

ASSIGNMENT ON CHAPTER ONE

Assignment Title:

Moment curvature

Due Date: One Week

Although it is not needed explicitly in ordinary design, the relation between moment applied to a given beam section and the resulting curvature, through the full range of loading to failure, is important to the study of:

- Member ductility,
- Understanding the development of plastic hinges, and
- Accounting for the redistribution of elastic moments that occur in most RC structures before collapse.

The ductility of a beam cross section depends on:

- Material grade (both for steel and concrete)
- Member dimension
- Reinforcement detail

Thus, the aim of this assignment is to help students understand the contribution of the above mentioned variables to the ductility of a beam cross section.

I. Ductility of slab

The following slab element shown below has a width b=1000mm, a height of h=180mm and an effective depth d=161mm.if the slab is made C25/30 and steel S-400, plot the moment curvature diagram for the slab at least four points.

II. <u>Consider a beam section shown in the figure below:</u>

Where:

- b is the beam width in mm
- d is the effective depth in mm
- f_{yk} is the characteristics strength of the rebar in MPa
- f_{cu} is the characteristics cubic compressive strength of the concrete in MPa
- A_{st} area of steel in the tension side
- A_{sc} area of steel in the compression side
- n is number of bars in the tension side
- m is size of bar in tension side
- p is number of bars in the compression side
- q is size of bar in the compression side

Use (γ_c =1.5 , γ_s = 1.15 and concrete cover 25mm)

REQUIRED: Draw the moment curvature diagram for the different sections given below and briefly discuss the contribution of each variable.

I. <u>To find the effect of A_{st} on the ductility of beam</u> [Group#1]

b (mm)	300
d (mm)	400
f _{yk} (MPa)	400
f _{cu} (MPa)	30
A _{st}	2\$\0,2\$\$
Asc	none

b (mm)	300
d (mm)	400
f _{yk} (MPa)	400
f _{cu} (MPa)	30
A _{st}	5ф24
A _{sc}	2φ10,2φ12,2φ14,2φ16,2φ20,2φ24

II. <u>To Find the effect of A_{sc} on the ductility of beam</u> [Group#2]

III. To find The effect of f_{cu} on the ductility of the beam [Group#3]

b (mm)	300
d (mm)	400
f _{yk} (MPa)	400
f _{cu} (MPa)	20,25,30,37,45,50
A _{st}	5ф24
A _{sc}	none

IV. To find The effect of f_{yk} on the ductility of the beam [Group#4]

b (mm)	300
d (mm)	400
f _{yk} (MPa)	400,450,460,500,550,600
f _{cu} (MPa)	30
A _{st}	4ф14
A _{sc}	none

V. <u>To find The effect of d on the ductility of the beam</u> [Group#5]

b (mm)	300
d (mm)	350,400,450,500,550,600
f _{yk} (MPa)	400
f _{cu} (MPa)	30
A _{st}	5ф24
A _{sc}	none

b (mm)	400,450,500,550,600,800
d (mm)	300
f _{yk} (MPa)	400
f _{cu} (MPa)	30
A _{st}	5ф24
A _{sc}	none

VI. <u>To find The effect of b on the ductility of the beam</u> [Group#6]