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Overview

e Introduction of Communication Engineering
e Elements of communication system
e Channel characteristics
e Signals and systems — Review
e Mathematical models of a channel
e Fundamentals of Analog Transmission
e The Hilbert Transform & Bandpass Signals
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' Common Signals

Triangle pulse
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Common Signals

Sinc function
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Common Signals

Sinc squared function

sinc2(t)

s cinc2(t)
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Frequency Domain Analysis of Signal and Systems

|
e Fourier series

e Fourier transform
e Power and energy
e Sampling Theorem
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Periodic Signals

Periodic signals are important class of signals (widely
used), where smallest T is a period

Examples: cos(myf) & ej Dol

x(t)=x(t+T1), forall s

- Period T =21/

Introduce a set of harmonically-related complex
exponentials St

: n—t

:/.

Construct a periodic signal

o
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Fourier Series of Periodic Signal

|
e Can x'(t) be made the same as x(t)?

e Yes, by adjusting c,,

1 — iy Jeo . 1T
L et

Hl =—o0

e {c,} — Fourier series coefficient (or spectral coefficients or
discrete spectrum of the signal)

e c,— DC component or average value of x(t)
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 Fourier Series — Example 1
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 Fourier Series — Example 2

C
T
X(7)= :
(1) {Gﬁzc\rczﬂz = sine(7) = ST
19
= |
N _ _*jni, _ L 5{%
| = 45
o | —‘~1I1I.,'('.—)

Q.: How does ¢, scale with
the pulse amplitude? 901, ﬁﬁ?h

Duration? Period?
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Convergence of Fourier Series

|
« Dirichlet conditions:
— X(t) must be jabsolutely integrable|(finite power)

L‘r(f)‘d? < oo

— X(t) must be of|bounded variation] that is the number of maxima
and minima during a period is finite

— In any finite interval of time, there are only a finite number of
Idiscuntinuities, which are finite.

« Dirichlet conditions are only sufficient, but are not
necessary.

« All physically-reasonable (practical) sighals meet these
conditions.

Introduction to Communications — Introduction 11
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Fourier Series of Real Signals

e Forareal signal, Im{x(t)}=0=c,=c,
e Then the trigonometric Fourier series is given as

=?“ g[u cos (noyt) +Bb, sin (neyt) |. ="

Iy

a, =2Re{cﬂ}=%

L.T[I)cﬂs{ﬁmﬂf)df. b, =—-2Im{c,}= % L.T[I} sin (nyt )dt

e Another form

of it is

.1'(?) =Xyt iﬁin CGS(H%F—F [pr.')

n=1

A, =|{“H| =1|I|ﬁf§ +E:§_ 0, =—arg(c, ) =—Tan_1(bn /a,)
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Gibbs Phenomenon

Q.: reproduce
these graphs
using a computer

7 ‘ SRR
N | {..d_./
/ N=79
increasing the number of

terms does not decrease
the ripple maximum!
R

1
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Properties of Fourier Series

Linearity:

Time shifting:

. F F
Time reversal: |x(1)«——c, @ x(-t)e——c_,

F [0x) (1) + By (1) | = OF [, (6) | +BF [, (1))

F F -
xX(t)e——c, @ x(f—1y)——e Jﬂmﬂr‘j.{'”

+oo
* Time scaling: |x(ar)= Y ¢,/
ﬂ:—c:c-
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Properties of Fourier Series

* Multiplication: | x(r)y(r) e 23" cher s

« Convolution: L_I{’E)}‘(i‘—'[}(f’f%i-%ﬂ‘;f;

. . dx(t) F .
« Differentiation: T > JgCy,
. F C
« |ntegration: f (T)d T« »—— | forcyg =0
= Jnoy,
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Properties of Fourier Series

Real x(t):

Real & even x(t):
Real & odd x(t):

: N
Parseval's Theorem: | | >

c_, =0C

—H M

c_, =c, .1111{5H } =0

c_, =—c,.Re{c, }=0

)
E

En’r = i ‘c‘n

H=—co
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Frequency Domain Analysis of Signal and Systems

e [ourier series

e Fourier transform
e Power and energy
e Sampling Theorem

Sem. II, 2020 Introduction to Communications — Introduction
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Fourier Transform - Review

|
e Fourier series works for periodic signals only

e \What about aperiodic signals?
e This is very large and important class of signals

e Aperiodic signal can be considered as periodic for T — o
e Fourier series changes to Fourier transform
e Complex exponents are infinitesimally close in frequency

e Discrete spectrum becomes a continuous one
e Also known as spectral density
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Fourier Series -> Fourier Transform

Periodic signal
x(t)

Its spectrum

=t =l ot Gl

As T increases, spectral

components are getting closer

and closer, becoming the

continuous spectrum at the limit
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Fourier Transform

|
e Fourier transform (spectrum) radial frequency

5, (f)= [ x(0)e>¥ar 5 (0)= [ x(t)e

e |nverse Fourier transform

radial frequency

x(6)= [T, (f) e dr x(1) == [, (@) do

e Convergence of Fourier Transform - Dirichlet conditions

e X(1) Is absolutely integrable

e X(t) has a fine number of maxima and minima within any finite
Interval

e X(t) has a finite number of discontinuities within any finite interval
e These discontinuities must be finite
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Examples: Rectangular Pulse

x(t)

signal ,
| Ljl<t/2
x(r]:]—[(r):{ﬂ.khtfz T .
2 2
ﬂ 5: ()
spectrum B
ST T .
S (f)=1 ch{ = tsinc( /1)
— . i, R i
— il f\-—/ ~"" s
T T
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Example: Sinc(t)

Shortening pulse widens its spectrum!

Hq :.t:l

2ﬁ¢

S
spectrum x (/) L= Sy, ()
1

- fi . -A A
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‘ Fourier Transform of Periodic Signal

« FT of a complex exponent:

(1) =&/ < 2n8(0-0,)=8(f - f,)
« Important property:

3(f)= -E:Eiﬂﬂﬁfﬁ & prove this property

« FT of a periodic signal:

+oo | FT +oo -
Z e, o2n Y e, 8(m—nmy) = Z c,0(f —nfp)
=—ca H=—c= H=—ae

.T(f]:

7 1=

« FTof cos(m,r) ?
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Properties of Fourier Transform*

I
+ Verv similar to those of Fourier seriesl

. o F
+ Linearity: 0uxy (1) +Bxy (1) > oSy, (f) +BS,, (f)
+ Time shifting: | (/) & S (0)= x(t—1y) < e 705 ()

Time reversall | x(7) < S, (0) = x(—1) & S, (—)

x(ar) <> 775 properties.

Time scaling: 1 (m] Prove these

a] "\a

‘properties are useful for evaluating Fourier transform in a simple way
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Properties of Fourier Transform

+ Conjugation: | \() 5 (0)= x*(1) & S, (—)
| ()
- Differentiation: |¥(7) <> Sx(®) = — = & joS, () 2
L
f QL
1 o
» Integration: I x(1)dt <> — 5, (0) + 15, (0)5(w) o
oo J® .
P
oo QL
]- # r ¥ E
() v(t) & — j Sy ()5, (0- o) = o
» Multiplication: n 3
(L
=5, (0)*5, (o)
- Frequency shift (modulation): |x(1)e/™ < S(w— o)
Introduction to Communications — Introduction 25
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Duality of Fourier Transform

x() & S, ()= 5, () S 2mx(—w) | |x(H) < S,.(f)=>5,.() o x(—f)

X1 [j(u)

X|n‘)

x:'.(t] x;ﬂ:ﬂﬂ)

vy w
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‘ Convolution Property

|
e This property is of great importance

= ¥(®)
i

oo h(t)
v(f) = j x(Dh(f—t)dt < S, (0)H(w) = S}.(m) T 3 T

—c0 Sy()| [H(w)| |5y (w)
(1) i | H (03] i | H (] 23] i () Cascade connection
of LTI blocks
(a) | |
| J— Y (| B yit) M) H;_;I[j[::] | H (| 2] = (1)
(b) AV. Oppenheim, A 5. Willsky, Signals and Systems, 1097 (c)
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Parseval Theorem

e Total energy in time domain is the same as the total energy
In frequency domain

1
2

E= [|xfdr= [|s,(N] df =— [|s.(0)] dw

o E(f)=|S( f)\z- energy spectral density (ESD) of x(t)

e It represents the amount of energy per Hz of bandwidth

e Counterpart of Parseval theorem for periodic signal is the
e Autocorrelation property

R.(1)= _E:x(r}:r*[r—t}drH‘Sx(m)F R_(0)=E
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Fourier Transform of Real Signals

o If (1) is real |Im{x(r)}= 0= 5, (-w) =5, (w)

e Fourier transform can be presented as

x(1) =2 [|Sy ()] cos(2nf +@(f))df. |
d No negative
tm([S, (/)] frequenciesl!
- —1 “x
o= [Re [S_T(f)]J

Sem. II, 2020 Introduction to Communications — Introduction
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Frequency Domain Analysis of Signal and Systems

e Fourier series
e Fourier transform
e Power and energy

Sem. II, 2020 Introduction to Communications — Introduction
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Power and Energy

e Power P, and energy E, of a signal x(t) are

T oo
1
P, = j}ig_yx(rfdr E, = _i\x(r)\zm

e Energy-type signals: E, <w
e Power-type signals 0< P, <o
e Signal cannot be both energy and power type

e Signal energy: if X(t) is voltage or current, E, is the energy
dissipated in 1 Ohm resistor

e Signal power: if x(t) is voltage or current, P, is the power
dissipated in 1 Ohm resistor

Sem. II, 2020 Introduction to Communications — Introduction
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Energy-type Signals (Summary)

|
e Signal energy in time and frequency domains:

L] oo 1 O
Ey= [|x@o)f'dr= []sy( f}‘zdfzﬁ [ I8y do

e Energy spectral density (energy per Hz of bandwidth)

Ec(f) =S

e ESD is FT of autocorrelation function

R (1)= [ x(1)x"(1-v)dt > E(£)|  [R.(0)=E,
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Power-type Signals: PSD

|
e Definition of the power spectral density (PSD) (power per

Hz of bandwidth):

ﬂ(f)—lnu“m =P.= [ R(f)df <=

T—eo

« where x7(7) is the truncated signal (to [-T/2,T/2]),
x(1). =T/2<t<T/2
1T(3‘)—1(r)l—[[r] {

0. otherwise

« and s.(f) isits spectrum (FT),
Sr(f)=FT{xr (1)}

Sem. II. 2020 Introduction to Communications — Introduction



Signal Bandwidth and Negative Frequencies

|
¢ \What negative frequency means?

e |t means that thereis ¢/2™ term in signal spectrum

e Convenient mathematical tool

e Do not exist in practice (i.e., cannot be measured on spectrum
analyzer)

e \What is the signal bandwidth? There are many definitions
e Defined for positive frequency only

e Determines the frequency band over which a substantial
part of the signal power/energy is concentrated

e For bandlimited signals
‘&f = fma:{ ~ Jmin» fmax*-fmjﬂ =0
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Signal Bandwidth

e Defined for positive frequencies only

e Informal: a frequency band over which a substantial (or all)
signal power is concentrated

e Absolute bandwidth: for band-limited signals, frequency
band where spectrum is not zero
e For all other frequencies, the spectrum must be zero

e 3 dB (half-power) bandwidth: frequency band where PSD
(or ESD) is not lower than -3dB with respect to the
maximum

e Zero-crossing bandwidth: frequency band limited by 1St
zero(s) in the spectrum

Sem. II, 2020 Introduction to Communications — Introduction 35



\ Signal Bandwidth

absolute bandwidth 3 dB bandwidth

A |'5_1-[:_}r}| l|5x(f}|

Y =

N /
f . ' >
‘ dth TS
Zero-crossing bandwidth

4 15

/ >
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Overview

e Introduction of Communication Engineering
e Elements of communication system
e Channel characteristics
e Signals and systems — Review
e Mathematical models of a channel
e Fundamentals of Analog Transmission
e The Hilbert Transform & Bandpass Signals
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Baseband & Bandpass Signals

|
e Baseband (lowpass) signal: Spectrum is nonzero around

the origin (f=0) and zero (negligible) elsewhere A

51' (f ) =0, ‘f S fma:-;

|5, ()

/1N

: : bAf
e Bandpass (narrowband) signal: spectrum is nonzero

around the carrier frequency f_and zero (negligible)

elsewhere M)

5.1'{f)iﬂ- ‘f_ff‘iﬂ !

Sem. Il, 2020 Introduction to Communications — Introduction
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Complex Envelope Representation

|
¢ Any narrowband (bandpass) signal can be presented as

+(f) = Re {C(r)efmcf‘} = A(t)cos (ot +o(F))

e Where
e c(t) = A(t)e*Vis complex envelope (phasor)
o A(t)=|c(t)| is amplitude
o o(t) =Zc(t) is phase
o Amplitude and phase vary in time, but much slower than
the carrier
e Equivalent form (in-phase (l) and quadrature (Q))

x() = ay(1)cos(o.t)—ag (D) sin(o.1)

ar(t)=Re{C(r)}=A(r)cos(o(r))

() Where I’J'QU) — Im {(“U)} = A(r}sﬁl{ﬂp(f)}
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Complex Envelope Representation ...

| o C(t), A(t), o(t), a,(t), aQ(t) — are baseband signals

e Some additional relations:

C(H=ar(N+jag(D)] |40)= \{nf (1) +ap> (1)

lfﬁg{r))

ar (1)

o(f)=tan~

h,

e Very useful for analysis and simulation of modulated
signals
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Geometric Viewpoint of Narrowband Signals

Analytic signal (pre-envelope)

Im
Complex envelope x(1) L —————————————

Im &

| ()

/yr
"o(1)

= A(7)is rotating at do(r)/dr (rad/s)
» z(7)is rotating at 2xnf. (rad/s) w.r.t. A(t)

o x(f)  Re

Sem. II, 2020 Introduction to Communications — Introduction
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‘ Frequency-Domain Viewpoint

1) + 5.0 24 5.0

ANAY
ip 0 . 0 7.
3) tscn

1) Original signal

2) Pre-envelope  z(f) = x(¢) + jx(¢) /\
(analytic signal) f
—

3) Baseband signal C(f) = fff(?) "‘J'”Q{?) I
—j2af.t 0 Je
=z()e/ /e

Hilbert transform:  x(1) — S;(f) =—Jjsen(f)- S, (f)
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Hilbert Transform (Extra!)

|
o Frequency domain representatlon

[—jSe(£).f >0 (—7(-90%). f >0
S H(f)=
) 1 S, (f).f<0 = v 1;‘(%0)__;‘{0 E\Q

e Time-domain representation x(1) i)

hit) p———»

o)
i) = 2rxin =1 [ Xy @y, 500 [ED] 50
r rr_mf

T
N ZH(f) @

>

|2 ()]

W
W

:‘

) Examp|e: x(t) = Acos(ot+8) — x(1) =2
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Example

|
e Consider the signal

x(t) = cos(2nf,t)cos(2mf.t)

A. Obtain and sketch the spectrum of the analytical signal (pre-
envelop) xp(t) = x(t) + jx(t)

B. Obtain and sketch the spectrum of the complex envelope (or
complex baseband representation) x(t)
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EX.

|
e Consider the signal

x(t) = 2W sinc(2W t) cos(2mfyt)

A. Is the signal narrowband or wideband? Justify your answer.

Obtain and sketch the spectrum of the analytical signal xp(t) =

x(t) + jx(t)

C. Obtain and sketch the spectrum of the complex envelope (or
complex baseband representation) x(t)

W

Introduction to Communications — Introduction 45
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Overview

e Elements of communication system
e Channel characteristics

e Signals and systems — Review

e Mathematical models of a channel
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Channel Impairments

|
e There are factors that limit the performance of the

communication system.

e Attenuation: radio signal strength decreases as it propagates
through matter.

o [nterference

e Noise : Undesired or unwanted signal

e Shot noise: the electrons are discrete and are not moving in a
continuous steady flow, so the current is randomly fluctuating.

e Thermal noise: caused by the rapid and random motion of electrons
within a conductor due to thermal agitation. (Thermal Noise Power =

KB.T.BW)
e Phase delays

e due multipath propagation: radio signal reflects off objects ground,
arriving at destination at slightly different times

e Can be modeled as realizable (LTI) system

Introduction to Communications — Introduction 47
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Review of Linear Time Invariant Systems

|
e A system performs a transformation on an input x(t) to

produce an output y(t)

x(f) ——  H(*) > W(1) = H(x(7))
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Review of Linear Time Invariant Systems

e Linear Systems

e A linear system is a system for which the superposition property
applies

- Consider a system that produces output y, (t) for
input x,(t) and output y,(t) for input x,(t) then we
write

e y.(t) = H(x,(t)) and

* y5(t) = H(x,(t))
- Then the system H is linear if for x5(t) =
ax,(t)+bx,(t), y5(t)=H(x5(t)) = aH(x,(t))+bH(x,(t))
= ay,(t)+by,(t).
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Time Invariant Systems

|
e A system is time invariant if a time shift to the input results

IN N0 changes other than the same time shift being applied

to the output

o |f y,(t) Iis the output of the system when x, (1) is the input let
X, (t) = X, (t-7) be the input that produces output y, (t)

e The system is time invariant if y, (t) = y;(t- 7)
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Linear time Invariant Systems

e A systemis LTI if itis both linear and time invariant
e An LTI system is described by its impulse response

e The system’s impulse response is h(t) and it is the output

of the system when the input is x(t) = Xt)
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Output of LTI system

e For any input x(t), the output of an LTI system is y(t) =
x(t)*h(t), where * denotes convolution.

=

x()*h(t) = [x(A)h(1—A)dA = th(ﬂu)x(r —A)da

— o)

Sem. II, 2020 Introduction to Communications — Introduction
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Causality

e A system is causal if it's output depends only on past
and present values of the input (it does not depend on
future values of the input).

e For LTI system:

X

¥(1) = [ IA)x(t- A)dA

=

e When i < 0, y(t) depends on future values of the input.
Therefore an LTI system is causal if h(1)=0 for all 12 <0.
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Stability

e A system is stable if for any bounded input, it's output
is also bounded.

e For LTI system, this implies that

dA <o

]E| h(A)
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Mathematical Models of Channels

e System-level model: linear time-invariant system

(D Linear
e filter
ht)

r(t)=s(t)*h(t)+n(r)=

: r(r) o
% : = [ h(t)s(1=7)dr+n(r)

ﬂi:

————————— —

e Detailed model: based on Electromagnetics (i.e., radio
wave propagation)

Sem. Il, 2020
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Distortionless Transmission

e \When a signal is not distorted by a filter?
e QOutput is a shifted and scaled copy of the input

v(t)=L[x(0)]|=a-x(t—1;)

e In the frequency domain: A

S, (f)=a-e *Fs (f)

v

e Filter frequency response / A &)

] &
H()=a-e P> o) =2, ?

fo =—6(f)/(27f)
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Example

|
e A given communication channel has amplitude and phase responses as

shown in the figure below:

|s(e) |
A

—— 2 —

=100 =50 50 100

e For which cases is the transmission distortion-less?

e With a plot of amplitude and phase spectrum of the output indicate
what type of distortion in imposed.

a) cos(48mt) + 5 cos(126mt)
b) cos(10mt) + 4 cos(50mt)
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Distortionless Transmission: Narrowband Signals

e QOutput is a shifted and scaled copy of the input + constant

phase shift of the carrier is permitted
x(1) = A(t)cos(of+0(f)) =
v(t)=a- At —1y)cos( o (f—15) + ot —15)+ 6y ) A

e |In the frequency domain ' £

Sy(f) =a-/ TFHIsE (1)

e Filter frequency response || [H()|=const | 7] £t
: : |8(f) =-27fiy + 6
(over the signal bandwidth)
group time delay: | t; = —ﬁ%ff}
carrier time delay: t. =ty —By ((2Tf,)
Introduction to Communications — Introduction 59

Sem. Il, 2020



Summary

e Baseband (lowpass) and narrowband (bandpass) signals
and systems

e Complex envelope representation
e Time-varying amplitude and phase
e Hilbert transform
e In-phase and quadrature signals
e Geometric representation of narrowband signals

¢ Transmission of narrowband signals through bandpass
systems

e Distortionless transmission
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