PROCESS HEAT TRANSFER

Donald O.Kern

TATA McGRAW-HILL EDITION

PROCESS HEAT TRANSFER D. Q. KERN

INTERNATIONAL STUDENT EDITION

PROCESS HEAT TRANSFER

PROCESS HEAT TRANSFER

BY
DONALD Q. KERN
D. Q. Kern Associates, and
Professorial Lecturer in Chemical Engineering
Case Institute of Technology

INTERNATIONAL STUDENT EDITION

McGRAW-HILL INTERNATIONAL BOOK COMPANY

Auckland Bogotá Guatemala Hamburg Johannesburg Lisbon
London Madrid Mexico New Delhi Panama Paris San Juan
São Paulo Singapore Sydney Tokyo

PROCESS HEAT TRANSFER

INTERNATIONAL STUDENT EDITION

Copyright (C) 1965

Exclusive rights by McGraw-Hill Book Company Japan, Ltd. for manufacture and export. This book cannot be re-exported from the country to which it is consigned by McGraw-Hill.

21st printing 1983

Copyright, 1950, by the McGraw-Hill Book Company, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher.

When ordering this title use ISBN 0-07-085353-3

To my wife
NATALIE W. KERN
for her real help

PREFACE

It is the object of this text to provide fundamental instruction in heat transfer while employing the methods and language of industry. This treatment of the subject has evolved from a course given at the Polytechnic Institute of Brooklyn over a period of years. The possibilities of collegiate instruction patterned after the requirements of the practicing process engineer were suggested and encouraged by Dr. Donald F. Othmer, Head of the Department of Chemical Engineering. The inclusion of the practical aspects of the subject as an integral part of the pedagogy was intended to serve as a supplement rather than a substitute for a strong foundation in engineering fundamentals. These points of view have been retained throughout the writing of the book.

To provide the rounded group of heat-transfer tools required in process engineering it has been necessary to present a number of empirical calculation methods which have not previously appeared in the engineering literature. Considerable thought has been given to these methods, and the author has discussed them with numerous engineers before accepting and including them in the text. It has been a further desire that all the calculations appearing in the text shall have been performed by an experienced engineer in a conventional manner. On several occasions the author has enlisted the aid of experienced colleagues, and their assistance is acknowledged in the text. In presenting several of the methods some degree of accuracy has been sacrificed to permit the broader application of fewer methods, and it is hoped that these simplifications will cause neither inconvenience nor criticism.

It became apparent in the early stages of writing this book that it could readily become too large for convenient use, and this has affected the plan of the book in several important respects. A portion of the material which is included in conventional texts is rarely if ever applied in the solution of run-of-the-mill engineering problems. Such material, as familiar and accepted as it may be, has been omitted unless it qualified as important fundamental information. Secondly, it was not possible to allocate space for making bibliographic comparisons and evaluations and at the same time present industrial practice. Where no mention has been made of a recent contribution to the literature no slight was intended. Most of the literature references cited cover methods on which the author has obtained additional information from industrial application.

The author has been influenced in his own professional development by the excellent books of Prof. W. H. McAdams, Dr. Alfred Schack, and others, and it is felt that their influence should be acknowledged separately in addition to their incidence in the text as bibliography.

For assistance with the manuscript indebtedness is expressed to Thomas H. Miley, John Blizard, and John A. Jost, former associates at the Foster Wheeler Corporation. For checking the numerical calculations credit is due to Krishnabhai Desai and Narendra R. Bhow, graduate students at the Polytechnic Institute. For suggestions which led to the inclusion or exclusion of certain material thanks are due Norman E. Anderson, Charles Bliss, Dr. John F. Middleton, Edward L. Pfeiffer, Oliver N. Prescott, Everett N. Sieder, Dr. George E. Tait, and to Joseph Meisler for assistance with the proof. The Tubular Exchanger Manufacturers Association has been most generous in granting permission for the reproduction of a number of the graphs contained in its Standard. Thanks are also extended to Richard L. Cawood, President, and Arthur E. Kempler, Vice-President, for their personal assistance and for the cooperation of The Patterson Foundry \& Machine Company.

Donald Q. Kern
New York, N.Y.
April, 1950

CONTENTS

Preface vii
Index to the Principal Apparatus Calculations. xi
Cefapter

1. Process Heat Transfer 1
2. Conduction 6
3. Convection 25
4. Radiation 62
5. Temperature 85
6. Counterflow: Double-pipe Exchangers 102
7. 1-2 Parallel-counterflow: Shell-and-Tube Exchangers 127
8. Flow Arrangements for Increased Heat Recovery 175
9. Gases 190
10. Streamline Flow and Free Convection 201
11. Calculations for Process Conditions 221
12. Condensation of Single Vapors 252
13. Condensation of Mixed Vapors 313
14. Evaporation 375
15. Vaporizers, Evaporators, and Reboilers 453
16. Extended Surfaces. 512
17. Direct-contact Transfer: Cooling Towers. 563
18. Batch and Unsteady State Processes 624
19. Furnace Calculations. 674
20. Additional Applications 716
21. The Control of Temperature and Related Process Variables 765
Appendix of Calculation Data 791
AUTHOR Index 847
Subject Index 851

INDEX TO THE PRINCIPAL APPARATUS CALCULATIONS

Exchangers
Double-pipe counterflow exchanger (benzene-toluene) 113
Double-pipe series-parallel exchanger (lube oil-crude oil) 121
Tubular exchanger (kerosene-crude oil) 151
Tubular exchanger (water-water) 155
Tubular cooler ($\mathrm{K}_{3} \mathrm{PO}_{4}$ solution-water) 161
Tubular heater, unbaffled (sugar solution-steam) 167
Tubular 2-4 cooler (33.5 API oil-water) 181
Tubular exchangers in series (acetone-acetic acid) 184
Tubular gas aftercooler (ammonia gas-water) 193
Tubular gas intercooler (CO_{2}-water vapor-water) 346
Tubular streamline flow heater (crude oil-steam). 203
Tubular free convection heater (kerosene-steam). 207
Core tube heater (gas oil-steam) 211
Tank heater (aniline-steam) 217
Tubular exchanger (straw oil-naphtha) 231
Tubular 4-8 exchanger (lean oil-rich oil) 235
Tubular cooler (NaOH solution-water) 238
Tubular heater (alcohol-steam) 241
Tubular split-flow cooler (flue gas-water) 246
Jacketed vessel (aqueous solution-steam) 719
Tube coil (aqueous solution-steam). 723
Pipe coil cooler (slurry-water) 725
Tromabone cooler (SO_{2} gas-water) 729
Atmospheric cooler (jacket water-water). 736
Electric resistance heater 758
Compensers (Tubular)
Condenser, horizontal (propanol-water) 274
Condenser, vertical (propanol-water) 277
Desuperheater-condenser, horizontal (butane-water) 285
Condenser-subcooler, vertical (pentanes-water) 290
Condenser-subcooler, horizontal (pentanes-water) 295
1-1 Reflux condenser, vertical (carbon disulfide-water) 299
Surface condenser (turbine exhaust steam-water). 308
Condenser, horizontal (hydrocarbon mixture-water) 331
Condenser, horizontal (steam, CO_{2} mixture-water) 346
Condenser, horizontal (hydrocarbon mixture, gas, steam-water) 356
Evaporators (Tubular)
Raw water evaporator 387
Power plant makeup evaporator 388
Process multiple effect evaporator 389
Heat transformer evaporator 390
Salt water distiller 393
Cane sugar multiple effect evaporator. 418
Paper pulp waste liquor multiple effect evaporator 427
Caustic soda multiple effect forced circulation evaporator 437
Thermocompression cane sugar evaporator. 447
Vaporizing Exchangers (Tubular)
Vaporizer, forced circulation (butane-steam) 464
Kettle reboiler (hydrocarbons-steam) 475
Thermosyphon reboiler, horizontal (naphtha-gas oil) 482
Thermosyphon reboiler, vertical (butane-steam) 488
Extended Surfaces
Longitudinal fin double-pipe cooler (gas oil-water) 530
Tubular longitudinal in cooler (oxygen-water). 535
Transverse fin crossflow cooler (air-water) 556
Direct Contact Transfer
Cooling tower requirement. 602
Cooling tower guarantee 605
Cooling tower rerating 609
Gas cooler (nitrogen-water) 615
Gas cooler, approximate solution (nitrogen-water) 620
Radiant Heaters
Tube still 702
Direct fired vessel 709

CHAPTER 1

PROCESS HEAT TRANSFER

Heat Transfer. The science of thermodynamics deals with the quantitative transitions and rearrangements of energy as heatin bodies of matter. Heat transfer is the science which deals with the rates of exchange of heat between hot and cold bodies called the source and receiver. When a pound of water is vaporized or condensed, the energy change in either process is identical. The rates at which either process can be made to progress with an independent source or receiver, however, are inherently very different. Vaporization is generally a much more rapid phenomenon than condensation.

Heat Theories. The study of heat transfer would be greatly enhanced by a sound understanding of the nature of heat. Yet this is an advantage which is not readily available to students of heat transfer or thermodynamics because so many manifestations of heat have been discovered that no simple theory covers them all. Laws which may apply to mass transitions may be inapplicable to molecular or atomic transitions, and those which are applicable at low temperatures may not apply at high temperatures, For the purposes of engineering it is necessary to undertake the study with basic information on but a few of the many phenomena. The phases of a single substance, solid, liquid, and gaseous, are associated with its energy content. In the solid phase the molecules or atoms are close together, giving it rigidity. In the liquid phase sufficient thermal energy is present to extend the distance of adjacent molecules such that rigidity is lost. In the gas phase the presence of additional thermal energy has resulted in a relatively complete separation of the atoms or molecules so that they may wander anywhere in a confined space. It is also recognized that, whenever a change of phase occurs outside the critical region; a large amount of energy is involved in the transition.

For the same substance in its different phases the various thermal properties have different orders of magnitude. As an example, the specific heat per unit mass is very low for solids, high for liquids, and usually intermediate for gases. Similarly in any body absorbing or losing heat, special consideration must be given whether the change is one of sensible or latent heat or both. Still further, it is also known that a hot source is
capable of such great subatomic excitement that it emits energy without any direct contact with the receiver, and this is the underlying principle of radiation. Each type of change exhibits its own peculiarities.

Mechanisms of Heat Transfer. There are three distinct ways in which heat may pass from a source to a receiver, although most engineering applications are combinations of two or three. These are conduction, convection, and radiation.

Conduction. Conduction is the transfer of heat through fixed material such as the stationary wall shown in Fig. 1.1. The direction of heat flow will be at right angles to the wall

Fig. 1.1. Heat flow through a wall. if the wall surfaces are isothermal and the body homogeneous and isotropic. Assume that a source of heat exists on the left face of the wall and a receiver of heat exists on the right face. It has been known and later it will be confirmed by derivation that the flow of heat per hour is proportional to the change in temperature through the wall and the area of the wall A. If t is the temperature at any point in the wall and x is the thickness of the wall in the direction of heat flow, the quantity of heat flow $d Q$ is given by

$$
\begin{equation*}
d Q=k A\left(-\frac{d t}{d x}\right) \quad \mathrm{Btu} / \mathrm{hr} \tag{1.1}
\end{equation*}
$$

The term $-d t / d x$ is called the temperature gradient and has a negative sign if the temperature has been assumed higher at the face of the wall where $x=0$ and lower at the face where $x=X$. In other words, the instantaneous quantity of heat transfer is proportional to the area and temperature difference $d t$, which drives the heat through the wall of thickness $d x$. The proportionality constant k is peculiar to conductive heat transfer and is known as the thermal conductivity. It is evaluated experimentally and is basically defined by Eq. (1.1). The thermal conductivities of solids have a wide range of numerical values depending upon whether the solid is a relatively good conductor of heat such as a metal or a poor conductor such as asbestos. The latter serve as insulators. Although heat conduction is usually associated with heat transfer through solids, it is also applicable with limitations to gases and liquids.

Convection. Convection is the transfer of heat between relatively hot and cold portions of a fluid by mixing. Suppose a can of liquid were
placed over a hot flame. The liquid at the bottom of the can becomes heated and less dense than before owing to its thermal expansion. The liquid adjacent to the bottom is also less dense than the cold upper portion and rises through it, transferring its heat by mixing as it rises. The transfer of heat from the hot liquid at the bottom of the can to the remainder is natural or free convection. If any other agitation occurs, such as that produced by a stirrer, it is forced convection. This type of heat transfer may be described in an equation which imitates the form of the conduction equation and is given by

$$
\begin{equation*}
d Q=h A d t \tag{1.2}
\end{equation*}
$$

The proportionality constant h is a term which is influenced by the nature of the fluid and the nature of the agitation and must be evaluated experimentally. It is called the heat-transfer coefficient. When Eq. (1.2) is written in integrated form, $Q=h A \Delta t$, it is called Newton's law of cooling.

Radiation. Radiation involves the transfer of radiant energy from a source to a receiver. When radiation issues from a source to a receiver, part of the energy is absorbed by the receiver and part reflected by it. Based on the second law of thermodynamics Boltzmann established that the rate at which a source gives off heat is

$$
\begin{equation*}
d Q=\sigma \epsilon d A \cdot T^{4} \tag{1.3}
\end{equation*}
$$

This is known as the fourth-power law in which T is the absolute temperature. σ is a dimensional constant, but ϵ is a factor peculiar to radiation and is called the emissivity. The emissivity, like the thermal conductivity k or the heat-transfer coefficient h, must also be determined experimentally.

Process Heat Transfer. Heat transfer has been described as the study of the rates at which heat is exchanged between heat sources and receivers usually treated independently. Process heat transfer deals with the rates of heat exchange as they occur in the heat-transfer equipment of the engineering and chemical processes. This approach brings to better focus the importance of the temperature difference between the source and receiver, which is, after all, the driving force whereby the transfer of heat is accomplished. A typical problem of process heat transfer is concerned with the quantities of heats to be transferred, the rates at which they may be transferred because of the natures of the bodies, the driving potential, the extent and arrangement of the surface separating the source and receiver, and the amount of mechanical energy which may be expended to facilitate the transfer. Since heat transfer involves an exchange in a system, the loss of heat by the one body will equal the heat absorbed by another within the confines of the same system.

In the chapters which follow studies will first be made of the three individual heat-transfer phenomena and later of the way in which their combination with a simultaneous source and receiver influences an apparatus as a whole. A large number of the examples which follow have been selected from closely related processes to permit gradual comparisons. This should not be construed as limiting the broadness of the underlying principles.

Many of the illustrations and problems in the succeeding chapters refer to liquids derived from petroleum. This is quite reasonable, since petroleum refining is a major industry, petroleum products are an important fuel for the power industry, and petroleum derivatives are the starting point for many syntheses in the chemical industry.

Petroleum is a mixture of a great many chemical compounds. Some can be isolated rather readily, and the names of common hydrocarbons present in petroleum may be identified on Fig. 7 in the Appendix. But more frequently there is no need to obtain pure compounds, since the ultimate use of a mixture of related compounds will serve as well. Thus lubricating oil is a mixture of several compounds of high molecular weight, all of which are suitable lubricants. Similarly, gasoline which will ultimately be burned will be composed of a number of volatile combustible compounds. Both of these common petroleum products were present in the crude oil when it came from the ground or were formed by subsequent reaction and separated by distillation. When dealt with in a process or marketed as mixtures, these products are called fractions or cuts. They are given common names or denote the refinery operation by which they were produced, and their specific gravities are defined by a scale established by the American Petroleum Institute and termed either degrees API or ${ }^{\circ}$ API. The ${ }^{\circ}$ API is related to the specific gravity by

$$
\begin{equation*}
{ }^{\circ} \mathrm{API}=\frac{141.5}{\operatorname{sp} \mathrm{gr} \text { at } 60^{\circ} \mathrm{F} / 60^{\circ} \mathrm{F}}-131.5 \tag{1.4}
\end{equation*}
$$

Being mixtures of compounds the petroleum fractions do not boil isothermally like pure liquids but have boiling ranges. At atmospheric pressure the lowest temperature at which a liquid starts to boil is identified as the initial boiling point, IBP, ${ }^{\circ} \mathrm{F}$. A list of the common petroleum fractions derived from crude oil is given below:

Fractions from crude oil	Approx ${ }^{\circ}$ API	Approx IBP, ${ }^{\circ}{ }^{5}$
Light ends and gases.	114	
Gasoline.	75	200
Naphtha.	60	300
Kerosene.	45	350
Absorption oil	40	450
Straw oil.	40	500
Distillate.	35	550
Gas oil.	28	600
Lube oil.	18-30	
Reduced crude.		
Paraffin wax and jelly.		
Fuel oil (residue).	25-35	500
Asphalt....................		

A method of defining the chemical character of petroleum and correlating the properties of mixtures was introduced by Watson, Nelson, and Murphy. ${ }^{1}$ They observed that, when a crude oil of uniform distilling behavior is distilled into narrow cuts, the ratio of the cube root of the absolute average boiling points to the specifio gravities of the cuts is a constant or

$$
\begin{equation*}
K=\frac{T_{B}^{1 / 3}}{s} \tag{1.5}
\end{equation*}
$$

where $K=$ characterization factor
$T_{B}=$ average boiling point, ${ }^{\circ} \mathrm{R}$
$s=$ specific gravity at $60^{\circ} / 60^{\circ}$
NOMENCLATURE FOR CHAPTER 1
A Heat-transfer surface, ft^{2}
$h \quad$ Individual heat-transfer coefficient, $\mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}{ }^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$
$K \quad$ Characterization factor
$k \quad$ Thermal conductivity, $\mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F} / \mathrm{ft}\right)$
Q Heat flow, Btu/hr
$s \quad$ Specific gravity, dimensionless
T Temperature, ${ }^{\circ} \mathrm{R}$
$T_{B} \quad$ Absolute average boiling temperature, ${ }^{\circ} \mathbf{R}$
t Temperature in general, ${ }^{\circ} \mathrm{F}$
x, X Distance, ft
$\sigma \quad \mathrm{A}$ constant, $\mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{(} \mathrm{R}^{4}\right)$
E Emissivity, dimensionless
${ }^{1}$ Watson, K. M., E. F. Nelson, and G. B. Murphy, Ind. Eng. Chem., 25, 880 (1933 27, 1460 (1935).

CHAPTER 2

CONDUCTION

The Thermal Conductivity. The fundamentals of heat conduction were established over a century ago and are generally attributed to Fourier. In numerous systems involving flow such as heat flow, fluid flow, or electricity flow, it has been observed that the flow quantity is directly proportional to a driving potential and inversely proportional to the resistances applying to the system, or

$$
\begin{equation*}
\text { Flow } \propto \frac{\text { potential }}{\text { resistance }} \tag{2.1}
\end{equation*}
$$

In a simple hydraulic path the pressure along the path is the driving potential and the roughness of the pipe is the flow resistance. In an electric circuit the simplest applications are expressed by Ohm's law: The voltage on the circuit is the driving potential, and the difficulty with which electrons negotiate the wire is the resistance. In heat flow through a wall, flow is effected by a temperature difference between the hot and cold faces. Conversely, from Eq. (2.1) when the two faces of a wall are at different temperatures, a flow of heat and a resistance to heat flow are necessarily present. The conductance is the reciprocal of the resistance to heat flow and Eq. (2.1) may be expressed by

$$
\begin{equation*}
\text { Flow } \propto \text { conductance } \times \text { potential } \tag{2.2}
\end{equation*}
$$

To make Eq. (2.2) an equality the conductance must be evaluated in such a way that both sides will be dimensionally and numerically correct. Suppose a measured quantity of heat Q^{\prime} Btu has been transmitted by a wall of unknown size in a measured time interval $\theta \mathrm{hr}$ with a measured temperature difference $\Delta t{ }^{\circ} \mathrm{F}$. Rewriting Eq. (2.2)

$$
\begin{equation*}
Q=\frac{Q^{\prime}}{\theta}=\text { conductance } \times \Delta t \quad B t u / h r \tag{2.3}
\end{equation*}
$$

and the conductance has the dimensions of $\mathrm{Btu} /(\mathrm{hr})\left({ }^{\circ} \mathrm{F}\right)$. The conductance is a measured property of the entire wall, although it has also been found experimentally that the flow of heat is influenced independently by the thickness and the area of the wall. If it is desired to design a wall to have certain heat-flow characteristics, the conductance obtained above
is not useful, being applicable only to the experimental wall. To enable a broader use of experimental information, it has become conventional to report the conductance only when all the dimensions are referred to unit values. When the conductance is reported for a quantity of material 1 ft thick with heat-flow area $1 \mathrm{ft}^{2}$, time unit 1 hr , and temperature difference $1^{\circ} \mathrm{F}$, it is called the thermal conductivity k. The relationship between the thermal conductivity and the conductance of an entire wall of thickness L and area A is then given by

$$
\text { Conductance }=k \frac{A}{L}
$$

and

$$
\begin{equation*}
Q=k \frac{A}{L} \Delta t \tag{2.4}
\end{equation*}
$$

where k has the dimensions resulting from the expression $Q L / A \Delta t$ or $\mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right.$ of flow area) (${ }^{\circ} \mathbf{F}$ of temperature difference)/(ft of wall thickness). ${ }^{1}$

Experimental Determination of k :* Nonmetal Solids. An apparatus for the determination of the thermal conductivity of nonmetal solids is shown in Fig. 2.1. It consists of an electrical heating plate, two identical test specimens through which heat

Fic. 2.1. Guarded conductivity apparatus. passes, and two water jackets which remove heat. The temperatures at both faces of the specimens and at their sides are measured by thermocouples. A guard ring is provided to assure that all the measured heat input to the plate passes through the specimens with a negligible loss from their sides. The guard ring surrounds the test assembly and consists of an auxiliary heater sandwiched between pieces of the material being tested. While current enters the heating plate, the input to the

[^0]auxiliary heater is adjusted until no temperature differences exist between the specimens and adjacent points in the guard ring. Observations are made when the heat input and the temperatures on both faces of each specimen remain steady. Since half of the measured electrical heat input to the plate flows through each specimen and the temperature difference and dimensions of the specimen are known, k can be computed directly from Eq. (2.4).

Liquids and Gases. There is greater difficulty in determining the conductivities of liquids and gases. If the heat flows through a thick layer of liquid or gas, it causes free con-

Fig. 2.2. Liquid conductivity apparatus. (After J. F. D. Smith.) vection and the conductivity is deceptively high. To reduce convection it is necessary to use very thin films and small temperature differences with attendant errors of measurement. A method applicable to viscous fluids consists of a bare electric wire passing through a horizontal tube filled with test liquid. The tube is immersed in a constant-temperature bath. The resistance of the wire is calibrated against its temperature. For a given rate of heat input and for the temperature of the wire obtained from resistance measurements the conductivity can be calculated by suitable equations. A more exact method, however, is that of Bridgman and Smith, ${ }^{1}$ consisting of a very thin fluid annulus between two copper cylinders immersed in a constant-temperature bath as shown in Fig. 2.2. Heat supplied to the inner cylinder by a resistance wire flows through the film to the outer cylinder, where it is removed by the bath. This apparatus, through the use of a reservoir, assures that the annulus is full of liquid and is adaptable to gases. The film is $1 / 64 \mathrm{in}$. thick, and the temperature difference is kept very small.

Influence of Temperature and Pressure on k. The thermal conductivities of solids are greater than those of liquids, which in turn are greater than those of gases. It is easier to transmit heat through a solid than a liquid and through a liquid than a gas. Some solids, such as metals, have high thermal conductivities and are called conductors. Others have low conductivities and are poor conductors of heat. These are insulators. In experimental determinations of the type described above the thermal conductivity has been assumed independent of the temperature at any point in the test material. The reported values of k are consequently

[^1]the averages for the entire specimen, and the error introduced by this assumption can be estimated by an examination of Tables 2 to 5 in the Appendix. The conductivities of solids may either increase or decrease with temperature and in some instances may even reverse their rate of change from a decrease to an increase. For the most practical problems there is no need to introduce a correction for the variation of the thermal conductivity with temperature. However, the variation can usually be expressed by the simple linear equation
$$
k=k_{0}+\gamma t
$$
where k_{0} is the conductivity at $0^{\circ} \mathrm{F}$ and γ is a constant denoting the change in the conductivity per degree change in temperature. The conductivities of most liquids decrease with increasing temperature, although water is a notable exception. For all the common gases and vapors there is an increase with increasing temperature. Sutherland ${ }^{2}$ deduced an equation from the kinetic theory which is applicable to the variation of the conductivity of gases with temperature
$$
k=k_{32} \frac{492+C_{k}}{T+C_{k}}\left(\frac{T}{492}\right)^{3 / 2}
$$
where $C_{k}=$ Sutherland constant
$T=$ absolute temperature of the gas, ${ }^{\circ} \mathrm{R}$
$k_{32}=$ conductivity of the gas at $32^{\circ} \mathrm{F}$
The influence of pressure on the conductivities of solids and liquids appears to be negligible, and the reported data on gases are too inexact owing to the effects of free convection and radiation to permit generalization. From the kinetic theory of gases it can be concluded that the influence of pressure should be small except where a very low vacuum is encountered.

Contact Resistance. One of the factors which causes error in the determination of the thermal conductivity is the nature of the bond formed between the heat source and the fluid or solid specimen which contacts it and transmits heat. If a solid receives heat by contacting a solid, it is almost impossible to exclude the presence of air or other fluid from the contact. Even when a liquid contacts a metal, the presence of minute pits or surface roughness may permanently trap infinitesimal bubbles of air, and it will be seen presently that these may cause considerable error.

Derivation of a General Conduction Equation. In Eqs. (2.1) to (2.4) a picture of heat conduction was obtained from an unqualified observation of the relation between heat flow, potential, and resistance. It is now feasible to develop an equation which will have the broadest applicability

[^2]and from which.other equations may be deduced for special applications. Equation (2.4) may be written in differential form
\[

$$
\begin{equation*}
\frac{d Q^{\prime}}{d \theta}=k d A \frac{d t}{d x} \tag{2.5}
\end{equation*}
$$

\]

In this statement k is the only property of the matter and it is assumed to be independent of the other variables. Referring to Fig. 2.3, an elemental cube of volume $d v=d x d y d z$ receives a differential quantity of heat $d Q_{1}^{\prime}$ Btu through its left $y z$ face in the time interval $d \theta$. Assume all but the left and right $y z$ faces are

Fig. 2.3. Unidirectional heat flow. insulated. In the same interval the quantity of heat $d Q_{2}^{\prime}$ leaves at the right face. It is apparent that any of three effects may occur: $d Q_{1}^{\prime}$ may be greater than $d Q_{2}^{\prime}$ so that the elemental volume stores heat, increasing the average temperature of the cube; $d Q_{2}^{\prime}$ may be greater than $d Q_{1}^{\prime}$ so that the cube loses heat; and lastly, $d Q_{1}^{\prime}$ and $d Q_{2}^{\prime}$ may be equal so that the heat will simply pass through the cube without affecting the storage of heat. Taking either of the first two cases as being more general, a storage or depletion term $d Q^{\prime}$ can be defined as the difference between the heat entering and the heat leaving or

$$
\begin{equation*}
d Q^{\prime}=d Q_{1}^{\prime}-d Q_{2}^{\prime} \tag{2.6}
\end{equation*}
$$

According to Eq. (2.5) the heat entering on the left face may be given by

$$
\begin{equation*}
\frac{d Q_{1}^{\prime}}{d \theta}=k d y d z\left(-\frac{\partial t}{\partial x}\right) \tag{2.7}
\end{equation*}
$$

The temperature gradient $-\frac{\partial t}{\partial x}$ may vary with both time and position in the cube. The variation of $-\frac{\partial t}{\partial x}$ as $f(x)$ only is $-\frac{\partial(\partial t / \partial x)}{\partial x}$. Over the distance $d x$ from x to $x+d x$, if $d Q_{2}^{\prime}>d Q_{1}^{\prime}$, the total change in the temperature gradient will be $-\frac{\partial(\partial t / \partial x)}{\partial x} d x$ or $-\frac{\partial^{2} t}{\partial x^{2}} d x$. Then at x the gradient is $-\frac{\partial t}{\partial x}$, and at $x+d x$ the temperature gradient is

$$
-\frac{\partial t}{\partial x}-\frac{\partial^{2} t}{\partial x^{2}} d x
$$

$d Q_{2}^{\prime}$ out of the cube at the right face and in the same form as Eq. (2.7) is given by

$$
\begin{equation*}
\frac{d Q_{2}^{\prime}}{d \theta}=k d y d z\left(-\frac{\partial t}{\partial x}-\frac{\partial^{2} t}{\partial x^{2}} d x\right) \tag{2.8}
\end{equation*}
$$

from which

$$
\begin{equation*}
\frac{d Q^{\prime}}{d \theta}=\frac{d Q_{1}^{\prime}}{d \theta}-\frac{d Q_{2}^{\prime}}{d \theta}=k d y d z\left(\frac{\partial^{2} t}{\partial x^{2}}\right) d x \tag{2.9}
\end{equation*}
$$

The cube will have changed in temperature by $-d t$ deg. The change in temperature per unit time will be $d t / d \theta$ and over the time interval $d \theta$ it is given by ($d t / d \theta$) $d \theta$ deg. Since the analysis has been based on an elemental volume, it is now necessary to define a volumetric specific heat, $c_{v}, \mathrm{Btu} /\left(\mathrm{ft}^{3}\right)\left({ }^{\circ} \mathrm{F}\right)$ obtained by multiplying the weight specific heat c Btu/(lb) $\left({ }^{\circ} \mathrm{F}\right)$ by the density ρ. To raise the volume $d x d y d z$ by

$$
\frac{d t}{d \theta} d \theta^{\circ} \mathrm{F}
$$

requires a heat change in the cube of

$$
\begin{equation*}
\frac{d Q^{\prime}}{d \theta}=c \rho d x d y d z \frac{\partial t}{\partial \theta} \tag{2.10}
\end{equation*}
$$

and combining Eqs. (2.9) and (2.10)

$$
\begin{equation*}
c_{\rho} d x d y d z \frac{\partial t}{\partial \theta}=k d y d z\left(\frac{\partial^{2} t}{\partial x^{2}}\right) d x \tag{2.11}
\end{equation*}
$$

from which

$$
\begin{equation*}
\frac{\partial t}{\partial \theta}=\frac{k}{c \rho}\left(\frac{\partial^{2} t}{\partial x^{2}}\right) \tag{2.12}
\end{equation*}
$$

which is Fourier's general equation, and the term $k / c p$ is called the thermal diffusivity, since it contains all the properties involved in the conduction of heat and has the dimensions of $\mathrm{ft}^{2} / \mathrm{hr}$. If the insulation is removed from the cube so that the heat travels along the X, Y, and Z axes, Eq. (2.12) becomes

$$
\begin{equation*}
\frac{\partial t}{\partial \theta}=\frac{\hbar}{c \rho}\left(\frac{\partial^{2} t}{\partial x^{2}}+\frac{\partial^{2} t}{\partial y^{2}}+\frac{\partial^{2} t}{\partial z^{2}}\right) \tag{2.13}
\end{equation*}
$$

When the flow of heat into and out of the cube is constant as in the steady state, t does not vary with time, and $d t / d \theta=0$, in Eq. (2.12). $\partial t / \partial x$ is a constant and $\partial^{2} t / \partial x^{2}=0 . \quad d Q_{1}^{\prime}=d Q_{2}^{\prime}$, and Eq. (2.8) reduces to Eq. (2.5) where $d x d y=d A$. Substituting $d Q$ for $d Q^{\prime} / d \theta$, both terms having
dimensions of $\mathrm{Btu} / \mathrm{hr}$, the steady-state equation is

$$
\begin{equation*}
d Q=k d A \frac{d t}{d x} \tag{2.14}
\end{equation*}
$$

Equation (2.14) applies to many of the common engineering problems.
Thermal Conductivity from Electrical-conductivity Measurements. The relationship between the thermal and electrical conductivities of metals demonstrates an application of Fourier's derivation incorporated

Frg. 2.4. Heat flow in a metal. in Eq. (2.9) and is a useful method of determining the thermal conductivities of metals. An insulated bar of metal as shown in Fig. 2.4 has its left and right cross-sectional faces exposed to different constanttemperature baths at t_{1} and t_{2}, respectively. By fastening electric leads to the left and right faces, respectively, a current of I amp may be passed in the direction indicated, generating heat throughout the length of the bar. The quantities of heat leaving both ends of the bar in the steady state must be equal to the amount of heat received as electrical energy, $I^{2} R^{\omega}$, where R^{ω} is the resistance in ohms. From Ohm's law

$$
I=\frac{E_{1}-E_{2}}{\sigma(L / A)}=\frac{A}{\sigma} \frac{d E}{d x}
$$

where $E_{1}-E_{2}$ is the voltage difference, σ the resistivity of the wire in ohm-ft and K, the reciprocal of the resistivity, is the electrical conductivity.

$$
\begin{align*}
I & =K A \frac{d E}{d x} \tag{2.15}\\
R^{\omega} & =\frac{\sigma d x}{A}=\frac{d x}{K A} \tag{2.16}
\end{align*}
$$

Substituting Eqs. (2.15) and (2.16) for $I^{2} R^{\omega}$,

$$
\begin{equation*}
d Q=I^{2} R^{\omega}=K^{2} A^{2}\left(\frac{d E}{d x}\right)^{2} \frac{d x}{K A}=K A\left(\frac{d E}{d x}\right)^{2} d x \tag{2.17}
\end{equation*}
$$

But this is the same as the heat transferred by conduction and given by

Eq. (2.9). When $t_{1}=t_{2}$ and equating (2.9) and (2.17),

$$
\begin{equation*}
k \frac{d^{2} t}{d x^{2}} d x-K\left(\frac{d E}{d x}\right)^{2} d x=0 \tag{2.18}
\end{equation*}
$$

But

$$
\begin{equation*}
\frac{d t}{d x}=\frac{d t}{d E} \frac{d E}{d x} \tag{2.19}
\end{equation*}
$$

Differentiating,

$$
\begin{equation*}
\frac{d^{2} t}{d x^{2}}=\left(\frac{d E}{d x}\right)^{2} \frac{d^{2} t}{d E^{2}}+\frac{d t}{d E}\left(\frac{d^{2} E}{d x^{2}}\right) \tag{2.20}
\end{equation*}
$$

If I and A are constant for the bar, then $K(d E / d x)$ is constant. Since K does not vary greatly with t or $x, d E / d x$ is constant, $d^{2} E / d x^{2}=0$, and from Eq. (2.18) substituting Eq. (2.20) for $d^{2} t / d x^{2}$

$$
\begin{align*}
k \frac{d^{2} t}{d E^{2}}-K & =0 \tag{2.21}\\
\frac{d^{2} t}{\overline{d E^{2}}} & =\frac{K}{k} \tag{2.22}\\
\frac{k t}{K} & =\frac{1}{2} E^{2}+C_{1} E+C_{2} \tag{2.23}
\end{align*}
$$

where C_{1} and C_{2} are integration constants. Since there are three constants in Eq. (2.23), C_{1}, C_{2}, and k / K, three voltages and three temperatures must be measured along the bar for their evaluation. C_{1} and C_{2} are determined from the end temperatures and k is obtained from k / K using the more simply determined value of the electrical conductivity K.

Flow of Heat through a Wall. Equation (2.14) was obtained from the general equation when the heat flow and temperatures into and out of the two opposite faces of the partially insulated elemental cube $d x d y d z$ were constant. Upon integration of Eq. (2.14) when all of the variables but Q are independent the steady-state equation is

$$
\begin{equation*}
Q=\frac{k A}{L} \Delta t \tag{2.24}
\end{equation*}
$$

Given the temperatures existing on the hot and cold faces of a wall, respectively, the heat flow can be computed through the use of this equation. Since $k A / L$ is the conductance, its reciprocal R is the resistance to heat flow, or $R=L / k A(\mathrm{hr})\left({ }^{\circ} \mathrm{F}\right) / \mathrm{Btu}$.

Example 2.1. Flow of Heat through a Wall. The faces of a 6 -in. thick wall measuring 12 by 16 ft will be maintained at 1500 and $300^{\circ} \mathrm{F}$, respectively. The wall is made of kaolin insulating brick. How much heat will escape through the wall?

Solution. The average temperature of the wall will be $900^{\circ} \mathrm{F}$. From Table 2 in the

Appendix the thermal conductivity at $932^{\circ} \mathrm{F}$ is $0.15 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F} / \mathrm{ft}\right)$. Extrapolation to $900^{\circ} \mathrm{F}$ will not chenge this value appreciably.

$$
Q=\frac{k A}{L} \Delta t
$$

Where $\Delta t=1500-300=1200^{\circ} \mathrm{F}$

$$
A=16 \times 12=192 \mathrm{ft}^{2}
$$

$$
L=6 / 12=0.5 \mathrm{ft}
$$

$$
Q=0.15 \times \frac{192}{0.5} \times 1200=69,200 \mathrm{Btu} / \mathrm{hr}
$$

Flow of Heat through a Composite Wall: Resistances in Series. Equation (2.24) is of interest when a wall consists of several materials placed together in series such as in the construction of a furnace or boiler firebox. Several types of refractory brick are usually employed, since those capable of withstanding the higher

Fig. 2.5. Heat flow through a composite wall. inside temperatures are more fragile and expensive than those required near the outer surface, where the temperatures are considerably lower. Referring to Fig. 2.5, three different refractory materials are placed together indicated by the subscripts a, b, and c. For the entire wall

$$
\begin{equation*}
Q=\frac{\Delta t}{\bar{R}} \tag{2.25}
\end{equation*}
$$

The heat flow in Btu per hour through material a.must overcome the resistance $R_{\text {w. }}$. But in passing through material a the heat must also pass through materials b and c in series. The heat flow entering at the left face must be equal to the heat flow leaving the right face, since the steady state precludes heat storage. If $R_{a} R_{b}$, and R_{c} are unequal, as the result of differing conductivities and thicknesses, the ratio of the temperature difference across each layer to its resistance must be the same as the ratio of the total temperature difference is to the total resistance or

$$
\begin{equation*}
Q=\frac{\Delta t}{R}=\frac{\Delta t_{a}}{\overline{R_{a}}}=\frac{\Delta t_{b}}{R_{b}}=\frac{\Delta t_{c}}{R_{c}} \tag{2.26}
\end{equation*}
$$

For any composite system using actual temperatures

$$
\begin{equation*}
Q=\frac{\Delta t}{R}=\frac{t_{0}-t_{1}}{R_{a}}=\frac{t_{1}-t_{2}}{R_{b}}=\frac{t_{2}-t_{3}}{R_{c}} \tag{2.27}
\end{equation*}
$$

Rearranging and substituting,

$$
\begin{equation*}
Q=\frac{\Delta t}{R}=\frac{t_{0}-t_{3}}{\left(L_{a} / k_{a} A\right)+\left(L_{b} / k_{b} A\right)+\left(L_{c} / k_{c} A\right)} \tag{2.28}
\end{equation*}
$$

Example 2.2. Flow of Heat through a Composite Wall. The wall of an oven consists of three layers of brick. The inside is built of 8 in . of firebrick, $k=0.68$ Btu/ $(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F} / \mathrm{ft}\right)$, surrounded by 4 in . of insulating brick, $k=0.15$, and an outside layer of 6 in . of building brick, $k=0.40$. The oven operates at $1600^{\circ} \mathrm{F}$ and it is anticipated that the outer side of the wall can be maintained at $125^{\circ} \mathrm{F}$ by the circulation of air. How much heat will be lost per square foot of surface and what are the temperatures at the interfaces of the layers?

Solution:

For the firebrick, $R_{a}=L_{a} / k_{a} A=8 / 12 \times 0.68 \times 1=0.98(\mathrm{hr})\left({ }^{\circ} \mathrm{F}\right) /(\mathrm{Btu})$
Insulating brick, $R_{b}=L_{b} / k_{b} A=4 / 12 \times 0.15 \times 1=2.22$
Building brick, $\quad R_{c}=L_{c} / k_{0} A=6 / 12 \times 0.40 \times 1=1.25$

$$
R=\overline{4.45}
$$

Heat loss $/ \mathrm{ft}^{2}$ of wall, $Q=\Delta t / R=(1600-125) / 4.45=332 \mathrm{Btu} / \mathrm{hr}$
For the individual layers:

$$
\begin{array}{cl}
\Delta t & =Q R \quad \text { and } \quad \Delta t_{a}=Q R_{a}, \text { etc. } \\
\Delta t_{a} & =332 \times 0.98=325^{\circ} \mathrm{F} \\
\Delta t_{b} & =332 \times 2.22=1600-325=1275^{\circ} \mathrm{F} \\
\hline 138^{\circ} \mathrm{F} & t_{2}=1275-738=537^{\circ} \mathrm{F}
\end{array}
$$

Example 2.3. Flow of Heat through a Composite Wall with an Air Gap. To illustrate the poor conductivity of a gas, suppose an air gap of $1 / 4 \mathrm{in}$. were left between the insulating brick and the firebrick. How much heat would be lost through the wall if the inside and outside temperatures are kept constant?
Solution. From Table 5 in the Appendix at $572^{\circ} \mathrm{F}$ air has a conductivity of 0.0265 $\left.\mathrm{Btu} /(\mathrm{hr})(\mathrm{ft})^{2}\right)\left({ }^{\circ} \mathrm{F} / \mathrm{ft}\right)$, and this temperature is close to the range of the problem.

$$
\begin{aligned}
R_{\text {air }} & =0.25 / 12 \times 0.0265=0.79(\mathrm{hir})\left({ }^{\circ} \mathrm{F}\right) / \mathrm{Btu} \\
R & =4.45+0.79=5.24 \\
Q & =\frac{1600-125}{5.24}=281 \mathrm{Btu} / \mathrm{hr}
\end{aligned}
$$

It is seen that in a wall 18 in . thick a stagnant air gap only $3 / 4 \mathrm{in}$. thick reduces the heat loss by 15 per cent.

Heat Flow through a Pipe Wall. In the passage of heat through a flat wall the area through which the heat flows is constant throughout the entire distance of the heat flow path. Referring to Fig. 2.6 showing a unit length of pipe, the area of the heat flow path through the pipe wall increases with the distance of the path from r_{1} to r_{2}.

Fig. 2.6. Heat flow through a pipe wall. The area at any radius r is given by $2 \pi r 1$ and if the heat flows out of the cylinder the temperature gradient for the
incremental length $d r$ is $d t / d r$. Equation (2.14) becomes

$$
\begin{equation*}
q=2 \pi r k\left(-\frac{d t}{d r}\right) \quad B t u /(\mathrm{hr})(\operatorname{lin} \mathrm{ft}) \tag{2.29}
\end{equation*}
$$

Integrating,

$$
\begin{equation*}
t=-\frac{q}{2 \pi k} \ln r+C_{1} \tag{2.30}
\end{equation*}
$$

When $r=r_{i}, t=t_{i}$; and when $r=r_{o}, t=t_{0}$; where i and o refer to the

Fig. 2.7. Cylindrical resistances in series. inside and outside surfaces, respectively. Then

$$
\begin{equation*}
q=\frac{2 \pi k\left(t_{i}-t_{0}\right)}{2.3 \log r_{o} / r_{i}} \tag{2.31}
\end{equation*}
$$

and if D is the diameter,

$$
\frac{r_{o}}{r_{i}}=\frac{D_{o}}{D_{i}}
$$

Referring to Fig. 2.7 where there is a composite cylindrical resistance,

$$
\begin{align*}
& t_{1}=t_{2}+\frac{2.3 q}{2 \pi k_{a}} \log \frac{D_{2}}{D_{1}} \tag{2.32}\\
& t_{2}=t_{3}+\frac{2.3 q}{2 \pi k_{b}} \log \frac{D_{3}}{D_{2}} \tag{2.33}
\end{align*}
$$

Adding,

$$
\begin{equation*}
t_{1}-t_{3}=\frac{2.3 q}{2 \pi k_{a}} \log \frac{D_{2}}{D_{1}}+\frac{2.3 q}{2 \pi k_{b}} \log \frac{D_{3}}{D_{2}} \tag{2.34}
\end{equation*}
$$

Example 2.4. Heat Flow through a Pipe Wall. A glass pipe has an outside diameter of 6.0 in . and an inside diameter of 5.0 in . It will be used to transport a fluid which maintains the inner surface at $200^{\circ} \mathrm{F}$. It is expected that the outside of the pipe will be maintained at $175^{\circ} \mathrm{F}$. What heat flow will occur?

Solution. $k=0.63 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F} / \mathrm{ft}\right)$ (see Appendix Table 2).

$$
q=\frac{2 \pi k\left(t_{i}-t_{o}\right)}{2.3 \log D_{o} / D_{i}}=\frac{2 \times 3.14 \times 0.63(200-175)}{2.3 \log 6.0 / 5.0}=538 \mathrm{Btu} / \mathrm{inin} \mathrm{ft}
$$

If the inside diameter of a cylinder is greater than 0.75 of the outside diameter, the mean of the two may, be used. Then per foot of length

$$
\begin{equation*}
q=\frac{\Delta t}{\bar{R}}=\frac{\Delta t}{L_{a} / k_{a} A_{m}}=\frac{t_{1}-t_{2}}{\frac{\left(D_{2}-D_{1}\right) / 2}{\pi k_{a}\left(D_{1}+D_{2}\right) / 2}} \tag{2.35}
\end{equation*}
$$

where $\left(D_{2}-D_{1}\right) / 2$ is the thickness of the pipe. Within the stated limatations of the ratio D_{2} / D_{1}, Eq. (2.35) will differ from Eq. (2.34) by
about 1 per cent. Actually there are $1.57 \mathrm{ft}^{2}$ of external surface per linear foot and $1.31 \mathrm{ft}^{2}$ of internal surface. The heat loss per square foot is $343 \mathrm{Btu} / \mathrm{hr}$ based on the outside surface and $411 \mathrm{Btu} / \mathrm{hr}$ based on the inside surface.

Heat Loss from a Pipe. In the preceding examples it was assumed that the cold external surface could be maintained at a definite temperature. Without this assumption the examples would have been indeterminate, since both Q and Δt would be unknown and independent in a single equation. In reality the temperature assigned to the outer wall depends not only on the resistances between the hot and cold surfaces but also on the ability of the surrounding colder atmosphere to remove the heat arriving at the outer surface. Consider a pipe as shown in Fig. 2.8 covered (lagged) with rock wool insulation and carrying steam at a temperature t_{s} considerably above that of the atmosphere, t_{a}. The overall temperature difference driving heat out of the pipe is $t_{s}-t_{a}$. The

Fra. 2.8. Heat loss from an insulated pipe. resistances to heat flow taken in order are (1) the resistance of the steam to condense upon and give up heat to the inner pipe surface, a resistance which has been found experimentally to be very small so that t_{s} and t_{s}^{\prime} are nearly the same; (2) the resistance of the pipe metal, which is very small except for thick-walled conduits so that t_{s}^{\prime} and $t_{s}^{\prime \prime}$ are nearly the same; (3) the resistance of the rock wool insulation; and (4) the resistance of the surrounding air to remove heat from the outer surface. The last is appreciable, although the removal of heat is effected by the natural convection of ambient air in addition to the radiation caused by the temperature difference between the outer surface and colder air. The natural convection results from warming air adjacent to the pipe, thereby lowering its density. The warm air rises and is replaced continuously by cold air. The combined effects of natural convection and radiation cannot be represented by a conventional resistance term $R_{a}=L_{a} / K_{a} A$, since L_{a} is indefinite and the conductance of the air is simultaneously supplemented by the transfer of heat by radiation. Experimentally, a temperature difference may be created between a known outer surface and the air, and the heat passing from the outer surface to the air can be determined from measurements on the fluid flowing in the pipe. Having Q, A, and Δt, the combined resistance of both effects is obtained as the quotient of $\Delta t / Q$. The flow of heat from a pipe to ambient air is usually a heat loss, and it is therefore desirable to report the data as a unit conductance term $k / L \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right.$ of
external surface) (${ }^{\circ} \mathrm{F}$ of temperature difference). The unit conductance is the reciprocal of the unit resistance L / k instead of the reciprocal of the resistance for the entire surface $L / k A$. In other words, it is the conductance per square foot of heat-flow surface rather than the conductance of the total surface. The unit resistance has the dimensions

Frg. 2.9. Heat transfer by convection and radiation from horizontal pipes at temperature t_{1} to air at $70^{\circ} \mathrm{F}$.
$(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right) / \mathrm{Btu}$. The reciprocal of the unit resistance, h_{a}, has the dimensions of $\mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$ and is sometimes designated the surface coefficient of heat transfer. Figure 2.9 shows the plot of the surface coefficient from pipes of different diameters and surface temperatures to ambient air at $70^{\circ} \mathrm{F}$. It is based upon the data of Heilman, ${ }^{1}$ which has been substantiated by the later experiments of Bailey and Lyell.' ${ }^{2}$ The four resistances in terms of the equations already discussed are
Condensation of steam;

$$
\begin{equation*}
q=h_{s} \pi D_{s}^{\prime}\left(t_{s}-t_{s}^{\prime}\right) \tag{1.2}
\end{equation*}
$$

${ }^{1}$ Heilman, R. H., Ind. Eng. Chem., 16, 445-452 (1924).
2 Bailey, A., and N. C. Lyell, Engineering, 147, 60-62 (1939).

Pipe wall:

$$
\begin{equation*}
q=\frac{2 \pi k_{b}}{2.3 \log D_{t}^{\prime \prime} / D_{s}}\left(t_{s}^{\prime}-t_{s}^{\prime \prime}\right) \tag{2.31}
\end{equation*}
$$

Insulation:

$$
\begin{equation*}
q=\frac{2 \pi k_{c}}{2.3 \log D_{1} / D_{s}^{\prime \prime}}\left(t_{r}^{\prime \prime}-t_{1}\right) \tag{2.31}
\end{equation*}
$$

Radiation and convection to air:

$$
\begin{equation*}
q=h_{a} \pi D_{1}\left(t_{1}-t_{a}\right) \tag{1.2}
\end{equation*}
$$

or combining

$$
t_{s}-t_{a}=q\left(\frac{1}{\overline{h_{s} \pi D_{s}^{\prime}}}+\frac{2.3}{2 \pi \tilde{k}_{b}} \log \frac{D_{s}^{\prime \prime}}{D_{s}^{\prime}}+\frac{2.3}{2 \pi k_{s}} \log \frac{D_{1}}{D_{s}^{\prime \prime}}+\frac{1}{h_{a} \pi D_{1}}\right)
$$

The terms inside the parentheses are the four resistances, and of these the first two can usually be neglected. The equation then reduces to

$$
q=\frac{\pi\left(t_{s}-t_{a}\right)}{\frac{2.3}{2 k_{a}} \log \frac{D_{1}}{D_{s}^{\prime \prime}}+\frac{1}{h_{a} D_{1}}}
$$

From the abscissa of Fig. 2.9 it is seen that h_{a} depends upon not only the temperature difference but the actual temperatures at the outside of the insulation and of the air. Its reciprocal is also one of the resistances necessary for the calculation of the total temperature difference, and therefore the surface coefficient h_{a} cannot be computed except by trial-and-error methods.
Example 2.5. Heat Loss from a Pipe to Air. A 2-in. steel pipe (dimensions in Table 11 in the Appendix) carries steam at $300^{\circ} \mathrm{F}$. It is lagged with $1 / 2 \mathrm{in}$. of rock wool, $k=0.033$, and the surrounding air is at $70^{\circ} \mathrm{F}$. What will be the heat loss per linear foot?

Solution. Assume $t_{1}=150^{\circ} \mathrm{F}, t_{1}-70=80^{\circ} \mathrm{F}, h_{a}=2.23 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$.

$$
q=\frac{3.14(300-70)}{\frac{2.3}{2 \times 0.033} \log \frac{3.375}{2.375}+\frac{1}{2.23 \times 3.375 / 12}}=104.8 \mathrm{Btu} /(\mathrm{hr})(\text { lin } \mathrm{ft})
$$

Check between t_{c} and t_{l}, since $\Delta t / R=\Delta t_{c} / R_{c}$:

$$
\begin{aligned}
q=104.8 & =\frac{2 \times 3.14 \times 0.033\left(300-t_{1}\right)}{2.3 \cdot \log 3.375 / 2.375} \\
t_{1} & =123.5^{\circ} F \text { No check }
\end{aligned}
$$

Assume $t_{1}=125^{\circ} \mathrm{F}, t_{1}-70=55^{\circ} \mathrm{F}, h_{a}=2.10 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$.

$$
q=\frac{3.14(300-70)}{\frac{2.3}{2 \times 0.033} \log \frac{3.375}{2.375}+\frac{\mathrm{F}}{2.10 \times 3.375 / 12}}=103.2 \mathrm{Btu} /(\mathrm{hr})(\mathrm{linft})
$$

Check between t_{a} and t_{1}.

$$
\begin{aligned}
q=103.2 & =\frac{2 \times 3.14 \times 0.033\left(300-t_{1}\right)}{2.3 \log 3.375 / 2.375} \\
t_{1} & =125.8^{\circ} \mathrm{F} \quad \text { Check }
\end{aligned}
$$

The total heat loss q does not appear to vary significantly for the different assumed values of t_{1}. This is because the insulation and not the small surface coefficient affords the major resistance to heat flow. When the variation in q is considerable for different assumed temperatures of t_{1}, it indicates insufficient insulation.

The Maximum Heat Loss through Pipe Insulation. It would seem at first that the thicker the insulation the less the total heat loss. This is always true for flat insulation but not for curved insulation. Consider a pipe with successive layers of cylindrical insulation. As the thickness of the insulation is increased, the surface area

Frg. 2.10. The critical radius. from which heat may be removed by air increases and the total heat loss may also increase if the area increases more rapidly than the resistance. Referring to Fig. 2.10, the resistance of the insulation per linear foot of pipe is

$$
\begin{equation*}
R_{b}=\frac{1}{2 \pi \tilde{k}_{b}} \ln \frac{r}{r_{1}} \tag{2.36}
\end{equation*}
$$

and the resistance of the air per linear foot of pipe, although a function of the surface and air temperatures, is given by

$$
\begin{equation*}
R_{a}=\frac{1}{h_{a} 2 \pi r} \tag{2.37}
\end{equation*}
$$

The resistance is a minimum and the heat loss a maximum when the derivative of the sum of the resistances R with respect to the radius r is set equal to zero or

$$
\begin{align*}
\frac{d R}{d r} & =0=\frac{1}{2 \pi k_{b}} d \ln \frac{r}{r_{1}}+\frac{1}{h_{a} 2 \pi} d \frac{1}{r} \tag{2.38}\\
& =\frac{1}{2 \pi k_{b} r}-\frac{1}{h_{a} 2 \pi r^{2}}
\end{align*}
$$

At the maximum heat loss $r=r_{c}$, the critical radius, or

$$
\begin{equation*}
r_{c}=\frac{k_{b}}{h_{a}} \tag{2.39}
\end{equation*}
$$

In other words, the maximum heat loss from a pipe occurs when the critical radius equals the ratio of the thermal conductivity of the insulation to the surface coefficient of heat transfer. The ratio has the dimension of ft . It is desirable to keep the critical radius as small as possible
so that the application of insulation will result in a reduction and not an increase in the heat loss from a pipe. This is obviously accomplished by using an insulation of small conductivity so that the critical radius is less than the radius of the pipe, or $r_{c}<r_{1}$.

The Optimum Thickness of Insulation. The optimum thickness of insulation is arrived at by a purely economic approach. If a bare pipe were to carry a hot fluid, there would be a certain hourly loss of heat whose value could be determined from the cost of producing the Btu in the plant heat-generating station. The lower the heat loss the greater the thickness and initial cost of the insulation and the greater the annual fixed charges (maintenance and depreciation) which must be added to the annual heat loss. The fixed charges on pipe insulation will be about 15 to 20 per cent of the initial installed cost of the insulation. By assuming a number of thicknesses of insulation and adding the fixed charges to the value of the heat lost, a minimum cost will be obtained and the thickness corresponding to it will be the optimum economic thickness of the insulation. The

Fig. 2.11. Optimum thickness of insulation. form of such an analysis is shown in Fig. 2.11. The most difficult part is obtaining reliable initial-installation-cost data, since they vary greatly with plant to plant and with the amount of insulating to be done at a single time.

Graphical Solutions of Conduction Problems. Thus far in the treatment of conduction, only those cases have been considered in which the heat input per square foot of surface was uniform. It was also characteristic of these cases that the heat removal per square foot of surface was also uniform. This was likewise true for the cylinder, even though the internal and external surfaces were not identical. Some of the common problems of steady-state conduction in solids involve the removal or input of heat where it is not uniform over a surface, and although the solution of such problems by mathematical analysis is often complicated it is possible to obtain close approximations graphically. The method employed here is that of Awbery and Schofield ${ }^{1}$ and earlier investigators.

Consider the section of a metal-sheathed wall, as shown in Fig. 2.12, with hot side $A B C$ at the uniform temperature t_{1}. At recurring intervals $D F$ on the cold side $D E F$ at the uniform temperature t_{2}, metal bracing

[^3]ribs are attached to the outer sheath and imbedded two-thirds into the thickness of the wall. Since the sheath and metal rib both have a high thermal conductivity compared with the wall material itself, the rib and sheath may both be considered to be at very nearly the same temperature. The predominantly horizontal lines indicated on the drawing represent isothermal planes perpendicular to the plane of the drawing. Consequently there is no heat flow to be considered in the direction perpendicular to the plane of the drawing.

Fig. 2.12. Graphical representation of heat conduction.
Since the drawing is symmetrical about the vertical line $B E$, consider only the right half of the drawing bounded by $B C F E$. Assume an arbitrary number of isotherms n_{x} in the direction from B to E so that, if k is constant, $\Delta t=n_{x} \Delta t_{x}$. If k varies with t then $k \Delta t_{x}=\frac{1}{n_{z}} \int_{1}^{2} k d t$. The greater the assumed number of isotherms the greater the precision of the solution. Next, consider the heat to flow from t_{1} to metal at t_{2} through n_{l} lanes emanating from $B C$ and forming the network indicated. Now refer to any small portion of any lane, such as $a b c d$ with length x, mean width y, where $y=(a b+c d) / 2$, and unit depth $z=1$ perpendicular to the drawing. The steady-heat flow into each lane is Q_{i}. The conduction equation is then $Q_{l}=k(y z) \Delta t_{x} / x$. The temperature difference from one isotherm to the next is naturally the same, and since Q_{l} is constant for the lane it is evident from the conduction equation that the ratio y / x must also be constant, although y and x may vary. The network of the drawing is constructed such that, for each quadrilateral, $y=x$. Where x is small it is because the isotherms are crowded together owing to the high heat removal by the rib. The heat flow per lane is then given by

$$
k \frac{\left(l_{1}-t_{2}\right)}{n_{x}}
$$

The total heat flow from $B C$ thus requires $n_{l}=Q n_{x} / k\left(t_{1}-l_{2}\right)$ lanes, where Q is the total heat flow. Figure 2.12 was constructed in this manner starting with six isotherms.

Although the individual portions of the network are neither squares nor rectangles their corners are at right angles in accordance with the steady-state principle that the flow of heat is always at right angles to the isotherms comprising the temperature difference. In Fig. 2.12 it is seen that 11 lanes were obtained for each half of a symmetrical section. If the isotherms were undisturbed by the rib, the portions $a b c d$ would then be squares and the heat entering $B C$ would flow normal to it and 8.3 lanes would be required. The rib is therefore equivalent to increasing the heat removal by 33 per cent. When the ribs are spaced more closely together, the fractional heat removal increases.

PROBLEMS

2.1. A furnace is enclosed by walls made (from inside out) of 8 in . of kaolin firebrick, 6 in . of kaolin insulating brick, and 7 in . of fireclay brick. What is the heat loss per square foot of wall when the inside of the furnace is maintained at $2200^{\circ} \mathrm{F}$ and the outside at $200^{\circ} \mathrm{F}$?
2.2. A furnace wall is to consist in series of 7 in . of kaolin firebrick, 6 in . of kaolin insulating brick, and sufficient fireclay brick to reduce the heat loss to $100 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)$ when the face temperatures are 1500 and $100^{\circ} \mathrm{F}$, respectively. What thickness of fireclay brick should be used? If an effective air gap of $1 / 8 \mathrm{in}$, can be incorporated between the fireclay and insulating brick when erecting the wall without impairing its structural support, what thickness of insulating brick will be required?
2.3. A furnace wall consists of three insulating materials in series. 32 per cent chrome brick, magnesite bricks, and low-grade refractory bricks ($k=0.5$). The magnesite bricks cannot withstand a face temperature above $1500^{\circ} \mathrm{F}$, and the lowgrade bricks cannot exceed $600^{\circ} \mathrm{F}$. What thickness of the wall will give a heat loss not in excess of $1500 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)$ when the extreme face temperatures are 2500 and $200^{\circ} \mathrm{F}$, respectively?
2.4. A 6-in. IPS pipe is covered with three resistances in series consisting from the inside outward of $1 / 2 \mathrm{in}$. of kapok, 1 in. of rock wool, and $1 / 2 \mathrm{in}$. of powdered magnesite applied as a plaster. If the inside surface is maintained at $500^{\circ} \mathrm{F}$ and the outside at $100^{\circ} \mathrm{F}$, what is the heat loss per square foot of outside pipe surface?
2.5. A $2-\mathrm{in}$. IPS line to a refrigerated process covered with $1 / 2 \mathrm{in}$. of kapok carries $25 \% \mathrm{NaCl}$ brine at $0^{\circ} \mathrm{F}$ and at a flow rate of $30,000 \mathrm{lb} / \mathrm{hr}$. The outer surface of the kapok will be maintained at $90^{\circ} \mathrm{F}$. What is the equation for the flow of heat? Calculate the heat leakage into the pipe and the temperature rise of the fluid for a $60-\mathrm{ft}$ length of pipe.
2.6. A vertical cylindrical kiln 22 ft in diameter is enclosed at the top by a hemispherical dome fabricated from an 8 -in. layer of interlocking and self-supporting 32 per cent chrome bricks. Derive an expression for conduction through the dome. When the inside and outside of the hemispherical dome are maintained at 1600 and $300^{\circ} \mathrm{F}$, respectively, what is the heat loss per square foot of internal dome surface? How does the total heat loss for the dome compare with the total heat loss for a flat structurally supported roof of the same material when exposed to the same difference in temperature?
2.7: A 4 -in. steel pipe carrying $450^{\circ} \mathrm{F}$ steam is lagged with 1 in . of kapok surrounded by 1 in . of powdered magnesite applied as a plaster. The surrounding air is at $70^{\circ} \mathrm{F}$. What is the loss of heat from the pipe per linear foot?
2.8. A $3-\mathrm{in}$. IPS main carries steam from the powerhouse to the process plants at a linear velocity of 8000 fpm . The steam is at 300 psi (gage), and the atmosphere is at $70^{\circ} \mathrm{F}$. What percentage of the total heat flow is the bare-tube heat loss per 1000 ft of pipe? If the pipe is lagged with half a thickness of kapok and half a thickness of asbestos, what total thickness will reduce the insulated heat loss to 2 per cent of the bare-tube heat loss?
2.9. In a $6-\mathrm{in}$. steam line at $400^{\circ} \mathrm{F}$ the unit resistance for the condensation of steam at the inside pipe wall has been found experimentally to be $0.00033(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right) / \mathrm{Btu}$. The line is lagged with $1 / 2 \mathrm{in}$. of rock rool and $1 / 2 \mathrm{in}$. of asbestos. What is the effect of including the condensation and metal pipe-wall resistances in calculating the total heat loss per linear foot to atmospheric air at $70^{\circ} \mathrm{F}$?

NOMENCLATURE FOR CHAPTER 2

A	Heat-flow area, ft ${ }^{2}$
C_{1}, C_{2}	Constants of integration
C_{k}	Sutherland constant
c_{v}	Volumetric specific heat, $\mathrm{Btu} /\left(\mathrm{ft}{ }^{3}\right)\left({ }^{\circ} \mathrm{F}\right)$
c	Specific heat at constant pressure, $\mathrm{Btu} /(\mathrm{lb})\left({ }^{\circ} \mathrm{F}\right)$
D	Diameter, ft
E	Voltage or electromotive force
h_{a}	Surface coefficient of heat transfer, Btu/(hr)(ft^{2})(${ }^{\circ} \mathrm{F}$)
I	Current, amp
K	Electrical conductivity, 1/ohm-ft
k	Thermal conductivity, Btu/(hr)(ft^{2}) $\left({ }^{\circ} \mathrm{F} / \mathrm{ft}\right)$
L	Thickness of wall or length of pipe, ft
n_{l}	Number of heat-flow lanes
n_{x}	Number of isotherms
Q	Heat flow, Btu/hr
$Q{ }^{\text {Q }}$	Heat flow per lane, Btu/hr
Q^{\prime}	Heat, Btu
q	Heat flow, Btu/(hr) (lin ft)
R	Resistance to heat flow, (hr)($\left.{ }^{\circ} \mathrm{F}\right) / \mathrm{Btu}$
R^{ω}	Resistance to electric flow, ohms
r	Radius, ft
t	Temperature at any point, ${ }^{\circ} \mathrm{F}$
Δt	Temperature difference promoting heat flow, ${ }^{\circ} \mathrm{F}$
T	Absolute temperature, ${ }^{\circ} \mathrm{R}$
v	Volume, ft^{3}
x, y, z	Coordinates of distance, ft
γ	Change in thermal conductivity per degree
θ	Time, hr
ρ	Density, $\mathrm{lb} / \mathrm{ft}^{3}$
σ	Resistivity, ohm-ft

CHAPTER 3

CONVECTION

Introduction. Heat transfer by convection is due to fluid motion. Cold fluid adjacent to a hot surface receives heat which it imparts to the bulk of the cold fluid by mixing with it. Free or natural convection occurs when the fluid motion is not implemented by mechanical agitation. But when the fluid is mechanically agitated, the heat is transferred by forced convection. The mechanical agitation may be supplied by stirring, although in most process applications it is induced by circulating the hot and cold fluids at rapid rates on the opposite sides of pipes or tubes. Free- and forced-convection heat transfer occur at very different speeds, the latter being the more rapid and therefore the more common. Factors which promote high rates for forced convection do not necessarily have the same effect on free convection. It is the purpose of this chapter to establish a general method for obtaining the rates of heat transfer particularly in the presence of forced convection.

Film Coefficients. In the flow of heat through a pipe to air it was seen that the passage of heat into the air was not accomplished solely by conduction. Instead, it occurred partly by radiation and partly by free convection. A temperature difference existed between the pipe surface and the average temperature of the air. Since the distance from the pipe surface to the region of average air temperature is indefinite, the resistance cannot be computed from $R_{a}=L_{a} / k_{a} A$, using k for air. Instead the resistance must be determined experimentally by appropriately measuring the surface temperature of the pipe, the temperature of the air, and the heat transferred from the pipe as evidenced by the quantity of steam condensed in it. The resistance for the entire surface was then computed from

$$
R_{a}=\frac{\Delta t_{a}}{Q} \quad(\mathrm{hr})\left({ }^{\circ} \mathrm{F}\right) / \mathrm{Btu}
$$

If desired, L_{a} can also be calculated from this value of R_{a} and would be the length of a fictitious conduction film of air equivalent to the combined resistance of conduction, free convection, and radiation. The length of the film is of little significance, although the concept of the fictitious film finds numerous applications. Instead it is preferable to
deal directly with the reciprocal of the unit resistance h, which has an experimental origin. Because the use of the unit resistance L / k is so much more common than the use of the total surface resistance $L / k A$, the letter R will now be used to designate $L / k(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right) / \mathrm{Btu}$ and it will simply be called the resistance.

Not all effects other than conduction are necessarily combinations of two effects. Particularly in the case of free or forced convection to liquids and, in fact, to most gases at moderate temperatures and temperature

Fig. 3.1. Two convection coefficients. differences the influence of radiation may be neglected and the experimental resistance corresponds to forced or free convection alone as the case may be.

Consider a pipe wall with forced convection of different magnitudes on both sides of the pipe as shown in Fig. 3.1. On the inside, heat is deposited by a hot flowing liquid, and on the outside, heat is received by a cold flowing liquid. Either resistance can be measured independently by obtaining the temperature difference between the pipe surface and the average temperature of the liquid. The heat transfer can be determined from the sensible-heat change in either fluid over the length of the pipe in which the heat transfer occurs. Designating the resistance on the inside by R_{i} and on the outside by R_{o}, the inside and outside pipe-wall temperatures by t_{p} and t_{w}, and applying an expression for the steady state,

$$
\begin{equation*}
Q=\frac{A_{i}\left(T_{i}-t_{p}\right)}{R_{i}}=\frac{A_{o}\left(t_{t v}-t_{o}\right)}{R_{o}} \tag{3.1}
\end{equation*}
$$

where T_{i} is the temperature of the hot fluid on the inside and t_{o} the temperature of the cold fluid on the outside. Replacing the resistances by their reciprocals h_{i} and h_{o}, respectively,

$$
\begin{equation*}
Q=h_{i} A_{i} \Delta t_{i}=h_{0} A_{0} \Delta t_{0} \tag{3.2}
\end{equation*}
$$

The reciprocals of the heat-transfer resistances have the dimensions of $\mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right.$ of temperature difference) and are called individual film coefficients or simply film coefficients.

Inasmuch as the film coefficient is a measure of the heat flow for unit surface and unit temperature difference, it indicates the rate or speed with which fluids having a variety of physical properties and under varying degrees of agitation transfer heat. Other factors influence the
film coefficient such as the size of the pipe and whether or not the fluid is considered to be on the inside or outside of the pipe. With so many variables, each having its own degree of influence on the rate of heat transfer (film coefficient), it is fairly understandable why a rational derivation is not available for the direct calculation of the film coefficient. On the other hand, it is impractical to run an experiment to determine the coefficient each time heat is to be added or removed from a fluid. Instead it is desirable to study some method of correlation whereby several basic experiments performed with a wide range of the variables can produce a relationship which will hold for any other combinations of the variables. The immediate problem is to establish a method of correlation and then apply it to some experimental data.

The Viscosity. It is not possible to proceed very far in the study of convection and fluid flow without defining a property which has an important bearing upon both, viscosity. In order to evaluate this property by fluid dynamics two assumptions are required: (1)

Fig. 3.2. Flujd strain.
 Where a solid-liquid interface exists, there is no slip between the solid and liquid, and (2) Newton's rule: Shear stress is proportional to the rate of shear in the direction perpendicular to motion. An unstressed particle of liquid as shown in Fig. $3.2 a$ will

Fig. 3.3. Fluid shear. assume the form in Fig. $3.2 b$ when a film of liquid is subjected to shear.

The rate of shear is proportional to the velocity gradient $d u / d y$. Applying Newton's rule, if τ is the shear stress,

$$
\begin{equation*}
\tau=\mu \frac{d u}{d y} \tag{3.3}
\end{equation*}
$$

where μ is the proportionality constant or

$$
\mu=\frac{\tau}{d u / d y} \quad\left\{\begin{array}{l}
\text { In solids it results in deformation and is equivalent } \\
\text { to the modulus of elasticity. } \\
\text { In liquids it results in deformation at a given rate. }
\end{array}\right.
$$

To evaluate μ refer to Fig. 3.3 where shear is produced by maintaining the liquid film between a stationary plate at distance Y and a moving plate with velocity V. At any point in the film the velocity u.is given
by $u=V y / Y$.

$$
\begin{align*}
\text { Rate of shear } & =\frac{d u}{d y}=\frac{V}{\bar{Y}} \tag{3.3}\\
\tau & =\mu \frac{V}{Y} \tag{3.4}
\end{align*}
$$

where μ is called the viscosity when V and Y have unit values.
The actual force required to move the plate is $r A$. If F is the poundforce, L the length, and θ the time, the dimensions of the viscosity are

$$
\mu=\tau \frac{Y}{\bar{V}}=\frac{F}{L^{2}} \frac{L}{\bar{L} / \theta}=\frac{F \theta}{L^{2}}
$$

or using the pound-mass M, where $F=M g$ and $g=L / \theta^{2}$, the acceleration of gravity,

$$
\mu=\frac{M L}{L^{2} \theta^{2}} \frac{L}{L / \theta}=\frac{M}{L \theta}
$$

When evaluated in cgs metric units μ is commonly called the absolute viscosity.

$$
\mu=\frac{\text { gram-mass }}{\text { centimeter } \times \text { second }}
$$

This unit has been named the poise after the French scientist Poiseuille. This is a large unit, and it is customary to use and speak of the centipoise, or one-hundredth poise. In engineering units its equivalent is defined by

$$
\mu=\frac{\text { pound-mass }}{\text { foot } \times \text { hour }}
$$

Viscosities in centipoises can be converted to engineering units on multiplying by 2.42. This unit has no name. Another unit, the kinematic viscosity, is also used because it occurs frequently in physical systems and produces straighter graphs of viscosity vs. temperature on logarithmic coordinates. The kinematic viscosity is the absolute viscosity in centipoises divided by the specific gravity.

$$
\text { Kinematic viscosity }=\frac{\text { absolute viscosity }}{\text { specific gravity }}
$$

The unit of kinematic viscosity is the stokes, after the English mathematician Stokes, and the hundredth of the stokes is the centistokes.

The viscosity can be determined indirectly by measuring the time of efflux from a calibrated flow device having an orifice and a controlled temperature. The commonest is the Saybolt viscometer, and the time of efflux from a standard cup into a standard receiver is measured in
seconds and recorded as Saybolt Seconds Universal, SSU. Conversion factors from the time of efflux to centistokes for the Saybolt and other viscometers are given in Fig. 13. ${ }^{1}$

Heat Transfer between Solids and Fluids: Streamline and Turbulent Flow. The Reynolds Number. When a liquid flows in a horizontal pipe, it may flow with a random eddying motion known as turbulent flow, as shown in Fig. 3.4 by a plot of the Iocal velocity in the pipe vs. the distance from its center. If the linear velocity of the liquid is decreased below some threshold value, the nature of the flow changes and the turbulence disappears. The fluid particles flow in lines along the axis of the pipe, and this is known as streamline flow. An experiment used for the visual determination of the type of flow consists of a glass tube

Fra. 3.4. Turbulent flow in pipes.
Fig. 3.5. Streamline flow is pipes.
through which water flows. A thin stream of ink is injected at the center of the fube, and if the ink remains at the center for a reasonable distance, it is indicative of streamline flow. Synonyms for streamline flow are viscous, laminar, and rodlike flow. Additional experimentation has indicated that streamline flow proceeds as if by the sliding of concentric thin cylinders of liquid one within the other as shown in Fig. 3.5. It appears that the distribution of the velocities of the cylinders is parabolic with the maximum at the center and approaching zero at the tube wall.

Reynolds ${ }^{2}$ observed that the type of flow assumed by a liquid flowing in a tube was influenced by the velocity, density, and viscosity of the liquid and the diameter of the tube. When related as the quotient of $D u p / \mu$, called the Reynolds number, it was found that turbulent flow always existed when the numerical value of $D u p / \mu$ exceeded about 2300 and usually when it exceeded 2100. By definition, the transfer of heat by convection proceeds mainly as the result of mixing, and while this requirement appears to be satisfied by turbulent flow, it is not fulfilled by stream-

[^4]Line flow. Streamline flow is, in fact, a form of conduction whose study will be deferred to a later chapter. The speed with which heat is transferred to or from a given liquid to a tube is considerably less for streamline than for turbulent flow, and in industrial practice it is almost always desirable to avoid conditions such as low liquid velocity which promote streamline flow.

Dimensional Analysis. A method of correlating a number of variables into a single equation expressing an effect is known as dimensional analysis. Certain equations describing physical phenomena can be obtained rationally from basic laws derived from experiments. An example is the time of vibration of a pendulum from Newton's second law and the gravitational constant. Still other effects can be described by differential equations, and the course or extent of the phenomena deduced by means of the calculus. Numerous examples of this type are encountered in elementary physics. In still other types of phenomena there is insufficient information to permit the formulation of either differential equations or a clear picture by which fundamental laws may be applied. This last group must be studied experimentally, and the correlation of the observations is an empirical approach to the equation. Equations which can be obtained theoretically can also be obtained empirically, but the reverse is not true.

Bridgman ${ }^{1}$ has presented by far the most extensive proof of the mathematical principles underlying dimensional analysis. Because it operates only upon the dimensions of the variables, it does not directly produce numerical results from the variables but instead yields a modulus by which the observed data can be combined and the relative influence of the variables established. As such, $i t$ is one of the important cornerstones of empirical study. It recognizes that any combination of a number and a dimension, such as 5 lb or 5 ft , possesses two identifying aspects, one of pure magnitude (numerical) and the other quantitative (dimensional). Fundamental dimensions are quantities such as length, time, and temperature which are directly measurable. Derived dimensions are those which are expressed in terms of fundamental dimensions such as velocity $=$ length/time or density $=$ mass $/$ length ${ }^{3}$. The end results of a dimensional analysis may be stated as follows: If a dependent variable having given dimensions depends upon some relationship among a group of variables, the individual variables of the group must be related in such a way that the net dimensions of the group are identical with those of the dependent variable. The independent variables may also be related in such a way that the dependent variable is defined by the sum of several

[^5]different groups of variables, each group having the net dimensions of the dependent variable. As a very simple illustration consider the continuity equation which is frequently written in elementary physics and thermodynamics texts in the form
\[

$$
\begin{equation*}
w=\frac{u a}{v} \tag{3.5}
\end{equation*}
$$

\]

where $w=$ fluid flow rate, weight/time
$u=$ fluid velocity in conduit, length/time
$a=$ cross section of the conduit, length \times length $=$ length ${ }^{2}$
$v=$ specific volume, length \times length \times length $/$ weight $=$ length $3 /$ weight
Why does Eq. (3.5) have this particular form? u, a, and v must be related so that their net dimensions are the same as those of the dependent variable w, namely, weight/time. An equation involving both pure numbers and dimensions must be correct with respect to either and both. Checking the dimensions alone, writing for the variables in Eq. (3.5) their individual dimensions,

$$
\begin{equation*}
\frac{\text { Weight }}{\text { Time }}=\frac{\text { length }}{\text { time }} \times \text { length }^{2} \times \frac{1}{\frac{\text { length }}{}{ }^{3}}=\frac{\text { weight }}{\text { time }} \tag{3.6}
\end{equation*}
$$

It is seen that the dimensions on the left side are identical with the net dimensions of the group only when the variables of the group are arranged in the particular manner indicated by the formula. The three independent variables above give an answer in weight/time only when arranged in a single way, ua/v. Conversely it may be deduced that the form of an equation is determined only by its dimensions; the form which produces dimensional equality represents the necessary relationship among the variables. Any physical equation may be written and evaluated in terms of a power series containing all the variables. If the form were not known in the illustration above and it was desired to find a relationship which must exist between the variables w, u, a, and v, it may be expressed by a power series such as

$$
\begin{equation*}
\phi(w, u, a, v)=\alpha w^{b} u^{c} a^{d} v^{s}+\alpha^{\prime} w^{b^{s}} u^{c^{\prime}} a^{d^{\prime}} v^{e^{\prime}}+\cdots=0 \tag{3.7}
\end{equation*}
$$

The factors α and α^{\prime} are dimensionless proportionality constants. Since the dimensions of all the consecutive terms of the series are identical, it is not necessary to consider any of the terms beyond the first. Accordingly one can write

$$
\begin{equation*}
\phi^{\prime}\left(w^{b} u^{c} a^{d} v^{e}\right)=1 \tag{3.8}
\end{equation*}
$$

where ϕ^{\prime} indicates the function. Arbitrarily setting $b=-1$ so that u
will not appear in the final equation raised to a fractional exponent,

$$
\begin{equation*}
w=\alpha u^{\sigma} a^{d} v^{\sigma} \tag{3.9}
\end{equation*}
$$

Substituting dimensions,

$$
\begin{equation*}
\frac{\text { Weight }}{\text { Time }}=\alpha\left(\frac{\text { length }^{c}}{\text { time }}\right)^{c} \times\left(\text { length }^{2}\right)^{d} \times\left(\frac{\text { length }^{3}}{\text { weight }}\right)^{\bullet} \tag{3.10}
\end{equation*}
$$

If a group of independent variables will establish numerical equality with a dependent variable, the same is true of their dimensions. Equation (3.6) imposes this condition. The exponents c, d, and e may then assume such values as are necessary to effect the dimensional equality between the left and right sides. The remainder of the solution is merely to evaluate c, d, and e by simple algebra. Summing the exponents of the dimensions on both sides and recalling that an exponent of zero reduces a number to unity,

$$
\begin{aligned}
& \Sigma \text { length, } 0=c+2 d+3 e \\
& \Sigma \text { weight, } 1=-e \\
& \Sigma \text { time, }-1=-c
\end{aligned}
$$

Solving for the unknown, d is found to be +1 . The three exponents are then $c=+1, d=+1$, and $e=-1$. Substituting these in Eq. (3.9),

$$
\begin{equation*}
w=\alpha u^{+1} a^{+1} v^{-1}=\alpha \frac{u a}{v} \tag{3.11}
\end{equation*}
$$

Inasmuch as this is an exact relationship, the proportionality constant α is equal to 1.0 and

$$
w=\frac{u a}{v}
$$

Thus by purely algebraic means the correct form of the equation has been established. This has been an extremely elementary illustration in which all of the exponents were integers and the dependent and independent variables were expressed in only three kinds of dimensions: weight, length, and time. In systems involving mechanics and heat it is often necessary to employ other dimensions such as temperature and a derived heat unit H, the Btu or calorie.

In mechanical and chemical engineering it is customary to use a set of six dimensions: force F, heat H, length L, mass M, temperature T, and time θ. One of the important alternatives, however, hinges about the unit of force and the unit of mass. In the preceding illustration the weight was employed. The relationship would hold whether the pound-mass or gram-mass or the pound-force (poundal) or gram-force (dyne) were used

Table 3.1. Dimensions and Unifs
Dimensions:* Force $=F$, heat $=H$, length $=L$, mass $=M$, temperature $=T$, time $=\theta . \quad$ The force-pound is the poundal, the force-gram is the dyne

Symbol	Quantity: consistent engineering and metric units	$\underset{\text { sion }}{\text { Dimen- }}$
g	Acceleration of gravity, $\mathrm{ft} / \mathrm{hr}^{2}, \mathrm{~cm} / \mathrm{sec}^{2}$	L / θ^{2}
A	Area or surface, ft^{2}, cm^{2}	L^{2}
K_{H}	Conversion from kinetic energy to heat	$M L^{2} / H_{\theta^{2}}$
K_{M}	Conversion from force to mass	ML/Fe ${ }^{2}$
ρ	Density, $\mathrm{lb} / \mathrm{ft}^{8}, \mathrm{~g} / \mathrm{cm}^{3}$	M / L^{3}
D	Diameter, ft, cm	L
$k^{\text {a }}$	Diffusivity (volumetric), $\mathrm{ft}^{2} / \mathrm{hr}, \mathrm{cm}^{2} / \mathrm{sec}$	L^{2} / θ
F	Force, force-pound (poundal), force-gram (dyne)	F
H	Heat, Btu, cal	H
L	Length, ft , cm	L
M	Mass, lb, g	M
W	Mass flow, $\mathrm{lb} / \mathrm{hr}$, g/sec	M / θ
G	Mass velocity, $\mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right), \mathrm{g} /(\mathrm{sec})\left(\mathrm{cm}^{2}\right)$	$M / \theta L^{2}$
J	Mechanical equivalent of heat, (force-lb) (ft)/Btu, (force-g) (cm)/ cal	$F L / H$
P	Pressure, force-lb/ $/ \mathrm{ft}^{2}$, force-g/ $/ \mathrm{cm}^{2}$	F / L^{2}
P_{0}	Power, (force-lb)(ft)/hr, (force-g)(em)/see	$F L / \theta$
r	Radius, ft, cm	
c	Specific heat, $\mathrm{Btu} /(\mathrm{lb})\left({ }^{\circ} \mathrm{F}\right), \mathrm{cal} /(\mathrm{g})\left({ }^{\circ} \mathrm{C}\right)$	H/MT
v	Specific volume, $\mathrm{ft}^{3} / \mathrm{lb}, \mathrm{cm}^{3} / \mathrm{g}$	L^{3} / M
τ	Stress, force-lb/ $/ \mathrm{ft}^{2}$, force $-\mathrm{g} / \mathrm{cm}^{2}$	F / L^{2}
σ	Surface tension, force-lb/ft, force-g/cm	F / L
T	Temperature, ${ }^{\circ} \mathrm{F},{ }^{\circ} \mathrm{C}$	T
k.	Thermal conductivity, $\mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}{ }^{2}\right)\left({ }^{(} \mathrm{F} / \mathrm{ft}\right)$, cal/(sec$)\left(\mathrm{cm}^{2}\right)\left({ }^{\circ} \mathrm{C} /\right.$ cm)	H/LT θ
α	Thermal diffusivity, $\mathrm{ft}^{2} / \mathrm{hr}, \mathrm{cm}^{2} / \mathrm{sec}$	L^{2} / θ
β	Thermal coefficient of expansion, $1 /{ }^{\circ} \mathrm{F}, 1 /{ }^{\circ} \mathrm{C}$	$1 / T$
R_{t}	Thermal resistivity, ($\left.{ }^{\mathrm{F}}\right)(\mathrm{ft})(\mathrm{hr}) / \mathrm{Btu},\left({ }^{\circ} \mathrm{C}\right)(\mathrm{cm})(\mathrm{sec}) / \mathrm{cal}$	$L T \theta / H$
θ	Time, hr , sec	θ
u	Velocity, $\mathrm{ft} / \mathrm{hr}, \mathrm{cm} / \mathrm{sec}$	L/ θ
μ_{g}	Viscosity (force-lb)(hr)/ft2, (force-g) (sec)/ $/ \mathrm{cm}^{2}$	$F \theta / L^{2}$
μ	Viscosity (abs), lb/(ft) (hr), $\mathrm{g} /(\mathrm{cm})$ (sec)	$M / L \theta$
M	Mass, lib, g	M
w_{0}	Work, (force-lb) (ft), (force-g) (cm)	$F L$

*For a system without heat changes theae automatically reduce to FLMAO.
as long as the weight was always treated in the same way. Consider a system in which the mass is a fundamental dimension as M, L, T, θ. From the acceleration equation, force $=$ mass X acceleration,

$$
F=M L \theta^{-2}
$$

In another set of dimensions it may be more convenient to consider force
the fundamental dimension, in which case mass is expressed by

$$
M=F L^{-1} \theta^{2} .
$$

When some of the variables are commonly expressed in units of force such as pressure $F L^{-2}$ and other variables by units of mass such as the density $M L^{-3}$, it is necessary to introduce a dimensional constant into the series expression before solving for the exponents. The constant relating M and F naturally has the dimensions of the gravitational acceleration constant $L \theta^{-2}$. A similar situation also arises when describing a phenomenon by which a work or kinetic energy change occurs in a system. Some of the variables may ordinarily be expressed in terms of foot-pounds (force-pound \times foot) and others in terms of heat energy such as the Btu. A conversion factor which is the heat equivalent of work must be introduced to convert $F L$ to H, or vice versa. The constant is the kinetic energy equivalent of the heat $M L^{2} / H \theta^{2}$. A number of common variables and dimensional constants are given in Table 3.1 together with their net dimensions in a six-dimension system. Typical sets of engineering and metric units are included.
Analysis for the Form of a Fluid-flow Equation. When an incompressible fluid flows in a straight horizontal uniform pipe with a constant mass rate, the pressure of the fluid decreases along the length of the pipe owing to friction. This is commonly called the pressure drop of the system, ΔP. The pressure drop per unit length is referred to as the pressure gradient, $d P / d L$, which has been found experimentally to be influenced by the following pipe and fluid properties: diameter D, velocity u, fluid density ρ, and viscosity μ. What relationship exists between the pressure gradient and the variables?

Solution. The pressure has dimensions of force/area, whereas the density is expressed by mass/volume so that a dimensional constant relating M to F must be included, $K_{M}=M L / F \theta^{2}$. The same result may be accomplished by including the acceleration constant g along with the variables above. While the viscosity is determined experimentally as a force effect and has the dimensions $F \theta / L^{2}$, it is a very small unit, and it is more common in the engineering sciences to use the absolute viscosity $M / L \theta$ in which the conversion from force to mass has already been made.

Using the same method of notation as before,

$$
\begin{align*}
& \frac{d P}{d L} \propto D, u, \rho, \mu, K_{M} \tag{3.12}\\
& \frac{d P}{d L}=\alpha D^{a} u^{b} \rho^{c} \mu^{d} K_{\boldsymbol{M}}^{\bullet} \tag{3.13}
\end{align*}
$$

Substituting dimensions and arbitraxily setting the exponent of $d P / d L$ equal to 1 ,

$$
\begin{equation*}
\frac{F}{L^{3}}=\alpha(L)^{a}\left(\frac{L}{\theta}\right)^{b}\left(\frac{M}{L^{3}}\right)^{c}\left(\frac{M}{L \theta}\right)^{d}\left(\frac{M L}{F \theta^{2}}\right)^{c} \tag{3.14}
\end{equation*}
$$

Summing exponents,

$$
\begin{aligned}
& \Sigma F, \quad 1=-e \\
& \Sigma L, \quad-3=a+b-3 c-d+e \\
& \Sigma M, \quad 0=c+d+e \\
& \Sigma \theta, \quad 0=-b-d-2 e
\end{aligned}
$$

Solving simultaneously,

$$
\begin{aligned}
& a=-1-d \\
& b=2-d \\
& c=1-d \\
& d=d \\
& e=-1
\end{aligned}
$$

Substituting back in Eq. (3.13),

$$
\begin{equation*}
\frac{d P}{d L}=\alpha D^{-1-d} u^{2-d} \rho^{1-d} \mu^{d} K_{M}^{-1}=\frac{\alpha u^{2} \rho}{D K_{M}}\left(\frac{D u \rho}{\mu}\right)^{-d} \tag{3.15}
\end{equation*}
$$

where α and $-d$ must be evaluated from experimental data. A convenient term of almost universal use in engineering is the mass velocity G, which is identical with $u \rho$ and corresponds to the weight flow per square foot of flow area. To obtain the pressure drop from Eq. (3.15), replace $d P$ by $\Delta P, d L$ by the length of pipe L, or ΔL, and substituting for K_{M} its equivalent g,

$$
\begin{equation*}
\Delta P=\frac{\alpha G G^{2} L}{D \rho g}\left(\frac{D G}{\mu}\right)^{-d} \tag{3.16}
\end{equation*}
$$

where $D u \rho / \mu$ or $D G / \mu$ is the Reynolds number.
Analysis for the Form of a Forced-convection Equation. The rate of heat transfer by forced convection to an incompressible fluid traveling in turbulent flow in a pipe of uniform diameter at constant mass rate has been found to be influenced by the velocity u, density ρ, specific heat c, thermal conductivity k, viscosity μ, as well as the inside diameter of the pipe D. The velocity, viscosity, density, and diameter affect the thickness of the fluid film at the pipe wall through which the heat must first be conducted, and they also influence the extent of fluid mixing. k is the thermal conductivity of the fluid, and the specific heat reflects the variation of the average fluid temperature as a result of unit heatabsorp-
tion. What relationship holds between the film coefficient or rate of heat transfer, $h_{i}=H / \theta L^{2} T$ [such as $\mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$], and the other variables?

Solution. It is not known whether all energy terms will be expressed mechanically or thermally by the dimensions of the variables so that the dimensional constant $K_{H}=M L^{2} / H \theta^{2}$ must be included. If all the dimensions combine to give only thermal quantities such as the Btu, which appears in the dimensions of h_{i}, the exponent of K_{H} in the series expression should be zero and the constant will reduce dimensionally to 1.0 , a pure number.

$$
\begin{gather*}
h_{i} \propto u, \rho, c, D, k, \mu, K_{H} \\
h_{i}=\alpha u^{a} \rho^{b} c^{d} D^{e} k^{f} \mu^{g} K_{H}^{i} \tag{3.17}\\
\frac{H}{\theta L^{2} T}=\alpha\left(\frac{L}{\theta}\right)^{a}\left(\frac{M}{L^{3}}\right)^{b}\left(\frac{H}{M T}\right)^{d}(L)^{e}\left(\frac{H}{\theta L T}\right)^{f}\left(\frac{M}{L \theta}\right)^{\sigma}\left(\frac{M L^{2}}{H \theta^{2}}\right)^{i} \tag{3.18}
\end{gather*}
$$

Summing exponents,

$$
\begin{aligned}
& \Sigma H, \quad 1=d+f-i \\
& \Sigma L,-2=a-3 b+e-f-g+2 i \\
& \Sigma M, \quad 0=b-d+g+i \\
& \Sigma T,-1=-d-f \\
& \Sigma \theta,-1=-a-f-g-2 i
\end{aligned}
$$

Solving simultaneously,

$$
\begin{aligned}
a & =a \\
b & =a \\
d & =1-f \\
e & =a-1 \\
f & =f \\
g & =1-f-a \\
i & =0
\end{aligned}
$$

Substituting back,

$$
\begin{equation*}
h_{i}=\alpha u^{a} \rho^{a} c^{1-f} D^{a-1} k^{f} \mu^{1-f-a} K_{H}^{0} \tag{3.19}
\end{equation*}
$$

or collecting terms,

$$
\begin{equation*}
\frac{h_{i} D}{k}=\alpha\left(\frac{D u \rho}{\mu}\right)^{a}\left(\frac{c \mu}{k}\right)^{1-f} \tag{3.20}
\end{equation*}
$$

where α, a, and $1-f$ must be evaluated from a minimum of three sets of experimental data. Substituting the mass velocity for $u \rho$ in the above,

$$
\begin{equation*}
\frac{h_{i} D}{k}=\alpha\left(\frac{D G}{\mu}\right)^{a}\left(\frac{c \mu}{k}\right)^{1-f} \tag{3.21}
\end{equation*}
$$

The dimensionless groups $h D / k$ and $c \mu / k$, like the Reynolds number
$D u \rho / \mu$ or $D G / \mu$, have been assigned names to honor earlier investigators in the field of fuid mechanics and heat transfer. A list of the common groups and the names assigned to them are included in Table 3.2.

Table 3.2. Common Dimensionless Groups

Symbol	Name	Group
$B i$	Biot number	$h r / k$
$F \sigma$	Fourier number	$k \theta / \rho c r^{2}$
$G z$	Graetz number	$w c / k L$
$G r$	Grashof number	$D^{3} \rho^{2} g \beta \Delta t / \mu^{2}$
$N u$	Nusselt number	$h D / k$
$P e$	Peclet number	$D G c / k$
$P r$	Prandtl number	$c \mu / k$
$R e$	ReynoIds number	$D G / \mu, D u \rho / \mu$
$S c$	Schmidt number	$\mu / \rho k_{d}$
$S t$	Stanton number	$h / c G$

One of the useful aspects of dimensional analysis is its ability to provide a relationship among the variables when the information about a phenomenon is incomplete. One may have speculated that both fluid friction and forced convection are influenced by the surface tension of the fluid. The surface tension could have been included as a variable and new equations obtained, although the form of the equations would have been altered considerably. Nevertheless it would have been found that the exponents for any dimensionless groups involving the surface tension would be nearly zero when evaluated from experimental data. By the same token, the equations obtained above may be considered to be predicated on incomplete information. In either case a relationship is obtainable by dimensional analysis.

Consistent Units. In establishing the preceding formulas the dimensions were referred to in general terms such as length, time, temperature, etc., without specifying the units of the dimensions. The dimension is the basic measurable quantity, and convention has established a number of different basic units such as temperature, ${ }^{\circ} \mathbf{F}$ and ${ }^{\circ} \mathrm{C}$; area, square foot, square inch, square meter, square centimeter; time, second or hour; etc. In order that the net dimensions of the variables may be obtained by cancellation among the fundamental and derived dimensions, all must employ the same basic measured units. Thus if several variables employ dimensions containing length such as velocity L / θ, density M / L^{3}, and thermal conductivity $H / \theta L T$, each must employ the same basic unit of length such as the foot. Accordingly, when substituting values of the variables into a dimensionless group, it is not permissible to signify the
dimensions of some variables in feet, some in inches, and still others in centimeters. However, any unit of length is acceptable provided all the lengths involved in the variables are expressed in the same unit of length. The same rule applies to the other fundamental and derived dimensions. When a group of dimensions are expressed in this manner, they are called consistent units. Any group of consistent units will yield the same numerical result when the values of the variables are substituted into the dimensionless groups.

The Pi Theorem. One of the important mathematical proofs of dimensional analysis is attributed to Buckingham, ${ }^{1}$ who deduced that the number of dimensionless groups is equal to the difference between the number of variables and the number of dimensions used to express them. Dimensional constants are also included as variables. The proof of this statement has been presented quite completely by Bridgman. ${ }^{2}$ Designating dimensionless groups by the letters $\pi_{1}, \pi_{2}, \pi_{3}$, the complete physical statement of a phenomenon can be expressed by

$$
\begin{equation*}
\phi\left(\pi_{1}, \pi_{2}, \pi_{3} \ldots\right)=0 \tag{3.22}
\end{equation*}
$$

where the total number of π terms or dimensionless groups equals the number of variables minus the number of dimensions. In the preceding example there were, including h_{i}, eight variables. These were expressed in five dimensions, and the number of dimensionless groups consequently was three. There is a notable exception which must be considered, however, or this method of obtaining the number of dimensionless groups by inspection can lead to an incorrect result. When two of the variables are expressed by the same dimension such as the length and diameter of a pipe, neither is a unique variable, since the dimensions of either are indistinguishable, and to preserve the identity of both they must be combined as a dimensionless constant ratio, L / D or D / L. When treated in this manner, the equation so obtained will apply only to a system which is geometrically similar to the experimental arrangement by which the coefficients and exponents were evaluated, namely, one having the same ratio of L / D or D / L. For this reason the form of a fluid-flow equation, Eq. (3.15), was solved for the pressure gradient rather than the pressure drop directly. Although the solution for a forced-convection equation has already been obtained algebraically, it will be solved again to demonstrate the P_{i} theorem and the extent to which it differs from the direct algebraic solution. In general, it is desirable to solve for the dimensionless groups appearing in Table 3.2.

[^6]Analysis for a Forced-convection Equation by the Pi Theorem.

$$
\begin{gather*}
\phi\left(\pi_{1}, \pi_{2}, \pi_{3} \ldots\right)=0 \\
\pi=\alpha\left(\frac{H}{\theta L^{2} T}\right)^{a}\left(\frac{L}{\theta}\right)^{b}\left(\frac{M}{L^{3}}\right)^{d}\left(\frac{H}{M T}\right)^{e}(L)^{f}\left(\frac{H}{\theta L T}\right)^{a}\left(\frac{M}{L \theta}\right)^{m}\left(\frac{M L^{2}}{H \theta^{2}}\right)^{i} \tag{3.23}
\end{gather*}
$$

Summing exponents,

$$
\begin{aligned}
& \Sigma H, 0=a+e+g-i \\
& \Sigma L, 0=-2 a+b-3 d+f-g-m+2 i \\
& \Sigma M, 0=d-e+m+i \\
& \Sigma T, 0=-a-e-g \\
& \Sigma \theta, \quad 0=-a-b-g-m-2 i
\end{aligned}
$$

π_{1}, π_{2}, and π_{3} may be evaluated by simple algebra. All the exponents need not be summed up in one operation, since it has been seen in Eq. (3.20) that the dimensionless groups comprising it are only composed of three or four variables each. It is requisite in summing for the three groups individually only that all the exponents be included at some time and that three summations be made equal to the difference between the eight.variables and five dimensions or three groups, π_{1}, π_{2}, and π_{3}.
π_{1}. Since it is desired to establish an expression for h_{i} as the dependent variable, it is preferable that it be expressed raised to the first power or $a=1$. This will assure that in the final equation the dependent variable will not be present raised to some odd fractional power. Since all the exponents need not be included in evaluating π_{1}, assume $b=0$ and $e=0$. Referring to Eq. (3.20) it will be seen that as a result of these assumptions neither the Reynolds number nor the Prandtl number will appear as solutions for π_{1}. When $b=0, u^{b}=1$ and $D u \rho / \mu=1$; and when $e=0, c^{e}=1$ and $c \mu / k=1$.

Assume $a=1, b=0, e=0$. Solving the simultaneous equations above, $d=0, f=+1, g=-1, m=0, i=0$,

$$
\pi_{1}=\phi^{\prime}\left(\frac{h_{i} D}{k}\right)
$$

π_{2}. Having already obtained h_{i} it is desirable not to have it appear again in either π_{2} or π_{3}. This can be accomplished in solving for the next group by assuming $a=0$. The entire Nusselt number $h_{i} D / k$ will then reduce to 1. If a Reynolds number is desired, because it is a useful criterion of fluid flow, assume b or $f=1$. Lastly, if the Prandtl number is to be eliminated, assume that the exponent of c or k is zero. If the exponent of the viscosity is assumed to be zero, it will not be possible to obtain either a Reynolds number or a Prandtl number.

Assume $f=1, a=0, e=0$. Solving the simultaneous equations above, $b=1, d=1, g=0, m=-1, i=0$,

$$
\pi_{2}=\phi^{\prime}\left(\frac{D u_{\rho}}{\mu}\right)
$$

π_{3}. To prevent the h_{i} term and the velocity or density from appearing again, assume $a=0, e=1, f=0$. All the exponents will have now appeared in one or more solutions.

Assume $a=0, e=1, f=0$. Solving the simultaneous equations above, $b=0, d=0, g=-1, m=1, i=0$,

$$
\pi_{3}=\phi^{\prime}\left(\frac{c \mu}{k}\right)
$$

The final expression is

$$
\begin{equation*}
\phi\left(\frac{h_{i} D}{k}, \frac{D u \rho}{\mu}, \frac{c \mu}{k}\right)=0 \tag{3.25}
\end{equation*}
$$

or

$$
\begin{align*}
\frac{h_{i} D}{k} & =\phi_{1}\left(\frac{D u \rho}{\mu}\right) \phi_{2}\left(\frac{c \mu}{k}\right) \\
& =\alpha\left(\frac{D u \rho}{\mu}\right)^{p}\left(\frac{c \mu}{k}\right)^{q}=\alpha\left(\frac{D G}{\mu}\right)^{p}\left(\frac{c \mu}{k}\right)^{q} \tag{3.26}
\end{align*}
$$

where the proportionality constant and the exponents must be evaluated from experimental data.

Development of an Equation for Streamline Flow. Since streamline flow is a conduction phenomenon, it is subject to rational mathematical analysis. On the assumption that the distribution of velocities at any cross section is parabolic, the inside surface of the pipe is uniform, and the velocity at the wall is zero, Graetz ${ }^{1}$ obtained for radial conduction to a fluid moving in a pipe in rodlike flow

$$
\begin{equation*}
\frac{t_{2}-t_{1}}{t_{p}-t_{1}}=1-8 \phi\left(\frac{w c}{k L}\right) \tag{3.27}
\end{equation*}
$$

where t_{1} and t_{2} are the inlet and outlet temperatures of the fluid, t_{p} is the uniform inside pipe surface temperature, $t_{p}-t_{1}$ the temperature difference at the inlet, and $\phi(w c / k L)$ is the numerical value of an infinite series having exponents which are multiples of $w c / k L$. Equation (3.27) may be replaced through dimensional analysis with an empirical expression which must be evaluated from experiments. If $t_{2}-t_{1}$, the rise in the temperature of the fluid flowing in the pipe, is considered to be influenced
${ }^{1}$ Graetz, L., Ann. Physik, 25, 337 (1885). For a review of the treatment of conduction in moving fluids see T. B. Drew, Trans. AIChE, 26, 32 (1931).
in radial conduction by the length of path L, the rate of flow w, specific heat c, thermal conductivity k, and the temperature difference between the pipe inside surface and the fluid temperature so that $\Delta t_{i}=t_{p}-t_{1}$,

$$
\begin{equation*}
t_{2}-t_{1}=\alpha L^{a} w^{b} c^{d} k^{b} \Delta t_{i}^{f} \tag{3.28}
\end{equation*}
$$

Solving by the method of dimensional analysis

$$
\begin{equation*}
t_{2}-t_{1}=\alpha\left(\frac{w c}{k L}\right)^{d} \Delta t_{i} \tag{3.29}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{t_{2}-t_{1}}{\Delta t_{i}}=\alpha\left(\frac{w c}{k L}\right)^{d} \tag{3.30}
\end{equation*}
$$

which is similar to Eq. (3.27). Now note that neither Eq. (3.28) nor (3.29) contains h_{i} or the viscosity μ. But $Q=h_{i} A_{i} \Delta t_{i}$ or

$$
w c\left(t_{2}-t_{1}\right)=h_{i} \pi D L \Delta t_{i}
$$

and substituting $G=\frac{w}{\pi D^{2} / 4}$ in Eq. (3.30),

$$
\begin{equation*}
\frac{h_{i} L}{D G c}=\alpha\left(\frac{D^{2} G c}{k L}\right)^{d} \tag{3.31}
\end{equation*}
$$

Now synthetically introducing the viscosity by multiplying the right term of Eq. (3.31) by $(\mu / \mu)^{d}$, one obtains

$$
\begin{equation*}
\frac{h_{i} D}{k}=\alpha\left[\left(\frac{D G}{\mu}\right)\left(\frac{c \mu}{k}\right)\left(\frac{D}{L}\right)\right]^{d+1}=\alpha\left(\frac{w c}{k L}\right)^{d+1} \tag{3.32}
\end{equation*}
$$

This is a convenient means of representing streamline flow using the dimensionless groups incidental to turbulent flow and including the dimensionless ratio D / L. It should not be inferred, however, that because of this method of representation the heat-transfer coefficient is influenced by the viscosity even though the Reynolds number, which is the criterion of streamline flow, is inversely proportional to the viscosity. The values of μ in Eq. (3.32) actually cancel out.

The Temperature Difference between a Fluid and a Pipe Wall. Before attempting to evaluate the constants of a forced-convection equation from experimental data, an additional factor must be taken into account. When a liquid flows along the axis of a tube and absorbs or transmits sensible heat, the temperature of the liquid varies over the entire length of the pipe. In the case of heat flow through a flat wall, the temperature over the entire area of each face of the flat wall was identical and the temperature difference was simply the difference between any
points on the two faces. If the temperature of the inner circumference of a pipe wall is nearly constant over its entire length, as it might be when the fluid inside the tube is heated by steam, there will be two distinct temperature differences at each end: one between the pipe wall and the inlet liquid and one at the other end between the pipe wall and the heated liquid. What is the appropriate temperature difference for use in the equation $Q=h_{i} A_{i}\left(t_{p}-t\right)=h_{i} A_{i} \Delta t_{i}$, where t_{p} is the constant temperature of the inside pipe wall and t is the varying temperature of the liquid inside the pipe?

Referring to Fig. 3.6, the constant temperature of the inside pipe wall is shown by the horizontal line t_{p}. If the specific heat is assumed con-

Fig. 3.6. Temperature difference between a fluid and a pipe wall.
stant for the liquid, the rise in temperature is proportional to the total heat received by the liquid in passing from the inlet temperature t_{1} to the outlet temperature t_{2} and if h_{i} is considered constant

$$
\begin{equation*}
d Q=h_{i} d A_{i} \Delta t_{i} \tag{3.33}
\end{equation*}
$$

The slope of the lower line defining the temperature difference Δt_{i} as a function of Q is

$$
\begin{equation*}
\frac{d \Delta t_{i}}{d Q}=\frac{\Delta t_{2}-\Delta t_{1}}{Q} \tag{3.34}
\end{equation*}
$$

where $\Delta t_{2}=t_{p}-t_{1}$ and $\Delta t_{1}=t_{p}-t_{2} . \quad$ Eliminating $d Q$ from Eqs. (3.33) and (3.34),

$$
\begin{equation*}
\frac{h_{i} d A_{i}}{Q}\left(\Delta t_{2}-\Delta t_{1}\right)=\int_{\Delta t_{1}}^{\Delta t_{2}} \frac{d \Delta t_{i}}{\Delta t_{i}} \tag{3.35}
\end{equation*}
$$

Integrating

$$
\begin{equation*}
Q=\frac{h_{i} A_{i}\left(\Delta t_{2}-\Delta t_{1}\right)}{\ln \Delta t_{2} / \Delta t_{1}} \tag{3.36}
\end{equation*}
$$

The expression $\frac{\Delta t_{2}-\Delta t_{1}}{\ln \Delta t_{2} / \Delta t_{1}}$ is the logarithmic mean temperature difference, abbreviated LMTD, and the value of h_{i}, which has been computed from $Q=h_{i} A_{i} \Delta t_{i}$ when Δt_{i} is the logarithmic mean, is a distinct value of
h_{i}. If the value of Δt_{i} were arbitrarily taken as the arithmetic mean of Δt_{2} and Δt_{1}, the value of h_{i} would have to be designated to show that it does not correspond to the logarithmic mean. This is usually accomplished by affixing the subscript a or m for arithmetic mean, as h_{a} or h_{m}. When Δt_{2} and Δt_{1} approach equality, the arithmetic and logarithmic means approach each other.

Experimentation and Correlation. Suppose experimental apparatus was available with known diameter and length and through which liquid could be circulated at various measurable flow rates. Suppose, furthermore, that it was equipped with suitable devices to permit measurement of the inlet and outlet liquid temperatures and the temperature of the pipe wall. The heat absorbed by the liquid in flow through the pipe would be identical with the heat passing into the pipe in directions at right angles to its longitudinal axis, or

$$
\begin{equation*}
Q=w c\left(t_{2}-t_{1}\right)=h_{i} A_{i} \Delta t_{i} \tag{3.37}
\end{equation*}
$$

From the observed values of the experiment and the calculation of Δt_{i}, as given in Eq. (3.36), h_{i} can be computed from

$$
\begin{equation*}
h_{i}=\frac{w c\left(t_{2}-t_{1}\right)}{A_{i} \Delta t_{i}} \tag{3.38}
\end{equation*}
$$

The problem encountered in industry, as compared with experiment, is not to determine h_{i} but to apply experimental values of h_{i} to obtain A_{i}, the heat-transfer surface. The process flow sheet ordinarily contains the heat and material balances about the various items of equipment which enter into a process. From these balances are obtained the conditions which must be fulfilled by each item if the process is to operate as a unit. Thus between two points in the process it may be required to raise the temperature of a given weight flow of liquid from t_{1} to t_{2} while another fluid is cooled from T_{1} to T_{2}. The question in industrial problems is to determine how much heat-transfer surface is required to fulfill these process conditions. The clue would appear to be present in Eq. (3.38), except that not only A_{i} but also h_{i} is unknown unless it has been established by former experiments for identical conditions.

In order to prepare for the solution of industrial problems it is not practical to run experiments on all liquids and under an infinite variety of experimental conditions so as to have numerical values of h_{i} available. For example, h_{i} will differ for a single weight flow of a liquid absorbing identical quantities of heat when the numerical values of t_{1} and t_{2} differ, since the liquid properties are related to these temperatures. Other factors which affect h_{i} are those encountered in the dimensional analysis
such as the velocity of the liquid and the diameter of the tube through which heat transfer occurs. It is here that the importance of the equations obtained through dimensional analysis becomes apparent. If the values of the exponents and coefficients of the dimensionless equation for extreme conditions of operation are established from experiments, the value of h_{i} can be calculated for any intermediate combination of velocity and pipe and liquid properties from the equation.

A typical apparatus for the determination of the heat-transfer coefficient to liquids flowing inside pipes or tubes is shown in Fig. 3.7. The principal part is the test exchanger, which consists of a test section of pipe enclosed by a concentric pipe. The annulus is usually connected

Fig. 3.7. Test apparatus for the tube transfer coefficient.
to permit the condensation of steam for liquid-heating experiments or the rapid circulation of water for liquid-cooling experiments. The auxiliary exchanger is connected to perform the opposing operation of the test section and cools when the test section is used for heating. For a heating experiment, cold liquid from the reservoir is circulated through the circuit by a centrifugal pump. A by-pass is included on the pump discharge to permit the regulation of flow through the flow meter. The liquid then passes through a temperature-measuring device, such as a calibrated thermometer or thermocouple, where t_{1} is obtained. t_{1} is taken at some distance in the pipe before the test section, so that the temperature-measuring device does not influence the convection eddies in the test section itself. The liquid next passes through the test section and another unheated length of pipe before it is mixed and its temperature t_{2} is measured. The unheated extensions of the test pipe are referred to as calming sections. Next the liquid passes through a cooler where its temperature is returned to t_{1}. The annulus of the test section is con-
nected to calibrated condensate drain tanks where the heat balance can be checked by measuring the steam, Dowtherm (a fluid which permits the attainment of high vapor temperatures at considerably lower pressures than are obtained with steam), or other vapor quantity. The pressure of steam can be adjusted by a pressure-reducing valve, and in the event that the heating vapor does not have a well-established tempera-ture-pressure saturation curve, thermocouples or thermometers can also be inserted in the shell. The temperature of the outside surface of the heated length of the pipe is obtained by attaching a number of thermocouples about the pipe surface and obtaining their average temperature. The thermocouples may be calibrated by circulating preheated oil through the tube while the annulus outside the test pipe is kept under vacuum. The temperature at the outside of the test-pipe surface can then be calculated from the uniform temperature of the preheated oil after correcting for the temperature drop through the pipe wall and calibrating temperature against emf by means of a potentiometer. The leads from the pipe-surface thermocouples are brought out through the gaskets at the ends of the test section.

The performance of the experiment requires the selection of an initial reservoir temperature t_{1} which may be attained by recirculating the liquid through the exchanger at a rapid rate until the liquid in the reservoir reaches the desired temperature. A flow rate is selected and cooling water is circulated through the cooler so that the temperature of the oil returning to the reservoir is also at t_{1}. When steady conditions of t_{1} and t_{2} have persisted for perhaps 5 min or more, the temperatures t_{1} and t_{2} are recorded along with the flow rate, readings of the pipe-surface thermocouples, and gain in condensate level during the test interval. With versatile apparatus using good regulating valves an experiment can usually be carried out in less than an hour.

Several important points must be safeguarded in the design of experimental apparatus if consistent results are expected. The covers at the ends of the test section cannot be connected directly to the test pipe, since they act as gatherers of heat. Should they touch the test pipe in a metal-to-metal contact, they add large quantities of heat in local sections. To prevent inaccuracies from this source the covers and the test pipe should be separated by a nonconducting packing gland. Another type of error results from the accumulation of air in the annulus, which prevents the free condensation of vapor on the test pipe. This usually is apparent if there is a lack of uniformity in the readings of the pipe-surface thermocouples and annulus thermocouples when the latter are employed. This can be overcome by providing a bleed for the removal of any trapped air. Problems incidental to the installation and calibration of thermocouples
and thermometers appear elsewhere. ${ }^{1}$ The same is true of equations to correct for fluid flow through standard orifices when the properties of the liquid vary.

Evaluation of a Forced Convection Equation from Experimental Data. As an example of correlation, data are given in Table 3.3 which were obtained by Morris and Whitman ${ }^{2}$ on heating gas oil and straw oil with steam in a $1 / 2-\mathrm{in}$. IPS pipe with a heated length of 10.125 ft .

The viscosity data are given in Fig. 3:8 and are taken from the original publication. The thermal conductivities may be obtained from Fig. 1, and the specific heats from Fig. 4. Both are plotted in the Appendix

Fig. 3.8. Viscosities of test oils.
with ${ }^{\circ}$ API as parameters. The thermal conductivity of the metal was taken by Morris and Whitman to be $35 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F} / \mathrm{ft}\right)$ and constant, although this is higher than the value given in Appendix Table 3. Only columns 2, 3, 4, and 5 in Table 3.3 were observed where
$t_{1}=$ oil inlet temperature, ${ }^{\circ} \mathrm{F}$
$t_{2}=$ oil outlet temperature, ${ }^{\circ} \mathrm{F}$
$t_{w}=$ temperature of outer pipe surface averaged from thermocouples
$w=$ weight flow, $\mathrm{lb} / \mathrm{hr}$
The first step in correlating a forced convection equation is to determine that the data are in turbulent flow, otherwise an attempted correlation by Eq. (3.26) would be incorrect. In column 11 the Reynolds numbers have been calculated using the diameter and flow area of a $1 / 2-\mathrm{in}$. IPS pipe which may be found in Table 11. Fluid properties have been obtained at the mean temperature $\left(t_{1}+t_{2}\right) / 2$. The Reynolds numbers all exceed

[^7]Table 3.3. Data of Morris and Whitman
Runs Heating $36.8^{\circ} \mathrm{API}$ Gas Oil with Steam

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)
Run No.	w	t_{1}.	t_{2}	t_{w}	Q	Δt_{i}	h_{i}	$\frac{h_{i} D}{k}$	G	$\frac{D G}{\mu}$	$\frac{c \mu}{k}$	$j_{\bar{I}}=\frac{N u}{P r}$	$j_{H}=\frac{N u}{P r^{1 / 3}}$
B1	722	77.1	106.9	210.1	10,150	115.7	53.6	35.5	342,000	2,280	47.2	0.75	9.83
B2	890	77.9	109.3	209.0	13,150	112.6	71.4	46.3	421,000	2,825	46.7	0.99	12.85
B3	1056	85.6	117.6	208.9	16,100	104.0	94.5	62.3	501,000	3,710	43.3	1.44	17.75
B4	1260	89.8	121.9	208.0	19,350	98.5	120	79.5	597,000	4,620	41.4	1.92	23.0
B5	1497	91.6	123.3	207.5	22,700	96.0	144	95	709,000	5,780	40.7	2.33	27.7
B6	1802	99.1	129.2	207.2	26,200	88.5	181	120.5	854,000	7,140	38.7	3.12	35.5
$B 7$	2164	102.3	131.7	206.9	30,900	84.7	223	147.5	1,026,000	8,840	37.7	3.91	44.0
$B 8$	2575	106.5	134.3	206.4	35,000	80.3	266	176.5	1,220,000	10,850	36.5	4.83	53.2
$B 9$	3265	111.5	137.1	205.0	41,100	74.2	338	223	1,548,000	14,250	35.3	6.32	68.0
${ }^{810}$	3902	113.9	138.2	203.8	46,600	70.6	403	266.5	1,850,000	17,350	35.1	7.60	81.4
$B 11$	4585	116.8	139.7	203.0	51,900	66.9	474	313	2,176,000	20,950	34.1	9.18	96.5
$B 12$	5360	122.2	142.9	202.9	54,900	62.3	538	356	2,538,000	25,550	32.9	10.82	111.2
B13	6210	124.8	144.1	202.2	59,500	59.1	615	407	2,938,000	30,000	32.7	12.43	127.5
Runs Heating 29.4 ${ }^{\circ}$ API Straw Oil with Steam													
C8	2900	100.0	115.4	206.3	20,700	95.8	132	87.5	1,375,000	3,210	133	0.66	17.2
C9	2920	86.7	99.3	208.0	16,800	112.7	91.1	60.4	1,387,000	2,350	179	0.34	10.7
$C 10$	3340	101.7	117.6	206.0	24,800	92.9	163	108	1,585,000	3,820	129.5	0.83	21.4
C11	3535.	100.5	115.7	205.5	25,000	94.0	162	107.5	1,675,000	3,880	133.3	0.81	21.1
$C 12$	3725	163.0	175.1	220.1	22,600	47.9	288	191	1,767,000	10,200	57.8	3.30	49.5
C13	3810	160.5	173.6	220.5	24,900	50.0	304	201.5	1,805,000	10,150	59.3	3.39	51.6
C14	3840	109.0	124.4	205.7	27, 800	85.2	199	131.5	1,820,000	4,960	115	1.15	27.1
C15	4730	112.0	127.3	205.3	34, 100	81.0	257	170	2,240,000	6,430	110	1.55	35.5
C16	5240	154.9	167.6	217.7	33,100	51.9	389	257.5	2,485,000	13,150	62.9	4.08	64.7
C17	5270	150.9	164.3	217.0	34,900	54.7	389	257.5	2,500,000	12,520	65.6	3.92	63.7
C18	5280	142.3	156.8	216.7	37,500	62.0	369	244	2,510,000	11,250	72.6	3.36	58.5
C19	5320	132.3	148.1	215.9	40,600	70.2	353	234	2,520,000	9,960	81.5	2.87	54.1
C20	5620	118.8	133.1	204.7	38,200	73.5	317	210	2,660,000	8,420	100.4	2.09	45.2
C21	6720	122.2	135.9	204.3	43,900	69.2	387	256	3,185,000	10,620	95.6	2.68	56.0
C22	8240	124.1	137.0	204.4	47,900	67.3	434	287	3,905,000	12,650	93.3	3.08	63.3

2100 in substantiation of turbulent flow. Equation (3.26) is given as

$$
\frac{h_{i} D}{k}=\alpha \cdot\left(\frac{D G}{\mu}\right)^{p}\left(\frac{c \mu}{k}\right)^{q}
$$

and α, p, and q can be found algebraically by taking the data for three test points.

Algebraic Solution. This method of correlation is demonstrated by using the three points $B 4, B 12$, and $C 12$ in Table 3.3 which include a large range of $h_{i} D / k, D G / \mu$, and $c \mu / k$ as calculated presently from flow and fluid properties and tabulated in columns 9, 11, and 12.

$$
\begin{aligned}
\frac{h_{i} D}{k} & =\alpha\left(\frac{D G}{\mu}\right)^{p}\left(\frac{c \mu}{k}\right)^{q} \\
C 12: 191 & =\alpha(10,200)^{p}(57.8)^{q} \\
B 12: 356 & =\alpha(25,550)^{p}(32.9)^{q} \\
B 4: 79.5 & =\alpha(4,620)^{p}(41.4)^{q}
\end{aligned}
$$

Taking the logarithms of both sides,

$$
\begin{aligned}
C 12: 2.2810 & =\log \alpha+4.0086 p+1.7619 q \\
B 12: 2.5514 & =\log \alpha+4.4065 p+1.5172 q \\
B 4: 1.9004 & =\log \alpha+3.6646 p+1.6170 q
\end{aligned}
$$

Eliminating the unknowns one by one gives $\alpha=0.00682, p=0.93$, and $q=0.407$, and the final equation is

$$
\frac{h_{i} D}{k}=0.00892\left(\frac{D G}{\mu}\right)^{0.93}\left(\frac{c \mu}{k}\right)^{0.407}
$$

When the equation is to be used frequently, it can be simplified by fixing q as the cube root of the Prandtl number and solving for new values of α and p. The simplified equation would be

$$
\frac{h_{i} D}{k}=0.0089\left(\frac{D G}{\mu}\right)^{0.065}\left(\frac{c \mu}{k}\right)^{1 / 6}
$$

Graphical Solution. For the correlation of a large number of points the graphical method is preferable. Rewriting Eq. (3.26),

$$
\begin{equation*}
\frac{h_{i} D}{k}\left(\frac{c \mu}{k}\right)^{-q}=\alpha\left(\frac{D G}{\mu}\right)^{p} \tag{3.39}
\end{equation*}
$$

which is an equation of the form

$$
\begin{equation*}
y=\alpha x^{p} \tag{3.40}
\end{equation*}
$$

Taking the logarithms of both sides,

$$
\log y=\log \alpha+p \log x
$$

which reduces on logarithmic coordinates to an equation of the form

$$
\begin{equation*}
y=\alpha+p x \tag{3.41}
\end{equation*}
$$

On logarithmic coordinates the entire group $\left(h_{i} D / k\right)(c \mu / k)^{-8}$ is the ordinate y in Eq. (3.41), the Reynolds number is x, p is the slope of the data when plotted as y vs. x, and α is the value of the intercept when

$$
p \log x=0
$$

which occurs when the Reynolds number is 1.0. To plot values of $j_{H}=\left(h_{i} D / k\right)(c \mu / k)^{-q}$, the exponent q must be assumed. The most satisfactory assumed value of the exponent will be the one which permits the data to be plotted with the smallest deviation from a straight line. A value of q must be assumed for the entire series of the experiments, and j_{H} computed accordingly. This is a more satisfactory method than an algebraic solution, particularly when a large number of tests on different oils and pipes are being correlated. If q is assumed too large, the data, will scatter when plotted as y vs. x. If q is assumed too small, the data will not scatter but will give a large deviation by producing a curve. Preparatory to a graphical solution, run $B 1$ in Table 3.3 will be computed completely from observed data alone. Run $B 1$ consists of a test employing a $36.8^{\circ} \mathrm{API}$ gas oil in a $1 / 2^{-i n}$. IPS pipe.

Observed test data:
Weight flow of gas oil, $w=722 \mathrm{lb} / \mathrm{hr}$
Temperature of oil at pipe inlet, $t_{1}=77.1^{\circ} \mathrm{F}$
Temperature of oil at pipe outlet, $t_{2}=106.9^{\circ} \mathrm{F}$
Average temperature of outside pipe surface, $t w=210.1^{\circ} \mathrm{F}$
Physical data and calculated results:
Heat Ioad, Btu/hr:
Average oil temperature $=\frac{77.1+106.9}{2}=92.0^{\circ} \mathrm{F}$
Average specific heat, $c=0.472 \mathrm{Btu} /(\mathrm{lb})\left({ }^{\circ} \mathrm{F}\right)$

$$
Q=w c\left(t_{2}-t_{1}\right)=722 \times 0.472(106.9-77.1)=10,150 \mathrm{Btu} / \mathrm{hr}
$$

Temperature of pipe at inside surface, t_{p} :
I.D. of $1 / 2-\mathrm{in} . \mathrm{IPS}=0.62 \mathrm{in}$; O.D. $=0.84 \mathrm{in}$.

Length, 10.125 ft ; surface, $1.65 \mathrm{ft}^{2}$

Thermal conductivity of steel, $35 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F} / \mathrm{ft}\right)$
Q per lin $\mathrm{ft}, q=\frac{10,150}{10.125}=1007 \mathrm{Btu}$
$t_{p}=t_{w}-\frac{2.3 q}{2 \pi k} \log \frac{D_{2}}{D_{1}}=210.1-\frac{2.3 \times 1007}{2 \times 3.14 \times 35} \log \frac{0.84}{0.62}=208.7^{\circ} \mathrm{F}$
Δt_{i} in expression $Q=h_{i} A_{i} \Delta t_{i}$:
At inlet, $\Delta t_{2}=208.7-77.1=131.6^{\circ} \mathrm{F}$
At outlet, $\Delta t_{1}=208.7-106.9=101.8^{\circ} \mathrm{F}$

$$
\begin{align*}
\Delta t_{i} & =\mathrm{LMTD}=\frac{131.6-101.8}{2.3 \log (131.6 / 101.8)}=115.7^{\circ} \mathrm{F} \tag{3.36}\\
h_{i} & =\frac{Q}{A_{i} \Delta t_{i}}=\frac{10,150}{1.65 \times 115.7}=53.6 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)
\end{align*}
$$

The thermal conductivity of the oil will be considered constant at $0.078 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F} / \mathrm{ft}\right)$.

Nusselt number, $N u=\frac{h_{i} D}{k}=\frac{53.6 \times 0.62}{0.078 \times 12}=35.5$, dimensionless
Mass velocity, $G=\frac{w}{\pi D^{2} / 4}=\frac{722}{\left(3.14 \times 0.62^{2}\right) /\left(4 \times 12^{2}\right)}=342,000$

$$
\mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)
$$

The viscosity from Fig. 3.8 at $92^{\circ} \mathrm{F}$ is 3.22 centipoises [gram-mass $/ 100$ $(\mathrm{cm})(\mathrm{sec})]$ or $3.22 \times 2.42=7.80 \mathrm{lb} /(\mathrm{ft})(\mathrm{hr})$.

Reynolds number, $R e=\frac{D G}{\mu}=\frac{0.62}{12} \times 342,000 \times \frac{1}{7.80}$

$$
=2280, \text { dimensionless }
$$

Prandtl number, $\operatorname{Pr}=\frac{c \mu}{k}=\frac{0.472 \times 7.80}{0.078}=47.2$, dimensionless
Assume values of q of 1.0 and $1 / 3$ respectively.
First trial: $j_{H}=N u / P r=0.75$ plotted in Fig. 3.9
Second trial: $j_{H}=N u / P r^{1 / 3}=9.83$ plotted in Fig. 3.10
The values of the first trial in which the ordinate is $j_{H}=\frac{h_{i} D}{k} /\left(\frac{c \mu}{k}\right)$ for an assumed value of $q=1$ are plotted in Fig. 3.9 where two distinct lines result, one for each of the oils. It is the object of a good correlation to provide but one equation for a large number of liquids and this can be accomplished by adjusting the exponent of the Prandtl number. By assuming a value of $q=1 / 3$ and plotting the ordinate $j_{H}=\frac{h_{i} D}{k} /\left(\frac{c \mu}{k}\right)^{1 / 3}$, it is possible to obtain the single line as shown in Fig. 3.10. By drawing
the best straight line through the points of Fig. 3.10, the slope can be measured in the same way as on rectangular coordinates, which in this particular case is found to be 0.90 . By extrapolating the straight line

Frg. 3.9. Plot of Re vs. j_{H} with Prandtl exponent of 1.0 .

Fig. 3.10. Plot of Re vs. jH with Prandtl exponent of $1 / 3$.
until the Reynolds number is 1.0 , a value of $\alpha=0.0115$ is obtained as the intercept. The equation for all the data is thus

$$
\begin{equation*}
\frac{h_{i} D}{k}=0.0115\left(\frac{D G}{\mu}\right)^{0.90}\left(\frac{c \mu}{k}\right)^{1 / 3} \tag{3.42}
\end{equation*}
$$

A value of $q=0.40$ would cause less bowing and a smaller deviation. The correlation of data need not be confined to heating or cooling runs on liquids separately. It is entirely possible to combine both types of data into a single correlation, called the isothermal heat-transfer equation, but the procedure involves an additional consideration which is deferred until Chap. 5.
Correlation of Fluid Friction in Pipes. When a fluid flows in a pipe isothermally, it undergoes a decrease in pressure. From Eq. (3.16) it is seen that for isothermal turbulent flow this pressure drop is a function of the Reynolds number and, in addition, to the roughness of the pipe

Rewriting Eq. (3.16) in dimensionless form,

$$
f^{\prime}=\frac{\Delta P g \rho D}{G^{2} L}=\alpha\left(\frac{D G}{\mu}\right)^{-d}
$$

where f^{\prime} is one of the dimensionless factors found in the literature to designate the friction factor and ΔP is the pressure drop in pounds per square foot. For combination with other hydrodynamic equations it is more convenient to use a friction factor f so that

$$
\begin{equation*}
f=\frac{\Delta P 2 g_{\rho} D}{4 G^{2} L}=\frac{\alpha}{R e^{d}} \tag{3.43}
\end{equation*}
$$

When experimental data are available, it is thus convenient to obtain a correlation by plotting f as a function of the Reynolds number and the conventional Fanning equation as shown in Fig. 3.11. The Fanning equation comprises the first and second terms of Eq. (3.43) and is usually written as $\Delta F=\Delta P / \rho$ where ΔF is the pressure drop expressed in feet of liquid, or

$$
\begin{equation*}
\Delta F=\frac{4 f G^{2} L}{2 g \rho^{2} \bar{D}} \tag{3.44}
\end{equation*}
$$

For the portion of the graph corresponding to streamline flow

$$
(R e<2100 \text { to } 2300)
$$

the equation for the pressure drop may be deduced from theoretical considerations alone and has been verified by experiment. The equation is

$$
\begin{equation*}
\Delta F=\frac{32 \mu G}{g \rho^{2} D^{2}} \tag{3.45}
\end{equation*}
$$

By equating (3.44) and (3.45), since each applies at the transition point from streamline to turbulent flow, the equation of this line, known as the Hagen-Poiseuille equation, where f is used with Eq. (3.44), is

$$
\begin{equation*}
f=\frac{16}{D G / \mu} \tag{3.46}
\end{equation*}
$$

To the right of the transition region in turbulent flow there are two lines, one for commercial pipes and the other for tubes. Tubes have smoother finishes than pipes and therefore give lower pressure drops when all other factors are the same. This is not so of streamline flow where the fluid at the pipe or tube wall is assumed to be stationary or nearly stationary and the pressure drop is not influenced by roughness. The equation of f in Eq. (3.44) for fluids in tubes in turbulent flow is given by

Drew, Koo, and McAdams ${ }^{1}$ within ± 5 per cent by

$$
\begin{equation*}
f=0.00140+\frac{0.125}{(D G / \mu)^{0.32}} \tag{3.47a}
\end{equation*}
$$

For clean commercial iron and steel pipes an equation given by Wilson,

Fig. 3.11. Friction factors for flow in pipes and tubes.
McAdams, and Seltzer ${ }^{2}$ within ± 10 per cent is

$$
\begin{equation*}
f=0.0035+\frac{0.264}{(D G / \mu)^{0.42}} \tag{3.47b}
\end{equation*}
$$

It can be seen that, if the transition from streamline to turbulent flow is given by $D u \rho / \mu=2300$, approximately, then the velocity at which a fluid in a pipe changes from streamline to turbulent flow is

$$
u_{\text {orit }}=\frac{2300 \mu}{D_{\rho}}
$$

For water flowing in a $1-\mathrm{in}$. IPS pipe at $100^{\circ} \mathrm{F}$, the viscosity is 0.72 centi-
${ }^{1}$ Drew, T. B., E. C. Koo, and W. H. McAdams, Trans. AIChE, 28, 56-72 (1932).
${ }^{2}$ Wilson, R. E., W. H. McAdams, and M. Seltzer, Ind. Eng. Chem., 14, 105-119 (1922).
poise or 0.72 gram-mass $\times 100(\mathrm{~cm})(\mathrm{sec})$ or $0.72 \times 2.42=1.74 \mathrm{lb} /(\mathrm{ft})$ (hr), and the inside diameter of the pipe is 1.09 in ., or $1.09 / 12=0.091 \mathrm{ft}$.

$$
u_{\text {orit }}=\frac{2300 \times 1.74}{0.091 \times 62.3}=707 \mathrm{ft} / \mathrm{hr}, \text { or } 0.196 \mathrm{fps}
$$

For air at $100^{\circ} \mathrm{F}$ the viscosity is $0.0185 \times 2.42=0.0447 \mathrm{lb} /(\mathrm{ft})(\mathrm{hr})$ and the density is approximately $0.075 \mathrm{lb} / \mathrm{ft}^{3}{ }^{3}$ Then for the same pipe

$$
u_{\text {orit }}=\frac{2300 \times 0.0447}{0.091 \times 0.075}=15,100 \mathrm{ft} / \mathrm{hr}, \text { or } 4.19 \mathrm{fps}
$$

The Reynolds Analogy. Both heat transfer and fluid friction in turbulent flow have been treated empirically, whereas their streamline-

Fig. 3.12. Momentum transfer between a fluid and a boundary layer.
flow equivalents may be studied theoretically with reasonable accuracy. Turbulent flow is of greater importance to industry, yet this empiricism exists because of the lack of simple mathematics by which derivations might be obtained. As early as 1874, however, Osborne Reynolds ${ }^{1}$ pointed out that there was probably a relationship between the transfer of heat and the fluid friction between a hot fluid and a surface.

There are several advantages which might accrue from an equation relating heat transfer and fluid friction. For the most part fluid-friction experiments are simpler to perform than are heat-transfer experiments, and the understanding of both fields could be increased by experimentation in either. The fundamentals of the mechanism of both might also be better understood if they were directly related. The analogy between the two is made possible by the fact that the transfer of heat and the transfer of fluid momentum can be related. A simplified proof follows.

Referring to Fig. 3.12 a fluid in amount $W \mathrm{lb} / \mathrm{hr}$ and specific heat C flows through a tube of radius r. In the section of the pipe between L and
${ }^{1}$ Reynolds, op. cit., pp. 81-85.
$L+d L$ the temperature of the fluid is T, and the temperature at the inside surface of the pipe wall is t_{p}. Of the total fluid flow along the axis of the pipe, assume that $m \mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)$ impinges on the pipe wall where its velocity falls to zero and its temperature approaches the temperature of the pipe wall, t_{p}. Each particle of fluid which thus contacts the wall gives up its axial momentum and upon returning to the main body of the fluid has its axial momentum renewed at the expense of the energy of the main stream. The constant loss and renewal of momentum are the cause of the pressure drop. The traction or drag on unit area of the pipe wall is obtained by equating the drag on unit length of pipe wall to the product of the pressure gradient and the cross-sectional area of the pipe, which reduces to

$$
\begin{equation*}
\tau=\frac{f}{2} \rho u^{2} \tag{3.48}
\end{equation*}
$$

where τ is the drag. Since the drag is assumed to be equal to the loss of momentum of the fluid,

$$
\begin{equation*}
m u \doteq \tau=\frac{f}{2} \rho u^{2} \tag{3.49}
\end{equation*}
$$

The rate of heat transfer between the fluid and the wall is given by

$$
\begin{equation*}
m C 2 \pi r d L\left(T-t_{p}\right)=W C d T \tag{3.50}
\end{equation*}
$$

or from Eqs. (3.49) and (3.50)

$$
\begin{equation*}
m=\frac{W d T}{2 \pi r d L\left(T-t_{p}\right)}=\frac{\tau}{u} \tag{3.51}
\end{equation*}
$$

In simple terms the last two members of Eq. (3.51) state
Heat actually given up to pipe wall
Total heat available to be given up

$$
\begin{aligned}
& =\frac{\text { momentum lost by skin friction to pipe wall }}{\text { total momentum available }} \\
& =a \text { constant }
\end{aligned}
$$

Rewriting Eq. (3.50) to include the heat-transfer coefficient,

$$
\begin{align*}
W C d T & =h_{i} 2 \pi r d L\left(T-t_{p}\right) \tag{3.52}\\
h_{i} & =\frac{W C d T}{2 \pi r d L\left(T-t_{p}\right)}=\frac{\tau C}{u}=\frac{f}{2} \rho u C=\frac{f C G}{2} \tag{3.53}
\end{align*}
$$

or in dimensionless form,

$$
\frac{h_{i}}{C G}=\frac{f}{2}
$$

It is interesting to note in Eq. (3.53) that an equation has been obtained for the heat-transfer coefficient which involves the friction factor and
which can be determined from an experiment in which no heat was transferred. Like most derivations which require a number of assumptions, the use of Eq. (3.53) applies only to a small range of fluids, particularly permanent gases.

It was Reynolds as quoted by Stanton ${ }^{1}$ who predicted that the coefficient of heat transfer obtained from Eq. (3.53) should be affected by the ratio of the thermal conductivity and viscosity of a specific fluid. While the presence of the thermal conductivity suggests the influence of conduction, it was observed experimentally that the entire cross section of a fluid in turbulent flow is not turbulent. Instead it has been found that a laminar layer exists near the pipe wall through which conduction must occur. Prandtl ${ }^{2}$ and Taylor ${ }^{3}$ independently included this layer. If it is assumed that the layer has a thickness b and that the temperature of its inner circumference is t^{\prime}, the heat flow per square foot of layer is given by

$$
\begin{equation*}
Q=\frac{k\left(t^{\prime}-t_{p}\right)}{b} \tag{3.54}
\end{equation*}
$$

where k is the mean conductivity for the layer. Assume that the transfer of heat and momentum is carried through this layer by molecular motion without disturbing its laminar flow. The inner surface of the layer moves with a velocity u^{\prime} in streamline flow, and writing ($u-u^{\prime}$) for u in Eq. (3.53),

$$
\begin{equation*}
Q=h_{i}\left(T-t^{\prime}\right)=\frac{\tau C\left(T-t^{\prime}\right)}{\left(u-u^{\prime}\right)} \tag{3.55}
\end{equation*}
$$

From the definition of viscosity given by Eq. (3.4),

$$
\begin{equation*}
\tau=\mu \frac{u^{\prime}}{b} \tag{3.56}
\end{equation*}
$$

where μ is the viscosity of the fluid in the layer. From Eq. (3.54),

$$
\begin{equation*}
t^{\prime}-t_{p}=\frac{Q b}{k}=\frac{\mu u^{\prime} Q}{\tau k} \tag{3.57}
\end{equation*}
$$

And from Eq. (3.55),

$$
\begin{equation*}
T-t^{\prime}=\frac{Q\left(u-u^{\prime}\right)}{\tau C} \tag{3.58}
\end{equation*}
$$

Combining Eqs. (3.57) and (3.58),

$$
\begin{equation*}
T-t_{p}=Q\left(\frac{\mu u^{\prime}}{\tau k}+\frac{u}{\tau \bar{C}}-\frac{u^{\prime}}{\tau C}\right) \tag{3.59}
\end{equation*}
$$

[^8]The corrected value of h_{i} becomes

$$
\begin{equation*}
h_{i}=\frac{Q}{\left(T-t_{p}\right)}=\frac{\tau}{\frac{\mu u^{\prime}}{k}+\frac{u}{C}-\frac{u^{\prime}}{C}} \tag{3.60}
\end{equation*}
$$

Substituting r^{\prime} for the ratio u^{\prime} / u and eliminating τ by means of Eq. (3.48),

$$
\begin{equation*}
h_{i}=\frac{f C G}{2\left[1-r^{\prime}+r^{\prime}\left(C_{\mu} / k\right)\right]} \tag{3.61}
\end{equation*}
$$

or in dimensionless form using c for C and h for h_{i} as usually given in the literature,

$$
\begin{equation*}
\frac{h}{c G}=\frac{f}{2} \frac{1}{1-r^{\prime}+r^{\prime}(c \mu / k)} \tag{3.62}
\end{equation*}
$$

Equation (3.61) is the Prandtl modification of the Reynolds analogy, which is sometimes called the Prandtl analogy. The dimensionless Prandtl group $c \mu / k$ has appeared earlier in this chapter, and when it is numerically equal to 1.0 , Eq. (3.61) reduces to Eq. (3.53). This is approximately the case for permanent gases. While Eq. (3.61) is a notable extension of the Reynolds analogy, it too has definite limitations. Modern theory now presumes that the distribution of velocities no longer ends abruptly at the laminar layer but that there is instead a buffer layer within the laminar layer in which the transition occurs. Other extensions of the analogies also appear in the literature.

PROBLEMS

3.1. The heat-transfer coefficient h from a hot horizontal pipe to a gas by free convection has been found to be influenced by the specific heat c, thermal conductivity k, density ρ, viscosity μ, thermal coefficient of expansion β of the gas, pipe diameter D, gravitational constant g, and the temperature difference Δt between the surface of the pipe and the main body of the gas. Establish the form of a dimensionless equation for the heat-transfer coefficient.
3.2. The heat-transfer coefficient for the condensation of a vapor on a horizontal pipe has been found to be influenced by the diameter of the pipe D, acceleration of gravity g, the temperature difference Δt between the saturated vapor and the pipe wall, thermal conductivity k, latent heat of vaporization λ, viscosity μ, and the density ρ of the vapor. Establish a dimensionless expression for the heat-transfer coefficient.
3.3. The rate of cooling of a hot solid in still air has been found to be influenced by the specific heat c, thermal conductivity k, density ρ and viscosity μ of the gas, the length of the solid l, and the temperature difference Δt between the surface of the solid and the bulk temperature of the gas. Establish a dimensionless equation for the rate of cooling h.
3.4. When a fluid flows around a sphere, the force exerted by the fluid has been
found to be a function of the viscosity μ, density ρ and velocity u of the gas, and the diameter D of the sphere. Establish an expression for the pressure drop of the fluid as a function of the Reynolds number of the gas.
3.5. The heating of gas oil and straw oil in a pipe has been found for a $1 / 2-\mathrm{in}$. IPS pipe to follow Eq. (3.42).

$$
\frac{h_{i} D}{k}=0.0115\left(\frac{D G}{\mu}\right)^{0.90}\left(\frac{c \mu}{k}\right)^{3 /}
$$

It is desired to circulate $5600 \mathrm{lb} / \mathrm{hr}$ of the $36.8^{\circ} \mathrm{API}$ gas oil through a 1-in. IPS pipe while its temperature is raised from 110 to $130^{\circ} \mathrm{F}$. In the absence of any additional heat-transfer data, calculate the heat-transfer coefficient in the 1-in. IPS pipe. How does this compare with the value of h_{i} when the same quantity of gas oil flows in a $1 / 2-\mathrm{in}$. IPS pipe as calculated by the same equation? The data will be found in the illustration in the chapter.
3.6. Using Eq. (3.42), it is desired to circulate $4000 \mathrm{lb} / \mathrm{hr}$ of amyl acetate through a $3 / 4$-in. IPS pipe while its temperature is raised from 130 to $150^{\circ} \mathrm{F}$. (a) From data available in the Appendix on the physical properties of amyl acetate calculate the heat-transfer coefficient. It may be necessary to extrapolate some of the data. (b) Do the same for $6000 \mathrm{lb} / \mathrm{hr}$ of ethylene glycol in the same pipe when heated from 170 to $200^{\circ} \mathrm{F}$.

If only one point is given for a property, such as the thermal conductivity, and it is lower than the average temperature, its use will actually introduce a slight factor of safety.
3.7. On a $1 / 2-\mathrm{in}$. IPS pipe 10.125 ft long Morris and Whitman reported the following for heating water in a pipe while steam is circulated on the outside. Note that G^{\prime}, the reported mass velocity, is not in consistent units.

$G^{\prime}, \mathrm{lb} /(\mathrm{sec})\left(\mathrm{ft}^{2}\right)$	$t_{1},{ }^{\circ} \mathrm{F}$	$t_{2},{ }^{\circ} \mathrm{F}$	$t_{w},{ }^{\circ} \mathrm{F}$
58.6	91.6	181.5	198.4
60.5	92.7	180.3	198.0
84.3	102.2	175.3	196.5
115	103.1	171.3	194.5
118	103.4	168.2	194.9
145	105.0	165.9	194.0
168	107.2	163.3	192.4
171	106.7	164.6	191.1
200	108.5	160.1	190.0
214	106.3	158.9	188.3
216	110.1	160.2	190.2
247	107.6	158.2	186.3

Viscosities and conductivities can be found in the Appendix. The specific heat and gravity should be taken as 1.0. Establish an equation of the form of Eq. (3.26) using all the data. (Hint. To save time in the selection of the exponent of the Prandtl number, take three random points such as the first, last, and an intermediate one and solve algebraically.)
3.8. On cooling a 35.8° API gas oil with water Morris and Whitman reported the following for 10.125 ft of $1 / 2-\mathrm{in}$. IPS pipe:

$G^{\prime}, \mathrm{lb} /(\mathrm{sec})\left(\mathrm{ft}^{2}\right)$	$t_{1},{ }^{\circ} \mathrm{F}$	$t_{2},{ }^{\circ} \mathrm{F}$	$t_{w},{ }^{\circ} \mathrm{F}$
82.6	150.3	125.5	66.0
115	138.7	118.7	68.0
164	130.5	113.9	70.0
234	141.2	124.2	79.2
253	210.0	179.8	115.4
316	197.6	173.3	122.9
334	132.3	119.4	82.1
335	191.1	168.4	116.3
413	194.4	173.0	121.6
492	132.5	122.1	89.5
		200.2	182.4
562	188.6	139.4	
587	190.0	175.1	127.7
672	191.8	176.4	139.7
682	132.5		
739		132.6	124.6

The viscosity of the oil is 2.75 centipoises at $100^{\circ} \mathrm{F}$ and 1.05 centipoises at $200^{\circ} \mathrm{F}$. To obtain intermediate values of the viscosity plot temperature vs. viscosity on logarithmic paper. Establish an equation of the form of Eq. (3.26) using all the data. (The hint given in Prob. 3.7 is applicable.)
3.9. On the cooling of the $29.4^{\circ} \mathrm{API}$ straw oil with water Morris and Whitman reborted the following for 10.125 ft of $1 / 2-\mathrm{in}$. IPS pipe:

$G^{\prime}, \mathrm{lb} /(\mathrm{sec})\left(\mathrm{ft} \mathrm{t}^{2}\right)$	$t_{1},{ }^{\circ} \mathrm{F}$	$t_{2},{ }^{\circ} \mathrm{F}$	$t_{v},{ }^{\circ} \mathrm{F}$
141	362.3	296.3	139.8
143	477.6	385.7	194.8
165	317.8	270.0	116.9
172	163.7	148.2	60.2
252	140.5	130.1	62.9
292	142.3	131.5	66.9
394	133.0	124.6	69.6
437	244.9	218.7	141.4
474	130.6	123.1	71.7
474	376.1	330.6	232.9
485	181.1	166.5	102.3
505	134.9	126.8	75.4
556	171.9	159.5	99.8
572	137.9	129.6	80.6
618	310.8	281.6	217.0
633	244.1	222.8	160.4
679	162.4	152.0	99.3
744	196.6	182.7	129.1
761	155.4	146.0	97.6

(a) Establish an equation of the form of Eq. (3.26) for all the data. (b) Combine this data with that of Prob. 3.8 to obtain one correlation for both oils. (c) Calculate j_{H}
when the exponent of the Prandtl number is $3 / 3$, and plot together with the data for the illustration in the text on heating. What conclusion may be drawn?
3.10. Sieder and Tate ${ }^{1}$ obtained data on the cooling of $a 21^{\circ}$ API oil flowing on the inside of copper tube having an inside diameter of 0.62 in . and 5.1 ft long:

$w, \mathrm{lb} / \mathrm{hr}$	$t_{1},{ }^{\circ} \mathrm{F}$	$t_{2},{ }^{\circ} \mathrm{F}$	t_{p}
1306	136.85	135.15	73.0
1330	138.0	136.2	74.0
1820	160.45	158.5	76.5
1388	160.25	157.9	75.5
231	157.75	149.5	77.0
239	157.5	148.45	78.0
457	212.8	203.2	89.0
916	205.5	200.4	86.0
905	205.0	200.0	85.5
1348	206.35	202.9	87.5
1360	207.6	204.0	87.5
1850	206.9	203.7	88.5
1860	207.0	204.0	90.0
229	141.6	134.65	82.5
885	140.35	138.05	77.0
1820	147.5	146.0	79.8
473	79.6	84.75	118.5
469	80.2	86.5	136.0
460	80.0	82.0	137.0

The temperature t_{p} is for the inside surface of the tube. Inasmuch as these data fall below a Reynolds number of 2100, obtain an equation of the form of Eq. (3.32). The viscosity of the oil is 24.0 centipoises at $200^{\circ} \mathrm{F}$ and 250 centipoises at $100^{\circ} \mathrm{F}$. Intermediate viscosities can be obtained by drawing a straight line on logarithmic paper as shown in Fig. 3.8. (The hint of Problem 3.7 is applicable.)

NOMENCLATURE FOR CHAPTER 3
A Heat-transfer surface, ft^{2}
a Fluid flow area, ft^{2}
b Thickness of laminar layer, ft
C Specific heat of hot fluid in derivations, Btu/(lb) (${ }^{\circ} \mathrm{F}$)
c Specific heat of cold fluid, $\mathrm{Btu} /(\mathrm{lb})\left({ }^{\circ} \mathrm{F}\right)$
$D \quad$ Inside diameter of pipe or tube, ft
$F \quad$ Fundamental dimension of force, force-lb
$\Delta F \quad$ Pressure drop, ft of liquid
f Friction factor in the Fanning equation, dimensionless
$f^{\prime} \quad$ Friction factor, dimensionless
G Mass velocity, $\mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)$
${ }^{1}$ Ind. Eng. Chem., 28, 1429-1435 (1936),
g Acceleration of gravity, $\mathrm{ft} / \mathbf{h} \mathbf{r}^{\mathbf{2}}$
H Heat unit, Btu
$h \quad$ Heat-transfer coeffcient in general, Btu/(hr)(ft²)($\left.{ }^{\circ} F\right)$
$h_{i} \quad$ Heat-transfer coefficient based on the inside pipe surface, Btu/(hr) (ft²) ($\left.{ }^{\circ} \mathrm{F}\right)$
$h_{0} \quad H e a t-t r a n s f e r ~ c o e f f i c i e n t ~ b a s e d ~ o n ~ t h e ~ o u t s i d e ~ p i p e ~ s u r f a c e, ~ B t u /(h r)\left(f t^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$
$j H \quad$ Factor for heat transfer, dimensionless
$K_{H} \quad$ Conversion factor between kinetic energy and heat, (mass-lb)(ft)/Btu
K_{M} Conversion factor between force and mass, mass-lb/force-lb
k Thermal conductivity, Btu/(hr)($\left.\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F} / \mathrm{ft}\right)$
L Length, ft
M Fundamental dimension of mass, mass-lb
m Mass velocity perpendicular to inside pipe surface, $\mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)$
$\Delta P \quad$ Pressure drop, $\mathrm{lb} / \mathrm{ft}^{2}$
Q Heat flow, Btu/hr
$R_{i} \quad$ Thermal resistance on inside of pipe, (hr)(ft$\left.)^{2}\right)\left({ }^{\circ} \boldsymbol{F}\right) / \mathrm{Btu}$
$\boldsymbol{R}_{0} \quad$ Thermal resistance on outside of pipe, $(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right) / \mathrm{Btu}$
r Radius, ft
r^{\prime} Ratio of u^{\prime} / u, dimensionless
T Temperature of hot fluid, ${ }^{\circ} \mathrm{F}$
$T_{i} \quad$ Temperature of hot fluid inside a pipe, ${ }^{\circ} \mathrm{F}$
$t^{\prime} \quad$ Temperature of inner surface of laminar layer, ${ }^{\circ} \mathrm{F}$
$t_{o} \quad$ Temperature of cold fluid outside a pipe, ${ }^{\circ} \mathrm{F}$
t_{p} Temperature at inside surface of a pipe, ${ }^{\circ} \mathbf{F}$
$t_{v} \quad$ Temperature at outside surface of a pipe, ${ }^{\circ} \mathrm{F}$
t_{i}, t_{2} Inlet and outlet cold fuid temperatures, ${ }^{\circ} \mathrm{F}$
Δt Temperature difference for heat transfer, ${ }^{\circ} \mathrm{F}$
Δt; Temperature difference between inside pipe fluid and inside pipe wall, ${ }^{\circ} \mathrm{F}$
Δt. Temperature difference between outside pipe fluid and outside pipe wall, ${ }^{\circ} \mathrm{F}$
u Velocity in general, $\mathrm{ft} / \mathrm{hr}$
$u^{\prime} \quad$ Velocity of laminar layer, $\mathrm{ft} / \mathrm{hr}$
$v \quad$ Specific volume, $\mathrm{ft}{ }^{3} / \mathrm{lb}$
W Weight flow of hot fiuid, lb/hr
w Weight flow of cold fluid, $\mathrm{lb} / \mathrm{hr}$
x, y Coordinates, ft (y is also used to indicate an ordinate)
Y Distance, ft
α Any of several proportionality constants, dimensionless
0 Time, hr
$\mu \quad$ Viscosity, lb/(ft)(hr)
π. Dimensionless group
$\rho \quad$ Density, $\mathrm{lb} / \mathrm{ft}^{3}$
$r \quad$ Shear stress, $\mathrm{lb} / \mathrm{ft}^{2}$
ϕ Function

Superacripts

p, q Constants

Subscripts (except as noted above)

i Inside a pipe or tube

- Outside a pipe or tube

CHAPTER 4

RADIATION

Introduction. All too often radiation is regarded as a phenomenon incidental only to hot, luminous bodies. In this chapter it will be seen that this is not the case and that radiation, as a third means of transferring heat, differs greatly from conduction and convection. In heat conduction through solids the mechanism consists of an energy transfer through a body whose molecules, except for vibrations, remain continuously in fixed positions. In convection the heat is first absorbed from a source by particles of fluid immediately adjacent to it and then transferred to the interior of the fluid by mixture with it. Both mechanisms require the presence of a medium to convey the heat from a source to a receiver. Radiant-heat transfer does not require an intervening medium, and heat can be transmitted by radiation across an absolute vacuum.

Wavelength and Frequency. It is convenient to mention the characteristics of radiant energy in transit before discussing the origins of radiant energy. Radiant energy is of the same nature as ordinary visible light. It is considered, in accordance with Maxwell's electromagnetic theory, to consist of an oscillating electric field accompanied by a magnetic field oscillating in phase with it. College physics texts usually treat the theory in detail.

The variation with time of the intensity of the electric field passing a given point can be represented by a sine wave having finite length from crest to crest and which is λ, the wavelength. The number of waves passing a given point in unit time is the frequency of the radiation, and the product of the frequency and wavelength is the velocity of the wave. For travel in a vacuum the velocity of propagation of radiation is very nearly 186,000 miles $/ \mathrm{sec}$. For travel through a medium the velocity is somewhat less, although the deviation is generally neglected.

The wavelength of radiation may be specified in any units of length, but the micron, $1 \times 10^{-4} \mathrm{~cm}$, is common. All the known waves included in the electromagnetic theory lie between the short wavelengths of cosmic rays, less than 1×10^{-6} micron, and the long wavelength of radio above 1×10^{7} microns. Of these, only waves in the region between the near and far infrared with wavelengths of $3 / 4$ to 400 microns are of importance to radiant-heat transfer as found in ordinary industrial equipment.

The Origins of Radiant Energy. Radiant energy is believed to originate within the molecules of the radiating body, the atoms of such molecules vibrating in a simple harmonic motion as linear oscillators. The emission of radiant energy is believed to represent a decrease in the amplitudes of the vibrations within the molecules, while an absorption of energy represents an increase. In its essence the quantum theory postulates that for every frequency of radiation there is a small minimum pulsation of energy which may be emitted. This is the quantum, and a smaller quantity cannot be emitted although many such quanta may be emitted. The total radiation of energy of a given frequency emitted by a body is an integral number of quanta at that frequency. For different frequencies, the number of quanta and thus the total energy may be different. Planck showed that the energy associated with a quantum is proportional to the frequency of the vibration or, if the velocity of all radiation is considered constant, inversely proportional to the wavelength. Thus radiant energy of a given frequency may be pictured as consisting of successive pulses of radiant energy, each pulse of which has the value of the quantum for a given frequency.

The picture of the atom proposed by Bohr is helpful to a clearer understanding of one possible origin of radiant energy. Electrons are presumed to travel about the nucleus of an atom in elliptical orbits at varying distances from the nueleus. The outermost orbital electrons possess definite energies comprising their kinetic and potential energies, by virtue of their rotation about the nucleus. The potential energy is the energy required to remove an electron from its orbit to an infinite distance from the nucleus. A given electron in an orbit at a given distance from the nucleus will have a certain energy. Should a disturbance occur such as the collision of the atom with another atom or electron, the given electron may be displaced from its orbit and may (1) return to its original orbit, (2) pass to another orbit whose electrons possess a different energy, or (3) entirely leave the system influenced by the nucleus. If the transition is from an orbit of high energy to one of lower energy, the readjustment is affected by the radiation of the excess energy.

Another origin of radiant energy may be attributed to the changes in the energies of atoms and molecules themselves without reference to their individual electrons. If two or more nuclei of the molecule are vibrating with respect to each other, a change in the amplitude or amplitudes of vibration will cause a change in energy content. A decrease in amplitude is the result of an emission of radiant energy, while an increase is the result of the absorption of radiant energy. The energy of a molecule may be changed by an alteration of its kinetic energy of translation or rotation, and this will likewise result in the emission of radiant energy. A decrease
in velocity corresponds to the emission of radiant energy, while an increase corresponds to the absorption of radiant energy.

Since temperature is a measure of the average kinetic energy of molecules, the higher the temperature the higher the average kinetic energy both of translation and of vibration. It can therefore be expected that the higher the temperature the greater the quantity of radiant energy emitted from a substance. Since molecular movement ceases completely only at the absolute zero of temperature, it may be concluded that all substances will emit or absorb radiant energy provided the temperature of the substances is above absolute zero.

For radiant energy to be emitted from the interior of a solid it must penetrate the surface of the solid without being dissipated by producing other energy changes within its molecules. There is little probability that radiant energy generated in the interior of a solid will reach its surface without encountering other molecules, and therefore all radiant energy emitted from the surfaces of solid bodies is generated by energylevel changes in molecules near and on their surfaces. The quantity of radiant energy emitted by a solid body is consequently a function of the surface of the body, and conversely, radiation incident on solid bodies is absorbed at the surface. The probability that internally generated radiant energy will reach the surface is far greater for hot radiating gases than for solids, and the radiant energy emitted by a gas is a function of the gas volume rather than the surface of the gas shape. In liquids the situation is intermediate between gases and solids, and radiation may originate somewhat below the surface, depending on the nature of the liquid.

The Distribution of Radiant Energy. A body at a given temperature will emit radiation of a whole range of wavelengths and not a single wavelength. This is attributed to the existence of an infinite variety of linear oscillators. The energy emitted at each wavelength can be determined through the use of a dispersing prism and thermopiles. Such measurements on a given body will produce curves as shown in Fig. 4.1 for each given temperature. The curves are plots of the intensities of the radiant energy $I_{\lambda} \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)$ (micron) against the wavelengths in microns λ as determined at numerous wavelengths and connecting points. For any given temperature each curve possesses a wavelength at which the amount of spectral energy given off is a maximum. For the same body at a lower temperature the maximum intensity of radiation is obviously less, but it is also significant that the wavelength at which the maximum occurs is longer. Since the curve for a single temperature depicts the amount of energy emitted for a single wavelength, the area under the curve must equal the sum of all the energy radiated by the body at all its wavelengths. The maximum intensity falls between $3 / 4$ and 400 microns, indicating that
red heat is a far better source of energy than white heat. Were it not for this fact, the near-white incandescent lamp would require more energy for illumination and give off uncomfortable quantities of heat.

When dealing with the properties of radiation, it is necessary to differentiate between two kinds of properties: monochromatic and total. A monochromatic property, such as the maximum values of I_{λ} in Fig. 4.1, refers to a single wavelength. A total property indicates that it is the

Fig. 4.1. Intensity of monochromatic radiation for a hot body at different temperatures.
algebraic sum of the monochromatic values of the property. Monochromatic radiation literally means "one color" or one wavelength, but experimentally it actually refers to a group or band of wavelengths, since wavelengths cannot be resolved individually. Monochromatic values are not important to the direct solution of engineering problems but are necessary for the derivation of basic radiation relationships.

The Emissive Power. The total quantity of radiant energy of all wavelengths emitted by a body per unit area and time is the total emissive power $E, \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)$. If the intensity of the radiant energy at any wavelength in Fig. 4.1 is $I_{\lambda}{ }^{\bullet} \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)$ (micron), the total emissive power is the area under the curve and may be computed by

$$
\begin{equation*}
E=\int_{0}^{\infty} I_{\lambda} d \lambda \tag{4.1}
\end{equation*}
$$

A relationship between I_{λ} and λ was the subject of many investigations both experimental and mathematical during the nineteenth century. Planck was the first to recognize the quantum nature of radiant energy and developed an equation which fits the spectral energy curve of Fig. 4.1 at any temperature. It is given by

$$
\begin{equation*}
I_{\Lambda}=\frac{C_{1} \lambda^{-5}}{e^{C_{2} \lambda T}-1} \tag{4.2}
\end{equation*}
$$

where $\quad I_{\lambda}=$ monochromatic intensity of emission, $\mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)$ (micron)
$\lambda=$ wavelength, microns
C_{1} and $C_{2}=$ constants with values 1.16×10^{8} and 25,740
$T=$ temperature of the body, ${ }^{\circ} \mathrm{R}$
Wien postulated another law known as Wien's displacement law, which states that the product of the wavelength of the maximum value of the monochromatic intensity of emission and the absolute temperature is a constant, or

$$
\begin{equation*}
\lambda T=2884 \text { micron }{ }^{\circ} \mathrm{R} \tag{4.3}
\end{equation*}
$$

Equation (4.3) may be derived from Eq. (4.2) as follows,

$$
\begin{gather*}
d I_{\lambda}=d\left(\frac{C_{1} \lambda^{-5}}{e^{c_{2} \lambda T}-1}\right)=0 \tag{4.4}\\
\left(-5 C_{1} \lambda^{-6}\right)\left(e^{c_{2} / \lambda T}-1\right)+C_{1} \lambda^{-5}\left(e^{c_{2} / \lambda T}\right) \frac{C_{2}}{\lambda^{2} T}=0 \\
\left(-5+\frac{C_{2}}{\lambda T}\right) e^{c_{2} / \lambda T}+5=0 \tag{4.5}
\end{gather*}
$$

By trial and error, the first term equals -5 when $\lambda T=2884$.
Spectral measurements of the radiation received on the earth's surface from the sun and allowing for absorption by the atmosphere indicate that the peak I_{λ} lies approximately at 0.25 micron, which is well in the ultraviolet. This accounts for the high ultraviolet content of the sun's rays and the predominance of blue in the visible portion of the spectrum. The location of the peak allows an estimation of the sun's temperature from Eq. (4.3) at $11,000^{\circ} \mathrm{F}$.

The Incidence of Radiant Energy : The Black Body. The preceding discussion has dealt with the generation of radiant energy. What happens when radiant energy fails upon a body? In the simple case of light it may be all or partially absorbed or reflected. If the receiving medium is transparent to the radiation, it will transmit some of the energy through itself. The same effects are applicable to radiant energy, and an energy balance about a receiver on which the total incident energy is unity is
given by

$$
\begin{equation*}
a+r+\tau=1 \tag{4.6}
\end{equation*}
$$

where the absorptivity a is the fraction absorbed, the reflectivity r the fraction reflected, and the transmissivity τ the fraction transmitted. The majority of engineering materials are opaque substances having zero transmissivities, but there are none which completely absorb or reflect all the incident energy. The substances having nearly complete or unit absorptivities are lampblack, platinum black, and bismuth black, absorbing 0.98 to 0.99 of all incident radiation.

If an ordinary body emits radiation to another body, it will have some of the emitted energy returned to itself by reflection. When Planck developed Eq. (4.2), he assumed that none of the emitted energy was returned, this was equivalent to an assumption that bodies having zero transmissivity also had zero reflectivity. This is the concept of the perfect black body and for which $a=1.0$.

Relationship between Emissivity and Absorptivity : Kirchhoff's Law. Consider a body of given size and shape placed within a hollow sphere of constant temperature, and assume that the air has been evacuated. After thermal equilibrium has been reached, the temperature of the body and that of the enclosure will be the same, inferring that the body is absorbing and radiating heat at identical rates. Let the intensity of radiation falling on the body be $I \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)$, the fraction absorbed a_{1}, and the total emissive power $E_{1} \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)$. Then the energy emitted by the body of total surface A_{1} is equal to that received, or

$$
\begin{align*}
E_{1} A_{1} & =I a_{1} A_{1} \tag{4.7}\\
E_{1} & =I a_{1} \tag{4.8}
\end{align*}
$$

If the body is replaced by another of identical shape and equilibrium is again attained,

$$
\begin{equation*}
E_{2}=I a_{2} \tag{4.9}
\end{equation*}
$$

If a third body, a black body, is introduced, then

$$
\begin{equation*}
E_{b}=I a_{b} \tag{4.10}
\end{equation*}
$$

But by definition the absorptivity of a black body is 1.0.

$$
\begin{equation*}
\frac{E_{1}}{a_{1}}=\frac{E_{2}}{a_{2}}=E_{b} \tag{4.11}
\end{equation*}
$$

or at thermal equilibrium the ratio of the total emissive power to the absorptivity for all bodies is the same. This is known as Kirchhoff's law. Since the maximum absorptivity of the black body is taken as 1.0 from Eq. (4.6), its reflectivity must be zero. Absolute values of the total
emissive power are not obtainable, but

$$
\begin{align*}
& E_{1}=a_{1} E_{b} \tag{4.12}\\
& E_{2}=a_{2} E_{b} \tag{4.13}\\
& \frac{E_{1}}{\overline{E_{b}}}=a_{1}=\epsilon_{1} \tag{4.14}\\
& \frac{E_{2}}{\overline{E_{b}}}=a_{2}=\epsilon_{2} \tag{4.15}
\end{align*}
$$

The use of the ratio of the actual emissive power to the black-body emissive power under identical conditions is the emissivity ϵ. Since it is the reference, the emissivity of the black body is unity. The emissivities of common materials cover a large range and are tabulated in Table 4.1. Emissivities are influenced by the finish or polish of the surface and increase with its temperature. Highly polished and white surfaces generally have lower values than rough or black surfaces. From Eq. (4.12) it can be seen that any body having a high emissivity as a radiator will have a high absorptivity when acting as a receiver. The usual statement is as follows: Good radiators make good absorbers.

Experimental Determination of the Emissivity. The experimental determination of the emissivities of materials is particularly difficult at high temperatures. The problems of maintaining a system free of conduction, convection, and a radiation-absorbing medium require careful analysis. A method is given here which is satisfactory for the measurement of emissivities in the range of room temperatures and might be applicable to the calculation of such problems as the loss of heat from a pipe to air by radiation alone. A hollow, opaque, internally blackened cylinder is maintained in a constant-temperature bath as shown in Fig. 4.2. A total radiation receiver is mounted by a bracket to the wall of the cylinder. The radiation receiver consists of a copper cylinder a, which is blackened on the inside and highly polished on the outside. Two extremely thin, blackened, and highly conducting copper discs b and b^{\prime} are mounted in the receiver for the purpose of absorbing radiation. By mounting the discs at equal distances from the top and bottom of the small cylinder, the angles α_{1} and α_{2} are equal and the discs have equal areas for receiving radiation. The lower disc receives radiation from the blackened constant-temperature walls of the vessel. The upper disc receives radiation from a plate of specimen material c which is electrically maintained at a fixed temperature. The two discs are wired together by a sensitive thermocouple so that they oppose each other, and only net differences in the quantity of radiation are measured by the galvanometer. By wiring them to oppose each other, any effects within the receiver itself are also canceled. If the galvanometer deflection for the specimen non-
black body is measured and then c is replaced by a perfect black body, the ratio of the two galvanometer deflections is the emissivity of the specimen. Data obtained in this manner are the normal total emissivity as given in Table 4.1. They may also be used in the solution of problems having hemispherical radiation except in the presence of highly polished surfaces.

Fig. 4.2. Apparatus for measuring emissivities.
Influence of Temperature on the Emissive Power: Stefan-Boltzmann Law. If a perfect black body radiates energy, the total radiation may be determined from Planck's law. Starting with the monochromatic blackbody equation

$$
I_{\lambda}=\frac{C_{1} \lambda^{-5}}{e^{C_{1} / \lambda T}-1}
$$

it may be applied to sum up all the energy by integration of the area under a curve in Fig. 4.1 or at a fixed temperature

$$
\begin{equation*}
E=\int_{0}^{\infty} \frac{C_{1} \lambda^{-5}}{e^{G_{2} \lambda T}-1} d \lambda \tag{4.16}
\end{equation*}
$$

Let $x=C_{2} / \lambda T, \lambda=C_{2} / T x, d \lambda=\left(-C_{2} / T x^{2}\right) d x$, from which

$$
\begin{equation*}
E_{\mathrm{b}}=-\frac{C_{1} T^{4}}{C_{2}^{4}} \int_{0}^{\infty} x^{3}\left(e^{x}-1\right)^{-1} d x \tag{4.17}
\end{equation*}
$$

Table 4.1. The Normal Total Emissiytty of Various Surfaces (Hottel) A. Metals and Their Oxides

Surface	$t,{ }^{\circ}{ }^{*}{ }^{*}$	Emissivity*
Aluminum		
Highly polished plate, 98.3 \% pure	440-1070	0.039-0.057
Polished plate......	73	0.040
Rough plate.	78	0.055
Oxidized at $1110^{\circ} \mathrm{F}$.	390-1110	0.11-0.19
Al-surfaced roofing.	100	0.216
Calorized surfaces, heated at $1110^{\circ} \mathrm{F}$		
Copper. .	390-1110	0.18-0.19
Steel. .	390-1110	0.52-0.57
Brass		
Highly polished.		
73.2 \% Cu, $26.7 \% \mathrm{Zn}$.	476-674	0.028-0.031
$62.4 \% \mathrm{Cu}, 36.8 \% \mathrm{Zn}, 0.4 \% \mathrm{~Pb}, 0.3 \% \mathrm{Al}$.	494-710	$0.033-0.037$
	530	0.030
Hard rolled, polished, but direction of polishing visible.	70	0.038
but somewhat attacked.... but traces of stearin from	73	0.043
polish left on	75	0.053
Polished	100-600	0.096-0.096
Rolled plate, natural surface.	72	0.06
Rubbed with coarse emery	72	0.20
Dull plate.	120-660	0.22
Oxidized by heating at $1110^{\circ} \mathrm{F}$.	390-1110	0.61-0.59
Chromium (see Nickel alloys for Ni-Cr steels)	100-1000	0.08-0.26
Copper		
Carefully polished electrolytic copper...	176	0.018
Commercial emeried, polished, but pits remaining	66	0.030
Commercial, scraped shiny but not mirrorlike. . . .	72	0.072
Polished. .	242	0.023
Plate, heated long time, covered with thick oxide		0.78
Plate heated at $1110^{\circ} \mathrm{F}$	390-1110	0.57-0.57
Cuprous oxide.	1470-2010	0.66-0.54
Molten copper	1970-2330	0.16-0.13
Gold..		
Pure, highly polished.	440-1160	0.018-0.035
Iron and steel		
Metallic surfaces (or very thin oxide layer)		
Electrolytic iron, highly polished.	350-440	0.052-0.064
Polished iron.	800-1880	$0.144-0.377$
Iron freshly emeried.	68	0.242
Cast iron, polished..	392	0.21
Wrought iron, highly polished.	100-480	0.28
Cast iron, newly turned.	72	0.435
Polished steel casting.	1420-1900	$0.52-0.56$
Ground sheet steel.	1720-2010	0.55-0.61
Smooth sheet iron.	1650-1900	$0.55-0.60$
Cast iron, turned on lathe.	1620-1810	$0.60-0.70$

Table 4.1. The Normal Total Emissivity of Various Surfaces (Hotiel).-
(Continued)

Surface	$t,{ }^{\circ} \mathrm{F} *$	Emissivity*
Iron and steel-(Continued)		
Iron plate, pickled, then rusted red.	68	0.612
Completely rusted.	67	0.685
Rolled sheet steel.	70	0.657
Oxidized iron.	212	0.736
Cast iron; oxidized at $1100^{\circ} \mathrm{F}$	390-1110	0.64-0.78
Steel, oxidized at $1100^{\circ} \mathrm{F}$.	390-1110	0.79-0.79
Smooth oxidized electrolytic iron.	260-980	0.78-0.82
Iron oxide.	930-2190	0.85-0.89
Rough ingot iron.	1700-2040	0.87-0.95
Sheet steel, strong, rough oxide layer.	75	0.80
Dense, shiny oxide layer	75	0.82
Cast plate, smooth	73	0.80
Rough.	73	0.82
Cast iron, rough, strongly oxidized	100-480	0.95
Wrought iron, dull oxidized.	70-680	0.94
Steel plate, rough.	100-700	0.94-0.97
High-temperature alloy steels (see Nickel alloys)		
Molten metal		
Cast iron.	2370-2550	0.29-0.29
Mild steel	2910-3270	0.28-0.28
Lead		
Pure (99.96\%), unoxidized	260-440	0.057-0.075
Gray oxidized.	75	0.281
Oxidized at $390^{\circ} \mathrm{F}$	390	0.63
Mercury. . .	32-212	0.09-0.12
Molybdenum filament	1340-4700	0.096-0.292
Monel metal, oxidized at $1110^{\circ} \mathrm{F}$.	390-1110	0.41-0.46
Nickel		
Electroplated on polished iron, then polished	74	0.045
Technically pure (98.9% Ni, +Mn), polished	440-710	0.07-0.087
Electroplated on pickled iron, not polished.	68	0.11
Wire.	368-1844	0.096-0.186
Plate, oxidized by heating at $1110^{\circ} \mathrm{F}$	390-1110	0.37-0.48
Nickel oxide.	1200-2290	0.59-0.86
Nickel alloys		
Chromnickel.	125-1894	0.64-0.76
Nickelin ($18-32 \mathrm{Ni} ; 55-68 \mathrm{Cu} ; 20 \mathrm{Zn}$), gray oxidized KA-2S alloy steel ($8 \% \mathrm{Ni}$; $18 \% \mathrm{Cr}$), light silvery, rough, brown, after heating. after 42 hr . heating at $980^{\circ} \mathrm{F}$.	70	0.262
	420-914	0.44-0.36
	420-980	0.62-0.73
NCT-3 alloy ($20 \mathrm{Ni} ; 25 \mathrm{Cr}$). Brown, splotched, oxidized from service.	420-980	0.90-0.97
NCT-6 alloy ($60 \mathrm{Ni} ; 12 \mathrm{Cr}$). Smooth, black, firm adhesive oxide coat from service	520-1045	0.89-0.82
Platinum		
Pure, polished plate.	440-1160	0.054-0.104
Strip.	1700-2960	0.12-0.17
Filament.	80-2240	0.036-0.192
Wire.	440-2510	0.073-0.182

Table 4.1. The Nohmal Total Emissivity of Various Surfaces (Hottel).(Continued)

Surface	$t,{ }^{\circ} \mathrm{F} *$	Emissivity*
Silver		
Polished, pure.	440-1160	0.0198-0.0324
Polished.	100-700	0.0221-0.0312
Steel (see Iron)		
Tantalum filament.	2420-5430	0.194-0.31
Tin, bright tinned iron sheet.	76	0.043 and 0.064
Tungsten		
Filament, aged.	80-6000	0.032-0.35
Filament.	6000	0.39
Zinc		
Commercial 99.1% pure, polished.	440-620	0.045-0.053
Oxidized by heating att $750^{\circ} \mathrm{F}$.	750	0.11
Galvanized sheet iron, fairly bright.	82	0.228
Galvanized sheet iron, gray oxidized.	75	0.276

B. Refractories, Building Materials, Paints, and Miscellaneous

Asbestos		
Board.	74	0.96
Paper	100-700	0.93-0.945
Brick		
Red, rough, but no gross irregularities.	70	0.93
Silica, unglazed, rough.	1832	0.80
Silica, glazed, rough.	2012	0.85
Grog brick, glazed.................................... (See Refractory materials)	2012	0.75
Carbon		
T-carbon (Gebruder Siemens) $0.9 \% \mathrm{ash}$.	260-1160	$0.81-0.79$
This started with emissivity at $260^{\circ} \mathrm{F}$ of 0.72 , but on heating changed to values given.		
Carbon filament.	1900-2560	0.526
Candle soot.	206-520	0.952
Lampblack-water-glass coating .	209-362	0.959-0.947
Same.	260-440	0.957-0.952
Thin layer on iron plate.	69	0.927
Thick coat.	68	0.967
Lampblack, 0.003 in. or thicker.	100-700	0.945
Enamel, white fused, on iron..	66	0.897
Glass, smooth....	72	0.937
Gypsum, 0.02 in. thick on smooth or blackened plate	70	0.903
Marble, light gray, polished.	72	0.931
Oak, planed.......................	70	0.895
Oil layers on polished nickel (lub. oil)	68	
Polished surface, alone............	. . .	0.045
+0.001 in. oil.;	0.27
+0.002 in. oil.		0.46
+0.005 in . oil.	. . .	0.72
o thick oil layer. .		0.82

Table 4.1. The Normal Total Emissivity of Various Surfaces (Hotiel). (Continued)

Surface	$t,{ }^{\circ}{ }^{*}$	Emissivity*
Oil layers on aluminum foil (linseed oil)		
Al foil.	212	$0.087 \dagger$
+1 coat oil.	212	0.561
+2 coats oil.	212	0.574
Paints, lacquers, varnishes		
Snow-white enamel varnish on rough iron plate.	73	0.906
Black shiny lacquer, sprayed on iron.	76	0.875
Black shiny shellac on tinned iron sheet	70	0.821
Black matte shellac.	170-295	0.91
Black lacquer.	100-200	0.80-0.95
Flat black lacquer	100-200	0.96-0.98
White lacquer.	100-200	0.80-0.95
Oil paints, 16 different, all colors.	212	0.92-0.96
Aluminum paints and lacquers		
$10 \% \mathrm{Al}, 22 \%$ lacquer body, on rough or smooth surface.	212	0.52
$26 \% \mathrm{Al}, 27 \%$ lacquer body, on rough or smooth surface.	212	0.3
Other Al paints, varying age and Al content.	212	$0.27-0.67$
Al lacquer, varnish binder, on rough plate.	70	0.39
Al paint, after heating to $620^{\circ} \mathrm{F}$.	300-600	0.35
Paper, thin		
Pasted on tinned iron plate.	66	0.924
Rough iron plate.	66	0.929 -
Black lacquered plate.	66	0.944
Plaster, rough lime.	50-190	0.91
Porcelain, glazed.	72	0.924
Quartz, rough, fused.	70	0.932
Refractory materials, 40 different	1110-1830	
Poor radiators.		$\left[\begin{array}{c}0.65 \\ 0.70 \\ 0.80\end{array}\right\}-0.75$
Good radiators.		$0.80\}-\{0.85$
		[0.85\} 0.90$]$
Roofing paper.	69	0.91
Rubber		
Hard, glossy plate.	74	0.945
Soft, gray, rough (reclaimed)	76	0.859
Serpentine, polished.	74	0.900
Water.	32-212	0.95-0.963

[^9]Expanding the term in parentheses,

$$
\begin{equation*}
E_{b}=-\frac{C_{1} T^{4}}{C_{2}^{4}} \int_{0}^{\infty} x^{3}\left(e^{-x}+e^{-2 x}+e^{-3 x}+e^{-4 x}+\cdots\right) d x \tag{4.18}
\end{equation*}
$$

Integrating each term and summing only the first four as significant,

$$
\begin{equation*}
E_{b}=\frac{C_{1} T^{4}}{C_{2}^{4}} \times 6.44 \tag{4.19}
\end{equation*}
$$

Evaluating constants,

$$
\begin{equation*}
E_{b}=0.173 \times 10^{-8} T^{4} \tag{4.20}
\end{equation*}
$$

Equation (4.20) being the area under a curve in Fig. 4.1 from $\lambda=0$ to $\lambda=\infty$ states that the total radiation from a perfect black body is proportional to the fourth power of the absolute temperature of the body. This is known as the Stefan-Boltzmann law. The constant 0.173×10^{-8} $\mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{R}^{4}\right)$ is known as the Stefan-Boltzmann constant, usually designated by σ. The equation was also deduced by Boltzmann from the second law of thermodynamics. Equation (4.20) serves as the principal relationship for the calculation of radiation phenomena and is to radiation what $Q=h A \Delta t$ is to convection. However, Eq. (4.20) was derived for a perfect black body. From Eq. (4.14) if a body is nonblack, the emissivity is the ratio E / E_{b} and E can! be written $E=E_{b} \epsilon$. Equation (4.20) becomes

$$
\begin{equation*}
E=\epsilon \sigma T^{4} \tag{4.21}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{Q}{A}=\epsilon \sigma T^{4} \tag{4.22}
\end{equation*}
$$

Exchange of Energy between Two Large Parallel Planes. Quantitative considerations so far have dealt with the energy change when radiation occurs only from a single body, and it has been assumed that energy once radiated is no longer returned to its source. This is true only if one black body radiates to another black body with no medium between them . or no absorption occurs by the medium between them. Of the gases, chlorine, hydrogen, oxygen, and nitrogen are classified as nonabsorbing. Carbon monoxide, carbon dioxide, and organic gases and vapors are absorbing to greater or lesser extents. From earlier discussions it should be conceded that radiation from a small plate proceeds outwardly in a hemisphere with the plate as center and that the radiation incident upon unit area of a body at great distance is very small. In radiation it is necessary to qualify the condition under which all the radiation from the source is completely received by the receiver. It will occur if two plates.
or radiant planes are infinitely large, so that the amount of radiation which fans out from the edges of the source and over the edges of the receiver is insignificant. If both of the plates or planes are black bodies, the energy from the first is $E_{b 1}=\sigma T_{1}^{4}$ and from the second $E_{b 2}=\sigma T_{2}^{4}$. By the definition of a black body, all the energy it receives is absorbed and the net exchange per square foot between two planes maintained at constant temperatures is

$$
\begin{align*}
\frac{Q}{A} & =E_{b 1}-E_{b 2}=\sigma\left(T_{1}^{4}-T_{2}^{4}\right) \tag{4.23}\\
& =0.173\left[\left(\frac{T_{1}}{100}\right)^{4}-\left(\frac{T_{2}}{100}\right)^{4}\right] \tag{4.24}
\end{align*}
$$

Example 4.1. Radiation between Two Large Planes. Two very large walls are at the constant temperature of 800 and $1000^{\circ} \mathrm{F}$. Assuming they are black bodies, how much heat must be removed from the colder wall to maintain a constant temperature?

Solution:

$$
\begin{aligned}
& T_{1}=1000+460=1460^{\circ} \mathrm{R} \quad T_{2}=800+460=1260^{\circ} \mathrm{R} \\
& \frac{Q}{A}=0.173\left[(14.6)^{4}-(12.6)^{4}\right]=3,500 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)
\end{aligned}
$$

Exchange of Energy between Two Parallel Planes of Different Emissivity. The preceding discussion applied to black bodies. If the two planes are not black bodies and have different emissivities, the net exchange of energy will be different. Some of the energy emitted from the first plane will be absorbed, and the remainder radiated back to the source. For two walls of infinite size the radiation of each wall can be traced. Thus if energy is emitted by the first wall per square foot of an amount E_{1} and emissivity ϵ_{1}, the second wall will absorb $E_{1} \epsilon_{2}$ and reflect $1-\epsilon_{2}$ of it. The first wall will then again radiate but in the amount $E_{1}\left(1-\epsilon_{2}\right)\left(1-\epsilon_{1}\right)$. The changes at the two planes are

> Hot plane Radiated: E_{1} Returned: $E_{1}\left(1-\epsilon_{2}\right)$ Radiated: $E_{1}\left(1-\epsilon_{2}\right)\left(1-\epsilon_{1}\right)$ Returned: $E_{1}\left(1-\epsilon_{2}\right)\left(1-\epsilon_{1}\right)\left(1-\epsilon_{2}\right)$ $$
\text { Cold plane }
$$ Radiated: E_{2} Returned: $E_{2}\left(1-\epsilon_{1}\right)$ Radiated: $E_{2}\left(1-\epsilon_{1}\right)\left(1-\epsilon_{2}\right)$ Returned: $E_{2}\left(1-\epsilon_{1}\right)\left(1-\epsilon_{2}\right)\left(1-\epsilon_{1}\right)$

and

$$
\begin{align*}
\frac{Q}{A}= & {\left[E_{1}-E_{1}\left(1-\epsilon_{2}\right)-E_{1}\left(1-\epsilon_{2}\right)\left(1-\epsilon_{2}\right)^{2}\right.} \\
& \left.-E_{1}\left(1-\epsilon_{2}\right)\left(1-\epsilon_{1}\right)^{2}\left(1-\epsilon_{2}\right)^{2}+\cdots\right]-\left[\epsilon_{1} E_{2}\right. \\
& \left.-\epsilon_{1} E_{2}\left(1-\epsilon_{1}\right)\left(1-\epsilon_{2}\right)-\epsilon_{1} E_{2}\left(1-\epsilon_{1}\right)^{2}\left(1-\epsilon_{2}\right)^{2}+\cdots\right] \tag{4.25}
\end{align*}
$$

E_{1} is given by $\epsilon_{1} \sigma T_{1}^{4}, E_{2}$ by $\epsilon_{2} \sigma T_{2}^{4}$, and Eq. (4.25) is a series whose solution is

$$
\begin{equation*}
\frac{Q}{A}=\frac{\sigma}{\left(1 / \epsilon_{1}\right)+\left(1 / \epsilon_{2}\right)-1}\left(T_{1}^{4}-T_{2}^{4}\right) \tag{4.26}
\end{equation*}
$$

Example 4.2. Radiation between Planes with Different Emissivities. If the two walls in Example 4.1 have emissivities of 0.6 and 0.8, respectively, what is the net exchange?
Solution:

$$
\frac{Q}{A}=\frac{0.173}{(1 / 0.6)+(1 / 0.8)-1}\left[(14.6)^{2}-(12.6)^{2}\right]=1825 \mathrm{Btu} /(\mathrm{hr})(\mathrm{ft} 2)
$$

Fra. 4.3. Radiation with a shield.

For perfect black bodies the value was $3500 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)$.
Radiation Intercepted by a Shield. Suppose two infinite and parallel planes are separated by a third plane which is opaque to direct radiation between the two and which is extremely thin (or has infinite thermal conductivity) as shown in Fig. 4.3. The net exchange between the two initial planes is given by Eq. (4.26).

$$
\begin{equation*}
Q=\frac{\sigma A}{\left(1 / \epsilon_{1}\right)+\left(1 / \epsilon_{3}\right)-1}\left(T_{1}^{4}-T_{3}^{4}\right) \tag{4.27}
\end{equation*}
$$

If $\epsilon_{1}=\epsilon_{3}$ but $\epsilon_{1} \ngtr \epsilon_{2}$, the net exchange from 1 to 3 is given by

$$
\begin{equation*}
Q_{1}=\frac{\sigma A}{\left(1 / \epsilon_{1}\right)+\left(1 / \epsilon_{2}\right)-1}\left(T_{1}^{4}-T_{2}^{4}\right)=\frac{\sigma A}{\left(1 / \epsilon_{2}\right)+\left(1 / \epsilon_{3}\right)-1}\left(T_{2}^{4}-T_{8}^{4}\right) \tag{4.28}
\end{equation*}
$$

from which

$$
\begin{equation*}
T_{2}^{4}=1 / 2\left(T_{1}^{4}+T_{5}^{4}\right) \tag{4.29}
\end{equation*}
$$

Then

$$
\begin{equation*}
Q_{1}=\frac{\sigma A}{\left(1 / \epsilon_{1}\right)+\left(1 / \epsilon_{2}\right)-1} \frac{1}{2}\left(T_{1}^{4}-T_{3}^{4}\right) \tag{4.30}
\end{equation*}
$$

When $\epsilon_{1}=\epsilon_{2}, Q_{1}=1 / 2 Q$, and for the simple case where n shields are employed, each having the same emissivities as the initial planes,

$$
Q_{n}=\frac{1}{n+1} Q
$$

where Q is the exchange if the initial planes were not separated.
Spheres or Cylinders with Spherical or Cylindrical Enclosures. The radiation between a sphere and an enclosing sphere of radii r_{1} and r_{2} may be treated in the same manner as Eq. (4.26). The radiation emitted initially by the inner sphere is $E_{1} A_{1}$, all of which falls on A_{2}. Of this total, however, $\left(1-\epsilon_{2}\right) E_{1} A_{1}$ is reflected of which $\left(\frac{r_{1}}{r_{2}}\right)^{2}\left(1-\epsilon_{2}\right) E_{1} A_{1}$ falls on A_{1} and $\left[1-\left(\frac{r_{1}}{r_{2}}\right)^{2}\right]\left(1-\epsilon_{2}\right) E_{1} A_{1}$ falls on A_{2}. If this analysis is continued as before, the energy exchange will again be represented by a geometrical series and the net exchange between the inner and outer sphere is given by

$$
\begin{equation*}
Q=\frac{\sigma A_{1}}{\frac{1}{\epsilon_{1}}+\left(\frac{r_{1}}{r_{2}}\right)^{2}\left(\frac{1}{\epsilon_{2}}-1\right)}\left(T_{1}^{4}-T_{2}^{4}\right)=\frac{\sigma A_{1}}{\frac{1}{\epsilon_{1}}+\frac{A_{1}}{A_{2}}\left(\frac{1}{\epsilon_{2}}-1\right)}\left(T_{1}^{4}-T_{2}^{4}\right) \tag{4.31}
\end{equation*}
$$

The same relation will be seen to hold for infinitely long concentric cylinders except that A_{1} / A_{2} is r_{1} / r_{2} instead of r_{1}^{2} / r_{2}^{2}.

Radiation of Energy to a Completely Absorbing Receiver. In Example 2.5, calculations were made on the loss of heat from a pipe to air. When a heat source is small by comparison with the enclosure it is customary to make the simplifying assumption that none of the heat radiated from the source is reflected to it. In such cases, Eq. (4.26) reduces to

$$
\begin{equation*}
\frac{Q}{A_{1}}=\epsilon_{1} \sigma\left(T_{1}^{4}-T_{2}^{4}\right) \tag{4.32}
\end{equation*}
$$

Sometimes it is convenient to represent the net effect of the radiation in the same form employed in convection; namely,

$$
\begin{equation*}
Q=h_{r} A_{1}\left(T_{1}-T_{2}\right) \tag{4.33}
\end{equation*}
$$

where h_{r} is a fictitious film coefficient representing the rate at which the radiation passes from the surface of the radiator. The values of Q in Eqs. (4.32) and (4.33) are identical, but the value in Eq. (4.32) is related to the mechanism by which the heat was transferred. Eq. (4.33) is a statement of the heat balance as applied before in the Fourier equation to conduction and convection. Fishenden and Saunders ${ }^{1}$ have treated a number of interesting aspects of the subject.
${ }^{1}$ Fishenden, M., and O. A. Saunders, "The Calculation of Heat Transmission," His Majesty's Stationery Office, London, 1932.

Example 4.3. Calculation of Radiation from a Pipe. In Example 2.5 the outside temperature of a lagged pipe carrying steam at $300^{\circ} \mathrm{F}$ was $125^{\circ} \mathrm{F}$ and the surrounding atmosphere was at $70^{\circ} \mathrm{F}$. The heat loss by free convection and radiation was 103.2 $\mathrm{Btu} /(\mathrm{hr})(\mathrm{lin} \mathrm{ft})$, and the combined coefficient of heat transfer was $2.10 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)$ $\left({ }^{\circ} \mathrm{F}\right)$. How much of the heat loss was due to radiation, and what was the equivalent coefficient of heat transfer for the radiation alone?

$$
\text { Area/lin } \mathrm{ft}=\pi \times \frac{3.375}{12} \times 1=0.88 \mathrm{ft}^{2}
$$

From Table 4.1B, the emissivity is approximately 0.90 .

$$
\begin{aligned}
T_{1}=125+460=585^{\circ} \mathrm{R} & T_{2}=70+460=530^{\circ} \mathrm{R} \\
q & =0.90 \times 0.88 \times 0.173\left[(585 / 100)^{4}-(53 \% 100)^{4}\right]=52.5 \mathrm{Btu} /(\mathrm{hr})(\mathrm{lin} \mathrm{ft}) \\
h_{r} & =\frac{Q}{A\left(T_{1}-T_{2}\right)}=\frac{52.5}{0.88(125-70)}=1.08 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft} \mathrm{t}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)
\end{aligned}
$$

Exchange of Energy between Any Source and Any Receiver. The three preceding illustrations have been extremely limited. The study of two planes was directed only to sources and receivers which were infinitely large so that every point on one plane could be connected with every point on the second and no radiation from the one "leaked" past the other and out of the system. A slighly more complex arrangement can be achieved between two concentric spheres or two concentric cylinders. In either of these all the radiation from the source may be seen to fall on the receiver. But this is very rarely the case in practical engineering problems, particularly in the design of furnaces. The receiving surface, such as the banks of tubes, is cylindrical and may partially obscure some of the surface from "seeing" the source. In a system composed of walls and pipes

Frg. 4.4. Radiation between two plates. running in different arrangements the geometry by which the radiation falls on the surfaces and the manner in which these surfaces reflect their energy are difficult to evaluate. The simplest elements are treated here, but many practical applications require the empirical methods of Chap. 19.

Consider the arrangement of two radiating plates at temperatures T_{1} and T_{2} as shown in Fig. 4.4. The two plates are not face-to-face and therefore have only an askance view of each other. The lower plate, represented isometrically in the horizontal plane, radiates in all directions upward and outward. Some of the radiation from the surface of the hot plate, $d A_{1}$ falls upon the second plate but not perpendicular to it. The second plate $d A_{2}$ will
reflect some of the incident energy, but only a part of it will return to the first plate. What is the net exchange of energy between the two?

The lines eo and $e^{\prime} o^{\prime}$ are perpendiculars to the two plates, respectively, on their mutually exposed surfaces. The length of the shortest line joining the two plates at their centers is r. When viewed from o^{\prime}, a foreshortened picture of $d A_{1}$ is obtained. Instead of isometrically, the plate $d A_{1}$ may be viewed from its end as in Fig. 4.5, where $d A_{2}$ is assumed perpendicular to the plane of the paper for simplicity, the line $a b$ represents a side of $d A_{1}$, and the line $a^{\prime} b$ represents the width of $a b$ in the view obtained from o^{\prime}. Since eo and $o o^{\prime}$ are mutually perpendicular to its

Fig. 4.5. Section view between two plates.

Fig. 4.6. Solid angle.
sides, angle $a b a^{\prime}$ must equal α_{1} and the side $a^{\prime} b$ corresponding to $d A_{1}^{\prime}$ is $d A_{1}^{\prime}=d A_{1} \cos \alpha_{1}$. For the second plate, $d A_{2}^{\prime}=d A_{2} \cos \alpha_{2}$. The center of surface $d A_{2}^{\prime}$ may be considered to lie in the hemisphere receiving radiation from $d A_{1}$, and the quantity falling on a surface in the hemisphere consequently diminishes with the square of the radius. If both are black bodies, the radiation from plate 1 to plate 2 is proportional to the normal surfaces exposed to each other and inversely to the square of the distance between them.

$$
\begin{equation*}
d Q_{1-2}=\frac{I_{1}}{r^{2}} d A_{1}^{\prime} d A_{2}^{\prime} \tag{4.34}
\end{equation*}
$$

where I_{1} is the proportionality constant dimensionally equal to the intensity of radiation. Substituting the original surfaces,

$$
\begin{equation*}
d Q_{1-2}=\frac{I_{1}}{r^{2}} \cos \alpha_{1} \cos \alpha_{2} d A_{1} d A_{2} \tag{4.35}
\end{equation*}
$$

An important relationship exists between the intensity I_{1} and the emissive power E. In Fig. 4.6 let $d \omega_{1}$ be the solid angle which is by definition the intercepted area on a sphere divided by $r^{2} . d A_{1}$ is a small plate in
the center of the isometric plane of the base. Then

$$
\begin{align*}
d \omega_{1} & =\frac{d A_{2}^{\prime}}{r^{2}}=\frac{r \sin \alpha d \beta r d \alpha}{r^{2}} \\
& =\sin \alpha d \alpha d \beta \tag{4.36}
\end{align*}
$$

From Eqs. (4.35), (4.35a), and (4.36),

$$
\begin{align*}
\frac{d Q}{d A} & =E_{b}=I_{1} \int_{0}^{\pi / 2} \sin \alpha \cos \alpha d \alpha \int_{0}^{2 \pi} d \beta \\
& =I_{1} \pi \tag{4.37}\\
I_{1} & =\frac{E_{b}}{\pi}=\frac{\sigma T^{4}}{\pi} \tag{4.38}
\end{align*}
$$

Substituting Eq. (4.38) in Eq. (4.35) the net exchange between T_{1} and T_{2} is

$$
\begin{equation*}
d Q=\frac{\cos \alpha_{1} \cos \alpha_{2} d A_{1} d A_{2}}{\pi r^{2}} \sigma\left(T_{1}^{4}-T_{2}^{2}\right) \tag{4.39}
\end{equation*}
$$

If $\cos \alpha_{1} \cos \alpha_{2} d A_{2} / \pi r^{2}$ is written F_{A}, F_{A} is known as the configuration or geometrie factor. For some systems it is very difficult to derive, but for

Fig. 4.7. Radiation between parallel planes. (Hottel.)
several basic arrangements it is fairly simple. Hottel ${ }^{1}$ has integrated a number of eases, the commonest of which are plotted in Figs. 4.7, 4.8 and 4.9. Equation (4.39) can thus be written in integrated form

$$
\begin{equation*}
Q=F_{A} A_{1} \sigma\left(T_{\mathbf{1}}^{4}-T_{2}^{4}\right) \tag{4.40}
\end{equation*}
$$

${ }^{1}$ Hottel, H. C., Mech. Eng., 52, 699 (1930).

Fig. 4.8. Radiation between an element and a parallel plane. (Hottel.)

Fig. 4.9. Radiation between perpendicular planes. (Hottel.)

If the two surfaces are gray and therefore nonblack, from Eq. (4.26)

$$
\begin{equation*}
Q=\frac{F_{A} A_{1} \sigma}{\left(1 / \epsilon_{1}\right)+\left(1 / \epsilon_{2}\right)-1}\left(T_{1}^{4}-T_{2}^{4}\right) \tag{4.41}
\end{equation*}
$$

Writing F_{ϵ} for the emissivity correction, Eq. (4.41) becomes

$$
\begin{equation*}
Q=F_{A} F_{c}^{\prime} A_{1} \sigma\left(T_{1}^{4}-T_{2}^{4}\right) \tag{4.42}
\end{equation*}
$$

The summary in Table 4.2 gives the values of F_{A} and F_{ϵ} for a number of the common cases derived here and elsewhere.

Table 4.2. Values of F_{A} and F_{ϵ}

	F_{i}	F_{t}
(a) Surface A_{1} small compared with the totally enclosing surface A_{2}	1.	ϵ_{1}
(b) Surfaces A_{1} and A_{2} of parallel dises squares, 2:1 rectangles, long rectangles	Fig. 4.7	$\epsilon_{1} \epsilon_{2}$
(c) Surface $d A_{1}$ and parallel rectangular surface A_{2} with one corner of rectangle above $d A_{1}$	Fig. 4.8	$\epsilon_{1} \epsilon_{2}$
(d) Surfaces A_{1} or A_{2} of perpendicular rectangles having a common side	Fig. 4.9	ϵ_{1}
(e) Surfaces A_{1} and A_{2} of infinite parallel planes or surface A_{1} of a completely enclosed body is small compared		1
with A_{2} (f) Concentric spheres or infinite concentric cylinders with surfaces \boldsymbol{A}_{1}	1	$\begin{gathered} \left(\frac{1}{\epsilon_{1}}+\frac{1}{\epsilon_{2}}\right)-1 \\ 1 \end{gathered}$
and A_{2}	1	$\overline{\frac{1}{\epsilon_{1}}+\frac{A_{1}}{A_{2}}\left(\frac{1}{\epsilon_{2}}-1\right)}$

Example 4.4. Radiation from a Pipe to a Duct. Calculate the radiation from a 2 -in. IPS steel pipe carrying steam at $300^{\circ} \mathrm{F}$ and passing through the center of a 1- by $1-\mathrm{ft}$ galvanized sheet-iron duct at $75^{\circ} \mathrm{F}$ and whose outside is insulated.

Solution. From Table 11 in the Appendix $A=0.622 \mathrm{ft}^{2}$ of external surface per linear foot of pipe. The emissivity of oxidized steel from Table 4.1 is $\epsilon_{1}=0.79$.
The surface of the duct is $A_{2}=4(1 \times 1)=4.0 \mathrm{ft}^{2} / \mathrm{lin} \mathrm{ft}$.
The surface of the pipe is not negligible by comparison with that of the duct, and (f) of Table 4.2 applies most nearly.

$$
\begin{align*}
\epsilon_{2} & =0.276 \text { (oxidized zinc in Table 4.1) } \\
F_{A} & =1 \tag{Table4.2}\\
F_{G} & =\frac{1}{\frac{1}{\epsilon_{1}}+\frac{A_{1}}{A_{2}}\left(\frac{1}{\epsilon_{2}}-1\right)}=\frac{1}{\frac{1}{0.79}+\frac{0.622}{4.0}\left(\frac{1}{0.276}-1\right)}=0.60 \tag{Table4.1}\\
Q & =F_{A} F_{A} A \sigma\left(T_{1}^{4}-T_{2}^{4}\right) \tag{4.42}\\
& =1 \times 0.60 \times 0.622 \times 0.173 \times 10^{-8}\left(760^{4}-535^{4}\right) \\
& =164 \mathrm{Btu} /(\mathrm{hr})(\operatorname{lin} \mathrm{ft})
\end{align*}
$$

PROBLEMS

4.1. A 2 -in. TPS steel pipe carries steam at $325^{\circ} \mathrm{F}$ through a room at $70^{\circ} \mathrm{F}$. What decrease in radiation occurs if the bare pipe is coated with 26 per cent aluminum paint?
4.2. One wall of a corridor 8 by 28 by $4 . f t$ wide between a drying chamber and an outside wall of the building is at $200^{\circ} \mathrm{F}$, and the 8 - by 28 - ft wall of the building will be at $40^{\circ} \mathrm{F}$ during normal winter weather. What will be the heat passing across the corridor in winter if the drying chamber is surfaced with unglazed silica brick and the building wall is plastered?
4.3. A chamber for heat-curing steel sheets lacquered black on both sides operates by passing the sheets vertically between two steel plates 6 ft apart. One of the plates is at $600^{\circ} \mathrm{F}$, and the other, exposed to the atmosphere, is at $80^{\circ} \mathrm{F}$. What heat is transferred between the walls, and what is the temperature of the lacquered sheet when equilibrium has been reached?
4.4. A $3-\mathrm{in}$. IPS lagged pipe carries steam at $400^{\circ} \mathrm{F}$ through a room at $70^{\circ} \mathrm{F}$. The lagging consists of a $1 / 2$-in. thick layer of asbestos. The use of an overcoat of 26 per cent aluminum paint is to be investigated. What percentage savings in heat loss can be effected?
4.5. A molten organic compound is carried in the smaller of two concentric steel pipes $2-$ and 3 -in. IPS. The annulus can be flooded with.steam to prevent solidification, or the liquid can be heated somewhat and circulated without steam so that the annulus acts as an insulator. If the molten fluid is at $400^{\circ} \mathrm{F}$ and the outer pipe is at room temperature ($80^{\circ} \mathrm{F}$), what heat loss occurs from the molten material in 40 lin ft of pipe?
4.6. Calculate the radiant-heat loss from a furnace through a 2 -in.-diameter peep door when the inside temperature is $1750^{\circ} \mathrm{F}$ and the outside temperature is $70^{\circ} \mathrm{F}$. Consider the emission due to a black body.
4.7. A bare concrete pump house 10 by 20 by 10 ft high is to be heated by pipes laid in the concrete floor. Hot water is to be used as the heating medium to maintain a floor surface temperature of $78^{\circ} \mathrm{F}$. The walls and ceiling are of such thickness as to maintain temperatures of $62^{\circ} \mathrm{F}$ on all inside surfaces in the winter. (a) What is the rate of radiation between the floor and the ceiling if the walls are considered nonconducting and reradiating? The pumps cover a negligible area of the floor. (b) What additional heat will be required if the foor area is doubled by enlarging the room to 20 by 20 ft ?
4.8. A bath of molten zinc is located in the corner of the floor of a zine dipping room 20 by 20 by 10 ft high. Zine melts at $787^{\circ} \mathrm{F}$, and the ceiling could be maintained at $90^{\circ} \mathrm{F}$ in the summer by conduction through the roof. (a) What heat will be radiated from a $1-\mathrm{ft}^{2}$ bath? (b) If the bath is moved to the center of the room, what heat will be radiated?

NOMENCLATURE FOR CHAPTER 4

A Heat-transfer of emitting or absorbing surface, ft^{2}
$A^{\prime} \quad$ Effective surface, $\mathrm{ft} \mathrm{t}^{2}$
a Absorptivity, dimensionless
C_{1}, C_{2} Constants in Planck's Law
E Emissive power, Btu/(hr)(ft²)
$F_{A} \quad$ Geometric factor, dimensionless
$F_{\varepsilon} \quad$ Emissivity factor, dimensionless
$h_{r} \quad$ Heat-transfer coefficient equivalent to radiation, $\mathrm{Btu} /(\mathrm{hr})\left(\mathrm{tt}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$

```
I Intensity of radiation, Btu/(hr)(ft)
I
n Number of radiation shields
Q Heat flow or net heat exchange, Btu/(hr)
r Reflectivity, dimensionless; radius, ft
T Temperature, ' }\textrm{R
\alpha,\beta,\omega Angle, deg
\epsilon Emissivity, dimensionless
\lambda Wavelength, microns
\sigma Stefan-Boltzmann constant, 0.173 > 10-8 Btu/(hr)(ft')(% }\mp@subsup{}{}{4}\mp@subsup{}{}{4}
T Transmissivity, dimensionless
```


Subscripts

b Black body
1 Source
2 Receiver

CHAPTER 5

TEMPERATURE

The Temperature Difference. A temperature difference is the driving force by which heat is transferred from a source to a receiver. Its influence upon a heat-transfer system which includes both a source and a receiver is the immediate subject for study.

In the experimental data of Chap. 3 the temperature of the inside pipe wall t_{p} was calculated from the reported value of the outside pipe-wall temperature t_{w}. The logarithmic mean of the differences $t_{p}-t_{1}$ and $t_{p}-t_{2}$ was used to calculate Δt_{i}. The reported temperature of the pipe was the average of a number of thermocouples which were not actually constant over the length of the pipe. It is not ordinarily possible in industrial equipment to measure the average pipe-wall temperature. Only the inlet and outlet temperatures of the hot and cold fluids are known or can be measured, and these are referred to as the process temperatures. ${ }^{1}$

Plots of temperature vs. pipe length, t vs. L, for a system of two concentric pipes in which the annulus fluid is cooled sensibly and the pipe fluid heated sensibly are shown in Figs. 5.1 and 5.2. When the two fluids travel in opposite directions along a pipe as in Fig. 5.1, they are in counterflow. Figure 5.1 can be compared with Fig. 3.6 to which it is similar except that one is a plot of $t \mathrm{vs} . L$ and the other is a plot of $t \mathrm{vs} . Q$, the heat transferred. When the fluids travel in the same direction as in Fig. 5.2, they are in parallel flow. The temperature of the inner pipe fluid in either case varies according to one curve as it proceeds along the length of the pipe, and the temperature of the annulus fluid varies according to

[^10]another. The temperature difference at any length from the origin where $L=0$ is the vertical distance between the two curves.

Overall Coefficient of Heat Transfer. The concentric pipes in Figs. 5.1 and 5.2 bring together two streams each having a particular film coefficient and whose temperatures vary from inlet to outlet. For convenience, the method of calculating the temperature difference between the two should employ only the process temperatures, since these alone are generally known. To establish the temperature difference in this manner between some general temperature T of a hot fluid and some general temperature t of a cold fluid, it is necessary to account also for all the resistances between the two temperatures. In the case of two con-

Fig. 5.1. Counterflow.

Fig. 5.2. Parallel flow.
centric pipes, the inner pipe being very thin, the resistances encountered are the pipe fluid-film resistance, the pipe-wall resistance, L_{m} / k_{m}, and the annulus fluid-film resistance. Since Q is equal to $\Delta t / \Sigma R$ as before,

$$
\begin{equation*}
\Sigma R=\frac{1}{h_{i}}+\frac{L_{m}}{k_{m}}+\frac{1}{h_{o}} \tag{5.1}
\end{equation*}
$$

where ΣR is the overall resistance. It is customary to substitute $1 / U$ for ΣR where U is called the overall coefficient of heat transfer. Inasmuch as a real pipe has different areas per linear foot on its inside and outside surfaces, h_{i} and h_{o} must be referred to the same heat-flow area or they will not coincide per unit length. If the outside area A of the inner pipe is used, then h_{i} must be multiplied by A_{i} / A to give the value that h_{i} would have if originally calculated on the basis of the larger area A instead of A_{i}. For a pipe with a thick wall Eq. (5.1) becomes
$\frac{1}{U}=\frac{1}{h_{i}\left(A_{i} / A\right)}+\frac{2.3 D_{o}}{2 k_{m}} \log \frac{D_{o}}{D_{i}}+\frac{1}{h_{o}}=\frac{1}{h_{i}\left(D_{i} / D_{o}\right)}+\frac{2.3 D_{o}}{2 k_{m}} \log \frac{D_{o}}{D_{i}}+\frac{1}{h_{o}}$
The integrated steady-state modification of Fourier's general equation may then be written

$$
\begin{equation*}
Q=U A \Delta t \tag{5.3}
\end{equation*}
$$

where Δt is the temperature difference between the two streams for the entire surface A. Using the simplification that the thin metal pipe-wall resistance is negligible, Eq. (5.2) becomes

$$
\begin{equation*}
\frac{1}{\widetilde{U}}=\frac{1}{h_{i}\left(A_{i} / A\right)}+\frac{1}{h_{0}} \tag{5.4}
\end{equation*}
$$

Hereafter Eq. (5.3) will be referred to simply as the Fourier equation. Just as h_{i} was obtained from $h_{i}=Q / A_{i} \Delta t_{i}$ in Eq. (3.2) using thermocouples, so U can be obtained from $U=Q / A \Delta t$ using process temperatures alone. In experiments involving sensible heat transfer between two fluids, Eqs. (5.2) and (5.4) can be used to obtain either individual film coefficient from the overall coefficient U only if some supplementary means are available for computing the other film coefficient. Fortunately, the condensation of steam can provide a negligible resistance, so that h_{i} or h_{o} can usually be determined individually with suitable accuracy from an experiment using either of the fluids and steam.

Equation (5.3) is of particular value in design when the individual film coefficients can both be calculated through the use of equations of the types obtained by dimensional analysis such as Eq. (3.26) or (3.32), and U can be solved for accordingly. Then Eq. (5.3) is used in computing the total area, or length of path required when Q is given and Δt is calculated from the process temperatures. When the process temperatures of the two respective streams are given, the total heat transfer $Q \mathrm{Btu} / \mathrm{hr}$ is also given, being computed from $Q=w c\left(t_{2}-t_{1}\right)=W C\left(T_{1}-T_{2}\right)$.

The Controlling Film Coefficient. When the resistance of the pipe metal is small by comparison with the sum of the resistances of both film coefficients, and it usually is, it may be neglected. If one film coefficient is small and the other very large, the small coefficient provides the major resistance and the overall coefficient of heat transfer for the apparatus is very nearly the reciprocal of the major resistance. Suppose $h_{i}\left(A_{i} / A\right)=10$ and $h_{o}=1000 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right) R_{i}=1 / 10=0.1, R_{o}=1 / 1000=0.001$, and $\Sigma R=0.101$. A variation of 50 per cent in R_{o} does not materially influence Q, since a value of $h_{o}=500$ will change ΣR only from 0.101 to 0.102 . When a significant difference exists, the smaller coefficient is the controlling film coefficient.

Logarithmic Mean Temperature Difference: Counterflow. Generally both fluids undergo temperature variations which are not straight lines when temperatures are plotted against length as in Figs. 5.1 and 5.2. At every point $T-t$ between the two streams differs, yet this should lead to the same result as Eq. (3.36), in which the logarithmic mean temperature difference was obtained from a study of $T-t \mathrm{vs}$. Q. However, there is an advantage to a derivation based on $T-t$ vs. L, since it permits
identification of the temperature difference anywhere along the pipe length. Later, when more complex flow patterns are encountered, this information will be essential. Although two fluids may transfer heat in a concentric pipe apparatus in either counterflow or parallel flow, the relative direction of the two fluids influences the value of the temperature difference. This point cannot be overemphasized: Any flow pattern formed by two fluids must be identified with its unique temperature difference. For the derivation of the temperature difference between the two fluids of Fig. 5.1 in counterflow, the following assumptions must be made:

1. The overall coefficient of heat transfer U is constant over the entire length of path.
2. The pounds per hour of fluid flow is constant, obeying the steadystate requirement.
3. The specific heat is constant over the entire length of path.
4. There are no partial phase changes in the system, i.e., vaporization or condensation. The derivation is applicable for sensible-heat changes and when vaporization or condensation is isothermal over the whole length of path.
5. Heat losses are negligible.

Applying the differential form of the steady-state equation,

$$
\begin{equation*}
d Q=U(T-t) a^{\prime \prime} d L \tag{5.5}
\end{equation*}
$$

where $a^{\prime \prime}$ is the square feet of surface per foot of pipe length or

$$
a^{\prime \prime} d L=d A
$$

From a differential heat balance

$$
\begin{equation*}
d Q=W C d T=w c d t \tag{5.6}
\end{equation*}
$$

where Q is the limit as $d Q$ varies from 0 to Q. At any point in the pipe from left to right the heat gained by the cold fluid is equal to that given up by the hot fluid. Taking a balance from $L=0$ to $L=X$

$$
\begin{equation*}
W C\left(T-T_{2}\right)=w c\left(t-t_{1}\right) \tag{5.7}
\end{equation*}
$$

from which

$$
\begin{equation*}
T=T_{2}+\frac{w c}{W C}\left(t-t_{1}\right) \tag{5.8}
\end{equation*}
$$

From Eqs. (5.5) and (5.6) substituting for T,

$$
d Q=w c d t=U\left[T_{2}+\frac{w c}{W C}\left(t-t_{1}\right)-t\right] a^{\prime \prime} d L
$$

t and L are the only variables. Collecting terms of t and L,

$$
\begin{equation*}
\int \frac{U a^{\prime \prime} d L}{w c}=\int \frac{d t}{T_{2}-\frac{w c}{W C} t_{1}+\left(\frac{w c}{W C}-1\right) t} \tag{5.9}
\end{equation*}
$$

This right-hand term is of the form

$$
\int \frac{d t}{a_{1}+b_{1} t}=\frac{1}{b_{1}} \log \left(a_{1}+b_{1} t\right)
$$

Integrating $d L$ between 0 and L and $d t$ between t_{1} and t_{2},

$$
\begin{equation*}
\frac{U A}{w c}=\frac{1}{\left(\frac{w c}{W C}-1\right)} \ln \frac{T_{2}-\frac{w c}{W C} t_{1}+\left(\frac{w c}{W C}-1\right) t_{2}}{T_{2}-\frac{w c}{W C} t_{1}+\left(\frac{w c}{W C}-1\right) t_{1}} \tag{5.10}
\end{equation*}
$$

To simplify this expression substitute for T_{2} in the numerator the expression from Eq. (5.7), expand the denominator, and cancel terms

$$
\begin{equation*}
\frac{U A}{w c}=\frac{1}{(w c / W C)-1} \ln \frac{T_{1}-t_{2}}{T_{2}-t_{1}} \tag{5.11}
\end{equation*}
$$

Substitute for $w c / W C$ the expression from Eq. (5.7)

$$
\begin{align*}
\frac{U A}{w c}=\frac{1}{\left(T_{1}-T_{2}\right) /\left(t_{2}-t_{1}\right)-1} & \ln \frac{T_{1}-t_{2}}{T_{2}-t_{1}} \\
& =\frac{t_{2}-t_{1}}{\left(T_{1}-t_{2}\right)-\left(T_{2}-t_{1}\right)} \ln \frac{T_{1}-t_{2}}{T_{2}-t_{1}} \tag{5.12}
\end{align*}
$$

Since $w c\left(t_{2}-t_{1}\right)=Q$ and substituting Δt_{2} and Δt_{1} for the hot and cold terminal temperature differences $T_{1}-t_{2}$ and $T_{2}-\ell_{1}$,

$$
\begin{equation*}
Q=U A\left(\frac{\Delta t_{2}-\Delta t_{1}}{\ln \Delta t_{2} / \Delta t_{1}}\right) \tag{5.13}
\end{equation*}
$$

If the difference between the two terminals $\Delta t_{2}-\Delta t_{1}$ is written so as to be positive then the ratio of the two terminals taken in the same order is numerically greater than unity and any confusion due to negative signs is eliminated. The expression in parentheses in Eq. (5.13) again is the logarithmic mean or log mean temperature difference and is abbreviated LMTD. Equation (5.13) for counterflow may be written

$$
\begin{equation*}
Q=U A \Delta t=U A \times \mathrm{LMTD} \tag{5.13a}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta t=\mathrm{LMTD}=\frac{\left(T_{1}-t_{2}\right)-\left(T_{2}-t_{1}\right)}{\ln \left(T_{1}-t_{2}\right) /\left(T_{2}-t_{1}\right)}=\frac{\Delta t_{2}-\Delta t_{1}}{\ln \Delta t_{2} / \Delta t_{1}} \tag{5.14}
\end{equation*}
$$

Parallel Flow. Referring to Fig. 5.2 for the case where both fluids flow in the same direction, the basic equations are essentially the same. For the steady state,

$$
d Q=U(T-t) a^{\prime \prime} d L
$$

but

$$
d Q=W C d T=-w c d t
$$

since t declines in the direction of increasing values of T. Taking the heat balance between X and the left end,

$$
W C\left(T-T_{2}\right)=w c\left(t_{2}-t\right)
$$

Again considering the hot terminal difference $\Delta t_{2}=T_{1}-t_{1}$ as the greater temperature difference in parallel flow and $\Delta t_{1}=T_{p}-t_{2}$ the lesser temperature difference, the result is

$$
\begin{equation*}
Q=U A \frac{\left(T_{1}-t_{1}\right)-\left(T_{2}-t_{2}\right)}{\ln \left(T_{1}-t_{1}\right) /\left(T_{2}-t_{2}\right)}=U A \frac{\Delta t_{2}-\Delta t_{1}}{\ln \Delta t_{2} / \Delta t_{1}} \tag{5.15}
\end{equation*}
$$

Relation between Parallel Flow and Counterflow. It may appear from the final form of the derivations for the two flow arrangements that there is little to choose between the two. The examples which follow demonstrate that except where one fluid is isothermal (such as condensing steam) there is a distinct thermal disadvantage to the use of parallel flow.

Example 6.1. Calcufation of the LMTD. A hot fluid enters a concentric-pipe apparatus at a temperature of $300^{\circ} \mathrm{F}$ and is to be cooled to $200^{\circ} \mathrm{F}$ by a cold fluid entering at $100^{\circ} \mathrm{F}$ and heated to $150^{\circ} \mathrm{F}$. Shall they be directed in parallel flow or counterflow?

Solution. It is convenient to write the temperatures in the form employed here and to realize that the \log mean is always somewhat less than the arithmetic mean $\left(\Delta t_{2}+\Delta t_{1}\right) / 2$.
(a) Counterflow:

$$
\begin{aligned}
& \text { Hot fluid Cold fluid } \\
& \text { (Tt) } 300-150\left(t_{2}\right)=150\left(\Delta t_{2}\right) \\
& \left(T_{2}\right) 200-100\left(t_{1}\right)=\frac{100\left(\Delta t_{1}\right)}{50}\left(\Delta t_{2}-\Delta t_{1}\right) \\
& \text { LMTD }=\frac{\Delta t_{2}-\Delta t_{1}}{2.3 \log \Delta t_{2} / \Delta t_{1}}=\frac{50}{2.3 \log 150 / 100}=123.5^{\circ} \mathrm{F}
\end{aligned}
$$

(b) Parallel flow:

$$
\begin{aligned}
& \text { Hot fluid Cold fuid } \\
& \left(T_{1}\right) 300-100\left(t_{1}\right)=200\left(\Delta t_{2}\right) \\
& \left(T_{2}\right) 200-150\left(t_{2}\right)=\frac{50\left(\Delta t_{1}\right)}{150\left(\Delta t_{2}-\Delta t_{1}\right)} \\
& \text { LMTD }=\frac{150}{2.3 \log ^{20} 95_{0}}=108^{\circ} \mathrm{F}
\end{aligned}
$$

The LMTD for the same process temperatures in parallel flow is lower than for counterflow.

Example 5.2. Calculation of the LMTD with Equal Outlet Temperatures. A hot fluid enters a concentric-pipe apparatus at $300^{\circ} \mathrm{F}$ and is to be cooled to $200^{\circ} \mathrm{F}$ by a cold fluid entering at $150^{\circ} \mathrm{F}$ and heated to $200^{\circ} \mathrm{F}$.
(a) Counterflow:

$$
\begin{aligned}
& \text { Hot fluid Cold fluid } \\
& \begin{array}{c}
300-200=100\left(\Delta t_{2}\right) \\
200-150=\frac{50}{50}\left(\Delta t_{1}\right) \\
\text { LMTD }=\frac{50}{\left.2.3 t_{2}-\Delta t_{1}\right)}{ }^{100} \xi_{0}
\end{array}=72
\end{aligned}
$$

(b) Parallel flow:

$$
\begin{aligned}
& \text { Hot fluid Cold fluid } \\
& \begin{array}{c}
300-150=150\left(\Delta t_{2}\right) \\
200-200=\frac{0}{150}\left(\Delta t_{1}\right) \\
\text { LMTD } \left.-\Delta t_{1}\right) \\
=\frac{150}{2.3 \log ^{15} \%}=0
\end{array}
\end{aligned}
$$

In parallel flow the lowest temperature theoretically attainable by the hot fluid is that of the outlet temperature of the cold fluid, t_{2}. If this temperature were attained, the LMTD would be zero. In the Fourier equation $Q=U A \Delta t$, since Q and U are finite, the heat-transfer surface A would have to be infinite. The last is obviously not feasible.

The inability of the hot fluid in parallel flow to fall below the outlet temperature of the cold fluid has a marked effect upon the ability of parallel-flow apparatus to recover heat. Suppose it is desired to recover as much heat as possible from the hot fluid in Example 5.1 by using the same quäntities of hot and cold fluid as before but by assuming that more heat-transfer surface is available. In a counterflow apparatus it is possible to have the hot-fluid outlet T_{2} fall to within perhaps 5 or 10° of the cold-fluid inlet t_{1}, say $110^{\circ} \mathrm{F}$. In parallel-flow apparatus the heat transfer would be restricted by the cold-fluid outlet temperature rather than the cold-fluid inlet and the difference would be the loss in recoverable heat. Parallel flow is used for cold viscous fluids, however, since the arrangement may enable a higher value of U to be obtained.

Consider next the case where the hot terminal difference (Δt_{2}) in the preceding examples is not the greater temperature difference.

Example 5.3. Calculation of the LMTD When $\Delta t_{c}>\Delta t_{h}$. While a hot fluid is cooled from 301 to $200^{\circ} \mathrm{F}$ in counterflow, a cold fluid is heated from 100 to $275^{\circ} \mathrm{F}$. Counterflow:

$$
\begin{aligned}
& \text { Hot fluid Cold fluid } \\
& \begin{array}{c}
300-275=25\left(\Delta t_{h}\right) \\
200-100=\frac{100}{75}\left(\Delta t_{c}\right) \\
\left(\Delta t_{c}-\Delta t_{h}\right)
\end{array} \\
& \text { LMTD }=\frac{75}{2.3 \log 100 / 25}=54.3^{\circ} \mathrm{F}
\end{aligned}
$$

Lastly, when one of the fluids proceeds through the apparatus isothermally (condensing steam), parallel flow and counterflow yield identical temperature differences.

Example 5.4. Calculation of the LMTD with One Isothermal Fluid. A cold fluid is heated from 100 to $275^{\circ} \mathrm{F}$ by steam at $300^{\circ} \mathrm{F}$.
(a) Counterflow:
Hot fuid Cold fluid

$300-275$	$=25$
$300-100$	$=200$

(b) Parallel flow:

$$
\begin{aligned}
& \text { Hot fluid Cold fuidd } \\
& \begin{array}{l}
300-100=200 \\
300-275=25
\end{array}
\end{aligned}
$$

These are identical.
Hereafter, unless specifically qualified, all temperature arrangements will be assumed in counterflow. Many industrial types of equipment are actually a compromise between parallel flow and counterflow and receive additional study in later chapters.

Heat Recovery in Counterflow. Very often a counterflow apparatus is available which has a given length L and therefore a fixed surface A. Two process streams are available with inlet temperatures T_{1}, t_{1} and flow rates and specific heats W, C and w, c. What outlet temperatures. will be attained in the apparatus?

- This problem requires an estimate of U which can be checked by the methods of succeeding chapters for different types of counterflow heattransfer equipment. Rewriting Eq. (5.12),

$$
w c\left(t_{2}-t_{1}\right)=U A \frac{\left(T_{1}-t_{2}\right)-\left(T_{2}-t_{1}\right)}{\ln \left(T_{1}-t_{2}\right) /\left(T_{2}-t_{1}\right)}
$$

Rearranging

$$
\begin{equation*}
\ln \frac{T_{1}-t_{2}}{T_{2}-t_{1}}=\frac{U A}{w C}\left(\frac{T_{1}-T_{2}}{t_{2}-t_{1}}-1\right) \tag{5.16}
\end{equation*}
$$

Since $W C\left(T_{1}-T_{2}\right)=w c\left(t_{2}-t_{1}\right), w c / W C=\left(T_{1}-T_{2}\right) /\left(t_{2}-t_{1}\right)$. This means that the ratio of the temperature ranges can be established without recourse to actual working temperatures. Calling this unique ratio R without a subscript

$$
R=\frac{w c}{W C}=\frac{T_{1}-T_{2}}{t_{2}-t_{1}}
$$

Substituting in Eq. (5.16) and removing logarithms,

$$
\begin{equation*}
\frac{T_{1}-t_{2}}{T_{2}-t_{1}}=e^{(U \Lambda / w c)(R-1)} \tag{5.17}
\end{equation*}
$$

To obtain an expression for T_{2} alone.

$$
t_{2}=t_{1}+\frac{T_{1}-T_{2}}{R}
$$

Substituting in Eq. (5.17) and solving,

$$
\begin{equation*}
T_{2}=\frac{(1-R) T_{1}+\left[1-e^{(U A / w c)(R-1)}\right] R t_{1}}{1-R e^{(U \Delta / w c)(R-1)}} \tag{5.18}
\end{equation*}
$$

For parallel flow it becomes

$$
\begin{equation*}
T_{2}=\frac{\left[R+e^{(V \Lambda / w c)(R+1)}\right] T_{1}+\left[e^{(V \Lambda / w c)(R+1)}-1\right] R t_{1}}{(R+1) e^{(V \Lambda / w c)(R+1)}} \tag{5.19}
\end{equation*}
$$

t_{2} may be obtained from T_{2} by applying the heat balance

$$
W C\left(T_{1}-T_{2}\right)=w c\left(t_{2}-t_{1}\right)
$$

The Caloric or Average Fluid Temperature. Of the four assumptions used in the derivation of Eq. (5.14) for the LMTD, the one which is subject to the largest deviation is that of a constant overall heat-transfer coefficient U. In the calculations of Chap. 3 the film coefficient was computed for the properties of the fluid at the arithmetic mean temperature between inlet and outlet, although the correctness of this calculation was not verified. In fluid-fluid heat exchange the hot fluid possesses a viscosity on entering which becomes greater as the fluid cools. The cold counterflow fluid enters with a viscosity which decreases as it is heated. There is a hot terminal $T_{1}-t_{2}$ and a cold terminal $T_{2}-t_{1}$, and the values of h_{o} and $h_{i}\left(A_{i} / A\right)$ vary over the length of the pipe to produce a larger U at the hot terminal than at the cold terminal. As a simple example, take the case of an individual transfer coefficient at the inlet and outlet as obtained from the data of Morris and Whitman through use of Eq. (3.42).

Example 5.5. Calculation of h_{1} and h_{2}. Calculation of point B-6:

$$
t_{1}=99.1^{\circ} \quad t_{2}=129.2^{\circ} \mathrm{F}
$$

Inlet at 99.1 ${ }^{\circ} \mathrm{F}$:

$$
\begin{array}{ll}
c=0.478 \mathrm{Btu} / \mathrm{b} & \left(\frac{D G}{\mu}\right)^{0.9}=\left(\frac{0.622 \times 854,000}{12 \times 2.95 \times 2.42}\right)^{0.9}=2570 \\
\mu & =2.95 \mathrm{cp} \\
k & =0.078 \mathrm{Btu} /(\mathrm{hr})(\mathrm{ft})\left({ }^{0} \mathrm{~F} / \mathrm{ft}\right) \\
h_{i} & =0.078 \times \frac{12}{0.622} \times 0.0115 \times 2570 \times 3.52=156 \text { at inlet }
\end{array}
$$

Outlet at $129.2^{\circ} \mathrm{F}$:
$c=0.495$

$$
\begin{aligned}
& \left(\frac{D G}{\mu}\right)^{0.9}=\left(\frac{0.622 \times 854,000}{12 \times 2.20 \times 2.42}\right)^{0.9}=3390 \\
& \left(\frac{c \mu}{k}\right)^{3 / 3}=\left(\frac{0.495 \times 2.20 \times 2.42}{0.078}\right)^{3 / 3}=3.23
\end{aligned}
$$

$\mu=2.20$
$k=0.078$
$h_{2}=0.078 \times \frac{12}{0.622} \times 0.0115 \times 3390 \times 3.23=190$ at outlet
At the arithmetic mean (114.3° F) $h_{a}=174.5$, which is only 3.6 per cent in error of the experimental value of 181 but the variations against h_{i} at the arithmetic mean are $\left(\frac{156-174.5}{174.5}\right) 100=-10.6$ per cent and $\left(\frac{190-174.5}{174.5}\right) 100=+8.9$ per cent.

From the above it is seen that under actual conditions the variation of U may be even greater than that of h_{i} alone, since the outside film coefficient h_{o} will vary at the same time and in the same direction as h_{i}. The variation of U can be taken into account by numerical integration of $d Q$, the heat transferred over incremental lengths of the pipe $a^{\prime \prime} d L=d A$, and using the average values of U from point to point in the differential equation $d Q=U_{\mathrm{av}} d A \Delta t$. The summation from point/to point then gives $Q=U A \Delta t$ very closely. This is a time-consuming method, and the increase in the accuracy of the result does not warrant the effort. Colburn ${ }^{1}$ has undertaken the solution of problems with varying values of U by assuming the variation of U to be linear with temperature and by deriving an expression for the true temperature difference accordingly. The ratio of the LMTD for constant U and the true temperature difference for varying U is then used as the basis for establishing a single overall coefficient which is the true mean rather than the arithmetic mean.

Assume:

1. The variation of U is given by the expression $U=a^{\prime}\left(\dot{1}+b^{\prime} t\right)$
2. Constant weight flow
3. Constant specific heat
4. No partial phase changes

Over the whole transfer path

$$
Q=W C\left(T_{1}-T_{2}\right)=w c\left(t_{2}-t_{1}\right)
$$

Since $R=w c / W C=\left(T_{1}-T_{2}\right) /\left(t_{2}-t_{1}\right)$ or generalized as in Fig. 5.1,

$$
R=\frac{\left(T-T_{2}\right)}{\left(t-t_{1}\right)}
$$

The heat balance for the differential area $d A$ is given by

$$
d Q=U(T-t) d A=w c d t
$$

${ }^{1}$ Colburn, A. P., Ind. Eng. Chem., 35, 873-877 (1933).
where U is the average value for the increment or

$$
\frac{d t}{U(T-t)}=\frac{d A}{w c}
$$

Since $U=a^{\prime}\left(1+b^{\prime} t\right)$, substitute for U.

$$
\frac{d t}{a^{\prime}\left(1+b^{\prime} t\right)(T-t)}=\frac{d A}{w c}
$$

From the heat balance obtain the expression for T in terms of t and separate into parts.
$\frac{1}{a^{\prime}\left(R-1-b^{\prime} T_{2}+b^{\prime} R t_{1}\right)} \int_{t_{1}}^{t_{2}}\left[\frac{(R-1) d t}{T_{2}-R t_{1}+(R-1) t}-\frac{b^{\prime} d t}{1+b^{\prime} t}\right]=\int \frac{d A}{w c}$
Integrating,
$\frac{1}{a^{\prime}\left(R-1-b^{\prime} T_{2}+b^{\prime} R t_{1}\right)}\left[\ln \frac{T_{2}-R t_{1}+(R-1) t_{2}}{T_{2}-R t_{1}+(R-1) t_{1}}-\ln \frac{1+b^{\prime} t_{2}}{1+b^{\prime} t_{1}}\right]=\frac{A}{w c}$

Using the subscript 1 to indicate the cold terminal and 2 the hot terminal as heretofore

$$
U_{1}=a^{\prime}\left(1+b^{\prime} t_{1}\right) \quad U_{2}=a^{\prime}\left(1+b^{\prime} t_{2}\right)
$$

As before,

$$
\Delta t_{1}=T_{2}-t_{1} \quad \Delta t_{2}=T_{1}-t_{2}
$$

and factoring Eq. (5.21)

$$
\begin{equation*}
\frac{t_{2}-t_{1}}{U_{1} \Delta t_{2}-U_{2} \Delta t_{1}} \ln \frac{U_{1} \Delta t_{2}}{U_{2} \Delta t_{1}}=\frac{A}{w c} \tag{5.22}
\end{equation*}
$$

Combining with $Q=w c\left(t_{2}-t_{1}\right)$,

$$
\begin{equation*}
\frac{Q}{A}=\frac{U_{1} \Delta t_{2}-U_{2} \Delta t_{1}}{\ln U_{1} \Delta t_{2} / U_{2} \Delta t_{1}} \tag{5.23}
\end{equation*}
$$

Equation (5.23) is a modification of Eq. (5.13) which accounts for the variation of U by replacing it with U_{1} and U_{2}, where $A=0$ and $A=A$, respectively. This is still unsatisfactory, however, since it requires twice calculating both individual film coefficients to obtain U_{1} and U_{2}. Colburn chose to obtain a single overall coefficient, U_{x}, at which all the surface can be regarded to be transferring heat at the LMTD. U_{x} is then defined by

$$
\begin{equation*}
\frac{Q}{A}=\frac{U_{1} \Delta t_{2}-U_{2} \Delta t_{1}}{\ln U_{1} \Delta t_{2} / U_{2} \Delta t_{1}}=U_{x}\left(\frac{\Delta t_{2}-\Delta t_{1}}{\ln \Delta t_{2} / \Delta t_{1}}\right) \tag{5.24}
\end{equation*}
$$

Substituting $U_{x}=a^{\prime}\left(1+b^{\prime} t_{c}\right)$,

$$
\begin{equation*}
U_{x}=a^{\prime}\left(1+b^{\prime} t_{c}\right)=\frac{\frac{a^{\prime}\left(1+b^{\prime} t_{1}\right) \Delta t_{2}-a^{\prime}\left(1+b^{\prime} t_{2}\right) \Delta t_{1}}{\ln \left[\left(1+b^{\prime} t_{1}\right) \Delta t_{2}\right] /\left[\left(1+b^{\prime} t_{2}\right) \Delta t_{1}\right]}}{\frac{\Delta t_{2}-\Delta t_{1}}{\ln \Delta t_{2} / \Delta t_{1}}} \tag{5.25}
\end{equation*}
$$

U_{x} will now be identified by finding t_{c}, the temperature of the properties at which h_{i} and h_{o} are computed and at which such a value of U_{x} exists. Let F_{c} be a fraction. By multiplying the temperature rise of the controlling (film) stream by F_{c} and adding the resulting fractional rise to the lower terminal temperature of the stream, a temperature is obtained at which to evaluate heat transfer properties and calculate h_{i}, h_{o}, and U_{x}.

$$
\begin{equation*}
F_{c}=\frac{t_{c}-t_{1}}{t_{2}-t_{1}} \tag{5.26}
\end{equation*}
$$

t_{c} is the caloric temperature of the cold stream. By definition, let

$$
K_{c}=\frac{t_{2}-t_{1}}{1 / b^{\prime}+t_{1}}=\frac{U_{2}-U_{1}}{U_{1}} \quad r=\frac{\Delta t_{1}}{\Delta t_{2}}=\frac{\Delta t_{c}}{\Delta t_{h}}
$$

and substituting the equivalents in Eq. (5.25),

$$
\frac{1+b^{\prime} t_{2}}{1+b^{\prime} t_{1}}=K_{c}+1 \quad \frac{1+b^{\prime} t_{c}}{1+b^{\prime} t_{1}}=K_{c} F_{c}+1
$$

from which

$$
\begin{equation*}
F_{c}=\frac{\left(1 / K_{c}\right)+[r /(r-1)]}{1+\frac{\ln \left(K_{c}+1\right)}{\ln r}}-\frac{1}{K_{c}} \tag{5.27}
\end{equation*}
$$

Equation (5.27) has been plotted in Fig. 17 in the Appendix with

$$
K_{c}=\frac{U_{2}-U_{1}}{U_{1}}=\frac{U_{h}-U_{c}}{U_{c}}
$$

as the parameter, where c and h refer to the cold and hot terminals, respectively. The caloric fraction F_{c} can be obtained from Fig. 17 by computing K_{c} from U_{h} and U_{c} and $\Delta t_{c} / \Delta t_{h}$ for the process conditions. The caloric temperature of the hot fluid T_{o} is

$$
\begin{equation*}
T_{c}=T_{2}+F_{c}\left(T_{1}-T_{2}\right) \tag{5.28}
\end{equation*}
$$

and for the cold fluid

$$
\begin{equation*}
t_{c}=t_{1}+F_{o}\left(t_{2}-t_{1}\right) \tag{5.29}
\end{equation*}
$$

Colburn has correlated in the insert of Fig. 17 the values of K_{g} where the controlling film is that of a petroleum cut. A correlation of this type can
be made in any industry which deals with a particular group of fluids by obtaining a^{\prime} and b^{\prime} from properties and eliminates the calculation of U_{k} and U_{c}. If an apparatus transfers heat between two petroleum cuts, the cut giving the largest value of K_{c} is controlling and can be used directly to establish F_{c} for both streams from the figure. Thus, whenever there is a sizeable difference between U_{h} and U_{0} the LMTD is not the true temperature difference for counterflow. The LMTD may be retained, however, if a suitable value of U is employed to compensate for its use in Eq. (5.13).

Example 5.6. Calculation of the Caloric Temperature. A 20° API crude oil is cooled from 300 to $200^{\circ} \mathrm{F}$ by heating cold $60^{\circ} \mathrm{API}$ gasoline from 80 to $120^{\circ} \mathrm{F}$ in a counterflow apparatus. At what fluid temperatures should U be evaluated?

Solution:

Shell
20° API crude: 60° API gasoline

242.5	Caloric temp.	97	
250	Mean	100	
300	Higher temp.	120	180
200	Lower temp.	80	120
100	Δt_{2}		
	Diff	40	

Crude, $T_{1}-T_{2}=300-200=100^{\circ} \mathrm{F}, K_{c}=0.68$ from Fig. 17 insert
Gasoline, $t_{2}-t_{1}=120-80=40^{\circ} \mathrm{F}, K_{e} \leqq 0.10$
The larger value of K_{e} corresponds to the controlling heat-transfer coefficient which is assumed to establish the variation of U with temperature. Then

$$
\begin{aligned}
\frac{\Delta t_{c}}{\Delta t_{h}} & =\frac{200-80}{300-120}=0.667 \\
F_{e} & =0.425 \text { from Fig. } 17
\end{aligned}
$$

Caloric temperature of crude, $T_{c}=200+0.425(300-200)=242.5^{\circ} \mathrm{F}$.
Caloric temperature of gasoline, $t_{c}=80+0.425(120-80)=97.0^{\circ} \mathrm{F}$.
It should be noted that there can be but one caloric mean and that the factor F 。 applies to both streams but is determined by the controlling stream.

The Pipe-wall Temperature. The temperature of the pipe wall can be computed from the caloric temperatures when both h_{i} and h_{o} are known. Referring to Fig. 5.3 it is customary to neglect the temperature difference across the pipe metal $t_{v}-t_{p}$ and to consider the entire pipe to be at the temperature of the outside surface of the wall t_{w}. If the outside caloric temperature is T_{c} and the inside caloric temperature t_{c} and $1 / R_{i o}=h_{i o}=h_{i}\left(A_{i} / A\right)=h_{i} \times(\mathrm{ID} / \mathrm{OD})$, where the subscript io refers
to the value of the coefficient inside the pipe referred to the outside surface of the pipe.

$$
\begin{equation*}
Q=\frac{\Delta t}{\Sigma R}=\frac{T_{c}-t_{c}}{R_{o}+R_{i o}}=\frac{t_{w}-t_{c}}{R_{i o}} \tag{5.30}
\end{equation*}
$$

Replacing the resistances in the last two terms by film coefficients,

$$
\frac{T_{c}-t_{c}}{1 / h_{o}+1 / h_{i o}}=\frac{t_{w o}-t_{c}}{1 / h_{i o}}
$$

Solving for t_{w}

$$
\begin{equation*}
t_{w}=t_{c}+\frac{h_{o}}{h_{i o}+h_{o}}\left(T_{c}-t_{c}\right) \tag{5.31}
\end{equation*}
$$

and

$$
\begin{equation*}
t_{w}=T_{c}-\frac{h_{i o}}{h_{i o}+h_{o}}\left(T_{c}-t_{c}\right) \tag{5.32}
\end{equation*}
$$

When the hot fluid is inside the pipe these become

$$
\begin{equation*}
t_{v}=t_{c}+\frac{h_{i o}}{h_{i o}+h_{o}}\left(T_{c}-t_{c}\right) \tag{5.31a}
\end{equation*}
$$

and

$$
\begin{equation*}
t_{w}=T_{c}-\frac{h_{o}}{h_{i o}+h_{o}}\left(T_{c}-t_{c}\right) \tag{5.32a}
\end{equation*}
$$

Isothermal Representation of Heating and Cooling. In streamline flow when a fluid flows isothermally, the velocity distribution is assumed to be parabolic. When a given quantity of liq-

Fig. 5.3. Pipe-wall temperature. uid is heated as it travels along a pipe, the viscosity near the pipe wall is lower than that of the bulk of the fluid. The fluid near the wall travels at a faster velocity than it would in isothermal flow and modifies the parabolic velocity

Frg. 5.4. Heating, cooling, and isothermal streamline fiow.
distribution as indicated by the heating curve in Fig. 5.4. If the liquid is cooled, the reverse occurs: The fluid near the wall flows at a lower velocity than in isothermal flow, producing the velocity distribution indicated for cooling. For the liquid to flow more rapidly at the wall during heating some of the liquid near the eenter axis of the pipe must
flow outward toward the wall to maintain the increased velocity. This is a radial velocity component which actually modifies the nature of the streamline flow. If data for heating an oil in a given temperature range are plotted as in Fig. 3.10 together with data for cooling the oil in the same temperature range, two families of points are obtained. The data on heating give higher heat-transfer coefficients than those on cooling. Colburn ${ }^{1}$ undertook to convert both heating and cooling data to a single isothermal line. He was able to employ a basic equation of the form of Eq. (3.32) by multiplying the right-hand term by the dimensionless ratio ($\left.\mu / \mu_{f}\right)^{\prime}$ where μ is the viscosity at the caloric temperature and μ_{f} is the viscosity at an arbitrary film temperature defined for streamline flow by

$$
\begin{equation*}
t_{f}=t_{\mathrm{av}}+1 / 4\left(t_{t_{0}}-t_{\mathrm{av}}\right) \tag{5.33}
\end{equation*}
$$

and for turbulent flow by

$$
\begin{equation*}
t_{f}=t_{\mathrm{av}}+1 / 2\left(t_{w}-t_{\mathrm{av}}\right) \tag{5.34}
\end{equation*}
$$

Sieder and Tate ${ }^{2}$ undertook the correlation of a large quantity of data in tubes, rather than pipes, and obtained a dimensionless factor $\left(\mu / \mu_{r o}\right)^{\prime \prime}$ where μ_{v} is the viscosity at the tube-wall temperature $t_{v o}$. Using the Sieder and Tate correction, Eq. (3.32) for streamline flow becomes

$$
\begin{equation*}
\frac{h_{i} D}{k}=\alpha\left[\left(\frac{D G}{\mu}\right)\left(\frac{c \mu}{k}\right)\left(\frac{D}{L}\right)\right]^{d+1}\left(\frac{\mu}{\mu_{v}}\right)^{r \prime \prime} \tag{5.35}
\end{equation*}
$$

Equation (3.26) for turbulent flow becomes

$$
\begin{equation*}
\frac{h_{i} D}{k}=\alpha\left(\frac{D G}{\mu}\right)^{p}\left(\frac{c \mu}{k}\right)^{q}\left(\frac{\mu}{\mu_{w}}\right)^{r^{\prime \prime}} \tag{5.36}
\end{equation*}
$$

By incorporating the correlation factor for heating and cooling in this manner a single curve is obtained for both heating and cooling, since the value of μ / μ_{w} is greater than 1.0 for liquid heating and lower than 1.0 for liquid cooling. Inasmuch as the viscosities of gases increase rather than decrease with higher temperature, the deviations from the isothermal velocity distribution are the reverse of liquids.

PROBLEMS

6.1. For a concentric-pipe heat-transfer apparatus having a 1 -in. IPS mner pipe the film coefficient h_{i} has been computed to be $10.0 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$. By suitable calculation three different fluids, when circulated through the annulus. will have film coefficients of $10.0,20.0$, and 200 , respectively. Neglecting the resistance of the pipe, how does the value of the annulus coefficient affect the value of the sverall coefficient?
5.2. (a) For values of $h_{i}=100$ and $h_{o}=500$, what error results in the calculated value of U for a concentric-pipe heat-transfer apparatus having a $2-\mathrm{in}$. IPS inner pipe when the metal resistance is obtained from $R_{m}=L_{m} / k_{m} A$ instead of $\left(2.3 / 2 \pi k_{m}\right)$
${ }^{1}$ Colburn, A. P., Trans. AIChE, 29, 174-210 (1933).
${ }^{2}$ Sieder, E. N., and G. E. Tate, Ind. Eng. Chem., 28, 1429-1436 (1936).
$\log D_{2} / D_{1}$ and when the pipe resistance is omitted entirely. (b) What are the errors when the coefficients are $h_{i}=10$ and $h_{0}=50$?
5.3. Calculate the LMTD for counterfiow in the following cases in which the hot fluid is cooled from 200 to $100^{\circ} \mathrm{F}$ and the cold fluid, heated through an equal range in each case, is (a) 90 to $140^{\circ} \mathrm{F}$, (b) 80 to $130^{\circ} \mathrm{F}$, and (c) 60 to $110^{\circ} \mathrm{F}$. Observe the nature of the deviation of the LMTD from the arithmetic means of the two terminal differences in each case.
5.4. A hot fluid is cooled from 245 to $225^{\circ} \mathrm{F}$ in each case. Compare the advantage of counterflow over parallel flow in the size of the LMTD when a cold fluid is to be heated from (a) 135 to $220^{\circ} \mathrm{F}$, (b) 125 to $210^{\circ} \mathrm{F}$, and (c) 50 to $135^{\circ} \mathrm{F}$.
5.5. $10,000 \mathrm{lb} / \mathrm{hr}$ of cold benzene is heated under pressure from $100^{\circ} \mathrm{F}$ by cooling $9000 \mathrm{lb} / \mathrm{hr}$ of nitrobenzene at a temperature of $220^{\circ} \mathrm{F}$. Heat transfer will occur in a concentric-pipe apparatus having a $11 / 4-\mathrm{in}$. IPS inner pipe 240 ft long. Tests on similar equipment transferring heat between the same liquids indicates that a value of $U=120$ based on the outside surface of the inner pipe may be expected. (a) What outlet temperatures may be expected in counterflow? (b) What outlet temperatures may be expected in parallel flow? (c) If part of the concentric pipe is removed leaving only 160 lin ft , what outlet temperatures may be expected in counterflow?
5.6. Benzene is to be heated in a concentric-pipe apparatus having a $11 / 3-\mathrm{in}$. IPS inner pipe from 100 to $140^{\circ} \mathrm{F}$ by $8000 \mathrm{lb} / \mathrm{hr}$ of nitrobenzene having an initial temperature of $180^{\circ} \mathrm{F}$. A value of $U=100$ may be expected based on the outside surface of the pipe. How much cold benzene can be heated in 160 lin ft of concentric pipe (a) in counterflow, (b) in parallel flow? (Hint. Trial-and-error solution.)
5.7. Aniline is to be cooled from 200 to $150^{\circ} \mathrm{F}$ in a concentric-pipe apparatus having $70 \mathrm{ft}^{2}$ of external pipe surface by $8600 \mathrm{lb} / \mathrm{hr}$ of toluene entering at $100^{\circ} \mathrm{F}$. A value of $U=75$ may be anticipated. How much hot aniline can be cooled in counterflow?
5.8. In a counterflow concentric-pipe apparatus a liquid is cooled from 250 to $200^{\circ} \mathrm{F}$ by heating another from 100 to $225^{\circ} \mathrm{F}$. The value of U_{1}, at the cold terminal, is calculated to be 50.0 from the properties at the cold terminal, and U_{2} at the hot terminal is calculated to be 60.0 . At what fluid temperatures should U be computed to express the overall heat transfer for the entire apparatus?
5.9. In a counterflow concentric-pipe apparatus a liquid is cooled from 250 to $150^{\circ} \mathrm{F}$ by heating another from 125 to $150^{\circ} \mathrm{F}$. The value of U_{1} at the cold terminal is 52 and at the hot terminal U_{2} is 58 . At what liquid temperatures shouid U for the overall transfer be computed?
5.10. The calculation of the caloric temperatures can be accomplished directly by evaluating a^{\prime} and b^{\prime} in $U=a^{\prime}\left(1+b^{\prime} t\right)$ for a given temperature range. If the hot liquid in Prob. 5.8 always provides the controlling film coefficient, what are the numerical values of the constants a^{\prime} and b^{\prime} ?
5.11. A $40^{\circ} \mathrm{API}$ kerosene is cooled from 400 to $200^{\circ} \mathrm{F}$ by heating $34^{\circ} \mathrm{API}$ crude oil from 100 to $200^{\circ} \mathrm{F}$. Between what caloric temperatures is the heat transferred, and how do these deviate from the mean?
5.12. A 35° API distillate used as a heating oil is cooled from 400 to $300^{\circ} \mathrm{F}$ by fresh $35^{\circ} \mathrm{API}$ distillate heated from 200 to $300^{\circ} \mathrm{F}$. Between what caloric temperatures is the heat transferred, and how do these deviate from the mean?

NOMENCLATURE FOR CHAPTER 5

A Heat-transfer surface or outside surface of pipes, ft^{2}
$a^{\prime \prime} \quad$ External pipe surface per foot of length, ft
$a^{\prime}, b^{\prime} \quad$ Constants in the equation $U=a^{\prime}\left(1+b^{\prime} t\right)$

a_{1}, b_{1}	Constants
C	Specific heat of hot fuid in derivations, $\mathrm{Btu} /(\mathrm{lb})\left({ }^{\circ} \mathrm{F}\right)$
c	Specific heat of cold fluid, Btu/(1b)(${ }^{\circ} \mathrm{F}$)
D	Inside diameter of pipe; ft
$F_{\text {c }}$	Caloric fraction, dimensionless
G	Mass velocity, $\mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft}{ }^{2}\right)$
h	Heat-transfer coefficient, $\mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}{ }^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$
h_{i}, h_{0}	Inside and outside film coefficients, Btu/(hr)(ft^{2}) $\left({ }^{\circ} \mathrm{F}\right)$
$h_{\text {io }}$	$h_{i} A_{i} / A$, inside film coefficient referred to outside surface, Btu/ (hr)($\left.\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$
$K_{\text {c }}$	Caloric factor, dimensionless
k	Thermal conductivity, $\mathrm{Btu} /(\mathrm{hr})(\mathrm{ft})^{2}\left({ }^{(} \mathrm{F} / \mathrm{ft}\right)$
L	Length, ft
LMTD	Log mean temperature difference, ${ }^{\circ} \mathrm{F}$
Q	Heat flow, $\mathrm{Btu} / \mathrm{hr}$
R	Ratio of $w c / W C=\left(T_{1}-T_{2}\right) /\left(t_{2}-t_{1}\right)$, dimensionless
ΣR	Overall resistance to heat fow, (hr)(ft^{2}) $\left({ }^{\circ} \mathrm{F}\right) / \mathrm{Btu}$
r	Ratio of cold to hot terminal differences, dimensionless
T	Temperature of the hot fluid, ${ }^{\circ} \mathrm{F}$
T。	Caloric temperature of hot fluid, ${ }^{\circ} \mathrm{F}$
T_{1}, T_{2}	Hot-fluid inlet and outlet temperatures, respectively, ${ }^{\circ} \mathrm{F}$
t	Temperature of the cold fluid, ${ }^{\circ} \mathrm{F}$
t c	Caloric temperature of cold fluid, ${ }^{\circ} \mathrm{F}$
t_{f}	Film temperature in Eqs. (5.33) and (5.34), ${ }^{\circ} \mathrm{F}$
t_{p}	Inside pipe-wall temperature, ${ }^{\circ} \mathrm{F}$
t_{0}	Outside pipe-wall temperature, ${ }^{\circ} \mathrm{F}$
$t_{1} t_{2}$	Cold-fluid inlet and outlet temperatures, respectively, ${ }^{\circ} \mathrm{F}$
Δt	Temperature difference at a point or mean over an area, ${ }^{\circ} \mathrm{F}$
$\Delta t_{c}, \Delta t_{\text {n }}$	$\underset{{ }^{\circ} \mathrm{F}}{\mathrm{Temperature}} \mathrm{difference}$ at the cold and hot terminals, respectively,
Δt_{i}	Logarithmic mean of $t_{p}-t_{1}$ and $t_{p}-t_{2},{ }^{\circ} \mathrm{F}$
U	Oyerall coefficient of heat transfer in general, $\left.\mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)^{\prime}{ }^{\circ} \mathrm{F}\right)$
U_{c}, U_{h}	Overall coefficient of heat transfer at cold and hot terminals,
U_{1}, U_{2}	$\mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft} \mathrm{t}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$
U_{x}	Value of U at $t_{c}, \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$
W	Weight flow of hot fluid, $\mathrm{lb} / \mathrm{hr}$
${ }^{*}$	Weight flow of cold fluid, $\mathrm{lb} / \mathrm{hr}$
α	Proportionality constant, dimensionless
μ	Viscosity at mean or caloric temperature, $\mathrm{lb} /(\mathrm{ft})(\mathrm{hr})$
μ_{f}, μ_{w}	Viscosity at the film and pipe-wall temperatures, respectively, $\mathrm{lb} /(\mathrm{ft})(\mathrm{hr})$

Superscripts

$d, p, q, r^{\prime}, r^{\prime \prime}, r^{\prime \prime \prime} \quad$ Constants

Subscripts (except as noted above)

i Inside a pipe or tube

- Outside a pipe or tube

io
Value based on inside of a pipe or tube referred to the outside of the tube.

CHAPTER 6

COUNTERFLOW: DOUBLE PIPE EXCHANGERS

Definitions. Heat-transfer equipment is defined by the function it fulfills in a process. Exchangers recover heat between two process streams. Steam and cooling water are utilities and are not considered in the same sense as recoverable process streams. Heaters are used primarily to heat process fluids, and steam is usually employed for this purpose, although in oil refineries hot recirculated oil serves the same purpose. Coolers are employed to cool process fluids, water being the main cooling medium. Condensers are coolers whose primary purpose is the removal of latent instead of sensible heat. The purpose of reboilers is to supply the heat requirements of a distillation process as latent heat. Evaporators are employed for the concentration of a solution by the evaporation of water. If any other fluid is vaporized besides water, the unit is a vaporizer.

Double Pipe Exchangers. For the derivations in Chap. 5, a concen-tric-pipe heat-transfer apparatus was employed. The industrial counter-

Fig. 6.1. Double pipe exchanger.
part of this apparatus is the double pipe exchanger shown in Fig. 6.1. The principal parts are two sets of concentric pipes, two connecting Tees, and a return head and a return bend. The inner pipe is supported within the outer pipe by packing glands, and the fluid enters the inner pipe through a threaded connection located outside the exchanger section proper. The Tees have nozzles or screwed connections attached to them to permit the entry and exit of the annulus fluid which crosses from one leg to the other through the return head. The two lengths of inner pipe are connected by a return bend which is usually exposed and does not provide effective heat-transfer surface. When arranged in two legs as in Fig. 6.1, the unit is a hairpin.

The double pipe exchanger is extremely useful because it can be assembled in any pipe-fitting shop from standard parts and provides inexpensive heat-transfer surface. . The standard sizes of Tees and return heads are given in Table 6.1.

Table 6.1. Double Pipe Exchanger Fittings	
Outer pipe, IPS	Inner pipe, $I P S$
2	$11 / 4$
$21 / 2$	$1 / 4$
3	2
4	3

Double pipe exchangers are usually assembled in 12 -, 15 -, or $20-\mathrm{ft}$ effective lengths, the effective length being the distance in each leg over which heat transfer occurs and excludes inner pipe protruding beyond the exchanger section. When hairpins are employed in excess of 20 ft in length corresponding to 40 effective linear feet or more of double pipe, the inner pipe tends to sag and touch the outer pipe, thereby causing a poor flow distribution in the annulus. The principal disadvantage to the use of double pipe exchangers lies in the small amount of heat-transfer surface contained in a single hairpin. When used with distillation equipment on an industrial process a very large number are required. These require considerable space, and each double pipe exchanger introduces no fewer than 14 points at which leakage might occur. The time and expense required for dismantling and periodically cleaning are prohibitive compared with other types of equipment. However, the double pipe exchanger is of greatest use where the total required heat-transfer surface is small, 100 to $200 \mathrm{ft}^{2}$ or less.

Film Coefficients for Fluids in Pipes and Tubes. Equation (3.42) was obtained for heating several oils in a pipe based on the data of Morris and Whitman. Sieder and Tate ${ }^{1}$ made a later correlation of both heating and cooling a number of fluids, principally petroleum fractions, in horizontal and vertical tubes and arrived at an equation for streamline flow where $D G / \mu<2100$ in the form of Eq. (5.35).
$\frac{h_{i} D}{k}=1.86\left[\left(\frac{D G}{\mu}\right)\left(\frac{c \mu}{k}\right)\left(\frac{D}{L}\right)\right]^{1 / 5}\left(\frac{\mu}{\mu_{x}}\right)^{0.14}=1.86\left(\frac{4}{\pi} \frac{w c}{k L}\right)^{3 / 5}\left(\frac{\mu}{\mu_{v}}\right)^{0.14}$
where L is the total length of the heat-transfer path before mixing occurs. Equation (6.1) gave maximum mean deviations of approximately ± 12 per cent from $R e=100$ to $R e=2100$ except for water. Beyond the transition range, the data may be extended to turbulent flow in the form of Eq. (5.36).

$$
\begin{equation*}
\frac{h_{i} D}{k}=0.027\left(\frac{D G}{\mu}\right)^{0.8}\left(\frac{c \mu}{k}\right)^{1 / 3}\left(\frac{\mu}{\mu_{w}}\right)^{0.14} \tag{6.2}
\end{equation*}
$$

${ }^{1}$ Sieder, E. N., and G. E. Tate, Ind. Eng. Chem., 28, 1429-1436 (1936).

Equation (6.2) gave maximum mean deviations of approximately +15 and - 10 per cent for the Reynolds numbers above 10,000. While Eqs. (6.1) and (6.2) were obtained for tubes, they will also be used indiscriminately for pipes. Pipes are rougher than tubes and produce more turbulence for equal Reynolds numbers. Coefficients calculated from tube-data correlations are actually lower and safer than corresponding-calculations based on pipe data and there are no pipe correlations in the literature so extensive as tube correlations. Equations (6.1) and (6.2) are applicable for organic liquids, aqueous solutions, and gases. They are not conservative for water, and additional data for water will be given later. In

Fig. 6.2. Tube-side heat-transfer curve.
order to permit the graphical representation of both equations on a single pair of coordinates, refer to Fig. 6.2. Using the ordinate

$$
j_{H}=\left(\frac{h_{i} D}{k}\right)\left(\frac{c \mu}{k}\right)^{-3 / 5}\left(\frac{\mu}{\mu_{w}}\right)^{-0.14}
$$

and the abscissa ($D G / \mu$) only Eq. (6:2) can be shown. By using D / L or L / D as a parameter, Eq. (6.1) can also be included. The transition region joins the two. Working plots of Eqs. (6.1) and (6.2) are given in Fig. 24 of the Appendix together with a line of slope 0.14 to facilitate the solution of the ratio $\phi=\left(\mu / \mu_{w}\right)^{0.14}$.

Fluids Flowing in Annuli: The Equivalent Diameter. When a fluid flows in a conduit having other than a circular cross section, such as an annulus, it is convenient to express heat-transfer coefficients and friction factors by the same types of equations and curves used for pipes and tubes. To permit this type of representation for annulus heat transfer it has been found advantageous to employ an equivalent diameter D_{e}. The equivalent diameter is four times the hydraulic radius, and the
hydraulic radius is, in turn, the radius of a pipe equivalent to the annulus cross section. The hydraulic radius is obtained as the ratio of the flow area to the wetted perimeter. For a fluid flowing in an annulus as shown in Fig. 6.3 the flow area is evidently $(\bar{\pi} / 4)\left(D_{2}^{2}-D_{1}^{2}\right)$ but the wetted perimeters for heat transfer and pressure drops are different. For heat transfer the wetted perimeter is the outer circumference of the inner pipe with diameter D_{1}, and for heat transfer in annuli

$$
\begin{equation*}
D_{e}=4 r_{h}=\frac{4 \times \text { flow area }}{\text { wetted perimeter }}=\frac{4 \pi\left(D_{2}^{2}-D_{1}^{2}\right)}{4 \pi D_{1}}=\frac{D_{2}^{2}-D_{1}^{2}}{D_{1}} \tag{6.3}
\end{equation*}
$$

In pressure-drop calculations the friction not only results from the resistance of the outer pipe but is also affected by the outer surface of the inner pipe. The total wetted perimeter is $\pi\left(D_{2}+D_{1}\right)$, and for the pressure drop in annuli

$$
\begin{equation*}
D_{e}^{\prime}=\frac{4 \times \text { flow area }}{\text { frictional wetted perimeter }}=\frac{4 \pi\left(D_{2}^{2}-D_{1}^{2}\right)}{4 \pi\left(D_{2}+D_{1}\right)}=D_{2}-D_{1} \tag{6.4}
\end{equation*}
$$

This leads to the anomalous result that the Reynolds numbers for the same flow conditions, w, G, and μ, are different for heat transfer and pressure drop since D_{s} might be above 2100 while D_{e}^{\prime} is below 2100. Actually both Reynolds numbers should be considered only approximations, since the sharp distinction between streamline and turbulent flow at the Reynolds number of 2100 is not completely valid in annuli.

Film Coefficients for Fluids in Annuli. When the equivalent diameter from Eq. (6.3) is substi-

Fig. 6.3. Annulus diameters and location of coefficients. tuted for D, Fig. 24 in the Appendix may be considered a plot of $D_{e} G / \mu$ vs. $\left(h_{a} D_{e} / k\right)(c \mu / k)^{-1 / 3}\left(\mu / \mu_{w}\right)^{-0.14}$. h_{o} is the outside or annulus coefficient and is obtained in the same manner as h_{i} by multiplication of the ordinate. Even though D differs from $D_{\epsilon} h_{Q}$ is effective at the outside diameter of the inner pipe. In double pipe exchangers it is customary to use the outside surface of the inner pipe as the reference surface in $Q=U A \Delta t$, and since h_{i} has been determined for A_{i} and not A, it must be corrected. h_{i} is based on the area corresponding to the inside diameter where the surface per foot of length is $\pi \times$ ID. On the outside of the pipe the surface per foot of length is $\pi \times O D$; and again letting $h_{i o}$ be the value of h_{i} referred to the outside diameter,

$$
\begin{equation*}
h_{i o}=h_{i} \frac{A_{i}}{A}=h_{i} \frac{\mathrm{ID}}{\mathrm{OD}} \tag{6.5}
\end{equation*}
$$

Fouling Factors. The overall coefficient of heat transfer required to fulfill the process conditions may be determined from the Fourier equation when the surface A is known and Q and Δt are calculated from the process conditions. Then $U=Q / A \Delta t$. If the surface is not known U can be obtained independently of the Fourier equation from the two film coefficients. Neglecting the pipe-wall resistance,

$$
\begin{equation*}
\frac{1}{U}=R_{i o}+R_{o}=\frac{1}{h_{i o}}+\frac{1}{h_{0}} \tag{6.6}
\end{equation*}
$$

or

$$
\begin{equation*}
U=\frac{h_{i o} h_{o}}{h_{i o}+h_{o}} \tag{6.7}
\end{equation*}
$$

The locations of the coefficients and temperatures are shown in Fig. 6.3. When U has been obtained from values of $h_{i o}$ and h_{o} and Q and Δt are calculated from the process conditions, the surface A required for the process can be computed. The calculation of A is known as design.

When heat-transfer apparatus has been in service from some time, however, dirt and scale deposit on the inside and outside of the pipe, adding two more resistances than were included in the calculation of U by Eq. (6.6). The additional resistances reduce the

Fig. 6.4. Location of fouling factors and heat-transfer coefficients. original value of U, and the required amount of heat is no longer transferred by the original surface $A ; T_{2}$ rises above and t_{2} falls below the desired outlet temperatures, although h_{i} and h_{o} remain substantially constant. To overcome this eventuality, it is customary in designing equipment to anticipate the deposition of dirt and scale by introducing a resistance R_{d} called the dirt, scale, or fouling factor, or resistance. Let $R_{d i}$ be the dirt factor for the inner pipe fluid at its inside diameter and $R_{d o}$ the dirt factor for the annulus fluid at the outside diameter of the inner pipe. These may be considered very thin for dirt but may be appreciably thick for scale, which has a higher thermal conductivity than dirt. The resistances are shown in Fig. 6.4. The value of U obtained in Eq. (6.7) only from $1 / h_{i a}$ and $1 / h_{o}$ may be considered the clean overall coefficient designated by U_{c} to show that dirt has not been taken into account. The coefficient which includes the dirt resistance is called the design or dirty overall coefficient U_{D}. The value of A corresponding to U_{D} rather than U_{C} provides the basis on which equipment is ultimately built. The relationship between the two overall coefficients U_{C} and U_{D} is

$$
\begin{equation*}
\frac{1}{\overline{U_{D}}}=\frac{1}{\overline{U_{C}}}+R_{d i}+R_{d o} \tag{6.8}
\end{equation*}
$$

or setting

$$
\begin{gather*}
R_{d i}^{*}+R_{d o}=R_{d} \tag{6.9}\\
\frac{1}{U_{D}}=\frac{1}{U_{c}}+R_{d} \tag{6.10}
\end{gather*}
$$

Thus suppose that for a double pipe exchanger, $h_{i o}$ and h_{o} have been computed to be 300 and 100 respectively, then

$$
\frac{1}{U_{c}}=\frac{1}{h_{i o}}+\frac{1}{h_{o}}=0.0033+0.01=0.0133
$$

or $U_{c}=1 / 0.0133=75.0 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$. From experience, let us say, it has been found that a thermal dirt resistance of $R_{d i}=0.001$ $(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right) /$ Btu will deposit annually inside the pipe and $R_{d o}=0.0015$ will deposit on the outside of the pipe. For what overall coefficient should the surface be calculated so that the apparatus need be cleaned only once a year? Then $R_{d}=R_{d i}+R_{d a}=0.0025$, and

$$
\frac{1}{U_{D}}=\frac{1}{U_{C}}+R_{d}=\frac{1}{75.0}+0.0025=0.0158(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right) / \mathrm{Btu}
$$

or

$$
U_{\mathrm{D}}=\frac{1}{0.0158}=63.3 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)
$$

The Fourier equation for surface on which dirt will be deposited becomes

$$
\begin{equation*}
Q=U_{D} A \Delta t \tag{6.11}
\end{equation*}
$$

If it is desired to obtain A, then $h_{i o}$ and h_{o} must first be calculated from equations such as Eq. (6.1) and (6.2) which are independent of the extent of the surface but dependent upon its form, such as the diameter and fluid flow area. With these, U_{c} is obtained from Eq. (6.6) and U_{D} is obtained from U_{o} using Eq. (6.10). Sometimes, however, it is desirable to study the rates at which dirt accumulates on a known surface A. U_{C} will remain constant if the scale or dirt deposit does not alter the mass velocity by constricting the fluid flow area. U_{D} and Δt will obviously change as the dirt accumulates because the temperatures of the fluids will vary from the time the surface is freshly placed in service until it becomes fouled. If Δt is calculated from observed temperatures instead of process temperatures then Eq. (6.11) may be used to determine R_{d}

[^11]for a given fouling period. Then from Eq. (6.10)
\[

$$
\begin{equation*}
R_{\mathrm{d}}=\frac{1}{U_{D}}-\frac{1}{U_{c}} \tag{6.12}
\end{equation*}
$$

\]

which can also be written

$$
\begin{equation*}
R_{d}=\frac{U_{C}-U_{D}}{U_{C} U_{D}} \tag{6.13}
\end{equation*}
$$

When R_{d} (deposited) $>R_{d}$ (allowed), as after a period of service, the apparatus no longer delivers a quantity of heat equal to the process requirements and must be cleaned.

Numerical values of the dirt or fouling factors for a variety of process services are provided in Appendix Table 12. The tabulated fouling factors are intended to protect the exchanger from delivering less than the required process heat load for a period of about a year to a year and a half. Actually the purpose of the tabulated fouling factors should be considered from another point of view. In designing a process plant containing many heat exchangers but without alternate or spare pieces of heat-transfer equipment, the process must be discontinued and the equipment cleaned as soon as the first exchanger becomes fouled. It is impractical to shut down every time one exchanger or another is fouled, and by using the tabulated fouling factors, it can be arranged so that all the exchangers in the process become dirty at the same time regardless of service. At that time all can be dismantled and cleaned during a single shutdown. The tabulated values may differ from those encountered by experience in particular services. If too frequent cleaning is necessary, a greater value of R_{d} should be kept in mind for future design.

It is to be expected that heat-transfer equipment will transfer more heat than the process requirements when newly placed in service and that it will deteriorate through operation, as a result of dirt, until it just fulfills the process requirements. The calculation of the temperatures delivered initially by a clean exchanger whose surface has been designed for U_{D} but which is operating without dirt and which is consequently oversurfaced is not difficult. Referring to Eqs. (5.18) and (5.19) use U_{C} for U and the actual surface of the exchanger A (which is based on U_{D}). This calculation is also useful in checking whether or not a clean exchanger will be able to deliver the process heat requirements when it becomes dirty.

Pressure Drop in Pipes and Pipe Annuli. The pressure-drop allowance in an exchanger is the static fluid pressure which may be expended to drive the fluid through the exchanger. The pump selected for the circulation of a process fluid is one which develops sufficient head at the desired capacity to overcome the frictional losses caused by connecting
piping, fittings, control regulators, and the pressure drop in the exchanger itself. To this head must be added the static pressure at the end of the line such as the elevation or pressure of the final receiving vessel. Once a definite pressure drop allowance has been designated for an exchanger as a part of a pumping circuit, it should always be utilized as completely as possible in the exchanger, since it will otherwise be blown off or expanded through a pressure reducer. Since in Eq. (3.44)

$$
\Delta F \propto G^{2} \quad\left(\text { nearly }, \text { since } f \text { varies somewhat with } \frac{D G}{\mu}\right)
$$

and in Eq. (6.2) for turbulent flow

$$
h_{i} \propto G^{0.8} \quad \text { (nearly) }
$$

the best use of available pressure is to increase the mass velocity which also increases h_{i} and lessens the size and cost of the apparatus. It is customary to allow a pressure drop of 5 to 10 psi for an exchanger or battery of exchangers fulfilling a single process service except where the flow is by gravity. For each pumped stream 10 psi is fairly standard. For gravity flow the allowable pressure drop is determined by the elevation of the storage vessel above the final outlet z in feet of fluid. The feet of fluid may be converted to pounds per square inch by multiplying z by $p / 144$.
The pressure drop in pipes can be computed from the Fanning equation [Eq. (3.44)], using an appropriate value of f from Eq. (3.46) or Eq. (3.47b), depending upon the type of flow. For the pressure drop in fluids flowing in annuli, replace D in the Reynolds number by D_{e}^{\prime} to obtain f. The Fanning equation may then be modified to give

$$
\begin{equation*}
\Delta F=\frac{4 f G^{2} L}{2 g \rho^{2} D_{s}^{\prime}} \tag{6.14}
\end{equation*}
$$

Where several double pipe exchangers are connected in series, annulus to annulus and pipe to pipe as in Fig. 6.5, the length in Eq. (3.44) or (6.14) is the total for the entire path.

The pressure drop computed by Eq. (3.44) or (6.14) does not include the pressure drop encountered when the fluid enters or leaves exchangers. For the inner pipes of double pipe exchangers connected in series, the entrance loss is usually negligible, but for annuli it may be significant. The allowance of a pressure drop of one velocity head, $V^{2} / 2 g^{\prime}$, per hairpin will ordinarily suffice. Suppose water flows in an annulus with a mass velocity of $720,000 \mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)$. Since $\rho=62.5 \mathrm{lb} / \mathrm{ft}^{3}$ (approximately),

$$
V=\frac{G}{3600 \rho}=\frac{720,000}{3600 \times 62.5}=3.2 \mathrm{fps}
$$

The pressure drop per hairpin will be $3.2^{2} /(2 \times 32.2)=0.159 \mathrm{ft}$ of water or 0.07 psi . Unless the velocity is well above 3 fps , the entrance and exit losses may be neglected. Values of $V^{2} / 2 g^{\prime}$ are plotted directly against the mass velocity for a fluid with a specific gravity of 1.0 in Fig. 27 in the Appendix.

The Calculation of a Double Pipe Exchanger. All the equations developed previously will be combined to outline the solution of a double pipe exchanger. The calculation consists simply of computing h_{o} and $h_{i o}$ to obtain U_{c}. Allowing a reasonable fouling resistance, a value of U_{D} is calculated from which the surface can be found with the use of the Fourier equation $Q=U_{D} A \Delta t$.

Usually the first problem is to determine which fluid should be placed in the annulus and which in the inner pipe. This is expedited by establishing the relative sizes of the flow areas for both streams. For equal allowable pressure drops on both the hot and cold streams, the decision rests in the arrangement producing the most nearly equal mass velocities and pressure drops. For the standard arrangements of double pipes the flow areas are given in Table 6.2.

Table 6.2. Flow Areas and Eqcivalent Diameters in Double Pipe Exchangars

Exchanger, IPS	Flow area, in. ${ }^{2}$		Annulus, in.	
	Annulus	Pipe	d_{e}	d_{ϵ}^{\prime}
$2 \times 11 / 4$	1.19	1.50	0.915	0.40
$21 / 2 \times 11 / 4$	2.63	1.50	2.02	0.81
3×2	2.93	3.35	1.57	0.69
4×3	3.14	7.38	1.14	0.53

In the outline below, hot- and cold-fluid temperatures are represented by upper and lower case letters, respectively. All fluid properties are indicated by lower case letters to eliminate the requirement for new nomenclature.

Process conditions required:
Hot fluid: T_{1}, T_{2}, W, c, s or $\rho, \mu, k, \Delta P, R_{d o}$ or $R_{d i}$
Cold fluid: t_{1}, t_{2}, w, c, s or $\rho, \mu, k, \Delta P, R_{d i}$ or $R_{d o}$
The diameter of the pipes must be given or assumed.

A convenient order of calculation follows:
(1) From $T_{1}, T_{2}, t_{1}, t_{2}$ check the heat balance, Q, using c at $T_{\text {mean }}$ and $t_{\text {mean }}$.

$$
Q=W C\left(T_{1}-T_{2}\right)=w c\left(t_{2}-t_{1}\right)
$$

Radiation losses from the exchanger are usually insignificant compared with the heat load transferred in the exchanger.
(2) LMTD, assuming counterflow.
(3) T_{c} and t_{c} : If the liquid is neither a petroleum fraction nor a hydrocarbon the caloric temperatures cannot be determined through the use of Fig. 17 and Eqs. (5.28) and (5.29). Instead, the calculation of U_{c} must be performed for the hot and cold terminals giving U_{b} and U_{0} from which one may obtain $K_{c .} \quad F_{c}$ is then gotten from Fig. 17 or Eq. (5.27). If neither of the liquids is very viscous at the cold terminal, say not more than 1.0 centipoise, if the temperature ranges do not exceed 50 to $100^{\circ} \mathrm{F}$, and if the temperature difference is less than $50^{\circ} \mathrm{F}$, the arithmetic means of T_{1} and T_{2} and t_{1} and t_{2} may be used in place of T_{c} and t_{c} for evaluating the physical properties. For nonviscous fluids $\phi=\left(\mu / \mu_{w}\right)^{0.14}$ may be taken as 1.0 as assumed below.

Inner pipe:

(4) Flow area, $a_{p}=\pi D^{2} / 4$, ft^{2}.
(5) Mass velocity, $\mathrm{G}_{p}=w / a_{p}, \mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)$.
(6) Obtain μ at T_{c} or t_{c} depending upon which flows through the inner pipe. $\quad \mu, \mathrm{lb} /(\mathrm{ft})(\mathrm{hr})=$ centipoise $\times 2.42$.
From $D \mathrm{ft}, G_{p} \mathrm{Ib} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right), \mu \mathrm{lb} /(\mathrm{ft})(\mathrm{br})$ obtain the Reynolds number, $R e_{p}=D G_{p} / \mu$.
(7) From Fig. 24 in which $j_{H}=\left(h_{i} D / k\right)(c \mu / k)^{-1 / 3}\left(\mu / \mu_{w}\right)^{-0.14}$ vs. $D G_{p} / \mu$ obtain j_{H}.
(8) From c Btu/(lb) $\left({ }^{\circ} \mathrm{F}\right), \mu \mathrm{lb} /(\mathrm{ft})(\mathrm{hr}), k \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F} / \mathrm{ft}\right)$, all obtained at T_{c} or t_{c} compute $(c \mu / k)^{3 / 3}$.
(9) To obtain h_{i} multiply j_{H} by $(k / D)(c \mu / k)^{1 / 3}(\phi=1.0)$ or

$$
\begin{equation*}
\frac{h_{i} D}{k}\left(\frac{c \mu}{k}\right)^{-1 / 3}\left(\frac{\mu}{\mu_{w}}\right)^{-0.14} \frac{k}{D}\left(\frac{c \mu}{k}\right)^{1 / 2} \times 1.0=h_{i} \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right) \tag{6.15a}
\end{equation*}
$$

(10) Convert h_{i} to $h_{i 0} ; h_{i o}=h_{i}\left(A_{i} / A\right)=h_{i} \times \mathrm{ID} / \mathrm{OD}$.

Annulus:
(4) Flow area, $a_{a}=\pi\left(D_{2}^{2}-D_{1}^{2}\right) / 4, \mathrm{ft}^{2}$

Equivalent diameter $D_{e}=\frac{4 \times \text { flow area }}{\text { wetted perimeter }}=\frac{D_{2}^{2}-D_{1}^{2}}{D_{1}} \quad \mathrm{ft}$
(5') Mass velocity, $G_{a}=w / a_{a}, \mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)$
(6) Obtain μ at T_{c} or $t_{c}, \mathrm{lb} /(\mathrm{ft})(\mathrm{hr})=$ centipoise $\times 2.42$. From $D_{c} \mathrm{ft}$, $G_{a} \mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right), \mu \mathrm{lb} /(\mathrm{ft})(\mathrm{hr})$ obtain the Reynolds number,

$$
R e_{a}=\frac{D_{e} G_{a}}{\mu}
$$

(7') From Fig. 24 in which $j_{H}=\left(h_{o} D_{e} / k\right)(c \mu / k)^{-1 / 6}\left(\mu / \mu_{w}\right)^{-0.14}$ vs. $D_{e} G_{a} / \mu$ obtain j_{H}.
(8') From c, μ, and k, all obtained at T_{c} or t_{c} compute $(c \mu / k)^{1 / 5}$.
(9^{\prime}) To obtain h_{o} multiply j_{H} by $\left(k / D_{e}\right)(c \mu / k)^{1 / 3}(\phi=1.0)$ or

$$
\begin{equation*}
\frac{h_{o} D_{e}}{k}\left(\frac{c \mu}{k}\right)^{-1 / 1}\left(\frac{\mu}{\mu_{k}}\right)^{-0.14} \frac{J_{i}}{D_{e}}\left(\frac{c \mu}{k}\right)^{1 / 3} \times 1.0=h_{o} \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right) \tag{6.15b}
\end{equation*}
$$

Overall coefficients:
(11) Compute $U_{C}=h_{i o} h_{o} /\left(h_{i o}+h_{o}\right), \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$.
(12) Compute U_{D} from $1 / U_{D}=1 / U_{C}+R_{d}$.
(13) Compute A from $Q=U_{D} A \Delta t$ which may be translated into length. If the length should not correspond to an integral number of hairpins, a change in the dirt factor will result. The recalculated dirt factor should equal or exceed the required dirt factor by using the next larger integral number of hairpins.
Calculation of ΔP. This requires a knowledge of the total length of path satisfying the heat-transfer requirements.

Inner pipe:

(1) For $R e_{p}$ in (6) above obtain f from Eq. (3.46) or (3.47b).
(2) $\Delta F_{p}=4 f G^{2} L / 2 g \rho^{2} D, f \mathrm{ft}$. $\Delta F_{p} \rho / 144=\Delta P_{p}$, psi.
Annulus:
(1') Obtain $D_{e}^{\prime}=\frac{4 \pi\left(D_{2}^{2}-D_{1}^{2}\right)}{4 \pi\left(D_{2}+D_{1}\right)}=\left(D_{2}-D_{1}\right)$.
Compute the frictional Reynolds number, $R e_{a}^{\prime}=D_{e}^{\prime} G_{a} / \mu$. For $R e_{a}^{\prime}$ obtain f from Eq. (3.46) or (3.47b).
(2') $\Delta F_{a}=4 f G^{2} L / 2 g \rho^{2} D_{e}^{\prime}$, ft.
(3') Entrance and exit losses, one velocity head per hairpin:
$\Delta F_{l}=\frac{V^{2}}{2 g^{\prime}} \mathrm{ft} / \mathrm{hairpin}$
$\left(\Delta F_{a}+\Delta F_{l}\right) \rho / 144=\Delta P_{a}, \mathrm{psi}$.
There is an advantage if both fluids are computed side by side, and the use of the outline in this manner will be demonstrated in Example 6.1.

Example 6.1. Double Pipe Benzene-Toluene Exchanger. It is desired to heat $9820 \mathrm{lb} / \mathrm{hr}$ of cold benzene from 80 to $120^{\circ} \mathrm{F}$ using hot toluene which is cooled from 160 to $100^{\circ} \mathrm{F}$. The specific gravities at $68^{\circ} \mathrm{F}$ are 0.88 and 0.87 , respectively. The other fluid properties will be found in the Appendix. A fouling factor of 0.001 should be provided for each stream, and the allowable pressure drop on each stream is 10.0 psi .

A number of 20 -ft hairpins of 2 - by $11 / 4-\mathrm{in}$. IPS pipe are available. How many hairpins are required?

Solution:

(1) Heat balance:

$$
\begin{align*}
\text { Benzene, } t_{\mathrm{av}} & =\frac{80+120}{2}=100^{\circ} \mathrm{F} \quad c=0.425 \mathrm{Btu} /(\mathrm{lb})\left({ }^{\circ} \mathrm{F}\right) \tag{Fig.2}\\
Q & =9820 \times 0.425(120-80)=167,000 \mathrm{Btu} / \mathrm{hr} \\
\text { Toluene, } T_{\mathrm{av}} & =\frac{160+100}{2}=130^{\circ} \mathrm{F} \quad c=0.44 \mathrm{Btu} /(\mathrm{lb})\left({ }^{\circ} \mathrm{F}\right) \tag{Fig.2}\\
W & =\frac{167,000}{0.44(160-100)}=6330 \mathrm{lb} / \mathrm{hr}
\end{align*}
$$

(2) LMTD, (see the method of Chap. 3):

$$
\text { Hot fluid } \quad \text { Cold fluid } \quad \text { Diff. }
$$

160	Higher temp	120	40
100	Lower temp	80	20
Δt_{2}			
Δt_{1}			
$\Delta t_{2}-\Delta t_{1}$			

$$
\begin{equation*}
\mathrm{LMTD}=\frac{\Delta t_{2}-\Delta t_{1}}{2.3 \log \Delta t_{2} / \Delta t_{1}}=\frac{20}{2.3 \log 40 / 2_{0}}=28.8^{\circ} \mathrm{F} \tag{5.14}
\end{equation*}
$$

(3) Caloric temperatures: A check of both streams will show that neither is viscous at the cold terminal (the viscosities less than 1 centipoise) and the temperature ranges and temperature difference are moderate. The coefficients may accordingly be evaluated from properties at the arithmetic mean, and the value of $\left(\mu / \mu_{w}\right)^{0.14}$ may be assumed equal to 1.0 .

$$
T_{\mathrm{av}}=1 / 2(160+100)=130^{\circ} \mathrm{F} \quad t_{\mathrm{av}}=1 / 2(120+80)=100^{\circ} \mathrm{F}
$$

Proceed now to the inner pipe. A check of Table 6.2 indicates that the flow area of the inner pipe is greater than that of the annulus. Place the larger stream, benzene in the inner pipe.

Hot fluid: annulus, toluene
(4') Flow area,
$D_{2}=2.067 / 12=0.1725 \mathrm{ft}$
$D_{1}=1.66 / 12=0.138 \mathrm{ft}$
$a_{a}=\pi\left(D_{2}^{2}-D_{1}^{2}\right) / 4$

$$
=\pi\left(0.1725^{2}-0.138^{2}\right) / 4=0.00826 \mathrm{ft}^{2}
$$

Equiv diam, $D_{0}=\left(D_{2}^{2}-D_{1}^{2}\right) / D_{1} \mathrm{ft}$
[Eq (6.3)]
$D_{c}=\left(0.1725^{2}-0.138^{2}\right) / 0.138$

Cold fuid: inner pipe, benzene
(4) $D=1.38 / 12=0.115 \mathrm{ft}$

Flow area, $a_{p}=\pi D^{2} / 4$

$$
=\pi \times 0.115^{2} / 4=0.0104 \mathrm{ft}^{2}
$$

Hot fluid: annulus, toluene
(6') Mass vel, $G_{a}=W / a_{a}$ $=6330 / 0.00826=767,000 \mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)$
(6^{\prime}) At $130^{\circ} \mathrm{F}, \mu=0.41 \mathrm{cp}$
[Fig. 14]
$=0.41 \times 2.42=0.99 \mathrm{lb} /(\mathrm{ft})(\mathrm{hr})$
Reynolds no., $R e_{a}=\frac{D_{e} G_{a}}{\mu}$

$$
=0.0762 \times 767,000 / 0.99=59,000
$$

(7') $j H=167$
[Fig. 24]
(8) At $130^{\circ} \mathrm{F}, c=0.44 \mathrm{Btu} /(\mathrm{lb})\left({ }^{\circ} \mathrm{F}\right)$
[Fig. 2]
$k=0.085 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F} / \mathrm{ft}\right) \quad[$ Table 4$\}$ $\left(\frac{c_{\mu}}{k}\right)^{1 / 2}=\left(\frac{0.44 \times 0.99}{0.085}\right)^{1 / 4}=1.725$
(9') $h_{o}=j_{H} \frac{k}{D_{e}}\left(\frac{c_{\mu}}{k}\right)^{1 / 3}\left(\frac{\mu}{\mu_{n}}\right)^{0.14}$
[Eq. (6.15b)]
$=167 \times \frac{0.085}{0.0762} \times 1.725 \times 1.0$
$=323 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$

Cold fluid: inner pipe, benzene
(5) Mass vel, $G_{p}=w / a_{p}$ $=9820 / 0.0104=943,000 \mathrm{Ib} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)$
(6) At $100^{\circ} \mathrm{F}, \mu=0.50 \mathrm{cp} \quad$ [Fig. 14] $=0.50 \times 2.42=1.21 \mathrm{lb} /(\mathrm{ft})(\mathrm{hr})$
Reynolds no., $R e_{p}=\frac{D G_{p}}{\mu}$

$$
=0.115 \times 943,000 / 1.21=89,500
$$

(7) $j_{H I}=236$
[Fig. 24]
(8) At $100^{\circ} \mathrm{F}, c=0.425 \mathrm{Btu} /(\mathrm{Bb})\left({ }^{\circ} \mathrm{F}\right)$
[Fig. 2]
$k=0.091 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F} / \mathrm{ft}\right) \quad$ [Table 4] $\left(\frac{c \mu}{k}\right)^{1 / 3}=\left(\frac{0.425 \times 1.21}{0.091}\right)^{1 / 6}=1.78$
(9) $h_{i}=j_{H} \frac{k}{D}\left(\frac{c \mu}{k}\right)^{1 / 3}\left(\frac{\mu}{\mu_{w}}\right)^{0.14}$
[Eq. (6.15a)]

$$
\begin{aligned}
& =236 \times \frac{0.091}{0.115} \times 1.78 \times 1.0 \\
& =333 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)
\end{aligned}
$$

(10) Correct h_{i} to the surface at the $O D$

$$
\begin{align*}
h_{i o} & =h_{i} \times \frac{\mathrm{ID}}{\mathrm{OD}} \tag{6.5}\\
& =333 \times \frac{1.38}{1.66}=276
\end{align*}
$$

Now proceed to the annulus.
(11) Clean overall coefficient, U_{C} :
$U_{C}=\frac{h_{i_{0}} h_{0}}{h_{\text {io }}+h_{o}}=\frac{276 \times 323}{276+323}=149 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$
(12) Design overall coefficient, U_{D} :
$\frac{1}{U_{D}}=\frac{1}{U_{C}}+R_{d}$
$R_{d}=0.002$ (required by problem)
$\frac{1}{U_{D}}=\frac{1}{149}+0.002$
$U_{D}=115 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$
Summary

323	h outside	276
U_{C}	149	
U_{D}	115	

(13) Required surface:

$$
\begin{gathered}
Q=U_{D} A \Delta t \quad A=\frac{Q}{U_{D} \Delta t} \\
\text { Surface }=\frac{167,000}{115 \times 28.8}=50.5 \mathrm{ft}^{2}
\end{gathered}
$$

From Table 11 for $11 / 4-\mathrm{in}$. IPS standard pipe there are $0.435 \mathrm{ft}^{2}$ of external surface per foot length.

$$
\text { Required length }=\frac{50.5}{0.435}=116 \text { lin } \mathrm{ft}
$$

This may be fulfilled by connecting three 20 - ft hairpins in series.
(14) The surface supplied will actually be $120 \times 0.435=52.2 \mathrm{ft}^{2}$. The dirt factor will accordingly be greater than required. The actual design coefficient is

$$
\begin{align*}
& U_{D}=\frac{167,000}{52.2 \times 28.8}=111 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right) \\
& R_{d}=\frac{U_{c}-U_{D}}{U_{c} U_{D}}=\frac{149-111}{149 \times 111}=0.0023(\mathrm{hr})\left(\mathbf{f t}^{2}\right)\left({ }^{\circ} \mathrm{F}\right) / \mathrm{Btu} \tag{6.13}
\end{align*}
$$

Pressure Drop

(1') D_{e}^{\prime} for pressure drop differs from $D_{e} \mid$ (1) For $R e_{p}=89,500$ in (6) above
for heat transfer. $D_{e}^{\prime}=\left(D_{2}-D_{1}\right) \quad[E q . ~(6.4)$
$f=0.0035+\frac{0.264}{(D G / \mu)^{0.42}} \quad$ [Eq. (3.47b)]
$=0.0035+\frac{0.264}{89,500^{0.42}}=0.0057$
$s=0.88, \rho=62.5 \times 0.88=55.0$
(2) $\Delta F_{p}=\frac{4 f G_{p}^{2} L}{2 g \rho^{2} D}$
$=\frac{4 \times 0.0057 \times 943,000^{2} \times 120}{2 \times 4.18 \times 10^{8} \times 55.0^{2} \times 0.115}$
$=\frac{4 \times 0.0071 \times 767,000^{2} \times 120}{2 \times 4.18 \times 10^{8} \times 54.3^{2} \times 0.0345}$
$=23.5 \mathrm{ft}$
(3) $V=\frac{G}{3600 \rho}=\frac{767,000}{3600 \times 54.3}=3.92 \mathrm{fps}$ $F_{l}=3\left(\frac{V^{2}}{2 g^{\prime}}\right)=3 \times \frac{3.92^{2}}{2 \times 32.2}=0.7 \mathrm{ft}$ $\Delta P_{a}=\frac{(23.5+0.7) 54.3}{144}=9.2 \mathrm{psi}$
Allowable $\Delta P_{a}=10.0 \mathrm{psi}$
[Table 6]
(2) $\Delta F_{a}=\frac{4 f G_{a}^{2} L}{2 g \rho^{2} D_{c}^{\prime}}$
[Eq. (3.47b)]
$s=0.87, \rho=62.5 \times 0.87=54.3$
$\Delta P_{p}=\frac{8.3 \times 55.0}{144}=3.2 \mathrm{psi}$
Allowable $\Delta P_{p}=10.0 \mathrm{psi}$

A check of U_{h} and U_{s} gives 161 and 138, respectively, and $K_{\theta}=0.17$. From Fig. 17 for $\Delta t_{0} / \Delta t_{h}=2 \%{ }_{40}=0.5, F_{s}=0.43$, whereas in the solution above the arithmetic mean temperatures were used. The arithmetic mean assumes $F_{c}=0.50$. However, since the ranges are amall for both fluids, the error is too small to be significant. If the ranges of the fluids or their viscosities were large, the error might be considerable for $F_{c}=0.43$.

Double Pipe Exchangers in Series-parallel Arrangements. Referring to Example 6.1, it is seen that a calculated pressure drop of 9.2 psi is
obtained against an allowable pressure drop of 10.0 psi. Suppose, however, that the calculated pressure drop were 15 or 20 psi and exceeded the available head. How then might the heat load be transferred with the available pressure head? One possibility is the use of a by-pass so that only three-quarters or two-thirds of the fluid flows through the exchanger and the remainder through the by-pass. This does not provide an ideal solution, since the reduced flow causes several unfavorable changes in the design. (1) The reduced flow through the exchanger reduces the mass velocity G_{a} and the film coefficient h_{0}. Since both of the coefficients are nearly alike, 323 vs. 276 , any sizable reduction in G_{a} alone decreases U_{c} by nearly $G_{a}^{0.8}$. (2) If less liquid circulates through the annulus, it has to be cooled over a longer range than from 160 to $100^{\circ} \mathrm{F}$ so that, upon

Fig. 6.5. Double pipe exchangers in series.

Fia. 6.6. Series-parallel arrangement.
mixing with the by-pass fluid, the process outlet temperature of $100^{\circ} \mathrm{F}$ results. As an example, the portion circulating through the annulus might have to be cooled over the range from 160 to $85^{\circ} \mathrm{F}$ depending upon the percentage by-passed. The outlet temperature of $85^{\circ} \mathrm{F}$ is closer to the inner pipe inlet of $80^{\circ} \mathrm{F}$ than originally, and the new cold-terminal difference Δt_{1} of only $5^{\circ} \mathrm{F}$ greatly decreases the LMTD. The two effects, decreased U_{c} and LMTD, increase the required number of hairpins greatly even though the heat load is constant. Reversing the location of the streams by placing the benzene in the annulus does not provide a solution in this case, since the benzene stream is larger than the toluene stream. The possibility of reversing the location of the streams should always be examined first whenever the allowable pressure drop cannot be met.

A solution is still possible, however, even when all the above have failed. When two double pipe exchangers are connected in series, the arrangement is shown in Fig. 6.5. Suppose that the stream which is too large to be accommodated in several exchangers in series is divided in half and each half traverses but one exchanger through the inner pipes in

Fig. 6.6. Dividing a stream in half while keeping the flow area constant produces about one-eighth of the series pressure drop, since G and L will be half and the product of $G^{2} L$ in Eq. (6.14) will be one-eighth. While the film coefficient will also be reduced, the unfayorable temperature difference of by-passing can be circumvented. Where there is a substantial unbalance between the weight flow of the two streams because one operates over a long range and the other over a very short range, the large stream may be divided in three, four, or more parallel streams. In larger services each parallel stream may also flow through several exchangers in series in each parallel bank. The term "parallel streams" should not be confused with "parallel flow." The former refers to the division of the flow of one fluid, while the latter refers to the direction of flow between two fluidṣ.

The True Temperature Difference for Series-parallel Arrangements. The LMTD calculated from T_{1}, T_{2}, t_{1}, and t_{2} for the series arrangement will not be the same for a series-parallel arrangement. Half of the pipe fluid enters the upper exchanger II in Fig. 6.6 where the annulus fluid is hot, and half enters the lower exchanger I in which the annulus fluid has already been partially cooled. While exchangers in series do not transfer equal quantities of heat, the series-parallel relationship is even more adverse, the lower exchanger accounting for relatively less of the total heat transfer. If the true temperature difference is called Δt, it will not be identical with the LMTD for the process conditions although both of the exchangers operate in counterflow.

Consider the two exchangers in Fig. 6.6 designated by I and II. The intermediate temperature is T, and the outlets of the parallel streams are designated by $t_{2}^{I I}$ and t_{2}^{I}. Their mixed temperature is t_{2},

For exchanger I, containing half the surface,

$$
\begin{equation*}
Q_{\mathrm{I}}=W C\left(T-T_{2}\right)=\frac{U A}{2} \times \mathrm{LMTD}_{\mathrm{I}} \tag{6.16}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{LMTD}_{\mathrm{I}}=\frac{\left(T-t_{2}^{\mathrm{I}}\right)-\left(T_{2}-t_{1}\right)}{\ln \left(T-t_{2}^{\mathrm{I}}\right) /\left(T_{2}-t_{1}\right)} \tag{6.17}
\end{equation*}
$$

Substituting in Eq. (6.16),

$$
\frac{U A}{2 W C}=\frac{\left(T-T_{2}\right)}{\left(T-t_{2}^{\mathrm{T}}\right)-\left(T_{2}-t_{1}\right)} \ln \frac{T-t_{2}^{1}}{T_{2}-t_{1}}
$$

Rearranging,

$$
\begin{align*}
\frac{U A}{2 W C} & =\frac{\left(T-T_{2}\right)}{\left(T-T_{2}\right)-\left(t_{2}^{I}-t_{1}\right)} \ln \frac{\left(T-t_{2}^{I}\right)}{\left(T_{2}-t_{1}\right)} \\
& =\frac{1}{1-\left(t_{2}^{T}-t_{1}\right) /\left(T-T_{2}\right)} \ln \frac{T-t_{2}^{I}}{T_{2}-t_{2}} \tag{6.18}
\end{align*}
$$

Let

$$
\begin{align*}
R^{\dot{\mathrm{Y}}} & =\frac{\left(T-T_{2}\right)}{\left(t_{2}^{\mathrm{I}}-t_{1}\right)}=\frac{w c}{2 W C} \\
\frac{U A}{2 W C} & =\frac{R^{\mathrm{I}}}{R^{\mathrm{I}}-1} \ln \frac{T-t_{2}^{\mathrm{I}}}{T_{2}-t_{1}} \tag{6.19}
\end{align*}
$$

Similarly for exchanger II

$$
\begin{align*}
Q_{\mathrm{II}} & =W C\left(T_{1}-T\right)=\frac{U A}{2} \times \mathrm{LMTD}_{\mathrm{II}} \tag{6.20}\\
\operatorname{LMTD}_{\mathrm{II}} & =\frac{\left(T_{1}-t_{2}^{\mathrm{II}}\right)-\left(T-t_{1}\right)}{\ln \left(T_{1}-t_{2}^{\mathrm{I}}\right) /\left(T-t_{1}\right)} \tag{6.21}
\end{align*}
$$

Let

$$
\begin{align*}
R^{\mathrm{II}} & =\frac{T_{1}-T}{t_{2}^{\mathrm{I}}-t_{1}}=\frac{w c}{2 W C} \\
\frac{U A}{2 W C} & =\frac{R^{\mathrm{II}}}{R^{\mathrm{II}}-1} \ln \frac{T_{1}-t_{2}^{\mathrm{II}}}{T-t_{1}} \tag{6.22}
\end{align*}
$$

Since c and C were assumed constant,

$$
\begin{equation*}
R^{\mathrm{x}}=R^{\mathrm{II}}=R^{\prime}=\frac{w c}{2 W C} \tag{6.23}
\end{equation*}
$$

Let

$$
\begin{gathered}
S^{\mathrm{I}}=\frac{t_{2}^{\mathrm{I}}-t_{1}}{T-t_{1}} \quad M^{\mathrm{I}}=\frac{T-T_{2}}{T-t_{1}} \\
M^{\mathrm{I}}=R^{\prime} S^{\mathrm{I}}
\end{gathered}
$$

Similarly let

$$
S^{\mathrm{II}}=\frac{t_{2}^{\mathrm{II}}-t_{1}}{T_{1}-t_{1}} \quad M^{\mathrm{II}}=\frac{T_{1}-T}{T_{1}-t_{1}}
$$

R^{\prime} and S are ratios which recur frequently in obtaining the true temperature difference Δt from the LMTD. S is the ratio of the cold fluid range to the maximum temperature span, the latter being the difference between both inlet temperatures, T_{1} and t_{1}.
But

$$
\begin{aligned}
M^{\mathrm{II}} & =R^{\prime} S^{\mathrm{II}} \\
1-S^{\mathrm{I}}=\frac{T-t_{2}^{\mathrm{I}}}{T-t_{1}} & =\frac{T-t_{1}}{T-t_{1}}-\frac{t_{2}^{\mathrm{I}}-t_{1}}{T-t_{1}} \\
\frac{T-t_{2}^{\mathrm{I}}}{T_{2}-t_{1}} & =\frac{1-S^{\mathrm{I}}}{1-R^{\prime} S^{\mathrm{I}}}
\end{aligned}
$$

and from Eq. (6.19)

$$
\begin{equation*}
\frac{U A}{2 W C}=\frac{R^{\prime}}{R^{\prime}-1} \ln \frac{1-S^{\mathrm{I}}}{1-R^{\prime} S^{\mathrm{I}}} \tag{6.24}
\end{equation*}
$$

and from Eq. (6.22)

$$
\begin{equation*}
\frac{U A}{2 W C}=\frac{R^{\prime}}{R^{\prime}-1} \ln \frac{1-S^{\mathrm{II}}}{1-R^{\prime} S^{\mathrm{II}}} \tag{6.25}
\end{equation*}
$$

and equating Eqs. (6.24) and (6.25),

$$
\frac{1-S^{\mathrm{I}}}{1-R^{\prime} S^{\mathrm{I}}}=\frac{1-S^{\mathrm{II}}}{1-R^{\prime} S^{\mathrm{II}}}
$$

Therefore

$$
\begin{aligned}
S^{\mathrm{I}} & =\mathbb{S}^{\mathrm{II}} \\
M^{\mathrm{I}} & =M^{\mathrm{II}}
\end{aligned}
$$

Adding Eqs. (6.24) and (6.25),

$$
\begin{equation*}
\frac{U A}{W C}=\frac{2 R^{\prime}}{R^{\prime}-1} \ln \frac{1-S^{1}}{1-R^{\prime} S^{\mathrm{I}}}=\frac{2 R^{\prime}}{R^{\prime}-1} \ln \frac{T-t_{2}^{I}}{T_{2}-t_{1}} \tag{6.26}
\end{equation*}
$$

in which T is the only unknown, and since $M^{\mathrm{I}}=M^{\mathrm{II}}$,

$$
\begin{gather*}
\frac{T_{1}-T}{T_{1}-t_{1}}=\frac{T-T_{2}}{T-t_{1}} \\
T^{2}-2 t_{1} T+t_{1}\left(T_{1}+T_{2}\right)-T_{1} T_{2}=0 \tag{6.27}
\end{gather*}
$$

Equation (6.27) is a quadratic whose solution is

$$
\begin{align*}
T & =\frac{2 t_{1} \pm \sqrt{4 t_{1}^{2}-4 t_{1}\left[\left(T_{1}+T_{2}\right)-4 T_{1} T_{2}\right]}}{2} \\
& =t_{1} \pm \sqrt{\left(T_{1}-t_{1}\right)\left(T_{2}-t_{1}\right)} \tag{6.28}
\end{align*}
$$

The minus sign applies when the heating medium is in the pipes. The plus sign applies when the cooling medium is in the pipes.
Substituting for T in Eq. (6.26),

$$
\begin{align*}
\frac{U A}{W C} & =\frac{2 R^{\prime}}{R^{\prime}-1} \ln \left[\frac{\left(R^{\prime}-1\right)\left(T_{1}-t_{1}\right)+\sqrt{\left(\overline{\left.T_{1}-t_{1}\right)\left(T_{2}-t_{1}\right)}\right.}}{R^{\prime} \sqrt{\left(T_{1}-t_{1}\right)\left(T_{2}-t_{1}\right)}}\right] \\
& =\frac{2 R^{\prime}}{R^{\prime}-1} \ln \left[\left(\frac{R^{\prime}-1}{R^{\prime}}\right)\left(\frac{T_{1}-t_{1}}{T_{2}-t_{1}}\right)^{3 / 2}+\frac{1}{R^{\prime}}\right] \tag{6.29}
\end{align*}
$$

Δt is the single value for the entire series-parallel arrangement; thus

$$
\begin{gather*}
Q=U A \Delta t=W C\left(T_{1}-T_{2}\right) \tag{6.30}\\
\Delta t=\frac{Q}{U A}=\frac{W C}{U A}\left(T_{1}-T_{2}\right) \tag{6.31}
\end{gather*}
$$

It is convenient in this derivation to employ a definition for the true temperature difference in terms of the maximum temperature span $T_{1}-t_{1}$:

$$
\begin{equation*}
\Delta t=\gamma\left(T_{1}-t_{1}\right) \tag{6.32}
\end{equation*}
$$

Equating (6.31) and (6.32);

$$
\begin{aligned}
\frac{W C}{U A}\left(T_{1}-T_{2}\right) & =\gamma\left(T_{1}-t_{1}\right) \\
\gamma & =\frac{W C\left(T_{1}-T_{2}\right)}{U A\left(T_{1}-t_{1}\right)}
\end{aligned}
$$

Since $M=\left(T_{1}-T_{2}\right) /\left(T_{1}-t_{1}\right)$, define $P^{\prime}=\left(T_{2}-t_{1}\right) /\left(T_{1}-t_{1}\right)$ and $U A / W C=M / \gamma ;$ then

$$
P^{\prime}+M=1 \quad \text { or } \quad M=1-P^{\prime}
$$

Substituting in Eq. (6.29),

$$
\begin{equation*}
\frac{U A}{W C}=\frac{2 R^{\prime}}{R^{\prime}-1} \ln \left[\left(\frac{R^{\prime}-1}{R^{\prime}}\right)\left(\frac{1}{P^{\prime}}\right)^{3 / 2}+\frac{1}{R^{\prime}}\right] \tag{6.33}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{1-P^{\prime}}{\gamma}=2\left(\frac{R^{\prime}}{R^{\prime}-1}\right) \ln \left[\left(\frac{R^{\prime}-1}{R^{\prime}}\right)\left(\frac{1}{P^{\prime}}\right)^{3 / 2}+\frac{1}{R^{\prime}}\right] \tag{6.34}
\end{equation*}
$$

If developed in a generalized manner it can be shown that, for one series hoi stream and n parallel cold streams, Eq. (6.34) becomes

$$
\begin{equation*}
\frac{1-P^{\prime}}{\gamma}=2.3 \frac{n R^{\prime}}{R^{\prime}-1} \log \left[\left(\frac{R^{\prime}-1}{R^{\prime}}\right)\left(\frac{1}{P^{\prime}}\right)^{1 / n}+\frac{1}{R^{\prime}}\right] \tag{6.35a}
\end{equation*}
$$

where

$$
R^{\prime}=\frac{T_{1}-T_{2}}{n\left(t_{2}-t_{1}\right)}
$$

For one series cold stream and n parallel hot streams,

$$
\begin{equation*}
\frac{1-P^{\prime \prime}}{\gamma}=2.3 \frac{n}{1-R^{\prime \prime}} \log \left[\left(1-R^{\prime \prime}\right)\left(\frac{1}{P^{\prime \prime}}\right)^{1 / n}+R^{\prime \prime}\right] \tag{6.35b}
\end{equation*}
$$

where

$$
P^{\prime \prime}=\frac{T_{1}-t_{2}}{T_{1}-t_{1}} \quad \text { and } \quad R^{\prime \prime}=\frac{n\left(T_{1}-T_{2}\right)}{t_{2}-t_{1}}
$$

Example 6.2. Calculation of the True Temperature Difference. A bank of double pipe exchangers operates with the hot fluid in series from 300 to $200^{\circ} \mathrm{F}$ and the cold fiuid in six parallel streams from 190 to $220^{\circ} \mathrm{F}$. What is the true temperature difference Δt ?

$$
P^{\prime}=\frac{T_{2}-t_{1}}{T_{1}-t_{1}}=\frac{200-190}{300-190}=0.091 \quad R^{\prime}=\frac{T_{1}-T_{2}}{n\left(t_{2}-t_{1}\right)}=\frac{300-200}{6(220-190)}=0.558
$$

Substituting in Eq. (6.35a) and solving, $\gamma=0.242$.

$$
\begin{equation*}
\Delta t=0.242(300-190)=26.6^{\circ} \mathrm{F}^{\prime} \tag{6.32}
\end{equation*}
$$

The LMTD would be $33.7^{\circ} \mathrm{F}$, and an error of 27 per cent would be introduced by its use.

Exchangers with a Viscosity Correction, ϕ. For heating or cooling fluids, the use of Fig. 24 with an assumed value of $\left(\mu / \mu_{v}\right)^{0.14}=1.0$ also assumes a negligible deviation of fluid properties from isothermal flow. For nonvișcous fluids the deviation from isothermal flow during heating
or cooling does not introduce an appreciable error in the calculation of the heat-transfer coefficient. When the pipe-wall temperature differs appreciably from the caloric temperature of the controlling fluid and the controlling fluid is viscous, the actual value of $\phi=\left(\mu / \mu_{v}\right)^{0.14}$ must be taken into account. To include the correction, t_{w} may be determined by Eq. (5.31) or by (5.32) from uncorrected values of h_{o} / ϕ_{a} and $h_{i o} / \phi_{p}$, which are then corrected accordingly by multiplication by ϕ_{a} and ϕ_{p} respectively. The corrected coefficients where $\phi \neq 1.0$ are

$$
\begin{align*}
h_{o} & =\left(\frac{h_{a}}{\phi_{a}}\right) \phi_{a} \tag{6.36}\\
h_{i o} & =\left(\frac{h_{i o}}{\phi_{p}}\right) \phi_{p} \tag{6.37}
\end{align*}
$$

Similarly for two resistances in series employing the viscosity corrections for deviation from the isothermal the clean overall coefficient is again

$$
\begin{equation*}
U_{c}=\frac{h_{i o} h_{o}}{h_{i o}+h_{o}} \tag{6.38}
\end{equation*}
$$

Example 6.3. Double Pipe Lube Oil-Crude Oil Exchanger. $6,900 \mathrm{lb} / \mathrm{hr}$ of a 26° API lube oil must be cooled from 450 to $350^{\circ} \mathrm{F}$ by $72,500 \mathrm{lb} / \mathrm{hr}$ of $34^{\circ} \mathrm{API}$ mid-continent crude oil. The crude oil will be heated from 300 to $310^{\circ} \mathrm{F}$.

A fouling factor of 0.003 should be provided for each stream, and the allowable pressure drop on each stream will be 10 psi.

A number of 20 -ft hairpins of 3 - by 2 -in. IPS pipe are available. How many must be used, and how shall they be arranged? The viscosity of the crude oil may be obtained from Fig. 14. For the lube oil, viscosities are 1.4 centipoises at $500^{\circ} \mathrm{F}, 3.0$ at $400^{\circ} \mathrm{F}$, and 7.7 at $300^{\circ} \mathrm{F}$. These viscosities are great enough to introduce an error if $\left(\mu / \mu_{v}\right)^{0: 14}=1$ is assumed.

Solution:

(1) Heat Balance:

Lube oil, $Q=6900 \times 0.62(450-350)=427,000 \mathrm{Btu} / \mathrm{hr}$
Crude cil, $Q=72,500 \times 0.585(310-300)=427,000 \mathrm{Bti} / \mathrm{hr}$
(2) Δt :

Hot Fluid Cold Fluid Diff.

450	Higher temp	310	140
350	Lower temp	300	50
Δt_{2}			
Δt_{1}			
$\Delta t_{2}-\Delta t_{1}$			

It will be impossible to put the $72,500 \mathrm{lb} / \mathrm{hr}$ of crude into a single pipe or annulus, since the flow area of each is too small. Assume, as a trial, that it will be employed in two parallel streams.

$$
\begin{equation*}
\Delta t=87.5^{\circ} \mathrm{F} \tag{6.35a}
\end{equation*}
$$

(3) Caloric temperatures:

$$
\begin{align*}
& \frac{\Delta t_{c}}{\Delta t_{k}}=\frac{50}{140}=0.357 \quad K_{c}=0.43 \quad F_{c}=0.395 \tag{Fig.17}\\
& T_{c}=350 \times 0.395(450-350)=389.5^{\circ} \mathrm{F} \tag{5.28}\\
& t_{c}=300 \times 0.395(310-300)=304^{\circ} \mathrm{F} \tag{5.29}
\end{align*}
$$

Proceed now to the inner pipe.

Hot fluid: annulus, lube oil
(4) Flow area, $D_{2}=3.068 / 12=0.256 \mathrm{ft}$ $D_{1}=2.38 / 12=0.199 \mathrm{ft}$
$a_{a}=\pi\left(D_{2}^{2}-D_{1}^{2}\right) / 4$
$=\pi\left(0.256^{2}-0.199^{2}\right) / 4=0.0206 \mathrm{ft}^{2}$
Equiv diam, $D_{e}=\left(D_{2}^{2}-D_{1}^{2}\right) / D_{1}$
[Eq. (6.3)]
$=\left(0.256^{2}-0.199^{2}\right) / 0.199=0.13 \mathrm{ft}$
(5^{\prime}) Mass vel, $G_{a}=W / a_{a}$
$=6900 / 0.0206=335,000 \mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)$
(6^{\prime}) At $389.5^{\circ} \mathrm{F}, \mu=3.0 \mathrm{cp}$

$$
=3.0 \times 2.42=7.25 \mathrm{lb} /(\mathrm{ft})(\mathrm{hr})
$$

[Fig. 14]
$R e_{a}=D_{a} G_{a} / \mu \quad[E q$. (3.6)]
$=0.13 \times 335,000 / 7.25=6,000$
If only 2 hairpins in series are required, L / D will be $2 \times 40 / 0.13=614$. Use $L / D=600$.
(7^{\prime}) $j_{H}=20.5$
[Fig. 24]
(8^{\prime}) At $T_{c}=389.5^{\circ} \mathrm{F}, \quad c=0.615 \mathrm{Btu} /$ (lb) $\left({ }^{\circ} \mathrm{F}\right)$ [Fig. 4] $k=0.067 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F} / \mathrm{ft}\right) \quad$ [Fig. 1]
$\left(\frac{c \mu}{k}\right)^{1 / 3}=\left(\frac{0.615 \times 7.25}{0.067}\right)^{1 / 3}=4.05$
(9') $h_{o}=j_{H} \frac{k}{D_{e}}\left(\frac{c \mu}{k}\right)^{1 / 3}{ }_{\phi_{a}}$
[Eq. (6.15)]

$$
\begin{aligned}
& \frac{h_{o}}{\phi_{a}}=\frac{20.5 \times 0.067 \times 4.05}{0.13} \\
&=42.7 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft} \mathrm{t}^{2}\right)\left({ }^{\circ} \mathrm{F}\right) \\
& t_{w}=t_{c}+\frac{h_{o} / \phi_{a}}{h_{i o} / \phi_{p}+h_{o} / \phi_{a}}\left(T_{c}-t_{c}\right)
\end{aligned}
$$

[Eq. (5.31)]
$=304+\frac{42.7}{297+42.7}(389.5-304)$
$=314^{\circ} \mathrm{F}$
$\mu_{w}=6.6 \times 2.42=16.0 \mathrm{lb} /(\mathrm{ft})(\mathrm{hr})$
[Fig. 14]

$$
\begin{aligned}
\phi_{a} & =\left(\mu / \mu_{w}\right)^{0.14} \\
& =(7.25 / 16.0)^{0.24}=0.90 \\
h_{0} & =\frac{h_{o}}{\phi_{a}} \phi_{a} \\
& =42.7 \times 0.90=38.4
\end{aligned}
$$

[Fig. 24]
[Eq. (6.36)]

Cold fluid: inner pipe, crude oil
(4) Flow area, $D=2.067 / 12=0.172 \mathrm{ft}$ $a_{p}=\pi D^{2} / 4$

$$
=\pi \times 0.172^{2} / 4=0.0233 \mathrm{ft}^{2}
$$

Since two parallel streams have been assumed, $w / 2 \mathrm{lb} / \mathrm{hr}$ will flow in each pipe.
(5) Mass vel, $G_{p}=w / a_{p}$
$=\frac{72,500}{2 \times 0.0233}$
$=1,560,000 \mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)$
(6) At $304^{\circ} \mathrm{F}, \mu=0.83 \mathrm{cp}$
$=0.83 \times 2.42=2.01 \mathrm{lb} /(\mathrm{ft})(\mathrm{hr})$
[Fig. 14]
$R e_{p}=D G_{p} / \mu$
$=0.172 \times 1,560,000 / 2.01=133,500$
(7) $j_{H}=320$
[Fig. 24]
(8) At $t_{\mathrm{c}}=304^{\circ} \mathrm{F}, c=0.585 \mathrm{Btu} /(\mathrm{lb})\left({ }^{\circ} \mathrm{F}\right)$
[Fig. 4] $k=0.073 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F} / \mathrm{ft}\right) \quad[$ Fig. 1]
$\left(\frac{c \mu}{k}\right)^{1 / 3}=\left(\frac{0.585 \times 2.01}{0.073}\right)^{1 / 3}=2.52$
(9) $h_{i}=j_{H} \frac{k}{D}\left(\frac{c \mu}{k}\right)^{1 / 3} \phi_{p}$
[Eq. (6.15a)]
$\frac{h_{i}}{\phi_{p}}=\frac{320 \times 0.073 \times 2.52}{0.172}$
$=342 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$
(10) $\frac{h_{i o}}{\phi_{p}}=\frac{h_{i}}{\phi_{p}} \times \frac{\mathrm{ID}}{\mathrm{OD}}$
$=342 \times 2.067 / 2.38=297$
Now proceed from (4^{\prime}) to (9^{\prime}) to obtain t_{w}.
$\mu_{k}=0.77 \times 2.42=1.86$
[Fig. 14]
$\phi_{p}=\left(\mu / \mu_{v}\right)^{0.14}$
$=(2.01 / 1.86)^{0.14}=1.0$ nearly
[Fig. 24]
$h_{i o}=\frac{h_{i o}}{\phi_{p}} \phi_{p}$
$=297 \times 1.0=297$
(1I) Clean overall coefficient, U_{σ} :
$U_{c}=\frac{h_{i o} h_{o}}{h_{i o}+h_{o}}=\frac{297 \times 38.4}{297+38.4}=34.0 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$
(12) Design overall coefficient, U_{D} :

$$
\begin{align*}
\frac{1}{U_{D}} & =\frac{1}{U_{G}}+R_{d} \tag{6.10}\\
R_{d} & =0.003+0.003=0.006(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{(} \mathrm{F}\right) / \mathrm{Btu} \\
U_{D} & =28.2
\end{align*}
$$

(13) Surface:

$$
A=\frac{Q}{U_{D} \Delta t}=\frac{427,000}{28.2 \times 87.5}=173 \mathrm{ft}^{2}
$$

External surface $/ \mathrm{lin} \mathrm{ft}, a^{\prime \prime}=0.622 \mathrm{ft}$
(Table 11)
Required length $=\frac{173}{0.622}=278 \mathrm{lin} \mathrm{ft}$
This is equivalent to more than six 20 -ft hairpins or 240 lin feet. Since two parallel streams are employed, use eight hairpins or 320 lin. feet. The hairpins should have the annuli connected in series and the tubes in two parallel banks of four exchangers.

The corrected U_{D} will be $U_{D}=Q / A \Delta t=427,000 / 320 \times 0.622 \times 87.5=24.5$.
The corrected dirt factor will be $R_{d}=1 / U_{D}-1 / U_{C}=1 / 24.5-1 / 34.0=0.0114$.

Pressure Drop

(1') $D_{e}^{\prime}=\left(D_{2}-D_{1}\right) \quad[$ Eq. (6.4)] $]$
$=(0.256-0.198)=0.058 \mathrm{ft}$
$R e_{a}^{\prime}=D_{e}^{\prime} G_{a} / \mu$
$=0.058 \times 335,000 / 7.25=2680$
$f^{\prime}=0.0035+\frac{0.264}{2680^{0.42}}=0.0132$
[Eq. (3.47b)]
$s=0.775, \rho=62.5 \times 0.775=48.4$
[Fig. 6]
(2) $\Delta F_{a}=\frac{4 f G_{a}^{2} L_{a}}{2 g \rho^{2} D_{a}^{\prime}}$
$=\frac{4 \times 0.0132 \times 335,000^{2} \times 320}{2 \times 4.18 \times 10^{3} \times 48.4^{2} \times 0.058}$
$=16.7 \mathrm{ft}$
(3') $V=\frac{G_{\sigma}}{36000_{\rho}}=\frac{335,000}{3600 \times 48.4}=1.9 \mathrm{fps}$
$\Delta F_{l}=8\left(\frac{V^{2}}{2 g^{\prime}}\right)=8\left(\frac{1.9^{2}}{2 \times 32.2}\right)=0.45 \mathrm{ft}$
$\Delta P_{\mathrm{a}}=\frac{(16.7+0.45) \times 48.4}{144}=5.8 \mathrm{psi}$
Allowable $\Delta P_{a}=10.0 \mathrm{psi}$
(1) For $R e_{p}=133,500$ in (6) above
$f=0.0035+\frac{0.264}{133,500^{0.42}}=0.005375$
$s_{1}=0.76, \rho=62.5 \times 0.76=47.5$
[Fig. 6]
Halves of the tube fluid will flow through only four exchangers.
(2) $\Delta F_{p}=\frac{4 f G_{p}^{2} L_{p}}{2 g \rho^{2} D}$

$$
\begin{gathered}
=\frac{4 \times 0.005375 \times 1,560,000^{2} \times 160}{2 \times 4.18 \times 10^{8} \times 47.5^{2} \times 0.172}= \\
=25.7 \mathrm{ft} \\
\Delta P_{p}=\frac{25.7 \times 47.5}{144}=8.5 \mathrm{psi}
\end{gathered}
$$

Allowable $\Delta P_{p}=10.0 \mathrm{psi}$
If the flow had not been divided, the pressure drop would be nearly eight times as great, or about 60 psi .

PROBLEMS

6.1. What is the fouling factor when (a) $U_{C}=30$ and $U_{D}=20$, (b) $U_{C}=60$ and $U_{D}=50$, and (c) $U_{c}=110$ and $U_{D}=100$? Which do you consider reasonable to specify between two moderately clean streams?
6.2. A double pipe exchanger was oversized because no data were available on the rate at which dirt accumulated. The exchanger was originally designed to cool $13,000 \mathrm{Hb} / \mathrm{hr}$ of 100 per cent acetic acid from 250 to $150^{\circ} \mathrm{F}$ by heating $19,000 \mathrm{lb} / \mathrm{hr}$ of butyl alcohol from 100 to $157^{\circ} \mathrm{F}$. A design coefficient $U_{D}=85$ was employed, but during initial operation a hot-liquid outlet temperature of $117^{\circ} \mathrm{F}$ was obtained. It' rose during operation at the average rate of $3^{\circ} \mathrm{F}$ per month. What dirt factor should have been specified for a 6 -month cleaning cycle?
6.3. O-xylene coming from storage at $100^{\circ} \mathrm{F}$ is to be heated to $150^{\circ} \mathrm{F}$ by cooling $18,000 \mathrm{lb} / \mathrm{hr}$ of butyl alcohol from 170 to $140^{\circ} \mathrm{F}$. Available for the purpose are five $20-\mathrm{ft}$ hairpin double pipe exchangers with annuli and pipes each connected in series. The exchangers are 3 -by 2 -in. IPS. What is (a) the dirt factor, (b) the pressure drops? (c) If the hot and cold streams in (a) are reversed with respect to the annulus and inner pipe, how does this justify or refute your initial decision where to place the hot stream?
6.4. $10,000 \mathrm{lb} / \mathrm{hr}$ of $57^{\circ} \mathrm{API}$ gasoline is cooled from 150 to $130^{\circ} \mathrm{F}$ by heating $42^{\circ} \mathrm{API}$ kerosene from 70 to $100^{\circ} \mathrm{F}$. Pressure drops of 10 psi are allowable with a minimum dirt factor of 0.004 . (a) How many $21 / 2$ - by $1 \frac{1}{4}-\mathrm{in}$. IPS hairpins 20 ft long are required? (b) How shall they be arranged? (c) What is the fimal fouling factor?
6.5. $12,000 \mathrm{lb} / \mathrm{hr} 26^{\circ}$ API lube oil (see Example 6.3 in text for viscosities) is to be cooled from 450 to $350^{\circ} \mathrm{F}$ by heating $42^{\circ} \mathrm{API}$ kerosene from 325 to $375^{\circ} \mathrm{F}$. A pressure drop of 10 psi is permissible on both streams, and a minimum dirt factor of 0.004 should be provided. (a) How many $20-\mathrm{ft}$ hairpins of $21 / 2$ - by $11 / 4 \mathrm{in}$. IPS double pipe are required? (b) How shall they be arranged, and (c) what is the final dirt factor?
6.6. $7,000 \mathrm{lb} / \mathrm{hr}$ of aniline is to be heated from 100 to $150^{\circ} \mathrm{F}$ by cooling $10,000 \mathrm{lb} / \mathrm{hr}$ of toluene with an initial temperature of $185^{\circ} \mathrm{F}$ in 2 - by 1 -in. IPS double pipe hairpin exchangers 15 ft long. Pressure drops of 10 psi are allowable, and a dirt factor of 0.005 is required. (a) How many hairpin sections are required? (b) How shall they be arranged? (c) What is the final dirt factor?
6.7. $24,000 \mathrm{lb} / \mathrm{hr}$ of 35° API distillate is cooled from 400 to $300^{\circ} \mathrm{F}$ by $50,000 \mathrm{lb} / \mathrm{hr}$ of 34° API crude oil heated from an inlet temperature of $250^{\circ} \mathrm{F}$. Pressure drops of 10 psi are allowable, and a dirt factor of 0.006 is required. Using $20-\mathrm{ft}$ hairpins of 4 - by 3 -in. IPS (a) how many are required, (b) how shall they be arranged, and (c) what is the final fouling factor?
6.8. A liquid is cooled from 350 to $300^{\circ} \mathrm{F}$ by another which is heated from 290 to $315^{\circ} \mathrm{F}$. How does the true temperature difference deviate from the LMTD if (a) the hot fluid is in series and the cold fluid flows in two parallel counterflow paths, (b) the hot fluid is in series and the cold fluid flows in three parallel-flow-counterflow paths, (c) The cold-fluid range in (a) and (b) is changed to 275 to $300^{\circ} \mathrm{F}$.
6.9. A fluid is cooled from 300 to $275^{\circ} \mathrm{F}$ by heating a cold fluid from 100 to $290^{\circ} \mathrm{F}$. If the hot fluid is in series, how is the true temperature difference affected by dividing the hot stream into (a) two parallel streams and (b) into three parallel streams?
6.10. $6330 \mathrm{lb} / \mathrm{hr}$ of toluene is cooled from 160 to $100^{\circ} \mathrm{F}$ by heating amyl acetate from 90 to $100^{\circ} \mathrm{F}$ using 15 -ft hairpins. The exchangers are 2 - by $11 / 4-\mathrm{in}$. IPS. Allowing 10 psi pressure drops and providing a minimum dirt factor of 0.004 (a) how many hairpins are required, (b) how shall they be arranged, and (c) what is the final dirt, factor?
6.11. $13,000 \mathrm{lb} / \mathrm{hr}$ of $26^{\circ} \mathrm{API}$ gas oil (see Example 6.3 in text for viscositics) is cooled from 450 to $350^{\circ} \mathrm{F}$ by heating $57^{\circ} \mathrm{API}$ gasoline under pressure from 220 to $230^{\circ} \mathrm{F}$ in as many 3 - by 2 -in. IPS double pipe 20 -ft hairpins as are required. Pressure drops of 10 psi are permitted along with a minimum dirt factor of 0.004 . (a) How many hairpins are required? (b) How shall they be arranged? (c) What is the final dirt factor?
6.12. $100,000 \mathrm{lb} / \mathrm{hr}$ of nitrobenzene is to be cooled from 325 to $275^{\circ} \mathrm{F}$ by benzene heated from 100 to $300^{\circ} \mathrm{F}$. Twenty-foot hairpins of 4 - by 3 -in. IPS double pipe will be employed, and pressure drops of 10 psi are permissible. A minimum dirt factor of 0.004 is required. (a) How many hairpins are required? (b) How shall they be arranged? (c) What is the final dirt factor?

NOMENCLATURE FOR CHAPTER 6

A. Heat-transfer surface, ft^{2}
$a \quad$ Flow area, ft^{2}
$a^{\prime \prime} \quad$ External surface per linear foot of pipe, ft
C Specific heat of hot fuid in derivations, $\mathrm{Btu} /(\mathrm{lb})\left({ }^{\circ} \mathrm{F}\right)$
C_{1} A constant
c Specific heat of cold fluid in derivations' or either fluid in calculations $\mathrm{Btu} /(\mathrm{lb})\left({ }^{\circ} \mathrm{F}\right)$
$D \quad$ Inside diameter, ft
$D_{1}, D_{2} \quad$ For annuli D_{1} is the outside diameter of inner pipe, D_{2} is the inside diameter of the outer pipe, ft
$D_{e,}, D_{e}^{\prime} \quad$ Equivalent diameter for heat-transfer and pressure drop, ft
$d_{e}, d_{c} \quad$ Equivalent diameter for heat-transfer and pressure drop, in.
Do
Outside diameter, ft
$F_{c} \quad$ Caloric fraction, dimensionless
$\Delta F \quad$ Pressure drop, ft
$f \quad$ Friction factor, dimensionless
$G \quad$ Mass velocity, $\mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)$.
$0 \quad$ Acceleration of gravity $4.18 \times 10^{8} \mathrm{ft} / \mathrm{hr}^{2}$
$g^{\prime} \quad$ Acceleration of gravity $32.2 \mathrm{ft} / \mathrm{sec}^{2}$
$h, h_{i}, h_{o} \quad$ Heat-transfer coefficient in general, for inside fluid, and for outside fluid, respectively, Btu/(hr) (ft $\left.{ }^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$
$h_{i o} \quad$ Value of h_{i} when referred to the pipe outside diameter, $\mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$
ID Inside diameter, ft or in.
$j_{I} \quad$ Heat-transfer factor, dimensionless
$K_{e} \quad$ Caloric factor, dimensionless
$k \quad$ Thermal conductivity, Btu/(hr) (ft ${ }^{2}$) (${ }^{\circ} \mathrm{F} / \mathrm{ft}$)
$L \quad$ Pipe length or leagth of path, ft
$M \quad$ Temperature group $\left(T_{1}-T_{2}\right) /\left(T_{1}-t_{1}\right)$, dimensionless
n
OD
$P^{\prime} \quad$ Temperature group $\left(T_{2}-t_{1}\right) /\left(T_{1}-t_{1}\right)$, dimensionless
$P^{\prime \prime} \quad$ Temperature group $\left(T_{1}-t_{2}\right) /\left(T_{1}-t_{1}\right)$, dimensionless
$\Delta P^{\prime} \quad$ Pressure drop, psi
$Q \quad$ Heat flow, Btu/hr
$R \quad$ Temperature group $\left(T_{2}-T_{2}\right) /\left(t_{2}-t_{1}\right)$, dimensionless
$R^{\prime} \quad$ Temperature group $\left(T_{1}-T_{2}\right) / n\left(t_{2}-t_{1}\right)$, dimensionless
$R^{\prime \prime}$. Temperature group $n\left(T_{1}-T_{2}\right) /\left(t_{2}-t_{1}\right)$, dimensionless

R_{d}, R_{i}, R_{0}	Combined dirt factor, inside dirt factor, outside dirt factor, (hr)(ft $\left.{ }^{2}\right)\left({ }^{\circ} \mathrm{F}\right) /$ Btu
$R e, R e^{\prime}$	Reynolds number for heat transfer and pressure drop, dimensionless
r_{h}	Hydraulic radius, ft
S	Temperature group ($t_{2}-t_{1}$)/($T_{1}-t_{1}$), dimensionless
s	Specific gravity, dimensionless
T, T_{1}, T_{2}	Hot-fluid temperature in general, inlet and outlet of hot fluid, ${ }^{\circ} \mathrm{F}$
Tc	Caloric temperature of hot fluid, ${ }^{\circ} \mathrm{F}$
t, t_{1}, t_{2}	Cold-fluid temperature in general, inlet and outlet of cold fluid, ${ }^{\circ} \mathrm{F}$
t_{c}	Caloric temperature of cold fluid, ${ }^{\circ} \mathrm{F}$
Δt	True or effective temperature difference in $Q=U_{D} A \Delta t$
$\Delta t_{c}, \Delta t_{h}$	Cold- and hot-terminal temperature differences, ${ }^{\circ} \mathrm{F}$
U, U_{C}, U_{D}	Overall coefficient of heat transfer, clean coefficient, design coefficient, $\mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$
V	Velocity, fps
W	Weight flow of hot fluid, $\mathrm{lb} / \mathrm{hr}$
w	Weight flow of cold fluid, $\mathrm{lb} / \mathrm{hr}$
z	Height, ft
γ	A constant, dimensionless
μ	Viscosity at the caloric temperature, centipoises $\times 2.42=1 \mathrm{~b} /(\mathrm{ft})(\mathrm{hr})$
$\mu_{\text {w }}$	Viscosity at the pipe-wall temperature, centipoises $\times 2.42=\mathrm{lb} /(\mathrm{ft})(\mathrm{hr})$
ρ	Density, $\mathrm{lb} / \mathrm{ft}^{3}$
ϕ	$\left(\mu / \mu_{w}\right)^{0.14}$

Subscripts and Superscripts

a	Annulus
l	Loss
p	Pipe
I	First of two exchangers
II	Second of two exchangers

CHAPTER 7

1-2 PARALLEL-COUNTERFLOW:

 SHELL-AND-TUBE EXCHANGERS
INTRODUCTION

The Tubular Element. The fulfillment of many industrial services requires the use of a large number of double pipe hairpins. These consume considerable ground area and also entail a large number of points at which leakage may occur. Where large heat-transfer surfaces are required, they can best be obtained by means of shell-and-tube equipment.

Shell-and-tube equipment involves expanding a tube into a tube sheet and forming a seal which does not leak under reasonable operating con-

Fig. 7.1. Tube roll.

Frg. 7.2. Ferrule.
ditions. A simple and common example of an expanded tube is shown in Fig. 7.1. A tube hole is drilled in a tube sheet with a slightly greater diameter than the outside diameter of the tube, and two or more grooves are cut in the wall of the hole. The tube is placed inside the tube hole, and a tube roller is inserted into the end of the tube. The roller is a rotating mandril having a slight taper. It is capable of exceeding the elastic limit of the tube metal and transforming it into a semiplastic condition so that it flows into the grooves and forms an extremely tight seal. Tube rolling is a skill, since a tube may be damaged by rolling to paper thinness and leaving a seal with little structural strength.

In some industrial uses it is desirable to install tubes in a tube sheet, so that they can be removed easily as shown in Fig. 7.2. The tubes are
actually packed in the tube sheet by means of ferrules using a soft metal packing ring.

Heat-exchanger Tubes. Heat-exchanger tubes are also referred to as condenser tubes and should not be confused with steel pipes or other types of pipes which are extruded to iron pipe sizes. The outside diameter of heat exchanger or condenser tubes is the actual outside diameter in inches within a very strict tolerance. Heat-exchanger tubes are available in a variety of metals which include steel, copper, admiralty, Muntz metal, brass, 70-30 copper-nickel, aluminum bronze, aluminum, and the stainless steels. They are obtainable in a number of different wall thicknesses defined by the Birmingham wire gage, which is usually referred to as the BWG or gage of the tube. The sizes of tubes which are generally available are listed in Table 10 of the Appendix of which the $3 / 4$ outside diam-

Fig. 7.3. Common tube layouts for exchangers.
eter and 1 in . OD are most common in heat-exchanger design. The data of Table 10 have been arranged in a manner which will be most useful in heat-transfer calculations.

Tube Pitch. Tube holes cannot be drilled very close together, since too small a width of metal between adjacent tubes structurally weakens the tube sheet. The shortest distance between two adjacent tube holes is the clearance or ligament, and these are now fairly standard. Tubes are laid out on either square or triangular patterns as shown in Fig. 7.3a and b. The advantage of square pitch is that the tubes are accessible for external cleaning and cause a lower pressure drop when fluid flows in the direction indicated in Fig. 7.3a. The tube pitch P_{T} is the shortest center-to-center distance between adjacent tubes. The common pitches for square layouts are $3 / 4 \mathrm{in}$. OD on 1 -in. square pitch and 1 in . OD on $11 / 4$-in. square pitch. For triangular layouts these are $3 / 4 \mathrm{in}$. OD on $15 / 16-\mathrm{in}$. triangular pitch, $3 / 4 \mathrm{in}$. OD on $1-\mathrm{in}$. triangular pitch, and $1-\mathrm{in}$. OD on $11 / 4-\mathrm{in}$. triangular pitch. In Fig. $7.3 c$ the square-pitch layout has been rotated 45°, yet it is essentially the same as in Fig. 7.3a. In Fig. 7.3d a mechanically cleanable modification of triangular pitch is
shown. If the tubes are spread wide enough, it is possible to allow the cleaning lanes indicated.

Shells. Shells are fabricated from steel pipe with nominal IPS diameters up to 12 in . as given in Table 11. Above 12 and including 24 in. the actual outside diameter and the nominal pipe diameter are the same. The standard wall thickness for shells with inside diameters from 12 to 24 in . inclusive is $3 / 8 \mathrm{in}$., which is satisfactory for shell-side operating pressures up to 300 psi . Greater wall thicknesses may be obtained for greater pressures. Shells above 24 in . in diameter are fabricated by rolling steel plate.

Stationary Tube-sheet Exchangers. The simplest type of exchanger is the fixed or staitonary tube-sheet exchanger of which the one shown in Fig. 7.4 is an example. The essential parts are a shell (1), equipped with two nozzles and having tube sheets (2) at both ends, which also serve as flanges for the attachment of the two channels (3) and their respective

Fig. 7.4. Fixed-head tubular exchanger.
channel covers (4). The tubes are expanded into both tube sheets and are equipped with transverse baffles (5) on the shell side. The calculation of the effective heat-transfer surface is frequently based on the distance between the inside faces of the tube sheets instead of the overall tube length.

Baffles. It is apparent that higher heat-transfer coefficients result when a liquid is maintained in a state of turbulence. To induce turbulence outside the tubes it is customary to employ baffles which cause the liquid to flow through the shell at right angles to the axes of the tubes. This causes considerable turbulence even when a small quantity of liquid flows through the shell. The center-to-center distance between baffles is called the baffe pitch or bafle spacing. Since the baffles may be spaced close together or far apart, the mass velocity is not entirely dependent יpon the diameter of the shell. The baffle spacing is usually not greater than a distance equal to the inside diameter of the shell or closer than a distance equal to one-fifth the inside diameter of the shell. The baffles are held securely by means of baffle spacers (6) as shown in Fig. 7.4, which consist of through-bolts screwed into the tube sheet and a number of
smaller lengths of pipe which form shoulders between adjacent baffles. An enlarged detail is shown in Fig. 7.5.

There are several types of baffles which are employed in heat exchangers, but by far the most common are segmental baffles as shown in Fig. 7.6. Segmental baffles are drilled plates with heights which are generally 75 per cent of the inside diameter of the shell. These are known

Fig. 7.5. Baffle spacer detail (enlarged).

Fig. 7.6. Segmental baffle detail.

Frg. 7.7. Dise and doughnut baffle.
as 25 per cent cut baffes and will be used throughout this book although other fractional baffle cuts are also employed in industry. An excellent review of the influence of the baffle cut on the heat-transfer coefficient has been presented by Donohue. ${ }^{1}$ They may be arranged, as shown, for "up-and-down" flow or may be rotated 90° to provide "side-to-side" flow, the latter being desirable when a mixture of liquid and gas flows
${ }^{1}$ Donohue, D. A., Ind. Eng. Chem., 41, 2499-2510 (1949).
through the shell. The baffle pitch and not the 25 per cent cut of the baffles, as shown later, determines the effective velocity of the shell fluid.

Other types of baffles are the disc and doughnut of Fig. 7.7 and the orifice baffle in Fig. 7.8. Although additional types are sometimes employed, they are not of general importance.

Frg. 7.8. Orifice baffle.
Fixed-tube-sheet Exchanger with Integral Channels. Another of several variations of the fixed-tube-sheet exchanger is shown in Fig. 7.9, in which the tube sheets are inserted into the shell, forming channels which are integral parts of the shell. In using stationary tube-sheet exchangers it is often necessary to provide for differential thermal expansion between the tubes and the shell during operation, or thermal stresses will develop across the tube sheet. This can be accomplished by the use of an expansion joint on the shell, of which a number of types of flexible joints are available.

Ftg. 7.9. Fixed-tube-sheet exchanger with integral channels. (Patterson Foundry \& Machine Co.)

Fixed-tube-sheet 1-2 Exchanger. Exchangers of the type shown in Figs. 7.4 and 7.9 may be considered to operate in counterflow, notwithstanding the fact that the shell fluid flows across the outside of the tubes. From a practical standpoint it is very difficult to obtain a high velocity when one of the fluid flows through all the tubes in a single pass. This can be circumvented, however, by modifying the design so that the tube fluid is carried through fractions of the tubes consecutively. An example of a tuo-pass fixed-tube-sheet exchanger is shown in Fig. 7.10, in which all the tube fluid flows through the two halves of the tubes successively.

The exchanger in which the shell-side fluid flows in one shell pass and the tube fluid in two or more passes is the 1-2 exchanger. A single channel is employed with a partition to permit the entry and exit of the tube fluid from the same channel. At the opposite end of the exchanger a bonnet is provided to permit the tube fluid to cross from the first to the second pass. As with all fixed-tube-sheet exchangers, the outsides of the tubes

Fig. 7.10. Fixed-head 1-2 exchanger. (Patterson Foundry \& Machine Co.)
are inaccessible for inspection or mechanical cleaning. The insides of the tubes can be cleaned in place by removing only the channel cover and using a rotary cleaner or a wire brush. Expansion problems are extremely critical in 1-2 fixed-tube-sheet exchangers, since both passes, as well as the shell itself, tend to expand differently and cause stress on the stationary tube sheets.

Removable-bundle Exchangers. In Fig. 7.11 is shown a counterpart of the 1-2 exchanger having a tube bundle which is removable from the

Fig. 7.11. Pull-through floating-head 1-2 exchanger. (Patterson Foundry \& Machine Co.)
shell. It consists of a stationary tube sheet, which is clamped between the single channel flange and a shell flange. At the opposite end of the bundle the tubes are expanded into a freely riding floating tube sheet or floating head. A floating-head cover is bolted to the tube sheet, and the entire bundle can be withdrawn from the channel end. The shell is closed by a shell bonnet. The floating head illustrated eliminates the differential expansion problem in most cases and is called a pull-through floating head.

The disadvantage to the use of a pull-through floating head is one of simple geometry. To secure the floating-head cover it is necessary to bolt it to the tube sheet, and the bolt circle requires the use of space where it would be possible to insert a great number of tubes. The bolting not only reduces the number of tubes which might be placed in the tube bundle but also provides an undesirable flow channel between the bundle and the shell. These objections are overcome in the more conventional

Fra. 7.12. Floating-head 1-2 exchanger. (Patterson Foundry \& Machine Co.)
split-ring floating-head 1-2 exchanger shown in Fig. 7.12. Although it is relatively expensive to manufacture, it does have a great number of mechanical advantages. It differs from the pull-through type by the use of a split-ring assembly at the floating tube sheet and an oversized shell cover which accommodates it. The detail of a split ring is shown in Fig. 7.13. The floating tube sheet is clamped between the floating-head cover and a clamp ring placed in back of the tube sheet which is split in half to permit dismantling. Different manufacturers have different

modifications of the design shown here, but they all accomplish the purpose of providing increased surface over the pull-through floating head in the same size shell. Cast channels with nonremovable channel covers are also employed as shown in Fig. 7.12.

Tube-sheet Layouts and Tube Counts. A typical example of the layout of tubes for an exchanger with a split-ring floating head is shown in Fig. 7.14. The actual layout is for a $131 / 4 \mathrm{in}$. ID shell with 1 in . OD tubes on $11 / 4$-in. triangular pitch arranged for six tube passes. The partition
arrangement is also shown for the channel and floating-head cover along with the orientation of the passes. Tubes are not usually laid out symmetrically in the tube sheet. Extra entry space is usually allowed in the shell by omitting tubes directly under the inlet nozzle so as to minimize the contraction effect of the fluid entering the shell. When tubes are

Fig. 7.14. Tube-sheet layout for a $131 / 4 \mathrm{in}$. ID shell employing 1 in . OD tubes on $1 / 4-\mathrm{in}$. triangular pitch with six tube passes.
laid out with minimum space allowances between partitions and adjoining tubes and within a diameter free of obstruction called the outer tube limit, the number of tubes in the layout is the tube count. It is not always possible to have an equal number of tubes in each pass, although in large exchangers the unbalance should not be more than about 5 per cent. In Appendix Table 9 the tube counts for $3 / 4$ and 1 in . OD tubes are given for one pass shells and one, two, four, six, and eight tube pass arrangements.

Table 7.1. Tube Count Entry Allowances

Shell ID, in.	Nozzle, in.
Less than 12.	2
12-171/4.	3
191/4-211/4.	4
231/4-29.	6
$31-37$.	8
Over 39.	10

These tube counts include a free entrance path below the inlet nozzle equal to the cross-sectional area of the nozzles shown in Table 7.1. When a larger inlet nozzle is used, extra entry space can be obtained by flaring the inlet nozzle at its base or removing the tubes which ordinarily lie close to the inlet nozzle.

Packed Floating Head. Another modification of the floating-head 1-2 exchanger is the packed floating-head exchanger shown in Fig. 7.15.

This exchanger has an extension on the floating tube sheet which is confined by means of a packing gland. Although entirely satisfactory for shells up to 36 in . ID, the larger packing glands are not recommended for higher pressures or services causing vibration.

U-bend Exchangers. The 1-2 exchanger shown in Fig. 7.16 consists of tubes which are bent in the form of a, U and rolled into the tube sheet.

Fig. 7.15. Packed floating head 1-2 exchanger. (Patterson Foundry \& Machine Co.)

Fig. 7.16. U-bend 1-2 exchanger. (Patterson Foundry \& Machine Co.)

Fig. 7.17. U-bend double-tube-sheet exchanger. (Patterson Foundry \& Machine Co.)
The tubes can expand freely, eliminating the need for a floating tube sheet, floating-head cover, shell flange, and removable shell cover. Baffles may be installed in the conventional manner on square or triangular pitch. The smallest diameter U-bend which can be turned without deforming the outside diameter of the tube at the bend has a diameter of three to four times the outside diameter of the tubing. This means that it will usually be necessary to omit some tubes at the center of the bundle, depending upon the layout.

An interesting modification of the U-bend exchanger is shown in Fig. 7.17. It employs a double stationary tube sheet and is used when the leakage of one fluid stream into the other at the tube roll can cause serious corrosion damage. By using two tube sheets with an air gap between them, either fluid leaking through its adjoining tube sheet will escape to the atmosphere. In this way neither of the streams can contaminate the other as a result of leakage except when a tube itself corrodes. Even tube failure can be prevented by applying a pressure shock test to the tubes periodically.

THE CALCULATION OF SHELL-AND-TUBE EXCHANGERS

Shell-side Film Coefficients. The heat-transfer coefficients outside tube bundles are referred to as shell-side coefficients. When the tube bundle employs baffles directing the shell-side fluid across the tubes from top to bottom or side to side, the heat-transfer coefficient is higher than for undisturbed fiow along the axes of the tubes. The higher transfer

Fig. 7.18. Flow across a bundle. coefficients result from the increased turbulence. In square pitch, as seen in Fig. 7.18, the velocity of the fluid undergoes continuous fluctuation because of the constricted area between adjacent tubes compared with the flow area between successive rows. In triangular pitch even greater turbulence is encountered because the fluid flowing between adjacent tubes at high velocity impinges directly on the succeeding row. This would indicate that, when the pressure drop and cleanability are of little consequence, triangular pitch is superior for the attainment of high shell-side film coefficients. This is actually the case, and under comparable conditions of flow and tube size the coefficients for triangular pitch are roughly 25 per cent greater than for square pitch.

Several factors not treated in preceding chapters influence the rate of heat transfer on the shell side. Suppose the length of a bundle is divided by six baffles. All the fluid travels across the bundle seven times. If ten baffles are installed in the same length of bundle, it would require that the bundle be crossed a total of eleven times, the closer spacing causing the greater turbulence. In addition to the effects of the baffle spacing the shell-side coefficient is also affected by the type of pitch, tube size, clearance, and fluid-flow characteristics. Furthermore, there is no true flow area by which the shell-side mass velocity can be computed,
since the flow area varies across the diameter of the bundle with the different number of tube clearances in each longitudinal row of tubes. The correlation obtained for fluids flowing in tubes is obviously not applicable to fluids flowing over tube bundles with segmental baffles, and this is indeed borne out by experiment. However, in establishing a method of correlation the form of the heat-transferfactor $j_{B}=(h D / k)(c \mu / k)^{-1 / h}\left(\mu / \mu_{w}\right)^{-0.14} \mathrm{vs}$. $D G / \mu$ has been retained, in agreement with the suggestion of McAdams, ${ }^{1}$ but using fictitious values for the equivalent diameter D_{ε} and the mass velocity G_{s} as discussed below.

Figure 28 in the Appendix is a correlation of industrial data which gives satisfactory results for the hydrocarbons, organic compounds, water, aqueous solutions, and gases when the bundle employs baffles with acceptable clearances between baffles and tubes and between baffles and shells. ${ }^{2}$ It is not the mean curve through the data but a safe curve such that the deviation of the test points from the curve ranges from 0 to approximately 20 per cent high. Inasmuch as the line expressing the equation possesses a curvature, it cannot be evaluated in the simple form of Eq. (3.42), since the proportionality constant and the exponent of the Reynolds number actually vary. For values of Re from 2000 to $1,000,000$, however, the data are closely represented by the equation

$$
\frac{h_{o} D_{0}}{k}=0.36\left(\frac{D_{e} G_{s}}{\mu}\right)^{0.55}\left(\frac{c \mu}{k}\right)^{1 / 3}\left(\frac{\mu}{\mu_{w}}\right)^{0.14}
$$

where h_{o}, D_{e} and G_{s} are as defined below. Calculations using Fig. 28 agree very well with the methods of Colburn ${ }^{3}$ and Short ${ }^{4}$ and the test data of Breidenbach ${ }^{5}$ and O^{\prime} Connell on a number of commercial heat exchangers. It will be observed in Fig. 28 that there is no discontinuity at a Reynolds number of 2100 such as occurs for fluids in tubes. The different equivalent diameters used in the correlation of shell and tube data precludes comparison between fluids flowing in tubes and across tubes on the basis of the Reynolds number alone. All the data in Fig. 28 refer to turbulent flow.

Shell-side Mass Velocity. The linear and mass velocities of the fluid change continuously across the bundle, since the width of the shell and the number of tubes vary from zero at the top and bottom to maxima at the center of the shell. The width of the flow area in the correlation

[^12]represented by Fig. 28 was taken at the hypothetical tube row possessing the maximum flow area and corresponding to the center of the shell. The length of the flow area was taken equal to the baffle spacing B. The tube pitch is the sum of the tube diameter and the clearance C^{\prime}. If the inside diameter of the shell is divided by the tube pitch, it gives a fictitious, but not necessarily integral, number of tubes which may be assumed to exist at the center of the shell. Actually in most layouts there is no row of tubes through the center but instead two equal maximum rows on either side of it having fewer tubes than computed for the center. These deviations are neglected. For each tube or fraction there are considered to be $C^{\prime} \times 1 \mathrm{in} .^{2}$ of crossflow area per inch of baffle space. The shell-side or bundle crossflow area a_{s} is then given by
\[

$$
\begin{equation*}
a_{s}=\frac{\mathrm{ID} \times C^{\prime} B}{P_{r} \times 144} \quad \mathrm{ft}^{2} \tag{7.1}
\end{equation*}
$$

\]

and as before, the mass velocity is

$$
\begin{equation*}
G_{s}=\frac{W}{a_{s}} \quad \mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right) \tag{7.2}
\end{equation*}
$$

Shell-side Equivalent Diameter. By definition, the hydraulic radius corresponds to the area of a circle equivalent to the area of a noncircular flow channel and consequently in a plane at right angles to the direction of flow. The hydraulic radius employed for correlating shell-side coeffcients for bundles having baffles is not the true hydraulic radius. The direction of flow in the shell is partly along and partly at right angles to the long axes of the tubes of the bundle. The flow area at right angles to the long axes is variable from tube row to tube row. A hydraulic radius based upon the flow area across any one row could not distinguish between square and triangular pitch. In order to obtain a simple correlation combining both the size and closeness of the tubes and their type of pitch, excellent agreement is obtained if the hydraulic radius is calculated along instead of across the long axes of the tubes. The equivalent diameter for the shell is then taken as four times the hydraulic radius obtained for the pattern as layed out on the tube sheet. Referring to Fig. 7.19, where the crosshatch covers the free area ${ }^{1}$ for square pitch

$$
\begin{equation*}
D_{e}=\frac{4 \times \text { free area }}{\text { wetted perimeter }} \tag{7.3}
\end{equation*}
$$

or

$$
\begin{equation*}
d_{e}=\frac{4 \times\left(P_{T}^{2}-\pi d_{0}^{2} / 4\right)}{\pi d_{0}} \quad \text { in } \tag{7.4}
\end{equation*}
$$

[^13]where P_{T} is the tube pitch in inches and d_{0} the tube outside diameter in inches. For triangular pitch as shown in Fig. 7.19 the wetted perimeter of the element corresponds to half a tube.
\[

$$
\begin{equation*}
d_{e}=\frac{4 \times\left(1 / 2 P_{T} \times 0.86 P_{T}-1 / 2 \pi d_{0}^{2} / 4\right)}{1 / 2 \pi d_{0}} \quad \text { in. } \tag{7.5}
\end{equation*}
$$

\]

The equivalent diameters for the common arrangements are included in Fig. 28.

It would appear that this method of evaluating the hydraulic radius and equivalent diameter does not distinguish between the relative percentage of right-angle flow to axial flow, and this is correct. It is possible, using the same shell, to have equal mass velocities, equivalent diameters, and

Fig. 7.19. Equivalent diameter.
Reynolds numbers using a large quantity of fluid and a large baffle pitch or a small quantity of fluid and a small baffle pitch, although the proportions of right-angle flow to axial flow differ. Apparently, where the range of baffle pitch is restricted between the inside diameter and onefifth the inside diameter of the shell, the significance of the error is not too great to permit correlation.

Example 7.1. Compute the shell-side equivalent diameter for a $9 / 4 \mathrm{in}$. OD tübe on 1-in. square pitch. From Eq. (7.4)

$$
\begin{aligned}
& d_{\epsilon}=\frac{4\left(1^{2}-3.14 \times 0.75^{2} / 4\right)}{3.14 \times 0.75}=0.95 \mathrm{in} . \\
& D_{\epsilon}=\frac{0.95}{12}=0.079 \mathrm{ft}
\end{aligned}
$$

The True Temperature Difference Δt in a 1-2 Exchanger. A typical plot of temperature vs. length for an exchanger having one shell pass and two tube passes is shown in Fig. 7.20 for the nozzle arrangement indicated. Relative to the shell fluid, one tube pass is in counterflow and the other in parallel flow. Greater temperature differences have
been found, in Chap. 5 , to result when the process streams are in counterflow and lesser differences for parallel flow. The 1-2 exchanger is a combination of both, and the LMTD for counterflow or parallel flow alone cannot be the true temperature difference for a parallel flowcounterflow arrangement. Instead it is necessary to develop a new equation for calculation of the effective or true temperature difference Δt to replace the counterflow LMTD. The method employed here is a modification of the derivation of Underwood ${ }^{1}$ and is presented in the final form proposed by Nagle ${ }^{2}$ and Bowman,

(b)

Fia. 7.20. Temperature relations in a 1-2 exchanger. Mueller, and Nagle. ${ }^{\circ}$

The temperature of the shell fluid may undergo either of two variations as it proceeds from the inlet to outlet, crossing the tube bundle several times in its progress: (1) So much turbulence is induced that the shell fluid is completely mixed at any length X from the inlet nozzle, or (2) so little turbulence is induced that there is a selective temperature atmosphere about the tubes of each tube pass individually. The baffles and turbulent nature of the flow components across the bundle appear to eliminate (2) so that (1) is taken as the first of the assumptions for the derivation of the true temperature difference in a 1-2 exchanger. The assumptions are

1. The shell fluid temperature is an average isothermal temperature at any cross section.
2. There is an equal amount of heating surface in each pass.
3. The overall coefficient of heat transfer is constant.
4. The rate of flow of each fluid is constant.
5. The specific heat of each fluid is constant.
6. There are no phase changes of evaporation or condensation in a part of the exchanger.
7. Heat losses are negligible.

The overall heat balance, where Δt is the true temperature difference, is

$$
\begin{equation*}
Q=U A \Delta t=W C\left(T_{1}-T_{2}\right)=w c\left(t_{2}-t_{1}\right) \tag{7.6}
\end{equation*}
$$

${ }^{1}$ Underwood, A. J. V., J. Inst. Petroleum Technol., 20, 145-158 (1934).
${ }^{2}$ Nagle, W. M., Ind. Eng. Chem., 25, 604-608 (1933).
${ }^{\text {s }}$ Bowman, R. A., A. C. Mueller, and W. M. Nagle. Trans. ASME., 62, 283-294 (1840).

From which

$$
\begin{equation*}
\Delta t=\left(\frac{T_{1}-T_{2}}{U A / W C}\right)_{\mathrm{true}}=\left(\frac{t_{2}-t_{1}}{U A / w c}\right)_{\mathrm{true}} \tag{7.7}
\end{equation*}
$$

In Fig. $7.20 a$ let T be the temperature of the shell fluid at any cross section of the shell $L=X$ between $L=0$ and $L=L$. Let t^{I} and $t^{I I}$ represent temperatures in the first and second tube passes, respectively, and at the same cross section as T. Let $a^{\prime \prime}$ be the external surface per foot of length. In the incremental surface $d A=a^{\prime \prime} d L$ the shell temperature changes by $-d T$. Over the area $d A$

$$
\begin{align*}
-W C d T & =U \frac{d A}{2}\left(T-t^{\mathrm{I}}\right)+U \frac{d A}{2}\left(T-t^{\mathrm{I}}\right) \tag{7.8}\\
-W C d T & =U d A\left(T-\frac{t^{\mathrm{I}}+t^{\mathrm{I}}}{2}\right) \tag{7.9}\\
-\int \frac{U d A}{W C} & =\int \frac{d T}{T-\left(t^{\mathrm{I}}+t^{\mathrm{II}}\right) / 2} \tag{7.10}
\end{align*}
$$

But in this equation T, t^{T}, and t^{T} are dependent variables. The heat balance from $L=X$ to the hot-fluid inlet is

$$
\begin{equation*}
W C\left(T-T_{2}\right)=w c\left(t^{\mathrm{II}}-t^{\mathrm{r}}\right) \tag{7.11}
\end{equation*}
$$

and the heat balance per pass

$$
\begin{align*}
w c d t^{\mathrm{I}} & =U \frac{d A}{2}\left(T-t^{\mathrm{I}}\right) \tag{7.12}\\
w c d t^{I I} & =-U \frac{d A}{2}\left(T-t^{I I}\right) \tag{7.13}
\end{align*}
$$

Dividing Eq. (7.13) by Eq. (7.12),

$$
\begin{equation*}
\frac{d t^{\mathrm{II}}}{d t^{I}}=-\frac{T-t^{\mathrm{II}}}{T-t^{I}} \tag{7.14}
\end{equation*}
$$

To eliminate t^{II} and $d t^{11}$ from Eq. (7.11) and (7.13)

$$
\begin{equation*}
t_{1}=\frac{W C}{w c}\left(T_{2}-T\right)+t^{I} \tag{7.15}
\end{equation*}
$$

Differentiating Eq. (7.15), with the hot fluid inlet T_{1} constant,

$$
\begin{equation*}
d t^{\mathrm{II}}=-\frac{W C}{w c} d T+d t^{\mathrm{I}} \tag{7.16}
\end{equation*}
$$

Substituting in Eq. (7.14) and rearranging,

$$
\begin{equation*}
\frac{W C}{w c} \frac{d T}{d t^{T}}=1+\frac{T-t^{\mathrm{I}}-(W C / w c)\left(T_{2}-T\right)}{T-t^{\mathrm{I}}} \tag{7.17}
\end{equation*}
$$

The number of variables in Eq. (7.15) has been reduced from three ($T, t^{\mathrm{I}}, t^{\mathrm{II}}$) to two (T and t^{I}). For a solution it is necessary to eliminate either T or t^{1}. Simplifying by the use of parameters as in the case of the double pipe exchanger let

$$
R=\frac{T_{1}-T_{2}}{t_{2}-t_{1}}=\frac{w c}{W \bar{C}} \quad \text { and } \quad S=\frac{t_{2}-t_{1}}{T_{1}-t_{1}}
$$

Rearranging Eq. (7.8),

$$
\begin{equation*}
W C \frac{d T}{d A}+\frac{U}{2}\left(T-t^{\mathrm{I}}\right)+\frac{U}{2}\left(T-t^{\mathrm{I}}\right)=0 \tag{7.18}
\end{equation*}
$$

Simplifying and substituting $W C=w c / R$,

$$
\begin{equation*}
\frac{d T}{d A}+\frac{U R T}{w c}-\frac{U R}{2 w c}\left(t^{\mathrm{I}}+t^{\mathrm{II}}\right)=0 \tag{7.19}
\end{equation*}
$$

Differentiating with respect to A,

$$
\begin{equation*}
\frac{d^{2} T}{d A^{2}}+\frac{U R}{w c} \frac{d T}{d A}-\frac{U R}{2 w c}\left(\frac{d t^{I}}{d A}+\frac{d t^{I I}}{d A}\right)=0 \tag{7.20}
\end{equation*}
$$

Substituting Eqs. (7.12) and (7.13),

$$
\begin{equation*}
\frac{d^{2} T}{d A^{2}}+\frac{U R}{w c} \frac{d T}{d A}-\frac{U^{2} R}{(2 w c)^{2}}\left(t^{\mathrm{II}}-t^{\mathrm{I}}\right)=0 \tag{7.21}
\end{equation*}
$$

Since the heat change is sensible, a direct proportionality exists between the percentage of the temperature rise (or fall) and Q.

$$
\begin{equation*}
\frac{T-T_{2}}{T_{1}-T_{2}}=\frac{t^{I}-t^{1 I}}{t_{1}-t_{2}} \tag{7.22}
\end{equation*}
$$

or

$$
\begin{gather*}
t^{\mathrm{II}}-t^{\mathrm{I}}=\frac{T-T_{2}}{R} \tag{7.23}\\
\frac{d^{2} T}{d A^{2}}+\frac{U R}{w c} \frac{d T}{d A}-\frac{U^{2} T}{(2 w c)^{2}}=-\frac{U^{2} T_{2}}{(2 w c)^{2}} \tag{7.24}
\end{gather*}
$$

Differentiating again with respect to A,

$$
\begin{equation*}
\frac{d^{3} T}{d A^{8}}+\frac{U R}{w c} \frac{d^{2} T}{d A^{2}}-\frac{U^{2} d T}{(2 w c)^{2} d A}=0 \tag{7.25}
\end{equation*}
$$

The solution of this equation will be found in any standard differentialequations text. The equation is

$$
\begin{equation*}
T=K_{1}+K_{2} e^{-\left(U_{A} / 2 v c\right)\left(R+\sqrt{\left.R^{2}+1\right)}\right.}+K_{8} e^{-\left(U_{A} / 2 v o c\right)\left(R-\sqrt{R^{2}+1}\right)} \tag{7.26}
\end{equation*}
$$

When $T=T_{2}, A$ will have increased from 0 to A, and from the solution
of Eq. (7.24) $K_{1}=T_{2}$ so that Eq. (7.26) becomes

$$
\begin{equation*}
-K_{2} e^{-(U A / 2 v c)\left(R+\sqrt{R^{2}+1}\right)}=K_{3} e^{-(U A / 2 w \mathrm{c})\left(R-\sqrt{R^{2}+1}\right)} \tag{7.27}
\end{equation*}
$$

Taking logarithms of both sides and simplifying,

$$
\begin{equation*}
\frac{U A}{w c}=\frac{1}{\sqrt{R^{2}+1}} \ln \left(-\frac{K_{2}}{K_{3}}\right) \tag{7.28}
\end{equation*}
$$

Differentiate Eq. (7.26):

$$
\begin{align*}
\frac{d T}{d A}=-K_{2} \frac{U}{2 w c} & \left(R+\sqrt{\left.R^{2}+1\right)} e^{-(U A / 2 w c)\left(R+\sqrt{R^{2}+1}\right)}\right. \\
& -K_{3} \frac{U}{2 w c}\left(R-\sqrt{R^{2}+1}\right) e^{-(U A / 2 w c)\left(R-\sqrt{\left.R^{2}+1\right)}\right.} \tag{7.29}
\end{align*}
$$

Substituting the value of $d T / d A$ from Eq. (7.19) and since at $A=0$, $t^{\mathrm{I}}=t_{1}, t^{\mathrm{II}}=t_{2}$, and $T=T_{1}, t^{\mathrm{I}}+t^{\mathrm{II}}=t_{1}+t_{2}$.

$$
\begin{align*}
R\left(t_{1}+t_{2}\right)-2 R T_{1}=-K_{2}\left(R+\sqrt{R^{2}+1}\right) & \\
& -K_{3}\left(R-\sqrt{R^{2}+1}\right) \tag{7.30}
\end{align*}
$$

From Eq. (7.26) at $A=0$ and $T=T_{1}$ and $K_{1}=T_{2}$

$$
\begin{equation*}
T_{1}-T_{2}=K_{2}+K_{3} \tag{7.31}
\end{equation*}
$$

Multiplying both sides of Eq. (7.31) by $\left(R+\sqrt{R^{2}+1}\right)$,

$$
\begin{align*}
& \left(R+\sqrt{R^{2}+1}\right)\left(T_{1}-T_{2}\right)=K_{2}\left(R+\sqrt{R^{2}+1}\right) \\
& \tag{7.32}\\
& +K_{3}\left(R+\sqrt{R^{2}+1}\right)
\end{align*}
$$

Adding Eqs. (7.31) and (7.32) and solving for K_{3},

$$
\begin{equation*}
K_{3}=\frac{R\left(t_{1}+t_{2}\right)+\left(T_{1}-T_{2}\right)\left(R+\sqrt{R^{2}+1}\right)-2 R T_{1}}{2 \sqrt{\overline{R^{2}+1}}} \tag{7.33}
\end{equation*}
$$

Returning to Eq. (7.31),

$$
\begin{align*}
& -K_{2}=K_{3}-\left(T_{1}-T_{2}\right)= \\
& \frac{\left(R+\sqrt{R^{2}+1}\right)\left(T_{1}-T_{2}\right)-2 \sqrt{R^{2}+1}\left(T_{1}-T_{2}\right)-2 R T_{1}+R\left(t_{1}+t_{2}\right)}{2 \sqrt{R^{2}+1}} \tag{7.34}
\end{align*}
$$

Since $R=\left(T_{1}-T_{2}\right) /\left(t_{2}-t_{1}\right)$,

$$
\begin{equation*}
-\frac{K_{2}}{K_{3}}=\frac{\left(R-\sqrt{R^{2}+1}\right)\left(t_{1}-t_{2}\right)-\left(T_{1}-t_{1}\right)-\left(T_{1}-t_{2}\right)}{\left(R+\sqrt{R^{2}+1}\right)\left(t_{1}-t_{2}\right)-\left(T_{1}-t_{1}\right)-\left(T_{1}-t_{2}\right)} \tag{7.35}
\end{equation*}
$$

Dividing by $T_{1}-t_{1}$ and substituting $S=\left(t_{2}-t_{1}\right) /\left(T_{1}-t_{1}\right)$ and $1-S=\left(T_{1}-t_{2}\right) /\left(T_{1}-t_{1}\right)$,

$$
\begin{equation*}
-\frac{K_{2}}{K_{3}}=\frac{2-S\left(R+1-\sqrt{R^{2}+1}\right)}{2-S\left(R+1+\sqrt{R^{2}+1}\right)} \tag{7.36}
\end{equation*}
$$

Substituting in Eq. (7.28),

$$
\begin{equation*}
\left(\frac{U A}{w c}\right)_{\text {true }}=\frac{1}{\sqrt{R^{2}+1}} \ln \frac{2-S\left(R+1-\sqrt{R^{2}+1}\right)}{2-S\left(R+1+\sqrt{R^{2}+1}\right)} \tag{7.37}
\end{equation*}
$$

Equation (7.37) is the relationship for the true temperature difference for 1-2 parallel flow-counterflow. How does this compare with the LMTD for counterflow employing the same process temperatures? For counterflow

$$
\begin{equation*}
Q=w c\left(t_{2}-t_{1}\right)=U A \frac{\left(T_{1}-t_{2}\right)-\left(T_{2}-t_{1}\right)}{\ln \left(T_{1}-t_{2}\right) /\left(T_{2}-t_{1}\right)} \tag{7.38}
\end{equation*}
$$

from which

$$
\begin{equation*}
\left(\frac{U A}{w c}\right)_{\text {countorfoow }}=\frac{t_{2}-t_{1}}{\frac{\left(T_{1}-t_{2}\right)-\left(T_{2}-t_{1}\right)}{\ln \left(T_{1}-t_{2}\right) /\left(T_{2}-t_{1}\right)}}=\frac{\ln (1-S) /(1-R S)}{R-1} \tag{7.39}
\end{equation*}
$$

The ratio of the true temperature difference to the LIMTD is

$$
\begin{equation*}
\frac{t_{2}-t_{1}}{(U A / w c)_{\text {rue }}} / \frac{t_{2}-t_{1}}{(U A / w c)_{\text {ounderflow }}}=\frac{(U A / w c)_{\text {oounterfiow }}}{(U A / w c)_{\text {trus }}} \tag{7.40}
\end{equation*}
$$

Calling the fractional ratio of the true temperature difference to the $\operatorname{LMTD} F_{T}$,

$$
\begin{equation*}
F_{F}=\frac{\sqrt{R^{2}+1} \ln (1-S) /(1-R S)}{(R-1) \ln \frac{2-S\left(R+1-\sqrt{R^{2}+1}\right)}{2-S\left(R+1+\sqrt{R^{2}+1}\right)}} \tag{7.41}
\end{equation*}
$$

The Fourier equation for a 1-2 exchanger can now be written:

$$
\begin{equation*}
Q=U A \Delta t=U A F_{T}(\mathrm{LMTD}) \tag{7.42}
\end{equation*}
$$

To reduce the necessity of solving Eq. (7.37) or (7.41), correction factors F_{T} for the LMTD have been plotted in Fig. 18 in the Appendix as a function of S with R as the parameter. When a value of S and R is close to the vertical portion of a curve, it is difficult to read the figure and F_{T} should be computed from Eq. (7.41) directly. When an exchanger has one shell pass and four, six, eight, or more even-numbered tube passes such as a 1-4, 1-6, or 1-8 exchanger, Eq. (7.10) becomes for a 1-4 exchanger

$$
-\int \frac{U d A}{W C}=\int \frac{d T}{T-\left(t^{I}+t^{\mathrm{II}}+t^{\mathrm{II}}+t^{\mathrm{IV}}\right) / 4}
$$

for a 1-6 exchanger

$$
-\int \frac{U d A}{W C}=\int \frac{d T}{T-\left(t^{I}+t^{I I}+t^{\mathrm{II}}+t^{\mathrm{IV}}+t^{\mathrm{V}}+t^{\mathrm{VI}}\right) / 6} \cdots
$$

It can be shown that the values of F_{T} for a 1-2 and 1-8 exchanger are less than 2 per cent apart in the extreme case and generally considerably less. It is therefore customary to describe any exchanger having one shell pass and two or more even-numbered tube passes in parallel flow-counterflow as a 1-2 exchanger and to use the value of F_{T} obtained from Eq. (7.41). The reason F_{T} will be less than 1.0 is naturally due to the fact that the tube passes in parallel with the shell fluid do not contribute so effective a temperature difference as those in counterflow with it.

There is an important limitation to the use of Fig. 18. Although any exchanger having a value of F_{T} above zero will theoretically operate, it is not practically true. The failure to fulfill in practice all the assumptions employed in the derivation, assumptions 1, 3, and 7 in particular, may cause serious discrepancies in the calculation of Δt. As a result of the discrepancies if the actual value of t_{i} in Fig. $7.20 a$ at the end of the parallel pass is required to approach T_{2} more closely than the derived value of t_{i}, it

Fig. 7.21. Temperature relations in a 1-2 exchanger with conventional nozzle arrangement. may impose a violation of the rule of parallel flow; namely, the outlet of the one stream t_{i} may not attain the outlet of the other, T_{2}, with nut infinite surface. Accordingly it is not advisable or practical to use a 1-2 exchanger whenever the correction factor F_{T} is computed to be less than 0.75. Instead some other arrangement is required which more closely resembles counterflow.

The temperature relationship for the case where the orientation of the shell nozzles has been reversed is shown in Fig. 7.21 for the same inlet and outlet temperatures plotted in Fig. 7.20. Underwood ${ }^{1}$ has shown that the values of F_{T} for both are identical. ${ }^{2}$ Since a 1-2 exchanger is a combination of counterflow and parallel-flow passes, it may be expected that the outlet of one process stream cannot approach the inlet of the

${ }^{1}$ Underwood, op. sit.

2 The values of t_{i}, however, differ for both cases.
other very closely. In fact it is customary in parallel flow-counterflow equipment to call $T_{2}-t_{2}$ the approach, and if $t_{2}>T_{2}$, then $t_{2}-T_{2}$ is called the temperature cross.

It is useful to investigate several typical process temperatures and to note the influence of different approaches and crosses upon the value of

Fig. 7.22. Influence of approach temperature on $F r$ with fluids having equal ranges in a 1-2 exchanger.

Fra. 7.23. Influence of approach temperature on F_{T} with fluids having unequal ranges in a 1-2 exchanger.
F_{T}. For a given service the reduction of F_{T} below unity in Eq. (7.42) is compensated for by increasing the surface. Thus if the process temperatures are fixed it may be inadvisable to employ a parallel flow-counterflow exchanger as against a counterflow exchanger, since it increases the cost of the equipment beyond the value of its mechanical advantages. In Fig. 7.22 two pairs of fluids each with equal ranges of 100 and $50^{\circ} \mathrm{F}$
are studied. The operating temperatures of the cold fluid are fixed, while the hot-fluid temperatures are variable thereby changing the approach in each case. Note the conditions under which F_{r} shrinks rapidly, particularly the approach at the practical minimum $F_{T}=0.75$ and the influence of the relationship between T_{2} and t_{2}. The calculation of several points is demonstrated.

Example 7.2. Calculation of F_{T} for Fluids with Equal Ranges

Point:	(a) 50° approach		(b) Zero approach		(c) 20° cross	
	(T_{1}) 350	200	(T_{1}) 300	200	(T_{1}) 280	200
	$\left(T_{2}\right) 250$	100	$\left(T_{2}\right) 200$		(T_{2}) 180	
	100	100	100		100	100
$=$	$-T_{2}=$	$\frac{00}{00}=$	$R=1.0$		$R=1.0$	
	$\frac{-t_{\mathrm{t}}}{-t_{1}}=$	$\frac{100}{0-10}$	$S=0.50$		$S=0.555$	
$F_{T}=0$	25 (Fig.		$F_{T}=0.80$		$F_{T}=0.64$	

In Fig. 7.23 are shown the results of the calculation when one fluid has a range five times as great as the other.
Shell-side Pressure Drop. The pressure drop through the shell of an exchanger is proportional to the number of times the fluid crosses the bundle between baffles. It is also proportional to the distance across the bundle each time it is crossed. Using a modification of Eq. (3.44) a correlation has been obtained using the product of the distance across the bundle, taken as the inside diameter of the shell in feet D_{s} and the number of times the bundle is crossed $N+1$, where N is the number of baffles. If L is the tube length in feet,

Number of crosses, $N+1=$ tube length, in./baffle space, in.

$$
\begin{equation*}
=12 \times L / B \tag{7.43}
\end{equation*}
$$

If the tube length is $16^{\prime} 0^{\prime \prime}$ and the baffles are spaces 18 in . apart, there will be 11 crosses or 10 baffles. There should always be an odd number of crosses if both shell nozzles are on opposite sides of the shell and an even number if both shell nozzles are on the same side of the shell. With close baffle spacings at convenient intervals such as 6 in . and under, one baffle may be omitted if the number of crosses is not an integer. The equivalent diameter used for calculating the pressure drop is the same as for heat transfer, the additional friction of the shell itself being neglected. The isothermal equation for the pressure drop of a fluid being heated or cooled and including entrance and exit losses is

$$
\begin{equation*}
\Delta P_{s}=\frac{f G_{s}^{2} D_{s}(N+1)}{2 g \rho D_{e} \phi_{s}}=\frac{f G_{\varepsilon}^{2} D_{s}(N+1)}{5.22 \times 10^{10} D_{e} s \phi_{s}} \quad \mathrm{psf} \tag{7.44}
\end{equation*}
$$

where s is the specific gravity of the fluid. Equation (7.44) gives the pressure drop in pounds per square foot. The common engineering unit is pounds per square inch. To permit the direct solution for ΔP_{8} in psi dimensional shell-side friction factors, square foot per square inch, have been plotted in Fig. 29. To obtain the pressure drop in consistent units by Eq. (7.44) multiply f in Fig. 29 by 144.

Tube-side Pressure Drop. Equation (3.44) may be used to obtain the pressure drop in tubes, but it applies principally to an isothermal fluid. Sieder and Tate have correlated friction factors for fluids being. heated or cooled in tubes. They are plotted in dimensional form in Fig. 26 and are used in the equation

$$
\begin{equation*}
\Delta P_{i}=\frac{f G_{i}^{2} L n}{5.22 \times 10^{10} D_{\varepsilon} s \phi_{t}} \quad \mathrm{psf} \tag{7.45}
\end{equation*}
$$

where n is the number of tube passes, L the tube length, and $L n$ is the total length of path in feet. The deviations are not given, but the curve has been accepted by the Tubular Exchanger Manufacturers Association. In flowing from one pass into the next at the channel and floating head the fluid changes direction abruptly by 180°, although the flow area provided in the channel and floating-head cover should not be less than the combined flow area of all the tubes in a single pass. The change of direction introduces an additional pressure drop ΔP_{r}, called the return loss and accounted for by allowing four velocity heads per pass. The velocity head $V^{2} / 2 g^{\prime}$ has been plotted in Fig. 27 against the mass velocity for a fluid with a specific gravity of 1 , and the return losses for any fluid will be

$$
\begin{equation*}
\Delta P_{r}=\frac{4 n}{s} \frac{V^{2}}{2 g^{\prime}} \quad \mathrm{psi} \tag{7.46}
\end{equation*}
$$

where $V=$ velocity, fps
$s=$ specific gravity
$g^{\prime}=$ acceleration of gravity, $\mathrm{ft} / \mathrm{sec}^{2}$
The total tube-side pressure drop ΔP_{r} will be

$$
\begin{equation*}
\Delta P_{T}=\Delta P_{t}+\Delta P_{r} \quad \text { psi } \tag{7.47}
\end{equation*}
$$

The Analysis of Performance in an Existing 1-2 Exchanger. When all the pertinent equations are used to calculate the suitability of an existing exchanger for given process conditions, it is known as rating an exchanger. There are three significant points in determining the suitability of an existing exchanger for a new service.

1. What clean coefficient U_{c} can be "performed" by the two fluids as the result of their flow and individual film coefficients $h_{i o}$ and h_{o} ?
2. From the heat balance $Q=W C\left(T_{1}-T_{2}\right)=w c\left(t_{2}-t_{1}\right)$, known surface A, and the true temperature difference for the process temperatures a value of the design or dirty coefficient, U_{D} is obtained. U_{C} must exceed U_{D} sufficiently so that the dirt factor, which is a measure of the excess surface, will permit operation of the exchanger for a reasonable period of service.
3. The allowable pressure drops for the two streams may not be exceeded.

When these are fulfilled, an existing exchanger is suitable for the process conditions for which it has been rated. In starting a calculation the first point which arises is to determine whether the hot or cold fluid should be placed in the shell. There is no fast rule. One stream may be large and the other small, and the baffle spacing may be such that in one instance the shell-side flow area a_{s} will be larger. Fortunately any selection can be checked by switching the two streams and seeing which arrangement gives the larger value of U_{c} without exceeding the allowable pressure drop. Particularly in preparation for later methods there is some advantage, however, in starting calculations with the tube side, and it may be well to establish the habit. The detailed steps in the rating of an exchanger are outlined below. The subscripts s and t are used to distinguish between the shell and tubes, and for the outline the hot fluid has been assumed to be in the shell. By always placing the hot fluid on the left the usual method of computing the LMTD may be retained.

The Calculation of an Existing 1-2 Exchanger. Process conditions required

Hot fluid: $T_{1}, T_{2}, W, c, s, \mu, k, R_{d}, \Delta P$
Cold fluid: $t_{1}, t_{2}, w, c, s, \mu, k, R_{d}, \Delta P$
For the exchanger the following data must be known:

Shell side	Tube side
ID	Number and length
Baffle space	OD, BWG, and pitch
Passes	Passes

(1) Heat balance, $Q=W C\left(T_{1}-T_{2}\right)=w c\left(t_{2}-t_{1}\right)$
(2) True temperature difference Δt :

LMTD, $\quad R=\frac{T_{1}-T_{2}}{t_{2}-t_{1}}, \quad S=\frac{t_{2}-t_{1}}{T_{1}-t_{1}}$
$\Delta t=$ LMTD $\times F_{r}\left(F_{r}\right.$ from Fig. 18)
(3) Caloric temperature T_{c} and $t_{c}:{ }^{1}$

Hot fluid: shell side
(4') Flow area, $a_{s}=\mathrm{ID} \times C^{\prime} B / 144 P_{T}, \mathrm{ft}^{2}$
[Eq. (7.1)]
(5^{\prime}) Mass vel, $G_{s}=W / a_{i}, \mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)$
[Eq. (7.2)]
(6') Obtain D_{c} from Fig. 28 or compute from Eq. (7.4).
Obtain μ at $T_{c}, \mathrm{lb} /(\mathrm{ft})(\mathrm{hr})=\mathrm{cp} \times 2.42$
$R e_{s}=D_{6} G_{s} / \mu$
(7') Obtain j_{H} from Fig. 28.
(8') At T_{c} obtain $c, \mathrm{Btu} /(\mathrm{lb})\left({ }^{\circ} \mathrm{F}\right)$ and k,
$\mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F} / \mathrm{ft}\right)$.
Compute* $\left(c_{\mu} / k\right)^{1 / 3 /}$.
(9^{\prime}) $h_{o}=j_{H} \frac{k}{D}\left(\frac{c \mu}{k}\right)^{1 / 3} \phi_{s}$
[Eq. (6.15b)]
(10') Tube-wall temp, t_{w}
$t_{w}=t_{c}+\frac{h_{o} / \phi_{s}}{h_{i o} / \phi_{t}+h_{o} / \phi_{s}}\left(T_{c}-t_{c}\right)$
[Eq. (5.31)]
(11') Obtain μ_{ω} and $\phi_{s}=\left(\mu / \mu_{v}\right)^{0.14}$.
[Fig. 24]
(12') Corrected coefficient, $h_{o}=\frac{h_{o} \phi_{4}}{\phi_{s}}$
[Eq. (6.36)]

Cold fluid: tube side
(4) Flow area, a_{f} :

Flow area per tube a_{t}^{\prime} from Table 10, in. ${ }^{2}$
$a_{t}=\frac{\text { No. of tubes } \times \text { flow area } / \text { tube }}{\text { No. of passes }}$
$=N_{i} a_{z}^{\prime} / 144 n, \mathrm{ft}^{2}$
(5) Mass vel, $G_{t}=w / a_{t}, \mathrm{lb} /(\mathrm{br})\left(\mathrm{ft}^{2}\right)$
(6) Obtain D from Table 10, ft .

Obtain μ at $t_{c}, \mathrm{lb} /(\mathrm{ft})(\mathrm{hr})=\mathrm{cp} \times 2.42$
$R e_{t}=D G_{t} / \mu$
(7) Obtain j_{H} from Fig. 24.
(8) At t_{c} obtain $c, B t u /(\mathrm{lb})\left({ }^{\circ} \mathrm{F}\right)$ and k, $\mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F} / \mathrm{ft}\right)$.
Compute ${ }^{*}(c \mu / k)^{1 / 3}$.
(9) $h_{i}=j_{H} \frac{k}{D}\left(\frac{c \mu}{k}\right)^{1 / 2} \phi_{t} \quad[$ Eq. (6.15a)]
(10) $\frac{h_{i o}}{\phi_{t}}=\frac{h_{i}}{\phi_{t}} \times \frac{\mathrm{ID}}{\mathrm{OD}}$
[Eq. (6.5)]
(11) Obtain t_{w} from (10^{\prime}).

Obtain μ_{w} and $\phi_{t}=\left(\mu / \mu_{w}\right)^{0.14}$. [Fig. 24]
(12) Corrected coefficient, $h_{i o}=\frac{h_{i o} \phi_{t}}{\phi_{t}}$
[Eq. (6.37)]
(13) Clean overall coefficient U_{c} :
$U_{C}=\frac{h_{i o} h_{0}}{h_{i o}+h_{o}}$
(14) Design overall coefficient U_{D} : Obtain external surface/lin ft $a^{\prime \prime}$ from Appendix Table 10.
Heat-transfer surface, $A=a^{\prime \prime} L N_{i}, \mathrm{ft}^{2}$

$$
U_{D}=\frac{Q}{A \Delta t} \quad \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)
$$

(15) Dirt factor R_{d} :

$$
\begin{equation*}
R_{d}=\frac{U_{C}-U_{D}}{U_{C} U_{D}} \quad(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right) / \mathrm{Btu} \tag{6.13}
\end{equation*}
$$

If R_{d} equals or exceeds the required dirt factor, proceed under the pressure drop.
${ }^{1}$ The use of caloric temperatures is in partial contradiction of the derivation for the 1-2 parallel flow-counterflow temperature difference in which U was assumed constant. The use of caloric temperatures presumes that a linear variation of U with t can be accounted for as the product of $U_{\text {salorio }} \Delta t$ where Δt is the true parallel flowcounterflow temperature difference when U is constant.
*A convenient graph of $k(c \mu / k)^{1 / 2}$ vs. μ for petroleum fractions is given in Fig. 16.

Pressure Drop

(1) For Re; in (6') obtain $f, \mathrm{ft}^{2} / \mathrm{in}^{2}{ }^{2}$
[Fig. 29]
(2') No. of crosses, $N+1=12 L / B$
[Eq. (7.43)]
$\left(3^{\prime}\right) \Delta P_{i}=\frac{f G_{s}^{2} D_{s}(N+1)}{5.22 \times 10^{10} D_{e} s \phi_{s}} p s i$
[Eq. (7.44)]
(1) For $R e_{i}$ in (6) obtain $f, \mathrm{ft}^{2} / \mathrm{in} .^{2}$
[Fig. 26]
(2) $\Delta P_{t}=\frac{f G_{t}^{2} L n}{5.22 \times 10^{10} D_{s} \phi_{t}}$
(3) $\Delta P_{r}=\frac{4 n}{s} \frac{V^{2}}{2 g^{\prime}} \frac{62.5}{144} \mathrm{psi}$
[Eq. (7.46)]
[Eq. (7.47)]

Example 7.3. Calculation of a Kerosene-Crude Oil Exchanger. $43,800 \mathrm{lb} / \mathrm{hr}$ of a 42° API kerosene leaves the bottom of a distilling column at $390^{\circ} \mathrm{F}$ and will be cooled to $200^{\circ} \mathrm{F}$ by $149,000 \mathrm{lb} / \mathrm{hr}$ of $34^{\circ} \mathrm{API}$ Mid-continent crude coming from storage at $100^{\circ} \mathrm{F}$ and heated to $170^{\circ} \mathrm{F}$. A 10 psi pressure drop is permissible on both streams, and in accordance with Table 12, a combined dirt factor of 0.003 should be provided.
Available for this service is a $211 / 4 \mathrm{in}$. ID exchanger having 1581 in . $\mathrm{OD}, 13 \mathrm{BWG}$ tubes $16^{\prime} 0^{\prime \prime}$ long and laid out on $11 / 4-\mathrm{in}$. square pitch. The bundle is arranged for four passes, and baffles are spaced 5 in . apart.
Will the exchanger be suitable; i.e., what is the dirt factor?

Solution:

Exchanger:
Shell side Tube side

ID $=21144 \mathrm{in} . \quad$ Number and length $=158,16^{\prime} 0^{\prime \prime}$
Baffle space $=5$ in. $\quad O D, B W G$, pitch $=1 \mathrm{in} ., 13 \mathrm{BWG}, 1 \frac{1}{4}-\mathrm{in}$. square

$$
\text { Passes }=1
$$

$$
\text { Passes }=4
$$

(1) Heat balance:

Kerosene, $\quad Q=43,800 \times 0.605(390-200)=5,100,000 \mathrm{Btu} / \mathrm{hr}$
Mid-continent crude, $Q=149,000 \times 0.49(170-100)=5,100,000 \mathrm{Btu} / \mathrm{br}$
(2) Δt :
Hot Fluid

390	Higher Temp	170	220
200	Lower Temp	100	100
190	Differences	70	120
$\left(T_{1}-T_{2}\right)$	$\left(\Delta t_{2}-\Delta t_{1}\right)$		

LMTD $=152.5^{\circ} \mathrm{F}$
$R=180 \AA_{0}=2.71$
$S=\frac{70}{390-100}=0.241$
$F_{T}=0.905$
(Fig. 18)
$\Delta t=0.905 \times 152.5=138^{\circ} \mathrm{F}$
(3) T_{c} and t_{c} :

$$
\begin{align*}
\frac{\Delta t_{c}}{\Delta t_{h}} & =0.455 \tag{Fig.17}\\
K_{c} & =0.20 \text { (crude oil controlling) } \\
F_{c} & =0.42 \\
T_{c} & =200+0.42 \times 190=280^{\circ} \mathrm{F} \tag{5.28}\\
t_{c} & =100+0.42 \times 70=129^{\circ} \mathrm{F} \tag{5.29}
\end{align*}
$$

Since the flow area of both the shell and tube sides will be nearly equal, assume the larger stream to flow in the tubes and start calculation on the tube side.

Hot fluid: shell side, kerosene
(4') Flow area, $a_{4}=\mathrm{ID} \times C^{\prime} B / 144 P_{T}$
[Eq. (7.1)]

$$
=21.25 \times 0.25 \times 5 / 144 \times 1.25
$$

$=0.1475 \mathrm{ft}^{2}$
(B^{\prime}) Mass vel, $G_{s}=W / a_{\text {a }}$
[Eq. (7.2)]
$=43,800 / 0.1475=297,000 \mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)$
(6') $R e_{a}=D_{0} G_{0} / \mu$
[Eq. (7.3)]
At $T_{c}=280^{\circ} \mathrm{F}, \mu=0.40 \times 2.42$

$$
=0.97 \mathrm{lb} /(\mathrm{ft})(\mathrm{hr}) \quad \text { [Fig. 14] }
$$

$D_{\text {e }}=0.99 / 12=0.0825 \mathrm{ft} \quad[$ Fig. 28]
$R e_{2}=0.0825 \times 297,000 / 0.97=25,300$
(7) $j_{\text {H }}=93$
[Fig. 28]
(8^{\prime}) At $T_{c}=280^{\circ} \mathrm{F}$,
$c=0.59 \mathrm{Btu} /(\mathrm{lb})\left({ }^{\circ} \mathrm{F}\right)$
[Fig. 4) $k=0.0765 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}{ }^{2}\right)\left({ }^{\circ} \mathrm{F} / \mathrm{ft}\right)$
[Fig. 1] $\left(c_{\mu} / k\right)^{3 / 6}=(0.59 \times 0.97 / 0.0765)^{1 / 2}=1.95$
(9^{\prime}) $h_{s}=j_{H} \frac{k}{D_{s}}\left(\frac{c \mu}{k}\right)^{1 / 3} \phi_{s}$
[Eq. (6.15b)]
$\frac{h_{0}}{\phi_{t}}=93 \times \frac{0.0765}{0.0825} \times 1.95=169$
(10 ${ }^{\prime}$) Tube-wall temperature:
$t_{w}=t_{c}+\frac{h_{o} / \phi_{v}}{h_{i \theta} / \phi_{t}+h_{o} / \phi_{s}}\left(T_{c}-t_{c}\right)$
[Eq. (5.31)]

$$
=129+\frac{169}{109+169}(280-129)
$$

$$
=221^{\circ} \mathrm{F}
$$

(11') At $t_{v}=221^{\circ} \mathrm{F}, \mu_{w}=0.56 \times 2.42$
$=1.36 \mathrm{lb} /(\mathrm{ft})(\mathrm{hr}) \quad$ [Fig. 14]
$\phi_{s}=\left(\mu / \mu_{w}\right)^{0.14}=(0.97 / 1.36)^{0.14}$
$=0.96$
[Fig. 24 insert]
(12') Corrected coefficient, $h_{o}=\frac{h_{0}}{\phi_{s}} \phi_{t}$
[Eq. (6.36)]
$=169 \times 0.96=162 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$

Cold fuid: tube side, crude oil
(4) Flow area, $a_{t}^{\prime}=0.515 \mathrm{in}{ }^{9}$
[Table 10]
$a_{t}=N_{t} a_{t}^{\prime} / 144 n$
[Eq. (7.48)]
$=158 \times 0.515 / 144 \times 4=0.141 \mathrm{ft}^{2}$
(5) Mass vel, $G_{t}=w / a_{t}$
$=149,000 / 0.141=1,060,000$
$\mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft} \mathrm{t}^{\mathrm{s}}\right)$
(B) $R e_{t}=D G_{t} / \mu$

At $t_{c}=129^{\circ} \mathrm{F}, \mu=3.6 \times 2.42$
$=8.7 \mathrm{lb} /(\mathrm{ft})(\mathrm{hr})$ [Fig. 14]
$D=0.81 / 12=0.0675 \mathrm{ft} \quad$ [Table 10]
$R e_{t}=0.0675 \times 1,060,000 / 8.7=8,220$
(7) $L / D=16 / 0.0675=237$
$j_{H}=31$
[Fig. 24]
(8) At $t_{c}=129^{\circ} \mathrm{F}$,
$c=0.49 \mathrm{Btu} /(\mathrm{lb})\left({ }^{\circ} \mathrm{F}\right)$
[Fig. 4]
$k=0.077 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F} / \mathrm{ft}\right) \quad[$ Fig. 1]
$\left(c_{\mu} / k\right)^{1 / 2}=(0.49 \times 8.7 / 0.077)^{1 / 2}=3.81$
(9) $h_{i}=j_{H}\left(\frac{k}{D}\right)\left(\frac{c_{\mu}}{k}\right)^{\text {E/ }} \phi_{t}$
[Eq. (6.15a)]
$\frac{h_{i}}{\phi_{t}}=31 \times \frac{0.077}{0.0675} \times 3.81=135$
(10) $\begin{array}{r}\frac{h_{i o}}{\phi_{t}}=\frac{h_{i}}{\phi_{t}} \times \frac{\mathrm{ID}}{\mathrm{OD}}=135 \times \frac{0.81}{1.0}=109 \\ {[\mathrm{Eq} .(0.5)]}\end{array}$
(11) At $t_{w}=221^{\circ} \mathrm{F}, \mu_{w}=1.5 \times 2.42$
$=3.63 \mathrm{lb} /(\mathrm{ft})(\mathrm{hr}) \quad$ [Fig. 14]
$\phi_{i}=\left(\mu_{11} / \mu_{v}\right)^{0.14}=(8.7 / 3.63)^{0.14}$
$=1.11$
[Fig. 24 insert]
(12) Corrected coefficient, $h_{i o}=\frac{h_{i o}}{\phi_{t}} \phi_{t}$
[Eq. (6.37)]
$=109 \times 1.11=121 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$
(13') Clean overall coefficient U_{c} :

$$
\begin{equation*}
U_{C}=\frac{h_{i_{0}} h_{0}}{h_{i_{0}}+\breve{h}_{\circ}}=\frac{121 \times 162}{121+162}=69.3 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right) \tag{6.38}
\end{equation*}
$$

(14) Design overall coefficient U_{D} :

$$
\begin{gather*}
a^{\prime \prime}=0.2618 \mathrm{ft}^{2} / \mathrm{lin} \mathrm{ft} \tag{Table10}\\
\text { Total surface, } A=158 \times 16^{\prime} 0^{\prime \prime} \times 0.2618=662 \mathrm{ft}^{2} \\
U_{D}=\frac{Q}{A \Delta t}=\frac{5,100,000}{662 \times 138}=55.8 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)
\end{gather*}
$$

(15) Dirt factor \boldsymbol{R}_{d} :

$$
\begin{equation*}
R_{d}=\frac{U_{C}-U_{D}}{U_{C} U_{D}}=\frac{69.3-55.8}{69.3 \times 55.8}=0.00348(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right) / \mathrm{Btu} \tag{6.13}
\end{equation*}
$$

Summary

162	h outside	121
U_{C}	69.3	
U_{D}	55.8	
R_{d} Calculated 0.00348		
R_{d} Required		

Pressure Drop
(1') For Re, $=25,300$,
$f=0.00175 \mathrm{ft}^{2} / \mathrm{in} .^{2}$
$s=0.73$
$D_{1}=21.25 / 12=1.77 \mathrm{ft}$
(2') No. of crosses, $N+1=12 L / B$
[Eq.(7.43)]

$$
=12 \times 16 / 5=39
$$

(3) $\Delta P_{s}=\frac{f G_{s}^{2} D_{s}(N+1)}{5.22 \times 10^{10} D_{s} \dot{\phi}_{s}}[E q$. (7.44)] $=\frac{0.00175 \times 297,000^{2} \times 1.77 \times 39}{5.22 \times 10^{10} \times 0.0825 \times 0.73 \times 0.96}$ $=3.5 \mathrm{psi}$

Allowable $\Delta P:=10.0 \mathrm{psi}$
(1) For $R e_{t}=8220$,
[Fig. 29] $f=0.000285 \mathrm{ft}^{2} / \mathrm{in}^{2}$
[Fig. 6] $s=0.83$
[Fig. 26]
[Fig. 6]
(2) $\Delta P_{t}=\frac{f G_{i}^{2} L n}{5.22 \times 10^{10} D s \phi_{t}} \quad[E q . ~(7.45)]$ $=\frac{0.000285 \times 1,060,000^{2} \times 16 \times 4}{5.22 \times 10^{10} \times 0.0675 \times 0.83 \times 1.11}$
$=6.3 \mathrm{psi}$
(3) $G_{t}=1,060,000, \frac{V^{2}}{2 g^{\prime}}=0.15 \quad$ [Fig. 27]
$\Delta P_{r}=\frac{4 n}{s} \frac{V^{2}}{2 g^{\prime}}$
(4) $\Delta P_{T}=\Delta P_{t}+\Delta P_{r}$ $=6.3+2.9=9.2 \mathrm{psi}$

$$
\begin{equation*}
=\frac{4 \times 4}{0.83} \times 0.15=2.9 \mathrm{psi} \tag{7.46}
\end{equation*}
$$

Allowable $\Delta P_{T}=10.0 \mathrm{psi}$

It is seen that a dirt factor of 0.00348 will be obtained although only 0.003 will be required to provide reasonable maintenance period. The pressure drops have not been exceeded and the exchanger will be satisfactory for the service.

Exchangers Using Water. Cooling operations using water in tubular equipment are very common. Despite its abundance, the heat-transfer characteristics of water separate it from all other fluids. It is corrosive to steel, particularly when the tube-wall temperature is high and dissolved air is present, and many industrial plants use nonferrous tubes exclusively for heat-transfer services involving water. The commonest nonferrous tubes are admiralty, red brass, and copper, although in certain localities there is a preference for Muntz metal, aluminum bronze, and aluminum. Since shells are usually fabricated of steel, water is best handled in the tubes. When water flows in the tubes, there is no serious problem of corrosion of the channel or floating-head cover, since these parts are often made of cast iron or cast steel. Castings are relatively passive to water, and large corrosion allowances above structural requirements can be provided inexpensively by making the castings heavier. Tube sheets may be made of heavy steel plate with a corrosion allowance of about $1 / 8$ in. above the required structural thickness or fabricated of naval brass or aluminum without a corrosion allowance.

When water travels slowly through a tube, dirt and slime resulting from microorganic action adhere to the tubes which would be carried away if there were greater turbulence. As a standard practice, the use of cooling water at velocities less than 3 fps should be avoided, although in certain localities minimum velocities as high as 4 fps are required for continued operation. Still another factor of considerable importance is the deposition of mineral scale. When water of average mineral and air content is brought to a temperature in excess of $120^{\circ} \mathrm{F}$, it is found that tube action becomes excessive, and for this reason an outlet water temperature above $120^{\circ} \mathrm{F}$ should be avoided.

Cooling water is rarely abundant or without cost. One of the serious problems facing the chemical and power industries today results from the gradual deficiency of surface and subsurface water in areas of industrial concentration. This can be partially overcome through the use of cooling towers (Chap. 17), which reuse the cooling water and reduce the requirement to only 2 per cent of the amount of water required in oncethrough use. River water may provide part of the solution to a deficiency of ground water, but it is costly and presupposes the proximity of a river. River water must usually be strained by moving screens and pumped. considerable distances, and in some localities the water from rivers servicing congested industrial areas requires cooling in cooling towers before it can be used.

Many sizable municipalities have legislated against the use of public water supplies for large cooling purposes other than for make-up in cooling towers or spray-pond systems. Where available, municipal water
may average about 1 cent per 1000 gal., although it has the advantage of being generally available at from 30 to 60 psi pressure which is adequate for most process needs including the pressure drops in heat exchangers. Where a cooling tower is used, the cost of the water is determined by the cost of fresh water, pumping power, fan power, and write-off on the original investment.

The shell-side heat-transfer curve (Fig. 28) correlates very well for the flow of water across tube bundles. The high thermal conductivity of water results in relatively high film coefficients compared with organic fluids. The use of the tube-side curve (Fig. 24), however, gives coefficients which. are generally high. In its place the data of Eagle and Ferguson ${ }^{1}$ for water alone are given in Fig. 25 and are recommended whenever water flows in tubes. Since this graph deals only with water, it has been possible to plot film coefficients vs. velocity in feet per second with temperature as the parameter. The data have been plotted with the $3 / 4$ in., 16 BWG tube as the base, and the correction factor obtained from the insert in Fig. 25 should be applied when any other inside diameter is used.
In a water-to-water exchanger with individual film coefficients ranging from 500 to 1500 for both the shell and tube, the selection of the required dirt factor merits serious judgment. As an example, if film coefficients of 1000 are obtained on the shell and tube sides, the combined resistance is 0.002 , or $U_{C}=500$. If a fouling factor of 0.004 is required, the fouling factor becomes the controlling resistance. When the fouling factor is $0.004, U_{D}$ must be less than $1 / 0.004$ or 250 . Whenever high coefficients exist on both sides of the exchanger, the use of an unnecessarily large fouling factor should be avoided.

The following heat-recovery problem occurs in powerhouses. Although it involves a moderate-size exchanger, the heat recovery is equivalent to nearly $1500 \mathrm{lb} / \mathrm{hr}$ of steam, which represents a sizable economy in the course of a year.

Example 7.4. Calculation of a Distilled-water-Raw-water Exchanger. 175,000 $\mathrm{lb} / \mathrm{hr}$ of distilled water enters an exchanger at $93^{\circ} \mathrm{F}$ and leaves at $85^{\circ} \mathrm{F}$. The heat will be transferred to $280,000 \mathrm{lb} / \mathrm{hr}$ of raw water coming from supply at $75^{\circ} \mathrm{F}$ and leaving the exchanger at $80^{\circ} \mathrm{F}$. A 10 psi pressure drop may be expended on both streams while providing a fouling factor of 0.0005 for distilled water and 0.0015 for raw water when the tube velocity exceeds 6 fps.
Available for this service is a $151 / 4 \mathrm{in}$. ID exchanger having $1603 / 4 \mathrm{in}$. OD, 18 BWG tubes $16^{\prime} 0^{\prime \prime}$ long and laid out on ${ }^{15} / 16$-in. triangular pitch. The bundle is arranged for two passes, and baflles are spaced 12 in . apart.
Will the exchanger be suitable?

[^14]Solution:
Exchanger:
Shell side
Tube side
ID $=1534 \mathrm{in} . \quad$ Number and length $=160,16^{\prime} 0^{\prime \prime}$
Baffe space $=12 \mathrm{in} . \quad$ OD, BWG, pitch $=3 / 4 \mathrm{in} ., 18 \mathrm{BWG}, 15 / \mathrm{B}_{6} \mathrm{in}$. tri.
Passes $=1$
Passes $=2$
(1) Heat balance:

Distilled water, $Q=175,000 \times 1(93-85)=1,400,000 \mathrm{Btu} / \mathrm{hr}$ Raw water, $Q=280,000 \times 1(80-75)=1,400,000 \mathrm{Btu} / \mathrm{hr}$
(2) Δt :

Hot Fluid Cold Fluid Diff.

93	Higher Temp	80	13
85	Lower Temp	75	10
8	Differences	5	3

$$
\begin{align*}
\mathrm{LMTD} & =11.4^{\circ} \mathrm{F} \tag{5.14}\\
R & =\frac{8}{5}=1.6 \quad S=\frac{5}{93-75}=0.278 \\
P_{r} & =0.945 \tag{Fig.18}\\
\Delta t & =0.945 \times 11.4=10.75^{\circ} \mathrm{F} \tag{7.42}
\end{align*}
$$

(3) T_{o} and t_{c} :

The average temperatures T_{a} and t_{a} of 89 and $77.5^{\circ} \mathrm{F}$ will be satisfactory for the short ranges and $\phi_{\text {a }}$ and ϕ_{1} taken as 1.0. Try hot fluid in shell as a trial, since it is the smaller of the two.

Hot fluid: shell side, distilled water
(4^{\prime}) $a_{t}=\mathrm{ID} \times C^{\prime} B / 144 P_{T} \quad[E q, ~(7.1)]$

$$
\begin{aligned}
& =15.25 \times 0.1875 \times 12 / \\
& \quad \quad 144 \times 0.9375=0.254 \mathrm{ft}^{2}
\end{aligned}
$$

($\left.\mathbf{B}^{\prime}\right) G_{1}=W / a_{4}$
[Eq. (7.2)]

$$
\begin{aligned}
&=175,000 / 0.254 \\
&=690,000 \mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)
\end{aligned}
$$

(6^{\prime}) At $T_{a}=89^{\circ} \mathrm{F}, \mu=0.81 \times 2.42$

$$
=1.96 \mathrm{lb} /(\mathrm{ft})(\mathrm{hr})
$$

[Fig. 14]
$D_{c}=0.55 / 12=0.0458 \mathrm{ft}$
$R e_{t}=D_{d} G_{s} / \mu$
[Fig. 28]
$=0.0458 \times 690,000 / 1.96=16,200$
(7) $j_{H}=73$
[Fig. 28]
(8^{\prime}) At $T_{a}=89^{\circ} \mathrm{F}, c=1.0 \mathrm{Btu} /(\mathrm{lb})\left({ }^{\circ} \mathrm{F}\right)$ $k=0.36 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F} / \mathrm{ft}\right) \quad$ [Table 4] $(c \mu / k)^{3 / 6}=(1.0 \times 1.96 / 0.36)^{1 / 3}=1.76$

Cold fluid: tube side, raw water
(4) $a_{1}^{\prime}=0.334$ in. ${ }^{2} \quad$ [Table 10]
$a_{t}=N_{10}^{a} / 144 n \quad$ [Eq. (7.48)]
$=160 \times 0.334 / 144 \times 2=0.186 \mathrm{ft}^{2}$
(b) $G_{t}=w / a_{t}$

$$
=280,000 / 0.186
$$

Vel, $V=G_{t} / 3600 \rho$

$$
=1,505,000 \mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)
$$

$=1,505,000 / 3600 \times 62.5=6.70 \mathrm{fps}$
(6) At $t_{\sigma}=77.5^{\circ} \mathrm{F}, \mu=0.92 \times 2.42$

$$
=2.23 \mathrm{lb} /(\mathrm{ft})(\mathrm{hr})
$$

[Fig. 14]
$D=0.65 / 12=0.054 \mathrm{ft}\left(R e_{\star}\right.$ is for pressure drop only) [Table 10] $R e_{t}=D G_{1} / \mu$

$$
=0.054 \times 1,505,000 / 2.23=36,400
$$

Hot fluid: shell side, distilled water (9) $h_{o}=f_{H} \frac{k}{D_{e}}\left(\frac{c_{\mu}}{k}\right)^{1 / 6} \times 1 \quad$ [Eq. $\left.(6.15 b)\right]$ $=73 \times 0.36 \times 1.76 / 0.0458=1010$
(10') (11') (12') The small difference in the average temperatures eliminates the need for a tube-wall correction, and $\phi_{t}=1$.
(13) Clean overall coefficient U_{c} :

$$
\begin{equation*}
U_{c}=\frac{h_{i c} h_{o}}{h_{\mathrm{io}}+h_{o}}=\frac{1155 \times 1010}{1155+1010}=537 \mathrm{Btu} /(\mathrm{hr})(\mathrm{ft})\left({ }^{\circ} \mathrm{F}\right) \tag{6.38}
\end{equation*}
$$

When both film coefficients are high the thermal resistance of the tube metal is not necessarily insigaificant as assumed in the derivation of Eq. (6.38). For a steel 18 BWG tube $R_{m}=0.00017$ and for copper $R_{m}=0.000017$.
(14) Design overall coefficient U_{D} :

$$
\begin{gather*}
\text { External surface } / \mathrm{ft}_{s} a^{\prime \prime}=0.1963 \mathrm{ft}^{2} / \mathrm{ft} \\
A=160 \times 16^{\prime \prime} 0^{\prime \prime} \times 0.1963=502 \mathrm{ft}^{2} \\
U_{D}=\frac{Q}{A \Delta t}=\frac{1,400,000}{502 \times 10.75}=259 \tag{5.3}
\end{gather*}
$$

(15) Dirt factor R_{d} :

$$
\begin{equation*}
R_{d}=\frac{\grave{U}_{C}-U_{D}}{U_{C} \times U_{D}}=\frac{537-259}{537 \times 259}=0.0020(\mathrm{hr})\left(\mathrm{ft}{ }^{2}\right)\left({ }^{\circ} \mathrm{F}\right) / \mathrm{Btu} \tag{6.13}
\end{equation*}
$$

Summary

Summary		
1010	h outside	1155
U_{C}	537	
U_{D}	259	
R_{d} Calculated 0.0020		
R_{d} Required		

Pressure Drop
(1) For $R e_{t}=36,400, f=0.00019 \mathrm{ft}^{2} / \mathrm{in} .^{2}$ [Fig. 26]

Cold fuid: tube side, raw water
(9) $h_{i}=1350 \times 0.99=1335 \quad$ [Fig. 25]
$h_{i_{0}}=h_{i} \times \mathrm{ID} / \mathrm{OD}=1335 \times 0.65 / 0.75$ $=1155 \quad[\mathrm{Eq},(6.5)]$

$$
\begin{aligned}
& \text { (i) For } R e_{s}=16,200, f=0.0019 \mathrm{ft}^{2} / \mathrm{in} .^{2} \\
& \text { (2') No. of crosses, } N+1=12 \mathrm{~L} / \mathrm{B} \\
& \text { [Eq. (7.43)] } \\
& =12 \times 16 / 12 \\
& =16 \\
& D_{s}=15.25 / 12=1.27 \mathrm{ft} \\
& \text { (1) For } R e_{s}=16,200, f=0.0019 \mathrm{ft}^{2} / \mathrm{in} .^{2}
\end{aligned}
$$

(1)
(2) $\Delta P_{t}=\frac{f G_{i}^{2} L n}{5.22 \times 10^{10} D_{s \phi_{t}}}$ [Eq. (7.45)] $=\frac{0.00019 \times 1,505,000^{2} \times 16 \times 2}{5.22 \times 10^{10} \times 0.054 \times 1.0 \times 1.0}$ $=4.9 \mathrm{psi}$

$$
\begin{align*}
& \text { Pressure Drop } \\
& \text { (3') } \Delta P_{d}=\frac{f G_{d}^{2} D_{s}(N+1)}{5.22 \times 10^{10} D_{e s \phi_{t}}}[\text { Eq. (7.44)] } \tag{Fig.27}\\
& =\frac{0.0019 \times 690,000^{2} \times 1.27 \times 16}{5.22 \times 10^{10} \times 0.0458 \times 1.0 \times 1.0} \\
& =7.7 \mathrm{psi} \\
& \text { Allowable } \Delta P_{1}=10.0 \mathrm{psi} \\
& \text { (3) } \Delta P_{r}: G_{i}=1,505,000, V^{2} / 2 g^{\prime}=0.33 \\
& \Delta P_{r}=(4 n / s)\left(V^{2} / 2 g^{\prime}\right) \quad[\text { Eq. (7.46)] } \\
& =\frac{4 \times 2}{1} \times 0.33=2.3 \mathrm{psi} \\
& \begin{array}{c}
\text { (4) } \Delta P_{r}=P_{t}+P_{r} \\
=4.9+2.6=7.5 \mathrm{psi} \\
\text { Allowable } \Delta P_{T}=10.0 \mathrm{psi}
\end{array} \\
& \text { [Eq. (7.47)] }
\end{align*}
$$

It is seen that the overall coefficient for this problem is five times that of the oil-to-oil exchange of Example 7.3, the principal difference being due to the excellent thermal properties of water. The exchanger is satisfactory for the service.

Optimum Outlet-water Temperature. In using water as the cooling medium for a given duty it is possible to circulate a large quantity with a small temperature range or a small quantity with a large temperature range. The temperature range of the water naturally affects the LMTD. If a large quantity is used, t_{2} will be farther from T_{1} and less surface is required as a result of the larger LMTD. Although this will reduce the original investment and fixed charges, since depreciation and maintenance will also be smaller, the operating cost will be increased owing to the greater quantity of water. It is apparent that there must be an optimum between the two conditions: much water and small surface or little water and large surface.

In the following it is assumed that the line pressure on the water is sufficient to overcome the pressure drop in the exchanger and that the cost of the water is related only to the amount used. It is also assumed that the cooler operates in true counterflow so that $\Delta t=$ LMTD. If the approach is small or there is a temperature cross, the derivation below requires an estimate of F_{r} by which the LMTD is multiplied.

The total annual cost of the exchanger to the plant will be the sum of the annual cost of water and the fixed charges, which include maintenance and depreciation.

If C_{T} is the total annual cost,

$$
C_{T}=(\text { water cost } / \mathrm{lb})(\mathrm{lb} / \mathrm{hr})(\text { annual } \mathrm{hr})
$$

$$
Q=w c\left(t_{2}-t_{1}\right)=+\left(\text { annual fixed charges } / \mathrm{ft}^{2}\right)\left(\mathrm{ft}^{2}\right)
$$

Substituting the heat-balance terms in Eq. (7.49), where $w=Q /\left[c\left(t_{2}-t_{1}\right)\right]$ and the surface $A=Q / U(L M T D)$

$$
C_{T}=\frac{Q \theta C_{W}}{c\left(t_{2}-t_{1}\right)}+\frac{C_{F} Q}{\bar{U}(\mathrm{LMTD})}
$$

where $\theta=$ annual operating hours
$C_{W}=$ water cost $/ \mathrm{lb}$
$C_{F}=$ annual fixed charges $/ \mathrm{ft}^{2}$
Assuming U is constant

$$
\mathrm{L} M T D=\frac{\Delta t_{2}-\Delta t_{1}}{\ln \Delta t_{2} / \Delta t_{1}}
$$

Keeping all factors constant except the water-outlet temperature and consequently Δt_{2},

$$
\begin{equation*}
C_{T}=\frac{Q \theta C_{W}}{c\left(t_{2}-t_{1}\right)}+\frac{C_{P} Q}{U\left[\frac{T_{1}-t_{2}-\Delta t_{1}}{\ln \left(T_{1}-t_{2}\right) / \Delta t_{1}}\right]} \tag{7.50}
\end{equation*}
$$

The optimum condition will occur when the total annual cost is a minimum, thus when $d C_{T} / d t_{2}=0$.

Differentiating and equating the respective parts,

$$
\begin{equation*}
\frac{U \theta C_{W}}{C_{F} c}\left(\frac{T_{1}-t_{2}-\Delta t_{1}}{t_{2}-t_{1}}\right)^{2}=\ln \frac{T_{1}-t_{2}}{\Delta t_{1}}-\left[1-\frac{1}{\left(T_{1}-t_{2}\right) / \Delta t_{1}}\right] \tag{7.51}
\end{equation*}
$$

Equation (7.51) has been plotted by Colburn and is reproduced in Fig. 7.24 .

Example 7.5. Calculation of the Optimum Outlet-water Temperature. A viscous fluid is cooled from 175 to $150^{\circ} \mathrm{F}$ with water available at $85^{\circ} \mathrm{F}$. What is the optimumoutlet water temperature?

$$
\begin{aligned}
175-x & =\Delta t_{2} \\
150-85 & =\Delta t_{1}=65
\end{aligned}
$$

It will first be necessary to assume a value of U. Sinoe the material is viscous, assume $U=15$. To evaluate the group $U_{\theta} C_{F} / C_{p c}$:
$\theta=8000$ operating hours annually
$C_{\text {W }}$ computed at $\$ 0.01 / 1000 \mathrm{gal} .=0.01 / 8300$, dollars $/ \mathrm{lb}$
For annual charges assume 20 per cent repair and maintenance and 10 per cent depreciation. At a unit cost of $\$ 4$ per square foot the annual fixed charge is

$$
\$ 4 \times 0.30=\$ 1.20
$$

The specific heat of water is taken as 1.0 .

$$
\begin{aligned}
\frac{U \theta C_{W}}{C_{F C}} & =\frac{15 \times 8000}{1.20 \times 1.0}\left(\frac{0.01}{8300}\right)=0.1205 \\
\frac{T_{1}-T_{2}}{\Delta t_{1}} & =\frac{175-150}{150-85}=0.39
\end{aligned}
$$

From Figure 7.24,

$$
\begin{aligned}
\frac{\Delta t_{2}}{\Delta t_{1}} & =0.96 \\
\Delta t_{2} & =T_{1}-t_{2}=0.96 \times 65=62.3^{\circ} \mathrm{F} \\
t_{2} & =175-62.3=112.7^{\circ} \mathrm{F}
\end{aligned}
$$

When the value of U is high or there is a large hot-fluid range, the optimum outlet-water temperature may be considerably above the upper limit of $120^{\circ} \mathrm{F}$. This is not completely correct, since the maintenance cost will probably rise considerably above 20 per cent of the initial cost when the temperature rises above $120^{\circ} \mathrm{F}$. Usually information is not available on the increase in maintenance cost with increased water-outlet

Fra. 7.24. Optimum outIet water temperature. (Perry, Chemical Engineers' Handbook, McGraw-Hill Book Company, Inc., New York, 1950.)
temperature, since such data entail not only destructive tests but records kept over a long period of time.

Solution Exchangers. One of the commonest classes of exchangers embraces the cooling or heating of solutions for which there is a paucity of physical data. This is understandable, since property vs. temperature plots are required not only for each combination of solute and solvent but for different concentrations as well. Some of the data available in the literature and other studies permit the formulation of rules for estimating the heat-transfer properties of solutions when the rules are used with considerable caution. They are given as follows:

Thermal conductivity:

Solutions of organic liquids: use the weighted conductivity.
Solutions of organic liquids and water: use 0.9 times the weighted conductivity.
Solutions of salts and water circulated through the shell: use 0.9 times the conductivity of water up to concentrations of 30 per cent.
Solutions of salts and water circulating through the tubes and not exceeding 30 per cent: use Fig. 24 with a conductivity of 0.8 that of water.
Colloidal dispersions: use 0.9 times the conductivity of the dispersion liquid.
Emulsions: use 0.9 times the conductivity of the liquid surrounding the droplets.

Specific heat:

Organic solutions: use the weighted specific heat.
Organic solutions in water: use the weighted specific heat.
Fusable salts in water: use the weighted specific heat where the specific heat of the salt is for the crystalline state.

Viscosity:

Organic liquids in organics: use the reciprocal of the sum of the terms, (weight fraction/viscosity) for each component.
Organic liquids in water: use the reciprocal of the sum of the terms, (weight fraction/viscosity) for each component.
Salts in water where the concentration does not exceed 30 per cent and where it is known that a sirup-type of solution does not result: use a viscosity twice that of water. A solution of sodium hydroxide in water under even very low concentrations should be considered sirupy and can not be estimated.

Wherever laboratory tests are available or data can be obtained, they will be preferable to any of the foregoing rules. The following demonstrates the solution of a problem involving an aqueous solution:

Example 7.6. Calculation of a Phosphate Solution Cooler. $20,160 \mathrm{lb} / \mathrm{hr}$ of a 30% $\mathrm{K}_{3} \mathrm{PO}_{4}$ solution, specific gravity at $120^{\circ} \mathrm{F}=1.30$, is to be cooled from 150 to $90^{\circ} \mathrm{F}$ using well water from 68 to $90^{\circ} \mathrm{F}$. Pressure drops of 10 psi are allowable on both streams, and a total dirt factor of 0.002 is required,

Available for this service is a 10.02 in . ID $1-2$ exchanger having $523 / 4 \mathrm{in}$. OD, 16 BWG tubes $16^{\prime} 0^{\prime \prime}$ loug laid out on I-in. square pitch. The bundle is arranged for two passes, and the baffles are spaced 2 in . apart.

Will the exchanger be suitable?

Solution:
Exchanger:

Shell side

Tube side
$I D=10.02 \mathrm{in}$. Number and length $=52,16^{\prime} 0^{\prime \prime}$
$B_{\text {affle space }}=2 \mathrm{in} . \quad O D, B W G$, pitch $=3 / 4 \mathrm{in} ., 16 \mathrm{BWG}, 1 \mathrm{in}$. square

$$
\text { Passes }=1
$$

Passes $=2$
(1) Heat balance:

Specific heat of phosphate solution $=0.3 \times 0.19+0.7 \times 1=0.757 \mathrm{Btu} /(\mathrm{lb})\left({ }^{\circ} \mathrm{F}\right)$
$30 \% \mathrm{~K}_{3} \mathrm{PO}_{4}$ solution, $Q=20,160 \times 0.757(150-90)=915,000 \mathrm{Btu} / \mathrm{hr}$
Water, $Q=41,600 \times 1.0(90-68)=915,000 \mathrm{Btu} / \mathrm{hr}$
(2) Δt :

$$
\text { Hot Fluid } \quad \text { Cold Fluid } \quad \text { Diff. }
$$

150	Higher Temp	90	60
90	Lower Temp	68	22
60	Differences	22	38

LMTD $=37.9^{\circ} \mathrm{F}$
$R=\frac{60}{22}=2.73 \quad \mathrm{~S}=\frac{22}{150-68}=0.268$
$F_{T}=0.81$
$\Delta t=0.81 \times 37.9=30.7^{\circ} \mathrm{F}$
(3) T_{c} and t_{c} : The average temperatures T_{a} and t_{a} of 120 and $79^{\circ} \mathrm{F}$ will be satisfactory.

Hot fluid: shell side, phosphate solution
(4') $a_{s}=$ ID $\times C^{\prime} B / 144 P_{T} \quad[$ Eq. (7.1)] $]$
$=10.02 \times 0.25 \times 2 / 144 \times 1$
$=0.0347 \mathrm{ft}^{2}$
(5^{\prime}) $G_{4}=w / a_{t}$

$$
=20,160 / 0.0347
$$

$$
=578,000 \mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)
$$

(6) At $T_{a}=120^{\circ} \mathrm{F}$,
$\mu=2 \mu_{\text {mater }}=1.20 \times 2.42$
$=2.90 \mathrm{lb} /(\mathrm{ft})(\mathrm{hr}) \quad[$ Fig. 14]
$D_{e}=0.95 / 12=0.079 \mathrm{ft}$
$R e_{s}=D_{0} G_{s} / \mu$
[Fig. 28]
$=0.01$ [Eq. (7.3)]
$0.079 \times 578,000 / 2.90=15,750$
(7) $j_{H}=71$
[Fig. 28]
(8^{\prime}) At $T_{a}=120^{\circ} \mathrm{F}, k=0.9 k_{\text {wator }}$ $=0.9 \times 0.37$
$=0.33 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F} / \mathrm{ft}\right)$
$\left(c_{\mu} / k\right)^{1 / 2}=(0.757 \times 2.90 / 0,33)^{1 / 5}=1.88$
(9') $h_{o}=j_{H} \frac{k}{D_{e}}\left(\frac{c \mu}{k}\right)^{1 / 4} \times 1 \quad$ [Eq. (6.15b)]
$=71 \times 0.33 \times 1.88 / 0.079$
$=558 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft} \mathrm{t}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$
$\left(10^{\prime}\right)\left(11^{\prime}\right)\left(12^{\prime}\right) \phi_{t}$ and $\phi_{t}=1$

Cold fuid: tube side, water
(4) $a_{t}^{\prime}=0.302$ in. ${ }^{2} \quad$ TTable 10]
$a_{t}=N_{t} a_{t}^{\prime} / 144 n$
$=52 \times 0.302 / 144 \times 2=0.0545 \mathrm{ft}^{2}$
(Б) $G_{t}=w / a_{t}$

$$
=41,600 / 0.0545
$$

$$
=762,000 \mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)
$$

$V=G_{t} / 3600 \rho=762,000 / 3600 \times 62.5$ $=3.40 \mathrm{fps}$
(6) At $t_{a}=79^{\circ} \mathrm{F}, \mu=0.91 \times 2.42$
$=2.20 \mathrm{Ib} /(\mathrm{ft})(\mathrm{hr}) \quad$ TTable 14]
$D=0.62 / 12=0.0517 \mathrm{ft} \quad$ [Table 10]
($R e_{t}$ is for pressure drop only)
$R e_{t}=D G_{t} / \mu$
$=0.0517 \times 762,000 / 2.20=17,800$
(9) $h_{i}=800 \times 1.0=800$
[Fig. 25]
$h_{i 0}=h_{i} \times$ ID $/ \mathrm{OD}=800 \times 0.62 / 0.75$
$=662 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right) \quad[\mathrm{Eq} .(6.5)]$
(18) Clean overall coefficient U_{c} :

$$
\begin{equation*}
U_{C}=\frac{h_{i o} h_{o}}{h_{i o}+h_{o}}=\frac{662 \times 558}{662+558}=303 \mathrm{Btu} /(\mathrm{br})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right) \tag{6.38}
\end{equation*}
$$

(14) Design overall coefficient U_{D} :

$$
\begin{gathered}
\text { External surface } / \mathrm{ft}, a^{\prime \prime}=0.1963 \mathrm{ft}^{2} \\
A=52 \times 16^{\prime} 0^{\prime \prime} \times 0.1963=163 \mathrm{ft}^{2} \\
U_{D}=\frac{Q}{A \Delta t}=\frac{915,000}{163 \times 30.7}=183 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)
\end{gathered}
$$

(15) Dirt factor R_{d} :

$$
\begin{equation*}
R_{d}=\frac{U_{c}-U_{D}}{U_{C} U_{D}}=\frac{303-183}{303 \times 183}=0.00216(\mathrm{hr})\left(\mathrm{ft} \mathrm{t}^{2}\right)\left({ }^{\circ} \mathrm{F}\right) / \mathrm{Btu} \tag{6.13}
\end{equation*}
$$

Summary

558	$h_{\text {outside }}$	662
U_{C}	303	
U_{D}	183	
R_{d} Calculated 0.00216		
R_{d} Required	0.0020	

Pressure Drop
(1') For $R e_{4}=15,750, f=0.0019 \mathrm{ft}^{2} / \mathrm{in.g}$.
(1) For $R e_{i}=17,900, f=0.00023 \mathrm{ft}^{2} / \mathrm{in} .{ }^{2}$
[Fig. 29]
[Fig. 26]
(2') No. of crosses, $N+1=12 L / B$
[Eq. (7.43)]
$=12 \times 16 / 2$
$D_{t}=10.02 / 12=0.833 \mathrm{ft}$
(3) $\Delta P_{s}=\frac{f G_{s}^{2} D_{s}(N+1)}{5.22 \times 10^{10} D_{s} \Delta \phi_{s}}$ [Eq. (7.44)]

$$
=\frac{0.0019 \times 578,000^{2} \times 0.833 \times 96}{5.22 \times 10^{10} \times 0.079 \times 1.30 \times 1.0}
$$

$$
=9.5 \mathrm{psi}
$$

Allowable $\Delta P_{s}=10.0 \mathrm{psi}$
(2) $\Delta P_{t}=\frac{f G_{t}^{2} L n}{5.22 \times 10^{10} D s \phi_{t}}$

$$
\begin{equation*}
=\frac{0.00023 \times 762,000^{2} \times 16 \times 2}{5.22 \times 10^{10} \times 0.0517 \times 1.0 \times 1.0} \tag{7.45}
\end{equation*}
$$

(3) $G_{t}=762,000, \frac{V^{2}}{2 g^{\prime}}=0.08 \quad$ [Fig. 27] $\Delta P_{r}=\frac{4 n}{s} \frac{\mathrm{~V}^{2}}{2 g^{\prime}}$
[Eq. (7.46)]
$=\frac{4 \times 2}{1} \times 0.08=0.7 \mathrm{p}$
$\Delta P_{r}=\Delta P_{t}+\Delta P_{r}$
$=1.6+0.7=2.3 \mathrm{psi}$
Allowable $\Delta P_{T}=10.0 \mathrm{psi}$
(Table 10)
heating medium. Steam as a heating medium introduces several diffculties: (1) Hot steam condensate is fairly corrosive, and care must be exercised to prevent condensate from accumulating within an exchanger where continuous contact with metal will cause damage. (2) The condensate line must be connected with discretion. Suppose exhaust steam at 5 psig and $228^{\circ} \mathrm{F}$ is used to heat a cold fluid entering at a temperature of $100^{\circ} \mathrm{F}$. The tube wall will be at a temperature between the two but nearer that of the steam, say $180^{\circ} \mathrm{F}$, which corresponds to a saturation pressure of only 7.5 psia for the condensate at the tube wall. Although the steam entered at 5 psig, the pressure on the steam side may drop locally to a pressure below that of the atmosphere, so that the condensate will not run out of the heater. Instead it will remain and build up in the exchanger until it blocks off all the surface available for heat transfer. Without surface, the steam will not continue to condense and will retain its inlet pressure long enough to blow out some or all of the accumulated condensate so as to reexpose surface, depending upon the design. The heating operation will become cyclical and to overcome this difficulty and attain uniform flow, it may be necessary to employ a trap or suction for which piping arrangements will be discussed in Chap. 21.

The heat-transfer coefficients associated with the condensation of steam are very high compared with any which have been studied so far. It is customary to adopt a conventional and conservative value for the film coefficient, since it is never the controlling film, rather than obtain one by calculation. In this book in all heating services employing relatively air-free steam a value of $1500 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$ will be used for the condensation of steam without regard to its location. Thus $h_{i}=h_{o}=$ $h_{i o}=1500$.

It is advantageous in heating to connect the steam to the tubes of the heater rather than the shell. In this way, since the condensate may be corrosive, the action can be confined to the tube side alone, whereas if the steam is introduced into the shell, both may be damaged. When steam flows through the tubes of a 1-2 exchanger, there is no need for more than two tube passes. Since steam is an isothermally condensing fluid, the true temperature difference Δt and the LMMD are identical.

When using superheated steam as a heating medium, except in desuperheaters, it is customary to disregard the temperature range of desuperheating and consider all the heat to be delivered at the saturation temperature corresponding to the operating pressure. A more intensive analysis of the condensation of steam will be undertaken in the chapters dealing with condensation.

Pressure Drop for Steam. When steam is employed in two passes on the tube side, the allowable pressure drop should be very small, less than 1.0 psi, particularly if there is a gravity return of condensate to the boiler. In a gravity-return system, condensate flows back to the boiler because of the difference in static head between a vertical column of steam and a vertical column of condensate. The pressure drop including entrance and end losses through an exchanger can be calculated by taking one-half of the pressure drop for steam as calculated in the usual manner by Eq. (7.45) for the inlet vapor conditions. The mass velocity is calculated from the inlet steam rate and the flow area of the first pass (which need not be equal to that of the second pass). The Reynolds number is based on the mass velocity and the viscosity of steam as found in Fig. 15. The specific gravity used with Eq. (7.45) is the density of the steam obtained from Table 7 for the inlet pressure divided by the density of water taken as $62.5 \mathrm{lb} / \mathrm{ft}^{3}$.

Quite apparently this calculation is an approximation. It is conservative inasmuch as the pressure drop per foot of length decreases successively with the square of the mass velocity while the approximation assumes a value more nearly the mean of the inlet and outlet.
The Optimum Use of Exhaust and Process Steam. Some plants obtain power from noncondensing turbines or engines. In such places there may be an abundance of exhaust steam at low pressures from 5 to 25 psig which is considered a by-product of the power cycles in the plant. While there are arbitrary aspects to the method of estimating the cost of exhaust steam, it will be anywhere from one-quarter to one-eighth of the cost of process or live steam. Although it possesses a high latent heat, exhaust steam is of limited process value, since the saturation temperature is usually about 215 to $230^{\circ} \mathrm{F}$. If a liquid is to be heated to 250 or $275^{\circ} \mathrm{F}$, it is necessary to use process steam at 100 to 200 psi developed at the powerhouse specially for process purposes.

When a fluid is to be heated to a temperature close to or above that of exhaust steam, all the heating can be done in a single shell using only process steam. As an alternative the heat load can be divided into two shells, one utilizing as much exhaust steam as possible and the other using as little process steam as possible. This leads to an optimum: If the outlet temperature of the cold fluid in the first exchanger is made to approach the exhaust steam temperature too closely, a small Δt and large first heater will result. On the other hand, if the approach is not close, the operating cost of the higher process steam requirement in the second heater increases so that the initial cost of two shells may not be justified.

In the following analysis it is assumed that the pressure drop, pumping
cost, and overall coefficient are identical in a single and double heater arrangement. It is assumed also that the fixed charges per square foot of surface is constant, although this too is not strictly true. The cost equation is taken as the sum of steam and fixed charges and because steam condenses isothermally, $\Delta t=$ LMTD.

$$
\begin{equation*}
C_{T}=w c\left(t-t_{1}\right) \theta C_{E}+A_{1} C_{F}+w c\left(t_{2}-t\right) \theta C_{P}+A_{2} C_{F} \tag{7.52}
\end{equation*}
$$

where $C_{r^{\prime}}=$ total annual cost, dollars
$C_{F}=$ annual fixed charges, dollars/ ft^{2}.
$C_{E}=$ cost of exhaust steam, dollars/Btu
$C_{P}=$ cost of process steam, dollars/Btu
$T_{E}=$ temperature of exhaust steam, ${ }^{\circ} \mathrm{F}$
$T_{P}=$ temperature of process steam, ${ }^{\circ} \mathrm{F}$
$t=$ intermediate temperature between shells
$\theta=$ total annual operating hours

$$
A_{1}=\frac{Q_{1}}{U \Delta t_{1}}=\frac{w c}{U} \ln \frac{T_{B}-t_{1}}{T_{B}-t} \quad \text { and } \quad A_{2}=\frac{Q_{2}}{U \Delta t_{2}}=\frac{w c}{U} \ln \frac{T_{P}-t}{T_{P}-t_{2}}
$$

Substituting, differentiating Eq. (7.52) with respect to t, and setting equal to zero

$$
\begin{equation*}
\left(T_{P}-t\right)\left(T_{E}-t\right)=\frac{C_{F}\left(T_{P}-T_{E}\right)}{\left(C_{P}-C_{E}\right) U \theta} \tag{7.53}
\end{equation*}
$$

Example 7.7. The Optimum Use of Exhaust and Process Steam. Exhaust steam at $5 \mathrm{psi}\left(\approx 228^{\circ} \mathrm{F}\right)$ and process steam at $85 \mathrm{psi}\left(\approx 328^{\circ} \mathrm{F}\right)$ are available to heat a liquid from 150 to $250^{\circ} \mathrm{F}$. Exhaust steam is available at 5 cents per per 1000 lb , and process steam at 30 cents per 1000 lb . From experience an overall rate of $50 \mathrm{Btu} /$ (hr) $\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$ may be expected. The assumption may be checked later. Use annual fixed charges of $\$ 1.20$ per square foot, 8000 annual hours, latent heats of $960.1 \mathrm{Btu} / \mathrm{lb}$ for exhaust, and $888.8 \mathrm{Btu} / \mathrm{lb}$ for process steam.

Solution:

$$
\begin{align*}
(328-t)(228-t) & =\frac{1.20(328-228)}{(0.30 / 1000 \times 888.8-0.05 / 1000 \times 960) 50 \times 8000} \tag{7.53}\\
t & =218^{\circ} \mathrm{F}
\end{align*}
$$

1-2 Exchangers without Baffles. Not all 1-2 exchangers have 25 per cent cut segmental baffles. When it is desired that a fluid pass through the shell with an extremely small pressure drop, it is possible to depart from the use of segmental baffles and use only support plates. These will usually be half-circle, 50 per cent cut plates which provide rigidity and prevent the tubes from sagging. Successive support plates overlap at the shell diameter so that the entire bundle can be supported by two
half circles which support one or two rows of tubes in common. These may be spaced farther apart than the outside diameter of the shell, but when they are employed, the shell fluid is considered to flow along the axis instead of across the tubes. When the shell fluid flows along the tubes or the baffles are cut more than 25 per cent, Fig. 28 no longer applies. The flow is then analogous to the annulus of a double pipe exchanger and can be treated in a similar manner, using an equivalent diameter based on the distribution of flow area and the wetted perimeter for the entire shell. The calculation of the shell-side pressure drop will also be similar to that for an annulus.

Example 7.8. Calculation of a Sugar-solution Heater without Baffles. 200,000 $\mathrm{lb} / \mathrm{hr}$ of a 20 per cent sugar solution ($s=1.08$) is to be heated from 100 to $122^{\circ} \mathrm{F}$ using steam at 5 psi pressure.
Available for this service is a 12 in . TD 1-2 exchanger without baflles having $763 / 4 \mathrm{in}$. $O D, 16 \mathrm{BWG}$ tubes $16^{\prime} 0^{\prime \prime}$. long laid out on a $1-\mathrm{in}$. square pitch. The bundle is arranged for two passes.
Can the exchanger provide a 0.003 dirt factor without exceeding a 10.0 psi solution pressure drop?

Solution:

Exchanger:

Shell side	Tube side
ID $=12$ in.	Number and length $=76,16^{\prime \prime} 0^{\prime \prime}$
Baffle space $=$ half circles	OD, BWG, pitch $=3 / 4 \mathrm{in} ., 16 \mathrm{BWG}, 1 \mathrm{in}$, square
Passes $=1$	Passes $=2$.

(1) Heat balance:

Specific heat of 20 per cent sugar at $111^{\circ} \mathrm{F}=0.2 \times 0.30+0.8 \times 1$

$$
\begin{equation*}
=0.86 \mathrm{Btu} /(\mathrm{lb})\left({ }^{\circ} \mathrm{F}\right) \tag{Table7}
\end{equation*}
$$

Sugar solution, $Q=200,000 \times 0.86(122-100)=3,790,000 \mathrm{Btu} / \mathrm{hr}$
Steam $Q=3950 \times 960.1=3,790,000 \mathrm{Btu} / \mathrm{hr}$
(2) Δt :
Hot Fluid

228	Higher Temp	122	106
228	Lower Temp	100	128
0	Differences	22	22

When $R=0, \Delta t=\mathrm{LMTD}=116.5^{\circ} \mathrm{F}$.
(3) T_{e} and t_{c} : The steam coefficient will be very great compared with that for the sugar solution, and the tube wall will be considerably nearer $228^{\circ} \mathrm{F}$ than the caloric temperature of the fluid. Obtain F_{c} from U_{1} and U_{2}. Failure to correct for wall effects, however, will keep the heater calculation on the safe side. Use $111^{\circ} \mathrm{F}$ as the average, t_{a}.

Hot fluid: tube side, steam		
$\begin{aligned} & \text { (4) } a_{t}^{\prime}=0.302 \mathrm{in}^{2} \\ & a_{t}=N a_{t}^{\prime} / 144 n \end{aligned}$	[Table 10]	
	$\begin{aligned} a_{t} & \left.=N_{i} a_{4}^{\prime} / 144 n \quad \quad \text { [Eq. }(7.48)\right] \\ & =76 \times 0.302 / 144 \times 2=0.0797 \mathrm{ft}^{2} \end{aligned}$	
(5) G_{t} (for pressure drop only) $=W / a_{t}$$=3950 / 0.0797=49,500 \mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)$		
(6) At $T_{a}=228^{\circ} \mathrm{F}$,		
$\begin{aligned} \mu_{\text {steam }}= & 0.0128 \times 2.42 \\ & =0.031 \mathrm{lb} /(\mathrm{ft})(\mathrm{hr}) \quad[\text { Fig. } 15] \end{aligned}$		
$D=0.62 / 12=0.0517 \mathrm{ft}$ [Table 10]		
$R e_{t}=D G_{t} / \mu \quad$ [Eq. (3.6)]		
$=0.0517 \times 49,500 / 0.031=82,500$		
is for pressure drop.		

(9) Condensation of steam:
$h_{i o}=1500 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$
(10) $t_{w}{ }^{*}$:
$t_{w}=t_{c}+\frac{h_{i o}}{h_{i_{0}}+h_{o}}\left(T_{a}-t_{a}\right) \quad[\mathrm{Eq} .(5.31 a)]$
$=111+\frac{1500}{1500+278}(228-111)$
$=210^{\circ} \mathrm{F}$

Cold fluid: shell side, sugar solution
(4') $a_{4}=$ (area of shell) - (area of tubes)
$=11_{44}\left(\pi 12^{2} / 4-76 \times \pi\right.$
$\left.\times 0.75^{2} / 4\right)$
[Eq. (7.2)]
(${ }^{\prime}$) $G_{s}=w / a_{t}$

$$
=200,000 / 0.55
$$

$$
=364,000 \mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)
$$

(6') At $t_{c}=111^{\circ} \mathrm{F}, \mu=2 \mu_{\text {water }}$
$=1.30 \times 2.42=3.14 \mathrm{lb} /(\mathrm{ft})(\mathrm{hr})$
[Fig. 14]
$D_{\epsilon}=4 a_{s} /($ wetted perimeter $)$ [Eq. (6.3)]
$=4 \times 0.55 /(76 \times \pi \times 0.75 / 12)$
$=0.148 \mathrm{ft}$
$R e_{s}=D_{t} G_{s} / \mu$
[Eq. (7.3)]
$=0.148 \times 364,000 / 3.14=17,100$
(${ }^{\prime}$) From Fig. 24 (tube-side data)
$j_{H}=61.5$
(8) At $t_{a}=111^{\circ} \mathrm{F}$,
$k=0.9 \times 0.37$
$=0.333 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F} / \mathrm{ft}\right)$
$\left(c_{\mu} / k\right)^{1 / 2}=(0.86 \times 3.14 / 0.333)^{1 / 2}=2.0$
(9) $h_{o}=f_{H} \frac{k}{D_{s}}\left(\frac{c \mu}{k}\right)^{1 / 3} \phi_{s} \quad[\mathrm{Eq} .(6.15 b)]$
$\frac{h_{a}}{\phi_{s}}=61.5 \times 0.333 \times 2.0 / 0.148=278$
(11') At $t_{w}=210^{\circ} \mathrm{F}, \mu_{w}=2 \mu_{\text {watar }}$
$=0.51 \times 2.42=1.26 \mathrm{lb} /(\mathrm{ft})(\mathrm{hr})$
[Fig. 14]
$\phi_{s}=\left(\mu / \mu_{w}\right)^{0.14}=(3.14 / 1.26)^{0.14}=1.12$
(12') Corrected coefficient, $h_{a}=\frac{h_{o} \phi_{s}}{\phi_{2}}$
[Eq. (6.36)]
$=278 \times 1.12=311 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$
(13) Clean overall coefficient U_{C} :

$$
\begin{equation*}
U_{C}=\frac{h_{i_{0}} h_{o}}{h_{i o}+h_{o}}=\frac{1500 \times 311}{1500+311}=257 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right) \tag{6.38}
\end{equation*}
$$

(14) Design overall coefficient U_{D} :

$$
\begin{aligned}
a^{\prime \prime} & =0.1963 \mathrm{ft}^{2} / \mathrm{lin} \mathrm{ft}^{\prime} \\
A & =76 \times 16^{\prime \prime} \times 0.1963=238 \mathrm{ft}^{2} \\
U_{D} & =\frac{Q}{A \Delta t}=\frac{3,790,000}{238 \times 116.5}=137 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)
\end{aligned}
$$

(Table 10)
(15) Dirt factor R_{d} :

$$
\begin{equation*}
R_{d}=\frac{U_{C}-U_{D}}{U_{C} U_{D}}=\frac{257-137}{257 \times 137}=0.0034(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right) / \mathrm{Btu} \tag{6.13}
\end{equation*}
$$

* Note $h_{i o}$ in the numerator.

Summary

1500	h outside	311
U_{C}	257	
U_{d}	137	
R_{d} Calculated 0.0034		
R_{d} Required 0.003		

Pressure Drop

(1) Specific vol of steam from Table 7:
$v=20.0 \mathrm{ft}^{3} / \mathrm{lb}$
$s=\frac{1 / 20.0}{62.5}=0.00080$
$R e_{t}=82,500, f=0.000155 \mathrm{ft}^{2} / \mathrm{in}^{2}{ }^{2}$
[Fig. 26]

$$
\begin{aligned}
\Delta P_{t} & =\frac{1}{2} \times \frac{f G_{t}^{2} L n}{5.22 \times 10^{10} D s \phi_{t}} \quad[\mathrm{Eq} .(7.45)] \\
& =\frac{1}{2} \times \frac{0.000155 \times 49,500^{2} \times 16 \times 2}{5.22 \times 10^{10} \times 0.0517} \\
& \times 0.8 \mathrm{psi} \quad
\end{aligned}
$$

This is a relatively high pressure drop for steam with a gravity condensate return.
The exchanger is satisfactory.

[Eq. (7.45)]
$=\frac{0.00025 \times 364,000^{2} \times 16 \times 1}{5.22 \times 10^{10} \times 0.122 \times 1.08}$
$=0.07 \mathrm{psi}$

Heat Recovery in a 1-2 Exchanger. When an exchanger is clean, the hot-fluid outlet temperature is lower than the process outlet temperature and the cold-fluid outlet temperature is higher than the process outlet temperature. For counterflow it was possible to obtain the value of T_{2} and t_{2} for a clean exchanger from Eq. (5.18), starting with

$$
w c\left(t_{2}-t_{1}\right)=U A \times \mathrm{LMTD}
$$

For a 1-2 exchanger the outlet temperatures can be obtained starting with the expression $w c\left(t_{2}-t_{1}\right)=U A F_{7} \times$ LMTD, where the LMTD is defined in terms of parameters R and S by Eq. (7.39) and F_{T} is defined by Eq: (7.41).
Recognizing that F_{T} can be eliminated when $U A / w c$ in Eq. (7.37) is plotted against S, Ten Broeck ${ }^{1}$ developed the graph shown in Fig. 7.25. In an existing 1-2 exchanger A and $w c$ are known. U can be computed
${ }^{1}$ Ten Broeck, H., Ind. Eng. Chem., 80, 1041-1042 (1938).
from the flow quantities and temperatures, and R can be evaluated from $w c / W C$. This permits S to be read directly from the graph. Since $S=\left(t_{2}-t_{1}\right) /\left(T_{1}-t_{1}\right)$ and T_{1} and t_{1} are known, it is then possible to obtain t_{2} and from the heat balance $w c\left(t_{2}-t_{1}\right)=W C\left(T_{1}-T_{2}\right)$. The line designated threshold represents the initial points at which a temperature cross occurs. Values on this line correspond to $T_{2}=t_{2}$.

Fig. 7.25. Ten Broeck chart for determining t_{2} when T_{1} and t_{1} are known in a 1-2 exchanger. (Industrial \& Engineering Chemistru.)

Example 7.9. Outlet Temperatures for a Clean 1-2 Exchanger. In Example 7.3, kerosene-crude oil exchanger, what will the outlet temperatures be when the exchanger is freshly placed in service?

Solution:

$$
\begin{gathered}
U_{G}=69.3 \quad A=662 \quad \begin{array}{c}
w=149,000 \\
W=43,800
\end{array} \quad C=0.49 \\
\frac{U A}{w C}=\frac{69.3 \times 662}{149,000 \times 0.49}=0.63 \\
R=\frac{w c}{W \bar{C}}=\frac{149,000 \times 0.49}{43,800 \times 0.60}=2.78
\end{gathered}
$$

From Figure 7.25,

$$
\begin{aligned}
S & =\frac{t_{2}-t_{1}}{T_{1}-t_{1}}=0.265 \\
t_{2} & =t_{1}+0.265\left(T_{1}-t_{1}\right)=100+0.265(390-100)=177^{\circ} \mathrm{F} \\
T_{2} & =T_{1}-R\left(t_{2}-t_{1}\right)=390-2.78(177-100)=176^{\circ} \mathrm{F}
\end{aligned}
$$

The Efficiency of an Exchanger. In the design of many types of apparatus it is frequently desirable to establish a standard of maximum performance. The efficiency is then defined as the fractional performance of an apparatus delivering less than the standard. Dodge ${ }^{1}$ gives the definition of the efficiency of an exchanger as the ratio of the quantity
${ }^{1}$ Dodge, B. F., "Chemioal Engineering Thermodynamics," McGraw-Hill Book Company, Inc., New York, 1944,
of heat removed from a fluid to the maximum which might have been removed. Using the usual nomenclature,

$$
\begin{equation*}
e=\frac{w c\left(t_{2}-t_{1}\right)}{w c\left(T_{1}-t_{1}\right)}=\frac{t_{2}-t_{1}}{T_{1}-t_{1}} \tag{7.54}
\end{equation*}
$$

which is identical with the temperature group S and presumed that $t_{2}=T_{1}$. Depending upon whether the hot or cold terminal approaches zero, the efficiency may also be expressed by

$$
\begin{equation*}
e=\frac{W C\left(T_{1}-T_{2}\right)}{W C\left(T_{1}-t_{1}\right)} \tag{7.55}
\end{equation*}
$$

Although there is merit to this definition from the standpoint of thermodynamics there is a lack of realism in an efficiency definition which involves a terminal difference and a temperature difference of zero. It is the same as defining the efficiency as the ratio of the heat transferred by a real exchanger to an exchanger with infinite surface.

In process heat transfer there is another definition which is useful. The process temperatures are capable of providing a maximum temperature difference if arranged in counterflow. There appears to be some value in regarding the efficiency of an exchanger as the ratio of the temperature difference attained by any other exchanger to that for true counterflow. This is identical with F_{T}, which proportionately influences the surface requirements. It will be seen in the next and later chapters that other flow arrangements besides 1-2 parallel flow-counterflow can be attained in tubular equipment and by which the value of F_{T} may be increased for given process temperatures. These obviously entail flow patterns which approach true counterflow more closely than the 1-2 exchanger.

PROBLEMS

7.1. A 1-2 exchanger is to be used for heating $50,000 \mathrm{lb} / \mathrm{hr}$ of methyl ethyl ketone from 100 to $200^{\circ} \mathrm{F}$ using hot amyl alcohol available at $250^{\circ} \mathrm{F}$. (a) What minimum quantity of amyl alcohol is required to deliver the desired heat load in a 1-2 exchanger? (b) If the amyl alcohol is available at $275^{\circ} \mathrm{F}$, how does this affect the total required quantity?
7.2. A 1-2 exchanger has one shell and two tube passes. The passes do not have equal surfaces. Instead X per cent of the tubes are in the first pass and $(1-X)$ per cent are in the second, but if the tube-side film coefficient is not controlling, the assumption of constant U is justifiable. (a) Develop an expression for the true temperature difference when X per cent of the tubes are in the colder of the two tube passes. (b) What is the true temperature difference when the hot fluid is cooled from 435 to $225^{\circ} \mathrm{F}$ by a noncontrolling cooling medium in the tubes which is heated from 100 to $150^{\circ} \mathrm{F}$ when 60 per cent of the tubes are in the colder tube pass and (c) when 40 per cent of the tubes are in the colder pass? How do these compare with the 1-2 true temperature difference with equal surfaces in each pass?
7.3. A double pipe exchanger has been designed for the nozzle arrangement shown in Fig. 7.26. If the hot stream is cooled from 275 to $205^{\circ} \mathrm{F}$ while the cold stream enters at $125^{\circ} \mathrm{F}$ and is heated to $t_{2}=190^{\circ} \mathrm{F}$, what is the true temperature difference? (Hint. Establish an equation for the temperature difference with the nozzle arrange-

Fig. 7.26. Illustration for Prob. 7.3. ment shown and sufficient to allow a numerical trial-and-error solution.) How does this compare with the LMTD for counterflow?
7.4. $43,800 \mathrm{lb} / \mathrm{hr}$ of $42^{\circ} \mathrm{API}$ kerosene between 390 and $200^{\circ} \mathrm{F}$ is used to heat $143,000 \mathrm{lb} / \mathrm{hr}$ of 34° API Mid-continent crude from 100 to $170^{\circ} \mathrm{F}$ in a $662 \mathrm{ft}^{2}$? exchanger (Example 7.3). The clean coefficient is $69.3 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$. When the 1-2 exchanger is clean, what outlet temperatures will be obtained? Calculate the outlet temperatures directly from F_{7}. How does the total heat load compare with that which could be delivered by a true counterflow exchanger assuming that the same U could be obtained?
7.5. It is necessary on a new installation to preheat $149,000 \mathrm{lb} / \mathrm{hr}$ of $34^{\circ} \mathrm{API}$ crude oil from $770^{\circ} \mathrm{F}$ to a temperature of $285^{\circ} \mathrm{F}$, corresponding to that of the feed plate of a fractionating tower. There is a utility 33° API gas oil line running near the tower at $530^{\circ} \mathrm{F}$ of relatively unlimited quantity. Because the pumping cost for cold gas oil is prohibitive, the temperature of the gas oil from the heat exchanger, returning to the line, should not be less than $300^{\circ} \mathrm{F}$.

Available on the site is a 25 in . ID 1-2 exchanger containing 252 tubes 1 in . OD. $13 \mathrm{BWG}, 16^{\prime} 0^{\prime \prime}$ long arranged on a six-pass $1 / 4 / 4 \mathrm{in}$. triangular pitch layout. The shell bafles are spaced at 5 -in. centers. A pumping head of 10 psi is allowable on the gas oil line and 15 psi on the feed line. Will the exchanger be acceptable if cleaned, and if so, what will the fouling factor be? For the gas oil the viscosities are 0.4 centipoise at $530^{\circ} \mathrm{F}$ and 0.7 centipoise at $300^{\circ} \mathrm{F}$. For the crude oil the viscosities are 0.9 centipoise at $285^{\circ} \mathrm{F}$ and 2.1 centipoise at $170^{\circ} \mathrm{F}$. (Interpolate by plotting ${ }^{\circ} \mathrm{F}$ vs, centipoise on logarithmic paper.)
7.6. $96,000 \mathrm{lb} / \mathrm{hr}$ of $35^{\circ} \mathrm{API}$ absorption oil in being cooled from 400 to $200^{\circ} \mathrm{F}$ is used to heat $35^{\circ} \mathrm{API}$ distillate from 100 to $200^{\circ} \mathrm{F}$. Available for the service is a 29 in . ID $1-2$ exchanger having 338 tubes 1 in . OD, $14 \mathrm{BWG}, 16^{\prime} 0^{\prime \prime}$ long on $134-\mathrm{in}$. triangular pitch. Baffes are spaced 10 in . apart, and the bundle is arranged for four tube passes. What arrangement gives the more nearly balanced pressure drops, and what is the dirt factor? The viscosity of the absorption oil is 2.6 centipoise at $100^{\circ} \mathrm{F}$ and 1.15 centipoise at $210^{\circ} \mathrm{F}$. (Plot on logarithmic paper ${ }^{\circ} \mathrm{F}$ vs. viscosity in centipoise, and extrapolate as a straight line.) The viscosity of the distillate is 3.1 centipoise at $100^{\circ} \mathrm{F}$ and 1.3 centipoise at $210^{\circ} \mathrm{F}$.
7.7. $43,200 \mathrm{lb} / \mathrm{hr}$ of $35^{\circ} \mathrm{API}$ distillate is cooled from 250 to $120^{\circ} \mathrm{F}$ using cooling water from 85 to $120^{\circ} \mathrm{F}$. Available for the service is a $191 / 4 \mathrm{in}$. ID 1-2 exchanger having 204 tubes $/ 3 / \mathrm{in}$. OD, $16 \mathrm{BWG}, 16^{\prime} 0^{\prime \prime}$ long on $1-\mathrm{in}$. square pitch. Bafles are spaced 5 in , apart, and the bundle is arranged for four passes. What arrangement gives the more nearly balanced pressure drops, and what is the dirt factor? What is the optimum outlet-water temperature? (Viscosities of the distillate are given in Prob. 7.6.)
7.8. $75,000 \mathrm{lb} / \mathrm{hr}$ of ethylene glycol is heated from 100 to $200^{\circ} \mathrm{F}$ using steam at $250^{\circ} \mathrm{F}$. Available for the service is a $171 / 4 \mathrm{in}$. ID $1-2$ exchanger having 224 tubes

鲌in. OD, 14 BWG, $16^{\prime} 0^{\prime \prime}$ long on $15 / 16$-in. triangular pitch. Baffles are spaced 7 in . apart, and there are two tube passes to accommodate the steam. What are the pressure drops, and what is the dirt factor?
7.9. $100,000 \mathrm{lb} / \mathrm{hr}$ of 20 per cent potassium iodide solution is to be heated from 80 to $200^{\circ} \mathrm{F}$ using steam at 15 psig. Available for the service is a 10 in . ID 1-2 exchanger without bafles having 50 tubes $3 / 4 \mathrm{in}$. OD, $16 \mathrm{BWG}, 16^{\prime} 0^{\prime \prime}$ long arranged for two passes on 1516 -in. triangular pitch. What are the pressure drops and the dirt factor?
7.10. $78,359 \mathrm{lb} / \mathrm{hr}$ of isobutane ($118^{\circ} \mathrm{API}$) is cooled from 203 to $180^{\circ} \mathrm{F}$ by heating butane ($111.5^{\circ} \mathrm{API}$) from 154 to $177^{\circ} \mathrm{F}$. Available for the service is a $171 / 4 \mathrm{in}$. ID $1-2$ exchanger having 178 tubes $3 / 4 \mathrm{in}$. OD, $14 \mathrm{BWG}, 12^{\prime} 0^{\prime \prime}$ long on 1 -in. triangular piteh. Baffles are spaced 6 in . apart, and the bundle is arranged for four passes. What are the pressure drops and the dirt factor?
7.11. A $1-2$ exchanger recovers heat from $10,000 \mathrm{lb} / \mathrm{hr}$ of boiler blowdown at 135 psig by heating raw water from 70 to $96^{\circ} \mathrm{F}$. Raw water flows in the tubes. Available for the service is a 10.02 in . ID $1-2$ exchanger having 52 tubes $3 / 4 \mathrm{in}$. OD, $16 \mathrm{BWG}, 8^{\prime} 0^{\prime \prime}$ long. Baffles are spaced 2 in . apart, and the bundle is arranged for two tube passes. What are the pressure drops and fouling factors?
7.12. $60,000 \mathrm{lb} / \mathrm{hr}$ of a $25 \% \mathrm{NaCl}$ solution is cooled from 150 to $100^{\circ} \mathrm{F}$ using water with an inlet temperature of $80^{\circ} \mathrm{F}$. What outlet water temperature may be used? Available for the service is a $21 / 4 \mathrm{in}$. ID $1-2$ exchanger having 302 tubes $3 / 4 \mathrm{in}$. OD, $14 \mathrm{BWG}, 16^{\prime} 0^{\prime \prime}$ long. Baffles are spaced 5 in . apart, and the bundle is arranged for two passes. What are the pressure drops and fouling factor?

NOMENCLATURE FOR CHAPTER 7

A	Heat-transfer surface, ft^{2}
a	Flow area, ft^{2}
$a^{\prime \prime}$	External surface per linear foot, ft
B	Baffe spacing, in.
C	Specific heat of hot fluid, in derivations, Btu/(lb) (${ }^{\circ} \mathrm{F}$)
C^{\prime}	Clearance between tubes, in.
0	Specific heat of fluid, Btu/ $(\mathrm{lb})\left({ }^{\circ} \mathrm{F}\right)$
C_{E}	Cost of exhaust steam, dollars/Btu
C_{F}	Annual fixed charges, dollars/ ft^{2}
C_{P}	Cost of process steam, doilars/Btu
C_{T}	Total annual cost, dollars/year
$C_{\text {W }}$	Cost of water, dollars / lb
D	Inside diameter of tubes, ft
d_{0}	Outside diameter of tubes, in.
. D_{0}, D_{0}^{\prime}	Equivalent diameter for heat transfer and pressure drop, ft
$d_{e j} d_{e}^{\prime}$	Equivalent diameter for heat transfer and pressure drop, in.
Dt	Inside diameter of shell, ft
e	Efficiency, dimensionless
F 。	Caloric fraction, dimensionless
\dot{F}_{T}	Temperature difference factor, $\Delta t=F_{T} \times$ LMTD , dimensionless
f	Friction factor, dimensionless; for ΔP in $\mathrm{psi}, \mathrm{ft}^{2} / \mathrm{in}^{2}$
G	Mass velocity, $\mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)$
0	Acceleration of gravity, $\mathrm{ft} / \mathrm{hr}^{\mathbf{2}}$
g^{\prime}	Acceleration of gravity, $\mathrm{ft} / \mathrm{sec}^{2}$
$h, h_{i} h_{0}$	Heat-transfer coefficient in general, for inside fluid, and for outside fluid, respectively, $\mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$

$h_{i o} \quad$ Value of h_{i} when referred to the tube outside diameter, Btu/(hr)$\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$
ID Inside diameter, in.
$j_{H} \quad$ Factor for heat transfer, dimensionless
$K_{c} \quad$ Caloric constant, dimensionless
$K_{1}, K_{2} \quad$ Numerical constants
$k \quad$ Thermal conductivity, $\mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}{ }^{2}\right)\left({ }^{\circ} \mathrm{F} / \mathrm{ft}\right)$
$L \quad$ Tube length, ft
LMTD \quad Log mean temperature difference, ${ }^{\circ} \mathrm{F}$
$N \quad$ Number of shell-side bafles
$N_{t} \quad$ Number of tubes
$n \quad$ Number of tube passes
$P_{r} \quad$ Tube pitch, in.
$\Delta P_{T}, \Delta P_{t}, \Delta P_{r}$ Total, tube side and return pressure drop, respectively, psi
$Q \quad$ Heat flow, Btu/hr
$R \quad$ Temperature group, $\left(T_{1}-T_{2}\right) /\left(t_{2}-t_{1}\right)$, dimensionless
$R_{d}, R_{i}, R_{o} \quad$ Combined, inside and outside dirt factors, respectively, $(\mathrm{hrr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right) /$ Btu
$R e, R e^{\prime} \quad$ Reynolds number for heat transfer and pressure drop, dimensionless
$S \quad$ Temperature group, $\left(t_{2}-t_{1}\right) /\left(T_{1}-t_{1}\right)$, dimensionless
$s \quad$ Specific gravity
$T, T_{1}, T_{2} \quad$ Temperature in general, inlet and outlet of hot fluid, ${ }^{\circ} \mathrm{F}$
$T_{E}, T_{P} \quad$ Saturation temperatures of exhaust and pressure steam, ${ }^{\circ} \mathrm{F}$
$T_{a} \quad$ Average temperature of hot fluid, ${ }^{\circ} \mathrm{F}$
$T_{c} \quad$ Caloric temperature of hot fluid, ${ }^{\circ} \mathrm{F}$
$t, t_{1}, t_{2} \quad$ Temperature in general or outlet of the first of two heaters, inlet and outlet of cold fluid, ${ }^{\circ} \mathrm{F}$
$t^{\mathrm{I}}, t^{\mathrm{II}} \quad$ Temperatures in first and second passes, ${ }^{\circ} \mathrm{F}$
$t_{a} \quad$ Average temperature of cold fluid, ${ }^{\circ} \mathrm{F}$
$t_{i} \quad$ Temperature at end of first pass, ${ }^{\circ} \mathrm{F}$
$t_{c} \quad$ Caloric temperature of cold fluid, ${ }^{\circ} \mathrm{F}$
$t_{w} \quad$ Tube wall temperature, ${ }^{\circ} \mathrm{F}$
$\Delta t \quad$ True temperature difference in $Q=U_{D} A \Delta t,{ }^{\circ} \mathrm{F}$
$\Delta t_{c}, \Delta t_{h} \quad$ Temperature differences at the cold and hot terminals, ${ }^{\circ} \mathrm{F}$
$U, U_{\mathcal{C}}, U_{D} \quad$ Overall coefficient of heat transfer, clean coefficient, design coefficient, $\mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$
$\begin{array}{ll}V & \text { Velocity, fps } \\ v & \text { Specific volume, } \mathrm{ft} 3 / \mathrm{lb}\end{array}$
$W \quad$ Weight flow in general, weight flow of hot fluid, $\mathrm{lb} / \mathrm{hr}$
$w \quad$ Weight flow of cold fluid, $\mathrm{lb} / \mathrm{hr}$
$X \quad$ Length, ft
$z \quad$ Height, ft
$\phi \quad$ The viscosity ratio $\left(\mu / \mu_{0}\right)^{0.14}$
$\mu \quad$ Viscosity, centipoises $\times 2.42=\mathrm{lb} /(\mathrm{ft})(\mathrm{hr})$
$\mu_{w} \quad$ Viscosity at tube-wall temperature, centipoises $\times 2.42=\mathrm{lb} /(\mathrm{ft})(\mathrm{hr})$
$\rho \quad$ Density, lb/ft ${ }^{3}$
Subscripts (except as noted above)
$s \quad$ Shell
$t \quad$ Tubes

CHAPTER 8

FLOW ARRANGEMENTS FOR INCREASED HEAT RECOVERY

The Lack of Heat Recovery in Exchangers. The important limitation of the $1-2$ exchangers treated in Chap. 7 lies in their inherent inability to provide effective heat recovery. The advantages of 1-2 exchangers have already been discussed. When a temperature cross occurs in a 1-2 exchanger, the value of F_{T} drops sharply, and the small extent to which the shell-outlet temperature can fall below the tube-outlet temperature eliminates them from consideration for high heat recoveries. Assume conditions in which the shell fluid is reduced from 200 to $140^{\circ} \mathrm{F}$ while the tube fluid rises from 80 to $160^{\circ} \mathrm{F}$. All the heat in the hot fluid from 140 to $80^{\circ} \mathrm{F}$ is necessarily lost in a $1-2$ exchanger because of the close approach required between the tube fluid at the end of the parallel pass and the shell fluid outlet T_{2}, as in Figs. 7.20 and 7.21.

This chapter deals with shell-andtube equipment and the methods by which the temperature cross of two fluid streams $t_{2}-T_{2}$ can be increased with an accompanying increase in heat recovery. Consider an exchanger similar to a 1-2 exchanger except that it is equipped

Fig. 8.1. Pass arrangements in $8-2-4$ exchanger. with a longitudinal baffe (heavy line) as shown in Fig. 8.1. In this exchanger the fluid enters the shell through one of the nozzles adjacent to the tube sheet and travels the length of the shell before reversing its direction about the longitudinal baffle and returning to an exit nozzle also adjacent to the tube sheet. Assume that the tube bundle contains four or more passes with equal surface in each pass. Such an exchanger is a $8-4$ exchanger. A generalized sketch of temperature vs. length for a 2-4 exchanger is shown in Fig. 8.2a. In a 1-2 exchanger operating with the identical temperatures and shown in Fig. 8.2b, it is seen that a cross exists so that hot fluid leaving the shell at $140^{\circ} \mathrm{F}$ is forced to pass over tubes carrying heated cold fluid having a temperature of $160^{\circ} \mathrm{F}$. Thus the shell fluid may be cooled at some point to a temperature lower than its ouclet, and
the tube fluid may be heated to a temperature above its outlet. When the two fluids are near their outlets, the shell fluid, being cooled, is

(a)-2-4 EXCHANGER

(b)-1-2 EXCHANGER

Fig. 8.2. Temperature relations in 1-2 and 2-4 exchangers. actually heated and the tube fluid is actually cooled. In exchangers this is called reheating.

The True Temperature Difference Δt in a $2-4$ Exchanger. In the $2-4$ exchanger the longitudinal baffe reduces reheating as shown in Fig. $8.2 a$ so that the $140^{\circ} \mathrm{F}$ shell-

Fig. 8.3. The 2-2 true counterflow exchanger.
outlet fluid need never come in contact with the $160^{\circ} \mathrm{F}$ tube-outlet fluid. Passes I and II are in contact only with 2 and passes III and IV are in contact only with 1. If there are two shell passes and but two tube passes,

Fig. 8.4. Two 1-2 exchangers connected in eeries. they can be arranged in true counterflow as shown in Fig. 8.3. However, where the shell contains two shell passes and the tube bundle contains four or more tube passes, the flow pattern differs from any encountered heretofore. The derivation of a factor F_{T} for the 2-4 exchanger can be readily established.

In the 2-4 exchanger it is assumed that there is no fluid leakage between the longitudinal shell baffle and the shell and that no heat is transferred across it, although this may lead to an error of 10 to 15 per cent when a large temperature difference exists between the average temperatures of the shell fluid in the two shell passes. The assumptions for the 1-2 exchanger also apply. Referring to the 2-4 exchanger in Fig. 8.1,
the shell fluid temperature is T_{x} where it reverses direction after the first shell pass and the tube temperature is t_{y} where it reverses direction after the second tube pass. The entire $2-4$ exchanger may then be considered the same as two 1-2 exchangers in series as shown in Fig. 8.4 with intermediate temperatures T_{x} and t_{y}. Calling these exchangers I and II in Fig. 8.4, the heat balances are, respectively,
I.

$$
\begin{equation*}
W C\left(T_{1}-T_{x}\right)=w c\left(t_{2}-t_{y}\right) \tag{8.1}
\end{equation*}
$$

and
II.

$$
\begin{equation*}
W C\left(T_{z}-T_{2}\right)=w c\left(t_{y}-t_{1}\right) \tag{8.2}
\end{equation*}
$$

The quantities of heat transferred in I and II are obviously not the same. Equation (7.37) may be written for each of the exchangers:

$$
\begin{align*}
& \text { I. } \frac{U A}{w c}=\frac{1}{2 \sqrt{R^{2}+1}} \ln \frac{T_{1}+T_{x}-t_{y}-t_{2}+\left(T_{1}-T_{x}\right) \sqrt{R^{2}+1}}{T_{1}+T_{x}-t_{y}-t_{2}-\left(T_{1}-T_{x}\right) \sqrt{R^{2}+1}} \tag{8.3}\\
& \text { II. } \frac{U A}{w c}=\frac{1}{2 \sqrt{R^{2}+1}} \ln \frac{T_{z}+T_{2}-t_{1}-t_{y}+\left(T_{z}-T_{2}\right) \sqrt{R^{2}+1}}{T_{x}+T_{2}-t_{1}-t_{y}-\left(T_{x}-T_{2}\right) \sqrt{R^{2}+1}} \tag{8.4}
\end{align*}
$$

By algebraically eliminating T_{x} and t_{y} in Eqs. (8.3) and (8.4) through the use of S and the heat balances in Eqs. (8.1) and (8.2), F_{T} is given by
$F_{T}=\frac{\left[\sqrt{R^{2}+1} / 2(R-1)\right] \ln (1-S) /(1-R S)}{\ln \frac{2 / S-1-R+(2 / S) \sqrt{(1-S)(1-R S)}+\sqrt{R^{2}+1}}{2 / S-1-R+(2 / S) \sqrt{(1-S)(1-R S)}-\sqrt{R^{2}+1}}}$
Equation (8.5) has been plotted in Fig. 19 and will be used for 2-4 exchangers in the Fourier equation $Q=U A \Delta t=U A F_{T} \times$ LMTD. A comparison has been made between the values of F_{T} in 1-2 and 2-4 exchangers as shown in Fig. 8.5, where both exchangers employ fluids operating with identical temperature ranges. The advantage of the 2-4 flow arrangement is apparent from the large temperature crosses permissible. In Fig. 8.6 the hot fluid at each point has a 100° range with varying approach and the cold fluid a 20° fixed range from 180 to $200^{\circ} \mathrm{F}$. With a 5° cross the 1-2 exchanger has a value of $F_{T}=0.70$ compared with $F_{T}=0.945$ for a 2-4 exchanger. It is general that the greater the number of shell passes in an exchanger the greater the cross or the greater the heat recovery which may be obtained. Mechanically, however, it is impractical to design single items of heat-transfer equipment with removable bundles having more than two shell passes, although it is seen that the 2-4 exchanger is thermally identical with two 1-2 exchangers in series. Greater crosses than those possible in a 2-4 exchanger can be achieved by using three 1-2 exchangers in series (3-6 arrangement) or two 2-4 exchang-
ers in series ($4-8$ arrangement). Values of F_{r} for arrangements up to six shell passes and twelve tube passes are plotted in Figs. 18 through 23. A Ten Broeck chart for heat-recovery calculations in a $2-4$ exchanger is given in Fig. 8.7 and is used in the same manner as Fig. 7.25.

Fig. 8.5. Comparison of effieiency of 2-4 and 1-2 exchangers with equal fluid temperature ranges.

Fig. 8.6. Influence of approach temperature on F_{T} for unequal fluid temperature ranges.
Exchangers having odd numbers of tube passes have not been treated here because they may create mechanical problems in stationary tube-sheet exchangers and are not often employed. Fischer ${ }^{1}$ has calculated and plotted the values of F_{T} for several odd-numbered tube arrangements: Naturally for a maximum value of F_{r} the odd tube-pass arrangements must be piped so that the majority of the tube passes are in counterflow with the shell fluid rather than in parallel flow.
${ }^{1}$ Fischer, F. K., Ind. Eng. Chem., 30, 377-383 (1938).

Fia. 8.7. Ten Broeck chart for determining t_{2} in a $2-4$ exchanger. (Industrial and Engineering Chemistry.)

Ina. 8.8. Removable baffle 2-4 floating-head exchanger. (Patterson k'oundry \& Machine Co.)

Fra. 8.9. Welded baffle 2-4 floating-head exchanger. (Patterson Foundry \& Machine Co.)
2-4 Tubular Exchangers. Two methods by which the 2-4 temperature arrangement is achieved in tubular exchangers are shown in Figs. 8.8 and 8.9. The exchanger in Fig. 8.8 is similar to an ordinary 1-2 exchanger except that both of the shell nozzles are adjacent to the stationary tube sheet. Through the use of split segmental baffles a removable longitudinal baffle is inserted in the tube bundle. Usually some type of seal is provided between the longitudinal baffle and the shell, since any
appreciable leakage between the two shell passes invalidates the calculated value of F_{T} for the 2-4 exchanger.

A more expensive but more positive form of the 2-4 exchanger is shown in Fig. 8.9. In this exchanger the baffle is welded to the shell. This requires cutting smaller inside diameter shells in half and welding the baffle from the outside of the shell. In larger shells the baffle is installed internally. Furthermore, in order that the bundle be removable it is necessary to make the floating tube sheet in two halves which are joined by a single floating-head cover and a backing piece to prevent the two

Fig. 8.10. Vertically cut segmental baffles.

Frg. 8.11. Horizontally cut segroental bafles.
halves from leaking at the center line. The space allowance for the welded longitudinal baffle at the center line of the tube sheet also permits fewer tubes to be accommodated in the shell than for a 1-2 exchanger.

To permit the introduction of the longitudinal baffle, the segmental baffles may possess either of the two forms shown in Fig. 8.10 and 8.11. Those in Fig. 8.10 are vertically cut baffles and are similar to the segmental baffles found in 1-2 exchangers. The crosshatch section is the flow area. The flow distribution is nearly identical with that which exists in 1-2 exchangers with but one-half the flow area per inch of baffle spacing. Consequently the mass velocity for any given weight flow of fluid, W or w, will be twice that of a 1-2 exchanger of the same inside diameter and baffle spacing. The baffies shown in Fig. 8.11 are horizontally cut baffles in which the cut-out portions are equal to those of ordinary segmental
baffles. The mass velocities in this case are the same per inch of baffle spacing as for 1-2 exchangers for a given weight flow although the fluid traverses a depth but half the inside diameter of the shell. Horizontally cut baffles are seldom used, since most fluids involved in large temperature crosses necessitating 2-4 exchangers also have long temperature ranges and relatively small flow quantities. The reduced flow area and increased mass velocity and film coefficient afforded by vertically cut baffles are usually desirable.
The Calculation of a 2-4 Exchanger. A 2-4 exchanger can be used when the process temperatures give a correction factor F_{T} of less than 0.75 for a $1-2$ exchanger. If the factor F_{T} obtained from Fig. 19 for a 2-4 exchanger exceeds 0.90 with a removable longitudinal baffle or 0.85 with a welded longitudinal baffle, a single 2-4 exchanger will be adequate. If the value of F_{T} is below these limits, it will then be necessary to use a larger number of shell passes until an arrangement is found in which F_{T} approximates these values.

The calculation of a 2-4 exchanger differs in only three minor respects from the calculation of a 1-2 exchanger as outlined in Chap. 7. (1) F_{T} will be read from Fig. 19, (2) the flow area for vertically cut baffles will be half the values computed from Eq. (7.44), and (3) the number of crosses used for computing the pressure drop will be double, since one set of baffles is above and one is below the longitudinal baffle.

Example 8.1. Calculation of a $2-4$ Oil Cooler. A $33.5^{\circ} \mathrm{API}$ oil has a viscosity of 1.0 centipoise at $180^{\circ} \mathrm{F}$ and 2.0 centipoise at $100^{\circ} \mathrm{F}$. $49,600 \mathrm{lb} / \mathrm{hr}$ of oil leaves a distilling column at $358^{\circ} \mathrm{F}$ and is to be used in an absorption process at $100^{\circ} \mathrm{F}$. Cooling will be achieved by water from 90 to $120^{\circ} \mathrm{F}$. Pressure-drop allowances of 10 psi may be used on both streams along with a combined dirt factor of 0.004 .
Available for this service from a discontinued operation is a 35 in . ID 2-4 exchanger having 4541 in . OD, 11 BWG tubes $12^{\prime} 0^{\prime \prime}$ long and laid out on $11 / 4-\mathrm{in}$. square pitch. The bundle is arranged for six tube passes, and vertically cut baffles are spaced 7 in . apart. The longitudinal baffle is welded to the shell.
Is it necessary to use a 2-4 exchanger? Will the available exchanger fulfill the requirements?

Solution:
Exchanger:

Shell side	Tube side
$\mathrm{ID}=35 \mathrm{in}$.	Number and length $=454,12^{\prime \prime} 0^{\prime \prime}$
Baffle space $=7 \mathrm{in}$. (vert. cut)	OD, BWG, pitch $=1 \mathrm{in} ., 11 \mathrm{BWG}, 11 / 4$-in. square
Passes $=2$	Passes $=6$
(1) Heat balance:	
Oil, $Q=49,600 \times 0.545$ (358	$-100)=6,980,000$ Btu
Water, $Q=233,000 \times 1.0$	20-90) $=6,980,000 \mathrm{Btu}$

(3) Δt :

Hot Fluid Cold Fluid Diff.

358	Higher Temp	120	238
100	Lower Temp	90	10
258	Differences	30	228

LMTD $=72.0^{\circ} \mathrm{F}$
$R=\frac{258}{30}=8.6 \quad S=\frac{30}{358-90}=0.112$
R and S do not intersect on Fig. 18, making a 2-4 exchanger imperative.
From Fig. 19 for a $2-4$ exchanger, $F_{T}=0.93$
$\Delta t=F_{T} \times \mathrm{LMTD}=0.93 \times 72.0=66.9^{\circ} \mathrm{F}$
(3) T_{c} and t_{c} :

$$
\begin{align*}
\frac{\Delta t_{c}}{\Delta t_{h}} & =10238=0.042 \quad K_{c}=0.47 \quad F_{c}=0.25 \tag{Fig.17}\\
T_{c} & =160+0.25(258)=165^{\circ} \mathrm{F} \\
t_{c} & =90+0.25(30)=98^{\circ} \mathrm{F}
\end{align*}
$$

Water will flow in the tubes to prevent corrosion of the shell.

Hot fluid: shell side, 33.5° API oil
(4') $a_{s}=1 / 2\left(\mathrm{ID} \times C^{\prime} B\right) / 144 P_{T}$ (modified for a $2-4$ exchanger) [Eq. (7.1)]
$=1 / 2 \times 35 \times 0.25 \times 7 / 144$
$\times 1.25=0.17 \mathrm{ft}^{2}$
(5^{\prime}) $G_{s}=w / a_{s}$
[Eq. (7.2)]

$$
=49,600 / 0.17
$$

$$
=292,000 \mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)
$$

(6) At $T_{c}=165^{\circ} \mathrm{F}$,

By obtaining X and Y in Fig. 14 from original data, $\mu=1.12 \mathrm{cp}$
$=1.12 \times 2.42=2.71 \mathrm{lb} /(\mathrm{ft})(\mathrm{hr})$
$D_{e}=0.99 / 12=0.0825 \mathrm{ft}$
[Fig. 28]
$R e_{b}=D_{d} G_{s} / \mu$
[Eq. (7.3)]
$=0.0825 \times 292,000 / 2.71=8900$
[Fig. 28]
(7^{\prime}) $j_{H}=52.5$
1.12 cp
(8) At $T^{\prime \prime}=165^{\circ} \mathrm{F}$, when $\mu=1.12$
$k(\mathrm{c} \mathrm{\mu} / \mathrm{k})^{1 / 3}=0.20 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$
[Fig. 16]
(${ }^{\prime}$) $h_{o}=j_{H} \frac{k}{D_{e}}\left(c_{\mu} / k\right)^{13 / \phi_{*}} \quad[$ Eq. (6.15b)]
$\frac{h_{o}}{\phi_{s}}=52.5 \times 0.20 / 0.0825=127$

Cold fluid: tube side, water
(4) $a_{i}^{\prime}=0.455 \mathrm{in} .^{2}$
[Table 10]
$a_{t}=N_{t} a_{t}^{\prime} / 144 n$
$=454 \times 0.455 / 144 \times 6=0.239 \mathrm{ft}^{2}$
(5) $G_{t}=w / a_{t}$

$$
=233,000 / 0.239
$$

$$
=975,000 \mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)
$$

$V=G_{t} / 3600 \rho=975,000 / 3600 \times 62.5$
$=4.33 \mathrm{fps}$
(6) At $t_{c}=98^{\circ} \mathrm{F}$,
$\mu=0.73 \times 2.42=1.77 \mathrm{lb} /(\mathrm{ft})(\mathrm{hr})$
$D=0.76 / 12=0.0633 \mathrm{ft} \quad$ [Table 10]
($R e_{c}$ is for pressure drop only)
$R e_{t}=D G_{t} / \mu$

$$
=0.0633 \times 975,000 / 1.77=34,900
$$

(9) $h_{s}=1010 \times 0.96$

$$
=970 \mathrm{Btu} /(\mathrm{br})\left(\mathrm{ft} \mathrm{t}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)
$$

[Fig. 25]

Hot fluid: shell side, 33.5°. API onl
(10^{\prime}) Tube-wall temp:
$t_{w o}=t_{c}+\frac{h_{o}}{h_{\mathrm{io}}+h_{o}}\left(T_{c}-t_{c}\right) \quad[E q . ~(5.31)]$

$$
=98+\frac{127}{737+127}(165-98)=108^{\circ} \mathrm{F}
$$

(11) At t_{w},
$\mu_{v}=1.95 \times 2.42=4.72 \mathrm{lb} /(\mathrm{ft})(\mathrm{hr})$
[Fig. 14]
$\phi_{s}=\left(\mu / \mu_{w}\right)^{0.14}=(2.71 / 4.72)^{0.14}$
$=0.92$
[Fig. 24 insert]
(12') Corrected coefficient h_{c} :
$h_{a}=127 \times 0.92=117 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$ [Eq. (6.36)]

Cold fluid: tube side, water
(10) $h_{i_{o}}=h_{i} \times \mathrm{ID} / \mathrm{OD}=970$ $\times 0.76 / 1.0=737$ [Eq. (6.5)]
(11) Correction unnecessary for water.
(13') Clean overall coefficient U_{C} :

$$
\begin{equation*}
U_{C}=\frac{h_{i_{0} h_{o}}}{h_{i o}+h_{o}}=\frac{737 \times 117}{737+117}=101 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{tt}^{2}\right)\left({ }^{\circ} \mathrm{F}\right) \tag{6.38}
\end{equation*}
$$

(14') Design overall coefficient U_{D} :

$$
a^{\prime \prime}=0.2618 \mathrm{ft}^{2} / \mathrm{lin} \mathrm{ft}
$$

(Table 10)
Total surface, $A=454 \times 12^{\prime} 0^{\prime \prime} \times 0.2618=1425 \mathrm{ft}^{2}$
$Q \quad 6,980,000$

$$
U_{D}=\frac{Q}{A \Delta t}=\frac{6,980,000}{1425 \times 66.9}=73.3 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)
$$

(15) Dirt factor R_{d} :

$$
\begin{equation*}
R_{d}=\frac{U_{c}-U_{D}}{U_{C} U_{D}}=\frac{101-73.3}{101 \times 73.3}=0.0038(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right) / \mathrm{Btu} \tag{6.13}
\end{equation*}
$$

Summary		
117	h outside	737
U_{C}	101	
U_{D}	73.3	
R_{d} Calculated 0.0038		
R_{d} Required	0.0040	

Pressure Drop
(1') For $R e_{s}=8900, f=0.00215 \mathrm{ft}^{2} / \mathrm{in} .^{2} \mid$ (1) For $R e_{t}=34,900$,
[Fig. 29] $f=0.000195 \mathrm{ft}^{2} / \mathrm{in}^{2}{ }^{2}$
[Fig. 26]
$\begin{aligned}\left(2^{\prime}\right) \text { No. of crosses, } N+1= & 12 L / B \\ & {[\text { Eq. }(7.43)] }\end{aligned}$
$=12 \times 12 / 7=20.1$
Say 21 per pass or 42 for bundle $L_{s}=35 / 12=2.92 \mathrm{ft}$
$B=0.82$
[Fig. 6]
(2) $\Delta P_{t}=\frac{f G_{t}^{2} L n}{5.22 \times 10^{10} D s \phi_{t}} \quad[E q$. (7.45)]
$=\frac{0.000195 \times 975,000^{2} \times 12 \times 6}{5.22 \times 10^{10} \times 0.0633 \times 1.0 \times 1.0}$.
$=4.0 \mathrm{psi}$

Pressure Drop

(3') $\Delta P_{:}=\frac{f G_{s}^{2} D_{2}(N+1)}{5.22 \times 10^{10} D_{s} 8 \phi_{s}} \quad[E q . ~(7.44)]$
$=\frac{0.00215 \times 292,000^{2} \times 2.92 \times 42}{5.22 \times 10^{10} \times 0.0825 \times 0.82 \times 0.92}$
$=7.0 \mathrm{pai}$

$$
\begin{aligned}
& \Delta P_{r}=\frac{4 n}{8} \frac{V^{2}}{2 g^{\prime}} \quad[E q . \text { (7.46)] } \\
& =\frac{4 \times 6}{1} \times 0.13=3.2 \mathrm{psi} \\
& \text { (4) } \Delta P_{T}=\Delta P_{t}+\Delta P_{r} \\
& =4.0+3.2=7.2 \mathrm{psi} \\
& \text { Allowable } \Delta P_{T}=10.0 \mathrm{psi}
\end{aligned}
$$

The exchanger will have a slightly low dirt factor but is otherwise satisfactory.
Exchangers in Series. In plants where large numbers of exchangers are used, certain size standards (total number of tubes, pass arrangements, baffle spacing) are established for 1-2 exchangers so that a majority of future services can be fulfilled by an arrangement of a number of standard exchangers in series or parallel. Although this may sometimes cause awkwardness because of the impossibility of utilizing the equipment most efficiently, it has the great advantage of reducing the type and number of replacement parts, tubes, and tools. In these plants when a process has become obsolete, it is customary to find a number of exchangers of identical size available for other uses. If the tube bundle is simply retubed, the exchanger will frequently be as serviceable as when new. When two exchangers are connected in series on both the shell and tube sides, they form a temperature arrangement which has been shown to be identical with the 2-4 exchanger. When a temperature cross involves a correction factor for an arrangement which approximates true counterflow more closely than that possible in a 1-2 exchanger, it can be met by a series arrangement of a number of 1-2 exchangers. The 2-4, 3-6, 4-8, etc., arrangements are all based upon shells and channels being connected in series. Any arrangement which is an even multiple of two shell passes such as 2-4, 4-8, etc., may be fulfilled by a number of 1-2 exchangers or half as many $2-4$ exchangers.

The calculation for process conditions requiring more than one shell pass follows the method used for 1-2 exchangers except that the entire group of exchangers is treated as a unit.

Example 8.2. Calculation of an Acetone-Acetic Acid Exchanger. Acetone ($s=0.79$) at $250^{\circ} \mathrm{F}$ is to be sent to storage at $100^{\circ} \mathrm{F}$ and at a rate of $60,000 \mathrm{lb} / \mathrm{hr}$. The heat will be received by $185,000 \mathrm{lb} / \mathrm{hr}$ of 100 per cent acetic acid ($3=1.07$) coming, from storage at $90^{\circ} \mathrm{F}$ and heated to $150^{\circ} \mathrm{F}$. Pressure drops of 10.0 psi are available for both fluids, and a combined dirt factor of 0.004 should be provided.

Available for the service are a large number of $1-2$ exchangers having $211 / 4 \mathrm{in}$: ID shells with 270 tubes $3 / 4 \mathrm{in}$. OD, $14 \mathrm{BWG}, 16^{\prime} 0^{\prime \prime}$ long and laid out on 1 -in. square
pitch. The bundles are arranged for two tube passes with segmental baffles spaced 5 in. apart.
How many of the 1-2 exchangers should be installed in series?

Solution:

Exchanger:

$$
\begin{array}{rlrl}
\text { Shell side } & \text { Tube side } \\
\text { ID } & =211 / 4 \mathrm{in} . & \text { Number and length }=270,16^{\prime} 0^{\prime \prime} \\
\text { Baffle space }=5 \text { in. } & \text { OD, BWG, pitch }=3 / 4 \mathrm{in} ., 14 \mathrm{BWG}, 1 \mathrm{in} . \text { square } \\
\text { Passes }=1 & \text { Passes }=\mathbf{2}
\end{array}
$$

(1) Heat balance:

Acetone, $Q=60,000 \times 0.57(250-100)=5,130,000 \mathrm{Btu} / \mathrm{hr}$
Acetic acid, $Q=168,000 \times 0.51(150-90)=5,130,000 \mathrm{Btu} / \mathrm{hr}$
(2) Δt :

Hot Fluid Cold Fluid Diff.

250	Higher Temp	150	100
100	Lower Temp	90	10
150	Difference	60	90

$$
\begin{align*}
& \text { LMTD }=39.1^{1} \mathrm{~F}: \quad S=60 /(250-90)=0.375 \tag{5.14}\\
& R=15 \% / 60=2.5 ; \quad S=\text { not possible } \tag{7.18}\\
& F_{T}: 1-2 \text { exchanger, } F_{T}=\text { no } \\
& \quad 2-4 \text { exchanger, } F_{T}=0.67 \text { (too low) } \\
& 3-6 \text { exchanger, } F_{T}=0.88 \tag{Fig.20}\\
& \Delta t=0.88 \times 39.1=34.4^{\circ} \mathrm{F} \tag{7.42}
\end{align*}
$$

(Fig. 18)
(Fig. 19)

To permit the transfer of heat with the temperatures given by the process, a minimum of three shell passes is required. If the sum of the surfaces in three shells is insufficient, a greater number will be required.
(3) T_{c} and t_{c} :These liquids are not viscous, and the viscosity correction will be negligible, $\phi_{t}=\phi_{t}=1$. Average temperatures may be used.

Hot fluid: shell side, acetone
$\left(4^{\prime}\right) a_{s}=\mathrm{ID} \times C^{\prime} B / 144 P_{T} \quad[$ Eq. (7.1) $]$
$=21.25 \times 0.25 \times 5 / 144 \times 1.0$ $=0.185 \mathrm{ft}^{2}$
($\left.b^{\prime}\right) G_{s}=W / a_{s}$
$=60,000 / 0.185$
$=324,000 \mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)$
(6') At $T_{a}=175^{\circ} \mathrm{F}$,
$\mu=0.20 \times 2.42=0.49 \mathrm{lb} /(\mathrm{ft})(\mathrm{hr})$
[Fig. 14]
$D_{4}=0.95 / 12=0.079 \mathrm{ft}$
$R_{e}=D_{s} G_{s} / \mu$
[Fig. 28]
$=0.079 \times 324,000 / 0.49=52,200$
(v') $j_{H}=137$

Cold fuid: tube side, acetic acid
(4) $\dot{a}_{t}^{\prime}=0.268$ in. $^{2} \quad[$ Table 10]
$a_{t}=N_{t} a_{t}^{\prime} / 144 n \quad$ [Eq. (7.48)]
$=270 \times 0.268 / 144 \times 2=0.251 \mathrm{ft}^{2}$
(5) $G_{t}=w / a_{t}$

$$
=168,000 / 0.251
$$

$$
=670,000 \mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)
$$

(6) At $t_{a}=120^{\circ} \mathrm{F}$,
$\mu=0.85 \times 2.42=2.06 \mathrm{lb} /(\mathrm{ft})(\mathrm{hr})$
[Fig. 14]
$D=0.584 / 12=0.0487 \mathrm{ft}$
$R e_{t}=D G_{t} / \mu$
$=0.0487 \times 670,000 / 2.06=15,800$
(7) $j_{H}=55$
[Fig. 24]

Hot fluid: shell side, acetone
; $\left.8^{\prime}\right)$ At $T_{a}=175^{\circ} \mathrm{F}$,
$c=0.63 \mathrm{Btu} /(\mathrm{b})\left({ }^{\circ} \mathrm{F}\right)$
$x=0.095 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F} / \mathrm{ft}\right) \quad$ [Table 4]
$(c \mu / k)^{3 / 6}=(0.63 \times 0.49 / 0.095)^{1 / 6}=1.47$
(9') $h_{o}=j_{H} \frac{k}{D_{e}}\left(\frac{c \mu}{k}\right)^{1 / 5} \times 1 \quad[\mathrm{Eq} .(6.15 b)]$

$$
=137 \times 0.095 \times 1.47 / 0.079
$$

$=242 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}{ }^{2}\right)\left({ }^{(0} \mathrm{F}\right)$
(10^{\prime}) (11^{\prime}) (12^{\prime}) The viscosity correction will be very small.

Cold fluid: tube side, acetie acid
(8) At $t_{a}=120^{\circ} \mathrm{F}$,
$c=0.51 \mathrm{Btu} /(\mathrm{lb})\left({ }^{\circ} \mathrm{F}\right)$
[Fig. 2]
$k=0.098 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F} / \mathrm{ft}\right) \quad$ [Table 4]
$(c \mu / k)^{1 / 3}=(0.51 \times 2.06 / 0.098)^{3 / 6}=2.21$
(9) $h_{i}=j_{H} \frac{k}{D}\left(\frac{c \mu}{k}\right)^{3 / 3} \times 1 \quad$ [Eq. (6.15a)]
$=56 \times 0.098 \times 2.21 / 0.0487$
$=249 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$
(10) $h_{i o}=h_{i} \times \mathrm{ID} / \mathrm{OD}$
[Eq. (6.5)]
$=249 \times \frac{0.584}{0.75}=194$
(13) Clean overall coefficient U_{c} :

$$
\begin{equation*}
U_{c}=\frac{h_{i o} h_{o}}{h_{i o}+h_{o}}=\frac{242 \times 194}{242+194}=107.5 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right) \tag{6.38}
\end{equation*}
$$

(14) Design overall coefficient U_{D} :
$a^{\prime \prime}=0.1963 \mathrm{ft}^{2} / \mathrm{lin} \mathrm{ft}$
(Table 10)
Total surface, $A=3\left(270 \times 160^{\prime \prime} \times 0.1963\right)=2540 \mathrm{ft}^{2}$

$$
U_{D}=\frac{Q}{A \Delta t}=\frac{5,130,000}{2540 \times 34.4}=58.8\left(\mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)\right.
$$

(15) Dirt factor R_{d} :

$$
\begin{equation*}
R_{\mathrm{d}}=\frac{U_{C}-U_{D}}{U_{C} U_{D}}=\frac{107.5-58.8}{107.5 \times 58.8}=0.007^{\pi}(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right) / \mathrm{Btu} \tag{6.13}
\end{equation*}
$$

Summary		
242	h outside	194
U_{C}	107.5	
U_{D}	58.8	
R_{d} Calculated 0.0077		
R_{d} Required	0.0040	

Pressure Drop
(1') For $R e_{s}=52,200$, $f=0.00155 \mathrm{ft}^{2} / \mathrm{in} \mathrm{n}^{2}$?
(2') No. of crosses, $N+1=12 L / B$
$=16 \times 12 / 5=39$
Total for 3 exchangers $=39 \times 3=117$
$D_{s}=21.25 / 12=1.78 \mathrm{ft}$
$s=0.79$
[Table 6]
(1) For $R e_{t}=158,000$,
[Fig. 29] $f=0.00024 \mathrm{ft}^{2} / \mathrm{in} .^{2}$
$s=1.07$
[Fig. 26] [Table B]
(2) $\Delta P_{t}=\frac{j G_{t}^{2} L n}{5.22 \times 10^{10} D_{s \phi_{t}}}$
[Eq. (7.45)]
$=\frac{0.00024 \times 670,000^{2} \times 16 \times 2 \times 3}{5.22 \times 10^{10} \times 0.0487 \times 1.07 \times 1.0}$
$=3.8 \mathrm{psi}$

Pressure Drop

$$
\text { (3') } \begin{aligned}
\Delta P_{s} & =\frac{f G_{t}^{2} D_{t}(N+1)}{5.22 \times 10^{10} D_{e} s \phi_{s}} \\
= & \frac{0.00155 \times 324,000^{2} \times 1.78 \times 117}{5.22 \times 10^{10} \times 0.079 \times 0.79 \times 1.0} \\
& =10.4 \mathrm{psi}
\end{aligned}
$$

(3) $G_{t}=670,000$,
$V^{2} / 2 g^{\prime}=0.063$
$\Delta P_{r}=3(4 n / s)\left(V^{2} / 2 g^{\prime}\right)$
$=\frac{3 \times 4 \times 2}{1.07} \times 0.063=1.4 \mathrm{psi}$
(4) $\Delta P_{t}=\Delta P_{t}+\Delta P_{r}$

$$
\begin{equation*}
=3.8+1.4=5.2 \mathrm{psi} \tag{7.47}
\end{equation*}
$$

Allowable $\Delta P_{T}=10.0 \mathrm{psi}$
[Fig. 27]

Allowable. $\Delta P_{s}=10.0 \mathrm{psi}$
The three exchangers are more than adequate for heat transfer, even though the pressure drop is insignificantly high. Fewer exchangers cannot be used.

The 1-1 True Counterflow Exchanger. There are instances in which the temperature cross is so great that the only solution lies in the use of

Fig. 8.12. The 1-1 floating-head exchanger. (Patterson Foundry \& Machine Co.)
true counterflow. In fixed-tube-sheet equipment this is readily accomplished, but in floating-head equipment it is slightly more difficult. It can be achieved as shown in Fig. 8.12. An extension forming the tube fluid-outlet nozzle protrudes through the shell bonnet by means of a packing gland. This type of exchanger is also used when there is a great quantity of tube-side fluid.

PROBLEMS

8.1. $33,114 \mathrm{lb} / \mathrm{hr}$ of n-butyl alcohol at $210^{\circ} \mathrm{F}$ is to be cooled to $105^{\circ} \mathrm{F}$ using water from 95 to $115^{\circ} \mathrm{F}$. Available for the purpose is a 1914 in . ID, two-pass shell exchanger with 204 tubes $3 / 4$ in. OD, 16 BWG, $16^{\prime} 0^{\prime \prime}$ long on 1 -in. square pitch arranged for four passes. Vertically cut baffles are spaced 5 in . apart. Pressure drops of 10 psi are allowable. What is the dirt factor?
8.2. $62,000 \mathrm{lb} / \mathrm{hr}$ of hot $26^{\circ} \mathrm{API}$ quench oil having viscosities equivalent to a $42^{\circ} \mathrm{API}$ kerosene (Fig. 14) is cooled from 425 to $304^{\circ} \mathrm{F}$ by heating $27,200 \mathrm{lb} / \mathrm{hr}$ of $35^{\circ} \mathrm{API}$ distillate (Fig. 14) with an inlet temperature of $100^{\circ} \mathrm{F}$. Available for the service are $151 / 4 \mathrm{in}$. ID $1-2$ exchangers with 108 tubes $3 / 4 \mathrm{in}$. OD, 16 BWG, $16^{\prime} 0^{\prime \prime}$ long arranged for six passes. Baffles are spaced 6 in . apart. Total pressure drops of 10 psi are allowable. How many 1-2 exchangers are required, and what dirt factor do they yield?
8.3 . $36,000 \mathrm{lb} / \mathrm{hr}$ of ethyl acetate is cooled from 190 to $100^{\circ} \mathrm{F}$ using water from 80 to $120^{\circ} \mathrm{F}$. Available for the service is a $231 / 4 \mathrm{in}$. ID, two-pass shell exchanger with
$2923 / 4 \mathrm{in}$. OD, $14 \mathrm{BWG}, 12^{\prime} 0^{\prime \prime}$ long tubes arranged for eight passes. Vertically cut baffles are spaced 8 in . apart. What pressure drops and dirt factor will be obtained?
8.4. $55,400 \mathrm{lb} / \mathrm{hr}$ of nitrobenzene coming from a reactor under pressure at $365^{\circ} \mathrm{F}$ is to be cooled to $150^{\circ} \mathrm{F}$ by preheating benzene under pressure from 100° to the highest outlet temperature attainable. Available for the service are two 25 in . ID, two-pass shell exchangers with 356 tubes $3 / 4 \mathrm{in}$. OD, $13 \mathrm{BWG}, 16^{\prime} 0^{\prime \prime}$ long arranged for six tube passes. Vertically cut baffles are spaced 8 in . apart. What are the pressure drops and the dirt factor?

NOMENCLATURE FOR CHAPTER 8

A	Heat-transfer surface, ft^{2}
$a^{\prime \prime}$	External surface per lin ft , ft
a	Flow area, ft^{2}
B	Baffle spacing, in.
C^{\prime}	Clearance between tubes, in.
C	Specific heat of hot fluid in derivations, $\mathrm{Btu} /(\mathrm{lb})\left({ }^{\circ} \mathrm{F}\right)$
c	Specific heat of fluid, Btu/(lb)(${ }^{\circ} \mathrm{F}$)
D	Inside diameter of tubes, ft
De	Equivalent diameter for heat transfer and pressure drop, ft
$D_{\text {a }}$	Inside diameter of shell, ft
${ }^{\text {d }}$	Inside diameter of tubes, in.
de	Equivalent diameter for heat transfer and pressure drop, in.
$F_{\text {c }}$	Caloric fraction, dimensionless
\boldsymbol{F}_{T}	Temperature difference factor, $\Delta t=F_{T} \times$ LMTD, dimensionless
f	Friction factor, $\mathrm{ft}^{2} / \mathrm{in}^{2}{ }^{2}$
G	Mass velocity, $\mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft}{ }^{2}\right)$
g^{\prime}	Acceleration of gravity, $\mathrm{ft} / \mathrm{sec}^{2}$
h_{i}, h_{o}	Heat-transfer coefficient for inside and outside fluids, respectively, $\mathrm{Btu} /(\mathrm{hr})(\mathrm{ft})\left({ }^{\circ} \mathrm{F} \mathrm{F}\right)$
$h_{\text {io }}$	Value of h_{i} when referred to the tube outside diameter, Btu/(hr)(ft²) $\left({ }^{\circ} F\right)$
ID	Inside diameter, in.
j_{H}	Factor for heat transfer, dimensionless
$K_{\text {c }}$	Caloric constant, dimensionless
k	Thermal conductivity, $\mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}{ }^{2}\right)\left({ }^{\circ} \mathrm{F} / \mathrm{ft}\right)$
L	Tube length, ft
LMTD	Log mean temperature difference, ${ }^{\circ} \mathbf{F}$
N	Number of shell-side baffles
N t	Number of tubes
n	Number of tube passes
OD	Outside diameter of tube, in.
ΔP	Pressure drop, psi
$\Delta P_{T}, \Delta P_{t}, \Delta P_{r}$	Total, tube and return pressure drop, psi
P_{T}	Tube pitch, in.
R	Temperature group (T_{1} - T_{2})/($t_{2}-t_{1}$), dimensionless
$\boldsymbol{R}_{\boldsymbol{d}}$	Combined dirt factor, (hr)(ft ${ }^{2}$) ($\left.{ }^{\circ} \mathrm{FF}\right) / \mathrm{Btu}$
Re	Reynolds number, dimensionless
S	Temperature group, ($t_{2}-t_{1}$)/($T_{1}-t_{1}$), dimensionleas
8	Specific gravity, dimensionless
T, T_{1}, T_{2}	Temperature in general, inlet and outlet of hot fluid, ${ }^{\circ} \mathrm{F}$

T	Ayerage temperature of hot fluid, ${ }^{\circ} \mathrm{F}$
T_{s}	Caloric temperature of hot fluid, ${ }^{\circ} \mathrm{F}$
T_{1}	Temperature of shell fluid between first and second passes, ${ }^{\circ} \mathrm{F}$
t_{1}, t_{2}	Inlet and outlet temperatures of cold fluid, ${ }^{\circ} \mathrm{F}$
t_{0}	Average temperature of hot fluid, ${ }^{\circ} \mathrm{F}$
t	Caloric temperature of cold fluid, ${ }^{\circ} \mathrm{F}$
t_{i}	Temperature at end of first pass, ${ }^{\circ} \mathrm{F}$
t_{w}	Tube-wall temperature, ${ }^{\circ} \mathrm{F}$
t_{v}	Temperature of tube fluid between second and third passes, ${ }^{\circ} \mathrm{F}$
Δt	True temperature difference in $Q=U_{D} A \Delta t$, ${ }^{\circ} \mathrm{F}$
$\Delta t_{c}, \Delta t_{h}$	Temperature differences at the cold and hot terminals, ${ }^{\circ} \mathrm{F}$
U_{C}, U_{D}	Clean and design overall coefficients of heat transfer, Btu/(hr)(ft²) $\left({ }^{\circ} \mathrm{F}\right)$
V	Velocity, fps
W	Weight flow of hot fluid, $\mathrm{lb} / \mathrm{hr}$
w	Weight flow of cold fluid, $\mathrm{lb} / \mathrm{hr}$
μ	Viscosity, centipoises $\times 2.42=\mathrm{lb} /(\mathrm{ft})(\mathrm{hr})$
μ_{w}	Viscosity at tube wall-temperature, centipoises $\times 2.42=1 \mathrm{lb} /(\mathrm{ft})(\mathrm{hr})$
ρ	Density, lb/ft ${ }^{8}$
ϕ	$\left(\mu / \mu_{r o}\right)^{0.14}$
Subscripts (except as noted above)	
s	Shell side
t	Tube side

CHAPTER 9

GASES

Introduction. The calculation for the heating or cooling of a gas differs in only minor respects from the calculation for liquid-liquid systems. The relationships between gas film coefficients and allowable pressure drops are critically dependent upon the operating pressure of the system whereas for incompressable fluids the operating pressure is not important. The values of film coefficients for gases are generally lower than those obtained for liquids at equal mass velocities, the difference being inherent in the properties of the gases.

Properties of Gases. The properties of gases are compared with those of liquids to emphasize the major differences between them. The viscosities of gases range from about 0.015 to 0.025 centipoise, or about onetenth to one-fifth the values obtained for the least viscous liquids. Gas viscosities increase with temperature in contrast with liquids and Reynolds numbers are correspondingly large even when mass velocities are small. The thermal conductivities of gases, with the exception of hydrogen, are about one-fifth the values usually obtained for organic liquids and about one-fifteenth of the values for water and aqueous solutions. The specific heats of organic gases and vapors are only slightly lower than those of organic liquids. With the exception of hydrogen the specific heats of inorganic gases and light hydrocarbon vapors range from 0.2 to $0.5 \mathrm{Btu} /(\mathrm{lb})\left({ }^{\circ} \mathrm{F}\right)$. Although the specific heat, viscosity, and thermal conductivity of a gas increase with temperature, the Prandtl number $c \mu / k$ shows little dependence upon temperature except near the critical. The value of $c \mu / k$ calculated at any single temperature serves sufficiently well for the solution of problems involving the same gas at another temperature within reasonable proximity. The values of $c \mu / k$ are given in Table 9.1 for the common gases.

While most of the viscosity, specific-heat, and conductivity data on gases are tabulated for atmospheric pressure, corrections to other pressures may be made by established methods. Viscosities may be corrected by means of the correlation of Comings and Egly ${ }^{1}$ given in Fig. $13 b$ or by employing the method of Othmer and Josefowitz. ${ }^{2}$ Specific heats may be

[^15]corrected by the method of Watson and Smith. ${ }^{1}$ These corrections will not be significant, however, unless the pressure of the gas is great. Except at high vacuums the conductivities of gases are not affected by the pressure. Calculation of the density or specific volume of a gas by the perfect gas law is suitable for moderate pressures but may be in error at high pressures. If actual compression data are available, their use is preferable at high pressures, or the perfect gäs law may be replaced by a

Tabig 9.1. Prandtl Numbers for Gases at 1 atm and 2120F

Gas	$\frac{c}{k}$
Air.	0.74
Aramonia.	078
Carbon dioxide.	0.80
Carbon monoxide.	074
Ethylene...... . .	083
Hydrogen.	0.74
Hydrogen sulfide.	0.77
Methane.	0.79
Nitrogen.	0.74
Oxygen	0.74
Steam.	0.78
Sulfur dioxide.	0.80

more acceptable equation of state such as that of Van der Waals or Beattie-Bridgman.

Pressure Drop. Equations (7.44) and (7.45) and friction factors obtained from Figs. 29 and 26 can be used for the calculation of the pressure drop on the shell or tube sides of gas heaters or coolers when the average value of the inlet and outlet specific gravities of the gas relative to water is used. It is apparent in the case of any gas that the specific gravity varies considerably with its operating pressure. The specific gravity of air in an exchanger operated at 150 psia is very nearly ten times the specific gravity when operated at atmospheric pressure, and for a given mass velocity the pressure drop will only be one-tenth as great. Moving in the other direction, air at $71 / 2$ psia has a density one-half that of the atmosphere, and the pressure drop for a given mass velocity becomes greater-as the operating pressure decreases, an unfavorable consideration in vacuum processes. When a gas is operated at high pressure, however, a relatively large mass velocity can be used without obtaining a pressure drop of an impractical order. When a gas is operated under vacuum, a pressure drop of 0.5 psi may represent a very large portion of the entire head available to move the gas through the exchanger.

[^16]Film Coefficients. Film coefficients can be evaluated with reasonable accuracy through the use of the usual shell-and-tube equations or Figs. 28 and 24. No correction need be made for the viscosity ratio ϕ unless the temperature range is exceedingly great. As mentioned above, the low viscosities of gases result in large Reynolds numbers even where very small mass velocities are used. Large values of j_{H} are the result, but the correspondingly low thermal conductivity gives film coefficients below those obtained for liquids at equal mass velocities or at equal values of j_{H}. The commonest applications of gas cooling under pressure are found in the aftercooling and intercooling of gases which have undergone adiabatic or polytropic compression in single- and multistage compressors. Gas-to-liquid heat transfer is also used for the recovery of waste heat from near-atmospheric combustion gases such as economizers, but these usually employ a modification known as extended surfaces, which will be treated in Chap. 16. When gases are heated, steam is the usual heating medium.

Many of the data reported in the literature for turbulent-flow heat transfer make use of the following transformation:

$$
\begin{equation*}
\frac{h D}{k}\left(\frac{c \mu}{k}\right)^{-3 / 3} \frac{\mu}{D G} \frac{c}{c}=\frac{h}{c G}\left(\frac{c \mu}{k}\right)^{3 / 3} \tag{9.1}
\end{equation*}
$$

A new factor j_{k} is then defined as

$$
\begin{equation*}
j_{h}=\frac{h}{c G}\left(\frac{c \mu}{k}\right)^{3 / 3} \tag{9.2}
\end{equation*}
$$

and is plotted as a function of $R e$. All the convection equations given heretofore can be plotted as j_{h} vs. Re in place of j_{H} vs. Re by simply dividing the values of j_{H} as given in Figs. 28 and 24 by their respective values of Re. Alternate equations are obtained thereby.

There is considerable merit to the use of j_{h} in preference to j_{H} when correlating gases. Using $j_{H}, c \mu / k$ is a constant, but k in Eq. (6.15a) and ($6.15 b$) must be obtained at the bulk temperature to obtain h, and conductivity data are sparse for gases. Using $j_{h}, c \mu / k$ is a constant, but only c is required in Eq. (9.1) to obtain h, and this will have been required for the heat load as well.

When gases enter an adiabatic compressor, their isotherms follow the equation $p \nu^{\gamma}=$ constant, where p is the absolute pressure of the gas, v its specific volume, and γ the ratio of the specific heats of the gas at constant pressure to constant volume. Applying the perfect gas law, the variation of absolute pressure with absolute temperature becomes

$$
\begin{equation*}
\left(\frac{T_{2}}{T_{1}}\right)_{\mathrm{ab}}=\left(\frac{p_{2}}{p_{1}}\right)^{(\gamma-1) / \gamma} \tag{9.3}
\end{equation*}
$$

Gases to be cooled or heated at moderate pressures are usually placed in the shell of shell-and-tube equipment to localize corrosion resulting from the cooling water or steam condensate. At higher pressures, however, it is customary to place the gas in the tubes where the pressure is effective only upon the tubes.

Example 9.1. Calculation of an Ammonia Compressor Aftercooler. Dry ammonia gas at 83 psin and at a rate of $9872 \mathrm{lb} / \mathrm{hr}$ is discharged from a compressor at $245^{\circ} \mathrm{F}$ and is to be fed to a reactor at $95^{\circ} \mathrm{F}$ using cooling water from 85 to $95^{\circ} \mathrm{F}$. A pressure drop of 2.0 psi is allowable on the gas and 10.0 psi on the water.
Available for the service is a $231 / 4 \mathrm{in}$. ID 1-2 exchanger having $3643 / 4 \mathrm{in}$., 16 BWG tubes $8^{\prime} 0^{\prime \prime}$ long and laid out on $15 / 16^{-i n}$. triangular pitch. The bundle is arranged for eight passes, and baffles are spaced 12 in, apart.
What will the dirt factor and pressure drops be?

Solution:

Exchanger:

$$
\begin{array}{cc}
\text { Shell side } & \text { Tube side } \\
\text { ID }=231 / 4 & \text { Number and length }=364,8^{\prime} 0^{\prime \prime} \\
\text { Baffle space }=12 \text { in. } & \text { OD, BWG, pitch }=3 / 4 \text { in., } 16 \mathrm{BWG}, 15 / 16 \text {-in. tri. } \\
\text { Passes }=1 & \text { Passes }=8
\end{array}
$$

(1) Heat balance:

Ammonia gas, $Q=9872 \times 0.53(245-95)=785,000 \mathrm{Btu} / \mathrm{hr}$
Water, $Q=78,500 \times 1(95-85)=785,000 \mathrm{Btu} / \mathrm{hr}$
(a) Δt :

Hot Fluid Cold Fluid Diff.

245	Higher Temp	95	150
95	Lower Temp	85	10
150	Differences	10	140

$$
\begin{equation*}
\mathrm{LMTD}=51.8^{\circ} \mathrm{F} \tag{5.14}
\end{equation*}
$$

$R=\frac{150}{10}=15 \quad S=\frac{10}{245-85}=0.0625$
$F_{T}=0.837$
$\Delta t=0.837 \times 51.8=43.4^{\circ} \mathrm{F}$
(3) T_{c} and t_{c} : The viscosities will vary too little to require correction. Water will flow in the tubes to prevent corrosion of the shell.

Hot fluid: shell side, ammonia at 83 psia

$$
\begin{array}{rlr}
\left(4^{\prime}\right) a_{2} & =\operatorname{ID} \times C^{\prime} B / 144 P_{T} & \text { [Eq. (7.1)] } \\
& =23.25 \times 0.1875 \times 12 / 144 \\
& =0.388 \mathrm{ft}^{3} & \times 0.937
\end{array}
$$

Hot fluid: shell side, ammonia at 83 psia
${ }_{\left(5^{\prime}\right)} G_{s}=W / a_{s}$
$=9872 / 0.388$
[Eq. (7.2)]

$$
=25,400 \mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)
$$

(6) At $T_{a}=170^{\circ} \mathrm{F}$,
$\mu=0.012 \times 2.42=0.029 \mathrm{lb} /(\mathrm{ft})(\mathrm{hr})$
[Fig. 15]
$D_{e}=0.55 / 12=0.0458 \mathrm{ft}$
$R e_{s}=D_{0} G_{s} / \mu$
[Eq. (7.3)]
$=0.0458 \times 25,400 / 0.029=40,200$
(7') $j_{H}=118$
[Fig. 28]
(8) At $T_{a}=170^{\circ} \mathrm{F}$,
$k=0.017 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F} / \mathrm{ft}\right) \quad$ [Table 5] $(c \mu / k)^{1 / 8}=(0.53 \times 0.029 / 0.017)^{3 / 3}=0.97$ (9') $h_{0}^{-}=j_{H} \frac{k}{D_{e}}\left(\frac{c \mu}{k}\right)^{1 / 8} \times 1 \quad$ [Eq. (6.15b)] $=118 \times 0.017 \times 0.97 / 0.0458$

$$
=42.3 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)
$$

(10') (11)) (12') Viscosity correction is unnecessary.

Cold fluid: tube side, water
(5) $G_{t}=w / a_{t}$

$$
=78,500 / 0.0954
$$

$$
=823,000 \mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)
$$

$V=G_{t} / 3600 \rho=823,000 / 3600 \times 62.5$ $=3.65 \mathrm{fps}$
(6) At $t_{a}=90^{\circ} \mathrm{F}$,
$\mu=0.82 \times 2.42=1.99 \mathrm{lb} /(\mathrm{ft})(\mathrm{hr})$
[Fig. 14]
$D=0.62 / 12=0.0517 \mathrm{ft} \quad$ [Table 10]
$R e_{t}=D G_{t} / \mu \quad\left(R e_{t}\right.$ is for pressure drop only)
$=0.0517 \times 823,000 / 1.99=21,400$
(9) $h_{i}=900 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right) \quad$ [Fig. 25]
(10) $h_{i o}=h_{i} \times$ ID $/ \mathrm{OD}$
[Eq. (6.5)]

$$
=900 \times 0.62 / 0.75=744
$$

(13) Clean overall coefficient U_{c} :

$$
\begin{equation*}
U_{c}=\frac{h_{i o} h_{o}}{h_{i o}+h_{o}}=\frac{744 \times 42.3}{744+42.3}=40.1 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right) \tag{6.38}
\end{equation*}
$$

(14) Design overall coefficient U_{D} :

$$
\begin{equation*}
a^{\prime \prime}=0.1963 \mathrm{ft}^{2} / \mathrm{lin} \mathrm{ft} \tag{Table10}
\end{equation*}
$$

$$
\text { Total surface, } A=364 \times 8^{\prime \prime} 0^{\prime \prime} \times 0.1963=572 \mathrm{ft}^{2}
$$

$$
U_{D}=\frac{Q}{A \Delta t}=\frac{785,000}{572 \times 43.4}=31.7 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)
$$

(15) Dirt factor R_{d} :

$$
\begin{equation*}
R_{d}=\frac{U_{C}-U_{D}}{U_{c} U_{D}}=\frac{40.1-31.7}{40.1 \times 31.7}=0.0070(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right) / \mathrm{Btu} \tag{6.13}
\end{equation*}
$$

Summary

42.3	h outside	744
U_{C}	40.1	
U_{D}	31.7	
R_{d} Calculated 0.0070		
R_{d} Required $\quad x$		

Pressure Drop
(1') For $R e_{3}=40,200$, $f=0.00162 \mathrm{ft}^{2} / \mathrm{in} .{ }^{2}$
(2') No. of crosses, $N+1=12 L / B$
[Eq. (7.43)]

$$
\begin{aligned}
& =12 \times 8 / 12=8 \\
s & =\frac{p_{\text {gas }}}{\rho_{\text {watar }}} \\
p y & =\frac{w^{\prime}}{(\mathrm{MW})} \times 1545 T_{\mathrm{abs}} \\
\rho_{\mathrm{gas}} & =\frac{w^{\prime}}{v}=\frac{p(\mathrm{MW})}{1545 T_{\mathrm{sba}}} \\
& =\frac{(83 \times 144)(17.1)}{1545(460+170)}=0.209 \mathrm{lb} / \mathrm{ft}^{3} \\
s & =\frac{0.209}{62.5}=0.00335 \\
D_{s} & =23.25 / 12=1.94 \mathrm{ft} \\
\left(8^{\prime}\right) & \Delta P_{s}=\frac{f G_{b}^{2} D_{s}(N+1)}{5.22 \times 10^{10} D_{\odot} s \phi_{s}} \\
& =\frac{0.00162 \times 25,400^{2} \times 1.94 \times 8}{5.22 \times 10^{10} \times 0.0458 \times 0.00335} \\
& =2.0 \mathrm{psi}
\end{aligned}
$$

Allowable $\Delta P_{z}=2.0 \mathrm{psi}$
(1) For $R e_{t}=21,400$,
$0.000225 \mathrm{ft}^{2} / \mathrm{in} .^{2}$
(2) $\Delta P_{t}=\frac{f G_{i}^{2} L n}{5.22 \times 10^{10} D s \phi_{t}} \quad[E q$. (7.45)]

$$
=\frac{0.000225 \times 823,000^{2} \times 8 \times 8}{5.22 \times 10^{10} \times 0.0517 \times 1.0}
$$

$$
=3.6 \mathrm{psi}
$$

(3) $G_{i}=823,000, V^{2} / 2 g^{\prime}=0.090 \quad$ [Fig. 27]
$\Delta P_{r}=(4 n / s)\left(V^{2} / 2 g^{\prime}\right)$
[Eq. (7.46)]
$=\frac{4 \times 8}{1.0} \times 0.090=2.9 \mathrm{psi}$
(4) $\Delta P_{T}=\Delta P_{t}+\Delta P_{r}$
[Eq. (7.47)]

$$
=3.6+2.9=6.5 \mathrm{psi}
$$

Allowable $\Delta P_{T}=10.0 \mathrm{psi}$

The ability to meet the allowable pressure drop hinges closely upon the density of the gas. If the gas had been air at the same pressure, the density and pressure drop would have been $0.209 \times{ }^{29} / 1_{7}=0.357 \mathrm{lb} / \mathrm{ft}^{3}$ and 1.2 psi . Similarly an exchanger can be used for gases at vacuum pressure only when a very small mass velocity is employed. The latter results in very low transfer rates for vacuum services, values of U_{D} being as low as 2 to $10 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$.
Air Compressor Intercoolers. In the compression of air for utility purposes it is common to subject atmospheric air to four or more stages of compression. The allowable pressure drop in the intercoolers following the initial stages of compression is extremely critical. Assuming that the compressors operate with compression ratios of roughly $21 / 4: 1$ or $2 \frac{1}{2}: 1$, a pressure drop of 1 psi in the first-stage intercooler represents a reduction in the total pressure delivered after the fourth stage of $1 \times 2.5 \times 2.5 \times 2.5=13.1 \mathrm{psi}$ and nearly 80 psi after the sixth stage. In addition, the presence of moisture in the inlet air makes it impossible to compute the heat load as a simple sensible-heat change. Suppose saturated air is taken into the compressor at $95^{\circ} \mathrm{F}$ (during a summer shower), compressed, and then cooled back to $95^{\circ} \mathrm{F}$ between each stage of compression. The air and water vapor both occupy the same total volume. The compression of a saturated gas raises the dew point above
its initial dew point. Cooling the compressed gas back to its original temperature requires that it be cooled below its dew point. This can occur only if water condenses out of the compressed gas during cooling. The reasoning follows: The original water vapor in the saturated atmospheric air was all that could exist in the original volume of air at $95^{\circ} \mathrm{F}$. Its total weight can be obtained from the specific volume of steam, in cubic feet per pound, for $95^{\circ} \mathrm{F}$ as found in Table 7. After compression and cooling back to $95^{\circ} \mathrm{F}$ the total volume of air is reduced but the specific volume of steam at $95^{\circ} \mathrm{F}$ is unchanged. The same specific volume can be maintained in the reduced gas volume only if some of the water condenses out of the gas.

Example 9.2. Calculation of the Heat Load for an Air Intercooler. 4670 cfm of air saturated at $95^{\circ} \mathrm{F}$ enters a four-stage adiabatic compressor, having a compression ratio of 2.33:1, at atmospheric pressure. (a) How much heat must be removed in the first-stage intercooler? (b) How much heat must be removed in the second-stage intercooler?

Solution:
(a) Inlet 4670 cfm :

Saturation partial pressure of water at $95^{\circ} \mathrm{F}=0.8153 \mathrm{psi}$
(Table 7)
Saturation specific volume of water at $95^{\circ} \mathrm{F}=404.3 \mathrm{ft}^{3} / \mathrm{lb}$
(Table 7)
The air and water both occupy the same volume at their respective partial pressures.
Lb water $/ \mathrm{hr}$ entering $=4670 \times 60 / 404.3=692 \mathrm{lb}$

First stage:

After 2.33 compression ratio

$$
\begin{aligned}
p_{2} & =14.7 \times 2.33=34.2 \mathrm{psi} \\
\left(\frac{T_{2}}{T_{1}}\right)_{\mathrm{abs}} & =\left(\frac{p_{2}}{p_{1}}\right)^{(\gamma-1) / \gamma}\left(\gamma=1.40 \text { for air }{ }^{*}\right) \\
\frac{T_{2 \text { abs }}}{460+95} & =(2.33))^{(1.4-1) / 1.4} \\
T_{2 \mathrm{ab}} & =705^{\circ} \mathrm{R} \text { or } 245^{\circ} \mathrm{F}
\end{aligned}
$$

Intercooler:

Final gas volume $=4670 \times 60 \times 14.7 / 34.2=120,000 \mathrm{ft}^{3} / \mathrm{hr}$
Water remaining in air $=120,000 / 404.3=297 \mathrm{lb} / \mathrm{hr}$
Condensation in intercooler $=692-297=395 \mathrm{lb} / \mathrm{hr}$
Specific volume of atmospheric air $=(359 / 29)(555 / 492) 14.7 /(14.7-0.8153)$
$=14.8 \mathrm{ft}^{2} / \mathrm{lb}$
Air in inlet gas $=4670 \times 60 / 14.8=18,900 \mathrm{lb} / \mathrm{hr}$
Heat load (245 to $95^{\circ} \mathrm{F}$):
Sensible heat:
$Q_{\text {nir }}=18,900 \times 0.25(245-95)=708,000 \mathrm{Btu} / \mathrm{hp}$
$Q_{\text {wator }}=692 \times 0.45(245-95)=46,700 \mathrm{Btu} / \mathrm{hr}$
Latent heat:
$Q_{\text {water }}=395 \times 1040.1 \quad \underset{\text { Total }}{=} \frac{411,000 \mathrm{Btu} / \mathrm{hr}}{1,165,700 \mathrm{Btu} / \mathrm{hr}}$

* The correction of γ for the presence of water vapor is usually omitted.

If condensation had not been accounted for, an error of 33 per cent would have resulted. It should also be noted that over half of the water condenses in the firststage intercooler.
(b) Second stage: $p_{3}=34.2 \times 2.33=79.8 \mathrm{psi}$.

Final gas volume $=4670 \times 60 \times 14.7 / 79.8=51,500 \mathrm{ft}^{3} / \mathrm{hr}$
Pounds of water remaining in air $=51,500 / 404.3=127.5 \mathrm{lb} / \mathrm{hr}$
Condensation in intercooler $=297-127.5=169.5 \mathrm{lb} / \mathrm{hr}$
Heat load (245° to $95^{\circ} \mathrm{F}$):
Sensible heat:

$$
\begin{aligned}
& Q_{\text {nir }}=18,900 \times 0.25(245-95)=708,000 \mathrm{Btu} / \mathrm{hr} \\
& Q_{\text {water }}=297 \times 0.44(245-95)=19,600 \mathrm{Btu} / \mathrm{hr}
\end{aligned}
$$

Latent heat:

$$
Q_{\text {retar }}=169.5 \times 1040.1 \quad=\frac{170,700}{898,300} \mathrm{Btu} / \mathrm{hr}
$$

Erample 9.3. Caiculation of the Dew Point after Compression. The dew point and saturation temperature of the saturated inlet air are the same. After the firststage compression the dew point is raised. What is the dew point when air saturated at $95^{\circ} \mathrm{F}$ and 14.7 psi is compressed to 34.2 psi ?

Solution:

At inlet:
Mols air $=18,900 / 29=652$
Mols water $=692 / 18=\frac{38.4}{690.4}$
After compression:
Partial pressure of water vapor $=(38.4 / 690.4) 34.2=1.90 \mathrm{psi}$
From Table 7 equivalent to 1.90 psi , dew point $=124^{\circ} \mathrm{F}$
In other words, the gas and water vapor are cooled sensibly from 245 to $124^{\circ} \mathrm{F}$ in the first stage intercooler and the water vapor will start to condense at $124^{\circ} \mathrm{F}$.

The Calculation of Coolers for Wet Gases. The calculation of the heat load and film coefficients in the intercoolers of adiabatic compression systems starting with initially dry gases offers no particular difficulty. The heat load is the sensible-heat requirement to cool the gas back between stages. The film coefficient is that of the dry gas.

Coolers which are required to cool wet gases present a number of additional problems. If the wet gas is to be cooled below its dew point, two zones will appear: (1) from the inlet temperature to the dew point in which both the gas and the vapor are cooled sensibly and (2) from the dew point to the outlet temperature, in which the gas and vapor are cooled and part of the vapor condenses. The first zone can be calculated rather simply as a dry gas, but the calculation of the second zone is extremely lengthy. A relatively accurate calculation will be demon-
strated as an example of condensation in Chap. 13, where it will be seen that both the condensation and gas film coefficients are closely related. The film coefficient for the mixture varies considerably from the dew point to the outlet temperature as the concentration of the condensable vapor diminishes. It is also seen that, in any wet gas cooling service if the tube-wall temperature is below the dew point of the gas, even though the gas is not cooled below its dew point, the tube wall will be wet with condensate. As droplets of condensate fall from the tube, they will reflash into the gas and some fraction may drain from the cooler if the temperature should fall below the dew point. However, the film of liquid on the tube actually introduces a resistance film through which the heat must be transferred. If the condensable vapor is water, the resistance can be omitted because of the high conductivity of the film. If it is a vapor whose condensate is a viscous fluid, it may be necessary to calculate the mean resistance of the film from methods given in Chap. 13 based on the properties of the condensate. It is also well to consider that gases which are not particularly corrosive when containing a small concentration of water vapor may be corrosive when dissolved in condensate water at the cold tube wall. Desuperheaters, which are simply gas coolers, frequently operate with part of the surface moist although no actual condensate drains from the system.

Abstract

The performance of commercial intercoolers for permanent gases saturated at atmospheric pressure with water at $100^{\circ} \mathrm{F}$ or less can be predicted rapidly by empirical rules. These rules are as follows: (1) Calculate the entire heat load of sensible cooling and condensation as if transferred at the dry gas rate, and (2) use the value of $\Delta t=F_{T} \times$ LMTD obtained from the inlet and outlet temperatures of the gas to and from the cooler and the temperatures of the water. These rules are actually the combination of a asfe and an unsafe generalization which tend to offset each other. The combined film coefficient for condensation and gas cooling below the dew point is greater than that given by (1). The true temperature difference is less than that calculated by (2), since the log mean for the portion of the heat load delivered from the dew point to the outlet is less than that calculated by the rule.

PROBLEMS

9.1. 3500 cfm of dry nitrogen at 17 psig and $280^{\circ} \mathrm{F}$ is cooled to $100^{\circ} \mathrm{F}$ by water with an inlet temperature of $85^{\circ} \mathrm{F}$. Available for the service is a 31 in . ID 1-2 exchanger having $6003 / 4 \mathrm{in}$. OD, 16 BWG tubes $12^{\prime} 0^{\prime \prime}$ long arranged for eight passes on 1 -in. triangular pitch. The baffe spacing is 24 in . center to center.

Pressure drops of 2.0 psif for the gas and 10.0 for the water should not be exceeded, and a minimum dirt factor of 0.01 should be provided. Will the cooler work?
9.2. $17,500 \mathrm{lb} / \mathrm{hr}$ of oxygen at atmospheric pressure is cooled from 300 to $100^{\circ} \mathrm{F}$ by water from 85 to 100°. Available for the service is a 31 in . ID 1-2 exchanger containing $6003 / 4 \mathrm{in}$. OD, 16 BWG tubes $12^{\prime} 0^{\prime \prime}$ long arranged for eight passes on 1 -in. triangular pitch. Baffles are spaced 24 in . apart.

What are the dirt factor and the pressure drops?
9.3. 5000 cfm of saturated air at $100^{\circ} \mathrm{F}$ enters the first stage of a compressor having a $2.45: 1$ compression ratio. The air is at atmospheric pressure. (a) How much heat must be removed after each of the four stages, assuming a 2.0 pai preasure drop in each intercooler. (b) Available for the first-atage intercooler is a 29 in . ID exchanger having 508 tubes $3 / 4$ OD in., 14 BWG by $12^{\prime} 0^{\prime \prime}$ long arranged for eight passes on $1-\mathrm{in}$. triangular pitch. The baffle spacing is 24 in. Using cooling water with an $85^{\circ} \mathrm{F}$ inlet, what are the pressure drops and dirt factor?
9.4. For the second-stage intercooler of Example 9.2 in the text the following $1-2$ exchanger is available: $211 / 4 \mathrm{in}$. ID containing $2943 / 4 \mathrm{in}$. OD, 14 BWG tubes $12^{\prime} 0^{\prime \prime}$ long arranged for eight passes on $15 / 16-\mathrm{in}$, triangular pitch. Baffer are spaced 20 in . apart. What are the dirt factor and the pressure drops?

NOMENCLATURE FOR CHAPTER 9

A	Heat-transfer surface, ft^{2}
\boldsymbol{a}	Flow area, ft^{2}
$a^{\prime \prime}$	External surface per linear foot, ft
B	Baffle spacing, in.
C^{\prime}	Clearance between tubes, in.
c	Specific heat of cold fluid, $\mathrm{Btu} /(\mathrm{lb})\left({ }^{\circ} \mathrm{F}\right)$
D	Inside diameter of tubes, ft
D.	Equivalent diameter, ft
F_{7}	Temperature difference factor, $\Delta t=F_{T} \times$ LMTD, dimensionless
f	Friction factor, $\mathrm{ft}^{2} / \mathrm{in} .{ }^{2}$
G	Mass velocity, $\mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)$
g^{\prime}	Acceleration of gravity, it/ sec^{2}
h_{0}, h_{i}, h_{0}	Heat-transfer coeffcient in general, for inside fluid, and for outside fluids, respectively, $\mathrm{B} t \mathrm{u} /(\mathrm{hr})\left(\mathrm{ft}{ }^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$
$h_{i o}$	Value of h_{i} when referred to the tube OD, $\mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$
j_{H}	Factor for heat transfer ($h D / k)(c \mu / k)^{1 / 8}$, dimensionless
$j_{\text {h }}$	Factor for heat transfer ($h / c G$) $\left(c_{\mu} / k\right)^{3 / 3}$, dimensionless
k	Thermal conductivity, Btu/(hr) ($\mathrm{ft} \mathrm{t}^{2}$) ${ }^{\circ} \mathrm{F} / \mathrm{ft}$)
L	Tube length, ft
LMTD	Log mean temperature difference, ${ }^{\circ} \mathrm{F}$
N	Number of baffles
N_{i}	Number of tubes
n	Number of tube passes
P_{T}	Tube pitch, in.
ΔP	Pressure drop, psi
$\Delta P_{T}, \Delta P_{t}, \Delta P_{r}$	Total, tube side and return drop, psi
p	Pressure, psia
R	Temperature group ($\left.T_{1}-T_{2}\right) /\left(t_{2}-t_{1}\right)$, dimensionless
$R_{\text {d }}$	Combined dirt factor, (hr) (ft ${ }^{2}$) (${ }^{\circ} \mathrm{F} / \mathrm{Btu}$)
Re	Reynolds number, dimensionless
S	Temperature group ($t_{2}-t_{1}$)/($T_{1}-t_{1}$), dimensionless
s	Specific gravity, dimensionless
$T_{\text {abs }}$	Absolute temperature, ${ }^{\circ} \mathrm{R}$
T_{a}	Average temperature of hot fluid, ${ }^{\circ} \mathrm{F}$
T_{c}	Caloric temperature of hot fluid, ${ }^{\circ} \mathrm{F}$
T_{1}, T_{2}	Inlet and outlet temperature of hot fluid, ${ }^{\circ} \mathrm{F}$
t_{4}	Average temperature of cold fluid, ${ }^{\circ} \mathrm{F}$

$t_{\text {c }}$	Caloric temperature of cold fluid, ${ }^{\circ} \mathrm{F}$
t_{1}, t_{2}	Inlet and outlet temperature of cold fluid, ${ }^{\circ} \mathrm{F}$
Δt	True temperature difference in $Q=U_{D} A \Delta t,{ }^{\circ} \mathrm{F}$
U_{C}, U_{D}	Clean and design overall coefficient of heat transfer, Btu/(hr) (ftz) (${ }^{\circ} \mathrm{F}$)
V	Velocity, fps
v	Specific volume, $\mathrm{ft}^{3} / \mathrm{lb}$
W	Weight flow of hot fluid, $\mathrm{lb} / \mathrm{hr}$
w	Weight flow of cold fluid, $\mathrm{lb} / \mathrm{hr}$
w^{\prime}	Weight, lb
$\boldsymbol{\gamma}$	Ratio of specific heats of a gas, dimensionless
μ	Viscosity, centipoises $\times 2.42=1 \mathrm{lb} /(\mathrm{ft})(\mathrm{hr})$
μ_{9}	Viscosity at the tube wall, centipoises $\times 2.42=1 \mathrm{l} /(\mathrm{ft})(\mathrm{hr})$
ρ	Density, $\mathrm{lb} / \mathrm{ft}^{2}$
ϕ	$\left(\mu / \mu_{w}\right)^{0.14}$

Subscripts (except as noted above)

s	Shell side
t	Tube side

CHAPTER 10

STREAMLINE FLOW AND FREE CONVECTION

Streamline Flow in the Tubes of Exchangers. From the Fourier equation alone for a single tube $Q=w c\left(t_{2}-t_{1}\right)=h_{i}(\pi D L) \Delta t$. When the inside tube-wall temperature t_{p} is constant, the temperature difference Δt in streamline flow may be replaced by the arithmetic mean of the hot and cold terminal temperature differences $\Delta t_{a}=\left[\left(t_{p}-t_{1}\right)+\left(t_{p}-t_{2}\right)\right] / 2$. Solving for $h_{i} D / k$,

$$
\begin{equation*}
\frac{h_{i} D}{k}=\left(\frac{2}{\pi} \frac{w c}{k L}\right) \frac{\left(t_{2}-t_{1}\right)}{\left(t_{p}-t_{1}\right)+\left(t_{p}-t_{2}\right)} \tag{10.1}
\end{equation*}
$$

It is interesting to note that the highest outlet temperature attainable in a tube is the constant temperature of the hot tube wall t_{p}. For this case Eq. (10.1) reduces to

$$
\begin{equation*}
\frac{h_{1} D}{k}=\left(\frac{2}{\pi} \frac{w c}{k L}\right) \tag{10.2}
\end{equation*}
$$

No observed average value of h_{i} can exceed that given by Eq. (10.2), and it is a useful tool by which erroneous observations may be rejected.

Graetz obtained Eq. (3.27) from purely theoretical considerations on the assumption of a parabolic distribution of velocities as the fluid flows in a tube in laminar flow. He did not include any corrections for modifications of the parabolic distribution during heating and cooling. Sieder and Tate eraluated the equiralent empirical equation [Eq. (3.32)] and obtained Eq. (6.1), which may be credited with correcting for the modifications of the velocity distribution during heating and cooling.

Streamline flow in tubes may be construed as a conduction effect, and it is also subject to the simultaneous occurrence of free convection as well. Free convection is only significant in nonviscous fluids. Fluids flow in streamline flow due to three conditions: (1) The fluid is viscous; (2) the fluid is not viscous, but the quantity is small for the flow area provided; and (3) the flow quantity and viscosity are intermediate but combine to give streamline flow. Only when free convection is surpressed owing to the high average viscosity of the liquid, say several centipoises and over, or when the temperature difference is small does Eq. (6.1) give h_{i} within the stated deviation as pure conduction. For cases falling under (2) or (3) above, the value of h_{i} from Eq. (6.1) may be
conservative, the true value of h_{i} being as much as 300 per cent greater due to the influence of free convection.

In the Graetz derivation the value of L in the Graetz number wc/kL or in the ratio D / L is assumed to be the length of the path over which the fluid moves with a conduction temperature gradient at right angles to the long axis of the tube. Naturally, if mixing occurs at any point in the heat-transfer tube, the distance from the inlet to the point of mixing must be regarded as the length of the path over which the temperature gradient is effective whether or not it corresponds to the total tube length of the exchanger, $n L$. Boussinesq ${ }^{1}$ has advanced the theory that under ideal conditions streamline flow is not established until the liquids has traveled a length of approximately 15 tube diameters. In multipass heat-transfer equipment it is sometimes possible to consider the fluid in the tubes mixed at the end of each pass. Internal mixing is desirable, just as convection is desirable and also because it restricts the length of streamline path to the length of each pass, L.

The shorter the unmixed length the greater the value of h_{i}, although it is not always safe to assume that mixing occurs at the end of each tube pass of an exchanger. In modern multipass exchangers, the flow areas in the floating head and channel are usually designed to be identical with or slightly greater than the flow area of the tubes in each passs. In this way it is possible to eliminate excessive return pressure drops. If no turbulence or mixing is induced at the ends of each pass, $n L$ is the total length of path instead of L, which leads to the calculation of safe values of h_{i} should mixing actually occur.

Frequently it will be found that the Reynolds number based on the viscosity at $t_{a}=\left(t_{1}+t_{2}\right) / 2$ is less than 2100 but near the outlet the Reynolds number based on the viscosity at t_{2} is greater than 2100. Equation (6.1) is not applicable in the transitional or turbulent flow range. In calculations on multipass exchangers, the point at which $R e=2100$ must then be obtained by trial and error, and the path beyond it excluded from calculation as streamline flow. If a portion of the tube is in the transitional range, it can best be computed by means of Fig. 24.

For a two-tube pass exchanger the maximum error in h_{i} calculated from Eq. (6.1) between a mixing or nonmixing assumption between passes is $(2 / 1)^{3 / 2}=1.26$ or 26 per cent, since $h_{i} \propto 1 / L^{1 / 3}$. For an eighttube pass exchanger the error is $(8 / 1)^{1 / 3}=2.0$ or 100 per cent. Ordinarily a decision should not be arrived at without consulting the design of the exchanger and noting whether or not provision for mixing between passes has been included.
${ }^{1}$ Boussinesq, J., Compt. rend., 113, 9 (1891).

Example 10.1. Crude Oil Heater: Streamiline Flow. A line carries $16,000 \mathrm{lb} / \mathrm{hr}$ of. $34^{\circ} \mathrm{API}$ crude oil. It enters the tubes at $95^{\circ} \mathrm{F}$ and is heated to $145^{\circ} \mathrm{F}$ using steam at $250^{\circ} \mathrm{F}$. Consider the fluid mixed between passes.
The viscosities of the crude oil are

${ }^{\circ} \mathrm{F}$	$\mu c p$
$\mathbf{2 5 0}$	1.15
200	1.7
150	2.8
125	3.8
100	5.2

Available for temporary service is a horizontal 1-2 exchanger having a $151 / 4 \mathrm{in}$. ID shell with 861 in . OD, 16 BWG tubes $12^{\prime} 0^{\prime \prime}$ long laid out on $11 / 4-\mathrm{in}$. triangular pitch. The bundle is arranged for two tube passes, and baffles are spaced 15 in . apart. Since the beater is for temporary use, no dirt factor will be included.

Will the exchanger fulfill the requirement?

Solution:

Exchanger:

$$
\begin{array}{rlrl}
\text { Shell side } & \text { Tube side } \\
\text { ID } & =151 / 4 \mathrm{in} . & \text { Number and length }=86,12^{\prime} 0^{\prime \prime} \\
\text { Baffle space }=15 \mathrm{in} . & \text { OD, BWG, pitch }=1 \mathrm{in}, 16 \mathrm{BWG}, 1 \% 4 \text {-in. tri. } \\
\text { Passes }=1 & \text { Passes }=2
\end{array}
$$

(1) Heat balance:

Crude, $Q=16,000 \times 0.485(145-95)=388,000 \mathrm{Btu} / \mathrm{hr}$
Steam, $Q=410 \times 945.5=388,000 \mathrm{Btu} / \mathrm{hr}$
(2) Δt :
Hot Fluid

250	Higher Temp	145	105
250	Lower Temp	95	155
0	Differences	50	50

$\Delta t=$ LMTD $=129^{\circ} \mathrm{F}$ (true counterfiow)
(3) T_{c} and t_{c} : This fluid is in streamline flow throughout the heater [see (6), p. 204]. For streamline flow the arithmetic mean should be used. For the first pass

$$
t_{a}=\frac{t_{1}+t_{i}}{2}=\frac{95+125}{2}=110^{\circ} \mathrm{F} \text { (approx.) }
$$

On the assumption that the fluids are mixed between passes, each pass must be solved independently. Since only two passes are present in this exchanger, it is simply a matter of assuming the temperature at the end of the first pass. More than half the heat load must be transferred in the first pass; therefore assume t_{i} at the end of the first pass is $125^{\circ} \mathrm{F}$ and $t_{i}-t_{1}$ is $30^{\circ} \mathrm{F}$.

Hot fluid: shell side steam
(9') $h_{0}=1500$
(10) $t_{p}=t_{a}+\frac{h_{o}}{h_{i}+h_{o}}\left(T_{e}-t_{a}\right)$

$$
\begin{array}{r}
=110+\frac{1500}{12.4+1500}(250-110) \\
=249^{\circ} \mathrm{F}
\end{array}
$$

Cold fluid: tube side, crude oil
(4) $a_{t}^{\prime}=0.594 \mathrm{in}$. ${ }^{2}$
$a_{t}=N_{t} a_{t}^{\prime} / 144 n$
[Table 10]
[Eq. (7.48)]
$=86 \times 0.594 / 144 \times 2=0.177 \mathrm{ft}^{1}$
(5) $G_{t}=w / a_{t}$

$$
=16,000 / 0.177
$$

$$
=90,400 \mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)
$$

(6) $D=0.87 / 12=0.0725 \mathrm{ft} \quad$ [Table 10]
$R e_{t}=D G_{t} / \mu$
At $t_{2}=145^{\circ} F$ (the outlet temperature)
$\mu=2.95 \times 2.42=7.15 \mathrm{lb} /(\mathrm{ft})(\mathrm{kr})$
$R e_{t}=0.0725 \times 90,400 / 7.15=915$
At $t_{0}=110^{\circ} \mathrm{F}$,
$\mu=4.8 \times 2.42=11.6 \mathrm{lb} /(\mathrm{ft})(\mathrm{hr})$
$R e_{t}=0.0725 \times 90,400 / 11.6=565$
(7) $h_{i}=1.86 \frac{k}{D}\left(\frac{D G}{\mu} \frac{c \mu}{k} \frac{D}{L}\right)^{1 / 3} \phi_{t}$
[Eq. (6.1)]
(8) $\frac{c \mu}{k}=\frac{0.485 \times 11.6}{0.0775}=72.5$
$\frac{D}{L}=\frac{0.0725}{12}=0.0060$
(9) $\frac{h_{i}}{\phi_{t}}=1.86 \times \frac{0.0775}{0.0725}$
$(565 \times 72.5 \times 0.0060)^{1 / 2}=12.4$
(10) At $t_{p}=249^{\circ} \mathrm{F}$,

$$
\begin{aligned}
& \mu=1.20 \times 2.42=2.9 \mathrm{lb} /(\mathrm{ft})(\mathrm{hr}) \\
& \phi_{t}=\left(\frac{\mu}{\mu_{t}}\right)^{0.14} \\
& =\left(\frac{11.6}{2.9}\right)^{0.14}=1.20 \\
& \text { (11) } h_{i}=\frac{h_{i}}{\phi_{t}} \phi_{t}=12.4 \times 1.20 \\
& =14.9 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)
\end{aligned}
$$

$$
\begin{aligned}
\Delta t=t_{p}-t_{a} & =249-110=139^{\circ} \mathrm{F} \\
t_{i}-t_{1} & =\frac{h_{i} A_{i} \Delta t}{w c}
\end{aligned}
$$

Internal surface per foot of length $=0.228 \mathrm{ft}$

$$
\begin{aligned}
A_{i} & =\frac{86}{2} \times 12^{\prime} 0^{\prime \prime} \times 0.228=117.5 \mathrm{ft}^{2} \\
t_{i}-t_{1} & =\frac{14.9 \times 117.5 \times 139}{16,000 \times 0.485}=31.4^{0} \mathrm{~F}
\end{aligned}
$$

Assumed value of $t_{i}-t_{1}=30.0^{\circ} \mathrm{F}$ (close enough for check)
The oil now enters the second pass at $126.4^{\circ} \mathrm{F}$ and leaves at 152 instead of $145^{\circ} \mathrm{F}$, indicating that the heater is oversurfaced if no dirt factor is required.

If four or more passes are present, the calculation is carried out in the same manner as shown above with a new assumed temperature at the end of each pass. If the calculated outlet from the last pass equals or exceeds t_{2}, the heater will operate satisfactorily.

When a dirt factor is to be provided, obtain the initial outlet temperature t_{2} delivered by the oversized heater, when freshly placed in service, from the heat balance and Eq. (5.18), using U_{c} for $U_{r} U_{c}$ is obtained from U_{D} and R_{a} by Eq. (6.10) instead of from $h_{i o}$ and h_{o}, since in this case it is desired to calculate the value of $h_{i o}$ which will produce the initial value of the outlet temperature. Having calculated t_{2}, solve for each pass until the outlet temperature corresponds to the initial value of t_{2} before dirt accumulates.

Free Convection in Tubes. Streamline flow is calculated by equations employing weight flow or mass velocity as one of the variables. However, if a horizontal tube surrounded by condensing steam carries cold

(b)

(c)

(d)

Fig. 10.1. Free convection in tubes.
liquid and its flow is suddenly halted, the liquid in the tube continues to heat. According to Eq. (6.1) the film coefficient should be zero if the mass velocity is zero. Where the heat is transferred through movements within the liquid itself without forced circulation, it occurs by free or natural convection. Some of the factors influencing free convection in liquids can be observed very readily in the laboratory owing to changes in the index of refraction which accompany changes in density. When a fluid is heated in a glass vessel on a hot plate, the convection currents are visible. Liquid at the bottom of the vessel and adjacent to the heat source is heated by conduction. The heat absorbed reduces the density of the bottom layer of liquid so that it rises and the colder liquid tends to settle.

In a horizontal tube the process is somewhat more orderly. Starting with a stationary liquid, heat is applied from the outside, raising the temperature of an outer layer of liquid as shown in Fig. 10.1a. The cold central core is heavier than the liquid adjacent to the wall and settles toward the bottom of the tube somewhat as shown in Fig. 10.1b. The rate of settling is retarded by the temperature-viscosity relationship between the hot fluid at the wall and the cooled core of liquid. As the
free-convection currents are established, they develop and mix with the bulk of liquid presumably as in Fig. 10.1c, and if the tube is large, mixing may be accelerated as in Fig. 10.1d. The film coefficient for free convection is a function of the inside diameter of the tube D, density of the liquid ρ, coefficient of expansion β, gravitational constant g, thermal conductivity k, viscosity μ, and lastly the temperature difference Δt_{0} between the hot tube wall and the bulk of the fluid.

$$
h_{i}=f\left(D, \rho, \beta, c, g, k, \mu, \Delta t_{a}\right)
$$

Solving by dimensional analysis

$$
\begin{equation*}
\frac{h_{i} D}{k}=C_{1}\left(\frac{D^{3} \rho^{2} g \beta \Delta t_{a}}{\mu^{2}}\right)^{a}\left(\frac{c \mu}{k}\right)^{b} \tag{10.3}
\end{equation*}
$$

where $D^{8} \rho^{2} g \beta \Delta t_{a} / \mu^{2}$ is the Grashof number.
Combined Free Convection and Streamline Flow in Horizontal Tubes. Just as there is a transition region and not a single point separating streamline and turbulent flow, there must also be some transition region between free convection to a fluid standing still and streamline flow. At low linear velocities both are undoubtedly operative. Equation (6.1) was correlated from data obtained on small tubes with moderately viscous fluids and under moderate temperature differences such that the Grashof numbers were relatively small. Kern and Othmer ${ }^{1}$ investigated this region in horizontal tubes under large temperature differences and tube diameters and evaluated free convection as a correction to the SiederTate equation. Their final equation is

$$
\begin{equation*}
\frac{h_{i} D}{k}\left(\frac{\mu}{\mu_{v}}\right)^{-0.14}=1.86\left[\left(\frac{D G}{\mu}\right)\left(\frac{c \mu}{k}\right)\left(\frac{D}{L}\right)\right]^{1 / 2} \frac{2.25\left(1+0.010 G r_{g^{1}}{ }^{1 / 3}\right)}{\log R e} \tag{10.4}
\end{equation*}
$$

where $G r_{a}$ is the Grashof number evaluated from properties taken at the average fluid temperature $t_{a}=\left(t_{1}+t_{2}\right) / 2 . \quad h_{i}$ as ordinarily calculated by Eq. (6.1) can be corrected for free convection by multiplying by

$$
\begin{equation*}
\psi=\frac{2.25\left(1+0.010 G_{r_{a}^{1 / 3}}\right)}{\log R e} \tag{10.5}
\end{equation*}
$$

Inspection of Eq. (10.4) indicates that the influence of the free-convection currents are dissipated in the transition and turbulent region. In view of the delicate nature of free-convection currents this is quite plausible. The two factors which ordinarily influence free convection most are a low viscosity and large temperature difference. Martinelli et al. ${ }^{2}$ studied
${ }^{1}$ Kern, D. Q., and D. F. Othmer, Trans. ATChE, 39, 517-555 (1943).
${ }^{2}$ Martinelli, R. C., C. J. Southwell, G. Alves, H. L. Craig, E. B. Weinberg, N. E. Lansing, and L. M. K. Boelter, Trans. AIChE, 38, 943 (1942).
the influence of free convection in upward and downward flow in vertical tubes. They found a slight increase in the coefficient when heating water in upward flow compared with downward flow. Their final correlation is rather complicated, although they also obtained a correlation of free convection involving the Reynolds number.
Example 10.2. Kerosene Heater: Streamline Flow and Free Convection. A line carries $16,000 \mathrm{lb} / \mathrm{hr}$ of 40° API light distillate or heavy kerosene with corrosive contaminants. It enters the tubes at $95^{\circ} \mathrm{F}$ and is heated to $145^{\circ} \mathrm{F}$ using steam at $250^{\circ} \mathrm{F}$. Consider the liquid unmized between passes.
The viscosities of the kerosene are

${ }^{\circ} F$	$\mu, c p$
250	0.60
200	0.85
150	1.30
125	1.70
100	2.10

Available for the service is a horizontal 1-2 exchanger, having a $15 \frac{1}{4} \mathrm{in}$. ID shell with 861 in . OD, 16 BWG tubes $12^{\prime} 0^{\prime \prime}$ long laid out on $1 \frac{1}{4}-\mathrm{in}$. triangular pitch. The bundle is arranged for two tube passes, and bafles are spaced 15 in . apart (same as Example 10.1).

What is the true dirt factor?

Solution:

Exchanger:

Shell side	Tube side		
ID	$=151 / 4 \mathrm{in}$.	Number and length	$=86,120^{\prime \prime}$
Baffle space	$=15 \mathrm{in}$.	OD, BWG, pitch	$=1$ in., $16 \mathrm{BWG}, 11 / 4$ - in. tri.
Passes	$=1$		Passes

(1) Heat balance:

Kerosene, $Q=16,000 \times 0.50(145-95)=400,000 \mathrm{Btu} / \mathrm{hr}$
Steam, $Q=4230 \times 945.5=400,000 \mathrm{Btu} / \mathrm{hr}$
(2) Δt :
Hot Fluid

250	Higher Temp	145	105
250	Lower Temp	95	155
0	Differences	50	50

$\Delta t=\mathrm{LMTD}=129^{\circ} \mathrm{F}$ (true counterflow)
(3) T_{b} and t_{0} : This fluid is in atreamline flow throughout the heater [see (6), p. 208]. For streamline flow the arithmetic mean is

$$
t_{a}=\frac{t_{1}+t_{2}}{2}=\frac{95+145}{2}=120^{\circ} \mathrm{F}
$$

Hot fluid: shell side, steam
(9') Condensation of steam:
$h_{o}=1500$
(10') t_{w} :

$$
\begin{aligned}
t_{w} & =t_{a}+\frac{h_{o}}{h_{i o}+h_{o}}\left(T_{a}-t_{a}\right) \\
& =120+\frac{1500}{8.9+1500}(250-120) \\
& =249^{\circ} \mathrm{F}
\end{aligned}
$$

Cold fuid: tube side, $40^{\circ} \mathrm{API}$ kerosene
(4) $a_{t}^{\prime}=0.594$ in. ${ }^{2} \quad$ [Table 10]
$a_{t}=N_{t} a_{i}^{\prime} / 144 n \quad$ [Eq. (7.48)]
$=86 \times 0.594 / 144 \times 2=0.177 \mathrm{ft}^{2}$
(5) $G_{t}=w / a_{t}$

$$
=16,000 / 0.177
$$

$$
=90,400 \mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)
$$

(6) $D=0.87 / 12=0.0725 \mathrm{ft} \quad$ [Table 10] $R e_{t}=D G_{l / \mu}$
At $t_{2}=145^{\circ} \mathrm{F}$,
$\mu=1.36 \times 2.42=3.29 \mathrm{lb} /(\mathrm{ft})(\mathrm{hr})$
$R e_{t}=0.0725 \times 90,400 / 3.29=1990$
At $t_{a}=120^{\circ} \mathrm{F}$,
$\mu=1.75 \times 2.42=4.23 \mathrm{lb} /(\mathrm{ft})(\mathrm{br})$
$R e_{t}=0.0725 \times 90,400 / 4.23=1,550$
Streamline flow, fluid unmixed between passes
$L n / D=12 \times 2 / 0.0725=331$
(7) $j_{H}=3.10$
[Fig. 24]
(8) At $\mu=1.75 \mathrm{cp}$ and $40^{\circ} \mathrm{API}$,
$k(c \mu / k)^{1 / 2}=0.24 \mathrm{Bta} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F} / \mathrm{ft}\right)$
[Fig. 16]
(9) $\frac{h_{i}}{\phi_{t}}=j_{H} \frac{k}{D}\left(\frac{c \mu}{k}\right)^{1 / s} \quad[$ Eq. (6.15a)]
$h_{i} / \phi_{t}=3.10 \times 0.24 / 0.0725=10.25$
(10) $\frac{h_{i 0}}{\phi_{t}}=\frac{h_{i}}{\phi_{t}} \times \mathrm{ID} / \mathrm{OD}$
[Eq. (6.5)]
$=10.25 \times 0.87 / 1.0=8.91$
(11) At $t_{w w}=249^{\circ} \mathrm{F}$,
$\mu_{w}=0.60 \times 2.42=1.45 \mathrm{Ib} /(\mathrm{ft})(\mathrm{hr})$
$\phi_{t}=\left(\mu / \mu_{k}\right)^{0.14}$
$=(4.23 / 1.45)^{0.14}=1.16$
(12) $h_{i o}=\frac{h_{i o}}{\phi_{t}} \phi_{t}$
[Eq. (6.37)]
$=8.91 \times 1.16$
$=10.3 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$
$\Delta t_{a}=t_{w}-t_{a}=249-120=129^{\circ} \mathrm{F}$
Since the kerosene has a viscosity of only 1.75 cp at the caloric temperature and $\Delta t_{a}=129^{\circ} \mathrm{F}$, free convection should be investigated.
$\begin{aligned} \psi & =\frac{2.25\left(1+0.01 G r_{a}^{3 / 3)}\right.}{\log R e} \quad \text { [Eq. (10.5) } \\ \text { Grashof number, } G r_{a}=D^{3} \rho^{2} g \beta & \Delta t_{a} / \mu^{2} \\ s & =0.80, \\ \rho & =0.8 \times 62.5=50.0 \mathrm{lb} / \mathrm{t}^{8} \quad \quad \quad \text { [Fig. 6] } \\ \beta & =\frac{1}{\sigma_{F}}=\frac{1 / \rho_{2}-1 / \rho_{1}}{\left(t_{2}-t_{1}\right)\left(1 / \rho_{\mathrm{ar}}\right)} \\ & =\frac{s_{1}^{2}-s_{2}^{2}}{2\left(t_{2}-t_{1}\right) s_{1} s_{2}}\end{aligned}$

(13) Clean overall coefficient U_{c} :

$$
\begin{equation*}
U_{C}=\frac{h_{i o} h_{o}}{h_{i o}+h_{o}}=\frac{15.1 \times 1500}{15.1+1500}=14.9 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right) \tag{6.38}
\end{equation*}
$$

(14) Design overall coefficient U_{D} :

$$
\begin{gathered}
a^{\prime \prime}=0.2618 \mathrm{ft}^{2} / \mathrm{lin} \mathrm{ft} \\
\text { Total surface, } A=86 \times 12^{\prime} 0^{\prime \prime} \times 0.2618=270 \mathrm{ft}^{2} \\
U_{D}=\frac{Q}{A \Delta t}=\frac{400,000}{270 \times 129}=11.5 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)
\end{gathered}
$$

(15) Dirt factor:

$$
\begin{equation*}
R_{d}=\frac{U_{C}-U_{D}}{U_{G} U_{D}}=\frac{14.9-11.5}{14.9 \times 11.5}=0.0198(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right) / \mathrm{Btu} \tag{6.13}
\end{equation*}
$$

Summary: Figures in parentheses are uncorrected for free convection
Summary

1500	h outside	(10.3) 15.1
U_{C}	(10.2)14.9	
U_{D}	11.5	
R_{d} Calculated 0.0198		

If the correction for free convection were not included, it would have given the impression that the unit would not work, since U_{C} would be smaller than U_{D}. Corrected, however, it is very safe. If the viscosity were 3 or 4 centipoises and the Reynolds number remained the same because of increased weight flow, the exchanger would not be suitable.
The pressure drop may be computed as heretofore except that ϕ_{t} for pressure drop in streamline flow is $\left(\mu / \mu_{w}\right)^{0.25}$.

The Use of Core Tubes. Employing the horizontal exchanger of the preceding example, suppose that $50,000 \mathrm{lb} / \mathrm{hr}$ of a $28^{\circ} \mathrm{API}$ gas oil was to be heated from 105 to $130^{\circ} \mathrm{F}$ using steam at $250^{\circ} \mathrm{F}$. Would the exchanger be satisfactory?

Solving as before, the value of the viscosity correction ϕ_{t} is 1.18 but the free-convection correction ψ is negligible, and U_{C} would be less than U_{D}.

Cores, dummy tubes with one end sealed (by clamping in a vise), may
be placed within the tubes of an exchanger as shown in Fig. 10.2. They constrict the cross-sectional area by forming an annulus which replaces the inside diameter of the tube with a smaller equivalent diameter and which increases the mass velocity of the tube fluid. Although the use of a core decreases the effective tube diameter and increases the mass

Fig. 10.2. Core detail.
velocity, it does not alter the Reynolds number from its value before introduction of the core. Using a core,

$$
a_{\mathrm{B}}=\frac{\pi}{4}\left(D_{2}^{2}-D_{1}^{2}\right)
$$

where D_{1} is the outside diameter of the core and D_{2} is the inside diameter of the tube. Wetted perimeter for heat transfer ${ }^{1}=\pi D_{2}$

$$
\begin{gathered}
D_{s}=4 \frac{\pi}{4} \frac{\left(D_{2}^{2}-D_{1}^{2}\right)}{\pi D_{2}}=\frac{D_{2}^{2}-D_{1}^{2}}{D_{2}} \\
G=\frac{w}{(\pi / 4)\left(D_{2}^{2}-D_{1}^{2}\right)} \\
R e_{t}=\frac{D_{t} G}{\mu}=\frac{D_{3}^{2}-D_{1}^{2}}{D_{2} \mu} \frac{w}{(\pi / 4)\left(D_{2}^{2}-D_{1}^{2}\right)}=\frac{4 w}{\pi D_{2} \mu}
\end{gathered}
$$

Without a core the result is the same.

$$
R e_{t}=\frac{D G}{\mu}=\frac{D_{2}}{\mu} \frac{w}{(\pi / 4) D_{2}^{2}}=\frac{4 w}{\pi D_{2} \mu}
$$

Since the Reynolds number remains the same, the advantage of the cores is manifested by the smaller value of D_{0} to D in Eq. (6.1). However, the use of cores eliminates the possibility of free convection as correlated by Eq. (10.4), since the cores disrupt the natural-convection currents. Cores are most advantageously employed only when the fluid is viscous and free convection is precluded.

Any size of core may be employed, and it is customary to use 18 BWG or lighter heat-exchanger tubes for the purpose. If the tube is sealed by clamping in a vise, the core must be of such size that one-half its perimeter is greater than the inside diameter of the tube into which it is to be inserted. If the clamped width is less, the core is secured by welding
${ }^{1}$ Unlike the annulus of a double pipe exchanger, the wetted perimeter is the circumference at the inside diameter of the outer tube rather than the outer diameter of the inner tube.
small rods at the clamped ends, which are larger than one-half the perimeter of the tube. The cores are inserted with the sealed end at the inlet of each pass, so that in multipass exchangers half are inserted at the channel and half at the opposite end of the bundle.

Since cores produce considerable inlet and exit turbulence, it is fair to assume that substantial mixing occurs between passes. In such cases the unmixed length of path may be taken as the tube length.

The equivalent diameter for pressure drop is smaller than that for heat transfer because the wetted perimeter is the sum of the circumferences of the inside of the tube plus the outside of the core. Ordinarily, if there is a large quantity of liquid flowing but the viscosity is high, the pressure drop will be quite large. If the flow is scanty and the viscosity is small, the pressure drop will usually be negligibly small despite the use of a core.

Example 10.3. Gas Oil Heater Using Cores. In an effort to make the exchanger in Example 10.2 suitable for the flow of $50,000 \mathrm{lb} / \mathrm{hr}$ of $28^{\circ} \mathrm{API}$ gas oil, the use of cores will be investigated. The oil will be heated from 105 to $130^{\circ} \mathrm{F}$ using steam at $250^{\circ} \mathrm{F}$. Comparisons will be made with Example 10.2.

The correct core cannot always be selected for the first trial, and it is usually necessary to assume several core sizes and carry out the calculation.

Viscosities of the oil in the low temperature range are

${ }^{\circ} F$	$\mu, c p$
250	2.0
200	3.1
150	5.0
125	6.3
100	8.2

Solution:

Exchanger:

$$
\begin{array}{rlrl}
\text { Shell side } & \text { Tube side } \\
\text { ID } & =151 / 4 \mathrm{in} . & \text { Number and length } & =86,12^{\prime} 0^{\prime \prime} \\
\text { Baffle space } & =15 \mathrm{in} . & \text { OD, BWG, pitch } & =1 \mathrm{in} ., 16 \mathrm{BWG}, 11 / 4-\mathrm{in} . \text { tri. } \\
\text { Passes } & =1 & \text { Passes } & =2
\end{array}
$$

Assume that $1 / 2$-in., 18 BWG cores are used.
(1) Heat balance:

Gas oil, $Q=50,000 \times 0.47(130-105)=587,000 \mathrm{Btu} / \mathrm{hr}$
Steam, $Q=6220 \times 945.5=587,000 \mathrm{Btu} / \mathrm{hr}$
(2) Δt :

Hot Fluid Cold Fluid Diff.

250	Higher Temp	130	120
250	Lower Temp	105	145
0	Differences	25	25

$\Delta t=\mathrm{LMTD}=132.5^{\circ} \mathrm{F}$ (true counterflow)
(3) T_{c} and t_{c} :
$t_{a}=\frac{\left(t_{1}+t_{2}\right)}{2}=\frac{130+105}{2}=117.5^{\circ} \mathrm{F}$

Hot fluid: shell side, steam
(4) $a_{4}=\operatorname{ID} \times C^{\prime} B / 144 P_{T} \quad[E q$. (7.1) $]$
$=15.25 \times 0.25 \times 15 / 144 \times 1.25$ $=0.318 \mathrm{ft}^{2}$
($\left.\boldsymbol{B}^{\prime}\right) G_{s}=W / a_{s}$

$$
=6220 / 0.318
$$

$$
=19,600 \mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)
$$

(6) At $T_{a}=250^{\circ} \mathrm{F}$,
$\mu=0.013 \times 2.42=0.0314 \mathrm{lb} /(\mathrm{ft})(\mathrm{hr})$
[Fig. 15]
$D_{e}=0.72 / 12=0.060 \mathrm{ft}$
$R e_{s}=D_{s} G_{s} / \mu$ (for pressure drop)
[Eq. (7.3)]
$=0.06 \times 19,600 / 0.0314=37,400$
(9') Condensation of steam:

$$
\hat{h}_{o}=1500
$$

(10') t_{u} :
$t_{x p}=t_{a}+\frac{h_{o}}{h_{i o}+h_{o}}\left(T_{a}-t_{a}\right)$ [Eq. (5.31)]
$=117.5+\frac{1500}{19.5+1500}(250-117.5)$
$=249^{\circ} \mathrm{F}$

Cold fluid: tube side, crude oil
(4) $a_{t}^{\prime}=\frac{\pi}{4}\left(d_{2}^{2}-d_{1}^{2}\right)$
$=\frac{\pi}{4}\left(0.87^{2}-0.50^{2}\right)=0.40 \mathrm{in} .^{2}$
(d_{2} and d_{1} are the annulus diameters, in.)
$a_{t}=N_{i} a_{t}^{\prime} / 144 n$
[Eq. (7.48)]
$=86 \times 0.40 / 144 \times 2=0.119 \mathrm{ft}^{2}$
(5) $\boldsymbol{G}_{t}=w / a_{t}$

$$
=50,000 / 0.119
$$

$$
=420,000 \mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft}^{8}\right)
$$

(6) $d_{\epsilon}=\frac{d_{2}^{2}-d_{1}^{2}}{d_{2}}=\frac{0.87^{2}-0.50^{2}}{0.87}$
$D_{.}=0.582 / 12=0.0485 \mathrm{ft}$
At $t_{a}=117.5^{\circ} \mathrm{F}$,
$\mu=6.9 \times 2.42=16.7 \mathrm{lb} /(\mathrm{ft})(\mathrm{hr})$
$R e_{i}=D_{d} G_{i} / \mu$

$$
=0.0485 \times 420,000 / 16.7=1,220
$$

Assume mixing between passes L / D 。 $\approx 12 / 0.0485=247$
(7) $j_{H}=3.10$
(8) At $\mu=6.9 \mathrm{ep}$ and $28^{\circ} \mathrm{API}$ $k(c \mu / k)^{1 / 3}=0.35 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F} / \mathrm{ft}\right)$
[Fig. 16]

$$
=3.10 \times 0.35 / 0.0485=22.4
$$

(10) $\frac{h_{i o}}{\phi_{t}}=\frac{h_{i}}{\phi_{t}} \times \frac{\mathrm{ID}}{O \mathrm{D}}$
[Eq. (6.5)

$$
=22.4 \times 0.87 / 1.0=19.5
$$

(11) At $t_{w}=249^{\circ} \mathrm{F}$,
$\mu_{s p}=2.0 \times 2.42=4.84 \mathrm{lb} /(\mathrm{ft})(\mathrm{hr})$
$\phi_{t}=\left(\mu / \mu_{1}\right)^{0.14}$
$=(16.7 / 4.84)^{0.14}=1.18$
(12) $h_{i s}=\frac{h_{i o}}{\phi_{t}} \phi_{t}$
[Eq. (6.37)]

$$
\begin{aligned}
=19.5 & \times 1.18 \\
& =23.0 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)
\end{aligned}
$$

(13) Clean overall coefficient U_{c} :

$$
\begin{equation*}
U_{c}=\frac{h_{i o} h_{o}}{h_{i o}+h_{o}}=\frac{23.0 \times 1500}{23.0+1500}=22.6 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right) \tag{6.38}
\end{equation*}
$$

(14) Design overall coefficient U_{D} :

$$
\begin{aligned}
A & =270 \mathrm{ft}^{2} \\
U_{D} & =\frac{Q}{A \Delta t}=\frac{587,000}{270 \times 132.5}=16.4 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)
\end{aligned}
$$

(15) Dirt factor R_{d} :

$$
\begin{equation*}
R_{d}=\frac{U_{C}-U_{D}}{U_{C} U_{D}}=\frac{22.6-16.4}{22.6 \times 16.4}=0.0172(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right) / \mathrm{Btu} \tag{6.13}
\end{equation*}
$$

Summary

1500	h outside	19.4
U_{C}	22.6	
U_{D}	16.4	
R_{d} Calculated 0.0172		

Note that the cores make the heater operable.
Pressure Drop
(1) For $R e_{s}=37,400$, $f=0.0016 \mathrm{ft}^{2} / \mathrm{in} .$.
[Fig. 29]

$$
\left\lvert\, \begin{align*}
& (1) d_{t}^{\prime}=\left(d_{2}-d_{1}\right) \quad \text { [Eq. } \tag{6.4}\\
& \quad=(0.87-0.50)=0.37 \mathrm{in} . \\
& D_{e_{t}}^{\prime}=0.37 / 12=0.0309 \mathrm{ft} \\
& R e_{t}^{\prime}=D_{e_{t}}^{\prime} G_{t} / \mu \\
& \\
& =0.0309 \times 420,000 / 16.7=777 \\
& f=0.00066 \mathrm{ft}^{2} / \mathrm{in}^{2}{ }^{2}
\end{align*}\right.
$$

[Fig. 26]
(2) For streamline-flow pressure drop:
(2') No. of crosses, $N+1=12 L / B$
[Eq. (7.43)]
$=12 \times 12 / 15=10$
$v=13.82 \mathrm{ft}^{*} / \mathrm{lb}$
(Table 7)
$s=\frac{1}{13.82 \times 62.5}=0.00116$
$D_{s}=15.25 / 12=1.27 \mathrm{ft}$
(3') $\Delta P_{s}=\frac{1}{2} \frac{f G_{s}^{2}\left(D_{s}\right)(N+1)}{5.22 \times 10^{10} D_{e} s \phi_{s}}$
[Eq. (7.52)]
$=\frac{0.0016 \times 19,600^{2} \times 1.27}{\times 10}$
$=\frac{1}{2} \times \frac{1.4 \mathrm{psi}}{5.22 \times 10^{10} \times 0.060} \times 1.0$
$\times 0.00116 \times 1.0$
$\phi_{t}=(16.7 / 4.84)^{0.26}=1.35$
$s=0.85$
[Fig. 6]
$\Delta P_{1}=\frac{f G_{t}^{2} L n}{5.22 \times 10^{10} D_{e_{i}}^{\prime} s \phi_{t}} \quad[$ Eq. (7.45)]
(3) $=\frac{0.00066 \times 420,000^{2} \times 12 \times 2}{5.22 \times 10^{10} \times 0.0309 \times 0.85}$
$\times 1.35$
$\begin{aligned} & =1.5 \mathrm{psi} \\ P_{r} & =\text { negligibl }\end{aligned}$
[Eq. (7.46)]
$\Delta P_{r}=$ negligible

The choice of a core was satisfactory. A large dirt factor should be used because of the inaccuracies of the calculation. It would also be advisable to investigate the use of a $8 / 8$ or $3 / 4 \mathrm{in}$. OD core. although either of these cores will cause a considerably greater pressure drop.

Streamline Flow in Shell. When an exchanger is selected to fulfill process conditions from among existing exchangers, streamline flow in tubes should be avoided if possible. By comparison with turbulent flow, streamline flow requires the use of a larger surface for the delivery of equal heat. Sometimes streamline flow in tubes is unavoidable as when there is a great unbalance between both the sizes of the two streams and the shell-side and tube-side flow areas. If the flow area of the shell is greater than that of the tubes and one of the fluid quantities is much larger than the other, it may be imperative in meeting the allowable pres-

Fig. 10.3. Free convection outside tubes. (After Ray.) sure drop to place the smaller stream in the tubes. Still other instances of streamline flow arise when a liquid is placed in the tubes for corrosion reasons whereas from the standpoint of fluid flow it logically belongs in the shell.

Streamline flow in shells, on the other hand, is fortunately a rare problem. It occurs at a Reynolds number well below 10, as plotted in Fig. 28, due to the constantly changing flow area across the long axis of the bundle. The shell is consequently an excellent place in which to locate a scanty stream. The fouling factors of Table 12 have been predicated upon turbulent flow, and for low tube velocities they should be increased perhaps 50 to 100 per cent to provide additional protection.
Free Convection outside Tubes and Pipes. The mechanism of free convection outside a horizontal cylindrical shape differs greatly from that within it. On the outside of a pipe the convection currents are not restrained as they are within it, and heated fluid is usually free to rise through greater heights of cold fluid thereby increasing the convection. The atmosphere about a pipe has been explored by Ray, ${ }^{2}$ and the isotherms are shown schematically in Fig. 10.3. Cold air from the relatively ambient atmosphere travels in toward the hot tube whence it is heated and rises. Numerous investigators have established the influence of the Grashof and Prandtl numbers on the correlation of free convection. Unfortunately most of the experimental information has been obtained on apparatuses such as single tubes and wires rather than industrial equipment. Accordingly, however, the film coefficient for free convection to
${ }^{1}$ Ray, B. B., Proc. Indian Assoc. Cultivation Sci., 6, 95 (1920).
gases from horizontal cylinders can be represented by

$$
\frac{h_{c} D}{k_{f}}=\alpha\left[\left(\frac{D_{o}^{3} \rho_{g}^{2} g \beta \Delta t}{\mu_{f}^{2}}\right)\left(\frac{c_{f} \mu_{f}}{k_{f}}\right)\right]^{0,25}
$$

where h_{c} is the free convection coefficient and all the properties are evaluated at the fictitious film temperature t_{f} taken as the mean of the temperature of the heating surface and the bulk temperature of the fluid being heated. Thus

$$
\begin{equation*}
t_{f}=\frac{t_{w}+t_{a}}{2} \tag{10.6}
\end{equation*}
$$

For the most part it is difficult to obtain good data for the various types and sizes of equipment used in industry. This is due in part to the interference and complexities of free-convection heating elements such as banks of tubes and the inability to control an atmosphere of fluid to the extent necessary for good experimental results.

Free-convection correlations from the outside surfaces of different shapes which are of direct engineering value fall largely into two classes: free convection about single tubes or pipes and free convection about vessels and walls. McAdams ${ }^{1}$ gives an excellent review of the work done heretofore in this field. It is apparent that free-convection currents are not only influenced by the position of the surface but also by its proximity to other surfaces. A hot horizontal surface sets up currents which differ greatly from those set up by a vertical surface. McAdams has summarized these in a simplified dimensional form ${ }^{2}$ for free convection to air.
Horizontal pipes: $\quad h_{c}=0.50\left(\frac{\Delta t}{d_{o}}\right)^{0.25}$
Long vertical pipes: $\quad h_{c}=0.4\left(\frac{\Delta t}{d_{o}}\right)^{0.25}$
$\begin{array}{ll}\text { Vertical plates less } & \\ \text { than } 2 \mathrm{ft} \text { high: } & h_{c}=0.28\left(\frac{\Delta t}{z}\right)^{0.25}\end{array}$
Vertical plates more
than 2 ft high:
Horizontal plates:
Facing upward:
$h_{a}=0.3 \Delta t^{0.25}$

Facing downward: $\quad h_{c}=0.2 \Delta t^{0.25}$
where Δt is the temperature difference between hot surface and cold fluid in ${ }^{\circ} \mathrm{F}, d_{o}$ is the outside diameter in inches, and z is the height in feet.
${ }^{1}$ McAdams, W. H., "Heat Transmission," 2d ed., pp. 237-246, McGraw-Hill Book Company, Inc., New York, 1942.
${ }^{2}$ Perry, J. H., "Chemical Engineers' Handbook," 3rd Ed., p. 474, McGraw-Hill Book Company, Inc., New York, 1950.

Fig. 10.4. Free convection outside horizontal pipes and tubeb. [T. H. Chilton, A. P. Colburn, R. P. Generaux, and H. C. Vernon, Trans. ASME Petroleum Mech. Eng., 55, 5 (1933).]

For single horizontal pipes the dimensionless expression will apply except that α will vary between 0.47 and 0.53 between small and large pipes. Thus

$$
\begin{equation*}
\frac{h_{c} D_{o}}{k_{f}}=0.47\left[\left(\frac{D_{o f}^{3} \rho_{f}^{2} g \beta \Delta t}{\mu_{f}^{2}}\right)\left(\frac{c \mu_{f}}{k_{f}}\right)\right]^{0.25} \tag{10.13}
\end{equation*}
$$

Chilton, Colburn, Generaux, and Vernon ${ }^{1}$ have developed an alignment chart which gives conservative coefficients for a single pipe but which has been used by the author and others without noticeable error for the calculations of free convection outside banks of tubes. The dimensional equation, plotted in Fig. 10.4 for gases and liquids, is

$$
\begin{equation*}
h_{c}=116\left[\left(\frac{k_{\rho_{\rho}^{3}}^{2} c_{f} \beta}{\mu_{f}^{f}}\right)\left(\frac{\Delta t}{d_{o}}\right)\right]^{0.25} \tag{10.14}
\end{equation*}
$$

where μ_{f}^{\prime} is in centipoises. Of the four axes in the alignment chart one is the reference line of values of $k_{f}^{3} p_{j}^{2} c_{f} \beta / \mu_{f}$ which allows its use for fluids other than those whose key numbers are given in Fig. 10.4. The use of the chart for tube bundles requires that the pipes or tubes not be located too closely to the bottom of the vessel or too closely among themselves so that they interfere with the natural-convection currents. The tubes should not be located closer than several diameters from the bottom of the vessel, nor should the clearance between tubes be less than a diameter. Notwithstanding the data available, free-convection design is not very accurate, and reasonable factors of safety such as large fouling factors are recommended.

The use of the several types of free-convection correlations for fluids outside tubes is demonstrated by the typical problem which follows.

Example 10.4. Calculation of a Heating Bundle for an Aniline Storage Tank. A horizontal outdoor storage tank $5^{\prime} 0^{\prime \prime}$ ID by $12^{\prime} 0^{\prime \prime}$ long and presumed cylindrical is to

Fig. 10.5. Heating a fluid in a tank by free convection.
be used for aniline storage at a constant temperature of $100^{\circ} \mathrm{F}$ even though the prevailing atmospheric temperature should fall to $0^{\circ} \mathrm{F}$. The tank is not insulated but is shielded from the wind. Heat will be supplied by means of exhaust steam through a bundle connected through the bottom of the tank as shown in Fig. 10.5 and consisting of $6^{\prime} 0^{\prime \prime}$ lengths of $1-\mathrm{in}$. IPS pipe. The use of a temperature controller (Chap. 21) to throttle the steam would make the entire operation automatic.
How many lengths of pipe should be provided?
Solution. The first part of the problem is to determine how much heat will be lost from the tank to the atmosphere. This gives the heat load for which the coil must be designed.
${ }^{1}$ Chilton, T. H., A. P. Colburn, R. P. Generaux, and H. C. Vernon, Trans. A.S.M.E., Petroleum Mech. Eng., 65, 5 (1933).

From Eq. (10.7) to (10.12) the convection coefficient to air will be somewhere between $h_{c}=0.2 \Delta t^{0.25}$ and $h_{c}=0.3 \Delta t^{0.25}$ for the entire tank surface. Since the equation giving the higher value of h_{c} is safer.
Convection loss:

$$
h_{c}=0.3 \Delta t^{0.26}
$$

Neglecting the temperature drop through the tank metal

$$
\begin{gather*}
\Delta t=100-0=100^{\circ} \mathrm{F} \\
h_{c}=0.3 \times 100^{0.25}=0.95 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right) \\
\text { Radiation rate, } h_{r}=\frac{0.173 \epsilon\left(\left(T_{1, \mathrm{abs}} / 100\right)^{4}-\left(T_{2, \mathrm{abs}} / 100\right)^{4}\right]}{T_{1, \mathrm{abs}}-T_{2, \mathrm{abs}}} \tag{4.32}
\end{gather*}
$$

Assuming an emissivity of about 0.8 ,

$$
h_{r}=\frac{0.173 \times 0.8\left(5.6^{4}-4.6^{4}\right)}{100}=0.75 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)
$$

Combined loss:

$$
\begin{aligned}
h_{c}+h_{\mathrm{r}} & =0.95+0.75=1.70 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right) \\
\text { Total tank area } & =\frac{2 \pi \times 5^{2}}{4}+\pi \times 5 \times 12=227.8 \mathrm{ft}^{2}
\end{aligned}
$$

Total heat loss, $Q=\left(h_{\epsilon}+h_{r}\right) A \Delta t=1.70 \times 227.8 \times(100-0)=38,800 \mathrm{Btu} / \mathrm{hr}$
This heat must be supplied by the pipe bundle.
Assuming exhaust steam to be at $212^{\circ} \mathrm{F}$,

$$
\begin{aligned}
& \frac{\Delta t}{\bar{d}_{o}}=\frac{212-100}{1.32}=85 \\
& t_{f}=\frac{212+100}{2}=156^{\circ} \mathrm{F} \text { (nearly) }
\end{aligned}
$$

From Figure 10.4, $h_{c}=48 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$.

$$
\begin{equation*}
U_{C}=\frac{\dot{h}_{i} h_{o}}{h_{\mathrm{i}_{\mathrm{o}}}+h_{o}}=\frac{1500 \times 48}{1500+48}=46.5 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right) \tag{6.38}
\end{equation*}
$$

Assume a dirt factor of $0.02(\mathrm{hr})\left(\mathrm{ft} \mathrm{t}^{2}\right)\left({ }^{\circ} \mathrm{F}\right) / \mathrm{Btu}$

$$
U_{D}=\frac{U_{C} \times 1 / R_{d}}{U_{C}+1 / R_{d}}=\frac{46.5 \times 50}{46.5+50}=24.1 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)
$$

Total surface,

$$
\begin{aligned}
& A=\frac{Q}{U_{D} \Delta t} \\
&=38,800 / 24.1 \times(212-100)=14.4 \mathrm{ft}^{2} \\
& \text { Area } / \text { pipe }=0.344 \times 6=2.06 \mathrm{ft}^{2} \\
& \text { Number of pipes }=14.4 / 2.06=7
\end{aligned}
$$

(Table 11)

These may be arranged in series or parallel.

PROBLEMS

10.1. $9000 \mathrm{lb} / \mathrm{hr}$ of $34^{\circ} \mathrm{API}$ crude oil at $100^{\circ} \mathrm{F}$ (see Example 10.1 for viscosities) enter the tubes of a $171 / 4 \mathrm{in}$. ID $1-2$ exchanger containing 118 tubes 1 in . OD, 16 BWG , $12^{\prime} 0^{\prime \prime}$ long arranged for two passes in $1 \frac{1}{4}-\mathrm{in}$. triangular pitch. It is desired to attain an outlet temperature of $150^{\circ} \mathrm{F}$ using steam at $250^{\circ} \mathrm{F}$. What is the actual outlet temperature?
10.2. $37,000 \mathrm{lb} / \mathrm{hr}$ of an organic compound whose properties are closely approximated by the $28^{\circ} \mathrm{API}$ gas oil in the Appendix is to be heated by steam in the tubes of a clean exchanger because the shell baffes are half-circle support plates. The oil is to be heated from 100 to $200^{\circ} \mathrm{F}$ by steam at $325^{\circ} \mathrm{F}$.
Available for the service is a 27 in . ID $1-2$ exchanger containing 3341 in . $\mathrm{OD}_{\text {r }}$ 16 BWG, $16^{\prime} 0^{\prime \prime}$ long tubes arranged for two passes on $11 / 4-\mathrm{in}$. triangular pitch.
(a) Determine the dirt factor if the oil is not mixed betwreen passes? (b) What is the actual outlet temperature of the oil if the fluid is mised between passes?
10.3. $22,000 \mathrm{lb} / \mathrm{hr}$ of a flushing oil closely resembling 28° API gas oil is to be heated from 125 to $175^{\circ} \mathrm{F}$ to improve filtration. Available as a heating medium is another line corresponding to a $35^{\circ} \mathrm{API}$ distillate at $280^{\circ} \mathrm{F}$. The temperature range of the distillate will be only $5^{\circ} \mathrm{F}$ so that the exchanger is essentially in counterflow.

Available for the service is a 21314 in . ID $1-2$ exchanger containing $2403 / 4 \mathrm{in}$., 16 BWG tubes $8^{\prime \prime} 0^{\prime \prime}$ long. Tubes are arranged for six passes on 1 -in. square pitch. Baffes are spaced 8 in. apart. Because of contaminants the flushing oil will flow in the tubes.

Investigate all the possibilities, including the use of cores, to make the exchanger operable. Pressure drops are 10 psi , and a combined dirt factor is 0.015 (not to be confused with 0.0015).
10.4. A vertical cylindrical storage tank $6^{\prime} 0^{\prime \prime}$ ID and $8^{\prime} 0^{\prime \prime}$ tall is filled to 80 per cent of its height with ethylene glycol at $150^{\circ} \mathrm{F}$. The surrounding atmosphere may fall to $0^{\circ} \mathrm{F}$ in the winter, but it is desired to maintain the temperature within the tank by using a rectangular bank of 1 in . IPS pipes heated with exhaust steam at $225^{\circ} \mathrm{F}$ How much surface is required? How should the pipes be arranged?

NOMENCLATURE FOR CHAPTER 10

A	Heat transfer surface, ft^{2}
$a^{\prime \prime}$	External surface per linear foot, ft
a	Flow area, ftz
B	Baffle spacing, in.
C_{1}, C_{2}	Constants, dimensionless
D	Inside diameter of tubes or pipes, ft
D	Outside diameter of tubes or pipes, ft
D_{6}, D^{\prime} 。	Equivalent diameter for heat transfer and pressure drop, ft
${ }^{\text {d }}$	Inside diameter of tubes, in.
d_{0}	Outside diameter of tubes, in.
f	Friction factor, $\mathrm{ft}^{2} / \mathrm{im} .^{2}$
G	Mass velocity, $\mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)$
G	Grashof number, dimensionless
$\theta r_{\text {a }}$	Grashof number at the average or bulk temperature, dimensionless
g	Acceleration of gravity, $\mathrm{ft} / \mathrm{hr}^{2}$
h, h_{i}, h_{0}	Heat-transfer coefficient in general, for inside fluid, and for outside fluid, respectively, $\mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$
$h_{\text {io }}$	Value of $h_{\text {i }}$ when referred to the tube outside diameter
h_{c}	Heat-transfer coefficient for free convection, Btu/(hr)($\mathrm{ft}^{\mathbf{t})\left({ }^{(} \mathrm{F}\right)}$
h_{r}	Heat-transfer coefficient for radiation, $\mathrm{Btu} /(\mathrm{ank})\left(\mathrm{ft}{ }^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$
${ }_{\text {j }}$	Factor for heat transfer, dimensionless
k	Thermal conductivity, $\mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}{ }^{2}\right)\left({ }^{(} \mathrm{F} / \mathrm{ft}\right)$
L	Tube length or length of unmixed path, ft.
n	Number of tube passes

ΔP	Pressure drop in general, psi
$\Delta P_{r}, \Delta P_{r}, \Delta P_{t}$	Total, tube, and return pressure drop, respectively, psi
P_{T}	Tube pitch, in.
$\boldsymbol{R}_{\text {d }}$	Combined dirt factor, (hr) (ft^{2}) $\left.{ }^{\circ} \mathrm{F}\right) / \mathrm{Btu}$
$R e, R e^{\prime}$	Reynolds number for heat transfer and pressure drop, dimensionless
8	Specific gravity, dimensionless
$T_{a}, T_{\text {c }}$	Average and caloric temperature of hot fluid, ${ }^{\circ} \mathrm{F}$
t_{1}, t_{2}	Inlet and outlet temperatures of cold fluid, ${ }^{\circ} \mathrm{F}$
t_{a}, t_{c}	Average and caloric temperatures of cold fluid, ${ }^{\circ} \mathrm{F}$
t_{f}	Film temperature $1 / 2\left(t_{w 0}+t_{a}\right),{ }^{\circ} \mathrm{F}$
t	Temperature at end of first pass, ${ }^{\circ} \mathrm{F}$
t_{p}, t_{w}	Inside and outside tube wall temperatures, ${ }^{\circ} \mathrm{F}$
Δt	Temperature difference for heat transfer, ${ }^{\circ} \mathrm{F}$
Δt_{a}	Temperature difference between tube wall and average fluid temperatiure, ${ }^{\circ} \mathrm{F}$
U_{C}, U_{D}	Clean and design overall coefficients, $\mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$
v	Specific volume, $\mathrm{ft}^{8} / \mathrm{lb}$
W, w	Weight flow of hot and cold fluid, lb/hr
z	Height, ft
$\boldsymbol{\alpha}$	Constant
β	Coefficient of thermal expansion, $1 /{ }^{\circ} \mathrm{F}$
μ	Viscosity, centipoises $\times 2.42=1 \mathrm{l} /(\mathrm{ft})(\mathrm{hr})$
μ_{0}	Viscosity at tube wall temperature, centipoises $\times 2.42=1 \mathrm{~b} /(\mathrm{ft})(\mathrm{hr})$
$\mu_{j}^{\prime \prime}$	Viscosity at film temperature, centipoises
p	Density, $1 \mathrm{l} / \mathrm{ft}^{3}$
ϕ	$\left(\mu / \mu_{\omega}\right)^{0.14}$. For pressure drop in streamline flow, $\left(\mu / \mu_{\omega}\right)^{0.25}$
ψ	Free convection correction, Eq. (10.5), dimensionless

Subscripts (except as noted above)

$f \quad$ Evaluated at the film temperature
 s
 Shell side
 $t \quad$ Tube side

CHAPTER 11

CALCULATIONS FOR PROCESS CONDITIONS

Optimum Process Conditions. The experience obtained from the calculation of existing tubular exchangers will presently be applied to cases in which only the process conditions are given. Before undertaking these calculations an investigation will be made to determine whether or not several related pieces of equipment can avail themselves of the overall process temperatures in an optimum manner. This is an economic affair similar to that for the optimum outlet-water temperature

Frg. 11.1. Typical process employing heat recovery.
and the optimum use of exhaust steam discussed in Chap. 7. Often an exchanger operates in series with a cooler and a heater as shown in Fig. 11.1. The cooler regulates the final temperature of the hot fluid, and the heater adjusts the final temperature of the cold fluid ${ }^{1}$ to the requirements of the next step in the process. The quantity of heat recovered in the exchanger alone greatly influences its size and cost, since the true temperature difference in the exchanger approaches zero as the heat recovery approaches 100 per cent. On the other hand, whatever

[^17]heat is not recovered in the exchanger must be removed or added through the use of additional steam in the heater and additional water in the cooler, which raises the initial costs of the two as well as the operating cost of the process. This arrangement suggests the presence of an optimum distribution of temperatures so that the fixed and the operating charges will combine to give a minimum.

Among a number of examples of heat recovery available in the chemical and power industries, that of Fig. 11.1 is typical. It shows the flow sheet of a simple vapor-recovery system such as is employed in the stripping of gasoline from natural gas, an absorption and distillation process, although the absorber and distilling column are not a part of the present analysis. Only the pertinent heat-flow lines are dash enclosed. The natural gas coming from the earth is laden with gasoline vapors which command a higher price when separated from the natural gas and condensed. The rich gas enters the absorber where it contacts an absorbent, usually a nonviscous oil, in which the gasoline vapors selectively dissolve. The outlet gas of reduced gasoline-vapor concentration is lean gas. The absorbent leaves the bottom of the absorber with the dissolved vapors as rich oil. It must next be fed to a distilling column where the gasoline and the oil are separated by steam distillation. The oil leaving the bottom of the distilling column is substantially free of the solute and therefore lean oil. Absorption is favored by low temperatures, while distillation requires higher temperatures so that the gasoline can be vaporized from the oil. The exchanger, heater, and cooler are represented in Fig. 11.1 by E, H, and $C R$, respectively. The temperatures to and from the absorber and distilling column will be considered fixed by equilibrium conditions whose definitions are beyond the scope of this study. The temperatures of the steam and water will also be fixed. The nucleus of the problem lies in determining the exchanger outlet temperatures T_{x} or t_{y}, either of which fixes the other, so that the total annual cost of the three heat-transfer items will be a minimum.

If C_{E}, C_{H}, and $C_{C R}$ are the annual fixed charges per square foot for the exchanger, heater, and cooler, and if A_{E}, A_{H}, and $A_{C R}$ are their surfaces, the five elements of cost are

1. Fixed charges of exchanger, $C_{E} A_{I}$
2. Fixed charges of heater, $C_{H} A_{H}$
3. Cost of steam, C_{s}, dollars/Btu
4. Fixed charges of cooler, $C_{C R} A_{C R}$
5. Cost of water, $C_{\text {F }}$, dollars/Btu

The surface of each unit, $A=Q / U \Delta t$, is dependent upon its true temperature difference. In each piece of equipment, however, the true temperature difference depends upon either T_{x} or t_{y}. To obtain an
expression for the minimum cost it will be necessary to differentiate the total annual cost with respect to either T_{x} or t_{y} and solve for T_{x} or t_{v} after setting the derivative equal to zero. For simplicity assume that only true counterflow exchangers are employed so that the true temperature difference and LMTD of all units are identical and that all the unit fixed charges $C_{F}, C_{F}, C_{C R}$ are the same and independent of the total number of square feet of each unit. The equation for the total annual cost C_{T} is obtained after eliminating t_{y} through the use of the dimensionless group R.

$$
\begin{align*}
C_{T}= & \frac{C_{B} W C\left(T_{1}-T_{x}\right)}{U_{E}\left[(1-R) T_{1}+(R-1) T_{x}\right]} \ln \frac{(1-R) T_{1}-t_{1}+R T_{x}}{T_{x}-t_{1}} \\
& +\frac{C_{H} w c}{U_{H}} \ln \frac{T_{s}-t_{1}-R T_{1}+R T_{x}}{T_{s}-t_{2}}+C_{s} \theta w c\left(t_{2}-t_{1}-R T_{1}+R T_{x}\right) \\
+ & \frac{C_{C R} W C\left(T_{x}-T_{2}\right)}{U_{C R}\left[\left(T_{x}-t_{2}^{\prime}\right)-\left(T_{2}-t_{1}^{\prime}\right)\right]} \ln \frac{T_{x}-t_{2}^{\prime}}{T_{2}-t_{1}^{\prime}}+C_{W} \theta W C\left(T_{x}-T_{2}\right) \tag{11.1}
\end{align*}
$$

where U_{E}, U_{H}, and $U_{C R}$ are the overall coefficients, θ is the total number of annual operating hours, and the other temperatures are indicated in Fig. 11.1. When differentiated with respect to T_{x} and set equal to zero, the equation for the optimum value of T_{x} is

$$
\begin{align*}
0=C_{s} \theta+C_{W} \theta & +\frac{C_{H}}{U_{H}} \frac{1}{\left[R\left(T_{x}-T_{1}\right)+\left(T_{z}-t_{1}\right)\right]} \\
+ & \frac{C_{C R}}{U_{C R}} \frac{\left(t_{1}^{\prime}-t_{2}^{\prime}\right)}{\left[\left(T_{z}-T_{2}\right)+\left(t_{1}^{\prime}-t_{2}^{\prime}\right)\right]} \ln \frac{\left(T_{z}-t_{2}^{\prime}\right)}{\left(T_{2}-t_{1}^{\prime}\right)} \\
& +\frac{C_{C R}}{U_{C R}} \frac{\left(T_{x}-T_{2}\right)}{\left[\left(T_{z}-T_{2}\right)+\left(t_{1}^{\prime}-t_{2}^{\prime}\right)\right]} \frac{1}{\left(T_{x}-t_{2}^{\prime}\right)} \\
& \quad-\frac{C_{E}}{\bar{U}_{E}} \frac{\left(T_{1}-t_{1}\right)}{\left[\left(T_{1}-t_{1}\right)+R\left(T_{z}-T_{1}\right)\right]} \frac{1}{\left(T_{z}-T_{1}\right)} \tag{11.2}
\end{align*}
$$

T_{x} can be obtained by a trial-and-error calculation.
Actually where the disposition of the temperatures justifies obtaining the optimum, the operation will be too large to permit the use of true counterflow in all of the equipment. When the flow pattern in the exchanger alone deviates from true counterflow and Δt is given by Eq. (7.37), the problem is somewhat more difficult to solve and less direct. However, if F_{T} is placed in the denominator of the last term in Eq. (11.2), a simplified trial-and-error solution can be obtained for a system using a 1-2, 2-4, etc., exchanger. Equation (11.2) is not particularly useful, however, unless extensive data are available on the installed costs and fixed charges of exchangers, since the cost per square foot of surface also varies with the size of the exchanger. Sieder ${ }^{1}$ has shown in Fig. 11.2 how the
${ }^{1}$ Sieder, E. N., Chem. Met. Eng., 46, 322-325 (1939)
relative cost (per square foot) of surface decreases from small to large exchangers. The fixed charges are usually arrived at as a percentage (30 per cent) of the initial cost per square foot, and this varies so much

Frg. 11.2. Cost of tubular surface vs. size of exchanger. (Sieder, Chemical Engineering.) with the size of the final exchanger that several successive trials are required to establish the proper range of individual costs.

Other obstacles are also encountered in the solution of a general equation for the optimum. If a typical problem is solved for a system with a 1-2 exchanger and the calculated value of T_{x} comes out to be less than the practical limit of $F_{T}=0.75-0.80$ in

Fig. 11.3. Optimum recovery temperature. the 1-2 exchanger, the entire calculation, though valid, must be repeated using a different exchanger. The task of obtaining the optimum process temperatures can be achieved more readily by graphical means. As the temperature T_{x} is varied, there are two opposed costs as follows: As T_{x} is increased, the cost of the utilities increases but the initial cost and fixed charges on the exchanger decrease. By assuming several values of T_{x} the required sizes of all the equipment can be computed for each assumption. From the overall heat balances the operating costs of the utilities can also be obtained. The total annual costs are then the sum of the two costs as plotted in Fig. 11.3 with the optimum corresponding to the point indicated.

The Optimum Exchanger. The factors which are favorable for the attainment of higher film coefficients for fluids in exchangers also increase
their pressure drops. For turbulent flow in tubes as given by Eq. (6.2) the film coefficient varies with $G_{6}^{0.8}$, whereas the pressure drop in Eq. (7.45) varies with G_{2}^{2}. This means that if the tube-side coefficient is the controlling coefficient and if the design of the exchanger can be altered so as to increase the tube-side mass velocity, the overall coefficients U_{C}, U_{D} also increase and the size of the exchanger can be reduced accordingly. Offsetting this advantage is an increase in the pressure drop and pumping power costs for the greater mass velocity. As in the calculation of the optimum process conditions, there is an optimum exchanger capable of fulfilling process conditions with a minimum annual cost. The achievement of this design, however, requires an exchanger capable of providing the optimum fluid-flow velocities on the shell as well as the tube sides. This would frequently entail the use of an odd number of tube passes or an odd tube length, which is inconsistent with industrial practices. McAdams ${ }^{1}$ has given an excellent résumé of the equations and approximations required for establishing the optimum exchanger to which the reader is referred.

Rating an Exchanger. In Chaps. 7 through 10 the calculations were carried out on existing exchangers. In the application of the Fourier equation to an existing exchanger, Q was determined from the heat balance; A from the number, outside diameter, and length of the tubes; and Δt from $F_{r} \times$ LMTD, permitting the solution for U_{D}. From the fluid-flow conditions, $h_{o}, h_{i o}, U_{c}$, and the pressure drops were calculated. The criterion of performance R_{d} was then obtained from U_{D} and U_{c}. When there is no available exchanger and only the process conditions are known, calculation may proceed in an orderly way by assuming the existence of an exchanger and testing it as in previous examples for a suitable dirt factor and pressure drops.

To prevent the loss of considerable time, rational methods of assuming an exchanger should be developed. By returning to the component parts of the Fourier equation $Q=U_{D} A \Delta t$, the heat load Q is seen to be fixed by the process conditions, while Δt is obtained by assuming a fluidflow pattern. Thus if it is desired to set up a 1-2 exchanger, and if the process temperatures give $F_{T}>0.75-0.80$, the remaining unknowns are U_{D} and A. The design or dirty coefficient U_{D} is in turn related by a reasonable dirt factor to U_{C}, which reflects the heat-transfer characteristics of the two fluids. Previous examples in the text suggest that different numerical film coefficients may be expected within definite ranges in well-designed exchangers for different classes of fluids. It is also apparent that, except where both coefficients are approximately
${ }^{1}$ McAdams, W. H., "Heat Transmission," 2 A ed., pp. 363-367, MeGraw-Hill Book Company, Inc., New York, 1942.
equal, the lower film coefficient determines the range of U_{c} and U_{D}. In the light of this experience if a trial value of U_{D} is assumed and then substituted into the Fourier equation to supplement calculated values of Q and Δt, it permits the trial calculation of A. To facilitate the use of reasonable trial values of U_{D} approximate overall coefficients have been presented in Appendix Table 8 for common pairs of fluids.

When the value of A is combined with tube length and pitch preferences, the tube counts in Appendix Table 9 become a catalogue of all the possible exchanger shells, from which only one will usually best fulfill the process conditions. Having decided which fluid will tentatively flow in the tubes, the trial number of tube passes can be approximated by a consideration of the quantity of fluid flowing in the tubes and the number of tubes corresponding to the trial value of A. The trial mass velocity should fall somewhere between 750,000 and $1,000,000 \mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)$ for fluids with allowable tube-side pressure drops of 10 psi .

If the trial number of tube passes has been assumed incorrectly, a change in the total number of passes changes the total surface which is contained in a given shell, since the number of tubes for a given shell diameter varies with the number of tube-pass partitions. The assumed number of tube passes for the trial surface is satisfactory if it gives a value of h_{i} above U_{D} and a pressure drop not exceeding the allowable pressure drop for the fluid. One may next proceed to the shell side by assuming a trial baffle spacing which can be varied, if in error, over a wide range without altering h_{i}, A, or Δt as computed previously for the tube side. It is always advantageous therefore to compute the tube side first to validate the use of a particular shell.

In calculating an exchanger the best exchanger is the smallest one with a standard layout which just fulfills the dirt-factor and pressuredrop requirements. There are only a few limitations to be considered. It is still assumed that there is no advantage in using less than the allowable pressure drop and that, in accordance with Fig. 28, 25 per cent cut segmental baffles will be employed within the minimum and maximum spacing. The extremes of the spacing range are
Maximum spacing, $B=$ ID of shell, in.
Minimum spacing, $B=\frac{I D \text { of shell }}{5}$, or 2 in., whichever is larger
These limitations stem from the fact that at wider spacings the flow tends to be axial rather than across the bundle and at closer spacings there is excessive leakage between the baffles and the shell. Owing to the convention of placing the inlet and outlet nozzles on opposite sides of the shell, the end baffles may not exactly conform to the chosen spacing
for an even number of baffles and an odd number of crosses. When using a close convenient spacing, if an odd number of baffles is indicated, the pressure-drop and heat-transfer coefficients can be calculated for the chosen spacing, although one baffle will be omitted by respacing the extreme end baffies.

The different combinations of the number of tube passes and the baffle pitch which can be employed in a given shell permit the variation of the mass velocities and film coefficients over broad limits. The number of tube passes can be varied from two to eight and in larger shells to sixteen. As indicated above, the shell-side mass velocity can be altered fivefold between the minimum and maximum baffle spacings. It is desirable to bear in mind the latitude this permits in the event that the first trial baffle spacing and tube passes have been wide of fulfilling the process conditions. In 1-2 exchangers the least performance is obtained with two tube passes and the maximum baffle space. For the tube side in turbulent flow

$$
\begin{aligned}
h_{i} & \propto G_{i}^{0.8} \\
\Delta P_{t} & \propto G_{t}^{2} n L
\end{aligned}
$$

where $n L$ is the total length of path. Going to eight tube passes in the same shell inside diameter the changes incurred are
but

$$
\frac{h_{i(8 \text { paspos })}}{\bar{h}_{i(2 \text { p paseses })}}=\left(\frac{8}{2}\right)^{0.8}=\frac{3}{1}
$$

$$
\frac{\Delta P_{t(8 \text { Dasocos })}}{\Delta P_{t(2 \text { pasasos })}}=\frac{8^{2} \times 8 \times 1}{2^{2} \times 2 \times 1}=\frac{64}{1}
$$

or although the heat-transfer coefficient can be increased threefold, the pressure drop must be increased 64 times to accomplish it. For streamline flow the expenditure of the larger amount of pumping energy will increase the tube-side coefficient only by

$$
\frac{h_{i(8 \text { Daseses) }}}{h_{i(2 \text { pasese })}}=\left(\frac{8}{2}\right)^{1 / 2}=\frac{1.58}{1}
$$

provided the fluid is in streamline flow in both cases. The shell side may be represented approximately by

$$
\begin{aligned}
h_{\theta} & \propto G_{s}^{0.5} \\
\Delta P_{s} & \propto G_{s}^{2}(N+1)
\end{aligned}
$$

where N is the number of baffles and $N+1$ the number of bundle crosses. The changes for the shell side between minimum and maximum baffle spacings are

$$
\frac{h_{o, \min }}{\bar{h}_{0, \text { max }}}=\left(\frac{5}{1}\right)^{0.5}=\frac{2.23}{1}
$$

but

$$
\frac{\Delta P_{\mathrm{s}, \min }}{\Delta P_{\mathrm{g}, \max }}=\frac{5^{2} \times 5}{1^{2} \times 1}=\frac{125}{1}
$$

Offsetting this, however, is the fact that the shell side yields a higher order of film coefficients for the smaller of the two streams if there is a great difference in their weight flow rates.

Through the use of the overall coefficients suggested in Table 8 and a judicious analysis of the summary of the first trial assumptions, it should be possible to obtain the most suitable exchanger on the second trial.

Tube Standards. There are numerous advantages in standardizing the outside diameter, gage, and length of the tubes used in a plant.

Frg. 11.4. Cost of tubular surface vs. tube outside diameter. (Sieder, Chemical Engineering.)

Standardization reduces the number of sizes and lengths which must be carried in storage for the replacement of tubes which develop leaks. It also reduces the number of installing and cleaning tools required for maintenance. Pitch standards have already been discussed in Chap. 7, but the selection of the tube diameter has an economic aspect. Obviously the smaller the diameter of the tube the smaller the shell required for a given surface, the greater the value of h_{i}, and the smaller the first cost. The nature of the variation in cost, taken from Sieder, is shown in Fig. 11.4. The difference is small between the use of $3 / 4$ and 1 in . OD tubes. The cost per square foot rises greatly, however, as the diameters increase above 1 in . OD. Similarly the longer the tubes the smaller the shell diameter for a given surface, and from Fig. 11.5 the cost variation between the use of $12-16$-, and $20-\mathrm{ft}$ tubes is not very great although 8 -ft tubes sharply increase the first cost.

The lower cost of surface obtained from the smaller outside diameter and greater length tubes is offset by the fact that maintenance and particularly cleaning are costlier with long tubes of small outside diameter. If the tubes are too small, under $3 / 4 \mathrm{in}$. OD , there are too many to be
cleaned, and there is less facility in handling and cleaning the smaller tubes. If the tubes are too long, it is difficult to remove the bundle and plot space must be allocated not only for the exchanger itself but also for the withdrawal of the bundle. Long tubes are also very difficult to replace, especially where the baffles are closely spaced. It is difficult to obtain comparative maintenance data per square foot as a function of tube diameter or length, since few industrial users appear to employ an assortment of tubes or have kept cost data. It may be significant

Fig. 11.5. Cost of tubular surface vs. tube length. (Sieder, Chemical Engineering.)
that for exchanger work with fluids of ordinary fouling characteristics the $3 / 4$ and 1 in. OD tubes are employed most frequently. For chemical evaporators, boilers, and fouling services, larger tubes are customary.
The Calculation and Design of an Exchanger. The outline for design follows:

Given:
Process conditions:
Hot fluid: $T_{1}, T_{2}, W, C, s, \mu, k, R_{d}, \Delta P$
Cold fluid: $t_{1}, t_{2}, w, c, s, \mu, k, R_{d}, \Delta P$
The tube length, outside diameter, and pitch will be specified by plant practice or may be determined from the suggestions in Chap. 7.
(1) Heat balance, $Q=W C\left(T_{1}-T_{2}\right)=w c\left(t_{2}-t_{1}\right)$
(2) True temperature difference, Δt :

LMTD:
$R=\frac{T_{1}-T_{2}}{t_{2}-t_{1}} \quad S=\frac{t_{2}-t_{1}}{T_{1}-t_{1}}$
F_{T} from Figs. 18 through 23
$\Delta t=\mathrm{LMTD} \times F_{T}$
(3) Caloric temperatures, T_{c} and t_{c}

Trial 1:

For the exchanger:
(a) Assume a tentative value of U_{D} with the aid of Table 8, and compute the surface from $A=Q / U_{D} \Delta t$. It is always better to assume U_{D} too high than too low, as this practice ensures arriving at the minimum surface. Determine the corresponding number of tubes using Table 10.
(b) Assume a plausable number of tube passes for the pressure drop allowed, and select an exchanger for the nearest number of tubes from the tube counts of Table 9 .
(c) Correct the tentative U_{D} to the surface corresponding to the actual number of tubes which may be contained in the shell.

The performance calculation for the film coefficients should start with the tube side. If the tube-side film coefficient is relatively greater than U_{D} and the pressure-drop allowance is reasonably fulfilled and not exceeded, the calculation can proceed to the shell side. Whenever the number of tube passes is altered, the surface in the shell is also altered, changing the value of A and U_{D}. For the remainder of the calculation shown here it is assumed that the cold fluid flows in the tubes as it does in a majority but not necessarily all cases.

Hot fuid: shell side
(4') Assume a plausible baffle spacing for the pressure drop allowed.
Flow area, $a_{s}=\mathrm{ID} \times C^{\prime} B / 144 P_{T} \mathrm{ft}^{2}$
[Eq. (7.1)]
(\mathbf{b}^{\prime}) Mass vel, $G_{s}=W / a_{s} \mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)$
[Eq. (7.2)]
($\left.6^{\prime}\right) R e_{s}=D_{6} G_{s} / \mu \quad$ [Eq. (7.3)]
Obtain D_{ε} from Fig. 28 or compute from Eq (7.4).
Obtain μ at T_{c}
(7') j_{H} from Fig. 28
(8) At T_{c} obtain $c \mathrm{Btu} /(\mathrm{lb})\left({ }^{\circ} \mathrm{F}\right)$ and k $\mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F} / \mathrm{ft}\right)$
$\left(c_{\mu} / k\right)^{3 / 3}$
(9') $h_{o}=j_{H} \frac{k}{D_{e}}\left(\frac{c \mu}{k}\right)^{1 / 2} \phi_{s}$
[Eq. (6.15)]
(10') Tube-wall temp, t_{w}
$t_{w}=t_{c}+\frac{h_{o}}{h_{i_{0}}+h_{o}}\left(T_{c}-t_{c}\right)$
(11) Obtain μ_{w} and $\phi_{s}=\left(\mu / \mu_{v}\right)^{0.14}$
[Fig. 24]
(12') Corrected coefficient,
$h_{0}=\frac{h_{o} \phi_{s}}{\phi_{s}}$
[Eq. (6.36)]
Check pressure drop. If unsatisfactory, assume a new baffle spacing.

Cold fuid: tube side
(4) Flow area, a_{t} : Flow area per tube a_{t} From Table 10
$a_{t}=N: a_{t}^{\prime} / 144 n, \mathrm{ft}^{2}$
[Eq. (7.48)]
ID will be obtained from Table 10.
(6) Mass vel, $G_{t}=w / a_{t} \mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)$
(6) $R e_{t}=D G_{t} / \mu$

Obtain D from Table 10.
Obtain μ at t_{c}.
(7) j_{z} from Fig. 24
(8) At t_{c} obtain $c \mathrm{Btu} /(\mathrm{Ib})\left({ }^{\circ} \mathrm{F}\right)$ and k $\mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F} / \mathrm{ft}\right)$
$(c \mu / k)^{1 / 3}$
(9) $h_{i}=j_{H} \frac{k}{D}\left(\frac{c \mu}{k}\right)^{1 / 2} \phi_{t} \quad$ [Eq. (6.15a)]
(10) $\frac{h_{i o}}{\phi_{t}}=\frac{h_{i}}{\phi_{t}} \frac{\mathrm{ID}}{\mathrm{OD}}$
[Eq. (6.5)]
(11) Obtain μ_{w} and $\phi_{t}=\left(\mu / \mu_{v}\right)^{0.14}$
[Fig. 24]
(12) Corrected coefficient.
$h_{i o}=\frac{h_{i o} \phi_{t}}{\phi_{t}}$
[Eq. (6.37)]
Check pressure drop. If unsatisfactory, assume a new pass arrangement.

Pressure Drop

(1') For $R e_{\text {, }}$ in (6^{\prime}) obtain f
(1) For $R e_{t}$ in (6) obtain f
[Fig. 26]
(2') No. of crosses, $N+1=12 L / B$
[Eq. (7.43)]
(2) $\Delta p_{t}=\frac{f G_{t}^{2} L n}{5.22 \times 10^{10} D_{s \phi_{t}}}$
[Eq. (7.45)]
$\Delta P_{*}=\frac{f G_{4}^{2} D_{1}(N+1)}{5.22 \times 10^{10} D_{\Delta} s \phi_{4}}$
[Eq. (7.44)]
(3) $\Delta P_{\mathrm{r}} \equiv \frac{4 n}{s} \frac{V^{2}}{2 g^{\prime}}$
[Eq. (7.46)]
(4) $\Delta P_{T}=\Delta P_{t}+\Delta P_{r}$
[Eq. (7.47)]

If both sides are satisfactory for film coefficients and pressure drop, the trial may be concluded.
(13) Clean overall coefficient U_{0} :

$$
\begin{equation*}
U_{c}=\frac{h_{i o} h_{o}}{h_{i o}+h_{\sigma}} \tag{6.38}
\end{equation*}
$$

(14) Dirt factor $R_{d}: U_{D}$ has been obtained in (c) above.

$$
\begin{equation*}
R_{\mathrm{d}}=\frac{U_{C}-U_{D}}{U_{c} U_{D}} \tag{6.13}
\end{equation*}
$$

The calculation of a number of exchangers for typical sensible-heattransfer conditions are given in this chapter. Each presents a different aspect of design. Together they should provide the perspective necessary for meeting a variety of applications encountered in modern industry. Since the method of approach involves trial-and-error calculations, the analyses and comments included in each solution should reduce the time required for subsequent calculations.

Example 11.1. Calculation of a Straw Oil-Naphtha Exchanger. $29,800 \mathrm{lb} / \mathrm{hr}$ of a $35^{\circ} \mathrm{API}$ light oil at $340^{\circ} \mathrm{F}$ is used to preheat $103,000 \mathrm{lb} / \mathrm{hr}$ of $48^{\circ} \mathrm{API}$ naphtha from 200 to $230^{\circ} \mathrm{F}$. The viscosity of the oil is 5.0 centipoises at $100^{\circ} \mathrm{F}$ and 2.3 centipoises at $210^{\circ} \mathrm{F}$. The viscosity of the naphtha is 1.3 centipoises at $100^{\circ} \mathrm{F}$ and 0.54 centipoises at $210^{\circ} \mathrm{F}$. Pressure drops of 10 psi are allowable.

Because the oil may tend to deposit residues, allow a combined dirt factor of 0.005 and use square pitch. Plant practice employs $3 / 4 \mathrm{in}$. OD, 16 BWG tubes $16^{\prime} 0^{\prime \prime}$ long wherever possible.

Solution:

(1) Heat balance:

Straw oil, $Q=29,800 \times 0.58(340-240)=1,730,000 \mathrm{Btu} / \mathrm{hr}$
Naphtha, $Q=103,000 \times 0.56(230-200)=1,730,000 \mathrm{Btu} / \mathrm{hr}$
(2) Δt :

$$
\text { Hot Fluid } \quad \text { Cold Fluid } \quad \text { Diff. }
$$

340	Higher Temp	230	110
240	Lower Temp	200	40
100	Differences	30	70

LMTD $=69.3^{\circ} \mathrm{F}$
$R=\frac{100}{30}=3.3 \quad S=\frac{30}{340-200}=0.214 \quad F_{T}=0.885$
A 1-2 exchanger will be satisfactory.
$\Delta t=0.885 \times 69.3=61.4^{\circ} \mathrm{F}$
(3) T_{c} and t_{c} :

$$
\begin{align*}
& \frac{\Delta t_{c}}{\Delta t_{h}}=0.364 \quad K_{c}=0.23 \text { (straw oil controlling) } \tag{Fig.17}\\
& F_{c}=0.405 \\
& T_{e}=240+0.405 \times 100=280.5^{\circ} \mathrm{F} \tag{5.28}\\
& t_{c}=200+0.405 \times 30=212^{\circ} \mathrm{F} \tag{5.29}
\end{align*}
$$

Trial:
(a) Assume $U_{D}=70$: From Table 8 a value of U_{D} between 60 and 75 should be the maximum expected. It is always better to assume U_{D} too high than too low so that the final exchanger will just fulfill the requirements. Place the small stream in the shell.

$$
\begin{align*}
& A=\frac{Q}{U_{D} \Delta t}=\frac{1,730,000}{70 \times 61.4}=403 \mathrm{ft}^{2} \\
& a^{\prime \prime}=0.1963 \mathrm{ft}^{2} / \mathrm{lin} \mathrm{ft} \tag{Table10}
\end{align*}
$$

Number of tubes $=\frac{403}{16^{\prime} 0^{\prime \prime} \times 0.1963}=129$
(b) Assume two tube passes: The quantity of tube-side fluid is very large for the small heat load and moderately large Δt and will otherwise cause difficulty in meeting the allowable ΔP if too many tube passes are employed.

From the tube counts (Table 9): 129 tubes, two passes, $3 / 4 \mathrm{in}$. OD on $1-\mathrm{in}$. square pitch
Nearest count: 124 tubes in a $151 / 4 \mathrm{in}$. ID shell
(c) Corrected coefficient U_{D} :
$A=124 \times 16^{\prime} 0^{\prime \prime} \times 0.1963=390 \mathrm{ft}^{2}$
(Table 10)
$U_{D}=\frac{Q}{A \Delta t}=\frac{1,730,000}{390 \times 61.4}=72.3$

Hot fluid: sheil side, straw oil
(4') Flow area, a_{s} : Since the minimum baffle space will provide the greatest value of h_{0}, assume
$B=\mathrm{ID} / 5=15.25 / 5$, say 3.5 in .
[Eq. (11.4)]
$a_{s}=$ ID $\times C^{\prime} B / 144 P_{T} \quad$ [Eq. (7.1)]
$=15.25 \times 0.25 \times 3.5 / 144 \times 1$
$=0.0927 \mathrm{ft}^{2}$
(5) Mass vel, $G_{s}=W / a$, [Eq. (7.2)]
$=29,800 / 0.0927=321,000 \mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)$
(6^{\prime}) At $T_{c}=280.5^{\circ} \mathrm{F}$, $\mu=1.5 \times 2.42=3.63 \mathrm{lb} /(\mathrm{ft})(\mathrm{hr})$
[Fig. 14]

$$
\begin{aligned}
D_{e} & =0.95 / 12=0.0792 \mathrm{ft} \\
R e_{s} & =D_{.} G_{s} / \mu \\
& =0.0792 \times 321,000 / 3.63=7000
\end{aligned}
$$

Cold fuid: tube side, naphtha
(4) Flow area, $a_{t}^{\prime}=0.302 \mathrm{in}{ }^{2}$
[Table 10]
$a_{t}=N_{t} a_{t}^{\prime} / 144 n$
$=124 \times 0.302 / 144 \times 2=0.130 \mathrm{ft}^{2}$
(5) Mass vel, $G_{t}=w / a_{t}$
$=103,000 / 0.130=793,000 \mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)$
(6) At $t_{c}=212^{\circ} \mathrm{F}$,
$\mu=0.54 \times 2.42=1.31 \mathrm{lb} /(\mathrm{ft})(\mathrm{hr})$
$D=0.62 / 12=0.0517 \mathrm{ft} \quad$ [Table 10]
$R e_{t}=D G_{t} / \mu$
$=0.0517 \times 793,000 / 1.31=31,300$

Hot fluid: shell side, straw oil
(7') $\mathbf{j}_{\boldsymbol{H}}=46$
(8') For $\mu=1.5 \mathrm{cp}$ and $35^{\circ} \mathrm{API}$
[Fig. 16] $k(\mathrm{c} \mu / k)^{1 / 3}=0.224 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F} / \mathrm{ft}\right)$ $\left(9^{\prime}\right) h_{0}=j \pm \frac{k}{D_{s}}\left(\frac{c \mu}{k}\right)^{1 / 2} \phi_{4} \quad[E q . ~(6.15 b)]$ $\frac{h_{0}}{\phi_{t}}=\frac{46 \times 0.224}{0.0792}=130$
(10'), (11'), (12') Omit the viscosity correction for the trial or $\phi_{s}=1.0$.
$h_{o}=\frac{h_{0}}{\phi_{s}}=130 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$

Cold fluid: tube side, naphtha
(7) $j_{H}=102$
[Fig. 24]
(8) For $\mu=0.54 \mathrm{cp}$ and $48^{\circ} \mathrm{API}$
[Fig. 16]
$k\left(c_{\mu} / k\right)^{1 / 3}=0.167 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F} / \mathrm{ft}\right)$
(9) $h_{i}=j_{H} \frac{k}{D}\left(\frac{c \mu}{k}\right)^{1 / 3} \phi_{t} \quad[$ Eq. (6.15a)] $\frac{h_{i}}{\phi_{t}}=102 \times 0.167 / 0.0517=329$
(10) $\frac{h_{i o}}{\phi_{t}}=\frac{h_{i}}{\phi_{i}} \times \frac{\mathrm{ID}}{\mathrm{OD}}=329 \times \frac{0.62}{0.75}=272$
[Eq. (6.5)]
(11), (12) Omit the viscosity correction for the trial or $\phi_{t}=1.0$.
$h_{i o}=\frac{h_{i o}}{\phi_{i}}=272 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}{ }^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$
Proceed with the pressure drop calculation.

Pressure Drop

(1) For Re, $=7000$,
$f=0.00225 \mathrm{ft}^{2} / \mathrm{in}^{2}{ }^{2}$
$s=0.76$
(2') No. of crosses, $N+1=12 L / B$
$=12 \times 16 / 3.5=55$
$s=0.76$
$D_{s}=15.25 / 12=1.27 \mathrm{ft}$
(3') $\Delta P_{s}=\frac{f G_{s}^{2} D_{s}(N+1)}{5.22 \times 10^{10} D_{s} s \phi_{s}}[\mathrm{Eq}$. (7.44)] $=\begin{array}{r}0.00225 \times 321,000^{2} \times 1.27 \\ \times 55 \\ 5.22 \times 10^{10} \times 0.0792 \times 0.76 \\ \times 1.0 \\ =5.2 \mathrm{psi}\end{array}$
[Eq. (7.43)]
(1) For $R e_{t}=31,300$,
[Fig. 29]
[Fig. 6]
$f=0.0002 \mathrm{ft}^{2} / \mathrm{in} .^{2}$
[Fig. 26]
$s=0.72$
[Fig. 6]

(3) and (4) may be omitted for the trial. Now proceed to the shell side.
(13) Clean overall coefficient U_{C} :

$$
\begin{equation*}
U_{c}=\frac{h_{i_{0}} h_{o}}{\bar{h}_{i_{0}}+h_{o}}=\frac{272 \times 130}{272+130}=88.2 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right) \tag{6.38}
\end{equation*}
$$

(14) Dirt factor $R_{d}: U_{D}$ from (c) is 72.3.

$$
\begin{equation*}
R_{d}=\frac{U_{G}-U_{D}}{U_{C} U_{D}}=\frac{88.2-72.3}{88.2 \times 72.3}=0.0025(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right) / \mathrm{B} t \mathrm{u} \tag{6.13}
\end{equation*}
$$

130	h outside	272
U_{C}	88.2	
U_{D}	72.3	
R_{d} Calculated 0.0025		
R_{d} Required	0.0050	
5.2	Calculated $\Delta \mathrm{P}$	2.1
10.0	Allowable $\Delta \mathrm{P}$	10.0

Discussion. The first trial is disqualified because of failure to meet the required dirt factor. What conclusions may be drawn so that the next trial will produce the satisfactory exchanger? Could any advantage be gained by reversing the streams? Obviously the film coefficient for the distillate, which is controlling, would drop considerably if the streams were reversed. Could four passes be used for the tubes? Doubling the number of tube passes would approximately double the mass velocity and give eight times the tube-side pressure drop thereby exceeding the allowable ΔP. All the assumptions above have been reasonable. The exchanger is simply a little too small, or in other words, the value assumed for U_{D} must be reduced. It will be necessary to proceed anew.
Trial 2: Assume $U_{D}=60$, two tube passes and the minimum shell baffle space. Proceeding as above and carrying the viscosity correction and pressure drops to completion, the new summary is given using a $171 / 4 \mathrm{in}$. ID shell with 166 tubes on two passes and a 3.5 -in. baffle space.

Summary

115.5	h outside	213
U_{C}	74.8	
U_{D}	54.2	
R_{d} Calculated 0.005		
R_{d} Required 0.005		
4.7	Calculated $\Delta \mathrm{P}$	2.1
10.0	Allowable $\Delta \mathrm{P}$	10.0

The final exchanger will be

$$
\begin{array}{cc}
\text { Shell side } & \text { Tube side } \\
\text { ID }=171 / 4 \mathrm{in} . & \text { Number and length }=166,16^{\prime \prime} 0^{\prime \prime} \\
\text { Baffle space }=3.5 \mathrm{in} . & \text { OD, BWG, pitch }=3 / 4 \mathrm{in} ., 16 \mathrm{BWG}, 1 \text {-in. square } \\
\text { Passes }=1 & \text { Passes }=2
\end{array}
$$

Example 11.2. Calculation of a Lean-oil-Rich-oil Exchanger. $84,348 \mathrm{lb} / \mathrm{hr}$ of a $35^{\circ} \mathrm{API}$ lean absorption oil in a process identical with Fig. 11.1 leaves a stripping column to transfer its heat to $86,357 \mathrm{lb} / \mathrm{hr}$ of rich oil leaving the absorber at $100^{\circ} \mathrm{F}$ with a gravity of closely $36^{\circ} \mathrm{API}$ at $60^{\circ} \mathrm{F}$. The range for the lean oil will be from 350 to $160^{\circ} \mathrm{F}$, and the outlet temperature of the rich oil will be $295^{\circ} \mathrm{F}$. The viscosity of the oil is 2.6 centipoises at $100^{\circ} \mathrm{F}$ and 1.15 centipoises at $210^{\circ} \mathrm{F}$. Pressure drops of 10 psi are available, and in accordance with Table 12, a combined dirt factor of 0.004 should be allowed.

Plant practice again employs $3 / 4 \mathrm{in}$. OD, 16 BWG tubes $16^{\prime} 0^{\prime \prime}$ long and laid out on square pitch.

Solution:

(1) Heat balance:

Lean oil, $Q=84,438 \times 0.56(350-160)=8,950,000 \mathrm{Btu} / \mathrm{hr}$
Rich oil, $Q=86,357 \times 0.53(295-100)=8,950,000 \mathrm{Btu} / \mathrm{hr}$
(2) Δt :
Hot Fluid Coid Fluid Diff.

350	Higher Temp	295	55
160	Lower Temp	100	60
190	Differences	195	5

$\mathrm{LMTD}=57.5^{\circ} \mathrm{F}$
$R=\frac{190}{195}=0.975 \quad S=\frac{195}{350-100}=0.78$
1-2 exchanger, $F_{T}=$ inoperable
(Fig. 18)
2-4 exchanger, $F_{T}=$ inoperable
3-6 exchanger, $F_{T}=0.725$
(Fig. 20)
4-8 exchanger, $F_{T}=0.875$
(Fig. 21)
A 4-8 exchanger arrangement will be required. This may be met by four 1-2 exchangers in series or two $2-4$ exchangers in series. The latter will be used.

$$
\begin{equation*}
\Delta t=0.875 \times 57.5=50.3^{\circ} \mathrm{F} \tag{7.42}
\end{equation*}
$$

(3) T_{c} and t_{c} :

$$
\begin{align*}
& \frac{\Delta t_{c}}{\Delta t_{c}}=1.09 \\
& K_{c}=0.32 \tag{Fig.17}\\
& F_{c}=0.48 \\
& T_{e}=160+0.48 \times 190=251^{\circ} \mathrm{F} \tag{5.28}\\
& t_{c}=100+0.48 \times 195=193.5^{\circ} \mathrm{F} \tag{5.29}
\end{align*}
$$

Trial:
(a) Assume $U_{D}=50$: Although both oils and quantities are almost identical, the temperature range of the cold rich oil and correspondingly greater viscosity will make the rich oil controlling. For this reason, allowable pressure drops being equal, the cold fluid should be placed in the shell. The coefficients will be lower than those of Table 8, since the pressure drops are more difficult to meet in a 4-8 exchanger and mass velocities must accordingly be kept down. In Example 11.1 with a similar controlling oil the value of U_{C} was approximately 75 with a minimum bafle spacing which did not completely take advantage of the allowable pressure drop. The
assumption of $U_{D}=50$ is a compromise between medium and heavy organics and will probably be high but will help to establish the correct unit on the following trial.

$$
A=\frac{Q}{U_{D} \Delta t}=\frac{8,950,000}{50 \times 50.3}=3560 \mathrm{ft}^{2}
$$

Use two $2-4$ exchangers in series with removable longitudinal baffles.
Number of tubes per shell, $N_{t}=3560 / 2 \times 16^{\prime} 0^{\prime \prime} \times 0.1963=567$
(Table 10)
(b) Assume six tube passes: From previous problems a mass velocity of 700,000 gave satisfactory tube-side pressure drops. Since the number of tube passes in two units will be greater, a maximum of about 450,000 should be employed.

Six passes (flow area/tube, $a_{t}^{\prime}=0.302$ in. ${ }^{2}$)
$G=w / a_{t}=w 144 n / N_{t} a_{t}^{\prime}=84.438 \times 144 \times 6 / 567 \times 0.302=426,000 \mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)$ From the tube counts (Table 9): 567 tubes, six passes, $3 / 4 \mathrm{in}$. OD on 1 -in. square pitch
Nearest count: 580 tubes in a 31 in . ID shell
(c) Corrected coefficient U_{D} :
$a^{\prime \prime}=0.1963 \mathrm{ft}^{2} / \mathrm{lin} \mathrm{ft}^{\prime}$
(Table 10)
$A=2 \times 580 \times 16^{\prime} 0^{\prime \prime} \times 0.1963=3640 \mathrm{ft}^{2}$
$U_{D}=\frac{Q}{A \Delta t}=\frac{8,950,000}{3640 \times 50.3}=49.0$

Hot fluid: tube szde, lean oil
(4) Flow area, a_{t} :
$a_{t}^{\prime}=0.302$ in. ${ }^{2}$
$a_{t}=N_{t} a_{t}^{\prime} / 144 n$
[Table 10]
$=580 \times 0.302 / 144 \times 6=0.203 \mathrm{ft}^{2}$
(5) Mass vel, $G_{t}=W / a_{t}$
$=84,438 / 0.203=416,000 \mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)$
(6) At $T_{c}=251^{\circ} \mathrm{F}, \mu=0.88 \times 2.42$

$$
=2.13 \mathrm{lb} /(\mathrm{ft})(\mathrm{hr}) \quad[\text { Fig. 14] }
$$

$D=0.62 / 12=0.0517 \mathrm{ft} \quad$ [Table 10] $R e_{t}=D G_{t} / \mu$

$$
=0.0517 \times 416,000 / 2.13=10,100
$$

(7) $j_{H}=36.5$
[Fig. 24]
(8) For $\mu=0.88 \mathrm{cp}$ and $35^{\circ} \mathrm{API}$
$k(c \mu / k)^{1 / 8}=0.185 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F} / \mathrm{ft}\right)$
[Fig. 16]
(9) $h_{i}=j_{H} \frac{k}{D}\left(\frac{c \mu}{k}\right)^{1 / 3} \phi_{t} \quad[E q . ~(6.15 a)]$
$\frac{h_{i}}{\phi_{t}}=36.5 \times \frac{0.185}{0.0517}=130$
(10) $h_{i o}=h_{i} \times \frac{\mathrm{ID}}{\mathrm{OD}}$
[Eq. (6.5)]

$$
\Rightarrow 130 \times 0.62 / 0.75=107
$$

(11) (12) Omit the viscosity correction for the trial, $\phi_{t}=1.0$
$h_{i_{0}}=\frac{h_{i o}}{\phi_{t}}=107 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$

Cold fluid: shell side, rich oil
(4') Flow area, a_{s} : Since the quantity of fluid is large, any baffle spacing may be arbitrarily assumed.
Assume $B=12 \mathrm{in}$.
$a_{s}=\mathrm{ID} \times C^{\prime} B / 144 P_{T}$
[Eq. (7.1)]
$=1 / 2(31 \times 0.25 \times 12 / 144 \times 1.0)$
$=0.323 \mathrm{ft}^{2}$ (2-4 exchanger)
(b^{\prime}) Mass vel, $G_{s}=w / a_{s} \quad$ [Eq. (7.2)]
$=86,357 / 0.323=267,000 \mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)$
(6^{\prime}) At $t_{c}=193.5^{\circ} \mathrm{F}$,
$\mu=1.30 \times 2.42=3.15 \mathrm{lb} /(\mathrm{ft})(\mathrm{hr})$
$D_{\text {d }}=0.95 / 12=0.0792 \mathrm{ft}$
$R e_{s}=D_{d} G_{s} / \mu$
$=0.0792 \times 267,000 / 3.15=6,720$
(7^{\prime}) $j_{H}=45$
[Fig. 28]
(8^{\prime}) For $\mu=1.30 \mathrm{cp}$ and $35^{\circ} \mathrm{API}$
$k\left(c_{\mu} / k\right)^{2 / 3}=0.213 \mathrm{Btu} /(\mathrm{hr})\left(\mathbf{f t}^{2}\right)\left({ }^{\circ} \mathbf{F} / \mathrm{ft}\right)$
[Fig. 16]
(9') $h_{o}=j_{H} \frac{k}{D_{s}}\left(\frac{c \mu}{k}\right)^{3 / 5} \phi_{s} \quad[$ Eq. (6.15)]
$\frac{h_{o}}{\phi_{s}}=45 \times \frac{0.213}{0.0792}=121$
(10^{\prime}) Omit the viscosity correction for the
trial, $\phi_{s}=1.0$.
$h_{o}=\frac{h_{o}}{\phi_{t}}=121 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$

Pressure Drop

(1) For Re $=10,100$, $f=0.00027 \mathrm{ft}^{2} / \mathrm{in}^{2}{ }^{2}$
$s=0.77$

[Fig. 26]	$\begin{array}{l}(1) \text { For } R e_{s}=6720, \\ f=0.0023 \\ \mathrm{ft}^{2} / \mathrm{in}^{2}\end{array}$

[Fig. 29]
[Fig. 6]
$s=0.79$
[Fig. 6]
(2) $\Delta P_{t}=\frac{f G_{t}^{2} L n}{5.22 \times 10^{10} D s \phi_{t}}$
[Eq. (7.45)]
(2') No. of crosses, $N+1=12 L / B$
$=\frac{0.00027 \times 416,000^{2} \times 16 \times 6 \times 2}{5.22 \times 10^{10} \times 0.0517 \times 0.77 \times 1.0}$
$=4.3 \mathrm{psi}$
$=2 \times 2 \times 12 \times 16 / 12=64$
$D_{s}=31 / 12=2.58 \mathrm{ft}$
(3) $G_{t}=416,000, V^{2} / 2 g^{\prime}=0.024$
[Fig. 27]

$$
\begin{aligned}
& \Delta P_{\mathrm{r}}=\frac{4 n}{3} \frac{V^{2}}{2 g^{\prime}}=\frac{4 \times 2 \times 6}{0.77} \times 0.024 \\
&=1.5 \mathrm{psi} \\
& \Delta P_{T}\left.=\Delta P_{i}+\Delta P_{R}=4.3+1.5=5.8 \mathrm{psi} .(7.46)\right] \\
& {[\mathrm{Eq} .(7.47)] }
\end{aligned}
$$

(3') $\Delta P_{s}=\frac{f G_{s}^{2} D_{s}(N+1)}{5.22 \times 10^{10} D_{s} s \phi_{s}}\left[E q_{.}(7.44)\right]$
$=\frac{0.0023 \times 267,000^{2} \times 2.58 \times 64}{5.22 \times 10^{10} \times 0.0792 \times 0.79 \times 1.0}$
$=8.3 \mathrm{psi}$

The pressure drop suggests the possibility of using eight passes but a rapid check shows the pressure drop for eight passes would exceed 10 psi .
Now proceed to the shell side.
(14) Dirt factor $R_{\mathrm{d}}: U_{D}$ from (c) is 49.0

$$
\begin{equation*}
R_{d}=\frac{U_{c}-U_{D}}{U_{c} U_{D}}=\frac{56.8-49.0}{56.8 \times 49.0}=0.0028(\mathrm{hr})\left(\mathrm{ft}{ }^{2}\right)\left({ }^{\circ} \mathrm{F}\right) / \mathrm{Btu} \tag{6.13}
\end{equation*}
$$

107	h outside	121
U_{C}	56.8	
U_{D}	49.0	
R_{d} Calculated 0.0028		
R_{d} Required 0.0040		
5.8	Calculated ΔP	8.3
10.0	Allowable ΔP	10.0

Discussion. The initial assumptions have provided an exchanger which very nearly meets all the requirements. Eight-pass units would meet the heat-transfer requirement but would give a tube-side pressure drop of 14 psi . The trial exchanger will
be somewhat less suitable when the value of ϕ_{t} is also taken into account. If the minimum dirt factor of 0.0040 is to be taken literally, it will be necessary to try the next size shell.

Trial 2:

Assume a 33 in . ID shell with six ${ }^{1}$ tube passes and baffles spaced 12 -in. apart, since the pressure drop increases with the diameter of the shell for a given mass velocity. The summary for the conditions are

Summary

94	h outside	118
U_{C}	52.3	
U_{D}	42.0	
R_{d} Calculated 0.0047		
R_{d} Required 0.004		
4.4	Calculated ΔP	7.9
10.0	Allowable ΔP	10.0

The two final exchangers in series will be

$$
\begin{array}{rlrl}
\text { Shell side } & \text { Tube side } \\
\text { ID } & =33 \text { in. } & \text { Number and length }=676,16^{\prime} 0^{\prime \prime} \\
\text { Baffle space } & =12 \mathrm{in} . & O D, B W G, \text { pitch } & =3 / 4 \mathrm{in} ., 16 \mathrm{BWG}, 1 \text {-in. square } \\
\text { Passes } & =2 & & \text { Passes }
\end{array}=6
$$

Example 11.3. Calculation of a Caustic Solution Cooler. $100,000 \mathrm{lb} / \mathrm{hr}$ of $15^{\circ} \mathrm{Be}$ caustic solution (11 per cent sodium hydroxide, $s=1.115$) leaves a dissolver at $190^{\circ} \mathrm{F}$ and is to be cooled to $120^{\circ} \mathrm{F}$ using water at $80^{\circ} \mathrm{F}$. Use a combined dirt factor of 0.002 and pressure drops of 10 psi .

The viscosity of the 11 per cent sodium hydroxide may be approximated by the methods of Chap. 7, but is sirupy, and actual data should be used if possible. The viscosity at $100^{\circ} \mathrm{F}$ is 1.4 centipoises and at $210^{\circ} \mathrm{F}$ is 0.43 centipoises. For the specific heat assume the dry salt to have a value of $0.25 \mathrm{Btu} / \mathrm{lb}$, giving a specific heat for the solution at the mean of 0.88 .

Plant practice permits the use of triangular pitch with 1 in. OD tubes for solutions in which the scale may be boiled out.

Solution:

(1) Heat balance:

Caustic, $Q=100,000 \times 0.88(190-120)=6,160,000 \mathrm{Btu} / \mathrm{hr}$
Water, $Q=154,000 \times 1(120-80)=6,160,000 \mathrm{Btu} / \mathrm{hr}$
${ }^{1}$ An eight-pass exchanger would give a pressure drop of 10.8 psi .
(2) Δt :
Hot Fluid Cold Fluid Diff.

190	Higher Temp	120	70
120	Lower Temp	80	40
70	Differences	40	30

LMTD $=53.3^{\circ} \mathrm{F}$
Eq. (5.14)
$R=\frac{70}{40}=1.75 \quad S=\frac{40}{190-80}=0.364$
$F_{r}=0.815$
A 1-2 exchanger will be satisfactory.
$\Delta t=0.815 \times 53.3=43.5^{\circ} \mathrm{F}$
(3) T_{c} and t_{c} : The average temperatures T_{a} and t_{a} will be satisfactory because of the closeness of the ranges and the low viscosities.

Trial:

(a) Assume $U_{D}=250$. From Table 8 this value is about the minimum for a 0.001 dirt factor and should be suitable for a trial when the required dirt factor is 0.0020 .
$A=\frac{6,160,000}{250 \times 43.5}=567 \mathrm{ft}^{2}$
$a^{\prime \prime}=0.2618 \mathrm{ft}^{2} / \mathrm{in} \mathrm{ft}$
(Table 10)
Number of tubes, $N_{t}=\frac{567}{16^{\prime} 0^{\prime \prime} \times 0.2618}=136$
(b) Assume four tube passes: For two tube passes $a_{t}=0.258$ and $G_{t}=598,000$ corresponding to a water velocity of only 2.65 fps.

From the tube counts (Table 9): 136 tubes, 4 passes, 1 in. OD on $134-\mathrm{in}$. triangular pitch

Nearest count: 140 tubes in a 191/4" ID shell
(c) Corrected coefficient U_{D} :
$A=140 \times 16^{\prime} 0^{\prime \prime} \times 0.2618=586 \mathrm{ft}^{2}$
$U_{D}=\frac{Q}{A \Delta i}=\frac{6,160,000}{586 \times 43.5}=\mathbf{2 4 2}$

Hot fluid: shell side, caustic
(4) From the previous problems a mass velocity of about 500,000 gave a reasonable pressure drop. By trial this corresponds to about a 7 -in. baffle spacing. $a_{1}=I D \times C^{\prime} B / 144 P_{T}$
[Eq. (7.1)]
$=19.25 \times 0.25 \times 7 / 144 \times 1.25$ $=0.1875 \mathrm{ft}^{2}$

Cold fluid: tube side, water
(4) Flow area, $a_{t}^{\prime}=0.546$ in. ${ }^{2}$ [Table 10]
$a_{t}=N_{t} a_{t}^{\prime} / 144 n$
[Eq. (7.48)]
$=140 \times 0.546 / 144 \times 4=0.133 \mathrm{ft}^{2}$

Hot fluid: shell side, caustic
(${ }^{\prime}$) $G_{s}=W / a_{s}$

$$
=100,000 / 0.1875
$$

$=533,000 \mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)$
(6') At $T_{a}=155^{\circ} \mathrm{F}$,
$\mu=0.76 \times 2.42=1.84 \mathrm{lb} /(\mathrm{ft})(\mathrm{hr})$
$D_{4}=0.72 / 12=0.06 \mathrm{ft}$
[Fig. 28]
$R e_{s}=D_{0} G_{s} / \mu \quad$ [Eq. (7.3)]
$=0.06 \times 533,000 / 1.84=17,400$
$\left(7^{\prime}\right) j_{H}=75$
(8) At $155^{\circ} \mathrm{F}, k=0.9\left(k_{\text {water }}\right)$ [Table 4] $=0.9 \times 0.38$ $=0.342 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}{ }^{2}\right)\left({ }^{\circ} \mathrm{F} / \mathrm{ft}\right)$
$(c \mu / k)^{1 / 6}=(0.88 \times 1.84 / 0.342)^{1 / 3}=1.68$
(9') $h_{o}=j_{H} \frac{K}{D_{e}}\left(\frac{c_{\mu}}{k}\right)^{1 / 3} \phi_{\mathrm{s}} \quad[\mathrm{Eq} .(6.15 b)]$
$\frac{h_{o}}{\phi_{s}}=75 \times 0.342 \times 1.68 / 0.06=717$
(10') (11) (12') $\phi_{s}=1$ (low viscosity)
$h_{o}=\frac{h_{o}}{\phi_{s}}=717 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$

Cold fluid: tube side, water
(5) $G_{t}=w / a_{t}$
$=154,000 / 0.133$

$$
=1,160,000 \mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)
$$

Vel, $V=G_{t} / 3600 p$
$=1,160,000 / 3600 \times 62.5=5.16 \mathrm{fps}$
(6) At $t_{a}=100^{\circ} \mathrm{F}$,
$\mu=0.72 \times 2.42=1.74 \mathrm{lb} /(\mathrm{ft})(\mathrm{hr})$
[Fig. 14]
$D=0.834 / 12=0.0695 \mathrm{ft} \quad$ [Table 10]
(Res is for pressure drop only)
$R e_{t}=D G_{t} / \mu$
$=0,0695 \times 1,160,000 / 1.74=46,300$
(9) $h_{i}=1240 \times 0.94=1165 \quad$ [Fig. 25]
$\begin{aligned} \text { (10) } h_{i o} & =h_{i} \times \text { ID } / \mathrm{OD} \quad[\mathrm{Eq} .(6.5)] \\ & =1165 \times 0.834 / 1.0 \quad \\ & =972 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)\end{aligned}$

Pressure Drop

(1') For $R e_{*}=17,400$,
$f=0.0019 \mathrm{ft}^{2} / \mathrm{in} .^{2}$
(2') No. of crosses, $N+1=12 L / B$
[Eq. (7.43)]

$$
=12 \times 16 / 7=28
$$

$D_{\mathrm{s}}=19.25 / 12=1.60 \mathrm{ft}$
(3') $\Delta P_{s}=\frac{f G_{s}^{2} D_{s}(N+1)}{5.22 \times 10^{10} D_{s} s \phi_{z}} \quad[\mathrm{Eq} .(7.44)]$

$$
\begin{array}{r}
=\frac{0.0019 \times 533,000^{2} \times 1.60 \times 28}{5.22 \times 10^{10} \times 0.06 \times 1.115 \times 1.0} \\
=7.0 \mathrm{psi}
\end{array}
$$

[Fig. 29]
(1) For $R e_{i}=46,300$,
$f=0.00018 \mathrm{ft}^{2} / \mathrm{in}^{2}{ }^{2}$
(2) $\Delta P_{t}=\frac{f G_{t}^{2} L n}{5.22 \times 10^{10} D s \phi_{t}} \quad[\mathrm{Eq} .(7.45)]$

$$
=\frac{0.00018 \times 1,160,000^{2} \times 16 \times 4}{5.22 \times 10^{10} \times 0.0695 \times 1.0 \times 1.0}
$$

$$
=4.3 \mathrm{psi} \quad[\mathrm{Eq} .(7.46)]
$$

(3) $\Delta P_{r}=\frac{4 n}{s} \frac{V^{2}}{2 g^{\prime}}$
[Fig. 27]

$$
=\frac{4 \times 4}{1} \times 0.18=2.9 \mathrm{psi}
$$

(4) $\Delta P_{T}=\Delta P_{t}+\Delta P_{r}$
[Eq. (7.47)]

$$
=4.3+2.9=7.2 \mathrm{psi}
$$

Now proceed to the shell side.
(13) Clean overall coefficient U_{C} :

$$
\begin{equation*}
U_{c}=\frac{h_{i o} h_{o}}{h_{i_{0}}+h_{o}}=\frac{972 \times 717}{972+717}=413 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right) \tag{6.38}
\end{equation*}
$$

(14) Dirt factor $R_{d:} U_{D}$ from (c) is 242.

$$
\begin{equation*}
R_{d}=\frac{U_{c}-U_{D}}{U_{c} U_{D}}=\frac{413-242}{413 \times 242}=0.0017(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right) / \mathrm{Btu} \tag{6.13}
\end{equation*}
$$

Summary		
717	h outside	972
U_{C}	413	
U_{D}	242	
R_{d} Calculated	0.0017	
R_{d} Required	0.0020	
7.0	Calculated ΔP	7.2
10.0	Allowable ΔP	10.0

Discussion. Adjustment of the baffle space to use the full 10 psi will still not permit the exchanger to make the 0.002 dirt factor. The value of U_{D} has been assumed too high. Try the next size shell

Trial 2:

Try a $211 / 4 \mathrm{in}$. ID shell with four tube passes and a 6 -in. baffle space. This corresponds to 170 tubes.

Summary

720	h outside	840
U_{C}	390	
U_{D}	200	
R_{d} Calculated 0.0024		
R_{d} Required 0.002		
9.8	Calculated ΔP	4.9
10.0	Allowable ΔP	10.0

The use of six tube passes exceeds the allowable tube side pressure drop.
The final exchanger will be

$$
\begin{array}{rlrl}
\text { Shell side } & \text { Tube side } \\
\text { ID } & =211 / 4 \mathrm{in} . & \text { Number and length }=170,16^{\prime} 0^{\prime \prime} \\
\text { Baffle space } & =6 \text { in. } & \text { OD, BWG, pitch } & =1 \text { in., } 14 \text { BWG, } 11 / 4 \text {-in. tri. } \\
\text { Passes } & =1 & \text { Passes } & =4
\end{array}
$$

Example 11.4. Calculation of an Alcohol Heater. $115,000 \mathrm{lb} / \mathrm{hr}$ of absolute alcohol (100 per cent ethyl alcohol, $s=0.78$) is to be heated under pressure from a stor-
age tomperature of 80 to $200^{\circ} \mathrm{F}$ using steam at $225^{\circ} \mathrm{F}$. A dirt factor of 0.002 is required along with an allowable alcohol pressure drop of 10 psi .

Plant practice is established using I-in. OD tubes, $14 \mathrm{BWG}, 12^{\prime} 0^{\prime \prime}$ long. Triangular pitch is satisfactory for clean services.

Solution:

(1) Heat balance:

Alcohol, $Q=115,000 \times 0.72(200-80)=9,950,000 \mathrm{Btu} / \mathrm{hr}$
Steam, $Q=10,350 \times 962=9,950,000 \mathrm{Btu} / \mathrm{hr}$
(2) Δt : LMTD (true counterflow):

Hot Fluid Cold Fluid Diff.

225	Higher Temp	200	25
225	Lower Temp	80	145
0	Differences	120	120

$$
\begin{equation*}
\mathrm{LMTD}=68.3^{\circ} \mathrm{F} \tag{5.14}
\end{equation*}
$$

(3) T_{c} and t_{c} : Use T_{c} and t_{a} because of the low alcohol viscosity.

Trial.
(a) Assume $U_{D}=200$: From Table 8 values of U_{D} from 200 to 700 may be expected when a dirt factor of 0.001 is employed. Since the dirt factor required is 0.002 , the very maximum value of U_{D} would be 500 corresponding to the dirt alone.
$A=\frac{Q}{U_{D} \Delta t}=\frac{9,950,000}{200 \times 68.3}=728 \mathrm{ft}^{2}$
$a^{\prime \prime}=0.2618 \mathrm{ft}^{2} / \mathrm{lin} \mathrm{ft}^{\mathrm{f}}$
(Table 10)
Number of tubes, $N_{t}=\frac{728}{12^{\prime} 0^{\prime \prime} \times 0.2618}=232$
(b) Assume two tube passes: Only one or two passes are required for steam heaters.

From the tube counts (Table 9): 232 tubes, two passes, 1 in. OD on $1 / 4$-in. triangular pitch

Nearest count: 232 tubes in a $23 \frac{1}{4}$ in. ID shell
(c) Corrected coefficient U_{D} :
$A=232 \times 12^{\prime} 0^{\prime \prime} \times 0.2618=728 \mathrm{ft}^{2}$
$U_{D}=\frac{Q}{A \Delta t}=\frac{9,950,000}{728 \times 68.3}=200$

Hot fluid: tube side, steam
(4) Flow area, $a_{i}^{\prime}=0.546$ in. ${ }^{2}$ [Table 10] $a_{\ell}=N_{t} a_{t}^{\prime} / 144 n \quad$ [Eq. (7.48)]
$=232 \times 0.546 / 144 \times 2=0.44 \mathrm{ft}^{2}$

Cold fluid: shell side, alcohol
(4') To obtain a mass velocity betwreen 400,000 and 500,000 use a 7 -in. baffle space.
$\begin{aligned} a_{\mathrm{s}} & =\mathrm{ID} \times C^{\prime} B / 144 P_{T} \quad[\text { Eq. }(7.1)] \\ & =23.25 \times 0.25 \times 7 / 144 \times 1.25 \quad \mathrm{ft}^{3} \\ & =0.226\end{aligned}$

Hot fluid: tube side, steam
(5) $G_{t}=W / a_{t}$

$$
=10,350 / 0.44
$$

$$
=23,500 \mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)
$$

(6) At $225^{\circ} \mathrm{F}$,
$\mu=0.013 \times 2.42=0.0314 \mathrm{lb} /(\mathrm{ft})(\mathrm{hr})$
[Fig. 15]
$D=0.834 / 12=0.0695 \mathrm{ft}$
$R e_{\ell}=D G_{\ell} / \mu$ (for pressure drop only)
$=0.0695 \times 23,500 / 0.0314$
$=52,000$
(9) $h_{i o}=1500 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$

Cold fluid: shell side, alcohol
(5') $G_{s}=w / a_{b}$
[Eq. (7.2)]

$$
=115,000 / 0.226
$$

$$
=508,000 \mathrm{lb} /(\mathrm{hr})\left(\mathrm{f} \mathrm{t}^{2}\right)
$$

(6) At $t_{a}=140^{\circ} \mathrm{F}$,

$$
\mu=0.60 \times 2.42=1.45 \mathrm{lb} /(\mathrm{ft})(\mathrm{hr})
$$

[Fig. 14]
$D_{e}=0.72 / 12=0.06 \mathrm{ft}$
[Fig. 28]
$R_{s}=D_{s} G_{s} / \mu \quad[E q . ~(7.3)]$
$=0.06 \times 508,000 / 1.45=21,000$
(7^{\prime}) $j_{H}=83$
(8) At $140^{\circ} \mathrm{F}$,
$k=0.085 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F} / \mathrm{ft}\right)$ [Table 4]
$\left(c_{\mu} / k\right)^{1 / 3}=(0.72 \times 1.45 / 0.085)^{1 / 3}=2.31$
$\left(9^{\prime}\right) h_{o}=j_{H} \frac{k}{D_{e}}\left(\frac{c \mu}{k}\right)^{36} \phi_{s} \quad[E q .(6.15 b)]$
$\frac{h_{0}}{\phi_{s}}=83 \times 0.085 \times 2.31 / 0.06=270$
$\left(10^{\prime}\right) \phi_{4}=1.0$,
$h_{o}=\frac{h_{o}}{\phi_{s}}=270 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$

Pressure Drop

(1) For $R e_{t}=52,000$,
$f=0.000175 \mathrm{ft}^{2} / \mathrm{in} .^{2}$
From Table 7 the specific volume is approximately $21 \mathrm{ft}^{3} / \mathrm{lb}$.
$\rho=1 / 2 \mathrm{I}=0.0477 \mathrm{lb} / \mathrm{ft}^{3}$
$s=0.0477 / 62.5=0.00076$
(2) $\Delta P_{t}=\frac{1}{2} \frac{f G_{t}^{2} L n}{5.22 \times 10^{10} D_{8 \phi_{t}}} \quad[$ Eq. 7.53)]

$$
\begin{aligned}
& =\frac{1}{2} \times \frac{0.000175 \times 23,500^{2} \times 12 \times 2}{5.22 \times 10^{10} \times 0.0695 \times 0.00076} \\
& =0.42 \mathrm{psi}
\end{aligned}
$$

(3) ΔP_{r} : Negligible because of partial condensation at end of first pass.
(1') For $R e_{s}=21,000$,
[Fig. 26] $f=0.0018 \mathrm{ft}^{2} / \mathrm{in} .^{2}$
$s=0.78$
(2') No. of crosses, $N+1=12 L / B$
[Eq. (7.43)]
$=12 \times 12 / 7=21$
$D_{s}=23.25 / 12=1.94 \mathrm{ft}$
(3') $\Delta P_{s}=\frac{f G_{8}^{2} D_{s}(N+1)}{5.22 \times 10^{10} D_{8} s \phi_{s}}$
[Eq. (7.44)]
$=\frac{0.0018 \times 508,000^{2} \times 1.94 \times 21}{5.22 \times 10^{10} \times 0.06 \times 0.78 \times 1.0}$
$=7.8 \mathrm{psi}$
(13) Clean overall coefficient U_{C} :

$$
\begin{equation*}
U_{c}=\frac{h_{i{ }_{i}} h_{0}}{h_{i o}+h_{0}}=\frac{1500 \times 270}{1500+270}=229 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right) \tag{6.38}
\end{equation*}
$$

(14) Dirt factor $R_{d}: U_{D}$ from (c) is 200.

$$
\begin{equation*}
R_{d}=\frac{U_{C}-U_{D}}{U_{c} U_{D}}=\frac{229-200}{229 \times 200}=0.000633(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right) / \mathrm{Btu} \tag{6.13}
\end{equation*}
$$

Summary

1500	h outside	270
U_{C}	229	
U_{D}	200	
R_{d} Calculated 0.000633		
R_{d} Required 0.002		
0.42	Calculated P	7.8
Neg.	Allowable P	10.0

Discussion. This is clearly an instance in which U_{D} was assumed too high. It is now a question of how much too high. With the aid of the summary it is apparent that in a larger shell a clean overall coefficient of about 200 may be expected. To permit a dirt factor of 0.002 the new U_{D} should be

$$
\begin{gathered}
\frac{1}{U_{D}}=\frac{1}{U_{C}}+R_{d}=\frac{1}{200}+0.002 \\
U_{D}=143
\end{gathered}
$$

Trial 2:

$$
A=\frac{Q}{U_{D} \Delta t}=\frac{9,950,000}{143 \times 68.3}=1020 \mathrm{ft}^{2}
$$

No. of tubes $=\frac{1020}{12^{\prime} 0^{\prime \prime} \times 0.2618}=325$
Nearest count: 334 tubes in a 27 in . ID shell (Table 9).
The same baffle pitch should be retained, since the pressure drop increases with the inside diameter.

Summary

1500	h outside	250
U_{C}	214	
U_{D}	138.5	
R_{d} Calculated 0.0025		
R_{d} Required 0.002		
0.23	Calculated ΔP	7.1
Neg.	Allowable ΔP	10.0

If a $25-\mathrm{in}$. exchanger had been used, the dirt factor would be less than 0.002 and a 6 -in. baffe space would give a pressure drop exceeding 10 psi . The final exchanger is

```
    Shell side Tube side
    ID =27 in. Number and length =334, 12'0'
Bafle space = 7 in. OD, BWG, pitch = 1 in., 14 BWG, 11/4-in. tri.
    Passes =1 Passes =2
```

Split Flow. Sometimes it is not possible to meet the pressure-drop requirements in a 1-2 or 2-4 exchanger. Instances will occur when (1) the true temperature difference or U_{D} is very great and a small exchanger is indicated for the quantity of heat to be transferred, (2) one fluid stream has a very small temperature range compared with the other, or (3) the allowable pressure drop is small. In gases and vapors the last is the more critical because of the low density of the gas or vapor. In liquids an excellent example of (2) is found in the quenching of steel, where it is customary to cool a large volume of circulated quench oil over a small range. It is also characteristic of a number of near-constant temperature operations such as the removal of heat from exothermic reactions by continuous recirculation of the reacting fluids through an external 1-2 cooler.

Tra. 11.c. Split-flow exchanger.

Fic. 11.7. Temperature relations in split flow.

The failure to meet the allowable pressure drop by the conventional methods in a 1-2 exchanger should be construed as an indication that fluid flow and not heat transfer is the controlling factor. Reducing the length of the tubes and increasing the diameter of the shell provides one means of reducing the pressure drop, but other means are available. By locating the shell inlet nozzle at the center instead of at the end of the shell and using two outlet nozzles as shown in Fig. 11.6, the shell-side pressure drop will be but one-eighth as great as in a conventional 1-2 exchanger of the same shell diameter. The reduction is due to halving the mass velocity and halving the length of the shell-side path. This type of flow is known as split flow.

As seen in Fig. 11.7 the temperature relations in a split-flow exchanger are not in true counterflow or identical with a 1-2 exchanger, being dis-
continuous at the shell mid-point. A direct solution of the equation ${ }^{1}$ for the true temperature difference is somewhat tedious, since the values of $t_{1}^{\prime \prime}$ and $t_{2}^{\prime \prime}$ are related to the actual temperature differences and heat transferred in both parts of the exchanger on either side of the shell inlet. If $T_{2}>t_{2}$, it is satisfactory to obtain Δt by multiplying the ILMTD by the value of F_{T} obtained for a 1-2 exchanger. For services in which there is a temperature cross the actual split-flow equation should be used.

Another type of flow giving even lower pressure drops is divided flow, which is usually reserved for low-pressure gases, condensers, and reboilers. It will be discussed in Chap. 12.

Example 11.5. Calculation of a Flue Gas Cooler. $10,500 \mathrm{cfm}$ of flue gas (mol. wt. $=$ 30) at 2 psig and $250^{\circ} \mathrm{F}$ is to be cooled to $125^{\circ} \mathrm{F}$ with an allowable pressure drop of 1.0 psi. Cooling will be effected by water from 80 to $100^{\circ} \mathrm{F}$ and with an allowable pressure drop of 10 psi . An overall dirt factor of 0.005 should be provided with a reasonable minimum water velocity.
Plant practice uses 1 in. OD, 14 BWG tubes on square pitch for all services, and because it is sometimes difficult to meet the pressure drop in gas coolers, no tube length is specified.

Solution:

(1) Heat balance:

Gas: $10,500 \mathrm{cfm}$ of flue gas at $250^{\circ} \mathrm{F}$
Total gas $=\frac{10,500 \times 60 \times 30}{359 \times(711 / 492) \times(14.7 / 16.7)}=41,300 \mathrm{lb} / \mathrm{hr}$
Gas, $Q=41,300 \times 0.25(250-125)=1,290,000 \mathrm{Btu} / \mathrm{hr}$
Water, $Q=64,500 \times 1(100-80)=1,290,000 \mathrm{Btu} / \mathrm{hr}$
(2) Δt :
Hot Fluid

250	Higher Temp	Cold Fluid	Diff.
125	Lower Temp	80	150
125	Differences	20	45

${ }^{1}$ Unpublished notes, D. Q. Kern and C. L. Carpenter. The equation in terms of terminal temperatures for a split-flow exchanger with two tube passes is
$\Delta t=\frac{\left(T_{1}-T_{2}\right) \lambda / 2}{\left\{\begin{array}{c}\frac{\left(T_{1}-T_{2}\right) 2 \lambda n}{n+1} e^{\left(T_{1}-T_{1}\right)\left(\frac{\lambda}{2}-1\right) / 2 \Delta t}-\left(T_{1}-T_{2}\right)(\lambda+2)+t_{1}+t_{3} \\ -\frac{4 T_{2}+2(n-1) T_{1}}{n+1}\end{array}\right.}$
where $n=Q_{B} / Q_{A}$

$$
\lambda=\frac{\sqrt{4 R^{2}+1}}{R}
$$

and
$Q_{B} / Q_{A}=$ ratio of heat transfer in each half
$\mathrm{LMTD}=87.4^{\circ} \mathrm{F}$
$R=\frac{125}{20}=6.25 \quad S=\frac{20}{250-80}=0.118 \quad F_{T}=0.935$
A conventional 1-2 exchanger will be satisfactory. $\Delta t=0.935 \times 87.4=81.6^{\circ} \mathrm{F}$
(3) T_{c} and t_{c} : The average temperatures T_{a} and t_{a} will be satisfactory because of the small variations in the individual viscosities.

Trial:
(a) Assume $U_{D}=15$; From the examples of Chap. 9 , at atmospheric pressure and 2 psi allowable pressure drop a coefficient of about 20 might be anticipated. Since the allowable pressure drop in this example is only 1.0 psi, the trial value of U_{D} must be reduced accordingly. Assume $12^{\prime} 0^{\prime \prime}$ tubes to increase the shell cross section.

$$
\begin{aligned}
& A=\frac{Q}{U_{D} \Delta t}=\frac{1,290,000}{15 \times 81.6}=1055 \mathrm{ft}^{2} \\
& a^{\prime \prime}=0.2618 \mathrm{ft}^{2} / \mathrm{lin} \mathrm{ft} \\
& \text { Number of tubes }=\frac{1055}{12^{\prime} 0^{\prime \prime} \times 0.2618}=336
\end{aligned}
$$

(b) Assume eight tube passes: Because of the low design coefficient gas exchangers are large for the amount of cooling medium required.
From the tube counts (Table 9): 336 tubes, eight passes, 1 in . OD on $11 / 4$-in. square pitch

Nearest count: 358 tubes in a 31 in. ID shell
(c) Corrected coefficient U_{D} :

$$
\begin{aligned}
& A=358 \times 12^{\prime} 0^{\prime \prime} \times 0.2618=1125 \mathrm{ft}^{2} \\
& U_{D}=\frac{Q}{A \Delta t}=\frac{1,290,000}{1125 \times 81.6}=14.0
\end{aligned}
$$

When solved in a manner identical with the preceding examples and using the smallest integral number of bundle crosses (five) corresponding to a $28.8-\mathrm{in}$. spacing the summary is

Summary

24.0	h outside	392
U_{C}	22.7	
U_{D}	14.0	
R_{D} Calculated 0.027		
R_{d} Required 0.005		
5.2	Calculated ΔP	1.0
10	Allowable ΔP	10.0

Disoussion. The exchanger selected as a solution to the requirements combines two conditions which have not been met previously: The dirt factor is considerably greater than necessary, and the pressure drop is five times greater than the allowable. Had 8 -ft tubes been used in place of the $12-\mathrm{ft}$ tubes for $U_{D}=15$, the shell inside diameter would have been 37 in . The baffles could have been spaced 32 in . apart to provide three bundle crosses, but the resulting pressure drop would be 1.7 psi . This would be unsatisfactory, since gases require large inlet connections and the flow distribution on
the first and third bundle crosses would be poor and the conditions of allowable pressure drop would still not be met. The solution is found in a splitffow arrangement.

Trial 2. Split fow:
(a) Assume $U_{D}=15$. Referring to the summary of the first trial it is evident that, if the pressure drop is to be met, the mass velocity must be reduced so that the new gas film coefficient will be considerably below the value of 24.0 obtained for ordinary flow.
(b) Assume 12 tube passes. The low water coefficient of 392 corresponds to a velocity of only 1.7 fps which is extremely low for corrosion and dirt even where good water may be employed. Since the size of the shell will not be altered appreciably, having a large inside diameter, it is justifiable that 12 passes be employed. Fewer tube passes would be needed if tube cores were inserted in the tubes. These may be calculated in the manner of Example 10.3. When using more than 8 passes in large shells, the tube count for 8 passes should be reduced by 5 per cent for 12 passes and 10 per cent for 16 passes. For smaller shells it is advisable to avoid the use of 12 and 16 passes. Using the same shell as in Trial 1 for 12 passes, the new tube count will be $358 \times 0.95=340$ tubes.
(c) Corrected coefficient U_{D} :
$A=340 \times 12^{\prime} 0^{\prime \prime} \times 0.2618=1070 \mathrm{ft}^{2}$
$U_{D}=\frac{Q}{A \Delta t}=\frac{1,240,000}{1070 \times 81.6}=14.8$

Hot fiuid: shell side, flue gas

(4') Flow area, $a_{s}=\mathrm{ID} \times C^{\prime} B / 144 P_{2}$
There must be an odd number of crosses in each half of the shell and the largest spacing is 31 in .
$72 \mathrm{in} . / 31 \mathrm{in} .=2$ crosses; say 3 crosses (odd)
Actual spacing $=\frac{12 \times 12}{2 \times 3}=24 \mathrm{in}$.
$a_{s}=31 \times 0.25 \times 24 / 144 \times 1.25=1.03$ $\mathrm{ft}{ }^{2}$
(5^{\prime}) Mass vel, split flow:
$G_{s}=1 / 2 W / a_{s}$
$=1 / 2 \times 41,300 / 1.03$
[Eq. (7.2)]
$\left(6^{\prime}\right)$ At $T_{a}=187.5^{\circ} F$
$\mu=0.0206 \times 2.42=0.050 \mathrm{lb} /(\mathrm{ft})(\mathrm{hr})$
[Fig. 15]
$D_{s}=0.99 / 12=0.0825 \quad$ [Fig. 28]
$R e_{s}=D_{s} G_{s} / \mu \quad$ [Eq. (7.3)]

$$
=0.0825 \times 20,000 / 0.05=33,000
$$

(7') $j_{H}=105$
[Fig. 28]
(8) At $187.5^{\circ} \mathrm{F}$,
$k=0.015 \mathrm{Btu} /(\mathrm{h} r)\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F} / \mathrm{ft}\right)$
(Table 5)
$(c \mu / k)^{1 / 3}=(0.25 \times 0.050 / 0.015)^{1 / 2}=0.94$

Cold fluid: tube side, water
(4) Flow area,
$a_{t}^{\prime}=0.546 \mathrm{in}.{ }^{3}$
[Table 10)
$a_{t}=N_{t} a_{t}^{\prime} / 144 n$
$=340 \times 0.546 / 144 \times 12=0.107 \mathrm{ft}^{2}$
(5) $G_{t}=w / a_{t}$
$=64,500 / 0.107$
$=602,000 \mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)$
$\mathrm{Vel}, V=G_{t} / 3600 \rho$

$$
=602,000 / 3600 \times 62.5=2.68 \mathrm{fps}
$$

(6) At $t_{a}=90^{\circ} \mathrm{F}$,
$\mu=0.81 \times 2.42=1.96 \mathrm{lb} /(\mathrm{ft})(\mathrm{hr})$
[Fig. 14]
$D=0.834 / 12=0.0695 \mathrm{ft}$
$R e_{t}=D G_{t} / \mu$

$$
=0.0695 \times 602,000 / 1.96=21,300
$$

($R e_{i}$ is for pressure drop only)

Hot fluid: shell side, flue gas
(g) $h_{0}=j_{H} \frac{k}{D_{d}}\left(\frac{c \mu}{k}\right)^{3 / 3} \phi_{4} \quad$ [Eq. (6.15)] $\frac{h_{o}}{\phi_{t}}=105 \times 0.015 \times 0.94 / 0.0825$

$$
=17.9
$$

(10') (11') (12') $\phi_{s}=1.0$
$h_{0}=\frac{h_{0}}{\phi_{n}}=17.9 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$
(9) $h_{i}=710 \times 0.94=667$
[Fig. 25]
(10) $h_{i o}=h_{i} \times I D / O D$

$$
\begin{aligned}
=667 \times & 0.83 / 1.0 \\
& =557 \mathrm{Bta} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)
\end{aligned}
$$

Cold fluid: tube side, water

Pressure Drop

(1) For $R e_{3}=33,000$,
$f=0.0017 \mathrm{ft}^{2} / \mathrm{in}^{2}{ }^{2}$
[Fig. 29]
(2') No. of crosses, $N+1=3$ [Eq. (7.43)
$D_{1}=31 / 12=2.58 \mathrm{ft}$
$8=0.0012$
(3') $\Delta P_{z}=\frac{f G_{s}^{2} D_{s}(N+1)}{5.22 \times 10^{10} D_{s} s \phi_{4}}$ [Eq. (7.44)] $=\frac{0.00167 \times 20,000^{2} \times 2.58 \times 3}{5.22 \times 10^{10} \times 0.0825 \times 0.0012 \times 1.0}$
$=1.0 \mathrm{psi}$
(1) For Ree $_{4}=21,300$,
$f=0.00012 \mathrm{ft}^{2} / \mathrm{in} .^{2}$
(2) $\Delta P_{t}=\frac{f G_{t}^{2} L n}{5.22 \times 10^{10} D s \phi_{t}}$
[Fig. 26]
[Eq. (7.45)]

$$
=\frac{0.00022 \times 602,000^{2} \times 12 \times 12}{5.22 \times 10^{10} \times 0.0695 \times 1.0 \times 1.0}
$$

$=3.1 \mathrm{psi}$
(3) $\Delta P_{r}=4 n / s\left(V^{2} / 2 g^{\prime}\right)$
[Fig. 27]

$$
=(4 \times 12 / 1) 0.052=2.5 \mathrm{psi}
$$

(4) $\Delta P_{r}=\Delta P_{t}+\Delta P_{r}$
[Eq. (7.47)]

$$
=3.1+2.5=5.6 \mathrm{psi}
$$

(13) Clean overall coefficient U_{c} :

$$
\begin{equation*}
U_{c}=\frac{h_{i_{0}} h_{o}}{h_{\xi_{0}}+h_{o}}=\frac{557 \times 17.9}{557+17.9}=17.3 \mathrm{Btu} /(\mathbf{h r})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathbf{F}\right) \tag{6.38}
\end{equation*}
$$

(14) Dirt factor $R_{d}: U_{D}$ from (c) $=14.8$

$$
\begin{equation*}
R_{\mathrm{d}}=\frac{U_{G}-U_{D}}{U_{C} U_{D}}=\frac{17.3-14.8}{17.3 \times 14.8}=0.0098(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left(^{\circ} \mathrm{F}\right) / \mathrm{Btu} \tag{6.13}
\end{equation*}
$$

Summary

17.9	h outside	557
U_{C}	17.3	
U_{D}	14.8	
R_{d} Calculated 0.0098		
R_{d} Required	0.005	
1.0	Calculated ΔP	5.6
1.0	Allowable ΔP	10.0

A I6-pass unit would also be suitable but is not warranted. The final exchanger is

Shell side	Tube side
ID $=31 \mathrm{in}$.	Number and length $=340,12^{\prime} 0^{\prime \prime}$
Baffle space $=24 \mathrm{in}$.	OD, BWG, pitch $=1$ in., $14 \mathrm{BWG}, 11 / 4$-in. square
Passes $=$ split flow	
Passes $=12$	

PROBLEMS

For the following process conditions determine the size and arrangement of exchanger to fulfill the conditions allowing pressure drops of 10 psi each stream and a combined dirt factor of 0.004. Employ 1-2 exchangers wherever possible.
11.1. $60,000 \mathrm{lb} / \mathrm{hr}$ of $42^{\circ} \mathrm{API}$ kerosene is cooled from 400 to $225^{\circ} \mathrm{F}$ by heating $35^{\circ} \mathrm{API}$ distillate from 100 to $200^{\circ} \mathrm{F}$.

11.2. $120,000 \mathrm{lb} / \mathrm{hr}$ of aniline is cooled from 275 to $200^{\circ} \mathrm{F}$ by heating $100,000 \mathrm{lb} / \mathrm{hr}$ of benzene from 100 to $200^{\circ} \mathrm{F}$.
Use $3 / 4 \mathrm{in}$. OD, 14 BWG tubes, $16^{\prime} 0^{\prime \prime}$ long on $1-\mathrm{in}$. square pitch.
11.3. $84,000 \mathrm{lb} / \mathrm{hr}$ of $42^{\circ} \mathrm{API}$ kerosene is cooled from 300 to $100^{\circ} \mathrm{F}$ using water from

85 to $120^{\circ} \mathrm{F}$. Calculate the requirement using the $1-2$ exchangers in series.
Use $3 / 4 \mathrm{in}$. OD, 16 BWG tubes, $16^{\prime} 0^{\prime \prime}$ long on 1 -in. triangular pitch.
11.4. $22,000 \mathrm{lb} / \mathrm{hr}$ of $35^{\circ} \mathrm{API}$ distillate is heated from 200 to $300^{\circ} \mathrm{F}$ by $28^{\circ} \mathrm{API}$ gas oil from an inlet temperature of $500^{\circ} \mathrm{F}$.
Use 1 in . OD, 14 BWG tubes, $12^{\prime} 0^{\prime \prime}$ long on $1 / 4-\mathrm{in}$. triangular pitch.
11.5. $68,000 \mathrm{lb} / \mathrm{hr}$ of $56^{\circ} \mathrm{API}$ gasoline is cooled from 200 to $100^{\circ} \mathrm{F}$ using water at $85^{\circ} \mathrm{F}$.

Use 1 in . $O \mathrm{D}, 14 \mathrm{BWG}$ tubes, $12^{\prime} 0^{\prime \prime}$ long on $1 \frac{1}{4}$-in. square pitch.
11.6. $32,000 \mathrm{lb} / \mathrm{hr}$ of oxygen at 5 psig is cooled from 300 to $150^{\circ} \mathrm{F}$ using water at $85^{\circ} \mathrm{F}$. (Allowable pressure drop for oxygen 2.0 psi .)

Use $3 / 4 \mathrm{in}$. OD, 16 BWG tubes, $12^{\prime} 0^{\prime \prime}$ long on. 1 -in. square pitch.

NOMENCLATURE FOR CHAPTER 11

A	Heat-transfer surface, ft^{2}
$A_{C R}, A_{B}, A_{H}$	Heat-transfer surface of cooler, exchanger, and heater, $\mathrm{ft}{ }^{2}$
a	Flow area, ft^{2}
$a^{\prime \prime}$	External surface per linear foot, ft
B	Baffe spacing, in.
C	Specific heat of hot fluid in derivations, $\mathrm{Btu} /(\mathrm{lb})\left({ }^{\circ} \mathrm{F}\right)$
Cs	Cost of steam, dollars/Btu
C_{T}	Total annual cost, dollars
$C_{\text {Fr }}$	Cost of water, dollars/Btu
$C_{C R}, C_{E}, C_{H}$	Fixed charges of cooler, exchanger, and heater, respectively, dollars/ (ft^{2}) (yesr)
G^{\prime}	Clearance between tubes, in.
c	Specific heat of fluid, $\mathrm{Btu} /(\mathrm{lb})\left({ }^{\circ} \mathrm{F}\right)$
D	Inside diameter of tubes, ft
D,	Inside diameter of shell, ft
$D_{\text {e }}, D_{e}^{\prime}$	Equivalent diameter for heat transfer and pressure drop, ft
d	Inside diameter of tubes, in.
$d_{e s} d_{e}^{\prime}$	Equivalent diameter for heat transfer and pressure drop, in.
F_{c}	Caloric fraction, dimensionless
F_{T}	Temperature-difference factor, $\Delta t=F_{T} \times \mathrm{LMTD}$, dimensionles

f	Friction factor, $\mathrm{ft}^{2} / \mathrm{in} .{ }^{2}$
G	Mass velocity, lb/(hr)(ft^{2})
g	Acceleration of gravity, $\mathrm{ft} / \mathrm{hr}{ }^{2}$
g^{\prime}	Acceleration of gravity, $\mathrm{ft} / \mathrm{sec}^{2}$
$h, h_{i} h_{o}$	Heat-transfer coefficient in general, for inside fluid, and for outside fluid, respectively, Btu/(hr) $\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$
$h_{i o}$	Value of h_{i} when referred to the tube outside diameter, $\mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)$ (${ }^{\circ}$ F)
j_{H}	Factor for heat transfer, dimensionless
$K_{\text {c }}$	Caloric constant, dimensionless
$\stackrel{ }{2}$	Thermal conductivity, $\mathrm{Btu} /(\mathrm{hr})(\mathrm{ft})^{\text {) }}$ (${ }^{\text {F/ /ft) }}$
L	Tube length, ft
IMTD	Log mean temperature difference, ${ }^{\circ} \mathrm{F}$
N	Number of shell-side baffles
N	Number of tubes
n	Number of tube passes
P_{T}	Tube pitch, in.
$\Delta P_{T}, \Delta P_{t}, \Delta P_{r}$	Total, tube and return pressure drop, psi
Q	Heat flow, Btu/hr
\boldsymbol{R}	Temperature group ($T_{1}-T_{2}$)/($t_{2}-t_{1}$), dimensionless
$R_{\text {d }}$	Dirt factor, (hr) (ft) $\left.{ }^{\circ} \mathrm{F}\right) /$ Btu
Re, Re ${ }^{\prime}$	Reynolds number for heat transfer and pressure drop, dimensionless
S	Temperature group ($t_{2}-t_{1}$)/($\left.T_{1}-t_{1}\right)$, dimensionless
s	Specific gravity, dimensionless
T_{1}, T_{2}	Inlet and outlet temperature of hot fluid, ${ }^{\circ} \mathrm{F}$
T_{a}	Average temperature of hot fluid, ${ }^{\circ} \mathrm{F}$
$T e$	Caloric temperature of hot fluid, ${ }^{\circ} \mathrm{F}$
Ts	Temperature of steam, ${ }^{\circ} \mathrm{F}$
T_{z}	Optimum exchenger hot-fluid outlet temperature, ${ }^{\circ} \mathrm{F}$
$t y$	Optimum exchanger cold-fluid outlet temperature, ${ }^{\circ} \mathrm{F}$
$t a$	Average temperature of cold fluid, ${ }^{\circ} \mathrm{F}$
t	Caloric temperature of cold fluid, ${ }^{\circ} \mathrm{F}$
t	Tube-wall temperature, ${ }^{\circ} \mathrm{F}$
$t_{1} t_{2}^{\prime}$	Inlet and outlet water temperatures, ${ }^{\circ} \mathrm{F}$
$t_{1}^{\prime \prime}, t_{2}^{\prime \prime}$	Temperatures in a split-flow exchanger, ${ }^{\circ} \mathrm{F}$
Δt	True temperature difference in $Q=U_{D} A \Delta t,{ }^{\circ} \mathrm{F}$
$\Delta t_{c} \Delta t^{\prime}$	Cold and hot terminal temperature difference, ${ }^{\circ} \mathrm{F}$
U_{C}, U_{D}	Clean and design overall coefficient of heat transfer, $\mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}{ }^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$
$U_{C R,}, U_{E,}, U_{H}$	Overall coefficient of heat transfer for cooler, exchanger, and heater, respectively, $\mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}{ }^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$
V	Velocity, fps
W	Weight flow of hot fiuid, lb/hr
w	Weight flow of cold fluid, $\mathrm{lb} / \mathrm{hr}$
ϕ	Viscosity ratio, $\left(\mu / \mu_{0}\right)^{0.14}$
β	Viscosity, centipoises $\times 2.42=1 \mathrm{~b} /(\mathrm{ft})(\mathrm{hr})$
μ_{u}	Viscosity at tube-wall temperature, centipoises $\times 2.42=\mathrm{lb} /(\mathrm{ft})(\mathrm{hr})$
0	Annual operating hours
Subscripts (except as noted above)	
s	Shell
t	Tube

CHAPTER 12

CONDENSATION OF SINGLE VAPORS

Introduction. A fluid may exist as a gas, vapor, or liquid. The change from liquid to vapor is vaporization, and the change from vapor to liquid is condensation. The quantities of heat involved in the vaporization or condensation of a pound of fluid are identical. For a pure fluid compound at a given pressure the change from liquid to vapor or vapor to liquid occurs at but one temperature which is the saturation or equilibrium temperature. Since vapor-liquid heat-transfer changes usually occur at constant or nearly constant pressure in industry, the vaporization or condensation of a single compound normally occurs isothermally. When a vapor is removed upon formation from further contact with a liquid, the addition of heat to the vapor causes superheat, during which it behaves like a gas. If a mixture of vapors instead of a pure vapor is condensed at constant pressure, the change does not take place isothermally in most instances. The general treatment of vapor mixtures differs in certain respects from single compounds and will be studied in the next chapter with the aid of the phase rule of J. Willard Gibbs.

Condensation occurs at very different rates of heat transfer by either of the two distinct physical mechanisms, which will be discussed presently, dropwise or filmwise condensation. The condensing film coefficient is influenced by the texture of the surface on which condensation occurs and also by whether the condensing surface is mounted vertically or horizontally. In spite of these apparent complications condensation, like streamline flow, lends itself to direct mathematical study.

Dropwise and Filmwise Condensation. When a saturated pure vapor comes into contact with a cold surface such as a tube, it condenses and may form liquid droplets on the surface of the tube. These droplets may not exhibit an affinity for the surface and instead of coating the tube fall from it, leaving bare metal on which successive droplets of condensate may form. When condensation occurs by this mechanism, it is called dropwise condensation. Usually, however, a distinct film may appear as the vapor condenses and coats the tube. Additional vapor is then required to condense into the liquid film rather than form directly on the bare surface. This is film or filmwise condensation. The two mechanisms are distinct and independent of the quantity of vapor condensing per square foot of surface. Filmwise condensation is therefore
not a transition from dropwise condensation because of the rapidity at which condensate forms on the tube. Due to the resistance of the condensate film to the heat passing through it the heat-transfer coefficients for dropwise condensation are four to eight times those for filmwise condensation. Steam is the only pure vapor known to condense in a dropwise manner, and special conditions are required for its oceurrence. These are described by Drew, Nagle, and Smith ${ }^{1}$ and principally result from the presence of dirt on the surface or the use of a contaminant which adheres to the surface. Materials have been identified by Nagle ${ }^{2}$ which promote the dropwise condensation of steam although these also introduce an impurity into the steam. Dropwise condensation also occurs when several materials condense simultaneously as a mixture and where the condensate mixture is not miscible, as in the case of a hydrocarbon and steam. However, during various periods in the normal operation of a steam condenser the mechanism may initially be filmwise condensation, shift to dropwise condensation, and at some later time revert to film condensation. Because of the lack of control it is not customary in calculations to take advantage of the high coefficients which have been obtained in dropwise-condensation experiments. This chapter consequently deals with the calculation of condensers for various conditions and is based solely upon film-condensation heat-transfer coefficients.
It is fortunate that the phenomenon of film condensation lends itself to mathematical analysis, and the nature of condensation on a cold surface may be considered one of self-diffusion. The saturation pressure of vapor in the vapor body is greater than the saturation pressure of the cold condensate in contact with the cold surface. This pressure difference provides the potential for driving vapor out of the vapor body at a great rate. Compared with the small resistance to heat transfer by diffusion from the vapor into the condensate, the film of condensate on the cold tube wall contributes the controlling resistance. It is the slowness with which the heat of condensation passes through this film that determines the condensing coefficient. The ultimate form of an equation for the condensing coefficient may be obtained from dimensional analysis where the average condensing coefficient \bar{h} is a function of the properties of the condensate film, l, ρ, g, μ, and $L, \Delta t$, and λ, the last being the latent heat of vaporization. Nusselt theoretically derived the relationships for the mechanism of film condensation, and the results he obtained are in excellent agreement with experiments.

Process Applications. In chemical industry it is a common practice to separate a liquid mixture by distilling off the compounds which have

[^18]lower boiling points in the pure condition from those having higher boiling points. In a solution of several compounds each exerts a partial pressure and the most volatile cannot be boiled off from the rest without carrying some of the heavier or higher boiling compounds along with it. The proportion of heavier compounds carried off when a solution starts to boil is less than existed in the original solution before boiling commenced. If the vapor coming off initially is condensed, it has a lower boiling point than the original solution, indicating the increase in the proportion of the more volatile compounds. By successively boiling off

Fig. 12.1. Distilling column with auxiliaries.
only part of a liquid mixture, condensing the vapor formed, and boiling off only a part of the condensate, it is possible to obtain a nearly pure quantity of the most volatile compound by numerous repetitions of the procedure. Thus the separation by distillation is accomplished by partial vaporization and subsequent condensation.

In distillation it is customary to obtain a number of partial vaporizations and condensations by directly contacting a vapor and a liquid cooling medium in a continuous distilling column. The bubble cap distilling column shown in Fig. 12.1 is representative of modern practice and derives its name from a series of inverted slotted caps which are placed over vapor risers on each plate of the column. Vapor from below a plate enters the risers and is broken into bubbles as it passes through the slotted bottoms of the bubble caps and thence through the layer of liquid
maintained by the downcomer on each plate. The feed, which is usually a liquid, is a mixture of more and less volatile compounds and enters the distilling column at the feed plate where the volatile compounds are partially vaporized by the rising vapors as the feed travels across the plate. The remainder of the liquid on the plate is less volatile than the feed and overflows to the plate below through the downcomer. The boiling points of the liquids on each of the lower plates is consequently higher.
To vaporize a portion of the feed, vapor from below the feed plate must exchange heat with the liquid on the feed plate, thereby driving the more volatile compounds to the plate above the feed. By supplying heat at the bottom of the column where the increased concentration of the least volatile compounds represents the highest boiling temperature in the system, a thermal gradient is established plate by plate between the bottom of the column and the top. Heat supplied at the bottom by vaporization in a reboiler is transmitted to the top of the column plate-byplate due to the temperature differences corresponding to the differences in boiling points between plates. Continuous distillation requires the presence of liquid at all times on the plates, so that vapors of the less volatile compounds in the feed may be condensed and carried downward. To accomplish this, some volatile liquid from the condenser, which represents one plate above the top plate and which is therefore colder, is introduced onto the top plate and flows downward in the column. The volatile liquid which is poured back into the column from the condenser is the reflux. The quantity of volatile components removed from the system at the top and having the same composition as the reflux is called the distillate or overhead product. The heavier compounds removed at the bottom are variously called waste or residue or, if they are of value, bottoms product. The quantitative aspects of the heat balance are treated in Chap. 14.
It is the condensing temperature in the condenser which determines the operating pressure of the distilling column, since the saturation temperature of a vapor varies with its pressure. The overkead product must condense in the condenser at a temperature sufficiently high so that its latent heat can be removed by cooling water. The size of the condenser is dependent upon the difference between the condensing temperature and the range of the cooling water. If the condensing temperature is very close to the cooling water range at atmospheric pressure, the distillation pressure must be elevated to permit the attainment of a larger Δt.

In the power industry the term surface condenser is reserved for tubular equipment which condenses steam from the exhaust of turbines and engines. Since a turbine is primarily designed to obtain mechanical work
from heat, the maximum conversion is obtained in the turbine by maintaining a low turbine-discharge temperature. If the turbine were to discharge to the atmosphere, the lowest attainable steam temperature would be $212^{\circ} \mathrm{F}$, but if the steam were to discharge into a condenser under vacuum, it would be possible to operate at discharge temperatures of $75^{\circ} \mathrm{F}$ and lower and to convert the enthalpy difference from 212 to $75^{\circ} \mathrm{F}$ into useful work.

Condensation on Surfaces-Nusselt's Theory. In condensation on a vertical surface a film of condensate is formed as shown in Fig. 12.2 and further condensation and heat transfer to the surface occurs by conduction through the film which is assumed to be in laminar flow downward. The thickness of this film greatly influences the

Fie. 12.2. The rertical condensate film. rate of condensation, since the heat accompanying the removal of vapors from the vapor phase encounters the condensate film as a resistance which may be quite large. The thickness of the film is a function of the velocity of drainage which varies with the deviation of the surface from a vertical position. For a vertical surface the thickness of the film cumulatively increases from top to bottom. For this reason the condensing coefficient for a vapor condensing on a vertical surface decreases from top to bottom, and for the attainment of a large condensing coefficient the height of the surface should not be very great. The velocity of drainage for equal quantities of condensate is also a function of the viscosity of the condensate: The lower the viscosity the thinner the film. For all liquids the viscosity decreases as the temperature increases, and the condensing coefficient consequently inereases with the condensate temperature. The derivations given in this chapter through Eq. (12.34) are those of Nusselt. ${ }^{\text {. }}$ The following assumptions are involved:

1. The heat delivered by the vapor is latent heat only.
2. The drainage of the condensate film:from the surface is by laminar flow only, and the heat is transferred through the film by conduction.
3. The thickness of the film at any point is a function of the mean velocity of flow and of the amount of condensate passing at that point.
4. The velocity of the individual layers of the film is a function of the relation between frictional shearing force and the weight of the film (see Chap. 3).
${ }^{1}$ Nusselt, W., Z. Ver. deut. Ing., 60, 541 (1916).
5. The quantity of condensate is proportional to the quantity of heat transferred, which is in turn related to the thickness of the film and of the temperature difference between the vapor and the surface.
6. The condensate film is so thin that the temperature gradient through it is linear.
7. The physical properties of the condensate are taken at the mean film temperature.
8. The surface is assumed to be relatively smooth and clean.
9. The temperature of the surface of the solid is constant.
10. The curvature of the film is neglected.

Condensation. Vertical Surfaces. In Fig. 12.2 the rate at which heat passes from the vapor through the liquid condensate film and into the cooling surface per unit area is given by

$$
\begin{equation*}
\frac{Q}{A}=\frac{k\left(t^{\prime}-t\right)}{y^{\prime}}=\lambda W^{\prime}=h\left(t^{\prime}-t\right) \tag{12.1}
\end{equation*}
$$

where λ is the latent heat of vaporization, W^{\prime} the pounds of condensate formed per hour per square foot, and y^{\prime} is the thickness of the condensate film at the generalized point in the figure whose coordinates are x^{\prime}, y^{\prime}. The other symbols have their conventional meaning.

The rate at which the vapor condenses is then given by

$$
\begin{equation*}
W^{\prime}=\frac{k\left(t^{\prime}-t\right)}{\lambda y^{\prime}} \tag{12.2}
\end{equation*}
$$

The liquid flows downward over the vertical surface with a velocity u varying from zero at the tube-film interface and increasing outward to the condensate-vapor interface. The velocity also increases vertically as the condensate flows downward.

Consider a small cube of unit depth $d z=1$, defined by $d x d y 1$ in the moving condensate film of Fig. 12.2. On the side near the cold vertical surface there is a tangential force acting upward and tending to support the cube. On the side away from the cold vertical surface there is a tangential force acting downward due to the more rapid movement of the liquid downward as the distance from the surface is increased. If the resultant force upward through the cube is designated by τ, then the respective forces are $\tau-d r / 2$ and $\tau+d r / 2$. The differential tangential force must be offset by gravity acting down.

$$
\begin{equation*}
\rho d x d y 1=\left(\tau-\frac{d \tau}{d y} \frac{d y}{2}\right)-\left(\tau+\frac{d \tau}{d y} \frac{d y}{2}\right)=-d \tau \tag{12.3}
\end{equation*}
$$

On unit area, $d x d z=1$

$$
\rho=-\frac{d \tau}{d y}
$$

From the basic definition of viscosity in Chap. 3 the tangential stress is defined by Eq. (3.3), using (Ib-force) (hr)/ft ${ }^{2}$ as the dimensions for the viscosity. Since it is customary to use the dimensions (lb-mass)/(ft)(hr) for the dimensions, Eq. (3.3) becomes

$$
\begin{align*}
\tau & =\frac{\mu}{g} \frac{d u}{d y} \tag{12.4}\\
\frac{d \tau}{d y} & =\frac{\mu}{g} \frac{d^{2} u}{d y^{2}}=-\rho \tag{12.5}
\end{align*}
$$

Take ρ / μ as constant.

$$
\begin{align*}
\frac{d^{2} u}{d y^{2}} & =-\frac{\rho g}{\mu} \tag{12.6}\\
u & =-\frac{\rho g y^{2}}{2 \mu}+C_{1} y+C_{2} \tag{12.7}
\end{align*}
$$

The constants C_{1} and C_{2} must now be evaluated. Since the liquid adheres to the wall, u must equal zero at $y=0$, making C_{2} equal zero.

(b)

Fig. 12.3. Vertical condensate film flow.
At the outer boundary of the film (condensate-vapor interface) there is no tangential stress and from $\tau=\mu d u / d y$ when $y=y^{\prime}$,

$$
\begin{align*}
\left(\frac{d u}{d y}\right)_{y=y^{\prime}} & =0=-\frac{\rho g y^{\prime}}{\mu}+C_{1} \quad C_{1}=\frac{\rho g y^{\prime}}{\mu} \tag{12.8}\\
u & =\frac{\rho g}{\mu}\left(y y^{\prime}-\frac{y^{2}}{2}\right)
\end{align*}
$$

At a distance x from the top of the condensing surface the average velocity downward \bar{u} is given by

$$
\begin{equation*}
\bar{u}=\frac{1}{y^{\prime}} \int_{0}^{y^{\prime}} u d y=\frac{\rho g}{3 \mu} y^{\prime^{2}} \tag{12.9}
\end{equation*}
$$

When the value of x from the top of a vertical wall is taken to be unity as shown in Fig. 12.3a, the quantity of downward flow across a horizontal plane of area $1 y^{\prime}$ of the condensate is

$$
1 y^{\prime} \bar{u} \rho
$$

At $\boldsymbol{x}+d x$ there is a gain in the amount of downward flow of condensate as shown in Fig. 12.3b. Using the value for \bar{u} from Eq. (12.9), multiplying by ρy^{\prime}, and differentiating with respect to x to obtain the increase from x to $x+d x$,

$$
\begin{equation*}
d\left(\rho \vec{u} y^{\prime}\right)=d\left(\frac{\rho^{2} g}{3 \mu} y^{\prime^{\prime}}\right)=\frac{\rho^{2} g y^{\prime 2}}{\mu} d y^{\prime} \tag{12.10}
\end{equation*}
$$

And this increase must come from condensation out of the vapor and into the condensate film

$$
d\left(\rho \bar{u} y^{\prime}\right)=W^{\prime} 1 d x
$$

where W ' is the condensate flow out of the vapor and "normal" to the falling condensate layer per unit area as in Fig. 12.3b. From Eq. (12.2), however, W^{\prime} was defined in terms of the heat transfer as

$$
W^{\prime}=\frac{k\left(t^{\prime}-t\right)}{\lambda y^{\prime}}
$$

Substituting for W^{\prime} in Eq. (12.10) the value from Eq. (12.2),

$$
\begin{align*}
\frac{k}{\lambda y^{\prime}}\left(t^{\prime}-t\right) d x & =\frac{\rho^{2} g y^{\prime 2}}{\mu} d y^{\prime} \tag{12.11}\\
\left(t^{\prime}-t\right) d x & =\frac{\rho^{2} g \lambda y^{\prime 2}}{k \mu} d y^{\prime} \tag{12.12}
\end{align*}
$$

For a limited range set $t^{\prime}-t, \rho, \lambda, \mu$, and k constant and integrate.
When $y^{\prime}=0, x=0$

$$
\begin{align*}
& y^{\prime} \frac{\rho^{2} g \lambda}{4 \mu k}=\left(t^{\prime}-t\right) x \tag{12.13}\\
& y^{\prime}=\left[\frac{4 \mu k}{\rho^{2} \lambda g}\left(t^{\prime}-t\right) x\right]^{1 / 4} \tag{12.14}
\end{align*}
$$

The heat-transfer coefficient across the condensate layer at the distance x from the origin per unit of interfacial area is given from Eq. (12.1) by

$$
\begin{equation*}
h_{x}=\frac{Q_{x} / A_{x}}{t^{\prime}-t}=\frac{k}{y^{\prime}} \tag{12.15}
\end{equation*}
$$

Substitute y^{\prime} from Eq. (12.14):

$$
\begin{equation*}
h_{x}=\left[\frac{k^{3} \rho^{2} \lambda g}{4 \mu\left(t^{\prime}-t\right)}\right]^{1 / 4} \frac{1}{x^{1 / 4}} \tag{12.16}
\end{equation*}
$$

The total heat through the condensate layer from 0 to x is Q_{x}

$$
\begin{align*}
Q_{x} & =\int_{0}^{x} h_{x}\left(t^{\prime}-t\right) d x=\int_{0}^{x}\left[\frac{k^{3} \rho^{2} \lambda g}{4 \mu\left(t^{\prime}-t\right)}\right]^{1 / 4}\left(t^{\prime}-t\right) \frac{d x}{x^{1 / 4}} \\
& =\frac{4^{3 / 4}}{3}\left(\frac{k^{3} \rho^{2} \lambda g}{\mu}\right)^{1 / 4}\left[\left(t^{\prime}-t\right) x\right]^{3 / 4} \tag{12.17}
\end{align*}
$$

If the average coefficient between the two points is \bar{h},

$$
\begin{align*}
& \check{h}=\frac{\left(Q_{x}\right)_{x=L}}{\left(t^{\prime}-t\right) L}=\frac{4^{3 / 4}}{3} \frac{\left(\frac{k_{f}^{3} \rho_{f}^{2} \lambda g}{\mu_{j}}\right)^{3 / 4}\left[\left(t^{\prime}-t\right) L\right]^{3 / 4}}{\left(t^{\prime}-t\right) L} \\
& \bar{h}=0.943\left(\frac{k_{f}^{3} \rho_{f}^{2} \lambda g}{\mu_{f} L \Delta t_{f}}\right)^{3 / 4} \tag{12.18}
\end{align*}
$$

where k_{f}, ρ_{f}, and μ_{f} are evaluated at the film temperature t_{f} and where the film temperature is
and

$$
\begin{equation*}
t_{f}=1 / 2\left(t^{\prime}+t\right)=1 / 2\left(T_{v}+t_{w}\right) \tag{12.19}
\end{equation*}
$$

$$
\Delta t_{f}=t_{f}-t_{w}
$$

In the above, as in the derivation which follows, the stress caused by the passage of the saturated vapor over the condensate-vapor interface has been neglected. It can be included, although it is not of practical consequence. The variation of the film thickness and local heat-transfer coefficient are shown in Fig. 12.4. The shapes of the curves follow the thickness and consequently the resistance of the condensate film.

Inclined Surfaces. Consider a cube making the angle α as shown in Fig. 12.5. The gravity component acting in a plane parallel to the surface is $\rho \sin \alpha$, and Eq. (12.3) becomes

$$
\begin{equation*}
\rho \sin \alpha d y d x 1=\left(\tau-\frac{d \tau}{d y} \frac{d y}{2}\right)-\left(\tau+\frac{d \tau}{d y} \frac{d y}{2}\right)=-d \tau \tag{12.20}
\end{equation*}
$$

On unit area $d x d z=1$

$$
\begin{equation*}
\rho \sin \alpha=-\frac{d \tau}{d y} \tag{12.21}
\end{equation*}
$$

Equation (12.6) becomes

$$
\begin{equation*}
\frac{d^{2} u}{d y^{2}}=-\frac{g p}{\mu} \sin \alpha \tag{12.22}
\end{equation*}
$$

Equation (12.7) becomes

$$
\begin{equation*}
u=-\frac{g \rho}{2 \mu} y^{2} \sin \alpha+C_{1} y+C_{2} \tag{12.23}
\end{equation*}
$$

At the start of condensation on the tube where $y=0$ and there is no velocity along the tube, $u=0$ and $C_{2}=0$

$$
C_{1}=\frac{g \rho y^{\prime}}{\mu} \sin \alpha
$$

Fig. 12.4. Vertical film thickness and condensing coefficients for a descending film. (After Nusselt.)

Fig. 12.5. Film on an inclined surface

Fig. 12.6. Condensate film on a horizontal tube.
and Eq. (12.9) becomes

$$
\begin{equation*}
\bar{u}=\frac{g \rho y^{\prime 2}}{3 \mu} \sin \alpha \tag{12.24}
\end{equation*}
$$

and Eq. (12.18) becomes

$$
\begin{equation*}
\bar{h}=0.943\left(\frac{k_{j}^{3} p_{j}^{2} \lambda g \sin \alpha}{\mu_{j} L \Delta t_{f}}\right)^{3 / 4} \tag{12.25}
\end{equation*}
$$

Horzontal Tubular Surfaces. Consider a cube of unit length at radius r making an angle α with the vertical as seen in Fig. 12.6. The mass flow of vapor into the condensate film through the area $r d \alpha$ and with a film
thickness y^{\prime} is given by the conduction equation.

$$
W^{\prime}=\frac{k\left(t^{\prime}-t\right) r d \alpha}{\lambda y^{\prime}}
$$

The condensation must give rise to an increase in the inclined falling film. For a differential amount of condensation the increase through the condensing area $r d \alpha$ is $d\left(\rho \bar{u} y^{\prime}\right)$ and for Eq. (12.10)

$$
d\left(\rho \bar{u} y^{\prime}\right)=\frac{\rho^{2} g}{3 \mu} d\left(y^{\prime 3} \sin \alpha\right)=W^{\prime} d x
$$

Substituting for W^{\prime}, Eq. (12.11) becomes

$$
\begin{aligned}
\frac{k\left(t^{\prime}-t\right) r d \alpha}{\lambda y^{\prime}} & =\frac{\rho^{2} g}{3 \mu} d\left(y^{\prime 2} \sin \alpha\right) \\
\frac{3 \mu k\left(t^{\prime}-t\right) r d \alpha}{\rho^{2} g \lambda} & =y^{\prime} d\left(y^{\prime 2} \sin \alpha\right)
\end{aligned}
$$

Let

$$
\begin{aligned}
m & =\frac{3 \mu k\left(t^{\prime}-t\right) r}{\rho^{2} g \lambda} \\
m d \alpha & =y^{\prime} d\left(y^{\prime 3} \sin \alpha\right)
\end{aligned}
$$

Differentiating

$$
\begin{align*}
m d \alpha & =y^{\prime}\left(3 y^{\prime 2} \sin \alpha d y^{\prime}+y^{\prime 3} \cos \alpha d \alpha\right) \\
& =3 y^{\prime 2} \sin \alpha d y^{\prime}+{y^{\prime}}^{4} \cos \alpha d \alpha \tag{12.26}
\end{align*}
$$

In Eq. (12.26) the term $3 y^{\prime 2} d y^{\prime}$ appears, but $d\left(y^{\prime 4}\right)=4 y^{\prime 3} d y^{\prime}$ and

$$
3 y^{2^{2}} d y^{\prime}=3 / 4 d y^{\prime}
$$

Rearranging Eq. (12.26) and substituting,

$$
d \alpha=\frac{3}{4 m} \sin \alpha d y^{\prime \prime}+\frac{y^{\prime}}{m} \cos \alpha d \alpha
$$

Let $y^{\prime 2} / m=\psi^{4}=z$

$$
\begin{align*}
& d \alpha=3 / 4 \sin \alpha d z+z \cos \alpha d \alpha \tag{12.27}\\
& \frac{3}{4} \sin \alpha \frac{d z}{d \alpha}+z \cos \alpha-1=0 \tag{12.28}
\end{align*}
$$

Equation (12.28) is a linear differential equation whose solution is

$$
\begin{equation*}
z=\frac{1}{\sin ^{3 / 4} \alpha}\left(\frac{4}{3} \int \sin ^{1 / 3} \alpha d \alpha+C_{3}\right) \tag{12.29}
\end{equation*}
$$

When $\alpha=0, C_{3}=0$,

$$
\begin{equation*}
z=\frac{4}{3} \frac{1}{\sin ^{1 / 2} \alpha} \int \sin ^{36} \alpha d \alpha \tag{12.30}
\end{equation*}
$$

The value of this integral for different values of α may be determined by graphical methods. From the substitution in Eq. (12.27)

$$
\begin{equation*}
y^{\prime}=\psi m^{3 / 4}=\psi\left[\frac{3 \mu k\left(t^{\prime}-t\right) r}{\rho^{2} g \lambda}\right]^{1 / 4} \tag{12.31}
\end{equation*}
$$

As shown in Eq. (12.15), $h_{x}=k / y^{\prime}$.
The thickness of the film actually decreases slightly as α increases from 0 to 5°, and then it increases steadily and breaks into drops. The local-heat transfer coefficient at any point is then

$$
\begin{equation*}
h_{\alpha}=\frac{k}{y^{\prime}}=\frac{1}{\psi}\left[\frac{k^{3} \rho^{2} \lambda g}{3 \mu\left(t^{\prime}-t\right) r}\right]^{1 / 4} \tag{12.32}
\end{equation*}
$$

The average heat-transfer coefficient \bar{h}_{α} of the segment between angles α_{1} and α_{2} is

$$
\begin{equation*}
\left.\tilde{h}_{\alpha}\right]_{\alpha_{1}}^{\alpha_{1}}=\frac{k}{m^{3 /}\left(\alpha_{2}-\alpha_{1}\right)} \int_{\alpha_{1}}^{\alpha_{2}} \frac{d \alpha}{\psi} \tag{12.33}
\end{equation*}
$$

Employing graphical methods as before, where D_{0} is the outside diameter of the tube, the average heat-transfer coefficients are found to be

$$
\begin{aligned}
\bar{h}_{\alpha} &]_{0^{\circ}}^{90^{\circ}} \\
\bar{h}_{\alpha} &]_{90^{\circ}}^{180^{\circ}}
\end{aligned}=0.560\left(\frac{k^{3} \rho^{2} \lambda g}{\mu D_{o} \Delta t_{f}}\right)^{1 / 4}\left(\frac{k^{3} \rho^{2} \lambda g}{\mu D_{o} \Delta t_{j}}\right)^{1 / 4} .
$$

From 0 to 180° which is one-half the tube, the other half being sym. metrical,

$$
\begin{equation*}
\bar{h}=0.725\left(\frac{k_{f}^{3} \rho_{\lambda}^{2} \lambda g}{\mu_{f} D_{0} \Delta t_{f}}\right)^{3 / 4} \tag{12.34}
\end{equation*}
$$

The variation of the film thickness and heat-transfer coefficient for steam on a horizontal tube is shown in Fig. 12.7. As in the preceding case it is governed by the resistance of the condensate film to conduction.

Development of Equations for Calculations. McAdams ${ }^{1}$ found from the correlation of the data of several investigations that observed condensing coefficients for steam on vertical tubes were 75 per cent greater than the theoretical coefficients calculated by Eq. (12.18). The values calculated from Eq. (12.18) agree, however, for a condensate in streamline flow with the values calculated from Eq. (6.1) for ordinary streamline flow.

When a liquid descends vertically on the outside of a tube, it is certainly
${ }^{2}$ McAdams, op. cit., p. 264.

Frg. 12.7. Plot of the heat-transfer coefficient and film thickness of water on a horizontal tube. (After Nusselt.)
in streamline flow at the top of the tube, where the accumulation of condensate is small. If a relatively large amount of vapor is condensed on the tube, it is possible that at some point below the top the film will

Fig. 12.8. Vertical descending film. change to turbulent flow. This may be estimated from the diameter and length of the tube, the viscosity of the condensate, and the quantity being condensed. Referring to the tube as shown in Fig. 12.8, the crosshatched area outside the tube represents condensate film as seen at any point looking down. This is similar to the flow in the annulus of a double pipe exchanger except that the outer surface of the film is not formed by a concentric pipe. In the case of the double pipe exchanger the equivalent diameter was taken as four times the hydraulic radius.

Then

$$
D_{0}=4 r_{h}=4 \times \frac{\text { free flow area }}{\text { wetted perimeter }}
$$

and

$$
R e=\frac{D_{\mu} G}{\mu}
$$

For vertical tubes let

$$
A_{f}=\text { cross-sectional area (shaded) }
$$

$P=$ wetted perimeter per tube
$D_{0}=4 \times A_{f} / P$
Letting the loading per tube be $w^{\prime}=W / N_{t}$, where N_{t} is the number of tubes,

$$
\begin{align*}
G & =w^{\prime} / A_{f} \quad \mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right) \\
R e & =D_{e} G / \mu=\left(4 A_{j} / P\right)\left(w^{\prime} / A_{f}\right) / \mu=4 w^{\prime} / \mu P \tag{12.35}
\end{align*}
$$

Calling the condensate loading per linear foot G^{\prime},

$$
\begin{equation*}
G^{\prime}=\frac{w^{\prime}}{P}, \quad \mathrm{lb} /(\mathrm{hr})(\operatorname{lin} \mathrm{ft}) \tag{12.36}
\end{equation*}
$$

Eq. (12.35) becomes

$$
R e=\frac{4 G^{\prime}}{\mu}
$$

The total heat load is given by $Q=\lambda w^{\prime}$.

$$
\begin{equation*}
\bar{h}=\frac{Q}{A \Delta t_{f}}=\frac{\lambda w^{\prime}}{\overline{P L \Delta t_{j}}}=\frac{\lambda}{\bar{L}} \frac{G^{\prime}}{\Delta t_{f}} \tag{12.37}
\end{equation*}
$$

Substituting in Eq. (12.18),

$$
\begin{equation*}
\bar{h}=0.943\left(\frac{k_{k \rho}^{3} \rho_{f}^{2} g}{\mu_{j}} \overline{\bar{h}}\right)^{3 / 4} \tag{12.38}
\end{equation*}
$$

Multiplying the right term by $(4 \mu / 4 \mu)^{1 / 4}$,

$$
\begin{gather*}
\bar{h}^{3 / 4}=0.943\left(\frac{4 k_{f}^{3} \rho_{f}^{2} g}{\mu_{f}^{2}} \frac{\mu_{f}}{4 G^{\prime}}\right)^{1 / 4} \\
\bar{h}\left(\frac{\mu_{f}^{2}}{k_{f}^{3} \rho_{f}^{2} f}\right)^{3 / 4}=1.47\left(\frac{4 G^{\prime}}{\mu_{f}}\right)^{-1 / 4} \tag{12.39}
\end{gather*}
$$

For horizontal tubes Eq. (12.39) becomes

$$
\begin{equation*}
\bar{h}\left(\frac{\mu_{f}^{2}}{k_{j}^{3} \rho_{f}^{2} g}\right)^{1 / 2}=1.51\left(\frac{4 G^{\prime \prime}}{\mu_{f}}\right)^{-1 / 3} \tag{12.40}
\end{equation*}
$$

where the loading for a single horizontal tube is

$$
\begin{equation*}
G^{\prime \prime}=\frac{W}{L N_{t}} \tag{12.41}
\end{equation*}
$$

Using the corresponding loading as given by either Eq. (12.36) or (12.41) as the case may be, Eqs. (12.39) and (12.40) may both be represented by

$$
\begin{equation*}
\bar{h}\left(\frac{\mu_{f}^{2}}{k_{f}^{3} \rho_{f}^{2}}\right)^{1 / 3}=1.5\left(\frac{4 G^{\prime}}{\mu_{f}}\right)^{-1 / 2}=1.5\left(\frac{4 G^{\prime \prime}}{\mu_{f}}\right)^{-1 / 2} \tag{12.42}
\end{equation*}
$$

Equations (12.39) and (12.40) were obtained for condensation on single tubes. In a vertical-tube bundie the presence of one or more tubes does not alter the assumptions on which the derivation was predicated. However, on horizontal tubes in tube bundles it has been found that the splashing of the condensate as it drips over successive rows of tubes causes $G^{\prime \prime}$ to be more nearly inversely proportional to $N_{t}{ }^{3 / 3}$ rather than N_{t} so that it is preferable to use a fictitious value for horizontal tubes

$$
\begin{equation*}
G^{\prime \prime}=\frac{W}{L N t^{3 /}} \quad \mathrm{lb} /(\mathrm{hr})(\mathrm{lin} \mathrm{ft}) \tag{12.43}
\end{equation*}
$$

Figure 12.9 is a line chart of solutions of Eq. (12.42) prepared for convenience. Its use requires that the film be in streamline flow corresponding to an average Reynolds number of about 1800 to 2100 for the flow gradient assumed by the condensate. For steam at atmospheric pressure Eq. (12.42) reduces to the equations given by McAdams: For horizontal tubes

$$
\begin{equation*}
\bar{h}=\frac{3100}{D_{o}^{3 / 4} \Delta t_{f}^{3 / 4}} \tag{12.44a}
\end{equation*}
$$

and for vertical tubes

$$
\begin{equation*}
\bar{h}=\frac{4000}{L^{1 / 4} \Delta t_{j}^{3 / 3}} \tag{12.44b}
\end{equation*}
$$

where Δt_{f} ranges from 10 to $150^{\circ} \mathrm{F}$.
It is frequently desirable to apply Eqs. (12.39), (12.40), and (12.42) to the calculation of condensers which are modifications of the 1-2 exchanger with condensation in the shell. Such condensers have baffled tube bundles. The baffles do not affect the condensing film coefficients in horizontal condensers, since the coefficients are independent of the vapor mass velocity, but they do influence the accumulation of condensate on the tubes of vertical condensers. Moreover, in condensers with multipass tubes the tube-wall temperature is different at every point in each pass, whereas the surface temperature was assumed constant in the derivations. A correction for the latter cannot be accounted for in the calculations except by the treatment of small surface increments of each pass individually. The error introduced by using the mean tube-wall temperature as being effective over all the surface is apparently too small to justify the lengthier calculation. Since the baffle holes are ordinarily
${ }^{1}$ 7bid., p. 270.

Condensing load G^{\prime} or $\mathrm{G}^{\prime \prime} \mathrm{b} /(\mathrm{hr})(\mathrm{lin} \mathrm{ft})$
Fig. 12.9. Condensing coefficients. Graphical solution of Eq. (12.42).
about $1 / 32$ in. greater in diameter than the tube outside diameter, the baffles in vertical condensers prevent the condensate film from reaching a thickness greater than $1 / 64 \mathrm{in}$. before impinging on the baffle. This, however, is a favorable limitation except at high tube loadings where the condensate film might otherwise grow sufficiently to change to turbulent flow.

Comparison between Horizontal and Vertical Condensation. The value of the condensing film coefficient for a given quantity of vapor on a given surface is significantly affected by the position of the condenser. In a vertical tube about 60 per cent of the vapor condenses in the upper half of the tube. By combining Eqs. (12.18) and (12.34) the ratio of the theoretical horizontal and vertical condensing coefficients is given by

Fra. 12.10. Condenser with gravity return of reflux.

Fig. 12.11. Vertical condenser with condensation in shell and gravity return of reflux.
(0.725/0.943)(L/D $)^{1 / 4}$. For a $3 / 4 \mathrm{in}$. OD tube $16^{\prime} 0^{\prime \prime}$ long, the horizontal coefficient should be 3.07 times as great as the vertical coefficient, provided that the condensate film is in streamline flow throughout. Ordinarily, however, the advantage is not quite so great due to the other modifications which prevail such as a transition of the vertical film into turbulent flow.

For the condensation of exhaust steam from turbines with vacuum discharge the condenser surface is usually very great, from 10,000 to 60,000 ft^{2} per shell, and the economics are such that tubes up to 26 ft long are employed. These large condensers are designed with overall transfer coefficients as high as $800 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$ as treated later. Condensers for such services are universally installed in a horizontal position to facilitate the distribution of the vapor and the removal of the condensate.

When a condenser is employed on a distillation column, several specife factors must be taken into consideration. A typical arrangement of such
a condenser is shown in Fig. 12.10, in which the reflux is returned to the column by gravity. The condensate leg 1-2 of height z_{1}, must supply sufficient hydrostatic head to return the condensate to the column through the seal. In Fig. 12.11 a vertical condenser is employed for the same service, but it is not well suited for gravity return of the condensate, since it must be elevated considerably above the column, which in many cases is very tall by itself. Maintenance and structural support for the vertical condenser may be costly and considerably more difficult. On the other hand if it is desired not only to condense the overhead vapor but also to subcool the condensate, the vertical condenser is admirably suited. Subcooling is the operation of cooling the condensate below its saturation temperature, and this is done very frequently when the overhead product is a volatile liquid to be sent to storage. By subcooling it is possible to avoid large evaporation losses during initial storage. The combination of condensation and subcooling in a single unit eliminates the need for a separate overhead product cooler, as shown in Fig. 12.1.

Condensation inside Tubes. Horizontal Condensers. The equations developed so far give excellent results when applied to condensation outside tubes, although the deviations in commercial condensers have not been reported except in isolated instances. Often, however, the condensate is corrosive, or it is desired to recover the latent heat from the vapor by using it to preheat the feed to a column. In such cases it may be preferable to condense the vapor in the tubes rather than on the tubes wherein the original derivation is no longer applicable. Within the tubes of a single-pass horizontal condenser each tube condenses an equal amount of vapor and there is no change in the coefficient due to the splashing of condensate from one tube row to another. As the condensate flows along the inside bottoms of the tubes, however, it builds up a thicker condensate resistance film than that anticipated in the derivation. Yittle is available of a theoretical nature to permit a rational analysis, but it has been found that the film coefficient may be safely computed by Eq. (12.40) when $G^{\prime \prime}$, which is theoretically $W / L N_{t}$, is replaced by the fictitious loading

$$
\begin{equation*}
G^{\prime \prime}=\frac{W}{0.5 L N_{t}} \quad \mathrm{lb} /(\mathrm{hr})(\operatorname{lin} \mathrm{ft}) \tag{12.45}
\end{equation*}
$$

Equation (12.45) is especially useful when condensation occurs in the inner pipe of a double pipe exchanger. For condensation in the tubes of a condenser with multipass tubes it is preferable to compute the average film coefficient for each pass. The condensate formed in the first pass is carried through the second pass by one or more of the lower tubes in the pass, which may flow full of condensate and therefore expose no surface
for condensation. The calculation is then carried out by trial and error to determine the true tube loading in each pass.

Vertical Condensers. Condensation inside vertical tubes follows essentially the same mechanism as condensation outside vertical tubes if the interference of the shell baffles is neglected. Since the condensate film has the ability to grow continuously in its descent down the inside or outside of tubes, it may change from streamline to turbulent flow at some height between the top and the bottom. The local condensing coefficient deereases continuously from the top downward until at some point the film changes to turbulent flow. After the transition to turbulent flow the coefficient increases in accordance with the usual behavior of forced convection. By semiempirical means Colburn ${ }^{1}$ has combined the effect

Fig. 12.12. Semiempirical condensation curve for vertical tubes. (Colburn, Transactions of American Institute of Chemical Engineers.)
of streamline flow in the upper portion of the tube with that of turbulent flow below the point where $4 G^{\prime} / \mu_{f}=2100$. This required the selection of a heat-transfer factor for forced convection such that h at the transition point was roughly the same for both Nusselt condensation and turbulent flow. He then obtained the mean coefficient for the entire height of the tube by weighting the average coefficient for the upper portion of the tube and h for forced convection in the lower portion of the tube. The mean coefficients of condensation for the entire tube when $4 G^{\prime} / \mu_{f}>2100$ are given in Fig. 12.12. This plot contains the values recommended by McAdams. The distance from the top of the tube at which the change from laminar to turbulent flow occurs may be obtained from Nusselt's semiempirical derivation based on the transition occurring at $4 G^{\prime} / \mu_{\gamma}$ $=1400$ for steam and employing Eqs. (12.8) and (12.14). If x_{c} is the distance in feet from the top,

$$
\begin{equation*}
x_{c}=\frac{2668 \lambda \mu_{f}^{5 / 3}}{\rho^{35} \operatorname{kg}^{1 / 5}\left(T_{v}-t_{w}\right)} \quad \mathrm{ft} \tag{12.46}
\end{equation*}
$$

${ }^{1}$ Colburn, A. P., Trans. AIChE, 30, 187-193 (1934).

Where there is evidence that the transition occurs at a higher value than $4 G^{\prime} / \mu_{j}=1400$, as for organic vapors, the value of x_{c} should be multipiied by the ratio of the corrected value of $4 G^{\prime} / \mu_{f}$ divided by 1400 .

Naturally if a vertical condenser is to operate with condensation inside the tubes, it will have but one tube pass as shown in Fig. 12.13.

Condenser Calculations. Condensers are better classified by what goes on inside them than by their process locations or services. Often in addition to condensation they may also perform vapor desuperheating or condensate subcooling so that a separate shell need not be employed for the sensible-heat transfer. A convenient classification in which each class is indicative of a different modification of the calculation is given below:

1. Single vapors (the vapor of a pure compound or a constant boiling mixture)
a. Saturated vapor: Total or partial condensation outside tubes
b. Superheated vapor: Desuperheating and condensation outside tubes
c. Saturated vapor: Condensation and subcooling outside tubes
d. Condensation inside tubes: Desuperheating, condensing, subcooling
e. Condensation of steam
2. Vapor mixtures (Chap. 13). The application of the phase rule.
a. Binary mixture
b. Vapor mixture with long condensing range
c. Vapor mixtures forming immiscible condensates
d. Single vapor or vapors with noncondensable gas
e. Vapor mixtures and noncondensable

Fig. 12.13. Vertical condenser with condensation in the tubes and gravity return of reflux. gases forming immiscible condensates
For cases $1 a$ through $1 d$ the majority of condensers are modifications of the 1-2 exchanger and may be referred to as 1-2 condensers. The use of a 1-2 exchanger as a condenser usually requires provision for a larger: entrance space so that the vapor is not subjected to too great a pressure drop on entering the shell. This may be accomplished in either of three ways: The vapor may be introduced through a vapor belt as shown in Fig. 12.14 or by means of a flared shell inlet nozzle as shown in Fig. 12.15. A third method is the elimination of some of the tubes from the bundle which lie close to the inlet nozzle.

Although condensation reduces the volume of the vapor, it. occurs at constant pressure except for the frictional pressure drop between the inlet and the outlet. In a horizontal condenser using conventional seg
mental baffles it is imperative that they be arranged for side-to-side flow and not up-and-down flow as shown in Fig. 7.6. This involves merely rotating the bundle 90° before bolting the channel to the shell flange. Failure to provide side-to-side flow causes pools of condensate to form between each pair of baffles whose cutout areas are on the top of the sheil, thereby impeding the passage of vapor.

The Allowable Pressure Drop for a Condensing Vapor. In the original Nusselt assumptions the condensing coefficient was considered to be independent of the vapor velocity across the bundle of the condenser and to depend only upon G^{\prime} or $G^{\prime \prime}$, the loading as pounds of condensate per hour per linear foot. It is customary for the sake of good vapor distribution to have the vapor travel across the bundle as rapidly as the pressuredrop considerations will allow and to space the baffles accordingly. To account for the shrinkage in the total pounds of vapor as it travels the

Fig. 12.14. Vapor-belt detail.

Fig. 12.10. Flared-nozzle detail.
length of the bundle, the baffle spacing may be staggered to give a nearly constant vapor mass velocity. At the inlet the baffles are spaced far apart but are spaced more closely toward the outlet. The use of staggered pitch is not universally accepted, since it reduces the adaptability of the equipment to other services in the event that the original process is discontinued. With uniform baffle pitch the condenser may be readily adapted to gas-liquid and liquid-liquid heat exchange.

In distillation the allowable pressure drop for a vapor coming off a column is usually very small if the condenser is installed for the gravity return of the reflux to the column. Referring to Fig. 12.10 the hydraulic circuit consists of the weight of the overhead vapor line $z_{3}-z_{2}$, condenser pressure drop ΔP_{c}, the weight of the condensate leg z_{1}, and the pressure drop in the condensate return line, which is usually neglected. The equation is given closely in pounds per square inch by

$$
\frac{\rho_{v} z_{1}}{144}+\Delta P_{c}=\frac{\rho_{l} z_{1}}{144}
$$

where $\rho_{v}=$ density of vapor, $\mathrm{lb} / \mathrm{ft}^{3}$
$\rho_{l}=$ density of liquid, $\mathrm{lb} / \mathrm{ft}^{3}$
$\Delta P_{\mathrm{c}}=$ pressure drop in condenser, psi
Expansion and contraction losses from and to the tower have also been neglected. For all practical purposes the minimum available hydrostatic head must exceed $\rho_{l} z_{1}=144 \Delta P_{c}$. To this must usually be added an additional factor to permit the use of a flow-control valve in the reflux line. For a liquid with a specific gravity of 1.0 the minimum elevation of the condensate line above the level of the top plate for a 2.0 psi allowable pressure drop in the condenser is (2.0/14.7) $\times 34=4.62 \mathrm{ft}$, and for liquids of lower specific gravity the elevation of the condenser will be proportionately greater. For this reason the condenser is frequently installed at the ground level and a condensate return pump is substituted for gravity return of reflux. This is especially true at higher pressures, where hydraulic control is more difficult and serious surging may occur at the top of the column. To prevent surging the condensate leaving the condenser first enters a condensate accumulator and then goes to the pump. With pumped return a vapor pressure drop of 5 psi is often allowed in the condenser. For gravity systems the allowable vapor pressure drop in the condenser will be usually 1 to 2 psi .

In the condensation of a pure saturated vapor, the vapor enters the condenser at its saturation temperature and leaves as a liquid. The pressure drop is obviously less than that which would be calculated for a gas at the inlet specific gravity of the vapor and greater than that which would be computed using the outlet specific gravity of the condensate. The mass velocity of inlet vapor and outlet liquid are, however, the same. In the absence of extensive correlations reasonably good results are obtained when the pressure drop is calculated for a mass velocity using the total weight flow and the average specific gravity between inlet and outlet. This method can be further simplified, as in the condensation of steam, by taking one-half the conventional pressure drop computed entirely on inlet conditions. Thus for condensation in the shell,

$$
\begin{equation*}
\Delta P_{s}=\frac{1}{2} \frac{f G_{s}^{2} D_{s}(N+1)}{5.22 \times 10^{20} D_{e} s} \tag{12.47}
\end{equation*}
$$

where s is the specific gravity of vapor. For condensation in tubes

$$
\begin{equation*}
\Delta P_{i}=\frac{1}{2} \frac{f G_{i}^{2} L n}{5.22 \times 10^{10} D_{\varepsilon} s} \tag{12.48}
\end{equation*}
$$

where s is the specific gravity of the vapor. No contraction or expansion losses need be considered. Both Eqs. (12.47) and (12.48) are on the safe side, since the mass velocity of the vapor decreases nearly linearly
in the presence of a large Δt from inlet to outlet whereas the pressure drop decreases as the square of the velocity.

When circumstances make it difficult to meet the allowahle drop through a 1-2 condenser, a lower pressure drop can be obtained by resorting to split flow as shown in Fig. 12.16. Still another arrangement

Frg. 12.16. Condenser with split flow and gravity return of reflux.
whose characteristics will be discussed later is the double-flow or dividedflow condenser shown in Fig. 12.17. This condenser consists of a conventional bundle with a removable longitudinal baffle and transverse support plate as well as smaller baffles to induce side-to-side flow of the vapor and condensate. The support plate, in addition to supporting all

Fig. 12.17. Divided-flow 1-2 condenser.
the tubes, also serves to divide the flow. To prevent the condensate and vapor in the upper half of the shell from passing between the longitudinal baffle and the inside diameter of the shell, it is customary to provide sealing strips, which force the vapor and condensate to travel the half lengths of the divided flow condenser.

Example 12.1. Calculation of a Horizontal n-Propanol Condenser. A horizontai $1-2$ condenser is required for the condensation of $60,000 \mathrm{lb} / \mathrm{hr}$ of substantially pure n-propanol (propyl alcohol) coming from the top of a distilling column operating at

15 psig , at which pressure it boils at $244^{\circ} \mathrm{F}$. Water at $85^{\circ} \mathrm{F}$ will be used as the cooling medium. A dirt factor of 0.003 is required with allowable pressure drops of 2.0 psi for the vapor and 10.0 psi for the water.

Because of the location of the condenser, assume that $8^{\prime} 0^{\prime \prime}$ tubes are used. Tubes are to be $8 / 4 \mathrm{in}$. OD, 16 BWG on $15 / 16$-in. triangular pitch.

Solution:

(1) Heat balance:
n-Propanol, $Q=60,000 \times 2 \mathbf{2} 85=17,100,000 \mathrm{Btu} / \mathrm{hr}$ Water, $Q=488,000 \times 1(120-85)=17,100,000 \mathrm{Btu} / \mathrm{hr}$
(2) Δt :

Hot Fluid Cold Fluid Diff.

244	Higher Temp	120	124
244	Lower Temp	85	159
0	Differences	35	35

$$
\begin{equation*}
\Delta t=\mathrm{LMTD}=141^{\circ} \mathrm{F} \tag{5.14}
\end{equation*}
$$

The exchanger is in true counterflow, since the shell-side fluid is isothermal.
(3) T_{c} and t_{s} : The influence of the tube-wall temperature is inciuded in the condensing film coefficient. The mean $t_{a}=102.5^{\circ} \mathrm{F}$ can be used for t_{c}.

Trial:
(a) Assume $U_{D}=100$: Condensing film coefficients will generally range from 150 to
300. Assuming a film coefficient of 1000 for water U_{C} will range from 130 to 230.
$A=\frac{Q}{U_{D} \Delta t}=\frac{17,100,000}{100 \times 141}=1213 \mathrm{ft}^{2}$
Number of tubes $=\frac{1213}{8^{\prime} 0^{\prime \prime} \times 0.1963}=773$
(b) Assume four tube passes: The quantity of water is large, but the condenser will have a large number of tubes, making a two-pass assumption inadvisable.

From the tube counts (Table 9): 773 tubes, four passes, $3 / 4 \mathrm{in}$. OD on $15 / 16$-in. triangular pitch
Nearest count: 766 tubes in a 31 in . ID shell
(c) Corrected coefficient U_{D} :
$A=766 \times 8^{\prime} 0^{\prime \prime} \times 0.1963=1205 \mathrm{ft}^{2}$
$U_{D}=\frac{Q}{A \Delta t}=\frac{17,100,000}{1205 \times 141}=101$

Hot fluid: shell side, n-propanol
(4') Assume maximum baffe space. This will be $321 / 2,31$, and $321 / 2$ in. equal to 96 in. or 2 baffles and 3 crosses for side-to-side flow.

$$
\begin{aligned}
a_{i} & =I D \times C^{\prime} B / 144 P_{T} \quad[\text { Eq. (7.1)] } \\
& =31 \times 0.1875 \times 31 / 144 \times 0.937
\end{aligned}
$$

$$
=1.34 \mathrm{ft}^{2}
$$

Cold fluid: tube side, water
(4) Flow area, $a_{t}^{\prime}=0.302 \mathrm{in}^{2} \quad$ [Table 10]
$a_{t}=N_{t} a_{t}^{\prime} / 144 n$
[Eq. (7.48)]
$=766 \times 0.302 / 144 \times 4=0.402 \mathrm{ft}^{2}$

Hot fuid: shell side, th-propanol
(b^{\prime}) $G_{i}=W / a_{3}$ (for pressure drop only) [Eq. (7.2)]

$$
=60,000 / 1.34
$$

$=44,700 \mathrm{Ib} /(\mathrm{hr})\left(\mathrm{tt}^{2}\right)$
Looding, $G^{\prime \prime}=W / L N_{i}^{2 / 3} \quad[E q .(12.43)]$

$$
=60,000 / 8 \times 766^{2,5}
$$

$=89.3(\mathrm{lb}) /(\mathrm{hr})(\mathrm{lin} \mathrm{ft})$
Assume $\ddot{h}=h_{o}=200$
From (10) $h_{i 0}=1075$
$t_{w}=t_{a}+\frac{h_{0}}{h_{i o}+h_{o}}\left(T_{v}-t_{a}\right) \quad[$ Eq. (5.31)]
$\begin{aligned} &=102.5+200 / 1275(244-102.5) \\ &=125^{\circ} \mathrm{F}\end{aligned}$
$=125^{\circ} \mathrm{F}$
$t_{f}=\left(T_{v}+t_{u}\right) / 2 \quad[$ Eq. (12.19)]
$=(244+125) / 2=184.5^{\circ} \mathrm{F}$
$k_{j}=0.094 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F} / \mathrm{ft}\right)$ [Table 4]
$s_{f}=0.80 \quad$ [Table 6]
$\mu_{f}=0.62 \mathrm{cp} \quad$ [Fig. 14]
From Fig. 12.9 or Eq. (12.42)
$\bar{h}=h_{o}=172 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$

Cold fluid: tube side, quater
(Б) $G_{t}=w / a_{t}$

$$
\begin{aligned}
&=488,000 / 0.402 \\
&=1,210,000 \mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft} \mathrm{t}^{4}\right)
\end{aligned}
$$

$V e l, V=G_{t} / 3600 p$

$$
=1,210,000 / 3600 \times 62.5=5.42 \mathrm{fps}
$$

(6) At $t_{a}=102.5^{\circ} \mathrm{F}$,
$\mu=0.72 \times 2.42=1.74 \mathrm{lb} /(\mathrm{ft})(\mathrm{hr})$
$D=0.62 / 12=0.0517 \mathrm{ft} \quad$ [Table 10]
$R e_{t}=D G_{t} / \mu$ (for pressure drop anly)

$$
\begin{aligned}
& =0.0517 \times 1,210,000 / 1.74=36,200 \\
& \text { (9) } h_{i}=1300
\end{aligned}
$$

[Eq. (6.5)]

$$
\begin{aligned}
=1300 & \times 0.62 / 0.75 \\
& =1075 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{H}\right)
\end{aligned}
$$

Based on $\overleftarrow{h}=172$ instead of the assumed 200 a new value of t_{v} and t_{f} could be obtained to give a more exact value of \bar{k} based on fluid properties at a value of i_{f} more nearly correct. It is not necessary in this example because the condensate properties will not change materially.

Pressure Drop

(1) At $T_{v}=244^{\circ} \mathrm{F}$
$\mu_{\text {arepor }}=0.010 \times 2.42$

$$
=0.0242 \mathrm{lb} /(\mathrm{ft})(\mathrm{hr})
$$

[Fig. 15]

$$
D_{e}=0.55 / 12=0.0458 \mathrm{ft}
$$ [Fig. 28]

$R e_{s}=D_{s} G_{s} / \mu$

$$
\begin{equation*}
=0.0458 \times 44,700 / 0.0242=84,600 \tag{7.3}
\end{equation*}
$$

$f=0.00141 \mathrm{ft}^{2} / \mathrm{in} .^{2}$
[Fig. 29]
(2') No. of crosses, $N+1=3$
Mol. wt. $=60.1$
Density, $\rho=\frac{60.1}{359(704 / 492)(14.7 / 29.7)}$ $=0.238 \mathrm{lb} / \mathrm{ft}^{3}$
$s=0.238 / 62.5=0.00381$
$D_{s}=31 / 12=2.58 \mathrm{ft}$
(3) $\Delta P_{s}=\frac{1}{2} \frac{f G_{s}^{2} D_{s}\left(\lambda^{r}+1\right)}{5.22 \times 10^{10} D_{s} s}$
[Eq. (12.47)]
$=\frac{1}{2} \frac{0.0014 \times 44,700^{2} \times 2.58 \times 3}{5.22 \times 10^{10} \times 0.0458 \times 0.00381}$
$=1.2 \mathrm{psi}$
(1) For $R e_{t}=36,200$,
$f=0.00010 \mathrm{ft}^{2} / \mathrm{min}{ }^{3}$
[Fig. 26]
(2) $\Delta P_{1}=\frac{f G_{t}^{2} L_{n}}{5.22 \times 10.0 D s \phi_{t}} \quad[E \mathrm{q} .(7.45)]$
$=\frac{0.00019 \times 1,210,000^{2} \times 8 \times 4}{5.22 \times 10^{10} \times 0.0517 \times 1.0 \times 1.0}$

$$
=3.3 \mathrm{psi}
$$

(3) $\Delta P_{r}=(4 n / s)\left(V^{2} / 2 g^{\prime}\right) \quad$ [Eq. (7.46)]

$$
=(4 \times 4 / 1) 0.20=3.2 \mathrm{psi}
$$

(4) $\Delta P_{7^{\prime}}=\Delta P_{t}+\Delta P_{r} \quad$ [Eq. (7.47)]

$$
=3.3+3.2=6.5 \mathrm{psi}
$$

(13) Clean overall coefficient U_{c} :

$$
\begin{equation*}
U_{c}=\frac{h_{i_{i}} h_{o}}{h_{i c}+h_{0}}=\frac{1075 \times 172}{1075+172}=148.5 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right) \tag{6.38}
\end{equation*}
$$

(14) Dirt factor $R_{d}:{ }^{1} \quad U_{D}$ from $(c)=101$

$$
\begin{equation*}
R_{\mathbf{d}}=\frac{U_{C}-U_{D}}{U_{c} U_{D}}=\frac{148.5-101}{148.5 \times 101}=0.0032(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right) / \mathrm{Btu} \tag{6.13}
\end{equation*}
$$

Summary		
172	h outside	1075
U_{G}	148.5	
U_{D}	101	
R_{d} Calculated 0.0032		
R_{d} Required	0.003	
1.2	Calculated ΔP	6.5
2.0	Allowable ΔP	10.0

The first trial exchanger is satisfactory and will be

$$
\begin{array}{cc}
\text { Shell side } & \text { Tube side } \\
\text { ID }=31 \mathrm{in} . & \text { Number and length }=766,8^{\prime} 0^{\prime \prime} \\
\text { Baffle space }=31 \mathrm{in} . \text { (approx.) } & \text { OD, BWG, pitch }=3 / 4 \mathrm{in} ., 16 \mathrm{BWG}, 15 / 16 \text {-in. tri. } \\
\text { Passes }=1 & \text { Passes }=4
\end{array}
$$

It is interesting at this point to compare a vertical condenser with the horizontal condenser which fulfilled the process conditions of Example 12.1. The horizontal and vertical condensing film coefficients are both affected by W and N_{t}, and the best basis for comparison is obtained when the number of tubes in both condensers is the same. To this end a vertical condenser will be assumed which employs the same tube count as that of the preceding example except that the tube length may be 12 or 16 ft as needed to account for the lower coefficients obtained in vertical condensation.

Example 12.2. Design of a Vertical n-Propanal Condenser. Process conditions will be taken from Example 12.1. To prevent corrosion of the shell the water will flow in the tubes.

Solution:

(1) Heat balance: same as Example 12.1, $Q=17,100,000 \mathrm{Btu} / \mathrm{hr}$
(2) Δt : same as Example $12.1, \Delta t=141^{\circ} \mathrm{F}$
(3) T_{c} and t_{c} : same as Example 12.1
${ }^{1}$ In condensation calculations the omission of the resistance of the tube metal may introduce a significant error and should be checked.

Trial:
(a) Assume $U_{D}=70$. The equation for the condensing film coefficient gives greater values for horizontal tubes than for vertical tubes. It will consequently be necessary to reduce the value of U_{D}.

$$
A=\frac{Q}{U_{D} \Delta t}=\frac{17,100,000}{70 \times 141}=1730 \mathrm{ft}^{2}
$$

Nearest oommon tube length:

$$
\frac{1730}{766 \times 0.1963}=11.5 \mathrm{ft} \quad \text { (use } 12^{\prime} 0^{\prime \prime} \text {) }
$$

(b) The layout of Example 12.1, using $3 / 4 \mathrm{in}$. OD tubes on $15 / 16$-in. triangular pitch and four passes will be retained for comparison.
(c) Corrected coefficient U_{D} :
$A=766 \times 12^{\prime} 0^{\prime \prime} \times 0.1963=1805 \mathrm{ft}^{2}$
$U_{D}=\frac{Q}{A \Delta t}=\frac{17,100,000}{1805 \times 141}=67.2$
Hot fluid: shell side, n-propanol
(4') See (1^{\prime}) under Pressure Drop $D_{o}=0.75 / 12=0.0625 \mathrm{ft}$
(b^{\prime}) Loading, $G^{\prime}=W / 3.14 N_{i} D_{0}$
$=60,000 / 3.14 \times 766 \times 0.0625$
$=399 \mathrm{lb} /(\mathrm{hr})(\mathrm{linft})$
Assume $\bar{h}=h_{0}=100$

$$
\begin{align*}
& t_{w}=t_{a}+\frac{h_{o}}{h_{i o}+h_{o}}\left(T_{v}-t_{a}\right) \text { [Eq. (5.31)] } \\
& =102.5+(100 / 1175)(244-102.5) \\
& =114.5^{\circ} \mathrm{F} \\
& t_{f}=1 / 2\left(T_{v}+t_{v}\right) \\
& =(244+114.5) / 2=179^{\circ} \mathrm{F} \\
& k_{f}=0.0945 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F} / \mathrm{ft}\right) \\
& s_{f}=0.76 \\
& \mu_{j}^{\prime}=0.65 \mathrm{cp}\left(4 G^{\prime} / \mu=1025\right) \tag{Fig.14}\\
& \text { From Fig. } 12.9 \text { or Eq. (12.41), } \\
& \bar{h}=h_{o}=102 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)
\end{align*}
$$

Pressure Drop

(1') It will be necessary to arrange the $12-\mathrm{ft}$ bundle into a minimum number of bundle crosses or $N+1=5$. The spacing will be

$$
B=1445=29 \mathrm{in} .
$$

$$
\begin{equation*}
a_{\mathrm{E}}=\mathrm{ID} \times C^{\prime} B / 144 P_{T} \tag{7.1}
\end{equation*}
$$

$=31 \times 0.1875 \times 29 / 144 \times 0.937$ $=1.25 \mathrm{sq} \mathrm{ft}$

Cold fluid: tube side, water
(4)-(10) Same as Example 12.1
$h_{i o}=1075$
(1) Same as Example 12.1 except for the tube length.

Pressure Drop

$$
\begin{aligned}
& G_{s}=W / a_{2} \quad \text { [Eq. (7.2)] } \\
& =60,000 / 1.25=48,000 \mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right) \\
& \text { At } T_{v}=244^{\circ} \mathrm{F} \text {, } \mu_{\text {rapor }} \\
& \text { [Fig. 15] } \\
& =0.010 \times 2.42 \div 0.0242 \mathrm{lb} /(\mathrm{ft})(\mathrm{hr}) \\
& D_{0}=0.55 / 12=0.0458 \mathrm{ft} \\
& \text { [Fig. 28] } \\
& R e_{s}=D_{0} G_{2} / \mu \\
& \text { [Eq. (7.3)] } \\
& =0.0458 \times 48,000 / 0.0242=91,000 \\
& f=0.0014 \mathrm{ft}^{2} / \mathrm{in} .^{2}
\end{aligned}
$$

(2) No. of crosses,
$N+1=5$
[Eq. (7.43)]
$s=0.00381$
[Example 12.1]
$D_{4}=81 / 12=2.58 \mathrm{ft}$
(3') $\Delta P_{s}=\frac{1}{2} \frac{f G_{8}^{2} D_{s}(N+1)}{5.22 \times 10^{10} D_{8}}$
[Eq: (12:47)]
$=\frac{1}{2} \times \frac{0.00142 \times 48,000^{2} \times 2.58 \times 5}{5.22 \times 10^{10} \times 0.0458 \times 0.00381}$
$=2.3 \mathrm{psi}$
The pressure drop is high, and if it cannot be compensated for by elevating the condenser, it will be necessary to use the halfcirele support baffes as in Example 7.8:
(2) $\Delta P_{t}=\frac{f G_{t}^{2} L n}{5.22 \times 10^{10} D_{s \phi_{t}}}$ $=\frac{0.00019 \times 1,210,000^{2} \times 12 \times 4}{5.22 \times 10^{10} \times 0.0517 \times 1.0 \times 1.0}$
$=5.0 \mathrm{psi}$
(3) ΔP_{r} as in Example $12.1=3.2 \mathrm{psi}$
(4) $\Delta P_{T}=\Delta P_{t}+\Delta P_{r}$
$=5.0+3.2=8.2 \mathrm{psi}$
(13) Clean overall coefficient U_{c} :

$$
\begin{equation*}
U_{C}=\frac{h_{i o} h_{0}}{h_{i o}+h_{o}}=\frac{1075 \times 102}{1075+102}=93.2 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft} \mathrm{t}^{2}\right)\left({ }^{\circ} \mathrm{F}\right) \tag{6.38}
\end{equation*}
$$

(14) Dirt factor $R_{d}: U_{D}$ from (c) $=67.2$

$$
\begin{equation*}
R_{d}=\frac{U_{C}-U_{D}}{U_{C} U_{D}}=\frac{93.2-67.2}{93.2 \times 67.2}=0.00415 \tag{6.13}
\end{equation*}
$$

Summary

102	h outside	1075
U_{σ}	93.2	
U_{D}	67.2	
R_{d} Calculated 0.00415		
R_{d} Required 0.0030		
2.3	Calculated ΔP	8.2
2.0	Allowable ΔP	10.0

Discussion. The condenser is somewhat safe from a heat-transfer standpoint but exceeds the allowable pressure drop, although not seriously. The advantage of horizontal condensation may be observed from the U_{C} of 148.5 in the horizontal condenser as compared with 93.2 in a vertical condenser in an identical service. The vertical condenser has advantages, however, when the condensate is to be subcooled.
The final vertical condenser is

$$
\begin{array}{cc}
\text { Shell side } & \text { Tube side } \\
\text { ID }=31 \mathrm{in} . & \text { Number and length }=766,12^{\prime \prime} 0^{\prime \prime} \\
\text { Baffle space }=29 \mathrm{in.} & \text { OD, BWG, pitch }=3 / 4 \mathrm{in} ., 16,15 / 16 \text {-in. tri. } \\
\text { Passes }=1 & \text { Passes }=4
\end{array}
$$

Partial Condensers and the Balanced Pressure Drop. Sometimes it is desirable to condense only a portion of the vapor in a condenser such as may be needed only for reflux. Such a condenser is a partial condenser although the term dephlegmator was formerly used. The calculation of a partial condenser does not alter the method of computing the condensing film coefficient. The calculation of the pressure drop for a partial condenser is obtained with sufficient accuracy from the average of the pressure drops based on inlet and outlet conditions. The pressure drop for the inlet conditions has already been treated and for the outlet conditions it is obtained for practical purposes by computing the mass velocity and Reynolds number from the weight flow of vapor still in the vapor phase at the outlet.

A more precise calculation of the pressure drop involves an additional factor. During partial condensation in a horizontal condenser the vapor stream travels in the upper portion of the shell and the layer of condensate travels in parallel with it on the bottom of the shell. Both must traverse the length of the exchanger with the same pressure drop, since the terminal pressures for both are identical. This is called the condition of balanced pressure drops, and it applies whenever two fluids flow in parallel in the same channel. For condensation inside horizontal tubes, particularly in tube bundles, the pressure drop can be computed by trial and error by assuming the average segments of the pipe in which the condensate and vapor flow. The equivalent diameter can then be calculated for each portion from the free-flow area and the wetted perimeter. The mass velocity, Reynolds number, and pressure drops can similarly be calculated. If the pressure drops for the assumed division of the segments do not check, a new assumption must be made and the calculation repeated. The principle of balanced pressure drops is particularly important when it is desired to subcool the condensate to a very specific temperature and the area for sensible-heat transfer must be determined closely. When dealing with the shell side of 1-2 horizontal condensers, it is extremely difficult to predict accurately the effective flow area at the
bottom of the shell unless it can be determined by planimeter from the actual layout, although the principle of balanced pressure drop must also apply.
Influence of Impurities upon Condensation. In distillation operations the volatile component is always only partially separated from the less volatile components and the overhead product is never 100 per cent pure. Instead it may contain from a trace to a substantial concentration of the heavier components, and it does not condense isothermally except when the overhead is a constant boiling mixture or a mixture forming two immiscible liquids. When the temperature range over which the condensation of a mixture occurs is small, perhaps not exceeding 10 to $20^{\circ} \mathrm{F}$, it may be treated as a pure compound with the true temperature difference being the LMTD for 1-1 condensers or $F_{r} \times$ LMTD for 1-2 condensers. The use of the conventional LMTD in either case assumes that the heat load removed from the vapor per degree of temperature decrease is uniform. Particularly where close approaches to the temperature of the cooling medium are involved, this may lead to serious error as demonstrated in Chap. 13. For the majority of services the assumption does not cause a serious error.

Another type of impurity causing a deviation from isothermal condensation is the presence of a trace of noncondensable gas, such as air, mixed with the vapor. A noncondensable gas is actually a superheated gas which is not cooled to its saturation temperature while the vapor itself is condensed. A common example is the presence of air in the condensation of steam. The presence of only 1 per cent of air by volume may reduce the condensing coefficient of steam by 50 per cent. The mechanism of the condensation becomes one of diffusion of the vapor through the air, the latter serving as a resistance to the transfer of heat. Under conditions of superatmospheric pressure there is little hazard that air will leak into a system except for the small quantities which may have been dissolved in the feed water before it was vaporized. In vacuum operation the possibility of air leakage into the system requires that provision be made for its continuous removal.

Condensation of a Superheated Vapor. The condensation of a superheated vapor differs from that of a saturated vapor in so far as there is sensible heat to be removed. The superheat may be the result of an additional heat absorption by a dry saturated vapor after removal from contact with the liquid from which it was formed or from passing a saturated vapor through a pressure-reducing valve. For the condensation of superheated steam McAdams ${ }^{1}$ cites a number of investigators who have found that the entire superheated and condensing heat loads may be
${ }^{1}$ MeAdams, op. cut., p. 279.
considered transferred by the temperature difference between the steam saturation temperature and the tube wall temperature, or

$$
\begin{equation*}
Q=\bar{h} A\left(T_{S}-t_{w}\right) \tag{12.49}
\end{equation*}
$$

where \bar{h} is the condensing film coefficient and T_{s} is the saturation temperature of the superheated steam corresponding to its inlet pressure. This is actually a compromise rule. It simplifies the calculation by balancing the greater temperature difference that should be used for the desuperheating alone against a film coefficient which may be somewhat lower than the condensing coefficient. In the light of less conclusive evidence one may speculate on what possibility occurs in a desuperheater-condenser. Consider a horizontal true counterflow or 1-1 condenser with the vapor in the shell. When the superheated vapor enters at the hot end of the condenser, the temperature of the tube wall may be lower than the saturation temperature of the vapor. The superheated vapor contacting the tube wall condenses at its saturation temperature and may possibly even be subcooled. As the condensate drips from the tubes, it probably exchanges heat by reflashing into the hot superheated vapor at a great transfer rate, thereby effecting most of the desuperheating. Here, then, the desuperheating is probably controlled by the rate of subcooling, which should be relatively high for a film on a cold tube wall provided the condensate does not drain too rapidly to be subcooled.

It is also possible to have a reverse condition. If the cooling medium has been heated so that the tube-wall temperature near the hot terminal is greater than the saturation temperature, the tube wall will be dry toward the hot end and desuperheating will occur only as if the superheated steam were a dry gas. In this case it is necessary to divide the unit into a desuperheating and a condensing zone, and this method will be treated presently.

In the condensation of vapors other than steam it must be noted that a different relationship exists between the relative heat content of the superheat and the latent heat of evaporation. When steam at atmospheric pressure and superheated $100^{\circ} \mathrm{F}$ is condensed, the desuperheat represents slightly less than 5 per cent of the total heat load. If an organic vapor whose boiling point is in the same range, such as n-heptane, is superheated $100^{\circ} \mathrm{F}$ and then condensed, the desuperheat represents over 25 per cent of the heat load. Furthermore, water vapor has a very low density compared with organic vapors, and the mechanics of reflashing and diffusion in the vapor phase is probably more active for steam than for organic vapors. In condensers with multiple tube passes, condensation does not occur where the tube-wall temperature is higher than the saturation temperature of the vapor, so that it is possible to have only part of the surface wetted.

The Weighted Clean Coefficient and Temperature Difference in Desuperheater-Condensers. In establishing the true temperature difference for counterflow and 1-2 exchangers it was assumed that no partial phase change occurred in the exchanger. The desuperheater-condenser is a distinct violation of this assumption, requiring the development of a new method of computing the true temperature difference. In Fig. 12.18 the temperatures during the condensation of a pure vapor are shown. In Fig. 12.19 are shown the temperatures during the desuperheating and condensation of a superheated vapor. It is convenient to consider the

Frg. 12.18, Temperature diatribution vs. tube length during isothermal condensation in a.1-2 condenser.

Fig. 12.19. Temperature distribution vs. tube length in a 1-2 desuperheater-condenser.
condenser as being subdivided into two zones in series, one for desuperheating and the other for condensation. The length L in the liquid condensate loading, $G^{\prime \prime}=W / L N_{t^{2 / 3}}^{2 /}$, for a horizontal desuperheater-condenser is then the length of tube corresponding only to condensation and not the overall tube length. It will be seen that this requires an estimate of the length of tube corresponding only to condensation before \bar{h} can be obtained. This difficulty in calculation does not arise in vertical units.

The temperature relations in the condensing zone of Fig. 12.19 are identical with those of a 1-2 exchanger, but those of the desuperheating zone differ from any type encountered previously. For a two-tube pass 1-2 desuperheater-condenser with desuperheating occurring at the channel end, the temperature t_{1}^{\prime} may be obtained from differential equations for the heat transfer over the two tube passes of the desuperheating zone. Then t_{1}^{\prime} is given by ${ }^{1}$

$$
\begin{aligned}
t_{1}^{\prime}= & \frac{1}{2}\left(\frac{W \lambda}{w c}+2 T_{1}+t_{1}-t_{2}\right) \\
& \pm \frac{1}{2} \sqrt{\left(t_{2}-t_{1}-2 T_{1}-\frac{W \lambda}{w c}\right)^{2}-4\left[\left(2 T_{1}-t_{2}\right) t_{1}+\left(\frac{W C}{w c}\right) T_{1}\right]}
\end{aligned}
$$

[^19]By a heat balance t_{2}^{\prime} can also be found. For four or more tube passes the calculation of the temperature difference is considerably more involved but may be simplified semiempirically. For desuperheating and condensation in a counterflow apparatus no problem arises. In a 1-2 condenser if the condensation is isothermal or the condensing range is small, and if there is no temperature cross between the condensing range and the range of the cooling medium, it is possible, with small error, to consider the entire heat load delivered in counterflow regardless of the nozzle orientation. Temperature crosses in parallel flow-counterflow desuper-heater-condensers should always be avoided if at all possible. Then the temperature rise of the water during condensation corresponds to the condensing heat load. This method is not so unsafe in the desuperheating zone as it appears if the tube-wall temperature at the hot terminal of the condenser is lower than the saturation temperature of the vapor. The calculation of the surface required for desuperheating by using a dry gas film coefficient without regard to possible desuperheating by reflashing in the desuperheating zone more than compensates for the error in the temperature difference encountered in real problems. If d and c indicate the desuperheating and condensing zones, respectively, and q is the heat transferred in each, the two zones may be computed by $q_{d}=U_{d} A_{d}(\Delta t)_{d}$ and $q_{c}=U_{c} A_{c}(\Delta t)_{c}$ where U_{d} and U_{c} are the clean overall coefficients and A_{d} and A_{c} the corresponding surfaces.

The use of the two zones permits the calculation of individual values of U_{d} and U_{c}, for each zone, but in the preceding examples the practice was established to judge the suitability of an exchanger by the size of the dirt factor, which was obtained from the difference between the clean and design overall coefficients. In each zone of a desuperheater-condenser there is a separate clean coefficient, and each is effective over an independent surface. The two overall coefficients may be replaced by a single value, the weighted overall clean coefficient, which is obtained from

$$
\begin{equation*}
U_{c}(\text { weighted })=\frac{\Sigma U_{c} A_{c}}{\Sigma A_{c}}=\frac{U_{c} A_{o}+U_{d} A_{d}}{A_{c}+A_{d}} \tag{12.50}
\end{equation*}
$$

where U_{C} is the weighted clean overall coefficient.
To calculate a value of U_{D} from the Fourier equation $Q=U_{D} A \Delta t$ it is necessary first to obtain a single value for Δt. This may be weighted in terms of the heat transferred, respectively, by the temperature differences for condensation and desuperheating. Since $U_{D} A=Q / \Delta t$,

$$
\begin{equation*}
\Delta t(\text { weighted })=\frac{Q \mid}{\sum_{i} \frac{q}{\Delta t}}=\frac{Q}{\frac{q_{c}}{(\Delta t)_{c}}+\frac{q_{d}}{(\Delta t)_{d}}} \tag{12.51}
\end{equation*}
$$

where Δt is the weighted temperature difference and $(\Delta t)_{c}$ and $(\Delta t)_{d}$ are LMTD in counterflow. The assumptions in the weighting method should be completely understood before attempting the solution of problems. They serve as a consistent means, if not entirely precise, for comparing the performance and design of desuperheater-condensers.

In the calculation of desuperheater-condensers for the fulfilment of process conditions, it is difficult to establish a fast rule for assuming a reasonable value of U_{D} for the trial calculation. It is not only dependent upon the film coefficients of the superheated and saturated vapor but to an equal extent upon the distribution of the heat load between condensation and superheat which may have any value. By weighting U_{D} from the individual heat loads and anticipated individual design coefficients it permits a reasonably good approximation. Thus for a trial calculation

$$
\begin{equation*}
U_{D}(\text { weighted })=\frac{Q}{\frac{q_{c}}{\left(U_{D}\right)_{c}}+\frac{q_{d}}{\left(U_{D}\right)_{d}}} \tag{12.52}
\end{equation*}
$$

Example 12.3. Calculation of a Butane Desuperheater-condenser. $27,958 \mathrm{lb} / \mathrm{hr}$ of isobutane with small amounts of n-butane issues from a gas reactor at $200^{\circ} \mathrm{F}$ and 85 psig. The gas becomes saturated at $130^{\circ} \mathrm{F}$ and is completely condensed at $125^{\circ} \mathrm{F}$. Cooling is by well water from 65 to $100^{\circ} \mathrm{F}$.

A minimum combined dirt factor of 0.003 is required along with allowable pressure drops of 2.0 psi for the butanes and 10.0 psi for the water.

Available for the service is a $231 / 4 \mathrm{in}$. ID horizontal $1-2$ gas exchanger with 352 $3 / 4 \mathrm{in}$. OD, 16 BWG tubes $16^{\prime} 0^{\prime \prime}$ long laid out on $1-\mathrm{in}$. triangular pitch for four passes. The bafles are spaced 12 in . apart.

Solution:

Exchanger:

$$
\begin{array}{rlrl}
\text { Shell side } & \text { Tube side } \\
\text { ID } & =23 y / \mathrm{in} . & \text { Number and length }=352,16^{\prime} 0^{\prime \prime} \\
\text { Baffle space } & =12 \mathrm{in} . & \text { OD, BWG, pitch }=3 / 4 \mathrm{in} ., 16 \text { BWG, } 1 \text { in.-tri } \\
\text { Passes } & =1 & \text { Passes } & =4
\end{array}
$$

(1) Heat balance:

Butanes: Desuperheating range, $q_{d}=27,958 \times 0.44(200-130)$

$$
\begin{equation*}
=860,000 \mathrm{Btu} / \mathrm{hr} \tag{Fig.5or9}
\end{equation*}
$$

Condensing range (From Fig. 9):
Enthalpy of n-butane vapor at 100 psia and $130^{\circ} \mathrm{F}=309 \mathrm{Btu} / \mathrm{lb}$
Enthalpy of n-butane liquid at 100 psia and $125^{\circ} \mathrm{F}=170 \mathrm{Btu} / \mathrm{lb}$
$q_{c}=27,958(309-170)=3,880,000 \mathrm{Btu} / \mathrm{hr}$
$Q=860,000+3,880,000=4,740,000 \mathrm{Btu} / \mathrm{hr}$
Water, $Q=135,500 \times 1(100-65)=4,740,000 \mathrm{Btu} / \mathrm{hr}$
$\Delta t_{\text {water }}=3,880,000 / 135,500=28.7^{\circ} \mathrm{F}$
(2) Δt weighted:

Desuperheat $(\Delta t)_{d}$
Hot Fluid

200	Higher Temp	100	100
130	Lower Temp	93.7	36.3
70	Differences	6.3	63.7

$\langle\Delta t)_{d}=\tau \mathrm{MTD}=63.0^{\circ} \mathrm{F}$
$\frac{q_{d}}{(\Delta t)_{d}}=\frac{860,000}{63.0}=13,650$

Condensation ($\Delta t)_{e}$
Hot Fluid Cold Fluid Dif.

130	Higher Temp	93.7	36.3
125	Lower Temp	65.0	60.0
5	Differences	28.7	23.7

$(\Delta t)_{c}=\mathrm{L} \mathrm{MrD}^{\top}=47.0^{\circ} \mathrm{F}$
(5.14)
$\frac{a_{c}}{(\Delta t)_{c}}=\frac{3,880,000}{47}=82,500$

$$
\begin{equation*}
\text { Weighted } \Delta t=\frac{Q}{\Sigma q / \Delta t}=\frac{4,740,000}{13,650+82,500}=49.3^{\circ} \mathrm{F} \tag{12.51}
\end{equation*}
$$

(3) T_{e} and t_{c} : Average values will be satisfactory.

Hot fluid: shell side, butanes
(4') $a_{s}=\operatorname{ID} \times C^{\prime} B / 144 P_{T} \quad[E q$. (7.1)]
$=23.25 \times 0.25 \times 12 / 144 \times 1.0$
$=0.484 \mathrm{ft}^{2}$
Desuperheating (dry gas):
${ }^{\left(5^{\prime}\right)} G_{s}=W / a_{t}$

$$
=27,958 / 0.484
$$

[Eq. (7.2)]

$$
=57,800 \mathrm{lb} /(\mathrm{hr})(\mathrm{ft})
$$

(6) At $T_{a}=165^{\circ} F$, the mean for the superheated gas,
$\mu=0.01 \times 2.42=0.0242 \mathrm{lb} /(\mathrm{ft})(\mathrm{hr})$
[Fig. 15]
$D_{e}=0.73 / 12=0.0608 \mathrm{ft}$
[Fig. 28]
$R e_{s}=D_{s} G_{s} / \mu$
$=0.0608 \times 57,800 / 0.0242=145,000$
(7^{\prime}) $j_{H}=239$
[Fig. 28]
(8^{\prime}) At $165^{\circ} \mathrm{F}$,
$k=0.012 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right) \quad$ TTable 5] $(c \mu / k)^{1 / 3}=(0.44 \times 0.0242 / 0.012)^{1 / 3}$

$$
=0.96
$$

(9^{\prime}) $h_{o}=j_{H} \times \frac{k_{6}}{D_{c}}\left(\frac{c \mu}{k}\right)^{1 / 3}$
[Eq. (6.15b)] (9) $h_{i}=800$
[Fig. 25]

$$
\begin{gathered}
=239 \times 0.012 \times 0.96 / 0.0608 \\
=45.2 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)
\end{gathered}
$$

Cold fluid: tube side, water
(4) $a_{t}^{\prime}=0.302 \mathrm{in}.{ }^{2} \quad$ [Table 10]
$a_{t}=N_{t} a_{t}^{\prime} / 1444 n$
$==352 \times 0.302 / 144 \times 4=0.185 \mathrm{ft}^{2}$
(5) $G_{t}=w / a_{t}$

$$
=135,500 / 0.185
$$

Vel, $V=G_{t} / 3600 \rho$

$$
=732,000 \mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)
$$

$=732,000 / 3600 \times 62.5=3.25 \mathrm{fps}$
(6) At $t_{a}=82.5^{\circ} \mathrm{F}$,
$\mu=0.87 \times 2.42=2.11 \mathrm{lb} /(\mathrm{ft})(\mathrm{hr}) \mathrm{CFig}. \mathrm{14]}$
$D=0.62 / 12=0.0517 \mathrm{ft}$
$R e_{t}=D G_{t} / \mu$ (for pressure drop only)
$=0.0517 \times 732,000 / 2.11=18,000$

$$
h_{i_{0}}=h_{i} \times \mathrm{ID} / \mathrm{OD}
$$

$$
=800 \times 0.62 / 0.75
$$

$$
=662 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft} \mathrm{t}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)
$$

Clean overall coefficient $U_{d,}$ desuperheat:

$$
\begin{equation*}
U_{d}=\frac{h_{i o} h_{o}}{h_{i o}+h_{o}}=\frac{862 \times 45.2}{682+45.2}=42.3 \tag{6.38}
\end{equation*}
$$

Clean surface required for desuperheating:

$$
A_{d}=\frac{q_{d}}{U_{d}(\Delta t)_{d}}=\frac{860,000}{42.3 \times 63.0}=323 \mathrm{ft}^{2}
$$

Condensation

(5') Assume condensation occurs over 60% of the tube length.
$L_{c}=16^{\prime} 0^{\prime \prime} \times 0.60=9.6 \mathrm{ft}$
$G^{\prime \prime}=W / L N_{t}{ }^{2 / 3}=\frac{27,958}{9.6 \times 352^{2 / 3}}$
$=58.3 \mathrm{lb} /(\mathrm{hr})$ (lin ft) [Eq. (12.43)]
Assume $\vec{h}=h_{0}=200$;
From (9), $h_{i o}=662$
Average temp of condensation:
$T_{v}=(130+125) / 2=127.5^{\circ} \mathrm{F}$
$t_{t}=t_{a}+\frac{h_{o}}{h_{i t}+h_{o}}\left(T_{v}-t_{a}\right) \quad$ [Eq. (5.31)]
$=82.5+\frac{200}{662+200}(127.5-82.5)$
$=93^{\circ} \mathrm{F}$
$t_{f}=\left(T_{v}+t_{w}\right) / 2=(127.5+93) / 2$
$=110^{\circ} \mathrm{F}$ [Eq. (12.19)]
k_{f} is not given in Table 4 for butane or isobutane, but from the values for pentane and hexane it should be about 0.076 at . $86^{\circ} \mathrm{F}$ and 0.074 at $140^{\circ} \mathrm{F}$. A value of 0.075 will be used.
$s_{f}=0.55\left(110^{\circ} \mathrm{API}\right)$ [Fig. 6]
$\mu_{i}^{\prime}=0.14 \mathrm{cp}$
$\bar{h}=h_{0}=207$

Average temp during condensation $t_{a}=82.5^{\circ} \mathrm{F}$

The assumption of $\bar{h}=200$ is satisfactory
Ulean overall coefficient U_{c}, condensation:

$$
\begin{equation*}
U_{c}=\frac{h_{i_{0} h_{0}}}{h_{i_{0}}+h_{0}}=\frac{662 \times 207}{662+207}=158 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft} \mathrm{t}^{2}\right)\left(\mathrm{F}^{\mathrm{F}}\right) \tag{6.38}
\end{equation*}
$$

Clean surface required for condensation:

$$
A_{\epsilon}=\frac{q_{c}}{U_{v}(\Delta t)_{e}}=\frac{3,880,000}{158 \times 47}=523 \mathrm{ft}^{2}
$$

Total clean surface required A_{c} :

$$
A_{c}=A_{d}+A_{c}=323+523=846 \mathrm{ft}^{2}
$$

Check of assumed condensing length L_{c} :

$$
\frac{A_{c}}{A_{c}+A_{d}} \times 100=\frac{523}{846} \times 100=62 \%
$$

Assumed length $=60 \% \quad$ (satisfactory)
(13) Weighted clean overall coefficient:

$$
\begin{equation*}
U_{c}=\frac{\Sigma U A_{c}}{\Sigma A_{c}}=\frac{42.3 \times 323+158 \times 523}{846}=114 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft} \mathrm{t}^{2}\right)\left({ }^{\circ} \mathrm{F}\right) \tag{12.50}
\end{equation*}
$$

(14) Design overall coefficient U_{D} :

$$
\begin{gathered}
a^{\prime \prime}=0.1963 \mathrm{ft} / \mathrm{lin} \mathrm{ft} \\
\text { Total surface }=352 \times 16^{\prime} 0^{\prime \prime} \times 0.1963=1105 \mathrm{ft}: \\
U_{D}=\frac{Q}{A \Delta t}=\frac{4,740,000}{1105 \times 49.3}=87.2
\end{gathered}
$$

(Table 10)
(15) Dirt factor R_{d} :

$$
\begin{equation*}
R_{d}=\frac{U_{c}-U_{D}}{U_{C} U_{D}}=\frac{114}{114 \times 87.2}=0.0027 \tag{6.13}
\end{equation*}
$$

Pressure Drop

(1') Desuperheat:
For $\operatorname{Re}_{4}=145,000, f=0.0013 \mathrm{ft}^{2} / \mathrm{in} .{ }^{2}$
[Fig. 29]
(2') No. of crasses
($L_{d}=16^{\prime} 0^{\prime \prime} \times 0.40=6.4 \mathrm{ft}$)
$12 L / B=6.4 \times 12 / 12=6 \quad[$ Eq. (7.43)]

$$
\text { Mol. wt. }=58.1
$$

Density, $\rho=\frac{58.1}{359(625 / 492)(14.7 / 99.7)}$ $=0.863 \mathrm{lb} / \mathrm{ft}^{3}$
$s=0.863 / 62.5=0.0138$
$D_{s}=23.25 / 12=1.94 \mathrm{ft}$
(3) $\Delta P_{s}=\frac{f G_{s}^{2} D_{s}(N+1)}{5.22 \times 10^{10} D_{s} \phi_{s}}$
[Eq. (7.44)]
$=\frac{0.0013 \times 57,800^{2} \times 1.94 \times 6}{5.22 \times 10^{10} \times 0.0608 \times 0.0138 \times 1.0}$

$$
=1.1 \mathrm{psi}
$$

(1) Condensation:

Use of the same Reynolds number will be satisfactory. $s=0.0146$
(2^{\prime}) No. of crosses ($L_{c}=9.6 \mathrm{ft}$)
$N+1=12 \times 9.6 / 12=10 \quad$ [Eq. (7.43)]
(3') $\Delta P_{s}=\frac{1}{2} \frac{f G_{s}^{2} D_{s}(N+1)}{5.22 \times 10^{10} D_{c} s}$
[Eq. (12.47)]
$=\frac{1}{2} \times \frac{0.0013 \times 57,800^{2} \times 1.94 \times 10}{5.22 \times 10^{10} \times 0.0608 \times 0.0146}$ $=0.90 \mathrm{psi}$
(4) $\Delta P_{t}=1.1+0.9=2.0 \mathrm{psi}$ (total)
(1) For $R e_{i}=17,900, f=00023 \mathrm{ft}^{2} / \mathrm{in}$.
[Fig. 26]
(2) $\Delta P_{t}=\frac{f G_{t}^{2} L n}{5.22 \times 10^{10} D_{s \phi_{t}}} \quad$ [Eq. (7.45)] $=\frac{0.00023 \times 730,000^{2} \times 16 \times 4}{5.22 \times 10^{10} \times 0.0517 \times 1.0 \times 1.0}$
(3) $\Delta P_{r}=(4 n / s)\left(V^{2} / 2 g^{\prime}\right) \quad=3.0 \mathrm{psi}$
[Eq. (7.46)]
[Fig. 27]
$=\langle 4 \times 4 / 1\rangle 0.075=1.2 \mathrm{psi}$.
(4) $\Delta P_{T}=\Delta P_{i}+\Delta P_{r}$
$=3.0+1.2=4.2 \mathrm{psi}$

Summary		
$45.2 / 207$	h outside	662
U_{C}	114	
U_{D}	87.2	
R_{d} Calculated 0.0027		
R_{d} Required	0.0030	
2.0	Calculated ΔP	4.2
2.0	Allowable ΔP	10.0

The Vertical Condenser-subcooler. It is often desirable to subcool a vapor to a temperature lower than the saturation temperature of the vapor. This occurs in distillation when the overhead product is volatile and it is desired to send it to storage at a lower temperature to prevent excessive evaporation losses. Vertical condensers are excellent for use as condenser-subcoolers whether they be of the 1-2 type as shown in Fig. 12.11 with condensation in the shell or the 1-1 type in Fig. 12.13 with condensation inside or outside the tubes.

If a saturated vapor passes into the shell of a vertical condenser, it is possible to divide it into two distinct zones operating in series, the upper for condensation and the lower for subcooling. This is accomplished by means of a loop seal as shown in Fig. 12.20. The object of the loop seal is to prevent the condensate from draining from the exchanger at so rapid a rate that it emerges without subcool-

Fig. 12.20. Loop seal on vertical con-denser-subcooler. ing. Since the shell will flow full of liquid in the subcooling zone, when a loop seal is used, the film coefficients for subcooling can be computed through the use of Fig. 28 in the same manner employed heretofore for liquids. The same is true for the tube side of a 1-1 exchanger using tube-side heat transfer data, Fig. 24, for calculating coefficients.

In establishing the true temperature difference for the condenser-subcooler in Fig. 12.20 there is no margin of safety such as occurs in the desuperheater-condenser. In the subcooling zone the temperatures are identical with a 1-2 exchanger having water inlet and outlet temperatures t_{1}^{\prime} and t_{2}^{\prime}, whereas in the condensing zone the pattern again differs. For a precise calculation of the true temperature difference it is necessary to estimate t_{1}^{\prime} and t_{2}^{\prime} and to solve for the two condensing passes separately. This entails a lengthy trial-and-error calculation. For four or more tube passes the solution is even lengthier.

The cooling medium is heated over a greater temperature range in the first condensing pass than in the second, so that $T_{1}-t_{1}$ is greater than $T_{1}-t_{2}$. The temperature $t_{1}^{\prime \prime}$ at the bottom of the subcooling zone is actually higher than the mean of t_{1} and t_{2}.

As in the case of the desuperheater-condenser, the calculation of the effective temperature difference may be simplified by means of a similar assumption. Avoid process conditions which involve a cross between the cooling medium outlet temperature and the subcooled condensate outlet temperatures. Then for 1-2 condensers with any even number of tube passes consider the cooling medium to be in counterflow and calculate the weighted temperature difference accordingly.

Example 12.4. Calculation of a Vertical Condenser-subcooler. $21,000 \mathrm{lb} / \mathrm{hr}$ of mixed n-pentane and i-pentane comes from a distilling column at $130^{\circ} \mathrm{F}$ and 25 psia and condenses completely at $125^{\circ} \mathrm{F}$. The condensate is to be subcooled from 125 to $100^{\circ} \mathrm{F}$ for storage. Cooling will be effected by water from 80 to $100^{\circ} \mathrm{F}$. A shell-side pressure drop of 2.0 psi is permissible for the vapor and 10.0 psi for water. A minimum fouling factor of 0.003 should be provided.

Available for the service is a 25 in . ID vertical $1-2$ condenser containing $3703 / 4 \mathrm{in}$. $O D, 16 \mathrm{BWG}, 16^{\prime} 0^{\prime \prime}$ tubes laid out on $1-\mathrm{in}$. square pitch. Shell bafles are 12 in . apart, and the bundle is arranged for four tube passes:

Will the condenser be a satisfactory vertical condenser-subcooler?

Solution:

Exchanger:

$$
\begin{array}{cc}
\text { Tube side } \\
\text { Shell side } \\
\text { ID }=25 \mathrm{in} . & \text { Number and length }=370,16^{\prime} 0^{\prime \prime} \\
\text { Baffe space }=12 \mathrm{in.} . & \text { OD, BWG, pitch }=3 / 4 \mathrm{in} ., 16 . \mathrm{BWG}, 1 \mathrm{in} . \text {-square } \\
\text { Passes }=1 & \text { Passes }=4
\end{array}
$$

(1) Heat balance:

Condensing range (130 to $125^{\circ} \mathrm{F}$): (Data from Fig. 9).
Enthalpy of n-pentane vapor at 25 psia and $130^{\circ} \mathrm{F}=315 \mathrm{Btu} / \mathrm{mb}$
Enthalpy of n-pentane liquid at 25 psia and $125^{\circ} \mathrm{F}=170 \mathrm{Btu} / \mathrm{lb}$
$q_{c}=21,000(315-170)=3,040,000 \mathrm{Btu} / \mathrm{hr}$

Subcooling range (125 to $100^{\circ} \mathrm{F}$):

$$
\begin{aligned}
& q_{\mathrm{s}}=21,000 \times 0.57(125-100)=300,000 \mathrm{Btu} / \mathrm{hr} \\
& Q=\Sigma_{q}=3,040,000+300,000=3,340,000 \mathrm{Btu} / \mathrm{hr}
\end{aligned}
$$

Wrater, $Q=167,000 \times 1(100-80)=3,340,000 \mathrm{Bta} / \mathrm{hr}$
During condensation $\Delta t_{\text {water }}=3,040,000 / 167,000=18.2^{\circ} \mathrm{F}$
(2) Δt weighted:

Condensing, $(\Delta t)_{c}=36.4 ; q_{0} /(\Delta t)_{c}=3,040,000 / 36.4=83,500 \mathrm{Btu} /(\mathrm{hr})\left({ }^{\circ} \mathrm{F}\right)$
Subcooling, $(\Delta t)_{s}=30.2 ; q_{s} /(\Delta t)_{s}=300,000 / 30.2=9,930$

$$
\begin{equation*}
\Delta t=Q / \sum \frac{q}{\Delta t}=\frac{3,340,000}{93,430}=35.8^{\circ} \mathrm{F} \tag{12.51}
\end{equation*}
$$

(3) T_{c} and t_{c} : Average values will be satisfactory.

Fot fluid: shell side, pentanes
(4') Condensation:
$D_{0}=0.75 / 12=0.0625 \mathrm{ft}$
$G^{\prime}=W / \pi N_{t} D_{0}$
$=21,000 / 3.14 \times 370 \times 0.0625$
$=290 \mathrm{lb} /(\mathrm{hr})(\operatorname{lin} \mathrm{ft})$
Assume $\bar{\hbar}=h_{0}=125$
Average temp of condensing vapor:
$T_{v}=(130+125) / 2=127.5^{\circ} \mathrm{F}$
$t_{\mathrm{if}}=t_{a}+\frac{h_{o}}{h_{i g}+h_{c}}\left(T_{z}-t_{a}\right) \quad[\mathrm{Eq} . \quad(5.31)]$
$=90+\frac{125}{774+125}(127.5-90)=95^{\circ} \mathrm{F}$
$t_{j}=\left(T_{v}+t_{4}\right) / 2=(127.5+95) / 2$

$$
=111^{\circ} \mathrm{F} \quad[\mathrm{Eq} .(12.19)]
$$

$k_{j}=0.077 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F} / \mathrm{ft}\right)$
[Table 4]
[Fig. 6]
[Fig. 14]
$s_{f}=0.60(92$
$\mu_{f}^{\prime}=0.19 \mathrm{cp}$
$\bar{h}=h_{0}=120$ (vs. 125 assumed. t_{ρ} will not be changed materially by recalculation.)

Cold fluid: tube side, twater
(4) $a_{t}^{\prime}=0.302 \mathrm{in} .^{2}$
[Table 10]
$a_{t}=N_{t} a_{t}^{\prime} / 144 n \quad$ [Eq. (7.48)]
$=370 \times 0.302 / 144 \times 4=0.194 \mathrm{ft}^{2}$
(Б) $G_{i}=w / a_{t}$

$$
=167,000 / 0.194
$$

$$
=860,000 \mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)
$$

Vel, $V=G_{t} / 3600 \rho=860,000 / 3600$
$=3.84 \mathrm{fps}$
(9) $h_{i}=940$
[Fig. 25]
$\begin{aligned} h_{i o} & =h_{i} \times 1 D / O D \\ & =940 \times 0.62 / 0.75\end{aligned}$
$=777$ Btu $/(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$

Clean overall coefficient for condensation U_{e} :

$$
\begin{equation*}
U_{c}=\frac{h_{i a} h_{0}}{h_{i o}+h_{0}}=\frac{777 \times 120}{777+120}=104 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{It}^{2}\right) \cdot\left({ }^{\circ} \mathrm{F}\right) \tag{6.38}
\end{equation*}
$$

Clean surface required for condensation A_{r} :

$$
A_{\varepsilon}=\frac{g_{e}}{U_{e}(\Delta t)_{e}}=\frac{3,040,000}{104 \times 36.4}=803 \mathrm{ft}^{2}
$$

(4) Subcooling:
$a_{s}=\mathrm{ID} \times C^{\prime} B / 144 P_{T}$
[Eq. (7.1)]
$=25 \times 0.25 \times 12 / 144 \times 1.0=0.521 \mathrm{ft}^{2}$
(5^{\prime}) $G_{s}=W / a$,
[Eq. (7.2)]

$$
=21,000 / 0.521
$$

$=40,300 \mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)$
(6) At $T_{a}=112.5^{\circ} \mathrm{F}$,
$\mu=0.19 \times 2.42=0.46 \mathrm{lb} /(\mathrm{ft})(\mathrm{hr})$
[Fig. 14]
$D_{s}=0.95 / 12=0.0792 \mathrm{ft}$
$R e_{3}=D_{0} G_{3} / \mu$
[Eq. (7.3)
$=0.0792 \times 40,300 / 0.46=6950$
(7^{\prime}) $i_{H}=46.5$
(8) At $112.5^{\circ} \mathrm{F}$,
$k=0.077 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F} / \mathrm{ft}\right) \quad[$ Table 41 $\left(c_{\mu} / k\right)^{1 / 3}=(0.57 \times 0.46 / 0.077)^{1 / 3}=1.51$

$$
\left.\begin{aligned}
\left(9^{\prime}\right) h_{0}= & =j \frac{k}{D_{e}}\left(\frac{c \mu}{k}\right)^{1 / 3} \\
& =46.5 \times 0.077 \times 1.51 / 0.0792 \\
& =68.0 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)
\end{aligned} \right\rvert\,
$$

(6) At $90^{\circ} \mathrm{F}, \mu=0.82 \times 2.42=1.98$ [Fig. 14]
$D=0.62 / 12=0.0517 \mathrm{ft}$
$R e_{t}=D G_{t} / \mu$ (for pressure drop only)
$=0.0517 \times 860,000 / 1.98=22,500$

Clean overall coefficient for subcooling U_{s} :

$$
\begin{equation*}
U_{s}=\frac{h_{i o} h_{o}}{h_{i o}+h_{o}}=\frac{777 \times 68.0}{777+68.0}=62.5 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{\mathrm{D}}\right)\left({ }^{\circ} \mathrm{F}\right) \tag{6.38}
\end{equation*}
$$

Clean surface required for subcooling A_{s} :

$$
A_{t}=\frac{q_{s}}{U_{s}(\Delta t)_{s}}=\frac{300,000}{62.5 \times 30.2}=159 \mathrm{ft}^{2}
$$

Total clean surface required $A c$:

$$
A_{c}=A_{c}+A_{s}=803+159=962 \mathrm{ft}^{2}
$$

(13) Weighted overall clean coefficient U_{c} :

$$
\begin{equation*}
U_{c}=\frac{\Sigma U A_{C}}{\Sigma A_{G}}=\frac{104 \times 803+62.5 \times 159}{962}=97.1 \tag{12.50}
\end{equation*}
$$

(14) Design overall coefficient U_{D} :

$$
\begin{equation*}
a^{\prime \prime}=0.1963 \mathrm{ft}^{2} / \mathrm{lin} \mathrm{ft}^{2} \tag{Table10}
\end{equation*}
$$

Total surface $=370 \times 16^{\prime} 0^{\prime \prime} \times 0.1963=1160 \mathrm{ft}^{2}$

$$
U_{D}=\frac{Q}{A \Delta t}=\frac{3,340,000}{1160 \times 35.8}=80.5
$$

(15) Dirt factor R_{d} :

$$
\begin{equation*}
R_{d}=\frac{U_{c}-U_{D}}{U_{C} U_{D}}=\frac{97.1-80.5}{97.1 \times 80.5}=0.0021(\mathrm{hr})\left(\mathrm{ft}^{\mathrm{s}}\right)\left({ }^{\circ} \mathrm{F}\right) / \mathrm{Btu} \tag{6.13}
\end{equation*}
$$

Pressure Drop

Height of zones:
Condensing: $L_{0}=L A_{c} / A_{c}$

$$
=16 \times 803 / 962=13.4 \mathrm{ft}
$$

(1') Condensation:

At $T_{v}=127.5^{\circ} \mathrm{F}$,
$\mu=0.0068 \times 2.42=0.0165 \mathrm{lb} /(\mathrm{ft})(\mathrm{hr})$
[Fig. 15]
$R e_{s}=D_{0} G_{s} / \mu$
$=0.0792 \times 40,300 / 0.0165=193,000$
$f=0.0012 \mathrm{ft2} / \mathrm{in}^{2}$
Mol. wt. $=72.2$
[Fig. 29]
72.2
$\rho_{\text {vapor }}=\overline{359(590 / 492)(14.7 / 25)}$

$$
=0.284 \mathrm{lb} / \mathrm{ft}^{\mathrm{a}}
$$

$s=0.284 / 62.5=0.00454$
(2') No. of crosses, $N+1=12 L / B$
$=12 \times 13.4 / 12=13.4$, say 14
$D_{t}=25 / 12=2.08 \mathrm{ft}$
(3') $\Delta P_{s}=\frac{1}{2} \frac{f G_{s}^{2} D_{s}(N+1)}{5.2210^{10} D_{8} 8}$
[Eq. (12.47)]
$=\frac{1}{2} \times \frac{0.0012 \times 40,300^{2} \times 2.08 \times 14}{5.22 \times 10^{10} \times 0.0792 \times 0.00454}$
$\Rightarrow 1.6 \mathrm{psi}$
(4) ΔP of subcooling is negligible.
(1) For $R e_{t}=22,500, f=0.00022 \mathrm{ft}^{2} / \mathrm{in} .^{2}$
[Fig. 26]
(2) $\Delta P_{t}=\frac{f G_{t}^{2} L n}{5.22 \times 10^{10} D s \phi_{t}}$ [Eq. (7.45)]
$=\frac{0.00022 \times 860,000^{2} \times 16 \times 4}{5.22 \times 10^{10} \times 0.0517 \times 1.0}$
$=3.9 \mathrm{psi}$
(3) $\Delta P_{r}=(4 n / s)\left(V^{2} / 2 g^{\prime}\right)$
[Fig. 27]
$=(4 \times 4 / 1) 0.10=1.6 \mathrm{psi}$
[Eq. (7.46)]
(4) $\Delta P_{T}=\Delta P_{t}+\Delta P_{T}$ [Eq. (7.47)]

$$
=3.9+1.6=5.5 \mathrm{psi}
$$

Summary

$12 \% 8$	h inside	777
U_{C}	97.1	
U_{D}	80.5	
R_{d} Calculated 0.0021		
R_{d} Required	0.003	
1.6	Calculated ΔP	5.5
2.0	Allowable ΔP	10.0

The dirt factor is too small to warrant installation of the unit.

The Horizontal Condenser-subcooler. ${ }^{1}$ The horizontal condenser can also be equipped with a loop seal as shown in Fig. 12.21 to provide subcooling surface. This can also be accomplished by means of a dam baffle, as shown in Fig. 12.22. The loop seal has the advantage of external adjustability. In either case the flow of vapor is predominantly the same as in a condenser. The condensing and subcooling zones are in parallel instead of in series as in the vertical unit. This requires that the condensing vapor and the condensate both travel the length of the exchanger with a; balanced pressure drop, and since the specific gravity of the condensate is so much greater than that of the vapor, the flow area required for the condensate must indeed be very small. The calculation of a horizontal condenser-subcooler brings up the problem of balancing

Frg. 12.21. Loop seal on horizontal con-denser-subcooler.

Fig. 12.22. Dam baffle.
the pressure drops and at the same time balancing the performance for the sensible and condensing heat loads to correspond to the assumed proportion of the bundle submerged for subcooling.

The calculation of the weighted clean overall coefficient to be employed here presupposes the presence of the two zones in parallel. It is further assumed that the surface for subcooling is not more than 50 per cent of the total surface. If subcooling represents more than 50 per cent, it would often be preferable to use a separate shell for subcooling alone where a higher condensate velocity can be attained. When the condensation surface requirements are more than 50 per cent of the total surface requirement, the vapor may be assumed to travel as in an ordinary condenser and its film coefficient is computed by Eq. (12.43), except that N_{t} in $G^{\prime \prime}$ is the number of tubes which are not submerged. The value of L used in calculating the vapor loading is the overall tube length. For simplicity, subcooling may be assumed to occur at a heat transfer coefficient corresponding to free convection although all the correlations for

[^20]free convection in Chap. 10 were for heating only. For light materials, such as organic solvents and petroleum fractions like kerosene and lighter, it is safe to assume a subcooling film coefficient of about 50 , and for heavier condensates, such as aniline, straw oil, etc., it is about 25 or lower.

The calculation of the weighted temperature difference is also modified. In the orientation of the tube passes in a horizontal 1-2 condenser-subcooler the coldest pass is always placed in contact with the flooded portion of the shell, and it is a safe practice to consider the temperature rise of the cooling medium proportional to the transferred heat load. Thus if the subcooling heat load is 25 per cent of the total heat load, the cooling medium will rise the first 25 per cent of its temperature range while traveling through the subcooling passes.

The pressure drop in the shell should be computed on the basis of balancing the pressure drops in the two zones, but this requires a number of additional assumptions which cannot be entirely justified. Instead, for any given submergence, it is possible to approximate the pressure drop by calculating the average pressure drop for the vapors alone, using a segmental flow area equivalent to the vapor space and assuming that the pressure drop so calculated is identical with that of the condensate.

Example 12.5. Calculation of a Horizontal Condenser-subcooler. Using the same process conditions and condenser as in Example 12.4, which were unsatisfactory, what dirt factor would be achieved if the condenser-subcooler was operated horizontally?

It is understood that the baffle pitch will have to be somewhat greater if the unit is operated horizontally, since flooding the horizontal shell reduces the vapor flow area and therefore increases the pressure drop. But the baffle pitch is not regarded as influencing the transfer coefficients in the horizontal condenser-subcooler, and this example may be considered an illustration of the effectiveness of horizontal vs. vertical surface in condenser-subcoolers.

Solution:

Exchanger: Same as Example 12.4.
(1) Heat balance: Same as Example 12.4.
(2) Δt weighted:

Temperature rise of water during condensation $=18.2^{\circ} \mathrm{F}$

$$
\begin{align*}
& \text { Condensing, }(\Delta t)_{e}=36.4 \quad \frac{q_{c}}{(\Delta t)_{e}}=\frac{3,040,000}{36.4}=83,500 \mathrm{Btu} /(\mathrm{hr})\left({ }^{\circ} \mathrm{F}\right) \\
& \text { Subcooling, }(\Delta t)_{e}=30.2 \quad \frac{q}{(\Delta t)_{c}}=\frac{300,000}{30.2}=\frac{9,930}{93,430 \mathrm{Btu} /(\mathrm{hr})\left({ }^{\circ} \mathrm{F}\right)} \\
& \Delta t=Q / \sum \frac{q}{\Delta t}=\frac{3,340,000}{93,430}=35.8^{\circ} \mathrm{F}
\end{align*}
$$

(3) T_{c} and t_{c} : Average values will be satisfactory.

Trial:

Assume shell is flooded to a height of $0.3 D_{\text {s }}$. Originally subcooling represented $15 \% 62=16.5$ per cent of the total surface. For the horizontal condenser \bar{h} will be much higher than for the vertical, hence about 25 per cent of the surface will be required for subcooling.

From mathematical tables determine the area of shell cross section which is flooded a_{s}^{\prime} to obtain the number of submerged tubes.

For $0.3 D_{0}, C_{1}=0.198$ in the formula
$a_{4}^{\prime}=C_{1} D_{4}^{2}=0.198 \times 25^{2}=124$ in. 2
Number of submerged tubes $=370 \times \frac{124}{(\pi / 4) \times 25^{2}}=93$ (approx.)
Number of tubes for condensation $=370-93=277$
Flooded surface $=(93 / 370) 100=25 \%$

Condensation:

$$
\begin{equation*}
G^{\prime \prime}=\frac{W}{L N_{t}^{3 / 3}}=\frac{21,000}{16 \times 27^{33}}=30.9 \tag{12.43}
\end{equation*}
$$

Assume the same film temperature as before.
$\bar{h}=h_{o}=251$
$h_{i o}=777$ from Example 12.4
Clean overall coefficient for condensation U_{c} :

$$
\begin{equation*}
U_{\mathrm{c}}=\frac{h_{\mathrm{io}} h_{o}}{h_{i o}+h_{o}}=\frac{777 \times 251}{777+251}=190 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right) \tag{6.38}
\end{equation*}
$$

Clean surface required for condensation A_{c} :

$$
A_{e}=\frac{\dot{q}_{e}}{U_{c}(\Delta t)_{e}}=\frac{3,040,000}{190 \times 36.4}=440 \mathrm{ft}^{2}
$$

Subcooling: (Free-convection rate assume $h=50$):
Clean overall coefficient for subcooling U_{s} :

$$
\begin{equation*}
U_{s}=\frac{h_{i o} h_{o}}{h_{i_{0}}+h_{o}}=\frac{777 \times 50}{777+50}=47.0 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right) \tag{6.9}
\end{equation*}
$$

Clean surface required for subcooling A_{s} :

$$
A_{t}=\frac{q_{t}}{U_{t}(\Delta t)_{e}}=\frac{300,000}{47.0 \times 30.2}=211 \mathrm{ft}^{2}
$$

Total clean surface required A_{c} :

$$
A_{C}=A_{0}+A_{s}=440+211=651 \mathrm{ft}^{2}
$$

(13) Weighted clean overall coefficient U_{c} :

$$
\begin{equation*}
U_{0}=\frac{\Sigma U_{A}}{\Sigma A_{C}}=\frac{190 \times 440+47.0 \times 211}{651}=144 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right) \tag{12.50}
\end{equation*}
$$

(14) Design overall coefficient U_{D} :

$$
U_{D}=\frac{Q}{A \Delta t}=\frac{3,340,000}{11.60 \times 35.8}=80.5 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)
$$

(15) Dirt factor R_{d} :

$$
\begin{equation*}
R_{\mathrm{d}}=\frac{U_{C}-U_{D}}{U_{C} \bar{U}_{D}}=\frac{144-80.5}{144 \times 80.5}=0.0054(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right) / \mathrm{Btu} \tag{6.13}
\end{equation*}
$$

Pressure Drop

It will be necessary to spread the bafles to a spacing of 18 in . to compensate for the reduction in crossflow area due to the flooded subcooling zone. The tube-side pressure drop will be the same as before. Assume bundle flooded to $0.3 D_{s}$.

$$
\begin{align*}
& a_{s}=0.7 \times \mathrm{ID} \times C^{\prime} \frac{B}{144 P_{T}}=0.7 \times 25 \times 0.25 \times \frac{18}{144 \times 1.0}=0.547 \mathrm{ft}^{2} \tag{7.1}\\
& G_{s}=\frac{W}{a_{s}}=\frac{21,000}{0.547}=38,400 \mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right) \tag{7.2}\\
& R e_{s}=\frac{D_{t} G_{s}}{\mu}=0.0792 \times \frac{38,400}{0.0165}=185,000 \tag{7.3}\\
& f=0.00121 \mathrm{ft}^{2} / \mathrm{in}^{2} \tag{Fig.29}\\
& \text { Number of crosses, } N+1=\frac{12 L}{B}=12 \times \frac{16}{18}=11 \tag{7.43}\\
& D_{s}=2.08 \mathrm{ft} \\
& \Delta P_{s}=\frac{1}{2} \frac{f G_{s}^{2} D_{s}(N+1)}{5.22 \times 10^{10} D_{s}}=\frac{1}{2} \frac{0.00121 \times 38,400^{2} \times 2.08 \times 11}{5.22 \times 10^{10} \times 0.0792 \times 0.00454}=1.0 \mathrm{psi} \tag{12.47}
\end{align*}
$$

Summary

$251 / 50$	h inside	777
U_{C}	144	
U_{D}	80.5	
R_{d} Calculated 00054		
R_{d} Required 0.003		
1.0	Calculated ΔP	5.5
2.0	Allowable ΔP	10.0

Remarks. The horizontal condenser-subcooler should be equipped with a loop seal or dam baflles approximately one-third the height of the shell.

It is possible to draw some general conclusions from the summaries of Examples 12.4 and 12.5 which shed light on the relative orders of magnitude between horizontal and vertical condenser-subcoolers. The vertical condenser has the advantage of well-defined zones, but it is restricted by the height available at the top of a column when employed with a column and the smaller size of the condensing film coefficient. On the other hand, the horizontal condenser-subcooler, though less adaptable to close calculations, gives considerably higher overall clean coefficients. The majority of the condenser-subcoolers used in industry are consequently of the horizontal type.

Vertical Refluxing inside Tubes. It is often necessary to treat a solid material with a volatile boiling liquid or to maintain a liquid mixture at

Fig. 12.23. Reflux-type condenser.

Fig. 12.24. Knock-back condenser.
its boiling point so as to complete a chemical reaction. To maintain a constant pressure the volatile liquid is boiled overhead in the reactor and returned at a continuous rate as shown in Fig. 12.23. The rate at which the volatile liquid is boiled overhead is called the boil-up rate and is usually expressed in pounds per hour per square foot of liquid surface. A condenser operated in a closed circuit in this manner is a reflux-type condenser. When the vapor enters the bundle at the bottom as in Fig. 12.24 it is a special case of the reflux type known as a knock-back condenser. The reflux type of condenser is not intended to produce subcooling, and the condensate drains back freely into the treating vessel. Very often the boil-up rate is so great that the condensing film may be
partially in turbulent flow, whence the film coefficient is calculated frons Colburn's relationship as given in Fig. 12.12.

Greater headroom is required for a knock-back condenser, although it has some advantage over a horizontal condenser due to its excellent drainage. If the Reynolds number for a vertical condenser, $4 G^{\prime} / \mu_{f}$, is less than 1800 to 2100 corresponding to the transition point in Fig. 12.12, all the condensation will occur in streamline flow as computed by Eq. (12.42). If the Reynolds number is greater than about 1800, the upper surface where the condensate film is in streamline flow may be computed separately from that below it in turbulent flow. Knock-back condensers differ from reflux-type condensers, since the vapor enters at the bottom and may not, in fact, even reach the top.

Example 12.6. Calculation of Vertical Reflux-type CS_{2} Condenser. A solid material is treated in a vessel with carbon disulfide and traces of corrosive sulfur compounds at 25 psig corresponding to a boiling point of $176^{\circ} \mathrm{F}$ and a total boil-up of $30,000 \mathrm{lb} / \mathrm{hr}$. A negligible pressure drop will be required for the tube side, and 10 psi is available for the water, which enters at $85^{\circ} \mathrm{F}$. A combined dirt factor of 0.003 will be necessary
Available for the purpose is $171 / 4 \mathrm{in}$. ID $1-1$ exchanger having $1773 / 4 \mathrm{in}$. OD, 16 BWG tubes $16^{\prime \prime} 0^{\prime \prime}$ long. They are laid out for 1 -in. square pitch, and the baffle spacing is 6 in .

Will the exchanger be satisfactory?
Solution:
Exchanger:

$$
\begin{array}{ccc}
\text { Shell side } & \text { Tube side } \\
\text { ID }=171 / 4 \mathrm{in} . & \text { Number and length }=177,16^{\prime} 0^{\prime \prime} \\
\text { Bafle space }=6 \text { in. } & \text { OD, BWG, pitch }=3 / 4 \mathrm{in} ., 16 \text { BWG, } 1 \text {-in. square } \\
\text { Passes }=1 & \text { Passes }=1
\end{array}
$$

(1) Heat balance:

Carbon disulfide, $Q=30,000 \times 140=4,200,000 \mathrm{Btu} / \mathrm{hr}$
Water, $Q=120,000 \times 1(120-85)=4,200,000 \mathrm{Btu} / \mathrm{hr}$
(2) $\Delta t: \Delta t=\mathrm{LMTD}=72.1^{\circ} \mathrm{F}$
(3) T_{c} and t_{c} : The use of average temperatures will be satisfactory.

In this particular problem it will be advisable to compute the shell side first, since the water rate is needed to establish the tube-wall temperature for condensation.

Hot fluid: tube side, carbon disulfide
Assume $h_{i o}=300$

$$
\begin{aligned}
t_{凶} & =t_{a}+\frac{h_{i_{o}}}{h_{i o}+h_{o}}\left(T_{v}-t_{a}\right) \\
& =102.5+30 \%(176-102.5) \\
t_{/} & =(122.5+176) / 2=149^{\circ} \mathrm{F}
\end{aligned}
$$

[Eq. (12.19)]

Cold fluid: shell side, water
(4') $a_{s}=I D \times C^{\prime} B / 144 P_{T} \quad[$ Eq. (7.1) $]$
$=17.25 \times 0.25 \times 6 / 144 \times 1.0$
$=0.18 \mathrm{ft}^{2}$
(5^{\prime}) $G_{s}=w / a_{s} \quad[\mathrm{Eq}$. (7.2)]
$=120,000 / 0.18$
$=667,000 \mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)$

Hot fluid: tube side, carbon disulfide $\mu_{f}=0.28 \times 2.42=0.68 \mathrm{lb} /(\mathrm{ft})(\mathrm{hr})$
[Fig. 24]
$k_{f}=0.09 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F} / \mathrm{ft}\right)$
[Fig. 14]
$s_{f}=1.26 ; \rho_{f}=62.5 \times 1.26=78.8 \mathrm{lb} / \mathrm{ft}^{3}$
$D=0.62 / 12=0.0517 \mathrm{ft}$
$G^{\prime}=W / \pi N_{i} D$
$=30,000 / 3.14 \times 177 \times 0.0517$
$=1045 \mathrm{lb} /(\mathrm{hr})(\mathrm{lin} \mathrm{ft})$
$R e_{t}=4 G^{\prime} / \mu_{f}$
[Eq. (12.37)]
$=4 \times 1045 / 0.68=6150$
The film will be in turbulent flow.
$\bar{h}\left(\mu_{f}^{2} / k_{f}^{2} \rho_{f}^{2} g\right)^{3 / 4}=0.251$
$h_{i}=\bar{h}=0.251\left(\frac{k_{f}^{8} \rho_{f}^{2} g}{\mu_{f}^{2}}\right)^{1 / 2}$
$=0.251\left(\frac{0.093^{3} \times 78.8^{2} \times 4.1^{17} \times 10^{3}}{0.68^{2}}\right)^{1 / 8}$
$=400$
$h_{i \theta}=400 \times 0.62 / 0.75$
$=331 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right) \quad$ [Eq. (6.5)]
[Fig. 12.12]

Clean overall coefficient $\boldsymbol{U}_{\boldsymbol{C}}$:

$$
\begin{equation*}
U_{c}=\frac{h_{i_{0}} h_{o}}{h_{i_{o}}+h_{o}}=\frac{331 \times 786}{331+786}=233 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right) \tag{6.38}
\end{equation*}
$$

Design overall coefficient U_{D} :
Total surface $=177 \times 16^{\prime} 0^{\prime \prime} \times 0.1963=556 \mathrm{ft}^{2}$

$$
U_{D}=\frac{Q}{A \Delta t}=\frac{4,200,000}{556 \times 72.1}=105 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)
$$

Dirt factor $\boldsymbol{R}_{\mathrm{d}}$:

$$
\begin{equation*}
R_{d}=\frac{U_{C}-U_{D}}{U_{C} U_{D}}=\frac{233-105}{233 \times 105}=0.00522(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right) / \mathrm{Btu} \tag{6.13}
\end{equation*}
$$

Pressure Drop

(1) Flow area: $a_{t}^{\prime}=0.302$ in. ${ }^{2}$ [Table 10] \mid (1') For $R e_{s}=31,000$
$a_{t}=N_{t} a_{t}^{\prime} / 144 n$
[Eq. (7.48)]
$=177 \times 0.302 / 144 \times 1=0.372 \mathrm{ft}^{2}$
(2) $G_{t}=W / a_{t}$
[Eq. (6.3)]

$$
=30,000 / 0.372
$$

$=80,500 \mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)$
At inlet,
$\mu=0.012 \times 2.42=0.029 \mathrm{lb} /(\mathrm{ft})(\mathrm{hr})$
[Fig. 15]
$D=0.62 / 12=0.0517 \mathrm{ft}$
$R e=0.0517 \times 80,500 / 0.029=143,000$
$f=0.000138 \mathrm{ft}^{2} / \mathrm{in} .^{2}$
[Fig. 26]
Mol. wt. $=76.1$
$\rho=\frac{76.1}{359(636 / 492)(14.7 / 39.7)}=0.443 \mathrm{lb} / \mathrm{ft}^{\mathrm{s}}$
$f=0.0017 \mathrm{ft}^{2} / \mathrm{in}^{2}{ }^{2}$
[Fig. 29]
(2') No. of crosses, $N+1=12 L / B$
[Eq. (7.43)]
$=12 \times 16 / 6=32$
$D_{s}=17.25 / 12=1.44 \mathrm{ft}$

Pressure Drop

Summary

331	h outside	786
U_{C}	233	
U_{D}	105	
R_{d} Calculated 0.00522		
R_{d} Required 0.004		
0.4	Calculated ΔP	8.4
neg.	Allowable ΔP	10.0

The unit is satisfactory.

THE CONDENSATION OF STEAM

The Surface Condenser. Any saturated vapor can be condensed by a direct spray of cold water under appropriate conditions of temperature and pressure provided contamination of the condensate by water is not objectionable. Steam, on the other hand, as generated in power stations, is an extremely pure form of water substantially free of the impurities causing scale. The term surface condenser is reserved for tubular apparatus employed for the condensation of steam.

In the design and operation of a steam turbine or engine the exhaust temperature of the heat is kept as low as possible so that a maximum change in enthalpy occurs during the conversion of heat into work. This is a natural deduction of the Carnot cycle. The exhaust temperature is limited only by the coldness and abundance of the cooling medium and the allowance of a reasonable temperature difference. The economics and optimum energy distribution of power cycles is beyond consideration here, but with cooling water available at $70^{\circ} \mathrm{F}$ or thereabouts a turbine
will exhaust at $75^{\circ} \mathrm{F}$, which corresponds to a vacuum saturation pressure. Consequently, such apparatus is usually designed for vacuum operation on the steam side.

The surface condenser, as a development of the power rather than chemical industry, is handled differently from preceding illustrations, and the purpose here is to indicate the exceptions. Equations (12.44a) and (12.44b) for the condensation of steam at atmospheric pressures have

Fig. 12.25. Influence of air on the condensing coefficient of $230^{\circ} \mathrm{F}$ steam. (Data of Othmer.)
already been presented. These equations give steam-condensing coefficients at atmospheric pressure and are of little use in estimating the condensation rate under a vacuum of 1 to $11 / 2 \mathrm{in} . \mathrm{Hg}$ abs. Furthermore, air dissolved in the boiler feed water, despite deaeration, tends to accumulate in the condenser, where it impedes heat transfer. Othmer ${ }^{1}$ has shown that, when as little as 1 per cent of air by volume is mixed with the inlet steam, the condensing coefficient falls from 2000 to 1100 with a temperature difference between the steam and cooling medium of $20^{\circ} \mathrm{F}$. When the air concentration is 2 per cent by volume, the condensing coefficient falls from 2000 to 750 at the same temperature difference. It is also found that during steady-state transfer the air tends to surround the
${ }^{1}$ Othmer, D. F., Ind. Eng. Chem., 21, 576 (1929).

Fig. 12.26. Surface condenser. (Foster Wheeler Corporation.)
tube surface, setting up a resistance through which the steam must diffuse. Othmer's data are reproduced in Fig. 12.25.

Surface condensers are usually much larger than other types of tubular equipment, some containing over $60,000 \mathrm{ft}^{2}$ of condensing surface. The attainment of a very small steam-side pressure drop directly affects the pressure of the condenser exhaust and the cycle efficiency for a given cooling-water inlet temperature. A typical small surface condenser is shown in Fig. 12.26. To permit a low pressure drop and a deep penetra-

Fig. 12.27. Large dual-bank surface condensor. (Foster Wheeler Corporation.)
tion of the steam into the bundle tubes are laid out for crossflow, using radial pitch as shown in Fig. 12.26b. Another important consideration is the removal of air, since an accumulation of air increases the total pressure in the condenser and raises the condensation temperature. Only when surface condensers contain $15,000 \mathrm{ft}^{2}$ or less are they apt to have
cylindrical bodies. When they contain surface in excess of $15,000 \mathrm{ft}^{2}$, they are made in the boxlike manner shown in the elevation of Fig. 12.27. In large condensers the steam is not required to pass through the entire tube bundle but instead through a divided portion of the tube bundle.

The principal parts of surface condensers, in addition to the shell and water boxes or channels, are a large exhaust steam inlet port, sbell-side air-removal outlets, and a hot well equipped with condensate and air outlets. The condenser shown in Fig. 12.26 is arranged horizontally for two passes or double flow on the water side as are the majority of such condensers. The tubes are usually 22 to 26 ft in length with support plates through which all the tubes pass, since the steam travels in crossflow. The lower portion of the bundle is separated to permit the cooling of the air-vapor mixture which leads to the vacuum apparatus. This is usually an air jet pump as discussed in Chap. 14. Since the steam condenses isothermally, the LMTD in crossflow is identical with that for counterflow. The method of calculation outlined in the remainder of this chapter is in agreement with the recommended practices of the Heat Exchange Institute, whose member companies include the larger manufacturers of surface condensers.

Definitions. There are a number of definitions which apply to surface condensers. The more important are given here: The steam load is expressed in pounds per hour of steam having an assumed heat rejection to the cooling water of $950 \mathrm{Btu} / \mathrm{lb}$. When used in connection with the exhaust of a steam engine the rejection is taken as $1000 \mathrm{Btu} / \mathrm{lb}$. The condenser vacuum is the difference between atmospheric pressure and the pressure measured at the steam inlet and is expressed in in. Hg at a temperature of $32^{\circ} \mathrm{F}$. The absolute pressure in a condenser is the difference between the barometric pressure and condenser vacuum and is expressed in in. Hg abs. The heat head is the difference between the inlet circulating water temperature and the temperature corresponding to the absolute pressure at the steam inlet to the condenser, T_{s}. The temperature rise refers to the circulating-water temperatures $t_{2}-t_{1}$, and the terminal difference is defined as $T_{S}-t_{2}$.

Since the condensate is also under vacuum, it collects in a hot well at the bottom of the condenser and requires pumping out. The condensate depression is the difference between the temperature of the condensate in the hot well and the temperature corresponding to the absolute pressure of the steam at the inlet to the condenser. It is the actual number of degrees the condensate is subcooled, and must be maintained within close limits since subcooling reduces the saturation pressure and hence the suction pressure on the intake of the condensate pump, reducing its performance. It is also customary to compute the total surface in a
surface condenser using the tube length between the facing sides of the tube sheets instead of the overall tube length. This is equivalent to the effective surface described in Chap. 7.

There are several conventions employed in surface condensers which are rarely violated. Surface condensers are seldom designed to operate at an absolute pressure below $0.7 \mathrm{in} . \mathrm{Hg}$ abs with a terminal difference of less than $5^{\circ} \mathrm{F}$, with a dissolved oxygen content in the condensate of less than $0.03 \mathrm{~cm}^{3} /$ liter, or with a steam loading [not to be confused with G^{\prime}

Fig. 12.28. Overall coefficients in surface condensers. (Heat Exchange Institute.)
or $\left.G^{\prime \prime}, \mathrm{lb} /(\mathrm{hr})(\mathrm{lin} \mathrm{ft})\right]$ exceeding $8 \mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)$. Water velocities of less than 3 fps are not used. The quantity of air which leaks into the system must be estimated for the design of the air pump whether a mechanical pump or a jet-type ejector is used. The Heat Exchange Institute gives a graph of overall clean heat-transfer coefficients to be used as shown in Fig. 12.28 and with the maximum loading of $8 \mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)$ of steam condensed when the inlet water is at $70^{\circ} \mathrm{F}$. The clean overall coefficient for different tube diameters and a loading of $8 \mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)$ can also be obtained by

$$
\begin{equation*}
U_{c}=C_{t} \sqrt{V} \tag{12.53}
\end{equation*}
$$

where C_{t} is a constant as shown in Fig: 12.28 for each tube outside diameter and V is the water velocity in feet per second. Dirt factors are defined as a percentage of the clean overall coefficients called the cleanli-
ness factor. Thus a cleanliness factor of 85 per cent means that the design overall coefficient will be 85 per cent of the clean overall coefficient. The design overall coefficient U_{D} for a loading of $8 \mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)$ and inlet water temperature of 70° is

$$
\begin{equation*}
U_{D}=C_{C l} C_{t} \sqrt{V} \tag{12.54}
\end{equation*}
$$

And the coefficient for any other loading and temperature is

$$
\begin{equation*}
U_{D}=C_{L} C_{T} C_{C l} C_{t} \sqrt{V} \tag{12.55}
\end{equation*}
$$

where C_{L} is the loading correction equal to $\sqrt[4]{\text { loading } / 8}$ and C_{T} is the temperature correction.

Surface Condenser Calculation. The condenser pressure-drop calculation is far more complex than for previous types of equipment and hinges very greatly upon the geometric design of the surface condenser. There is no published correlation between the pressure drop of condensing steam in crossflow and radial pitch, and the calculations performed here determine the surface required for the heat load without layout refinements. The calculations, however, permit the evaluation of a condenser for conditions other than those for which it was designed.

The pressure drop on the tube side is conventionally determined by a formula of the Williams and Hazen type using a constant of 130, so that

$$
\begin{equation*}
\Delta P_{t}=0.0067 \frac{V^{1.84}}{d^{1.16}} \tag{12.56}
\end{equation*}
$$

where $V=$ water velocity, fps

$$
d=\text { tube } \mathrm{ID}, \text { in. }
$$

It differs somewhat on the unsafe side from Eq. (7.45) at velocities of 6 fps and less but agrees very closely at velocities approaching 10 fps. The return losses suggested by the Heat Exchange Institute correspond to less than the four velocity heads given by Eq. (7.46). The relationships for the condenser are

$$
Q=w 1\left(t_{2}-t_{1}\right)=500 G_{o}\left(t_{2}-t_{1}\right)
$$

where G_{a} are the gallons per minute and multiplication by 500 gives the flow in pounds per hour.

$$
\begin{align*}
\Delta t=\mathrm{LMTD} & =\frac{\left(T_{s}-t_{1}\right)-\left(T_{s}-t_{2}\right)}{\ln \left(T_{s}-t_{1}\right) /\left(T_{s}-t_{2}\right)}=\frac{t_{2}-t_{1}}{\ln \left(T_{s}-t_{1}\right) /\left(T_{s}-t_{2}\right)} \\
A & =\frac{Q}{\bar{U} \Delta t}=\frac{500 G_{o}\left(t_{2}-t_{1}\right)}{U \frac{\left(t_{2}-t_{1}\right)}{\ln \left(T_{s}-t_{1}\right) /\left(T_{s}-t_{2}\right)}}=\frac{500 G_{o}}{V} \ln \frac{T s-t_{1}}{T_{s}-t_{2}} \tag{12.58}\\
t_{2} & =T_{s}-\frac{T_{s}-t_{1}}{\operatorname{antilog} U A /\left(2.3 \times 500 G_{o}\right)} \tag{12.57}
\end{align*}
$$

The outlet temperature of the water t_{2} depends upon gallons per minute circulated G_{o} or the velocity V. But U is also dependent upon V. Equation (12.58) can be solved directly for t_{2}, since

$$
A=L a^{\prime \prime} N_{t}
$$

where $a^{\prime \prime}$ are the square feet of external surface per foot of tube length and

$$
\frac{U A}{2.3 \times 500 G_{o}}=\frac{U}{2.3 \times 500} \frac{L a^{\prime \prime} N_{t} n}{7.5 \times 60 V\left(a_{i}^{\prime} / 144\right) N_{t}}=\frac{0.00279 U L n a^{\prime \prime}}{V a_{i}^{\prime}}
$$ and

$$
\begin{equation*}
t_{2}=T_{s}-\frac{T_{S}-t_{1}}{\operatorname{antilog} 0.00279 U L n a^{\prime \prime} / V a_{t}^{\prime}} \tag{12.59}
\end{equation*}
$$

Example 12.7. Calculation of a Surface Condenser. A steam turbine exhausts $250,000 \mathrm{Jb} / \mathrm{hr}$ of steam at a pressure of 1.5 in . Hg. Cooling water is available at $70^{\circ} \mathrm{F}$. A preference has been designated for the use of $7 / 8 \mathrm{in}$. OD, 18 BWG tubes and a cleanliness factor of 85 per cent.

To permit estimation of the cost of the condenser on the basis of dollars/ ft , how much surface will be required and what will be the operating quantity and range of the cooling water?

Solution. Assume the maximum loading of $8 \mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)$ and a water velocity of 7.5 fps.

$$
\begin{align*}
& C_{c l}=0.85 \quad C_{T}=1.0 \quad C_{L}=1.0 \\
& U_{D}=C_{c l} C_{T} C_{L} C_{1} \sqrt{\vec{V}} \tag{12.55}\\
&=0.85 \times 1.0 \times 1.0 \times 263 \sqrt{7.5}=612 \\
& A=\frac{250,000}{8}=31,250 \mathrm{ft}^{2}
\end{align*}
$$

The necessary outlet terminal water temperature will be

$$
\begin{equation*}
t_{2}=T_{s}-\frac{T_{S}-t_{1}}{\text { antilog } 0.000279 \times U L n a^{\prime \prime} / V a a_{i}^{\prime}} \tag{12.59}
\end{equation*}
$$

For a $7 / 8 \mathrm{in}$. OD, 18 BWG tube, $a^{\prime \prime}=0.229 \mathrm{ft}^{2} / \mathrm{ft}, \mathrm{ID}=0.777 \mathrm{in}$., and $a_{t}^{\prime}=0.475 \mathrm{in} .^{2}$ (computed from Table 10).

$$
T_{s} \approx 1.5 \mathrm{in} . \mathrm{Hg}=91.72^{\circ} \mathrm{F}
$$

Since this will be a relatively large condenser, assume a maximum tube length of $26^{\prime} 0^{\prime \prime}$ and two tube passes.

$$
t_{2}=91.72-\frac{91.72-70}{\operatorname{antilog}(0.000279 \times 612 \times 26 \times 2 \times 0.229) /(7.5 \times 0.475)}=85.90^{\circ} \mathrm{F}
$$

The circulation rate is

$$
G_{0}=\frac{250,000 \times 950}{(85.90-70) \times 500}=29,800 \mathrm{gpm}
$$

Individual Film Coefficients for Steam Condensers. The method of calculating surface condensers has been based on the use of overall coeffcients instead of individual coefficients. Individual coefficients are diff-
cult to obtain from direct experimentation but can be computed from the overall coefficients. Unlike condensers employing organic vapors, the condensing coefficient for steam is considerably greater than that for the water, and under these circumstances the tube metal resistance is a sufficiently sizable portion of the total resistance to require inclusion in the calculation. For a clean tube the overall coefficient of heat transfer may be equated thus:

$$
\frac{1}{\overline{U_{c}}}=R_{c}+R_{m}+R_{w}
$$

and for a dirty tube:

$$
\frac{1}{U_{D}}=R_{c}+R_{m}+R_{a}+R_{w}
$$

where R_{c} is the resistance of the condensing vapor, R_{m} is the resistance of the tube metal, and R_{w} the resistance of the water in the tubes, all based on the tube outside diameter. Wilson ${ }^{i}$ has shown that the sum of the first three resistances for a series of tests is essentially constant and that R_{v} is the controlling resistance. Furthermore, the film coefficient for water in tubes is proportional to the 0.8 power of the velocity through the tubes, R_{w} can then be replaced by $1 / a_{1} V^{0.8}$, and the equations above can be rewritten with a_{0} and a_{1} constants.

$$
\begin{equation*}
\frac{1}{V^{V}}=a_{0}+\frac{1}{a_{1} V^{0.8}} \tag{12.60}
\end{equation*}
$$

A plot of $1 / U$ vs. $1 / V^{0.8}$ on rectangular coordinates should yield a straight line permitting the evaluation of both constants a_{0} and a_{1}. a_{0} is actually the intercept for an infinite water velocity, and when the metal and dirt resistances are subtracted, the true value of the condensing coefficient can be obtained.

$$
R_{c}=\frac{1}{h_{c}}=a_{0}-R_{m}-R_{d}
$$

PROBLEMS

12.1. $62,000 \mathrm{lb} / \mathrm{hr}$ of pure ethyl alcohol at 2.0 psig is to be condensed by water from 85 to $120^{\circ} \mathrm{F}$. A dirt factor of 0.003 should be provided. A pressure drop of 2 psi is allowable for the vapor and 10.0 for the water.
Calculate the required size of a $1-2$ horizontal condenser using 1 in . OD, 14 BWG tubes $16^{\prime} 0^{\prime \prime}$ long on $1 / 4-\mathrm{in}$. triangular pitch.
12.2. Using the data of Prob. 12.1 calculate the size of a $1-2$ vertical condenser required to fulfill the conditions.
12.3. Using the data of Prob. 12.1 calculate the size of a 1 -1 vertical condenser with condensation in the tubes.
${ }^{1}$ Wilson, R. E., Trans. ASME, 37, 47 (1915).
12.4. $24,000 \mathrm{lb} / \mathrm{hr}$ of nearly pure methyl ethyl ketone vapor at 2 psig (boiling point $180^{\circ} \mathrm{F}$) is to be condensed and cooled to $160^{\circ} \mathrm{F}$ by water from 85 to $120^{\circ} \mathrm{F}$. Pressure drops of 2.0 psi for the vapor and 10.0 for the water are permissible.

Available for the service is a 25 in . ID $1-2$ horizontal condenser with $4683 / 4 \mathrm{in}$. OD, 16 BWG tubes, $16^{\prime} 0^{\prime \prime}$ long arranged for four passes on $15 / 16$-in. triangular pitch. Baffles are spaced $25^{\prime \prime}$ apart.
(a) What is the true temperature difference?
(b) What are the dirt factor and the pressure drops?
12.5. For the data of Prob. 12.4 calculate the true temperature difference and size of a horizontal 1-2 condenser-subcooler required to fulfill the conditions using $3 / 4$ in. OD, 16 BWG tubes $12^{\prime} 0^{\prime \prime}$ long on $15 / 16$-in. triangular pitch with a dirt factor of 0.003 .
12.6. $50,000 \mathrm{lb} / \mathrm{hr}$ of ethyl acetate at 35 psig (boiling point $248^{\circ} \mathrm{F}$) enters a horizontal $1-2$ desuperheater-condenser at $300^{\circ} \mathrm{F}$ and leaves at $248^{\circ} \mathrm{F}$. Cooling is effected by water from 85 to $120^{\circ} \mathrm{F}$.

Available for the service is a 27 in . ID $1-2$ condenser containing $4323 / 4 \mathrm{in}$. OD, 16 BWG tubes $12^{\prime} 0^{\prime \prime}$ long arranged for four passes on 1-in. square pitch. Baffles are spaced 24 in . apart.

Calculate the true temperature difference and the dirt factor and pressure drops.
12.7. $57,000 \mathrm{lb} / \mathrm{hr}$ of nearly pure hexane enters the shell of a vertical 1-2 condenser at 5 psig and $220^{\circ} \mathrm{F}$. The condensing range is from 177 to $170^{\circ} \mathrm{F}$, at which temperature it goes to storage. Cooling water is used between 90 and $120^{\circ} \mathrm{F}$.
Available for the service is a 31 in . 1 D condenser containing $650.3 / 4 \mathrm{in}, 0 \mathrm{D}, 16 \mathrm{BWG}$ tubes $16^{\prime} 0^{\prime \prime}$ long on four-pass layout using 1 -in. triangular pitch. Baffles are spaced 18 in . apart.
Calculate the true temperature difference, the dirt factor, and the pressure drops.
12.8. $59,000 \mathrm{lb} / \mathrm{hr}$ of a mixture of light hydrocarbons, principally propane, enters a $1-2$ horizontal condenser at the initial condensing temperature of $135^{\circ} \mathrm{F}$ at 275 psig. The condensing range is from 135 to $115^{\circ} \mathrm{F}$, at which temperature $49,000 \mathrm{lb} / \mathrm{hr}$ is condensed by cooling water from 90 to 110 . The remainder of the condensation occurs with refrigerated water.

Available for the service is a 37 in . ID 1-2 horizontal condenser with $11003 / 4 \mathrm{in}$. $O D, 16 \mathrm{BWG}$ tubes $16^{\prime} 0^{\prime \prime}$ long arranged for four passes on ${ }^{15} / 16^{-\mathrm{in}}$. triangular pitch. Baffles are spaced 36 in , apart.
What is the dirt factor, and what are the pressure drops?

NOMENCLATURE FOR CHAPTER 12

A	Heat-transfer surface, ft^{2}
$A_{0}, A_{\text {d }}, A_{\text {d }}$	Heat-transfer surface for condensation, desuperheating, and subcooling, respectively, ft^{2}
A_{f}	Cross-sectional area of a film, ft^{2}
$A_{\text {c }}$	Total clean heat-transfer surface, ft^{2}
a	Flow area, ft^{2}
$a^{\prime \prime}$	External surface per linear foot, ft
a	Submerged cross section of shell, ft^{8}
a_{t}^{\prime}	Flow area per tube, in. ${ }^{2}$
a_{0}, a_{1}	Constants
B	Baffle spacing, in.
C	Specific heat of hot fluid in derivations, Btu/(1b) (${ }^{\circ} \mathrm{F}$)
$C_{c l}, C_{T}, C_{L}$	Cleanliness, temperature, and loading factors, dimensionless
C_{1}	Tube factor, dimensionless

C^{\prime}	Clearance between tubes, in.
C_{1}, C_{2}, C_{3}	Constants
c	Specific heat of cold fluid, Btu/(lb) ($\left.{ }^{\circ} \mathrm{F}\right)$
D	Inside diameter of tubes, ft
D_{0}	Outside diameter of tubes, ft
$D_{\text {c }}$	Equivalent diameter for heat transfer and pressure drop, ft
d	Inside diameter of tubes, in.
d_{0}	Outside diameter of tubes; in.
f	Friction factor, $\mathrm{ft}^{2} / \mathrm{in} .{ }^{3}$
G	Mass velocity, $\mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)$
G^{\prime}	Condensate loading for vertical tubes, $\mathrm{lb} /(\mathrm{hr})(\mathrm{ft})$
$G^{\prime \prime}$	Condensate loading for horizontal tubes, $\mathrm{lb} /(\mathrm{hr})(\mathrm{ft})$
G_{0}	Circulating water rate, gpm
g	Acceleration of gravity, $\mathrm{ft} / \mathrm{hr}{ }^{2}$
g^{\prime}	Acceleration of gravity, $\mathrm{ft} / \mathrm{sec}^{2}$
$h, h_{i}, h_{\text {o }}$	Heat-transfer coefficient in general, for inside fluid, and for outside fluid, respectively, $\mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$
$h_{\text {io }}$	Value of h_{i} when referred to the tube OD, Btu/(hr)(ft ${ }^{2}$) (${ }^{\circ} \mathrm{F}$)
h_{x}	Condensing film coefficient at a distance x from the top of the tube $\mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$
h_{α}	Condensing film coefficient at angle α°, $\mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$
\bar{h}	Average value of the condensing film coefficient between two points, $\mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft} \mathrm{t}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$
j_{H}	Factor for heat transfer, dimensionless
\dot{k}	Thermal conductivity, Btu/(hr) (ft ${ }^{2}$) (${ }^{\circ} \mathrm{F} / \mathrm{ft}$)
L	Tube length, ft
$L_{\text {c }}$	Tube length exposed to condensation, ft
LMTD	Log mean temperature difference, ${ }^{\circ} \mathrm{F}$
m	A constant
N	Number of shell-side baffles
n	Number of tube passes
N_{t}	Number of tubes effective for condensation
P	Perimeter, ft
P_{T}	Tube pitch, in.
ΔP	Pressure drop in general, psi
$\Delta P_{T}, \Delta P_{t}, \Delta P_{r}$	Total, tube, return pressure drop, respectively, psi
$\Delta P_{\text {c }}$	Pressure head of condensate, psi
Q	Heat flow, Btu/hr
Q_{x}	Heat flow at distance x from top of tube, $\mathrm{Btu} / \mathrm{hr}$
$q_{c} q_{d_{1}} q_{s}$	Heat flow for condensation, desuperheating and subcooling respectively, Btu/hr
$R_{\text {d }}$	Combined dirt factor, (hr) ($\mathrm{ft}{ }^{2}$) ($\left.{ }^{\circ} \mathrm{F}\right) / \mathrm{Btu}$
$R_{c}, R_{m}, R_{1 s}$	Resistance of condensate film, tube metal, and water, respectively, $(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right) / \mathrm{Btu}$
r	Radius of tube, ft
r_{h}	Hydraulic radius, $r_{h}=$ flow area/wetted perimeter, ft
Re	Reynolds number, dimensionless
s	Specific gravity, dimensionless
T, T_{1}, T_{2}	Temperature in general, inlet and outlet of hot fluid, respectively, ${ }^{\circ} \mathrm{F}$

$T{ }_{\text {c }}$	Average temperature of hot fluid, ${ }^{\circ} \mathrm{F}$
$T_{\text {c }}$	Caloric temperature of hot fluid, ${ }^{\circ} \mathrm{F}$
Ts	Steam temperature, ${ }^{\circ} \mathrm{F}$
t, t_{1}, t_{2}	Cold-fluid temperature in general, inlet, and outlet, respectively, ${ }^{\circ} \mathrm{F}$
$t_{\text {a }}$	Average temperature of cold fluid, ${ }^{9} \mathrm{~F}$
t t	Caloric temperature of cold fluid, ${ }^{\circ} \mathrm{F}$
$t \boldsymbol{f}, t_{w}$	Temperature of film and tube wall respectively, ${ }^{\circ} \mathrm{F}$
t^{\prime}	Temperature at outer surface of condensate film, ${ }^{\circ} \mathrm{F}$
Δt	True temperature difference in $Q=U_{D} A \Delta t,{ }^{\circ} \mathrm{F}$
$(\Delta t)_{c},(\Delta t)_{d},\left(\Delta t_{t}\right)$	True or fictitious temperature difference for condensation, desuperheating, and subcooling, respectively, ${ }^{\circ} \mathrm{F}$
Δt_{f}	$\left(T_{v}-t_{v}\right) / 2,{ }^{\circ} \mathrm{F}$
U, U_{C}, U_{D}	Overall coefficient of heat transfer, clean coefficient, and design coefficient, respectively, $\mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$
$U_{\epsilon}, U_{\text {d }}, U_{\text {, }}$	Clean overall coefficient for condensation, desuperheating, and subcooling respectively, $\mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$
u	Film velocity along axis of tube, $\mathrm{ft} / \mathrm{hr}$
\bar{u}	Average film velocity, ft/hr
V	Velocity, fps
W	Weight flow in general; weight flow of hot fluid, $\mathrm{lb} / \mathrm{hr}$
W^{\prime}	Rate of condensation, $\mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)$
w	Weight flow of cold fluid, $\mathrm{lb} / \mathrm{hr}$
w^{\prime}	Rate of condensation per tube $W / N_{t} \mathrm{lb} /(\mathrm{hr})$ (tube)
x, x^{\prime}	Length of film, ft
x_{0}	Distance from top of tube at which change from streamline to turbulent flow occurs, ft
y, y^{\prime}	Width of film, ft
z	Distance, ft; height of a hydrostatic leg, ft; a synthetic function
α	Angle of tube, deg
λ	Latent heat of condensation or vaporization, Btu/lb
μ	Viscosity, centipoises $\times 2.42=1 \mathrm{lb} /(\mathrm{ft})(\mathrm{hr})$
μ^{\prime}	Viscosity, centipoises
μ_{w}	Viscosity at tube-wall temperature, centipoises $\times 2.42=\mathrm{lb} /(\mathrm{ft})$ (hr)
ρ	Density, $\mathrm{lb} / \mathrm{ft}^{8}$
τ	Tangential stress, $\mathrm{lb} / \mathrm{ft}^{2}$
ϕ	Viscosity ratio, $\left(\mu / \mu_{\varphi}\right)^{0.14}$, dimensionless
ψ	A function

Subscripts (except otherwise noted)

c	Condensate, condensing
f	Film or film temperature
l	Liquid
8	Shell side
v	Vapor
t	Tube side

CHAPTER 13

CONDENSATION OF MIXED VAPORS

Introduction. In the preceding chapter it was assumed that the condensing vapor consisted of a pure or substantially pure compound which condensed isothermally. If the vapor was mixed with another compound having a slightly different boiling point, the mixture condensed over a small condensing range. It was further assumed that, where there was a condensing range, the latent heat of condensation was transferred to the cooling medium uniformly over the entire condensing range.

However, consider a mixture of two diverse fluids having a condensing range of $100^{\circ} \mathrm{F}$. In order to effect the first 10 per cent reduction in the vapor temperature it may be necessary to remove 50 per cent of the total heat load from the vapor mixture, since the less volatile component condenses more rapidly as the vapor temperature is reduced. Previously, in using the LMTD for condensing vapors in counterflow it was assumed that during the first 10 per cent reduction in the vapor temperature only 10 per cent of the heat was removed. The substitution of the logarithmic mean for the true temperature difference based on assumed uniform condensing characteristics for the vapor mixture may lead to a conservative or an unsafe value of Δt and the selection of the wrong condenser. The problems imposed by the condensation of a vapor mixture do not end there. Depending upon the nature of the mixture, the average condensing coefficient \bar{h} may not remain constant throughout the condensing range and may vary greatly with the composition of the vapor mixture as the less volatile components are condensed. The latter is particularly true of a mixture consisting of a vapor and a noncondensable gas, such as steam and air.

The Phase Rule. ${ }^{1}$ The different types of vapor mixtures may be studied qualitatively through the use of the phase rule of J. Willard Gibbs. Phases are defined as homogeneous amounts of matter in the solid, ${ }^{2}$ liquid. or gaseous form which are distinguishable from each other by the presence of an interface between any two phases. A vapor is the coexistence of a gas and a liquid and, like any boiling liquid and its vapor, consists of two phases.

[^21]There are many organic chemical compounds which are not soluble in water, forming immiscible mixtures with it. If a cylindrical vessel is filled to the top with a mixture of pentane and water, an interface appears between the water on bottom ($s=1.0$) and the pentane on top ($s=0.8$) and the system contains two liquid phases. While agitation may be used to disperse the water into the pentane layer as droplets, it does not affect the number of phases, since only the nature of the interface is of consequence and not its shape. On the other hand, a mixture of two gases readily forms a homogeneous mixture in a vessel, and as in all gas mixtures, all the gaseous compounds form but one phase. An interesting relationship is obtained if a mixture of water and pentane is brought to a boil in an enclosed vessel: There is a mixture of pentane and water in the gas phase and two liquid phases, so that the bounded matter or system consists of three phases.

Suppose a mixture of two mutually soluble or miscible compounds is olaced in an insulated vessel at its boiling point as shown in Fig. 13.1. If the vapor and liquid are in equi-

Fra. 13.1. Equilibrium vessel. librium, no heat can escape and the system continues to vaporize and condense indefinitely. The boiling point of the system is related to the total pressure of the system as well as the ratio of the two compounds in the original liquid. Assume next that it is desired to change the pressure on the system. Does the liquid still continue to boil at the same temperature if the enthalpy remains constant? Do the chemical compositions of the vapor and liquid phases remain the same? If these questions can be answered, it is possible without running experiments to determine whether or not a given mixture condenses isothermally. If condensation is isothermal, the true temperature difference may be taken as being identical with the LMTD. If condensation is not isothermal, then other methods must be applied for the calculation of the true temperature difference, the commonest of which will be developed later in this chapter.

Gibbs formulated a rule to determine the number of independent variables pertaining to a system in equilibrium which must be specified for the number of phases to be fixed permanently. Thus if a system consists of several phases in equilibrium, what conditions in the original system can be varied while keeping the kind (compositions) and number

[^22]of phases from changing? Changes in the relative sizes of the phases are of no consequence. The numbers of variables, such as the temperature, pressure, and compositions of the system, which the process engineer is free to fix so as to fix the number and kinds of phases permanently are the degrees of freedom (of selection). Sometimes it is possible to fix the number of phases in a system by simply fixing the pressure. This is true of a pure boiling fluid such as water. If it is desired to boil water by establishing a gas and a liquid phase, can it be done under any combination of pressure and temperature the engineer desires to fix? If the pressure is regarded as a degree of freedom, since it may be freely and independently chosen, and it is fixed at 14.7 psia, it suffices to fix all the conditions for the existence of the two phases. But the temperature may not be freely and independently chosen, since it is not an independent variable but in the equilibrium system it is a property dependent upon the saturation (pressure) curve of the liquid. It is consequently not possible to have the water present in two phases at a pressure of 14.7 psia at any other temperature than $212^{\circ} \mathrm{F}$.

The boiling of a single compound is a relatively simple matter. If several compounds are mixed together, it is considerably more difficult to determine how the compositions, pressure, and temperature serve to fix permanently the number and kinds of phases in the original system. Gibbs's phase rule allows the rapid determination of the number of degrees of freedom in systems of greater complexity. The phase rule is written

$$
\begin{equation*}
F=C-P+2 \tag{13.1}
\end{equation*}
$$

where F is the number of degrees of freedom, C the number of individual chemical compounds or chemical substances in the system, and P is the number of phases. Nothing in the phase rule determines how many phases will result from the admixture of any particular group of chemical components. The number of phases which a group of chemical compounds may form in a boiling system must be known beforehand from a knowledge of the miscibility or immiscibility of the components as liquids plus the addition of one gas phase into or from which vaporization and condensation may occur. This information can be obtained from the solubility tables included in chemical handbooks.

Applications of the Phase Rule. There are nine common types of vapor mixtures encountered in heat transfer, and these are given in Table 13.1. To demonstrate the use of the phase rule for determining the isothermal or nonisothermal nature of the condensation of a vapor mixture in a condenser three of the types will be illustrated. It is agair. emphasized that, in ordinary process design, condensers operate at sub-

Table 13.1. Common Condensation Requirements

Case	Type of components	Example	Degrees of freedom	Temptduring condensation
1	Pure vapor	Water	1	Isothermal
2	Two miscible	Butanepentane	2	Decreasing
3	n-Miscible	Butane-pen-tane-hexane	n^{*}	Decreasing
4	Vapor and noncondensable	Steam-air	2	Decreasing
5	n-Miscible + noncondensable	Butane-pentene-air	$n+1$	Decreasing
6	Two immiscible	Pentane-steam	1	Isothermal
7	n-Miscible + one immiscible	Butane-pen-tane-steam	n	Decreasing
8	n-Immiscible + noncondensable	Pentane-steam-air	2	Decreasing
9	n-Miscible + one immiscible + noncondensable	Butane-pentane-steam-air	$n+1$	Decreasing

* Where there are more than three degrees of freedom, the additional degrees represent concentrations which must be fixed. Thus a mixture of butane, pentane, and hexane requires fixing not only the butane in relation to hexane but also the amount of pentane in relation to bexane.
\dagger For constant-pressure processes.
stantially constant pressure and that one degree of freedom is usually fixed by the operating pressure of the process.

For the analyses below reference should be made to Fig. 13.2 which shows the inlet end of a condenser. Directly under the inlet nozzle at 1-1' the inlet temperature is T_{1}, and at

Fra. 13.2. Conditions at condenser inlet. another section such as 2-2', after partial condensation has occurred, the temperature is designated as T_{2}, which may or may not be identical with T_{1}. When a vapor is to be condensed, it is convenient to consider condensation as the transfer of material between a gas phase and one or more liquid phases. Since condensation occurs because the heat-transfer surface is below-the dew point of the vapor, it is proper to assume that the heat-transfer surface directly under the inlet nozzle is wet and supplies the liquid phases immediately after the vapor enters the condenser.

Case 2. Condensation of a Mixture of Two Miscible Components. Example: Butane-pentane.

$$
\begin{aligned}
F & =C-P+2 \\
& =2-2+2=2 \quad \text { (2 deg of freedom) }
\end{aligned}
$$

At the inlet to the condenser the pressure p_{1} and the composition C_{1} of the vapor are fixed by the process operation preceding the condenser such as distillation. The system is completely defined by the process which has already fixed the two degrees of freedom p_{1} and C_{1}, and T_{1} at $1-1^{\prime}$ is fixed therefore as a dependent variable as in the case of water boiling at 14.7 psia. Between $1-1^{\prime}$ and $2-2^{\prime}$ heat is removed and with it a quantity of the high-boiling compound and a lesser quantity of the low-boiling compound condense into the liquid phase. The composition C_{2} of the vapor at $2-2^{\prime}$ differs from C_{1}^{\prime} at $1-1^{\prime}$, the vapor being leaner in the highboiling compound. Apply the phase rule again at $2-2^{\prime}$. There must still be two degrees of freedom, since it is desired to retain the same number of phases. The pressure is constant at p_{1}, but the composition has changed to C_{2}. According to the laws governing vapor-liquid equilibrium, the temperature T_{2} at p_{1}, C_{2} cannot be the same as T_{1} at p_{1}, C_{1}, since the latter is a point on a vapor-liquid equilibrium line just as $212^{\circ} \mathrm{F}$ and 14.7 psia is a point on the equilibrium line for water. The temperature of condensation must consequently vary from $1-1^{\prime}$ to $2-2^{\prime}$, and the condensation is not isothermal.
Case 4. Condensation of a Vapor from a Noncondensable Gas. Example: Steam-air-water.

$$
F=2-2+2=2 \quad \text { (2 deg of freedom })
$$

The operating pressure is fixed, and C_{1} is fixed at the inlet to the condenser by the ratio of steam to air in the inlet gas. Since two degrees of freedom p_{1} and C_{1} are fixed, the temperature T_{1} is again a dependent variable at 1-1'. Moving along to $2-2^{\prime}$, where the pressure on the system is still p_{1}, some of the steam is condensed while the gas is not condensed and a new composition C_{2} results. The temperature T_{2} for p_{1}, C_{2} must differ from T_{1} at p_{1}, C_{1} for the same reason as before. The temperature at $2-2^{\prime}$ or any other point is actually the dew point for the mixture remaining in the gas phase and varies from the inlet to outlet as the composition of the vapor phase changes. Condensation is not isothermal.

Case 6. Condensation of a Mixture of Two Immiscible Components Example: Pentane-steam-water.

$$
F=2-3+2=1 \quad \text { (1 deg of freedom) }
$$

The condensate consists of two liquid phases. With but one degree of freedom the system is completely fixed at $1-1^{\prime}$ by selecting the operating pressure p_{1}. The temperature T_{1} then corresponds to p_{1}. At $2-2^{\prime}$ the pressure is the same, p_{1}, and since this fixes the system, T_{2} and T_{1} must be identical, both being dependent upon p_{1}. Condensation is isothermal.

1. CONDENSATION OF A BINARY MIXTURE

Vapor-liquid Relationships. In the derivation of the Nusselt equation for a single component it was assumed that the rate at which the vapor enters the condensate film is nearly infinite. A vapor entering a condenser at its saturation pressure condenses because the surface is at a temperature below its dew point or saturation temperature. The rate at which the vapor passes from the vapor phase to the liquid phase, however, is dependent upon the mechanism of diffusion. This means that, if the temperature of the condensate film is lower than the saturation temperature of the bulk of the vapor, the pressure of the component at the condensate film is less than that of the vapor and a pressure differential is established. The direction of the differential promotes the flow out of the vapor phase.

In the condensation of a binary mixture the problem of diffusion is slightly more involved, although it does not produce a significant resistance in series with the resistance of the condensate film. In a binary mixture unless it is a constant boiling mixture such as 95 per cent ethanolwater, the higher boiling component condenses in greater proportion near the condenser inlet. The rate of condensation of both components is related to their individual pressure differentials between the bulk of the vapor and the condensate film. Colburn and Drew ${ }^{1}$ pointed out that the ratio of the partial pressures exerted by the condensate film for a binary mixture is dependent upon the temperature of the film, which in turn is related to the temperature of the cold surface and the cooling water range. Thus for a given binary mixture entering a condenser not only the overall rate but also the chemical composition of the condensate are influenced by the temperature of the cooling water. This is not of particular concern in the total condensation of a vapor, but it can influence the composition of the product from a partial condenser. Colburn and Drew give equations for calculating the composition and temperature at the vapor-condensate interface for binary mixtures. It is customary, however, to assume the temperature of the condensate at the vapor-liquid interface to be the same as that of the vapor.

In the condensation of the overhead vapor coming from a binary dis-

[^23]tillation the vapor is almost entirely composed of the more volatile component and the presence of the second component establishes a condensing range as predicted by the phase rule. The second component, being less volatile, condenses more rapidly near the inlet than the outlet. It is conceivable, then, for a binary mixture with a condensing range of $20^{\circ} \mathrm{F}$ that the higher boiling component comes out in greater proportion during the first 10° than it does during the second 10°. Similarly, more of the heat may be removed from the vapor in the second 10° than in the first. The use of the LMTD is slightly in error on the unsafe side in the case of binary overhead vapors, although the size of the error does not usually justify its rejection. Where a number of compounds are contained in the overhead vapor as in multicomponent distillation, the temperature range and the distribution of the heat transfer differ greatly from the straight-line relationship of Q vs. t on which the LMTD is predicated. Methods of treating multicomponent mixtures are dealt with in the next section.

Film coefficients for the transfer of heat by condensation from binary mixtures may be treated in the same manner as heretofore for a single vapor using the weighted film properties of the mixture.

2. CONDENSATION OF A MULTICOMPONENT MIXTURE

Vapor-liquid Relationships in Mixtures. The phase rule has been used only qualitatively, but it is important for the identification of the various types of mixture problems. Except in binary mixtures or mixtures of several compounds whose boiling points in the pure condition do not differ greatly, the condensation of the vapor mixture occurs over a long temperature range. The fraction of the total heat load delivered during a fractional decrease in the vapor temperature need not be uniform over the entire condensing range, and this invalidates the use of the logarithmic mean alone or $F_{T} \times$ LMTD in the case of a 1-2 condenser. The solution of such problems requires the determination or calculation of the condensing curve for the mixture.

When a single vapor is in equilibrium with its liquid, the vapor and liquid have the same composition. For a mixture some of the components are more volatile than others (except in constant-boiling mixtures) and the vapor and liquid in equilibrium have different compositions, the percentage of the more volatile components being greater in the vapor. The following discussion applies particularly to mixtures which form ideal solutions, although suggestions for its application to nonideal solutions are included.

An ideal solution is one in which the presence of the several components
has no effect upon the behavior of each and which is governed by Dalton's and Raoult's laws. For such a system Dalton's law states that the total pressure is the sum of the partial pressures in the phase above the liquid solution. Raoult's law states that the partial pressure of a component in the phase above a liquid solution is equal to the product of its pressure as a pure component and its mol fraction in the solution. The latter is not true of nonideal solutions in which the presence of the various components tends to reduce the partial pressures of the others so that the total pressure is not the sum of the products of the mol fractrons and vapor pressures in the pure condition. Materials of an electrolytic or ionic nature deviate from the laws of ideal solutions to a great extent. For an ideal solution:

Dalton's law:

$$
\begin{equation*}
p_{t}=p_{1}+p_{2}+p_{3} \quad p_{1}=p_{t} y_{1} \tag{13.2}
\end{equation*}
$$

and Raoult's law:

$$
\begin{equation*}
p_{1}=p_{p 1} x_{1} \tag{13.3}
\end{equation*}
$$

where p_{t} is the total pressure, p_{I} the partial pressure of component $1, p_{p 1}$ the vapor pressure of the pure component 1 at the temperature of the solution, y_{1} the mol fraction of component 1 in the vapor phase, and x_{1} the mol fraction of component 1 in the liquid. Subscripts 2, 3, etc., refer to other components. The mol fraction is the ratio of the number of mols of a single component to the total number of mols in the mixture and is sometimes abbreviated by $m f$. The mol per cent is the mol fraction multiplied by 100 .

Solving Eqs. (13.2) and (13.3) for p_{1},

$$
\begin{equation*}
p_{1}=p_{p 1} x_{1}=p_{t} y_{1} \tag{13.4}
\end{equation*}
$$

Rearranging,

$$
\begin{equation*}
y_{1}=\frac{p_{p 1} x_{1}}{p_{t}} \tag{13.5}
\end{equation*}
$$

Solutions which are ideal at moderate pressures appear to deviate from ideality at high pressures, each component tending in some degree to lower the pressure of the other. The total pressure is then no longer the summation of the partial pressures, and Eq. (13.5) is not valid. Fugacities or corrected pressures, designated by the letter f, are then introduced. The fugacities are the partial pressures of the compounds such that the various criteria of ideality may be retained, and their values originate with experimental pressure-volume-temperature studies on the actual chemical compounds.

$$
\begin{equation*}
f_{p 1} x_{1}=f_{t} y_{1} \tag{13.6}
\end{equation*}
$$

where f_{t} replaces the total pressure p_{t}

$$
\begin{equation*}
y_{1}=\frac{f_{p 1} x_{1}}{f_{t}} \tag{13.7}
\end{equation*}
$$

or

$$
\begin{equation*}
y_{1}=K_{1} x_{1} \tag{13.8}
\end{equation*}
$$

where $K_{1}=f_{p 1} / f_{t}$

$$
\begin{equation*}
\Sigma y_{1}=\Sigma\left(K_{1} x_{1}\right) \tag{13.9}
\end{equation*}
$$

K is called the equilibrium constant.
When a mixture is in vapor-liquid phase equilibrium, the vapor possesses a greater percentage of the more volatile components than the

Fig. 13.3. Vapor pressure curves.
liquid. It is possible from Eqs. (13.4) to (13.9) at any given total pressure to calculate the mol fraction y_{1} of the component in the vapor phase which may coexist with a mol fraction x_{1} of the same component in the
liquid phase. The vapor pressures of the pure components must be known at the temperature at which the vapor-liquid equilibrium is assumed to exist. Given butane, pentane, and hexane, as seen in Fig. 13.3, the butane possesses the highest vapor pressure at any given temperature. If several mixtures of the three compounds are formulated with equal ratios of pentane to hexane, the one with the largest percentage of butane would start to boil most nearly at the boiling point of pure butane. Other mixtures having a preponderance of hexane boil nearer the boiling point of hexane. Any mixture of the three compounds starts to boil at an initial temperature higher than the boiling point of pure butane and lower than the boiling point of pure hexane, since boiling starts only when the sum of the partial pressures, $p_{1}+p_{2}+p_{3}$, is infinitesimally greater than the total pressure on the system.

Boiling is presumed to start when the first bubble is forced out of the solution. This temperature is called the bubble point of the mixture, the term boiling point being reserved for a pure compound. If the mixture is boiled at constant pressure with a full expansion of the volume of vapor formed, the liquid phase does not disappear until the last droplet is vaporized. For the mixtures referred to above the last droplet consists mainly of hexane and it disappears at a higher temperature than that at which the initial bubble of the mixture formed. Upon complete vaporization the composition of the total vapor is the same as the composition of the liquid before vaporization began. Conversely, if the equilibrium were to start with all the mixture in the vapor phase, the liquid phase begins with the formation of the first droplet of condensate which is identical in composition to the last droplet vaporized. The temperature of formation of the first droplet by heat extraction from the vapor phase is again called the dew point. The difference between the bubble point and dew point is the boiling range, which must exist for any miscible mixture as predicted by the phase rule.

Example 13.1. Calculation of the Bubble Point, Dew Point, and Vapor Composition of a Mixture. The following mixture is to be heated and vaporized at atmospheric pressure. What is the temperature at which boiling will start (i.e., the bubble point), and what is the composition of the first vapor formed?

Compound	$\mathrm{Lb} / \mathrm{hr}$	Mol. wt.	$\mathrm{Mol} / \mathrm{hr}$	$m f$
Butane, $\mathrm{C}_{4} \mathrm{H}_{10} \ldots \ldots \ldots \ldots$	1,625	58.12	28.0	0.077
Pentane, $\mathrm{C}_{5} \mathrm{H}_{12} \ldots \ldots \ldots \ldots$	16,200	72.15	224.0	0.613
Hexane, $\mathrm{C}_{6} \mathrm{H}_{14} \ldots \ldots \ldots \ldots$	9,750	86.17	113.0	0.310
	27,575		365.0	1.000

Solution:

(a) Bubble point: At atmospheric pressure, $p_{1}=14.7 \mathrm{psi}=760 \mathrm{~mm} \mathrm{Hg}$.

$p_{t}=760 \mathrm{~mm}$		Assume $T=100^{\circ} \mathrm{F}$		Assume $T=96{ }^{\circ} \mathrm{F}$		Assume $T=97^{\circ} \mathrm{F}$	
	x_{1}, m^{\prime}	$p_{\text {pli } 100^{\circ} \mathrm{F}}$	$p_{1}=p_{p 1} x_{1}$	$p_{p 1.80^{\circ} \mathrm{F}}$	$p_{1}=p_{p 1} x_{1}$	$p_{p 1,97^{\circ} \mathrm{F}}$	$p_{1}=p_{p 1} x_{1}$
$C_{4}{ }^{*}$	0.077	3,170	244	2,990	230	3,040	234
C_{5}	0.613	790	484	725	444	740	454
C_{6}	0.310	$\begin{gathered} p_{t}=\Sigma p_{1}=805.5 \\ \text { Too high } \end{gathered}$		229	71	234	72.4
	1.000			$\begin{gathered} 745 \\ \text { Too low } \end{gathered}$	760.4 Check		

* The use of the letter C with a subscript is the usual abbreviation for a straight-chain organic molecule where the subseript indicates the number of carbon atoms. If not straight-chain as isobutane, the subscript designates the number of carbon atoms but the C is preceded by i. Thus butane C_{4}, isobutame i- $_{4}$, pentane C_{8}, isopentane $\mathbf{i - C} C_{5}$, etc.
The composition of the first bubble is found from Eq. (13.5), $y_{1}=\frac{p_{p 1} x_{1}}{p_{1}}$

	$\frac{p_{p 1} x_{1}}{p_{t}}=y_{1}$
C_{4}	$234 / 760.4=0.308$
C_{6}	$454 / 760.4=0.597$
C_{6}	$72.4 / 760.4=$$\mathbf{0 . 0 9 5}$

(b) Similarly at what temperature will the mixture start to boil if the system is under a pressure of 35 psia and what will the composition be? $\quad p_{t}=35$ psia $=1810 \mathrm{~mm}$.

	$x_{1}, m f$	Assume $T=150^{\circ} \mathrm{F}$		Assume $T=149^{\circ} \mathrm{F}$		$\frac{p_{p 1} x_{1}}{p_{t}}=y_{1}$
		$p_{\text {P1,180 }}{ }^{\circ} \mathrm{F}$	$p_{1}=p_{p 1} x_{1}$	$p_{\text {p1,149 }}{ }^{\circ} \mathrm{F}$	$p_{1}=p_{p 1} x_{1}$	
C_{4}	0.077	6100	469	6050	467	$467 / 1810=0.258$
C_{5}	0.613	1880	1153	1850	1135	$11351810=0.627$
C_{6}	0.310	680	211	670	208	$308 / 1810=0.115$
	1.000	$\begin{gathered} P_{t}=\Sigma p_{1}=1833 \\ \text { Too high } \end{gathered}$			1810 Check	1.000

(c) Parts (a) and (b) may have been solved by Eqs. (13.6) to (13.9) from tabulated values of f_{p} / f_{t} which were computed from experimental data and are shown in Fig. 7 in the Appendix. In Fig. 7 values of the equilibrium constant K are plotted for a number of hydrocarbons against temperature and pressure. It is, in effect, the vapor pressure curve for the 18 compounds indicated. Thus if a focal point of $K=1$ is chosen for any compound, a line connecting pressure and temperature through $K=1$ gives the boiling temperature of the pure compound corresponding to any pressure. Since $K=1$, from Eq. (13.8), $f_{p} / f_{t}=1$, and the pressure of a pure compound f_{p} or p_{p}
must be identical with the total pressure f_{t} or p_{t} when there is no other fluid present. At 760 mm or 14.7 psia the bubble point computed from the fugacity data represented by Fig. 7 will be higher than in (a) owing to the mutual reduction of partial pressures resulting from nonideality.

Bubble Point

	$x_{1}, m f$	Assume $T=95^{\circ} \mathrm{F}$		Assume $T=100^{\circ} \mathrm{F}$		Assume $T=102^{\circ} \mathrm{F}$	
		$K_{985^{\circ} \mathrm{F}}$	$y_{1}=K_{1} x_{1}$	$K_{100{ }^{\circ} \mathrm{F}}$	$y_{1}=K_{1} x_{1}$	K_{1029}	$y_{1}=K_{1} x_{1}$
C.	0.077	3.13	0.241	3.35	0.258	3.45	0.266
C_{5}	0.613	0.92	0.564	1.00	0.613	1.02	0.625
C6	0.310	0.30	0.093	0.335	0.104	0.35	0.109
	1.000	$\begin{gathered} \Sigma y_{1}=0.898 \\ \text { Too low } \end{gathered}$			$\begin{gathered} \hline 0.975 \\ \text { Too low } \end{gathered}$		$\begin{aligned} & 1.000 \\ & \text { Check } \end{aligned}$

(d) The use of K values gives y_{1} directly and permits use of the total mol fraction of $\Sigma y_{1}=1.00$ as the criterion for equilibrium. Similarly for 35 psia

	x_{1}	Assume $T=150^{\circ} \mathrm{F}$		Assume $T=153^{\circ} \mathrm{F}$	
		$K_{160{ }^{\circ} \mathrm{F}}$	$y_{1}=K_{1} x_{1}$	$K_{165^{\circ} \mathrm{F}}$	$y_{1}=K_{1} x_{1}$
C_{4}	0.077	2.80	0.216	2.90	0.223
C_{5}	0.613	1.01	0.619	1.06	0.650
C_{6}	0.310	0.40	0.124	0.415	0.1285
	1.000		$\begin{aligned} & =0.959 \\ & \text { Too low } \end{aligned}$		$\begin{aligned} & 1.0015 \\ & \text { Check } \end{aligned}$

(e) The temperature at which the liquid phase disappears if boiling occurs in an enclosed vessel is the temperature at which only the last droplet is left. But this is the same as the physical picture of the dew point when the first droplet is formed. The initial compositions are then the vapor mol fractions or y 's, and for the liquid formed $x_{1}=y_{1} / K_{1}$.
Dew point: At $p_{t}=14.7 \mathrm{psia}, 760 \mathrm{~mm}$.

	y_{1}	Assume $T=130^{\circ} \mathrm{F}$		Assume $T=120^{\circ} \mathrm{F}$		Assume $T=123^{\circ} \mathrm{F}$	
		$K_{180}{ }^{\circ} \mathrm{F}$	$x_{1}=\frac{y_{1}}{K_{1}}$	$K_{120}{ }^{\circ} \mathrm{F}$.	$x_{1}=\frac{y_{1}}{K_{1}}$	$K_{123^{\circ} \mathrm{F}}$	$x_{1}=\frac{y_{1}}{K_{1}}$
C_{4}	0.077	5.0	0.015	4.4	0.0175	4.60	0.0167
C_{5}	0.613	1.65	0.371	1.40	0.437	1.49	0.412
Cb	0.310	0.62	0.500	0.51	0.608	0.545	0.568
	1.000	$\Sigma x=0.886$			1.062		$\begin{aligned} & 0.9967 \\ & \text { Check } \end{aligned}$

The dew point is $123^{\circ} \mathrm{F}$.

At $p_{t}=35 \mathrm{psia}$

	y_{1}	Assume $T=174^{\circ} \mathrm{F}$	
		$K_{174 \mathrm{~F}}{ }^{\circ}$	$x_{1}=\frac{y_{1}}{K_{1}}$
C_{4}	0.077	3.70	0.0208
C_{5}	0.613	1.38	0.444
C_{6}	0.310	0.58	0.533
	1.000	$\Sigma x=0.998$	

The dew point is $174^{\circ} \mathrm{F}$.
The Operating Pressure of a Condenser. In Example 13.1 may be found the quantitative requirements for setting the operating pressure of a distilling column and condenser. If the condenser is operated at atmospheric pressure, the condensing range is from 123 to $102^{\circ} \mathrm{F}$. The application of 1-2 condensers for these temperatures is not very satisfactory when cooling water is available at $85^{\circ} \mathrm{F}$, since the water temperature range must be kept small to prevent a large temperature cross above the $102^{\circ} \mathrm{F}$ condensate outlet. It would be necessary for atmospheric pressure condensation to operate the condenser with a Δt of about $16.5^{\circ} \mathrm{F}$ with the use of a large amount of water. If the distilling column pressure were raised to 35 psia, the range of condensation would be from 174 to $153^{\circ} \mathrm{F}$. The cooling-water range could be from 85 to $120^{\circ} \mathrm{F}$, and the Δt would be about $57^{\circ} \mathrm{F}$, requiring approximately one-quarter as much surface as at atmospheric pressure. It must be realized, however, that raising the pressure on the column increases the column first cost and also the temperature of the heating medium in the reboiler. The selection of the optimum process operating pressure is a matter of economic analysis. The total annual operating cost for several pressures, which includes utilities and fixed charges, is plotted against operating pressure, the optimum occurring when the total annual cost is a minimum.

Relative Volatilities. Another method of obtaining the composition during phase equilibrium is by relative volatilities. This method utilizes the principle that in a mixture of several components some are more and some are less volatile (have larger or smaller K 's) than an intermediate compound. Although the K 's may change greatly even over a small temperature range, the ratios of the equilibrium constants relative to each other remain nearly constant. By means of this premise it is possible to eliminate the successive trial-and-error calculation provided the frst trial is reasonably close. For a three component system

$$
\begin{gather*}
y_{1}=K_{1} x_{1} \quad y_{2}=K_{2} x_{2} \quad y_{3}=K_{3} x_{3} \\
\frac{y_{1}}{y_{2}}=\frac{K_{1} x_{1}}{K_{2} x_{2}} \quad \frac{y_{3}}{y_{2}}=\frac{K_{3} x_{3}}{\bar{K}_{2} x_{2}} \tag{13.10}
\end{gather*}
$$

$K_{1} / K_{2}=\alpha_{1-2}$ is the relative volatility of compound 1 to compound 2 and $K_{3} / K_{2}=\alpha_{3-2}$ is the relative volatility of compound 3 to compound 2 .
For vaporization:

$$
\begin{equation*}
y_{1}+y_{2}+y_{3}=1.00 \tag{13.11}
\end{equation*}
$$

Relative to y_{2}

$$
\begin{equation*}
\frac{y_{1}}{y_{2}}+1+\frac{y_{3}}{y_{2}}=\frac{1.00}{y_{2}} \tag{13.12}
\end{equation*}
$$

Substituting,

$$
\alpha_{1-2} \frac{x_{1}}{x_{2}}+1+\alpha_{3-2} \frac{x_{3}}{x_{2}}=\frac{1.00}{y_{2}}
$$

Rearranging,

$$
\begin{equation*}
y_{2}=\frac{x_{2}}{\alpha_{1-2} x_{1}+x_{2}+\alpha_{3-2} x_{3}}=\frac{x_{2}}{\Sigma \alpha x} \tag{13.13}
\end{equation*}
$$

and since

$$
\begin{gather*}
\frac{x_{2}}{y_{2}}=\alpha_{1-2} \frac{x_{1}}{y_{1}} \\
y_{1}=\frac{\alpha_{1-2} x_{1}}{\Sigma \alpha x} \tag{13.14}\\
y_{2}=y_{2} \quad y_{3}=\frac{\alpha_{3-2} x_{3}}{\Sigma \alpha x}
\end{gather*}
$$

For condensation:

$$
\begin{gather*}
x_{1}+x_{2}+x_{3}=1.00 \tag{13.15}\\
\frac{x_{1}}{x_{2}}+1+\frac{x_{3}}{x_{2}}=\frac{1}{x_{2}} \\
\frac{y_{1}}{y_{2} \alpha_{1-2}}+1+\frac{y_{3}}{y_{2} \alpha_{3-2}}=\frac{1}{x_{2}} \\
\frac{y_{1}}{y_{2} \alpha_{1-2}}+1+\frac{y_{3}}{y_{2} \alpha_{3-2}}=\frac{1}{x_{2}} \\
x_{2}=\frac{y_{2}}{y_{1} / \alpha_{1-2}+y_{2}+y_{3} / \alpha_{3-2}} \\
x_{1}=\frac{y_{1} / \alpha_{1-2}}{\Sigma y / \alpha} \quad x_{2}=\frac{y_{2}}{\Sigma y / \alpha} \quad x_{3}=\frac{y_{3} / \alpha_{3-2}}{\Sigma y / \alpha} \tag{13.16}
\end{gather*}
$$

Example 13.2. Calculation of the Bubble Point and Vapor Composition by Relative Volatilities. As before, make the assumption that the bubble point is $95^{\circ} \mathrm{F}$, which is considerably off.

Bubble point: $p_{t}=14.7$ psia. Assume $T=95^{\circ} \mathrm{F}$.

	x_{1}	$K_{96}{ }^{\circ} \mathrm{F}$	$\alpha_{959}{ }^{5}$	$\alpha_{1} x_{i}$	$y_{1}=\frac{\alpha_{1} x_{1}}{\Sigma \alpha_{1}}$
C_{4}	0.077	3.13	3.40	0.262	0.269
C_{5}	0.613	0.92	1.0	0.613	0.628
C_{6}	0.310	0.30	0.326	0.101	0.1035
	1.000	$K_{2}=\frac{y_{2}}{x_{2}}=\frac{\sum\left(\alpha_{2} x_{2} / \Sigma \alpha x\right)}{x_{2}}=\frac{0.976}{}=\frac{0.628}{0.613}=1.0005$			

Look up the temperature of C_{5} in Fig. 7 corresponding to a K_{2} of 1.025 and $p_{t}=14.7$ psia.

$$
K_{2}=1.025 \quad T=102^{\circ} \mathrm{F} \quad \text { (Checks Example } 13.1 \text { on first trial) }
$$

Dew point; $p_{t}=14.7$ psia. Assume $T=130^{\circ} \mathrm{F}$.

	y_{1}	$K_{180^{\circ}}$	$\alpha_{1 s 0^{\circ} \mathrm{F}}$	$\frac{y_{1}}{\alpha_{2}}$	$x_{1}=\frac{y_{1} / \alpha_{1}}{\Sigma y / \alpha}$
C_{4}	0.077	5.0	3.03	0.0254	0.0175
C_{5}	0.613	1.65	1.00	0.613	0.419
C_{6}	0.310	0.62	0.376	0.824	0.5635
	1.000		$\Sigma_{y / \alpha}=1.462$	1.0000	
		$K_{2}=\frac{y_{2}}{x_{2}}=y_{2} / \frac{y / \alpha}{\Sigma y / \alpha}=\frac{0.613}{0.419}=1.46$			

Look up the temperature of C_{5} corresponding to a $K_{2}=1.46$ and $p_{t}=14.7$ psia.

$$
K_{2}=1.46 \quad T=122^{\circ} \mathrm{F}
$$

The value computed from K values was $123^{\circ} \mathrm{F}$, showing a small variation in the actual relationship of the volatilities.

Calculation of Compositions between the Dew Point and Bubble Point. The calculation of dew points and bubble points from mol fractions is usually an unnecessary step, and it is desirable to carry out multicomponent calculations on the total number of the mols directly.
Since

$$
y_{1}=K_{1} x_{1}
$$

it is the same as

$$
\frac{V_{1}}{V}=K_{1} \frac{L_{1}}{L}
$$

where V_{1} is the number of mols of a component in the vapor and L_{1} the number of mols of the component in the liquid. V and L are the total number of mols of vapor and liquid, respectively.
At the dew point,

$$
\begin{equation*}
V_{1}=K_{1} L_{1} \tag{13.17}
\end{equation*}
$$

At the bubble point,

$$
\begin{equation*}
L_{1}=\frac{V_{1}}{K_{1}} \tag{13.18}
\end{equation*}
$$

In an enclosed vessel at equilibrium at any temperature between the dew point and bubble point if Y is the original number of mols of vapor consisting of Y_{1}, Y_{2}, and Y_{3}, etc., for each compound, the amount condensed is given by

$$
Y=V+L \quad Y_{1}=V_{1}+L_{1}
$$

where V is the total mols of vapor remaining and L is the total mols of liquid formed. Then

$$
V_{1}=Y_{1}-L_{1}
$$

and

$$
\begin{align*}
V_{1} & =K_{1} L_{1} \frac{V}{L} \\
L_{1} & =\frac{Y_{1}}{1+K_{1}(V / L)} \tag{13.19}
\end{align*}
$$

To determine the mols condensed at any given temperature between the dew point and bubble point, assume a ratio of V / L and calculate by Eq. (13.19) the number of mols of liquid formed for the assumed value of V / L. If the ratio of the mass of vapor remaining to the mols of liquid formed does not check the assumed value of V / L, a new assumption must be made.

Differential Condensation. The equilibrium in a condenser causes differential condensation. Consider a condenser as shown in Fig. 13.4 divided into a number of condensing intervals as $0-0$ to $1-1,1-1$ to $2-2$, etc. At $0-0$ there is perhaps one droplet of condensate, but in the zone

Frg. 13.4. Differential condensation in a condenser.
from 0-0 to 1-1 considerable condensate is formed. At 1-1 there is now a layer of condensate, and the total mols of vapor plus condensate is the same as at $0-0$, but the mols of vapor is less and its composition differs from the original feed. The equilibrium at 1-1 differs from the dew point in so far as there is now a definite number of mols of liquid present instead of one droplet. In the interval from 1-1 to 2-2 where a new equilibrium is established, the vapor is in equilibrium not merely with the liquid which has been formed by condensation during the interval but also with a liquid whose composition consists of all the precondensed liquid from previous intervals. The similarity between this behavior and that which occurs in a constant-pressure batch vessel can be demonstrated. If L_{c} are the total mols of liquid condensed in the zone $0-0$ to $1-1$ before
the zone from 1-1 to 2-2, $L_{c_{1}}$ the mols of component 1 condensed from $0-0$ to 1-1, and L^{\prime} and L_{1}^{\prime} the total mols and mols of component 1 formed in the zone from 1-1 to 2-2 in Fig. 13.4, then at 2-2

$$
\begin{align*}
\frac{V_{1}}{V} & =K_{1} \frac{L_{1}^{\prime}+L_{c_{1}}}{L^{\prime}+L_{c}} \\
\frac{V_{1}}{} & =Y_{1}-L_{1}^{\prime} \\
\frac{Y_{1}-L_{1}^{\prime}}{V} & =K_{1} \frac{L_{1}^{\prime}+L_{c_{1}}}{L^{\prime}+L_{c}} \\
L_{1}^{\prime} & =Y_{1}-K_{1} \frac{V\left(L_{1}^{\prime}+L_{c_{1}}\right)}{L^{\prime}+L_{c}} \\
L_{1}^{\prime} & =\frac{Y-K_{1}\left(V / L^{\prime}+L_{c}\right) L_{c_{1}}}{1+K_{1}\left(V / L^{\prime}+L_{c}\right)} \tag{13.20}
\end{align*}
$$

At any point, however, $L^{\prime}+L_{c}=L, L_{1}^{\prime}+L_{c_{1}}=L_{1}$, and Eq. (13.20) reduces to Eq. (13.19). Figure 13.4 is obviously idealized and does not take into account the hydrodynamics of such a condensate layer.

The Calculation of the Condensing Curve for a Multicomponent Mixture. The calculation of the weighted temperature difference is dependent upon the shape of the condensing curve which is a plot of vapor heat content vs. vapor temperature for the condensing range. The weighted temperature difference is then obtained by taking increments of the condensing range and computing the average temperature difference between the vapor and water temperatures. From a practical standpoint it is necessary to choose only a reasonable number of temperatures, since the solution of Eq. (13.19) is by trial and error. The best selection of the intervals should give equal increments of $d Q / \Delta t$ or $U A$, but this is rather difficult to accomplish by inspection. It is usually helpful to observe whether the vapor to be condensed has fronts or tails. Tails indicate that for a high dew point the main portion of the vapor does not condense until a considerably lower temperature is reached. Thus in example 13.1 if a small number of mols of C_{9} or C_{10} was added to the mixture, the dew point would be considerably higher than before although the major heat load removed by condensation would start only at the temperature which previously was the dew point or near $130^{\circ} \mathrm{F}$ at 14.7 psia. With small amounts of C_{9} and C_{10} the temperature of the vapor would fall rapidly upon the removal of a small amount of heat. Similarly in the case of fronts, the presence of the small amount of propane C_{3} reduces the bubble point, although the heat removal between the old and new bubble points would not necessarily represent a significant percentage of the total heat load removed in the condenser.

The Weighted Temperature Difference. In the desuperheater-condenser and condenser-subcooler it was assumed that the counterflow
temperature differences could be applied over the entire length of the shell to obtain the weighted Δt. In the case of a multicomponent mixture, because it requires an integration to obtain the weighted Δt, it is similarly very convenient to assume that the cooling medium is in counterflow with the multicomponent vapor even if a $1-2$ condenser is employed. The percentage rise in the temperature of the cooling medium at any cross section of the shell is then taken as proportional to the percentage of the heat load removed from any condenser cross section to the exit. The weighted Δt is then the averaged temperature difference between the condensing curve (vapor heat content vs. T_{v} plot) and a straight line representing the cooling medium. When a $1-2$ condenser is employed, if the value of F_{T} based on inlet and outlet temperatures is not very nearly 1.0 , the assumption above may not be admissible. If q is the heat load for an interval on the condensing curve, then the weighted Δt is obtained from the total heat load Q divided by the summation of the values of $q / \Delta t_{a v}$ where $\Delta t_{a v}$ is the average temperature difference for the interval.

Heat-transfer Coefficients for a Multicomponent Mixture. When a multicomponent mixture is condensed, the condensing range between the dew point and the bubble point may be greater than 100°. The liquid which is formed near the inlet differs greatly in composition from that formed near the outlet and must be cooled to the bubble point at the end of the shell before it drains from the condenser. The film coefficient in the condenser differs somewhat from the Nusselt assumptions in that the first liquid to condense is the higher boiler and higher boilers in any homologous chemical series are more viscous than the lower ones. For vertical or horizontal tubes this means that the Reynolds number for the inlet portion of the tubes might well be lower than might be calculated using the mean properties of the total mixture for the condensate film. Nevertheless, to avoid the tediousness of an integration to determine the changes in \bar{h} due to changing liquid properties for differential changes in area $d A$, it is possible to use a method of averaging the inlet and outlet film coefficients. This can be done by using the mean properties of the mixture, or, if there is a great difference in the characteristics of the condensate between inlet and outlet, to calculate h at both terminals and take the mean. The compositions of the final condensate on the tubes of vertical and horizontal condensers condensing the same mixture are not identical, since the condensate is cumulative on vertical tubes. There appears to be little need, however, in view of the other assumptions which also apply, to take this into account except with viscous condensates.

In either vertical or horizontal condensers it is helpful to consider, as in the development of Eq. (13.20), that the phase equilibrium at a cross section exists between the residual vapor and all the liquid formed up to
that point. In condensing a multicomponent mixture between its dew point and bubble point the vapor is cooled and the condensate formed at the inlet leaves at the temperature of the outlet, which may be colder by some $100^{\circ} \mathrm{F}$ or more. The vapor and condensate must be cooled sensibly as they travel the length of the shell, although this is not the same as desuperheating or subcooling, since it occurs concurrently with condensation rather than in distinct zones. The clean surface required for condensation is frequently calculated from the entire heat load, the weighted Δt, and a value of $U_{\text {clean }}$, using h obtained from either of the two methods described above. The main problem of sensible-heat transfer appears to be in cooling the condensate rather than the vapor, since the vapor coefficient in the presence of condensation is quite high as discussed for steam in Chap. 12. One method of treating the sensible-heat transfer is to allow additional surface equivalent to the percentage which the sensible-heat load is to the total heat load. The sensible-heat-transfer surface is then an additional percentage of the condensing surface. This is equivalent to the use of a sensible-heat-transfer coefficient about onehalf the condensing coefficient. Another method is to compute condensate cooling surface using the free-convection coefficient of about 50 but applied only to the average liquid cooling sensible-heat load. Actually both methods give about the same answer. The effectiveness of the surface required for sensible-heat transfer, and particularly for cooling the condensate, is assured by submerging all the additional surface allowance through the use of a loop seal or dam baffle as discussed previously. The overall clean coefficient is then the weighted coefficient based on the total clean surface. If the vapor enters above the dew point or condensate leaves below the bubble point, the desuperheating and subcooling zones are weighted along with the condensing zone as in Chap. 12.

Example 13.3. Condenser Calculations for a Multicomponent Mixture. The overhead vapor from a distilling column operating at 50 psia contains only saturated hydrocarbons such as propane, butane, and hexane and has the following analysis:

	$\mathrm{Lb} / \mathrm{hr}$	$\mathrm{Mol} / \mathrm{hr}$
C_{8}	7,505	170.5
$C_{4}{ }^{*}$	16,505	284.0
C_{6}	4,890	56.8
C_{7}	34,150	341.1
C_{8}	32,400	284.0

[^24]It is to be condensed in a 1-2 horizontal condenser using cooling water from 80 to $120^{\circ} \mathrm{F}$. Pressure drops of 2.0 psi for the vapor and 10.0 psi for the water should be adequate. A minimum dirt factor of 0.004 should be provided. Available for the service is a 33 in . ID $1-2$ condenser having $7743 / 4 \mathrm{in}$. OD, 16 BWG tubes $16^{\prime} 0^{\prime \prime}$ long and laid out on 1 -in. triangular pitch. The bundle is arranged for four passes, and bafles are spaced, except at the inlet and outlet, 30 in . apart.
(a) Determine the condensing range.
(b) Compute the condensing curve.
(c) Compute the weighted Δt.
(d) Establish the suitability of the condenser.

Solution. (a) Condensing range: This is the temperature spread between the dew point [Eq. (13.17)] and the bubble point [Eq. (13.18)].

Dew point: Assume $T=283^{\circ} \mathrm{F}$
Bubble point: Assume $T=120^{\circ} \mathrm{F}$

	V_{1}	$K_{1 \times t 283}{ }^{\circ} \mathrm{F}$	$\frac{V_{1}}{K_{1}}$	L_{1}	$K_{1 \text { at } 120^{\circ} \mathrm{F}}$	$K_{1} L_{1}$
C_{3}	170.5	13.75	12.40	170.5	4.1	700
C_{4}	284.0	6.18	46.0	284.0	1.39	395
C_{6}	56.8	1.60	35.5	56.8	0.17	9.66
C_{7}	341.1	0.825	414.	341.1	0.06	20.44
C_{8}	284.0	0.452	628.	284.0	0.023	6.54
	1136.4		1147.0 Check	1136.4		$\begin{array}{r} 1132.6 \\ \text { Check } \end{array}$

Assume intervals at $270,250,230,200,160^{\circ}$, and the dew point, and solve for V / L by Eq. (13.19) to obtain the condensation in each interval and from it the heat load for the interval.

Range: 283 to $270^{\circ} \mathrm{F}$
Trial: Assume $V / L=4.00$.

	Y_{1}	$K_{270^{\circ}}$	$\frac{K_{1} V}{L}$	$1+\frac{K_{1} V}{L}$	$L_{1}=\frac{Y_{1}}{1+K_{1}(V / L)}$
	170.5	12.75	51.0	52.0	3.28
C_{3}	284.0	5.61	22.4	23.4	12.13
C_{4}	56.8	1.40	5.60	6.60	8.60
C_{8}	341.1	0.705	2.82	3.82	89.3
C_{7}	284.0	0.375	1.50	2.50	113.7
C_{8}	1136.4			$L=\frac{2 L_{1}=227.0}{}$	

[^25]If the assumed and calculated values of V / L had not checked, a new value would have been assumed. A check in this type of calculation generally infers a variation of 0.01 or less as the ratio of V / L decreases. For the next range, 270 to $250^{\circ} \mathrm{F}$, proceed as above and obtain the actual mols of condensation for the interval by subtracting the liquid in equilibrium at $270^{\circ} \mathrm{F}$ from that in equilibrium at $250^{\circ} \mathrm{F}$. Then L_{61} are the mols of the individual compounds formed before the interval and L_{1}^{\prime} are the mols of the individual compounds formed in the interval. L_{2}^{\prime} is obtained by subtracting $L_{c 1}$ from L_{11}, which is in turn obtained from a checked assumption of V / L where $\Sigma L_{1}=L$. A summary of the point-to-point calculations is given in Table 13.2.
(b) Condensing curve: This step requires the calculation of the heat load between intervals. Except at the inlet and outlet of the condenser there is a change in both vapor and liquid quantities over the interval. The heat changes are determined from the change in enthalpies as given in Fig. 10. A representative interval is calculated following Table 13.2.

The LMTD would be $87.7^{\circ} \mathrm{F}$, and the error resulting from its use would have been $(13 / 100.7) \times 100=12.9$ per cent on the safe side. In any system without serious fronts or tails the use of the LMTD is usually satisfactory, although there is no assurance that the error will always be on the safe side.

The condensing curve for true counterflow is shown as a straight line in Fig. 13.5. The actual condensing curve is shown as a curved line, and the area enclosed by the two represents the actual increase in temperature potential which is available.

Table 13.2. Pont-to-point Compositions

$$
L_{1}=L_{e 1}+L_{\mathrm{I}}^{\prime} \quad L=\left(L_{1}\right)
$$

Heat Load for the Interval 270 to 250°

	Mol. Wt.	$H_{v, 270^{\circ}}$	Y_{1}	H_{v}	$H_{l, 270^{\circ}}$	$L_{c 1}$	H_{1}
C_{8}	44	324	167.2	$2,384,000$	210	3.28	30,300
C_{4}	58	334	27.9	$5,260,000$	212	12.13	149,200
C_{e}	86	352	48.2	$1,460,000$	226	8.60	167,000
C_{7}	100	359	251.8	$9,030,000$	236	89.3	$2,105,000$
C_{8}	114	368	170.3	$7,150,000$	239	113.7	$3,100,000$
				$25,284,000$			$5,551,500$

$H_{270^{\circ}}=30,835,500 \mathrm{Btu} / \mathrm{hr}$

	Mol. wt.	$H_{v, 250^{\circ}}$	Y_{1}	H_{0}	$H_{l, 250^{\circ}}$	$L_{c 1}$	H_{1}
C_{3}	44	313	161.4	2,221,000	195	9.13	78,400
C_{4}	58	323	251.1	4,700,000	197.5	32.94	377,000
C_{6}	86	341	36.2	1,060,000	212.5	20.60	376,000
C_{7}	100	350	157.3	5,500,000	224	183.8	4;110,000
C_{8}	114	358	87.9	3,580,000	225	196.1	5,040.000
				$\begin{array}{r}\text { 17,061,000 } \\ \hline 9,981,400\end{array}$			9,981,400
			$H_{250}{ }^{\circ}$	-27,042,400	Btu/hr		

$Q_{270-250^{\circ}}=30,835,500-27,042,000=3,793,100 \mathrm{Btu} / \mathrm{hr}$
Heat Load for the Entire Range

$T_{\text {vador },{ }^{\text {TF }}}$	H	$q=\Delta H$	$\Delta t_{\text {w }}{ }^{*}$	${ }^{t_{W},}{ }^{\text {a }} \mathrm{F}$	Δt_{av}	$\frac{q}{\Delta t}$	quumulative
283	34,312,000	3,476,500	6.55	120			0
270	30,835,500	3,793,100	7.15	113.4	159.8	21,780	3,476,500
250	27,042,000	2,839,400	5.35	106.3	150.1	25,210	7,269,600
230	24,203,000	3,359,000	6.34	100.9	136.4	20,800	10,109,000
200	20,844,000	3,931,100	7.42	94.6	117.2	28,620	13,468,000
160	16,912,900	3,803,900	7.17	87.2	$88.2 \dagger$	44,550	17,399,100
120	13,109,000			80.0			21,203,000
		21,203,000	39.98		$\Sigma U A=210,410$		

* Water requirement: $t \neq$ is the water temperature.
$\frac{21,203,000}{120-80}=530,000 \mathrm{lb} / \mathrm{hr}$ of cooling water $\approx 1060 \mathrm{gpna}$
\dagger LMTD

$$
\text { Weighted } \Delta t=\frac{\Sigma q}{\Sigma \overline{U A}}=\frac{21,203,000}{210,410}=100.7^{\circ} \mathrm{F}
$$

Fig. 13.5. Straight-line and differential condensing curves
The calculation of the exchanger for Example 13.3 follows:
Exchanger:

Shell side

Tube side
$\mathrm{ID}=33 \mathrm{in} . \quad$ Number and length $=774,16^{\prime} 0^{\prime \prime}$
Baffle space $=30 \mathrm{in} . \quad$ OD, BWG, pitch $=3 / 4 \mathrm{in} ., 16 \mathrm{BWG}, 1-\mathrm{in}$. tri.

$$
\text { Passes }=1
$$

$$
\text { Passes }=4
$$

(1) Heat balance:
Q shell $=21,203,000 \mathrm{Btu} / \mathrm{hr}$
Q water $=530,000 \times 1(12 \mathrm{C}-80)=21,203,000 \mathrm{Btu} / \mathrm{hr}$
Average molecular weight $=\frac{95,450}{1136.4}=84$
This corresponds very closely to hexane (mol. wt. $=86.2$) whose properties will be used throughout.

Condensate sensible heat load $=95,450 \times \frac{0.6(283-120)}{2}=4,670,000 \mathrm{Btu} / \mathrm{hr}$
Submergence $=4,670,000 \times \frac{100}{21,203,000}=22 \%$ (approx)
(2) Δt : Weighted $\Delta t=100.7^{\circ} \mathrm{F}$
(3) T_{c} and t_{c} : The use of average temperatures will be satisfactory.

Hot fuid: shell side, vapor
(4') Unsubmerged tubes

$$
=774 \times(1-0.22)=604
$$

$$
G^{\prime \prime}=W / L N t^{3 / 3}=95,450 / 16 \times 604^{3 / 2}
$$

$$
=83.7[\text { Eq. }(12.43)]
$$

Cold fuid: tube side, water
(4) Flow area, $a_{t}^{\prime}=0.302$ in. ${ }^{2}$
[Table 10]
$a_{t}=N_{t} a_{t}^{\prime} / 144 n$
[Eq. (7.48)]
$=774 \times 0.302 / 144 \times 4=0.406 \mathrm{ft}^{2}$

Cold fluid: tube side water
(5) $G_{t}=w / a_{t}$
$=530,000 / 0.406$
$=1,300,000 \mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)$
$V=G_{t} / 3600 \rho=1,300,000 / 3600 \times 62.5$
$=5.79 \mathrm{fps}$
(6) $h_{i}=1355$
$h_{i o}=h_{i} \times \mathrm{ID} / \mathrm{OD}$
$=1355 \times 0.62 / 0.75$
$=1120 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right) \quad$ [Eq. (6.5)]

Clean overall coefficient U_{c}, condensation:

$$
\begin{equation*}
U_{c}=\frac{h_{i o} h_{o}}{h_{i o}+h_{o}}=\frac{1120 \times 206}{1120+206}=174 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right) \tag{6.38}
\end{equation*}
$$

Clean surface required for condensation:

$$
A_{c}=\frac{q_{c}}{U_{c} \Delta t}=\frac{21,203,000}{174 \times 100.7}=1210 \mathrm{ft}^{2}
$$

Clean surface required for subcooling:

$$
A_{\mathrm{s}}=1210 \times 0.22=267 \mathrm{ft}^{2}
$$

Total surface required:

$$
A_{C}=1210+267=1477 \mathrm{ft}^{2}
$$

Weighted overall clean coefficient U_{C} :

$$
U_{c}=\frac{Q}{A \Delta t}=\frac{21,203,000}{1477 \times 100.7}=143
$$

Design overall coefficient U_{D} :

$$
\begin{aligned}
& a^{\prime \prime}=0.1963 \mathrm{ft}^{2} / \operatorname{lin} \mathrm{ft} \\
& \text { Total surface }=774 \times 16^{\prime} 0^{\prime \prime} \times 0.1963=2430 \mathrm{ft}^{2} \\
& U_{D}=\frac{Q}{A \Delta t}=\frac{21,203,000}{2430 \times 100.7}=86.7 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)
\end{aligned}
$$

(Table 10)

Dirt factor R_{α} :

$$
\begin{equation*}
R_{d}=\frac{U_{C}-U_{D}}{U_{C} U_{D}}=\frac{143-86.7}{143 \times 86.7}=0.00455(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right) / \mathrm{Btu} \tag{6.13}
\end{equation*}
$$

Pressure Drop

(1') $a_{s}=1 D \times C^{\prime} B / 144 P_{t} \quad$ [Eq. (7.1)]
$=33 \times 0.25 \times 30 / 144 \times 1.0$
$=1.72 \mathrm{ft}^{2}$
Submergence may be neglected unless the calculated pressure drop is close.
$G_{s}=W / a_{s}$
$\left.=95,450 / 1.72=55,500 \mathrm{Ib} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right) \mathrm{L}\right)$
(1) At $100^{\circ} \mathrm{F}$, $\mu=0.72 \times 2.42=1.74 \mathrm{lb} /(\mathrm{ft})(\mathrm{hr})$
$D=0.62 / 12=0.0517 \mathrm{ft}$
$R e_{t}=D G_{t} / \mu$
$=0.0517 \times 1,300,000 / 1.74=38,600$

Pressure Drop

At $T_{\mathrm{I}}=283^{\circ} \mathrm{F}$, $\mu=0.009 \times 2.42=0.0218 \mathrm{lb} /(\mathrm{ft})(\mathrm{hr})$ $D_{0}=0.73 / 12=0.0608 \mathrm{ft} \quad$ [Fig. 15] $R e_{s}=D_{d} G_{3} / \mu$ $=0.0608 \times 55,500 / 0.0218=155,000$ $f=0.00125 \mathrm{ft}^{2} / \mathrm{mi} .^{2} \quad$ [Fig. 29]
(2') No. of crosses $(N+1)=12 L / B$
$=12 \times 16 / 30=7$
$\rho=\frac{84}{359 \times 743 / 49.2 \times 14.7 / 50}$
$=0.527 \mathrm{Jb} / \mathrm{ft}^{3}$
$s=0.527 / 62.5=0.00844$
$D_{s}=33 / 12=2.75 \mathrm{ft}$
(3^{\prime}) $\Delta P_{:}=\frac{1}{2} \frac{f G_{s}^{2} D_{s}(N+1)}{5.22 \times 10^{20} D_{s}}$
(2) $\Delta P_{t}=\frac{f G_{t}^{2} L n}{5.22 \times 10^{10} D s \phi_{t}} \quad$ [Eq. (7.45)]

$$
0.00019 \times 1,300,000^{2} \times 16
$$

$$
=\frac{\times 4}{5.22 \times 10^{19} \times 0.0517 \times 1.0} \times 1.0
$$

$=7.6 \mathrm{psi}$
(3) $\Delta P_{r}=(4 n / s)\left(V^{2} / 2 g^{\prime}\right) \quad[$ Eq. (7.46) $]$
$=4 \times 4 \times 0.23=3.7 \mathrm{psi}$
[Fig. 27]
$=\frac{1}{2} \frac{0.00125 \times 55,500^{2} \times 2.75 \times 7}{5.22 \times 10^{10} \times 0.0608 \times 0.00844}$
$=1.4 \mathrm{psi}$
(4) $\Delta P_{T}=\Delta P_{t}+\Delta P_{r}$
$=7.6+3.7=11.3 \mathrm{psi}$
[Eq. (7.47)]
Summary

206^{*}	h outside	1120
U_{C}	143	
U_{D}	86.7	
R_{d} Calculated 0.00455		
R_{d} Required	0.004	
1.4	Calculated ΔP	11.3
2.0	Allowable ΔP	10.0

* Condensation only.

The slightly excessive tube-side pressure drop for water should not be objectionable. The bundle should be submerged about 25 to 30 per cent.

3. CONDENSATION OF A MIXTURE OF MISCIBLES AND ONE IMMISCIBLE

This case arises in the steam distillation of organics which are miscible among themselves but not with water. The stripping of the volatile compounds from absorption oil is a typical example as shown in Fig 11.1.

The introduction of the steam permits part of the total operating pressure in the distilling column to be contributed by the steam, so that the mixture of volatiles and oil need not be raised to a high temperature to accomplish distillation. In this way and without resorting to vacuum a greater separation can be made between the volatiles and the oil, which boils over a somewhat higher range than that at which the distillation is carried out. If the overhead vapor is a mixture of a single compound and steam, the condensation occurs isothermally. If the mixture contains more than one compound miscible with the first but immiscible with water, there is a condensing range. Since the total pressure in the latter consists of water plus the miscibles, the equilibrium relationships for the miscibles corresponds to the sum of their partial pressures instead of the total pressure on the system. The partial pressure of the steam depends only upon the saturation pressure corresponding to its temperature in the mixture as given by the properties of saturated steam in Table 7. The total pressure is constant, but the relative partial pressures of the miscibles and steam change from point to point. The problems involved in the calculation of the condensing curve for this system are included in the more comprehensive problem demonstrated in Sec. 5 of this chapter. Ordinarily the calculation is so lengthy that the use of the LMTD or the use of $F_{T} \times$ LMTD is justifiable as the case may be.

Hazelton and Baker ${ }^{1}$ carried out experimental work on a single vertical tube condensing benzene; toluene, and chlorbenzene with steam. It was found that the presence of the organic tended to favor the dropwise condensation of the steam. Film coefficients were found to be independent of the temperature drop across the condensate film and independent of the properties of the liquid condensed with water. Hazelton and Baker were able to correlate their work with the experimental results of others. For vertical tubes they obtained

$$
\begin{equation*}
\bar{h}=79\left[\frac{(\mathrm{wt}-\%)_{A} \lambda_{A}+(\mathrm{wt}-\%)_{B} \lambda_{B}}{(\mathrm{wt}-\%)_{\Delta} L}\right]^{1 / 4} \tag{13.21a}
\end{equation*}
$$

where A and B refer, respectively, to the organic and the water in the condensate film and L is the tube length in feet. They were able to correlate the work of several investigators on horizontal tubes by

$$
\begin{equation*}
\bar{h}=61\left[\frac{(\mathrm{wt}-\%)_{A} \lambda_{A}+(\mathrm{wt}-\%)_{B} \lambda_{B}}{(\mathrm{wt}-\%)_{A} D_{O}}\right]^{1 / 4} \tag{13.21b}
\end{equation*}
$$

For tube bundles in horizontal exchangers it is unlikely that the coefficient differs greatly from the value predicted by Eq. (13.21b).

[^26]
4. CONDENSATION OF A VAPOR FROM A NONCONDENSABLE GAS

As in the case of a gas compressor intercooler (Chap. 9) if a mixture of a vapor and a gas is cooled in a constant-pressure operation, the temperature at which the first droplet of condensate appears is the dew point. The dew point is the saturation temperature of the vapor corresponding to its partial pressure in the mixture. The calculation of the dew point of a mixture of a vapor and a noncondensable gas was demonstrated in Example 9.3. The calculation of the compressor intercooler is covered in this section.

When a mixture of a vapor and a noncondensable gas is fed to a condenser and the temperature of the tubes is below the dew point, a film

Fig. 13.6. Condensation potentials with noncondensables.
of condensate forms on the tubes. The relationship of the partial pressures is shown in Fig. 13.6. A film of noncondensable gas and vapor collects about the condensate film as suggested by the data of Othmer in Fig. 12.25. If an equilibrium is presumed to exist on the surface of the condensate film, the partial pressure of the vapor at the tube wall corresponds to the cold condensate p_{c} and the partial pressure of the vapor in the gas film lies between that at the condensate film p_{c} and that in the gas body p_{v}. In order for the vapor in the gas body to continue condensing into the condensate film, it must be driven across the gas film by the difference between the partial pressure of the vapor in the gas body and in the condensate. The passage of one component through another is called diffusion or mass transfer, and in a diffusion system the rate at which the steam condenses is no longer dependent entirely upon Nusselt's condensing mechanism but upon the laws governing diffusion. When
vapor diffuses through a noncondensable gas film and liquefies at the tube wall, it also carries with it its latent heat of condensation. In addition to the partial-pressure difference promoting diffusion there is also a temperature difference between the gas body T_{g} and the condensate film T_{c} by which the gas is sensibly cooled. It will be shown that the rate of diffusion and the rate of heat transfer are not independent of each other.

Relationships between Heat and Mass Transfer. The theory of diffusion will be treated in greater detail in Chap. 17, which is devoted to diffusional heat transfer.

It was shown in Chap. 3 that there is an analogous behavior between heat transfer and fluid friction when a fluid flows in a tube. Another analogy exists for a system in which a transfer of matter by diffusion is accompanied by a transfer of heat. A number of authors have contributed to the refinement and extension of this analogy, but the derivations employed bere are essentially those of Colburn, ${ }^{1}$ Colburn and Hougen, ${ }^{2}$ and Chilton and Colburn. ${ }^{3}$ The paper of Colburn and Hougen forms the basis for design calculations.

It was shown in Chap. 9 that when dealing with gases it is advantageous to express the heat-transfer factor j_{H} for a fluid flowing inside a tube by

$$
\begin{equation*}
j_{H}=\frac{h D}{k}\left(\frac{c \mu}{k}\right)^{-1 / 3}=\frac{h}{c G}\left(\frac{c \mu}{k}\right)^{3 / 3}\left(\frac{D G}{\mu}\right) \tag{13.22}
\end{equation*}
$$

A new factor j_{h} may then be defined as $j_{h}=j_{H} /(D G / \mu)$ or

$$
\begin{equation*}
j_{h}=\frac{h}{c G}\left(\frac{c \mu}{k}\right)^{3 h} \tag{13.23}
\end{equation*}
$$

By employing j_{h} it is possible to eliminate the variation of k with temperature in making a sensible-heat-transfer calculation, since ($c \mu / k$) is nearly constant over a wide temperature range. Since

$$
Q=w c\left(t_{2}-t_{1}\right)=h_{\pi} D L \Delta t
$$

and $G=4 w / \pi D^{2}$, on substituting for both h and G Eq. (13.23) becomes

$$
\begin{equation*}
j_{h}=\frac{h}{c G}\left(\frac{c \mu}{k}\right)^{3 / 3}=\frac{t_{2}-t_{1}}{\Delta t} \frac{D}{4 L}\left(\frac{c \mu}{k}\right)^{3 /} \tag{13.24}
\end{equation*}
$$

Multiplying the last term by $\pi D / \pi D$,

$$
\begin{equation*}
j_{h}=\frac{h}{c G}\left(\frac{c \mu}{k}\right)^{3 / 3}=\frac{t_{2}-t_{1}}{\Delta t}\left(\frac{a}{A}\right)\left(\frac{c \mu}{k}\right)^{3 / 3} \tag{13.25}
\end{equation*}
$$

where a is the flow area $\pi D^{2} / 4$, and A is the tube surface $\pi D L$.

[^27]When a vapor is absorbed from a gas, which is not saturated with moleeules of the solvent, diffusion may occur in two directions: Molecules of the vapor may pass into the absorbent, and molecules of the absorbent may pass into the gas. In the passage of water vapor from the gas body into a condensate film consisting of liquid water alone the transfer of matter is in one direction and the mols of matter transferred from the gas to the liquid is given by

$$
\begin{equation*}
d N_{d}=d\left(\frac{G a p_{v}}{M_{m} p_{t}}\right)=K_{\theta} \Delta p d A \tag{13.26a}
\end{equation*}
$$

where $A=$ diffusion surface, ft^{2}
$a=$ flow area of gas and vapor, ft^{2}
$G=$ mass velocity, $\mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)$
$K_{G}=$ mass diffusion coefficient, mol/(hr)(ft²)(atm)
$M_{m}=$ mean molecular weight of the vapor and noncondensable, $\mathrm{lb} / \mathrm{mol}$
$N_{\mathrm{d}}=$ material transferred, $\mathrm{mol} / \mathrm{hr}$
$p_{c}=$ partial pressure in atmospheres of the vapor at condensate film, atm
$p_{v}=$ partial pressure in atmospheres of the vapor in gas body, atm
$p_{t}=$ total pressure on the system in atmospheres, atm
$\Delta p=$ instantaneous driving potential in atmospheres, $p_{v}-p_{c}$, atm

The coefficient K_{G} is simply the dimensional rate constant which makes $d N_{d}$ equal to the right side of the equation. K_{G} is determined experimentally, and therefore K_{σ} and U are similar in function, K_{σ} being to Δp in mass transfer what U is to Δt in heat transfer. If the initial concentration of the condensable vapor is small, it is convenient to use the simplification that the mass velocity of the mixture does not vary appreciably during the diffusion of the vapor out of the gas and that

$$
\frac{G}{M_{m}}=\frac{G_{i}}{M_{i}}\left(\frac{p_{t}}{p_{t}-p_{v}}\right)
$$

where the subscript i refers to the inert gas. Replacing $p_{t}-p_{v}$ by p_{0}, the pressure of the inert gas in the gas body, and keeping p_{t} constant in the tube with constant a, the differentiation of the second term in Eq. (13.26a) yields

$$
\begin{equation*}
d N_{d}=\frac{G a d p_{v}}{M_{m} p_{t}}=K_{G} \Delta p d A \tag{13.26b}
\end{equation*}
$$

The second and third terms can be readily regrouped to give

$$
\frac{K_{\theta} p_{g f}}{G / M_{m 2}}=\left(\frac{d p_{v}}{\Delta p}\right)\left(\frac{p_{\theta f}}{p_{t}}\right)\left(\frac{a}{d A}\right)
$$

where $p_{v f}$ is the log mean of p_{v} of the inert in the gas body and $p_{g}^{\prime}=p_{t}-$ p_{c} the pressure of the inert at the condensate film. In integrated form it becomes

$$
\begin{equation*}
\frac{K_{\theta} p_{\theta f}}{G / M_{m}}=\left(\frac{p_{1}-p_{2}}{\Delta p}\right)\left(\frac{p_{\theta f}}{p_{g}}\right)\left(\frac{a}{A}\right) \tag{13.27}
\end{equation*}
$$

where p_{I} and p_{2} are the partial pressures of the diffusing component at A_{1} and A_{2}.

When a fluid flows along a surface, the particles within the fluid exchange momentum with the stationary film at the surface, causing a pressure drop in the fluid in the direction of flow. This assumption led to Eq. (3.51) in the Reynolds analogy. It is entirely conceivable that a similar condition occurs when a vapor traveling along a surface condenses against the condensate film which it enters by moving at right angles to the direction of flow and giving up its momentum. In Eq. (3.51) and subsequent equations it became apparent that the ratio of the loss of momentum by skin friction to the total momentum of the stream depended upon how much stationary surface there was for the total amount of fluid flowing. For a given quantity of fluid flowing in a tube and a given total diffusion or heat-transfer surface, the amount of skin friction will be greater if the path consists of a long small-bore tube than for a short tube of large diameter. The index of these possibilities is the ratio A / a or, when used in a diffusion factor, its reciprocal a / A. Just as it was found in the refinement of the Reynolds analogy that the ratio of μ / k influences the heat transfer, so it can be inferred that the properties of the fluid also affect' diffusion. The properties associated with skin friction are contained in the dimensionless Schmidt number $\mu / \rho k_{d}$, where k_{d} is the diffusion coefficient (diffusivity) in square feet per hour of one gas through another and μ and. ρ are the viscosity and density of the mixture. If the influence of μ / k_{a} on diffusion is comparable to that of μ / k in heat transfer, then it is reasonable to multiply Eq. (13.27) by ($\mu / \rho k_{d}$). Assuming $p_{g f} / p_{g}=1.0$, designating the diffusion factor $j_{d,}$, and arbitrarily using the two-thirds power

$$
\begin{equation*}
j_{d}=\left(\frac{p_{1}-p_{2}}{\Delta p}\right)\left(\frac{a}{A}\right)\left(\frac{\mu}{\rho k_{d}}\right)^{2 / 3} \tag{13.28}
\end{equation*}
$$

Attention is now directed to the similarity between Eqs. (13.25) and (13.28). From an extension of the Reynolds analogy to distillation,
where the analogy between mass and heat transfer is very close, there is good reason to believe that j_{d} and j_{h} are the same function of the Reynolds number and equal. The relationship between diffusion and heat transfer is then obtained by equating Eqs. (13.25) and (13.28) and solving for K_{σ}.

$$
\begin{equation*}
K_{G}=\frac{h(c \mu / k)^{3 /}}{c p_{g f} M_{m}\left(\mu / \rho k_{d}\right)^{3 / 2}} \tag{13.29}
\end{equation*}
$$

The principal deduction from Eq. (13.29) is that the rates of diffusion and heat transfer do not occur independently. When the vapor concentration is high, as in many industrial applications, Eq. (13.28) must be calculated for incremental changes in the surface, since $p_{g f} / p_{\theta}$ will no longer be unity.

The overall coefficient of heat transfer varies greatly during the condensation of a vapor from a noncondensable gas which is initially at its dew point because the potential for diffusion varies greatly as the vapor is removed from the gas body leaving a higher percentage of inert. At the inlet the composition of a mixture of vapor and noncondensable may be almost all vapor and the film coefficient may be very nearly that of the pure condensing coefficient for the vapor alone. But after much of the vapor has condensed, the outlet may consist of substantially pure noncondensable gas with a low accompanying film coefficient. It is often possible to have a variation of U_{c} for the condensation of steam from air from $1500 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$ at the inlet to a value of 15 at the outlet.

Inasmuch as the film coefficient varies from inlet to outlet, the heat distribution may also vary owing to a differential rate of change in the enthalpy of the vapor mixture as the temperature falls. In other words, although the temperature of the gas declines 50 per cent of the total gastemperature range, it is probably untrue that 50 per cent of the total heat load will have been delivered. This is not merely the case of finding the true temperature difference but the heat-transfer coefficient also varies as $d Q=q$ varies. The surface is then defined by the fundamental equation

$$
\begin{equation*}
A=\int \frac{d Q}{(U \Delta t)} \tag{13.30}
\end{equation*}
$$

Equation (13.30) cannot be integrated unless U and Δt are expressed as functions of Q. A much simpler method is to integrate numerically $d Q=q$ for small but finite intervals:

Diffusivities. For an excellent account of diffusion and the experimental methods of determining the diffusivity of one gas through another,
the reader is referred to Sherwood's excellent book. ${ }^{1}$ Gilliland ${ }^{2}$ has established an empirical equation for the determination of the diffusivity of one gas through another which is given by

$$
\begin{equation*}
k_{d}=0.0166 \frac{T^{32}}{p_{t}\left(v_{A}^{1 / 3}+v_{B}^{3 /)^{2}}\right.}\left(\frac{1}{M_{A}}+\frac{1}{M_{B}}\right)^{1 / 2} \tag{13.31}
\end{equation*}
$$

where $k_{d}=$ diffusivity, $\mathrm{ft}^{2} / \mathrm{hr}$
$p_{t}=$ total pressure, atm
$v_{A}, v_{B}=$ molecular volumes of diffusing and inert gases computed from the data on atomic volumes in Table 13.3
$T=$ absolute temperature ${ }^{\circ} \mathrm{K}\left({ }^{\circ} \mathrm{C}\right.$ abs)
$M_{A}, M_{B}=$ molecular weights of the diffusing and inert gases, respectively

Table 13.3. Atomic Volumes

Bromine.	27.0
Sulfur.	25.6
Oxygen	7.4
In methyl esters.	9.1
In higher esters and ethers.	11.0
In acids.	12.0
Carbon.	14.8
Chlorine.	24.6
Hydrogen.	3.7
Nitrogen.	15.6
In primary amines.	10.5
In secondary amines.	12.0
For benzene ring formation de	15
For naphthaline deduct.	30
For the hydrogen molecule us	$v=14.3$
For air use.	$v=29.9$

Example 13.4. Calculation of the Diffusivity of a Mixture. Calculate the diffusivity of a steam- CO_{2} mixture at $267^{\circ} \mathrm{F}$ and 30 psig.

For steam, $\mathrm{H}_{2} \mathrm{O}: v_{A}=2 \times 3.7+7.4=14.8 \quad M_{A}=18$
For $\mathrm{CO}_{2}: v_{B}=14.8+2 \times 7.4=29.6 \quad M_{B}=44$
$T=267^{\circ} \mathrm{F} \approx 273+130=403^{\circ} \mathrm{K} \quad 30 \mathrm{psig} \approx \frac{14.7+30}{14.7}=3.04 \mathrm{~atm}$
$k_{d}=0.0166 \times \frac{4033 / 2}{3.04\left(14.8^{1 / 3}+29.6^{1 / 2}\right)^{2}}\left(\frac{1}{18}+\frac{1}{44}\right)^{1 / 2}=0.41 \mathrm{ft}^{2} / \mathrm{hr}$
Development of an Equation for Heat Transfer, Chilton and Colburn have shown that the results of their analogy, culminating in Eq. (13.29),
${ }^{1}$ Sherwood, T. K., "Absorption and Extraction," McGraw-Hill Book Company, Inc., New York, 1937.
${ }^{2}$ Gilliland, E. R., Ind. Eng. Chem., 26, 516 (1934).
hold on the safe side for flow inside tubes, flow across a single tube, and flow along plane surfaces. In each case the appropriate value of h is substituted in Eq. (13.29). It appears likely that these equations are valid in most cases of a vapor forming a nonviscous, noncontrolling condensate film. The use of h_{0} calculated for the gas from Fig. 28 and substituted in Eq. (13.29) for the condensation of steam from air and CO_{2} in the shells of horizontal baffled condenser has been known to hold successfully in a number of applications.

To establish an equation which may be solved from point to point for U and Δt as in Eq. (13.30) it should be necessary only to sum up all the resistances in series at an average cross section in each increment of q. In the condensation of a vapor from a noncondensable gas the quantity of heat which leaves the gas film must equal the quantity picked up by the cooling water. The total heat flow across the gas film is the sum of the latent heat carried by vapor diffusion into the condensate film plus the sensible heat removed from the gas because of the temperature difference $T_{g}-T_{c}$. The heat load expressed in terms of the shell-side, tubeside, and overall potentials per square foot of surface when the mixture of gas and vapor flows in the shell is
(a)
(c)
$h_{o}\left(T_{g}-T_{c}\right)+K_{a} M_{v} \lambda\left(p_{v}-p_{c}\right)=h_{i o}\left(T_{c}-t_{W}\right)=U\left(T_{g}-t_{W}\right)$
where $h_{o}=$ shell-side dry-gas coefficient, Btu/(hr) $\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$
$h_{i o}=$ tube-side water coefficient, $\mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$
$T_{0}=$ temperature of the gas, ${ }^{\circ} \mathrm{F}$
$T_{0}=$ temperature of the condensate, ${ }^{\circ} \mathrm{F}$
$t_{W}=$ water temperature, ${ }^{\circ} \mathrm{F}$
$p_{v}=$ partial pressure of vapor in the gas body, atm
$p_{c}=$ partial pressure of the vapor at the condensate film, atm
$M_{v}=$ molecular weight of vapor, dimensionless
$\lambda=$ latent heat, Btu/lb
The possibility of subcooling the vapor at the tube wall has been omitted from the heat balance, since it is not usually significant compared with the larger latent effects. If subcooling is of consequence, it means that the amount of heat delivered at the tube wall is greater than that which entered the gas film.

In the application of Eqs. (13.29), (13.30), and (13.32) to the solution of an actual condenser it is assumed that there is a single value of T_{0} and T_{c} at any cross section and hence of p_{v} and p_{c}. In a condenser having several tube passes with water in the tubes this is obviously not possible. If there is a long condensing range, a small cooling-water range, and no temperature cross so that F_{r} for a 1-2 condenser would be substantially
1.0, then little harm results in the assumption of a true counterflow distribution of water temperatures. At whatever point the gas gives up half of the total heat load, the water can be assumed to have received half the total heat load. This may appear rather arbitrary, but in the final analysis it is a problem of maintaining $T_{g}-T_{c}$ and $p_{v}-p_{c}$ in their proper relation, and both require the presence of the same single value of T_{c} at any point. Otherwise the solution must be extended to cover each of the passes as a related condenser.

The Calculation of a Vapor-Noncondensable Mixture. The method of applying Eqs. (13.29), (13.30), and (13.32) are outlined below:

1. A complete exchanger must be assumed to fix the shell-side and tubeside flow areas. The surface is obtained by integration on the assumption of trie counterflow.
2. From the process conditions compute h_{o} and $h_{i o}$ for the gas and cooling medium, respectively. The use of an average value for $h_{i s}$ is acceptable but not for h_{o}, since the mass velocity of the gas changes from point to point.
3. From the value of h_{o} obtain $K_{G} / p_{g \delta}$ from Eq. (13.29).
4. Fix the first interval of calculation by fixing T_{a}, which also fixes the heat load q for the interval.
5. Assume values of T_{c}, the condensate temperature, so that Eqs. (13.32a) and (13.32b) balance. For each assumed value of T_{c} it is necessary to compute a new value of $p_{g f}$, since the pressure of the vapor at the condensate film is the saturation pressure corresponding to T_{c}.
6. When Eqs. (13.32a) and (13.32b) balance, the total heat load transferred per square foot of each is the same as the load which must have been transferred overall, $U\left(T_{g}-t_{c}\right)$.
7. From q obtained in 4 and $U\left(T_{g}-t_{o}\right)$ obtain $d A$ for the interval.
8. Proceed with the next interval by assuming a lower value of T_{g}.

Example 13.5. Calculation of a Steam-Carbon Dioxide Condenser. Steam is to be condensed from carbon dioxide in the following exchanger:
$211 / 4 \mathrm{in}$. ID shell with $12-\mathrm{in}$. baffle spacing.
246 tubes, $3 / 4 \mathrm{in}$. OD, $16 \mathrm{BWG}, 12^{\prime} 0^{\prime \prime}$ on $1-\mathrm{in}$. square pitch.
The tube bundle has four passes.
The hot stream is a mixture of 4500 lb of steam and 1544 lb of CO_{2} at 30 psig entering at the dew point and leaving at $120^{\circ} \mathrm{F}$. Cooling water will enter at $80^{\circ} \mathrm{F}$ and leave at $115^{\circ} \mathrm{F}$.

The diffusivity of steam- CO_{2} mixtures calculated by the Gilliland formula is 0.41 $\mathrm{ft} 2 / \mathrm{hr}$, and ($\left.\mu / \rho k_{d}\right)^{3 / 3}$ may be taken for simplicity as constant at the average value of 0.62 between inlet and outlet.
(a) Determine the weighted Δt. (b) Determine the dirt factor for the condenser.

Solution. As a simplification it may be assumed that the heat-transfer coefficient at the average water temperature is constant throughout the exchanger. This does not alter the earlier assumption that the water temperature is considered in true counterflow with the condensate.

Basis: One hour

Entering	$\mathrm{Lb} / \mathrm{hr}$	$\mathrm{Mol} / \mathrm{hr}$
CO_{2}	.1544	35
$\mathrm{H}_{2} \mathrm{O}$	4500	250
Total	6044	285

Total pressure $=30+14.7=44.7$ psia $\approx 3.05 \mathrm{~atm}$ where psi/14.7 $=\mathrm{atm}$
Partial pressure of water $=250 / 285 \times 44.7=39.2 \mathrm{psi} \approx 2.68 \mathrm{~atm}$
Dew point $=267^{\circ}$ from Table $7 \approx 2.68 \mathrm{~atm}$
Mean molecular weight, $M_{m} \doteq 604 \frac{3}{385}=21.2$
(a) Weighted temperature difference Δt :

Overall balances:

Inlet: Water vapor pressure, $p_{v}=2.68 \mathrm{~atm}$ Inert pressure, $p_{0}=3.05-2.68=0.37 \mathrm{~atm}$ Total pressure $=3.05 \mathrm{~atm}$.
Exit: Partial pressure of water at $120^{\circ} \mathrm{F}=0.1152 \mathrm{~atm}$ Water vapor pressure, $p_{v}=0.115 \mathrm{~atm}$ Inert pressure, $p_{g}=2.935 \mathrm{~atm}$ Total pressure $=3.05 \mathrm{~atm}$
Pound mols steam inlet $=250$
Pound mols steam exit $=35 \times \frac{0.115}{2.935}=1.37$
Pound mols steam condensed $=250-1.37=248.63$
Heat load: Assume points at $267,262,255,225,150,120^{\circ} \mathrm{F}$, and compute the heat load q for each interval.

For the interval from 267 to $262^{\circ} \mathrm{F}$:
From Table 7, p_{v} at $262^{\circ} \mathrm{F}=2.49 \mathrm{~atm}$

$$
p_{\sigma}=3.05-2.49=0.56 \mathrm{~atm}
$$

Mol steam remaining $=35 \times \frac{2.49}{0.56}=156$
Mol steam condensed $=250-156=94$
Heat of condensation $=94 \times 18 \times 937.3+0.46(267-262) \times 94 \times 18$
$=1,590,000 \mathrm{Btu}$
Heat from uncondensed steam $=156 \times 18 \times 0.46(267-262)=6,450$
Heat from noncondensable $=1544 \times 0.22 \times 5.0 \quad=\quad 1,700$
Total for interval $=\overline{1,598,150}$
Heat balance:

$$
\begin{aligned}
& \text { Interval, }{ }^{\circ} F \quad q \\
& \text { 267-262 1,598,000 } \\
& \text { 262-255 1,104,000 } \\
& \text { 255-225 1,172,000 } \\
& \text { 225-150 751,000 } \\
& \begin{array}{lr}
150-120 & 177,000 \\
\text { Total. } & 4,802,000
\end{array} \\
& \text { Total water }=\frac{4,802,000}{115-80}=137,000 \mathrm{lb} / \mathrm{hr}
\end{aligned}
$$

Water coefficient, h_{i} :

$$
\begin{align*}
a_{t} & =N_{t} \frac{a_{t}^{\prime}}{144 n}=246 \times \frac{0.302}{144 \times 4}=0.129 \mathrm{ft}^{2} \tag{7.48}\\
G_{t} & =\frac{w}{a_{t}}=\frac{137,000}{0.129} \approx 1,060,000 \mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right) \\
V & =\frac{G}{3600 \rho}=\frac{1,060,000}{3600 \times 62.5}=4.72 \mathrm{fps} \\
h_{i} & =1120 \tag{Fig.25}\\
h_{\mathrm{i} o} & =h_{g} \times \frac{\mathrm{ID}}{\mathrm{O}} \overline{\mathrm{D}}=1120 \times \frac{0.62}{0.75}=926 \tag{6.5}
\end{align*}
$$

Now procead to determine $U \Delta t$ from point to point in the unit by assuming temperatures for the condensate film so that Eqs. (13.32a) and (13.32b) are equal. Shell-side coeffcient for entrance gas mixture.
Mean properties for Point 1:

$$
\begin{aligned}
& \text { Mean } c=\frac{1544 \times 0.22+4500 \times 0.46}{6044}=0.407 \mathrm{Btu} /(\mathrm{lb})\left({ }^{\circ} \mathrm{F}\right) \\
& \text { Mean } k=\frac{1544 \times 0.0128+4500 \times 0.015}{6044}=0.0146 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F} / \mathrm{ft}\right) \\
& \text { Mean } \mu=\frac{1544 \times 0.019+4500 \times 0.0136}{6044}=0.015 \times 2.42=0.0363 \mathrm{lb} /(\mathrm{ft})(\mathrm{hr}) \\
& a_{s}=\mathrm{ID} \times C^{\prime} \frac{B}{144 P_{T}}=21.25 \times 0.25 \times \frac{12}{144 \times 1.0}=0.442 \mathrm{ft}^{2} \\
& G_{s}=\frac{W}{a_{z}}=\frac{6044}{0.442}=13,650 \mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)
\end{aligned}
$$

$$
\begin{equation*}
R e_{s}=\frac{D_{e} G_{s}}{\mu} \quad D_{c}=\frac{0.95}{12}=0.0792 \mathrm{ft} \tag{Fig.28}
\end{equation*}
$$

$$
\begin{equation*}
j_{H}=102 \tag{Fig.28}
\end{equation*}
$$

$$
\begin{equation*}
=0.0792 \times \frac{13,650}{0.0363}=29,800 \tag{7.3}
\end{equation*}
$$

$\left(\frac{c \mu}{k}\right)^{1 / 3}=\left(\frac{0.407 \times 0.0363}{0.0146}\right)^{1 / 3}=1.0$
$h_{o}=j_{H} \frac{k}{D_{c}}\left(\frac{c \mu}{k}\right)^{1 / 3}=102 \times 0.0146 \times \frac{1.0}{0.0792}=18.9$
$\left(\mu / \rho k_{d}\right) 36=0.62 \quad\left(\frac{c \mu}{k}\right)^{2 / 3}=\left(\frac{0.407 \times 0.0363}{0.0146}\right)^{3 / 4}=1.01$
$K_{G}=\frac{h_{o}(c \mu / k)^{2 / 3}}{c p_{o f} M_{m}\left(\mu / \rho k_{d}\right)^{3 / 3}}=\frac{18.9 \times 1.01}{0.407 \times p_{g f} \times 21.2 \times 0.62}=\frac{3.56}{p_{o f}}$
Point 1:

$$
\begin{aligned}
& T_{g}=267^{\circ} \mathrm{F} \text { (entrance) } \quad p_{v}=2.68 \mathrm{~atm} \quad p_{\sigma}=3.05-2.68=0.37 \mathrm{~atm} \\
& \iota_{W}=115^{\circ} \mathrm{F} \quad \Delta t=T_{g}-t_{W}=267-115=152^{\circ} \mathrm{F}
\end{aligned}
$$

Try

$$
\begin{align*}
& T_{c}=244^{\circ} \mathrm{F} \quad p_{c}=1.83 \mathrm{~atm} \quad p_{\sigma}^{\prime}=3.05-1.83=1.22 \mathrm{~atm} \\
& p_{0 f}=\frac{p_{\sigma}^{\prime}-p_{\sigma}}{2.3 \log p_{o}^{\prime} / p_{g}}=\frac{1.22-0.37}{2.3 \log 1.22 / 0.37}=0.715 \mathrm{~atm} \\
& h_{0}\left(T_{\sigma}-T_{c}\right)+K_{G} M_{v} \lambda\left(p_{v}-p_{c}\right)=h_{i o}\left(T_{c}-t_{W}\right) \tag{13.32}\\
& 18.9(267-244)+\frac{3.56}{0.715} \times 18 \times 933.8(2.68-1.83)=926(244-115) \\
& 71,400 \neq 129,000 \quad \text { No check }
\end{align*}
$$

Try

$$
\begin{aligned}
& T_{c}=220^{\circ} \mathrm{F} \quad p_{c}=1.17 \mathrm{~atm} \quad p_{d}^{\prime}=1.88 \mathrm{~atm} \quad p_{o f}=0.93 \mathrm{~atm} \\
& 18.9(267-220)+\frac{3.56}{0.93} \times 18 \times 933.8(2.68-1.17)=926(220-115) \\
& \qquad 98,400=97,500 \mathrm{Check} \\
& U \Delta t=\frac{98,400+97,500}{2}=97,950 \\
& U=\frac{97,950}{267-115}=644
\end{aligned}
$$

Having determined the conditions at the inlet, proceed from point to point in the exchanger. Since the partial pressure of water changes rapidly at high temperatures, it follows that most of the condensation will occur near the inlet. (Refer to the saturation curve for water.) To obtain a reasonable distribution of heat loads over the condenser, a second point very near the inlet has been chosen.

Point 2:

$$
\begin{aligned}
& T_{g}=262^{\circ} \mathrm{F} \text { and saturated } \quad p_{v}=2.49 \mathrm{~atm} \quad p_{g}=3.05-2.49=0.56 \\
& \text { Mol steam remaining }=35 \times \frac{2.49}{0.56}=156 \\
& \text { New gas rate }=1544+156 \times 18=4352 \mathrm{lb} / \mathrm{hr} \\
& \text { Mean properties: } M_{m}=22.8 \quad c=0.382 \quad k=0.0143 \\
& \mu=0.0154 \times 2.42=0.0373 \\
& G_{s}=\frac{W}{a_{s}}=\frac{4352}{0.442}=9850 \mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft}{ }^{2}\right) \\
& R_{e}=\frac{D_{0} G_{s}}{\mu}=0.0792 \times \frac{9850}{0.0373}=20,900 \\
& j_{H}=83.5 \quad\left(\frac{c \mu}{k}\right)^{1 / 3}=1.0 \quad\left(\frac{c \mu}{k}\right)^{3 / 3}=1.0 \\
& h_{0}=15.0 \\
& K_{G}=\frac{15.0 \times 1.0}{0.382 \times p_{g f} \times 22.8 \times 0.62}=\frac{2.80}{p_{0 f}} \\
& \text { Water rise }=1,598,000 / 137,000=11.7^{\circ} \mathrm{F} \\
& t_{W}=115-11.7=103.3^{\circ} \mathrm{F}
\end{aligned}
$$

Try

$$
\begin{aligned}
& T_{c}=182^{\circ} \mathrm{F} \quad p_{c}=0.534 \mathrm{~atm} \quad p_{g}^{\prime}=2.51 \mathrm{~atm} \quad p_{\sigma f}=1.305 \mathrm{~atm} \\
& 15.0(262-182)+\frac{2.80}{1.305} \times 18 \times 937.3(2.49-0.534)=926(182-103.3) \\
& \quad 71,900=72,800 \quad \text { Check } \\
& U \Delta t=\frac{71,900+72,800}{2}=72,350 \\
& U=\frac{72,350}{262-103.3}=456
\end{aligned}
$$

Points 3, 4, and 5 are calculated in the same manner.
Point 6:
$T_{g}=120^{\circ} \mathrm{F}$ and saturated $\quad p_{v}=0.115 \mathrm{~atm} \quad p_{0}=3.05-0.115=2.935 \mathrm{~atm}$ Mol steam remaining $=35 \times \frac{0.115}{2.035}=1.37$

```
New gas rate \(=1544+1.37 \times 18=1568.7\)
Mean properties:
\(M_{n}=43.1, c=0.214, k=0.0102\),
        \(\mu=0.016 \times 2.42=0.0387\)
        \(G_{s}=\frac{w}{a_{t}}=\frac{1568.7}{0.442}=3570 \mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\)
    \(R e=0.0792 \times \frac{3570}{0.0387}=7300\)
    \(j_{H}=47.5 \quad\left(\frac{c \mu}{k}\right)^{1 / 3}=0.935\)
\(\left(\frac{c \mu}{k}\right)^{3 / 5}=0.872\)
\(h_{o}=5.7\)
\(K_{G}=\frac{0.87}{p_{g j}}\).
Water rise \(=\frac{177,000}{137,000}=1.3^{\circ} \mathrm{F}\)
\(t_{W}=81.3-1.3=80^{\circ} \mathrm{F}\)
Try
\[
\begin{aligned}
& T_{c}^{\prime}=80.7^{\circ} \mathrm{F} \quad p_{c}=0.0352 \mathrm{~atm} \quad p_{g}^{\prime}=3.05-0.0352=3.015 \quad p_{a f}=2.97 \\
& 5.7(120-80.7)+\frac{0.87}{2.97} \times 18 \times 1025.8(0.115-0.0352)=926(80.7-80) \\
& \quad 654=648 \\
& U \Delta t=\frac{654+648}{2}=651 \\
& U=\frac{651}{(120-80)}=16.2
\end{aligned}
\]
```

Having determined both q and $U \Delta t$, it need only be recalled that $A=\dot{\Sigma} q / \Sigma U \Delta t$ and proceed to evaluate A. This may be done in any of several ways. More accurately, Σq should be plotted against $1 / U \Delta t$, the area of the graph corresponding to A. A simpler and generally acceptable method involves tabulation of the results obtained so far and a numerical summation. This last will be demonstrated.

| Point | T_{g} | T_{c},
 ${ }^{\circ} \mathrm{F}$ | $U \Delta t$ | $(U \Delta t)_{\mathrm{av}}$ | q | $A=\frac{q}{(U \Delta t)_{\mathrm{av}}}$ | Δt | Δt_{av} | $\frac{q}{\Delta t_{\mathrm{av}}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 267 | 220 | 97,950 | $\ldots \ldots . \ldots \ldots \ldots$. | $\ldots \ldots \ldots \ldots$ | 152 | | | |
| 2 | 262 | 182 | 72,350 | 85,150 | $1,598,000$ | 18.8 | 158.7 | 155.5 | 10,300 |
| 3 | 255 | 145 | 45,900 | 59,075 | $1,104,000$ | 18.7 | 159.7 | 159.2 | 6,930 |
| 4 | 225 | 101 | 12,900 | $26,000^{*}$ | $1,172,000$ | 45.2 | 138.2 | 149.0 | 7,870 |
| 5 | 150 | 84 | 1,710 | $5,560^{*}$ | 751,000 | 135.1 | 68.7 | 99.3^{*} | 7,570 |
| 6 | 120 | 80.7 | 651 | $1,098^{*}$ | 177,000 | 161.0 | 40.0 | 53.3^{*} | 3,320 |

[^28]The LMTD based on a shell range from 267 to $120^{\circ} \mathrm{F}$ and tube range from 80 to $115^{\circ} \mathrm{F}$ is $84.0^{\circ} \mathrm{F}$, but when weighted by the summation of $\Sigma U A=Q / \Delta t$,

$$
\text { Weighted } \Delta t=\frac{Q}{\Sigma q / \Delta t_{\mathrm{av}}}=\frac{4,802,000}{35,990}=133^{\circ} \mathrm{F}
$$

and

$$
U_{\text {Clean }}=\frac{Q}{A \Delta t}=\frac{4,802,000}{378.8 \times 133}=95.3
$$

External surface $/ \mathrm{ft}=0.1963$
(Table 10)
Total surface available $=246 \times 12^{\prime} 0^{\prime \prime} \times 0.1963=580 \mathrm{ft}^{2}$

$$
\begin{aligned}
& U_{D}=\frac{Q}{A \Delta t}=\frac{4,802,000}{580 \times 133}=62.3 \\
& R_{d}=\frac{U_{c}-U_{D}}{U_{C} U_{D}}=\frac{95.3-62.3}{95.3 \times 62.3}=0.0055
\end{aligned}
$$

Remarks. The pressure drop for the shell side can be computed from the average based on the inlet and outlet total gas conditions. The 0.0055 dirt factor is greater

Fra. 13.7. Condensation of CO_{2}-steam mixture.
than is generally necessary, but large dirt factors are recommended because of the sensitivity of the calculation in the later stages. A plot of U and A vs. Q is shown in Fig. 13.7. Note that U_{C} varies from 644 to 16.2 from inlet to outlet.
It is not usually necessary to account for heat for subcooling all the condensate to the outlet temperature when the vapor is steam because of its high thermal conductivity when condensing on the tube wall. When the condensing vapor is organie, it will be neoessary to allow extra surface as discussed in the preceding section.

5. CONDENSATION FROM A NONCONDENSABLE OF A MIXTURE IMMISCIBLE WITH WATER

The Influence of Components on the Condensing Curve. This section corresponds to Case 9 in Table 13.1. The methods used here refer particularly to steam distillation in the petroleum industry, although variations of the method can be applied to other problems as well.

When an organic vapor mixture immiscible with water enters a condenser and contains a noncondensable gas as well as steam, the calculation can be carried out using Eq. (13.20) with modifications. The total pressure is the sum of three distinct pressures: the pressure of the miscibles, pressure of the gas, and the pressure of the immiscible. The equilibrium among the miscibles is unaffected by the presence of the other components except that the equilibrium exists only at the sum of the partial pressures of the miscibles and not at the operating pressure of the condenser. Since the steam-gas and miscibles-gas mixtures attain their separate equilibrium relationships, the system may have two dew points, one for the steam and the other for the miscibles, although both need not be passed in the condenser. If there are a large number of miscible compounds, the calculation of the condensing curve will be considerably lengthier than the direct calculation of a multicomponent mixture.

A vapor mixture of miscibles is affected in definite ways by the presence of a noncondensable and steam. The noncondensable reduces the curvature of the condensation curve for the miscibles. This is due to the fact that the mols of noncondensable remain constant while the miscibles leave the vapor. The noncondensables, however, reduce the condensing coefficient for both the vapor of the miscibles and the steam. The dew point of the miscibles can be obtained from the sum of the pressures of the miscibles and the noncondensable by the summation of the $K_{1} L_{1}$ values with the mols of noncondensable included as a constant. Since the steam is immiscible with the miscibles, its dew point is a function only of the partial pressure and temperature at which the noncondensable becomes saturated with steam as found in tables of steam properties such as Table 7. Which of the two dew points occurs at the higher temperature depends upon the composition of the initial vapor. It is entirely possible to have either the steam or the miscibles condense first, or both may have dew points close together. Since the latent heat of the steam is about six to eight times as great as that of an oil, it is extremely important to determine just where the steam starts to condense, and the condensing curve may exhibit a greater divergence from a straight line on a heat capacity vs. T_{v} plot than is usually encountered with multicomponent mixtures of miscibles alone. The calculation of this type of problem
can be facilitated by empirical methods. A problem of this type will be solved presently using an empirical method developed for petroleum fractions.

Development of an Empirical Solution. In the petroleum industry it is customary to take liquid samples of complex vapors and actually distill them in the laboratory at atmospheric pressure by either of two methods. The first is the ASTM distillation, which is carried out in a standardized manner with prescribed equipment as outlined in the ASTM Standards, 1930, Part II. A. $100-\mathrm{cm}^{3}$ sample is distilled batchwise in a distillation flask with a thermometer submerged in the neck. The temperature is recorded at the initial boiling point (IBP) and for successive $10-\mathrm{cm}^{3}$ portions distilled over. The percentages distilled over are plotted against the temperature. This is called the ASTM distillation curve. Another method which is more accurate but much more elaborate is the true boiling point (TBP) distillation. This consists of introducing the sample of material into a round-bottom flask which is then connected to a Pod* bielniak distilling column containing a large number of theoretical distilling plates. The material is distilled over with a reflux ratio of $10: 1$ to $30: 1$. The TBP curve is plotted in a similar manner to the ASTM distillation except that a nearly complete separation takes place and the percentages distilled can be identified by their boiling points as pure compounds. The first material to come overhead in a TBP distillation has a lower initial boiling point than the ASTM, since the most volatile fraction will have been separated almost individually from the next less volatile fraction. The presence in an ASTM distillation of the unseparated fractions shortens the range of temperatures between the initial boiling point and the end point of the distillation by comparison with the TBP.

A number of correlations have been made by Piroomov and Beiswenger ${ }^{1}$ and Packie, ${ }^{2}$ of which the latter is used here. These studies undertake the problem of correlating a batch distillation such as the ASTM or TBP with the performance to be expected in a distilling column where the vaporization occurs by a continuous process. Thus suppose a still were continuously operated at its boiling point by the introduction of liquid feed which separates continuously into a vapor rising upward and a liquid which is withdrawn at the bottom. Consider such an equilibrium system. It is assumed that boiling produces a liquid of uniform composition and that the vapor is in equilibrium with the still liquid. A similar condition exists in distilling columns, reboilers, and condensers in which liquid continuously in equilibrium with the vapor above it is formed from
${ }^{1}$ Piroomoy and Beiswenger, Am. Petroleum Inst. Bull. 10, p. 52, Jan. 3, 1920.
${ }^{2}$ Packie, J. W., Trans. AIChE, 37, 51-78 (1941).
point to point. A curve which indicates the temperature of the liquid as a function of composition and for a given pressure when it is maintained in equilibrium with its vapor over its entire boiling or condensing range is called an equilibrium flash curve (EF). An EF curve is necessary for the calculation of the condensing curve, and it naturally differs from an ASTM curve in which the material previously vaporized is removed from the system. The method given below permits the conversion of an ASTM or TBP curve to an EF curve empirically as the result of a correlation of many flash distillations which have been compared with their respective ASTM and TBP distillations. The procedure for obtaining the condensing curve and the true temperature difference from the ASTM or TBP curve is as follows:

The true temperature difference:

1. Draw the ASTM distillation curve with per cent vaporized as the abscissa and temperature as the ordinate.
2. Draw the distillation reference line which is a straight line through the 10 and 70 per cent points of the ASTM or TBP curves.
3. Determine the slope of the distillation reference line by the following formula, where percentages represent points on the respective curves.

$$
\frac{\operatorname{Temp}{ }^{\circ} \mathrm{F} \text { at } 70 \%-\operatorname{temp}{ }^{\circ} \mathrm{F} \text { at } 10 \%}{60}={ }^{\circ} \mathrm{F} / \%
$$

4. Compute an average 50 per cent point for the distillation curve by averaging the 20,50 , and 80 per cent points, or if the 80 per cent point is lacking, use the 50 per cent point of the distillation reference line.
5. Enter the appropriate curves in Fig. 13.8 or 13.9, which is the key to the correlation. It relates the 50 per cent point of the ASTM distillation reference line to the 50 per cent point on the equilibrium flash reference line.
6. Using the slope calculated in 3 enter Fig. 13.10, which relates the slope of the ASTM reference line to the slope of the equilibrium flash reference line.
7. The 50 per cent point and slope determine the flash reference line, which is assumed to be straight through the 10 and 70 per cent points of the flash vaporization curve.
8. At the various percentages read temperatures from the ASTM or TBP curve and its reference line, and subtract the temperature for the reference line from that for the distillation curve noting the sign of the difference.
9. For each percentage distilled read on the appropriate curve in Fig. 13.11 or 13.12 the corresponding value of the ratio
(Temp on flash vaporization curve) - (temp on flash reference line)
(Temp on distillation curve) - (temp on distillation reference line)
10. Multiply the ratio obtained in 9 by the difference obtained in 8 to obtain the difference between the temperatures on the flash vaporization curve and the flash reference line for a given percentage distilled. This enables a translation for the curvature of the ASTM to the EF curve.
11. For the same percentage distilled and used to obtain the product in 10, read a value of the temperature on the flash reference line and add

Fig. 13.8. *An average of the 20,50, and 80 per cent values. Relation between 50 per cent points of ASTM and EF curves. (Packie, Trans. AIChE.)
to or subtract from it, according to the sign, the product obtained in 10. Proceed point by point to determine the entire flash vaporization curve.
12. The curve obtained thus is the EF or flash vaporization curve for 1 atm pressure, since it refers to the ASTM curve at atmospheric pressure. To obtain a curve at other pressures when the distilling column is to be operated at sub- or superatmospheric pressure, refer to Fig. 8 in the Appendix. ${ }^{1}$

[^29]Observe the temperature at the intersection of the flash reference and the distillation reference line. On the vapor pressure chart (Fig. 8) estimate the number of degrees of displacement in boiling point that the change in pressure would cause for a pure hydrocarbon with an atmospheric boiling point the same as the temperature at the intersection of the two reference curves. Displace each point of the flash vaporization curve by the same number of degrees by which a pure compound with atmospheric boiling point at the temperature of the intersection would be

Frg. 13.9. Relation between 50 per cent points of TBP and EF curves. (Packie, Transactions of American Institute of Chemical Engineers.)
displaced by the change from atmospheric pressure. For operating pressures greater than 25 psi greater accuracy may be expected by employing the method of Katz and Brown. ${ }^{1}$

The method of calculating the heat-transfer coefficients for such systems is deferred following an illustrative example on the calculation of the weighted true temperature differences, so that the problems originating in the calculation of the condensing curve can be clarified first.

Example 13.6a. Calculation of a Hydrocarbon-Noncondensable-steam Mixture. The overhead of a distilling column operating at 5 psig contains $13,330 \mathrm{lb} / \mathrm{hr}$ of oil vapor, $90 \mathrm{lb} / \mathrm{hr}$ of noncondensable gas of 50 mol . wt., and $370 \mathrm{lb} / \mathrm{hr}$ of steam. On condensation the oil vapor has an average gravity of $50^{\circ} \mathrm{API}$. The overhead is at a
of 100° read on the abscissa, giving a value at the left of 6.5 psia. In a mixture of organic compounds, if its boiling temperature is known at 14.7, Fig. 8 permits with equal facility the determination of the pressure and corresponding temperature for any new condition. This type of graph has certain inherent advantages over the more conventional Cox chart, particularly when it is preferable to divide arbitrarily a mixture of hydrocarbons into a number of fictitious pure compounds so as to approximate the total composition of the mixture.
${ }^{1}$ Katz, D. L., and G. G. Brown, Ind. Eng. Chem., 25, 1373-1384 (1933).

Fta. 13.10. Slope of ASTM and TBP reference lines to EFC reference lines. (Packie, Transactions of American Institute of Chemicol Engineers.)

Fig. 13.11. Departure ΔT of the ASTM curve from its reference line. (Packie, Transactions of American Institute of Chemical.Engineers.)

Fra. 13.12. Departure ΔT of the TBP curve from its reference line. (Packie, Transactions of Americcn Institute of Chemical Engineers.)

Fra. 13.13. Plot of ASTM curve and construction of the EFC.
temperature of $305^{\circ} \mathrm{F}$ and is to be completely condensed (as far as practicable) with water from 85 to $120^{\circ} \mathrm{F}$.

Determine the weighted true temperature difference.
The ASTM distillation on the oil alone in the overhead is as follows:

\% distilled	Temp, ${ }^{\circ} \mathrm{F}$
IBP	90
10	145
20	180
30	208
40	234
50	260
60	286
70	312
80	338
90	367
End point	400

Solution: Basis 1 hour.

(1) and (2) Plot the ASTM curve and reference line as shown in Fig. 13.13.

Applying the method outlined, determine the dew point of (a) oil vapor and (b) steam, (c) the condensing ourve, (d) the heat load, (e) the weighted true temperature difference, and lastly (f) the condenser.
(3) Slope of the ASTM $=\frac{70 \%-10 \%}{60 \%}=\frac{312-145}{60}=2.79^{\circ} \mathrm{F} / \%$
(4) Average 50% point $=\frac{20+50+80 \%}{3}=\frac{180+260+338}{3}=259.3^{\circ} \mathrm{F}$
(b) For the 50 per cent point on the equilibrium fash curve (EFC) from Fig. 13.8 where the slope on the ASTM $=2.79^{\circ} \mathrm{F} / \%$ and $259.3^{\circ} \mathrm{F}$
50% point ASTM $=50 \%$ point flash curve $=38^{\circ} \mathrm{F}$ 50% on $\mathrm{EFC}=259-38^{\circ}=221^{\circ} \mathrm{F}$ fixing first point on EFC
(6) From Fig. 13.10, upper curve

Slope of flash reference line $=1.65^{\circ} \mathrm{F} / \%$
10% on $\mathrm{EFC}=50 \%-40 \%=221-40 \times 1.65=155^{\circ} \mathrm{F}$
70% on $\mathrm{EFC}=50 \%+20 \%=221+20 \times 1.65=254^{\circ} \mathrm{F}$
(7) Draw this line as a reference through the 50 per cent point. Calculate the flash curve for different percentages off.
(8) ΔT ASTM $={ }^{\circ} \mathrm{F}$ ASTM $-{ }^{\circ} \mathrm{F}$ ASTM reference
(9) ΔT ASTM \times (factor Fig. 13.11) $=\Delta T$ EFC
(10) ${ }^{\circ} \mathrm{F}$ EFC reference $+\Delta T \mathrm{EFC}={ }^{\circ} \mathrm{F} \mathrm{EFC}$
(11) 0% off:

$$
\begin{aligned}
& \Delta T \mathrm{ASTM}=90-117=-27^{\circ} \mathrm{F} . \\
& \Delta T \mathrm{EFC}=-27 \times 0.50=13.5^{\circ} \mathrm{F} . \\
& { }^{\circ} \mathrm{F} \text { EFC }=139-13.5=125.5 .
\end{aligned}
$$

10% off:
ΔT ASTM $=145-145=0$.
20% off:
ΔT ASTM $=180-173=+7.0^{\circ}$.
$\Delta T \mathrm{EFC}=+7.0 \times 0.82=5.7^{\circ}$.
${ }^{\circ} \mathrm{F}$ EFC $\quad=172+5.7=177.7$.
30% off:
ΔT ASTM $=208-201=+7.0^{\circ}$.
ΔT EFC $=+7.0 \times 0.67=4.7^{\circ}$.
${ }^{\circ} \mathrm{F} \mathrm{EFC}=188+4.7=192.7$.
40% off:
ΔT ASTM $=234-229=+5.0^{\circ}$.
$\Delta T \mathrm{EFC}=5.0 \times 0.57=2.9^{\circ}$.
${ }^{\circ} \mathrm{F}$ EFC $=204+2.9=206.9$.
70% off:
ΔT ASTM $=312-312=0$.
(12) Correct for pressure: Intersection ASTM reference and EFC reference at $170^{\circ} \mathrm{F}$. From Fig. 8 in the Appendix follow oblique at 170° to intersection with 19.7 psi at $187^{\circ} \mathrm{F}$. Add $187^{\circ}-170^{\circ}=17^{\circ}$ to each point.

Calculation of the 80 per cent point:
The following vapor enters, $13,330 \mathrm{lb} / \mathrm{hr}$ oil $50^{\circ} \mathrm{API}, 370 \mathrm{lb} / \mathrm{hr}$ steam, $90 \mathrm{lb} / \mathrm{hr}$ gas 50 mol . wt.

Frg. 13.14. Molecular weights of petroleum fractions. (Watson, Nelson, and Murphy, Industrial and Engineering Chemistry.)

Fig. 13.15. Computed vs. actual vapor pressure of steam.

For 80 per cent, $13,330 \times 0.80=10,664 \mathrm{ib} / \mathrm{hr}$ oil uneondensed.
Average boiling point from the EFC at 1 atm is $269^{\circ} \mathrm{F}$ from Fig. 13.13.
Average boiling point from the EFC at 19.7 psia add $17^{\circ} \mathrm{F}=269+17=286^{\circ} \mathrm{F}$.
The molecular weight of the vapors from point to point is determined from Fig. 13.14.
For $50^{\circ} \mathrm{API}$ oil and $269^{\circ} \mathrm{F}$, mol. wt. $=113$.
The mols of oil still to be condensed $=10,664 / 113=94.3$.
The following are also present: Mols gas $=9 \% \%_{0}=1.80$

$$
\begin{aligned}
\text { Mols steam }=370 / 18 & =20.6 \\
\text { Mols total } & =116.7
\end{aligned}
$$

The total pressure is 19.7 psia, and the partial pressure of each component is proportional to its mol fraction.

Partial pressure of oil $=(94.3 / 116.7) 19.7=15.9$ psia.
Partial pressure of NC gas $=(1.8 / 116.7) 19.7=0.304$ psia.
The temperature at which the oil will condense in the presence of noncondensable corresponds to its partial pressure.
Refer to Fig. 8 in the Appendix, which relates the temperature at which a fraction will boil at a higher or lower pressure if the temperature at a given pressure is known.

At 19.7 psia the boiling point is $286^{\circ} \mathrm{F}$. At the intersection of this ordinate and abscissa follow the oblique to an ordinate of 15.9 psia and read the new abscissa, $277^{\circ} \mathrm{F}$. These values are the actual condensing temperatures of the oil vapor in the presence of noncondensable gas and steam.

To determine the heat load it is also necessary to determine the temperature at which the steam starts to condense, since the ultimate condensate, water, is immiscible with the condensed oil. The steam may condense before the dew point of the oil is reached, during condensation of the oil, or after nearly all the oil has condensed. The dew point of the steam is a function only of its partial presure in the vapor and the saturation temperature of pure steam at the partial pressure.
At 19.7 psia, if only pure steam were present, it would condense at $227^{\circ} \mathrm{F}$. The dew point in this case must be considerably lower.

Calculation of Dew Point of the Steam

$T_{t}{ }^{\circ} \mathrm{F}$	$\left[p_{t}-\left(p_{\text {oil }}+p_{\mathrm{NC}}\right)\right]=p_{\text {stoam }}$		$p_{\text {sat }}$ (steam tables)	
95	19.7	6.73	12.97	0.815
127	19.7	9.40	10.30	2.050
163	19.7	12.25	7.45	5.09
205	19.7	14.64	5.06	12.77
240	19.7	15.65	4.05	24.97

These are plotted in Fig. 13.15, the point of intersection, $173^{\circ} \mathrm{F}$, being the dew point of the steam.
To establish the respective heat loads in the oil and steam zones the condensation of oil from inlet to the dew point of the steam is determined from Table 13.4. Where steam and oil condense together, it will be necessary to assume a temperature below the dew point of steam and the amount of oil condensed at that point. If at the assumed temperature the sum of the partial pressures adds up to the total pressure, 19.7 psia, the amounts of oil, steam, and noncondensable will be fixed.

At $173^{\circ} \mathrm{F}$, the dew point of steam, $p_{\text {sat }}=6.417 \mathrm{psia}$

$$
p_{\text {oil }}+p_{\mathrm{NC}}=19.7-6.417=13.29 \mathrm{psia}
$$

$$
\begin{aligned}
\text { Oil } & =M \\
\text { NC gas }=9 \% / h 0 & =1.8 \\
\text { Steam }=37 \% / 8 & =\frac{20.55}{22.35}+X
\end{aligned}
$$

But the 20.55 mol steam ≈ 6.417 psia.

$$
\begin{aligned}
19.7 \times 20.55 /(22.35+X) & =6.417 \\
X & =40.75 \mathrm{mols} \text { oil }
\end{aligned}
$$

The partial pressures of the components, being in the mol ratios, are

	Psi
Oil.	12.74
NC gas.	0.56
Steam.	6.42
	19.72

$173^{\circ} \mathrm{F}$ and 12.74 psia are equivalent to $180^{\circ} \mathrm{F}$ at 14.7. From Fig. 13.14 the molecular weight of the vapors is 85 .

$$
\begin{aligned}
\mathrm{Lb} / \mathrm{hr} \text { vapor } & =40.75 \times 85=3470 \mathrm{lb} \\
\% \text { Condensed } & =\frac{(13,330-3470) 100}{13,330}=74 \%
\end{aligned}
$$

It is now necessary to determine the amounts of steam and oil condensed at temperatures below the steam dew point. In constructing Table 13.4 the partial pressure of

Table 13.4. Oil Condensing Curve

\%	Con-densables, $\mathrm{lb} / \mathrm{hr}$	Av BP on EFC		50° API mol. wt.	Mol oil	$\begin{aligned} & \text { Mol } \\ & \text { NC } \\ & \text { gas } \end{aligned}$	Mol steam	$\left\lvert\, \begin{gathered} \mathrm{Mol} \\ \text { total } \end{gathered}\right.$	Total pressure, psia	Par.tial pressure oil, psia	Partial pressure NC gas, psia.	Cond ${ }^{\circ} \mathrm{F}$
		$\begin{gathered} 14.7 \\ \text { psia, } \\ { }^{\circ} \mathrm{F}, \end{gathered}$	$\left\lvert\, \begin{gathered} 19.7 \\ \text { psia, } \\ { }^{\circ} \mathrm{F} \end{gathered}\right.$									
100	13,330	300	317	124	107.5	1.8	20.6	129.9	19.7	16.3	. 273	305
80	10,664	269	286	113	94.3	1.8	20.6	116.7	19.7	15.9	0.304	277
60	7,998	239	256	103	77.7	1.8	20.6	100.1	19.7	15.3	0.354	240
40	5,332	207	224	93	57.4	1.8	20.6	79.8	19.7	14.2	0.444	205
20	2,666	178	195	84	31.8	1.8	20.6	54.2	19.7	11.6	0.654	163
10	1,333	155	172	78	17.1	1.8	20.6	39.5	19.7	8.5	0.897	127
5	667	141	158	75	8.9	1.8	20.6	31.3	19.7	5.6	1.13	95

steam and the mols in the gas phase were considered constant. Actually, however, when the steam is condensed, it is the result of a continuously decreasing partial pressure. This correction is made below

The reduction in the partial pressure of steam in the mixture increases the partial pressure of oil, thereby increasing the percentage condensation for a given temperature. Thus for 80 per cent condensation if both the steam and noncondeasable gas were removed, the temperature would correspond to $195^{\circ} \mathrm{F}$ on the 19.7 psia EFC instead of $163^{\circ} \mathrm{F}$ when the steam and noncondensable gas are present.

Trial 1:

At $163^{\circ} \mathrm{F}$, assume 90 per cent of oil vapor is condensed.

	$\mathrm{Mol} / \mathrm{hr}$	$m f$
Oil vapor $13,300 \times 0.10 / 78$.	17.1	17.1/(18.9 + X)
NC gas.	1.8	$1.8 /(18.9+X)$
Steam.	X	$X /(18.9+X)$
Total.	$18.9+X$	

Then $19.7 X /(18.9+X)$ is the partial pressure of the steam. Since water is insoluble in the hydrocarbons, the partial pressure is also fixed by the saturation pressure given in the steam tables.

For $163^{\circ} \mathrm{F} p_{\text {stagm }}=5.09$ psia

$$
\begin{aligned}
19.7 X /(18.9+X) & =5.09 \\
X & =6.58 \text { mols steam }
\end{aligned}
$$

	Mol/hr	$m f$	$m f \times p_{t}=p_{\text {prrtial }}$
Oil vapor.	17.1	0.672	13.23
NC gas.	1.8	0.070	1.38
Steam	6.58	0.258	5.09
Total.	25.48	1.000	19.70

A temperature of $163^{\circ} \mathrm{F}$ at 13.23 psia is equivalent to a temperature of $188^{\circ} \mathrm{F}$ at 19.7 psia. From the EFC at 19.7 psia in Fig. 13.13 it will be seen that 16.5 per cent will be vaporized at $188^{\circ} \mathrm{F}$ or 83.5 per cent condensed. It was assumed that 90 per cent was condensed; hence the amount of oil assumed to be condensed was in error, requiring a new trial.

Trial 2;
At $163^{\circ} \mathrm{F}$ assume 85 per cent of vapor condensed.

	$\mathrm{Mol} / \mathrm{hr}$	$m f$	$m f \times p_{t}$
Oil vapor, $13,330 \times .15 / 81$.	24.7	0.692	13.62
NC gas, 9%	1.8	0.050	0.99
Steam, X	$(X=9.23)$	0.258	5.09
		1.00	19.70

$163^{\circ} \mathrm{F}$ at 13.62 psia $\approx 185^{\circ} \mathrm{F}$ on the 19.7 psia EFC. This point corresponds to 15 per cent liquid or 85 per cent condensed. The assumption checks the curve.
Initial steam $=37 \% 18 \quad=20.55 \mathrm{mols}$
Uncondensed steam at $163^{\circ} \mathrm{F}=9.23$
Mols condensed, $173-163^{\circ} \mathrm{F}=\overline{11.32}$
Similarly

$T,{ }^{\circ} \mathrm{F}$	Oil cond, $\%$	Oil cond, lb	Steam cond, lb
173	74	9,863	0
163	85	11,350	204
127	97.5	13,000	357
95	100	13,330	370

Condensing Curve. The following enthalpy data have been taken from Fig. 11 in the Appendix and the steam tables. The limitations of this type of petroleum enthalpy data may be found in the literature. The inconsistency of the enthalpy datum temperatures for steam and the oil vapor does not affect this solution, since only differences are involved.

Oil			Steam	
$T_{c,}{ }^{\circ} \mathrm{F}$	H_{v}, vapor	$H_{H,}$ liquid	H_{g} or H_{v}, gas or vapor	$H_{l, \text { liquid }}$
305	368	242	1197.0	Superheated
277	359	225	1184.1	Superheated
240	337	204	116.0	Superheated
205	322	185	1150.6	Superheated
173	310	168	1135.4	140.9
163	306	163	1131.4	130.9
127	293	144	1116.6	94.9
95	283	128	1103.1	63.0

Heat load
$305^{\circ} \mathrm{F}$:
$\begin{array}{llll}\text { Oil vapor }=13,330 \times 368 & =4,920,000 & \\ \text { Steam } & = & 370 \times 1197.0 & =443,000 \\ \text { NC gas } & = & 90 \times 0.46(273) & =\frac{11,300}{5,374,300}\end{array}$
$277^{\circ} \mathrm{F}$:
$\begin{array}{ll}\text { Oil vapor }=10,664 \times 354 & =3,770,000 \\ \text { Oil liquid }=2,666 \times 225 & =595,000 \\ \text { Steam }=370 \times 1184.1 & =438,000 \\ \text { NC gas } & =90 \times 0.46(245) \\ & =\frac{9,300}{4,812,300}\end{array}$

$240^{\circ} \mathrm{F}:$	H	\boldsymbol{H}	
Oil vapor	$=7,998 \times 337$	$=2,695,000$	
Oil liquid	$=5,332 \times 204$	$=1,088,000$	
Steam	$=370 \times 1167$	$=432,000$	
NC gas	$=90 \times 0.46(208)$	$=\frac{8,600}{4,223,600}$	588,700

$205^{\circ} \mathrm{F}$:
Oil vapor $=5,332 \times 322=1,715,000$
Oil liquid $=7,998 \times 185=1,480,000$
Steam $=370 \times 1150.6=426,000$
NC gas $=90 \times 0.46(173)=7,200$
595,400
$173^{\circ} \mathrm{F}$ (dew point of steam):
Oil vapor $=2,666 \times 310=827,000$
Oil liquid $=10,664 \times 168=1,790,000$
Steam $=370 \times 1135.4=420,000$
NC gas $=90 \times 0.46(141)=\frac{5,800}{3,042,800}$
585,400
$163^{\circ} \mathrm{F}$:
Oil.vapor $=1,980 \times 306=606,000$
Oil liquid $=11,350 \times 163 \quad=1,850,000$
Steam $=166 \times 1131.4=188,500$
Water $=204 \times 130.9=26,700$
NC gas $=90 \times 0.46(131)=\frac{5,400}{2,676,600} \quad 366,200$
$127^{\circ} \mathrm{F}$:
$\begin{array}{ll}\text { Oil vapor }=330 \times 293 & =96,600 \\ \text { Oil liquid }=13,000 \times 144 & =1,870,000 \\ \text { Steam }= & 13 \times 1116.6 \\ \text { Water } & =34,400 \\ \text { NC.gas } & =357 \times 94.9 \\ & =30 \times 0.46(95) \\ & =\frac{33,900}{2,900} \\ & \end{array}$
$95^{\circ} \mathrm{F}$:
Oil liquid $=13,300 \times 128=1,710,000$
Water $=370 \times 63=23,300$
$\begin{aligned} \text { NC gas }=90 \times 0.46(63) & =\frac{2,600}{17755,900}\end{aligned}$
282,900
These calculations are plotted in Fig. 13.16
Summary:
Inlet to steam dew point:

$$
5,374,300-3,042,800=2,331,500 \mathrm{Btu} / \mathrm{hr}
$$

Steam dew point to outlet:

$$
\begin{aligned}
& 3,042,800^{\circ}-1,735,900=\frac{1,306,900}{3,638,400} \mathrm{Btu} / \mathrm{hr} \\
& \text { Fotal }
\end{aligned}
$$

Total water $=\frac{3,638,400}{120-85}=104,000 \mathrm{lb} / \mathrm{hr}$

Frg. 13.16. Condensation of mixed hydrocarbons with gas and steam.
In this particular problem the condensing curve from the iniet to the dew point of the steam is nearly straight. When both the shell and tube steam temperature changes are proportional to the heat load, the LMTD may be applied.

Water temperature at dew point of steam,

$$
t_{W}=85+\frac{1,306,900}{3,638,400} \times 35=97.5^{\circ} \mathrm{F}
$$

Weighted true temperature difference, Δt :
Inlet to dew point of steam:

$$
\begin{array}{llrl}
T_{1} & 305 & 120.0 & t_{2} \\
T_{X} & 173 & 97.5 & t_{y} \\
& U A=\frac{\Delta q}{\Delta t}=\frac{2,331,500}{122.2}=19,050
\end{array}
$$

Dew point of steam to outlet (from Fig. 13.16):

q	Δq	T_{c}	t_{V}	Δt_{av}	$\frac{\Delta \dot{q}}{\Delta t_{\mathrm{av}}}=U A$
$2,331,500$	$\ldots \ldots$.	173	97.5		
$2,500,000$	169,000	169	96	74	
$2,750,000$	250,000	161	93	70.5	2,285
$3,000,000$	250,000	149	91	63	3,550
$3,250,000$	250,000	134	89	51.5	4,850
$3,500,000$	250,000	112	86	35.5	7,040
$3,638,000$	138,000	95	85	18.5	7,460
				$U A=\sum \frac{\Delta q}{\Delta t}$	29,155

$$
\text { Weighted } \Delta t=\frac{Q}{\Sigma \Delta g / \Delta t}=\frac{1,306,900}{29,155}=44.8^{\circ} \mathrm{F}
$$

Overall weighted temperature difference:

$$
\text { Weighted } \Delta t=\frac{3,638,500}{29,155+19,050}=75.5^{\circ} \mathrm{F}
$$

The uncorrected LMTD is $60.1^{\circ} \mathrm{F}$.
The Overall Coefficient of Heat Transfer. The condensing curve of Example $13.6 a$ is typical of the condensation which may occur for the phase system indicated. It is repeated here that the steam dew point may be higher than the oil dew point and that the steam may start to condense first. When the latter occurs, the surface from the steam dew point to the oil dew point can be treated as the ordinary condensation of a vapor from a noncondensable with the superheated oil vapor combining with the gas to form the total noncondensables. If the vapor enters at a temperature above either dew point, it is cooled to the first dew point as a dry gas, although this does not happen after a distilling column, since the top plate vapor is always at a dew point.

Fig. 13.17. Condensing coefficients for vapors and noncondensables.
Where steam is above its dew point, it is regarded as a noncondensable gas as a matter of safety even though the tube-wall temperature may be below the dew point of the steam and therefore wet. When oil vapor condenses in the presence of noncondensables, the problem is again one of diffusion except that the equations employed heretofore for diffusion are not very reliable when calculated from the properties of vapors of high molecular weight. A curve for the condensing and diffusion coefficient for oil vapors in the presence of noncondensable gases is plotted in Fig. 13.17 as a function of the percentage of noncondensables. Its origin is discussed presently.

When steam diffuses through a noncondensable gas and the vapor of miscibles, the rate of heat transfer is quite different from that of pure diffusion. An unpublished correlation has been made of the overall clean coefficients $U_{\mathcal{C}}$ obtained by calculating the pure diffusion of steam, using the method under Sec. 4 of this chapter, through gases with molecular weights between 16 and 50 . The calculated data define a common line when U_{c} is plotted against the percentage of noncondensables even though the operating pressures on the systems varied. The curve obtained from this data is taken as the base curve, and to it is added a film resistance corresponding to an oil layer of 0.002 in ., which gives an average resistance of 0.0020 . The steam curve shown in Fig. 13.17 was arrived at in this manner. The oil diffusion curve was established by taking the pure condensing coefficient for a vapor and reducing it in the same percentage as the steam curve is reduced by the increase in the percentage of the noncondensables. The base value for the oil curve in Fig. 13.17 was 300 , but any other condensing coefficient can be used and reduced accordingly. This will usually not be a necessary refinement. The use of the curves at low vacuums or very high pressures is questionable, but a large number of condensers have been designed at rates corresponding to those obtained by this method and have operated successfully.

While a method based on using fictitious coefficients as suggested above may not be so desirable as a method employing individual film calculations, it has the advantage of being rapid. The cooling of the condensate to the outlet temperature in horizontal condensers may be treated similarly to that in Sec. 2, by using the free convection rate U of about 50 and applied to the average liquid-cooling sensible heat load. The water is considered to be in the coldest passes, and the temperature rise of the water is figured accordingly.

Example 13.6b. Calculation of a Condenser for the Condensation from Noncondensable of a Mixture Immiscible with Water. The vapor of Example $13.6 a$ is to be condensed with a fouling factor of at least 0.0030 and pressure drops not exceeding 2.0 psi for the vapor and 10.0 psi for the water.

Available for the purpose is a 27 in . ID exchanger containing 2861 in . OD, 14 BWG tubes $12^{\prime} 0^{\prime \prime}$ long laid out on $11 / 4-\mathrm{in}$. triangular pitch. The bundle is arranged for eight tube passes and baffles are spaced 16 in . apart.

Solution:

Exchanger:

Shell side	Tube side
ID $=27 \mathrm{in}$.	Number and length $=286,12^{\prime \prime} 0^{\prime \prime}$
Baflle space $=16 \mathrm{in}$.	OD, BWG, pitch $=1$ in., $14 \mathrm{BWG}, 134 \mathrm{in}$. tri.
Passes $=1$	Passes $=8$

Clean surface requirements:

Heat load inlet to dew point of steam $=2,331,500 \mathrm{Btu} / \mathrm{hr}$ $\Delta t=122.2^{\circ} . \quad h_{i o}$ for water is $700 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$.
From Table 13.4 at inlet

$$
\begin{aligned}
\text { NC gas }+ \text { steam }=1.8+20.6 & =22.4 \mathrm{~mol} / \mathrm{hr} \\
\text { Total } & =129.9 \mathrm{~mol} / \mathrm{hr} \\
\% \text { NC gas }=\frac{22.4}{129.9} & =0.1735
\end{aligned}
$$

From Fig. 13.17, $h_{o}=205 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$
At dew point of steam

From Fig. 13.17, $h_{0}=140$
Log mean overall coefficient $=136.5 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$
$\Delta t=122.2^{\circ} \mathrm{F}$
$A_{G 1}=\frac{Q}{U \Delta t}=\frac{2,331,500}{136.5 \times 122.2}=139.5 \mathrm{ft}^{2}$
At the dew point of the steam the water vapor is no longer considered a noncondensable gas. And since the remainder of the oil vapor is condensing, it is not to be considered a noncondensable in the presence of water vapor although the presence of each influences the rate of diffusion of the other. At dew point of steam to outlet:

		Mol/hr NC gas.
Steam...	1.8	
Total.	$\frac{20.6}{22.4}$	

$\% \mathrm{NC}$ gas $=\frac{1.8}{22.4}=0.080$
From Fig. 13.17, $U_{C}=212$ (weighted for oil and steam)
At outlet

$$
\begin{aligned}
\mathrm{NC} \mathrm{gas} & =1.8 \mathrm{mols} \\
\text { Steam } & =\text { neg }
\end{aligned}
$$

From Fig. 13.17, $U_{C}=15$
Log mean overall coefficient $=74.5 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft} \mathbf{2}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$
$\Delta t=44.8^{\circ} \mathrm{F}$
$A_{C 2}=\frac{Q}{\bar{U} \Delta t}=\frac{1,306,900}{74.5 \times 44.8}=391 \mathrm{ft}^{2}$
Subcooling rate: Consider all the condensate cooled over half the entire condensing range.

Heat of liquid $\left(50^{\circ} \mathrm{API}\right)=13,330 \times 0.55(305-95) / 2=770,000 \mathrm{Btu} / \mathrm{hr}$
Assume the coldest water passes are in contact with the condensate.
Water rise $=\frac{770,000}{3,638,400} \times 35=7.4^{\circ} \mathrm{F}$
Condensate, 305 to $95^{\circ} \mathrm{F}$

Water, 85 to $92.4^{\circ} \mathrm{F}$
LMTD $=66.3^{\circ} \mathrm{F}$
Use a value of $U=50$ for free convection.
$A_{s}=\frac{Q}{U \Delta t}=\frac{770,000}{50 \times 66.3}=232.5 \mathrm{ft}^{2}$
Total clean surface, $A_{C}=139.5+391+232.5=763 \mathrm{ft}^{2}$
Clean overall coefficient U_{c} :

$$
U_{C}=\frac{Q}{A_{C} \Delta t}=\frac{3,638,400}{763 \times 75.5}=63.2 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathbf{F}\right)
$$

Design overall coefficient U_{D} :
External surface/ft of length $=0.2618 \mathrm{ft}$
(Table 10)
$A=286 \times 12^{\prime} 0^{\prime \prime} \times 0.2618=897 \mathrm{ft}^{2}$
$U_{D}=\frac{3,638,400}{897 \times 75.5}=53.7$
Dirt factor:

$$
R_{d}=\frac{U_{c}-U_{D}}{U_{C} U_{D}}=\frac{63.2-53.7}{63.2 \times 53.7}=0.0028(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right) / \mathrm{Btu}
$$

The pressure drop is computed in the usual manner.
Submerge (232.5/763)897 $=274 \mathrm{ft}^{2}$ of surface
Summary

$*$	h outside	700
U_{C}	63.2	
U_{D}	53.7	
R_{d} Calculated 0.0028		
R_{d} Required	0.003	
0.8	Calculated ΔP	5.6
2.0	Allowable ΔP	10.0

* Composite. Low dirt factor.

PROBLEMS

13.1. The following vapor enters a condenser at 40 psia:

$$
\begin{array}{lc}
& M o l s / h r \\
C_{4} & 6.4 \\
C_{5} & 219.7 \\
C_{6} & 2.3 \\
& 228.4
\end{array}
$$

Assume a pressure drop of 5 psi in the condenser. Available for the service is a 25 in . ID $1-2$ horizontal condenser containing 2221 in . OD, $14 \mathrm{BWG}, 12^{\prime} 0^{\prime \prime}$ long tubes arranged for eight passes on $11 / 4-\mathrm{in}$. square pitch. Baffles are spaced 18 in . apart. Cooling is by water from 85 to $120^{\circ} \mathrm{F}$.
(a) What is the true temperature difference?
(b) What are the dirt factor and pressure drops?
13.2. The following overhead vapor enters a condenser at 20 psia.

	Mols $/ h r$
C_{4}	10.5
C_{5}	150.0
C_{6}	39.6
C_{7}	63.7
C_{8}	191.5

Cooling is effected by water from 85 to $120^{\circ} \mathrm{F}$.
Available for the service is a $231 / 4 \mathrm{in}$. ID 1-2 horizontal condenser containing 308 $3 / 4 \mathrm{in}$. OD, $14 \mathrm{BWG}, 12^{\prime} 0^{\prime \prime}$ long tubes arranged for four passes on 1 -in. square pitch. Baffles are spaced 24 in . apart.
(a) What is the true temperature difference?
(b) What are the dirt factor and the pressure drop?
13.3. The following overhead vapor enters a condenser at 50 psia.

	Mols $/ h r$
C_{4}	31
C_{5}	245
C_{6}	124
$\mathrm{H}_{2} \mathrm{O}$	$\underline{40}$

Cooling is effected by water from 85 to $120^{\circ} \mathrm{F}$.
(a) What is the true temperature difference?
(b) Calculate the size of 1-2 horizontal condenser required for the service providing a minimum dirt factor of 0.004 and a pressure drop of 2.0 for the vapor and 10.0 for water. Use 1-in. tabes on $11 / 4-\mathrm{in}$. square pitch and a minimum water velocity of 3.0 fps.
13.4. $2800 \mathrm{lb} / \mathrm{hr}$ of air is saturated with water vapor at $203^{\circ} \mathrm{F}$ at 5 psi , and the mixture enters a condenser where it is cooled to $100^{\circ} \mathrm{F}$ by water from 70 to $100^{\circ} \mathrm{F}$.

Available for the service is a 27 in . ID 1-2 condenser containing $4623 / 4 \mathrm{in}$. OD, $16 \mathrm{BWG}, 12^{\prime} 0^{\prime \prime}$ tubes arranged for four passes on 1 -in. triangular pitch. Baffles are spaced 24 in. apart.
(a) What is the true temperature difference?
(b) What are the dirt factor and the pressure drops?
13.5. An oil has the following ASTM distillation curve:

$\%$ distilled	$\circ F$
IBP	310
10	328
20	338
30	346
40	354
50	360
60	367
70	372
80	377
90	382
100	387

$28,000 \mathrm{lb} / \mathrm{hr}$ of oil (mol. wt. $=154$) and $4400 \mathrm{lb} / \mathrm{hr}$ of steam enter a condenser at 20 psia. Cooling will be effected by water from 85 to $100^{\circ} \mathrm{F}$. Available for the service is a 31 in . ID $1-2$ vertical condenser $16^{\prime} 0^{\prime \prime}$ tall containing $7283 / 4 \mathrm{in}$. OD , $16 \mathrm{BWG}, 16^{\prime} 0^{\prime \prime}$ long tubes arranged for two passes on $1-\mathrm{in}$. triangular pitch.
(a) What is the weighted Δt ?
(b) What are the dirt factor and pressure drops?
13.6. A $48^{\circ} \mathrm{API}$ oil has the following ASTM distillation curve:

\% distilled	${ }^{\circ} F$
IBP	100
10	153
20	190
30	224
40	257
50	284
60	311
70	329
80	361
90	397
End point	423

$15,300 \mathrm{lb} / \mathrm{hr}$ of oil vapor, $3620 \mathrm{lb} / \mathrm{hr}$ of steam, and $26,200 \mathrm{lb} / \mathrm{hr}$ of noncondensable gas (mol. wt. $=46$) at 2.0 psi are to be condensed using cooling water with an inlet temperature of $85^{\circ} \mathrm{F}$.

Available for the service are two 33 in . ID 1-2 horizontal condensers connected in series and containing $6803 / 4 \mathrm{in}$. OD, 14 BWG tubes $16^{\prime} 0^{\prime \prime}$. long laid out for four passes on 1 -in. square pitch. Baffles are at full pitch.
(a) Considering the condenser to be at atmospheric pressure, what is the weighted Δt ?
(b) What are the dirt factors and the pressure drops?

NOMENCLATURE FOR CHAPTER 13

A	Heat-transfer surface, ft^{2}
A_{C}	Clean heat-transfer surface, ft^{2}
A_{c}, A_{s}	Heat-transfer surface for condensation and subcooling respectively, ft^{2}
$A_{\mathbf{q}}$	Heat-transfer surface corresponding to the heat load interval q, ft^{2}
a	Flow area, ft^{2}
B	Baffle spacing, in.
C	Specific heat of hot fluid in derivations, $\mathrm{Btu} /(\mathrm{lb})\left({ }^{\circ} \mathrm{F}\right)$; number of components in the phase rule, dimensionless
C^{\prime}	Clearance between tubes, in.
c	Specific heat of cold fluid, $\mathrm{Btu} /(\mathrm{lb})\left({ }^{\circ} \mathrm{F}\right)$
L	Inside diameter of tubes, ft
D。	Outside diameter of tubes, ft
d	Inside diameter of tubes, in.
D.	Equivalent diameter for heat transfer and pressure drop, ft
$d_{\text {c }}$	Equivalent diameter for heat transfer and pressure drop, in.
F	Degrees of freedom in the phase rule
f	Friction factor
f_{p}, f_{t}	Fugacity of the pure compound, fugacity at the total pressure, atm

G	Mass velocity, $\mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)$
G_{m}	Mol mass velocity, mol/(hr)(ft^{2})
G^{\prime}	Condenser loading for vertical condensers, $1 \mathrm{lb} /(\mathrm{hr})(\mathrm{ft})$
$G^{\prime \prime}$	Condenser loading for horizontal condensers, $\mathrm{lb} /(\mathrm{hr})(\mathrm{ft})$
g^{\prime}	Acceleration of gravity, $\mathrm{ft} / \mathrm{sec}^{2}$
H_{v}, H_{i}	Enthalpy of the vapor, enthalpy of the liquid, Btu/lb
h, h_{i}, h_{o}	Heat-transfer coefficient in general, for inside fluid, and for outsids fluid, respectively, $\mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$
$h_{\text {io }}$	Value of h_{i} when referred to the tube OD, Btu/(hr) $\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$
\bar{h}	The average condensing film coefficient, $\mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}{ }^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$
$j_{\text {II }}$	Factor for heat transfer, $(h D / k)\left(c_{\mu} / k\right)^{-1 / 8}$, dimensionless
j_{h}	Factor for heat transfer, $(h / c G)(c \mu / k)^{2 / 4}$, dimensionless
j_{d}	Factor for diffusion, dimensionless
K	Equilibrium constant, dimensionless
K_{1}	Equilibrium constant for any single compound or the first compound, dimensionless
K_{G}	Diffusion coefficient, ($\mathrm{lb}-\mathrm{mol}$)/(hr) (ft ${ }^{2}$) (atm)
k	Thermal conductivity, Btu/(hr)(ftt ${ }^{2}\left({ }^{\circ} \mathrm{F} / \mathrm{ft}\right)$
k_{d}	Diffusivity, $\mathrm{ft}^{2} / \mathrm{hr}$
L	Tube length, ft or total liquid, mol or mol/hr
L_{1}	Liquid of a single compound or the first compound, mol or $\mathrm{mol} / \mathrm{hr}$
L_{1}^{\prime}	Liquid of a single compound or the first compound condensed in an interval, mol or $\mathrm{mol} / \mathrm{hr}$
L_{C}	Length of tube on which condensation is effective, ft
$L_{\text {c }}$	Liquid of a single compound condensed prior to an interval, mol or $\mathrm{mol} / \mathrm{hr}$
M_{A}, M_{B}	Molecular weight of diffusing and inert gases, respectively
M_{m}	Mean molecular weight of vapor mixture, $\mathrm{lb} / \mathrm{mol}$
M_{v}	Molecular weight of diffusing component, $\mathrm{lb} / \mathrm{mol}$
$m f$	Mol fraction, dimensionless
N	Number of baffles, dimensionless
N_{d}	Number of mols transferred by diffusion, dimensionless
N_{t}	Number of tubes effective for condensation in a partially submerged bundle, dimensionless
n	Number of tube passes; number of compounds in a mixture
P	Number of phases in the phase rule
P_{T}	Tube pitch, in.
ΔP	Pressure drop in general, psi
$\Delta P_{T}, \Delta P_{t}, \Delta P_{r}$	Total, tube, and return pressure drop, respectively, psi
p	Partial pressure in general, atm
p_{1}, p_{2}	Partial pressures of the components; partial pressures for one compound at two different points, atm
p_{l}, p_{p}	Total pressure and pressure of the pure compound, atm
$p_{g}, p_{\theta}^{\prime}$	Partial pressure of the inert gas in the gas body and at the condensate film, atm
$p_{g i}$	Log mean pressure difference of the inert gas between p_{g} and p_{g}, atm
Δp	Pressure difference of diffusing fluid between p_{v} and p_{c}, atm
Q	Heat flow, Btu/hr
q	Heat flow for interval, Btu/hr
9.	Heat flow for condensation, Btu/hr

$R_{\text {d }}$	Combined dirt factor, (hr) (ft^{2}) ($\left.{ }^{\circ} \mathrm{F}\right) / \mathrm{Btu}$
$R e$	Reynolds number, dimensionless
s	Specific gravity, dimensionless
T	Temperature of a gas mixture, ${ }^{\circ} \mathrm{K}$
T_{1}, T_{2}	Inlet and outlet temperatures of hot fluid, ${ }^{\circ} \mathrm{F}$
T \%	Temperature of condensate film; caloric temperature of hot fluid, ${ }^{\circ} \mathrm{F}$
$T S$	Steam temperature, ${ }^{\circ} \mathrm{F}$
t, t_{1}, t_{2}	Cold-fluid temperature in general, inlet, and outlet, respectively, ${ }^{\circ} \mathrm{F}$
t_{c}	Caloric temperature of cold fluid
i_{f}	Temperature of film, ${ }^{\circ} \mathrm{F}$
t_{W}, t_{w}	Temperature of water, tube-wall temperature, ${ }^{\circ} \mathrm{F}$
Δt	True temperature difference, ${ }^{\circ} \mathrm{F}$
$U, U_{\mathcal{C}}, U_{\mathrm{L}}$	Overall coefficient of heat transier, clean coefficient, and design coefficient, respectively, Btu/(hr)(ft²)($\left.{ }^{\circ} \mathrm{F}\right)$
$U_{\epsilon,} U_{s}$	Clean overall coefficient for condensation and subcooling, respectively, $\mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$
V	Velocity, fps or total vapor, mol or mol/hr
V_{1}	Vapor of a single compound or the first compound, mol or mol/hr
v_{A}, v_{B}	Molar volumes of diffusing and inert gas, dimensionless
W	Weight flow of hot fluid, $\mathrm{lb} / \mathrm{hr}$
w	Weight flow of cold fluid, $\mathrm{Ib} / \mathrm{hr}$
$x_{1} x_{1}, x_{2}$	Mol fraction in liquid
Y, Y_{1}, Y_{2}	Total vapor feed or each component, mol or $\mathrm{mol} / \mathrm{hr}$
y, y_{1}, y_{2}	Mol fraction in vapor
α	Relative volatility
λ	Latent heat of vaporization, Btu/lb
μ	Viscosity, centipoises $\times 2.42=\mathrm{lb} /(\mathrm{ft})(\mathrm{hr})$
μ_{ν}	Viscosity at the tube-wall temperature, centipoises $\times 2.42=\mathrm{lb}$ / (ft) (hr)
ρ	Density, lb/ft ${ }^{3}$
ϕ	Viscosity ratio, $\left(\mu / \mu_{v}\right)^{0.14}$

Subscripts (except as noted above)

a	Average
c	Condensate or condensing
f	Film
g	Gas (inerts)
i	Inert
l	Liquid
s	Shell side
t	Tubeside
v	Vapor

CHAPTER 14

EVAPORATION

The Mechanism of Vaporization. Much of our present knowledge of the boiling phenomenon is obtained from the work of Jakob and Fritz ${ }^{1}$ and later researches of Jakob. ${ }^{2}$ When steam flows through a tube which is submerged in a pool of liquid, minute bubbles of vapor form at random points on the surface of the tube. The heat passing through the tube surface where no bubbles form enters the surrounding liquid by convection. Some of the heat in the liquid then flows toward the bubble, causing evaporation from its inner surface into itself. When sufficient buoyancy has been developed between the bubble and the liquid, the bubble breaks loose from the forces holding it to the tube and rises to the surface of the liquid pool. Kelvin postulated that, in order for this behavior to prevail the liquid must be hotter than the saturation temperature in the incipient bubble. This is possible, since the spherical nature of the bubble establishes liquid surface forces on it so that the saturation pressure inside the bubble is less than that of the surrounding liquid. The saturation temperature of the bubble being lower than that of the liquid surrounding it, heat flows into the bubble. The number of points at which bubbles originate is dependent upon the texture of the tube surface, the number increasing with the roughness. Jakob and Fritz have detected the presence of superheated liquid close to the heating surface and have found the difference between the temperature of the superheated liquid and the saturation temperature of the vapor to be less for rough surfaces than for smooth surfaces.

Heat transfer by vaporization without mechanical agitation is obviously a combination of ordinary liquid free convection and the additional convection produced by the rising stream of bubbles. Under very small temperature differences between tube wall and boiling liquid the formation of bubbles proceeds slowly and the rate of heat transfer is essentially that of free convection as given in Eqs. (10.13) and (10.14). The surface tension as an influence on bubble formation and growth is another variable as shown in Fig. 14.1. The surface tension of water against air

[^30]is approximately 75 dynes/cm at room temperature, whereas the majority of organics have surface tensions ranging from 20 to 30 dynes $/ \mathrm{cm}$ at room temperature. The surface tensions of most liquids at their respective boiling points, however, are probably not so far apart as at room temperature. The surface tensions of the liquids against metals may also differ from their surface tensions against air, since the rate of vaporization of water is actually much greater than that of organics under identical conditions. If the surface tension of the liquid is low it tends to wet surfaces, so that the bubble in Fig. 14.1a is readily oceluded by the liquid and rises. For liquids with intermediate surface tensions, as in Fig. $14.1 b$, a momentary balance may exist between the bubble and the tube wall, so that it is necessary to form larger bubbles before the buoyant force can free it from the surface. The bubble in Fig. 14.1c indicates the influence of high surface tension.

Fig. 14.1. Effect of interfacial tension on bubble formation. (After Jakob and Fritz.)

Frg. 14.2. Boiling curve of water from pools. (After McAdams.)

Consider the typical boiling coefficient curve of McAdams ${ }^{1}$ based on the data on several investigators for water as shown in Fig. 14.2. From a $(\Delta t)_{w}$ above $5^{\circ} \mathrm{F}$ there is a relatively straight logarithmic relationship between the coefficient of vaporization and the temperature difference, where $(\Delta t)_{w}$ is the difference between the tube wall and the vapor temperatures. This relationship changes, however, at the critical temperature difference, which occurs at about $45^{\circ} \mathrm{F}$ for water evaporating from pools. At that temperature difference the hot surface and liquid approach the condition shown in Fig. 14.3. There is a predominance of vapor at the tube wall because of the high rate of heat throughput, and very little liquid actually contacts the hot tube wall. This condition is called

[^31]blanketing or vapor bïnding, wherein the large amount of vapor formed at the tube wall actually serves as a gas resistance to the passage of heat into the liquid and reduces the film coefficient for vaporization as the temperature difference increases. Drew and Mueller ${ }^{1}$ have reported the critical temperature differences for a number of organic compounds under varying conditions of surface and the organics exhibit a critical temperature difference of roughly 60 to $120^{\circ} \mathrm{F}$. When vaporization takes place directly at the heating surface, it is called nuclear boiling, and when it takes place through a blanketing film of gas, it is film boiling.

A useful criterion of performance during vaporization is that of the maximum attainable heat flux defined as $(Q / A)_{\text {max }}$ or $(U \Delta t)_{\text {max }}$. The heat flux vs. $(\Delta t)_{w}$ is plotted for boiling water as the upper curve of Fig. 14.2. It represents the number of Btu per hour being transferred per square foot of surface with the maximum attainable flux corresponding to the heat flow at the critical temperature difference. For water at atmospheric pressure this occurs, according to McAdams, ${ }^{2}$ when $h_{v}=8800$ and $(Q / A)_{\text {max }}=400,000$ and at higher pressures both values increase. More than $(Q / A)_{\text {max }}$ $\mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)$ cannot be forced through the heating surface be-

Fig. 14.3. Incipient blanketing. (After Jakob and Fritz.) cause of the appearance of a gas film. When a higher $(\Delta t)_{w}$ than the critical is employed, a smaller vaporization coefficient results and the flux similarly decreases. It follows then that the large temperature differences so favorable to conduction and convection may actually be a hindrance to vaporization.
The following factors are found to affect the rate of heat transfer by vaporization from pools and have defeated, to a great extent, the possibility of obtaining one or two simple correlations applicable to the majority of liquids: (1) nature of the surface and distribution of bubbles; (2) properties of the fluid such as surface tension, coefficient of expansion, and viscosity; and (3) the influence of the temperature difference upon the evolution and vigor of the bubbles.

Effect of Pressure and Properties on the Vaporizing Coefficient. Much of the present method of calculation of vaporization from pools consists of nothing more than the use of observed coefficients for individual liquids reported at atmospheric pressure. If the coefficient for vaporization from a pool has been reported for a fluid at atmospheric pressure, it can

[^32]be converted to subatmospheric pressures by the equation of Jakob: ${ }^{1}$
\[

$$
\begin{equation*}
\tilde{h}_{v}=h_{v, 14.7 \text { peia }}\left(\frac{p}{p_{14.7 \text { pias }}}\right)^{1 / 3} \tag{14.1}
\end{equation*}
$$

\]

For superatmospheric pressures up to 226 psi the coefficient is given by

$$
\begin{equation*}
h_{v}=h_{v, 14.7 \text { psia }}\left(\frac{p}{p_{14.7 \text { pia }}}\right)^{3 / 6} \tag{14.2}
\end{equation*}
$$

where h_{v} and p refer to the new conditions.
Since blanketing is caused by the accumulation of vapor bubbles, the pressure on the system is important in defining the size of individual bubbles. The influence of the viscosities and surface tensions of liquids on their respective atmospheric coefficients as functions of the absolute values of the properties has not been correlated. From experiments on single liquids outside single tubes with variable pressure Cryder and Finalborgo, ${ }^{2}$ working at low fluxes, obtained a family of curves of nearly uniform slope when plotting h_{v} vs. $(\Delta t)_{w}$. Their mean equation is

$$
\begin{equation*}
\log \frac{h_{v, 14,7 \mathrm{prie}}}{h_{v}}=0.015\left(t_{14,7 \mathrm{pai}}-t\right) \tag{14.3}
\end{equation*}
$$

where h_{v} and t refer to the new conditions.
Classification of Vaporizing Equipment. There are two principal types of tubular vaporizing equipment used in industry: boilers and vaporizing exchangers. Boilers are directly fired tubular apparatus which primarily convert fuel energy into latent heat of vaporization. Vaporizing exchangers are unfired and convert the latent or sensible heat of one fluid into the latent heat of vaporization of another. If a vaporizing exchanger is used for the evaporation of water or an aqueous solution, it is now fairly conventional to call it an evaporator. If used to supply the heat requirements at the bottom of a distilling column, whether the vapor formed be steam or not, it is a reboiler. When not used for the formation of steam and not a part of a distillation process, a vaporizing exchanger is simply called a vaporizer. When an evaporator is used in connection with a power-generating system for the production of pure water or for any of the evaporative processes associated with power generation, it is a power-plant evaporator. When an evaporator is used to concentrate a chemical solution by the evaporation of solvent water, it is a chemical evaporator. Both classes differ in design. Unlike evaporators it is the object of reboilers to supply part of the heat required for distillation and not a change in concentration, although a change generally cannot

[^33]be avoided. Very often the term evaporator is also applied to a combination of several pieces of equipment each of which can also be defined as an evaporator.

Unfortunately certain classes of evaporators are still designed as part of an art rather than the rational summation of the individual resistances to heat flow as practiced heretofore. This is due to the high transfer coefficients with which certain classes of evaporators operate and the difficulty of identifying each of the small individual resistances which make up the overall resistance. As in the case of surface condensers in Chap. 12, numerous classes of evaporators are designed on the basis of accepted overall coefficients, and it is these classes and their processes which are treated in this chapter. Generally they involve vaporization from pools as compared with vaporization in the shell or tubes of a. 1-2 exchanger. Evaporators which may be or are usually designed from individual coefficients will be treated in Chap. 15.

POWER-PLANT EVAPORATORS ${ }^{1}$

Introduction. One of the main purposes of power-plant evaporators is to provide relatively pure water for boiler feed. The principal features

Fig. 14.4. Power-plant evaporator. (The Lummas Company.)
incorporated in power-plant evaporators are a tubular heating element, a space in which the liquid droplets which are carried up by the bursting bubbles may be disengaged, and a means of removing the scale from the outsides of the tubes. Three typical examples, each with merit, are shown in Figs. 14.4 to 14.6. In Fig. 14.4 the tube bundle is laid out flat and the feed is introduced at the bottom. In Fig. 14.5 the bundle is cylindrical and the feed is introduced just below the liquid level. All
${ }^{1}$ The author is indebted to Gerald D. Dodd of the Foster Wheeler Corporation for his generous assistance in the preparation of this section. Readers interested only in chemical evaporation may omit pages 379 to 393 without loss of context.
operate half full of water, the upper half being the disengaging space, and all are equipped with separators which return the entrained liquid below the liquid level in the evaporator.

The Treatment of Feed Water. When a pound of steam is evaporated from a pool of boiling water, most of the impurities originally in the water

Fig. 14.5. Power-plant evaporator. (Alco Producte.)

Fig. 14.6. Power-plant evaporator. (Foster Wheeler Corporation.)
remain behind and in time tend to form scale on the submerged heating surface. All natural water contains mineral salts, of which those of calcium and magnesium in particular form scale. The scale forms more rapidly on hot surfaces and is an additional resistance to the flow of heat. This is detrimental to the performance of evaporators which are designed for high rates of heat transfer. Water is classified as hard or soft principally from its behavior in household use. Soap reacts with the calcium and magnesium salts, forming insoluble compounds, but water which is considered soft in the home may still be unsatisfactory as feed to a continuous evaporator. In order to reduce the accumulation of the scale-
forming materials, it is customary to vaporize only 90 per cent of the water feed continuously, the remaining 10 per cent being drained continuously as blowdown.

There are three principal chemical means by which waters are softened. These are (1) the cold lime-soda process, (2) the hot lime-soda process, and (3) the zeolite process. The last is by far the commonest on new installations. In the sodium zeolite process a complex sodium silicate reacts continuously with the scale-forming compounds of the feed water, replacing the positive ions of the calcium and magnesium compounds with sodium ions and at the same time retaining the calcium and magnesium compounds as calcium and magnesium zeolites. It is therefore necessary to have two zeolite beds in operation so that the calcium and magnesium can be removed from one bed while the other accumulates calcium and magnesium as zeolites. A detailed discussion of water conditioning is beyond the scope of this chapter, but since evaporation is itself a purification process, the question arises as to the need for preliminary chemical purification. The reasons are as follows: When bubbles of vapor are disengaged from the liquid at the surface of a pool, the vapor entrains, or carries off, some of the liquid water with it which has not been distilled and consequently contains the impurities of the concentrated blowdown. When these small quantities of carry-over are continuously fed to a boiler, they cause scale deposition on the boiler tubes. In addition they increase the quantity of blowdown which must be removed from the boiler where the temperature is greater than in the evaporator and which represents an added loss in sensible heat from the power generating system.
The softening of water prior to entering the evaporator is in no sense a guarantee of the purity of the final boiler feed since a number of factors influence the amount of entrainment occurring at the surface of the liquid. Significant is the ratio of the total solids to suspended solids or the ratio of total solids to sodium alkaline solids, particularly when accompanied by a large quantity of suspended solids or a minute quantity of inorganic solids. When the softening reduces the surface tension of the water appreciably, excessive priming or foaming invariably results. The control of foaming is consequently one of the most important considerations in evaporator design. The standard required purity of a typical evaporator product in the United States contains not more than two to four parts of mineral solids per U.S. gallon. Notwithstanding these precautions the formation of scale in an evaporator is such that it is considered normal to descale a power-plant evaporator every 24 hr .
There are three principal types of scale: (1) soft scale which can be washed from the tube, (2) hard scale which can be removed only manu-
ally, and (3) hard scale which can be shocked from the tube. All three evaporators in Figs. 14.4 to 14.6 are equipped for the removal of the last type of scale. The principle of scale removal by shocking is as follows: In Figs. 14.4 and 14.5 the distance between the tube sheets is fixed by external bars connecting them. In order to descale, all the hot water is removed from the shell and steam is circulated through the tubes, causing expansion of the tubes alone so that they bow if originally straight or straighten if originally installed with a bend at their centers. The hot

Fig. 14.7. Commercial evaporation coefficients for water.
scale is stressed owing to the expansion, and cold water is sprayed on the tubes, resulting in a sudden differential contraction which cracks the scale and causes it to be shed. If the evaporator is small, 100 to $600 \mathrm{ft}^{2}$, it is customary to flood the shell with cold water instead of spraying. For large installations the time required to fill and drain the shell would cause too long a shutdown period, and spraying is employed. Another variation of the power-plant evaporator is shown in Fig. 14.6 using serpentine tubes. The bundle is stressed between the vertical support pieces so that the scale is effectively removed from the curved portions as well as the flat portions of the tube.

Heat-transfer Coefficients in Power-plant Evaporators. The rates of heat transfer in power-plant evaporators, as mentioned before, are not treated on the basis of individual film coefficients. Because of the rapidity of scale formation and the nature of the scale resistance, the overall rates are based on the normal operating cycle of about one descaling every 24 hr . In Fig. 14.7 the percentages of a base average overall coefficient U_{D} are plotted against Δt which in an evaporator is the difference between the saturation temperature of the heating steam and the saturation temperature on the shell side. This temperature difference is always employed when evaporators are designed from overall coefficients. In the power-plant evaporator it is called the temperature head, and in chemical evaporators it is the apparent temperature difference, designated $(\Delta t)_{a}$. The values of U_{D} and Δt so defined permit the direct substitution of U_{D} in $Q=U_{D} A \Delta t$. The overall coefficient is greatly influenced by the pressure on the system, since the vapor volume of the bubbles is less at high pressure than at low pressures so that larger coefficients may be expected for the former. This is reflected by the curves which have been plotted in Fig. 14.7 as functions of the vapor temperature and which represent indirectly the operating pressure of the shell side. The curves level off abruptly at high-temperature heads owing to incipient vapor blanketing. The base value of the overall coefficient is varied in industry owing both to special problems suggested by a chemical analysis of the water and to changing competition among manufacturers.

A value of $700 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$ is a fair average for the base value of $U_{D_{r}}$ although higher base coefficients have frequently been used.

Example 14.1. Calculation of Evaporator Surface. $10,000 \mathrm{lb} / \mathrm{hr}$ of distilled water is required from untreated water. Steam is available at $300^{\circ} \mathrm{F}$, and the condenser will vent to the atmosphere. How much surface is required?

Assume a pressure drop through the condenser and lines of about 5 psi. The saturation temperature in the evaporator shell will be 19.7 psia or $226^{\circ} \mathrm{F}$.

Heat balance:

$$
\begin{aligned}
& Q_{\text {erad }}=10,000 \times 961=9,610,000 \mathrm{Btu} / \mathrm{hr} \\
& Q_{300} \mathrm{~F}=10,550 \times 910=9,610,000 \mathrm{Btu} / \mathrm{hr}
\end{aligned}
$$

Temperature head:

$$
\Delta t=300-226=74^{\circ} \mathrm{F}
$$

Overall coefficient:
From Fig. 14.7 at a heat head of $74^{\circ} \mathrm{F}$ and a vapor temperature of $226^{\circ} \mathrm{F}$, the coeff. cient is 86.5 per cent of base. Using a base of $700 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)^{\circ} \mathrm{F}$

$$
U_{\mathrm{D}}=700 \times 0.865=605
$$

$$
A=\frac{Q}{U_{D} \Delta t}=\frac{9,610,000}{605 \times 74}=2150 \mathrm{ft}^{2}
$$

Temperature Differences at Less than Maximum Flux. The preceding calculation is of value only to estimate the surface requirement. The surface will fill half of the shell or less, and the method of spacing the surface varies greatly with different manufacturers. Tubes, as a rule, are spaced farther apart in evaporators than in exchangers.

According to Fig. 14.7 it would be possible to obtain increasing overall coefficients up to a temperature head of $100^{\circ} \mathrm{F}$ although the vapor temperature is $212^{\circ} \mathrm{F}$ corresponding to atmospheric pressure. Previously it was stated that the critical temperature difference at atmospheric pressure was $45^{\circ} \mathrm{F}$. A temperature head of Δt of $100^{\circ} \mathrm{F}$ corresponds to a critical temperature difference $(\Delta t)_{w}$ of about $75^{\circ} \mathrm{F}$ but the limitation of the critical temperature difference holds only when operating at maximum flux. In Fig. 14.7 the flux for $212^{\circ} \mathrm{F}$ vapor and $\Delta t=100^{\circ} \mathrm{F}$ is

$$
700 \times 0.85 \times 100=60,000 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)
$$

If the flux has a value less than maximum, the temperature difference $(\Delta t)_{w}$ may be greater than the critical temperature difference. The flux is the principal index of vapor binding, and for this reason it is always restricted to a fraction of the maximum attainable when designing commercial evaporators. Restricting the flux to a design maximum amounts to an increase in the total surface for the purpose of reducing the amount of vaporization per unit of heat-transfer surface.

Multiple-effect Evaporation. In the production of distilled water the vapor formed in the evaporator is useful steam as well as relatively pure water. If a pound of steam is supplied to an evaporator as shown in Fig. $14.8 a_{\text {g }}$ it can be used to produce about 0.9 lb of steam from a pound of water. The remaining 0.1 lb of water contains the bulk of the impurities, and it is removed from the evaporator as evaporator blowdown. The 0.9 lb of vapor from the evaporator can be condensed by partially preheating the evaporator feed, or in the power plant, it can bf, mixed directly with cold return condensate before being fed to the boilr r.

If, however, the original pound of steam was supplied to a process as shown in Fig. $14.8 b$ and the vapor produced in the first evaporator was then used as a heat source in a second evaporator operat ng at a lower pressure than the first, an additional utilization could be made of most of the heat. If both evaporators in Fig. $14.8 b$ were fed in parallel with raw water, about 0.85 lb of pure water would be formed in the first effect and about 0.75 lb would be formed in the second effect. For each pound of steam supplied about 1.6 lb of pure water would be produced. The original pound of steam can also be considered a pound of pure water. When the vapor formed in the first effect is reused as the heating medium in a second effect, it is a double-effect evaporator. When applied to three

(a) SINGLE EFFECT-1 LB STEAM PRODUCES $1+0.9$ LB DISTILLED WATER

(b) DOUBLE EFFECT-1LB STEAM PRODUCES $1+1.60$ LB DISTILLED WATER

(c) TRIPLE EFFECT-1 LB STEAM PRODUCES $1+2.25$ LB DISTILLED WATER

Frg. 14.8. Multiple-effect evaporation with parallel feed.
effects as shown in Fig. 14.8c, it is a triple-effect evaporator and the original pound of steam produces about 2.25 lb of pure water.

In order to maintain temperature differences for heat transfer between the vapor from one effect and the boiling liquid of the next effect, the pressure on each succeeding evaporator must be lower than its predecessor. The quantity of blowdown, which is arrived at from experience with water of different impurities, carries with it considerable sensible heat and thereby reduces the amount of vaporization which can be realized in succeeding effects. Due in part to this escape of heat from the system there is a limit to the number of effects which are justifiable. The fixed charges for additional effects ultimately dissipate the savings in energy which result from the use of a large number of effects.

Power-plant Evaporation Processes. Power-plant evaporation processes fall into four classes:

1. Make-up evaporators for boiler feed
2. Process evaporators for the production of purified water
3. Heat-transformer evaporators
4. Salt-water distillers

These processes are discussed below with typical flow sheets which contain all the necessary information computed from simple heat balances. Since only enthalpy differences are involved, it has not been felt necessary to include the individual heat balances for each case.

1. Make-up Evaporators. Make-up evaporators supply boiler feed water to replace leakage and losses from the system as process steam in plants or as discarded condensate. This is by far the largest class of evaporation process and is usually accomplished in a single-effect evaporator, although occasionally a double-effect evaporator may be used depending upon the characteristics of the condensate cycle in the power plant and the amount of make-up required. There is hardly a power plant built today which does not inolude such equipment. The evaporators themselves are small, containing about 100 to $1000 \mathrm{ft}^{2}$ of surface. Typical process examples of the use of single-effect make-up evaporators are shown in Figs. 14.9 and 14.10. In Fig. 14.9 a turbine operating on $150,000 \mathrm{lb} / \mathrm{hr}$ of steam at 400 psig and superheated to $800^{\circ} \mathrm{F}$ is bled in three stages to supply sufficient high-temperature superheated steam so that the make-up can be heated to the saturation temperature of the boiler corresponding to 400 psig. Naturally saturated steam at 400 psig cannot be used to heat feed up to its saturation temperature. It can be shown by an economic balance that it would be wasteful to use steam directly from the superheater at $800^{\circ} \mathrm{F}$ for fced-water heating in preference to the use of partially spent superheated steam from the turbine.

Bleed steam from the eighth stage of the turbine is run directly to the evaporator where it vaporizes $9000 \mathrm{lb} / \mathrm{hr}$ of make-up. The vaporized make-up and evaporator steam are both condensed in an evaporatorcondenser by the bulk of boiler feed with a $5^{\circ} \mathrm{F}$ temperature approach. The remainder of the diagram is obtained by trial-and-error calculation for the optimum efficiency of the cycle.

A variation of this flow arrangement is shown in Fig. 14.10 in which some of the steam formed in the evaporator is combined with the make-up

Frig. 14.9. Single-effect make-up evaporator with evaporator-condenser between two bleed heaters.
in a preheater. The remainder of the steam formed in the evaporator goes to an evaporator-condenser, where it is condensed by the boiler feed. The condensate from the evaporator tubes and the evaporator-condenser is then combined in the flash tank. In the flash tank the condensate from the evaporator comes out as superheated ($339.4^{\circ} \mathrm{F}$) liquid compared with the condensate from the evaporator-condenser ($313.3^{\circ} \mathrm{F}$), and a portion flashes back to the evaporator-condenser, thereby providing all the pressure differences necessary for the operation of the equipment. In Fig: 14.11 a triple-effect evaporator is shown for cases where an excessively large amount of make-up water is required.

The location of the evaporator-condenser is important. In the modern power plant the evaporator is heated by turbine bleed steam and the vapor produced discharges either into a stage heater on the next bleed point below or into an evaporator-condenser located between the two stage heaters A and C (see Fig. 14.9) where B is a feed-water heater.

Fig. 14.10. Single-effect make-up evaporator with preheater, evaporator-condenser, and flash tank.

Fig. 14.11. Triple-effect make-up evaporator.
The latter arrangement is generally the most economical particularly if the vapor condensed is on the suction side of the boiler feed pump, i.e., the low-pressure end of the bleed cycle. If there is sufficient temperature difference between the two stages in question, A and C, the evaporator will receive steam from the same bleed point from which the higher stage heater C receives steam. The evaporator-condenser is then located
between that particular stage heater and the next lower one B. This arrangement permits taking all the heat for heating feed water in the evaporator-condenser and for the higher of the two feed heaters C, from the high bleed point without displacing the bleed steam from the next lower bleed point. It can readily be seen that, if the evaporator discharges into the next lower bleed heater, the heat absorbed in the next lower heater will come from the next higher bleed point and will have by-passed several stages of the turbine in so doing, resulting in a loss of kilowatts.
2. Process Evaporators. There are a number of industries which continuously require large quantities of distilled water. This type of plant employs double, triple, or quadruple effects and receives heat either

from a bleed point or from the boiler directly. The selection of the number of effects is closely allied to the relationship among the fixed charges and the steam operating cost. Multiple-effect evaporators with parallel feed need not have all effects simultaneously in operation and can therefore be adjusted if the demand for distilled water varies. Evaporators for this type of service are generally of medium size, about 500 to $2000 \mathrm{ft}^{2}$ per shell. A typical triple-effect process evaporator is shown in Fig. 14.12, where $83,205 \mathrm{lb} / \mathrm{hr}$ of steam at 35 psia (20 lb gage) and saturated is split to mix directly with the cold feed at $70^{\circ} \mathrm{F}$ and for vaporization in the evaporator. This process employs several of the elements discussed under make-up evaporators. The final product is $222,015 \mathrm{lb} / \mathrm{hr}$ of distilled treated water. In order to obtain a maximum quantity of vaporization from a given quantity of steam initially near atmospheric pressure, temperature differences are maintained from the first to the last effect by operating with the last effect under vacuum. This is accomplished by using a steam jet vacuum pump on the last effect. Thus the shell side of the first effect in Fig. 14.12 operates at 18.9 psia or $225^{\circ} \mathrm{F}$, the second at 8.6 psia or $186^{\circ} \mathrm{F}$, and the third at
2.5 psia or $134^{\circ} \mathrm{F}$. This establishes differences in the effects of 34 , 39 , and $52^{\circ} \mathrm{F}$. The operating pressures for each of the effects is determined by trial and error, so that all three effects will have the same surface as calculated by $A=Q / U_{D} \Delta t$. This procedure will be demonstrated in detail in the treatment of a chemical evaporator. If the vacuum were not applied, the maximum available temperature difference over the three effects wrould be from 259 to $212^{\circ} \mathrm{F}$ or 47 instead of $125^{\circ} \mathrm{F}$ as shown in the flow sheet.

The principle of vacuum evaporation is extensively used in chemical evaporation. Since the vapor from the last effect is at a low temperature, it has little value in the preheating of the feed, its temperature in this case being $134^{\circ} \mathrm{F}$. The evaporator-condenser, therefore, operates with cooling-tower water instead of feed water. It will be noted that, although

Fig. 14.13. Heat-transformer evaporator.
the heat from the last-effect vapor is rejected, the blowdown heat losses of such a system are reduced considerably by being at a low heat level. The steam required for the vacuum pump must also be taken into account in computing the efficiencies of vacuum processes.
3. Heat-transformer Evaporators. The heat-transformer evaporator is a single-effect system of one or more shells in parallel receiving steam from the exhaust of a high-pressure turbine or high-pressure engine. Flow sheets are shown in Figs. 14.13 and 14.14. The purpose of this type of evaporator is to condense steam from a high-pressure boiler which has passed through a high-pressure turbine and into the evaporator. The condensate is then returned directly to the high-pressure boiler by a pressure booster, thereby keeping the high-pressure circuit closed and continuously supplied with high-pressure boiler water and steam. Obviously high-pressure boiler and turbine installations are favorably affected by this circuit. By the condensation of the exhaust steam from the highpressure turbine or engine the heat transfer in the evaporator is used to produce large quantities of process steam, all or a large part of which is never returned to the evaporator system. If the condensate is not
returned, it is because it may be difficult to collect or the vapor may be consumed in a chemical or heating process or it may be continuously contaminated.

This type of evaporator is relatively large, having been built in a single unit in sizes up to $11,000 \mathrm{ft}^{2}$ of surface and capable of producing 150,000 to $200,000 \mathrm{lb} / \mathrm{hr}$ of steam. Single evaporators of this size are 10 to 11 ft

Fig. 14.14. Heat-transformer evaporator.
in diameter and 40 to 50 ft in length. There are not many of the larger installations, but where large quantities of process or heating steam are required, it is readily understood that a high-pressure boiler operating at 1400 psi throttle pressure and exhausting at 200 psi produces large quantities of "by-product" power. This power is charged only with the heat extracted on the passage of the steam through the turbine, the remaining charges being debited to the cost of producing high-pressure steam, the primary object of the steam cycle. When the energy from a high-pressure line is continuously used to produce low-pressure steam for purposes outside the original installation, it is called a heat transformer
from its similarity to a stepdown electrical transformer and also a reduc-ing-valve transformer. It is actually the only way in which high-pressure saturated steam can be converted to low-pressure saturated steam without superheat. The reason for the reducing-valve evaporator, however, is primarily to preserve the pressure on the high-pressure side.

Sometimes the heat going to process must be transported a considerable distance. To prevent condensation the vapor should be somewhat superheated before leaving the generating system, although the heattransformer evaporator produces only saturated steam. For this purpose

Fig. 14.15. Heat-transformer evaporator supplying superheat.
the arrangement shown in Fig. 14.15 is generally used to provide a heat exchanger or reheater which passes the steam to the heat-transformer evaporator through the tubes and the vapor from the evaporator through the shell, thereby providing some superheat.
4. Salt-water Distillers. A pound of fuel can normally yield about 10 lb of steam, and in a double-effect evaporator for use with salt water 10 lb of steam will yield a total of 18.5 lb of pure water. It is little wonder, then, that ships at sea commonly produce their own water requirements from sea water. Sea water contains about 3 per cent solids by weight corresponding to about $34,000 \mathrm{ppm}$ compared with 340 ppm in fresh water. Instead of about 90 per cent vaporization it is customary to vaporize only about one-third of the feed. The remainder, containing
about 5 per cent solids or $51,000 \mathrm{ppm}$, is dumped overboard. Because of the largeness of the blowdown the use of a vacuum system with low evaporation temperatures is desirable, since low temperatures are also favorable to low rates of scaling. Unlike evaporators in stationary power

Frg. 14.16. Salt-water distiller.
plants salt-water evaporators or distillers operate for 600 to 700 hr without descaling. The flow sheet of a typical salt-water distiller is shown in Fig. 14.16.

Vacuum Operation of a Process. Evaporators frequently operate with the last effect under vacuum, and one of the important considerations is
the method of continuously maintaining the vacuum. The use of a mechanical compressor on the last stage is usually prohibitive because of the energy required for compression. The specific volume of water vapor at $2 \mathrm{in} . \mathrm{Hg}$ abs is $399.2 \mathrm{ft}^{3} / \mathrm{lb}$. Furthermore, there is little reason to

Fig. 14.17. Two-stage ejector with jet intercondenser, serving a barometric condenser. (Foster Wheeler Corporation.) operate a mechanical compressor when the required reduction in volume can be partially achieved by condensation. The latter is one of the principles embodied in the

Fig. 14.18a. Two-stage ejector with jet inter- and aftercondensers. (Fositer Wheeler Corporation.)
barometric condenser with air ejectors, an example of which is shown in Fig. 14.17. It is operated by the two steam jet ejectors.

A single ejector connected to a condenser is capable of maintaining a vacuum of about $26.5 \mathrm{in} . \mathrm{Hg}$ abs and can be made with several jets
replacing the single-motive steam nozzle. This provides a more uniform distribution of steam in the mixing zone. When a vacuum of 26.5 to 29.3 in . is desired, it can be accomplished by means of a two-stage ejector as shown in Fig. 14.18a and b. For higher vacuums the use of a three-stage ejector is required. The two-stage detail in Fig. $14.18 a$ is the same as that employed in Fig. 14.17. The condenser in Fig. 14.17 is a barometric condenser equipped with a water inlet and distribution plates, so that the water entering the inlet cascades or sprays over the incoming

Fxg. 14.18b. Two-stage ejector with surface inter- and aftercondensers. (The Lummus Company.)
stream from the evaporator or precondenser and removes a large part of the steam from the process as condensate. The remaining air with less steam flows overhead into the first stage ejector. After compression in the first stage the partial pressure of the steam will have been increased and most of the remaining vapor can be condensed by another direct contact with cooling water.

Again referring to Fig. 14.17, in order to remove the water and condensate from the assembly without losing vacuum it is necessary that a leg of liquid be maintained with a hydrostatic head $z \rho$ equal to the difference between the vacuum and atmospheric pressure, where z is the height and ρ the density. In this manner the upper surface of the liquid in the tail pipe is at a pressure corresponding to the vacuum and the liquid at the bottom of the tail pipe is at atmospheric pressure due to the weight of the hydrostatic head. Thus liquid under vacuum continu-
ously enters the tail pipe, and liquid at atmospheric pressure continually leaves by way of the hot well at the bottom of the tail pipe. Atmospheric pressure corresponds to a hydrostatic head of 34 ft of water, and complete vacuum corresponds to zero hydrostatic head. To maintain a process at substantially complete vacuum requires that a leg of 34 ft of water be maintained between the barometric condenser and the hot well. If a vacuum of less than $29.92 \mathrm{in} . \mathrm{Hg}$ is to be maintained by the ejectors but a leg of 34 ft equivalent to $29.92 \mathrm{in} . \mathrm{Hg}$ has been provided, it means merely that the height of liquid in the tail pipe will automatically drop

Fia. 14.19. Barometric condensers.
to provide only the necessary hydrostatic difference between the operating vacuum of the ejector and the atmospheric pressure.

Barometric condensers are of two types, counterflow and parallel flow as shown in Fig. $14.19 a$ and b. In counterflow types the temperature of the water at the liquid level may approach the vapor temperature more closely than in parallel-flow types. Counterflow types are preferable where water is at a premium or it is difficult to have the vapor enter from the top. If a pump is used to remove the tail liquid instead of a total barometric height, whatever head is supplied by the pump can be deducted from the total barometric height and the assembly is known as a low-level condenser.

The quantity of water required in the barometric condenser can be computed from

$$
\begin{equation*}
\operatorname{Gpm}=\frac{Q}{500\left(T_{s}-t_{w}-t_{a}\right)} \tag{14.4}
\end{equation*}
$$

where $T_{s}=$ saturation temperature of the vapor, ${ }^{\circ} \mathrm{F}$
$t_{W}=$ temperature of the water, ${ }^{\circ} \mathrm{F}$
$t_{a}=$ degrees of approach, to $T_{s},{ }^{\circ} F$
In counterflow barometric condensers t_{a} is taken as $5^{\circ} \mathrm{F}$.
The two-stage ejector assembly in Fig. $14.18 a$ will produce the same results as that of Fig. 14.18b. It differs only in that the condensation after each stage is accomplished by means of tubular surface instead of the direct contact of the cooling water with the steam or vapor mixture. The tubular intercondenser and aftercondenser are combined in a single shell, since the total surface required is usually quite small. Surface condensation is mandatory where the vacuum exhaust cannot be mixed with the cooling water for reasons of corrosion or chemical reaction.

Fig. 14.20. Single-stage ejector with surface aftercondenser serving a surface condenser. (Foster Wheeler Corporation.)

In the operation of a steam turbine or engine the surface condenser discussed in Chap. 12 actually serves as the precondenser for the maintenance of vacuum across the turbine. The surface condenser yields not only condensate but also a mixture of air saturated with water vapor, which must be continuously removed. Failure to remove the air causes an increase in the pressure and temperature of the condenser, as well as a noncondensable air blanket which reduces the overall heat-transfer coefficient. The air removal can be accomplished as shown in Fig. 14.20 with a surface intercondenser and a removal pump. The hot-well pump is provided for low-level installation. A counterpart using a low-level barometric condenser can also be used. For the design and selection of ejectors Jackson ${ }^{1}$ has presented a comprehensive discussion.
${ }^{1}$ Jackson, D. H., Chem. Eng. Progress, 44, 347-352 (1948).

CHEMICAL EVAPORATION

Comparison between Power-plant and Chemical Evaporation. The purpose of the majority of power-plant evaporators is the separation of pure water from raw or treated water. The impurities are continuously withdrawn from the system as blowdown. In chemical industry the manufacture of heavy chemicals such as caustic soda, table salt, and sugar starts with dilute aqueous solutions from which large quantities of water must be removed before final crystallization can take place in suitable equipment. In the power-plant evaporator the unevaporated

Fig. 14.21. Quadruple-effect chemical evaporator arranged for forward and backward feed.
portion of the feed is the residue, whereas in the chemical evaporator it is the product. This leads to the first of several differences between powerplant and chemical evaporation. These are as follows:

Absence of Blowdown. Chemical evaporators do not operate with blowdown, and instead of liquid being fed in parallel to each body it is usually fed to multiple-effect systems in series. Common methods of feeding are shown in Fig. 14.21a and b. The feed to the first effect is partially. evaporated in it and partially in each of the succeeding effects. When the liquid feed flows in the same direction as the vapor, it is forward feed, and
when fed in the reverse direction, it is backward feed. From the standpoint of effectively using the temperature potentials forward feed is preferable. If the liquid is very viscous, there is an advantage to the use of backward feed, since the temperature of the first effect is always the greatest and the corresponding viscosity will be less. The advantages and disadvantages of both will be discussed later. The absence of blowdown enables greater heat recovery in a chemical evaporator.

Boiling Point Rise ($B P R$). Although chemical evaporators are capable of high heat efficiencies, they are incapable under certain conditions of a high utilization of temperature potentials and consequently require greater surfaces. This is due to the fact that a concentrated aqueous solution undergoes a boiling point rise above the saturation temperature corresponding to pure water at the same pressure. Suppose steam enters the tubes or chest of a chemical evaporator at 45 psia and is to evaporate water from a caustic soda solution. The steam temperature is $274^{\circ} \mathrm{F}$. If pure water is evaporated at $18 \mathrm{in} . \mathrm{Hg}$, the temperature of the vapor formed would be $169^{\circ} \mathrm{F}$. But because of the dissolved salt the liquor boils at $246^{\circ} \mathrm{F}$ at 18 in . Hg instead of at $169^{\circ} \mathrm{F}$. The temperature difference across the heat-transfer surface is only $274-246=28^{\circ} \mathrm{F}$, and the difference of $246-169=77^{\circ} \mathrm{F}$ represents lost potential which cannot be attained owing to the presence of the dissolved material. The difference between the temperature of heating vapor and the saturation temperature corresponding to the pressure of the evaporating vapor is the apparent temperature drop $(\Delta t)_{a}$, or $274-169=105^{\circ} F$ in the example above. Heat-transfer coefficients, which are reported on a basis of

$$
U_{D}=\frac{Q}{A(\Delta t)_{a}},
$$

are apparent overall coefficients. If coefficients are based on the temperature difference across the heating surface between the heating vapor and the evaporating liquid, as in most casès, $U_{D}=Q / A \Delta t$, where $\Delta t=28^{\circ} \mathrm{F}$ in the example above. If solutions have boiling point rises above about $5^{\circ} \mathrm{F}$, the latent heat of vaporization of steam from the solution differs from that obtained from the steam tables (Table 7) at the saturation pressure of the vapor. The latent heat of vaporization for steam from a solution can be computed either from Duhring's relationship or from the equation of Othmer. ${ }^{1}$ According to Duhring's rule,

$$
\begin{equation*}
\frac{\lambda_{w}}{\lambda_{s}}=\frac{\Delta t_{\mathrm{F}}^{\prime}}{\Delta t_{s}^{\prime}}\left(\frac{t_{\mathrm{W}}^{\prime}}{t_{s}^{\prime}}\right)_{\mathrm{ab}}^{2} \tag{14.5}
\end{equation*}
$$

[^34]where $\lambda_{s}=$ latent heat of 1 lb of pure water from solution at the temperature t and pressure $p_{\text {s }}$
$\lambda_{W}=$ latent heat of 1 lb of pure water at the temperature t_{W}^{\prime} but at p_{s}, the same pressure as t
$t_{a}^{\prime} t_{t}^{\prime}=$ boiling points of the solution and water at the same pressure, $p_{s},{ }^{\circ} R$
$\Delta t_{s}^{\prime} / \Delta t_{w}^{\prime}=$ rate of change of the two boiling-point curves over the same pressure range
According to Othmer's method and based on the Clausius-Clapeyron equation,
\[

$$
\begin{equation*}
\frac{\lambda_{s}}{\lambda_{W}}=\frac{d \log p_{z}}{d \log p_{W}} \tag{14.6}
\end{equation*}
$$

\]

where p_{Δ} and $p_{\text {F }}$ are the respective absolute vapor pressures of the solution and pure water over an identical range of temperatures.

The BPR can be computed but only for dilute solutions which are relatively ideal. For real solutions the data on boiling-point elevation must be obtained experimentally by measuring the vapor-pressure curve for a given concentration at two different temperatures. Additional determinations can be made for other concentrations if more than a single effect is used.

Fluid Properties. In the power-plant evaporator the water-softening process is modified in different localities so that the evaporator feed composition causes a minimum of foaming and other operating difficulties. In the chemical evaporator the residue, a concentrated solution, is the desired product, and usually no adjustment can be made to the solution to prevent foaming or to eliminate the deposition of scale. This must be taken into consideration in the design of the equipment. Furthermore, concentrated solutions, as discussed in Chap. 7, produce liquors of high viscosity. Particularly since boiling is a combination of vaporization and free convection the overall coefficient of heat transfer is a function of both the concentration and the temperature at which evaporation occurs. The influence of viscosity may be so great that a negligible Grashof group, $D^{3} p^{2} g \beta \Delta t / \mu^{2}$, results for evaporators operating with natural circulation. Under these circumstances the liquor cannot be relied upon to circulate very rapidly about the heating element and it is necessary to use forced circulation instead of natural circulation as presumed heretofore.

CHEMICAL EVAPORATORS

Chemical evaporators fall into two classes: natural circulation and forced circulation. Natural-circulation evaporators are used singly or in multiple effect for the simpler evaporation requirements. Forced-
circulation evaporators are used for viscous, salting, and scale-forming solutions. Natural-circulation evaporators fall into four main classes:

1. Horizontal tube
2. Calandria vertical tube
3. Basket vertical tube
4. Long tube vertical

The discussion of evaporator design in this chapter deals only with those which are designed on a basis of flux and accepted overall coefficients. Those employing film coefficients are treated in the next chapter.

Horizontal-tube Evaporators. Horizontal-tube evaporators as shown in Fig. 14.22 are the oldest type of chemical evaporator. Although they once enjoyed widespread use, they have given way to other types. They consist of a round or square shell and a horizontal tube bundle which is usually square. They do not take very good advantage of the thermal currents induced by heating and therefore are not so acceptable as the types which have replaced them. The horizontal evaporator is the only distinct type of chemical evaporator employing steam in the tubes. The principal advantages of horizontal evaporators lie in the relatively small headroom they require and the ability to arrange the bundle so that air brought in with the steam

Fig. 14.22. Horizontal-tube evaporator. (Swenson Evaporator Company.) does not collect and blanket useful surface. The horizontal evaporator is least satisfactory for fluids which form scale or deposit salt, the deposit being on the outside of the tube, and it is therefore used only for relatively simple problems of concentration rather than for the preparation of a liquid for ultimate crystallization. It is well suited to processes in which the final product is a liquor instead of a solid, such as industrial sugar sirups, where the large volume of liquid stored in the evaporator can permit a close adjustment of the final density by changing the holdup in the evaporator. The tube length is determined by the size of the evaporator body itself. Because evaporation occurs on the outside of the tubes, eliminating a scale problem inside the tubes, the horizontal-tube evaporator uses smaller tubes than any other type, from $3 / 4$ to $1 \frac{1}{4} \mathrm{in}$. OD.

Calandria-type Evaporators. The calandria evaporator is shown in Fig. 14.23. It consists of a short vertical-tube bundle, usually not more
than $6^{\prime} 0^{\prime \prime}$ high, set between two fixed tube sheets which are bolted to the

Fig. 14.23. Calandria-type evaporator. (Swenson Evaporator Company.) shell flanges. The steam flows outside the tubes in the steam chest, and there is a large circular space for downtake in the center of the bundle whereby the cooler liquid circulates back to the bottom of the tubes. The flow area of the downtake is from one-half the flow area of the tubes to an area equal to it. Tubes are large, up to 3 in . OD, to reduce the pressure drop and permit rapid circulation and are installed in tube sheets with ferrule-type packing. The layout of a typical calandria is shown in Fig. 14.24. One of the problems is to baffle the steam chest so that there is a relatively uniform tube coverage.

Fra. 14.24. Typical calandria baftling. Arrows indicate direction of steam flow. Shaded areas indicate location of noncondensable bleed points.

Another is to provide adequate bleed points so that no pockets of noncondensable gas develop. The condensate is removed at any convenient point. The space above the liquid level on the tube sheet serves primarily to disengage the liquid, which is carried along by the vapor. A common accessory of evaporators is a catchall which is installed on the vapor line for the purpose of removing entrained liquid and returning it to the bulk of the fluid. Two typical catchalls are shown in Fig. 14.25a and b. They operate on the principle of centrifugally removing the liquid droplets.

Calandria evaporators are so common they are often referred to as standard evaporators. Since scaling occurs inside the tubes, it is possible to use the standard evaporator for more rigorous services than the hori-

Frg. 14.25a. Catchall with bottom outlet.

Fig. 14.25t. Catchall with top outlet.
zontal tube evaporator and, in addition, a propeller can be installed in the dished or conical bottom to increase the rate of circulation.

Basket-type Evaporators. A basket-type evaporator is shown in Fig. 14.26. It is similar to a calandria evaporator except that it has a removable bundle which can be cleaned quite readily. The bundle is supported on internal brackets, and the downtake occurs between the bundle and the shell instead of in a central downtake. Because the tube sheets hang freely, the problem of differential expansion between the tubes and the steam chest shell is not important. This type frequently is designed with a conical bottom and may also have a propeller installed to increase circulation. As a result of these mechanical advantages the basket evaporator can be used for liquors which have a tendency to scale, although they are not recommended for liquids with high viscosities or great rates of scaling. The selection of a basket or calandria evaporator usually foilows the established policies of the different industries in which they are used after years of experience, or modifications suggested by manufacturers. Some manufacturers have preferences for the one type
in a certain application, whereas another will prefer the second type for the same service.

Long-tube Vertical Evaporators. A long-tube vertical evaporator is shown in Fig. 14.27. It consists of a long tubular heating element designed for the passage of the liquor through the tubes but once by natural circulation. The steam enters through a vapor belt as dis-

Fig. 14.26. Basket-type evaporator. (Swenson Evaporator Company.)

Fig. 14.27. Long-tube vertical evaporator.
(General American Transportation Company.)
cussed in Chap. 12, and the bundle is baffled so that there is a free movement of steam, condensate, and noncondensable downward. The upper tube sheet is free, and just above it there is a vapor deflector to reduce the entrainment. This type of evaporator is not especially adapted to scaling or salting liquors, but it is excellent for the handling of foamy, frothy liquors. The velocity of the vapor issuing from the tubes is greater than in the short-tube vertical types. Tubes are usually $11 / 4$ to 2 in . OD and from 12 to 24 ft in length. When arranged for recirculation the apparatus will be as shown in Fig. 14.28. In this type, disengagement
occurs outside the evaporator body. The calculation of this type of evaporator for aqueous solutions with known physical and thermal properties will be discussed in Chap. 15.

Forced-circulation Evaporators. Forced-circulation evaporators are made in a variety of arrangements as shown in Figs. 14.29 through 14.31. Forced-circulation evaporators may not be so economical to operate as natural-circulation evaporators, but they are necessary where the concen-

Fig. 14.28. Long-tube recirculation evaporator. (General American Transportation Company.)

Fig. 14.29. Forced-circulation-type evaporator with inside vertical heating element. (Swenson Evaporator Company.)
tration problem involves a solution with poor flow, scale, and thermal characteristics. Since the Grash of group varies inversely with the square of the viscosity, there is a limit to the viscosities of solutions which will naturally recirculate. With very viscous materials there is no alternative but to use this type of evaporator. Also, where there is a tendency to
form seale or deposit salts, the high velocities obtainable by the use of circulating pumps are the only means of preventing the formation of excessive deposits. Forced-circulation evaporators are well adapted to a close control of flow, particularly when a long time of contact may be injurious to the chemical in solution. Tubes for forced-circulation evaporators are smaller than in natural-circulation types, usually not exceeding 2 in . OD.

Fig. 14.30. Forced-circulation evaporator with vertical external element. (General American Transportation Corporation.)

In Fig. 14.27 the steam enters the bundle outside the evaporator body and contacts the tubes at the top of the bundle by means of the annular space provided. A deflector plate is installed above the upper tube sheet, and the circulating pump is installed at ground level. In Fig. 14.30 the same effect is produced by means of a vertical external bundle, which simplifies construction to a degree but which is not so compact. Figure 14.31 is a variation with a horizontal bundle which is particularly adaptable where the beadroom is low.

Effect of Hydrostatic Head. Consider a pure fluid with a boiling surface somewhat above the top of a bundle of horizontal tubes. The boiling point is regarded as being set by the pressure at the liquid-vapor interface. If there is a great layer of liquid above the tube bundle, it will exert a hydrostatic pressure upon the liquid in contact with the tube surface. The added pressure upon the liquid raises the boiling temperature

Fig. 14.31. Forced-circulation evaporator with horizontal external element. (General American Transportation Corporation.)
at the heat-transfer surface above that necessary to produce vapors of the saturation temperature corresponding to the pressure at the liquid-vapor interface. The effect of hydrostatic head, as in the case of BPR, reduces the useful temperature difference effective upon the heat-transfer surface. Since evaporators operate on fixed apparent temperature differences, the size of the heat-transfer surface must be increased accordingly for the presence of a hydrostatic head. The influence of temperature and pressure on the overall coefficient is essentially that shown in Fig. 14.7.

At high temperatures the liquid is less viscous and is more favorably suited to evaporation.

The effect of hydrostatic head may be estimated from

$$
\begin{equation*}
\Delta t_{h}=0.03 \frac{T_{R} v}{\lambda_{s}} \Delta p \tag{14.7}
\end{equation*}
$$

where $\Delta t_{h}=$ hydrostatic elevation of the boiling point, ${ }^{\circ} \mathrm{F}$
$T_{R}=$ solution boiling temperature, ${ }^{\circ} \mathrm{R}$
$v=$ specific volume of water vapor at $T_{R} \mathrm{ft}^{3} / \mathrm{lb}$
$\lambda_{s}=$ latent heat of vaporization corresponding to the saturation pressure, Btu/lb
$\Delta p=$ hydrostatic head, ft
Usually Δp may be taken as corresponding to one-half the indicated liquid level. It is apparent that the influence of hydrostatic pressure will be greater as the vacuum upon the system is increased, since v varies considerably with the pressure whereas λ_{s} varies but little.

For all evaporators operating with natural circulation a loss in available capacity due to hydrostatic head cannot be avoided but the loss can be reduced by maintaining the lowest liquid levels consistent with the efficient operation of the equipment. If the froth is regulated to 10 in ; above the upper tube sheet of vertical heating elements, good operating control can usually be effected. The achievement of good operating control is facilitated by the choice of the tube diameter and length and in general by designing for a high fluid velocity into the disengaging space. Problems of arrangement for natural circulation will be treated in Chap. 15.

Multiple-effect Chemical Evaporation. In the study of parallel-feed multiple-effect power-plant evaporators it was shown that in a tripleeffect evaporator 1 lb of steam evaporated approximately 2.25 lb of water. The use of parallel feed is by no means the most economical and is used in chemical evaporation only when the feed solution is nearly saturated to begin with and evaporation is intended for the purpose of supersaturation. In chemical evaporation it is customary to employ forward feed, backward feed, or a modification of both, known as mixed feed. Returning to Fig. 14.21 there are certain opposing advantages and disadvantages resulting from the use of either forward or backward feed.

In forward feed if the feed liquor is at a higher temperature than the saturation temperature of the first effect, some evaporation will occur automatically as vapor flashing. Since a vacuum is usually maintained on the last effect, the liquor flows by itself from effect to effect and a
liquor removal pump is required only on the last effect. Similarly, since the saturation temperature of the boiling solution in each effect is lower than the temperature of the effect preceding it, there is flashing or "free" evaporation in each succeeding effect, which reduces the overall steam requirement. In an evaporator the boiling film is the controlling resistance and the numerical value of the overall coefficient decreases with concentration because the viscosity is increasing. In forward feed the concentrated liquor is in the last effect, and obviously that effect has the lowest overall coefficient, since the liquor is most concentrated there and at the same time coldest.

When backward feed is employed, it overcomes the objection of having the most concentrated liquor in the coldest effect. Here the dilute liquor enters the last and coldest effect and leaves concentrated in the first effect, which is at the highest temperature. In this feed arrangement liquor must be heated in each effect as compared with solution flashing in each effect in forward feed. Furthermore, the feed must be pumped from effect to effect, which means that the number of places for air leakage, such as the pump and flanges, increases the maintenance and power cost. The temperature relations in backward feed usually ofiset these disadvantages in part, since the system is in counterflow and the economy of steam is greatest under these conditions.

If the feed liquor to a backward-feed evaporator is initially hot, its introduction into the last effect is wasteful, since the vapors which flash off in the last effect are lost to the condenser. In forward feed not only would these vapors flash but in each succeeding effect they would reevaporate additional water. The problem of the direction of feed to be employed is, as in most alternate problems of heat transfer, an economic one. Backward feed may or may not lead to smaller surface requirements, depending upon the extent of concentration and the viscosity of the desired final solution. The steam cost will be less for backward feed if the feed is cold and less for forward feed if the feed liquor is at approximately the operating temperature of the first effect or higher. The computation of problems by both methods will readily establish the most favorable operating relationship.

THE CALCULATION OF CHEMICAL EVAPORATORS

by Joseph Meisler ${ }^{1}$

Referring to Fig. $14.21 a$ the surface and steam requirements for multiple-effect chemical evaporation can be computed by imposing a heat balance across each effect individually and a material balance
${ }^{1}$ The Air Reduction Company, Inc., and the Polytechnic Institute of Brooklyn.
over the whole system. The following nomenclature will be employed for a quadruple effect:

$$
\begin{aligned}
c_{F} & =\text { specific heat of feed, } \mathrm{B} t \mathrm{u} /(\mathrm{lb})\left({ }^{\circ} \mathrm{F}\right) \\
t_{F} & =\text { temperature of feed, }{ }^{\circ} \mathrm{F} \\
w_{F} & =\text { feed, } \mathrm{lb} / \mathrm{hr} \\
T_{s} & =\text { saturation temperature of steam to first effect, }{ }^{\circ} \mathrm{F} \\
W_{s} & =\text { steam to first effect, } \mathrm{lb} / \mathrm{hr} \\
w_{1-4} & =\text { total water removed by evaporation, } \mathrm{lb} / \mathrm{hr} \\
c_{1}, c_{2}, c_{3,}, c_{4} & =\text { specific heat of liquor in effects } 1 \text { to } 4, \mathrm{Btu} /(\mathrm{lb})\left({ }^{\circ} \mathrm{F}\right) \\
t_{1}, t_{2}, t_{3}, t_{4} & =\text { boiling points of liquor in effects } 1 \text { to } 4,{ }^{\circ} \mathrm{F} \\
w_{1}, w_{2}, w_{3}, w_{4} & =\text { water removed in effects } 1 \text { to } 4, \mathrm{lb} / \mathrm{hr}
\end{aligned}
$$

Assume that there are no chemical heat effects as a result of the concentration (i.e., negative heats of solution) and that there is no BPR.

Forward feed

Heat balance on first effect:

$$
\begin{equation*}
W_{S} \lambda_{s}+w_{F} c_{F}\left(t_{F}-t_{1}\right)=w_{1} \lambda_{1} \tag{14.8}
\end{equation*}
$$

Heat balance on second effect:

$$
\begin{equation*}
w_{1} \lambda_{1}+\left(w_{F}-w_{1}\right) c_{1}\left(t_{1}-t_{2}\right)=w_{2} \lambda_{2} \tag{14.9}
\end{equation*}
$$

Heat balance on third effect:

$$
\begin{equation*}
w_{2} \lambda_{2}+\left(w_{F}-w_{1}-w_{2}\right) c_{2}\left(t_{2}-t_{3}\right)=w_{3} \lambda_{3} \tag{14.10}
\end{equation*}
$$

Heat balance on fourth effect:

$$
\begin{equation*}
w_{3} \lambda_{3}+\left(w_{F}-w_{1}-w_{2}-w_{3}\right) c_{3}\left(t_{3}-t_{4}\right)=w_{4} \lambda_{4} \tag{14.11}
\end{equation*}
$$

Material balance:

$$
\begin{equation*}
w_{1-4}=w_{1}+w_{2}+w_{3}+w_{4} \tag{14.12}
\end{equation*}
$$

The surface requirements will be

$$
\begin{align*}
& A_{1}=\frac{Q}{U_{D} \Delta t}=\frac{W_{s} \lambda_{s}}{U_{1}\left(T_{s}-t_{1}\right)} \tag{14.13}\\
& A_{2}=\frac{w_{1} \lambda_{1}}{U_{2}\left(t_{1}-t_{2}\right)} \\
& A_{3}=\frac{w_{2} \lambda_{2}}{U_{3}\left(t_{2}-t_{3}\right)} \\
& A_{4}=\frac{w_{3} \lambda_{3}}{U_{4}\left(t_{3}-t_{4}\right)}
\end{align*}
$$

Let

$$
\begin{equation*}
A_{1}=A_{2}=A_{3}=A_{4} \tag{14.14}
\end{equation*}
$$

where U_{1}, U_{2}, U_{3}, and U_{4} are the design overall coefficients in the respective effects. From the material balance and the heat balances there are five equations and five unknowns: $W_{s}, w_{1}, w_{2}, w_{3}$, and w_{4}. These may be solved for simultaneously.

Backward feed. Referring to Figure 14.21b:
Heat balance on fourth effect:

$$
\begin{equation*}
w_{3} \lambda_{3}+w_{F} c_{F}\left(t_{F}-t_{4}\right)=w_{4} \lambda_{4} \tag{14.15}
\end{equation*}
$$

Heat balance on third effect:

$$
\begin{equation*}
w_{2} \lambda_{2}+\left(w_{F}-w_{4}\right) c_{4}\left(t_{3}-t_{4}\right)=w_{3} \lambda_{3} \tag{14.16}
\end{equation*}
$$

Heat balance on second effect:

$$
\begin{equation*}
w_{1} \lambda_{1}+\left(w_{F}-w_{4}-w_{3}\right) c_{3}\left(t_{2}-t_{3}\right)=w_{2} \lambda_{2} \tag{14.17}
\end{equation*}
$$

Heat balance on first effect:

$$
\begin{equation*}
W_{s} \lambda_{s}+\left(w_{F}-w_{4}-w_{3}-w_{2}\right) c_{2}\left(t_{1}-t_{2}\right)=w_{1} \lambda_{1} \tag{14.18}
\end{equation*}
$$

Material balance:

$$
\begin{equation*}
w_{1-4}=w_{1}+w_{2}+w_{3}+w_{4} \tag{14.19}
\end{equation*}
$$

The surface relations will be the same as before, since it is practical to impose the restriction that the surface in each of the bodies be identical. It has also been shown by experience that under this condition the pressure differences between effects will be approximately equal. If steam enters the first effect of a quadruple-effect evaporator at atmospheric pressure and the last effect is at $26 \mathrm{in} . \mathrm{Hg}$ vacuum corresponding to 1.95 psia, the pressure difference between the steam and the first effect and from effect to effect will be ($14.7-1.95$)/5. This will enable selection of the saturation pressures in the individual effects. Since the heattransfer coefficients will be different in the individual effects, it may be found that the surfaces defined by Eqs. (14.13) and (14.14) are unequal. This means that owing to the inequality in the overall coefficient in the different effects the Δt across each effect does not correspond to the assumption of an equal division of the total pressure differential. This will be particularly true when the overall coefficients in the different effects differ greatly or when there is considerable flashing in the first effect. To equalize the surface in each body the temperature differences in the individual effects can be adjusted so that a larger temperature
difference will be employed in the effect having the lowest heat transfer coefficient, the heat loads in all effects remaining nearly equal.
Multiple-effect evaporators may be designed for minimum surface or minimum initial cost. These cases have been treated by Bonilla. ${ }^{1}$ The design of multiple-effect evaporators for optimum conditions, however, is more the exception in industry than the rule, the trend being in the direction of standardization.

Example 14.2. Calculation of a Triple-effect Forward-feed Evaporator. It is desired to concentrate $50,000 \mathrm{lb} / \mathrm{hr}$ of a chemical solution at $100^{\circ} \mathrm{F}$ and 10.0 per cent solids to a product which contains 50 per cent solids. Steam is available at 12 psig, and the last effect of a triple-effect evaporator with equal heat-transfer surfaces in each effect will be assumed to operate at a vacuum of $26.0 \mathrm{in} . \mathrm{Hg}$ referred to a $30-\mathrm{in}$. barometer. Water is available at $85^{\circ} \mathrm{F}$ for use in a barometric condenser.

Assume a negligible BPR, an average specific heat of 1.0 in all effects, the condensate from each effect leaves at its saturation temperature and that there are negligible radiation losses. Calculate: (a) Steam consumption, (b) heating surface required for each body, (c) condenser water requirement. The accepted overall coefficients of heat transfer for the different effects will be $U_{1}=600, U_{2}=250$, and $U_{3}=125 \mathrm{Btu}$ / $(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$,

Solution:

Total feed $w_{F}=50,000 \mathrm{lb} / \mathrm{hr}$
Total solids in feed $=0.10 \times 50,000=5000 \mathrm{lb} / \mathrm{hr}$
Total product $=\frac{5000}{0.50}=10,000 \mathrm{lb} / \mathrm{hr}$
Total evaporation, $w_{1-3}=50,000-10,000=40,000 \mathrm{lb} / \mathrm{hr}$
$c_{F}=1.0$.
The balances applying to this problem are

```
First effect: \(W_{s} \lambda_{s}+w_{F}\left(t_{F}-t_{1}\right)=w_{1} \lambda_{1}\)
Second effect: \(w_{1} \lambda_{1}+\left(w_{F}-w_{1}\right)\left(t_{1}-t_{2}\right)=w_{2} \lambda_{\varepsilon}\)
Third effect: \(w_{2} \lambda_{2}+\left(w_{F}-w_{1}-w_{2}\right)\left(t_{2}-t_{3}\right)=w_{3} \lambda_{\mathrm{t}}\)
Material: \(w_{1}+w_{2}+w_{s}=w_{1-3}\)
\(t_{F}=100^{\circ} \mathrm{F}\)
Ts at \(12 \mathrm{psig} \quad=244^{\circ} \mathrm{F}\)
\(T_{8}\) at \(26 \mathrm{in} . \mathrm{Hg}(1.95 \mathrm{psia})=125^{\circ} \mathrm{F}\)
Total temperature difference \(=119^{\circ} \mathrm{F}\)
```

When a forward-feed multiple-effect evaporator employs equal surfaces in each effect, as noted above, experience indicates that the differences in the pressures between effects will be nearly equal. This will rarely be entirely true, but it forms an excellent starting point for the calculation of the pressures in the effects. Any discrepancies can be adjusted later.

Average pressure difference $=\frac{26.70-1.95}{3}=8.25 \mathrm{psi} /$ effect
${ }^{1}$ Bonilla, C. F., Trans.AIChE, 41, 529-537 (1945).

Breakup of the Total Pressure Differenge

	Pressure, psia	$\begin{aligned} & \Delta P, \\ & \mathrm{psi} \end{aligned}$	Steam or vapor, ${ }^{\circ} \mathrm{F}$,	$\lambda, \operatorname{Bta} / 1 \mathrm{~b}$
Steam chest, 1st effect.	26.70		$T_{s}=244$	$\lambda_{s}=949$
Steam chest, 2 d effect.	18.45	8.25	$t_{1}=224$	$\lambda_{1}=961$
Steam chest, 3d effect.	10.20 (20.7 in. Hg)	8.25	$t_{2}=194$	$\lambda_{2}=981$
Vapor to condenser.	1.95 (26 in. Hg)	8.25	$t_{s}=125$	$\lambda_{s}=1022$

$$
\begin{array}{rlrl}
949 W s+50,000(100-224) & = & 961 w_{z} \\
961 w_{1}+\left(50,000-w_{1}\right)(224-194) & = & 981 w_{2} \\
981 w_{2}+\left(50,000-w_{1}-w_{2}\right)(194-125) & = & 1022 w_{3} \\
w_{1}+w_{2}+w_{s} & =40,000
\end{array}
$$

Solving simultaneously,

$$
\begin{gathered}
w_{1}=12,400 \\
w_{2}=13,300 . \\
w_{3}=14,300 \\
w_{1-3}=w_{1}+w_{2}+w_{3}=\frac{40,000}{W s=19,100} \\
A_{1}=\frac{W s \lambda_{s}}{U_{1}\left(T_{s}-t_{1}\right)}=\frac{19,100 \times 949}{600 \times 20}=1510 \mathrm{ft}^{2} \\
A_{2}=\frac{w_{1} \lambda_{1}}{U_{2}\left(t_{1}-t_{9}\right)}=\frac{12,400 \times 961}{250 \times 30}=1590 \\
A_{3}=\frac{w_{2} \lambda_{2}}{U_{2}\left(t_{2}-t_{3}\right)}=\frac{13,300 \times 981}{125 \times 69}=1510 \quad \text { (Use } 1600 \mathrm{ft} / \mathrm{effect} \text {) }
\end{gathered}
$$

Heat to condenser $=w_{3} \lambda_{s}=14,300 \times 1022=14,710,000 \mathrm{Btu} / \mathrm{hr}$
Water requirement $=14,710,000 /(120-85)=420,000 \mathrm{lb} / \mathrm{hr}$ or $420,000 / 500$
$=840 \mathrm{gpm}$
Economy, lb evaporation/lb steam $=40,000 / 19,100=2.09 \mathrm{lb} / \mathrm{lb}$
Remarks. During operation the equal pressure-drop distribution may not maintain itself. This will oceur if there is undue scaling in one of the effects, if a body is gas bound, or if liquor levels are not properly maintained. Another factor may be the withdrawal of a large quantity of steam from one of the effects as a source of low-pressure heating steam. Any deviation from an equal pressure-drop distribution does not mean that the entire multiple-effect assembly will fail to operate but instead that the unit will assume a new pressure distribution and operate with a reduced capacity and steam economy.

Nonalgebraic Solution of Evaporators. It will presently be shown that the use of a simultaneous algebraic solution such as that above can scarcely be applied advantageously to more complicated arrangements or to a great number of effects. In industrial problems it has been found preferable and timesaving to perform the heat and material balances on the evaporator by directly assuming the value of W_{s} and solving each effect by a direct balance on itself instead of through the use of simul-
taneous equations. If the total evaporation based on the assumed value of W_{s} does not equal the required quantity, a new value of W_{s} is assumed and the calculation repeated. This method is demonstrated in Example 14.2a, in which the hint that $W_{S}=19,100$ from Example 14.2 is used.

Example 14.2a. Solution of Example 14.2 by Assuming W_{S}

Heat balance

1. Assume steam to 1 st effect $W_{S}=19,100 \mathrm{lb} / \mathrm{hr}, w_{F}=50,000 \mathrm{lb} / \mathrm{hr}$
$19,100 \mathrm{lb}$ at $12 \mathrm{psig}=19,100 \times 949 \quad=18,100,000 \mathrm{Btu} / \mathrm{hr}$
Deduct for heating feed $=50,000(224-100)=6,200,000$
Available for evaporation $\quad=\overline{11,900,000} \mathrm{Btu} / \mathrm{hr}$
λ_{1} at $224^{\circ} \mathrm{F}=961 \mathrm{Btu} / \mathrm{lb}, w_{1}=11,900,000 / 961=12,400 \mathrm{lb} / \mathrm{hr}$
Transfer to 2 d effect $=50,000-12,400=\quad 37,600 \mathrm{lb} / \mathrm{hr}$
2. Vapors from 1st effect $\quad=11,900,000 \mathrm{Btu} / \mathrm{hr}$

Add flash, 37;600(224-194)
$=1,130,000$
Available for evaporation $\quad=\overline{13,030,000} \mathrm{Btu} / \mathrm{hr}$
λ_{2} at $194^{\circ} \mathrm{F}=981 \mathrm{Btu} / \mathrm{lb}, w_{2}=13,030,000 / 981=13,300 \mathrm{lb} / \mathrm{hr}$
Transfer to 3 d effect $=37,600-13,300=\quad 24,300 \mathrm{lb} / \mathrm{hr}$
3. Vapors from 2d effect $=13,030,000 \mathrm{Btu} / \mathrm{hr}$

Add flash, 24,300(194-125)
$=1,680,000$
Available for evaporation
$=1,14,710,000 \mathrm{Btu} / \mathrm{hr}$
λ_{3} at $125^{\circ} \mathrm{F}=1022 \mathrm{Btu} / \mathrm{lb} w_{3}=14,710,000 / 1022=14,300$
$\begin{array}{ll}\text { Product }=24,300-14,300 & 10,000 \mathrm{lb} / \mathrm{hr}\end{array}$
4. Heat to condenser $\quad=14,710,000 \mathrm{Btu} / \mathrm{hr}$

If the quantities failed to check a new value for W_{s} could be assumed.
As a first trial the steam could have been estimated in the absence of the hint obtained from Exercise 14.2 by the relationship

$$
\begin{equation*}
W_{s}=\frac{w_{e}}{0.75 \times \text { number of effects }} \tag{14.20}
\end{equation*}
$$

where w_{s} is the total pounds of evaporation. Equation (14.20) is based on feed entering at its boiling point. If the feed enters below its boiling point, the factor 0.75 must be reduced somewhat. With the feed at only $100^{\circ} \mathrm{F}$ and the boiling point at $125^{\circ} \mathrm{F}$ the value must be reduced to 0.70 .
Example 14.3. Backward-feed Multiple-effect Evaporator. Conditions are the same as Example 14.2 except using backward feed with overall coefficients of $U_{1}=400$, $U_{2}=250$, and $U_{3}=175 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$.
Solution. As before,

$$
w_{1}=50,000 \mathrm{lb} / \mathrm{hr} \quad w_{1-3}=40,000 \mathrm{lb} / \mathrm{hr}
$$

and

$$
\epsilon_{F}=1.0
$$

The balances applying to this problem are
Third effect: $w_{2} \lambda_{2}+w_{F}\left(t_{F}-t_{3}\right)=w_{3} \lambda_{2}$
Second effect: $w_{1} \lambda_{1}+\left(w_{F}-w_{3}\right)\left(t_{2}-t_{3}\right)=w_{2} \lambda_{2}$
First effect: $W_{S} \lambda_{S}+\left(w_{F}-w_{3}-w_{2}\right)\left(t_{1}-t_{2}\right)=w_{1} \lambda_{1}$

Material:

$$
\begin{aligned}
& w_{1}+w_{2}+w_{3}=w_{1-3} \\
& 981 w_{2}+50,000(100-125)=1022 w_{3} \\
& 961 w_{1}+\left(50,000-w_{3}\right)(125-194)=981 w_{2} \\
& 949 W_{S}+\left(50,000-w_{\mathrm{s}}-w_{2}\right)(194-224)=961 w_{1} \\
& w_{1}+w_{2}+w_{3}=40,000 \\
& w_{1}=15,950 \\
& w_{2}=12,900 \\
& w_{3}=11,150 \\
& W_{s}=16,950 \\
& w_{1-3}=w_{1}+w_{2}+w_{3}=\overline{40,000} \\
& A_{1}=\frac{16,950 \times 949}{400 \times 20}=2010 \mathrm{ft}^{2} \\
& A_{2}=\frac{15,950 \times 961}{250 \times 30}=2040 \mathrm{ft}^{2} \\
& A_{3}=\frac{12,900 \times 981}{175 \times 69}=1050 \mathrm{ft}^{2}
\end{aligned}
$$

Since the heating surfaces for the three effects are far from equal, the temperature differences employed in the effects must therefore be modified to meet the conditions of the problem. For the first trial the average surface was

$$
\frac{(2010+2040+1050)}{3}=1700 \mathrm{ft}^{2}
$$

With a better distribution of temperatures and pressures, however, less than

$$
3 \times 1700=5100 \mathrm{ft}^{2}
$$

of surface may be expected, since the Δt in both of the first two effects will be improved at the expense of only the last effect.

Recalculation:

Assume an average surface of $1500 \mathrm{ft}^{2} /$ effect, and find the temperature differences which will provide these surfaces. Assume

First effect: $T_{S}-t_{1}=28^{\circ} \mathrm{F}, A_{1}=20 / 28 \times 2010=1450 \mathrm{ft}^{2}$
Second effect: $t_{1}-t_{2}=41^{\circ} \mathrm{F}, A_{2}=30 / 41 \times 2040=1490 \mathrm{ft}^{2}$
Third effect: $t_{2}-t_{3}=50^{\circ} \mathrm{F}, A_{3}=69 / 50 \times 1050=1440 \mathrm{ft}^{2}$
$T s-t_{s}=119^{\circ} \mathrm{F}$.
The new temperature-pressure distribution is

	Pressure, psia	Steam or vapor, ${ }^{\circ} \mathrm{F}$	$\lambda, \mathrm{Btu} / \mathrm{lb}$
Steam chest, 1st effect	26.7	$T_{S}=244$	949
Steam chest, 2d effect.	16.0	$t_{1}=216$	968
Steam chest, 3d effect.	$16.4 \mathrm{in} . \mathrm{Hg}$	$t_{2}=175$	992
Vapor to condenser.	26.0 in. Hg	$t_{3}=125$	1022

Solving again for w_{1}, w_{2}, w_{3}, and W_{s},

$$
\begin{array}{rll}
w_{1}=15,450 & A_{1}=1450 & \\
w_{2}=13,200 & A_{2}=1470 & \\
w_{3}=11,350 & A_{3}=1490 & \text { (Use } \left.1500 \mathrm{ft}^{2} / \text { effect }\right) \\
W_{S}=16,850 & &
\end{array}
$$

Heat to condenser $=11,350 \times 1022=11,600,000 \mathrm{Btu} / \mathrm{hr}$
Water requirement $=11,600,000 /(120-85)=332,000 \mathrm{lb} / \mathrm{hr}=332,000 / 500$

$$
=664 \mathrm{gpm}
$$

Economy, lb evaporation/lb steam $=40,000 / 16,850=2.37 \mathrm{lb} / \mathrm{lb}$

	Forward	Backward
Total steam, $\mathrm{lb} / \mathrm{hr}$.	19,100	16,850
Cooling water, gpm	840	664
Total surface, ft^{2}.	4,800	4,500

The operating conditions for both forward and backward feed are shown in Fig. $14.32 a$ and b. Substantiating the simple reasoning, backward feed is more effective thermally than forward feed. Omitted, however, is the maintenance and investment on backward-feed pumps between each effect and the problems of air leakage and flow control. All of these are considerably greater in backward feed.

Optimum Number of Effects. The greater the number of effects the larger the amount of evaporation per pound of steam admitted to the first effect. The operating costs will be less the larger the number of effects. This is offset, however, by the increased first cost of the apparatus and increased maintenance charges for cleaning and replacement, both of which enter as fixed charges. Supervisory labor will be the same for the operation of any number of effects. The cost of condenser water must also be included, and it, too, will decrease the greater the number of effects employed. The optimum number of effects may be obtained by computing the process requirements with two, three, four, or up to six or eight effects and determining the fixed charges and operating cost resulting from each arrangement. When the total cost is plotted against the number of effects, a minimum will occur corresponding to the optimum number of effects. Actually, however, the number of effects in the various heavy chemical industries are fairly standardized. For example, table salt is concentrated in four effects in which parallel feed of liquor is used, caustic soda with two or three effects and backward feed, and sugar with five or six effects and forward feed. Except when introducing an entirely new chemical process it will rarely be necessary to carry out a complete economic analysis.

Bleed Steam. In certain industries and particularly in the production of sugar, there is a great need for low-pressure steam, say 10 to 15 psia, for the large amount of liquor preheating required throughout the plant. For the preheating it is found advantageous to use some of the steam from the first or subsequent effects for various preheating services such as in the decolorization of sugar sirup. Since any vapor formed in the first and later effects will have already been used one or more times for

Fra. 14.32a. Example 14. Forward feed.

(b)

Frg. 14.32b. Example 14. Backward feed.
evaporation, the cost per Btu of the vapor is cheaper than that of fresh steam. Steam can be bled economically from one or more effects for these additional services while reducing the overall heating cost of the plant. To account for this in the heat-balance equations [Eqs. (14.8) through 14.18)] one need only include the term W_{B} for the pounds per hour of bleed steam in the effect in which it occurs. The quantity of bleed steam must also be introduced into the material balance of Eqs. (14.11) and (14.18). To prevent the introduction of one or more
unknowns than there are simultaneous equations, W_{B} should not be entered as another unknown but as a definite number of pounds of bleed steam or as a percentage of the total evaporation if the calculation is for an existing installation.

The Solution of Industrial Problems. ${ }^{1}$ The preceding examples have served to introduce the elementary methods of calculation and the principles of multiple-effect evaporation. Actually, industrial problems are rarely so simple. Instead, the evaporator system must be integrated with the operation of the entire manufacturing process, and this complicates the calculation greatly. The element of experience is essential to the completion of a calculation within a reasonable period of time. In the remainder of this chapter several of the most widely met commercial problems will be analyzed. These are sugar concentration, waste-liquor evaporation in the paper pulp industry, and the production of caustic soda. The analyses involved in their solution should be readily adaptable to the majority of other problems. A fourth process, distillery waste concentration, has been omitted in favor of evaporation by thermocompression. The methods indicated may be employed either for the design of a new evaporator or for the calculation of performance in an existing evaporator.

THE CONCENTRATION OF CANE-SUGAR LIQUORS-FORWARD FEED

Description of the Process. It is the practice in cane-sugar production to strain the juice containing the sugar after it has been pressed from the sugar cane and clarified chemically. In the initial stage of clarification, called defecation, large amounts of colloids and inorganic and organic salts are removed. This is accomplished by the addition of lime to the juice at $200^{\circ} \mathrm{F}$, forming a heavy slime which is removed by settling, decantation, and filtration. The clear solution is then fed to the multipleeffect evaporator for concentration.

Example 14.4. An evaporator installation is to have a capacity for concentrating $229,000 \mathrm{lb} / \mathrm{hr}$ of $13^{\circ} \mathrm{Brix}$ (degrees Brix is the per cent by weight of sugar in the solution) to 60° Brix, at which concentration it will be decolorized. This quantity of sugar solution results from milling 2300 tons of sugar cane per $20-\mathrm{hr}$ day. The raw juices will be heated from 82 to $212^{\circ} \mathrm{F}$ by the use of exhaust vapors bled from the first and second effects. Steam will be available to the first effect at 30 psig.

Solution. The arrangement of equipment is shown in Fig. 14.33 and is justified by the fact that bled vapor is a cheaper preheating medium than fresh steam. In this analysis it is arbitrarily assumed that $37,500 \mathrm{lb} / \mathrm{hr}$ of 15 psig vapor is bled from the first effect for use in the vacuum pans in the crystallizing section of the plant. The
${ }^{1}$ Readers who are not directly interested in chemical evaporation problems may omit the remainder of this chapter without affecting the context of later chapters.

Fig. 14.33. Six-body sugar evaporator with preheaters.

BPR and specific heats of sugar solutions are given in Fig. 14.34. A flow diagram such as that in Fig. 14.33 is usually arrived at from experience or from preliminary studies of total suriace requirements as in Table 14.1.

Table 14.1. Average Evaporation per Square Foot Heating Surface for Sugar Evaporators

	Water evaporated,
Effects	lb/(hr)(ft2)
1	$14-16$
2	$6-8$
3	$5-6$
4	$4-5$
5	$3-4$

In the matter of choosing the number of effects from experience, it is the practice to use a straight quadruple effect if little or no vapor bleeding is required and to add a "preevaporator" as a first effect if excessive bleeding of low pressure vapor are required for preheating feed, etc., or if relatively low-pressure live steam is bled for other plant processes, i.e., vacuum pans. ${ }^{1}$

The forward-feed arrangement is common in the sugar industry, since stronger juices or sirups are sensitive to high temperatures. This procedure places a severe handicap on the last effect of a multiple-effect evaporator where the most viscous juice

boils at the lowest temperature. However, because of the "caramelizing" tendency of high-concentration solutions this procedure is of paramount importance in the preparation of a product of high purity.

Table 14.2 is a convenient reference in estimating the temperature-pressure distribution and for presenting a summary of all the important process and design conditions. Items 2 to 9 inclusive are estimated first, and from these the heat balance can be made.

It is shown in item 2 of Table 14.2 that 30 psig steam is fed in parallel to effects $1 A$ and $1 B$, the temperature $274^{\circ} \mathrm{F}$ in 3 being the saturation temperature corresponding to the steam pressure. The last-effect vapor body is designed to operate under a
${ }^{1}$ Futher discussion of the flow diagram will be given at the conclusion of the heat balance.
vacuum of $23 \mathrm{in} . \mathrm{Hg}\left(147^{\circ} \mathrm{F}\right)$. This is shown in 7 and 8 . Item 13 shows that the sirup leaving the last effect is $60^{\circ} \mathrm{Brix}$. From Fig. 14.34a this concentration corresponds to a boiling temperature of 147 or $154^{\circ} \mathrm{F}$ as shown in 5 . For 6 of Table 14.2 it can be assumed tentatively that the ${ }^{\circ}$ Brix concentration is divided evenly among all the effects; thus, the BPR for each effect can be read from Fig. 14.34a. The ultimate material distribution determined from the heat balance, however, will give a precise

Table 14.2. Evaporator Summary

Item	Effects					
	1A	1B	2	3	4	5
1. Steam flow, $\mathrm{lb} / \mathrm{hr}$	42,600	38,000				
2. Steam pressure, psi/in.	30	30	15	5	$4^{\prime \prime}$	141/2'
3. Steam temp, ${ }^{\circ} \mathrm{F}$	274	274	250	227	205	181
4. $\Delta t,{ }^{\circ} \mathrm{F}$	23	23	21	20	20	27
5. Liquor temp, ${ }^{\circ} \mathrm{F}$	251	251	229	207	185	154
6. $\mathrm{BPR},{ }^{\circ} \mathrm{F}$			2	2	4	7
7. Vapor temp, ${ }^{\circ} \mathrm{F}$	250	- 250	227	205	181	147
8. Vapor pressure, psi/in. Hg	15	15	5	4	141/2	23
9. λ, Btu/b	946	946	960	975	990	1,010
10. Liquor in, $\mathrm{lb} / \mathrm{hr}$	229,000	190,200	154,000	117,100	87,800	64,000
11. Liquor out, $\mathrm{lb} / \mathrm{hr}$	190,200	154,000	117,100	87,800	64,000	49,600
12. Evaporation, $\mathrm{lb} / \mathrm{hr}$	38,800	36,200	36,900	29,300	23,800	14,400
13. ${ }^{\circ}$ Brix (out)	15.7	19.4	25.5	34.3	46.5	60.0
14. A, ft^{2}	3,500	3,500	5,000	5,000	5,000	3,500
15. $U_{D}, \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$	478	425	310	264	219	138
16. $U_{D} \Delta t, \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)$	11,000	9,780	6,520	5,270	4,390	3,740

estimate of the Brix distribution in the different effects. Item 13 is a summary of the Iatter. In order to complete 2 to 9 inclusive, the distribution of temperature differences in each effect must be determined as in 4 .
The total temperature difference in the evaporator system is $274^{\circ}-147=127^{\circ} \mathrm{F}$. From the total must be subtracted the sum of all the BPR (i.e., from effect $1 B$ to the fifth effect inclusive), a sum of $16^{\circ} \mathrm{F}$. This will give $127-16=111^{\circ} \mathrm{F}$ as the total "effective" temperature difference. The latter is distributed along the foliowing lines: (a) The total is distributed in proportion to the values found in practice for a unit with the same number of effects. (b) The total is distributed on the basis of accepted average values of heat flux $U_{D} \Delta t=Q / A$ as found in industry and with values of U_{D} estimated from similar operations. Accepted values of the flux are given in (16) of Table 14.2. They may be redistributed for a different number of effects. (c) An equal distribution of the total pressure drop is assumed through the system. Either method will give a sufficiently close estimate of the temperature difference distribution for obtaining items 2 to 9 required for working the heat balance. It might be noted here that, if the estimated values of the temperature
differences are found to be very much out of line with those found in practice, they must be revised. Having estimated the distribution of the temperature difference the saturated vapor pressure above the liquor or the saturated steam pressure in the following effect may be determined from the steam tables (Table 7). The latent heats corresponding to saturated vapor pressures will be obtained similarly.

Since it is planned to bleed vapors from the different effects for preheating both the raw and clarified sugar solutions, it is necessary to determine the quantities which will be bled from each effect. The raw sugar solutions will be preheated from 82 to 212°, a range of $130^{\circ} \mathrm{F}$. Vapors from the fourth effect will be used to preheat the raw sugar solution from 82 to $144^{\circ} \mathrm{F}$, vapors from the third effect from 144 to 184°, and vapors from the second effect from 184 to 212°. Heat quantities and surfaces for the juice heaters are calculated as in Table 14.3. Similarly juice from the clarifier is preheated by second-effect vapors from 200 to 220° and by first-effect evaporators from 220 to $243^{\circ} \mathrm{F}$. In all instances the preheaters are designed to permit a duplication of surface, although in some instances overdesign obviously results. A spare heater is usually included in the system to allow continuity of operation during cleaning. In arriving at the temperature range for the individual preheaters a minimum terminal difference of $7^{\circ} \mathrm{F}$ has been used. Larger terminal differences may be employed if the spread of temperatures makes them permissible.

Table 14.3. Sugar-juice Heaters

Raw-juice heaters

1. $229,000(212-184)(0.91)$
$=5,840,000 \mathrm{Btu} / \mathrm{hr}$
Vapor temp. $=227^{\circ} \mathrm{F} \quad \Delta t=26.6^{\circ} \mathrm{F}$
$U_{D}=231$
Surface, $A=\frac{5,840,000}{26.6 \times 231}=950 \mathrm{ft}^{2}$
2. $229,000(184-144)(0.90)$

$$
=8,250,000 \mathrm{Btu} / \mathrm{hr}
$$

Vapor temp. $=205^{\circ} \mathrm{F} \quad \Delta t=37.6^{\circ} \mathrm{F}$
Surface, $A=\frac{8,250,000}{37.6 \times 230}=950 \mathrm{ft}^{2}$
3. $229,000(144-82)(.90)=12,800,000$

Vapor temp. $=181^{\circ} \mathrm{F} \quad \Delta t=62.2^{\circ} \mathrm{F}$.
Surface, $A=\frac{12,800,000}{62.2 \times 217}=950 \mathrm{ft}^{2}$
Use 3 heaters at $1000 \mathrm{ft}^{2}$ each plus 1
heater as spare

Clear-juice heaters

1. $229,000(243-220)(0.91)$
$=4,800,000 \mathrm{Btu} / \mathrm{hr}$
Vapor temp. $=250^{\circ} \mathrm{F} \quad \Delta t=15.8^{\circ} \mathrm{F}$
$U_{D}=234$
Surface, $A=\frac{4,800,000}{15.8 \times 234}=1300 \mathrm{ft}^{2}$
2. $229,000(220-200)(0.90)$
$=4,120,000 \mathrm{Btu} / \mathrm{hr}$
Vapor temp. $=227^{\circ} \mathrm{F} \quad \Delta t=14.8^{\circ} \mathrm{F}$ Surface, $A=\frac{4,120,000}{14.8 \times 214}=1300 \mathrm{ft}^{2}$
Use 2 heaters at $1300 \mathrm{ft}^{2}$ each plus 1 heater at $1300 \mathrm{ft}^{2}$ as spare

Table 14.4 shows the heat and material balance for the evaporator. To effect a balance it is necessary to estimate correctly the steam flow to the first effect. In the simple case where no vapors are bled for process heating an assumption is made by using a quantity of steam which is about 20 per cent above theoretical, i.e., the hourly evaporation divided by the number of effects. In the present case where excessive vapors are bled, the "extrapolated evaporation" is divided by the number of effects. The extrapolated evaporation is equivalent to the actual plus that which the vapors could effect if not bled for process work. Since only an estimate of the steam is

Table 14.4. Heat Balance

Effect	Bta/hr	Evaporation, $\mathrm{lb} / \mathrm{hr}$
1A. Heat in steam $=42,600 \times 929 \times .97 \ldots \ldots$ Heating liquor $=\quad 229,000(251-243), 91$.	$\begin{gathered} 38,400,000 * \\ 1,670,000 \end{gathered}$	
- 38,800	36,730,000/946	38,800
Liquor to 1B $=190,200$		
18. Heat in steam $=38,000 \times 929 \times .97$.	34,200,000*	
- 36,200	34,200,000/946	36,200
Liquor to 2d effect $=154,000$		
2. Heat in 1A vapors.	36,730,000	
Heat in 1B vapors.	34,200,000	
Total heat available.	70,930,000	
First effect cond. firsh $=80,600(274-250)$	1,940,000	
	72,870,000	
Heat to vacuum pans $=37,500 \times 946$.	-35,500,000	
	37,370,000	
Heat to clear-juice heaters.	- 4,800,000	
Heat to 2d effect.	32,570,000*	
Liquor flash $=154,000(251-229) .85$.	$\begin{array}{r} \\ +2.880 .000 \\ \hline\end{array}$	
36,900	35,450,000/963	36,900
Liquor to $3 \mathrm{~d}=\overline{117,100}$		
3. Heat in 2 d vapors.	35,450,000	
Cond. flash $=37,500(250-227)$.	865,000	
	36,315,000	
Heat to clear-juice heaters.	- 4,120,000	
	32,195,000	
Heat to raw-juice heaters.	- 5:840,000	
	26,355,000*	
Liquor flash $=117,100(229-207) .83$.	+ 2,150,000	
29,300	28,505,000/975	29,300
Liquor to 4 th $=87,800$		
4. Heat in 3d vapors.........	28,505,000	
Cond. flash $=74,200(227-205)$.	1,630,000	
	30,135,000	
Heat to raw-juice heaters.	- 8,250,000	
	21,885,000*	
Liquor flash $=87,800(207-185) .80$.	+ 1,540,000	
23,800	23,425,000/989	23,800
Liquor to 5 th $=\overline{64,000}$		
5. Hest in 4th vapors..	23,425,000	
Cond. flash $=101,400(205-181)$.	2,480,000	
	25,905,000	
Heat to raw-juice heaters.	$-12,800,000$	
	13,105,000*	
Liquor flash $=64,000(184-154) .74$.	+1,470,000	
14,400	14,575,000/1010	14,400
Prod. discharge $=\overline{49,600}$	Total hourly evaporation	179,400

* Heat supplied by heating element.
required, the following rule can be used to obtain the extrapolated evaporation: Add to the actual evaporation the equivalent evaporation of the bled vapors thus:
$L b / h r$
(a) Actual evaporation. .. 179,400
(b) Equivalent evaporation from vapors of 1st effect used for vacuum pans ($4 \times 35,500,000$)/977.

145,500
(c) Equivalent evaporation from lst effect vapors used for clarified-juice

19,700
(d) Equivalent evaporation from $2 d$ effect vapors used for clarified- and rawjuice heaters, ($3 \times 9,960,000$)/977

30,600
(e) Equivalent evaporation from 3d effect vapors used for raw-juice heaters, $(2 \times 8,250,000) / 977$

17,900
(f) Equivalent evaporation from 4th effect vapors used for raw-juice heaters, $(1 \times 12,800,000) / 977$

13,100
Extrapolated evaporation
406,200

$$
\begin{aligned}
\text { Estimated steam quantity } \frac{406,200}{5} & =81,240 \mathrm{lb} / \mathrm{hr} \\
\text { Actual steam required from final heat balance } & =\frac{80,600}{640} \mathrm{lb} / \mathrm{hr} \\
\text { Error } & =\frac{1}{}
\end{aligned}
$$

This method of estimating the steam quantity to the first effect gives quite consistent results and can be used as a "first" trial in Table 14.4. One or two trials will determine the exact steam flow for obtaining the required evaporation.
It will be noted from Table 14.4 that liquor and steam flow in series through alk effects (in forward-feed arrangement) except for the first effect where the total steam is divided for parallel flow between effects 1A and 1B. The latter procedure is common where excessive evaporation in a single effect would require a very large vapor body. The division of the total steam in the heat balance between effects 1 A and 1 B is arbitrary, especially if equal heating surface will be supplied. However, it is the usual practice to divide the total steam in the ratio of $1.1 / 1.0$ for effects $1 \mathrm{~A} / 1 \mathrm{~B}$ to simplify calculations and to take into account the fact that the 1 A effect will have a higher heat-transfer coefficient and thus use more steam for greater evaporation.
In effects 1 A and 1 B liquor must be preheated to its boiling point before evaporation commences. In all other effects the liquor flashes or vaporizes a portion of its water on entering the following body. To increase the steam economy still further, it is customary to flash the condensate to the vapor space of the following effect. Thus the total steam condensate is flashed to the vapor space in the first effect, and the vapors obtained from this flash are added to the total vapors leaving the 1A and 1B effects. Likewise the net condensate in the second effect $(38,800+36,200-37,500$, which was removed for vacuum pans) is flashed to the corresponding second-effect saturated vapor, etc. It will be noted that the total flash in each effect is cumulative, since the condensate flows in series to a common discharge header through a series of flash tanks. A well-designed condensate flash system may save as much as 10 per cent of the live-steam requirement.
The heat balance is completed when one obtains a product from the last effect equal in quantity and ${ }^{\circ}$ Brix concentration to that for which the evaporator is being designed. Thus a material balance in the present case shows:

$$
\begin{aligned}
\text { Feed } & =229,000 \mathrm{lb} / \mathrm{hr} \times 0.13=29,800 \mathrm{lb} / \mathrm{hr} \text { sugar } \\
\text { Discharge } & =\frac{29,800}{0.60}=49,600 \mathrm{lb} / \mathrm{hr} \text { of } 60^{\circ} \mathrm{Brix} \text { sugar } \\
\text { Evaporation } & =229,000-49,600=179,400 \mathrm{lb} / \mathrm{hr} \text { water evaporated }
\end{aligned}
$$

If an incorrect quantity of steam is assumed or a very poor temperature distribution is made, the required evaporation or product discharged will not be obtained. In the latter case, an apportionment of the difference between the required evaporation and that obtained in the first trial, based upon the assumed steam quantity and a recalculation of the heat balance, will give results close enough for practical purposes. In general, if the heat balance is off by less than 1 per cent in product or evaporation, it may be considered to check.

The vapors from the last effect can be used for process heating or carried to a condenser. Evaporator vapors are used to heat the juice before and after clarification by means of two sets of heaters. In Fig. 14.33 the heaters are grouped in sets of four and three. The first set is for preheating the raw juice with vapors of the second, third, and fourth effects. The second set is for preheating the clarified juice before it enters the first effect of the evaporator and uses vapors from the first and second effects. Each set of heaters operates with one less than that indicated, the omitted unit acting as a spare.
The first four effects of the evaporator system are designed to have bodies of the long-tube vertical-film type (Fig. 14.27), while the fifth effeet is provided with a calandria-type body (Fig. 14.23). The first four effects have catchalls with tangential vapor inlets and bottom outlets, whereas the fifth effect is designed with a top vapor outlet. The entire evaporator unit is arranged to allow by-passing any unit from the system for cleaning or repair.
Vacuum is maintained by a barometric condenser and ejector. The gallons per minute of water required in the barometric condenser is calculated from Eq. (14.4). Where low vacuum and cold water are combined as in the present example, a value of $15^{\circ} \mathrm{F}$ may be used for the approach temperature difference t_{a}.

$$
\begin{equation*}
\text { Water }=\frac{14,575,000}{500(147-82-15)}=583 \mathrm{gpm} \tag{14.4}
\end{equation*}
$$

Discussion. In Table 14.2 items 10 to 13 inclusive summarize the data obtained from the material and heat balance in Table 14.4. The surface design, i.e., the heating element, vapor head, etc., is shown in 14 to 16 inclusive. Item 16 lists values of $U_{D} \Delta t$ employed commercially; dividing these values of $U_{D} \Delta t$ by the estimated Δt yields the values of U_{D} showin in 15. If the values of U_{D} are much out of line with correlated values for similar operation, then a redistribution of either Δt or $U_{D} \Delta t$ may be necessary. Both are affected simultaneously. Surfaces are found by dividing the starred heat loads in Table 14.4 by respective values of $U_{D} \Delta t$.

In designing heaters for both raw and clear juice in Table 14.3 the importance of equal size and duplication of units is emphasized. A careful division of the total heat load was made to allow large temperature differences when using the bled vapors of the different effects. Slightly larger transfer coefficients could have been used, but it is desirable to equalize the surfaces at the expense of arbitrarily varying the transfer coefficients.
A check of Eq. (14.7) will show that it is not imperative to account for the hydrostatic loss when setting up Table 14.2. Since the evaporator
bodies are designed for high velocity and low liquor levels, it has been assumed that any capacity loss due to hydrostatic head is compensated for by a slightly conservative design of surface.

THE EVAPORATION OF PAPER PULP WASTE LIQUORS-BACKWARD FEED

Description of Paper-pulp Production Processes. There are three standard processes for producing paper pulp, namely, the soda, sulfate, and sulfite processes. All three produce wastes which are recovered either because of valuable residues or to avoid public nuisance.

1. In the soda process wood chips are cooked in digesters with caustic soda solution of about $12^{\circ} \mathrm{Be}$. After digestion, the pulp is washed clean with a hose in tanks having screen bottoms or else passed through a filter which is used for washing it. The liquor separated from the washed pulp, called black liquor, contains the resin and lignin of the wood and all the alkali used in the digester. The black liquor is evaporated, and solids are recovered for the value of the alkali.
The soda process is applied to both nonresinous and resinous woods. In the latter case the black liquors tend to foam and evaporators of the long-tube, vertical-film type are used almost exclusively. The solutions are not scale forming, undergo little elevation in boiling point (BPR), and the concentrated product is not excessively viscous. Liquors are usually concentrated to about a 40 per cent solid content by backward feed in a sextuple (or higher) effect evaporator, and the concentrate is subsequently fed to rotary incinerators. The latter produces black ash, which is leached, and the resulting solution is recausticized for use in the digesters.
2. The sulfate pulp process uses a mixture of sodium hydroxide, sodium carbonate, and sodium sulfide for digestion of wood chips. The sulfide is renewed by adding sodium sulfate and reducing it with carbon (thus, "sulfate" process). The process is used on resinous woods, and the content of inorganic material in the waste liquor is higher. It is usually concentrated to about 50 and often 55 per cent. The liquor is more viscous than the soda black liquor of same density, foams more, and has a higher elevation in boiling point owing to the larger content of inorganic solids. The usual practice is to use long-tube vertical-film-type evaporators with six effects or more and with backward feed. Because of the high viscosity in the first effect it is customary to divide the latter into two bodies with parallel steam flow. This procedure increases the liquor rate, which offsets the detrimental effect of the high viscosity on the heattransfer rate.
3. The sulfite pulp process uses calcium or magnesium bisulfite as the active chemical in wood chip digestion. The active material is not
recovered. ${ }^{1}$ When a mill is located in an isolated area the waste liquor is discarded; when a mill is located in nonisolated districts, evaporation of the liquors and burning of the concentrate are required to prevent surface or subsurface water polution. In recent years, however, much development work has been carried out on the fermentation of sulfite liquors for alcohol production.

Example 14.6. A unit concentrating soda pulp black liquor will be designed to evaporate $90,000 \mathrm{lb} / \mathrm{hr}$ of water from a feed of $144,000 \mathrm{lb} / \mathrm{hr}$ which enters at $170^{\circ} \mathrm{F}$ and contains 15.2 per cent solids. This is equivalent to a product discharge of $54,000 \mathrm{lb} / \mathrm{hr}$ containing 40.5 per cent solids. These quantities are based on the production of 150 tons of pulp per day, and the resulting black liquor contains $3500 \mathrm{lb} /$ ton of total solids. Utilities available are dry saturated steam at 35 psig and condenser water at $60^{\circ} \mathrm{F}$.
Solution. Economy studies in the industry indicate that a six-body sextupleeffect evaporator will be required. In this type of unit the liquor flow is arranged for divided feed to the fifth and sixth effects to eliminate the large vapor bodies which would otherwise be required were the total feed passed through in series. From the last two effects the liquor is pumped through the remaining bodies in series, backward flow. The discharge from the first effect, after passing through a liquid-level control valve to a liquor flash tank, is finally sent to a product storage tank. Figure 14.35 illustrates schematically the arrangement of the equipment for this process.
In this type of process all vapor, liquor, and condensate lines are designed with by-pass arrangements, permitting any one body to be cut out for cleaning or maintenance and still allowing the operation of the unit as a quintuple effect.
The vapors from the last effect are condensed in a multijet barometric condenser or are used for heating mill water to $110^{\circ} \mathrm{F}$. If the latter scheme is followed, a surface condenser can be substituted for the multijet condenser.
The factors entering in making the heat balance are similar to those discussed under sugar evaporation. Referring to Table 14.5 it is important first to estimate correctly the temperature-pressure distribution, items 2 to 8 .
The overall temperature difference is $280-125=155^{\circ} \mathrm{F}$ (corresponding to 35 psig and $26 \mathrm{in} . \mathrm{Hg}$). For the estimated per cent solids distribution in each body, the BPR, can be obtained from Fig. 14,36a. The estimated total BPR is $41^{\circ} \mathrm{F}$, and the effective temperature difference (disregarding hydrostatic head factors in accordance with the discussion under sugar evaporators) is $155-41$, or $114^{\circ} \mathrm{F}$. Specific-heat data are given in Fig. 14,36b. The distribution of temperature differences Δt in item 4 is in accordance with general practice, using higher temperature differentials in the first and last effects owing to the larger evaporation loads and the relatively even distribution in the other effects. Slight deviations in the estimated values of the temperaturedifference distribution from what may be found in actual operation will not affect the heat balance or design of the evaporator too greatly. Poor temperature-difference estimates, however, will be reflected by poorly correlatable transfer coefficients. The accepted overall coefficients for multiple-effect soda-black-liquor processes are given

[^35]

GAASNVALI LVAH SSADOYd

Fre. 14.35. Soda black-liquor evaporator.

Tabli 14.5. Evaporator Summary
All bodies will consist of $300^{\circ} 2 \mathrm{in}$. OD, 10 BWG tubes $24^{\prime} 0^{\prime \prime}$ long

Item	Effects					
	1	2	3	4	5	6
1. Steam flow, $\mathrm{lb} / \mathrm{hr}$.	20,000					
2. Steam pressure, psi/in. Hg.	35	14.5	4	$7^{\prime \prime}$	16.5"	$22^{\prime \prime}$
3. Steam temp, ${ }^{\circ} \mathrm{F}$.	280	249	224	199	174	151
4. $\Delta t,{ }^{\circ} \mathrm{F}$.	21	17	18	19	18	21
5. Liquor temp, ${ }^{\circ} \mathrm{F}$.	259	232	206	180	156	130
6. BPR, ${ }^{\circ} \mathrm{F}$.	10	8	7	6	5	5
7. Vapor temp, ${ }^{\circ} \mathrm{F}$.	249	224	198	174	151	125
8. Vapor pressure, psi/in. Hg.	14.5	4	$7{ }^{\prime \prime}$	16.5 "	$22^{\prime \prime}$	$26^{\prime \prime}$
8. $\lambda, \mathrm{Btu} / \mathrm{lb}$.	946	962	978	994	1,008	1,022
10. Liquor in, $\mathrm{lb} / \mathrm{hr}$.	73,400	88,300	101,100	113,000	72,000	22,000
11. Liquor out, $\mathrm{lb} / \mathrm{hr}$.	56,200	73,400	88,300	101, 100	58,300	54,700
12. Evaporation, $\mathrm{lb} / \mathrm{hr}$.	17,200	14,900	12,800	11,900	13,700	17,300
13. Total solids, \%*.	38.9	29.8	24.7	21.6	18.7	20.0
14. $A, \mathrm{ft}_{2} .$.	3,250	3,250	3,250	3,250	3,250	3,250
15. $U_{D}, \mathrm{Btu} /(\mathrm{hr})(\mathrm{ft})^{2}\left({ }^{\circ} \mathrm{F}\right)$.	262	295	252	251	221	221
16. Ub $\Delta t, \mathrm{Btu} /(\mathrm{dr})\left(\mathrm{ft}^{2}\right)$.	5,510	8,000	4,580	4,770	3,980	4,650

* 40.5 per cent from flash tank; $22,000 \mathrm{lb} / \mathrm{hr}$ vaporized in flash tank.

Fig. 14.36a. ${ }^{\circ} \mathrm{Be}$ vs. ${ }^{\circ} \mathrm{F}$ BPR and total dry solids for soda black liquor.

(b)

Frg. 14.36b. Specific heat vs. per cent solids for soda black liquor.
in Table 14.5. If the calculated coefficients differ appreciably from the accepted values, the Δt distribution will have to be altered accordingly.

Table 14.6 shows the procedure in determining the heat balance. It will be observed that this balance is one of trial and error. With some experience in backward-flowevaporator calculations, however, not more than two trials are necessary to obtain the correct balance. A first trial is necessary for determining the approximate quantity of live steam to the first effect. Since the overall material balance (Table 14.5) shows that a total of $90,000 \mathrm{lb} / \mathrm{hr}$ of water is evaporated, the theoretical amount of steam for a six-effect evaporator would be $90,000 / 6$, or $15,000 \mathrm{lb} / \mathrm{hr}$. It is found, however, that the economy of multiple-effect blackrliquor evaporators falls in the order of 75 per cent of theoretical or 6×0.75 which is 4.5 . Thus, as an estimate

$$
\frac{90,000 \mathrm{lb}}{4.5}=20,000 \mathrm{lb} / \mathrm{hr}
$$

of steam will be used for a trial balance. This value is converted to its total evaporation potential by multiplying by its latent heat of vaporization and a factor of about 0.97 to take into account heat losses by radiation.

Since the feed is backward, the quantity of liquor being pumped from the second to the first effect is unknown. In fact, the only known liquor quantity is $54,000 \mathrm{lb} / \mathrm{hr}$ of product discharge leaving the flash tank. Ordinarily the black liquor in the first effect is not concentrated to the final desired solid content, but several of the last per cent of water are allowed to vaporize in a flash tank which is located ahead of the first effect and which is connected to one of the low-pressure evaporator bodies as shown in Fig. 14.35. In tbis instance the flash tank receiving the discharge from the first effect is piped to the vapor body of the third effect, which is at a saturation temperature of $199^{\circ} \mathrm{F}$. Since the solution discharged from the first effect has a BPR of $10^{\circ} \mathrm{F}$, its actual boiling temperature in the third effect is $199+10=209^{\circ} \mathrm{F}$ and a flash corresponding to 259 to $209^{\circ} \mathrm{F}$ is effected.

If the quantity of liquor discharged from the first effect were known, the amount of additional water evaporated by flash could easily be calculated. An estimate is therefore made of this quantity as follows:

Divide the total evaporation by the number of effects, i.e., $90,000 / 6=15,000$, and add to it about 15 per cent, giving a total of $17,200 \mathrm{lb} / \mathrm{hr}$. The latter is an estimate of the amount of evaporation in the first effect. Since the flash is usually a few per cent of the product (here $2200 / 54,000=4.1$ per cent), an estimated value of the flash is added to the evaporation in the first effect and the total added to the product discharge from the flash tank: thus $54,000+(17,200+2200)=73,400 \mathrm{lb} / \mathrm{hr}$. This quantity is the estimated discharge from the second effect and must be preheated from 232 to $259^{\circ} \mathrm{F}$, the boiling point in the first effect. The latter is indicated in item 1 b of the heat-balance calculations, Table 14.6. By subtracting the preheat from $1 a$ and dividing the difference $(16,270,000 / 946)$ by the latent heat of vaporization corresponding to the saturated vapor pressure in the first effect, the amount of actual evaporation in the first effect $1 c$ is obtained. The latter value should correspond to that estimated. If it does not check, the value of the discharge liquor from the second effect $1 b$ is revised to bring the estimated and the calculated evaporation rates in line. Moreover, since the preheat load $1 b$ is usually in the order of 8 to 10 per cent of the steam load $1 a$ only a small change is ordinarily required in the former to balance the estimated and calculated evaporation rates. The discharge to the flash tank is the difference between $1 b$ and $1 c$. The amount of flashed vapor is equal to the heat load $1 d$ divided by the latent heat of vaporization corresponding to

Table 14.6. Heat Balance
Cooling water at $60^{\circ} \mathrm{F}=\frac{17,750,000}{500(125-15-60)}=710 \mathrm{gpm}$

Effect

* Radiation factor.
\dagger For surface caloulation.
saturated pressure in the third effect. Subtracting the flash le from $1 d$ should give the known product in $1 f$. If a deviation from the product is obtained, slight changes are required in $1 d, 1 c$, and $1 b$ to complete the balance in the first effect.

In the second effect the value of $2 a$ corresponds to the heat load of the vapors leaving the first effect and entering the second effect steam chest. The value of $2 d$ is equal to $1 b$, which has already been determined. An estimate of $2 b$ determines $2 c$. A check on the estimated value of $2 b$ is obtained if $2 b-2 c=2 d$. If they are unequal, a slight change in $2 b$ will establish the equality.

The value of item $3 a$ corresponds to the heat load of vapors leaving the second effect. Moreover, to increase steam economy the condensate from the second effect is discharged through a flash tank into a condensate header. The flash tank is piped to the steam chest of the third effect. Item $3 b$ shows the equivalent heat load added to the steam chest of the third effect by flashing the condensate of the second effect into it.

Since item $3 f$ equals $2 b$, an estimate of $3 d$ determines the value of $3 e$. A check on the estimate $3 d$ is determined by the equality of the values under $3 d-3 e=3 f$.

Item $4 a$ is the net heat load in the third effect vapors and $4 b$ is the combined condensate flash from effects 2 and 3; i.e., $17,200+14,900=32,100 \mathrm{lb} / \mathrm{hr}$. Item $4 c$ corresponds to $1 d$, since it was stated above that the discharge from the furst effect passed through a flash tank piped to the steam chest of the fourth effect (or to the vapor line of the third effect). The flashed vapors are therefore used as an additional source of heat for evaporation and are included in the total heat load in the vapors entering the fourth-effect steam chest $4 d$. Item $4 e$ is estimated similarly to $3 d$, etc. It will be noted, however, that in using a temperature differential for preheating the liquor to the boiling temperature, $180^{\circ} \mathrm{F}$, the liquor was preheated from 143 to $180^{\circ} \mathrm{F}$. From Table 14.5 it will be observed that the boiling points in effects 5 and 6 are, respectively, 156 and 130° F. Since the feed is passed through the last two effects in parallel, the common temperature of the combined discharged liquor from these effects is taken as their arithmetic average; i.e., $(156+130) / 2=143^{\circ} \mathrm{F}$.

Item $5 b$ in Table 14.6 is the combined condensate flash of effects 2 , 3 , and 4 ; i.e., $17,200+14,900+12,800=44,900 \mathrm{lb} / \mathrm{hr}$. Since feed enters above its boiling-point temperature in both the fifth and sixth effects, a certain amount will flash on entering the two bodies. Items $5 d$ and $6 d$ show the flash calculations. The discharge from the fifth effect, $5 f$, combined with the discharge from the sixth effect, $6 f$, is pumped to the fourth effect.

Item $6 b$ is the combined condensate flash of effects 2 to 5 inclusive. When added to $6 a$ the sum gives the total heat load to the steam chest of the sixth effect.

If the heat balance is closed so that the total calculated hourly evaporation is found to be equal to that which is required in the material balance, then the sum of $5 f$ and $6 f$ will be equal to $4 e$ and the estimated steam requirement will be satisfactory. If the heat balance does not close on the first trial, a revision of the steam estimate is made and 1 through 6 inclusive are repeated. To revise the steam requirements it is seen that the algebraic difference between the obtained and required evaporation divided by the estimated economy need only be added to the initial estimate of steam. Thus, if the calculated evaporation were $94,500 \mathrm{lb} / \mathrm{hr},(90,000-94,500) / 4.5=-1000$ or approximately $20,000-1000=19,000 \mathrm{lb} / \mathrm{hr}$ of steam would be used for reworking the balance. Ordinarily not more than two trials need be made to obtain a closure in the balance.

Each body in Fig. 14.35 is of the long-tube vertical-film type Fig. 14.27.
The water rating of a multijet barometric condenser is quite similar to that for a
countercurrent barometric type employed on sugar evaporators. The major difference is in the allowable approach to the vapor temperature. Whereas in the countercurrent barometric condenser it is permissible to use about $5^{\circ} \mathrm{F}$ approach for a good design, the multijet is designed conservatively for a $15^{\circ} \mathrm{F}$ approach. Thus, the gallons per minute required are

$$
\frac{Q}{500\left(T_{s}-15-t_{W}\right)}=\frac{17,750,000}{500(125-15-60)}=710 \mathrm{gpm}
$$

In using a surface condenser it will not be desirable to approach the saturated vapor temperature closer than $15^{\circ} \mathrm{F}$; thus, 710 gpm can be heated from 60 to $110^{\circ} \mathrm{F}$ for use as mill water.

CAUSTIC SODA CONCENTRATION-FORCED-CIRCULATION EVAPORATORS

Description of the Process. The concentration of caustic soda solutions obtained either from the reaction of soda ash and lime or from the electrolytic decomposition of brine present certain distinct problems: (1) Caustic solutions have a high elevation in boiling point which causes a large loss of available temperature difference in multiple-effect evaporators. (2) The concentrated solutions are highly viscous, reducing sharply the heat-transfer rate in natural-circulation evaporators. (3) Caustic solutions may have detrimental effects on steel, causing caustic embrittlement. (4) Caustic solutions may require the removal of large quantities of salt as the solution becomes concentrated.

In order to avoid caustic embrittlement of steel, solid nickel tubes are used along with nickel-clad plate-steel bodies. All auxiliary equipment which comes in contact with the caustic solution is also nickel clad. Due to the costliness of nickel as a material of construction, however, it is important to design this class of equipment for as small a heating surface as possible. Since the liquor-film heat-transfer coefficient is a function of the velocity of the caustic solution through the tubes, a high velocity must be established in order to obtain a large transfer coefficient in the tubes:

The process flow sheet is shown in Fig. 14.37. Cell liquor feed, along with filtrate and wash brine from the salt filter or centrifuge, is introduced into the filtrate feed tank a. From a the liquor is pumped into the second effect b of the evaporator where partial concentration and partial salt precipitation occur. The resulting semiconcentrated effluent from the second effect is pumped into the weak-liquor settler c along with the slurry underflow from the 50 per cent caustic settler d. The underflow from a contains all the precipitated salt from the system in the form of a slurry. This slurry is pumped to the filter or centrifuge to remove the precipitated salt and to wash the salt with brine. The filtrate entering the filtrate tank a is recirculated through the system with cell liquor feed

PROCESS HEAT TRANSFER

Fig. 14.37. Double-effect forced-circulation caustic evaporator.
as described above. The overflow from c is pumped into the first effect of the evaporator f for further concentration and further salt precipitation. The effluent from the first effect is at a temperature of $246^{\circ} \mathrm{F}$ and contains concentrated caustic solution and a suspension of salt. This

Fig. 14.38. Boiling-point-preasure relations of caustic soda solutions. (Columbia Alkali Corporation.)
slurry is pumped to the forced-circulation flash tank g where it is cooled to approximately $192^{\circ} \mathrm{F}$ and where further flash evaporation and further salt precipitation occurs. The flash-tank effluent is pumped to d. The underflow from this settler consists of a salt slurry which flows into c along with the second-effect effluent, and the salt is eventually removed
by a as described above. The overflow from d is the product liquor containing $50 \% \mathrm{NaOH}, 2.7 \% \mathrm{NaCl}$, and 47.3% water.

Steam, usually 20 psig , is introduced into the heating element of the first effect. Here the steam condenses and gives up its latent heat to the liquor circulated through the tubes, causing this liquor to boil when it

Fig. 14.39. Specific gravity of caustic soda solutions. (Columbia Alkali Corporation.)
reaches the vapor body of the first effect. The condensate from the first effect passes through a trap into a flash chamber h, where flashing occurs with the evolution of more vapors. The vapors from the first effect leave through a catchall k, returning the entrained liquor back to the bottom of the first-effect body. The stripped vapors leaving the catchall combine with the condensate flash vapors and are introduced into the second-effect heating element, where they are condensed and removed by
means of a condensate pump. The condensation of these vapors produce further boiling in the second-effect vapor body. The vapors leaving the second body pass through another catchall l into a barometric condenser m, where they are totally condensed by contact with cold water. The

Fig. 14.40a. Specific heats of high-concentration caustic soda solutions.

(b)

Fig. 14.40b. Specific heats of low-concentration caustic soda solutions. (Columbia Alkali Corporation.)
noncondensables from the system eventually reach the condenser through a system of vent piping, and there they are removed by a steam jet ejector n.

Example 14.6. Electrolytic cell liquor containing $8.75 \% \mathrm{NaOH}, \mathbf{1 6 . 6 0 \%} \mathrm{NaCl}$, and 74.65% water at a temperature of $120^{\circ} \mathrm{F}$ is to be concentrated to a product containing $50 \% \mathrm{NaOH}, 2.75 \% \mathrm{NaCl}$, and 47.25% water at a temperature of $192^{\circ} \mathrm{F}$. The
capacity of the unit is $\mathbf{2 5}$ tons per $\mathbf{2 0}$-hour day based on $\mathbf{1 0 0 \%}$ caustic soda. Physical properties are given in Figs. 14.38 to 14.41.

Solution. Table 14.7 is a material balance. It will be observed that the calculations are conveniently based on 1 ton NaOH production per hour, and therefore the numerals in Fig. 14.37 are obtained by using a factor of 1.25 greater than those shown on Table 14.7.

From the material balance and from the temperature-pressure distribution in Table 14.8 the heat balance (Table 14.9) can be worked out rather easily for this evaporator.

Fig. 14.41. Relative heat content of caustic soda solutions. (Columbia Alkchi Corporation.)

In Table 14.8 the total temperature difference between the saturated live steam and $27 \mathrm{in} . \mathrm{Hg}$ vacuum is $274-115=159^{\circ} \mathrm{F}$. From Fig. 14.38 the estimated BPR of the solutions in the first and second effects is 77 and $26^{\circ} \mathrm{F}$, respectively, corresponding to concentrations appearing in Table 14.7. Thus, the effective temperature difference is $159-(77+26)=56^{\circ} \mathrm{F}$. The latter is arbitrarily divided evenly between the two effects. In addition to the two effects of the evaporator, an additional amount of evaporation is obtained in the forced-cireulation flash tank. The latter operates at 27 in . Hg and receives the concentrated slurry from the first effect and cools it from 246 to $192^{\circ} \mathrm{F}$. The last column of Table 14.8 summarizes the thermal and masterial quantities for the flash tank.

Table 14.7. Caustic Evaporator Material Balance
Basis: 1 ton/hr NaOH

> Cell liquor at $120^{\circ} \mathrm{F}$ $8.75 \% \mathrm{NaOH}=2000$
> $16.6 \% \mathrm{NaCl}=3800$
> $74.65 \% \mathrm{H}_{3} \mathrm{O}=17050$
> Total oell liquor $=\overline{22850}$
> Wath at $80^{\circ} \mathrm{F}$
> $\begin{aligned} 25 \% \mathrm{NaCl} & =340 \\ 75 \% \mathrm{H}_{2} \mathrm{O} & =1020 \\ \text { Total wash } & =1360\end{aligned}$

NaOH		NaCl		$\underset{\mathrm{Lb}}{\mathrm{H}_{2} \mathrm{O}}$	$\begin{gathered} \text { Total, } \\ \mathrm{Lb}, \end{gathered}$
\%	Lb	\%	Lb		
8.75	2000	16.60	3800	17,050 1,020	$22,850$
50.00	2000		4140	18,070	24,210
			4030	18,180	20,210
	8000		5505	20,775	32,280
50	2500	1390	2,360	6,500
29̈. $\dot{6}$	$\begin{aligned} & 85000 \\ & 8500 \end{aligned}$	8.28	6895 2835	$\begin{aligned} & 23,135 \\ & 23,135 \end{aligned}$	38,780 34,470
	\cdots		4060		
	4000		5395	10,905	20,300
		25.00	340	1,020	1,360
	4000		5735	11,925	21,660
23.05	4000	9.84	1705	11,925	17,630
			4030		
23.05	4000	P. 84	1705	11.925	17,630
8.75	2000	16.60	3800	17,050	22,850
14.82	6000	13.60	5505	28,975	40,480
.....			8,200	8,200
	6000		5505	20,775	
19.95	6000	ii. 2 2 2	3370	20,775	30,045.
			2135		
24.62	4500	8.22	1500	12,230	18,230
			7,537	7,537
	4500		1500	4,693	10,693
47.05	4500	$3 \mathrm{Brg4}$	367	4,693	9,560
			1133		1.133
	4500		1500	4.693	10,693
	443	443
	4500		1500	4.250	10,250
50.00	4500	2.75	248	4,250	8,998
					${ }_{10}^{1,252}$
50.00	$\begin{aligned} & 4500 \\ & 2000 \end{aligned}$	2.75	$\begin{array}{r} 1500 \\ 110 \end{array}$	$\begin{aligned} & 4,250 \\ & 1,890 \end{aligned}$	10,250 4,000
	2500		1390	2,360	6,250
		.	1252		1,252
50.00	2500	2.75	138	2,380	4,998

[^36]It was noted that in a forced-circulation evaporator the surface is not a direct function of the temperature difference between the boiling solution and the saturated vapor temperature in the steam chest. The surface in a forced-circulation evaporator is determined by an economic balance between the size of the evaporator and the rata of circulation or, what amounts to the same thing, the power requirements of the pumps.

Table 14.8. Caustic Evaporator Summart*

Item	Effect		Flash tank
	I	II	
1. Steam pressure, psi.	30		
2. Steam temperature, ${ }^{\circ} \mathrm{F}$.	274	169	
3. $\Delta t,{ }^{\circ} \mathrm{F}$.	28	28	
4. Liquor temperature, ${ }^{\circ} \mathrm{F}$	246	141	192
5. BPR, ${ }^{\circ} \mathrm{F}$.	77	26	77
6. Vapor temperature, ${ }^{\circ} \mathrm{F}$.	169	115	115
7. $\lambda, \mathrm{Btu} / \mathrm{lb}$.	997	1,027	1,027
8. Feed, $\mathrm{lb} / \mathrm{hr}^{*}$.	22,788	50,602	13,367
9. Product, lb/hr*.	13,367	40,352	12,813
10. Evaporation, lb/hr*	9,421	10,250	554
11. Heat flow, $\mathrm{Btu} / \mathrm{hr}^{*}$.	11,890,000	11,020,000	
12. $U_{D}, \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$.	700		
13. $A, \mathrm{ft}^{2} \ldots$.	683	683	
14. Tubes, OD, in. and BWG	1, 16	1, 16	
15. Tube length, ft.	7	7	
16. No. tubes.	432	432	
17. Circulating pump, gpm.	3200 at 20 ft	3200 at 20 ft	167 at 45 ft
18. Apparent efficiency, \%.	54	64	
18. BHP.	38	35	8.2
20. Motor, hp.	40	40	10.0

* Correspond to actual flows in Fig. 14.37.

A method generally used to solve for surface requirements is indicated below. In desigaing for optimum surface it is customary to use about 8 fps velocity through the tubes of the heater. Furthermore, in this illustration tubes will be 1 in . OD, 16 BWG, solid nickel, $7^{\prime} 0^{\prime \prime}$ long arranged on a two-pass layout. The heaters must be designed for sufficient surface to transfer enough heat from the vapor or steam side to satisfy the heat quantities under 11 of Table 14.8.

For effect $I . \quad 0.8 w\left(t_{x}-246\right)=11,840,000=U_{D} A \Delta t$. That is, by circulating w $\mathrm{lb} / \mathrm{hr}$ of liquid through the tubes and raising the temperature of the latter to t_{x}, a small temperature differential above the saturated-solution boiling temperature in the flash chamber, a gentle flash will occur with not too rapid a crystal growth. By assuming a given value t_{x}, both w and Δt are determined. Furthermore, by designing for a given velocity of 8 fps , the value of U_{c}, the clean overall coefficient, is determined from the thermal characteristics of the solution. This is illustrated below:

$$
G=V(s \times 62.5 \times 3600)=8 \times 1.5 \times 62.5 \times 3600=2,700,000, \mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)
$$

For this mass velocity a tube-film coefficient approximately equal to 1375 can be obtained from the methods employed in Chap. 7. Combining the latter with a steam film coefficient of approximately 1500 will give a value for U_{C} or U_{D} equal to 700 . Setting up the following table:

$t_{x},{ }^{\circ} \mathrm{F}$	$w, \mathrm{lb} / \mathrm{hr}$	Δt	U_{c}	A, ft^{2}	a_{t}, flow area per pass, ft^{2}	$G_{\text {oalo }}$	$U_{\text {sale }}$
251	$2,970,000$	25.4	700	670	0.87	$3,420,000$	
252	$2,480,000$	25.0	700	680	0.88	$2,820,000$	
.252 .5	$2,290,000$	24.7	700	686	0.89	$2,570,000$	700
253	$2,120,000$	24.5	700	695	0.90	$2,520,000$	

Thus the gain per minute for circulation is 3200 , and from pressure-drop calculations in tubes, the static head, etc., a total dynamic head of 20 ft is found to be required.

> Table 14.9. Caustic Evaporator Heat Balance Basis $=1$ ton $/ \mathrm{hr} \mathrm{NaOH}$

Effect	Btu/hr	Evaporation, $\mathrm{lb} / \mathrm{hr}$	
1. a. Heat in steam $=10,500 \times 930 \times 0.974$ b. Heating liquor $=18,230$	9,500,000	7,750	
$\times(246-150) \times 0.83$.	1,470,000		
c. Resultant heat..	8,030,000		
d. Heat of concentrate.	300,000		
e. Heat of vapors.	7,730,000/997		
2. a. Heat of vapors.	7,730,000		
b. Condensate flash $=10,500(274-169)$	1,090,000		
c. Heat flow.	8,820,000		
d. Heating liquor $=40,480(141-130) 0.92 .$	$410,000$		
e. Heat of vapors.	8,410,000/1027	8,200	
Flash tank:			
a. Liquor flash $=10,693(246-192) 0.79)$.	460,000		
b. Heat of concentrate	10,000		
c. Heat of vapors.	450,000/1027	443	
Total evaporation.		16,393	
Condenser:			
Heat of flash tank vapors (above $110^{\circ} \mathrm{F}$).	452,000		
Heat of vapors 2 (above $110^{\circ} \mathrm{F}$).	8,450,000		
Total heat in (above $110^{\circ} \mathrm{F}$).	$\begin{aligned} 8,902,000 / 20= & 445,000 \mathrm{lb} \\ = & 890 \mathrm{gpm} /(\mathrm{ton})(\mathrm{hr}) \\ & \text { of } \mathrm{NaOH} \end{aligned}$		
Water $\Delta t=(110-90)=20^{\circ}$			

For effect II. $\quad 0.92 w\left(t_{x}-141\right)=11,020,000=U_{D A} \Delta t$. For a velocity of 8 fps $G=8 \times 1.35 \times 62.5 \times 3600=2,430,000 \mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)$. Using thermal characteristics for this solution gives an approximate $U_{D}=700 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$.

As for effect I:

$t_{x},{ }^{\circ} \mathrm{F}$	$w, \mathrm{lb} / \mathrm{hr}$	Δt	$U_{\mathcal{C}}$	A, ft^{2}	a_{t}, flow area per pass, ft^{2}	$G_{\text {calo }}$	$U_{\text {calo }}$
146	$2,400,000$	25.4	700	620	0.80	$2,790,000$	700
146.5	$2,160,000$	25.2	700	683	0.89	$2,430,000$	

From the design coefficient above a smaller surface could have been used. However, since it is desirable to duplicate both the surface and pump of the first effect, the larger surface is chosen.

THERMOCOMPRESSION

The principle of thermocompression is continuously finding wider application in industry. Consider a single-effect evaporator. It is fed with steam and generates vapors which have nearly as much heat content

Fig. 14.42. Thermocompression evaporator. (Buffalo Foundry \& Machine Company.) as was originally present in the steam. These vapors are condensed with water as a convenient means of removal, but this is a severe waste of both Btu and water. Were it not for the fact that the temperature of the generated vapors is lower than the steam, it would be possible to circulate the vapor back into the steam chest and evaporate continuously without supplying additional steam. But apart from the heat balance, a temperature difference must exist between the steam and the generated vapors or no heat would have been transferred originally. If the vapors from the evaporator were compressed to the saturation pressure of the steam, however, the temperature of the vapors could be raised to that of the original steam. The cost of supplying the necessary amount of compression is usually small compared with the value of the latent heat in the vapors.

The practice of recompressing a vapor to increase its temperature and permit its reuse is thermocompression. Where fuel is costly, the compression may be accomplished with a centrifugal compressor as in the Kleinschmidt still for the production of distilled water. Where steam is available at a pressure higher than that required in the evaporator, the
recompression can be effected in a steam jet booster. The latter operates on the principle of an ejector and is used to compress vapors instead of a noncondensable gas. A thermocompression evaporator of the type using a booster ejector is shown in Fig. 14.42.

The pressure at which stearn is discharged from a thermocompressor depends upon the pressure and proportion at which the live steam and the vapors are supplied. It will be apparent from the analysis below that the higher the desired discharge pressure the greater the percentage of live steam required. Table 14.10 compares the proportions of live steam to entrained vapors for steam-chest pressures of 18 to 26 psig when live steam is available to the jet at 150 psig and the entrained vapors are taken off at 15 psig .

Table 14.10. Thermocompressor Economy

Steam-chest pressure, psig	18	20	22	24	26
Entrainment ratio, lb entrained vapor/lb live steam	3.33	2	1.43	1.08	87
Amount of live steam saved, \%	66	67	59	52	46

Table 14.10 shows substantial savings of live steam for fixed quantities of low-pressure steam discharged from the compressor. Figure 14.43 represents the variation of the reciprocal of the entrainment ratio with steam-chest pressure for entrained vapors at different pressures.

Derivation of charts similar to Fig. 14.43 can be made by analyzing the thermodynamic conditions imposed on the jet thermocompressor. Referring to Fig. 14.44, high-pressure steam is caused to expand in the nozzle a from which it issues with a high velocity into the mixing space b where it transfers some of its momentum to the vapor sucked in. In the diffuser section d, which is the reverse of a nozzle, the mixed vapors are compressed to the steam-chest pressure p_{3}. The work of compression results from the conversion of kinetic energy of the high-velocity mixture into pressure head. Thus, vapor at low pressure p_{2} is entrained and compressed to a higher pressure p_{3} at the expense of energy in the motive steam. Using the treatment of Kalustian, ${ }^{1}$
let $H_{1}=$ enthalpy of steam at p_{1}, Btu $/ \mathrm{lb}$
$H_{2}=$ enthalpy of steam after isentropic expansion in nozzle to pressure $p_{2,}$ Btu/lb
$H_{2^{\prime}}=$ enthalpy of steam after actual expansion in nozzle to pressure $p_{2}, \mathrm{Btu} / \mathrm{lb}$
$e_{1}=$ efficiency of the nozzle
${ }^{1}$ Kalustian, P., Refrig. Eng., 28, 188-193 (1934).

Fig. 14.43. Thermocompressor steam entrainment. (Schutte \& Koerting Company.)

Then

$$
\begin{equation*}
e_{1}=\frac{H_{1}-H_{2^{\prime}}}{\bar{H}_{1}-\bar{H}_{2}}=\frac{\text { actual work of expansion }}{\text { theoretical work of expansion }} \tag{14.21}
\end{equation*}
$$

Let $H_{3}=$ enthalpy of the mixture at start of compression in the diffuser section at $p_{2}, \mathrm{Btu} / \mathrm{lb}$
$H_{4}=$ enthalpy of the mixture after isentropic compression from p_{2} to the discharge pressure $p_{3}, \mathrm{Btu} / \mathrm{lb}$
$e_{2}=$ efficiency of compression in the diffuser
Then

$$
e_{2}=\frac{H_{4}-H_{3}}{\text { actual work of compression }}
$$

Let $M_{2}=$ entrained vapor at pressure $p_{2} \mathrm{lb}$
$M_{1}=$ motive high-pressure steam at pressure p_{1}, lb
The actual work required for compressing the mixture of vapors in the diffuser is given by $\left(M_{1}+M_{2}\right)\left(H_{4}-H_{3}\right) / e_{2}$. The actual work obtain-

Fra. 14.44. Ejector.
able from the expansion of the high-pressure steam is less than the theoretical value $\left(H_{1}-H_{2}\right)$ because of friction in the nozzle, which is taken into account by the nozzle efficiency e_{1}. There is a further loss in available energy in the transfer of momentum from the high-velocity jet to the relatively slow-moving entrained vapor. If e_{3} is the efficiency of momentum transfer, the net available work from the jet is

$$
M_{1} e_{1} e_{3}\left(H_{1}-H_{2}\right)
$$

By equating the net available work obtained from the jet to the actual work required for compressing the mixture in the diffuser, one obtains
Entrainment ratio, $\frac{M_{2}}{\bar{M}_{1}}=\left[\frac{\left(H_{1}-H_{2}\right)}{\left(H_{4}-H_{3}\right)} e_{1} e_{2} e_{3}-1\right]$,
lb vapor entrained/lb steam

Equation (14.22) must be solved by trial and error, since H_{3} and H_{4} are functions of x_{3}, the quality of the steam at p_{3} which is in itself a func-
tion of M_{2} and M_{1}. If one assumes no heat and no enthalpy change due to the mixing a balance on the mixing process gives

$$
\begin{gather*}
x_{3}\left(M_{1}+M_{2}\right)=x_{2^{\prime \prime}} M_{1}+x_{4} M_{2} \tag{14.23}\\
x_{3}=\frac{x_{2^{\prime \prime}} M_{1}+x_{4} M_{2}}{M_{1}+M_{2}} \tag{14.24}
\end{gather*}
$$

where $x_{2^{\prime \prime}}$ is the quality of motive steam after expansion to p_{2} and after it has lost its kinetic energy in the entraining process, x_{4} is the quality of the entrained steam, and $x_{2^{\prime \prime}}$ is related to $x_{2^{\prime}}$, the quality after expansion but before the entrainment step, by the equation

$$
\begin{equation*}
\left(1-e_{3}\right)\left(H_{1}-H_{2^{\prime}}\right)=\left(x_{2^{\prime \prime}}-x_{2^{\prime}}\right) \lambda \tag{14.25}
\end{equation*}
$$

where λ is the latent heat of vaporization of the fluid at $p_{2} . x_{2^{\prime}}$ is related to x_{2}, the quality after isentropic expansion, by

$$
\left(1-e_{1}\right)\left(H_{1}-H_{2}\right)=\left(x_{2^{\prime}}-x_{2}\right) \lambda
$$

As an illustration, take the case where $p_{1}=150 \mathrm{psig}, p_{2}=9 \mathrm{psig}$, $H_{1}=1196 \mathrm{Btu} / \mathrm{lb}$ (from Table 7), $H_{2}=1050 \mathrm{Btu} / \mathrm{lb}$ (after isentropic expansion from p_{1} to p_{2}), and $x_{2}=0.885$. It will be assumed that the values of e_{1}, e_{2}, e_{3} are, respectively, $0.98,0.95$, and 0.85 .

$$
H_{1}-H_{2^{\prime}}=0.98(1196-1050)=143
$$

and therefore $H_{2^{\prime}}=1053$. From Table $7 \lambda=954$ and from Eq. (14.22)

$$
954\left(x_{2^{\prime}}-x_{2}\right)=(1-0.98)(1196-1050)
$$

and therefore $x_{2^{\prime}}=0.89$. From Eq. (14.25)

$$
(1-0.85)(143)=954\left(x_{2^{\prime \prime}}-0.89\right)
$$

and therefore $x_{2^{\prime \prime}}=0.91$. Assuming $x_{3}=0.95$,

$$
H_{3}=1159(0.95)=1100
$$

Since the entrained steam at p_{2} is assumed saturated, $x_{4}=1$ and therefore $H_{4}=1164$; hence from Eq. (14.22)

$$
\frac{M_{2}}{M_{1}}=\frac{146}{64}(0.79)-1=1.80-1=0.8
$$

As a check on the assumed value of x_{3}, from Eq. (14.24) above

$$
x_{3}=\frac{x_{2^{\prime \prime}}+x_{4}\left(M_{2} / M_{1}\right)}{1+M_{2} / M_{1}}=\frac{0.91+0.80}{1+0.80}=\frac{1.71}{1.8}=0.95
$$

(which checks the assumed value).
Since the entrainment ratio M_{2} / M_{1} is a function of the thermal (expansion and compression) and mechanical (mixing) efficiencies of the compressor, specialized and good design of the different elements of the
unit will increase the overall efficiency $e_{1} e_{2} e_{3}$. The closer this product approaches unity the higher the entrainment ratio or the greater the saving in live steam. In good design, overall efficiencies approach 0.75 to 0.8 , with individual efficiencies in the order of $e_{1}=0.95-0.98$, $e_{2}=0.90-0.95$, and $e_{3}=0.80$ to 0.85 .

To study the saving in steam, the reduction in water requirements and condenser size, a comparison will be made of a straight triple-effect evaporator and one involving the use of a thermocompressor in conjunction with a triple-effect evaporator.

THERMOCOMPRESSION SUGAR EVAPORATOR

Example 14.7. It is required to concentrate $100,000 \mathrm{lb} / \mathrm{hr}$ of a $10^{\circ} \mathrm{Brix}$ sugar solution to 30° Brix. Exhaust steam at 20 psig is available in limited quantity. Water is available at $85^{\circ} \mathrm{F}$ and also in limited quantity owing to cooling-tower capacity. The feed will enter at $230^{\circ} \mathrm{F}$. The thermocompressor evaporator will recompress vapors from the second effect as shown in Fig. 14.45 using saturated steam at 150 psig.

Fra. 14.45. Thermocompression sugar evaporator.
Solution. The analysis is shown in Tables 14.11 to 14.13. The live steam required for the thermocompressor is $M_{1}=32,200-14,300^{*}=17,900$.

Saving in live steam over straight triple effect $=20$ per cent
Saving in water over straight triple effect $=20$ per cent

* $M_{1} / M_{2}=1.25$ from Fig. 14.43. $M_{1}+M_{2}=32,200$ from heat balance above, and therefore $M_{2}=32,200 /(1.25+1)=14,300$.

Table 14.11. Evaporator Summary

Effect	Straight triple effect			Thermocompression		
	1	2	3	1	2	3
Steam flow, lb/hr.	22,400			17,900*		
Steam pressure, psi.	20	9	2	20	9	2
Steam temp, ${ }^{\circ} \mathrm{F}$	258	237	217	258	237	217
$\Delta t,{ }^{\circ} \mathrm{F}$.	20	18	22	20	18	22
Liquor temp, ${ }^{\circ} \mathrm{F}$	238	219	195	238	219	195
BPR, ${ }^{\circ} \mathrm{F}$.	1	2	3	1	2	3
Vapor temp, ${ }^{\circ} \mathrm{F}$.	237	217	192	237	215	192
Vapor pressure, psi/in.	9	2	$10^{\prime \prime}$	9	2	$10^{\prime \prime}$
$\lambda, \mathrm{Btu} / \mathrm{lb}$.	954	965	983	954	965	983
Liquor $\mathrm{in}, \mathrm{lb} / \mathrm{hr}$	100,000	79,400	56,900	109,000	70,000	52,400
Liquor out, $\mathrm{lb} / \mathrm{hr}$	79,400	56,900	33,300	70,000	52,400	33,300
Evaporation, $\mathrm{lb} / \mathrm{hr}$.	20,600	22,500	23,500	30,000	17,600	19,100
${ }^{\circ}$ Brix (out).						30
Condenser water, gpm.		455			365	

* Live steam to thermocompressor.

Table 14.12. Heat Balance-Stratght Truple Effect

$$
\text { Condenser water }=\frac{23,232,000}{500(192-5-85)}=455 \mathrm{gpm}
$$

Table 14.13. Heat Balance-Thermocompression Evaporator
Condenser water $=\frac{18,662,000}{500(192-5-85)}=365 \mathrm{gpm}$

Effect	$\mathrm{Bta} / \mathrm{hr}$	Evaporation $\mathrm{lb} / \mathrm{hr}$
1. a. Heat in steam $=(32,200)(940)(.97)$.	29,300,000	30,000
b. Heating liquor $=100,000(238-230) .92$.	735,000	
c. Heat for evaporation.	28,565,000/954	
d. Liquor to $2 \mathrm{~d}=\mathbf{7 0 , 0 0 0 ~ \mathrm { lb } / \mathrm { hr }}$	$28,565,000$	
b. Heat removed entrained vapors by thermocompression $=\left(\frac{32,200}{1.25+1}\right) 954$.	$13,600,000$	
c. Heat in 1st vapors.	14,965,000	17,600
d. Condensate flash $=32,200(258-237)$.	677,000	
e. Liquor flash $=70,000$ (238-217).89	1,310,000	
f. Heat for evaporation.	$\overline{16,952,000 / 965}$	
g. Liquor to $3 \mathrm{~d}=70,000-17,600=52,400$ $\mathrm{lb} / \mathrm{hr}$		
3. a. Heat in 2 d vapors..	16,952,000	19,100
b. Condensate flash $=30,000(237-217)$.	$600,000$	
c. Liquor flash $=52,400(217-192) .85$	1,110,000	
d. Heat for evaporation. e. Product $=52,400-19,100=33,300 \mathrm{lb} / \mathrm{hr}$	18,662,000/983	
f. Total evaporation.		66,700

The saving in utilities illustrated in the above problem is of importance only if there is a shortage of them. In all circumstances, however, installation of a thermocompressor in conjunction with a multiple-effect evaporator involves balancing the initial outlay of the additional equipment against the reduction in utilities and in condenser size, change in evaporator body sizes, etc. If auxiliary motive power such as a turbinedriven pump is required in the plant, the available power from 150 psig live steam exhausting to 20 psig should be included in the economy.

Although the above treatment of thermocompression is of interest because of the large savings in utilities which it effects when used in conjunction with a multiple-effect evaporator, it is recommended also in applications where multiple-effect evaporation cannot be used. Thus the use of thermocompression evaporators is particularly advantageous in concentrating liquids which are sensitive to high temperatures. Low operating temperatures are assured because a high vacuum can be maintained. The steam used in a steam chest is usually below atmospheric pressure.

PROBLEMS

14.1. It is desired to concentrate a caustic soda solution from 12.5 to 40 per cent in a double-effect evaporator. $50,000 \mathrm{lb} / \mathrm{hr}$ of feed solution enters the evaporator at $120^{\circ} \mathrm{F}$, and steam at 15 psig is available for effecting the concentration. Vacuum in the second effect is held at $24 \mathrm{in} . \mathrm{Hg}$, and water from a cooling tower is available at $85^{\circ} \mathrm{F}$. Estimate (a) the quantity of steam and water required for forward feed operation; (b) the quantity of steam and condenser water required for backward feed operation; (c) the surface required for operation in (a), assuming overall coefficients of heat transfer of 400 and $250 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$ for the first and second effects; (d) the surface in (b) for values of U_{D} equal to 450 and 350 in the two effects respectively; (e) if equal bodies were required for (c) and (d), what steam economy could be expected.
14.2. In Prob. 14.1 it is desired to concentrate the caustic soda solution in a forcedcirculation double-effect evaporator unit. Only a limited amount of steam at 15 psig is available, and it is therefore decided to use turbine-driven circulation pumps taking 150 psig steam and exhausting at, 15 psig. Assuming feed rate, vacuum, and water temperature as in Prob. 14.1 and forward-feed operation and equal surface for both effects, estimate (a) the water rate required for the turbine if its efficiency is taken at 70 per cent, (b) the pounds of 15 psig steam required for the desired concentration, (c) the make-up steam at 15 psig required if the turbine exhaust is used for the concentration and a solution circulation rate of 6 fps is assumed in the heaters of the two effects. (Hint. Assume $U_{D}=400$; estimate surface, cross-sectional flow area, total circulation, and total head and power required.) (d) Estimate surface required for each effect.
14.3. A $20,000 \mathrm{lb} / \mathrm{hr}$ sugar solution at $180^{\circ} \mathrm{F}$ is to be concentrated from 12 to 30° Brix in a double-effect, forward-feed, calandria-type evaporator. Assuming that exhaust steam from a steam engine is available at 5 psig and the vacuum in the second effect is held at $23 \mathrm{in} . \mathrm{Hg}$, estimate (a) steam economy; (b) surface of each body, assuming U_{D} of 500 and 200 for first and second effects, respectively, and equal surface for each effect; (c) water required for a barometric condenser, assuming that $90^{\circ} \mathrm{F}$ water is available and a $10^{\circ} \mathrm{F}$ approach to condensing temperature is permitted.
14.4. A triple-effect sugar evaporator is to be designed to concentrate $100,000 \mathrm{lb} / \mathrm{hr}$ of solution at $150^{\circ} \mathrm{F}$ from 14 to $50^{\circ} \mathrm{Brix}$. Steam is available at 150 psig , and water at $75^{\circ} \mathrm{F}$. Steam to the first effect will be 25 psig, and the vacuum in the last effect will be held at 24 in . Hg. Vapors will leave the first effect at 15 psig and will partly be compressed by a thermocompressor using 150 psig steam and partly enter the second effect as steam. Assuming equal surfaces for the three bodies, forward-feed arrangement, and a $5^{\circ} \mathrm{F}$ approack in the condenser, estimate (a) the total steam required to the first effect, (b) the total 150 psig steam used, (c) economy, (d) water required in the condenser, (e) surface required, assuming $U_{D}=500,300$, and 150 for the three effects, respectively.
14.5. A paper mill producing 300 tons of pulp per 24 hr by the magnesium sulfite process concentrates a 12 per cent waste liquor to 55 per cent in a quintuple-effect long-tube evaporator. The solution entering the last two effects in parallel at 135° is evaporated by 45 psig saturated steam. Assume the following: (a) Feed contains 2800 lb total solids per ton pulp produced; (b) first effect is divided into two parallel bodies of 4500 and $7000 \mathrm{ft}^{2}$, respectively; (c) water is available at $75^{\circ} \mathrm{F}$; (d) vacuum in the last-effect vapor body is $26 \mathrm{in} . \mathrm{Hg}$; (e) $7^{\circ} \mathrm{F}$ water approach to condenser saturation temperature; $(f) \mathrm{BPR}$ is $18,16,13,10,5,7^{\circ} \mathrm{F}$, respectively, for all bodies; (g) product from first effect is flashed to fourth-effect steam chest; (h) vapor condensate flashes between effects.

Find (a) material and heat balance for the evaporator, (b) total water required (gallons per minute), (c) the total surface required, (d) steam economy of the evaporator.
14.6. Residual liquor from the electrolysis of brine in chlorine cells flows to a caustic concentration system at the rate of 1176 tons per $21-\mathrm{hr}$ day. Concentration to $50 \% \mathrm{NaOH}$ is effected in a triple-effect, forced-circulation evaporator. The latter boils off the water content in three successive stages, thereby crystallizing the salt content and increasing the percentage of caustic soda contained in the circulating solution.

The liquor flow is as follows:

Order of flow	Analysis of outgoing liquor flow			
	\% crystal lized salt	\% dissolved salt	\% dissolved NaOH	\% water
1. Cell liquor at $160^{\circ} \mathrm{F}$.	0	14.95	- 11.00	74.05
2. 2 d effect evaporator.	3.56	15.47	13.97	67:00
3. 3d effect evaporator.	7.55	8.08	22.43	61.94
4. Weak-liquor settler.	0 *	8.00 *	25.70*	66.30 *
5. 1st effect evaporator.	8.23	4.84	42.10	44.83
6. Flash tank..	11.35	2.40	44.30	41.95
7. 50% caustic settler	0^{*}	2.70*	50.00*	47.30*

* Per cent changes owing to removal of crystallized salt at these stages to alt-recovery system.

Utilities:

Steam at 75 psig
Water to barometric condenser at $80^{\circ} \mathrm{F}$
Condenser held at $27 / 4 \mathrm{in}$. Hg vacuum (third effect at 27 in . Hg vacuum)
Determine (a) the material balance in the system, (b) the heat balance in the system; estimate (c) the surface required ($A n s$. three $1800 \mathrm{ft}^{2}$ external heaters), (d) total water required, (e) steam economy.
14.7. A $15^{\circ} \mathrm{Brix}$ sugar solution is to be concentrated to 60° Brix in a quadrupleeffect calandria-type evaporstor. Part of the vapors from the first, second, and third effects will heat the cold solution from 100 to $220^{\circ} \mathrm{F}$ in heat exchangers prior to injection into the first effect of the evaporator system. Dilute juice is concentrated at the rate of 500 gpm , using live steam at 25 psig. Estimate the following: (a) material balance through the evaporator system, (b) heat balance on the evaporator system assuming condensate flashing between effects and $26 \frac{1}{2} \mathrm{in} . \mathrm{Hg}$ vacuum in fourth effect, (c) steam economy, (d) water rate to a barometric condenser assuming $75^{\circ} \mathrm{F}$ water available, (e) surface required for the heaters, (f) surface required for the calandria bodies, assuming equal surface for each body.

NOMENCLATURE FOR CHAPTER 14

A	Heat-transfer surface, ft^{3}
a_{i}	Tube-side flow area, ft^{2}
BPR	Boiling point rise, ${ }^{\circ} \mathrm{F}$
C	Specific heat of hot fluid in derived equations, $\mathrm{Btu} /(\mathrm{lb})\left({ }^{\circ} \mathrm{F}\right)$
c	Specific heat, $\mathrm{Btu} /(\mathrm{Ob})\left({ }^{\circ} \mathrm{F}\right)$

D	Inside diameter of tubes, ft
e_{1}, e_{2}, e_{3}	Efficiency of nozzle, diffuser, and momentum transfer, respectively, dimensionless
G	Mass velocity, $\mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)$
g	Acceleration of gravity, $\mathrm{ft} / \mathrm{hr}^{2}$
H	Enthalpy; H_{1}, motive steam, H_{2} after isentropic expansion in nozzle, H_{2}^{\prime} after actual expansion in nozzle; H_{3} at start of compression in diffuser; H_{4} after compression in diffuser, Btu/lb
M_{1}, M_{2}	High-pressure motive steam and entrained vapor, respectively, lb
$p_{1}, p_{2,} p_{3}$	Pressure of motive steam; suction, and ejector discharge, respectively, psi
$p_{\text {d }}, p_{\text {ch }}$	Vapor pressure of solution and or pure water, respectively, psi
Δp	Hydrostatic pressure, ft
Q	Heat flow, Btu/hr
T	Temperature of the hot fluid, ${ }^{\circ} \mathrm{F}$
T_{R}	Boiling temperature, ${ }^{\circ} \mathrm{R}$
t	Temperature of fluid in general, ${ }^{\circ} \mathrm{F}$
$t_{a}, t_{s,}, t_{W}$	Approach temperature, temperature of solution and of pure water, ${ }^{\circ} \mathbf{F}$. Boiling point of solution and of pure water, ${ }^{\circ} \mathbf{R}$
$\Delta t,(\Delta t)_{a}$	True temperature difference, apparent temperature difference, ${ }^{\circ} \mathrm{F}$
$(\Delta t)_{v}$	Temperature difference between the wall and liquid, ${ }^{\circ} \mathrm{F}$
Δt_{n}	Temperature rise due to hydrostatic heat, ${ }^{\circ} \mathrm{F}$
$\Delta t_{s}, \Delta t_{T}$	Temperature change of boiling points of solution and pure water, ${ }^{\circ} \mathrm{F}$
	Overall coefficient of heat transfer, $\mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$
U_{C}, U_{D}	Clean and design overall coefficient of heat transfer, $\mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}{ }^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$
W	Weight flow of hot fluid, $\mathrm{lb} / \mathrm{hr}$
${ }^{1}$	Weight flow of cold fluid, $\mathrm{lb} / \mathrm{hr}$
w_{e}	Evaporation, lb/hr
v	Specific volume, $\mathrm{ft}^{3} / \mathrm{lb}$
x	Quality, subscripts correspond to $p_{1}, p_{2,}$ and p_{s}, per cent
z	Height, ft
β	Coefficient of thermal expansion, per cent/ $/{ }^{\circ} \mathrm{F}$
λ	Latent heat of vaporization, $\mathrm{Btu} / \mathrm{lb}$
λ_{s}, λ_{W}	Latent heat of vaporization of solution and pure water, Btu/lb
μ	Viscosity, centipoises $\times 2.42=\mathrm{lb} /(\mathrm{ft})(\mathrm{hr})$
Subscripts (except as noted above)	
F	Feed
S	Steam
v	Vapor or vaporization
1,2, 3, 4	Effect

CHAPTER 15

VAPORIZERS, EVAPORATORS, AND REBOILERS

In the preceding chapter calculations were included for only those types of evaporators which are usually designed on the basis of "accepted" overall heat-transfer coefficients. It is unfortunate that so important a class of apparatus is designed in this way, but the properties of concentrated aqueous solutions present problems which leave little alternative. When applied to solutions of liquids in water rather than solids in water, the evaporator may be calculated by methods similar to those of earlier chapters. Heat-transfer coefficients in the basket, calandria, and horizontal-tube evaporators are excluded from further discussion.

For the sake of clarity it is well to repeat the definitions adopted in Chap. 14 for dealing with vaporizing exchangers. Any unfired exchanger in which one fluid undergoes vaporization and which is not a part of an evaporation or distillation process is a vaporizer. If the vapor formed is steam, the exchanger is referred to as an evaporator. If a vaporizing exchanger is used to supply the heat requirements of a distillation process as vapors at the bottom of the distilling column, it is a reboiler whether or not the vapor produced is steam. The process requirements of evaporators have already been treated, and those of vaporizers and reboilers will be discussed presently. The principles and limitations which apply to vaporizers and vaporizer processes specifically apply also to evaporators and reboilers and should be regarded accordingly.
Vaporizing Processes. Vaporizers are called upon to fulfill the multitude of latent-heat services which are not a part of evaporative or distillation processes. The heat requirements are usually very simple to compute. Perhaps the commonest type of vaporizer is the ordinary horizontal 1-2 exchanger or one of its modifications, and vaporization may occur in the shell or in the tubes. If steam is the heating medium, the corrosive action of air in the hot condensate usually makes it advantageous to carry out the vaporization in the shell.

There are some fundamental differences between the operation and calculation of vaporization as treated in Chap. 14 and in the 1-2 horizontal or vertical vaporizer. In the power-plant evaporator, for example, the upper 50 or 60 per cent of the shell is used for the purpose of disengaging the liquid entrained by the bursting bubbles at the surface of
the pool. The disengagement is further implemented by the use of a steam separator in the shell. The mechanical design and thickness of the evaporator shell, flanges, and tube sheets are based upon the product of the shell-side pressure and the diameter of the shell. In the majority of instances the pressure or vacuum is not great and the shell, flange, and tube-sheet thicknesses are not unreasonable. In the case of a vaporizer, however, operation is often at high pressure, and it is usually too expensive to provide disengagement space in the shell, since the inclusion of disengagement space at high pressures correspondingly increases the shell thickness. For this reason vaporizers are not usually designed for internal disengagement. Instead some external means, such as an inexpensive welded drum, is connected to the vaporizer wherein the entrained liquid is separated from the vapor.

When a vapor evaporates from the surface of a pool, as in the powerplant evaporator, it is possible to evaporate 100 per cent of the liquid fed to it without reducing the level of the pool provided the evaporator was originally filled to operating level with liquid. The reason less than 100 per cent of the feed is normally vaporized is because residue accumulates and it is necessary to provide a blowdown connection for its removal.

When a 1-2 exchanger is used as a vaporizer, it is filled with tubes and cannot be adapted for blowdown, since all the feed to a vaporizer is usually of value and a rejection as blowdown is prohibitive. If the feed were completely vaporized in the vaporizer, it would emerge as a vapor and any dirt which was originally present would be left behind on the tube surface over which total vaporization occurred, fouling it rapidly. If the 1-2 exchanger (vaporizer) were over-designed, that is, if it contained too much surface, disengagement would have to occur on the tubes and due to the excess surface the vapor would superheat above its saturation temperature. The latter is undesirable in most processes, since superheated vapors subsequently require surface elsewhere for desuperheating. In the case of a reboiler it will be shown later that superheat actually reduces the performance of the distilling column. These factors establish a rule which should always be employed for the calculation of vaporization processes: The feed to a vaporizer should not be vaporized completely. The value of this rule is apparent. If less than 100 per cent of the feed is vaporized in a 1-2 exchanger, the residual liquid can be counted on to prevent the accumulation of dirt directly on the surface of the heating element. A maximum of about 80 per cent vaporization appears to provide favorable operation in 1-2 exchangers, although higher percentages may be obtained in vessels having internal disengagement space.

Forced- and Natural-circulation Vaporizer. When liquid is fed to a vaporizer by means of a pump or gravity flow from storage, the vaporizer
is fed by forced circulation. A typical example is shown in Fig. 15.1. The circuit consists of a 1-2 exchanger serving as the vaporizer and a disengaging drum from which the unvaporized liquid is withdrawn and recombined with fresh feed. The generated vapor is removed from the top of the drum.

Since it is desirable to vaporize only 80 per cent of the liquid entering the vaporizer, the total liquid entering will be 125 per cent of the quantity of vapor required. Even better cleanliness will result if less than 80 per cent of the liquid is vaporized, and this can be accomplished by recirculation. Suppose $8000 \mathrm{lb} / \mathrm{hr}$ of vapor is required. The liquid entering the vaporizer will be $1.25 \times 8000=10,000 \mathrm{lb} / \mathrm{hr}$. In this manner 80 per cent will be vaporized when $10,000 \mathrm{lb} / \mathrm{hr}$ of liquid passes into the vapor-

Fig. 15.1. Vaporizing process with forced circulation.
izer. The $2000 \mathrm{lb} / \mathrm{hr}$ of liquid which was not vaporized will be recombined with $8000 \mathrm{lb} / \mathrm{hr}$ of fresh liquid coming from storage or, if the storage is hot, returned directly to storage.

Now suppose that, for greater cleanliness and the attainment of a higher coefficient, the liquid is speeded through the vaporizer at a faster flow rate by means of a larger pump. It may be desired that liquid enter the vaporizer at a rate of 40,000 instead of $10,000 \mathrm{lb} / \mathrm{hr}$ suggested by the process. Since only $8000 \mathrm{lb} / \mathrm{hr}$ of vapor will be produced, only 8000 $\mathrm{lb} / \mathrm{hr}$ of fresh liquid will continue to come from storage. The difference, $32,000 \mathrm{lb} / \mathrm{hr}$, will have to be supplied by recirculation again and again of unvaporized liquid through the vaporizer. For $40,000 \mathrm{lb} / \mathrm{hr}$ entering the vaporizer, only $8000 \mathrm{lb} / \mathrm{hr}$, or 20 per cent will actually be vaporized, and the higher velocity over the heat-transfer surface and the low percentage raporized will permit longer operation without excessive fouling.

The advantage of recirculation can be computed economically. The high recirculating rate will increase the power cost but decrease the size of the equipment and the maintenance cost.

The vaporizer may also be connected with a disengaging drum without the use of a recirculating pump. This scheme is natural circulation and is shown in Fig. 15.2. It requires that the disengaging drum be elevated above the vaporizer. Recirculation is effected by the hydrostatic head difference between the column of liquid of height z_{1} and the column of mixed vapor and liquid of height z_{3}. The head loss in the vaporizer itself due to frictional pressure drop corresponds to z_{2}. The hydrostatic head difference between z_{3} and z_{1} is available to cause liquid to circulate at

Fig. 15.2. Vaporizing process with natural circulation.
such a velocity that it produces a pressure drop z_{2}^{\prime} in the vaporizer equal to the hydrostatic difference between z_{3} and z_{1}. The cold feed is usually fed high on the return pipe so that the leg z_{1} will have as great a density and hydrostatic pressure $z_{1} \rho$ as possible. If the pressure of the feed is greater than the operating pressure of the system, the feed will have to join the return pipe at a lower point unless a jet is used, so that there will be a sufficient liquid head above the junction to prevent feed from backing up directly into the drum. Piping the feed directly to the disengaging drum usually makes control of the operating variables more difficult. If there is a sufficiently great pressure difference between the feed and operating pressure, the feed can be used as the motive fluid in an ejector to increase the recirculation of liquid through the vaporizer. This is
inefficient if the fresh liquid is compressed purposely to serve as the motive fluid, but if the fresh liquid is available under pressure for other reasons, the ejector permits recovery of some of the pressure head.

The advantages of forced circulation or natural circulation are in part. economic and in part dictated by space. The forced-circulation arrangement requires the use of a pump with its continuous operating cost and fixed charges. As with forced-circulation evaporators, the rate of feed recirculation can be controlled very closely. If the installation is small, the use of a pump is preferable. If a natural-circulation arrangement is used, pump and stuffing-box problems are eliminated but considerably more headroom must be provided and recirculation rates cannot be controlled so readily. Natural-circulation steam generators are frequently laid out in accordance with Fig. 15.2 but employing a vertical

Fig. 15.3. Forced-circulation reboiler arrangement.
1-1 exchanger with vaporization in the tubes. Water is especially adaptable to natural-circulation arrangements, since the density differences between the liquid and vapor at a given temperature are very large.

Reboiler Arrangements. When reboilers are used, the space at the bottom of the column between the liquid level and the bottom plate is employed for disengagement and the bubble caps serve as separators. A typical arrangement for a forced-circulation reboiler is shown in Fig. 15.3. This type is called a pump-through reboiler. All the liquid on the bottom plate, frequently called trapout to distinguish it from bottom product, is carried by the downcomer below the liquid level of the column. The liquid can be recirculated through the reboiler as many times as is economically feasible, so that the percentage vaporized per circulation is kept low while the bottom product is withdrawn from a separate connection. In general, forced-circulation or pump-through reboilers are used only on small installations or those in which the bottoms liquid is so viscous and
the pressure drop through the piping and reboiler so high that natural circulation is impeded.

By far the greater number of large reboiler installations employ natural circulation. This can be achieved in either of two simple ways as shown in Fig. $15.4 a$ and b. In Fig. $15.4 a$ all the liquid on the bottom plate is circulated directly to the reboiler, whence it is partially vaporized. The unvaporized portion, on being disengaged under the bottom plate, is withdrawn as bottom product. In Fig. $15.4 b$ the liquid passes through the downcomer below the liquid level of the column as in forced circulation. The bottom liquid is free to recirculate through the reboiler as many times as the hydrostatic pressure difference between z_{1} and z_{3} will permit. Because there is no opportunity for recirculation in the arrange-

(a)-ONCE-THROUGH REBOLLER

(b)-RECIRCULATING REBOILER

Fra. 15.4. Natural-circulation reboiler arrangements.
ment in Fig. 15.4a, it is called a once-through reboiler arrangement. Figure $15.4 b$ is referred to as a recirculating reboiler.

Classification of Vaporizing Exchangers. There is a greater hazard in the design of vaporizing exchangers than any other type of heat exchanger. For this reason it is convenient to set up a classification based on the method of calculation as employed for each distinct type of service. Each of the common classes below is distinguishable by some difference in calculation.
A. Forced-circulation vaporizing exchangers

1. Vaporization in the shell
a. Vaporizer or pump-through reboiler with isothermal boiling
b. Vaporizer or pump-through reboiler with boiling range
c. Forced-circulation evaporator or aqueous-solution reboiler
2. Vaporization in the tubes
a. Vaporizer or pump-through reboiler with or without boiling range
b. Forced-circulation evaporator or aqueous solution reboiler
B. Natural-circulation vaporizing exchangers
3. Vaporization in the shell
a. Kettle reboiler
b. Chiller
c. Bundle-in-column reboiler
d. Horizontal thermosyphon reboiler
4. Vaporization in the tubes
a. Vertical thermosyphon reboiler
b. Long-tube vertical evaporator

Heat-flux and Temperature-difference Limitations. It may be assumed that process conditions will always be established which provide for the vaporization of only part of the liquid fed to a vaporizer. When vaporizing liquids from pools, extremely high maximum fluxes have been obtained. For water a maximum flux is reported at 400,000 $\mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)$ and for organics from 70,000 to $125,000 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)$, although these have been obtained nnly in laboratory-scale apparatuses with perfectly clean surfaces. It is again pointed out that the maximum flux occurs at the critical temperature difference and is a limitation of the maximum coefficient which may be attained. Beyond the critical temperature difference both the coefficient and the flux decrease, the decrease being due to the formation of a layer of gas on the tubes. It is the phenomenon of vapor blanketing which poses the principal difficulty in the design and operation of vaporizing exchangers.

Fluxes of magnitudes as high as those above are of little practical value in design. It will be recognized that vaporization in a 1-2 exchanger, occurring as it does without continuous disengagement, is very different from vaporization out of liquid pools. By restricting disengagement in the 1-2 exchanger, the possibility of vapor blanketing is increased greatly, so that it is necessary also to restrict the flux to an allowable value safely out of the range in which blanketing might occur. The flux is defined by Q / A or $U_{D} \Delta t$ but not by $h_{v}(\Delta t)_{w}$, where h_{v} is the vaporization coefficient and $(\Delta t)_{w}$ is the temperature difference between the tube wall and the boiling temperature. $h_{v}(\Delta t)_{w}$ is the flux based on the clean surface A_{c}, while Q / A is the flux based on the actual surface A, and A is greater than A_{C} in a vaporizer designed with a dirt factor. However, it is customary to restrict both Q / A and h_{y}, to safe maxima, the two also serving to prevent the presence of too great a temperature difference $(\Delta t)_{w}$. The following restrictions will be observed throughout this chapter:
I. Flux
a. The maximum allowable fux for forced circulation vaporizers and reboilers vaporizing organics is $20,000 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)$ and for natural circulation 12,000 $\mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)$.
b. The maximum allowable flux for the vaporization of water or aqueous solutions of low concentration using forced or natural circulation is $30,000 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)$.

II. Film coefficient

a. The maximum allowable vaporizing film coefficient for the forced- or naturalcirculation vaporization of organics is $300 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$.
b. The maximum vaporizing film coefficient for the forced- or natural-circulation vaporization of water and aqueous solutions of low concentration is $1000 \mathrm{Btu} /$ (hr) $\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$.

Relationship between Maximum Flux and Maximum Film Coefficient. The objects of the limitations above are the elimination of all vapor blanketing possibilities. Suppose it is desired partially to vaporize an organic compound boiling at $200^{\circ} \mathrm{F}$ in a forced-circulation vaporizer using steam at a temperature of $400^{\circ} \mathrm{F}$ so that $\Delta t=200^{\circ} \mathrm{F}$ and the flow is such that a vaporizing coefficient of $300 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$ can be obtained. If the condensing steam coefficient is $1500, U_{c}=250$, and if $R_{d}=0.003$, $U_{D}=142$. The flux will be $142 \times 200=28,400 \mathrm{Bti} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)$, which exceeds. limitation I a. Since Q / A or $U_{D} \Delta t$ may not exceed 20,000 , any change to permit compliance with $\mathrm{I} a$ amounts to an increase in the total surface for vaporization. If the original steam and vapor temperatures are retained, the new overall coefficien $t U_{D}$ will be $20,000 / 200=100$ $\mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$. The temperature difference $(\Delta t)_{w}$ may be greater than the critical temperature difference, since it does not occur at the maximum attainable flux and under these conditions the critical temperature difference can be exceeded within limits without the danger of vapor blanketing. There is no advantage to the use of very high temperature differences, however, since at the maximum allowable flux any increase in Δt must be offset by a decrease in the allowable value of U_{D}. Only when U_{D} is naturally small may the use of a high Δt be partially justified.

The test of whether or not a vaporizer exceeds the allowable flux is always determined by dividing the total vaporizing heat load by the total available surface for vaporization. By the same token the maximum value of U_{D} which may be anticipated is given by $U_{D}=(Q / A)(1 / \Delta t)$ regardless of the dirt factor which results. When setting the temperature of the heating medium, it is seen that the use of a large Δt and corresponding $(\Delta t)_{w}$ also requires decreasing U_{D} which in turn gives a large value of $R_{d}=1 / U_{D}-1 / U_{c}$. The large dirt factor is not essential to the continued operation of the vaporizer from the standpoint of dirt but only as a preventive against vapor blanketing. Accordingly, when the temperature of the heating medium may be selected independently such as by setting the pressure in the case of steam, it need not be set at a value of Δt greater than that which gives a U_{D} corresponding to the desired dirt factor.

FORCED-CIRCULATION VAPORIZING EXCHANGERS

1. Vaporization in the Shell

a. Vaporizer or Pump-through Reboiler with Isothermal Boiling. The calculations employed in the solution of this type of vaporizer are common to the many simple vaporizing problems found in a plant whether or not connected with a distilling column. If a liquid is substantially pure or a constant-boiling mixture, it will boil isothermally. This usually applies to the bottom liquid of a distilling column separating a binary mixture into relatively pure compounds. For utility boiling operations, such as the vaporization of a cold liquid coming from storage, the liquid may not be at its boiling point and may require preheating to the boiling point. Since the shell of a forced-circulation vaporizer is essentially the same as any other 1-2 exchanger, the preheating can be done in the same shell as the vaporization. If the period of performance of a vaporizer is to be measured by a single overall dirt factor, it is necessary to divide the shell surface into two successive zones, one for preheating and one for vaporization; in much the same manner employed in condenser-subcoolers. The true temperature difference is the weighted temperature difference for the two zones, and the clean coefficient is the weighted clean coefficient as given by Eqs. (12.50) and (12.51).

If steam is the heating medium, only two tube passes are required and these need not be equally divided, sinee the return pass carries considerably less vapor than the first pass. If a hot stream such as gas oil is the heating medium, there is a problem in determining the true temperature difference in each zone. If the approach between the heating-medium outlet temperature and the vapor outlet temperature is not too small, the true temperature difference can be approximated by considering the temperature fall in each zone proportional to the heat removed from the heating medium. The method of using zones has also been discussed in Chap. 12 along with condenser-subcoolers.

Film Coefficients. Where there is a preheating zone, it can be computed by the use of Fig. 28 like any other heater with the cold fluid in the shell. The isothermal boiling film coefficient is also obtained by the use of Fig. 28 based on the premise that the heat must first be absorbed by the liquid by forced convection before passing into the vapor bubbles and that the liquid heating coefficient is the controlling coefficient in the sequence.

Pressure Drop. The shell-side pressure drop for the vaporizing zone is computed by introducing the average specific gravity into the denominator of Eq. (7.44). If the vaporizing liquid boils isothermally at t_{s} and receives heat from a medium having a range $T_{1}-T_{2}$, two possibilities may be considered:

Case I: The vapor and heating medium may be in counterflow.
Case II: The vapor and heating medium may be in parallel flow.
case I: vapors and heating medium in counterflow. Referring to Fig. 15.5, if W is the weight flow of the heating medium, C its specific heat, and T is the temperature of the heating medium at any tube

Fig. 15.5. Temperatures during vaporization of an isothermal fluid by a nonisothermal heating medium. length x,

$$
\begin{equation*}
W C d T=U a^{\prime \prime} d x\left(T-t_{z}\right) \tag{15.1}
\end{equation*}
$$

where $a^{\prime \prime} d x$ is the surface. Integrating T with respect to x,

$$
\begin{equation*}
\ln \left(T-t_{s}\right)=\frac{U a^{\prime \prime} x}{W C}+C_{i} \tag{15.2}
\end{equation*}
$$

At $x=0$,

$$
\begin{gather*}
C_{1}=\ln \left(T_{2}-t_{s}\right) \tag{15.3}\\
\ln \frac{T-t_{s}}{T_{2}-t_{s}}=\frac{U a^{\prime \prime} x}{W C} \tag{15.4}
\end{gather*}
$$

or

$$
\begin{equation*}
T=t_{s}+\left(T_{2}-t_{s}\right) e^{U a^{\prime \prime} x / F C} \tag{15.5}
\end{equation*}
$$

When $x=L, T=T_{1}$,

$$
\begin{equation*}
Q=W C\left(T_{1}-T_{2}\right)=W C\left(T_{2}-t_{s}\right)\left(e^{U a^{\prime \prime} L / W C}-1\right) \tag{15.6}
\end{equation*}
$$

The pounds evaporated w_{c} at any point x are given by

$$
\begin{equation*}
w_{e}=\frac{W C}{\lambda_{s}}\left(T_{2}-t_{v}\right)\left(e^{V a^{\prime \prime} x / F F}-1\right) \tag{15.7}
\end{equation*}
$$

If w is the weight flow of all the isothermal fluid and v_{av} its average specific volume, then for the entire mixture in passing from inlet to outlet

$$
\begin{align*}
& w v_{a v}=\frac{W C}{\lambda_{s}}\left(T_{2}-t_{s}\right)\left(e^{U a^{\prime \prime} x / W C}-1\right) v_{v} \\
&+\left[w-\frac{W C}{\lambda_{s}}\left(T_{2}-t_{s}\right)\left(e^{U a^{\prime \prime} x / W C}-1\right)\right] v_{l} \tag{15.8}
\end{align*}
$$

where v_{v} is the specific volume of the vapor and v_{l} is the specific volume of the liquid.

For the pressure drop by assuming $1 / \rho_{\mathrm{av}}=v_{\mathrm{av}}$

$$
\begin{gather*}
\int d \Delta P=\int \frac{f G^{2}}{2 g \rho_{\mathrm{av}}} d x=\int \frac{f G^{2}}{2 g} v_{\mathrm{av}} d x \tag{15.9}\\
\frac{2 g w}{f G^{2}} \int d \Delta P=\int\left[\frac{W C}{\lambda_{2}}\left(T_{2}-t_{s}\right)\left(e^{U a^{\prime \prime} x / W c}-1\right) v_{v} d x+w v_{l} d x\right. \\
\left.-\frac{W C}{\lambda_{2}}\left(e^{U a^{\prime \prime x} / W C}-1\right) v_{l} d x\right]
\end{gather*}
$$

Integrating and simplifying,
$\frac{2 g \Delta P}{f G^{2} L}=v_{\mathrm{av}}=\frac{W C}{\lambda_{s} w}\left[\left(v_{v}-v_{l}\right)(L \mathrm{MTD})-\left(T_{2}-T_{t}\right)\left(v_{v}-v_{l}\right)\right]+v_{i}$
Generally, however, it is simpler to apply the law of mixtures as given below, which closely resembles Eq. (15.10).

Case I: Vapors in counterflow to heating medium:

$$
\begin{gather*}
v_{\mathrm{vv}}=\frac{W C}{U A}\left(v_{2}-v_{l}\right)-\frac{W C\left(T_{2}-t_{s}\right)}{\lambda_{s} w}\left(v_{v}-v_{l}\right)+v_{l} \tag{15.11}\\
s_{\mathrm{nv}}=\frac{1}{v_{\mathrm{av}}(62.5)} \tag{15.12}
\end{gather*}
$$

Case II: Vapors in parallel flow to heating medium:

$$
\begin{gather*}
v_{\mathrm{av}}=\frac{W C}{U A}\left(v_{l}-v_{2}\right)+\frac{W C}{\lambda_{\mathrm{r}} w}\left(T_{1}-t_{\mathrm{s}}\right)\left(v_{v}-v_{l}\right)+v_{l} \tag{15.13}\\
s_{\mathrm{av}}=\frac{1}{v_{\mathrm{sv}}(62.5)}
\end{gather*}
$$

With the average gravity based on Eqs. (15.11) and (15.13), Eq. (7.44) is only part of the pressure drop, since no term has been included to account for the acceleration of the vapor through the vaporizer or the contraction loss at the outlet. Instead of using Eqs. (15.11) and (15.13), the pressure drop can be computed more rapidly by an arbitrary assumption of the value of the average specific gravity. At the start of the vaporizing zone the gravity is that of the liquid, whereas at the outlet it is considerably less, even if the percentage converted to vapor is not very high. Likewise with constant-flow area the velocity through the shell increases toward the outlet owing to the large volume of the exit fluid, although the mass velocity is presumably constant. On the other hand, the viscosity effective upon the pressure drop probably does not vary much over the vaporizing zone, being that of the liquid throughout. The pressure drop can be computed using the mass velocity as heretofore, the Reynolds number based on liquid properties at inlet conditions and the mean gravity between inlet and outlet. Similar reasoning can be applied to vaporization on the tube side. The comparison between the true average gravity defined by Eqs. (15.11) and (15.13) and the mean of the inlet and outlet gravities is shown below.

Example 15.1. Calculation of the Average Specific Volume. A vaporizer is to generate $10,000 \mathrm{lb} / \mathrm{hr}$ of 15 psig steam by removing heat from a bottom product. The bottom product is $150,000 \mathrm{lb} / \mathrm{hr}$ of approximately 42° API kerosene leaving a column at $400^{\circ} \mathrm{F}$. The design coefficient in the vaporizer will be about 100 .

Compare the true average specific volume with that obtained by the approximate method.

$$
\begin{align*}
& t_{\mathbf{1}}=250^{\circ} \mathrm{F} \quad \lambda_{1}=945.3 \mathrm{Btu} / \mathrm{lb} \tag{Table7}\\
& \text { Steam, } Q=10,000 \times 945.3=9,450,000 \mathrm{Btu} / \mathrm{hr} \\
& \text { Kerosene, } Q=150,000 \times 0.63(400-300)=9,450,000 \mathrm{Btu} / \mathrm{hr} \\
& \Delta t=\mathrm{LMTD}=91^{\circ} \mathrm{F} \tag{5.14}\\
& A=\frac{Q}{U_{D} \Delta t}=\frac{9,450,000}{100 \times 91}=1040 \mathrm{ft}^{2} \\
& W C=150,000 \times 0.63=94,500 \mathrm{Btu} /{ }^{\circ} \mathrm{F}
\end{align*}
$$

From Table 7

$$
v_{t}=0.017 \quad v_{v}=13.75 \mathrm{ft}^{\mathrm{z}} / \mathrm{lb}
$$

By the law of mixtures
Assume 80 per cent of the outlet fluid is vapor.

$$
\begin{aligned}
v_{2} & =0.80 \times 13.75+0.20 \times 0.017=11.0 \mathrm{ft}^{\mathrm{3}} / \mathrm{lb} \\
v_{\mathrm{Av}} & =\frac{94,500(11.0-0.017)}{100 \times 1040}-\frac{94,500(300-250)}{945.3 \times 10,000}(13.75-0.017)+0.017 \\
& =3.04 \mathrm{ft}^{8} / \mathrm{lb}
\end{aligned}
$$

By the approximate method

$$
\begin{aligned}
& v_{l}=0.017 \quad v_{2}=11.0 \mathrm{ft}^{\mathrm{3}} / \mathrm{lb} \\
& v_{\mathrm{ar}}=\frac{0.017+11.0}{2}=5.5 \mathrm{ft}^{\mathrm{s}} / \mathrm{lb} \\
& \text { Actual density }=\frac{1}{3.04}=0.329 \mathrm{lb} / \mathrm{ft}^{\mathrm{s}} \quad s=\frac{0.329}{62.5}=0.0053 \\
& \text { Approximate density }=\frac{1}{5.5}=0.182 \mathrm{lb} / \mathrm{ft}^{3} \quad s=0.0029
\end{aligned}
$$

Since the pressure drop is inversely proportional to the gravity, the approximate method is safe. The acceleration loss is usually taken at about two velocities heads and can be omitted when using the approximate method.

While the condenser is usually the cleanest part of a distillation or vaporization-condensation assembly, the vaporizer is usually quite the opposite. Vaporizers tend to accumulate dirt, and for this reason high recirculation rates and large dirt factors will often be desirable. Preference should be given to the use of square pitch and a removable tube bundle. Although it may reduce the possibility of using a $1-2$ vaporizing exchanger for other services, the baffle spacing can be increased or staggered from inlet to outlet to reduce the pressure drop of the fluid vaporizing in the shell.

Example 15.2. Vaporizer or Pump-through Reboiler with Isothermal Boiling. It is desired to provide $19,750 \mathrm{lb} / \mathrm{hr}$ of butane vapor at 285 psi using cold feed from storage at $75^{\circ} \mathrm{F}$. The butane will boil isothermally at $235^{\circ} \mathrm{F}$, and steam will be available at 100 psi .

Available for the service is a $151 / 4 \mathrm{in}$. ID $1-2$ exchanger with 761 in . OD, 16 BWG tubes $16^{\prime} 0^{\prime \prime}$ long laid out on $11 / 4-\mathrm{in}$. square pitch for two passes. The baffes are spaced 5 in . apart.

What will the dirt factor and pressure drops be?
Solution. To prevent total vaporization in the shell, the total liquid entering the vaporizer will be $19,750 / 0.80=24,700 \mathrm{lb} / \mathrm{hr}$. The vapor should then be disengaged from the liquid in a drum, and the excess liquid returned to the pump suction for recombination with $19,750 \mathrm{lb} / \mathrm{hr}$ of new feed. Thus for every $19,750 \mathrm{lb} / \mathrm{hr}$ coming from storage at $75^{\circ} \mathrm{F}, 4950 \mathrm{lb} / \mathrm{hr}$ at $235^{\circ} \mathrm{F}$ will be mixed with it so that the inlet temperature will be $108^{\circ} \mathrm{F}$.

Solution:

Exchanger:

$$
\begin{array}{rlrl}
\text { Shell side } & \text { Tube side } \\
\text { ID }=1.51 / 4 \mathrm{in} . & \text { Number and length }=76,16^{\prime} 0^{\prime \prime} \\
\text { Baffle Space } & =5 \mathrm{in} . & \text { OD, BWG, pitch }=1 \text { in., } 16 \mathrm{BWG}, 1 \not 14 \text {-in. square } \\
\text { Passes }=1 & \text { Passes }=2
\end{array}
$$

(1) Heat balance:

Preheat:
Enthalpy of liquid at $108^{\circ} \mathrm{F}$ and $300 \mathrm{psia}=162 \mathrm{Btu} / \mathrm{lb}$
(Fig. 9)
Enthalpy of liquid at $235^{\circ} \mathrm{F}$ and 300 psia $=248 \mathrm{Btu} / \mathrm{lb}$

$$
q_{p}=24,700(248-162)=2,120,000 \mathrm{Btu} / \mathrm{hr}
$$

Vaporization:
Enthalpy of vapor at $235^{\circ} \mathrm{F}=358 \mathrm{Btu} / \mathrm{lb}$
$q_{v}=19,750(358-248)=2,170,000 \mathrm{Btu} / \mathrm{lb}$
Butane, $Q=2,120,000+2,170,000=4,290,000 \mathrm{Btu} / \mathrm{hr}$
Steam, $Q=4880 \times 880.6=4,290,000 \mathrm{Btu} / \mathrm{hr}$
(2) Δt weighted: (Subscripts p and v indicate preheating and vaporizing.)
$(\Delta t)_{p}=\mathrm{LMTD}=158.5^{\circ} \mathrm{F}$
$(\Delta t)_{y}=\mathrm{LMTD}=103.0^{\circ} \mathrm{F}$
$\frac{q_{p}}{(\Delta t)_{p}}=2,120,000 / 158.5=13,400$
$\frac{q_{v}}{(\Delta t)_{v}}=2,170,000 / 103.0=21,100$

$$
\begin{equation*}
\sum \frac{q}{\Delta t}=\overline{34,500} \tag{12.51}
\end{equation*}
$$

Weighted $\Delta t=\frac{Q}{\Sigma q / \Delta t}=\frac{4,290,000}{34,500}=124.5^{\circ} \mathrm{F}$
(3) T_{c} and t_{c} : Average values of temperatures will be satisfactory for preheat zone.

Hot fluid: tube side, steam
(4) $a_{t}^{\prime}=0.594$ in. ${ }^{2}$
[Table 10]

$$
a_{t}=N_{t} a_{t}^{\prime} / 144 n \quad \text { Eq. (7.48)] }
$$

$=76 \times 0.594 / 2 \times 144=0.157 \mathrm{ft}^{2}$
(b) $G_{t}=W / a_{t}$

$$
\begin{aligned}
=4880 / 0.157 & \\
& =31,100 \mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)
\end{aligned}
$$

Cold fluid: shell side, butane Preheating:
(4') $a_{5}=$ ID $\times C^{\prime} B / 144 P_{T} \quad[E q .(7.1)]$
$=15.25 \times 0.25 \times 5 / 144 \times 1.25$ $=0.106 \mathrm{ft}^{2}$
(5') $G_{s}=w / a_{s}$

$$
\begin{equation*}
=24,700 / 0.106 \tag{7.2}
\end{equation*}
$$

$$
=233,000 \mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)
$$

$$
\begin{aligned}
& \text { Hot fluid: tube side, steam } \\
& \text { (6) At } T_{s}=338^{\circ} \mathrm{F}, \\
& \mu=0.015 \times 2.42=0.0363 \mathrm{lb} /(\mathrm{ft})(\mathrm{hr}) \\
& \text { [Fig. 15] } \\
& \begin{array}{r}
\text { (}=0.87 / 12=0.0725 \mathrm{ft}\left(R e_{t}\right. \text { is for pres- } \\
\text { sure drop only) } \\
R e_{t}=D G_{t} / \mu \\
=0.0725 \times 31,100 / 0.0363=62,000
\end{array}
\end{aligned}
$$

(9) $h_{i o}$ for condensing steam

$$
=1500 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)
$$

Cold fluid: shell side, butane
(6') At $T_{a}=172^{\circ} \mathrm{F}$ (average of 108 and $235^{\circ} \mathrm{F}$)
$\mu=0.115 \times 2.42=0.278 \mathrm{lb} /(\mathrm{ft})(\mathrm{hr})$
[Fig. 14]
[Fig. 28]
$D_{0}=0.99 / 12=0.0825 \mathrm{ft}$
$R e_{s}=D_{8} G_{\varepsilon} / \mu$
$=0.0825 \times 233,000 / 0.278=69,200$
(7) $j_{H}=159$
[Fig. 28]
(8) At $172^{\circ} \mathrm{F}\left(114^{\circ} \mathrm{API}\right)$
$k(c \mu / k)^{1 / 3}=0.12 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F} / \mathrm{ft}\right)$
[Fig. 16]
$\phi_{4}=1.0$
$\begin{aligned}\left(9^{\prime}\right) h_{a} & =j_{H} \frac{k}{D_{\theta}}\left(\frac{c \mu}{k}\right)^{1 / 3} \quad[\text { Eq. }(6.15 b)] \\ & =159 \times 0.12 / 0.0825 \\ & =231 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)\end{aligned}$

Clean overall coefficient for preheating U_{p} :

$$
\begin{equation*}
U_{p}=\frac{h_{i_{o}} h_{o}}{h_{i o}+h_{\mathrm{o}}}=\frac{1500 \times 231}{1500+231}=200 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathbf{F}\right) \tag{6.38}
\end{equation*}
$$

Clean surface required for preheating A_{p} :

$$
A_{p}=\frac{q_{p}}{U_{p}(\Delta t)_{p}}=\frac{13,400}{200}=67.0 \mathrm{ft}^{2}
$$

Vaporization:
(6) At $235^{\circ} \mathrm{F}$, $\mu=0.10 \times 2.42=0.242 \mathrm{lb} /(\mathrm{ft})(\mathrm{hr})$ [Fig. 14]
$R e_{s}=0.0825 \times 233,000 / 0.242=79,500$
(7^{\prime}) $j_{H}=170$
[Fig. 28]
(8') At $235^{\circ} \mathrm{F}$
$k\left(c_{\mu} / k\right)^{1 / 2}=0.115 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F} / \mathrm{ft}\right)$
$\phi_{s}=1.0$
(Fig. 16)
(θ^{\prime}) $h_{o}=j_{H} \frac{k}{D_{s}}\left(\frac{c \mu}{k_{k}}\right)^{1 / 3}$

$$
\begin{equation*}
=170 \times 0.115 / 0.0825=237 \tag{6.15}
\end{equation*}
$$

(9) $h_{i o}$ for condensing steam $=1500$

Clean overall coefficient for vaporization U_{v} :

$$
\begin{equation*}
U_{v}=\frac{h_{i 0} h_{o}}{h_{i 0}+h_{o}}=\frac{1500 \times 237}{1500+237}=205 \tag{6.38}
\end{equation*}
$$

Clean surface required for vaporization A_{v} :

$$
A_{v}=\frac{q_{v}}{U_{v}(\Delta t)_{v}}=\frac{21,100}{205}=103 \mathrm{ft}^{2}
$$

Total clean surface A_{c} :

$$
A_{c}=A_{p}+A_{v}=67.0+103=170 \mathrm{ft}^{2}
$$

(13) Weighted clean overall coefficient U_{c} :

$$
\begin{equation*}
U_{c}=\frac{\Sigma U A}{A_{c}}=\frac{13,400+21,100}{170}=203 \tag{12.50}
\end{equation*}
$$

(14) Design overall coefficient:

$$
\text { Surface/lin } \mathrm{ft} \text { of tube }=0.2618
$$

(Table 10)
Total surface $=76 \times 16^{\prime} 0^{\prime \prime} \times 0.2618=318 \mathrm{ft}^{2}$

$$
U_{D}=\frac{Q}{A \Delta t}=\frac{4,290,000}{318 \times 1.24 .5}=108.5
$$

Check of maximum fiux:
A total of $170 \mathrm{ft}^{2}$ are required of which 103 are to be used for vaporization. For the total surface required $318 \mathrm{ft}^{2}$ will be provided. It can be assumed, then, that the surface provided for vaporization is

$$
103 / 170 \times 318=193 \mathrm{ft}^{2}
$$

The flux is $Q / A=2,170,000 / 193=10,700 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}{ }^{2}\right) . \quad$ (Satisfactory)
(15) Dirt factor:

$$
\begin{equation*}
R_{d}=\frac{U_{C}-U_{D}}{U_{c} U_{D}}=\frac{203-108.5}{203 \times 108.5}=0.0043(\mathrm{hr})\left(\mathrm{ft} \mathrm{t}^{2}\right)\left({ }^{\circ} \mathrm{F}\right) / \mathrm{Btu} \tag{6.13}
\end{equation*}
$$

Pressure Drop

(1) For $R e_{t}=62,000$, $f=0.000165 \mathrm{ft}^{2} / \mathrm{in} .^{2}$ [Fig. 26] From Table 7, specific vol of steam at 115 $\mathrm{psia}=3.88 \mathrm{ft}^{3} / \mathrm{lb}$
$s=\frac{1}{3.88 \times 62.5}=0.00413$
(2) $\Delta P_{t}=\frac{1}{2} \frac{f G^{2} L n}{5.22 \times 10^{10} D s \phi t}$
$=\frac{1}{2} \times$
$\frac{0.000165 \times 31,100^{2} \times 16 \times 2}{5.22 \times 10^{10} \times 0.0725 \times 0.00413 \times 1}$
$=0.16 \mathrm{psi}$

Preheat:
(1) $R e_{s}=69,200, f=0.00145 \mathrm{ft}^{2} / \mathrm{in} .{ }^{2}$
[Fig. 29]
(2') Length of preheat zone
$L_{p}=L A_{p} / A_{C}$

$$
=16 \times 67.0 / 170=6.3 \mathrm{ft}
$$

$\left.{ }^{(3}{ }^{\prime}\right)$ No. of crosses, $N+1=12 L_{p} / B$
$=12 \times 6.3 / 5=15$ [Eq. (7.43)]
[Fig. 6]
$D_{\mathrm{s}}=15.25 / 12=1.27 \mathrm{ft}$
(4) $\Delta P_{s}=\frac{f G_{s}^{2} D_{s}(N+1)}{5.22 \times 10^{10} D_{\varepsilon} s \phi_{s}}$
[Eq. (7.44)]
$=\frac{0.00145 \times 233,000^{2} \times 1.27 \times 15}{5.22 \times 10^{10} \times 0.0825 \times 0.50 \times 1.0}$

$$
=0.70 \mathrm{psi}
$$

Vaporization:
(1') $R e_{\text {s }}=79,500, f=0.00142 \mathrm{ft}^{2} / \mathrm{in} .^{2}$
(2') Length of vaporization zone
$L_{v}=16-6.3=9.7 \mathrm{ft}$
(3') No. of crosses, $N+1=12 L / B$
[Eq. (7.43)]
$=9.7 \times 12 / 5=23$
Mol. $\mathrm{wt} .=58.1$

Summary

1500	h outside	$231 / 237$
U_{C}	203	
U_{D}	108.5	
R_{d} Calculated 0.0043		
R_{d} Required		
0.16	Calculated ΔP	2.6
Neg	Allowable ΔP	5.0

b. Vaporizer or Pump-through Reboiler with Boiling Range. If a liquid undergoing vaporization is a mixture of a number of miscible compounds, it does not boil isothermally. Instead it has an initial boiling temperature (bubble point) and a final boiling temperature (dew point) at which the last bit of liquid is vaporized. When the mixture starts to boil at its bubble point, the more volatile compounds are driven out of the solution at a greater rate and as the volatile compounds enter the vapor phase the boiling temperature of the residual liquid rises. This means that throughout the vaporizer there is a temperature range over which boiling occurs, and the greater the percentage of the total liquid vaporized the more nearly the range extends from the bubble point to the dew point of the inlet liquid.

Because of the boiling range, sensible as well as latent heat must be absorbed simultaneously by the liquid as it proceeds through the vapor-
izer so that it will possess a range of boiling temperatures. Furthermore the sensible heat is absorbed over the same surface as the heat for vaporization in contrast to the preheater-isothermal vaporizer in which the two occur in separate zones. The calculation of the boiling coefficient in this case, however, is the same as for a preheater-vaporizer as calculated in Example 15.2. Here the heat from the tube wall is first absorbed by the liquid as sensible heat before it is transformed into vaporization. Since the rate of heat transfer from a hot liquid into an incipient vapor bubble is very great, it may be assumed that the sensible-heat-transfer coefficient as calculated from Fig. 28 for either direct vaporization or simultaneous sensible-heat transfer is the limiting resistance. The coefficient for the combined sensible-heat transfer and vaporization is calculated as if the entire vaporizing heat load were transferred as sensible heat to the liquid over its boiling range in the vaporizer.

The true temperature difference may be taken as the LMTD if the heating medium is isothermal. This assumes that the heat transferred is proportional to the change in temperature, namely, that one-half of the total load is delivered while the temperature rises one-half of the total temperature range for vaporization. If the bulk of a mixture consists of closely related compounds with some more or less volatile compounds, the assumption that the heat and temperature proportions are equal may cause considerable error. The true temperature difference can be obtained by graphical integration as treated in Example 13.3.

Film Coefficients. The sensible-heat-transfer coefficient should be regarded as the boiling coefficient when applying the restrictions of allowable flux and allowable coefficient even though it is computed from Fig. 28. When a liquid has a boiling range, the average flux, Q / A may be less than 20,000 but because of the variation in temperature difference, $U_{D} \Delta t_{1}$ at the greater terminal temperature difference may exceed 20,000 . Discrepancies of this sort may cause bumping or erratic vaporization if the initial compounds to vaporize are very volatile compared with the bulk and tend to separate from the liquid too readily. A check of the inlet flux can prevent this difficulty. If the inlet flux does not exceed, say $25,000 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)$, there is no need to penalize the entire design by providing excess surface simply because of an excessive flux over the first few per cent of the vaporizing surface.

Pressure Drop. The pressure drop is computed in the same manner as for isothermal boiling, using the Reynolds number based on inlet conditions and a gravity which is the mean of inlet and outlet gravities. It is also quite possible that a fluid with a boiling range may enter a vaporizer below its bubble point. In such cases the surface is again divided into two consecutive zones, one for pure preheating and the other for vapori-
zation of a mixture with a boiling range. The weighted coefficients and temperature difference may be obtained as before through the use of Eqs. (12.50) and (12.51).
c. Forced-circulation Evaporator or Aqueous-solution Reboiler. As seen in Chap. 14, the shells of 1-2 exchangers are not used in forced-circulation-evaporator processes, since the properties of water are excellent for natural-circulation equipment. However, a 1-2 exchanger can easily serve as a forced-circulation evaporator. In distillation processes such as the distillation of an acetone-water or alcohol-water solution the bottom product is nearly pure water. It may be advantageous in smaller operations of this nature to use a pump-through reboiler in preference to natural circulation, since the losses in the connecting piping may be unduly high and the use of larger connecting pipes does not assure smooth operation. The aqueous-solution reboiler can be calculated in the same manner as the pump-through reboiler, with or without a boiling range, except that the allowable flux and film coefficient is greater.

This type of equipment is usually designed with the dirt factor as the controlling resistance. The applicability of a method of computing water-vaporization rates is therefore of value only at low mass velocities. Since water vapor has a very low vapor density, low mass velocities must be employed whenever the allowable pressure drop is small. Film coefficients for boiling water and aqueous solutions can be obtained by the use of Fig. 28, although these will be about 25 per cent lower than those which have been obtained experimentally. Where data on the physical properties of aqueous solutions are lacking, they can be approximated by the methods of Chap. 7. If the mass velocity is very low, the value of the coefficient so obtained may be multiplied by 1.25 and the overall value of U_{o} should rarely exceed $600 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$.

2. Vaporization in the Tubes

a. Pump-through Vaporizer or Reboiler with or without Boiling Range. The coefficients for vaporization with or without a boiling range can be obtained from Fig. 24 for organic liquids. The number of tube passes may be as great in horizontal exchangers as the pressure drop will allow. If the number of tubes in the final passes are greater than the number in the initial passes, it is possible to obtain a reduced pressure drop. The shell side, when employing steam, may be laid out on triangular pitch, since cleaning will be infrequent and the shell side can be cleaned by boiling out. The pressure drop can be computed using Eq. (7.45) with a Reynolds number based on the inlet properties and a specific gravity which is the mean between inlet and outlet. The tube fluid should flow upward.
b. Forced-circulation Evaporator or Aqueous-solution Reboiler. The tube-side data for the evaporation of water and aqueous solutions can also be obtained from Fig. 24. The boiling coefficients will be about 25 per cent greater than the computed values, and at low mass velocities the coefficient can be multiplied by a correction factor of 1.25 .

This class also includes the forced-circulation evaporators similar to 1-1 exchangers. The calculation of the vertical long-tube evaporator will be treated as a natural-circulation vaporizer.

NATURAL-CIRCULATION VAPORIZING EXCHANGERS

1. Vaporization in the Shell

a. Kettle Reboiler. The kettle reboiler is shown in Fig. 15.6. It is a modification of the power-plant evaporator. The relation of the bundle to the shell is seen better from an end elevation. Another form of the kettle reboiler employing a tube sheet which covers the entire shell is

Fra. 15.6. Kettle-type reboiler. (Patierson Foundry and Machine Co.)

Fra. 15.7. Kettle-type reboiler with integral tube sheet. (Patterson Foundry and Machine Co.)
shown in Fig. 15.7. In this type the bundle is not circular but conforms to the shell as seen from an end elevation. The method of connecting this type of reboiler to the distilling column is shown in Fig. 15.8. Kettle reboilers are fitted with a weir to ensure that the liquid level in the reboiler is maintained and that the tube surface is not exposed. Since only about 80 per cent of the liquid bottoms entering at the inlet are vaporized, provision must be made for the removal of the bottoms product which is on the discharge side of the weir. There are a number of
arbitrary rules on the volume required above the liquid level for disengagement and the maximum number of pounds per hour which may be vaporized from the liquid surface. If the top row of tubes is not higher than 60 per cent of the shell diameter, adequate disengaging space will

Fig. 15.8. Kettle reboiler arrangement.
be provided when a liquid level covering the top row of tubes is ensured by the weir.
b. Chiller. The chiller is shown in Fig. 15.9. It is a typical kettle reboiler, except for the weir, and the bundle has tubes to a height of about 60 per cent of the diameter. The vapor space above is for disengagement

Fra. 15.9. Chiller. (Patterson Foundry and Machine Co.)
of the vapor from the liquid. Chillers are used in refrigeration processes of the vapor-compression type as shown in Fig. 15.10. The refrigeration cycle begins at the point a, where liquid refrigerant at a temperature higher than that of the condenser water and at high pressure passes to a constant-enthalpy throttle valve where its pressure is reduced. The pressure and temperature of the liquid on the downstream side of the valve are naturally less than on the high-pressure side. The expansion is adiabatic, and some of the liquid flashes into vapor cooling the remainder of the refrigerant on the low-pressure side at b. If the cold refrigerant is to be circulated directly to a refrigerator, the saturation tempera-
ture at b is often about 5 or $10^{\circ} \mathrm{F}$ lower than the temperature ultimately desired in the chamber being refrigerated. The partially vaporized refrigerant may enter the shell of a chiller, where the remainder is vaporized isothermally at low temperature by the fluid being chilled as it flows through the tubes. The vapor then passes to the compressor between c and d, where it is recompressed to the higher pressure (and temperature) such that it can be recondensed with the available cooling water.

Cold brine is often circulated to the chamber being refrigerated in preference to the refrigerant itself. Brines are usually sodium chloride

Fic. 15.10. Compression refrigeration system.
or calcium chloride solutions in concentrations up to 25 per cent by weight, depending upon the coldness of temperature to be maintained. They are cheap and have little susceptibility toward leakage. On accomplishing refrigeration by sensible heat absorption, brines remain in the liquid phase without developing high pressures and eliminate the need for costly vapor piping through the refrigerating system. In this way contaminants which might find their way into the refrigerant, particularly under vacuum, are kept out of it and from the compressor, condenser, and throttle. Brines, on the other hand, require that an additional temperature difference be maintained. When the refrigerant is circulated directly to the cold chamber, there is but one temperature difference between the chamber and the refrigerant. Using brines, however, there is one temperature difference between the refrigerant and
brine and one between the brine and cold chamber, and this arrangement increases the cost of the refrigeration. For other aspects of refrigerating cycles, such as the selection of optimum conditions, reference may be made to standard thermodynamics texts. The chiller is frequently called the evaporator in the refrigeration process, although this use of the term is at variance with the nomenclature used herein. When used in large

Frg. 15.11. Natural-circulation boiling and sensible film coefficients.
installations, the refrigerant may disengage into a separate drum instead of in the chiller shell.

Film Coefficients in Chillers and Kettle Reboilers. When a liquid is vaporized from a pool, the velocity of the liquid flowing over the heattransfer surface is very low. At these low velocities the film coefficient for boiling is independent of the velocity and dependent instead upon the temperature difference between the tube wall and the saturation temperature of the boiling fluid. A curve showing this relationship is represented by the upper line in Fig. 15.11. The coefficients are again limited to 300 for organics and 1000 for water, except that the maximum
allowable flux for organics is $12,000 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)$. The latter does not permit the use of large temperature differences for natural-circulation vaporizers and reboilers, which require more surface as a class than do forced-circulation types. The difference in cost of surface is usually more than offset by the saving in circulating pump power.

Chillers operate isothermally unless the vapor space of the chiller also serves as a flash chamber for the expansion, in which case the inlet temperature will be that at the throttle valve and the outlet temperature the saturation temperature of the refrigerant. The vaporization out of the liquid surface, however, is isothermal. Kettle reboilers also operate under nearly isothermal conditions, particularly when employed at the bottom of an aqueous-solution distilling column. When used with organic bottoms, however, there is ussually a boiling range, and it is necessary to provide for the introduction of sensible heat. The sensible heat is regarded as entering the liquid by a modification of free convection, ${ }^{1}$ and the curve for free convection to organics in natural circulation is given by the lower line of Fig. 15.11. It corresponds fairly, closely to the results obtained from Fig. 10.4. In the case of kettle reboilers the total heat load is divided into sensible- and latent-heat fractions, and the surface required for each fraction is computed separately at its respective boiling or sensible coefficient. While there are several ways in which this procedure can be justified, it is nonetheless an empirical means of calculating coefficients comparable to those obtained in practice. This method is demonstrated in Example 15.4.

Pressure Drop in Kettle Reboilers and Chillers. The height of botioms maintained in a distilling column naturally seeks its own level in the reboiler. If the reboiler is not mounted much below the liquid level in the column, there is a negligible hydrostatic head for fluid flow from the column to the reboiler, and hence the circulation rate is relatively small. This results in a low fluid velocity across the reboiler surface, and the pressure drop, as well as that of the connecting piping, may be considered negligible. The kettle reboiler, in fact, is the most suitable of all naturalcirculation reboilers where the reboiler cannot be mounted sufficiently below the liquid level in the column to provide a large recirculation rate.

Example 15.3. Calculation of a Kettle Reboiler. $45,500 \mathrm{lb} / \mathrm{hr}$ of bottoms of $65^{\circ} \mathrm{API}$ gravity and small boiling range at $400^{\circ} \mathrm{F}$ enter a kettle reboiler from which $28,100 \mathrm{lb} / \mathrm{hr}$ of vapor is formed at an operating pressure of 200 psig . Heat is supplied by $28^{\circ} \mathrm{API}$ gas oil in the range from 575 to $475^{\circ} \mathrm{F}$ and 120 psig operating pressure. A pressure drop of 10 psi is permissible.

Available for the service is a 25 in . ID kettle reboiler containing a six-pass $15 \frac{1}{4}-\mathrm{in}$.
${ }^{1}$ The terms natural convection and natural circulation sometimes cause confusion. The former refers to heat transfer, and the latter to fluid flow.
circular bundle. The bundle contains 681 in . OD, 14 BWG tubes $12^{\prime} 0^{\prime \prime}$ long on $11 / 4-\mathrm{in}$. square pitch. The bundle is baffled only by quarter-circle support plates.

Will the reboiler be satisfactory?
What are the dirt factor and pressure drops?

Solution:

Kettle:

Shell side
$151 / 4-\mathrm{in}$. circular bundle in 25 in .
ID
7/4-circle support plates

Tube side
Number and length $=68,12^{\prime} 0^{\prime \prime}$
$O D, B W G$, pitch $=1$ in., $14 \mathrm{BWG}, 11 / 4 \mathrm{in}$. square Passes $=6$
(1) Heat balance:

Enthalpy of liquid at $400^{\circ} \mathrm{F}$ and $215 \mathrm{psia}=290 \mathrm{Btu} / \mathrm{lb}$
(Fig. 11)
Enthalpy of vapor at $400^{\circ} \mathrm{F}$ and $215 \mathrm{psia}=385 \mathrm{Btu} / \mathrm{lb}$
Gasoline, $Q=28,100 \times(385-290)=2,670,000 \mathrm{Btu} / \mathrm{hr}$
Gas oil, $Q=34,700 \times 0.77(575-475)=2,670,000$
(2) Δt : Isothermal boiling
$\Delta t=\mathrm{LMTD}=118^{\circ} \mathrm{F}$
(3) $T_{s}: \frac{\Delta t_{c}}{\Delta t_{s}}=\frac{475-400}{575-400}=0.428$

$$
\begin{align*}
& K_{c}=0.37 \tag{Fig.17}\\
& F_{c}=0.42 \\
& T_{c}=475+0.42(575-475)=517^{\circ} \mathrm{F} \tag{5.28}
\end{align*}
$$

Hot fluid: tube side, gas oil
(4) Flow area, $a_{t}^{\prime}=0.546$ in. ${ }^{2}$ [Table 10]
$a_{t}=N_{t} a_{t}^{\prime} / 144 n$
$=68 \times 0.546 / 144 \times 6=0.043 \mathrm{ft}^{2}$
(5) $G_{t}=W / a_{t}$

$$
=34,700 / 0.043
$$

$$
=807,000 \mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)
$$

(6) At $T_{c}=517^{\circ} \mathrm{F}$,
$\mu=0.27 \times 2.42=0.65 \mathrm{lb} /(\mathrm{ft})(\mathrm{hr})$ (extrapolated) [Fig. 14]
$D=0.834 / 12=0.0694 \mathrm{ft}$
$R e_{t}=D G_{t} / \mu$

$$
=0.0694 \times 807,000 / 0.65=85,700
$$

(7) $j_{H}=220$
[Fig. 24]
(8) At $517^{\circ} \mathrm{F}\left(28^{\circ} \mathrm{API}\right)$
[Fig. 16]
$h(c \mu / k)^{1 / 6}=0.118 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F} / \mathrm{ft}\right)$
(9) $h_{i}=j_{H} \frac{k_{1}}{D}\left(\frac{c \mu}{k}\right)^{1 / 3}{ }_{\phi_{t}}$
[Eq. (6.15d)]
$h_{i} / \phi_{t}=220 \times 0.118 / 0.0694=374$
(10) $\frac{h_{\text {io }}}{\phi_{t}}=\frac{h_{i}}{\phi_{t}} \times \frac{\mathrm{ID}}{O \mathrm{D}}$
[Eq. (6.9)]

$$
=374 \times 0.834 / 1.0=311
$$

The correction for $\left(\frac{\mu}{\mu_{w}}\right)^{0.14}$ is negligible.
(9') Assume $h_{o}=300$ for trial.
(10) $t_{v}=t_{c}+\frac{h_{i 0}}{h_{i 0}+h_{o}}\left(T_{c}-t_{c}\right)$

$(\Delta t)_{w}=460-400=60^{\circ} \mathrm{F}$
From Fig. 15.11, $h_{v}>300$;
hence use 300 .

$$
\begin{equation*}
=460^{\circ} \mathrm{F} \tag{5.31}
\end{equation*}
$$

Cold fluid: shell side, gasoline
(13) Clean overall coefficient U_{C} :

$$
\begin{equation*}
U_{c}=\frac{h_{i o} h_{o}}{h_{i o}+h_{o}}=\frac{311 \times 300}{311+300}=152 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right) \tag{6.38}
\end{equation*}
$$

(14) Design overall coefficient U_{D} :

$$
a^{\prime \prime}=0.2618 \mathrm{ft}^{2} / \mathrm{lin} \mathrm{ft}
$$

(Table 10)
Total surface $=68 \times 12 \times 0.2618=214 \mathrm{ft}^{2}$

$$
\begin{equation*}
U_{D}=\frac{Q}{A \Delta t}=\frac{2,670,000}{214 \times 118}=105.5 \tag{5.3}
\end{equation*}
$$

Check of maximum flux:

$$
\frac{Q}{A}=\frac{2,670,000}{214}=12,500 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right) \text { (satisfactory) }
$$

(15) Dirt factor R_{d} :

$$
\begin{equation*}
R_{d}=\frac{U_{C}-U_{D}}{U_{C} U_{D}}=\frac{152-105.5}{152 \times 105.5}=0.0029 \tag{6.12}
\end{equation*}
$$

Pressure Drop

(1) For $R e_{t}=85,700, f=0.00015 \mathrm{ft}^{2} / \mathrm{in} .{ }^{2} \mid$ Negligible
[Fig. 26]
$s=0.71$
[Fig. 6]
(2) $\Delta P_{t}=\frac{f G_{t}^{2} L n}{5.22 \times 10^{10} D 8 \phi_{t}}$
$=\frac{0.00015 \times 807,000^{2} \times 12 \times 6}{5.22 \times 10^{10} \times 0.0694 \times 0.71}$
$\times 1.0$
$=2.8 \mathrm{psi}$
(3) $G_{t}=807,000, V^{2} / 2_{\square}^{1}=0.090$
[Fig. 27]
$\Delta P_{r}=\frac{4 n}{3} \frac{V^{2}}{2_{g}^{1}}$
[Eq. (7.46)]
$=\frac{4 \times 6}{0.71} \times 0.09=3.1 \mathrm{psi}$
(4) $\Delta P_{T}=\Delta P_{t}+\Delta P_{r} \quad$ [Eq. (7.47)]
$=2.8+3.1=5.9 \mathrm{psi}$
Summary

311	h outside	300
U_{C}	152	
U_{D}	105.5	
R Calculated 0.0029		
R_{d} Required		
5.9	Calculated ΔP	Neg
10.0	Allowable ΔP	Neg

c. Bundle-in-column Reboiler. It will probably occur while examining the kettle reboiler (Fig. 15.6) that, if the bundle is to be submerged in the trapout, it can be inserted directly into the bottom of the column, as in Fig. 15.12. There is no objection from a heat-transfer standpoint. As seen in Example 15.3 only $214 \mathrm{ft}^{2}$ of surface was required for the transfer of $2,670,000 \mathrm{Btu} / \mathrm{hr}$ and this in a $151 / 4-\mathrm{in}$. cir-

Fig. 15.12. Bundle-incolumn reboiler. cular bundle $16^{\prime} 0^{\prime \prime}$ long. The column required for $28,100 \mathrm{lb} / \mathrm{hr}$ of the vapor at 200 psig has a diameter of less than 3 ft . If the bundle is inserted in the bottom of such a column, many short tubes will be required and the height of the bottom of the column must be increased so as to maintain the same holdup space. Another obvious disadvantage lies in the size of the flanged connection which must be welded to the side of the column to accommodate the larger bundle. Internal supports are also required to keep the weight of the bundle from forming a cantilever with the column connection flange. These difficulties are usually surmountable when the column diameter is greater than 6 ft , but overall experience favors the use of external reboilers in preference to the small savings realized by eliminating the shell.

The calculations for the bundle-in-column reboiler are identical with those for the kettle reboiler, using coefficients from Fig. 15.11.

Fig. 15.13. Horizontal thermosyphon reboiler. (Patterson Foundry and Machine Co.)
d. Horizontal Thermosyphon Reboiler. This is perhaps the commonest type of reboiler. Figure 15.13 shows a horizontal thermosyphon reboiler. It consists of centrally located inlet and outlet nozzles, a vertical circular support plate between the nozzles, and a horizontal longitudinal baffle. Horizontal thermosyphons operate on the principle of divided flow as first outlined under condensers in Fig. 12.17, with halves of the entering fluid flowing away from each other below the longitudinal baffle and toward each other above it. Disengagement takes place in the column, and the reboiler may be connected by the
arrangement of Fig. 15.4a or b. In Fig. 15.4a, as stated previously, all the liquid from the bottom plate is led directly to the reboiler. The rate of feed to the reboiler is the hourly trapout rate, which passes through the reboiler but once. In Fig. $15.4 b$ the reboiler is connected to the bottoms, which are free to recirculate at a rate such that the frictional pressure drop in the reboiler and other resistances of the circuit just balance the hydrostatic head difference between the liquid and liquid-vapor legs. The hydrostatic head available in the latter arrangement, however, is less than in the once-through arrangement although a greater head is required for recirculation. The head is provided by raising the bottom liquid level in the column or by raising the column itself. Occasionally the reboiler may be set in a well, but this practice finds little favor in modern plants.

Film Coefficients in Horizontal Reboilers. The coefficients used for thermosyphons are substantially the same as those employed for kettle reboilers and are given by Fig. 15.11. When there is a boiling range, it is imperative that the overall clean coefficient be weighted for sensible- and latent-heat loads individually, although the procedure differs from the weighting of successive zones, since both sensible heating and boiling occur in the same temperature range. This problem was not encountered in forced-circulation reboilers and vaporizers because the rates of boiling and sensible-heat transfer are ordinarily very nearly identical. However, in a shell without forced convection the rate of sensible-heat transfer by free convection is usually less than one-sixth the naturalcirculation boiling rate. In natural circulation, however, where both sensible-heat transfer and boiling occur over the same surface, the free convection coefficient is undoubtedly modified by the bubble movements which far exceed the agitation derived from ordinary free convection currents. To account for this modification, the sensible portion of the heat load is assumed to be transferred by ordinary free convection and the boiling portion is assumed to be transferred as natural-circulation vaporization.

Although the flow is not counterflow, it usually does not deviate greatly from it, because one or both of the fluids is substantially isothermal. If steam is the heating medium, the counterflow temperature difference applies directly. If a liquid is the heating medium rather than a vapor, the counterflow temperature difference applies only if the range on the material being vaporized is small and the approach between the heating medium and vaporizing medium inlet temperatures is appreciable. If F_{T} for a 1-2 exchanger exceeds 0.90 an insignificant error may be anticipated from the use of the 1-2 parallel flow-counterflow temperature difference.

Since the temperature differences for sensible heating and vaporization are the same, there is no weighted temperature difference. But the sensible heat q_{s} is transferred with a free convection coefficient of h_{s}, and the latent heat q_{v} is transferred with the considerably higher coefficient h_{v}. To permit obtaining a single dirt factor, as the index of performance or maintenance of the reboiler, the weighted coefficient may be obtained as follows: From $q=h \mathrm{~A} \Delta t$,

$$
\begin{aligned}
& A_{s}(\Delta t)_{s}=\frac{q_{s}}{h_{s}} \\
& A_{v}(\Delta t)_{v}=\frac{q_{v}}{h_{v}}
\end{aligned}
$$

The weighted coefficient is then

$$
h=\frac{Q}{q_{t} / h_{s}+q_{v} / h_{v}}
$$

Since neither h_{v} nor h_{s} is influenced by the velocity through the reboiler, it will be of no consequence in the calculation whether the reboiler has been connected for once-through or recirculation operation.

Pressure Drop. There is an obvious need in the recirculation arrangement to keep the pressure drop through the thermosyphon as small as possible. When studying condensers it was observed that the greater the pressure drop through the condenser the higher the condenser must be elevated above the column to permit the gravity return of condensate. The effect of pressure drop on the elevation of the bottom tower liquid level above the reboiler is even more critical. The greater the pressure drop through the reboiler the higher the entire column and auxiliaries must be elevated above the ground level to produce sufficient hydrostatic head to overcome the pressure drop. Pressure drops of about 0.25 psi are generally allowed for the reboiler and attendant losses. If the column is small in diameter or height, a pressure drop as high as 0.50 psi may be allowed, but concessions of this nature to the design of the reboiler are rare. For a reboiler vaporizing a small fraction of the liquid entering it, the required elevation is greater, since the return leg to the column contains more liquid than vapor and the difference in density of the streams to and from the reboiler is small.

While half baffles may occasionally be used to increase the turbulence in the shell, the tubes are usually prevented from sagging by the vertical support plate between the inlet and outlet nozzles and additional quartercircle support plates. The liquid entering the horizontal thermosyphon flows one-half of the tube length on the underside of the longitudinal baffle and one-half the tube length on the upper side, so that all the liquid travels the entire tube length but in each instance with a mass-velocity based on one-half the total flow. The length of path of each parallel stream equals
the tube length, and it is sufficiently accurate to treat the pressure drop the same as for a shell without baffles and with axial flow as in Example 7.8. The diameter of a horizontal thermosyphon reboiler is greater than that which corresponds to the tube count of a conventional 1-2 exchanger because of the free space which must be provided in the upper half to allow the light mixture of vapor and liquid readily to reach the outlet nozzle. If the surface of a 25 in . ID layout sufficed for heat transfer, the tubes would be relocated in a 27 in . ID shell while retaining the tube pitch so as to leave a free vapor flow channel at the top of the shell and a lesser entrance channel at the bottom.

The equivalent diameter is computed directly by Eq. (7.3) from the wetted perimeter of the tubes, half the shell, and the width of the longi-

Frg. 15.14. Horizontal thermosyphon with double nozzles. (Patterson Foundry and Machine Co.)
tudinal baffle. The flow area is the difference between half a circle and the number of tubes in the upper or lower shell pass. In the absence of the actual tube layout these may be assumed to be equal. The Reynolds number is computed from the inlet liquid viscosity and the equivalent diameter. The pressure drop is based on the mean specific gravity between inlet and outlet, using a friction factor obtained from Fig. 26 for the tube side.

When there is a single inlet nozzle on the shell, it is customary not to use a tube length more than five times the shell diameter. Long, thin reboilers do not thermosyphon well. When a long, thin reboiler is indicated, it is usually equipped with two inlet nozzles as shown in Fig. 15.14 with a mass velocity based on one-fourth the flow rate in one-half the flow area. The following table will serve as a guide to well-proportioned horizontal thermosyphons:

Shell ID, in.	Tube length
$12-171 / 4$	$8^{\prime} 0^{\prime \prime}$
$191 / 4-29$	$12^{\prime \prime} 0^{\prime \prime}$
31 and over	$16^{\prime} 0^{\prime \prime}$

When using a recirculating arrangement with a horizontal thermosyphon, recirculation can be computed approximately as the rate at
which the pressure drop through the reboiler equals the hydrostatic difference of z_{1} and z_{3} in Fig. $15.4 b$ although the rate does not affect the film coefficient. Instead of the recirculation rate it is preferable in reboilers to specify the recirculation ratio, which is defined as the pounds per hour of liquid leaving the reboiler compared with the pounds per hour of vapor alone. This should not be confused with the conventional definition of recirculation rates, which is defined as the ratio of the total hourly throughput to the hourly requirement.

In a recirculating reboiler the temperature range is not identical with that of a once-through arrangement. If the liquid recirculates, only a small amount of vapor is formed in each circulation and the vaporization occurs over a smaller temperature range, although the outlet temperatures in both arrangements are identical. In the recirculating arrangement the temperature difference is somewhat smaller. Usually the reduction in temperature difference is not significant unless the range of the heating medium is very close to that of the vaporization. A recirculation ratio four times or greater than the hourly once-through vapor rate is considered favorable from a cleanliness standpoint. The method of calculating recirculation ratios will be discussed in connection with the vertical thermosyphon reboiler, where a higher order of recirculation is usually obtained.
Example 15.4. Calculation of a Once-through Horizontal Thermosyphon Reboiler. $38,500 \mathrm{lb} / \mathrm{hr}$ of $60^{\circ} \mathrm{API}$ naphtha in a once-through arrangement is to enter a horizontal thermosyphon reboiler and produce $29,000 \mathrm{lb} / \mathrm{hr}$ of vapor in the temperature range from 315 to $335^{\circ} \mathrm{F}$ at an opersting pressure of 5.0 psig . Heat will be supplied by $28^{\circ} \mathrm{API}$ gas oil with a range from 525 to $400^{\circ} \mathrm{F}$.

Available for the service is a $21 / 4 \mathrm{in}$. ID reboiler containing 1161 in . OD, 14 BWG tubes $12^{\prime} 0^{\prime \prime}$ long laid out on $11 / 4$-in. square pitch. The bundle has a support plate above the single inlet nozzle and is arranged for eight passes.

What are the dirt factor and the pressure drops?

Solution:

Reboiler:

Thell side	Tube side
ID $=213 / 4$ in.	Number and length $=116,12^{\prime \prime} 0^{\prime \prime}$
Support plates $=1 / 4$ circles	OD, BWG, pitch $=1$ in., $14 \mathrm{BWG}, 11 / 4-\mathrm{in}$. square
Passes $=$ divided	Passes $=8$

(1) Heat balance:

Enthalpy of liquid at $315^{\circ} \mathrm{F}$ and $19.7 \mathrm{psia}=238 \mathrm{Btu} / \mathrm{lb}$
(Fig. 11)
Enthalpy of liquid at $335^{\circ} \mathrm{F}$ and $19.7 \mathrm{psia}=252 \mathrm{Bta} / \mathrm{lb}$
Enthalpy of vapor at $335^{\circ} \mathrm{F}$ and $19.7 \mathrm{psia}=378 \mathrm{Btu} / \mathrm{lb}$
Naphtha $q_{v}=29,000(378-252)=3,650,000$ $q_{2}=38,500(252-238)=540,000$
$Q=$
$=\overline{4,190,000} \mathrm{Btu} / \mathrm{hr}$
Gas oil, $Q=51,000 \times 0.66(525-400)=4,190,000$
(2) Δt :

Hot Fluid Cold Fluid

525	Higher Temp	335	190
400	Lower Temp	315	85
125	Differences	20	105

LMTD $=131^{\circ} \mathrm{F}$
$R=\frac{125}{20}=6.25 \quad S=\frac{20}{525-315}=0.095$
$F_{T}=0.97$
$\Delta t=F_{T} \times \mathrm{LMTD}=0.97 \times 131=127^{\circ} \mathrm{F}$
(3) T_{c} :
$\frac{\Delta t_{c}}{\Delta t_{h}}=\frac{85}{190}=0.447$
(Fig. 17)
$K_{0}=0.42$
$F_{c}=0.41$
$T_{c}=400+0.41(525-400)=451^{\circ} \mathrm{F}$
$t_{c}=315+0.41(335-315)=323^{\circ} \mathrm{F}$

Hot fuid: tube side, gas oil
(4) $a_{t}^{\prime}=0.546 \mathrm{in}{ }^{2}$
[Table 10]
$a_{t}=N_{t} a_{t}^{\prime} / 144 n$
$=116 \times 0.546 / 144 \times 8=0.055 \mathrm{ft}^{2}$
(б) $G_{t}=W / a_{t}$

$$
=51,000 / 0.055
$$

$=928,000 \mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)$
(6) At $T_{c}=451^{\circ} \mathrm{F}$,
$\mu=0.45 \times 2.42=1.09 \mathrm{lb} /(\mathrm{ft})(\mathrm{hr})$
[Fig. 14]
$D=0.834 / 12=0.0695 \mathrm{ft} \quad$ [Table 10]
$R e_{t}=D G_{t} / \mu$

$$
=0.0695 \times 928,000 / 1.09=59,200
$$

(7) $j_{H}=168$
[Fig. 24]
(8) At $T_{c}=451^{\circ} \mathrm{F}\left(28^{\circ} \mathrm{API}\right)$
[Fig. 16]
$\left.k(c \mu / k)^{5 / 6}=0.142 \mathrm{Btu} /(\mathrm{hr})(\mathrm{ft})^{2}\right)\left({ }^{\circ} \mathrm{F} / \mathrm{ft}\right)$
(9) $h_{i}=\left(j_{H} k / D\right)\left(c_{\mu} / k\right)^{1 / s^{2}} \phi_{t} \quad$ [Eq. (6.15a)]
$\frac{h_{i}}{\phi_{i}}=168 \times \frac{0.142}{0.0695}=343$
$\phi_{t}=1.0$
(10) $h_{i 0}=h_{i} \times$ ID $/ O D$

$$
\begin{aligned}
&=343 \times 0.834 / 1.0 \\
&=286 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)
\end{aligned}
$$

Cold fuid: shell side, naphtha
Assume weighted $h_{o}=200$
$h_{\text {io }}$ from (10) $=286$
$t_{w}=t_{c}+\frac{h_{i_{0}}}{h_{s_{o}}+h_{o}}\left(T_{\sigma}-t_{0}\right) \quad$ [Eq. (5.31)]

$$
=323+\frac{286}{286+200}(451-323)
$$

$$
=382^{\circ} \mathrm{F}
$$

$(\Delta t)_{w}=382-323=59^{\circ} \mathrm{F}$
From Fig. 15.11, $h_{v}=>300$, use 300
$h_{s}=60$
$q_{v} / h_{v}=3,650,000 / 300=12,150$
$q_{8} / h_{s}=540,000 / 60=\frac{9,000}{21,150}$
(10^{\prime}) $h_{c}=4,190,000 / 21,150$
$=198 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$ Checks 200 assumed for h_{0}.
(13) Overall clean coefficient U_{c} :

$$
\begin{equation*}
U_{c}=\frac{h_{i_{0} h_{o}}}{h_{i o}+h_{o}}=\frac{286 \times 198}{286+198}=116 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right) \tag{6.38}
\end{equation*}
$$

(14) Design overall coefficient U_{D} :

$$
\text { Surface per linear foot }=0.2618
$$

(Table 10)
Total surface $=116 \times 12^{\prime} 0^{\prime \prime} \times 0.2618=364 \mathrm{ft}^{2}$

$$
U_{D}=\frac{Q}{A \Delta t}=\frac{4,190,000}{364 \times 127}=90.7
$$

Check of maximum flux (besed on total transfer through the surface):

$$
\frac{Q}{A}=\frac{4,190,000}{364}=11,500 \text { vs. } 12,000 \text { allowable }
$$

(15) Dirt factor R_{d} :

$$
\begin{equation*}
R_{d}=\frac{U_{C}-U_{D}}{U_{C} U_{D}}=\frac{116-90.7}{116 \times 90.7}=0.0024 \tag{6.13}
\end{equation*}
$$

Pressure Drop

(1) $R e_{i}=59,200, f=0.000168 \mathrm{ft}^{2} / \mathrm{in} .^{2} \mid\left(1^{\prime}\right) D_{e}^{\prime}=4 \times$ flow area $/$ frictional wetted
[Fig. 26]
$s=0.73$
[Fig. 6]
(2) $\Delta P_{t}=\frac{f G_{t}^{2} L n}{5.22 \times 10^{10} D_{s \phi_{t}}}$

$$
=\frac{0.000168 \times 928,000^{2} \times 12 \times 8}{522 \times 10^{10} \times 0.0695 \times 0.73 \times 1}
$$

$$
=5.3 \mathrm{psi}
$$

(3) $G_{t}=928,000 V^{2} / 2 g^{\prime}=0.11$ [Fig. 27] $\Delta \operatorname{Pr}=4 \frac{n}{s} \frac{V^{2}}{2 g^{\prime}}=\frac{4 \times 8}{0.73} \times 0.11=4.8 \mathrm{psi}$
(4) $\Delta P_{T}=\Delta P_{t}+\Delta P_{r}$
[Eq. (7.46)]

$$
=5.3+4.8=10.1 \mathrm{psi}
$$

Assume half of tubes above and half of tubes below longitudinal buffle.
Flow area $=1 / 2$ shell cross section $-1 / 2$ tube cross section

$$
=\frac{\pi}{8}\left(21.25^{2}-1.0 \times 116\right)=132 \mathrm{in} .^{2}
$$

$a_{s}=132 / /_{44}=0.917 \mathrm{ft}^{2}$
Wetted perimeter $=\frac{\pi \times 21.25}{2}+\frac{\pi}{2} \times 1$

$$
\times 116+21.25=236.7 \mathrm{in}
$$

$d_{s}^{\prime}=4 \times 132 / 236.7=2.23 \mathrm{in}$.
$D_{s}^{\prime}=2.23 / 12=0.186 \mathrm{ft}$
$G_{\mathrm{s}}=(w / 2) / a_{s}$
$=5 / 238,500 \times 0.917$

$$
=21,000 \mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)
$$

For 60° API at 315 use data in Fig. 14 for $56^{\circ} \mathrm{API}$ gasoline as an approximation.
$\mu=0.18 \times 2.42=0.435 \mathrm{lb} /(\mathrm{ft})(\mathrm{hr})$
$R e_{t}=D_{d}^{\prime} G_{s} / \mu$
$=0.186 \times 21,000 / 0.435=8950$
$f=0.00028 \mathrm{ft}^{2} / \mathrm{in} .^{2}$
From Fig. 13.14, mol. wt. $=142$

Pressure Drop

$$
\begin{aligned}
\Delta P_{z} & \left.=\frac{f G_{s}^{2}\left(L_{\text {total }}\right)}{5.22 \times 10^{10} D_{e}^{\prime} s \phi_{s}} \quad \text { [Eq. }(7.45)\right] \\
& =\frac{0.00028 \times 21,000^{2} \times 12}{5.22 \times 10^{20} \times 0.186 \times 0.35 \times 1.0} \\
& =0.0004 \mathrm{psi}
\end{aligned}
$$

Summary

286	h outside	$30 \% 0$
U_{G}	116	
U_{D}	90.7	
R_{d} Calculated 0.0024		
R_{d} Required		
10.1	Calculated ΔP	Neg
10.0	Allowable ΔP	0.25

The dirt factor is somewhat low for continued service. The high pressure drop on the gas oil line is insignificant.

When a reboiler is overdesigned, it may operate by breathing. As liquid enters the reboiler, it may be completely vaporized very quickly because of the overdesign. New liquid replaces it and cools the surface down. The new liquid remains in the reboiler momentarily and is heated and completely vaporized also, so that intermittent bursts of vapor issue from the reboiler outlet instead of a smooth continuous flow of vapor and liquid mixture. This can be overcome by reducing the pressure on the steam if steam is the heating medium or by placing an orifice on the shell outlet flange so as to cause an increased pressure drop on the vapor.

Horizontal Thermosyphons with Baffes. Horizontal thermosyphons are occasionally designed with vertically cut baffles such as were discussed in connection with the 2-4 exchanger. The baffles do not affect the boiling film, but they do affect the sensible-heating coefficient, increasing it beyond the free-convection value. If the baffles are the usual 25 per cent, vertically cut, segmental baffles arranged for side-to-side flow, the sensible film coefficient can be computed from shell-side data as given in Fig. 28 and as discussed under the $2-4$ exchanger. If the baffles are cut 50 per cent corresponding to quarter-circle support plates, the coefficient is treated on the basis of axial flow as above, using the equivalent diameter as calculated in Example 7.8 and the tube-side data of Fig. 24.

2. Vaporization in the Tubes

The members of this class are vertical units operating with a relatively large hydrostatic head and a low pressure drop. For this reason the vaporization usually occurs in the tubes of a one-tube-pass exchanger, which permits a greater recirculation rate than is common to horizontal units with vaporization in the shell. The three main classes of equipment employing this arrangement are the

Fre. 15.15. Natural-circulation steam generator. This is similar to Fig. 14.27 but for foaming and soaling provisions. vertical long-tube evaporator, the vertical thermosyphon reboiler, and the unfired steam generator. The

Fig. 15.16. Vertical thermosyphon reboiler connected to tower.
steam generator is shown in Fig. 15.15, and it is similar to the vertical long-tube evaporator in Fig. 14.27. The vertical thermosyphon reboiler is shown in Fig. 15.16, and it will presently be treated in detail to demonstrate the calculation common to natural-circulation units.
Recirculation Ratios. The recirculation ratio is attained when the sum of the resistances in the vaporization circuit is equal to the hydrostatic driving force on the vaporizing fluid. Referring to the vertical thermosyphon in Fig. 15.16, there are five principal resistances:

1. Frictional pressure drop through the inlet piping
2. Frictional pressure drop through the reboiler (z_{2})
3. Expansion or acceleration loss due to vaporization in the reboiler
4. Static pressure of a column of mixed liquid and vapor $\left(z_{3}\right)$ in the reboiler
5. Frictional pressure drop through the outlet piping

Expansion Loss Due to Vaporization. This is taken as two velocity heads based on the mean of the inlet and outlet specific gravities.

$$
\begin{equation*}
\Delta P_{1}=\frac{G^{2}}{144 g \rho_{\mathrm{av}}} \quad \mathrm{psi} \tag{15.14}
\end{equation*}
$$

Particularly where the recirculation ratio and the operating pressure are great, the difference in the densities between the inlet and outlet are not very large and the expansion loss is negligible.

Weight of a Column of Mixed Liquid and Vapor. This is difficult to evaluate if precision is required, since the expansion of the vapor is a function of the recirculation ratio, average specific volume of the vapor, coefficient of expansion of the liquid, etc. For nearly all practical cases it may be assumed that the variation of the specific gravity is linear between the inlet and the outlet. If v is the specific volume at any height x in the vertical tube of Fig. 15.17 whose total length is L and whose inlet and outlet specific volumes are v_{i} and y_{0},

$$
\begin{equation*}
v=\dot{v}_{i}+\frac{\left(v_{0}-v_{i}\right) x}{L} \tag{15.15}
\end{equation*}
$$

If the weight of the column of mixture is m, the change in weight with height is $d m$, and if a is the cross-section flow area,

$$
\begin{equation*}
d m=\frac{a}{v} d x \tag{15.16}
\end{equation*}
$$

Fig. 15.17. Volume change in a

If the static pressure of the column of liquid and vapor is designated by $z_{3} \rho_{\mathrm{av}}$ and the cross-section area a is unity,

$$
\begin{equation*}
z_{3} \rho_{\mathrm{av}}=\int^{L} \frac{d x}{v}=\int \frac{d x}{v_{i}+\left(v_{0}-v_{i}\right) x / L} \quad \mathrm{psi} \tag{15.17}
\end{equation*}
$$

Integrating and dividing by 144 to obtain the head per square inch

$$
\begin{equation*}
\frac{z_{3} \rho_{\mathrm{av}}}{144}=\frac{2.3 L}{144\left(v_{o}-v_{i}\right)} \log \frac{v_{0}}{v_{i}} \quad \mathrm{psi} \tag{15.18}
\end{equation*}
$$

Rational solutions for the recirculation ratio can be established by taking all the heads in the circuit into account as functions of the mass velocity G, and upon solution for G the recirculation rate can be obtained directly. Because the gravity of the reboiler outlet mixture also varies
with the recirculation ratio, the expression becomes complex and it is simpler to solve by trial and error. If the height of an existing reboiler is given, the recirculation ratio can be computed. If the recirculation ratio is given, the required head $z_{1} \rho_{2}$ may be computed.
a. Vertical Thermosyphon Reboiler. The vertical thermosyphon is usually a conventional 1-1 exchanger with the channel end up. The upper tube sheet is placed close to the liquid level of the bottoms in the distilling column. Since the reboiler can be set close to the column, the frictional loss in the inlet and outlet piping is usually negligible. The recirculation ratio is determined from the difference between the hydrostatic head in the distilling column corresponding to the tube length of the reboiler and the weight of the vapor-liquid mixture. Recirculation ratios exceeding 4:1 are usually employed.

Example 15.5. Calculation of a Vertical Thermosyphon Reboiler. A vertical thermosyphon reboiler is to provide $40,800 \mathrm{lb} / \mathrm{hr}$ of vapor which is almost pure butane. In an arrangement identical with Fig. 15.16 the column operates at a pressure of 275 psig corresponding to a nearly isothermal boiling point of $228^{\circ} \mathrm{F}$. Heat will be supplied by steam at 125 psig.

A recirculation ratio of $4: 1$ or greater should be employed.
What is the optimum exchanger to fulfill this requirement? $8 / 4 \mathrm{in}$. OD, 16 BWG tubes on 1 -in. triangular pitch will be used.

Solution:
(1) Heat balance:

Enthalpy of liquid at $228^{\circ} \mathrm{F}$ and $290 \mathrm{psia}=241 \mathrm{Btu} / \mathrm{lb}$
(Fig. 9)
Enthalpy of vapor at $228^{\circ} \mathrm{F}$ and 290 psia $=338 \mathrm{Btu} / \mathrm{lb}$
Butane, $Q=40,800(338-241)=3,960,000 \mathrm{Btu} / \mathrm{hr}$
Steam, $Q=4570 \times 868=3,960,000 \mathrm{Btu} / \mathrm{hr}$
(2) Δt : Isothermal boiling
$\Delta t=\mathrm{LMTD}=125^{\circ} \mathrm{F}$
(3) T_{c} and t_{c} : Both streams are isothermal.

Trial 1 (see Chap. 11 for method of approach):
(a) When establishing reboiler surface the first trial should always be taken for the maximum allowable flux

$$
A=\frac{Q}{Q / A}=\frac{3,960,000}{12,000}=330 \mathrm{ft}^{2}
$$

Assume $16^{\prime} 0^{\prime \prime}$ long tubes. These will reduce the shell diameter and provide the cheapest reboiler. However, it will also require the greatest elevation of the column.

Number of tubes $=330 / 16^{\prime} 0^{\prime \prime} \times 0.1963=105$
(Table 10)
(b) Since this will be a 1-1 exchanger, only one tube pass

From the tube counts: 105 tubes, 1 pass, $3 / 4 \mathrm{in}$. OD, 1 -in. triangular pitch.
Nearest count: 109 tubes in a $13 \frac{1}{4} \mathrm{in}$. ID shell
(c) Corrected coefficient U_{D} :
$A=109 \times 16^{\prime} 0^{\prime \prime} \times 0.1963=342 \mathrm{ft}^{2}$
$U_{D}=\frac{3,960,000}{342 \times 125}=92.5$

Recirculation ratio: Assume 4:1 recirculation ratio.

$$
\begin{align*}
& \text { Static pressure of reboiler leg, } \frac{z_{3} \rho_{\mathrm{ar}}}{144}=\frac{2.3 L}{144\left(v_{0}-v_{i}\right)} \log \frac{v_{0}}{\nu_{i}} \quad \mathrm{psi} \tag{15.18}\\
& \text { Vapor density, } \rho_{v}=\frac{68}{359 \times{ }^{888 / 492} \times 14.7 / 290}=2.27 \mathrm{lb} / \mathrm{ft}^{3} \\
& v_{\text {vabor }}=\frac{1}{2.27}=0.44 \mathrm{ft}^{3} / \mathrm{lb} \\
& v_{\text {locuid }}=v_{i}=\frac{1}{62.5 \times 0.43}=0.0372 \mathrm{ft}^{\mathrm{a}} / \mathrm{lb} \tag{Fig.6}
\end{align*}
$$

Weight flow of recirculated liquid $=4 \times 40,800=163,200 \mathrm{lb} / \mathrm{hr}$
Total volume out of reboiler:

$$
\begin{gathered}
\text { Liquid, } 163,200 \times 0.0372=6,100 \mathrm{ft}^{\mathrm{s}} \\
\text { Vapor, } 40,800 \times 0.44=17,950 \mathrm{ft}^{8} \\
\text { Total }=\frac{14,050 \mathrm{ft}^{\mathrm{s}}}{24,}=0.175 \mathrm{ft}^{3} / \mathrm{lb} \\
\text { vessure of leg, } \frac{z_{8} \rho_{\mathrm{ar}}}{144}=\frac{24,050}{(163,200+40,800)}=0 \frac{2.3 \times 16}{144(0.1175-0.0372)} \times \log \frac{0.1175}{0.0372}=1.60 \mathrm{psi}
\end{gathered}
$$

Frictional resistance:

$$
\begin{align*}
& \text { Flow area: } \\
& a_{t}=N_{:} \frac{a_{i}^{\prime}}{144 n}=109 \times \frac{0.302}{144}=0.229 \mathrm{ft}^{2} \quad \text { (Table 10) } \\
& G_{t}=\frac{w}{a_{t}}=\frac{163,200+40,800}{0.229}=891,000 \mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right) . \\
& \text { At } 228^{\circ} \mathrm{F}, \mu=0.10 \times 2.42=0.242 \mathrm{lb} /(\mathrm{ft})(\mathrm{hr}) \tag{Fig.14}\\
& D=\frac{0.62}{12}=0.0517 \mathrm{ft} \\
& R e_{t}=\frac{D G}{\mu}=\frac{0.0517 \times 891,000}{0.242}=190,000 \\
& f=0.000127 \mathrm{ft}^{2} / \mathrm{in} .^{2} \tag{Fig.26}\\
& s_{\text {mean }}=\frac{(0.43+1 / 0.1175 \times 62.5)}{2}=0.285 \\
& \Delta P_{t}=\frac{f G^{2} L n}{5.22 \times 10^{10} D s \phi_{t}}=\frac{0.000127 \times 891,000^{2} \times 16}{5.22 \times 10^{10} \times 0.0517 \times 0.285 \times 1.0}=2.09 \mathrm{psi} \tag{7.45}\\
& \text { Total resistance }=1.60+2.09=3.69 \mathrm{psi} \\
& \text { Driving force, } \frac{z_{1} \rho_{l}}{144}=16 \times 0.43 \times 62.5 / 144=2.98 \text { psi no check }
\end{align*}
$$

The resistances are greater than the hydrostatic head can provide; hence the recirculation ratio will be less than 4:1. Of the resistances the frictional pressure drop may be reduced by the square of the mass velocity if the tubes are made shorter. The other alternative is to raise the liquid level in the column above the upper tube sheet.

Trial 2: Assume $12^{\prime} 0^{\prime \prime}$ tubes and 4:1 recirculation ratio:
(a) Number of tubes $\approx 330 \mathrm{ft}^{2}=330 / 12^{\prime} 0^{\prime \prime} \times 0.1963=140$
(b) from the tube counts: 140 tubes, one pass, $3 / 4 \mathrm{in}$. OD, $1-\mathrm{in}$. triangular pitch Nearest count: 151 tubes in a 1514 in . ID shell
(c) Corrected coefficient U_{D} :

$$
\begin{aligned}
& A=151 \times 12^{\prime} 0^{\prime \prime} \times 0.1963=356 \mathrm{ft}^{2} \\
& U_{D}=3,960,000 / 356 \times 125=89.0
\end{aligned}
$$

Recirculation ratio: Assume 4:1 recirculation ratio

$$
\begin{aligned}
& y_{i}=0.0372 \text { as before } \\
& v_{a}=0.1175
\end{aligned}
$$

Static pressure of leg, $\frac{z_{3} \rho_{\text {av }}}{144}=\frac{2.3 \times 12}{144(0.1175-0.0372)} \log \frac{0.1175}{0.0372}=1.20 \mathrm{psi}$
Frictional resistance:

$$
\begin{aligned}
& a_{t}=151 \times \frac{0.302}{144}=0.316 \mathrm{ft}^{2} \\
& G_{t}=\frac{204,000}{0.316}=645,000 \mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right) \\
& R e_{t}=0.0517 \times \frac{645,000}{0.242}=138,000 \\
& f=0.000135 \mathrm{ft} / \mathrm{in} .^{2} \\
& \Delta P_{t}=\frac{0.000135 \times 845,000^{2} \times 12}{5.22 \times 10^{10} \times 0.0517 \times 0.285 \times 1.0}=0.88 \mathrm{psi} \\
& \text { Total resistance }=1.20+0.88=2.08 \mathrm{psi} \\
& \text { Driving force, }, \frac{z_{1} \rho_{t}}{144}=12 \times 0.43 \times \frac{62.5}{144}=2.24 \mathrm{psi}
\end{aligned}
$$

Since the driving force is slightly greater than the resistances, a recirculation ratio better than $4: 1$ is assured. With a mass velocity of $645,000 \mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft} t^{2}\right)$ equivalent to an inlet velocity ($V=G_{t} / 3600 \rho$) of $645,000 / 3600 \times 62.5 \times 0.43=6.7 \mathrm{fps}$ the butane boiling coefficient may be computed as for forced circulation.

Hot fuid: shell side, steam
(9) Condensing steam
$h_{o}=1500 \mathrm{Btu} /(\mathrm{hr})(\mathrm{ft} \cdot)^{\circ}\left({ }^{\circ} \mathrm{F}\right)$

Cold fuid: tube side, butane
(4), (6), (6) $R e_{i}=138,000$
(7) $j_{H}=330$
[Fig. 24]
(8) $k(c \mu / k)^{3 / 2}=0.115 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F} / \mathrm{ft}\right)$
(9). $h_{i}=\left(j_{B} k / D\right)\left(c_{\mu} / k\right)^{1 / 8}$

$$
=330 \times 0.115 / 0.0517=735
$$

This exceeds the maximum. Use 300 .
(10) $h_{i o}=h_{0} \times$ ID $/ \mathrm{OD}=300$ $\times 0.62 / 0.75=248 \mathrm{Btu} /(\mathrm{hr})(\mathrm{ft})\left({ }^{\circ} \mathrm{F}\right)$
(13) Clean overall coefficient U_{c} :

$$
\begin{equation*}
U_{c}=\frac{h_{i_{0}} h_{o}}{h_{i_{o}}+h_{o}}=\frac{1500 \times 248}{1500+248}=213 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{(} \mathrm{F}\right) \tag{6.38}
\end{equation*}
$$

(14) Dirt factor R_{d} :
U_{D} has been obtained above.

$$
\begin{equation*}
R_{d}=\frac{U_{C}-U_{D}}{U_{C} U_{D}}=\frac{213-89}{213 \times 89}=0.0065(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right) / \mathrm{Btu} \tag{6.13}
\end{equation*}
$$

Pressure Drop: The pressure drop through the reboiler has been computed, 0.88 psi. The head elevation z_{1} will be 12 ft . The pressure drop on the shell using half-circle support plates is negligible.

Summary		
1500	h outside	248
U_{C}	213	
U_{D}	89	
R_{d} Calculated 0.0065		
R_{d} Required $0.004-0.006$		
Neg	Calculated ΔP	0.88
Neg	Allowable ΔP	0.88

The large dirt factor must be retained because of the flux requirements. This is clearly an instance in which the high temperature of the steam yields no advantage. If the steam temperature were lower, a higher value of U_{D} could be used and the surface would remain the same.

The final reboiler will be

$$
\begin{array}{cc}
\text { Shell side } & \text { Tube side } \\
\text { ID }=151 / 4 \mathrm{in} . & \text { Number and length }=151,12^{\prime} 0^{\prime \prime} \\
\text { Baffe space }=1 / 2 \text { circles } & \text { OD, BWG, pitch }=3 / 4 \mathrm{in} ., 16 \text { BWG, } 1 \text {-in. tri. } \\
\text { Passes }=1 & \text { Passes }=1
\end{array}
$$

b. Long-tube Vertical Evaporator. The calculation in Example 15.5 can be applied directly to the long-tube vertical evaporator and the steam generator. The method of computing the recirculation ratio can also be applied directly to horizontal thermosyphons, although it is seen in practice that the recirculation ratio is usually quite low.

CALCULATIONS FOR DISTILLATION PROCESSES
The Reboiler Heat Balance. The heat requirements for a reboiler can be determined readily from heat balances on any continuous distillation column. A typical column is shown in Fig. 15.18 along with a condenser and reboiler. The function of reflux has already been discussed in Chap. 12. If R is the reflux ratio, i.e., the number of mols of condensate poured back into the column per mol of product with-

Frg. 15.18. Distilling column with condenser and reboiler. drawn, the heat balance on the condenser is

$$
\begin{equation*}
(R+1) W_{D} H_{D(v)}-(R+1) W_{D} H_{D(l)}=Q_{\sigma} \tag{15.19}
\end{equation*}
$$

where $W_{D}=$ distillate (overhead product), $\mathrm{lb} / \mathrm{hr}$
$H_{D}=$ enthalpy of the distillate (overhead product), Btu/lb $Q_{c}=$ heat removed in the condenser, Btu/hr
Subscripts (l) and (v) refer to the liquid and vapor, respectively.
The heat balance on the entire column where the feed may be liquid or vapor is

$$
\begin{align*}
& \text { In Out } \\
& W_{F} H_{F(l \text { or } v)}+Q_{R}=Q_{C}+W_{B} H_{B(l)}+W_{D} H_{D(l)} \tag{15.20}
\end{align*}
$$

where Q_{R} is the reboiler duty in Btu per hour and subscripts F and B refer to the feed and bottoms, respectively.
Rearranging,

$$
\begin{equation*}
Q_{R}=(R+1) W_{D} H_{D(v)}-R W_{D} H_{D(l)}+W_{B} H_{B(l)}-W_{F} H_{F} \tag{15.21}
\end{equation*}
$$

Assuming that enthalpy data are available, the heat load for the reboiler can be determined if the distillate, feed and bottom quantities, and temperatures are known and if the reflux ratio is also given.

Example 15.6. Calculation of the Reboiler Duty. $20,000 \mathrm{lb} / \mathrm{hr}$ of a $50-50$ mixture by weight of benzene and toluene is to be distilled at 5 psig total pressure to produce a distillate or overhead product containing 99.0 per cent by weight of benzene, the more volatile component, and a bottom product containing not more than 5 per cent of benzene. A reflux ratio of 2.54 mols of reflux per mol of distillate will be used. What heat load must the reboiler deliver?

First, how much distillate and product will be formed? Two balances may be applied to obtain this information: the overall material balance and a balance to determine how the total benzene in the feed is distributed between the distillate and the bottoms, thus:

$$
\begin{aligned}
& \text { Overall balance, } 20,000=W_{D}+W_{B} \\
& \text { Benzene balance, } 20,000 \times 0.50=0.99 W_{D}+0.05 W_{B} \\
& \text { Solving simultaneously, } W_{D}=9570 \mathrm{lb} / \mathrm{hr} \\
& W_{B}=10,430 \mathrm{lb} / \mathrm{hr}
\end{aligned}
$$

The enthalpies are obtained from Figs. 3 and 12 weighted for chemical composition at the respective temperatures

$$
\begin{gathered}
H_{B(l)}=108.0 \mathrm{Btu} / \mathrm{lb} \quad \text { Latent heat }=153.0 \mathrm{Btu} / \mathrm{lb} \\
H_{D(l)}=85.8 \quad H_{D(v)}=253.8
\end{gathered}
$$

Substituting in Eq. (15.21),
$Q_{R}=(2.54+1) 9570 \times 253.8-2.54 \times 9570 \times 85.8+10,430 \times 108.0-20,000$ $\times 92.0=5,800,000 \mathrm{Btu} / \mathrm{hr}$

Vapor which must be generated in the reboiler $=5,800,000 / 153=37,900 \mathrm{lb} / \mathrm{hr}$
The liquid entering the reboiler in a once-through arrangement is the total quantity leaving the bottom plate or trapout. The trapout, in
turn, is equal to the sum of the material vaporized in the reboiler and the bottoms product. The total quantity entering the reboiler is

$$
37,900+10,430=48,330 \mathrm{lb} / \mathrm{hr}
$$

The percentage vaporized is $37,900 \times 100 / 48,330=78.5$ per cent and the vapor and liquid are disengaged under the bottom plate. The temperature during vaporization does not remain constant in the reboiler, although the boiling range for a binary mixture with a fairly pure bottom product is very small. The vapor-liquid equilibrium relationships have already been tréated in Chap. 13. The general method of determining the boiling range will be demonstrated presently with a multicomponent mixture.

Temperature Potentials in Distillation. The operating pressure of a distillating column is usually determined by the approach of the bubble point of the overhead product to the average temperature of the cooling water available to the condenser. If condenser water is available from 80 to $100^{\circ} \mathrm{F}$, it is impossible to remove the latent heat of condensation from a vapor at such a pressure that it condenses at $60^{\circ} \mathrm{F}$. In such a case it is necessary to raise the operating pressure and obtain a higher saturation temperature at which the heat can flow into the cooling water. The higher the pressure the greater the temperature difference across the condenser and the smaller the condenser. This is offset by the increased cost of the reboiler, column, and condenser, all of which must be designed for a greater pressure. If steam is available in a plant at a definite maximum pressure, the greater the temperature difference in the condenser the smaller the temperature difference attainable in the reboiler.

The Quantitative Relationships in Fractional Distillation. ${ }^{1}$ Only a brief discussion of the elements of fractional distillation are within the scope of this chapter, but they are of considerable value in analyzing the influence of the process variables on the size of the heat-transfer equipment and particularly the reboiler. Excellent treatments of distillation theory will be found in a number of standard references. ${ }^{2}$ Con-

[^37]sider the distillation arrangement in Fig. 15.19 enclosed by the dash line $0-0^{\prime}-3^{\prime}-3$. The upper horizontal dash line $1-1^{\prime}$ cuts the distilling column between any two plates above the feed arbitrarily designated as the nth plate and the $n+1$ th plate. There is a quantity of vapor V mols $/ \mathrm{hr}$ entering $1-1^{\prime}-0^{\prime}-0$ with a vapor composition corresponding to that above the liquid of the composition of the nth plate and designated by V_{n}. The liquid L mols $/ \mathrm{hr}$ leaving $1-1^{\prime}-0^{\prime}-0$ are those coming from the $n+1$ th plate of the column and are designated by L_{n+1}. In addition some distillate W_{D} mols/hr is withdrawn. The material balance on $1-1^{\prime}-0^{\prime}-0$ is the

Fig. 15.19. Analysis of balances about a distilling column.
equation of the quantities in and out

$$
\begin{equation*}
V_{n}=L_{n+1}+W_{D} \tag{15.22}
\end{equation*}
$$

The material balance applied to the mols of one individual component also holds.

$$
\begin{equation*}
V_{n} y_{n}=L_{n+1} x_{n+1}+W_{D} x_{D} \tag{15.23}
\end{equation*}
$$

where y_{n} is the vapor mol fraction of one component in V_{n}, x_{n+1} is the liquid mol fraction of one component in L_{n+1}, and x_{D} is the mol fraction of the same component in the distillate. Solving for y_{n}, the vapor composition on any plate in the section above the feed plate, and eliminating V_{n},

$$
\begin{align*}
y_{n}= & \left(\frac{L_{n+1}}{L_{n+1}+W_{D}}\right) x_{n+1} \\
& +\left(\frac{W_{\mathrm{D}}}{L_{n+1}+W_{D}}\right) x_{D} \tag{15.24}
\end{align*}
$$

This equation defines the composition of the vapor throughout the upper section of the column. When a separation of components is to be accomplished and a distilling column is to be designed for it, certain data must be given, namely, the quantity and composition of the feed (W_{P}, x_{F}), the desired overhead distillate composition (x_{D}), and the bottoms-product composition $\left(x_{B}\right)$. The quantities of distillate and bottoms (W_{D} and W_{B}) can be readily obtained by an overall material and component balance on the column as in Eqs. (15.22) and (15.23). In Eq. (15.24) there then remain three unknown variables, y_{n}, L_{n+1}, and x_{n+1}. If one of these variables can be determined at some point in the column, only two will remain unknown. Since the liquid composition
of the feed and of the distillate (top plate) must be given at the start, only y_{n} and L_{n+1} are ordinarily unknown. Equation (15.24) is soluble when another relationship is introduced containing y_{n} and L_{n+1}. Referring to Fig. 15.19 a heat balance can be made about the upper portion of the column alone without including the condenser.

$$
\begin{equation*}
V_{n} H_{n(v)}+W_{R} H_{D(l)}=\left(W_{R}+W_{D}\right) H_{D(v)}+L_{n+1} H_{n+1(l)} \tag{15.25}
\end{equation*}
$$

Similarly for the section below the feed, $2-2^{\prime}-3^{\prime}-3$, the analogues of Eqs. (15.22) to (15.24), where any plate below the feed is taken as the m th plate and the plate above it as the $m+1$ th plate, the balances are

$$
\begin{gather*}
V_{m}+W_{B}=L_{m+1} \tag{15.26}\\
L_{m+1} x_{m+1}=V_{m} y_{m}+W_{B} x_{B} \tag{15.27}\\
y_{m}=\left(\frac{L_{m+1}}{L_{m+1}-W_{B}}\right) x_{m+1}-\left(\frac{W_{B}}{L_{m+1}-W_{B}}\right) x_{B} \tag{15.28}
\end{gather*}
$$

From a heat balance at the bottom

$$
\begin{equation*}
Q_{R}+L_{m+1} H_{m+1(l)}=V_{m} H_{m(v)}+W_{B} H_{B(l)} \tag{15.29}
\end{equation*}
$$

It has been observed that the ratio of the molar latent heats of vaporization to the absolute boiling points of related compounds is a constant This is Trouton's rule. If it is further assumed that the latent heats of all compounds are equal, the latent heats of any ideal solutions they may form are also equal per mol of mixture. By assuming that the sensibleheat change from plate to plate is negligible compared with the latentheat changes, the calculation of distillation processes is greatly simplified. If the temperature difference between the distillate and bottoms is several hundred degrees, however, this assumption cannot be made. Following this assumption, if the molar latent heats of the vaporization and condensation throughout the tower are constant, the mols of material on each plate must also be constant. Then

$$
\begin{equation*}
H_{n(v)}=H_{B(v)} \tag{15.30}
\end{equation*}
$$

and

$$
V_{n}=W_{u}+W_{D}
$$

And from Eq. (15.25) as a result of the equality in vapor heat content,

$$
\begin{equation*}
W_{R} H_{R(l)}=L_{n+1} H_{n+1(l)} \tag{15.31}
\end{equation*}
$$

By assumption,

$$
\begin{equation*}
H_{R(l)}=H_{n+1(l)} \tag{15.32}
\end{equation*}
$$

and

$$
W_{R}=L_{n+1}
$$

The mols of liquid and vapor flow have thus been proved constant above the feed. It is now necessary to determine whether it is also constant below the feed and, if constant, whether or not the value of V_{m} is also equal to V_{n}. Combining the heat balance for the section below the feed [Eq. (15.29)] with the overall heat balance [Eq. (15.21)],
$V_{m} H_{m(v)}-L_{m+1} H_{m+1(l)}=\left(W_{R}+W_{D}\right) H_{D(v)}-W_{F} H_{F(l)}-W_{D} H_{D(l)}$
and using the assumptions established previously,

$$
\begin{align*}
V_{n n} H_{m(v)} & =\left(W_{R}+W_{D}\right) H_{D(v)} \tag{15.34}\\
H_{m(v)} & =H_{D(v)}=H_{n(v)} \\
V_{m} & =W_{R}+W_{D}=V_{n} \tag{15.35}
\end{align*}
$$

Equation (15.34) establishes the equality of vapor flow in both portions of the column.

Similarly

$$
\begin{align*}
L_{m} H_{m(l)} & =W_{F} H_{F(l)}+W_{R} H_{R(l)} \tag{15.36}\\
H_{m(l)} & =H_{F(l)}=H_{R(l)} \\
L_{m} & =W_{P}+W_{R} \tag{15.37}
\end{align*}
$$

Equation (15.24) may be generalized for the composition at any plate above the feed by

$$
\begin{equation*}
y=\left(\frac{L}{L+W_{D}}\right) x+\left(\frac{W_{D}}{L+W_{D}}\right) x_{D}=\frac{L}{V} x+\frac{W_{D}}{V} x_{D} \tag{15.38}
\end{equation*}
$$

Equation (15.28) may be generalized for any plate below the feed by

$$
\begin{equation*}
y=\left(\frac{L}{L-W_{B}}\right) x-\left(\frac{W_{R}}{L-W_{B}}\right) x_{B}=\frac{L}{V} x-\frac{W_{B}}{V} x_{B} \tag{15.39}
\end{equation*}
$$

The McCabe-Thiele ${ }^{1}$ Diagram. If the composition of a binary mixture can be traced by the analysis of only one component throughout the column, the solutions of Eqs. (15.38) and (15.39) can be obtained rather simply, since these apply only to the more volatile component. The solution can be accomplished by plotting a vapor-composition curve at constant total pressure which relates the mol fraction of the more volatile component in the vapor arising from and in equilibrium with a given composition of liquid as calculated by Eq. (13.7). Such an equilibrium vapor-composition curve of ordinate y vs. the values of x as the abscissa for a benzene-toluene mixture, is plotted in Fig. 15.20. These are the equilibrium changes which would occur if an individual mixture of, say, 20 mol -per cent of benzene was maintained at its boiling point in a closed vessel and shows the difference in the vapor and liquid compositions
${ }^{1}$ McCabe, W. L., and E. W. Thiele, Ind. Eng. Chem., 17, 605 (1925).
required at equilibrium. The same is true at the other compositions, 40, 60 per cent, etc. These are also the changes which would occur to the liquid on the plates of a distilling column if no liquid entered and no vapor left the plates. Thus, a 40 mol-per cent benzene solution on a plate or $x_{n}=0.40$ is in equilibrium with a vapor of 61.4 mol-per cent or

$$
y_{n}=0.614
$$

If the vapor were completely condensed on the plate above $(n+1)$ by a cooling coil and. without the presence of liquid reflux, the concentration

Fig. 15.20. Vapor-composition curve for mixtures of benzene and toluene at 5 psig.
of benzene in the condensed liquid would be $x_{n+1}=0.614$. But the liquid reflux constantly enters and leaves the plates, and vapor constantly enters through the bubble cap and arises from it with a different composition. Although an equilibrium change occurs on each plate, there is never so broad an equilibrium change from plate to plate as indicated in Fig. 15.20 due to the continuous addition and removal of compounds from the plates. These have been accounted for in the balances from which Eqs. (15.38) and (15.39) were determined.

It is interesting to note that, if a diagonal is drawn across Fig. 15.20, it is the locus of the points at which a horizontal line joins a vapor and a
liquid of the same composition. Thus if the 61.4 mol-per cent vapor were condensed by heat removal using a cooling coil rather than cold reflux, the new condensate at a would also be 61.4 mol-per cent. If the 61.4 mol-per cent condensate were vaporized again, it would describe the path $a b$ and its condensation would be $b c$. The function of a plate in a distillating column is to provide a space for equilibrium to take place, and the number of $a b c$ paths required one after the other, as $a b c, c d e$, etc., to permit the separation of a volatile component of concentration x_{F} in the feed to a concentration x_{D} in the distillate is the number of theoretical

Fig. 15.21. Effect on the operating line of varying reflux ratio.
plates required for the separation from x_{F} to x_{D}. If the number of plates required to separate x_{B} from x_{F} is added to it, one obtains the total number of required theoretical plates to produce a bottoms and distillate of desired compositions from a feed of a given composition. Instead of following the diagonal line in Fig. 15.20 the composition between the liquid and the vapor passing throughout the column may be represented by the two lines in Fig. 15.21 with their identifying equations [Eqs. (15.38) and (15.39)] written directly thereon. Since these lines describe the compositions with which the column operates with reflux being poured back, they are the operating lines. The upper line represents the enrichment of volatile component above the feed plate and is called the rectifying sec-
tion. The lower line represents the depletion of volatile component and is the stripping section.

The influence of the reflux can be seen more clearly with the aid of Fig. 15,21. If the amount of reflux is increased while x_{D} is fixed, the slope of the operating line for the rectification above the feed plate also increases, moving the point o downward to o^{\prime}. When the vapor at a is condensed at b^{\prime} instead of b, a greater composition change occurs per plate and a smaller number of plates are required for the separation. In terms of height a shorter column can be used. But again it must be pointed out that the greater the quantity of reflux and the shorter the column the greater the diameter of the column and the greater the heat load on the reboiler and condenser. For this reason the determination of the optimum reflux ratio is an economic consideration obtained by adding the operating costs and fixed charges of the equipment for different reflux ratios and determining the minimum operating cost as a function of the reflux ratio.

It is now apparent that the 45° diagonal line in Fig. 15.21 represents the smallest possible number of plates with which the separation of feed into distillate and bottoms can be effected. But the slope of the diagonal is 1.0 , and in Eq. (15.38) if the slope is unity, $L /\left(L+W_{D}\right)=1.0$ and $W_{D}=0$, corresponding to a primed column in equilibrium from top to bottom but without feed and producing no distillate. On the other hand, suppose o were moved up to a. The number of equilibrium changes necessary to go from x_{F} to x_{D} with an operating line between x_{p} on the diagonal and a would be infinite, although the reflux would be a minimum. This last would require an infinitely high column, and if o were moved to a point even higher than a, it would be impossible to achieve the separation.

Minimum Reflux. The determination of the minimum reflux is a useful limitation for establishing a practical reflux ratio. The optimum reflux ratio, as mentioned before, is simply one of economic costs. If the operating line connects a and x_{D}, corresponding to minimum reflux, the value of the total mols of reflux at minimum reflux may be designated by W_{R}^{\prime}. Then Eq. (15.38) may be written

$$
\begin{equation*}
y_{F}=\frac{W_{R}^{\prime}}{V} x_{F}+\frac{W_{D}}{V} x_{D} \tag{15.40}
\end{equation*}
$$

but

$$
\begin{equation*}
W_{D}=V-W_{R}^{\prime} \tag{15.41}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{W_{R}^{\prime}}{V}=\frac{x_{D}-y_{F}}{x_{D}-x_{F}} \tag{15.42}
\end{equation*}
$$

where W_{R}^{\prime} / V is the ratio of the mols of reflux at minimum reflux to the total vapor.

Thermal Condition of the Feed-Effect upon the Reboiler. In all the heat balances employed so far in this chapter it has been assumed that the feed was a liquid entering at its boiling point. This is not a requisite of a distillation process. The feed may enter the column directly from storage as a liquid colder than the boiling point corresponding to its composition, or it may come from the partial condenser of a preceding distilling column as a saturated vapor. It may even come from a preceding column as a liquid or vapor at a higher pressure than the operating pressure of the column to which it is fed. If a high-pressure liquid, it will flash on being released to the low-pressure column, giving a feed which is a mixture of liquid and vapor. If it is a high-pressure vapor and passes through a reducing valve before entering the low-pressure column, it may be superheated. How do these possibilities affect the column and the reboiler?

For the case of a liquid feed at its boiling point a liquid balance around the feed plate is

$$
\begin{equation*}
W_{F}=L_{m+1}-L_{n+1} \tag{15.43}
\end{equation*}
$$

Define a new equation to correct for deviations from the balance in Eq. (15.43).

$$
\begin{equation*}
q=\frac{L_{m+1}-L_{n+1}}{W_{F}} \tag{15.44}
\end{equation*}
$$

If $q=1$, then as in Eq. (15.43) all the feed enters as liquid at its boiling point.
If $q<1$, some of the feed is vapor, accounting for the discrepancy in the liquid balance.
If $q<0, q W_{F}$ must be negative. This means that there is less liquid downflow in the lower portion than in the upper section. This could occur only if some of the feed was superheated so that less fluid was required for the heat transfer.
If $q=0, q W_{F}=0$ and the feed is vapor at its boiling point.
If $q>1$, the feed is cold liquid.
If these are the possibilities, how do they affect the intersection of the upper and lower operating lines of the column, since any point on the vertical line from x_{F} to a in Fig. 15.21 represents a liquid only? Employing Eqs. (15.23) and (15.27) and calling the coordinates of the intersection x^{\prime}, y^{\prime},

$$
\begin{aligned}
& V_{n} y^{\prime}=L_{n+1} x^{\prime}+W_{D} x_{D} \\
& V_{m} y^{\prime}=L_{m+1} x^{\prime}+W_{B} x_{B}
\end{aligned}
$$

and the component balance for the volatile component

$$
\begin{equation*}
W_{F} x_{F}^{\prime}=W_{D} x_{D}^{\prime}+W_{B} x_{B}^{\prime} \tag{15.45}
\end{equation*}
$$

And if $q=\left(L_{m+1}-L_{n+1}\right) / W_{F}$, then $q-1=\left(V_{m}-V_{n}\right) / W_{F}$, from which

$$
\begin{equation*}
y^{\prime}=\frac{q}{q-1} x^{\prime}-\frac{x_{F}}{q-1} \tag{15.46}
\end{equation*}
$$

If q is determined from Eq. (15.44), then Eq. (15.46) describes the point of intersection in terms of x and y. The various positions of the intersection in terms of q are shown in Fig. 15.22. Inspection of Fig. 15.22

Fig. 15.22. Effect of thermal condition of feed.
indicates that for a given reflux ratio the colder the feed the fewer the number of plates required for the separation, since the reflux ratio in the lower section is increased by the condensation of the additional vapors at the feed plate. The increased reflux in the lower section must be offset by an increase in the size of the reboiler and the quantity of reboiler heat. This brings up the point of whether it is cheaper to supply the heat for cold feed in a feed preheater or in the reboiler. Very obviously it is cheaper to do so in nearly all cases in a separate preheater, since the temperature at which the feed absorbs the heat must be lower than the temperature at which the bottoms can absorb the additional heat in the
reboiler. This might suggest an advantage to the use of vapor feed, but this is offset by the increased cost of transporting the vapor in larger lines and by an increased number of theoretical plates. Furthermore, vapor feed cannot contain sufficient heat to offset the need for a reboiler, since almost all the heat entering as vapor feed must be removed in the condenser to give product and the latent heat required for reflux must still be provided by the reboiler. If feed is available as a vapor, it is unwise to condense it first, since the reduced reboiler duty and operating cost of vapor feed more than justify the addition of extra theoretical plates.

Example 15.7. Distillation of a Binary Mixture. $20,000 \mathrm{lb} / \mathrm{hr}$ of a 50 weight per cent mixture of benzene and toluene is to be distilled at an operating pressure of 5.0 psig to produce a distillate containing 99.0 weight per cent benzene and bottoms containing 95.0 weight per cent toluene. How many plates are required?

Solution. First determine the pounds of distillate and bottoms obtained as in Example 15.6. Basis: One hour.

Material balance, $20,000=W_{\mathrm{D}}+W_{B}$
Benzene balance, $20,000 \times 0.50=0.99 W_{D}+0.05 W_{B}$
Solving simultaneously:

$$
\begin{aligned}
& W_{D}=9570 \mathrm{lb} / \mathrm{hr} \\
& W_{B}=10,430 \mathrm{lb} / \mathrm{hr}
\end{aligned}
$$

Compositions and Bolling Ponts

	Lib/hr	Mol. wt.	$\mathrm{Mol} / \mathrm{hr}$	x_{1}	$p_{p 1}, 214^{\circ} \mathrm{F}$	$x_{1} p_{p 1}$	y_{1}
Feed:							
$\mathrm{C}_{6} \mathrm{H}_{6}$	10,000	78.1	128.0	0.543	1380	750	0.741
$\mathrm{C}_{7} \mathrm{H}_{8}$	10,000	93.1	107.5	0.457	575	262	0.259
	20,000		235.5	1.000	$\Sigma x p_{p}=1012$		1.000
Distillate:					$p_{p 1} 195^{\circ} \mathrm{F}$		
$\mathrm{C}_{6} \mathrm{H}_{5}$	9,474	78.1	121.5	0.992	1025	1015	0.996
$\mathrm{C}_{7} \mathrm{H}_{8}$	96	93.1	1.0	0.008	410$\Sigma x p_{p}$	4	0.004
	9,570		122.5	1.000		1019	1.000
Bottoms:$\mathrm{C}_{6} \mathrm{H}_{6}$			6.7		$p_{p 1} 246^{\circ} \mathrm{F}$		
	520	78.1		0.059	2180	129	0.128
$\mathrm{C}_{7} \mathrm{H}_{8}$	9,910	93.1	113.0	$\frac{0.941}{1.000}$	940	882	0.872
	10,430				$\Sigma x p_{p}=1011$		1.000

Minimum reflux: The equilibrium data plotted in Fig. 15.20 can be used.

$$
\begin{align*}
\frac{W_{R}^{\prime}}{V} & =\frac{x_{D}-y_{F}}{x_{D}-x_{F}}=\frac{0.992-0.741}{0.992-0.543}=0.558 \mathrm{~mol} / \mathrm{mol} \tag{15.42}\\
V & =W_{R}^{\prime}+W_{D} \quad \text { where } \quad W_{D}=1 \\
W_{R}^{\prime} & =0.558 W_{R}^{\prime}+0.558 W_{D} \\
W_{R}^{\prime} & =1.27 \mathrm{~mol} \text { reflux } / \mathrm{mol} \text { distillate }
\end{align*}
$$

Assume 200 per cent of the theoretical minimum reflux as an economic reflux.

$$
W_{R}=1.27 \times 2=2.54 \mathrm{~mol} / \mathrm{mol} \text { distillate }
$$

The intercept for the upper operating line is

$$
\frac{W_{D}}{W_{R}+1} x_{D}=\frac{1}{2.54+1} \times 0.992=0.280
$$

Connecting the corresponding lines in Fig. 15.23:
Thirteen plates are required.
The feed plate is seventh from the top.
Total reflux $=122.5 \times 2.54=310.5 \mathrm{~mol}$
Heat Balances
Enthalpies are computed above $0^{\circ} F^{\prime}$ using specific heats from Fig. 3 and latent heats from Fig. 12 of the Appendix.

	$\mathrm{Mol} / \mathrm{hr}$	Mol. wt.	Lb/hr	Temp, ${ }^{\circ} \mathrm{F}$	Btu/lb	Btu/hr
Heat balance around condenser: Heat in:						
Top plate vapor..........	433	87.3	33,900	195	253.8	8,600,000
Heat out: ${ }_{\text {He\| }}$						
Distillate.	122.5	78.3	9,570	195	85.8	822,000
Reflux.	310.5	78.3	24,330	195	85.8	2,090,000
Condenser duty, by difference.		\cdots		5,688,000
						8,600,000
Overall heat balance:						
Heat in:						
Feed..	235.5	84.8	20,000	214	92.0	1,840,000
ence.		\cdots	\cdots		5;900,000
						7,640,000
Heat out:						
Distillate.	122.5	78.3	9,570	195	85.8	822,000
Bottoms.	113.0	92.8	10,430	246	108.0	1,130,000
Condenser duty	\cdots		5,688,000
						$\longdiv { 7 , 6 4 0 , 0 0 0 }$

For simplicity, in the case of a binary distillation it may be assumed that the trapout and the bottoms liquid are at nearly the same temperature and the latent heat of vaporization per pound is that of the bottoms.

At $246^{\circ} \mathrm{F}, \lambda=153 \mathrm{Btu} / \mathrm{hr}$
Reboiler vapor $=5,800,000 / 153=37,900 \mathrm{lb} / \mathrm{hr}$
Trapout $=37,900+10,430=48,330 \mathrm{lb} / \mathrm{hr}$
Actually the trapout liquid on the lowest plate is at a lower temperature than the bottoms, and there is a boiling range in the reboiler. Since in this problem the aver-

Frg. 15.23. Solution of Example 15.8.
age temperature change per plate is only $(246-195) / 13=3.9^{\circ} \mathrm{F}$, the boiling range can be neglected, although in distillations with greater average temperature change per plate it must be taken into account. This point is treated in Example 15.8.

Heat Balance around Reboiler

	Mol/hr	Mol. wt.	$\mathrm{Lb} / \mathrm{hr}$	$\underset{{ }^{\circ} \mathrm{F}}{\text { Temp, }}$	Btu/lb	Btu/hr
Heat in:						
Trapout.	522	92.8	48,330	246	108.0	$\begin{array}{\|l\|l} 5,230,000 \\ 5,800,000 \end{array}$
Reboiler duty, by difference	
						11,030,000
Heat out:						
Reboiler vapor.	409	92.8	37,900	246	261.0	9,900,000
Bottoms...................	113	92.8	10,430	246	108.0	1,130,000
						11,030,000

The reboiler requirements are
Total liquid to reboiler $=48,330 \mathrm{lb} / \mathrm{hr}$
Vaporization $=37,900$
Temperature (nearly isothermal) $=246^{\circ} \mathrm{F}$
Pressure $=5$ psig
Heat load $=5,800,000 \mathrm{Btu} / \mathrm{hr}$

Reboiler Duty for a Multicomponent Mixture. The method of Example 15.7 may be extended to the calculation of the reboiler requirements for a multicomponent mixture (see Chap. 13). The feed quantity and composition as well as the distillate and bottoms compositions and the reflux ratio must be known. The steps in the calculation of the heat balance may be summarized:

1. Heat balance on condenser alone to determine Q_{c}

Into condenser: Top tray vapor
Out of condenser: Distillate and reflux
2. Overall heat balance on column to determine Q_{R}

Into column: Feed and reboiler heat
Out of column: Distillate, bottoms and condenser duty
3. Heat balance on reboiler alone: The quantity, composition, and temperature of the bottoms are known. The quantity, composition, and temperature of the trapout to the reboiler are not known. The heat required of the reboiler is known, but the quantity of the reboiler vapor is not known, although it has a composition which must be in equilibrium with the bottoms. The bottom-plate liquid will be at a lower temperature than the reboiler, and the liquid to the reboiler will be at this lower temperature. It is customary to assume this temperature difference and check the bottom-plate temperature afterward. For columns distilling a small range of components the difference will be as little as 5 to $10^{\circ} \mathrm{F}$, and for wide ranges the liquid on the bottom plate may be $50^{\circ} \mathrm{F}$ or more below the reboiler temperature.

If X is the pounds of vapor formed and the subscript p refers to the bottom plate, the heat balance around the reboiler is

$$
\begin{equation*}
X H_{B(v)}+W_{B(l)} H_{B(l)}=X H_{P(l)}+W_{B(l)} H_{P(l)}+Q_{R} \tag{15.47}
\end{equation*}
$$

from which X can be obtained (see Fig. 15.18).
4. Since there is a material balance across the bottom plate, the bottom-plate liquid is the sum of the mols of vapor and mols of bottoms. Having determined the mols of vapor and the bottoms being known, the trapout is the sum.

Having the total mols in the bottom-plate liquid, the temperature on the plate can be checked by a bubble-point calculation. If the temperature assumed in (3) does not check the bubble point of the trapout, a new bottom-plate temperature must be assumed and (3) reworked.

Example 16.8. The Reboiler Duty for a Multicomponent Mixture. The feed, distillate, and bottoms quantities and compositions are given below. A reflux ratio of $2: 1$ will be used. What is the reboiler duty?

	Feed, $\mathrm{mol} / \mathrm{hr}$	Distillate, $\mathrm{mol} / \mathrm{hr}$	Bottoms, $\mathrm{mol} / \mathrm{hr}$
C_{4}	6.4	6.4	
C_{5}	223.8	219.7	$4 . \mathrm{I}$
C_{6}	51.6	2.3	49.3
C_{7}	71.9	$\ldots \ldots$	71.9
C_{8}	52.5	$\ldots \ldots$	52.5
C_{9}	54.7	$\ldots \ldots$	54.7
C_{10}	82.5	$\ldots \ldots$	82.5
C_{11}	76.6	$\ldots \ldots$	76.6
C_{12}	22.4	\ldots.	22.4
	642.4	228.4	414.0

Solution:

Dew Point of Overhead

	$\mathrm{Mol} / \mathrm{hr}$	$K_{40 \mathrm{DSiA}}^{14 \mathrm{~m}^{\circ} \mathrm{F}}$	$\frac{V}{K}$
C_{4}	6.4	2.8	2.3
C_{5}	219.7	1.01	217.5
C_{6}	2.3	0.34	6.8
	228.4		228.4

Bobrle Pont of Bottoms

	$\mathrm{Mol} / \mathrm{hr}$		$K L$	$\mathbf{L b} / \mathrm{hr}$
C_{5}	4.1	5.8	23.8	1,700
C6	49.3	3.0	148.0	13,900
C_{7}	71.9	1.68	120.8	13,030
C_{8}	52.5	. 98	51.4	6,260
C_{8}	54.7	0.57	31.2	4,240
C_{10}	82.5	0.35	28.9	4,330
C_{12}	76.6	0.21	16.1	2,640
C_{12}	22.4	0.13	2.9	520
	414.0		423.1	46,620

Average mol. wt. $=46,620 / 423.1=110.3$
The pressure at the top and bottom of the column actually differs because of the pressure drop of the vapor in the column itself. Usually the distillate is taken at 5 to 10 psi lower than the bottom.

Heat Balance on Reboiler
Assume 30° difference between reboiler and bottom plate giving a bottom-plate temperature of $300^{\circ} \mathrm{F}$

Heat in:						
Trapout:	619.7^{*}	126.6	78,177	300	234	18,300,000
Reboiler duty..Heat out:		4,280,000
						22,580,000
	Heat out:					
Reboiler vapor.	205.7*	110.3	22,700	. 330	369	8,380,000
Bottoms.	414.0	134.0	55,477	330	256	14,200,000
						22,580,000

[^38]| | y^{*} | Reboiler vapor$V=y 205.7+\text { Bottoms }=\text { Trapout }$ | | | $K_{40 \mathrm{pdi}}^{300 \mathrm{~F}}$ | Mol $\times K$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C_{5} | 0.056 | 11.6 | 4.1 | 15.7 | 4.5 | 70.6 |
| C_{6} | 0.350 | 71.9 | 49.3 | 121.2 | 2.25 | 273.0 |
| C_{7} | 0.285 | 58.7 | 71.9 | 130.6 | 1.20 | 156.8 |
| C_{8} | 0.122 | 25.0 | 52.5 | 77.5 | 0.66 | 51.1 |
| C ${ }_{0}$ | 0.074 | 15.2 | 54.7 | 69.9 | 0.38 | 26.6 |
| C_{10} | 0.068 | 14.1 | 82.5 | 96.6 | 0.22 | 21.2 |
| C_{11} | 0.038 | 7.8 | 76.6 | 84.4 | 0.13 | 10.9 |
| C_{12} | 0.007 | 1.4 | 22.4 | 23.8 | 0:07 | 1.8 |
| | 1.000 | 205.7 | 414.0 | 619.7 | | 612.0 |

which checks 619.7

* Mol fraction of vapor in equilibrium with bottoms.

This checks the $30^{\circ} \mathbf{F}$ assumption between reboiler and bottom plate.
The reboiler requirements are

Vaporization	$22,700 \mathrm{lb} / \mathrm{hr}$
Total liquor to reboiler	78,177 lb/hr
Heat load.	4,280,000 Btu/hr
Temperature range.	$300-330^{\circ} \mathrm{F}$
Operating pressure.	40 psia

PROBLEMS

15.1. $20,000 \mathrm{lb} / \mathrm{hr}$ of hexane vapor is required from a liquid feed at $100^{\circ} \mathrm{F}$ and 85 psig. Heat is to be supplied by steam at $350^{\circ} \mathrm{F}$.

Available for the service is a $171 / 4 \mathrm{in}$. ID $1-2$ exchanger containing $1603 / 4 \mathrm{in}$. OD, $16 \mathrm{BWG}, 16^{\prime \prime} 0^{\prime \prime}$ long tubes arranged for two tube passes on 1 -in. square pitch. Shell baffles are spaced 16 in . apart.

What are the dirt, factor and pressure drops?
15.2. $30,000 \mathrm{lb} / \mathrm{hr}$ of a mixture whose average properties correspond to hexane is vaporized from $40,000 \mathrm{lb} / \mathrm{hr}$ of feed at its bubble point at 105 psig . The boiling range is from 300 to $350^{\circ} \mathrm{F}$, and heat is supplied by steam at $398^{\circ} \mathrm{F}$.

Available for the service is a $191 / 4 \mathrm{in}$. ID $1-2$ exchanger containing 1321 in . OD , $14 \mathrm{BWG}, 16^{\prime} 0^{\prime \prime}$ long tubes arranged for two tube passes on $1 / 4$-in. aquare pitch. Shell baffles are spaced 12 in . apart.

What are the dirt factor and the pressure drops?
15.3. $45,000 \mathrm{lb} / \mathrm{hr}$ of $42^{\circ} \mathrm{API}$ kerosene enters a once-through horizontal thermosyphon reboiler. $32,000 \mathrm{lb} / \mathrm{hr}$ is vaporized between 285 and $330^{\circ} \mathrm{F}$, using steam at $380^{\circ} \mathrm{F}$. The required dirt factor is 0.0030 , and the allowable pressure drop through the reboiler is 0.25 psi . Vaporization occurs at 5 psig , and the molecular weight of the vapor may be taken as 120. The latent heat of the vapor is $110 \mathrm{Btu} / \mathrm{lb}$.

Available for the service is a 25 in . ID horizontal thermosyphon containing 324 $3 / 4 \mathrm{in}$. OD, 16 BWG tubes, $12^{\prime} 0^{\prime \prime}$ long laid out on 1 -in. square pitch for two passes.

Is the reboiler satisfactory?
15.4. $76,300 \mathrm{lb} / \mathrm{hr}$ of pentane bottoms (mol. wt. liquid $=77.2$) is to be recirculated through a horizontal thermosyphon reboiler to provide $31,400 \mathrm{lb} / \mathrm{hr}$ of vapor (mol,
wt. vapor $=74.7$, latent heat $=153 \mathrm{Btu} / \mathrm{lb}$). The tower and exchanger operate at 85 psig, and vaporization occurs from 225 to $245^{\circ} \mathrm{F}$. Heat is supplied by $28^{\circ} \mathrm{API}$ gas oil from 470 to $370^{\circ} \mathrm{F}$ with a maximum pressure drop of 15 psi .

A 2334 in . ID horizontal thermosyphon reboiler contains $2403 / 4 \mathrm{in}$. OD, 13 BWG , $8^{\prime} 0^{\prime \prime}$ tubes with six passes on $1-i n$. square pitch. A pressure drop of 0.25 is permissible.

What will the dirt factor and approximate recirculation ratio be?
15.5. A reboiler is to be designed for the vaporization service in Prob. 15.4 with a dirt factor of 0.004 except that the heat requirement will be supplied by a 50 psig steam line. Using $3 / 4 \mathrm{in}$. OD, 13 BWG tubes, establish the layout of a reboiler which most reasonably fulfills the conditions.
15.6. A vertical thermosyphon reboiler must provide $120,000 \mathrm{lb} / \mathrm{hr}$ of butane vapor to a tower at 135 psig (boiling point $=178^{\circ} \mathrm{F}$, latent heat $=122 \mathrm{Btu} / \mathrm{lb}$) using steam at 12 psig in the shell.

Available for the service is a 35 in . ID $1-1$ exchanger containing $9003 / 4 \mathrm{in}$., 16 BWG , $16^{\prime} 0^{\prime \prime}$ long tubes on 1-in. triangular pitch. Shell baffles are half-circle supports on 24 in. centers.

What is the recirculation ratio?
15.7. For the process conditions in Prob. 15.6 determine the nearest vertical thermosyphon to yield approximately a $4: 1$ recirculation ratio and a dirt factor of 0.003 when the heat is supplied by steam at $250^{\circ} \mathrm{F}$.

NOMENCLATURE FOR CHAPTER 15

A	Heat-transfer surface, ft^{2}
A_{p}, A_{2}, A_{0}	Heat-transfer surface for preheating, sensible heating, and vaporization, ft^{2}
$a^{\prime \prime}$	External surface per linear foot of pipe or tube, ft
a_{i}^{\prime}	Flow area per tube, in. ${ }^{2}$
B	Baffle spacing, in.
C	Specific heat of hot fluid, Btu/(lb)(${ }^{\circ} \mathrm{F}$)
c	Specific heat of cold fluid, Btu/(lb) (${ }^{\text {F }}$)
D	Inside diameter of tube, ft
$D_{\text {A, }} D_{\text {d }}^{\prime}$	Equivalent diameter for heat transfer and pressure drop, ft
D_{1}	Inside diameter of shell, ft
d.	Equivalent diameter, in.
e	Napieran base, dimensionless
$F_{\text {f }}$	Caloric fraction, dimensionless
F_{r}	Temperature-difference factor, $\Delta t=F_{T} \times \mathrm{LMTD},{ }^{\circ} \mathrm{F}$
f	Friction factor, $\mathrm{ft}^{2} / \mathrm{in} .{ }^{2}$
G	Mass velocity, $\mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft}{ }^{2}\right.$)
g^{\prime}	Acceleration of gravity, $\mathrm{ft} / \mathrm{sec}^{2}$
H	Enthalpy, Btu/lb
h	Heat-transfer coefficient in general, $\mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$
h_{i}, h_{0}	Heat-transfer coefficient for inside fluid and for outside fluid, Btu (hr) $\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$
$h_{\text {io }}$	Value of h_{i} when referred to the tube outside diameter, Btu/(hr) ($\mathrm{ft}{ }^{2}$) $\left({ }^{\circ} \mathrm{F}\right)$
h_{p}, h_{s}, h_{v}	Film coefficient for preheating, sensible-heat transfer and vaporization, $\mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$
ID	Inside diameter of shell or tube, in.
j_{H}	Factor for heat transfer, dimensionless

K	Vapor-liquid equilibrium constant, dimensionless
K_{c}	Caloric constant, dimensionless
k	Thermal conductivity, $\mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right) /(\mathrm{ft})$
L	Tube length, ft ; liquid, $\mathrm{mol} / \mathrm{hr}$
LMTD	Logarithmic mean temperature difference, ${ }^{\circ} \mathrm{F}$
m	Weight of a column of liquid and vapor, lb
N	Number of baflles
N_{t}	Number of tubes
n	Number of tube passes
OD	Outside diameter of tube, in.
P_{T}	Tube pitch, in.
$\triangle P$	Pressure drop, psi
$\Delta P_{r}, \Delta P_{t}, \Delta P_{r}$	Total, tube, and return pressure drop, psi
p	Pressure, psi
$p_{p}, p_{\text {e }}$	Pressure of a pure component and total pressure on the system, atm or psi
q	Factor in distillation describing the condition of the feed, dimensionless
q_{Q}, q_{s}, q_{v}	Heat flow for preheating, sensible heating, and vaporization, Btu/hr Heat flow, Btu/br
Q_{C}, Q_{R}	Condenser and reboiler duties, $\mathrm{Btu} / \mathrm{hr}$
R	Reflux ratio; temperature group ($\left.T_{1}-T_{2}\right) /\left(t_{2}-t_{1}\right)$, dimensionless
R_{d}	Dirt factor, (hr) (ft^{2}) $\left.{ }^{\circ} \mathrm{F}\right) / \mathrm{Btu}$
$R e, R e^{\prime}$	Reynolds number for heat transfer and pressure drop, dimensionless
$s, s_{\text {av }}$	Specific gravity, average specific gravity; dimensionless
T 。	Caloric temperature of hot fluid ${ }^{\circ} \mathrm{F}$
T_{s}	Steam temperature, ${ }^{\circ} \mathrm{F}$
$t_{\text {s }}$	Isothermal boiling temperature, ${ }^{\circ} \mathrm{F}$
T_{1}, T_{2}	Inlet and outlet temperatures of hot fluid, ${ }^{\circ} \mathrm{F}$
$t_{\text {c }}$	Caloric temperature of cold fluid, ${ }^{\circ} \mathrm{F}$
$\Delta t_{c}, \Delta t_{h}$	Cold and hot terminal differences, ${ }^{\circ} \mathrm{F}$
Δt	True temperature difference, ${ }^{\circ} \mathrm{F}$
$\Delta t_{p}, \Delta t_{s}, \Delta t_{v}$	True temperature difference for preheating, sensible-heat transfer, and vaporization, ${ }^{\circ} \mathrm{F}$
$(\Delta t)_{w}$	Temperature difference between tube wall and boiling liquid, ${ }^{\circ} \mathrm{F}$
U, U_{C}, U_{D}	Overall coefficient of heat transfer, clean coefficient, and design coefficient, $\mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$
V	Velocity, fps; vapor, mol/hr
v, v_{v}, v_{l}	Specific volume, specific volume of vapor, specific volume of liquid, $\mathrm{ft}^{3} / \mathrm{lb}$
$v_{i}, v_{0}, v_{\text {av }}$	Inlet, outlet, and average specific volumes, $\mathrm{ft}^{3} / \mathrm{lb}$
W	Weight flow of hot fuid, $\mathrm{lb} / \mathrm{hr}$
W_{R}^{\prime}	Minimum reflux, $\mathrm{lb} / \mathrm{hr}$
${ }^{w}$	Weight flow of cold fluid, $\mathrm{lb} / \mathrm{hr}$
X	Vapor formed in reboiler, $\mathrm{lb} / \mathrm{hr}$
x	Distance, ft
x, y	Mol fraction of liquid and vapor
x^{\prime}, y^{\prime}	Mol fraction at intersection of operating lines
z	Static height or frictional head, ft
λ	Latent heat of vaporization, Btu/lb
	Viscosity at the caloric temperature, $\mathrm{lb} /(\mathrm{ft})(\mathrm{hr})$

μ_{w}	Viscosity at the tube wall temperature, $\mathrm{lb} /$
ρ	Density, lb/ft
ϕ^{\prime}	Viscosity ratio, $\left(\mu / \mu_{w}\right)^{0.14}$
Subscripts	(except as noted above)
B	Bottoms
D	Distillate
F	Feed
l	Liquid
m	Plate below the feed in a distilling column
$m+1$	Plate below the m plate
n	Plate above the feed
$n+1$	Plate below the n plate
p	Bottom plate
R	Reflux
s	Shell
t	Tube
v	Vapor

CHAPTER 16

EXTENDED SURFACES ${ }^{1}$

Introduction. When additional metal pieces are attached to ordinary heat-transfer surfaces such as pipes or tubes, they extend the surface available for heat transfer. While the extended surface increases the total transmission of heat, its influence as surface is treated differently. from simple conduction and convection.

Consider a conventional double pipe exchanger whose cross section is shown in Fig. 16.1a. Assume that hot fluid flows in the annulus and cold

Fig. 16.1. Ordinary and finned tube.
fluid in the inner pipe, both in turbulent flow, and that the effective temperatures over the cross section are T_{c} and t_{c}, respectively. The heat transferred can be computed from the inner pipe surface, the annulus coefficient, and the temperature difference $T_{c}-t_{w}$, where t_{w} is the temperature of the outer surface of the inner pipe. Next assume that strips of metal are welded to the inner pipe as shown in Fig. 16.1b. Since the metal strips are attached to the cold tube wall, they serve to transfer additional heat from the hot fluid to the inner pipe. The total surface available for heat transfer no longer corresponds to the outer circumfer ence of the inner pipe but is increased by the additional surface on the sides of the strips. If the metal strips do not reduce the conventional

[^39]annulus heat-transfer coefficient by appreciably changing the fluid-flow pattern, more heat will be transferred from the annulus fluid to the pipe fluid.

Pieces which are employed to extend the heat-transfer surfaces are known as fins. It will be shown in the case of pipes and tubes, however, that each square foot of extended surface is less effective than a square foot of unextended surface. Referring again to Fig. 16.1b, there is a temperature difference $T_{c}-t_{f}$ between the annulus fluid and the fin, and the heat which flows into the fin will be conducted by it to the inner

Fig. 16.2. Some commercial forms of extended surface. a. Longitudinal fins. (GriscomRussell Co.) b. Transverse fins. (Griscom-Russell Co.) c. Discontinuous fins. (Babcock and Wilcox Co.) d. Pegs or studs. (Babcock and Wilcox Co.) e. Spines. (Thermek Corporation.) (Gardner, Transactions of the ASME.)
pipe. For heat to be conducted to the pipe, t_{f} must be greater than the pipe-wall temperature t_{w}. Then $T_{c}-t_{f}$ is less than $T_{c}-t_{w}$. Since the effective temperature difference between the fluid and fin is less than that between the fluid and pipe, it results in less heat transfer per square foot of fin than for the pipe. Furthermore, the temperature difference between the fluid and the fin changes continuously from the outer extremity to the base of the fin owing to the rate at which heat enters the fin by convection and the rate at which it is transferred to its base by conduction.

It will be found that two fundamental heat-transfer principles enter into the various relationships in fins: (1) to determine from the geometry and conductivity of the fin the nature of the temperature variation and (2) to determine the heat-transfer coefficient for the combination of fin and unextended surface. In the case of the double pipe exchanger, for example, the fins suppress the spiral eddies about the annulus, which in turn reduces the convection coefficient for the annulus below its conventional value as determined from Eq.

(a)

PEENED

(b)

WELDED

Frg. 16.3. Fin attachment. (6.2).

Classification of Extended Surfaces. Fins of a number of industrial types are shown in Fig. 16.2. Pipes and tubes with longitudinal fins are marketed by several manufacturers and consist of long metal strips or channels attached to the outside of the pipe. The strips are attached either by grooving and peening the tube as in Fig. $16.3 a$ or by welding continuously along the base. When channels are attached, they are integrally welded to the tube as in Fig. 16.3b. Longitudinal fins of this type are commonly used in double pipe exchangers or in unbaffled shell-and-tube exchangers when the flow proceeds along the axis of the tube. Longitudinal fins are most commonly employed in problems involving

Fig. 16.4. Transverse fins.
gases and viscous liquids or when the smallness of one of a pair of heattransfer streams causes steamline flow.

Transverse fins are made in a variety of types and are employed primarily for the cooling and heating of gases in crossflow. The helical fins in Fig. $16.4 a$ are classified as transverse fins and are attached in a variety of ways such as by grooving and peening, expanding the tube metal itself to form the fin, or welding ribbon to the tube continuously. Disc-type
fins are also transverse fins and are usually welded to the tube or shrunken to it as shown in Fig. $16.4 b$ and c. In order to shrink a fin onto a tube a disc, with inside diameter slightly less than the outside diameter of the tube, is heated until its inside diameter exceeds the outside diameter of the tube. It is slipped onto the tube, and upon cooling, the disc shrinks to the tube and forms a bond with it. Another variation of the shrunk-on fin in Fig. $16.4 c$ employs a hollow ring in its hub into which a hot metal ring is driven. Other types of transverse fins are known as discontinuous fins, and several shapes such as the star fin are shown in Fig. 16.5.

Spine- or peg-type fins employ cones, pyramids, or cylinders which extend from the pipe surface so that they are usable for either longitudinal flow or crossflow. Each type of finned tube has its own characteristics and effectiveness for the transfer of heat between the fin and the fluid inside the tube, and the remainder of this chapter deals with the derivation of the relationships and the applications of the commonest types. Perhaps the principal future uses will be in the field of atomic energy for the recovery of controlled heat of fission, in the reversing exchanger for commercial oxygen plants, in jet propulsion, and in gas-turbine cycles.

LONGITUDINAL FINS

Derivation of the Fin Efficiency. The simplest fin from the standpoint of manufacture as well as mathematics is the longitudinal fin of uniform thickness. For the derivation of its

(a)- STAR-TYPE FIN

(b)-MODIFIED STAR FIN

Frg. 16.5. Discontinuous fins. characteristics it is necessary to impose the limitations and assumptions given by Murray ${ }^{1}$ and later by Gardner. ${ }^{2}$

1. The heat flow and temperature distribution throughout the fin is independent of time; i.e., the heat flow is steady.
2. The fin material is homogeneous and isotropic.
3. There is no heat source in the fin itself.
4. The heat flow to or from the fin surface at any point is directly proportional to the temperature difference between the surface at that point and the surrounding fluid.
5. The thermal conductivity of the fin is constant.

[^40]6. The heat-transfer coefficient is the same over the entire fin surface.
7. The temperature of the fluid surrounding the fin is uniform.
8. The temperature of the base of the fin is uniform.
9. The fin thickness is so small compared with its height that temperature gradients across the width of the fin may be neglected.
10. The heat transferred through the outermost edge of the fin is negligible compared with that passing into the fin through its sides.
11. The joint between the fin and the tube is assumed to offer no bond resistance.

At any cross section as in Fig. 16.6 let T_{c} be the constant temperature of the hot fluid everywhere surrounding the fin and let t be the tempera-

Fig. 16.6. Derivation of the longitudinal fin efficiency.
ture at any point in the fin and variable. Let θ be the temperature difference driving heat from the fluid to the fin at any point in its cross section. Then

$$
\begin{equation*}
\theta=T_{c}-t \tag{16.1}
\end{equation*}
$$

If l is the height of the fin varying from 0 to b,

$$
\begin{equation*}
\frac{d \Theta}{d l}=-\frac{d t}{\overline{d l}} \tag{16.2}
\end{equation*}
$$

The heat within the fin which passes through its cross section by conduction is

$$
\begin{equation*}
Q=k a_{x} \frac{d \theta}{d l} \tag{16.3}
\end{equation*}
$$

where a_{x} is the cross-sectional area of the fin. This is equal to the heat which passed into the fin through its sides from $l=0$ down to the shaded cross section. If P is the perimeter of the fin, the area of the sides is $P d l$ and the film coefficient from liquid to fin side, whether on fin surface or tube surface, is h_{f}.

$$
\begin{equation*}
d Q=h_{f} \theta P d l \quad \text { or } \quad \frac{d Q}{d l}=h_{f} P \theta \tag{16.4}
\end{equation*}
$$

Differentiating Eq. (16.3) with respect to l

$$
\begin{equation*}
\frac{d Q}{d l}=k a_{x} \frac{d^{2} \theta}{d l^{2}} \tag{16.5}
\end{equation*}
$$

Equations (16.4) and (16.5) are equalities.

$$
\begin{equation*}
k a_{x} \frac{d^{2} \Theta}{d l^{2}}-h_{f} P \theta=0 \tag{16.6}
\end{equation*}
$$

Rearranging,

$$
\begin{equation*}
\frac{d^{2} \Theta}{d l^{2}}-\frac{h_{f} P \Theta}{k a_{x}}=0 \tag{16.7}
\end{equation*}
$$

The direct solution of this equation is

$$
\begin{equation*}
\theta=C_{1} e^{\left(\frac{h_{y} P}{k a_{*}}\right)^{3 / 2}}+C_{2} e^{-\left(\frac{h_{j} P}{k a_{n}}\right)^{1 / 2}} \tag{16.8}
\end{equation*}
$$

Let

$$
m=\left(\frac{h_{f} P}{K a_{x}}\right)^{3 / 2}
$$

The general solution is

$$
\begin{equation*}
\theta=C_{1} e^{m l}+C_{2} e^{-m l} \tag{16.9}
\end{equation*}
$$

At $l=0$

$$
\begin{equation*}
\theta_{0}=C_{1}+C_{2} \tag{16.10}
\end{equation*}
$$

where the subscript refers to the outer edge of the fin.
If no heat enters the fin at the extreme end, as qualified by assumption $10, d \theta / d l=0$ when $\theta=0$ and $C_{1}-C_{2}=0$.

$$
\begin{equation*}
C_{1}=C_{2}=\frac{\theta_{e}}{2} \tag{16.11}
\end{equation*}
$$

Equation (16.8) becomes

$$
\begin{equation*}
\frac{\theta}{\theta_{t}}=\frac{e^{m l}+e^{-m l}}{2} \tag{16.12}
\end{equation*}
$$

or in general terms

$$
\begin{equation*}
\theta=\theta_{e} \cosh m l \tag{16.13}
\end{equation*}
$$

At the base of the fin where $l=b$

$$
\begin{equation*}
\Theta_{b}=\theta_{e} \cosh m b \tag{16.14}
\end{equation*}
$$

where the subscript refers to the base of the fin.
Thus an expression has been obtained for the temperature difference between the constant fluid temperature and variable fin temperature in terms of the length of the fin. It is now necessary to obtain an expression for Q in terms of l. From Eq. (16.4) by differentiation with respect to the fin height l,

$$
\begin{equation*}
\frac{d^{2} Q}{d l^{2}}=h_{f} P \frac{d \Theta}{d l} \tag{16.15}
\end{equation*}
$$

Substituting in Eq. (16.3),

$$
\begin{gather*}
Q=\frac{k a_{x}}{h_{f} P} \frac{d^{2} Q}{d l^{2}} \tag{16.16}\\
\frac{d^{2} Q}{d l^{2}}-\frac{h_{f} P}{k a_{x}} Q=0 \tag{16.17}
\end{gather*}
$$

As before, the solution is

$$
\begin{equation*}
Q=C_{1}^{\prime} e^{m l}+C_{2}^{\prime} e^{-m l} \tag{16.18}
\end{equation*}
$$

At $l=0$

$$
C_{1}^{\prime}+C_{2}^{\prime}=0 \quad C_{1}^{\prime}=-C_{2}^{\prime}
$$

and

In terms of hyperbolic functions

$$
\begin{align*}
Q & =\frac{h_{f} P \Theta_{e}}{m} \sinh m l \tag{16.21}\\
Q_{b} & =\frac{h_{f} P \theta_{e}}{m} \sinh m b \tag{16.22}
\end{align*}
$$

The ratio of heat load Q_{b} to the temperature difference θ_{b} at the base is

$$
\begin{equation*}
\frac{Q_{b}}{\Theta_{b}}=\frac{h_{j} P \Theta_{e} \sinh m b}{m \Theta_{e} \cosh m b} \tag{16.23}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{Q_{b}}{\theta_{b}}=\frac{h_{f} P}{m} \tanh m b \tag{16.24}
\end{equation*}
$$

Define h_{b} as the value of h_{f} to the fin surface alone when referred to the base area of the fin at $l=b$. Calling the ratio $h_{b} / h_{j}=\Omega$ the efficiency ${ }^{1}$ of the fin, the average value of the heat-transfer coefficient at the base of the fin is given by Fourier's equation:

$$
\begin{equation*}
\frac{Q_{b}}{\theta_{b} b P}=h_{b} \tag{16.25}
\end{equation*}
$$

The fin efficiency h_{t} / h_{f} may be defined by Eqs. (16.24) and (16.25).

$$
\begin{equation*}
\Omega=\frac{h_{b}}{h_{f}}=\frac{Q_{b} / \Theta_{b} b P}{\frac{m Q_{b}}{\Theta_{b} P} \cdot \frac{1}{\tanh m b}}=\frac{\tanh m b}{m b} \tag{16.26}
\end{equation*}
$$

Equation (16.26) applies only to the fin and not to the bare portion of the tube between the fins. To give the total heat removed by a finned tube, the heat flowing into the fin with a coefficient h_{f} must ultimately be combined with that flowing into the bare tube at the tube outside diameter. For this it is necessary to establish some reference surface at which the coefficient on the different parts can be reduced to the same heat flux. In an ordinary exchanger h_{o} is referred to the tube outside diameter. Because there is no simple reference surface on the outside of finned tubes it is convenient to use the inside diameter of the tube as the reference surface at which local coefficients are corrected to the same heat flux. By definition h_{f} is the coefficient to all the outside surface, whether it be the fin or bare tube. Beneath the bases of the fins there is naturally a greater heat flux than on the bare tube surface between fins, since the heat flowing through the bases of the fins is greater per unit of tube area. It may also be expected that part of the heat passing from the bases of the fins is conducted into the tube metal, so that the temperature difference between the annulus fluid and bare tube is not strictly constant. It is not usually necessary to correct for this effect, since the bare tube area so affected by the increased flux near the bases of the fins is ordinarily small compared with the total bare tube area. At the inside diameter of the tube, however, the heat from both the fins and the bare tube surface is assumed to have attained a uniform flux.

The total heat removed from the annulus liquid and arriving at the tube inside diameter is a composite of the heat transferred by the fins to the tube outside diameter and that transferred directly to the bare tube surface. These may be combined by means of the weighted eff-

[^41]ciency Ω^{\prime}. If the heat transferred through the bare tube surface at the tube outside diameter is designated by Q_{0}, then
\[

$$
\begin{equation*}
Q_{o}=h_{f} A_{o} \theta_{b} \tag{16.27}
\end{equation*}
$$

\]

where A_{o} is the bare tube surface at the outside diameter exclusive of the area beneath the bases of the fins. If there are N_{f} fins on the tube, $b P N_{f}$ is all of the fin surface. The total heat transfer at the outside diameter is given by

$$
\begin{align*}
Q & =Q_{b}+Q_{o}=h_{b} b P N_{f} \Theta_{b}+h_{f} A_{o} \Theta_{b} \\
& =\left(\frac{h_{b} b P N_{f} A_{o}}{A_{o}}+\frac{h_{f} b P N_{f} A_{o}}{b P N_{f}}\right) \theta_{b} \\
& =\left(\frac{h_{b}}{A_{o}}+\frac{h_{f}}{b P N_{f}}\right) b P N_{f} A_{o} \theta_{b} \tag{16.28}
\end{align*}
$$

Substituting Eq. (16.26) to eliminate h_{b}

$$
\begin{equation*}
Q=\left(b P N_{f} \frac{\tanh m b}{m b}+A_{o}\right) h_{f} \Theta_{b} \tag{16.29}
\end{equation*}
$$

Calling $h_{f o}$ the composite value of h_{f} to both the fin and bare tube surfaces when referred to the outside diameter of the tube, the weighted efficiency is by definition $\Omega^{\prime}=h_{f o} / h_{f}$. Combining Eqs. (16.24) and (16.29)

$$
\begin{equation*}
\Omega^{\prime}=\frac{h_{f o}}{h_{f}}=\left(\frac{b P N_{f} \frac{\tanh m b}{m b}+A_{⿱}}{b P N_{f}+A_{o}}\right) \tag{16.30}
\end{equation*}
$$

But as in Eq. (6.2) the values of the coefficients vary inversely with the heat-flow area. If $h_{f i}$ is the value of the composite coefficient $h_{f o}$ referred to the tube inside diameter,

$$
\begin{equation*}
\frac{h_{f i}}{h_{f o}}=\frac{b P N_{f}+A_{o}}{A_{i}} \tag{16.31}
\end{equation*}
$$

Substituting in Eq. (16.31)

$$
\begin{equation*}
h_{f i}=\left(b P N_{f} \frac{\tanh m b}{m b}+A_{0}\right) \frac{h_{f}}{A_{i}} \tag{16.32}
\end{equation*}
$$

From Eq. (16.32)

$$
\begin{equation*}
h_{f i}=\left(\frac{\Omega A_{f}+A_{0}}{A_{f}+A_{o}}\right) \frac{\left(A_{f}+A_{o}\right)}{A_{i}} h_{f} \tag{16.33}
\end{equation*}
$$

or simply

$$
\begin{equation*}
h_{f i}=\left(\Omega A_{f}+A_{o}\right) \frac{h_{f}}{A_{i}} \tag{16.34}
\end{equation*}
$$

Thus an equation has been obtained which gives directly the heat-transfer coefficient on the inside of an extended tube which is the equivalent of a value of h_{f} on the outside surface of the tube. By substituting the physical and geometrical factors for a given tube and fin arrangement a weighted efficiency curve can be developed relating h_{f} to $h_{f i}$ based on the inside tube surface.

Bonilla ${ }^{1}$ has presented a graphical solution of Eq. (16.34) for the rectangular fin of uniform thickness. The method of derivation employed here is applicable to other types of longitudinal fins as well, although it is rather awkward for the longitudinal fin of triangular cross section. A table of the hyperbolic tangents is given in Table 16.1.

Table 16.1. Hyperbolic Tangents

$m b$	Tanh $m b$	$\frac{\text { Tanh } m b}{m b}$
0.0	0.0000	1.000
0.1	0.0997	0.997
0.2	0.1974	0.987
0.3	0.2913	0.971
0.4	0.380	0.950
0.5	0.462	0.924
0.6	0.537	0.895
0.7	0.604	0.863
0.8	0.664	0.830
0.9	0.716	0.795
1.0	0.762	0.762
1.1	0.801	0.728
1.2	0.834	0.695
1.3	0.862	0.663
1.4	0.885	0.632
1.5	0.905	0.603
2.0	0.964	0.482
3.0	0.995	0.333
4.0	0.999	0.250

Example 16.1. Calculation of the Fin Efficiency and a Weighted Efficiency Curve. To illustrate the use of Eq. (16.34) a weighted fin efficiency curve will be developed for one of the common types of finned tubes used in double pipe exchangers.

A double pipe exchanger employs a $11 / 4 \mathrm{in}$. OD, 13 BWG steel inner tube to which are attached 20 fins $20 \mathrm{BWG}, 3 / 4 \mathrm{in}$. high. Through suitable bushings the inner pipe is inserted into a 3 -in. IPS outer pipe. Determine (a) the efficiency of the fins for various values of $h_{f},(b)$ the weighted efficiency curve.

[^42]
Soluthon:

Total outside surface, A :
Fin surface, $A_{f}=(20 \times 0.75 \times 12 \times 2) / 144=2.50 \mathrm{ft}^{2} / \mathrm{lin} \mathrm{ft}$
Bare tube surface, $A_{0}=(3.14 \times 1.25-20 \times 0.035)^{1} 2 / 1_{44}=0.268 \mathrm{ft} 2 / \mathrm{lin} \mathrm{ft}$
$A_{j}+A_{0}=2.50+0.268=2.77 \mathrm{ft}^{2} / \mathrm{lin} \mathrm{ft}$
Total inside surface, $A_{i}=(3.14 \times 1.06 \times 12) / 144=0.277 \mathrm{ft}^{2} / \mathrm{lin} \mathrm{ft}$
(a) Fin efficiencies:

$$
\begin{equation*}
\text { Efficiency, } \Omega=\frac{\tanh m b}{m b} \tag{16.26}
\end{equation*}
$$

$$
m=\left(\frac{h_{f} P}{k a_{x}}\right)^{3 / 3}=h_{f} 3 /\left(\frac{P}{k a_{x}}\right)^{1 / 2}=h_{f}^{1 / 2}\left(\frac{2 \times 20 \times 144}{25 \times 0.035 \times 12 \times 20}\right)^{1 / 2}=5.24 h_{f} 3 / 2
$$

h_{f}	$5.24 h_{f}^{3 / 2}$	$m b$	$\tanh m b$	$\Omega=\frac{\tanh m b}{m b}$
4	10.48	0.655	0.5717	0.872
16	20.96	1.31	0.864	0.660
36	31.44	1.97	0.962	0.498
100	52.4	3.28	0.995	0.303
400	104.8	6.55	1.00	0.152
625	131	8.19	1.00	0.122
900	157	9.82	1.00	0.102

The fin efficiencies are given in the last column. Note that, when the outside coefficient h_{f} is 4.0 , both sides of the fir contribute heat-transfer surface which is 87.2 per cent as effective as bare tube surface. When $h_{f}=100$, the surface is only 30.3 per cent as effective, and when $h_{f}=900$ (water or steam), the extended surface is only 10.2 per cent as effective. This is because at the higher film coefficient the fin metal more nearly attains the temperature of the hot fluid and the temperature difference between the fluid and fin is correspondingly less for given values of T_{c} and t_{c}.
(b) The weighted efficiency curve directly gives the value of $h_{f i}$ obtained at the tube inside diameter when the coefficient to the fin and the bare tube is h_{f}.

$$
\begin{aligned}
& h_{f i}=\left(\Omega A_{f}+A_{o}\right) \frac{h_{f}}{A_{i}} \\
& \\
& h_{f} \times\left(\Omega A_{f}+A_{o}\right) / A_{i}=h_{f i} \\
& 4 \times(0.872 \times 2.50+0.268) / 0.277=35.4 \\
& 16 \times(0.660 \times 2.50+0.268) / 0.277=110.8 \\
& 36 \times(0.498 \times 2.50+0.268) / 0.277=193.5 \\
& 100 \times(0.303 \times 2.50+0.268) / 0.277=370 \\
& 400 \times(0.152 \times 2.50+0.268) / 0.277=935 \\
& 625 \times(0.122 \times 2.50+0.268) / 0.277=1295 \\
& 900 \times(0.102 \times 2.50+0.268) / 0.277=1700
\end{aligned}
$$

These values of h_{f} and $h_{f i}$ are plotted in Fig. 16.7. If the film coefficient to the fin is large, as with condensation or the cooling or heating of water in the annulus, there is little advantage to be gained from the use of fins particularly when a dirt factor must be included which may be the controlling resistance. Actually, a fin of a desired metal
can be designed to give a high efficiency for any reasonable value of h_{f}, but as h_{f} increases, the size and cost of the fin also increases. Greater efficiencies can also be obtained by using fins which are not uniformly thick such as are treated later on.

Frg. 16.7. Weighted fin-efficiency curve.
There are several manufacturers who supply completely assembled double pipe exchangers with fins on the inner pipe. Because the finned pipe or tube cannot be inserted through a packed gland as in Fig. 6.1,

Fig. 16.8. Longitudinal in double pipe exchanger. (Griscom-Russell Co.)
the method of confining the inner pipe is somewhat more complicated. A typieal example of a standard preassembled double pipe finned exchanger is shown in Fig. 16.8, and as in Chap. 6, a single unit is called a hairpin. The cost of these units is extremely moderate, and they are preferable
when one of the fluids is a gas, a viscous liquid, or a small stream. Operated in series or in parallel they are often superior to shell-and-tube exchangers, notwithstanding the increased number of leakable joints they introduce. When connected in any other manner but in series the true temperature difference is computed for series-parallel flow by Eq. (6.35). When operated with cooling water in the inner pipe a nonferrous pipe may be selected with either steel or nonferrous fins attached. Three

Fig. 16.9. Weighted fin-efficiency curves for steel double pipe exchangers.
weighted efficiency curves for three of the commonest sizes of double pipe finned exchangers are given in Fig. 16.9. These do not correspond to the offerings of any single manufacturer but are a composite of the three sizes ordinarily available from manufacturers' stocks.
Double-pipe-exchanger Coefficients and Pressure Drops. The addition of fins to the outsides of the inner pipes of double pipe exchangers generally reduces the value of the annulus film coefficient by smoothing the flow of fluid on the outside of the tube or pipe. Data obtained for bare tube surfaces cannot be used for the calculation of double pipe extended-surface exchangers. While a design curve or equation relating
h_{f} to the flow variables and heat-transfer properties can be determined by experiment in the usual manner (see Chap. 3), the correlation differs for extended surfaces. Starting with a double pipe finned exchanger, a fluid is passed through the annulus and heated by the dropwise condensation of steam, whose condensing coefficient is very high compared with the annulus coefficient. Any other heating medium can be substituted

Fig. 16:10. Longitudinal fin heat transfer and pressure drop.
if its individual coefficient can be or has been determined accurately. For cooling experiments water is usually employed. Readings are taken of the oil-temperature change, the steam or water temperatures, and the fluid flow. The surface A_{i} is known from the inside diameter and length of the inner pipe, and the heat load, the LMTD, and U_{i}, the clean overall coefficient; can also be computed. The film coefficient for the annulus $h_{f i}$ can then be determined from the following equation:

$$
\begin{equation*}
\frac{1}{U_{i}}=\frac{1}{h_{i}}+\frac{1}{\frac{h_{f i}}{}} \tag{16.35}
\end{equation*}
$$

The value of $h_{f i}$ so obtained represents h_{f} to the fin and bare tube already combined and weighted. If four or more fins are attached to the inner pipe, the addition of a greater number does not appear to affect the heattransfer coefficient h_{f} significantly. Naturally the weighted efficiency and the total heat transfer are directly influenced by the number of fins. To make the experimental data general for other fin and tube arrangements than those tested, the value of $h_{f i}$ must be transferred from the inside diameter of the inner tube to the annulus. In the annulus it may then be resolved between the fin and bare tube surface by converting from $h_{f i}$ to h_{f} and plotting a heat-transfer factor j_{f}, which includes the average value of h_{f} to both types of surface.

Figure $16.10 a$ is an isothermal curve which was obtained in this manner from numerous heating and cooling experiments on different fin and tube double pipe arrangements and agrees with the published data of DeLorenzo and Anderson. ${ }^{1}$ Friction factors are given in Fig. 16.10b. The equivalent diameter D_{e}^{γ} for pressure drop differs from D_{e} for heat transfer because of the inclusion of the perimeter of the outer pipe in the wetted perimeter. Both equivalent diameters are computed as in Chap. 6 for double pipe excharigers using four times the hydraulic radius.

To illustrate the method of treating experimental data on pipes or tubes with extended surface, a typical test point will be computed below. This is in the reverse order of the calculation of the surface requirements for the fulfillment of process conditions which will be demonstrated later.

Example 16.2. Calculation of a Heat-transfer Curve from Experimental Data. Experimental double pipe exchanger, steel hairpin.

Shell, 3 in. IPS
Finned inner tube: $11 / 4 \mathrm{in}$. OD, 13 BWG to which are attached $20 \mathrm{fins}, 20 \mathrm{BWG}$, $3 / 4 \mathrm{in}$. high
Length of finned inner tube, $10^{\prime} 0^{\prime \prime}$ per leg between return bends.
Data and observations:
Hot fluid, steam, $T_{s}=302^{\circ} \mathrm{F}$ (in inner tube)
Cold fluid, 40.8° API kerosene, $t_{1}=151^{\circ} \mathrm{F}$
$t_{2}=185^{\circ} \mathrm{F}$
Weight fiow, $w=15,200 \mathrm{lb} / \mathrm{hr}$
The dropwise condensation of steam was promoted with oil.
Calculations:
ID of 3 in . IPS pipe $=3.068 \mathrm{in}$.
Annulus flow area, $a_{a}=\frac{\pi\left(3.068^{2}-1.25\right)^{2}}{4 \times 144}-\frac{20 \times 0.035 \times 0.75}{144}=0.0395 \mathrm{ft}^{2}$

[^43]Wetted perimeter $=\pi \times \frac{1.25}{12}-20 \times \frac{0.035^{*}}{12}+20 \times 0.75 \times \frac{2}{12}=2.77 \mathrm{ft}$
Equivalent diameter, $D_{c}=\frac{4 \times \text { flow area }}{\text { wetted perimeter }}=4 \times \frac{0.0395}{2.77}=0.057 \mathrm{ft}$
Heat load, $Q=15,200 \times 0.523(185-151)=271,000 \mathrm{Btu} / \mathrm{hr}$
$\mathrm{LMTD}=133^{\circ} \mathrm{F}$
Internal surface $/ \mathrm{lin} \mathrm{ft}, A_{i}=0.277 \mathrm{ft}^{2} / \mathrm{ft}$
$U_{i}=\frac{271,000}{0.277 \times 20 \times 133}=368 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$
$h_{i}=3000$ (assumed value for dropwise condensation of steam)
$\frac{1}{U_{i}}=\frac{1}{h_{i}}+\frac{1}{h_{f i}} \quad \frac{1}{368}=\frac{1}{3000}+\frac{1}{h_{j i}}$
$h_{f i}=418 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$
From the efficiency curve (Fig. 16.7) for $h_{f i}=418, h_{f}=120$.
At the average temperature $\mu=0.80 \mathrm{cp} \times 2.42=1.94 \mathrm{lb} /(\mathrm{ft})(\mathrm{hr})$

$$
\begin{align*}
& \left(\frac{c \mu}{k}\right)^{1 / 3}=2.34 \\
& j_{f}=h_{f} \frac{D_{e}}{k}\left(\frac{c \mu}{k}\right)^{-1 / 3}=\frac{120 \times 0.057}{0.079 \times 2.34}=37.0 \tag{16.36}\\
& G_{a}=\frac{15,200}{0.0395}=385,000 \mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right) \\
& R e_{a}=0.057 \times \frac{385,000}{1.94}=11,300
\end{align*}
$$

This single point, $R e_{a}=11,300 \mathrm{vs} . j_{f}=37$, does not fall exactly on the isothermal curve of Fig. 16.10a. It is off by more than is first apparent (37 vs .41 or 9.8 per cent), since it represents a heating run and j_{r} should be divided by a viscosity correction to permit its representation on an isothermal curve which is applicable to both heating and cooling. The general implications of such a procedure have been discussed in Chaps. 5 and 6 . In the correlations covered in Fig. 16.10a the viscosity correction was found to be $\phi_{a}=\left(\mu / \mu_{f v}\right)^{0.14}$, where $\mu_{\rho w}$ is the viscosity taken at the temperature of the "wall" $t_{f v}$. Thus $\mu_{f v}$ replaces μ_{w} when the pipe wall has fins.
The Wall Temperature $t_{f v}$ of a Finned Tube. The wall temperature of an extended-surface pipe or tube influences the values of the heattransfer coefficients which are obtained when a fluid is heated and cooled over the same operating range. Since the fin and tube metals will not be at the same temperature, the use of any single temperature such as $t_{f w}$ to replace the fin temperature t_{f} and the tube-wall temperature t_{w} is naturally fictitious. Kayan ${ }^{1}$ has developed an ingenious experimental method of analyzing for the wall temperature which simulates heat transfer by means of an electrical analogy. Theoretical methods of obtaining the wall temperature are quite complex, and even the most typical applications of extended surfaces have not been covered by adequate derivations. The method employed below is semiempirical. Its principal

* This is the area of the bare tube beneath the bases of the fins. The extremities of the fins were not considered to receive heat in the derivation, and their lengths are not included in the perimeter.
${ }^{1}$ Kayan, C. F., Trans. ASME, 67, 713-718 (1945); Ind. Eng. Chem., 40; 1044-1049 (1948).
advantage lies in the brevity with which a solution can be obtained. It is presented here in the sequence which is most adaptable to design when an isothermal performance curve such as Fig. $16.10 a$ is available. If an isothermal curve is to be developed from heating and cooling experiments, the sequence need merely be rearranged:

The true temperature difference Δt corresponds to the total resistance $1 / U_{D_{i}}$ in the design equation $\left(Q / A_{i}\right)=U_{D_{i}} \Delta t$. The sum of the smaller temperature differences through each of the component resistances between the annulus and inner tube fluids must equal the true temperature difference. The dirt factors for the annulus and tube may not be combined in extended surface equipment, since they are applicable to such widely different actual surfaces that flux corrections must be employed. The component resistances are then the (1) annulus film, (2)

Frg. 16.11. The location of coefficients and temperature drops in longitudinal fins.
annulus dirt factor, (3) fin and tube metal, compositely, (4) tube-side dirt factor and (5) tube-side film. The component temperature differences are obtained by multiplying the component resistances by the flux Q / A_{i} when the latter is corrected to the appropriate surface at each point. The wall temperature $t_{f u}$.occurs between temperature drops (2) and (3), and by obtaining this temperature $\mu_{f w}$ can be evaluated. While the clean coefficient U_{i} is obtained from individual coefficients calculated for properties at T_{c} and t_{c}, the summation of the component temperature differences in the design equation corresponds to Δt and not $T_{c}-t_{c}$.

The value of the wall $t_{f w}$ is obtained by trial and error. First assume a value of $t_{f w}$ which permits the calculation of ϕ_{a}, the annulus viscosity correction, and the annulus film coefficient corrected for heating or cooling. The reciprocal of the annulus film coefficient is the resistance in (1). The fouling factor is the resistance in (2). If the temperature after passing through these two resistances corresponds to the assumed value of $t_{f v}$ and if the total temperature drop over the five resistances corre-
sponds to Δt, the assumed value was correct. If no check is obtained, a new value of $t_{f w}$ must be assumed and the procedure repeated. The location of the various temperatures and resistances involved in this method are shown in Fig. 16.11. The nomenclature differs from Eq. (16.35) in which there were no dirt factors. The steps in summing up the resistances and correcting for the different surfaces per linear foot of extended surface pipe or tube should be evident in the outline below.

1. Assume a temperature $t_{f, s}$ to establish a temperature difference between the annulus fluid and the wall.
2. Obtain $\phi_{a}=\left(\mu / \mu_{f w}\right)^{0.14}$ where $\mu_{f_{w}}$ is obtained at $t_{f v}$.
3. Obtain h_{f} / ϕ_{a} from a design curve and correct for the viscosity ratio ϕ_{a} and obtain h_{f} by $h_{f}=\left(h_{f} / \phi_{a}\right) \phi_{a}$. Then $R_{f}=1 / h_{f}$.
4. To obtain the value of h_{f} effective at the fin surface add to it the resistance through the annulus dirt factor $R_{\text {do }}$. For a dirt factor of $R_{d o}$,

$$
\begin{equation*}
\frac{1}{h_{f}^{\prime}}=R_{f}+R_{d o} \tag{16.37}
\end{equation*}
$$

where h_{f}^{\prime} is the effective value of h_{f} at the fin.
5. Obtain' $h_{f i}^{\prime}$ for the value of h_{f}^{\prime} in 4 from an appropriate weighted efficiency curve such as Fig. 16.9.
6. Multiply \dot{h}_{f}^{\prime} in 4 by the surface ratio $\left(A_{f}+A_{o}\right) / A_{i}$ giving $h_{f i}^{\prime \prime}$, which is h_{f}^{\prime} corrected for flux but not for the resistance of the fin and wall metals.

$$
\begin{equation*}
h_{f i}^{\prime \prime}=\frac{h_{f}^{\prime}\left(A_{f}+A_{0}\right)}{A_{i}} \tag{16.38}
\end{equation*}
$$

The difference between ${h_{f i}^{\prime}}_{i}$ and $h_{f i}^{\prime \prime}$ may be considered due to the resistance of the fin and tube wall metals.

$$
\begin{equation*}
R_{\text {matatal }}=\frac{1}{h_{f i}^{\prime}}-\frac{1}{h_{f i}^{\prime \prime}} \tag{16.39}
\end{equation*}
$$

7. Obtain h_{i} for the tube fluid from any suitable tube-side data such as Fig. 24 or 25 , where $\phi_{k}=\left(\mu / \mu_{f w}\right)^{0.14}$ instead of $\left(\mu / \mu_{v}\right)^{0.14}$, and combine with the tube-side dirt factor, $R_{d i} \quad R_{i}=1 / h_{i}$, and if h_{i}^{\prime} is the value of h_{i} at the tube wall,

$$
\begin{equation*}
\frac{1}{h_{i}^{\prime}}=R_{i}+R_{d i} \tag{16.40}
\end{equation*}
$$

8. From h_{i}^{\prime} and $h_{j i}^{\prime}$ obtain $U_{D i}$, the corrected overall design coefficient based on the inside tube diameter.

$$
\begin{equation*}
\frac{1}{U_{D i}}=\frac{1}{h_{f i}^{\prime}}+\frac{1}{h_{i}^{\prime}} \tag{16.41}
\end{equation*}
$$

9. Obtain the flux for the surface actually employed.

$$
\begin{equation*}
\frac{Q}{A_{i}}=U_{D i} \Delta t \tag{16.42}
\end{equation*}
$$

10. Impose the flux from 9 on the individual resistances and determine whether the summation of the first two individual differences is the amme as the assumed value
of $T_{c}-t_{j w}$ and if the sum of all differences equals the true temperature difference. In the same order as before, the temperature drops are
a. Annulus film:

$$
\begin{equation*}
\Delta t_{j}=\frac{Q / A_{i}}{h_{f i}^{\prime \prime}} \tag{16.43a}
\end{equation*}
$$

b. Annulus dirt, corrected to the inside diameter:

$$
\begin{equation*}
\Delta t_{d o}=\left(\frac{Q}{A_{i}}\right) R_{d o} \frac{A_{i}}{A_{f}+A_{o}} \tag{16.43b}
\end{equation*}
$$

c. Fin and tube metal:
d. Tube-side dirt:

$$
\begin{equation*}
\Delta t_{\text {metal }}=\left(\frac{Q}{A_{i}}\right) R_{\text {motal }} \tag{16.43c}
\end{equation*}
$$

$$
\begin{equation*}
\Delta t_{d i}=\left(\frac{Q}{A_{i}}\right) R_{d i} \tag{16.43d}
\end{equation*}
$$

e. Tube-side finn:

$$
\begin{equation*}
\Delta t_{i}=\frac{Q / A_{i}}{h_{i}} \tag{16.43e}
\end{equation*}
$$

When the tube fluid is a gas, water, or a similar nonviscous fluid, the tube-side viscosity correction can be omitted and ϕ_{a} can be taken as 1.0. The metal of which the fin is fabricated greatly affects the efficiency, particularly since k for steel is 26 and for copper $220 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F} / \mathrm{ft}\right)$.

The Calculation of a Double Pipe Finned Exchanger. The method employed here closely follows that of the outline in Chap. 6. The true temperature difference for a double pipe exchanger is the LMTD calculated for true counterflow or a value computed from Eq. (6.35) for seriesparallel flow. The effective tube length does not include the return bend between legs of a hairpin or any of the unfinned portion of the inner tube. The inside of the tube is used as the reference surface. Most manufacturers prefer to use the outside as the reference surface, since it has a larger numerical value. The solutions of problems can be converted to manufacturers' data by multiplying the inside surface by the ratio ($A_{f}+A_{o}$) $/ A_{i}$ and dividing the overall coefficient $U_{D i}$ by this ratio. Tube lengths of $12,15,20$, and 24 ft are considered reasonable for extendedsurface hairpins. Large tube lengths are permissible, since the fins on the inner pipe rest snugly on the outer pipe and there is no sagging. As explained previously, fouling factors cannot be combined as in ordinary double pipe exchangers because they are effective on widely different surfaces and each must be treated separately.

[^44]
Solution:

(1) Heat balance: Gas oil, $Q=18,000 \times 0.53(250-200)=477,000 \mathrm{Btu} / \mathrm{hr}$
(Fig. 4)
Water, $Q=11,950 \times 1.0(120-80)=477,000 \mathrm{Btu} / \mathrm{hr}$
(2) Δt : Assume true counterflow for the first trial. Unless the allowable pressure drop on either stream is exceeded, it will not be necessary to consider series-parallel arrangements calculated by Eq. (6.35).
$\Delta t=\mathrm{LMTD}=124^{\circ} \mathrm{F}$
(3) Caloric temperatures T_{e} and t_{c} :
$\frac{\Delta t_{c}}{\Delta t_{h}}=\frac{120}{130}=0.92 \quad K_{c}=0.27 \quad F_{c}=0.47$
(Fig. 17)
$T_{c}=200+0.47(250-200)=224^{\circ} \mathrm{F}$
$t_{e}=80+0.47(120-80)=99^{\circ} \mathrm{F}$

Hot fuid: annulus, gas oil
(4') 3 in . TPS, $\mathrm{ID}=3.068$ in. [Table 11] $11 / 2 \mathrm{in}$. IPS, $\mathrm{OD}=1.90 \mathrm{in} . \quad$ [Table 11] Fin cross section, 20 BWG, $3 / 2 \mathrm{in}$. high

$$
=0.035 \times 0.5=0.0175 \mathrm{in}^{2}
$$

[Table 10]
$a_{a}=\left(\frac{\pi}{4} \times 3.068^{2}-\frac{\pi}{4} \times 1.90^{2}-24\right.$ $\times 0.0175$)
$=4.13 \mathrm{in} .^{2}$
$=4.13 / 144=0.0287 \mathrm{ft}^{2}$
Wetted perimeter* $=(\pi \times 1.90-24$ $\times 0.035+24 \times 2 \times 0.5)$
$=29.13 \mathrm{in}$.
$d_{e}=4 \times 4.13 / 29.13=0.57 \mathrm{in}$.
$D_{c}=0.57 / 12=0.0475 \mathrm{ft}$
($\mathbf{b}^{\prime \prime}$) $G_{a}=W / a_{a}$

$$
\begin{aligned}
&=18,000 / 0.0287 \\
&=628,000 \mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)
\end{aligned}
$$

(6') At $T_{c}=224^{\circ} \mathrm{F}$,
$\mu=2.50 \times 2.42=6.05 \mathrm{lb} /(\mathrm{ft})(\mathrm{hr})$
[Fig. 14]
$R e_{a}=D_{d} G_{a} / \mu$
$=0.0475 \times 628,000 / 6.05=4930$
(7') $j_{r}=18.4$
[Fig. 16.10]
(8') At $T_{c}=224^{\circ} \mathrm{F}$
$k(c \mu / k)^{1 / 3}=0.25 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{9} \mathrm{~F} / \mathrm{ft}\right)$
[Fig. 16]
(9') $h_{f}=j_{r} \frac{k}{D_{c}}\left(\frac{c \mu}{k}\right)^{1 / 3} \phi_{a} \quad[E q: ~(6.15)]$

$$
\frac{h_{f}}{\phi_{G}}=18.4 \times \frac{0.25}{0.0475}=96.7
$$

Cold fuid: inner pipe, water
(4) $D=1.61 / 12=0.134 \mathrm{ft}$
[Table 11]
$a_{t}=\pi D^{2} / 4=\pi \times 0.134^{2} / 4=0,0142 \mathrm{ft}^{2}$

* In the derivation, the outermost edge of the fins was assumed to have zero heat transfer.

Calculation of $t_{f w}$ (numbers refer to the outline procedure):
(1) Assume $T_{c}-t_{f w}=40^{\circ} \mathrm{F}$
$t_{f 10}=224-40=184^{\circ} \mathrm{F}$
(Fig. 14)
(2) At $184^{\circ} \mathrm{F}, \mu_{f v}=3.5 \mathrm{cp}$
$\phi_{a}=\left(\frac{\mu}{\mu_{f w}}\right)^{0.14}=\left(\frac{2.5}{3.5}\right)^{0.14}=0.95$
(3) $h_{f}=96.7 \times 0.95=91.8 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$
(4) $R_{\mathrm{do}}=0.002, R_{f}=\frac{1}{91.8}=0.0109(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right) / \mathrm{Btu}$
$\frac{1}{\vec{h}_{f}^{\prime}}=0.002+0.0109$
$h_{y}^{\prime}=77.5$
(5) $h_{f i}^{\prime}=255$
(6) $h_{f i}^{\prime \prime}=h_{f}^{\prime} \frac{A_{f}+A_{o}}{A_{i}}=77.5 \times 5.76=447$
$R_{\text {motal }}=\frac{1}{h_{f i}^{\prime}}-\frac{1}{h_{f i}^{\prime \prime}}=\frac{1}{255}-\frac{1}{447}=0.00169$
(7) Assume $\phi_{t}=1.0$ for cooling water:
$R_{d i}=0.003 \quad R_{i}=1 / 795=0.00126$
$\frac{1}{h_{i}^{\prime}}=0.00126+0.003$
$h_{i}^{\prime}=235$
(8) $\frac{1}{U_{D i}}=\frac{1}{255}+\frac{1}{235}$
$U_{D i}=122$
(9) To obtain the true flux the heat load must be divided by the actual heat-transfer surface.
For a $1 / 1 / 2-\mathrm{in}$. IPS pipe there are $0.422 \mathrm{ft}^{2} / \mathrm{lin}$ foot
(Table 11)
Trial:
$A_{i}=\frac{Q}{U_{D i} \Delta t}=\frac{47,000}{122 \times 124}=31.5 \mathrm{ft}^{2}$
Length of pipe required $=\frac{31.5}{0.422}=74.8 \mathrm{lin} \mathrm{it}$
Use two 20 -ft hairpins $=80 \mathrm{lin} \mathrm{ft}$
$A_{i}=80 \times 0.422=33.8 \mathrm{ft}^{2}$
$\frac{Q}{A_{\mathrm{i}}}=\frac{477,000}{33.8}=14,100 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)$
(a) Annulus film $\Delta t_{f}=\left(\frac{Q}{A_{i}}\right) / h_{r i}^{\prime \prime}=\frac{14,100}{447}$
$=31.6^{\circ}$
(b) Annulus dirt, $\Delta t_{d o}=\left(\frac{Q}{A_{i}}\right) R_{d o} \frac{A_{i}}{A_{j}+A_{0}}=14,100 \times \frac{0.002}{5.76}=4.9$
(c) Fin and tube metal, $\Delta t_{\text {motel }}=\left(\frac{Q}{A_{i}}\right) R_{\text {motal }}=14,100 \times 0.00169=23.8$
(d) Tube-side dirt, $\Delta t_{d i}=\left(\frac{Q}{A_{i}}\right) R_{d i}=14,100 \times 0.003 \quad=42.3$
(e) Tube-side film, $\Delta t_{i}=\left(\frac{Q}{A_{i}}\right) / h_{i}=\frac{14,100}{795}$
$=\frac{17.7}{120.3^{\circ}}$

Assumed $T_{e}-t_{f w}=40.0^{\circ}$ Calculated $T_{c}-t_{f w}=36.5^{\circ} \quad$ LMTD $=124^{\circ}$
The difference of $40-36.5=3.5^{\circ} \mathrm{F}$ will not materially change the value of $\left(\mu / \mu_{w}\right)^{0.14}$.
Note: The temperature drop of $120.3^{\circ} \mathrm{F}$ corresponds to a fouling factor based on 74.8 lin ft while the flux corresponds to 80 lin ft . The correction appears at the end of the solution.

Pressure Drop

$$
\begin{aligned}
& \text { (1') } d_{s}^{\prime}=4 \times 4.13 /(29.13+\pi \times 3.07) \quad \text { (1) } R e_{t}=65,000 \text { (pipe) } \\
& D_{e}^{\prime}=0.43 / 12=0.0359 \mathrm{ft} \\
& R e_{a}^{\prime}=D_{a}^{\prime} G_{a} / \mu \\
& =0.0359 \times 628,000 / 6.05=3730 \\
& f=0.00036 \mathrm{ft}^{2} / \mathrm{in}^{2}{ }^{2} \text {. } \\
& s=0.82 \\
& \text { [Fig. 16.10] } \\
& \text { (2') } \Delta P_{a}=\frac{f G_{a}^{2} L n}{5.22 \times 10^{10} D_{e}^{\prime} s \phi_{a}} \\
& \text { [Eq. (7.45)] } \\
& =\frac{0.00036 \times 628,000^{2} \times 80}{5.22 \times 10^{10} \times 0.0359 \times 0.82 \times 0.95} \\
& =7.9 \mathrm{psi} \\
& \text { 65,000 (pipe) } \\
& =0.43 \mathrm{in} \text {. } \\
& f=0.000192 \mathrm{ft}^{2} / \mathrm{in} .^{2} \\
& \text { [Fig. 26] }
\end{aligned}
$$

Summary

0.002	Dirt Factor	0.003
255	h inside	235
$U_{D i}$	122	
7.9	Calculated ΔP	1.4
10.0	Allowable ΔP	10.0

Adjustment of the fouling factor. $U_{D i}=122$ was based on 74.8 lin ft . Based on $80 \mathrm{lin} \mathrm{ft} U_{D i}=114$ and the difference is excess dirt factor equal to 0.00057 . This can readily be added to the tube side to give a dirt factor of 0.00357 , or it can be added to the annulus by taking $0.00057 \times 5.76=0.00328$. The total annulus dirt factor for the latter will then be $0.002+0.00328=0.00528$. For the new value of h_{f}^{\prime}

$$
\begin{align*}
\frac{1}{h_{f}^{\prime}} & =0.00528+\frac{1}{91.8} \tag{16.37}\\
h_{f}^{\prime} & =62 \\
h_{f i}^{\prime} & =220 \tag{Fig.16.9}\\
U_{D i} & =\frac{h_{f i}^{\prime} h_{i}^{\prime}}{h_{r i}^{\prime}+h_{i}^{\prime}}=\frac{220 \times 235}{220+235}=114 \tag{16.41}
\end{align*}
$$

The corrected summary is

0.0053	Dirt Factor	0.003
220	h inside	235
$U_{D i}$	114	
7.9	Calculated ΔP	1.4
10.0	Allowable ΔP	10.0

Remarks: There is no need to readjust the calculation of $t_{f_{w},}$ since only item (b) will be affected and this is usually insignificant in its contribution to the value of Δt. Thus the corrected value is

$$
\Delta t_{d \rho}=14,100 \times \frac{0.0053}{5.76}=13.0^{\circ}
$$

This gives a computed Δt of 128.4° vs. 124.0°, but this difference does not justify a new trial value of $t_{\text {fw }}$. The need for readjusting the fouling factor is of particular value when checking the performance of an existing hairpin or battery of hairpins for a new service.

As reported by a manufacturer the total surface would be $33.8 \times 5.76=194 \mathrm{ft}^{2}$. The reported overall coefficient would be $114 / 5.76=19.8 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$.

Extended-surface Shell-and-tube Exchangers. The use of extended surfaces in double pipe exchangers permits the transfer of a great deal of heat in a compact unit. The same advantages may be obtained from the use of longitudinally finned tubes in shell-and-tube arrangements equivalent to the 1-1, 1-2 or 2-4 exchanger. Because they are relatively uncleanable, extended-surface tubes are usually laid out on triangular pitch and are never spaced so closely that the fins of adjacent tubes intermesh. To prevent sagging and the possibility of tube vibration which might result from intermeshing, each tube in a bundle is supported individually. This cannot be done with conventional support plates because they introduce a certain amount of flow across the bundle which cannot be accomplished very well with Iongitudinal finned tubes. Support is accomplished, however, by welding or shrinking small circumferential rings about each tube which enclose the fins but at different points along the length of each tube. The rings prevent any tubes from intermeshing and at the same time afford a positive elimination of vibration damage. At several points along its length the entire bundie is then bound with circumferential bands which keep all of the finned tubes firmly pressed against the rings of adjacent tubes.

Longitudinal fin exchangers are relatively expensive and, since they are
not cleanable, can be used only for fluids which ordinarily have very low film coefficients and which are clean or form dirt that can be boiled out. This makes them ideal for gases at low pressure where the density is low and the allowable pressure drop is accordingly small.

The prototype of this exchanger is the 1-2 exchanger without baffles as calculated in Example 7.8. Longitudinal fin shell-and-tube exchangers are computed in the same manner as double pipe extended-surface exchangers using the same efficiency curves for identical tubes. Only the equivalent diameters for heat transfer and pressure drop differ. These are computed in the conventional manner for the entire shell using four times the hydraulic radius as discussed in Chap. 6 and demonstrated in Example 7.8.

Example 16.4. Calculation of a Longitudinal Fin Shell-and-tube Exchanger. $30,000 \mathrm{lb} / \mathrm{hr}$ of oxygen at 3 psig pressure and $250^{\circ} \mathrm{F}$ is to be cooled to $100^{\circ} \mathrm{F}$ using water from 80 to $120^{\circ} \mathrm{F}$. The maximum allowable pressure drop for the gas is 2.0 psi and for the water 10.0 psi. Fouling factors of not less than 0.0030 should be provided for each stream.

Available for the service is a $191 / 4 \mathrm{in}$. ID $1-2$ exchanger equipped with $7016^{\prime \prime} 0^{\prime \prime}$ tubes each with 20 fins $1 / 2 \mathrm{in}$. high of 20 BWG (0.035 in .) steel. The tubes are 1 in . OD, 12 BWG and are laid out on 2-in. triangular pitch for four passes.

Will the exchanger fulfill the service? What is the final gas side dirt factor?

Solution:

Exchanger:

Shell side	Tube side
$\mathrm{ID}=1914 \mathrm{in}$.	Number and length $=70,16^{\prime} 0^{\prime \prime}$, 20 fins, 20 BWG , in.
Baffle Space $=$ ring supports	$\mathrm{OD}, \mathrm{BWG}$, pitch $=1 \mathrm{in} ., 12 \mathrm{BWG}, 2-\mathrm{in}$. tri.
Passes $=1$	Passes $=4$
(1) Heat balance:	
Oxygen at $17.7 \mathrm{psia}, Q=$	$30,000 \times 0.225(250-100)=1,010,000 \mathrm{Btu} / \mathrm{hr}$
Water, $Q=50,500 \times 1(100$	-80) $=1,010,000 \mathrm{Btu} / \mathrm{hr}$
(2) Δt :	

Hot Fluid Cold Fluid

250	Higher Temp	100	150
100	Lower Temp	80	20
150	Difference	20	130

$$
\begin{align*}
& \mathrm{LMTD}=64.6^{\circ} \mathrm{F} \tag{5.14}\\
& R=\frac{150}{20}=7.5 \quad S=\frac{20}{250-80}=0.1175(7.18) \quad F_{T}=0.87 \tag{Fig.18}\\
& \Delta t=0.87 \times 64.6=56.2^{\circ} \mathrm{F}
\end{align*}
$$

(3) T_{c} and t_{c} : The average temperatures of 175 and $90^{\circ} \mathrm{F}$ will be adequate.

Hot fluid: shell side, oxygen	Cold fluid: tube side, water
(4) $a_{5}=\frac{\pi}{4} \times 19.25^{2}$	(4) $a_{t}^{\prime}=0.479 \mathrm{in}.{ }^{2} \quad$ [Table 10]
$-70\left(\frac{\pi}{4} \times 1^{2}+20 \times 0.035 \times 0.5\right)$ $=2115$ in 2	$\begin{aligned} a_{\iota} & =N_{t} a_{t}^{\prime} / 144 n \quad \text { [Eq. (7.48)] } \\ & =70 \times 0.479 / 144 \times 4=0.0582 \mathrm{ft}^{2} \\ D & =0.782 / 12=0.0652 \mathrm{ft} \end{aligned}$
$\begin{aligned} & =211.5 \mathrm{in.}^{2} \\ & =211.5 / 144=1.47 \mathrm{ft}^{2} \end{aligned}$	
Wetted perimeter $=70(\pi \times 1-20$	
$\begin{aligned} & \times 0.035+20 \times 2 \times 0.5) \\ & \quad=1570 \mathrm{in} . \end{aligned}$	
$d_{c}=4 \times 211.5 / 1570=0.54 \mathrm{in}$.	
[Eq. (6.4)]	
$D_{e}=0.54 / 12=0.045 \mathrm{ft}$	
$\text { (5) } \begin{aligned} G_{\varepsilon} & =W / a_{s} \\ & =30,000 / 1.47 \end{aligned}$	$\text { (5) } \begin{aligned} G_{t} & =w / a_{t} \\ & =50,500 / 0.0582 \end{aligned}$
$=20,400 \mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft} \mathrm{t}^{2}\right)$	$=868,000 \mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)$
	$V=G_{t} / 3600 \rho=868,000 / 3600 \times 62.5$
	(6) ${ }^{\text {a }}$, ${ }^{\circ} \mathrm{F}, \quad=3.86 \mathrm{fps}$
$\begin{aligned} & \text { (6') At } T_{a}=175^{\circ} \mathrm{F}, \mu=0.0225 \times 2.42 \\ & =0.0545 \mathrm{lb} /(\mathrm{ft})(\mathrm{hr}) \quad \text { [Fig. 15] } \end{aligned}$	$\begin{aligned} & \text { (6) At } t_{a}=90^{\circ} \mathrm{F}, \\ & \mu=0.80 \times 2.42=1.94 \mathrm{lb} /(\mathrm{ft})(\mathrm{hr}) \end{aligned}$
Re $=0.0 D_{0} G_{s} / \mu$	[Fig.
$=0.045 \times 20,400 / 0.0545=16,850$	$\begin{aligned} R e_{t} & =D G_{t} / \mu\left(\text { for }{ }^{\prime} \text { pressure drop only }\right) \\ & =0.0652 \times 868,000 / 1.94=29,100 \end{aligned}$
(7') $j_{H}=59.5 \quad$ [Fig. 16.10a]	
(8) At $175^{\circ} \mathrm{F}, c=0.225 ; k=0.0175$	
$\left(c_{\mu} / k\right)^{3 / 3}=(0.225 \times 0.0545 / 0.0175)^{3 / 2}$.	
$=0.89$	
$\phi_{s}=1.0$ (for gases)	
(9) $h_{f}=j_{f} \frac{k}{D_{c}}\left(\frac{c \mu}{k}\right)^{1 / 2} \phi_{s}$ [Eq. (6.15)]	(9) $h_{i}=940 \times 0.96=903 \quad[$ Fig. 25]
$=59.5 \times 0.0175 \times 0.89 / 0.045$	$\left\{\begin{array}{l} R_{d i}=0.003, h_{d i}=1 / 0.003=333 \\ h_{d i} h_{i} \quad 333 \times 903 \end{array}\right.$
$R_{\text {do }}=0.003, h_{\text {do }}=1 / 0.003=333$	$h_{i}=\frac{h_{d i}+h_{i}}{}=\frac{333+903}{}$
$h_{\text {do }} h_{f} h^{3}=33 \times 20.5$	
$=\frac{h_{d o}+h_{f}}{h^{2}+20.5}=19.3$	
[Eq. (16.37)]	
$h_{f i}^{\prime}=142 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right) \quad$ [Fig. 16.9]	

Overall design coefficient based on inside of tube $U_{D i}$:

$$
\begin{equation*}
U_{D i}=\frac{h_{f i}^{\prime} h_{i}^{\prime}}{. h_{f i}^{\prime}+h_{i}^{\prime}}=\frac{142 \times 243}{142+243}=89.6 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right) \tag{16.41}
\end{equation*}
$$

Actual overarif coefficient based on inside of tube:
Internal surface per lin $\mathrm{ft}=0.2048 \mathrm{ft}$
(Table 10)

$$
\begin{aligned}
& A_{i}=70 \times 0.2048 \times 16^{\prime} 0^{\prime \prime}=230 \mathrm{ft}^{2} \\
& U_{D i}=\frac{Q}{A_{i} \Delta t}=\frac{1,010,000}{230 \times 56.2}=78.2
\end{aligned}
$$

Adjustment of the fouling factor:
Excess fouling factor $=\left(\frac{1}{U_{\text {Diactual }}}\right)-\frac{1}{U_{D i}}=\frac{1}{78.2}-\frac{1}{89.6}=0.00165$
Adding to the outside fouling factor: $\frac{A_{f}+A_{0}}{A_{i}}=9.27$

$$
\begin{aligned}
& R_{d o}=0.003+9.27 \times 00165=0.0183 \\
& h_{f, \text { notual }}^{\prime}=0.0183+\frac{1}{20.5}=14.9 \\
& h_{f i}^{\prime}=113
\end{aligned}
$$

Check of actual overall coefficient:

$$
U_{D i}=\frac{h_{j ;}^{\prime} h_{i}^{\prime}}{h_{f i}^{\prime}+h_{i}^{\prime}}=\frac{113 \times 243}{113+243}=77.3 \quad \text { Check vs. } 78.2
$$

Pressure Drop

(1') $d_{e}^{\prime}=4 \times 211.5 /(1570+\pi \times 19.25) \left\lvert\, \begin{gathered}\text { (1) For } R e_{t}=29,100 \\ =0.52,\end{gathered}\right.$
$=0.52 \mathrm{in} . \quad[\mathrm{Eq} .(6.5)] \mid f=0.00021 \mathrm{ft}^{2} / \mathrm{in}^{2}$
[Fig. 26]
$D_{e^{\prime}}^{\prime}=0.52 / 12=0.0433 \mathrm{ft}$
$\operatorname{Re}_{s}^{\prime}=D_{s}^{\prime} G_{s} / \mu$
$=0.0433 \times 20,400 / 0.0545=16,200$
$f=0.00025 \mathrm{ft}^{2} / \mathrm{in} .{ }^{2}$
[Fig. 16.10b)]
Mol. wt. oxygen $=32$

$$
\begin{aligned}
& \rho=\frac{32}{359 \times{ }^{635 / 492 \times 14.7 / 17.7}}=0.083 \mathrm{lb} / \mathrm{ft}^{3} \\
& s=0.083 / 62.5=0.00133 \\
& \begin{aligned}
\left(2^{\prime}\right) \Delta P_{s} & =\frac{f G_{8}^{2} L n}{5.22 \times 10^{10} D_{t}^{\prime} s \phi_{s}} \\
\quad & {[\text { Eq. }(7.45)] } \\
& =\frac{0.00025 \times 20,400^{2} \times 16}{5.22 \times 10^{10} \times 0.0433} \times 0.00133 \times 1.0 \\
& =0.6 \mathrm{psi}
\end{aligned}
\end{aligned}
$$

(2) $\Delta P_{t}=\frac{f G_{t} L n}{5.22 \times 10^{10} D s \phi_{t}} \quad[E q .(7.45)]$

$$
=\frac{0.00021 \times 868,000^{2} \times 16 \times 4}{5.22 \times 10^{10} \times 0.0652 \times 1.0 \times 1.0}
$$

$$
=3.0 \mathrm{psi}
$$

Summary

0.018	Dirt Factor	0.003
113	h inside	243
$U_{D i}$	78.2	
0.6	Calculated ΔP	3.0
2.0	Allowable ΔP	10.0

The large shell-side dirt factor might suggest that the exchanger is considerably oversized. However, the number of finned tubes which can be fitted on 2 -in. triangular
pitch into a $171 / 4 \mathrm{in}$. shell is only 54 . This gives a required value of $U_{D i}$ of 102 which is slightly greater than can be performed in a $17 \frac{1}{1}-\mathrm{in}$. exchanger.

TRANSVERSE FINS

Derivation of the Fin Efficiency. The different types of transverse finned pipes and tubes have been discussed at the beginning of the chapter. Expressions for their efficiencies are somewhat more difficult to derive than for longitudinal fins, since even the transverse fin of uniform

Fig. 16.12. Derivation of the transverse-fin efficiency. cross section does not reduce to the simple differential equations of the longitudinal fin of uniform cross section. The derivations given here are those of Gardner, ${ }^{1}$ which are ingenious because they develop a general expression that is applicable on modification to all the types of manufactured fins including the longitudinal fins. For the derivation of a general case, a transverse fin of varying cross section will be considered. The fluid surrounding the fin is again assumed to be hotter than the fin itself, and the flow of heat is from the outer fluid to the fin. The same assumptions apply as before. Referring to Fig. 16.12, let $\theta=T_{c}-t$ where T_{c} is the constant hot-fluid temperature and t is the metal temperature at any point in. the fin. The heat entering the two sides of the fin between $2-2^{\prime}$ and $1-1^{\prime}$ is dependent upon the surface between the two radii r_{e} and r_{1}. Thus the total surface between $2-2^{\prime}$ and $0-0^{\prime}$ is a function of γ

$$
\begin{equation*}
d Q=h_{f} \Theta d A \tag{16.44}
\end{equation*}
$$

The heat which enters the fin between 2-2' and 1-1' flows toward its base through the cross section of the fin at 1-1'. Applying the Fourier equation

$$
\begin{equation*}
Q=-k \alpha_{x} \frac{d \theta}{d r} \tag{16.45}
\end{equation*}
$$

where k is the thermal conductivity and a_{x} is the cross-sectional area of the fin which in this case also varies with r

Differentiating Eq. (16.45),

$$
\begin{equation*}
-\frac{d Q}{d r}=\frac{d}{d r}\left(k a_{x} \frac{d \theta}{d r}\right)=k a_{x} \frac{d^{2} \theta}{d r^{2}}+\frac{k d a_{x}}{d r} \frac{d \theta}{d r} \tag{16.46}
\end{equation*}
$$

${ }^{1}$ Gardner, op. cit.

Equating Eqs. (16.44) and (16.46)

$$
\begin{equation*}
\frac{d^{2} \Theta}{d r^{2}}+\left(\frac{1}{a_{x}} \frac{d a_{x}}{d r}\right) \frac{d \theta}{d r}+\left(\frac{h_{f}}{k a_{x}} \frac{d A}{d r}\right) \Theta=0 \tag{16.47}
\end{equation*}
$$

This second-order differential equation is somewhat more difficult to evaluate than Eq. (16:6), which had simple roots, and can be solved by Bessel functions.

A number of second-order differential equations arise in the solution of engineering problems which can be solved by a power series. The solution can be written as the sum of two arbitrary functions and two arbitrary constants as suggested by Eq. (16.9). In a general form the Bessel equation is

$$
\begin{equation*}
r^{2} \frac{d^{2} \Theta}{d r^{2}}+r \frac{d \Theta}{d r}+\left(r^{2}-n^{2}\right) \Theta=0 \tag{16.48}
\end{equation*}
$$

where n is a constant. Many types of functions which are independent solutions of the Bessel equation have been developed; and their properties are tabulated. ${ }^{1}$ Douglass has provided the following solution for Eq. (16.48) into which Eq. (16.47) may be transformed by multiplying by r^{2}.

$$
\begin{align*}
& r^{2} \frac{d^{2} \theta}{d r^{2}}+\left[(1-2 m) r-2 \alpha_{1} r\right] \frac{d \theta}{d r} \\
&+\left[p^{2} C_{3}^{2} r^{2 p}+\alpha_{1}^{2} r^{2}+\alpha_{1}(2 m-1) r+m^{2}-p^{2} n^{2}\right] \theta=0 \tag{16.49}
\end{align*}
$$

where α_{1}, C_{3}, p, m, and n are constants, the last being the order of the Bessel function.

Equations (16.48) and (16.49) will have the same form when

$$
\begin{equation*}
a_{x}=C_{4} r^{1-2 p n} \tag{16.50}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{d A}{d r}=C_{5} r^{2 p(1-n)-1} \tag{16.51}
\end{equation*}
$$

where C_{4} and C_{5} are positive constants. If the cross section of the fin can be described by Eq. (16.50) and the surface from the outer edge to the cross section by Eq. (16.51), the general solution is found from the boundary conditions at the outer edge of the fin and at the base of the fin.

At the outer edge, $r=r_{e}$ and $\theta=\theta_{e}$
At the base, $r=r_{b}$ and $\Theta=\theta_{b}$
For n equal to zero or an integer

$$
\begin{equation*}
\theta=\theta_{b}\left(\frac{u}{u_{b}}\right)^{n}\left[\frac{I_{n}(u)+\beta_{1} K_{n}(u)}{I_{n}\left(u_{b}\right)+\beta_{1} K_{n}\left(u_{b}\right)}\right] \tag{16.52}
\end{equation*}
$$

[^45]where
\[

$$
\begin{equation*}
\beta_{1}=-\frac{I_{n-1}\left(u_{e}\right)}{K_{n-1}\left(u_{e}\right)} \tag{16.53}
\end{equation*}
$$

\]

and

$$
\begin{equation*}
u=-i C_{3} r^{p}=r \sqrt{\frac{h_{f}}{k a_{x}} \frac{d A}{d r}} \tag{16.54}
\end{equation*}
$$

where u_{b} and u_{e} are found by substituting r, a_{x}, and $d A / d r$ for the edge and base, respectively, and $i=\sqrt{-1}$. Since Θ is a function of A as well as r, the heat transferred to the entire fin surface from the fluid is

$$
\begin{equation*}
Q=h_{f} \int_{0}^{A_{f}} \theta d A \tag{16.55}
\end{equation*}
$$

where A_{f} is the total fin surface. The same heat when transferred through the base of the fin to the tube is

$$
\begin{equation*}
Q=h_{b} \Theta_{b} A_{f} \tag{16.56}
\end{equation*}
$$

Defining the fin efficiency as before,

$$
\begin{equation*}
\Omega=\frac{h_{b}}{h_{f}}=\frac{\int_{0}^{A_{f}} \theta d A}{\theta_{b} A_{f}}=\frac{2(1-n)}{u_{b}\left[1-\left(u_{e} / u_{b}\right)^{2(1-n)}\right]}\left[\frac{I_{n-1}\left(u_{b}\right)-\beta_{1} K_{n-1}\left(u_{b}\right)}{I_{n}\left(u_{b}\right)+\beta_{1} K_{n}\left(u_{b}\right)}\right] \tag{16.57}
\end{equation*}
$$

For a fin of given contour the exponent of r is known in Eq. (16.50). Equation (16.51) may be eliminated accordingly to permit the solution for n, the order of the Bessel function.

When $n=0$, the introduction of Eqs. (16.52) and (16.53) and

$$
d A=C_{B} u^{1-2 n} d u
$$

as obtained from Eqs. (16.51) and (16.54) into Eq. (16.57) gives the value of Ω for the annular fin of constant width.

Equation (16.57) reduces to

$$
\begin{equation*}
\Omega=\frac{2}{u_{b}\left[1-\left(u_{e} / u_{b}\right)\right]^{2}}\left[\frac{I_{1}\left(u_{b}\right)-\beta_{1} K_{1}\left(u_{b}\right)}{I_{0}\left(u_{b}\right)+\beta_{1} K_{0}\left(u_{b}\right)}\right] \tag{16.58}
\end{equation*}
$$

where

$$
\begin{equation*}
\beta_{1}=\frac{I_{1}\left(u_{o}\right)}{K_{1}\left(u_{e}\right)} \tag{16.59}
\end{equation*}
$$

and

$$
\begin{align*}
& u_{b}=\frac{\left(r_{e}-r_{b}\right) \sqrt{h_{f} / k y_{b}}}{\left(\frac{r_{e}}{r_{b}}-1\right)} \tag{16.60}\\
& u_{a}=u_{b}\left(\frac{r_{e}}{r_{b}}\right) \tag{16.61}
\end{align*}
$$

Plots of these equations are given in Fig. 16.13a.

For the case where n equals a fraction,

$$
\begin{equation*}
\theta=\theta_{b}\left(\frac{u}{u_{b}}\right)^{n} \cdot\left[\frac{I_{n}(u)+\beta_{1} I_{-n}(u)}{I_{n}\left(u_{b}\right)+\beta_{1} I_{-n}\left(u_{b}\right)}\right] \tag{16.62}
\end{equation*}
$$

where

$$
\begin{equation*}
\beta_{1}=\frac{I_{n-1}\left(u_{e}\right)}{I_{1-n}\left(u_{e}\right)} \tag{16.63}
\end{equation*}
$$

If half the thickness of the fin, y, is given by

$$
\begin{align*}
y & =y_{b}\left(\frac{r}{r_{b}}\right)^{-\frac{2 n}{1-n}} \tag{16.64}\\
u & =(1-n)\left(\frac{r}{r_{b}}\right)^{\frac{1}{1-n}} \sqrt{\frac{h_{f}}{k y_{b}}} r_{b} \tag{16.05}
\end{align*}
$$

When n equals a fraction, Eq. (16.57) becomes

$$
\begin{equation*}
\Omega=\frac{2(1-n)}{u_{b}\left[1-\left(u_{e} / u_{b}\right)^{2(1-n)}\right]}\left[\frac{I_{n-1}\left(u_{b}\right)+\beta_{1} I_{1-n}\left(u_{b}\right)}{I_{n}\left(u_{b}\right)+\beta_{1} I_{-n}\left(u_{b}\right)}\right] \tag{16.66}
\end{equation*}
$$

When $n=1 / 3$, corresponding to annular fins with constant heat flux at every cross section from r_{b} to r_{e}

$$
\begin{gather*}
\Omega=\frac{4}{3 u_{b}\left[1-\left(u_{e} / u_{b}\right){ }^{3 / 3 /}\right]}\left[\frac{I_{-36}\left(u_{b}\right)+\beta_{1} I_{36}\left(u_{b}\right)}{I_{36}\left(u_{b}\right)+\beta_{1} I_{-3 s}\left(u_{b}\right)}\right] \tag{16.67}\\
\beta_{1}=\frac{-I_{-36}\left(u_{e}\right)}{I_{36}\left(u_{e}\right)} \tag{16.68}\\
u_{c}=u_{b}\left(\frac{r_{e}}{r_{b}}\right)^{3 / 2} \tag{16.69}\\
y=y_{b}\left(\frac{r_{b}}{r}\right) \tag{16.70}
\end{gather*}
$$

These values are plotted in Fig. 16.13b. For longitudinal fins and spines the efficiency curves and the fundamental equations are included in Fig. $16.13 c$ and d. When a fouling factor is present replace h_{f} by h_{f}^{\prime}.

In these graphs the efficiency Ω has been plotted as the ordinate and the principal shape element influencing the value of n in the Bessel equation has been plotted as the abscissa. The variations in the types of construction of transverse finned tubes are numerous and less standardized than for longitudinal fins, and no attempt will be made here to compute weighted efficiency curves of h_{f}^{\prime} vs. $h_{j i}^{\prime}$. A weighted efficiency curve can be computed, however, using Eq. (16.34) with the values of Ω being taken from Fig. $16.13 a$ and b, in the same manner as before, when the frequent use of given fin and tube arrangements justifies their preparation.

Fig. 16.13. Fin efficiencies. Where there is no foul-

(c)- FIN EFFICIENCY OF SEVERAL TYPES OF STRAIGHT FIN

(d)-EFFICIENCY CURVES FOR FOUR TYPES OF SPINE
ing factor replace h_{f}^{\prime} by h_{f}. (Gardner, Transactions of the ASME.)

The Optimum Thermal Fin. Schmidt ${ }^{1}$ has undertaken the derivations for the shapes of various types of fins which give the highest heat transfer for the minimum amount of metal. As a result, the optimum fin may be considered the one which has a constant heat flux at any cross section between the outer edge and the base. For the common longitudinal and transverse fins these would correspond to tall narrow shapes with small base areas. Furthermore, the sides of the fins should have parabolic curvatures. Although the thermal efficiency for ideal fins may be high, the cost of their manufacture is usually excessive and they are not often structurally adaptable to industrial applications. The calculations of the optimùm shapes have led, however, to the present type of manufacture using 20 BWG and lighter metal ribbons except where the conditions of heat transfer requires a more rugged construction.
The metal used in their manufacture greatly affects the economics of the fins. Schmidt has prepared the following table comparing the ratio of the quantity of metal required for fins with identical shapes where the weight and volume of a copper fin is taken as unity.

Table 16.2. Optimum Volumes and Weights of Metal Fins

Metal	k	Gravity	Volume	Weight
Copper.	222	8.9	1.0	1.0
Aluminum	121	2.7	1.83	0.556
Steel.	30	7.8	7.33	0.43

Jakob ${ }^{2}$ presents an excellent survey of optimum fins defined by other criteria.

Transverse Fin Exchangers. Transverse fin exchangers in crossflow are used only when the film coefficients of the fluids passing over them are low. This applies particularly to gases and air at low and moderate pressures. Tubes are also available which have many very small fins integrally shaped from the tube metal itself and which are usable in conventional 1-2 exchangers with baffled side-to-side flow. These can be calculated using a suitable shell-side heat-transfer curve and an appropriate efficiency curve.

Perhaps the most interesting applications of transverse fins are found in the larger gas cooling and heating services such as on furnaces (economizers), tempering coils for air conditioning, air-cooled steam condensers for turbine and engine work, and miscellaneous special services. An application which is growing in popularity is the air-cooled steam con-

[^46]denser as shown in Fig. 16.14 for localities with inadequate coolingwater supply. The steam enters the tubes, and an induced-draft fan circulates air over the transverse finned tubes. In this way it is possible to attain a closer approach to the atmospheric temperature than could be done with a reasonable surface composed entirely of bare tubes. In

Fig. 16.14. Transverse-fin atmospheric condenser.

Fig. 16.15. Transverse-fin gas cooler. (Foster Wheeler Corp.)
Fig. 16.15 a plan is shown of a high-temperature gas cooler used in an aviation testing laboratory. With the exception noted before, all other transverse fin exchangers operate in crossflow. The true temperature differences for systems operating in crossflow naturally differ from other flow patterns except when one fluid is isothermal; then all systems are in true counterflow. Before proceeding to the calculation of a typical
extended-surface gas exchanger, an investigation will be made of the influence of flow pattern on the true temperature difference in crossflow.

True Temperature Difference for Crossflow Arrangements. Consider a duct in which a hot gas (or other fluid) passes at right angles to a bundle carrying a cold tube liquid in a single pass as in Fig. 16.16. Assume that baffles indicated by the vertical lines are placed across the bundle in the direction of gas flow to prevent mixing over the length of the tubes. At point A in the first horizontal row of tubes and in the plane $1-1^{\prime}$ there is an unique temperature difference between the gas-inlet temperature and

Fig. 16.16. Crossflow.
the liquid-inlet temperature. Moving to plane 2-2' there is a smaller temperature difference at A^{\prime} between the gas-inlet temperature and the liquid at some higher temperature. Similarly at $3-3^{\prime}$ and the point $A^{\prime \prime}$ the temperature difference is smaller than A^{\prime}, and further reductions of the temperature difference may be expected over the entire length of the tubes in the first tube row. Carrying the analysis to a lower row of tubes, the gas temperature off the first horizontal-tube row varies over the tube length, since the quantity of heat transferred in passing over the first row decreased from point to point with the decreasing temperature difference. Over the second horizontal row the temperature differences also vary but the temperatures of the gas leaving the row are different from those on leaving the preceding row of tubes. This picture is unlike that used in the derivation of the true temperature difference for a $1-2$
exchanger as given in Chap. 7, in which the shell-side fluid was considered mixed and of homogeneous temperature at every cross section and where it was assumed that all the tube rows comprising each tube pass were at the same temperature.

Suppose, on the other hand, that the baffles in the exchanger in Fig. 16.16 are removed and that the tubes are not very long so that the gas passing over a row of tubes may be considered thoroughly mixed. This is.much different from the preceding analysis, but it also differs from that of the 1-2 exchanger. In the 1-2 exchanger the uniform cross-section temperature varied along the length of the tube. In the present case the gas temperature at a cross section varies from row to row, and it can be seen that the true temperature difference is influenced considerably by whether one, both, or neither stream is mixed.

When a gas passes at right angles to a bundle composed of a single row of single-pass tubes, both fluids may be considered unmixed. However, it is not always possible to determine clearly if both streams are mixed, the definition being somewhat arbitrary in the case of tube bundles with long and short tube lengths. In the study below, four common theoretical mixing possibilities are treated to permit an estimation of the error resulting from the assumption of any particular one of them. Not all the possible crossflow temperature differences have been studied, but the principal derivations are available.

The derivations below are essentially those of Nusselt ${ }^{1}$ and Smith, ${ }^{2}$ and the graphs of the final equations are in the form developed by Nagle and Bowman, Mueller and Nagle. ${ }^{3}$ These derivations involve the usual assumptions except as qualified for mixing. If T refers to the hot fluid, t to the cold fluid, and subscripts 1 and 2 to the inlet and outlet, respectively, it is convenient to define three parameters as follows:

$$
\left.\begin{array}{rl}
K & =\frac{T_{1}-T_{2}}{T_{1}-t_{1}} \\
S & =\frac{t_{2}-t_{1}}{T_{1}-t_{1}}
\end{array}\right\} \quad R=\frac{K}{S}=\frac{T_{1}-T_{2}}{t_{2}-t_{1}}
$$

From Eq. (7.39) for counterflow define

$$
()_{\text {oounterflow }}=\frac{R-1}{\ln (1-S) /(1-R S)}=\frac{(K-S) / S}{\ln (1-S) /(1-K)}
$$

${ }^{1}$ Nusselt, W., Tech. Mech. u. Thermodynam., I, 417-422 (1930).
${ }^{2}$ Smith, D. M., Engineering, 138, 474-481, 606-607 (1934).
${ }^{3}$ See Chap. 7 for references.

Employing the factor F_{T} to correct the LMTD to the true temperature difference Δt in crossflow by the method introduced in Chap. 7,

$$
F_{T}=\frac{(r)}{(r)_{\text {counter Sow }}}
$$

where $\Delta t=F_{T} \times \mathrm{LMTD}$. Without a subscript (r) refers to the true value in crossflow.

Referring to Fig. 16.16 and applying the heat balances,

$$
\begin{gather*}
U A \theta=\iint U(T-t) d x d y \tag{16.71}\\
W C\left(T_{1}-T_{2}\right)=w c\left(t_{2}-t_{1}\right) \tag{16.72}\\
\mathrm{LMTD}=\frac{\left(T_{1}-t_{2}\right)-\left(T_{2}-t_{1}\right)}{\ln \left(T_{1}-t_{2}\right) /\left(T_{2}-t_{1}\right)}=\frac{\Delta t_{h}-\Delta t_{c}}{\ln \Delta t_{h} / \Delta t_{c}}=C_{7} \Delta t_{h} \tag{16.73}
\end{gather*}
$$

and where $C_{7}=\left(1-\frac{\Delta t_{c}}{\Delta t_{n}}\right) / \ln \frac{\Delta t_{h}}{\Delta t_{c}}$ is a function only of $\frac{\Delta t_{c}}{\Delta t_{h}}$. Let $X Y$ be the total tube area swept out as the shell fluid moves downward in the a direction and the tube fluid moves from left to right in the y direction.

Case A. Both Fluids Unmixed. Referring to Fig. 16.17a,

$$
\begin{equation*}
U(T-t) d x d y=-\frac{W C}{Y} d y \frac{\partial T}{\partial x} d x=\frac{w c}{\bar{X}} d x \frac{\partial t}{\partial x} d y \tag{16.74}
\end{equation*}
$$

If

$$
x^{\prime}=\frac{x}{\bar{X}} \cdot \frac{U A}{W C} \quad \text { and } \quad y^{\prime}=\frac{y}{Y} \frac{U A}{w c}
$$

then

$$
\begin{equation*}
T-t=-\frac{\partial T}{\partial x^{\prime}}=+\frac{\partial t}{\partial y^{\prime}} \tag{16.75}
\end{equation*}
$$

Solve when $T=T_{1}$ at $x^{\prime}=0$ and $t=t_{1}$ at $y^{\prime}=0$.
The solution is expressed in a doubly infinite series.

$$
\begin{equation*}
\frac{T-t_{1}}{T_{1}-t_{1}}=1+\sum_{u=1}^{\infty} \sum_{v=1}^{\infty}\left[(-1)^{u+v} \frac{(u+v-1)!v!}{(u!v!)^{2}}\left(x^{\prime}\right)^{\mathfrak{u}}\left(y^{\prime}\right)^{v}\right] \tag{16.76}
\end{equation*}
$$

T_{2} is obtained by integration as the mean of T when $x=X$ and y goes from 0 to Y. Then $W C\left(T_{1}-T_{2}\right)=Q, x=X, x^{\prime}=K /(r), y=Y$, and $y^{\prime}=S /(r)$.

$$
\begin{equation*}
(r)=\sum_{u=0}^{\infty} \sum_{v=0}^{\infty}\left\{(-1)^{u+v} \frac{(u+v)!}{u!(u+1)!v!(v+1)!}\left[\frac{K}{(r)}\right]^{u}\left[\frac{S}{(r)}\right]^{v}\right\} \tag{16.77}
\end{equation*}
$$

Values of F_{T} are plotted for $F_{T}=(r) /(r)_{\text {oounterliow }}$ in terms of R and S in Fig. 16.17a.

(c) Both fluids mixed.

(d) Two-pass counterflow, shell fluid mixed, tube fluid unmixed.

Fig. 16.17. Crossflow-temperature-difference correction factors. (Bowman, Mueller, and Nable, Transactions of the ASME.)

Case B. One Fluid Mixed, Other Fluid Unmixed. Referring to Fig. $16.17 b$ let the shell fluid be mixed. T is a function only of x, but t is a function of both x and y. Consider a strip at x_{1} of width $d x$. The fluid flowing across the strip is at the constant shell temperature T_{1}, but the fluid flowing along the strip is unmixed and varies. If t is the unmixed varying temperature, at the inlet where $t=x t_{1}$ at $y=0$,

$$
\begin{equation*}
\frac{d t}{d y}=\frac{U X}{w c}(T-t) \tag{16.78}
\end{equation*}
$$

At the outlet of the strip the temperature is given by

$$
\begin{equation*}
\frac{T-t_{x_{1}} Y}{T-t_{1}}=e^{-v X Y / w v} \tag{16.79}
\end{equation*}
$$

where $t_{x_{1}}$ rafers to the strip. The total heat transfer in the strip to the mixed fluid is

$$
\begin{equation*}
w c \frac{d x}{\bar{X}}\left(t_{1}-t_{x_{2}} Y\right)=W C d T \tag{16.80}
\end{equation*}
$$

Substituting for $t_{x_{2}} Y$ in Eq. (16.80), integrating, and allowing for the boundary condition $t=t_{1}$ at $x=0$, an expression is obtained for T which gives T_{2} when $x=X$. Thus

$$
\begin{equation*}
\frac{T_{1}-T_{2}}{T_{1}-t_{1}}=1-e^{v c / W C}\left(1-e^{-U X Y / v c}\right) \tag{16.81}
\end{equation*}
$$

The parameters have been chosen so that

$$
\begin{gather*}
\frac{w c}{W C}=\frac{K}{S} \quad \text { and } \quad \frac{U X Y}{w c}=\frac{S}{(r)} \\
K=1-e^{-\frac{K}{S}\left(1-e-\frac{S}{(r)}\right)} \tag{16.82}
\end{gather*}
$$

Expressing (r) as an implicit function

$$
\begin{equation*}
(r)=\frac{S}{\ln 1 /\left(1-\frac{S}{K} \ln \frac{1}{1-\bar{K}}\right)} \tag{16.83}
\end{equation*}
$$

Factors for this equation are plotted in Fig. 16.17b.
Case C. Both Fluids Mixed. Referring to Figure $16.17 c, T$ is a function of x only and t is a function of y only. The total heat flow across a section $d y$ is

$$
U d y \int_{0}^{x}(T-t) d x
$$

where T is.variable and t is constant. The heat transferred is $w c d t$ and

$$
\begin{equation*}
\frac{w c d t}{U X d y}+t=\frac{1}{X} \int_{0}^{x} T d x \tag{16.84}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
\frac{w c d t}{U Y d y}+t=\frac{1}{Y} \int_{0}^{Y} t d y \tag{16.85}
\end{equation*}
$$

Let $\frac{1}{X} \int_{0}^{X} T d x=\alpha_{2}, \frac{1}{Y} \int_{0}^{Y} t d y=\beta_{2}$ where α_{2} and β_{2} are constants. Substituting, integrating, and allowing for the boundary conditions $T=T_{1}$ at $x=0$ and $t=t_{1}$ at $y=0$, equations are obtained in α_{2} and β_{2}.

$$
\begin{align*}
& \alpha_{2}=\beta_{2}-\frac{(r)}{K}\left(T_{1}-\beta_{2}\right)\left(e^{-K /(r)}-1\right) \tag{16.86}\\
& \beta_{2}=\alpha_{2}-\frac{(r)}{S}\left(t_{1}-\alpha_{2}\right)\left(e^{-S /(r)}-1\right) \tag{16.87}
\end{align*}
$$

The integration also gives the temperature change for one fluid.

$$
\begin{equation*}
t_{2}-t_{1}=\left(\alpha_{2}-t_{1}\right)\left(1-e^{-s /(r)}\right) \tag{16.88}
\end{equation*}
$$

Solving simultaneously and using the temperature change times wc to obtain the heat transmitted,

$$
\begin{equation*}
(r)\left[\frac{K /(r)}{1-e^{-K /(r)}}+\frac{S /(r)}{1-e^{-S /(r)}}\right]=1 \tag{16.89}
\end{equation*}
$$

Factors for this equation are plotted in Fig. 16.17c. Many of the cases for one crossflow and several series passes have not been solved so far. The case of greatest value is that of one crossllow and two series passes in parallel flow-counterflow when the shell fluid is unmixed and the series fluid is mixed between passes.

Case D. Shell Fluid Mixed, Two Pass, Counterflow, Fluid Urimixed Except between Passes. Let t_{12} be the mixed temperature between passes and T_{12} the corresponding shell temperature as shown in Fig. 16.17d. Call the upper pass I and the lower pass II, each with surface $A / 2$. From Case B

$$
\begin{equation*}
1-K_{\mathbf{I}}=e^{-K_{\mathbf{I}} /(S) \mathrm{I}}\left(1-e^{-S_{\mathrm{I}} /(r) \mathrm{I}}\right) \tag{16.90}
\end{equation*}
$$

and

$$
\begin{equation*}
-K_{\mathrm{II}}=e^{-K_{\mathrm{II}} / S_{I I}}\left(1-e^{-S_{I I} /(r) \mathrm{II}}\right) \tag{16.91}
\end{equation*}
$$

From the identity of flow in each path

$$
\begin{equation*}
\frac{K_{\mathrm{I}}}{S_{\mathrm{I}}}=\frac{K}{S}=\frac{K_{\mathrm{II}}}{S_{\mathrm{II}}} \tag{16.92}
\end{equation*}
$$

From the constancy of the heat-transfer coefficient and area in each pass

$$
\begin{equation*}
\frac{(r)_{\mathrm{I}}}{\overline{K_{\mathrm{I}}}}=\frac{(r)_{\mathrm{II}}}{\overline{K_{I I}}} \tag{16.93}
\end{equation*}
$$

Let $M=\left(T_{1}-t_{12}\right) /\left(T_{1}-t_{1}\right)$ and $N=\left(T_{12}-t_{1}\right) /\left(T_{1}-t_{1}\right)$. Since the total heat transfer is the sum of both passes,

$$
\begin{equation*}
U A \Delta t=\frac{U A}{2} \Delta t_{\mathrm{I}}+\frac{U A}{2} \Delta t_{\mathrm{II}} \tag{16.94}
\end{equation*}
$$

and

$$
\begin{equation*}
(r)=1 / 2 M(r)_{\mathrm{I}}+1 / 2 N(r)_{\mathrm{II}} \tag{16.95}
\end{equation*}
$$

Also

$$
\begin{align*}
T_{1}-T_{2} & =\left(T_{1}-T_{12}\right)+\left(T_{12}-T_{2}\right) \tag{16.96}\\
K & =M K_{\mathrm{I}}+N K_{\mathrm{II}} \\
T_{1}-t_{1} & =\left(T_{1}-t_{12}\right)+\left(t_{12}-t_{1}\right) \\
1 & =M+N S_{\mathrm{Ir}} \tag{16.97}\\
T_{1}-t_{1} & =\left(T_{1}-T_{12}\right)+\left(T_{12}-t_{1}\right) \\
1 & =M K_{\mathrm{I}}+N \tag{16.98}
\end{align*}
$$

Solving all nine equations simultaneously and eliminating the eight unknowns $K_{\mathrm{I}}, S_{\mathrm{I}},(r)_{\mathrm{I}}, K_{\mathrm{II}}, S_{\mathrm{II}},(r)_{\mathrm{II}}, M$, and N produces a solution in terms of K, S, and (r). From Eqs. (16.92) and (16.93)

$$
\begin{equation*}
\frac{K_{I}}{K_{I I}}=\frac{S_{I}}{S_{\mathrm{II}}}=\frac{(r)_{I}}{(r)_{\mathrm{II}}} \tag{16.99}
\end{equation*}
$$

From Eqs. (16.90) and (16.91)

$$
K_{I}=K_{I I} \quad S_{I}=S_{I I} \quad(r)_{I}=(r)_{I I}
$$

From Eqs. (16.94) and (16.96)

$$
\frac{K_{I}}{(r)_{\mathrm{I}}}=\frac{1}{2} \frac{K}{(r)} \quad \frac{S_{\mathrm{I}}}{(r)_{\mathrm{I}}}=\frac{1}{2} \frac{S}{(r)}
$$

Eliminating M and N between Eqs. (16.96) to (16.98) and applying Eq. (16.92),

$$
\begin{gather*}
K_{\mathrm{I}}^{2}\left(1+\frac{S}{K}-S\right)-2 K_{\mathrm{I}}+K=0 \tag{16.100}\\
K_{\mathrm{I}}=\frac{K}{1 \pm \sqrt{(1-K)(1-S)}} \tag{16.101}
\end{gather*}
$$

Substituting in Eq. (16.90) using only the positive root,

$$
\begin{equation*}
\frac{\sqrt{(1-S) /(1-K)}-S / R}{1-S / K}=e^{K / s}\left(1-e^{1 / 2 / /(r)}\right) \tag{16.102}
\end{equation*}
$$

or

$$
\begin{equation*}
(r)=\frac{S}{2 \ln \frac{1}{\frac{1-(S / K) \ln \sqrt{(1-S) /(1-K)}-(S / K)}{1-S / K}}} \tag{16.103}
\end{equation*}
$$

Factors for this equation are plotted in Fig. 16.17d.
Dunn and Bonilla ${ }^{1}$ have treated the case of fin transfer with no transverse mixing parallel to the extended surface and present graphs to permit a rapid solution for the system.

Comparison of Thermal Efficiency in Different Arrangements. Examination of the standard types of fluid-flow arrangements will indicate the relative thermal efficiency of each. There are three true fluid-flow patterns: counterflow, crossflow, and parallel flow. Consider a fluid being cooled from 400 to $200^{\circ} \mathrm{F}$ by a fluid being heated from 100 to $200^{\circ} \mathrm{F}$ so that the approach in terms of a l-2 exchanger is zero or $200^{\circ} \mathrm{F}$ for a counterflow exchanger.

$$
\begin{array}{cc}
\text { Hot fluid } & \text { Cold fluid } \\
400 & 200=200=\Delta t_{c} \\
\frac{200}{200} & t_{2}-t_{1}=100=100=\Delta t_{h} \\
T_{1}-T_{2}=100 \\
R=200 / 100=2.0 & S=10 \%=0.300=0.33
\end{array}
$$

Type of Flow F_{T}
Counterflow, 1-1 exchanger.. . . 1.00
Parallel flow-counterfow, 2-4 exchanger. .. . 0.95
Crossflow, shell mixed and two unmixed tube passes in series.................. 0.98
Crossflow, both fluids unmixed.. . . . 0.90
Crossflow, shell fluid mixed and tube fluid unmixed............................. . . 0.87
Parallel flow-counterflow, 1-2 exchanger. 0.81
Crossflow, both fluids mixed.. . 0.77
Crossflow, shell mixed and two unmixed parallel-flow tube passes.............. 0
Parallel flow... 0
The deductions which may be made from above are (1) that the presence of parallel flow greatly decreases the utilization of the thermal potential for heat transfer and (2) that mixing the fluid streams also decreases the utilization. The curves of F_{T} vs. R and S for crossflow with two parallel tube passes have not been included in Fig. 16.17, since it is impractical for even moderate temperature approaches and has little value as a means of heat recovery.

Film Coefficients to Transverse Fins. Almost all the data available on commercial scale runs have been made with air or flue gas. The heat-

[^47]transfer curve employed here has been transposed from the data of Jameson, ${ }^{1}$ which agree within reasonable limits with the published results of Tate and Cartinhour ${ }^{2}$ on economizers. It has been found that the heat-transfer coefficient is not influenced by the spacing of succeeding rows although nearly all the data were obtained for triangular pitch.

The actual heat-flow pattern in a transverse fin probably differs somewhat from the idealized picture used in deriving the fin efficiency. In triangular pitch the air or gas strikes the front and sides of the annular fins but not the back of the fin. As determined experimentally h_{f} is actually only an average value. The concentration of heat on the lead side of an annular fin probably introduces a potential for heat flow around the fin metal which was not considered in the derivation. Discontinuous fins such as stars or other types give generally higher coefficients than helical or disc fins, and this may be attributed in part to the greater ease with which the gas penetrates the space between adjacent discontinuous fins.

Because so many of the applications involve gases, it has become a common convention in extended-surface heat transfer to use Colburn's heat-transfer factor $j_{h}=(h / c G)(c \mu / k)^{2 / 3}$. The advantages of Colburn's form of the factor particularly with gases have been discussed in Chap. 9. For the sake of a consistent presentation the data of Jameson have been converted to the Sieder-Tate heat-transfer factor as shown in Fig. 16.18a with the value of the viscosity correction ϕ taken as 1.0 for gases. The equivalent diameter in Jameson's correlation has been defined by

$$
\begin{equation*}
D_{0}=\frac{2\left(A_{f}+A_{o}\right)}{\pi(\text { projected perimeter })} \tag{16.104}
\end{equation*}
$$

The projected perimeter is the sum of all the external distances in the plan view of a transverse finned tube. The mass velocity is computed from the free flow area in a single bank of tubes at right angles to the gas flow.

Pressure Drop for Transverse Fins. Unlike the heat transfer coefficient, the pressure drop is greatly influenced by the spacing of the succeeding rows of tubes, their layout and closeness. It is often possible in transverse-fin equipment that the vertical and transverse pitches will be unequal. Of a number of excellent correlations of pressure drop in crossw flow that of Gunter and Shaw ${ }^{3}$ is used here. It is equally satisfactory for crossflow calculations over bare tubes and the correlation is based on oils, water, and air. While there has been some objection to the broad-

[^48]ness of the correlation it gives relatively safe values for the pressure drop. The Reynolds numbers are computed on the basis of a volumetric equivalent diameter which reflects the proximity and arrangement of the succeeding rows, and the pressure-drop equation contains two dimensionless configuration factors. The volumetric equivalent diameter is defined by
\[

$$
\begin{equation*}
D_{e v}^{\prime}=\frac{4 \times \text { net free volume }}{A_{f}+A_{o}} \tag{16.105}
\end{equation*}
$$

\]

The net free volume is the volume between the center lines of two vertical banks of tubes less the volumes of the half-tubes and fins within the

Fix. 16.18. Transverse-fin heat transfer and pressure drop. ((a) Jameson (b) Gunter and Shaw, Transactions of the ASME.)
center lines. A configuration factor is a dimensionless group which is ordinarily lost in the derivation but which may be included at the discretion of the experimenter. The factors used here are S_{T} and S_{L} where S_{T} is the pitch in a transverse bank and S_{L} is the center-to-center distance to the nearest tube in the next bank. The pressure-drop equation is thus

$$
\begin{equation*}
\Delta P=\frac{f G_{s}^{2} L_{p}}{5.22 \times 10^{10} \times D_{e v}^{\prime} s \phi_{s}}\left(\frac{D_{e v}^{\prime}}{S_{T}}\right)^{0.4}\left(\frac{S_{L}}{S_{T}}\right)^{0.6} \tag{16.106}
\end{equation*}
$$

where L_{p} is the length of the path. Friction factors are given in Fig. $16.18 b$.

Example 16.6. Calculation of a Transverse-fin Air Cooler. A duct $4^{\prime} 0^{\prime \prime}$ by $4^{\prime} 0^{\prime \prime}$ carries $100,000 \mathrm{lb} / \mathrm{hr}$ of air from a kiln drier at $250^{\circ} \mathrm{F}$. The gas is to be used to preheat treated water from 150 to $190^{\circ} \mathrm{F}$ by revamping a section of the duct and installing 1 in . OD, 14 BWG tubes with 3/8 in. high annular brass fins of 20 BWG metal spaced $1 / 8 \mathrm{in}$. apart. Assume the spacing for the tubes is on $21 / 4-\mathrm{in}$. triangular pitch.
Use dirt factors of 0.0030 on both streams. The pressure head on the gas side is only a fraction of a pound per square inch, so that the overall pressure drop must be low.
How many tubes should be installed? How shall they be arrangod?

Solution:

(1) Heat balance:

Air at $14.7 \mathrm{psia}, Q=100,000 \times 0.25(250-200)=1,250,000 \mathrm{Btu} / \mathrm{hr}$
Water, $Q=31,200 \times 1.0(190-150)=1,250,000 \mathrm{Btu} / \mathrm{hr}$
(2) Δt : Assume that in the final arrangement the water will flow in series from one vertical tube bank to the next, so that there will be as many passes as banks. If there are more than several banks in a 4 - by 4 -ft duct, the air may be considered mixed. Figure $16.17 d$ will apply.
Hot Fluid Cold Fluid

250	Higher Temp	190	60
200	Lower Temp	150	50
50	Difference	40	10

$\mathrm{LMTD}=54.6^{\circ} \mathrm{F}$
$R=\frac{50}{40}=1.25 \quad S=\frac{40}{250-150}=0.40 \quad F_{T}=0.985$
(Fig. 16.17d)
$\Delta t=54.6 \times 0.985=53.7^{\circ} \mathrm{F}$
(3) T_{c} and t_{c} : The average temperatures of 225 and $170^{\circ} \mathrm{F}$ will be adequate.

Calculation of the duct equivalent diameter and flow area:
Equivalent diameter (refer to Fig. 16.19a):
$d_{o}=\frac{2(\text { fin area }+ \text { bare tube area })}{\pi \text { (projected perimeter) }}$
Fin area, $A_{f}=\frac{\pi}{4}\left(1.75^{2}-1^{2}\right) \times 2 \times 8 \times 12=310 \quad$ in. ${ }^{2} / \mathrm{ft}$
Bare tube area, $A_{0}=\pi \times 1 \times 12-\pi \times 1 \times 8$
Total $\quad=\overline{337.2} \mathrm{in} .2 / \mathrm{ft},\left(2.34 \mathrm{ft}^{2} / \mathrm{ft}\right)$
Projected perimeter $=2 \times 3 / 8 \times 2 \times 8 \times 12+2(12-8 \times 0.035 \times 12)$ $=161.3 \mathrm{in} . / \mathrm{ft}$
$d_{c}=\frac{2 \times 337.2}{\times 161.3}=1.33 \mathrm{in}$.
$D_{c}=1.33 / 12=0.111 \mathrm{ft}$

(a)-PROJECTION

(b)-Elevation

Fig. 16.19.

Flow area:
21 tubes may be fit in one vertical bank
20 tubes in alternating banks for triangular pitch

$$
\begin{aligned}
a_{3} & =(4 \times 12)(4 \times 12)-21 \times 1 \times 48-21(2 \times 0.035 \times 3 / 8 \times 8 \times 48)=1079 \mathrm{in.}^{2} \\
& =1079 / 144=7.50 \mathrm{ft}^{2}
\end{aligned}
$$

Hot fuid: duct, air
(4') $a_{s}=7.50 \mathrm{ft}^{2}$
$D_{\mathrm{e}}=0.111 \mathrm{ft}$
(5) $G_{s}=W / a_{s}$

$$
\begin{aligned}
&=100,000 / 7.50 \\
&=13,300 \mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)
\end{aligned}
$$

(6') At $T_{a}=225^{\circ} \mathrm{F}$,
$\mu=0.0215 \times 2.42=0.052 \mathrm{lb} /(\mathrm{ft})(\mathrm{hr})$
[Fig. 15]
$R e_{3}=D_{e} G_{s} / \mu$
$=0.111 \times 13,300 / 0.052=28,400$
(7^{\prime}) $j_{f}=157$
[Fig. 16.18a]
(8^{\prime}) At $T_{a}=225^{\circ} \mathrm{F}$, $k=0.0183 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft} \mathrm{t}^{2}\right)\left({ }^{\circ} \mathrm{F} / \mathrm{ft}\right)$ $(c \mu / k)^{1 / 3}=(0.25 \times 0.052 / 0.0183)^{1 / 3}=0.89$ $\phi_{s}=1.0$ (for air)
($\left.9^{\prime}\right) h_{f}=j_{f}\left(k / D_{0}\right)(c \mu / k)^{1 / 3} \quad$ [Eq. (6.15)]

$$
=157 \times \frac{0.0183}{0.111} \times 0.89=23.1
$$

$R_{d o}=0.003 ; h_{d o}=1 / 0.003=333$
$h_{f}^{\prime}=\frac{h_{\text {do }} h_{f}}{h_{d o}+h_{f}}=\frac{333 \times 23.1}{333+23.1}$

$$
=21.5 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)
$$

[Eq. (16.37)]

Cold fuid: tubes, treated water
(4) $a_{t}^{\prime}=0.546$ in. ${ }^{2}$
[Table 10] Assume each bank carries all of the water. $a_{t}=N_{t}\left(a_{t}^{\prime} / 144 n\right)$
[Eq. (7.48)]
$=21 \times 0.546 / 144=0.0795 \mathrm{ft}^{2}$
$D=0.834 / 12=0.0695 \mathrm{ft}$
(5) $G_{t}=w / a_{t}$

$$
=31,200 / 0.0795
$$

$$
=392,000 \mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)
$$

$V=G_{t} / 3600 \rho=392,000 / 3600 \times 62.5$
$=1.74 \mathrm{fps}$
(6) At $t_{a}=170^{\circ} \mathrm{F}$,
$\mu=0.37 \times 2.42=0.895 \mathrm{lb} /(\mathrm{ft})(\mathrm{hr})$
[Fig. 14]
$R e_{t}=D G_{t} / \mu$ (for pressure drop only)

$$
\begin{equation*}
=0.0695 \times 392,000 / 0.895=30,400 \tag{Fig.25}
\end{equation*}
$$

(9) $h_{i}=710 \times 0.94=667$
$R_{d i}=0.003, h_{d i}=1 / 0.003=333$
$\phi_{t}=1.0$
$h_{i}^{\prime}=\frac{h_{d i} h_{i}}{h_{d i}+h_{i}}=\frac{333 \times 667}{333+667}=222$
[Eq. (16.40)]
$h_{f i}^{\prime}$ (see Fig. 16.13a) $\quad k$ for brass $=60 \mathrm{Btu} /(h r)\left(f t^{2}\right)\left({ }^{\circ} \mathrm{F} / \mathrm{ft}\right)$ (Table 3)

$$
\begin{align*}
& y_{\mathrm{b}}=\frac{0.085}{2 \times 12}=0.00146 \mathrm{ft} \\
& \left(r_{c}-r_{b}\right) \sqrt{h_{f}^{\prime} / k y_{b}}=\left(\frac{0.875-0.5}{12}\right) \sqrt{\frac{21.5}{60 \times 0.00146}}=0.49 \\
& \frac{r_{e}}{r_{b}}=\frac{0.875}{0.50}=1.75 \\
& \Omega=0.91 \tag{Fig.16.13a}\\
& h_{f i}^{\prime}=\left(\Omega \times A_{j}+A_{o}\right) \frac{h_{f}^{\prime}}{A_{i}} \tag{16.34}\\
& A_{i}=0.218 \mathrm{ft}^{2} / \mathrm{ft} . \\
& h_{f i}^{\prime}=\left(0.91 \times \frac{310}{144}+\frac{27.2}{144}\right) \frac{21.5}{0.218}=212 \\
& U_{D_{i}}=\frac{h_{i f}^{\prime} h_{i}^{\prime}}{h_{f i}^{\prime}+h_{i}^{\prime}}=\frac{212 \times 222}{212+222}=108 \tag{16.41}\\
& \text { Inside surface/bank }=21 \times 4 \times 0.218=18.3 \mathrm{ft}^{2} \\
& A_{i}=\frac{Q}{U_{D i} \Delta t}=\frac{1,250,000}{108 \times 53.7}=215 \mathrm{ft}^{2}
\end{align*}
$$

Use $215 / 18.3=11.8$ banks, say 12 banks. ${ }^{1}$

Pressure Drop

(1) $D_{s_{v}}^{\prime}=\frac{4 \times \text { net free volume }}{\text { frictional surface }}$

Refer to Fig. $16.19 b$
Net free volume $=4 \times 4 \times \frac{1.95}{12}-\frac{1}{2}(21+20) \frac{\pi}{4} \times \frac{1^{2} \times 4}{144}-\frac{1}{2}(21+20) \frac{\pi}{4}$

$$
\left(1.75^{2}-1^{2}\right) \frac{0.035}{144} \times 8 \times 4
$$

$$
=1.91 \mathrm{ft}^{3}
$$

Frictional surface ${ }^{*}=\frac{1}{2}(21+20) 2.34 \times 4=192 \mathrm{ft}^{2}$
$D_{\varepsilon_{\mathrm{r}}}^{\prime}=4 \times \frac{1.91}{192}=0.040 \mathrm{ft}$
$G_{s}=13,300 \mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)$
$R e_{s}=0.040 \times 13,300 / 0.052=10,200$
$f=0.0024 \mathrm{ft} \mathrm{t}^{2} / \mathrm{in} .{ }^{2}$
[Fig. 16.18b]
$\rho=\frac{29}{359 X^{685 / 492}}=0.058 \mathrm{lb} / \mathrm{ft}^{2}$
$s=0.058 / 62.5=0.000928$
$L_{p}=12 \times 1.95 / 12=1.95 \mathrm{ft}$
$\left(\frac{D_{o_{v}}^{\prime}}{S_{T}}\right)^{0.4}=\left(\frac{0.040}{2.25 / 12}\right)^{0.4}=0.538$
(1) $R e_{t}=30,400$
$f=0.00020 \mathrm{ft} 2 / \mathrm{in} .^{2}$
[Fig. 26]
$\left(\frac{S_{L}}{S_{T}}\right)^{0.6}=1.0$
${ }^{1}$ The effective path for pressure drop will be approximately $12 \times 1.95 \mathrm{in} .=23.4 \mathrm{in}$.
*The walls of the duct may be neglected.

Double Extended Surface. Another type of heating element, which at first inspection appears to offer unlimited possibilities, is the double extended surface. Suppose two flowing fluids are separated by a metal wall and the surface is extended into both fluids by means of spines or pegs whose bases are superimposed. Per square foot of wall area it should be possible to add as much surface as desired as long as there are no restrictions along the axes of the spines. Such an arrangement will be called for only when the coefficients from both fluids to their respective fins is small. Under these conditions it is usually found that an unpractical length of fin is required for even a moderate total heat transfer. The fin efficiencies and total transfer can be determined by the methods already treated and by the use of Fig. $16.13 c$ or d. The heattransfer coefficients generally must be approximated from more conventional arrangements.

PROBLEMS

16.1. A double pipe exchanger consists of a 3 -in. IPS outer pipe and a $11 / 2-\mathrm{in}$. IPS inner pipe on which several arrangements of fins $1 / 2 \mathrm{in}$. high are under consideration. Compare the weighted efficiency curves with that in Fig. 16.9 when the following are used: (a) 18 steel fins, 20 BWG; (b) 18 copper fins, 20 BWG; (c) 18 steel fins, 16 BWG.
16.2. $4620 \mathrm{lb} / \mathrm{hr}$ of a $28^{\circ} \mathrm{API}$ gas oil will be used to preheat $5700 \mathrm{lb} / \mathrm{hr}$ of a 110° API butane reactor feed at elevated pressure from 260 to $400^{\circ} \mathrm{F}$. The gas oil will enter at $575^{\circ} \mathrm{F}$ and leave at $350^{\circ} \mathrm{F}$. A pressure drop of 10 psi is permissible on the gas oil, but on the reactor feed it should not exceed 2 to 3 psi . Dirt factors of 0.002 should be provided on each side. The gas oil is the controlling fluid and should flow in the annulus.

Available for the purpose are a number of $20-\mathrm{ft}$ hairpin double pipe exchangers consisting of $21 / 2-\mathrm{in}$. IPS outer pipes and $11 / 4 \mathrm{in}$. OD, 10 BWG inner tubes with 24 fins 20 BWG, $1 / 2 \mathrm{in}$. high.

How many sections should be used, and how shall they be arranged?
16.3. In a regenerative gas-absorption process $10,300 \mathrm{lb} / \mathrm{hr}$ of 15° Bé caustic soda ($s=1.115$) leaves the regenerator at $240^{\circ} \mathrm{F}$ and is cooled to $170^{\circ} \mathrm{F}$. The heat is absorbed by $10,300 \mathrm{lb} / \mathrm{hr}$ of $15^{\circ} \mathrm{Be}$ caustic soda at $100^{\circ} \mathrm{F}$ being sent to the regenerator.

Available for the service are a number of $20-\mathrm{ft}$ hairpins consisting of $3-\mathrm{in}$. IPS shells and $11 / 2-\mathrm{in}$. IPS imner tubes with 24 fins $20 \mathrm{BWG}, 1 / 2 \mathrm{in}$. high. Pressure drops of 10 psi are allowable. Dirt factors of 0.002 should be provided on each side.

How many sections are required, and how shall they be arranged?
16.4. $20,000 \mathrm{lb} / \mathrm{hr}$ of nitrogen at 0 gage pressure is to be heated from 100 to $175^{\circ} \mathrm{F}$ using exhaust steam at $212^{\circ} \mathrm{F}$. Fouling factors of 0.002 should be provided for both. Available for the service is a $193 / 4 \mathrm{in}$. ID $1-2$ exchanger containing 561 1/4in. OD tubes, $12^{\prime} 0^{\prime \prime}$ long and having 24 fins 20 BWG , $1 / 2 \mathrm{in}$. high arranged for two passes.
Is the exchanger satisfactory? What are the pressure drops?
16.5. A textile impregnating room measures 50 by 100 by 12 ft . Because of the possibility of developing an explosive and toxic concentration it is necessary to change the air eight times an hour. To provide comfortable conditions the room should be kept at $75^{\circ} \mathrm{F}$, although no provision will be made for humidity control. The lowest winter temperature to be anticipated is $30^{\circ} \mathrm{F}$ (Middle Atlantic). The air intake will be through an existing 4 by 4 ft duct in which a tempering coil is to be provided using exhaust steam at $212^{\circ} \mathrm{F}$.
Available are $4^{\prime} 0^{\prime \prime}$ long helical fin tubes with male and female threads. These are $3 / 4 \mathrm{in}$. OD, 16 BWG with $3 / 8$ in. high brass fins 0.018 in. thick spaced six to the inch. Assume that they will be installed on $18 / 4-\mathrm{in}$. triangular pitch.
How many tubes are required? What static pressure must be available in the duct?

NOMENCLATURE FOR CHAPTER 16

A Total outside heat-transfer surface, ft

$$
A_{f}
$$

$$
A_{i}, A_{0}
$$

a,
a_{t}^{\prime}
a_{x}
b
C
$C_{1}, C_{2}, C_{3}, C_{4}, C_{5}, C_{6}, C_{7}$
$C_{1}^{\prime}, C_{2}^{\prime}$,
c
$D \quad$ Inside diameter of tubes or pipes, ft
d
D_{c}, D_{e}^{\prime}
e
F_{T}
$f \quad$ Friction factor, $\mathrm{ft}^{2} / \mathrm{in}^{2}$
$\boldsymbol{G} \quad$ Mass velocity; $\mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)$
$g \quad$ Acceleration of gravity, $4.18 \times 10^{8} \mathrm{ft} / \mathrm{hr}^{2}$
$h \quad$ Heat-transfer coefficient in general, $\mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$
$h_{b} \quad$ Heat-transfer coefficient h_{f}^{\prime} or h_{f} to fin delivered at the base of the $\mathrm{fin}, \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{tt}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$
$\boldsymbol{h}_{d i}, h_{d o}$
h_{f}, h_{f}^{\prime}
Dirt coefficient equivalent to the reciprocal of the dirt factor inside the tube $R_{\text {di }}$ and outside the tube, $R_{d o}$, respectively; Btu/ $\left\langle\mathrm{hr}\right.$) $\left(\mathrm{ft} \mathrm{t}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$
Heat-transfer coefficient on fin side of a pipe or tube, heattransfer coefficient on fin side of a pipe or tube corrected for the dirt factor, $\mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$

$h_{f i}, h_{f i}^{\prime}$	h_{f} and h_{f}^{\prime} corrected to the inside surface of a pipe or tube respectively, $\mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$
$h_{f i}^{\prime \prime}$	Value of $h_{f i}^{\prime}$ if there were no resistance in the fin itself $\mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$
$h_{\text {\% }}$	The average film coefficient of the outside diameter of the tube weighting h_{f} to the fin surface and to the tube outside surface, $\mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$
h_{i}, h_{i}^{\prime}	Heat-transfer coefficient for the fluid inside tho tube, h_{i} corrected for the dirt factor, Btu/(hr) $\left(\mathrm{ft}{ }^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$
${ }_{\text {mo}}$	Heat-transfer coefficient for outside fluid, $\mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}{ }^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$
$I_{n}(u)$	Modified Bessel function of the first kind and order n, dimensionless
i	$\sqrt{-1}$, dimensionless
j_{1}	Factor for heat transfer to finned pipes and tubes, dimensionless
j_{H}, j_{h}	The Sieder-Tate and Colburn heat-transfer factors, dimensionless
K	Temperature group for crossflow ($\left.T_{1}-T_{9}\right) /\left(T_{f}-t_{1}\right)$, dimensionless
$K_{n}(u)$	Modified Bessel function of the second kind and order n, dimensionless
k	Thermal conductivity, $\mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}{ }^{2}\right)\left({ }^{\circ} \mathrm{F} / \mathrm{ft}\right)$
L	Length of tube, ft
L_{p}	Length of path, ft
LMTD	Logarithmic mean temperature difference, ${ }^{\circ} \mathbf{F}$
l	Height of fin at any point, ft
m	Either of two constants used in the derivation of longitudinal or annular fins, dimensionless
N_{s}	Number of fins (per tube)
N_{t}	Number of tubes in bundle
n	Number of tube passes; a constant denoting the order of the Bessel function, dimensionless
P	Perimeter, ft
ΔP	Pressure drop, psi
p	A constant in the Bessel equation, dimensionless; pressure. atm
Q	Total heat flow or total heat flow through bases of fins and bare tube surface, Btu/hr
Q。	Heat flow, heat flow through bare tube surface, Btu/hr
R	Temperature group ($\left.T_{1}-T_{2}\right) /\left(t_{2}-t_{1}\right.$), dimensionless
$R_{\text {do }}, R_{\text {di }}$	Dirt or fouling factor, outside tube and inside tube, $(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right) / \mathrm{Btu}$
Re, Re	Reynolds number for heat transfer and pressure drop, dimensionless
r	Radius, ft
(r)	Temperature group in crossflow, $\Delta t /\left(T_{1}-t_{1}\right)$, dimensionless
(r) countorlow $^{\text {a }}$	Temperature group in counterflow, LMTD/($\left.T_{1}-t_{1}\right)$, dimensionless
S	Temperature group ($t_{2}-t_{1}$)/($T_{1}-t_{1}$), dimensionless

s	Specific gravity, dimensionless
T	Temperature of hot fluid, ${ }^{\circ} \mathrm{F}$
$T s$	Temperature of steam, ${ }^{\circ} \mathrm{F}$
t	Temperature of fin or cold fluid in general, ${ }^{\circ} \mathrm{F}$
T_{c}, t_{c}	Caloric temperature of hot fluid and cold fluid, respectively, from Eqs. (5.28) and (5.29), ${ }^{\circ} \mathrm{F}$
$t_{u s,} t_{w}^{\prime}, t_{f w}$	Temperature of tube wall, temperature in fin metal, temperature of wall in finned tubes, ${ }^{\circ} \mathrm{F}$
t_{f}, t_{f}^{\prime}	Temperature of clean fin, temperature of fin beneath dirt film, ${ }^{\circ} \mathrm{F}$
Δt	True temperature difference, ${ }^{\circ} \mathrm{F}$
$\Delta t_{c}, \Delta t_{k}$	Hot and cold terminal differences, ${ }^{\circ} \mathrm{F}$
$\Delta t_{f}, \Delta t_{d o y} \Delta t_{d i}, \Delta t_{i}$	Temperature drops across in coefficient, outside dirt, inside dirt, and the inside fluid film corrected for viscosity and dirt, ${ }^{\circ} \mathrm{F}$
$U_{\text {di }}$	Overall design coefficient of heat transfer based on the inside tube surface, Btu/(hr$)\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$
U_{i}	Overall clean coefficient of heat transfer based on inside tube surface, $B t u /(h r)\left(f t t^{2}\right)\left({ }^{\circ} F\right)$
u	A function
V	Velocity of flow, fps
v	A function
W	Weight flow in general, weight flow of hot fluid, $\mathrm{lb} / \mathrm{hr}$
w	Weight flow of cold fluid, $\mathrm{lb} / \mathrm{hr}$
X, Y, x, y	Distances, it
y	Half the width of a fin, ft .
α	Constant in transverse fin and crossflow derivations
β	Constant in transverse fin and crossflow derivations
θ	Temperature difference between fluid and fin $T-t,{ }^{\circ} \mathrm{F}$
${ }^{\mu}$	Viscosity at the caloric temperature, $\mathrm{lb} /(\mathrm{ft})(\mathrm{hr})$
$\mu_{v} \mu_{f w}$	Viscosity at, the tube wall or fin temperatures, t_{w} or $t_{f_{w}}$, $\mathrm{lb} /(\mathrm{ft})(\mathrm{hr})$
ρ	Density, $\mathrm{lb} / \mathrm{ft}^{3}$
ϕ	Viscosity ratio ($\left.\mu / \mu_{j v}\right)^{90.44}$, dimensionless
Ω	Fin efficiency h_{h} / h_{l}, dimensionless
Ω^{\prime}	Weighted efficiency for fin and bare tube, dimensionless

Subscripts (except as noted above)

a	Annulus
b	Base (of fin)
e	Edge (of fin)
i	Interface of film or inside of pipe or tube
s	Shell
i	Tube
I	First of two passes
$I I$	Second of two passes

CHAPTER 17

DIRECT-CONTACT TRANSFER: COOLING TOWERS

Introduction. In all preceding chapters the hot and cold fluids were separated by impervious surfaces. In tubular equipment, the tube limits the intimacy of contact between the hot and cold fluids and also serves as a surface upon which resistances accumulate as fouling and scale films. In order that a turbulent fluid in a tube may receive heat, particles in the eddying fluid body must contact a warm film at the tube wall, take in heat by conduction, and then mix with the eddying fluid body. A similar process occurs on the shell side, and the net heat exchange may occur through as many as seven individual resistances.

One of the principal reasons for employing tubes is to prevent the contamination of the hot fluid by the cold fluid. When one of the fluids is a gas and the other a liquid, an impervious surface is often unnecessary, since there may be no problem of mutual contamination, the gas and liquid being readily separable after mixing and exchanging heat. Fouling resistances are automatically eliminated by the absence of a surface on which they can collect and permit a direct-contact apparatus to operate indefinitely with uniform thermal performance. The greater intimacy of the direct contact generally permits the attainment of greater heat-transfer coefficients than are usual in tubular equipment.

Perhaps the outstanding application of an apparatus operating with a direct contact between a gas and a liquid is the cooling tower. It is usually a boxlike redwood structure with redwood internals. Cooling towers are employed to contact hot water coming from process cooling systems with air for the purpose of cooling the water and allowing its reuse in a process: The function of the wooden internals, or fill, is to increase the contact surface between the air and the water. A cooling tower ordinarily reduces the fresh cooling-water requirement by about 98 per cent, although there is some mutual contamination caused by the saturation of the air with water vapor.

The prospective use for direct-contact equipment in other services requiring rapid rates of heat transfer is perhaps greater than for any other type of heat-transfer apparatus. Although applied now almost exclusively to the humidification of air or the cooling of water, the principles of direct-contact heat transfer may be applied to the cooling or heating of
other insoluble gases or liquids. This is especially true in the cooling of gases over long temperature ranges. The jet condenser referred to in Chap. 14 is also an example of direct contact as applied to condensation in which a large heat load may be condensed in an apparatus of small volume. A modification of the same principle might readily be applied to the condensation of organic vapors by a spray of water and particularly to the problem of condensing an oil vapor in the presence of a noncondensable gas. Future developments may well be anticipated for the recovery of atomic energy in commercial fission processes, in jet propulsion, and in gas-turbine cycles. This chapter treats the theory and develops the principal calculations applicable to direct-contact heat transfer.

Diffusion. If dry air at constant temperature is saturated by water at the same temperature in a direct-contact apparatus, the water vapor entering the air carries with it its latent heat of vaporization. The humidity of the air-water-vapor mixture increases during saturation because the vapor pressure of water out of the liquid is greater than it is in the unsaturated air and vaporization is the result. When the vapor pressure of water in the air equals that of the liquid, the air is saturated and vaporization ceases. The temperature of the water can be kept constant during air saturation if heat is supplied to it to replace that lost from it to the gas as latent heat of vaporization. Clearly, then, the heat transfer during the saturation of a gas with a liquid can be made to proceed without a temperature difference, although such a limitation is rarely encountered. It is seen, however, that there is a fundamental difference between this type of heat transfer and conduction, convection, or radiation.

When a movement of material is promoted between two phases by a vapor pressure (or concentration) difference, it is diffusion and is characterized by the fact that material is transferred from one phase to another or between both phases. This behavior is called mass or material transfer to set it apart from the ordinary concepts of heat transfer. While the phase-rule definitions apply to systems at equilibrium, if a phase is not homogeneous, self-diffusion may occur as the phase approaches homogeneity.

For the condensation of a vapor in the presence of a noncondensable gas it was expedient in Chap. 13 to introduce Colburn's analogy between heat transfer and mass transfer. This in turn was compared with Reynold's analogy between heat transfer and fluid friction as discussed in Chap. 3. The Reynold's analogy holds more closely for heat transfer and fluid friction than do the Colburn and other analogies for heat transfer and mass transfer. In the condensation of a vapor from a noncon-
densable gas an inert film near the tube wall retards the condensable vapor from reaching the condensate film at the tube wall. The rate at which the vapor passes through the inert film is a function of the pressure of the vapor in the gas body and in the condensate film adjoining the tube wall and follows the mechanism of diffusion.

Several of the illustrative examples solved in this chapter can be understood without a thorough background in the theory of diffusion, but the advantages of a good foundation are evident. The elements of simple diffusion are presented here in abbreviated form, drawing, wherever possible, upon the similarity of diffusion to convection heat transfer. Excellent treatments of the subject may be found in Sherwood ${ }^{1}$ and Perry ${ }^{2}$.

Diffusion Theory. Diffusion involves the passage of one fluid through another. Consider a gas, such as air, containing a small amount of acetone vapor which is soluble in water while the air may be considered insoluble in water. Suppose the air-acetone mixture is fed to a tower which has fresh water flowing continuously down its walls so that any acetone molecules which might bound into the water are removed by it from the gas body. How fast will acetone molecules be removed from the gas body?

An idealized picture of the problem is shown in Fig. 17.1. It may be assumed that a relatively stagnant air film forms at the liquid surface owing to the loss of momentum of the air molecules striking the liquid

Fig. 17.1. Film theory showing principal resistances. film and being dragged along by it. This is represented between 1-1 and $2-2$. The liquid film may also be considered relatively stagnant compared with the air body. This is the basis of the "two-film" theory. It may be conceded, because of the mutual solubility of acetone in water, that the rate at which acetone molecules can pass through the liquid film is exceedingly great. Thus the acetone molecules in the air film which arrive at the liquid film are depleted so rapidly by solution in the liquid film that the concentration of acetone molecules in the air film is less than it is in the gas body. This establishes a pressure or concentration

[^49]gradient between the air body and the air film which continuously promotes the movement of acetone molecules in the direction of the liquid. This picture is analogous to that of the steady-state film theory of Chap. 3 in which a temperature gradient promoted heat transfer.

The air and liquid films are similar to thermal resistances in series. In the case of diffusion from 1-1' to 2-2' the concentration difference of the diffusing air-acetone mixture is the potential for the mass transfer of the acetone across the several resistances in series. Designating the diffusing gas by the subscript A and the inert or insoluble gas (air) by the subscript B the concentration of each gas may be expressed individually by its molar density, δ mols $/ \mathrm{ft}^{3}$. The rate at which the concentration of A in the air body decreases, $-d \delta_{A}$, depends upon four factors: (1) the number of mols of A, δ_{A}; (2) the number of mols of B, δ_{B}; (3) the relative difference of movement between the velocity of A, u_{A} and the velocity of B, u_{B} in the direction of diffusion; and (4) the length of the air film $d l$.

$$
\begin{equation*}
-d \delta_{A}=\alpha_{A B} \delta_{A} \delta_{B}\left(u_{A}-u_{B}\right) d l \tag{17.1}
\end{equation*}
$$

where $\alpha_{A B}$ is the proportionality constant. If the net diffusion of the insoluble gas is zero, $u_{B}=0$ and Eq. (17.1) reduces to

$$
\begin{equation*}
-d \delta_{A}=\alpha_{A B} \delta_{A} \delta_{B} u_{A} d l \tag{17.2}
\end{equation*}
$$

If N_{A} is the number of pound-mols per hour transferred through $A \mathrm{ft}^{2}$ of film surface,

$$
\begin{gather*}
\frac{N_{A}}{A}=u_{A} \delta_{A} \quad \mathrm{lb}-\mathrm{mol} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right) \tag{17.3}\\
 \tag{17.4}\\
-d \delta_{A}=\alpha_{A B} \delta_{B} \frac{N_{A}}{A} d l
\end{gather*}
$$

and since

$$
\begin{align*}
-\dot{d} \delta_{A} & =d \delta_{B} \tag{17.5}\\
N_{A} & =\frac{A}{\alpha_{A B} \delta_{B}} \frac{d \delta_{B}}{d l}=\frac{A}{\alpha_{A B}} \frac{d \ln \delta_{B}}{d l} \tag{17.6}
\end{align*}
$$

and for equimolal diffusion of A into B.

$$
\begin{equation*}
\frac{N_{A}}{A}=-\frac{N_{B}}{A}=u_{A} \delta_{A}=-u_{B} \delta_{B} \tag{17.7}
\end{equation*}
$$

From Eq. (17.1)

$$
\begin{gather*}
-d \delta_{A}=\left(\alpha_{A B} \delta_{B} u_{A} \delta_{A}-\alpha_{A B} \delta_{A} u_{B} \delta_{B}\right) d l=\alpha_{A B} u_{A} \delta_{A}\left(\delta_{A}+\delta_{B}\right) d l \tag{17.8}\\
u_{A} \delta_{A}=-\frac{I}{\alpha_{A B}\left(\delta_{A}+\delta_{B}\right)} \frac{d \delta_{A}}{d l} \tag{17.9}
\end{gather*}
$$

From the continuity equation, input - output $=$ accumulation. At steady state there will be no accumulation of A in the gas film. In pounds per cubic foot per unit time

$$
\begin{equation*}
-M_{A} \frac{\partial \delta_{A}}{\partial \theta}-M_{A} \frac{\partial\left(u_{A} \delta_{A}\right)}{\partial l}=0 \tag{17.10}
\end{equation*}
$$

where M_{A} is the molecular weight of gas A and θ is time.

$$
\begin{equation*}
\frac{\partial \delta_{A}}{\partial \theta}=\frac{\partial}{\partial l}\left[\frac{1}{\alpha_{A B}\left(\delta_{A}+\delta_{B}\right)} \frac{d \delta_{A}}{d l}\right] \tag{17.11}
\end{equation*}
$$

Call $\delta_{A}+\delta_{B}=\delta$ the total number of mols per cubic feet.

$$
\begin{equation*}
\frac{\partial \delta_{A}}{\partial \theta}=\frac{\partial}{\partial l}\left(k_{d} \frac{\partial \delta_{A}}{\partial l}\right) \tag{17.12}
\end{equation*}
$$

Defining the constant $k_{d}=1 / \alpha_{A B} \delta$ or

$$
\begin{equation*}
\alpha_{A B}=\frac{1}{k_{d} \delta} \tag{17.13}
\end{equation*}
$$

k_{d} is the diffusivity or diffusion coefficient introduced in Chap. 13. It is basically defined, however, by Eqs. (17.12) and (17.13). Returning to Eq. (17.6),

$$
\begin{equation*}
N_{A}=k_{d} \delta A \frac{d \ln \delta_{B}}{d l} \tag{17.14}
\end{equation*}
$$

And for a perfect gas, which the insoluble gas usually approximates,

$$
\begin{equation*}
\delta=\frac{n}{v}=\frac{p_{i}}{R T} \tag{17.15}
\end{equation*}
$$

where $n=$ total number of mols
$p_{t}=$ total pressure
$R=$ gas constant

$$
\begin{equation*}
N_{A} d l=\frac{k_{d} p_{i} A}{R T} d \ln \delta_{B} \tag{17.16}
\end{equation*}
$$

Integrating over the length of the gas film from the gas body to the gas-film-liquid-film interface,

$$
\begin{equation*}
N_{A}=\frac{k_{i} p_{t} A}{R T l} \ln \frac{\delta_{B}}{\delta_{B i}}=\frac{k_{i} p_{i} A}{R T l} \ln \frac{p_{B}}{p_{B i}} \tag{17.17}
\end{equation*}
$$

where the concentrations have also been expressed by the partial pressures and where the subscript B_{i} refers to the value at the interface $2-2^{\prime}$. For a
driving force across the gas film consisting of the two pressures p_{B} and $p_{B i}$, let $p_{B m}$ be the \log mean driving pressure of the inert B. Then

$$
\begin{equation*}
p_{B m}=\frac{p_{B}-p_{B i}}{\ln p_{B} / p_{B i}} \tag{17.18}
\end{equation*}
$$

and

$$
\begin{gather*}
\ln \frac{p_{B}}{p_{B i}}=\frac{p_{B}-p_{B i}}{p_{B m}} \tag{17.19}\\
N_{A}=\frac{k_{d} p_{t} A}{R T l p_{B m}}\left(p_{B}-p_{B i}\right) \tag{17.20}
\end{gather*}
$$

This is similar to the ordinary transfer equation $Q=h_{o} A\left(T_{0}-t_{w}\right)$, using the nomenclature of Chap. 6, where $T_{0}-t_{w}$ is the temperature difference at a single cross section and the tube-wall temperature t_{w} corresponds to the interface concentration. Since the partial pressure of a component is proportional to its mol fraction in a mixture of perfect gases,

$$
\begin{equation*}
N_{A}=k_{G} A\left(p-p_{i}\right)=k_{G} A p_{i}\left(y-y_{i}\right) \tag{17.21}
\end{equation*}
$$

where y and u_{i} are the mol fractions in the gas body and at the interface and

$$
\begin{equation*}
k_{a}=\frac{k_{d} p_{t}}{R T l p_{B m}} \tag{17.22}
\end{equation*}
$$

k_{ϵ} may be compared with h for one of two fluids engaging in heat transfer.
The diffusivity can be determined experimentally by measuring the rate of evaporation of the diffusing gas A from a volumetric container into an inert which is passed over the vessel. Diffusivities can be computed by the Gilliland equation [Eq. (13.31)]. It will be noted that in Eq. (13.31) k_{d} is inversely proportional to the total pressure on the system p_{t} so that in Eq. (17.20) no correction need be made for pressure, since the product $k_{d} p_{t}$ in the numerator will be constant.

In an ordinary diffusion tower the potential difference $p-p_{i}$ or $y-y_{i}$ differs at every cross section or height of the tower as material is transferred out of the gas body. If the total transfer is the sum of a number of transfers through incremental surfaces with a differential potential on each increment, the differential equation for the entire height in which all the surface is contained becomes

$$
\begin{equation*}
d N_{A}=k_{G}\left(p-p_{i}\right) d A=\mathcal{K}_{\sigma} p_{t}\left(y-y_{i}\right) d A \tag{17.23}
\end{equation*}
$$

Just as the total heat transfer Q can be calculated from a single individual film coefficient, the total surface, and the temperature difference between the fluid and the tube wall, so the material transfer can be determined from the change in the gas phase alone, using Eq. (17.21). The total material
leaving the gas phase is obviously the same as that which enters the liquid phase. By a similar analysis to that above it can be shown that, for the liquid-film-liquid-body interface,

$$
\begin{equation*}
d N_{A}=k_{L}\left([c]_{A i}-[c]_{\Lambda}\right) d A=k_{L}[c]_{\operatorname{lor}}\left(x_{i}-x\right) d A \tag{17.24}
\end{equation*}
$$

where $[c]$ is the concentration in the liquid with subscripts as above, x the mol fraction of the diffusing material in the liquid, and k_{L} is the liquidside diffusion coefficient. Expressed as an equality,

$$
\begin{equation*}
d N_{A}=k_{\epsilon} p_{t}\left(y-y_{i}\right) d \dot{A}=k_{x}[c]_{\mathrm{ar}}\left(x_{i}-x\right) d A \tag{17.25}
\end{equation*}
$$

k_{G} and k_{L} are the reciprocals of the two resistances in series comprising the gas and liquid films. In terms of overall coefficients and the overall potential for diffusion

$$
\begin{align*}
d N_{A} & =K_{G}\left(p-p^{\prime}\right) d A=K_{L}\left([c]_{A}^{\prime}-[c]_{A}\right) d A \\
& =K_{\sigma} p_{t}\left(y-y^{\prime}\right) d A=K_{L}[c]_{\mathrm{ev}}\left(x^{\prime}-x\right) d A \tag{17.26}
\end{align*}
$$

where $p^{\prime}=$ partial pressure of the diffusing vapor which would be in 'equilibrium with liquid of the concentration of the liquid body, atm
$[c]_{A}^{\prime}=$ concentration of the diffusing vapor which would be in equilibrium with the partial pressure of the diffusing vapor in the gas body, lb-mols/ft ${ }^{3}$
x^{\prime} and $y^{\prime}=$ mol fractions corresponding to $[c]_{\Lambda}^{\prime}$ and p^{\prime}, respectively, dimensionless.
The overall coefficients are expressed in either of the two ways
$K_{G}=$ overall coefficient of mass transfer, $\mathrm{lb}-\mathrm{mols} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)$ (atmosphere of partial pressure difference)
$K_{L}=$ overall coefficient of mass transfer, $\mathrm{lb}-\mathrm{mols} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)$ (concentration difference/ $/ \mathrm{ft}^{3}$)
$K_{i \in}$ and K_{L} may be related to the individual films and to each other by means of Henry's law.

$$
p^{\prime}=C_{H[}[c]_{A}^{\prime}
$$

where p^{\prime} is the equilibrium partial pressure of A in the gas phase corresponding to a liquid concentration of $[\mathrm{c}]_{A}^{1} \mathrm{lb}-\mathrm{mols} / \mathrm{ft}{ }^{3} . \quad C_{u}$ is the Henry's law proportionality constant. The law holds only for relatively dilute solutions.

Then

$$
\begin{align*}
& K_{G}=\frac{1}{\left(C_{H} / k_{L}\right)+\left(1 / k_{G}\right)} \tag{17.27}\\
& K_{L}=\frac{1}{\left(1 / k_{L}\right)+\left(1 / C_{H} k_{G}\right)} \tag{17.28}
\end{align*}
$$

K_{G} and K_{z} are really the same except for the dimensional differences in the respective equations in which they are employed. Equations (17.27) and (17.28) will be seen to resemble Eq. (6.7) for obtaining the overall coefficient of heat transfer from two individual film coefficients.

Colburn ${ }^{1}$ has introduced the idea of a unit of mass transfer which is a measure of the number of interphase equilibrium changes required to effect a given amount of diffusion. It is identical with the concept of a theoretical plate in distillation under a particular condition. If G_{m} is the gas rate in mols per hour per square foot of tower cross section and $d y$ is the change of concentration of the diffusing component, $d N_{A}=G_{m} d y$ and Eq. (17.26) can be written

$$
\begin{equation*}
G_{m} d y=K_{\sigma} p_{t}\left(y-y^{\prime}\right) d A \tag{17.29}
\end{equation*}
$$

If the surface per cubic foot of tower is $a \mathrm{ft}^{2} / \mathrm{ft}^{3}$, the total surface is $d A=a d V$, where V is the volume of the tower per square foot of tower cross section.

$$
\begin{equation*}
n_{t}=\int \frac{d y}{y-y^{\prime}}=K_{G} a \frac{V}{G_{n}} \tag{17.30}
\end{equation*}
$$

The integral of $d y /\left(y-y^{\prime}\right)$ over the entire height of tower gives the number of times the average potential may be divided into the total desired concentrate change. This is an index of the size of the absorption or desorption task which must be accomplished, and n_{t} is called the number of transfer units. When n_{t} is multiplied by G_{m}, it gives $K_{G} a V$, which is the total number of mols of material transferred. Different heights of various diffusion towers are required for the accomplishment of one transfer unit of diffusion depending upon how a particular tower is constructed and how much surface it contains per cubic foot of volume. From experiments on a particular type of tower of overall height Z it is possible to determine experimentally the number of transfer units of diffusion accomplished by it, and the height of a single transfer unit $H T U$ will be

$$
\begin{equation*}
H T U=\frac{Z}{n_{t}} \tag{17.31}
\end{equation*}
$$

The Wet-bulb Temperature. Humidification is a form of heat transfer as well as a form of diffusion. In air conditioning systems it is the increase in the moisture content of air and is usually accomplished by a spray washer. In a cooling tower air is also humidified but cold water and not moist air is its principal product. Particularly relative to the cooling tower, it is customary in the United States to define the moisture content of air by its wet-bulb temperature. This is a valuable concept,
${ }^{1}$ Colburn, A. P., Trans. ATChE, 35, 211 (1934).
since it will be shown later that the wet-bulb temperature is also the lowest water temperature which can possibly be obtained by adiabatic humidification. The wet-bulb temperature is described here because it is a simple concept from which an excellent picture of simultaneous mass and heat transfer can be drawn. Refer to Fig. 17.2 which consists of a thermometer surrounded by a wick dipping into water at the same temperature as the surrounding air. The wick is always wet. A second thermometer is suspended in the surrounding air to indicate the $d r y$-bulb temperature.

Assume that unsaturated air at any dry bulb is circulated over the wick. Because the wick is wet and the air is unsaturated, the partial pressure of the water vapor out of the wick is greater than that of the water vapor in the circulated air and water evaporates from the wick to the air. But the evaporation of water from the wick requires many Btu of latent heat, which must come from somewhere. When the air is initially circulated over the wick, the Btu could come from the wick itself by lowering the temperature of the wick below its initial temperature. If the initial wick temperature was the same as the dry bulb, any temperature drop in the wick would establish a temperature difference between the dry-bulb temperature and the lower temperature of the wick.

Fig. 17.2, The wet-bulb thermometer. This causes sensible heat to flow from the air into the wick, thereby reducing the air temperature. An additional depression of the wick temperature continues as long as air is circulated, until a point is reached at which the temperature difference between the dry bulb and the wick causes just enough heat to flow into the wick to counterbalance the loss of heat from the wick by evaporation. Under this condition an equilibrium is established whereby the vaporization into a cubic foot or a pound of air is offset by the sensible heat removed from a cubic foot or a pound of air. Thus it should make no difference whether the air passes slowly or rapidly over the wick when the equilibrium is attained; the temperature of the wick should be depressed to the same extent, since the amount of water evaporating into each pound of dry air is offset by an equal sensible-heat removal from the same pound of air. The faster air is circulated over the wick, however, the greater will be the weight of water evaporated from the wick. This convenient temperature is called the wet-bulb temperature. The wet bulb naturally varies for air of a given dry bulb according
to the extent to which it is saturated before contacting the wick, since the degree of saturation affects the amount of water vapor which can be evaporated into the air and consequently the amount of heat which can be removed from it.

The depression of the temperature of the wet-bulb thermometer, in the experiment desoribed above, started when the water, presumably at the dry-bulb temperature, evaporated into the air at the same temperature. If the air had been saturated at the dry-bulb temperature, no water would have evaporated at all. If instead of humidifying air our primary interest was in a process for obtaining cold water by evaporating part of the water from the wick, the lowest water temperature attainable would be the wet-bulb temperature. Thus a cooling tower or any other humidifying apparatus which transferred no heat to or from its surroundings while the air and liquid were in contact could cool the water only to the wet-bulb temperature of the air, which is a function of the degree of saturation of the air or inert gas with the liquid being evaporated. In the northern part of the temperate zone, where a wet-bulb temperature of $75^{\circ} \mathrm{F}$ occurs in the summertime, it is impossible to cool water lower than $75^{\circ} \mathrm{F}$ except by refrigeration.

The process between the air and the wick can be described rather simply for the equilibrium condition when the wick has presumably reached the wet-bulb temperature. Let X be the absolute humidity of the original air, pounds of water per pound of dry air, which is related to the partial pressure of the water vapor in the original air by

$$
X=\frac{p_{\text {water rapor }}}{p_{t}-p_{\text {water vapor }}} \times \frac{M_{w}}{M_{a}}
$$

where M_{w} and M_{a} are the molecular weights of water and air. Let X^{\prime} be the humidity (or vapor pressure) of the water out of the wick at the wet-bulb temperature. For simplicity, a diffusion overall mass-transfer coefficient K_{X} will be used in which the evaporative potential from the wick to the air is expressed in terms of the two humidities X^{\prime} and X, whereas K_{σ} employs the pressure in atmospheres to express the diffusion potential. Then if λ is the latent heat of vaporization, the heat leaving the wick per square foot of surface is given by

$$
\begin{equation*}
\frac{Q}{A}=K_{X}\left(X^{\prime}-X\right) \lambda \tag{17.32}
\end{equation*}
$$

The heat of vaporization per square foot of wick is offset by the heat transferred from the air to the wick, which is given by

$$
\begin{equation*}
\frac{Q}{A}=h\left(t_{D B .}-t_{W B}\right) \tag{17.33}
\end{equation*}
$$

where $t_{D B}$ and $t_{W B}$ are the dry-bulb and wet-bulb temperatures of the air, respectively, and h is the sensible-heat-transfer coefficient between the air and the wick.

Since Eqs. (17.32) and (17.33) are identities, and can be equated.

$$
\begin{equation*}
h\left(t_{D B}-t_{W B}\right)=K_{X}\left(X^{\prime}-X\right) \lambda \tag{17.34}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{h}{K_{X}}=\frac{\left(X^{\prime}-X\right) \lambda}{t_{D B}-t_{W B}} \tag{17.35}
\end{equation*}
$$

and the potential for K_{X} is pounds of water/pound of dry air. Using K_{G} for K_{x} the potential is atmospheres of water/atmosphere of air, which employs the molar ratio of water to air for a perfect gas. Weight and mol ratios are obviously not equal, although both are dimensionless. Thus a $1: 1 \mathrm{~mol}$ ratio of water to air is equal to an $18 / 29$ or $0.62: 1$ weight ratio. The net effects of weight transfer must be the same as the product of molar transfer and the molecular weight of the diffusing vapor.

$$
\begin{gather*}
K_{X}\left(X^{\prime}-X\right)=K_{a} M_{A}\left(p^{\prime}-p\right) \tag{17.36}\\
X^{\prime}=\frac{p^{\prime}}{p-p^{\prime}} \frac{M_{A}}{M_{B}}=\frac{p^{\prime}}{p_{B m}} \frac{M_{A}}{M_{B}}=\frac{p^{\prime}}{p_{t}} \frac{M_{A}}{M_{B}} \tag{17.37}
\end{gather*}
$$

The last is very nearly true for the temperature ranges in humidification

$$
\begin{gather*}
X=\frac{p}{p-p^{\prime}} \frac{M_{A}}{M_{B}}=\frac{p}{p_{B m}} \frac{M_{A}}{M_{B}}=\frac{p}{p_{t}} \frac{M_{A}}{M_{B}} \tag{17.38}\\
K_{X}\left(\frac{p^{\prime}-p}{p_{B_{m}}}\right) \frac{M_{A}}{M_{B}}=K_{G} M_{A}\left(p^{\prime}-p\right) \tag{17.39}\\
K_{X}=K_{G} p_{B m} M_{B} \tag{17.40}
\end{gather*}
$$

Relation between the Wet-bulb and the Dew-point Temperatures. There is an interesting distinction between the wet-bulb and dew-point temperatures. Both are used in diffusion calculations. To obtain the wet bulb temperature the following is considered: As bone-dry air plus its accompanying vapor is circulated continuously over a wick at a given initial temperature, the air and vapor mixture are cooled by the passage of sensible heat from it into the wick. The air and vapor mixture get the heat back, however, in the form of vaporized water whose latent heat is equal to the heat which passed into the wick although the final temperature of the mixture is lower after circulation. The volume or weight of vapor per pound of $d r y$ air increases. Since no heat enters or leaves the system during the direct contact, it is an adiabatic process, and the wet bulb is obviously a temperature in such an adiabatic process.

The dew point is the temperature at which a gas of given vapor content deposits the first drop of condensate when cooled by a constant-
pressure process. In the temperature-entropy plot of Fig. 17.3 the saturation curve for water is described by $B E F$. The constant pressure cooling of water vapor occurs along the constant pressure path $A B$. Consider next the adiabatic contact between water and air. Being adiabatic, it is described by a fictitious path $A^{\prime \prime} C^{\prime \prime}$, which is an adiabatic although not isentropic, since the mixture of air and water vapor is irreversible. The cooling of the air and evaporation of the water separately are not true adiabatic processes. Only the gross effects between the two are truly adiabatic. For the process of adiabatic saturation the path of the water vapor alone can be determined by experiment and is found to be along the line $A C$. The point C is the wet bulb, and since water vapor is added during the adiabatic saturation the partial pressure of the water vapor

Tig. 17.3. Relation between wet-bulb and dew-point temperatures. a.t the wet bulb C, is somewhat higher than B. When air is initially 70 per cent saturated or more, the wet bulb exceeds the dew point by less than 2 per cent of the difference between the dry bulb and the wet bulb. If gas at the dry-bulb temperature T_{A} possesses a higher degree of saturation, the point A moves to A^{\prime} and the dew point is at the obviously higher temperature T_{B}^{\prime}.
The Lewis Number. The relationship between the heat-transfer coefficient and the mass-transfer coefficient, h / K_{x}, enters into nearly every direct-contact problem. The analogy between heat transfer and fluid friction in Chap. 3 was arrived at by mathematical similarity. Heat transfer and mass transfer may also be related by comparing both with fluid friction. References to the subject will be found in Chap. 13. Only the most general application is developed here, although it appears that greater accuracies may be obtained from other analogies. For heat transfer Chilton and Colburn give

$$
j_{h}=\frac{f}{2}=\frac{h D / k}{(D G / \mu)(c \mu / k)}\left(\frac{c \mu}{k}\right)^{3 / k}=\frac{h}{c G}\left(\frac{c \mu}{k}\right)^{2 / h}
$$

where f is the dimensionless friction factor.
For mass transfer (diffusion)

$$
\begin{equation*}
j_{d}=\frac{f}{2}=\frac{K_{X} D / \rho k_{d}}{(D G / \mu)\left(\mu / \rho k_{d}\right)}\left(\frac{\mu}{\rho k_{d}}\right)^{2 / 3}=\frac{K_{X}}{G}\left(\frac{\mu}{\rho k_{d}}\right)^{2 / 3} \tag{17.41}
\end{equation*}
$$

Dividing,

$$
\begin{equation*}
\frac{j_{d}}{j_{h}}=\frac{K_{x} c\left(\mu / \rho k_{d}\right)^{3 /}}{h(c \mu / k)^{3 /}}=1 \tag{17.42}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{h}{K_{x} c}=\frac{\left(\mu / \rho k_{d}\right)^{33}}{(c \mu / k)^{33}}=\left(\frac{k}{c \rho F_{d}}\right)^{33}=1 \tag{17.43}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{h}{K_{x} c}=1 \tag{17.44}
\end{equation*}
$$

Lewis ${ }^{1}$ called attention to this relation, and the dimensionless group $h / K_{x} c$ is known as the Lewis number Le. It conveys the extremely important information that the heat-transfer coefficient is to the masstransfer coefficient as the value of the specific heat of the medium which serves for both heat transfer and mass transfer. For the case of the wick

Fra. 17.4. Lewis numbers for the air-water system.
in a wet-bulb experiment if the mean specific heat of the moist air is $0.25 \mathrm{Btu} /(\mathrm{lb})\left({ }^{\circ} \mathrm{F}\right)$, then the heat-transfer rate will be but one-quarter of the mass-transfer rate. It thus requires four times as great a potential for a given number of Btu to be transferred by sensible heat as for an equal number of Btu by mass transfer. The plot of Lewis number vs. temperature for the system air-water calculated from $L e=\left(k / \rho k_{d} c\right)^{3 / 5}$ is shown in Fig. 17.4. Two points obtained experimentally by Hilpert ${ }^{2}$ are also included in the plot. Values of h / K_{x} for other systems are tabulated in Table 17.1.

The Effective Film. In the wet-bulb experiment it was seen that the same wet-bulb temperature would be attained regardless of the rate of gas flow over the wick. It has also been shown in Chap. 11 that the rate of heat transfer varies with the 0.8 power of the gas velocity. The same should be true for mass transfer. In the Eq. (17.44), if the ratio of the

[^50]coefficients is constant, the film for both heat transfer and mass transfer must be affected to the same degree by a change in the gas rate. Sherwood ${ }^{1}$ has presented a correlation for the vaporization of numerous liquids into air, including water, and obtained
\[

$$
\begin{equation*}
\frac{D}{l}=0.023\left(\frac{D G}{\mu}\right)^{0.83}\left(\frac{\mu}{\rho k_{d}}\right)^{0.44} \tag{17.45}
\end{equation*}
$$

\]

where D is the inside diameter of the tube and l is the thickness of the film. This may be compared with Eq. (6.2) of Sieder and Tate for heat transfer:

$$
\frac{h_{i} D}{k}=0.027\left(\frac{D G}{\mu}\right)^{0.8}\left(\frac{c_{\mu}}{k}\right)^{1 / 2}\left(\frac{\mu_{w}}{\mu}\right)^{0.14}
$$

Table 17.1. Average Values of h / K_{X} Calculated from Wet-bulb Determinations* Diffusion into Air

Vapor	$\frac{h}{\overline{K_{X}}}$	Calculated from Chilton-Colburn analogy, Eq. (17.43)
Benzene	0.41	0.44
Carbon tetrachloride.	0.44	0.49
Chlorobenzenc.	0.44	0.48
Ethyl acetate.	0.42	0.46
Ethylene tetrachloride.	0.50	0.51
Toluene	0.44	0.47
Water.	0.26	0.21

* Sherwood, T. K., Trans. AIChE, 28, 107 (1932).
when $\left(\mu / \mu_{w}\right)^{0.14}$ is substantially 1.0 for gases. Other interesting extentions of the theory have been made by Arnold ${ }^{2}$ and Chilton and Colburn. ${ }^{3}$

HUMIDIFICATION AND DEHUMIDIFICATION

Humidifiers: The Cooling Tower. The largest present-day uses of diffusional heat transfer are found in the cooling tower, the air-conditioning spray chamber, the spray drier, the spray tower, and the spray pond. The use of cooling towers has grown tremendously in the last twenty years owing to an increasing necessity. In many industrial localities cold fresh water is too scarce to permit its unlimited use as a cooling medium. The problem of supplying sufficient surface and subsurface cooling water has grown to such an extent that new plants are often

[^51]required to develop the continual reuse of the limited water they may obtain from public or private sources. In some communities even river water, which may be present in abundance, requires precooling as discussed in Chap. 7. This is especially true of some of the rivers in the southern part of the United States having northern sources and which are heated to the dry-bulb temperature by the time they reach the South.
The available temperature of cooling water has been shown to be an important economic factor in the design of modern chemical and power plants. In the chemical plant it fixes the operating pressure on the condensers of distillation and evaporation processes and consequently on the equipment preceding them. In the power plant it fixes the turbine- or engine-discharge pressure and the ultimate recovery of heat. For these vital reasons the study of the cooling tower and the temperature of the water made available by it is of great importanco in the planning of a process. The cooling tower is also the simplest member of a class of apparatus whose potentialities have scarcely been realized.
Classification of Cooling Towers. Modern cooling towers are classified according to the means by which air is supplied the tower. All employ stacked horizontal rows of fill to provide increased contact surface between the air and water. In mechanical-draft towers the air is supplied in either of the two ways shown in Fig. 17.5a and b. If the air is sucked into the tower by a fan at the top through louvers at the bottom, it is induced draft. If the air is forced in by a fan at the bottom and discharges through the top, it is forced draft. Natural-circulation towers are of two types, atmospheric and natural draft as in Fig. $17.5 c$ and d.
Mechanical-draft Towers. Towers of this class are the commonest erected in the United States at present, and of these the vast majority are now induced-draft towers. The trend toward the induced-draft tower has been pronounced only in the last ten years, but it represents a logical transition, since there are advantages to its use which exceed all others except under very special conditions. In the forced-draft type as in Fig. $17.5 b$ the air enters through a circular fan opening and a relatively large ineffective height and volume of tower must be provided as airinlet space. The air distribution is relatively poor, since the air must make a 90° turn while at high velocity. In the induced-draft tower, on the other hand, the air can enter along one or more entire lengths of wall, and as a result the height of tower required for air entry is very small.
In the forced-draft tower the air is discharged at low velocity from a large opening at the top of the tower. Under these conditions the air possesses a small velocity head and tends to settle into the path of the fan intake stream. This means that the fresh intake air is contaminated by partially saturated air which has already passed through the tower
before. When this occurs, it is known as recirculation and reduces the performance capacity of the cooling tower. In the induced-draft tower the air discharges through the fan at a high velocity so that it is driven up into the natural air currents which prevent it from settling at the air intake. In induced-draft towers, however, the pressure drop is on the intake side of the fan, which increases the total fan-power requirements. The higher velocity of discharge of the induced-draft tower also causes a

Fia. 17.5. The common types of cooling towers.
somewhat greater entrainment or drift loss of water droplets carried from the system by the air stream.

Natural-circulation Towers. In use in Europe and the Orient, the popularity of the types in Fig. $17.5 c$ and d is declining in the United States. This is particularly true of the natural-draft tower.

The atmospheric tower avails itself of atmospheric wind currents. Air blows through the louvered sides in one direction at a time, shifting with the time of year and other atmospheric conditions. In exposed places having average wind velocities of 5 or 6 mph the atmospheric tower may
prove to be the most economical type, and where power costs are high, it may even be preferable with wind velocities as low as $21 / 2$ to 3 mph . Since the atmospheric currents must penetrate the entire width of the tower, the towers are made very narrow by comparison with other types and must be very long to afford equal capacity. Towers of this type have been built which are over 2000 ft long. Drift losses occur over the entire side and are greater than for other types. These torvers make less efficient use of the available potential, since they operate in crossflow whereas it was shown in Chap. 16 that the most effective use of potentials occurs in counterflow. When cooling water is desired at a temperature close to the wet bulb, this type is incapable of producing it. Atmospheric towers are consequently extremely large and have high initial costs, and when the air is becalmed, they may cease to operate. They have one great advantage, however, in that they eliminate the principal operating cost of mechanical draft towers, i.e., the cost of fan power. In areas with low average wind velocities the fixed charges and pumping costs offset the advantage. Representative arerage July wind velocities in the United States are shown in Fig. 17.6. An average velocity exceeding 5 or 6 mph is not a sufficient indication that an atmospheric tower is the best. With an average wind velocity of 5 mph the tower will operate at less than design capacity for part of the time. The placement of the tower in a $5-\mathrm{mph}$ wind locality must be such that it is free of obstruction and can avail itself very fully of existing currents.

Natural-draft towers operate in the same way as a furnace chimney. Air is heated in the tower by the hot water it contacts, so that its density is lowered. The difference between the density of air in the tower and outside it causes a natural flow of cold air in at the bottom and the rejection of less dense, warm air at the top. Natural-draft towers must be tall for sufficient buoyancy and must have large cross sections because of the low rate at which the air circulates compared with mechanical draft. Natural-draft towers consume more pumping power. However, they eliminate the cost of fan power and may be more reliable in some localities than are atmospheric towers. In atmospheric towers emphasis must be placed on wind characteristics. In natural-draft towers primary consideration must be given to the temperature characteristics of the air. If it is customary for the air to rise to a high temperature during the day, at least relative to the hot-water temperature, the natural-draft tower will cease to operate during the hot portion of the day. The initial cost and fixed charges on these towers are rather great, and they seem to be passing out of use.

Closely allied to natural-circulation cooling towers is the spray pond consisting of a number of up-spray nozzles, which spray water into the

Fig. 17.6. Summer wind data. The length of each line indicates the number of hours in a normal July that the wind blows toward the center circles at each of 71 stations. Figures in circles are average July velocities in miles per hour. (The Marley Company.)
air without inducing air currents. These do not operate with an orderly attempt at air flow and consequently are not capable of producing water approaching the wet bulb as closely as cooling towers. Where the water must be cooled over a short range and without a close approach to the wet-bulb temperature, spray ponds may provide the most economical solution to a water-cooling problem. Drift losses in spray ponds are relatively high. Spray towers are also used widely. They are similar to atmospheric towers except that they employ little or no fill.

Cooling towers are occasionally equipped with bare-tube bundles, which are inserted just above the water basin at the bottom of the tower. These are referred to as bare-tube or atmospheric coolers. The primary cooling water flows inside the cooler while tower water is continuously circulated over it. The primary cooling water is thus contained in a totally closed system. The calculation of this type of apparatus will be treated in Chap. 20.

Cooling-tower Internals and the Role of Fill. If water passes through a nozzle capable of producing small droplets, a large surface becomes available-for air-water contact. Since the water-air interface is also the heat-transfer surface, the use of a nozzle permits the attainment of considerable performance per cubic foot of contact apparatus. This is the principle of the spray pond and the spray tower. Consider a hypothetical spray tower as shown in Fig. 17.7a. Liquid fed to it falls through by gravity. If the tower is 16 ft high and no

(a)- FREE FALL TOWER
10.7. Fie ad it fall. initial velocity is imparted to the droplet, it falls in approximate accord with the free-fall law, $z=1 / 2 g \theta^{2}$, where z is the height, g the acceleration of gravity, and θ the time. A droplet of water will fall through the height of the tower in 1 see. If liquid is fed at the rate of one droplet per second and there is no obstruction, one droplet will always be present in the tower and one droplet may be continuously removed from the tower per second. The effective surface in the tower of Fig. $17.7 a$ is that of one droplet.

Now suppose that by introducing some geometrical forms on which a droplet may impinge or be deflected it is possible to make a droplet take 4 sec to fall through the height of the tower. Then as shown in Fig. 17.76, one droplet is fed per second at the top and one droplet is
continuously removed at the bottom but four droplets remain in the tower. The effective surface in the latter is that of four droplets or four times the free-fall surface. The function of fill is to increase the available surface in the tower either by spreading the liquid over a greater surface or by retarding the rate of fall of the droplet surface through the apparatus. In ordinary diffusion towers such as chemical absorbers the packing is introduced in the form of Raschig rings, Berl saddles, or other objects which are very compact and provide a surface on which the liquid spreads and exposes a large film. This is flm surface. In the cooling tower, because of the requirement of a large air volume and small allowable pressure drop, it is customary to use spaced wooden slats of triangular or rectangular cross section, leaving the tower substantially unob-

Fig. 17.8 Common types of cooling-tower fill.
structed. The packing, or fill, in a cooling tower is almost entirely fabricated in either of the forms of Fig. 17.8, and its purpose is to interrupt the descent of liquid. Although the free space between adjoining fill slats is relatively large, the horizontal projection of the fill does not permit the droplets of liquid to fall through the tower without impinging repeatedly on successively lower slats. Some of the liquid striking the top of a slat spatters, but a large part flows about it and breaks into turbulent flow at the bottom so as to form new droplets automatically and recreate new a^{3} roplet surface. The surface on the sides of the fill is comparable to film surface in packed absorbers. There is, in addition, a large amount of droplet surface. More recently the trend has been toward the use of small rectangular slats. They are considerably cheaper to fabricate and install than those of triangular cross section and cause lower pressure drops. The mechanism of producing droplets below each horizontal row relies upon the draining liquid breaking into turbulent flow. Consequently, the method by which the droplets are formed at the top of the tower is of
little consequence to the overall formation of surface as long as there is a uniform distribution of liquid over the entire cross section of the tower.

To demonstrate the effectiveness of these types of fill the free-fall analysis can be carried still further. According to the free-fall equation a droplet will fall 16 ft in 1 sec . In $1 / 2 \mathrm{sec}$ a droplet with zero velocity at the top falls approximately 4 ft , and its average velocity is 8 fps . In the second $1 / 2$ sec it falls the remaining 12 ft with an average velocity of 24 fps . The droplets traverse the lower three-quarters of the tower so quickly that the time of contact in the last three-quarters of the tower equals only that of the first quarter. The advantage of interrupted fall thus becomes apparent: Each time the fall is interrupted (say at each quarter of the tower in Fig. 17.7b) it is as if a droplet with zero velocity were starting to fall anew, and the interrupted tower is equivalent to the effective first quarters of four spray towers in series.

In most cooling towers the liquid is introduced by spraying the water upward at the top so that it travels up and then down before striking the first row of fill. This provides effective contact inexpensively, since the velocity of a droplet traveling upward must decrease to zero when its direction reverses. Another means of increasing the surface or time of con-

Fig. 17.9. Cooling-tower water and air flow. tact in spray towers and cooling towers is by atomizing the water instead of forming droplets. The same can be achieved with a nozzle instead of an atomizer by using a water-soluble wetting agent. This is not very practical, however, since very fine droplets cannot be caught in the drift eliminators without the expenditure of a large pressure drop. In the construction of cooling towers it is customary to employ droplets of such a size that drift losses can be guaranteed not to exceed 0.25 per cent of the total water circulated over the tower. With the expenditure of a greater fan power this loss can be reduced to 0.10 per cent.

The Heat Balance. Consider the flow diagram in Fig. 17.9. It consists of a cooling tower operating with a heat source in a closed circuit. Water from the basin of the tower is pumped through a battery of surface condensers, where its temperature is raised. The heated water passes back onto the tower along with make-up water, which compensates for the evaporation from the system owing to the saturation of the air passing through the tower.

For convenience, cooling towers are analyzed on the basis of $1 \mathrm{ft}^{2}$ of tower internal ground area. The air rate or air loading is taken as the bone-dry gas rate per unit of ground area $G \mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)$. The water loading at the top of the tower is the water rate per unit of ground area L $\mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)$, and the make-up rate is $L_{0} \mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)$. The heat load per hour per square foot q is accordingly the total hourly rate Q divided by the internal ground dimensions of the tower. Using the subscript 1 for the inlet and 2 for the outlet, the balance around the tower in terms of the gas for a $0^{\circ} \mathrm{F}$ datum is

$$
\begin{equation*}
q+L_{0} C T_{0}=G\left(H_{2}-H_{1}\right) \tag{17.46}
\end{equation*}
$$

where C is the specific heat of water and H is the enthalpy per pound of bone-dry air and including the heat of the vapor associated with the pound of bone-dry air. In terms of the water loading the heat balance is

$$
\begin{equation*}
q=L C\left(T_{1}-T_{2}\right)+L_{0} C\left(T_{2}-T_{0}\right) \tag{17.47}
\end{equation*}
$$

Combining both equations,

$$
\begin{equation*}
G\left(H_{2}-H_{1}\right)=L C\left(T_{1}-T_{2}\right)+L_{0} C T_{2} \tag{17.48}
\end{equation*}
$$

The quantity of make-up water required to compensate for evaporation is

$$
\begin{equation*}
L_{0}=G\left(X_{2}-X_{1}\right) \tag{17.49}
\end{equation*}
$$

Dividing Eq. (17.48) by Eq. (17.49)

$$
\begin{align*}
\frac{G\left(H_{2}-H_{1}\right)}{G\left(X_{2}-X_{1}\right)} & =\frac{L C\left(T_{1}-T_{2}\right)+L_{0} C T_{2}}{L_{0}} \tag{17.50}\\
L_{0} \frac{H_{2}-H_{1}}{\left(X_{2}-X_{1}\right)} & =L C\left(T_{1}-T_{2}\right)+L_{0} C T_{2} \tag{17.51}
\end{align*}
$$

Combining Eq. (17.51) with Eq. (17.47)

$$
\begin{gather*}
L C\left(T_{1}-T_{2}\right)+L_{0} C T_{2}=q+L_{0} C T_{0} \tag{17.52}\\
L_{0}=\frac{q}{\left(H_{2}-H_{1}\right) /\left(X_{2}-\overline{X_{1}}\right)-C T_{0}} \tag{17.53}
\end{gather*}
$$

Equation (17.53) gives the quantity of make-up corresponding to any fixed terminal conditions. The enthalpy for saturated air appears on ordinary psychrometric charts, Caution is suggested in the use of these charts, since they invariably have differing datums. Some employ a $0^{\circ} \mathrm{F}$ air datum and a $32^{\circ} \mathrm{F}$ water vapor datum to permit the use of the Keenan and Keyes steam tables (Table 7). When a single chart is used, the enthalpy differences are all of sufficient accuracy for heat-transfer calculations. When part of the data is taken from one chart and part from another, serious error may result. For the solution of all air-water
mixtures in this chapter the enthalpy of saturated air above $0^{\circ} \mathrm{F}$ can be computed by

$$
\begin{equation*}
H^{\prime}=X^{\prime} t+X^{\prime} \lambda+0.24 t \tag{17.54}
\end{equation*}
$$

where 0.24 is the specific heat of air.
For unsaturated air

$$
\begin{equation*}
H=X t_{D P}+X \lambda_{D P}+0.45 X\left(t-t_{D P}\right)+0.24 t \tag{17.55}
\end{equation*}
$$

where 0.45 is the specific heat of water vapor from 0 to $120^{\circ} \mathrm{F}$ and the subscript $D P$ refers to the dew point.

Example 17.1. Calculation of the Enthalpy of Saturated Air. What is the saturation enthalpy of air at $75^{\circ} \mathrm{F}$?

At $75^{\circ} \mathrm{F}$ the saturation partial pressure of water is 0.4298 psia (Table 7).
Humidity, $X^{\prime}=\frac{p_{w}}{p_{t}-p_{v}} \frac{M_{v}}{M_{a}}=\frac{0.4298}{14.696-0.4298} \times \frac{18}{29}=0.0187 \mathrm{lb}$ water $/ \mathrm{lb}$ air
Enthalpy above $0^{\circ} \mathrm{F}, H^{\prime}=0.0187 \times 75+0.0187 \times 1051.5+0.24 \times 75$

$$
\begin{equation*}
=39.1 \mathrm{Btu} / \mathrm{lb} \mathrm{dry} \text { air } \tag{17.54}
\end{equation*}
$$

The enthalpies of Tables 17.2 and 17.3 have been computed in this manner.
Table 17.2. Enthalpies and Humidities of Air-Water Mixtures at 14.7 Psia

Temp, ${ }^{\circ} \mathrm{F}$	Vapor pressure, psia	Humidity, lb $\mathrm{H}_{2} \mathrm{O} / \mathrm{lb}$ air	Enthalpy, Btu/lb air	$\begin{gathered} v \text { air, } \\ \mathrm{ft}^{3} / \mathrm{lb} \end{gathered}$	$\underset{\substack{\text { air } \\ \mathrm{ft} / \mathrm{lb} \\ \mathrm{H}_{2} \mathrm{O} \\ \hline}}{\text {, }}$
40	0.1217	0.005	15.15	12.59	12.70
45	0.1475	0.0063	17.8	12.72	12.85
50	0.1781	0.0076	20.5	12.84	13.00
55	0.2141	0.0098	23.8	12.97	13.16
60	0.2563	0.0110	26.7	13.10	13.33
65	0.3056	0.0130	30.4	13.23	13.51
70	0.3631	0.0160	34.5	13.35	13.69
75	0.4298	0.0189	39.1	13.48	13.88
80	0.5069	0.0222	44.1	13.60	14.09
85	0.5959	0.0262	50.0	13.73	14.31
90	0.6982	0.0310	56.7	13.86	14.55
95	0.8153	0.0365	64.2	13.99	14.81
100	0.9492	0.0430	72.7	14.11	15.08
105	1:1016	0.0503	82.5	14.24	15.39
110	1.2748	0.0590	93.8	14.36	15.73
115	1.4709	0.0691	106.7	14.49	16.10
120	1.6924	0.0810	121.5	14.62	16.52
125	1.9420	0.0948	138.8	. 14.75	16.99
130	2.2225	0.1108	158.5	14.88	17.53
135	2.5370	0.1300	181.9	15.00	18.13
140	2.8886	0.1520	208.6	15.13	18.84
145	3.2810	0.1810	243.8	15.26	19.64
150	3.7180	0.2160	286.0	15.39	20.60

Table 17.3. Enthatpims and Humimitibs at Vartous Elevations
Elevations are feet above sea level
Humidity, X^{\prime}, lb water $/ \mathrm{lb}$ dry air; enthalpies, $H^{\prime}, \mathrm{Btu} / \mathrm{lb}$ dry air

$\underset{{ }_{\circ} \mathrm{F}}{\mathrm{~T} .,}$	2000		4000		6000		8000	
	x^{\prime}	H^{\prime}	X^{\prime}	H^{\prime}	X^{\prime}	H^{\prime}	X^{\prime}	H^{\prime}
40	0.0056	15.8	0.0061	16.4	0.0065	16.8	0.0070	17.3
45	0.00680	18.4	0.0073	18.9	0.0079	19.6	0.0085	20.3
50	0.0082	21.1	0.0088	21.8	0.0095	22.6	0.0103	23.4
55	0.0099	24.3	0.0106	25.0	0.0115	26.0	0.0124	27.0
60	0.0119	27.7	0.0128	28.7	0.0138	29.8	0.0149	31.0
65	0.01420	31.5	0.0153	32.8	0.0165	34.1	0.0178	35.6
70	0.0170	35.9	0.0183	37.3	0.0197	38.9	0.0212	40.6
75	0.0202	40.7	0.0217	42.2	0.0234	44.4	0.0253	46.5
80	0.0239	46.1	0.0253	47.7	0.0278	50.5	0.0300	53.0
85	0.0284	52.5	0.0306	55.0	0.0330	57.7	0.0358	60.9
90	0.0334	59.4	0.0361	62.4	0.0390	65.7	0.0425	69.6
95	0.0394	67.5	0.0425	71.0	0.0460	75.0	0.0499	80.4
100	0.0465	76.8	0.0501	81.0	0.0544	85.7	0.0580	91.0
105	0.0545	87.2	0.0590	92.4	0.0640	98.1	0.0695	104.3
110	0.0645	99.8	0.0692	105.4	0.0751	111.9	0.0819	119.8
115	0.0750	113.4	0.0812	120.6	0.0885	128.8	0.0964	137.8
120	0.0880	129.8	0.0955	130.3	0.1040	147.0	0.1137	158.8
125	0.1029	148.0	0.1120	158.5	0.1220	170.0	0.1340	183.5
130	0.1208	169.8	0.1317	182.4	. 0.1440	196.7	0.1580	212.7
135	0.1412	195.1	0.1548	210.6	0.1698	227.9	0.1870	247.6
140	0.1665	225.7	0.1830	244.8	0.2010	265.5	0.2220	289.7
145	0.1965	261.8	0.2190	287.8	0.2420	314.8	0.2690	345.8
150	0.2320	304.5	0.2560	332.3	0.2842	365.0	0.3180	404.0

Heat Transfer by Simultaneous Diffusion and Convection. In the wetbulb experiment the air and water were initially at the same temperature, although this was not a necessary requirement. By simply referring to Fig. 17.3 it can be seen that the equilibrium represented by the wetbulb temperature is influenced by the absolute vapor content of the air.

In a cooling tower hot water is cooled by cold air. When water passes through the tower, the water temperature may fall below the dry bulb of the inlet air but not lower than the wet bulb of the inlet air. Consider the tower to be divided into two portions. In the upper portion hot water contacts outlet air which is colder than the water. Unlike the wet-bulb experiment, in this case the partial pressure of the water out of the liquid is greater than that in the exit air while the temperature of the water is also greater than that of the exit air. Both potentials work to decrease the water temperature by evaporation and sensible transfer to the air, thereby increasing the air enthalpy. In this manner,
depending upon the amount of air and the amount of evaporation it is possible for the temperature of the water to fall to or below the dry bulb of the inlet air before reaching the bottom of the tower where the air enters. It is the fact that both potentials may operate adiabatically in the same direction while saturating air which makes the cooling tower so effective for cooling water. In the lower portion of the tower the water may possess a temperature equal to or Iower than the dry bulb of the air it contacts, and sensible heat and mass transfer are in opposite directions, identical with the wet-bulb experiment. The limit to which the outlet water temperature may then fall in a cooling tower is that which is adiabatically in equilibrium with the inlet air, namely, the wet bulb.

The derivation of the performance of a cooling tower given below is essentially that of Merkel. ${ }^{1}$ Since the total heat transfer in a cooling tower is the passage of heat by diffusion and convection from the water to the air,

$$
\begin{equation*}
q=q_{d}+q_{c} \tag{17.56}
\end{equation*}
$$

where $q_{d} \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)$ is the portion transferred by diffusion and q_{c} $\mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)$ is the portion transferred by convection. In the definition of q it should be remembered that the area implied by its dimensions is the ground area of the tower and not the heat-transfer surface.

If λ is the average latent heat of vaporization of all the water vaporized in the tower,

$$
\begin{equation*}
q_{d}=L_{0} \lambda \quad \text { (nearly) } \tag{17.57}
\end{equation*}
$$

Combining with Eq. (17.47)

$$
\begin{equation*}
q_{c}=L C\left(T_{1}-T_{2}\right)+L C\left(T_{2}-T_{0}\right)-L_{0} \lambda \tag{17.58}
\end{equation*}
$$

and
$\frac{q_{c}}{q_{d}}=\frac{L C\left(T_{1}-T_{2}\right)+L_{0} C\left(T_{2}-T_{0}\right)-L_{0} \lambda}{L_{0} \lambda}=\frac{L C\left(T_{1}-T_{2}\right)+L_{0} C\left(T_{2}-T_{0}\right)}{L_{0} \lambda}-1$
But

$$
\begin{equation*}
L_{0}=G\left(X_{2}-X_{1}\right) \tag{17.59}
\end{equation*}
$$

and

$$
\begin{equation*}
G\left(H_{2}-H_{1}\right)=L C\left(T_{1}-T_{2}\right)+L_{0} C\left(T_{2}-T_{0}\right) \tag{17.60}
\end{equation*}
$$

from which

$$
\begin{equation*}
\frac{q_{c}}{q_{d}}=\frac{1}{\lambda}\left(\frac{H_{2}-H_{1}}{X_{2}-X_{1}}\right)-1 \tag{17.48}
\end{equation*}
$$

This is an interesting relationship, since it states that the ratio of the heat transferred by convection to that transferred by diffusion, both in the
${ }^{1}$ Merkel, F., Forschungsarb.; 275, 1-48.(1925).
same direction, is fixed by the inlet and outlet air conditions, which are either known or can be obtained by calculation. While Eq. (17.61) establishes the quantities of heat transfer by convection and diffusion, the ratio of the rates of heat and mass transfer has been set by the Lewis number.

Based on the overall rather than the individual films, the sensible-heat transfer from the water at temperature T to the air at temperature t is given by

$$
\begin{equation*}
d q_{c}=h(T-i) a d V \tag{17.62}
\end{equation*}
$$

where a is the surface of the water per cubic foot of tower as both droplet and film surface and $d V$ is the differential tower volume in which the surface exists. From this $a d V=d A$, where A is the heat-transfer surface. If c is the humid heat of the air defined by $c=0.24+0.45 X$,

$$
\begin{align*}
& d q_{\mathrm{c}}=G c d t \tag{17.63}\\
& d q_{d}=\lambda d L \tag{17.64}
\end{align*}
$$

Since $d L$ is the rate at which material diffuses, the differential form of Eq. (17.26) for weight flow is

$$
\begin{equation*}
1 / 18 d L=K_{o}\left(p^{\prime}-p\right) a d V \tag{17.65}
\end{equation*}
$$

where p^{\prime} is the partial pressure of water corresponding to the water temperature T and p is the vapor pressure in the air. For all practical purposes the humidity can be considered proportional to the partial pressure, at least in the range encountered in cooling-tower applications. Equation (17.65) becomes

$$
\begin{equation*}
d L=K_{X}\left(X^{\prime}-X\right) a d V \tag{17.66}
\end{equation*}
$$

where X^{\prime} is the humidity at the water temperature T and X the humidity of the air.

Substituting in Eq. (17.64),

$$
\begin{equation*}
d q_{d}=K_{x} \lambda\left(X^{\prime}-X\right) a d V \tag{17.67}
\end{equation*}
$$

The water evaporated ∂L increases the humidity of the air stream above its value at the inlet by

$$
\begin{equation*}
d L=G d X \tag{17.68}
\end{equation*}
$$

The combined heat transfer $d q$ is then the sum of both modes of transfer

$$
\begin{equation*}
d q=d q_{o}+d q_{d}=h(T-t) a d V+K_{x} \lambda\left(X^{\prime}-X\right) a d V \tag{17.69}
\end{equation*}
$$

and

$$
\begin{equation*}
d q=G d H \tag{17.70}
\end{equation*}
$$

Equation (17.70) is useful if it can be combined with Eq. (17.69), since it expresses the total heat transfer in the system in heat units alone. In order to avoid the appearance of both X and H in the same equation, the
X values can be factored out. Using an average value for the humid heat c and the latent heat λ and neglecting superheat, all of which are permissible in the relatively close range in which the cooling tower operates, for an air-water mixture consisting of 1 lb of air and $X \mathrm{lb}$ of water vapor,

$$
\begin{align*}
H & =1 c t+\lambda X \tag{17.71}\\
G d H & =G(c d t+\lambda d X) \tag{17.72}
\end{align*}
$$

Regrouping Eq. (17.69),

$$
\begin{equation*}
d q=K_{X} a d V\left[\left(\frac{h T}{K_{X}}+\lambda X^{\prime}\right)-\left(\frac{h t}{K_{X}}+\lambda X\right)\right] \tag{17.73}
\end{equation*}
$$

Add and subtract $c(T-t)$.
$d q=K_{x} a d V\left[\left(c T+\lambda X^{\prime}\right)-(c t+\lambda X)+c(T-t)\left(\frac{h}{K_{X} c}-1\right)\right]$
Substitute Eq. (17.71) into Eq. (17.74).

$$
\begin{equation*}
d q=K_{X} a d V\left[\left(H^{\prime}-H\right)+c(T-t)\left(\frac{h}{K_{x} c}-1\right)\right] \tag{17.75}
\end{equation*}
$$

$d q$ can be expressed in terms of the enthalpy decrease of the total water quantity or the enthalpy increase of the total air mixture, both of which are equal.

$$
\begin{equation*}
d q=d(L C T)=G d H \tag{17.76}
\end{equation*}
$$

The gas loading G remains constant throughout the tower because it is based on the bone-dry gas only. The liquid loading is not quite constant, however, owing to the evaporation of water into the bone-dry air. The saturation loss from water to air amounts to less than 2 per cent of the water circulated over the tower and may be considered constant without introducing a serious error.

Hence

$$
\begin{equation*}
d(L C T)=L C d T \tag{17.77}
\end{equation*}
$$

and

$$
\begin{equation*}
L C d T=G d H \tag{17.78}
\end{equation*}
$$

From Table 17.1, for water diffusing into air the Lewis number is approximately $h / K_{x} c=1$, and the last term of Eq. (17.75) drops out, thus

$$
\begin{equation*}
L C d T=G d H=R_{X}\left(H^{\prime}-H\right) a d V \tag{17.79}
\end{equation*}
$$

By introducing the mass-transfer-rate equivalent $K_{x}=h / c$ both modes of heat transfer can be combined by the use of either coefficient, whichever is the easier to obtain. Actually $h / K_{x} c$ for the system air-water is not 1.0 as predicted by the Lewis number. The data of several investi-
*This is an approximation for Eqs. (17.54) and (17.55).
gators indicate that the value of the Lewis number is nearer 0.9. In practice Eq. (17.79) is always evaluated from diffusion potentials, which means that only the convection heat-transfer coefficient is in error if the theoretical value of the Lewis number is used. In most cooling-tower services the convection-heat transfer alone represents less than 20 per cent of the total heat load. The development of equations without the convenient simplification that the Lewis number equals 1.0 will be treated later.

The Analysis of Cooling-tower Requirements. Equation (17.79) is the key equation for the calculation of the design and the analysis of performance in cooling towers. K_{X} is the overall transfer-rate term analogous to U_{c} in exchangers, and it should be remembered that there is no dirt factor in direct-contact heat transfer. However, in tubular exchangers the heat-transfer surface is usually known or can be readily computed. In the cooling tower the value of a cannot be determined directly, since it is composed of a random disposition of droplet and film surface. The film surface is nearly independent of the thickness of the film, while the droplet surface is dependent upon both the portion of the liquid loading forming droplet's and the average size of the droplets formed. In a tower having interrupted fall other factors will obviously enter. Theinability to calculate a is overcome by experimentally determining the product $K_{X} a$ as a whole for a particular type of tower fill and at specific rates of flow for the diffusing fluids comprising the system.

In the development of diffusion theory it was shown that the number of transfer units n_{t} obtained from Eq. (17.30) provided a useful means of sizing the task to be accomplished in fulfilling a required amount of mass transfer by diffusion. For a particular type of fill if the height of one transfer unit ($H T U$) is known, the total height of tower required for the task per square foot of ground area is obtained as the product of $n_{t}(H T U)$. The units of mols and atmospheres are convenient for absorption calculations but the pound is more convenient in diffusion-heat transfer. Equation (17.79) is seen to be the analogue of Eq. (17.29) except that the portion of the total Btu transferred by sensible-heat transfer has first been converted by the Lewis number into an equivalent quantity of Btu mass transfer and then combined with the actual mass transfer since it is a fixed proportion of it. Consequently, $G d H$ is the total heat transfer in the diffusion tower. Rearranging Eq. (17.79),

$$
\begin{gather*}
\int \frac{d H}{\bar{H}^{\prime}-H}=K_{x} a \frac{V}{G} \tag{17.80}\\
n_{d}=\int \frac{d T}{\bar{H}^{\prime}-\vec{H}}=K_{x} a \frac{V}{L} \tag{17.81}
\end{gather*}
$$

While Eq. (17.80) resembles Eq. (17.30) except for its dimensions, it is not. very convenient for use in cooling-tower calculations where the principal interest lies in the temperature of the water produced. Equation (17.80) can be transformed to Eq. (17.81) when multiplied by the ratio G / L and recalling that $C=1.0$ for water. It is more convenient to use Eq. (17.81), whose value will be called the number of diffusion units n_{d} to avoid confusion with the number of transfer units n_{t}. If the height of one diffusion unit $H D U$ is known for a given type of fill, the total height of tower required for a given service can be computed.

Determination of the Number of Diffusion Units. The number of diffusion units calculated by Eq. (17.81) is equal to $\int d T /\left(H^{\prime}-H\right)$ and is determined only by the process conditions imposed upon a tower and not the

(a)

Fig. 17.10. resistance.
performance of the tower itself. Only the $H D U$ is obtained experimentally. If a quantity of water of a given inlet temperature and a quantity of air of a given wet bulb are to be contacted, it will require a certain number of diffusion units as determined by the integration of Eq. (17.81) to reduce the water to any desired temperature. The number of diffusion units so obtained will be required in any type of tower, whether it be filled, packed, or empty. The height of the tower which is capable of providing the predetermined number of diffusion units varies for each type of fill and with the liquid and gas loadings.

Since the temperature of the water T is not a simple function of H^{\prime} and H, it is more convenient to carry out the integration of Eq. (17.81) graphically or numerically. Referring to Fig. 17.10a, the tabulated
saturation enthalpies of air H^{\prime} are plotted against the water temperature T throughout the water range in the tower. The saturation values of H^{\prime} form a curve which are the values of air saturated at the water temperature and which may be regarded to exist at the air film on the surface of the water. Since the saturation enthalpies also include the saturation humidities, this line is equivalent to the vapor pressure of water out of the water.

The next requirement is to determine the actual enthalpy at any point in the tower. Equation (17.78) states that $L C d T=G d H$, where $C=1.0$ for water. It relates the change in enthalpy in the gas phase $d H$ to the accompanying change in the water temperature $a T$ in contact with the gas. This change can be represented by rearranging Eq. (17.78) to give

$$
\begin{equation*}
\frac{L}{G}=\frac{d H}{d T} \tag{17.82}
\end{equation*}
$$

which is the equation of a straight line in Fig. $17.10 a$ whose slope is the ratio of the liquid to air loading L / G. The value of H at any point on the operating line is given by

$$
\begin{equation*}
H_{2}=H_{1}+\frac{L}{G}\left(T_{2}-T_{1}\right) \tag{17.83}
\end{equation*}
$$

since the enthalpy of the inlet air H_{1} is known or can be readily determined. As a visual aid it should be understood that the area on the graph between the saturation curve and the operating line is an indication of the size of the potential promoting the total heat transfer. A change in process conditions such that the operating line is moved downward to include a greater area between itself and the saturation line means that fewer diffusion units and a lesser height of any type of tower are ultimately required. At any temperature T in the column between T_{1} and T_{2} the potential driving heat out of the saturated film at the water surface and into the unsaturated air is the difference between the value of H^{\prime} and H at that point. By taking small increments of T and dividing by the average difference of $H^{\prime}-H$ for the increment, the number of diffusion units required to change the temperature of the water is obtained. When the increments are summed up, the total change in the water temperature gives the total value of n_{d}. As mentioned above, the starting point for the operating line H_{1} is obtained from the condition of the atmospheric air entering the tower at the bottom.

When the number of diffusion units is obtained from Eq. (17.80) instead of Eq. (17.81), ($H^{\prime}-H$) can be obtained as the log mean of the enthalpy difference at the bottom and top of the tower. In Fig. 17.10a this is equivalent to taking the area between the operating line and a
straight line drawn between H_{1}^{\prime} and H_{2}^{\prime}. The potential obtained in this manner is greater than the actual potential and causes errors which may be on the unsafe side. To obtain the number of diffusion units from the $\int d H /\left(H^{\prime}-H\right)$, the expression must be multiplied by G / L.

Correction for the Liquid-film Resistance. From Eqs. (17.46) to (17.82) the derivation was based upon the assumption that the overall coefficient and the gas-side coefficient were identical. This, of course, implied that the liquid film does not offer any significant resistance to diffusion and that the gas side is controlling. This may be in error, particularly when the humidifying liquid is an aqueous solution. McAdams ${ }^{1}$ has devised an excellent graphic method of allowing for the resistance of the liquid film. In writing Eq. (17.62) it was assumed that h was identical with h_{G}, which is the heat-transfer coefficient from the liquid-film-air-film interface to the air. When there is an appreciable liquidfilm resistance, h in Eq. (17.62) should more correctly be written as an overall coefficient U, since it is the resultant of h_{G} and h_{L}, the latter being the convection coefficient from the liquid film to the interface. h without a subscript will be retained for cooling-tower applications in place of U because it is consistent with much of the literature. For the actual relationship when there is a significant liquid-film resistance, rewrite Eq. (17.62).

$$
\begin{equation*}
L C d T=h_{L}\left(T-T_{i}\right) a d V \tag{17.62a}
\end{equation*}
$$

which is the rate of transfer from the liquid body through the liquid film to the liquid-air interface. The rate of sensible transfer from the interface through the gas film to the gas body is given by

$$
G c d t=h_{G}\left(T_{i^{\prime}}-t\right) a d V
$$

The analogue of Eq. (17.79) may be obtained in terms of the interface.

$$
G d X=k_{x}\left(X_{i}-X\right)
$$

Applying the Lewis number $h_{G} / k_{x} c=1$, where k_{x} is the gas-side diffusion coefficient,

$$
\begin{equation*}
G d H=k_{X}\left(H_{i}-H\right) a d V \tag{17.79a}
\end{equation*}
$$

Equating (17.62a) and (17.79a) gives

$$
\frac{h_{L}}{k_{X}}=\frac{H_{i}-H}{T_{i}-T}
$$

Referring to Fig. 17.10b, a line of negative slope $-h_{L} / h_{X}$ is drawn from each of the terminal points of the operating line and the potential is the area included between the saturation line, the operating line, and the ${ }^{1}$ McAdams, W. H., "Heat Transmission," 2d ed., p. 290, McGraw-Hill Book Company, Inc., New York, 1942.
two lines of negative slope. The interface values of the enthalpies and temperatures are marked accordingly.

Cooling-tower Process Conditions. From the standpoint of tube corrosion $120^{\circ} \mathrm{F}$ is the maximum temperature at which cooling water ordinarily emerges from tubular equipment. If some of the liquid products in a plant are cooled below $120^{\circ} \mathrm{F}$, the outlet-water temperature is usually lower than $120^{\circ} \mathrm{F}$ in order to prevent an appreciable temperature cross inside the tubular equipment. The temperature of the water to a cooling tower rarely exceeds $120^{\circ} \mathrm{F}$ and is usually less. When the temperature of the water from a process is over $120^{\circ} \mathrm{F}$, the increased evaporation may justify the use of an atmospheric cooler to prevent the direct contact between hot water and air.

The lowest possible temperature to which water can be cooled in a cooling tower corresponds to the wet-bulb temperature of the air. This is not a practical limit, however, since the vapor pressure out of the water and in the air will be the same when the water attains the wet-bulb temperature, resulting in a zero diffusion potential for which an infinite tower is required. The difference between the water-outlet temperature from the tower T_{2} and the wet-bulb temperature is called the approach in a cooling tower. Since most cooling towers operate over nearly the same water range, the approach is the principal index of how difficult the task will be as well as an indication of the number of diffusion units which will be required.

In Fig. 17.11 is shown a map of the United States on which are recorded the wet-bulb temperatures which are not exceeded for more than 5 per cent of the total hours for the four summer months from June through September. In the northeastern portion of the country the 5 per cent wet-bulb temperature is about $75^{\circ} \mathrm{F}$, and it is customary in this region to cool the water in a tower to a 10° approach, or $85^{\circ} \mathrm{F}$. On the Gulf Coast, the 5 per cent wet-bulb temperature is about $80^{\circ} \mathrm{F}$, and in these regions it is customary to invest more in cooling towers by cooling to a 5° approach, or again $85^{\circ} \mathrm{F}$. Countless installations have justified the economics of these approaches. It must be realized, however, that, when a tower is designed for a definite approach to the 5 per cent wet bulb, there will be some hours during which the water issuing from the tower will be warmer than originally specified in the process conditions.

When a process involves volatile materials or vacuum operation, the 5 per cent wet bulb is discarded for another basis of selection. The approach may be selected as a compromise between the values in Fig. 17.11 and a compilation of reasonable maximum temperatures. Such a compilation is contained in Table 17.4. These are not the all-time maximums but temperatures which are rarely exceeded. As an example, dur-

Fig. 17.11. Summer wet-bulb temperature data. The wet-bulb temperatures shown will be exceeded not more than 5 per cent of the total hours during June to Soptember, inclusive, of a normal summer. (The Marley Company.)

Tabli 17.4. Reasonable Maximum Temperatures and Absolute Maximuk Wind Velocities in the Unifed States*

State	City	Reasonable maximum, Temp, ${ }^{\circ} \mathrm{F}$			Max recorded wind velacity, mph
		Dry bulb	Wet bulb	Dew point	
Alabama.	Mobile	95	82	80	87
Arizona.	Phoenix	113	78	74	40
Arkansas.	Little Rock	103	83	78	49
California	Fresno	110	75	66	41
	Laguna Beach	82	70	68	
	Oakland	94	68	67	50
	San Diego	88	74	72	43
	Williams	110	80	71	
Colorado.	Denver	99	68	64	53
	Grand Junction	102	68	63	
Connecticut.	Hartford		82		58
District of Columbia	Washington	99	84	80	55
Florida.	Jacksonville	99	82	79	58
	Miami	92	81	79	87
Georgia.	Atlanta	101	82	79	51
Idaho..	Boise	109	71	65	43
Illinois.	Chicago	104	80	77	65
	Moline	103	83	80	
Indiana.	Evansville	102	82	79	60
Kansas.	Wichita	110	79	74	68
Louisiana.	New Orleans	95	83	81	66
	Shreveport	102	83	79	50
Massachusetts.	Boston	96	78	76	60
Michigan. .	Detroit	101	79	76	67
Minnesota	St. Paul	103	79	75	78
Mississippi	Jackson	103	83	80	49
Missouri. .	Kansas City	108	79	76	57
	Kirksville	108	82	79	
	St. Louis.	108	81	76	91
	Springfield	98	79	76	52
Montana	Helena,	97	70	60	54
Nebraska.	North Platte	104	76	71	73
	Omaha	108	80	75	53
Nevada.		101	64	58	
	Reno	102	66	56	46
New Jersey .	Camden	102	82	78	68
	Newark	99	81	77	
New Mexico.	Albuquerque	98	68	66	63
New York...	Albany	97	78	75	59
	Buffalo	¢3	77	74	73
	New York	100	81	78	73

Table 17.4. Reasonable Maximum Temperatures and Absolutet Maximum Wind Velocities in the United States.*-(Conitinued)

State	City	Reasonable maximum, Temp, ${ }^{\circ} \mathrm{F}$			Max recorded wind velocity, mph
		Dry bulb	Wet bulb	Dew point	
North Carolina.	Raleigh	98	82	80	45
	Wilmington	94	81	79	53
North Dakota.	Fargo	105	.		58
Ohio.	Cincinnati	106	81	78	54
-	Cleveland	101	79	76	60
Oflahoma.	Tulsa	106	79	77	
Oregon.	Portland	99	70	68	43
Pennsylvania.	Bellefonte	96	78	75	
	Pittsburgh	98	79	74	56
South Carolina.	Charleston	98	82	80	81
South Dakota.	Huron	106	76	74	56
	Rapid City	103	71	66	
'1'enmessee.	Knoxville	100	79	76	59
	Memphis	103	83	80	58
Texas.	Amarillo	101	75	70	65
	Brownsville	96	80	79	80
	Dallas	105	80	76	63
	El Paso	101	72	69	60
	Houston	100	81	79	63
	San Antonio	102	83	82	56
Utah.	Modena	97	66	61	
	Salt Lake City	102	68	64	53
Washington.	Seattle	86	70	67	59
	Spokane	106	68	58	41
Wisconsin	Green Bay	99	79	75	53
	La Crosse	100	83	81	69
Wyoming.	Rock Springs	91	62	58	

* Courteay the Marley Company.
ing a 14 -year period the wet-bulb temperature in New York City only twice exceeded $80^{\circ} \mathrm{F}$ for 7 hr duration or more. On one occasion a momentary wet bulb of $88^{\circ} \mathrm{F}$ was recorded. The two occasions on which the wet bulb exceeded $80^{\circ} \mathrm{F}$ were so rare that it is simpler to justify reducing the plant capacity or shutting down altogether during these infrequent occurrences rather than to use $80+^{\circ} \mathrm{F}$ as the basis for design. Since the 5 per cent wet bulb for New York is $75^{\circ} \mathrm{F}$, only critical requirements can justify the use of a temperature between $75^{\circ} \mathrm{F}$ and the reasonable maximum of $81^{\circ} \mathrm{F}$. Cooling towers are usually designed to withstand a wind velocity of 100 mph , which is equivalent to $30 \mathrm{lb} / \mathrm{ft}^{2}$.

In the study of cooling towers the impression sometimes arises that the cooling tower cannot operate when the inlet air is at its wet-bulb temperature. This, of course, is not so. When air at the wet-bulb temperature enters the tower, it receives sensible heat from the hot water, and its temperature is raised thereby so that it is no longer saturated. Water then evaporates continuously into the air as it travels upwaid in the tower.

One of the objectionable characteristics of cooling towers is known as fogging. When the hot and saturated exit air discharges into a cold atmosphere, condensation will occur. It may cause a dense fog to fall over a portion of the plant with attendant safety hazards. If provision is made during the initial design, condensation can be reduced by any means which reduces the outlet temperature of the air. If it is desired to maintain a fixed range for the cooling water in coolers and condensers, fogging can be reduced by the recirculation of part of the basin water back to the top of the tower where it combines with hot water from the coolers and condensers. This reduces the temperature of the water to the tower, while the heat load is unchanged. The principal expense of the operation, aside from initial investment, will be that of the pumping power for the recirculation water, which does not enter the coolers and condensers.

Humidification Coefficients. An apparatus in which air and water can be brought into intimate contact may serve as a cooling tower or air humidifier. Considerable information can be found in the literature on the performance of a variety of packing and fills. Simpson and Sherwood ${ }^{1}$ have given an excellent review of some of the pertinent data in the literature as well as some original data on fills suitable for cooling towers. Because of the outgrowth of modern diffusion calculations from absorption practices in the chemical industries, much of the data in the literature is represented by a plot of $K_{G} a$ vs. G for systems in which the gas film is controlling. This method now appears to be giving way to plots of the $H T U$ vs. G. Colburn ${ }^{2}$ has recalculated much of the early data on this basis. The relation between the $H T U$ and $K_{\sigma} a$ is

$$
H T U=\frac{Z}{K_{Q} a} \frac{V}{G}
$$

where Z is the total height containing n_{t} transfer units. Both calculations are based on the use of the pound-mols of water transferred and a driving potential expressed in atmospheres. There seems little reason to employ these units in humidification calculations, since the pounds of
${ }^{1}$ Simpson, W. M., and T. K. Sherwood, Refrig. Eng., 535 (1946).
${ }^{2}$ Colburn, A. P. Trans. AIChE, 29, 174 (1939).
water transferred and a driving potential in humidity units are so convenient. No data have appeared in the literature so far in which $H D U$, the height of a diffusion unit, is plotted against G for the humidification of air, but data have appeared with $K_{X} \propto$ plotted against G. The relation between the $H D U$ and $K_{x} a$ is

$$
\begin{equation*}
H D U=\frac{Z}{K_{x} a} \cdot \frac{V}{L} \tag{17.84}
\end{equation*}
$$

and the relation between the $K_{X} a$ and $K_{\theta} a$ can be obtained from Eq. (17.40). The $H D U$ or $K_{x} a$ are the performance characteristics of the given fill, or packing, and n_{d} is the size of the job required for the fulfillment of process conditions. In the case of packed towers containing small objects it is possible to report the data over wide ranges by an equation of the form

$$
\begin{equation*}
K_{X} a=C_{1} G^{r} \tag{17.85}
\end{equation*}
$$

If the value of $K_{x} a$ is multiplied by the ratio V / L, the number of diffusion units in a given height can be obtained, since $V=1 Z$.

If a tower is in operation and it is desired to determine its performance characteristics such as the $H D U$ or $K_{X} a$, the number of diffusion units being performed must be calculated first from the observed inlet and outlet temperatures, humidities, and flow rates. The total packed, or filled, height divided by the value of n_{a} calculated from observed data will give the $H D U$. Of the data available in the literature only those for Raschig rings and Berl saddles are given here, since other types of packings and fill are less standardized and in some instances difficult to reproduce. The data in Table 17.5 have been published in part by McAdams ${ }^{1}$ from tests by Parekh ${ }^{2}$ and have been made available through the courtesy of Dean T. K. Sherwood. Data on fills producing droplet surface cannot be represented quite so readily as film-type packings, since the total droplet surface changes greatly with the number of droplets formed. This in turn is influenced by the liquid loading.

Caution is emphasized in the application of the information in the literature to use in actual services. Many of the data have been obtained on small packed, or filled, heights or on laboratory-scale apparatus of small cross section. A problem in the design of large towers is the attainment of a uniform distribution of both air and water over the entire cross section and height of the tower. A tower of large cross section should be easier to control than a small one because of the lower ratio of wall perimeter to cross section, which, in a sense, is a rough index of the fraction of the liquid flowing down the tower walls. Since the water is

[^52]| Table 17.5. Himidificatton Characteristics: Rascheg Rings and Berl Saddles*$\begin{aligned} K_{X} a & =C_{Y} G^{\gamma} \\ \text { Where gas loading, } G & =\mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft} t^{2}\right. \text { ground area) } \\ \text { Liquid loading, } L & =1 \mathrm{~b} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right. \text { ground area) } \\ K_{X} a & =\mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft}^{3}\right)(\mathrm{lb} / \mathrm{lb}) \text { potential } \end{aligned}$ | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Packing, in $\dagger \dagger$ | Depth, in. \dagger | L | G | γ | $K_{x} a$ | C_{1} |
| 1 Rasehig. | 24 | 500 | 250 | 0.50 | 226 | 14.3 |
| | | 1500 | 250 | 0.50 | 468 | 29.6 |
| | | 3000 | 250 | 0.50 | 635 | 40.2 |
| 11/2 Raschig... | 20.6 | 500 | 250 | 0.43 | 208 | 19.4 |
| | | 1500 | 250 | 0.55 | 370 | 17.9 |
| | | 3000 | 250 | 0.60 | 445 | 16.4 |
| 2 Raschig. | 19.1 | 500 | 250 | 0.47 | 190 | 14.3 |
| | | 1500 | 250 | 0.54 | 301 | 15.3 |
| | | 3000 | 250 | 0.53 | 351 | 18.9 |
| 1/2 Berl. | 15.5 | 500 | 250 | 0.61 | 320 | 11.1 |
| | | 1500 | 250 | 0.61 | 468 | 16.3 |
| | | 3000 | 250 | 0.61 | 595 | 20.7 |
| 1 Berl. | 20.3 | 500 | 250 | 0.42 | 245 | 24.2 |
| | | 1500 | 250 | 0.50 | 464 | 29.4 |
| | | 3000 | 250 | 0.69 | 569 | 12.7 |
| 11/2 Berl. | 22 | 500 | 250 | 0.52 | 200 | 11.4 |
| | | 1500 | 250 | 0.52 | 305 | 17.4 |
| | | 3000 | 250 | 0.52 | 383 | 21.8 |

* From M. D. Parekh Report, MIT, courtesy of Professors T. K. Sherwood and W. H. MeAdams.
$\dagger 1 / 2$ in. Raschig rings do not follow the equation.
usually distributed only at the top, the tendency for more and more liquid to reach and descend along the wall and by-pass the packing increases with the height of the tower. A tower packed to a height of 20 ft does not actually deliver twice as many diffusion units as a tower packed to a height of 10 ft with the same packing, or fill. Another difficulty in large packed towers is the increased opportunity for channeling. With a large cross section there is a tendency for a disproportionate quantity of the liquid to descend through half the cross section while a disproportionate quantity of air rises in the other half. Still another note of caution refers particularly to data obtained on spray towers. As explained earlier, most of the performance occurs in the upper few feet of the tower. If a tower is equipped with sprays only at its top, the height of the tower will not be an indication of the available surface.

Consideration must also be given to the fact that many of the available data have been reported on experiments in which gas and liquid loadings of from 200 to $5000 \mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)$ have been used. The twenty-fivefold range of variables provides considerable insight into the influence. of these variables on performance. By the same token it is easier to obtain good data on a small packed height in which the approach to equilibrium is not very close and in which the precise experimental determination of the humidities is not too significant. None of these should be considered representative of the ranges employed in modern cooling towers. The purpose of a cooling tower is solely to produce cooling water, which, next to air itself, is the cheapest utility. The most important operating cost is that of the fan power for circulating the air. Accordingly a small allowable pressure drop of less than 2 in . of water is the standard practice. In all but extraordinary services the liquid loading on droplet-forming fills is from 1 to $4 \mathrm{gpm} / \mathrm{ft}^{2}$ or 500 to 2000 $\mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)$. Gas loadings are between 1300 and $1800 \mathrm{Ib} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)$, corresponding to gas velocities of roughly 300 to 400 fpm .

Another factor to be considered is that of flooding the fill in which the orderly counterflow of air and water is disrupted. Lobo, Friend, et al. ${ }^{1}$ have made available the results of a study on the influence of hquid and gas loadings on the flooding points of packed towers. In slat-fill towers forming droplets there are two flooding points. One exceeds about 15 $\mathrm{gpm} /\left(\mathrm{ft}^{2}\right)$ above which the liquid loading is so great that the water falls in curtains thereby reducing the production of water droplets. Another, occurring at higher liquid loadings, is the true flooding point in which the distribution of air and water is impaired. The liquid loading at the flood points is not independent of the gas loading. At the other extreme of low liquid loading is incipient wetting, in which the liquid flow is so small that the film surface may not be entirely wetted. In the case of the slatfill tower few droplets are produced under these conditions and the surface is principally film surface.

Only limited performance data are available in the literature on commercial cooling towers. This is natural, since such information is usually confidential with fabricators, and operators only occasionally make test data available. By comparison with experimental towers the values of $K_{X} a$ or $H D U$ obtained in large towers are relatively small. At gas and liquid loadings of about $1000 \mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)$ many laboratoryscale data have been reported with values of $K_{x} a$ ranging from 200 to $600 \mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft}^{3}\right)(\mathrm{lb} / \mathrm{lb})$. It is doubtful that any full-sized apparatus erected in the United States at present is capable of a $K_{X} a$ exceeding 100 within the usual limits of pressure drop permitted in industry.
${ }^{\text {E }}$ Lobo, W. E., L. Friend, F. Hashmall, and F. Zenz, Trans. AIChE, 41, 693 (1945).

The Calculation of Cooling-tower Performances. Usually operators buy cooling towers rather than erect them themselves. This is undoubtedly the wisest policy, since it makes available to the operator a great deal of "know-how" in a field in which it is of great value. The operator will specify the quantity of water and the temperature range he requires for his process. The fabricator will propose a tower which will fulfill the conditions furnished by the operator for the 5 per cent wet bulb in the locality of the plant and guarantee the fan power with which it will be accomplished. With the first cost, fan power, and the approximate height of the pumping head the operator can compute the cost of the cooling-tower water based on a period of depreciation of about twenty years.

Assume that a cooling tower has been erected and placed in operation on this basis. An acceptance run is made to determine whether or not, the cooling tower is meeting the guarantee. This consists of a wet-bulb determination on the windward side of the tower and the determination of the air rate by velometer or other pitot arrangement. The air leaving the cooling tower is always assumed to be saturated at its outlet temperature. Tests have shown it to be anywhere from 95 to 99 per cent saturated.

In a heat exchanger the performance is satisfactory if the measured overall coefficient during initial operation at the process conditions equals or exceeds the stipulated clean coefficient. In cooling towers the basis for design is one which is very rarely present. A cooling tower designed for a given approach to the 5 per cent wet bulb and erected in the fall of the year will probably not encounter the design condition for another 8 or 9 months. On the basis of its performance in autumn will it operate at the design conditions when they eventually return? A series of calculations answering questions of this nature will be undertaken presently.

Each performance calculation may be divided into two parts: (1) How many diffusion units correspond to the process requirement, and (2) how many diffusion units is or can the tower actually perform? Obviously at all conditions (2) should exceed (1).

Example 17.2. Calculation of the Number of Diffusion Units. A plant is being laid out in a restricted-water locality. The total heat load to be removed from several processes by the cooling tower is $26,000,000 \mathrm{Btu} / \mathrm{hr}$. The locality has a 5 per cent wet-bulb temperature of $75^{\circ} \mathrm{F}$. The water will leave the tower with a 10° approach to the wet bulb, or $85^{\circ} \mathrm{F}$. Being water of ordinary air and mineral content it will emerge from equipment at a maximum temperature of $120^{\circ} \mathrm{F}$. The water equivalent to this range is 1500 gpm .

A tower 24 by 24 ft has been erected with a fan capacity of $187,000 \mathrm{cfm}$. How
many diffusion units must the tower be capable of performing to fulfill the process requirements?

Determine (a) by numerical integration and (b) by using the log mean enthalpy difference.
Solution. (a) On coordinates of enthalpy vs. wrater temperature such as Fig. 17.12 plot the saturation line from the data of Table 17.2.

Next determine the enthalpy of the inlet air which is one terminal of the operating line. In this problem it corresponds to a $75^{\circ} \mathrm{F}$ wet bulb or air saturated at $75^{\circ} \mathrm{F}$. From Table $17.2 H_{1}=39.1$ Btu/lb dry air at an outlet water temperature of $85^{\circ} \mathrm{F}$.

Fia. 17.12. Solution of Example 17.2.
The liquid and air loading will establish the slope of the operating line throughout the tower, starting at H_{1}. The liquid loading is simply the total hourly water rate divided by the ground area. The air loading was given in the proposal as 187,000 cfm at $75^{\circ} \mathrm{F}$ wet bulb. The density of the dry air in a cubic foot of mixture is $1 / 13.88=0.072 \mathrm{lb} / \mathrm{ft}^{\mathrm{a}}$ from Table 17.2.
Ground area $=24 \times 24=576 \mathrm{ft}^{2}$
$L=1500 \times 50 \% 76=1302 \mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft} \mathrm{t}^{2}\right)$
$G=187,000 \times 0.072 \times 6 \%_{76}=1400 \mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)$
$\frac{L}{\vec{G}}=\frac{1302}{1400}=0.93$

In Fig. 17.12 from $H_{1}=39.1$ draw a line of positive slope equal to 0.93 or calculate H_{2} from Eq. (17.83) and draw a line between H_{1} and H_{2}

$$
H_{2}=H_{1}+\frac{L}{\tilde{G}}\left(T_{2}-T_{1}\right)=39.1+0.93(120-85)=71.6 \mathrm{Btu}
$$

The area between the saturation line and the operating line represents the potential for heat transfer. It can be determined either by counting squares, in which case a plot of $1 /\left(H^{\prime}-H\right)$ vs. T is more convenient, or by numerical integration. The latter is employed here:

T	H^{\prime}	H	$H^{\prime}-H$	$\left(H^{\prime}-H\right)_{\text {sv }}$	$\frac{d T\left(=5.0^{\circ} \mathrm{F}\right)}{\left(\bar{H}^{\prime}-H\right)_{\mathrm{av}}}$
85	50.0	39.1	10.9		
90	56.7	43.7	13.0	11.45	0.418
95	64.2	48.4	15.8	14.4	0.347
100	72.7	53.1	19.7	17.7	0.282
105	82.5	57.7	24.8	22.2	0.225
110	93.8	62.4	31.4	28.1	0.178
115	106.7	67.0	39.7	35.55	0.1405
120	121.5	71.6	49.9	44.8	0.1115
		$n_{d}=K_{X} a \frac{V}{L}=\int \frac{d T}{\bar{H}^{\prime}-H}=1.70$			

In order to fulfill process requirements the tower must be capable of performing 1.70 diffusion units. But to perform to that extent under process requirements it must also be capable of that much performance under any other conditions.
(b) Using the log mean enthalpy difference,

At the top of the tower $H_{2}^{\prime}-H_{2}=49.9 \mathrm{Btu} / \mathrm{lb}$
At the bottom of the tower $H_{1}^{\prime}-H_{1}=10.9 \mathrm{Bta} / \mathrm{lb}$
Log mean $\left(H^{\prime}-H\right)=\frac{49.9-10.9}{2.3 \log 49.9 / 10.9}=25.8 \mathrm{Btu} / \mathrm{lb}$
$n_{d}=\frac{K_{X} a V}{L}=\frac{d T}{H^{\prime}-H}-\frac{120-85}{25.8}=1.35 \mathrm{vs} .1 .70$
The error is naturally larger the greater the range, and $35^{\circ} \mathrm{F}$ is nearly the extreme for a cooling tower. This method is acceptable only where the range is very small.

Example 17.3. Calculation of the Required Height of Fill. Suppose it is known that, for a particular fill at $L=1302$ and $G=1400, K_{X} a$ is $1151 \mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft}^{3}\right)(\mathrm{lb} / 1 \mathrm{~b})$. What height of fill should be supplied, and what is the $H D U$ when a fill has a $K_{x} a$ of $115 \mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft}^{3}\right)(\mathrm{lb} / \mathrm{lb})$?

Solution. Height of fill:
Since the loading is based on $1 \mathrm{ft}^{2}$ of ground area,

$$
\begin{gathered}
n_{d}=\frac{K_{X} a(1 Z)}{L} \\
Z=\frac{n_{d} L}{K_{X} a}=1.70 \times \frac{1302}{115}=19.1 \mathrm{ft}
\end{gathered}
$$

The height of a diffusion unit is Z / n_{d}.

$$
H D U=\frac{19.1}{1.70}=11.3 \mathrm{ft}
$$

This last is contrasted to values of 3 ft obtained by London, Mason, and Boelteri on a streamline shape film tower of known surface or of $11 / 2 \mathrm{ft}$ obtained by Parekh (extrapolated) for Raschig rings.

Example 17.4. Determination of a Cooling-tower Guarantee. Under steady atmospheric conditions during an autumn test the 24 - by 24 -ft tower of Example 17.2 in actual operation showed a steady water temperature of $114.3^{\circ} \mathrm{F}$ on the tower and 79.3° off the tower. The wet bulb determined by psychrometer was $65^{\circ} \mathrm{F}$. Air and water loadings were maintained at their design values.

Will this tower be capable of producing 1500 gpm of 120 to $85^{\circ} \mathrm{F}$ water when the wet bulb is $75^{\circ} \mathrm{F}$?
Solution. This is a solution based on the observed data and is the same as before except that the operating line starting at H_{1} corresponds to the $65^{\circ} \mathrm{F}$ wet bulb or $30.4 \mathrm{Bta} / \mathrm{lb}$.

T	H^{\prime}	H	$H^{\prime}-H$	$\left(H^{\prime}-H\right)_{\mathrm{av}}$	$\frac{d T}{\left(H^{\prime}-H\right)_{\mathrm{av}}}$
79.3	43.4	30.4	13.0		
85	50.0	35.7	14.3	13.65	0.417
90	56.7	40.3	16.4	15.35	0.326
95	64.2	45.0	19.2	17.8	0.281
100	72.7	49.6	23.1	21.5	0.237
105	82.5	54.3	28.2	25.65	0.195
110	93.8	58.5	35.3	31.75	0.158
114.3	103.3	62.9	40.4	37.85	0.113
				$n_{d}=1.72$	

In order to fulfill the process requirements the cooling tower must be capable of pron viding 1.70 diffusion units when the wet bulb is $75^{\circ} \mathrm{F}$. The same calculation applied to the actual. test conditions shows it to be delivering 1.72 diffusion units, and it is therefore acceptable. The fan power can be checked independently from the electric circuit or from the steam rate for a turbine drive.

The Influence of Process Conditions upon Design. It is rewarding to study the effects of various process changes upon the height and cross section of the apparatus or the cost of its operation. Six of the considerations which affect the size of the tower are indicated in Fig. 17.13. They are analyzed best by means of the enthalpy-temperature diagram, since the area between the saturation and operating lines is a measure of the
${ }^{1}$ London. A. L., W. E. Mason, and L. M. K. Boelter, Trans. ASME, 62, 41-50 (1940).

Fig. 17.13. Effect of design variables on the size of the potential.
total potential. The smaller the area the greater the height of tower required for fulfillment of the process conditions.
a. Unsaturation of the Inlet Air. Heretofore reference has been made only to the wet-bulb temperature of the inlet air and not to its dry bulb. In each case it has been assumed identical with the wet bulb, i.e., adiabatically saturated. In Example 17.2 the enthalpy of the inlet air at the $75^{\circ} \mathrm{F}$ wet bulb was $39.1 \mathrm{Btu} / \mathrm{lb}$. Suppose the air is at a dry bulb of $85^{\circ} \mathrm{F}$ when the wet bulb is $75^{\circ} \mathrm{F}$. The air will be unsaturated, and its enthalpy will be $41.7 \mathrm{Btu} / \mathrm{lb}$ instead of 39.1. In Fig. $17.13 a$ this will drop the operating. line insignificantly from $H_{1}-H_{2}$ to $\left(H_{1}\right)-\left(H_{2}\right)$, the crosshatch area representing the increase in potential. Failure to correct the enthalpy for the dry bulb gives results which are slightly on the safe side, and for this reason it is customary to specify only the wet bulb.
b. Close Approach. Both operating lines in Fig. $17.13 b$ have the same L / G ratio (same slopes) and equal ranges of $35^{\circ} F$ for the removal of the same process heat load. The operating line $\left(H_{1}\right)-\left(H_{2}\right)$ attempts to do the same cooling as $H_{1}-H_{2}$ and with the same inlet air but between the temperatures of 115 and $80^{\circ} \mathrm{F}$ instead of 120 and $85^{\circ} \mathrm{F}$. The area between the saturation curve and the operating line is greatly decreased by $\left(\mathrm{H}_{1}\right)-\left(\mathrm{H}_{2}\right)$. Similarly it might be desired to obtain water from 120 to $85^{\circ} \mathrm{F}$ with 80° wet-bulb instead of 75° wet-bulb air. This will raise the operating line $H_{1}-H_{2}$ vertically and also decrease the potential.
c. Changing the $L_{/} / G$ Ratio. If the ground area is too limited, such as when a cooling tower is erected atop a building, it may be necessary to employ a relatively high liquid loading without increasing the air quantity, since 400 fpm is about the maximum economical air velocity. This will decrease the cross section of the tower but increase the slope of the operating line $H_{1}-H_{2}$ to $H_{1}-\left(H_{2}\right)$ as in Fig. 17.13c, resulting in a decreased potential and a higher tower. This is the simple observation that the less air circulated per pound of water the less the extent of cooling.
d. Location of the Operating Range. The saturation line has a varying curvature. In Fig. $17.13 d$ an operating line $H_{1}-H_{2}$ is shown with a range from 105 to $70^{\circ} \mathrm{F}$. Suppose it is desired to design a tower using the same inlet air but to cool water from 95 to $60^{\circ} \mathrm{F}$. This would be impossible with the same L / G ratio, since the operating line $\left(H_{1}\right)-\left(H_{2}\right)$ would intersect the saturation line. Obviously heat transfer would stop at the intersection (H_{2}^{\prime}), since the potential would be zero at that point. A considerably lower L / G ratio would be required, which in turn means more air must be circulated for the removal of the same number of Btu.
e. Staging. One of the means of overcoming the small L / G ratio in the preceding paragraph can be accomplished by the use of two towers. This is staging. The water at the top of the first tower is hot and contacts air of enthalpy H_{2} along the operating line $H_{1}-H_{2}$ as shown in Fig. 17.13e. The water is removed from the basin at temperature T_{3} and is pumped over the second tower, which also uses atmospheric air of enthalpy H_{1}. The second tower operates between H_{1} and H_{3}. In this way both operating lines may have large slopes without intersecting the saturation line. The fixed charges and operating cost of two towers increase the cost of water considerably, but water produced in this manner should be regarded as chilled water, and its cost and range compared with that of refrigerated water.
f. Elevation. Some plants are located at high elevations. Should this be mentioned in the process conditions? At reduced atmospheric pressure, as seen in Fig. 17.13f, the saturation line is higher, which in turn increases the potential and reduces the required size of tower if all other conditions are the same. This occurs because the partial pressure of the water is fixed whereas the total pressure has been decreased. The humidity of the saturated air at higher elevation is also greater.

The Influence of Operating Variables. Since a cooling tower uses the atmosphere as a cooling medium, it is also subject to the variations in the atmosphere. When operating at the design wet bulb, the tower should produce water of the range and at the temperature specified in the guarantee. When the wet bulb falls, however, it is the same as increasing the potential in the tower. If the heat load on the tower and the values of L and G circulated through the tower are all to be kept constant, the water still undergoes the same number of degrees of cooling in it but the inlet and outlet temperatures will be colder than guaranteed. The cooling tower is only able to remove the same heat load from the water by automatically reducing the potential difference, tne water temperatures declining accordingly with the wet bulb. From the standpoint of operating the coolers and condensers employed in a plant, this arrangement requires the simplest instrumentation. When a cooler receives water at a constant rate which is colder than that for which it was rated, the hot fluid is cooled below the desired outlet temperature. To prevent this from occurring in a cooler, the flow rate of the colder water through the cooler is reduced by by-passing, so that less water is used but with a constant design outlet temperature. The constant-temperature outlet water is then recombined with the by-pass water before returning to the cooling tower. In this way all coolers or condensers designed for water, say, from 85 to $120^{\circ} \mathrm{F}$ have outlet-water temperatures of $120^{\circ} \mathrm{F}$
the year around. This was, in fact, the basis for the temperatures in Example 17.4.

If the water and air loadings on a tower are changed in any way, the number of diffusion units the tower is capable of providing are also altered. Ordinarily the loadings on a single cell cannot be changed very greatly. In fact a variation of 20 per cent from the mean of the design water loading is the maximum which may be anticipated, since the droplets are produced by nozzles which, in turn, have been sized for a given flow rate at a given head. The maximum discharge capacity will be about 120 per cent of design and when less than 80 per cent of the design water rate is used, the dispersion of the droplets is reduced along with the total, quantity of water. The air loading can be regulated by varying the pitch of the fan blades, which can usually be rotated to a plus or minus 3° position from the mean. In summer the blades will be in a $+3^{\circ}$ position and in winter at -3°. In winter the -3° position of the fan delivers about 80 per cent of the $+3^{\circ}$ air quantity, but the power saving is 40 per cent. If requested, the cooling-tower fabricator will specify the temperature range assumed by the cooling-tower water at 80 and 120 per cent of its design loading when the design air quantity is at the guarantee wet bulb. Sometimes, when the operating wet bulb is lower than the design wet bulb, it is desirable to use the increased potential to produce more cooling water of the original design temperature range. When the wet bulb varies, how much more water can be produced? This can be calculated from the 80,100 , and 120 per cent values, using the assumption that the number of diffusion units performed by a tower is dependent only upon the L / G ratio and not upon either L or G separately. This is a useful approximation within the range of cooling-tower operation and from 80 to 120 per cent of design capacity.

Example 17.5. The Recalculation of Cooling-tower Performance. In the guarantee of the 24 by 24 -ft tower of Example 17.2 for cooling 1500 gpm from 120 to $85^{\circ} \mathrm{F}$ at a $75^{\circ} \mathrm{F}$ wet bulb the following data were given by the fabricator for overload and underload

Liquid loading, \% Temperature range, ${ }^{\circ} F$
120 122.2-87.2
$100 \quad 120.0-85.0$
$80 \quad 117.5-82.5$
When the wet bulb is $70^{\circ} \mathrm{F}$, how much water from 120 to $85^{\circ} \mathrm{F}$ can the tower provide?
Solution. First reconstruct the portion of the actual periormance curve from which the tower was designed. On the assumption that the performance curve is only a function of L / G and not L or G separately and, having already integrated the design condition, the same must be done for the overload and underload.

For $1500 \mathrm{gpma}, L / G=0.93$
For 120 per cent of design, $L / G=1.20 \times 0.93=1.115$
At $87.2^{\circ} \mathrm{F}, H_{2}=39.1 \mathrm{Btu}$
At $122.2^{\circ} \mathrm{F}, H_{2}=39.1+1.115 \times 35=78.1 \mathrm{Btu}$

T	H^{\prime}	H	$H^{\prime}-H$	$\left(H^{\prime}-H\right)_{\mathrm{av}}$	$\frac{d T}{\left(H^{\prime}-H\right)_{\mathrm{av}}}$
87.2	53.1	39.1	14.0		
90	56.7	42.0	14.7	14.35	0.195
95	64.2	47.6	16.6	15.65	0.320
100	72.7	53.3	19.4	18.0	0.278
105	82.5	58.8	23.7	21.55	0.232
110	93.8	64.3	29.5	26.6	0.188
115	105.7	70.0	36.7	33.25	0.150
120	121.5	75.6	45.9	41.3	0.121
122.2	128.2	78.1	50.1	48.0	0.0458
				$K_{X} a \frac{V}{L}=1.53$	

For 80 per cent of design, $L / G=0.80 \times 0.93=0.74$
At $82.5^{\circ} \mathrm{F}, H_{1}=39.1$
At $117.5^{\circ} \mathrm{F}, H_{2}=39.1+0.74 \times 35=65.0 \mathrm{Btu}$

T	H^{\prime}	H^{\prime}	$H^{\prime}-H$	$\left(H^{\prime}-H\right)_{\mathrm{av}}$	$\frac{d T}{\left(H^{\prime}-H\right)_{\mathrm{av}}}$
82.5	47.2	39.1	8.1		
85	50.0	40.8	9.2	8.7	0.286
90	56.7	44.6	12.1	10.7	0.465
95	64.2	48.3	15.9	14.0	0.357
100	72.7	52.0	20.7	18.3	0.273
105	82.5	55.6	26.9	23.8	0.210
110	93.8	59.3	34.5	30.7	0.163
115	106.7	63.0	43.7	39.1	0.128
117.5	121.5	65.0	56.5	50.1	0.050
				$K_{X} a \frac{V}{L}=1.92$	

The values of $K_{x} a V / L$ vs. L / G are plotted in Fig. 17.14.
How much water from 120 to $85^{\circ} \mathrm{F}$ can be circulated over the tower when the wet bulb falls to $70^{\circ} \mathrm{F}$? In Fig. 17.14 both the ordinate $K_{x} a V / L$ and the abscissa L / G. contain $L_{\text {f }}$ which in turn determines the desired water quantity. A value of L can be assumed, and if the value obtained for both $K_{x a V} V / L$ and L / G falls on the curve of Fig. 17.14, the requirements of performance will be satisfied. The solution is consequently by trial and error.

Trial 1. Assume $L / G=1.10$
$H_{1}=34.5$
$H_{2}=34.5+1.10 \times 35=73.0$

T	H^{\prime}	H	$H^{\prime}-H$	$\left(H^{\prime}-H\right)_{\mathrm{av}}$	$\frac{d T}{\left(H^{\prime}-H\right)_{\mathrm{av}}}$
85	50.0	34.5	15.5		
90	56.7	40.0	16.7	16.1	0.309
95	64.2	45.5	18.7	17.7	0.282
100	72.7	51.0	21.7	20.2	0.247
105	82.5	56.5	26.0	23.85	0.210
110	93.8	62.0	31.8	28.9	0.173
115	106.7	68.5	38.2	35.0	0.143
120	121.5	73.0	48.5	43.35	0.115

From Fig. 17.14, for $K_{x} a V / L=1.48, L / G=1.19$
Assumed, $L / G=1.10$ No check
Trial 2: Assume $L / G=1.20$
$H_{1}=34.5$
$H_{2}=34.5+1.20 \times 35=76.5$

T	H^{\prime}	H	$H^{\prime}-H$	$\left(H^{\prime}-H\right)_{\mathrm{av}}$	$\frac{d T}{\left(H^{\prime}-H\right)_{\mathrm{av}}}$
85	50.0	34.5	15.5		
90	56.7	40.5	16.2	15.9	0.313
95	64.2	46.5	17.7	16.95	0.295
100	72.7	52.5	20.2	18.95	0.264
105	82.5	58.5	24.0	22.1	0.226
110	93.8	64.5	29.3	26.65	0.188
115	106.7	70.5	36.2	32.75	0.153
120	121.5	76.5	45.0	40.6	0.123

From Fig. 17.14, for $K_{X a V}=1.56, L / G=1.08$
Assumed, $L / G=1.20$ No check
By interpolation the conditions are satisfied when the value of $L / G=1,14$. The total water which can be produced with an $85^{\circ} \mathrm{F}$ temperature will be $1500 \times \frac{1.14}{0.93}=1840$ gpm.

Dehumidifiers. The dehumidification of hot humid air by washing with cold water is a common practice in air conditioning. Although it is generally carried out in spray washers, it can be effectively achieved through the use of a cooling tower or similar contacting device. Con-
sider humid air saturated and at a higher temperature than the cold-water spray. The humidity or partial pressure of the water vapor in the hot air body is greater than the saturation humidity in the air film, which, in the absence of a liquid film resistance, is presumed to be saturated at the

Fig. 17.14. Solution of Example 17.5. water temperature. The potential difference for mass transfer is then in the direction from the gas body to the water body, the reverse of the direction of humidification. The enthalpy at every point in the air body is greater than the corresponding value of the air film. This is shown graphically in Fig. 17.15. The operating line again has the slope of L / G, but it is above the saturation line.

The mass transfer of the water vapor from the air body into the liquid is a mechanism apart from condensation, although the heat of the water removed by mass transfer is equal to the latent heat of vaporization. In true diffusion the mass transfer from the gas body to the liquid is treated as a molecular phenomenon, in which case no dew is assumed to form. Humidification and dehumidification may be considered identical except in the direction of the mass transfer. Studies indicate that the rate of dehumidification equals the rate of humidification, the same $K_{x} a$ data being applicable to either. Thus the number of diffusion units for dehumidification can likewise be determined by integrating the area between the upper operating line and the saturation line. The basic equation for the case of dehumidification where the Lewis number is unity becomes

$$
\begin{equation*}
n_{d}=K_{x} a \frac{V}{L}=\int \frac{d T}{H-H^{\prime}} \tag{17.86}
\end{equation*}
$$

Fra. 17.15. Dehumidification patentials.
which differs from Eq. (17.81) only in the position of H and H^{\prime}.
Heat Transfer from Gases. All the preceding illustrations have been concerned with cooling warm water. Suppose it is desired to cool a gas at a moderate pressure as in Chap. 9. If the gas is passed through a heat exchanger with a reasonable allowable pressure drop, a low heat-
transfer coefficient results. This is particularly true where the static pressure on the gas is developed by a blower or fan. The same hot gas may be brought into contact with water in a packed or filled tower with droplet surface, and the heat transfer will be accomplished very cheaply. In many instances a cylindrical vessel containing a few feet of dumped packing material may replace a large tubular exchanger. The application of direct-contact heat transfer to the solution of gas-cooling problems has not yet received the widespread acceptance it appears to merit.

There is an unfounded prejudice in some quarters against the direct contact of water with high-temperature gases. It is sometimes felt that unpredictable results will be obtained such as frothing and boiling. Consider the typical cases shown in Fig. 17.16. In Fig. 17.16a a hot gas (air) enters a tower at $300^{\circ} \mathrm{F}$ with a dew point of $120^{\circ} \mathrm{F}$ and leaves at $200^{\circ} \mathrm{F}$. The water has a range from 85 to $120^{\circ} \mathrm{F}$. What will happen at

Fig. 17.16. Influence of the inlet dew point on the direction of mass transfer.
the bottom of the tower? The gas, by virtue of its dew point, has a vapor pressure of 1.69 psia. The water leaving the tower is at $120^{\circ} \mathrm{F}$ and has the same vapor pressure. There will be no potential for the mass transfer of water from the water body into the gas, so that there can be no vaporization, whether the temperature of the inlet gas be 200 or $2000^{\circ} \mathrm{F}$. The mass transfer is established solely by the difference between the dew point of the inlet gas and the partial pressure corresponding to the outlet water temperature. At a differential height upward in the tower the relationship between the potentials changes: The water temperature is lower than the gas dew point, and water vapor starts to diffuse from the gas to the water. The diffusion process continues up to the gas outlet at the top.

In Fig. $17.16 b$ the process conditions have been altered so that the dew point of the inlet gas is 85 instead of $120^{\circ} \mathrm{F}$. Here the partial pressure of the outlet cold water is greater than that of the inlet gas, but the pressure exerted by the outlet water is still 1.69 psia , no matter how high the
gas temperature may be. This case is somewhat different from that of a cooling tower, since the gas will be cooled and humidified whereas in the cooling tower it is heated and humidified. In Fig. 17.16c a gas enters with a higher dew point than that of the water and the movement of the vapor is from the gas to the water body throughout. Other interesting arrangements are possible. Analysis shows that sensible-heat transfer by direct contact must be accompanied by some mass transfer. When a gas is to be cooled over a great range, measured in hundreds of degrees, and the dew point corresponds to that of flue gases such as from 110 to $130^{\circ} \mathrm{F}$, the amount of mass transfer may be very small.

Calculations without a Simplified Lewis Number. In the derivation of equations for the performance of cooling towers or other air-water humidifiers and dehumidifiers, a simple expression was obtained. This was owing very largely to the assumption that the Lewis number for air-water diffusion is nearly unity. It thus becomes possible to eliminate the last term of Eq. (17.75) from further evaluation in cooling-tower calculations. When $L e \neq 1.0$, Eq. (17.75), instead of reducing to Eq. (17.81), reduces to

$$
\begin{equation*}
n_{d}=K_{x} a \frac{V}{L}=\int \frac{d T}{\left(H^{\prime}-H\right)+c(T-t)(L e-1)} \tag{17.87}
\end{equation*}
$$

Equation (17.87) cannot be evaluated in a simple, straightforward manner because of the last term of the denominator. In Fig. 17.4 the Lewis number for air-water has a value of $1.0 \mathrm{at} 600^{\circ} \mathrm{F}$. For the diffusion of water into other gases such as H_{2} and CO_{2} the Lewis number is about 2.0 and 0.6 , respectively.

In the case of gas cooling if no simplifying assumption can be made for the Lewis number, it is necessary to return to the three basic equations for humidification and dehumidification. These are

$$
\begin{align*}
d q_{c} & =h_{\dot{a}} d V(T-t)=G c d T \tag{17.62}\\
d q_{d} & =K_{X} a d V\left(X-X^{\prime}\right)=\lambda d L \tag{17.67}\\
L d t & =G d H \tag{17.78}
\end{align*}
$$

where T now refers to the hot gas and t to the cold water. These equations are, respectively, the convection, diffusion, and overall heat balances. The first two can be related by the fact that $h=(L e) K_{X} c$. The overall heat balance given by Eq. (17.78) obviously is the sum of Eqs (17.62) and (17.67), respectively.

The problem is to determine the number of diffusion units corresponding to process requirements by the simultaneous integration of all three equations. This calls for a typical trial-and-error solution. Suppose a hot gas as in Fig. 17.16a contacts cold water in a counterflow tower. The process conditions leave two unknowns: the outlet air humidity and the quantity of water flowing over the tower. Although its temperature is
known, the outlet-air enthalpy cannot be calculated until its humidity is known. Without the outlet humidity the total heat to be removed $G d H=L d t$ cannot be calculated, and without it L cannot be determined. The number of diffusion units is dependent upon the L / G ratio, which cannot be set without knowing L. The solution of a gas-cooling problem can be seen to hinge entirely upon the value of the outlet-air humidity. However, by assuming the outlet humidity for a required gas-outlet temperature the enthalpy can be determined, the heat balance closed, and the L / G ratio is found.

Neglecting mechanical problems of distribution, the required height of the tower is proportional to the number of diffusion units it must contain. Having obtained L by assuming the gas-outlet humidity, the quantity of water diffused in the tower and the quantity of heat transferred can be determined by $K_{x} a V / L$ or $h a V / L$, both of which are related by the Lewis number. Starting at the bottom of the tower at the gas inlet, an increment $K_{X} a \Delta V / L$ can be assumed and the amount of mass and heat transfer occurring over the increment calculated, since L is now known and $K_{x} a \Delta V$ is the actual number of pounds of mass transfer for the interval. Working up the column by increments, Eqs. (17.62) and (17.67) can be integrated. Since Eq. (17.78) is the sum of Eqs. (17.62) and (17.67), a height should be reached in the tower at which all the heat transferred corresponds to Eq. (17.78). If the assumed enthalpy of the outlet-gas and the inlet-water temperature does not occur at the same height, the outlet enthalpy has been assumed incorrectly and a new assumption must be made.

Sherwood and Reed ${ }^{1}$ have given the solution of the three differential equations by the method of W. E. Milne, which is straightforward but fairly lengthy. If an estimate of the outlet humidity can be made, the method outlined above may be simpler.

Example 17.6. Calculation of a Direct-contact Gas Cooler. A cooling operation consists of passing $50,000 \mathrm{lb} / \mathrm{hr}$ of bone-dry gas of 29 molecular weight (essentially nitrogen) over trays of hot material from whose surface oxygen must be excluded. The gas is heated in passing over the trays from 200 to $300^{\circ} \mathrm{F}$ and emerges with a dew point of $120^{\circ} \mathrm{F}$. It then goes to a direct-contact cooler where it is cooled back to $200^{\circ} \mathrm{F}$ and dehumidified with water which is heated from 85 to $120^{\circ} \mathrm{F}$. A pressure drop of about 2 in . of water is permissible.
(a) How many diffusion units are required to accomplish this process?
(b) Using some standard low-pressure-drop data in the literature calculate the dimensions of a direct-contact tower. In the solution of this problem data will be used for a simple fill described by Simpson and Sherwood.

Solution. Basis: $1 \mathrm{ft}^{2}$ of ground area.

[^53](a) Tower fili of suspended fiber board will be used. Such towers can easily operate with gas velocities of 450 fpm with reasonable pressure drops and drift elimination because they are film type towers. If the gas loading is assumed to be 1500 $\mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)$, it will correspond to a gas velocity at the average temperature of the gas of 450 fpm . A higher gas rate cannot be justified, and a lower one might provide a tower of unnecessarily large cross section. This last can be checked only by a pressuredrop caleulation once the height of the tower has been determined.

To close the heat balance and to determine the total heat transfer and liquid loading it is necessary to assume the outlet-gas humidity. Assumption: 20 per cent of the initial vapor content of the gas enters the water body.

$$
\begin{aligned}
\text { At the gas inlet } \begin{aligned}
X_{1} & =\frac{1.69}{14.7-1.69} \times \frac{18}{29}=0.0807 \mathrm{lb} / \mathrm{lb} \\
G & =1500 \mathrm{lb} / \mathrm{hr}
\end{aligned}
\end{aligned}
$$

Total water in inlet gas $=1500 \times 0.0807=121.05 \mathrm{lb} / \mathrm{hr}$
The inlet gas is at $300^{\circ} \mathrm{F}$ and a $120^{\circ} \mathrm{F}$ dew point. Use $0.25 \mathrm{Btu} /(\mathrm{lb})\left({ }^{\circ} \mathrm{F}\right)$ for the specific heat of nitrogen
$H_{1}=0.0807 \times 120+0.0807 \times 1025.8+0.45 \times 0.0807(300-120)+0.25$

$$
\times 300=174.0 \text { Btu } / \mathrm{lb} \text { dry air } \quad(17.55)
$$

20 per cent of the vapor has been assumed to diffuse into the water body.
Outlet gas humidity, $\dot{X_{2}}=\frac{121.05(1.0-0.20)}{1500}=0.06456 \mathrm{lb} / \mathrm{lb}$
Dew point of outlet gas, $\frac{p_{w}}{14.7-p_{w}} \times \frac{18}{29}=0.06456$
$p_{w}=1.388$ psia $\approx 112.9^{\circ} \mathrm{F}$ dew point
The outlet gas has a temperature of $200^{\circ} \mathrm{F}$ and a $112.9^{\circ} \mathrm{F}$ dew point.
$H_{2}=0.06456 \times 112.9+0.06456 \times 1029.8+0.06456 \times 0.45(200-112.9)$
$+0.25 \times 200=126.4 \mathrm{Btu} / \mathrm{lb}$ dry air (17.55)
Total heat load, $q=G\left(H_{1}-H_{2}\right)=1500(174.0-126.4)=71,500 \mathrm{Btu} / \mathrm{hr}$
Water loading, $L=\frac{71,500}{120-85}=2040 \mathrm{lb} / \mathrm{hr}$
This water loading corresponds to $4.0 \mathrm{gpm} /\left(\mathrm{ft}^{2}\right)$, which is reasonable for this type of apparatus as explained earlier.

Interval 1:

$\frac{K_{X} a \Delta V}{L}: 0$ to 0.05
From Fig. 17.4 at $300^{\circ} \mathrm{F}, L e=0.93$

$$
C=0.25+0.45 \times 0.0807=0.283 \mathrm{Btu} /(\mathrm{lb})\left({ }^{\circ} \mathrm{F}\right)
$$

$h a V=K_{X} a \frac{V}{L} L\left(L_{e}\right) C=0.05 \times 2040 \times 0.93 \times 0.283$
$=26.9 \mathrm{Btu} /(\mathrm{hr})\left({ }^{\circ} \mathrm{F}\right)$
$q_{c}=h a V(T-t)=26.9(300-120)=4850 \mathrm{Btu} / \mathrm{hr}$
$\Delta T=\frac{4,850}{0.283 \times 1500}=11.4^{\circ} \mathrm{F}$
$T_{0.05}=300-11.4=288.6^{\circ} \mathrm{F}$
Since the dew point of the gas and the water outlet are the same in this problem, there is no diffusion in the first interval. In any other problem diffusion may occur in the first interval, and it can be treated the same as the second interval below:

$$
\begin{aligned}
\Delta t & =\frac{4850}{2040}=2.38^{\circ} \mathrm{F} \\
t_{0.05} & =120-2.38=117.6^{\circ} \mathrm{F}
\end{aligned}
$$

The temperstures for the first interval are shown in Fig. 17.17.
Interval 2: $\frac{K_{X} a \Delta V}{L}: 0.05$ to 0.15

$$
h a V=0.10 \times 2040 \times 0.93 \times 0.283=53.8 \mathrm{Btu} /(\mathrm{hr})\left({ }^{\circ} \mathrm{F}\right)
$$

For the interval:
$g_{c}=53.8(288.6-117.6)=9200 \mathrm{Btu} / \mathrm{hr}$
$\Delta T^{T}=\frac{9200}{0.283 \times 1500}=21.7^{\circ} \mathrm{F}$
$T_{0.15}=288.6-21.7=266.9^{\circ} \mathrm{F}$
$X_{117.6^{\circ} \mathrm{E}}^{f}=0.0748 \mathrm{lb} / \mathrm{lb}$
Lb water diffused during interval $=K_{\bar{x} a} \boldsymbol{V}$ $\left(X-X^{\prime}\right)$
$K_{X} a V=K_{X a} \frac{V}{L} \times L=0.10 \times 2040=204.0$
$\mathrm{lb} /(\mathrm{hr})(\mathrm{lb} / \mathrm{lb})$
$K_{X a} V\left(X-X^{\prime}\right)=204.0(0.0807-0.0748)=$
$1.203 \mathrm{lb} / \mathrm{hr}$
Lb water remaining $=121.05-1.203=$
$119.85 \mathrm{lb} / \mathrm{hr}$
$\lambda_{117.8^{\circ} \mathrm{p}}=1027 \mathrm{Btu} / \mathrm{lb}$
$q_{d}=1.203 \times 1027=1235 \mathrm{Btu} / \mathrm{hr}$
$q=9200+1235=10,435 \mathrm{Btu} / \mathrm{hr}$
$\Delta t=\frac{10,435}{2040}=5.12^{\circ} \mathrm{F}$
$t_{0.15}=(117.6-5.1)=112.5^{\circ} \mathrm{F}$
$X_{112.5^{\circ} \mathrm{F}}^{\prime}=0.0640 \mathrm{lb} / \mathrm{lb}$
$X_{112.0^{\circ} \mathrm{F}}=\frac{119.85}{1500}=0.0798 \mathrm{lb} / \mathrm{lb}$
Interval $3: \frac{K_{X} a \Delta V}{L}: 0.15$ to 0.25
$h a V=53.8 \mathrm{Btu} /(\mathrm{hr})\left({ }^{\circ} \mathrm{F}\right)$
For the interval:
$q_{a}=53.8(266.9-112.5)=8300 \mathrm{Btu} / \mathrm{hr}$
$\Delta T=\frac{8300}{0.283 \times 1500}=19.5^{\circ} \mathrm{F}$
$T_{0.25}=266.9-19.5=247.4^{\circ} \mathrm{F}$
Lb water diffused during interval $=204.0(0.0798-0.0640)=3.22 \mathrm{lb} / \mathrm{hr}$
Lb water remaining $\Rightarrow 119.85-3.22=116.63 \mathrm{lb} / \mathrm{hr}$
$\lambda_{112.5 \circ \mathrm{~F}}=1030 \mathrm{Btu} / \mathrm{lb}$
$q_{d}=3.22 \times 1030=3320 \mathrm{Btu} / \mathrm{hr}$
$q:=8300+3320=11,620 \mathrm{Btu} / \mathrm{hr}$
$\Delta t=\frac{11,620}{2040}=5.70^{\circ} \mathrm{F}$
$t_{0.25}=112.5-5.7=106.8^{\circ} \mathrm{F}$
$X_{106.8^{\circ} \mathrm{F}}^{\prime}=0.0533 \mathrm{lb} / \mathrm{lb}$
$X_{106,8 \circ \mathrm{~F}}=\frac{116.63}{1500}=0.0775 \mathrm{lb} / \mathrm{lb}$

The calculations of the remaining intervals until a gas temperature of $200^{\circ} \mathrm{F}$ is reached are shown in Fig. $17: 17$ frnm the summary table below.

Interval	$K_{X^{\prime}} \frac{V}{L}$	T	t	$\begin{gathered} \mathrm{H}_{2} \mathrm{O} \\ \text { diffused, } 1 \mathrm{~b} \end{gathered}$	q_{c}	q_{d}
	0	300	120			
1	0.05	288.6	117.6	0	4,850	0
2	0.15	266.9	112.5	1.20	9,200	1,235
3	0.25	247.4	106.8	3.22	8,300	3,320
4	0.35	229.6	100.6	4.99	7.560	5,150
5	0.45	213.2	94.0	6.29	6,950	6,520
6	0.538	200.0	88.0	6.22	5,640	6,460
	$n_{d}=0.538$			21.92	42,500 65,185	$\begin{aligned} & 22,685 \\ & / \mathrm{hr} \end{aligned}$

Assumed diffusion $=20$ per cent
Calculated diffusion $=21.92 \times \frac{100}{121.05}=18.0$ per cent
It is seen that the above summary is somewhat off, since the water temperature ended at $88^{\circ} \mathrm{F}$ whereas the inlet temperature was specified to be at $85^{\circ} \mathrm{F}$. If an answer of greater accuracy is desired, the temperature and humidity are found to check when the diffusion is assumed to be $181 / 2$ per cent and 0.55 diffiusion units are obtained. Plots can be made to show the variation of T and t with height.
(b) The following smoothed data are given for an experimental tower with vertical sheets of composition board:

Tower cross section: $415 / 8$ by $237 / 8 \mathrm{in}$.
Filled height: $413 / 8 \mathrm{in}$.
Sheet thickness: $1 / 8 \mathrm{in}$.
Horizontal spacing: $5 / 8$-in. centers
Number of sprays: 18

L, lb water $/(\mathrm{hr})\left(\mathrm{ft}^{2}\right)$	G, lb air $/(\mathrm{hr})\left(\mathrm{ft}^{2}\right)$	$K_{X} a$	ΔP, $\mathrm{in} . \mathrm{H}_{2} \mathrm{O}$
882	700	190	0.040
	1100	258	0.083
	1500	312	0.136
1178	700	200	0.049
	1100	290	0.095
	1500	373	0.150
1473	700	206	0.060
	1100	315	0.106
	1500	420	0.162

For $G=1500$, extrapolate to $L=2040$ on logarithmic coordinates. $K_{X} a=510$.
Tower height, $Z=\frac{n_{d} L}{K_{X} a}=0.54 \times \frac{2040}{510}=2.16 \mathrm{ft}$
Cross section $=\frac{50,000}{1500}=33.3 \mathrm{ft}^{2}$.
Note the small height. Even with an adequate factor for safety little height will be required to cool the gas.

The extrapolated pressure drop is 0.175 in . $\mathrm{H}_{2} \mathrm{O}$ per $413 / 8 \mathrm{in}$. of height.

SENSIBLE-HEAT TRANSFER

Heating and Cooling without Mass Transfer. When a hot gas contacts a nonvolatile cooling medium, the mass transfer is very small. In addition, with the exception of water, methanol, and ammonia, the latent heat of vaporization is also small, from 100 to $200 \mathrm{Btu} / \mathrm{lb}$, so that the diffusion heat load is insignificant. In such case it is possible to neglect the mass transfer altogether and simplify the method of calculation for gas coolers.

Most performance data on packed towers have been obtained for mass transfer, but convection alone can be computed from mass-transfer data such as $K_{X} a$ or $H D U$ by the simple relationship $h a V / L=(L e) C\left(K_{X} a V / L\right)$. The enthalpy of the gas where there is no mass transfer is proportional to its temperature, and the potential for convection is the difference between the temperature of the gas and the temperature of the water at any cross section in the tower. Accordingly, haV/L $=\int d t /(T-t)$, and since only sensible-heat changes occur,

$$
\begin{equation*}
\frac{h a V}{L}=\int \frac{d t}{\mathrm{LMTD}} \tag{17.88}
\end{equation*}
$$

For a given system in a given tower if $H D U$ is known, Eq. (17.88) can in turn be converted to the number of diffusion units by

$$
\begin{equation*}
n_{d}=(L e) \quad \int \frac{d t}{\mathrm{LMTD}}=\frac{h a V}{L(L e) C} \tag{17.89}
\end{equation*}
$$

There is a dearth of information on the performance of different packings and fills during the saturation of gases with oils and other organics which are suitable as nonvolatile heat-transfer mediums for hot gases. This is also true for the Lewis numbers for such systems. Theoretical approximations can be obtained, but these may lead to considerable error.

In a cooling tower the convection-heat transfer represents only about 20 per cent of the total heat transfer. In the gas cooler of Example 17.6 convection accounted for 65 per cent of the total heat load. If the gas had had an inlet temperature of $1000^{\circ} \mathrm{F}$ and a dew point of $120^{\circ} \mathrm{F}$, convection would have accounted for 95 per cent of the heat load. If a gas
with a dew point of 120 to $130^{\circ} \mathrm{F}$ or less is to be cooled by water without a close approach, diffusion represents a small portion of the heat load and the entire problem can be treated as one of sensible-heat transfer. The dew points referred to above are within the range of flue gases. Some allowance must be made in the heat load and liquid loading, although the height of the tower will not be affected, since both diffusion and convection will occur in the same height. The use of this short method is demonstrated below.

Example 17.7. Approximate Calculation of a Gas Cooler. $50,000 \mathrm{lb} / \mathrm{hr}$ of the gas in Example 17.6 (dew point $=120^{\circ} \mathrm{F}$) is to be cooled from an initial temperature of 500 to $200^{\circ} \mathrm{F}$. How many diffusion units of any type of tower are required?
Solution. Assume that C for the mixture is $0.28 \mathrm{Btu} /(\mathrm{Ob})\left({ }^{\circ} \mathrm{F}\right)$.
Sensible-heat load $=50,000 \times 0.28(500-200) \quad=4,200,000$
From Example 1.7.6 approximate diffusion $=\frac{50,000}{1,500} \times 22,685=\frac{758,000}{4,958,000} \mathrm{Btu} / \mathrm{hr}$
Actuaily, an allowance as high as 30 per cent of the sensible load can be made and the excess water compensated for by throttling when the tower is in operation.

$$
\text { Total water quantity }=\frac{4,958,000}{120-85}=142,000 \mathrm{lb} / \mathrm{hr}
$$

If the maximum liquid loading is taken as $2040 \mathrm{Ib} /(\mathrm{hr})\left(\mathrm{ft} \mathrm{t}^{2}\right)$, the required tower cross section will be

$$
\frac{142,000}{2040}=69.7 \mathrm{ft}^{2}
$$

The new gas rate will be

$$
\frac{50,000}{69.7}=718 \mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)
$$

Calculation of the number of diffusion units:

$$
\begin{equation*}
\frac{h a V}{L}=\int \frac{d t}{\mathrm{LMTD}} \tag{17.88}
\end{equation*}
$$

The two terminal temperature differences are (200-85) and (500-120).

$$
\begin{aligned}
\text { LMTD } & =\frac{(500-120)-(200-85)}{\ln (500-120)(200-85)}=222^{\circ} \mathrm{F} \\
d t & =120-85=35^{\circ} \mathrm{F} \\
\frac{h a V}{L} & =\frac{35}{222}=0.16 \\
n_{d} & =\frac{h a V}{L(L e) C} \\
& =\frac{0.16}{0.93 \times 0.28}=0.62 \text { diffusion units }
\end{aligned}
$$

For a tower employing fill as in Example 17.6:
By extrapolation for $G=718$ and $L=2040, K_{X} a=215$

$$
\begin{aligned}
n_{d} & =K_{X} a \frac{V}{L} \\
0.62 & =215 \times \frac{V}{2040}=215 \times \frac{1 Z}{2040} \\
Z & =6.8 \mathrm{ft} \text { high } \\
\text { Ground dimensions } & =(69.7)^{3 / 2}=81 / 3 \times 81 / 3 \mathrm{ft}
\end{aligned}
$$

As before, the pressure drop will be negligible.

PROBLEMS

17.1. A cooling tower 30 by 30 ft (Example 15.2) has been designed to cool 1800 gpm of water from 110 to $85^{\circ} \mathrm{F}$ when the 5 per cent wet bulb is $75^{\circ} \mathrm{F}$. The fans are capable of delivering $275,000 \mathrm{cfm}$ of air. How many diffusion units are required? If the 5 per cent wet bulb was $80^{\circ} \mathrm{F}$, how many diffusion units would be required?
17.2. A cooling tower 30 by 24 ft was designed to deliver 1200 gpm of water from 105 to $85^{\circ} \mathrm{F}$ when the 5 per cent wet bulb was $80^{\circ} \mathrm{F}$. Fans are capable of delivering $230,000 \mathrm{cfm}$ of air. (a) In an actual test at full loadings when the wet bulb was $70^{\circ} \mathrm{F}$ the water range was from 77.0 to $97.0^{\circ} \mathrm{F}$. Was the tower fulfiling guarantee conditions? (b) If the range was 78.0 to $98.0^{\circ} \mathrm{F}$, would the tower fulfill guarantee conditions?
17.3. In a Texas lube plant it is desired to install a water-cooled heat exchanger for a liquid with a waxy residue. A small portion of the cooling-tower water from. a single cell is available, but there is some question that in winter the entering water will chill out wax and disrupt operation.

The tower operates in summer at an $80^{\circ} \mathrm{F}$ wet bulb with water on at $120^{\circ} \mathrm{F}$ and off at $85^{\circ} \mathrm{F}$. Because of the main equipment on the water line the air and water quantities to the tower are fixed throughout the year at an $L / G=0.86$. Similarly the load is also fixed.

As a winter extreme it is desired to know the temperature to the exchanger and on the tower when the wet bulb is $60^{\circ} \mathrm{F}$.
17.4. A $6^{\prime} 0^{\prime \prime}$ ID tower 30 ft high packed with $10^{\prime} 0^{\prime \prime}$ of 3 -in. coke was used to provide 40 gpm of water cooled from 120 to $80^{\circ} \mathrm{F}$ when contacted with 3600 cfm of air having a dry bulb of $85^{\circ} \mathrm{F}$ and a $75^{\circ} \mathrm{F}$ wet bulb.

To approximately what temperature could the same tower cool 6800 cfm of flue gas from an economizer if packed to a height of $20^{\prime} 0^{\prime \prime}$ with coke? In a previous test at a gas load of $1020 \mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)$ a diffusion coefficient of $555 \mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft}^{3}\right)(\mathrm{lb} / \mathrm{lb})$ was obtained.
17.5. $100,000 \mathrm{lb} / \mathrm{hr}$ of nitrogen enters a direct-contact cooler at $350^{\circ} \mathrm{F}$ and a dew point of $130^{\circ} \mathrm{F}$ and is cooled to $200^{\circ} \mathrm{F}$ by water from 85 to $120^{\circ} \mathrm{F}$. Assume that a maximum gas loading of $1400 \mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)$ and a maximum liquid loading of 2000 $\mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)$ are permissible. What diameter of round tower is required? How many diffusion units are required?

NOMENCLATURE FOR CHAPTER 17

A	Heat-transfer surface, ft^{2}
a	Surface of packing or fill, $\mathrm{ft}^{2} / \mathrm{ft}^{3}$
C_{B}	Henry's law constant, (atm) $\left(\mathrm{ft}^{3}\right) /$ mol
C	Specific heat of hot liquid or humid heat of hot gas, Bta $/(\mathrm{lb})\left({ }^{\circ} \mathrm{F}\right)$
C_{1}	A constant

c	Specific heat of cold liquid or humid heat of cold gas, Btu/(lb) (${ }^{\circ} \mathrm{F}$)
[c]	Concentration in liquid, lb-mols/ft ${ }^{3}$
D	Inside diameter of tube, ft.
g	Acceleration of gravity, $\mathrm{ft} / \mathrm{hr}^{2}$
G_{m}	Gas rate, lb-mols/(hr)($\mathrm{ft} \mathrm{t}^{2}$ of ground area)
G	Gas rate, $\mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right.$ of ground area)
H, H^{\prime}	Enthalpy of the gas, saturation enthalpy of the gas, Btu/lb dry air
HTU	Height of a transfer unit, ft
$H D U$	Height of a diffusion unit, ft
h	Overall coefficient of heat transfer h_{G} or h_{L} in a system in which one film actually controls, Btu/(hr) (ft ${ }^{2}$) (${ }^{\circ} \mathrm{F}$)
$h_{G} h_{L}$	Coefficient of heat transfer from the gas to the gas-liquid interface, coefficient from the liquid to the gas-liquid interface, $\mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$
h_{i}, h_{0}	Coefficient of heat transfer referred to the inside diameter and the outside diameter of the tube, respectively, Btu/(hr)(ft $\left.{ }^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$
j_{d}, j_{k}	Factor for diffusion, factor for heat transfer, respectively, dimensionless
K_{G}	Overall coefficient of mass transfer, lb-mols/(hr)(ft ${ }^{2}$)(atm)
K_{L}	Overall coefficient of mass transfer, $\mathrm{lb}-\mathrm{mols} /(\mathrm{hr})\left(\mathrm{ft}{ }^{2}\right)($ unit concentration)
K_{X}	Overall coefficient of mass transier, $\mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft} \mathbf{t}^{2}\right)(\mathrm{lb} / \mathrm{lb})$
k	Thermal conductivity, Btu/(hr) (ft^{2}) (${ }^{\circ} \mathrm{F} / \mathrm{ft}$)
k_{d}	Diffusivity, $\mathrm{ft}^{2} / \mathrm{hr}$
k_{G}	Gas-film coefficient, lb-mol/(hr) (ft ${ }^{2}$)(atm)
k_{L}	Liquid-film coefficient, lb -mol/ $(\mathrm{hr})\left(\mathrm{ft}^{2}\right)$ (unit concentration)
k_{X}	Gas-film coefficient, lb/(hr) (ft^{2}) (lb/lb)
L	Liquid loading, $\mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right.$ of ground area)
$L M T D$	Logarithmic mean temperature difference, ${ }^{\circ} \mathrm{F}$
L_{0}	Makeup water, $\mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right.$ of ground area)
Le	Lewis number, $h_{G} / k_{X} c$ or $h / K_{X} c$, dimensionless
l	Film thickness, ft
M	Molecular weight, dimensionless
M_{w}, M_{a}	Molecular weight of water and air, respectively, dimensionless
$N_{\text {A }}$	Gas rate of diffusion, $\mathrm{lb}-\mathrm{mol} / \mathrm{hr}$
n	Number of mols
n_{d}	Number of diffusion units, dimensionless
n,	Number of transfer units, dimensionless
p	Pressure of diffusing component in the gas body, atm
p^{\prime}	Equilibrium pressure of the diffusing component, atm
$p_{\text {Am }}$	Log mean pressure of inert gas, atm
p_{t}	Total pressure, atm or psi
$p_{\text {¢ }}$	Partial pressure of water, consistent with units of p_{t}
Q	Total heat transfer, Btu/hr
q	Heat transfer based on $1 \mathrm{ft}^{2}$ of ground area, Btu/(hr) (ftt ${ }^{2}$ ground area)
q_{c}, q_{d}	Heat transfer by convection and diffusion, respectively, based on $1 \mathrm{ft}^{2}$ of ground area, $\mathrm{Bt} \mathbf{t} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right.$ of ground area)
R	Gas constant, $1544 \mathrm{ft-1b} / \mathrm{Btu}$
S	Entropy, Btu/ ${ }^{\circ} \mathrm{F}$
T	Temperature of the hot fluid, ${ }^{\circ} \mathrm{F}$
T_{0}	Makeup water, temperature ${ }^{\circ} \mathrm{F}$
t	Temperature of the cold fluid, ${ }^{\circ} \mathrm{F}$

$t_{D E}, t_{W B}, t_{D P}$	Dry-bulb, wet-bulb, and dew-point temperatures, respectively, ${ }^{\circ} \mathrm{F}$
U_{C}	Clean overall coefficient of heat transfer, Btu/(hr) (fta) (\%F)
u	Velocity, ft/hr
V	Tower volume, ft^{3}
v	Specific volume, $\mathrm{ft}^{3} / \mathrm{lb}$
X, X^{\prime}	Humidity of the gas, saturation humidity of the gas, $\mathrm{lb} / \mathrm{lb}$
x	Mol fraction of difiusing component in liquid phase
y	Mol fraction of diffusing component in gas phase
Z	Height of tower, ft
z	Height of free fall, ft
$\alpha_{A B}$	Proportionality constant, $\mathrm{hr} / \mathrm{ft}{ }^{2}$
γ	Exponent in Eq. (17.85)
δ	Molar density, lb-mols/ft ${ }^{3}$
θ	Time, hr
λ	Average latent heat of vaporization, Btu/lb
$\lambda_{D P}$	Latent heat of vaporization at the dew point, Btu/lb
ρ	Density, $\mathrm{lb} / \mathrm{ft}^{\text {s }}$

Subscripts (except as noted above)

A Diffusing component
$B \quad$ Inert gas
$i \quad$ Gas-liquid interface
1 Inlet
2 Outlet

CHAPTER 18

BATCH AND UNSTEADY-STATE PROCESSES

Introduction. The relationships of preceding chapters have appned only to the steady state in which the heat flow and source-temperature were constant with time. Unsteady-state processes are those in which the heat flow, the temperature, or both vary with time at a fixed point. Batch heat-transfer processes are typical unsteady-state processes in which discontinuous heat changes occur with specific quantities of material as when heating a given quantity of liquid in a tank or when a cold furnace is started up. Still other common problems involve the rates at which heat is conducted through a material while the temperature of the heat source varies. The daily periodic variations of the heat of the sun on various objects or the quenching of steel in an oil bath are examples of the latter. Other apparatuses based on the characteristics of the unsteady state are the regenerative furnaces used in the steel industry, the pebble heater, and equipment in processes employing fixed and mov-ing-bed catalysts.

In batch processes for the heating of liquids the time requirement for heat transfer can usually be modified by increasing the circulation of the batch fluid, the heat transfer medium, or both. The reasons for using a batch rather than a continuous heat-transfer operation are dictated by numerous factors. Some of the common reasons are (1) the liquid being processed is not continuously available; (2) the heating or cooling medium is not continuously available, (3) the requirements of reaction time or treating time necessitates holdup, (4) the economics of intermittently processing a large batch justifies the accumulation of a small continuous stream, (5) cleaning or regeneration is a significant part of the total operating period, and (6) the simplified operation of most batch processes is advantageous.

In order to treat the commonest applications of batch and unsteadystate heat transfer systematically, it is preferable to divide processes between liquid (fluid) heating or cooling and solid heating or cooling. The commonest examples are outlined below.

1. Heating and cooling liquids
a. Liquid batches
b. Batch distillation
2. Heating and cooling solids
a. Constant medium temperature
b. Periodically varying temperature
c. Regenerators
d. Granular material in beds

HEATING AND COOLING LIQUIDS

1a. Liquid Batches

Introduction. Bowman, Mueller, and Nagle ${ }^{1}$ have derived an expression for the time required to heat an agitated batch by the immersion of a heating coil when the temperature difference is the LMTD for counterflow. Fisher ${ }^{2}$ has extended the batch calculation to include an external counterflow exchanger. Chaddock and Sanders ${ }^{3}$ have treated agitated batches heated by external counterflow exchangers with the continuous addition of liquid to the tank and have also taken into account the heat of solution. Some of the derivations which follow apply to coils in tanks and jacketed vessels, although the method of obtaining overall coefficients of heat transfer for these elements is deferred until Chap. 20.

It is not always possible to distinguish between the presence or absence of agitation in a liquid batch, although the two premises lead to different requirements for the accomplishment of a batch temperature change in a given period of time. When a mechanical agitator is installed in a tank or vessel as in Fig. 18.1, there is no need to question that the tank fluid is agitated. When there is no mechanical agitator but the liquid is continuously recirculated, the conclusion that the batch is agitated is one of discretion. Where the heating element is an external exchanger, it is safer to assume agitation.
In the derivation of batch equations given below, T refers to the hot batch liquid or heating medium and t refers to the cold batch liquid or cooling medium. The following cases are treated here:
Heating and̉ cooling agitated batches, counterflow
Coil-in-tank or jacketed vessel, isothermal medium
Coil-in-tank or jacketed vessel, nonisothermal medium
External exchanger, isothermal medium
External exchanger, nonisothermal medium
External exchanger, liquid continuously added to tank, isothermal medium
External exchanger, liquid continuously added to tank, nonisothermal medium

[^54]Heating and cooling agitated batches, parallel flow-counterflow
External 1-2 exchanger
External 1-2 exchanger, liquid continuously added to tank
External 2-4 exchanger
External 2-4 exchanger, liquid continuously added to tank
Heating and cooling batches without agitation
External counterflow exchanger, isothermal medium
External counterflow exchanger, nonisothermal medium
External 1-2 exchanger
External 2-4 exchanger
Heating and Cooling Agitated Batches. There are several ways of

Fig. 18.1. Agitated batch. of Eqs. (18.1) through (18.23):

1. U is constant for the process and over the entire surface.
2. Liqu d flow rates are constant.
3. Specific heats are constant for the process.
4. The heating or cooling medium has a constant inlet temperature.
5. Agitation produces a uniform batch fluid temperature.
6. No partial phase changes occur.
7. Heat losses are negligible.

Heating and Cooling Agitated Batches: Counterflow

COIL-IN-TANK OR JACKETED VESSEL, ISOTHERMAL HEATING MEDIUM, Consider the arrangement shown in Fig. 18.1 consisting of an agitated vessel containing $M \mathrm{lb}$ of liquid with specific heat c and initial temperature t_{1} heated by a condensing medium of temperature T_{1}. The batch temperature t_{2} at any time θ is given by the differential heat balance. If Q^{\prime} is the total number of Btu transferred, then per unit of time

$$
\begin{align*}
d Q=\frac{d Q^{\prime}}{d \theta} & =M c \frac{d t}{d \theta}=U A \Delta t \tag{18.1}\\
\Delta t & =\left(T_{1}-t\right) \tag{18.2}
\end{align*}
$$

$$
\begin{align*}
\frac{d t}{d \theta} & =\frac{U A}{M c} \Delta t \tag{18.3}\\
\int \frac{d t}{T_{1}-t} & =\frac{U A}{M c} \int d \theta \tag{18.4}
\end{align*}
$$

Integrating from t_{1} to t_{2} while the time passes from 0 to θ,

$$
\begin{equation*}
\ln \frac{T_{1}-t_{1}}{T_{1}-t_{2}}=\frac{U A \theta}{M c} \tag{18.5}
\end{equation*}
$$

The use of an equation such as Eq. (18.5) requires the independent calculation of U for the coil or jacketed vessel as given in Chap. 20. With Q and A fixed by process conditions, the required heating time can be calculated.

COIL-IN-TANK OR JACKETED VESSEL, ISOTHERMAL COOLING MEDIUM. Problems of this type usually arise in low-temperature processes in which the cooling medium is a refrigerant which is fed to the cooling element at its isothermal boiling temperature. Conside the same arrangement as shown in Fig. 18.1 containing $M \mathrm{lb}$ of liquid with specific heat C and initial temperature T_{1} cooled by a vaporizing medium of temperature t_{1}. If T is the batch temperature at any time θ,

$$
\begin{align*}
\frac{d Q^{\prime}}{d \theta} & =-M C \frac{d T}{d \theta}=U A \Delta t \tag{18.6}\\
\Delta t & =\left(T-t_{1}\right) \\
\ln \frac{T_{1}-t_{1}}{T_{2}-t_{1}} & =\frac{U A \theta}{M C} \tag{18.7}
\end{align*}
$$

COIL-IN-TANK OR JACKETED VESSEL, NONISOTHERMAL HEATING MEDIUM. The nonisothermal heating medium has a constant flow rate W andinlet temperature T_{1} but a variable outlet temperature

$$
\begin{align*}
&(a) \\
& \frac{d Q^{\prime}}{d \theta}=M c \frac{d t}{d \theta}=W C\left(T_{1}-T_{2}\right)=U A \Delta t \\
& \Delta t=\mathrm{LMTD}=\frac{T_{1}-T_{2}}{\ln \left(T_{1}-t\right) /\left(T_{2}-t\right)} \tag{18.8}\\
& T_{2}=t+\frac{T_{1}-t}{e^{J \Delta / W}}
\end{align*}
$$

Let $K_{1}=e^{0 \Delta / W G}$ and equate (a) and (b) of Eq. (18.8).

$$
\begin{align*}
M c \frac{d t}{d \theta} & =W C\left(\frac{K_{1}-1}{K_{1}}\right)\left(T_{1}-t\right) \\
\ln \frac{T_{1}-t_{1}}{T_{1}-t_{2}} & =\frac{W C}{M c}\left(\frac{K_{1}-1}{K_{1}}\right) \theta \tag{18.9}
\end{align*}
$$

COIL-IN-TANK, NONISOTHERMAL COOLING MEDIUM:

$$
\begin{align*}
\frac{d Q^{\prime}}{d \theta} & =-M C \frac{d T}{d \theta}=v c\left(t_{2}-t_{1}\right)=U A \Delta t \tag{18.10}\\
K_{2} & =e^{U A / t e c} \\
\ln \frac{T_{2}-t_{1}}{T_{2}-t_{1}} & =\frac{w c}{M C}\left(\frac{K_{2}-1}{K_{2}}\right) \theta \tag{18.11}
\end{align*}
$$

external heat exchanger, isothermal heating medium. Con-

Fig. 18.2. Agitated batch with external 1-1 exchanger. sider the arrangement in Fig. 18.2 in which the fluid in the tank is heated by an external exchanger. Since the heating medium is isothermal, any type of exchanger with steam in the shell or tubes will be applicable. The advantages of forced circulation on both streams recommend this arrangement.

The variable temperature out of the exchanger t^{\prime} will differ from the variable tank temperature t, and the differential heat balance is given by

$$
\begin{align*}
\frac{d Q^{\prime}}{d \theta} & =M c \frac{d t}{d \theta}=w c\left(t^{\prime}-t\right)=U A \Delta t \\
t^{\prime} & =T_{1}-\frac{T_{1}-t}{e^{\theta \Delta / w c}} \tag{18.12}
\end{align*}
$$

Let

$$
\begin{align*}
K_{2} & =e^{U A / w c} \\
\ln \frac{T_{1}-t_{1}}{T_{1}-t_{2}} & =\frac{w c}{M c}\left(\frac{K_{2}-1}{K_{2}}\right) \theta \tag{18.13}
\end{align*}
$$

external bxchanger, isothermal cooling medivm:

$$
\begin{equation*}
\ln \frac{T_{1}-t_{1}}{T_{2}-t_{1}}=\frac{W C}{M C}\left(\frac{K_{1}-1}{K_{1}}\right) \theta \tag{18.14}
\end{equation*}
$$

external kxchanger, nonisothermal heating medium. The differential heat balance is given by

$$
\frac{d Q^{\prime}}{d \theta}=M c \frac{d t}{d \theta}=w c\left(t^{\prime}-t\right)=W C\left(T_{1}-T_{2}\right)=U A \Delta t
$$

There are two variable temperatures, t^{\prime} and T_{2}, which appear in the LMTD and which must first be eliminated. Equating Eq. (18.15), (a) and (b),

$$
t^{\prime}=t+\frac{M c}{w c} \frac{d t}{d \theta}
$$

Equating Eq. (18.15), (a) and (c),

$$
T_{2}=T_{1}-\frac{M c}{W C} \frac{d t}{d \theta}
$$

Let

$$
K_{3}=e^{U A\left(\frac{1}{w C}-\frac{1}{W C}\right)}
$$

and

$$
\begin{equation*}
\ln \frac{T_{1}-t_{1}}{T_{1}-t_{2}}=\frac{K_{3}-1}{M} \frac{w W C}{\left(K_{3} w c-\overline{W C}\right)} \theta \tag{18.16}
\end{equation*}
$$

external exchanger, nonisothermal cooling meditm:

$$
\begin{align*}
K_{4} & \left.=e^{V A\left(\frac{1}{W C}\right.}-\frac{1}{w c}\right) \\
\ln \frac{T_{1}-t_{1}}{T_{2}-t_{1}} & =\frac{\left(K_{4}-1\right)}{M} \frac{W w c}{\left(K_{3} W C-w c\right)} \theta \tag{18.17}
\end{align*}
$$

EXTERNAL EXCHANGER, LIQUID CONTINUOUSLY ADDED TO TANK, ISOthermal heating medium. The elements of the process are shown in Fig. 18.3. Liquid is continuously added to the tank at the rate of $L_{0} \mathrm{lb} / \mathrm{hr}$ and at the constant temperature t_{0}. It is assumed that no chemical heat effects attend the addition of the make-up liquid. Since M is the pounds of liquid originally in the batch and L_{0} is in pounds per hour,

Frg. 18.3. Agitated batch with external 1-1 exchanger, liquid continuously added. the total liquid at any time is $M+L_{0} \theta$. The differential heat balance is given by

$$
\begin{equation*}
\left(M+L_{0} \theta\right) \frac{d t}{d \theta}+L_{0} c\left(t-t_{0}\right)=w c\left(t^{\prime}-t\right) \tag{18.18}
\end{equation*}
$$

and

$$
w c\left(t^{\prime}-t\right)=U A \Delta t
$$

where

$$
\Delta t=\mathrm{LMTD}=\frac{t^{\prime}-t}{\ln \left(T_{1}-t\right) /\left(T_{1}-t^{\prime \prime}\right)}
$$

Solving for t^{\prime},

$$
t^{\prime}=\left(\frac{K_{2}-1}{K_{2}}\right) T_{1}+\frac{t}{\overline{K_{2}}}
$$

Substituting in Eq. (18.18),

$$
\begin{gather*}
\int \frac{d t}{w\left(\frac{K_{2}-1}{K_{2}}\right)\left(T_{2}-t\right)-L_{0}\left(t-t_{0}\right)}=\int \frac{d \theta}{M+L_{0} \theta} \\
\ln \frac{t_{1}-t_{0}-\frac{w}{L_{0}}\left(\frac{K_{2}-1}{K_{2}}\right)\left(T_{1}-t_{1}\right)}{t_{2}-t_{0}-\frac{w}{L_{0}}\left(\frac{K_{2}-1}{K_{2}}\right)\left(T_{1}-t_{2}\right)} \\
=\left[\frac{w}{L_{0}}\left(\frac{K_{2}-1}{K_{2}}\right)+1\right] \ln \frac{M+L_{0} \theta}{M} \tag{18.19}
\end{gather*}
$$

If the addition of liquid to the tank causes an average endothermic or exothermic heat of solution, $\pm q_{8} \mathrm{Bta} / \mathrm{lb}$ of make-up, it may be included by adding $\pm q_{0} / c_{0}$ to both the numerator and denominator of the left side. The subscript 0 refers to the make-up.
external exchanger, liquid continuously added to tank, isothermal cooling medium:

$$
\begin{gather*}
\left(M+L_{0} \theta\right) c \frac{d T}{d \theta}+W C\left(T-T^{\prime}\right)=L_{0} C\left(T_{0}-T\right) \tag{18.20}\\
\ln \frac{T_{0}-T_{1}-\frac{W}{L_{0}}\left(\frac{K_{1}-1}{K_{1}}\right)\left(T_{1}-t_{1}\right)}{T_{0}-T_{2}-\frac{W}{L_{0}}\left(\frac{K_{1}-1}{K_{1}}\right)\left(T_{2}-t_{1}\right)} \\
=\left[1-\frac{W}{L_{0}}\left(\frac{K_{1}-1}{K_{1}}\right)\right] \ln \frac{M+L_{0} \theta}{M} \tag{18.21}
\end{gather*}
$$

The heat-of-solution effects can be included by adding $\pm q_{s} / C_{0}$ to both the numerator and denominator of the left side.
external exchanger, liquid continuously added to tank, non: isothermal heating mbdium. The heat balance is identical with Eq. (18.18) for heating except that Δt is written for the inlet and outlet temperatures of the heating medium.

$$
\begin{aligned}
\Delta t & =\operatorname{LMTD}
\end{aligned}=\frac{\left(T_{2}-t\right)-\left(T_{1}-t^{\prime}\right)}{\ln \left(T_{2}-t\right) /\left(T_{1}-t^{\prime}\right)}=\frac{\left(t^{\prime}-t\right)-\left(T_{1}-T_{2}\right)}{\ln \left(T_{2}-t\right) /\left(T_{1}-t^{\prime}\right)}
$$

Let

$$
\begin{gather*}
K_{5}=e^{\frac{U_{A}}{w c}\left(1-\frac{w c}{W C}\right)} \\
\ln \frac{t_{0}-t_{1}+\frac{w W C\left(K_{5}-1\right)\left(T_{1}-t_{1}\right)}{L_{0}\left(K_{5} W C-w c\right)}}{t_{0}-t_{2}+\frac{w W C\left(K_{5}-1\right)\left(T_{1}-t_{2}\right)}{L_{0}\left(K_{5} W C-w c\right)}} \\
\quad=\left[\frac{w W C\left(K_{5}-1\right)}{L_{0}\left(K_{5} W c-w c\right)}+1\right] \ln \frac{M+L_{0} \theta}{M} \tag{18.22}
\end{gather*}
$$

The heat-of-solution effects can be included by adding $\pm q_{s} / c_{0}$ to both the numerator and denominator of the left side.

EXTERNAL EXCHANGER, LIQUID CONTINUOUSLY ADDED TO TANK, NONisothermal cooling medium:

$$
\begin{array}{r}
K_{8}=e^{\frac{U_{A}}{W C}\left(1-\frac{W c}{w c}\right)} \\
\ln \frac{T_{0}-T_{1}-\frac{W w c\left(K_{6}-1\right)\left(T_{1}-t_{1}\right)}{L_{0}\left(K_{\mathrm{B}} w c-W C\right)}}{T_{0}-T_{2}-\frac{W w c\left(K_{6}-1\right)\left(T_{2}-t_{1}\right)}{L_{0}\left(K_{6} w c-W C\right)}} \\
\quad=\left[\frac{W w c\left(K_{6}-1\right)}{L_{0}\left(K_{\theta} w c-W C\right)}+1\right] \ln \frac{M+L_{0} \theta}{M} \tag{18.23}
\end{array}
$$

The heat-of-solution effects can be included by adding $\pm q_{s} / C_{0}$ to both the numerator and denominator of the left side.

Heating and Cooling Agitated Batches. 1-2 Parallel flow-Counterflow. The derivations for the preceding cases included assumption 7, which required that all external exchangers operate in counterflow. With nonisothermal cooling and heating mediums this will not always be advantageous, since it sacrifices the construction and performance advantages of multipass apparatus such as the 1-2 exchanger. The external 1-2 exchanger can be included by using the temperature difference as defined by Eq. (7.37).

$$
\begin{equation*}
\frac{U A}{w c}=\frac{1}{\sqrt{R^{2}+1}} \ln \frac{2-S\left(R+1-\sqrt{R^{2}+1}\right)}{2-S\left(R+1+\sqrt{R^{2}+1}\right)} \tag{7.37}
\end{equation*}
$$

where

$$
\begin{gather*}
R=\frac{T_{1}-T_{2}}{t^{\prime}-t}=\frac{w c}{W C} \quad \text { and } \quad S=\frac{t^{\prime}-t}{T_{1}-t} \\
\frac{2-S\left(R+1-\sqrt{R^{2}+1}\right)}{2-S\left(R+1+\sqrt{R^{2}+1}\right)}=e^{\left(U A / w_{c}\right) \sqrt{R^{2}+1}}=K_{7} \\
S=\frac{2\left(K_{7}-1\right)}{K_{7}\left(R+1+\sqrt{\left.R^{2}+1\right)-\left(R+1-\sqrt{R^{2}+1}\right.}\right.} \tag{18.24}
\end{gather*}
$$

and so S as well as R is a constant which is independent of the exchanger outlet temperatures.
external 1-2 exchanger, heating. Using the same heat balance as defined by Eq. (18.15),

$$
\begin{aligned}
& t^{\prime}=t+\frac{M}{w} \frac{d t}{d \theta} \\
& S=\frac{t^{\prime}-t}{T_{1}-t}=\frac{(M / w)(d t / d \theta)}{T_{1}-t}
\end{aligned}
$$

Rearranging,

$$
\begin{align*}
\int \frac{d t}{T_{1}-t} & =\frac{S w}{M} \int d \theta \\
\ln \frac{T_{1}-t_{1}}{T_{1}-t_{2}} & =\frac{S w}{M} \theta \tag{18.25}
\end{align*}
$$

where S is defined by Eq. (18.24).
external 1-2 exchanger, cooling:

$$
\begin{equation*}
\ln \frac{T_{1}-t_{1}}{T_{2}-t_{1}}=S \frac{w c}{M C} \theta \tag{18.26}
\end{equation*}
$$

where S is defined by Eq. (18.24).
external 1-2 exchanger, liquid continuously added to tank. heating:

$$
\begin{gather*}
\left(M+L_{0} \theta\right) c \frac{d t}{d \theta}=w c\left(t^{\prime}-t\right)-L_{0 c}\left(t-t_{0}\right) \tag{18.27}\\
S=\frac{t^{\prime}-t}{T_{1}-t}=\frac{\left(\frac{M}{w}+\frac{L_{0} \theta}{w}\right) \frac{d t}{d \theta}+\frac{L_{0}}{w}\left(t-t_{0}\right)}{T_{1}-t}
\end{gather*}
$$

Simplifying

$$
\begin{gather*}
\frac{d t}{S T_{1}+\frac{L_{0}}{w} t_{0}-\left(S+\frac{L_{0}}{w}\right) t}=\frac{d \theta}{\frac{M}{w}+\frac{L_{0} \theta}{w}} \\
\ln \frac{S T_{1}+\frac{L_{0}}{w} t_{0}-\left(S+\frac{L_{0}}{w}\right) t_{1}}{S T_{1}+\frac{L_{0}}{w} t_{0}-\left(S-\frac{L_{0}}{w}\right) t_{2}}=\frac{S w+L_{0}}{L_{0}} \ln \frac{\left(M+L_{0} \theta\right)}{M} \tag{18.28}
\end{gather*}
$$

where S is defined by Eq. (18.24). The heat-of-solution effects can be included by adding $\pm q_{s} / c_{0}$ to the numerator, and denominator of the left side.

EXTERNÄL 1-2 EXCHANGER, LIQUID CONTINUOUSLY ADDED TO TANK, COOLING:

$$
\begin{array}{r}
\left(M+L_{0} \theta\right) C \frac{d T}{d \theta}=L_{0} C\left(T_{0}-T\right)-W C\left(T-T^{\prime}\right) \\
\frac{1}{L_{0}+W S R} \ln \frac{L_{0} T_{0}+W S R t_{1}-\left(L_{0}+W S R\right) T_{1}}{L_{0} T_{0}+W S R t_{1}-\left(L_{0}+W S R\right) T_{2}} \\
=\frac{1}{L_{0}} \ln \left(\frac{M+L_{0} \theta}{M}\right) \tag{18.30}
\end{array}
$$

where S is defined by Eq. (18.24). The heat-of-solution effects can be included by adding $\pm q_{s} / C_{0}$ to the numerator and denominator of the left side.

HEATING AND COOLING AGITATED BATCHES, $2-4$ PARALLEL FLOWCOUNTERFLOW. Equation (8.5) gives the true temperature relations for the 2-4 exchanger. This can be rearranged in terms of S to give

$$
\begin{equation*}
S=\frac{2\left(K_{8}-1\right)[1+\sqrt{(1-S)(1-R S)]}}{\left(K_{8}-1\right)(R+1)+\left(K_{8}+1\right) \sqrt{R^{2}+1}} \tag{18.31}
\end{equation*}
$$

and

$$
\begin{equation*}
K_{8}=e^{(U A / 2 w c) \sqrt{R^{2}+1}} \tag{18.32}
\end{equation*}
$$

Since S cannot be expressed simply, Eq. (18.31) can be solved by trial and error, assuming different values of S until an equality is reached. The equations for heating and cooling are the same as those developed for the 1-2 exchanger except that the value of S from Eq. (18.31) replaces the value of S from Eq. (18.24). The heat-of-solution effects can be accounted for in the same manner as for the 1-2 exchanger.

Heating and Cooling without Agitation. It will be seen in Chap. 20 that agitation increases the film coefficient and thereby decreases the time requirement when heating or cooling liquids by means of a coil in tank. With external exchangers the presence of agitation, either intended or

Fig. 18.4. Batch without agitation: unavoidable, much to the contrary increases the time required to heat or cool a batch. This can be appreciated by simple analysis. Referring to Fig. 18.4, the batch with initial temperature t passes through an external exchanger and is returned to the tank where it builds up as a layer of temperature t_{1}. Such might be the case if the liquid was relatively viscous or the vessel tall and narrow. All the liquid enters the exchanger at the tank temperature t during the initial circulation and
emerges with a temperature t_{1} which is the feed temperature to the exchanger on the next recirculation. With agitation, however, the first liquid emerging from the exchanger mixes with the batch liquid and immediately raises its temperature above the initial temperature t. This in turn reduces the temperature difference in the exchanger and increases the time required for a given heat transfer.

Suppose the initial quantity of batch liquid is $M \mathrm{lb}$ and that it is circulated through the exchanger at the rate of $w \mathrm{lb} / \mathrm{hr}$. Since there is a discrete temperature change with each recirculation, the process is not described by a differential change. If the number of circulations required for the attainment of a final batch temperature is N, the time is given by $\theta=N M / w$.

EXTERNAL COUNTERFLOW EXCHANGER, ISOTHERMAL HEATING MEDIUM:

$$
w c\left(t_{1}-t\right)=U A \frac{\left(t_{1}-t\right)}{\ln \left(T_{1}-t\right) /\left(T_{1}-t_{1}\right)}
$$

For the initial circulation

$$
t_{1}=T_{1}-\frac{1}{K_{2}}\left(T_{1}-t\right)
$$

For the first recirculation

$$
t_{2}=T_{1}-\frac{1}{K_{2}}\left(T_{1}-t_{1}\right)
$$

In terms of T_{1} and t

$$
t_{2}=T_{1}-\frac{1}{K_{2}^{2}}\left(T_{1}-t\right)
$$

or

$$
\begin{equation*}
t_{N}=T_{1}-\frac{1}{K_{2}^{N}}\left(T_{1}-t\right) \tag{18.33}
\end{equation*}
$$

When solved for N circulations,

$$
\begin{equation*}
\theta=\frac{N M}{w} \tag{18.34}
\end{equation*}
$$

Provision can be made for the continuous addition of liquid by computing the mix temperature to the exchanger after each circulation. In such an event the size of the batch itself must be treated as increasing with each circulation, so that Eq. (18.34) does not apply unless M is increased by $L_{0} \theta$ pounds during the recirculation. The total time will be the sum of the individual calculations as above.
external counterflow exchanger, isothermal cooling medium:

$$
\begin{equation*}
T_{N}=t_{1}-\frac{1}{K_{1}^{N}}\left(t_{1}-T\right) \tag{18,35}
\end{equation*}
$$

EXTERNAL COUNTERFLOW EXCHANGER, NONISOTHERMAL HEATING medrum. The outlet temperature of the batch and the heating medium after each recirculation is not known. This case does not factor so simply as the preceding with an isothermal medium. Although the answer can be expressed in a series form, it is tedious to evaluate and greater speed can be attained by calculating the temperature changes after each recirculation. The temperature relations after each recirculation can be defined when

$$
\begin{align*}
S & =\frac{K_{9}-1}{K_{9} R-1} \tag{18.36}\\
K_{9} & =e^{(U A / w c)(R-1)}
\end{align*}
$$

Initial circulation

$$
\begin{equation*}
t_{1}=t+S\left(T_{1}-t\right) \tag{18.37}
\end{equation*}
$$

Recirculation

$$
t_{2}=t_{1}+S\left(T_{1}-t_{1}\right)
$$

Solve for each circulation by introducing the temperature from the preceding circulation.

EXTERNAL COUNTERFLOW EXCHANGER, NONISOTHERMAL COOLING MEDIUM. After each recirculation,

$$
\begin{equation*}
T_{1}=T-S\left(T-t_{1}\right) \tag{18.38}
\end{equation*}
$$

external 1-2 exchanger, heating and cooling. This case can be calculated in the same manner as the preceding but using S as defined by Eq. (18.24). An even greater simplification can be obtained by using the Ten Broeck chart in Fig. 7.25 and calculating each step separately. The continuous addition of liquid can be accounted for in each step along with its heat of solution.
external 2-4 exchanger, heating and cooling. This is the same as the preceding except that S is defined by Eq. (18.31) or Fig. 8.7.

Example 18.1. Calculation of Batch Heating. 7500 gal of liquid benzene under pressure at $300^{\circ} \mathrm{F}$ is required for a batch extraction process. The storage temperature of the benzene is $100^{\circ} \mathrm{F}$. Available as a heating medium is a $10,000 \mathrm{lb} / \mathrm{hr} 28^{\circ} \dot{\mathrm{A} P I}$ oil stream at a temperature of $400^{\circ} \mathrm{F}$. A pump connected to the tank is capable of circulating $40,000 \mathrm{lb} / \mathrm{hr}$ of benzene. Available for the service is $400 \mathrm{ft}^{2}$ of clean double pipe exchanger surface which, in counterflow streams, yields a U_{C} of 50 calculated for the flow rates above.
(a) How long will it take to heat the agitated batch using the double pipe counterflow assembly?
(b) How long will it take using a 1-2 exchanger with the same surface and coefficient?
(c) How long will it take using a $2-4$ exchanger with the same surface and coefficient?
(d) How long will it take in (a) if the batch vessel is very tall and the batch is not considered to be agitated?

Solution:

(a) This corresponds to Eq. (18.16).

Specific gravity of benzene $=0.88$
Specific heat of benzene $=0.48 \mathrm{Btu} /(\mathrm{lb})\left({ }^{\circ} \mathrm{F}\right)$
$M=7500 \times 8.33 \times 0.88=55,000 \mathrm{lb}$
$w_{c}=40,000 \times 0.48=19,200 \mathrm{Btu} /(\mathrm{hr})\left({ }^{\circ} \mathrm{F}\right)$
$W C=10,000 \times 0.60=6000 \mathrm{Btu} /(\mathrm{hr})\left({ }^{\circ} \mathrm{F}\right)$
$K_{3}=e^{U A\left(\frac{1}{w_{c}}-\frac{1}{W C}\right)}$
$=e^{50 \times 400\left(\frac{1}{19,200}-\frac{1}{6000}\right)}=0.101$
Substitute in Eq. (18.16).

$$
\begin{gathered}
\ln \frac{400-100}{400-300}=\frac{(0.101-1)}{55,000} \times \frac{40,000 \times 6000}{(0.101 \times 6000-19,200)} \theta \\
\theta=5.18 \mathrm{hr}
\end{gathered}
$$

(b) This case corresponds to Eq. (18.25) in which S is defined by Eq. (18.24) and θ by Eq. (18.25).

$$
\begin{aligned}
& R=\frac{w c}{W C}=\frac{19,200}{6000}=3.20 \\
& K_{7}=e^{J 1 / w c} \sqrt{R^{2}+1} \\
& \quad=e^{\frac{50 \times 400}{19,200} \sqrt{3.20^{2}+1}}=33.1 \\
& S=\frac{2(33.1-1)}{33.1\left(1+3.20+\sqrt{\left.3.20^{2}+1\right)}-\left(1+3.20-\sqrt{\left.3.20^{2}+1\right)}\right.\right.}=0.266 \\
& \ln \frac{400-100}{400-300}=\frac{0.266 \times 40,000}{55,000} \theta
\end{aligned}
$$

(c) Use S from Eq. (18.31).

$$
\begin{aligned}
K_{\mathrm{B}} & =e^{U_{\Delta} / 2 v v \sqrt{R^{2}+1}} \\
& =e^{\frac{100 \times 200}{2 \times 19,200} \sqrt{3.20^{2}+1}}=5.75
\end{aligned}
$$

Solve Eq. (18.31) by trial and error:

$$
\begin{aligned}
& S=\frac{2(5.75-1)[1+\sqrt{(1-S)(1-3.20 S)}]}{(5.75-1)(3.2+1)+(5.75+1) \sqrt{3.20^{2}+1}} \\
&=0.282 \\
& \ln \frac{400-100}{400-300}=\frac{0.282 \times 40,000}{55,000} \times \theta \\
& \theta=5.33 \mathrm{hr}
\end{aligned}
$$

(d) Use Eq. (18.37) and S from Eq_{q}, (18.36).

$$
\begin{aligned}
K_{9} & =e^{i(1 / / 00(R-1)} \\
& =e^{\frac{50 \times 400}{19,200}(3.20-1)}=9.87 \\
S & =\frac{K_{9}-1}{K_{i} R-1}=\frac{9.87-1}{9.87 \times 3.20-1}=0.290
\end{aligned}
$$

$$
\begin{aligned}
& t_{1}=t+S\left(T_{1}-t\right)=100+0.29(400-100)=187^{\circ} \mathrm{F} \\
& t_{2}=t_{1}+S\left(T_{1}-t_{1}\right)=187+0.29(400-187)=249^{\circ} \mathrm{F} \\
& t_{3}=t_{2}+S\left(T_{1}-t_{2}\right)=249+0.29(400-249)=293^{\circ} \mathrm{F} \\
& t_{4}=t_{3}+S\left(T_{1}-t_{3}\right)=293+0.29(400-293)=324^{\circ} \mathrm{F}
\end{aligned}
$$

Actually, a fractional number of circulations are required. If the problem may be treated from the standpoint of total heat input to the batch, let
$x=$ fractional circulation
$293(1-x)+324=300$
$x=0.23$
Total circulations $=3+0.23=3.23$

$$
\theta=3.23 \times \frac{55,000}{40,000}=4.44 \mathrm{hr}
$$

This value compares with 5.18 hr for the agitated batch.

1b. Batch Distilllation

Introduction. Typical arrangements for batch distillation are shown in Figs. 18.5 and 18.6. The still pot is charged with a batch of liquid,

Frg. 18.5. Coil-heated batch still.

Fig. 18.6. Batch stili with external reboiler.
and heat is supplied by a coil or a natural- or forced-circulation reboiler. In some high-temperature installations the still pot may be directly fired. Batch distillation is usually employed when there is an insufficiency of charge stock to warrant continuous operation and the assemblies are often relatively small. In batch distillation the composition and temperature of the residual liquid in the still constantly vary, and usually the same
applies to the condensate except when the still has been charged with or forms a constant-boiling mixture. In batch distillation it is possible to obtain an initial overhead fraction which is purer than that obtainable with the same reflux by continuous distillation. This is particularly true when the overhead product is sold in different grades with a premium for purity. It is also possible by constantly varying the reflux ratio to obtain a nearly-uniform overhead composition although its quantity constantly decreases. The latter is usually too costly to be general.

The composition change during the batch distillation of a binary mixture is given by the Rayleigh equation.

$$
\begin{equation*}
\ln \frac{L_{1}}{L_{2}}=\int_{x_{2}}^{x_{1}} \frac{d x}{y-x} \tag{18.39}
\end{equation*}
$$

where $L_{1}=$ mols liquid charge to still
$L_{2}=$ mols residue after distillation
$x_{1}=$ mol fraction of volatile component in charge liquid
$x_{2}=$ mol fraction of volatile component in residue
$y=$ mol fraction of vapor in equilibrium with x
The temperature must be obtained from a boiling-point curve if the mixture is not ideal and does not follow Raoult's and Henry's laws.

The Rayleigh equation does not contain any term with a unit of time. The time allotted to the distillation is therefore independent of any feed quantity. If a batch represents the intermittent accumulation of several hours' flow of charge stock, the rate of distillation must be such that the still pot will be vacated and ready to receive the next charge. If the distillation occurs infrequently, the rate of distillation can be determined economically from the optimum relationship between fixed and operating charges. In batch distillation the cost of labor is particularly large and favors a rapid distillation. The cost of the equipment, on the other hand, favors slower rates of distillation.

The Reboiler and Condenser. The design conditions for both the reboiler and the condenser are usually based upon the limiting conditions of operation. Very often batch distillation is controlled automatically by a program or elapsed-time controller (see Fig. 21.28) such that the heating medium is supplied at a rate producing a steady increase in the boiling temperature. If a heating medium such as steam were supplied to a batch reboiler at a fixed rate, much of it would not be condensed in the reboiler following the initial period of rapid yaporization whence the residue is heated sensibly. The charge stock is a mixture having volatile components which leave the residue at a decreasing rate as the distillation progresses. The boiling temperature of the residue consequently rises as the volatile components are depleted. As the sensible
load in the still pot increases, the weighted heat transfer coefficient to the residue decreases. Suppose steam at $300^{\circ} \mathrm{F}$ is used to vaporize a charge having an initial boiling point of $200^{\circ} \mathrm{F}$ and the distillation is to be cut off at a residue composition corresponding to a boiling point of $250^{\circ} \mathrm{F}$. A distillation curve can be prepared using the methods of Chaps. 13 and 15. Instantaneous coefficients can be computed for both the start and the finish from adjacent intervals of heat input. At the start when the film coefficient and heat load are high, the temperature difference is

$$
300-200=100^{\circ} \mathrm{F}
$$

but at the cutoff temperature, where the film coefficient and heat load are low, the temperature difference is only $300-250=50^{\circ} \mathrm{F}$. Both conditions must be tested for U and Δt to determine which one requires the greater surface.
The factors affecting the condenser are different. The water rate is usually kept constant. At the start of distillation the temperature of the overhead vapor may be near $200^{\circ} \mathrm{F}$ and the water, with a range from 85 to $120^{\circ} \mathrm{F}$, provides an LMTD of $96.2^{\circ} \mathrm{F}$. At the cutoff the overhead may be near $250^{\circ} \mathrm{F}$, corresponding to a temperature difference of $150^{\circ} \mathrm{F}$ or greater, and the heat load and water range will be smaller. The condensing coefficient will change little over the entire run. The limiting condition for the condenser therefore is at the start of distillation, where the maximum heat load and minimum temperature difference usually occur together.
A common practice for obtaining the heat load for the reboiler and condenser without resorting to a distillation curve is to take the total heat load and divide it by the time allotted to the distillation. This will give a fictitious average hourly heat load which is greater than that at the cutoff but usually less than the initial heat load. The value of Q so obtained is combined with the value of U and Δt occurring at both the start and the cutoff temperatures; and the larger calculated surface plus some allowance for the error is used. If the heating element is also used to preheat the charge, it is entirely likely that the preheat rate may be limiting. The time for preheating can be obtained from one of the batch heating equations in the preceding section.

HEATING AND COOLING SOLIDS

2a. Constant Medium Temperature

Introduction. Since the appearance of Fourier's ${ }^{1}$ early work the conduction of heat in solids has attracted the interest and attention of many

[^55]leading mathematicians and physicists. It is possible to present only some of the simplest and most representative cases here and to suggest the overall nature of the study. The reader is referred to the excellent books on the subject listed below. ${ }^{1}$. They treat the subject in greater detail and provide the solutions for a number of specific problems as well as many with more complex geometry.

In the treatment of unsteady-state conduction the simplest types of problems are those in which the surface of the solid suddenly attains a new temperature which is maintained constant. This can happen only when the film coefficient from the surface to some isothermal heat-transfer medium is infinite, and although there are not many practical applications of this type, it is an important steppingstone to the solution of numerous problems. Ordinarily, heating or cooling involves a finite film coefficient or else a contact resistance develops between the medium and the surface so that the surface never attains the temperature of the medium. Moreover, the temperature of the surface changes continuously as the solid is heated even though the temperature of the medium remains constant. It is also possible that the temperature of the medium itself varies, but this class of problem will be treated separately in the next section. The cases treated in this section include those with finite film coefficients or contact resistances as well as those with infinite coefficients. The following are considered:

Sudden change of the surface temperature (infinite coefficient)
Wall of infinite thickness heated on one side
Wall of finite thickness heated on one side
Wall of finite thickness heated on both sides (slab)
Square bar, cube, cylinder of infinite length, cylinder with length equal to its diameter, sphere
${ }^{1}$ Boelter, L. M. K., V. H. Cherry, H. A. Johnson, and R. C. Martinelli, "Heat Transfer Notes," University of California Press, Berkeley, 1946. Carslaw, H. S., and J. C. Jaeger, "Conduction of Heat in Solids," Oxford University Press, New York, 1947: Grober, H., "Einfuhrung in die Lehre von der Warmeubertragung," Verlag Julius Springer, Berlin, 1926. Ingersoll, L. R., O. J. Zobel, and A. C. Ingersoll, "Heat Conduction with Engineering and Geological Applications," MoGraw-Hill Book Company Inc., New York, 1948. McAdams, W. H., "Heat Transmission," 2d ed., McGraw-Hill Book Company, Inc., New York, 1942. Schack, A., "Der industrielle Warmeubergang," Verlag Atahleisen, Dusseldorf, 1929; English translation by H. Goldschmidt and E. P. Partridge, "Industrial Heat Transfer," John Wiley \& Sons, Inc., New York, 1933. Sherwood, T. K., and C. E. Reed, "Applied Mathematics in Chemical Engineering," McGraw-Hill Book Company, Inc., New York, 1939. For a review of more recent methods see Dusinberre, G. M., "Numerical Analysis of Heat Flow," McGraw-Hill Book Company, Inc., New York, 1949, and Jakob, M, "Heat Transfer," Vol. 1, John Wiley \& Sons,.Inc., New York, 1949.

Changes duèto media having contact resistances

Wall of finite thickness
Cylinder of infinite length, sphere, seminnfinite solid
Newman's method for common and composite shapes
Graphical determination of the time-temperature distribution
Wall of Infinite Thickness Heated on One Side. A wall of infinite thickness and at a uniform original temperature is subjected to surroundings with constant temperature T_{a}. It is assumed that there is no contact resistance between the medium and the surface it contacts, so that the face temperature of the wall is also T_{s}. This differs from ordinary quenching in which there is a very definite contact resistance. The general equation for conduction has been given by Eq. (2.13). For a wall of infinite thickness it reduces to unidirectional heat flow as given by Eq. (2.12). The group $k / c \rho$ is the thermal diffusivity consisting only of the properties of the conducting material. Calling this group α, the conduction may be represented by

$$
\begin{equation*}
\frac{\partial t}{\partial \theta}=\alpha \frac{\partial^{2} t}{\partial x^{2}} \tag{2.12}
\end{equation*}
$$

Fourier has indicated that the time-temperature-distance relationship for a body of uniform temperature subjected to a sudden source of heat will be represented by the exponential $e^{-p \theta} e^{q x}$, where p and q are constants, θ is the time, and x the distance from the surface. With this as the starting point it is possible to set up a number of equations which describe the variation of the temperature with time and distance throughout a solid suddenly subjected to a heat source at one face. It is requisite, however, that the equation containing the exponential also fulfill all the boundary conditions imposed on the system. The most general equation of this type is given by

$$
\begin{equation*}
t=C_{1}+C_{2} x+C_{3} e^{-p \theta} e^{q x} \tag{18.40}
\end{equation*}
$$

in which C_{1}, C_{2}, and C_{3} are constants. A modification of Eq. (18.40) which describes the case in question and fulfills numerous boundary conditions is given by Schack as

$$
\begin{equation*}
t=C_{1}+C_{2} x+C_{2} \frac{2}{\sqrt{\pi}} \int_{z=0}^{z=x / 2 \sqrt{\alpha \theta}} e^{-z^{2}} d z \tag{18.41}
\end{equation*}
$$

where $\frac{2}{\sqrt{\pi}} \int_{0}^{z} e^{-z^{2}} d z$ is readily recognized as the probability integral or Gauss's error integral with values from 0 to 1.0 . The boundary conditions for an infinite wall heated on one face are that, when $x=x$ and $\theta=0 . t=t_{0}$ and, when $x=0$ and $\theta=0, t=T_{s}$, where t_{0} is the initial
uniform temperature of the solid. When $x=0$ and $\theta=0, t=T_{s}=C_{2}$ in which T_{s} is the temperature of the face of the slab directly upon being brought in contact with surroundings at T_{8}. When $x=x$ and $\theta=0$, the temperature of the slab naturally possesses its original temperature t_{0} or

$$
\begin{equation*}
t_{\theta=0}=C_{1}+C_{2} x+C_{z}=t_{0} \tag{18.42}
\end{equation*}
$$

This can be valid, however, only if $C_{2}=0$, for otherwise t_{0} would have to vary with x whereas it was assumed to be uniform.

Thus

$$
t_{0}=C_{1}+C_{3}
$$

or

$$
C_{3}=t_{0}-T_{6}
$$

Substituting for the constants in Eq. (18.41),

$$
t=T_{s}+\left(t_{0}-T_{s}\right) \frac{2}{\sqrt{\pi}} \int_{0}^{x / 2 \sqrt{\alpha_{\theta}}} e^{-z^{2}} d z
$$

or in abbreviated form

$$
\begin{equation*}
t=T_{s}+\left(t_{0}-T_{s}\right) f_{1}\left(\frac{x}{2 \sqrt{\alpha \theta}}\right) \tag{18.43}
\end{equation*}
$$

where $f_{1}(x / 2 \sqrt{\alpha \theta})$ denotes the value of the error integral in terms of the

Fra. 18.7. Probability integral.
dimensionless group $x / 2 \sqrt{\alpha \theta}$. The values of the integral are plotted in Fig. 18.7. Equation (18.43) can be conveniently written

$$
\begin{equation*}
Y=\frac{T_{s}-t}{T_{s}-t_{0}}=f_{1}\left(\frac{x}{2 \sqrt{\alpha \theta}}\right) \tag{18.44}
\end{equation*}
$$

Equation (18.44) is obviously the means by which the temperature t at any distance x and after time θ can be deternined. A similar result can
be obtained by dimensional analysis. For unit area the heat flow can be taken from Eq. (2.5).

$$
\begin{equation*}
\frac{d Q}{d A}=k \frac{d t}{d x} \tag{18.45}
\end{equation*}
$$

where Q is the heat flow Btu/hr. To obtain $d t / d x$ from the expression for t in Eq. (18.44) the derivative of the error integral becomes

$$
\begin{equation*}
\frac{\partial}{\partial x} \int_{0}^{x / 2 \sqrt{\alpha \theta}} e^{-z^{2}} d z=\frac{e^{-x^{2} / 4 \alpha \theta}}{2 \sqrt{\alpha \theta}} \tag{18.46}
\end{equation*}
$$

and Eq. (18.45) reduces to

$$
\begin{equation*}
\frac{Q}{A}=\frac{k\left(T_{s}-t_{0}\right)}{\sqrt{\pi \alpha \theta}} e^{-x^{2} / 4 \alpha \theta} \tag{18.47}
\end{equation*}
$$

Values of the exponential are plotted in Fig. 18.8.

Fig. 18.8. Values of the exponential.
The heat flow through the surface is obtained when $x=0$ or

$$
\begin{equation*}
\frac{Q}{A}=\frac{k\left(T_{s}-\dot{t}_{0}\right)}{\sqrt{\pi \alpha \theta}} \tag{18.48}
\end{equation*}
$$

and after θ hr the total heat which will have entered or left the wall will be

$$
\begin{equation*}
\frac{Q^{\prime}}{A}=2 k\left(T_{s}-t_{0}\right) \sqrt{\frac{\theta}{\pi \alpha}} \tag{18.49}
\end{equation*}
$$

where Q^{\prime} is the number of Btu.
Example 18.2. Heat Flow through a Wall. It is desired to know the temperature of a thick steel wall 4 in . below its hot surface and 4 hr after its uniform temperature of $100^{\circ} \mathrm{F}$ was changed by suddenly applying a temperature of $1000^{\circ} \mathrm{F}$ to one face. How much heat will be passing into the wall at that time, and how much will already have passed into the wall?

Solution. Using Eq. (18.44):
Properties of steel: Assume

$$
\begin{align*}
& t_{\mathrm{av}}=500^{\circ} \mathrm{F} \\
& c=0.12 \mathrm{Btu} /(\mathrm{lb})\left({ }^{\circ} \mathrm{F}\right) \\
& k=24.0 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F} / \mathrm{ft}\right) \\
& \rho=488 \mathrm{lb} / \mathrm{ft}^{3} \\
& \alpha=\frac{k}{c_{\rho}}=\frac{24.0}{0.12 \times 488}=0.41 \mathrm{ft}^{2} / \mathrm{hr} \\
& x=4 / 12=0.333 \mathrm{ft} \\
& \theta=4 \\
& \quad Y=\frac{T_{s}-t}{T_{s}-t_{0}}=f_{1}\left(\frac{x}{2 \sqrt{\alpha \theta}}\right)=f_{1}\left(\frac{0.333}{2 \sqrt{0.41 \times 4}}\right)=f_{1}(0.130) \tag{18.44}
\end{align*}
$$

From Fig. 18.7, for $x / 2 \sqrt{\alpha \theta}=0.130, f_{1}(x / 2 \sqrt{\alpha \theta})=0.142$.

$$
\begin{align*}
& t=T_{s}+\left(t_{0}-T_{s}\right) f_{1}\left(\frac{x}{2 \sqrt{\alpha \theta}}\right) \tag{18.43}\\
& t=1000+(100-1000) 0.142=872^{\circ} \mathrm{F}
\end{align*}
$$

The heat flow crossing a plane 4 in . from the surface at 4 hr after applying the heat is given by Eq. (18.47).

$$
\begin{align*}
& \frac{Q}{A}=\frac{k\left(T_{0}-t_{0}\right)}{\sqrt{\pi \alpha \theta}} \tag{18.47}\\
& \frac{Q}{A}=\frac{24(1000-100)}{\sqrt{\pi \times 0.41 \times 4}}=9525 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)
\end{align*}
$$

The total heat which flowed through a square foot of wall in the 4 hr is given by

$$
\begin{align*}
\frac{Q^{\prime}}{A} & =2 k\left(T_{s}-t_{0}\right) \sqrt{\frac{\theta}{\pi \alpha}} \tag{18.49}\\
& =2 \times 24(1000-100) \sqrt{\frac{4}{3.14 \times 0.41}}=76,000 \mathrm{Btu} / \mathrm{ft}^{2}
\end{align*}
$$

Wall of Finite Thickness Heated on One Side. The equations developed in the preceding section for the infinitely thick wall can be applied also with limitations to walls of finite thickness. If the finite wall is relatively thick, the temperature-distance distribution for a short period after the heat has been applied will be nearly the same as for the infinite wall. As the period is lengthened, however, the penetration of heat through the wall to its cold face increases. Schack ${ }^{1}$ has analyzed this problem by noting that a finite wall can be made to duplicate an infinite wall. This will occur if the same heat flow is remoyed from the remote face of the finite wall as would ordinarily flow through a plane
${ }^{1}$ Schack, op. cit.
in an infinite wall at the same distance from the hot surface. If t_{0} is the temperature at the remote face of a finite wall $l \mathrm{ft}$ thick, the heat flow per square foot from the remote face will be

$$
\begin{equation*}
Q=h\left(t-t_{0}\right) \tag{18.50a}
\end{equation*}
$$

And this is equal to the heat flow in an infinite wall at the distance $x=l$ from the hot face.

$$
\begin{equation*}
Q=k\left(T_{s}-t_{0}\right) \frac{e^{-x^{2} / 4 \alpha \theta}}{\sqrt{\pi \alpha \theta}} \tag{18.50b}
\end{equation*}
$$

By equating the two the rate of heat removal required to reproduce the distribution of an infinite wall will be

$$
\begin{equation*}
h=\frac{k\left(T_{s}-t_{0}\right) e^{-x^{2 / * \alpha \theta}}}{\left(\dot{t}-t_{0}\right) \sqrt{\pi \alpha \theta}} \tag{18.51}
\end{equation*}
$$

If the value of $l / 2 \sqrt{\alpha \theta}$ is nearly 1.0 , the temperature increase in the remote surface will be very small. If the value of $l / 2 \sqrt{\alpha \bar{\theta}}$ exceeds 0.6 , it will be possible for most industrial applications to apply Eq. (18.44) to the finite wall directly.

Wall of Finite Thickness Heated on Both Sides. In a study of the time-temperature distribution during the annealing of optical glass, Williamson and Adams ${ }^{1}$ developed equations for obtaining the center, center-line, or center-plane temperature of a number of shapes whose surfaces had suddenly been exposed to a heat source with infinite film coefficient. Included among these are the infinitely wide slab, the square bar, the cube, the cylinder with infinite length, the cylinder with length equal to diameter, and the sphere. Since only in the slab is the flow of heat along a single axis, it may be expected that equations for the other forms will be more complex. Where the flow of heat is symmetrical, it is considerably more convenient to use the center line or center plane as the distance reference. The surface conditions will then correspond to $\pm l / 2$, and the center line or center plane to $l / 2=0$. Williamson and Adams obtained equations in terms of a Fourier series. For the infinite slab the equation is

$$
\begin{aligned}
Y=\frac{T_{*}-t}{T_{s}-t_{0}}=\frac{4}{\pi}\left[e^{-\left(\frac{\pi}{2}\right)^{2} \frac{4 \alpha \theta}{l^{2}}} \sin \pi \frac{x}{l}+\frac{1}{3} e^{-9\left(\frac{\pi}{2}\right)^{24 \alpha \theta}} l^{2}\right. & \sin \frac{3 \pi x}{l} \\
& \left.+\frac{1}{5} \cdot e^{-25\left(\frac{\pi}{2}\right)^{2} \frac{24 \theta}{l^{2}}} \sin \frac{5 \pi x}{l}+\cdots\right]
\end{aligned}
$$

As $4 \alpha \theta / l^{2}$ increases, the series converges even more rapidly until at $4 \alpha \theta / l^{2}=0.6$ only the first term is important. The solutions for all the

[^56]above shapes can be expressed in terms of a series. Williamson and Adams have presented their calculations in the simplified form
\[

$$
\begin{equation*}
Y=\frac{T_{j}-t}{T_{s}-t_{0}}=f_{2}\left(\frac{4 \alpha \theta}{l^{2}}\right) \tag{18.52}
\end{equation*}
$$

\]

or

$$
\begin{equation*}
t=T_{s}+\left(t_{0}-T_{s}\right) f_{2}\left(\frac{4 \alpha \theta}{l^{2}}\right) \tag{18.52a}
\end{equation*}
$$

Fig. 18.9. Plot of $f_{2}\left(4 \alpha \theta / l^{2}\right)$ for various shapes.
The series expression is presented by $f_{2}\left(4 \alpha \theta / l^{2}\right)$, in which l is the principal depth or diameter and t the temperature at the center, center line, or center plane. For the various shapes and their respective final equations, the values of $f_{2}\left(4 \alpha \theta / l^{2}\right)$ were tabulated by Williamson and Adams and have been plotted in Fig. 18.9.

Example 18.3. Center-line Temperature of a Shaft. Calculate the temperature at the center line of a long steel shaft 12 in . in diameter, initially at $100^{\circ} \mathrm{F}, 15 \mathrm{~min}$
after its surface temperature has been suddenly changed to $1000^{\circ} \mathrm{F}$. As before, α may be taken as $0.41 \mathrm{ft}^{2} / \mathrm{hr}$.

$$
\frac{4 \alpha \theta}{l^{2}}=\frac{4 \times 0.41 \times 15 / 60}{(12 / 12)^{2}}=0.41
$$

From Fig. 18.9 when $L=\infty$

$$
f_{2}\left(\frac{4 \alpha \theta}{l^{2}}\right)=0.155
$$

From Eq. (18.52)

$$
t=1000+(100-1000) \times 0.155=860^{\circ} \mathrm{F}
$$

Wall of Finite Thickness Heated by a Fluid with Contact Resistance. This practical condition has been treated by Grober ${ }^{1}$ along with the evaluation of the functions contained in the final equations. This corresponds to quenching in that it considers a contact resistance between the heating or cooling medium and the wall face or both faces in the case of an infinitely wide slab of finite thickness. The reciprocal of the contact resistance is the coefficient of heat transfer between the liquid and solid and, as mentioned earlier, causes the surface temperature to vary even though the temperature of the heating medium remains constant. The method of evaluating the film coefficient may be selected approximately from among the methods of earlier chapters or those in Chap: 20. In many cases it is difficult to obtain an analogous mechanism for computing heat transfer during a quenching operation: In a large vessel at nearly constant temperature, such as might be employed for the quenching of steel plates, the limiting coefficient between the oil and metal is that of free convection, and it varies continuously with time as the temperature difference between the metal and oil decreases. Consider a plate with an initial temperaturè t_{0} suddenly plunged into a gas or liquid of constant surrounding temperature T_{s}. The temperature of the surface will be given by

$$
\begin{align*}
t_{x=0} & =T_{\varepsilon}+\left(t_{0}-T_{s}\right) f_{3}\left(\frac{4 \alpha \theta}{l^{2}}, \frac{h l}{2 k}\right) \tag{18.53}\\
Y & =\frac{T_{s}-t}{T_{s}-t_{0}}=f_{3}\left(\frac{4 \alpha \theta}{l^{2}}, \frac{h l}{2 \bar{k}}\right) \tag{18.53a}
\end{align*}
$$

The temperature of the center plane will be

$$
\begin{equation*}
t_{l / 2}=T_{s}+\left(t_{0}-T_{s}\right) f_{4}\left(\frac{4 \alpha \theta}{l^{2}}, \frac{h l}{2 k}\right) \tag{18.54}
\end{equation*}
$$

or

$$
\begin{equation*}
Y=\frac{T_{s}-t_{l / 2}}{T_{s}-t_{0}}=f_{4}\left(\frac{4 \alpha \theta}{l^{2}}, \frac{h l}{2 k}\right) \tag{18.54a}
\end{equation*}
$$

${ }^{1}$ Grober, op. cit.

Grober has graphically evaluated the functions

$$
f_{3}\left(\frac{4 \alpha \theta}{l^{2}}, \frac{h l}{2 k}\right) \quad \text { and } \quad f_{4}\left(\frac{4 \alpha \theta}{l^{2}}, \frac{h l}{2 k}\right)
$$

which have been plotted by Schack as shown in Fig. 18.10 and 18.11 for the surface and centers of rectangular shapes. When presented in this form the plots are referred to as Schack charts.

Example 18.4. Quenching : The Schack Chart. Iron castings in the form of large slabs 10 in . thick are held at red heat ($1100^{\circ} \mathrm{F}$) before being hung vertically in $70^{\circ} \mathrm{F}$ air to cool.

It is desired to start further operations on them after 4 hr have elapsed,
(a) What will the surface temperature be after 4 hr ?
(b) What will the center-plane temperature be after 4 hr ?

Solution. In order to obtain the average coefficient from the slab to air by radiation and convection an assumption must be made of the surface temperature after 4 hr.
(a) Assume the temperature is $500^{\circ} \mathrm{F}$ after 4 hr . The coefficient from plate to air is the sum of the radiation and convection coefficients. From Eq. (4.32) and (4:33)

$$
h_{r}=\frac{\sigma \sigma\left(T_{1}^{4}-T_{2}^{4}\right)}{T_{1}-T_{2}}
$$

where the temperatures are in ${ }^{\circ} \mathrm{R}$.
For the initial coefficient at $1100^{\circ} \mathrm{F}$,

$$
h_{r}=\frac{0.70 \times 0.173 \times 10^{-8}\left(1580^{4}-530^{4}\right)}{1100-70}=6.9 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)
$$

From Eq. (10.10)

$$
\begin{aligned}
h_{c} & =0.3(\Delta t)^{3 / 4} \\
& =0.3(1100-70)^{1 / 4}=1.7 \mathrm{Btu} /(\mathrm{br})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)
\end{aligned}
$$

Total initial coefficient $=6.9+1.7=8.6 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft} \mathrm{t}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$
For the 4-hr coefficient at $500^{\circ} \mathrm{F}$

$$
\begin{aligned}
& h_{r}=2.2 \\
& h_{c}=1.35
\end{aligned}
$$

Total coefficient after $4 \mathrm{hr}=2.2+1.35=3.55 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft} \mathbf{t}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$
The average coefficient is somewhat lower than the mean of the initial and final coefficients, since the radiation coefficient decreases rapidly as the temperature falls. The mean coefficient gives a surface temperature somewhat larger than the actual.

Mean coefficient, $h=(8.6+3.55) / 2=6.1 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$

Fhg. 18.10. Chart for determining the temperature history of points on the surfaces of rectangular shapes. (Nowman, Industrial Engineering Chemistry, after Schavk.)

Fig. 18.11. Chart for determining the temperature history of points at the centers of rectangular shapes. (Newman, Industriai Engineering Chemistry, after Schack.)

From the Appendix, $k=27, c=0.14$, and $\rho=490$ (approximately)

$$
\begin{align*}
\alpha & =\frac{k}{c \rho}=\frac{27}{0.14 \times 490}=0.394 \\
\frac{4 \alpha \theta}{l^{2}} & =\frac{4 \times 0.394 \times 4}{(10 / 2)^{2}}=9.1 \\
\frac{h l}{2 k} & =\frac{6.1 \times(1012)}{2 \times 27}=0.094 \\
t_{x-0} & =T_{4}+\left(t_{0}-T_{s}\right) f_{8}\left(\frac{4 \alpha \theta}{l^{2}}, \frac{h l}{2 k}\right) \\
& =70+(1100-70) f_{3}(9.1,0.094) \tag{18.53}
\end{align*}
$$

From Fig. 18.10, $f_{3}(9.1,0.094)=0.42$

$$
t_{x=0}=70+(1100-70) 0.42=502^{\circ} \mathrm{F}
$$

(b) The temperature of the center plane is given by

$$
\begin{align*}
t_{t / \mathrm{s}} & =T_{\varepsilon}+\left(t_{0}-T_{s}\right) f_{4}\left(\frac{4 \alpha \theta}{l^{2}}, \frac{h l}{2 k}\right) \\
& =70+(1100-70) f_{4}(9.1,0.094) \tag{18.54}
\end{align*}
$$

From Fig. 18.11, $f_{4}(9.1,0.094)=0.43$

$$
t_{x=0}=70+(1100-70) 0.43=512^{\circ} \mathrm{F}
$$

Finite and Seminninite Shapes Heated by a Fluid with a Contact Resistance. Referring to Eq. (18.52a) or (18.53a) Gurney and Lurie ${ }^{1}$ noted that the relationships for heating various shapes with fluids having finite or infinite film coefficients could be represented by the four dimensionless groups $4 \alpha \theta / l^{2},\left(T_{s}-t\right) /\left(T_{s}-t_{0}\right), 2 k / h l$, and $2 x / l$. With these dimensionless parameters they made plots for the finite wall (slab), cylinder of infinite length, sphere, and seminfinite solid. These are reproduced in Figs. 18.12 through 18.15. Gurney-Lurie charts are particularly useful, since they permit the calculation of the temperature not only at the surface and center of the object but at intermediate points as well. The ordinate Y is identical with the Schack chart for the same shape. Gurney-Lurie charts, however, are more difficult to interpolate than are Schack charts. The case of the semiinfinite solid is identical with the slab for the short initial period before the heat flow has reached the center plane of the slab. The use of these charts is demonstrated by the solution of an illustrative problem.

Example 18.5. The Gurney-Lurie Chart. Steel circular rods 8 in . in diameter and 12 ft long initially at $400^{\circ} \mathrm{F}$ are cooled in oil before being machined. The oil is maintained at a constant temperature of $200^{\circ} \mathrm{F}$ by means of a quench oil cooler. The average free convection coefficient from an 8 -in. pipe to an oil of the properties of the quench oil is $50 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft} \mathrm{t}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$.
What is the temperature 2 in . below the surface after 15 min ?
${ }^{1}$ Gurney, H. P., and J. Lurie, Ind. Eng. Chem., 15, 1170 (1923).

FIg. 18.12. Gurney-Lurie chart for slab.
Solution. This corresponds to an infinitely long cylinder, and Fig. 18.13 will be used. α will be evaluated at the mean temperature of $300^{\circ} \mathrm{F}$

$$
\begin{aligned}
k & =25 \quad c=0.12 \quad \rho=490 \\
\alpha & =\frac{k}{c \rho}=\frac{25}{0.12 \times 490}=0.425 \\
\frac{4 \alpha \theta}{l^{2}} & =\frac{4 \times 0.45 \times 1560}{(8 / 12)^{2}}=1.01 \\
\frac{2 x}{l} & =\frac{4}{8}=0.5 \\
\frac{1}{N u} & =\frac{2 k}{h l}=\frac{2 \times 25}{50 \times 8 / 22}=1.5
\end{aligned}
$$

From Fig. 18.13

Fig. 18.13. Gurney-Lurie chart for cylinders.
Newman's Method for Common and Composite Shapes. Many of the objects which are regularly subjected to quenching do not conform with the simple shapes dealt with so far. Among such common shapes are the rectangular bar, the brick (rectangular parallelepiped), and the short cylinder of finite length. For heat flow along the x axis alone the tem-
perature of the object is defined by Y or $Y_{x}=\left(T_{s}-t\right) /\left(T_{s}-t_{0}\right)$, where the subscript x indicates the direction of the heat flow. The center of the object is taken as the reference point. In a long rectangular bar

Fig. 18.14. Gurney-Lurie chart for spheres.
whose cross section is reckoned in the x and y directions, Newman ${ }^{1}$ has proved that the temperature at any point in the cross section is given by $\left(T_{s}-t\right) /\left(T_{s}-t_{0}\right)=Y_{x} Y_{y}$, where both Y_{x} and Y_{y} have been calculated for the flow of heat through a finite slab. Similarly for a brick whose
${ }^{1}$ Newman, A. B., Trans. AIChE, 27, 203 (1931).
cross section is reckoned by x and y the temperature at any point can be defined by $\left(T_{s}-t\right) /\left(T_{s}-t_{0}\right)=Y_{z} Y_{y} Y_{z}$, where the value of Y_{z} has been determined for the long dimension of the brick as a slab with heat flow

Fig. 18.15. Gurney-Lurie chart for seminnfinite solid.
in the z direction. For the cylinder of finite length if the length is i_{x} and the diameter l_{z}, the temperature can be defined by

$$
\frac{T_{s}-t}{T_{s}-t_{0}}=Y_{x} Y_{s}
$$

In objects of finite length if one of the plane faces is insulated against the flow of heat, the calculation is treated as above except that the zero axis or reference point is moved to the insulated wall instead of the center and the distance perpendicular to the insulated face is doubled (l instead of $l / 2$). If a pair of parallel faces is insulated so that there is no net heat flow in the x, y, or z direction, the entire direction is omitted. Similarly, it is possible that the film coefficient to the different faces of an object may not be identical on all sides, since the flow of fluid may be mostly parallel to some surfaces and perpendicular to others. This will not interfere with the solution of a problem for objects having parallel faces as long as the coefficient on any two parallel faces is the same and the heat-flow symmetry about the center is preserved. The values of Y for these shapes can be obtained from Schack or Gurney-Lurie charts for the finite slab or infinite cylinder and from which complex shapes can be built up accordingly. A Schack chart for the infinite cylinder has been prepared by Newman. ${ }^{1}$

To illustrate this method, consider a brick which has the dimensions l_{x}, l_{y}, and l_{z} in the x, y, and z directions, respectively. The extreme distances of the faces of the brick reckoned from its center are $l_{x} / 2, l_{y} / 2$, and $l_{z} / 2$. At its center it is apparent that $l_{x} / 2=0, l_{y} / 2=0$, and $l_{z} / 2=0$. For the cylinder, at the circumference the dimension is $l_{x} / 2$ and at the parallel end faces $l_{z} / 2$.

Example 18.6. The Application of Newman's Method to Heating a Brick. This problem uses the data of an example by Newman with numerical values obtained from Gurney-Lurie charts.

A firebrick 9 by 4.5 by 2.5 in . initially at $70^{\circ} \mathrm{F}$ is suspended in a flue through which furnace gases at $300^{\circ} \mathrm{F}$ are traveling at such a rate that the resulting film coefficient on all faces is $4.1 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$. Estimate the temperatures at the following points at the end of 1 hr : (a) the center of the brick, (b) any corner of the brick, (c) the center of the 9 - by 4.5 -in. faces, (d) the center of the 9 - by 2.5 -in. faces, (e) the center of the 4.5 - by 2.5 -in. faces, (f) the middle of the long edges.
The following data are supplied:

$$
\begin{aligned}
k & =0.3 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F} / \mathrm{ft}\right) \\
\rho & =103 \mathrm{lb} / \mathrm{ft}^{3} \\
c & =0.25 \mathrm{Btu} /(\mathrm{lb})\left({ }^{\circ} \mathrm{F}\right)
\end{aligned}
$$

Solution:

$$
\begin{aligned}
& \alpha=\frac{k}{c \rho}=\frac{0.3}{0.25} \times 10.3=0.01164 \mathrm{ft}^{2} / \mathrm{hr} \\
& \frac{4 \alpha \theta}{l_{x}^{2}}=\frac{4 \times 0.01164 \times 1.0}{(9 / 12)^{2}}=0.0828 \quad \\
& \frac{4 \alpha \theta}{l_{y}^{2}}=\frac{4 \times 0.01164 \times 1.0}{\left(4 l_{x}\right.}=\frac{2 \times 0.3}{4.1 \times 9 / 12}=0.195 \\
& \frac{4 \alpha \theta}{l_{s}^{2}}=\frac{4 \times 0.3313}{(2.5164 \times 12)^{2}}=1.0 \\
& \frac{2 k}{h l_{y}}=\frac{2 \times 0.3}{4.1 \times 4.5 / 12}=0.390 \\
&{ }^{1} \text { Newman, A. B., Ind. Eng. Chem., } 28,545-548 \frac{2 k}{h l_{z}}=\frac{2 \times 0.3}{4.1 \times 2.5 / 12}=0.702 \\
&(1936) .
\end{aligned}
$$

From Fig. 18.12

$$
\begin{array}{ll}
\text { At the center } & \text { At the surface } \\
\frac{2 x}{l}=0 & \frac{2 x}{l}=1.0 \\
Y_{x}=0.98^{*} & Y_{x}=0.325^{*} \\
Y_{y}=0.75 & Y_{y}=0.29 \\
Y_{z}=0.43 & Y_{z}=0.245
\end{array}
$$

For all cases,

$$
Y=\frac{T_{s}-t}{T_{s}-t_{0}}=\frac{300-t}{300-70}=\frac{300-t}{230}
$$

(a) Center of brick ($l_{x}=0 ; l_{y}=0 ; l_{z}=0$):

$$
\begin{aligned}
& \frac{300-t}{230}=0.98 \times 0.75 \times 0.43=0.316 \\
& t=227.4^{\circ} \mathrm{F}
\end{aligned}
$$

(b) Corner of brick ($l_{z} / 2, l_{y} / 2, l_{z} / 2$):

$$
\begin{aligned}
& \frac{300-t}{230}=0.325 \times 0.29 \times 0.245=0.023 \\
& t=294.7^{\circ} \mathrm{F}
\end{aligned}
$$

(c) Center of 9 - by 4.5 -in. face $\left(l_{x} / 2=0, l_{y} / 2=0, l_{x} / 2\right.$):

$$
\frac{300-t}{230}=0.98 \times 0.75 \times 0.245=0.18
$$

$$
t=258.5^{\circ} \mathrm{F}
$$

(d) Center of 9 - by 2.5-in. face ($\left.l_{x} / 2=0, l_{y} / 2, l_{z} / 2=0\right)$:

$$
\frac{300-t}{230}=0.98 \times 0.29 \times 0.43=0.122
$$

$$
t=272^{\circ} \mathrm{F}
$$

(e) Center of 4.5 - by $2.5-\mathrm{in}$. face $\left(l_{x} / 2, l_{y} / 2=0, l_{z} / 2=0\right)$:

$$
\begin{aligned}
& \quad \frac{300-t}{230}=0.325 \times 0.75 \times 0.43=0.105 \\
& t=275.8^{\circ} \mathrm{F} \\
& \text { (f) Middle of long edge }\left(l_{z} / 2=0, l_{z} / 2, l_{z} / 2\right): \\
& \frac{300-t}{230}=0.98 \times 0.29 \times 0.245=0.0695 \\
& t=284^{\circ} \mathrm{F}
\end{aligned}
$$

The Graphical Determination of the Time-temperature Distribution. The time-temperature distribution for many practical problems has not appeared in the literature because their solutions are lengthy or their mathematics is extremely complex. A useful and concise method of treating such cases graphically has been developed by E. Schmidt. ${ }^{1}$ Consider a slab of infinite width and finite thickness in which the heat flows only through the thickness. As before, the time-temperature relationship can be obtained by solution of the basic conduction equation

$$
\begin{equation*}
\frac{d t}{d \theta}=\alpha \frac{d^{2} t}{d x^{2}} \tag{2.12}
\end{equation*}
$$

* These values are read more easily from Schack charts.
${ }^{1}$ E. Schmidt, "Foppls Festschrift," pp. 179-189, Verlag Julius Springer, Berlin, 1924. See particularly, Sherwood and Reed, op. cit., pp. 241-255.

The temperature in the slab at any point is a function of the time and distance. Divide the slab into a number of distance increments of $\Delta x \mathrm{ft}$ each, and consider an increment of time $\Delta \theta$. At a constant distance x from one face of the slab the incremental temperature change during a finite time change $\Delta \theta$ can be indicated by Δt_{θ}. For a constant value of θ the variation of the temperature with x can be indicated by Δt_{x}. Equa-

Fig. 18.16. Schmidt graphical method. tion (2.12) can then be written

$$
\begin{equation*}
\frac{\Delta t_{\theta}}{\Delta \theta}=\alpha \frac{\Delta^{2} t_{x}}{\Delta x^{2}} \tag{18.55}
\end{equation*}
$$

or rearranging,

$$
\begin{equation*}
\Delta t_{\theta}=\alpha \frac{\Delta \theta}{\Delta x^{2}} \Delta^{2} t_{x} \tag{18.56}
\end{equation*}
$$

Referring to Fig. 18.16 in which the slab is divided into distance increments Δx, let $t_{n, m}$ represent the temperature at n distance increments from the origin $n \Delta x$ after m time increments, $m \Delta \theta$. When x is constant, the change of temperature with time in the layer $m \Delta x$ from the surface is

$$
\begin{equation*}
\Delta t_{\theta}=t_{n, m+1}-t_{n, m} \tag{18.57}
\end{equation*}
$$

When θ is a constant, the variation of the temperature with distance is

$$
\begin{equation*}
\Delta \dot{t}_{x}=t_{n+1, m}-t_{n, m} \tag{18.58}
\end{equation*}
$$

and for the second change or difference between two differences

$$
\begin{equation*}
\Delta^{2} t_{x}=\Delta\left(\Delta t_{x}\right)=\left(t_{n+1, m}-t_{r, m}\right)-\left(t_{n, m}-t_{n-1, m}\right) \tag{18.59}
\end{equation*}
$$

Substituting these in Eq. (18.56),

$$
\begin{equation*}
t_{n, m+1}-t_{n, m}=\alpha \frac{\Delta \theta}{\Delta x^{2}}\left[\left(t_{n+1, m}-t_{n, m}\right)-\left(t_{n, m}-t_{n-1, m}\right)\right] \tag{18.60}
\end{equation*}
$$

If the increments of distance and time are chosen so that

$$
\begin{equation*}
\alpha \frac{\Delta \theta}{\Delta x^{2}}=\frac{1}{2} \tag{18.61}
\end{equation*}
$$

Equation (18.60) reduces to

$$
\begin{equation*}
t_{n, m+1}=1 / 2\left(t_{n+1, m}+t_{n-1, m}\right) \tag{18.62}
\end{equation*}
$$

Equation (18.62) is the basis of the graphic method. It implies that the temperature at any point at any time is the arithmetic mean of the two
temperatures at + and $-\Delta x$ during the preceding time increment, $\Delta \theta$. A straight line drawn through the values of the temperatures at $(n-1) \Delta x$ and $(n+1) \Delta x$ intersects the vertical median at the arithmetic mean where the temperatures at $(n-1) \Delta x$ and $(n+1) \Delta x$ were the two previous temperatures.

The complete method is illustrated by Fig. 18.16. Consider a symmetrical object such as an infinite slab at initial temperature t_{0} suddenly subjected at both faces to a cooling medium with zero contact resistance and temperature T_{s}. The heat flow is along the x axis. Since the temperature distribution about the center plane is symmetrical, only one-half of the slab need be considered and the half of the slab under consideration is broken up into the distance increments shown by the vertical lines. If the initial temperature upon contact is T_{s} at 0 and the temperature is t_{0} at C, then at the time increment $\Delta \theta$ later the temperature in the plane $B-B^{\prime}$ will be the arithmetic mean of t_{0} and T_{a}, b_{1}. Points C, D, and E remain unchanged during the first increment. During the second time increment the temperature at C in plane $C-C^{\prime}$ falls to c_{2}, D and E remaining unchanged. During the third time increment the temperature at b_{1} falls to b_{3} and the temperature at D falls to d_{3}. During this increment the temperature at the center plane does not change, since it is the mean of the values at $\pm \Delta x$ from the center plane, which are both still at t_{0}. During the fourth increment the temperature at C falls from c_{2} to c_{4}, but the temperature at the center plane e_{4} is the mean of the two identical values of d_{3} at $\pm \Delta x$ from the center plane and therefore lies on a horizontal line. The procedure can be continued indefinitely with each horizontal line across the center plane representing two time increments.

Example 18.7. The Graphical Determination of the Time-Temperature Distribution. A steel slab 20 in . thick and at an initial temperature of $500^{\circ} \mathrm{F}$ is suddenly subjected to a temperature of $100^{\circ} \mathrm{F}$ on both faces. What is the temperature distribution after 20 min ?
Solution. For simplicity take $\alpha=0.40 \mathrm{ft}^{2} / \mathrm{hr}$. Take distance increments $\Delta x 2 \mathrm{in}$. apart.

$$
\Delta x=3 / 12=0.167 \mathrm{ft}
$$

From the conditions of Eq. (18.61) take time increments such that $\alpha\left(\Delta \theta / \Delta x^{2}\right)=1.2$.

$$
\Delta \theta=\frac{0.167^{2}}{2 \times 0.40}=0.035 \mathrm{hr} \text { or } 2.1 \mathrm{~min}
$$

Number of steps required $=20 / 2.1=9.5$
In Fig. 18.17 half of the slab is divided into distance increments of 2 in . and the time intervals are drawn accordingly. After 9 time increments corresponding to $9 \times 2.1=18.9 \mathrm{~min}$, the temperature at the center plane is $413^{\circ} \mathrm{F}$. After 11 increments or 23.1 min it is $383^{\circ} \mathrm{F}$. The value at 20 min can be obtained by plotting a time-temperature curve for the center plane alone from which a temperature of $406^{\circ} \mathrm{F}$ is obtained.

Time-Temperature Distribution with Contact Resistance. The instances in which the heat source is applied with negligible contact resistance are exceedingly rare. A graphical method was developed by Schmidt for a slab when the film coefficient to it was finite. Sherwood and Reed ${ }^{1}$ have given an excellent presentation of the method. The presence of a finite film coefficient or contact resistance indicates that a temperature drop occurs between the bulk temperature of the surround-

Fra. 18.17. Solution of Example 18.7 by the Schmidt method.
ing medium at T_{ε} and the surface of the slab t_{f}. The heat balance across the surface is given by

$$
\begin{equation*}
k\left(\frac{d t}{d x}\right)_{x=0}=h\left(T_{s}-t_{f}\right) \tag{18.63}
\end{equation*}
$$

where T_{s} is again the temperature of the surroundings and t_{f} is the surface temperature. Accordingly, the temperature gradient across the surface is given by

$$
\begin{equation*}
\left(\frac{d t}{d x}\right)_{x=0}=\frac{T_{s}-t_{f}}{k / h} \tag{18.64}
\end{equation*}
$$

Any line cutting the surface of the slab on t vs. x coordinates such as in Fig. 18.16 must consequently have a numerical slope of $\left(T_{s}-t_{f}\right) /(k / h)$. Referring to Fig. 18.18, a slab is divided into distance increments Δx, except that they are marked off such that the surface of the slab corresponds to the middle of a distance increment. The reason will be apparent as the construction progresses. Next, the origin O is set off at a distance $k / h \mathrm{ft}$ to the left of the surface and at the temperature T_{s}.
${ }^{1}$ Sherwood and Reed, op. cit.

The slope of a line drawn from the origin O through the surface plane then has the slope ($T_{s}-t_{j}$)/(k/h). By constructing the vertical at $\Delta x / 2$ to the left of the surface, Schmidt's rule can be applied and each alternate time increment is represented by a line crossing the surface with the appropriate slope. The surface is thus the locus of values of t_{f}. The construction is carried out by the preceding Schmidt method until the center plane has been passed by a line drawn to $\Delta x / 2$ at the right of the center plane. Since the distance increments are displaced by the distance $\Delta x / 2$, the plane at $\Delta x / 2$ to the right of the center plane is the

Fra. 18.18. Schmidt method with contact resistance.
mirror image of that at $\Delta x / 2$ to the left with the temperatures drawn to corresponding points on the plane to the right. Thius for alternate increments of time the line slopes up and down.
Nonsymmetrical cases of heat flow can be studied by this approximate method when mathematical derivations lead to involved expressions. Such a condition arises when one face of a slab is exposed to a finite film coefficient while the other is exposed to a negligible resistance. Another common condition is that in which the faces are at two different temperatures or in which the temperatures undergo cyclical variations. For this last a number of repeated solutions are required, but they provide results which otherwise might be unobtainable. Schmidt has also provided
graphical solutions for a number of complex problems such as the heat flow through layers of dissimilar materials.

2b. Periodically Varying Temperature

Periodic Variation of the Surface Temperature. There are a number of instances in which the temperature of the heating medium is not constant. In some, the medium and the surface temperatures vary harmonically. Typical examples of the latter are the temperature of the earth's surface or within an internal combustion cylinder, although there are not many practical applications. Figure 18.19 shows the variation at a distance x in a wall whose surface temperature varies as a sine function with time. Inasmuch as the

Firg. 18.19. Sine temperature variation at surface and at point x ft below. heat must travel from the surface into the bulk of the material and the thermal diffusivity is finite, there is a time lag before the temperature-time variations at the surface are reproduced at the distance x. Naturally, the maximum amplitude at x is less than that at the surface, and it is still less at greater distances. It should be noted that Fig. 18.19 is a plot of time vs. temperature and not; distance vs. temperature, so that the decline in the amplitude with distance is not indicated. If f is the number of complete periodic changes per hour, the time required for a point within the body to respond to a variation at the surface is evidently given by

$$
\begin{equation*}
\theta=\frac{x}{2} \sqrt{\frac{1}{\alpha \pi f}} \tag{18.65}
\end{equation*}
$$

where x is the distance in feet from the surface to the point. If the temperature variation is single harmonic, the surface temperature can be defined in terms of the maximum surface temperature by

$$
\begin{equation*}
\Delta t_{x=0}=\Delta t_{o x} \sin 2 \pi f \theta \tag{18.66}
\end{equation*}
$$

where $t_{O M}$ is the maximum temperature at the surface where $x=0$. At the distance x the temperature has the same period but lags by $(x / 2) \sqrt{1 / \alpha \pi f} \mathrm{hr}$, the time initially required to travel from the surface to x. The maximum temperature at x is given by

$$
\begin{equation*}
\Delta t_{x=x, \max }=\Delta t_{O X R} e^{-x \sqrt{\pi f / \alpha}} \tag{18.67}
\end{equation*}
$$

The equation for the variation of the temperature at any distance in typical problems requires the solution of a Fourier series which is beyond the limitations of space here. If the variation at the distance x at any time θ can be expressed as a sine function, it is given by

$$
\begin{equation*}
\Delta t_{x}=\Delta t_{o \mathrm{as}} e^{-x \sqrt{\pi / \alpha}} \sin \left(2 \pi f \theta-x \sqrt{\frac{\pi f}{\alpha}}\right) \tag{18.68}
\end{equation*}
$$

If the variation can be expressed as a cosine function instead of a sine function, the temperature at any point x is given by

$$
\begin{equation*}
\Delta t_{x}=\Delta t_{o \Delta e} e^{-x \sqrt{\pi j / \alpha}} \cos \left(2 \pi f \theta-x \sqrt{\frac{\pi f}{\alpha}}\right) \tag{18.69}
\end{equation*}
$$

The flow of heat through a flat wall for a half period can be determined from the basic conduction equation

$$
d Q^{\prime}=k A\left(\frac{d t}{d x}\right)_{x=0} d \theta
$$

by differentiating Eq. (18.68) or (18.69) with respect to x, from which the following is obtained for Q for a half period:

$$
\begin{equation*}
Q=k A \Delta t_{o M} \sqrt{\frac{2}{\alpha \pi f}} \tag{18.70}
\end{equation*}
$$

Example 18.8. Calculations for a Wall with Periodic Temperature Variation. The surface of a thick brick wall is subjected to a daily temperature variation from 60 to $120^{\circ} \mathrm{F}$. The cosine variation may be assumed. The cement is assumed to have the same properties of the bricks, which are $k=0.3 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F} / \mathrm{ft}\right), \rho=103 \mathrm{lb} / \mathrm{ft}^{3}$, $c=0.25 \mathrm{Btu} /(\mathrm{lb})\left({ }^{\circ} \mathrm{F}\right)$; and $\alpha=k / c \rho=0.01164 \mathrm{ft}^{2} / \mathrm{hr}$.
(a) What is the temperature lag 6 in. below the surface?
(b) What is the amplitude at this depth?
(c) What is the temperature deviation from the mean after 2 hr ?
(d) What is the heat flow during the half period?

Solution:

(a) Temperature lag 6 in. below the surface:

$$
\begin{align*}
\theta & =\frac{x}{2} \sqrt{\frac{1}{\alpha \pi f}} \\
& =\frac{6 / 2}{2} \sqrt{\frac{1}{0.01164 \pi^{1 / 24}}}=6.45 \mathrm{hr} \tag{18.65}
\end{align*}
$$

(b) Amplitude:

$$
\begin{aligned}
\Delta t_{O_{M}} & =\frac{120-60}{2}=30^{\circ} \mathrm{F} \\
\Delta t_{x=x} & =\Delta t_{o M} e^{-x \sqrt{\pi / / \alpha}} \\
& =30 . e^{-0.5 \sqrt{\pi / 24 \times 0.01164}}=5.8^{\circ} \mathrm{F}
\end{aligned}
$$

(c) Temperature deviation after 2 hr :

$$
\begin{align*}
\Delta t_{z} & =\Delta t_{O M} e^{-x \sqrt{\pi f / \alpha}} \cos \left(2 \pi f \theta-x \sqrt{\frac{\pi f}{\alpha}}\right) \tag{18.69}\\
& =5.8 \cos (2 \times \pi \times 1 / 24 \times 2-1.635) \\
& =5.8 \cos 1.10=2.6^{\circ} \mathrm{F}
\end{align*}
$$

(d) Heat flow during the half period:

$$
\begin{align*}
& \frac{Q}{A}= k \Delta t_{o M} \sqrt{\frac{2}{\alpha \pi f}} \tag{18.70}\\
&= 0.3 \times 30 \sqrt{\frac{2}{0.0 \pm 164 \pi^{1 / 2}}}=326 \mathrm{Btu} / \mathrm{hr}\left(\mathrm{ft} \mathrm{t}^{2}\right) \\
& \text { c. REGENERATORS }
\end{align*}
$$

Introduction. A regenerator is an apparatus in which heat is alternately stored and removed. The broadest applications of regeneration have been in the blast and open-hearth furnaces of the steel industry. More recently regeneration applications have been extended to the "reversing exchanger" for large-scale air-separating plants in the FischerTropsch process and other synthetic processes. A type of reversing exchanger which was popular in Germany employed Fränkl regenerator packing, which consists of metallic ribbons having corrugations at an angle of 45°. Two such ribbons are wound together in spirals which are then packed one above the other. Temperature histories and coefficients have been reported by Lund and Dodge. ${ }^{1}$ Several of the proposed designs for the reversing exchanger also included the storage of heat by means of extended surfaces. Schack ${ }^{2}$ presents an excellent survey of the literature on regenerators as well as his own work, which is recommended to the reader who is undertaking a comprehensive study of regenerator design. As treated here the regenerator is cited as another aspect of the unsteady state as well as to indicate the general methods of heat storage in processes. Actual regenerators require additional refinements in assumptions and practices.

Temperature Variations in Regenerators. The open-hearth furnace is charged with molten pig iron and scrap to supply the oxygen requirements for the oxidation of impurities. A mixture of hot fuel gas and air is burned above the pool of molten metal, thereby maintaining the temperature and removing the impurities arising from the pool. The products of combustion and oxidation are waste gases containing considerable heat which might profitably be recovered by preheating the fuel-gas-air mixture. When the waste gases leave the furnace, they are passed through

[^57]a cold brick checkerwork to which they give up a large portion of their heat. In a matter of a few minutes the bricks become very hot, and at some optimum surface temperature the flow of waste gases is replaced by the passage of cold fuel-air mixture on its way to the furnace. This mixture is heated while cooling the brickwork back to a low temperature. In the meantime the flow of the waste gases continues over another brickwork only to be interrupted by the flow of more fuel-gas-air mixture. By employing a sufficient number of brick checkerworks it is possible to operate on a continuous basis with fuel-gas-air mixtures alternating with the waste gases in the transfer of heat.

It can be seen that the inlet temperature of either the waste gases or the fuel-gas-air mixture to the checkerwork is substantially constant but the outlet temperatures vary. This differs from preceding time-temperature relationships. The cyclic operation of a regenerator consists of two separate periods. During the heating period the brickwork absorbs heat, and during the cooling period the heat is removed, although the periods are usually of unequal duration. To simplify regenerator terminology the conventions of Schack and others will be followed. In these, gas refers to the hot medium (waste gas) and air to the cold medium. Heilgenstadt ${ }^{1}$ has shown that the heat transfer in a generator can be represented by a modified form of the Fourier equation for $1 \mathrm{ft}^{2}$ of surface by

$$
\begin{equation*}
\frac{d q^{\prime}}{d A}=H(T-t) \quad \text { Btu } /(\text { period })\left(\mathrm{ft}^{2}\right) \tag{18.71}
\end{equation*}
$$

where q^{\prime} is the heat transferred during the period from the gas to air whose mean temperatures are T and t, respectively. H is the overall coefficient of heat transfer for the period, $\mathrm{Btu} /\left(\right.$ period) $\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$, and differs from U in the unit of time. Integrating, since $A=1$, Eq. (18.71) becomes

$$
\begin{equation*}
q^{\prime}=H(T-t) \quad \text { Btu } /(\text { period })\left(\mathrm{ft}^{2}\right) \tag{18.72}
\end{equation*}
$$

Using θ_{H} and θ_{C} to indicate the duration of the gas and air half periods in hours, respectively, the heat transferred during the half periods is

$$
\begin{equation*}
q^{\prime}=h_{H}\left(T-t_{s}\right) \theta_{H}=h_{C}\left(t_{s}-t\right) \theta_{C} \tag{18.73}
\end{equation*}
$$

where t_{s} is the mean temperature of the brickwork, which is assumed to be identical for both helf-periods in an ideal regenerator and h_{H} and h_{c} are the gas and air film coefficients, $\mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$. Solving for an ideal regenerator,

$$
\begin{equation*}
t_{s}=\frac{h_{H} T \theta_{H}+h_{C} t \theta_{C}}{h_{H} \theta_{H}+h_{C} \theta_{C}} \tag{18.74}
\end{equation*}
$$

${ }^{1}$ Heilgenstadt, W., Mitt. Warmestelle Ver. deut. Eisenh., 73, (1925).

From Eqs. (18.72) and (18.73)

$$
\begin{equation*}
H(T-t)=h_{H} T \theta_{H}-h_{c} t \theta_{c} \tag{18.75}
\end{equation*}
$$

The value of H in Eq. (18.72) is thus the value for the ideal regenerator or $H_{i d}$. Substituting in Eq. (18.73),

$$
\begin{equation*}
H_{i d}=\frac{1}{1 / h_{H} \theta_{H}+1 / h_{c} \theta_{c}} \tag{18.76}
\end{equation*}
$$

In an actual regenerator the temperature of the gas decreases several times more rapidly than the air is heated. If T_{s} is the mean temperature of the surface during cooling only and t_{s} the mean during heating, the solution of Eq. (18.73) gives

$$
\begin{equation*}
H=H_{i d}\left(1-\frac{t_{s}-T_{s}}{T-t}\right) \tag{18.77}
\end{equation*}
$$

Equation (18.71) can also be expressed in terms of the mean temperature of the brickwork.

$$
\begin{equation*}
d q^{\prime}=h_{H}\left(T-t_{s}\right) d A d \theta \quad \text { Btu } /(\text { period })\left(\mathrm{ft}^{2}\right) \tag{18.78}
\end{equation*}
$$

Considering the brick as a slab of finite thickness whose temperature varies periodically on both sides,

Fro. 18.20. Heat storage factor. Grober has defined a heat storage factor γ which is the ratio of the heat actually stored in the wall to that which could have been stored if the conductivity of the wall were infinite or

$$
q^{\prime}=q_{\max }^{\prime} \gamma
$$

where γ is $f_{5}\left(4 \alpha \theta / l^{2}\right)$. Values of $f_{5}\left(4 \alpha \theta / l^{2}\right)$ are plotted in Fig. 18.20. In terms of the brick material the weight of the brickwork for $1 \mathrm{ft}^{2}$ of heat-transfer surface is M / A, where the depth is one-half the thickness of the brick. If c_{s} is the specific heat of the solid, the heat absorbed by the brickwork is then

$$
\begin{equation*}
d q^{\prime}=M c_{s} \gamma d t_{s} d A \quad \mathrm{Btu} /(\text { period })\left(\mathrm{ft}^{2}\right) \tag{18.79}
\end{equation*}
$$

Equating (18.78) and (18.79),

$$
\begin{equation*}
M c_{s} \gamma d t_{s}=h_{H}\left(T-t_{s}\right) d \theta \tag{18.80}
\end{equation*}
$$

or rearranging,

$$
\frac{d t_{s}}{d \theta}=\frac{h_{H}}{M c_{s} \gamma}\left(T-t_{n}\right)
$$

Differentiating with respect to θ;

$$
\begin{equation*}
\frac{d^{2} t_{s}}{d \theta^{2}}=\frac{h_{H}}{M c_{s} \gamma} \frac{d T}{d \theta}-\frac{h_{H}}{M c_{8} \gamma} \frac{d t_{s}}{d \theta} \tag{18.81}
\end{equation*}
$$

Solving for $d T / d \theta$,

$$
\frac{d T}{d \theta}=\frac{d t_{s}}{d \theta}+\frac{M c_{s} \gamma}{h_{H}}\left(\frac{d^{2} t_{s}}{d \theta^{2}}\right)
$$

from which it will be seen that the temperature of the gas is not only dependent upon the temperature of the wall but allso upon its rate of change with time. From Eq. (18.73) and based on $1 \mathrm{ft}^{2}$ of surface,

$$
q=h_{H}\left(T-t_{s}\right) \quad \mathrm{Btu} / \mathrm{hr}
$$

in which q is the quantity of heat absorbed per hour under the potential difference $T-t_{s}$. Differentiating with respect to θ and substituting in Eq. (18.81),

$$
\begin{equation*}
\frac{d T}{d \theta}=\frac{h_{H}}{M c_{\gamma} \gamma}\left(T-t_{*}\right)+\frac{d\left(T-t_{s}\right)}{d \theta} \tag{18.82}
\end{equation*}
$$

Integrating for a finite heating period θ,

$$
\begin{equation*}
\Delta T=\frac{q_{\mathrm{av}} \theta}{M c_{\mathrm{s}} \gamma}+\frac{1}{h_{H}}\left(q_{\theta}-q_{\theta}\right) \tag{18.83}
\end{equation*}
$$

where q_{0} is the number of Btu transferred per hour at the start of the period and q_{θ} represents the transfer after time θ. If $T_{q, \theta=0}$ is the wastegas exit temperature at the start of the period (the time for travel from inlet to outlet being negligible) and $T_{2, \theta=\theta}$ is the gas exit temperature at a finite time after the period has commenced, at the start

$$
\begin{equation*}
q_{0}=\frac{W C}{A}\left(T_{1}-T_{2, \theta=0}\right) \quad \text { Btu } /(\mathbf{h r})\left(f t^{2}\right) \tag{18.84}
\end{equation*}
$$

and after $\theta \mathrm{hr}$

$$
\begin{equation*}
q_{\theta}=\frac{W \dot{C}}{A}\left(T_{1}-T_{2, \theta=\theta}\right) \tag{18.85}
\end{equation*}
$$

Where the inlet gas temperature T_{1} is constant.

$$
\begin{equation*}
q_{\theta}-q_{0}=\frac{W C}{A}\left(T_{2, \theta=0}-T_{2, \theta-\theta}\right) \quad \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right) \tag{18.86}
\end{equation*}
$$

Substituting in Eq. (18.83),

$$
\begin{equation*}
\Delta T=\frac{q_{\mathrm{vv}} \theta}{M c_{\mathrm{z}} \gamma\left(1-\frac{W C}{h_{H} A}\right)} \tag{18.87}
\end{equation*}
$$

Although data are available on the heat-transfer coefficients to actual regenerators, they can be found roughly from Fig. 24 for smooth surfaces by using the equivalent diameter defined by Eq. (6.3) in place of D.

2d. Heat Transfer to Granular Materials in Beds

This case is of particular interest in processes employing fixed- and moving-bed catalysts. It can also be used to obtain coefficients for combination with regenerator equations when using granular materials. An excellent review of the literature on this subject has been given by Lof and Hawley. ${ }^{1}$ Perhaps the most ambitious original undertaking in this field was by Schumann, ${ }^{2}$ who formulated and solved the equations for the case of an incompressible fluid flowing through a bed of solids with infinite thermal conductivity. Schumann assumed that (1) any given particle could be considered to attain a uniform temperature throughout at any given instant, (2) the resistance to conduction in the solid itself was negligible, (3) the rate of heat transfer from fluid to solid at any point was proportional to the temperature difference between the two at the point, (4) the change in the volumes of fluid and solid with the temperature variation was negligible, and (5) thermal properties were independent of the temperature during a temperature-change cycle. Schumann calculated temperature-time curves in terms of the groups

$$
\frac{T-t_{0}}{T_{1}-t_{0}} \quad \frac{h^{\prime} x}{C^{\prime} v}=\frac{h x}{C^{\prime} G} \quad \frac{h^{\prime} \theta}{c_{s}^{\prime}}\left(1-f^{\prime}\right)
$$

where

$$
T=\text { gas temperature at any time, }{ }^{\circ} \mathrm{F}
$$

$T_{1}=$ inlet gas temperature, ${ }^{\circ} \mathrm{F}$
$t=$ solid temperature at any time, ${ }^{\circ} \mathrm{F}$
$t_{0}=$ initial temperature of the solid bed, ${ }^{\circ} \mathrm{F}$
$C^{\prime}=$ specific heat of unit volume of gas at constant pressure, Btu/(ftas) (${ }^{\circ} \mathrm{F}$)
$c_{s}^{\prime}=$ specific heat of unit volume of solids, $\mathrm{Btu} /\left(\mathrm{ft}^{3}\right)\left({ }^{\circ} \mathrm{F}\right)$
$f^{\prime}=$ fraction of voids in the solid bed
$G=$ mass velocity of fluid, $\mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)$
$h^{\prime}=$ volumetric heat-transfer coefficient, $\mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{\mathrm{a}}\right)\left({ }^{\circ} \mathrm{F}\right)$
$v=$ average volumetric fluid rate through bed, $\mathrm{ft}^{8} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right.$ of bed section)
$x=$ length of bed, ft
${ }^{1}$ Lof, G. O., and R. W. Hawley, Ind. Eng. Chem., 40, 1061-1070 (1948).
${ }^{2}$ Schumann, T. E. W., J. Franklin Inst., 208, 405 (1929).

Schumann's curves were later extended by Furnas, ${ }^{1}$ and the data of both are given in Fig. 18.21. With a temperature-time curve of this form Furnas experimentally developed the equation for the volumetric heattransfer coefficient.

$$
\begin{equation*}
h^{\prime}=\frac{A^{\prime} G^{0.7} T^{\prime} 4^{0.3} 10^{0.68-3.56 f^{\prime 2}}}{D_{e}^{\prime 0.9}} \tag{18.88}
\end{equation*}
$$

where $T^{\prime}=$ average of the inlet air and initial bed temperature, ${ }^{\circ} \mathbf{F}$ $A^{\prime}=$ constant
$D_{e}^{\prime}=$ equivalent spherical diameter defined by Eq. (18.89), ft

Fig. 18.21. Schumann curves. (Lof and Hawley, Industrial Engineering Chemistry)

$$
\begin{equation*}
D_{0}^{\prime}=\left(\frac{6 \times \text { net volume of particles }}{\pi \times \text { number of particles }}\right)^{1 / 8} \tag{18.89}
\end{equation*}
$$

Lof and Hawley carried out experiments on granitic gravel ranging in size from 4 mesh to 1.5 in . and air rates from 12 to 66 standard cubic feet of air per minute per square foot of gross cross-sectional area. The thickness of the bed was 36 in . They obtained the following dimensional equation

$$
\begin{equation*}
h^{\prime}=0.79\left(\frac{G}{D_{e}^{\prime}}\right)^{0.7} \tag{18.90}
\end{equation*}
$$

Because the volumetric heat-transfer coefficient has not been introduced before, Table 18.1, computed by Lof and Hawley, is included for 0.394 in . particle diameters and an air rate of 50 standard cubic feet per minute per square foot, an inlet temperature of $200^{\circ} \mathrm{F}$, and normal voids. The
${ }^{1}$ Furnas, C. C., Trans. AIChE, 24, 142 (1930); U.S. Bur. Mines Bull. 361 (1932).
Table 18.1. Solid Bed Coefficients
Material $\quad h^{\prime}, B t u /(h r)\left(f t^{3}\right)\left({ }^{\circ} F\right)$
Iron ores.......................... 406-1200
Limestone. 460
Coke. 347
Blast-furnace charge 260
Coal. 400
Firebrick. 534
Iron balls. 668
Gravel............. 399
authors suggest that Eq. (18.90) may be freely extrapolated to higher temperatures where the coefficient is increased by radiation.

The following problem has been adapted from Lof and Hawley.
Example 18.9. Calculation of the Length of a Bed. A bed of granitic-type gravel consisting of 1.0 in . particles has 45 per cent voids and is initially at a uniform temperature of $50^{\circ} \mathrm{F} . \quad 60 \mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)$ cross-sectional area of hot air at $200^{\circ} \mathrm{F}$ is available for periods of 6 hr . It is considered wasteful from a heat-recovery standpoint to let the exit air leave the bed at a temperature above $90^{\circ} \mathrm{F}$. How long a bed can be heated by the air stream?

Data:

Specific heat of gravel, $0.25 \mathrm{Btu} /(\mathrm{lb})\left({ }^{\circ} \mathrm{F}\right)$ or $41.3 \mathrm{Btu} /\left(\mathrm{ft}^{3}\right)\left({ }^{\circ} \mathrm{F}\right)$
Actual density of gravel $165 \mathrm{lb} / \mathrm{ft}^{3}$
Specific heat of air $0.0191 \mathrm{Btu} /\left(\mathrm{ft}^{3}\right)\left({ }^{(} \mathrm{F}\right)$

Solution:

$$
\begin{aligned}
h^{\prime}=0.79\left(\frac{G}{D_{e}^{\prime}}\right)^{0.7}=0.79\left(\frac{60}{Z_{12}^{\prime}}\right)^{0.7}=79.4 \\
\frac{h^{\prime} \theta}{e_{s}^{\prime}\left(1-f^{\prime}\right)}=\frac{79.4 \times 6}{41.3 \times 0.55}=21.0 \\
\frac{T-t_{0}}{T_{1}-t_{0}}=\frac{90-50}{200-50}=0.267
\end{aligned}
$$

From Fig. 18.21,

$$
\begin{aligned}
& \frac{h x \rho}{c^{\prime} G}=24.5 \quad \rho=0.0807 \mathrm{lb} / \mathrm{ft}^{3} \mathrm{air} \\
& x=24.5 \times \frac{0.0191 \times 60}{79.4 \times 0.0807}=4.4 \mathrm{ft}
\end{aligned}
$$

PROBLEMS

18.1. 6000 gal of liquid toluene is to be cooled from 300 to $150^{\circ} \mathrm{F}$ using water from 85 to $120^{\circ} \mathrm{F}$. A pump in the tank is eapable of circulating $30,000 \mathrm{lb} / \mathrm{hr}$ of toluene through an external exchanger. Available for the service is $400 \mathrm{ft}^{2}$ of heat-exchanger surface in various types, all affording approximately the same overall coefficient of $75 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F} / \mathrm{ft}\right)$.
(a) How long will it take to cool an agitated batch using, respectively, a double pipe exchanger, 1-2 exchanger, and 2-4 exchanger?
(b) How long will it take to cool a nonagitated batch using the same exchangers as in (a)?
(c) If the batch is cooled to $120^{\circ} \mathrm{F}$, how long will it take in (a) and (b)?
(d) If the pumping rate is increased to $40,000 \mathrm{lb} / \mathrm{hr}$ and the coefficient increased to 90, how long will it take in (a) and (b)?
18.2. 6000 gal of liquid aniline is to be cooled from 300 to $150^{\circ} \mathrm{F}$ using water from 85 to $120^{\circ} \mathrm{F}$. A pump in the tank is capable of circulating $30,000 \mathrm{lb} / \mathrm{hr}$ of aniline through an external exchanger. The overall clean coefficient is $40 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$.
(a) How much surface is required to accomplish the operation in 2 hr using double pipe, 1-2 and 2-4 exchangers with both agitated and nonagitated batches?
(b) How much surface is required for (a) if the time is reduced to 1 hr ?
18.3. Cylindrical steel objects 4 in . long by 6 in . in diameter and at $1000^{\circ} \mathrm{F}$ are to be quenched by being dropped into a tank filled with recirculating water at a constant temperature of $100^{\circ} \mathrm{F}$. The average overall coefficient on all faces will be about 75 .
(a) How long will it take for the center of the cylinder to reach a temperature of $125^{\circ} \mathrm{F}$?
(b) How long will it take for a depth 1 in . below the surface on the long axis to attain a temperature of $500^{\circ} \mathrm{F}$?
18.4. A water main at $50^{\circ} \mathrm{F}$ passes through a mass of concrete at the same temperature, the whole being exposed to the atmosphere. The main is located 24 in . below the surface of the concrete. If the temperature were to fall to $0^{\circ} \mathrm{F}$, how long would it take for the pipe to be in danger of freezing? Use $k=0.65 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft} \mathrm{t}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$, $c=0.20$, and $\rho=140 \mathrm{lb} / \mathrm{ft}^{3}$.
18.5. A steel slab 30 in. thick and at an initial temperature of $100^{\circ} \mathrm{F}$ is suddenly subjected to an air stream with a temperature of $300^{\circ} \mathrm{F}$ on both sides and a coefficient to steel of 5.0 . What is the temperature distribution after $1 / 2 \mathrm{hr}$?
18.6. The local daily range of temperatures on a concrete roof is between 80 and $40^{\circ} \mathrm{F}$. Assume that the roof is 12 in . thick and that the data in Example 18.4 apply.
(a) What variations occur 6 in. below the surface?
(b) What is the time lag?
(c) What is the temperature 4 hr after the maximum has been reached?

NOMENCLATURE FOR CHAPTER 18

A	Heat-transfer surface, ft^{2}
C_{0}	Specific heat of hot fluid added to batch, Btu/(1b) (${ }^{\circ} \mathrm{F}$)
C	Specific heat of hot fluid, Btu/(lb) (${ }^{\circ} \mathrm{F}$)
C_{1}, C_{2}, C_{3}	Constants
c	Specific heat of cold fluid, $\mathrm{Btu} /(\mathrm{lb})\left({ }^{\circ} \mathrm{F}\right)$
c_{8}	Specific heat of cold fluid added to batch, $\mathrm{Btu} /(\mathrm{lb})\left({ }^{\circ} \mathrm{F}\right)$
ca	Specific heat of solid, $\mathrm{Btu} /(\mathrm{lb})\left({ }^{\circ} \mathrm{F}\right)$
C^{\prime}	Specific heat of unit volume of gas, $\mathrm{Btu} /\left(\mathrm{ft}^{3}\right)\left({ }^{\circ} \mathrm{F}\right)$
c_{s}^{\prime}	Specific heat of unit volume of solids, $\mathrm{Btu} /\left(\mathrm{ft}^{3}\right)\left({ }^{\circ} \mathrm{F}\right)$
f	Number of complete periodic temperature changes per hour, $1 / \mathrm{hr}$
f^{\prime}	Fraction of voids in solids, dimensionless
f_{1}, f_{2}, ete.	Abbreviations for various functions by which Y is expressed
H	Overall coefficient or heat transfer per period, Btu/(period) (ft^{2}) (${ }^{\circ} \mathrm{F}$)
h	Heat-transfer coefficient, Bta /(hr) (ftt ${ }^{2}$ (${ }^{\circ} \mathrm{F}$)
h^{\prime}	Volumetric heat-transfer coefficient, Btu/(hr) (ft. ${ }^{\text {a }}$ ($\left.{ }^{\circ} \mathrm{F}\right)$
$h_{H} ; h_{C}$	Heat-transfer coefficient during heating and cooling half periods, respectively, $\mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$

h_{c}, h_{r}	Heat-transfer coefficient by convection and radiation, respectively, $\mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$
K_{1}, K_{2}, etc.	Constants in batch heating and cooling equations, dimensionless
	Thermal conductivity, $\mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F} / \mathrm{ft}\right)$
L_{0}	Rate of liquid addition to a batch, lb/hr
L_{1}, L_{2}	Charge and residual quantities of liquid in batch distillation; mol
l	Length or width of object or diameter of cylinder, ft
M	Weight of batch liquid, lb; weight of solid, lb
m	Number of time increments, $\Delta \theta$
N	Number of circulations
n	Number of distance increments, Δx
$N u$	Nusselt number, $h l / 2 k$
Q	Heat flow, Btu/hr
Q^{\prime}	Heat, Btu
q	Heat flow during a heating or cooling period, Btu/(hr)(ft² of regenerator surface)
q^{\prime}	Heat flow during a heating or cooling period, Btu/(period)(ft² of regenerator surface)
R	Temperature group wc/WC=($\left.T_{1}-T_{2}\right) /\left(t_{2}-t_{1}\right)$, dimensionless
S	Temperature group ($t_{2}-t_{1}$)/($T_{1}-t_{1}$), dimensionless
T	Temperature of hot fluid or batch at any temperature or time, ${ }^{\circ} \mathrm{F}$
T_{0}	Temperature of hot fluid continuously added to batch, ${ }^{\circ} \mathrm{F}$
T	Temperature of surrounding medium, ${ }^{\circ} \mathrm{F}$
T_{1}, T_{2}	Initial and final temperatures of hot fluid, ${ }^{\circ} \mathrm{F}$.
t	Temperature of cold fluid, batch or solid, ${ }^{\circ} \mathrm{F}$
t_{f}	Temperature of solid surface in the Schmidt method, ${ }^{\circ} \mathrm{F}$
t	Temperature of brickwork in a regenerator, ${ }^{\circ} \mathrm{F}$
t_{n}, t_{m}	Temperature of solid after n distance and m time increments, ${ }^{\circ} \mathrm{F}$
t_{0}	Original temperature of solid, ${ }^{\circ} \mathrm{F}$
tom	Maximum surface temperature, ${ }^{\circ} \mathrm{F}$
Δt	True temperature difference, ${ }^{\circ} \mathrm{F}$
$\Delta t_{8}, \Delta t_{x}$	Temperature difference after time θ and distance x, respectively, ${ }^{\circ} \mathrm{F}$
$\Delta t_{n, m}$	Temperature difference after n distance and m time increments, ${ }^{\circ} \mathrm{F}$
U	Overall coefficients of heat transfer, $\mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}{ }^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$
v	Average volumetric fluid rate through bed, $\mathrm{ft}^{3} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right.$ of bed cross section)
W	Weight flow of hot fluid, $\mathrm{lb} / \mathrm{hr}$
w	Weight flow of cold fluid, $\mathrm{lb} / \mathrm{hr}$
x	Mol fraction of volatile component in liquid, dimensionless; distance, ft
x_{1}, x_{2}	Initial and final mol fractions of volatile component in liquid, dimensionless
Y	Temperature group ($T_{s}-t$)/($T_{s}-t_{0}$), dimensionless
Y_{x}, Y_{y}, Y_{z}	Temperature group Y in the directions x, y, and z, respectively, dimensionless
y	Mol fraction of volatile component in vapor, dimensionless; distance, ft
z	Function in the probability integral; distance, ft
α	Thermal diffusivity, k / c^{\prime}, $\mathrm{ft}^{2} / \mathrm{hr}$
γ	Heat-storage factor, dimensionless
ϵ	Emissivity, dimensionless
θ	Time, hr

p \quad Density, $\mathrm{lb} / \mathrm{ft}^{3}$
 $\sigma \quad$ Radiation constant, $0.173 \times 10^{-8} \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{R}^{4}\right)$

Superscripts and Subscripts (except as noted above)

0 Time or distance at start
$p, q \quad$ Constants
$x, y, z \quad$ Direction
θ At time θ

CHAPTER 19

FURNACE CALCULATIONS

by John B. DWYer ${ }^{1}$

Introduction. The most important commercial applications of radiant-heat-transfer calculations are encountered in the design of steam-generating boilers and petroleum-refinery furnaces. Since the art of the construction of these units developed before the theory, empirical methods were evolved for the calculation of radiant-heat transfer in such furnaces. Various contributions ${ }^{2}$ to the literature on general and specific radiantheat transfer problems, especially those of H. C. Hottel, have made possible a more fundamental approach to furnace design. Several semitheoretical methods for furnace radiant-section heat-transfer calculations are now available. Often these methods can be adapted to the rapid solution of problems encountered in kilns, ovens, heat-treating and chemical furnaces, and miscellaneous equipment in which radiant-heat transfer is of importance.

It is the purpose of this chapter to present some of the empirical and semitheoretical methods of furnace radiant-section calculation, data for their use, and examples of their application. The limitations of these methods are pointed out, and their adaptability to miscellaneous heattransfer problems indicated. Included is a brief description of several types of boilers and oil heaters currently in use. A discussion of the theoretical aspects of radiation from nonluminous gases is presented to illustrate the general scope of the problem, and the simplifications and assumptions used in reducing theories to practice are also pointed out.

While it is necessary to calculate the radiant-heat-transfer flux in order to design a furnace, many other factors often influence furnace arrangement, such as the permissible flux under various conditions and the extent and nature of boiler tube slagging on the efficiency of the surface. The precautions which must be taken to avoid the deposition

[^58]of coke in oil-heating or vaporizing furnaces have a pronounced effect on the actual design of refinery furnaces. The art of furnace design, in fact, often far exceeds the importance of the calculations.

Steam-generating Boilers. There are two general types of steamgenerating boilers, the fire-tube boiler and the water-tube boiler. The former consists of a cylindrical vessel having tubes passing through it which are rolled into the heads at each end of the vessel. The tube bundle is generally horizontal, and the upper section of the vessel is not tubed. Combustion gases pass through the tubes, and a water level is carried in the vessel to immerse the tubes completely but at the same time allowing disengaging space between the water level and top portion of the vessel. In occasional vertical-tube boilers of this type, the tubes must be immersed in water for that portion of their length required to reduce the temperature of the gases sufficiently to avoid overheating the uncooled upper portion of the tubes. Some of the water-cooled parts such as shell or tube sheets can be subjected to radiation from the combustion gases, since these parts may form a portion of the enclosure of the combustion chamber. The major mechanism of heat transfer from the gases to the tubes is convection. Fire-tube boilers seldom exceed 8 ft in diameter, and steam pressure is generally limited to 100 to 150 psig. Fire-tube boilers are used for low-capacity services up to 15,000 to 20,000 $\mathrm{lb} / \mathrm{hr}$ of steam production for domestic, industrial, and process heating and for small-scale power generation as in locomotives, etc. Fuels employed may be coal, oil, or gas, and in some cases, local combustibles such as wood, sludge, etc., are used.

Water-tube boilers, as their name implies, have water within their tubes. Combustion of stoker or pulverized coal and coke or of gas or oil fuels provides radiation to the boiler tubes, and further heat transfer is accomplished by arranging the flow of hot gases over the tubes to provide convection-heat transfer. There are three important classifications of water-tube boilers: longitudinal drum, cross-drum straight tube, and cross-drum bent tube. The last is the most important of the three and will be discussed here briefly. Information on the other types can be found in Gaffert. ${ }^{1}$

Figure 19.1 shows a typical low-pressure boiler designed to generate $200,000 \mathrm{lb} / \mathrm{hr}$ of steam at 235 psig and $500^{\circ} \mathrm{F}$. Since the saturation temperature at this pressure is only $401^{\circ} \mathrm{F}, 99^{\circ} \mathrm{F}$ of superheat is required. Only a small superheater is necessary, since the superheat duty is about 5 per cent of the total boiler duty. The radiant boiler tubes cover the entire wall and roof surface, forming a "water wall" by means of which
${ }^{1}$ Gaffert, G. A., "Steam Power Stations," 3d ed., McGraw-Hill Book Company, Inc., New York, 1946.
the temperature of the refractory walls is kept down, thus decreasing their maintenance. Often the water tubes are partially embedded in the walls. The radiant-section furnace walls sometimes are protected from overheating by circulating cooling air outside them. In the furnace shown, water is fed by gravity from the upper drums to headers at the bottom end of the water wall tubes on all four radiant walls. Circula-

Fig. 19.1. Pulverized-coal-fired low-pressure boiler. (Babcock \& Witcox Company.)
tion is upward through these tubes, and the steam is disengaged from water in the upper drums, then passes through a steam separator before being superheated. In a low-pressure boiler, the convection tubes reduce the fiue-gas temperature sufficiently that they proceed directly to the air preheater, obviating the need of an economizer (feed-water preheater). These convection tubes are the bent tubes running from the upper drums to the lower drum. Circulation in these tubes is, in general, downward in the left (cooler) bank and upward through the hotter bank.
A typical power-generating steam boiler is shown in Fig. 19.2. It has a capacnty of $450,000 \mathrm{lb} / \mathrm{hr}$ of 900 psig steam delivered at $875^{\circ} \mathrm{F}$. Since

the saturation temperature at 900 psig is $532^{\circ} \mathrm{F}$, considerable superheat duty is required. Very little boiler convection surface can be placed between the radiant boiler and the superheater, since high-temperature combustion gases must be used to attain the required superheat temperature level with a reasonable amount of superheater tube surface. Since feed water must be brought essentially to the saturation temperature before it is admitted to the boiler drum, considerable heat is absorbed in the economizer section wherein the feed water is preheated, and the thermal efficiency of the unit is further increased by preheafing the combustion air with the flue gases before they are sent to the stack.

Petroleum-refinery Furnaces. In atmospheric and vacuum crude distillation, thermal cracking, and modern high-temperature gas processing, the direct-fired tubular furnace is the primary factor in the refinery unit. Furnaces also are widely employed in various heating, treating, and vaporizing services. Refinery furnaces of various types are required for handling fluids at temperatures as high as $1500^{\circ} \mathrm{F}$ and at a combination temperature and pressure as severe as $1100^{\circ} \mathrm{F}$ and 1600 psig.

Oil or gas fuels are used exclusively in these furnaees, although in the near future the need may develop for firing with by-product petroleum coke. In general the thermal efficiency of refinery furnaces is considerably less than that of large boilers, since in many cases fuel has little worth in the refinery. With the trend toward utilization of a greater percentage of the crude oil produced, fuel is becoming scarcer and more valuable and refiners are recognizing the need for higher thermal efficiencies. It is expected that the range of thermal efficiencies will rise from 65 to 70 per cent employed in the past to 75 to 80 per cent in the future.

As in boilers, refinery furnaces usually contain both radiant- and con-vection-heat-transfer surface. Occasionally only radiant surface is employed for very low-capacity furnaces with duties up to $5,000,000$ $\mathrm{Btu} / \mathrm{hr}$. Air preheaters have been used to a very limited extent because of the relative unimportance of fuel efficiency; however, even at moderate fuel prices their use generally can be shown to be economical.

In Fig. 19.3 is shown a box-type furnace fired from the end walls of the radiant section. Furnaces of this type might have capacities ranging from $25,000,000$ to $100,000,000 \mathrm{Btu} / \mathrm{hr}$ heat input to the oil. Radiant tubes cover the side wall, roof, and bridge-wall (partition between radiant and convection section) surfaces. Oil is preheated in the bottom and top rows of the convection bank, then passes through the radiant tubes. After reaching an elevated temperature (900 to $1000^{\circ} \mathrm{F}$) it is passed through a large number of couvection-section tubes wherein it is main-
tained at a high temperature for sufficient time to accomplish the desired degree of cracking. These convection tubes are called the soaking section. The particular furnace shown employs flue-gas recirculation which serves to increase the convection-section duty and decrease the radiantsection duty: The amount of flue gas recirculated is controlled by two factors, namely, (1) limiting the radiant-section flux to prevent overheating the tubes and causing coke deposition within them and (2) controlling

Fig. 19.3. Box-type furnace. (Lobo and Evans, Transactions AIChE.)
the temperature gradient through the convection soaker coil. The more nearly constant the oil temperature is held for a given outlet temperature the greater will be the "soaking factor" and extent of cracking. This assumes, of course, that the outlet temperature is the highest oil temperature. The endothermic reaction heat of cracking may result in a condition in which the oil temperature drops from soaker inlet to outlet. Such a temperature drop is inadvisable, particularly in vapor-phase cracking, since polymers formed in the vapor may condense on the tube walls and undergo further cracking to produce coke.

Figure 19.4 shows a De Florez type furnace, which is circular in cross section and employs vertical tubes. All the radiant tubes are equidistant from the burners, ensuring good circumferential heat distribution, but the flux may vary considerably from the bottom of the tubes to the top.

Fig. 19.4. De Florez circular furnace. (Lobo and Evans, Transactions AIChE.)
This furnace is fred from the bottom and has so little convection surface that an air preheater is employed to provide good thermal efficiency.

Figure 19.5 shows a double radiant-section box-type furnace. The convection-section tubes and those in one radiant section are employed for one service, while the other radiant section is independently controlled to perform another service. In Fig. 19.6 is an overhead convec-tion-bank box-type furnace with the stack located on top of the con-

Fig. 19.5. Double-radiant-section box-type furnace. (Lobo and Evans, Transactions AIChE.)

Fig. 19.6. Simple furnese with overhead convection bank. (M. W. Kellogg Co.)
vection bank. Such an arrangement saves on duct work and stack required as compared with a "down-draft" convection-bank arrangement as in Figs. 19.3 and 19.5. Figure 19.7 shows a somewhat similar furnace employing "A" frame type construction, utilizing an inherently stiff structural-steel arrangement to reduce steel costs.

Figure 19.8 presents a modern multiple radiant-section furnace. The convection bank is used for heating two separate oil streams. Each of

Fig. 19.7. Oil-heating "A" frame furnace. (M. W. Kellogg Co.)
these streams is identically heated in one of the outside radiant "heater" sections, and allowed to soak in one of the middle radiant "soaker" sections. Radiant soakers are preferred to convection soakers because they can be controlled better in so far as heat input is concerned. Furthermore, since the tubes can be seen during operation, any deformation of the tubes can be noted and tube failures with resultant fires avoided. Floor firing of the furnace permits the use of a large number of small burners distributed along the length of the tubes, ensuring even flux distribution. The small burners can be located close to the side-wall or bridge-wall tubes without danger of direct impingement of the burner flames on the tubes. As a result, the cross-sectional dimensions of the
furnace can be reduced and tubes made longer than in a furnace fired from the end walls with large burners. A saving in the number of expensive return bends or "headers" employed can thus be realized.

Fig. 19.8. Overhead convection bank oil-heating furnace provided with separately fired radiant sections. (M.W. Kellogg Co.)

Radiant-heat-transfer Factors. As pointed out at the conclusion of Chap. 4, the general equation for radiant-heat transfer can be represented by

$$
\begin{align*}
Q & =F_{A} F_{\epsilon} A \sigma\left(T_{1}^{4}-T_{2}^{4}\right) \tag{4.42}\\
& =\mathscr{F} \sigma A^{\prime}\left(T_{1}^{4}-T_{2}^{4}\right) \tag{19.1}
\end{align*}
$$

where $Q=$ heat flow by radiation alone to $A^{\prime}, \mathrm{Btu} / \mathrm{hr}$
$T_{1}=$ temperature of source, ${ }^{\circ} \mathrm{R}$
$T_{2}=$ temperature of sink, ${ }^{\circ} \mathrm{R}$
$\mathcal{F}=$ factor to allow for both the geometry of the system and the nonblack emissivities of the hot and cold bodies, dimensionless
$A^{\prime}=$ effective heat-transfer surface of sink or cold body, ft^{2}
$\sigma=$ Stefan-Boltzmann constant, $0.173 \times 10^{-8} \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{R}^{4}\right)$
It is obvious that the application of such an equation to practical engineering problems must incorporate simplifications and assumptions.

It will be helpful to develop the bases for those simplifications and indicate the assumptions.

In general, the furnace consists of a heat receiver or sink, a heat source, and enclosing surfaces (the last being made up in some part by the sink and/or source). While there is complex interaction among these three essential parts, they can be evaluated best in the order given.
Heat Sink. The usual heat receiver for industrial furnaces is composed of a multiplicity of tubes disposed over the walls, roof, or floor of the

Reradiafing wall

Frg. 19.9. Evaluation of the effectiveness factor α.

$$
\begin{aligned}
\alpha_{A, ~ d i r e a t ~} & =\frac{90^{\circ}-A_{1}{ }^{\circ}-A_{2}{ }^{\circ}-A_{3}{ }^{\circ}}{90^{\circ}} \\
\alpha_{N, \text { direot }} & =\frac{90^{\circ}-N_{1}{ }^{\circ}-N_{2}{ }^{\circ}-N_{3}{ }^{\circ}-N_{4}{ }^{\circ}}{90^{\circ}} \\
\alpha_{\text {direct }} & =\frac{\alpha_{A}, \text { direct }+\alpha_{B}, \text { direot }+\cdots \alpha_{N, \text { direot }}}{N} \\
\alpha_{\text {total }} & =\alpha_{\text {direot }}+\alpha_{\text {hirect }}\left(1.00-\alpha_{\text {dirett }}\right)
\end{aligned}
$$

Note that α_{A}, direct, α_{B}, diroot, etc., approach equality as distance between radiating plane and tube row increases.
furnace or located more centrally in the firebox. The most common case is the one in which bare tubes are arranged in a single row in front of a refractory wall. Although there are many rather arbitrary means of evaluating the effective heat-transfer surface of such arrangements, a rational development has been proposed by Hottel, ${ }^{1}$ which now is used almost exclusively. It already has been stated that the elements of the furnace are best handled individually, and in evaluating the effective or "seen" surface of the tube rows, the assumption is made that the heat source is a radiating plane parallel to the tube row. End effects as described in Chap. 4 are eliminated by assuming both the plane of the

[^59]tubes and the radiating plane to be infinite in extent. All surfaces are assumed to be black.

In Fig. 19.9 is shown a method of evaluating the effectiveness factor α by which the surface of a plane replacing the tube row with assumed emissivity of 1.0 must be multiplied to obtain an equivalent (cold) plane surface. The plane replacing the tubes $A_{c p}$ is equal to the number of tubes times length times center-to-center spacing. The first method shown is one suggested by Hottel, ${ }^{1}$ which is simple and rapid. It is assumed that any heat loss through the refractory is equal to the heat transferred to the refractory by convection; hence all radiation impinging on the wall is reradiated. It can be seen that, as the tubes are spread farther apart, the fraction of the radiation originating at a point at the source which will be intercepted by the tubes will diminish, hence α will decrease. At the same time $A_{c p}$ per tube is increased. The net effect is an increase in effective surface per tube but a decrease in effective surface per unit surface of furnace wall. The effectiveness of the tube is increased because a greater portion of its circumferential area is irradiated. The radiation not intercepted by the tubes reaches the refractory, from which it is reradiated. If it is assumed that the refractory is at a uniform temperature (not quite true), the radiation leaving the refractory will be intercepted to the same extent as the radiation from the source. Hence the total radiation absorbed by the tube row will be the fraction $\left[\alpha_{\text {direst }}+\alpha_{\text {direct }}\left(1-\alpha_{\text {direct }}\right)\right]$ of the radiation from the source. The illustration shows that several points along the radiating plane must be investigated (covering only one-half of the tube center-to-center distance because of the symmetry of the system) to obtain the average fraction of interception. Also by symmetry, only the angle between 90 and 180 need be investigated at each point.

A better understanding of the distribution of the radiant rate on the tube circumference is obtained from Fig. 19.10 in which the values are developed from the standpoint of the tube surface. The point on a tube which is located on the diameter perpendicular to the radiating plane and on the side of the tube facing the plane receives radiation through an angle of 180°, and hence the α value for this point is 1.00 . Other points on the circumference can "see" through a smaller and smaller angle as one proceeds to the rear of the tube, until a point is reached at which no direct radiation from the plane is received. The effectiveness of each incremental area of the entire circumferential tube surface A is evaluated, and the sum of these effective areas must be divided by $A_{c p}$ to obtain α. Again by symmetry, only half the tube circumference need be investi-

[^60]gated, and it is rather apparent that the front of the tube absorbs considerably more heat than at other points on its circumference.

The interception of reradiation can be evaluated in the same manner, recalling that the intensity of the reradiation is ($1-\alpha_{\text {direot }}$) times the intensity of the source. The total of direct radiation plus reradiation can be indicated in the polar coordinate plot to show the actual heat distribution. It is important to note the poor ratio between the average and the maximum value of α for the various points on the tube circumference. For a normal tube spacing of about 1.8 times outside diameter

Reradiating wal/

Fig. 19.10. Evaluation of α showing flux distribution on tube circumference.
in oil-refinery furnaces, the ratio is about 2.0 , indicating that, at an average flux of $10,000 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)$ on the total tube surface A, the maximum point flux (disregarding factors affecting heat distribution other than α) will be $20,000 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)$ on the front face of the tube. The greater the ratio of center-to-center distance to outside diameter the lower the ratio of maximum rate to average rate, and since $\alpha_{\max }$ in all cases is 1.00 , it can be seen readily from this development of α that the effective surface of the tubes increases. Except in special cases, however, the cheapest furnace results when tubes are spaced as close together as the physical and mechanical limitations of return bends will permit.

In the case of double rows of tubes, the back row receives about onequarter of the total heat transfer. It is again also important to note that the ratio of maximum flux to the average flux (circumferential) for both rows of tubes becomes much worse than for a single row. The ratio can be obtained by dividing the total circumferential surface for the two rows by the total product of $\alpha A_{c p}$ for the two rows. Actually the tube emissivity is not 1.00 as assumed, and there will actually be some reflection from one tube to another. The net effect is to increase the effective emissivity of the row 2 or 3 per cent which is neglected in design practice.

Figure 19.11 presents values of α, direct and total, for single and double rows of tubes with refractory behind them. From the values of $\alpha_{\text {direct }}$ for the first and second row, it can be seen that a nest of tubes more than two rows deep can be assumed to have a value of $\alpha_{\text {total }}$ equal to 1.0. For convection banks whose tubes are radiated directly by the furnace $A_{c p}$ is merely the width times the length of the opening.

In boiler furnaces tubes are sometimes half imbedded in the refractory, are sometimes finned, and occasionally are equipped with metal- or refractory-faced blocks. For a more detailed development of α values for such arrangements reference should be made to Hottel. ${ }^{1}$ Still another serious complication arises in boiler furnaces from the slagging of the tubes.

A method of evaluating the effective radiant-heat-transfer surface for various boiler tubes has been presented by Mullikin. ${ }^{2}$ For slagged tubes of any type, the effective surface is

$$
\begin{equation*}
\left(\alpha A_{c p}\right)_{s}=A_{c p} \alpha F_{c} F_{\varepsilon} F_{\epsilon} \tag{19.2}
\end{equation*}
$$

where $A_{\text {cp }}$ and α are as before with the subscript indicating a slagged condition and
where $F_{a}=$ conductivity factor, dimensionless
$F_{s}=$ slag factor, dimensionless
$F_{\epsilon}=$ emissivity factor, dimensionless
Note that the tube emissivity is introduced into the evaluation of the effective surface in this case while previously the emissivity was considered in the exchange factor \mathfrak{F}. Actually no confusion will result, since in the only method discussed here in which $\left(\alpha A_{c p}\right)_{s}$ is employed F_{E} is assumed to be unity. Practical values of F_{c} are 1.00 for bare and finned tubes, 0.70 for bare-faced metal blocks shrunk onto the tubes, and 0.33 for refractory-faced metal blocks. The slag factor will vary from a low of 0.6 to 0.9 or 1.0 for well-operated boilers. When the tubes are clean, F_{s} is 1.0 , of course. From a review of published boiler tests the slag

[^61]factor appears to be ordinarily about 0.8 to 0.9 . It is impossible to make generalizations about the slagging, which may occur with different coals (and some oil fuels) and with varying furnace temperatures and the slag

Fig. 19.11. Radiation between a plane and one or more tube rows parallel to the plane. (Courtesy of Hottel.)
factor in such cases is estimated from comparable information. A boiler in intermittent service tends to clean itself, while one in continuous service reaches an equilibrium state (steady or cyclic) at which the effects of the slag do not vary appreciably. Apparently there is consider-
able difference between the reduction in heat absorption due to dry ash on the tubes and that resulting when the slag is molten or running. A change in operating conditions may change the slag condition and cause variations in the accuracy of any equation which considered heat-transfer principles without the practical factors.

Heat Source. The heat to a furnace is provided primarily in the combustion reaction and in the sensible heat of the combustion air if it has been preheated. Gas fuels generally provide nonluminous flames. Oil fuels can be fired to provide flames of varying degrees of luminosity, depending upon burner design, extent of atomization, and percentage of excess air used. Pulverized coal burners produce a flame containing incandescent solid particles and of a greater degree of luminosity than the minimum obtainable with oil burners. Stoker firing provides an incandescent fuel bed.

The differences in the characteristics of the flames or heat patterns produced in the conventional firing of the various fuels have resulted in the development of methods of calculating radiant-heat transmission which apply on the one hand to oil- or gas-fired refinery furnaces and on the other hand to coal- (either stoker or pulverized) fired units. There is no simple, universally applicable method of calculating heat absorption in all types of furnaces. At the outset, then, the calculations must differentiate between furnaces fired with gas or oil and furnaces fired with solid fuels. It is justifiable to say that heat-absorption-calculation methods are further advanced in refinery-furnace design than in boiler work. Undoubtedly this is due at least in part to the greater complexity of the heat sources and sinks of boiler furnaces. While methods of calculation for coal-fired furnaces will be presented, the discussion of the heat source will be limited mainly to furnaces whose fireboxes are filled largely with nonluminous gases and whose bounding surfaces are not part of the heat source-as opposed to the case of a stoker-fired furnace. Luminousflame calculations require information obtained either from experiment or from experience, and some data have been presented by Hottel. ${ }^{1}$

Consider for the moment a furnace in which gaseous fuel is fred by burners producing nonluminous flames. Further consider that the path of the combustion products through the furnace is very short compared with the dimensions of the plane perpendicular to the path. In such a furnace, equipped with many small burners to give good distribution of firing, one would expect little or no variation in the temperature of the gases from point to point in the furnace. No luminous flames are present to radiate to the tubes or refractory. The only primary sources of radiation are the combustion products themselves, and these are assumed to be
${ }^{1}$ Perry, J. H., "Chemical Engineers' Handbook," 3d ed., pp. 493-495, McGraw-Hill Book Company, Inc., New York, 1950.
uniform in temperature. There is a great difference in the emissivity of various gases at the same temperature. The diatomic gases such as O_{2}, N_{2}, and H_{2} have very poor emissivities, so low that they may be considered zero in furnace-design work. On the other hand, $\mathrm{H}_{2} \mathrm{O}, \mathrm{CO}_{2}$, and SO_{2} have good emissivities (though much poorer than most solid materials), and CO has a fair emissivity. The sources of radiation may be referred to specifically as the radiating constituents in the combustion products. Ordinarily $\mathrm{H}_{2} \mathrm{O}$ and CO_{2} are the only radiating constituents which need be considered, since the small amount of sulfur in most fuels is negligible and furnaces are generally operated with sufficient excess air to eliminate CO.

The total radiation from a gas mass containing CO_{2} and $\mathrm{H}_{2} \mathrm{O}$ will depend upon the temperature of the gas and the number of radiating molecules present. The volume of the gas and the concentration of radiating molecules per unit of volume are therefore a measure of the radiation to be anticipated at a given temperature. In actuality the geometric shape of the gas mass must also be considered because of the angle factor involved in radiation.

The mean beam length, $L \mathrm{ft}$, is the average depth of the blanket of flue gas in all directions for each of the points on the bounding surface of the furnace and is used instead of a cubical measure of the volume. The concentration of the radiating molecules is measured by their partial pressures. The emissivity of the gas mass in a furnace is a function of the product $p L$ atm- ft , where p is the partial pressure of the radiating constituent. If more than one radiating constituent is present, the emissivities are additive, although a small correction must be made for the interference of one type of molecule with the radiation from the other. In calculating the emissivity of the gas mass, allowance must be made for the temperatures of both the source and the sink. For heat transfer to a black body, one would use the equation

$$
\begin{equation*}
Q_{b}=0.173 F_{b A}\left[\epsilon_{G}\left(\frac{T_{G}}{100}\right)^{4}-a_{G}\left(\frac{T_{b}}{100}\right)^{4}\right] A_{b}^{\prime} \tag{19.3}
\end{equation*}
$$

where $Q_{b}=$ duty or heat transfer to the black body by radiation from gas, Btu/hr
$A_{b}^{\prime}=$ effective heat-transfer surface of black body, ft^{2}
$a_{G}=$ absorptivity of gas at T_{b}, dimensionless
$F_{b A}=$ factor to allow for the geometry of a system with a blackbody sink, dimensionless
$T_{G}=$ temperature of gas, ${ }^{\circ} \mathrm{R}$
$T_{b}=$ temperature of black body, ${ }^{\circ} \mathbf{R}$
$\epsilon_{G}=$ emissivity of gas at T_{G}, dimensionless

Practically, a_{ϵ} can be replaced by ϵ_{G} evaluated at T_{b}. When two radiating constituents are present, $\mathrm{H}_{2} \mathrm{O}$ and CO_{2}, the equation can be rewritten (neglecting the correction factor for interference between the dissimilar molecules):

$$
\begin{equation*}
Q_{b}=0.173 \Im_{b}\left[\left(\epsilon_{c}+\epsilon_{W}\right)_{T_{c}}\left(\frac{T_{G}}{100}\right)^{4}-\left(\epsilon_{C}+\epsilon_{W}\right)_{T_{b}}\left(\frac{T_{b}}{100}\right)^{4}\right] A_{b}^{\prime} \tag{19.4}
\end{equation*}
$$

where $\left(\epsilon_{C}+\epsilon_{W}\right)_{T_{G}}=$ emissivity of gas at T_{G}
$\epsilon_{C}=$ emissivity of CO_{2} at $p_{\mathrm{CO}_{2}} \cdot L$ and T_{G}
$\epsilon_{T W}=$ emissivity of $\mathrm{H}_{2} \mathrm{O}$ at $p_{\mathrm{H}_{2} \mathrm{O}} \cdot L$ and T_{G}
$\left(\epsilon_{C}+\epsilon_{W}\right)_{r_{b}}=$ emissivity (substituted for absorptivity)
$\epsilon_{C}=$ emissivity of CO_{2} at $p_{\mathrm{CO}_{2}} \cdot L$ and T_{b}
$\epsilon_{W}=$ emissivity of $\mathrm{H}_{2} \mathrm{O}$ at $p_{\mathrm{H}_{2} \mathrm{O}} \cdot L$ and T_{b}
It should be noted that in addition to the correction factor which should be introduced to allow for interference, the emissivity of water vapor has been found by Egbert ${ }^{1}$ to be a function of its partial pressure. Values of L for furnaces of various geometric shapes have been determined by Hottel, and Table 19.1 presents a useful digest of these values for furnace

```
Table 19.1. Mean Lengte of Radiant Beams in Various Gas Shapes
            Dimensional ratio*
            Rectangular furnaces:
            1. 1-1-1 to 1-1-3
            1-2-1 to 1-2-4
            2. 1-1-4 to 1-1-\infty
            3. 1-2-5 to 1-2-8
            4. 1-3-3 to 1-\infty-\infty
Cylindrical Furnaces:
    5. d\timesd 2/3 diameter
    6. }d\times2d\mathrm{ to }d\times\inftyd, 1\times\mathrm{ diameter
Tube Banks:
    7. As in convection sections }L(\textrm{ft})=0.4\mp@subsup{P}{T}{}-0.567\textrm{OD},\textrm{in}
    * Length, width, height in any order.
```

work. In industrial-furnace design the term rate is used synonymously with the term flux in preceding chapters and individual film coefficients are not considered. It is convenient to have charts which give the values of the radiant-heat-transfer flux q_{c} and q_{w} as functions of $p L$ and T where

$$
\begin{aligned}
q_{c} & =0.173 \epsilon_{C}\left(\frac{T}{100}\right)^{4} \text { at } p_{\mathrm{CO}_{2}} \cdot L \text { and } T \\
q_{W} & =0.173 \epsilon_{W}\left(\frac{T}{100}\right)^{4} \text { at } p_{\mathrm{E}_{2} \mathrm{O}} \cdot L \text { and } T \\
q_{b} & =0.173 \epsilon_{b}\left(\frac{T}{100}\right)^{4} \text { and } \epsilon_{b}=1.00
\end{aligned}
$$

${ }^{1}$ Egbert, R. B., Sc. D. Thesis in Chem. Eng., MIT, 1941.

Such charts are presented in Figs. 19.12 and 19.13 from data by Hottel and Egbert. The correction for interference is also given in the insert graphs in per cent, and the corrected emissivity is equal to

$$
\begin{equation*}
\epsilon_{\theta}=\left[\frac{\left(q_{\sigma}+q_{W}\right) r_{\sigma}-\left(q_{c}+q_{w}\right)_{r_{s}}}{\left(q_{b}\right) r_{\sigma}-\left(q_{b}\right) r_{s}}\right] \frac{100-\%}{100} \tag{19.5}
\end{equation*}
$$

In many simple cases of radiant-heat transfer from gases to nonblack bodies no complications of angle factors need be introduced and the heattransfer rate can be calculated simply by

$$
\begin{equation*}
q=\frac{Q}{A}=\epsilon_{s}\left[\left(q_{c}+q_{w}\right)_{r_{a}}-\left(q_{c}+q_{w}\right)_{T_{s}}\right] \frac{100-\%}{100} \tag{19.6}
\end{equation*}
$$

where the subscript S refers to the cold surface and the emissivity of the cold surface is ϵ. . Such is the case in tube bundles as in furnace convection sections where radiant-heat transfer is often quite important. In this particular case the tubes are surrounded by the gas and no angle factor is required. The surface to be used is the circumferential tube area. (For banks of tubes there is additional radiant-heat transfer from the refractory side walls which add to the average rate or flux.)
Some conclusions may be drawn from the dependency of the gas emissivity upon $p L$. For furnaces of the same physical proportions but of differing sizes, one would expect the larger to have a higher rate of heat transfer with a given gas temperature (because of the greater value of L). The effect of increasing excess air is to decrease the value of p, hence the emissivity, and the radiant rate for a given gas temperature is thereby decreased. Though not strictly related to a discussion of the effects of excess air, it has been found by experience that refinery furnaces do not operate under optimum conditions because of the use of undue amounts of excess air. The combustion conditions of boilers are usually controlled more rigidly than refinery furnaces, because of the greater value of fuel in boiler plants.

Enclosing Surfaces. The part played by the refractory walls, arch, floor, etc., of the furnace in transferring heat from the gas to the cold surface is often difficult to visualize. The gas mass radiates in all direotions. The emissivity of the gas evaluated from p and L, as discussed previously, is directional in that it denotes the radiation impinging on a point of the cold surface on the furnace enclosure. All of this radiation is directed from various sections of the gas mass toward that particular point. However, the various sections of the gas mass also radiate in other directions. Some of this radiation may be directed toward refractory surface (which is not cold), and the refractory in turn reradiates or

Fig. 19.13. Radiation due to water vapor. (Courtesy of Hottel.)
reflects the impinging radiation, some of it being redirected toward the point first considered. The gas mass is quite transparent to the reradiation (more so than to the reflection, since the spectral characteristics of the reradiation depend upon the characteristics of the surface of the refractory) ; hence the point on the cold surface receives more radiation than would be evaluated from the emissivity of the gas. The refractory is somewhat analogous to a reflector placed behind a light source.

An effective means of illustrating the effect of the refractory is to start with an enclosure containing no cold surface. It contains a gas of a certain emissivity at a given temperature. If a small aperture is made in the enclosure, the radiation streaming through the aperture will be equal to that coming from a black body at the gas temperature, no matter what the emissivity of the gas may be but provided the enclosure walls are well insulated and the system has reached thermal equilibrium. Now, if instead of the aperture one places a small section of cold surface within the enclosure, the radiation falling upon it will be equal to that which would come from black surroundings at the gas temperature. The effect of a very high ratio of refractory surface to cold surface is to produce a furnace emissivity of 1.0 , even though the gas emissivity is low.

On the other hand, if the entire enclosing surface is cold and black, each point on the surface will receive only the radiation initially directed toward it, since radiation in other directions is completely absorbed and the furnace emissivity is equal to the gas emissivity. If the emissivity of the cold surface is less than 1 , some of the radiation will be reflected, and though the net effect of a lower cold surface emissivity will be a decrease in heat transfer for a given temperature difference, the decrease will not be proportional to the decrease in emissivity. The reflections will be absorbed only partly by the gas, and the unabsorbed portion will be added to the primary radiation to some other portion of the cold surface. The lower the gas emissivity (absorptivity) the less will be the effect of a change in the emissivity of the cold surface. It might be mentioned that in a fire-tube boiler the radiant-heat transfer can be evaluated by application of these principles, and it is undoubtedly safe to assume that the emissivity of the tube surface is 1.0 .

Qualitatively it has been demonstrated that the net radiant-heat transmission will be increased for a given gas emissivity, cold-surface emissivity, and gas and cold-surface temperatures by an increase in the ratio of refractory surface to cold surface. The random addition of refractory (in the form of a partition or bridge wall) does not provide a means of increasing the flux without increasing the furnace gas temperature, however. While the ratio of refractory to cold surface may thus be increased, it is increased at the expense of decreasing the mean beam
length for the furnace. In so-called double radiant-section furnaces, each section is best handled as a separate furnace.

Quantitatively a rigorous evaluation of the effect of the refractory surface is very difficult and beyond the range of practicability for most engineering work. Hottel has developed an equation for the overall exchange factor which is included in Eq. (4.26).

$$
\begin{equation*}
F_{\epsilon}=\frac{1}{\left(1 / \epsilon_{F}\right)+\left(1 / \epsilon_{S}\right)-1} \tag{19.7}
\end{equation*}
$$

in which ϵ_{S} is the emissivity of the cold surface, and ϵ_{F}, the effective emissivity of the furnace cavity (which will be greater than ϵ_{G} if any portion of the enclosure is not cold). Hottel further defines ϵ_{F} as a function of the gas emissivity, the ratio of refractory surface to cold surface, and an angle factor accounting for the geometrical relationships between various sections of cold and refractory surfaces.

In summary, the tube surface must be evaluated as equivalent plane surface. The emissivity of the gas mass is a function of its temperature, the temperature of the cold surface, the mean beam length of the furnace, and the partial pressures of the radiating constituents. The effective emissivity of the furnace is a function of the gas emissivity and the ratio (and relative arrangement) of refractory to cold surfaces. The overall excbange factor may be obtained from the furnace and cold surface emissivities for use in an equation of the Stefan-Boltzmann type for calculating the radiant heat transfer.

$$
\begin{equation*}
Q=0.173 \mathcal{F}\left[\left(\frac{T_{G}}{100}\right)^{4}-\left(\frac{T_{S}}{100}\right)^{4}\right] \alpha A_{c p} \tag{19.8}
\end{equation*}
$$

Theoretically the proper average value of T_{G} must be used or the calculation of long furnaces must be carried out in a stepwise manner. Actually it is often satisfactory to consider the temperature of the gases leaving the furnace radiant section as the average temperature when the degree of turbulence of the gases is high. When highly luminous flames or stoker firing are employed additional data are required. It should be noted that methods for calculating the average heat transfer rates or fluxes in the radiant section give no measure of the uniformity of the rates on various tubes. Either experience or highly analytical calculations are required to estimate specific rates.

DESIGN METHODS

The common methods for calculating heat absorption in furnace radiant sections are surveyed below. Several are illustrated by calculations at the conclusion.

1. Method of Lobo and Evans. ${ }^{1}$ This method makes use of the overall exchange factor \mathcal{F} and a Stefan-Boltzmann type equation. It has a good theoretical basis and is used extensively in refinery-furnace design work. It is also recommended for oil- or gas-fired boilers. The average deviation between the predicted and observed heat absorption for 85 tests on 19 different refinery furnaces varying widely in physical and operating characteristics was 5.3 per cent. The maximum deviation was 16 per cent. This method is illustrated by Example 19.1.
2. Method of Wilson, Lobo, and Hottel. ${ }^{2}$. This is an empirical method which can be used for box-type furnaces fired with oil or refinery gas when fluxes lie between 5000 and $30,000 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)$ of circumferential tube surface. Other limitations are that the percentage of excess air be from 5 to 80 per cent and that tube-surface temperatures be at least $400^{\circ} \mathrm{F}$ lower than the radiant-section exit-gas temperature. The mean beam length should not be less than 15 ft . This method is widely used in industry and is recommended under the above limitations when the accuracy of the Lobo-Evans equation is not demanded. For most of the tests referred to under the Lobo-Evans method the average deviation was 6 per cent and the maximum deviation 33 per cent. This method is illustrated by Example 19.2.
3. The Orrok-Hudson ${ }^{3}$ Equation. This is an early empirical equation for calculating heat absorption in the radiant section of a water-tube boiler. It has been replaced by more accurate expressions and is of limited value for design work. It can be used to estimate the effects of changes in firing rate or air-fuel ratio for an existing boiler fired with coal or oil if it is known that there will be no appreciable change in either the character or extent of the slagging of the furnace tubes. In such applications it may be necessary to adjust the constant in the equation to suit the known operating conditions. The use of this equation is illustrated in Example 19.3.
4. Wohlenberg ${ }^{4}$ Simplified Method. This is an empirical method, though undoubtedly much sounder than the Orrok-Hudson equation for calculating radiant-heat absorption. It is useful only for coal firing. It is again repeated that a knowledge of the anticipated slagging is a prerequisite to the application of a heat-transfer equation to a boiler. Tests on seven large boilers indicated an average deviation of about 10 per cent when the slag factor was estimated from the furnace appearance. The maximum deviation was about 50 per cent for stoker firing, but better accuracy was obtained in furnaces fired with pulverized coal.
[^62]
APPLICATIONS

Method of Lobo and Evans. The equation given previously for radiant-heat transfer to the cold surface was

$$
\begin{equation*}
Q=0.173 \mathcal{F}\left[\left(\frac{T_{G}}{100}\right)^{4}-\left(\frac{T_{S}}{100}\right)^{4}\right] \alpha A_{c p} \tag{19.8}
\end{equation*}
$$

In addition some heat will be transferred by convection, and the total heat transfer to the cold surface is

$$
\begin{equation*}
\Sigma Q=0.173 F\left[\left(\frac{T_{G}}{100}\right)^{4}-\left(\frac{T_{s}}{100}\right)^{4}\right] \alpha_{c p} A_{c p}+h_{c} A\left(T_{G}-T_{s}\right) \tag{19.9}
\end{equation*}
$$

where $A=$ total tube surface, ft^{2}
$A_{c_{p}}=$ equivalent cold plane surface, ft^{2}
$\mathcal{F}=$ overall exchange factor, dimensionless
$h_{c}=$ convection coefficient, $\mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$
$\Sigma Q=$ total hourly heat transfer to the cold surface, Btu/hr
$T_{G}=$ temperature of flue gas leaving the radiant section, ${ }^{\circ} \mathrm{R}$
$T_{s}=$ tube surface temperature, ${ }^{\circ} \mathrm{R}$
$\alpha=$ factor by which $A_{c p}$ must be reduced to obtain effective cold surface, dimensionless
The convection term can be simplified by assuming that $h_{\mathrm{c}}=2.0$ and that for this term alone A is approximately $2.0 \alpha A_{c p}$. Since it is desired to divide all terms by \mathcal{F}, a value of 0.57 will be used in its stead when the convection term is considered. Then

$$
\begin{equation*}
\frac{\Sigma Q}{\alpha A_{c p} \mathcal{F}^{2}}=0.173\left[\left(\frac{T_{G}}{100}\right)^{4}-\left(\frac{T_{s}}{100}\right)^{4}\right]+7\left(T_{G}-T_{s}\right) \tag{19.10}
\end{equation*}
$$

This relationship is shown graphically in Fig. 19.14. In addition to the above flux equation, a heat balance is necessary for the solution of the heat-absorption problem. The heat balance is as follows:

$$
\begin{equation*}
Q=Q_{F}+Q_{A}+Q_{R}+Q_{S}-Q_{W}-Q_{G} \tag{19.11}
\end{equation*}
$$

where $Q=$ total radiant-section duty; $\mathrm{Btu} / \mathrm{hr}$
$Q_{A}=$ sensible heat above $60^{\circ} \mathrm{F}$ in combustion air, $\mathrm{Btu} / \mathrm{hr}$
$Q_{F}=$ heat liberated by fuel, Btu/hr (lower heating value)
$Q_{\sigma}=$ heat leaving the furnace radiant sections in the flue gases, Btu/hr
$Q_{R}=$ sensible heat above $60^{\circ} \mathrm{F}$ in recirculated flue gases, Btu/hr
$Q_{S}=$ sensible heat above $60^{\circ} \mathrm{F}$ in steam used for oil atomization, $\mathrm{Btu} / \mathrm{hr}$
$Q_{\mathrm{Fr}}=$ heat loss through furnace walls, Btu/hr (1 to 10 per cent of Q_{F}, depending upon the size, temperature, and construction of the furnace, 2 per cent is a good design figure)
As a further simplification Q_{s} can be neglected, and the net heat liberation is

$$
\begin{equation*}
Q_{F}+Q_{A}+Q_{R}-Q_{V}=Q_{\mathrm{not}} \tag{19.12}
\end{equation*}
$$

The heat leaving in the flue gases at the exit-gas temperature T_{G} is

$$
Q_{G}=W\left(I+G^{\prime}\right) C_{\mathrm{av}}\left(T_{G}-520\right)
$$

$T_{6}=$ Flue gas temperature over bridgewall, deg.fahr:

Fic. 19.14. Radiant-section heat flux.
where $W=$ fuel rate, $\mathrm{lb} / \mathrm{hr}$

$$
\begin{aligned}
\left(1+G^{\prime}\right)= & \text { ratio of flue gas leaving the radiant section to fuel fired, } \mathrm{lb} / \mathrm{lb} \\
G^{\prime}= & \text { ratio of air to fuel, } \mathrm{lb} / \mathrm{lb} \\
C_{\mathrm{av}}= & \text { average specific heat of flue gases between } T_{G}{ }^{\circ} \mathrm{R} \text { and } 520^{\circ} \mathrm{R}, \\
& \text { Btu/(lb) }\left({ }^{\circ} \mathrm{F}\right)
\end{aligned}
$$

In applying the equations, the equivalent cold plane surface is evaluated with the aid of Fig. 19.11. As mentioned earlier, $A_{c p}$ is the surface of a

Fig. 19.15. Overall heat-exchange factor in radiant sections.
plane replacing the tube row and corresponds to the product of the number of tubes times their exposed length in feet times center-to-center spacing in feet. When the convection section is so located that it receives the benefit of direct radiation from the radiant section, it should be included in the equivalent cold plane surface. For a nest of tubes more than two rows deep, α may be taken as 1.0 and $\alpha A_{c p}$ is merely the product of the length times width of the opening of the convection bank.

When the convection bank is isolated from the radiant section, it is not included in the radiant-section calculations.

The gas emissivity is calculated from the mean beam length, partial pressures of the radiating constituents, tube temperature, and gas temperature (which usually has to be assumed in the first trial calculation). The overall exchange factor \mathcal{F} is shown in Fig. 19.15 as a function of gas ("flame") emissivity and the ratio of effective refractory surface A_{R}, where

$$
\begin{equation*}
A_{R}=A_{T}-\alpha A_{c p} \tag{19.13}
\end{equation*}
$$

where $A_{R}=$ effective refractory surface, ft^{2}
$A_{T}=$ total area of furnace surfaces, ft^{2}
$\alpha A_{\text {cp }}=$ equivalent cold plane surface, ft^{2}
The exit-gas temperature is obtained by a trial-and-error calculation until it satisfies both the heat-transfer and the heat-balance equation. To lessen the amount of calculation required in applying the method of Lobo and Evans, Fig. 19.14 gives the value of $\Sigma Q / \alpha A_{c p} \mathfrak{F}$ for various combinations of T_{G} and T_{s}.

It is recommended that, in furnaces where the path of the gas is more than 1.5 times the minimum dimension of the cross-sectional area for gas flow, a stepwise calculation be employed; typical of such a case would be a vertically fired, vertical cylindrical furnace whose height is twice its diameter. The top and bottom halves of the furnace would be calculated as separate furnaces except that the flue gases from the lower half would provide the heat liberation to the second.

In practice the total furnace duty is calculated first, including the sensible heat, heat of vaporization, and any heat of reaction. The efficiency of the furnace e is given by

$$
\begin{equation*}
e=\frac{\Sigma Q}{Q_{F}} \times 100 \quad \% \tag{19.14}
\end{equation*}
$$

It is determined from a balance between fuel costs and the first cost of the furnace (plus air preheater if one is used). The quantity of excess air to be used depends upon the type of fuel, type of burners, type of draft, and the temperature of the combustion air. In practice, however, 40 per cent excess air is used for designing natural or induced-draft furnaces, 25 per cent excess air for forced-draft furnaces.

The use of air preheat is dictated by the temperature of the coolest material to be heated, the cost of fuel, and the cost of furnace surface and to some degree by conventional practices. Air preheaters are easily justified by the savings in fuel cost, although they complicate the operation of the furnace and require additional maintenance.

When the heat liberation has been determined, the design of a petroleum furnace is then established on the basis of the permissible average radiant-section rate as defined in Table 19.2 appearing at the conclusion of the chapter. The tube diameter is dependent upon consideration of the film coefficient, pressure drop, and radiant rate. The spacing of the tubes depends upon the characteristics of the headers or return bends. The closest possible spacing is used except when special requirements arise such as the need for an improved uniformity of flux on the tube circumference.

The most economical furnace design uses the maximum tube length which is compatible with the furnace cross section and which provides adequate clearance between the tubes and burners. In some refinery units tubes 60 ft long are used, although 40 ft is the more usual limit. In boilers tube lengths may even be longer.

Example 19.1. Calculation of a Furnace by the Method of Lobo and Evans. A furnace is to be designed for a total duty of $50,000,000 \mathrm{Btu} / \mathrm{hr}$. The overall efficiency is to be 75 per cent (lower heating value basis). Oil fuel with a lower heating value of $17,130 \mathrm{Btu} / \mathrm{lb}$ is to be fired with 25 per cent excess air (corresponding to 17.44 lb air $/ \mathrm{lb}$ fuel), and the air preheated to $400^{\circ} \mathrm{F}$. Steam for atomizing the fuel is $0.3 \mathrm{lb} / \mathrm{lb}$ of oil. The furnace tubes are to be 5 in . OD on $8 \frac{1}{2}$-in. centers, in a single-row arrangement. The exposed tube length is to be $38^{\prime} 6^{\prime \prime}$. The average tube temperature in the radiant section is estimated to be $800^{\circ} \mathrm{F}$.
Design the radiant section of a furnace having a radiant-section average flux of $12,000 \mathrm{Btu} /(\mathrm{hr}) \mathrm{ft}^{2}$.
Solution. As in all trial-and-error solutions, a starting point must be assumed and checked. With experience, the first choice may come very close to meeting the desired conditions. For orientation purposes, one can make an estimate of the number of tubes required in the radiant section by assuming that

$$
\frac{Q}{\alpha A_{\mathrm{cp}}}=2 \times \text { average flux }=24,000 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)
$$

If the overall exchange factor is $0.57, \Sigma Q / \alpha A_{c p} \mathcal{F}=24,000 / 0.57=42,000$; from Fig. 19.14 it can be seen that with a tube temperature of $800^{\circ} \mathrm{F}$, an exit-gas temperature of $1730^{\circ} \mathrm{F}$ will be required to effect such a flux. The duty in cooling the furnace gases to $1730^{\circ} \mathrm{F}$ can be calculated, and from it the required number of tubes determined for the first approximation of the design.

```
Heat liberated by the fuel, \(Q_{F}=\frac{50,000,000}{0.75}=66,670,000 \mathrm{Btu} / \mathrm{hr}\)
Fuel quantity \(=\frac{66,670,000}{17,130}=3890 \mathrm{lb} / \mathrm{hr}\)
Air required \(=3890 \times 17.44=67,900 \mathrm{lb} / \mathrm{hr}\)
Steam for atomizing \(=3890 \times 0.3=1170 \mathrm{lb} / \mathrm{hr}\)
\(Q_{F}=66,670,000 \mathrm{Btu} / \mathrm{hr}\)
\(Q_{A}=67,900 \times 82 \mathrm{Btu} / \mathrm{lb}\) at \(400^{\circ} \mathrm{F}=5,560,000 \mathrm{Btu} / \mathrm{hr}\) (above \(60^{\circ} \mathrm{F}\) )
\(Q_{s}=\) negligible \(\left(1170 \times 0.5 \times 190^{\circ} \mathrm{F}\right) \mathrm{Btu} / \mathrm{hr}\)
\(Q_{F}+Q_{A} \quad=72,230,000 \mathrm{Btu} / \mathrm{hr}\)
\(Q_{T F}=2 \%\) of \(Q_{F} \quad=1,330,000 \mathrm{Btu} / \mathrm{hr}\)
\(Q_{\text {net }}=Q_{F}+Q_{A}-Q_{T T}=70,900,000 \mathrm{Btu} / \mathrm{hr}\)
```

Heat out in gases at $1730^{\circ} \mathrm{F}, 25$ per cent excess air, $476 \mathrm{Btu} / \mathrm{lb}$ of flue gas,

$$
Q_{G}=476(3890+67,900+1170)=34,500,000
$$

$Q=Q_{\text {net }}-Q_{G}=70,900,000-34,500,000=36,400,000 \mathrm{Btu} / \mathrm{hr}$ (first estimate)
The surface/tube, $A=38.5 \mathrm{ft} \times \pi \times 5 / 12=50.4 \mathrm{ft}^{2}$
The estimated number of tubes N_{t} is $N_{t}=\frac{36,400,000}{12,000 \times 50.4}=60.1$
Try 60 tubes.
The layout of the cross section of the furnace may be as shown in Fig. 19.16.

Tixg. 19.16. Furnace of Examples 19.1 and 19.2.
Equivalent cold plane surface $A_{c p}$:
Center-to-center distance $=8 \frac{1}{2} \mathrm{in}$.
$A_{e p}$ per tube $=\frac{81 / 2}{12}$ in. $\times 38.5=25.7 \mathrm{ft}^{2}$
Total α to a single row, refractory backed, from Fig. 19.11:

$$
\begin{align*}
& \text { Ratio of center-to-center } / O D=81 / 2 / 5=1.7 \quad \alpha=0.937 \tag{Fig.19.11}\\
& \alpha A_{c p} / \text { tube }=25.7 \times 0.937=25 \mathrm{ft}^{2} \\
& \alpha A_{c p}=60 \times 25=1500 \mathrm{ft}^{2}
\end{align*}
$$

Refractory surface:

$$
\begin{aligned}
& \text { End walls }=2 \times 20.46 \times 14.92=611 \mathrm{ft}^{2} \\
& \text { Side wall }= 14.92 \times 38.5=575 \mathrm{ft}^{2} \\
& \text { Bridge wall }= 9.79 \times 38.5=377 \mathrm{ft}^{2} \\
& \text { Floor and arch }=2 \times 20.46 \times 38.5=1575 \mathrm{ft}^{2} \\
& A_{T}=\overline{3138} \mathrm{ft}^{2} \\
& A_{R}=A_{r}-\alpha A_{c p}=1638 \quad \frac{A_{R}}{\alpha A_{c p}}=\frac{1638}{1509}=1.09
\end{aligned}
$$

Mean beam length:
Dimension ratio $=38.5 \times 20.46 \times 14.92=3: 2: 1$ (approximately)
$L=2 / 3 \sqrt[3]{\text { volume }}=2 / 3 \sqrt[3]{38.5 \times 20.46 \times 14.92}$
$L=15 \mathrm{ft}$
Gas emissivity: From the analysis of the fuel, the steam quantity, and the assumption that the humidity of the air is 50 per cent of saturation at $60^{\circ} \mathrm{F}$, the partial pressures of CO_{2} and $\mathrm{H}_{2} \mathrm{O}$ in the combustion gases with 25 per cent excess air are
$p_{\mathrm{CO}_{2}}=0.1084 \quad p_{\mathrm{H}_{2} \mathrm{O}}=0.1248 \quad p_{\mathrm{CO}_{2}} L=0.1084 \times 15=1.63 \quad p_{\mathrm{H}_{3} \mathrm{O}} L=1.87$
From Fig. 19.12 and 19.13, the emissivity of the gas can be evaluated.

$$
\epsilon_{G}=\left[\frac{\left(q_{\mathrm{CO}_{2}} \text { at } P_{\mathrm{CO}_{2} L} L+q_{\mathrm{H}_{2} \mathrm{O}} \text { at } P_{\mathrm{H}_{2} \mathrm{O}} L\right)_{T_{G}}-\left(q_{\mathrm{CO}_{2}} \text { at } P_{\mathrm{CO}_{2}} L+q_{\mathrm{H}_{2} \mathrm{O}} \text { at } p_{\mathrm{H}_{2} \mathrm{O}} L\right)_{\mathrm{T}_{\mathrm{T}}}}{\left(q_{b}\right)_{G G}-\left(q_{b}\right)_{T s}}\right] \frac{100-\%}{100}
$$

$\%$ correction at $\frac{p_{\mathrm{CO}_{2}}}{p_{\mathrm{CO}}^{4}}+p_{\mathrm{H} 2 \mathrm{O}}=\frac{0.1084}{0.2332}=0.465$
$p_{\mathrm{CO}_{2}} L+p_{\mathrm{H}_{2} \mathrm{O}} L=3.56$
$\%$ correction $=8 \%$ (estimated)
$\epsilon \epsilon=\left[\frac{(6500+14,500)-(650+1950)}{39,000-4400}\right]\left(\frac{100-8.0}{100}\right)$
$\epsilon_{G}=0.489$
Overall exchange factor \mathfrak{F} :

$$
\begin{aligned}
& \mathcal{F} \text { at } \epsilon=0.496 \text { and } \frac{A_{R}}{A_{c p}}=1.09 . \\
& \mathcal{F}=0.635 \text { from Fig. } 19.15
\end{aligned}
$$

Check of gas temperature required to effect assumed duty on assumed surface:
$\Sigma Q=36,400,000 \mathrm{Btu} / \mathrm{hr}$ assumed $\quad \alpha A_{c p}=1500 \mathrm{ft}^{2}$ assumed
$\frac{\Sigma Q}{\alpha A_{\text {ep }} F}=\frac{36,400,000}{1500 \times 0.635}=38,200$
T_{a} required (at $T_{s}=800^{\circ}$) $=1670^{\circ} \mathrm{F}$ compared with $1730^{\circ} \mathrm{F}$ assumed in heat balance)

The trial indicates that more duty than $36,400,000 \mathrm{Btu} / \mathrm{hr}$ will be performed, since this duty cools the flue gases to only $1730^{\circ} \mathrm{F}$, while the flux corresponding to this duty could be effected by a gas temperature of $1670^{\circ} \mathrm{F}$. Actually this is a fairly close check, and the number of tubes in the furnace need not be changed, since the final balance will be struck at about $1700^{\circ} \mathrm{F}$ for the assumed furnace. The duty would be $37,050,000 \mathrm{Btu} / \mathrm{hr}$ at this exit temperature, and assuming that \mathfrak{F} does not change (it will go up slightly) $\Sigma Q / \alpha A_{c p} \mathcal{F}=39,000$, requiring a "driving" temperature of $1695^{\circ} \mathrm{F}$, which is a close enough approximation. The circumferential flux will be $37,050,000 / 60 \times 50.4=12,280 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)$ as compared with the 12,000 flux specified. Such a difference is negligible.

In general, if the gas temperature required to effect the duty used in the heat balance falls below the temperature shown by the heat balance, the number of tubes assumed is too few or the actual flux will be higher than the assumed rate

Method of Wilson, Lobo, and Hottel. The limitations of this method have been pointed out. In the original publication several equations were presented, but the most useful is the following:

$$
\begin{equation*}
\frac{Q}{Q_{F}}=\frac{1}{1+\left(G^{\prime} / 4200\right) \sqrt{Q_{F}^{\prime} / \alpha A_{c p}}} \tag{19.15}
\end{equation*}
$$

where again $G^{\prime}=1 \mathrm{~b}$ air/lb fuel and the other nomenclature is similar to that given for the Lobo and Evans method. While the cold surface is properly evaluated so that the equation is applicable to furnaces having double as well as single rows of tubes, the effect of refractory surfaces is neglected. The effect of excess air on the radiant-section efficiency is measured only by G^{\prime}, the air-fuel ratio, and consequently the equation does not hold for fuels having heating values which are either very low or very high. The equation is recommended for rapid calculation (within its limitations) and for predicting the effects of changes in furnace operating conditions.

Example 19.2. Calculation of a Furnace by the Method of Wilson, Lobo, and Hottel. The furnace of Example 19.1 is to be fired with cracked gas fuel at 40 per cent excess air, using no air preheat. If the capacity of the burners limits the heat liberation to $50,000,000 \mathrm{Btu} / \mathrm{hr}$, what will be the radiant-section duty? (The air-fuel ratio is 22.36 lb air/lb fuel.)

Solution:

$$
\begin{align*}
Q & =50,000,000 \times \frac{1}{1+(22.36 / 4200) \sqrt{50,000,000 / 1500}} \tag{19.15}\\
& =25,300,000 \mathrm{Btu} / \mathrm{hr}
\end{align*}
$$

The radiant-section average rate will be $8350 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{it}^{2}\right)$, and the exit-flue-gas temperature $1540^{\circ} \mathrm{F}$ by heat balance.

Wohlenberg Simplified Method. While this method is an empirical method, its derivation is of interest. Wohlenberg ${ }^{1}$ developed a complex theoretical method for evaluating the heat absorption in boiler furnaces which took into account the many variables already discussed and in addition those factors unique to coal firing. The simplified method, however, relates the radiant-section absorption efficiency of any boiler furnace to a base or standard design by means of factors which correct for the differences in all of the characteristics between the two.

The base design is as follows:
Furnace volume $=8000 \mathrm{ft}^{3}$
Release rate $=25,000 \mathrm{Btu} / \mathrm{ft}^{3}$ for pulverized coal firing
$=40,000 \mathrm{Btu} / \mathrm{ft}^{3}$ for stoker firing
${ }^{1}$ Wohlenberg, W. J., and D. G. Morrow, Trans. ASME, 47, 177 (1925). Wohlenberg, W. J., and E. L. Lindseth, Trans. ASME, 48, 849 (1926).

Excess air $=20$ per cent for pulverized coal firing
$=40$ per cent for stoker firing
Coal $=$ Illinois bituminous
Fineness $=75$ per cent through 200 mesh
Fraction cold = unity
The fraction cold is defined as the effective exposed radiant-heating surface in the furnace divided by the total exposed furnace surface (exclusive of the grate in stoker firing). The evaluation of the effective heating surface is by the method of Mullikin discussed previously. The absorption efficiency of the base furnace is 0.452 for pulverized fuel firing and 0.311 for stoker firing; the absorption efficiency e of any furnace is the ratio of heat absorbed to the heat liberated by the fuel (higher heating value) plus the heat in the combustion air.

Wohlenberg's equation is

$$
\begin{equation*}
e=F K_{1} K_{2} K_{3} K_{4} K_{5} K_{6} K_{7} K_{8}+C^{\prime} \tag{19.16}
\end{equation*}
$$

where the various factors have the following significance: F is chosen according to type of firing, pulverized coal or stoker, and the influences of the other factors are
$K_{1}=$ furnace volume
$K_{2}=$ heat liberation rate, Btu/ft ${ }^{3}$
$K_{3}=$ fraction cold
$K_{4}=$ excess air
$K_{5}=$ heating value of coal (HHV)
$K_{6}=$ pulverizing fineness
$K_{7}=$ furnace volume beyond K_{1}
$K_{8}=$ heat liberation rate beyond K_{2}
$C^{\prime}=$ air preheat
The equation does not apply to gas- or oil-fired boilers, although the methods proposed by Mullikin or Lobo and Evans may be used. The application of the simplified equation is straightforward and gives values which are in good agreement with the more complex method of Wohlenberg. It has been mentioned several times that the ash or slag on the boiler surfaces presents problems beyond those of ordinary heat-transfer calculations. Accordingly a basis of evaluating the influence of ash or slag under operating conditions must be established before these methods can be applied to rational design.

Orrok-Hudson Equation. This is very similar in form to the Wilson, Lobo, and Hottel equation, and as already pointed out, its greatest use is for comparing furnace performance under various operating conditions. The fractional heat absorption is

$$
\begin{equation*}
\frac{Q}{Q_{F}}=\frac{1}{1+G^{\prime} \sqrt{C_{R} / 27}} \tag{19.17}
\end{equation*}
$$

where G^{\prime}, Q, and Q_{F} are defined as before and C_{R} is the pounds of fuel per hour per square foot of projected radiant-heating surface. For one tube, $C_{R}=$ (OD in. $/ 12$) \times exposed length.

Example 19.3. Calculation of Performance by the Orrok-Hudson Equation. What per cent increase in the radiant-section heat absorption may be expected in a boiler when the firing rate is increased 50 per cent?

The initial ratio of absorption to liberation is 0.38 , and the excess air is expected to incresse from 25 to 40 per cent as a result of the increased firing rate.

Solution:

$$
\begin{gathered}
\frac{Q_{P_{2}}}{Q_{P_{1}}}=1.50 \quad \frac{C_{R_{2}}}{C_{R_{1}}}=1.5 \\
\frac{G_{2}^{\prime}}{G_{1}^{\prime}}=\frac{140}{125}
\end{gathered}
$$

Q_{s} / Q_{1} is to be determined.

$$
\begin{aligned}
& \frac{Q_{1}}{Q_{F_{1}}}=\frac{1}{1+G^{\prime} \sqrt{C_{R} / 27}}=0.38 \\
& 1=0.38+0.38 G_{1}^{\prime} \sqrt{C_{R 1} / 27} \\
& G_{1}^{\prime} \sqrt{\frac{C_{R_{1}}}{27}}=\frac{0.62}{0.38}=1.63 \\
& G_{2}^{\prime} \sqrt{\frac{C_{R_{2}}}{27}}=\frac{140}{125} G_{3}^{\prime} \sqrt{\frac{1.5 C_{R_{1}}}{27}}=1.12 \times 1.223 G_{1}^{\prime} \sqrt{\frac{C_{R_{1}}}{27}} \\
& G_{2}^{\prime} \sqrt{\frac{C_{R_{2}}}{27}}=1.37 G_{2}^{\prime} \sqrt{\frac{C_{R_{1}}}{27}}=1.37 \times 1.63=2.23 \\
& Q_{2}=\frac{Q_{F_{2}}}{1+2.23}=0.31 Q_{F_{2}} \\
& \frac{Q_{2}}{Q_{1}}=\frac{0.31 Q_{F_{2}}}{0.38 Q_{F_{1}}}=\frac{0.31 \times 1.5 Q_{F_{1}}}{0.38 Q_{F_{1}}}=1.22
\end{aligned}
$$

Hence the radiant absorption will be increased only 22 per cent for an increase of 50 per cent in the heat liberated. In such a case the effects of the higher exit-flue-gas temperature on superbeater tubes would have to be investigated.

Miscellaneous Applications. Radiant-heat transfer is of importance in sections of a furnace other than the radiant section proper. Radiantheat transfer to the "shield" tubes (top two rows) of the convection bank of a furnace such as that shown in Fig. 19.16 may be evaluated by the method of Lobo and Evans. The procedure is the same as in the case of the calculations of the radiant section proper with the exception that the gas temperature to be used is that of the gases coming over the bridge wall. One would expect that the temperature to use would be the gas temperature after heat has been lost to the shield tubes by radiation. In this particular case, however, the mean radiating temperature is closer to that of the gases entering the cavity immediately above the shield tubes. Hence no trial and error is involved in calculating this heat
transfer, since the radiant-section exit temperature is already known. It should be noted that, since the convection-heat transfer to the shield tubes will be evaluated independently, the value of $\Sigma Q / \alpha A_{c p} \mathfrak{F}$ corresponding to the gas temperature and the shield-tube-metal temperature should be reduced by the amount $7\left(T_{G}-T_{s}\right)$.

Once the gases have actually made their entrance into the rows of tubes, they will continue to lose heat by radiation, and in spite of the rather small mean beam length this radiation may account for 5 to 30 per cent of the total heat transfer in the entire convection section. This radiation can be evaluated by the equation

$$
\begin{equation*}
Q_{R c}=0.173\left[\left(\frac{T_{G}}{100}\right)^{4}-\left(\frac{T_{S}}{100}\right)^{4}\right] A \frac{1}{\left(1 / \epsilon_{G}\right)+\left(1 / \epsilon_{S}\right)-1} \tag{19.18}
\end{equation*}
$$

where $Q_{R C}=$ radiant-heat flow at a point in the convection section in Btu per hour. Other terms were defined in the Lobo and Evans method. It should be noted that no correction for reradiation from the refractory side walls is made. (It is more convenient instead to use the method of Monrad ${ }^{1}$ to apply a correction factor to the combined heat-transfer coefficient for convection and radiation.) With negligible loss in accuracy the last term can be rewritten

$$
\begin{equation*}
\frac{1}{\left(1 / \epsilon_{G}\right)+\left(1 / \epsilon_{s}\right)-1}=\epsilon_{G} \epsilon_{s} \tag{19:19}
\end{equation*}
$$

and the equation becomes, with further substitution,

$$
\begin{equation*}
\frac{Q_{R C}}{A}=\epsilon_{S}\left[\left(q_{C}+q_{W}\right)_{T_{G}}-\left(q_{C}+q_{W}\right)_{T_{s}}\left(\frac{100-\%}{100}\right)\right. \tag{19.20}
\end{equation*}
$$

The use of this equation is illustrated by Example 19.4. Another type of problem frequently encountered is one in which a kettle or tank is to be used for boiling a liquid and the vessel either is direct-fired or is heated by waste flue gases from another unit. It can be calculated by applying some of the principles already illustrated. Example 19.5 shows such an application.

Example 19.4. Calculation of the Equivalent Radiant Coefficient. In the convection section of a refinery furnace, tubes are 5 in . OD on $8 \frac{1}{2}$ in, centers; spaced on equilateral triangular pitch. The flue gases at the row of tubes under consideration are at $1500^{\circ} \mathrm{F}$; the tube temperature is $650^{\circ} \mathrm{F}$. The flue gases contain $10.84 \% \mathrm{CO}_{2}$ and $12.48 \% \mathrm{H}_{2} \mathrm{O}$ by volume. Calculate the radiant-heat transfer between the gas and tubes in terms of a coefficient which can be added to the convection-heat-transfer coefficient.

[^63]
Solution:

$$
\begin{aligned}
& \epsilon_{S}=0.90 \quad \text { (assumed) } \\
& L=0.4 \text { (center to center) }-0.567 \text { (OD) (from } 7 \text { in Table 19.1) } \\
& =0.4(8.5)-0.567(5)=3.400-2.835 \\
& =0.565 \mathrm{ft} \\
& p_{\mathbb{H}_{2} \mathrm{O}} L=0.1248 \times 0.565=0.0704 \mathrm{~atm}-\mathrm{ft} \\
& p_{\mathrm{CO}_{2}} L=0.1084 \times 0.565=0.0611 \mathrm{~atm}-\mathrm{ft} \\
& q_{\mathrm{H}_{2} \mathrm{O}} \text { at } T_{G}=1050 \quad q_{\mathrm{H}_{2} \mathrm{O}} \text { at } T_{S}=165 \\
& q_{\mathrm{CO}_{2}} \text { at } T_{G}=\frac{1700}{2750} \quad q_{\mathrm{CO}_{2}} \text { at } T_{s}=\frac{160}{325} \\
& \frac{Q_{R C}}{A}=0.9(2750-325) \\
& \frac{P_{\mathrm{CO}_{2}}}{P_{\mathrm{CO}_{2}}+P_{\mathrm{E}_{2} \mathrm{O}}}=\frac{0.1084}{0.1084+0.1248}=0.465 \\
& P_{\mathrm{CO}_{2}} L+P_{\mathrm{H}_{2} \mathrm{O}} L=0.1315 \\
& \% \text { correction }=2 \% \\
& \frac{Q_{R C}}{A}=0.9 \times 2425 \times 0.98=2140
\end{aligned}
$$

The equivalent radiation coefficient is, then,

$$
h_{r}=\frac{Q_{R C}}{A \Delta T}=\frac{2140}{1500-650}=2.51 \mathrm{Bta} /(\mathrm{hr})(\mathrm{ft} 2)\left({ }^{\circ} \mathrm{F}\right)
$$

which is a very appreciable part of the total coefficient. To correct the total coefficient $h_{c}+h_{\mathrm{r}}$ for radiation from the walls of the convection bank the method of Monrad mentioned previously is recommended.

Example 19.5. Calculation of a Heated Vessel. Design a simple vessel for continuously concentrating a solution whose boiling point is $480^{\circ} \mathrm{F}$. The duty required is $500,000 \mathrm{Btu} / \mathrm{hr}$. The source of heat available is $3050 \mathrm{lb} / \mathrm{hr}$ of flue gas at $1500^{\circ} \mathrm{F}$. A quantity of 48 in . OD pipe formerly used in some discarded vessels is available.

Solution. The required unit might take the shape of that shown in Fig. 19.17. Fiue gases flow parallel to the axis of the vessel in a tunnel beneath it. Although the cold surface is segregated from the refractory surface to a greater extent than in a furnace radiant section, the Lobo and Evans exchange factor can be used without affecting the accuracy of the solution nearly so much as the poor choice of a

Fig. 19.17. Simple concentrator of Example 19.5. mean gas temperature.

Since the vessel will be very long compared with the cross-sectional area of the flue-gas path, a stepwise ealculation is indicated unless the mean gas temperature can be evaluated properly. In a stepwise calculation, the heater could be broken up into seetions of varying length, each having the same duty. Inasmuch as the heat trans
fer is predominantly radiant and the cold surface is at a constant temperature, an adequate mean temperature is defined by

$$
\begin{equation*}
T_{a}=\sqrt[4]{T_{G, \text { in }}^{2} T_{G, \text { out }}^{2}} \tag{19.21}
\end{equation*}
$$

The solution is worked on this basis. Assuming that overall heat losses equal 10 per cent of the duty, the exit-fue-gas temperature is found to be $900^{\circ} \mathrm{F}$. The cold surface is assumed to have an emissivity of 0.9 and temperature of $500^{\circ} \mathrm{F}$. The flue gases contain $7.1 \% \mathrm{CO}_{2}$ and $14.3 \% \mathrm{H}_{2} \mathrm{O}$. The gas emissivity is found to be 0.259 at the hot end and 0.27 at the cold end; hence an average value of 0.265 can be used. Calculation of the gas emissivity was iliustrated in Example 19.1. The equivalent surface per foot of length obviously lies between the values corresponding to the are and the chord of the heated portion of the circumference; hence

$$
\begin{aligned}
& \frac{\alpha A_{c p}}{\mathrm{ft}}=\frac{3.5+120 / 360 \times \pi \times 4.0}{2}=3.85 \mathrm{ft}^{2} / \mathrm{ft} \\
& \frac{A_{R}}{\mathrm{ft}}=3.0+3.6+3.0=0.6 \mathrm{ft}^{2} / \mathrm{ft}
\end{aligned}
$$

Arbitrarily negleeting end walls and also the side wall refractory over $3^{\prime} 0^{\prime \prime}$ above the floor,

$$
\begin{gathered}
\frac{A_{R}}{\alpha A_{c p}}=\frac{9.6}{3.85}=2.49 \\
\mathcal{F}=0.56 \text { at } \epsilon_{G}=0.265 \quad \text { and } \quad \frac{A_{R}}{a A_{c p}}=2.49 \\
\frac{Q}{\alpha A_{c p} F}=15.300 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft} t^{2}\right) \text { at } T_{G}=1174^{\circ} \mathrm{F} \quad \text { and } \quad T_{S}=500^{\circ} \mathrm{F}
\end{gathered}
$$

However, the convection coefficient is small, $1.0 \pm B t u /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$, and $A / \alpha A_{c p}$ is not 2.0 as in the assumptions for the Lobo and Evans equation.

$$
\begin{gathered}
\frac{Q}{\alpha A_{c p} \mathfrak{F}^{(}}(i, e ., \text { radiation only })=15,300-7\left(T_{G}-T^{\prime} s\right)=10,610 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right) \\
\frac{Q}{\alpha A_{c p}}=10,610 \times 0.56=5940 \mathrm{Btu} /(\mathrm{lur})\left(\mathrm{ft}^{2}\right) \text { of } \alpha A_{c p}
\end{gathered}
$$

Convection rate basis, $\alpha A_{\text {cr }}$:

$$
\begin{aligned}
\frac{Q_{c}}{\alpha A_{c p}} & =1.0 \times(1174-500) \times \frac{4.2}{3.85}=640 \\
\frac{\Sigma Q}{\alpha A_{c p}} & =5940+640=6580 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right) \\
\alpha A_{c p} \text { required } & =\frac{500,000}{6580}=76.0 \mathrm{ft}^{2} \\
\text { Length required } & =\frac{76.0}{3.85}=19.7 \mathrm{ft}
\end{aligned}
$$

Inasmuch as the heat available is fixed in quantity and temperature level, the actual design should employ a liberal safety factor (say $25-\mathrm{ft}$ length) and provision should be made to control the heat transfer either by means of a flue-gas by-pass or by admitting tempering air at the inlet to the unit.

Some Practical Aspects of Refinery Furnaces. While heat-transfer calculations are very important in the design of refinery furnaces, some of
the other factors which enter into their design (and operation) require mention. The furnace must be designed around the burners. If the furnace is fired from the end wall so that the flames travel parallel to the tubes, the cross section of the furnace must be great enough to provide adequate clearance between the burners and the tubes. When such clearance is not provided, flames impinge on the tubes and may cause failures even when moderate pressures and temperatures are employed in the tubes.

When the burners are placed in the floor, side wall, or roof of a box-type furnace, a large number of small burners may be used and the clearances need not be so great. Since the space for locating the burners increases with the tube length, the maximum practical tube length may be used thereby decreasing the required number of return bends. Tube length is limited by the capacity of modern tube mills unless butt-welded tubes are used. The method of cleaning the tubes by turbining or the steamair decoking method may also be a factor in determining the tube length. Ordinarily the design of the convection section requiring a reasonable flue-gas velocity for a good convection coefficient determines the tube length when the burner spacing is not controlling. The distribution of flue-gas flow in the convection section becomes more difficult when long tubes are used, and for furnaces with 50 - to $60-\mathrm{ft}$ tubes at least two flue-gas take-offs from the convection section should be provided. The care and operation of the burners and allied equipment have a pronounced effect on the cost of operating and maintaining the furnace. A furnace having a duty of $100,000,000 \mathrm{Btu} / \mathrm{hr}$ will burn in the neighborhood of a quarter of a million dollars worth of fuel per year, and such a furnace will use from $5,000,000$ to $15,000,000 \mathrm{lb} /$ year of steam for atomizing oil fuel depending upon whether or not the steam-oil ratio is carefully controlled. Oil burners should function properly when atomizing with 0.3 lb of steam per pound of oil.

Most burners require a certain amount of secondary air which is admitted through the burner register. It should be pointed out that, in general, the burner register should be used to control the air-fuel ratio (per cent excess air) while the stack damper should be used to control the draft at the top of the furnace. A slight draft (0.01 to $0.05 \mathrm{in} . \mathrm{H}_{2} \mathrm{O}$) should be maintained at that point at all times, so that leakage through the furnace roof or walls is inward. Outward leakage of flue gases damages the castings and steel supporting the brickwork, warps peep doors and explosion doors, and damages the furnace severely. The furnace should be provided with a draft-gage connection in the roof to guide the operator, but in the absence of such an instrument the appearance of the roof tile may be a guide. Dark lines at the joints between the bricks
indicate an infiltration of air; bright lines indicate outward flow of flue gases.

The use of more excess air than necessary may often make it impossible to maintain the proper draft at the top of the furnace. Furthermore the higher the excess air the greater will be the fuel requirement for a given duty, and Orsat analyses of the flue gases should be made a part of the routine operation to ensure economical furnace performance. Excess oxygen in the flue gases increases the rate of oxidation of the tubes and tube supports. In some types of furnaces (depending upon the ratio of radiant- to convection-section surface) higher excess air results in a higher temperature of the flue gases entering the convection section and may cause premature failure of the tube sheets in the convection section.

The higher the radiant flux the lower the first cost of a furnace for a given duty. At average fluxes above $15,000 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)$, however, the savings diminish rapidly; and the problems of control and maintenance of the furnace increase disproportionately. The larger the furnace and the greater the ratio of refractory to cold surface, however, the lower will be the radiant-section flue-gas temperature for a given radiant flux. The average radiant flux permissible in a furnace depends upon the charge stock, extent of cracking, the heat-transfer coefficient within the tube, the ratio of $A / \alpha A_{c p}$ (which is the ratio of the rate on the face of the tube to the circumferential rate), and the distribution of fluxes along the length of the tubes and for tubes in various locations. All these details require consideration, and in Table 19.2 are presented some representative values of permissible average rates.

It should be realized that average permissible rates are rule-of-thumb affairs and that, actually, the maximum point rate on a tube or tubes is the basic factor which should be prescribed for given conditions. Accordingly, the average permissible rate may be increased when tubes are spaced farther apart than normal, when the tubes are fired from both sides, or when any other specific steps are taken to improve the rate distribution. Tubes are generally spaced from one to one and one-half tube diameters from the face of a wall to the center line of the tubes.

One diameter is preferable from a practical standpoint, since it decreases the weight of the intermediate tube supports.

In the past, air preheaters have not been used so widely on refnery furnaces as on boiler furnaces. The use of air preheat is particularly desirable when the inlet temperature of the oil to be heated is quite high. When air preheat is employed, a greater proportion of the furnace duty is done in the radiant section than when the air is not preheated if a given radiant rate is to be maintained.

In furnace test work flue-gas temperatures should be determined with a high-velocity thermocouple, preferably of the multishielded type. Tube-metal temperatures can be measured by means of an optical pyrometer or by tube-skin thermocouples. It should be noted that the optical pyrometer may indicate temperatures higher than the true skin temperature; this is particularly true when the refractory surfaces are much hotter than the tubes, in which case some of the radiation received by the pyrometer consists of reflected radiation originating at the higher temperature refractory.

PROBLEMS

19.1. Using the Orrok-Hudson equation, calculate the efficiency of a boiler radiant furnace firing 1.0 ton/hr of coal at an air/fuel ratio of 16.0 lb air/lb fuel. The circumferential area of the boiler tubes is $7000 \mathrm{ft}^{2}$.
19.2. Calculate the maximum radiant rate on the circumference of a tube in the back (second) row of a group of double-row tubes in front of a furnace wall. The average circumferential rate on a tube in the front row is $10,000 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)$. All tubes are 4 in . OD on 7 -in. centers, spaced on equilateral triangular pitch.
19.3. Using the Wilson, Lobo, and Hottel equation for a box-type heater, calculate the average circumferential heat-transfer rate in a furnace radiant section when (a) heat liberation is $142,000,000 \mathrm{Btu} / \mathrm{hr}$, excess air $=30$ per cent ($20.75 \mathrm{lb} \mathrm{air} / \mathrm{lb}$ fuel), $\alpha A_{c p}=1970 \mathrm{ft}^{2}, A=4710 \mathrm{ft}^{2}$, (b) as in ' (a) except 60 per cent excess air, (c) as in (a) except tubes (same outside dimension and C-C) are added to make $A=6000 \mathrm{ft}^{2}$, (d) as in (a) except heat liberation is $100,000,000 \mathrm{Btu} / \mathrm{hr}$.
19.4. Using the Lobo-Evans method, calculate the fuel required (pounds per hour) in a furnace, having the following characteristics if an average radiant-section rate of $12,000 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)$ of circumferential tube area is to be developed:

Dimension of combustion chamber	by 30 by 40 ft .
Tube OD.	
Tube center-to-center spacing.	10 in.
Number of tubes (arranged in single row)	
Circumferential tube surface.	$4710 \mathrm{ft}^{2}$
Total wall area $A^{\text {r }}$.	$4300 \mathrm{ft}^{2}$
Fuel oil.	Oil
Atomization medium.	0.3 lb steam $/ \mathrm{lb}$ oil
Heating value of fuel (LHV).	17,130 Btu/lb
Excess air.	25\%
Lb air/lb fuel.	17.44
Estimated tube temperature.	$1000^{\circ} \mathrm{F}$

Note. Assume the average specific heat $\left[\mathrm{Btu} /(\mathrm{lb})\left({ }^{\circ} \mathrm{F}\right)\right]$ of flue gases to be 0.28 between $60^{\circ} \mathrm{F}$ ($\mathrm{H}_{2} \mathrm{O}$ as vapor) and the exit flue-gas temperature. For water-vapor and CO_{2} concentrations in the flue gases, see Example 19.1.
19.5. Calculate the fuel requirement for a furnace in which $2000 \mathrm{lb} / \mathrm{hr}$ of aluminum chips are to be melted continuously. The chips are charged at $60^{\circ} \mathrm{F}$. The furnace is 12 by 12 ft inside cross-sectional dimensions. The height between the level of the molten aluminum and the roof is 9 ft . The emissivity of the mass of aluminum may be taken as 0.30 . Fuel oil is fired as in Prob. 19.4 with 17.44 lb air $/ \mathrm{lb}$ fuel and 0.3 lb steam/lb fuel. Assume same average specific heat for flue gas as in Problem 19.4.

Note. Use the Lobo-Evans equation, correcting from a tube emissivity of 0.9 used in the derivation of the overall exchanger factor to an emaissivity of 0.3. The value of F_{e} is found using the chart. ϵF is found by substituting 0.9 for ϵ_{S} in Eq. (19.7).

NOMENCLATURE FOR CHAPTER 19

A Heat-transfer surface for convection, ft^{2}
Acp Area of a cold plane replacing a bank of tubes, ft^{2}
$A_{R} \quad$ Area of effective refractory surfaces, ft^{2}
$A_{T} \quad$ Total area of furnace surfaces, ft^{2}
$A^{\prime} \quad$ Effective or "seen" heat-transfer area of sink or cold body, ft^{2}
$a_{\theta} \quad$ Absorptivity of gas, dimensionless
$C \quad$ Specific heat, Btu/(lb)($\left.{ }^{\circ} \mathrm{F}\right)$
$C_{\Omega} \quad \mathrm{Lb}$ fuel/(hr)(ft ${ }^{2}$ projected radiant-heating surface)
C^{\prime} Influence of air preheat, dimensionless
$e \quad$ Furnace efficiency defined by Eq. (19.14), per cent
F Factor for type of coal firing, dimensionless
F The overall exchange factor to allow for the geometry and emissivities, dimensionless
$F_{b \Delta} \quad$ Factor to allow for the geometry of a system with a black-body sink, dimensionless
Fo Conductivity factor, dimensionless
F. Slag factor, dimensionless
$F_{\epsilon} \quad$ Emissivity factor, dimensionless
$G^{\prime} \quad$ Ratio of air to fuel, $\mathrm{lb} / \mathrm{lb} ;\left(1+G^{\prime}\right)$, ratio flue gas to fuel, $\mathrm{lb} / \mathrm{lb}$
$h_{e} \quad$ Convection coefficient, $\mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$
$h_{r} \quad$ Equivalent radiation coefficient, $\mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$
$K_{1}, K_{2} \quad$ Constants
$L \quad$ Mean length of beam, ft
$N_{i} \quad$ Number of tubes
$p \quad$ Pressure, atm
$P_{T} \quad$ Tube pitch or center-to-center distance, in.
Q Radiant-heat flow, Btu/hr
$Q_{R C} \quad$ Radiant-heat flow at a point in the convection section, Btu/hr
Qs Sensible-heat flow, Btu/hr
$Q_{W} \quad$ Heat loss through furnace wall, Btu/hr
$\Sigma Q \quad$ Combined radiation and convection heat flow, Btu/hr
$q \quad$ Heat flux, Btu/(hr)($\left.\mathrm{ft}^{2}\right)$
$T s \quad$ Mean temperature of receiver, ${ }^{\circ} \mathbf{F}$
$T_{1} \quad$ Temperature of source, ${ }^{\circ} \mathrm{R}$
$T_{2} \quad$ Temperature of receiver, ${ }^{\circ} \mathbf{R}$
$W \quad$ Fuel rate, lb/hr

```
\alpha Effectiveness factor, dimensionless
\beta Angle, deg
\epsilon Emissivity, dimensionless
\epsilonF Effective emissivity of the furnace cavity, dimensionless
\sigma Stefan-Boltzmann constant, 0.173 > 10-8 Btu/(hr)(ft2)(% R
Subscripts (except as noted above)
A Air
Black body
C Carbon dioxide
F Fuel
G.Gas
R Recirculated
S Surface
W Water
```


CHAPTER 20

ADDITIONAL APPLICATIONS

Introduction. There are a number of collateral uses for heat-transfer equipment which have not appeared in any of the preceding chapters. Some of these include the commonest and least expensive forms of heattransfer surface such as coils, submerged pipes in boxes, and trombone coolers. For the most part the heat-transfer elements treated here are not very closely related to those discussed in earlier chapters, nor can their performances be calculated with equal accuracy. This is an important limitation when attempting to calculate the surface requirements for a close temperature approach. The following are treated here:

1. Jacketed, vessels
2. Coils
3. Submerged-pipe coil
4. Trombone cooler
5. Atmospheric cooler
6. Evaporative condenser
7. Bayonet
8. Falling-film exchanger
9. Granular materials in tubes
10. Electric resistance heaters

1. JACKETED VESSELS

Vessels without Agitation. Few data are available in the literature for predicting coefficients within a jacket or between a jacket and a liquid inside a vertical cylindrical vessel in which no mechanical agitation occurs. During heating, the latter rely upon free convection which has not been correlated except as given in Chap. 10. Free convection-heating coefficients can be approximated for vessels of large diameter by Eqs. (10.8) through (10.11). No consistent data are available for cooling by free convection, although the coefficients are undoubtedly lower.

Colburn ${ }^{\text {h }}$ has tabulated the results of a number of studies from which several broad generalizations can be drawn. For the transfer of heat from steam condensing in a jacket to water boiling within the vessel the clean overall coefficient is about $250 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$ for a copper vessel
${ }^{1}$ Perry, J. H., "Chemical Engineers' Handbook," 3d ed., pp. 481-482, McGraw-Hill Book Company, Inc., New York, 1950.
and 175 for a steel vessel. The difference is due to the conductivities and equivalent structural thicknesses of the two metals, respectively. The same coefficients might also be expected for boiling dilute aqueous solutions. For water-to-water heating or cooling, an overall coefficient of $100 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right){ }^{\prime}$ appears to be in order provided neither stream is refrigerated. The coefficient is perhaps between 75 and 80 for aqueous solutions whose properties do not differ greatly from those of pure water. For heating or cooling nonviscous hydrocarbons the overall coefficient should be reduced to about 50. For fluids classified as medium organics in Table 8 a more probable range of coefficients is from 10 to 20 . The jacket of a vessel may be baffled helically to assure positive circulation.

A heat-transfer coefficient selected from the groups above cannot be incorporated into the Fourier equation $Q=U A \Delta t$ except when the vessel operates under steady state. A jacketed vessel can be adapted for operation under steady-state conditions when there is a continuous influx and removal of the liquid entering it. Since a jacketed vessel is primarily a batch vessel, the temperature difference during batch heating or cooling is not constant. The coefficient must consequently be substituted into a suitable unsteady-state equation, such as Eqs. (18.5), (18.7), (18.9), or (18.11), which takes into account the time required to change the temperature of the batch while employing a temperature difference which varies with time.

Mechanically Agitated Vessels. Chilton, Drew, and Jebens ${ }^{1}$ have published an excellent correlation on both jacketed vessels and coils under batch and steady-state conditions and employing the Sieder-Tate heat-transfer factor j with a Reynolds number modified for mechanical agitation. They employed a flat paddle. Although much of the work was

Fig. 20.1. Jacketed vessel. carried out on a vessel 1 ft in diameter, checks were also obtained on vessels five times those of the experimental setup. The deviations on runs with water were the highest for the fluids tested, which included lube oils and glycerol, and were in some instances off by 17.5 per cent. Additional applications of this method have been discussed by Mack and Uhl ${ }^{2}$ along with calculations. In jacketed vessels it was found that the correlation held up to the agitator rate at which air was beaten into the liquid. For water this corresponded to an agitator rate of 200 rpm , and for other liquids the rate was higher. In Fig. 20.1 a typical jacketed-vessel
${ }^{1}$ Chilton, T. H., T. B. Drew, and R. H. Jebens, Ind. Eng. Chem., 36, 510-516 (1944).
${ }^{2}$ Mack, D. E., and V. W. Uhl, Chem. Eng., 54, No. 9, 119-125; No. 10, 115-116 (1947).
assembly is shown. It consists of a vessel and jacket with suitable means for circulating the jacket fluid and a flat two-bladed paddle agitator.

The dimensions essential to the calculation are the height of the wetted portion of the vessel z, the diameter of the vessel D_{j}, the length of the paddle L, and the height of the bottom of the paddle above the bottom of the vessel B. Studies made by White and coworkers ${ }^{1}$ indicate. that power requirements can be determined as a function of the modified Reynolds number, $R c_{i}=L^{2} N \rho / \mu$, where L is the length of the paddle in

Fig. 20.2. Heat-transfer coefficients from jackets and coils. (Chilton, Drew, and Jebens, Industrial and Engineering Chemistry.)
feet, N the number of revolutions per hour, ρ the average density, and μ the viscosity of the liquid. Chilton, Drew, and Jebens have employed the same modified Reynolds number for heat transfer. Their results are given by the consistent equation

$$
\begin{equation*}
\frac{h_{j} D_{j}}{k}=0.36\left(\frac{L^{2} N \rho}{\mu}\right)^{3 / 6}\left(\frac{c \mu}{l_{k}}\right)^{1 / 3}\left(\frac{\mu}{\mu_{w}}\right)^{0.14} \tag{20.1}
\end{equation*}
$$

Equation (20.1) is plotted as the lower line in Fig. 20.2. It is seen that to scale up from pilot to plant size the change in the coefficient is given by

$$
\begin{equation*}
\frac{h_{j 1}}{h_{j 2}}=\left(\frac{L_{1}}{L_{2}}\right)^{1 / 6}\left(\frac{N_{1}}{N_{2}}\right) \tag{20.2}
\end{equation*}
$$

1 White, A. M., E. Brenner, G. A. Phillips, and M. S. Morrison, Trans. AIChE, 30, 585 (1934).

The power requirements are given by the dimensional equation of White and coworkers.

$$
\begin{equation*}
\mathrm{hp}=1.29 \times 10^{-4} D \frac{1.1}{3} L^{2.72} N^{\prime 2.86} y^{0.3} z^{0.6} \mu^{\prime 0.14} \rho^{0.86} \tag{20.3}
\end{equation*}
$$

where $y=$ width of the agitator, ft

$$
\begin{aligned}
N^{\prime} & =\text { speed, rps } \\
\mu^{\prime} & =\text { the viscosity, lb/ft } \times \text { sec }
\end{aligned}
$$

These equations hold for paddle agitators centrally located with $L>0.3 D_{i}$ and with a height $<L / 6$. The coefficient in the jacket itself has not been determined, although it can be readily estimated for both steam and water. The use of this method for the solution of a typical problem is given below.

Example 20.1. Calculation of a Jacketed Vessel. A jacketed vessel has the following dimensions: A 12 -in. IPS pipe is jacketed by a 14 -in. IPS pipe both having dished bottoms. It is equipped with a paddle agitator 7.2 in . long and 1.2 in . high located at a distance of 1.8 in. from the bottom. The drive speed is 125 rpm . It is to be filled to a height of 10 in . with a batch of aqueous reacting liquor at $150^{\circ} \mathrm{F}$ which requires the addition of $32,600 \mathrm{Btu} / \mathrm{hr}$ to supply the eudothermic heat of reaction and maintain temperature. A dirt factor of 0.005 should be provided. At what temperature must steam be available for the jacket?

Solution. This may be regarded as a steady-state problem, since Δt is constant.

$$
L=\frac{7.2}{12}=0.6 \mathrm{ft}
$$

$$
N=125 \times 60=7500 \mathrm{rev} / \mathrm{hr}
$$

$$
\rho=62.5 \mathrm{lb} / \mathrm{ft}^{3} \text { (approximately) }
$$

$$
\begin{equation*}
\text { At } 150^{\circ} \mathrm{F}, \mu=0.44 \times 2.42=1.06 \mathrm{lb} /(\mathrm{ft})(\mathrm{hr}) \tag{Fig.14}
\end{equation*}
$$

$$
\begin{equation*}
k=0.38 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F} / \mathrm{ft}\right) \tag{Table4}
\end{equation*}
$$

$$
c=1.0 \mathrm{Btu} /(\mathrm{lb})\left({ }^{\circ} \mathrm{F}\right)
$$

$$
R e_{i}=\frac{L^{2} N_{\rho}}{\mu}=\frac{0.6^{2} \times 7500 \times 62.5}{1.06}=160,000
$$

$$
\begin{equation*}
j=1100=\frac{h_{i} D_{i}}{k}\left(\frac{c \mu}{k}\right)^{-1 / 3}\left(\frac{\mu}{\mu_{w}}\right)^{-0.14} \tag{Fig.20.2}
\end{equation*}
$$

$\left(\frac{\mu}{\mu_{n}}\right)^{0.14}$ may be regarded as 1.0 for water.
$D_{i}=\frac{12.09}{12}=1.01 \mathrm{ft}$

$$
\begin{align*}
& \left(\frac{c \mu}{k}\right)^{3 / 4}=\left(1 \times \frac{1.06}{0.38}\right)^{3 /}=1.41 \tag{Table11}\\
& h_{i}=j \frac{k}{D_{j}}\left(\frac{c \mu}{k}\right)^{3 / 6}\left(\frac{\mu}{\mu_{0}}\right)^{0.14} \\
& \quad=1100 \times \frac{0.38}{1.01} \times 1.41 \times 1.0=588 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)
\end{align*}
$$

For the steam in the jacket referred to the inside diameter of the vessel,

$$
h_{\mathrm{hi}}=1500 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)
$$

Using the inside surface as reference,
$U_{c}=\frac{h_{j} h_{o i}}{h_{i}+h_{o i}}=\frac{588 \times 1500}{588+1500}=422 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$
$R_{d}=0.005 \quad h_{d}=\frac{1}{R_{\mathrm{d}}}=\frac{1}{0.005}=200$
$\frac{1}{U_{D}}=\frac{1}{U_{C}}+R_{\text {d }}$
or
$U_{D}=\frac{U_{c} h_{d}}{U_{c}+h_{d}}=\frac{422 \times 200}{422+200}=136$
For calculation of the heat-transfer surface consider the bottom to be a flat plate or use tables giving the surface as a function of diameter for elliptical heads.

$$
A=\pi \times 1.01 \times 0.83+\frac{\pi}{4} \times 1.01^{2}=3.43 \mathrm{ft}^{2}
$$

The temperature difference is the LMTD, since both streams are isothermal.

$$
\begin{aligned}
Q & =U_{D} A \Delta t \\
\Delta t & =\frac{32,600}{136 \times 3.43}=70^{\circ} \mathrm{F}
\end{aligned}
$$

Since the reaction occurs at $150^{\circ} \mathrm{F}$, the temperature of the steam must be

$$
T_{s}=150+70=220^{\circ} \mathrm{F}
$$

Note: If a higher temperature of steam were required, the jacket wall temperature must be checked by Eq. (6.8) to assure that it is not higher than the boiling temperature of the vessel fluid. If vapor bubbles form at the inside surface, the film coefficient may be reduced by an unpredictable amount.

2. COILS

Introduction. Tube coils afford one of the cheapest means of obtaining heat-transfer surface. They are usually made by rolling lengths of copper, steel, or alloy tubing into helixes or double helical coils in which the inlet and exit are conveniently located side by side. Helical coils of either type are frequently installed in vertical cylindrical vessels with or without an agitator, although free space is provided between the coil and the vessel wall for circulation. When such coils are used with mechanical agitation, the vertical axis of the agitator usually corresponds to the vertical axis of the cylinder. Double helical coils may be installed in shells with the coil connections passing through the shell or shell cover. Such an apparatus is similar to a tubular exchanger, although limited to smaller surfaces. Another type of coil is the pancake coil, which is a spiral rolled in a single plane so as to lie horizontally near the bottom of a vessel to transfer heat by free convection. Examples of the single helix and pancake are shown in Fig. 20.3. The rolling of coils, particularly
with diameters above 1 in ., requires a special winding technique to prevent the tube from flattening into an elliptical cross section, since distortion reduces the flow area.

Tube-side Coefficients. Because of the increased turbulence it is to be expected that the tube-side coefficients for a coiled tube will be greater for a given weight flow than that for a straight tube. For a double pipe helical water-to-water exchanger Richter ${ }^{1}$ obtained overall coefficients which are about 20 per cent greater than those computed for straight pipes using similar flow velocities. Jeschke ${ }^{2}$ obtained data on the cooling of air in $11 / 4-\mathrm{in}$. steel coiled tubing. For ordinary use McAdams ${ }^{3}$ suggests that straight tube data such as Eqs. (6.1) and (6.2) or Fig. 24 can be used when the value of h so obtained is multiplied by $1+3.5\left(D / D_{H}\right)$, where D is the inside diameter of the tube in feet and D_{H} is the diameter of the helix in feet. McAdams also suggests that in the absence of data on specific liquids the same correction can be applied to them. Precise corrections are not important, since in most instances it is customary to use either cold water or steam in the tube, neither of which is controlling. For water flowing in the tubes it is suggested that the uncorrected coefficients be

Fig. 20.3. Types of tube coils. obtained from Fig. 25.

Outside Coefficients to Fluids without Mechanical Agitation. There is a dearth of data in the literature on the transfer of heat to helical coils by free convection. Colburn ${ }^{4}$ has prepared a table of the available overall coefficients. The vertical helical coil is poorly adapted for free-convection heating, since the same liquid rises from the lowest to the highest turns successively, thereby reducing the effectiveness of the upper turns. Coefficients for pancake coils can be approximated from Eq. (10.7) or (10.11). To date, however, no standard method has appeared for calculating film coefficients for the outside of a single or double helical shell-and-coil type of exchanger. When employed for cooling fluids in vessels the effect of free convection is small.

[^64]Outside Coefficients to Fluids with Mechanical Agitation. Chilton, Drew, and Jebens ${ }^{1}$ also obtained a correlation for heat transfer to fluids in vessels with mechanical agitation heated or cooled by submerged tube coils as shown in Fig. 20.4. Their equation for the coil is similar to that for the jacketed vessel with the same deviation and is given by

$$
\begin{equation*}
\frac{h_{c} D_{j}}{l_{c}}=0.87\left(\frac{L^{2} N \rho}{\mu}\right)^{3 / 3}\left(\frac{c \mu}{k}\right)^{3 / 3}\left(\frac{\mu}{\mu_{v c}}\right)^{0.14} \tag{20.4}
\end{equation*}
$$

Equation (20.4) is represented by the upper line in Fig. 20.2. Its use is also similar. As with jacketed vessels, caution is again directed to the fact that for batch applications the value of h_{c} cannot be used with the Fourier equation. Instead, an appropriate equation must again be selected from Chap. 18. However, if the vessel is operated with continu-

Fra. 20.4. Tube coul in a vessel. ous feed and continuous overflow, the value of h_{c} and U_{D} obtained from Eq. (20.4) can be substituted into the Fourier equation. If possible, the dirt factor should be made the limiting resistance.

Outside Coefficients Using Vertical Pipes. One of the disadvantages resulting from the use of a paddleagitator and helical-coil arrangement is its low mixing efficiency. For good mixing and correspondingly higher transfer coefficients the agitator must impart vertical as well as horizontal flow lines. When using an agitator of the paddle or vertical-blade turbine types and radial tube banks with tubes arranged vertically in the vessel, the tubes act as baffles. Rushton, Lichtmann, and Mahony ${ }^{2}$ investigated this type of arrangement employing a 4 - ft tank and a liquid level 4 ft high. Four banks of four 1-in. IPS vertical pipes were arranged at right angles about both a $16-\mathrm{in}$. six-blade turbine and a $12-\mathrm{in}$. four-blade turbine. The maximum coefficients were obtained when the mixing turbine was located at a height 2 ft above the bottom. The heat-transfer coefficients have been reported for water as functions of the Reynolds number by the following dimensional equations:
For the 16 -in. six-blade turbine:

$$
\begin{align*}
& \text { Heating: } h_{c}=0.00285 \frac{L^{2} N \rho}{\mu} \tag{20.5a}\\
& \text { Cooling: } h_{c}=0.00265 \frac{L^{2} N \rho}{\mu} \tag{20.5b}
\end{align*}
$$

${ }^{1}$ Chilton, T. H., T. B. Drew, and R. H. Jebens, loc. cit.
${ }^{2}$ Rushton, J. H., R. S. Lichtmann, and L. H. Mahony, Ind. Eng. Chem., 40, 10821087 (1948).

For the 12 -in. four-blade turbine:

$$
\begin{align*}
& \text { Heating: } h_{c}=0.00235\left(\frac{L^{2} N \rho}{\mu}\right)^{0.7} \tag{20.6a}\\
& \text { Cooling: } h_{c}=0.00220\left(\frac{L^{2} N \rho}{\mu}\right)^{0.7} \tag{20.6b}
\end{align*}
$$

where L is the diameter of the turbine.
Example 20.2. Calculation of a Tube Coil. The thermal conditions of Example 20.1 will be used. $32,600 \mathrm{Btu} / \mathrm{hr}$ will be introduced into an isothermal liquid at $150^{\circ} \mathrm{F}$ using steam at $220^{\circ} \mathrm{F}$. The coils will consist of turns of $1 / 2 \mathrm{in}$. OD copper tubing with a mean coil diameter of 9.6 in . How many turns are required?

Solution:

$$
\begin{aligned}
L & =0.6 \mathrm{ft} \quad N=7500 \mathrm{rev} / \mathrm{hr} \quad \rho=62.5 \mathrm{ft}^{3} / \mathrm{lb} \quad \mu=1.06 \mathrm{lb} /(\mathrm{ft})(\mathrm{hr}) \\
\mathrm{k}) & =0.38 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F} / \mathrm{ft}\right) \quad c=1.0 \mathrm{Btu} /(\mathrm{lb})\left({ }^{\circ} \mathrm{F}\right) \\
R e_{j} & =\frac{L^{2} N p}{\mu}=160,000 \\
j & =1700 \text { (upper line, Fig. 20.2) } \\
D_{i} & =1.01 \mathrm{ft} \quad\left(\frac{c \mu}{k}\right)^{1 / 6}=1.41, \quad\left(\frac{\mu}{\mu_{w}}\right)^{0.14}=1.0 \text { for water } \\
h_{a} & =j \frac{k}{D}\left(\frac{c \mu}{k}\right)^{-1 / 3}\left(\frac{\mu}{\mu_{w}}\right)^{-0.14} \\
& =1700 \times \frac{0.38}{1.01} \times 1.41=900 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)
\end{aligned}
$$

For steam,

$$
\begin{aligned}
& h_{o i}=1500 \\
& U_{C}=\frac{h_{c} h_{o i}}{h_{c}+h_{o i}}=\frac{900 \times 1500}{900+1500}=562 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right) \\
& R_{d}=0.005 \quad h_{d}=\frac{1}{0.005}=200 \\
& U_{D}=\frac{U_{c} h_{d}}{U_{\mathrm{c}}+h_{\mathrm{d}}}=\frac{562 \times 200}{562+200}=147.5 \\
& A=\frac{Q}{U_{D} \Delta t}=\frac{32,600}{147.5 \times(220-150)}=3.16 \mathrm{ft}^{2}
\end{aligned}
$$

External surface $/ \mathrm{lin} \mathrm{ft}=0.1309 \mathrm{ft}^{2} / \mathrm{ft}$
(Table 30)
Per turn $=\pi \times 0.8 \times 0.1309=0.328 \mathrm{ft}^{2}$
Turns $=\frac{3.16}{0.328}=9.6$

3. SUBMERGED-PIPE COIL

Introduction. This is one of the simplest and cheapest methods of obtaining both cooling and condensing surface. A series of pipes are connected by standard fittings and are submerged in a concrete or wood trough with water circulating about the pipes as shown in Fig. 20.5. Coolers of this type are of considerable value when the hot fluid is corrosive or erosive such as when carrying suspended abrasive particles. The calculations of the trough side are naturally only approximate, but
since water flows in the trough, it is not the limiting resistance except when the coil is employed to condense steam.

Temperature Difference in the Submerged-pipe Coil Cooler. Since the flow of water outside the coil is mostly along the axes of the tubes, the true temperature difference depends upon the arrangement of the tube passes. The trough is usually arranged for one pass. If the pipes are connected by a header at each end with a single pass so that the pipe fluid is in counterflow with the water, the true temperature difference is given by the LMTD. If the pipes are connected by return elbows in a multipass arrangement, the flow pattern may be treated as parallel flowcounterflow, with the 1-2 exchanger correction applying provided the trough liquid is reasonably mixed at every point along the length of the pipes. For crossflow arrangements a corresponding correction can

Fig. 20.5. Submerged-pipe coil.
be obtained from Fig. 16.17 or 20.76 in the event that any of these flow patterns apply. Coefficients for the pipe side can be obtained from Fig. 24.

Trough Heat-transfer Coefficients. Trough heat-transfer coefficients are usually difficult to evaluate. There are no conventional arrangements and few published data for this type of equipment. In installations with little or no baffling, a large portion of the cooling water by-passes the surface between the coil and the trough enclosure. Owing to the low water velocities usually encountered, pipe coils tend to foul at a rapid rate because of the growth of algae slime and other scales. The use of large fouling factors is requisite not only from the standpoint of dirt but as a means of providing additional design safety. Fouling factors of less than 0.01 should be avoided, in which case the maximum value of the overall design coefficient will be less than 100 .

Ordinarily there is considerable free space in the cross section of the trough, so that the actual linear velocity of the water over the coil may be extremely smail. At the extreme of low velocities the trough-side
coefficient will approach the free convection coefficient from a pipe to water. To estimate the minimum possible coefficient Fig. 10.4 can be used. However, if there is any sort of distribution of the water, there need be no hesitancy in using some multiple of the values obtained from Fig. 10.4 .

Slurries and Suspensions. Pipe coils are becoming increasingly common in modern catalytic processes. The catalyst is often a finely divided dust which forms a slurry or a suspension with the carrying liquid. Because of the possibility that the solid will settle, slurries flow with high velocities to maintain turbulence, and the possibility of solids being thrown out of the liquid at elbows can be lessened by using streamline fittings. Many slurries are extremely erosive, the solids having an abrasive action on the metal, and in this respect the pipe coil is ideally suited, since it is possible to use extra heavy or double extra heavy steel pipe in assembling the coil. If the continuous erosion causes serious contamination to the product or poisons the catalyst, it is possible to resort to harder alloy pipes fabricated to IPS dimensions.

Very often data are available separately on the carrying liquid and the solid and not on the combined slurry dispersion. With a slurry it is fairly common to consider the controlling film coefficient to be that which exists between the liquid and the tube wall. The transfer of heat from the liquid to the catalyst particles is not considered to offer an appreciable resistance. The film coefficient can consequently be calculated for the combined heat load in the conventional manner using Eq. (6.2) or Fig. 24 and based upon the properties of the liquid alone except for the viscosity. The presence of the solid changes the viscosity of the liquid to an unpredictable extent, since at low concentrations some fine dusts tend to adsorb large quantities of liquid and greatly increase the viscosity. Other solids appear to be only superficially wetted and do not change the viscosity significantly. Using clays and similar catalysts it may be assumed that a concentration of 2 or 3 lb of solid per gallon of mixture does not increase the viscosity of the liquid by more than 100 per cent, and this higher value is suggested in the absence of actual viscosity data on a slurry.

[^65]Solution:

$$
\begin{aligned}
& T_{\mathrm{av}}=1 / 6(675+200)=437.5^{\circ} \mathrm{F} \quad c=0.64 \mathrm{Btu} / \mathrm{lb} \\
& \text { Oil, } Q=33,100 \times 0.64(675-200)=10,200,000 \mathrm{Btu} / \mathrm{hr}^{*} \\
& \text { Water, } Q=510,000 \times 1.0(140-120)=10,200,000 \mathrm{Btu} / \mathrm{hr}
\end{aligned}
$$

$\Delta t: \quad$ It may be assumed that one stream carries all of the pipe liquid. Whether in crossflow or parallel flow-counterflow the true temperature-difference relations have not been derived. A case closely allied to the pipe coil will be treated for the two- (or more) pass trombone cooler. In any event the true temperature difference will be very nearly the same as the LMTD, since the outlet temperatures of both streams do not approach each other closely and the average temperatures are far apart.

$$
\begin{equation*}
\mathrm{LMTD}=230^{\circ} \mathrm{F} \tag{5.14}
\end{equation*}
$$

T_{c} and t_{c} : The use of average temperatures will be satisfactory, since the outside coefficient cannot be determined very accurately.

Hot fuid: tube side, oil
$a_{t}^{\prime}=6.61$ in. ${ }^{2} /$ pipe
Try all pipes in series.
Flow area, $a_{t}=6.61 / 144=0.0458 \mathrm{ft}^{2}$
Mass vel, $G_{t}=W / a_{t}$
$=33,100 / 0.0458=723,000 \mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)$
The viscosity is given at $400^{\circ} \mathrm{F}$, which is near enough for this calculation.
$\mu=2.3 \times 2.42=5.56 \mathrm{lb} /(\mathrm{ft})(\mathrm{hr})$
$D=2.9 / 12=0.242 \mathrm{ft} \quad$ TTable 11]
$R e_{t}=D G_{t} / \mu$
$=0.242 \times 723,000 / 5.56=31,300$
$j_{H}=100$
$k\left(c_{\mu} / k\right)^{1 / 3}=0.245 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}-\left(^{\circ} \mathrm{F} / \mathrm{ft}\right)^{\circ}\right.$
[Fig. 16]

$$
\begin{aligned}
h_{i} & =j_{H}\left[k\left(c_{\mu} / k\right)^{2 / 8}\right] / D \\
& =100 \times 0.245 / 0.242=101
\end{aligned}
$$

$$
O D=3.5 \mathrm{in} .
$$

$$
h_{i o}=h_{i} \times I D / O D=101 \times 2.9 / 3.5
$$

[Table 11]

$$
=83.7 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right) \quad[\mathrm{Eq} .(6.5)]
$$

Cold fluid: trough side, water
Assume poor circulation and a minimum coefficient.
For a trial assume $h_{c}=150 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)$ (${ }^{\circ} \mathrm{F}$)
$t_{v}=t_{\mathrm{av}}+\frac{h_{\mathrm{io}_{o}}}{h_{i o}+h_{o}}\left(T_{\mathrm{av}}-t_{\mathrm{av}}\right)$

$$
=130+\frac{83.7}{83.7+150}(437.5-130)
$$

$$
=240^{\circ} \mathrm{F}
$$

$t_{f}=Y_{2}\left(t_{w}+t_{\mathrm{av}}\right)$
$=1 / 2(240+130)=185^{\circ} \mathrm{F}$
Refer to Fig. 10.4:
$\Delta t=240-130=110^{\circ} \mathrm{F}$
$d_{o}=3.5 \mathrm{in}$.
$\left(\Delta t / d_{o}\right)=110 / 3.5=31.4$
$h_{o}=150$ (trial checks)
$U_{c}=\frac{h_{o} h_{i_{o}}}{h_{i_{0}}+h_{i_{i o}}}=\frac{150 \times 83.7}{150+83.7}=53.8 \mathrm{Btu} /(\mathrm{hr})(\mathrm{ft})\left({ }^{\circ} \mathrm{F}\right)$
$R_{d}=0.010 \quad h_{d}=\frac{1}{.010}=100$
$U_{D}=\frac{U_{C} h_{d}}{U_{C}+h_{d}}=\frac{53.8 \times 100}{53.8+100}=35.0$
$A=\frac{Q}{U \Delta t}=\frac{10,200,000}{35.0 \times 230}=1265 \mathrm{ft}^{2}$
External surface $/ \mathrm{lin} \mathrm{ft}=0.917 \mathrm{ft}{ }^{2} / \mathrm{ft}$
(Table 11)
Pipe lengths required $=\frac{1265}{0.917 \times 24}=58$
*This is safe, since the specific heat of the solids is only about $0.2 \mathrm{Btu} /(\mathrm{lb})$ (${ }^{\circ} \mathrm{F}$) and $33,100 \mathrm{Ib} / \mathrm{hr}$ represents the combined flow.

These must be arranged in series either in a single helical stack 29 tubes high or, if headroom is not available, in severat lower stacks; Actually some boiling occurs outside part of the pipe surface where $t_{v}>212^{\circ} \mathrm{F}$ so as greatly to increase the trough coefficient.

4. TROMBONE COOLERS

Introduction. Trombone coolers are sometimes called trickle coolers, cascade coolers, horizontal-film coolers, S-type coolers, and serpentine coolers. A sketch is shown in Fig. 20.6. Trombone coolers consist of a bank of standard pipes one above the other in series and over which water trickles downward, partly evaporating as it travels. They have been used extensively in the heavy chemical, brewing, coke, petroleum, and icemaking industries. They are frequently made of ceramic materials for cooling corrosive gases at atmospheric pressure, such as HCl and NO_{2}. When calculating heat flow through ceramics the resistance of the pipe wall must be included. The trombone cooler presents two problems: (1) the evaluation of the outside film coefficient and (2) calculation of the crossflow true temperature difference.

Fig. 20.6. Trombone cooler.

Temperature Difference in the Trombone Cooler. The flow arrangement of Fig. 20.6 in crossflow differs from any of the cases in Fig. 16.17 in that the fluid flowing outside the multipass pipes is not mixed over the length of the pipes whereas the multipass pipe fluid is mixed. Bowman, Mueller, and Nagle ${ }^{1}$ have prepared correction factors F_{T} by which the true temperature difference Δt can be obtained as the product

$$
F_{T} \times \mathrm{LMTD}
$$

for both the return-bend and helical types of trombone arrangement. These are given in Fig. 20.7a and b and are based, respectively, on the following:

Return bend arrangement:

$$
\frac{1}{1-K}=e^{K_{1},\left[\cosh K_{1} R+\left(1-K_{1}\right) \sinh K_{1} R\right]}
$$

where $K_{1}=1-e^{-S / 2(r)}$.
Helical arrangement:

$$
\frac{1}{1-K}=e^{K_{1} R}\left(e^{K_{1} R}+K_{1}^{2} R\right)
$$

${ }^{1}$ Bowman, Mueller, and Nagle. Trans. ASME, 62, 291 (1940).
where again $K_{1}=1-e^{-S / 2(t)}$ and

$$
K=\frac{T_{1}-T_{2}}{T_{1}-t_{1}}, \quad R=\frac{T_{1}-T_{2}}{t_{2}-t_{1}}, \quad(r)=\frac{\mathrm{LMTD}}{T_{1}-t_{1}}, \quad S=\frac{t_{2}-t_{1}}{T_{1}-t_{1}}
$$

While these apply specifically to units having but two pipe passes only, a small error arises when the corrections are applied to units having a greater number of pipe passes.

Fig. 20.7a. Mean-temperature-difference correction factor for two-pass trombone.

FIG: 20.7b. Mean-temperature-difference correction factor for two-pass helical trombone. (Bowman, Mueller, and Nagle, Transactions ASME.)

Outside Film Coefficients. The main published work on this type of apparatus was carred out by McAdams and coworkers at MIT and summarized by McAdams, Drew, and Bays. ${ }^{1}$ (1) It is assumed that no evaporation occurs from the surface of the water although it is exposed to the atmosphere. (2) It is assumed that half of the liquid flows down each side of each pipe in streamline flow. The criterion of streamline flow is a Reynolds number, $4 G^{\prime} / \dot{\mu}$, of less than 2100, where $G^{\prime}=w / 2 L$,

[^66] (1940).
w is the water rate in pounds per hour, and L is the length of each pipe in the bank in feet. The equation for the transfer coefficients within ± 25 per cent is given by the dimensional equation
\[

$$
\begin{equation*}
h=65\left(\frac{G^{\prime}}{D_{0}}\right)^{1 / 3} \tag{20.7}
\end{equation*}
$$

\]

where D_{0} is the outside diameter of the pipe in feet. When the value of the Reynolds number exceeds 2100 , it is to be expected that the rates will be somewhat higher. Any appreciable evaporation will also increase the film coefficient. Large fouling factors and low outlet-water temperatures are recommended, particularly when the water has a large mineral content.

Example 20.4. Calculation of a Trombone SO_{2} Cooler. $3360 \mathrm{lb} / \mathrm{hr}$ of SO_{2} gas issues from a sulfur burner at $450^{\circ} \mathrm{F}$ and is to be precooled to $150^{\circ} \mathrm{F}$ in a high-conductivity pipe-trombone cooler. 3 -in. IPS pipes will be used. Owing to space limitations the straight length of the pipe may not exceed $8^{\prime} 0^{\prime \prime}$. Cooling water is available at $85^{\circ} \mathrm{F}$ and should not be heated above $100^{\circ} \mathrm{F}$ because of scale and corrosion from the outside.

How many pipe lengths are required for the bank when the overall fouling factor is 0.010 ?

Solution:

$$
\begin{align*}
& T_{\Delta r}=300^{\circ} \mathrm{F} \quad C=0.165 \mathrm{Btu} /(\mathrm{lb})\left({ }^{\circ} \mathrm{F}\right) \tag{Fig.3}\\
& \mathrm{SO}_{2,} Q=3360 \times 0.165(450-150)=166,500 \mathrm{Btu} / \mathrm{hr} \\
& \text { Water, }^{2} Q=11,100 \times 1.0(100-85)=166,500 \mathrm{Btu} / \mathrm{hr}
\end{align*}
$$

Hot Fluid Cold Fluid

450	Higher Temp	100	350
150	Lower Temp	85	65
300	Differences	15	285

LMTD $=169^{\circ} \mathrm{F}$

(5.14)
R will be ${ }^{30} \% 1_{5}=20.0$, which is beyond the values plotted in Fig. 20.7b. The graph can be used by replacing R by $1 / R$ and S by RS. This interchanges the two streams without affecting the temperature relationships.

$$
\begin{aligned}
& R=20 \quad \frac{1}{R}=0.05 \\
& S=\frac{\left(t_{2}-t_{1}\right)}{T_{1}-t_{1}}=\frac{15}{365}=0.0412 \quad R S=20 \times 0.0412=0.824 \\
& F_{T}=0.98 \\
& \Delta t=0.98 \times 169=166^{\circ} \mathrm{F}
\end{aligned}
$$

T_{c} and t_{c} : Average values of the temperatures will suffice since the gas-film coefficient does not vary greatly from inlet to outlet. $T_{\mathrm{av}}=300^{\circ} \mathrm{F}$ and $t_{\mathrm{av}}=92.5^{\circ} \mathrm{F}$.

Hot fluid: tube side, SO_{2}
$a_{t}^{\prime}=7.38 \mathrm{in} .^{2}$
[Table 11]
All pipes will be in series.
Flow area, $a_{t}=7.38 / 144=0.0512 \mathrm{ft}^{2}$
$G_{i}=W / a_{t}$
$=3360 / 0.0512=65,600$
$D=3.068 / 12=0.256 \mathrm{ft}$
[Table 11]
At $T_{a}=300^{\circ} \mathrm{F}$, $\mu=0.017 \times 2.42=0.041 \mathrm{lb} /(\mathrm{ft})(\mathrm{hr})$
[Fig. 15]
$R e_{z}=D G_{2} / \mu$
$=0.256 \times 65,600 / 0.041=410,000$
$j_{H}=790$
$k=0.0069$ (nearest value available in Table 5)
$(c \mu / k)^{1 / 3}=(0.165 \times 0.041 / 0.0069) 1 / 3$ $=0.99$
$h_{i}=j_{H} \frac{k}{D}\left(\frac{c \mu}{k}\right)^{1 / 3}$
[Eq. (6.15)]
$=790 \times \frac{0.0069}{0.256} \times 0.99=21.1$
$h_{i o}=h_{i} \times \mathrm{ID} / \mathrm{OD}$
$=21.1 \times 3.068 / 3.50$

$$
=18.5 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)
$$

$$
U_{C}=\frac{h_{g} h_{i o}}{h_{o}+h_{i o}}=\frac{868 \times 18.5}{868+18.5}=18.1 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{f} \mathrm{t}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)
$$

$$
R_{d}=0.010 \quad h_{d}=\frac{1}{0.010}=100
$$

$$
U_{D}=\frac{U_{c} h_{d}}{U_{C}+h_{G}}=\frac{18.1 \times 100}{18.1+100}=15.3
$$

$$
A=\frac{Q}{U \Delta t}=\frac{166,500}{15.3 \times 169}=65.6 \mathrm{ft}^{2}
$$

External surface/lin $\mathrm{ft}=0.917$
Number of pipe lengths $=\frac{65.6}{0.917 \times 8}=8.95 \quad$ (use 9)

5. ATMOSPHERIC COOLERS

Introduction. The atmospheric cooler is an improvement over the trombone cooler particularly for large services. Atmospheric coolers are located in cooling towers beneath the fill (see Chap. 17). They are also known as spray coolers, bare-tube coolers, and open or atmospheric coolers and provide tubular heat-transfer surface for certain services at about one-third the cost of conventional shell-and-tube equipment. A typical arrangement in an induced-draft cooling tower is shown in Fig. 20.8. Perhaps the broadest use of atmospheric coolers lies in the cooling of the
jacket water of internal-combustion engines. In a survey of 106 plants in the natural gasoline industry, Kallam ${ }^{1}$ found the atmospheric cooler to be the most widely used type, accounting for 44.5 per cent of all installations. Other methods of jacket-water cooling are the direct circulation of the jacket water over the cooling tower, induced-draft air-cooled extended-surface units, and the use of a conventional exchanger between the cold recirculated cooling tower water and the jacket water. Calculations applicable to these methods have already been discussed.

When piped directly from the atmospheric cooler to the water jacket, the water travels in a closed circuit and the same water is continuously heated and cooled. Naturally this minimizes corrosion and the deposition of slime in both the jacket and the tube bundle. Since jacket water is usually recirculated over a short temperature range of 10 to $20^{\circ} \mathrm{F}$ and

Fra. 20.8. Atmospheric cooler showing an arrangement for jacket prater cooling.
at a temperature to the cooler above $120^{\circ} \mathrm{F}$, the advantages of the closed circuit are important.

Other methods of cooling jacket water are less advantageous. The high temperature of the recirculated jacket water prohibits its direct circulation over the cooling-tower fill without an atmospheric cooler because the air-saturation loss would be very great. When jacket water is cooled by cooling-tower water in an external exchanger, the pumping cost of the cooling-tower water is increased by the added pressure drop through the exchanger. The equipment cost is also increased. When using an atmospheric cooler it is possible to circulate less cooling water then required for sensible-heat transfer, since some evaporation occurs on the outside of the tubes of the atmospheric cooler. When used for the condensation of exhaust steam from turbines or engines, the atmospheric
${ }^{i}$ Kallam, F. L., Petroleum Refiner, 27, 371-378 (1948).
cooler is then called an evaporative condenser. This modification will be discussed in the next section.

An atmospheric cooler is a bank of tubes in a supported frame between two cast headers with removable bolted covers. A sketch including alternate nozzle connections is shown in Fig. 20.9. The headers are usually cast in one piece including the nozzles. They vary in length and width to conform with the internal structure dimensions of the coolingtower supporting structure. Generally the tubes are from 8 to 20 ft long with cooler widths of 3 to 6 ft . The width is small, so that the major tower-supporting beams can be erected between adjoining cooler

Fig. 20.9. Atmospheric cooler with alternate nozale arrangements. (Foster Wheeler Corporation.)
sections. Thus a 24 - by 24 -ft cooling tower might be equipped with four sections having $20-\mathrm{ft}$ tube lengths and 5 - ft widths. The tubes are rolled directly into the headers and can be replaced when corroded by simply unbolting the header covers and reaming out the corroded tube. The outside structural framework of the cooler also supports the tubes. If the headers are of a weldable material, the framework is welded directly to them. If the material cannot be welded, the framework is bolted to the headers.

The tubes are laid out in horizontal rows with about three to seven superimposed horizontal rows per header. The vertical pitch between the horizontal rows is usually less than the horizontal pitch, since an adequate water-flow area must be provided to permit the free drainage of water into the basin. Where a larger number of rows is required, it is customary to use two sections one above the other. Tube passes may be orientated in any convenient manner.

The advantages of the atmospheric cooler are lower first cost and lower
pumping cost. The great disadvantage lies in the rapid rate of scale formation on the outside of the tubes due to evaporation. The rate is such that succeeding horizontal rows are always superimposed rather than staggered for accessibility during cleaning and scale removal. While scale may be loosened by thermal shock, the shock does not necessarily cause it to drop off the tubes and waters of different mineral contents present separate scale problems. Scale removal by scraping is often the only solution, and the number of horizontal tube rows per section is kept small in anticipation of the scale. Notwithstanding these precautions, pieces of scale frequently fall from the upper tube rows and lie across the lower rows, interfering with the even distribution of water over the tubes.

Fig. 20.10. Atmospheric coolers: Heat removed by evaporation. (Kallam, Refiner.)
Kallam recommends fouling factors for design which are identical with those of Table 12 although the service period is very much shorter.

The Calculation of Atmospheric Coolers. The method of calculation employed here is based on the correlation of Kallam. ${ }^{1}$ While this method has been cited by Nelson, ${ }^{2}$ the original article presents results without experimental data. Kallam states that 45 tests were run on three coolers embracing the following variations: cooling water rate, 3 to $38 \mathrm{lb} /(\mathrm{min})$ (ft^{2} of projected tube surface); water velocity in tubes, 2 to 14 fps ; wind velocity at cooling tower, 10 to 1000 fpm ; temperature of cooling water to atmospheric cooler (off the fill), 60 to $78^{\circ} \mathrm{F}$; temperature of cooling water off cooler, 88 to $120^{\circ} \mathrm{F}$ (to basin) ; temperature of water to tubes, 109 to $153^{\circ} \mathrm{F}$; temperature of water from tubes, 90 to $141^{\circ} \mathrm{F}$; dry-bulb
${ }^{1}$ Kallam, F. L., Petroleum Refiner, 19, 371-382 (1940).
${ }^{2}$ Nelson, W. L., "Petroleum Refinery Engineering," 3d ed., McGraw-Hill Book Company, Inc., New York, 1949.
temperature, 60 to $76^{\circ} \mathrm{F}$; wet-bulb temperature, 54 to $66^{\circ} \mathrm{F}$; heat removed by evaporation of cooling water, 0.4 to 50.0 per cent. No deviations have been given, and Kallam states that the relative humidity of the air above the atmospheric cooler did not influence the percentage of evaporation off the cooler. While the method is entirely empirical, the author knows of two instances in which coolers calculated by Kallam's method proved to be satisfactory in practice. In order to set the temperature range for the cooling-tower water over the cooler, an economic balance must be carried out between the cost of both the cooling tower and the atmospheric cooler for several temperatures to determine the economic optimum.

For the outside film coefficient Kallam employs two dimensionless configuration terms, $Y=\left(P_{H}-D_{o}\right) / D_{0}$ and $Z=\left(P_{H}-D_{o}\right) / P_{H}$, where P_{H}

Frg. 20.11. Atmospheric coolers: Outside flm coefficients. (Kallam, Refiner.)
is the horizontal pitch and D_{0} is the outside diameter of the tubes. Calculation curves are given in Figs. 20.10 and 20.11, although the actual groups employed are both arbitrary and dimensional. There are, in addition, two flow terms which are based on different cooler outside areas. These are the projected tube area of a horizontal row used for computing the water spray M in pounds per minute per square foot of projected tube area and the overall ground area of the section calculated as the product of the fube length L and the distance between the outer sides of the two extreme tubes in a horizontal row B. The latter is used to compute the spray in pounds per hour per square foot of base area between tube sheets m. Figure 20.10 gives the percentage of the total spray water evaporated and is plotted as a function of the spray quantity and its mean temperature over the atmospheric section. This permits adjustment of the spray quantity so that the combined sensible- and latent-heat effects will balance the tube-side heat load. This will be demonstrated in the following illustration:

Suppose that it is desired to remove $1,000,000 \mathrm{Btu} / \mathrm{hr}$ from a bare tube cooler consisting of two sections with 20 ft long tubes and a 4 ft wide bundle and that the design of the cooling tower is such that the water temperature will rise from 70 to $80^{\circ} \mathrm{F}$. Assume 1 in. OD tubes with 2 -in. horizontal pitch and $13 / 4-\mathrm{in}$. vertical pitch. If no evaporation occurred, it would be necessary to circulate $100,000 \mathrm{Ib} / \mathrm{hr}$ or 200 gpm .

To determine the quantity of spray with evaporation:
Number of tubes per horizontal row $=\frac{4 \times 12}{2}=24$
Projected area per tube $=1 / 12 \times 20=1.67 \mathrm{ft}^{2}$
Total projected area $=2 \times 24 \times 1.67=80 \mathrm{ft}^{2}$
$D_{o}=1 / 12=0.0833 \mathrm{ft}$
$P_{H}=2 / 12=0.167 \mathrm{ft}$
$Y=\frac{{ }^{P_{H}-D_{0}}}{D_{0}}=\frac{0.167-0.0833}{0.0833}=1.0$
$Z=\frac{P_{H}-D_{0}}{P_{H}}=\frac{0.167-0.0833}{0.167}=0.5$
$\left(D_{o} Y Z\right)^{0.1}=(0.0833 \times 1.0 \times 0.5)=0.7278$
Since the average water temperature over the bundle is $75^{\circ} \mathrm{F}, M t_{\mathrm{av}}=75 \mathrm{M}$. It is now necessary to assume values of the percentage evaporated E as a function of the spray loading, both of which determine the heat load.

Trial 1:

Assume $E=20$ per cent.

$$
\frac{E}{\left(D_{o} Y Z\right)^{0.1}}=\frac{0.20}{0.7278}=0.275
$$

From Fig. 20.10

$$
\begin{aligned}
M t_{\mathrm{av}} & =1040 \\
M & =1040 / 75=13.9 \mathrm{lb} /(\mathrm{min})\left(\mathrm{ft}^{2}\right)
\end{aligned}
$$

Heat removed from cooler sensibly $=13.9 \times 80 \times 60 \times 10=667,000$ Btu
Evaporation $=\frac{1,000,000-667,000}{1,000,000} \times 100=33 \%$
The computed evaporation of 33 per cent does not check the assumed value of 20 per cent, and a new trial must be made. An assumption of 18.5 per cent checks with a spray of $17.05 \mathrm{lb} /(\min)\left(\mathrm{ft}^{2}\right)$. The heat removed sensibly will be $818,000 \mathrm{Bta} / \mathrm{hr}$, and the spray to be circulated will be

$$
\frac{818,000}{8.33 \times 60}=163.6 \mathrm{gpm}
$$

compared with a total of 200 gpm when vaporization is not considered. The outside film coefficient can be obtained from Fig. 20.11 or the dimensional equation

$$
\begin{equation*}
h_{o}=190 N^{0.05}\left(\frac{m^{0.3} D_{o} Y Z}{\mu P_{V}}\right)^{4.4} \tag{20.8}
\end{equation*}
$$

where $P_{\mathrm{V}}=$ vertical pitch, ft
$m=w / L B$,
$w=$ total hourly flow over the section
$\mu=$ viscosity, $\mathrm{lb} /(\mathrm{ft})(\mathrm{hr})$
$N=$ number of horizontal rows
Temperature Difference in the Atmospheric Cooler. The correct evaluation of the true temperature difference is extremely important in this type of apparatus, since the approach of both outlet streams is usually quite close. As an example of crossflow it is necessary to decide whether the spray liquid is mixed or unmixed in accordance with the derivations covered by Eqs. (16.71) through (16.103). The spray fluid in commercial towers can usually be considered unmixed, and the true temperature difference can be obtained through the use of Fig. 16.17b.

Example 20.5. Calculation of an Atmospheric Jacket Water Cooler. 295 gpm of jacket water from a diesel compressor are to be cooled from 143° to $130^{\circ} \mathrm{F}$. It is possible to convert a $12 \times 16 \mathrm{ft}$ cooling tower to permit the insertion of two atmospheric sections side-by-side consisting of 1 in . $\mathrm{OD} \times 16 \mathrm{BWG}$ tubes $120^{\prime \prime}$ long on $17 / 8-\mathrm{in}$. horizontal pitch and $11 / 2-\mathrm{in}$. vertical pitch. The distance between the extreme horizontal tubes in each section will be $4^{\prime} 0^{\prime \prime}$.
Individual dirt factors of 0.003 for the cooling tower water and 0.001 for the jacket water should be provided.
What will the spray requirement be and how many horizontal rows of tubes should be provided in the sections?

Solution:

Outside film coefficient:

Number of tubes per row/section $=4 \times 12 / 1.875=25.6$ (say 25)
Total projected area $=2(12 / 12 \times 1 \times 25)=50 \mathrm{ft}^{2}$
Assume a spray of $28 \mathrm{lb} /(\min)\left(\mathrm{ft}^{2}\right)$
Average temperature over section $=1 / 2(90+110)=100^{\circ} \mathrm{F}$
$M t_{\text {av }}=100 \times 28=2800$
From Fig. 20.10
$\frac{E}{\left(D_{o} Y Z\right)^{0.1}}=0.171$
$D_{o}=\frac{1}{12}=0.0833 \mathrm{ft} \quad P_{H}=\frac{1.875}{12}=0.1562 \mathrm{ft}$
$\dot{Y}=\frac{0.1562-0.0833}{0.0833}=0.874$
$Z=\frac{0.1562-0.0833}{0.1562}=0.466$
$\left(D_{o} Y Z\right)^{0.1}=(0.0339)^{0.1}=0.712$
$E=0.171 \times 0.712=0.12 \%$ evaporation
Heat load $=295 \times 500(143-130)=1,920,000 \mathrm{Btu} / \mathrm{hr}$
Sensible heat $=1.920,000(1-0.12)=1,690,000 \mathrm{Btu} / \mathrm{hr}$
Final spray temperature: $1,690,000=28 \times 60 \times 50\left(t_{2}-90\right)$
$t_{2}=110^{\circ} \mathrm{F}$ Checks for $28 \mathrm{lb} /(\mathrm{min})\left(\mathrm{ft}^{2}\right)$
Total spray $=28 \times 60 \times 50=84,000 \mathrm{lb} / \mathrm{hr}$
$m=\frac{w}{L B}=\frac{84,000}{2 \times 4 \times 12}=875 \mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)$
$m^{0.3}=7.62$
$\mu_{\text {mater }}=0.76 \mathrm{cp}$
$\frac{m^{0.3} D_{0} Y Z}{\mu P_{V}}=\frac{7.62 \times 0.0339}{2.42 \times 0.76 \times 0.125}=1.12$
From Figure 20.11,

$$
\frac{h_{c}}{\mathbb{N}_{0}^{0.0 E}}=300
$$

Assume three horizontal rows/section

$$
\begin{aligned}
N^{0.05} & =3^{0.05}=1.057 \\
h_{0} & =300 \times 1.057=317 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)
\end{aligned}
$$

Tube-side coefficient
Assume an even number of passes (using vertical partitions) arranged to give a tube-side velocity of about 8 fps . Try four tube passes per section or eight total passes.
Flow area/pass, $a_{t}=3 \times 25 \times \frac{0.594}{4 \times 144}=0.0775 \mathrm{ft}^{2}$
Mass velocity, $G_{t}=\frac{W}{a_{t}}=295 \times \frac{500}{0.0775}=1,900,000 \mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)$
Velocity $=\frac{G_{t}}{3600 \rho}=\frac{1,900,000}{3600 \times 62.5}=8.45 \mathrm{fps}$
ID $=0.87 \mathrm{in}$.
$h_{i}=2300 \times 0.93=2140 \mathrm{Btu} /(\mathrm{hr})\left(f t^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$
$h_{i o}=h_{i} \times \frac{\mathrm{ID}}{\mathrm{OD}}=2140 \times \frac{0.87}{1.0}=1860$
Overall coefficients:

$$
U_{c}=\frac{h_{o} h_{i_{0}}}{h_{o}+h_{i o}}=\frac{317 \times 1860}{317+1860}=271 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)
$$

External surface//in $\mathrm{ft}=0.2618 \mathrm{ft}^{2} / \mathrm{ft}$
(Table 11)
Total surface $=2(3 \times 25 \times 12 \times 0.2618)=471 \mathrm{ft}^{2}$
$\Delta t:$
Hot Fluid Cold Fluid

143	Higher Temp	110	33
130	Lower Temp	90	40
13	Differences	20	7

$$
\begin{align*}
& \text { LMTD }=36.7^{\circ} \mathrm{F} \tag{5.14}\\
& R=13 / 20=0.65 \quad S=20 / 53=0.377 \\
& F_{T}=0.97 \tag{Fig.16.17b}\\
& \Delta t=F_{T} \times \mathrm{LMTD}=0.97 \times 36.7=35.6^{\circ} \mathrm{F} \\
& U_{D}=\frac{Q}{A \Delta t}=\frac{1,920,000}{471 \times 35.6}=114.5
\end{align*}
$$

Dirt factor:
$R_{d}=\frac{U_{C}-U_{D}}{U_{C} U_{D}}=\frac{271-114.5}{271 \times 114.5}=0.0051(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right) / \mathrm{Btu}$
The assumption of three horizontal rows is satisfactory, since a dirt factor of 0.004 was required.

The pressure drop on the tube side can be computed from Eqs. (7.45) through (7.47). The characteristics which the cooling tower must possess to permit the heat removal from the cooling tower water can be determined by the methods of Chap. 17.

6. EVAPORATIVE CONDENSERS

Atmospheric coolers were formerly used for the condensation of steam from turbines and noncondensing steam engines. They are less frequently used for this purpose now. Although Kallam's method is probably satisfactory for the condensation of organic vapors where the condensing coefficient is small by comparison, it is unsatisfactory in the case of steam condensation. The condensation of steam requires the use of high liquid loadings in the cooling tower because of the large heat flux associated with the condensation of a pound of steam. In this range the outside coefficients predicted from Fig. 20.11 are probably unreliable. It is safer to employ a conventional clean value for the overall coefficient than to attempt its calculation. A value of U_{C} of from 350 to 450 $\mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$ should give a reasonable condenser.

7. BAYONET EXCHANGERS

Introduction. A bayonet consists of a pair of concentric tubes, the outer of which has one end sealed as shown in Fig. 20.12. Bayonets were formerly known as field tubes. Both the outer and inner tubes extend from separate stationary tube sheets and extend either into shells or directly into vessels. The surface of the outer tube is the principal heattransfer surface. Bayonet exchangers are excellently adapted to the condensation of vapors under moderate and very low vacuum, outside. the bayonets and in exchanger shells, since the tubes are larger and heavier, usually 1 in . OD inside 2 in . OD, and the individual bayonets are generally self-supporting without the use of support plates. These qualities combine to cause a negligible pressure drop to the flow of vapors under vacuum outside bayonets. An example of a vacuum condenser arrangement is shown in Fig. 20.13, while the exchanger shown in Fig. 20.14 is known as a suction heater or suction tank heater.

Suction heaters are installed in tanks used for the storage of viscous liquids and semiplastics such as molasses, heavy lube oils, fuel oils, and asphalt. If a liquid is viscous, it would be necessary to maintain all the liquid in the tank at a temperature corresponding to a feasible pump-

Fig. 20.12. Section through a bayonet (suction-type) exchanger.
ing viscosity. This could be achieved by means of a steam coil, which would be required to supply sufficient heat to offiset the tank losses. Since viscous fluids afford little free convection, the coil would probably be supplemented by continuous agitation and if the stored material should

Fig. 20.13. Bayonet exchanger as vacuum condenser.

Fra. 20.14. Tank suction heater with bayonet tubes.
cool to too low a temperature, its uitimate removal might cause a serious problem. When a suction heater is installed as shown in Fig. 20.14, heat need be supplied only while the pumps are operating. As hot liquid is removed by the pump, it is replaced by the hydrostatic pressure of the liquid remaining in the tank. Bayonets are extremely effective for this type of service, but they are also rather expensive, and ordinarily the job
can be accomplished more cheaply by substituting an unbaffled U-tube bundle for the bayonets.

Temperature Difference in the Bayonet Exchanger. Bayonet exchangers introduce some interesting temperature differences which have

(c)

(b)

(d)

Fic. 20.15. : Arrangements of parallel flow and counterflow in bayonet exchangers.
not been encountered in any of the flow patterns discussed thus far. Consider the single bayonet shown in Fig. 20.15a with hot fluid on the shell side traveling in the direction shown. The temperature diagram is shown in Fig. 20.16. Cold liquid flows into the bayonet by the inner

Fig. 20.16. Temperature diagram for Case I. (Hurd, Industrial Engineering Chemistry.) tube and is rejected through the annulus in the opposite direction. There is a film coefficient on the shell side of the bayonet and a coefficient on the inside of the outer tube yielding the overall coefficient U_{c}. There is additional heat transfer between the cold medium entering the inner tube and the heated cold medium in counterflow with it in the annulus. The flow areas of the inner tube and annulus differ, although the weight flow is the same in each and the bayonet fluid has different film coefficients in the inner tube and in the annulus. These two coefficients produce a second overall coefficient u. The temperature distribution in Fig. $20.15 a$ is but one of four possibilities. The remainder are shown in Fig. 20.15b, c, and d. The true temperature difference is seen to be related not only to the flow pattern but also to the ratio of the two overall coefficients U and u.

The derivation employed here is that of Hurd ${ }^{1}$ and agrees with an ${ }^{1}$ Hurd, N. L., Ind. Eng. Chem.; 38, 1266-1271 (1946).
unpublished derivation of K. A. Gardner. As reference surfaces the outside diameters of the outer and inner tubes are used to define the cylindrical areas. The area at the sealed end itself is neglected. Letting P be the perimeter of the outer tube and p the perimeter of the inner tube, the differential heat balance on each tube-side stream gives

$$
\begin{align*}
U\left(T-t^{\mathrm{II}}\right) P d x-u\left(t^{\mathrm{II}}-t^{\mathrm{I}}\right) p d x & =-w c d t^{\mathrm{IV}} \tag{20.9}\\
u p\left(t^{\mathrm{II}}-t^{\mathrm{I}}\right) d x & =w c d t^{\mathrm{I}} \tag{20.10}
\end{align*}
$$

Adding

$$
\begin{equation*}
U P\left(T-t^{\mathrm{II}}\right) d x=w c\left(d t^{\mathrm{I}}-d t^{\mathrm{I}}\right) \tag{20.11}
\end{equation*}
$$

and

$$
\begin{equation*}
w c\left(t^{I I}-t^{I}\right)=W C\left(T_{1}-T\right) \tag{20.12}
\end{equation*}
$$

Taking a heat balance on the right-hand end,

$$
\begin{equation*}
\frac{d T}{d x}=\frac{U P}{W C}\left(T-t^{I I}\right) \tag{20.13}
\end{equation*}
$$

Differentiating

$$
\begin{equation*}
\frac{d^{2} T}{d x^{2}}=\frac{U P}{W C}\left(\frac{d T}{d x}-\frac{d t^{\mathrm{II}}}{d x}\right) \tag{20.14}
\end{equation*}
$$

Differentiating Eq. (20.12) with respect to x and rearranging,

$$
\begin{equation*}
\frac{d t^{\mathrm{II}}}{d x}=\frac{d t^{\mathrm{I}}}{d x}-\frac{W C}{w c} \frac{d T}{d x} \tag{20.15}
\end{equation*}
$$

From Eqs. (20.10) and (20.12)

$$
\begin{equation*}
\frac{d t^{I}}{d x}=\frac{u p}{w c} \frac{W C}{w c}\left(T_{1}-T\right) \tag{20.16}
\end{equation*}
$$

Substituting Eqs. (20.15) and (20.16) in Eq. (20.14) and letting

$$
\begin{gather*}
\left(T_{1}-T\right)=\tau \\
-\frac{d^{2} \tau}{d x^{2}}+\left(\frac{U P}{W C}-\frac{U P}{w c}\right) \frac{d \tau}{d x}+\frac{U P u p}{(w c)^{2}} \tau=\mathbf{0} \tag{20.17}
\end{gather*}
$$

Substituting $d \tau / d x=X$ and factoring,

$$
\begin{equation*}
-X^{2}+\left(\frac{U P}{W C}+\frac{U P}{w c}\right) X+\frac{U P u p}{(w c)^{2}}=0 \tag{20.18}
\end{equation*}
$$

Solving the quadratic

$$
\begin{equation*}
X=\frac{1}{2} \frac{U P}{W C}\left[1+\frac{W C}{w c} \pm \sqrt{\left(1+\frac{W C}{w c}\right)^{2}+4 \frac{u p}{J P}\left(\frac{W C}{w c}\right)^{2}}\right] \tag{20.19}
\end{equation*}
$$

Designate the radical by the letter ψ, and calling the plus and minus solutions X_{1} and X_{2}, respectively,

$$
\begin{align*}
& X_{1}=\frac{1}{2} \frac{U P}{W C}\left(1+\frac{W C}{w c}+\psi\right) \tag{20.20}\\
& X_{2}=\frac{1}{2} \frac{U P}{W C}\left(1+\frac{W C}{w c}-\psi\right) \tag{20.21}
\end{align*}
$$

Equation (20.17) is a second-order differential equation whose solution is

$$
\begin{equation*}
\tau=T_{1}-T=C_{1} e^{x_{1} x}+C_{2} e^{x_{2} x} \tag{20.22}
\end{equation*}
$$

From the terminal conditions

$$
T=T_{1} \quad \text { when } \quad x=L
$$

and

$$
T=T_{2} \quad \text { when } \quad x=0
$$

from which

$$
\begin{equation*}
C_{1}=-\frac{\left(T_{1}-T_{2}\right) e^{X_{2} L}}{e^{X_{1} L}-e^{X_{2} L}} \quad \text { and } \quad C_{2}=\frac{\left(T_{1}-T_{2}\right) e^{X_{1} L}}{e^{X_{1} L}-e^{X_{2} L}} \tag{20.23}
\end{equation*}
$$

Differentiating Eq. (20.22) with respect to x and substituting in Eq. (20.13),

$$
\begin{equation*}
C_{1} X_{1} e^{X_{1} x}+C_{2} X_{2} e^{X_{3 x}}=-\frac{U P}{\bar{W} C}\left(T-t^{\mathrm{I}}\right) \tag{20.24}
\end{equation*}
$$

Evaluated at $x=0$ it becomes

$$
\begin{equation*}
C_{1} X_{1}+C_{2} X_{2}=-\frac{U P}{W C}\left(T_{2}-t_{2}\right) \tag{20.25}
\end{equation*}
$$

Substituting Eqs. (20.20), (20.21), and (20.23) in Eq. (20.25),

$$
\begin{equation*}
\frac{1}{2}\left(T_{1}-T_{2}\right)\left[1+\frac{W C}{w C}-\psi\left(\frac{e^{X_{1} L}+e^{X_{2} L}}{e^{X_{1} L}-e^{X_{2} L}}\right)\right]=t_{2}-T_{2} \tag{20.26}
\end{equation*}
$$

Solving for $e^{x_{1} L} / e^{X_{2} L}$ and taking logarithms

$$
\begin{align*}
& \left(X_{1}-X_{2}\right) L \\
& \quad=\ln \left[\frac{\left(T_{2}-t_{2}\right)+\frac{1}{2}\left(T_{1}-T_{2}\right)\left(1+\frac{W C}{w c}\right)+\frac{1}{2} \psi\left(T_{1}-T_{2}\right)}{\left(T_{2}-t_{2}\right)+\frac{1}{2}\left(T_{1}-T_{2}\right)\left(1+\frac{W C}{w C}\right)-\frac{1}{2} \psi\left(T_{1}-T_{2}\right)}\right] \tag{20.27}
\end{align*}
$$

Eliminating X_{1} and X_{2} by Eq. (20.20) and eliminating L by introduction of the Fourier equation $W C\left(T_{1}-T_{2}\right)=U P L \Delta t$, where Δt is the true temperature difference between the shell side and tube side,

$$
\begin{equation*}
\Delta t=\frac{\left(T_{1}-T_{2}\right) \psi}{\ln \left[\frac{\left(T_{2}-t_{2}\right)+\frac{1}{2}\left(T_{1}-T_{2}\right)\left(1+\frac{W C}{w C}\right)+\frac{1}{2} \psi\left(T_{1}-T_{2}\right)}{\left(T_{2}-t_{2}\right)+\frac{1}{2}\left(T_{1}-T_{2}\right)\left(1+\frac{W C}{w C}\right)-\frac{1}{2} \psi\left(T_{1}-T_{2}\right)}\right]} \tag{20.28}
\end{equation*}
$$

Substituting the value of ψ and eliminating $w c / W C$ by introducing its equivalent $\left(T_{1}-T_{2}\right) /\left(t_{2}-t_{1}\right)$,

$$
\begin{equation*}
\Delta t=\frac{\sqrt{\left(T_{1}-T_{2}+t_{2}-t_{1}\right)^{2}+4 \frac{u p}{U P}\left(t_{2}-t_{1}\right)^{2}}}{\ln \left[\frac{T_{2}-t_{2}+T_{1}-t_{1}+\sqrt{\left(T_{1}-T_{2}+t_{2}-t_{1}\right)^{2}+4 \frac{u p}{U P}\left(t_{2}-t_{1}\right)^{2}}}{\left[T_{2}-t_{2}+T_{1}-t_{1}-\sqrt{\left(T_{1}-T_{2}+t_{2}-t_{1}\right)^{2}+4 \frac{u p}{\overline{U P}}\left(t_{2}-t_{1}\right)^{2}}\right.}\right]} \tag{20.29}
\end{equation*}
$$

which gives the true temperature difference in terms of the terminal differences. In order to establish a graphical representation, dimensionless parameters will again be used.

$$
R=\frac{T_{1}-T_{2}}{t_{2}-t_{1}}=\frac{w c}{W C} \quad V=\frac{1}{2}\left(\frac{T_{1}+T_{2}-t_{1}-t_{2}}{t_{2}-t_{1}}\right)
$$

where V is the arithmetic mean temperature difference per unit temperature change in the tube fluid.

$$
F=\frac{u p}{U P}
$$

where F is the ratio of the conductances per unit of tube length and the true temperature difference per unit change in tube side temperature is $\Delta t_{D}=\Delta t /\left(t_{2}-t_{1}\right)$. Using these ratios Eq. (20.29) can be written

$$
\begin{equation*}
\Delta t_{D}=\frac{\sqrt{(R+1)^{2}+4 F}}{\ln \left[\frac{2 V+\sqrt{(R+1)^{2}+4 F}}{2 V-\sqrt{(R+1)^{2}+4 F}}\right]} \tag{20.30}
\end{equation*}
$$

This equation also expresses Δt_{D} for Case IV in Fig. 20.15d. For Cases II and III the equivalents of Eqs. (20.29) and (20.30) are

$$
\begin{equation*}
\Delta t=\frac{\sqrt{\left(T_{1}-T_{2}-t_{2}+t_{1}\right)^{2}+4 \frac{u p}{U P}\left(t_{2}-t_{1}\right)^{2}}}{\ln \left[\frac{T_{2}-t_{2}+T_{1}-t_{1}+\sqrt{\left(T_{1}-T_{2}-t_{2}+t_{1}\right)^{2}+4 \frac{u p}{U P}\left(t_{2}-t_{1}\right)^{2}}}{T_{2}-t_{2}+T_{1}-t_{1}-\sqrt{\left(T_{1}-T_{2}-t_{2}+t_{1}\right)^{2}+4 \frac{u p}{U P}\left(t_{2}-t_{1}\right)^{2}}}\right]} \tag{20.31}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta t_{D}=\frac{\sqrt{(R-1)^{2}+4 F}}{\ln \left[\frac{2 V+\sqrt{(R-1)^{2}+4 F}}{2 V-\sqrt{(R-1)^{2}+4 F}}\right]} \tag{20:32}
\end{equation*}
$$

Equations (20.30) and (20.32) can be rearranged to the form

Fig. 20.17. Solution of Eq. (20.33). (Hurd, Industrial Engineering Chemistry.)

$$
\begin{equation*}
\frac{\Delta t_{D}}{V}=\frac{2(E / V)}{\ln \left(\frac{1+\frac{E}{V}}{1-\frac{E}{V}}\right)} \tag{20.33}
\end{equation*}
$$

where for Cases I and IV

$$
\begin{equation*}
E=1 / 2 \sqrt{(R+1)^{2}+4 F} \tag{20.34}
\end{equation*}
$$

and where for Cases II and III
$E=1 / 2 \cdot \sqrt{(R-1)^{2}+4 F}$
The solution of Eq. (20.33) is given in Fig. 20.17, and the solution for Eqs. (20.34) and (20.35) is given by Fig. $20.18 a$ and b, respectively. Because this method of obtaining the true temperature difference differs so greatly from the methods of preceding chapters, the procedure is summarized.

(a)

(b)

Fra. 20.18. Solution of Eqs. (20.34) and (20.35). (Hurd, Industrial Engineering Chemistry.)

1. Determine R and V, and after having determined U and u, determine F.
2. From R and F determine E in Fig. $20.18 a$ or b for the arrangement identified in Fig. 20.15. If V is equal to or greater than $3 E$, proceed directly to step 4 , using V as identical with the Δt_{D}.
3. Calculate E / V, and read $\Delta t_{D} / V$ from Fig. 20.17. Multiply by V to obtain Δt_{D}.
4. Multiply Δt_{d} by $\left(t_{2}-t_{1}\right)$ to obtain Δt for use in the Fourier equation.

Example 20.6. Calculation of the True Temperature Difference. $1000 \mathrm{lb} / \mathrm{hr}$ of fluid of 0.5 specific heat is to be heated from 50 to $100^{\circ} \mathrm{F}$ by means of $250 \mathrm{lb} / \mathrm{hr}$ of hot water in the shell which will be, cooled from 200 to $100^{\circ} \mathrm{F}$. The bayonet consists of 1 in . OD tubes within 2 in . OD tubes. U and u are 60 and $120 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$ as computed by methods described below. Assume the arrangement of Case III.

$$
\begin{aligned}
& R=\frac{200-100}{100-50}=2.0 \\
& V=\frac{1}{2}\left(\frac{200+100-50-100}{100-50}\right)=1.50 \\
& F=\frac{120 \times 1}{60 \times 2}=1.0
\end{aligned}
$$

In Fig. $20.18 b$ for $R=2.0$ and $F=1.0$, the abscissa and ordinate intersect at $E=1.10$. Thus $E / V=1.10 / 1.50=0.739$, and from Fig. $20.17 \Delta t_{D} / V=0.783$ and

$$
\begin{gathered}
\Delta t_{D}=0.783 \times 1.50=1.175 \\
\Delta t_{D}=\frac{\Delta t}{t_{2}-t_{1}} \quad \Delta t=1.175 \times 50=58.8^{\circ} \mathrm{F}
\end{gathered}
$$

The LMTD is $72^{\circ} \mathrm{F}$ for counterflow.
Bayonet-exchanger Heat-transfer Coefficients. The bayonet exchanger presents no new problem in the calculation of overall heat-transfer coefficients. The overall coefficient u for the outside diameter of the inner tube is found in the same manner employed for the double pipe exchanger in Chap. 6. The equivalent diameter for the annulus is based on the perimeter at the outside diameter of the inner tube and considered effective at the outside diameter of the inner tube. To compute the annulus coefficient at the inside diameter of the outer tube, the equivalent diameter is based on the perimeter at the inside diameter of the outer tube and is considered effective at the inside diameter of the outer tube. The flux is then corrected to the outside diameter of the outer tube by the simple ratio of the inside diameter to outside diameter.

Shell-side coefficients are treated in the same manner as former prototypes. Condensation and vaporization are treated by the methods of Chaps. 12 through 15. The use of a bayonet exchanger for sensible-heat transfer in a shell without baffles usually simulates longitudinal flow along the axis of the bayonet and can be computed by the methods of Example 7.5. For segmentally baffled bayonet bundles use Fig. 28.

8. FALLING-FILM EXCHANGERS

The falling-film exchanger is usually a conventional $1-1$ exchanger designed to operate vertically as shown in Fig. 20.19a. Liquid enters the channel at the top at such a rate that the tubes do not flow full of liquid, but instead, liquid descends by gravity along the inner walls of the

Frg. 20.19. (a) True counterflow falling-film exchanger with circular flow weirs. (b) Detail of a circular flow weir for insertion into top of tubes.
tubes as a thin film. Obviously this produces a much greater linear velocity for a given weight flow than could be obtained if the tube flowed full. The vertical tubes could be made to flow full if desired by feeding the liquid upward or through the use of a loop seal as discussed in Chap. 15. McAdams ${ }^{1}$ quotes Bays ${ }^{2}$ and coworkers as having determined the coefficients for heating water in film flow in 1.5 to 2.5 in . ID pipes 0.4 to

[^67]6.08 ft long. The coefficients are given within ± 18 per cent by the dimensional equation
\[

$$
\begin{equation*}
h_{i}=120\left(\frac{w}{\pi D}\right)^{1 / 3} \tag{20.36}
\end{equation*}
$$

\]

For other liquids McAdams cites a dimensionless empirical equation attributed to T. B. Drew for turbulent flow

$$
\begin{equation*}
\frac{h_{i}}{\left(k^{3} \rho^{2} g / \mu_{f}^{2}\right)^{1 / 3}}=0.01\left[\left(\frac{c \mu}{k}\right)\left(\frac{4 G^{\prime}}{\mu_{f}}\right)\right]^{1 / 6} \tag{20.37}
\end{equation*}
$$

where $G^{\prime}=w / \pi D$ and μ_{f} is evaluated at the average film temperature. For streamline flow where the Reynolds number $4 G^{\prime} / \mu_{f}$ is less than 2000, Bays and McAdams ${ }^{1}$ give

$$
\begin{equation*}
h_{i}=0.67\left[\left(\frac{k^{3} \rho^{2} g}{\mu_{f}^{2}}\right)\left(\frac{c \mu_{f}^{36}}{k L \rho^{2 / g} g^{1 / 2}}\right)\right]^{1 / 6}\left(\frac{4 G^{\prime}}{\mu_{f}}\right)^{1 / 6} \tag{20.38}
\end{equation*}
$$

Very often a swirl is imparted to the falling film by means of overflow pieces having nearly tangential notches which protrude above the upper tube sheet. A typical weir is shown in Fig. 20.19b.

The shell-side coefficient can be computed in the usual manner, using Fig. 28 for sensible coefficients or by the methods of Chaps. 12 or 15 for condensation or evaporation.

9. GRANULAR MATERIALS IN TUBES

The transfer of heat to or from fluidized solids has become increasingly important in modern catalytic and adsorptive processes. The transfer of heat to granular materials in beds was discussed as an unsteady-state problem in Chap. 18. When a dry granular material travels through a vertical or horizontal tube, the flow mechanism is akin to rodlike flow as discussed in Chap. 3. Based upon an earlier derivation of Graetz, ${ }^{2}$ Drew ${ }^{3}$ established the theoretical equation for a fluid in rodlike flow to be

$$
\begin{equation*}
\frac{t_{2}-t_{1}}{T_{s}-t_{1}}=1-0.692 e^{-5.78^{\pi k L}} \frac{\pi c}{w c}-0.131 e^{-30.4 \frac{\pi k L}{w c}}-0.0536 e^{-74.8 \frac{\pi k L}{w c}} \tag{20.39}
\end{equation*}
$$

where $T_{s}=$ constant temperature of the wall
$w=$ granular flow rate, $\mathrm{lb} / \mathrm{hr}$
For values of $\left(t_{2}-t_{1}\right) /\left(T_{s}-t_{1}\right)$ greater than 0.55 only the first term of the series need be considered. Equation (20.39) reduces to

$$
\begin{equation*}
\frac{t_{2}-t_{1}}{T_{s}^{\prime}-t_{1}}=1-0.692 e^{-5.78 \pi(k L / w c)} \tag{20.40}
\end{equation*}
$$

[^68]or
\[

$$
\begin{equation*}
\frac{T_{s}-t_{2}}{T_{s}-i_{1}}=0.692 e^{-5.78 \pi(k L / w c)} \tag{20.41}
\end{equation*}
$$

\]

In a study of heat transfer to sand, Brinn and coworkers ${ }^{1}$ experimentally verified the rodlike nature of the flow of several granular materials in tubes. They also made the following additional observations:

1. The transfer of heat to a fluid in rodilke flow is identical with the unsteady-state heating of an infinitely long cylinder with negligible resistance between the heat source and the cylinder as defined by an equation of the form of Eq. (18.52). The series expression for the infinitely long cylinder and Eq. (18.52) can be shown to be equivalent when the values of the exponents in the infinite series of Eq. (20.39) are identical. This requires that the Graetz number $w c / k L$ and the group $4 \alpha \theta / D^{2 *}$ be equal. In these groups α is the thermal diffusivity, θ the time in hours, and D the inside diameter of the cylinder in feet. Since the linear velocity of the material in the tubes is given by

$$
V=\frac{4 w}{\rho \pi D^{2}} \quad \mathrm{ft} / \mathrm{hr}
$$

and the volume of granular material by

$$
v_{s}=\frac{\pi D^{2}}{4} L
$$

The time is

$$
\theta=\frac{4 v_{s}}{V} \pi D^{2}
$$

The transformation is given by

$$
\frac{4 \alpha \theta}{D^{2}}=\left(\frac{4 k}{c \rho D^{2}}\right)\left(\frac{\pi D^{2} L}{4 w / \rho}\right)=\frac{\pi k L}{w c}
$$

2. For a given weight flow through the tube the temperature change is independent of the diameter. This leads to the interesting point that a desired value can be obtained for the heat-transfer coefficient by changing the tube diameter.
3. If there are other resistances in series with the rodlike flow, it is not possible to obtain the overall resistance and hence U by the arithmetic addition of the resistances. The solutions for such cases are given graphically in Fig. 20.20.

[^69]4. It is not necessary to obtain the film coefficient h_{i} for the granular material flowing inside the tube in calculating the size or performance of the system. It may be obtained as a matter of interest, however, from Eq. (20.41) and the following, which defines the arithmetic mean film coefficient,
\[

$$
\begin{equation*}
h_{i}=\frac{2 k}{\pi D}\left[\frac{1-\left(T_{\mathrm{s}}-t_{2}\right) /\left(T_{\mathrm{a}}-t_{1}\right)}{1+\left(T_{\mathrm{s}}-t_{2}\right) /\left(T_{\mathrm{s}}-t_{1}\right)}\right] \frac{w c}{k L} \tag{20.42}
\end{equation*}
$$

\]

While the preceding has applied to granular materials in rodlike flow in which the temperature of the wall is uniform, Brinn et al. have also solved the equations and given charts for the cases in which the temperature of the medium in the tube jacket is not uniform and also for the cases where the film coefficient from the jacket fluid to the tube is finite and infinite. To this extent they have employed the two temperature parameters R^{\prime} and S^{\prime} as an index of the temperature variation of both the rodlike and jacket flow and a parameter β which is the reciprocal of the Nusselt number, so that

$$
R^{\prime}=\frac{w c}{W C} \quad S^{\prime}=\frac{t_{2}-t_{1}}{T_{1}-t_{1}} \quad \beta=\frac{2 k}{h_{o i} D}
$$

where $h_{o i}$ is the jacket coefficient referred to the inside diameter of the tube. R is replaced by R^{\prime} and S by S^{\prime}, since $w c, t_{2}$ and t_{1} always refer to the granular material whether or not it is the colder of the two. Obviously when $R^{\prime}=0$, it is equivalent to a constant jacket temperature, and when $\beta=0$, it corresponds to a negligible contact resistance between the tube and the jacket fluid or an infinite value of $h_{o i}$. Graphs for values of $\beta=0$ and with $R^{\prime}=0,0.5$, and 1.5 are shown in Fig. 20.20a, b, c, and d. The reciprocals of these graphs correspond to the Gurney-Lurie chart of Fig. 18.13.

Data are usually lacking on the thermal conductivity of the granular material. Its value differs from the thermal conductivity of the solid, since the conduction of heat is obviously affected by granulation. Brinn et al. have found an excellent agreement in the value of the thermal conductivity for a granular solid when determined by heating or cooling a stationary bed similar to that of Chap. 18 or heating or cooling a granular solid in a tube under rodlike flow. For Ottawa sand and crushed ilmenite ore they report values of 0.172 and $0.132 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F} / \mathrm{ft}\right)$, respectively, for stationary beds and 0.155 and 0.141 , respectively, for vertical rodlike flow. The densities of the granular materials were, respectively, 101 and $103 \mathrm{lb} / \mathrm{ft}^{3}$ for the Ottawa sand and 149 and 168 for the ilmenite ore, although the density of the moving material is usually increased by movement. Specific heats for granular solids have been reported for

Fig. 20.20. Theoretical curves for heat transfer to fluids in rodlike flow ir

cylindrical pipes for various values of R^{\prime} and β. (Brinn, et al., Industriul and Engineering Chemistry.)
several materials, and these are somewhat higher than those of the solid. For quartz, silica, and Ottawa sand they range from 0.175 to $0.20 \mathrm{Btu} /(\mathrm{lb})\left({ }^{\circ} \mathrm{F}\right)$. Examples given below have been taken from the original reference.

Example 20.7. Calculation of Sand Cooling with Negligible Resistance. A sand has a specific heat $0.20 \mathrm{Btu} /(\mathrm{lb})\left({ }^{\circ} \mathrm{F}\right)$ and a thermal conductivity of $0.15 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)$ (${ }^{\circ} \mathrm{F} / \mathrm{ft}$). It is to be cooled from 284 to $104^{\circ} \mathrm{F}$ at the rate of $1000 \mathrm{lb} / \mathrm{hr}$ by water from 86 to $104^{\circ} \mathrm{F}$. A bundle will consist of vertical tubes $10^{\prime} 0^{\prime \prime}$ long and with inside diameters of 2.0 in.
(a) How many tubes are required?
(b) How many tubes are required if air from 86 to $104^{\circ} \mathrm{F}$ is the cooling medium?

Solution. (a) Assume $h_{o ;}$ for water is $500 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}{ }^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$.

$$
\beta=\frac{2 k}{h_{0}: D}=\frac{2 \times 1.05}{500 \times 3 / 12}=0.0036 \quad \text { (nearly zero) }
$$

The water cooling rate is

$$
\begin{aligned}
\frac{1000 \times 0.2(284-104)}{104-86} & =2000 \mathrm{lb} / \mathrm{hr} \\
R^{\prime}=\frac{w c}{W C}=\frac{1000 \times 0.2}{2000 \times 1} & =0.1 \\
S^{\prime}=\frac{t_{2}-t_{1}}{T_{1}-t_{1}}=\frac{104-284}{86-284} & =0.91
\end{aligned}
$$

From Fig. 20.206

$$
\begin{aligned}
\beta & =0 \quad R^{\prime}=0.1 \quad S^{\prime}=0.91 \\
\frac{w c}{k L} & =8.33 \\
w & =\frac{8.33 \times 0.15 \times 10}{0.20}=62.5 \mathrm{lb} / \mathrm{hr}
\end{aligned}
$$

This is the rate per tube.

$$
\text { Total number of tubes }=\frac{1000}{62.5}=16
$$

(b) For air, assume $h_{o i}=9$.

$$
\beta=0.2
$$

The air rate using 0.25 for the specific heat of air is

$$
\frac{1000 \times 0.2(284-104)}{0.25(104-86)}=8000 \mathrm{lb} / \mathrm{hr}
$$

Interpolating between Fig. $20.20 b$ and c,

$$
\begin{aligned}
\beta=0.2 \quad R^{\prime} & =0.1 \quad S^{\prime}=0.91 \\
\frac{w c}{k L} & =5.23 \\
w & =39 \mathrm{lb} / \mathrm{hr}
\end{aligned}
$$

and 26 tubes are needed. The film resistance increases the size of the unit by 62 per cent.
10. ELECTRIC-RESISTANCE HEATING

Introduction. The transformation of fuel energy into work (and then into electricity) is an inefficient process, only a portion of the fuel energy

Cutaway view of a two-terminal (single heat)
immersion heater
(a)-IMMERSION HEATER

(b)-STRIP HEATER

(c)-FINNED STRIP HEATER

Fig. 20.21. Common process resistance heating elements. (Westinghouse Electric Corporation.)
finally being available as work. The transformation of fuel energy into steam can be accomplished theoretically with 100 per cent efficiency. These are the practical deductions of the Carnot cycle, and electricity costs ten to fifteen times as much as steam in localities which are not served by hydroelectric power. For this reason electric resistance heating has not been considered a part of process heat transfer, although the
comparison of the cost of electricity and coal need not necessarily preclude its use. There are innumerable applications in which electric-resistance heating can be made to operate more effectively than fluid heat transfer particularly in batch operations. There are still other advantages which may be derived from the compactness of the standard types of electric heating elements: the ease with which they provide high temperatures, the elimination of combustion hazards, and their ready application to automatic regulation and control. It is fairly safe to conclude, however, that most of the applications of electric-resistance heating are small compared with those of the majority of industrial processes.

The three commonest resistance heating elements are the immersion heater, the strip heater, and the finned-strip heater. These are shown in Fig. 20.21. Others are available such as the cartridge heater which are treated by the same general method. Electric heaters consist of resistance wires embedded in a refractory which is then encased in a metal sheath. Immersion heaters are used for direct introduction into liquids and are made with copper sheathing for water heating and steel sheathing for oil and organics. The temperature of the copper sheathing may not exceed $350^{\circ} \mathrm{F}$, while the steel-sheathed heaters may operate at a maximum temperature of $750^{\circ} \mathrm{F}$. The strip heater is used most for the conduction heating of solids, and it can also be used for heating air and gases. Strip heaters are available with two maximum operating temperatures: $750^{\circ} \mathrm{F}$ for steel-sheathed heaters and $1200^{\circ} \mathrm{F}$ for chrome-steel-sheathed heaters. By far the best suited for air and gas heating is the finned-strip heater combining electric heating and extended surface and available with maximum operating temperatures of 750 and $950^{\circ} \mathrm{F}$.

The technique of handling electric-heating calculations has been developed by the electrical industry and is not identical with the methods employed in either the mechanical or chemical industries. ${ }^{\text {e }}$ This is doubtless due to the greater standardization of electric equipment.

The laws governing electric-resistance heating, neglecting the effect of the resistance on the circuit, are among the simplest in elementary physics. These are Ohm's law, $I=E / R^{\omega}$ and Joule's law, $P=E I$, where I is the current in amperes, E the voltage, R^{ω} the resistance in ohms, and P the power in watts: The rate at which electrical energy is converted into heat is given by $I^{2} R^{\omega}$. The rate of energy delivery is the watt or kilowatt, and this is equivalent to the Btu per hour. Similarly the total quantity of energy is the kilowatt-hour or watt-hour, and this is equivalent to Btu without a time unit.

In electric-resistance heating the element is capable of attaining a very high temperature. The ultimate temperature attained by a resistance heater is that which causes the heat energy to be dissipated at the same
rate as it is produced. To prevent the element from burning out, the cold fluid or solid must be capable of receiving the heat at a sufficiently rapid rate to keep the sheath from exceeding its maximum allowable

Table 20.1. Tamerston Heaters

Water heaters, copper sheath, $\max \operatorname{temp} 350^{\circ} \mathrm{F}$						Oil heaters, steel sheath, \max temp $750^{\circ} \mathrm{F}$					
Watts	Watts/ in. ${ }^{2}$ immexsion	. Immersed length. in.	Collar, in. IPS	No. heats	No. tubes	Watts	Watts/ in, ${ }^{2}$ immersion	Immersed length, in.	Collar, in. IPS	No. heats	No. tubes
1,000	35	8	114	1	1	1000	20	9	114.4	1	1
2,000	35	10	2	3	2	2000	20	17	2	3	2
3,000	35	15	2	3	2	3000	20	25	2	3	2
4,000	35	20	2	3	2	4000	20	34	2	3	2
5,000	35	24	2	3	2	5000	20	41	2	3	2
7,500	35	30	2	3	4						
10,000	35	35	2	3	4			rced Cir	ulation		
						5000*	35	25	2	3	2
						6000**	35	30	2	3	2
						8000*	30	33	2	3	4

* 230 volts only. All others 115 or 230 volts.

Table 20.2. Strip Heaters

| Steel sheath, max surface temp 750 |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: |

temperature. In other words, the design of electric elements is dictated by the flux which must be dissipated to the cold material. The flux is the deliverable energy in Btu per hour per square foot of surface. In
electrical units it is expressed in watts per square inch of element surface or watts per linear inch of element corresponding to watts per square inch for elements of uniform surface per inch of length.

Flux data for the various types of heater are given in Tables 20.1 through 20.4. The wattage indicates the output of the element but does

Table 20.3. Finned-strip Heaters

Steel sheath, max surface temp $750^{\circ} \mathrm{F}$				Chrome steel sheath, max surface temp $950^{\circ} \mathrm{F}$			
Watts	Watts/ in.	Total length, in.	Heated length, in.	Watts	Watts/ in.	Total length in.	Heated length, in.
250	31	12	8	250	62	8	4
350	25	18	14	350	44	12	8
500	25	24	30	500	36	18	14
750	25	31	27	750	37	24	30
1000	3,1	36	32	1000	38	31	27
1250	32	43	39	1500	47	36	32

Table 20.4. Strip Heaters
Clamp-on service watts per square inch of contact surface

Steel sheath, max surface temp $750^{\circ} \mathrm{F}$	Chrome steel sheath, max surface temp $1200^{\circ} \mathrm{F}$		
Total length, in.	Watts/in. ${ }^{2}$	Total length, in.	Watts/in.
12^{*}	21	8^{*}	42
18	16	12	29
24	16	18	24
31	19	24	25
36	21	31	25
43	22	43	26

* Passes.

not indicate its temperature in so doing. Included is the watts per square inch or watts per inch which the various elements may dissipate to the cold fluid or solid. For finned- and ordinary strip heaters the watts per inch removed by air as a function of the air velocity and initial temperature are given in Figs. 20.22 and 20.23. At low air velocities it is seen that there is little advantage to the use of finned-strip heaters in preference to bare-strip heaters. Since the outlet-air temperature also affects
the sheath temperature, Fig. 20.24 relates the surface temperature of strip heaters as a function of the flux and the ambient-air temperature. When dealing with elements operating at such high temperatures, the

Fra. 20.22. Finged-strip heater air-heating curves. (Westinghouse Electric Corporation.)
effect of radiation is of greater importance than in ordinary steam-heated equipment. Figure 20.25 relates the losses obtained experimentally under varying conditions. The use of these graphs and tables is shown explicitly by solving typical problems to which they apply.

Frg. 20.23. Strip-heater air-heating curves. (Westinghouse Electric Corporation.)
Example 20.8a. Immersion Water Heater. A tank 2 by 3 by 2 ft high is filled with water to a height of 18 in . It is required to heat the water from a tap temperature of $50^{\circ} \mathrm{F}$ to a dermand temperature of $150^{\circ} \mathrm{F}$ within 2 hr . Thereafter, the tank must supply $8 \mathrm{gal} / \mathrm{hr}$ of water at $150^{\circ} \mathrm{F}$.

What immersion elements are required?

Solution:

Unsteady state.
Lb water $=2 \times 3 \times 18 / 2 \times 62.5=562 \mathrm{lb}$
$Q^{\prime}=562.5(150-50) 1.0=56,250 \mathrm{Btu}$
$Q=\frac{56,250}{2}=28,125 \mathrm{Btu} / \mathrm{hr}=\frac{28,125}{3412}=8.25 \mathrm{kwhr}$
Josses:
From surface of water (Fig. 20.25c) $=2 \times 3 \times 260 \quad=1.56 \mathrm{kwhr}$
From sides of vessel (Fig. 20.25c) $=5.5(2 \times 2 \times 2+2 \times 2 \times 3) / 1000=0.11$
From bottom $=$ negligible
Total losses $=1.67 \mathrm{kwhr}$
Tótal requirement $=8.25+1.67=9.92 \mathrm{kwhr}$

Fig. 20.24. Surface temperature vs. Hux for strip heaters. (Westinghouse Electric Corporaw tion.)

Steady state: This is the same as heating $8 \mathrm{gal} / \mathrm{hr}$ of water.

The unsteady-state requirement controls the selection of the immersion heater requiring 10 kwhr . The nearest size in Table 20.1 is the 4000 -watt or 4 - kw immersion element with a. 20 -in. immersed length and wired for three heats. Three are required. The rate of absorption of heat by water is high, and there is little need ever to check the sheath temperature although the same rule is not universally true for organics.

Example 20.8b. Strip Heater for Air Heating. An oven is charged hourly with 100 lb of steel which is air dried at $370^{\circ} \mathrm{F}$ by means of strip heaters located inside it. Four air changes per hour are required for the removal of the moisture. The oven is 3 by 4 by 2 ft insulated with 2 in . of rock wool. The inlet air and steel are at $70^{\circ} \mathrm{F}$.

What arrangement of strip heaters is required?

Fig. 20.25a. Heat losses through insulated oven walls. Curve based on an insulation 1 in, thick of standard high-grade material, such as 85 per cent magnesia, rock wool, Filinsul, etc. If insulation is 2 in . thick, divide curve values by 2 ; if 4 in. thick, divide by 4 ; etc.

Fig. 20.25b. Heat losses from smooth solid surfaces. Heat losses from a horizontal surface laid flat on one side are top surface, 110 per cent of curve values; bottom surface, 55 per cent of curve values; averages of losses from top and bottom surfaces, $821 / 2$ per cent of curve values.

Solution:

Heat to steel charge $=100 \times 0.12(370-70)=3600 \mathrm{Btu} / \mathrm{hr}$
Heat to air $=4 \times 2 \times 3 \times 4 \times 0.075 \times 0.25(370-70)=540$
Total $=\widetilde{4140} \mathrm{Btu} / \mathrm{hr}$ or 1.22 kW

Losses:

From Fig. $20.25 a \mathrm{for} 52 \mathrm{ft}^{2}$ of oven outside surface and a temperature rise of $300^{\circ} \mathrm{F}$ the loss is 5 kw for 1 in . thick insulations. For 2 in . thick insulation the loss is $5 / 2$

$$
\text { Total }=\frac{2.50}{3.72} \mathrm{kw}
$$

Fig. 20.25c. Heat losses irom open hot-water tanks. (Festinghouse Electric Corporation.)
From Table 20.2 it is seen that the energy and space requirement can be fulfilled by four heaters of 1000 watts capacity each. The distribution will be poor, however, because so few elements are employed, and the use of eight elements of 500 watts is preferable. It has been assumed that steel-sheathed elements are used. The surface temperature must be checked to assure that this element will not exceed a surface temperature of $750^{\circ} \mathrm{F}$, since air absorbs heat relatively slowly.
From Table 20.2 the required dissipation is 25 watts/in. From Fig. 20.24 for $370^{\circ} \mathrm{F}$ air the surface of the sheath will be $680^{\circ} \mathrm{F}$ and hence is satisfactory. If the temperature had exceeded $750^{\circ} \mathrm{F}$, a chrome-steel element would have been necessary.

Example 20.8c. Finned-strip Heater. Determine the number of finned-strip heaters required to raise the temperature of 270 cfm of air flowing in an 18 - by 18 -in. duct from 70 to $120^{\circ} \mathrm{F}$. Density of air at $70^{\circ} \mathrm{F}$ is $0.075 \mathrm{lb} / \mathrm{It}^{8}$.
$Q=270 \times 0.075 \times 60 \times 0.25(120-70)=15,200 \mathrm{Btu} / \mathrm{hr}$ at 4.47 kw
Velocity $=270 / 1.5 \times 1.5 \times 60=2.0 \mathrm{fps}$
Refer to Fig. 20.22a. The air is capable of removing 33 watts/in which is the maximum dissipation which may be expected. Any group of heaters providing 5 kw which do not require a dissipation of more than 33 watts/in. and which will fit into the duet will be satisfactory. Thus in Table 20.3 elements of 350 watts with a total length each of 18 in . each are satisfactory.

Consider the same service handled by conventional strip heaters without fins. From Fig. $20.23 a$ the air will remove 26 watt/in. of heated length. From Table 20.2 the 18 in . long element with 350 watts capacity will also be satisfactory and cheaper.

Clamp-on Applications. One of the best examples of the versatility of the strip heater is the ease with which it can be clamped-on or bound to various vessels. When used in clamp-on services, it has been found that the temperature drop across the surface-to-surface contact is 14 to $19^{\circ} \mathrm{F}$ per unit of flux.

Example 20.8d. Clamp-on Plastic Heating. It is desired to heat a cast-iron plate 26 by 12 by 1 in . at $70^{\circ} \mathrm{F}$ on which a plastic with specific heat of $0.22 \mathrm{Btu} /(\mathrm{lb})\left({ }^{\circ} \mathrm{F}\right)$ is to be softened. It is necessary that one $70-\mathrm{lb}$ batch of the plastic be beated on the plate after it has attained a steady state rate from 70 to $300^{\circ} \mathrm{F}$ in 1 hr . The plate will be heated on its underside by clamp-on strip heaters in 1 hr . How many are required?

Solution. The specific gravity of cast iron is 7.2 , and its specific heat is 0.13 $\mathrm{Btu} /(\mathrm{lb})\left({ }^{\circ} \mathrm{F}\right)$.

Unsteady state:

Weight of plate $=26 \times 12 \times 1 \times 62.5 \times 7.2 / 1728=81 \mathrm{lb}$
$Q=81(300-70) 0.13=2400 \mathrm{Btu} / \mathrm{hr}$ or 0.705 kw
Losses: From Figure $20.25 b$ for a black body the radiation is 1.5 watts/in. ${ }^{2}$. The radiation from the top is actually 110 per cent of this value, and from the bottom of the plate it is 55 per cent for an average of 82.5 per cent.
Total radiation loss $=2 \times 26 \times 12 \times 1.5 \times 0.825 / 1000=0.80 \mathrm{kw}$
Total requirement $=0.70+0.80=1.50 \mathrm{~kW}$
Steady state: Input required to plate
$Q=70 \times 0.22(300-70)=3550 \mathrm{Btu} / \mathrm{hr}$ or 1.04 kw
Losses $=$

$$
\text { Total requirement }=\frac{0.80}{1.84} \mathrm{kw}
$$

The steady state is controlling. The requirements are satisfied by four 24 -in. strip heaters, but the sheath temperature must now be checked. Since the temperature drop per unit flux density is 14 to $19^{\circ} \mathrm{F}$, assume an average of $16.5^{\circ} \mathrm{F}$. For clamp-on strips 24 in . long the watts per square inch deliverable are 16. The total temperature drop is the product of the two.

$$
\Delta t=16.5 \times 16=264^{\circ} \mathrm{F}
$$

The sheath temperature is then $300+264=564^{\circ} \mathrm{F}$, which is satisfactory for steelsheathed elements with a $750^{\circ} \mathrm{F}$ maximum.

NOMENCLATURE FOR CHAPTER 20

A Heat-transfer surface; ft^{2}
$B \quad$ Height of agitator above vessel bottom, ft ; width of an atmospheric cooler, ft
C Specific heat of hot fluid, Btu/(lb) $\left({ }^{\circ} \mathrm{F}\right)$
$C_{1}, C_{2} \quad$ Constants
$D \quad$ Inside diameter of pipe or tube, ft
$D_{i} \quad$ Diameter of inside of vessel, ft
$D_{0} \quad$ Outside diameter of pipe or tube, ft
E Temperature group defined by Eq. (20.34) or (20.35), dimensionless; voltage; evaporation, per cent
$F \quad$ The ratio $u p / U P$, dimensionless
$G \quad$ Mass velocity, $\mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft}{ }^{2}\right)$
$G^{\prime} \quad$ Liquid loading for trombone coolers $w / 2 L, \mathrm{lb} /(\mathrm{hr})(\mathrm{ft})$; for falling filma $w / \pi D, \mathrm{lb} /(\mathrm{hr})(\mathrm{ft})$
$g \quad$ Acceleration of gravity, $\mathrm{ft} / \mathrm{hr}^{2}$
$h \quad$ Heat-transier coefficient, $\mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$
$h_{i}, h_{o} \quad H e a t-t r a n s f e r ~ c o e f f i c i e n t ~ r e f e r r e d ~ t o ~ t h e ~ i n s i d e ~ d i a m e t e r ~ a n d ~ o u t s i d e ~ d i a m e t e r ~$ of pipe or tube, Btu/(hr)(ft2)(${ }^{\circ} \mathrm{F}$)
$h_{o i}, h_{i o} h_{o}$ referred to the inside diameter; h_{i} referred to the outside diameter, Btu/(hr) (ft²)($\left.{ }^{\circ} \mathbf{F}\right)$
$I \quad$ Current, amp
$j \quad$ Factor for heat transfer, dimensionless
$K \quad$ Temperature group in crossflow $\left(T_{1}-T_{2}\right) /\left(T_{2}-t_{1}\right)$, dimensionless
$K_{1}, K_{2} \quad$ Constants
$k \quad$ Thermal conductivity, $\mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}{ }^{2}\right)\left({ }^{\circ} \mathrm{F} / \mathrm{ft}\right)$
$L \quad$ Tube length, ft; length of agitator paddle, ft
LMTD Log mean temperature difference, ${ }^{\circ} F$
$M \quad$ Spray, $\mathrm{lb} /$ (min) (ft^{2} projected tube area)
$m \quad$ Spray, $\mathrm{lb} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right.$ cooler cross-sectional area)
$N \quad$ Agitator speed, rev/hr; number of horizontal tube rows
$N^{\prime} \quad$ Agitator speed, rpm
P. Perimeter of large pipe or tube, ft; power, watts
$P_{H}, P_{V} \quad$ Horizontal tube pitch, ft ; vertical tube pitch, ft
$p \quad$ Perimeter of smaller pipe or tube, ft ;
Q Heat flow, Btu/hr
Q' Heat, Btu
$\boldsymbol{R} \quad$ Temperature group $\left(T_{1}-T_{2}\right) /\left(t_{2}-t_{1}\right)$, dimensionless
$R^{\prime} \quad$ Temperature group in rodlike flow, dimensionless
$R_{d} \quad$ Dirt factor, $(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right) / \mathrm{Btu}$
$R^{\omega} \quad$ Resistance, ohms
(r) Temperature group LMTD/($\left.T_{1}-t_{1}\right)$, dimensionless
$S \quad$ Temperature group $\left(t_{2}-t_{1}\right) /\left(T_{1}-t_{1}\right)$, dimensionless
$S^{\prime} \quad$ Temperature group in rodlike flow, dimensionless
T Temperature of the hot fluid in general, ${ }^{\circ} \mathrm{F}$
$T_{1,} T_{2}$ Inlet and outlet temperatures of the hot fluid, ${ }^{\circ} \mathrm{F}$
T. \quad Constant hot-fluid temperature, ${ }^{\circ} \mathrm{F}$

4 Temperature of the cold fluid in general, ${ }^{\circ} \mathrm{F}$
$t_{f}, t_{t} \quad$ Temperature of the film, temperature of the wall, ${ }^{\circ} \mathrm{F}$
$t_{1}, t_{2} \quad$ Inlet and outlet temperature of the cold fluid, ${ }^{\circ} \mathrm{F}$
$\Delta t \quad$ True temperature difference, ${ }^{\circ} \mathbf{F}$
$\Delta t_{D} \quad$ Temperature group $\Delta t /\left(t_{2}-t_{1}\right)$, dimensionless
$U \quad$ Overall coefficient of heat transfer, Btu/(hr)(ft2) $\left({ }^{\circ} \mathrm{F}\right)$
$U_{D}, U_{C} \quad$ Overall design coefficient; overall clean coefficient, $\mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$
$u \quad$ Overall coefficient of heat transfer, $\mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F}\right)$
$V \quad$ Velocity, fps ; temperature group, dimensionless
$v_{v} \quad$ Volume of granular material, ft^{3}
W Weight flow of hot fluid, $\mathrm{lb} / \mathrm{hr}$
$w \quad$ Weight flow of cold fluid, $\mathrm{lb} / \mathrm{hr}$
$X \quad$ A function
$x \quad$ Distance, ft
$Y \quad$ Space group $\left(P_{H}-D_{o}\right) / P_{H}$, dimensionless
$y \quad$ Thickness of agitator, ft
$Z \quad$ Space group $\left(P_{H}-D_{o}\right) / D_{o}$, dimensionless
$z \quad$ Height of liquid in vessel, ft
$\alpha \quad$ Thermal diffusivity, $\mathrm{ft}{ }^{2} / \mathrm{hr}$
$\beta \quad$ Dimensionless group, $2 k / h_{o i} D$
θ Time, hr
$\mu \quad$ Viscosity, lb/(ft)(hr)
$\rho \quad$ Density, $\mathrm{lb} / \mathrm{ft}^{\mathrm{a}}$
τ A function
$\psi \quad$ A function

Subscripts (except as noted above)

c	Coil
j	Jacket

CHAPTER 21

THE CONTROL OF TEMPERATURE AND RELATED PROCESS VARIABLES

Introduction. The even operation of a process is dependent upon the control of the process variables. These are defined as conditions in the process materials or apparatuses which are subject to change. Because there may be several materials and several pertinent operating factors which may change in the simplest of processes, the maintenance of control over an entire process is an important aspect of process design. Many of the advances in processing technology during recent years have been due in part to the widespread use of automatic-control mechanisms. Naturally a comprehensive study of so broad a field of endeavor is beyond the scope of this text, and it is the intention here to introduce in a practical way only the most elementary principles of process control.

Process Variables. When the flow sheet is laid out for a process, the temperatures, pressures, and fluid-flow quantities are theoretically fixed in accordance with heat, pressure, and material balances. The translation of the flow sheet into an operable plant requires that special provision be made to assure the relative constancy of the various quantities and qualities. It is impossible to achieve absolute constancy in even the simplest of industrial operations and these do not include the multitude of complex operations which are normally encountered. Take the simple case of a storage tank to which one pump continuously supplies liquid and an identical pump continuously removes liquid. Because of differences in suction and discharge, both pumps, acting independently, pump at different rates and the liquid level in the storage tank cannot be expected to remain constant.

Similar factors influence nearly every other steady-state condition. Consider the utilities alone such as high- and low-pressure steam, cooling water, electricity, compressed air, and fuel supply. When any single unit process in a plant is either shut down or started up, it may affect the supply of the utilities to the other unit processes. Furthermore, when the furnaces in a powerhouse are periodically refired, the temperature, pressure, and quantity of steam throughout the plant may show some variation. Similarly a sudden change in the steam demand at some point in the plant for steaming out large vessels may cause a sufficient
speed variation to affect the performance of turbine-driven pumps, compressors, and generators including their discharge rates and pressures. Or the temperature of cooling-tower water, varying with atmospheric conditions, might affect the total heat transfer at critical points in the process. Add to these the variations resulting from changes in the composition of the feed materials such as boiling points, specific heats, or viscosities, and additional fluctuations may be anticipated in the pressure, temperature, and fluid flow of the process streams.

Automatic control is employed to measure, suppress, correct, and modify changes of the four principal types of process variation:

1. Temperature control
2. Pressure control
3. Flow control
4. Level control

There are, in addition, other ${ }^{1}$ controllable variables such as specific gravity, thermal conductivity, speed, and composition. Because of its

Fig. 21.1. Self-acting temperature controller. importance to heat transfer particular attention is given in the following pages to temperature control and its relationship to the other principal process variables.

Self-acting and Pilot-acting Controllers. It is the object of all controllers to regulate the process variables, and to do so they must be capable of first measuring the variables. Some instruments are equipped to indicate the variable in a continuously readable form, and others, recorders, are equipped with pen and ink on a traveling chart calibrated for time. These are not essential parts of the control but additional conveniences.

Controllers or regulators are either self-acting or pilot-acting. A self-acting temperature controller is shown in Fig. 21.1. A bulb filled with a fluid having a favorable coefficient of thermal expansion is placed in 9 stream or vessel at the point where the temperature is to be controlled. The bulb is connected to the controller by means of a capillary tube. As an example of its operation suppose that the temperature of a stream
${ }^{1}$ See also Perry, J. H., "Chemical Engineers' Handbook," 3d ed., pp. 1263-1340 by R. W Porter and D. M. Considine, McGraw-Hill Book Company, Inc., New York, 1950.
leaving the shell of a heater is to be controlled by adjusting the flow of steam to the tubes of the heater. Any increase in the temperature of the stream causes an increase in the pressure of the bulb fluid, which is transmitted in turn to the bellows of the regulator assembly. The larger area of the bellows amplifies the force acting against the spring and causes the valve to move in a direction which decreases the flow of steam. If the same type of regulator were used to control the flow of cooling water instead of steam, the ralve would be arranged to open when the bulb pressure increased. The control points of self-acting controllers can be varied by means of adjusting nuts, which change the tension on the spring.

In general the temperature-sensitive element consists of a bulb and. capillary filled or partly filled with a volatile fluid, an inert gas, or an expanding liquid. Thermocouple and thermal-expansion elements also find wide application in temperature control. With the exception of the liquid-filled bulb the total amount of fluid contained in the capillary is very small compared with the amount confined in the bulb. If the capillary were accidentally to lie across a steam pipe, it would not materially affect the measurement of the instrument, since the amount of fluid present where the capillary contacts the pipe is exceedingly small. Under certain conditions compensation must be included for variations in the ambient temperature at the point where the variation is registered.

From a mechanical standpoint self-acting types of instruments are the simplest. Most of these fall into the regulator rather than the instrument class, because the regulator does not actually measure the variable but acts upon deviations from the set control point. Many involve no calibration in their manufacture whatever but are adjusted to produce the desired effect in the field. Typical of this class are weight-loaded reducing or back-pressure valves, spring-loaded diaphragm valves for reducing or back-pressure regulation, and the temperature regulator discussed above.

The second class of instruments are the pilot-acting controllers in which the detection of a small variation actuates a more powerful force by which the variable is corrected. This class is capable of a greater degree of sensitivity than the regulators because they eliminate some of the lags which would be inherent in self-acting mechanisms actuated by the force of a large volume of fluid. Most pilot-acting instruments use compressed air to effect the larger controls, while some employ electric relays and motor-driven controllers. The latter are used particularly for isolated services or where compressed air is not available.

The majority of pilot-acting instruments operate on the principle shown in Fig. 21.2 or a modification of it. The controller operates
between two fluids, one being controlled and another which adds or removes heat to or from the fluid being controlled. In Fig. 21.2 compressed air at 15 to 20 psig enters the control head, part passing to a

Fig. 21.2. Air-operated pilot:
diaphragm valve and part through the reducer. The discharge air from the reducer is at a low pressure and continuously escapes through the nozzle by impinging against a flat flapper. While air escapes through the nozzle, the diaphragm spring is contracted, since it is also affected by

Frg. 21.3. Diaphragm valve. the escape of air through the nozzle. This holds the valve in the control head against the left end of the control head. When a change occurs in the temperature of the fluid being controlled a capillary spiral or capillary helix connected to a temperature-sensitive element such as a bulb is displaced in response to the temperature change. The movement is used to bring the flapper toward the nozzle, thereby obstructing the escape of air and expanding the diaphragm spring. This may in turn be used to relieve the air pressure on a diaphragm valve effecting the control, thereby permitting it to close. A movement of the flapper of 0.002 in . is sufficient to actuate the control. A typical diaphragm valve is shown available which either open or close when subjected to the action described.

Lags. Instrumentation would pose no problem if only a single variable were to be controlled. Usually, however, the regulation of a process
requires the control of pressures, temperatures, and flow rates and the maintenance of adequate liquid levels to assure flow continuity. The greatest impediment to precise control results from a series of time lags between the measurement of a variation and its correction. These are inherent in all automatic control systems. Haigler ${ }^{1}$ has presented a visual picture of the time lags in a simple heat-transfer system from which Fig. 21.4 has been taken. Starting with the measurement of the variable at a, the lags may be traced alphabetically.

Fig. 21,4. Sources of lags in automatic control.
a. Measuring lag
b. Signal transfer from sensitive element to instrument
c. Controller operation lag
d. Signal transfer from controller to regulator
e. Velocity-distance lag until adjusted stream reaches apparatus
f. Capacity lag until the supply side fluid is adjusted
g. Transfer lag through tubing from supply to demand side
h. Capacity lag until the demand side is corrected
i. Velocity-distance lag until the measuring element detects the morrection

All these lags are not of equal importance, but they do present difficulties in the accomplishment of close control such as is required by modern high-temperature, high-pressure, and catalytic processes. Numerous questions arise in automatic control such as the extent to which the regulating valve on the correcting fluid should be opened and whether or not the opening should vary with the size of the deviation measured. How fast should it open? How much of the time-temperature relationship of the response of the correction should an instrument be able to anticipate? These are particularly important in the larger processes in which all the process variables must be controlled simultaneously in less time than would accompany the operation of several related simple instruments.
${ }^{2}$ Haigler, E. D., Trans. ASME, 60, 633-640 (1938).

Automatic-control Mechanisms. For a general background and mathematical development the literature on instrumentation should be consulted. Available to deal with the lags inherent in process control are four basic mechanisms. These are

1. Two-position control (also called on-and-off or open-and-shut), in which the overall flow of fluids, Btu, watts, etc., is limited to predetermined maximum and minimum values or completely turned on or off when the measured variable exceeds or falls below the control point setting.
2. Proportional control (also throttling), in which the magnitude of the corrective action taken by the instrument is proportional to the extent of the deviation of the measured variable from the control point setting.
3. Floating control, in which the rate of corrective action taken by an instrument is proportional to the extent of the deviation of the measured variable from the control-point setting.
4. Proportional control and automatic reset, in which the corrective action taken by an instrument is a combination of proportional control plus a corrective action which is proportional to the rate of the deviation and the duration of that deviation from the control-point setting. Another basic mechanism, the derivative function, is one which applies a correction which is proportional to the rate of the deviation and which is unaffected by the amount or duration of the deviation.

An example of two-position control may be found in the simple con-stant-temperature bath. When the temperature falls below a fixed minimum, heat is supplied until the bath reaches a fixed maximum temperature. The heat supply is then turned off until the bath again reaches the minimum whence heat is again supplied (on and off). For proportional control consider a vessel of small capacity containing a heating element. Cold water continuously enters and hot water leaves the vessel. The control-point temperature has been fixed. Suppose the temperature of the cold-water supply suddenly drops very much. For each degree that the water in the vessel deviates from the control point, a greater amount of heat will be supplied. In floating control, the rate at which the valve moves is proportional to the deviation of the temperature from the control setting. If the temperature is below the control point, the valve opens at a constant rate or a rate which increases with the extent of deviation. As the control point is reached, the valve closes but at a rate in proportion to the deviation. Floating control is not well suited to operations requiring rapid temperature control, since the correction in the temperature near the control point (narrow band) is slow and cyclical. Some floating-control mechanisms are modified to give a rapid action outside a fixed narrow band of deviations and a slow
action inside the narrow band. A combination of floating and proportional control will make the action more rapid. Proportional control and automatic reset correct the action of proportional control when a major deviation may continue with additional minor deviations in the same variable. Suppose a major demand change occurs. In proportional control the valve position is fixed by the magnitude of the deviation. If the valve is correcting for a large deviation while an additional minor deviation occurs, the correction for the minor deviations would be made with a valve which is open primarily to the extent of the major deviation. The reset shifts the proportioning band so that the minor corrections can be made as if the major deviation were the control point and not in proportion to the total deviation from the control point.

Fig. 21.5. Orifice taps.

Flow Control. The temperature control of a fluid can be accomplished by changing the flow of a heating or cooling medium. In many instances, however, the control of flow may be of greater importance than the control of temperature, and the methods of automatically maintaining flow warrant preliminary consideration. Unlike the expansion of a bulb, flow variations are detected by means of the differential pressures they cause

Fíg. 21.6. Simple flow control.
across an orifice. Usually the flange and orifice assembly shown in Fig. 21.5 is tapped and fitted with tubes leading to a capillary helix or other device which is sensitive to the differential pressure. A displasement changes the position of the flapper, and the remainder of the control is similar to that shown in Fig. 21.2.

The simplest arrangement of flow control is shown in Fig. 21.6. The
flow of compressed air to the pilot controller mechanism is usually assumed to be present without being indicated, and very often the controller may also record the variations, thus being a flow-recorder controller. In establishing the primary flow control for a process it is important to consider whether the pumps will be of the reciprocating or centrifugal

Fig. 21.7. Flow control with centrifugal pump.
types. If a centrifugal pump is employed, flow control can be effected by throttling against the pump pressure as shown in Fig. 21.7. In the pilot shown in Fig. 21.2 the compressed air leaving the control head kept the diaphragm valve open. About 70 per cent of the controllers are of this type, and about 30 per cent open if the air fails. The latter type is

Fig. 21.8. Flow control with reciprocating pump. particularly useful when controlling the flow of reflux to distilling towers. The use of a by-pass around the controller is a standard practice which permits the continued operation of the process with manual control if the controller or its air supply should fail. When using reciprocating pumps, throttling against the displacement of the pump may cause destructive pressures to be built up. The flow controller in these cases is installed in a by-pass, returning to the reciprocating pump suction as shown in Fig. 21.8. In this manner constant discharge is maintained by automatically altering the amount of by-passing. The second line having but a single valve allows manual by-passing when both the valves adjoining the diaphragm valve must be closed because of controller or air failure.

When using automatic controllers, the flow may be intentionally divided so that the bulk of the fluid flows through a continual by-pass and only a small amount through the controlling line. This reduces the cost of the controller by reducing its size. However, the use of a continual by-pass as an integral part of the flow-control system introduces several unfavorable factors in the maintenance of uniform control. Except where the flow lines are extremely large and the control valve is expensive, it is undesirable to use a continual by-pass. Like temperature control, pressure and level control are often intimately associated with the control of flow.

TEMPERATURE CONTROL

Instrumentation Symbols. Most of the common arrangements of process apparatus require several interrelated instruments to assure reasonable control. To simplify representation, the instrumentation flow-plan symbols employed here are those suggested in a survey questionnaire by a symbols subcommittee of the Instrument Society of America. The legend for a number of the common symbols is given in Fig. 21.9. The first letters which appear as instrument designations are

```
\(F=\) flow
\(L=\) level
\(P=\) pressure
    \(T=\) temperature
```

The second or third letters are

```
\(C=\) controller
\(G=\) glass (as \(L G)\)
\(I=\) indicator
\(R=\) recorder
\(S=\) safety
\(V=\) valve
\(W=\) well
```

Often it is desirable to assemble all the instruments at a single point away from the locality at which the measurement and control actually occur. These are referred to as board-mounted instruments as differentiated from locally mounted instruments and are designated by a horizontal line through the instrument. Often the instruments on a single control board are at some distance from the point of measurement. In such cases the response is amplified by a pneumatic transmitter. This is particularly requisite for the control of low-pressure fluids at a centralized board.
In the typical instrumentation diagrams which follow, the air lines to the instruments and the by-passes around the controllers have been
omitted. Except where necessary to manual control, the indicating or recording features, have also been omitted, although they are essential to the instrumentation of the process as a whole.

Whenever a control valve is installed directly in the inlet or outlet line of an exchanger, cooler, or heater, the fluid passing through the

Flow recorder with Flow recorder controller pneumatic transmission with pneumatic transmission

Pneumatic connection to diaphragm valve

Pneumatic transmitter with board-mountea instrument (receiver)

Temperature Temperature well
 indicator

Temperature-recorder controller resetting flow-recorder controller

Fig. 21.9. Typical instrument symbols. Instrument lines are usually lighter than piping or equipment.
apparatus must still retain sufficient available pressure so that, when operating, the control valve is capable of increasing or decreasing the flow of the line. Thus an exchanger which at design flow utilizes nearly all of the available static pressure on a line has little pressure available for overcoming the effect of the control valve. An instrument is useless which operates under such conditions that the control valve is wide open and unable to open farther to effect control. Thus when selecting a pump for a process the total head must be not only sufficient to overcome
the sum of the static heads and pressure drops of the equipment but also enough to overcome the drop through the control valve.

Coolers. Figures 21.10 to 21.12 show three methods of providing control for coolers. Figure 21.10 is used where the maximum possible cooling is desired or where there is an abundance of cooling water. When an overhead volatile product from a distilling column passes through an aftercooler and is to be sent to storage, it is cooled as low as possible, since any decrease in the evaporation and vent loss may constitute a significant economy. In such cases only a manual throttling valve is provided on the outlet-water line. If water is abundant, the manual valve is left completely open. The only instrumentation suggested is an

Fig. 21.10. Simple cooler. industrial thermometer or temperature indicator on the hot-fluid outlet. This enables the operator to make routine checks to ascertain that the temperature of the liquid is well below the maximum allowable storage temperature. Thermometers are useful at the other nozzles but only when checking the performance of the cooler or other apparatus. Thermometer wells are usually provided for this purpose as plugged bosses

Fig. 21.11. Cooler with fixed hot fluid outlet and near-constant water termperature.
in the necks of nozzles. If the nozzle necks are not conveniently located for testing, the thermometers can be inserted in Tees as near the cooler as possible. However, when checking exchanger performance and guarantee, the temperatures should be taken at the nozzle necks if at all possible.

The arrangement in Fig. 21.11 is used when a fixed hot-fluid outlet temperature and flow quantity are desired. The flow of the hot fluid is
controlled independently by the flow controller. The cooling water is assumed to have a relatively constant temperature, so that the hot-fluid outlet temperature is controlled by the quantity of cooling water. The temperature of the hot-fluid discharge is measured by a temperaturesensitive element at a and transferred to the temperature controller which actuates an air-operated valve on the cold-water discharge at b. If the temperature at a varies, the valve at b opens or closes accordingly. This same arrangement can be used for gases provided a sufficiently sensitive element is used.

In Fig. 21.12 an arrangement is shown for cooling gases below their dew points such as occurs in compressor aftercoolers. The gas is cooled

Frg. 21.12. Gas cooler with condensate removal.
and its temperature is measured at a and controlled at the water discharge b. The cooled gas and condensate pass into the knockout drum, where a liquid level is continuously maintained by the level controller. The simplest type of level controller consists of an external float whose vertical movement actuates the control. When the level rises above the control point or range of the level controller, it opens the valve at c and lets the liquid run out. The purpose of the level controller is to maintain a liquid seal which prevents the escape of gas from the condensate outlet and also prevents the condensate from backing up into the shell. The back-pressure regulator or pressure-control valve (PCV) releases gas from the knockout drum without upsetting the system flow, pressure, or liquid level.

Exchangers. Exchangers do not always require special temperature control. Since their purpose in a process is to provide the maximum recovery of heat, there is no reason to restrict their performance by the use of controls. It will ordinarily suffice to use manual valves which are kept wide open. The principal controls are usually provided on both the cooler and heater which are adjacent to the exchanger. For example, when a stream is to serve as the feed to a distilling column, it may enter the system through a bottoms-to-feed exchanger as in Fig. 11.1 and then through a feed preheater. The temperature control of the stream will be effected in the preheater by a flow adjustment of the steam entering the preheater. Similarly, when a fluid is cooled in an exchanger, it usually passes through a cooler and its temperature is controlled by a flow adjustment of the water. It is not possible to control both the flow quantities and outlet temperatures of both streams passing through an exchanger at the exchanger itself, since one adjustable quality must always be present. Thus, if the outlet temperatures of both streams are to be controlled and the flow or temperature of one stream may vary, the flow or outlet temperature of the other stream must also vary.

There are, however, a number of instances in which the outlet temperature of one of the streams must be controlled, and such cases are treated here. Most of the problems of exchanger instrumentation are encountered when the two streams are of unequal size, the one being very much larger than the other. By the same token the larger stream possesses a short temperature range and the smaller stream a very large temperature range. Figures 21.13 and 21.14 are typical of this application. In Fig. 21.13 the hot fluid is considered the large stream and the cold fluid the small stream. The hot fluid is to be flow- and temperature-controlled, and its inlet temperature is assumed to be subject to small variations. The cold fuid is flow-controlled, and its outlet temperature is assumed to be reasonably constant. The net Btu removal or injection in this case can best be effected on only a portion of the large stream, and to this end the by-pass is provided for temperature control. It will be seen, however, that the flow control of the hot fluid is carried out on the entire stream. This arrangement provides flexible temperature control, allowing any proportion to be by-passed. It also permits the elimination of any problems of excessive pressure drop which might result if the entire large stream were passed through the exchanger. It is also advantageous where an exchanger is repeatedly used for several different services. As an example, a particular distilling column and its auxiliaries may be used for a time with one feed stock and then changed to another stock for another period. The controls shown in Fig. 21.13 will enable the exchange of a fairly uniform heat load in the exchanger for the several
stocks. The pressure-control valve permits a constant controlled flow of the fluid being temperature-controlled, and the only varying qualities are the inlet temperature of the temperature-controlled fluid and the outlet temperature of the secondary fluid.

Fra. 21.13. Exchanger with temperature-controlled large stream.
Heaters. Few types of apparatus cause greater difficulty than heaters using low-pressure steam with temperature control on the cold-fluid outlet temperature. The difficulty can be eliminated, however, when proper means for removing the condensate and air are provided. All heaters

Fig. 21.14. Exchanger with temperature-controlled small stream.
using steam at superatmospheric pressures should be equipped with air vents at the highest accessible points. Heaters operating with a coldfluid outlet temperature exceeding $212^{\circ} \mathrm{F}$ as in Fig. 21.15 generally offer little difficulty, because the condensate is not subcooled below the pressure necessary to force it through the outlet trap.

In practice, heaters are often designed for small temperature differences. Added to this is the fact that they are usually overdesigned, particularly when clean, so that the cold-fluid outlet temperature and the steam condensate temperature are nearly the same. The cold fluid and the condensate may both have outlet temperatures below $212^{\circ} \mathrm{F}$ (corresponding to 0 psig) indicating that more heat is being removed from the steam than is desired thereby subcooling the condensate to vacuum. Without temperature control a condensate level may build up in the heater to cover a portion of the tubes, reduce the available surface and the transferred heat load, and reduce the outlet temperature on the hot

Fig. 21.15. Heater for high cold-fluid outlet temperature.
fluid. If the corrosive action resulting when a condensate level is maintained in the tubes is not excessive, the steam flow can be controlled manually or by a self-regulating flow controller with a simple trap for condensate removal provided the heat demand does not vary too frequently or rapidly for manual adjustment.

With temperature control a system for the removal of low-pressure steam embodying the principles shown in Fig. 21.16 must be employed. However, a pressure-control valve may be used to maintain the pressure in the heater. When the pressure-control valve is installed in the condensate outlet line, the temperature-control valve then varies the condensate level in the heater to compensate for varying heat loads. Very often an arrangement like that shown in Fig. 21.15 is unsuited for heaters providing a low cold-fluid outlet temperature. Without condensate covering some of the tubes, the total surface, containing some excess, is always exposed and the steam has to condense at subatmospheric pres-
sure in order to reduce the LMTD and provide the desired cold-fluid outlet temperature. On attaining an abnormally high fluid outlet tomperature, the temperature-control valve throttles the steam until a condensate level builds up inside the heater. By the time the cold-fluid outlet temperature has decreased to normal, condensate covers the tubes, causing the condensate in the lower portion to be subcooled and a resultant vacuum within the heater. When the temperature controller next detects a subnormal cold-fluid outlet temperature, it must admit enough steam to raise the pressure sufficiently to remove all the subcooled condensate and decrease the condensate level in the heater. In doing

Frg. 21.16. Heater using low-pressure steam.
this too many tubes may be uncovered by the steam pressure, causing the cold-fluid outlet temperature to rise above the control point. This procedure causes cycling and a virtually uncontrolled cold-fluid outlet temperature. The arrangement in Fig. 21.15 is suitable for heaters using high-pressure steam in which the condensing temperature and pressure, after passing through the control valve, is sufficiently high to blow the condensate out.

Total Condensers. Figure 21.17 shows the arrangement for a condenser with gravity flow of reflux. The principal disadvantage to the use of gravity flow lies in the fact that the condenser and accumulator must be elevated above the tower, requiring additional structural support, The overhead condensate drains into the accumulator, which is provided with a manual vent for continuous bleeding if the operation is at elevated

Fra. 21.17. Condenser with gravity flow of reflux.

Fra. 21.18. Condenser with pumped reflux.
pressure or left wide open if operation is at atmospheric pressure. If there is any tendency for noncondensables to enter the system, it may be necessary to bleed them at the top of the condenser. The condensate builds up a level in the accumulator, and reflux is regulated by the level controller. The overhead product is removed at a fixed rate by the flow controller. It is seen that there is no positive temperature control other than manual in the event that the reflux temperature should fall appreciably below that of the top tray. This may be compensated for, how-

Fig. 21.19. Condensation of a pure volatile product.
ever, by introducing a temperature controller at one of the intermediate trays of the column which operates on the steam line going to the reboiler at the bottom of the column.

Figure 21.18 is a typical example of a condenser operating with pumped-back reflux. The reflux pump is often at the ground level, and the condenser and the accumulator are immediately above it. In this particular application, the reflux rate is set by the flow controller and the overhead product flow is set by the level controller. The reversal of the method of overhead product flow control between Figs. 21.17 and 21.18 is due to the smaller liquid head in the gravity-flow system. Figure 21.19
shows an arrangement for the condensation of a pure volatile product which must be subcooled in an aftercooler to prevent the flashing of the overhead product when its liquid pressure is relieved. A particular feature of this type of arrangement is the use of a pressure controller for the control of temperature by direct connection between the water outlet flow and the tower pressure. When the system contains noncondensables this arrangement cannot be employed.

Figure 21.20 shows an arrangement for a system having noncondensables. The instruments used here differ in the manner by which they

Fig. 21.20. Condensation with noncondensables.
effect control. First, the noncondensables are prevented from building up in the system by means of the pressure controller on the accumulator, which provides a continuous automatic vent to the atmosphere or to the next step in the process if the saturated noncondensables are subjected to further treatment. The tower overhead temperature is maintained by the controller adjusting the rate of water flow to the condenser and likewise adjusting the reflux temperature to maintain the overhead product purity.

Partial Condensers. A partial condenser arrangement is shown in Fig. 21.21. The partial condenser is used for volatile materials to enable reflux to be pumped back to the tower at substantially the top tray
temperature while the remainder of the overhead is condensed and cooled so as to prevent reflashing when the pressure is released in the storage tank. The elements of the control can be identified by comparison with Figs. 21.19 and 21.20.

Fra. 21.21. Partial condenser.

Fig. 21.22. Pump-through reboiler with small bottoms rate.
Pump-through Reboilers. A reboiler can be critical in a distillation process, and its control is extremely important. Furthermore, steamheated reboilers are subject to the same operating difficulties encountered with heaters. Because pump-through reboilers are used only for small
services, the requirements of control are usually more sensitive than those for larger operations.

Figure 21.22 shows the arrangement for a pump-through reboiler where the amount of bottom product is small compared with the total flow through the reboiler. Figure 21.23 shows the arrangement for cases where the bottom product is an appreciable part of the total flow. In this case the bottom product rate is set separately by the level controller

Fig. 21.23. Pump-through rebailer with high bottoms rate.

Frg. 21.24. Pump-through reboiler with pure bottoms or constant-boiling mixture.
so as not to interfere with the reboiler operation. In both Figs. 21.22 and 21.23 it has been assumed that the liquids have appreciable boiling ranges so as to make the use of a temperature controller effective. If the bottom product is substantially pure or a constant boiling mixture, as in Fig. 21.24, the use of temperature control is impractical, since the temperature will remain constant independently of the steam supply. Only the flow rate changes, and to overcome this limitation the flow of steam is adjusted by the level controller. The reset permits partial response of the flow controller so as to increase the level controller range.

Natural-circulation Reboilers and Evaporators. Because of their similarity the chiller- and kettle-type reboiler are included in this classification. The instrumentation for the chiller is shown in Fig. 21.25. The valve on the temperature controller should be sized for a small

Fig. 21.25. Chiller.

Fig. 21.26. Kettie-type reboiler.
pressure drop so as not to reduce the compressor suction or unnecessarily increase the power cost. Figure 21.26 shows the instrumentation for the kettle reboiler. The functions of the level control are evident. The horizontal thermosyphon is shown in Fig. 21.27 with once-through flow as compared with a recirculating arrangement. The arrangements of

Figs. 21.26 and 21.27 may also serve as the basis for the instrumentation of horizontal and vertical evaporators.

Batch Processes. Batch processes are usually very simple to control. ${ }^{1}$ Most batch processes do not require automatic control of any sort.

Fig. 21.27. Thermosyphon reboiler.

Frg. 21.28. Batch distillation with eispsed time-temperature controiler.
Batch distillation presents several interesting problems which are shown in Fig. 21.28. During batch distillation the still and possibly the over-
${ }^{1}$ See particulariy Perry, J. H., "Chemical Engineers' Handbook," 3d ed., MeGrawHill Book Company, Inc., New York, 1950.
head temperatures change continuously as material is taken off overhead, and the related problem is then the control of temperature and pressure. Instead of using a temperature controller, an elapsed time-temperature controller or program controller is used. It sets a time period for the distillation temperatures and throttles the steam while the still tempera-

Fig. 21.29. Automatic control of a distillation process with feed containing some noncondensable gas.
ture rises through a timed cycle of temperature rises. The pressure control is maintained simply by a back-pressure regulator (pressure-control valve) on the assumption that there is some small amount of volatiles or noncondensables. The reflux is flow-controlled during the entire operation.

Continuous Distillation. Figure 21.29 shows the instrumentation for a continuous distillation charged with a feed having noncondensables.

With the exception of steam distillation which closely resembles it, other types of feed permit the instrumentation to be simplified. Included in Fig. 21.29 are the by-passes about the instrument controllers and the safety or relief valves on the exchangers. Safety valves are of the expan-sion-spring type. If it is possible in any way for the flow of the cold liquid to be halted because a valve has been accidentally turned off or the instrument control fails, a safety valve is placed on the inlet side of the cold fluid. It permits the expansion of the halted cold liquid to be relieved inasmuch as the hot fluid may continue to flow and prevents destructively large pressures from being built up in the liquid lines. After the small amount of liquid expansion has been relieved, the valve reseats itself. Attention should also be focused on the hook-up of the reboiler. Instead of the overflow going to the product outlet, as in the recirculating hook-up, the overflow is used to equalize the liquid level on a once-through arrangement. This is preferable in the event that the reboiler is overdesigned and more than the required amount o vaporization may occur. The temperature indicators shown in the column are multiple thermocouples connected usually to a single indicating instrument. The instruments which would make a convenient panel board for the control of the process are shown by a horizontal line for board mounting.

Conclusion. The elements of process control presented here have been among the simplest. The steppingstones by which an' overall modern process can be controlled involve far more than the combination of several single effects. For these complex applications the many compound instruments of particular manufacturers are required to amplify the measurements or surpress the lags resulting from a large number of controls.

APPENDIX OF CALCULATION DATA

CONTENTS

Table 1. Conversion factors 793
Thermal Conductivities ${ }^{1}$
Table 2. Thermal conductivities of common materials. 795
Table 3. Thermal conductivities of metals 799
Table 4. Thermal conductivities of liquids 800
Table 5. Thermal conductivities of gases and vapors. 801
Fig 1. Thermal conductivities of hydrocarbon liquids 803
Specific Heats ${ }^{1}$
Table 3. Specific heats of metals 799
Fig. 2. Specific heats of liquids 804
Fig. 3. Specific heats of gases at 1 atm 805
Fig. 4. Specific heats of hydrocarbon liquids 806
Fig. 5. Specific heats of hydrocarbon gases and vapors. 807
Specific Gravities ${ }^{1}$
Table 3. Specific gravities of metals. 799
Table 6. Specific gravities and molecular weights of liquids. 808
Fig. 6. Specific gravities of hydrocarbons. 809
Equilibrium Data ${ }^{2}$
Fig. 7. Equilibrium constants for hydrocarbons 810
Fig. 8. Vapor pressures of hydrocarbons 811
Enthalpies and Latent Heats
Fig. 9. Enthalpies of pure hydrocarbons 812
Fig. 10. Enthalpies of light hydrocarbons 813
Fig. 11. Enthalpies of petroleum fractions 814
Fig. 12. Latent heats of vaporization 815
Table 7. Thermodynamic properties of steam. 816
Viscosities ${ }^{1}$
Fig. 13a. Viscosity conversion chart 820
Fig. 13b. Viscosity correction chart for gases 820
Fig. 14. Viscosities of liquids 823
Fig. 15. Viscosities of gases and vapors. 825
Fig. 16. Values of $k(c \mu / k)^{1 / 2}$ for hydrocarbons. 826
${ }^{1}$ For aqueous and organic solutions see page 161 on which is given approximate formulas.
${ }^{2}$ See also Fig. 13.14.

Temperature Diference Corrections ${ }^{1}$

Fig. 17. Caloric temperature factor. 827
Fig. 18. LMMTD correction factors for 1-2 exchangers 828
Fig. 19. LMTD correction factors for 2-4 exchangers 829
Fig. 20. LMTD correction factors for 3-6 exchangers 830
Fig. 21. LMTD correction factors for 4-8 exchangers 831
Fig. 22. LMTD eorrection factors for $5-10$ exchangers. 832
Fig. 23. LMTD correction factors for $6-12$ exchangers. 833
Heat-transfer Data ${ }^{2}$
Fig. 24. Tube-side heat-transfer curve. 834
Fig. 25. Tube-side water-heat-transfer curve. 835
Fig. 26. Tube-side fraction factors. 836
Fig. 27. Tube-side return-pressure losses. 837
Fig. 28. Shell-side heat-transfer curve. 838
Fig. 29. Shell-side fraction factors. 839
Table 8. Approximate overall heat-transfer coefficients. 840
Layout Data
Table 9. Tube-sheet layouts (tube counts). 841
Table 10. Heat-ex́changer and condenser-tube data. 843
Table 11. Steel-pipe dimensions (IPS). 844
Fouling Factors
Table 12. Fouling factors. 845
${ }^{1}$ See Index for corrections.${ }^{2}$ See Index for other data.

Table 1. Conyersion Factors and Constants

```
Energy and power:
    Btu =0.252 kg-cal
    Btu = 0.293 watt-hr
    Btu = 0.555 pcu (pound centigrade unit)
    Btu = 778 ft-lb
    Btu}/\textrm{min}=0.236\textrm{hp
    Hp=42.4 Btu/min
    Hp = 33,000 ft-lb/min
    Hp=0.7457 kw
    Hp-hr =2543 Btu
    Kw = 1.3415 hp
    Watt-hr = 3.415 Btu
Fluid flow:
    Bbl/hr = 0.0936 cfm
    Bbl/hr =0.700 gpm
    Bbl/day = 0.0292 gpm
    Bbl/day =0.0039 cfm
    Cfm = 10.686 bbl/hr
    Gpm = 1.429 bbl/hr
    Gpm =34.3 bbl/day
    Gpm }\timess\mathrm{ (specific gravity) = 500 }\times8\textrm{slb}/\textrm{hr
Heat-transfer coefficients:
    Btu/(hr)(ft2)('F
    Btu}/(\textrm{hr})(\mp@subsup{\textrm{ft}}{}{2})(\mp@subsup{}{}{\circ}\textrm{F})=4.88\textrm{kg}-\textrm{cal}/(\textrm{hr})(\mp@subsup{\textrm{m}}{}{2})(\mp@subsup{}{}{\circ}\textrm{C}
    Btu/(hr)(fta)}(\mp@subsup{}{}{\circ}\textrm{F})=0.00204 watts/(in. ) ( (%F)
Length, area, and volume:
    Bbl = 42 gal
    Bbl=5.615 ft }\mp@subsup{}{}{3
    Cm = 0.3937 in.
    Fta}=0.1781 bbl
    Fts}=7.48 ga
    Ft }\mp@subsup{}{}{3}=0.0283\mp@subsup{\textrm{m}}{}{3
    M M = 6.290 bbl
    M
    Ft = 30.48 cm
    Ft = 0.3048 m
    Gal =0.02381 bbl
    Gal =0.1337 ft }\mp@subsup{}{}{3
Gal = 3.785 liter
Gal = 0.8327 gal (Imperial)
In. = 2.54 cm
Liter =0.2642 gal
Liter = 1.0567 qt
M = 3.281 ft
```



```
M2}=10.76\mp@subsup{\textrm{ft}}{}{2
```


Pressure:

Atm $=33.93 \mathrm{ft}$ of water at $60^{\circ} \mathrm{F}$
$\mathrm{Atm}=29.92 \mathrm{in} . \mathrm{Hg}$ at $32^{\circ} \mathrm{F}$
$\mathrm{Atm}=760 \mathrm{~mm} \mathrm{Hg}$ at $32^{\circ} \mathrm{F}$
$\mathrm{Atm}=14.696 \mathrm{psi}$
$\mathrm{Atm}=2116.8 \mathrm{lb} / \mathrm{ft}^{2}$
Atm $=1.033 \mathrm{~kg} / \mathrm{cm}^{2}$
Ft of water at $60^{\circ} \mathrm{F}=0.4331 \mathrm{psi}$
In. of water at $60^{\circ} \mathrm{F}=0.0361 \mathrm{psi}$
$\mathrm{Kg} / \mathrm{cm}^{2}=14.223 \mathrm{psi}$
$\mathrm{Psi}=2.309 \mathrm{Ft}$ of water at $60^{\circ} \mathrm{F}$

Temperature:

Temperature ${ }^{\circ} \mathrm{C}=56\left({ }^{\circ} \mathrm{F}-32\right)$
Temperature ${ }^{\circ} \mathrm{F}=95\left({ }^{\circ} \mathrm{C}+32\right)$
Temperature ${ }^{\circ} \mathrm{F}$ absolute $\left({ }^{\circ} \mathrm{R}\right)={ }^{\circ} \mathrm{F}+460$
Temperature ${ }^{\circ} \mathrm{C}$ absolute $\left({ }^{\circ} \mathrm{K}\right)={ }^{\circ} \mathrm{C}+273$
Thermal conductivity:

```
\(\mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F} / \mathrm{ft}\right)=12 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F} / \mathrm{in}.\right)\)
\(\mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F} / \mathrm{ft}\right)=1.49 \mathrm{~kg}-\mathrm{cal} /(\mathrm{hr})\left(\mathrm{m}^{2}\right)\left({ }^{\circ} \mathrm{C} / \mathrm{m}\right)\)
\(\mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F} / \mathrm{ft}\right)=0.0173 \mathrm{watts} /\left(\mathrm{cm}^{2}\right)\left({ }^{\circ} \mathrm{C} / \mathrm{cm}\right)\)
```

V iscosity (additional factors are contained in Fig. 13):

```
Poise = 1g/(cm)(sec)
Centipoise \(=0.01\) poise
Centipoise \(=2.42 \mathrm{lb} /(\mathrm{ft})(\mathrm{hr})\)
```


Weight:

$\mathrm{Lb}=0.4536 \mathrm{~kg}$
$\mathrm{Lb}=7000$ grains
Ton (short or net) $=2000 \mathrm{lb}$
Ton (long) $=2240 \mathrm{lb}$
Ton (metric) $=2205 \mathrm{lb}$
Ton $($ metric $)=1000 \mathrm{~kg}$

Constants:

Acceleration of gravity $=32.2 \mathrm{ft} / \mathrm{sec}^{2}$
Acceleration of gravity $=4.18 \times 10^{8} \mathrm{ft} / \mathrm{hr}^{2}$
Density of a cubic foot of water $=62.5 \mathrm{lb} / \mathrm{ft}^{3}$

Table 2. Thermax Conductivities of Some Building and Insulating Materlals*

Material	$\begin{gathered} \text { Apparent } \\ \text { density } \\ \rho, \mathrm{lb} / \mathrm{ft}^{3} \\ \text { at room } \\ \text { temperature } \\ \hline \end{gathered}$	${ }^{\circ} \mathrm{F}$	k	
Aerogel, silica, opacified.	8.5	248	0.013	
		554	0.026	
Asbestos-cement boards.	120	68	0.43	
Asbestos sheets.	55.5	124	0.096	
Asbestos slate.	112	32	0.087	
	112	140	0.114	
Asbestos.	29.3	-328.	0.043	
	29.3	32	0.090	
	36	32	0.087	
	36	212	0.111	
	36	392	0.120	
	36	752	0.129	
	43.5	-328	0.090	
	43.5	32	0.135	
Aluminum foil, 7 air spaces per 2.5 in.	0.2	100	0.025	
		351	0.038	
Ashes, wood.		32-212	0.041	
Asphalt...	132	68	0.43	
Boiler scale (ref. 364).				
Bricks .				
Alumina ($92-99 \% \mathrm{Al}_{2} \mathrm{O}_{3}$ by weight) fused.		801	1.8
Alumina ($64-65 \% \mathrm{Al}_{2} \mathrm{O}_{5}$ by weight).		2399	2.7	
(See also Bricks, fire clay).		1472	0.62	
	115	2012	0.63	
Building brickwork.		68	0.4	
Chrome brick (32%, $\mathrm{Cr}_{2} \mathrm{O}_{3}$ by weight)	200	392	0.67	
	200	1202	0.85	
	200	2399	1.0	
Diatomaceous earth, natural, across strata	27.7	399	0.051	
	27.7	1600	0.077	
Diatomaceous, natural, parallel to strata	27.7	399	0.081	
	277	1600	0.106	
Diatomaceous earth, molded and fred.....	38	399	0.14	
	38	1600	0.18	
Diatomaceous earth and clay, molded and fired	42.3	399	0.14	
	42.3	1600	0.19	
Diatomaceous earth, high burn, large pores		392	0.13	
	37	1832	0.34	

Table 2. Thbrmal Conductivities of Some Building and Insulating Materials.*-(Continued)

Material	Apparent density $\rho, \mathrm{lb} / \mathrm{ft}^{3}$ at room temperature	${ }^{\circ} \mathrm{F}$	k
Bricks: (Continued) Fire clay, Missouri			
		392	0.58
		1112	0.85
		1832	0.95
		2552	1.02
Kaolin insulating brick	27	932	0.15
	27	2102	0.26
Kaolin insulating firebrick	19	392	0.050
	19	1400	0.113
Magnesite ($86.8 \% \mathrm{MgO}, 6.3 \% \mathrm{Fe}_{2} \mathrm{O}_{3}, \mathbf{3 \%}$ $\mathrm{CaO}, \mathbf{2 . 6} \% \mathrm{SiO}_{2}$ by weight)	158	399	2.2
	158	1202	1.6
	158	2192	1.1
Silicon carbide brick, recrystalized	129	1112	10.7
	129	1472	9.2
	129	1832	8.0
	129	2192	7.0
	129	2552	6.3
Calcium carbonate, natural.	162	86	1.3
White marble.			1.7
Chalk.....	96		0.4
Calcium sulphate ($\mathbf{4 H}_{2} \mathrm{O}$), artificial...	84.6	104	0.22
Plaster, artificial.....	132	167	0.43
Building.......	77.9	77	0.25
Cambric, varnished.	:.....	100	0.09
Carbon, gas....	32-212	2.0
Cardboard, corrugated.		\% 8.	0.037
Celluloid...............	87.3	86	0.12
Charcoal flakes..	11.9	176 176	0.043
	15	176	0.051
Coke, petroleum.		32-1292 212	0.27 3.4
		932	2.9
Coke, powdered.	32-212	0.11
Concrete, cinder.	\ldots	0.20
1:4 dry.	\ldots	0.44
Stone....			0.54 0.024
Cotton wool.	5 10	86 86	0.024 0.025
Cork board...	10	86 86	0.025 0.025
Cork, ground. Regranulated.	9.4 8.1	86	0.025 0.026
Regranulated. .	8.1	86	0.026

Table 2. Thermal Conductivities of Some Building and Insulating Materials.*-(Continued)

Material	$\begin{gathered} \hline \text { Apparent } \\ \text { density } \\ \rho, \mathrm{lb} / \mathrm{ft}^{3} \\ \text { at room } \\ \text { temperature } \\ \hline \end{gathered}$	${ }^{\circ} \mathrm{F}$	\%
Diatomaceous earth powder, coarse	20.0	100	0.036
	20.0	1600	0.082
Fine	17.2	399	0.040
	17.2	1600	0.074
Molded pipe covering	26.0	399	0.051
	26.0	1600	0.088
4 vol. calcined earth and 1 vol. cement, poured and fired	61.8	399	0.16
	61.8	1600	0.23
Dolomite.	167	122	1.0
Ebonite.			0.10
Enamel, silicate.	38		0.5-0.75
Felt, wool...	20.6	86	0.03
Fiber insulating board.	14.8	70	0.028
Fiber, red....	80.5	68	0.27
With binder, baked.		68-207	0.097
Gas carbon.		32-212	2.0
Glass. .			0.2-0.73
Boro-silicate type.	139	86-167	0.63
Soda glass.			0.3-0.44
Window glass.		\ldots	0.3-0.61
Granite..			1.0-2.3
Graphite, dense, commercial.		32	86.7
Powdered, through 100 mesh.	30	104	0.104
Gypsum, molded and dry...	78	68	0.25
Hair, felt, perpendicular to fibers.	17	86	0.021
Yce.............................	57.5	32	1.3
Infusorial earth (see Diatomaceous earth).....Kapok..............................			
	0.88	68	0.020
Lampblack.	10	104	0.038
Lava..	\cdots	0.49
Leather, sole.	62.4	\cdots	0.092
Limestone (15.3 vol \% $\mathrm{H}_{2} \mathrm{O}$).	103	75	0.54
Linen.		86	0.05
Magnesia, powdered.	49.7	117	0.35
Magnesia, light carbonate.	19	70	0.04
Magnesium oxide, compressed.	49.9	68	0.32
Marble...................................			1.2-1.7

Table 4. Thermal Conductivities of Liguids*
 $k=\mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F} / \mathrm{ft}\right)$

A linear variation with temperature may be assumed. The extreme values given constitute also the temperature limits over which the data are recommended.

Luquid	${ }^{\circ} \mathrm{F}$	k	Liquid	${ }^{\circ} \mathrm{F}$	k
Aeetic acid 100%...	68	0.099	Heptyl alcohal ($n-7$......................	86	0.094
Acotio acid 50%	68	0.20	Hopty alcohal (n)................	167	0.091
Acetone.........	86	0.102	Hexyl aleohol ($n-$)	86	0.093
Acetome.	167	0.095	Hoxyl aloonol (n).	167	0.090
Allyl alcohol.	77-86	0.104		68	0.086
Ammaonis. 26%	5-88	0.29 0.261	Kerosene.	167	0.081
Ammonia, aqueous $\mathbf{2 6 \%}$.	68 140	$\begin{aligned} & 0.261 \\ & 0.29 \end{aligned}$	Laurie acid.	212	0.102
Amyl acetate. Alcohol (n-)	50	$\begin{aligned} & 0.083 \\ & 0.094 \end{aligned}$	Meroury		
	-86	$\begin{aligned} & 0.094 \\ & 0.089 \end{aligned}$	Mercury aclohol 100%	82	4.83 0.124
	8	0.088	80\%	68	0.154
	167	0.087	60%	68	0.190
Aniline.	32-68	0.100	40%	68	0.234
Benzene.	86	0.092	20\%	68	0.284 0.114
Benzene.	140	0.087	Chloride.......	5	0.111
Bromobenzene.	86	0.074	Chorde.	86	0.089
Butyl acetate (n Alcohol (n-). (iso-)	77-86	0.070 0.085	azene.	86	0.095
	88	0.097		212	0.688
	167	0.095	Nitromethane.	80	0.125
	50	0.091		140	0.120
Calcium chloride brine 30%	86	0.32	Nonane (n-)	8	0.084 0.082
Carm 15%	86	0.34		140	
Carbon disulphide........	86	0.093	Octane (n-)	86	0.083
	167 32	0.088 0.107	Octano (n)	140	0.081
Tetrachloride	154	0.107 0.094	Oils		
Chlorobenzen	+ 154	0.094 0.085	Castor. .	68 212	$\begin{aligned} & 0.104 \\ & 0.100 \end{aligned}$
Chloroforma.	86	0.080	Olive.	68	0.097
Cymene (para)	86	0.078		212	0.095
	140	0.079	Oleio acid.	212	0.0925
Decane (n-)	80	0.085	Palmitic acid.	212	0.0835
Dieblorodifuoromethane.	140	0.083	Paraldohyde.	86	0.084
	20	0.057	Paraldisdo	212	0.078
	60	0.053	Pentane (n)	86	0.078
	100	0.048	Peatam (n).....................	167	0.074
	140	0.043 0.038		122	0.092
	180	0.038	Petroleum ether.	86	0.075
Dichloromethane.	122	0.082		167	0.073
	86	0.096	Propyla	167	0.095
Ethyl meetate. . Aleohol 100%	68	0.101	Alcohol (iso-).	86	0.091 0.090
	68	0.105		140	0.050
80%	68	0.137	Sodium.	212	49
60%	68	0.176		410	46
40%	68	0.224	Sodium chloride brine $\mathbf{2 5 . 0 \%}$.	86	0.33
20\%	68	0.281	Sodium chlonde brine 12.5% \%	86	0.34
100\%	122	0.087	Steario acid.	212	0.0786
Benfene.	86	0.086	Sulfuric acid 90%........	86	0.21
	140	0.682	. 60%	86	0.25
Bromide. Ether...	68	0.070	30%	86	0.30
	167	0.078	Sulfur dioxide.	${ }_{8}^{5}$	0.128
Iodide.	104	0.064			
	167	0.063	Toluene.	88	0.086
Ethylene glycol.	32	0.153		167	0.084
Gasoline.			- ${ }^{\text {-trichlorosthane. }}$	122	0.077
Glyoerol 100%	68	0.0164	Triehlaroethylene.	122	0.089 0.074
80%	68	0.189	Turpentine.........................	59	0.074
100%	68	0.220	Vaseline.	59	0.106
40%	68	0.259			
20%	68	0.878	Water.	82	0.930
100%	212	0.104		869	$\begin{aligned} & 0.358 \\ & 0.381 \end{aligned}$
Heptane ($n-$)	86	0.081		178	0.398
Hexane (n-)	140 86	0.079 0.080	XYEene (oth	68	0.090
	140	0.078	(meta-)	68	0.090

[^70] Now Yorly, 1950.

Table 5. Thermal Conductivities of Gases and Vapors* $k=\mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F} / \mathrm{ft}\right)$
The extreme temperature values given constitute the experimental range. For extrapolation to other temperatures, it is suggested that the data given be plotted as $\log k \mathrm{vs} . \log T$ or that use be made of the assumption that the ratio $c \mu / k$ is practically independent of temperature (or of pressure, within moderate limits).

Table 5. Thermat Conductivities of Gases and Vapors.*-(Continued)

[^71]

Fig. 1. Thermal conductivities of hydrocarbon liquids. (Adaptealfrom Natl. Bur. Standards Misc. Pub. 97.)

Frg. 2. Specific heats of liquids. (Chilton, Colburn, and Vernon, based mainly on data from International Critical Tables. Perry, "Chemical Engineers' Handbook," 3d ed., McGrawHill Book Company, Inc., New York, 1950.)

Fra. 3. Specific heats of gases at 1 atm. (Perry, "Chemical Engineers' Handbook," 3ded., McGraw-Hill Book Company, Inc., New York, 1950.)

Fig. 5. Specific heats of hydrocarbon vapors at 1 atm. [Holcomb and Brown, Ind. Eng. Chem., 34, 595 (1942).]

Table 6. Specific Gravities and Molecular Weights of Liquids

Compound	Mot. wt.	${ }^{*}$	Compound	Mol. wt.	$8 *$
Acetaldehyde.	44.1	0.78	Ethyl iodide.	155.9	1.98
Acetic acid, 100%	60.1	1.05	Ethyl glycol.	88.1	1.04
Acetic scid, 70%		1.07	Formic acid.	46.0	1.22
Acetic anhydride	102.1	1.08	Glycerol, 100%	92.1	1.26
Acetone.	58.1	0.79	Glycerol, 50%		1.13
Ally alcohol.	58.1	0.86	n-Heptane.	100.2	0.68
Ammonia, 100%	17.0	0.61	n-flexane.	86.1	0.66
Ammonia, 26%		0.91	Isopropyl alcohol	60.1	0.79
Amyl acetate.	130.2	0.88	Mercury	200.6	13.55
Amyl alcohol.	88.2	0.81	Methanol, 100%	32.5	0.79
Aniline.	93.1	1.02	Methanol, 90%		0.82
Anisole.	108.1	0.99	Methanol, 40%		0.94
Arsenic trichloride	181.3	2.16	Methyl acetate.	74.9	0.93
Benzene.	78.1	0.88	Methyl chloride.	50.5	0.92
Brine, $\mathrm{CaCl}_{2} 25 \%$		1.23	Methyl ethyl ketone.	72.1	0.81
Brine, $\mathrm{NaCl} 25 \%$		1.19	Naphthalene.	128.1	1.14
Bromotoluene, ortho	171.0	1.42	Nitric acid, 95%		1.50
Bromotoluene, meta.	171.0	1.41	Nitric seid, 60%		1.38
Bromotoluene, para	171.0	1.39	Nitrobenzene	123.1	1.20
n-Butane.	58.1	0.60	Nitrotoluene, ortho	137.1	1.16
i-Butane.	58.1	0.60	Nitrotoluene, meta	137.1	1.16
Butyl acetate.	116.2	0.88	Nitrotoluene, para	137.1	1.29
n-Butyl alcohol.	74.1.	0.81	n-Octane.	114.2	0.70
i-Butyl alcohol.	74.1	0.82	Octyl alcohol.	130.23	0.82
n-Butyric acid.	88.1	0.96	Pentachloroethaine	202.3	1.67
i-Butyric acid.	88.1	0.98	n-Pentane.	72.1	0.63
Carbon dioxide.	44.0	1.29	Phenol.	94.1	1.07
Cribon disulfide.	76.1	1.26	Phosphorus tribromide.	270.8	2.85
Carbon tetrachloride	153.8	1.60	Phosphorus trichloride.	137.4	1.57
Chlorobenzen	112.6	1.11	Propane.	44.1	0.69
Chloroform.	119.4	1.49	Propionic acid.	74.1	0.99
Chlorosulionic acid.	116.5	1.77	r-Propyl alcohol.	60.1	0.80
Chlorotoluene, ortho.	126.6	1.08	$n-\mathrm{Propyl}$ bromide.	123.0	1.35
Chlorotoluene, meta	126.6	1.07	n-Propyl chloride.	78.5	0.89
Chlorotoluene, para	126.6	1.07	n-Propyl iodide.	170.0	1.75
Crebol, meta.	108.1	1.03	Sodium.	23.0	0.97
Cyciohexanol.	100.2	0.96	Sodium hydroxide, 50%		1.53
Dibromo methane.	187.9	2.09	Stannic chtoride	260.5	2.23
Dichloro ethane.	99.0	1.17	Sulfur diozido.	64.1	1.38
Dichloro methane	88.9	1.34	Sulfuric acid, 100%	98.1	1.83
Diethyl oxalate.	146.1	1.08	Sulfuric acid, 98%.		1.84
Dimethyl oxalate.	118.1	1.42	Sulfuric acid, 60%		1.50
Dipheryl.	154.2	0.99	Sulfuryl chloride.	135.0	1.67
Dipropyl oxalate.	174.1	1.02	Tetra chloreethane.	167.9	1.60
Ethyl acetate.	88.1	0.90	Tetra chloraethylene.	165.9	1.63
Ethyl alcohol, 100%	46.1	0.79	Titanium tetrachloride	189.7	1.73
Ethyl alcohol, 95%.		0.81	Toluene. .	92.1	0.87
Ethyl alcohol, 40%.		0.94	Trichloroethylene.	131.4	1.46
Ethyl benzene.	106.1	0.87	Vinyl scetate.	86.1	0.93
Ethyl bromide.	108.9	1.43	Water.	18.0	1.0
Ethyl chloride.	64.5	0.92	Xylene, ortio.	106.1	0.87
Ethyt ether.	74.1	0.71	Xylone, meta.	106.1	0.86
Ethyl formate.	74.1	0.92	Xylene, para.	106.1	0.86

* At approximately $68^{\circ} \mathrm{F}$. These valuea will be satisfactory, without extrapolation, for most engineoring problems.

Fra. 6. Specific gravities of hydrocarbons.

Fig. 7. Equilibrium constants for hydrocarbons. [Scheibel and Jenny, Ind. Eng. Chem., 37, 81 (1945).]

Fig. 9. Enthalpies of pure hydrocarbons. [Scheibel and Jenny, Ind. Eng. Chem., 37, 992 (1945).]

weight of vapor
Fra, 10. Enthalpies of light hydrocarbons. [Scheibel and Jenny, Ind. Erg. Chem., 37, 993 (1945).]

Fig. 11. Enthalpies of petroleum fractions. [Scheibel and Jenny, Ind. Eng. Chem., 37, 994 (1945).]

Fig. 12. Latent heats of vaporization. [Reproduced by permission of Chitton, Colburn, and Vernon, personal communication (revised) 1947.]

Table 7. Thermodynamic Properties of Steam
Dry saturated steam: pressure table*

$\begin{gathered} \substack{\text { press } \\ \text { psi }} \\ p \\ p \end{gathered}$	$\begin{gathered} \text { Temp }_{\circ}, \\ t \\ \hline \end{gathered}$	Specifio volume		Enthalpy			Entropy			Internal energy		$\begin{gathered} \substack{\text { Abs } \\ \text { press., } \\ \text { psi }} \\ p \\ \hline \end{gathered}$
		Sat. liquid of	$\begin{aligned} & \text { Set. } \\ & \text { Sapor } \\ & \boldsymbol{v}_{\boldsymbol{q}} \end{aligned}$	Saquid hs	$\begin{gathered} \text { Evap } \\ h_{f 0} \\ \hline \end{gathered}$	$\begin{gathered} \text { Sat. } \\ \text { Yapor } \\ h_{0} \\ \hline \end{gathered}$	$\begin{gathered} \text { Sat. } \\ \text { liquid. } \\ 8 s \\ \hline \end{gathered}$	Evap	Sat. vapor ε_{a}	Sat. liquid us	$\begin{gathered} \text { Sat. } \\ \text { vapor } \\ u_{g} \\ \hline \end{gathered}$	
		0.01614		69.70	1036.3	1106.0	0.1326	1.8456	2.9782	69.70	044.3	1.0
2.0	126.08	0.016	${ }^{333.73}$	${ }_{93.99}$	1022.	$11{ }^{\text {a }}$	- 178	1.7451		93.98	,	.0
	141	0.016	118.71	109.37	1312	1122.6	-	1.6855		109.36		
	152.97	0.016	$\begin{aligned} & 90.63 \\ & 73.52 \end{aligned}$	120				1:6427	1.8441	130.12		5.0
											1065	. 0
		01649	53.64	144.76	992.2							
8.	182	01653	47.34	150.79		1139	- 2674		80	150.77	1089	0
		01656	$\begin{aligned} & 42.40 \\ & 38.42 \end{aligned}$	$\left\|\begin{array}{l} 156.22 \\ 161.17 \end{array}\right\|$	$\begin{aligned} & 985.2 \\ & 982.1 \end{aligned}$	1141.4						${ }_{10}{ }^{\text {. }}$
${ }^{10} 14.696$			$\begin{aligned} & 38.42 \\ & 26.80 \end{aligned}$	161.17	982.1							4.696
4.696	212.00	$\begin{aligned} & 0.01672 \\ & 0.01672 \end{aligned}$	$\begin{aligned} & 26.80 \\ & 26.29 \end{aligned}$									
15 20	$\left\lvert\, \begin{aligned} & 213.03 \\ & 227.96 \end{aligned}\right.$	0.01672	$\begin{aligned} & 26.29 \\ & 20.089 \end{aligned}$	181.11	969.7	1156.3	.	. 3962	7319		研	0
25	240	1692	16.303	208.42	952.1	1160	0.3533	. 360		208.34		5
30	250.33	01701	13.746	218.82	945.3	1264.1	0.3680	1.3313	1.6993	218.7	08	30
35		. 01708	11.898	227.81	939.2	116	0.3807	1.30	1.68	22	10	5
40		. 17	10.498		933.7				1.6763		109	0
45	274	01721	9.401	$\left\|\begin{array}{l} 243.36 \\ 250.09 \end{array}\right\|$	928.6	174	. 40119	$\begin{aligned} & 1.26 \\ & 1.247 \end{aligned}$	${ }_{6}^{6689}$	249.22	1093.7	0
50 55	2881	01727	$\begin{aligned} & 8.515 \\ & 7.787 \end{aligned}$	$\left\lvert\, \begin{aligned} & 250.09 \\ & 256.30 \end{aligned}\right.$	$\begin{aligned} & 924.0 \\ & 919.6 \end{aligned}$	175.1	O. 41103	1.2474		${ }_{256.12}^{249.93}$	1096.7	55
		0.017	7.175	262.0	915.5	1177.6	0.4270	1.21	1.6438	26	1097.8	60
65	297	01	6.655	267.50	911.		0.4342		1.6374			
70		01748	${ }^{6} .206$	272.61	907.9	1180	0.4409	. 1780	1.63			5
75 80	307	01753	5.816 5.472	(288.02	904.1	183	0.4581	. 17878	1.6	281	102.1	80
85	316.25	0.01761	5.16	286.3	897.8		0.4587	1.157	1.61	286;11	110	85
90	320	01766	4.896	290.	894.7		164	. 14	1.611		103	
95		01770	4.652	294.	891.7	186	. 469	. 137			1105.2	$\underline{95}$
100	327.81	01774	4.432	${ }^{298.40}$	888	1187.2	. 4740	. 128			1105.2	100 110
110	334.77	17			88	11						
120		0.01789	3.728	312.44	$\left.\begin{array}{\|c} 877.9 \\ 879.9 \end{array} \right\rvert\,$. 0962				120 190
130		01796	3.455	318.81	879.9	193.	. 506	68	575	324.	1109	140
150	358.42	180	3.015	330.51	883.6	194	138		. 5694			0
160	363	18	2.834	335.93	859.2	195.	5204	, 43	. 5640	5.	1111.2	
170		0182	2.675	341.							111	70
180		. 0182	2.532	346.03	850.8	196	0.532	021			1113	180
190			$\begin{aligned} & 2.404 \\ & 2.288 \end{aligned}$	350.79 355	844.8	197	. 53381	0116	54		1113	190 200
200	$\begin{aligned} & 381 . \\ & 400 . \end{aligned}$	$\begin{aligned} & 01839 \\ & 01865 \end{aligned}$	$\begin{aligned} & 2.288 \\ & 1.8438 \end{aligned}$	376.00	885.1	1201.1	5675	. 9588	1.	375. 14		250
300		. 0189	1.5433	393.84	809.			. 922			1117	300
350		. 1913	1.3260	409.69				. 891	. 49	408.	1118.5	
400	444.	0.0193	$\begin{gathered} 1.1613 \\ 1 \\ \hline \end{gathered}$		$\begin{aligned} & 780.5 \\ & 7 \end{aligned}$			0.8639 0.838 8	4844	422.6	1118.7	450
450 500		0.0195 0.0197	I. 0.93278	4499.4	785.4	1204.	. 64887	0.8147	4734	435.5 48.6	1118.6	-
50		0199	. 8	460.8	743.1	1203	0.6608	0.79	1.4542	458.8	1118	580
600	486.21	0. 0201	0.769	471.6	731	1203.2	.	-7	1.4454	$4{ }^{\text {a }}$	1117	600
650	494.90	0.0203	0.7083	481.8							1116	700
700 750	503.10	0.0205 0.0207	0.6554 0.6092	491.5	709.7	200.	0.701	- 720	422	598.0	1115.	750
800	518	0.0209	0.5687	509.7	688.9	198	71	. 70	4	500	111	300
850	525.26	0.0210	0.5327	518.3	678	19	. 7	6891	1.408	515.0	112	
900	531.98	0.0212	0.5006	${ }_{534}^{526.6}$	668 659		0.727			30.9	1110.8	${ }^{\text {5 }}$
950 1000	538.43 544.61	0.0214	0.4717 0.4456	534, 5	649.	19	-743	6467	. 388	538.4	1109.41	10
1100		0.0220	0.4001	557.4	630.		. 757	0.620	1.37	552.9	1100	100
1200	567.22	0223	0.3619	571.7	${ }_{6} 611$.	183.	0.771	, 95				
1300	577.46	0.0227	0.3293	5885.4	593 574.	1178	O.78	49	$.355$	592.7	1095.4	1400
+1400	587.10	0.0231	0.3012 0.2785	611.6	574. 556.3	1167.9	0.808	. 526	1.335	605.1	1091.2	1500
2000	635.82	0.0257	0.1878	671.7	463.4	135	O. 861	. 42	1.28	662	1065	00
2500	668.13	0.0287	0.1307	730.6	360.5	091.		0.3197				
3000		346	0.0858 0.0503	802.5	217.8	902.	1.958	(1885	058	872.9	872.	3206.2

* Abridged "Thermodynamic Properties of Steam" by Joseph H..Keennn and Frederick G. Keyes. Vohn Wiley \& Sons, Inc., New York, 1937.

Table 7. Teermodinamic Properties of Steam.-(Continued)
Dry saturated steam: temperature table*

Temp.	$\begin{gathered} \text { Abs } \\ \text { press, } \end{gathered}$	Specific volume			Enthalpy			Entropy			$\begin{array}{r}\mathrm{Temp}_{\mathrm{F}}{ }^{\mathrm{F}} \\ \quad t \\ \hline\end{array}$
		Sat. liquid vis	Evap. 0 fo	Sat. vapor w_{0}	Sat. liquid $h \rho$	$\begin{gathered} \text { Evap. } \\ h_{f_{0}} \\ \hline \end{gathered}$	$\begin{aligned} & \text { Sat. } \\ & \text { Yapor } \\ & h_{9} \end{aligned}$	Sat. liquid af	Evap.	$\begin{gathered} \text { Sat. } \\ \text { vapor } \\ \mathbf{s}_{0} \\ \hline \end{gathered}$	
32	0.08854	. 01602	3306	$\overline{3306}$	0.00	1075.8	1075.8	. 0000	2.1877	1877	32
35	0.09995	. 01602	2947	2947	3.02	1074.1	$1077 . \frac{1}{3}$	0.0061	2.1709	2.1770	35 40
40	0.12170	0.01602	${ }_{2036.4}^{2444}$	2444		${ }_{1068.3}$	1079.3	0.0162 0.0262	2. 1435	2.1597	40 45
45 50	0.14752	0.01602	2036.4	$\left\lvert\, \begin{aligned} & 2036.4 \\ & 1703.2 \end{aligned}\right.$	$\begin{aligned} & 13.06 \\ & 18.07 \end{aligned}$	1068.4.	1081.7	0.0361	2.0903	2.1264	50
60	0.2563	0.01604	. 6	120	28.06	1059.9	1088.0	0.0555	2.0393	2.0948	60
70	0.3631	0.01606	867.8	867.9	38.04	1054.3	1092.3	0.0745	1.9902	2.0647	70
80	0.5069	0.01608	633.1	633.1	48.02	1048.6	1096.6	0.0932	1. 9428	2.0360	80
90	0.6982	0.01610	468.0 350.3	468.0	57.99	1042.9	1100.9	0.1115	$\left\lvert\, \begin{aligned} & 1.8972 \\ & 1.8531 \end{aligned}\right.$	1.0087	90 100
100	0.8492	0.01613	350, 3		67.97	103	5.2		1.8531	9826	110
110	1.2748	0.01617	265.3	265.4 203.27	$\begin{aligned} & 77.94 \\ & 87 \end{aligned}$	1031.6	1109.5			1.9577	110
120 130	1.6924	0.01620 0.01625	203.25 157.32	203.27 157.34	87.92	1025.8	1113.7	0.1845	1.7694	1.9112	130
140	2.8886	0.01629	122.99	123.01	107.89	1014.1	1122.0	0.1984	6910	8894	140
150	3.718	0.01634	98.06	97.07	117.89	1008.2	1126.1	0.2149	1.6537	1.8685	150
160	4.741	0.01639	77.27	77.29	127.89	1002.3	1130.2	0.2311	1.61	8	60
170	5.992	0.01645	62.04	62.06	137.90						
180 190	7.510	0.01651 0.01657	50.21 40.94	50.23 40.96	147.92	990.2	1138.0	0.2630	1.5480	. 8109	180 190
1900	11. ${ }^{9.389}$	$\left\|\begin{array}{l} 0.01657 \\ 0.01663 \end{array}\right\|$	+30.64	${ }_{3}{ }_{3}$	167.99	977.	1145.8	. 278	4824	. 7762	0
810	14.123	0.01670	27.80	27.82	178.05		1149		1.45	1.75	210
212	14.696	0.01672	26.78	26.80	180.07	970.3	1150	0.312	1.4446	1.756	212
220	17.186	0.01677	23.13	23.15	188.13	965.	1153	0.323	1. 4201	74	230
230	20.780	0.01684	19.365	19.382	198.23	958.8	1157.0	0.3387	1.3801	17140	230
240	24.969	0.01692	16.306	16.323	208.34	952.2	1160.5	0.3531	1.3609	1.7140	240
250	29.825	0.01700	13.804	13.821	216.	945.5	116	0.3675	1.3323	1.6998	250
260	35.429	0.01709	11.746	11.763	228.64	938.	1167	. 3817			260 270
270	41.858	0.01717	10.044 8.628	10.061 8.645	${ }_{249}^{238.84}$	${ }_{924}^{931}$	1170	0.3996	2769	1.6727	280
280 290	49.203 57.566	$\left\|\begin{array}{c} 0.01726 \\ 0.01735 \end{array}\right\|$	7.444	7.461	259.31	917.5	1176.8	0.4234	1.2238	72	200
300	67.013	0.	6.		269.59	910	1179	0.4369	1.1980	1.6350	300
810	77.68	0.01755	5.609	5.628	279.92	902.6	1182.5	0.4504	1. 1727	1.6231	310
820		0.01765	4.896	4.914	290.28	887.9	${ }_{1187}^{1185}$	0.4637 0.4769	1.1233	1:6115	${ }_{330}$
330 340	103.06 118.01	${ }_{0}^{0.01776} \mathbf{0 . 0 1 7 8 7}$:	4.289 3.770	4.788	311.13	879.0	1190.	0.4900	1.0992	1. 5891	340
950	134.63	0.01799	3.32	3.3			1192.3	0.502	1.0754	1.578	350
360	153.04	0.01811	2.939	2.957	332.18	862.2	1194.4	0. 515	. 0519	5	
379	173.37	0.01823	2.606	2.625	342.79	853.5	1196.3	0. 52818	02	5573	38
880	195.77	0.01836	2.317	${ }_{2}^{2.335}$	53	844.6		0.5539	1.0832	1.5371	390
	220.37								8,		
400 410	247.31 276.75	$\left\lvert\, \begin{gathered} 0.01864 \\ 0.01878 \end{gathered}\right.$	1.8447	$\begin{aligned} & 1.868 \\ & 1.670 \end{aligned}$		816.3	1202.1	578	,	5174	410
420	308.83	0.01894	1.4811	1.5000	396.77	806.3	1203.1	. 591	0.91	5078	330
430	343.72	0.01910	1.3308	1.3499	407.78	796.0	1203.8	. 615	0.8947	498	
440	381.59	0.01926	1.1979	1.217	118.90	785.4	1204.3	0.6158			
450	422.6	0.0194	1.0799	1.00	430.1		12	0.628	0.8513	1.4793	0
460	466.9	0.0196	0.9748	0.9944	441.4	763.2	204	. 64	0.829		
470	514.7	0.0198	0.8812	0.9009	452.8	751.5	1204.3	0.65	0. 80	1. ${ }_{1}{ }^{4} 51368$	480
480	566.1	0.0200	0.7927	0.81 .72	${ }_{476.4}^{464}$				0.7653	1.4418	490
490	621.4	0.0202	0.7221	0.74	4	726.8					
800	680.8	0.0204	0.6545	0.6749	487.8 511	$\begin{aligned} & 713.9 \\ & 686.4 \end{aligned}$	1201.7	0.688	0.7438 0.7006	+ 41425	500
520 540	812.4	0.0209	0.5385	0.5594	511.9	685.4	1193.2	0.73741	0. 6568	1.3942	540
860	1133.1	0.0221	0.3647	0.3888	562.2	624.2	1186.4	0.7621	0.6121	1.3742	560
580	1325.8	0.0228	0.2989	0.3217	588.9	588.4	1177.3	0.78	0.5659	1.353	580
600	1542.9	0.0236	0.2432	0.2688	617.0	548.5	1165.	0.813	0	3307	600
620	1786.6	0.0247	0.1955	0.2201	646.7	503.6	1150.3	0.83988	0.4664	11.3062	620
640	2059.7	0.0260	${ }_{0}^{0.1538}$	0.1798	${ }_{714.2}^{678}$	392.0	1104.	0.898	0.3485	1.2472	660
680	2708.1	0.0305	0.0810	0.1115	757.3	309.9	1067.2	0.9351	0.27	1.2071	680
700	3093.7	0.0369	0.0392	0.0761	823.3	172.1	905.4	0.9905	0.1484	1.1389	
T05. 4	3206.2	0.0503	0	0.0503	902.7	0	902.7	1.0580	0	1, 05	705.4

* Abridged from "Thermodynamic Properties of Steam" by Joseph H. Keenan and Frederick G. Keyes, John Wiley \& Sons, Inc., New York.

Table 7. Thermodynamic Properties of Steam.-(Continued)
Properties of superheated steam*

Abs press., pal (sat temp)	Temp, ${ }^{\circ} \mathrm{F}$												
	200	300	400	500	600	700	800	900	1000	1100	1200	1400	1600
(101. ${ }^{1}{ }^{1}$	$\left\|\begin{array}{\|c\|} \hline 150.4 \\ 1150.4 \end{array}\right\|$	$\begin{aligned} & 452.3 \\ & 115.8 \end{aligned}$	$\begin{aligned} & 612.0 \\ & 1241.7 \end{aligned}$	5788.3	631.2	800.8	$\begin{array}{r} 750.4 \\ 1432.8 \end{array}$	$\begin{array}{r} 809.9 \\ 1482.7 \end{array}$	889.5	1529.1	988.7	1107.8 1745.7	1227.0
	$\left.\begin{array}{\|l\|l\|} 1150.4 \\ 2.0512 \end{array} \right\rvert\,$	$\begin{aligned} & 1195.8 \\ & 2.1153 \end{aligned}$	12.1220	2.2233	2.2702	${ }_{2}^{13837}$	$\left\lvert\, \begin{gathered} 1432.8 \\ 2.3542 \end{gathered}\right.$	$\left[\begin{array}{l} 1822.73 \\ 2.3923 \end{array}\right.$	2.4283	2.4825			$\frac{18.6137}{5200}$
	78.16	90.25	102.26	114.22	126.18	138.10	150.03	161.95	173.87	185.79			245.4
(102.20)	11488	119.95	1241.2				[1432.7	1482.6	$\begin{array}{\|} 1533.4 \\ 2.2509 \end{array}$	$\left\lvert\, \begin{aligned} & 1585.1 \\ & 2.2851 \end{aligned}\right.$	$\begin{aligned} & 1637.7 \\ & 2.3178 \end{aligned}$	$\begin{array}{r} 1745.7 \\ 2.3792 \end{array}$	$\begin{aligned} & 1857.4 \\ & 2.4363 \end{aligned}$
$\begin{gathered} 10 \\ (183.21) \end{gathered}$	1.8718	1.9370			2.0927								
	$\begin{array}{r} 38.85 \\ 146.6 \end{array}$	45.00 1193.9	${ }^{51.04}$	57.05 128.5	${ }_{1335.1}^{63.03}$	1388.4	$\begin{array}{r} 74.98 \\ 1432.5 \end{array}$	$\begin{array}{r} 80.95 \\ 1482.4 \end{array}$	$\left[\begin{array}{r} 86.92 \\ 1533.2 \\ 0 \end{array}\right.$	$\begin{gathered} 92.88 \\ 158.0 \end{gathered}$	$\left\{\begin{array}{l} 98.84 \\ 1637.6 \end{array}\right.$	$\begin{aligned} & 10.77 \\ & 1745 \end{aligned}$	$\begin{aligned} & 122.69 \\ & 1887.3 \\ & 027.0 \end{aligned}$
	1.7927	1.8595	1.9172	1.9889	2.0160		2.1002	2.1383	2.1744	2.2088	2.2413	2.3028	
		30.53	34.68	38.78	42.86	40.94	51.00	55.07	59.13	83.19	67.25		83.48
14.696		1192.8	1239.9				1432.3		1533.1	1584.8			11887.31
(212.00)		1.8160	1.8743	1.9261	1.9734	2.0170	2.0578						
$\begin{gathered} 20 \\ (227.96) \end{gathered}$		22.36	25.43	28.46	31.	34.47	37.48	40.45	43.44	48.42	49.41	55.37	61.34
		1191.6	1239.2	1288.6	1334					1584.7			1887.2
		1.7808	1.8398	I. 8918	1.9382	1.9829	2.0235	2.0618	2.0978	2.1321	2.	83	
		11.040	12.628	14.188	15.688	17.188	18.702	20.20	21.70	23.20	24.69	27.68	30.66
		1186.8	1236.5	1284.8	1333.1	1381.9	1431.3	1481.4	1532.4	1584.3	1637.0	1745.1	1857.0
(267.25)		1.6994	1.7608	1.8140	1.8619	1.8058	1.9467	1.8850	2.0212	2.0555	2.0883	2.1498	2.2069
$\begin{gathered} 60 \\ (292.71) \end{gathered}$		7.259	8.357	9.403	10.427	11.441	12.449	13.452	14.454	15.453	16.451	18.448	20.44
		1181.6	1233	1283.0	1331	1380.9	1430.5	1480.8	1531.9	1583.8			1856.7
(282.71)		1.6492	1.7135	1.7678	1.8182	1.8605	1.9015	1.9400	1.9762	2.0108	2.0434	2.1040	2.1621
$\begin{gathered} 80 \\ (312.03) \end{gathered}$			6.220	7.020	7.797	8.562	9.322	10.077	10.830	11.582	12.332	13.8	5.325
			1230.7	1281.1	1330.5	1379.9	1429.7	1480.1	1531.3	1583.4	1636.	1744.5	1856.5
			1.6791	1.7346	1.7836	1.8281	1.8684	1.9079	1.9442	1.8787	2.0115	2.0731	2.1303
			4.837	5.589	B. 218		7.446	8.052	8.656	9.259	9.86	11.060	t2.258
			1227.6	1279.1	1329.1	1378.9	1428.9	1479.5	1530.8	1582.9	1635.		6.2
(327.81)			1.6518	1.7085	1.7581	1.8029	1.8443	1.8829	1.9193			0484	2.1056
$\begin{gathered} 120 \\ (341.25) \end{gathered}$			4.081	4.836	5.165	5.683	6.195	6. 702	7.207				10:213
			1224.4	1277.2	1327.7	1377.8	1428.1	1478.8	1530.2	1582.4		1743.9	1856.0
			1.6287	1.6869	1.7370	1.7822	1.8237	1.8625	1.8990	1.833			
			3.468	3.954	4.413	4.861	5.301	5.738	6.172	8.604	7.035	7.895	8.752
140			1221.1	1275.2	1326.4	1376.8	1427.3	1478.2	1529,7	1581.9	1634.9	1743.5	1885.7
2)			1.6087	1.6683	1.7180	1.7645	1.8083	1.8451	1.8817	1.9163	1.9493	2.0110	
$\begin{gathered} 160 \\ (363.53) \end{gathered}$			3.008	3.443	3.849	4.244	4.631	5.015	5.396	5.775	6.152	8.808	7.856
			1217.6	1273.1	1325.0	1375.7	1426.4			1581	1634	1743.2	18855.5
			1.5908	1.6519	1.7033	1. 3481	1.7911	1.8301	1.8667	1.8014	1.9344	. 0962	
			2.649	3.044	3.411	3.764	4.110	4.452	4.792	5.129	5.466	B. 136	6.804
180(373.06)			1214.0	1271.0	1323.5	1374.7	1425.6	1476.8	1528.6	1581.6		1742.8	1865.2
			1.5745	1.6373	1.6894	1.7355	1.7776	1.8167	1.8534	1.8882	1.9212	1.9831	104
			2.361	2.726	3.060	3,380	3.693	4.002	4.309	4.613	4.917	5.521	6. 123
			1210.3	1268.9	1322.1	1373.6	1424.8	1476.2	1528.0	1580.5	1833.7	1742.6	1885.0
(381.79)			1:5594	1.6240	1.6767	1.7232	1.7655	1.8048	1.8415	1.8763	1.3094	1.9713	2.0287
			2.125	2.485	2.772	3.066	3.352	3.834	3.913	4.181	4.467	5.017	5.565
			1206.5	1268.7	1320.7	1372.0	1424.0	1475.5	1527.5	1580.0	1633.3	1742.3	1854.7
			1.5453	1.6117	1.6652	1.7120	1,7545	1.7938	1.8308	1.8658	1.8987	1.9607	2.0181
			1.9278	2.247	2.533	2.804	3.068	3.327	3.584	3.839			5. 100
			1202.5	1264.5	1319.2	1371.5	1423.	1474	1526.9	1579.8	632.9	1742.0	1854.5
			1.5219	1.6003	1.6546	1.7017	1.7444	1.7839	1.8209	1.8558	1,8889	1.8510	
				2.063	2.330	2.562	2.827	3.067	3.305	3.541		4.242	4.707
							1422.3	1474.2	1528.3	1579.1	1832.	1741.7	1854:2
$\begin{gathered} 260 \\ (404.42) \end{gathered}$				1.5697	1.6447	1.6922	1. 7352	1.7748	1.8118	1.8467	1.8789	1.9420	. 8995
(411.05)				1.8047	2.156	2.362	2.621	2.845	3.066	3.286	3.504	3.938	4.370
				1260.0	1316.2	1369.4	1421.5	1473.5	1525.8	1578	1632	1741.4	1854.0
				1.5798	1.6354	1.6834	1.7285	1.7662	1.8033	1.8383	1.8716	1.9337	
300				1.7675	2.005	2.227	2.442	2.658	2.859	3.065	3.269		4.078
				1257	1314.7	1368	1420	1472.8	1525.2	1578.1	1631.7		853.7
(417.33)				1.5701	1.6268	1.6751	1.7184	1.7682	1.7854	1.8305	1.8638	. 92	. 9835
				1.4923	1.7036	1.8980	2.03	2.286	2.445	2.622	. 788	3.147	3.493
								471					
(431.72)				1251.5	,	16	1418.5	,					
				1.5481	1.6070	1.6	1.7602	1.7403	1.37	. 8			
				1.2851	1.4770	1.6508	1.8181	1.9767	2.134	2.290	2.445	2.75	3.055
(444.59)				1245.1	1306.	1362.7	1416.4	1469.4	1522.4	1575.8	1628.8	1789	${ }^{1852.5}$
				1.5281	589	. 63	1.6842	. 72	1.762	1.7977	1.8311	. 8936	

"Abridged from "Thermodynamic Properties of Steam," by Joseph H. Keanan and Frederick G. Keyes, John Wiley \& Sons. Inc., New York, 1937.

Table 7. Thermodynamic Properties of Steam.-(Contínued)
Properties of superheated steam*

Ahs Preas, pai (sat temp)		Temp, ${ }^{\text {F }}$ F													
		500	550	600	620	640	660	680	700	800	800	1000	1200	1400	1600
$\begin{gathered} 450 \\ (456.28) \end{gathered}$		1.1231	1.2155	1.3005	1.3332	1.3652	1.3987	1.4278	1.4584	1.5074	1.7516	1.8028	2.170	2.443	2.714
		1238.4	1272.0	1302.8	1314.6	1326.2	1337.5	$13 ¢ 8.8$	1359.9	1414.3	1467.7	1521.0	1628.8	1788.7	1851.9
		1.5085	1.5437	1.5735	1.5845	1.5951	1.6054	1.6153	1.6250		1.7108	1.7486	1.8177		1.9381
		0.9927	1.0800	1.1591	1.1803	1. 2188	1.2478	1.2763	1.3044	1.4405	1.5715	1.6996	1.9504	2.107	2.442
$\begin{gathered} 500 \\ (467.01) \end{gathered}$		$1231,3$	1266.8	1298.6		1322.6			1387.0	1412.1	1466.0	1519.6	1827.6	1737.9	1851.3
		1.4919	1.5280	1.5588	1.5701	1.5810	1.5915	1.6016	1.6115	1:8571	1.6982	1.7363	1.8056	1.8683	1.9252
		0.8852	0.9686	1.0431	1.0714	1.0989	1.1258	1.1523	1.1783	1.3038	1.4241	1.5414	1.7708	1.9957	2.219
650		1283	1261.2	1294.3		1318.9	1330.8	1342,5.	1354.0	1409.9	1464.3	1518.2	1823.6	1737.	1850.6
(476.94)		1.4751	1.5131	1.5451	1.5568	1.5680	1.5787	1.5890	1.5991	1.6452	1.8868	1.7250	1.7946	575	9155
		0.7947	0.8753	0.9463	0.9729	0.9888	1.0241	1.0489	1.0732	1.1899	1.3013	1.4096	1.6208	1.8279	2.033
(486.21)		1215.7	1255.5	1288.9	1302.7	1315.2	1327.4	1339.3	1351. 1	1407.7	1462.5	1516.7	1825.5	1786.3	1850.0
		1.4586	1,4900	1.5323	1.5443	1.5558	1.5667	1.5773	1.5875	1.6343	1.8762	1.7147	1.7846	1.8476	$1,9056$
			0.7277	0.7834	0.8177	0.8411	0.8639	0.8880	0.9077	1.0108	1.1082	1.2024	1.3853	1.5041	1.7405
			1243.2	1280.6	1294.3	1307.5	1320.3	13328	1345.0	1403.2	1459.0	1515.9	$1623: 5$		1848.8
(503.10)			1.4722	1.5084	1.5212	1.5333	1.6449	1.5559	1.5685	1.6147	1.6573	1.6963	1.7666	1.8298	1.8881
			0.3154	0.6779	0.7006	0.7223	0.7438	0.7835	0.7833	0.8763	0.9833	1.0470	1.2088	1.3668	1.5214
				1270.7	1285.4	1289.4	1312.9	1325.9	1338.6	1398.6	1455.4	1511.0	1621,4	1733.2	1847.5
(518.23)			1.4467	1.4863	1.5000	1.5129	1.5250	1.5366	1.5476	1.5972	1.6407	1.680 i	1.7510	1.8146	1.8729
			0.5254	0.5673	0.6089	0.6294	0.6491	0.6880	0.6863	0.7716	0.8506	0.9262	1.0714	1.2124	1.3509
900			1215.0	1260.1	1275.9	1290.9	1305.1	1518.8	1332.1	1383.9	$1451: 8$	1508.1	1619,3	1731.6	1846,3
(531.98)			1.4216	1.4653	1.4800	1.4938	1.5066	1.5187	1.5303	1.5814	1.6257	1.6856	1.7371	1.8009	1.8595
			0.4533	0.5140	0.5350	0.5546	0.5733	0.5912	0.6084		0.7604	,	0.96	1.0883	1.2146
1000			1198.3	1248.8	1265.9	1281.9	1287.0	1311.4	1325.3	1389.2	1448.2	1505.1	1617.3	1730.0	1845.0
(544.01)			1.3981	1.4450	1.4610	1.4757	1.4893	1.5021	1.5141	1.5670	1.6121	1.6525	1.7245	1.7886	1.8474
				0.4532	0.4738	0.4929	0.5110	0.5281		0.6191	10.6866	O. 7503	0.8716	0.9885	1.1031
1100				1236.7	1255.3	1272.4	1288.5	1303.7	1318.3	1384.3	1444:5	1502.2	1815	1728.4	1843.8 1.8563
(550.31)				1.4251	1,4425	1.4583	1.4728	1.4862	1.4988	1.5535	1.5985	1.6408	1.7130	1.7775	1.8363
				0.4018	0.4222	0.4410	0.4586	0.4752	0.4909	0.5617	0.6250	0.6843	0.7967	0.9046	1.0101
1200				1223.5	1243.9	1262.4	1279.6	1295.7	1311.0	1379.3	1440.7	11899.2	1613.1	17.	1842.5 18823
(567.22)				1.4052	1.4243	1.4413	1.4568	1.4710	1.4843	1.5109	1.5879	11.6293	1.7025	1.7672	8263
				0.317	0.3390	0.3580	0.3753	0.3912	0,4062	0.4714	0.5281	0.5805	0.6789	0.7727	1.8640
1400				1193.0	1218.4	1240.4	1260.3	1278.5	1205.5	1389.1	1433.1	1493.2	16089	1723.7	1840.0
(587.10)				1.3639	1.3877	1.4079	1.4258	1.4419	1.4567	1.5177	86	1.6083	1.6836	1.7489	8083
					0.2733	0.2936	0.3112	0.3271	0.3417	0.4034	0.4553	0.5027	0.5906	0.87	545
					1187.8	1215.2	1238.7	1259.6	1278.7	1358.4	1425.3	$\left\lvert\, \begin{aligned} & 1487.0 \\ & 1 \end{aligned}\right.$	1604.6	328	$\begin{aligned} & 1837.5 \\ & 1020 \end{aligned}$
(604.90)					1.3489	1.3741	1.3952	1.4137	1.4303	1.4964	476	1.5914	1.6669	328	. 7928
						0.2407	0.2597	0.2760	0.2907	0.3502	0.3986	0.4421	0.5218	1717	0.6693
1800						1185.1	1214.0	1238.5	1260.3	1347.2	1417.4	1480.8	$\begin{aligned} & 1600.4 \\ & 1.6520 \end{aligned}$	1717.3	1835.0
(621.03)						1.3377	1,3638	1.3855	1.4044	1.4765	1.5301	1.5752	(1.0520)	$.7185$	1.7786
						0.1836	0,2181.	O. 2337	0.2489	0.3074	0.3632	0.3935	0.4688	0.5352	0.6011
$\begin{gathered} 2000 \\ (635.82) \end{gathered}$						1145.6	1184.9	1214.8	1240.0	1385.5		1474.5	1.636	$\begin{aligned} & 1714.1 \\ & 1.7065 \end{aligned}$	$\begin{aligned} & 1832.5 \\ & 1.7666 \end{aligned}$
						1.2845	1.3300								
$\begin{gathered} 2500 \\ (668.13) \end{gathered}$								0.1484 1132.3	${ }^{0} 117686$	1303.6	1387.8	1458.4	1.3678	1706.1	1.4784 1826.2 1.7389
								1.2687	1.3073	1.4127	1.4772	1.5273	1.6088	1.6775	1.7389
									0.0884	0.1760	0.2159	0.2476	0.3018	0.8505	0.3986
$\begin{gathered} 5000 \\ (605.36) \end{gathered}$									1060.7	1267.2	1365.0	1441.8	1574.3	1698.0	91819.9
									1.1886	1.3690	1.4430	1.4884	1.8835		
										0.1583	0.1981	0.2288	0.2806	0.3267	. 3703
$\begin{array}{r} 8206.2 \\ (705.40) \end{array}$										1250.5	1355.2	1434.7	1569.8	1684.6	$\begin{aligned} & 1817.2 \\ & 1.7080 \end{aligned}$
										11.3508	1.4308	1.4874	1.5742	1.6452	1.7080
									0,0308	0.1364	0.1782	0.2038	0.2546	0.2977	0.3381
3500									780.5	1224.9	1340.7	1424.5	1563.3	1689.8	1813.6
									0.9515	1.3241	1.4127	1.4723	1.5615	1.8338	1.6968
									0.0287	0:1052	0.1462	0. 1743	0.2182	0.2581	0.2943
4000									763.8	1174.8	1314.4	1408.8	1552.1	1681.7	1807.2
									0.8347	1.2757	1.3827	1.4482	1.5417	1.6154	1.6785
									0.0276	0.0798	0.1226	0.1560	0.1917	0.2273	0.2602
4500									753.5	1113.9	1286.6	13884	1540.8	1873.5	1800.9
									0.9235	1.2204	1.3529	1.4253	1.5235	1.5890	1.6040
									0.0288	O. 0583	0.1036	0.1363	0.1696	0.2027	0.2329
5000									746.4	1047.1	1256.5	1369, 5	1529.5	1665.3	1794.5
									0.9152	1.1622	1.3231	1.4034	1.5066	1.5839	1.6490
									0.0262	0.0463	0.0880	0.1143	0.1516	0. 1825	0.2106
5500									741.3	985.0	1224. 1	1349.3	1518.2	1657.0	1788.1
									0.9090	1.1093	11.2930	1.3821	I. 4908	1.669	1.8360

[^72]

Fig, 13a. Viscosity conversion chart.

Fre. 13b. Viscosity correction chart for gases at different pressures. [Comings and Egly, Fnd. Eng. Chem., 32, 715 (1940).]

Viscosities of Petroneum Fragtions For temperature ranges employed in the text Coordinates to be used with Fig. 14

	X	Y
$76^{\circ} \mathrm{API}$ natural gasoline.	14.4	6.4
$56^{\circ} \mathrm{API}$ gasoline.	14.0	10.5
42° API kerosene.	11.6	16.0
$35^{\circ} \mathrm{API}$ distillate	10.0	20.0
$34^{\circ} \mathrm{API}$ mid-continent crude	10.3	21.3
$28^{\circ} \mathrm{API}$ gas oil.	10.0	23.6

	Acid No.	$\begin{gathered} \mathrm{Sp} \mathrm{gr} ; \\ 20 / 4^{\circ} \mathrm{C} \end{gathered}$	X	Y
Almond.	2.85	0.9188	6.9	28.2
Coconut.	0.01	0.9226	6.9	26.9
Cod liver.		0.9138	7.7	27.7
Cottonseed	14.24	0.9187	7.0	28.0
Larc.	3.39	0.9138	7.0	28.2
Linseed.	3.42	0.9297	6.3	27.5
Mustard.	...	0.9237	7.0	28.5
Neatsfoot.	13.35	0.9158	6.5	28.0
Olive.		0.9158	6.6	28.3
Palm kernel.	9.0	0.9190	7.0	26.9
Perilla, raw.	1.36	0.9297	8.1	27.2
Rapeseed.	0.34	0.9114	7.0	28.8
Sardine.	0.57	0.9384	7.7	27.3
Soybean	3.50	0.9228	8.3	27.5
Sperm.	0.80	0.8829	7.7	26.3
Sunflower.	2.76	0.9207	7.5	27.6
Whale, refined	0.73	0.9227	7.5	27.5

* Based on data at 100 and $210^{\circ} \mathrm{F}$ of A. R. Rescorla and F. I. Carnahan, Ind. Bng. Chem., 28, 12121218 (1936).

Viscosities of Commercial Fatty Acids*
250 to $400^{\circ} \mathrm{F}$

	$\begin{gathered} \mathrm{Spgr} \\ \text { at } 300^{\circ} \mathrm{F} \end{gathered}$	X	Y
Lauric.	0.792	10.1	23.1
Olec.	0.799	10.0	25.2
Palmitic	0.786	9.2	25.9
Stearic.	0.789	10.5	25.5

* From data of D. Q. Kern and W. Van Nostrand, Ind. Eng. Chem., 41, 2209 (1940).

Viscosities of Liquids*
Coordinates to be used with Fig. 14

Liquid	X	Y	Liquid	X	Y
Acetaldehyde	$\overline{15.2}$	4.8	Freon-21	15.7	7.5
Acetic acid, 100	12.1	14.2	Freon-22	17.2	4.7
Acetic acid, 70%	9.5	17.0	Freon-113.	12.5	11.4
Acetic anhydride	12.7	12.8	Freon-114:	14.6	8.3
Acetone, 100%.	14.5	7.2	Glycerol, 100%	2.0	30.0
Acetone, 35%.	7.9	15.0	Glycerol, 50%	6.9	19.6
Ally alcohol.	10.2	14.3	Heptane....	14.1	8.4
Ammonia, 100%	12.6	2.0	Hexane.	14.7	7.0
Ammonia, 26%	10.1	13.	Hydrochloric acid, 31.5%	13.0	16.6
Amyl acetate	11.8	12.5	Isobutyl alcohol	7.1	$\begin{aligned} & 18.0 \\ & 14.4 \end{aligned}$
Amyl alcohol	7.5	18.4	Isobutyric acid.	12.2	14.4
Aniline	8.1	18.7	Isopropyl alcohol	8.2	16.0
Anisole	12.3	13.5	Mercury	18.4	16.4
Arsenic trichloride	13.	14.5	Methanol, 100%	12.4	10.5
Benzene	12.5	10.9	Methanol, 90%	12.3	11.8
Brine, $\mathrm{CaCl}_{2}, 25$	6.6	15.9	Methanol, 40%	7.8	15.5
Brine, $\mathrm{NaCl}^{2} 25$	10.2	16.6	Methyl acetate	14.2	8.2 3.8 8.6
Bromine....	14.2	13.2	Methyl chlorid Methyl ethyl k	15.0 13.9	3.8 8.6
Bromotoluene n-Butane.	15.3	15.9 3.3	Methyl ethyl Naphthalene	13.9 7.9	8.6 18.1
n-Butan Isobutan	15.3	3.3 3.7	Naphthalene. Nitric acid, 95%	12.8	18.1 13.8 17.0
Butyl acetate	12.3	11.0	Nitric acid, 60%	10.8	17.0
Butyl alcohol.	8.6	17.2	Nitrobenzene.	10.6	16.2
Butyric acid.	12.1	15.3	Nitrotoluene	11.0	17.0
Carbon dioxide	11.6	0.3	Octane	13.7	10.0
Carbon disulfide	16.1	7.5	Octyl alcohol.	6.6	21. 1
Carbon tetrachloride.	12.7	13.1	Pentachloroetha	10.9	17.3
Chlorobenzen	12.3	12.4	Pentane	14.9	5.2
Chloroform	14.4	10.2	Phenol.	6.9	20.8
Chlorosulfonic acid	11.2	18.1.	Phosphorus tribromide.	13.8	16.7
Chlorotoluene, ortho.	13.0	13.3	Phosphorus trichloride.	16.2	10.9
Chlorotoluene, met	13.	12.5	Propane. . . .	15.3	1.0 13.8
Chlorotoluene; para	13.3	12.5	Propionic acid	12.	13.8
Cresol, meta.		20.8	Propyl alcohol.		
Cyclohexanol.	2.9	24.3	Propyl bromide	14.5	
Dibromothane	12.7	15.8	Propyl chloride	14.4	7.5
Dichloroethane.	13.2	12.2	Propyl iodide.	14.1	11.6
Dichloromethane	14.6	8.9	Sodium.	16.4	13.9
Diethyl oxalate	11.0	16.4	Sodium hydroxide, 50%	3.2	25.8
Dimethyl oxalate	12.3	15.	Stannic chloride...	13.5	12.8
Diphenyl........	12.0	18.	Sulfur dioxide.	15.2	7.1
Dipropyl oxale	10.3	17.7	Sulfuric acid, 110%	7.2	27.4
Ethyl acetate.	13.7	9.1	Sulfuric acid, 98%	7.0	24.8
Ethyl alcohol, 100%.	10.5	13.8	Sulfurie acid, 60%	10.2	12.3
Ethyl alcohol, 95\%.	9.8	14.3	Sulfuryl chloride..	15.2	12.4
Ethyl alcohol, 40%	6.5	16.6	Tetrachloroethane.	11.9	15.7
Ethyl benzene.	13.2	11.	Tetrachloroethylene. .	14.2	12.7
Ethyl bromide	14.5	8.1	Titanium tetrachloride	14	12.3
Ethyl chloride.	14.8	6.0	Toluene...	13.	
Ethyl ether.	14.5	5.3	Trichloroethylene.		
Ethyl formate.	14.2	8.4	Turpentine.		
Ethyl iodide.	14.7	10.3	Vinyl acetate.	14.0	8.8
Ethylene glycol.	10.0	23.6	Water.......	13.5	13.0
Formic acid	10.7	15.8	Xylene, ortho Xylene meta		12.6
Freon-11.	14.4	9.0	Xylene, meta. Xylene, para.		10.6 10.9
Freon-12.	16.8		Xylene, para.		

* From Perry, J. H., "Chemical Engineers' Handbook," 3d ed., McGrawr-Hill Book Company, Inc." Naw Yorla, 195J.

Frg. 14. Viscosities of liquids. (Perry, "Chemical Engineers' Handbook," 3d ed., McGraw
Hill Book Company, Inc., New York, 1950.)

Viscosities of Gasts* Coordinates to be used with Fig. 15

Gas	X	Y
Acetic acid	7.7	14.3
Acetone.	8.9	13.0
Acetylene.	9.8	14.9
Air.	11.0	20.0
Ammonia	8.4	16.0
Argon..	10.5	22.4
Benzene	8.5	13.2
Bromine	8.9	19.2
Butene.	9.2	13.7
Butylene	8.9	13.0
Carbon dioxide	9.5	18.7
Carbon disulfide	8.0	16.0
Carbon monoxide	11.0	20.0
Chlorine	9.0	18.4
Chloroform	8.9	15.7
Cyanogen	9.2	15.2
Cyclohexane	9.2	12.0
Ethane.	9.1	14.5
Ethyl acetate	8.5	13.2
Ethyl alcohol.	9.2	14.2
Ethyl chioride	8.5	15.6
Ethyl ether.	8.9	13.0
Ethylene.	9.5	15.1
Fluorine	7.3	23.8
Freon-11	10.6	${ }^{15.1}$
Freon-12	11.1	16.0
Freon-21	10.8	15.3
Freon-22	10.1	17.0
Freon-113	11.3	14.0
Helium.	10.9 .	20.5
Hexane.	8.6	11.8
Hydrogen.	11.2	12.4
$3 \mathrm{H}_{2}+1 \mathrm{~N}_{2}$	11.2	17.2
Hydrogen bromide.	8.8	20.9
Hydrogen chloride.	8.8	18.7
Hydrogen cyanide.	9.8	14.9
Hydrogen iodide.	9.0	21.3
Hydrogen sulfide.	8.6	18.0
Iodine..	9.0	18.4
Mercury	5.3	22.9
Methane.	9.9	15.5
Methyl alcohol	8.5	15.6
Nitric oxide.	10.8	20.5
Nitrogen.	10.6	20.0
Nitrosyl chloride.	8.0	17.6
Nitrous oxide.	8.8	19.0
Oxygen.	11.0	21.3
Pentane.	7.0	12.8
Propane	9.7	12.9
Propyl alcohol	8.4	13.4
Propylene.	9.0	13.8
Sulfur dioxide	9.6	17.0
Toluene	8.6	12.4
2, 3, 3-Trimethylbu	9.5	10.5
Water.	8.0 9.3	
Xenon.............	9.3	23.0

* From Perry, J. H., "Chemical Engineers' Handbook," 3d ed., MoGraw-Hill Book Company, Ine., New York, 1950.
 Hill Book Company, Inc., New York, 1950.).

[^73]

Fig. 18. LMTD correction factors for 1-2 exchangers. (Standards of Tubular Exchanger Manufacturers Association, 2ded., New York, 1949.)

Fic. 19. LMTD correction factors for 2-4 exchangers. (Standards of Tubular Exchanger Manufacturers Association $2 d$ ed., New York, 1949.)

Frg. 20. LMTD correction factors for 3-6 exchangers. (Standards of Tubular Exchanger Manufacturers Association, 2d ed.,
New York, 1949.)

Fxa. 21. LMTD correction factors for 4-8 exchangers. (Standards of Tubular Exchanger Manufacturers Association, $2 d$ ed., ∞ New York, 1949.)

Fig. 22. LMTD correction factors for 5-10 exchangers. (Standards of Tubular Exchanger Manufacturers Association, $2 d$ ed., New York, 1949.)

Fic. 24. Tube-side heat-transfer curve. (Adapted from Sieder and Tate.)

Fig. 25. Tube-side water-heat-transfer curve. [Adapted from Eagle and Ferguson, Proc. Roy. Soc., A127, 540 (1930).].

Fig. 26. Tube-side friction factors. (Standards of Tubular Exchanger Manufacturers Association, 2d ed., New York, 1949.)

Fig. 27. Tube-side return pressure loss.

Fig. 28. Shell-side heat-transfer curve for bundles with 25% cut segmental baffes.

Table 8. Approximate Overall Design Coefficients Values include total dirt factors of 0.003 and allowable pressure drops of 5 to 10 psi on the controlling stream Coolers

Hot fluid	Cold fluid	Overall U_{D}	
Water	Water	$250-500 \S$	
Methanol	Water	$250-500 \S$	
Ammonia	Water	$250-500 \S$	
Aqueous solutions	Water	$250-500 \S$	
Light organics*	Water	$75-150$	
Medium organics \dagger	Water	$50-125$	
Heavy organics \ddagger	Water	$5-75 \\|$	
Gases	Water	$2-50 ף$	
Water	Brine	$100-200$	
Light organics	Brine	$40-100$	
	Heaters		
Hot fluid	Cold fluid	Overall U_{D}	
Steam	Water	$200-700 \S$	
Steam	Methanol	$200-700 \S$	
Steam	Ammonia	$200-700 \S$	
Steam	Aqueous solutions:		
Steam	Less than 2.0 cp	$200-700$	
Steam	More than 2.0 cp	$100-500 \S$	
Steam	Light organics	$100-200$	
Steam	Medium organics	$50-100$	
Steam	Heavy organics	$6-60$	
Steam	Gases	$5-50 ף$	

Exchangers

Hot fluid	Cold fluid	Overall U_{D}
Water	Water	$250-500 \S$
Aqueous solutions	Aqueous solutions	$250-500 \S$
Light organics	Light organics	$40-75$
Medium organics	Medium organics	$20-60$
Heavy organics	Heavy organics	$10-40$
Heavy organics	Light organics	$30-60$
Light organics	Heavy organics	$10-40$

[^74]Table 9. Tube-sheet Layouts (Tube Counts)
Square Pitch

$3 / 4 \mathrm{in}$. OD tubes on $1-\mathrm{in}$. square pitch						1 in . OD tubes on $11 / 4 \mathrm{in}$. square pitch					
Shell ID; in.	1-P	2-P	4-P	$6-\mathrm{P}$	8-P	Shell ID, in.	1-P	2-P	4-P	6-P	$8-\mathrm{P}$
8	32	26	20	20		8	21	16	14		
10	52	52	40	36		10	32	32	26	24	
12	81	76	68	68	60	12	48	45	40	38	36
131/4	97	90	82	76	70	131/4	61	56	52	48	44
151/4	137	124	116	108	108	151/4	81	76	68	68	64
171/4	177	166	158	150	142	171/4	112	112	96	90	82
191/4	224	220	204	192	188	191/4	138	132	128	122	116
211/4	277	270	246	240	234	211/4	177	166	158	152	148
231/4	341	324	308	302	292	231/4	213	208	192	184	184
25	413	394	370	356	346	25	260	252	238	226	222
27	481	460	432	420	408	27	300	288	278	268	260
29	553	526	480	468	456	29	341	326	300	294	286
31	657	640	600	580	560	31	406	398	380	368	358
33	749	718	688	676	648	33	465	460	432	420	414
35	845	824	780	766	748	35	522	518	488	484	472
37	934	914	886	866	838	37	596	574	562	544	532
39	1049	1024	982	968	948	39	665	644	624	612	600
11/4 in . OD tubes on 19/16-in. square pitch						11/2 in. OD tubes on 178-in. square pitch					
10	16	12	10								
12	30	24	22	16					12	12	
131/4	32	30	30	22	22	131/4	22	22	16	16	
151/4	44	40	37	35	31	151/4	29	29	25	24	22
171/4	56	53	51	48	44	171/4	39	39	34	32	29
191/4	78	73	71	64	56	191/4	50	48	45	43	39
211/4	96	90	86	82	78	211/4	62	60	57	54	50
231/4	127	112	106	102	96	231/4	78	74	70	66	62
25	140	135	127	123	115	25	94	90	86	84	78
27	166	160	151	146	140	27	112	108	102	98	94
29	193	188	178	174	166	29	131	127	120	116	112
31	226	220	209	202	193	31	151	146	141	138	131
33	258	252	244	238	226	33	176	170	164	160	151
35	293	287	275	268	258	35	202	196	188	182	176
37	334	322	311	304	293	37	224	220	217	210	202
39	370	362	348	342	336	39	252	246	237	230	224

Table 9. Tgme-sheet Layouts (Tube Counts).-(Continued) Triangular Pitch

Table 10. Heat Exchanger and Condenser Tube Data

Tube OD, in.	BWG	Wall thickness, in.	ID, in.	Flow area per tube, in. ${ }^{2}$	Surface per lin $\mathrm{ft}, \mathrm{ft}^{2}$		Weight per lin ft, lb steel
					Outside	Inside	
1/2	12	0.109	0.282	0.0625	0.1309	0.0748	0.493
	14	0.083	0.334	0.0876		0.0874	0.403
	16	0.065	0.370	0.1076		0.0969	0.329
	18	0.049	0.402	0.127		0.1052	0.258
	20	0.035	0.430	0.145		0.1125	0.190
84	10	0.134	- 0.482	0.182	0.1963	0.1263	0.965
	11	0.120	0.510	0.204		0.1335	0.884
	12	0.109	0.532	0.223		0.1393	0.817
	13	0.095	0.560	0.247		0.1466	0.727
	14	0.083	0.584	0.268		0.1529	0.647
	15	0.072	0.606	0.289		0.1587	0.571
	16	0.065	0.620	0.302		0.1623	0.520
	17	0.058	0.634	0.314		0.1660	0.469
	18	0.049	0.652	0.334		0.1707	0.401
1	8	0.165	0.670	0.355	0.2618	0.1754	1.61
	9	0.148	0.704	0.389		0.1843	1.47
	10	0.134	0.732	0.421		0.1916	1.36
	11	0.120	0.760	0.455		0.1990	1.23
	12	0.109	0.782	0.479		0.2048	1.14
	13	0.095	0.810	0.515		0.2121	1.00 0.890
	14	0.083	0.834 0.856	0.546 0.576		0.2183 0.2241	0.890 0.781
	16	0.072 0.065	0.856 0.870	0.576 0.594		0.2277	0.710
	17	0.058	0.884	0.613		0.2314	0.639
	18	0.049	0.902	0.639		0.2361	0.545
114	8	0.165	0.920	0.665	0.3271	0.2409	2.09
	9	0.148	0.954	0.714		0.2498	1.91
	10	0.134	0.982	0.757		0.2572	1.75
	11	0.120	1.01	0.800		0.2644	1.58
	12	0.109	1.03	0.836		0.2701	1.45
	13	0.095	1.06	0.884 0.923		0.2775 0.2839	1.28
	14	0.083 0.072	1.11	0.823 0.960		0.2896	0.991
	16	0.065	1.12	0.985		0.2932	0.900
	17	0.058	1.13	1.01		0.2969	0.808
	18	0.049	1.15	1.04		0.3015	0.688
11/2	8	0.165	1.17	1.075	0.3925	0.3063	2.57
	9	0.148	1.20	1.14		0.3152	2.34
	10	0.134	1.23	1.19		0.3225	2.14
	11	0.120	1.26	1.25		0.3299	1.98
	12	0.109	1.28	1.29		0.3356	1.77
	13	0.095	1.31	1.35		0.3430 0.3492	1.56 1.37
	14	0.083	1.33 1.36	1.40 1.44		0.3492	1.20
	15	0.072 0.065	1.36 1.37	1.44		0.3587	1.09
	17	0.058	1.38	1.50		0.3623	0.978
	18	0.049	1.40	1.54		0.3670	0.831

Table 11. Dimensions of Stegl Pipe (IPS)

Nominal pipe size, IPS, in.	OD, in.	Schedule No.	ID, in.	Flow area per pipe, in. ${ }^{2}$	$\begin{aligned} & \text { Surface per lin } \mathrm{yt}, \\ & \mathrm{ft} .2 / \mathrm{ft} . \end{aligned}$		Weight per lin ft, lb steel
					Outside	Inside	
38	0.405	$\begin{aligned} & 40^{*} \\ & 80 \dagger \end{aligned}$	0.269 0.215	$\begin{aligned} & 0.058 \\ & 0.036 \end{aligned}$	0.106	0.070 0.056	$\begin{aligned} & 0.25 \\ & 0.32 \end{aligned}$
1/4	0.540	$40 *$ 80	0.364 0.302	0.104 0.072	0.141	$\begin{aligned} & 0.095 \\ & 0.079 \end{aligned}$	$\begin{aligned} & 0.43 \\ & 0.54 \end{aligned}$
3/8	0.675	$40 *$ 80	0.493 0.423	0.192 0.141	0.177	0.129 0.111	0.57 0.74
1/2	0.840	$40 *$ 80	0.622 0.546	0.304 0.235	0.220	0.163 0.143	0.85 1.09
$3 / 4$	1.05	$40 *$ 80	0.824 0.742	0.534 0.432	0.275	0.216 0.194	1.13 1.48
1	1.32	40 80	1.049 0.957	0.864 0.718	0.344	0.274 0.250	1.68 2.17
11/4:	1.66	40 80 	1.380 1.278	1.50 1.28	0.435	0.362 0.335	2.28 3.00
11/2	1.90	$40 *$ $80 \dagger$	1.610 1.500	2.04 1.76	0.498	0.422 0.393	2.72 3.64
2	2.38	$40 *$ 80	2.067 1.939	3.35 2.95	0.622	0.542 0.508	3.66 5.03
21/2	2.88	$40 *$ 80	2.469 2.323	4.79 4.23	0.753	0.647 0.609	5.80 7.67
3	3.50	$\begin{aligned} & 40^{*} \\ & 80 \dagger \end{aligned}$	3.068 2.900	7.38 6.61	0.917	$\begin{aligned} & 0.804 \\ & 0.760 \end{aligned}$	$\begin{gathered} 7.58 \\ 10.3 \end{gathered}$
4	4.50	$40 *$ $80 \dagger$	4.026 3.826	12.7 11.5	1.178	1.055 1.002	10.8 15.0
6	6.625	40 80	$\begin{aligned} & 6.065 \\ & 5.761 \end{aligned}$	28.9 26.1	I. 734	1.590 1.510	19.0 28.6
8	8.625	$\begin{aligned} & 40^{*} \\ & 80 \dagger \end{aligned}$	7.981 7.625	50.0 45.7	2.258	2.090 2.000	28.6 43.4
10	10.75	40 60	10.02 9.75	78.8 74.6	2.814	2.62 2.55	$\begin{aligned} & 40.5 \\ & 54.8 \end{aligned}$
12	12.75	30	12.09	115	3.338	3.17	43.8
14	14.0	30	13.25	138	3.665	3.47	54.6
16	16.0	30	15.25	183	4.189	4.00	62.6
18	18.0	$20 \pm$	17.25	234	4.712	4.52	72.7
20	20.0	20	19.25	291	5.236	5.05	78.6
22	22.0	$20 \ddagger$	21.25	355	5.747	5.56	84.0
24	24.0	20	23.25	425	6.283	6.09	94.7

[^75]Table 12. Foulling Factors*

Temperature of heating medium.....	Up to $240^{\circ} \mathrm{F}$		$240-400^{\circ} \mathrm{F} \dagger$	
Temperature of water........	$125^{\circ} \mathrm{F}$	or less	Over	$25^{\circ} \mathrm{F}$
Water	Water velocity, fps		$\begin{gathered} \hline \text { Water velocity, } \\ \text { fps } \\ \hline \end{gathered}$	
	3 ft and less	$\begin{aligned} & \text { Over } \\ & 3 \mathrm{ft} \end{aligned}$	$\begin{gathered} 3 \mathrm{ft} \\ \text { and less } \end{gathered}$	$\begin{aligned} & \hline \text { Over } \\ & 3 \mathrm{ft} \end{aligned}$
Sea water.	0.0005	0.0005	0.001	0.001
Brackish water.	0.002	0.001	0.003	0.002
Cooling tower and artificial spray pond:				
Treated make-up.	0.001	0.001	0.002	0.002
Untreated.	0.003	0.003	0.005	0.004
City or well water (such as Great Lakes).	0.001	0.001	0.002	0.002
Great Lakes.	0.001	0.001	0.002	0.002
River water:				
Minimum.	0.002	0.001	0.003	0.022
Mississippi.	0.003	0.002	0.004	0.003
Delaware, Schuylkill.	0.003	0.002	0.004	0.003
East River and New York Bay	0.003	0.002	0.004	0.003
Chicago sanitary canal.	0.008	0.006	0.010	0.008
Muddy or silty.	0.003	0.002	0.004	0.003
Hard (over 15 grains/gal)	0.003	0.003	0.005	0.005
Engine jacket.	0.001	0.001	0.001	0.001
Distilled.	0.0005	0.0005	0.0005	0.0005
Treated boiler feedwater	0.001	0.0005	0.001	0.001
Boiler blowdown.	0.002	0.002	0.002	0.002

\dagger Ratings in the last two columns are besed on a temperature of the heating medium of 240 to $400^{\circ} \mathrm{F}$. If the heating medium temperature is over $400^{\circ} \mathrm{F}$, and the cooling medium is known to scale these ratings should be modified accordingly:

Petroleum Fractions
 Liquids (industrial):

Oils (industrial):

Fuel oil.......................... . . 0.005
Clean recirculating oil....... 0.001
Machinery and transformer oils 0.001
Quenching oil................ . . 0.004
Vegetable oils................. . . 0.003
Gases, vapors (industrial):
Coke-oven gas, manufactured gas.
Diesel-engine exhaust gas..... 0.01
Organic vapors. 0.0005
Steam (non-oil bearing) 0.0
Alcohol vapors. 0.0
Steam, exhaust (oil bearing from reciprocating engines) 0.001
Refrigerating vapors (condensing from reciprocating compressors)
0.002

Air............................. . 0.002

Organic. 0.001
Refrigerating liquids, heating, cooling, or evaporating. 0.001
Brine (cooling)............... . 0.001
Atmospheric distillation units:
Residual bottoms, less than $25^{\circ} \mathrm{API}$. \qquad0.005

Distillate bottoms, 25° API or
above.
\qquad

Atmospheric distillation units:
Overhead untreated vapors... 0.0013
Overhead treated vapors. 0.003
Side-stream cuts......... 0.0013
Vacuum distillation units:
Overhead vapors to oil: From bubble tower (partial condenser»................. 0.001
From flash pot (no appreciable refiux)
0.003

[^76]Table 12. Fouling Fagtors.*-(Continued)

Overhead vapors in watercooled condensers:
From bubble tower (final condenser)
0.001

From flask pot. 0.04
Side stream:
To oil.... 0.001
To water. 0.002
Residual bottoms, less than $20^{\circ} \mathrm{API}$
0.005

Distillate bottoms, over $20^{\circ} \mathrm{API}$.
0.002

Natural gasoline stabilizer units:
Feed.
(H...... 0.0005
O.H. vapors 0.0005

Product coolers and exchangers 0.0005
Product reboilers. 0.001
$\mathrm{H}_{2} \mathrm{~S}$ Removal Units:
For overhead vapors......... . 0.001
Solution exchanger coolers. . . . 0.0016
Reboiler. 0.0016
Cracking units:
Gas oil feed:
Under $500^{\circ} \mathrm{F}$. 0.002
$500^{\circ} \mathrm{F}$ and over 0.003
Naphtha feed:
Under $500^{\circ} \mathrm{F}$. 0.002
$500^{\circ} F$ and over. 0.004
Separator vapors (vapors from separator, flash pot, and vaporizer).................... 0.006
Bubble-tower vapors. 0.002
Residuum. 0.010
Absorption units:
Gas.
0.002

Fat oil.
............ 0.002

Lean oil. 0.002
Overhead vapors. 0.001
Gasoline. 0.0005
Debutanizer, Depropanizer, De-
pentanizer, and Alkylation
Unite:
Feed. 0.001
Overhead vapors. 0.001
Product coolers. 0.001
Product reboilers. 0.002
Reactor feed.... 0.002
Lube treating units:
Solvent oil mized feed. 0.002
Overhead vapors. 0.001
Refined oil. 0.001
Refined oil heat exchangers
water cooled \ddagger. 0.003
Gums and tars:
Oil-cooled and steam generators...... 0.005
Water-cooled 0.003
Solvent. 0.001
Deasphaltizing units:
Feed oil. 0.002
Solvent. 0.001
Asphalt and resin:
Oil-cooled and steam gener-
ators......................... 0.005
Water-cooled. 0.003
Solvent vapors. 0.001
Refined oil. : 0.001
Refined oil water cooled. 0.003
Dewaxing units:
Lube oil. $0: 001$
Solvent... 0.001
Oil wax mix heating. 0.001
Oil wax mix cooling $\ddagger . . .$. 0.003
\ddagger Precautions muat be taicen against deposition of wax.

Crude Oil Streams

	$0-199^{\circ} \mathrm{F}$			200-299 ${ }^{\circ} \mathrm{F}$			$300-499^{\circ} \mathrm{F}$			$500^{\circ} \mathrm{F}$ and over		
	Velocity, fps											
	$\begin{gathered} \text { Under } \\ 2 \mathrm{ft} \end{gathered}$	$\begin{gathered} 2-4 \\ \mathrm{ft} \end{gathered}$	4 ft . and over	Under 2 ft	$\begin{gathered} 2-4 \\ \mathrm{ft} . \end{gathered}$	4 ft and over	$\left\|\begin{array}{c} \text { Under } \\ 2 \mathrm{ft} \end{array}\right\|$	$\begin{gathered} 2-4 \\ \mathrm{ft} \end{gathered}$	4 ft and over	$\begin{gathered} \text { Under } \\ 2 \mathrm{ft} \end{gathered}$	2-4	4 ft and over
Dry..	.0.003	0.002	0.002	0.003	0.002	0.002	0.004	0.003	0.002	0.005	0.004	0,003
Salts.	. 0.003	0.002	0.002	0.005	0.004	0.004	0.006	0.005	0:004	0.007	0.006	0.005

- Refers to a wet crude-any crude that has not been dehydrated.

AUTHOR INDEX

A

Adams, I. H., 645
Alves, G., 206
Anderson, E. D., 526
Arnold, J. H., 576
Awbery, J., 21

B

Badger, W. L., 493
Bailey, A., 18
Baker, E. M., 338
Bates, O. K., 7
Bays, G. S., Jr., 728, 746, 747
Beiswenger, G. A., 353
Boelter, I. M. K., 206, 605, 640
Bolland, J. L., 7
Bonilla, C. F., 412, 521, 653
Boussinesq, J., 202
Bowman, R. A., 140, 547, 625, 727
Breidenbach, E. P., 137
Brenner, E., 718
Bridgman, P. W., 8, 30, 38
Brinn, M. S., 748
Brown, G. G., 356, 806, 807
Buckingham, E., 38
C
Carnahan, F. L., 821
Carpenter, C. L., 246, 283
Carslaw, H. S., 512, 640
Cartinhour, J., 554
Chaddock, R. E., 625
Cherry, V. H., 640
Chilton, T. H., 340, 574, 576, 717, 718, 722, 804, 815
Colburn, A. P., 94-96, 99, 137, 159, 266, 270, 318, $340,564,565,570,574,576,598,716,721$, 804, 815
Comings, E. W., 190, 820
Considine, D. M., 766
Craig, H. L., 206
Cryder, D. S. 378

D

De Lorenzo, B., 526
Dodd, G. D., 409
Dodge, B. F., 170, 664
Donohue, D, A., 130°

Douglass, R. D., 539
Drew, T. B., 40, 53, 253, 319, 377, 717, 718, 722, 728, 746, 747
Dunn, W. E., 553
Dusinberre, G. M., 640
Dwyer, J. B., 674

Eagle, A., 155, 836
Egbert, R. B., 691, 692
Egly, R. B., 190, 820
Evans, J. E., 697, 706
F
Ferguson, R. M., 155, 836
Finalborgo, A. C. 378
Fischer, F. K., 178
Fishenden, M., 77
Fisher, R. C., 625
Fourier, J. B., 11, 37, 86, 106, 107, 110, 144, 177, 201, 205, 639, 641
Friedman, 8. J., 748
Friend, $\mathrm{L}_{0}, 601$
Frite, W., 375-377
Furnas, C. C., 669

G

Gaffert, G. A., 675
Gardner, K. A., 515, 538, 740
Gibbs, J. W., 252, 313
Gilliland, E. R., 344, 493
Goldschmidt, H., 640
Graetz, L., 40, 201, 202, 746
Grober, H., 640, 647, 648, 666
Guckert, F. A., 748
Gunter, A: Y., 554
Gurney, H. P., 651

H

Haigler, E. D., 769
Heahmall, F., 601
Hawley, R. W., 668
Hazelton, R., 338
Heilgenstadt, W., 665
Heilman, R. H., 18
Filpert, R., 575
Holoomb, D. E., 806, 807

Hottel, H. C., 80, 674, 684, 685, 687, 689, 691, 692, 696, 697, 706
Hougen, O. A., 340
Hurd, N. L., 740
Hutchinson, E., 7
I
Ingersoll, A. C., 640
Ingersoll, L. R., 640

J

Jackson, D. H., 397
Jaeger, J. C., 512, 640
Jakob, M., 375-378, 512, 544, 640
Jameson, S. L., 554
Jebens, R. H., 717, 718, 722
Jenny, F. J., 810, 812-814
Jeschke, D., 721
Johnson, F. A., 640
Josefowitz, \$., 190

K

Kallam, F. L.; 731, 733
Kalustian, P., 443
Katz, D. L.; 356
Kayan, C. F., 527
Keenan, J. H., 584, 816-819
Kelley, K. K., 799
Kern, D. Q., 206, 246, 283, 427, 821
Keyes, F. G., 584, 816-819
Koo, E, C., 53

L

Lansing, N. E., 206
Lewis, W. K., 493, 575
Lichtmann, R. S., 722
Lindseth, E. L., 705
Lobo, W. E., 601, 674, 697, 706, 707
Lof, G. O., 668
London, A. L., 605
Lund, G., 664
Lurie, J., 651
Lyell, N. C., 18

M

McAdams, W. H., 53, 137, 215, 225, 264, 270, 281, $376,377,493,593,599,640,674,721,728$, 746, 747
McCabe, W. L., 493, 496
Mack, D. E., 717
Mahony, L. H., 722
Marks, L. S., 795-799
Martinelli, R. C., 206, 640
Mason, W. E., 605
Meisler, J., 409, 427
Melville, H. W., 7
Merkel, F., 587
Milne, W. E. 615

Monrad, C. C., 708
Morris, F. F., 46, 59, 93, 103
Morrison, M. S., 718
Morrow, D. G., 705
Mueller, A. C., 140, 377, 547, 625, 727
Mullikin, H. F., 687, 697, 706
Murphy, G. B., 5, 360
Murray, W. M., 515

N

Nagle, W. M., 140, 253, 547, 625, 727
Nelson, E. F., 5, 360
Nelson, W. L., 733
Newman, A. B., 649, 650, 654, 656
Nusselt, W., 253, 256, 270, 272, 318, 330, 339, 547

0

O'Connell, H. E., 137
Orrok, G. A., 697
Othmer, D. F., 190, 206, 302, 339, 399, 400
P
Packie, J. W., 353, 355-357
Parekh, M. D., 599
Partridge, E. P., 640
Perry, J. H., 493, 564, 674, 689, 716, 721, 766, 787, 800-802, 804, 805, 822-825
Phillips, G. A., 718
Pigford, R. I., 565, 748
Piroomov, R. S., 353
Porter, R. W., 766
Prandtl, L., 56, 57
R
Ray, B. B., 214
Reed, C. F., 539, 615, 640, 657, 660
Rescorla, A. R., 821
Reynolds, O., 29, 54, 56
Richter, G. A., 721
Robinson, C. S., 493
Rushton, J. H., 722
\mathbf{S}
Saha, M. N., 7
Saunders, M, T., 625
Saunders, O. A., 77
Schack, A., 640, 641, 664
Soheibel, E. G., 810, 812-814
Schmidt, E., 544, 657, 660
Schofield, F., 21
Schumann, T. E., 668
Seltzer, M, 53
Shaw, W. A., 554
Sherwood, T. K., 344, 539, 565, 576, 598, 599,
614, 640, 657, 660
Short, B. E., 137
Sieder, E. N., 60, 99, 103, 223, 228, 229; 576, 835
Simpson, W. M., 598, 615

Smith, D. M., 547
Smith, J. F. D., 8
Smith, R. L., 191
Smith, W: Q., 253
Southwell, C. J., 206
Srivastava, B. N., 7
Stantọn, T. E., 56
Sutherland, W., 9

T

Tite, G. E., 60, 99, 103, 554, 576, 835
Taylor, G. I., 56
Ten Broeck, H., 169, 178, 635
Thiele, E. W., 496

- U

Uhl, V. W., 717
Undermood, A. J. V., 140, 145

V
Van Nostrand, W., 821
Vernon, H. C., 804, 815

W

Walker, W. H., 493
Watson, K. M., 5, 191, 360
Weinberg, E. B., 206
White, A. M., 718
Whitman, W. G., 46, 59, 93, 103
Williamson, E. D., 645
Wilson, D. W., 697, 706
Wilson, R. E., 53, 309
Wohlenberg, W. J., 697, 705, 706

Z

Zens, F., 601
Zobel, O. J., 640

SUBJECT INDEX

(The prinoipal tables, graphs, and equations are shown in boldface type)

A

Absolute pressure in surface condensers, 305
Absolute temperature, 3, 5, 74, 192
Absolute viscosity, 28
Absorbents, 222, 341
Absorbers, 222
Absorption, 341
in gasoline recovery, 222
of luminous flames, 690
Absorption oil, 4, 235
Absorptivity, definition of, 67
Acceleration head loss, 486
Acetic acid, 185
Acetone, 185, 470
Adiabatio compression, 192, 196, 197
Adiabatio humidification, 571-573
Adiabatic temperature, 192
Adsorptive processes, 747
After condensers, 394, 395, 397
jet, 394, 564
surface, 395, 397.
Aftercoolers and aftercooling, 192-195
Agitation in vessels, effect of, on coefficient, 717719, 721-733
on transfer time, 725-733
Agitators, paddle, 717, 722
turbine, 722
Air, 191, 196
atmospheric, reasonable maximum temperatures of, 596
summer wet-bulb temperatures of, 594-596
compresesion of, 192, 195
dissolved in water, 154, 302
enthalpies for; 585
over finned strip heaters, 757
over finned tubes, 535, 543
friction factors for, 191, 836, 839
heat-transfer coefficients in, 192
humid heat of, 588
humidities of, 685, 586
as steam contaminant, 302, 397
over strip heaters, 756
(See also Gas; Gases)
Air compressore, 195
Air conditioning, 544, 611
Air gap, resistance of, 15
Air jet pump, 305, 306, 394
(See also Ejector)
Air leakage in surface condensers, 306, 897
Air preheaters, 678, 680, 701

Alcohol heater, calculation of 241
Algae, 154, 724
Allowable pressure drop, in condensers, 272
in exchangers, 108
Alloys, properties of, 799
American Petroleum Institute (API), degrees API, definition of, 4
American Society for Testing Materials (ASTM), 353
Ammonia, 193, 619
Analogies, between electrical and heat conduction, 12, 527
between heat transfer, and fluid friction, 54-57, 564, 574
between heat transfer and mass transfer, 340, 564, 574
Analysis of performance, in cooling towers, 602
in double pipe exchangers, 110
in 1-2 exchangers, 148
in 2-4 exchangers, 181
Aniline, 217
Annealing, 645
Annual fixed charges, 21, 158, 159, 222, 224
in distillation, 325
in evaporators, 386, 389
Annual operating hours, 158
Annuli, in bayonets, 745
in condensing films, 264
in cora tubes, 210
in double pipes, 104-106
API (see American Petroleum Institute)
Apparent overall coefficients, 399
Apparent temperature drop, 399
Approach temperature, in barometric condensers, 396
in cooling towers, 594
in exchangers, 85
in parallel flow-counterflow exchangers, 146
Aqueous solutions, 398, 453
heat-transfer coefficients of, in pipes and tubes, 103
properties of, 161
(See also specific chemical names)
Area, crossflow, in shell-and-tube exchangers, 138
effective, in radiant heat transfer, 78-82, 683, 684, 686
for heat transfer in oylindrical resistances, 16
in tubular equipment, 129, 806
Asphalt, 739
ASTM distillation, 353
oalculations using, 356-367

Atmospheric coolers, 581, 584, 790-788
Atomic energy, 515
Atomic volumes, table of, 944
Automatic control, 766
Automatio-control mechanisms, 771
Automatic reset, 770
Average fluid temperature (ape Caloric temperature)

B

Back-pressure regulators, 767, 776
Bafle pitch, 129, 227
Baffe spacers, 129
Baffles, 129-131
dam, 294, 331
disc and doughnut, 130
helical, in jackets, 717
longitudinal, in divided flow exchangers, 478
in 2-4 exchangers, 175, 176, 179
orifice, 131
segmental, 130
horizontally and vertically cut, 180
maximum and minimum spacing for, 129 , 226, 227
for side-to-side flow, 130
split segmental, 180
for up-and-down flow, 130
Belanced pressure drop, 280, 294
Bare pipes, heat losses from, 17-21
Bare tube coolers, 581, 594, 730-738
Barometric condensers, 394, 396, 425, 427
water requirements in, 396
Bateh cooling and heating, of liquids, 625, 659
agitated, calculation of time for, 635-636
ooefficients for, 627
by coils, 626-628
by counterflow exohangers, 628-631
by 1-2 exchangers, 631-633
by 2-4 exchangers, 633
by jackets, 626-628
without agitation, calculation of time for, 686-637
by coils, 633
by counterfow exchangers, 633-635
by 1-2 exchangers, 635
by 2-4 exchangers, 635
by jackets, 633
of solids (see Conduction, unsteady)
Batch processes, 624
vs. continuous processes, 624
instrumentation for, 787
Betch stills, 637
Bayonet exchangers, 738-746
Beam length, 689
Beattia-Bridgman equation, 191
Benzene, 113, 338, 502, 635
Berl saddles, humidification characteristics of, 600
Bessel functions, 539
Biot number, 37
Birmingham wire gage (BWG), 128
Hlack ash, 423
Black body 66

Black liquor, 426
Blanketing in vaporization, 376
Blast furnace, 664
Blast-furnace charge, heat transfer to, 670
Bleed heater, 388
Bleed steam, 387, 417
Blowdown, 381, 384, 393, 464
Bohr, 63
Boil-up rate, 298
Boiler feed water, 302
Boilers, definition of, 378
steam-generating, 675
efficiency of, 678, 701
fire-tube, 675, 695
water-tube, 675
Boiling, 375
film and nuclear, 377
(See also Evaporation; Vaporization)
Boiling point vs. bubble point, 322
Boiling-point elevation, 400
Boiling-point rise (BPR), 399, 400
Boiling range in multicomponent mixtures, 322, 468
Boltzmann, 3, 74
Booster-ejeotors, 393-395, 443
steam consumption in, graphs, 444
Bottoms product, 255
Boundary layer, 54-57
Breathing in reboilers, 485
Brine, $433_{r} 473$
specific gravity of, 808
specific heat of, 804
thermal conductivities of, 800
viscosities of, 822
Brix, definition of, 418
Bubble caps, 254
Bubble point, va. boiling point, 322
definition of, 322
Bubble-point mixtures, multicomponent, calculation of, 322-325
using equilibrium constants, 324
using relative volatilities, 325
Buffer layer, 57
Building materials, thermal conductivitics of, 795
Bulk temperature, 206, 815
Bundle, 135, 217, 229
Butane, 285, 316, 317, 331, 464
Butane vapor-pressure curve, 321
By-passing, 772, 773
By-product power, 391

C

Calcium scale, 380
Caloium sulfite, 426
Calculation, of desuperheater-condensers, 283289
of double pipe exchangers, 110
of double pipe extended-surface exchangers, 630
of 1-2 exchangers, 148
in series, 184
of 2-4 exchangers, 181
of 1-2 extended-aurface exchangers, 534

Caloulation, of 1-2 horizontal condensers, 274277
of surface condensers, 307
trial-and-error, 19, 231
of 1-2 vertical condensers, 277-280
(See also Index to Principal Apparatus Calouletions)
Calming sections, 44
Calorio fraction, 96
Caloric temperature, 93-97
calculation of, 97
Calorie-temperature factor, 96, 827
Caramalizing, 420
Carbon dioxide, 344, 690
Carbon disulfide, 299
Carnot cycle, 301
Cartridge heaters, 754
Cascade coolers, 727
Catalysts, fixed and moving bed, 624, 668
Catalytic processes, 725, 747, 769
Catchalls, 403, 425
Caustic embrittlement, 433
Caustic soda (see Sodium hydroxide)
Cell Liquor, 438
Centipoise, 28
Centistokes, 28
Centrifugal pumps, flow control in, 772
Ceramics, 727
Channels, 129, 133, 305
flow area in, 202
Characterization factor, 5
Chemical evaporators, 378, 400-449
Chemical furnaces, 674
Chemical reaction, 298
Chiller, 459, 472-475
instrumentation for, 786
Chlorbenzene, 338
Clausius. Clapeyron equation, 400
Clean overali coefficient, 106
Cleaning lanes, 128
Cleaning transfer surface, 108
Cleanliness factor, 307
Clearance between tubes, 128
Cosl, as fuel, 675, 678, 689, 705
heat transfer to, 670
Coefficient of heat transfer (see Heat-transfer coefficient)
Coils, pancske, 721
pipe, submerged, 723-725
vertical, 722
in tanks, time for heating with, 626-628
tube, helioal, 720
calculation of, 723
Coke, heat transfer to, 670
Coke deposits, 675, 679
Colloidal dispersions, properties of, 161
Combustion, 689-692
Components in phase rule, 315
Composition of vapor mixture, 313
calculation of, 323-327
between dew point and bubble point, 327, 362
Compression, adiabatio, 192
polytropic, 192

Compressor aftercoolers, 192-195
temperature control for, 778
Compressors, aingle and multistage, 192, 195
Condensate, pumped return of, 273
Condensate depression in surface condensers, 305
Condensate loading (see Condensation)
Condensate raturn pump, 273
Condensation, 252-312, 313-374
dropwise, 252, 338
film, 252
in bayonet exchangers, 738
coefficients of, graph, $\mathbf{2 6 7}$
with condenseble impurities, 281
dimensional anslysis of, 253
of exhaust steam, 268, 397
graphical analysis of, 308
heat load Vs. temperature in, 313
in horizontal tubes, condensate loading of, 269
on horizontal tubes, 261
coefficients of, equaton, 265
condensate loading in, 265, 266
horizontal ys, vertical, 268
on inclined surfaces, 260
isothermal, 252
with noncondensable impurities, 281, 397
nonisothermal, 281
Nusselt's theory of, 256-263
recommended curves for, 267, 270
recommended equation, 266, 267
of single vapors, 252-312
of steam, equations, 266
presence of air in, 281
in surface condensers, 301-309
nomenclature, 305
of superheated vapor, 281
vapor-loading, 265
variation of, with temperature, 313
on vertical surfaces, 257-260
coefficients of, equation, 265
condensate loading in, 265
flow transition height of, 270
working equations for, 264-266
in vertical tubes, semiempirical coefficienta of, 270
zone of, 282, 289
Condensation of mixed vapors, 313-370
binary mixture, 318
condensing curve for, 319
calculation of, 329
condensing range of, by phase rule, 317
differential, 328
immiscibles from noncondensable gas in, 352372
mascibles from immiscible in, 337
multicomponent mixture in, 319-337
from noncondensable gas, 313, 317, 564
phase-rule applioations in, 315
of two miscible vapors, 317, 318
of steim from air, 343
from nonsondensable gab, 339, 367
aalculation of, 346-352

Condenser tubes, 128
dimensions of, 843
Condenser vacuum, in surface condensers, 305
Condensers, air-cooled, 545
barometne, 394, 396, 425, 427, 432
for batch distillation, 839
calculation types of, 271
definition of 102.
and dephlegmators, 280
evaporative, 732, 738
instrumentation for, 780-783
low-level, 396
operating pressure of, 325,577
partial, 280, 318
instrumentation for, 783
reflux, 288
shell-and-tube, condenser-subcooler, calculation of, 290-293
1-1, 282, 289, 299
1-2, 271, 274, 277, 280, 281, 283, 285, 289, $290,295,325,332,345$
desuperheater, celculation of, 285-289
divided-flow, 246
horizontal, 268, 269
with gravity reflux, 268
n-propanol-water, calculation of, 274-277 split-flow, 274
horizontal vs. vertical, 269
knock-back, 298
multicomponent-mixture, calculation of, 335 partial, 280
reflux-type, 298
calculation of, 299-301
ateam- CO_{2}, calculation of, 346
surface, for steam, 255, 301-309, 427, 433
calculation of, 308
crossflow in, 304
dissolved air, in, 302
pressure drop in, 302
vertical, 268
condenser-subcooler, calculation of, $289-$ 293
n-propanol-water, calculation of, 277-280
with single tube pass, 271
vacuum, 274, 738
(See albo Aftercondensers; Condensation; De-superheater-condensers; Intercondensers)
Condensing curve, 319, 329
influence of components on, 352
for multicomponent mixture, calculation of, 332, 366
Condensing range for multicomponent mixture, calculation of, 332
Condensing zone, 282, 289, 295, 331
for mixed vapors, 331
Conditioning of air, 544, 611
Conductance, definition of, 6 unit, definition of, 17
Conduction, Fourier's general equation of, 11 periodie, 624, 662-664
steady, 2, 6-23
through composite wall, 14
through composite pipe wall, 16

Conduction, steady, through condensate film, 263
in extended surisces (see Extended surfaces)
in fins (see Extended surfaces)
through fluids, 8
through granular materials, 747
graphical solution of, 21
through insulation, 17, 20
through metals, 12
through nonmetal solids, 7
through pipe wall, 15
through resistances in series, 14
with ribs, 22
through solids, 8
temperature gradient in, 2, 10
three-dimensional, 11
through wall, 13
unsteady, 624, 639-670
annealing, 645
with constant environment temperature, in brick shape, 653, 656-657
with contact resistance, 641, 647-657
without contact resistance, 640-647
in cube, 645, 646, 651
in cylinders, $645,646,651$
with constant environment temperature, in finitely thick wall, $644,647,651,657$
graphicel solution of, 657-662
Gurney-Lurie oharts for, 652-655
in infinitely thick wall, 641
in infinitely wide elab, 645, 640, 651
Newman's method for, 653-657
in rectangular shapes, 648
Schack charts for, 649, 650
Schmidt method for, 657-662
in spheres, 645, 646, 651
in square bars, $645,646,651$
time-temperature-distance in, 641, 657-662
and Frainkl regenerators, 664
to granular materials, 668-670
with heat-source variations, 624
heat-storage factor in, 666
in infinitely thiok wall, calculation of 643
with periodie temperatures, 624, 662-664
in regenerators, 625, 664-668
in reversing exchangers, 515,664
Conductivity (see Thermal conductivity; Elec-
trical conductivity)
Conductors, definition of, 8
Configuration factor, 555
Consistent units, 37
Constant boiling mixture, 281, 318, 319, 638
Constant pressure in condensers, 316, 322
Constants, 794
Contact resistance, $9,640,647$
Continuity equation, 31, 567
Continuous ve. batch processes, 624
Contraction head loss, 108, 112, 148, 273, 487
Control process, automatic, 766
manual, 772
Controllers, pilot-acting, 767 self-ating, 766
Controlling film coefficient, 87, 96

Convection, 2, 25-27
in cooling towers, $580-580$
forced, $2,25-27$
in annuli, double pipe exchangers, 105
with oxtended surface, 524
in batch cooling and heating, 626-637
in batch operations, 625-659
in condensate films, 270
in pipes and tubes, correlation of, 46-51
experimental determination of, 43-46
for liquids, 103
recommended equations, 103
for solutions, 166
for water, 155, 885
in shells, 136-140
for gases, 102
for liquids, 136, 166, 838
recommended equation, 137, 838
for solutions, 166
for water, 155
and simultaneous diffusion, 586-590
free, 3
from coils, 721
dimensional analysis of, 206
in evaporators, 375, 400
for gases, 215
heater calculation of, 217
in jacketed vessels, 716
in pipes and tubes, horizontal, 205 vertioal, 206
outside pipes and tubes, 214
recommended equation, 215
from planes, 215
and radiation, 18, 218
recommended equations, 216, 217
and streamline flow, 206
in furnaces, 675
natural (see Convection, free)
Conversion factors, 793, 794
force to mass, 34
hinetic energy to heat, 34
Coolers, 102
atmospheric, 581, 594, 780-788
cascade, 727
direct-contact, 614-621
drip, 727
horizontal-film, 727
instrumentation for, 775
open, 730
S-type, 727
serpentine, 727
spray, $\tau 30$
submerged-pipe coil, 723-727
trickle, 727
trombone, 727-730
temperature difference in, 727-728
(Set aleo Fixchangers)
Cooling towers, 563, 570, 576-611
air enthalpies for, 585
air loading in, 584, 601
approach temperature in, 594, 606

Cooling towers, atmospheric, 577, 578
wind velocities for, 580
calculation of diffusion units of, 591, 602-605, 600-611
crossfiow in, 579
as dehumidifiers, 611, 613, 614
depreciation in, 602
design conditions for, 504-598, 601, 602, 607
diffusion unit in, 591, 602-604, 612
diffusion units vs. performance, 591
drift loss in, $578 ; 58$
droplet surface in, 582
elevation of, above sea level of, 606
enthalpies for, 585
above sea level, 586
enthalpy-temperature plot for, 591
equations for, 588
fans for, 609, 613
jill in, 581-583, 590
film surface in, 582
flooding in, 601
fogging from, 598
forced draft in, 577
graphical integration in, 591
guarantees for, 602, 605, 608-611
beat balance in, 583-585, 614
induced draft in, 577
liquid film resistance in, 583
Joading in, 584, 601
Joading variations $\mathrm{in}_{\mathrm{r}} 609$
\log mean enthalpy difference in, 592, 603
make-up in, 584
mechanical draft in, 577
natural circulation in, 577, 578-581
natural draft in, 577, 579
number of diffusion units in, 590
numerical integration in, 501
operating range in, 607
performance calculations of, 602-605
performance characteristics of, 599
performance curves of, 609-611
pressure drop in, 601
process oonditions for, 594-598
process conditions affecting size of, 605-608
recirculation in, 578
seasonal variations in, 608
without simplified Lewis numbers, 614
staging in, 608
summer wet-bulb, 595
unsaturation of inlet air, 607
Cooling-tower water in evaporator-condensers, 390
Core tubes, 209
Correlation of experimental data on fluid friction. 51-54
on heat transfer, to extended surfaces, 526
in pipes, 46-51
Cosine law, 79
Cosmic rays, 62
Cost, of cooling water, 154, 159
of exchangers, installed, 223
minimum annual, 225
in relation to sive, 224
tube diameter, 228

Cost, minimum, of insulation, 21 of steam, 165
Countercurrent (sec Counterflow)
Counterflow, definition of, 85
heat recovery in, 92
methods of approximating, 184
temperature difference in, 87
Cox chart, 356
Cracking, thermal, 678, 679
Critical radius, 20
Critical temperature difference, 376, 377, 400
Critical velocity, 53
Crossflow, 545
in surface condensers, 304,307
temperature difference in, $546-553,727-728$
Crossflow ares in shell-and-tube exchangers, 138
Crude oil, 4, 121, 151, 203
utiliation of, 678
Cube, conduction in, 645, 646, 651
Curvilinear squares, 22
Cycle efficiency, 303
Cycles, Carnot, 301
power, 301, 388, 391
Cylinders, free convection from, 214, 216
radiation from, 77
unsteady conduction in, 645

D

Dalton's law, 320
Dam baffle, 294, 331
Deaeration of feedweter, 302
Defecation of sugar, 418
Degree of freedom, 315
Dehumidification, 576, 611, 613, 614
Dephlegmator, 280
Derivative function, 770
Design, thermal, of exchangers,
method for, 225-229
outline of, 229-231
Design overall coefficient, 106
Desuperheater-condensers, 282--285
Desuperheaters, 198
Desuperhesting, 271, 281, 454
Desuperheating zone, 282, 331
Dew paint, 195, 316, 339
of multicomponent mixtures, 316, 322
calculation of, 322-325
using equilibrium constants, 324
using relative volatilities, 326
of vapor-gas mixtures, 195
calculation of, 196, 361
Dew-point vs. wet-bulb temperature, 573
Dew points, systems with two, 352
Diameter, equivalent,
in annuli, 104, 745
in core tubes, 210
in shells, 188, 167, 535, 888
spherical, for solids, 669
Diameters, of pipes, 844
of tubes, 843
Diaphragm valves, 768
Differential condensation, 328

Diffusion, 253, 281, 318, 339, 367, 564-570. 613
film thickness in, 576
height of transfer unit of, 570
rate of, 341, 343
and simultaneous convection, 586-590
transfer unit for, 570
two-film theory of, 565
of vapor through gas, 303, 339
(See also Cooling towers; Direct-contact transfer)
Diffusion coefficient, 341, 672
Diffusion unit, 591, 602-604, 612
Diffusional heat transfer, 340
Diffusivity, 343, 567.
calculation of, 344
(See also Thermal diffusivity)
Digesters, 426
Dimensional analysis, $30-41$
of condensstion, 253
evaluation of equations from, 44
of fluid friction, 34
of forced convection, streamline flow, 40
turbulent flow, 35
of free convection, 206
by Pi theorem, 38-40
problems in, 57
theory of models in, 38
of unsteady conduction, 643
Dimensionless constants, 31
Dimensionless groups, 36
names of common, 37
Dimensions, of common variables, table, 33
consistent, 37
derived, 30
fundamental, 30
six-dimension system of, 32
Direct-contact transfer; 564-621
calculation of gas cooler for, $615-619,620$
channeling in, 600
for cooling gases, 612-614
dehumidifiers in, 611, 613, 614
flooding in, 601
heat balances in, 614
height of transfer unit in, 570
humidification characteristics of packings in, 599, 600
with liquid film resistances, 593
without mass transfer, 619
packed towers for, 598-601, 619
humidification coefficients, 598-601
sensible-heat transfer in, 619-621
theory of, 565-570
transfer unit in, 570
(See also Cooling towers)
Direct-contact vs. tubular equipment, 563
Direct-fired kettle, 708
Direct-fired still, 637
Direct-fired tank, 708
Direct-fired tubular furnace, 678
Dirt factors (see Fouling factors)
Dirty overall coefficient, 106

Disengagement, in ohemical evaporators, 404
in power-plant evaporators, 379, 380, 454
in vaporizers, 454
Disengaging drums, 455, 456
Distillate, 255
Distillation, batoh, 624, 637-639
instrumentation for, 787
Rayleigh equation for, 638
continuous, 253-255, 281, 289, 338, 353, 453, 491-502, 777
ASTM, 353
of crudes, 678
flash reference line for, 354
in gasoline recovery, 222
instrumentation for, 788
minimum reflux for, 499
nomenclature for, 254
operating pressure of, 325
processes of, 491-502
reference line for, 354
reflux control of, 772
steam, 222, 337, 352
instrumentation for, 789
theoretical plate, 498
trapout, 457
true boiling point (TBP), 383
Distillery waste, 418
Distilling columns, 222
condenser arrangements for, $268,271,274,290$
operating pressure of, 325
Divided fow, 246, 274, 478
Double pipe exchangers (see Exchangers)
Downcomer, 255
Drag in fluid flow, 55
Drip coolers, 727
Dropwise condensation, 252
Dry gases, coolers for, 192
Duhring's rule, 399

E

Eeonomic (see Optimum)
Economizers, 192; 544, 554, 677, 678
EF curve, 355
(see also Equilibrium flash)
Effective temperature difference (see Temperature difference)
Efficiency of exchanger, 170
Ejectors, 305, 306, 394, 443, 457
calculation of, 445
steam consumption in boosters, graph, 444
Elapsed-time controller, 788
Electric resistance heating, 753-763
Electrical conductivity, 12
Electrolytic decomposition, 433
Electrolytic solutions, 320
Electromagnetio theory, 62
Emissive power, 65
Emissivity, 3, 68
of diatomic gases, 690
of metals and their oxides, 70-72
of miscellaneous materials, 72
Emiasivity factor, 82, 687

Emulsions, properties of, 161
Endothermic reaction, 679
Energy, conversion faetors for, 793 spectral, 64
Engines, internal-combustion, 731 steam, 165, 301, 390, 397
Enlargement head Ioss, 112, 148, 273, 487
Enthalpy, of air, saturated, 585, 586
of light hydrocarbons, 813
of petroleum fractions, 814
of pure hydrocarbons, 812 of steam, 816-819
Enthalpy change, in turbines, 301
Entrance head loss, 112, 148, 273, 487
Equilibrium, in phase rule, 314
Equilibrium constants, 321, 810
Equilibrium faah, 354
Equilibrium tempergture, 252
Equivalent diameters, in annuli, 104, 745
in core tubes, 210
shell-side crossflow, 138, 838
spherical, for solids, 669
volumetric, in crossflow, 555
Ethyl alcohol, 241, 470
Evaporation, 375-449
blanketing in, 377, 378
bubble formation in, 375
chemical, 378, 400-409
flashing in forward-feed, 408, 411
free, 409
mixed feed in, 408
parallel feed in, 408
solids distribution in, 427
(See also Evaporators)
critical temperature difference in, 376
effect of pressure and properties on, 377
factors affecting, 377
heat flux in, allowable, 384
definition of, 377
Kelvin theory of, 375
maximum attainable fux in, 377
meehanism of, $375-377$
multiple-effect, 382-390, 408
with parallel feed, 385, 389, 408
from pools, 375-398, 459
power-plant processes of, 386-393
pressure correction for, 377
for pure water 375-397
roughness of surface in, 375
surface tension in, 375
vacuum, 390
vapor binding in, 377, 378
(See alao Vaporization)
Evaporative condensers, 738
Evaporator-condensers, 387, 388
Evaporstors, chemical, absence of blowdown in, 398
accepted heat fluxes for sugar solutions in, 421, 425
accepted overall coefficients in, 379, 412, 414, 453
for soda waste liquor, 429
for sugar solutions, 421, 425

Evaporators, chemioal, algebraic calculations of, $409-413$
apparent temperature difference in, $\mathbf{3 8 3}$
apparent temperature drop in, 399
backward-feed, 389, 409
outline of, 411-412
operation dificulty in, 416
boiling-point rise in, 390, 400
calculation of, $409-449$
calculation of sugar, 418-426
calculation of triple-effect backward-feed, 414, 416
calculation of triple-effect forward-feed, 412, .414
catchalls for, 403. 425
crystallixation in, 401
economy in, definition of, 413
extrapolated evaporation in, 422
forced-circulation, $400,405,406,457$
caustic sodarin, calculation of, 433-442
1-2 exchangers as, 470
inside vertical element in, 405
outside horizontal element in, 406
outside vertical element in, 406
velocities in, 440
forward-feed, 398, 408
outline of, 409-411
hydrostatic head in, 417, 426
industrial problems of, 418-449
mínimum initial cost of, 412
minimum surface for, 412
multiple-effect, 398, 408
natural-circulation, 400-405
basket-type, $401,403,453$
calandria vertical-tube, 401-403
horirontal-tube, 401, 453
long-tube vertical, 401-404, 425, 426, 459, 486, 491
sods liquor in, calculation of, 426-433
standard, 403
sugar, calculetion of, 418-426; 447-449
(See also Reboilers, natural-circulation, vertical thermosyphon)
nonalgebraic calculation of, 413-449
optimum number of effects for, 416
parallel feed in, 408
pressure distribution in, 413
quadruple-effect, 398
sextuple-effect, 427
single-effect, 400
standard number of effects for, 416
steam cost in, 409
steam economy in, 413
supersaturation in, 408
temperature distribution in, 415, 421, 427
thermocompression, 418, 442-447 sugar solutions in, calculation of, 447-449
(See also Evaporation, chemical)
definition of, 102, 378, 453
design methods in, 379
disengagement in, 379
function of, 378
ingtrumentation for, 787

Evaparators, power-plant, 378-397, 453
bent-tube, 382
blowdowr in, 381
deacaling, 381
distillers in, 380
double-effect, 384, 386, 388, 389
evaporator-condensers with, 387, 388
heat flux in, 384
heat head in, 388
beat transformers in, 380, 390-392
make-up of, 386-389
multiple-effect, 384-386, 389
pressure distribution in, 390
racuum in, 389
overall coefficients for $\mathbf{3 8 2}, 383$
process for, 386, 389
quadrupleweffect, 389
reducing valye in, 392
salt-water distillers for, 386, 392
separators for, 380
serpentine-tube, 382
shocking 382
single-effect, 386
temperature head of, 383
triple-effect, 386, 388, 389
types of scale in, 381
water treatment for, 380-382
Exchanger performance, 148
Exohanger rating, 148
Exchangers, approach temperature in, 85, 146. 175
bayonet, 738-746
cleaning of, 108
definition of, 102
double pipe, 102-123
calculation for series, 113-115
calculation outine for $110-112$
calculation for series-parallel, 121-123
condensation in, 289
pith extended surfaces (see Extended surfaces)
flow areas and equivalent diameters of, 110
series-parallel arrangements in, 115
series-parallel calculation of, 121
standard fittings for, 103
true temperature difference in, 120
with viscosity correction, 120
efficiency of, 170
guarantees for, 775
instrumentation for, 777
with longitudinal fins, 523, 534
shell-and-tube, annual fixed charges for, 222 , 224
cost of, in relation to size, 224
in relation to tube diameter, 228
in relation to tube length, 229
1-1, 187
for batch heating, 628-632
with extended surfaces, 534, 544
as vaporizers, 457, 488
1-2, aqueous solution in, calculation of, 161163, 167
without baffles, 166

Exohangers, shell-and-tube, 1-2, for batoh heating, 626
catoulation of, 151-153
caloulation outline of, 149-161
condensation in shells of, 266
as condensers, 271
as coolers, 154, 161, 238
core tubes for, 206
definition of, 145
double-tube sheets, 135
efficiency of, 170
with extended surfroes, 534
with fixed tube sheets, 132
with floating head, 133
as gas aftercooler, calculation of, 193-195
as heaters, 164, 241
calculation of 167
oil-to-oil, calculation of, 151-153, 231-235
outlet temperatures of clean; 170
with packed floating head, 135
With puli-through floating head, 132
in aeries, 176, 184
calculation of, 184-187
shell-side flow area of, 1.38
shell-side friction factors, 888
shell-side mass velocity, 137
shell-side pressure drop, 147, 838
with split-ring floating bead, 133
with streamline flow, 203, 207
U-bend, 135
as vaporizers (see Vaporizers)
water-to-water, caloulation of, 155-158
2-2, 176
$2-4$, for batch heating, 626
calculation of, 181
definition of, 175
with extended surfaces, 534
oil-to-oil, calculation of, 235
pil-to-water, calculation of, 181-184
in series, calculation of, 235
with removable-beffle flonting head, 179
with welded-baffle floating head, 179
3-6, 177, 235
$4-8,178,184$
oil-to-oil, calculation of, 235
with extended surfaces (see Extended sur-
faces, shell-and-tube exshangers)
falling-film, 746
optimum, 224
optimum velocities in, 227
mass velocities in, 227
rating of, $148,149,225$
return pressure lors in, 148
shell-side pressure drop for, 147, 898
split-flow, 245
calculation of, 246-250
with stationary tube sheets, 129, 131
with tube coils, 720
tube-side pressure drop in, 148, 886
with solutions, 160
with streamline flow, 202
temperature cross in, 146,175
temperature-cross increase in, 175

Exchangers, with transverse fins, 544 vaporiving, 378, 453, 458
Exhaust steam, 165
Exhaust temperature, 301
Exit head loss, 112, 148, 273, 487
Exothermic reactions, heat removal, 245
Expansion head loss, 112, 148, 273, 487
Expansion jointe, 131
Experimental evaluation of convection coeffcients, 43-51
Extended surfaces, 192, 512-562
air-cooled, 545, 731
double pipe exchangers, 514, 523
calculation of, 530-534
common sizes of, 624
efficiency curves for, 521
heat-transfer coefficients for, 625
pressure drops in, 525
temperature difierence in, 524
fins, classification of, 514
discontinuous, 515,554
effectiveness of, 519
ideal, 544
longitudinal, 514, 538
efficiency caloulation of, 522
efficiency curves of, 548
efficiency derivation of, 515-519, 538, 541
weighted-eficiency calculation of, 522
transverse, 514, 538-546, 553-562
dise, 514, 554
efficiency curves for, 542
efficiency derivation of, 538-541
heat-tranafer coefficients for, 553, 555
helical. 514, 554
preasure drop for, 555
star, 514
weighted efficiency of, 541
wall temperature of, $527-530$
weighted efficiency of, 519,524
pegs, 515, 559
efficiency curves of, 543
shell-and-tube exchangers, 514, 534
caloulation of, 535-538
spines, 515 , 541,559
efficiency curves of, 543
Extrapolated evaporation, 422
F

Falling-film exchangers, 746
Fanning equation, 62
for annuli, 104
friction factors for, 63
Fatty acids, properties of (see Liquids)
specific gravity of, 821
viscosity of, 821
Feed water, deaeration of, 302
Fermentation of sulfite Liquors, 427
Ferrules, 127, 402
Fiotitious compounds, 356
Field tubea, 738
Film boiling, 377

Film coefficients, 25, 26
control of, 87
(See also Heat-transfer coofficients)
Film resistance, 25
Film temperature, in condensation, 260
in forced convection, 99
in free convection, 215
Film theory, 26
Filmwise condensation, 252
Finned strip heaters, 754, 756, 757, 762
Fins (see Extended surfaces)
Firebrick, heat transfer to, 670
Fixed charges, 21, 158, 159, 222, 224
Fixed-tube-sheet exchangers, 129, 131
Flared nozzle, 271
Flash evaporation, 409, 416, 435
Flash reference line, 354
Flash tanks, 387
Flash vaporization curve, 355
Floating control, 770
Floating head, 132
flow area in, 202
split, 180
Floating-head cover, 132
Floating-tube sheet, 132
Flow, side-to-side, in condensers, 272
in exchangers, 130
Flow control, 771
Flow of fluids (see Fluid flow)
Flue gas, 246
Fluid flow, conversion factors for, 793
dimensional analysis of, 34
drag in, 55
pressure drop in, 34, 109
streamline, 29, 40, 201
transition velocity in, 53
turbulent, 29, 35
velocity distribution in, 29
(See also Friction factors; Pressure drop)
Fluid friction, 34
(See also Friction factors; Pressure drop)
Fluid shear; 27
Foaming, 381, 400
in soda process, 426
Forced circulation, in evaporators, 405; 406
in vaporizers, 454
Forced convection (see Convection)
Fouling factors, 106, 845
in water-to-water exchangers, 155
Fourier equation, 87, 106, 107, 110, 201, 225
for parallel-counterflow exchangers, 144, 177
Fourier general equation, 11, 86
Fourier number, 37
Fourier series, 645, 663
Fractional distillation, 493-502
Fractions from crude oil, 4
Free convection (see Convection)
and radiation, 18, 218
and streamline flow, 206
Frequency of radiation, 62
Friction, analogy of, to heat transfer, 54-57, 564, 574
Friction factors, 52

Friction factors, for Fanning equation, 68 for fluids, in shells, 839
in tubes, 836
baffled, 839
unbaflled, 167
(See also Pressure drop)
Fronts, in multicomponent mixtures, 329, 333
Fuel oil, 4, 675, 678, 689
Fugacity, 320
Furnaces, air preheaters for, 678, 680, 701
atomizing steam for, 698, 711
average flux in, 687, 696
blast, 664
calculations of, Lobo and Evans method, 697, 688-705
Orrok-Hudson equation, 697, 706, 707
Wilson, Lobo, and Hottel method, 697, 705
Wohlenberg simplified method, 697, 705
chemical, 674
coking in, 675, 679
conductivity factor for, 687
design methods for, 696-708
with double tube rows, 687
dry ash in, 689
effective refractory surface for, 701
effectiveness factors for, 685,687
emissivity factors for, 82,687
enclosing surfaces for, 684, 692-696
equivalent cold plane, 685
excess air in, 689, 690, 701, 706, 711
fuels for, 675
gas vs. coal-firing, 689
heat balances in, 698
heat sinks for, 684-689
heat sources for, 684, 689-692
heat-treating, 674
kilns, 674
maximum flux in, 687
mean beam length, 690-692
oil vs. coal-firing, 689
open-hearth, 664
Orat analysis of, 712
ovens for, 674
permissible flux in, 674, 702, 712
petroleum-refinery, 678-683
"A" frame, 682
average flux in, 686, 696
box-type, 678
bridgewalls for, 678
convection surface in, 678
De Florez, 680
double-radiant box-type, 680
down-draft convection-bank; 682
efficiency of, 678, 701
maximum fux in, 686
multiple radiant-section, 682
overhead convection-bank, 680
polymers in, 679
radiant surface in, 678
soaking section in, 679
tube spacing in, 686
pulverized-coal-firing, 689, 706
radiant-rate distribution, 685

Furnaces, regenerative, 624
reradiation in, 685
shield tubes in, 707
slag factor, 687,688
slagging in, 674, 687
stoker-firing, 689, 706
tube cleaning in, 711
tube-skin temperature, 713
(See also Boilers, stoam-generating; Radiation)

G

Gases, absorption of, 222
compression of, 192, 195
cooling by direct contact, 614-621
corrosive, 727
direct-contact transfer, 564
in exchangers, 190-198, 245, 246-250
ammonia cooler for, calculation of, 193-195
coolers for, 192, 246-250
wet, calculation of, 197
flue, 246
free convection to, 216
friction factors for, 191, 836, 839
as fuels, 675, 678, 689
heat-transfer coefficients of, 192
lean, 222
natural, 222
noncondensable, in vapor mixtures, 302, 313, 339-352
nonluminous, 674, 689
Prandtl numbers for, 191
properties of, compared with liquids, 190
radiating, 690
reactor, 285
rioh, 222
specific heat of, 805
thermal conductivity of, 801
under vacuum, 191, 195
viscosity of, 825
viscosity correction for, $\mathbf{8 2 0}$
wet, coolers for, 195
Gas-turbine cycles, 515
Gas oil, 4, 46, 209, 482, 530
Gasoline, 4, 222, 476
Gauss's error integral, 641
Gibbs' phase rule, 313-318
Gilliland formula, 344, 568
Graetz number, 37, 202, 748
Granular materials, in beds, 625, 668-670
in tubes, 747-752
Graphical solution, of conduction, 21
of process temperatures, 224
of steam-condensing coefficients, 309
Grashof number, 37, 206, 215, 400, 405
Gravel, heat transfer to, 670
Gurney-Lurie charts, 651-655

H

h, individual heat-transfer coefficient, definition of, 26
Hairpin, 102, 523
HDU, height of diffusion unit, 591

Heat, mechanical equivalent of, 34
of reaction, 679
of solution, $625,630,631$
total (see Enthalpy)
of vaporization, 815
Heat capacity (see Specific heat)
Heat economizers, 192
Heat-exchanger tubes, 128, 843
Heat exchangers (see Exchangers)
Heat flow (see Conduction)
Heat head in surface condensers, 305
Heat interchangers (see Exchangers)
Heat loss from pipe, 17
to air, coefficients of, 18
Heat recovery, in counterfow, 92
in 1-2 exchangers, $169,170,177$
in 2-4 exchangers, 177, 178, 179
instrumentation for, 777
lack of, in exchangers, 175
in parallel flow, 93
of waste heat, 192
Heat regenerators, 625, 664-668
Heat transfer, definition of, 1
Heat-transfer coefficients, in annuli, 105
with extended surfaces, 525
for atmospheric coolers, 734, 736
for bayonet exchangers, 745
for coils, 718, 721-723
condensation, of binary mixtures, 319
graph of, 267
of miscible-immiscible mixtures, 338
of miscibles and immiscibles from noncon-
densable, 352, 367
of multicomponent mixtures, 330
of steam, 266
in surface condensers, 306
in steam distillation, 338
in tube, horizontal, 269
vertical, equation, 265
on tube, horizontal, equation, 265
on tubes, horizontal, equation, 266
vertical, equation, $\mathbf{2 6 5}$
controlling, 87
conversion factors for, 793
definition of, 3, 18
desuperheating, calculation of, 286
evaporation, accepted overall, 379, 412, 414
453
apparent overall, 399
effect of pressure on, 378
of soda waste liquor, 429
of sodium hydroxide, 441, 442
of sugar solutions, 421
of water from pools, 382
extended surfaces, double pipe exchangers, 526
longitudinal fins, 525, 535
transverse fins, 555
in falling-film exchangers, 747
forced convection, for gases (vapors), 192
in pipes and tubes, 834
in shells, 838
for liquids, in pipee and tubes, 103, 834 in shells, 838

Heat-transfer coefficients, forced convection, for water in pipes and tubes, 885
free convection, from miscellaneous shapes, 215
from pipes, to gases, 215, 216
to liquids, 216, 217
for granular materials in beda, 670
individual, 26
in aurface condensers, 308
in jacketed vessels, 716-719
overall, 86
approximate, 840
arithmetic mean, 94
clean, 106
definition of, 106
dirty, design, 106
in evaporators, power-plant, 382, 383
in surface condensers, $\mathbf{3 0 6}$
true mean, 94
in vapor-nomeondensable systems, 343
periodic, 665
from pipes to air, 18
from pipes to gases, 214, 216
in pipes and tubea, 834
water, 835
for rediation, 77
for reboilens, 474
in shells, baffled, 136-139, 838
unbaffled, 166
for slurries, 725
for solids, 670
for solids in rodlike flow, 749
for steam as heating medium, 164
effect of dissolved air on, 302
for steam from noncondensables, 367
for suspensions, 725
in tubes, 103
geseos and liquids, 834
water, 855
for unsteady state, 717, 722
vaporization, forced-circulation, isothermal boiling, 461
maximum allowable, 460
nonisothermal boiling, 469
in shells, 461
in tubes, 470
natural-circulation, 474
in chillers, 472,474
in horizontal thermosyphons, 479
in kettle reboilers, 474
maximum allowable, 460
in vertical thermosyphons, 488
weighted, 480
of vapors from noncondensables, $\mathbf{3 6 7}$
for vertical condenser-subcodlers, 289
volumetric, 668, 669
for water, in shells, 137
in tubes, 155
weighted clean overall, in deauperheater-condensers, 284
for mixed vapors, 331
for vapor from noncondensable gas, calcula-
tion of, 351
weighted trial overall, 285

Heat-transfer factor $\mathbf{j u t}_{4,50,104,111}$
Heat-transfer factor $j h, 192$
Heat-treating furnaces, 674
Heaters, bleed, 388
definition of, 102
instrumentetion for, 778-780
stage, 388
sugar-juice, 422,425
(See cliso Exchangers)
Height of diffusion unit (HDU); 591
Height of transfer unit (HTU), 570, 590
Henry's law, 569, 638
n-Heptane, 282
i-Hexane, 355
n-Hexane, 322, 331
vapor-pressure curve of, 321
Holdup, in batch processes, 624
in distillation, 478
Horizontal condensers (see Condensers, shell-andtube)
Horizontal condenser-subeooler, 294
calculation of, 295-297
Horizontal film coolers, 727
Horizontal vs. vertical condenser-subcoolers, 208
Hot well, 305
HTU, height of transfer unit, 570,590
Humid heat, 588
Humidification, 563, 570-577, 613, 614
Humidification coefficients, 598-601
Humidifiers, 589,614
Hydraulic radius, 104, 138
in condensate fllms, 264
Hydrocarbon gases and vapors, specific heat of, 807
thermal conductivity of, 801
Hydrocsrbon liquids, equilibrium constants for, 810
molecular weights of, $\mathbf{5 6 0}$
Prandtl numbers for, 826
specifio gravity of, 809
specific heat of, 806
thermal conduetivity of, 808
vapor pressures of, 811
Hydrocarbons, heat-transfer (see Heat-transfer coefficients)
light, enthalpies of, 815
pure, enthalpies of, 812
Hydrogen, 190, 690
Hydrogen chloride, 727
Hydrostatic head, in evaporators, 408
for reflux return, 272
Hyperbolic tangents, 621
I
IBP (see Initial boiling point)
Ideal solutions, 319, 495
Ideality, criteria of, 320
Individual film coefficients (seo Heat-transfer coeffioients)
Ilmenite, 749
Immersion heaters, 754, 755, 758
Immiscible mixtures, 314

Incinerators, rotary, 426
Infinite series, 747
xnfrared, near and far, 65
Initial boiling point (IBP), 4, 353
Instrument Society of America, 773
Instrumentetion aymbols, 773
Instruments, 767
Insulating materials, thermal conductivity of, 795
Insulation, maximum heat loss through pipe, 20
optimum thickness of, 21
Insulator, definition of, 2, 8
Intensity of radiation, 64
Intercondensers, 397
Intercoolers, 192, 195, 197, 198, 339
calculation of heat load in, 196
Tonic solutions, 320
IPS (see Iron pipe size)
Iron balls, heat transfer to, 670
Iron ores, heat transfer to, 670
Iron pipe dimensions, 844
Iron pipe size (IPS), 843
J
$j_{H,} j_{h}$ (see Heat-transfer factor)
Jacket water cooling, 731
Jacketed vessels, 625, 716
heat-transfer coefficients for, 716-719
time for heating, 626-628
Jet condenser, 394, 564
Jet propulsion, 515
Joule's law; 754

K

Kelvin evaporation theory, 375
Kerosene, 4, 151, 207
Kettle, direct-fired, 708
Kettle reboilers (see Reboilers, natural circulation)
Kilns, 674
Kinematic viscosity, 28
Kirehhoff's law, 67
Kleinschmidt still, 442
Knock-back condensers, 298
Knockout drums, 776

L

Laminar flow (see Streamline flow)
Laminar layer, 54-57
Latent heat of vaporization, 815
Lean oil, 222, 235
Level controi, 768, 776
Lewis number, 574,612
Ligament betwoen tubes, 128
Lignin, 426
Lime, 418, 433
Lime-soda process, 381
Limestone, heat transfer to, 670
Liquid-level control, 766, 776
Liquids, cooling and heating (see Heat-transfer coofficients)
specific gravity of, $\mathbf{8 0 8}$

Liquids, specific heat of, 804
thermal conductivity of, 800
viscosity of, $\mathbf{8 2 3}$
LMTD (see Logarithmic mean temperature difference)
Loading, in cooling towers, 584, 601
in surface condensers, 306
Logarithmic mean temperature difference (LMTD), 42
Loop seal, on horizontal condenser-subcoolers, 294, 331
on vertical condenser-subcoolers, 289
Low-level condensers, 396
Lube oil, 4, 121

M

Magnesium bisulfite, 427
Magnesium scale, 380
Magnesiuma sulfite, 426
Mass-diffurion coefficient, 341
Mass transier, 339, 564, 612, 614
Mess velocity, 35
in shells, 137
in tube bundles, 150
Material transfer (see Mass transfer)
Maxwell's electromagnetic theory, 62
Mean beam leagth, 690-692
Mean temperature, 201
Mechanical equivalent of heat, 34
Metals, properties of, 799
Methyl alcohol, 619
Mieron, definition of 62
Mineral oils (see Hydrocarbons, Petroleum)
Minimum annual cost of exchanger, 225
Miscible mixtures, 314
Mixing, in streamline fow, 202
in temperature-difference assumptions, 140, 547
Models, theory of, 38
Mol fraction, 320
Molasses, 739
Molecular volume 344
Momentum transfer, 54, 342
Monochromatic properties, 65
Multicomponent mixtures, 319-329
empirical solution of, 353
fictitious eompounds of, 356
modified by immiscibles and noncondensables, 352
reboiler duty for, 505
Multipass exchangers (see Exchangers, 1-2)
Multiple-effect evaporation, 384, 389, 408

N

Naphtha, 4, 231, 482
Natuxal circulation, in evaporators, 400-405
in vaporizers, 454
Natural convection (see Convection, free)
Natural gas, 222
Natural gasoline industry, 731
Newton's law of cooling, 3
Newton's rile, 27

Newton's second law, 30
Nickel, 438
Nitric oxide, 727
Nitrogen, 615, 690
Nomenclature (see conclusion of each chapter)
Noncondensable gas (zee Gases)
Noncondensing turbines and engines, 165
Nonideal solutions, 320
Nonluminous geses, 674
Normal total emisivity, table, 70-73
Nozzle, flared, 271
Nozzle entry allowances, 134
Nuclear boiling, 377
Number of transfer units, 570,590
Nusselt number, 37
Nusselt's theory, 256-263
0
Ohm's lawt, 6, 12, 754
Oils, as fuels $\mathbf{8 7 5}, 678,689$
petroleum, classification of, 4 degree API of, 4 enthalpies of, 812-814 equilibrium constants of, 810
friction factors of (see Friction factors; Pressure drop)
heat transfer to (see Heat-transfer coeffcients)
molecular weights of, 360
pressure drop in (see Friction factors; Pressure drop)
specify gravity of liquid, $\mathbf{8 0 9}$
specific heat, of liquid, $\mathbf{8 0 6}$ of vapors from, 807
thermal conductivity, of liquid, 803 of vapors from, 801
wapor pressures of, 811
viscosity of, 881
(See alao Specific names of oils)
On-and-off control, 770
Open coolers, 730
Open-hearth furnace, 664
Open-and-shut control, 770
Operating pressure, of condenser, 325, 577
influence of, on gas heaters and coolers, 191
Optical glass, annealing, 645
Optimum atmospheric-cooler temperature, 734
Optipum effects in evaporation, 416
Optimum efficiency of cycles, 387
Optimum exchanger, 224
Optimum outlet-water temperature, 158
Optimum pressure in distillation, 325
Optimum process conditions, 221
Optimum recovery temperature, 224
Optimum reflux ratio, 499
Optimum thermal fin, 544
Optimum thickness of insulation, 21
Optimum use of exhaust and process stesm, 165
Optimum velocities, 225
Organic fluids, heat transfer of, 103, 840
(See also Heat-transfer coefficients)

Organic solutions, properties of, 161
Ottawe sand, 749
Outer tube limit, 134
Ovens, 674
Overall coefficients of heat transfer (see Heattransfer coefficients)
approximate values of, 840
graphical analysis of, 308
Overhead product, 255
Oxygen, 535, 690
dissolved in water, 306

P

Packed foating-head exchangers, 135
Packed towers (see Direct-contact transfer)
Paper-puly processes, 426
Paper-pulp waste liquors, 426
Parebolic velocity distribution, 40, 201
Parallel-counterflow, 139
Parallel feed in evaporators, 384
Parallel flow, 85
heat recovery in, 93
temperature difference in, 90
Parallel flow-counterflow, 139
Partial condensers, 280, 318
Partial phase change, 283
Partial pressure, 321
Pebble heaters, 624
Peclet number, 37
i-Pentane, 290
n-Pentane, 290, 314, 316, 317, 331
vapor pressure ourve of, 321
Perfect gas lew, 191, 192
Performance, of cooling tower 602
of exchanger, 148
Periodic heat-transfer coefficient, 665
Petroleum coke, as fuel, 678
Petroleum fractions, classification of, 4
light ends, 4
Petroleum industry, 4; 353
Petroleum oils (see Oils)
Petroleum-refinery furnaces (see Furnaces)
Phase, definition of, 313
Phase changes, partial, 283
Phase equilibrium, 314, 321
Phase rule, 252, 313-318, 564
Phosphate solution cooler, 161
Pi theorem, 38
forced convection by, 39
Pipe stills (see Furnaces, petroleum-refinery)
Pipes, dimensions of, 843
friction in (see Friction factors; Pressurs drop)
heat loases from, 17-21
Pipe-wall temperature, 97
Pitch, baffe, 129
tube, 128
Planck, 63
Planck's law, 66, 69
Plate in distillation, 254
Poise, 28
Poiseuille, 28

Polytropic compression, 182
Potential, definition of, 6
Power, by-prodiuct of, 391 conversion factors for, 793
Power cycles; 301
Power-plant evaporators, 378-397
(See clso Evaporators)
Power series, 31
Prandtl aralogy, 67
Prandtl number, 37, 50, 215
Prandtl numbers for gases, table, 191
Precondensers, 395, 397
Preheaters, in batch distiliation, 639
in sontinuous distillation, 221
with make-up evaporators, 387
Pressure, constant, in distillation, 271
conversion factors of, 744
effect of, on boiling coefficient, 378, 382
on thermal conductivity, 8
on viscosity, 820
Preselure booster, 390
Pressure-control valve, 767, 776
Preseure distribution in evaporators, 413
Pressure drop, 34
allowable, in compressor intercoolers, 195
in condensera, 272
in cooling to wers, 601
in exchangers, 108
in annuli, 109
balanced, in subcoolers, 280, 294
in chillers, 475
of condensing vapors, 273
in double pipe exchangers, entrance and exit losses, 109
on extended surfaces, longitudinal fins, 525 transverse fins, 555
in horizontal thermosyphons, 480
instrumentation for low, 777
in ketifle reboilers, 475
in partial condensers, 280
in pipes and tubes, 148, 202, 836
of condensing steam, 165
of condensing vapors, 273
deviation of, 34
equations for, 52
friction factors of, 53, 856
of gases, 191
of liquids, 148
over pipes end tubes, in crossfowi 554
in reboilers, natural-circuilation, 699
in resation to heat transfer, 54-57
in shells, 14T, 839
balanced, in condensation, 280, 294
of condensing steam, 165
of condensing vapors, 273
of gases, 191
split-flow, 245
of steam, 185
unbeffled, 166
in surface condensers, 307
in tubes, friotion factors for, 896
return losses for, 148, 887
Williams and Hagen equation, 307

Pressure drop, in vaporizers, inatural-circulation. 461, 469
Pressure-drop allowance, 108
in compressor intercoolers, 195
in condensers, 272
Pressure gradient, 34
Pressure-volume-temperature reletionships, 320
Priming in evaporatore, 381
Probability integral, 641
Process conditions, 110, 220
optimum, 221
Process heat transfer, 3
Process lage, 768
Process steam, 165
vB, exbaust steam, 165
Process temperatures, 85
Process variables, 765
Program controllers, 788
n-Propanol, 274
Properties, of liquid solutions, 161
of saturated steam, 816, 817
of superheated steam, 818,819
Proportional controi, 770
and reset, 770
Propyl alcohol, 274
Psychr ometric charte, 584
Pull-through foating-bead exchangers, 132
Pumps, selection of, 774

Q

Quantum theory, 63
Quenohing, 641, 647, 653

R

Radiant energy (aee Radiation)
Radient-heat flux, 674
Radiant-heat transfer, 78-82
(See also Racciation)
Radiznt-heat-transfer factors, 683-696
Radiation, 62-84, 674-715
absorptivity of, 67
between any source and receiver, 78
black-body, 66
characteristies of, 62
coefficient of heat-tranger, 77
to completely absorbing reaeiver, 77
between concentric eylinders, 77
betwean concentric apheres, 77
conetant, 74
cosine law of, 74
definition of, 3,62
distribution of, 64
emission of, 63
emissive power of, 65
influence of temperature on, 69
emissivity of, 3, 68
experimental determinetion of, 68
normal total, 69
table of, 70-73
and free convection. 18. 218
frequency of, 62

Radiation, of furnaces (8ee Furnacea) geometric factor of, 80 heat-transfer coefficient of, 77 incidence of, 66
intensity of, 64
Kirohhoff's law of, 67
from luminous flames, 689 monochromatic properties of, 65
from nonluminous gaseb, 674, 689
carbon dioxide, 600, 693
carbon monoxide, 690
sulfur dioxide, 690
temperature over bridgewall, 699
water-vapor, 690,694
origin of, 63
oscillating field of, 62
oscillator, 63, 64
overall heat-exchange factor of, $\mathbf{7 0 0}$
between parallel planes, 74
between perpendicular planes, 81
between pipe and duct 82
Planck equation for, 66
between planes of different emissivity, 74
between plate and plane, 81
quantum theory of, 63,66
reflectivity of, 67
Stefan-Boltzmann law of, 69
and temperature of sun, 66
total emissive power of, 65
transmissivity of, 67
ultreviolet, 66
velocity of propagation of 62
wave velocity of, 62
wave length of, 62
Wien's displacement law of, 66
Radio waves, 62
Raoult's law, 320, 838
Raschig rings, humidification charaoteristics of, 600
Rating an exchanger, 148
outline of, 149
Rayleigh equation, 638
Reaction time, 624
Reboilers, 102, 255, 378, 453, 454, 459
for batch stills, 637
divided-flow, 246
effent of column preseure on, 325
forced-circulation, for aqueous solutions, 470
film coefficients for, 461
instrumentation for, 784
maximum allowable flux for, 459
maximum coefficient for, 460
pressure drop in, 461-463
pump-through, 457, 458, 464-470
specific gravities in, 461-463
with vapors in tubee, 470,471
heat balances for, 491
heat-fiux limitations in, 459
influence of feed on, 500
natural-circulation, bafled thermosyphon, 485
bundle-in-column, 459, 478
horizontal thermosyphon, 459, 478-482, 485 caloulation of, 482-485

Reboilers, natural-ciroulation, instrumentation for, 786
kettle, 459, 471
calculation of, $475-477$
maximum allowable fux for, 459
maximum coefficient for, 460
once-through, 458, 479, 480
overdesign in, 485
recirculating, 458, 479, 480, 482
vertical thermosyphon, 459, 482, 486-488 calculation of, 488-491
temperature-difference limitations of, 459
vaporization curves of, 469
Receiver, definition of, 1
Reciprocating pumps, flow control with, 772
Recirculation rate, 482
Recirculation ratio, 482, 486-488
Recorders, 766, 772
Recovery of gasoline from natural gas, 222
(See also Heat recovery)
Reference line, distillation, 354
Reflectivity, 67
Reflux, 255
flow control of, 772
gravity return' of, 268, 271, 272
instrumentation for return of, 781
(See also Distillation)
Reflux condensers, 298
Refrigerants, 627
Fefrigeration cycles, 472
Regenerators, 625, 664-668
Regulators, 767
Reheater, 392
Reheating, 176
Relatipe volatilities, 325
Relief valves, 789
Removable bundle exchangers, 132
Resin, 426
Resistance, contect, 9,640
definition of, 6
to electricity flow, $B, 13$
to fluid flow, 6
to heat flow, 6
unit t_{r} definition of, 18
Resistance heating, 753-763
Resistances in series, 14
Resistivity, eleatrical, 12
Return pressure drop, 148, 202, 837
Reversing exchanger, 515, 664
Reynolds analogy, 54-57
applied, to diffusion, 342
to distillation, 343
Reynolds number, 29
critical value, 53
modified for agitation, 718
varistion of, in streamline flow, 202
Ribs, conduction in, 22
Rich oil, 222, 235
Rodlike flow, in flyids (see Streamline flow)
in solids, 747
Rotated square pitch, 128
Roughness, effect of, on fluid friction, 53 on heat transier, 104

S-type coolers, 727
Safety valves, 789
Salt solutions, properties, 161
Saturation temperature, 252
Saybolt Seconds Universal (SSU), 29
conversion factors for, 820
Saybolt viscometer, 29
Scale, calcium and magnesium, 380
in evaporators, 379-382, 400
impuritiea causing, 301
removal of, by shock, 382, 733
Scale factors (see Fouling factora)
Schack charts for rectangular shapes, 649, 650
Schmidt method, 657-662
Schmidt number, 37, 842
Sea water, 392
Self-diffusion, 564
Semiplasties, 739
Separators, 380, 454, 457
steam, 380, 455
Series, Fourier; 645, 663
infinite, 747
power, 31
Serpentine coolers, 727
Shear stress in fluids, 27
Shell-and-tube condensers (see Condensers)
Shell-and-tube exchangers (see Exchangers)
Shell-side film coefficients (see Heat-transfer coefficients)
Shell-side equivalent diameters, crossfow, 137, 838
Shell-side flow area, 138
Shell-side mass velocity, 137
Shell sizes, 129
Shocking for scale removal, 382
Sieder-Tate equation, 103, 206
Sieder-Tate heat-transfer factor, 104
Skin friction, 55,342
Slabs, unsteady conduction in, 645, 657
Slag in boilers, 674
Stiudge as fuel, 675
Slurries, 725-727
Soaking in cracking, 679, 682
Soap in water conditioning 380
Soda ash, 433
Soda process, 426
Soda waste liquor, BPR of, 430
evaporation of, 426-433
specific heat of, 429
Sodium carbonate, 426
Sodium chloride, 398
number of effects for, 416
Sodium hydroxide, 161, 398, 399, 426
boiling point ve. pressure relations of, 435
cooler for, calculation of, 238
corrosion by, 438
evaporation of, 433-442
number of effects for, 416
relative heat contents of, 438
specific-gravity curve of, 436
specific-heat curve of, 437
Sodium sulfide, 426

Sodium zeolite, 381
Solids, specific heat of, 799
thermal conductivity of, 795-799
Solids in beds, 668-670
Solution exchangers, 160
Solutions, ideal, 319, 495
nonideal, 320, 324
Source, definition of, 1
Specific gravity, of alloys, 799
of hydrocarbons, 809
of liquids, 808
of petroleum fractions, $\mathbf{8 0 9}$
of metals, 799
Specific heat, of alloys, 799
of gases, 190, 805
correction for pressure, 191
of granular solids, 750
of hydrocarbon liquids, 806
of hydrocarbon vapors, 807
of liquids, 804
of liquid solutions, 161
of metals, 799
of petroleum fractions, 806
of vapors, 807
Spectral energy, 64
Spheres, radiation from, 77
unsteady conduction in, 645
Split fiow, 245, 274
Split-ring assemably, 133
Split-ring floating-head exchangera, 133
Spray coolers, 730
Spray driers, 576
Spray ponds, 576, 579, 581
Spray towers, 576, 579, 581, 600
Spray washers, 570, 611
Square pitch, 128
rotated, 128
SSU (see Saybolt Seconds Universal)
Stage heater, 388
Stanton number, 37
Stationary tube-sheet excbangers, 129, 131
Steady state, definition of, 11
Steam, bleed, 387
condensation of, 253
economy of, in evaporators, $384,413,416$
as heating medium, 163, 167, 203, 207, 211, 242, 404
optimum use of exhaust and process, 165
superheated, 386
as heating medium, 164, 198
Steam boilers, 675
Steam distillation, 222, 337, 352
Steam engines, 165, 301, 390, 397
Steam generator, unfired, 457, 486
Steam heater, calculation of, 167
Steam load in surface condensers, 305
Steam loading in surface condensers, 306
Steam motive in ejectors, 395, 446
Steam pressure drop in shells and tubes, 165
Steam tables, 816-819
Steam turbines, 165, 301, 386, 390, 397
Steel industry, 624, 664
Steel pipe dimensions, 843

Stefan-Boltzmann constant, 74
Stefan-Boltzmann law, 69
Stokes, 28
Storage tanks, free-convection heaters for, 217
Straw oil, 4, 46, 231
Streamline flow, in condensate films 256
transition from, 270
definition of, 29
dimensional analysis of, 40
in 1-2 exchangers, mixed, calculation of, 203 unmixed, calculation of, 207
fouling factors for, 214
parabolic velocity distribution in, 40, 201
in pipes and tubes, core tubes for, 209
correction of, for free convection, 206
heat-transfer equation for, 103
highest attainable temperature in, 201
in shells, 214
variation of Reynolds number in, 202
Streamline flow and free convection, 206
Streamline shapes, 605
Strip heaters, 754-756, 759
Stripping (see Distrllation, stesm)
Subcooling, 269, 280, 282, 289-298
in surface condensers, 305
Subcooling zone, horizontal, 294, 331
vertical, 289
Submerged pipe coil, 723-725
Submergence in condenser-subcoolers, 289, 294
Sucrose (see Sugar)
Suction pressure, 305
Suction tank heater, 738
Sugar, 398, 401, 417-426
Sugar solution heater, 167
Sugar solutions, BPR for, 420
evaporation of, 418-427, 447-449
number of effects of 416
specific heats of, 420
Sulfate process, 426
Sulfite liquor fermentation, 427
Sufite process, 426
Sulfur dioxide, 690, 729
Superheat, 252
in distilling column, 454
in steam vs, organics, 281
Superheated steam, 281, 818
Superheated vapor, 281, 283, 454
Superheaters, in furnaces, 675
Surface, effective, in radiant-heat transfer, 78-82, 683, 684, 686
in tubular equipment, 129, 306
Surface coefficient of heat transfer, 18
Surface condensers, 301-309, 427, 433
cooffioients for, 306
dual-bank, 304
Surface tension of organics and water, 376, 381
Suppensions, 725
Sutherland constant, 9

T

Table salt, 398
production of, number of effecta for, 416

Tails in multicomponent mixtures, 329, 333
Tank suction heater, 738
TBP (ees True boiling point)
Temperature, absolute, 3, 6, 74, 192
in adiabatic compression, 192
arithmetic mean, 46
bulk, 206, 215
caloric, $93-97$
conversion factors for, 794
cut-off, 639
dry-bulb, 571
film, in condensation, 260
in forced convection, 99
in free convection, 215
mean, 201
periodically varying, 625
pipe-wall, 97
tube-skin, 713
wet-bulb, 570-573
Temperature approach, in barometric condensers, 396
in cooling towers, 594, 607
in exchangers, 146
Temperature control, 765-789
Temperature cross, 146, 175
in debuperheater-condensers, 284
increase of, in exchangers, 175
Temperature difference, 85
arithmetic meen, 201
critical, in evaporation, 376, 377
in vaporization, 460
in desuperheating, 282
effective (aee Temperature difference, true, weighted)
between fluid and pipe, 41
logarithmic mean, 42
calculation of, 90-93
correction factors in, for 1-2 exchangers, 828 derivation of, 144
correction in, for 2-4 exchangers, 889
for 3-6 exchangers, 830
for 4-8 exchangers, 831
for 5-10 exchangers, 832
for 6-12 exehangers, 835
for R greater than 20, 729
counterflow derivation of, 87
parallel-flow derivation of, 80
mean, 201
optimum, in coolers, 158-160
in heatera, 166
with partial phase changes (ses Temperature difference, weighted)
in power-plant evaporators, 383
in submerged pipe coils, 724
true (see Temperature difierence, weighted)
from ASTM curve, 354
in atmospheric coolers, 736
in bayonet exchangers, 740-745
comparison of, between $1-2$ and $2-4$ exohang ers, 177
in condensation, of binary maixtures, 319
of vapor from noncondensable gas, 843
in condenser-subcoolers, vertical, 295

Temperature difference, true, in condensing mixtures, 314
in counterfow, 97, 553
in crossflow, 546-553, 727-728
crossflow correction curves in, 549
crossfow vs. parallel-counterflow, 547, 553
in desuperheater-condensers, 283
in divided flow, 479
in 1-2 exchangers, 139-147, 898
in 2-4 exchangers, 176-179, 829
in horizontal thermosyphons, 479
for R greater than 20,729
in series-parallel counterflow, 117-120
in split-flow exchangers, 245
from TBP curve, 354
in trombone coolers, 727-728
vs. tube length, 86
weighted, in condensation, of miscibles and immiscibles from noncondensable, 356
of multicomponent mixture, 329, 332
in condenser-subcoolers, horizontal, 295 vertical, 290, 291
in condensers, batch, 639
in desuperheater-condensers, 283
calculation of, 286
in preheater-vaporizers, 461, 465
Temperature-difference correction for R greater than 20,729
Temperature distribution, ws. heat load, in condensation, 282, 313
in counterflow, 42
in moving fluids, 202, 747-751
in moving solids, 748
vs. tube length; in 1-2 condensers, isothermal condensation of, 283
in counterflow, 86
in 1-2 desuperheater-condensers, 283
in 1-2 exchangers, $140,145,176$
in 2-4 exchangers, 176
in parallel flow, 86
in split flow, 245
Temperature effect on thermal conductivity, 8
Temperature-entropy plot, 574
Temperature gradient, 2
in petroleum soaking, 679, 682
in streamline flow, 202
Temperature range, 85
in condensation, 281, 285, 313, 314
in desuperhesting, 285
Temperature rise in aurface condensers, 305
Tempering coils, 544
Terminal-temperature difference, 306
Theory of models, 38
Thermal conductivity, of alloys, 799
of building and insulating materials, 795-798
conversion factors for, 794
from electrical conductivities, 12
experimental determination of, for liquids and gases, 8
for nonmetal solids, 7
of gasea, 190
and vapora, 801

Thermal conductivity, of granular solids, 749 of hydrocarbon liquids, 803
influence of temperature and pressure on, 8
of liquid solutions, 161
of liquides, 800
of metals, 799
of petroleum fractions, 803
units of, 7
Thermal eracking, 678, 679
Thermal diffusivity, $11,641,662$
Thermal-expansion elements, 767
Thermal shock for scale removal. 382, 733
Thermocompression, 418, 442-447
steam economy of, 444
steam requirement for, graphs, 443
sugar evaporation by, 447-451
Thermocompression evaporation, 447-449
Thermocouples, 767
Thermodynamics, defiaition of, 1
Thermometer wells, 775
Thermosyphons (see Reboilers, natural-circulation)
Time of cooling and heating betches, celculation of, $635-637$
with coil-in-tank, 625-628
with counterfiow exchangers, 625, 628-631, 633-635
with 1-2 exchangers, 626, 631-633, 635
with 2-4 exchangers, 633, 635
with jacketed vessels, $625-628$
Time of cooling and heating solids, 639-662
(See also Conduction, unsteady)
Time of reaction, 624
Toluene, 113, 338, 502
Total emissive power, 65
Towers (see Direct-contact transfer; Distilling column)
Transfer unit, 570,590
Transition region, 52, 103
Transition velocity, 53
Trapout, 457
Treating, chemical, 208
Triangular pitch, 128
Trickle coolers, 727
Trombone coolers, 727-730
temperature difference in, 727-728
Trouton's rule, 495
True boiling point (TBP), 353
True temperature difference (see Temperature difference)
Tube bank (see Tube bundle)
Tube bundle, 135, 217, 229
Tube coils, 625
Tube counts, 134, 226, 840, 841
reduction of, for extra passes, 248
Tube diameters, common, 228
Tube expandizg, 127
Tube lengths, common, 228
Tube passes, 131, 227
Tube pitch, common, 128
radial, 305, 307
staggered, 272
Tube resistance to heat transfer, 309

Tube rolling, 127
Tube-sheet layouts, 128, 133, 840, 841
Tube sheets, 127
Tube standards, 228
Tube stills (see Furnaces, petroleum-refinery)
Tubes, bent, 382
common sives of, 128
field, 738
serpentine, 382
Tubular equipment (see Exchangers, shell-andtube)
Tubular Exchanger Manufacturers Association, Standards of the, 137, 148, 828-834, 837, 845
Turbines, 165, 301, 386, 390
Turbulent flow, in condensate filmes, 270
definition of, 29
Two-position control, 770

U

U, overall coefficient of heat trangfer, 86
U-bend exchangers, 135
double-tube sheet, 135
as suction heaters; 740
Ultraviolet; 66
Unit resistance, definition of, 18 .
Units, consistent, 37
Unsteady conduction (see Conduction)
Unsteady state, 624

Y

Vacuum, in evaporation processes, 393
gases under, 191
in surface condensers, 305
Vacuum processes, 390
water temperatures for, 594
Valves, regulating, 767
Van der Waals' equation, 191
Vapor, saturated, 282, 289
superheated, 281
Vapor belt, 271
Vapor binding, 376, 378
Vapor-diffusion (see Diffusion)
Vapor-liquid equilibria in phase rule, 313
Vapor-liquid relationships; of binary mixtures. 318
of multicomponent mixture, 319-329
of vapor and noncondensable gas, 339
Vapor mixtures (see Condensation of mired vapors; Vaporization)
common types of, 315
compositions of, 313
Vapor pressure, of hydrocarbons, 811
of water, 816
Vapor-racovery sybtem, 222
Vapoxization, 252, 322, 326, 375, 400
blanketing in, 468
from clean surfaces, 459
maximum coefficients for, 159
from pools, 459
(Ses also Evaporation; Evaporators; Vaporisers; Reboilers)

Vaporizers, 102, 378, 453, 458, 459
1-2 exchangers as, 459, 461
forced-circulation, 454
calculation of, 464-468
as evaporators, 470
film coefficients for, 461 isothermal boiling, 461 maximum allowable flux, 459 maximum coefficient, 460 nonisothermal boiling, 468 pressure drop in, 461-463 pump problems in, 457 specific gravities in, 461-463 vapory in tubes of, 470, 471
foreed- vs, natural-circulation, 457
fouling in, 455
natural-circulation, 456
hydrostatic head in, 456
maximum allowable flux in, 459
preheating in, 461
recirculation in, 455, 456
Vaporizing equipment, classification of, 378
Vaporizing exchangers, 378, 453, 458
Taporizing processes, 453, 465
Felocity, of drainage, 258
of water, in coolers, 155
in surface oondensers, 306
Velocity distribution, parabolic, 40, 201
Velocity gradient, 27
Vertical condensers (see Condensers, shell-sud tube)
Vertical condenser-subcooler, 289
calculation of, 290-293
Vessels, with coils, time for heating, 626-628
direct-fired, 709
jacketed, heat-transfer coefficients for, 716-719 time for heating, 626-628
Viscosity, 27
of animal and vegetable oils, 821
conversion chart for, 820
conversion factors for, 794
of fatty acids, 821
of gases, 190, 824, 325
of liquids, 822, 823
of liquid solutions, 161
of petroleum fractions, 821
pound-force, 28, 258
pound-mass, 28, 258
Viscosity correction, for grses, 820
for nonizothermal flow, 99, 120
Viscous flow (see Streamline flow)
Volumetric equivalent diameter, 555
Volumetric heat-transfer coefficient, 668, 669

W

Waste hest recovery, 192
Waste liquor; sulfate, 426
Water, algae in, 154, 724
as cooling medium, 154, 161, 193, 594
distilled, 155, 384, 443
evaporation of (see Evaporation)

Water, hard and soft, 3B0
optimum outiet temperature of, in exchangers, 158
calculation of 159
in power cycles, 301
raw, 155
sea, 392
in shells, heat-transfer coefficients of, 137
treatment of boiler-feed, 380-382
in tubes, heat-transfer coefficients of, 155, 835
velocity of, in coolers, 155
in surface condensers, 306
well, 285
Water conditioning, 380-382
Water boxe8, 129-133, 305

Water reuse, 577
Wavelength, 4
Weighted temperature difference (see Temperature difference)
Well water, 285
Wet-bulb temperature, 570-573
vs. dew-point, 573
Wet gases, coolers for, 195
Wien's displacement law, 66
Wind, maximum velocities of, 597
surnmer data on, 582
Wood as fuel, 675
\mathbf{Z}

Zeolite process, 381

OTHER McGRAW-HILL
INTERNATIONAL STUDENT EDITIONS
IN RELATED FIELDS
Andrews: CHEMISTRY; A Humanistic View Badger: NT TRODUCTION TO CHEMICAL ENGINEERING Baidwin: EXPERIMENTAL ORGANIC CHEMISTRY, $2 / \mathrm{e}$ Ewing: INSTRUMENTAL METHODS OF CHEMICAL ANALYSIS, 4/e Fitts: VECTOR ANALYSIS IN CHEMISTRY
Gilreath: FUNDAMENTAL CONCEPTS OF INORGANIC CHEMISTRY Griffin: MODERN ORGANIC CHEMISTRY
Groggins: UNIT PROCESSES IN ORGANIC SYNTHESIS, 5/e
Holman: HEAT TRANSFER, 4/e
Jones: MECHANICS OF COMPOSITE MATERIALS
Laitinen: CHEMICAL ANALYSIS, $2 / e$
Warct: ADVANCEEORGAN\|L CHEMISTRY, Z/e
McCabe: UNIT OPERATIONS OF CHEMICAL ENGINEERING, $3 / \mathrm{e}$
Monson: FUNDAMENTALS OF ORGANIC CHEMISTRY
Perry: CHEMICAL ENGINEERS' HANDBOOK, 5/e
Pine: ORGANIC CHEMISTRY; 4/e
Richards: EEEMENTS OF ORGANIC CHEMISTRY

[^0]: ${ }^{1}$ In the metric system it is usual to report the thermal conductivity as cal/(sec)$\left(\mathrm{cm}^{2}\right)\left({ }^{\circ} \mathrm{C} / \mathrm{cm}\right)$.

 * An excellent review of experimental methods will be found in Saha and Srivastava, "Treatise on Heat," The Indian Press, Calcutta, 1935. Later references are Bates, O. K., Ind. Eng. Chem., 25, 432 (1933); 28, 494 (1936); 33, 375 (1941); 37, 195 (1945). Bolland, J. L. and H. W. Melville, Trans, Faraday Soc., 33,1316 (1937). Hutchinson, E., Trans. Faraday Soc., 41, 87 (1945).

[^1]: ${ }^{1}$ Smith, J. F. D., Ind. Eng. Chem., 22, 1246 (1930); Trans. ASME, 58, 719 (1936).

[^2]: ${ }^{1}$ Sutherland, W., Phil. Mag., 36, 507 (1893).

[^3]: ${ }^{1}$ Awbery, J. and F. Schofield, Proc. Intern. Congr. Refrig., 5th Congr., 3, 591-610 (1929).

[^4]: ${ }^{1}$ Figure numbers which are not preceded by a chapter number will be found in the Appendix.
 ${ }^{2}$ Reynolds, O., "Scientific Papers of Osborne Reynolds," p. 81, Cambridge University Press, London, 1901.

[^5]: ${ }^{1}$ Bridgman, P. W., "Dimensional Analysis," Yale University Press, New Haven, 1931.

[^6]: ${ }^{1}$ Buckingham, E., Phys. Rev., 4, 345-376 (1914).
 ${ }^{2}$ Bridgman, op. cit.

[^7]: ${ }^{1}$ American Institute of Physics, "Temperature: Its Measurement and Control in Science and Industry," Reinhold Publishing Corporation, New York, 1941.
 ${ }^{2}$ Morris, F. H., and W. G. Whitman, Ind. Eng. Chem., 20, 234 (1928).

[^8]: ${ }^{1}$ Stanton, T. E., Phil. Trans. Roy. Soc. (London), A 100, 67-88 (1897).
 ${ }^{2}$ Prandtl, L., Physik. Z., 29, 487-489 (1928).
 ${ }^{3}$ Taylor, G. I., Brit. Adv. Comm. Aero., Rept. and Memo 272 (1917).

[^9]: Note. The results of many investigators have been omitted because of obvious defects in experimental method.

 * When two temperatures and two emissivities are given, they correspond, first to first and second to second, and linear interpolation is permigsible.
 \dagger Although this value is probably high, it is given for comparison with the data, by the same investigator, to show the effect of oil layers (see Aluminum, part A of this table).

[^10]: ${ }^{1}$ In the remainder of this book the subseript 1 always denotes the inlet and subscript 2 the outlet. The cold terminal difference Δt_{1} or Δt_{c} is given by $T_{2}-t_{1}$, and the hot terminal difference Δt_{2} or Δt_{5} by $T_{1}-t_{2}$. There are two additional terms which are often used in industry. These are the range and the approach. By "range" is meant the actual temperature rise or fall, which for the hot fluid is $T_{1}-T_{2}$ and for the cold fluid $t_{2}-t_{1}$. The "approach" has two different meanings depending upon whether counterflow equipment such as concentric pipes or other types of equipment are intended. For counterflow the approach is the number of degrees between the hot-fluid inlet and cold-fluid outlet, $T_{1}-t_{2}$, or hot-fluid outlet and cold fluid inlet, $T_{9}-t_{1}$, whichever is smaller. Thus a close approach means that one terminal difference will be very small, a significant factor in heat transfer. The definition of approach for other types of equipment will be discussed in Chap. 7.

[^11]: *Actually $R_{d i}$ should be referred to the outside diameter as $R_{d i o}=R_{i}\left(A / A_{i}\right)$. When a cylinder is very thin compared with its diameter, as a layer of dirt, its resistance is nearly the same as that through a flat wall. As shown by Eqs. (2.34) and (2.35), failure to correct to the outside will introduce a negligible error, usually well below 1 per cent. For thick scale, however, the error may be appreciable.

[^12]: ${ }^{1}$ McAdams, W. H., "Heat Transmission," 2d ed., p. 217, McGraw-Hill Book Company, Inc., New York, 1942.
 ${ }^{2}$ For mechanical details and standards see Standards of the Tubular Exchanges Manufacturers' Association, New York (1949).
 ${ }^{5}$ Colburn, A. P.; Trans. AIChE, 29, 174-210 (1933).
 ${ }^{4}$ Short, B. E., Univ. Texas Pub. 3819 (1938).
 ${ }^{5}$ Breidenbach, E. P., and H. E. O'Connell, Trans, AIChE, 42, 761-776 (1946),

[^13]: 1 The expression free area is used to avoid confusion with the free-flow area, an actual entity in the hydraulic radius.

[^14]: ${ }^{\text {I Eagle, A., and R. M. Ferguson, Pro. Roy. Soc., A127, 540-566 (1930). }}$

[^15]: ${ }^{1}$ Comings, E. W., and R. S. Egly, Ind. Eng. Chem., 32, 714-718 (1940).
 ${ }^{2}$ Othmer, D. F., and S. Josefowitz, Ind. Eng. Chem., 38, 111-116 (1946).

[^16]: ${ }^{1}$ Watson, K. M., and R. L. Smith, Natl. Petroleum News, July, 1936.

[^17]: ${ }^{1}$ This is actually the way to compensate and take advantage of the overperformance of an exchanger when it is clean if it has been designed for a dirty coefficient U_{D}. Unless equipped with a by-pass to reduce the flow through the exchanger, the temperature ranges of both fluids will exceed the process conditions. This is offset by throttling the steam and water in the heater and cooler and accordingly reducing the utility costs.

[^18]: ${ }^{1}$ Drew, T. B., W. M. Nagle, and W. Q. Smith, Trans. AIChE, 31, 605-621 (1935)
 ${ }^{2}$ Nagle, W. M., U.S. Patent 1,995,361.

[^19]: ${ }^{1}$ Unpublished notes, D. Q. Kern and C. L. Carpenter.

[^20]: ${ }^{1}$ The method of computing this type of apparatus is arbitrary, although it gives overall coefficients which have proved satisfactory in a large number of cases.

[^21]: ${ }^{1}$ The treatment of the phase rule is simplified here for the particular applications in this book.

 2 In nonthermodynamic texts these are frequently referred to as states.

[^22]: ${ }^{1}$ Gibbs, J. W., Trans. Conn. Acad. Arts Sci., III, 108-248 (1876).

[^23]: ${ }^{1}$ Colburn, A. P., and T. B. Drew, Trans. AIChE, 33, 197-215 (1937).

[^24]: * A trace of C_{8} has been combined half with C_{4} and half with C_{4} to simplify the caloulation.

[^25]: $V=1136.4-227.0=909.4$
 V / L calculated $=14.00$
 V / L assumed $=4.00$ Check

[^26]: ${ }^{1}$ Hazelton, R., and E. M. Baker, Trans. AIChE, 40, 1-29 (1944).

[^27]: ${ }^{1}$ Colburn, A. P., Trans. AIChE, 29, 174 (1933).
 ${ }^{2}$ Colburn, A. P., and O. A. Hougen, Ind. Eng. Chem., 26, 1178 (1934).
 ${ }^{3}$ Chilton, T. H., and A. P. Colburn, Ind. Eng. Chem., 26, 1183 (1934).

[^28]: *LMTD.

[^29]: ${ }^{1}$ Figure 8 is a plot of the vapor pressure of hydrocarbons. It is not plotted by individual compounds but rather by the boiling points pure compounds have or may have at atmospheric pressure. Thus, isohexane boils at $140^{\circ} \mathrm{F}$ at atmospheric pressure. The oblique curve at $140^{\circ} \mathrm{F}$ may then be considered the vapor pressure eurve for isohexane. Normal hexane, however, boils at $156^{\circ} \mathrm{F}$; and its vapor pressure curve will be a curve in Fig. 8 proportionately between the 140 and 160° curves. Traveling upward or downward along the 140° curve one obtains a value for the pressure of the compund as the ordinate and the saturation temperature corresponding to that pressure. Thus at 14.7 psia isohexane has a boiling point of 140° read as the abscissa. If the pressure at $100^{\circ} \mathrm{F}$ is desired, move downward on the 140° curve to a temperature

[^30]: ${ }^{1}$ Jakob, M., and W. Fritz, Forschr. Gebiete Ingenieurw., 2, 434 (1931).
 ${ }^{2}$ Jakob, M., Mech. Eng., 58, 643 (1936); "Heat Transfer," Vol. 1, John Wiley \& Sons, Inc., New York, 1949.

[^31]: ${ }^{1}$ McAdams, W. H., "Heat Transmission," p. 296, McGraw-Hill Book Company, Inc., New York; 1942.

[^32]: ${ }^{1}$ Drew, T. B., and A. C. Mueller, Trans. ATChE, 33, 449-471 (1939).
 ${ }^{2}$ McAdams, op. cit., p. 297.

[^33]: ${ }^{1}$ Jakob, M., Tech. Bull. Armour Inst. Tech., 2, No. 1 (1939).
 ${ }^{2}$ Cryder, D. S., and A. C. Finalborgo, Trans. AIChE, 33, 346-361 (1937).

[^34]: ${ }^{1}$ Othmer, D. F., Ind. Eng. Chem., 32, 841-856 (1940).

[^35]: ${ }^{1}$ Recent development by the Weyerhaeuser Timber Co. of a cyclic recovery system using the magnesium bisulfite base has increased interest in this method of pulp production. From unpublished paper on sulfite waste evaporation by D. Q. Kern and I . Meisler.

[^36]: - Solution temperature (approximate) $=150^{\circ} \mathrm{F}$.
 ${ }^{5}$ Solution temperatire (approximate) $=145^{\circ}{ }^{\circ}$
 © Solution temperature (approximate) $=141^{\circ} \mathrm{F}$.
 ${ }^{2}$ Solution temperature (approximate) $=246^{\circ} \mathrm{F}$.
 - Solution temperature (approximate) $=192^{\circ} \mathrm{F}$.

[^37]: ${ }^{1}$ Pages 493 to 502 are preliminary to the calculation of the reboiler duty in Examples 15.7 and 15.8 .

 2 Badger, W.L., and W.L. McCabe, "Elements of Chemical Engineering," McGrawHill Book Company, Inc., New York, 1936. Perry, J. H., "Chemical Engineers' Handbook," 3d ed., McGraw-Hill Book Company, Inc., New York, 1950. Robinson and Gilliland, "Elements of Fractional Distillation," McGraw-Hill Book Company, Inc., New York, 1939. Walker, W. H., W. K. Lewis, W. H. McAdams, and E. R. Gilliland, "Principles of Chemical Engineering," McGraw-Hill Book Company, Inc., New York, 1937.

[^38]: * X369 $+14,200,000=X 234+55,477 \times 234+4,280,000$ $135 X=3,080,000$
 $X=22,700 \mathrm{lb} / \mathrm{hr}$ of vapor
 $=\frac{22,700}{110.3}=205.7 \mathrm{~mol} / \mathrm{hr}$
 Trapout $=W$ re $+X=414.0+205.7=619.7 \mathrm{~mol} / \mathrm{hr}$
 Average molecular weight $=\frac{78,177}{619.7}=126.6$

[^39]: ${ }^{1}$ Comprehensive mathematical treatments of extended surfaces are given by Carslaw, H. S., and J. C. Jaeger, "Conduction of Heat in Solids," Clarendon Press, Oxiord, 1947. Jakob, M., "Heat Transfer," John Wiley \& Sons, Inc., New York, 1949.

[^40]: ${ }^{1}$ Murray, W. M., J. Applied Mechanics, 5, A78-80 (1938).
 ${ }^{2}$ Gardner, K. A., Trans. ASME, 67, 621-632 (1945).

[^41]: ${ }^{1}$ Another term which is used in the literature is the "fun effectiveness," which is the efficiency multiplied by the ratio of fin surface to fin base area.

[^42]: ${ }^{1}$ Bonilla, C. F., Ind. Eng. Chem., 40, 1098-1101 (1948).

[^43]: ${ }^{1}$ DeLorenzo, B., and E. D. Anderson, Trans. ASME, 67, 697-702 (1945).

[^44]: Example 16.3. Calculation of a Double Pipe Extended-surface Gas Oil Cooler. It is desired to cool $18,000 \mathrm{lb} / \mathrm{hr}$ of 28° API gas oil from 250 to $200^{\circ} \mathrm{F}$ in double pipe exchangers consisting of 3 -in. IPS shells with $1 / / 2-\mathrm{in}$. IPS inner pipes on which are mounted 24 fins $1 / 2 \mathrm{in}$. high by 0.035 in . (20 BWG) wide. Water from 80 to $120^{\circ} \mathrm{F}$ will serve as the cooling medium. Pressure drops of 10.0 psi are allowable on both streams, and fouling factors of 0.002 for the gas oil and 0.003 for the water are required,
 How many $20-\mathrm{ft}$ hairpins will be required?

[^45]: ${ }^{1}$ Sherwood, T. K., and C. E. Reed, "Applied Mathematics in Chemical Engineering," p. 211, McGraw-Hill Book Company, Inc., New York, 1939.

[^46]: ${ }^{1}$ Schmidt, E., Z. Ver. deut. Ing. 885, 70 (1926).
 ${ }^{2}$ Jakob, op. cit.

[^47]: ${ }^{1}$ Dunn, W. E., and C. F. Bonilla, Ind. Eng. Chem., 40, 1101-1104 (1848).

[^48]: ${ }^{1}$ Jameson, S. Lr, Trans, ASME, 67, 633-642 (1945).
 ${ }^{2}$ Tate, G. E., and J. Cartinhour, Trans. ASME, 67, 687-692 (1945).
 ${ }^{3}$ Gunter, A. Y., and W. A. Shaw, Trans. ASME, 67, 643-660 (1945).

[^49]: ${ }^{1}$ Sherwood, T. K., "Absorption and Extraction," MeGraw-Hill Book Company, Inc., New York, 1937.
 ${ }^{2}$ Perry, J. H., "Chemical Engineers' Handbook," 3d ed., See. 8, pp. 523-559, A. P. Colburn and R. L. Pigford, MeGrapr-Hill Book Company, Inc., New York. 1950.

[^50]: ${ }^{1}$ Lewis, W. K., Trans. ASME, 44, 329 (1922).
 ${ }^{2}$ Hilpert, R., Forschungshefl, 3, 355 (1932).

[^51]: ${ }^{1}$ Sherwood, op. cit., p. 39.
 ${ }^{2}$ Arnold, J. H., Physics, 4, 255 (1933).
 ${ }^{3}$ Chilton, T. H., and A. P. Colburn, Ind. Eng. Chem., 26, 1183 (1934),

[^52]: ${ }^{1}$ McAdams, W. H., op. cit., p. 289.
 ${ }_{2}$ Parekh, M., Sc. D. Report in Chem. Eng., MIT, (1941).

[^53]: ${ }^{1}$ Sherwqod, T. K., and C. E. Reed, "Applied Mathematics in Chemical Engineering," 134, MeGraw-Hill Book Company, Inc., New York, 1939.

[^54]: ${ }^{1}$ Bowman, R. A., A. C. Mueller, and W. M. Nagle, Trans. ASME, 62, 283-294 (1940).
 ${ }^{2}$ Fisher, R. C., Ind. Eng. Chem., 36, 939-942 (1944).
 ${ }^{2}$ Chaddock, R. E., and M. T. Sanders, Trans. AIChE, 40, 203-210 (1944).

[^55]: ${ }^{1}$ Fourier, J. B., "Théorie analytique de la chaleur," 1822.

[^56]: ${ }^{1}$ Williamson, E. D., and L. H. Adams, Phys. Rev., 14, 99-114 (1919).

[^57]: ${ }^{1}$ Lund, G., and B. F. Dodge, Ind. Eng. Chem., 40, 1019-1032 (1948).
 ${ }^{2}$ Schack, op. cit.

[^58]: ${ }^{1}$ The M. W. Kellogg Company. Acknowledgment is made of critical suggestions by W. E. Lobo of the same company.

 2 Perry, J. H., "Chemical Engineers' Handbook," 3d ed., pp. 483-498, McGrawHill Book Company, Inc., New York, 1950. McAdams, W. H., "Heat Transmission," Chap. 3 by H. C. Hottel, McGraw-Hill Book Company, Inc., New York, 1942. For additional references see McAdams, op. cit., p. 430.

[^59]: ${ }^{1}$ Hottel, H. C., Trans. ASME, 53, 265 (1931).

[^60]: ${ }^{1}$ Hottel, H. C., Personal communication.

[^61]: ${ }^{1}$ Hottel, loc. cit.
 ${ }^{2}$ Mullikin, H. F., Trans. ASME, 57, 518 (1935).

[^62]: ${ }^{1}$ Lobo, W. E., and J. E. Evans, Trans. AIChE, 35, 743 (1939).
 ${ }^{2}$ Wilson, D. W., W. E. Lobo, and H. C. Hottel, Ind. Eng. Chem., 24, 480 (1932).
 ${ }^{3}$ Orrok, G. A., Trans. ASME, 47, 1148 (1925).
 ${ }^{4}$ Wohlenberg, W. J., and H. F. Mullikin, Trans. ASME, 67, 531 (1935).

[^63]: ${ }^{1}$ Monrad, C. C., Ind. Eng. Chem., 24, 505 (1932).

[^64]: ${ }^{1}$ Richter, G. A., Trans. AIChE, 12, Part II, 147-185 (1919).
 ${ }^{2}$ Jeschke, D., Z. Ver. deut. Ing., 69, 1526 (1925); Z. Ver. deut. Ing., Erganzungheft, 24, 1 (1925).
 ${ }^{3}$ McAdams, W. H., "Heat Transmission," 2d ed., pp. 177, 184, McGraw-Hill Book Company, Inc., New York, 1942.
 ${ }^{4}$ Colburn, A. P., in Perry, op. cit., p. 481.

[^65]: Example 20.3. Calculation of a Submerged-pipe Coil Slurry Cooler. A spent clay catalyst comes from a catalytic reaction vessel as a slurry dispersed in an oil whose properties correspond to $28^{\circ} \mathrm{API}$ gas oil. The clay is dispersed to the extent of $1 \mathrm{lb} / \mathrm{gal}$. It enters a submerged pipe coil at $675^{\circ} \mathrm{F}$ and leaves at $200^{\circ} \mathrm{F}$. The viscosity of the mixture at $400^{\circ} \mathrm{F}$ is 2.3 centipoises. The combined flow is $33,100 \mathrm{lb} / \mathrm{hr}$, and cooling will be effected by water of low mineral content from 120 to $140^{\circ} \mathrm{F}$. Pipe lengths will consist of 3 -in. extra heavy steel pipe 24 ft long.

 What will be the size of the pipe coil?

[^66]: ${ }^{1}$ McAdams, W. H., T. B. Drew, and G. S. Bays, Jr., Trans. ASME, 62, 627-631

[^67]: ${ }^{1}$ McAdams, op. cit., p. 203.
 2 McAdams, Drew, and Bays, loc. cit.

[^68]: ${ }^{1}$ Bays, G. S., and W. H. McAdams, Ind. Eng. Chem., 29, 1240-124B (1937),
 2 Graetz, L., Ann. Physik, 25, 337 (1885).
 ${ }^{3}$ Drew, T. B., Trans. AIChE, 26, 26-80 (1931).

[^69]: ${ }^{1}$ Brinn, M. S., S. J. Friedınan, F. A. Guckert, and R. L. Pigford, Ind. Eng. Chem., 40, 1050-1061 (1948).

 * The inside diameter of the tube D here replaces the general length l in Eq. (18.52), since only cylinders are under consideration.

[^70]: * From Parry, J. F., "Chemical Engineers" Handbook," 3d ed. MoGraw-Hill Book Company, Inc.,

[^71]: * From Perry, J. H., "Chemical Engineers' Handbook," 3d ed., McGraw-Hill Book Company, Inc.; New York, 1950.

[^72]: *Abridged from "Therroodynamic Properties of Steam," by Joseph F. Keenan and Frederict G. Keyes, John Wiley \& Sons, Inc., New York, 1937.

[^73]: Fig. 17. The caloric temperature factor F_{c}. (Standards of Tubular Exchanger Manufacturers Association, 2d ed., New York, 1949.)

[^74]: * Light organics are fluids. with viscosities of less than 0.5 centipoise and include benzene, toluene, acetone, ethanol, methyl ethyl ketone, gasoline, light kerosene, and naphtha.
 \dagger Medium organics have viscosities of 0.5 to 1.0 centipoise and include kerosene, straw oil, hot gas oil, hot absorber oil, and some crudes.
 \ddagger Heavy organics have viscosities above 1.0 centipose and include cold gas oil, lube oils, fuel oils, reduced crude oils, tars, and asphalts.
 $\$$ Dirt factor 0.001 .
 $\|$ Pressure drop 20 to 30 psi.
 $\$$ Thase raten are greatly influenced by the operating pressure.

[^75]: * Commonly known as standard.
 t Commonly known as extra heary.
 \ddagger Approzimately.

[^76]: * Standards of Tubulor Exchanger Manufacturers Association, 2d ed., Nour York, 1949.

