Critical flow

Chapter 2

Reminder

- Depth (y) the vertical distance from the lowest point of the channel section to the free surface.
- Stage (z) - the vertical distance from the free surface to an arbitrary datum
- Area (A) - the cross-sectional area of flow, normal to the direction of flow
- Wetted perimeter (P) - the length of the wetted surface measured normal to the direction of flow.
- Surface width (B) - width of the channel section at the free surface
- Hydraulic radius (R) - the ratio of area to wetted perimeter (A / P)
- Hydraulic mean depth (D) - the ratio of area to surface width (A / B)

Central principle of open channel flow

- Conservation of energy

$$
H=z+\frac{p}{\gamma}+\frac{u^{2}}{2 g}
$$

```
where \(H=\) total energy
    \(z=\) elevation of streamline above the datum
    \(p=\) pressure
    \(\gamma=\) fluid specific weight
    \(p / \gamma=\) pressure head
    \(u=\) streamline velocity
    \(u^{2} / 2 g=\) velocity head
    \(g=\) local acceleration of gravity
```


Critical flow

- state at which the specific energy E is a minimum for a given \mathbf{q}
- the corresponding depth is known as Critical depth (y_{c}).

$$
\frac{\bar{u}}{\sqrt{g D}}=\mathbf{F}=1
$$

$$
\theta: x
$$

Fr value also determines the regime of flow

- $\mathrm{Fr}<1$ sub-critical (y>yc)
- upstream levels affected by downstream controls
- $\mathrm{Fr}=1$ critical
- $\mathrm{Fr}>1$ super-critical ($\mathrm{y}<\mathrm{yc}$)
- upstream levels not affected by downstream controls

Methods of estimating Y_{c}

- Algebraic solution
- Semi empirical equations
- Design charts

1. Algebraic solution

$$
\begin{aligned}
E & =y+\alpha \frac{\bar{u}^{*}}{2 g}=y+\alpha \frac{Q^{2}}{2 g A^{2}} \\
\frac{d E}{d y} & =1-\alpha \frac{Q^{2}}{g A^{3}} \frac{d A}{d y}=0
\end{aligned} \quad D=\frac{A}{T}
$$

Substituting $\alpha=1$

$$
\begin{aligned}
1-\frac{Q^{2}}{g A^{3}} \frac{d A}{d y}= & 1-\frac{Q^{2}}{g A^{2}} \frac{T}{A}=1-\frac{\bar{u}^{2}}{g} D=\frac{Q_{1}^{2} T_{c}}{g A_{c}^{3}}=1 \\
& \frac{\bar{u}^{2}}{2 g}=\frac{D}{2} \\
& \frac{\bar{u}}{\sqrt{g D}}=\mathbf{F}=1
\end{aligned}
$$

Rectangular channels

$q=\frac{Q}{b} \longrightarrow \bar{u}=\frac{q}{y}$
and for a rectangular channel, $y=D$. With these definitions, be rearranged to yield

$$
y_{c}=\left(\frac{q^{2}}{g}\right)^{1 / 3}
$$

Substitution of the above definitions

$$
\frac{\bar{u}_{c}^{2}}{2 g}=\frac{1}{2} y_{c}
$$

And using the definition of specific energy,

$$
y_{c}=Z_{k} E_{c}
$$

where $E_{c}=$ specific energy at critical depth and velocity.
B) Triangular Channel

For triangular channel having side slope of m or ($\mathrm{H}: \mathrm{V}=\mathrm{m}: 1$)

The specific energy at critical water depth,

$$
\begin{aligned}
& E_{c}=y_{c}+\frac{V_{c}^{2}}{2 g}=y_{c}+\frac{Q^{2}}{2 g A_{c}^{2}} \\
& E_{c}=y_{c}+\frac{g m^{2} y_{c}^{5}}{2 \times 2 \times g \times m^{2} \times y_{c}^{4}} \\
& E_{c}=y_{c}+\frac{y_{c}}{4}=1.25 y_{c}
\end{aligned}
$$

$$
A=m y^{2} \quad \text { and } \quad T=2 m y
$$

$$
\frac{Q^{2} T_{c}}{g A_{c}^{3}}=1
$$

$$
\frac{Q^{2}}{g}=\frac{A_{c}^{3}}{T_{c}}=\frac{m^{3} y_{c}^{6}}{2 m y_{c}}=\frac{m^{2} y_{c}^{5}}{2}
$$

$$
y_{c}=\left(\frac{2 Q^{2}}{g m^{2}}\right)^{1 / 5}
$$

$$
\begin{aligned}
& F_{r}=\frac{V}{\sqrt{g \frac{A}{T}}}=\frac{V}{\sqrt{g \frac{m y^{2}}{2 m y}}} \\
& F_{r}=\frac{V \sqrt{2}}{\sqrt{g y}}
\end{aligned}
$$

C) Circular Channel

Let D be the diameter of a circular channel and 2θ be the angel in radians subtended by the water surface at the center.

$$
\begin{aligned}
& \text { A = area of the flow section } \\
& =\text { area of the sector }+ \text { area of triangular portion } \\
& A=\frac{1}{2} r_{o}^{2} 2 \theta+\frac{1}{2} 2 r_{o} \sin (\pi-\theta) r_{o} \cos (\pi-\theta) \\
& A=\frac{1}{2} r_{o}^{2} 2 \theta+\frac{1}{2} 2 r_{o}^{2}(2 \sin (\pi-\theta) \cos (\pi-\theta)) \\
& A=\frac{1}{2} r_{o}^{2} 2 \theta-\frac{1}{2} 2 r_{o}^{2}(\sin 2 \theta) \\
& A=\frac{1}{2} r_{o}^{2}(2 \theta-\sin 2 \theta) \\
& A=\frac{1}{8} D^{2}(2 \theta-\sin 2 \theta) \quad T=D \sin \theta
\end{aligned}
$$

For critical flow state

$$
\frac{Q^{2}}{g}=\frac{A_{c}^{3}}{T_{c}}=\frac{\left[\frac{D^{2}}{8}\left(2 \theta_{c}-\sin 2 \theta_{c}\right)\right]^{3}}{D \sin \theta_{c}}
$$

2.Semi empirical Equations of estimating Y_{c} (straub 1982)

Channel type	Equation for y, in terms of $\psi=a Q^{2} g$	
Rectangular	${\frac{7}{b^{2}}}{ }^{1}$	
Trapezoidal	$0.81 \cdot \frac{\psi}{z^{0.5} b^{122}}:-\frac{b}{30 z}$	Range of applicability $\begin{aligned} & \quad 0.1<\frac{Q}{b^{2 /}}<0.4 \\ & \text { For } \frac{Q}{b^{2 \hbar}}<0.1 \end{aligned}$ use equation for rectangular channel
Triangular	$\frac{2 \psi}{z^{2}}{ }^{0.20}$	
Parabolic	$(0.84 c \psi)^{0.35}$	Perimeter equation $y=c x^{2}$
Circular	$\frac{1.01}{d_{0}^{\text {0/3 }}} \psi^{\text {ass }}$	Range of applicability $0.02 \leq \frac{y_{c}}{d_{0}} \leq 0.85$

3.Curves for estimating critical depth

Example 1

For a trapezoidal channel with base width $b=6.0 \mathrm{~m}$ and side slope $z=2$, calculate the critical depth of flow if $Q=17 \mathrm{~m}^{3} / \mathrm{s}$

Solution

$$
\begin{aligned}
& A=(b+z y) y=(6.0+2 y) y \\
& T=b+2 z y=6+4 y \\
& D=\frac{A}{T}=\frac{(3+y) y}{3+2 y}
\end{aligned}
$$

and

$$
\bar{u}=\frac{Q}{A}=\frac{17}{2(3+y) y}
$$

Substitution of the above

$$
\frac{[17 /(6+2 y)]^{2}}{g}=\frac{(3+y) y}{3+2 y}
$$

Simplifying,

$$
7.4(3+2 y)=[(3+y) y]^{3}
$$

By trial and error, the critical depth is approximately

$$
y_{c}=0.84 \mathrm{~m}
$$

and the corresponding critical velocity is

$$
u_{c}=\frac{17}{[6+2(0.84)] 0.84}=2.6 \mathrm{~m} / \mathrm{s}
$$

Section factor for critical flow

$$
Z=A \sqrt{\frac{A}{T}}=A \sqrt{D} \Rightarrow Z^{2}=A^{2} D \Rightarrow D=\frac{Z^{2}}{A^{2}}
$$

For critical flow $\quad \frac{V^{2}}{2 g}=\frac{D}{2}$

$$
\begin{gathered}
\frac{V^{2}}{2 g}=\frac{D}{2}=\frac{z^{2}}{2 A^{2}} \Rightarrow Z^{2}=\frac{V^{2} A^{2}}{g} \Rightarrow z=\frac{V A}{\sqrt{g}} \Rightarrow z=\frac{Q_{c}}{\sqrt{g}} \\
Q_{c}=Z_{c} \sqrt{g} \\
Q_{c}=Z_{c} \sqrt{\frac{g}{\alpha}} .
\end{gathered}
$$

Section factor

$$
Z=b y^{1.5}
$$

$$
Z=\frac{\sqrt{2}}{2} m y^{2.5}
$$

$$
Z=\frac{[y *(b+m y)]^{\cdot 5}}{\sqrt{b+2 m y}}
$$

First Hydraulic Exponent (M)

- In many computations involving a wide range of depths in channel, such as in the GVF computations, it is convenient to express the variation of Z with y in an exponential form.
- The (z-y) relationship

$$
Z^{2}=C_{1} y^{M}
$$

- In this equation
- $\mathrm{C}_{1}=$ a coefficient and
- $M=$ an exponent called first hydraulic exponent.
- It is found that generally M is a slowly -varying function of the aspect ratio for most of the channel shape

$$
M=\frac{y}{A}\left[3 T-\frac{A}{T} \frac{d T}{d y}\right]
$$

Example 3

Obtain the value of the first hydraulic exponent (M) for
a) Rectangular channel
b) Exponential channel where the area
$A=K^{1} y^{a}$

The introduction of the concepts of specific energy and critical flow makes it possible to discuss the reaction of the flow in a channel to changes in the shape of the channel and hydraulic structures for different steady-flow regimes.

At any cross section, the total energy is

$$
H=\frac{\bar{u}^{2}}{2 g}+y+z
$$

