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CHAPTER 4. ANALYSIS AND DESIGN OF COLUMNS 

4.1. INTRODUCTION 

A column is a vertical structural member transmitting axial compression loads with or without 

moments. The cross sectional dimensions of a column are generally considerably less than its 

height. Column support mainly vertical loads from the floors and roof and transmit these loads to 

the foundation.  

In a typical construction cycle, the reinforcement and concrete for the beam and slabs in a floor 

system are placed first. Once this concrete has hardened, the reinforcement and concrete for the 

columns over that floor are placed. The longitudinal (vertical) bars protruding from the column 

will extend through the floor into the next-higher column and will be lap spliced with the bars in 

that column. The longitudinal bars are bent inward to fit inside the cage of bars for the next-

higher column.  

The more general terms compression members subjected to combined axial and bending are 

sometimes used to refer to columns, walls, and members in concrete trusses or frames. These 

may be vertical, inclined, or horizontal. A column is a special case of a compression member that 

is vertical. 

Columns may be classified based on the following criteria: 

a. Classification on the basis of geometry; rectangular, square, circular, L-shaped, T-

shaped, etc. depending on the structural or architectural requirements. 

b. Classification on the basis of composition; composite columns, in-filled columns, etc. 

c. Classification on the basis of lateral reinforcement; tied columns, spiral columns. 

d. Classification on the basis of manner by which lateral stability is provided to the 

structure as a whole; braced columns, un-braced columns.  

e. Classification on the basis of sensitivity to second order effect due to lateral 

displacements; sway columns, non-sway columns.  

f. Classification on the basis of degree of slenderness; short column, slender column. 

g. Classification on the basis of loading: axially loaded column, columns under uni-axial 

moment and columns under biaxial moment 

4.2. TIED/SPIRAL COLUMNS 

a) Tied Columns: Columns where main (longitudinal) reinforcements are held in position by 

separate ties spaced at equal intervals along the length. Tied columns may be, square, 

rectangular, L-shaped, circular or any other required shape. And over 95% of all columns in 

buildings in non-seismic regions are tied columns. 
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Figure 4-1 Tied Columns 

b) Spiral Columns: Columns which are usually circular in cross section and longitudinal bars 

are wrapped by a closely spaced spiral. 

 

Figure 4-2 Spiral Columns 

Behavior of Tied and Spiral columns 

The load deflection diagrams (see Figure 4-3) show the behavior of tied and spiral columns 

subjected to axial load. 

 

Figure 4-3 Load deflection behavior of tied and spiral columns 

The initial parts of these diagrams are similar. As the maximum load is reached vertical cracks 

and crushing develops in the concrete shell outside the ties or spirals, and this concrete spalls off. 
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When this happens in a tied column, the capacity of the core that remains is less than the load 

and the concrete core crushes and the reinforcement buckles outward between the ties. This 

occurs suddenly, without warning, in a brittle manner. 

When the shell spalls off in spiral columns, the column doesn’t fail immediately because the 

strength of the core has been enhanced by the tri axial stress resulting from the confinement of 

the core by the spiral reinforcement. As a result the column can undergo large deformations 

before collapses (yielding of spirals). Such failure is more ductile and gives warning to the 

impending failure.  

Accordingly, ductility in columns can be ensured by providing spirals or closely spaced ties. 

4.3. CLASSIFICATION OF COMPRESSION MEMBERS 

4.3.1. BRACED/UN-BRACED COLUMNS 

a) Un-braced columns 

An un-braced structure is one in which frames action is used to resist horizontal loads. In such a 

structure, the horizontal loads are transmitted to the foundations through bending action in the 

beams and columns. The moments in the columns due to this bending can substantially reduce 

their axial (vertical) load carrying capacity. Un-braced structures are generally quit flexible and 

allow horizontal displacement (see Figure 4-4). When this displacement is sufficiently large to 

influence significantly the column moments, the structure is termed a sway frame.  

 

Figure 4-4 Sway Frame/ Un-braced columns 

b) Braced columns: 

Although, fully non sway structures are difficult to achieve in practice, building codes allow a 

structure to be classified as non-sway if it is braced against lateral loads using substantial bracing 

members such as shear walls, elevators, stairwell shafts, diagonal bracings or a combination of 
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these (See Figure 4-5). A column with in such a non-sway structure is considered to be braced 

and the second order moment on such column, P-∆, is negligible.  

 

Figure 4-5 Non-sway Frame / Braced columns 

4.3.2. SHORT/SLENDER COLUMNS 

a) Short columns 

They are columns with low slenderness ratio and their strengths are governed by the strength of 

the materials and the geometry of the cross section.  

b) Slender columns 

They are columns with high slenderness ratio and their strength may be significantly reduced by 

lateral deflection.  

When an unbalanced moment or as moment due to eccentric loading is applied to a column, the 

member responds by bending as shown in Figure 4-6. If the deflection at the center of the 

member is, δ, then at the center there is a force P and a total moment of M + Pδ. The second 

order bending component, Pδ, is due to the extra eccentricity of the axial load which results from 

the deflection. If the column is short δ is small and this second order moment is negligible. If on 

the other hand, the column is long and slender, δ is large and Pδ must be calculated and added to 

the applied moment M.  
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Figure 4-6 Forces in slender column 

4.4. CLASSIFICATION OF COLUMNS ON THE BASIS OF LOADING 

4.4.1. AXIALY LOADED COLUMNS 

They are columns subjected to axial or concentric load without moments. They occur rarely. 

When concentric axial load acts on a short column, its ultimate capacity may be obtained, 

recognizing the nonlinear response of both materials, from: 

 do cd g st st ydP f A A A f     (1) 

Where 

gA  is gross concrete area 

stA  is total reinforcement area 

 

4.4.2. COLUMN UNDER UNI-AXIAL BENDING   

Almost all compression members in concrete structures are subjected to moments in addition to 

axial loads. These may be due to the load not being centered on the column or may result from 

the column resisting a portion of the unbalanced moments at the end of the beams supported by 

columns. 
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Figure 4-7 Equivalent eccentricity of column load 

When a member is subjected to combined axial compression Pd and moment Md, it is more 

convenient to replace the axial load and the moment with an equivalent Pd applied at eccentricity 

ed as shown in Figure 4-7. 

4.5. INTERACTION DIAGRAM  

The presence of bending in axially loaded members can reduce the axial load capacity of the 

member. 

To illustrate conceptually the interaction between moment and axial load in a column, an 

idealized homogenous and elastic column with a compressive strength, fcu, equal to its tensile 

strength, ftu, will be considered. For such a column failure would occur in a compression when 

the maximum stresses reached fcu as given by: 

cu

P My
f

A I
    

(2) 

Where 

A, I area and moment of inertia of the section  

y distance from the centroidal axis to the most highly compressed surface 

P Axial load, positive in compression 

M Moment, positive as shown in Figure 4-8c 
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Figure 4-8 –Load and Moment on a column 

Dividing both sides by fcu gives: 

1
cu cu

P My

f A f I
   

(3) 

 

The maximum axial load the column can support is obtained when M = 0, and is Pmax = fcuA. 

Similarly the maximum moment that can be supported occurs when P=0 and is Mmax = fcuI/y. 

Substituting Pmax and Mmax gives: 

   

  
 

    
 

 

    
 

This is known as an interaction equation, because it shows the interaction of, or relationship 

between, P and M at failure. It is plotted as line AB (see Figure 4-9). A similar equation for a 

tensile load, P, governed by ftu, gives line BC in the figure, and the lines AD and DC result if the 

moments have the opposite sign.  

Figure 4-9 is referred to as an interaction diagram. Points on the lines plotted in this figure 

represent combination of P and M corresponding to the resistance of the section. A point inside 

the diagram such as E, represents a combination of P and M that will not cause failure. Load 

combinations falling on the line or outside the line, such as point F, will equal or exceed the 

resistance of the section and hence will cause failure. 
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Figure 4-9 is plotted for an elastic material with tu cuf f   . Figure 4-10a shows an interaction 

diagram for an elastic material with a compressive strength cuf , but with the tensile strength, tuf , 

equal to zero, and Figure 4-10b shows a diagram for a material with 0.5tu cuf f  . Lines AB 

and AD indicate load combinations corresponding to failure initiated by compression (governed 

by cuf ), while lines BC and DC indicate failures initiated by tension. In each case, the points B 

and D in Figure 4-9 and Figure 4-10 represent balanced failures, in which the tensile and 

compressive resistances of the material are reached simultaneously on opposite edges of the 

column. 

 

Figure 4-9 Interaction Chart for an elastic column 
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Figure 4-10 – Interaction diagrams for elastic columns, cuf  not equal to tuf  

Reinforced concrete is not elastic and has a tensile strength that is much lower than its 

compressive strength. An effective tensile strength is developed, however, by reinforcing bars on 

the tension face of the member. For these reasons, the calculation of an interaction diagram for 

reinforced concrete is more complex than that for an elastic material. However, the general shape 

of the diagram resembles Figure 4-10b. 

4.5.1. INTERACTION DIAGRAMS FOR REINFORCED CONCRETE COLUMNS 

Since reinforced concrete is not elastic and has a tensile strength that is lower than its 

compressive strength, the general shape of the diagram resembles Figure 4-11. 
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Figure 4-11 Interaction diagram for column in combined bending and axial load 

Although it is possible to derive a family of equations to evaluate the strength of columns 

subjected to combined bending and axial loads, these equations are tedious to use. For this 

reason, interaction diagrams for columns are generally computed by assuming a series of strain 

distributions, each corresponding to a particular point on the interaction diagram, and computing 

the corresponding values of P and M. Once enough such points have been computed, the results 

are plotted as an interaction diagram. 

4.5.2. SIGNIFICANT POINTS ON THE COLUMN INTERACTION DIAGRAM 

Figure 4-12 illustrate a series of strain distributions and the corresponding points on an 

interaction diagram for a typical tied column. As usual for interaction diagrams, axial load is 

plotted vertically and moment horizontally.  
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Figure 4-12 – Strain distribution corresponding to points on the interaction diagram 

1. Point A – Pure Axial Load. Point A in Figure 4-12 and the corresponding strain distribution 

represent uniform axial compression without moment, sometimes referred to as pure axial load. 

This is the largest axial load the column can support.  

2. Pont B- Zero Tension, Onset of Cracking. The strain distribution at B in Figure 4-12 

corresponds to the axial load and moment at the onset of crushing of the concrete just as the 

strains in the concrete on the opposite face of the column reach zero. Case B represents the onset 

of cracking of the least compressed side of the column. Because tensile stresses in the concrete 

are ignored in the strength calculations, failure load below point B in the interaction diagram 

represent cases where the section is partially cracked. 

3. Region A-C – Compression – Controlled Failures. Columns with axial loads and moments 

that fall on the upper branch of the interaction diagram between points A and C initially fail due 

to crushing of the compression face before the extreme tensile layer of reinforcement yields. 

Hence, they are called compression-controlled columns. 
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4. Point C- Balanced Failure, Compression-Controlled Limit Strain. Point C in Figure 4-12 

corresponds to a strain distribution with a maximum compressive strain on one face of the 

section, and a tensile strain equal to the yield strain in the layer of reinforcement farthest from 

the compression face of the column.  

 

Figure 4-13 Stress-Strain relationship for column 

In the actual design, interaction charts prepared for uniaxial bending can be used. The procedure 

involves: 

 Assume a cross section, d’ and evaluate d’/h  to choose appropriate chart  

 Compute: 

o Normal force ratio:               

o Moment ratios:              
  

 Enter the chart and pick ω (the mechanical steel ratio), if the coordinate (ν, μ) lies within 

the families of curves. If the coordinate (ν, μ) lies outside the chart, the cross section is 

small and a new trail need to be made. 

 Compute                     

 Check Atot satisfies the maximum and minimum provisions  

 Determine the distribution of bars in accordance with the charts requirement  

 

4.6. COLUMN UNDER BI-AXIAL BENDING 

Up to this point in the chapter we have dealt with columns subjected to axial loads accompanied 

by bending about one axis. It is not unusual for columns to support axial forces and bending 

about two perpendicular axes. One common example is a corner column in a frame. For a given 

cross section and reinforcing pattern, one can draw an interaction diagram for axial load and 

bending about either principal axis. As shown in Figure 4-14, these interaction diagrams form 

two edges of a three-dimensional interaction surface for axial load and bending about two axes. 

The calculation of each point on such a surface involves a double iteration: (1) the strain gradient 

across the section is varied, and (2) the angle of the neutral axis is varied. The neutral axis will 

generally not be parallel to the resultant moment vector. 
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Consider the RC column section shown under axial force P acting with eccentricities ex and ey, 

such that ex = My/p, ey = Mx/P from centroidal axes (Figure 4-14c). 

In Figure 4-14a the section is subjected to bending about the y axis only with eccentricity ex. The 

corresponding strength interaction curve is shown as Case (a) (see Figure 4-14d). Such a curve 

can be established by the usual methods for uni-axial bending. Similarly, in Figure 4-14b the 

section is subjected to bending about the x axis only with eccentricity ey. The corresponding 

strength interaction curve is shown as Case (b) (see Figure 4-14d). For case (c), which combines 

x and y axis bending, the orientation of the resultant eccentricity is defined by the angle λ 

        
  
  
       

   
   

 

Bending for this case is about an axis defined by the angle θ with respect to the x-axis. For other 

values of λ, similar curves are obtained to define the failure surface for axial load plus bi-axial 

bending. 

Any combination of Pu, Mux, and Muy falling outside the surface would represent failure. Note 

that the failure surface can be described either by a set of curves defined by radial planes passing 

through the Pn axis or by a set of curves defined by horizontal plane intersections, each for a 

constant Pn, defining the load contours (see Figure 4-14). 

 

Figure 4-14 Interaction diagram for compression plus bi-axial bending 

Computation commences with the successive choice of neutral axis distance c for each value of 

q. Then using the strain compatibility and stress-strain relationship, bar forces and the concrete 

compressive resultant can be determined. Then Pn, Mnx, and Mny (a point on the interaction 

surface) can be determined using the equation of equilibrium  
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Since the determination of the neutral axis requires several trials, the procedure using the above 

expressions is tedious. Thus, the following simple approximate methods are widely used. 

1. Load contour method: It is an approximation on load versus moment interaction 

surface. Accordingly, the general non-dimensional interaction equation of family of load 

contours is given by:  

(
   
    

)
  

 (
   
    

)

  

   

              (
   
   
)                

where:   Mdx = Pdey 

 Mdy = Pdex 

 Mdxo = Mdx when Mdy = 0 (design capacity under uni-axial bending about x)  

 Mdyo = Mdy when Mdx = 0 (design capacity under uni-axial bending about y)  

 

  

2. Reciprocal method/Bresler’s equation: It is an approximation of bowl shaped failure 

surface by the following reciprocal load interaction equation. 

 

   
 

 

    
 

 

    
 
 

   
 

where:   Pd = design (ultimate) load capacity of the section with eccentricities edy and edx 

 Pdxo = ultimate load capacity of the section for uni axial bending with edx only (edy = 0) 

 Pdyo = ultimate load capacity of the section for uni axial bending with edy only (edx = 0) 

 Pdo = concentric axial load capacity (edx = edy = 0) 

  

However interaction charts prepared for biaxial bending can be used for actual design. The 

procedure involves: 

 Select cross section dimensions h and b and also h’ and b’ 

 Calculate  h’/h and  b’/b  and select suitable chart 

 Compute: 

 Normal force ratio:                

 Moment ratios:                 and              

 Select suitable chart which satisfy  and   ratio: 

 Enter the chart to obtain ω 

 Compute                    

 Check Atot satisfies the maximum and minimum provisions  

 Determine the distribution of bars in accordance with the charts requirement 
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4.7. SLENDER COLUMNS 

4.7.1. DEFINITION OF A SLENDER COLUMN 

An eccentrically loaded, pin-ended column is shown in Figure 4-15a. The moments at the ends 

of the column are 

eM Pe   (4) 

When the loads P are applied, the column deflects laterally by an amount , as shown. For 

equilibrium, the internal moment at midheight is (Figure 4-15b) 

 cM P e     (5) 

The deflection increases the moments for which the column must be designed. In the 

symmetrical column shown here, the maximum moment occurs at midheight, where the 

maximum deflection occurs. 

Figure 4-16 shows an interaction diagram for a reinforced concrete column. This diagram gives 

the combinations of axial load and moment required to cause failure of a column cross section or 

a very short length of column. The dashed radial line O-A is a plot of the end moment on the 

column in Figure 4-15. Because this load is applied at a constant eccentricity, e, the end moment, 

eM  , is a linear function of P, given by Eq (4). The curved, solid line O-B is the moment cM  at 

midheight of the column, given by Eq(5). At any given load P, the moment at midheight is the 

sum of the end moment, Pe, and the moment due to the deflections, P  . The line O-A is 

referred to as a load-moment curve for the end moment while the line O-B is the load – moment 

curve for the maximum column moment. 

Failure occurs when the load-moment curve O-B for the point of maximum moment intersects 

the interaction diagram for the cross section. Thus the load and moment at failure are denoted by 

point B in Figure 4-16. Because the increase in maximum moment due to deflections, the axial –

load capacity is reduced from A to B. This reduction in axial-load capacity results from what is 

referred to as slenderness effects. 

A slender column is defined as a column that has a significant reduction in its axial-load capacity 

due to moments resulting from lateral deflections of the column. In the derivation of the ACI 

Code, “a significant reduction” was arbitrarily taken as anything greater than about 5 percent. 
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Figure 4-15 – Forces in a deflected column 

 

Figure 4-16 – Load and moment in a column 



AAiT, School of Civil and Environmental Engineering                         Reinforced Concrete II 

 

Chapter 3: Analysis and Design of Columns Page 17 
 

Buckling of Axially Loaded Elastic Columns 

Figure 4-17 illustrates three states of equilibrium. If the ball in Figure 4-17a is displaced laterally 

and released, it will return to its original position. This is stable equilibrium. If the ball in Figure 

4-17c is displaced laterally and released, it will roll off the hill. This is unstable equilibrium. The 

transition between stable and unstable equilibrium is neutral equilibrium, illustrated in Figure 

4-17b. Here, the ball will remain in the displaced position. Similar states of equilibrium exist for 

the axially loaded column in Figure 4-18a. If the column returns to its original position when it is 

pushed laterally at midheight and released, it is in stable equilibrium; and so on. 

Figure 4-18b shows a portion of a column that is in a state of neutral equilibrium. The 

differential equation for this column is  

2

2

d y
EI Py

dx
    

(6) 

 In 1744, Leonhard Euler derived Eq(6) and its solution, 

2 2

2c

n EI
P

l


  

(7) 

where:   EI = flexural rigidity of column cross section 

 l = length of the column 

 n = number of half – sine waves in the deformed shape of the column 

 

Figure 4-17 – States of equilibrium 
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Figure 4-18 – Buckling of a Pin ended column 

Cases with n = 1,2, and 3 are illustrated in Figure 4-18c. The lowest value of cP  will occur with 

n = 1.0. This gives what is referred to as the Euler buckling load: 

2

2E

EI
P

l


   

(8) 

Such a column is shown in Figure 4-19a. If this column were unable to move sideways at 

midheight, as shown in Figure 4-19b, it would buckle with n = 2, and the buckling load would be 

2 2

2

2
c

EI
P

l


   

(9) 

which is four times the critical load of the same column without the midheight brace. 

Another way of looking at this involves the concept of the effective length of the column. The 

effective length is the length of a pin-ended column having the same buckling load. Thus the 

column in Figure 4-19c has the same buckling load as that in Figure 4-19b. The effective length 
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of the column is l/2 in this case, where l/2 is the length of each of the half-sine waves in the 

deflected shape of the column in Figure 4-19b. The effective length, kl, is equal to l/n. The 

effective length factor is k = 1/n. Equation(8) is generally written as 

 

2

2c

EI
P

kl


   

(10) 

Four idealized cases are shown in Figure 4-20, together with the corresponding values of the 

effective length, kl. Frames a and b are prevented against deflecting laterally. They are said to be 

braced against sidesway. Frames c and d are free to sway laterally when they buckle. They are 

called unbraced or sway frames. The critical loads of the columns shown in Figure 4-20 are in 

the ratio 1:4:1:1/4. 

 

Figure 4-19 – Effective lengths of columns 
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Figure 4-20 – Effective lengths of idealized columns 

Thus it is seen that the restraints against end rotation and lateral translation have a major effect 

on the bucking load of axially loaded elastic columns. In actual structures fully fixed ends, such 

as those shown in Figure 4-20 b to d, rarely, if ever, occur.  

4.7.2. BEHAVIOR AND ANALYSIS OF PIN-ENDED COLUMNS 

Lateral deflections of a slender column cause an increase in the column moments, as illustrated 

in Figure 4-15 and Figure 4-16. These increased moments cause an increase in the deflections, 

which in turn lead to an increase in the moments. As a result, the load-moment line O-B in 

Figure 4-16 is nonlinear. If the axial load is below the critical load, the process will converge to a 

stable position. If the axial load is greater than the critical load, it will not. This is referred to as a 

second-order process, because it is described by a second-order differential equation.  

In a first-order analysis, the equations of equilibrium are derived by assuming that the deflections 

have a negligible effect on the internal forces in the members. In a second-order analysis, the 

equations of equilibrium consider the deformed shape of the structure. Instability can be 

investigated only via a second-order analysis, because it is the loss of equilibrium of the 

deformed structure that causes instability. However, because many engineering calculations and 
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computer programs are based on first-order analyses, methods have been derived to modify the 

results of a first-order analysis to approximate the second-order effects. 

P – δ Moments and P – Δ Moments 

Two different types of second-order moments act on the columns in a frame: 

1. P – δ moments. These result from deflections, δ, of the axis of the bent column away 

from the chord joining the ends of the column. The slenderness effects in pin-ended 

columns and in nonsway frames result from P- δ effects.  

2. P – Δ moments. These results from lateral deflections, Δ, of the beam-column joints 

from their original undeflected locations. The slenderness effects in sway frames result 

from P – Δ moments. 

Material Failures and Stability Failures 

Load-moment curves are plotted in Figure 4-21 for columns of three different lengths, all 

loaded (as shown in Figure 4-15) with the same end eccentricity, e. The load-moment curve 

O-A for a relatively short column is practically the same as the line M = Pe. For a column of 

moderate length, line O-B, the deflections become significant, reducing the failure load. This 

column fails when the load-moment curve intersects the interaction diagram at point B. This 

is called a material failure and is the type of failure expected in most practical columns in 

braced frames. If a very slender column is loaded with increasing axial load, P, applied at a 

constant end eccentricity, e, it may reach a deflection δ at which the value of the M P   

approaches infinity or becomes negative. When this occurs, the column becomes unstable, 

because, with further deflections, the axial load capacity will drop. This type of failure is 

known as a stability failure and occurs only with very slender braced columns or with slender 

columns in sway frames. 
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Figure 4-21 – Material and stability failures 

Effect of Unequal end moments on the strength of a slender column 

Up to now, we have considered only pin-ended columns subjected to equal moments at the two 

ends. This is a very special case, for which the maximum deflection moment, P  , occurs at a 

section where the applied load moment, Pe, is also a maximum. As a result, these quantities can 

be added directly, as done in Figure 4-15 and Figure 4-16. 

In the usual case, the end eccentricities, 1 1e M P  and 2 2e M P , are not equal and so give 

applied moment diagrams as shown shaded in Figure 4-22b and c for the column shown in 

Figure 4-22a. The maximum value of δ occurs between the ends of the column while the 

maximum e occurs at one end of the column. As a result, maxe  and max  cannot be added 

directly. Two different cases exist. For a slender column with small end eccentricities, the 

maximum sum of e   may occur between the ends of the column, as shown in Figure 4-22b. 

For a shorter column, or a column with large end eccentricities, the maximum sum of e   will 

occur at one end of the column, as shown in Figure 4-22c. 
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Figure 4-22 – Moments in columns with unequal end moments 

In the moment-magnifier design procedure, the column subjected to unequal end moments 

shown in Figure 4-23a is replaced with a similar column subjected to equal moments of 2mC M  at 

both ends, as shown in Figure 4-23b. The moments 2mC M  are chosen so that the maximum 

magnified moment is the same in both columns. The expression for the equivalent moment factor 

mC was originally derived for use in the design of steel beam – column and was adopted without 

change for concrete design. 

1

2
0.6 0.4

M

m M
C    (11) 

Thus in the above equation, 1M   and 2M  are the smaller and larger end moments, respectively, 

calculated from a conventional first-order elastic analysis. The sign convention for the ratio 

1 2M M  is illustrated in Figure 4-23c and Figure 4-23d. If the moments 1M   and 2M  cause single 

curvature bending without a point of contraflexure between the ends, as shown in Figure 4-23c, 

1 2M M  is positive. If the moments 1M   and 2M  bend the column in double curvature with a 

point of zero moment between the two ends, as shown in Figure 4-23d, then 1 2M M  is negative. 
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Figure 4-23 – Equivalent moment factor, mC  

4.8. DESIGN OF COLUMNS ACCORDING TO ES EN 1992:2015 

4.8.1. SECOND ORDER EFFECTS WITH AXIAL LOAD 

Second order effects may be ignored if they are less than 10% of the corresponding first order 

effects. Simplified criteria are given for isolated members below. 

4.8.1.1. Simplified criteria for second order effects 

Slenderness criterion for isolated members 
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Second order effects may be ignored if the slenderness λ is below a certain value λlim . The 

following may be used: 

lim 20A B C n    

Where: 

λ is the slenderness ratio 

A  1 1 0.2 ef   (if ef is not known, A = 0.7 may be used 

B 1 2    (if   is not known, B = 1.1 may be used) 

C 1.7 mr    (if mr  is not known, C = 0.7 may be used) 

ef  Effective creep ratio 

   
s yd c cdA f A f  ;mechanical reinforcement ratio; 

sA   is the total area of longitudinal reinforcement 

n    Ed c cdN A f  ; relative normal force 

mr   01 02M M  ; moment ratio 

01M  and 02M  are the first order end moments, 02 01M M   

If the end moments 01M  and 02M give tension on the same side, mr should be taken positive (i.e.

1.7C  ), otherwise negative (i.e. 1.7C  ). 

In the following cases, mr should be taken as 1.0 (i.e. 0.7C  ). 

 For braced members with first order moments only or predominantly due to 

imperfections or transverse loading 

 For unbraced members in general 

In cases with biaxial bending, the slenderness criterion may be checked separately for each 

direction. Depending on the outcome of this check, second order effects: 

a) May be ignored in both directions 

b) Should be taken into account in one direction 

c) Should be taken into account in both directions 

4.8.1.2. Slenderness and effective length of isolated members 

The slenderness ratio is defined as follows: 

0l i    (12) 

where: 

0l   is the effective length 

i   is the radius of gyration of the uncracked concrete section 
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Effective length is a length used to account for the shape of the deflection curve; it can also be 

defined as buckling length, i.e. the length of a pin-ended column with constant normal force, 

having the same cross section and buckling load as the actual member. 

Examples of effective length for isolated members with constant cross section are given in 

Figure 4-24. 

 

Figure 4-24 – Examples of different buckling modes and corresponding effective lengths for isolated 

members 

For compression members in regular frames, the slenderness criterion should be checked with an 

effective length 0l  determined in the following way. 

Braced members 

1 2
0

1 2

0.5 1 1
0.45 0.45

k k
l l

k k

   
     

    
  

(13) 

Unbraced members 

1 2 1 2
0

1 2 1 2

max 1 10 ; 1 1
1 1

k k k k
l l

k k k k

     
         

       

  
(14) 

where; 

1k  , 2k  are the relative flexibilities of rotational restraints at ends 1 and 2 respectively: 

k      M EI l    

   is the rotation of restraining members for bending moment M; 

EI   is the bending stiffness of compression member 

l   is the clear height of compression member between end restraints 
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0k   is the theoretical limit for rigid restraint, and k    represents the limit for no restraint at 

all. Since fully rigid restraint is rare in practice, a minimum value of 0.1 is recommended for 1k  

and 2k . 

If an adjacent compression member (column in a node is likely to contribute to the rotation at 

buckling, then  EI l  in the definition of k should be replaced by    
a b

EI l EI l    , a and b 

representing the compression member (column) above and below the node. 

In the definition of effective lengths, the stiffness of restraining members should include the 

effect of cracking, unless they can be shown to be uncracked in ULS. 

4.8.2. CREEP 

The effect of creep shall be taken into account in second order analysis, with due consideration 

of both the general conditions for creep and the duration of different loads in the load 

combination considered. 

The duration of loads may be taken into account in a simplified way by means of an effective 

creep ratio, ef  , which, used together with the design load, gives a creep deformation 

(curvature) corresponding to the quasi-permanent load: 

  0, 0ef oEqp Edt
M M 


  (15) 

Where: 

 , 0t



 is the final creep coefficient according to 3.1.4 of ES EN 1992:2015 

oEqpM  is the first order bending moment in quasi-permanent load combination (SLS) 

0EdM  is the first order bending moment in design load combination (ULS) 

If 
0oEqp EdM M  varies in a member of structure, the ratio may be calculated for the section with 

maximum moment, or a representative mean value may be used. 

The effect of creep may be ignored, i.e. 0ef  may be assumed, if the following three 

conditions are met: 

  , 0
2

t



  

 75    

 oEd EdM N h  

Here oEdM  is the first order moment and h is the cross section depth in the corresponding 

direction. 
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4.8.3. METHODS OF 2
ND

 ORDER MOMENT ANALYSIS FOR SLENDER COLUMNS 

The methods of analysis include a general method, based on non-linear second order analysis, 

and the following two simplified methods 

a) Second order analysis based on nominal stiffness 

b) Method based on estimation of curvature 

Method (a) may be used for both isolated members and whole structures, if nominal stiffness 

values are estimated appropriately but Method (b) is mainly suitable for isolated members.  

a) Second order analysis based on nominal stiffness 

In a second order analysis based on stiffness, nominal values of the flexural stiffness should be 

used, taking into account the effects of cracking, material non-linearity and creep on the overall 

behavior.  

The nominal stiffness should be defined in such a way that total bending moments resulting from 

the analysis can be used for design of cross sections to their resistance for bending moment and 

axial force. 

Nominal Stiffness 

The following model may be used to estimate the nominal stiffness of slender compression 

member with arbitrary cross section: 

c cd c s s sEI K E I K E I    (16) 

where: 

cdE   is the design value of the modulus of elasticity of concrete 

cI   is the moment of inertia of concrete cross section 

sE   is the design value of the modulus of elasticity of reinforcement 

sI   is the second value of the modus of elasticity of reinforcement, about the center of 

area of the concrete 

cK   is a factor for effects cracking, creep etc, 

sK  is a factor for contribution of reinforcement 

The following factors may be used in the above expression, provided 0.002   : 

1sK    

 1 2 1c efK k k     

Where: 
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   is the geometric reinforcement ratio, s cA A   

sA   is the total area of reinforcement  

cA  is the area of concrete section 

ef  is the effective creep ratio 

1k   is a factor which depends on concrete strength class 

2k  is a factor which depends on axial force and slenderness 

1 20ckk f  (MPa) 

2 0.20
170

k n


    

where: 

n   is the relative axial force,  Ed c cdN A f   

   is the slenderness ratio 

If the slenderness ratio   is not defined, 2k  may be taken as 

2 0.3 0.20k n    

As a simplified alternative, provided 0.01  , the following factors may be used in equation 

(17): 

0sK    

 0.3 1 0.5c efK     

In statically indeterminate structures, unfavourable effects of cracking in adjacent members 

should be taken into account. The above expressions are not generally applicable to such 

members. As a simplification, fully cracked sections may be assumed. The stiffness should be 

based on an effective concrete modulus: 

  , 1cd eff cd efE E   (17) 

where: 

cdE   Is the design value according to 5.8.6 (3) 

ef  Is the effective creep ratio; same value as for columns may be used 

 

cd cm cEE E   (18) 

Method based on moment magnification factor 



AAiT, School of Civil and Environmental Engineering                         Reinforced Concrete II 

 

Chapter 3: Analysis and Design of Columns Page 30 
 

The total design moment, including second order moment, may be expressed as a magnification 

of the bending moments resulting from a linear analysis, namely: 

 
 

  
  

0 1
1

Ed Ed

B Ed

M M
N N

  
(19) 

where: 

0EdM   is the first order moment 

   is a factor which depends on distribution of 1
st
 and 2

nd
 order moments 

EdN   is the design value of axial load 

BN   is the buckling load based on nominal stiffness 

For isolated members with constant cross section and axial load, the second order moment may 

normally be assumed to have a sine-shaped distribution. Then 

  2

0c   (20) 

Where: 

0c   is a coefficient which depends on the distribution of first order moment (for instance, 

0 8c  for a constant first order moment, 0 9.6c  , for a parabolic and 12 for a 

symmetric triangular distribution etc.). 

For members without transverse load, differing first order end moments 01M  and 02M  may be 

replaced by an equivalent constant first order moment 0eM . Consistent with the assumption of a 

constant first order moment, 0 8c  should be used. 

  0 02 01 020.6 0.4 0.4eM M M M   (21) 

01M  and 02M  should have the same sign if they give tension on the same side, otherwise 

opposite signs. Furthermore, 
02 01M M  . 

The value of 0 8c  also applies to members bent in double curvature. It should be noted that in 

some cases, depending on slenderness and axial force, the end moment(s) can be greater than the 

magnified equivalent moment. 

If the above expressions for calculation of   is not applicable, 1   is normally a reasonable 

simplification. Expression (18) can then be reduced to: 

 




0

1
Ed

Ed

Ed B

M
M

N N
  

(22) 

b) Method based on nominal curvature 
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This method is primarily suitable for isolated members with constant normal force and a defined 

effective length 0l  . The method gives a nominal second order moment based on a deflection, 

which in turn is based on the effective length and an estimated maximum curvature. The 

resulting design moment and axial force. 

Bending moments 

The design moment is : 

 0 2Ed EdM M M   (23) 

where: 

0EdM  is the 1
st
 order moment, including the effect of imperfections 

2M  Is the nominal 2
nd

 order moment 

The nominal second order moment  2M is  

2 2EdM N e   (24) 

where: 

EdN  is the design value of axial force 

2e  is the deflection   2

01 r l c   

1 r   is the curvature 

0l   is the effective length 

c   is a factor depending on the curvature distribution 

For constant section,  210c    is normally used. If the first order moment is constant, a 

lower value should be considered (8 is a lower limit, corresponding to constant total moment). 

Curvature 

For members with constant symmetrical cross sections, the following may be used: 

 01 1rr K K r   (25) 

where: 

rK  is a correction factor depending on axial load 

K  is a factor for taking account of creep 

01 r   0.45yd d   

yd   
yd sf E   

d   is the effective depth 

If all reinforcement is not concentrated on opposite sides, but part of it is distributed parallel to 

the plane of bending, d is defined as 
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  2 sd h i   (26) 

where si  is the radius of gyration of the total reinforcement area 

rK  in Expression (18) should be taken as: 

      1r u u balK n n n n   (27) 

where: 

n    Ed c cdN A f  , relative axial force 

EdN   is the design value of axial force 

un   1     

baln  is the value of n at maximum moment resistance; the value 0.4 may be used 

    s yd c cdA f A f   

sA   is the total area of reinforcement 

cA   is the area of concrete cross section 

The effect of creep should be taken into account by the following factor 

   1 1efK   (28) 

where: 

ef  is the effective creep ratio 

  0.35 200 150ckf      

   is the slenderness ratio 

4.8.4. DETAILING RULES FOR COLUMNS ACCORDING TO ES EN 1992:2015 

Longitudinal Reinforcement 

 Bars should have a diameter of not less than min  and the recommended value of min  is 8 

mm. 

 The total amount of longitudinal reinforcement should not be less than ,minsA  and the 

recommended value is  

 ,min

0.1 Ed
s

yd

N
A

f
  or 0.002 cA   whichever is the greater 

(29) 

Where: 

ydf  Is the design yield strength of the reinforcement 

EdN  Is the design axial compression force 
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 The area of reinforcement should not exceed 
,maxsA . The recommended value of 

,maxsA  is 

0.04 cA  outside lap locations unless it can be shown that the integrity of concrete is not 

affected, and that the full strength is achieved at ULS. This limit should be increased to 

0.08 cA  at laps. 

 For columns having a polygonal cross-section, at least one bar should be placed at each 

corner. The number of longitudinal bas in a circular column should not be less than four. 

Transverse reinforcement 

 The diameter of the transverse reinforcements should not be less than 6 mm or one 

quarter of the maximum diameter of the longitudinal bars, whichever is the greater. The 

diameter of the wires or welded mesh fabric for transverse reinforcement should not be 

less than 5 mm. 

 The transverse reinforcement should be anchored adequately. 

 The spacing of the transverse reinforcement along the column should not exceed , maxcl tS . 

The recommended value of , maxcl tS  is the least of the following three distances: 

 20 times the minimum diameter of the longitudinal bars 

 The lesser dimension of the column 

 400 mm 

 Every longitudinal bar or bundle of bars placed in a corner should be held by transverse 

reinforcement. No bar within a compression zone should be further than 150 mm from a 

restrained bar. 

 


