Infiltration

Fitsume T.

definition

- Infiltration: is the process of water entry into a soil
- *Soil water movement (percolation)* : is the process of water flow from one point to another point within the soil.
- Infiltration rate: is the rate at which the water actually infiltrates through the soil
- Infiltration capacity: the maximum rate at which the ground can absorb water
- Field capacity: is the volume of water the ground can hold.

Infiltration capacity(f) relation with rainfall intensity(i)

$f=f_c$, when $i \ge f_c$ or f=I, when $i < f_c$

FACTORS AFFECTING INFILTRATION

- condition of the land surface (cracked, crusted, compacted) land vegetation cover,
- surface soil characteristics (grain size & gradation),
- storm characteristics (intensity, duration & magnitude),
- surface soil and water temperature,
- chemical properties of the water and soil.

MEASUREMENT OF INFILTRATION

Infiltration varies temporally and spatially

Could be measured as

- Areal Infiltration (from analysis of rainfall-runoff data)
- Point infiltration

Infiltrometer is the instument used to measure point infiltration

ESTIMATION INFILTRATION

Horton infiltration

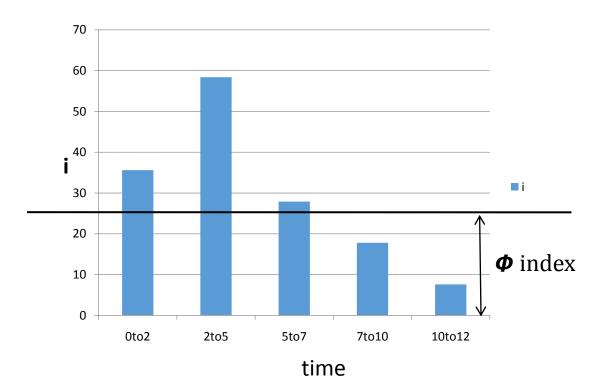
basd on hortons conclusion that infiltration begins at some rate f_o and exponentially decreases until it reaches a constant f_c .

 $f_{p} = f_{c} + (f_{0} - f_{c}) e^{-kt}$

• Note that infiltration takes place at capacity rates only when the intensity of rainfall i equals or exceeds f_p

$$F(t) = f_{c}t + \frac{(f_{0} - f_{c})(1 - e^{-kt})}{k}$$

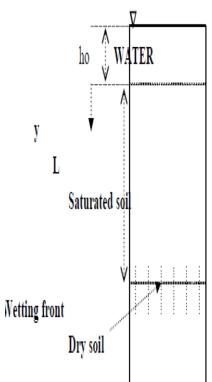
The φ-index method


- The φ-index is the simplest method and is calculated by finding infiltration as a difference between gross rainfall and observed surface runoff.
- It is an average RF above which the RF volume is equal to RO volume
- The φ-index method gives better estimate when losses is calculated after heavy rainfall and the soil profile is saturated.

Estimate φ-index of the catchment having an area 2.26 km2.The observed runoff caused by the rainfall given in the Table is 282.097 m3.
Time (hr) Rainfall (mm/h

rime (m)	Raimaii (mm/i
00 to 2	35.6
2 to 5	58.4
5 to 7	27.9
7 to 10	17.8
10 to 12	7.6

Computation of **\$\$** index from hyetograph


The Green-Ampt method

Assumes that water is pounded on the ground surface. Consider a vertical column of soil of unit horizontal cross-sectional area and let a control volume be defined around the wet soil between the surface and depth L.

 $F(t) = L(n - \theta_i)$

 $F(t) = Kt + \psi \Delta \theta \ln(1 + \frac{F(t)}{\psi \Delta \theta})$

- Θ₁-initial moisture content
- *n porosity*
- K- hydraulic conductivity

After simplification

$$F(t) - \psi \Delta \theta \ln(1 + \frac{F(t)}{\psi \Delta \theta}) = Kt$$

$$f = K(\frac{\psi \Delta \theta}{F(t)} + 1)$$

The attraction soil exerts on the water

	Porosity n	Wetting front	soil Saturated
Soil texture classes		suction head	hydraulic
		ψ (cm)	conductivity
			Ks (cm/hr)
Sand	0.437	4.95	23.56
	(0.374-0.500)	(0.97-25.36)	
Loamy sand	0.437	6.13	5.98
	(0.363-506)	(1.35-27.94)	
Sandy loam	0.453	11.01	2.18
	(0.351-0.555)	(2.67-45.47)	
Loam	0.463	8.89	1.32
	(0.375-0.551)	(1.33-59.38)	
Silt loam	0.501	16.68	0.68
	(0.420-0.582)	(2.92-95.39)	
Sandy clay loam	0.398	21.85	0.30
	(0.332-0.464)	(4.42-108.0)	
Clay loam	0.464	20.88	0.20
	(0.409-0.519)	(4.79-91.10)	
Silty clay loam	0.471	27.30	0.20
	(0.418-0.524)	(5.67-131.5)	
Sandy clay	0.430	23.90	0.12
	(0.370-0.490)	(4.08-140.2)	
Silty clay	0.479	29.22	0.10
	(0.425-0.533)	(6.13-139.4)	
Clay	0.475	31.63	0.06
	(0.427-0.523)	(6.39-156.5)	

Table 4.1 USDA Soil Texture Green-Ampt Infiltration Parameters (Maidment, 1993)

Soil texture	Matric, potential	Reduction factor for sub-	
	drop	crust conductivity	
	Ψi (cm)	SC	
Sand	2	0.91	
Loamy sand	3	0.89	
Sandy loam	6	0.86	
Loam	7	0.82	
Silt loam	10	0.81	
Sandy clay loam	5	0.85	
Clay loam	8	0.82	
Silty clay loam	10	0.76	
Sandy clay	6	0.80	
Silty clay	11	0.73	
Clay	9	0.75	

Table4.2: Mean steady-state matric potential drop Ψ i across seals by soil texture (Maidment 1993)

 Compute the infiltration rate f and cumulative infiltration F after one hour of infiltration into a silt loam soil that initially had an effective saturation of 30 %. Assume water is pounded to a small but negligible depth on the surface. For a silt loam soil $\Psi = 16.7$ cm, K =0.65 cm/hr, n = 0.501, $\theta i = 30\%$ x 0.501

 $\Delta \theta = n - \theta i = 0.501 - 30\% x \ 0.501 = 0.35.$ $\Psi \Delta \theta = 16.7 x \ 0.35 = 5.84 \text{ cm}.$ The cumulative infiltration at t = 1 hour is calculated employing Eq. (4.10), taking a trial value of F(t) = Kt = 0.65 cm.

$$F(t) = Kt + \psi \Delta \theta \ln(1 + \frac{F(t)}{\psi \Delta \theta})$$

= 1.27 cm

$$F(1) = 0.65 * 1 + 5.68 \ln(1 + \frac{0.65}{5.68})$$

Substituting F = 1.27 cm in Eq(4.10) we get 1.79 cm and after anumber of iteration F converges to a constant value of 3.17 cm.

Infiltration rate after one hour is estimated by Eq. (4.11)

$$f = K(\frac{\psi \Delta \theta}{F(t)} + 1)$$
$$f = 0.63(\frac{5.68}{3.17} + 1)$$

= 1.81 cm/hr.

The Phillip method

Phillip proposed an equation to estimate cumulative infiltration F(t) by

$$F(t) = St^{0.5} + Kt (4.3)$$

(4.4)

Where:

S = sorpitivity which is a function of the soil suction potential (representing soil suction head

K = the hydraulic conductivity of the soil (representing gravity head)

t = time from the beginning of the rainfall.

Noting that f(t) = dF(t)/dt, the Phillip equation for infiltration rate is $f(t) = 0.5St^{-0.5} + K$