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Introduction 
The discussion in the previous chapter assumes that the channel boundary is rigid and 
that the fluid moving through the channel is simply water.  As we noted in Chapter 3, 
however, although there are such channels in nature, most are alluvial with deformable 
boundaries and they conduct much more than just water.  Even at low discharges most 
natural rivers carry a complex fluid consisting of water and sediment of various kinds  as 
well as organic litter and organisms, both dead and alive!  Some of this material is 
carried near the channel boundary while some is carried within or on the surface of the 
flow;  some is submerged, some floats and some is dissolved. 
Material moved by the flow, derived locally and from upstream sources, constitutes 
sediment transport.  Some transported sediment may pass through a reach of channel 
with the flow as sediment throughput while some may be stored on the boundary for a 
period or residence time before moving on again. The relationship between the 
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boundary configuration and the flow in an alluvial channel is very complex and involves 
a discontinuous process of sediment exchange between the flow and the boundary.  At 
certain times sediment will move mainly from the flow to the boundary, building up the 
bed and banks through the process we call deposition.  At other times it will move 
mainly from the boundary to the flow through the process we call erosion.  Short-term 
boundary adjustments (hours to days) are often termed cut and fill while longer-term 
changes (months to years) are termed degradation and aggradation.  At still other times 
these sediment exchanges may be balanced, in which case the boundary will be stable 
and show no tendency to shift in position.   
 
Sediment transport modes in rivers 
Sediment is transported by the flow in one of three principal modes: as bedload 
transport, suspended-load transport or as dissolved-load transport.  Although  the 
dissolved load obviously is very important in sediment budget studies where interest, for 
example,  might be in the total mass of material being exported from a river system, in 
the context of river geomorphology it is much less important than the particulate load.  
Some scientists find it useful to think in terms of an additional mode of transport,  
transitional between that moved as  bedload and that forming the suspended load, 
called the saltation load.   Although it will be convenient at times to use this term it does 
not represent a separate process; our focus here will be on suspended-load and 
bedload transport. 
Suspended-sediment transport refers to the particles or grains of sediment moved 
along a river within and wholly supported by the flow.  In order for sediment grains to 
remain in suspension the upward-directed forces associated with turbulence in the flow 
must be strong enough to overcome the downward force of gravity acting on the grains. 
As physical reasoning implies, the suspended-sediment load consists largely of the finer 
fraction, the fine sand, silt and clay, of the sediment available to the river.    Because 
turbulence is generated at the channel boundary and is most intense there, suspended 
sediment tends to have higher concentrations and involve coarser material near the 
boundary and both sediment size and concentration decline as we move up through the 
water column towards the surface of the flow.  As we will see later, however, this 
general pattern can be distinctly modified in some rivers by the presence of sediment-
transporting flow structures such as vortices. 
In most rivers the bulk of transported sediment, often 90 per cent or more,  moves as 
suspended-sediment load.   
The suspended load also includes the wash load of the flow.  Wash load differs from the 
rest of the suspended load in that its suspension is not dependent on the forces of 
turbulence associated with flow.  Rather it can be kept in suspension for a very long 
time by the fine-scale turbulence associated with molecular agitation (or Brownian 
motion) of the water.  This motion continues even if the flow ceases as it might do where 
a river enters a slough or lake. The wash load is confined to the finest component (clay) 
of the available sediment. 
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Although the distinction here between bedload and suspended-sediment loads rests on 
fundamental differences in the physics of transport, it is important to keep in mind that 
any one grain size of sediment may at various times and places in the channel be 
transported in either of these modes.  As the vigour of the flow increases, as it might 
through a channel contraction, a grain initially moving as bedload may become part of 
the suspended load where the turbulence intensity is elevated, and again return to the 
bed where the flow later expands and becomes more placid.  Thus the mode of 
transport does not correspond in any precise way with a grain size.  Sand may move as 
bedload in a small stream and as suspended-sediment load in a larger more vigorous 
river.  Similarly, material found in the bed of a channel - the bed material - was not 
necessarily transported there as bedload nor does it define the size of material moved 
as bedload.   
If a wide range of grain sizes is available 
to the flow some sediment will occupy a 
transitional phase and may alternate 
between bedload and suspended load or 
may simply be intermittently suspended.  
Intermittent suspension, or saltation,  
involves the disturbance of a grain on the 
bed (often caused by the impact of 
another grain) in such a way that it rises 
quickly and steeply into the flow to a 
peak height and then returns to the bed 
again at a slower rate.  Thus the 
trajectory of such intermittently suspended grains in the flow is distinctively asymmetric 
(Figure 6.1).    
Bedload transport refers to the particles or grains of sediment moved along the bed of 
a river which are at all times wholly supported by the bed itself.  In other words, bedload 
is bed material which moves by sliding and rolling, largely as a result of the shear stress 
exerted on the boundary by the flowing water.  As you might expect, bedload consists 
largely of the coarser fraction, the sand and gravel, of the sediment available to the 
river.  Bedload transport in many rivers commonly does not occur or is negligible at low 
flow,  but  as flow increases,  the shear stress at the boundary eventually will exceed the 
threshold or critical conditions for bed particle movement and bedload transport will 
become active.  At intermediate flows bedload transport  often is confined to the thalweg 
of the channel (the locus of deepest flow along the channel) where the boundary shear 
stress is greatest.   
Bedload transport typically moves a small amount of sediment relative to the total 
sediment load and generally is less important than the suspended-load component in 
the context of sediment budgets.  In gravel-bed rivers, for example, bedload commonly 
constitutes less than ten per cent of the total load.  But as a geomorphic agent bedload 
transport exerts a fundamental control on the form and pattern of river channels and in 
this context is far more important than the suspended or dissolved sediment loads.    

        6.1: The asymmetric trajectory of  
            sediment grains in intermittent  
            suspension (saltation) 

water surface

Flow direction

river bed
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Dissolved load transport involves that component of the total load carried in solution.  
From a geomorphic perspective it is generally unimportant because it exerts little if any 
control over the form and pattern of the channel.  Nevertheless, the total mass of 
material moved by rivers in this way can be a major component of the sediment budget 
of a drainage basin.  It can be particularly significant in basins formed in highly soluble 
rocks such as limestones and marls.  Indeed the geomorphology of karst landscapes, 
much of it below the surface of the ground, is primarily the product of dissolved load 
transported by surface and subterranean rivers.   
     
Suspended-sediment transport 
 
 The physics of sediment suspension 
  Fluid drag and settling velocity 
Sediment particles remain suspended in flowing water because the gravitational forces 
causing them to fall towards the bed are at times exceeded by the upward-acting lifting 
forces induced by the flow.  In contrast, particles denser than water will always fall 
through standing water because the gravitational forces are unopposed by flow-induced 
lifting forces.  Gravity will cause a  particle to quickly accelerate towards the bed until 
the gravity force is opposed equally by the forces resisting movement, a state of 
balance in which the particle is said to have reached its terminal fall velocity or settling 
velocity.  It will be very useful for us to consider the processes governing the settling 
velocity of sediment grains in standing water because the forces involved are at the 
heart of the suspension phenomenon.   
In much of the discussion to follow the sediment grains are considered to be spheres.  
This assumption is reasonable, because many natural particles in rivers do tend to be 
spherical, and convenient, because this simple symmetrical geometry allows us to more 
easily isolate the forces involved in settling.  Later when we have the behaviour of 
spheres firmly pinned down we can relax this assumption and consider some of the 
complications introduced by less regular particle shapes.   
Meanwhile we must revisit some of the basic concepts of fluid deformation that we 
encountered in Chapter 5.  
The pattern of flow around settling spheres, shown in terms of streamlines in Figure 6.2, 
is of two basic types.  In the first case, settling of the particle is controlled by the 
viscosity of the fluid and flow around the falling sphere is laminar.  In the second, 
settling velocity of the particle is limited by inertial rather than viscous forces, and flow 
around the falling sphere is turbulent.  The flow domains for these two settling 
conditions can be defined in terms of a particle Reynolds number (Rep) which is exactly 
analogous to the Reynolds number we considered earlier in Chapter 5.  But in this 
context the characteristic length is not flow depth but rather is particle diameter (D) and 
flow velocity becomes the fall velocity (ω), thus:  
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    Rep = inertial forces
viscous forces   = ωD

ν
.....................................(6.2)  

When Rep < 0.1 grain settling is constrained overwhelmingly by viscous resistance.  
This condition is met only when the grains are small (in the silt-clay range; D<0.0625 
mm diameter) so that inertial effects are negligible and the grain falls sufficiently slowly 
that laminar flow occurs throughout and the streamline pattern is symmetrical about the 
vertical axial streamline which meets and leaves the sphere at two stagnation points 
where velocity is zero (Figure 6.2).  At these stagnation points shear stress is also zero 
but, as implied by the Bernoulli equation, surface pressure at these points must be at a 
maximum; a typical pattern of shear stress and pressure around a sphere falling at low 
particle Reynolds number is depicted in Figure 6.2. 
The resistance to flow encountered by an object moving through a fluid is known as the 
drag force (FD) and is the sum of all forces opposing the movement. Physical reasoning  
suggests that,  in  this  case of a sphere falling in  a viscosity-dominated low Reynolds 
number environment, the drag force will depend simply on the size of the sphere, the 
fluid viscosity, and the settling velocity.  Dimensional analysis yields (see Chapter 1) the 
general relation:    
     FD = kµDω  ...........................................................(6.3) 
 
in which the constant  k can be shown by experiment to be equal to 3π.   In fact, the 
British physicist Sir George Stokes (1819-1903) working early last century demonstrated 
analytically that the k = 3π  so that the particular form of equation (6.3) can be taken as: 
 
     FD = 3πµDω  .........................................................(6.4) 
We can now derive an expression for the settling velocity (which is constant and 
therefore implies zero net force acting on the sphere) under these circumstances by 
equating the impelling force - the submerged weight of the sphere - to the drag force in 
equation (6.4).  The impelling force for a sphere is specified by Fg = ma where the mass 
is the product of the sphere volume ( 1

 6πD3), the buoyancy-discounted density (ρs-ρw) 

and a is gravitational acceleration (g).  Thus we can state that,  since Fg = FD, 
 

                1
 6πD3(ρs-ρw)g  = 3πµDω 
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6.2: Flow patterns around a settling sphere (from Middleton & Southard, 1978) 

 
 
Solving for ω and simplifying yields the so-called 
Stokes Law: 
 

 ω =D2(ρs −ρw)g
18µ  .................................(6.5) 

a relation which is graphed in Figure 6.3  Thus, 
for viscosity-dominated settling, fall  velocity of a 
spherical grain varies with the square of the 
particle diameter.   
 If  we  assume a water temperature of 20oC and  
a  density  of  quartz  for  the  sphere (ρs = 2 650 
kgm-3),  from Table 3.1 we get  water density ρw 
= 998.2 kgm-3 and viscosity  µ = 0.001002 Nsm-2.  
Using these data equation (6.5) simplifies to: 
   ω ≅ 900 000 D2  ……………....(6.6) 
 

For grain diameter D = 0.0001 m (0.1 mm) 

6.3:  Settling   velocities  for quartz 
spheres  in relation  to  Stokes Law  
and  the Impact Law (from Richards, 
1982) 



Chapter 6: Sediment transport 

6.7 

equation (6.6) predicts a fall velocity ω = 0.009 ms-1 (0.9 cms-1), a result consistent with 
experiment (see Figure 6.3).  For a  grain diameter D = 0.01 m (1.0 cm),  however,   
equation  (6.6)  predicts  a  fall  velocity  ω = 90.0 ms-1 (9000 cms-1), absurdly higher 
than experience indicates is reasonable.  Clearly, Stokes Law is beyond its domain in 
this large grain-size range. 
An application of Stokes law is illustrated in Sample Problem 6.1. 
 

Sample Problem 6.1:  

Problem : A quartz silt particle (D50 =0.05 mm) is carried in suspension by a stream which flows into a 58 
m-deep lake where it settles to the bottom.  If the freshwater lake has a temperature of10oC, calculate the 
length of time required for the sediment particle to settle from the lake surface to the bottom. 

Solution:  We need to determine the settling velocity from Stokes law ω =
D2 (ρs − ρw )g

18µ

 

 
 

 

 
 .  We know  

from Table 2.1  that  µ= 1.307x10-3 Nsm-2, ρs=2650 kgm-3 and ρw =1000 kgm-3.  Given g = 9.806 ms-2 and 

D=  5x10-5 m, Stokes law yields: ω =
(5x10−5)2(2650 − 1000)9.806

18(1.307x10−3 )
= 1.719x10−3ms−1 .  The settling time, t, is 

therefore  t = 58
1.719x10−3

= 33741s .  In other words, in the absence of interfering currents, the particle 

would take about 9 hrs to settle to the bottom of the lake.  
 
The reason for the failure of Stokes Law to predict accurately the fall velocity of grains in 
excess of about 0.1 mm diameter is illustrated in Figure 6.2.  As grain size increases 
above this value the inertial forces become so great that the now negligible viscous 
forces are no longer able to constrain the settling behaviour of the particle. The particle 
Reynolds number for these conditions increases to values many orders of magnitude 
greater than one.  This corresponds to the flow around the sphere becoming fully 
turbulent and separating from the leeward side creating a separation bubble or wake 
behind the particle as it falls.  Within the wake zone the highly sheared flow at the 
separation boundary drives a complex pattern of eddying.  In certain circumstances 
instability along the line of separation can result in margins of the wake being folded into 
the flow (wake shedding) and eddies can be ejected in a remarkably periodic fashion 
forming a so-called von Karman vortex street.  Fluid pressure within the wake is much 
lower than that at the leading surface of the sphere and this “suction” behind the sphere 
acts to retard the fall velocity.  The importance of eliminating this low-pressure wake 
zone in many practical applications such as aircraft and automobile design is 
recognized in the process of  “streamlining”, leading to cigar-shaped forms which fill the 
potential lee-side separation bubble and thereby reduces the overall resistance to flow 
(drag). 
Obviously we need to take a different approach to specifying the governing equation for 
fall velocity under these higher Reynolds number flows where inertia of the water is the 
dominating resisting force.  Following Rubey (1933) we can change our frame of 
reference and conceptualize the constant fall-velocity behaviour as one in which the 
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spherical grain is held stationary in the flow by the impact of a rising column of water.  
An impact force, equal to the rate of momentum transfer per unit time from the water to 
the sphere is provided by the rising cylindrical column of water which has a cross-
sectional area equal to the projected area of the falling sphere ( π4 D

2 ).  In unit time the 

water-column mass is the product of the volume ( π4 D
2ω) and fluid density (ρw) and 

momentum is the product of the water mass and the fall velocity (ω) so we can say that 
the ʻimpact  forceʼ (FI) is given by: 
     FI = π4 D

2ρwω
2  ......................................................(6.7)   

For a constant fall velocity we can equate FI and the submerged weight of the sphere 
[Fg= 1

 6πD3(ρs-ρw)g] to give:     

    1
 6πD3(ρs-ρw)g = π4 D

2ρwω
2                   

 

Solving for ω and simplifying  
yields the Impact Law:             

ω =  
2
3
Dg(ρs − ρw)

ρw
 .....................................(6.8) 

Again, for the conditions specified above to develop equation (6.6), equation (6.8) 
similarly can be simplified to give: 
      ω = 3.3 D ..................................................(6.9) 
For example, a grain size D = 0.01 m (1.0 cm), equation  (6.9)  predicts a fall velocity ω 
= 0.33 ms-1 (33.0 cms-1), a value consistent with observation (see Figure 6.3). 
At the intersection of Stokes and the Impact Laws there is a transitional phase 
corresponding to the sand-size range (0.06-2 mm) in which viscous and inertial effects 
are both important.  Here a composite law applies (derived by balancing Fg with the sum 
of Fd and Fi; see Rubey, 1933): 

   1
 6πD3(ρs-ρw)g  = 3πµDω +  π4 D

2ρwω
2 

  or          D2(ρs-ρw)g  = 18µω +  32Dρwω
2...........................................(6.10) 

and is graphed in Figure 6.3 (equation (6.10) is a quadratic but easily solved 
numerically; see Appendix 1.1).  
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Sample Problem 6.2:  

Problem : A quartz sand particle (D50 =5 mm) is carried in suspension by a stream which flows into a 70 
m-deep lake where it settles to the bottom.  If the freshwater lake has a temperature of10oC, calculate the 
length of time required for the sediment particle to settle from the lake surface to the bottom. 

Solution:  We need to determine the settling velocity from Impact law ω =

2
3
Dg(ρs − ρw )

ρw

 

 

 
 
 

 

 

 
 
 

.  We know  

from Table 2.1  that ρw =1000 kgm-3 and for quartz grains, ρs =2650 kgm-3 . Given g = 9.806 ms-2 and D=  

0.005m, the Impact law yields: ω =

2
3
Dg(ρs − ρw )

ρw

 

 

 
 
 

 

 

 
 
 

  The settling time, t, is therefore  

t =
58

1.719x10−3
= 33741s .  In other words, in the absence of interfering currents, the particle would take 

about 9 hrs to settle to the bottom of the lake.  

 
Equations (6.6) and (6.9) specify the fall velocity of quartz spheres in 20oC pure water.  
It is important not to forget, however, that in the Stokes Law domain, fluid viscosity is a 
very important control which can vary significantly in nature.  Viscosity is very 
dependent on water temperature, doubling over the 20o-0oC temperature range (see 
Table 2.1).  That is, since fall velocity is directly dependent on the inverse of viscosity in 
Stokes Law, doubling the viscosity will halve the fall velocity. Similarly, apparent 
viscosity can be significantly higher than pure water if fine sediment is  suspended in the 
fluid.  For example, experiments by Simons et al (1963) show that the increased 
viscosity of a 10% bentonite solution is such that it reduces fall velocity of grains by 30-
80%, depending on grain size, compared to what they are in pure water.  Because 
suspended-sediment concentration is highest near the bed of a river, falling grains 
experience an increase in apparent viscosity and their fall velocity is thus slowed as 
they approach the bed.       
Nevertheless, the predominant source of  error in the fall velocity predicted for natural 
sediment grains by these fall-velocity laws, particularly the Impact Law, is the degree to 
which the physical system is non-conservative.  If some of the energy of a falling particle 
ʻleaksʼ from the balance equation and is used to power turbulence rather than to oppose 
simple inertial and viscous forces, the particle will fall more slowly than indicated by a 
fully conservative balance equation.  The principal culprit in this problem is grain shape.  
Non-spherical grains, typical of natural sediments,  during settling cause streamline 
distortions, complex flow separation and turbulence involving forces which defy 
characterization by any sort of analytical approach. 
A rather more general, but less theoretically complete, approach to this question makes 
use of an empirical drag coefficient, CD.  Returning to the Rubey perspective of  settling 
in which a rising cylinder of water supports a stationary particle, we can say that  the 
reduction in the ambient or free-stream velocity, ω,  to zero at the leading stagnation 
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point on any particle involves a loss of kinetic energy (KE= mω
2

2 ).  Again, in unit time, m 
= Aωρw  so that   
    KE= Aωρwω2

2 =
ρwω

3A
2  ....................................................(6.11) 

where A is the projected area of the particle.  Energy and work are interchangeable 
concepts and Equation (6.11) also can be interpreted as specifying the rate of doing 
work, or power, P =W

t .   Also, by definition, W = Fs (force x distance), and st = ω , so in 
this case of a settling particle,  P = FDω (where FD is the drag force acting on the grain) 
leading to:  
                FDω =

ρwω
3A

2    
 

       or    FD = ρwω
2A

2   .......................................................(6.12) 

In recognition of the effect of particle shape on FD, a drag coefficient, CD, is introduced 
in equation (6.12) so that   

FD= CD
ρwω

2A
2 ......................................................(6.13) 

Values for the drag coefficient CD have been determined by experiment and typical 
trends are shown for a range of particle Reynolds number in Figure 6.4.   
Stokes Law for spheres also is shown in Figure 6.4 in terms of Reynolds number, 
derived as follows.  Equation (6.13) is written for spheres (where A = π

D
2
 
 
 

 
 
 
2

=
πD2

4 ) and 

FD for viscous settling (FD = 3πµDω) is introduced from equation (6.4) so that: 
 
3πµDω = CD

ρwω
2πD2

8 .   Simplifying and rearranging yields: 

 CD =
24

ρwωD
µ

=
24
Rep

.............6.14) 

The CD/Rep trend in Figure 6.4 
is quite analogous to the ƒ/Re 
trend in the Stanton diagram 
in Figure 3.20.  At low particle 
Reynolds number the drag 
experienced by a settling 
particle is a single-valued 
function of Rep (Equation 
(6.14)).  Here the flow about 
the particle is viscous or 
laminar and the drag 
coefficient is very large but 6.4: The relationship between drag coefficient (C  ) 

and the particle Reynolds number (       ) for the 
settling velocity of variously shaped   particles 
(after Middleton and Southard, 1978)

D
ρu D
µ
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declines by an order of magnitude (from CD ≅ 100 to 10) in the range 0.1<Rep<1.0.  As 
Reynolds number increases above Rep ≅ 1.0, the drag continues to decline but at a rate 
less than that predicted by Stokes Law.  For cylinders flow separation begins at about 
Rep = 6.  In this phase, leeside eddying, vortex shedding and general turbulence begin 
to markedly influence particle drag.  For the domain in which Rep>100, drag coefficients 
change little with increasing values of Reynolds number.  Here flow around the settling 
particle is fully turbulent and drag is essentially independent of the viscous forces and 
therefore the Reynolds number.  In this zone of Rep-independent drag coefficients, 
variations in CD occur only in response to changes in particle shape;  highly streamlined 
bodies have low drag coefficients in the region of 0.1, roughly spherical bodies have 
values of about 0.5 and extremely blunt objects, such as a disk oriented normal to the 
flow, may have drag coefficients as high as 1.0 or more. 
Fall velocities of markedly non-spherical particles, particularly platy or disklike objects, 
may be even lower than their drag coefficients suggest because of instability in their 
settling motion.  For example, photographic studies (Stringham et al, 1969) show that, 
while disks fall with a steady and flat attitude at low particle Reynolds number, as Rep 
increases the falling particle develops a regular lateral oscillation (like a slowly falling 
leaf), then an inclined gliding motion eventually coupled with tumbling.  The particle fall 
trajectory can involve a significant lateral component and the vertical fall velocity is 
distinctly less than is the velocity along the trajectory actually followed.  Oscillatory 
behaviour of this sort associated with the strongly periodic stresses involved in eddy 
shedding behind blunt objects in turbulent flow are common.  Everyday examples of this 
effect are revealed in the humming of wires and cables in the wind and the vibration of 
partly submerged tree limbs in  flowing rivers.  
All these complications relating to fall velocity have led sedimentologists to think in 
terms of the true diameter of a particle (the measured b-axis length) and the effective 
diameter (or  equivalent, apparent, sedimentation or hydraulic diameter ) of a particle 
(the diameter of a same-density sphere with the same fall velocity), on the other.  It is 
reasoned that particles with the same sedimentation diameter (fall velocity) are subject 
to the same kind of transport and sedimentation behaviour regardless of the true particle 
diameter. 
  The diffusion model of sediment suspension 
As we noted earlier, sediment grains are suspended in the flow above the bed when the 
vertical component of turbulence equals their fall velocity.  Actually, it has been argued 
(see Bagnold, 1956) that, even in isotropic turbulence (in which turbulence scales and 
intensity are uniform throughout the flow), and therefore where the strength of the 
upward velocity component is the same as the downward component, suspension can 
be maintained.  In this case of isotropic turbulence it is envisaged that some grains will 
diffuse away from the region of high concentration near the bed by the grain collisions 
and ʻnear missesʼ which together give rise to a poorly understood net upward force 
termed the intergranular dispersive stress.  It would appear that some such mechanism 
must be at work since it has been shown that, even in laminar flow, grains can be 
dispersed from near the bed to higher positions in the flow (Francis, 1973). 
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In conditions of isotropic turbulence the downward (or negative direction) movement of 
grains from a point in the flow where there is a grain concentration C of uniformly sized 
grains, is described by: 
   rate of settling per unit volume of fluid = -ωC ..........................(6.15) 
If we assume that the upward vertical movement of particles is a diffusion process like 
many others in which the diffusion rate is proportional to the concentration gradient 
(Fickʼs Law), we can also say that: 

       rate of turbulent diffusion per unit volume = εs
dC
dy

 

 
 

 

 
 .......................(6.16) 

Equating equations (6.15) and (6.16) gives an equation describing the vertical 
distribution of the concentration of suspended particles: 

      ωC + es
dC
dy

 

 
 

 

 
 = 0  ...............................................(6.17) 

The diffusion coefficient, εs, should be constant for any given field of isotropic turbulence 
and we might expect it to be directly related to the corresponding diffusion coefficient for 
fluid momentum (ie, the eddy viscosity, ε; see equation 5.12), an expectation that has 
been confirmed experimentally (Rouse, 1939). 
Of course, in rivers we are dealing with shear flows where we have anything but 
isotropic turbulence and the key to developing the idea of equation (6.17) for this case is 
to specify how εs varies in the y direction above the bed. 

Assuming  the  direct  proportionality,   εs= βε  (and so ε = εs
β

),  and   recalling  equation   

(5.8),  τ = ερ dvdy , we can say that: 

                τ =
εsρ
β

dv
dy
 

 
 

 

 
 ..............................................(6.18)  

where β is a coefficient probably close to unity. 

Recalling equation (4.5),  we  can  say  that   τo  =  γds,   where  τo  =  boundary shear 
stress and d = the total depth of flow.  Within uniform flow the shear stress at any height  
y  above  the  bed  is  a  linear function of  the depth of overlying  water so that  τ = γ(d-
y)s, from which it follows (by dividing τ = γ(d-y)s by τo  = γds) that: 

         
 τ = τo 1−

y
d

 
 
 

 
 
 ....................................(6.19) 

Combining equations (6.18) and (6.19) yields: 

            εsρ
β

dv
dy
 

 
 

 

 
 =τo 1− yd

 
 
 

 
 
  
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which can be rearranged to give           εs =

β
τo
ρ

1− y
d

 
 
 

 
 
 

dv
dy

............................….............(6.20)    

Recalling that shear velocity,  V* = τo
ρ

, and introducing from equation (5.14) the “law of 

the wall”  ( dvdy =
V*

Ky ),  equation (6.20) becomes     

     εs = βV* 1− yd
 
 
 

 
 
 Ky  .................................................(6.21) 

Equation (6.21) describes how εs varies with height y above the bed and provides the 
process link needed to solve equation (6.17).  Combining these yields: 

     ωC + βV* 1− yd
 
 
 

 
 
 Ky dC

dy
 

 
 

 

 
 = 0  

which can be rearranged to give  dCC =
−ω dy

βKV* 1− y
d

 
 
 

 
 
 y

...........……………………..........(6.22) 

Integrating equation (6.22) yields: 

     lnC =
ω

βKV*
dy

1− y
d

 
 
 

 
 
 ya

d

∫  

or         C
Ca

=
d − y
y

 

 
 

 

 
 

a
d − a
 
 
 

 
 
 

 

 
 

 

 
 

z

 where z = ω

βKV*
   ......……...(6.23)  

 
Equation (6.23) is known as the Rouse equation and the exponent z as the Rouse 
Number, after Professor Hunter Rouse, the pioneering American hydraulic engineer who 
first derived the equation in 1937. 
The Rouse equation gives the concentration of sediment, C, of a given settling velocity, 
ω, at height y above the bed, relative to the concentration at height a above the bed; the 
graph of this equation is shown in Figure 6.5.  Thus, equation (6.23) does not predict an 
absolute suspended-sediment concentration but describes the vertical distribution given 
some known concentration Ca at height y = a (usually obtained as close to the bed as 
possible).     
This classical treatment of sediment suspension outlined above is consistent with 
general observation.  Other things constant, as the settling velocity (and Rouse Number 
decreases) the vertical distribution of sediment changes from being markedly 
concentrated near the bed (at z >1.0) to quite uniform with respect to depth  (at z < 132 ).  

Similarly, for sediment of a given settling  velocity we see the same  trend produced as 
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the vigour of the flow (reflected in V*) 
increases.  These qualitative trends 
certainly are consistent with general 
observation in rivers.  
The quantitative predictions of the 
Rouse equation have been 
confirmed experimentally by some 
researchers but disputed by others 
(see the review by Vanoni, 1975) .  
One of the sticking points in the 
diffusion theory is the assumption of 
the von Karman constant K = 0.4.  
For example it is widely accepted 
that close to the bed the  high 
concentration of sediment and the 
resulting dispersive stresses there 
must lead to changes in the structure 
of turbulence which renders the 
Rouse equation an over-
simplification.  Nevertheless, over 
most of the flow depth (and in the 

only zone we can measure!) the Rouse equation seems to offer a reasonable 
description of the suspension process in some rivers. 
The italicized caveat above is very important because it would appear that, in certain 
other rivers, particularly those transporting sand and fine gravel through dunes on the 
bed, the process of sediment suspension is fundamentally different to that implied by 
the classical diffusion approach.  It is commonly observed in these rivers that flow 
structures (eddies) shed from the bed and convected to the surface where they appear 
as “boils”, carry large amounts of sediment to the upper parts of the water column.  For 
example, Rood and Hickin (198x) measured concentrations and grain size of sediment 
within surface boils on Squamish River in British Columbia that were an order of 
magnitude higher than those in the ambient or interboil flow.  Thus it appears that here 
sediment is pumped from the bed along discrete well-defined vertical transportation 
corridors to the surface from which the sediment then rains out as a cloud of settling 
particles as the energy of the boil is dissipated.  Transient sediment distributions 
associated with an eddying event clearly will be very different to those described in 
Figure 6.5.  On Squamish River it is quite clear that almost all of the suspended load is 
transported by the river as advected sediment suspended temporarily by eddies shed 
from the bed.  In spite of its obvious importance, however, very little is known about this 
suspension mechanism and it deserves much greater attention by river scientists. 
   
  
 

6.5: Graph of the Rouse equation 
(6.23) for the vertical distribution of 
suspended-sediment concentration 
for a/d=0.05 and several values of 
the parameter z (from Vanoni, 1975)
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               Direct measurement of suspended-sediment transport rate 
 

Because no complete theory of suspended-sediment transport is available, 
measurement of suspended-sediment concentrations are critical to specifying the rate of 
transport.      
 
 
 
Bedload Transport  
 
The physics of bed material transport  
The physics of bed material movement involves two fundamental, and in many ways 
independent,  processes: sediment entrainment and transport maintenance.  Of these 
two sets of processes the first is by far the more complicated to analyze and invariably 
is the problem at the root of any failure to accurately predict bedload transport rates in 
rivers.   
Whether or not entrainment occurs depends on the ratio of entraining to resisting forces: 
 
      Ce = entraining forces

resisting forces  .....................................................(6.24) 

If the coefficient Ce = 1.0 in equation (6.1) the grain at rest on the bed is said to be at the 
threshold of motion. Ce < 1.0 implies no motion and Ce >1.0 is the state of entrainment.    
Similarly, once a particle has become entrained in the flow, whether or not transport is 
maintained depends on the ratio of transporting forces to resisting forces: 
        

    Ct = transporting forces
resisting forces  ....................................................(6.25) 

 

Provided Ct in equation (6.1) remains at or above unity,  the particle will remain in 
motion. 
Although equations (6.1) and (6.2) are conceptually identical they are operationally quite 
different because the entraining forces are not the same as the transporting forces 
(since the former is for a grain at rest and the latter is for one in motion) nor are the 
resisting forces identical in the two cases.  For example, a grain may form part of an 
imbricated gravel bed, locked in place by neighbouring particles.  In order to entrain the 
grain, sufficient force must be brought to bear on several particles in order to dislodge 
the grain from its resting place; less force is required to overcome the resisting forces 
once the grain is in motion.  This circumstance is quite analogous to an aircraft which 
must expend greater energy (apply greater force) to overcome ground and air friction in 
order to become airborne than it does to overcome just air friction in order to stay aloft. 
Sediment entrainment, as noted above, occurs just beyond the threshold of motion at 
Ce = 1.0, when the entraining forces = resisting forces.  Both sets of forces are very 
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complex, however, and the condition for the threshold defies analysis in all but the 
simplest cases.  Nevertheless, it will be instructive to consider the forces involved 
qualitatively and to consider an analytical solution which at least illustrates the nature of 
the problem and provides the basis for some widely used semi-empirical models for 
defining the conditions for incipient motion .      
 
The entraining forces involve at least three groups of applied forces: 
• impact force 
• shear stress (drag force)  
• lift forces (buoyancy, hydrodynamic lift, turbulence) 
 

The impact force is the result of direct momentum transfer to the grain as the water 
impacts on the upstream-projected surface area.  Actually, we have considered already 
the nature of the impact force in the context of the discussion of fall velocity.  The impact 
force, Fi,  for a single spherical grain at rest on a plane bed, is given by equation (6.3) if 
ω is replaced by the ambient velocity, v, striking the sphere: 
    Fi = ρwv2

π
4
 
 
 

 
 
 D2   ..............................................................(6.26) 

That is, the impact force is proportional to the flow velocity and grain diameter squared.  
Of course, equation (6.26) has no practical utility and its actual use would have to 
incorporate an empirical coefficient (ϑ ) to at least allow for the effects of grain sheltering 
(degree of exposure to the oncoming flow), grain shape, and the fact that not all of the 
force of the directly impinging water is expended on the sphere (Fi = ϕρwv2D2 ). 

Shear stress is the tangential force exerted by the fluid as it flows over and around the 
grain on the bed.  The unit force exerted on the sphere as the water shears over the 
channel boundary is given directly by equation (4.5).  In a channel of rectangular cross-
section the total shear stress applied to a single spherical particle on the bed 
(sometimes termed the tractive force) is given by the product of the shear stress term in 
equation (4.5) and the surface area of the sphere, thus: 

    τo = ρwgdsϕπ
D2

4     .........................................................(6.27) 

where, again, ϕ is a coefficient reflecting the degree to which the sphere surface is 
exposed.  Of course, if the shear stress were not uniformly distributed across the 
channel, a shear stress term such as that based on the local velocity distribution would 
be more appropriate than the depth/slope product (see Problem 5.3). 
The lift forces include the buoyant force, the hydrodynamic lift force, and the upward 
turbulence flux.  The buoyant force is the hydrostatic force resulting from the 
particle/fluid density differences and is easily accounted for in the usual way as the 
buoyancy-discounted or submerged weight of the particle.  The hydrodynamic lift force  
occurs because a grain on the bed is in the zone of steepest velocity gradient and the 
velocity at the base of the grain is considerably less than that at the top.  In accordance 
with Bernoulli (which specifies an inverse relationship between velocity and pressure), 
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there is an upward declining pressure gradient which tends to lift the grain off the bed.  
The role of turbulence is not independent of the pressure-gradient force because 
excursions of velocity above the mean flow velocity obviously intensify that gradient 
temporarily and increase the lift at those times.   
But turbulence also involves other lifting forces, mostly not well understood.  As water 
shears over the bed, turbulence is generated at the boundary in the form of wakes 
consisting of spinning parcels of water or vortices (eddies).  These vortices move from 
the bed up into the flow, providing irregular upward pulses or bursts of high-velocity fluid 
motion.  The upward force applied to bed particles by turbulence probably is the most 
important component of the lift force.  Unfortunately it is also exceedingly complex and 
not amenable to any realistic analytical treatment.  It is also very difficult to measure 
although several notable experimental studies (reviewed in Vanoni, 1975), suggest that 
the lift force can equal the drag force and exceed it by a factor of two or more in some 
flume flows. 
It has been argued that, because the lift forces involve the same basic variables as the 
drag force, the general expressions for both forces will have the same structure; see 
equation (6.12).  The general lift equation for a spherical bed particle, therefore,  
becomes: 
           FL = CLk2D

2ρwvo2
2   ..............................................(6.28) 

 

where CL is a lift coefficient (analogous to the drag coefficient), k2 is a particle shape 
factor, and Vo is flow velocity at the level of the particle.  We might note that this relation 
only applies to fully turbulent flows (viscosity is omitted from consideration).  This 
constraint is hardly limiting, however, since the viscous sublayer in all natural river flows 
would be completely disrupted by turbulence near the boundary. 
The relations among these competing forces is summarized in Figure 6.6A which shows 
a force diagram for roughly spherical particles resting on a river bed.  Because the 
downstream slope of most channels is very small compared with the angle of repose of 
the grains in the bed we can assume that the mean bed surface is horizontal.  The 
submerged weight or gravity force acts vertically downward through the centre of gravity 
of the grain and it is also subjected to the resultant of a horizontal drag force (or 
alternatively, an impact force) and a vertical lift force. 
 Most analytical treatments of entraining forces acting on a grain on the bed consider 
only drag; lift does not appear explicitly.  But it is argued that, because the resulting 
theoretical equations include coefficients of proportionality which are determined 
experimentally, and because lift depends on the same variables as drag, the effect of lift 
is automatically incorporated into the solutions.  This may not seem like compelling 
reasoning to everyone but an alternative approach has yet to be offered and the 
assumption certainly is convenient and leads to some interesting and useful results. 
For example, if the incipient motion of the particle shown in Figure 6.6 involves rolling or 
rotating about a pivot point in the surface of easiest movement, the gravity and drag 
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forces can be resolved in that direction and the moments of the opposing forces can be 
equated to define the condition of incipient motion (see Figure 6.6B) as: 
    FG sin α a1 = FD cos α a2  .............................................(6.29)  
where a1 and a2 are the unequal turning arms.  The horizontal drag force FD in equation 
(6.29) is easily replaced by a more comprehensive resultant of both the lift forces and 
the drag force or by an alternative force such as the impact force.  We will consider a 
couple of simple approaches but as we shall soon see, these analytical solutions have 
quite significant limitations and it is more useful to resort to a more general approach to 
the problem of defining incipient motion. 
It is not surprising that early thinking about incipient motion was in terms of flow velocity.  
The connection seemed so obvious that other factors influencing sediment motion were 
long neglected.  
We can derive an expression for incipient motion by solving equation (6.29) where the 
drag force is replaced by the impact force from equation (6.26) generalized to particles 
of projected area A  (Fi = ρwv2A ).  The gravity force exerted by a grain of volume, VO , is 
given by  FG = Vo(ρs − ρw)g. 

Thus, we can say that, at the point of incipient motion, the balance of moments is:   
 
 

     Vo(ρs −ρw)gsineαa1 = ρwv2Aϑcosαa2  

 

which can be simplified to   VoA =
ρw

ρs − ρw

 

 
 

 

 
 

ϑ
tanα

a2
a1

 

 
 

 

 
 
v2

g  ..........................………......(6.30) 

 
in which ϑ is a coefficient of grain exposure.  In the case of spheres, for which the 
turning arms a1 and a2 are equal, Vo =

1
6 πD

3  and projected A =
π
4D

2 ,  equation (6.30) 

simplifies further to 

     D =
ρw

ρs − ρw

 

 
 

 

 
 
3
2

ϑ
tanα

 
  

 
  
v2

g  ........................................(6.31)  
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 6.6: (A) Forces acting on a grain resting on a bed of similar grains with a (B) balance 
of moments for the drag component at the onset of grain movement (After Middleton 
and Southard,1984).  

 
 

The coefficients ρw
ρs − ρw

 

 
 

 

 
  and 3

2
ϑ

tanα
 
  

 
  
 will be sensibly constant for a particular sediment 

mix and we can conclude that the diameter of particles barely moved by a stream varies 
with the square of the flow velocity:  D∝ v2 .   
The cube of this proportionality, or  D3 ∝ v6 ,  implies that the mass, weight, or volume of 
a particle at the threshold of movement, varies with the sixth power of the flow velocity.  
It is perhaps surprising that this relationship, called the sixth power law (attributed to 
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Brahms, 1753) derived as it is for rather simple conditions, has been validated many 
times experimentally for particles coarser than about 2 mm in diameter. 

A particularly influential empirical study in 
this context is the analysis of erosion, 
transportation and deposition conducted by 
Hjulstrom (1935); his results are 
summarized in Figure 6.7.  Hjulstromʼs 
entrainment criterion is a band in v-D space 
representing unconsolidated through 
consolidated sediment and has a general 
slope on this log/log plot that implies D∝ v2  
in an approximate sense but only for grain 
sizes coarser than about 1 mm diameter.  
For grain sizes less than 0.1 mm diameter 
the entrainment velocity varies from a low of 
about 10 cms-1 for unconsolidated material 
to almost 1000 cms-1 for consolidated 
material.  The generally inverse relation 

between entrainment velocity and grain size less than 0.1 mm diameter reflects the fact 
that, as size declines in this range, increases in cohesive forces between the grains 
more than offset their declining mass.  The lowest threshold mean velocity occurs for 
well-sorted 0.2-0.5 mm sands.  The velocity criterion for deposition is less than that for 
entrainment (about two thirds) and is close to the fall velocity; the two converge closely 
for grains coarser than about 1.0 mm. 
Equation (6.29) can also provide a particular solution for sediment entrainment in terms 
of shear stress at the bed, a derivation first presented by White (1940). For spherical 
grains of the same diameter the submerged grain weight is FG = π

D3

6 (ρs − ρw)g.  If the 

number of grains per unit bed area is n = η

D2
, where η is a packing coefficient,  the 

exposed area per grain is D2

η
 so the total drag force FD =

τoD2

η
.  Making these 

substitutions in equation (6.29), and remembering that, for equal grain diameters the 
turning arms a1 = a2,  yields for the condition of threshold movement:  

              π D
3

6 a1(ρs −ρw)gsinα =
τocD2

η
a2 cosα   

which can be simplified to: 

     τoc = η
π
6 (ρs − ρw)gDtanα ........................................(6.31) 

We might also note that  

     τoc
(ρs − ρw)gD

= η
π
6 tanα ............................................(6.32) 

6.7: Threshold velocities according to 
Hjulstrom (1935) and transport and 
bedform regimes (After Richards, 1982)
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Equations (6.31) and (6.32) can be further modified to take account, for example, of a 
sloping bed, but they have no general practical use because of other limitations. For 
example, the influence of surrounding grains (such as imbrication) is ignored    and the 
use of time-averaged measurements ignores the extreme transient stresses associated 
with turbulence.  Equations (6.31) and (6.32) do provide, however, a theoretical 
framework for more general approaches.    
One such general approach to the problem of sediment entrainment was taken by 
Shields (1936) whose results are widely accepted and applied in solving river 
engineering problems. 
 

 

6.8 (a): The Shields diagram as modified by Vanoni (1964) and (b): An extended 
Shields relation (larger range of Reynolds number/grain size) based on Miller et 
al, 1977 (from Allen, 1997).   
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Shields used experimental data to characterize, for a range of particle Reynolds 
number,  the behaviour of the equilibrium force balance in a dimensionless critical shear 
stress term called the Shields criterion: 

θc =
τoc

(ρs − ρw)gD
....................................................(6.33) 

The structural similarity of equations (6.33) and (6.32) is quite apparent and reveals the 
physical basis of the Shields entrainment function which is graphed in Figure 6.8. 
For small Reynolds number (Rep<1.0) Shields dimensionless shear stress is high but 
declines to a minimum at about Rep ≅ 10.   This domain of the Shields entrainment 
function corresponds with the silt/clay grain size range and the high values of θc  are 
thought to reflect the fact that the grains are protected by the enclosing laminar sublayer 
as well as being bound strongly one to another by strong electrochemical forces  among  
the  grains.    As  Reynolds  number  increases  to   Rep ≅ 10   the  grains emerge from 
the thinning laminar sublayer into the turbulent flow and the increasing grain size into 
the coarse silt and sand range is associated with weakening moved of all particle sizes 
and θc  reaches a minimum approaching 0.03.  As Rep increases from 10 to 500 through 
the sand sizes into the gravel fraction, Shields dimensionless shear stress increases 
from about 0.03 to a plateau value of 0.06 for all higher values of Rep in fully turbulent 
flow over gravel.   
The asymptote at θc = 0.06 is particularly significant because it allows a useful 
simplification of equation (6.33) for use in estimating the critical shear stress for particle 
motion in gravel-bed rivers:  If  θc =

τoc
(ρs − ρw)gD

= 0.06,   

     τoc = 0.06(ρs − ρw)gD.............................................(6.34) 

For quartz particles in pure water equation (6.34) simplifies further  to 
     τoc ≈ 970D............................................................(6.35) 

 
There is considerable scatter in the empirical data used to define the Shields 
entrainment function and it is prudent to allow for a range of θc  where equation (6.34) 
represents the minimum shear stress required for motion.   
A suggestion offered by Church (19xx) in this regard is to vary θc  between 0.05 and 
0.07 in accordance with the packing state of particles in the bed.  If the sediment-
transporting flow declines abruptly, as it might do after a flash flood, the bed particles do 
not have an opportunity to mutually adjust, one to the other, and the bed packing is 
minimal; the bed packing state here is said to be overloose.  At the other extreme, 
prolonged flows near the point of incipient motion can promote imbrication and the 
development of gravel structures which correspond with an underloose packing state.  
Most channel beds have packing states between these end member conditions and are 
described as having a normal packing state for which θc  = 0.06.   
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 Measuring bedload transport rate 
  
To be continued ………………………. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Chapter 6: Sediment transport 

6.24 

 
 
 
 
6.1: The asymmetric trajectory of sediment grains in intermittent suspension (saltation) 
6.2: Flow patterns around settling spheres at low (laminar flow) and high (turbulent flow) 
Reynolds numbers (L or M&S) 
6.3: Settling velocities for quartz spheres in relation to Stokes Law and the Impact Law 
(KR)  
6.4: Drag coefficient and Reynolds number (M&S) 
6.5: Plot of Rouse equation (ASCE, 77) 
6.6: (A) Forces acting on a grain resting on a bed of similar grains with a (B) balance of 
moments for the drag component at the onset of grain movement (After Middleton and 
Southard,1984).  
6.7: Hjulstrom curve  
6.8: Shields Function 
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