Reinforced Concrete Structures 2

(CEng-3122)

Chapter One
Plastic Moment Redistribution

2

1. Introduction
2. Moment Curvature Relationship
3. Rotation Capacity

Presentation Outline

4. Continuous Beams
5. Plastic Hinges and Collapse Mechanisms
6. Moment Redistribution

Introduction

- Analysis of Reinforced Concrete Structures
- Methods of Analysis Allowed in EC-2

Analysis of RC Structures

- The purpose of any analysis is to know how the structure responds to a given loading and there by evaluate the stresses and deformations.

Given: the following sets of parameters

Carrying out Elastic Analysis: Results ...
Stresses

So far in the course analysis are based on linear elastic

Deformation

theory.

Analysis of RC Structures

5

Most reinforced concrete structures are designed for internal forces found by elastic theory with methods such as slope deflection, moment distribution, and matrix analysis.

There is an apparent inconsistency in determining the design moments based on an elastic analysis, while doing the design based on a limit state design procedure, where the structural design is based on inelastic section behavior.

Analysis
\checkmark Factored loads
\checkmark Elastic Analysis

Design

\checkmark The tensile reinforcement is proportioned on the assumption that its well beyond its yielding point at failure. (Ductile Design or $\varepsilon_{\mathrm{s}} \geq 4.313 \%$)
\checkmark Concrete stress distribution across the section is nonlinear.

Although the analysis and design basis are contradictory, it will be a safe and to a degree a conservative design. \qquad \equiv

Methods of Analysis Allowed in EC-2

The methods of analysis provided on EC-2 are for the purpose to establish the distribution of either internal forces and moments, or stresses, strains and displacements, over the whole or part of a structure.

1. Linear Elastic Analysis (section 5.4 - EC2)

- Based on the theory of elasticity.
- Suitable for both SLS and ULS.
- Assumption:
i. uncracked cross sections
ii. linear stress-strain (ε vs σ) relationships and,
iii. mean values of the elastic modulus [E].
- For thermal deformation, settlement and shrinkage effects at the (ULS), a reduced stiffness corresponding to the cracked sections may be assumed.
- For the (SLS) gradual evolution of cracking should be considered (eg. rigorous deflection calculation).

Methods of Analysis Allowed in EC-2 7

2. Linear Elastic Analysis with Limited Redistribution (section 5.5)

WILL BE INTRODUCED IN THE FOLLWING CHAPTER OF THE COURSE

- Suitable for ULS.
- The moments at ULS calculated using a linear elastic analysis may be redistributed, provided that the resulting distribution of moments remains in equilibrium with the applied loads.
- Redistribution of bending moments may be carried out without explicit check on the rotation capacity, provided that:
$0,5 \leq l_{1} / l_{2} \leq 2,0$
Ratio of redistribution $\delta=M_{1} / M_{2}<1$, is
$\checkmark \quad \delta \geq k_{1}+k_{2} x_{u} / d$ for $f_{c k} \leq 50 \mathrm{MPa}$
$\checkmark \quad \delta \geq k_{3}+k_{4} x_{u} / d$ for $f_{c k}>50 \mathrm{MPa}$
$\checkmark \quad \delta \geq k_{5}$ for reinforcement class B \& C
$\delta \geq k_{6}$ for reinforcement class A

x_{u} is the depth of the neutral axis at the ultimate limit state after redistribution. recommended value for k_{1} is 0,44 , for k_{2} is $1,25\left(0,6+0,0014 / \varepsilon_{\text {cu2 }}\right)$, for $k_{3}=0,54$, for $k_{4}=$ $1,25\left(0,6+0,0014 / \varepsilon_{\text {cu2 }}\right)$, for $k_{5}=0,7$ and $k_{6}=0,8$

Methods of Analysis Allowed in EC-2 8

non-Linear

 Analysis (section 5.7)IT IS BEYOUND THE SCOPE OF THE COURSE

- Suitable for ULS.
- Suitable for SLS if compatibility is ensured.
- When a beam yields in bending, an increase in curvature does not produce an increase in moment resistance. Analysis of beams and structures made of such flexural members is called Plastic Analysis.
- This is generally referred to as limit analysis, when applied to reinforced concrete framed structures, and plastic analysis when applied to steel structures
- Nonlinear analysis may be used for both ULS and SLS, provided that equilibrium and compatibility are satisfied and an adequate non-linear behavior for materials is assumed.
- The non-linear analysis procedures are more complex and therefore very time consuming.
- The analysis maybe first Or second order.

Moment Curvature Relationship

- Curvature
- Basic Assumption and Consideration in Establishing the Moment Curvature Relationship
- Procedures in Establishing the Moment Curvature Relationship

Curvature: Introduction

For a beam with homogeneous cross-section, which is loaded in bending is shown below.

Beam loaded in bending.

Segment of the beam loaded in bending.

Relationship between bending moment M and curvature K for beam with linear elastic homogeneous material.

But is Concrete a Homogenous, elastic material?

Then how do we determine the moment curvature relationship for it?

Why do we even bother compute the $\mathrm{M}-\mathrm{K}$ relationship in the first place?

Curvature: RC section

Reinforced concrete is not homogeneous because it is composed of steel and concrete which have different values for the elastic modulus; however, it is possible to identify an equivalent homogeneous concrete section with an equivalent moment of inertia.

This is done by means of an equivalent transformed cross section

To have the same material property of concrete across the RC section the reinforcement is transformed in to an equivalent concrete area using the modular ratio $\mathrm{n}=\mathrm{Es} / \mathrm{Ec}$

Addis Ababa institute of Technology

Curvature: RC section

It is important:

- to study the ductility of members
- to understand the development of plastic hinge, and
- to account for the redistribution of elastic moments that occurs in most reinforced concrete structures before collapse.

Curvature: RC section

The curve M-K may be calculated for every given cross-section in reinforced concrete; this is typically done by the calculation of some salient points:

A Typical M-K diagram for a RC section.
A. M and K just before the appearance of the flexural crack in the cross-section
B. M and K just after the appearance of the flexural crack
C. M and K when steel start to yield
D. M and K when failure is reached (normally due to the crushing of the compression concrete)

Basic Assumption and Consideration in Establishing the M-K Relationship

Basic	- Assabolic-rectangular stress block for concrete in compression is assumed. Assumptions
	Tensile strength of concrete is neglected.
- Plane section remains plane before and after bending.	
Elasto-Plastic stress strain relationship is assumed for	
reinforcement steel in tension.	
	Steel is perfectly bonded with concrete.
Basic	- Equilibrium of forces shall be maintained.
Considerations	Compatibility of Strains shall be maintained.
	Stress-Strain relationship has to be satisfied.

Procedures in Establishing the M-K Relationship

The general steps to be followed in computing the moment curvature relationship of RC section are as follows.

1. Assume the strain of the outer most fiber of concrete. [ε_{c}]
2. Assume the N.A. depth. [x]
3. From the linear strain distribution across the section compute the strain of the reinforcement bar in tension and the corresponding stress in it. [$\varepsilon_{\mathrm{s} 1}$ and $\sigma_{s 1}$]
4. Compute the total compressive and tensile forces. [C_{c} and T_{s}]
5. Check equilibrium of forces. $\left[\mathrm{C}_{\mathrm{c}}=\mathrm{T}_{\mathrm{s}}\right.$ or $\left.\mathrm{C}_{\mathrm{c}} \neq \mathrm{T}_{\mathrm{s}}\right]$
6. Determine lever arm $[z]$ and calculate the moment $[M]$ and the corresponding curvature [K].

Example 1.1 : For $R C$ beam section with $b / h=200 / 400 \mathrm{~mm}$, casted out of $\mathrm{C} 20 / 25$ concrete and

 reinforced by s-400. determine the moment curvature relationship of the section?a) $3 \varphi 14$
b) $3 \varphi 24$
[Use cover to longitudinal reinforcement bar 33 mm]

Solution: a) $3 \varphi 14$
Step1: Summarize the given parameters

Material	$\mathrm{C} 20 / 25$
$\mathrm{f}_{\mathrm{ctm}}=2.2 \mathrm{MPa} ; \mathrm{E}_{\mathrm{cm}}=30,000 \mathrm{MPa}$	

$$
\mathrm{f}_{\mathrm{ctm}}=2.2 \mathrm{MPa} ; \mathrm{E}_{\mathrm{cm}}=30,000 \mathrm{MPa}
$$

S-400

Modular ratio, $n=E_{s} / E_{c m}=6.67$
Geometry $\quad d=h$-cover $-\varphi / 2=400-33-7=360 \mathrm{~mm}$
$A_{s 1}=3 x \pi x(7 \mathrm{~mm})^{2}=461.81 \mathrm{~mm}^{2}$
Step2: Compute the cracking moment and corresponding curvature. [$\mathrm{M}_{\mathrm{cr}}, \mathrm{K}_{\mathrm{cr}}$]
I. Uncracked section properties.

The neutral axis depth of the uncracked section

$$
\begin{aligned}
& A_{1}=b \times h=200 \times 400=80000 \mathrm{~mm}^{2} \\
& A_{2}=(n-1) \times A_{s 1}=(6.67-1) \times 461.81=2618.46 \mathrm{~mm}^{2}
\end{aligned}
$$

And considering the top fiber as a refrence axis

$$
x_{1}=\frac{h}{2}=200 \mathrm{~mm}
$$

$$
x_{2}=d=360 \mathrm{~mm}
$$

Therefore:-

$$
x=\frac{\sum A_{i} x_{i}}{\sum A_{i}}=\frac{\left(A_{1} \times x_{1}\right)+\left(A_{2} \times x_{2}\right)}{\left(A_{1}+A_{2}\right)}=205.07 \mathrm{~mm}
$$

The second moment of the area of the uncracked section

$$
\begin{aligned}
& I_{1}=\left(\frac{b h^{3}}{12}\right)=\left(\frac{200 \times 400^{3}}{12}\right)=1066666666.67 \mathrm{~mm}^{4} \\
& I_{2} \approx 0 \\
& A_{1}=b \times h=200 \times 400=80000 \mathrm{~mm}^{2} \\
& A_{2}=(n-1) \times A_{s 1}=(6.67-1) \times 461.81=2618.46 \mathrm{~mm}^{2} \\
& y_{1}=x-\frac{h}{2}=205.07-200=5.07 \mathrm{~mm} \\
& y_{2}=d-x=360-205.07=154.93 \mathrm{~mm}
\end{aligned}
$$

Therefore :-

$$
\begin{aligned}
& I_{1}=I_{1}+I_{2}+\left(A_{1} \times y_{1}{ }^{2}\right)+\left(A_{2} \times y_{2}{ }^{2}\right) \\
& I_{1}=1066666666.67+0+\left(80000 \times 5.07^{2}\right)+\left(2618.46 \times 154.93^{2}\right) \\
& I_{1}=1131574752.42 \mathrm{~mm}^{4}
\end{aligned}
$$

II. Cracked section properties
x2

\uparrow

$$
\begin{aligned}
& I_{11}=I_{1}+I_{2}+\left(A_{1} \times y_{1}^{2}\right)+\left(A_{2} \times y_{2}^{2}\right) \\
& I_{11}=12569042+0+\left(18204.6 \times 45.5115^{2}\right)+\left(3080.27 \times 268.977^{2}\right) \\
& I_{11}=273129472.51 \mathrm{~mm}^{4}
\end{aligned}
$$

III. Compute the cracking moment.

$$
\begin{aligned}
& M_{c}=\frac{f_{c m} I_{1}}{y_{t}} \\
& y_{t}=h-x=400-205.07=194.93 \mathrm{~mm}
\end{aligned}
$$

Therefore

$$
M_{\mathrm{cr}}=\frac{2.2 \times 1131574752.42}{194.93}=12.77 \mathrm{kNm}
$$

IV. Compute the curvature just before cracking.
$K_{\mathrm{cr}}=\frac{M_{\mathrm{cr}}}{E_{\mathrm{c}!}}$
$K_{\mathrm{cr}}=\frac{12770000 \mathrm{Nmm}}{30000 \frac{\mathrm{~N}}{\mathrm{~mm}^{2}} \times 1131574752.42 \mathrm{~mm}^{4}}=0.3767 \times 10^{-6} \mathrm{~mm}^{-1}$
V. Compute the curvature just after cracking.

$$
\begin{aligned}
& K_{\mathrm{cr}}=\frac{M_{\mathrm{cr}}}{E_{\mathrm{c}} I_{I}} \\
& K_{\mathrm{cr}}=\frac{12770000 \mathrm{Nmm}}{30000 \frac{\mathrm{~N}}{\mathrm{~mm}^{2}} \times 273129472.51 \mathrm{~mm}^{4}}=1.558 \times 10^{-6} \mathrm{~mm}^{-1}
\end{aligned}
$$

Step3: Compute the yielding moment and corresponding curvature

 [M_{y}, K_{y}]

Assuming $0<\varepsilon_{\mathrm{cm}}<2 \%$ and from force equilibrium.
$\mathrm{Cc}=\mathrm{T}_{\mathrm{s}}$
$\alpha_{c} f_{c d} b d=A_{s l} f_{y d}$
$\alpha_{c}=\frac{A_{s t} f_{y d}}{f_{c d} b d}=\frac{461.81 \times 347.83}{11.33 \times 200 \times 360}=0.197$

From the strain profile

$$
\mathrm{k}_{\mathrm{x}}=\frac{\varepsilon_{\mathrm{cm}}}{\varepsilon_{\mathrm{cm}}+\varepsilon_{y}}=\frac{\varepsilon_{\mathrm{cm}}}{\varepsilon_{\mathrm{cm}}+1.74}
$$

From the simplified equations discussed in chapter two of RC-1 $\alpha_{c}=\varepsilon_{c m}\left[\frac{6-\varepsilon_{c m}}{12}\right] k_{x}=0.197$

Step4: Compute the ultimate moment and corresponding
curvature. $\left[M_{u}, K_{u}\right]$

18

Assuming a compression failure $\varepsilon_{c \mathrm{~m}}=3.5 \%, \varepsilon_{y}<\varepsilon_{\mathrm{s}}<25 \%$ and from force equilibrium.
$\alpha_{c}=\frac{A_{s} f_{y d}}{f_{c d} b d}=\frac{461.81 \times 347.83}{11.33 \times 200 \times 360}=0.197$
I From the strain profile
I $k_{x}=\frac{3.5}{3.5+\varepsilon_{s}}$
From the simplified equations discussed in chapter two of RC-1
$\alpha_{c}=k_{x}\left[\frac{3 \varepsilon_{\text {m }}-2}{3 \varepsilon_{\mathrm{m}}}\right]=0.197$

From the two equations above we can solve for $\varepsilon_{\mathrm{cm}}$ to be 1.208 . Assumption correctll from the two equations above we can solve for $\varepsilon_{\text {s }}$ to be $10.88 \ldots$ Assumption correct!

$$
\begin{aligned}
& k_{x}=\frac{1.208}{1.208+1.74}=0.410 \\
& x=d \times k_{x}=360 \times 0.410=147.6 \mathrm{~mm} \\
& \beta_{c}=k_{x}\left[\frac{8-\varepsilon_{c m}}{4\left(6-\varepsilon_{c m}\right)}\right]=0.145
\end{aligned}
$$

$$
z=d\left(1-\beta_{c}\right)=360(1-0.145)=307.8 \mathrm{~mm}
$$

Addis Ababa institute of Technology

$$
\kappa_{y}=\frac{\varepsilon_{\mathrm{cm}}}{x}=\frac{1.178 \times 10^{-3}}{145.44 \mathrm{~mm}}=8.10 \times 10^{-6} \mathrm{~mm}^{-1}
$$

I $k_{x}=\frac{3.5}{3.5+10.88}=0.243$
I $x=d \times k_{x}=360 \times 0.243=87.48 \mathrm{~mm}$
| $\beta_{c}=k_{x}\left[\frac{\varepsilon_{c m}\left(3 \varepsilon_{c m}-4\right)+2}{2 \varepsilon_{c m}\left(3 \varepsilon_{c m}-2\right)}\right]=0.101$
$\mid z=d\left(1-\beta_{c}\right)=360(1-0.101)=323.64 \mathrm{~mm}$
I $M_{u}=A_{s t} f_{y d} z=51.99 \mathrm{kNm}$
$\kappa_{u}=\frac{\varepsilon_{c m}}{x}=\frac{3.5 \times 10^{-3}}{87.26 \mathrm{~mm}}=40.11 \times 10^{-6} \mathrm{~mm}^{-1}$

Step5: Plot the moment vs curvature diagram

Home take Bonus exam:

Redo example1.1 considering the role of concrete in the tension zone of the reinforced concrete section.

Example 1.1 : For RC beam section with $b / h=200 / 400 \mathrm{~mm}$, casted out of $\mathrm{C} 20 / 25$ concrete and reinforced by $\mathrm{s}-400$. determine the moment curvature relationship of the section?
a) $3 \varphi 14$
b) $3 \varphi 24$
[Use cover to longitudinal reinforcement bar 33 mm]

Solution: b) $3 \varphi 24$

Step1: Summarize the given parameters

$$
\begin{aligned}
& \text { Material } \\
& \text { C20/25 } \\
& f_{c k}=20 \mathrm{MPa} ; \mathrm{f}_{\mathrm{cd}}=11.33 \mathrm{MPa} ; \\
& \mathrm{f}_{\mathrm{ctm}}=2.2 \mathrm{MPa} ; \mathrm{E}_{\mathrm{cm}}=30,000 \mathrm{MPa} \\
& \text { S-400 } \\
& \text { Modular ratio, } \mathrm{n}=\mathrm{E}_{\mathrm{s}} / \mathrm{E}_{\mathrm{cm}}=6.67 \\
& \text { Geometry } \quad d=h \text {-cover }-\varphi / 2=400-33-12=355 \mathrm{~mm} \\
& A_{s 1}=3 x \pi x(12 \mathrm{~mm})^{2}=1356.48 \mathrm{~mm}^{2}
\end{aligned}
$$

Step2: Compute the cracking moment and corresponding curvature. $\left[M_{c r}, K_{c r}\right]$

1. Uncracked section properties.

The neutral axis depth of the uncracked section

$$
\begin{aligned}
& A_{1}=b \times h=200 \times 400=80000 \mathrm{~mm}^{2} \\
& A_{2}=(n-1) \times A_{s 1}=(6.67-1) \times 1356.48=7691.24 \mathrm{~mm}^{2}
\end{aligned}
$$

And considering the top fiber as a refrence axis
$x_{1}=\frac{h}{2}=200 \mathrm{~mm}$
$x_{2}=d=355 \mathrm{~mm}$
Therefore:-

$$
x=\frac{\sum A_{i} x_{i}}{\sum A_{i}}=\frac{\left(A_{1} \times x_{1}\right)+\left(A_{2} \times x_{2}\right)}{\left(A_{1}+A_{2}\right)}=213.6 \mathrm{~mm}
$$

The second moment of the area of the uncracked section

$$
\begin{gathered}
I_{1}=\left(\frac{b h^{3}}{12}\right)=\left(\frac{200 \times 400^{3}}{12}\right)=1066666666.67 \mathrm{~mm}^{4} \\
I_{2} \approx 0 \\
A_{1}=b \times h=200 \times 400=80000 \mathrm{~mm}^{2} \\
A_{2}=(n-1) \times A_{s 1}=(6.67-1) \times 1356.48=7691.24 \mathrm{~mm}^{2} \\
y_{1}=x-\frac{h}{2}=213.6-200=13.6 \mathrm{~mm} \\
y_{2}=d-x=355-213.67=141.33 \mathrm{~mm} \\
\text { Therefore }:- \\
I_{1}=I_{1}+I_{2}+\left(A_{1} \times y_{1}{ }^{2}\right)+\left(A_{2} \times y_{2}{ }^{2}\right) \\
I_{1}=1066666666.67+0+\left(80000 \times 13.6^{2}\right)+\left(7691.24 \times 141.33^{2}\right) \\
I_{1}=1235089593.48 \mathrm{~mm}^{4}
\end{gathered}
$$

II. Cracked section properties
$\times 2$

The neutral axis depth of the cracked section
From equilibrium of forces carried by the concrete in the compression zone and the tension force carried by the transformed concrete area in tension we have the following expression.

$$
\frac{1}{2} b\left(k_{x} d\right)^{2}=n A_{s 1}\left(d-k_{x} d\right)
$$

Dividing the above expression by bd^{2} and denoting $\rho=\mathrm{A}_{\mathrm{s} 1} / \mathrm{bd}$ results in:
$k_{x}=\frac{x}{d}=-[n \rho]+\sqrt{[n \rho]^{2}+2[n \rho]}$

$$
\begin{aligned}
& n=6.67 \\
& \rho=\frac{1356.48}{355 \times 200}=0.0191 \\
& x=0.393 d=139.60 \mathrm{~mm}
\end{aligned}
$$

The second moment of the area of the cracked section
$I_{1}=\left(\frac{b x^{3}}{12}\right)=\left(\frac{200 \times 139.60^{3}}{12}\right)=45342452.27 \mathrm{~mm}^{4}$
$I_{2} \approx 0$
$A_{1}=b \times x=200 \times 139.60=27920 \mathrm{~mm}^{2}$
$A_{2}=n \times A_{s 1}=6.67 \times 1356.48=9047.72 \mathrm{~mm}^{2}$
$y_{1}=x-\frac{x}{2}=69.8 \mathrm{~mm}$
$y_{2}=d-x=355-139.60=215.4 \mathrm{~mm}$

Therefore :-
$I_{11}=I_{1}+I_{2}+\left(A_{1} \times y_{1}{ }^{2}\right)+\left(A_{2} \times y_{2}{ }^{2}\right)$
$I_{I I}=45342452.27+0+\left(27920 \times 69.8^{2}\right)+\left(2618.46 \times 215.4^{2}\right)$
$I_{11}=302858916.6 \mathrm{~mm}^{4}$
III. Compute the cracking moment.
$M_{c r}=\frac{f_{c t m} I_{1}}{y_{t}}$
$y_{t}=h-x=400-213.6=186.4 m m$
Therefore

$$
M_{\mathrm{cr}}=\frac{2.2 \times 1235089593.48}{186.4}=14.58 \mathrm{kNm}
$$

IV. Compute the curvature just before cracking.
$\kappa_{a}=\frac{M_{c r}}{E_{c} l_{l}}$
$\kappa_{\mathrm{cr}}=\frac{12770000 \mathrm{Nmm}}{30000 \frac{\mathrm{~N}}{\mathrm{~mm}^{2}} \times 1235089593.48 \mathrm{~mm}^{4}}=0.34464 \times 10^{-6} \mathrm{~mm}^{-1}$
V. Compute the curvature just after cracking.

$$
\begin{aligned}
& K_{\mathrm{cr}}=\frac{M_{\mathrm{cr}}}{E_{\mathrm{c}} I^{\prime}} \\
& K_{\mathrm{cr}}=\frac{14580000 \mathrm{Nmm}}{30000 \frac{\mathrm{~N}}{\mathrm{~mm}^{2}} \times 302858916.6 \mathrm{~mm}^{4}}=1.605 \times 10^{-6} \mathrm{~mm}^{-1}
\end{aligned}
$$

Step3: Compute the yielding moment and corresponding curvature

 $\left[M_{y}, K_{y}\right]$

Assuming $2 \% \ll \mathrm{~cm}<3.5 \%$ and from force equilibrium.
$\mathrm{Cc}=\mathrm{T}_{\mathrm{s}}$
$\alpha_{c} f_{c d} b d=A_{s} f_{y d}$
$\alpha_{c}=\frac{A_{s s} f_{y d}}{f_{c d} b d}=\frac{1356.48 \times 347.83}{11.33 \times 200 \times 355}=0.587$

From the strain profile

$$
\mathrm{k}_{\mathrm{x}}=\frac{\varepsilon_{\mathrm{cm}}}{\varepsilon_{\mathrm{cm}}+\varepsilon_{y}}=\frac{\varepsilon_{\mathrm{cm}}}{\varepsilon_{\mathrm{cm}}+1.74}
$$

From the simplified equations discussed in chapter two of RC-1
$\alpha_{c}=k_{x}\left[\frac{3 \varepsilon_{\mathrm{cm}}-2}{3 \varepsilon_{\mathrm{cm}}}\right]=0.587$
From the two equations above we can solve for $\varepsilon_{c m}$ to be 4.08
$4.08 \%>3.5 \%$, implies that the concrete in the compression zone has crushed even before the reinforcement in the tension zone has yielded.
Hence the section has reached its ultimate moment capacity, alon \$ with the corresponding curvature, before the yielding of the reinforcement.

Addis Ababa institute of

Technology

Step4: Compute the ultimate moment and corresponding
curvature. $\left[M_{u}, K_{u}\right]$

22

Assuming a compression failure $\varepsilon_{\mathrm{cm}}=3.5 \%, \varepsilon_{\mathrm{s}}<\varepsilon_{\mathrm{y}}$ and from force equilibrium.
$\mathrm{Cc}=\mathrm{Ts}$
$\alpha_{c} f_{c d} b d=A_{s t} \sigma_{s}=A_{s t}\left(E_{s} \times \varepsilon_{s}\right)$
$\alpha_{\mathrm{c}}=\frac{A_{s} \sigma_{\mathrm{s}}}{f_{c s} b d}=\frac{1356.48 \times 200000 \times \varepsilon_{\mathrm{s}}}{11.33 \times 200 \times 355}=0.33725 \varepsilon_{\mathrm{s}} \quad$ Where ε_{s} is in \%o
From the strain profile
${ }^{1} k_{x}=\frac{3.5}{3.5+\varepsilon_{s}}$
From the simplified equations discussed in chapter two of RC-1 | $\alpha_{c}=k_{x}\left[\frac{3 \varepsilon_{c m}-2}{3 \varepsilon_{c m}}\right]=0.33725 \varepsilon_{\text {s }}$
From the two equations above we can solve for $\varepsilon_{\text {s }}$ to be 1.636 ... Assumption correct! $k_{x}=\frac{3.5}{3.5+1.636}=0.681 \ldots$ Indicates a brittle failure!
$x=d \times k_{x}=355 \times 0.681=241.755 \mathrm{~mm}$
$\beta_{\mathrm{c}}=\mathrm{k}_{\mathrm{x}}\left[\frac{\varepsilon_{\mathrm{cm}}\left(3 \varepsilon_{\mathrm{cm}}-4\right)+2}{2 \varepsilon_{\mathrm{cm}}\left(3 \varepsilon_{\mathrm{cm}}-2\right)}\right]=0.283$
$z=d\left(-\beta_{c}\right)=355(1-0.101)=254.43 \mathrm{~mm}$
$M_{u}=A_{s 1}\left(E_{s} \times \varepsilon_{s}\right) z=112.93 \mathrm{kNm}$
$\kappa_{u}=\frac{\varepsilon_{c m}}{x}=\frac{3.5 \times 10^{-3}}{241.755 \mathrm{~mm}}=14.477 \times 10^{-6} \mathrm{~mm}^{-1}$

Step5: Plot the moment vs curvature diagram

Observation:

- Failure type vs moment curvature relationship
- Reinforcement in tension zone vs Ductility
- Ultimate capacity vs Ductility

Question:

- How would you improve the ductility of the section in (b)?
- How would you improve the moment capacity of the section in (a) with out compromising its ductility?

Rotation Capacity 24

- Introduction
- Rotational Capacity According EC-2

Rotation Capacity: Introduction

- The designer adopting limit/plastic analysis in concrete must calculate the inelastic rotation capacity it undergoes at plastic-hinge locations.
- This is critical in situation where moment redistribution is going to be implemented.

One way to calculate this rotation capacity is making use of the moment-curvature relationship established for a given section.

But this plastic rotation is not confined to one cross section but is distributed over a finite length referred to as the hinging length. (l_{p})
The total inelastic rotation $\theta_{p l}$ can be found by multiplying the average curvature by the hinging length:

$$
\begin{aligned}
& \theta_{p l}=\left(\kappa_{u}-\kappa_{y} \frac{M_{u}}{M_{y}}\right) I_{p} \\
& \text { where : } \\
& I_{p}=0.5 \mathrm{~d}+0.05 z \\
& \text { In which } z \text { is the distance from the point of } \\
& \text { maximum moment to the nearest point of zero moment }
\end{aligned}
$$

Rotation Capacity: According EC-2 26

- According to EC-2, verification of the plastic rotation in the ultimate limit state is considered to be fulfilled, if it is shown that under the relevant action the calculated rotation, $\theta_{p l, s}$, is less than or equal to the allowable plastic rotation, $\theta_{\mathrm{pl}, \mathrm{d}}$
- In the simplified procedure, the allowable plastic rotation may be determined by multiplying the basic value of allowable rotation by a correction factor k_{λ} that depends on the shear slenderness.

The recommended basic value of allowable rotation, for steel Classes B and C (the use of Class A steel is not recommended for plastic analysis) and concrete strength classes less than or equal to C50/60 and C90/105 are given

The values apply for a shear slenderness $\lambda=3,0$. For different values of shear slenderness $\theta_{\mathrm{pl}, \mathrm{d}}$ should be multiplied by k_{λ}

```
k}=\sqrt{}{\lambda/3
where :
\lambda is the ratio of the distance between point of zero and maximum moment after redistribution and effective depth, d.
As a simplification }\lambda\mathrm{ may be calculated for the concordant design values of the bending moment and shear.
\lambda= M
```


Rotation Capacity: According EC-2

Figure 5.6 N : Allowable plastic rotation, $\boldsymbol{\theta}_{\mathrm{pl}, \mathrm{d}}$, of reinforced concrete sections for Class B and C reinforcement. The values apply for a shear slenderness $\lambda=3,0$

Continuous Beams

Analysis of Continuous beams
Design of Continuous beams

Continuous Beams: Analysis

29

- Continuous beams and one-way slabs are indeterminate structures for which variable/live load variation has to be considered. This is because permanent/dead load is always there but variable might vary during the life time of these structures.

How variable loads are arranged and over the continuous beam depend on two things according to EC1990.

1. The design situation
a. Persistent or Transient
b. accidental
2. The relevant limit state
a. ultimate limit state of strength (STR

EQU

STR

b. The limit states of equilibrium (EQU)
c. strength at ULS with geotechnical actions (STR/GEO)

Addis Ababa institute of Technology

Continuous Beams: Analysis

 LOAD ARRANGEMNT OF ACTIONS: IN RELATION TO INFLUENCE LINESThe largest moment in continuous beams or one-way slabs or frames occur when some spans are loaded and the others are not. Influence lines are used to determine which spans should be loaded and which spans should not be to find the maximum load effect.

(a) Influence line for moment at B.

(b) Loading for maximum positive moment at B .

(c) Influence line for moment at C .

The figure (a) shows influence line for moment at B. The loading pattern that will give the largest positive moment consists of load on all spans having positive influence ordinates. Such loading is shown in figure (b) and is called alternate span loading or checkerboard loading.

The maximum negative moment at C results from loading all spans having negative influence ordinate as shown in figure (d) and is referred as an adjacent span loading.

Continuous Beams: Analysis

LOAD ARRANGEMNT OF ACTIONS: IN RELATION TO INFLUENCE LINES

(a) Influence line for shear at A.
$\overrightarrow{\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow} \sqrt{ }+\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$
(b) Loading for maximum positive shear at A.

(c) Influence line for shear at B.
(d) Loading for maximum positive shear at B .

Similarly, loading for maximum shear may be obtained by loading spans with positive shear influence ordinate as shown.

April 23, 2020

Continuous Beams: Analysis

LOAD ARRANGEMNT OF ACTIONS: According Eurocode

In building structures, any of the following sets of simplified load arrangements may be used at ULS and SLS.

- The more critical of:
a) Alternative spans carrying $\gamma_{G} G_{k}+\gamma_{Q} Q_{k}$ with other spans loaded with $Y_{G} G_{k}$ and
b) All spans carrying $Y_{G} G_{k}+Y_{Q} Q_{k}$
- Or the more critical of:
a) Alternative spans carrying $\gamma_{G} G_{k}+{ }_{Q} Q_{k}$ with other spans loaded with $\gamma_{G} G_{k}$ and
b) Any two adjacent spans carrying $\gamma_{G} G_{k}+\gamma_{Q} Q_{k}$

Example 1.2 : Given the three span beam (shown below) subjected to the following loads:

Self-weight	$G_{k 1}$
Permanent imposed load	$G_{k 2}$
Service imposed load	$Q_{k 1}$

Identify the load arrangement to come up with
a) bending moment verification at mid span of BC (STR)
b) verification of holding down against the uplift of bearings at end span A is as follows. (EQU) Solution: [a]

Solution: [b]

Continuous Beams: Design

After obtaining the maximum load effects of continuous beams, the design of continuous beam sections is carried out in the same procedure as discussed in reinforced concrete structures I course for no moment redistribution.

Example 1.3 : A continues beam with b/h $250 / 450$ is to be constructed out of C20/25 concrete and reinforced with $S 400$ reinforcement bar. The beam supports a factored permanenet load of $14.5 \mathrm{KN} / \mathrm{m}$ including its own self-weight and a factored variable load of $29 \mathrm{KN} / \mathrm{m}$. Take cover to stirrup to be 25 mm . Design the beam
a) Without moment redistribution
b) With 20% moment redistribution

USE $\varphi 8$ and $\varphi 20$ bars as web and longitudinal reinforcement

Solution:

Step1: Summarize the given parameters

Material \quad| $\mathrm{C} 20 / 25 \quad \mathrm{f}_{\mathrm{ck}}=20 \mathrm{MPa} ; \mathrm{f}_{\mathrm{cd}}=11.33 \mathrm{MPa}$; |
| :--- |

$$
\mathrm{f}_{\mathrm{ctm}}=2.2 \mathrm{MPa} ;
$$

$$
\mathrm{E}_{\mathrm{m}}=30,000 \mathrm{MPa}
$$

$$
\text { S-400 } \quad f_{y k}=400 \mathrm{MPa} ;
$$

$\mathrm{f}_{\mathrm{yd}}=347.83 \mathrm{MPa}$;
$\mathrm{E}_{\mathrm{s}}=200,000 \mathrm{MPa} ; \varepsilon_{\mathrm{y}}=1.74 \%$

Geometry

$d=h$-cover- $\left(\varphi_{\text {stiruup }}+\varphi_{\text {Iongitiudinal }} / 2\right)$

$$
=450-25-(8+10)=407 \mathrm{~mm}
$$

Load
$1.35 \mathrm{G}_{\mathrm{k}}=14.5 \mathrm{kN} / \mathrm{m}$

$$
1.500_{\mathrm{k}}=29.0 \mathrm{kN} / \mathrm{m}
$$

Step2: Identify the cases for maximum action effect on (span and support moments)
Case 1: when the whole section is loaded

Case2: alternate span loading (max. span moment at $A B$ and $C D$)1

Case3: alternate span loading (max. span moment at BC)

Case4: two adjacent spans loading (max. support moment at B or C)

Moment envelop: (superimposing the above four cases for the respective maximum moment)

Step3: Design the beam section according to the procedures discussed in RC1 using the either the design chart or design table
a) Support B and C (-ve moment)
$M_{\mathrm{sd}}=172.99 \mathrm{kNm}$

$$
\begin{array}{r}
\mu_{s d}=\frac{M_{s d}}{f_{c d} b d^{2}}=\frac{172.99 * 10^{6}}{11.33 * 250 * 407^{2}}=0.369>\mu_{\text {sd,lim }} \\
=0.295 \quad \text { Double reinforced }
\end{array}
$$

$$
20 n+45+25(n-2)=250-2 * 25-2 * 8
$$

$$
20 n+45+25 n-50=184
$$

$$
n=4.2
$$

Revise d

Revise the effective depth for the reinforcement arrangement

$$
\text { so } d=450-61=389 \mathrm{~mm}
$$

$$
\mu_{s d}=\frac{M_{s d}}{f_{c d} b d^{2}}=\frac{172.99 * 10^{6}}{11.33 * 250 * 389^{2}}=0.403>\mu_{s d, l i m}=0.295 \quad \text { Double reinforced }
$$

$$
K_{z, l i m}=0.814
$$

$M_{s d, l i m}=\mu_{s d, l i m} f_{c d} b d^{2}=0.295 * 11.33 * 250 * 389^{2}=126.48 \mathrm{KNm}$

$$
Z=K_{z, l i m} * d=0.814 * 389=316.646 \mathrm{~mm}
$$

$$
A_{s 1}=\frac{M_{s d, l i m}}{Z f_{y d}}+\frac{M_{s d, s}-M_{s d, l i m}}{f_{y d}\left(d-d_{2)}\right.}=\frac{126.48 * 10^{6}}{347.8 * 316.646}+\frac{(172.99-126.442) * 10^{6}}{347.8 *(389-43)}=1534.84 \mathrm{~mm}^{2}
$$

use $5 \varnothing 20$

Compression reinforcement design

Check if the reinforcement has yielded

$$
\begin{gathered}
\frac{d_{2}}{d}=\frac{43}{389}=0.1 \quad \varepsilon_{s 2}=2.6 \%(\text { read from chart }) \\
\varepsilon_{s 2}=2.6 \%>\varepsilon_{y d} \text { use } f_{y d}=347.826
\end{gathered}
$$

Calculate the stress in the concrete at the level of compression reinforcement to avoid double counting of area.

$$
\begin{aligned}
& \varepsilon_{c s 2}=2.6 \% 02 \% \text {, Therefore, we take } \\
& \varepsilon_{c}=3.5 \% \text { and } \sigma_{c d, s 2}=11.33 \mathrm{mpa}
\end{aligned}
$$

$$
A_{s 2=\frac{1}{\left(\sigma_{\left.s 2-\sigma_{c d, s 2}\right)}\right.}\left(\frac{M_{s d s}-M_{s d, l i m}}{d-d_{2}}\right)}=\frac{1}{(347.826-11.33)}\left(\frac{(172.99-138.44) * 10^{6}}{(389-43)}=399.48 \mathrm{~mm}^{2}\right.
$$

b) Span $A B$ and /or $C D$ (+ve moment)
$M_{\text {sds }}=146.28 \mathrm{kNm}$
Since the design moment is not far in magnitude from the one discussed in [a], its best if we assume two layers of reinforcement with $5 \varphi 20$ bars.

$$
\text { so } d=450-61=389 \mathrm{~mm}
$$

$$
\mu_{s d}=\frac{M_{s d}}{f_{c d} b d^{2}}=\frac{146.28 * 10^{6}}{11.33 * 250 * 389^{2}}=0.34128>\mu_{s d, l i m}=0.295
$$

Double reinforced

$$
K_{z, \text { lim }}=0.814
$$

$$
M_{s d, l i m}=\mu_{s d, l i m} f_{c d} b d^{2}=0.295 * 11.33 * 250 * 389^{2}=126.442 \mathrm{KNm}
$$

$$
Z=K_{z, l i m} * d=0.814 * 389=316.646 \mathrm{~mm}
$$

$A_{s 1}=\frac{M_{s d, l i m}}{Z f_{y d}}+\frac{M_{s d, s}-M_{s d, l i m}}{f_{y d}\left(d-d_{2)}\right.}=\frac{126.442 * 10^{6}}{347.8 * 316.646}+\frac{(146.28-126.442) * 10^{6}}{347.8 *(389-43)}=1312.972 \mathrm{~mm}^{2}$
use $5 \varnothing 20$

Compression reinforcement design

$$
\begin{aligned}
& \text { Check if the reinforcement has yielded } \\
& \begin{array}{c}
\frac{d_{2}}{d}=\frac{43}{389}=0.1 \quad \varepsilon_{s 2}=2.6 \% 0(\text { read from chart }) \\
\varepsilon_{s 2}=2.6 \% 0>\varepsilon_{y d} \text { use } f_{y d}=347.826
\end{array}
\end{aligned}
$$

$\varepsilon_{c s 2}=2.6 \% \geq 2 \%$, Therefore, we take
$\varepsilon_{c}=3.5 \%$ and $\sigma_{c d, s 2}=11.33 \mathrm{mpa}$
$A_{s 2=\frac{1}{\left(\sigma_{s 2}-\sigma_{c d, s 2}\right)}\left(\frac{M_{s d s}-M_{s d, l i m}}{d-d_{2}}\right)}^{=\frac{1}{(347.826-11.33)}\left(\frac{(146.28-138.44) * 10^{6}}{(389-43)}\right.}$
$=170.07 \mathrm{~mm}^{2}$
use $\mathbf{2} \varnothing \mathbf{2 0}$

Calculate the stress in the concrete at the level of compression reinforcement to avoid double counting of area.
use $2 \varnothing 20$

c) Span BC (+ ve moment)

Span BC is selected of all the three positive bending moments as its higher in values.

$$
M_{s d}=91.66 \mathrm{KN} \mathrm{~m}
$$

$$
\begin{gathered}
\mu s d, s=\frac{M s d, s}{f c d * b * d^{2}}=\frac{91.66 * 10^{6}}{11.33 * 250 * 407^{2}} \\
=0.195<\mu s d, l i m=0.295
\end{gathered}
$$

Singly reinforced section
$K \mathrm{z}=0.89$ (read from chart)

$$
A s 1=\frac{1}{f y d} * \frac{M s d, s}{z}
$$

$$
A s 1=\frac{1}{347.8} * \frac{91.66 * 10^{6}}{0.89 * 407}
$$

$$
A s 1=727.5 \mathrm{~mm}^{2}
$$

Use $3 \varphi 20$

Step4: Detailing

Plastic Hinges and Collapse Mechanisms

Plastic Hinges and Collapse Mechanisms

Statically Determinate Beam

- Will fail if ONE plastic hinge develop.
e.g. The simply supported beam shown below will fail , if P is increased until a plastic hinge is developed at the point of maximum moment (just underneath P),.

(a)

Real hinge

_ Plastic hinge
-
Therefore, Mechanism is defined as the formation \& arrangement of plastic hinges and perhaps real hinges that permit the collapse in a structure

Statically Indeterminate Beam

- Will require at least TWO plastic hinges to develop to fail.
e.g. The fixed-end beam shown below can't fail unless the three hinges in the figure develop.

e.g. The propped cantilever beam below is an example of a structure that will fail after two plastic hinges develop.

Plastic Hinges and Collapse Mechanisms 42

From the discussion in the previous slide we can point out the following as an observation

- If the structure is statically indeterminate, it is still stable after the formation of a plastic hinge, and for further loading, it behaves as a modified structure with a hinge at the plastic hinge location (and one less degree of indeterminacy).
- It can continue to carry additional loading (with formation of additional plastic hinges) until the limit state of collapse is reached on account of one of the following reasons:

1. formation of sufficient number of plastic hinges, to convert the structure (or a part of it) into a 'mechanism'.
2. limitation in ductile behavior (i.e., curvature k reaching the ultimate value $\mathrm{K}_{\max }$, or, in other words a plastic hinge reaching its ultimate rotation capacity) at any one plastic hinge location, resulting in local crushing of concrete at that section.

For illustration let us see the behavior of an indeterminate beam shown below, It will be assumed for simplicity that the beam is symmetrically reinforced, so that the negative bending capacity is the same as the positive.

Let the load P be increased gradually until the elastic moment at the fixed support, $3 \mathrm{PL} / 16$ is just equal to the plastic moment capacity of the section, Mu. This load is

$$
P=P_{e l}=\frac{16 M_{u}}{3 L}=\frac{5.33 M_{u}}{L}
$$

At this load the positive moment under the load is $5 / 32 \mathrm{PL}$, as shown

The beam still responds elastically everywhere but at the left support. At that point the actual fixed support can be replaced for purpose of analysis with a plastic hinge offering a known resisting moment Mu, which makes the beam statically determinate.

The load can be increased further until the moment under the load also becomes equal to Mu, at which load the second hinge forms. The structure is converted into a mechanism, and collapse occurs.

$$
M_{u}+\frac{M_{u}}{2}=\frac{P L}{4}
$$

$$
P=P_{u}=\frac{6 M_{u}}{L}
$$

The magnitude of the load causing collapse is easily calculated from the geometry It is evident that an increase of 12.5% is possible beyond the load which caused the formation of the first plastic hinge, before the beam will actually collapse.

Example1.4: Compute the theoretical ultimate load the beam below can support interms of the plastic moment capacity of the beam section. Assume the conditions in the illustrative example above are also applicable here (symmetric reinforcement across the span of the beam)
w

Given beam with loading and support condition

Step1: Identify the location and magnitude of maximum moment in the elastic range (indicates the location of the first plastic hinges)

Although the plastic moment has been reached at the ends and plastic hinges are formed, the beams will not fail because it has, in effect, become a simple end supported beam for further load increment.

mp The load can now be increased on this "Simple" beam, and the moments at the ends will remain constant; however, the moment out in the span will increase at it would in a uniformly loaded simple beam as shown.

If this is the case and assuming that the formed plastic hinges have enough rotational capacity, the next step is to come up with the ultimate load!..... How

Step2: Compute the theoretical ultimate load interims od the plastic moment capacity.
In order to come up with the ultimate load one could adopt a number methods, here under two of which are presented.
Using the concept of section equilibrium Using the concept of super positioning

$W_{p} I / 2$
$\sum M_{0}=0$
$M_{p}+M_{p}+w_{p}\left(\frac{1}{2}\right)\left(\frac{1}{4}\right)=\left(\frac{w_{p}}{2}\right)\left(\frac{1}{2}\right)$
$w_{p}=\frac{16 M_{p}}{I^{2}}$
Loading Capacity was increased by a fraction of $4 / 3=16 / 12$.

At $\mathrm{I} / 2$ bending moment has to reach m_{p} inorder to form a plastic hinge.
hence, $2 m_{p}=\frac{w_{p} I^{2}}{8}$
$w_{p}=\frac{16 m_{p}}{f^{2}}$

Moment Redistribution

Moment Redistribution

As seen in the previous section, the distribution of bending moments in a continuous beam (or frame) gets modified significantly in the inelastic phase.

The term moment redistribution is generally used to refer to the transfer of moments to the less stressed sections as sections of peak moments yield on their ultimate capacity being reached (as witnessed in the example above).

From a design viewpoint, this behavior can be taken advantage of by attempting to effect a redistributed bending moment diagram which achieves a reduction in the maximum moment levels (and a corresponding increase in the lower moments at other locations).

Such an adjustment in the moment diagram often leads to the design of a more economical structure with better balanced proportions, and less congestion of reinforcement at the critical sections.

Example1.5: Design the beam for flexure that is shown below, with $b / h=200 / / 400 \mathrm{~mm}$ and carrying a design load of $24 \mathrm{kN} / \mathrm{m}$ including its own weight;
a) Without moment redistribution
b) With 20% moment redistribution

$24 \mathrm{kN} / \mathrm{m}$

USE C20/25, S-400 and $\phi 8$ and $\phi 20$ bars for stirrup and longitudinal reinforcement respectively.

Assume cover to stirrup to be 25 mm
Solution: [a]
Step1: Summarize the given parameters

Material
 $$
\mathrm{C} 20 / 25 \quad \mathrm{f}_{\mathrm{ck}}=20 \mathrm{MPa} ; \mathrm{f}_{\mathrm{cd}}=11.33 \mathrm{MPa} ;
$$

$$
\mathrm{f}_{\mathrm{ctm}}=2.2 \mathrm{MPa} ;
$$

$$
\mathrm{E}_{\mathrm{m}}=30,000 \mathrm{MPa}
$$

$$
\mathrm{S}-400 \quad \mathrm{f}_{\mathrm{yk}}=400 \mathrm{MPa} ;
$$

$$
\mathrm{f}_{\mathrm{yd}}=347.83 \mathrm{MPa} ;
$$

$$
E_{s}=200,000 \mathrm{MPa} ; \varepsilon_{y}=1.74 \%
$$

Geometry $d=h$-cover $-\left(\varphi_{\text {stiruup }}+\varphi_{\text {longitiudinal }} / 2\right)$

$$
=400-25-(8+10)=357 \mathrm{~mm}
$$

Load $\quad 1.35 G_{k}+1.50 \mathrm{Q}_{\mathrm{k}}=24.0 \mathrm{kN} / \mathrm{m}$
Step2: Compute the design action on the beam (Bending moment)

Step3: design the beam at the supports and mid span
Carrying out the procedure for flexure design of
rectangular RC section, we will have the following results
Moment Reinforcement provided
$72 \mathrm{kNm} \quad 3 \phi 20$
(support)
36kNm 2ф20 (mid span)
Step4: Detailing

Solution: [b]
Step1: Summarize the given parameters

$$
\begin{array}{ll}
\text { Material } & \mathrm{C20/25} \mathrm{\quad} \quad \mathrm{f}_{\mathrm{ck}}=20 \mathrm{MPa} ; \mathrm{f}_{\mathrm{cd}}=11.33 \mathrm{MPa} ; \\
& \mathrm{f}_{\mathrm{ctm}}=2.2 \mathrm{MPa} ; \\
\mathrm{E}_{\mathrm{m}}=30,000 \mathrm{MPa} \\
\mathrm{~S}-400 \quad \mathrm{f}_{\mathrm{yk}}=400 \mathrm{MPa} ; \\
& \mathrm{f}_{\mathrm{yd}}=347.83 \mathrm{MPa} ; \\
\mathrm{E}_{\mathrm{s}}=200,000 \mathrm{MPa} ; \varepsilon_{\mathrm{y}}=1.74 \% \\
\text { Geometry } & \mathrm{d}=\mathrm{h}-\text { cover }-\left(\varphi_{\text {stiruup }}+\varphi_{\text {longitiudinal }} / 2\right) \\
=400-25-(8+10)=357 \mathrm{~mm} \\
\text { Load } & 1.35 G_{\mathrm{k}}+1.50 Q_{\mathrm{k}}=24.0 \mathrm{kN} / \mathrm{m}
\end{array}
$$

Moment redistribution up 20\% is allowed.

Step2: Select a critical section and carryout the moment redistribution
$0.2 \times 72 \mathrm{kNm}=14.4 \mathrm{kNm}$

Design Moment before redistribution

Design Moments after redistribution

72 kNm (support)

36 kNm (mid span)
57.6 kNm (support)
50.4 kNm (mid span)

Step3: design the beam at the supports and mid span Carrying out the procedure for flexure design of rectangular RC section, we will have the following results.
But keep in mind the value $\mu_{\text {lim }}$ for 20% moment redistribution which is 0.205

Moment	Reinforcement provided
57.6 kNm (support)	$2 \phi 20$
50.4 kNm (mid span)	$2 \phi 20$

Step4: Detailing
2ф20

Table 2-2 Design Table for C 12/15-C 50/60

$\mu_{\mathrm{Sd}}=\frac{M_{\mathrm{Sd}}}{f_{\mathrm{cd}} b d^{2}}$	$\omega=\frac{A_{\mathrm{s} 1} f_{\mathrm{yd}}}{f_{\mathrm{cd}} b d}$	$k_{\mathrm{x}}=\frac{x}{d}$	$k_{\mathrm{z}}=\frac{z}{d}$	$\begin{gathered} \varepsilon_{\mathrm{c}} \\ (\% \mathrm{mo}) \end{gathered}$	$\begin{gathered} \varepsilon_{\mathrm{s} 1} \\ (\% \mathrm{o}) \end{gathered}$	Percentage Redistribution
0.000	0.000	0.000	1.000	0.000	25.000	
0.010	0.010	0.030	0.990	0.773	25.000	
0.020	0.020	0.044	0.985	1.146	25.000	
0.030	0.031	0.055	0.980	1.464	25.000	
0.040	0.041	0.066	0.976	1.763	25.000	
0.050	0.051	0.076	0.971	2.060	25.000	
0.060	0.062	0.086	0.967	2.365	25.000	
0.070	0.073	0.097	0.962	2.682	25.000	
0.080	0.084	0.107	0.956	3.009	25.000	
0.090	0.095	0.118	0.951	3.349	25.000	
0.100	0.106	0.131	0.946	3.500	23.294	
0.110	0.117	0.145	0.940	3.500	20.709	
0.120	0.128	0.159	0.934	3.500	18.552	
0.130	0.140	0.173	0.928	3.500	16.726	
0.140	0.152	0.188	0.922	3.500	15.159	
0.150	0.164	0.202	0.916	3.500	13.799	
0.160	0.176	0.217	0.910	3.500	12.608	
0.170	0.188	0.232	0.903	3.500	11.555	
0.180	0.201	0.248	0.897	3.500	10.618	
0.190	0.213	0.264	0.890	3.500	9.777	
0.200	0.226	0.280	0.884	3.500	9.019	
0.205	0.233	0.288	0.880	3.500	8.653	20\%
0.210	0.239	0.296	0.877	3.500	8.332	
0.220	0.253	0.312	0.870	3.500	7.706	
0.230	0.266	0.329	0.863	3.500	7.132	
0.240	0.280	0.346	0.856	3.500	6.605	
0.250	0.295	0.364	0.849	3.500	6.118	
0.252	0.298	0.368	0.847	3.500	6.011	10\%
0.260	0.309	0.382	0.841	3.500	5.667	
0.270	0.324	0.400	0.834	3.500	5.247	
0.280	0.339	0.419	0.826	3.500	4.856	
0.290	0.355	0.438	0.818	3.500	4.490	
0.295	0.363	0.448	0.814	3.500	4.313	0\%

Thank you for the kind attention!

