
TWO-DIMENSIONAL, 
STEADY-STATE 
CONDUCTION
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In many situations the one-dimensional approach of 
heat conduction is oversimplification.  
Multidimensional effects must be accounted for.

4.1  Alternative Approaches 
Here the two-dimensional, steady state heat 

conduction will be treated.  Again the two major 
objectives in conduction analysis is determining the 
temperature field, T(x,y) and then the heat transfer.

For two-dimensional steady-state conduction with no 
generation and constant k, the PDE to be solved is
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Methods of solving include analytical, graphical, and 
numerical (finite difference, finite-element, or 
boundary element) approaches.

The analytical gets the exact solution of the PDE for 
only a restricted set of simple geometries and 
boundary conditions.  Often the solutions are in 
series form.  The method of separation of variables
will be used for this solution.

Graphical and numerical solutions give approximate 
results at discrete points.

Graphical solution is restricted to two-dimensional 
problems involving adiabatic and isothermal 
boundaries.  3



The method is based on the fact that isotherms must be 
perpendicular to heat flow lines figchp-
4\fig4.1.pptx. It requires good construction skills.  

Numerical methods may be used to obtain accurate 
results for complex, two- or three-dimensional 
geometries involving a variety of boundary 
conditions.

4.2  The method of Separation of variables
Consider the system shown in figchp-4\fig4.2.pptx.

Assumption made is that heat transfer from end 
surfaces is negligible or (∂2T/∂z2)≈0 .  This will 
make it a two dimensional problem. 
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To simplify the solution, the following transformation 
is used

Substituting gives

For the complete solution of the above PDE two 
boundary conditions are required  for each of the 
coordinates and these are

T(0,y)=T1 and T(x,0)=T1 or   θ(0,y) = 0 and  θ(x,0)=0
T(L,y)=T1 and T(x,W)=T2 or θ(L,y) = 0 and  θ(x,W)=1
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Because of the transformation, the BC’s have been 
restricted to 0’s and 1.

The method of separation of variables assumes a 
product solution of the form

θ(x,y) = X(x) . Y(y)

Substitution in the PDE of θ gives
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Indeed the differential equation is separable.  Another 
observation is that the left hand side expression is 
only a function of x and the right one only a function 
of y.  The equality can be satisfied only if the 
expression is independent of x and y. Only a 
constant can satisfy this condition.  Let this constant 
be λ2.  This makes the equation

0 or –λ2 could have been the constants.  But λ2

satisfies the prescribed boundary conditions.
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The resulting differential equations are

And the solutions are
X = C1 cos λx + C2 sin λx
Y = C3 eλy + C4 e-λy

This will give θ as
θ = XY = (C1 cos λx + C2 sin λx)(C3 eλy + C4 e-λy)
Using  the boundary conditions
(1) θ(0,y) = 0    → C1 = 0       
(2) θ(x,0) = 0    → (C2 sin λx)(C3+ C4) = 0
The only possibility is (C3+ C4) = 0.  If C2 = 0 
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It will result in θ = 0 (not the required solution)
This will then give  C3 = – C4

(3) θ(L,y) = 0  Gives  C2C4 sin λL (eλy – e-λy) = 0
As C2 and C4 can not be zeros, the only possibility is 

sin λL = 0     →   λL = nπ n=0, 1, 2, 3,…
n=0 makes θ(x,y) = 0 which is not acceptable.  So n=0 

will be precluded or n = 1, 2, 3, …
The solution then becomes

Combining the two constants, knowing that the new 
constant may depend on n will give 
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Since                                = 2 sinh (nπy/L)
As the sum of the solutions is also a solution, then the 

general solution becomes

To obtain Cn, we will apply the last boundary 
condition

(4)   θ(x,W)=1=
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To determine Cn, some manipulation is required.  This 
requires the knowledge of orthogonality.

An infinite set g1(x), g2(x), …, gn(x) is said to be 
orthogonal in the domain                    if

Most functions exhibit orthogonality including 
trigonometric functions 
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If f(x) is expressed in terms of series of orthogonal 
functions as

Then manipulating the above equation as follows

And then using the principles of orthogonality, on the 
right side all the expressions will be zero except one 
term and the result is given by
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Solving for Am and switching the subscript to n will 
give

For our situation  gn(x) = sin (nπx/L), f(x)=1 and 
substitution will give
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Substitution in the series representation of f(x) gives

Recalling the equation of the result of the fourth 
boundary condition and comparing gives

And the resulting final solution will be

Isotherms and heat flow lines are shown in figchp-
4\fig4.3.pptx. 14
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4.3  THE CONDUCTION SHAPE FACTOR AND 
DIMENSIONLESS CONDUCTION HEAT 
RATE

Conduction shape factors, S are used to report the 
existing solutions of heat conduction equations.  The 
steady-state heat transfer rate is expressed in 
dimensionless conduction heat rate,        .

Heat transfer rate in terms of shape factors may be 
expressed as
q = SkΔT1-2

Where ΔT1-2 is the temperature difference between 
boundaries. 
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Two dimensional conduction in a square channel of 
length L.  (a) Symmetry planes. (b) Flux plot. (c) 
Typical curvilinear square. 16



If properly constructed, qi will be the same for all 
lanes

M = Number of lanes
Application of Fourier’s law for the approximate 

square in a lane

For equal temperature increments across the isotherms 
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If the construction is made with Δx ≈Δy then the heat 
transfer can be estimated by

The above equation gives the two dimensional 
conduction shape factor, S, as
S = Ml/N
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Accordingly the two-dimensional conduction 
resistance as

Shape factors have been obtained analytically for 
numerous two- and three-dimensional systems and 
the results are summarized in tables.docx.  Case 9 is 
a three dimensional case.

For one dimensional cases, shape factors may also be 
defined for the familiar shapes as follows: 

Plane wall:  A/L        Cylinder:    
Sphere:   4πr1r2/(r2-r1)
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Cases 12 through 15 are for conduction heat rates  
from isothermal objects at T1 embedded within an 
infinite medium of uniform temperature (T2) and to 
facilitate the procedure a characteristic length is 
defined as
Lc ≡ (As/4π)1/2

where As is the surface area of the object.
Heat transfer rate to the infinite medium is given in 

terms dimensionless conduction heat rate as

Values which have been determined analytically and 
numerically are given as cases (12)-(15) in 

)]TT(kA/[qLq 21sc
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Table 4.1.
Example 4.1
A metallic electrical wire of diameter d=5mm is to be 

coated with insulation of thermal conductivity 
k=0.35 W/m.K.  It is expected that, for the typical 
installation, the coated wire will be exposed to 
conditions for which the total coefficient associated 
with convection and radiation is h=15W/m2.K.  To 
minimize the temperature rise of the wire due to 
ohmic heating, the insulation thickness is specified 
so that the critical insulation radius is achieved.  
During the wire coating process, however, the 
insulation thickness sometimes varies around the 
periphery of the wire, resulting in eccentricity
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of the wire relative to the coating.  Determine the 
change in the thermal resistance of the insulation 
due to an eccentricity that is 50% of the critical 
insulation thickness.

Figure for example 4.1 22
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Solution
rcr =k/h = 0.35/15= 0.023 m = 23 mm

Critical insulation thickness
tcr = rcr – d/2 = 0.023 – 0.005/2 = 0.021 m = 21 mm

For concentric geometry the thermal resistance is 
given by

For the eccentric wire, use case 7 where
z=0.5tcr = 0.5 x 0.021 = 0.010 m
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= 0.91 m.K/W
The reduction in the thermal resistance  of the 

insulation is 0.09 m.K/W or 9%.
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4.4  FIFNITE DIFFERENCE EQUATIONS
Large number of two-dimensional problems involve 

geometries and/or boundary conditions which makes 
analytical solutions impossible.  The best 
alternative, in such cases is to use numerical
technique such as finite difference, finite element or 
boundary element method.  Due to its ease of 
application, finite difference method will be treated.

4.4.1  The Nodal Network
Numerical solution enables determination of 

temperature at only discrete points.  This requires 
subdividing the medium of interest into a number of 
small regions with reference points at the centers 25



of the regions as shown in figchp-4\fig4.4.pptx.  This 
reference point is termed as nodal point or node, 
and the aggregate of points is termed a nodal
network, grid, or mesh. 

m, n represents the node and the temperature at m, n is 
a measure of the average temperature of the region 
(shaded area), in this case represented by Tm,n.  The 
temperature distribution shown in (b) is 
discontinuous.  Accuracy of the method depends on 
how fine the mesh is.
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4.4.2  Finite Difference Form of the Heat Equation
Considering the second derivative (∂2T/∂x2) of an 

interior node, the value of this derivative at the 
nodal point m, n may be approximated as

The above can be determined as
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Substitution in the 2nd derivative gives

Using similar procedures for the y-coordinate  will 
give
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Substitution in the differential equation gives

Using a network for which Δx = Δy  will give

Tm,n+1 + Tm,n-1 + Tm+1,n + Tm-1,n - 4Tm,n = 0
Thus the PDE is reduced to an algebraic equation 

which gives the temperature at a node as the average 
of the temperatures of the four neighboring nodes.
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4.4.3  The Energy Balance Method
This is an alternative method to develop  the finite 

difference equations for nodes. The approach is 
more versatile than the one seen before.  It uses 
energy conservation principle and assumes that all 
heat transfer is into the node as shown in figchp-
4\fig4.5.pptx.The analysis will consider heat 
generation too.  For a unit depth
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The conduction heat rate from each node can be 
written as 
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Using Δx =Δy and substituting in the summation 
equation will give

Tm,n+1 + Tm,n-1 + Tm+1,n + Tm-1,n - 4Tm,n = 0
With no heat generation it gives the same equation.
Equations must also be developed for nodes lying on 

the boundary surface of the object. The surface may 
enjoy convection heat transfer as shown in figchp-
4\fig4.6.pptx which is an internal corner.

The equations can be developed as
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Convection:
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With no energy generation and steady-state and 
network with Δx = Δy

Nodal energy balance equations for several common 
geometries is given in Table 4.2.

Example 4.2
Using the energy balance method, derive the finite 

difference equation for the m, n nodal point located 
on a plane, insulated surface of a medium with
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uniform heat generation. 
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Solution
Using the energy conservation for node m,n
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Substituting in the energy balance equation and 
simplifying gives
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The finite difference equations may also be formulated 
using the thermal resistance concept.  For the 
example of the corner node (internal)

The utility of the resistance can come when 
considering two nodes of dissimilar materials with a 
contact resistance between them figchp-
4\fig4.7.pptx.
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Where

4.5  SOLVING THE FINITE DIFFERENCE 
EQUATIONS

These equations are the result of the nodal equations.  
For N-nodal points there will be N equations.  The 
result is N linear algebraic with N unknown 
temperatures. 

Two types of solutions will be dealt with
• Direct and iterative
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For small equations, direct is suitable while for larger 
ones, iterative is better.

4.5.1  The Matrix Inversion Method
This is a direct solution.  The nodal equations are
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Using matrix notation, the above can be written as
[A][T] = [C]         

where
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Since
[A]-1[A] = I ,  then [A]-1[A][T]= [A]-1[C]      or
[T] = [A]-1[C]

If the inverse of A is defined as
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The solution then becomes
T1 = b11C1 + b12C2 + … + b1NCN

T1 = b11C1 + b12C2 + … + b1NCN

.         .             .       …         .
.         .             .       …         .
.         .             .       …         .

T1 = b11C1 + b12C2 + … + b1NCN

Matrix inversion can easily be done by calculators and 
computers.  For large equation, this procedure is 
time consuming.
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4.5.2  Gauss-Seidel Iteration
This is an iteration procedure and is good for large 

equations.  The following procedure is followed.
1. As much as possible, the equations should be 

reordered to have the largest coefficient at the 
diagonal for quick convergence.

2. After reordering, each of the N equations should be 
written in explicit form as
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where i = 1, 2, ….., N. The superscript k refers to the 
level of iteration.

3. An initial (k=0) value is assumed for each 
temperature Ti. 

4. Setting k=1 in the equation, values of Ti
(1) are then 

calculated by substituting assumed values in the 
second summation or new values in the first 
summation.  This step is the first (k=1) iteration.
New values of Ti

(k)are determined from Tj
(k) values 

of the current iteration, where 1 ≤ j≤ i-1, and the 
Tj

(k-1) values of the previous iteration, where 
i+1 ≤ j ≤N
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5. The iteration is terminated when a prescribed 
criterion is satisfied.

where ε represents an error margin.
Example 4.3
A large industrial furnace is supported on a long 

column fire clay brick, which is 1m by 1m on a 
side.  During steady-state operation, installation is 
such that three surfaces of the column are 
maintained at 500 K while the remaining surface is 
exposed to an airstream for which T∞ = 300 K and 
h = 10 W/m2.K.  Using a grid of Δx = Δy = 0.25 m, 
determine the two dimensional

ε≤− − )1k(
i

)k(
i TT
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temperature distribution in the column and the heat 
rate to the airstream per unit length of column.
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Solution
There are 12 nodes.  By symmetry the unknowns will 

be reduced to 8.
For interior nodes 1, 2, 3, 4, 5, and 6, the finite 

difference equations are
Node 1:  T2 +T3 + 1000 - 4T1 = 0
Node 2:  2T1 +T4 + 500 - 4T2 = 0
Node 3:  T1 +T4 + T5+ 500 - 4T3 = 0
Node 4:  T2 +2T3 + T6 – 4T4 = 0
Node 5:  T3 +T6 +T7 + 500 - 4T5 = 0
Node 6:  T4 +2T5 + T8 - 4T6 = 0
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For the surface nodes 7 and 8, use equation 4.42 using
h Δx/k=2.5

Node 7:  2T5 + T8 + 2000 - 9T7 = 0
Node 8:  2T6 + 2T7 + 1500 - 9T8 = 0
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-4T1 +  T2 +  T3 +  0  +  0  +  0  +  0  +  0  =  -1000
2T1 - 4T2 +  0    + T4 +  0  +  0  +  0  +  0  =  -500
T1 +  0    - 4T3 + T4 + T5 + 0  +  0  +  0  =  -500
0     +  T2 +2T3 - 4T4+  0  + T6+  0  +  0  =   0
0     +   0    +  T3 +  0  -4T5 +T6 +T7 +  0  =  -500
0     +   0    +   0   + T4 +2T5-4T6 +  0 + T8 =  0
0     +   0    +   0   +  0   +2T5+  0  -9T7+ T8 =  -2000
0     +   0    +   0   +  0   +  0  +2T6+2T7-9T8= -1500
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In matrix form [A][T]=[C]































−
−

−

−
−
−

=































−
−

−
−

−
−

−
−

=

1500
2000

0
500

0
500
500

1000

]C[

92200000
19020000
10421000
01140100
00104210
00011401
00001042
00000114

A
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The solution given by
[T]=[A]-1[C]     is the column vector































=

































=

05.339
99.356
74.418
95.436
01.462
07.472
15.485
30.489

T
T
T
T
T
T
T
T

]T[

8

7

6

5

4

3

2

1
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The heat transfer from the column to the airstream per 
unit length will be

To check the solution, the equality of the conduction 
and convection heat transfers can be checked.

m/W88305.39x125.099.56x25.0200x125.0[10x2

)TT(
2
x)TT(x)TT(

2
xh2

)TT(xh)TT(xh2)TT(
2
xh2

L
q

87s

87s

=++=









−+−+−






=

−+−+−=







∞∞∞

∞∞∞

∆
∆

∆

∆∆
∆
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The temperature distribution of the above example can 
also be determine using the Gauss-Seidel iteration 
method.

As the equations give a diagonal dominant coefficient 
matrix, it does not need any reordering. This is a 
typical behavior of finite difference solutions to 
conduction problems.

The explicit form of the equation according to step 2 is
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With initial assumption at k=0 and convergence 
criterion of ε=0.2 K, the following table is 
generated.

67.166T2222.0T2222.0T

T1111.0T2222.0T

T25.0T50.0T25.0T

125T25.0T25.0T25.0T

T25.0T50.0T25.0T

250T25.0T25.0T25.0T
125T25.0T50.0T

250T25.0T25.0T

)k(
7

)k(
6

)k(
8

)1k(
8

)k(
5

)k(
7

)1k(
8

)k(
5

)k(
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)k(
6

)1k(
7

)1k(
6

)k(
3

)k(
5

)1k(
6

)k(
3

)k(
2

)k(
4

)1k(
5

)1k(
4

)k(
1

)k(
3

)1k(
4

)k(
1

)k(
2

)1k(
3

)1k(
2

)k(
1

++=

+=

++=

+++=

++=

+++=

++=

++=

−

−

−−

−

−−

−

−−
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The results given in row 8 are in excellent agreement 
with those obtained by matrix inversion

k T1 T2 T3 T4 T5 T6 T7 T8
0 480.0 470.0 440.5 430.0 400.0 390.0 370.0 350.0
1 477.5 471.3 451.9 441.3 428.0 411.8 356.2 337.3
2 480.8 475.7 462.5 453.1 432.6 413.9 355.8 337.7
3 484.6 480.6 467.6 457.4 434.3 415.9 356.2 338.3
4 487.0 482.9 469.7 459.6 435.5 417.2 356.6 338.6
5 488.4 484.0 470.8 460.7 436.1 417.9 356.7 338.8
6 488.7 484.5 471.4 461.3 436.5 418.3 356.9 338.9
7 489.0 484.8 471.7 461.6 436.7 418.5 356.9 339.0
8 489.1 485.0 471.9 461.8 436.8 418.6 356.9 339.0
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