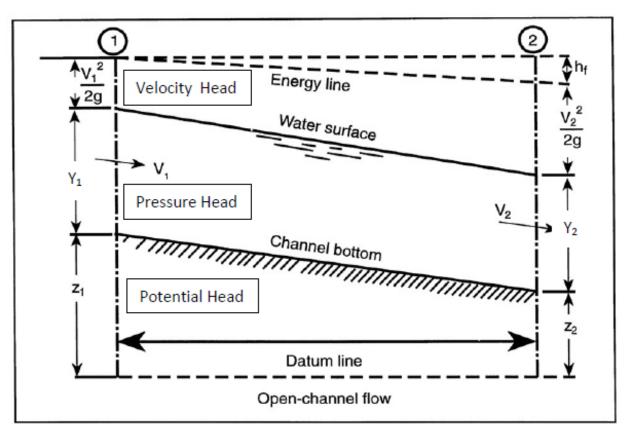
Open Channel Hydraulics

CENG 3601

References


- Chow, V. T. (1959): Open Channel Hydraulics , McGraw-Hill, New York
- Subarmanya, K. (2009): Flow in Open Channels 3rd edition, Tata McGraw Hill Education Private Limited, New Delhi
- Chanson, H.(2004): The Hydraulics of Open Channel Flow: An Introduction, 2nd edition Elsevier Butterworth-Heinemann Linacre House, Jordan Hill, Oxford OX2 8DP 200 Wheeler Road, Burlington
- Sturm, T.W. (2001): Open Channel Hydraulics, International edition, McGraw-Hill Higher Education
- All other related books and materials

Chapter One : Introduction

- Definition
- Difference between open channel and pipe flow
- Kinds and Types
- Geometric Properties of Open Channels
- Velocity Distribution in Open Channel
- Fundamental Equations
- Energy-Depth Relationships

Definitions and Schematic understanding Open Channel flow

- is a flow of liquid in a conduit with free space
- particularly applied to understand the flow of a liquid in artificial and natural channels

Open channel and pipe flow Open Channel Flow Pipe Flow

- have a free space
- Subject to atmospheric pressure also
- Flow driven by gravity (potential Energy)
- Unknown cross section (due to unknown depth)
- Flow depth computed using continuity and momentum equations
- Atmospheric Pressure as boundary condition

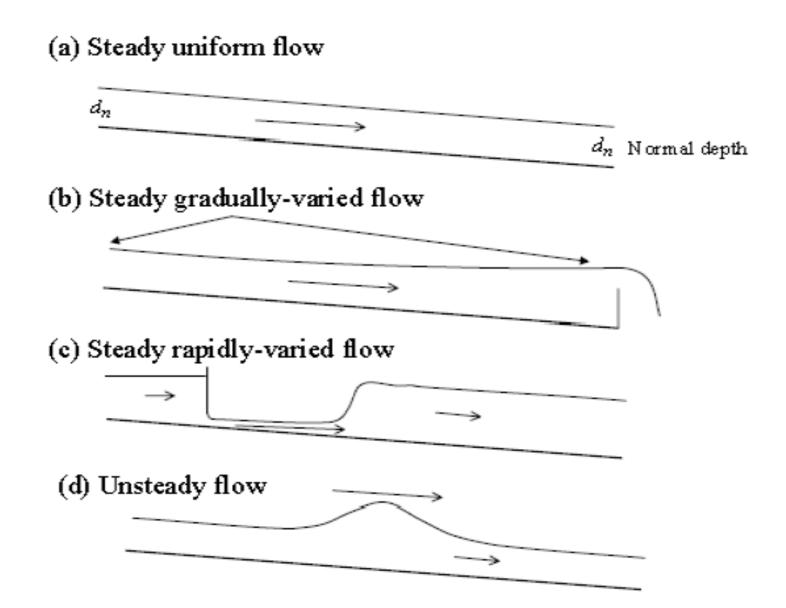
- No free space
- Hydraulic pressure only
- Flow driven by pressure
- Known and fixed flow cross section
- Velocity deduced from continuity equation
- No boundary condition

Kinds Kinds Open Channels

Artificial channels

- are channels made by man
- include irrigation canals, navigation canals, spillways, sewers, culverts and drainage ditches
- usually constructed in a regular cross-section shape throughout ⇒ Prismatic channels
- have well defined surface roughness's

– Natural channels


- are channels that naturally exist or crated with natural system
- are neither **regular nor prismatic**
- surface roughness will often change with time distance and even elevation
- more difficult to accurately analyze and obtain satisfactory results
- They include streams, rivers, floodplains

Classifications based on Apenange and Space

- Time as criterion \Rightarrow Steady and unsteady flow
- Space as criterion \Rightarrow Uniform and non uniform flow
- using combined criteria
 - Uniform flow (UF) \Rightarrow steady and uniform by its nature
 - Gradually Varied flow (GVF) \Rightarrow depth various with

distance gradually but not with time

- Rapidly Varied flow (RVF) ⇒ depth various with distance rapidly but not with time
- Unsteady flow ⇒ depth various with both time and distance

Types of Open Channels Classification based on the effect of Viscosity

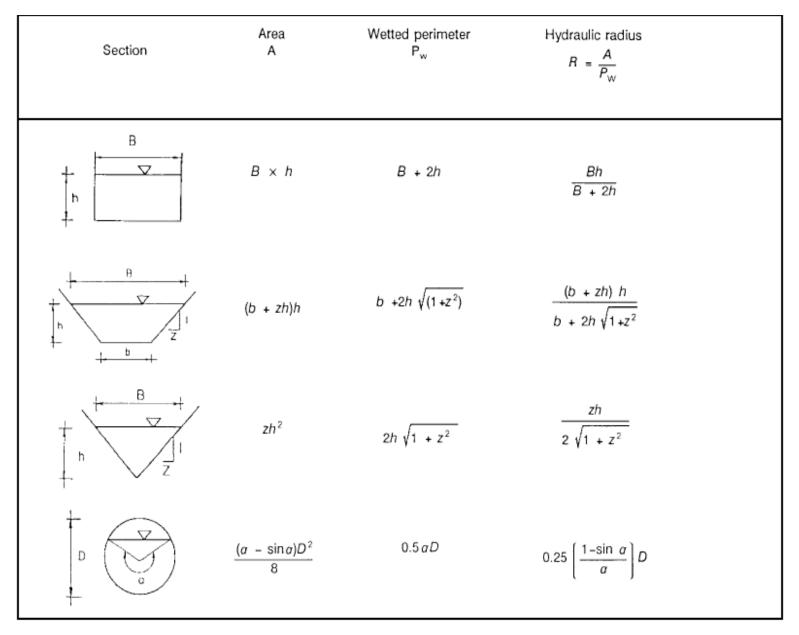
The state or behavior of open channel flow is governed by

the effects of viscosity relative to inertia

- Thus the open channel classified as
 - Laminar
 - Turbulent
 - Transitional

$$\operatorname{Re}_{Pipe} = \frac{\rho UD}{\mu}$$

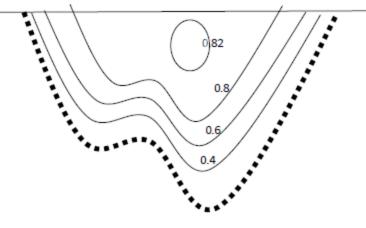
Re > 4000 Turbulent Re< 2000 laminar 2000 < Re < 4000 Transitional

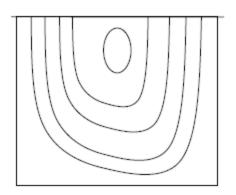

$$\operatorname{Re}_{Channel} = \frac{\rho UD}{4\mu} = \frac{\operatorname{Re}_{Pipe}}{4}$$

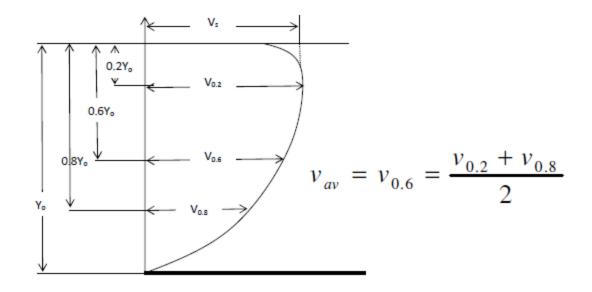
Re > 1000 Turbulent Re< 500 laminar 500 < Re < 1000 Transitionnel

Geometric Properties of Open Channels

- Depth (y) the vertical distance from the lowest point of the channel section to the free surface.
- Stage (z) the vertical distance from the free surface to an arbitrary datum
- Area (A) the cross-sectional area of flow, normal to the direction of flow
- Wetted perimeter (P) the length of the wetted surface measured normal to the direction of flow.
- Surface width (B) width of the channel section at the free surface
- Hydraulic radius (R) the ratio of area to wetted perimeter (A/P)
- Hydraulic mean depth (D) the ratio of area to surface width (A/B)


Geometric Properties




Velocity distribution in open channels Naturally three types of velocity are occurred in open channel flow,

- - **Longitudinal:** the one along the flow direction, (V)
 - Lateral:- at the bedside of the channel
 - Normal :- perpendicular to the flow direction.
- However, the two velocities (lateral and normal) are insignificance as ٠ compared to the longitudinal velocity
- Due to the presence of free surface and friction along the channel ٠ wall, the longitudinal velocity in a channel are not uniformly distributed.
- The velocity is zero at the solid boundaries and gradually increase with • distance from the boundary and reach to its maximum at the center a certain distance below the free surface

Velocity distribution in open channels

Velocity distribution in open channels The property of the velocity distribution is used to determine the discharge of

stream gauging station using Area-Velocity method

The surface velocity V_s is related to the average velocity V_{av} as ٠

$$V_{av} = kV_{s}$$

Where k = a coefficient with a value between 0.8 – 0.95

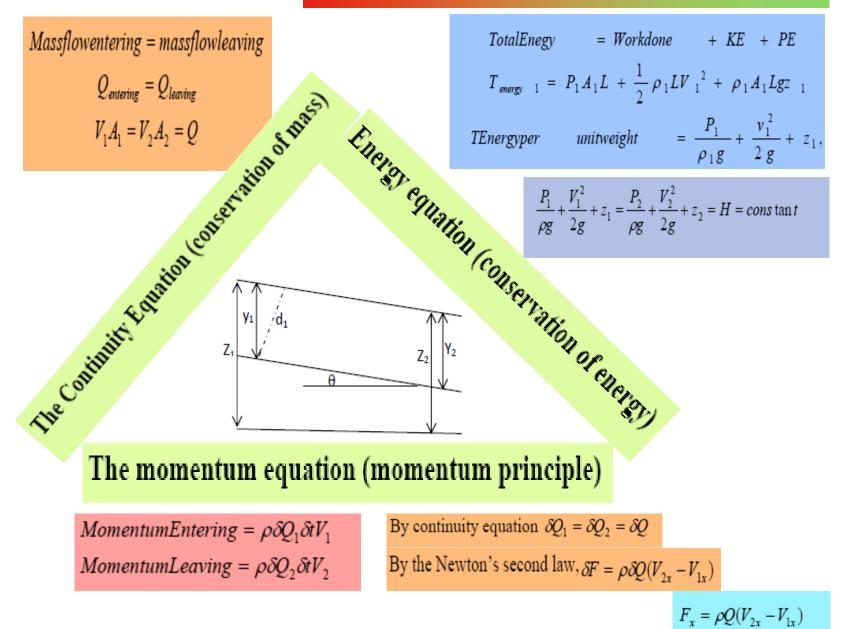
- The proper value of K depends on the Channel section and has to be determined ٠ by field calibrations.
- Important features when analyzing the velocity ٠
 - a single elevation represents the water surface perpendicular to the flow
 - Only the longitudinal velocity is considered so the discharge pass through the section can be expressed as $Q = AV_{av} = \int v dA$
 - Mean velocity (Vav) for the entire cross-section is defined on the basis of the longitudinal component of the velocity (v) $V_{av} = \frac{1}{4} \int v dA$

Velocity distribution in open channels • The difference of the two velocities is handle with velocity correction factor (α)

- Consider the Kinetic Energy ٠
 - For an elemental area (dA) the flux of kinetic Energy expressed as

$$KE = \left(\rho v dA\right) \frac{v^2}{2}$$

- For the total area (A) the kinetic Energy flux is $KE = \int \frac{\rho}{2} v^3 dA = \alpha \frac{\rho}{2} V_{av}^3 A$


- Thus
$$\alpha = \frac{\int v^3 dA}{V_{av}^3 A}$$
 for discrete values $\alpha = \frac{\sum v^3 \Delta A}{V_{av}^3 A}$

Similarly if we consider the momentum, we can get a relation called momentum $\beta = \frac{\int v^2 dA}{V^2} \text{ or } \frac{\sum v^2 \Delta A}{V_{\text{ex}}^2 A}$ correction factor (β)

Fundamental equations The equations which describe the flow of fluid are

- The equations which describe the flow of fluid are derived from three fundamental laws of physics:
 - Conservation of matter (or mass)
 - Conservation of energy
 - Conservation of momentum

Fundamental Equations

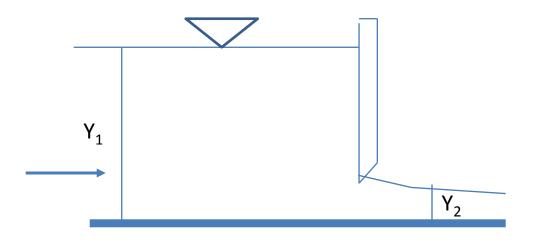
Example 1.1 The velocity distribution in a rectangular channel of width B and depth of flow Y₀ was approximated as

 $V = K_1 \sqrt{y}$

in which K1 is a constant

Calculate

a). The average velocity for the cross section


b). Correction coefficients α and β

Example 1.2 A sluice gate in a 2.0m wide horizontal rectangular channel is discharging freely as shown in the figure below. If the depths at small up stream (y_1) and downstream (y_2) are 2.5 and 0.2m respectively.

Estimate the discharge in the channel

a). By neglecting Energy losses at gate

b). By assuming the Energy loss at gate to be 10% of the upstream depth y₁

Energy-Depth Relationships Specific Energy

- The concept of specific energy is first introduced by Bakhmeteft (1932) and has been proven to be very useful in analysis of open channel flow.
- The total energy of a channel flow referred to datum is given by,

$$H = Z + Y Cos\theta + \alpha V \frac{\alpha V^2}{2g}^2$$

- If the datum coincides with the channel bed at the cross-section, the resulting expression is known as *specific energy* and is denoted by *E*.
- *Thus, specific energy is the energy at a cross-section of an* open channel flow with respect **to the channel bed**.

$$E = Y Cos\theta + \alpha V \frac{\alpha V}{2g}^2$$

When $\cos\theta = 1$ and $\alpha = 1$, the equation of specific energy further simplify as:

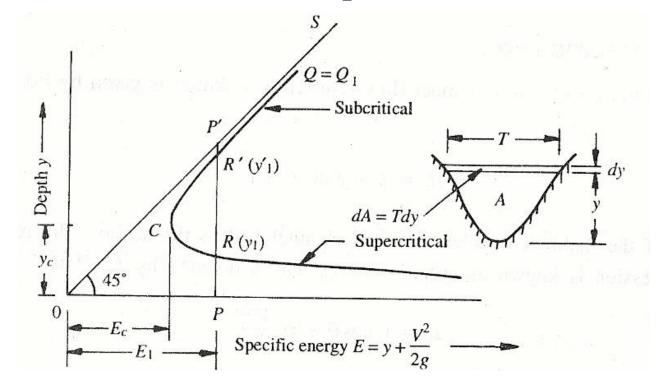
$$E = Y + V \frac{\alpha V^2}{2g^2}$$

we defined Specific Energy as regy - Depth

• Specific energy is the energy at a cross-section of an open channel flow with respect to the channel bed.

Or

- Specific energy is the height of the energy grade line above the channel bottom
- In other respect, since V=Q/A, the equation of specific energy may be written as:

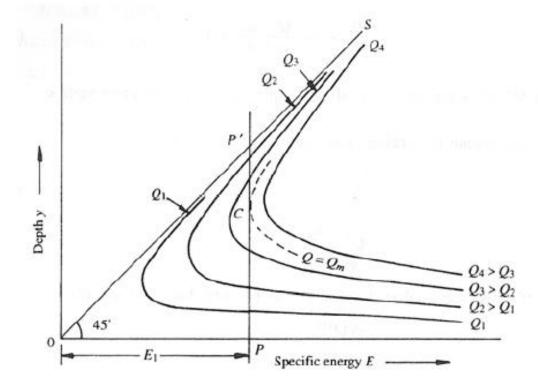

$$E = Y + V \frac{\alpha V^2}{2g} = Y + \frac{Q^2}{2gA^2}$$

Here, cross-sectional area A depends on water depth y and can be defined as, A = f(y). and also there is a functional relation between the three variables as,

$$f\left(=E\,,\,y\,,\,Q\,\right)=0$$

- This functional relationship examine on the plane, with two cases as
 - Constant Discharge
 - Variable Discharge

Constant discharge : $Q = Q_1 = Q_2 \Rightarrow E = f(y, Q)$.


- The depths of flow can be either $PR = y_1$ or $PR^{`} = y_1^{`}$. These two possible depths having the same specific energy are known as *alternate depths*.
- The corresponding Froude number of the alternative depths also given as

$$F = \frac{V}{\sqrt{g\frac{A}{T}}} = \frac{V}{\sqrt{gY}} \Longrightarrow F_1 = \frac{V_1}{\sqrt{gY_1}}$$

Example 1.3

 A rectangular channel 2.50 m wide has a specific energy of 1.50 m when carrying a discharge of 6.48 m³/sec. Calculate the alternate depths and corresponding Froude numbers.

Variable Discharge : $E_{1}^{0}e_{1}^{0}g_{2}^{0} \xrightarrow{\mathbb{Q}}_{2}^{0}e_{1}^{0}e_{1}^{0}$

- In this condition Q1<Q2<Q3< ----- Qn .
- Consider a section PP', the ordinate PP'=E=E₁=constant. Different Q curves give different intercepts. Thus the alternative depths of a given Q can be computed by considering constant specific energy.

Example 1-4

A flow of 5.0 m /sec is passing at a depth of 1.50 through a rectangular channel of width 2.50 m. What is the specific energy of the flow? What is the value of the alternate depth to the existing depth?