FOUNDATION ENGINEERING I cowro.

CEng 3204

CHAPTER THREE

Design of Shallow Foundations: COMBINED FOOTINGS

Example on Combined footings

- Design a rectangular base to support two columns carrying the following loads:

Column 1: dead load = 310 kN , imposed load = 160 kN
Column 2: dead load $=430 \mathrm{kN}$, imposed load $=220 \mathrm{kN}$

The columns are each 350 mm square and are spaced at 2.5 m centers. The width of the base is not to exceed 2.0 m . The safe bearing pressure on the ground is $160 \mathrm{kN} / \mathrm{m}^{2}$. Take fck $=30 \mathrm{MPa}$ concrete and fyk $=500$ MPa.

Example on Combined footings

a. Base arrangement and soil pressure

- Assume the weight of the base is $\mathbf{1 3 0} \mathbf{k N}$.
- Various load conditions are examined.
- It is assumed here that the imposed loads on the columns are independent loads and therefore carry different load factors. If this is not the case, then a single load factor should be applied for both the loads.

Example on Combined footings

Case 1: Dead + imposed load on both columns.

Use SLS values

Axial load $=(310+160)+(430+220)+130=1250 \mathrm{kN}$ Area of base $=1250 / 160=7.81 \mathrm{~m} 2$
Length of base $=7.81 / 2.0=3.91 \mathrm{~m}$
Choose $4.5 \mathrm{~m} \times 2.0 \mathrm{~m} \times \mathbf{0 . 6} \mathrm{m}$ deep base.
The weight of the base is $(4.5 \times 2.0 \times 0.6 \times 25)=135.0$ $\mathrm{kN} \approx 130 \mathrm{kN}$.

Example on Combined footings

$$
\begin{aligned}
& \text { Area }=4.5 \times 2.0=9.0 \mathrm{~m}^{2} \\
& \text { Section modulus }=2.0 \times 4.52 / 6=6.75 \mathrm{~m}^{3}
\end{aligned}
$$

- The base is arranged so that the center of gravity of the loads coincides with the center line of the base, in which case the base pressure will be uniform. This arrangement will be made for the maximum ultimate loads.
- The ultimate loads are

Column 1: load $=1.35 \times 310+1.5 \times 160=658.5 \mathrm{kN}$
Column 2: load $=1.35 \times 430+1.5 \times 220=910.5 \mathrm{kN}$
The distance of the center of gravity from column 1 is

$$
x=(910.5 \times 2.5) /(658.5+910.5)=1.45 \mathrm{~m}
$$

Example on Combined footings

Base arrangement

Example on Combined footings

- The soil pressure is checked for service loads for case 1:

$$
\text { Direct vertical load }=310+160+430+220+130=1250 \mathrm{kN}
$$

- Since the centroid of the loads does not exactly coincide with the centroid of the base, check for maximum pressure which is non-uniform. The moment about the centre line of the base is

$$
M=(430+220) \times 1.05-(310+160) \times 1.45=1.0 \mathrm{kNm}
$$

The moment is very small and can be ignored. The base pressure is practically constant.

Base pressure $=1250 / 9.0=138.9 \mathrm{kN} / \mathrm{m}^{2}<160.0 \mathrm{kN} / \mathrm{m}^{2}$

Example on Combined footings

Case 2: Column 1, dead + imposed load; column 2, dead load only. Use SLS values

Axial load $=(310+160)+(430+0)+130.0=1030 \mathrm{kN}$
Moment $=M=(430+0) \times 1.05-(310+160) \times 1.45=-230 \mathrm{kN} \mathrm{m}$
Maximum pressure $=1030 / 9.0+230.0 / 6.75=148.5 \mathrm{kN} / \mathrm{m}^{2}<160.0 \mathrm{kN} / \mathrm{m}^{2}$
Maximum base pressure occurs toward the column 1 side .

Example on Combined footings

Case 3: Column 1: dead load only; column 2: dead + imposed Ioad. Use SLS values

$$
\begin{aligned}
& \text { Axial load }=(310+0)+(430+220)+130=1090 \mathrm{kN} \\
& \text { Moment }=M=(430+220) \times 1.05-(310+0) \times 1.45=233 \mathrm{kN} \mathrm{~m} \\
& \text { Maximum pressure }=1090 / 9.0+233.0 / 6.75=155.6 \mathrm{kN} / \mathrm{m}^{2}<160.0 \mathrm{kN} / \mathrm{m}^{2} \\
& \text { Maximum base pressure occurs toward the column } 2 \text { side. }
\end{aligned}
$$

The base is satisfactory with respect to soil pressure.

Example on Combined footings

b. Analysis for actions in longitudinal direction at ULS

Take cover as 40 mm , and 20 mm diameter bars,

Example on Combined footings

- Using the 'Macaulay bracket notation', the shear force V and moment M in the longitudinal direction due to ultimate loads are calculated by statics.

$$
\begin{aligned}
& p=p_{1}+\left(p_{2}-p_{1}\right) \frac{x}{4.5} \\
& V=2\left\{\frac{\left(p_{1}+p\right)}{2} x\right\}-W_{1}\langle x-0.8\rangle^{0}-W_{2}\langle x-3.3\rangle^{0} \\
& M=2\left\{p_{1} \frac{x^{2}}{2}+\frac{\left(p-p_{1}\right)}{2} \frac{x^{2}}{3}\right\}-W_{1}\langle x-0.8\rangle-W_{2}\langle x-3.3\rangle
\end{aligned}
$$

Example on Combined footings

- The maximum design moments are at the column face and between the columns, and maximum shears are at \boldsymbol{d} from the column face.
- The load cases are as follows. The weight of the base is ignored as the corresponding base pressure will cancel the pressure due to the weight of the base.

Example on Combined footings

- In the following load factors from Equation (6.10), Table A2.4 (B) from BS EN 1990:2002, Eurocode-Basis of Structural Design are used.

$$
\gamma_{\mathrm{Gj}, \text { sup }}=1.35, \gamma \mathrm{Gj} \mathrm{j}_{\text {inf }}=1.0, \gamma_{\mathrm{Q}, 1}=1.5, \psi_{0, \mathrm{i}}=0.7
$$

- Six loading cases are discussed in detail.

Example on Combined footings

- Case 1A: Maximum load on both columns with column 1 carrying leading variable load.
- Case 1B: Maximum load on both columns with column 2 carrying leading variable load.
- Case 2A: Maximum load on column 1 and minimum load on column 2 with column 1 carrying leading variable load.
- Case 2B: Maximum load on column 1 and minimum load on column 2 with column 2 carrying leading variable load.
- Case 3A: Minimum load on column 1 and maximum load on column 2 with column 1 carrying leading variable load.
- Case 3B: Minimum load on column 1 and maximum load on column 2 with column 2 carrying leading variable load.

Example on Combined footings

Case 1A: Maximum load on both columns with column 1 carrying leading variable load.
Treat G_{k} as unfavorable on both columns, Q_{k} on column 1 as leading variable action and Q_{k} on column 2 as accompanying variable action

$$
\begin{aligned}
& \mathrm{W} 1: 1.35 \times 310+1.5 \times 160=658.5 \mathrm{kN} \\
& \mathrm{~W} 2: 1.35 \times 430+1.5 \times 0.7 \times 220=811.5 \mathrm{kN} \\
& \mathrm{~W} 1+\mathrm{W} 2=658.5+811.5=1470.0 \mathrm{kN}, \\
& \text { Moment } M=811.5 \times 1.05-658.5 \times 1.45=-102.75 \mathrm{kN} \mathrm{~m} \\
& \mathrm{p} 1=1470.0 / 9.0+102.75 / 6.75=178.6 \mathrm{kN} / \mathrm{m}^{2} \\
& \mathrm{p} 2=1470.0 / 9.0-102.75 / 6.75=148.1 \mathrm{kN} / \mathrm{m}^{2}
\end{aligned}
$$

Example on Combined footings

x	V	M	Remarks
0.075	26.8	1.0	d from left face of column 1
0.625	220.6	69.2	Left face of column 1
0.975	-316.7	52.5	Right face of column 1
1.525	-129.5	-70.1	d from right face of column 1
1.89	0	$-\mathbf{9 5 . 1}$	Maximum negative moment
2.575	$\mathbf{2 1 6 . 3}$	-23.2	d from left face of column 2
3.125	391.6	144.2	Left face of column 2
3.475	-310.6	$\mathbf{1 5 8 . 4}$	Right face of column 2
4.025	-142.1	34.1	d from right face of column 2

Design values: shear force $=216.3 \mathrm{kN}$, moment $=158.4 \mathrm{kNm}$ and -95.1 kNm .

Fig. 11.22 Shear force diagram for case 1A.

Example on Combined footings

Case 1B: Maximum load on both columns with column 2 carrying leading variable load.
Treat G_{k} as unfavorable on both columns, Q_{k} on column 2 as leading variable action and Q_{k} on column 1 as accompanying variable action.

$$
\begin{aligned}
& \text { W1: } 1.35 \times 310+1.5 \times 0.7 \times 160=586.5 \mathrm{kN} \\
& \mathrm{~W} 2: 1.35 \times 430+1.5 \times 220=910.5 \mathrm{kN} \\
& \mathrm{~W} 1+\mathrm{W} 2=586.5+910.5=1497.0 \mathrm{kN}, \\
& \text { Moment } M=910.5 \times 1.05-586.5 \times 1.45=105.6 \mathrm{kN} \mathrm{~m} \\
& \mathrm{p} 1=1497.0 / 9.0-105.6 / 6.75=150.7 \mathrm{kN} / \mathrm{m}^{2} \\
& \mathrm{p} 2=1497.0 / 9.0+105.6 / 6.75=181.96 \mathrm{kN} / \mathrm{m}^{2}
\end{aligned}
$$

Example on Combined footings

x	V	M	Remarks
0.075	22.6	0.8	d from left face of column 1
0.625	191.1	59.4	Left face of column 1
0.975	-286.0	42.8	Right face of column 1
1.525	-110.7	-66.5	d from right face of column 1
1.89	0	$\mathbf{- 8 5 . 4}$	Maximum negative moment
2.575	$\mathbf{2 3 5 . 7}$	-2.3	d from left face of column 2
3.125	423.3	178.8	Left face of column 2
3.475	-365.7	$\mathbf{1 8 8 . 8}$	Right face of column 2
4.025	-171.3	40.9	d from right face of column 2

Design values: shear force $=235.7 \mathrm{kN}$, moment $=188.8 \mathrm{kNm}$ and -85.4 kNm .

Fig. 1124 Shear force diagram for case 1B.

Example on Combined footings

Case 2A: Maximum load on column 1 and minimum load on column 2 with column 1 carrying leading variable load.

Treat G_{k} as unfavorable on column 1 and as favorable on column 2, Q_{k} on column 1 as leading variable action and Q_{k} on column 2 as accompanying variable action..

$$
\begin{aligned}
& \mathrm{W} 1: 1.35 \times 310+1.5 \times 160=658.5 \mathrm{kN} \\
& \mathrm{~W} 2: 1.0 \times 430+1.5 \times 0.7 \times 220=661.0 \mathrm{kN} \\
& \mathrm{~W} 1+\mathrm{W} 2=658.5+661.0=1319.5 \mathrm{kN}, \\
& \text { Moment } M=661.0 \times 1.05-658.5 \times 1.45=-260.8 \mathrm{kN} \mathrm{~m} \\
& \mathrm{p} 1=1319.5 / 9.0+260.8 / 6.75=185.2 \mathrm{kN} / \mathrm{m} 2 \\
& \mathrm{p} 2=1319.5 / 9.0-260.8 / 6.75=108.0 \mathrm{kN} / \mathrm{m} 2
\end{aligned}
$$

Example on Combined footings

x	V	M	Remarks
0.075	27.7	1.0	d from left face of column 1
0.625	224.9	71.0	Left face of column 1
0.975	-313.6	55.6	Right face of column 1
1.525	-133.4	-66.9	d from right face of column 1
2.04	0	$-\mathbf{9 5 . 3}$	Maximum negative moment
2.575	$\mathbf{1 8 1 . 7}$	-38.2	d from left face of column 2
3.125	331.7	103.4	Left face of column 2
3.475	-239.3	$\mathbf{1 1 9 . 7}$	Right face of column 2
4.025	-106.3	$\mathbf{2 5 . 2}$	d from right face of column 2

Design values: shear force $=181.7 \mathrm{kN}$, moment $=119.7 \mathrm{kNm}$ and -95.3 kNm .

Example on Combined footings

Case 2B: Maximum load on column 1 and minimum load on column 2 with column 2 carrying leading variable load.

Treat G_{k} as unfavorable on column 1 and as favourable on column 2, Q_{k} on column 2 as leading variable action and Q_{k} on column 1 as accompanying variable action.

```
W1:1.35 * 310 + 1.5 * 0.7 \times 160=586.5 kN
W2: 1.0 * 430 + 1.5 < 220 = 760.0 kN
W1 + W2 = 586.5 + 760.0 = 1346.5 kN,
Moment M = 760.0 × 1.05-586.5 \times 1.45 = -52.4 kN m
p1 = 1346.5 /9.0 + 52.4/6.75 = 157.4 kN/m2
p2 = 1346.5 /9.0-52.4 /6.75 = 141.9 kN/m2
```


Example on Combined footings

x	V	M	Remarks
0.075	23.6	1.0	d from left face of column 1
0.625	195.4	61.2	Left face of column 1
0.975	-282.9	45.9	Right face of column 1
1.525	-114.5	-63.3	d from right face of column 1
2.04	0	$\mathbf{- 8 4 . 9}$	Maximum negative moment
2.575	$\mathbf{2 0 1 . 1}$	$-\mathbf{1 7 . 2}$	d from left face of column 2
3.125	363.4	$\mathbf{1 3 8 . 1}$	Left face of column 2
3.475	-294.4	$\mathbf{1 5 0 . 2}$	Right face of column 2
4.025	-135.5	$\mathbf{3 2 . 1}$	d from right face of column 2

Design values: shear force $=201.1 \mathrm{kN}$, moment $=150.2 \mathrm{kNm}$ and -84.9 kNm .

Fig. 11.28 Shear force diagram for case 2B,

Example on Combined footings

Case 3A: Minimum load on column 1 and maximum load on column
2 with column 1 carrying leading variable load.
Treat Gk as unfavorable on column 2 and as favorable on column 1, Qk on column 1 as leading variable action and Qk on column 2 as accompanying variable action.

$$
\begin{aligned}
& \mathrm{W} 1: 1.0 \times 310+1.5 \times 160=550.0 \mathrm{kN} \\
& \mathrm{~W} 2: 1.35 \times 430+1.5 \times 0.7 \times 220=811.5 \mathrm{kN} \\
& \mathrm{~W} 1+\mathrm{W} 2=550.0+811.5=1361.5 \mathrm{kN}, \\
& \text { Moment } M=811.5 \times 1.05-550.0 \times 1.45=54.6 \mathrm{kN} \mathrm{~m} \\
& \mathrm{p} 1=1361.5 / 9.0-54.6 / 6.75=143.2 \mathrm{kN} / \mathrm{m} 2 \\
& \mathrm{p} 2=1361.5 / 9.0+54.6 / 6.75=159.4 \mathrm{kN} / \mathrm{m} 2
\end{aligned}
$$

Example on Combined footings

x	V	M	Remarks
0.075	21.5	1.0	d from left face of column 1
0.625	180.4	56.2	Left face of column 1
0.975	-267.3	41.0	Right face of column 1
1.525	-104.9	-61.5	d from right face of column 1
2.04	0	$-\mathbf{7 9 . 9}$	Maximum negative moment
2.575	$\mathbf{2 1 1 . 4}$	-6.3	d from left face of column 2
3.125	380.2	156.3	Left face of column 2
3.475	-322.8	$\mathbf{1 6 6 . 3}$	Right face of column 2
4.025	-150.4	36.1	d from right face of column 2

Design values: shear force $=211.4 \mathrm{kN}$, moment $=166.3 \mathrm{kNm}$ and -79.9 kNm .

Fig. 1130 Sbear force dingram for case 3A.

Example on Combined footings

Case 3B: Minimum load on column 1 and maximum load on column 2 with column 2 carrying leading variable load.
Treat G_{k} as unfavorable on column 2 and as favorable on column $1, Q_{k}$ on column 2 as leading variable action and Q_{k} on column 1 as accompanying variable action.

$$
\begin{aligned}
& \mathrm{W} 1: 1.0 \times 310+1.5 \times 0.7 \times 160=478.0 \mathrm{kN} \\
& \mathrm{~W} 2: 1.35 \times 430+1.5 \times 220=910.5 \mathrm{kN} \\
& \mathrm{~W} 1+\mathrm{W} 2=478.0+910.5=1388.9 \mathrm{kN}, \\
& \text { Moment } M=910.5 \times 1.05-478.0 \times 1.45=262.9 \mathrm{kN} \mathrm{~m} \\
& \mathrm{p} 1=1388.9 / 9.0-262.9 / 6.75=115.3 \mathrm{kN} / \mathrm{m}^{2} \\
& \mathrm{p} 2=1388.9 / 9.0+262.9 / 6.75=193.2 \mathrm{kN} / \mathrm{m}^{2}
\end{aligned}
$$

Example on Combined footings

x	V	M	Remarks
0.075	17.4	1.0	d from left face of column 1
0.625	150.9	46.4	Left face of column 1
0.975	-236.7	31.3	Right face of column 1
1.525	-86.1	-57.9	d from right face of column 1
2.04	0	$\mathbf{- 7 0 . 8}$	Maximum negative moment
2.575	$\mathbf{2 3 0 . 6}$	-14.6	d from left face of column 2
3.125	411.7	190.8	Left face of column 2
3.475	-378.0	$\mathbf{1 9 6 . 6}$	Right face of column 2
4.025	-179.8	42.7	d from right face of column 2

Design values: shear force $=230.6 \mathrm{kN}$, moment $=196.6 \mathrm{kNm}$ and -70.8 kNm .

Example on Combined footings

c. Design of longitudinal reinforcement

i. Bottom steel

The maximum moment is from case $3 B$

$$
\begin{aligned}
& \mathrm{M}=196.6 \mathrm{kNm} \\
& \mathrm{k}=\mathrm{M} /\left(\mathrm{bd}^{2} \mathrm{f}_{\mathrm{ck}}\right)=196.6 \times 106 /\left(2000 \times 550^{2} \times 30\right) \\
& =0.011<0.196 \\
& \left.\frac{z}{d}=0.5\left[1.0+\sqrt{\left(1-3 \frac{\mathrm{k}}{\mathrm{~d}}\right.}\right)\right] \quad \mathrm{z} / \mathrm{d}=0.99 \\
& \mathrm{f}_{\mathrm{yk}}=500, \mathrm{f}_{\mathrm{yd}}=500 / 1.15=435 \mathrm{MPa} \\
& \mathrm{As}=196.6 \times 106 /(435 \times 0.99 \times 550)=830 \mathrm{~mm}^{2}
\end{aligned}
$$

Example on Combined footings

Check minimum steel:

As, $\min =0.26 \times\left(\mathrm{f}_{\mathrm{ctm}} / \mathrm{f}_{\mathrm{yk}}\right) \times \mathrm{bd} \geq 0.0013 \mathrm{bd}$
$\mathrm{f}_{\mathrm{ctm}}=0.3 \times \mathrm{f}_{\mathrm{ck}} 0.67=0.3 \times 300.67=2.9 \mathrm{MPa}, \mathrm{fyk}=500 \mathrm{MPa}$
$\mathrm{b}=2000 \mathrm{~mm}, \mathrm{~d}=550 \mathrm{~mm}$
As, $\min =0.26 \times(2.9 / 500) \times 2000 \times 550 \geq 0.0013 \times 2000 \times 550$
As, $\min =1659 \mathrm{~mm}^{2}>830 \mathrm{~mm}^{2}$

Provide minimum reinforcement.
Provide 9ф16 at 240 mm centers to give a total area of $1809 \mathrm{~mm}^{2}$.

$$
(\ell c=1000 \mathrm{~mm})<\{0.75(c+3 d)=0.75(350+3 \times 550)=1500 \mathrm{~mm}\}
$$

Reinforcement should be spread uniformly across the width.

Example on Combined footings

ii. Top steel

The maximum moment from case 2 A is, $\mathrm{M}=95.3 \mathrm{kNm}$
Provide minimum reinforcement as bottom steel.

Provide $9 \phi 16$ at 240 mm centers to give a total area of $1809 \mathrm{~mm}^{2}$.

Example on Combined footings

d. Transverse reinforcement

At ULS, the base pressure distribution in $\mathrm{kN} / \mathrm{m}^{2}$ is shown below. The maximum pressure under the base is for case 3B.

Example on Combined footings

- The bending moment along the length of 4.5 m is variable. In order to calculate a moment which is reasonable, the average pressure over a width of 0.5 m of the footing length is calculated. The pressure at 0.5 m from the end is
115.3 + (193.2-115.3) $\times 4.0 / 4.5=184.5 \mathrm{kN} / \mathrm{m}^{2}$

The average pressure on a 0.5 m length at the heavier end is
$(193.2+184.5) / 2=188.9 \mathrm{kN} / \mathrm{m}^{2}$

$$
(2000-350) / 2=825 \mathrm{~mm}, \mathrm{~d}=550-16=534 \mathrm{~mm}
$$

The moment at the face of the columns on a 0.5 m length strip at the heaviest loaded end is

$$
\begin{aligned}
& M=\{188.9 \times(0.5 \times 0.825) \times 0.825 / 2=32.14 \mathrm{kNm} \\
& \mathrm{k}=\mathrm{M} /\left(\mathrm{bd}{ }^{2} \mathrm{fck}\right)=32.14 \times 106 /(500 \times 5342 \times 30)=0.008<0.196 \\
& \mathrm{z} / \mathrm{d}=0.99
\end{aligned}
$$

Example on Combined footings

$$
\begin{aligned}
& \text { fyk }=500, \text { fyd }=500 / 1.15=435 \mathrm{MPa} \\
& \text { As }=32.14 \times 106 /(435 \times 0.99 \times 534)=140 \mathrm{~mm}^{2} .
\end{aligned}
$$

Check minimum steel:

$$
\begin{aligned}
& \text { As, } \min =0.26 \times(\mathrm{fctm} / \mathrm{fyk}) \times \mathrm{bd} \geq 0.0013 \mathrm{bd} \\
& \mathrm{fctm}=0.3 \times \mathrm{fck} 0.67=0.3 \times 300.67=2.9 \mathrm{MPa}, \\
& \text { fyk }=500 \mathrm{MPa}, \mathrm{~b}=500 \mathrm{~mm}, \mathrm{~d}=534 \mathrm{~mm} \\
& \text { As, } \min =0.26 \times(2.9 / 500) \times 500 \times 534 \geq 0.0013 \times 500 \times 534 \\
& \text { As, } \min =402 \mathrm{~mm}^{2}>140 \mathrm{~mm}^{2} \quad \text { Provide minimum reinforcement. }
\end{aligned}
$$

Total steel for a width of 4500 mm is $402 \times 4500 / 500=3624 \mathrm{~mm}^{2}$.
Provide 19ф16 at 245 mm centers to give a total area of $3820 \mathrm{~mm}^{2}$.
Reinforcement should be spread uniformly across the length of the base.
Note that same reinforcement is provided at top and bottom faces.

Example on Combined footings

e. Vertical shear

The maximum vertical shear from case $1 B$ is

$$
\begin{aligned}
& V_{\mathrm{Ed}}=235.7 \mathrm{kN} \\
& \mathrm{v}_{\mathrm{Ed}}=235.7 \times 10^{3} /(2000 \times 550)=0.21 \mathrm{MPa} \\
& \mathrm{~A}_{\mathrm{sl}}=9 \mathrm{H} 16=1810 \mathrm{~mm} 2 \\
& 100 \times \rho 1=100 \times 1810 /(2000 \times 550)=0.165<2.0 \\
& \mathrm{C}_{\mathrm{Rd}, \mathrm{c}}=0.18 /(\mathrm{yc}=1.5)=0.12, \mathrm{k}=1+\sqrt{ }(200 / 550)=1.60 \leq 2.0, \\
& \mathrm{C}_{\mathrm{Rd}, \mathrm{c}} \times \mathrm{k} \times(100 \times \rho 1 \times \mathrm{fck}) 0.33=0.12 \times 1.60 \times(0.165 \times 30) 0.33=0.33 \\
& \mathrm{v}_{\min }=0.035 \times \mathrm{k} 1.5 \times \sqrt{ } \mathrm{fck}=0.035 \times 1.601 .5 \times \sqrt{ } 30=0.39>0.33 \\
& \mathrm{v}_{\mathrm{Rd}, \mathrm{c}}=0.39 \mathrm{MPa} \\
& \left(\mathrm{v}_{\mathrm{Ed}}=0.21\right)<\left(\mathrm{v}_{\mathrm{Rd}, \mathrm{c}}=0.39\right)
\end{aligned}
$$

No shear reinforcement is required.

Example on Combined footings

f. Punching shear

Check punching shear at column perimeter.
$\mathrm{V}_{\mathrm{Ed}}=$ column load - base pressure \times column area.
The maximum value is 889.4 kN for column 2 from case 3B.
$\mathrm{u}_{0}=2 \times(350+350)=1400 \mathrm{~mm}, \mathrm{~d}=550 \mathrm{~mm}$
$\mathrm{v}_{\mathrm{Ed}}=889.4 \times 10^{3} /(1400 \times 550)=1.16 \mathrm{MPa}$
$\mathrm{v}_{\mathrm{Rd}, \max }=0.3 \times(1-\mathrm{fck} / 250) \times \mathrm{fcd}=0.3 \times(1-30 / 250) \times(30 / 1.5)=$
5.28 MPa
$\mathrm{v}_{\mathrm{Ed}}<\mathrm{V}_{\mathrm{Rd}}$, max.
The thickness of slab is adequate.

Example on Combined footings

Case	Column 1			Column 2		
	Load	Pressure	$\mathrm{V}_{\text {Ed }}$	Load	Pressure	$\mathrm{V}_{\text {Ed }}$
Case 1A	658.5	173.1	637.3	811.5	156.2	792.4
Case 1B	586.5	156.3	567.4	910.5	173.6	889.2
Case 2A	658.5	171.5	637.4	661,0	128.6	645.3
Case 2B	586.5	154.6	567.6	760.0	145.9	742.1
Case 3A	550.0	146.1	532.1	811.5	155.1	792.5
Case 3B	478.0	129.2	462.2	910.5	172.5	$\mathbf{8 8 9 . 4}$

$X=0.8 m$
Column 1

$$
p=p_{1}+\left(p_{2}-p_{1}\right) \frac{x}{4.5}
$$

$X=3.3 m \quad$ Column 2
$\mathrm{V}_{\text {Ed }}=$ column load - base pressure \times column area.

Example on Combined footings

- Check punching shear is checked at perimeters at d to 2 d from the face of a column.

At $\mathbf{d}=550 \mathrm{~mm}$ from the face of the column,

$$
\begin{aligned}
& u=\text { perimeter }=2 \times(350+350)+2 \times \pi \times 550=4856 \mathrm{~mm} \\
& A=\text { Area under perimeter }=\left[4 \times 350 \times(350 / 2+550)+\pi \times 550^{2}\right] \times 10-6=1.965 \mathrm{~m}^{2}
\end{aligned}
$$

Column load $=910.5 \mathrm{kN}$, base pressure at centre line of column $=172.5 \mathrm{kN} / \mathrm{m}^{2}$

$$
\begin{gathered}
-V_{\text {ed,red }}=910.5-(172.5 \times 1.965)=571.5 \mathrm{kN} \\
\mathrm{~V}_{\mathrm{Ed}}=571.5 \times 10^{3} /(4856 \times 550)=0.21 \mathrm{MPa}
\end{gathered}
$$

$$
\text { Asl in x-direction }=9 \mathrm{H} 16=1810 \mathrm{~mm} 2
$$

$$
100 \times \rho_{x}=100 \times 1810 /(2000 \times 550)=0.165
$$

$$
\text { Asl in y-direction = 19H16 = } 3992 \text { mm2 }
$$

$$
100 \times \rho_{y}=100 \times 3992 /(4500 \times 550)=0.16
$$

$$
100 \rho 1=\sqrt{ }(0.165 \times 0.16)=0.162<2.0
$$

Example on Combined footings

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{Rd}, \mathrm{c}}=0.18 /\left(\mathrm{v}_{\mathrm{c}}=1.5\right)=0.12, \quad \mathrm{k}=1+\sqrt{ }(200 / 550)=1.60 \leq 2.0, \\
& \mathrm{C}_{\mathrm{Rd}, \mathrm{c}} \times \mathrm{k} \times(100 \times 01 \times \mathrm{fck}) 0.33=0.12 \times 1.60 \times(0.162 \times 30) 0.33=0.33 \\
& \mathrm{v}_{\min }=0.035 \times \mathrm{k} 1.5 \times \sqrt{ } .5 \mathrm{fck}=0.035 \times 1.601 .5 \times \sqrt{ } 30=0.39>0.33 \\
& \quad \mathrm{v}_{\mathrm{Rd}, \mathrm{c}}=0.39 \mathrm{MPa} \\
& \quad\left(\mathrm{v}_{\mathrm{Ed}}=0.21\right)<\left(\mathrm{v}_{\mathrm{Rd}}=\mathrm{v}_{\mathrm{Rd}, \mathrm{c}} \times\{2 \mathrm{~d} /(\mathrm{a}=\mathrm{d})\}=0.78\right)
\end{aligned}
$$

The thickness of slab is adequate.

At 1.5 d from the face of the column, the perimeter touches the edge of the slab on the width side. The punching shear is less critical than the vertical shear in this case. The slab is safe against punching shear failure.

Example on Combined footings

g. Sketch of reinforcement

