
Simple numerical Solution of the GVF equation

Fitsume T.

- In the Direct Step method, the location where the specified depth, y_d occurs is determined, given the location for the occurrence of depth, y_u. Consider the channel shown in figure below.
- In this channel, say depth y_u occurs at a distance x_u from the reference point. Discharge, Q, channel bottom slope, S₀, the roughness coefficient, n and cross sectional shape parameters (which relate A, P and R to y) are also known.
- The problem now is to determine the location x_d

$$z_u + y_u + \frac{\alpha_u V_u^2}{2g} = z_d + y_d + \frac{\alpha_d V_d^2}{2g} + \overline{S}f(x_d - x_u)$$
$$S_f = \frac{n^2 Q^2}{A^2 R^{4/3}}$$

- S_f varies between sections u and d since the flow depth, and consequently A and R vary between these two sections.
- S_f may also due to variation in the roughness between the two sections. Following equations may be used to determine S_f.

Arithmetic mean

$$\overline{S_f} = \frac{1}{2} (S_{f_u} + S_{f_d})$$

Geometric mean

$$\overline{S_{f}} = \sqrt{(S_{f_{u}} * S_{f_{d}})}$$

Harmonic mean

$$\overline{S_{f}} = \frac{2S_{f_{u}}S_{f_{d}}}{S_{f_{u}} + S_{f_{d}}}$$

- Experience has indicated that the arithmetic mean gives the lowest maximum error, although it is not always the smallest error. Also, it is the simplest of the three approximations. Therefore, its use is generally recommended.
- Noting that the bed elevations Z_u and Z_d are related through the bed slope, S_0 and the distance between the sections, $(x_d x_u)$, can be written as

$$-\left(y_d + \alpha_d \frac{V_d^2}{2g}\right) + \left(y_u + \alpha_u \frac{V_u^2}{2g}\right) = \overline{S}_f \left(x_d - x_u\right) - S_0 \left(x_d - x_u\right)$$

However,
$$y_u + \alpha_u \frac{V_u^2}{2g} = y_u + \frac{\alpha_u Q^2}{2g} = E_u$$

$$y_d + \alpha_d \frac{V_d^2}{2g} = y_d + \frac{\alpha_d Q^2}{2gA_d^2} = E_d$$

 where E_u and E_d are specific energies at section u and d, respectively.

2g $A_{\rm H}$

4g

$$x_{d} = x_{u} + \frac{E_{d} - E_{u}}{S_{0} - \frac{1}{2} \left(S_{f_{u}} + S_{f_{d}}\right)}$$
$$x_{d} = \frac{x_{u} + \left(y_{d} - y_{u}\right) + \frac{q^{2}}{2g} \left[\frac{1}{y_{d}^{2}} - \frac{1}{y_{u}^{2}}\right]}{S_{0} - \frac{q^{2}n^{2}}{2} \left[\frac{1}{y_{d}^{10/3}} + \frac{1}{y_{u}^{10/3}}\right]}$$

Disadvantages of Direct step method

- Interpolations become necessary if the flow depths are required at specified locations.
- It is inconvenient to apply this method to non prismatic channels because the crosssectional shape at the unknown location should be known a priori.

- In the standard step method, flow depth at a specified location, y_d is determined, given the flow depth, Y_u at another specified location. Consider the channel shown in Figure below. In this channel, say Y_u occurs at a distance X_u from the reference point.
- Discharge, Q, Channel bottom slope, S₀, the roughness coefficient, n and cross-sectional shape parameters (which relate A, P and R to y) are also known.
- The problem now is to determine the flow depth, Y_d at the specified location X_d

$$-\left(y_{d}+\alpha_{d}\frac{V_{d}^{2}}{2g}\right)+\left(y_{u}+\alpha_{u}\frac{V_{u}^{2}}{2g}\right)=\overline{S}_{f}\left(x_{d}-x_{u}\right)-S_{0}\left(x_{d}-x_{u}\right)$$

• Can be written as

$$y_{d} + \frac{\alpha_{d}Q^{2}}{2gA_{d}^{2}} + \frac{S_{f_{d}}(x_{d} - x_{u})}{2.0} = y_{u} + \frac{\alpha_{u}Q^{2}}{2gA_{u}^{2}} - \frac{S_{f_{u}}}{2}(x_{d} - x_{u}) + S_{0}(x_{d} - x_{u})$$

- the flow rate (Q), the roughness coefficient (n), distances X_d and X_u , the channel slope (S₀), the flow conditions at section u (y_u , α_u and A_u) are known.
- Therefore the right hand side of Eq. Above can be determined. On the left hand side, the area, A_d and the friction slope, S_{f d} are functions of the flow depth Y_d. Thus we have one equation in one unknown Y_d. Therefore, Y_d can be determined by solving the a non-linear equation.

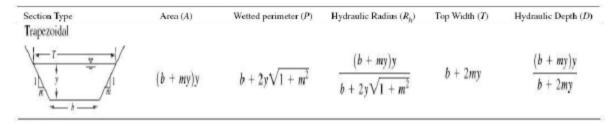
 Either trial and error or numerical techniques such as bisection, Newton –Raphson techniques etc. can be used for solving

$$y_{d} + \frac{\alpha_{d}Q^{2}}{2gA_{d}^{2}} + \frac{S_{f_{d}}(x_{d} - x_{u})}{2.0} = y_{u} + \frac{\alpha_{u}Q^{2}}{2gA_{u}^{2}} - \frac{S_{f_{u}}}{2}(x_{d} - x_{u}) + S_{0}(x_{d} - x_{u})$$

 For example, for a wide rectangular channel (assuming αu =αd =1.0)

$$y_{d} + \frac{q^{2}}{2gy_{d}^{2}} + \frac{n^{2}q^{2}\left(x_{d} - x_{u}\right)}{2y_{d}^{10/3}} = y_{u} + \frac{q^{2}}{2gy_{u}^{2}} - \frac{n^{2}q^{2}}{2y_{u}^{10/3}}\left(x_{d} - x_{u}\right) + S_{0}\left(x_{d} - x_{u}\right)$$

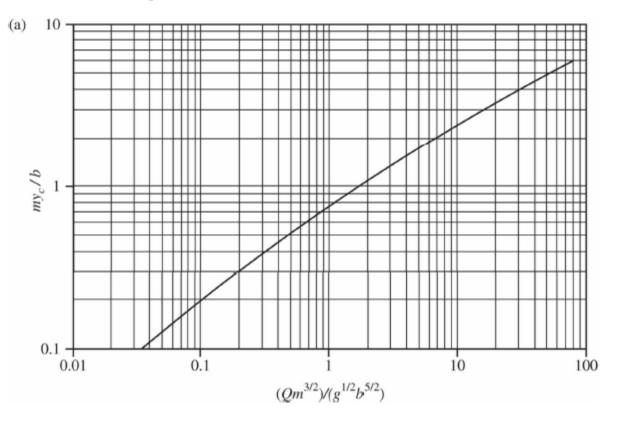
Example


• A grouted-riprap, trapezoidal channel (n= 0.0025) with a bottom width of 4 meters and side slopes of m = 1 carries a discharge 12.5 m³/sec on a 0.001 slope. Compute the backwater curve (upstream water surface profile) created by a low dam that backs water up to a depth of 2 m immediately behind the dam. Specifically, water depths are required at critical diversion points that are located at distances of 188 m, 423 m, 748 m, and 1,675 m upstream of the dam.

Solution:

1. Calculate normal depth,

 $S_{\rm o}=S_{\rm e}$ for uniform flow conditions


$$\frac{Q}{A} = \frac{1}{n} \cdot R_h^{2/3} \cdot S_o^{1/2}$$

$$\frac{12.5}{(b+m.y).y} = \frac{1}{0.025} \cdot \left(\frac{(b+m.y).y}{b+2.y.\sqrt{1+m^2}}\right)^{2/3} \cdot (0.001)^{1/2}$$
$$\frac{12.5}{(1.y+4.m).y} = \frac{1}{0.025} \cdot \left(\frac{(4+y).y}{4+2.y.\sqrt{1+1}}\right)^{2/3} \cdot (0.001)^{1/2}$$

By trial and error ; $y_n = 1.66 \text{ m}$

2. Calculate critical depth

$$\frac{Q.m^{3/2}}{g^{1/2}.b^{5/2}} = \frac{(12.5).(1)^{3/2}}{(9.81)^{1/2}.(4)^{5/2}} = 0.125$$
$$\frac{m.y_c}{b} = 0.230$$
$$y_c = \frac{(0.23).(4 \text{ m})}{1}$$
$$y_c = 0.92 \text{ m}$$

Known water depth ; y = 2 mNormal depth; $y_n = 1.66 \text{ m}$ Critical depth; $y_c = 0.92 \text{ m}$

The depth (y=2 m) just upstream from the dam is the control section designated as section 1. Energy balance computations begin here and progress upstream (backwater) because the flow is subcritical (yc < yn).

Since the profile has an M-1 classification, the flow depth will approach normal depth asymptotically as the computations progress upstream.

Since y/yc > 1 and y/yn > 1; the value dy/dx is positive, indicating that water depth increases in the direction of flow.

		2-03-04-04-04-04-04-04-04-04-04-04-04-04-04-	500. IPRO199000	259-6341,9920,75-658	00.0000000000000	ALTERNAL (1977)	AR 2008 2009 2009 2008 200	001020-0002011-0307	493997 815 500 940 6967		4709/25/25	
(1) Section	(2) U/D	(3) y (m)	(4) z (m)	(5) A (m ²)	(6) V (m/sec)	(7) $V^2/2g$ (m)	(8) <i>P</i> (m)	(9) <i>R_h</i> (m)	(10) S _e	(11) $S_{e(avg)}$	(12) h _L (m)	(13) Total Energy (m)
1 2	D U	2.00 1.94	$0.000 \\ 0.188$	12.00 11.52	1.042 1.085	0.0553 0.0600	9.657 9.487	1.243 1.215	0.000508 0.000567	0.000538 ($\Delta L = 188 \text{ m}$)	0.1011	2.156 2.188
Ν	lote: The	trial depth	of 1.94 m i	s too high	; the energ	y does not b	balance. Try a	lower ups	tream depth.			
1 2	D U	2.00 1.91	0.000 0.188	12.00 11.29	1.042 1.107	0.0553 0.0625	9.657 9.402	1.243 1.201	0.000508 0.000600	0.000554 ($\Delta L = 188 \text{ m}$)	0.1042	2.159 2.160
Ν	lote: The	trial depth of	of 1.91 m i	is correct.	Now balar	ice energy b	between sectio	ons 2 and 3	5.			
2 3	$egin{array}{c} D \ U \end{array}$	1.91 1.80	0.188 0.423	11.29 10.44	1.107 1.197	0.0625 0.0731	9.402 9.091	1.201 1.148	0.000601 0.000745	0.000673 ($\Delta L = 235 \text{ m}$)	0.1582	2.319 2.296
Ν	lote: The	trial depth	of 1.80 m i	is too low	; the energy	y does not ba	alance. Try a	higher ups	stream depth.			
2 3	D U	1.91 1.82	0.188 0.423	11.29 10.59	1.107 1.180	0.0625 0.0710	9.402 9.148	1.201 1.158	0.000601 0.000716	0.000659 ($\Delta L = 235 \text{ m}$)	0.1549	2.315 2.314
	Note: Th	ne trial depth	n of 1.82 n	n is correc	t. Now bal:	ance energy	between sec	tions 3 and	14.			
C 1	0.0.0	1	1.1	1	1.6		20.000					
Column (1 Column (2		Section numbers are arbitrarily designated from downstream to upstream. Sections are designated as either downstream (D) or upstream (U) to assist in the energy balance.										
					•	•				is now known of coatie	- 2 and the	double of
Column (3		Depth of flow (meters) is known at section 1 and assumed at section 2. Once the energies balance, the depth is now known at section 2, and the depth at section 3 is assumed until the energies at sections 2 and 3 balance.										
Column (4							an sea level) is quent bottom e		is case, the date	tum is taken as the chan	nnel bottom a	it section 1.
Column (5							in the trapezoi		ection.			
Column (6	Barrow		C/ 102 102		And the Second	and in the second	harge by the are					
	·/ ·····	, the they (the	in pri stro	114, 15 0014	inter of arre							1

- Column (7) Velocity head (meters).
- Column (8) Wetted perimeter (meters) of the trapezoidal cross section based on the depth of flow.
- Column (9) Hydraulic radius (meters) equal to the area in column 5 divided by the wetted perimeter in column 8.
- Column (10) Energy slope obtained from Manning equation (Equation 6.27a).
- Column (11) Average energy grade line slope of the two sections being balanced.
- Column (12) Energy loss (meters) from friction between the two sections found using $h_L = S_{e(av_R)}(\Delta L)$ from Equation 6.26b.
- Column (13) Total energy (meters) must balance in adjacent sections (Equation 6.26b). Energy losses are always added to the downstream section. Also, the energy balance must be very close before proceeding to the next pair of adjacent sections or errors will accumulate in succeeding computations. Thus, even though depths were only required to the nearest 0.01 m, energy heads were calculated to the nearest 0.001 m.

Section	U/D	y (m)	A (m ²)	P (m)	R _h (m)	V (m/sec)	V ² /2g (m)	E (m)	Se	$\Delta L(m)$	Distance to Dam (m)
1	D	2.00	12.00	9.657	1.243	1.042	0.0553	2.0553	0.000508		0
2	U	1.91	11.29	9.402	1.201	1.107	0.0625	1.9725	0.000601	186	186
	A distance o	f 186 m sepa	arates the two	o flow depths	s (2.00 m ar	nd 1.91 m).					
2	D	1.91	11.29	9.402	1.201	1.107	0.0625	1.9725	0.000601		186
3	U	1.82	10.59	9.148	1.158	1.180	0.0710	1.8910	0.000716	239	425