IS EN 1992
 (Eurocode 2) Design of Concrete Structures

Brian O'Rourke
 Chartered Engineer

Department of Civil, Structural and Environmental Engineering
Cork Institute of Technology

Introduction

EUROCODE 2: DESIGN OF CONCRETE STRUCTURES is published in four parts:
-IS EN 1992-1-1:2005 General Rules and Rules for Buildings
Irish National Annex due 19th October 2009
Replaces BS 8110-1,2,3
-IS EN 1992-1-2:2005 Design of Concrete structures. Structural fire design
Irish National Annex due 19 ${ }^{\text {th }}$ October 2009
Replaces BS 8110-1,2
-IS EN 1992-2: 2005 Design of Concrete Structures. Bridges. 2005
Irish National Annex due 30 ${ }^{\text {th }}$ October 2009
Replaces BS 5400
-IS EN 1992-3: 2006 Design of Concrete Structures. Liquid-retaining and containment structures
Irish National Annex due 19 th October 2009
Replaces BS 8007

Useful Resources

- www.eurocode2.info
- www.concretecentre.com
- I.S.E. Manual for Design of Concrete Structures to Eurocode 2
- Companion Document BD 2403 U.K. Dept. of Communities and Local Government
- Designed and Detailed Eurocode 2, Concrete Society
- Concrete Society / I.S.E. Standard Method of Detailing Structural Concrete, third edition to Eurocode 2
- Lecture and notes on www.ieicork.ie under downloads

Eurocode 2 Differences

1. Eurocode 2 is generally laid out to give advice on the basis of phenomena (e.g. bending, shear etc.) rather than by member types as in BS 8110 (e.g. beams, slabs, columns, etc)
2. Design is based on characteristic cylinder strengths not characteristic cube strengths
3. Code does not provide derived formulae (e.g. for bending, only the details of the stress block are expressed).
4. Units for stress are mega Pascals, $\mathrm{MPa}\left(1 \mathrm{MPa}=1 \mathrm{~N} / \mathrm{mm}^{2}\right)$

Differences continued

5. A comma used for a decimal point
6. One thousandth is represented by \%o
7. Axes changed x, y to y, z
8. The partial factor for steel reinforcement is 1.15 . However, the characteristic yield strength of steel that meets the requirements will be 500 MPa ; so overall the effect is negligible
9. Higher strengths of concrete are covered up to class C90/105. However, because the characteristics of higher strength concrete are different, some expressions in the Eurocode are adjusted for classes above C50/60

Differences continued

9. The 'variable strut inclination' method is used in for the assessment of the shear capacity of a section
10. Serviceability checks can still be carried out using 'deemed to satisfy' span to effective depth rules similar to BS 8110
11. The rules for determining the anchorage and lap lengths are more complex than the simple tables in BS 8110

IS EN 1992-1-1:2005

Twelve sections:
Section 1: General
Section 2: Basis of design
Section 3: Materials
Section 4: Durability and cover to reinforcement
Section 5: Structural analysis
Section 6: Ultimate limit states
Section 7: Serviceability limit states
Section 8: Detailing of reinforcement and prestressing tendons General
Section 9: Detailing of members and particular rules
Section 10: Additional rules for precast concrete elements and structures
Section 11: Lightweight aggregate concrete structures
Section 12: Plain and lightly reinforced concrete structures

Section 1 General Information

- Scope of code
- Principles and application rules
- Symbols

$E C 2$	$M_{E d}$	$V_{E d}$	b	d	d_{2}	$A_{s}, A_{s 1}$	$A_{s 2}$	x	z	$N_{E d}$	I_{0}
BS											
8110	M	V	b	d	d^{\prime}	A_{s}	A_{s}^{\prime}	x	z	N^{\prime}	I_{e}

Section 2 Basis of Design

Refers to IS EN 1990 / IS EN 1991 for design life, limit state principles, actions, etc.
2.4.2.2 Partial factors for materials UK values

Table 2.1N: Partial factors for materials for ultimate limit states

Design situations	γ_{c} for concrete	γ_{s} for reinforcing steel	γ_{s} for prestressing steel
Persistent \& Transient	1,5	1,15	1,15
Accidental	1,2	1,0	1,0

Section 3 Materials

Concrete: Table 3.1

Strength classes for concrete															Analytical relation /Explanation
$\mathrm{fcx}^{\text {(MPa) }}$	12	16	20	25	30	35	40	45	50	55	60	70	80	90	
faer	15	20	25	30	37	45	50	55	60	67	75	85	95	105	
	20	24	28	33	38	43	48	53	58	63	68	78	88	98	
$\underset{(\mathrm{MPa})}{f_{\infty}}$	1,6	1,9	2,2	2,6	2,9	3,2	3,5	3,8	4,1	4,2	4,4	4,6	4,8	5,0	$\begin{aligned} &=0.30,100 \leq 500) \\ &=000 \\ &=0.12 \cdot \ln (1+(50 / 10) \\ &=C 50 / 80 \end{aligned}$
	1,1	1,3	1,5	1,8	2,0	2,2	2,5	2,7	2,9	3,0	3,1	3,2	3,4	3,5	traces $=0.7 \times{ }^{5} \times$ frame
$\begin{aligned} & f_{\text {ca.oss }} \\ & \text { (MPa) } \end{aligned}$	2.0	2.5	2,9	3,3	3.8	4,2	4,6	4,9	5,3	5.5	5.7	6,0	6,3	6,6	tran $=1.3 \times f_{\text {far }}$
$\begin{gathered} E_{\text {com }} \\ (\mathrm{GPa}) \end{gathered}$	27	29	30	31	33	34	35	36	37	38	39	41	42	44	
$\Sigma_{\text {c1 }}(\%)$	1,8	1,9	2,0	2,1	2,2	2,25	2,3	2,4	2,45	2,5	2,6	2,7	2,8	2,8	
Eun (\%)					3,5					3,2	3,0	2.8	2.8	2.8	see Figure 32 or $\geq 50 \mathrm{Mpa}$
$\varepsilon_{=}(\%)$					2,0					2,2	2,3	2,4	2,5	2,6	see Figure 3.3 for $f=250 \mathrm{Mpa}$ $\left.-0^{\circ} / 00\right)=2.0+0.085\left(t_{0}-50\right)^{\rho 1}$
$\varepsilon_{\text {cuz }}(\%)$					3,5					3,1	2,9	2,7	2,6	2,6	see Figure 3.3 $\sec ^{\circ} /(\infty)=2.6+35\left(\left(90-\tan ^{2} 100\right]^{1}\right.$
n					2,0					1,75	1,6	1,45	1,4	1,4	$\begin{gathered} \text { for } f \geqslant 50 \mathrm{Moa} \\ n=1.4+23.4[(P 0-f) / 100]^{*} \end{gathered}$
$\varepsilon_{c 3}$ (\%)					1,75					1,8	1,9	2,0	2,2	2,3	
©6u3 (\%)					3,5					3,1	2,9	2,7	2,6	2,6	

Concrete Table 3.1 (extract)

$\begin{aligned} & f_{\mathrm{ck}} \\ & \mathrm{MPa} \end{aligned}$	25	30	35	40	45	50
$\begin{aligned} & \hline f_{\mathrm{cu}} \\ & \mathrm{MPa} \end{aligned}$	30	37	45	50	55	60
$\begin{aligned} & f_{\mathrm{ctm}} \\ & \mathrm{MPa} \end{aligned}$	2.6	2.9	3.2	3.5	3.8	4.1
$\begin{aligned} & \mathrm{E}_{\mathrm{cm}} \\ & \mathrm{GPa} \end{aligned}$	31	33	34	35	36	37
$\varepsilon_{\mathrm{c} 2}$	0.0035	0.0035	0.0035	0.0035	0.0035	0.0035

Irish N.A. may provide data for C28/35 \& C32/40

- Concrete design strength Cl . 3.1.6

$$
f_{c d}=\alpha_{c c} f_{c k} / \gamma_{c}
$$

$\alpha_{c c}=$ coefficient; 0.85 flexure \& axial load, 1.0 shear
UK values: Irish N.A. may change $\alpha_{c c}$ in range 0.85-1.0

$$
\gamma_{c}=1.5
$$

- Poisson's ratio = 0.2 Cl. 3.1.3 (4)
- Coefficient of thermal expansion 10E-6/k Cl. 3.1.3 (5)
- Creep / shrinkage CI. 3.1.4

Steel Reinforcement Cl. 3.2.2

- Ranges from 400 to 600 MPa , generally 500 MPa
- Bar sizes unchanged
- Modulus of elasticity, Es = 200GPa
- Mild steel reinforcement not covered

$$
\begin{gathered}
f_{y d}=f_{y k} / \gamma_{s} \\
\gamma_{s}=\text { partial factor for steel }=1.15
\end{gathered}
$$

Section 4 Durability and Cover

Cl. 4.4.1.1 (2)
$C_{\text {nom }}=C_{\text {min }}+\Delta C_{\text {dev }}$
$C_{\min }=\max \left\{C_{\min , b} ; C_{\text {min,dur }}\right\}$
$C_{\text {min,b }}$ from Table 4.2 (generally bar size) $C_{\text {min,dur }}$ from BS 8500 UK: IRISH N.A. \& IS EN 206 $\Delta C_{\text {dev }}=10 \mathrm{~mm}$ UK N. A.

Cover for Fire Protection

Engineers

Ireland

EN 1992-1-2 Typical dimensions / axis distance to satisfy fire resistance

Fire Resistance	Beam		One-way solid slab		Braced column	
	Simply Supported $\mathrm{b}_{\text {min }} / \mathrm{a}(\mathrm{mm})$	$\begin{aligned} & \text { Continuous } \\ & \mathrm{b}_{\min } / \mathrm{a} \\ & (\mathrm{~mm}) \end{aligned}$	Simply Supported $\mathrm{h}_{\text {min }} / \mathrm{a}(\mathrm{mm})$	$\begin{aligned} & \text { Continuous } \\ & \mathrm{h}_{\min } / \mathrm{a} \\ & (\mathrm{~mm}) \end{aligned}$	Exposed on one side $\mathrm{b}_{\text {min }} / \mathrm{a}$ (mm)	Exposed on more that one side $\mathrm{b}_{\text {min }} / \mathrm{a}(\mathrm{mm})$
R60	$\begin{aligned} & \hline 120 / 40 \\ & 160 / 35 \\ & 200 / 30 \\ & 300 / 25 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 120 / 25 \\ & 200 / 12 \end{aligned}$	80/20	80/10	155/25	$\begin{aligned} & 250 / 46 \\ & 350 / 40 \end{aligned}$
R90	$\begin{aligned} & \hline 150 / 55 \\ & 200 / 45 \\ & 300 / 40 \\ & 400 / 35 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 150 / 35 \\ & 250 / 25 \end{aligned}$	100/30	100/15	155/25	$\begin{aligned} & \hline 350 / 53 \\ & 450 / 40 \end{aligned}$
R120	$\begin{aligned} & \hline 200 / 65 \\ & 240 / 65 \\ & 300 / 55 \\ & 500 / 50 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 200 / 45 \\ & 300 / 35 \\ & 450 / 35 \\ & 500 / 30 \\ & \hline \end{aligned}$	120/40	200/20	175/35	$\begin{aligned} & \hline 350 / 57 \\ & 450 / 51 \end{aligned}$
R240	$\begin{aligned} & \hline 280 / 90 \\ & 350 / 80 \\ & 500 / 75 \\ & 700 / 70 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 280 / 75 \\ & 500 / 60 \\ & 650 / 60 \\ & 700 / 50 \\ & \hline \end{aligned}$	175/65	280/40	295/70	
Notes $\mathrm{b}_{\text {min }}, \mathrm{h}_{\text {min }}=$ beam or column width $\mathrm{a}=$ axis distance, generally distance to centre of reinforcing bar						

Section 5 Structural Analysis

5.1.1 Common idealisations of the behaviour used for analysis are:

- linear elastic behaviour (CI. 5.4)
- linear elastic behaviour with limited redistribution (Cl. 5.5)
- plastic behaviour at ULS including strut and tie models (CI. 5.6)
- non-linear behaviour (CI. 5.7)
5.2 Geometric imperfections

Structure assumed to be out of plumb with
inclination of $1 / 200$. Analysis must include an
equivalent horizontal load acting with the other
actions such as wind
5.8 second order effects with axial loads (columns)

Load Cases and Combinations Continuous Beams

5.1.3(1) permits analysis based on either:
(a) Alternate spans carrying the design variable and permanent load, and other spans carrying the permanent load
(b) Any two adjacent spans carrying the variable and permanent load, and all other spans carrying only the design permanent load
UK NA recommends (a), which leads to three load cases considered

Alternate spans loaded

Adjacent spans loaded

Floor slab simplification
UK N.A. recommends analysis based on all spans loaded where:
(a) For one way spanning slabs with bay areas $>30 \mathrm{~m}^{2}$
(b) Ratio of variable to permanent load ≤ 1.25
(c) Characteristic variable load does not exceed $5 \mathrm{kN} / \mathrm{m}^{2}$ excluding partitions

NCCI: Concrete Centre: Concise Eurocode
Bending moment and shear co-efficients for beams

	Moment	Shear
Outer support	25% of span moment	$0.45(G+Q)$
Near middle of end span	$0.090 Q+0.100 \mathrm{Ql}$	
At first interior support	$-0.094(G+Q) l$	$0.63(G+Q)^{\mathrm{a}}$
At middle of interior spans	$0.066 Q+0.086 \mathrm{Ql}$	
At interior supports	$-0.075(G+Q) l$	$0.50(G+Q)$

Key

a $0.55(G+Q)$ may be used adjacent to the interior span.

Notes

1 Redistribution of suppoit moments by 15% has teen included.
2 Applicable to 3 or more spans only and where $Q_{k} \leq G_{k}$
3 Minimum span 20.85 longest span.
4 Is the effective length, G is the total of the ULS permanent actions, Q is the total of the ULS variable actions.

Effective Width of Flanges

5.3.2.1

The effective flange width b_{ϵ} T and L beams is determinec from:

$$
b_{e c}=\sum b_{\mathrm{em}, 1}+b_{w} \leq b
$$

where

$$
b_{\text {en }}=0,2 b_{1}+0,1 I_{0} \leq 0,2 I_{0}
$$

and

$$
b_{0,1} \leq b_{1}
$$

Effective Span of Beams and Slabs
5.3.2.2 The effective span $I_{\text {eff }}$ of a beam or slab is:

$$
l_{\mathrm{eff}}=I_{n}+a_{1}+a_{2}
$$

Generally the lesser of:
Clear span $+\mathrm{h} / 2$ or
Clear span $+\mathrm{t} / 2$
Where t is the width of the support

(a) Non-continuous members
(b) Continuous members

Extract Figure 5.4

Section 6 Ultimate Limit State

Bending with or without axial force
6.1 (2)

Assumptions

- Plane sections remain plane after bending so that:
(a) the strains are linearly proportional to the distance to the neutral axis and
(b) the strain in the concrete is equal to the strain in the reinforcement at the same depth in the section
- The tensile strength of the concrete is ignored and no contribution is taken for the concrete below the neutral axis in tension

Strain distribution at ULS

Range of possible strain distributions

A - reinforcing steel tension strain limit
B - concrete compression strain limit
C- concrete pure compression strain limit
Figure 6.1: Possible strain distributions in the ultimate limit state

6.1(2)P Stress in the reinforcement

- The stress in the reinforcement is derived from its stressstrain curve given in Figure 3.8

$$
\begin{aligned}
& \varepsilon_{y d}=f_{y d} / E_{s} \\
& =500 /(200 * E 3 * 1.15) \\
& =0.0022
\end{aligned}
$$

6.1 (3)P Stress in the concrete

- The ultimate strain in $0.85 f_{c_{c k}}$ the concrete is $\varepsilon_{\mathrm{cu} 2}=0.0035$ from Table 3.1
- The stress in the concrete is obtained from the stress-strain curve Figure 3.3

Figure 3.3

Singly reinforced beams rectangular - parabolic stress

EC2 Rectangular Stress Block Cl. 3.1.7 Figure 3.5

$$
\begin{array}{ll}
\lambda=0,8 & \text { for } f_{\mathrm{c}} \leq 50 \mathrm{MPa} \\
\lambda=0,8-\left(f_{\mathrm{ck}}-50\right), 400 & \text { for } 50<f_{\mathrm{ck}} \leq 90 \mathrm{MPa} \\
\text { and }
\end{array}
$$

$$
\begin{array}{ll}
7=1,0 & \text { for } t_{\text {c }} \leq 50 \mathrm{MPa} \\
7 & =100-\left(f_{c k}-50\right) / 200 \\
\text { for } 50<f_{e x} \leq 90 \mathrm{MPa}
\end{array}
$$

Singly Reinforced Sections

Design Equations

Moment of resistance based on concrete reaching ULS $M_{R}=F_{c} Z$
$F_{c}=0.567 f_{c k}(0.8 x) b$
$Z=d-0.4 x$
$M_{R}=\left(0.567 f_{c k}(0.8 x) b\right)(Z)$
$M_{E d}=M_{R}$ for equilibrium at ULS

Le \dagger
$k=\frac{M_{E d}}{b d^{2} f_{c k}}$
And let

$$
x=\frac{d-z}{0.4}
$$

Hence

$$
k b d^{2} f_{c k}=\left(0.45 f_{c k} b\left(\frac{Z-d}{0.4}\right)\right)(Z)
$$

Therefore

$$
\frac{Z^{2}}{d^{2}}-\frac{Z}{d}+\frac{k}{1.134}=0
$$

Which is a quadratic equation in terms of $\frac{z}{d}$ With the positive roof of:
$Z=d\left\{0.5+\sqrt{0.25-\frac{k}{1.134}}\right\}$
Which is an equation for the lever arm in terms of k and d
The area of steel reinforcement required to resist M can be derived from:
$M_{E d}=F_{t} Z=\frac{f_{\text {yk }}}{\gamma_{m}} A_{s} Z$
With $\gamma_{m}=1.15$
Therefore:
$A_{s}=\frac{M_{E d}}{0.87 f_{y k} Z}$

Summary: Design Equations

$$
\begin{aligned}
& k=\frac{M_{E d}}{b d^{2} f_{c k}} \\
& z=d\left\{0.5+\sqrt{0.25-\frac{k}{1.134}}\right\}
\end{aligned}
$$

$$
A_{s}=\frac{M_{E d}}{0.87 f_{y k} Z}
$$

Limit on k

These derived equations can be used to design the reinforcement in a singly reinforced beam subject to the limits on the lever arm of:

1. Balanced design $x=0.636 d$, which limits $Z=0.75 d$ as a minimum
2. Maximum $x=0.45 d(5.6 .3(2))$, which limits $Z=0.82 d$ as a minimum

These limits expressed in terms of k are:

1. Balanced design $x=0.636 d$ or $Z=0.75 d$ substitutes to give:
$0.75 d=d\left\{0.5+\sqrt{0.25-\frac{k}{1.134}}\right\}$
Which solves for $k=0.207$ maximum
2. Maximum $x=0.45 d$ or $Z=0.82 d$
solves for $k=0.167$ maximum

It is also good practice to avoid failure by premature crushing of weak concrete near the top of the section $z=0.95 d$ as a maximum

Doubly Reinforced Beams

Section
Forces at ULS

For the EC2 limit $x=0.45 d$ the equilibrium of forces is:

$$
\begin{aligned}
0.87 f_{y k} A_{s 1} & =0.567 f_{c k} b(0.8)(0.45 d)+0.87 f_{y \mathrm{k}} A_{s 2} \\
M & =F_{c c}(0.82 d)+F_{s c}\left(d-a^{\prime}\right) \\
& =0.167 f_{c k} b d^{2}+0.87 f_{y k} A_{s 2}\left(d-d^{\prime}\right)
\end{aligned}
$$

$$
\begin{aligned}
M & =F_{c c}(0.82 d)+F_{s c}\left(d-a^{\prime}\right) \\
& =0.167 f_{c k} b d^{2}+0.87 f_{y k} A_{s 2}\left(d-d^{\prime}\right) \\
A_{s i} & =\frac{M-0.167 f_{c k} b d^{2}}{0.87 f_{y k}\left(d-d^{\prime}\right)}
\end{aligned}
$$

Equation B

By multiplying both sides of Equation A by $Z=0.82 d$ and rearranging gives

$$
A_{s 1}=\frac{0.167 f_{c k} b d^{2}}{0.87 f_{y k}\left(z_{b a l}\right)}+A_{s 2}
$$

Equation C
With $Z_{b a t}=0.82 \mathrm{~d}$
Substitution of

$$
k_{b a l}=0.167 \text { and } k=\frac{M}{b d^{2} f_{n k}}
$$

into Equation B and Equation C converts them to

$$
A_{s 2}=\frac{\left(k-k_{b a l}\right) f_{c k} b d^{2}}{0.87 f_{y k}\left(d-d^{\prime}\right)}
$$

And

$$
\boldsymbol{A}_{s}=\frac{k_{b a l} f_{c k} b d^{2}}{0.87 f_{y k} Z_{b a l}}+A_{s 1}
$$

Shear

Section 6.2

- The strut inclination method is used for shear capacity checks
- The shear is resisted by concrete struts in compression and shear reinforcement acting in tension
- Shear formulae expressed in terms of force rather than stress
- Designer free to choose a strut angle $22^{\circ} \leq \theta \leq 45^{\circ}$

Strut Inclination Method

notation

$V_{\text {Ride }}$ is the design shear resistance of the member without shear reinfoccement. $V_{\text {fids }}$ is the design value of the shearf focce which can be slstained by the yedding shear reinfoccement.
$V_{\text {ramax }}$ is the design value of the maximum shear foce which can be sistained by the member, limited by cussing of the compression stuts.

Design equations are derived as follows:
The maximum design strength of the concrete strut
$=$ Ultimate design strength \times cross-sectional area
$=\left(f_{c k} / 1.5\right)\left(b_{w} Z \cos \theta\right)$
And its vertical component
$=\left[\left(f_{c k} / 1.5\right)\left(b_{w} Z \cos \theta\right)\right] \sin \theta$
this is the maximum vertical shear that can be resisted by the concrete strut, $V_{R d, \text { max }}$

Trigonometrical conversion yields:
$V_{R d, \max }=\frac{f_{c k} b_{w} Z}{1.5(\cot \theta+\tan \theta)}$

In EC2 this equation is modified by a strength reduction, v_{1} factor for concrete cracked in shear:
$v_{1}=0.6\left(1-f_{c k} / 250\right)$
And $Z=0.9 d$
Therefore:
$V_{R d, \max }=\frac{v_{1} f_{c k} b_{w} 0.9 d}{1.5(\cot \theta+\tan \theta)}$

When the design shear force, $V_{E d}$ exceeds $V_{R d, c}$ shear links must be provided.
Their area and spacing is obtained by taking a method of sections cut at x-x

The vertical shear force in the link, $V_{w a}$ is:
$V_{w d}=V_{E d}=f_{y w d} A_{s w}$
$=\frac{f_{y k} A_{s w}}{1.15}$
$=0.87 f_{y k} A_{s w}$
If the links are spaced ats then the force in each link is proportionately:
$V_{E d} \frac{s}{Z \cot \theta}=0.87 f_{y-k} A_{\text {aw }}$
The shear resistance must equal the shear applied hence and by rearrangement:
$V_{R d}=V_{R r_{i, s}}=\frac{A_{s w}}{s} 0.78 d f_{y k} \cot \theta$

EC2 minimum links are:

$$
\frac{A_{s w, \min }}{s}=\frac{0.8 f_{c k}{ }^{0.5} b_{w}}{f_{y k}}
$$

For minor members that do not require shear reinforcement the shear capacity is given by an empirical equation:
$V_{R d, c}=\left[C_{R d, c} k\left(100 \rho_{1} f_{c k}\right)^{\frac{1}{3}}+k_{1} \sigma_{c p}\right] b_{w r} d$
With a minimum value of:
$V_{R d, s}=\left(\mathrm{v}_{m i n}+k_{1} \sigma_{\mathrm{cp}}\right) b_{w} d$
Where
$C_{R d, c}=\frac{0.18}{\gamma_{c}}$
$\rho_{1}=\frac{A_{s l}}{b_{w} d} \leq 0.02$
$A_{s i}$ is taken from Figure 6.3 in EC2
$k=1+\sqrt{\frac{200}{d^{\prime}}} \leq 2.0$
$k_{1}=0.15$
$\sigma_{c p^{2}}=a x i n d$ stress

Shear Formulae Summary

$$
V_{R d, \max }=\frac{v_{1} f_{c k} b_{w} 0.9 d}{1.5(\cot \theta+\tan \theta)}
$$

$$
\approx E C 2 E Q N .6 .9
$$

$$
\begin{aligned}
& V_{R n}=V_{R \pi, s}=\frac{A_{s w}}{s} 0.78 d f_{y k} \cot \theta \\
& \frac{A_{s w, m i n}}{s}=\frac{0.8 f_{c k}^{0.5} b_{w}}{f_{y k}}
\end{aligned}
$$

$$
\approx E C 2 E Q N .6 .8
$$

$$
\approx E C 2 E Q N .9 .4
$$

$$
V_{R H_{r} n}=\left[C_{R t_{r}, ?} k\left(100 \rho_{1} f_{r k}\right)^{\frac{1}{3}}+k_{1} \sigma_{r p}\right] b_{w} d
$$

But not less than

$$
V_{R d, c}=\left(v_{\min }+k_{1} \sigma_{c p}\right) b_{w} d \quad \text { EC2 EQN. } 6.2 b
$$

Suggested Design Procedure for Shear

1. Determine $V_{E d}$
2. Calculate the concrete compressive strut capacity for $\theta=22^{\circ}$ from:

$$
V_{R d, \max }=\frac{v_{1} f_{c k} b_{v} 0.9 d}{1.5(\cot \theta+\tan \theta)}
$$

3. If $V_{\text {Rd.max }} 22^{0} \geq V_{E d}$ proceed to step 6
4. If $V_{\text {Kd.max }} 22^{\circ} \leq V_{E d}$ check that the strut angle lies between 22° and 45° by calculating $V_{\text {Ramax }} 45^{\circ}$
5. Determine the strut angle from:
$\theta=0.5 \sin ^{-}\left\{\frac{V_{E d}}{V_{R d, \max \left(45^{\circ}\right)}}\right\} \leq 45^{\circ}$
6. Determine the area and spacing of the shear links from:
$V_{E d}=V_{\overrightarrow{R d, s}}=\frac{A_{s w}}{s} 0.78 d f_{y k} \cot \theta$
7. Check minimum links from:

$$
\frac{A_{s w, m i n}}{s}=\frac{0.8 f_{c k}{ }^{0.5} b_{w}}{f_{y k}}
$$

8. Check link spacing maximum $0.75 d$
9. Calculate additional longitudinal force in tension reinforcement.

Strut angle choice $22^{\circ}-45^{\circ}$
link spacing (10 mm link)

Cl. 6.4 Punching Shear

- Basic control perimeter radius at corners
- Located at 2 d form the face of the loaded area

Figure 6.13: Typical basic control perimeters around loaded areas

Section 7 S.L.S.

CI. 7.4 SLS Deflection

The serviceability limit state of deflection can be checked using spaneffective depth ratios. A more rigorous approach is possible but is seldom used in practice. the verification equation is:

Allowable $l / d=N \times k \times F 1 \times F 2 \times F 3 \geq$ actual l / d
Where:
$\mathrm{N}=$ Basic span-effective depth factor
K = Element typefactor
F1 = Flange beam factor
F2 = Brittle finishes factor
F3 $=$ reinforcement stress factor
Where:
$\sigma_{s}=\frac{f_{y k}}{\gamma_{s}}\left[\left(G_{k}+\psi_{2} Q_{k}\right) /\left(1.25 G_{k}+1.5 Q_{k}\right)\right]\left[A_{s, r e q a} / A_{s p r o v}\right](1 / \delta)$

Ireland
Table 7.4N: Basic ratios of span/effective depth for reinforced concrete members without axial compression

Structural System	K	Concrete highly stressed $\rho=1,5 \%$	Concrete lightly stressed $\rho=0,5 \%$
Simply supported beam, one- or two-way spanning simply supported slab	1,0	14	20
End span of continuous beam or one-way continuous slab or twoway spanning slab continuous over one long side	1,3	18	26
Interior span of beam or one-way or two-way spanning slab	1,5	20	30
Slab supported on columns without beams (flat slab) (based on longer span)	1,2	17	24
Cantilever	0,4	6	8
Note 1: The values given have been chosen to be generally conservative and calculation may frequently show that thinner members are possible. Note 2: For 2-way spanning slabs, the check should be carried out on the basis of the shorter span. For flat slabs the longer span should be taken. Note 3: The limits given for flat slabs correspond to a less severe limitation than a mid-span deflection of span/250 relative to the columns. Experience has shown this to be satisfactory.			

Columns

- Sections 5.8 \& 6.1
- Design more complex than BS 8110
- Braced / Unbraced
- Geometric imperfections must be included in M_{Ed} Procedure is to:
- Determine the slenderness ratio, λ
- Determine the limiting slenderness, $\lambda_{\text {lim }}$
- Design for axial load and first order moments
- Include for second order effects where they occur

Cl 5.8.3.2 Column Slenderness, λ

(1) The slendemess ratio is defined as follows:
$\lambda=l_{1} / i$
where:
l_{0} is the effective length, see 5.8 .3 .2 (2) to (7)
i is the radius of gyration of the uncracked concrete section

Braced members (see Figure 5.7 (f)):
$l_{0}=0,5 l \cdot \sqrt{\left(1+\frac{k_{1}}{0,45+k_{1}}\right) \cdot\left(1+\frac{k_{2}}{0,45+k_{2}}\right)}$
Unbraced members (see Figure 5.7 (g)):
$l_{0}=l \cdot \max \left\{\sqrt{1+10 \cdot \frac{k_{1} \cdot k_{2}}{k_{1}+k_{2}}} ;\left(1+\frac{k_{1}}{1+k_{1}}\right) \cdot\left(1+\frac{k_{2}}{1+k_{2}}\right)\right\}$
where:
$k_{1,} k_{2}$ are the relative flexibilities of rotational restraints at ends 1 and 2 respectively:

Concise Eurocode / I.S.E. / BS 8110

Table 5.1
Effective length l_{0} : conservative factors for braced columns

End condition at top	End condition at bottom		
	1	2	3
1	0.75	0.80	0.90
2	0.80	0.85	0.95
3	0.90	0.95	1.00

Key
Condition 1 Column connected monolithically to beams on each side that are at least as deep as the overall depth of the column in the plane considered
Where the column is connected to a foundation this should be designed to carry moment in order to satisfy this condition
Condition 2 Column connected monolithically to beams on each side that are shallower than the overall depth of the column in the plane considered by generally not less than half the column depth
Condition 3 Column connected to members that do not provide more than nominal restraint to rotation

Note

Table taken from Manual for the design of concrete building structures to Eurocode $2^{[21]}$. The values are those used in BS 8110: Part 1: 1997 ${ }^{[14]}$ for braced columns. These values are close to those values that would be derived if the contribution from adjacent columns were ignored.

Limiting slenderness $\lambda_{\text {lim }}$

5.8.3.1 Slenderness criterion for isolated members

(1) As an alternative to 5.8 .2 (6), second order effects may be ignored if the slenderness λ (as defined in 5.8.3.2) is below a certain value λ_{lim}.

Note: The value of $\lambda_{\text {Im }}$ for use in a Country may be found in its National Annex. The recommended value follows from:

$$
\begin{equation*}
\lambda_{\| m}=20 \cdot A \cdot B \cdot C N \mathrm{n} \tag{5.13N}
\end{equation*}
$$

where:

```
    \(A=1 /\left(1+0,2 \varphi_{e}\right) \quad\) (if \(\varphi_{e \text { e }}\) is not known, \(A=0,7\) may be used)
    \(B \quad=\sqrt{1+2 \omega} \quad\) (if \(\omega\) is not known, \(B=1,1\) may be used)
    \(C \quad=1,7-r_{\mathrm{m}} \quad\) (if \(r_{\mathrm{m}}\) is not known, \(C=0,7\) may be used)
    \(\varphi_{t r} \quad\) effective creep ratio; see 5.8.4;
    \(\omega \quad=A_{s} f_{y d} /\left(A_{c} f_{c o l}\right)\); mechanical reinforcement ratio;
    \(A_{s} \quad\) is the total area of longitudinal reinforcement
    \(n \quad=N_{E d} /\left(A_{c} F_{c a d}\right)\); relative normal force
    \(r_{\mathrm{m}} \quad=M_{01} / M_{02} ;\) moment ratio
    \(M_{01}, M_{02}\) are the first order end moments, \(\left|M_{02}\right| \geq\left|M_{01}\right|\)
```

If the end moments M_{01} and M_{02} give tension on the same side, r_{m} should be taken positive (i.e. $C \leq 1,7$),
otherwise negative (i.e. $C>1,7$).

Columns where $\lambda \leq \lambda_{\text {lim }}$ and Braced

Design for N_{Ed} and M_{Ed}
5.8.8 Nominal curvature method:
$\mathrm{M}_{\mathrm{Ed}}=\mathrm{M}_{\mathrm{OEd}}+\mathrm{N}_{\mathrm{Ed}} e_{i}$
$\mathrm{M}_{\text {OEd }}=$ the larger end moment from analysis
$e_{i}=$ the eccentricity due to geometric imperfection from 5.2(7)

$$
\begin{aligned}
& e_{i}=\left(\frac{\theta_{i} l_{0}}{2}\right) \\
& \theta_{i}=l / 200
\end{aligned}
$$

With a minimum eccentricity $=\mathrm{h} / 30$ or 20mm from 6.1(4)
Solve using equilibrium of forces or column design charts

Design for N_{Ed} and M_{Ed}
5.8.8 Nominal curvature method:
$M_{E d}=$ maximum of
(i) M_{02}
(ii) $\mathrm{M}_{\mathrm{OEd}}+\mathrm{M}_{2}$
(iii) $\mathrm{M}_{01}+0.5 \mathrm{M}_{2}$
$\mathrm{M}_{\text {OEd }}$ is the equivalent first order moment including the effect of imperfections at about mid-span height of the column, given as:
$\mathrm{M}_{0 \text { Ed }}=\left(0.6 \mathrm{M}_{02}+0.4 \mathrm{M}_{01}\right) \geq 0.4 \mathrm{M}_{02} \operatorname{Exp} 5.32$
M_{2} is the nominal $2^{\text {nd }}$ order moment, giver as:
$\mathrm{M}_{2}=\mathrm{N}_{\mathrm{Ed}} e_{2}$
$e_{2}=$ deflection curvature from $\operatorname{Exp} 5.33$

Again solve using equilibrium of forces or column design charts

ULS Strain distribution Figure 6.1 for solution by equilibrium

Figure 6.1: Possible strain distributions in the ultimate limit state

Figure 6.1 column strain relationships

Column Design Charts: NCCI Concrete Centre / I.S.E

Flgura 15.5c)
Rectangular columns d_{2} ih $=0.15$

Column Design Example

Loading

$$
\begin{array}{ll}
g_{k} \text { roof }=3.0 \mathrm{kN} / \mathrm{m}^{2} & g_{k} \text { floor }=4.5 \mathrm{kN} / \mathrm{m}^{2} \\
q_{k} \text { roof }=0.6 \mathrm{kN} / \mathrm{m}^{2} & q_{k} \text { floor }=4.0 \mathrm{kN} / \mathrm{m}^{2}
\end{array}
$$

Main beams 600 mm deep x 300 mm wide
Other beams 400 mm deep $\times 300 \mathrm{~mm}$ wide
Columns 450 mm square
$f_{c k}=40 \mathrm{MPa}$

```
fyk
```

Assume pinned foundations and structure braced
((1)) EņGineers
:ELAND

section $A-A$

Thank you for your attention

brian.orourke@cit.ie
 John.justinmurphy@cit.ie

IRELAND

