Classification of Flow Surface Profiles

Fitsume T.

Classification of Flow Surface Profiles

 Bottom slopes are classified as sustaining(S_o>0) and nonsustaining slopes(S_o≤ 0).

Mild slope $(Y_o > Y_C)$ Sustaining slopescritical slope $(Y_o = Y_C)$ steep slope $(Y_o < Y_C)$

```
Non sustaining slopes Adverse slope (S_0 = 0)
```

Number	Channel	Symb ol	Characteristic	Remark	
	category		condition		
1	Mild slope	Μ	$\mathbf{y}_0 > \mathbf{y}_c$	Subcritical flow at normal depth	
2	Steep slope	S	$y_{c} > y_{0}$	Supercritical flow at normal	
				depth	
3	Critical slope	C	$\mathbf{y}_{c} = \mathbf{y}_{0}$	Critical flow at normal depth	
4	Horizontal	H	$S_0 = 0$	Cannot sustain uniform flow	
	bed				
5	Adverse slope	A	$S_0 < 0$	Cannot sustain uniform flow	

Non Sustaining slopes(S_o=0)

Η

Zone 2 (y>yc)

 Depending upon the channel category and region of flow, the water surface profiles will have characteristics shapes. Whether a given GVF profile will have an increasing or decreasing water depth in the direction of flow will depend upon the term dy/dx being positive (back water curve) or

negative(drawdown curve).

$$\frac{dy}{dx} = \left(\frac{S_0 - S_e}{1 - Fr^2}\right).$$

$egin{aligned} y > y_0 & ightarrow S_e < S_0 & y > y_c & ightarrow F_r < 1 \ y = y_0 & ightarrow S_e = S_0 & y = y_c & ightarrow F_r = 1 \ y < y_0 & ightarrow S_e > S_0 & y < y_c & ightarrow F_r > 1 \end{aligned}$

y₀ = Uniform flow depth,
y_c = Critical flow depth,
y = Non-uniform flow depth

1. The water surface approaches the normal depth asymptotically

As
$$y \to y_0$$
, $V \to V_0$, $S_e = S_0$
$$\lim_{y \to y_0} \frac{dy}{dx} = \frac{S_0 - S_0}{1 - F_r^2} = \frac{0}{cons} = 0$$

2. The water surface meets the critical depth line vertically. As $y \rightarrow y_c$, $F_r^2 = 1$, $1 - F_r^2 = 0$,

$$\lim_{y \to y_{\epsilon}} \frac{dy}{dx} = \frac{S_0 - S_{\epsilon}}{1 - F_{r}^2} = \frac{S_0 - S_{\epsilon}}{0} = \infty$$

3. The water surface meets a very large depth as a horizontal asymptote

As
$$y \to \infty$$
, $V = 0 \to F_r = 0 \to S_e \to 0$

$$\lim_{y \to \infty} \frac{dy}{dx} = \frac{S_0 - S_e}{1 - F_r^2} = \frac{S_0}{1} = S_0$$

Based on this information, the various possible gradually varied flow profiles are grouped into twelve types

Channel Slope	Profile Type	Relation of y to y_n and y_c	S _f	F dy/dx	Sign	
	M ₁	$y > y_n > y_c$	< <i>S</i> ₀	<1	+	Draw down
Mild	M ₂	$y_n > y > y_c$	>S ₀	<1	(-)	curve
MIIIa	M ₃	$y_n > y_c > y$	>S ₀	>1	+	
2 Sugar	heris, titad	$y > y_c > y_n$	<s<sub>0</s<sub>	<1	(+)	Back water
Steen	S ₂	$y_c > y > y_n$	< <i>S</i> ₀	>1	-	CURVA
Sicep	S ₃	$y_c > y_n > y$	>S ₀	>1	gao + so	curve
Critical	Surge Vals	$y > y_n = y_c$	<s<sub>0</s<sub>	<1	. ³¹ +	
Cittical	C_3	$y_n = y_c > y$	>S ₀	>1	+	
Horizontal	Hand Ha	$v_n > v > v_c$	>S ₀	<1	1899 <u>()</u> 1997	
morizontai	H ₃	$y_n > y_c > y$	>S ₀	>1	т. + Алымоти	
Adverse	in That	v>vc	>S ₀	<1	942	
	A_3	y _c >y	>S ₀	>1	+	

A rectangular channel with a bottom width of 4.0 m and a bottom slope of 0.0008 has a discharge of 1.50 m³/sec. In a gradually varied flow in this channel, the depth at a certain location is found to be 0.30m. Assuming n = 0.016, Determine the type of GVF profile.

• M1 – Curve

Water depth will increase in the flow direction

- Occurs when obstructions to flow, such as weirs, dams, control structures and natural features, or bends, produce Backwater curves.
- Sub critical flow with $y > y_0 > y_c$ and $Fr < 1 \implies (1 Fr^2) > 0$
- Mild slope channel with $S_e < S_0 \Rightarrow S_0 S_e > 0$

 $\frac{dy}{dx} = \frac{\hat{S_0} - S_e}{1 - F_r^2} \rightarrow \frac{dy}{dx} = \frac{+}{+} > 0$ water surface for the limit values (∞ , y_0) are;

a). $Y \rightarrow \infty$, $V \rightarrow 0$, $Fr \rightarrow 0$, $(1-Fr^2)=1$ and $Y \rightarrow \infty$, $V \rightarrow 0$, $Se \rightarrow 0$, $(S_o - S_e)=S_o$

The water surface meets a very large depth as a horizontal asymptote.

b). $Y \rightarrow Yo$, $V \rightarrow Vo$, $Se \rightarrow So$, $(S_o - S_e) = 0$

The water surface approach the normal depth asymptotically

• M2 – Curve

Water depth will decrease in the flow direction

- Occurs at sudden drop of the channel, at constriction type of transitions and at the canal outlet into pools
- Water surface will be in Region 2
- Sub critical flow with $y_0 > y > y_c$ and $Fr < 1 \implies (1 Fr^2) > 0$
- Mild slope channel with $S_e > S_0 \Rightarrow S_0 S_e < 0$

$$\frac{dy}{dx} = \frac{S_o - S_e}{1 - Fr^2} = \frac{-}{+} = -$$

- water surface for the limit values (Y_0, Y_c) are;

a). $Y \rightarrow Yo$, $V \rightarrow Vo$, $Se \rightarrow So$, $(S_o - S_e) = 0$

The water surface approach the normal depth asymptotically

b). $Y \rightarrow Yc$, $Fr \rightarrow 1$, $(1-Fr^2)=0$

The water surface meets the critical depth line Vertically.

• M3 – Curve

Water depth will increase in the flow direction

- Occurs when supercritical streams enters a mild slope channel.
- The flow is leading from a spillway or a sluice gate to a mild slope forms
- supercritical flow with $y_0 > y_c > y$ and $Fr > 1 \implies (1 Fr^2) < 0$

- Mild slope channel with
$$S_e > S_0 \Rightarrow S_0 - S_e < 0$$

$$\frac{dy}{dx} = \frac{S_o - S_e}{1 - Fr^2} = \frac{-}{-} = +$$

- water surface for the limit values (Y_0, Y_c) are;

a). $Y \rightarrow Yc$, Fr = 1, $(1 - Fr^2) = 0$

The water surface meets the critical depth line Vertically .

b). $Y \rightarrow 0$, $V \rightarrow \infty$, $Se \rightarrow So$, $(S_o - S_e) = \infty$

The water surface approach the bed with some angel, it may be taken as

• S1 – Curve

Water depth will increase in the flow direction

- produced when flow from steep channel is terminated by deep pool that created by obstruction like weirs, or dams,
- At the beginning of the curve the flow changes from supercritical to subcritical flow through a hydraulic
- Supercritical flow with $y > y_c > y_0$ and $Fr > 1 \Rightarrow (1 Fr^2) < 0$
- Step slope channel with $S_e > S_0 \Rightarrow S_0 S_e < 0$

$$\frac{dy}{dx} = \frac{S_o - S_e}{1 - Fr^2} = \frac{-}{-} = +$$

- water surface for the limit values (∞ , y₀) are;

a). $Y \rightarrow \infty$, $V \rightarrow 0$, $Fr \rightarrow 0$, $(1-Fr^2)=1$ and $Y \rightarrow \infty$, $V \rightarrow 0$, $Se \rightarrow 0$, $(S_o - S_e)=S_o$

The water surface meets a very large depth as a horizontal asymptote.

b). $Y \rightarrow Yc$, $Fr \rightarrow 1$, $(1 - Fr^2) = 0$

The water surface meets the critical depth line Vertically

• S2 – Curve

Water depth will decrease in the flow direction

- Occurs at entrance region of Steep Channel leading from a reservoir and a brake grade
- Water surface will be in Region 2
- Sub critical flow with $y_c > y > y_o$ and $Fr > 1 \implies (1 Fr^2) < 0$
- Steep slope channel with $S_e > S_0 \Rightarrow S_0 S_e > 0$

$$\frac{dy}{dx} = \frac{S_o - S_e}{1 - Fr^2} = \frac{+}{-} = -$$

- water surface for the limit values (Y_0, Y_c) are;

a). $Y \rightarrow Yc$, $Fr \rightarrow 1$, $(1-Fr^2)=0$

The water surface meets the critical depth line Vertically.

a). $Y \rightarrow Yo$, $V \rightarrow Vo$, $Se \rightarrow So$, $(S_o - S_e) = 0$

The water surface approach the normal depth asymptotically

- Occurs when free flowfrom a sluice gate
- supercritical flow with $y_c > y_o > y$ and $Fr > 1 \Rightarrow (1 Fr^2) < 0$
- Steep slope channel with $S_e > S_0 \Rightarrow S_0 S_e < 0$

$$\frac{dy}{dx} = \frac{S_o - S_e}{1 - Fr^2} = \frac{-}{-} = +$$

- water surface for the limit values (Y_0, Y_c) are;

 $Y \rightarrow 0$, $V \rightarrow \infty$, $Se \rightarrow So$, $(S_o - S_e) = \infty$

The water surface approach the bed with some angel, it may be taken as

H – Curves

EXAMPLE 2

A rectangular channel 6m wide conveys 100 m3/sec of water. The channel slope is 0.003 for the first reach and then a sudden change in the slope to 0.01 in the second reach. The manning n for the channel is 0.015.Sketch the water-surface profile in the channel.

Assignment 3

 Sketch the flow profile if the slopes in the first and second reaches of the channel in the example are interchanged.

Features of Water Surface Profiles Control Sections

- A control section is defined as a section in which a fixed relationship exists between the discharge and depth of flow
 - Weirs, spillways, sluice gates are some typical examples of structures which give rise to control sections.
 - The critical depth is also a control point. However, it is effective in a flow profile which changes from subcritical to supercritical flow.
 - In the reverse case of transition from supercritical flow to subcritical flow, a hydraulic jump is usually formed by passing the critical depth as a control point.

Analysis of Flow Profile

- To determine the resulting water surface profile in a given case, one should be in a position to analyze the effects of various channel sections and controls connected in series.
 - A break in grade from a mild channel to a milder channel
 - It is necessary to first draw the critical-depth line (CDL) and the normal-depth line (NDL) for both slopes.
 - Since yc does not depend upon the slope for a taken Q = discharge, the CDL is at a constant height above the channel bed in both slopes.
 - The normal depth y_{01} for the mild slope is lower than that of the milder slope (y_{02}) .

- Serial Combination of Channel Sections

- Draw the longitudinal section of the system.
- Calculate the critical depth and normal depths of various reaches and draw the CDL and NDL in all reaches.
- Mark all the controls, both the imposed as well as natural controls.
- Identify the possible profiles.

Reach 1 Slope	Reach 2 Slope	Possible Control(s)	Figure No.	Relative Magnitudes	Active Control	Flow Profiles	
				of Normal Depths and Specific Energies		Reach 1	Reach 2
Mild	Mild	NDC at N	4-3a	$y_{n1} > y_{n2}; E_{n1} > E_{n2}$	NDC at N	M ₂	UF
		CDC at C*	4-3b	$y_{n2} > y_{n1}; E_{n2} > E_{n1}$	NDC at N	Mı	UF
Mild	Steep	CDC at C	4-3c	$y_{n1} > y_{n2}$ $E_{n1} > E_{n2}^{*}$ or $E_{n1} < E_{n2}^{**}$	CDC at C	M ₂	S2
Steep	Steep	NDC at N_	4-3d	$y_{n2} > y_{n1}; E_{n1} > E_{n2}$	NDC at N	UF	S3
			4-3e	$y_{n1} > y_{n2}; E_{n2} > E_{n1}$	NDC at N	UF	S2
Steep	Mild	NDC at N	4-3f	$y_{n2} > y_{n1}; (E_{n1} - \Delta E_{j1}) > E_{n2}$	NDC at N'	UF	M3 &
		NDC at N'	4-3g	$y_{n2} > y_{n1}; E_{n2} > (E_{n1} - \Delta E_{j1})$	NDC at N	J & S ₁	UF

Legend: J = Jump; UF = Uniform flow; $\Delta E_{j1} =$ Energy loss in the jump in reach 1.

*The loss of the specific energy within the M_2 curve is more than the gain of the specific energy within the S_2 curve. **The loss of the specific energy within the M_2 curve is less than the gain of the specific energy within the S_2 curve. * CDC is not shown in Figures 4-3a and 4-3b.

129