FOUNDATION ENGINEERING I (CONTD...)

CEng 3204

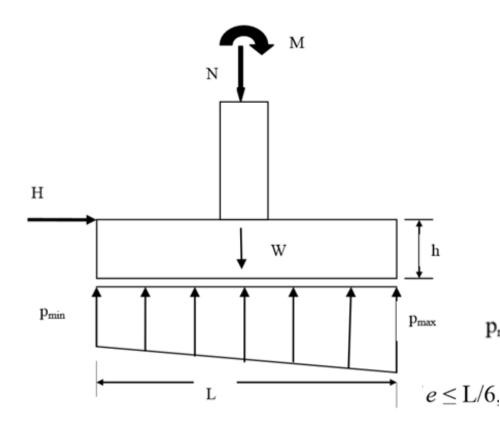
CHAPTER THREE

Design of Shallow Foundations: ISOLATED FOOTINGS

Isolated Footing Design

Eccentrically Loaded Pad Bases

- Base pressure is assumed rigid as compared with the soil.
- •Therefore, varies linearly across base.

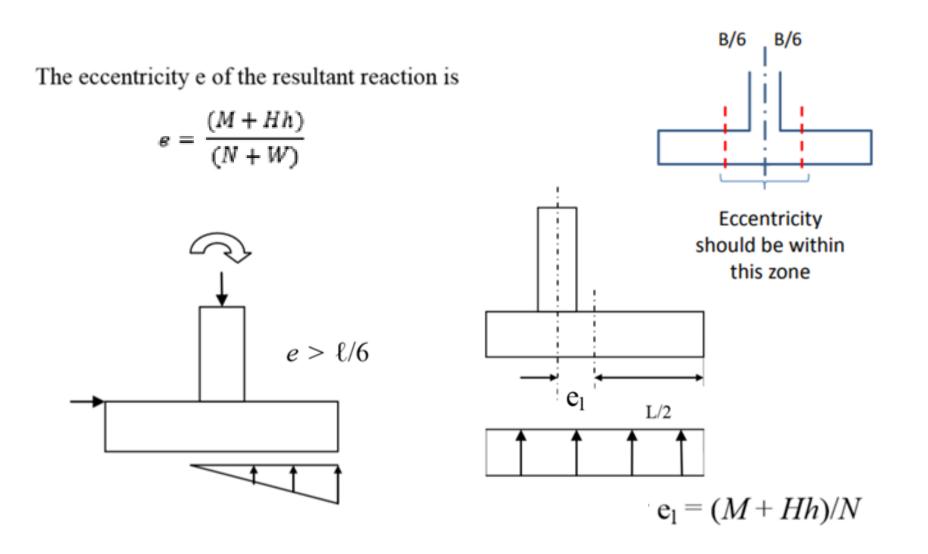


Base area $A = B \times L$ Section modulus $Z = B \times L^2/6$

$$p_{max} = \frac{(N+W)}{A} + \frac{(M+Hh)}{Z}$$
$$p_{min} = \frac{(N+W)}{A} - \frac{(M+Hh)}{Z}$$

p_{max} should not exceed the safe bearing pressure.

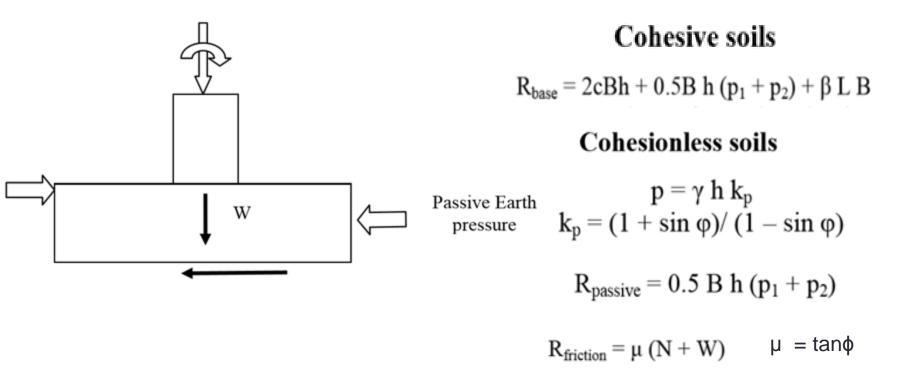
Isolated Footing Design



Isolated Footing Design

- Resistance to horizontal loads
 - Resisted by passive earth pressure, friction between the base and

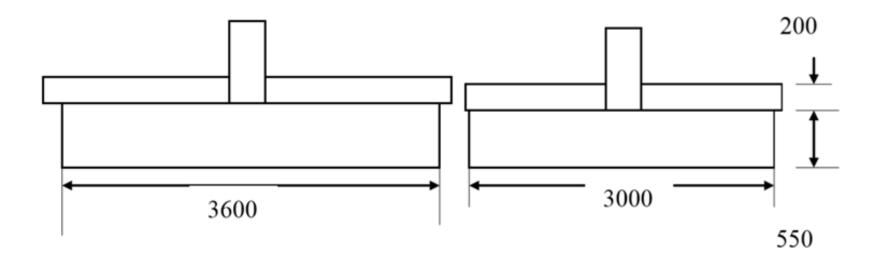
ground for cohesionless soils, or *adhesion* for cohesive soils.



The characteristics load for an internal column footing in a building are given. The proposed dimensions for the 450 mm column square and base (3600 x 3000 mm) are shown. The base supports a ground floor slab of 200 mm thick. The soil is firm well drained clay with the following properties:

> Unit weight = 18 kN/m^3 , Safe bearing pressure = 150 kN/m^2 , Cohesion = 60 kN/m^2

The materials to be used in the foundation are $f_{ck} = 30$ MPa and $f_{yk} = 500$ MPa.



	Vertical load, kN	Horizontal load, kN	Moment, kNm
Dead	770	35	78
Imposed	330	15	34

a. Maximum base pressure on soil

The maximum base pressure is checked for the service loads. Weight of base + slab = $(550 + 200) \times 10^{-3} \times 3.6 \times 3.0 \times 25 = 202.5$ kN

> Total axial load = 770 + 330 + 202.5 = 1302.5 kN Total moment = $78 + 34 + 0.550 \times (35 + 15) = 139.5$ kN m

> > Base area $A = 3.0 \times 3.6 = 10.8 \text{ m}^2$ Section modulus $Z = 3.0 \times 3.6^2/6 = 6.48 \text{ m}^3$

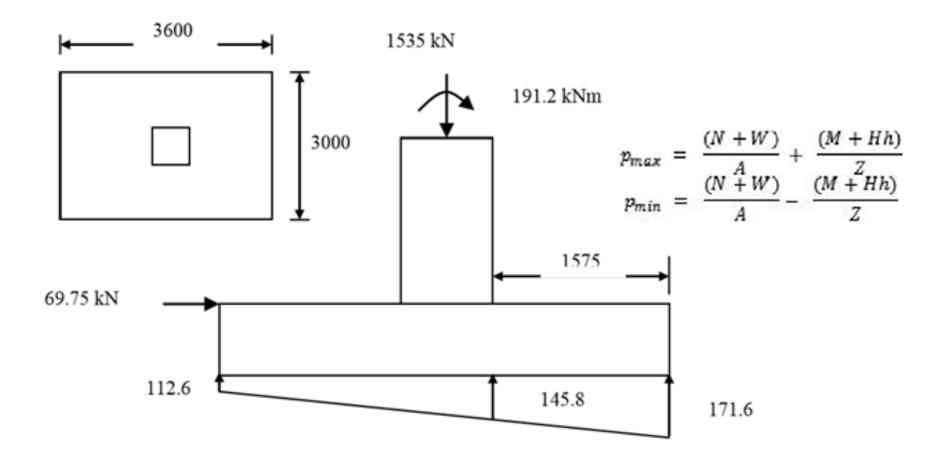
Maximum base pressure = $1302.5/10.8 + 139.5/6.48 = 120.6 + 21.5 = 142.1 \text{ kN/m}^2$ Maximum base pressure < (safe bearing pressure = 150 kN/m^2)

b. Resistance to horizontal load

Check the passive earth resistance assuming no ground slab. No adhesion, $\beta = 0$, (h₁ = 0, p₁ = 0), (h₂ = 0.550, p₂ = 18 × 0.550 = 9.9)

The passive resistance is
= 2c B h + 0.5 B h (p₁ + p₂) +
$$\beta$$
 L B
= {2 × 60 × 3.0 × 0.550} + {0.5 × 3.0 × 0.5 × (0 + 9.9)} + 0
= 198 + 7.4 = 205.4 kN

Factored horizontal load = $(1.35 \times 35) + (1.5 \times 15) = 69.75$ kN



- c. Design of moment reinforcement
 - I. Long-span moment steel

Axial load $N = (1.35 \times 770) + (1.5 \times 330) = 1535$ kN

Horizontal load $H = (1.35 \times 35) + (1.5 \times 15) = 69.75$ kN

Moment $M = (1.35 \times 78) + (1.5 \times 34) + (0.5 \times 69.75) = 191.2$ kNm

Maximum pressure = $1535/10.8 + 191.2/6.48 = 171.6 \text{ kN/m}^2$ Minimum pressure = $1535/10.8 - 191.2/6.48 = 112.6 \text{ kN/m}^2$

At the face of the column pressure is Pressure = $112.6 + (171.6 - 112.6) \times (3.6 - 1.575)/3.6 = 145.8 \text{ kN/m}^2$

Moment at the face of the column is $M_y = 145.8 \times 3.0 \times 1.575^2/2 + 0.5(171.6 - 145.8) \times 3.0 \times 1.575 \times (2/3) \times 1.575$ = 606.5 kNm

If the cover is 40 mm and 16 mm diameter bars are used, the effective depth for the bottom layer is

d = 550 - 40 - 16/2 = 502 mm $k = M/(bd^2 f_{ck}) = 606.5 \times 10^6/(3000 \times 502^2 \times 30) = 0.027 < 0.196$ $\frac{x}{d} = 0.5[1.0 + \sqrt{(1 - 3\frac{k}{\eta})}]$ z/d = 0.98 $A_s = M/\{0.87 f_{yk} z\}$ $f_s = 500, f_s = 500/1, 15 = 435 \text{ MPa}$

$$A_s = 606.5 \times 10^6 / (435 \times 0.98 \times 502) = 2834 \text{ mm}^2$$

$$\begin{split} A_{s,\,\min} &= 0.26 \times \, (f_{ctm}/f_{yk}) \times bd \geq 0.0013 \ bd \\ f_{yk} &= 500 \ \text{MPa}, \end{split}$$
 $f_{ctm} &= 0.3 \times f_{ck}^{0.67} = 0.3 \times 30^{0.67} = 2.9 \ \text{MPa}, \end{split} \qquad b = 3000 \ \text{mm}, \ d = 502 \ \text{mm}$

 $\begin{array}{l} A_{s,\ min} = 0.26 \times (2.9/500) \times 3000 \times 502 \geq 0.0013 \times 3000 \times 502 \\ A_{s,\ min} = 2271 \ mm^2 < 2834 \end{array}$

Provide 15H16. $A_s = 3016 \text{ nm}^2$.

 $0.75 (c + 3d) = 0.75 (450 + 3 \times 502) = 1467 mm$,

$$L/2 = 3000/2 = 1500 \text{ mm}$$

0.75 (c + 3d) < ℓ_x

The difference between 1467 mm and 1500 mm is small enough to be ignored and steel can be distributed uniformly. Provide 15 bars at 200 mm centres to give a total steel area of 3016 nm^2 .

II. Short-span moment steel

Average pressure = $0.5 \times (171.6 + 112.6) = 142.1 \text{ kN/m}^2$

Moment $M_x = 142.1 \times 3.6 \times 1.275^2/2 = 415.8$ kNm

Using H12 bars, Effective depth d = 550 - 40 - 16 - 12/2 = 488 mm $k = M/(bd^2 f_{ck}) = 415.8 \times 10^6/(3600 \times 488^2 \times 30) = 0.016 < 0.196$ $\frac{z}{d} = 0.5[1.0 + \sqrt{(1 - 3\frac{k}{\eta})}]$ z/d = 0.99

$$A_{s} = M/\{0.87 \text{ f}_{yk} z\}$$

$$f_{yk} = 500, \text{ f}_{yd} = 500/1.15 = 435 \text{ MPa}$$

$$A_{s} = 415.8 \times 10^{6}/(435 \times 0.99 \times 488) = 1979 \text{ mm}^{2}$$

$$A_{s, \min} = 0.26 \times (f_{ctm}/f_{yk}) \times bd \ge 0.0013 \text{ bd}$$

$$f_{ctm} = 0.3 \times f_{ck}^{-0.67} = 0.3 \times 30^{-0.67} = 2.9 \text{ MPa}, \text{ f}_{yk} = 500 \text{ MPa},$$

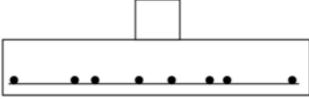
$$b = 3600 \text{ mm}, d = 488 \text{ mm}$$

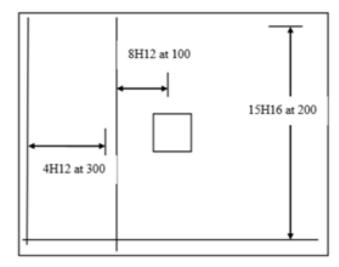
$$A_{s, \min} = 0.26 \times (2.9/500) \times 3600 \times 488 \ge 0.0013 \times 3600 \times 488$$

$$A_{s, \min} = 2649 \text{ mm}^{2} > 1979 \text{ mm}^{2}$$
Provide 24H12. A_{s} provided = 2714 mm²

 $0.75(c + 3d) = 1436 < (\ell_x = 1800 \text{ mm})$

Place two-thirds of the bars (16 bars) in the central zone 1914 nm wide. Provide 16H12 at 120 mm over a width of 1500 mm. In the outer strips 843 nm wide provide 4H12 at 200 mm centres.





d. Vertical shear

Long-span (*d* = 502 mm

Pressure = $112.6 + (171.6 - 112.6) \times (3.6 - 1.575 + 0.502) / 3.6 = 154.0 \text{ kN/m}^2$

Shear at a distance d from the face of the column is $V_{Ed} = 0.5(154.0 + 171.6) \times 3.0 \times (1.575 - 0.502) = 524.1 \text{ kN}$

 $v_{Ed} = 524.1 \times 10^3 / (3000 \times 502) = 0.35 \text{ MPa}$

 $V_{Rd,c} = [C_{Rd,c} k \{100 \rho_1 f_{ck}\}^{1/3}$ $v_{min} = 0.035 k^{1.5} \sqrt{f_{ck}}$

$$k = 1 + \sqrt{\frac{200}{d}} \le 2.0$$
$$k = 1 + \sqrt{(200/502)} = 1.63 \le 2.0$$

-

$$C_{Rd,c} = \frac{0.18}{(\gamma_c = 1.5)} = 0.12$$

$$\rho_1 = \frac{A_{sl}}{b_w d} \le 0.02$$

$$A_{sl} = 15H16 = 3016 \text{ mm}^2,$$

$$= 3016/(3000 \times 502) = 0.002 \le 0.02$$

$$C_{Rd,c} \times k \times (100 \times \rho_1 \times f_{ck})^{0.33} = 0.12 \times 1.63 \times (100 \times 0.002 \times 30)^{0.33} = 0.36$$
$$v_{min} = 0.035 \times k^{1.5} \times \sqrt{f_{ck}} = 0.035 \times 1.63^{-1.5} \times \sqrt{30} = 0.40 > 0.36$$
$$v_{Rd,c} = 0.40 \text{ MPa}$$

$$(v_{Ed} = 0.35) < (v_{Rd, c} = 0.40)$$

No shear reinforcement is required.

d. Vertical shear

II. Short-span

Average pressure = $0.5(171.6 + 112.6) = 142.1 \text{ kN/m}^2$

The average pressure acts over an area of dimensions $\{(3000 - 450)/2 - 488 = 787 \text{ mm}\} \times 3600 \text{ mm}$

 $V_{Ed} = 142.1 \times 3.6 \times 0.787 =$ 402.6 kN

 $v_{Ed} = 402.6 \times 10^3 / (3600 \times 488) = 0.24 \text{ MPa}$

$$\begin{split} V_{Rd,c} = & \left[C_{Rd,c} \; k \{ 100 \, \rho_1 \; f_{ck} \}^{1/3} \right] \\ C_{Rd,c} = & 0.18 / \; (\gamma_c = 1.5) = 0.12, \, k = 1 + \sqrt{(200/488)} = 1.64 \leq 2.0 \\ \rho_1 = & A_{sl} / \; (b_w \; d) = 2714 / \; (3600 \times 488) = 0.0016 \leq 0.02 \\ A_{sl} = 24H12 = 2714 \; mm^2, \end{split}$$

 $C_{\text{Rd, c}} \times k \times (100 \times \rho_1 \times f_{\text{ck}})^{0.33} = 0.12 \times 1.64 \times (100 \times 0.0016 \times 30)^{0.33} = 0.33$

 $v_{min} = 0.035 \times k^{1.5} \times \sqrt{f_{ck}} = 0.035 \times 1.64^{-1.5} \times \sqrt{30} = 0.40 > 0.33$

 $v_{Rd, c} = 0.40 \text{ MPa}$

 $(v_{Ed} = 0.24) < (v_{Rd, c} = 0.40)$

No shear reinforcement is required.

e. Punching shear and maximum shear

Check punching shear around column perimeter: Column perimeter, $u_0 = 2(c_1 + c_2) = 1800 \text{ mm}$ d = 495 mm

Column axial force = 1535 kN

 $v_{\text{Rd, max}} = 0.3 \times (1 - f_{\text{ck}}/250) \times f_{\text{cd}} = 0.3 \times (1 - 30/250) \times (30/1.5) = 5.28 \text{ MPa}$

Shear stress around column perimeter = $1535 \times 10^{3}/(1800 \times 495)$

$$= 1.72 \text{ MPa} < (v_{\text{Rd, max}} = 5.28 \text{MPa})$$

Thickness of the slab is acceptable.

Check punching shear on perimeters at Nd from the face of the column, where $1 \le N \le 2$.

Average d = 0.5 (502 + 488) = 495 mm

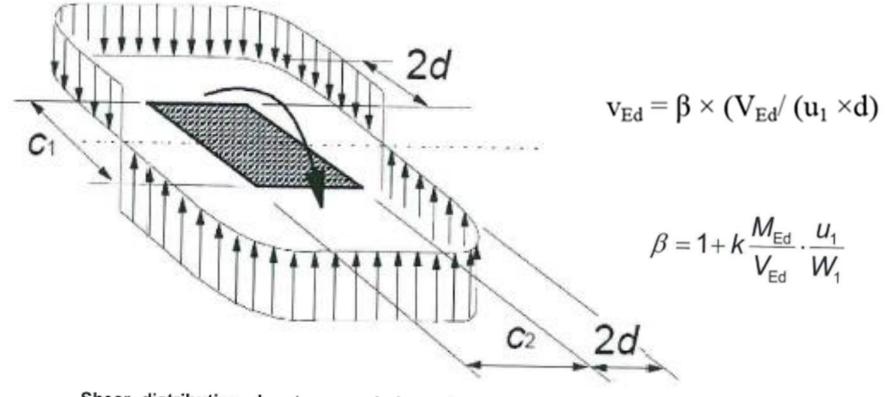
Average pressure = $(171.6 + 112.6)/2 = 141.8 \text{ kN/m}^2$

Area inside the perimeter A = $c_1 \times c_2 + 2 \times (c_1 + c_2) \times Nd + \pi \times (Nd)^2$

where $c_1 = c_2 = 450$ mm.

Upward thrust from base pressure = $141.8 \times A \text{ kN}$

Perimeter length, $\mathbf{u} = 2(\mathbf{c}_1 + \mathbf{c}_2 + \pi \times \mathrm{Nd})$

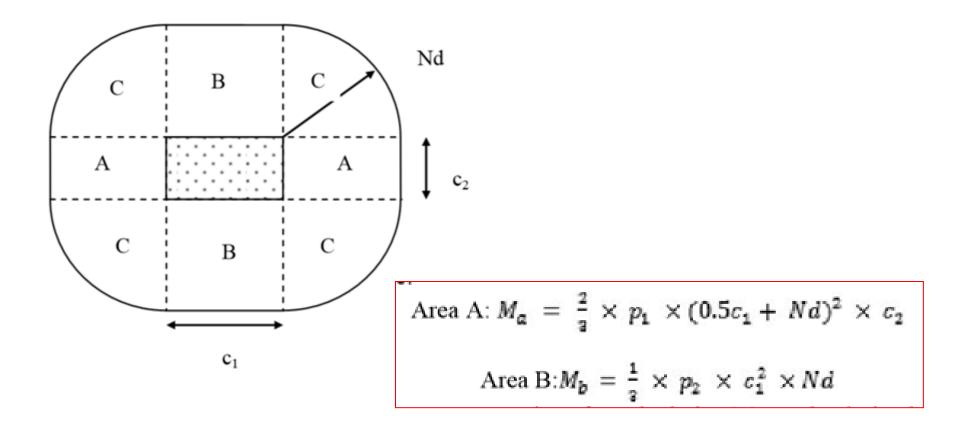


Shear distribution due to an unbalanced moment

 c_1 Nd Nd Pressure at column face is $p_2 = 29.8 \times (c_1/L) = 3.688 \text{ kN/m}^2$ 112.6 171.6 Pressure at punching shear perimeter, $p_1 = 29.8 \times (c_1 + 2 \text{ Nd})/\text{L kN/m}^2$ 141.8 where $c_1 = 450 \text{ mm}$, L = 3600 mm. 29.8 \mathbf{p}_2

 p_1

Moment caused by the linear pressure distribution in the three areas :



$$F = \int_{x=0}^{x=a} \{p_2 + (p_1 - p_2) \times \frac{x}{a}\} dx \int_{y=0}^{y=\sqrt{a^2} - x^2)} dy$$

$$F = \frac{a^2}{12} \times [(3\pi - 4)p_2 + 4p_1]$$

$$M_y = \int_{x=0}^{x=a} \{p_2 + (p_1 - p_2) \times \frac{x}{a}\} x dx \int_{y=0}^{y=\sqrt{a^2} - x^2)} dy$$

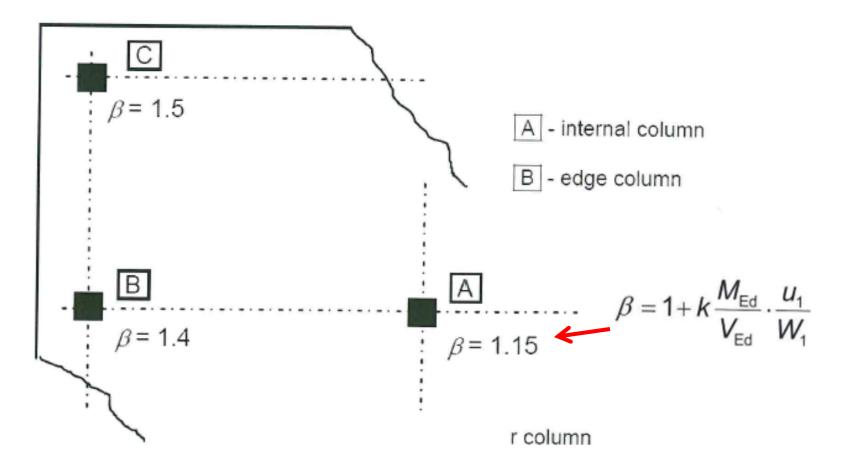
$$M_y = \frac{a^3}{48} \times [(16 - 3\pi)p_2 + 3\pi p_1]$$

$$M_c = 4M_y + 2 \times F \times c_1$$

$$p_2$$

$$p_1$$

Note: Recommended values for β are given in Figure 6.21N.



 $V_{Ed, red} = Column axial force - upward thrust from base pressure$

 $M_{Ed, red} = Moment on the column - (M_a + M_b + M_c)$

 $v_{Ed} = \beta \times (V_{Ed} / (u_1 \times d))$

$$\mathbf{u}_1 = 2(\mathbf{c}_1 + \mathbf{c}_2 + \pi \times \mathrm{Nd})$$

V W. k 0.45 0.60 0.70 0.80	$\beta = 1 + k \frac{M_{Ed}}{M_{Ed}} \cdot \frac{u_1}{M_{Ed}}$	C1/C2	≤ 0.5	1.0	2.0	≥ 3.0
	$V_{\rm Ed}$ $W_{\rm 1}$	k	0.45	0.60	0.70	0.80

W₁ corresponds to a distribution of shear
$$W_i = \int_{0}^{u_i} |e| d/e^{-1}$$

 $W_1 = \frac{c_1^2}{2} + c_1c_2 + 4c_2d + 16d^2 + 2\pi dc_1$
 $W = c_1 c_2 + 2 c_2 a + 0.5 c_1^2 + 4a^2 + \pi c_1 a$

									26			
	p_1	Α	N-	$V_{\text{Ed,red}}$	Ma	Mb	Mc	M-	M_{Ed}	W_1	u_1	VEd
Nd			Soil					soil	red			
495	11.8	1.9	265	1270	1.8	0.1	2.6	4.6	187	2.4	4.9	0.62
545	12.6	2.1	300	1235	2.2	0.1	3.5	5.9	185	2.7	5.2	0.56
594	13.4	2.4	338	1197	2.7	0.1	4.6	7.4	184	3.1	5.5	0.51
644	14.2	2.7	378	1157	3.2	0.2	5.9	9.3	182	3.4	5.8	0.46
693	15.0	3.0	420	1115	3.8	0.2	7.5	11.5	180	3.8	6.2	0.42
743	15.9	3.3	465	1070	4.5	0.2	9.4	14.0	177	4.2	6.5	0.39
792	16.7	3.6	511	1024	5.2	0.2	11.6	17.0	174	4.6	6.8	0.35
842	17.5	3.9	560	975	6.0	0.2	14.2	20.3	171	5.1	7.1	0.32
891	18.3	4.3	611	924	6.8	0.2	17.1	24.2	167	5.5	7.4	0.29
941	19.1	4.7	664	871	7.8	0.2	20.6	28.6	163	6.0	7.7	0.26
990	19.9	5.1	720	816	8.8	0.2	24.5	33.5	158	6.5	8.0	0.23

N-soil = 141.8 x A

 $M-soil = M_a + M_b + M_c$

V_{Ed,red}=1535 – N-soil

M_{Ed,red}=191.2 – M-soil

 $C_{Rd, c} = 0.18 / (\gamma_c = 1.5) = 0.12,$

 $k = 1 + \sqrt{(200/495)} = 1.64 \le 2.0$

Average 100A_s/ (bd) = $\sqrt{(0.20 \times 0.16)} = 0.18$ C_{Rd, c} × k × (100 × ρ_1 × f_{ck})^{0.33} = 0.12 × 1.64 × (0.18 × 30)^{0.33} = 0.35 v_{min} = 0.035 × k^{1.5} × $\sqrt{f_{ck}}$ = 0.035 × 1.64 ^{1.5} × $\sqrt{30}$ = 0.40 > 0.35

 $v_{\text{Rd, c}} = 0.40 \text{ MPa}$

 $v_{Rd} = v_{Rd, c} \times (2d/a) = 0.40 \times (2d/a)$ At 'a' = d, $v_{Rd} = 0.80$ MPa which is greater than 0.62 MPa At a = 2d, $v_{Rd} = 0.40$ MPa which is greater than 0.23 MPa No shear reinforcement is required.

