ADDIS RBRBA UNLVERSITY

FRiTs SCROOL OF GIVL RND ENVLRONMENTRE ENGMEERMNG

GENG 5213: GONSTRUGTION EQURPMENT

G폿PPㄹR-2
 CONSTRUGTION EQURPMENT RND PRENTIS EqULPMDENTS

CONTENTS

- Determination of Production of an Equipment
- Productivity of Shovel Family and Excavator
-General
-Productivity of Face Shovel
-Productivity of Dragline
-Productivity of Clamshell
-Productivity of Hoe/Excavator
aProductivity of Heavy Earth Moving and Grading Equipments
- Productivity of Loader
- Productivity of Dozer
-Productivity of Scraper -Productivity of Grader

CONSTRUCTION EQUIPIMENTS

1. Determination of Production of an Equipment

Terminologies

\square Pealk Productivity: is the theoretical productivity governed by design limitations only.

$$
Q_{p}=V \times f_{s} \times f_{f}
$$

$$
\text { Where: } \begin{aligned}
Q_{p} & =\text { Peak Productivity } \\
V & =\text { Volume carried/ bucket capacity } \\
f_{s} & =\text { Bank Volume/loose volume } \\
f_{f} & =\text { Bucket fill factor }
\end{aligned}
$$

- Actual Productivity: Productivity of an equipment after taking care of effective working hours and job management factor on the peak productivity.

CONSTRUCTION EQUIPIMENTS

1. Determination of Production of an Equipment

Terminologies

- Actual Productivity:

$$
Q_{a}=Q_{p} \times f_{w} \times f_{j}
$$

$$
\text { Where: } \begin{aligned}
& Q_{a}=\text { Actual Productivity } \\
& Q_{p}=\text { Peak Productivity } \\
& f_{w}=\text { Factor to take care of effective working hours } \\
& f_{j}=\text { Factors to take care of the management conditions }
\end{aligned}
$$

\square The computation of the actual production of construction equipment is complex. But through idealization, approximation and in general simplification, one can arrive at an optimum result.

CONSTRUCTION EQUIPIMENTS

1. Determination of Production of an Equipment

- Equipments can be broadly classified into two based on equipment productivity concepts:
- Cyclic Operating or
- Contùnuously Operatìng.
- Cyclic operating equipments: These are machines which are intentionally or unintentionally influenced by their operators. The actual productivity can be computed from:

$$
\mathrm{Q}_{\mathrm{a}}=\mathrm{V}_{\mathrm{n}} \times \mathrm{n}_{\mathrm{o}} \times \eta
$$

$$
\begin{aligned}
& \text { Where: } Q_{a}=\text { Actual Productivity }\left(\mathrm{Bm}^{3} / \mathrm{hr}\right) \\
& V_{n}=\text { Volume per cycle (} \text { Bm }^{3} \text {) } \\
& \eta=\text { Efficiency of the equipment } \\
& n_{o}=\text { number of cycle /Unit Time (usually Time in hours), if } T_{o} \\
& \text { is theoretical cycle time } \quad \boldsymbol{n}_{\boldsymbol{o}}=\frac{\boldsymbol{\sigma O}}{\boldsymbol{T}_{\boldsymbol{o}}}
\end{aligned}
$$

CONSTRUCTION EQUIPIMENTS

1. Determination of Production of an Equipment

- Contìnuously operating equìments: These are machines that continuously operate, like pumps, conveyor belts, etc. For these kinds of machines:

$$
Q_{a}=V_{\mathrm{n}} \times a \times \mathrm{n}_{\mathrm{o}} \times 60 \times \eta
$$

$$
\begin{aligned}
& \text { Where: } Q_{a}=\text { Actual Productivity }\left(\mathrm{Bm}^{3} / \mathrm{hr}\right) \\
& \quad V_{n}=\text { Volume per bucket } \\
& \\
& a=\text { Number of buckets } \\
& \eta=\text { Efficiency of the equipment } \\
& \\
& n_{o}=\text { number of cycle /Unit Time (usually Time in hours) }
\end{aligned}
$$

CONSTRUCTION EquIPIMENTS

2. PRODUCTIVITY OF SHOVEL FAMILY AND EXCAVATORS

- \boldsymbol{Q}_{a} - Shovel family is dependent on the actual volume per cycle and the cycle time.
- \boldsymbol{V}_{n} - Volume per bucket.
- Plate line capacity is the bucket volume contained within the bucket when following the outline of the bucket sides.
- Struck capacity is the bucket capacity when the load is struck off flush with the bucket sides.
- Water line capacity assumes a level of material flush with the lowest edge of the bucket (i.e., the material level corresponds to the water level that would result if the bucket were filled with water).
- Heaped volume is the maximum volume that can be placed in the bucket without spillage based on a specified angle of repose for the material in the bucket.

CONSTRUCTION EqUIPIMENTS

2. PRODUCTIVITY OF SHOVEL FAMIILY AND EXCAVATORS

- Figure - Struck and Heaped Bucket Capacity (Caterpillar Inc.)

Excavator bucket rating

CONSTRUCTION EQUIPIMENTS
 2. PRODUCTIVITY OF SHOVEL FAMILY AND EXCAVATORS

Machine	Rated Bucket Capacity
Backhoe and shovel	
Cable	Struck Volume
Hydraulic	Heaped Volume at 1:1 angle of repose
Clamshell	Plate line or water line volume
Dragline	90% of struck volume
Loader	Heaped volume at 2:1 angle of repose

Rated bucket capacity for different machine

CONSTRUCTION EQUIPIMENTS

2. PRODUCTIVITY OF SHOVEL FAMILY AND EXCAVATORS

\square Commonly - Bucket ratìngs for the cable shovel, dragline, and cable backhoe are based on struck volume:

- Thus it is often assumed that the heaping of the buckets will compensate for the swell of the soil. That is, a $5 \mathrm{~m}^{3}$ bucket would be assumed to actually hold 5 Bank m^{3} of material.
- A better estimate of the volume of material in one bucket load will be obtained if the nominal bucket volume is multiplied by a bucket fill factor or bucket efficiency factor.
- If desired, the bucket load may be converted to bank volume by multioplying its loose volume by the soil's load factor. Refer Example 2-1.

CONSTRUCTION EQUIPIMENTS

2. PRODUCTIVITY OF SHOVEL FAMILY AND EXCAVATORS

Example 2.1
Estimate the actual bucket load in bank cubic meters for a loader bucket whose heaped capacity is $3.82 \mathrm{~m}^{3}$. The soil's bucket fill factor is 0.9 and its load factor is 0.8 .

Solution

$$
\text { Bucket load }=\text { Bucket Volume } x \text { B.F.F } x f_{L}=3.82 \mathrm{Lm}^{3} \times 0.9 \times 0.8=2.75 \mathrm{Bm}^{3}
$$

Material	Bucket Fill Factor
Common Earth, loam	$0.80-1.10$
Sand and Gravel	$0.90-1.00$
Hard Clay	$0.65-0.95$
Wetlay	$0.50-0.90$
Rock well basted	$0.70-0.90$
Rock, poorly basted	$0.40-0.70$

Table 2-2.Bucket Fill Factors for Excalators

CONSTRUCTION EQUIPIMENTS

2. PRODUCTIVITY OF SHOVEL FAMILY AND EXCAVATORS

- CYCLE TIME $\left(n_{o}\right)=$ Number of cycle $/$ Unit Time $=60 / T_{c}$,
- Where T_{c} - cycle Time in minutes

$$
T_{C}=T_{F}+T_{V}
$$

Where

- $T_{V}=$ Variable Cycle Tìme - Variable time represents those components of cycle time related with travel tìme.
- Variable Cycle time is the time required to excavate and travel to load and travel to return to original position after loading.
- $T_{F}=$ Fixced Cycle Tîme - Fixed time represents those components of cycle time other than travel tìme.
- Fixed Cycle tìme represents the time required to maneuver, change gears, start loading, and dump.

CONSTRUCTION EquIPIMENTS

2. PRODUCTIVITY OF SHOVEL FAMILY AND EXCAVATORS

A. Productivity of Face Shovel (Power Shovel)

- The production capacity or output of a shovel is expressed in cubic meter per hour.
- The output varies for various type of materials to be digged. The following are the main factors which affect the out put of face shovel:
- Nature of the soil
- Height or Depth of cut
- Type of material
- Angle of swing
- Capacity of hauling unit and continuity of work
- Mechanical condition of shovel
- Efficiency of the operator
- Relative positions of the shovel and hauling unit
- Type of machine such as crawler or wheeled

CONSTRUCTION EQUIPIMENTS

2. PRODUCTIVITY OF SHOVEL FAMILY AND EXCAVATORS

A. Productivity of Face Shovel (Power Shovel)

\square Output of a shovel can be calculated using the following formula:
Hourly production $\left(\mathrm{m}^{3} / \mathrm{hr}\right)=q \times(3600 / \mathrm{C}) \times$ Efficiency
Where: $\mathrm{q}=$ production in m^{3} per cycle
= Heaped capacity x Swell factor x Bucket factor.

- Manufacturer of the equipment used to provide a graph b / n bucket size Vs Production/hr.
\square Since this gives production in ideal conditions, the figures thus obtained should be scaled down to expected production by using efficiency factor and bucket fill factor.

Excavation Efficiency Factor	
Sand, gravel, common earth	60%
Clay	50%
Blasted rock	40%

CONSTRUCTION EQUIPIMENTS

2. PRODUCTIVITY OF SHOVEL FAMILY AND EXCAVATORS

A. Productivity of Face Shovel (Power Shovel)

Bucket Factor	
Sand, gravel, common earth	90%
Well blasted rock	70%
Poorly blasted rock	50%

- The above figures are for crawler type of tractor shovel, however for wheel shovels, bucket factor is about 10% lesser than those mentioned above.

CONSTRUCTION EqUIPIMENTS

2. PRODUCTIVITY OF SHOVEL FAMILY AND EXCAVATORS

B. Productivity of Dragline

\square Output or performance of dragline depends on the following factors:

- Nature of the soil.
- Depth of cut.
- Angle of swing.
- Capacity of hauling units, if employed.
- Mechanical condition of the dragline.
- Efficiency and skill of the operator.
- Management conditions.
- Size and type of bucket.
- Working cycle

CONSTRUCTION EQUIPIMENTS

2. PRODUCTIVITY OF SHOVEL FAMILY AND EXCAVATORS

B. Productivity of Dragline

- Data are taken from "Liebher's Technical Hand Book Earth moving Product line".

Drag Line Production = Dragline Capacity $\left(\mathrm{m}^{3}\right) \times \mathbf{C} x f$
Where, $C=$ Theoretical Cycles $/ h r=120$ Cycles $/ h r$
$f=$ Correcting factor
$=f_{1} x f_{2} x f_{3} x f_{4} x f_{5} x f_{6} x f_{7}$
f_{2}-Digging factor

Boom Length (m)	12	18	24	30
Digging factor f_{2}	0.86	0.79	0.72	0.65

f_{3} - Hoist factor				
Boom Length (m)	12	18	24	30
Hoist factor, f_{3}	0.95	0.92	0.90	0.87

CONSTRUCTION EqUIPIMENTS

2. PRODUCTIVITY OF SHOVEL FAMIIY AND EXCAVATORS

B. Productivity of Draglìne

f_{1} - Fill factor		
	Class	Fill factor
1	Sand or fine gravel a) Dry b) Damp c) Wet	$\begin{aligned} & 1.1 \text { to } 1.2 \\ & 1.0 \text { to } 1.1 \\ & 0.9 \text { to } 0.8 \end{aligned}$
2	Clay a) Sandy clay, dry b) Cohesive, dry c) Very cohesive, hard	$\begin{aligned} & 0.95 \text { to } 1.0 \\ & 0.9 \text { to } 0.95 \\ & 0.88 \text { to } 0.9 \end{aligned}$
3	Earth with sand or gravel, dry	0.85 to 0.88
4	Top Soil a) Sandy clay b) Clay damp	$\begin{aligned} & 0.82 \text { to } 0.85 \\ & 0.80 \text { to } 0.82 \end{aligned}$
5	Clay with sand or gravel, damp	0.75 to 0.80
6	Slatelike rock, gravel	0.72 to 0.75
7	Gravel with clay, hard	0.70 to 0.72
8	Clay with large size gravel, damp	0.68 to 0.70

Construction Equipments
2. PRODUCTIVITY OF SHOVEL FAMIIYY AND EXCAVATORS
B. Productivity of Dragline

f_{4}-Swing factor (Simultaneous swing and hoist)			
Angle of Swing (deg)	90°	120°	180°
Swing factor, f_{4}	0.98	0.95	0.91

	f_{5}-Loading factor		
Method of dumping	Truck	Hopper	Stock pile
Loading factor, f_{5}	0.96	0.95	1.0

	f_{6} - Job efficiency factor		
Actual working time	$60 \mathrm{~min} / \mathrm{hr}$	$50 \mathrm{~min} / \mathrm{hr}$	$40 \mathrm{~min} / \mathrm{hr}$
Job efficiency factor, f_{6}	1.0	0.83	0.67

	$f_{7}-$ Operator factor		
Operator	Experienced	Average	Beginner
Operator factor, f_{7}	1.0	0.95	0.85

CONSTRUCTION EQUIPIMENTS

2. PRODUCTIVITY OF SHOVEL FAMIILY AND EXCAVATORS

B. Productivity of Dragline

Example 2.2

- An experienced operator has to excavate 'wet gravel' with a dragline capacity of $2.3 \mathrm{~m}^{3}$. The boom length is 18 m and the swing angle will be 120 degrees. The material is dumped onto stockpile. Actual working time is 50 min per hour.

Solution

Drag line production = Bucket capacity x C $x f$.
where $C=$ theoretical cycles $/ h r=120$ cycles $/ \mathrm{hr}$

$$
=2.3 \times 120 \times f
$$

$$
\text { where } f=f_{1} x f_{2} x f_{3} x f_{4} x f_{5} x f_{6} x f_{7}=0.8 \times 0.79 \times 0.92 \times 0.95 x 1.0 x 0.83 x 1.0
$$

$$
=0.4588
$$

Therefore, Drag line production $=2.3 \times 120 \times 0.4588$

$$
=126.4 \mathrm{~m}^{3} / \mathrm{hr}
$$

CONSTRUCTION EQUIPIMENTS

2. PRODUCTIVITY OF SHOVEL FAMIILY AND EXCAVATORS

C. Productivity of Clamshell

- Data are taken from "Liebher's Technical Hand Book Earth moving Product line".
Clamshell Production ($\mathrm{m}^{3} / \mathrm{hr}$) = Clamshell Capacity $\left(\mathrm{m}^{3}\right) \times \mathrm{C} \times f$)
Where, $C=$ Theoretical Cycles $/ h r=120$ Cycles $/ h r$

$$
\begin{aligned}
f & =\text { Correcting factor } \\
& =f_{1} x f_{2} x f_{3} x f_{4} x f_{5} x f_{6} x f_{7}
\end{aligned}
$$

Correction factors

- f_{1} - Fill factor
- Same as those for dragline.

CONSTRUCTION EQUIPIMENTS

2. PRODUCTIVITY OF SHOVEL FAMILY AND EXCAVATORS

C. Productivity of Clamshell
$f_{2}-$ Digging factor

Clamshell capacity $\left(\mathrm{m}^{3}\right)$	1	2	3	4	5
Digging factor, $f_{2}=$	0.98	0.97	0.96	0.96	0.95

f_{3} - Hoist factor (considering average rope speed of $50 \mathrm{~m} / \mathrm{min}$)

Digging depth (m)	5	10	15	20	
Hoist factor, $f_{3}=$	0.88	0.76	0.64	0.52	
	f_{4}-Swing factor				
Swing Angle (deg)	60	90	120	180	
Swing factor, $f_{4}=$	1.2	1.0	0.98	0.90	

$$
f_{5}-\text { Dump factor }
$$

Method of dumping
Dump factor, $f_{5}=$

Hopper
0.95

Stock pile
1.0

CONSTRUCTION EqUIPIMENTS

2. PRODUCTIVITY OF SHOVEL FAMILY AND EXCAVATORS

C. Productivity of Clamshell

	f_{6} - Job efficiency factor		
Actual working time	$60 \mathrm{~min} / \mathrm{hr}$	$50 \mathrm{~min} / \mathrm{hr}$	$40 \mathrm{~min} / \mathrm{hr}$
Job efficiency factor, $f_{6}=$	1.0	0.83	0.67
	$f_{7}-$ Operator factor		
	Experienced	Average	Beginner
Operator	1.0	0.95	0.85
Operator factor, $f_{7}=$			

Example 2.3

- An average operator has to excavate 'damp sand' with a clamshell of $2.0 \mathrm{~m}^{3}$. The digging depth is 10 m and the swing angle will be 120 degrees. The sand is added into trucks and actual working time is 50 $\mathrm{min} / \mathrm{hr}$.

CONSTRUCTION EQUIPIMENTS

2. PRODUCTIVITY OF SHOVEL FAMILY AND EXCAVATORS

C. Productivity of Clamshell

Solution

Clamshell production = Clamshell capacity $\boldsymbol{x} \boldsymbol{C} \boldsymbol{x}$.
where $C=$ theoretical cycles $/ h r$

$$
=2.0 \times 120 \times f
$$

where, $f=f_{1} x f_{2} x f_{3} x f_{4} x f_{5} x f_{6} x f_{7}$

$$
\begin{aligned}
& =1.0 \times 0.97 \times 0.76 \times 0.98 \times 0.9 \times 0.83 \times 0.95 \\
& =0.5127
\end{aligned}
$$

Therefore, Clamshell Production $=2.0 \times 120 \times 0.5127$
$=123.0 \mathrm{~m}^{3} / \mathrm{hr}$

2. PRODUCTIVITY OF SHOVEL FAMIIY AND EXCAVATORS

D. Productivity of Excavator/Hoe

- Steps for estimating production of Excavator/hoe:
- Step-1: Obtain the heaped bucket load volume (in Lm^{3}) from the manufacturers' data sheet.
- Heaped bucket capacity ratings for Excavator buckets assume a 1:1 material angle of repose
- Step-2: Material Type
- Step-3: Apply a bucket fill factor based on the type of machine and the class of material being excavated. Refer Table D-1.

Table D-1 Fill factor for hydraulic Hoe (Caterpillar Inc.)

Moist loam/ sandy clay	$100-110 \%$
Sand and gravel	$95-100 \%$
Rock-poorly blasted	$40-50 \%$
Rock-well blasted	$60-75 \%$
Hard, tough clay	$80-90 \%$

CONSTRUCTION EQUIPIMENTS

2. PRODUCTIVITY OF SHOVEL FAMILY AND EXCAVATORS

D. Productivity of Excavator/Hoe

- Steps for estimating production of Excavator/hoe:
- Step-4: Estimate cycle tìme (load, swing, dump and swing empty). Refer Table D-2.
- Swing is influenced by job conditions such as obstructions and clearances.

Table D-2 Excavation Cycle times for hydraulic crawler hoes under average condition

Bucket Size (cy)	Load Bucket (sec)	Swing Loaded (Sec)	Dump Bucket (Sec)	Swing empty (sec)	Total cycle (sec)
<1	5	4	2	3	14
1-1 $1 / 2$	6	4	2	3	15
2-2 1/2	6	4	3	4	17
3	7	5	4	4	20
$3^{1 / 2}$	7	6	4	5	22
4	7	6	4	5	22
5	7	7	4	6	24

CONSTRUCTION EQUIPIMENTS

2. PRODUCTIVITY OF SHOVEL FAMILY AND EXCAVATORS

D. Productivity of Excavator/Hoe

- Steps for estimating production of Excavator/hoe:
- Step-4:
- Small machines swing faster than large ones.
- Cycle times are based on swing angle of 30-60

CONSTRUCTION EQUIPIMENTS

2. PRODUCTIVITY OF SHOVEL FAMILY AND EXCAVATORS

D. Productivity of Excavator/Hoe

- Step-5: Check depth of cut. Refer Table D-3.
- Typical cycle times are for depth of cut between $40-60 \%$ of maxìmum digging depth.

A Maximum loading height of bucket with teeth
B Maximum reach at ground level
C Maximum digging depth
D Maximum vertical wall
E Maximum depth of cut for 2.44 m ($8^{\prime} 0^{\prime \prime}$) level bottom (straight clean up)
F Maximum bucket hinge pin height
G Maximum height, to bucket teeth at highest arc

CONSTRUCTION EQUIPMENTS

 2. PRODUCTIVITY OF SHOVEL FAMILY AND EXCAVATORS
D. Productivity of Excavator/Hoe

- Step-5:

Table D-3: Representative dimensions, loading clearance, and filling capacity, hydraulic crawler Hoe

Size bucket (cy)	Stick length (ft)	Maximum reach © ground level (ft) "B"	Maximum digging depth (ft)"C"	Maximum loading height (ft) "A"	Lifting capacity at 15 ft			
					Short stick		Long stick	
					Front (Ib)	Side (Ib)	Front (Ib)	Side (Ib)
$\frac{3}{5}$	5-7	19-22	12-15	14-16	2,900	2,600	2,900	2,600
$\frac{5}{4}$	6-9	24-27	16-18	17-19	7,100	5,300	7,200	5,300
1	5-13	26-33	16-23	17-25	12,800	9,000	9,300	9,200
$1 \frac{1}{2}$	6-13	27-35	17-21	18-23	17,100	10,100	17,700	11,100
2	7-14	29-38	18-27	19-24	21,400	14,500	21,600	14,200
$2 \frac{1}{2}$	7-16	32-40	20-29	20-26	32,600	21,400	31,500	24,400
3	10-11	38-42	25-30	24-26	$32,900^{*}$	24,600*	30,700*	26,200*
$3 \frac{1}{2}$	8-12	36-39	23-27	21-22	33,200*	21,900*	32,400*	22,000*
4	11	44	29	27	47,900*	33,500*		
5	8-15	40-46	26-32	25-26	34,100 ${ }^{1}$	27,500 ${ }^{\dagger}$	$31,60{ }^{\dagger}$	27,600 ${ }^{+}$

CONSTRUCTION EQUIPIMENTS

2. PRODUCTIVITY OF SHOVEL FAMILY AND EXCAVATORS

D. Productivity of Excavator/Hoe

- Steps for estimating production of Excavator:
- Step-6: Check loading height
- Does the selected Excavator/hoe have the reach capability to load the haul unit. Refer table D-3.
- Step-7: Efficiency factor
- The three primary conditions that control the efficiency of excavator loading operations are:
- Bunchìng: In actual operation cycle times are never constant. When loading haul units they will sometimes bunch. The impact of bunching is a function of the number of haul units.
- Operator efficiency: How good is the operator.
- Equipment availability: Are the haul units in good condition and repair? They will be available $x \%$ of the time.

Construction Equipments

2. PRODUCTIVITY OF SHOVEL FAMILY AND EXCAVATORS

D. Productivity of Excavator/Hoe

- Step-8: Calculation.

$$
\text { Step } 1 \times \text { Step } 3 \times \frac{\text { Step } 7}{\text { Step } 4}=\text { LCY } / \mathrm{hr}
$$

- Step-9: Convert production to Bank Volume (BCY)

	Material	Bank weight		Loose weight		Percent swell	Swell factor
		$\mathrm{lb} / \mathrm{cu} \mathrm{yd}$	$\mathrm{kg} / \mathrm{m}^{3}$	$\mathrm{lb} / \mathrm{cu} \mathrm{yd}$	$\mathrm{kg} / \mathrm{m}^{3}$		
Table D-4 Swell factor	Clay.dry	2,700	1,600	2,000	1,185	35	0.74
	Clay, wet	3,000	1,780	2,200	1,305	35	0.74
	Earth, dry	2,800	1,660	2,240	1,325	25	0.80
	Earth, wet	3.200	1,895	2,580	1,528	25	0.80
	Earth and gravel	3,200	1,895	2,600	1,575	20	0.83
	Gravel, dry	2,800	1,680	2,490	1.475	12	0.89
	Gravel, wet	3.400	2,020	2,980	1,765	14	0.88
	Limestone	4.400	2,610	2,750	1,630	60	0.63
	Rock, well blasted	4.200	2.490	2,640	1,565	60	0.63
	Sand, dry	2,800	1,542	2,280	1,340	15	0.87
	Sand, wet	2,700	1,600	2,360	1.400	15	0.87
	Shale	3.500	2,075	2,480	1.470	40	0.71

CONSTRUCTION EQUIPIMENTS

2. PRODUCTIVITY OF SHOVEL FAMILY AND EXCAVATORS

D. Productivity of Excavator/Hoe

- Production formula

$$
\text { Production }=\frac{3,600 \sec \times Q \times F \times(\mathrm{AS}: \mathrm{D})}{t}\left(\frac{E}{60-\operatorname{minhr}}\right)\left(\frac{1}{\text { Vol. Correction }}\right)
$$

Where, $Q=$ Heaped Capacity

$$
F=\text { Bucket Fill Factor }
$$

AS:D = Angle of swing and depth (height) of cut correction

$$
t=\text { Cycle time in seconds }
$$

$$
E=\text { Efficiency min } / \mathrm{hr}
$$

Volume correction for loose volume to bank volume:

CONSTRUCTION EQUIPIMENTS

2. PRODUCTIVITY OF SHOVEL FAMILY AND EXCAVATORS

D. Productivity of Excavator/Hoe

Example 2.3

- A crawler hoe having a $31 / 2$-cy bucket is being considered for use on a project to excavate very hard clay from a borrow pit. The clay will be loaded into trucks having a loading height of 9 ft 9 in . Soil- boring information indicates that below $\mathbf{8 f t}$, the material changes to an unacceptable silt material. What is the estimated production of the hoe in cubic yards bank measure, if the efficiency factor is equal to 50-min/hour?

Solution

\square Step-1: Size of bucket $=31 / 2$-cy
\square Step-2 : Bucket fill factor, Table D-1 gives $80-90 \%$, Use average Bucket fill factor $=(80+90) / 2=85 \%$

CONSTRUCTION EqUIPMENTS

2. PRODUCTIVITY OF SHOVEL FAMILY AND EXCAVATORS

D. Productivity of Excavator/Hoe

Solution cont.

- Step-3: Typical cycle element times
- Optimum depth of cut is $30-60 \%$ of maximum digging depth. From Table D-3 for a $31 / 2$-Cy size Hoe, maximum digging depth is 23-27 ft , Depth of excavation 8 ft .
$(8 \mathrm{ft} / 23 \mathrm{ft}) \times 100=34 \% \geq 30 \%$ okay!
$(8 \mathrm{ft} / 27 \mathrm{ft}) \times 100=30 \% \geq 30 \%$ okay!
- Therefore under average conditions and for $31 / 2-\mathrm{Cy}$ Size hoe, cycle times from Table D-2:

1. Load Bucket 7sec Very hard clay
2. Swing with load $6 \mathrm{sec} \quad$ Load trucks
3. Dump load 4 sec Load trucks
4. Return swing

5 sec
22sec

CONSTRUCTION EQUIPIMENTS

2. PRODUCTIVITY OF SHOVEL FAMILY AND EXCAVATORS

D. Productivity of Excavator/Hoe

Solution cont.

- Step-4: Efficiency factor, $50 \mathrm{~min} /$ hour
- Step-5: Class of material, hard clay Swell 35\% (Table D-4)
- Step-6: Probable production

$$
\frac{3,600 \mathrm{sec} / \mathrm{hr} \times 3 \frac{1}{2} \mathrm{cy} \times 0.85}{22 \mathrm{sec} / \mathrm{cycle}} \times \frac{50 \mathrm{~min}}{60 \mathrm{~min}} \times \frac{1}{(1+0.35)}=300 \mathrm{bcy} / \mathrm{hr}
$$

- Check maximum loading Height to ensure the hoe can service the trucks. From Table D-3, 21 to 22 ft .
$21 \mathrm{ft}>9 \mathrm{ft} 9 \mathrm{in}$. Okay!

CONSTRUCTION EQUIPIMENTS

3. PRODUCTIVITY OF EARTH MOVING EQUIPMENTS

A. Productivity of Loader

\square The following example demonstrates the process for estimating loader production.
Example 3-1

- A-cy wheel loader will be used to load trucks from a quarry stock pile of processed aggregate having a maximum aggregate size of $1^{11 / 4}$ in. The haul distance will be negligible. The aggregate has a loose unit weight of 3,100 . Estimate the loader production in tons based on 50-min/hour efficiency factor. Use a conservative fill factor.

Solution

- Step-1: Size of bucket = 4-cy
\square Step-2: Bucket fill factor (Table Al-1), aggregate over 1in., 85-90\%, use 85% conservative estimate

CONSTRUCTION EQUIPIMENTS

3. PRODUCTIVITY OF EARTH MOVING EQUIPMENTS

A. Productivity of Loader

Solution cont.
Table A-1 Bucket fill factors for wheel and truck loader

Materlal	Wheel loader fill factor (\%)	Track loader fill factor (\%)
Loose material Mixed moist aggregates Uniform aggregates	$95-100$	$95-100$
up to $\frac{1}{8}$ in.	$95-100$	$95-110$
$\frac{1}{1}-\frac{3}{3}$ in.	$90-95$	$90-110$
$\frac{1}{2}-\frac{3}{4}$ in.	$85-90$	$90-110$
1 in. and over	$85-90$	$90-110$
Blasted rock	$80-95$	$80-95$
Well blasted	$75-90$	$75-90$
Average	$60-75$	$60-75$
Poor	$100-120$	$100-120$
Other	$100-110$	$100-120$
Rock dirt mixtures	$80-100$	$80-100$
Moist loam	$85-95$	$85-100$
Soil		
Cemented materials		

CONSTRUCTION EQUIPIMENTS

3. PRODUCTIVITY OF EARTH MOVING EQUIPMENTS

A. Productivity of Loader

Solution cont.

- Step-2: Bucket fill factor

Check tîpping:
Load weight: 4-cy x $0.85=3.4$ lcy
3.4 lcy $\mathrm{x} 3,100 \mathrm{lb} / \mathrm{lcy}$ (loose unit weight of material) $=10,540 \mathrm{lb}$.

From Table $\mathbf{A}-2,4$-cy machine static tipping load at full turn is $25,000 \mathrm{lb}$, Therefore operating (50% static tipping at full turn) is

$$
0.5 \times 25,000 \mathrm{lb}=12,500 \mathrm{lb}
$$

$10,540 \mathrm{lb}$ actual load $<12,500 \mathrm{lb}$ operating load; therefore okay!
\square Step-3: Typical fixxed tìme (Table Al-4) 4-cy wheel loader, 30 to 33 sec; use 30 sec .

CONSTRUCTION EQUIPIMENTS

3. PRODUCTIVITY OF EARTH MOVING EQUIPMENTS

A. Productivity of Loader

Solution cont.

Table A-2 Representative specifications for wheel loader

Size, heaped bucket capacity (cy)	Static Bucket tipping dump load, © clearance full turn (ft) (b)		Maximum forward speed				Maximum reverse Raise/ speed dump/ First Second Third Fourth cycle (mph) (mph) (mph) (mph) (sec)				
			First (mph)	Second (mph)	Third (mph)	Fourth (mph)					
1.25	8.4	9,600	4.1	7.7	13.9	21	4.1	7.7	13.9	-	9.8
2.00	8.7	12,700	4.2	8.1	15.4	-	4.2	8.3	15.5	-	10.7
2.25	9.0	13,000	4.1	7.5	13.3	21	4.4	8.1	14.3	23	11.3
3.00	9.3	17,000	5.0	9.0	15.7	26	5.6	10.0	17.4	29	11.6
3.75	9.3	21,000	4.6	8.3	14.4	24	5.0	9.0	15.8	26	11.8
4.00	9.6	25,000	4.3	7.7	13.3	21	4.9	8.6	14.9	24	11.6
4.75	9.7	27,000	4.4	7.8	13.6	23	5.0	8.9	15.4	26	11.5
5.50	10.7	37,000	4.0	7.1	12.4	21	4.6	8.1	14.2	24	12.7
7.00	10.4	50,000	4.0	7.1	12.7	22	4.6	8.2	14.5	25	16.9
14.00	13.6	98,000	4.3	7.6	13.0	-	4.7	8.3	14.2	-	18.5
23.00	19.1	222,000	4.3	7.9	13.8	-	4.8	8.7	15.2	-	20.1

CONSTRUCTION EQUIPIMENTS

3. PRODUCTIVITY OF EARTH MOVING EQUIPMENTS

A. Productivity of Loader

Table A-3 Representative specification for truck loaders

Size, heaped bucket capacity	Bucket dump clearance (cy)	Static (ipping load (ib)	Maximum forward speed (mph)	Maximum reverse speed (mph)	Ralse/ dump/ (mwer (sele
1.00	8.5	10,500	6.5	6.9	11.8
1.30	8.5	12,700	6.5	6.9	11.8
1.50	8.6	17,00	5.9^{*}	5.9^{*}	11.0
2.00	9.5	19,000	6.4^{*}	6.4^{*}	11.9
2.60	10.2	26,000	6.0^{*}	6.0^{*}	9.8
3.75	10.9	36,000	6.4^{*}	6.4^{*}	11.4

Table A-4 Fixed cycle time for loaders

Loader size, heaped bucket capacity (cy)	Wheel loader cycle time (sec)	Track loader cycle time (sec)
$1.00-3.75$	$27-30$	$15-21$
$4.00-5.50$	$30-33$	-
$6.00-7.00$	$33-36$	-
$14.00-23.00$	$36-42$	-

CONSTRUCTION EQUIPIMENTS

3. PRODUCTIVITY OF EARTH MOVING EQUIPMENTS

A. Productivity of Loader

Solution cont.

- Step-4: Efficiency factor, $50 \mathrm{~min} /$ hour
- Step-5: Class of material, aggregate 3,100 lb per lcy.
- Step-6: Probable production

$$
\frac{3,600 \mathrm{sec} / \mathrm{hr} \times 4 \mathrm{cy} \times 0.85}{30 \mathrm{sec} / \mathrm{cycle}} \times \frac{50 \mathrm{~min}}{60 \mathrm{~min}} \times \frac{3,100 \mathrm{lb} / \mathrm{lcy}}{2,000 \mathrm{lb} / \mathrm{ton}}=527 \mathrm{ton} / \mathrm{hr}
$$

Example 3-2

\square The loader in example 3.1 will also be used to charge the aggregate bins of an asphalt plant that is located at the quarry. The one way haul distance from the $1 \frac{1}{4} \mathrm{in}$. Aggregate stockpile to the cold bins of the plant is 220ft. The asphalt plant uses 105 tons per hour of $1 \frac{1}{4} \mathrm{in}$. Aggregate. Can the loader meet the requirement?

CONSTRUCTION EQUIPIMENTS

3. PRODUCTIVITY OF EARTH MOVING EQUIPMENTS

A. Productivity of Loader

Solution

- Step-3: Typical fixed cycle time (Table A-4) 4-cy wheel loader, 30 to 33 sec , use 30 sec .
From Table A-2, Travel speeds forward:
First, 4.3 mph ; second, 7.7 mph ; third, 13.3 mph .
Travel speed reverse:
First, 4.9 mph ; second, 8.6 mph ; third, 14.9 mph .
Travel loaded: 220 ft , because of short distance and required time to accelerate and brake, use 80% first gear maximum speed.

$$
\frac{4.3 \mathrm{mph} \times 80 \% \times 88 \mathrm{fpm} / \mathrm{mph}}{60 \mathrm{sec} / \mathrm{min}}=5.0 \mathrm{t} / \mathrm{sec}
$$

CONSTRUCTION EQUIPMENTS

3. PRODUCTIVITY OF EARTH MOVING EQUIPMENTS

A. Productivity of Loader

Solution

- Step-3:

Return empty: 220 ft , because of short distance and required time to accelerate and brake, use 80% second gear maximum speed.

$$
\frac{7.7 \mathrm{mph} \times 80 \% \times 88 \mathrm{fpm} / \mathrm{mph}}{60 \mathrm{sec} / \mathrm{min}}=9.0 \mathrm{ft} / \mathrm{sec}
$$

1.	Fixed time	30 sec	4-cy wheel loader
2.	Travel with load	44 sec	$220 \mathrm{ft}, 80 \%$ first gear
3.	Return travel	24 sec	
	Cycle time	$220 \mathrm{ft}, 80 \%$ second gear	

\square Step-6: Probable production

$$
\begin{array}{r}
\frac{3,600 \mathrm{sec} / \mathrm{hr} \times 4 \mathrm{cy} \times 0.85}{98 \mathrm{sec} / \text { cycle }} \times \frac{50 \mathrm{~min}}{60 \mathrm{~min}} \times \frac{3,100 \mathrm{lb} / \mathrm{lcy}}{2,000 \mathrm{lb} / \text { ton }}=161 \mathrm{ton} / \mathrm{hr} \\
161 \mathrm{tons} / \mathrm{hr}>105 \text { tons } / \mathrm{hr} \text { requirement }
\end{array}
$$

The loader will meet the requirement.

CONSTRUCTION EQUIPIMENTS

3. PRODUCTIVITY OF EARTH MOVING EQUIPMENTS

B. Productivity of a Dozer

- The production of dozer mainly depend upon the following factors:
i. Size and condition of the dozer
ii. Distance traveled by the dozer
iii. Speed of operation
iv. Characteristic of soil being handled
v. Surface on which dozer is operating
vi. Efficiency
\square A dozer has no set volumetric capacity. There is no hopper or bowl to load; instead, the amount of material the dozer moves is dependant on the quantity that will remain in front of the blade during the push.

CONSTRUCTION EQUIPIMENTS

3. PRODUCTIVITY OF EARTH MOVING EQUIPMENTS

B. Productivity of a Dozer
\square The major factors that control dozer production rate are:

1. Condition of the material
2. Blade type
3. Cycle time
4. Condition of the material

- The type and condition of the material being handled affects the shape of the pushed mass in front of the blade.
- Cohesive materials (clays) will 'boil' and heap.
- Materials that exhibit a slippery quality or those that have high mica content will ride over the ground and swell out.
- Cohesionless materials (sands) are known as "dead" materials because they do not exhibit heap or swell properties.

Construction Equipments

3. PRODUCTIVITY OF EARTH MOVING EQUIPMENTS

B. Productivity of a Dozer

1. Condition of the material

CONSTRUCTION EQUIPIMENTS

3. PRODUCTIVITY OF EARTH MOVING EQUIPMENTS

B. Productivity of a Dozer
2. Blade type
\square Blade capacity is a function of a blade type and physical size.
Blade volumetric load

- The load that a blade will carry can be estimated by several methods:
i. Manufacturer's blade rating
ii. Previous experience (similar material, equipment, and work conditions)
iii. Field measurements
i. Manufacturers Blade ratùng
\square Manufacturers may provide a blade rating based on SAE practice J1265.

CONSTRUCTION EQUIPIMENTS

3. PRODUCTIVITY OF EARTH MOVING EQUIPMENTS

B. Productivity of a Dozer
2. Blade type
i. Manufacturers Blade ratìng

$$
\begin{aligned}
& V_{s}=0.8 W H^{2} \\
& V_{u}=V_{s}+Z H(W-Z) \tan x^{\circ}
\end{aligned}
$$

Where
$V_{s}=\quad$ capacity of straight or angle blade, in Icy
$V_{u}=\quad$ capacity of universal blade, in Icy
$W=\quad$ blade width, in yd, exclusive of end bits
$H=\quad$ effective blade height, in yd
$Z \quad=\quad$ wing length measured parallel to the blade width, in yd
$x=\quad$ wing angle

CONSTRUCTION EquIPIMENTS

3. PRODUCTIVITY OF EARTH MOVING EQUIPMENTS

B. Productivity of a Dozer
2. Blade type

Blade volumetric load
ï. Previous experience
\square Properly documented past experience is an excellent blade load estimating method.
iii. Field measurement
\square A procedure for measuring blade loads is as follow:
Obtain a normal load

- The dozer pushes a normal blade load onto a level area.
- Stop the dozer's forward motion. While raising the blade, move forward slightly to create a symmetrical pile.
Reverse and move away from the pile.

CONSTRUCTION EQUIPIMENTS

3. PRODUCTIVITY OF EARTH MOVING EQUIPMENTS

B. Productivity of a Dozer
2. Blade type

Blade volumetric load

iu. Field measurement

:Measurement

- Measure the height (H) of the pile at the inside edge of each rack.
- Measure the width (W) of the pile at the inside edge of each rack.
- Measure the greatest length (L) of the pile. This will not necessarily be at the middle.
- Computation
- Average both the two-height and the two-width measurements. If the measurements are in feet, the blade load in loose cubic yards (lcy) is calculated by the formula

Blade load (Icy) $=0.0139$ H W L

CONSTRUCTION EQUIPIMENTS

3. PRODUCTIVITY OF EARTH MOVING EQUIPMENTS

B. Productivity of a Dozer
2. Blade type

Blade volumetric load
iui. Field measurement

CONSTRUCTION EQUIPIMENTS

3. PRODUCTIVITY OF EARTH MOVING EQUIPMENTS

B. Productivity of a Dozer
2. Blade type

Example 3.3
The measurement from a blade-load test were $H_{1}=4.9 \mathrm{ft}, H_{2}=5.2 \mathrm{ft}, W_{1}=6.9 \mathrm{ft}, W_{2}=$ 7.0 ft , and $L=12.6 \mathrm{ft}$. What is the blade capacity in loose cubic yards for the tested material?

$$
H=\frac{4.9+5.2}{2}=5.05 \mathrm{ft}, \quad W=\frac{6.9+7.0}{2}=6.95
$$

Blade Load $($ lcy $)=0.0139 H W L=0.0139(5.05)(6.95)(12.6)=6.15$ lcy

CONSTRUCTION EQUIPIMENTS

3. PRODUCTIVITY OF EARTH MOVING EQUIPMENTS

B. Productivity of a Dozer
3. Cycle tìme
\square The sum of the time required to push, backtrack, and maneuver into position to push represents the complete dozer cycle.
\square Dozing is generally performed at slow speed, 1.5 to 2 mph .
\square Return Speed is usually the maximum that can be attained in the distance available.
\square For distances less than 100 ft , the operator cannot get the machine past the second gear.

CONSTRUCTION EQUIPIMENTS

3. PRODUCTIVITY OF EARTH MOVING EQUIPMENTS

B. Productivity of a Dozer
\square The following example demonstrates the process for estimating dozer production.
Example 3.4

- A power-shift crawler tractor has a rated blade capacity of $7.65 \mathrm{Lm}^{3}$. The dozer is excavating loose common earth and pushing a distance of $200 \mathrm{ft}(61 \mathrm{~m})$ with speed of $4 \mathrm{~km} / \mathrm{hr}$. Maximum reverse speed in third range is $8 \mathrm{~km} / \mathrm{hr}$. Estimate the production of the dozer, if job efficiency is 50 min/hr.

Solution

- Fixed time $=0.05 \mathrm{~min}$ (From Table B-1)
- Dozing speed $=4.0 \mathrm{~km} / \mathrm{hr}$ given but can be obtained from Table B-2.

CONSTRUCTION EQUIPIMENTS

3. PRODUCTIVITY OF EARTH MOVING EQUIPMENTS

B. Productivity of a Dozer

Solution cont.

- Dozing time $=61 \mathrm{~m} /(4 \mathrm{~km} / \mathrm{hr} \times 16.7 \mathrm{~m} / \mathrm{min})=0.91 \mathrm{~min}$ Note: $1 \mathrm{~km} / \mathrm{hr}=16.7 \mathrm{~m} / \mathrm{min}$
- Return time $=61 \mathrm{~m} /(8 \mathrm{~km} / \mathrm{hr} \times 16.7 \mathrm{~m} / \mathrm{min})=0.45 \mathrm{~min}$
- Cycle time $=(0.05+0.91+0.45) \mathrm{min}=1.41 \mathrm{~min}$
- Production $=7.65 \mathrm{Lm}^{3} \times[(50 \mathrm{~min} / \mathrm{hr}) /(1.41 \mathrm{~min})]=271 \mathrm{Lm}^{3} / \mathrm{hr}$

Table B-1 Typical dozer fixed cycle times	
Operating condition	Time (min)
Power-shift transmission	0.05
Direct-drive transmission	0.10
Hard digging	0.15

CONSTRUCTION EQUIPIMENTS

3. PRODUCTIVITY OF EARTH MOVING EQUIPMENTS

B. Productivity of a Dozer

Table B-2 Typical dozer operating speeds

Operating conditions

Speeds

Dozing

Hard materials, haul 30 m or less	$2.4 \mathrm{Km} / \mathrm{hr}$
Hard materials, haul over 30 m	$3.2 \mathrm{Km} / \mathrm{hr}$
Loose materials, haul 30 m or less	$3.2 \mathrm{~km} / \mathrm{hr}$
Loose material haul over 30 m	$4.0 \mathrm{~km} / \mathrm{hr}$

Return

30 m or less
Max reverse speed in second range (power shift) or reverse speed in gear used for dozing (direct drive)
Over 30m
Max reverse speed in third range (power shift) or highest reverse speed

CONSTRUCTION EQUIPIMENTS

3. PRODUCTIVITY OF EARTH MOVING EQUIPMENTS

B. Productivity of a Dozer

- Other methods of computing production are:

$$
\text { 1. } \begin{aligned}
\mathrm{Q}_{\mathrm{o}} & =\mathrm{V}_{0}\left(\frac{60}{\mathrm{~T}_{0}}\right) \mathrm{f}_{\mathrm{F}} \cdot \mathrm{f}_{\mathrm{s}} \cdot \mathrm{f}_{\mathrm{L}}\left(\mathrm{Bm}^{3} / \mathrm{h}\right) \\
\mathrm{Q}_{0} & =\text { theretical productivity }\left(\mathrm{Bm}^{3} \text { perhour }\right) \\
\mathrm{V}_{0} & =\text { blade load }\left[\mathrm{m}^{3}\right] \\
\mathrm{T}_{0} & =\text { basic cycle time }[\min] \\
\mathrm{f}_{\mathrm{F}} & =\text { fill factor } \\
\mathrm{f}_{\mathrm{S}} & =\text { shape factor (for Blades }) \\
\mathrm{f}_{\mathrm{L}} & =\text { load factor }
\end{aligned}
$$

CONSTRUCTION EqUIPIENTS

3. PRODUCTIVITY OF EARTH MOVING EQUIPMENTS

B. Productivity of a Dozer

Actual production

$$
\begin{aligned}
Q_{A} & =Q_{0}\left\{\frac{t_{\mathrm{N}}}{60 \cdot \mathrm{f}_{\mathrm{r}}}\right\} \cdot \mathrm{f}_{L} \quad[\mathrm{Bm} / \mathrm{h}] \\
\mathrm{t}_{\mathrm{N}} & =\text { effective working time }[\mathrm{min} / \mathrm{h}] \\
& =60-\left(\mathrm{t}_{\mathrm{n}}+\mathrm{t}_{\mathrm{z}}+\mathrm{t}_{\mathrm{a}}\right)
\end{aligned}
$$

$$
\mathrm{t}_{\mathrm{n}}=\text { time for side works like assembling, change of place, etc [} \mathrm{min} \text {] }
$$

$$
\mathrm{t}_{\mathrm{z}}=\text { time for additiona! work like uprooting rcots, trunks, etc. [min] }
$$

$$
\mathrm{t}_{\mathrm{a}}=\text { time for hinderance etc. }[\mathrm{min}]
$$

$$
\mathrm{f}_{\mathrm{z}}=\text { time factor to take care of overlapping times }
$$

$$
=\left(1-t_{p} / 60\right) \cdot\left(1-t_{s} / 60\right)
$$

$t_{p}=$ time for personal stoppages
$\mathrm{t}_{\mathrm{s}}=$ time for stoppages due to breakages $[\mathrm{min} / \mathrm{sec}]$

CONSTRUCTION EqUIPIMENTS
 3. PRODUCTIVITY OF EARTH MOVING EQUIPMENTS

B. Productivity of a Dozer

2. The productivity of a dozer, specifically for levellìng and spreadìng work can be calculated by:

$$
Q_{\mathrm{a}}=B * \mathrm{~m}^{*} \mathrm{f}_{\mathrm{e}} * V^{\prime} * 60 * f_{\mathrm{N}} * f_{\mathrm{z}}\left(\mathrm{~m}^{3} / \mathrm{h}\right)
$$

Where: B = reduced blade width (25% overlap) [m]
$\mathrm{m}=$ thickness of material spread, after compaction [m]
$f_{\mathrm{e}}=$ spreading factor to take care of the rolling and spread ability characteristics of the soil

Type of soil	Rolling	Coarse materials like coarse grained gravel	Mixed earth	Cohesive soil	Rock
f_{e}	$0.8-1.0$	$0.7-0.8$	$0.8-0.95$	$0.6-0.7$	$0.3-0.5$

$\mathrm{V}^{\prime}=$ calculated speed [m/min]
$f_{N}=$ efficiency factor, a product of site management factor and the factor taking care of operator's motivation and experience

Construction Equipments

3. PRODUCTIVITY OF EARTH MOVING EQUIPMENTS

B. Productivity of a Dozer

$\mathrm{f}_{\mathrm{z}}=$ product of time factors taking care of matrial rolling on the side of the blade, blade form, site management conditions, experience and motivation of operator

$$
\begin{aligned}
& \mathrm{V}^{\prime}=\mathrm{d} / \mathrm{T} \\
& \text { Where: } d=\text { length of strip (usually } 15-30 \mathrm{~cm} \text {) } \\
& \mathrm{T}=\text { time for spreading strips of length } \mathrm{d} \\
& =N_{p}{ }^{*} t_{f}{ }^{*} 0.06\left[d / N_{\text {spread }}+\left(N_{p}-1\right)(d) / N_{\text {leveling }}\right][\mathrm{min}] \\
& \mathrm{N}_{\mathrm{p}}=\text { number of passes per strip (usually } 2 \text { to } 4 \text {) } \\
& t_{f}=\text { fixed cycle time (usually } 0.1 \text { to } 0.2 \mathrm{~min} \text {) } \\
& \mathrm{V}_{\text {spread }}=\text { speed by spreading and rough leveling } \\
& \text { (usually } 4 \text { to } 5 \mathrm{~km} / \mathrm{hr} \text {) } \\
& V_{\text {leveling }}=\text { speed by fine leveling (usually } 4 \text { to } 6 \\
& \text { km/hr) }
\end{aligned}
$$

CONSTRUCTION EQUIPIMENTS

3. PRODUCTIVITY OF EARTH MOVING EQUIPMENTS

B. Productivity of a Dozer

Use of graphs, charts and curves for estìmatìng production
\square Production curves for estimating the amount of material that Caterpillar bulldozers can push are usually available by the manufacturers.
\square These curves are published in the Caterpillar Performance Handbook.
\square The bulldozer production curves give maximum uncorrected production for universal, semi-universal, and straight blades and are based on the following conditions:

- 100% efficiency (60 minute hour - level cycle).
- Power shift machines with 0.05 min . fixed times.
- Machine cuts for 15 m (50 feet), then drifts blade load to dump over a high wall. (Dump time - 0 sec.) Soil density of $1370 \mathrm{~kg} / \mathrm{Lm}^{3}$ ($2300 \mathrm{lb} / \mathrm{LCY}$).

CONSTRUCTION EqUIPIMENTS

3. PRODUCTIVITY OF EARTH MOVING EQUIPMENTS

B. Productivity of a Dozer

Use of graphs, charts and curves for estìmatìng production

$$
\begin{array}{|c}
\hline \text { Production }\left(\mathrm{Lm}^{3} / \mathrm{hr}\right) \\
(\mathrm{LCY} / \mathrm{hr})
\end{array}=\begin{gathered}
\text { Maximum } \\
\text { production }
\end{gathered} \times \begin{gathered}
\text { Correction } \\
\text { factors }
\end{gathered}
$$

\square To obtain estimated production in bank cubic meters or bank cubic yards, appropriate load factor from the Tables section should be applied to the corrected production as calculated above.

$$
\begin{array}{r}
\text { Production } \mathrm{Bm}^{3} / \mathrm{hr}
\end{array}=\begin{aligned}
& \mathrm{Lm}^{3} / \mathrm{hr} \\
& (\mathrm{LCY} / \mathrm{h}) \times \mathrm{LF} \\
& \times \mathrm{LF}
\end{aligned}
$$

CONSTRUCTION EqUIPMENTS

3. PRODUCTIVITY OF EARTH MOVING EQUIPMENTS

B. Productivity of a Dozer

Use of graphs, charts and curves for estìmatìng production

ESTIMATED DOZING PRODUCTION • Universal Blades • D7G through D11R

KEY
A - D11R-11U
B - D11R CD
C-D10R-10U
D - D9R-9U
E - D8R-8U
F - D7R-7U
G-D7G-7U

CONSTRUCTION EQUIPIMENTS
 3. PRODUCTIVITY OF EARTH MOVING EQUIPMENTS

B. Productivity of a Dozer

Use of graphs, charts and curves for estìmatìng production
ESTIMATED DOZING PRODUCTION • Semi-Universal Blades • D6M through D11R

KEY
A - D11R-11SU
B - D10R-10SU
C - D9R-9SU
D - D8R-8SU
E - D7R-7SU
F - D6R-6SU
G - D6M-6SU

CONSTRUCTION EQUIPMENTS

3. PRODUCTIVITY OF EARTH MOVING EQUIPMENTS

B. Productivity of a Dozer

Use of graphs, charts and curves for estìmatìng production
ESTIMATED DOZING PRODUCTION

CONSTRUCTION EQUIPIMENTS 3. PRODUCTIVITY OF EARTH MOVING EQUIPMENTS

B. Productivity of a Dozer
\% Grade vs. Dozing Factor
(-) Downhill
(+) Uphill

JOB CONDITION CORRECTION FACTORS

	$\begin{gathered} \text { TRACK- } \\ \text { TYPE } \\ \text { TRACTOR } \end{gathered}$	WHEEL. TYPE TRACTOR
OPERATOR -		
Excellent	1.00	1.00
Average	0.75	0.60
Poor	0.60	0.50
MATERIAL -		
Loose stockpile	1.20	1.20
Hard to cut; frozen -		
with tilt cylinder	0.80	0.75
without tilt cylinder	0.70	-
cable controlled blade	0.60	-
Hard to drift, "dead" (dry, non-cohesive material) or very sticky material		
Rock, ripped or blasted	0.60-0.80	-
SLOT DOZING	1.20	1.20
SIDE BY SIDE DOZING	1.15-1.25	1.15-1.25
VISIBILITY -		
Dust, rain, snow, fog or darkness	0.80	0.70
JOB EFFICIENCY -		
$50 \mathrm{~min} / \mathrm{hr}$	0.83	0.83
$40 \mathrm{~min} / \mathrm{hr}$	0.67	0.67
BULLDOZER*		
Adjust based on SAE capacity relative to the base blade used in the Estimated Dozing Production graphs.		
GRADES - See following graph.		66

CONSTRUCTION EqUIPIMENTS

3. PRODUCTIVITY OF EARTH MOVING EQUIPMENTS

B. Productivity of a Dozer

Use of graphs, charts and curves for estimatìng production

Example 3.3

\square Determine average hourly production of a D8R/8SU (with tilt cylinder) moving hard-packed clay an average distance of 45 m (150 feet) down a 15% grade, using a slot dozing technique.
Estimated material weight is $1600 \mathrm{~kg} / \mathrm{Lm} 3$ ($2650 \mathrm{lb} / \mathrm{LCY}$). Operator is average. Job efficiency is estimated at $50 \mathrm{~min} / \mathrm{hr}$.

Solution

- Uncorrected Maximum Production - $458 \mathrm{Lm}^{3} / \mathrm{hr}(600 \mathrm{LCY} / \mathrm{hr})$ from Estimated dozer production graph for Semi universal blade.

CONSTRUCTION EQUIPIMENTS
 3. PRODUCTIVITY OF EARTH MOVING EQUIPMENTS

B. Productivity of a Dozer

Use of graphs, charts and curves for estìmatìng production
Solution cont.
Applicable Correction Factors:
Hard-packed clay is "hard to cut" material -0.80
Grade correction (from graph) -1.30
Slot dozing . -1.20
Average operator . -0.75
Job efficiency ($50 \mathrm{~min} / \mathrm{hr}$) 0.83
Weight correction (2300/2650)-0.87
Production $=$ Maximum Production \times Correction
Factors
$=(600 \mathrm{LCY} / \mathrm{hr})(0.80)(1.30)(1.20)$
(0.75) (0.83) (0.87)
$=405.5 \mathrm{LCY} / \mathrm{hr}$
To obtain production in metric units, the same procedure is used substituting maximum uncorrected production in Lm^{3}.

$$
\begin{aligned}
& =458 \mathrm{Lm}^{3} / \mathrm{h} \times \text { Factors } \\
& =309.6 \mathrm{Lm}^{3} / \mathrm{h}
\end{aligned}
$$

CONSTRUCTION EqUIPIMENTS

3. PRODUCTIVITY OF EARTH MOVING EQUIPMENTS

B. Productivity of a Dozer

Productivity of Rìppers

\square Out put of rippers depend upon characteristic of soil, size of the dozer, speed of the machine, shape and size of the ripper tooth, number of shanks used, and depth and width of ripping pass.

- However, the following are the formulae used in general for calculating the out put of ripper.
Production per hour $=($ Bank volume rìpped per pass) x (No. of passes per hour)
Where, Bank volume ripped per pass $=$ (Length of pass)x(Width of ripping pass) x (Depth of penetration) x (Efficiency)
No. of passes per hour $=60 /($ Time for making one pass in min.)
Time taken in one pass $=($ Length of pass/Traveling speed $)+$ Turn round

Construction Equipments

3. PRODUCTIVITY OF EARTH MOVING EQUIPMENTS

C. Productivity of Scraper

\square Out put of scrapers depends on the following main factors:
i. Size and mechanical condition of the scraper
ii. Hauling distance
iii. Condition of the haul road
iv. Characteristics of soil and work area.
v. Efficiency

- Steps for determining production of scraper are summarised as follow:
- Step-1: Determination of weight (Empty vehicle weight, load weight and gross vehicle weight)
- Step-2: Rolling resistance
- Step-3: Grade resistance/assistance

Step-4: Total resistance/assistance

CONSTRUCTION EQUIPIMENTS

3. PRODUCTIVITY OF EARTH MOVING EQUIPMENTS

C. Productivity of Scraper

\square Steps for determining production of scraper are summarised as follow:

- Step-5: Travel speed
- Step-6: Travel time
- Step-7: Load time
- Step-8: Dump time
- Step-9: Turning time
- Step-10: Total cycle time
- Step-11: Pusher cycle time
- Step-11: Total resistance/assistance
- Step-12: Balance fleet time
- Step-13: Efficiency
- Step-14: Production

CONSTRUCTION EQUIPIMENTS

4. PRODUCTIVITY OF GRADING EQUIPMENTS

\square Out put of a motor grader depends upon the following main factors:
i. Size and mechanical condition of the motor grader
ii. Size of the blade
iii. Speed of travel
iv. Characteristics of soil being handled
v. Efficiency of the operator
\square In the majority of the cases, as the grader has multiple applications, the computation of its productivity is not always possible. It can, however, be estimated, case by case.

Method-1

- Average actual productivity for levellìng and spreadìng can be computed as follow:

CONSTRUCTION EQUIPIMENTS

4. PRODUCTIVITY OF GRADING EQUIPMENTS

Method-1

$$
\begin{aligned}
\mathbf{Q}_{a} & =\boldsymbol{B} \times \boldsymbol{L} \times f_{N} \times f_{\mathcal{Z}} \times 60 / T\left[/ \mathrm{m}^{2} / h r\right] \\
B & =l \times \cos A
\end{aligned}
$$

Where, $\mathrm{B}=$ width per strip with due consideration of over lapping
$1=$ length of blade
A = Angle of blade width respect to the axis (refer Table 4.1)
$\mathrm{L}=$ lift thickness after compaction
$\mathrm{f}_{\mathrm{N}}=$ factor to take care of site conditions, operator effectiveness (refer Table 4.2)
$\mathrm{f}_{\mathrm{Z}}=$ time factor (refer Table 4.3)
$\mathrm{T}=$ Cycle time, $\mathrm{T}=0.06 \Sigma(\mathrm{P} * \mathrm{D}) / \mathrm{V}, \mathrm{D}=$ distance
$\mathrm{P}=$ number of passes
$\mathrm{V}=$ forward and back ward average speed

CONSTRUCTION EqUIPIMENTS 4. PRODUCTIVITY OF GRADING EQUIPMENTS

Method-1

Table 4.1 Blade angle for different operation	
Type of earth/operation	Angle A in degrees
Normal	30
Hard earth	45
Loose and light material	20
Scarify, mix and spreading across	$30-50$
Fine levelling and spreading along	$0-30$

CONSTRUCTION EqUIPIMENTS 4. PRODUCTIVITY OF GRADING EQUIPMENTS

Method-1
Table 4.2 $f_{N^{-}}$factor to take care of site conditions and operator effectiveness

| | Very good | good | Average | Poor |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Site condition | 0.95 | 0.9 | 0.8 | 0.6 |
| Operator effectiveness | 1.0 | 0.85 | 0.75 | 0.6 |

Table 4.3.A Average speed for different operation

	Type of operation
Speed in Km/hr	
Road maintenance	$4-9$
Mix	8
Spread	$4-9$
Sub base work	$4-8$
Fine levelling	$9-22$
Cutting slopes	$7-9$
Ditching	$4-8$
Back ward and idle non operational speed	$10-V m a x ~ a s ~ p e r ~$ manufacturers Spec.

CONSTRUCTION EQUIPIMENTS 4. PRODUCTIVITY OF GRADING EQUIPMENTS

Method-1

Table 4.3.B Average speed for different operation

	Type of operation
Bank slopping	Speed in Km/hr
Ditching	4.0
Finishing	$4-6$
Grading and road maintenance	$6.5-14.5$
Mining	$6.4-9.7$
Snow removal	$14.5-32.2$
Spreading	$19.3-32.2$

CONSTRUCTION EQUIPIMENTS

4. PRODUCTIVITY OF GRADING EQUIPMENTS

Method-2

\square Grader production is also calculated as area covered by motor grader per hour.

$$
A=B \times V_{a v} \times \eta
$$

Where, $B=$ width per strip (m)

$$
\begin{aligned}
& =0.8 x l x \cos A \\
& l=\text { length of blade } \\
& A=\text { Angle with respect to axis } \\
& V_{a v}=\text { Average speed }(\mathrm{m} / \mathrm{hr}) \\
& \eta=\text { efficiency }
\end{aligned}
$$

- Time required to complete a roadway project can be calculated by

$$
\mathrm{T}=\text { Number of passes } \times \text { Distance }(\mathrm{Km})
$$

Average speed (Km/hr) x Efficiency factor

CONSTRUCTION EQUIPIMENTS

4. PRODUCTIVITY OF GRADING EQUIPMENTS

Method-3 (CAT Performance handbook)

\square One method expresses a motor grader's production in relation to the area covered by the moldboard.

$$
\begin{aligned}
& A=S \times\left(L_{e}-L_{\omega}\right) \times 1000 \times E \text { (Metric) } \\
& A=S \times\left(L_{e}-L_{\theta}\right) \times 5280 \times E \text { (English) } \\
& \text { where, } A=\text { Hourly operating area (} \mathrm{m}^{2} / \mathrm{h} \text { or } f t^{2} / \mathrm{h} \text {) } \\
& S=\text { Operating speed }(\mathrm{Km} / \mathrm{h} \text { or } \mathrm{mph}) \\
& L_{e}=\text { Effective blade length (m or ft) } \\
& L_{o}=\text { Width of overlap }(m \text { or } f t) \\
& \text { E Efficiency }
\end{aligned}
$$

CONSTRUCTION EQUIPIMENTS

4. PRODUCTIVITY OF GRADING EQUIPMENTS

Method-3 (CAT Performance handbook)

- Operating speeds: typical operating speeds by operation are provided as follow:

Finish Grading:	$0-4 \mathrm{~km} / \mathrm{h}$	$(0-2.5 \mathrm{mph})$
Heavy Blading:	$0-9 \mathrm{~km} / \mathrm{h}$	$(0-6 \mathrm{mph})$
Ditch Repair:	$0-5 \mathrm{~km} / \mathrm{h}$	$(0-3 \mathrm{mph})$
Ripping:	$0-5 \mathrm{~km} / \mathrm{h}$	$(0-3 \mathrm{mph})$
Road Maintenance:	$5-16 \mathrm{~km} / \mathrm{h}$	$(3-9.5 \mathrm{mph})$
Haul Road Maintenance:	$5-16 \mathrm{~km} / \mathrm{h}$	$(3-9.5 \mathrm{mph})$
Snow Plowing:	$7-21 \mathrm{~km} / \mathrm{h}$	$(4-13 \mathrm{mph})$
Snow Winging:	$15-28 \mathrm{~km} / \mathrm{h}$	$(9-17 \mathrm{mph})$

- Effective blade length: Since the moldboard is usually angled when moving material, an effective blade length must be computed to account for this angle. This is the actual width of material swept by the moldboard.

CONSTRUCTION EQUIPIMENTS

4. PRODUCTIVITY OF GRADING EQUIPMENTS

Method-3 (CAT Performance handbook)

- Effective blade length:

Moldboard Length, $\mathrm{m}(\mathrm{ft})$	Effective Length, m (ft) 30 degree blade angle	Effective Length, $\mathbf{m}(\mathrm{ft})$ 45 degree blade angle
$3.658(12)$	$3.17(10.4)$	$2.59(8.5)$
$3.962(13)$	$3.43(11.3)$	$2.80(9.2)$
$4.267(14)$	$3.70(12.1)$	$3.02(9.9)$
$4.877(16)$	$4.22(13.9)$	$3.45(11.3)$
$7.315(24)$	$6.33(20.8)$	$5.17(17.0)$

- Width overlap: The width of overlap is generally 0.6 m (2.0 ft). This overlap accounts for the need to keep the tires out of the windrow on the return pass.

CONSTRUCTION EQUIPIMENTS
 4. PRODUCTIVITY OF GRADING EQUIPMENTS

Method-3 (CAT Performance handbook)

- Job Efficiency: Job efficiencies vary based on job conditions, operator skill, etc.
\square A good estimation for efficiency is approximately 0.70 to 0.85 , but actual operating conditions should be used to determine the best value.

Example 4-1

\square A 140 H motor grader with a $3.66 \mathrm{~m}(12 \mathrm{ft})$ moldboard is performing road maintenance on a township road. The machine is working at an average speed of $13 \mathrm{~km} / \mathrm{h}(8 \mathrm{mph})$ with a moldboard carry angle of 60 degrees. What is the motor grader's production based on coverage area?
Note: Due to the long passes involved in road maintenance- fewer turnarounds - a higher job efficiency of 0.90 is chosen.

CONSTRUCTION EQUIPIMENTS

4. PRODUCTIVITY OF GRADING EQUIPMENTS

Method-3 (CAT Performance handbook)

Solution

\square From the table, the effective blade length is $3.17 \mathrm{~m}(10.4 \mathrm{ft})$. Metric
\square Production, $A=S \times\left(L_{e}-L_{e}\right) \times 1000 \times E$

$$
\begin{aligned}
& \mathrm{A}=13 \mathrm{~km} / \mathrm{h} \times(3.17 \mathrm{~m}-0.6 \mathrm{~m}) \times 1000 \times 0.90 \\
& \mathrm{~A}=30,069 \mathrm{~m}^{2} / \mathrm{hr}(3.07 \text { hectars } / \mathrm{hr})
\end{aligned}
$$

English
\square Production, $A=S x\left(L_{e}-L_{\theta}\right) \times 5280 \times E$
$\mathrm{A}=8 \mathrm{mph} \times(10.4 \mathrm{ft}-2 \mathrm{ft}) \times 5280 \times 0.90$
$\mathrm{A}=319,334 \mathrm{ft}^{2} / \mathrm{hr}(7.33 \mathrm{acres} / \mathrm{hr})$

THANK YOU!

