movement and moves to spec-CP, e.g. in sentences like Who did he say was coming?). However, in this chapter we shall argue that subjects originate internally within the Verb Phrase as arguments of verbs, and are subsequently raised into the specifier position within TP, with the relevant movement operation being triggered by an [EPP] feature carried by T. Since spec-TP is an A-position (i.e. a position which can generally only be occupied by argument expressions), the operation by which subjects move into spec-TP is traditionally known as A-movement.

7.2 Subjects in Belfast English

Let's begin our discussion of the syntax of subjects by looking at some interesting data from Belfast English (kindly supplied to me by Alison Henry). Alongside Standard English constructions like (1a/b) below:
(1)(a) Some students should get distinctions
(b) Lots of students have missed the classes

Belfast English also has structures like (2a/b):
(2)(a) There should some students get distinctions
(b) There have lots of students missed the classes

Sentences like ($2 \mathrm{a} / \mathrm{b}$) are called expletive structures because they contain the expletive pronoun there. (The fact that there is not a locative pronoun in this kind of use is shown by the impossibility of replacing it by locative here or questioning it by the interrogative locative where? or contrastively focussing it by assigning it contrastive stress.) For the time being, let's focus on the derivation of Belfast English sentences like ($2 \mathrm{a} / \mathrm{b}$) before turning to consider the derivation of Standard English sentences like (1a/b).

One question to ask about the sentences in $(2 \mathrm{a} / \mathrm{b})$ is where the expletive pronoun there is positioned. Since there immediately precedes the tensed auxiliary should/have, a reasonable conjecture is that there is the subject of should/have and hence occupies the spec-TP position. If this is so, we'd expect to find that the auxiliary can move in front of the expletive subject (via T-to-C movement) in questions - and this is indeed the case in Belfast English, as the sentences in (3) below illustrate:
(3)(a) Should there some students get distinctions?
(b) Have there lots of students missed the classes?

But what position is occupied by the underlined quantified expressions some students/lots of students in (3)? Since they immediately precede the verbs get/missed and since subjects precede verbs, it seems reasonable to conclude that the expressions some students/lots of students function as the subjects of the verbs get/missed and (since subjects are typically specifiers) occupy spec-VP (i.e. specifier position within VP). If these assumptions are correct, (2a) will have the structure (4) below (simplified by not showing the internal structure of the expressions some students/distinctions: we can take both of these to be QP/Quantifier Phrase expressions, headed by the overt quantifier some in one case and by a null quantifier [\varnothing ø] in the other):

The analysis in (4) claims that the sentence contains two subjects/specifiers: there is the specifier (and syntactic subject) of should, and some students is the specifier (and semantic subject) of get.

Given the assumptions in (4), sentence (2a) will be derived as follows. The noun distinctions merges with a null quantifier $[\mathrm{Q} \phi$] to form the $\mathrm{QP} \phi$ distinctions. By virtue of being the complement of the verb get, this QP is merged with the V get to form the V-bar (incomplete verb expression) get ϕ distinctions. The resulting V-bar is then merged with the subject of get, namely the QP some students (itself formed by merging the quantifier some with the noun students), so deriving the VP some students get \varnothing distinctions. This VP is in turn merged with the Tense auxiliary should, forming the T-bar should some students get ϕ distinctions. Let's suppose that a finite T has an [EPP] feature requiring it to have a specifier with person/number properties. In sentences like ($2 \mathrm{a} / \mathrm{b}$) in Belfast English, the requirement for T to have such a specifier can be satisfied by merging expletive there with the T-bar should some students get ϕ distinctions, so forming the TP There should some students get ϕ distinctions. The resulting TP is then merged with a null declarative complementiser, forming the CP shown in (4) above.

But what about the derivation of the corresponding Standard English sentence (1a) Some students should get distinctions? Let's suppose that the derivation of (1a) runs parallel to the derivation of (2a) until the point where the auxiliary should merges with the VP some students get ϕ distinctions to form the T-bar should some students get \varnothing distinctions. As before, let's assume that ${ }_{\mathrm{T}}$ should] has an [EPP] feature requiring it to project a structural subject/specifier. But let's also suppose that the requirement for [T should] to have a specifier of its own cannot be satisfied by merging expletive there in spec-TP because in standard varieties of English there can generally only occur in structures containing an intransitive verb like be, become, exist, occur, arise, remain etc. Instead, the [EPP] requirement for T to have a subject with person/number properties is satisfied by moving the subject some students from its original position in spec-VP into a new position in spec-TP, in the manner shown by the arrows below:

Since spec-TP is an A-position which can only be occupied by an argument expression (i.e. an expression which is the subject or complement of a verb or other predicate), the kind of movement operation illustrated by the dotted arrow in (5) is called A-movement.

Given the arguments presented in chapters 5 and 6 that Head Movement and Wh-Movement are composite operations involving copying and deletion, we would expect the same to be true of A-movement. One piece of evidence in support of a copying analysis of A-movement comes from scope
facts in relation to sentences such as (6a) below, which will have the syntactic structure shown in simplified form in (6b) if everyone originates as the subject of the verb finished and is then raised up (by A-movement) to become the subject of the present tense auxiliary have:
(6)(a) Everyone hasn't finished the assignment yet

For many speakers, sentences like (6a) are ambiguous between (i) a reading on which the quantifier expression everyone has scope over not so that the sentence means much the same as 'Everyone is in the position of not having finished the assignment yet', and (ii) another reading on which everyone falls within the scope of not (so that the sentence means much the same as 'Not everyone has finished the assignment yet'). We can account for this scope ambiguity in a principled fashion if we suppose that A-movement involves copying, that scope is defined in terms of c-command (so that a scope-bearing constituent has scope over constituents which it c-commands), and that the scope of a universally quantified expression like everyone in negative structures like (6b) can be determined either in relation to the initial position of everyone or in relation to its final position. In (6b) everyone is initially merged in a position (marked by strikethrough) in which it is c-commanded by (and so falls within the scope of) not; but via A-movement it ends up in an (italicised) position in which it c-commands (and so has scope over) not. The scope ambiguity in (6a) therefore reflects the two different positions occupied by everyone in the course of the derivation. (See Lebeaux 1995, Hornstein 1995, Romero 1997, Sauerland 1998, Lasnik 1998/1999, Fox 2000, and Boeckx 2000/2001 for discussion of scope in A-movement structures.)

The claim that (non-expletive) subjects like some students/lots of students in sentences like (1) originate internally within the VP containing the relevant verb (and from there move into spec-TP in sentences like (1) above) is known in the relevant literature as the VP-Internal Subject Hypothesis (= VPISH), and has been widely adopted in research since the mid 1980s. An extensive body of evidence was adduced in support of the hypothesis from a variety of sources and languages in the 1980s and early 1990s, e.g. in Kitagawa (1986), Speas (1986), Contreras (1987), Zagona (1987), Kuroda (1988), Sportiche (1988), Rosen (1990), Ernst (1991), Koopman and Sportiche (1991), Woolford (1991), Burton and Grimshaw (1992), McNally (1992), Guilfoyle, Hung and Travis (1992), and Huang (1993). Since then, it has become a standard analysis. Below, we look at some of the evidence in support of VPISH.

7.3 Idioms

Empirical evidence in support of the VP-Internal Subject Hypothesis comes from the syntax of idioms. We can define idioms as expressions (like those italicized below) which have an idiosyncratic meaning which is not a purely compositional function of the meaning of their individual parts:
(7)(a) Let's have a couple of drinks to break the ice
(b) Be careful not to upset the applecart
(c) The president must bite the bullet

There seems to be a constraint that only a string of words which forms a unitary constituent can be an idiom. So, while we find idioms like those in (7) which are of the form verb+complement (but where the subject isn't part of the idiom), we don't find idioms of the form subject+verb where the verb has a complement which isn't part of the idiom: this is because in subject $+v e r b+$ complement structures, the verb and its complement form a unitary constituent (a V-bar), whereas the subject and the verb do not and only unitary constituents can be idioms.

In the light of the constraint that an idiom is a unitary constituent with an idiosyncratic interpretation, consider idioms such as the following:
(8)(a) All hell broke loose
(b) The shit hit the fan
(c) The cat got his tongue

In (8), not only is the choice of verb and complement fixed, but so too is the choice of subject. In such idioms, we can't replace the subject, verb or complement by near synonyms - as we see from the fact that sentences like (9) below are ungrammatical (on the intended idiomatic interpretation):
(9)(a) *The whole inferno escaped
(b) *Camel dung was sucked into the air conditioning
(c) *A furry feline bit his lingual articulator

However, what is puzzling about idioms like (8) is that one or more auxiliaries can freely be positioned between the subject and verb: cf.
(10)(a) All hell will break loose
(b) All hell has broken loose
(c) All hell could have broken loose
(11)(a) The shit might hit the fan
(b) The shit has hit the fan
(c) The shit must have hit the fan

How can we reconcile our earlier claim that only a string of words which form a unitary constituent can constitute an idiom with the fact that all hell...break loose is a discontinuous string in (10), since the subject all hell and the predicate break loose are separated by the intervening auxiliaries will/has/could have? To put the question another way: how can we account for the fact that although the choice of subject, verb and complement is fixed, the choice of auxiliary is not?

The VP-Internal Subject Hypothesis provides a straightforward answer, if we suppose that subjects originate internally within VP, and that clausal idioms like those in (8) are $V P$ idioms which require a fixed choice of head, complement and specifier in the VP containing them. For instance, in the case of (8a), the relevant VP idiom requires the specific word break as its head verb, the specific adjective loose as its complement, and the specific quantifier phrase all hell as its subject/specifier. We can then account for the fact that all hell surfaces in front of the auxiliary will in (10a) by positing that the QP all hell originates in spec-VP as the subject of break loose, and is then raised (via A-movement) into spec-TP to become the subject of will break loose. Given these assumptions, (10a) will be derived as follows. The verb break merges with the adjective loose to form the idiomatic V-bar break loose. This is then merged with its QP subject all hell to form the idiomatic VP all hell break loose. The resulting VP is merged with the tense auxiliary will to form the T-bar will all hell break loose. Since finite auxiliaries carry an [EPP] feature requiring them to have a subject specifier with person/number features, the subject all hell moves from being the subject of break to becoming the subject of will - as shown in simplified form in below:

We can then say that (in the relevant idiom) all hell must be the sister of break loose, and that this condition will be met only if all hell originates in spec-VP as the subject (and sister) of the V-bar break loose. We can account for how the subject all hell comes to be separated from its predicate break loose by positing that subjects originate internally within VP and from there raise to spec-TP (via A-movement) across an intervening T constituent like will, so that the subject and predicate thereby come to be separated from each other - movement of the subject to spec-TP being driven by an [EPP] feature carried by [T will] requiring will to have a subject with person/number features. Subsequently, the TP in (12) is merged with a null declarative complementiser, so deriving the structure associated with (10a) All hell will break loose.

7.4 Argument structure and theta roles

The assumption that subjects originate internally within VP ties up in interesting ways with traditional work in predicate logic which maintains that propositions (which can be thought of as representing the substantive semantic content of clauses) comprise a predicate and a set of arguments. Simplifying somewhat, we can say that a predicate is an expression denoting an activity or event, and an argument is an expression denoting a participant in the relevant activity or event. For example, in sentences such as those below, the italicised verbs are predicates and the bracketed expressions represent their arguments.
(13)(a) [The guests] have arrived
(b) [The police] have arrested [the suspect]

In other words, the arguments of a verb are typically its subject and complement(s). A verb like arrive when used with a single bracketed argument in a structure like (13a) is said to be a one-place predicate; and a verb like arrest when used with two bracketed arguments in a structure like (13b) is said to be a

two-place predicate.

However, there is an important sense in which it is not enough simply to say that in a sentence such as (13b) The police have arrested the suspect the verb arrest is a predicate which has two arguments - the subject argument the suspect and the complement argument the police. After all, such a description fails to account for the fact that these two arguments play very different semantic roles in relation to the act of arrest - i.e. it fails to account for the fact that the police are the individuals who perform the act (and hence get to verbally and physically abuse the suspect), and that the suspect is the person who suffers the consequences of the act (e.g. being manhandled, handcuffed, thrown into the back of a windowless vehicle and beaten up). Hence, any adequate account of argument structure should provide a description of the semantic role which each argument plays.

In research spanning half a century - beginning with the pioneering work of Gruber (1965), Fillmore (1968), and Jackendoff (1972) - linguists have attempted to devise a universal typology of the semantic roles played by arguments in relation to their predicates. In the table in (14) below are listed a number of terms used to describe some of these roles (the convention being that terms denoting semantic roles are CAPITALISED), and for each role an informal gloss is given, together with an illustrative example in parentheses (in which the italicized expression has the semantic role specified):
(14) List of roles played by arguments with respect to their predicates

Role		Gloss
THEME	Entity undergoing the effect of some action	Mary fell over
AGENT	Entity instigating some action	Debbie killed Harry
EXPERIENCER	Entity experiencing some psychological state	I like syntax
LOCATIVE	Place in which something is situated or takes place	He hid it under the bed
GOAL	Entity representing the destination of some other entity	John went home
SOURCE	Entity from which something moves	He returned from Paris
INSTRUMENT	Means used to perform some action	He hit it with a hammer

We can illustrate how the terminology in (14) can be used to describe the semantic roles played by arguments in terms of the following examples:

(15)(a)	[The FBI] arrested [Larry Luckless]	(b)	[The suspect] received [a caution]
	[AGENT] [THEME]		[GOAL] [THEME]
(c)	[The audience] enjoyed [the play]	(d)	[The president] went [to Boston]
	[EXPERIENCER] [THEME]		[THEME] [GOAL]
(e)	[They] stayed [in a hotel]	(f)	[The noise] came [from the house]
	[THEME] [LOCATIVE]		[THEME] [SOURCE]

Given that - as we see from these examples - the THEME role is a central one, it has become customary over the past two decades to refer to the relevant semantic roles as thematic roles; and since the Greek letter q (= theta) corresponds to $t h$ in English and the word thematic begins with $t h$, it has also become standard practice to abbreviate the expression thematic role to \mathbf{q}-role (pronounced theeta-role by some and thayta-role by others). Using this terminology, we can say (e.g.) that in (15a) the FBI is the AGENT argument of the predicate arrested, and that Larry Luckless is the THEME argument of arrested.

Thematic relations (like AGENT and THEME) play a central role in the description of a range of linguistic phenomena. For example, it has been argued that the distribution of certain types of adverb is adverb is thematically determined. Thus, Gruber (1976) argues that adverbs like deliberately can only be used to modify AGENT arguments: cf.
(16)(a) John (= AGENT) deliberately rolled the ball down the hill
(b) *The ball (= THEME) deliberately rolled down the hill

Likewise, Fillmore (1972, p.10) argues that the adverb personally must be associated with an EXPERIENCER argument: cf.
(17)(a) Personally, your proposal doesn't interest me (= EXPERIENCER)
(b) *Personally, you hit me (= THEME)

For further discussion of the role played by thematic structure in syntax, see Radford (1988, pp.372-92).
If we look closely at the examples in (15), we see a fairly obvious pattern emerging. Each of the bracketed argument expressions in (15) carries one and only one q -role, and no two arguments of any predicate carry the same q-role. Chomsky (1981) suggested that these thematic properties of arguments are the consequence of a principle of Universal Grammar traditionally referred to as the \mathbf{q} criterion, and outlined in (18) below:

(18) \mathbf{q}-criterion

Each argument bears one and only one q-role, and each q -role is assigned to one and only one argument
(Chomsky 1981, p.36)
A principle along the lines of (18) has been assumed (in some form or other) in much subsequent work.
However, an important question raised by (18) is precisely how arguments come to be assigned theta-roles. To put this question in a more concrete form, consider how the object the suspect comes to be assigned its theta-role of THEME complement of the predicate arrested in (13b) The police have arrested the suspect. Since the suspect is the complement of the verb arrested and since verbs merge with their complements, a principled answer would be to suppose that theta-roles are assigned to arguments in accordance with the hypothesis (19) below:

Predicate-Internal Theta-Marking Hypothesis/PITMH

An argument is theta-marked (i.e. assigned a theta-role) via merger with a predicate
The hypothesis in (19) will also account for the theta-marking of subjects, if we assume that subjects originate as arguments of verbs. To see how, let's look at the derivation of (13b) The police have arrested the suspect.

The verb arrested merges with its direct object complement the suspect (a DP formed by merging the determiner the with the noun suspect). In accordance with PITMH (19), the object the suspect will be theta-marked via merger with the verbal predicate arrested. If the lexical entry for the verb arrest specifies that its complement plays the thematic role of THEME argument of arrest, merging the verb arrested with its complement the suspect will result in the suspect being assigned the theta-role of THEME argument of arrested. The V-bar thereby formed is then merged with the subject DP the police (itself formed by merging the determiner the with the noun police) to form the VP shown in (20) below (simplified by not showing the internal structure of the two DPs):

If the lexical entry for the verb arrest specifies that its subject has the thematic role of AGENT argument of arrest, merging the police with the V-bar arrested the suspect will result in the police being assigned the theta-role of AGENT argument of the predicate arrested. Introducing some new terminology at this point, we can say that in a structure such as (20), the complement the suspect is the internal argument of the verb arrested (in the sense that it is the argument contained within the immediate V-bar projection of the verb, and hence is a sister of the verb), whereas the subject the police is the external argument of the verb arrested (in that it occupies a position external to the V-bar constituent which is the immediate projection of the verb arrested). We can equivalently say that the verb arrested is first-merged with its complement the suspect and second-merged with its subject the police.

The VP in (20) is then merged with the present tense auxiliary [${ }_{\mathrm{T}}$ have], forming the T-bar have the police arrested the suspect. Since a finite T has an [EPP] feature requiring it to have a subject of its own, the DP the police moves from being the subject of arrested to becoming the subject of [${ }_{\mathrm{T}}$ have], forming The police have the police arrested the suspect. Merging the resulting TP with a null complementiser marking the declarative force of the sentence in turn derives the (simplified) structure in (21) below:

The analysis in (21) is consistent with the $\boldsymbol{\theta}$-criterion (18) in that each argument is assigned a single theta-role which is different from that assigned to any other argument of the same predicate (the suspect being the THEME argument of arrested and the police being its AGENT argument). (21) is also consistent with the Predicate-Internal Theta-Marking Hypothesis (19), since the suspect is assigned the thematic role of THEME argument of arrested by being first-merged with arrested, and the police is assigned the thematic role of AGENT argument of arrested by being second-merged with arrested. Since only predicative heads can assign theta-roles, and since neither T nor C is a predicative head, neither T nor C assigns any theta-role to any constituent in (21).

Our discussion here suggests that thematic considerations lend further support to the VP-Internal Subject Hypothesis. By positing that all arguments of a verb (including its subject) originate internally within VP, we can arrive at a unitary and principled account of q-marking in terms of the PredicateInternal Theta-Marking Hypothesis (21), since we can say that a verb only theta-marks an argument with which it is merged (via a first- or second-merge operation).

7.5 Unaccusative predicates

The overall conclusion to be drawn from our discussion so far is that subjects originate internally within VP, as theta-marked arguments of the verb. In all the structures we have looked at until now, the verb phrase has contained both a complement and a specifier (the specifier being the subject of the verb). However, in this and subsequent sections we look at VPs containing a verb and a complement but no specifier, and where it is the complement of the verb which subsequently moves to spec-TP.

One such type of VP are those headed by a special subclass of intransitive verbs which are known as unaccusative predicates for reasons which will become apparent shortly. In this connection, consider the syntax of the italicized arguments in structures such as the following:
(22)(a) There have arisen several complications
(b) There could have occurred a diplomatic incident
(c) There remains little hope of finding survivors

The fact that the italicised expressions are positioned after the bold-printed verbs suggests that they function as the complements of the relevant verbs - and indeed there is syntactic evidence in support of this view. Part of the evidence comes from their behaviour in relation to a constraint on movement operations discovered by Huang (1982) which can be characterised informally in the following terms:
(23) Constraint on Extraction Domains/CED

Only complements allow material to be extracted out of them, not specifiers or adjuncts.
We can illustrate Huang's CED constraint in terms of the following contrasts:
(24)(a) He was taking [pictures of who]?
(b) Who was he taking [pictures of whe]?
(25)(a) [Part of what] has broken?
(b) *What has [part of what] broken?
(26)(a) He was angry [when she hid what]?
(b) *What was he angry [when she hid what]?
($24 \mathrm{a} / 25 \mathrm{a} / 26 \mathrm{a}$) are echo questions in which the wh-pronoun who/what remains in situ, while ($24 \mathrm{~b} / 25 \mathrm{~b} / 26 \mathrm{~b}$) are their wh-movement counterparts. In (24), who is extracted out of a bracketed nominal expression
which is the complement of the verb taking, and yields the grammatical outcome (24b) since there is no violation of CED (extraction out of complement expressions being permitted by CED). By contrast, in (25) what is extracted out of a bracketed expression which is the subject (and hence specifier) of the auxiliary has, and since CED blocks extraction out of specifiers, the resulting sentence (25b) is ungrammatical. Likewise in (26) what is extracted out of a bracketed adjunct clause, and since CED blocks extraction out of adjuncts, (26b) is ungrammatical. (See Nunes and Uriagereka 2000 and Sabel 2002 for attempts to devise a Minimalist account of CED effects.)

In the light of Huang's CED constraint, consider a sentence such as:
How many survivors does there remain [some hope of finding how many survivars]
Here, the wh-phrase how many survivors has been extracted (via wh-movement) out of the bracketed expression some hope of finding how many survivors. Given that the Condition on Extraction Domains tells us that only complements allow material to be extracted out of them, it follows that the bracketed expression in (27) must be the complement of the verb remain. By extension, we can assume that the italicised expressions in (22) are likewise the complements of the bold-printed verbs.

However, the unaccusative complements italicised in structures like (22) differ in an important respect from the complements of typical transitive verbs. A typical transitive verb has a thematic subject and a thematic complement, and assigns accusative case to its complement (as in She hit him, where hit has the nominative AGENT subject she and the accusative THEME complement him). Unlike transitive structures, unaccusative structures like (22) have a non-thematic there subject (which is non-thematic in the sense that it isn't a theta-marked argument of the verb, but rather is a pure expletive), and (in languages which have a richer case system than English) the italicised complement receives nominative (=NOM) case, as the following Icelandic example (which Matthew Whelpton kindly asked Johannes Gisli Jónsson to provide for me) illustrates:
(28) Pad hafa komið nokkrir ${ }_{\mathrm{NOM}}$ gestir $_{\mathrm{NOM}}$

There have come some guests
Because they don't assign accusative case to their complements, such verbs are known as unaccusative predicates.

Not all intransitive verbs allow their arguments to be positioned after them, however - as we see from the ungrammaticality of sentences such as (29) below:
(29)(a) *When the Snail Rail train arrived five hours late, there complained many passengers
(b) *In the dentist's surgery, there groaned a toothless patient
(c) *Every time General Wynott Nukem goes past, there salutes a guard at the gate

Intransitive verbs like complain/groan/salute are known as unergative verbs: they differ from unaccusatives in that the subject of an unergative verb has the thematic role of an AGENT argument, whereas the subject of an unaccusative verb has the thematic property of being a THEME argument.

In addition to the contrast illustrated in $(22 / 29)$ above, there are a number of other important syntactic differences between unaccusative verbs and other types of verb (e.g. unergative verbs or transitive verbs). For example, Alison Henry (1995) notes that in one dialect of Belfast English (which she calls dialect A) unaccusative verbs can have (italicised) postverbal subjects in imperative structures like:
(30)(a) Leave you now!
(b) Arrive you before 6 o'clock!
(c) Be going you out of the door when he arrives!

By contrast, other (e.g. unergative or transitive) verbs don't allow postverbal imperative subjects, so that imperatives such as (31) below are ungrammatical in the relevant dialect:
(31)(a) *Read you that book!
(b) *Eat you up!
(c) *Always laugh you at his jokes!

Additional evidence for positing that unaccusative verbs are syntactically distinct from other verbs comes from auxiliary selection facts in relation to earlier stages of English when there were two perfect auxiliaries (have and be), each taking a complement headed by a specific kind of verb. Unaccusative verbs differed from transitive or unergative verbs in being used with the perfect auxiliary $b e$, as the sentences in (32) below (taken from various plays by Shakespeare) illustrate:
(32)(a) Mistress Page is come with me (Mrs Ford, Merry Wives of Windsor, V.v)
(b) Is the duke gone? Then is your cause gone too (Duke, Measure for Measure, V.I)
(c) How chance thou art returned so soon? (Antipholus, Comedy of Errors, I.ii)
(d) She is fallen into a pit of ink (Leonato, Much Ado About Nothing, IV.i)

We find a similar contrast with the counterparts of perfect havelbe in a number of other languages - e.g. Italian and French (cf. Burzio 1986), Sardinian (cf. Jones 1994), German and Dutch (cf. Haegeman 1994), and Danish (cf. Spencer 1991): see Sorace (2000) for further discussion. A last vestige of structures like (32) survives in present-day English structures such as All hope of finding survivors is now gone.

We thus have a considerable body of empirical evidence that unaccusative subjects behave differently from subjects of other (e.g. unergative or transitive) verbs. Why should this be? The answer given in work dating back to Burzio (1986) is that the subjects of unaccusative verbs do not originate as the subjects of their associated verbs at all, but rather as their complements, and that unaccusative structures with postverbal arguments involve leaving the relevant argument in situ in VP-complement position - e.g. in unaccusative expletive structures such as (22) above, and in Belfast English unaccusative imperatives such as (30). This being so, a sentence such as (22a) There have arisen several complications will be derived as follows. The quantifier several merges with the noun complications to form the QP several complications. This is merged as the complement of the unaccusative verb arisen, forming the VP arisen several complications. The resulting VP is merged with the auxiliary have to form the T-bar shown below:

The [EPP] feature carried by [${ }_{\mathrm{T}}$ have] requires it to have a nominal expression as its specifier. This requirement is satisfied by merging expletive there in spec-TP. The resulting TP there have arisen several complications is then merged with a null complementiser marking the declarative force of the sentence, so forming the CP (34) below, which is the structure of (22a) There have arisen several complications:

However, an alternative way for the T constituent in (33) to satisfy the [EPP] requirement is for T to attract a nominal to move to spec-TP. In conformity with the Attract Closest Principle, T will then attract the closest nominal within the structure containing it. Since the only nominal in (34) is the QP several complications, T attracts this QP to move to spec-TP in the manner shown in simplified form below:

The type of movement involved is the familiar A-movement operation which moves an argument from a position lower down in a sentence to become the structural subject (and specifier) of TP. The resulting TP in (35) is subsequently merged with a null complementiser marking the declarative force of the sentence, so generating the structure associated with Several complications have arisen.

The A-movement analysis of unaccusative subjects outlined in (35) above allows us to provide an interesting account of sentences pairs like that in (36) below:
(36)(a) All hope of finding survivors has gone
(b) All hope has gone of finding survivors

Since GO is an unaccusative verb, the QP all hope of finding survivors will originate as the complement of gone. Merging gone with this QP will derive the VP gone all hope of finding survivors. The resulting VP is merged with the T constituent has to form the T-bar has gone all hope of finding survivors. Since T has an [EPP] feature requiring it to project a specifier, the QP all hope of finding survivors is raised to spec-TP, leaving an italicised copy behind in the position in which it originated. Merging the resulting TP with a null complementiser marking the declarative force of the sentence derives the structure shown in simplified form in (37) below:
(37) [${ }_{\mathrm{CP}}\left[\mathrm{C} \varnothing\right.$] [${ }_{\mathrm{TP}}$ [${ }_{\mathrm{QP}}$ All hope of finding survivors] [T has] [vP [v gone] [${ }_{\mathrm{QP}}$ all hope of finding survivors]]]]

In the case of (36a), the whole of the QP all hope of finding survivors is spelled out in the bold-printed spec-TP position it moves to, and the italicised copy of the moved QP in VP-complement position is deleted in its entirety - as shown in simplified form in (38) below:
(38) [CP [C ø] [TP [QP All hope of finding survivors] [T has] [vP [v gone] [QP all hope of finding survivors]]]]

In the case of (36b), the quantifier all and the noun hope are spelled out in the bold-printed position they move to in (37), and the PP of finding any survivors is spelled out in the VP-complement position in which it originates - as shown in (39) below:
(39) [${ }_{\mathrm{CP}}\left[\mathrm{C} \varnothing\right.$] [${ }_{\mathrm{TP}}$ [QP All hope of finding survivors] [T has] [vp [v gone] [QP all hope of finding survivors]]]]
(39) thus presents us with another example of the discontinuous/split spellout phenomenon highlighted in §6.3. It also provides evidence in support of taking A-movement (like other movement operations) to be a composite operation involving copying and deletion.

7.6 Passive predicates

A class of predicates which are similar in some respects to unaccusative predicates are passive predicates. Traditional grammarians maintain that the bold-printed verbs in sentences such as the (a) examples in (40-42) below are in the active voice, whereas the italicized verbs in the corresponding (b) sentences are in the passive voice (and have the status of passive participles):
(40)(a) Hundreds of passers-by saw the attack (b) The attack was seen by hundreds of passers-by
(41)(a) Lex Luthor stole the kryptonite (b) The kryptonite was stolen by Lex Luthor
(42)(a) They took everything
(b) Everything was taken

There are four main properties which differentiate passive sentences from their active counterparts. One is that passive (though not active) sentences generally require the auxiliary BE. Another is that the main verb in passive sentences is in the passive participle form (cf. seen/stolen/taken), which is generally homophonous with the perfect participle form. A third is that passive sentences may (though need not) contain a by-phrase in which the complement of by plays the same thematic role as the subject in the corresponding active sentence: for example, hundreds of passers-by in the active structure (40a) serves as the subject of saw the attack, whereas in the passive structure (40b) it serves as the complement of the preposition by (though in both cases has the thematic role of EXPERIENCER argument of see). The fourth difference is that the expression which serves as the complement of an active verb surfaces as the subject in the corresponding passive construction: for example, the attack is the complement of saw in the active structure (40a), but is the subject of was in the passive structure (40b). Since this chapter is concerned with A-movement (and hence the syntax of subjects), we focus on the syntax of the superficial subjects of passive sentences (setting aside the derivation of by-phrases).

Passive predicates resemble unaccusatives in that alongside structures like those in (43a-45a) below containing preverbal subjects they also allow expletive structures like (43b-45b) in which the italicised argument can be postverbal (providing it is an indefinite expression):
(43)(a) No evidence of any corruption was found
(a) There was found no evidence of any corruption
(44)(a) Several cases of syntactophobia have been reported
(b) There have been reported several cases of syntactophobia
(45)(a) A significant change of policy has been announced
(b) There has been announced a significant change of policy

How can we account for the dual position of the italicised expression in such structures?
The answer given within the framework outlined here is that a passive subject is initially merged as the thematic complement of the main verb (i.e. it originates as the complement of the main verb as in (43b-45b) and so receives the q-role which the relevant verb assigns to its complement), and subsequently moves from VP-complement position into TP-specifier position in passive sentences such as (43a-45a).
On this view, the derivation of sentences like (43) will proceed as follows. The noun corruption merges with the quantifier any to form the QP any corruption. The resulting QP then merges with the preposition of to form the PP of any corruption. This PP in turn merges with the noun evidence to form the NP evidence of any corruption. The resulting NP is merged with the negative quantifier no to form the QP no evidence of any corruption. This QP is merged as the complement of the passive verb found (and thereby assigned the thematic role of THEME argument of found) to form the VP found no evidence of any corruption. The VP thereby formed is merged with the auxiliary was forming the T-bar was found no evidence of any corruption. The auxiliary [T was] carries an [EPP] feature requiring it to have a specifier. This requirement can be satisfied by merging the expletive pronoun there in spec-TP, deriving the TP There was found no evidence of any corruption. Merging this TP with a null complementiser marking the declarative force of the sentence will derive the structure shown in simplified form in (46) below:

However, an alternative way of satisfying the [EPP] feature of T is not to merge there in spec-TP but rather to passivise the QP no evidence of any corruption - i.e. to move it from being the thematic object of found to becoming the structural subject of was. Merging the resulting TP with a null complementiser which marks the sentence as declarative in force derives the CP shown in simplified form in (47) below (with the dotted arrow showing the movement which took place on the TP cycle):

The arrowed movement operation (traditionally called passivisation) by which QP moves from thematic complement position into structural subject position turns out to be a particular instance of the more general A-movement operation which serves to create structural subjects (i.e. to move arguments into spec-TP in order to satisfy the [EPP] feature of T). Note that an assumption implicit in the analyses in (46) and (47) is that verb phrases headed by intransitive passive participles remain subjectless throughout the derivation, because the T constituent was is the head which requires a structural subject by virtue of its [EPP] feature, not the verb found (suggesting that it is functional heads like T and C which trigger movement, not lexical heads like V).

In the case of (43a) No evidence of any corruption was found, the whole of the QP no evidence of any corruption is spelled out in the bold-printed spec-TP position in (47) at the head of the movement chain, and all the material in the italicised VP-complement position at the foot of the movement chain is deleted. However, in §6.3 we saw that some structures in which a moved noun has a prepositional complement may allow discontinuous spellout, with the noun and any preceding expressions modifying it being spelled out at the head of the movement chain, and its prepositional or clausal complement being spelled out at the foot of the movement chain. Discontinuous spellout is also permitted in (47), allowing for the possibility of the quantifier no and the noun evidence being spelled out in the bold-printed position at the head of the movement chain, and the PP of any corruption being spelled out in the italicised VP-complement position at the foot of the movement chain, so deriving the structure associated with:

(48) No evidence was found of any corruption

Sentences such as (48) thus provide us with empirical evidence that passive subjects originate as complements, on the assumption that of any corruption is a remnant of the preposed complement no evidence of any corruption.

Further evidence that passive subjects originate as complements comes from the distribution of idiomatic nominals like those italicised below:

$$
\begin{array}{lll}
\text { (49)(a) } & \text { They paid little heed to what he said } & \text { (b) } \text { Little heed was paid to what he said } \\
\text { (50)(a) } & \text { They paid due homage to General Ghouly } & \text { (b) Due homage was paid to General Ghouly } \\
\text { (51)(a) } & \text { The FBI kept close tabs on the CIA } & \text { (b) } \text { Close tabs were kept on the CIA by the FBI }
\end{array}
$$

In expressions such as pay heed/homage to and keep tabs on, the verb pay/keep and the noun expression containing heed/tabs/homage together form an idiom. Given our arguments in $\S 7.3$ that idioms are unitary constituents, it is apparent that the bold-printed verb and the italicised noun expression must form a unitary constituent when they are first introduced into the derivation. This will clearly be the case if we suppose that the noun expression originates as the complement of the associated verb (as in 49a-51a), and becomes the subject of the passive auxiliary was/were in (49b-51b) via passivisation/A-movement.

A claim which is implicit in the hypothesis that passive subjects originate as thematic objects is that the subjects of active verbs and the complements of passive verbs have the same thematic function. Evidence that this is indeed the case comes from the traditional observation that the two are subject to the same pragmatic restrictions on the choice of expression which can occupy the relevant position, as we see from sentences such as the following (where ?, ?! and ! mark increasing degrees of pragmatic anomaly):
(52)(a) The students/?the camels/?!The flowers/!The ideas were arrested
(b) They arrested the students/?the camels/?!the flowers!!the ideas

We can account for this if we suppose that pragmatic restrictions on the choice of admissible arguments for a given predicate depend jointly on the semantic properties of the predicate and the thematic role of the argument: it will then follow that two expressions which fulfil the same thematic role in respect of a given predicate will be subject to the same pragmatic restrictions on argument choice. Since passive subjects like those italicised in (52a) originate as complements, they will have the same q-role (and hence be subject to the same pragmatic restrictions on argument choice) as active complements like those italicised in (52b).

We can arrive at the same conclusion (that passive subjects originate as thematic complements) on theoretical grounds. It seems reasonable to suppose that principles of UG correlate thematic structure with syntactic structure in a uniform fashion: this assumption is embodied in the Uniform Theta Assignment

Hypothesis/UTAH argued for at length in Baker (1988). Given UTAH, it follows that two arguments which fulfil the same thematic function with respect to a given predicate will occupy the same initial position in the syntax. Hence if passive subjects have the same theta-role as active objects, it is plausible to suppose that passive subjects originate in the same VP-complement position as active objects.

7.7 Long-distance passivisation

Thus far, the instances of passivization which we have looked at have been clause-internal in the sense that they have involved movement from complement to subject position within the same clause. However, passivisation can also apply across certain types of clause boundary - as can be illustrated in relation to structures such as $(53 / 54)$ below:
(53)(a) There are alleged to have been stolen a number of portraits of the queen
(b) A number of portraits of the queen are alleged to have been stolen
(54)(a) There are believed to have occurred several riots
(b) Several riots are believed to have occurred

It seems clear that the italicised expression in each case is the thematic complement of the bold-printed verb in the infinitive clause, so that a number of portraits of the queen is the thematic complement of the passive verb stolen in (53), and several riots is the thematic complement of the unaccusative verb occurred in (54). In (53a/54a), the italicised argument remains in situ as the complement of the bold-printed verb; but in $(53 \mathrm{~b} / 54 \mathrm{~b})$ the italicised argument moves to become the structural subject of the auxiliary are. Let's look rather more closely at the derivation of sentences like (54a) and (54b).
(54a) is derived as follows. The quantifier several merges with the noun riots to form the QP several riots. This QP merges with (and is assigned the q -role of THEME argument of) the unaccusative verb occurred to form the VP occurred several riots. The resulting VP merges with the perfect auxiliary have to form the AUXP have occurred several riots. This in turn merges with the infinitival tense particle to, so forming the TP to have occurred several riots. The resulting TP merges with the passive verb believed to form the VP believed to have occurred several riots. This then merges with the auxiliary are to form the T-bar are believed to have occurred several riots. A finite T like are has an [EPP] feature requiring it to have a specifier, and one way of satisfying this requirement is for expletive there to be merged in spec-TP, forming the TP shown in (55) below (simplified by not showing intermediate projections, and by not showing the internal structure of the QP several riots):

(55)

[${ }_{\mathrm{TP}}$ There [${ }_{\mathrm{T}}$ are] [vP [v believed] [${ }_{\mathrm{TP}}\left[{ }_{\mathrm{T}}\right.$ to] [aUXP [aUX have] [vP [v occurred] [${ }_{\mathrm{QP}}$ several riots]]]]]]
However, an alternative way of satisfying the [EPP] requirement for are to have a structural subject is for the closest nominal expression it c-commands (namely, several riots) to passivise (i.e. undergo A-movement) and thereby move into spec-TP, as shown by the dotted arrow in (56) below (where t is a trace copy of the moved QP several riots):

The kind of passivisation operation shown by the dotted arrow in (56) is sometimes termed long-distance passivisation, since it involves moving an argument out of a lower clause into spec-TP position in a higher clause. Since operations which move a nominal into spec-TP are instances of A-movement, long-distance passivisation is yet another instance of the familiar A-movement operation. The TPs in (55/56) will subsequently be merged with a null complementiser marking the declarative force of the sentence, so deriving the overall structure associated with (54a/54b).

A key assumption made in $(55 / 56)$ is that the to-infinitive complement of the verb believed is a TP and not a CP. This is in line with our assumption in $\S 4.8$ that believe is an ECM verb when used with an infinitival complement, and that its complement is a defective clause (lacking the CP layer found in canonical clauses) and hence a TP. Recall that we have independent evidence from contrasts such as the following:
(57)(a) Nobody intended [you to get hurt]
(58)(a) Nobody intended [for you to get hurt]
(b) You weren't intended [to get hurt]
(b) *You weren't intended [for to get hurt]
that an italicised expression contained within a TP complement like that bracketed in (57) can passivise, but not an expression contained within a CP complement like that bracketed in (58). Consequently, the fact that several riots can passivise in (56) suggests that the to-infinitive complement of believed must be a TP, not a CP.

Evidence that we need to posit a long-distance passivisation operation comes from the fact that idiomatic nominals can undergo long-distance passivisation, as in the following examples:
(59)(a) Little heed is thought to have been paid to what he said
(b) Close tabs are alleged to have been kept on the FBI
(c) All hell was said to have broken loose
(d) The shit is expected to hit the fan

The italicised idiomatic nominals are normally used as the complement of the bold-printed verbs in $(59 \mathrm{a} / \mathrm{b})$ and as the subject of the bold-printed expressions in $(59 \mathrm{c} / \mathrm{d})$. So how do they end up as the subject of a higher passive clause in sentences like (59)? The answer is that they undergo long-distance passivisation. Note, incidentally, that sentences like ($59 \mathrm{c} / \mathrm{d}$) suggest that long-distance passivisation can move subjects as well as objects. This is because (in conformity with the Attract Closest Principle), passivisation involves movement of the closest nominal which the relevant tense auxiliary c-commands. In a clause like (59a) in which the verb paid projects a complement but no subject, the auxiliary will trigger preposing of the complement little heed on the TP cycle because this is the closest nominal c-commanded by the auxiliary is - the relevant movement operation being shown in skeletal form in (60a) below; by contrast, in a clause like (59c) in which the verb break projects a subject all hell, the auxiliary is will trigger passivisation of all hell because this is the closest nominal c-commanded by is - as shown in (60b):

(b)

Although we have referred to the movement operation involved in structures like (60) as long-distance passivisation, it is in fact our familiar A-movement operation by which T attracts the closest nominal expression which it c-commands to move to spec-TP. (An incidental detail to note is that the TPs in (60) are subsequently merged with a null complementiser marking the declarative force of the sentence.)

7.8 Raising

A further type of structure which involves movement of an argument expression out of one clause to become the subject of another clause is illustrated by the (b) examples in (61-64) below:
(61)(a) There does seem [to remain some hope of peace]
(b) Some hope of peace does seem [to remain]
(62)(a) There does appear [to have been made remarkably little progress on disarmament]
(b) Remarkably little progress on disarmament does appear [to have been made]
(63)(a) It would seem [that Senator Slyme has been lying to Congress]
(b) Senator Slyme would seem [to have been lying to Congress]
(64)(a) It would appear [that they have underestimated her]
(b) They would appear [to have underestimated her]

In (61), the italicised expression some hope of peace is the thematic complement of the unaccusative predicate remain; it remains in situ in the expletive structure (61a), but raises to become the subject of the seem-clause in (61b). In (62), the italicised expression remarkably little progress on disarmament is the thematic complement of the passive verb made; it remains in situ in the expletive structure (62a) but raises to become the subject of the appear-clause in (62b). In (63), the italicised expression Senator Slyme is the thematic subject of the verb lying: if the complement clause is a finite clause as in (63a), it surfaces as the
subject of the complement clause; but if the complement clause is infinitival as in (63b), it surfaces as the subject of the seem clause. Likewise, in (64), the italicised pronoun they is the thematic subject of the verb underestimate: if the complement clause is finite as in (64a), it surfaces as the subject of the complement clause; if the complement clause is infinitival as in (64b), it surfaces as the subject of the appear clause.

Examples like (61-64) suggest that verbs like seem and appear resemble passive predicates in that they allow an expression which is a theta-marked argument of a predicate in a lower clause to raise to become the subject of the seem/appear-clause. Given this assumption, a sentence such as (61b) will have the following simplified derivation. At the point where the QP some hope of ϕ peace has been formed (the noun peace having been merged with a null quantifier), it will be merged with (and q-marked by) the verb remain to form the VP remain some hope of ϕ peace. This VP is then merged with the infinitival tense particle to to form the TP to remain some hope of ϕ peace. The resulting infinitival TP is subsequently merged with the verb seem to form the VP seem to remain some hope of ϕ peace. This in turn is merged with the finite tense auxiliary DO to form the T-bar does seem to remain some hope of ϕ peace. A finite T has an [EPP] feature requiring it to have a subject; one way of satisfying this requirement is to merge expletive there with the resulting T-bar, to form the TP shown in simplified form in (65) below:

An alternative way of satisfying the [EPP] feature of ${ }_{\mathrm{T}}$ does] is to move the closest nominal c-commanded by does (= the QP some hope of \varnothing peace) from being the thematic complement of remain to becoming the structural subject of does, as shown in simplified form in (66) below:
[тр Some hope of ϕ peace [т does] [vp [v seem] [тр [т to] [vp [v remain] some hope of фpeace]]]]

The type of movement operation arrowed in (66) is traditionally known as raising (because it raises an argument out of a lower clause to become the subject of a higher clause) but in reality it turns out to be yet another instance of the more general A-movement operation by which T attracts the closest nominal which it c-commands to move to spec-TP. Words like seem/appear (when used with an infinival complement) have the property that the subject of the seem/appear-clause is created by being raised out of a complement clause, and so (for this reason) are known as raising predicates. The parallels between raising in structures like (66) and long-distance passivisation in structures like (56) should be obvious. (A minor detail to be tidied up is that that TPs in (65/66) are subsequently merged with a null complementiser marking the sentence as declarative in force.)

7.9 Comparing raising and control predicates

It might at first sight seem tempting to conclude from our discussion of long-distance passivisation structures like (60) and raising structures like (66) that all clauses containing a structure of the form verb + to + infinitive have a similar derivation to that in (60/66) in which some expression is raised out of the infinitive complement to become the subject of the main clause. However, any such conclusion would be undermined by our claim in $\S 4.2$ and $\S 4.7$ that some verbs which take to + infinitive complements are control predicates. In this connection, consider the difference between the two types of infinitive structure illustrated below:
(67)(a) He does seem [to scare them] (b) He does want [to scare them]

As used in (67), the verb seem is a raising predicate, but the verb want is a control predicate. We will see that this reflects the fact that the verbs seem and want differ in respect of their argument structure. We can illustrate this by sketching out the derivation of the two sentences.

In the raising structure (67a), the verb scare merges with (and assigns the EXPERIENCER q -role to) its internal argument/thematic complement them. The resulting V-bar scare them then merges with (and assigns the AGENT q -role to) its external argument/thematic subject he. The resulting VP he scare them is then merged with the infinitival tense particle to, so forming the TP to he scare them. This in turn merges with the raising verb seem to form the VP seem to he scare them. The resulting VP seem to he scare them is subsequently merged with the (emphatic) auxiliary does. The [EPP] feature carried by [${ }_{\mathrm{T}}$ does] requiring it to have a structural subject triggers raising of the closest nominal c-commanded by does (namely he)
from being thematic subject of scare them to becoming structural subject of does - as shown in schematic form below:

```
[Tр \(h e\) [ \({ }_{\mathrm{T}}\) does] [vp [v seem] [tт [т to] [vp he [v scare] them]]]]
    A
```

The resulting TP is then merged with a null complementiser marking the sentence as declarative in force.
A key assumption made in the raising analysis in (68) is that the verb seem (as used there) is a one-place predicate whose only argument is its infinitival TP complement, to which it assigns an appropriate q-role - perhaps that of THEME argument of seem. This means that the VP headed by seem has no thematic subject: note, in particular, that the verb seem does not q -mark the pronoun he, since he is
q -marked by scare, and the \mathbf{q}-criterion (18) rules out the possibility of any argument being q-marked by more than one predicate. Nor does the VP headed by seem have a structural subject at any stage of derivation, since he raises to become the subject of the TP containing does, not of the VP containing seem.

Now let's turn to consider the derivation of the control infinitive structure (67b) He does want to scare them. As before, the verb scare merges with (and assigns the EXPERIENCER q -role to) its internal argument (i.e. thematic complement) them. The resulting V-bar scare them then merges with (and assigns the AGENT q-role to) its external argument. Given the assumption we made in $\S 4.2$ that control infinitives have a particular kind of null pronominal subject known as 'big PRO', the thematic subject of scare them will be PRO, and this will be merged in spec-VP (in accordance with the VP-Internal Subject Hypothesis), and thereby be assigned the q -role of AGENT argument of scare. The resulting VP PRO scare them then merges with infinitival to, forming the TP to PRO scare them. Given the conclusion we drew in §4.8 that control infinitives are CPs, this TP will in turn merge with a null infinitival complementiser to form the $\mathrm{CP} \phi$ to PRO scare them. The CP thereby formed serves as the internal argument (and thematic complement) of the verb want, so is merged with want and thereby assigned the q -role of THEME argument of want. The resulting V-bar want ϕ to PRO scare them then merges with its external argument (and thematic subject) $h e$, assigning he the thematic role of EXPERIENCER argument of want. The resulting VP he want ϕ to PRO scare them is then merged with the tense auxiliary DO, forming the T-bar does he want ϕ to PRO scare them. The [EPP] feature carried by ${ }_{T}$ does] requires it to have a structural subject, and this requirement is satisfied by moving the closest noun or pronoun expression c-commanded by does (namely the pronoun he) to become the structural subject of does, as shown in simplified form below:

The TP in (69) is then merged with a null complementiser marking the sentence as declarative in force. The resulting structure satisfies the \mathbf{q}-criterion (which requires each argument to be assigned a single q -role, and each q -role to be assigned to a single argument), in that he is the EXPERIENCER argument of want, the bracketed CP in (69) is the THEME complement of want, PRO is the AGENT argument of scare, and them the EXPERIENCER argument of scare.

The analysis of control predicates presented here differs from that presented in chapter 4 in that it assumes that the PRO subject of a control infinitive like that bracketed in (67b) He does want to scare them is merged in spec-VP, and not (as assumed in chapter 4) in spec-TP. The requirement for PRO to be generated in spec-VP follows from the VP-Internal Subject Hypothesis and the Predicate-Internal Theta-Marking Hypothesis which posit that arguments are generated and theta-marked internally to a projection of their predicate, so that PRO (by virtue of being the AGENT argument of scare) is generated as the specifier of the VP headed by scare.

A question which arises from the assumption that subjects originate internally within VP and that (in finite clauses) they move to spec-TP because a finite T has an [EPP] feature requiring it to project a specifier is whether the same is true of non-finite clauses. In other words, in non-finite clauses, do subjects remain in situ within VP, or do they (as in finite clauses) raise to spec-TP?

Baltin (1995, p. 244) provides an empirical argument in favour of claiming that the PRO subject remains in situ in spec-VP in control infinitives. He notes that under the spec-VP analysis in (69), PRO will be positioned between to and scare rather than between want and to (as would be the case if PRO were in spec-TP), and hence PRO will not block to from cliticising onto want forming wanta/wanna. The
fact that the contraction is indeed possible - as we see from (70) below:

(70)

He does wanta/wanna scare them
leads Baltin to conclude that PRO is merged in spec-VP, and remains there throughout the derivation - at no point becoming the subject of infinitival to. Of course, an ancillary assumption which has to be made is that the null C which intervenes between want and to in (69) does not block contraction. One way of accounting for this might be to assume that to first cliticises onto the null C constituent introducing the complement clause in (69), and then subsequently (together with the null complementiser to which is has attached) cliticises onto the verb want.

An important conclusion which Baltin draws from his analysis of wanna contraction is that infinitival to in control structures does not have an [EPP] feature, and hence does not have a specifier at any stage of derivation. In much the same way, we can argue that the possibility of gonna contraction in raising structures such as (71) below:
(71) Little heed is gonna be paid to my proposal
provides evidence in support of positing that infinitival to in raising structures does not have an [EPP] feature either. Prior to passivisation, (71) will have the structure shown informally in (72) below:

(72)

$$
\text { [}{ }_{\mathrm{T}} \text { is] [} \mathrm{vp}\left[\mathrm { v } \text { going] } \left[{ } _ { { } _ { \mathrm { T } } } \left[{ }_{\mathrm{T}}\right.\right.\right. \text { to] be paid little heed to my proposal]] }
$$

If the idiomatic nominal little heed is raised directly to become the subject of is without first becoming the subject of to, (71) will have the structure shown in (73) below after passivisation has applied:
(73) [Tт little heed [T is] [vp [v going] [TP [T to] be paid tittle heed to my proposal]]]

The absence of any constituent intervening between to and going means that to can cliticise onto going, forming gonna. But if (contrary to what is suggested here) to in raising/passive infinitive structures had an [EPP] feature, the idiomatic nominal little heed would raise to become the specifier of infinitival to before becoming the subject of is, so that after passivisation we would have the structure (74) below:
(74)

$$
\begin{equation*}
\text { [}{ }_{\mathrm{TP}} \text { little heed }\left[\mathrm{T} \text { is] [vp [v going] [}{ }_{\mathrm{TP}} \text { little heed [}{ }_{\mathrm{T}}\right. \text { to] be paid little heed to my proposal]] } \tag{74}
\end{equation*}
$$

We would then expect that the presence of a trace copy of little heed intervening between going and to should block contraction, and we would therefore wrongly predict that gonna contraction is not possible, and hence that (71) is ungrammatical. The fact that contraction is indeed possible suggests that infinitival to does not have an [EPP] feature in passive infinitive structures. Given Baltin's argument that to does not have an [EPP] feature in control infinitives either, the more general conclusion which these two sets of claims invite is that:
(75) A finite Thas an [EPP] feature, but infinitival to does not

And indeed this assumption is made in the analyses outlined in (56), (60), (66), (68), (69) and (73) above.
There are interesting parallels between the derivation of unaccusative structures like (76a) below (sketched in (35) above), passive structures like (76b) (sketched in (56) above) and raising structures like (76c) (sketched in (68) above):
(76)(a) $\quad\left[{ }_{\text {TP }} \quad[\mathrm{T} \underline{\text { have }}][\mathrm{vP}[\mathrm{v}\right.$ arisen $]$ several complications $\left.]\right]$

(c) $\quad{ }_{\mathrm{Tr}_{1}}[\mathrm{~T}$ does $]\left[\mathrm{vp}[\mathrm{v}\right.$ seem $]\left[\mathrm{Tr}_{\mathrm{TP}}[\mathrm{T}\right.$ to $][\mathrm{vp}$ he $[\mathrm{v}$ scare $]$ them $\left.\left.\left.]\right]\right]\right]$

In each of these structures, a (bold-printed) one-place predicate which has no external argument (and which therefore projects into an intransitive VP which has a complement but no subject) allows movement of the closest (italicised) constituent c-commanded by the underlined T constituent out of the containing VP into spec-TP. For instance, the VP headed by the unaccusative verb arisen in (76a) has no subject and consequently allows its complement several complications to move out of its containing VP into spec-TP.

Likewise, the VPs headed by the passive verb believed and the unaccusative verb occurred in (76b) have no subject of their own, and so allow several riots to move out of both VPs into spec-TP in the main clause. Similarly, the VP headed by the raising verb seem in (76c) has no subject of its own and so allows the pronoun he to move into the main clause spec-TP position.

What all of this points to is that an intransitive (subjectless) VP allows a nominal c-commanded by its head verb to be attracted by a higher T constituent to move into spec-TP. However where a VP has a thematic subject of its own, it is this subject which raises to spec-TP (because the Attract Closest Principle requires T to attract the closest nominal which it c-commands to raise to spec-TP). So, for example, in (76c) above, it is the subject he of the VP headed by scare which raises to spec-TP and thereby becomes the subject of the present tense auxiliary does. The same is true of a control structure like (77) below (repeated from (69) above):

```
[Tp He [T does] [vp he [v want] [cP [c ø] [T> [т to] [vp PRO [v scare] them]]]]]
    A
```

Here, the pronoun he originates as the thematic subject of want, and hence raises to spec-TP by virtue of being the closest nominal c-commanded by T.

What this suggests is that the particular property of passive, unaccusative and raising predicates which enables them to permit A-movement of the closest nominal argument which they c-command is that they are intransitive and therefore do not project an external argument (so that the VP they head is subjectless). By contrast, verbs which project an external argument of their own (and hence occur in a VP which has a thematic subject) require this subject to be attracted by a higher T constituent to move into spec-TP. These distinct patterns of movement are a consequence of the Attract Closest Principle.

Having compared the syntax of control predicates with that of raising predicates, we end this chapter by looking briefly at the question of how we can determine whether a given predicate which selects an infinitival to complement is a control predicate or a raising predicate. In this connection, it should be noted that there are a number of syntactic differences between raising and control predicates which are a direct reflection of the different thematic properties of these two types of predicate. For example, raising predicates like seem can have expletive it/there subjects, whereas control predicates like want cannot: cf.
(78)(a) It seems/*wants to be assumed that he lied to Congress
(b) There seem/*want to remain several unsolved mysteries
(The expletive nature of $i t$ in (78a) is shown by the fact that it cannot be substituted by a referential pronoun like this/that, or questioned by what? Likewise, the expletive nature of there in (78b) is shown by the fact that it cannot be substituted by a referential locative pronoun like here, or questioned by where?) This is because control predicates like want are two-place predicates which project a thematic subject (an EXPERIENCER in the case of want, so that the subject of want must be an expression denoting an entity capable of experiencing desires), and non-referential expressions like expletive it/there are clearly not thematic subjects and so cannot be assigned a θ-role. By contrast, raising predicates like seem have no thematic subject, and hence impose no restrictions on the choice of structural subject in their clause, so allowing a (non-thematic) expletive subject.

Similarly, raising predicates like seem (but not control predicates like want) allow idiomatic subjects such as those italicised below:

Whenever they meet, ...
(a) all hell seems/*wants to break loose
(b) the fur seems/*wants to fly
(c) the cat seems/*wants to get his tongue

The ungrammaticality of sentences like *All hell wants to break loose can be attributed to the fact that want is a control predicate, and hence (in order to derive such a structure) it would be necessary to assume that all hell originates as the subject of want, and that break loose has a separate $P R O$ subject of its own: but this would violate the requirement that (on its idiomatic use) all hell can only occur as the subject of break loose, and conversely break loose (in its idiomatic use) only allows all hell as its subject. By contrast, All hell seems to break loose is grammatical because seem is a raising predicate, and so all hell can originate as the subject of break loose and then be raised up to become the subject of the null tense
constituent ${ }_{T} \varnothing$] in the seem clause.
A further property which differentiates the two types of predicate is that raising predicates like seem preserve truth-functional equivalence under passivisation, so that (80a) below is cognitively synonymous with (80b):
(80)(a) John seems to have helped Mary
(b) =Mary seems to have been helped by John

By contrast, control predicates like want do not preserve truth functional equivalence under passivisation, as we see from the fact that (81a) below is not cognitively synonymous with (81b):
(81)(a) John wants to help Mary
(b) \neq Mary wants to be helped by John

Moreover, there are pragmatic restrictions on the choice of subject which control predicates like want allow (in that the subject generally has to be a rational being, not an inanimate entity) - as we see from (82) below (where ! marks pragmatic anomaly):

My cat/!My gesture wants to be appreciated
By contrast, raising predicates freely allow animate or inanimate subjects: cf.

My cat/My gesture seems to have been appreciated

The different properties of the two types of predicate stem from the fact that control predicates like want θ-mark their subjects, whereas raising predicates like seem do not: so, since want selects an EXPERIENCER subject as its external argument (and prototypical EXPERIENCERS are animate beings), want allows an animate subject like my cat, but not an inanimate subject like my gesture. By contrast, since raising predicates like seem do not θ-mark their subjects, they allow a free choice of subject.

A final remark to be made is that although our discussion of raising and control predicates has revolved around verbs, a parallel distinction is found in adjectives. For example, in sentences such as:
(84)(a) John is likely to win the race
(b) John is keen to win the race
the adjective likely is a raising predicate and keen a control predicate. We can see this from the fact that likely allows expletive and idiomatic subjects, but keen does not: cf.
(85)(a) There is likely/*keen to be a strike
(b) All hell is likely/*keen to break loose

This is one reason why throughout this chapter we have talked about different types of predicate (e.g. drawing a distinction between raising and control predicates) rather than different types of verb.

7.10 Summary

This chapter has primarily been concerned with the syntax of subjects. In $\S 7.2$ we argued that Belfast English structures such as There should some students get distinctions provide us with evidence that subjects originate internally within VP, and we noted that the claim that subjects originate internally within VP is known as the VP-Internal Subject Hypothesis/VPISH. We also maintained that sentences such as Some students should get distinctions involve movement of some students from the specifier position within VP to the specifier position within TP, and we noted that the relevant movement operation is known as A-movement. In §7.3 we suggested that idioms like All hell will break loose provide further empirical support for the VPISH, since the assumption that idioms are unitary constituents requires us to suppose that all hell originates as a sister of break loose (in the specifier position within VP) and from there is raised up (by application of A-movement) to become the specifier of the TP headed by will. In §7.4 we argued that the VP-Internal Subject Hypothesis allows us to posit a uniform mapping between thematic argument structure and (initial) syntactic structure, if we suppose that all arguments of a predicate originate (and are theta-marked) internally within a projection of the predicate. In §7.5, we looked at the syntax of unaccusative predicates like arise/remain/occur etc. and hypothesised that the argument of an unaccusative verb originates as its complement but differs from the complement of a transitive verb in that it has no subject, and receives nominative rather than accusative case. We highlighted a number of further differences between unaccusative predicates and other types of predicate (e.g. in relation to the position of subjects in Belfast English imperatives, and auxiliary selection in earlier varieties of English). In §7.6, we looked at the structure of simple passive clauses, arguing that a passive subject originates as the thematic complement of a subjectless passive participle, and is raised into spec-

TP (via A-movement) in order to satisfy the [EPP] feature of T. In §7.7 we saw that passivisation can be a long distance operation involving movement of an argument contained within an infinitival TP which is the complement of a passive participle. We noted that the position of idiomatic subjects in sentences like Little heed is believed to have been paid to their proposal provides empirical support for positing long distance passivisation (as a particular instance of a more general A-movement operation which attracts the closest noun or pronoun expression c-commanded by T to move to spec-TP). In $\S 7.9$ we argued that predicates like seem/appear function as raising predicates in the sense that their subjects originate internally within their infinitive complement, and from there are raised to spec-TP position within the seem/appear-clause: hence, in a sentence such as All hell would appear to have broken loose, the idiomatic expression all hell originates as the subject of broken loose and from there is raised up to become the subject of would by A-movement. In §7.10, we contrasted raising predicates with control predicates, noting that they differ in that control predicates theta-mark their subjects (and hence generally require an animate subject) and have a CP complement, whereas raising predicates do not theta-mark their subjects (and hence freely allow inanimate, expletive and idiomatic subjects) and have a TP complement. We also noted that (unlike control predicates), raising predicates preserve truth-functional equivalence under passivisation.

WORKBOOK SECTION

Exercise XIII

Say whether the italicized verbs as used in the type of construction illustrated in the examples below function as raising or control predicates (or are ambiguous and can serve as both), and what evidence there is to support your analysis. Provide a detailed outline of the derivation of any one of the control sentences and any one of the raising sentences, giving arguments in support of your answer.

Employers tend to exploit employees	2
We came to appreciate the classes	4
They failed to hit the target	6
He refused to sign the petition	8
They attempted to pervert the course of justice	10
He is going to quit his job	12
John promises to be a good student	14
They managed to open the door	16
The weather is threatening to ruin the weekend	18
She has chosen to ignore him	20

2 John has decided to quit the university
You have to help me
He tried to rectify the situation
He's beginning to irritate me
I happened to be passing your house
He stands to lose a fortune
He needs to have a shave
We intend to close the store
We are hoping to get a visa
They are planning to visit London

Model answer for 1

There are a number of reasons for suggesting that tend functions as a raising predicate when it takes an infinitive complement. For one thing (as we would expect if tend is a one-place raising predicate which does not theta-mark its subject), tend imposes no restrictions on its choice of subject, and so freely allows either an expression like Professor Peabrain (denoting an animate being) or an expression like Syntax (denoting an inanimate entity) as the subject of its containing clause - as illustrated in (i) below:
(i) Professor Peabrain/Syntax tends to baffle people

Moreover, tend allows a nonthematic subject like expletive there/it - as in the examples below:
(ii) There tends to be a lot of confusion about syntax (iii) It tends to be assumed that syntax is hard
(We can tell that there is an expletive pronoun in (ii) from the fact that it cannot be substituted by here or questioned by where? Likwise, it must be expletive in (iii) because it cannot be substituted by this/that or questioned by what?) Moreover, tend can have an idiomatic subject, as in (iv) below:
(iv) All hell tends to break loose

Give that all hell can serve only as the subject of break loose in the relevant idiom in (iv), it is clear that we could not analyse tend as a control predicate in (iv) and claim that all hell originates as the subject of tend and PRO as the subject of break loose, since this would violate the requirement that all hell can occur
only as the subject of break loose and conversely that break loose can only have the subject all hell (in the relevant idiom). By contrast, if tend is a raising predicate, we can claim that all hell originates as the subject of break loose and then raises up to become the subject of the (null T constituent in the) tend clause. Furthermore, tend preserves truth-functional equivalence under passivisation, as we can see from the fact that (v) and (vi) are truth-functionally equivalent:
(v) Employers tend to exploit employees (vi) =Employees tend to be exploited by employers

Given the assumption that tend is a raising predicate, sentence 1 will be derived as follows. The noun employees merges with a null determiner (which has much the same generic sense as the in The Italians love pasta) to form the DP ϕ employees. The resulting DP merges with (and is assigned the q -role of THEME argument of) the verb exploit to form the V-bar exploit ϕ employees. The DP ϕ employers (itself formed by merging a null determiner with the noun employers) is then merged with (and assigned the q -role of AGENT argument of) this V-bar, forming the VP ϕ employers exploit ϕ employees. This VP is merged as the complement of the infinitival tense particle to, forming the TP to ϕ employers exploit ϕ employees. The relevant TP is in turn merged with the verb tend, forming the VP tend to ϕ employers exploit ϕ employees: we can perhaps take the TP complement of tend to have the thematic function of being a THEME argument of tend. The resulting VP is merged with a null present tense T, forming [T ϕ] tend to ϕ employers exploit ϕ employees. By virtue of being finite, $\left[\begin{array}{c} \\ \varnothing\end{array}\right]$ has an EPP feature requiring it to have a specifier. In accordance with the Attract Closest Principle, this requirement is satisfied by moving the closest nominal c-commanded by $\left[{ }_{T} \varnothing\right]$ - namely the DP \varnothing employers - into spec-TP in the manner shown by the dotted arrow below:

\qquad
The resulting structure (vii) is merged with a null complementiser marking the declarative force of the sentence, so forming the structure (vii) below:

The derivation satisfies the \mathbf{q}-criterion by virtue of the fact that each argument carrries one and only one q -role: i.e. ϕ employees is the THEME argument of exploit, \varnothing employers is the AGENT argument of exploit and the TP complement of tend is its THEME argument.

Exercise XIV

Discuss the derivation of the following sentences:
1a There are certain to remain some problems
b There were reported to remain some problems
c There were thought likely to remain some problems
2a A change of policy was envisaged
b A change of policy seems to be envisaged
c A change of policy is thought likely to be envisaged
3a Differences of opinion are emerging
b Differences of opinion are beginning to emerge
c Differences of opinion appear to be starting to emerge
$4 \mathrm{a} \quad \mathrm{He}$ is leaving the country
b He is planning to leave the country
c He is thought to be planning to leave the country
5a No details are going to be revealed
b No details of any threats seem likely to be revealed
c No details are expected to be revealed of any threats

Helpful hints

Assume that the infinitive form be is an auxiliary occupying the head AUX position of AUXP when immediately followed by a passive or progressive participle. For the purposes of this exercise, assume that a finite T has an [EPP] feature, but that infinitival to does not. Assume that he has the thematic role of an EXPERIENCER argument of the relevant predicates in 4, but that all other arguments in 1-5 are THEME arguments of their associated predicates. In relation to 5 a , consider the significance of the fact that going to can contract to $g o n n a$; in $5 \mathrm{~b} / \mathrm{c}$ assume that any is a partitive quantifier which has the property of being a polarity item (in the sense specified in exercise 3.2), and so must be c-commanded by a negative or interrogative constituent; in relation to 5 c , bear in mind the discussion of discontinuous spellout in the text.

Model answer for 1a

The quantifier some merges with the noun problems to form the QP some problems. This QP is merged with (and assigned the q -role of THEME complement of) the unaccusative predicate remain to form the VP remain some problems. This in turn is merged with the infinitival tense particle to, forming the TP to remain some problems. This is then merged with the raising adjective certain to form the AP certain to remain some problems. This in turn is merged with the copular verb be to form the VP be certain to remain some problems. The resulting VP is merged with a null finite T which attracts the copula be to move from V to T in the manner showed by the dotted arrow in (i), so forming the structure shown in simplified form below:
(i)

T (by virtue of being finite) has an [EPP] feature requiring it to project a subject, and this requirement is satisfied by merging there in spec-TP, forming the structure shown in abbreviated form in (ii) below (where t is a trace of the moved auxiliary be):
(ii)

The TP in (ii) is subsequently merged with a null declarative complementiser.
The analysis presented here assumes that certain is a raising adjective. Evidence that this is so comes from the fact that clauses containing certain allow expletive and idiomatic subjects, as in:
(iii)(a) It is certain to be raining in Manchester
(b) The fur is certain to fly

The expletive nature of $i t$ in (iiia) is shown by the fact that it cannot be substituted by referential pronouns like this/that or questioned by what?

8.

Agreement, Case and Movement

8.1 Overview

In this chapter, we take a look at the syntax of agreement. We begin by outlining the claim made by Chomsky in recent work that agreement involves a relation between a probe and a goal (though it should be noted that the term goal in this chapter is used in an entirely different way from the term GOAL which was used to denote the thematic role played by a particular kind of argument in relation to its predicate in §7.4). We look at the nature of agreement, and go on to show that nominative and null casemarking involve agreement with T. Finally, we explore the relationship between the [EPP] feature carried by T and agreement, and look at the consequences of this for control infinitives on the one hand and raising infinitives on the other.

8.2 Agreement

In traditional grammars, finite auxiliaries are said to agree with their subjects. Since (within the framework used here) finite auxiliaries occupy the head T position of TP and their subjects are in spec-TP, in earlier work agreement was said to involve a specifier-head relationship (between T and its specifier). However, there are both theoretical and empirical reasons for doubting that agreement involves a spec-head relation. From a theoretical perspective (as we saw in §4.9), Minimalist considerations lead us to the conclusion that we should restrict the range of syntactic relations used in linguistic description, perhaps limiting them to the relation c-command created by merger. From a descriptive perspective, a spec-head account of agreement is problematic in that it fails to account for agreement between the auxiliary are and the nominal several prizes in passive structures such as:
(1) There are thought likely to be awarded several prizes

Since the auxiliary are occupies the head T position of TP in (1) and the expletive pronoun there is in spec-TP, a spec-head account of agreement would lead us to expect that are should agree with there. But instead, are agrees with the in situ complement several prizes of the passive participle awarded. What is going on here? In order to try and understand this, let's take a closer look at the derivation of (1).

The quantifier several merges with the noun prizes to form the QP several prizes. This is merged as the thematic complement of the passive verb awarded to form the VP awarded several prizes. This in turn is merged with the passive auxiliary be to form the AUXP be awarded several prizes. This is then merged with the infinitival tense particle to, forming the TP to be awarded several prizes. The resulting TP is merged with the raising adjective likely to derive the AP likely to be awarded several prizes. This AP is subsequently merged with the passive verb thought to form the VP thought likely to be awarded several prizes. This in turn merges with the passive auxiliary be, forming the T-bar shown in simplified form in (2) below (where the notation BE indicates that the morphological form of the relevant item hasn't yet been determined)
(2)

The tense auxiliary $\left.{ }_{T \mathrm{~T}} \mathrm{BE}\right]$ needs to agree with an appropriate nominal within the structure containing it. Given Pesetsky's Earliness Principle (which requires operations to apply as early as possible in a derivation), T-agreement must apply as early as possible in the derivation, and hence will apply as soon as BE is introduced into the structure. On the assumption that c-command is central to syntactic operations, T will agree with a nominal (i.e. a noun or pronoun expression) which it c-commands. Accordingly, as soon as the structure in (2) is formed, [т BE] searches for a nominal which it c-commands to agree with.

To use the terminology introduced by Chomsky (1998, 1999, 2001), by virtue of being the highest head in the overall structure at this point in the derivation, BE serves as a probe which searches for a c-commanded nominal goal to agree with. The only nominal goal c-commanded by [${ }_{\mathrm{T}} \mathrm{BE}$] within the structure in (2) is the QP several prizes: $\left.{ }_{T} \mathrm{BE}\right]$ therefore agrees in person and number with several prizes, and so is ultimately spelled out as the third person plural form are in the PF component. Chomsky refers to person and number features together as \mathbf{f}-features (where f is the Greek letter $p h i$, pronounced in the same way as fie in English): using this terminology, we can say that the probe [${ }_{\mathrm{T}} \mathrm{BE}$] agrees in f -features with the goal several prizes. Subsequently, expletive there is merged in spec-TP to satisfy the [EPP] requirement for T to project a specifier, and the resulting TP is in turn merged with a null declarative complementiser to form the CP shown in simplified form below (which is the structure of (1) above):

[${ }_{C P}[\mathrm{C} \varnothing]$ [${ }_{\mathrm{TP}}$ There [${ }_{\mathrm{T}}$ are] [vP [v thought] [ap [A likely] [TP to be awarded several prizes]]]]]

However, there are a number of details which we have omitted in (3); one relates to the case assigned to the complement (several prizes) of the passive participle awarded. Although case is not overtly marked on the relevant noun expressions in English, evidence from languages like Icelandic with a richer case system suggests that the complement of a passive participle in finite expletive clauses is assigned nominative case via agreement with T - as the following contrast (from Sigurðsson 1996, p.12) illustrates:
(4)(a) Bad voru lesnar fjórar bakur

There were read four $_{\text {NOM.PL }}$ books $_{\text {NOM.PL }}$
(b) Pad var skilað fjórum bókum

There was returned four ${ }_{\text {DAT.PL }}$ books $_{\text {DAT.PL }}$
In (4a), the auxiliary voru is a third person plural form which agrees with the NOM.PL/nominative plural complement fjórar bakkur 'four books'. In (4b), the auxiliary is in the agreementless form var 'was', and the complement of the passive participle is DAT.PL/dative plural. (Var is a third person singular form, but can be treated as an agreementless form if we characterise agreement by saying that 'An auxiliary is first/second person if it agrees with a first/second person subject, but third person otherwise; it is plural if it agrees with a plural subject, but singular otherwise.' This means that a third person singular auxiliary can arise either by agreement with a third person singular expression or - as here - can be a default form used as a fall-back when the auxiliary doesn't agree with anything.) Sigurðsson argues that it is an inherent lexical property of the participle skilað 'returned' that (like around a quarter of transitive verbs in

Icelandic) it assigns so-called inherent dative case to its complement (See Svenonius 2002a/b on dative complements), and (because it can't agree with a non-nominative complement) the auxiliary surfaces in the agreementless form var in (4b); by contrast, the participle lesnar 'read' in (4a) does not assign inherent case to its complement, and instead the complement is assigned (so-called) structural nominative case via agreement with the past Tense auxiliary voru 'were'.

Icelandic data like (4) suggest that there is a systematic relationship between nominative case assignment and T-agreement: they are two different reflexes of an agreement relationship between a finite T probe and a nominal goal. In consequence of the agreement relationship between the two, the T probe agrees with a nominal goal which it c-commands, and the nominal goal is assigned nominative case. Accordingly, several prizes in (3) receives nominative case via agreement with [${ }_{\mathrm{T}}$ are]. (It should be noted in passing that throughout this chapter, we focus on characterising syntactic agreement. On so-called 'semantic agreement' in British English structures like The government are ruining the country, see den Dikken 2001, and Sauerland and Elbourne 2002.)

The approach to case assignment outlined here (in which subjects are assigned nominative case via agreement with a finite T) is different from that outlined in $\S 4.9$, where we suggested that subjects are case-marked by a c-commanding C constituent. But in one sense, our revised hypothesis that finite subjects are case-marked by T is consistent with our earlier analysis. In chapter 4, we argued that (in consequence of the Earliness Principle) a noun or pronoun expression is case-marked by the closest case-assigner which c-commands it: since we also assumed in chapter 4 that subjects originate in spec-TP, it was natural to assume that they are case-marked by the closest functional head above them, namely C . But once we move to an analysis like that in chapter 7 in which subjects originate internally within VP, our assumption that they are case-marked by the closest case-assigning head above them opens up the possibility that nominative subjects may be case-marked by T rather than by C - and indeed this is the assumption which we will make from now on (an assumption widely made in current research).

8.3 Feature Valuation

Let's think through rather more carefully what it means to say that case is systematically related to agreement, and what the mechanism is by which case and agreement operate. To illustrate our discussion, consider the derivation of a simple passive such as that produced by speaker B below:

SPEAKER A: What happened to the protestors?
SPEAKER B: They were arrested
Here, discourse factors determine that a third person plural pronoun is required in order to refer back to the third person plural expression the protestors, and that a past tense auxiliary is required because the event described took place in the past. So (as it were) the person/number features of they and the past tense feature of were are determined in advance, before the items enter the derivation. By contrast the case feature assigned to they and the person/number features assigned to were are determined via an agreement operation in the course of the derivation: e.g. if the subject had been the singular pronoun one, the auxiliary would have been third person singular via agreement with one (as in One was arrested); and if THEY had been used as the object of a transitive verb (as in The police arrested them), it would have surfaced in the accusative form them rather than the nominative form they.

Generalising at this point, let's suppose that noun and pronoun expressions like THEY enter the syntax with their (person and number) f -features already valued, but their case feature as yet unvalued. (The notation THEY is used here to provide a case-independent characterisation of the word which is variously spelled out as they/them/their depending on the case assigned to it in the syntax.) Using a transparent feature notation, let's say that THEY enters the derivation carrying the features [3-Pers, Pl-Num, u-Case], where Pers $=$ person, $P l=$ plural, $N u m=$ number, and $u=$ unvalued). Similarly, let's suppose that finite T constituents (like the tense auxiliary BE) enter the derivation with their tense feature already valued, but their person and number f-features as yet unvalued (because they are going to be valued via agreement with a nominal goal). This means that BE enters the derivation carrying the features [Past-Tns, u-Pers, u-Num]. In the light of these assumptions, let's see how the derivation of (5B) proceeds.

The pronoun THEY is the thematic complement of the passive verb arrested and so merges with it to form the VP arrested THEY. This is in turn merged with the tense auxiliary BE, forming the structure (6) below (where already-valued features are shown in bold, and unvalued features in italics):
(6)

Given Pesetsky's Earliness Principle, T-agreement will apply at this point. Let's suppose that agreement in such structures involves a c-command relation between a probe and a goal in which unvalued f features on the probe are valued by the goal, and an unvalued case-feature on the goal is valued by the probe. (In Chomsky's use of these terms, it is the unvalued person/number features which serve as the probe rather than the item BE itself, but this is a distinction which we shall overlook throughout, in order to simplify exposition.) Since ${ }_{\mathrm{T}} \mathrm{BE}$] is the highest head in the structure (6), it serves as a probe which searches for a c-commanded goal with an unvalued case feature, and locates the pronoun THEY. Accordingly, an agreement relation is established between the probe BE and the goal THEY. One reflex of this agreement relation is that the unvalued person and number features carried by the probe BE are valued by the goal THEY. Valuation here involves a Feature Copying operation which we can sketch in general terms as follows (where a and β are two different constituents contained within the same structure, and where one is a probe and the other a goal):

Feature Copying

If α is valued for some feature $[F]$ and β is unvalued for $[F]$ and if β agrees with α, the feature-value for $[F]$ on a is copied onto β

In consequence of the Feature Copying operation (7), the values of the person/number features of THEY are copied onto BE, so that the unvalued person and number features [u-Pers, u-Num] on BE in (6) are assigned the [3-Pers, Pl-Num] values carried by THEY - as shown in (8) below, where the underlined features are those which have been valued via the Feature Copying operation (7):

A second reflex of the agreement relation between BE and THEY is that the unvalued case feature [u-Case] carried by the goal THEY is valued by the probe BE. Since only auxiliaries with finite (present/past) tense have nominative subjects (and not e.g. infinitival auxiliaries), we can suppose that it is the finite tense features of the probe which are responsible for assigning nominative case to the goal. Accordingly, we can posit that nominative case assignment involves the kind of operation sketched informally below:

(9) Nominative Case Assignment

An unvalued case feature on a goal is valued as nominative by a probe carrying finite tense if probe and goal match in f-features (i.e. in person and number)

Since the person/number features of the probe BE match those of the goal THEY in (8), and since BE carries finite tense (by virtue of its [Past-Tns] feature), the unvalued case feature on THEY is valued as
nominative, resulting in the structure shown in (10) below (where the underlined feature is the one valued as nominative in accordance with (9) above):

Since all the features carried by BE are now valued, BE can ultimately be spelled out in the phonology as the third person plural past tense form were. Likewise, since all the features carried by THEY are also valued, THEY can ultimately be spelled out as the third person plural nominative form they. However, the derivation in (8) is not yet terminated: the [EPP] feature of T will subsequently trigger A-movement of they to become the structural subject of were, and the resulting TP they were arrested they will then be merged with a null declarative complementiser to form the structure ϕ they were arrested they: but since our immediate concern is with case and agreement, we skip over these details here.

8.4 Uninterpretable features and feature-deletion

Our discussion of how case and agreement work in a sentence such as (5B) has wider implications. One of these is that items may enter the derivation with some of their features already valued and others as yet unvalued: e.g. BE enters the derivation in (6) with its tense feature valued, but its (person and number) f-features unvalued; and THEY enters with its f-features valued but its case feature unvalued. This raises the question of which features are initially valued when they first enter the derivation, which are initially unvalued - and why. Chomsky (1998) argues that the difference between valued and unvalued grammatical features correlates with a further distinction between those grammatical features which are interpretable (in the sense that they play a role in semantic interpretation), and those which are uninterpretable (and hence play no role in semantic interpretation). For example, it seems clear that the case feature of a pronoun like THEY is uninterpretable, since a subject pronoun surfaces as nominative, accusative or genitive depending on the type of [bracketed] clause it is in, without any effect on meaning - as the examples in (11) below illustrate:
(11)(a) It is said [they were arrested]
(b) He expected [them to be arrested]
(c) He was shocked at [their being arrested]

By contrast, the (person/number)f -features of pronouns are interpretable, since e.g. a first person singular pronoun like I clearly differs in meaning from a third person plural pronoun like they. In the case of finite auxiliaries, it is clear that their tense features are interpretable, since a present-tense form like is differs in meaning from a past tense form like was. By contrast, the (person/number) f -features of auxiliaries are uninterpretable, in that they serve purely to mark agreement with a particular nominal.

As we saw in the simplified model of grammar which we presented in $\S 1.3$, each structure generated by the syntactic component of the grammar is subsequently sent to the PF component of the grammar to be spelled out (i.e. assigned a PF representation which provides a representation of its Phonetic Form). If we assume that unvalued features are illegible to (and hence cannot be processed by) the $\mathbf{P F}$ component, it follows that every unvalued feature in a derivation must be valued in the course of the derivation, or else the derivation will crash (i.e. fail) because the PF component is unable to spell out unvalued features. In more concrete terms, this amounts to saying that unless the syntax specifies whether we require e.g. a first person singular or third person plural present-tense form of BE , the derivation will crash because the PF component cannot determine whether to spell out BE as am or are.

In addition to being sent to the PF component, each structure generated by the syntactic component of the grammar is simultaneously sent to the semantic component, where it is converted into an appropriate semantic representation. Clearly, interpretable features play an important role in computing semantic representations. Equally clearly, however, uninterpretable features play no role whatever in this process: indeed, since they are illegible to the semantic component, we need to devise some way of ensuring that uninterpretable features do not input into the the semantic component. How can we do this?

Chomsky's answer is to suppose that uninterpretable features are deleted in the course of the syntactic derivation, in the specific sense that they are marked as being invisible in the semantic component while remaining visible in the syntax and in the PF component. To get a clearer idea of what this means in concrete terms, consider the uninterpretable nominative case feature on they in (5B) They were arrested. Since this case feature is uninterpretable, it has to be deleted in course of the syntactic derivation, so that the semantic component cannot 'see' it. However, the PF component must still be able to 'see' this case feature, since it needs to know what case has been assigned to the pronoun THEY in order to determine whether the pronoun should be spelled out as they, them or their. This suggests the following convention:

Feature Visibility Convention

Any uninterpretable feature deleted in the syntax is invisible to the semantic component, but remains visible in the syntactic component and in the PF component
The next question to ask at this juncture is what kind of syntactic operation is involved in the deletion of uninterpretable features. Let's suppose (following Chomsky) that feature deletion involves the kind of operation outlined informally below (where a and β enter into an agreement relation, and one is a probe and the other a goal)

Feature Deletion

A f -complete a deletes any uninterpretable person/number/case feature(s) carried by a matching β
Here, a and β are two different constituents contained within the same structure, and one is a probe and the other a goal. In a language like English where finite verbs agree with their subjects in person and number (but not gender), α is \mathbf{f}-complete (i.e. carries a complete set of f-features) if it has both person and number features (though in a language like Arabic where finite verbs agree in person, number and gender with their subjects, α is f-complete if it carries person, number and gender: see Nasu 2001/2002 for discussion.) For α to delete a person/number/case feature of β, the f-features of α must match any person and/or number f-features carried by β.

To make a rather abstract discussion more concrete, let's consider how feature deletion applies in the case of our earlier structure (10) above. Here, both BE and THEY are f -complete, since both are specified for person as well as number. Moreover, the two match in respect of their f-features, since both are third person plural. Let's assume that (in consequence of the Earliness Principle), feature deletion applies as early as possible in the derivation, and hence applies at the point where the structure in (10) has been formed. In accordance with Feature Deletion (13), f -complete BE can delete the uninterpretable casefeature carried by THEY; and conversely f-complete THEY can delete the uninterpretable person/number features carried by BE. Feature Deletion therefore results in the structure (14) below (where strikethrough indicates deletion):

The deleted features will now be invisible in the semantic component - in accordance with (12). The rest of the derivation proceeds as before.

Chomsky sees uninterpretable features as being at the very heart of agreement, and posits (1999, p.4) that 'Probe and Goal must both be active for Agree to apply' and that a constituent a (whether Probe or Goal) is active only if a contains one or more uninterpretable features. In other words, it is the presence of uninterpretable features on a constituent that makes it active (and hence able to serve as a probe or goal, and to play a part in feature-valuation and feature-deletion).

8.5 Expletive it subjects

So far, all the constructions we have looked at have involved a finite T agreeing with a noun or pronoun expression which carries interpretable person/number f -features. However, English has two expletive pronouns which (by virtue of being non-referential) carry no interpretable f-features. One of these is expletive it in sentences such as:
(15)(a) It is said that he has taken bribes
(b) It can be difficult to come to terms with long-term illness
(c) It's a pity that she can't come
(d) It's a long way from here to Lands End

The pronoun it in sentences like these appears to be an expletive, since it cannot be replaced by a referential pronoun like this or that, and cannot be questioned by what. Let's examine the syntax of expletive $i t$ by looking at the derivation of a sentence like (15a).

Suppose that we have reached the stage of derivation where the (passive participle) verb said has been merged with its CP complement that he was taking bribes to form the VP said that he was taking bribes. Merging this VP with the tense auxiliary BE forms the structure shown in simplified form below:

In accordance with Pesetsky's Earliness Principle, we might expect T-agreement to apply at this point. Accordingly, the probe BE (which is active by virtue of its uninterpretable person/number f-features) searches for an active goal to value its unvalued f-features. It might at first sight seem as if the CP headed by that is an appropriate goal, and is a third person singular expression which can value the person/number features of BE. However, it seems unlikely that such clauses have person/number features. One reason for thinking this is that even if the that-clause in (16) is coordinated with another that-clause as in (17) below, the verb BE remains in the singular form is:

(17) It is said [that he has taken bribes and that he has embezzled company funds]

If each of the italicised clauses in (17) were singular in number, we would expect the bracketed coordinate clause to be plural (in the same way as the co-ordinate structure John and Mary is a plural expression in a sentence like John and Mary are an item): but the fact that the passive auxiliary is remains singular in (17) suggests that the CP has no number properties of its own. Nor indeed does the that-clause in (17) have an unvalued case-feature which could make it into an active goal, since that-clauses appear to be caseless (as argued by Safir 1986), in that a that clause cannot be used in a position like that italicised in (18) below where it would be assigned accusative case by a transitive preposition such as of:
(18) *There have been reports of that he has taken bribes

If the CP in (16) has no uninterpretable case feature, it is inactive and so cannot value the f-features of BE.

However, a question we might ask about (16) is whether BE could instead agree with the subject of the that-clause, namely $h e$: after all, he has an uninterpretable case-feature (making it active), and is a third person singular expression and so could seemingly value the unvalued person/number features of BE. Yet
it is clear that BE does not in fact agree with $h e$, since if we replace $h e$ by the first person plural subject we, BE still surfaces in the third person singular form is - as (19) below illustrates:
(19) It is said [c户 that [TP we have taken bribes]]

Something, then, must prevent BE from agreeing with we - but what? The answer lies in a constraint developed by Chomsky termed the Phase Impenetrability Condition/PIC. Since understanding PIC requires a prior understanding of the notion of phase developed in Chomsky (1998, 1999, 2001), let's first take a look at what phases are.

In $\S 1.4$ we suggested that a fundamental principle of UG is a Locality Principle which requires all grammatical operations to be local. Using the probe-goal terminology introduced in this chapter, we can construe this as meaning that all grammatical operations involve a relation between a probe P and a local goal G which is sufficiently 'close' to the probe. However, an important question to ask is why probe-goal relations must be local. In this connection, Chomsky (2001, p.13) remarks that 'the P, G relation must be local' in order 'to minimise search' (i.e. in order to ensure that a minimal amount of searching will enable a probe to find an appropriate goal). His claim that locality is forced by the need 'to minimise search' suggests a processing explanation: the implication is that the Language Faculty can only process limited amounts of structure at one time - and, more specifically, can only hold a limited amount of structure in its 'active memory' (Chomsky 1999, p.9). In order to ensure a 'reduction of computational burden' (1999, p.9) Chomsky proposes that 'the derivation of EXP[ressions] proceeds by phase' (ibid.), so that syntactic structures are built up one phase at a time. He maintains (2001, p.14) that 'phases should be as small as possible, to minimise memory'. More specifically, he suggests (1999, p.9) that phases are 'propositional' in nature, and hence include CPs. His rationale for taking CP to be phases is that CP represents a complete clausal complex (including a specification of force).

In what sense do phases ensure that grammatical operations are purely local? The answer given by Chomsky is that any goal within the (c-command) domain of the phase (i.e. any goal c-commanded by the head of the phase) is impenetrable to further syntactic operations. He refers to this condition as the Phase Impenetrability Condition/PIC - and we can state it as follows (cf. Chomsky 2001, p.5, ex. 6)

Phase Impenetrability Condition/PIC

Any goal in the (c-command) domain of a phase head is impenetrable to a probe outside the phase
Stated in a form like (20), the relevant condition clearly begs the question of why a goal positioned 'below' a phase head should be impenetrable to a probe positioned 'above' the phase. Chomsky's answer (2001, p.5) is that once a complete phase has been formed, the domain of the phase head (i.e. its complement) undergoes a transfer operation by which it is simultaneously sent to the phonological component to be assigned an appropriate phonetic representation, and to the semantic component to be assigned an appropriate semantic representation - and hence no constituent in the relevant domain is thereafter able to undergo any further syntactic operations. So, for example, once the operations which take place on the CP cycle have been completed, the TP which is the domain/complement of the phase head C will be sent to the phonological and semantic components for processing. As a result, TP is no longer accessible in the syntax, and hence neither TP itself nor any constituent of TP can subsequently serve as a goal for a higher probe of any kind in the syntax.

In the light of the Phase Impenetrability Condition (20), let's return to our earlier structure (16) and ask why the auxiliary is in the main clause can't agree with the subject he of the complement clause. The answer is as follows. The complement clause that he has taken bribes is a CP , hence a phase. The domain of that CP (i.e. the constituent which is the complement of the head C of CP) is the TP he has taken bribes. This means that neither this TP nor any of its constituents can serve as a goal for a probe outside CP. Since is in (16) lies outside the bracketed CP phase, and he lies inside its bracketed TP domain, PIC prevents agreement between the two. (See Polinsky and Potsdam 2001, and Branigan and MacKenzie 2002 for an analysis of apparent long-distance agreement in terms of PIC.)

So far, what we have established in relation to the structure in (16) is that BE cannot agree with the that-clause because the latter is inactive and has no f-features or case-feature; nor can BE agree with he, because PIC makes he impenetrable to BE. It is precisely because BE cannot agree with CP or with any of its constituents that expletive it has to be used, in order to satisfy the [EPP] requirement of T, and to value the f-features of T. In keeping with the Minimalist spirit of positing only the minimal apparatus which is conceptually necessary, let's further suppose that expletive it has 'a full complement of f-features'
(Chomsky 1998, p.44) but that (as Martin Atkinson suggests) these are the only features carried by it in its expletive use. More specifically, let's assume that expletive it carries the features [third-person, singular-number]. Since expletive it is a 'meaningless' expletive pronoun, these features will be uninterpretable. Given this assumption, merging it as the specifier of the T-bar in (16) above will derive the structure (21) below (with interpretable features shown in bold, and uninterpretable features in italics):

At this stage in the derivation, the pronoun it can serve as a probe because it is the highest head in the structure, and because $i t$ is active by virtue of its uninterpretable f-features. Likewise, the auxiliary BE can serve as a goal for it because BE is c-commanded by it and BE is active by virtue of its uninterpretable f-features. Feature Copying (7) can therefore apply to value the unvalued f-features on BE as third person singular (via agreement with it), and Feature Deletion (13) can apply to delete the uninterpretable f -features of both it and BE, so deriving:

As required, all unvalued features have been valued at this point (BE ultimately being spelled out in the PF component as $i s$), and all uninterpretable features deleted. The resulting structure (22) is subsequently merged with a null declarative complementiser. The deleted uninterpretable person/number features of it and BE will be visible in the PF component and the syntax, but not in the semantic component; the undeleted [Pres-Tns] feature of BE will be visible in all three components. Hence, BE will be spelled out as is in the PF component, since the phonology can 'see' the third person, singular-number, present-tense features carried by BE.

There are two particular features of the analysis outlined above which merit further comment. One is that we have assumed that expletive it carries person and number features, but no gender feature and no case feature. While it clearly carries an interpretable (neuter/inanimate) gender feature when used as a referential pronoun (e.g. in a sentence like This book has interesting exercises in it, where it refers back to this book), it has no semantic interpretation in its use as an expletive pronoun, and so can be assumed to carry no interpretable gender feature in such a use. The reason for positing that expletive it is a caseless pronoun is that it is already active by virtue of its uninterpretable f-features, and hence does not 'need' a case-feature to make it active for agreement (unlike subjects with interpretable f -features). Some suggestive evidence that expletive it may be a caseless pronoun comes from the fact that it has no genitive form its - at least for speakers like me who don't say *He was annoyed at its being claimed that he lied.

8.6 Expletive there subjects

Having looked at the syntax of expletive it in the previous section, we now turn to look at expletive there. As a starting point for our discussion, we'll go back to the very first sentence we looked at
in this chapter, namely (1) There are thought likely to be awarded several prizes. Let's suppose that the derivation proceeds as before, until we reach the stage in (2) above. However, let's additionally assume that several prizes carries interpretable f-features (marking it as a third person plural expression) and an uninterpretable (and unvalued) case-feature. Let's also assume (as in earlier discussions) that BE carries an interpretable present-tense feature, and uninterpretable (and unvalued) f -features. This being so, the structure formed when BE is merged with its VP complement will be that shown in simplified form below:

Given the Earliness Principle, T-agreement will apply at this point in the derivation. Because BE is the highest head in the structure (in that it is the only head in the structure which is not c-commanded by another head), and because BE is active (by virtue of its uninterpretable f -features), BE serves as a probe which searches for a nominal goal within the structure containing it. The nominal several prizes can serve as a goal for the probe BE, since several prizes is active by virtue of carrying an uninterpretable case feature. By application of Feature Copying (7), the unvalued person and number features on BE are given the same values as those on several prizes - as shown in simplified form in (24) below:

$[\mathrm{BE}]$	thought likely to be awarded [several prizes $]$
$[$ Pres-Tns $]$	$[3-\mathrm{Pers}]$
$[3-$ Pers $]$	$[$ Pl-Num $]$
$[$ Pl-Num $]$	$[$ u-Case $]$

By application of Nominative Case Assignment (9), the unvalued case-feature of the goal several prizes in (24) is assigned the value nominative as shown in (25) below, since the probe BE carries finite tense (more specifically, present tense), and since the probe [BE] and the goal several prizes have matching f-feature values because both are third person plural:

$[\mathrm{BE}]$	thought likely to be awarded [several prizes $]$
$[$ Pres-Tns $]$	$[3-\mathrm{Pers}]$
$[3-\mathrm{Pers}]$	$[$ Pl-Num $]$
$[$ Pl-Num $]$	$[$ Nom-Case $]$

Via Feature Deletion (13), the probe BE deletes the uninterpretable nominative case feature on several prizes, since BE is f-complete (by virtue of carrying both person and number features) and the f-features of the probe BE match those of the goal several prizes. Conversely, via the same Feature Deletion operation (13), the goal several prizes deletes the uninterpretable person/number features on the probe BE, since the goal is f-complete (carrying both person and number features), and probe and goal have matching f-feature values. Feature Deletion yields:
[BE] thought likely to be awarded [several prizes]
[Pres-Tns]
[3-Pers]

[3-Pers]
[Pl-Num]

[Pl-Num]
[Nom-Case]
We have thus deleted all uninterpretable case/agreement features on both probe and goal, as required.
However, BE also has an [EPP] feature (not shown above) requiring it to project a structural subject. In (1) There are thought likely to be awarded several prizes, the [EPP] requirement of [${ }_{\mathrm{T}} \mathrm{BE}$] is satisfied by merging expletive there in spec-TP. Let's assume that (like expletive it), expletive there carries no case feature (and hence has no genitive form, as we see from the ungrammaticality of *She was upset by there's being nobody to help her). More precisely, let's follow Chomsky (1998, 1999, 2001) in positing that the only feature carried by expletive there is an uninterpretable person feature, and let's further suppose that there is intrinsically third person (consistent with the fact that a number of other words beginning with th- are third person - e.g. this, that, these, those and the). Accordingly, merging there in spec-TP will derive the structure shown in abbreviated form below:

The pronoun there serves as a probe because it is the highest head in the structure, and because it is active by virtue of carrying an uninterpretable third person f-feature. It therefore searches for a c-commanded goal to agree with. Let's suppose that agreement (of the kind we are concerned with here) involves a T -nominal relation (i.e. a relation between T and a noun/pronoun expression): this being so, there (being a pronominal probe) will search for an active T constituent to serve as its goal, and find [T BE$]$. BE is an active goal for the probe there in (27) because be contains uninterpretable person/number features: these have been marked as invisible to the semantic component (via Feature Deletion), but remain visible and active in the syntax in accordance with the Feature Visibility Convention (12). Accordingly, Feature Deletion (13) applies, and the goal BE deletes the matching uninterpretable third-person feature carried by the probe there. This is possible because there is active as a probe and BE is active as a goal (as we have just seen), and because the goal BE is f-complete (having both person and number features), and the third-person feature carried by the probe there matches the third-person feature carried by the goal BE. Deleting the uninterpretable person feature of there, and merging the resulting TP with a null complementiser carrying an interpretable declarative force feature [Dec-Force] derives the CP shown in skeletal form below:

Only the bold-printed interpretable features will be processed by the semantic component, not the barred italicised uninterpretable features (since these have all been deleted and deletion makes features invisible to the semantic component, while leaving them visible to the syntactic and phonological components); both the interpretable and uninterpretable features will be processed by the phonological component where BE will be spelled out as are. (On colloquial structures like There's lots of people in the room, see den Dikken 2001.)

An important question to ask in the context of our discussion of expletive it in the previous section and expletive there in this section is what factors determine the choice of expletive in a particular sentence. In this connection, let's ask why expletive there can't be used in place of expletive it in sentences like (29b) below:
(29)(a) It is said that he has taken bribes
(b) *There is said that he has taken bribes

Let's suppose that merging BE with the VP headed by the verb said forms the structure shown in (16) above, and that subsequently merging there in spec-TP derives the structure shown in (30) below:

Because it is the highest head in the structure, and because it is active by virtue of its uninterpretable person feature, there serves as a probe. BE serves as the goal for there because BE is c-commanded by there, and BE itself is active by virtue of its uninterpretable person/number features. Via Feature Copying (7), the unvalued person feature of BE will be assigned the same third-person value as there - as shown in schematic form below:

there | BE |
| :---: |
| $[3-$ Pers $]$ |
| $[$ Pres-Tns $]$ |

Via Feature Deletion (13), BE can delete the uninterpretable person feature of there, because BE is f -complete and the person features of BE and there have matching values. However, there cannot delete the person feature of BE , since there is f -incomplete (in that it has person but not number), and only a f-complete a can delete one or more features of β. Accordingly, the structure which results after Feature Deletion applies is:

$$
\begin{gather*}
\text { there } \begin{array}{c}
\text { BE } \\
{[\text { 3-Pers }]} \\
{[\text { Pres-Tns }]} \\
{[3-\text { Pers }]} \\
{[\text { u-Num }]}
\end{array} \tag{32}
\end{gather*}
$$

However, the resulting derivation will ultimately crash, for two reasons. Firstly, the number feature on BE has remained unvalued, and the PF component cannot process unvalued features. And secondly, the uninterpretable person and number features on BE have not been deleted, and the semantic component cannot process uninterpretable features. In other words, our assumptions about the differences between expletive it and expletive there allow us to provide a principled account of why (29a) It is said that he has taken bribes is grammatical, but (29b) *There is said that he has taken bribes is not.

Now let's ask why expletive it can't be used in place of there in a sentence like (33b) below:
(33)(a) There are thought likely to be awarded several prizes
(b) *It is thought likely to be awarded several prizes

One way of answering this question is by making the assumption outlined below :

EPP Generalisation

When T carries an [EPP] feature, this can be deleted
(i) by merging expletive there in spec-TP if T c-commands a matching indefinite goal (i.e. an indefinite noun or pronoun expression which matches T in person/number)
or (ii) by merging expletive it in spec-TP if T c-commands no matching goal
or (iii) by moving the closest matching active goal c-commanded by T into spec-TP

The requirement in (34iii) for T to attract the closest matching goal is a consequence of the Attract Closest Principle. (34i) stipulates the indefiniteness requirement without explaining it. An interesting possibility to explore would be that in expletive there structures, the associate is indefinite because it has no person properties, so that there is inserted in order to value the person properties of T (though see Frampton and Gutmann 1999 for an alternative explanation. See also Lasnik 2001 on the nature of EPP.)

It follows from (34) that in structures like (23) where [${ }_{\mathrm{T}} \mathrm{BE}$] c-commands (and agrees in person and number with) an indefinite nominal (several prizes), expletive there can be used but not expletive it, so deriving (33a) There are thought likely to be awarded several prizes. Conversely in structures like (16) where there is no matching goal accessible to the probe [${ }_{\mathrm{T}} \mathrm{BE}$], it can be used but not there - so deriving (15a) It is said that he has taken bribes. It also follows from (34) that neither expletive can be used in structures like the following:

(35)(a) *There was impeached the president
 (b) *It was impeached the president

This is because was in (35) c-commands and agrees in person and number with the definite goal the president, so that the conditions for the use of either expletive in (34i/ii) are not met. The only way of deleting the [EPP] feature of T in such a case is to passivise the definite DP the president, so deriving:
(36) The president was impeached

So, we see that the EPP Generalisation in (34) provides a descriptively adequate characterisation of data like (29), (33), (35) and (36). (See Bowers 2002 for an alternative account of the there/it distinction in expletives.)

However, our so-called generalisation in (34) is little more than a descriptive stipulation, and begs the question of why the relevant restrictions on the use of expletives should hold. A preferable solution would be to see the choice between expletive there and expletive it as one rooted in UG principles. Reasoning along these lines, one possibility would be to posit that economy considerations dictate that we use an expletive carrying as few uninterpretable features as possible. In a structure like (16), the expletive has to serve two functions: (i) to satisfy the [EPP] requirement for T to have a specifier with person and/or number properties; and (ii) to value the unvalued person/number features of [${ }_{T} \mathrm{BE}$]. Hence only expletive it can be used, since this carries carries both person and number. But in a structure like (27), the expletive is not needed to value the person/number features of $\left[{ }_{T} \mathrm{BE}\right]$ since these are valued by several prizes; rather, the expletive serves only to satisfy the requirement for T to have a specifier with person and/or number features. In this situation, we might suppose, there is preferred to it because there carries only person, and economy considerations dictate that we use as few uninterpretable features as possible.

8.7 Agreement and movement

So far, we have seen that agreement plays an important role not only in valuing the f-features of T but also in valuing the case-features of nominals. Chomsky $(1998,1999,2001)$ goes further and suggests that agreement also plays an important role in movement operations. To see why, let's return to consider the derivation of our earlier sentence (5B) They were arrested. Assume that the derivation proceeds as sketched earlier, with THEY being merged as the thematic complement of arrested, and the resulting VP in turn being merged with the tense auxiliary BE to form the structure (37) below:

In (37), $\left.{ }_{\mathrm{T}} \mathrm{BE}\right]$ is an active probe (by virtue of its uninterpretable person and number features) and has an uninterpretable [EPP] feature. It therefore searches for active nominal goals which can value and delete its person/number features, locating the pronoun THEY (which is active by virtue of its uninterpretable case
feature and which has person and number features which match those of BE). Since the matching goal THEY is a definite pronoun, the [EPP] feature of [$\left.{ }_{T} \mathrm{BE}\right]$ cannot be deleted by merging an expletive in spec-TP, but rather can only be deleted by movement of the goal to spec-TP, in accordance with (34iii): accordingly, THEY moves to become the specifier of BE, thereby deleting the uninterpretable [EPP] feature of BE. Assuming that Feature Copying, Nominative Case Assignment and Feature Deletion work as before, the structure which is formed at the end of the TP cycle will be that shown below:

(To avoid excessive visual clutter, the trace copy of they left behind in VP-complement position is shown here simply as they, but is in fact an identical copy of they, containing the same features as they. The same typographical convention will be used throughout the rest of this chapter.) The TP in (38) will subsequently be merged with a null declarative-force C , so terminating the syntactic derivation. Since all uninterpretable features have been deleted, the derivation converges - i.e. results in a syntactic structure which can subsequently be mapped into well-formed phonetic and semantic representations.

A key assumption underlying the analysis sketched here is that T triggers movement of a nominal goal with which it agrees in person and number. In a passive sentence like (5B) They were arrested, the nominal which agrees with T and which moves to spec-TP is the thematic complement of the verb arrested. But in an active sentence like:

He has arrested them

it is the subject he which agrees with T and moves to spec-TP, and not the complement them. Why should this be? In order to answer this question, let's look at how (39) is derived.

The verb arrested merges with its THEME complement them to form the V-bar arrested them. This V-bar is in turn merged with its AGENT argument he to form the VP he arrested them. The resulting VP is then merged with a present-tense T constituent to form the T-bar shown in simplified form below:

Given the Earliness Principle, T will serve as a probe at this point and look for a goal to value (and delete) its unvalued person/number features. However, if (as we assumed in our discussion of the passive structure in (38) above) T can agree with the complement of a verb, an important question to ask is why T can't agree with the complement them in an active structure like (40), and why in fact HAVE must agree with the subject he and hence is ultimately spelled out as the third person singular present-tense form has.

One answer to this question is provided by the Phase Impenetrability Condition, which we formulated in (20) above in the manner set out in (41) below:

Phase Impenetrability Condition/PIC

Any goal in the (c-command) domain of a phase head is impenetrable to a probe outside the phase

In our earlier discussion of PIC in §8.5, we noted Chomsky's (1999, p.9) claim that phases are 'propositional' in nature, and that accordingly CPs are phases. However, Chomsky claims that transitive verb phrases (but not intransitive VPs) are also propositional in nature and hence phases, by virtue of the fact that transitive VPs contain a complete thematic (argument structure) complex, including an external argument in spec-VP. If transitive VPs are phases, and PIC allows only constituents on the edge (i.e. in the head or specifier position) of a phase to be accessible to a higher probe, it follows that in a structure like (40) above, the T constituent HAVE will only be able to agree with the subject he on the edge of the transitive VP phase, not with the object them which lies within the (c-command) domain of the transitive phase head arrested. By contrast, in the passive structure (37), the passive VP arrested them is intransitive by virtue of not having an external argument/subject: since intransitive VPs are not phases, PIC does not prevent T from agreeing with the complement of the verb in (37).

8.8 EPP and agreement in control infinitives

The analysis presented in the previous section assumes that a finite T carries an [EPP] feature which drives A-movement. But what about the kind of infinitival [${ }_{\mathrm{T}} t o$] constituent found in control clauses? In the previous chapter, we assumed that infinitival to never has an [EPP] feature, and hence that the PRO subject of a control clause like that bracketed in (42a) below remains in situ in spec-VP as in (42b), rather than raising to spec-TP as in (42c):
(42)(a) They don't want [to see you]
(b) They don't want [${ }_{\mathrm{CP}}[\mathrm{C} \varnothing]\left[{ }_{\mathrm{TP}}\left[\mathrm{T}\right.\right.$ to] [${ }_{\mathrm{vP}}$ PRO [v see] you $\left.]\right]$]

We noted Baltin's (1995) claim that the in situ analysis (42b) under which PRO remains in situ would account for why wanna-contraction is possible in such sentences (yielding They don't wanna see you), since there would be no PRO intervening between want and to. However, Baltin's argument is not entirely convincing. After all, if intervening null constituents block to from cliticising onto want and if control clauses are CPs, why doesn't the intervening null complementiser in ($42 \mathrm{~b} / \mathrm{c}$) block wanna-contraction?

Moreover there is counter-evidence suggesting that PRO does in fact move to spec-TP in control infinitives (and hence that control to has an EPP feature). Part of the evidence comes from the syntax of constituents like those italicised in (43) below which have the property that they are construed as modifying a bold-printed antecedent which is not immediately adjacent to them in the relevant structure:
(43)(a) They were both priding themselves on their achievements
(b) I don't myself think that Svengali was the best choice for England manager
(c) He was personally held responsible

Both in (43a) is a floating quantifier (and each/all can be used in a similar fashion); myself in (43b) is a floating emphatic reflexive; and personally in (43c) is an argument-oriented adverb (construed as modifying an argument, in this case he). In each sentence in (43), the italicised expression is construed as modifying the bold-printed subject of the clause. Contrasts such as those in (44/45) below:
(44)(a) Two republican senators were themselves thought to have been implicated
(b) *There were themselves thought to have been implicated two republican senators
(45)(a) Two republican senators are both thought to have been implicated
(b) *There are both thought to have been implicated two republican senators
suggest that a floating modifier must be c-commanded by its bold-printed antecedent.
In the light of the requirement for a floating modifier to be c-commanded by its antecedent, consider the syntax of the bracketed clauses in the following sentences:
(46)(a) [To both be betrayed by their friends] would be disastrous for Romeo and Juliet
(b) [To themselves be indicted] would be unfair on the company directors
(c) It was upsetting [to personally have been accused of corruption]

In each of these examples, the bracketed clause is a control clause containing a PRO argument. In each case, PRO is the thematic complement of a passive participle (viz. betrayed/indicted/accused). Hence, if control to has no [EPP] feature and PRO remains in situ, the TP in the bracketed infinitive complement in (46b) will have the skeletal structure (47a) below, but if control to has an [EPP] feature, this will trigger movement of PRO to become the structural subject of to - as in (47b):
(47)(a) [CP [C $\varnothing]\left[{ }_{T \mathrm{TP}}\left[{ }_{\mathrm{T}}\right.\right.$ to] [aUXP themselves [AUX be] [vP [v indicted] PRO]]]]
(b) [${ }_{\mathrm{CP}}[\mathrm{C} \varnothing]\left[{ }_{\mathrm{TP}} \mathbf{P R O}\left[{ }_{\mathrm{T}}\right.\right.$ to] [auxp themselves [aUX be] [vP [v indicted] PRO] $]$]

Given the requirement for a floating emphatic reflexive to be c-commanded by its antecedent, and given that PRO is the intended antecedent of themselves in (47), it is clear that (47a) cannot be the right structure, since PRO does not c-command themselves in (47a). By contrast, movement of PRO to spec-TP in (47b) means that PRO will indeed c-command themselves, so correctly predicting that (47b) is grammatical.

Let's therefore follow Chomsky $(1998,1999,2001)$ in positing that control to does indeed have an [EPP] feature, triggering raising of PRO to spec-TP. Let's also follow Chomsky in positing that PRO is assigned null case by agreement with a c-commanding T with null (non-finite) tense in much the same way as subjects in tensed clauses are assigned nominative case by agreement with a c-commanding T which has finite (present or past) tense. More specifically, let's assume that to in control infinitives contains not only an abstract non-finite tense feature, but also abstract f-features; and let's further suppose that null case assignment can be characterised informally as follows:

(48) Null Case Assignment

An unvalued case feature on a goal is valued as null by a probe carrying null (non-finite) tense if probe and goal match in (person and number) f-features
See Stowell (1982) and Martin (2001) on the tense properties of control to, and Martin (2001) for evidence that control to has agreement features; but see Bowers (2002) for a different analysis of the case-marking of PRO subjects.

In the light of these assumptions, consider the derivation of the bracketed control clause in:

(49)

They have decided [PRO to help you]
Decide is a control predicate (as we see from the fact that (49) is paraphraseable as They have decided that they will help you, and from the fact that decide does not allow an expletive subject in a sentence like *There has decided to be an enquiry). Given the VP-Internal Subject Hypothesis, the PRO subject of the bracketed infinitive clause will originate in spec-VP, as the specifier of help you. More specifically, the derivation proceeds as follows. The verb help merges with its complement you, and the resulting V-bar help you in turn merges with its PRO subject to form the VP PRO help you. Merging control to with this VP forms the TP to help you. Let's suppose that since PRO refers back to they in (49), PRO (as used here) carries the interpretable features [3-Pers, Pl-Num]; let's also suppose that PRO enters the derivation with an unvalued case feature [u-Case]. In addition, let's assume that control to carries an interpretable nonfinite-tense feature [Nf-Tns] (denoting an irrealis event which has not yet happened but may happen in the future), and also has uninterpretable (and unvalued) person/number features. Finally (for the reasons given above), let's assume that to carries an [EPP] feature in control clauses. Given all these assumptions, merging to with [vp PRO help you] will form the T-bar (50) below (simplified by showing only features on constituents of immediate concern to us):

Since to is the highest head in the structure and is active (by virtue of its uninterpretable f-features), it serves as a probe which searches for a goal to value and delete its f-features. Since to c-commands PRO and PRO is active by virtue of its uninterpretable case feature, PRO can serve as a goal for the probe to. The unvalued f-features on the probe are assigned the same third person plural values as those on the goal by Feature Copying (7) and are deleted by Feature Deletion (13). The unvalued case-feature on PRO is assigned the value [Null-Case] by Null Case Assignment (48) and deleted by Feature Deletion (13). Since PRO is a definite pronoun, the [EPP] feature of to is deleted by movement of PRO to spec-TP in accordance with the EPP Generalisation (34iii). The result of applying these various operations is to derive the TP (51) below (simplified in a number of ways, e.g. by showing the trace of PRO simply as t rather than as a deleted copy of PRO):

The resulting TP is subsequently merged with the null nonfinite complementiser which introduces control clauses. As required, the structure which will serve as input to the semantic component will contain only (bold-printed) interpretable features - all uninterpretable features having been deleted.

In the prevous section, we suggested that a finite T has an [EPP] feature which triggers movement of the closest active matching goal to spec-TP, in conformity with the Attract Closest Principle. In this section, we have suggested that control to likewise carries an [EPP] feature triggering movement of the closest active goal to spec-TP. Such an analysis raises obvious questions about the nature of to in raising structures - and we turn to look at these in the next section.

8.9 EPP in defective clauses

In the previous chapter, we posited that raising to does not carry an [EPP] feature. This would mean that a sentence such as (52a) below has the skeletal structure (52b), with he originating as the thematic subject of admire and being raised directly to become the structural subject of does (as shown by the dotted arrow):
(52)(a) He does seem to admire her

More specifically, we assumed that to in raising structures like (52b) does not have an [EPP] feature, so that he does not become the subject of to at any stage of derivation.

However, Chomsky (2001, fn.56) argues that (somewhat contrived) sentences like (53) below provide empirical evidence that raising to does after all have an [EPP] feature:

(53)

John seems to Fred [to appear to himself [to like Mary]]
Here, himself refers to John, not to Fred. This is puzzling if we assume that the antecedent of a reflexive must be an argument locally c-commanding the reflexive (and hence contained within the same TP as the reflexive), since if raising to has no [EPP] feature and John moves directly from being the subject of the like clause to becoming the subject of the seem clause, the lefthand bracketed TP containing the reflexive will contain no antecedent for himself, and hence we will wrongly predict that sentences like (53) are ill-formed. By contrast, argues Chomsky, if we posit that raising to does indeed have an [EPP] feature, John will move from being subject of like Mary to becoming subject of to like Mary, then later becoming subject of to appear to himself to like Mary, before finally moving to become the subject of the null T
constituent in the seem clause. This will mean that a null trace copy of John is left behind as the subject of each of the two infinitive clauses, as shown in skeletal form in (54) below:

(54)

John seems to Fred [John to appear to himself [John to like Mary]]

Since the reflexive himself is locally c-commanded by the bold-printed trace John in (54) within the lefthand bracketed TP containing the reflexive, (54) correctly predicts that himself will be interpreted as referring to John. (Recall that Chomsky posits that traces are deleted in the phonological component but remain visible in the syntactic and semantic components. Further evidence that A-movement in raising structures is successive-cyclic is presented in Bošković 2002b.)

Sentences like (54) suggest that raising to must have an [EPP] feature triggering movement of an argument to spec-TP. But it's important to bear in mind that the [EPP] feature on T works in conjunction with the person/number f-features of T: more specifically, the [EPP] feature on T triggers movement to spec-TP of an expression which matches one or more of the f -features of T . It therefore follows that T in raising clauses must carry one or more f-features if it is to trigger movement of a nominal carrying f -features of its own. Now it clearly cannot be the case that raising to carries both person and number, since if it did we would wrongly predict that raising clauses require a null PRO subject (given that infinitival to assigns null case to its subject by (48) when carrying both person and number). The conclusion we reach, therefore, is that raising to must carry only one f-feature. But which f-feature person or number?

The answer is provided by raising sentences such as the following:

(55)

There do seem to remain several problems

On the assumption that raising to carries an [EPP] feature requiring it to project a subject, it seems reasonable to posit that expletive there originates as the specifier of to remain several problems and is subsequently raised up (in the manner shown by the arrow in the skeletal structure in (56) below) to become the specifier of $d o$ on the main-clause TP cycle:
[тр There [T do] [vр [v seem] [тр there [T to] [vp [v remain] several problems]]]]

This being so, merging there as the specifier of raising to on the subordinate clause TP cycle must satisfy the [EPP] feature of $t o$. It follows that the f-feature carried by $t o$ in (56) must match that carried by expletive there. Since we argued in $\S 8.6$ that expletive there carries person (but not number), it also follows that to in (56) must carry a person feature. This being so, the [EPP] feature of raising to will require it to project a specifier carrying a person feature, and expletive there clearly satisfies this requirement.

Our conclusion can be generalised from raising sentences like (55) to long-distance passives like (57a) below, involving the movement operation arrowed in (57b):
(57)(a) There are thought to remain several problems
(b) [${ }_{\mathrm{TP}}$ There $[\mathrm{T}$ are $]\left[\mathrm{vp}[\mathrm{v}\right.$ thought $]\left[{ }_{\mathrm{Tp}}\right.$ here $[\mathrm{T} \mathrm{to}][\mathrm{vp}$ [v remain several problems $\left.\left.\left.]\right]\right]\right]$

Passive to (i.e. the kind of to found in long-distance passives) cannot carry both person and number features, since otherwise it would wrongly be predicted to require a subject with null case. Since there originates as the subject of to in (57b) and has a person feature, it seems reasonable to conclude that passive to (like raising to) carries person but not number.

We can generalise our finding still further to infinitival TPs such as those bracketed in (58/59) below:
(58)(a) They were expecting [тp the visitors to be met at the airport]
(b) They were expecting [TP there to be someone to meet the visitors at the airport]
(59)(a) I will arrange [${ }_{\text {CP }}$ for [TP the visitors to be met at the airport]]
(b) I will arrange [${ }_{\mathrm{CP}}$ for [Tp there to be someone to meet the visitors at the airport]]

The bracketed TPs in (58) are ECM clauses (with the properties noted in §4.8). Since the visitors originates as the thematic complement of the passive verb met in (58a) but ends up as the subject of [T to],
it is clear that the head T of the bracketed complement-clause TP must contain an [EPP] feature and at least one f-feature. Since the infinitive subject can be expletive there in (58b), and since there carries only person, it follows that the head T of an ECM clause must carry a person feature as well as an [EPP] feature. But if we suppose that a non-finite T which carries a full set of person and number features (like the head T of a control clause) assigns null case to its subject, then it is apparent from the fact that the subject of an ECM clause is an overt constituent and hence does not have null case that the head T of an ECM clause must also be defective, and so carry an [EPP] feature and a person feature, but no number feature. Our conclusion can be generalised in a straightforward fashion to for-infinitive structures like those bracketed in (59): if we define ECM structures as structures in which a constituent within TP is assigned case by an external head lying outside the relevant TP , it follows that for-infinitives are also ECM structures.

Our argumentation here leads us to the following more general conclusions about the feature composition of T in English:

(60) Feature Composition of T in English

(i) T always carries an [EPP] feature in all types of (finite and non-finite, main and complement) clauses
(ii) T carries a complete set of (person and number) f -features in finite clauses and non-finite control clauses
(iii) T is defective in respect of its f -features in other types of non-finite clause (e.g. in raising clauses, long-distance passives, and ECM clauses) and carries only person (not number).
And these are essentially the assumptions made in Chomsky (2001).
In the light of the assumptions in (60), consider the derivation of the following sentence:
(61) Several prizes are thought likely [to be awarded]

Since the bracketed infinitive complement in (61) is a defective clause, [${ }_{\mathrm{T}} t o$] will carry uninterpretable [EPP] and person features (but no number feature) in accordance with ($60 \mathrm{i} / \mathrm{iii}$). This means that at the point where to is merged with its complement we have the structure shown in skeletal form below:
(62) $\begin{array}{cc}{[\mathrm{T} \text { to }] \text { be awarded }[\text { several prizes }]} \\ {[u-\text { Pers }]} & {[3-P e r s]} \\ {[E P P]} & {[\text { Pl-Num }]} \\ & {[\text { u-Case }]}\end{array}$

Since [т $t o$] is the highest head in the structure at this point and is active by virtue of its uninterpretable person feature, $\left[\begin{array}{r}\tau \\ \\ t o\end{array}\right]$ serves as a probe which searches for an active goal and locates several prizes, which is active by virtue of its unvalued case feature. The goal several prizes values the unvalued person feature of $t o$ as third person and (by virtue of being f-complete) deletes it. The unvalued case-feature of several prizes cannot be valued or deleted by to, since to is f-incomplete (by virtue of having no number feature), and only a finite/non-finite f-complete T can assign nominative/null case to a goal, and only a f complete a can delete a matching feature of β. The [EPP] feature of to is deleted by movement of several prizes to spec-TP in accordance with the EPP Generalisation (34iii), thereby deriving the structure (63) below (simplified in various ways, including by showing the deleted trace of several prizes without its features):

[several prizes $]$	$[$ T to $]$ be awarded several prizes
$[\mathbf{3 - P e r s}]$	$[\mathcal{3 - P e r s}]$
$[$ Pl-Num $]$	$[$ EPP $]$
$[$ u-Case $]$	

Merging the structure (63) with the raising adjective likely, merging the resulting AP with the passive verb thought and then merging the resulting VP with a finite present-tense T constituent containing BE will derive:
(64) $\left[{ }_{\mathrm{T}} \mathrm{BE}\right]$ thought likely [several prizes] ${ }_{\mathrm{T}}$ to] be awarded several prizes

$[$ Pres-Tns $]$	$[3-P e r s]$	$[3$ Peers $]$
$[$ u-Pers $]$	$[$ Pl-Num $]$	$[E P P]$
$[$ u-Num $]$	$[$ u-Case $]$	

[EPP]
Because it is the highest head in the structure and is active by virtue of its uninterpretable f-features, BE serves as a probe which searches for an active goal and locates several prizes. By virtue of being f -complete, the goal several prizes values and deletes the uninterpretable person/number features of the probe BE. By virtue of being finite and f-complete, BE values the unvalued case-feature of several prizes as nominative, and deletes it. The [EPP] feature of BE is deleted by moving several prizes to spec-TP in accordance with (34iii), so deriving:

The resulting TP is subsequently merged with a null declarative complementiser, and BE is ultimately spelled out as are. Since all unvalued features have been valued and all uninterpretable features have been deleted, the derivation converges (i.e. results in a well-formed structure which can be assigned an appropriate phonetic representation and an appropriate semantic representation).

Now let's return to take another look at the derivation of our earlier sentence (1) There are thought likely to be awarded several prizes. Let's suppose that we have reached the stage of derivation in (62) above, repeated as (66) below:

$[\mathrm{T}$ to $]$ be awarded $[$ several prizes $]$	
$[u$-Pers $]$	$[\mathbf{3 - P e r s}]$
$[E P P]$	$[\mathbf{P l}-\mathrm{Num}]$
	$[$ u-Case $]$

As before, to serves as a probe and identifies several prizes as an active goal. Since several prizes is f -complete, it can not only value the unvalued person feature of to but also delete it, yielding:

$[\mathrm{T}$ to $]$ be awarded $[$ several prizes $]$	
$[3$ Pers $]$	$[\mathbf{3 - P e r s}]$
$[E P P]$	$[\mathbf{P l}-\mathrm{Num}]$
	$[$ u-Case $]$

Since the goal several prizes is an indefinite expression, the [EPP] feature of to can be deleted by merging expletive there in spec-TP in accordance with the EPP Generalisation (34i), deriving:

there	$[\mathrm{T}$ to $]$	be awarded [several prizes $]$
$[3-$-Pers $]$	$[3-$ Pers $]$	$[$ 3-Pers $]$
	$[$ EPP $]$	$[$ Pl-Num $]$
		$[$ u-Case $]$

Since there is the highest head in the structure and is active by virtue of its uninterpretable person feature, it can serve as a probe, and picks out $t o$ as an active goal containing a person feature. However, since to is defective (in that it has no number feature), it cannot delete the uninterpretable person feature on there. (We assume here that several prizes cannot serve as a possible goal for there, because agreement is a relation between a noun/pronoun expression like there and a T constituent like $t o$, not a relation between two noun/pronoun expressions like there and several prizes.)

Merging the TP in (68) with the raising adjective likely, merging the resulting AP with the passive verb thought and merging the resulting VP with a present tense T containing BE will derive:

[T ${ }^{\text {BE] }}$	thought likely [there]	[T to]	be awarded [several prizes]
[Pres-Tns]	[3-Pers]	[3 Pers]	[3-Pers]
[u-Pers]		[EPP]	[Pl-Num]
[u-Num]			[u-Case]
[$E P P$]			

At this point, $\left.{ }_{T} \mathrm{BE}\right]$ is the highest head in the structure and so serves as a probe. Its uninterpretable person and number features make it active, and mean that $[\mathrm{T} \mathrm{BE}]$ looks for active nominal goals which have
person and/or number features. However, there are two such active nominal goals which are accessible to the probe [${ }_{\mathrm{T}} \mathrm{BE}$] in (69) - namely the expletive pronoun there (active by virtue of its uninterpretable third person feature) and the quantifier phrase several prizes (active by virtue of its uninterpretable case feature, and carrying both person and number features). Both are accessible to [${ }_{\mathrm{T}} \mathrm{BE}$] in terms of the Phase Impenetrability Condition (41) since neither is c-commanded by a phase head (i.e. by a complementiser or by a transitive verb). Let's suppose (following Chomsky 2001) that when a probe locates more than one active goal, it undergoes simultaneous multiple agreement with all active goals accessible to it - in other words, the probe BE simultaneously agrees with both there and several prizes. The unvalued person feature of BE will be valued as third-person via Feature Matching with the third-person goals there and several prizes; the unvalued number feature of BE will be valued as plural via agreement with the plural goal several prizes. The unvalued case feature on the goal several prizes will be valued as nominative (and deleted) by the f-complete probe BE because the two match in person and number and BE carries finite tense. The uninterpretable person/number features of the probe BE can in turn be deleted by the f -complete goal several prizes. In accordance with (34iii) and the Attract Closest Principle, the [EPP] feature of BE attracts the closest active goal (namely there) to move to become the specifier of BE (movement resulting in deletion of the EPP feature on BE), deriving:

there	$[\mathrm{TBE}]$	
$[$ 3-Pers $]$	$[$ Pres-Tns $]$	thought likely there

[EPP]
The resulting structure will then be merged with a null declarative complementiser, and BE will ultimately be spelled out as the third person plural present tense form are. As required, all uninterpretable features have been deleted from (70), so only the bold interpretable features are seen by the semantic component. Note that an important assumption which is incorporated into the analysis presented here is that the f -features of T agree with every goal which is accessible to them (giving rise to multiple agreement), but that (in consequence of the Attract Closest Principle) the [EPP] feature of T can only trigger movement of the closest goal to spec-TP. A further assumption we can make (though we will not go into the rationale for it here) is that all the agreement/movement operations which apply on a given cycle apply simultaneously.

To revert to terminology used in earlier chapters, if T in English always has an [EPP] feature, A-movement will always be a local operation which (in complex structures where an argument moves out of one or more lower TP constituents to become the subject of a higher TP) applies in a successive-cyclic fashion, with the relevant argument moving to become the subject of a lower TP before going on to become the subject of a higher TP. Since we saw in $\S 5.5$ that head movement is also successive-cyclic (in that a moved head moves into the next highest head position within the structure immediately containing it), the greater generalisation would appear to be that all movement is local (and hence successive cyclic in complex structures), so that any moved constituent moves into the closest appropriate landing site above it (as argued in Rizzi 2001a). If so, we would expect to find that wh-movement is also a local (hence successive-cyclic) operation. And in chapter 10, we shall argue that it is.

8.10 Summary

In this chapter, we have taken a look at Chomsky's recent work on case, agreement and A-movement. In §8.2 we saw that agreement plays an integral role in nominative case assignment, in that nominative case is assigned to a nominal which agrees in person and number with a finite T. In $\S 8.3$ we argued that some features enter the derivation already valued (e.g. the tense feature of T and the person/number f-features of nominals), whereas others (e.g. the f-features of T and the case feature of nominals) are initially unvalued and are assigned values in the course of the derivation by operations like Feature Copying (7) and Nominative Case Assignment (9). In §8.4, we argued that agreement and casemarking involve a relation between an active probe and an active goal, and that probe and goal are only active if they carry one or more uninterpretable features (e.g. uninterpretable f -features or case features). We also saw that uninterpretable features have to be deleted in the course of the derivation by a Feature Deletion operation, in order to ensure that they do not feed into the semantic component and thereby cause
the derivation to crash (because they are illegible in the semantic component), and that only a f-complete a can delete an uninterpretable feature of β. In $\S 8.5$, we suggested that expletive $i t$ enters the derivation with uninterpretable third-person and singular-number features, and that these value, delete and in turn are deleted by those of the auxiliary in sentences such as It is said that he has taken bribes. In §8.6, we argued that expletive there is merged directly in spec-TP, and serves as a probe whose uninterpretable third person feature is deleted via agreement with a f -complete T. In $\S 8.7$ we outlined Chomsky's agreementbased theory of movement under which movement involves an agreement relation between an active probe with an [EPP] feature and an active goal, and we suggested that the [EPP] feature of T can be satisfied either by merger of an expletive in spec-TP, or by movement of the closest active matching goal to spec-TP, with merger/movement of the relevant constituent in spec-TP deleting the [EPP] feature of T. In $\S 8.8$ we looked at the syntax of control infinitives, claiming that their PRO subject is assigned null case via agreement with a f-complete T carrying null (non-finite) tense. We went on to argue that data relating to the distribution of floating modifiers suggest that T in control infinitive clauses has an [EPP] feature which triggers movement of PRO to spec-TP. In $\S 8.9$ we argued that T in other types of infinitive clause (e.g. the infinitival complements of raising, passive and ECM predicates) is defective in that although it carries uninterpretable [EPP] and person features (the latter serving to make T active), it lacks the number feature carried by T in finite/control clauses. We saw that this entails that A-movement takes place in a successive-cyclic fashion, with the moved argument being raised to become the subject of a lower TP before raising to become the subject of a higher TP. We went on to consider the possibility that all movement operations are local (and hence apply in a successive-cyclic fashion in complex structures) and noted that this implies that wh-movement is also successive-cyclic in complex sentences (but said we would postpone detailed discussion of successive-cyclic wh-movement until chapter 10).

WORKBOOK SECTION

Exercise XV

Discuss the derivation of the following sentences.
1 There remains little hope of finding any survivors
2 There are expected to remain some problems
3 Several mineworkers are thought to have died
4 They are considered likely to want to enter the race
5 It would be unthinkable to compromise yourself
6 He appears to be thought to be certain to win the race
7 He is hoping to be promoted
8 It is rumoured that there have been several protests
9 It is rumoured that there have been several riots
10 There seem certain to remain some problems

Helpful hints

Assume (in accordance with (60) in the main text) that all finite clauses and all control infinitive clauses (i.e. infinitive clauses which are the complement of a CONTROL predicate like decide) are canonical clauses and hence CPs containing a T headed by a f -complete T with person, number and [EPP] features. By contrast, assume that seemingly subjectless infinitive clauses which are the complement of a RAISING predicate like seem/likely or a passive participle like expected are defective clauses, and hence are TPs headed by a defective T which has person and [EPP] features, but no number feature. Be careful not to confuse raising structures like It's likely to rain with control structures like It's easy to make a mistake: note that in the first structure we can have an expletive there subject (There's likely to be a strike), but not in the second (*There's easy to be a mistake). In control structures containing a reflexive, assume that PRO carries interpretable person and number features matching those of the reflexive. Assume also that infinitival be is the head AUX constituent of an AUXP when followed by a passive participle, but the head V of a VP when followed by an adjective.

Model answer for 1

Given the assumptions made in the text, sentence 1 will be derived as follows. The noun hope is merged with its PP complement of finding any survivors (whose structure need not concern us here) to form the NP hope of finding any survivors. This NP is merged with the quantifier little to form the QP little hope of finding any survivors. This QP is merged as the complement of the unaccusative verb remain to form the VP remain little hope of finding any survivors. This in turn is merged with an affixal finite T constituent (below denoted as AFF) to form the structure shown in simplified form in (i) below:

The affixal T constituent serves as a probe because it is the highest head in the structure, and because its uninterpretable person/number features make it active. In accordance with the Earliness Principle, T immediately searches for an active goal, locating the QP little hope of finding any survivors (which is active by virtue of having an uninterpretable case feature). The T probe values the case feature on the QP goal as nominative via the Nominative Case Assignment operation (9) in the main text, and deletes it via Feature Deletion (13). Conversely, the QP goal values the unvalued f -features on the T probe as third person singular via Feature Copying (7) and deletes them via Feature Deletion (13). The uninterpretable [EPP] feature carried by T requiring it to have a specifier which matches one or more of the person/number features carried by T can be deleted by merging there in spec-TP in accordance with (34i) in the main text, and the uninterpretable person feature on there can be deleted by the f-complete affix in T. Merging the resulting TP with a null complementiser marking the sentence as declarative in force derives:

All the features in (ii) feed into the PF component, and since there are no unvalued features in (ii), the relevant structure can be assigned an appropriate PF representation: since there is no overt auxiliary in T on which the Tense Affix (AFF) containing the person/number/tense features of T can be spelled out, the relevant affix is lowered onto the verb remain (by the morphological operation of Affix Hopping) in the PF component, so that the verb ultimately surfaces in the third person singular present tense form remains. Since all features in (ii) are valued, (ii) can be mapped into an appropriate PF representation; and since all (italicised) uninterpretable features have been deleted, (ii) can also be mapped into an appropriate semantic representation.

Exercise XVI

Discuss the derivation of following Belfast English sentences (kindly supplied to me by Alison Henry):
1 There should have been lots of students taking the course
2 There should have lots of students been taking the course
3 There should lots of students have been taking the course
4 There have seemed to be lots of students enjoying the course
5 There have seemed lots of students to be enjoying the course
6 There have lots of students seemed to be enjoying the course

Model answer for 1

Under the spec-TP analysis of expletive there outlined in the main text, 1 will have the following (simplified) derivation. The transitive verb taking merges with its DP complement the course to form the V-bar taking the course. This is in turn merged with its subject QP lots of students (whose internal structure need not concern us here) to form the VP lots of students taking the course. This in turn merges with the progressive auxiliary been to form the progressive auxiliary projection (PROGP) been lots of students taking the course. This is then merged with the perfect auxiliary have to form the Perfect Auxiliary Projection (PERFP) have been lots of students taking the course. The resulting PERFP is in turn merged with a finite T constituent containing the past tense modal auxiliary should, so deriving the T-bar shown in simplified form in (i) below (where only the features of those constituents of immediate interest to us are shown):
(i)

By virtue of its uninterpretable person and number features, ${ }_{\mathrm{T}}$ should $]$ serves as a probe and identifies the QP lots of students as the only accessible active goal. (Since a transitive VP is a phase, the Phase Impenetrabilty Condition prevents T from accessing any constituent of a transitive VP other than its specifier and head - and hence prevents the VP complement the course from being a goal for T.) Accordingly, lots of students values (as third person plural) and deletes the person/number features of should, and conversely should values (as nominative) and deletes the case feature of lots of students. Since the goal lots of students is an indefinite expression, the [EPP] feature carried by [${ }_{\mathrm{T}}$ should] can be deleted by merging expletive there in spec-TP in accordance with the EPP Generalisation (34i) in the main text. Merging expletive there in spec-TP will delete the [EPP] feature of T, and conversely the uninterpretable person feature carried by there can be deleted by the f -complete T constituent should, so deriving the simplified structure:
(ii) $\left.\begin{array}{cc}\text { there } \\ {[\text { 3-Pers }]} & \text { should } \\ {[\text { Past-Tns }]} & \text { have been lots of students enjoying the course } \\ & {[3 \text { Pers }]} \\ {[\text { Pl-Num }]} & {[\text { Pl-Ners }]} \\ & {[\text { EPP }]}\end{array}\right][$ Nom-Case $]$

The resulting TP will subsequently be merged with a null declarative C. Since all unvalued features have been valued and all uninterpretable features deleted, the resulting derivation is convergent (in that it can be mapped into appropriate phonetic and semantic representations).

Helpful Hints on 2-6

Discuss the problems posed for the assumption made throughout our text that only C (in wh-clauses) and T (in all types of clause) have an [EPP] feature. Consider the possibility of an alternative account under which languages (and language varieties) may differ in respect of an EPP PARAMETER in relation to what kind of heads carry an [EPP] feature.

9.

Split Projections

9.1 Overview

Hitherto, we have assumed a simple model of clause structure in which canonical clauses are $\mathrm{CP}+\mathrm{TP}+\mathrm{VP}$ structures. However, in $\S 5.6$ we suggested that it is necessary to 'split' TP into two different auxiliary-headed projections in sentences like He may be lying - namely a TP projection headed by the T constituent may and an AUXP projection headed by the AUX constituent be. In this chapter, we go on to suggest that CPs and VPs should likewise be split into more than one type of projection - hence the title of the chapter. We begin by looking at arguments that the CP layer of clause structure should be split into a number of separate (Force Phrase, Topic Phrase, Focus Phrase and Finiteness Phrase) projections. We then go on to explore the possibility of splitting verb phrases into two separate projections - an inner core headed by a lexical verb and an outer shell headed by an abstract light verb.

9.2 Split CP: Force, Topic and Focus projections

Our discussion of wh-movement in chapter 6 was concerned with movement of (interrogative, exclamative, and relative) wh-expressions to the periphery of clauses (i.e. to a position above TP).
However, as examples like (1) below illustrate, it is not simply wh-constituents which undergo movement to the clause periphery:
(1) No other colleague would he turn to

In (1), no other colleague (which is the complement of the preposition to) has been focused/focalised i.e. moved to the front of the sentence in order to focus it (and thereby give it special emphasis). At first sight, it would appear that the focused object moves into spec-CP and that the pre-subject auxiliary would moves from T to C in the manner shown in (2) below (simplified inter alia by not showing he originating in spec-VP):

However, one problem posed by the CP analysis of focusing/focalisation sketched in (2) is that a structure containing a preposed focused constituent can occur after a complementiser like that, as in (3) below:
(3) I am absolutely convinced [that no other colleague would he turn to]

This suggests that there must be more than one type of CP projection 'above' TP in clauses: more specifically, there must be one type of projection which hosts preposed focused constituents, and another type of projection which hosts complementisers. Reasoning along these lines, Luigi Rizzi (1997, 2001b, 2003) suggests that CP should be split into a number of different projections - an analysis widely referred to as the split CP hypothesis. More specifically, he suggests that complementisers (by virtue of their role in specifying whether a given clause is declarative, interrogative, imperative, or exclamative in force) should be analysed as Force markers heading a ForceP (= Force Phrase) projection, and that focused constituents should be analysed as contained within a separate FocP (= Focus Phrase) headed by a Foc constituent (= Focus marker).
On this view, the bracketed complement clause in (3) would have the structure shown in simplified form below:

The focused $\mathrm{QP} /$ quantifier phrase no other colleague originates as the complement of the preposition to and (by virtue of being focused) moves from complement position within PP into specifier position within FocP. The auxiliary would originates in T and from there moves into the head Foc position of FocP. One way of describing the relevant data is to suppose that the head Foc constituent of FocP carries an [EPP] feature and an uninterpretable focus feature which together attract the focused object no other colleague (which itself contains a matching interpretable focus feature) to move into spec-FocP, and that Foc is a strong head carrying an affixal [TNS] feature which attracts the auxiliary would to move from T into Foc.

From a discourse perspective, a focused constituent typically represents new information (i.e. information not previously mentioned in the discourse and assumed to be unfamiliar to the hearer). In this respect, focused constituents differ from another class of preposed expressions which serve as the topic of the clause immediately containing them. Topics typically represent old information (i.e. information which has already been mentioned in the discourse and hence is assumed to be known to the hearer). In this connection, consider the sentence produced by speaker B below:

SPEAKER A: The demonstrators have been looting shops and setting fire to cars
SPEAKER B: That kind of behaviour, we cannot tolerate in a civilised society
Here, the italicised phrase that kind of behaviour refers back to the activity of looting shops and setting fire to cars mentioned earlier by speaker A, and so is the topic of the discourse. Since the topic that kind of behaviour is the complement of the verb tolerate it would be expected to occupy the canonical complement position following tolerate. Instead, it ends up at the front of the overall sentence, and so would seem to have undergone a movement operation of some kind. Since the relevant movement operation serves to mark the preposed constituent as the topic of the sentence, it is widely known as topicalisation. (On differences between focusing and topicalisation, See Rizzi 1997, Cormack and Smith 2000b, Smith and Cormack 2002, Alexopoulou and Kolliakou 2002, and Drubig 2003.) However, since topicalisation moves a maximal projection to a specifier position on the periphery of the clause, it can (like focusing and wh-movement) be regarded a particular instance of the more general A-bar movement operation we looked at in chapter 7 whereby a moved constituent is attracted into an A-bar specifier position (i.e. the kind of specifier position which can be occupied by arguments and adjuncts alike).

Rizzi (1997) and Haegeman (2000) argue that just as focused constituents occupy the specifier position within a Focus Phrase, so too topicalised constituents occupy the specifier position within a Topic Phrase. This in turn raises the question of where Topic Phrases are positioned relative to other constituents within the clause. In this connection, consider the italicised clause in (6) below:
(6) He had seen something truly evil - prisoners being ritually raped, tortured and mutiliated. He prayed that atrocities like those, never again would he witness

In the italicised clause in (6), that marks the declarative force of the clause; atrocities like those is the object of the verb witness and has been preposed in order to mark it as the topic of the sentence (since it refers back to the acts of rape, torture and mutilation mentioned in the previous sentence); the preposed negative adverbial phrase never again is a focused constituent, and hence requires auxiliary inversion. Thus, the italicised that-clause in (6) will have the simplified structure shown below:
(7)

We can assume that the head Top constituent of the Topic Phrase contains an [EPP] feature and an uninterpretable topic feature, and that these attract a maximal projection which carries a matching interpretable topic feature to move to the specifier position within the Topic Phrase. If we further assume that Top is not a strong head (and so does not carry an affixal [TNS] feature), we can account for the fact that the auxiliary would remains in the strong Foc position and does not raise to the weak Top position.

Rizzi's split CP analysis raises interesting questions about the syntax of the kind of wh-movement operation which we find (inter alia) in interrogatives, relatives, and exclamatives. Within the unitary (unsplit) CP analysis outlined in chapter 7, it was clear that wh-phrases moved into spec-CP; but if CP can be split into a number of distinct projections (including a Force Phrase, a Topic Phrase, and a Focus Phrase), the question arises as to which of these projections serves as the landing-site for wh-movement. Rizzi (1997, p.289) suggests that 'relative operators occupy the highest specifier position, the spec of Force'. In this connection, consider the syntax of the bracketed relative clauses in (8) below:
(8)(a) A university is the kind of place [in which, that kind of behaviour, we cannot tolerate]
(b) Syntax is the kind of subject [which only very rarely will students enjoy]

In (8a), the preposed wh-expression in which precedes the preposed topic that kind of behaviour; in (8b) the preposed relative pronoun which precedes the preposed focused expression only very rarely. If Rizzi is right in suggesting that preposed relative operator expressions occupy specifier position within the Force Phrase, the bracketed relative clauses in $(8 \mathrm{a} / \mathrm{b})$ above will have the simplified structures shown below:
(9)(a) [ForceP in which [Force \varnothing] [TopP that kind of behaviour [Tор \varnothing] [TP we cannot tolerate $\mathbf{t} t]$]]
(b) [ForceP which [Force \emptyset] [FocP only very rarely [Foc will] [TP students t enjoy $t \mathbf{t}$]]]
(Trace copies of moved constituents are shown as t and printed in the same type-face as their antecedent.)
By contrast, Rizzi argues (1997, p.299) that a preposed wh-operator expression 'ends up in Spec of Foc in main questions'. If (as he claims) clauses may contain only a single Focus Phrase constituent, such an assumption will provide a straightforward account of the ungrammaticality of main clause questions such as (10) below:
(10)(a) \quad What never again will you do?
(b) *What will never again you do?

If both what and never again (when preposed) move into the specifier position within FocP, if Foc allows only one focused constituent as its specifier, and if no clause may contain more than one FocP constituent, it follows that (10a) will be ruled out by virtue of Foc having two specifiers (what and never again) and that (10b) will be ruled out by virtue of requiring two Focus Phrase constituents (one hosting what and another hosting never again). Likewise, multiple wh-movement questions (i.e. questions in which more than one wh-expression is preposed) like (11) below will be ruled out in a similar fashion:
(11)(a) *Who where did he send?
(b) *Who did where he send?

The assumption that preposed wh-phrases occupy spec-FocP has interesting implications for our claim in $\S 6.8$ that yes-no questions contain an interrogative operator whether (a null counterpart of whether). If this null operator (like other interrogative expressions) occupies spec-FocP, and if Foc is a strong head, it follows that inverted auxiliaries in main-clause yes-no questions like Has he left? will involve movement of the inverted auxiliary has into the head Foc position within FocP, with the specifier position in FocP being filled by a null counterpart of whether. This assumption would account for the ungrammaticality of sentences such as the following:
(12)(a) *Will never again things be the same?
(b) *Can that kind of behaviour we tolerate in a civilised society?

If never again is the specifier of a FocP constituent in (12a), the inverted auxiliary must be in a higher FocP projection whose specifier is whether. However, we have already seen in relation to sentences like (10/11) above that clauses may only contain one FocP constituent, so the ungrammaticality of (12a) can be attributed to the impossibility of stacking one FocP on top of another. Likewise, if that kind of behaviour is a topicalised constituent occupying the specifier position within a Topic Phrase in (12b) and if an inverted auxiliary like did in a yes-no question occupies the head Foc position of a FocP containing whether as its specifier, this means that FocP is positioned above TopP in (12b). Given the Head Movement Constraint, can will have to move through Top to get into Foc; but since Top is a weak head, can is prevented from moving through Top into Foc; and since Foc is a strong affixal head, the affix in Foc ends up being stranded without any verb to attach to. If we reverse the order of the two projections and position TopP above FocP, the resulting structure is fine, as we see from (13) below:

(13) That kind of behaviour, can we tolerate in a civilised society?

In (13), the topic that kind of behaviour occupies the specifier position of a TopP which has a weak head, while the inverted auxiliary can occupies the strong head Foc position in a FocP which has the null operator whether as its specifier.

Although Rizzi argues that a preposed interrogative wh-expression moves into spec-FocP in main clauses, he maintains that a preposed wh-expression moves into a different position (spec-ForceP) in complement-clause questions. Some evidence in support of this claim comes from sentences such as the following (from Culicover 1991):
(14)(a) Lee wonders [whether under no circumstances at all would Robin volunteer]
(b) Lee wonders [why under no circumstances at all would Robin volunteer]

Here, the wh-expressions whether/why occur to the left of the focused negative phrase under no circumstances, suggesting that whether/why do not occupy specifier position within FocP but rather some higher position - and since ForceP is the highest projection within the clause, it is plausible to suppose that whether/why occupy spec-ForceP in structures like (14).

A question raised by Rizzi's analysis of relative and interrogative wh-clauses is where preposed wh-expressions move in exclamative clauses. In this connection, consider (15) below:
(15)(a) How many of their policies only rarely do politicians get around to implementing!
(b) In how many countries, that kind of behaviour, autocratic leaders would simply not tolerate!

In (15a), the italicised exclamative wh-expression how many of their policies precedes the bold-printed focused constituent only rarely, while in (15b) the exclamative wh-phrase in how many countries precedes the underlined topic that kind of behaviour. And in (16) below:

In how many countries of the world, such behaviour, under no circumstances would autocratic leaders tolerate!
an italicised exclamative expression precedes both an underlined topicalised expression and a bold-printed focused expression - though the resulting sentence is clearly highly contrived. All of this suggests that exclamative wh-expressions (like relative wh-expressions) move into the specifier position within ForceP.

9.3 Split CP: Finiteness projection

In the previous section, we argued that above TP there may be not just a single CP projection but rather at least three different types of projection - namely a Force Phrase, a Topic Phrase and a Focus Phrase (the latter two being found only in clauses containing focused or topicalised constituents). However, Rizzi argues that below FocP (and above TP) there is a fourth functional projection which he terms FinP/Finiteness Phrase, whose head Fin constituent serves the function of marking a clause as finite or nonfinite. He argues that Fin is the position occupied by prepositional particles like di 'of' which introduce infinitival control clauses in languages like Italian in structures such as (17) below:

Gianni pensa, il tuo libro, di PRO cononscerlo bene
Gianni thinks, the your book, of PRO know.it well
'Gianni thinks that your book, he knows well'
Rizzi maintains that the italicised clause which is the complement of pensa 'thinks' in (17) has the simplified structure (18) below:

Under his analysis, il tuo libro 'the your book' is a topic and di 'of' is a Fin head which marks its clause as nonfinite (more specifically, as infinitival). Moreover, Rizzi maintains that the Fin head di 'of' assigns null case to the PRO subject of its clause (an account of null case assignment in keeping with our account in $\S 4.9$, but not with the Chomskyan account given in §8.8).

While present-day English has no overt counterpart of infinitival particles like Italian di in control clauses, it may be that for served essentially the same function in Middle English control infinitives such as those bracketed below:
(19)(a) Al were it good [no womman for to touche] (Chaucer, Wife of Bath's Tale, line 85) Although it would be good to touch no woman
(b) I wol renne out, [my borel for to shewe] (Chaucer, Wife of Bath's Tale, line 356) I will run out, in order to show my clothing
In $(19 a / b)$ the italicised expression is the direct object of the verb at the end of the line, but has been focalised/topicalised and thereby ends up positioned in front of for. This is consistent with the possibility that for occupies the same Fin position in Middle English as $d i$ in Modern Italian, and that the italicised complements in $(19 \mathrm{a} / \mathrm{b})$ move into specifier position within a higher Focus Phrase/Topic Phrase projection. Since the for infinitive complement in (19) has a null subject rather than an overt accusative subject, we can suppose that it is intransitive in the relevant use.

An interesting possibility raised by this analysis is that for in overt-subject infinitives in present-day English also functions as a nonfinite Fin head - though an obligatorily transitive one. In this regard, consider the two different replies given by speaker B below:

SPEAKER A: What was the advice given by the police to the general public?
SPEAKER B: (i) Under no circumstances for anyone to approach the escaped convicts
(ii) That under no circumstances should anyone approach the escaped convicts

What is particularly interesting about speaker B's replies in (20) is that the focused prepositional phrase under no circumstances precedes the complementiser for in (20Bi), but follows the complementiser that in (20Bii). This suggests that for occupies the head Fin position of FinP, but that occupies the head Force position of ForceP. On this view, the two answers given by speaker B would have the respective skeletal structures shown in $(21 \mathrm{a} / \mathrm{b})$ below:

If Foc is a strong head in finite (though not infinitival) clauses, it follows that the auxiliary should in (21b) will raise from the head T position of TP into the head Foc position of FocP; and if we assume the Head
Movement Constraint, it also follows that should must move first to Fin before moving into Foc. We can suppose that the reply given by speaker B in (22) below:

SPEAKER A: What was the advice given by the police to the general public?
SPEAKER B: Under no circumstances to approach the escaped convicts
has essentially the same structure as that shown in (21a), save that in place of the overt Fin head for we have a null Fin head, and that in place of the overt subject anyone we have a null PRO subject. In addition, if Foc is only a strong head in finite clauses, the Fin head remains in situ rather than raising to Foc.

The overall gist of Rizzi's split CP hypothesis is that in structures containing a topicalised and/or focalised constituent, CP splits into a number of different projections. In a clause containing both a topicalised and a focalised constituent, CP splits into four separate projections - namely a Force Phrase, Topic Phrase, Focus Phrase, and Finiteness Phrase. In a sentence containing a topicalised but no focalised constituent, CP splits into three separate projections - namely into a Force Phrase, Topic Phrase and Finiteness Phrase. In a sentence containing a focalised but no topicalised constituent, CP again splits into three projections - namely into a Force Phrase, Focus Phrase and Finiteness Phrase. However, in a
structure containing no focalised or topicalised constituents, Rizzi posits that Force and Finiteness features are syncretised (i.e. collapsed) onto a single head, with the result that CP does not split in this case: in other words, rather than being realised on two different heads, the relevant force and finiteness features are realised on a single head corresponding to the traditional C constituent (so that C is in effect a composite force/finiteness head). In simple terms, what this means is that C only splits into multiple projections in structures containing a topicalised and/or focalised constituent.

We can illustrate the conditions under which CP does (or does not) split in terms of the syntax of the that-clauses in (23) below:
(23)(a) You must know that this kind of behavior we cannot tolerate
(b) You must know that we cannot tolerate this kind of behaviour

In (23a) the object this kind of behaviour has been topicalised, so forcing CP to split into three projections (ForceP, TopP and FinP) as shown in simplified form in (24) below:

$$
\begin{equation*}
[\text { ForceP }[\text { Force that }][\mathrm{TopP} \text { this kind of behaviour }[\mathrm{Top} \varnothing][\text { FinP }[\text { Fin } \varnothing][\mathrm{TP} \text { we }[\mathrm{T} \text { cannot tolerate } t]]]] \tag{24}
\end{equation*}
$$

By contrast, in (23b) there is no topicalised or focalised constituent, hence CP does not split into multiple projections. Accordingly, only a single C constituent is projected which carries both finiteness and force features, as in (25) below (where DEC is a declarative force feature and FIN is a finiteness feature):

$$
\begin{equation*}
\text { [CP }\left[\mathrm{C} \text { that }_{\mathrm{DEC}, \mathrm{FIN}}\right][\text { TP } \text { we [T cannot] tolerate this kind of behaviour]] } \tag{25}
\end{equation*}
$$

Rizzi posits that (in finite clauses) the relevant types of head are spelled out in the manner shown informally in (26) below:

A head in a split CP projection can be spelled out in English as:
(i) that in a complement clause if it carries a declarative force feature (with or without a finiteness feature)
(ii) \varnothing if it carries a finiteness feature (with or without a declarative force feature)

It follows from (26) that the Force head in (24) can be spelled out as that but not as ϕ, and that Fin can be spelled out as ϕ but not as that, so accounting for the ungrammaticality of :
(27)(a) *You must know \varnothing this kind of behaviour that we cannot tolerate
(b) *You must know that this kind of behaviour that we cannot tolerate
(c) *You must know ϕ this kind of behaviour ϕ we cannot tolerate
(Irrelevantly, $(27 \mathrm{c})$ is grammatical if written with a colon between know and this kind of behaviour and read as two separate sentences.) It also means that the syncretised (force/finiteness) C constituent in (25) can either be spelled out as that in accordance with (26i), or be given a null spellout in accordance with (26ii) as in (28) below:
(28) You must know [C $\emptyset_{\text {DEC, FIN }}$] we cannot tolerate this kind of behaviour

In other words, Rizzi's analysis provides a principled account of the (overt/null) spellout of finite declarative complementisers in English (though see Sobin 2002 for complications. Complementiser spellout may be different in other languages - see e.g. Alexopoulou and Kolliakou 2002 on Greek.)

9.4 Split VPs: VP shells in ergative structures

Having looked at evidence that CP can be split into a number of different projections, we now turn to look at evidence arguing that VPs should be split into two distinct projections - an outer VP shell and an inner VP core. For obvious reasons, this has become known as the VP shell analysis.

The sentences we have analysed throughout this book so far have generally contained simple verb phrases headed by a verb with a single complement. Such single-complement structures can easily be accommodated within the binary-branching framework adopted here, since all we need say is that a verb merges with its complement to form a (binary-branching) V-bar constituent. However, a particular problem for the binary-branching framework is posed by three-place predicates like those italicised in (29) below which have a (bold-printed) subject and two (bracketed) complements:
(29)(a)
He rolled [the ball] [down the hill]
(b) He filled [the bath] [with water]

If we assume that complements are sisters to heads, it might seem as if the V-bar constituent headed by rolled in (29a) has the structure (30) below:
(30)

However, a structure such as (30) is problematic within the framework adopted here. After all, it is a ternary-branching structure (V-bar branches into the three separate constituents, namely the V rolled, the DP the ball and the PP down the hill), and this poses an obvious problem within a framework which assumes that the merger operation which forms phrases is an inherently binary operation which can only combine constituents in a pairwise fashion. Moreover, a ternary-branching structure such as (30) would wrongly predict that the string the ball down the hill does not form a constituent, and so cannot be coordinated with another similar string (given the traditional assumption that only identical constituents can be conjoined) - yet this prediction is falsified by sentences such as:

(31) He rolled the ball down the hill and the acorn up the mountain

How can we overcome these problems?
One answer is to suppose that transitive structures like He rolled the ball down the hill have a complex internal structure which is parallel in some respects to causative structures like He made the ball roll down the hill (where MAKE has roughly the same meaning as CAUSE). On this view the ball roll down the hill would serve as a VP complement of a null causative verb (which can be thought of informally an invisible counterpart of MAKE). We can further suppose that the null causative verb is affixal in nature and so triggers raising of the verb roll to adjoin to the causative verb, deriving a structure loosely paraphraseable as He made + roll [the ball foll down the hill], where foll is a trace copy of the moved verb roll. We could then say that the string the ball down the hill in (31) is a VP remnant headed by a trace copy of the moved verb roll. Since this string is a VP constituent, we correctly predict that it can be co-ordinated with another VP remnant like the acorn up the mountain - as is indeed the case in (31).

Analysing structures like roll the ball down the hill as transitive counterparts of intransitive structures is by no means implausible, since many three-place transitive predicates like roll can also be used as two-place intransitive predicates in which the (italicised) DP which immediately follows the (bold-printed) verb in the three-place structure functions as the subject in the two-place structure - as we see from sentence-pairs such as the following:

(32)(a) They will roll the ball down the hill	(b) The ball will roll down the hill
(33)(a) He filled the bath with water	(b) The bath filled with water
(34)(a) He broke the vase into pieces	(b) The vase broke into pieces
(35)(a) They withdrew the troops from Ruritania	(b) The troops withdrew from Ruritania
(36)(a) They closed the store down	(b) The store closed down
(37)(a) They moved the headquarters to Brooklyn	(b) The headquarters moved to Brooklyn

(32)(a) They will roll the ball down the hill
(33)(a) He filled the bath with water
(34)(a) He broke the vase into pieces
(35)(a) They withdrew the troops from Ruritania
(37)(a) They moved the headquarters to Brooklyn
(b) The ball will roll down the hill
(b) The bath filled with water
(b) The vase broke into pieces
(b) The troops withdrew from Ruritania
(b) The headquarters moved to Brooklyn
(Verbs which allow this dual use as either three-place or two-place predicates are sometimes referred to as ergative predicates.) Moreover, the italicised DP seems to play the same thematic role with respect to the bold-printed verb in each pair of examples: for example, the ball is the THEME argument of roll (i.e. the entity which undergoes a rolling motion) both in (32a) They will roll the ball down the hill and in (32b) The ball will roll down the hill. Evidence that the ball plays the same semantic role in both sentences comes from the fact that the italicised argument is subject to the same pragmatic restrictions on the choice of expression which can fulfil the relevant argument function in each type of sentence: cf.
(38)(a) The ball/the rock/! the theory/!sincerity will roll down the hill
(b) They will roll the ball/the rock/! the theory/!sincerity down the hill

If principles of UG correlate thematic structure with syntactic structure in a uniform fashion (in accordance with Baker's 1988 Uniform Theta Assignment Hypothesis/UTAH), then it follows that two arguments which fulfil the same thematic function with respect to a given predicate must be merged in the
same position in the syntax.
An analysis within the spirit of UTAH would be to assume that since the ball is clearly the subject of roll in (32b) The ball will roll down the hill, then it must also be the case that the ball originates as the subject of roll in (32a) They will roll the ball down the hill. But if this is so, how come the ball is positioned after the verb roll in (32b), when subjects are normally positioned before their verbs? A plausible answer to this question within the framework we are adopting here is to suppose that the verb roll moves from its initial (post-subject) position after the ball into a higher verb position to the left of the ball. More specifically, adapting ideas put forward by Larson (1988, 1990), Hale and Keyser (1991, 1993, 1994) and Chomsky (1995), let's suppose that the (b) examples in sentences like (32-37) are simple VPs, but that the (a) examples are split VP structures which comprise an outer shell and an inner core.

More concretely, let's make the following assumptions. In (32b) The ball will roll down the hill, the V roll is merged with its PP complement down the hill to form the V-bar roll down the hill, and this is then merged with the DP the ball to form the VP structure (39) below:
(39)

In the case of (32b), the resulting VP will then be merged with the T constituent will to form the T-bar will roll down the hill; the [EPP] and f -features of $\left[{ }_{\mathrm{T}}\right.$ will] trigger raising of the subject the ball into spec-TP to become subject of will (in the manner shown by the dotted arrow below), deriving:

The resulting TP is subsequently merged with a null declarative C constituent. (Throughout this chapter, we simplify exposition by omitting details like this which are not directly relevant to the point at hand.)

Now consider how we derive (32a) They will roll the ball down the hill. Let's suppose that the derivation proceeds as before, until we reach the stage where the VP structure (39) the ball roll down the hill has been formed. But this time, let's assume that the VP in (39) is then merged as the complement of an abstract causative light verb (v) - i.e. a null verb with much the same causative interpretation as the verb MAKE (so that They will roll the ball down the hill has a similar interpretation to They will make the ball roll down the hill). Let's also suppose that this causative light verb is affixal in nature (or has a strong V-feature), and that the verb roll adjoins to it, forming a structure which can be paraphrased literally as 'make+roll the ball down the hill' - a structure which has an overt counterpart in French structures like faire rouler la balle en bas de la colline, literally 'make roll the ball into bottom of the hill'). The resulting v-bar structure is then merged with the subject they (which is assigned the q -role of AGENT argument of the causative light verb), to form the complex vP (41) below (lower-case letters being used to denote the light verb, and the dotted arrow showing movement of the verb roll to adjoin to the null light-verb ϕ):

Subsequently, the vP in (41) merges with the T constituent will, the subject we raises into spec-TP, and the resulting TP is merged with a null declarative complementiser, forming the structure (42) below (where the dotted arrows show movements which have taken place in the course of the derivation):
(42)

The analysis in (42) correctly specifies the word-order in (32a) They will roll the ball down the hill. (See Stroik 2001 for arguments that $d o$ is used to support a null light-verb in elliptical structures such as John will roll a ball down the hill and Paul will do so as well.)

The VP-shell analysis in (42) provides an interesting account of an otherwise puzzling aspect of the syntax of sentences like (32a) - namely the fact that adverbs like gently can be positioned either before roll or after the ball, as we see from:
(43)(a) They will gently roll the ball down the hill (b) They will roll the ball gently down the hill

Let's suppose that adverbs like gently are adjuncts, and that adjunction is a different kind of operation from merger. Merger extends a constituent into a larger type of projection, so that (e.g.) merging T with an appropriate complement extends T into T-bar, and merging T-bar with an appropriate specifier extends T-bar into TP. By contrast, adjunction extends a constituent into a larger projection of the same type (e.g. merging a moved V with a minimal projection like T forms a larger T constituent; merging an adjunct with an intermediate projection like T-bar extends T-bar into another T-bar constituent; merging an adjunct with a maximal projection like TP forms an even larger TP - and so on. (See Stepanov 2001 and Chomsky 2001 for technical accounts of differences between adjunction and merger.) Let's suppose that gently is the kind of adverb which can adjoin to an intermediate verbal projection. Given this assumption and the light-verb analysis in (42), we can then propose the following derivations for (43a-b).

In (43a), the verb roll merges with the PP down the hill to form the V-bar roll down the hill, and this V-bar in turn merges with the DP the ball to form the VP the ball roll down the hill, with the structure shown in (39) above. This VP then merges with a null causative light-verb ϕ to which the verb roll adjoins, forming the v-bar $\emptyset+$ roll the ball roll down the hill. The resulting v-bar merges with the adverb gently to form the larger v-bar gently $\phi+$ roll the ball roll down the hill; and this v-bar in turn merges with the subject they to form the vP they gently $\phi+$ roll the ball roll down the hill. The v P thereby formed merges with the T constituent will, forming the T-bar will they gently $\phi+$ roll the ball foll down the hill. The subject they raises to spec-TP forming the TP they will they gently $\phi+$ roll the ball foll down the hill.

The resulting TP is then merged with a null declarative complementiser to derive the structure shown in simplified form in (44) below (with arrows showing movements which have taken place):

The analysis in (44) correctly specifies the word order in (43a) They will gently roll the ball down the hill.
Now consider how (43b) They will roll the ball gently down the hill is derived. As before, the verb roll merges with the PP down the hill, forming the V-bar roll down the hill. The adverb gently then merges with this V-bar to form the larger V-bar gently roll down the hill. This V-bar in turn merges with the DP the ball to form the VP the ball gently roll down the hill. The resulting VP is merged with a causative light-verb $[\mathrm{v} \varnothing]$ to which the verb roll adjoins, so forming the v-bar $\phi+$ roll the ball gently foll down the hill. This v-bar is then merged with the subject we to form the v P we $\phi+$ roll the ball gently roll down the hill. The vP thereby formed merges with [т will], forming the T-bar will we $\phi+$ roll the ball gently roll down the hill. The subject we raises to spec-TP, and the resulting TP is merged with a null declarative C to form the CP (45) below (with arrows showing movements which have taken place):
(45)

the ball

The different positions occupied by the adverb gently in (44) and (45) reflect a subtle meaning difference between (43a) and (43b): (43a) means that the action which initiated the rolling motion was gentle, whereas (43b) means that the rolling motion itself was gentle.

A light-verb analysis also offers us an interesting account of adverb position in sentences like:
(46)(a) He had deliberately rolled the ball gently down the hill
(b) *He had gently rolled the ball deliberately down the hill

Let's suppose that deliberately (by virtue of its meaning) can only be an adjunct to a projection of an agentive verb (i.e. a verb whose subject has the thematic role of AGENT). If we suppose (as earlier) that the light-verb $[\mathrm{v} \varnothing]$ is a causative verb with an AGENT subject, the contrast in (46) can be accounted for straightforwardly: in (46a) deliberately is contained within a vP headed by a null agentive causative light-verb; but in (46b) it is contained with a VP headed by the nonagentive verb roll. (The verb roll is a nonagentive predicate because its subject has the q-role THEME, not AGENT.) We can then say that adverbs like deliberately are adverbs which adjoin to a v-bar headed by an agentive light-verb, but not to V-bar.

This in turn might lead us to expect to find a corresponding class of adverbs which can adjoin to V-bar but not v-bar. In this connection, consider the following contrasts (adapted from Bowers 1993, p.609):
(47)(a) Mary jumped the horse perfectly over the last fence
(b) *Mary perfectly jumped the horse over the last fence

Given the assumptions made here, the derivation of (47a) would be parallel to that in (45), while the derivation of (47b) would be parallel to that in (44). If we assume that the adverb perfectly (in the relevant use) can function only as an adjunct to a V-projection, the contrast between (47a) and (47b) can be accounted for straightforwardly: in (47a), perfectly is adjoined to a V-bar, whereas in (47b) it is merged with a v-bar (in violation of the requirement that it can only adjoin to a V-projection).

9.5 Extending VP shells to other transitive structures

As we have seen, the VP shell analysis outlined here provides an interesting solution to the problems posed by ergative verbs when they are used as transitive verbs with two complements. However, the problems posed by transitive verbs which take two complements arise not only with ergative verbs which have transitive and intransitive counterparts (like those in (32-37) above), but also with two-complement transitive verbs like those bold-printed below (their complements being bracketed):
(48)(a) They will load [the truck] [with hay]
(c) They took [everything] [from her]
(b) He gave [no explanation] [to his friends]
(d) Nobody can blame [you] [for the accident]

Verbs like those in (48) cannot be used intransitively, as we see from the ungrammaticality of:
(49)(a) *The truck will load with hay
(b) *No explanation gave to his friends
(c) *Everything took from her
(d) *You can blame for the accident

However, it is interesting to note that in structures like (48) too we find that adverbs belonging to the same class as gently can be positioned either before the verb or between its two complements: cf.
(50)(a) They will carefully load the truck with hay
(b) They will load the truck carefully with hay

This suggests that (in spite of the fact that the relevant verbs have no intransitive counterpart) a shell analysis is appropriate for structures like (48) too. If so, a sentence such as (48a) will have the structure shown in simplified form in (51) below (with arrows showing movements which take place):

We can then say that the adverb carefully adjoins to v-bar in (50a), and to V-bar in (50b). If we suppose that verbs like load are essentially affixal in nature (in the sense that they must adjoin to a null causative light verb with an AGENT external argument) we can account for the ungrammaticality of intransitive structures such as (49a) *The truck will load with hay.

The VP shell analysis outlined above can be extended from predicates like load which have nominal and prepositional complements to so-called resultative predicates which have nominal and adjectival complements - i.e. to structures such as those below:
(52)(a) The acid will turn the litmus-paper red
(b) They may paint the house pink

In (52a), the verb turn originates in the head V position of VP, with the DP the litmus paper as its subject and the adjective red as its complement (precisely as in The litmus-paper will turn red): turn then raises to adjoin to a strong causative light-verb ϕ heading vP ; the subject of this light-verb (the DP the acid) in turn raises from spec-vP to spec-TP, and the resulting TP merges with a null declarative complementiser - as shown informally in (53) below:

[${ }_{C P}\left[{ }_{C} \emptyset\left[{ }_{T P}\right.\right.$ the acid [${ }_{\mathrm{T}}$ will] [${ }_{\mathrm{vP}}$ the acid ${ }_{\mathrm{v}} \emptyset+$ turn] [${ }_{\mathrm{vP}}$ the litmus-paper [v turn] red]]]]

©
(For alternative analyses of resultative structures like (52), see Keyser and Roeper 1992, Carrier and Randall 1992, and Oya 2002.)

We can extend the vP shell analysis still further, to take in double object structures such as:
(54)(a) They will get [the teacher] [a present]
(b) Could you pass [me] [the salt]?
(c) I showed [them] [my passport]
(d) She gave [me] [a hat]

For example, we could suggest that (54a) has the structure (55) below (with arrows indicating movements which take place in the course of the derivation):

That is, get originates as the head V of VP (with the teacher as its subject and a present as its complement, much as in The teacher will get a present), and then raises up to adjoin to the strong causative light-verb \varnothing heading vP ; the subject they in turn originates in spec-vP (and has the thematic role of AGENT argument of the null causative light-verb ϕ), and subsequently raises to spec-TP. (For a range of alternative analyses of the double object construction, see Larson 1988/1990, Johnson 1991, Bowers 1993, and Pesetsky 1995.)

In this section and the last, we have so far presented a shell analysis of three-place transitive predicates. But this raises interesting questions about how we deal two-place transitive predicates (which have subject and object arguments) like read in (56) below:

(56)

He read the book
Chomsky (1995) proposes a light-verb analysis of two-place transitive predicates under which (56) would (at the end of the vP cycle) have a structure along the lines of (57) below (with the arrow showing movement of the verb read from V to adjoin to a null light-verb in v):
(57)

That is, read would originate as the head V of VP, and would then be raised to adjoin to a null agentive light-verb \emptyset. (A different account of transitive complements as VP-specifiers is offered in Stroik 1990 and Bowers 1993.)

Chomsky's light-verb analysis of two-place transitive predicates can be extended in an interesting way to handle the syntax of a class of verbs which are known as unergative predicates. These are verbs like those italicized in (58) below which have agentive subjects, but which appear to have no complement:
(58)(a) Shall we lunch?
(b) Let's party!
(c) Don't fuss!
(d) Why not guess?
(e) He apologised
(f) She overdosed

Such verbs pose obvious problems for our assumption in the previous chapter that agentive subjects originate as specifiers and merge with an intermediate verbal projection which is itself formed by merger of a verb with its complement. The reason should be obvious - namely that unergative verbs like those italicised in (58) appear to have no complements. However, it is interesting to note that unergative verbs often have close paraphrases involving an overt light verb (i.e. a verb such as have/make/take etc. which has little semantic content of its own in the relevant use) and a nominal complement: cf.
(59)(a) Shall we have lunch
(b) Let's have a party!
(c) Don't make a fuss!
(d) Why not make a guess?
(e) He made an apology
(f) She took an overdose

This suggests a way of overcoming the problem posed by unergative verbs - namely to suppose (following Baker 1988 and Hale and Keyser 1993) that unergative verbs are formed by incorporation of a complement into an abstract light verb. This would mean (for example) that the verb lunch in (58a) is an implicitly transitive verb, formed by incorporating the noun lunch into an abstract light verb which can be thought of as a null counterpart of have. Since the incorporated object is a simple noun (not a full DP), we can assume (following Baker 1988) that it does not carry case. The VP thereby formed would serve the complement of an abstract light verb with an external argument (the external argument being we in the case of (58a) above). Under this analysis, unergatives would in effect be transitives with an incorporated object: hence we can account for the fact that (like transitives) unergatives require the use of the perfect auxiliary HAVE in languages (like Italian) with a HAVE/BE contrast in perfect auxiliaries.

9.6 Extending VP shells to unaccusatives

Thus far, we have argued that transitive verb phrases have a shell structure comprising an inner VP headed by a lexical verb and an outer vP headed by a light verb. However, we will now go on to
present evidence that a shall analysis is also appropriate for intransitive verbs. We begin by looking at unaccusative structures in this section.

In §7.5, we noted Burzio's claim that the arguments of unaccusative predicates originate as their complements. An immediate problem posed by Burzio's assumption is how we deal with two-place unaccusative predicates which take two arguments. In this connection, consider unaccusative imperative structures such as the following in (dialect A of) Belfast English (See Henry 1995: note that youse is the plural form of you - corresponding to American English y'all):
(60)(a)
Go you to school!
(b) Run youse to the telephone!
(c) Walk you into the garden!

If postverbal arguments of unaccusative predicates are in situ complements, this means that each of the verbs in (60) must have two complements. But if we make the traditional assumption that complements are sisters of a head, this means that if both you and to school are complements of the verb go in (60a), they must be sisters of $g o$, and hence the VP headed by go must have the (simplified) structure (61) below:

However, a ternary-branching structure such as (61) is obviously incompatible with a framework such as that used here which assumes that the merger operation by which phrases are formed is inherently binary.

Since analysing unaccusative subjects in such structures as underlying complements proves problematic, let's consider whether they might instead be analysed as specifiers. On this view, we can suppose that the inner VP core of a Belfast English unaccusative imperative structure such as (70a) Go you to school! is not (61) above, but rather (62) below:
(62)

We can then say that it is a property of unaccusative predicates that all their arguments originate within VP. But the problem posed by a structure like (62) is that it provides us with no way of accounting for the fact that unaccusative subjects like you in (60a) Go you to school surface postverbally. How can we overcome this problem? One answer is the following. Let us suppose that VPs like (62) which are headed by an unaccusative verb are embedded as the complement of a null light verb, and that the unaccusative verb raises to adjoin to the light verb in the manner indicated by the arrow in (63) below:

If (as Alison Henry argues) subjects remain in situ in imperatives in dialect A of Belfast English, the postverbal position of unaccusative subjects in sentences such as (60) can be accounted for straightforwardly. And the shell analysis in (63) is consistent with the assumption that the merger operation by which phrases are formed is intrinsically binary.

Moreover, the shell analysis enables us to provide an interesting account of the position of adverbs like quickly in unaccusative imperatives (in dialect A of Belfast English) such as:

Go you quickly to school!

If we suppose that adverbs like quickly are adjuncts which merge with an intermediate verbal projection (i.e. a single-bar projection comprising a verb and its complement), we can say that quickly in (64) is adjoined to the V-bar go to school in (63). What remains to be accounted for (in relation to the syntax of imperative subjects in dialect A of Belfast English) is the fact that subjects of transitive and unergative verbs occur in preverbal (not postverbal) position: cf.
(65)(a) You read that book!
(b) *Read you that book!
(66)(a) Youse tell the truth!
(b) *Tell youse the truth
(67)(a) You protest!
(b) *Protest you!

Why should this be? If we assume (as in our discussion of (56) above) that transitive verbs originate as the head V of a VP complement of a null agentive light verb, an imperative such as (65 a) will contain a vP with the simplified structure shown in (68) below (where the dotted arrow indicates movement of the verb read to adjoin to the null light verb heading vP):

The AGENT subject you will originate in spec-vP, as the subject of the agentive light-verb ϕ. Even after the verb read adjoins to the null light-verb, the subject you will still be positioned in front of the resulting verbal complex $\phi+$ read. As should be obvious, we can extend the light-verb analysis from transitive verbs like read to unergative verbs like protest if we assume (as earlier) that such verbs are formed by incorporation of a noun into the verb (so that protest is analysed as having a similar structure to make (a) protest), and if we assume that unergative subjects (like transitive subjects) originate as specifiers of an agentive light-verb.

Given these assumptions, we could then say that the difference between unaccusative subjects and transitive/unergative subjects is that unaccusative subjects originate within VP (as the argument of a lexical verb), whereas transitive/unergative subjects originate in spec-vP (as the external argument of a light-verb). If we hypothesise that verb phrases always contain an outer vP shell headed by a strong (affixal) light verb and an inner VP core headed by a lexical verb, and that lexical verbs always raise from V to v , the postverbal position of unaccusative subjects can be accounted for by positing that the subject remains in situ in such structures. Such a hypothesis will clearly require us to modify our earlier assumptions about the intransitive use of ergative predicates in sentences like (32-37) above, and to analyse intransitive ergatives in a parallel fashion to unaccusatives.

The light-verb analysis sketched here also offers us a way of accounting for the fact that in Early Modern English, the perfect auxiliary used with unaccusative verbs was be (as we saw in §7.5) whereas that used with transitive and unergative verbs was have. We can account for this by positing that the perfect auxiliary have selected a vP complement headed by a transitive light-verb verb with an external argument, whereas the perfect auxiliary be selected a complement headed by an intransitive light-verb with no external argument. The distinction has been lost in present-day English, with perfect have being used with both types of vP complement.

9.7 Extending VP shells to passives

A further class of intransitive structures which can be argued to have a complex shell structure are passives like:
(69) The horse was jumped perfectly over the fence

In §9.4, we saw that perfectly is the kind of adverb which adjoins to a V-bar like jump(ed) over the fence. However, such an analysis raises the question of how the head V jumped of the VP ends up positioned in
front of the adverb perfectly which modifies it in passive structures like (69). The answer we shall suggest here is that intransitive passive VPs (like their transitive active counterparts) have a $\mathrm{vP}+\mathrm{VP}$ shell structure, with the passive participle raising to adjoin to the light-verb heading the outer vP shell and hence moving across the adverb perfectly.

Under this assumption, (69) will be derived as follows. The V jumped merges with its PP complement to form the V-bar jumped over the fence. The adverb perfectly adjoins to this V-bar, thereby forming the even larger V-bar perfectly jumped over the fence. The resulting enlarged V-bar is then merged with the DP the horse, forming the VP the horse perfectly jumped over the fence. This VP is subsequently merged with an affixal light-verb which triggers raising of the verb jumped from V to v , so forming the vP shown in simplified form in (70) below:

Since passive verb phrases are intransitive, the light-verb in (70) projects no external argument.
The vP in (70) is then merged with a past tense T constituent containing the passive auxiliary BE. This serves as a probe and locates the DP the horse as an active goal. Agreement between the two results in the auxiliary being valued as third person singular (and hence ultimately being spelled out as was) and in the horse being assigned nominative case. The [EPP] feature on T triggers raising of the DP the horse to spec-TP. The resulting TP is then merged with a null complementiser marking the declarative force of the sentence, so deriving the structure shown below (simplified by showing only overt constituents of vP):

Thus, the assumption that passive verb phrases have a complex shell structure provides us with a principled account of how the passive participle jumped comes to be positioned in front of the adverb perfectly in (69) The horse was jumped perfectly over the fence.

9.8 Extending VP shells to raising verbs

A further class of intransitive predicates for which a shell analysis can be argued to be appropriate are raising predicates like seem. In this connection, consider the syntax of a raising sentence such as:
(72) The president does seem to me to have upset several people

Given the assumptions made in this chapter, (72) will be derived as follows. The verb upset merges with its QP complement several people to form the VP upset several people. This in turn merges with a null causative light-verb, which (by virtue of being affixal in nature) triggers raising of the verb upset to adjoin to the light-verb (as shown by the dotted arrow below); the resulting v-bar merges with its external AGENT argument the president to form the vP in (73) below (paraphraseable informally as 'The president caused-to-get-upset several people'):

The resulting vP is then merged with the auxiliary have to form an AUXP, and this AUXP is in turn merged with [$\mathrm{T} t$]. If we follow Chomsky (2001) in supposing that T in raising infinitives has an [EPP] feature and an unvalued person feature, the subject the president will be attracted to move to spec-TP, so deriving the structure shown in simplified form below (with the arrow marking A-movement):

The TP in (74) is then merged as the complement of seem, forming the V -bar seem the president to have upset several people (omitting traces and other empty categories, to make exposition less abstract). Let's suppose that to me is the EXPERIENCER argument of seem and is merged as the specifier of the resulting V-bar, forming the VP shown in (75) below (once again simplified by not showing traces and other empty categories):

On the assumption that all verb phrases contain an outer vP shell, the VP in (75) will then merge with a null (affixal) light verb, triggering raising of the verb seem to adjoin to the light verb. Merging the resulting vP with a finite T constituent containing (emphatic) DO will derive the structure shown in simplified form below (with the arrow showing the verb movement that took place on the vP cycle):

[${ }_{T}$ DO] serves as a probe looking for an active nominal goal. The Phase Impenetrability Condition (which renders the object of a transitive verb impenetrable to any constituent outside vP) makes the nominal several people impenetrable to T, since it is the object of the transitive verb upset: and let's assume that the pronoun $m e$ is likewise inaccessible to T (perhaps because a nominal goal is only active if it has an unvalued case feature, and the case feature of $m e$ has already been valued as accusative by the transitive preposition $t o$; or perhaps because $m e$ serves as the goal of a closer probe, namely the transitive preposition to). If so, the president (which is active by virtue of having an unvalued case feature) will be the only nominal which can serve as the goal of $\left[_{T}\right.$ DO] in (76). Accordingly, DO assigns nominative case to the president (and conversely agrees with the president, with DO ultimately being spelled out at PF as does), and the [EPP] and uninterpretable person/number features of DO ensure that the president moves into spec-TP, so deriving the structure shown in simplified form below:

The resulting TP will then be merged with a null declarative complementiser, forming the CP structure associated with (72) The president does seem to me to have upset several people. We can assume that the related sentence (78) below:
(78) The president does seem to have upset a lot of people
has an essentially parallel derivation, except that the verb seem in (78) projects no EXPERIENCER argument, so that the structure formed when seem is merged with its TP complement will not be (75) above, but rather [${ }_{\mathrm{vp}}\left[{ }_{\mathrm{V}}\right.$ seem] [${ }_{\mathrm{TP}}$ the president ${ }_{\mathrm{T}}$ to] have upset several people]].

An interesting corollary of the light-verb analysis of raising verbs like seem is that the Italian counterpart of seem is used with the perfect auxiliary essere 'be' rather than avere 'have' - as we can illustrate in relation to:

Maria mi è sempre sembrata essere simpatica
Maria me is always seemed be nice (= 'Maria has always seemed to me to be nice')
(The position of the EXPERIENCER argument $m i$ 'to me' in (79) is accounted for by the fact that it is a clitic pronoun, and clitics attach to the left of a finite auxiliary or verb in Italian - in this case attaching to the left of \grave{e} 'is') Earlier, we suggested that in languages with the have/be contrast, have typically selects a vP complement with an external argument, whereas be selects a vP complement with no external argument. In this context, it is interesting to note (e.g. in relation to structures like (77) above) that the light-verb found in clauses containing a raising predicate like seem projects no external argument, and hence would be expected to occur with (the relevant counterpart of) the perfect auxiliary be in a language with the have/be contrast. Data such as (79) are thus consistent with the light-verb analysis of raising predicates like seem outlined here. (It should be noted, however, that the HAVE/BE contrast is somewhat more complex than suggested here: see Sorace (2000) for a cross-linguistic perspective.)

The more general conclusion to be drawn from our analysis in $\S 9.4-\S 9.8$ is that all verb phrases (both transitive and intransitive alike) have a complex shell structure comprising an inner VP core headed by a lexical verb and an outer vP shell headed by a light-verb, with the lexical verb raising to adjoin to the
light-verb.

9.9 Transitive light verbs and accusative case assignment

In the previous chapter, we saw that nominative and null case are assigned to a goal by a matching f-complete probe (the probe being a finite T for nominative case, and a nonfinite control T for null case): however, we had nothing to say about accusative case assignment. If UG principles determine that all structural case-assignment involves assignment of case to a goal by af -complete matching probe, we can hypothesise that accusative case is likewise assigned to a goal by a f-complete probe which matches the goal in respect of its person and number features. But what could be the probe responsible for assignment of accusative case to (say) the accusative complement them in a transitive sentence such as that below?

(80) You have upset them

Chomsky in recent work has suggested an answer along the lines of (81) below:
(81) A transitive light-verb carrying person and number f-features serves as a probe which assigns accusative case to a goal with matching person and number features and an active (unvalued) case feature

Let's further suppose that:
(82) A light-verb is transitive only if it has a theta-marked external argument

In the light of (81) and (82), consider how the derivation of (80) proceeds.
The verb upset is merged with its complement THEY to form the VP upset THEY (capital letters being used to denote an abstract lexical item whose precise phonetic spellout as they/them/their has not yet been determined): the pronoun carries interpretable third-person, singular-number features and an uninterpretable (and unvalued) case-feature. The resulting VP is then merged with a null transitive light-verb which (since case assignment requires probe and goal to match in f-features) will carry unvalued and uninterpretable person/number features, so forming the v-bar below (with interpretable features shown in bold and uninterpretable features in italics):

[3-Pers]
[Pl-Num]
[u-Case]
The null light-verb probes and identifies THEY as the only active goal which carries an uninterpretable case feature. The goal THEY values (and, being f-complete, deletes) the person/number f-features of the light-verb probe (These will ultimately have a null spellout, like the light-verb itself). Conversely, the transitive light-verb values the unvalued case-feature of THEY as accusative in accordance with (81) (so that THEY is ultimately spelled out as them) and (by virtue of being f-complete) deletes it, so deriving:

The null light-verb is affixal, so will trigger raising of the verb upset from V to v . Since the (causative)
light verb in (84) is transitive, it projects an AGENT external argument. The relevant external argument is YOU in (80), and (if it refers to more than one individual) this enters the derivation with interpretable second-person and plural-number features, but an unvalued case-feature, so forming the vP (85) below:

The vP thereby formed is merged with a null finite T containing the perfect auxiliary HAVE, which has an interpretable present-tense feature, uninterpretable (and unvalued) f-features, and an uninterpretable [EPP] feature. Merging T with its vP complement derives:

[3-Pers] [PI-Num]
[Acc Case]
[${ }_{T}$ HAVE] then probes and locates the pronoun YOU as the only active goal with an unvalued case-feature which it c-commands. This results in the pronoun valuing and deleting the person/number features of the auxiliary, and conversely in the auxiliary valuing the case-feature of the pronoun as nominative, and deleting it: hence the items HAVE and YOU are spelled out as have and you at PF. The [EPP] feature of T triggers raising of the pronoun you from spec-vP to spec-TP (thereby deleting the [EPP] feature on T), deriving the structure (87) below:

The resulting structure is then merged with a null declarative complementiser to derive the CP structure
associated with (80) You have upset them. (On accusative case assignment in double object structures like give someone something, see Goodall 1999.)

9.10 Summary

We began this chapter in $\S 9.2$ by outlining the claim made by Luigi Rizzi that in clauses which contain preposed focus/topic expressions, CP splits into a number of separate projections, viz. a Force Phrase/ForceP, a Topic Phrase/TopP and a Focus Phrase/FocP (with a Focus head being strong in finite clauses in English, but not not a Topic or Force head). We pointed out that the split CP analysis of clauses raises interesting questions about the landing-site of preposed wh-expressions; and we suggested that relative and exclamative wh-expressions move to the specifier position within the Force Phrase, but that interrogative wh-expressions move to the specifier position within the Focus Phrase in main-clause questions (though move to the specifier position within the Force Phrase in complement-clause questions). In $\S 9.3$ we went on to examine Rizzi’s claim that split CP structures also contain a Finiteness Phrase/FinP. We noted his suggestion that clauses containing both a topicalised and a focalised constituent are ForceP/TopP/FocP/FinP structures; clauses containing only a topicalised (but no focalised) constituent are ForceP/TopP/FinP structures; clauses containing a focalised (but no topicalised) constituent are ForceP/FocP/FinP structures; and clauses which contain neither a focalised nor a topicalised constituent are simple CPs (with the relevant force and finiteness features being syncretised on a single C head). In $\S 9.4$ we went on to outline work by Chomsky, Larson and Hale suggesting that VPs can be split into two distinct projections - an inner VP core headed by a lexical verb and an outer vP shell headed by an affixal light-verb. In particular, we looked at the syntax of ergative verbs like roll which are used both intransitively in structures like The ball rolled down the hill and transitively in structures like They rolled the ball down the hill. We argued that the verb phrase in the transitive structures comprises an inner VP core contained within an outer vP shell headed by a causative light-verb with an AGENT subject, and that the light-verb triggers raising of the verb roll from V to v . We argued that data relating to the distribution of various types of adverb lend support to the shell analysis. In $\S 9.5$ we extended the shell analysis to a variety of other double-complement transitive structures including prepositional structures such as load the cart with hay, resultatives like turn the litmus-paper red, and double-object structures like get the teacher a present. We also outlined Chomsky's vP shell analysis of simple transitive structures like John read the book, and showed how such an analysis could be extended to unergatives if these are analysed as transitive predicates which undergo object-incorporation. In §9.6. We went on to outline a shell analysis of two-place unaccusative predicates, showing how this would account for the word-order found in Belfast English imperatives such as Go you to school! In $\S 9.7$ we extended the shell analysis to passives like The horse was jumped perfectly over the fence. In $\S 9.8$ we saw how the shell analysis can handle raising structures such as They seem to me to be fine, if the EXPERIENCER to me is analysed as occupying spec-VP, and if the verb seem raises from V to v and so comes to be positioned in front of to $m e$. We concluded that all transitive and intransitive verb phrases alike have a shell structure in which the verb raises from V to v. In $\S 9.9$ we outlined Chomsky's account of accusative case-marking, under which accusative case is assigned to a case-unvalued goal by af -complete transitive light-verb which has an external argument.

WORKBOOK SECTION

Exercise XVII

Assuming the grammaticality judgments given below (which are mine and which may be slightly different from those of some speakers), discuss how the relevant sentences could be analysed within the split CP framework. Where clauses are bracketed, concern yourself only with the structure of the bracketed material.

1 He admitted [that students only rarely enjoy syntax]
2 He admitted [that only rarely do students enjoy syntax]
3 *He admitted [that only rarely students enjoy syntax]
4 He admitted [that syntax, students only rarely enjoy]
5 *He admitted [syntax, students only rarely enjoy]
6 *He admitted [that syntax do students only rarely enjoy]

He admitted [that syntax, only rarely do students enjoy]
*He admitted [that syntax do only rarely students enjoy]
*He admitted [that only rarely do syntax, students enjoy]
*He admitted [that only rarely, syntax do students enjoy]
*He admitted [that only rarely, syntax, students enjoy]
What kind of courses do students only rarely enjoy?
*What kind of courses do only rarely students enjoy?
Syntax is something [which only rarely do students enjoy]
What's the reason [why syntax, students only rarely enjoy?]
I don't understand [why only rarely do students enjoy syntax]

Helpful hints

To simplify discussion, concern yourself only with the structure of the left periphery of the relevant clauses - i.e. the Force/Topic/Focus/Finiteness projections above the TP layer. Assume that you have reached a stage of derivation at which a TP has been formed whose head is a null third-person-plural present-tense affix (Tns), which merges with the verbal projection enjoy syntax to form the T-bar Tns enjoy syntax, and that the adverbial adjunct only rarely is then adjoined to this T-bar to expand it into the larger T-bar only rarely Tns enjoy syntax, which is then merged with its subject students to form the TP students only rarely Tns enjoy syntax. In accordance with the DP hypothesis, assume that both syntax and students are DPs headed by a null determiner. In relation to $15-16$, assume that why originates in the position where it ends up.

Model answer for (1)

Rizzi posits that CP splits into multiple projections in clauses which contain a preposed topic or focus constituent. Although only rarely seems to function as a preposed focused expression and syntax as a preposed topic in the relevant examples above, neither the main admitted clause nor the complement enjoy clause contains a preposed topic/focus constituent in sentence 1 ; hence, neither contains a FocP or TopP projection. Since Rizzi posits that force and finiteness features are syncretised on a single head (traditionally labelled C) in clauses which do not involve focalisation/topicalisation, both clauses in 1 will be CPs, the main clause headed by a null complementiser, and the complement clause headed by that. However, since our concern here is with the structure of the that clause which serves as the complement of the verb admitted, we concentrate on how this is derived.

Assume (as in the helpful hints) that we have reached a stage of derivation where we have formed the TP ϕ students only rarely Tns enjoy ϕ syntax (where ϕ is a null determiner, and Tns is a third-person-plural present-tense affix). Because there is no intervening topic or focus projection, the relevant force and finiteness features are here syncretised onto a single C/complementiser head (which is therefore marked as being both declarative and finite), so forming the structure shown in highly simplified form in (i) below:
(i) [CP [C that $\left.{ }_{\text {DEC, FIN }}\right][$ TP \emptyset students only rarely [т Tns] enjoy syntax] $]$

The (third-person-plural present-tense) Tns affix will subsequently be lowered onto the adjacent verb ENJOY in the PF component, with the result that this is ultimately spelled out as the third person plural present tense form enjoy. The complementiser introducing the clause in (i) can be spelled out either as that by virtue of carrying a declarative-force feature (in accordance with (26i) in the main text), or can be given a null spellout as ϕ by virtue of carrying a finiteness feature (in accordance with (26ii) in the main text). We therefore correctly predict that alongside sentence 1, we can also have a sentence like (ii) below, in which the bracketed complement clause contains a null complementiser:
(ii) He admitted [\varnothing students only rarely enjoy syntax]

Exercise XVIII

Discuss how the syntax of the following sentences could be analysed within the VP shell framework, giving arguments in support of your analysis.

1 They will increase the price to 30 dollars
2 Shall we sit him in the chair?

3 Will you climb me up there? (Child English)
4 This might make him angry
5 He will explain the problem fully to me
6 You must show her that she can trust you
7 Tourists may smuggle drugs illegally into the country
8 It was placed carefully in the folder
9 The police were reported by the press to have arrested a suspect
10 Several politicians are widely thought to be suspected of corruption
11 There does seem to me to remain some unrest in Utopia
12 Some evidence does appear to have emerged of corruption
Comment in particular on the syntax of the italicised constituents, saying what position each one occupies, what case it receives and how. In relation to (3), identify the nature of the error made by the child.

Helpful hints

In relation to the merger of verbs and nouns with their internal arguments, assume that internal arguments are canonically projected within VP in the hierarchical order given by the Thematic Hierarchy below:
13 THEME > other internal arguments > AGENT by-phrase argument > clausal argument
where $>=$ 'is projected higher up in the VP structure than'. This means that the first internal argument to be merged with a verb (as its complement) will be the lowest one on the hierarchy, and the second to be merged (as its specifier) will be the second lowest - and so on.

Model answer for 1

The verb increase can be used not only as an transitive verb in sentences such as 1 above, but also as an intransitive verb in sentences such as:
(i) The price will increase to 30 dollars

Accordingly, we can take increase to be an ergative predicate which has much the same syntax as the verb roll discussed in the main text. This would mean that 1 is derived as follows. The verb increase merges with its PP complement to 30 dollars to form the V-bar increase to 30 dollars; this V-bar in turn merges with the DP the price to form the VP (ii) below:

In accordance with the Thematic Hierarchy in 13, the THEME argument the price in (ii) occupies a higher position within the structure than the GOAL argument to 30 dollars. On Chomsky's account of ergative structures, the VP in (ii) subsequently merges with a causative light-verb ϕ with an external AGENT argument (= they). The light verb is f-complete and hence serves as a probe, identifying the price as an active goal (by virtue of its unvalued case-feature), and assigning it accusative case in accordance with (81) in the main text. Because the light-verb is affixal, the verb increase adjoins to it, so that at the end of the vP cycle we have the structure shown below:
(iii)

the price

The vP in (iii) is then merged with a T constituent containing will, and this assigns nominative case to the subject they (since the two match in respect of their f-features, albeit those of will are invisible). Since T has an [EPP] feature, it triggers raising of the subject they to spec-TP. Merging the resulting TP with a null declarative C forms the CP shown in simplified form below:
(iv) [${ }_{\mathrm{CP}}[\mathrm{C} \varnothing]\left[{ }_{\mathrm{TP}}\right.$ they [T_{T} will] [${ }_{\mathrm{vP}}$ they [v \varnothing +increase] [vp the price [v increase] to 30 dollars] $]$]]

10.

Phases

10.1 Overview

In this chapter, we look at recent work by Chomsky suggesting that syntactic structure is built up in phases (with phases including CP and transitive vP). At the end of each phase, part of the syntactic structure already formed undergoes transfer to the phonological and semantic components, with the result that the relevant part of the structure is inaccessible to further syntactic operations from that point on.

10.2 Phases

In $\S 8.5$, we noted Chomsky's claim in recent work that all syntactic operations involve a relation between a probe P and a local goal G which is sufficiently 'close' to the probe (or, in the case of multiple agreement, a relation between a probe and more than one local goal). We saw that Chomsky (2001, p.13) remarks that 'the P, G relation must be local' in order 'to minimise search', because the Language Faculty can only hold a limited amount of structure in its 'active memory' (Chomsky 1999, p.9). Accordingly, syntactic structures are built up one phase at a time. Chomsky suggests (1999, p.9) that phases are 'propositional' in nature, and include CP and transitive vP (more specifically, vP with an external argument, which he denotes as $v * P$). His rationale for taking CP and $v^{*} \mathrm{P}$ as phases is that CP represents a complete clausal complex (including a specification of force), and $\mathrm{v} * \mathrm{P}$ represents a complete thematic (argument structure) complex (including an external argument).

Once all the operations which apply within a given phase have been completed, the domain of the phase (i.e. the complement of its head) becomes impenetrable to further syntactic operations. As we have already seen, Chomsky refers to this condition as the Phase Impenetrability Condition/PIC - and we can state it informally as follows (cf. Chomsky 2001, p.5, ex. 6)
(1) Phase Impenetrability Condition/PIC

The c-command domain of a phase head is impenetrable to an external probe (i.e. A goal which is c-commanded by the head of a phase is impenetrable to any probe c-commanding the phase)
The reason why the domain of the phase head is impenetrable to an external probe (according to Chomsky 2001, p.5) is that once a complete phase has been formed, the domain of the phase undergoes a transfer
operation by which the relevant (domain) structure is simultaneously sent to the phonological component to be assigned an appropriate phonetic representation, and to the semantic component to be assigned an appropriate semantic representation - and from that point on, the relevant domain is no longer accessible to the syntax. So, for example, once a complete CP phase has been formed, the TP which is the domain (i.e. complement) of the phase head C will be sent to the phonological and semantic components for processing. As a result, TP is no longer visible in the syntax, and hence neither TP itself nor any constituent of TP can subsequently serve as a goal for a higher probe of any kind: i.e. no probe c-commanding CP can enter into a relation with TP or any constituent of TP.

In order to make our discussion more concrete, consider the derivation of the following sentence:

(2) Will Ruritania withdraw troops from Utopia?

Given the $\mathrm{vP}+\mathrm{VP}$ analysis of verb phrases outlined in the previous chapter, (2) will be derived as follows. The verb withdraw merges with its complement from Utopia (with Utopia being a DP headed by a null determiner, given the DP hypothesis) and its specifier troops (which is a QP headed by a null partitive quantifier ϕ) to form the VP ϕ troops withdraw from ϕ Utopia. This is then merged with a causative light verb whose external AGENT argument is Ruritania (another DP headed by a null determiner): since the light-verb is affixal, it triggers movement of the verb withdraw from its original (italicised) position in V to v , so deriving (3) below:

The light verb will agree with (and assign accusative case to) the QP ϕ troops. Since a transitive vP (i.e. a vP with an external argument) is a phase, and since the vP in (3) is transitive and has the external argument ϕ Ruritania, the VP constituent (by virtue of being the domain/complement of the light-verb which is the head of the phase) will undergo transfer to the phonological and semantic components at this point, and thereafter cease to be accessible to further syntactic operations. Let's suppose that as part of the transfer operation, traces are marked as having a null spellout in the phonological component (this being indicated by strikethrough), and that uninterpretable features which have been deleted by operation of agreement are removed from the structure handed over to the semantic component, but not from the structure handed over to the phonological component. Consequently, the phonological component will not spell out the trace of the verb withdraw in V , and only the constituents ϕ troops and from Utopia will be given an overt phonetic spellout.

The syntactic computation then proceeds once more, with [${ }_{\mathrm{T}}$ will] being merged with the vP in (3) to form the T-bar shown below (outlione font being used to indicate those parts of the structure which received an overt or null spellout in the phonological component after the VP underwent transfer at the end of the vP phase, and strikethrough marking traces receiving a null spellout):

\emptyset +withdraw withdraw oroops from o Utopia

Since [т will] has uninterpretable (and unvalued) person/number features, it is an active probe which searches for a local goal to value and delete its unvalued features. Neither ϕ troops nor \emptyset Utopia are accessible to the probe will (since both are contained within a VP which has already been transferred to the phonological and semantic components); however, the DP \varnothing Ruritania is accessible to will and is syntactically active by virtue of its uninterpretable case feature. Hence, will agrees (invisibly) with and assigns (invisible) nominative case to the DP ϕ Ruritania. The auxiliary [т will] also has an [EPP] feature requiring movement of the closest matching goal to spec-TP; accordingly, the $\mathrm{DP} \phi$ Ruritania is moved from its original (italicised) position in spec-vP to become the specifier of will, so deriving the structure:
(5)

The resulting TP is merged with a null interrogative C. Let's suppose (as we did in §6.8) that yes-no questions contain a null yes-no-question operator in spec-CP (e.g. a null counterpart of the adverb whether), and that C is strong/affixal and attracts will to move from its original (italicised) position in T to adjoin to the null C heading CP . If so, at the end of the CP cycle we will have the structure (6) below:

Since CP is a phase and the domain of the head of a phase is spelled out at the end of a phase, TP undergoes transfer to the phonological and semantic components at this point. The transfer operation results in the italicised traces of will and ϕ Ruritania receiving a null spellout in the phonological component.

However, we are now left with something of a problem. We have come to the end of the derivation, but so far neither C nor the null yes-no question operator which serves as its specifier have been 'handed over'
to the phonological and semantic components for further processing. In order to ensure that this happens, let's make the additional assumption in (7ii) below about transfer:

Transfer

(i) At the end of each phase, the domain (i.e. complement of the phase head) undergoes transfer
(ii) At the end of the overall derivation, all remaining constituents undergo transfer

In the case of (6), the two remaining constituents which have not yet undergone transfer are those at the edge of CP (the edge of a projection comprising its head and any specifiers/adjuncts it has) - i.e. the C-constituent containing will and the null yes-no question operator in spec-CP. Accordingly, these undergo transfer to the phonological/semantic components at the end of the overall derivation.

10.3 Intransitive and defective clauses

Our illustrative account of phases in the previous section involved a structure containing a transitive vP phase and a CP phase. However, since neither intransitive clauses (i.e. those containing a vP with no external argument) nor defective clauses (i.e. clauses which are TPs lacking a CP projection) are phases, things work differently in such structures - as we can illustrate in relation to the derivation of:

There are thought by some to remain numerous problems in Utopia
The unaccusative verb remain merges with its LOCATIVE complement in \varnothing Utopia (Utopia being a DP headed by a null determiner) to form the V-bar remain in \emptyset Utopia, and this V-bar is in turn merged with its THEME argument (the quantifier phrase numerous problems) to form the VP numerous problems remain in \emptyset Utopia. This VP in turn is merged with a null light-verb which, being affixal, triggers movement of the verb remain from its italicised position in V to adjoin to the light verb, so deriving:

Although a transitive vP is a phase (and requires its domain to be spelled out), the vP in (9) is intransitive because it has no external argument (i.e. vP has no specifier). Hence, its VP complement does not undergo transfer at this point, and the syntactic derivation proceeds by merging the resulting vP with infinitival to. If (as Chomsky 2001, fn. 56 argues) infinitival to has an [EPP] feature and a person feature in defective clauses, it follows that to must project a specifier with person properties. Let's suppose that this requirement is satisfied by merging expletive there in spec-TP, so deriving:

V	PP
remain	in \varnothing Utopia

The TP in (10) is then merged as the complement of the passive participle thought, forming a V-bar constituent which is in turn merged with the AGENT by-phrase by some to form a VP. Given our assumption in the previous chapter that all verb phrases have a complex shell structure, the resulting VP will in turn be merged as the complement of a light verb (arguably one which is participial in nature, so accounting for why the verb is eventually spelled out in the passive participle form thought, and why Chomsky 1999 uses the label PRT to denote the relevant participial head): since light verbs are affixal in nature, this means that the verb thought will raise to adjoin to the light verb. Merging the resulting vP with the passive auxiliary BE will derive the T-bar constituent shown below:

At this point, BE is an active probe by virtue of its uninterpretable (and unvalued) f-features, and so it searches for an active local goal to value its person/number features. There are two such goals within the structure in (11), namely the third person expletive pronoun there (active by virtue of its uninterpretable person feature) and the third person plural QP numerous problems (active by virtue of its uninterpretable and unvalued case feature). Both there and numerous problems are accessible goals for BE since neither is contained within a structure which has undergone transfer. Chomsky (2001) suggests that a probe P locates every active matching goal G within its search space (i.e. within that part of the syntactic structure which is accessible to the probe by virtue of not yet having undergone transfer), and that where there is more than one such goal, the probe simultaneously agrees with all the relevant goals at the same time: cf his (2001, p.13) remark that ' P can find any matching goal in the phase PH that it heads, simultaneously deleting uninterpretable features.' (We can assume that the pronoun some is not active at this point, because it falls within the domain of a closer probe by which will already have valued its case case feature as accusative.) What this means is that since BE has uninterpretable person and number features, it will locate every active goal within its search space which has a person and/or number feature. Since there has a third-person feature which is uninterpretable (making it active), there is one such goal; likewise, numerous problems is another active goal, since it has third-person and plural-number features and is active by virtue of its uninterpretable case feature. Accordingly, BE simultaneously agrees in person with
there and numerous problems, and in number with numerous problems, so that BE is assigned the values [third-person, plural-number]. Since numerous problems is f-complete, it can delete the uninterpretable person/number features of BE. Conversely, BE (by virtue of being finite) can value the unvalued casefeature of numerous problems as nominative, and (because BE is also f-complete) can delete the relevant case-feature (and also the person feature of there). The [EPP] feature of T is deleted by moving the closest active goal (i.e. there) from its original position as the specifier of to (italicised below) to become the specifier of BE. Merging the resulting TP with a null declarative complementiser derives the CP structure shown in simplified form in (12) below:

Since CP is a phase, the TP headed by [$\left.{ }_{\mathrm{T}} \mathrm{BE}\right]$ which constitutes its domain will undergo transfer at this point, in accordance with (7i). The italicised traces of moved constituents will be given a null spellout, and the auxiliary BE in T will be spelled out as are in the phonological component (since it has been valued as third person plural in the course of the derivation). The null C heading CP subsequently undergoes transfer by (7ii), and is assigned a null spellout in the phonological component, and interpreted in the semantic component as marking the relevant sentence as declarative in force.

In the context of our discussion of phases here, the key point which emerges is that neither an intransitive vP nor a defective TP clause constitutes a phase - e.g. in the case of (12), not the intransitive vP containing remain, or the vP containing the passive participle thought, or the defective TP complement of thought. In consequence, the relevant vP and TP constituents are still accessible in the syntax at the point where BE is introduced into the derivation, so allowing BE to agree with numerous problems.

10.4 Wh-movement through spec-CP

The phase-based theory of syntax outlined above has far-reaching consequences for the operation of A-bar movement operations like wh-movement - as we can illustrate in relation to the following sentence:
(13) Where is it thought that he will go?

The derivation of (13) proceeds as follows. The unaccusative verb $g o$ is merged with its GOAL argument (the locative adverbial pronoun where) to form the V-bar go where, which in turn is merged with its THEME argument he to form the VP he go where. This in turn is merged with a null affixal light-verb which triggers raising of the verb $g o$ to v from its original (italicised) position in V , so forming:

Since vP is intransitive (by virtue of the fact that the light-verb has no external argument), vP is not a phase, and Transfer cannot apply at this point. The syntactic computation therefore continues, with [${ }_{T}$ will] merging with the vP in (14). Will agrees with (and assigns nominative case to) he, and the [EPP] feature of will triggers raising of he from its original position (italicised below) in spec-VP to spec-TP. Merging the complementiser that with the resulting TP forms the CP shown in (15) below:

Since CP is a phase, its domain (i.e. its TP complement) will undergo transfer at this point. This means that neither TP nor any of the constituents of TP will subsequently be accessible to further syntactic operations - i.e. in effect, TP and its constituents of TP are frozen in place once TP undergoes transfer.

However, this causes an obvious problem, since if all constituents of TP are frozen in place at this point, the wh-word where will be unable to move from the (sentence-final) VP-complement position it occupies in (15) to the (sentence-initial) main clause CP-specifier position which it clearly needs to occupy in (13) Where is it thought that he will go? One way to overcome this problem is to assume that wh-movement applies in a successive-cyclic fashion, and that the complementiser that in structures like (15) has an [EPP] feature and a $[\mathrm{WH}]$ feature which together trigger movement of the closest wh-expression
(= where) to become the specifier of the complement-clause CP headed by that before where subsequently moves on to become the specifier of the main clause C constituent containing the inverted auxiliary is. If this is so, at the stage of derivation represented in (15) above, where will move from the italicised position shown in (16) below to become the specifier of that:

At this point (once all the operations which apply on the CP-cycle have applied) the domain of C (i.e. its TP complement) will undergo transfer in accordance with (7i), because CP is a phase: one consequence of this is that the italicised traces will be marked as receiving a null spellout in the phonological component.

After transfer of TP is completed, the syntactic computation continues. The CP in (16) is merged as the complement of the verb THINK, and the resulting VP is in turn merged as the complement of a participial light-verb (ensuring that THINK is eventually spelled out as the passive participle thought), with the verb THINK (below shown as thought) raising to adjoin to the light verb. The resulting vP is in turn merged as the complement of [${ }_{\mathrm{T}} \mathrm{BE}$], which has an [EPP] feature that is deleted by merger of expletive it in spec-TP (it in turn serving as a probe valuing the agreement features of BE). Merging the resulting TP with a null affixal C will trigger raising of BE from its original (italicised) position in T to C ; since C also has a wh-attracting [EPP] feature, it will trigger movement of where from the italicised spec-CP position in the complement clause into spec-CP position in the main clause, so deriving the CP shown in simplified form in (17) below:

it

Since CP is a phase, its domain (= the main clause TP) will undergo transfer by (7i) at this point, so that the italicised traces of is, thought and where will receive a null spellout in the phonological component. Subsequently, the constituents where and $i s+\phi$ on the edge of the root CP undergo transfer by (7ii).

What our discussion here tells us is that just as A-movement applies in a successive-cyclic fashion (each time moving the relevant nominal into the next highest spec-TP position in the structure), so too (within a phase-based theory of syntax) A-bar movement operations like wh-movement must apply in a successive-cyclic fashion: this means that each time a new phase head is introduced into the structure, it will serve as a probe which attracts the closest wh-goal to move into its specifier position.

10.5 Wh-movement through spec-vP in transitive clauses

Our discussion in the previous section showed that the assumption that CPs are phases means that long-distance wh-movement requires successive-cyclic movement of a moved wh-expression through intermediate spec-CP positions. However, since transitive vPs are also phases, it follows that in structures containing one or more transitive vPs, wh-movement will have to pass through intermediate spec-vP positions as well (since transitive vPs are phases). We can illustrate how this works in terms of the following example:
(18) What have they done?
(18) will be derived as follows. The verb DO (shown here in its spellout form done) merges with its thematic complement what to form the VP done what. This is merged with a transitive light verb whose external argument is they and which (by virtue of being affixal) triggers raising of done from V to v ; the light verb (by virtue of being transitive) also values the case-feature of what as accusative and (by virtue of being f-complete) deletes it. Let's suppose that just as C can have an [EPP] feature attracting movement of a wh-expression, so too a transitive light-verb (perhaps by virtue of being a phase head, like C) can likewise have a wh-attracting [EPP] feature. This being so, what will be moved to become a second specifier for vP , forming the structure below:

The notational convention assumed in (19) is that first-merge of a head H with its complement forms an $\mathrm{H}-\mathrm{bar} / \mathrm{H}^{\prime}$ projection; second-merge of H with a specifier forms an H -double-bar/H" projection; third merge of H with another specifier forms an H-treble-bar/H'" projection... and so on. However, by tradition, the
maximal projection of H is denoted as HP : hence, the node labelled vP in (19) is a v-treble-bar projection, but is labeled vP because it is the maximal projection of the relevant light verb.

The double-specifier analysis in (19) is in accordance with Chomsky's (1998, p.16) assumption that a head can have multiple specifiers - in the case of (19), an inner specifier they representing the external argument of the light verb, and an outer specifier what which deletes the [EPP] feature of the light verb. In accordance with (7i), the VP in (19) will undergo transfer at the end of the vP phase, and the two italicised traces will thereby be given a null spellout. Of course, if what had not moved to spec-vP at this point, it would have been spelled out in situ and hence frozen in place, and thereby wrongly be predicted to be unable to undergo wh-movement.

Since a transitive vP is a phase, the VP domain done what in (19) will undergo transfer at the end of the vP cycle, and the trace copies of the moved constituents done and what will each receive a null spellout. The derivation then proceeds by merging [T have] with the vP in (19), forming the T-bar (20) below:
(20)

The probe have now searches for an appropriate goal. It needs to 'skip over' what and instead identify they as the expression that it agrees with, assigns nominative case to and attracts to move to spec-TP. Clearly we cannot say that what is inactive as a goal since it needs to be an active goal in order to be able to undergo subsequent wh-movement. However, it seems reasonable to suppose that what is active only for agreement with an A-bar head, not for agreement with an A-head. (In the terminology of Roberts 1994, a head like T which allows only an argument as its specifier is an A-head, and a head like C which allows either an argument or an adjunct as its specifier is an A-bar head.) More specifically, we can suppose that a noun or pronoun expression which carries interpretable person/number/gender features is only active for agreement with an A-head if it has an unvalued and undeleted case-feature: this would mean that what is ineligible for A-agreement because its case feature was valued as accusative and deleted by the transitive light-verb at the earlier stage of derivation shown in (19) above. By contrast, since they in (20) has an unvalued case feature, it is active for A-agreement and A-movement (but not for A-bar movement). Accordingly, have agrees with, assigns nominative case to and triggers movement of the subject they, so deriving:

This TP is then merged with a null complementiser with a strong tense feature (triggering movement of have from T to C) and an [EPP] feature which triggers movement of what to spec- CP , so deriving:

At the end of the CP phase, TP undergoes transfer in accordance with (7i) and the italicised traces are given a null spellout in the phonological component. Subsequently, the constituents at the edge of CP (i.e. its specifier what and its head have $+\phi$) undergo transfer in accordance with (7ii).

Our discussion of the derivation of (18) What have they done? shows us that in transitive clauses A-bar movement will involve movement through spec-vP into spec-CP. An obvious implication of this is that wh-sentences like (23) below which contain two transitive clauses:
(23) What might she think that they will do?
will correspondingly involve successive-cyclic wh-movement through two spec-vP positions (and likewise through two spec-CP positions) - as shown in skeletal form below:
[cp What [c might] she [vp what think [cr hat [c that] they will [vp dhat do what]

More generally, a sentence containing n transitive verbs and m CPs intervening between the original position of a wh-expression and its ultimate landing site will involve movement through n spec-vP positions and m spec-CP positions.

10.6 Evidence for wh-movement through spec-CP

The discussion in the previous section shows how (in a phase-based theory of syntax in which CPs and transitive vPs are phases) theoretical considerations force successive-cyclic wh-movement through spec-CP and spec-vP. However, an interesting question which arises is whether there is any
empirical evidence in support of the successive-cyclic analysis. As we shall see, there is in fact considerable evidence in support of such an analysis. In this section, we look at evidence in support of successive-cyclic movement through spec-CP; and in the next section, we examine evidence of successive-cyclic movement through spec-vP.

Let's begin by looking at evidence from English. Part of the evidence comes from the interpretation of reflexive anaphors like himself. As we saw in Exercise 3.2, these are subject to Principle A of Binding Theory which requires an anaphor to be locally bound and hence to have an antecedent within the TP most immediately containing it. This requirement can be illustrated by the contrast in (25) below:
(25)(a) *Jim was surprised that [${ }_{T P}$ Peter wasn't sure [${ }_{C P}$ that [TTP Mary liked this picture of himself best]]]
(b) Jim was surprised that [${ }_{T P}$ Peter wasn't sure [${ }_{C P}$ which picture of himself [${ }_{T P}$ Mary liked best]]]

In (25a), the TP most immediately containing the reflexive anaphor himself is the bold-printed TP whose subject is Mary, and since there is no suitable (third person masculine singular) antecedent for himself within this TP, the resulting sentence violates Binding Principle A and so is ill-formed. However, in (25b) the wh-phrase which picture of himself has been moved to the specifier position within the bracketed CP, and the TP most immediately containing the reflexive anaphor is the italicised TP whose subject is Peter. Since this italicised TP does indeed contain a c-commanding antecedent for himself (namely its subject Peter), there is no violation of Principle A if himself is construed as bound by Peter - though Principle A prevents Jim from being the antecedent of himself.

In the light of this restriction, consider the following sentence:

(26)

Which picture of himself wasn't he sure that Mary liked best?

In (26), the antecedent of himself is he - and yet himself is clearly not c-commanded by he, as we see from (27) below (simplified, and showing only overt constituents):

In fact, the only elements c-commanded by the pronoun he in (27) are T-bar and its constituents. But if he does not c-command himself in (27), how come he is interpreted as the antecedent of himself when we would have expected such a structure to violate Principle A of Binding Theory and hence to be ill-formed?

We can provide a principled answer to this question if we suppose that wh-movement operates in a successive-cyclic fashion, and involves an intermediate stage of derivation represented in (28) below (simplified by showing overt constituents only):
(28) [${ }_{T P}$ He wasn't sure [CP which picture of himself that [TTP Mary liked best]]]
(Note that (28) is an intermediate stage of derivation, not a complete sentence structure; if it were a sentence, in relevant varieties it would violate the Multiply Filled Comp Filter discussed in §6.10.) In (28), the anaphor himself has a c-commanding antecedent within the italicised TP most immediately containing it - namely the pronoun he. If we follow Belletti and Rizzi (1988), Uriagereka (1988) and Lebeaux (1991) in supposing that the requirements of Principle A can be satisfied at any stage of derivation, it follows that positing that a sentence like (26) involves an intermediate stage of derivation like (28) enables us to account for why himself is construed as bound by he. More generally, sentences like (26) provide us with evidence that long-distance wh-movement involves successive cyclic movement through intermediate spec-CP positions - and hence with evidence that CP is a phase. (See Fox 2000 and Barss 2001 for more detailed discussion of related structures). At a subsequent stage of derivation, the
wh-QP which picture of himself moves into spec-CP in the main clause, so deriving the structure (27) associated with (26) Which picture of himself wasn't he sure that Mary liked best?

A further argument for successive-cyclic wh-movement through spec-CP (and consequently for the phasehood of CP) is offered by McCloskey (2000), based on observations about quantifier stranding/ floating in West Ulster English. In this variety, a wh-word can be modified by the universal quantifier all, giving rise to questions such as:
(29) What all did you get for Christmas? (= 'What are all the things which you got for Christmas?')

McCloskey argues that in such sentences, the quantifier and the wh-word originate as a single constituent. He further maintains that under wh-movement, the wh-word what can either pied-pipe the quantifier all along with it as in (29) above, or can move on its own leaving the quantifier all stranded. In this connection, consider the sentences in (30) below:
(30)(a) What all do you think that he'll say that we should buy?
(b) What do you think all that he'll say that we should buy?
(c) What do you think that he'll say all that we should buy?
(d) What do you think that he'll say that we should buy all?

McCloskey claims (2000, p.63) that 'All in wh-quantifier float constructions appears in positions for which there is considerable independent evidence that they are either positions in which wh-movement originates or positions through which wh-movement passes. We have in these observations a new kind of argument for the successive-cyclic character of long wh-movement.'

McCloskey argues that the derivation of (30a-d) proceeds along the following lines (simplified in a number of ways). The quantifier all merges with its complement what to form the structure [all what]. The wh-word what then raises to become the specifier of all, forming the overt QP [what all]. The resulting QP [what all] is merged as the object of buy, forming [buy what all]. If what undergoes wh-movement on its own in subsequent stages of derivation, we derive (30d) 'What do you think that he'll say that we should buy all?' But suppose that the quantifier all is pied-piped along with what under wh-movement until we reach the stage shown in skeletal form below:
[cР what all [C that] we should buy]

If wh-movement then extracts what on its own, the quantifier all will be stranded in the most deeply embedded spec-CP position, so deriving (30c) 'What do you think that he'll say all that we should buy?' By contrast, if all is pied-piped along with what until the end of the intermediate CP cycle, we derive:
(32) [СР what all [с that] he'll say that we should buy]

If wh-movement then extracts what on its own, the quantifier all will be stranded in the intermediate spec-CP position and we will ultimately derive (30b) 'What do you think all that he'll say that we should buy? But if all continues to be pied-piped along with what throughout the remaining stages of derivation, we ultimately derive (30a) 'What all do you think that he'll say that we should buy?'

There is also considerable empirical evidence in support of successive-cyclic movement through spec-CP from a number of other languages. One such piece of evidence comes from preposition pied-piping in Afrikaans. Du Plessis (1977, p.724) notes that in structures containing a wh-pronoun used as the complement of a preposition in Afrikaans, a moved wh-pronoun can either pied-pipe (i.e. carry along with it) or strand (i.e. leave behind) the preposition - as the following sentences illustrate:

```
(33)(a) Waarvoor dink julle [werk ons]?
    What-for think you work we?
    'What do you think we are working for?'
(b) Waar dink julle [werk ons voor]?
    What think you work we for? (same interpretation as 33a)
(c) Waar dink julle [voor werk ons]?
    What think you for work we? (same interpretation as 33a)
```

Du Plessis argues that sentences such as (33c) involve movement of the PP waarvoor 'what-for' to spec-CP position within the bracketed complement clause, followed by movement of waar 'what' on its own into the main clause spec-CP position, thereby stranding the preposition in the intermediate spec-CP
position. On this view, sentences like (33c) provide empirical evidence that long-distance wh-movement involves movement through intermediate spec-CP positions.

A rather different kind of argument for successive-cyclic wh-movement comes from the phenomenon of wh-copying. A number of languages exhibit a form of long-distance wh-movement which involves leaving an overt copy of a moved wh-pronoun in intermediate spec-CP positions - as illustrated by the following structures cited in Felser (2004):
(34)(a) Wêr tinke jo wêr't Jan wennet

Where think you where'that Jan lives?
'Where do you think that John lives?'
(FRISIAN, Hiemstra 1986, p.99)
(b) Kas o Demiri mislenola kas i Arìfa dikhla?

Whom Demir think whom Arifa saw?
'Whom does Demir think Arifa saw?' (ROMANI, adapted from McDaniel 1989, p569, fn.5)
(c) Wer glaubst du, wer dass du bist? Who think you who that you are? 'Who do you think that you are?'
(GERMAN, Fanselow \& Mahajan 2000: 220)
In cases of long-distance wh-movement out of more than one complement clause, a copy of a moved whpronoun appears at the beginning of each clause - as illustrated by (35) below:
(35) Wen glaubst du, wen Peter meint, wen Susi heiratet?

Who believe you who Peter thinks who Susi marries?
'Who do you believe Peter thinks that Susi is marrying?'
(GERMAN, Felser 2004, p.563)
The wh-copies left behind at intermediate landing-sites in sentences such as (34) and (35) suggest that long-distance wh-movement involves movement of the wh-expression through intermediate spec-CP positions - precisely as a phase-based theory of syntax would lead us to expect (See Nunes 2001 for further discussion.)

A parallel wh-copying phenomenon is reported in an intriguing study of the acquisition of wh-questions by Ros Thornton (1995). She reports children producing long-distance wh-copy questions such as the following (1995, p.147):
(36)(a) What do you think [what Cookie Monster eats]?
(b) Who do you think [who the cat chased]?
(c) How do you think [how Superman fixed the car]?

In such cases, the bold-printed wh-word moves to the front of the overall sentence, but leaves an italicised copy at the front of the bracketed complement clause. What this suggests is that wh-movement involves an intermediate step by which the wh-expression moves to spec-CP position within the bracketed complement clause before moving into its final landing-site in the main clause spec-CP position. The error made by the children lies in not deleting the italicised medial trace of the wh-word. Of course, this raises the question of why the children don't delete the intermediate wh-word. One answer may be that the null complementiser heading the bracketed complement clause is treated by the children as being a clitic which attaches to its specifier (just as have cliticises to its specifier in Who've they arrested?). Leaving an overt wh-copy of the pronoun behind provides a host for the clitic wh-complementiser to attach to. Such an analysis seems by no means implausible in the light of the observation made by Guasti, Thornton and Wexler (1995) that young children produce auxiliary-copying negative questions such as the following (the names of the children and their ages in years;months being shown in parentheses):
(37)(a) What did he didn't wanna bring to school? (Darrell 4;1)
(b) Why could Snoopy couldn't fit in the boat? (Kathy 4;0)

If we assume that contracted negative n ' t is treated by the children as a PF enclitic (i.e. a clitic which attaches to the end of an immediately preceding auxiliary host in the PF component), we can conclude that the children spell out the trace of the inverted auxiliary did in order to provide a host for the enclitic negative n 't. More generally, data like (37) suggest that children may overtly spell out traces as a way of providing a host for a clitic.

A related phenomenon is reported by Alison Henry in her (1995) book on Belfast English. She notes that in main clause wh-questions in Belfast English, not only the main clause C but also intermediate C constituents show T-to-C movement (i.e. auxiliary inversion), as illustrated below:
(38) What did Mary claim [did they steal]?
(Henry 1995, p.108)
We can account for auxiliary inversion in structures like (38) in a straightforward fashion if we suppose that (in main and complement clauses alike in Belfast English) a C which attracts an interrogative wh-expression also carries an affixal [TNS] feature triggering auxiliary inversion. In order to explain auxiliary inversion in the bracketed complement clause in (38), we would then have to suppose that the head C of CP carries [WH, EPP] features which trigger movement of the interrogative pronoun what through spec-CP, given our assumption that C has an affixal [TNS] feature triggering auxiliary inversion in clauses in which C attracts an interrogative wh-expression. On this view, the fact that the complement clause shows auxiliary inversion provides evidence that the preposed wh-word what moves through the spec-CP position in the bracketed complement clause before subsequently moving into the main-clause spec-CP position.

Returning now to wh-questions produced by young children, it is interesting to note that a further type of structure which Ros Thornton (1995) reports one of the children in her study (= AJ) producing are wh-questions like (39) below:
(39)(a) Which mouse what the cat didn't see?
(b) Which drink do you think [what the ghost drank]?

Here, the italicised C positions are filled by what - raising the question of why this should be. Thornton notes that a number of the children in her study also produced questions like:
(40) Which juice that the ghost could drink?

This suggests that what in structures such as (39) is a wh-marked variant of that. More specifically, it suggests that (for children like AJ) the complementiser that is spelled out as what when it carries [WH, EPP] features and attracts a wh-marked goal to move to spec-CP.

In the light of this assumption, let's now look at how wh-movement applies in the derivation of (39b). Since the bracketed complement clause is transitive in (39b) and a transitive vP is a phase, the wh-phrase which drink will move to spec-vP on the embedded clause vP cycle. Thus, at the stage when the complementiser that enters the derivation, we will have the overt structure below (a structure which is simplified by omitting all null constituents, including traces):

$$
\begin{equation*}
\text { [C that }{ }_{\mathrm{WH}, \mathrm{EPP}} \text {] the ghost [vP which drink drank] } \tag{41}
\end{equation*}
$$

The complementiser that has [WH, EPP] features and consequently attracts which drink to move to spec-CP, so deriving the overt structure shown in simplified form below:
(42) [CP which drink [C that ${ }_{\text {WH, EPP }}$] the ghost [ve drank]]

On the assumption that children like AJ spell out that as what when it carries the features [WH, EPP], the complementiser that will ultimately be spelled out as what. (By contrast, in standard varieties of adult English, the complementiser is always spelled out as that, irrespective of whether it is wh-marked or not.)

The next stage in the movement of the wh-phrase takes place on the main clause vP phase, when which drink moves to spec-vP. At the point where the null complementiser heading the main clause is introduced into the derivation, we will have the following sketelal structure (with AFF denoting a tense affix, and the structure simplified by not showing trace copies or empty categories other than the main-clause C and T):

$$
\begin{equation*}
\text { [} \mathrm{C} \varnothing] \text { you [} \mathrm{T} \text { AFF] [ve which drink think [} \mathrm{CP} \text { [C what] the ghost [}{ }_{\mathrm{vP}} \text { drank]]] } \tag{43}
\end{equation*}
$$

The null main-clause complementiser has a strong [TNS] feature which triggers raising of the tense affix to C. It also has [WH, EPP] features which trigger movement of which drink to spec-CP, so deriving (44) below (with DO-support providing a host for the tense affix in the PF component):
(44) [${ }_{C P}$ Which drink [C do+AFF+ \varnothing] you [${ }_{v P}$ think [${ }_{C P}$ [C what] the ghost [${ }_{\mathrm{vP}}$ drank]]]]

On this view, the fact that the complementiser that is spelled out as what in (39b) provides evidence that wh-movement passes through the intermediate spec-CP position.

A more general conclusion which can be drawn from our discussion of (39) is that wh-marking of a complementiser provides us with evidence that the relevant complementiser triggers wh-movement (and indeed it may be that what in nonstandard comparatives like Yours is bigger than what mine is has the status of a complementiser which triggers wh-movement of a null wh-operator). In this connection, it is interesting to note that McCloskey (2001) argues that long-distance wh-movement in Irish triggers wh-marking of intermediate complementisers. The complementiser which normally introduces finite clauses in Irish is $g o$ 'that', but in (relative and interrogative) clauses involving wh-movement we find the wh-marked complementiser $a L$ (below glossed as what) - as the following long-distance wh-question shows:

Cén t-úrscéal $a L$ mheas mé $a L$ dúirt sé $a l$ thuig sé?
Which novel what thought I what said he what understood he?
'Which novel did I think that he said that he understood?'
(Note that the word-order in (45) is wh-word+complementiser+verb+subject+complement.) McCloskey argues that the wh-marking of each of the italicised complementisers in (45) provides evidence that wh-movement applies in a successive-cyclic fashion, with each successive C which is introduced into the derivation having [WH, EPP] features which trigger wh-marking of C and wh-movement of the relevant wh-expression. Chung (1994) provides parallel evidence from wh-marking of intermediate heads in Chamorro. The work of McCloskey and Chung provides further evidence that a complementiser is only wh-marked if it carries both a [WH] feature and an [EPP] feature.

Overall, then, we see that there is a considerable body of empirical evidence which supports the hypothesis that long-distance wh-movement is successive-cyclic in nature and involves movement through intermediate spec-CP positions. Additional syntactic evidence comes from partial wh-movement in a variety of languages (see e.g. Cole 1982, Saddy 1991 and Cole and Hermon 2000), and from exceptional accusative case-marking by a higher transitive verb of the wh-subject of a lower finite clause (reported for English by Kayne 1984, p. 5 and for Hungarian by Bejar and Massam 1999, p.66).

10.7 Evidence for wh-movement through spec-vP in transitive clauses

In the previous section, we noted that theoretical considerations lead us to conclude that, if transitive vPs are phases, wh-movement must involve movement through intermediate spec-vP positions in transitive clauses. An important question to ask, therefore, is whether there is any empirical evidence of wh-movement through spec-vP. We shall see that there is.

One such piece of evidence comes from observations about have-cliticisation. In varieties of English such as my own, have when used as a main verb marking possession can contract onto an immediately adjacent pronoun ending in a vowel or dipthong, e.g. in sentences such as (46) below:
(46)(a) They have little faith in the government
(b) They've little faith in the government

However, cliticisation is blocked when the object of have undergoes wh-movement, as we see from sentences like those below:
(47)(a) How little faith they have in the government!
(b) *How little faith they've in the government

To see why this should be, let's take a closer look at the derivation of (47).
The verb have merges with the prepositional phrase in the government to form the V-bar have in the government. This is then merged with the QP how little faith to form the VP how little faith have in the government. The resulting VP is merged with a null light-verb forming a v-bar which is in turn merged with its subject they, and the verb have raises to adjoin to the light verb. Being transitive, the light-verb assigns accusative case to how little faith. Since a transitive light-verb is a phase head, the light-verb will carry [WH, EPP] features which trigger movement of the wh-marked QP how little faith to spec-vP. The resulting vP is merged with a T constituent which agrees with, case-marks and triggers movement to specTP of the subject they, so that on the TP cycle we have the structure shown in simplified form below:
(48)

PRN they

Since a finite T is generally able to attract possessive have to move from V to T , we might expect have to move from V to T at this point. But if have moves to T , it will then be adjacent to the subject they, leading us to expect have to be able to cliticise onto they in the PF component, so wrongly predicting that (47b) is grammatical. How can we prevent have cliticisation in such structures? One answer is to suppose that movement of have from v to T is blocked in structures like (48) by the intervening raised object how little faith in the outer spec-vP position. This would mean that the verb have remains in the head v position of $v P$ rather than moving into T ; and if have cannot move into T , it will not be adjacent to (and so cannot cliticise onto) the subject they in spec-TP. As should be obvious, this kind of account is crucially dependent on the assumption that the preposed wh-phrase how little faith moves through spec-vP before moving into spec-CP.

A very different kind of evidence in support of wh-movement through spec-vP in transitive clauses comes from wh-marking of verbs (in languages with a richer verb morphology than English). We saw in $\S 10.6$ that a complementiser is wh-marked (in languages like Irish and Chamorro) if it has [EPP, WH] features and attracts a wh-marked goal. Chung $(1994,1998)$ presents evidence that wh-movement out of a transitive verb phrase likewise triggers wh-marking of the verb in Chamorro. We can illustrate this phenomenon of wh-marking of transitive verbs in terms of the following example (from Chung 1998, p.242):

Hafa si Maria s-in-angane-nña as Joaquin?
What PN Maria wh-say.to-AGR OBL Joaquin (= 'What did Maria say to Joaquin?')
(PN denotes a person/number marker, AGR an agreement marker, and OBL an oblique case marker.) The crucial aspect of the the example in (49) is that the direct object hafa 'what' has been moved out of the transitive verb phrase in which it originates, and that this movement triggers wh-marking of the italicised verb, which therefore ends up carrying the wh-infix in. This suggests that a transitive light-verb carrying [EPP, WH] features attracts a wh-marked goal and undergoes agreement with the goal, resulting in the verb which is adjoined to the light-verb being overtly wh-marked (though see Dukes 2000 for an alternative perspective on the relevant affixes in Chamorro). For further examples of wh-marking of intermediate verbs in long-distance wh-movement structures, see Branigan and MacKenzie (2002) on Innu-aimûn, and den Dikken (2001) on Kilega.

A related piece evidence comes from participle agreement in French in transitive clauses such as (50b) below (discussed in Kayne 1989, Branigan 1992, Ura 1993/2001, Bošković 1997, Richards 1997 and Sportiche 1998):
(50)(a) Il a commis quelle bêtise?

He has committed what blunder 'What blunder did he make?'
(b) Quelle bêtise il a commise? What blunder he has committed 'What blunder did he make?'
The participle commis 'committed' is in the default (masculine singular) form in (50a), and does not agree with the feminine singular in situ wh-object quelle bêtise 'what blunder' (the final $-e$ in these words can be taken to be an orthographic marker of a feminine singular form). However, the participle commise in (50b) contains the feminine singular marker $-e$ and agrees with its preposed feminine singular object quelle bêtise 'what blunder' and consequently rhymes with bêtise. What's going on here?

Let's look first at the derivation of (50a). The QP quelle bêtise 'what blunder' in (50a) is merged as the complement of the verb commis 'committed' forming the VP commis quelle bêtise 'committed what
blunder'. The resulting VP is then merged with a null transitive light verb whose external AGENT argument is the pronoun il 'he'; since the light-verb is affixal, it triggers movement of the verb commis 'committed' to adjoin to the light verb, so that at the end of the vP phase we have the structure (51) below:

The light-verb agrees in person/number f -features with the object quelle bêtise 'what blunder' and assigns it accusative case. By hypothesis, the light verb has no [EPP] feature in wh-in-situ questions, so there is no movement of the wh-phrase quelle bêtise 'what blunder' to spec-vP. Subsequently the vP (51) is merged as the complement of the auxiliary a 'has' which agrees in person/number f-features with (and triggers movement to spec-TP of) the subject il 'he'. Merging the resulting TP with a null complementiser which likewise has no [EPP] feature derives the structure associated with (50a) Il a commis quelle bêtise? (literally 'He has committed what blunder?').

Now consider the derivation of (50b). This is similar in a number of respects to that of (50a), so that (as before) the light verb agrees in person and number with (and assigns accusative case to) its object quelle bêtise 'what blunder'. But in addition, the light-verb has [WH, EPP] features, and these attract the wh-marked object quelle bêtise 'what blunder' to move to become an additional (outer) specifier for the vP , so deriving the structure shown in (52) below:

The resulting vP (52) is then merged as the complement of the auxiliary a 'has' which agrees in f features with (and triggers movement to spec-TP of) the subject il 'he'. Merging the resulting TP with a null interrogative complementiser which has [EPP, WH] features triggers movement of the wh-phrase to spec-CP, so deriving the structure associated with (50b) Quelle bêtise il a commise? (literally 'What blunder he has committed?')

In the light of the assumptions made above, consider why the participle surfaces in the agreeing (feminine singular) form commise 'committed' in (50b), but in the non-agreeing (default) form commis in (50a). Bearing in mind our earlier observation that (in languages like Irish) a complementiser only shows overt wh-marking if it has an [EPP] feature as well as a [WH] feature, a plausible suggestion to make is that French participles only overtly inflect for number/gender agreement with their object if they have an [EPP] feature which forces movement of the object through spec-vP. However, any such assumption requires us to suppose that wh-movement proceeds through spec-vP in transitive clauses, and hence lends further support for Chomsky's claim that transitive vPs are phases. (The discussion here is simplified in a number of respects for expository purposes, e.g. by ignoring the specificity effect discussed by Richards 1997 pp.158-160, and additional complications discussed by Ura 2001.)

Further evidence in support of successive-cyclic wh-movement through spec-vP in transitive clauses comes from observations about mutation in Welsh made in Tallerman (1993). Tallerman claims that
wh-traces trigger so-called soft mutation of the initial consonant of a following word. In this connection, consider the sentence in (53) below (where PROG denotes a progressive aspect marker):

Beth wyt ti 'n feddwyl oedd gin I?
What are you PROG thinking was with me (= 'What do you think I had?')
What is particularly interesting here is that the italicised verb has undergone soft mutation (so that in place of the radical form meddwyl 'thinking', we find the mutated form $f e d d w y l$. Given independent evidence that Tallerman produces in support of claiming that wh-traces induce mutation, an obvious way of accounting for the use of the mutated verb-form feddwyl 'thinking' in (53) is to suppose that the wh-pronoun beth 'what' moves through spec-vP on its way to the front of the overall sentence, in much the same way as what moves in front of think in (24) above. We can then suppose that a wh-trace on the edge of vP triggers soft mutation on the lexical verb adjoined to the light-verb heading the vP. (See Willis 2000 for a slightly different account of Welsh mutation.)

10.8 Summary

In this chapter, we have taken a look at Chomsky's phase-based theory of syntax. In §10.2, we noted Chomsky's suggestion that the computational component of the Language Faculty can only hold limited amounts of syntactic structure in its working memory at any one time, and that clause structure is built up in phases (with phases including CP and transitive vP). At the end of each phase, the domain (i.e. complement of the phase head) undergoes transfer to the phonological and semantic components, with the result that neither the domain nor any constituent it contains are accessible to further syntactic operations from that point on. In $\S 10.3$ we saw that intransitive vPs and defective clauses (i.e. clauses which are TPs lacking an extended projection into CP) are not phases, and hence allow A-movement out of their complement, as in structures such as Numerous problems are thought to remain in Utopia. In $\S 10.4$ we saw that a phase-based theory of syntax requires us to assume that long-distance A-bar movement (e.g. of wh-expressions) involves movement through intermediate spec-CP positions, since CP is a phase and only constituents at the edge of a phase can undergo subsequent syntactic operations. In $\S 10.5$ it was argued that A-bar movement in transitive clauses involves movement through intermediate spec-vP positions. In $\S 10.6$ a range of arguments were presented in support of successive-cyclic A-bar movement through intermediate spec-CP positions, from structures including preposition stranding in Afrikaans, quantifier stranding in West Ulster English, wh-copying in adult and child grammars, and wh-marking of complementisers in adult and child grammars. In $\S 10.7$ we looked at evidence from have-cliticisation in English, wh-marking of verbs in Chamorro, past participle agreement in French, and mutation in Welsh in support of claiming that wh-movement in transitive clauses involves movement through spec-vP.

WORKBOOK SECTION

Exercise XIX

Discuss the role played by phases in the derivation of the following sentences:

1 Where has he arranged for her to go?

2 Where does he seem to think they've gone?
3 What would it appear that they've said to her?
4 What does he appear to think was said to her?
5 What is he expecting to happen to her?
6 What is he thought likely to want her to do?
7 What problems are there expected to arise?
8 How many prizes do you want there to be awarded?
9 Whose assignment do you want to be penalised?
10 What kind of prize do you want to award?

Helpful hint

In 8 take how many prizes to be a QP, with many as its head, prizes as its complement, and how as its specifier. You may find it useful to remind yourself of the discussion of the syntax of infinitive complements in $\S 4.7$ and $\S 4.8$, and the discussion of pied-piping in $\S 6.6$ and $\S 6.7$.

Model answer for 1

The unaccusative verb go merges with its (locative adverbial pronoun) complement where to form the V-bar go where. This V-bar is then merged with the pronoun (which is ultimately spelled out as) her to form the VP her go where. This VP is in turn merged with an intransitive light-verb, which (being affixal) triggers raising of the verb go from V to v. Since the relevant vP has no external argument, it is intransitive. Given that intransitive vPs are not phases and their heads have no [EPP] feature, no wh-movement takes place at this point. The resulting vP merges with infinitival to, forming the T-bar in (i) below:

Since an infinitival T is defective in all clauses except control clauses with a null PRO subject, infinitival to will be defective here and so have person and [EPP] features, but no number feature. Infinitival to probes at this point, searching for a goal with a person feature and an active A-feature, locating her (which has a person feature and has an active A-feature in the form of its unvalued case feature) and raising her to become the specifier of $t o$, with the person feature of to being valued and deleted in the process, and the [EPP] feature of to being deleted. The resulting TP is then merged with the complementiser for to form a C -bar constituent containing the overt items for her to go where. Since the relevant C is transitive, it assigns accusative case to the infinitive subject her in spec-TP (arguably as a refex of abstract person/number agreement between the two). Since CP is a phase, C will carry an [EPP] feature triggering movement of where to spec-CP, so deriving the structure shown in simplified form below (with italics marking trace copies):
(ii)

At the end of the CP cycle, the domain of C (i.e. its TP complement) will undergo transfer (to the phonological and semantic components) and thereafter be inaccessible to further syntactic operations; italicised traces of moved constituents will be deleted.

The resulting CP is then merged with the verb arrange, forming the VP arrange where for her to go. This is in turn merged with an affixal light-verb, triggering raising of the verb arrange from V to v . The resulting v-bar is merged with its AGENT external argument he (the AGENT role of he being shown by the possibility of modifying it by the agentive adverb deliberately). Since the light verb is transitive by virtue of having an external argument, it will have an [EPP] feature triggering movement of where to spec-vP, so deriving the structure shown below (simplified by not showing the structure of the embedded CP or the null constituents which it contains):
(iii)

Since a vP with an external argument is a phase, its VP domain will undergo transfer at this point, and the italicised trace of the verb arranged will be deleted.

The vP in (iii) is then merged as the complement of a finite T constituent [${ }_{T}$ HAVE]. This serves as a probe looking for a goal with an active A-feature, and locates the subject he which is active by virtue of its unvalued, uninterpretable case-feature. In consequence, HAVE agrees in person and number with he and so is ultimately spelled out as has. The [EPP] feature of T triggers movement of he to spec-TP. The resulting TP is merged with a null interrogative C which (being strong) triggers movement of has from T to C . Since CP is a phase, C has an [EPP] feature and so serves as a probe triggering movement of the wh-goal where to spec-CP, deriving the structure shown below (simplified by showing only overt constituents of vP):
(iv)

The TP domain then undergoes transfer in accordance with (7i) in the main text (with the italicised copy of the moved auxiliary has being given a null spellout), and the constituents on the edge of CP undergo
transfer in accordance with (7ii).

Exercise XX

Discuss the derivation of the following sentences, commenting on points of special interest. (Note that $4 \mathrm{a} / \mathrm{b}$ are examples from a non-standard variety of British English.)
1a He is someone [who/whom I believe has left]
b He is someone [who/* whom it is believed has left]
2a He is someone [whom they claim to have died]
b *They claim him to have died
3a Who d'ya reckon what/*that seen 'im? (= Who d'you think saw him?')
b Who d'ya reckon that/*what 'e seen? (= Who d'you think that he saw?)
4a There look like there have been some problems
b What sort of problems do there look like there have been?
Say why sentences like 4 a are identified by Chomsky (1998, p.46, fn.94) as potentially problematic for a phase-based theory of syntax which assumes that all finite clauses are CPs and hence phases.

In addition, discuss the derivation of the following child wh-questions reported in Thornton (1995):
5 Which dinosaur that Grover didn't ride on?
6 Which mouse what the cat didn't see?
7 Which animal do you think what was chasing the cat?
8 Which Smurf do you think who was chasing the cat?
(The examples in 7 and 8 are adapted slightly for the purposes of this exercise.)

Helpful hints

In $1 \mathrm{a} / \mathrm{b}$ and 2 a , concern yourself only with the derivation of the bracketed relative clause structures. In relation to 2 , consider the possibility that (in active uses) verbs like claim select a CP complement headed by a null infinitival complementiser which lacks the ability to assign case. In relation to 4, consider the possibility that like is a raising adjective (cf. likely) which has a finite TP complement. In relation to 5 and 6, make the simplifying assumption that didn't is an inherently negative auxiliary which originates in T. In relation to 8 , consider the possibility that an intermediate C with an [EPP] feature agrees in person, number, and (animate or inanimate) gender with the subject its clause.

Model answer for 1a

What is puzzling about 1 a is why the wh-pronoun can surface in the overtly accusative form whom when (prior to wh-movement) it was the subject of has left and so would have been expected to agree with (and be assigned nominative case by) has, and hence to be spelled out as nominative who. In order to try and find out what's going on here, let's take a look at the derivation of the relevant sentence.

The verb LEAVE is unaccusative, and so the relative pronoun who originates as its internal argument. Merging leave with who derives the VP leave who. This VP is then merged with a strong light-verb which triggers raising of leave to adjoin to the light verb. Merging the resulting vP with the auxiliary have (which requires the verb LEAVE to be spelled out in the perfect participle form left at PF) derives the structure (i) below (with italics marking a copy of a moved constituent):
(i)

The unvalued person/number features of T serve as a probe, identifying who as a goal which is active by virtue of its unvalued case feature. Accordingly, have agrees with who and is ultimately spelled out at PF as has. We'd also expect the unvalued case-feature of who to be valued as nominative via agreement with the finite T have at this point, but let's suppose that this doesn't happen. Instead, the EPP feature of T attracts who to move to spec-TP, so deriving the structure shown in skeletal form in (ii) below (trace copies left behind by movement being shown in italics):
(ii) [${ }_{\mathrm{TP}}$ who [T_{h} has] [${ }_{\mathrm{vP}}\left[{ }_{\mathrm{v}}\right.$ left] [vp [v left] who] $]$]

The resulting TP is then merged with a C carrying [WH, EPP] features which attract who to move into spec-CP, and (since CP is a phase) the TP complement of C then undergoes transfer, so deriving the structure shown in (iii) below (with items being shown in their PF form, outlione font indicating constituents which have undergone spellout, and strikethrough showing constituents which are given a null spellout in the PF component):

The CP in (iii) is then embedded as the complement of the verb believe, deriving the structure shown in skeletal form in (iv) below (simplified, inter alia, by showing only those constituents of TP which have been overtly spelled out):
(iv) [vp [v believe] [cP who [c \varnothing] [TP Thas $\mathbb{C e f i t}]]]$

The VP in (iv) is then merged with a transitive light verb whose external argument is the pronoun (which is ultimately spelled out as) I, and the verb believe raises to adjoin to the light-verb (leaving an italicised trace copy behind), forming the structure shown in simplified form in (v) below:
(v)

The light verb is transitive (by virtue of having an external argument) and so carries unvalued person/number features, allowing it to agree with and assign (exceptional) accusative case to the wh-pronoun who (which remains active at this point by virtue of its case-feature not having yet been valued): accordingly, the accusative relative pronoun is spelled out as whom in formal styles, and as who in other styles. On the assumption that the light-verb also carries [WH, EPP] features, it will trigger movement of who to become a second (outer) specifier for vP. The derivation will thereafter continue in a familiar fashion, with I agreeing with, being assigned nominative case by and moving to become the specifier of the relative clause T constituent, and who moving from spec-vP to become the specifier of the null C constituent heading the relative clause. Note, however, that a crucial feature of this analysis is the assumption that a transitive vP is a phase, and triggers successive-cyclic movement of an extracted wh-expression through spec-vP.

While the force of the argument presented above is somewhat weakened by the problematic status of whom in present-day English (discussed in Lasnik and Sobin 2000), it is interesting to note that Bejar and Massam (1999, p.66) report a similar phenomenon (of exceptional case-marking of the subject of a finite clause by a higher transitive verb) in Hungarian sentences such as:
(vi) Kiket mondtad hogy szeretnél ha eljönnék?

Whom you.said that you.would.like if they.came
'Who did you say you would like it if they came?'
Bejar and Massam suppose that different links in a movement chain can be assigned different cases, with PF determining which of the various cases is actually spelled out. Their analysis overcomes an apparent violation of the Earliness Principle in the derivation outlined above, since we would have expected who to be assigned nominative case at the stage of derivation represented in (i) above. However, their proposal poses an apparent challenge to the claim that the different links in movement chains are identical copies, since this will clearly not be so if different chain links carry different cases.
11.

Glossary and List of Abbreviations

Bold print is used to indicate technical terms, and to cross-refer to entries elsewhere in the glossary. Abbreviations used here are: ch. = chapter; $\S=$ chapter/section number; ex. = exercise.

A: See Adjective, A-head, A-position, Binding.

A-bar: An A-bar position is a position which can be occupied by arguments or adjuncts alike. For example, the specifier position within CP is said to be an A-bar position because it can contain not only an argument like the italicised wh-phrase in 'Which car did he fix?' but also an adjunct like the italicised adverbial phrase in 'How did he fix the car?' A-bar movement is a movement operation (like
wh-movement) which moves an argument or adjunct expression to an A-bar position. On A-bar head, see A-head.
Acc(usative): See Case.

ACP: See Attract Closest Principle.

Acquisition: The process by which people acquire their first language ($=\mathrm{L} 1$ acquisition) or a second language which is not their mother tongue (= L2 acquisition).
Active: A contrast is traditionally drawn between sentence pairs such as (i) and (ii) below:
(i) The thieves stole the jewels
(ii) The jewels were stolen by the thieves
(i) is said to be an active clause (or sentence), and (ii) to be its passive counterpart; similarly, the verb stole is said to be an active verb (or a verb in the active voice) in (i), whereas the verb stolen is said to be a passive verb (or a verb in the passive voice - more specifically, a passive participle) in (ii); likewise, the auxiliary were in (ii) is said to be a passive auxiliary. In a different use, a probe or goal is said to be active for movement/agreement if it carries an (unvalued) uninterpretable feature: see §8.4.

Adequacy, criteria of: These are the criteria which an adequate grammar or linguistic theory must meet. See §1.2.

Adjacency condition: A condition requiring that two expressions must be immediately adjacent (i.e. there must be no constituent intervening between the two) in order for some operation to apply. For example, have must be immediately adjacent to they in order to cliticise onto it in structures such as They've gone home.
Adjective: This is a category of word (abbreviated to A) which often denotes states (e.g. happy, sad), which typically has an adverb counterpart in -ly (cf. sad/sadly), which typically has comparative/ superlative forms in -erl-est (cf. sadder/saddest), which can often take the prefix un- (cf. unhappy), which can often form a noun by the addition of the suffix -ness (cf. sadness), etc. See $\S 2.2$ and $\S 2.3$.

Adjoin: See Adjunction.

Adjunct: One way in which this term is used is to denote an optional constituent typically used to specify e.g. the time, place or manner in which an event takes place. Another way in which it is used is to denote a constituent which has been attached to another to form a larger constituent of the same type. (See Adjunction).
Adjunction: This is a process by which one constituent is adjoined (= attached) to another to form a larger constituent of the same type. For example, we could say that in a sentence like 'He should not go', the negative particle not (in the guise of its contracted form $n^{\prime} t$) can be adjoined to the auxiliary should to form the negative auxiliary shouldn't. In a sentence such as He gently rolled the ball down the hill, the adverb gently can be taken to be an adverb which adjoins to a verbal projection, extending it into a larger projection of the same kind: see $\S 9.4$.
Adposition: A cover term subsuming preposition and postposition. For example, the English word in is a preposition since it is positioned before its complement (cf. in Tokyo), whereas its Japanese counterpart is a postposition because it is positioned after its complement Tokyo. Both words are adpositions.

ADV/Adverb: This is a category of word which typically indicates manner (e.g. 'wait patiently') or degree (e.g. 'exceedingly patient'). In English, most (but not all) adverbs end in -ly (cf. quickly - but also almost). See $\S 2.2$ and 2.3.

AFF: See Affix

Affective: An affective constituent is an (e.g. negative, interrogative or conditional) expression which can have a polarity expression like (partitive) any in its scope. So, for example, interrogative if is an affective constituent as we see from the fact that an interrogative if-clause can contain partitive any in a sentence such as 'I wonder if he has any news about Jim.'

Affix/Affixal: The term affix is typically used to describe a grammatical morpheme which cannot stand on its own as an independent word, but which must be attached to a host word of an appropriate kind. An affix which attaches to the beginning of a word (e.g. un- in unhappy) is called a prefix: an affix which attaches to the end of a word (e.g. -s in chases) is called a suffix. An affixal head is one which behaves like an affix in needing to attach to a particular kind of host word. See also Clitic. Affix Hopping is an operation by which an unattached affix in T is lowered onto a verb: see §4.4. Affix Attachment is an operation whereby an unattached tense affix lowers onto a verb where possible, but is otherwise supported by use of the dummy auxiliary do: see $\S 5.8$.
AGENT: This is a term used to describe the semantic (= thematic) role which a particular type of argument plays in a given sentence. It typically denotes a person who deliberately causes some state of affairs to come about: hence e.g. John plays the thematic role of AGENT in a sentence such as 'John smashed the bottle'. See §7.4.
Agreement: An operation by which (e.g. in a sentence like They are lying) the person/number features of the auxiliary are get assigned the same values as those of its subject they, so that are is third person plural because it agrees in person and number with its third person plural subject they. See ch. 8 .

A-head: An A-head is the kind of head (like T) which allows as its specifier an argument expression but not an adjunct expression. An A-bar head is the kind of head (like C) which allows as its specifier either an argument or an adjunct expression.
Allomorphs: Variant phonetic forms of a single morpheme. For example, the noun plural morpheme $\{\mathrm{s}\}$ in English has the three allomorphs $/ \mathrm{s} /($ e.g. in cats) $/ \mathrm{z} /$ (e.g. in $d o g s$) and $/ \mathrm{zz} /$ (e.g. in horses).
A-movement: Movement from one A position to another (typically, from a subject or complement position into another subject position). See ch.7.
A-position: A position which can be occupied by an argument, but not by a nonargument expression (e.g. not by an adjunct). In practice, the term denotes a subject position, or a lexical complement position (i.e. a position occupied by a constituent which is the complement of a lexical/substantive head).

Anaphor: This is an expression (like himself) which cannot have independent reference, but which must take its reference from an appropriate antecedent (i.e. expression which it refers to) within the same phrase or sentence. Hence, while we can say 'John is deluding himself' (where himself refers back to John), we cannot say *'Himself is waiting', since the anaphor himself here has no antecedent. A traditional distinction is drawn between reflexive anaphors (i.e. self forms like myselflourselves/yourself/ yourselves/himselff herselflitselffthemselves) and the reciprocal anaphors each otherlone another (cf. 'They help each other/one another'). See $\S 3.6$ and ex.VI.
Animate: The term animate is used to denote (the gender of) an expression which denotes a living being (e.g. a human being or animal), while the term inanimate is used in relation to an expression which denotes lifeless entities. For example, the relative pronoun who could be said to be animate in gender and the relative pronoun which inanimate - hence we say someone who upsets people and something which upsets people.
Antecedent: An expression which is referred to by a pronoun or anaphor of some kind. For example, in 'John cut himself shaving', John is the antecedent of the anaphor himself, since himself refers back to John. In a sentence such as 'He is someone who we respect', the antecedent of the relative pronoun who is someone.
AP: adjectival phrase - i.e. a phrase headed by an adjective, such as fond of chocolate, keen on sport, good at syntax, etc.
Arbitrary: When we say that an expression has 'arbitrary reference', we mean that it can denote an unspecified set of individuals, and hence have much the same meaning as English onelpeople or French on. In a sentence such as 'It is difficult [PRO to learn Japanese]', the bracketed clause is said to have an abstract pronoun subject PRO which can have arbitrary reference, in which case the sentence is paraphraseable as 'It's difficult for people to learn Japanese.' See §4.2.
Argument: This is a term borrowed by linguists from philosophy (more specifically, from predicate calculus) to describe the role played by particular types of expression in the semantic structure of sentences. In a sentence such as 'John hit Fred', the overall sentence is said to be a proposition (a term used to describe the semantic content of a clause), and to consist of the predicate hit and its two arguments John and Fred. The two arguments represent the two participants in the act of hitting, and the predicate is the expression (in this case the verb hit) which describes the activity in which they are engaged. By extension, in a sentence such as 'John says he hates syntax' the predicate in the main clause is the verb says, and its two arguments are John and the clause he hates syntax; the argument he hates syntax is in turn a proposition whose predicate is hates, and whose two arguments are he and syntax. Since the complement of a verb is positioned internally within V-bar whereas the subject of a verb is positioned outside V-bar, complements are also referred to as internal arguments, and subjects as external arguments. Expressions which do not function as arguments are nonarguments. The argument structure of a predicate provides a description of the set of arguments associated with the predicate, and the thematic role which each fulfils in relation to the predicate. See 7.4.
Array: The lexical array for a given expression denotes the set of lexical items out of which the expression is formed.

Article: A term used in traditional grammar to describe a particular subclass of determiners: the determiner the is traditionally called the definite article, and the determiner a the indefinite article.
Aspect: A term typically used to denote the duration of the activity described by a verb (e.g. whether the activity is ongoing or completed). In sentences such as:
(i) He has taken the medicine
(ii) He is taking the medicine
the auxiliary has is said to be an auxiliary which marks perfect aspect, in that it marks the perfection (in the sense of 'completion' or 'termination') of the activity of taking the medecine; for analogous reasons, taken is said to be a perfect participle verb form in (i) (though is referred to in traditional grammars as a 'past participle'). Similarly, is functions as an auxiliary which marks progressive aspect in (ii), because it relates to an activity which is ongoing or in progress (for this reason, is in (ii) is also referred to as a progressive auxiliary); in the same way, the verb taking in (ii) is said to be the progressive participle form of the verb (though is sometimes known in traditional grammars as a 'present participle').
Aspectual auxiliaries: Auxiliaries which mark Aspect - e.g. perfect have and progressive be. See Aspect.
Associate: An expression which represents the thematic argument in an expletive there construction, and which is associated with the expletive subject there: e.g. several prizes in There were awarded several prizes.

Asymmetric c-command: See C-command.

Attract: To say that a head H attracts a constituent C is to say that H triggers movement of C to some position on the edge of HP (so that C may move to adjoin to H , or to become the specifier of H).
Attract Closest Principle: A principle of grammar requiring that a head H which attracts a particular type of constituent C attracts the closest C which it c -commands.
Attribute: See Value.
Attributive adjective: This term denotes an adjective which is used to modify a following noun expression - e.g. red in 'John has a red Ferrari', where red attributes the property of being red to the noun Ferrari. Attributive adjectives contrast with predicative adjectives, which are adjectives used in structures such as 'The house was red' or 'They painted the house red', (where the property of being red is said to be predicated of the expression the house).
AUX/Auxiliary: A term used to categorise items such as will/would/can/could/shall/should/may/might/ must/ought and some uses of have/be/do/need/dare. Such items have a number of idiosyncratic properties, including the fact that they can undergo inversion (e.g. in questions like 'Can you speak French?'). By contrast, main verbs (i.e. verbs which are not auxiliaries) cannot undergo inversion - as we see from the ungrammaticality *'Speak you French?' See §2.7.
AUXP: Auxiliary projection/Auxiliary phrase - i.e. a phrase headed by an auxiliary which does not occupy the head T position of TP. See §5.6.
Auxiliary copying: A phenomenon whereby a moved auxiliary leaves behind an overt copy of itself when it moves - as with can in a Child English question like What can I can have for dinner?

Auxiliary inversion: See Inversion.

Auxiliary selection: This term relates to the type of verb which a given auxiliary selects as its complement: e.g. in many languages (the counterpart of) BE when used as a perfect auxiliary selects only a complement headed by a verb with no external argument, whereas (the counterpart of) HAVE selects a complement headed by a verb with an external argument.
B: On Principle B of Binding Theory, see exercise 3.2.
bar: When used as a suffix attached to a category label such as $\mathrm{N}, \mathrm{V}, \mathrm{P}$ etc (as in N-bar, V-bar, P-bar, T-bar etc.), it denotes an intermediate projection which is larger than a word but smaller than a phrase. Hence, in a phrase such as university policy on drugs, we might say that the string policy on drugs is an N -bar, since it is a projection of the head noun policy, but is an intermediate projection in that it has a larger projection into the NP university policy on drugs. The term bar notation refers to a system of
representing projection levels which posits that (first-) merge of a head H with its complement forms an H-bar constituent, (second-) merge of a head with a specifier forms an H-double-bar constituent, (third-) merge of a head with a further specifier forms an H-treble-bar constituent, and so on (with the maximal projection of H being labelled HP). On A-bar position, see A-position.
Bare: A bare infinitive structure is one which contains a verb in the infinitive form, but does not contain the infinitive particle to (e.g. the italicised clause in 'He won't let you help him'). A bare noun is a noun used without any determiner to modify it (e.g. fish in 'Fish is expensive'). A bare clause is one not introduced by an overt complementiser (e.g. he was tired in 'John said he was tired'. A theory of bare phrase structure is one in which there are no category labels or projection levels associated with constituents: see §3.7.

Base form: The base form of a verb is the simplest, uninflected form of the verb (the form under which the relevant verb would be listed in an English dictionary) - hence forms like go/be/have/see/want/love are the base forms of the relevant verbs. The base form can typically function either as an infinitive (cf. 'Try to stay'), an imperative (cf. 'Stay with me tonight!'), a present tense indicative form ('They sometimes stay with me'), or a subjunctive form (cf. 'I demand that he stay with me').
Binarity Principle: A principle of Universal Grammar specifying that all nonterminal nodes in syntactic structures (i.e. tree-diagrams) are binary-branching. See §3.2.
Binary: A term relating to a two-way contrast. For example, number is a binary property in English, in that we have a two-way contrast between singular forms like cat and plural forms like cats. It is widely assumed that parameters have binary settings, that features have binary values, and that all branching in syntactic structure is binary.
Binary-branching: A tree diagram in which every nonterminal node has two daughters is binarybranching; a category/node which has two daughters is also binary-branching. See 3.2.

Bind/Binder/Binding: To say that one constituent X binds (or serves as the binder for) another constituent Y (and conversely that Y is bound by X) is to say that X determines properties (usually, referential properties) of Y. For example, in a sentence such as 'John blamed himself', the reflexive anaphor himself is bound by John in the sense that the referential properties of himself are determined by John (so that the two refer to the same individual). The C-command condition on binding says that a bound form must be c-commanded by its antecedent. On principles A, B and C of Binding Theory, see exercise 3.2.

Bottom-up: To say that a syntactic structure is derived in a bottom-up fashion is to say that the structure is built up from bottom to top, with lower parts of the structure being formed before higher parts.

Bound: In a traditional use of this term, a bound form is one which cannot stand alone and be used as an independent word, but rather must be attached to some other morpheme (e.g. negative n ' t, which has to attach to some auxiliary such as could). In a completely different use of the term, a bound constituent is one which has a binder (i.e. antecedent) within the structure containing it (See Bind).
Bracketing: A technique for representing the categorial status of an expression, whereby the expression is enclosed within a pair of square brackets, and the lefthand bracket is labelled with an appropriate category symbol-e.g. [d the]. See §2.10.

Branch: A term used to represent a solid line linking a pair of nodes in a tree diagram, marking a mother/daughter (i.e. containment) relation between them.

C: See Complementiser

Canonical: A term used to mean 'usual', 'typical' or 'normal', as in 'The canonical word order in English is specifier+head+complement.'
Case: The different case forms of a pronoun are the different forms which the pronoun has in different sentence positions. It is traditionally said that English has three cases - nominative (abbreviated to Nom), accusative (=Acc, sometimes also referred to as objective), and genitive (= Gen). Personal pronouns typically inflect overtly for all three cases, whereas noun expressions inflect only for genitive case. The different case forms of typical pronouns and noun expressions are given below:

nominative	I	we	you	he	she	it	they	who	the king
accusative	me	us	you	him	her	it	them	who(m)	the king
genitive	my mine	our ours	your yours	his	her hers	its	their theirs	whose	the king's

As is apparent, some pronouns have two distinct genitive forms: a weak (shorter) form used when they are immediately followed by a noun (as in 'This is my car'), and a strong (longer) form used when they are not immediately followed by a noun (as in 'This car is mine'). In Chomsky and Lasnik (1995), it is suggested that the null subject PRO found in control constructions carries null case. In languages like English where certain types of expression are assigned case by virtue of the structural position they occupy in a given clause (e.g. accusative if c-commanded by a transitive head, nominative if c-commanded by finite intransitive head), the relevant expressions are said to receive structural case. Where a constituent is assigned case by virtue of its semantic function (e.g. a GOAL complement of certain types of verb is assigned dative case in German), it is said to receive inherent case. In languages like Icelandic where subjects can be assigned a variety of cases (e.g. some are accusative and others dative, depending on the choice of verb and its semantic properties), subjects are said to have quirky case. In the Italian counterpart of a structure like 'She gave him them', the direct object corresponding to English 'them' is assigned accusative case, and the indirect object corresponding to English 'him' is assigned a distinct case, traditionally called dative case. (On direct and indirect objects, see Object). On nominative case assignment, see $\S 4.9$ and $\S 8.3$; on accusative case assignment, see $\S 4.9$ and $\S 9.9$; on null case assignment, see $\S 4.9$ and $\S 8.8$; and on the syntax of genitives, see $\S 6.7$.

Case particle: Some linguists take of in structures like destruction of the city or fond of pasta to be a particle marking genitive case and belonging to the category K of 'case particle'. On this analysis, the of-phrase (of the city) is taken to have genitive case, and of is said to be the morpheme which marks genitive case.

Categorial: Categorial information is information about the grammatical category that an item belongs to. A categorial property is one associated with members of a particular grammatical category. The Categorial Uniformity Principle is a principle suggested by Luigi Rizzi (2000, p.288) to the effect that all expressions of the same type belong to the same category (e.g. all declarative clauses are CPs, both main clauses and complement clauses).

Categorise/Categorisation: Assign(ing) an expression to a (grammatical) category.
Category: A term used to denote a set of expressions which share a common set of linguistic properties. In syntax, the term is used for expressions which share a common set of grammatical properties. For example, boy and girl belong to the (grammatical) category noun because they both inflect for plural number (cf. boys/girls), and can both be used to end a sentence such as 'The police haven't yet found the missing ---'. In traditional grammar, the term parts of speech was used in place of categories.
Causative verb: A verb which has much the same sense as 'cause'. For example, the verb have in sentences such as 'He had them expelled' or 'He had them review the case' might be said to be causative in sense (hence to be a causative verb).
C-command: A structural relation between two constituents. To say that one constituent X c-commands another constituent Y is (informally) to say that X is no lower than Y in the structure (i.e. either X is higher up in the structure than Y, or the two are at the same height). More formally, a constituent X c-commands its sister constituent Y and any constituent Z that is contained within Y . A constituent X asymmetrically c-commands another constituent Y if X c-commands Y but Y does not c -command X . See §3.6.

C-command condition on binding: A condition to the effect that a bound constituent (e.g. a reflexive anaphor like himself or the trace of a moved constituent) must be c-commanded by its antecedent (i.e. by the expression which binds it). See $\S 3.6$ and exercise 3.2.

CED: See Condition on Extraction Domains.

Chain: A set of constituents comprising an expression and any trace copies associated with it. Where a constituent does not undergo movement, it forms a single-membered chain.

Citation: The citation form of a word is the form under which the word is listed in traditional dictionaries.

Clause: A clause is defined in traditional grammar as an expression which contains (at least) a subject and a predicate, and which may contain other types of expression as well (e.g. one or more complements and/or adjuncts). In most cases, the predicate in a clause is a lexical (= main) verb, so that there will be as many different clauses in a sentence as there are different lexical verbs. For example, in a sentence such as 'She may think that you are cheating on her', there are two lexical verbs (think and cheating), and hence two clauses. The cheating clause is that you are cheating on her, and the think clause is She may think that you are cheating on her, so that the cheating clause is one of the constituents of the think clause. More specifically, the cheating clause is the complement of the think clause, and so is said to function as a complement clause in this type of sentence. Clauses whose predicate is not a verb (i.e. verbless clauses) are known as small clauses: hence, in 'John considers [Mary intelligent]', the bracketed expression is sometimes referred to as a small clause.

Cleft sentence: A structure such as 'It was syntax that that he hated most', where syntax is said to occupy focus position within the cleft sentence.

Clitic(isation): The term clitic denotes an item which is (generally) a reduced form of another word, and which has the property that (in its reduced form) it must cliticise (i.e. attach itself to) an appropriate kind of host (i.e. to another word or phrase). For example, we could say that the contracted negative particle n ' t is a clitic form of the negative particle not which attaches itself to a finite auxiliary verb, so giving rise to forms like isn't, shouldn't, mightn't, etc. Likewise, we could say that 've is a clitic form of have which attaches itself to a pronoun ending in a vowel, so giving rise to forms like we've, you've, they've, etc. When a clitic attaches to the end of another word, it is said to be an enclitic (and hence to encliticise) onto the relevant word. Clitics differ from affixes in a number of ways. For example, a clitic is generally a reduced form of a full word, and has a corresponding full form (so that 'll is the clitic form of will, for example), whereas an affix (like noun plural $-s$ in cats) has no full-word counterpart. Moreover, clitics can attach to phrases (e.g. 's can attach to the president in The president's lying), whereas an affix typically attaches to a word stem (e.g. the past tense -ed affix attaches to the verb stem snow in snowed).

Close/Closer/Closest: In structures in which a head X attracts a particular kind of constituent Y to move to the edge of XP, X is said to attract the closest constituent of type Y , in accordance with the Attract Closest Principle. On one view of closeness, if X c-commands Y and Z, X is closer to Y than to Z if Y c-commands Z. See also Local.

Cognition/Cognitive: (Relating to) the study of human knowledge.

Common Noun: See Noun.

COMP: See Complementiser.

Comparative: The comparative form of an adjective or adverb is the form (typically ending in -er) used when comparing two individuals or properties: cf. 'John is taller than Mary', where taller is the comparative form of the adjective tall.

Competence: A term used to represent native speakers' knowledge of the grammar of their native language(s).

Complement: This is a term used to denote a specific grammatical function (in the same way that the term subject denotes a specific grammatical function). A complement is an expression which is directly merged with (and hence is the sister of) a head word, thereby projecting the head into a larger structure of essentially the same kind. In 'Close the door', the door is the complement of the verb close; in 'After dinner', dinner is the complement of the preposition after; in 'good at physics', at physics is the complement of the adjective good; in 'loss of face', of face is the complement of the noun loss. As these examples illustrate, complements typically follow their heads in English. The choice of complement (and the morphological form of the complement) is determined by properties of the head: for example, an auxiliary such as will requires as its complement an expression headed by a verb in the infinitive form (cf. 'He will go/*going/*gone'). Moreover, complements bear a close semantic relation to their heads (e.g. in 'Kill him', him is the complement of the verb kill and plays the semantic role of THEME argument of the
verb kill). Thus, a complement has a close morphological, syntactic and semantic relation to its head. A complement clause is a clause which is used as the complement of some other word (typically as the complement of a verb, adjective or noun). Thus, in a sentence such as 'He never expected that she would come', the clause that she would come serves as the complement of the verb expected, and so is a complement clause. On complement selection, see Selection.

Complementiser: This term is used in two ways. On the one hand, it denotes a particular category of clause-introducing word such as that/iflfor, as used in sentences such as 'I think that you should apologize', 'I doubt if she realises', 'They're keen for you to show up'. On the other hand, it is used to denote the pre-subject position in clauses ('the complementiser position') which is typically occupied by a complementiser like that/iflfor, but which can also be occupied by an inverted auxiliary in sentences such as 'Can you help?', where can is said to occupy the complementiser position in the clause. A complementiser phrase (CP) is a phrase/clause/expression headed by a complementiser (or by an auxiliary or verb occupying the complementiser position).

Complex sentence: One which contains more than one clause.
Component: A grammar is said to have three main components: a syntactic/computational component which generates syntactic structures, a semantic component which assigns each such syntactic structure an appropriate semantic interpretation, and a PF component which assigns each syntactic structure generated by the computational component an appropriate phonetic form. See §1.2.

Compound word: a word which is built up out of two (or more) other words - e.g. man-eater.

Computational component: See Component.

Concord: A traditional term to describe an operation whereby a noun and any adjectives or determiners modifying it are assigned the same values for features such as number, gender and case.

Conditional: A term used to represent a type of clause (typically introduced by if or unless) which lays down conditions - e.g. 'If you don't behave, I'll bar you', or 'Unless you behave, I'll bar you'. In these examples, the clauses If you don't behave and Unless you behave are conditional clauses.

Condition on Extraction Domains: A constraint to the effect that only complements allow constituents to be extracted out of them, not specifiers or adjuncts. See §7.5.

Configurational: Positional - i.e. relating to the position occupied by one or more constituents in a tree diagram. For example, a configurational definition of a structural subject (for English) would be 'an argument which occupies the specifier position in TP'. This definition is configurational in the sense that it tells you what position within TP the subject occupies.

CONJ: See Conjunction.

Conjoin: To join together two or more expressions by a coordinating conjunction such as and/or/but. For example, in 'Naughty but nice', naughty has been conjoined with nice (and conversely nice has been conjoined with naughty).

Conjunct: One of a set of expressions which have been conjoined. For example, in 'Rather tired but otherwise alright', the two conjuncts (i.e. expressions which have been conjoined) are rather tired and otherwise alright.

Conjunction/CONJ: A word which is used to join two or more expressions together. For example, in a sentence such as 'John was tired but happy', the word but serves the function of being a coordinating conjunction because it coordinates (i.e. joins together) the adjectives tired and happy. In 'John felt angry and Mary felt bitter', the conjunction and is used to coordinate the two clauses John felt angry and Mary felt bitter. In traditional grammar, complementisers like that/for/if are categorised as (one particular type of) subordinating conjunction.

Constituent: A term denoting a structural unit - i.e. an expression which is one of the components out of which a phrase or sentence is built up. For example, the various constituents of a prepositional phrase ($=\mathrm{PP}$) such as 'Straight into touch' (e.g. as a reply to 'Where did the ball go?') might be the preposition into, the noun touch, the adverb straight, and the intermediate projection (P-bar) into touch. To say that
X is an immediate constituent of Y is to say that Y immediately contains X (see Contain), or equivalently that Y is the mother of X : see $\S 3.6$.
Constituent Structure: The constituent structure (or phrase structure, or syntactic structure) of an expression is (a representation of) the set of constituents which the expression contains. Syntactic structure is usually represented in terms of a labelled bracketting or a tree diagram.

Constrained: see Restrictive.

Constraint: A structural restriction which blocks the application of some process to a particular type of structure. The term tends to be used with the rather more specific meaning of 'A grammatical principle which prevents certain types of grammatical operation from applying to certain types of structure.'
Contain: To say that one constituent X contains another constituent Y is to say that Y is one of the constituents out of which X is formed by a merger operation of some kind. In terms of tree diagrams, we can say that X contains Y if X occurs higher up in the tree than Y, and X is connected to Y by a continuous (unbroken) set of downward branches (the branches being represented by the solid lines connecting pairs of nodes in a tree diagram). If we think of a tree diagram as a network of train stations, we can say that X contains Y if it is possible to get from X to Y by travelling one or more stations south. To say that one constituent X immediately contains another constituent Y is to say that Y occurs immediately below X in a tree and is connected to X via a branch (or, that X contains Y and there is no intervening constituent Z which contains Y and which is contained by X). See §3.6.

Content: This term is generally used to refer to the semantic content (i.e. meaning) of an expression (typically, of a word). However, it can also be used is a more general way to refer to the linguistic properties of an expression: e.g. the expression phonetic content is sometimes used to refer to the phonetic form of (e.g.) a word: hence, we might say that PRO is a pronoun which has no phonetic content (meaning that it is a 'silent' pronoun with no audible form).

Contentives/content words: Words which have intrinsic descriptive content (as opposed to functors, i.e. words which serve essentially to mark particular grammatical functions). Nouns, verbs, adjectives and (most) prepositions are traditionally classified as contentives, while pronouns, auxiliaries, determiners, complementisers, and particles of various kinds (e.g. infinitival to, genitive of) are classified as functors. See §2.4.
Contraction: A process by which two different words are combined into a single word, with either or both words being reduced in form. For example, by contraction, want to can be reduced to wanna, going to to gonna, he is to he's, they have to they've, did not to didn't, etc. See also Cliticisation.

Contrastive: In a sentence like 'Syntax, I hate but phonology I enjoy', the expressions syntax and phonology are contrasted, and each is said to be contrastive in use.
Control(ler)/Control predicate: In non-finite clauses with a PRO subject which has an antecedent, the antecedent is said to be the controller of PRO (or to control PRO), and conversely PRO is said to be controlled by its antecedent; and the relevant kind of structure is called a control structure. So, in a structure like 'John decided PRO to quit', John is the controller of PRO, and conversely PRO is controlled by John. The term control predicate denotes a word like try which takes an infinitive complement with a (controlled) PRO subject. See §4.2.

Converge(nce): A derivation converges (and hence results in a well-formed sentence) if the resulting PF-representation contains only phonetic features, and the associated semantic representation contains only (semantically) interpretable features. The Convergence Principle is a UG principle requiring that when a probe attracts a goal carrying some feature $[\mathrm{F}]$, it triggers movement of the smallest constituent containing $[\mathrm{F}]$ which will lead to a convergent (hence well-formed) derivation. See §6.6.
Coordinate/Coordination: A coordinate structure is a structure containing two or more expressions joined together by a coordinating conjunction such as and/but/or/nor (e.g. 'John and Mary' is a coordinate structure.). Coordination is an operation by which two or more expressions are joined together by a coordinating conjunction.
Copula/Copular Verb: A 'linking verb', used to link a subject with a nonverbal predicate. The main
copular verb in English is be (though verbs like become, remain, stay etc. have much the same linking function). In sentences such as 'They are lazy', 'They are fools' and 'They are outside', the verb are is said to be a copula in that it links the subject they to the adjectival predicate lazy, or the nominal predicate fools, or the prepositional predicate outside.

Copy/Copying: The Copy Theory of Movement is a theory developed by Chomsky which maintains that a moved constituent leaves behind a (trace) copy of itself when it moves, with the copy generally having its phonetic features deleted and so being null: see $\S 5.3, \S 6.3$ and $\S 7.2$. Feature Copying is an operation by which the value of a feature on one constituent is copied onto another (e.g. the values of the person/number features of a subject are copied onto an auxiliary): see §8.3.

Coreferential: Two expressions are coreferential if they refer to the same entity. For example, in 'John cut himself while shaving', himself and John are cofererential in the sense that they refer to the same individual.

Count/Countability: A count(able) noun is a noun which can be counted. Hence, a noun such as chair is a count noun since we can say 'One chair, two chairs, three chairs, etc.'; but a noun such as furniture is a non-count/uncountable/mass noun since we cannot say '*one furniture, *two furnitures, etc.' The countability properties of a noun determine whether the relevant item is a count noun or not.

Counterexample: An example which falsifies a particular hypothesis. For example, an auxiliary like ought would be a counterexample to any claim that auxiliaries in English never take an infinitive complement introduced by to (cf. 'You ought to tell them').
CP: Complementiser phrase (See Complementiser).
Crash: A derivation is said to crash if one or more features carried by one or more constituents is illegible at either or both of the interface levels (the phonetics interface and the semantics interface). For example, if the person or number features of HAVE remain unvalued in a sentence such as 'He HAVE left', the resulting sentence will crash at the phonetics interface, since the PF component will be unable to determine whether HAVE should be spelled out as have or has.

Cross-categorial properties: Properties which extend across categories, i.e. which are associated with more than one different category. See §2.11.
Cycle/Cyclic: Syntactic operations (like agreement and movement) are said to apply in a cyclic fashion, such that each time a head H is merged with one or more other constituents, a new cycle of operations begins (in the sense that any operation affecting H and one or more other constituents which it c-commands applies at this point). See §5.7.

D: see Determiner.

Dat: An abbreviation for dative case. See Case.
Daughter: A node X is the daughter of another node Y if Y is the next highest node up in the tree from X , and the two are connected by a branch (solid line).
Declarative: A term used as a classification of the force (i.e. semantic type) of a clause which is used to make a statement (as opposed to an interrogative, exclamative or imperative clause).

Default: A default value or property is one which obtains if all else fails (i.e. if other conditions are not satisfied). For example, if we say that $-\phi$ is the default verbal inflection for regular verbs in English, we mean that regular verbs carry the inflection $-s$ if third person singular present tense forms, $-d$ if past, perfect or passive forms, -ing if progressive or gerund forms, and - ϕ otherwise (by default).
Defective: A defective item is one which lacks certain properties. For example, if we suppose that T constituents generally carry person and number features, then infinitival to in all infinitive structures except control infinitives is a defective T constituent in that (under Chomsky's analysis) it carries person but not number. Any clause containing a defective T constituent is a defective clause.

Definite: Expressions containing determiners like the, this, that etc. are said to have definite reference in that they refer to an entity which is assumed to be known to the addressee(s): e.g. in a sentence such as 'I hated the course', the DP the course refers to a specific (e.g. Minimalist Syntax) course whose identity is
assumed to be known to the hearer/reader. In much the same way, personal pronouns like he/shelit/they etc. are said to have definite reference. By contrast, expressions containing a determiner like a are indefinite, in that (e.g.) if you say 'I'm taking a course', you don't assume that the hearer/reader knows which course you are taking.
DEG: A degree word like so/too/how.
Demonstrative: This is a term used to refer to words like this/that, theselthose and herelthere which indicate a location relatively nearer to or further from the speaker (e.g. this book means 'the book relatively close to me', and that book means 'the book somewhat further away from me').

Derivation: The derivation of a phrase or clause is the set of syntactic (e.g. merger and movement) operations used to form the relevant structure. The derivation of a word is the set of morphological operations used to form the word.
Derivational morphology/suffix: Derivational morphology is the component of a grammar which deals with the ways in which one type of word can be formed from another: for example, by adding the suffix -ness to the adjective sad we can form the noun sadness, so that -ness is a derivational suffix. See §2.2.

Derivative: To say that the noun happiness is a derivative of the adjective happy is to say that happiness is formed from happy by the addition of an appropriate derivational morpheme (in this case, the suffix -ness).

Derive: To derive a structure it to say how it is formed (i.e. specify the operations by which it is formed).
Derived structure: A structure which is produced by the application of one or more syntactic (merger, movement or agreement) operations.
Descriptive adequacy: A grammar of a particular language attains descriptive adequacy if it correctly specifies which strings of words do (and don't) form grammatical phrases and sentences in the language, and correctly describes the structure and interpretation of the relevant phrases and sentences. See §1.2.

DET/Determiner: A word like the/this/that which is typically used to modify a noun, but which has no descriptive content of its own. Most determiners can be used either prenominally (i.e. in front of a noun that they modify) or pronominally (i.e. used on their own without a following noun) - cf. 'I don't like that idea/I don't like that'). See $\S 2.5$.

Determiner Phrase: A phrase like the king (of Utopia) which comprises a determiner the, and a noun complement like king or a noun phrase complement like king of Utopia. In work before the mid 1980s, a structure like the king of Utopia would have been analysed as a noun phrase ($=\mathrm{NP}$), comprising the head noun king, its complement of Utopia and its specifier the. Since Abney (1987), such expressions have been taken to have the status of DP/determiner phrase.

Direct Object: See Object.

Discontinuous spellout: A phenomenon whereby part of a moved phrase is spelled out in the position in which it originates, and the remainder in the position in which it ends up - as in 'How much do you believe of what he tells you?', where the wh-phrase how much of what he tells you moves to the front of the sentence, with how much being spelled out in the position it moves to, and of what he tells you being spelled out in the position in which it originates. See §6.3.

Discourse: Discourse factors are factors relating to the extrasentential setting in which an expression occurs (where extrasentential means 'outside the immediate sentence containing the relevant expression'). For example, to say that the reference of PRO is discourse-determined in a sentence such as 'It would be wise PRO to prepare yourself for the worst' means that PRO has no antecedent within the sentence immediately containing it, but rather refers to some individual(s) outside the sentence (in this case, the person being spoken to).

Distribution/Distributional: The distribution of an expression is the set of positions which it can occupy within an appropriate kind of phrase or sentence. Hence, a distributional property is a word-order property.
Domain: The domain (or, more fully, c-command domain) of a head H is the set of constituents
c-commanded by H - namely its sister and all the constituents contained within its sister. For example, the domain of C includes its TP complement and any constituent of the relevant TP.

Do-Support: This refers to the use of the 'dummy' (i.e. meaningless) auxiliary do to form questions, negatives or tags in sentences which would otherwise contain no auxiliary. Hence, because a nonauxiliary verb like want requires do-support in questions/negatives/tags, we have sentences such as 'Does he want some?', 'He doesn't want any', and 'He wants some, does he?' See §5.8.

Double-object construction: See Object

DP: See Determiner Phrase.
DP Hypothesis: The hypothesis that all nominal arguments have the status of DPs - not just nominals like the president which contain an overt determiner, but also 'bare' nominal arguments like politicians and promises (in sentences like 'Politicians break promises').
D-pronoun: A pronoun like that in 'I don't like that' which seems to be a pronominal determiner.
Earliness Principle: A principle which says that linguistic operations must apply as early in a derivation as possible.

Early Modern English: The type of English found in the early seventeenth century (i.e. at around the time Shakespeare wrote most of his plays, between 1590 and 1620).
Echo question: A type of sentence used to question something which someone else has just said (often in an air of incredulity), repeating all or most of what they have just said. For example, if I say 'I've just met Nim Chimpsky' and you don't believe me (or don't know who I'm talking about), you could reply with an echo question such as 'You've just met who?'
Edge: The edge of a given projection HP is that part of HP which excludes the complement of H (hence, that part of the structure which includes the head H and any specifier/s or adjunct/s which it has).

ECM: See Exceptional Case Marking.

Economy Principle: A principle which requires that (all other things being equal) syntactic representations should contain as few constituents and syntactic derivations involve as few grammatical operations as possible.

Elizabethan English: The type of English found in the early seventeenth century, during the reign of Queen Elizabeth I (i.e. at around the time Shakespeare wrote most of his plays, between 1590 and 1620).

Ellipsis/Elliptical: Ellipsis is an operation by which an expression is omitted (in the sense that its phonetic features are deleted and so unpronounced), e.g. in order to avoid repetition. For example, in a sentence such as 'I will do it if you will do it', we can ellipse (i.e. omit) the second occurrence of do it to avoid repetition, and hence say 'I will do it if you will'. An elliptical structure is one containing an 'understood' constituent which has undergone ellipsis (i.e. been omitted).

Embedded clause: A clause which is positioned internally within another constituent. For example, in a sentence such as 'He may suspect that I hid them', the hid-clause (= that I hid them) is embedded within (and is the complement of) the verb phrase headed by the verb suspect. Likewise, in 'The fact that he didn't apologise is significant', the that-clause (that he didn't apologise) is an embedded clause in the sense that it is embedded within a noun phrase headed by the noun fact. A clause which is not embedded within any other expression is a root clause (see Root) or main clause.

EME: See Early Modern English.

Empirical evidence: Evidence based on observed linguistic phenomena. In syntax, the term 'empirical evidence' usually means 'evidence based on grammaticality judgments by native speakers.' For example, the fact that sentences like *'Himself likes you' are judged ungrammatical by native speakers of Standard English provides us with empirical evidence that anaphors like himself can't be used without an appropriate antecedent (i.e. an expression which they refer back to).
Empty: A constituent is empty/null if it is 'silent' and hence has no overt phonetic form. Empty categories include null subject pronouns like PRO and pro, null relative pronouns (like the null counterpart of who in
someone who I know well), null determiners (like that in ' ϕ John is tired'), and null trace copies of moved constituents. See ch.4.

Enclitic/Encliticise: See Clitic.

Entry: A lexical entry is an entry for a particular word in a dictionary (and hence by extension refers to the set of information about the word given in the relevant dictionary entry).
EPP: This was originally an abbreviation for the Extended Projection Principle, which posited that every T constituent must be extended into a TP projection which has a specifier. In more recent work, the requirement for a T constituent like will to have a specifier is said to be a consequence of T carrying an [EPP] feature requiring it to project a specifier. The EPP Generalisation specifies the conditions under which the EPP feature carried by a head is deleted via use of an expletive or movement: see $\S 8.6$.

Ergative: This term originally applied to languages like Basque in which the complement of a transitive verb and the subject of an intransitive verb are assigned the same morphological case. However, by extension, it has come to be used to denote verbs like break which occur both in structures like 'Someone broke the window' and in structures like 'The window broke', where the window seems to play the same semantic/thematic role in both types of sentences, in spite of being the complement of broke in one sentence and the subject of broke in the other. See §9.4.

Exceptional Case Marking/ECM: Accusative subjects of infinitive clauses (e.g. him in 'I believe him to be innocent') are said to carry exceptional accusative case (in that the case of the accusative subject is assigned by the main-clause verb believe, and it is exceptional for the case of the subject of one clause to be assigned by the verb in a higher clause). Verbs (like believe) which take an infinitive complement with an accusative subject are said to be ECM verbs. See $\S 4.8$ and $\S 4.9$.
Exclamative: A type of structure used to exclaim surprise, delight, annoyance, etc. In English syntax, the term is restricted largely to clauses beginning with wh-exclamative words like What! or How! - e.g. 'What a fool I was!' or 'How blind I was!' See §6.9 and §9.2.

Existential: An existential sentence is one which is about the existence of some entity. For example, a sentence such as 'Is there any coffee left?' questions the existence of coffee. Consequently, the word any here is sometimes said to be an existential quantifier (as is some in a sentence like 'There is some coffee in the pot').
Experience: Children's experience is the speech input which they receive (or, more generally, the speech activity which they observe) in the course of acquiring their native language.

EXPERIENCER: A term used in the analysis of semantic/thematic roles to denote the entity which experiences some emotional or cognitive state - e.g. John in 'John felt unhappy', or 'John thought about his predicament'. See §7.4.

Explanatory Adequacy: A linguistic theory meets the criterion of explanatory adequacy if it explains why grammars have the properties that they do, and how children come to acquire grammars in such a short period of time. See §1.2.

Expletive: A 'dummy' constituent with no inherent semantic content, such as the pronoun there in existential sentences like 'There is no truth in the rumour', or the pronoun it in sentences such as It is unclear why he resigned. See $\S 8.5$ and $\S 8.6$.

Expression: This word is used in the text as an informal term meaning a string (i.e. continuous sequence) of one or more words which form a constituent.

Extended Projection Principle: See EPP.

External Argument. See Argument.

Extract/Extraction: Extract(ion) is another term for move(ment), and so denotes an operation by which one constituent is moved out of another. E.g. in a structure such as 'Who do you think [he saw ---]' the pronoun who has been extracted out of the bracketed clause (i.e. it is been moved out of the position marked ---), and moved to the front of the overall sentence. The extraction site for a moved constituent is the position which it occupied before undergoing movement.

F: This symbol is used as a convenient notational device to denote an abstract functional head (or an abstract feature) of some kind.
Feature: A device used to describe a particular grammatical property. For example, the distinction between count and noncount nouns might be described in terms of a feature such as [\pm COUNT]. On Feature Copying, see Copying. Feature Deletion is an operation by which uninterpretable features are deleted: see $\S 8.4$. The Feature Visibility Convention specifies that deleted features are invisible in the semantic component but remain visible in the syntactic and PF components: see §8.4.

Feminine: This term is used in discussion of grammatical gender to denote pronouns like she/her/hers which refer to female entities.

FHC: See Functional Head Constraint.

Filled: To say that a given position in a structure must be filled is to say that it cannot remain empty but rather must be occupied (usually by an overt constituent of an appropriate kind).

Fin/Finite/FinP: The term finite verb/finite clause denotes (a clause containing) an auxiliary or nonauxiliary verb which can have a nominative subject like I/we/he/she/they. For example, compare the two bracketed clauses in:
(i) What if [people annoy her]?
(ii) Don't let [people annoy her]

The bracketed clause and the verb annoy in (i) are finite because in place of the subject people we can have a nominative pronoun like they; by contrast, the bracketed clause and the verb annoy are nonfinite in (ii) because people cannot be replaced by a nominative pronoun like they (only by an accusative pronoun like them): cf.
(iii) What if [they annoy her]? (iv) Don't let [them/*they annoy her]

By contrast, a verb or clause which has a subject with accusative or null case in English is nonfinite; hence the bracketed clauses and italicised verbs are nonfinite in the examples below:

(v) Don't let [them annoy her] (vi) You should try [PRO to help]

Nonfinite forms include infinitive forms like be, and participle forms like being/been. In work by Luigi Rizzi on split CP projections (discussed in §9.3), infinitival complementisers like Italian di 'of' and English for are said to occupy the head Fin ('Finiteness') position within a FinP ('Finiteness Phrase') projection.

First Person: See Person.

Floating Quantifier: A quantifier which is separated from the expression which it quantifies. For example, in a sentence such as 'The students have all passed their exams', all quantifies (but is not positioned next to) the students, so that all is a floating quantifier here.
Foc/Focus/Focusing/FocP: Focus position in a sentence is a position occupied by a constituent which is emphasised in some way (usually in order to mark it as containing 'new' or 'unfamiliar' information). For example, in a cleft sentence such as 'It's syntax that they hate most' or a pseudo-cleft sentence such as 'What they hate most is syntax', the expression syntax is said to occupy focus position within the relevant sentence. Focusing denotes a movement operation by which a constituent is moved into a focus position at the beginning of a clause in order to highlight it (e.g. to mark it as introducing new information). Thus, in a sentence like 'Nothing could they do to save her', the expression nothing has been focused by being moved to the front of the overall sentence from its underlying position as the complement of the verb do. In work on split CP projections by Luigi Rizzi (discussed in §9.2), preposed focused expressions are said to occupy the specifier position within a FocP ('Focus Phrase') projection which is headed by an abstract Foc ('Focus') head.
Foot: The foot of a (movement) chain is the constituent which occupies the lowest position in the chain.

Force: The complementisers that/if in a sentence such as I didn't know [that/if he was lying] are said to indicate that the bracketed clauses are declarative/interrogative in force (in the sense that they have the force of a question/a statement). In work on split CP projections by Luigi Rizzi (discussed in §9.2-§9.3), complementisers are said to constitute a Force head which can project into a Force Phrase.
Formal: In an expression such as formal speech style, the word formal denotes a very careful and stylised form of speech (as opposed to the kind of informal colloquial speech style used in a casual conversation in a bar): in an expression such as formal features, the word formal means 'grammatical' (i.e. features which play a role in morphology/syntax).

Fragment: An utterance which is not a complete sentence (in the sense that it does not constitute a clause). So, a phrase such as 'A new dress' used in reply to a question such as 'What did you buy?' would be a sentence-fragment (By contrast, a sentence such as 'I bought a new dress' would not be a sentencefragment, since it contains a complete clause.)
Front/Fronting: Fronting is an informal term to denote a movement operation by which a given expression is fronted - i.e. moved to the front of some phrase or sentence.
Function: Expressions such as subject, specifier, complement, object, head, and adjunct are said to denote the grammatical function which a particular expression fulfils in a particular structure (which in turn relates to the position which it occupies and certain of its grammatical properties - e.g. case and agreement properties).
Functional Category/Functional Head Constraint/Function Word/Functor: A word which has no descriptive content and which serves an essentially grammatical function is said to be a function word or functor (By contrast, a word which has descriptive content is a content word or contentive). A functional category is a category whose members are function words: hence, categories such as complementiser, auxiliary, infinitive particle, case particle, or determiner are all functional categories - as well as the expressions they head (e.g. C-bar/CP, T-bar/TP, D-bar/DP etc.). See §2.4. The Functional Head Constraint is a grammatical principle which specifies that the complement of a certain type of functional head (including C and D) cannot be preposed on its own without also moving the functional head: see $\S 3.5$.
Gapping: a form of ellipsis in which the head word is omitted from one (or more) of the conjuncts in a coordinate structure in order to avoid repetition. For example, the italicised second occurrence of bought can be gapped (i.e. omitted) in a sentence such as 'John bought an apple and Mary bought a pear', giving 'John bought an apple, and Mary a pear'.
Gen: In one use, an abbreviation for genitive case; in another, an abbreviation for gender.
Gender: A grammatical property whereby words are divided into different grammatical classes which play a role in agreement/concord relationships. In French, for example, nouns are intrinsically masculine or feminine in gender (e.g. pommier 'apple tree' is masculine, but pomme 'apple' is feminine), and determiners inflect for gender (as well as number), so that un ' a ' is the masculine form of the indefinite article, and une is its feminine form. Determiners in French have to agree in gender (and number) with the nouns they modify, hence we say un pommier 'an apple tree', but une pomme 'an apple'. In English, nouns no longer have inherent gender properties, and adjectives/determiners don't inflect for gender either. Only personal pronouns like he/she/it carry gender properties in modern English, and these are traditionally said to carry masculine/feminine/neuter gender respectively (though the term inanimate is sometimes used in place of neuter).
Generate/Generative: The syntactic component of a grammar is said to generate (i.e. specify how to form) a set of syntactic structures. A grammar which does so is said to be a generative grammar.
Generic: To say that an expression like eggs in a sentence such as 'Eggs are fattening' has a generic interpretation is to say that it is interpreted as meaning 'eggs in general'.

Genitive: See Case.

Gerund: When used in conjunction with the progressive aspect auxiliary be, verb forms ending in -ing are progressive participles; in other uses they generally function as gerunds. In particular, -ing verb forms
are gerunds when they can be used as subjects, or as complements of verbs or prepositions, and when (in literary styles) they can have a genitive subject like my. Thus writing is a gerund (verb form) in a sentence such as 'She was annoyed at [my writing to her mother]', since the bracketed gerund structure is used as the complement of the preposition $a t$, and has a genitive subject $m y$.
GOAL/Goal: The term GOAL is used in the analysis of semantic/thematic roles to denote the entity towards which something moves - e.g. Mary in 'John sent Mary a letter': see §7.4. In a different sense, the term goal represents a constituent which agrees with a higher head which serves as a probe: see §8.2.
Gradable/ungradable: Words are gradable if they denote a concept or property which can exist in varying degrees. For example, tall is gradable since we can say (e.g.) fairly/very/extremely tall; by contrast, dead is ungradable, since it denotes an absolute property (hence it's odd to say *very dead).

Grammar: In traditional terms, the word grammar relates to the study of morphology and syntax. In a broader Chomskyan sense, grammar includes the study of phonology and semantics: i.e. a grammar of a language is a computational system which derives the Phonetic Form and Semantic Representation of expressions.
Grammatical: An expression is grammatical if it contains no morphological or syntactic error, and ungrammatical if it contains one or more morphological or syntactic errors. Grammatical features are (e.g. person, number, gender, case etc.) features which play a role in grammatical operations (e.g. in determining case or agreement properties).
Have-cliticisation: An operation by which have (in the guise of its contracted clitic variant $/ \mathrm{v} /$) attaches to an immediately preceding word ending in a vowel or diphthong, resulting in forms such as I've, we've, they've, etc.
Head: This term has two main uses. The head (constituent) of a phrase is the key word which determines the properties of the phrase. So, in a phrase such as fond offast food, the head of the phrase is the adjective fond, and consequently the phrase is an adjectival phrase (and hence can occupy typical positions associated with adjectival expressions - e.g. as the complement of is in 'He is fond of fast food'). In many cases, the term head is more or less equivalent to the term word (e.g. in sentences such as 'An accusative pronoun can be used as the complement of a transitive head'). In a different use of the same word, the head of a movement chain is the highest constituent in the chain.
Headed/Headedness Principle: An expression is headed if it has a head. The Headedness Principle specifies that every constituent must be headed (i.e. must have a head). So, for example, an expression like fond of fast food is headed by the adjective fond and so is an adjectival phrase. See Head.

Head-first/-last: A head-first structure is one in which the head of an expression is positioned before its complement(s); a head-last structure is one in which the head of an expression is positioned after its complement(s). See §1.5.
Head movement: Movement of a word from one head position to another (e.g. movement of an auxiliary from T to C , or of a verb from V to T , or of a noun from N to D). See ch.5.
Head Movement Constraint/HMC: A principle of Universal grammar which specifies that movement between one head position and another is only possible between the head of a given structure and the head of its complement. See §5.5.

Head Position Parameter: The parameter which determines whether a language positions heads before or after their complements. See $\S 1.5$.
Head Strength Parameter: A parameter whose setting determines whether a given kind of head is strong and can trigger movement of a lower head to attach to it, or weak and so cannot attract a lower head to move to attach to it. See §5.5.

HMC: See Head Movement Constraint.

Homophonous: Two different expressions are homophonous if they have the same phonetic form (e.g. we've and weave).

Host: An expression to which a clitic or affix attaches. For example, if $n ' t$ cliticises onto could in expressions like couldn't, we can say that could is the host onto which n ' t cliticises.

I: See INFL.

Identify: In the relevant technical sense, we can say that in a relative clause like that italicised in 'I'm looking for someone whom I can trust' the relative pronoun whom can be deleted because it can be identified by its antecedent someone (in the sense that the grammatical features carried by the pronoun will match those of its antecedent). See §6.10.

Idiom: A string of words which has an idiosyncratic meaning (e.g. hit the roof in the sense of 'get angry').
I-language: I-language is a linguistic system internalised (i.e. internally represented) within the brain. See §1.2.

Illegible: See Legible.

Immediate constituent: See Constituent.

Immediately contain: See Contain.
Imp: A symbol used to designate an (affixal) imperative morpheme which occupies the head C position of CP in imperatives: see ex. X .
Impenetrable: Inaccessible. See Phase Impenetrability Condition.
Imperative: A term employed to classify a type of sentence used to issue an order (e.g. 'Be quiet!',
'Don't say anything!'), and also to classify the type of verb-form used in an imperative sentence (e.g. be is an imperative verb-form in 'Be quiet!').

Inanimate: See Animate.

Inclusiveness Condition: A grammatical principle proposed by Chomsky (1999, p.2) which 'bars introduction of new elements (features) in the course of a derivation'.

Indefinite: See Definite.

Indicative: Indicative (auxiliary and main) verb forms are finite forms which are used (inter alia) in declarative and interrogative clauses (i.e. statements and questions). Thus, the italicised items are said to be indicative in mood in the following sentences: 'He is teasing you', 'Can he speak French?', 'He had been smoking', 'He loves chocolate', 'He hated syntax'. An indicative clause is a clause which contains an indicative (auxiliary or nonauxiliary) verb. See Mood.
Infinitive: The infinitive form of a verb is the (uninflected) form which is used (inter alia) when the verb is the complement of a modal auxiliary like can, or of the infinitive particle to. Accordingly, the italicised verbs are infinitive forms in sentences like 'He can speak French', and 'He's trying to learn French.' An infinitive clause is a clause which contains a verb in the infinitive form. Hence, the bracketed clauses are infinitive clauses in: 'He is trying [to help her]', and 'Why not let [him help her]?' (In both examples, help is an infinitive verb form, and to when used with an infinitive complement is said to be an infinitive particle.) Since clauses are analysed as phrases within the framework used here, the term infinitive phrase can be used interchangeably with infinitive clause, to denote a TP projection headed by the infinitive particle to (or by a null counterpart of the infinitive particle to).
INFL: A category devised by Chomsky (1981) whose members include finite auxiliaries (which are INFLected for tense/agreement), and the INFinitivaL particle $t o$. In more recent work, T is used in place of INFL. See §2.8.
Inflection/Inflectional: An inflection is an affix which marks grammatical properties such as number, person, tense, case. For example, a plural noun such as dogs in English comprises the stem form dog and the plural number inflection $-s$. Inflectional morphology is the grammar of inflections.
Inherent case: See Case.
Initial grammar: The earliest grammar of their native language developed by infants.

Innateness hypothesis: The hypothesis that children have a biologically endowed innate language faculty. See §1.3.
In situ: A constituent is said to remain in situ (i.e. 'in place') if it doesn't undergo a given kind of movement operation.
Interface levels: Levels at which the grammar interfaces (i.e. connects) with speech and thought systems which lie outside the domain of grammar. Phonetic Form is the level at which the grammar interfaces with articulatory-perceptual (speech) systems, and Semantic Representation is the level at which it interfaces with conceptual-intentional (thought) systems.
Intermediate projection: See Project(ion).

Internal argument: See Argument.

Internalised grammar: A grammar which in internally represented within the mind/brain.
Interpretable: A feature is (semantically) interpretable if it has semantic content: so, for example, a feature such as [Plural-Number] on a pronoun like they is interpretable, but a phonological feature like [+nasal] is uninterpretable, and so too are many grammatical/formal features (e.g. case features). See §8.4.
Interpretation: To say that an expression has a particular (semantic) interpretation is to say that it expresses a particular meaning. So, for example, we might say that a sentence such as 'He loves you more than Sam' has two different interpretations - one on which Sam has a subject interpretation and is implicitly understood as the subject of loves you, and a second on which Sam has an object interpretation and is implicitly understood as the object of he loves. The first interpretation can be paraphrased as 'He loves you more than Sam loves you', and the second as 'He loves you more than he loves Sam.'

Intermediate projection: A projection which is larger than a word, but smaller than a phrase. See Bar.
Internal argument: Complement. See Argument.
Interrogative: An interrogative clause or sentence is one which asks a question. See Questions.
Intransitive: see Transitive.
Intuitions: Judgments given by native speakers about the grammaticality, interpretation and structure of expressions in their language.
Inversion/Inverted: A term used to denote a movement process by which the relative order of two expressions is reversed. It is most frequently used in relation to the more specific operation by which an auxiliary (and, in earlier stages of English, nonauxiliary) verb comes to be positioned before its subject, e.g. in questions such as 'Can you speak Swahili?', where can is positioned in front of its subject you. See ch.5. An inverted auxiliary/verb is one which is positioned in front of its subject (e.g. will in 'Will I pass the syntax exam?').
Irrealis: An infinitive complement like that italicised in 'They would prefer (for) you to abstain' is said to denote an irrealis (a Latin word meaning 'unreal') event in the sense that the act of abstention is a hypothetical event which has not yet happened and may never happen.
Island: A structure out of which no subpart can be extracted. For example, co-ordinate structures like William and Harry are islands in this sense. Hence, in a sentence like 'I admire William and Harry', we can topicalise the whole co-ordinate structure William and Harry by moving it to the front of the overall sentence (as in 'William and Harry, I admire'), but we cannot topicalise Harry alone (as we see from the ungrammaticality of *‘Harry I admire William and').
K. Case particle. See Case.

Label: A notational device used to represent linguistic (particularly categorial) properties of constituents. For example, if we say that the word man belongs to the category N of noun, we are using N as a label to indicate the categorial properties of the word man (i.e. to tell us what grammatical category man belongs to).
Labelled bracketing: See Bracketing.

Landing site: The landing-site for a moved constituent is the position it ends up in after it has been moved (e.g. The specifier position within CP is the landing-site for a moved wh-expression).

Language Faculty: Chomsky argues that humans beings have an innate Language Faculty which provides them with an algorithm (i.e. set of procedures or programme) for acquiring a grammar of their native language(s). See §1.3.

LBC: See Left Branch Condition.

Learnability: A criterion of adequacy for linguistic theory. An adequate theory must explain how children come to learn the grammar of their native languages in such a short period of time, and hence must provide for grammars of languages which are easily learnable by children. See §1.2.
Left Branch Condition: A constraint which specifies that in languages like English, the leftmost constituent of a nominal, adjectival or adverbial expression cannot be moved out of the expression containing it.
Legible: To say that syntactic structures must be legible at the semantics and phonetics interfaces is to say that the structures inputted to the semantic component of the grammar must contain only features which contribute to semantic interpretation, and that the structures inputted to the PF component must contain only features which contribute to determining the phonetic form of an expression. Any structure which is not legible at a given interface is said to be illegible to the relevant interface.
Level: In the sense in which this term is used in this book, constituents like T, T-bar and TP represent different projection levels - i.e. successively larger types of category (T being a minimal projection, T-bar an intermediate projection, and TP a maximal projection). See Projection.
Lexical/Lexicon: The word lexical is used in a number of different ways. Since a lexicon is a dictionary (i.e. a list of all the words in a language and their idiosyncratic linguistic properties), the expression lexical item in effect means 'word', the expression lexical entry means 'the entry in the dictionary for a particular word', the term lexical property means 'property of some individual word', the term lexical learning means 'learning words and their idiosyncratic properties', and the term lexical array means 'the set of words out of which a given expression is formed'. However, the word lexical is also used in a second sense, in which it is contrasted with functional (and hence means 'non-functional'). In this second sense, a lexical category is a category whose members are contentives (i.e. items with idiosyncratic descriptive content): hence, categories such as noun, verb, adjective or preposition are lexical categories in this sense. So, for example, the term lexical verb means 'main verb' (i.e. a nonauxilary verb like go, find, hate, want etc.).
LF(-representation): (A representation of the) Logical Form (of an expression). See Representation. The LF-component of a grammar is the (semantic) component which converts the syntactic structures produced by merger and movement operations into LF-representations.

Light verb: This term is traditionally used to denote verbs (e.g. like take/make in expressions like make fun of and take heed of) with relatively little semantic content. However, in recent work on VP shells discussed in §9.4-§9.9, this term is extended to denote an abstract affixal verb (often with a causative sense like that of make) to which a noun, adjective or verb adjoins. For example, it might be claimed that the suffix -en in a verb like sadden is an affixal light verb which combines with adjectives like black, white and sad to form the causative verb sadden (which has a meaning loosely paraphraseable as 'make sad', or 'cause to become sad'). This type of analysis can be extended to verbs like roll as they are used in sentences like 'He rolled the ball down the hill', if we assume that roll here is used causatively (and so has a meaning paraphraseable as 'make roll', or 'cause to roll'), and hence involves adjunction of the verb roll to an abstract light-verb (which can be thought of as a null verbal counterpart of -en).
Link: A constituent (or position) which is part of a movement chain.
Local: One constituent X can agree with another constituent Y only if Y is in the local c-command domain of X - i.e. only if Y is c-commanded by X and if Y is sufficiently close to X . In recent work, Chomsky has defined closeness (for syntactic operations like agreement) in terms of the Phase Impenetrability Condition.

LOCATIVE: This is a term which denotes the semantic/thematic function of a constituent. A locative expression is one which denotes place. So, for example, there/where are locative pronouns in sentences such as 'Are you going there?' or 'Where are you going?' See §7.4.
Locus: To say that T is the locus of tense is to say that the tense property of a tensed clause or tensed auxiliary or main verb originates as a tense feature (or tense affix) carried by the head T constituent of TP.
Long-distance movement: A long-distance movement operation is one which moves a constituent out of one clause (TP/CP) into another.

Main clause: see Root clause.
Main verb: A non-auxiliary verb. See Auxiliary.
Masc(uline): This term is used in discussions of grammatical gender to denote pronouns like he/him/his which refer to male entities.

Mass noun: See Count noun.
Match: Two constituents match in respect of some feature $[\mathrm{F}]$ either if one is valued for $[\mathrm{F}]$ and the other unvalued for $[\mathrm{F}]$, or if both carry the same value for $[\mathrm{F}]$. See ch. 8 .
Matrix: In a sentence such as 'I think he lied', the (italicised) lied clause is an embedded/complement clause (by virtue of being embedded as the complement of the verb think), and the think clause is the matrix clause, in the sense that it is the clause immediately containing the lied clause.

Maximal Projection: See Projection.

Merge(r): An operation by which two constituents are combined together to form a single larger constituent. See ch.3.

MFCF: See Multiply Filled COMP Filter.

Minimalism/Minimalist program: A theory of grammar developed by Chomsky whose core assumption is that grammars are minimally complex, perfect systems of optimal design. See §1.2.

Minimal projection: See Projection.

MIT: The Massachusetts Institute of Technology (located in Cambridge Massachusetts), where Chomsky has worked for the past five decades.
Modal/Modality: A modal auxiliary is an auxiliary which expresses modality (i.e. notions such as possibility, futurity or necessity). The set of modal auxiliaries found in English is usually assumed to include will/would/can/could/shall/should/may/might/must/ought, and need/dare when followed by a 'bare' (to-less) infinitive complement.
Modifier/Modify: In an expression such as tall men, it is traditionally said that the adjective tall modifies (i.e. attributes some property to) or is a modifier of the noun men. Likewise, in a sentence such as 'Eat slowly!', the adverb slowly is said to modify the verb eat (in the sense that it describes the manner in which the speaker is being told to eat).
Module: An individual component of a larger system. For example, a grammar might be said to contain a case module - i.e. a component which accounts for the case properties of relevant constituents.
Mood: This is a term describing inflectional properties of finite verbs. (Auxiliary and nonauxiliary) verbs in English can be in the indicative mood, subjunctive mood, or imperative mood. Examples of each type of mood are given by the italicised verb forms in the following: 'He hates [= indicative] spaghetti'; 'The court ordered that he be [= subjunctive] detained indefinitely'; 'Keep [= imperative] quiet!' The mood of the verb determines aspects of the interpretation of the relevant clause, so that e.g. subjunctive verbs occur in irrealis clauses.
Morpheme: The smallest unit of grammatical structure. Thus, a plural noun such as cats comprises two morphemes, namely the stem cat and the plural suffix $-s$.
Morphology/morphological: Morphology studies how morphemes are combined together to form words. Morphological properties are properties relating to the form of words (i.e. relating to the
inflections or affixes they carry). For example, it is a morphological property of regular count nouns that they have a plural form ending in $-s$.
Morphosyntactic: A morphosyntactic property is a 'grammatical' property, i.e. a property which affects (or is affected by) relevant aspects of morphology and syntax. For instance, case is a morphosyntactic property in that (e.g.) pronouns have different morphological forms and occupy different syntactic positions according to their case: e.g. the nominative form of the first person plural pronoun is we and its accusative form is $u s$; the two occupy different syntactic positions in that the nominative form occurs as the subject of a finite verb, whereas the accusative form occurs as the complement of a transitive verb or preposition: cf. 'We disagree', 'Join $u s$ '.
Mother: A constituent X is the mother of another constituent Y if X is the next highest node up in the tree from Y, and the two are connected by a branch (solid line). See §3.6.
Multiple agreement: Agreement between a probe and more than one goal. See §8.9.
Multiple wh-questions: Questions containing more than one wh-word. See §6.5.
Multiple specifiers: In his (1995) book and subsequent work, Chomsky suggests that certain types of head may allow more than one specifier (e.g. a light verb with an external argument/subject as its inner specifier may attract a wh-expression to become its outer specifier: see $\S 10.5)$.
Multiply Filled COMP Filter: A constraint which specifies that (in present-day English) no overt complementiser (like that/if/for) can have an overt specifier.

N: See Noun.

Natural language: A language acquired in a natural setting by human beings (hence, excluding e.g. computer languages, animal communication systems, etc.).
NEG: The head constituent of a NEGP (i.e. of a Negation Phrase constituent which contains not as its specifier). See §5.7.
Negation: A process or construction in which some proposition is said to be false. Negation involves the use of some negative item such as not, n't, nobody, nothing, never, etc. - though most discussions of negation in English tend to be about the negative adverbs not/n't. See §5.7.
Negative evidence: In the context of discussions about the nature of the evidence which children make use of in acquiring their native language(s), this term relates to evidence based on the nonoccurrence of certain structures in the child's speech input, or on correction of children by others (e.g. adults). See §1.7.
Negative Particle: This term typically denotes the negative adverbs not/n't.
NEGP: See NEG.

Neuter: See Gender.

Neutralise/Neutralisation: When a grammatical contrast (e.g. that between a singular noun like cat and a plural noun like cats) is not marked in some expression (e.g. the singular/plural noun form sheep), the contrast is said to have been neutralised or syncretised (in the relevant expression).
\mathbf{N}-movement: Movement of a noun to a higher position within a nominal expression. See §5.9.
Node: A term used to denote each point in a tree diagram which carries a category label. Each node represents a separate constituent in the relevant structure.
Nom: An abbreviation for nominative. See Case.
Nominal: This is the adjective associated with the word noun, so that in principle a nominal (expression) is an expression containing a noun. However, the term is sometimes extended to mean 'expression containing a noun or pronoun'.
Nominalisation/Nominalising: Nominalisation is a process by which some other type of expression is converted into a nominal (i.e. noun expression). For example, -ness is a nominalising (i.e. noun-forming) suffix in that if we suffix -ness to an adjective like sad, we form the noun sadness.

Nominative: See Case

Nonargument: See Argument

Nonauxiliary Verb: A 'lexical verb' or 'main verb' (like want, try, hate, smell, buy etc.) which requires do-support to form questions, negatives and tags.
Nonconstituent: A nonconstituent string is a sequence of words which do not together form a constituent.

Noncount noun: See Count noun.

No-negative-evidence hypothesis: The hypothesis that children acquire their native language(s) on the basis of positive evidence alone, and do not make use of negative evidence. See §1.7.
Nonfinite: See Finite.

Nonterminal: See Terminal.

Noun: A category of word (whose members include items such as boy/friend/thought/sadness/computer) which typically denotes an entity of some kind. See §2.2 and §2.3. In traditional grammar, a distinction is drawn between common nouns and proper nouns. Proper nouns are names of individual people (e.g. Chomsky), places (e.g. Colchester, Essex, England), dates (e.g. Tuesday, February, Easter), magazines (e.g. Cosmopolitan) etc., whereas common nouns (e.g. boy, table, syntax etc.) are nouns denoting general (non-individual) entities. Proper nouns have the semantic property of having unique reference, and the syntactic property that (unless themselves modified) they generally can't be modified by a determiner (cf. *the London).

Noun Phrase/NP: A phrase whose head is a noun. In work prior to the mid 1980s, a structure such as the king of Utopia was taken to be a noun phrase/NP comprising the head noun king, its complement of Utopia and its specifier the. In more recent work, such expressions are taken to be Determiner
Phrases/DPs comprising the head determiner the and a noun phrase/NP complement king of Utopia, with the NP in turn comprising the head noun king and its complement of Utopia. See $\S 3.3$ and $\S 4.10$.

NP: See Noun Phrase.

\mathbf{N}-pronoun: A pronoun like one in 'Mary bought a green one' which has the morphological and distributional properties of a (count) noun.

Null: A null constituent is one which is 'silent' or 'unpronounced' and so has no overt phonetic form. See ch. 4 .

Null case: The case carried by PRO (See Case).
Null subject: A subject which has grammatical and semantic properties but no overt phonetic form. There are a variety of different types of null subject, including the null pro subject which can be used in any finite clause in a language like Italian, the null counterpart of you found in English imperative clauses like 'Shut the door!', the null PRO subject found in non-finite control clauses like that bracketed in 'The prisoners tried [PRO to escape]', and the null truncated subject found in sentences like 'Can't find my pen. Must be on my desk at home'. See §4.2.

Null subject language: This term is used to denote a language which allows any finite clause of any kind to have a null pro subject. For example, Italian is a null subject language and so allows us to say 'Sei simpatica' (literally 'Are nice', meaning 'You are nice'); by contrast, English is a non-null subject language in the sense that it doesn't allow the subject to be omitted in this type of structure (Hence * 'Are nice' is ungrammatical in English).

Null subject parameter: A parameter whose setting determines whether a language is a null subject language or not. See §1.5.

Num: An abbreviation for the feature Number. In a different (but related) use, a category label denoting a particular head which is claimed by some to be the locus of number properties in noun expressions. It may correspond to the position which a noun like invasione 'invasion' moves to in an Italian nominal such as la grande invasione italiana dell'Albania (literally 'The great invasion Italian of.the Albania', and more
idiomatically 'the great Italian invasion of Albania'). A Phrase headed by a Num constituent is labelled NumP ‘Number Phrase’. See §5.9.
Number: A term used to denote the contrast between singular and plural forms. In English, we find number contrasts in nouns (cf. 'one dog', 'two dogs'), in some determiners (cf. 'this book', 'these books'), in pronouns (cf. it/they), and in finite (auxiliary or main) verbs (cf. 'It smells', 'They smell').
Object: The complement of a transitive item (e.g. in 'Help $m e$ ', $m e$ is the object of the transitive verb $h e l p$; and in 'for $m e$ ', $m e$ is the object of the transitive preposition for). The term object is generally restricted to complements which carry accusative case - i.e. to nominal or pronominal complements: hence, nothing would be the object (and complement) of said in 'He said nothing', but the that-clause would be the complement (but not the object) of said in 'He said [that he was tired]' - though some traditional grammars extend the term object to cover clausal complements as well as (pro)nominal complements. In sentences such as 'She gave him them', the verb give is traditionally said to have two objects, namely him and them: the first object (representing the recipient) is termed the indirect object, and the second object (representing the gift) is termed the direct object; the relevant construction is known as the double object construction. Where a verb has a single object (e.g. nothing in 'He said nothing'), this is the direct object of the relevant verb.
Objective: Another term for accusative. See Case.
One-place predicate: A predicate which has only one argument. See Argument.
Operator: This term is used in syntax to denote (e.g.) interrogative and negative expressions which have the syntactic properties that they trigger auxiliary inversion (cf. 'What have you done?', 'Nothing have I done') and allow a polarity item like partitive/existential any to occur in their scope (cf. 'What can anyone do?' 'Nothing can anyone do').

Orphaned: See Stranded.

Overt: An expression is overt if it has a non-null phonetic form, but null if it has no phonetic content. Thus, him is an overt pronoun, but PRO is a null pronoun. The term overt structure is used in this book (though not more generally) as an informal expository term to refer to a simplified representation of the structure of a given expression which shows only the overt constituents which it contains (and hence excludes trace copies and other null constituents).

P: See Preposition.

Paraphrase: A paraphrase is an expression which has roughly the same meaning as the expression which it is being used to paraphrase, but which brings out the relevant meaning more clearly. For example, we can bring out the ambiguity of a sentence like He loves you more than me by saying that it has two different interpretations, one of which can be paraphrased as 'He loves you more than he loves me', and the other of which can be paraphrased as 'He loves you more than I love you'.
Parameters: Dimensions of grammatical variation between different languages or different language varieties (e.g. the Null Subject Parameter, Head Position Parameter, Wh-Parameter). See §1.5.
Parameter-setting: The process by which children determine which setting of a parameter is appropriate for the native language they are acquiring. See §1.6.
Partial: A labelled bracketing is partial if it shows only part of the structure of a given sentence or expression (other parts being omitted to simplify exposition).
Participle: A non-finite verb form which encodes aspect or voice. In European languages, participles have no person properties but (in languages like Latin or Icelandic which have a richer morphology than English) have number/gender/case properties. English has three types of participle: progressive participles (ending in -ing) used in conjunction with the progressive aspect auxiliary be in sentences like 'It is raining'; perfect participles (generally ending in $-d$ or $-n$) used in conjunction with the perfect aspect auxiliary have in sentences like 'He has gone home'; and passive participles (also generally ending in $-d$ or $-n$) used in conjunction with the passive voice auxiliary be in sentences like 'He was arrested by Percy Plodd'.

Particle: This is an informal term used to describe a range of (typically monosyllabic) items which are invariable in form, and which don't fit easily into traditional systems of grammatical categories. For example, infinitival to (cf. 'Try to be nice') is said to be an infinitive particle; of as used in expressions like 'loss of face' is sometimes said to be a genitive case particle; not and n ' t are said to be negative particles. The term is sometimes extended to include prepositions used without a complement (e.g. down in 'He fell down').
Partitive: A partitive quantifier is a word like some/any which quantifies over part of the members of a given set (as in 'Some students enjoy syntax').

Part of speech: See Category.

Passive: see Active; see also Passivisation.

Passive participle: See Active, Participle.

Passivisation: A movement operation whereby an expression which is the thematic complement of a verb becomes the subject of the same clause (as in 'The jewels were stolen') or the subject of another clause (as in 'The minister was said to have lied to Parliament'). See §7.6-§7.7.

Past tense: See Tense.

Patient: A particular type of theta role, denoting an entity which suffers the consequences of some action. For example, in a sentence such as 'John killed Harry', Harry is the patient argument of the verb kill. The more recent term THEME is often used in place of the traditional term PATIENT. See §7.5.
PERF: Perfect aspect auxiliary (e.g. have in 'He may have left'). See Aspect.
Perfect: In one sense of the word, in a sentence like 'He has gone home', has is an auxiliary marking perfect aspect, and gone is a perfect participle: see Aspect, Participle. In a different sense, by claiming that language is a perfect system, Chomsky means that grammars produce structures which are 'perfect' in the sense that they are precisely of the form required to interface with speech and thought systems.
Performance: A term which denotes observed language behaviour - e.g. the kind of things people actually say when they speak a language, and what meanings they assign to sentences produced by themselves or other people. Performance can be impaired by factors such as tiredness or drunkenness, giving rise to performance errors. Performance is contrasted with competence (which denotes fluent native speakers' knowledge of the grammar of their native language). See $\$ 1.2$.
PERFP: Phrase headed by a perfect aspect auxiliary like have.
Periphery: The periphery of a clause is that part of the clause structure which is positioned above TP - in other words the edge of CP (or its counterpart in a split CP system like that discussed in §9.2-§9.3).

Pers: An abbreviation of Person.

Person: In traditional grammar, English is said to have three grammatical persons. A first person expression (e.g. $I / w e$) is one whose reference includes the speaker(s); a second person expression (e.g. $y o u$) is one which excludes the speaker(s) but includes the addressee(s) (i.e. the person or people being spoken to); a third person expression (e.g. he/she/it/they) is one whose reference excludes both the speaker(s) and the addressee(s) - i.e. an expression which refers to someone or something other than the speaker(s) or addressee(s).
Personal pronouns: These are pronouns which carry inherent person properties - i.e. first pronouns such as $I / w e$, second person pronouns such as you, and third person pronouns such as he/shelitt/hey. See person.
PF(-representation): (A representation of the) Phonetic Form (of an expression). See Representation. The PF-component of a grammar is the component which converts the syntactic structures generated by the computational component of the grammar into PF-representations, via a series of morphological and phonological operations. A PF-clitic is a clitic which attaches to another item in the PF-component (not in the syntax), so that the two form a single phonetic word, but are not a single word in the syntax.

P-feature: A feature (e.g. a topic-, focus- or wh-feature) which attracts a constituent to move to the periphery of a clause.
Phase: In work outlined in chapter 10, Chomsky argues that syntactic structures are build up in phases (phases including complementiser phrases and transitive verb phrases), and that once a phase has been produced, the domain/complement of the head of the phase undergoes transfer to the PF component and the semantic component, and thereby becomes impenetrable to further operations in the syntax.
Phase Impenetrability Condition: A constraint on grammatical operations which specifies that the domain/complement of a phase head is impenetrable/inaccessible to an external probe (i.e. to a c-commanding probe which lies outside relevant phase). See §8.5 and §10.2.
Phi-features/f -features: Person and number features (and, in languages which have grammatical gender, gender features as well).

Phonetic representation: See Representation.

Phonological features: Features used to describe sound properties. For example, the difference between nasal and oral sounds might be described in terms of the feature [\pm NASAL].

Phrase: The term phrase is used to denote an expression larger than a word which is a maximal projection: see Projection. In traditional grammar, the term refers strictly to non-clausal expressions (Hence, 'reading a book' is a phrase, but 'He is reading a book' is a clause, not a phrase). However, in more recent work, clauses are analysed as types of phrases: e.g. 'He will resign' is a tense phrase (TP), and 'That he will resign' is a complementiser phrase (CP). See §3.3 and §3.4.
Phrase-marker: A tree diagram used to represent the syntactic structure of a phrase or sentence. See §3.6.

Phrase structure: See Constituent structure.

PIC: See Phase Impenetrability Condition.

Pied-Piping: A process by which a moved constituent drags one or more other constituents along with it when it moves. For example, if we compare a sentence like 'Who were you talking to?' with 'To whom were you talking?', we can say that in both cases the pronoun who is moved to the front of the sentence, but that in the second sentence the preposition to is pied-piped along with the pronoun who. See §6.6. and §6.7.

PITMH: See Predicate-Internal Theta-Marking Hypothesis. See §7.4.

PL: See Plural.

Plural: A plural expression is one which denotes more than one entity (e.g. these cars is a plural expression, whereas this car is a singular expression).

P-marker: See Phrase-marker.

Polarity expression: A word or phrase (e.g. a word like ever or a phrase like at all or care a damn) which has an inherent affective polarity, and hence is restricted to occurring within the scope of an affective (e.g. negative, interrogative or conditional) constituent. See affective.
Positive evidence: In discussions of child language acquisition, this expression denotes evidence based on the actual occurrence of certain types of structure in the child's speech input. For example, hearing an adult say Open it gives a child positive evidence that verbs are canonically positioned before their complements in English See §1.7.

Possessive: A possessive structure is one which indicates possession: the term is most commonly used in relation to expressions like 'John's book' or 'his book' (where the italicised expressions denote the person who possesses the book). The italicised possessor in each structure is said to be genitive in case.
Postposition: A type of word which is the counterpart of a preposition in languages which position prepositions after their complements. See Adposition.
Postulate: A postulate is a theoretical assumption or hypothesis; to postulate is to hypothesise.

PP: See Prepositional Phrase.

PPT: See Principles and Parameters Theory.

Pragmatics: The study of how nonlinguistic knowledge is integrated with linguistic knowledge in our use of language.

Pr: An abbreviation for the feature [present-tense]. See Tense.
Precede(nce): To say that one constituent precedes another is to say that it is positioned to its left (on the printed page) and that neither constituent contains the other. Precedence is left-to-right linear ordering.

Preclausal: A preclausal expression is one which is positioned in front of a clause.

Predicate: See Argument, Predicative.

Predicate-Internal Theta-Marking Hypothesis. The hypothesis that an argument is assigned a theta-role via merger with a predicate. See §7.4.

Predication: The process by which a predicate is combined with a subject in order to form a proposition. For example, in a sentence such as 'Boris likes vodka', the property of liking vodka is said to be predicated of Boris.

Predicative: In structures such as 'John is in Paris/very silly/a liar', the italicised expressions are said to be predicative in that they predicate the property of being in Paris/being very silly/being a liar of John (i.e. they attribute the relevant property to John). A nominal like a liar when used predicatively is also referred to as a predicate nominal.

Prefix: See Affix.
Prenominal: A prenominal expression is one which is positioned in front of a noun expression. For example, both a and red are prenominal in an expression such as a red car.
Preposing: An informal term to indicate a movement operation by which a constituent is moved further to the left within a phrase or sentence.

Preposition: A preposition is a word generally used to express location, manner, etc. - e.g. at/in/on/under/ by/with/from/against/down etc. In English, it is a characteristic property of prepositions that they are invariable, and that they can generally be modified by straight/right. Where a preposition has a nominal or pronominal complement, it is said to be transitive; where it has no complement, it is said to be intransitive. Hence down is a transitive preposition in 'He fell down the stairs, but an intransitive preposition in 'He fell down'.

Prepositional Phrase: A phrase whose head is a preposition - e.g. in town, on Sunday, to the market, for someone else, etc.

Preposition stranding: See Stranding.
Pres/Present tense: See Tense.
Principles: Principles of Universal Grammar/UG principles describe potentially universal properties of natural language grammars: the terms condition and constraint are also used with much the same meaning as the term principle. Potential principles of Universal Grammar include the Headedness Principle, Binary Principle, Attract Closest Principle and Phase Impenetrability Principle.

Principles-and-Parameters Theory: This theory, developed in Chomsky (1981) and much subsequent work, claims that natural language grammars incorporate not only a set of innate universal principles which account for those aspects of grammar which are common to all languages, but also a set of parameters which account for those aspects of grammar which vary from one language to another. See Principles and Parameters.
PRN: An abbreviation for Pronoun.
PRO: A null-case pronoun (known informally as 'big PRO', because it is written in capital letters) which represents the understood subject of an infinitive complement of a control predicate, e.g. in a structure such as 'John decided PRO to leave'. See §4.2.
pro: A null nominative-case pronoun (known informally as 'little pro', because it is written in lower-case letters) which represents the understood null subject of a finite clause in a null subject language. A Shakespearean sentence such as 'Wilt come?' (= 'Will you come?', Stephano, The Tempest, III.ii) could be argued to have a null pro subject, and hence to have the structure 'Wilt pro come?', with pro having essentially the same interpretation as the second person singular pronoun thou. See §4.2.
Probe: When a head is merged with its complement, it serves as a probe which searches for a matching goal within its complement (i.e. an expression which it can agree with). See §8.2.

Proform: A proform is an expression (typically a word) which has no specific content of its own, but which derives its content from an antecedent. For example, in a sentence such as 'Mary may have been tired, but she didn't seem so', the antecedent of the word so is the adjective tired: hence so (in the use illustrated here) can be said to be an adjectival proform.
PROG: Progressive aspect auxiliary (e.g. be in 'He may be waiting for you'). See Aspect.

Progressive: See Aspect.

PROGP: Progressive phrase - i.e. a phrase headed by a PROG/progressive auxiliary constituent - e.g. be waiting for you in 'He may be waiting for you'.
Project(ion): A projection is a constituent containing a head word. For example, a noun phrase such as students of Linguistics is a projection of its head noun students (equivalently, we can say that the noun students here projects into the noun phrase students of linguistics). A minimal projection is a constituent which is not a projection of some other constituent: hence, heads (i.e. words) are minimal projections. An intermediate projection is a constituent which is larger than a word, but smaller than a phrase (e.g. is working in 'He is working'). A maximal projection is a constituent which is not contained within any larger constituent with the same head. So, for example, in a sentence like 'I've heard several accounts of what happened', the italicised noun phrase expression accounts of what happened is a maximal projection, since it is a projection of the noun accounts but is not contained within any larger projection of the noun accounts (if we assume that several accounts of what happened is a quantifier phrase headed by the quantifier several). By contrast, in a sentence such as 'I've heard several accounts', the italicised noun accounts is both a minimal projection (by virtue of the fact that it is not a projection of some other head) and a maximal projection (by virtue of the fact that it is not contained within any larger structure which has the same head noun). The Projection Principle is a UG principle suggested in earlier work by Chomsky (1981, p.29) which requires that the properties of lexical items should remain constant throughout the derivation: a related principle is the Inclusiveness Condition.

Pronominal: A pronominal (expression) is a non-anaphoric pronoun like him which obeys Principle B of Binding Theory (and hence must not refer to any higher expression within the closest TP most immediately containing it). See Exercise 3.2.
Pronoun: The word pronoun is composed of the two morphemes - namely pro (meaning 'on behalf of') and noun: hence, a pronoun is traditionally said to be a word used in place of a noun expression. Pronouns differ from nouns in that they have no intrinsic descriptive content, and so are functors. There are a range of different types of pronoun found in English, including the pronominal noun one (s) used in sentences like 'I'll take the red one(s)', pronominal quantifiers like any in 'I couldn't find any', and pronominal determiners like this in 'This is hard'. The term pronoun is most frequently used to indicate a class of items (like he/him/his) traditionally referred to as personal pronouns (though analysed in much recent work as pronominal determiners). See §2.6.

Proper noun: See Noun.

Proposition: This is a term used to describe the semantic content (i.e. meaning) of a sentence. For example, we might say that the sentence 'Does John smoke?' questions the truth of the proposition that 'John smokes'.

Pseudocleft sentence: A sentence such as 'What he hated most was syntax', where syntax is said to occupy focus position within the overall sentence.
Q: In one use, an abbreviation for quantifier; in another use, an abbreviation for question particle.

Quantifier: A quantifier is a special type of determiner used to denote quantity. Typical quantifiers include the universal quantifiers all/both, the distributive quantifiers each/every, the existential/ partitive quantifiers some/any, etc.
Quantifier floating: See Floating quantifier.
QP/Quantifier Phrase: A phrase whose head is a quantifier - e.g. an expression such as many people, or few of the students.

Q-pronoun: A pronoun like many in 'I don't eat many' which seems to be a pronominal quantifier.
Question: This refers to a type of sentence which is used to ask whether something is true, or to ask about the identity of some entity. See Yes-no question and Wh-question.
Question operator: The analysis of yes-no questions presented in $\S 6.8$ suggests that they contain a null interrogative operator (i.e. a null counterpart of whether).

Quirky case: See Case.

Raising (predicate): The term raising is used in two senses. In its most general sense, it denotes any movement operation which involves moving some constituent from a 'lower' to a 'higher' position in a structure. However, it also has a more specific sense, indicating a particular kind of A movement operation by which an expression is moved from being the subject of one clause to becoming the subject of another. The term raising predicate denotes a word like seem whose subject is raised out of subject position in a complement clause to become subject of the (TP constituent in the) seem clause. See $\S 7.8$ and §7.9.

Reciprocal: See Anaphor.

Reduced: a reduced form is a form of a word which has lost one or more of its segments (i.e. vowel/consonants), and/or which contains a vowel which loses its defining characteristics and is realised as a neutral vowel like schwa / $\partial /$. For example, the auxiliary have has the full (unreduced) form /hæv/ when stressed, but has the various reduced forms $/ \mathrm{h} \partial \mathrm{v} /$, / $\mathrm{v} /$ and $/ \mathrm{v} /$ when unstressed.
Reference/Referential/Referring: The reference of an expression is the entity (e.g. object, concept, state of affairs) in the external world to which it refers. A referential/referring expression is one which refers to such an entity; conversely, a nonreferential expression is one which does not refer to any such entity. For example the second there in a sentence such as 'There was nobody there' is referential (it can be paraphrased as 'in that place'), whereas the first there is nonreferential and so cannot have its reference questioned by where? (cf. *‘Where was nobody there?').
Reflexive: See Anaphor.
Relative pronoun/relative clause: In a sentence such as 'He's someone [who you can trust]', the bracketed clause is said to be a relative clause because it 'relates to' (i.e. modifies, or restricts the reference of) the pronoun someone. The pronoun who which introduces the clause is said to be a relative pronoun, since it 'relates to' the expression someone (in the sense that someone is the antecedent of who). See §6.10.

Representation: A syntactic representation (or structural representation) is a notation/device (typically, a tree diagram or labelled bracketing) used to represent the syntactic structure of an expression: a semantic representation is a representation of linguistic aspects of the meaning of an expression; a PF-representation is a representation of the phonetic form of an expression.
Restrictive: A restrictive theory is one which imposes strong constraints on the types of structures and operations found in natural language grammars. See §1.2.

Resultative: A verb such as paint in a sentence such as 'John painted his house pink' is said to be a resultative verb in that the result of the action of painting is that the house becomes pink. See $\S 9.5$.
R-expression: A referring expression comprising or containing a noun, like John or the man next door. See ex.VI.

Root: The root of a tree diagram is the topmost node in the tree. Hence, a root clause is a free-standing clause, i.e. a clause which is not contained within any other expression. In traditional grammar, a root clause is termed a principal clause, independent clause or main clause. By contrast, an embedded clause is a clause which is contained within some larger expression; and a complement clause is an (embedded) clause which is used as the complement of some item. So, in a sentence such as 'I think he loves you', the think clause (i.e. the expression I think he loves you) is a root clause, whereas the loves clause (i.e. the expression he loves you) is an embedded clause. Moreover, the loves clause is also a complement clause, since it serves as the complement of the verb think.
S/S'/S-bar: Category label used in work in the 1960s and 1970s to designate a sentence or clause. See §3.3 and §3.4.

Scope: The scope of an expression is the set of constituents which it modifies or which fall within (what we might informally call) its 'sphere of influence'. For example, a sentence like He cannot be telling the truth has a meaning paraphraseable as 'It is not possible that he is telling the truth', and in such a sentence the negative not is said to have scope over the modal auxiliary can (and conversely can is said to fall within the scope of not, or to have narrow scope with respect to not). By contrast, a sentence such as You mustn't tell lies has a meaning paraphraseable as 'It is necessary that you not tell lies', and in such a sentence, the auxiliary must is said to have scope over (or to have wide scope with respect to) the negative particle n ' t.

SCP: See Strict Cyclicity Principle.

Second person: See Person.

Select(ion)/Selectional: When a word has a particular type of complement, it is said to select (i.e. 'take' or 'allow') the relevant type of complement (and the relevant phenomenon is referred to as complementselection). For example, we can say that the word expect has the selectional property that it can select an infinitive complement (e.g. in structures like 'They expect to win').

Semantics/Semantic component: Semantics is the study of linguistic aspects of meaning. The semantic component of a grammar is the component which maps syntactic structures into semantic representations. See Representation.

Sentence: This term is usually used to denote a root clause - i.e. a free-standing clause which is not contained within some larger expression. See Root.

Sentence fragment: See Fragment.

SG: An abbreviation for singular.
Shakespeare: Shakespeare's plays were written between (around) 1590 and 1620, and are examples of Early Modern English/Elizabethan English (though some have suggested that Shakespeare's English is rather conservative, and hence is more representative of a slightly earlier stage of English).
Shell. This term is used in connection with the idea (discussed in §9.4-§9.9) that verb phrases comprise two different projections, an outer vP shell headed by a light verb, and an inner VP core headed by a lexical verb.

Silent: See Null.
Simple sentence: One which contains a single clause.
Singular: A singular expression is one which denotes a single entity (e.g. this car is a singular expression, whereas these cars is a plural expression).

Sister: Two nodes are sisters if they have the same mother (i.e. if they are directly merged with each other at some stage of derivation). See §3.6.

Small clause: See Clause.
SOURCE: A term used in the analysis of semantic/thematic roles to denote the entity from which something moves - e.g. the italicised expression in 'John returned from Paris'. See §7.4.

Spec: See Specifier. Terms like spec-CP/spec-TP/spec-VP (etc.) denote the specifier position within CP/TP/VP (etc.).
Specification: The specification of an item is the set of features which it carries.
Specifier: The grammatical function fulfilled by certain types of constituent which precede the head of their containing phrase. For example, in a sentence such as 'John is working', John is superficially the specifier (and subject) of is working. In a sentence such as 'What did John do?' what is superficially the specifier of the CP headed by a C constituent containing the inverted auxiliary did. In a phrase such as 'straight through the window', straight is the specifier of the PP headed by the preposition through.
Specifier-first: A specifier-first structure is one which has its specifier positioned in front of its head.
Spellout: The point in a derivation at which part of a syntactic structure is sent to the PF component to be mapped into a PF-representation (i.e. representation of its phonetic form). To say that an item has a null spellout is to say that it is 'silent' and so has a null phonetic form.
Split CP/Split VP: Work by Luigi Rizzi discussed in §9.2-§9.3 has suggested that $\mathbf{C P}$ can be split into a number of distinct projections, including a Force Phrase, Focus Phrase, Topic Phrase and Finiteness Phrase. Similarly, work by Larson, Hale and Chomsky outlined in $\S 9.4-\S 9.9$ has suggested that verb phrases can be split into two different projections, an outer vP shell headed by a light verb, and an inner VP core headed by a lexical verb. On split spellout, see Discontinuous spellout.
Stack(ing): To say (e.g.) that prenominal adjectives can be stacked in front of a noun is to say that we can have an indefinitely large number of adjectives positioned in front of a noun (e.g. 'a big, red, juicy, ripe apple').
Star: An asterisk (*) used in front of an expression to indicate that the expression is ungrammatical.
Stem: The stem of a word is the form to which inflectional affixes are added. So, a verb form like going comprises the stem go and the inflectional suffix -ing.
Strand/Stranded/Stranding: A stranded (or orphaned) preposition is one which has been separated from its complement (by movement of the complement). For example, in an echo question like 'You're waiting for who?', the preposition for has not been stranded, since it is immediately followed by its complement who. But in 'Who are you waiting for?', the preposition for has been stranded or orphaned, in that it has been separated from its complement who: the relevant phenomenon is termed preposition stranding. The Stranding Constraint specifies that in formal styles of English, a preposition cannot be separated from its complement and thereby be stranded.
Strict Cyclicity Principle: A UG principle which specifies that a cyclic operation can only affect the overall head H of a structure and some other constituent within the structure headed by H. See §5.7.
String: A continuous sequence of words contained within the same phrase or sentence. For example, in the sentence 'They hate syntax', the sequences They hate, hate syntax and They hate syntax are all strings but They syntax is not. Note that a string need not be a constituent.
Strong: A strong head is one which can attract (i.e. trigger movement of) another head; a weak head is one which cannot trigger movement. For example, C in an interrogative main clause is strong in presentday English, and so attracts an auxiliary to move from T to $\mathrm{C}-$ e.g. in sentences like Can you speak French? On an entirely different use of these terms in the expressions weak/strong genitive pronoun, see Case.

Structural: See Case, Representation.

Structure: See Constituent Structure.

Stylistic variation: Variation correlated with stylistic factors. For example, whom is used in formal styles and who in other styles in sentences like 'He is someone whom/who I admire greatly'.
Subject: The (superficial structural) subject of a clause is a noun or pronoun expression which is normally positioned between a complementiser and an (auxiliary or nonauxiliary) verb. Syntactic characteristics of subjects include the fact that they can trigger agreement with auxiliaries (as in 'The president is lying',
where the auxiliary is agrees with the subject the president), and they can be inverted with auxiliaries in main clause questions (as in 'Is the president lying?', where the auxiliary is has been inverted with the subject the president).
Subjunctive: In a (formal style) sentence such as 'The judge ordered that he be detained indefinitely', the passive auxiliary verb be is traditionally said to be in the subjunctive mood, since although it has exactly the same form as the infinitive form be (e.g. in infinitive structures such as 'To be or not to be - that is the question'), it has a nominative subject $h e$, and hence is a finite verb form. In present-day spoken English, constructions containing subjunctive verbs are generally avoided, as they are felt to be archaic or excessively formal in style by many speakers. See Mood.

Substantive: A substantive category is a category (like noun, verb, adjective, adverb, preposition) whose members are contentives (i.e. items with idiosyncratic descriptive content). See §2.4.
Substitution: A technique used to determine the category which a given expression belongs to. An expression belongs to a given type of category if it can be substituted (i.e. replaced) in phrases or sentences like that in which it occurs by another expression which clearly belongs to the category in question. For example, we might say that clearer is an adverb in 'John speaks clearer than you' because it can be replaced by the adverbial expression more clearly. See §2.3.

Successive-cyclic movement: Movement in a succession of short steps. On the claim that Head Movement is successive-cyclic, see §5.5. On the claim that A-movement is successive-cyclic, see §8.9. On the claim that wh-movement is successive cyclic, see ch. 10.

Suffix: See Affix.

Superlative: The superlative is a form of an adjective/adverb (typically carrying the suffix -est) used to mark the highest value for a particular property in comparison with others. For example, hardest is the superlative form of hard in 'John is the hardest worker because he works hardest'.

Syncretise/Syncretism: In work on split CP projections discussed in §9.3, Rizzi has claimed that although Force and Finiteness are projected on separate heads when some (topicalised or focused) constituent intervenes between them, they are syncretised (i.e. collapsed/conflated) into a single head carrying both Force and Finiteness features when no constituent intervenes between them.

Syntactic representation: See Representation.

Syntax: The component of a grammar which determines how words are combined together to form phrases and sentences.

T: A tense-marking constituent containing either a tensed auxiliary, or an abstract tense affix Tns, or a non-finite tense particle like infinitival to. T-to-C movement is movement of an auxiliary or nonauxiliary verb from the head T position of TP into the head C position of CP - as with the italicised inverted auxiliary in 'Is it raining?'
Taxonomy: A taxonomy is a classificatory system. A taxonomic theory of language is one which classifies constituents into different types. See §1.2.

Tag: A string usually consisting of an auxiliary and a subject pronoun which is 'tagged' onto the end of a sentence. Thus, the italicised string is the tag in the following: 'The president isn't underestimating his opponents, is he?', and the overall sentence is known as a tag question/tag sentence.
Tense: Finite auxiliary and main verbs in English show a binary (two-way) tense contrast, traditionally said to be between present tense forms and past tense forms. Thus, in 'John hates syntax', hates is a present tense verb form, whereas in 'John hated syntax', hated is a past tense verb form (An alternative classification which many linguists prefer is into [\pm PAST] verb forms, so that hated is [+PAST], and hates [-PAST]). This present/past tense distinction correlates (to some extent) with time-reference, so that (e.g.) past tense verbs typically describe an event taking place in the past, whereas present-tense verbs typically describe an event taking place in the present (or future). However, the correlation is an imperfect one, since e.g. in a sentence such as 'I might go there tomorrow', the auxiliary might carries the past tense inflection - t (found on past tense main verbs like left) but does not denote past time.

Tensed: A tensed (auxiliary or nonauxiliary) verb-form is one which carries (present/past) tense - e.g. is, will, could, hates, went, etc. By extension, a tensed clause is one containing a tensed auxiliary or main verb. See Tense.
Terminal node: A node at the bottom of a tree.
Ternary: Three-way. For example, person properties might be described in terms of a ternary (threevalued) feature such as [1/2/3-Pers], with first person pronouns like we being [1-Pers], second person pronouns like you being [2-Pers], and third person pronouns like they being [3-Pers]. A ternary-branching constituent is one which has three daughters.
Thematic: On Thematic role, see Theta-role. On the Thematic Hierarchy which specifies where an argument carrying a given theta-role should be merged, see ex. XVIII.
THEME: The name of a specific theta-role (sometimes also termed PATIENT) representing the entity undergoing the effect of some action (e.g. Harry in 'William teased Harry').
Theory of grammar: A theory which specifies the types of categories, relations, operations and principles found in natural language grammars. See §1.2.

Theta mark/者mark: To say that a predicate theta-marks its arguments is to say that it determines the theta role played by its arguments. See §7.4.
Theta-role/ $\boldsymbol{\theta}$-role: The semantic role played by an argument in relation to its predicate (e.g. AGENT, THEME, GOAL, etc.). For example, in a sentence like William teased Harry, the verb tease assigns the θ-role AGENT to its subject William and the theta-role THEME to its complement Harry. See §7.4.
Theta criterion/匂criterion: A principle of Universal Grammar which specifies that each argument should bear one and only one theta-role, and that each theta role associated with a given predicate should be assigned to one and only one argument. See §7.4.

Third Person: See Person.

Three-place predicate: A predicate (typically a verb) which takes three arguments - e.g. the verb give in 'John gave Mary something' (where the three arguments of give are John, Mary and something). See Argument.
Tns: An abstract affix which carries tense and agreement properties. See §4.4.
Top/Topic/Topicalisation/TopP: In a dialogue such as the following:
SPEAKER A: I've been having problems with the Fantasy Syntax seminar
SPEAKER B: That kind of course, very few students seem to be able to get their heads round
the italicised expression that kind of course can be said to be the topic of the sentence produced by speaker B, in the sense that it refers back to the Fantasy Syntax seminar mentioned by the previous speaker. An expression which represents 'old' or 'familiar' information in this way is said to be a topic. The movement operation by which the italicised expression moves from being the complement of the preposition round to the front of the overall sentence is traditionally termed topicalisation. In work by Luigi Rizzi on split CP projections discussed in §9.2, topic expressions which occur at the beginning of clauses are said to be contained within a TopP 'Topic Phrase' projection, headed by an abstract Top (= 'Topic') constituent.
TP: Tense projection/Tense phrase - i.e. phrase headed by a tense-marked auxiliary or an abstract tense morpheme Tns. See §3.2-§3.3.
Trace (theory): A trace of a moved constituent is a null copy left behind (as a result of movement) in each position out of which a constituent moves. Trace theory is a theory which posits that moved constituents leave behind a trace copy in each position out of which they move. See $\S 5.3, \S 6.3$ and $\S 7.2$.

Transfer: See Phase.

Transitive: A word is traditionally said to be transitive (in a given use) if it assigns accusative case to a noun or pronoun expression which it c-commands. So, likes in 'John likes him' is a transitive verb, since it assigns accusative case to its complement him. Likewise, infinitival for is a transitive complementiser,
since it assigns accusative case to the subject of its infinitive complement (cf. 'I'm keen [for him to participate more actively]'). See §4.9.
Tree (diagram): A form of graph used to represent the syntactic structure of a phrase or sentence.
Truncate/Truncation: Truncation is an operation by which a sentence is shortened by omitting one or more unstressed words at the beginning. For example, we can truncate a question like Are you going anywhere nice on holiday? by omitting are to form You going anywhere nice on holiday? and can further truncate the sentence by omitting you to give Going anywhere nice on holiday?

T-to-C movement: See T.
Two-place predicate: A predicate which has two arguments - e.g. tease in 'William teased Harry' where the two arguments of the predicate tease are William and Harry. See Argument.

UG: see Universal Grammar.

Unaccusative: An unaccusative predicate is a word like come whose apparent 'subject' originates as its complement. See §7.5.

Unary-branching. A unary-branching node is one which has a single daughter.
Unbound: A constituent is unbound if it has no appropriate antecedent in an appropriate position within a given structure. For example, himself is unbound in a sentence such as *'She helped himself', since she is not an appropriate antecedent for himself, and there is no other appropriate antecedent for himself anywhere within the sentence.
Unergative: An unergative predicate is a verb like groan in a sentence such as 'He was groaning' which has an AGENT subject but no overt object (though may have an incorporated object: see §9.5).

Ungradable: See Gradable.

Ungrammatical: See Grammatical.

Uniformity of Theta Assignment Hypothesis/UTAH: A hypothesis (developed by Baker 1988) which maintains that each theta-role assigned by a particular kind of predicate is canonically associated with a specific syntactic position: e.g. spec-vP is the canonical position associated with an AGENT argument.

Uninterpretable: See Interpretable.

Universal Grammar: Those aspects of grammar which are universal, and which are assumed by Chomsky to be part of the innate knowledge which a child is born with.
Universality: A criterion of adequacy for a theory of grammar, requiring that the theory be applicable to all natural languages. See §1.2.

Unreduced: See Reduced.

Unspecified: To say that a constituent is unspecified for a given feature is to say that it lacks the relevant feature.

Unvalued: See Value.

UTAH: See Uniformity of Theta Assignment Hypothesis.

V: See Verb.

v: See Light verb.
Value: In relation to a feature such as [Singular-Number], number is said to be an attribute (and represents the property being described) and singular its value. To value a feature is to assign it a value. For example, a finite auxiliary enters the derivation with its person and number features unvalued (i.e. not assigned any value), and these are then valued via agreement with the subject in the course of the derivation. See $\S 8.3$.

Variety: A particular (e.g. geographical or social) form of a language.

Verb: A category of word which has the morphological property that it can carry a specific range of inflections (e.g. the verb show can carry past tense $-d$, third person singular present tense $-s$, perfect $-n$ and progressive -ing, giving rise to shows/showed/shown/showing), and the syntactic property that it can head the complement of infinitival to (cf. 'Do you want to show me?’) See §2.2 and §2.3. On Verb movement, see V-to-T movement.
Verb phrase: a phrase which is headed by a verb - e.g. the italicised phrase in 'They will help you'. See ch. 3 .
V-to-T movement: Movement of a verb out of the head V position in VP into the head T position in TP. See §5.4.
Vocative: A vocative expression is one which is used to address one or more individuals, and which is set off in a separate tone-group at the beginning or end of the sentence (marked in the spelling by the use of a comma). So, for example, Fred is a vocative expression in 'Fred, can you give me a hand?' and similarly, you two is a vocative expression in 'Come here, you two!'

Voice: See Active.

VP/VPISH: On VP, see Verb Phrase. A VP-adverb is an adverb (like perfectly) which adjoins to a projection of a lexical verb (V). The VP-Internal Subject Hypothesis/VPISH is the hypothesis that subjects originate internally within the verb phrase: see ch. 7.
vP: a phrase (maximal projection) headed by a light verb. A vP-adverb is an adverb which adjoins to a projection of a light verb (v).

Weak: See Strong.

Wh: This is widely used as a feature carried by constituents which undergo wh-movement (hence e.g. the relative pronoun who in someone who I think is lying can be described as a wh-pronoun, as can the interrogative pronoun who in Who are you waiting for? and the exclamative quantifier what in What fun we had!
Wh-copying: A phenomenon whereby a moved wh-expression leaves behind an overt copy of itself when it moves - as with movement of who in a Child English question such as Who do you think who chased the cat?
Wh-expression: an expression containing a wh-word (i.e. containing a word carrying a [WH] feature).
Wh-island constraint: A constraint which specifies that wh-clauses (i.e. clauses beginning with a wh-expression) are islands, so that no constituent can be moved out of a wh-clause. See Island.
Wh-movement: A type of movement operation whereby a wh-expression is moved to the front of a particular type of structure (e.g. to the front of the overall sentence in 'Where has he gone?'). See ch.6.
Wh-parameter: A parameter whose setting determines whether wh-expressions are (or are not) moved to the front of an appropriate type of clause (e.g. in wh-questions). See §1.5.

Wh-phrase: A phrase containing a wh-word.
Wh-question: A question which contains a wh-word, e.g. 'What are you doing?'
Wh-word: A word which begins with wh (e.g. who/what/which/where/when/why), or which has a similar syntax to wh-words (e.g. how).
Word order: The linear sequencing (left-to-right ordering) of words within a phrase or sentence.
Yes-no question: A question to which 'Yes' or 'No' would be an appropriate answer - e.g. 'Is it raining?'

REFERENCES

Abney, S.P. (1987) The English Noun Phrase in Its Sentential Aspect, PhD diss., MIT.
Akmajian, A. \& Heny, F. (1975) An Introduction to the Principles of Transformational Syntax, MIT Press, Cambridge Mass.
Alexopoulou, T. \& Kolliakou, D. (2002) 'On Linkhood, Topicalisation and Clitic Left Dislocation', Journal of Linguistics 38: 193-245.
Antony, L. and Hornstein, N. (2002) Chomsky and His Critics, Blackwell, Oxford.
Aronoff, M. (1976) Word Formation in Generative Grammar, MIT Press, Cambridge Mass.
Aronoff, M. \& Fuhrhop, N. (2002) 'Restricting suffix combinations in German and English: closing suffixes and the monosuffix constraint', Natural Language and Linguistic Theory 20: 451-490.
Atkinson, M. (2003) Unpublished course notes, University of Essex
Baker, C.L. (1970) 'Notes on the description of English questions: The role of an abstract question morpheme', Foundations of Language 6: 197-219.
Baker, M. (1988) Incorporation, University of Chicago Press, Chicago.
Baltin, M. (1995) 'Floating quantifiers, PRO and predication', Linguistic Inquiry 26: 199-248.
Baltin, M. and Collins, C. (eds) (2001) The Handbook of Contemporary Syntactic Theory, Blackwell, Oxford.
Barss, A. (2001) 'Syntactic reconstruction effects' in Baltin and Collins (eds), pp. 670-696.
Basilico, D. (2003) 'The topic of small clauses', Linguistic Inquiry 34: 1-35.
Bejar, S. \& Massam D. (1999) 'Multiple case checking', Syntax 2: 65-79.
Belletti, A. and Rizzi, L. (1988) 'Psych-verbs and θ-theory', Natural Language and Linguistic Theory, 6: 291-352.
Bernstein, J.B. (2001) 'The DP hypothesis: Identifying clausal properties in the nominal domain', in Baltin and Collins (eds) pp. 536-61.
Bobaljic, J. (1995) Morphosyntax: The Syntax of Verbal Inflection, PhD diss., MIT.
Bobaljic, J. (2002) 'A-chains at the PF-interface: Copies and "covert" movement', Natural Language and Linguistic Theory, 20: 197-267.
Boeckx, C. (2000) 'A note on Contraction', Linguistic Inquiry 31: 357-366.
Boeckx, C. (2001) 'Scope reconstruction and A-movement', Natural Language and Linguistic Theory 19: 503-548.
Bošković, Z. (1997) 'On certain violations of the superiority condition, AgrO and economy of derivation', Journal of Linguistics 33: 227-254.
Bošković, Z. (2001) On the Nature of the Syntax-Phonology Interface: Cliticization and Related Phenomena, Elsevier, Amsterdam.
Bošković, Z. (2002a) 'On multiple wh-fronting', Linguistic Inquiry 33: 351-383.
Bošković, Z. (2002b) 'A-Movement and the EPP', Syntax 5: 167-218.
Bowerman, M. (1988) 'The "no negative evidence" problem: How do children avoid an overly general grammar?', in J. Hawkins (ed.) Explaining Language Universals, Blackwell, Oxford, pp.73-101.

Bowers, J. (1993) 'The syntax of predication', Linguistic Inquiry 24: 591-656.
Bowers, J. (2002) 'Transitivity’, Linguistic Inquiry 33: 183-224.
Braine, M.D.S. (1971) 'Three suggestions regarding grammatical analyses of children's language' in C.A. Ferguson \& D.I. Slobin (eds) Studies of Child Language Development, Holt Rinehart and Winston, New York, pp.421-429.
Branigan, P. (1992) Subjects and Complementisers, PhD diss., MIT.
Branigan, P. \& MacKenzie, M. (2002) 'Altruism, Ā-movement and object agreement in Innu-aimûn', Linguistic Inquiry 33: 385-407.
Brody, M. (1995) A Radically Minimalist Theory, MIT Press, Cambridge Mass.
Brown R., Cazden C. \& Bellugi U. (1968) 'The child's grammar from I to III', in J.P. Hill (ed.) Minnesota Symposium on Child Development vol 2, pp. 28-73.
Brown R. \& Hanlon, C. (1970) 'Derivational complexity and order of acquisition in child speech', in J.R. Hayes (ed.) Cognition and the Development of Language, Wiley, New York, pp. 11-53.
Burton, S. \& Grimshaw, J. (1992) 'Coordination and VP-internal subjects’, Linguistic Inquiry 23: 305-13.
Burzio, L. (1986) Italian Syntax, Reidel, Dordrecht.
Carrier, J. \& Randall, J.H. (1992) 'The argument structure and syntactic structure of resultatives', Linguistic Inquiry 23: 173-234.
Cheng, L. (1997) On the Typology of Wh-Questions, Garland, New York.
Cheng, L. \& Rooryck, J. (2000) 'Licensing Wh-in-situ’, Syntax 3: 1-19.
Chomsky, N. (1965) Aspects of the Theory of Syntax, MIT Press, Cambridge Mass.
Chomsky, N. (1968) Interview with S. Hamshire in The Listener, May 1968.
Chomsky, N. (1972) Language and Mind (enlarged edition), Harcourt Brace Jovanovich, New York.
Chomsky, N. (1981) Lectures on Government and Binding, Foris, Dordrecht.
Chomsky, N (1982) Some Concepts and Consequences of the Theory of Government and Binding, MIT Press, Cambridge Mass.
Chomsky, N. (1986a) Knowledge of Language: Its Nature, Origin and Use, Praeger, New York.
Chomsky, N. (1986b) Barriers, MIT Press, Cambridge Mass.
Chomsky, N. (1993) 'A minimalist program for linguistic theory', in Hale and Keyser (eds) pp. 1-52 (reprinted as chapter 3 of Chomsky 1995).
Chomsky, N. (1995) The Minimalist Program, MIT Press, Cambridge Mass.
Chomsky, N. (1998) Minimalist Inquiries: The Framework, MIT Occasional Papers in Linguistics, no 15 (also published in R. Martin, D. Michaels and J Uriagereka (eds) Step by Step: Essays on Minimalism in Honor of Howard Lasnik, MIT Press, Cambridge Mass., pp. 89-155).
Chomsky, N. (1999) Derivation by Phase, MIT Occasional Papers in Linguistics, no. 18 (also published in M. Kenstowicz (ed) (2001) Ken Hale: A Life in Language, MIT Press, Cambridge Mass., pp.1-52).

Chomsky, N. (2001) Beyond Explanatory Adequacy, unpublished manuscript, MIT.
Chomsky, N. (2002) On Nature and Language, Cambridge University Press
Chomsky, N. \& Lasnik, H. (1977) 'Filters and Control', Linguistic Inquiry 8: 425-504.
Chomsky, N. \& Lasnik, H. (1995) 'The theory of principles and parameters', in Chomsky 1995, pp. 13-127.
Chung, S. (1994) 'Wh-agreement and "Referentiality" in Chamorro', Linguistic Inquiry 25: 1-45.
Chung, S. (1998) The Design of Agreement: Evidence from Chamorro, University of Chicago Press, Chicago.
Cinque, G. (1994) 'Evidence for partial N-movement in the Romance DP', in G. Cinque, J. Koster, J.-Y. Pollock, L. Rizzi \& R. Zanuttini (eds) Towards Universal Grammar: Studies in Honor of Richard Kayne, Georgetown University Press, Washington DC, pp. 85-110.
Cinque, G. (1999) Adverbs and Functional Heads, Oxford University Press, Oxford.
Cole, P. (1982) Imbabura Quechua, North-Holland, The Hague.
Cole, P. and Hermon, G. (2000) 'Partial wh-movement: Evidence from Malay' in Lutz, Müller and van Stechow (eds) pp. 101-130.
Contreras, J. (1987) 'Small clauses in Spanish and English', Natural Language and Linguistic Theory, 5: 225-44.
Cormack, A. \& Smith, N. (1999) 'Where is a sign merged?', Glot International 4,6:21.
Cormack, A. \& Smith, N. (2000a) 'Head Movement and negation in English', Transactions of the

Philological Society 98: 49-85.
Cormack, A. \& Smith, N. (2000b) 'Fronting: The Syntax and Pragmatics of "Focus" and "Topic"", UCL Working Papers in Linguistics 20: 387-417.
Crain, S. \& Pietroski, P. (2002) 'Why language acquisition is a snap', The Linguistic Review 19: 163183.

Culicover, P. (1991) 'Topicalization, inversion and complementiser in English', in D. Delfitto, M. Everaert, A., Evers, \& F. Stuurman (eds) OTS Working Papers: Going Romance and Beyond, University of Utrecht, pp. 1-45.
Curtiss, S. (1977) Genie: A Psycholinguistic Study of a Modern Day "Wild Child", Academic Press, London.
Dayal, V. (2002) 'Single-pair versus multiple-pair answers: Wh-in-situ and scope’, Linguistic Inquiry 33: 512-520.
Déchaine, R.-M. \& Wiltschko, M. (2002) 'Decomposing pronouns', Linguistic Inquiry 33: 409-442.
den Dikken, M. (2001) 'Pluringulars, pronouns and quirky agreement', The Linguistic Review 18: 19-41.
Denham, K. (2000) 'Optional wh-movement in Babine-Witsuwit'en', Natural Language and Linguistic Theory 18: 199-251.
Drubig, H.N. (2003) 'Toward a typology of focus and focus constructions', Linguistics 41: 1-50.
Dukes, M. (2000) 'Agreement in Chamorro', Journal of Linguistics 36: 575-588.
du Plessis, H. (1977) 'Wh-movement in Afrikaans', Linguistic Inquiry 8: 211-222.
Embick, D. \& Noyer, R. (2001) 'Movement operations after Syntax', Linguistic Inquiry 32: 555-595.
Epstein, S. \& Seeley, D. (1999) 'Specifying the GF "subject", eliminating A-chains and the EPP with a derivational model', ms. University of Michigan.
Ernst, T. (1991) 'On the scope principle', Linguistic Inquiry 22: 750-6.
Fabb, N. (1988) 'English suffixation is constrained only by selectional restrictions', Natural Language and Linguistic Theory 6: 527-39.
Fanselow G. \& Mahajan. A. (2000) 'Towards a minimalist theory of wh-expletives, wh-copying and successive cyclicity’, in Lutz, Müller \& von Stechow (eds), pp.195-230.
Felser, C. (1999a) Verbal Complement Clauses: A Minimalist Study of Direct Perception Constructions, Benjamins, Amsterdam.
Felser, C. (1999b) 'Perception and control: A Minimalist analysis of English direct perception complements', Journal of Linguistics 34: 351-385.
Felser, C. (2004) 'Wh-copying, phases and successive cyclicity', Lingua 114: 543-574.
Fillmore, C.J. (1968) 'The case for case', in E. Bach \& R.T. Harms (eds) Universals in Linguistic Theory, Holt Rinehart \& Winston, New York, pp.1-88.
Fillmore, C.J. (1972) 'Subjects, speakers and roles’ in D. Davidson \& G. Harman (eds) Semantics of Natural Language, Reidel, Dordrecht.
Fodor, J.D. \& Crowther, C. (2002) 'Understanding stimulus poverty arguments’, The Linguistic Review 19: 105-145.
Fox, D. (2000) Economy and Semantic Interpretation, MIT Press, Cambridge Mass.
Frampton, J \& Gutmann, S. (1999) 'Cyclic computation, a computationally efficient minimalist syntax’, Syntax 2: 1-27.
Freidin, R. \& Vergnaud, J.R. (2001) 'Exquisite connections: some remarks on the evolution of linguistic theory', Lingua 111: 639-666.
Goodall, G. (1999) 'Accusative case in passives’, Linguistics 37: 1-12.
Green, L. (1998) Semantic and Syntactic Patterns in African American English, ms. University of Massachusetts.
Grimshaw, J. (1993) Minimal Projection, Heads, and Optimality, draft manuscript, Rutgers University.
Groat, E \& O’Neil, J. (1996) 'Spell-out at the LF interface', in W. Abraham, S.D. Epstein, H. Thráinsson \& C.J.-W. Zwart (eds) Minimal Ideas, Benjamins, Amsterdam, pp.113-139.
Gruber, J.S. (1965) Studies in Lexical Relations, PhD diss., MIT.
Gruber, J.S. (1976) Lexical Structures in Syntax and Semantics, North-Holland, Amsterdam.
Guasti, M.T. (2002) Language Acquisition: The Growth of Grammar, Bradford books, MIT Press, Cambridge Mass.
Guasti, M.T., Thornton R. \& Wexler K. (1995) 'Negation in children's questions: The case of English', in B. MacLaughlin \& S. McEwen (eds) Proceedings of the $19^{\text {th }}$ Annual Boston University Conference on

Language Development, Cascadilla Press, Somerville Mass, pp.228-239.
Guilfoyle, E., Hung, H. and Travis, L. (1992) 'Spec of IP and spec of VP: two subjects in Austronesian languages', Natural Language and Linguistic Theory 10: 375-414.
Haegeman, L. (1994, 2 $2^{\text {nd }}$ edition) Introduction to Government and Binding Theory, Blackwell, Oxford.
Haegeman, L. (1995) The Syntax of Negation, Cambridge University Press.
Haegeman, L. (2000) 'Inversion, non-adjacent inversion and adjuncts in CP', in Transactions of the Philological Society 98: 121-160.
Hale, K. \& Keyser, S. J. (1991) On the Syntax of Argument Structure, Lexicon Project Working Papers, MIT, Center for Cognitive Science, Cambridge Mass.
Hale, K. \& Keyser, S. J. (1993) 'On argument structure and the lexical expression of semantic relations', in Hale \& Keyser (eds), pp. 53-109.
Hale, K. \& Keyser, S.J. (1993) (eds) The View from Building 20, MIT Press, Cambridge Mass.
Hale, K. \& Keyser, S. J. (1994) 'Constraints on argument structure', in B. Lust, M. Suñer \& J. Whitman (eds) Heads, Projections and Learnability, Erlbaum, Hillsdale New Jersey, vol 1, pp.53-71.
Halle, M. \& Marantz, A. (1993) 'Distributed morphology and the pieces of inflection', in Hale and Keyser (eds), pp.111-176.
Han, C.-H. (2001) 'Force, negation and imperatives', The Linguistic Review, 18: 289-325.
Henry, A. (1995) Belfast English and Standard English: Dialect Variation and Parameter-Setting, Oxford University Press, Oxford.
Hiemstra, I. (1986) 'Some aspects of wh-questions in Frisian', North-Western European Language Evolution (NOWELE) 8: 97-110.
Holmberg, A. (2000) 'Am I unscientific? A reply to Lappin, Levine and Johnson', Natural Language and Linguistic Theory 18: 837-842.
Hornstein, N. (1995) Logical Form: From GB to Minimalism, Blackwell, Oxford.
Huang, C.-T. J. (1982) Logical Relations in Chinese and the Theory of Grammar, PhD diss., MIT.
Huang, C.-T. J. (1993) 'Reconstruction and the structure of VP: some theoretical consequences', Linguistic Inquiry 24: 103-38.
Hurford, J. (1991) 'The evolution of the critical period for language acquisition', Cognition 40: 159-201.
Hyams, N. (1986) Language Acquisition and the Theory of Parameters, Reidel, Dordrecht.
Hyams, N. (1992) 'A reanal ysis of null subjects in child language', in J. Weissenborn, H. Goodluck \& T.
Roeper (eds) Theoretical Issues in Language Acquisition, Erlbaum, London, pp.249-267.
Ingham, R. (2000) 'Negation and OV order in Late Middle English', Journal of Linguistics 36: 13-38.
Jackendoff, R.S. (1972) Semantic Interpretation in Generative Grammar, MIT Press, Cambridge Mass.
Jaeggli, O. \& Safir, K. (1989) The Null Subject Parameter, Kluwer, Dordrecht.
Johnson, K. (1991) 'Object positions', Natural Language and Linguistic Theory 9: 577-636.
Johnson, K. (2002) 'Restoring exotic co-ordinations to normalcy', Linguistic Inquiry 33: 97-156.
Jones, M.A. (1994) Sardinian Syntax, Routledge, London.
Julien, M. (2001) 'The syntax of complex tenses', The Linguistic Review 18: 125-167.
Kayne, R S (1984) Connectedness and Binary Branching, Foris, Dordrect.
Kayne, R.S. (1989) 'Facets of Romance past participle agreement', in P. Benincà (ed.) Dialect Variation and the Theory of Grammar, Foris, Dordrecht, pp. 85-103.
Kayne, R.S. (1994) The Antisymmetry of Syntax, MIT Press, Cambridge Mass.
Keyser, S.J. \& Roeper, T. (1992) 'Re: the abstract clitic hypothesis’, Linguistic Inquiry 23: 89-125.
Kishimoto, H. (2000) 'Indefinite pronouns and overt N-raising', Linguistic Inquiry 31: 557-566.
Kitagawa, Y. (1986) Subjects in English and Japanese, PhD diss., University of Massachusetts.
Klima, E. S. (1964) 'Negation in English' in J.A. Fodor \& J.J. Katz (eds) The Structure of Language, Prentice-Hall, Englewood Cliffs, NJ, pp. 246-323.
Koopman, H. \& Sportiche, D. (1991) 'The position of subjects', Lingua 85: 211-58.
Kuroda, Y. (1988) 'Whether we agree or not', Lingvisticae Investigationes 12: 1-47.
Landau, I. (1999) Elements of Control, PhD diss., MIT.
Landau, I. (2001) 'Control and Extraposition: the case of Super-Equi', Natural Language and Linguistic Theory 19: 109-152.
Landau, I. (2002) '(Un)interpretable Neg in Comp', Linguistic Inquiry 33: 465-492.
Lappin, S., Levine, R.D., and Johnson, D.E. (2000a) Topic...Comment: The structure of unscientific revolutions', Natural Language and Linguistic Theory 18: 665-671.

Lappin, S., Levine, R.D., and Johnson, D.E. (2000b) 'The revolution confused: A response to our critics', Natural Language and Linguistic Theory 18: 873-890.
Lappin, S., Levine, R.D., and Johnson, D.E. (2001) 'The revolution maximally confused’, Natural Language and Linguistic Theory 19: 901-919.
Larson, R. (1988) 'On the double object construction', Linguistic Inquiry 19: 335-91.
Larson, R. (1990) 'Double objects revisited: reply to Jackendoff’, Linguistic Inquiry 21: 589-632.
Lasnik, H. (1995) 'Verbal Morphology: Syntactic Structures meets the Minimalist Program', in H. Campos and P. Kempchinksky (eds) Evolution and Revolution in Linguistic Theory, Georgetown University Press, Georgetown, pp. 251-75.
Lasnik, H. (1998) 'Some reconstruction riddles', in Penn Working Papers in Linguistics 5: 83-98, Penn Linguistics Circle, University of Pennsylvania, Philadelphia.
Lasnik, H. (1999) 'Chains of arguments’, in S.D. Epstein \& N. Hornstein (eds) Working Minimalism, MIT Press, Cambridge Mass., pp.189-215.
Lasnik, H. (2000) Syntactic Structures Revisited: Contemporary Lectures on Classic Transformational Theory, MIT Press, Cambridge Mass. (with Depiante, M. \& Stepanov, A.)
Lasnik, H. (2001) 'A note on the EPP', Linguistic Inquiry 32: 356-361.
Lasnik, H. \& Sobin, N. (2000) 'The Who/Whom Puzzle: On the preservation of an archaic feature', Natural Language and Linguistic Theory 18: 343-371.
Lasnik, H. \& Uriagereka, J. (2002) 'On the poverty of the challenge', The Linguistic Review 19: 147-150.
Lebeaux, D. (1991) 'Relative clauses, licensing and the nature of derivation', in S. Rothstein (ed.)
Syntax and Semantics 25: Perspectives on Phrase Structure, Academic Press, New York, pp. 209-239.
Lebeaux, D. (1995) 'Where does Binding Theory apply?', in University of Maryland Working Papers in Linguistics 3: 63-88.
Legate, J.A. \& Yang, C.D (2002) 'Empirical re-assessment of stimulus poverty arguments', The Linguistic Review 19: 151-162.
Lenneberg, E. (1967) Biological Foundations of Language, Wiley, New York.
Lightfoot, D. \& Hornstein, N. (eds) (1994) Verb Movement, Cambridge University Press.
Longobardi, G. (1994) 'Reference and proper names', Linguistic Inquiry 25: 609-66.
Longobardi, G. (1996) 'The syntax of N-raising: a minimalist theory', OTS Working Papers no 5, Research Institute for Language and Speech, Utrecht.
Longobardi, G. (2001) 'The Structure of DPs: Some Principles, Parameters and Problems', in Baltin and Collins (eds), pp. 562-603.
Lutz, U., Müller, G. and von Stechow A. (eds) (2000) Wh-Scope Marking, Benjamins, Amsterdam. Lyons, C. (1999) Definiteness, Cambridge University Press.
McCloskey, J. (2000) 'Quantifier Float and Wh-Movement in an Irish English', Linguistic Inquiry 31: 57-84.
McCloskey, J. (2001) 'The morphosyntax of WH-extraction in Irish', Journal of Linguistics 37: 67-100.
McDaniel, D. (1989) 'Partial and multiple wh-movement', Natural Language and Linguistic Theory 7: 565-604.
McNally, L. (1992) 'VP-coordination and the VP-internal subject hypothesis', Linguistic Inquiry 23: 336-41.
McNeill, D. (1966) 'Developmental Psycholinguistics' in F. Smith \& G.A. Miller (eds) The Genesis of Language, MIT Press, Cambridge Mass., pp.15-84.
Marcus, G.F. (1993) 'Negative evidence in language acquisition', Cognition 46: 53-85.
Martin, R. (2001) 'Null case and the distribution of PRO', Linguistic Inquiry 32: 141-166.
Morgan, J.L. and Travis, L. (1989) 'Limits on negative information in language input', Journal of Child Language 16: 531-552.
Namai, K. (2000) 'Gender features in English', Linguistics 38: 771-779.
Nasu, N. (2001) 'Associating EPP with f -completeness' Proceedings of the North Eastern Linguistic Society 31: 351-367.
Nasu, N. (2002) Aspects of the Syntax of A-Movement: A Study of English Infinitival Contructions and Related Phenomena, PhD diss., University of Essex.
Nunes, J. (1999) 'Linearization of chains and phonetic realisation of chain links', in S.D. Epstein \& N. Hornstein (eds) Working Minimalism, MIT Press, Cambridge Mass., pp. 217-249.
Nunes, J. (2001) 'Sideward movement', Linguistic Inquiry 32: 303-344.

Nunes, J. \& Uriagereka, J. (2000) 'Cyclicity and extraction domains', Syntax 3: 20-43.
Ochi, M. (1999) 'Multiple spell-out and PF-adjacency', Proceedings of the North-Eastern Linguistic Society 29.
Oya, T. (2002) 'Reflexives and resultatives: Some differences between English and German', Linguistics 40: 961-986.
Pesetsky, D. (1995) Zero Syntax: Experiencers and Cascades, MIT Press, Cambridge Mass.
Pesetsky, D. (1997) 'Optimality Theory and Syntax: Movement and Pronunciation', in D. Archangeli \& D.T. Langendoen (eds) Optimality Theory: An Overview, Blackwell, Oxford, pp. 134-170.

Pesetsky, D. (1998) 'Some optimality principles of sentence pronunciation' in P. Barbosa, D. Fox, P. Hagstrom, M. McGinnis \& D. Pesetsky (eds) Is the Best Good Enough? MIT Press, Cambridge, pp. 337-383.
Pesetsky, D. (2000) Phrasal Movement and Its Kin, MIT Press, Cambridge Mass.
Phillips, C. (2003) 'Linear order and constituency', Linguistic Inquiry 34: 37-90.
Piattelli-Palmarini, M. (2000) 'The metric of open-mindedness', Natural Language and Linguistic Theory, 18: 859-862.
Picallo, M.C. (1991) 'Nominals and nominalization in Catalan', Probus 3: 279-316.
Pollock, J.-Y. (1989) 'Verb movement, Universal Grammar, and the structure of IP', Linguistic Inquiry 20: 365-424.
Polinksky, M. \& Potsdam, E. (2001) 'Long-distance agreement and Topic in Tsez', Natural Language and Linguistic Theory 19: 583-646.
Postal, P.M. (1966) 'On so-called pronouns in English', in F. Dinneen (ed.) Nineteenth Monograph on Language and Linguistics, Georgetown University Press, Washington DC (reprinted in D. Reibel \& S. Schane (eds) (1969) Modern Studies in English, Prentice-Hall, Englewood Cliff NJ, pp. 201-224).
Pullum, G.K. \& Scholz, B.C. (2002) 'Empirical assessment of stimulus poverty arguments', The Linguistic Review 19: 9-50.
Radford, A. (1988) Transformational Grammar, Cambridge University Press, Cambridge.
Radford, A. (1993) 'Head-hunting: on the trail of the nominal Janus', in G. Corbett, N.M. Fraser \& S. McGlashan (eds) Heads in Grammatical Theory, Cambridge University Press, Cambridge, pp. 73-111.
Radford, A. (1997a) Syntactic Theory and the Structure of English, Cambridge University Press, London.
Radford, A. (1997b) Syntax: A Minimalist Introduction, Cambridge University Press, London.
Radford, A, Atkinson M, Britain D, Clahsen H and Spencer A (1999) Linguistics: An Introduction, Cambridge University Press, Cambridge
Ramat, P. (1999) 'Linguistic categories and linguists' categorizations', Linguistics 37: 157-180.
Reintges, C.H, LeSourd P. and Chung, S (2002) 'Movement, wh-agreement and apparent wh-in-situ', paper presented to Workshop on Wh-Movement, University of Leiden, December 2002.
Reuland, E. (2000) 'Revolution, discovery and an elementary principle of logic', Natural Language and Linguistic Theory 18: 843-848.
Reuland, E. (2001a) 'Primitives of Binding', Linguistic Inquiry 32: 439-492.
Reuland, E. (2001b) 'Confusion compounded', Natural Language and Linguistic Theory 19: 879-885.
Reuland E. \& Everaert M. (2001) 'Deconstructing Binding' in Baltin \& Collins (eds), pp.634-670.
Richards, N. (1997) What Moves Where When in Which Language? PhD diss., MIT.
Ritter, E. (1991) 'Two functional categories in noun phrases: Evidence from Modern Hebrew', in S. Rothstein (ed) Perspectives on Phrase Structure: Heads and Licensing, Academic Press, New York, pp. 37-62.
Rizzi, L. (1997) 'The fine structure of the left periphery' in L Haegeman (ed) Elements of Grammar, Kluwer, Dordrecht, pp. 281-337.
Rizzi, L. (2000) 'Remarks on early null subjects', in M.-A. Freidemann \& L. Rizzi (eds) The Acquisition of Syntax, pp.269-292.
Rizzi, L. (2001a) 'Relativized minimality effects', in Baltin \& Collins, pp. 89-110.
Rizzi, L. (2001b) 'On the position "Int(errogative)" in the left periphery of the clause', in G. Cinque and G. Salvi (eds) Current Issues in Italian Syntax, Elsevier, Amsterdam, pp.287-296.

Rizzi, L. (2003) 'Locality and Left Periphery' to appear in A. Belletti (ed) Structures and Beyond: The Cartography of Syntactic Structures, vol.2, Oxford University Press.
Roberts, I. (1993) Verbs and Diachronic Syntax, Kluwer, Dordrecht.
Roberts, I. (1994) 'Two types of head movement in Romance’, in Hornstein \& Lightfoot (eds) pp. 207-
242.

Roberts, I. (1997) 'Restructuring, head movement and locality’, Linguistic Inquiry 28: 423-460.
Roberts, I. (2000) 'Caricaturing dissent', Natural Language and Linguistic Theory 18: 849-857.
Roberts, I. (2001a) 'Who has confused what? More on Lappin, Levine and Johnson', Natural Language and Linguistic Theory 19: 887-890.
Roberts, I. (2001b) 'Head Movement', in Baltin and Collins (eds), pp.113-147.
Romero, M. (1997) 'The correlation between scope reconstruction and connectivity effects', in E. Curtiss, J. Lyle and G. Webster (eds) Proceedings of the XVI West Coast Conference in Formal Linguistics, CLSI, Stanford, pp. 351-365.
Rosen, S.T. (1990) Argument Structure and Complex Predicates, Garland, New York.
Ross, J.R. (1967) Constraints on Variables in Syntax, PhD diss., MIT (published as Infinite Syntax! by Ablex Publishing Corporation, Norwood, New Jersey, 1986).
Runner, J. (1998) Noun Phrase Licensing and Interpretation, Garland, New York.
Rymer, R. (1993) Genie: A Scientific Tragedy, Harper Perennial, New York.
Sabel, J. (2002) 'A minimalist analysis of syntactic islands', The Linguistic Review 19: 271-315.
Saddy, D. (1991) 'Wh scope mechanisms in Bahasa Indonesia' in L. Cheng \& H. Demirdache (eds) MIT
Working Papers in Linguistics 15: 183-218.
Safir, K. (1986) Syntactic Chains, Cambridge University Press, Cambridge.
Sag, I. (1997) 'English relative clause constructions', Journal of Linguistics 33: 431-483.
Sampson, G. (2002) 'Exploring the richness of the stimulus', The Linguistic Review 19: 73-104.
Sauerland, U. (1998) The Meaning of Chains, PhD diss., MIT.
Sauerland, U. \& Elbourne, P. (2002) 'Total reconstruction, PF movement and derivational order',
Linguistic Inquiry 33: 283-319
Scholz, B.C. \& Pullum, G.K. (2002) 'Searching for arguments to support linguistic nativism', The Linguistic Review 19: 185-223.
Seppänen, A. \& Trotta, J. (2000) 'The wh+that pattern in present-day English', in J.M. Kirk (ed.) Corpora Galore: Analyses and Techniques in Describing English, Rodopi, Amsterdam, pp. 161-175.
Sigurðsson, H.Á. (1996) 'Icelandic finite verb agreement', Working Papers in Scandinavian Syntax 57: 1-46.
Smith, N. (1998) 'Jackdaws, sex and language acquisition', Glot International 3, 7: 7.
Smith, N. (1999) Chomsky: Ideas and Ideals, Cambridge University Press, Cambridge.
Smith, N. \& Cormack, A. (2002) 'Indeterminacy, inference, iconicity and interpretation: Aspects of the grammar-pragmatics interface', in M. Makri-Tsilipakou (ed) Selected Papers on Theoretical and Applied Linguistics, Aristotle University of Thessaloniki, pp.38-53.
Sobin, N. (2002) 'The Comp-trace effect, the adverb effect, and minimal CP', Journal of Linguistics 38: 527-560.
Sorace, A. (2000) 'Gradients in auxiliary selection with intransitive verbs', Language 76: 859-890.
Speas, P. (1986) Adjunction and Projections in Syntax, PhD diss., MIT, Cambridge Mass.
Spencer, A.J. (1991) Morphological Theory, Blackwell, Oxford.
Sportiche, D. (1988) 'A Theory of floating quantifiers and its corollaries for constituent structure', Linguistic Inquiry 19: 425-49.
Sportiche, D. (1998) 'Movement, agreement and case', in Partitions and Atoms of Clause Structure, Routledge, London, pp. 88-243.
Stepanov, A. (2001) 'Late adjunction and minimalist phrase structure', Syntax 4: 94-125.
Stockwell, R., Schachter, P. and Hall Partee, B (1973) The Major Syntactic Structures of English, Holt Rinehart and Winston, New York.
Stowell, T. (1981) Origins of Phrase Structure, PhD dissertation, MIT.
Stowell, T. (1982) 'The tense of infinitives', Linguistic Inquiry 13: 561-570.
Stroik, T. (1990) ‘Adverbs as V-Sisters’, Linguistic Inquiry 21: 654-61.
Stroik, T. (2001) 'On the light verb hypothesis', Linguistic Inquiry 32: 362-369.
Svenonius, P. (2002a) 'Case is uninterpretable aspect', http://www.hum.uit.no/a/svenonius/paperspage. html.
Svenonius, P. (2002b) 'Icelandic case and the structure of events' http://www.hum.uit.no/a/svenonius/ paperspage.html.
Tallerman, M.O. (1993) 'Case assignment and the order of functional projections in Welsh', in A.

Siewierska (ed.) Eurotyp Working Papers, Programme in Language Typology, European Science Foundation, pp.1-41.
Taraldsen, T. (1990) 'D-projections and N-projections in Norwegian’, in M. Nespor \& J. Mascarò (eds) Grammar in Progress, Foris, Dordrecht, pp. 419-431.
Ten Hacken, P. (2001) Review of Radford (1997a/b), Natural Language Engineering, 7/1.
Thomas, M. (2002) 'Development of the concept of "the poverty of stimulus", The Linguistic Review 19: 51-71.
Thornton, R (1995) 'Referentiality and Wh-Movement in Child English: Juvenile D-Linkuency', Language Acquisition 4: 139-175.
Tieken-Boon van Ostade, I. (1988) 'The origins and development of periphrastic auxiliary do: a case of destigmatisation', Dutch Working Papers in English Language and Linguistics 3: 1-30.
Travis, L. (1984) Parameters and Effects of Word Order Variation, PhD diss., MIT.
Ura, H. (1993) 'On feature-checking for wh-traces’, MIT Working Papers in Linguistics 18: 243-280.
Ura, H. (2001) 'Local economy and generalized pied-piping', The Linguistic Review 18: 169-191.
Uriagereka, J. (1988) On Government, PhD diss., University of Connecticut.
Uriagereka, J. (1998) Rhyme and Reason, MIT Press, Cambridge Mass.
Uriagereka, J. (2000) 'On the emptiness of "design" polemics', Natural Language and Linguistic Theory, 18: 863-871.
Uriagereka, J. (2001) 'Cutting derivational options', Natural Language and Linguistic Theory, 19: 891-900.
Vainikka, A. \& Levy, Y. (1999) 'Empty subjects in Finnish and Hebrew’, Natural Language and Linguistic Theory 17: 613-671.
Vikner, S. (1995) Verb Movement and Expletive Subjects in Germanic Languages, Oxford University Press, Oxford.
Watanabe, A. (2001) 'Wh-in-situ languages’, in Baltin and Collins, pp. 203-225.
Wexler, K (1994)'Optional Infinitives, Head Movement and the Economy of Derivations', in Lightfoot \& Hornstein (eds), pp. 305-350.
Willis, D. (2000) 'On the distribution of resumptive pronouns and wh-trace in Welsh', Journal of Linguistics 36: 531-73.
Woolford, E. (1991) 'VP-internal subjects in VSO and nonconfigurational languages', Linguistic Inquiry 22: 503-40.
Yang, C.D. (1999) 'Unordered Merge and its linearization', Syntax 1: 38-64.
Zagona, K. (1987) Verb Phrase Syntax, Kluwer, Dordrecht.
Zwicky, A. (2002) 'I wonder what kind of construction that this kind of example illustrates', in D. Beaver, L.D. Casillas Martínez, B.Z. Clark \& S. Kaufmann (eds) The Construction of Meaning, CSLI Publications, pp. 219-248.

