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This text introduces engineering and architectural students to the basic tech-

- niques required for analyzing the majority of structures and the elements of

which most structures are composed, including beams, frames, arches,
trusses, and cables. Although the authors assume that readers have com-
pleted basic courses in statics and strength of materials, we briefly review
the basic techniques from these courses the first time we mention them. To
clarify the discussion, we use many carefully chosen examples to illustrate
the various analytic techniques introduced, and whenever possible, we
select examples confronting engineers in real-life professional practice.

Features of This Text

1. Expanded treatment of loads. Chapter 2 is devoted to a com-
" prehensive discussion of loads that includes dead and live loads,
tributary areas, and earthquake and wind forces. New to this edi-
tion are updated wind and earthquake specifications that conform
“to the latest edition of the ASCE Standard. We have simplified the
more complex provisions of the most recent national building code
{ANSI/ASCE), intended for professional engineers, to provide
readers with a basic understanding of how multistory buildings,
bridges, and other structures respond to earthquake and wind loads

in various areas of the United States. This chapter can be used as a
helpful reference for courses that combine analysis and design as
well as capstone courses that cover comprehensive design projects.

2. New homework problems. We have increased the number of new
homework problems substantially; about 60 percent of the problems
are revised or are new (in both metric and U.S. Customary System
units), and many are typical of analysis problems encountered in
practice. The many choices enable the instructor to select problems
suited for a particular class or for a particular emphasis.

3. New computer problems and applications. Computer prob-
lems, new te this edition, provide readers with a deeper under-
standing of the structural behavior of trusses, frames, arches, and
other structural systems. These simple, carefully tailored problems
illustrate significant aspects of structural behavior that, in the past,
experienced designers needed many years of practice to under-
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wilh a computer screen icon and begin in Chapter 4 of the text.

E stand and analyze correctly. The computer problems are identified
" The new computer problems can be solved using the Educational

Version of the commercial software RISA-2D that is available to.

users on the text’s new Online Learning Center. However, any
software that produces deflected shapes as well as shear, moment,
and axial load diagrams can be used to solve the problems. An
overview on the use of the RISA-2D software and an author-written
tutorial are also available at the Online Learning Center.

4, Expanded discussion of the general stiffness method. Chapter
16, on the general stiffness method, provides a clear transition
from classical methods of analysis to those using matrix formula-

‘tions for computer analysis, as discussed in Chapters 17 and 18.

5. Realistic, fully drawn illastrations. The illustrations in the text
provide a realistic picture of actual structural elements and a clear
understanding of how the designer models joints and boundary
conditions. Photographs complement the text to illustrate exam-
ples of building and bridge failures. '

6. New Online Learning Center. This text offers a new Web-based
learning center available to users at www.mhhe.com/leet2e, The site
offers an array of tools, including lecture slides, an image bank of the
text’s art, helpful Web links, and the RISA-2D educational software.

Contents and Sequence of Chapters

We present the topics in this book in a carefully planned sequence to
facilitate the student’s study of analysis. In addition, we tailor the expla-
nations to the level of students at an early stage in their engineering edu-
cation. These explanations are based on the authors’ many years of expe-
rience teaching analysis,

Chapter 1 provides a historical overview of structural engineering
(from earliest post and lintel structures to today’s high-rises and
cable bridges) and a brief explanation of the interrelationship
between analysis and design. We also describe the essential char-
acteristics of basic structures, detailing both their advantages and
their disadvantages. .

Chapter 2 on loads is described above in Features of This Text.

Chapters 3, 4, and 5 cover the basic techniques required to deter-
mine bar forces in trusses, and shear and moment in beams and
frames. The methods developed in these chapters are used to solve
almost every problem in the remainder of the text.

Chapters 6 and 7 interrelate the behavior of arches and cables and
cover their special characteristics (of acting largely in dlrect stress
and using materials efficiently).
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Chapter 8 covers methods for positioning live load on determinate
structures to maximize the internal force at a specxﬁc section of a
beam or frame or in the bars of a truss.

Chapters 9 and 10 provide methods used to compute the deflections
of structures to verify that a structure is not excessively flexible
and to analyze indeterminate structures by the method of consis-
tent deformations.

Chapters 11, 12, and 13 introduce several classical methods for ana-
lyzing indeterminate structures. Although most complex indeter-
minate structures are now analyzed by computer, certain tradi-
tional methods (e.g., moment distribution) are useful to estimate
the forces in highly indeterminate beams and frames to verify the
computer solution.

Chapter 14 extends the methods used in Chapter 8 to analyze inde-
terminate structures. Engineers use the techniques in both chapters
to design bridges or other structures subject to moving loads or to
live loads whose position on the structure can change.

Chapter 15 gives approximate methods of analysis, used to estimate
the value of forces at selected points in highly indeterminate struc-
tures. With approximate methods, designers can verify the accu-
racy of computer studies or check the results of more traditional,
lengthy hand analyses described in earlier chapters.

Chapters 16, 17, and 18 introduce matrix methods of analysis.

Chapter 16 extends the general stiffness method to a variety of sim-
ple structures. The matrix formulation of the stiffness method is
-applied to the analysis of trusses (Chap. 17) and to the analysis of
beams and frames (Chap. 18).
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The Brooklyn Bridge. Opened in 1883 at a cost of $9 million, this bridge was heralded as the “Eighth Won- ’
der of the World.” The center span, which rises 135 ft above the surface of the East River, spans nearly 1600 ft ¢
between towers. Designed in part by engineering judgment and in part by calculations, the bridge is able to |
support more than three times the original design load. The large masonry towers are supported on pneu- |
t matic caissons 102 by 168 ftin plan. In 1872 Colonel Washington A. Roebling, the director of the project, was
 paralyzed by caissons disease while supervising the construction of one of the submerged piers. Crippled for [ %
- life, he directed the balance of the project from bed with the assistance of his wife and engineering staff. '
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Introduction

Overviewvof the Text

f

As an engineer or architect involved with the design of buildings, bridges,
and other structures, you will be required to make many technical deci-
sions about structural systems. These decisions include (1) selecting an effi-
cient, economical, and attractive structural form; (2) evaluating its safety,
that is, its strength and snffness and (3) planning its erection. under tem—
porary construction loads:: -

To design a structure, you will. Ieam to carry out a structural ana3y~

'szs that establishes the internal forces and deflections at all points pro-
duced by the design loads. Designers determine the internal forces in key

members in order to size both members and the connections between mem-
bers, And designers evaluate deflections to ensure a serviceable struc-

g;;turem-one that does not deflect or vibrate excessively under load so that
its funcnon is impaired.

Analyzmg Basic Structural Elements

Durmg previous courses in statics and strength of materials, you developed

t:y;ome background in structural analysis when you computed the bar forces

in trusses and constructed shear and moment curves for beams. You will

now broaden your background in structural analysis by applying, in a sys-

tematic way, a variety of techniques for determining the forces in and the
deflections of a number of basic structural elements: beams, trusses, frames,

arches, and cables. These elements represent the basic components used to
form more complex structural systems.

Moreover, as you work analysis problems and examine the distribu-
tion of forces in various types of structures, you will understand more about
how structures are stressed and deformed by load. And you will gradu-
ally develop a clear sense of which structural conﬁguramon is optimal for
a particular design situation.
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Further, as you develop an almost intuitive sense of how a structure
behaves, you will learn to estimate with a few simple computations the
approximate values of forces at the most critical sections of the structure.
This ability will serve you well, enabling you (1) to verify the accuracy
of the results of a computer analysis of large, complex structures and
(2) to estimate the preliminary design forces needed to size individual
components of multimember structures during the early design phase
when the tentative configuration and propomons of the structure are being
established.

Analyzing Two-Dimensional Structures

As you may have observed while watching the erection of a multistory
building frame, when the structure is fully exposed to view, its structure
is a complex three-dimensional system composed of beams, columns;
slabs, walls, and diagonal bracing. Although load applied at a particular
point in a three-dimensional structure will stress all adjacent members,

most of the load is typically transmitted through certain key members-..

directly to other supporting members or into the foundation.
‘Once the behavior and function of the various components of most

three-dimensional structures are understood, the designer can typically .~ *
simplify the analysis of the actual structure by subdividing it into smaler

two-dimensional subsystems that act as beams, trusses, or framés. This pro-

cedure also significantly reduces the complexity of the analysis because ~

two-dimensional structures are much easier and faster to analyze than
three-dimensional structures. Since with few exceptions (e.g., geodesic
domes constructed of light tubular bars) designers typically analyze a
series of simple two-dimensional structures—even when they are design-
ing the most complex three-dimensional structures——we will devote a
large portion of this book to the analysis of two-dimensional or planar
structures, those that carry forces lying in the plane of the structure.

Once you clearly understand the basic topics covered in this text, you
will have acquired the fundamental techniques required to analyze most
buildings, bridges, and structural systems typically encountered in pro-
fessional practice. Of course, before you can design and analyze with
confidence, you will require some months of actual design experience in
an engineering office to gain further understanding of the total design
process from a practitioner’s perspective.

For those of you who plan to specialize in structures, mastery of the
topics in this book will provide you with the basic structural principles
required in more advanced analysis courses—those covering, for exam-
ple, matrix methods or plates and shells. Further, because design and analy-
sis are closely interrelated, you will use again many of the analytical pro-
cedures in this text for more specialized courses in steel, reinforced
concrete, and bridge design.
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Section 1.2 The Design Process: Relationship of Analysis to Design

12 The Design Process: Relationship of S
Analysis to Design

The design of any structure—whether it is the framework for a space

vehicle, a high-rise building, a suspensien bridge, an offshore oil drilling
platform, a tunnel, or whatever—is typically carried out in alternating
steps of design and analysis. Each step supplies new information that
permits the designer to proceed to the next phase. The process continues

" until the analysis indicates that no changes in member sizes are required.

The specific steps of the procedure are described below.

Conceptual Design

A project begins with a specific need of a client. For example, a devel-
oper may authorize an engineering or architectural firm to prepare plans
for a sports complex to house a regulation football field, as well as seat-

~ ing 60,000 people, parking for 4000 cars, and space for essential facili-

ties. In another case, a city may retain an engineer to design a bridge to

span a 2000-ft-wide river and to carry a certain hourly volume of traffic.

The designer begins by considering all possible layouts and structural
systems that might satisfy the requirements of the project. Often archi-
tects and engineers consult as a team at this stage to establish layouts that

* lend themselves to efficient structural systems in addition to meeting the
" archifectiral (functional and aesthetic) requirements of the project. The

- x

designer' next prepares sketches of an architectural nature showing the
main structural elements of each design, aithough details of the structural
system at this point are often sketchy. '

Preliminary Design

In the preliminary design phase, the engineer selects from the conceptual
design several of the structural systems that appear most promising, and
sizes their main components. This preliminary proportioning of structural
members requires an understanding of structural behavior and a knowl-
edge of the loading conditions (dead, live, wind, and so forth) that will
most likely affect the design. At this point, the experienced designer may
make a few rough computations to estimate the proportions of each struc-
ture at its critical sections.

Analysis of Preliminary Designs

At this next stage, the precise loads the structure will carry are not known
because the exact size of members and the architectural details of the
design are not finalized. Using estimated values of load, the engineer car-
ries out an analysis of the several structural systems under consideration

L - - T e - BT e e
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to determine the forces at critical sections and the deflections at any
point that influences the serviceability of the structure.

The true weight of the members cannot be calculated until the struc-
ture is sized exactly, and certain architectural details will be influenced, in
turn, by the structure. For example, the size and weight of mechanical
equipment cannot be determined until the volume of the building is estab-
lished, which in turn depends on the structural system. The designer, how-
ever, knows from past experience with similar structures how to estimate
values for load that are fairly close approximations of final values.

Redesign of the Structures

Using the results of the analysis of preliminary designs, the designer
recomputes the proportions of the main elements of all structures. Although
each analysis was based on estimated values of load, the forces estab-
lished at this stage are probably indicative of what a particular structure
must carry, so that proportions are unlikely to change significantly even
after the details of the final design are established.

Evaluation of Preliminary Designs

The various preliminary designs are next compared with regard to cost,
avaxlabmty of materials, appearance, maintenance, time for construction,
and other pertinent considerations. The structure best satisfying the client’s
established criteria is selected for further refinement in the final design
phase.

Final Design and Analysis Phases

In the final phase, the engineer makes any minor adjustments to the
selected structure that will improve its economy or appearance. Now the
designer carefully estimates dead loads and considers specific positions
of the live load that will maximize stresses at specific sections. As part
of the final analysis, the strength and stiffness of the structure are evalu-

ated for all significant loads and combinations of load, dead and live,’

including w md snow, earthquake, temperature change, and settlements.
If the results of the final design confirm that the proportions of the struc-
ture are adequate to carry the design forces, the design is complete. On

the other hand, if the final design reveals certain deficiencies (e.g., cer- -

tain members are overstressed, the structure is unable to resist lateral
wind loads efficiently, members are excessively flexible, or costs are
over budget), the designer will either have to modify the configuration of
the structure or consider an alternate structural system.

Steel, reinforced concrete, wood, and metals, such as aluminum, are
all analyzed in the same manner. The different properties of materials are
taken into account during the design process. When members are sized,
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Section 1.3 . Strength and Serviceability 7

designers refer to design codes, which take into account each matenal’
special propemes
This text is concerned primarily with the analysis of structures as

_detailed above. Design is covered in separate courses in most engineer-

ing programs; however, since the two topics are so closely mterrelated
we will necessarily touch upon some design issues.

- Strength and Serwceablhty

The desxgner must proportxon structures so that they will neither fail nor
deform excessively under any possible loading conditions. Members are
always designed with a capacity for load significantly greater than that
required to support anticipated service loads (the real loads or the loads

- specified by design code). This additional capacity also provides a factor

of safety against accidental overload. Moreover, by limiting the level of
stress, the designer indirectly provides some control over the deforma-
tions of the structure. The maximum allowable stress permitted in a
member is determined either by the tensile or compressive strength of
the material o, in the case of slender compression members, by the stress
at which a member (or a component of a member) buckles.

* Although structures must be designed with an adequate factor of safety

- to'reduce the probability of failure to an acceptable level, the engineer

must also ensure that the structure has sufficient stiffness to function use-
fully under all loading conditions. For example, floor beams must not
sag excessively or vibrate under live load. Excessively large deflections
of beams may produce cracking of masonry walls and plaster ceilings, or
may damage equipment that becomes misaligned. High-rise buildinigs must
not sway excessively under wind loads (or the building may cause motion
sickness in the inhabitants of upper floors). Excessive movements of a
building not only are disturbing to the occupants, who become concerned
about the safety of the structure, but also may lead to cracking of exte-
rior curtain walls and windows. Photo 1.1 shows a modern office build-
ing whose facade was constructed of large floor-to-ceiling glass panels.
Shortly after the high-rise building was completed, larger than antici-
pated wind loads caused many glass panels to crack and fall out. The
falling glass constituted an obvious danger to pedestrians in the street
below. After a thorough investigation and further testing, all the original
glass panels were removed. To correct the design deficiencies, the struc-
ture of the building was stiffened, and the facade was reconstructed with
thicker, tempered glass panels. The dark areas in Photo 1.1 show the tem-
porary plywood panels used to enclose the building during the period in
which the original glass panels were removed and replaced by the more
durable, tempered glass. : :

B e - CBE e - - CBRE e e - 3T

Photo 1.1: Wind damage. Shortly after ther-
mopane windows were installed in this high-rise
office building, they began failing and-falling-out,-
scattering broken glass on passers-by beneath.

Before the building could be occupied, the
structural frame had to be stiffened and all the
original glass panels had to be replaced by thicker,
tempered glass—costly procedures that delayed
the opening of the building for several years,

. -



8 Chapter 1 Inroduction

To give you some historical perspective on structural engineering, we
- will briefly trace the evolution of structural systems from those trial-and-
error designs used by the ancient Egyptians and Greeks to the highly
sophisticated configurations used today. The evolution of structural
forms is closely related to the materials available, the state of construc-
tion technology, the designer’s knowledge of structural behavior (and
much later, analysis), and the skill of the construction worker.
For their great engineering feats, the early Egyptian builders used stone
quarried from sites along the Nile to construct temples and pyramids.
i Since the tensile strength of stone, a brittle material, is low and highly vari-
Figure 1.1: Early post-and-lintel constructionas ~ able (because of a multitude of internal cracks and voids), beam spans in
seen in an Egyptian Temple. temples had to be short (see Fig. 1.1) to prevent bending failures. Since this
post-and-lintel system-—massive stone beams balanced on relatively thick
stone columns—has only a limited capacity for horizontal or eccentric ver-
tical loads, buildings had to be relatively low. For stability, columns had to
be thick—a slender column will topple more easily than a thick column.

The Greeks, greatly interested in refining the aesthetic appearance of
the stone column, used the same type of post-and-lintel construction in -
the Parthenon (about 400 5.¢.), a temple considered one of the most ele-
gant examples of stone construction of all time (Fig. 1.2). Even up to the
early twentieth century. long after post-and-lintel construction was supes-
seded by steel and reinforced concrete frames, architects continued to
impose the facade of the classic Greek temple on the entrance of public
buildings. The classic tradition of the ancient Greeks was influential for
centuries after their civilization declined.

Gifted as builders. Roman engineers made extensive use of the arch,
often employing it in multiple tiers in coliseums, aqueducts, and bridges
(Photo 1.2). The curved shape of the arch allows a departure from rec-
tangniar lines and permits much longer clear spans than are possible with
masonry post-and-lintel construction. The stability of the masonry arch
requires (1) that its entire cross section be stressed in compression under
all combinations of load and (2) that abutments or end walls have suffi-
cient strength to absorb the large diagonal thrust at the base of the arch.
The Romans also, largely by trial and error, developed a method of enclos-
ing an interior space by a masonry dome, as seen in the Pantheon still stand-
ing in Rome. ' :

During the Gothic period of great cathedral buildings (Chartres, Notre
Dame), the arch was refined by trimming away excess material, and its
shape became far more elongated. The vaulted roof, a three-dimensional
form of the arch, also appeared in the construction of cathedral roofs.
Arch-like masonry elements, termed flying buttresses, were used together
with piers (thick masonry columns} or walls to carry the thrust of vaulted
roofs to the ground (Fig. 1.3). Engineering in this period was highly

Figure 1.2: Front of Parthenon. columns taper
and were fluted for decoration.
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Photo 1.2: Romans pioneered in the use of arches for bridges, buildings, and aqueducts,
. Pont-du-Gard, Roman aqueduct built in 19 8.C. to carry water across the Gardon Valley to
Nimes. Spans of the first- and second-level arches are 53 to 80 ft. (Near Remoulins, France.)

- roof truss

flying buttress

clerestbry

masonry
massive pier
stone

column
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Figure 1.3: Simplified cross section showing the
main structural elements of Gothic construction.
Exterior masonry arches, called flying buttresses,
used to stabilize the arched stone vault over the
nave. The outward thrust of the arched vault is
transmitted through the flying buttresses 1o deep
masonry piers on the exterior of the building.
Typically the piers broaden toward the base of the
building. -For the structure to be stable, the
masonry must be stressed in compression
throughout. Arrows show the flow of forces.
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10 Chapter 1 Introduction

Photo 1.3: The Eiffel Tower, constructed of
wrought iron in 1889. dominates the skyline of
~Paris in this early photagraph. The tower; the fore-
runner of the modern steel frame building, rises to
a height of 984 ft (300 m) from a 330-ft (100.6-m)
square base. The broad base and the tapering
shaft provide an efficient structural form to resist
the large overturning forces of the wind. At the
top of the tower where the wind forces are the
greatest, the width of the building is smallest.

- S B B *

émpirical based on what master masons learned and passed on to their
apprentices; these skills were passed down through the generations.
Although magnificent cathedrals and palaces were constructed for
many centuries in Europe by master builders, no significant change
occurred in construction technology until cast iron was produced in com-
mercial quantities in the mid-eighteenth century. The introduction of cast
iron made it possible for engineers to design buildings with shallow but
strong beams, and columns with compact cross sections, permitting the
design of lighter structures with longer open spans and larger window areas.

The massive bearing walls required for masonry construction were no

longer needed. Later, steels with high tensile and compressive strengths per-
mitted the construction of taller structures and eventually led to the sky-
scraper of today.

In the late nineteenth century, the French engineer Eiffel constructed
many long-span steel bridges in addition to his innovative Eiffel Tower,
the internationally known landmark in Paris (Photo 1.3). With the devel-
opment of high-strength steel cables, engineers were able to construct
long-span suspension bridges. The Verrazano Bridge at the entrance of
New York harbor—one. of the longest bridges in the world—spans 4260
ft between towers.

The addition of steel reinforcement to concrete enabled engineers
to convert unreinforced concrete (a brittle, stonelike material) into

tough, ductile structural members. Reinforced concrete, which takes .
‘the shape of the temporary forms into which it is poured, allows a large

variety of forms to be constructed. Since reinforced concrete structures
are monolithic, meaning they act as one continuous unit, they are highly
indeterminate. ‘ '

Until improved methods of indeterminate analysis enabled designers
to predict the internal forces in reinforced concrete construction, design
remained semi-empirical; that is, simplified computations were based on
observed behavior and testing as well as on principles of mechanics.
With the introduction in the early 1920s of moment distribution by Hardy
Cross, engineers acquired a relatively simple technique to analyze con-
tinuous structures. As designers became familiar with moment distribu-
tion, they were able to analyze indeterminate frames, and the use of rein-
forced concrete as a building material increased rapidly.

~ The introduction of welding in the late nineteenth century facilitated
the joining of steel members—welding eliminated heavy plates and angles
required by eatlier riveting methods—and simplified the construction of
rigid-jointed steel frames. ' _

In recent years, the computer and research in materials science have
produced major changes in the engineer’s ability to construct special-

. purpose structures, such as space vehicles: The introduction of the com-

puter and the subsequent development of stiffness matrices for beams,
plates, and shell elements permitted designers to analyze many complex
structures rapidly and accurately. Structures that even in the 1950s took
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Section 1.5

teams of engineers months to analyze can now be analyzed more accu-
rately in minutes by one designer using a computer.

‘ Basic Structural Elements

All structural systems are composed of a number of basic structural ele-

ments—beams, columns, hangers, trusses, and so forth. In this section we
describe the main characteristics of these basic elements so that you will
understand how to use them most effectively.

Hangers, Suspension Cables—
Axially Loaded Members in Tension

Since all cross sections of axially loaded members are uniformly stressed,

the material is used at optimum efficiency. The capacity of tension mem-
bers is a direct function of the tensile strength of the material. When mem-

‘bers are constructed of high-strength materials, such as alloyed steels,
even members with small cross sections have the capacity to support large
loads (see Fig. 1.4). ' ‘

As-a negative feature, members with small cross sections are very -
flexible and tend to vibrate easily under moving loads. To reduce this

tendency to vibrate, most building codes specify that certain types of ten-
sion members have a minimum amount of flexural stiffness by placing
an upper limit on their slenderness ratio 1/, where [ is the length of mem-

“bertand r is the radius of gyration. By definition r = V I/A where I equals
the moment of inertia and A equals the area of the cross section. If the direc-
tion of load suddenly reverses (a condition produced by wind or earth-
quake), a slender tension member will buckle before it can provide any
resistance to the load.

Coﬂlumns—Axially Loaded Members in Compression

Columns also carry load in direct stress very efficiently. The capacity of a
compression member is a function of its slenderness ratio /. If L/r is large,
the member i3 slender and will fail by buckling when stresses are low—
often with little warning. If I/r is small, the member is stocky. Since stocky
members fail by overstress—by crushing or yielding—their capacity for
axial load is high. The capacity of a slender column also depends on the
restraint supplied at its ends. For example, a slender cantilever column—
fixed at one end and free at the other—will support a load that is one-fourth
as large as that of an identical column with two pinned ends (Fxg 1.5b, ¢).
In fact, columns supporting pure axial load occur only in idealized
situations. In actual practice, the initial slight crookedness of columns or
an eccentricity of the applied load creates bending moments that must be
taken into account by the designer. Also in reinforced concrete or welded
building frames where beams and columns are connected by rigid joints,
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.. Figure 1.4 Chemical storage tank supported by

tension hangers carrying force T,
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Figure 1.5: (a) Axially loaded column; (b) can-
V tilever column with buckling load £,; (¢) pin-sup-
ported column with buckling load 42,; (d) beam-

column.
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Figure 1.6: (@) Beam deflects into a shallow
curve; (B) inlernal forces (shear V and moment
M): {¢) l-shaped steel section; (d) glue-laminzizd
wood I-beam.
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columns carry both axial load and bending moment. These members are
called beam-columns (see Fig. 1.5d).

Beams—Shear and Bending Moment Created by Loads

Beams are slender members that are loaded perpendicular to their ’longitu- :

dinal axis (see Fig. 1.6a). As load is applied, a beam bends and deflects into

a shallow curve. At a typical section of a beam, internal forces of shear V-
. and moment M develop (Fig. 1.6b). Except in short, heavily loaded beams;,

the shear stresses 7 produced by V are relatively small, but the longitudinal
bending stresses produced by M are large. If the beam behaves elastically,

the bending stresses on a cross section (compression on the top and tension

on the bottom) vary linearly from a horizontal axis passing through the cen-
troid of the cross section. The bending stresses are directly proportional o
the moment, and vary in magnitude along the axis of the beam.

Shallow beams are relatively inefficient in transmitting load because
the arm between the forces C and T that make up the internal couple is
small. To increase the size of the arm, material is often removed from the
center of the cross section and concentrated at the top and bottom sur-

-faces, producing an I-shaped section (Fig. 1.6¢ and d).

Planar Trusses—All Members Axially Loaded

A truss is a structural element composed of slender bars whose ends are
assumed to be connected by frictionless pin joints. If pin-jointed trusses
are loaded at the joints only, direct stress develops in all bars. Thus the

“material is used at optimum efficiency. Typically, truss bars are assembled

in a triangular pattern—the simplest stable geometric configuration (Fig.
1.7a). In the nineteenth century, trusses were often named after the design-
ers who established a particular configuration of bars (see Fig. 1.7b).

The behavior of a truss is similar to that of a beam in which the solid
web (which transmits the shear} is replaced by a series of vertical and diag-
onal bars. By eliminating the solid web, the designer can reduce the dead-
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top i Figure 1.7: (a) Assembly of triangular elements
chord to form a truss; (b) two common types of trusses
\ named after the original designer.
vertical

diagonal

‘Warren truss

O]

weight of the truss significantly. Since trusses are much lighter than beams
of the same capacity, trusses are easier to erect. Although most truss joints
are formed by welding or bolting the ends of the bars to a connection (or
gusset) plate (Fig. 1.8a), an analysis of the truss based on the assumption
of pinned joints produces an acceptable result.

Although trusses are very stiff in their own plane, they are very flex-
ible when loaded perpendicular to their plane. For this reason, the com-

- pression chords of trusses must be stabilized and aligned by cross-bracing

(Fig. 1.8b). For example, in buildings, the roof or floor systems attached
to the joints of the upper chord serve as lateral supports to prevent lateral
buckling of this member. v ’
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Figure 1.8: (a) Bolted joint detail; () truss bridge
- showing cross-bracing needed to stabilize the two

main trusses.
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Arches—Curved Members Stressed Heavily
in Direct Compression

Arches typically are stressed in compression under their dead load. Because
of their efficient use of material, arches have been constructed with spans
of more than 2000 ft. To be in pure compression, an efficient state of stress,
the arch must be shaped so that the resultant of the internal forces on each

_section passes through the centroid. For a given span and rise, only one

shape of arch exists in which direct stress will occur for a particular force
system. For other loading conditions, bending moments develop that can
produce large deflections in slender arches. The selection of the appro-
priate arch shape by the early builders in the Roman and Gothic periods
represented a rather sophisticated understanding of structural behavior.
(Since historical records report many failures of masonry arches, obvi-
ously not all builders understood arch action.) : :
Because the base of the arch intersects the end supports (called abur-
ments) at an acute angle, the internal force at that point exerts a horizon-
tal as well as a vertical thrust on the abutments. When spans are large, when
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loads are heavy, and when the slope of the arch is shallow, the horizontal
component of the thrust is large. Unless natural rock walls exist to absorb
the horizontal thrust (Fig. 1.94), massive abutments must be constructed
(Fig. 1.96), the ends of the arch must be tied together by a tension mem-
ber (Fig. 1.9¢), or the abutment must be supported on piles (Fig. 1.9d).

Cables—Flexible Members Stressed in Tension
by Transverse Loads

Cables are relatively slender, flexible members composed of a group of
high-strength steel wires twisted together mechanically. By drawing
alloyed steel bars through dies—a process that aligns the molecules of the
metal—manufacturers are able to produce wire with a tensile strength
reaching as high as 270,000 psi. Since cables have no bending stiffness,
they can only carry direct tensile stress (they would obviously buckle under
the smallest compressive force). Because of their high tensile strength
and efficient manner of transmitting load (by direct stress), cable struc-
tures have the strength to support the large loads of long-span structures
more economically than most other structural elements. For example,
when distances to be spanned exceed 2000 ft, designers usually select
suspension or cable-stayed bridges (see Photo 1.4). Cables can be used
~ to construct roofs as well as guyed towers.

Under its own deadweight (a uniform load acting along the arc of the
cable), the cable takes the shape of a catenary (Fig. 1.10a). If the cable
carries a load distributed uniformly over the horizontal projection of its
span, it will assume the shape of a parabola (Fig. 1.10b). When the sag
(the vertical distance between the cable chord and the cable at midspan)
is small (Fig. 1.10qa), the cable shape produced by its dead load may be
closely approximated by a parabola.

cable
T chord
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abutment

batter patter
pile pile

(d)

Figure 1.9: (@) Fixed-end arch carries roadway
over a canyon where rock walls provide a natural
support for arch thrust 7; (b) large abutments pro-
vided to carry arch thrust; (c) tension tie added at
base to carry horizontal thrust, foundations
designed only for vertical reaction R; () founda-
tion placed on piles, batter piles used to transfer
horizontal component of thrust into ground.

Figure 1.10: (a) Cable in the shape of a catenary
under dead load; (&) parabolic cable produced by
a uniform load; (¢) free-body diagram of a section
of cable carrying a uniform vertical load; equilib-
rium in horizontal direction shows that the hori-
zontal component of cable tension H is constant.
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Photo 1.4: (a) Golden Gate Bridge (San Fran-
cisco Bay Area). Opened in 1937, the main span
of 4200 ft was the longest single span at that time
and retained this distinction for 29 years. Princi-
pal designer was Joseph Strauss who had previ-
ously collaborated with- Ammanr on the George
Washington Bridge in New York City. (b) Rhine
River Bridge at Flehe, near Dusseldorf, Germany.
Single-tower design. The single line of cables is
connected to the center of the deck, and there are
three traffic lanes on each side. This arrangement
depends on the torsional stiffness of the deck
structure for overall stability.

16
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Section 1.5 Basic Structural Elements 17

tower Figure 1.11: Techniques to stiffen cables: (a)

- guyed tower with pretensioned cables stressed to
approximately 50 percent of their ultimate tensile
A strength; (b) three-dimensional net of cables; tie-

/\ down cables stabilize the upward-sloping cables;

T P — T (¢) cable roof paved with concrete blocks to hold

}{’ N ~ " down cable to eliminate vibrations. Cables sup-

tie—cli)(l)wn W ported by massive pylons (columns) at each end.
cables ? : : ’

tensioned
cables

concrete =~ ‘supported
blocks roof

/
foundation

©

Because of a lack of bending stiffness, cables undergo large changes
in shape when concentrated loads are applied. The lack of bending stiff-
ness also makes it very easy for small disturbing forces (e.g., wind) to
induce oscillations (flutter) into cable-supported roofs and bridges. To uti-
lize cables effectively as structural members, engineers have devised a
variety of techniques to minimize deformations and vibrations produced by
live loads. Techniques to stiffen cables include (1) pretensioning, (2) using
tie-down cables, and (3) adding extra dead load (see Fig. 1.11).

As part of the cable system, supports must be designed to absorb the
cable end reactions. Where solid rock is available, cables can be anchored
economically by grouting the anchorage into rock (see Fig. 1.12). If rock
is not available, heavy foundations must be constructed to anchor the
cables. In the case of suspension bridges, large towers are required to SUP-  Figure 1.12: Detail of a cable anchorage into
port the cable, much as a clothes pole props up a clothesline. - . rock.
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. stiffeners

@

Figure 1.13: Rigid-jointed structures: (a) one-
story rigid frame; (b) Vierendeel truss. loads trans-
mitted both by direct stress and bending: (¢} details
" of a welded joint at the corner of a steel rigid
frame; (d) reinforcing detail for corner of con-
crete frame in (b).

Rigid Frames—Stressed by Axial Load and Moement

Examples of rigid frames (structures with rigid joints) are shown in Figure
1.13a and b. Members of a rigid frame, which typically carry axial load

-and moment, are called beam-columns. For a joint to be rigid, the angle

between the members framing into a joint must not change when the mem-
bers are loaded. Rigid joints in reinforced concrete structures are simple to
construct because of the monolithic nature of poured concrete. However,
rigid joints fabricated from steel beams with flanges (Fig. 1.6¢) often
require stiffening plates to transfer the large forces in the flanges between
members framing into the joint (see Fig. 1.13¢). Although joints can be
formed by riveting or bolting, welding greatly simplifies the fabrication

of rigid joints in steel frames.

Plates or Slabs—Load Carried by Bending

Plates are planar elements whose depth (or thickness) is small compared
to their length and width. They are typically used as floors in buildings
and bridges or as walls for storage tanks. The behavior of a plate depends
on the position of supports along the boundaries. If rectangular plates are
supported on opposite edges, they bend in single curvature (see Fig. 1.14a).

- If supports are continuous axound the boundaries, double curvature bend-

ing occurs.

. Since slabs are flexible owmg to their small depth the distance they
can span without sagging excessively is relatively small. (For example,
reinforced concrete slabs can span approximately 12 to 16 ft.) If spans are
large, slabs are typically supported on beams or stxffened by addmg ribs

. {(Fig. 1.145).

If the connection between a slab and the supporting beam is properly
designed, the two elements act together {(a condition called composite

< action) to form a T-beam (Fig. 1.14¢). When the slab acts as the flange
" of a rectangular beam, the stlffness of the beamn will increase by a factor
-of approximately 2.

By corrugating plates, the demgner can create a series of deep beams

* (called folded plates) that can span long distances. At Logan Airport in

Boston, a prestressed concrete folded plate of the type shown in Figure
1.14d spans 270 ft to act as the roof of a hanger.

“Thin Shells (Curved Surface Elements)—

Stresses Acting Primarily in Plane of Element

_Thin shells are three-dimensional curved surfaces. Although their thick-
ness is ofteén small (several inches is common in the case of a reinforced

concrete shell), they can span large distances because of the inherent
strength and stiffness of the curved shape. Spherical domes, which are
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single double ( bef}r:;l
curvature bending curvature bending typical)
(@ )
shear
connector

Figure 1.14: (a) Influence of boundaries on curvature. (&) Beam and slab system. (¢) Slab
and beams act as 4 unit. On left, concrete slab cast with stem to form a T-beam; right, shear
connector joins concrete slab to steel beam, producing a composite beam. (d} A folded
plate roof. o

(©)

- commonly used to cover sports arenas and storage tanks, are one of the
most common types of shells built.

Under uniformly distributed loads, shells develop in-plane stresses
(called membrane stresses) that efficiently support the external load (Fig.
1.15). In addition to the membrane stresses, which are typically small in
magnitude, shear stresses perpendicular to the plane of the shell, bend-
ing moments, and torsional moments also develop. If the shell has bound-
aries that can equilibrate the membrane stresses at all points (see Fig.
1.16a and b), the majority of the load will be carried by the membrane
stresses. But if the shell boundaries cannot supply reactions for the mem-
brane stresses (Fig. 1.16d), the region of the shell near the boundaries
will deform. Since these deformations create shear normal to the surface
of the shell as well as moments, the shell must be thickened or an edge
member supplied. In most shells, boundary shear and moments drop rap-
idly with distance from the edge. :

The ability of thin shells to span large unobstructed areas has always
excited great interest among engineers and architects. However, the great
expense of forming the shell, the acoustical problems, the difficulty of pro-
ducing a watertight roof, and problems of buckling at low stresses have
restricted their use. In addition, thin shells are not able to carry heavy con-
centrated loads without the addition of ribs or other types of stiffeners.
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snap-through buckling:
this mode of failure prevented by adding
stiffening ribs or thickening shell -

{a)

Figure 1.16: Commonly constructed types of

shells. (a) Spherical dome supported continuously.

Boundary condition for membrane action is sup- -

plied. (b) Modified dome with closely spaced
supports. Due to openings, the membrane condi-
tion is disturbed somewhat at the boundaries.

Shell must be thickened or edge beams supplied -

at openings. {¢) Hyperbolic paraboloid. Straight-
line generators form this shell. Edge members are
needed to supply the reaction for the membrane
stresses. (d) Dome with widely spaced supports.

Membrane forces cannot develop at the bound-

" aries. Edge beams and thickening of shell are

required around the perimeter. (¢) Dome with a -

" compression ring at the top and a tension ring at
the bottom. These rings supply reactions for mem-

brane stresses. Columns must carry only vertical -

load. (f) Cylindrical shell, :

nn :
£ tension

........................................................................................................................................................

1.6 Assembling Basic Elements to Form a Stable
Structural System

One-Story Building

To illustrate how the designer combines the basic structural elements
tdescribed in Section 1.5) into a stable structural system, we will discuss
in detail the behavior of a simple structure, considering the one-story, box-
like structure in Figure 1.17a. This building, representing a small storage
facility, consists of structural steel frames covered with light-gage corre-
gated metal panels. (For simplicity, we neglect windows, doors, and other
architectural details.) I .

In Figure 1.17h, we show one of the steel frames located just inside the
end wall (labeled ABCD in Fig. 1.174) of the building. Here the metal roof
deck is supported on beam CD that spans between two pipe columns

- located at the corners of the building. As shown in Figure 1.17¢, the ends
-of:the beam are connected to the tops-of the columns by bolts that pass
- through the bottom flange of the beam and a cap plate welded to the top of

the column. Since this type of connection cannot transmit moment effec-
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Section 1.6

see detail A

roof deck

Positlon of braced frames In bullding
(see Fig.1.178), shown by dashed lines.
All other structural members omitted.

-7 1%
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tively between the end of the beam and the top of the column, the designer
assumes that this type of a connection acts as a small-diameter hinge.

Because these bolted joints are not rigid, additional light members
(often circular bars or steel angle members) are run diagonally between
adjacent columns in the plane of the frame, serving to stabilize the structure
further. Without this diagonal bracing (Fig. 1.17b), the resistance of the
frame to lateral loads would be small, and the structure would lack stiff-
ness. Designers insert similar cross-bracing in the other three walls—and
sometimes in the plane of the roof.

The frame is connected to the foundation by boits that pass through
a light steel baseplate, welded to the bottom of the column. The bottom
ends of the bolts, called anchor bolts, are embedded in concrete piers

- SN A - - PN e -
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‘roofing
insulation

roof deck

beam

cap
plate

pipe
column

end view front view

detail A

©)

Figure 1.17: (@) Three-dimensional view of
building (arrow indicates direction in which roof
deck spans); (&) details of cross-braced frame with
bolted joints; (¢) details of beam-to-column con-
nections; {d) idealized model of structural system
transmitting gravity loads from roof; (¢) model of
beam CD;, (f) idealized model of truss system for
transmitting lateral load acting to the right. Diag-
onal member DB buckles and is ineffective.
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located directly under the column. Typically, designers assume that a sim-
ple bolted connection of this type acts as a pin support; that is, the con-
nection prevents the base of the column from displacing vertically and
horizontally, but it does not have sufficient stiffness to prevent rotation
(engineering students often wrongly assume that a flat baseplate bolted
to a concrete pier produces a fixed-end condition, but they are not taking
into account the large loss of rotational restraint induced by even small
flexural deformations of the plate).

Although the bolted connection does have the capacity to apply a smail
but uncertain amount of rotational restraint to the buse of the column, the
designer usually treats it conservatively as a frictionless pin. However, it
is usually unnecessary to achieve a more rigid connection because to do
8o is expensive, and the additional rigidity can be supplied more simply and
economically by increasing the moment of inertia of the columns. If design-
ers. wish to produce a fixed support at the base of a column to increase its

stiffness, they must use a heavy, stiffened baseplate and the foundation
must be massive.

DeSIgn of Frame for Gravity Load. To analyze this small frame for
gravity load, the designer assumes the weight of the roof and any vertical
live load (e.g., snow or ice) are carried by the roof deck (acting as a series
of small parallel beams) to the frame shown in Figure 1.174. This frame is
idealized by the designer as a beam connected by a pinned joint to the
columns. The designer neglects the diagonal bracing as a secondary
member—assumed to be inactive when vertical load acts. Since no
moments are assumed to develop at the ends of the beam, the designer ana-
lyzes the beam as a simply supported member with a uniform load (see
Fig. 1.17e). Because the reactions of the beam are applied directly over the
centerlines of the columns, the designer assumes that the column carries
only direct stress and behaves as an axially loaded compression member,

Design for Lateral Load. The designer next checks for lateral loads.
If a lateral load P (produced by wind, for example) is applied to the top

~ of the roof (see Fig. 1.17f), the designer can assume that one of the diag-
- onals acting together with the roof beam and columns forms atruss. If the

diagonals are light flexible members, only the diagonal running from A to

€, which suetches and develops tensile stresses as Lhe beam displaces to
_ 'the right, is assumed 1o be effective. The oppos1te diagonal BD is assumed

to buckle because it is slender and placed in compression by the lateral
movement of the beam. If the wind reverses direction, the other diagonal

BD would become effective, and diagonal AC would buckle.

As we have illustrated in this simple problem, under certain types of

- loads, certain members come into play to.transmit the loads into the sup-

ports. As long as the designer understands how to pick a logical path for

these loads, the analysis can be greatly simplified by eliminating mem-
bers that are not effective.
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Section 1.7 . Analyzing by Computer

Analyzing by Computer

Until the late 1950s, the analysis of certain types of indeterminate struc-
tures was a long, tedious procedure. The analysis of a structure with many
joints and members (a space truss, for example) might require many months
of computations by a team of experienced structural engineers, More-
over, since a number of simplifying assumptions about structural behav-
ior were often required, the accuracy of the final results was uncertain,
Today computer programs are available that can analyze most structures
rapidly and accurately. Some exceptions still exist. If the structure is an
unusual shape and complex—a thick-walled nuclear containment vessel
or the hull of a submarine—the computer analysis can still be compli-
cated and time-consuming.

- Most computer programs for analyzing structures are written to pro-
duce a first-order analysis; that is, they assume (1) linear-elastic behav-
ior, (2) that member forces are unaffected by the deformations (change
in geometry) of the structure, and (3) that no reduction in flexural stiff-
ness is produced in columns by compression forces.

The classical methods of analysis covered in this book produce a first-
order analysis, suitable for the majority of structures, such as trusses, con-
tinuous beams, and frames, encountered in engineering practice. When a
first-order analysis is used, structural design codes provide empirical pro-
cedures needed to adjust forces that may be underestimated.

While more complicated to use, second-order programs that do account
forinelastic behavior, changes in geometry, and other effects influencing
the magnitude of forces in members are more precise and produce a more
accurate analysis. For example, long slender arches under moving loads
can undergo changes in geometry that increase bending moments signif-
icantly. For structures of this type, a second-order analysis is essential.

- Engineers typically use computer programs prepared by teams of struc-
tural specialists who are also skilled programmers and mathematicians.
Of course, if the designer does not establish a stable structure, or if a crit-
ical loading condition is overlooked, the information supplied by the analy-
sis is obviously not adequate to produce a safe, serviceable structure.

In 1977, the failure of the large three-dimensional space truss (see
pages 72 and 682) supporting the 300-ft by 360-ft roof of the Hartford
Civic Center Arena is an example of a structural design in which the
designers relied on an incomplete computer analysis and failed to produce
a safe structure. Among the factors contributing to this disaster were inac-
curate data (the designer underestimated the deadweight of the roof by
1.5 million 1b}, and the inability of the computer program to predict the
buckling load of the compression members in the truss. In other words,
the presumption existed in the-program that the structure was stable—an
assumption in the majority of early computer programs used for analyz-
ing structures. Shortly after a winter storm deposited a heavy load of
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rain-soaked snow and ice on the roof, the buckling of certain slender
compression members in the roof truss precipitated a sudden collapse of
the entire roof. Fortunately, the failure occurred several hours after a
crowd of 5000 sports fans attending a basketball game had left the build-
ing. Had the failure taken place several hours sooner (when the building
was occupied), hundreds of people would have been killed. Although no
loss of life occurred, the facility was unusable for a considerable period,

and large sums of money were required to clear the wreckage, to redemgn
the building, and to reconstruct the arena.

Although the computer has reduced the hours of computatlons 1equ1red
to analyze structures, the designer must still have a basic insight into all
potential failure modes in order to assess the reliability of the solutions
generated by the computer. Preparation of a mathematical model that ade-

quately represents the structure remains one of the most important aspects
of structural engineering.

.......................................................................................................................................................

1.8 Preparat;on of Computations

Preparanon of a set of clear, complete camputatlons for each analyms 18

. an important responsibility of each engineer. A well-organized set of

computations not only will reduce the possibility of computational error,
but also will provide essential information if the strength of an existing
structure must be investigated at some future time. For example, the owner
of a building may wish to determine if one or more additional floors can
be added to an existing structure without overstressing the structural

frame and foundations. If the original computations are complete and the

engineer can determine the design loads, the allowable stresses, and the

assumptions upon which the original analysis and design were based,

evaluation of the modified structure’s strength is facilitated.
QOccasionally, a structure fails (in the worst case, lives are lost) or

proves unsatisfactory in service (e.g., floors sag or vibrate; walls crack).

In these situations, the original computations will be examined closely
by all parties to establish the liability of the designer. A sloppy or incom-
plete set of computations can damage an engineer’s reputation.

Since the computations required to solve the homework problems in
this book are similar to those made by practicing engineers in design
offices, students should consider each assignment as an opportunity to
improve the skills required to produce computations of professional qual-

ity. With this objective in mind, the following suggestions are offered:

1. State the objective of the analysis in a short sentence.
2. Prepare a clear sketch of the structure, showing all loads and
dimensions. Use a sharp pencil and a straightedge to draw lines.

Figures and numbers that are neat and clear have a more professional
appearance.
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Section 1.8 Preparation of Computations

- Include all steps of your computations. Computations cannot easily

be checked by another engineer unless all steps are shown. Provide
a word or two stating what is being done, as needed for
clarification.

Check the results of your computations by making a static check
(i.e., writing additional equilibrivm equations).

If the structure is complex, check the computations by makmg an
approximate analysis (see Chap.14). ,

Verify that the direction of the deflections is consistent with the
direction of the applied forces. If a structure is analyzed by a
computer, the displacements of joints (part of the output data) can
be plotted to scale to produce a clear picture of the deformed
structure.

......

To begin our study of structural analysis, we reviewed the relationship
between planning, design, and analysis. In this interrelated

process, the structural engineer first establishes one or more initial
configurations of possible structural forms, estimates deadweights,
selects critical design loads, and analyzes the structure. Once the

structure is analyzed, major members are resized. If the results of

the design confirm that the initial assumptions were correct, the
design is complete. If there are large differences between the initial

" and final proportions, the design is modified, and the analysis and

sizing repeated. This process continues until final results confirm
that the proportions of the structure require no modifications.

Also we reviewed the characteristics of common structural elements
that comprise typical buildings and bridges. These include beams,
trusses, arches, frames with rigid joints, cables, and shells.
Although most structures are three-dimensional, the designer who
develops an understanding of structural behavior can often divide
the structure into a series of simpler planar structures for analysis.

- The designer is able to select a simplified and idealized model that

accurately represents the essentials of the real structure. For example, -
although the exterior masonry or windows and wall panels of a
building, connected to the structural frame, increase the stiffness of
the structure, this interaction is typically neglected.

Since most structures are analyzed by computer, structural engineers
must develop an understanding of structural behavior so they can,
with a few simple computations, verify that the results of the computer
analysis are reasonable. Structural failures not only involve high
costs, but also may result in injury to the public or Ipss of life.
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The Iarge 1999 Chi-Chi earthquake (magnitude 7.7) in Taiwan caused the upper floors of the apartment
buildings shown in'the photo to topple over as a unit. Although the columns supporting the building were
deszgned for'seismic forces, the attachment of rigid concrete and brick partition walls to the columns in the
upper floor ,gated ‘the designer's intent, and forced the more flexible segments of the lower floor
columns to fail as the upper mass of the building displaced laterally as a unit.
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£ 2,1 Building and Design Code

A code is a set of technical specifications and standards that control major -

details of analysis, design, and construction of buildings, equipment, and
bridges. The purpose of codes is to produce safe, economical structures
so that the public will be protected from poor or madequate design and
construction. ,

Two types of codes exist. One type, called a structural code, is written
by engmeerq and other specialists who are concerned with the design of &
particular C“Iass of structure (e.g., buildings, highway bridges, or nuclear
power plants) or who are interested in the proper use of a specxﬁc material

(steel, reinforced concrete, aluminum, or wood). Typically, structural codes
. specify design loads, allowable stresses for various types of members,

design assumptions, and requirements for materials. Examples of structural
codés frequently used by structural engineers. include the following:

1. Standard Specifications for Highway Bridges by the American
Association of State Highway and Transportation Officials
(AASHTO) covers the design and analysis of highway bridges.

2. Manual for Railivay Engineering by the American Railway

Engineering and Maintenance of Way Association (AREMA)
covers the design and analysis of railroad bridges. =

3. Building Code Requirements for Reinforced Concrete (ACI 318) by
the American Concrete Institute (ACI) covers the analysis and
design of concrete structures.

4. Manual of Steel Construction by the American Institute of Steel
Construction (AISC) covers the analysis and demgn of steel
structures.

5. National Design Specifications for Wood Construction by the
American Forest & Paper Association (AFPA) covers the analysis
and design of wood structures.

The second type of code, called a building code, is established to cover
construction in a given region (often a city or a state). A building code
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contains provisions pertaining to architectural, structural, mechanical,
and electrical requirements. The objective of a building code is also to
protect the public by accounting for the influence of local conditions on

-construction. Those provisions of particular concern to the structural

designer cover such topics as soil conditions (bearing pressures), live
loads, wind pressures, snow and ice loads, and earthquake forces.- Today

- many building codes adopt the provisions of the Standard Minimum Design
" Loads for Buildings and Other Structures published by the American

Society of Civil Engineers (ASCE) or the more recent International

Building Code by the International Code Council.

As new systems evolve, as new materials become available, or as
repeated failures of accepted systems occur, the contents of codes are
reviewed and updated. In recent years the large volume of research on
structural behavior and materials has resulted in frequent changes to both
types of codes. For example, the ACI Code Committee issues a yearly

. -addendum and producés a revised edition of the national code every 6 years.
Most codes make provision for the designer to depart from pre-

scribed standards if the designer can show by tests or.analytical studies”

: »that such changes produce a safe design.

Structures must be proportioned so that they will not fail or deform exces-
sively under load. Therefore, an engineer must take great care to anticipate
the probable loads a structure must carry. Although the design loads speci-
fied by the codes are generally satisfactory for most buildings, the designer
must also decide if these loads apply to the specific structure under consid-
eration. For example; if the shape of a building is unusual (and induces

increased wind speeds), wind forces may deviate significantly from those
_ specified by a building code. In such cases, the designer should conduct

wind tunnel tests on models to establish the appropriate design forces. The
designer should also try to foresee if the function of a structure (and conse-

- quently the loads it must carry) will change in the future, For example, if

the possibility exists that heavier equipment may be introduced into an area

. that is originally designed for a smaller load, the designer may decide to
. increase the design loads specified by the code. Designers typically differ-

entiate between two types of load: live load and dead load.
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+~ 2.3 Dead Loads

The load associated with the weight of ‘the structure and its permanent
components (floors, ceilings, ducts, and so forth) is called the dead load.

~
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Since the dead load must be used in the computations to §ize members
but is not known precisely until the members are sized, its magnitude
must be estimated initially. After members are sized and architectural
details finalized, the dead load can be computed more. accurately. If the
computed value of dead load is approxxmately equal to (or slightly less
than) the initial estimate of its value, the analysis is finished. But if a large
difference exists between the estimated and computed values of dead
load, the designer should revise the computations, using the improved
value of deadweight,

Dead Load Adjustment for Utilities and Partition Walls

In most buildings the space directly under each floor is occupied by a
variety of utility lines and supports for fixtures including air ducts, water
and sewage pipes, electrical conduit, and lighting fixtures. Rather than.
attemnpt to account for the actual weight and position of each item, design-
ers add an additional 10 to 15 Ib/ft? (0.479 to 0.718 kN/m?) to the weight
of the floor system to ensure that the strength of the floor, columns and
other structural members will be adequate.

Normally designers try to position beams directly under heavy masonry
walls to carry their weight directly into supports. If an owner requires
flexibility to move walls or partitions periodically in order to reconfig-
ure office or laboratory space, the designer can add an appropriate
allowance to the floor dead load. If partitions are light, this may be an
additional dead load of 10 Ib/ft? (0.479 kN/m?) or less. In a factory or a
laboratory that houses heavy test equipment, the allowance may be 3or
4 times larger. .

Distribution of Dead Load to Framed Floor Systems

Many floor systems consist of a reinforced concrete slab supported on a
rectangular grid of beams. The supporting beams reduce the span of the
slab and permit the designer to reduce the depth and weight of the floor
system, The distribution of load to a floor beam depends on the geomet-
ric configuration of the beams formmg the grid. To develop an insight
into how load from a particular region of a slab is transferred to sup-
porting beams, we will examine the three cases shown in Figure 2.1, In
the first case, the edge beams support a uniformly loaded square slab (see
Fig. 2.1a). From symmetry we can infer that each of the four beams along
the outside edges of the slab carries the same triangular load. In fact, if
a slab with the same area of uniformly distributed reinforcement in the x
and y directions were loaded to failure by a uniform load, large cracks
would open along the main diagonals, confirming that each beam supports
the load on a triangular area. The area of slab that is supported by a par~
ticular beam is termed the beam’s tributary area.
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(@) square slab, all edge bearns support beam B1 "} B1
a triangular area; () two edge beams S
divide load equally; (c) loadona I ft g1} ,, ! slab Ly

width of slab in Fig. (b); (d) tributary
areas for beams Bl and B2 shown
shaded, all diagonal lines slope at 45%;
(e)‘top figure shows most likely load
on beam B2 in Fig. (d); botrom figure

shows simplified load disuribution on : LLs 4o Ls |
beam B2; (f) most likely load on beam ) ) 2 2
B1 in Fig. (d): (g) simplified load dis- B wi v )

tribution to beam B1.
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In the second case, we consider a rectangular slab supported on oppo-
site sides by two parallel beams (Fig. 2.15). In this case, if we imagine a
uniformly loaded 1-ft-wide strip of slab that acts as a beam spanning a dis-
tance L, between two edge beams Bl and B2 (Fig. 2.15), we can see that
the load on the slab divides equally between the supporting edge beams;
that is, each foot of beam carries a uniformly distributed load of wiL /2
(Fig. 2.1c), and the tributary area for each beam is a rectangular area that
extends out from the beam a distance LJ/2 to the centerline of the slab.

For the third case, shown in Figure 2.14, a slab, carrying a uniformly
distributed load w, is supported on a rectangular grid of beams. The trib-
utary area for both an interior and an exterior beam is shown shaded in
Figure 2.1d. Each interior beam B2 (see Fig. 2.1d) carries a trapezoidal
load. The edge beam B1, which is loaded at the third points by the reac-
tions from the two interior beams, also carries smaller amounts of load
from three triangular areas of slab (Fig. 2.1f). If the ratio of the long to
short side of a panel is approximately 2 or more, the actual load distri-
butions on beam B2 can be simplified by assuming conservatively that
the total load per foot, w, = wL,/3, is uniformly distributed over the
entire length (see Fig. 2.1¢), producing the reaction Rg,. In the case of
beam B1, we can simplify the analysis by assuming the reaction Rp,
from the uniformly loaded B2 beams is applied as a concentrated load at
the third points (see Fig. 2.1g). - '

Table 2.1a lists the unit weights of a number of commonly used con-
struction materials, and Table 2.1 contains the weights of building com-
ponents that are frequently specified in building construction. We will
make use of these tables in examples and problems.

Examples 2.1 and 2.2 introduce computations for dead load.

* Section 2.3 Dead Loads 31

A three-ply asphalt felt and gravel roof over 2-in-thick insulation board
is supported by 18-in-deep precast reinforced concrete beams with 3-ft-
wide flanges (see Fig. 2.2). If the insulation weighs 3 lb/ft* and the
asphalt roofing weighs 5 1b/ft?, determine the total dead load, per foot
of length, each beam must support.

Solution
Weight of beam is as follows:

Flange %ft X %2—& X 1ft X 150 Ib/ft® = 150 Ib/ft

10

St -
em 13

ft X %ft X 1t X 150 1b/ft = 145 Ib/ft

|
EXAMPLE 2.1 |

three-ply felt
with gravel topping

2" rigid insulation

b 33—

_Figure 2.2: Cross section of reinforced concrete

beams.

[continues on next page]
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Example 2.1 continues . . .

Insulation 31b/At?2 X 3 ft X 1 ft =0 lb/ft

Roofing o 5LIb/ft2 X 3 ft X 1 ft = 16.5 Ib/ft

Total = 320.5 Ib/ft,
round to 0.321 kip/ft

R bR e s R

R

EXAMPLE 2 2

By S

P

Statement of Example

The steel framing plan of a small building is shown in Figure 2.3¢. The
floor consists of a 5-in-thick reinforced concrete slab supported on steel
beams (see section 1-1 in Fig. 2.3b). Beams are connected to each other
and to the corner columns by clip angles; see Figure. 2.3¢. The clip angles
are assumed to provide the equivalent of a pin support for the beams; that
is, they can transmit vertical load but no moment. An acoustical board
ceiling, which weighs 1.5 1b/ft2, is suspended from the concrete slab by
closely spaced supports, and it can be treated as an additional uniform
load on the slab. To account for the weight of ducts, piping, conduit, and
so forth, located between the slab and ceiling (and supported by hangers
from the slab), an additional dead load allowance of 20 1b/ft? is assumed.
The designer initially estimates the weight of beams B1 at 30 Ib/ft and
the 24-ft girders B2 on column lines 1 and 2 at 50 Ib/ft. Establish the
magnitude of the dead load distribution on beam B1 and girder B2.

Solution
We will assume that all load between panel centerlines on either side of

- beam B1 (the tributary area) is supported by beam Bl (see the shaded

area in Fig. 2.3a). In other words, as previously discussed, to compute
the dead load applied by the slab to the beam, we treat the slab as a series
of closely spaced, 1-ft-wide, simply supported beams, spanning between
the steel beams on column lines A and B, and between B and C (see the
cross-hatched area in Fig. 2.3a). One-half of the load, wL/2, will go to
each supporting beam (Fig. 2.3d), and the total slab reaction applied per
foot of steel beam equals wL = 8w (see Fig. 2.3¢).
Total dead load applied per foot to beam B1:

Weight of slab 1 ft X 1ft X -5—2»& X 8 ft X 150 Ib/ft® = 500 1b/ft

Weight of ceiling 1.5 b/ X 8 fr'= 12 1b/ft
Weight of ducts, etc. ‘ ‘ 20 1b/ft2 X 8 ft = 160 Ib/ft
Estimated weight of beam =~ o - =30 b/t
Total = 702 1b/f,
round to
0.71 kip/ft
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5" slab
\
RN T

. Lo [0 1[0

suspended ceiling

Section 1-1

®

—1 —O
b 3@s =24 ——
@

Section 2-2

PLee.® 7

@

(}) ?) 8.875kips  8.875 kips
wp = 0.71 Kip/ft @« 8’ 8/ 8'9

T Ty e o ket

| 24! i
R, = 8.875 kips Rp=8875kips = R, =9.475 kips  Ry=9475kips
Beam Bi = Beam B2
: Figure 2.3: Determination of dead load for
(&) (63 beam and girder. )

Sketches of each beam with its applied loads are shown in Figure 2.3¢ and
J. The reactions (8.875 kips) from the B1 beams are applied as concen-
trated loads to the third points of girder B2 on column line 2 (Fig. 2.3f).
The uniform load of 0.05 kip/ft is the estimated weight of girder B2,
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B ST W

Typical Design Dead Loads .

.............................................................................................................................................

' (a) Material Weightsx

Substance “Weight, Ib/ft® (kN/m?)
Steel B b 490 (77.0)
Aluminum A 165 (25.9)
Reinforced concrete: ‘

. Normal weight - 150 (23.6)

Light weight 90-120 (14.1-18.9)
Brick : e ' o 120 (18.9)
‘Wood

Southern pine ‘ 37 (5.8)

Douglas fir =~ = : . L 34 (5.3)

(b} Building Component Weights
Component " Weight, ib/ft? (kN/m?)
Ceilings : o ' : ’
Gypsum plaster on suspended metal lath , .10 (0.48)
‘Acoustical fiber tile on rock lath and channel ' :
ceiling : 5(0.24)
Floors
Reinforced concrete slab per inch of thickness
Normal weight 125 (0.60)
Lightweight 6-10 (0.29-0.48)
Roofs

Three-ply felt tar and gravel % (0.26)

2-in insulation ; 3(0.14)
Walls and parritions ‘

Gypsum board (1-in thick) V " 4 (0.19)

Brick (per inch of thickness) 10 (0.48)

Hollow concrete block (12 in thick)

Heavy aggregate : ‘ ’ 80 (3.83)
Light aggregate ) ‘ 55 (2.63)
Clay tile (6-in thick) : : 30 (1.44)

2 X 4 studs 16 in on center, %~in gypsum wall '

on both sides V 8 (0.38)
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Tributary Areas of Columns

To determine the dead load transmitted into a column from a floor slab, the
designer can either (1) determine the reactions of the beams framing into
the column or (2) multiply the tributary area of the floor surrounding the
column by the magnitude of the dead load per unit area acting on the floor.
The tributary area of a column is defined as the area surrounding the
column that is bounded by the panel centerlines. Use of tributary areas
is the more common procedure of the two methods for computing col-
umn loads. In Figure 2.4 the tributary areas are shaded for corer column
Al, interior column B2, and exterior column C1. Exterior columns located
on the perimeter of a building also support the exterior walls as well as
floor loads. :

As you can see by comparing tributary areas for the floor system in
Figure 2.4, when column spacing is approximately the same length in
both directions, interior columns support approximately 4 times more
floor dead load than corner columns. When we use the tributary areas to
establish column loads, we do not consider the position of floor beams,
but we do include an allowance for their weight.

Use of tributary areas is the more common procedure of the two meth-
ods for computing columns loads because designers also need the tribu-

tary areas to compute live loads given that design codes specify that the .

percentage of /ive load transmitted to a column is an inverse function of
the tributary areas; that is, as the tributary areas increase, the live load
reduction increases. For columns supporting large areas this reduction
can reach a maximum of 40 to 50 percent. We will cover the ASCE 7-98
specification for live load reduction in Section 2.4.1.

- IR e ‘ - KA B -

Figure 2.4: Tributary area of columns Al, B2,

- Section 2.3 Dead Loads

and C1 shown shaded.
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EXAMPLE 2.3

k‘]")ead load to éblurﬁrﬁ B2 1s as follows:

Using the tributary area method, compute the floor dead loads supported
by columns Al and B2 in Figure 2:4. The floor system consists of a 6-
in-thick reinforced concrete slab weighing 75 1b/ft?. Allow 15 Ib/ft? for
the weight of floor beams, utilities, and a ceiling suspended from the
floor. In addition, allow 10 Ib/ft? for lightweight partitions. The precast
exterior wall supported by the perimeter beams weighs 600 1b/ft.

- Solution

Total floor dead load is
D =75+ 15 + 10 = 100 b/ft? = 0.1 kip/ft?
Dead load to column Al is as follows:
Tributary area - A,=9 X 10 =90 ft*
‘Floor dead load 'A,D =90 X 0.1 klp/ft2 =9 kxps

- Weight of exterior wall = , ‘
- weight/ft (lepgth) (0.6 klp/ft)(l(} +9) = ;1 1.4 kips,

Total = 20.4 kips

Tributary area = 18 X 21 = 378 ft>
Total dead load = 378 ft? X 0.1 kip/ft*> = 37.8 kips

..........................................................................

Buildings Loads

Loads that can be moved on or off a structure are classified as live loads.
Live loads include the weight of people, furniture, machinery, and other
equipment. Live loads can vary over time especially if the function of the
building changes. The live loads specified by codes for various types of
buildings represent a conservative estimate of the maximum load likely
to be produced by the intended use of the building. In each region of the
country, building codes typically specify the design live load. Currently,
many state and city building codes base the magnitude of live loads and
design procedures on the ASCE standard, which has evolved over time

- by relating the magnitude of the design load to the successful perfor-

mance of actual buildings. When sizing members, designers must also
consider short-term construction live loads, particularly if these loads are
large. In the past a number of building failures have occurred during con-
struction when large piles of heavy construction material were concen-
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trated in a small area of a floor or roof of a partially erected building,
when the capacity of members, not fully bolted or braced is below their
potential load capacity.

The ASCE standard typ1cally specifies a minimum value of uniformly
distributed live load for various types of buildings (Table 2.2). If certain
structures, such as parking garages, are also subjected to large concen-
trated loads, the standard may require that forces in members be investi-
gated for both uniform and concentrated loads, and that the design be
based on the loading condition that creates the greatest stresses. For exam-
ple, the ASCE standard specifies that, in the case of parking garages, mem-
bers be designed to carry either the forces produced by a uniformly dis-
tributed live load of 50 Ib/ft® or a concentrated load of 2000 1b acting
over an area of 6.25 ft>—whichever is larger.

Live Load Reduction

Recognizing that a member supporting a large tributary area is less likely
to be loaded at all points by the maximum value of live load than a mem-
ber supporting a smaller floor area, building codes permit live load reduc-
tions for members that have a large tributary area. For this situation, the
ASCE standard permits a reduction of the design live loads L, as listed
in Table 2.2, by the following equation when the influence area Kij; Aris
larger than 400 ft? (37.2 m?). However, the reduced live load must not be
less than 50 percent of L, for members supporting one floor or a section

&4 TABLE 2.2
1 Typical Design Live Loads

Occupancy Use Live Load, Ib/ft? (kN/m?)

Assembly areas and theaters

Fixed seats (fastened to floor) 60 (2.87)

Lobbies ‘ 100 (4.79)

Stage floors 150 (7.18)
Libraries

Reading rooms ; ‘ 60 (2.87)

Stack rooms 150 (7.18)
Office buildings , ‘

Lobbies 100 (4.79)

Offices 50 (2.40)
Residential

Habitable attics and sleeping areas 30 (1.44)

Uninhabitable attics with storage . : 20 (0.96)

All other areas . 40 (1.92)
Schools . o ,

Classrooms . , v 40.(1.92)

Corridors above the first floor , 80 (3.83)

- I . - IR M. - -
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of a single floor, nor less than 40 percent of L, for members supporting
two or more floors:

15
L= L0<0.2S + ——) U.S. customary units  (2.1a)
‘ VK,Ar ‘ ‘

4.57
VEyAr
where L, = design load listed in Table 2.2

L = reduced value of live load
"Ar = tributary area, ft*> (m?)

K;; = live load element factor, equal to 4 for columns and 2 for
beams

L= L0<0.25 + ) ST units 2.1b)

For a column or beam supporting more than one floor, the term Ay rep-
resents the sum of the tributary areas from all floors.

EXAMPLE 2.4

- K B

For the three-story building shown in Figure 2 5a and b, calculate the
design live load supported by (1) floor beam A, (2) girder B, and (3) the -
interior column-2B in the first story. Assume a 50 1b/ft? design live load,
L,, on all floors including the roof.

Solution
(1) Floor beam A ‘ ,
Span = 20 ft tributary area Ay = 8(20) = 160 ft* K =2
Determine if live loads can be reduced: '
K Ar = 2A; = 2(160) = 320 ft2 < 400 f1°

‘therefore, no live load reduction is permitted.

Compute the uniform live load per foot to beam:

W = 50(8) = 400 Ib/ft = 0.4 kip/ft
See Figure 2.5d for loads and reactions. )
(2) Girder B

Girder B is loaded at each third point by the reactions of two floor beams.
Its tributary area extends outward 10 ft from its longitudinal axis to the

~ midpoint of the panels on each side of the girder (see shaded area in Fig.

2.5a); therefore Ay = 20(16) = 320 ft3.
K Ar = 2(320) = 640 fi2

- [ ST VIR - [ ST " - W e




?

10’
10
©— J_ gLt — c 12’
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3@8’224Ir ' 3@8'-‘:24' ' 1 24! ? 24! I
- Plan :
(@ R =32.3 kips
Elevation
Ap=480 ft &
/
I I I
L__.L_J |
12 12/ i
panel § panel §
Tributary area to column C shown shaded
©
6.736 ki 736 ki
wy = 0.4 kip/ft ps .73 kips
—
— - - —
1; —— L =20' ? ' ,t L=24 ?
R=4kips R =4 kips R =6.736 kips R =6.736 Kips
Beam A Beam B
@ (&)
Figure 2.5: Live load reduction.
[continues on next page]
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Example 2.4 continues . . .

Since K ;A7 = 640 ft* > 400 {12, a live load reduction is permitted. Use
Equation 2.1a.

15 15 )
wz,e(o.zs + —————-~> 50 (o 254+ — 2 ) = 50(0.843) = 42.11b/ft2
VK, A; V640 (0.843) /

Since 42.1 Ib/ft2 > 0.5(50) = .25 Ib/ft2 (the lower limit), still use w =
42.1 /i3,

Load at thnd point = 2[_1666(8)(10)] = 6.736 kips

The resulting design loads are shown in Figure 2.5¢.

(3) Column 2B in the first story

The shaded area in Figure. 2.5¢ shows the tributary area of the interior
column for each floor. COmpute the tributary area for each floor:

=20(24) = 480 ft?
ompute the trxbutary area f01 three ﬂoors
= 3(480) = 1440 ft?
and  KuAr = 4(140) = 5760 12 > 400 £

therefore reduce live load using Equanon 2.1a (but not Iess than 0.4L):

15

15
—L0<0.25 +—-——> 50 lb/ft2<0 25 + ) = 22.41b/f¢*
Vs T OR ) TR

Since 22.4 Ib/ft* > 0.4 X 50 Ib/ft? = 20 Ib;’ft2 (the lower limit), use L

= 22.4 1b/ft%.

Load to column = (Ap)(22.4 1b/ft?) = (1440)(22.4 1b/ft?) = 32,256 Ib
= 32.3 “kjvps ; T

- -

. -

lmpact

Normally the values of live loads specxﬁed by buildmg codes are treated
as static loads because the majority of loads (desks, bookcases, filing cab-
inets, and so forth) are stationary. If loads are applied rapidly, they create
additional impact forces. When a moving body {(e.g., an elevator coming
to a sudden stop) loads a structure, the structure deforms and absorbs the
kinetic energy of the moving object. As an alternative to a dynamic analy-
sis, moving loads are often treated as static forces and increased empiri-
cally by an impact factor. The magnitude of the impact factor  for a nom-

“ber of common structural supports is listed in Table 2.3.
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_TABLE 2.3
Live Load Impact Factor
Loading Case Impact Factor |, Percent
Supports of elevators and elevator machinery © 100
Supports of light machinery, shaft or motor-driven 20
Supports of reciprocating machinery or power-driven units 50
Hangers supporting floors and balconies 33
Cab-operated traveling crane support girders and their connections 25

......

Determine the magnitude of the concentrated force for which the beam
in Figure 2.6 supporting an elevator must be designed. The elevator, which
weighs 3000 1b, can carry a maximum of six people with an average

weight of 160 Ib.

Solution

Read in Table 2.3 that an impact factor I of 100 percent applies to all ele-
vator loads. Therefore, the weight of the elevator and its passengers must
be doubled.

Total load = D + L = 3000 + 6 X 160 = 3960 Ib
Design load = (D + L)2 = 3960 X 2 = 7920 Ib

EXAMPLE 2.5

e
1 support
ey cablelry  beam

¥4 elevator jhaluiihel

Figure 2.6: Beam supporting an elevator.

Bridges

Standards for highway bridge design are governed by AASHTO specifi-
cations, which require that the engineer consider either a single HS20
truck or the uniformly distributed and concentrated loads shown in Fig-

ure 2.7. Typically the HS20 truck governs the design of shorter bridges’

whose spans do not exceed approximately 145 ft. For longer spans the
distributed loading usually controls.

Since moving traffic, particularly when roadway surfaces are uneven,
bounces up and down, producing impact forces, truck loads must be
increased by an impact factor / given by

50 .
R AETT U.S. customary units (2.2a)
15.2 ) "
I = 7+ 381 ST units | (2.2h)

but the impact factor need not be greater than 30 percent, and L = -the
}ength in feet (meters) of the portion of the span that is loaded to produce
maximum stress in the member.
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100
clearance and
load lane width
: | 2 (
HS20-44 8000 1b 32,000 1b . 32,000 1b

14'- 0" 1Y

W = Combined weight on the first two axles, which is the same as for the cc;'responding H track
V= Variable spacing - 14 ft to 30 {t inclusive. Spacing to be used is that which produces maximum stresses.

@
uniform load
" 640-1b per - :
linear foot concentrated load: 18 kips for moment
of lane load 26 kips for shear

b bbb bbb
Figure 2.7: AASHTO HS20-44 design live
loads, A @)

. The position of the span length L in the denominator of Equation 2.2
indicates that the additional forces created by impact are an inverse func-
- tion of span-length. In other words, since long spans are more massive
and have a longer natural period than short spans, dynamic loads produce
much larger forces in a-short-span bridge than in a long-span bridge.
Railroad bridge design uses the Cooper E80 loading (Fig. 2.8) con~
tained in the AREMA Manual for Railway Engineering. This loading
" congists of two locomotives followed by a uniform load representing the
weight of freight cars. The AREMA manual also provides an equation
for impact. Since the AASHTO and Cooper loadings require the use of
{nfluerice littes to establish the position of wheels to maximize forces at
various positions in a bridge member, design examples illustrating the
use of wheel loads will be deferred to Chapter 9.

- [E ST W - RS ST VR ‘ - AT e - -

Y



g e

By, - I B -

Section 2.5 Wind Loads 43

first locomotive second locomotive

axle spacing —8'—e sl stlesile 90 sl gde sl g o g s s side g sl gl sl sl

E80 loads 40 8 80 80 52 52 52 52 40 80 80 80 80 52 52° 32 52 8 kips/ft
Figure 2.8: AREMA EB80 railroad loadings.

Wind Loads

Introduction

As we have all observed from the damage produced by a hurricane or tor-
nado, high winds exert large forces. These forces can tear off tree limbs,
carry away roofs, and break windows. Since the speed and direction of wind
are continually changing, the exact pressure or suction applied by winds
to structures is difficult to determine. Nevertheless, by recognizing that
wind is like a fluid, it is possible to understand many aspects of its behav-
ior-and to arrive at reasonable design loads. ‘

The magnitude of wind pressures on a structure depends on the wind
velocity, the shape and stiffness of the structure, the roughness and pro-
file of the surrounding ground, and the influence of adjacent structures.
‘When wind strikes an object in its path, the kinetic energy of the moving
air particles is converted to a pressure g,, which is given by

mv? '

4T (2.3)‘

where m represents the mass density of the air and V equals the wind

velocity. Thus the pressure of the wind varies with the density of the air—
a function of temperature~—and with the square of the wind velocity.

The friction between the ground surface and the wind strongly influ-

ences the wind velocity. For example, winds blowing over large, open,

paved areas (e.g., runways of an airport) or water surfaces are not slowed

as much as winds blowing over rougher, forest-covered areas where the

friction is greater. Also near the ground surface, the friction between the

air and ground reduces the velocity, whereas at higher elevations above the

- ground, friction has little influence and wind velocities are much higher.

Figure 2.9a shows the approximate variation of wind velocity with height

T e - L .
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1
!
. /
elevation , I
above /
ground 7
/
-/
7/
[ —
increasing
wind velocity
)
elevation
above
ground
|
0

wind pressure

0]

Figure 2.9: (@) Variation of wind velocity with
distance above ground surface; (b) variation of
wind pressure specified by typical building codes
for windward side of building.

-path of
air particle

)

Figure 2.10: Influence of shape on drag factor:
(a) ctirved profile permits air to pass around body
easily (drag factor is small); (b) wind trapped by

flanges increases pressure on web of gxrder (drag -

factor is large).

B U N,

above the ground surface. This mformatzon is supplied by anemometers—
devices that measure wind speeds.

Wind pressure also depends on the bhape of the surface that the wind
strikes. Pressures are smallest when the body has a streamlined cross sec-
tion and greatest for blunt or concave cross sections that do not allow the
wind to pass smoothly around (see Fig. 2.10). The influence of shape on
wind pressure is accounted for by drag factors that are tabulated in cer-
tain building codes.

As an alternative to computmg wind pressures from wmd velocities,
some building codes specify an equivalent horizontal wind pressure.

‘This pressure increases with height above the ground surface (Fig. 2.95).

The force exerted by the wind is assumed to be equal to the product of

the wind pressure and the surface arca of a building or other structure.
When wind passes over a sloping roof (see Fig. 2.11a), it must increase

its velocity to maintain continuity of the flowing air. As the wind veloc-

] (1)

uplift pressure

wind s———-

leeward '
face

" windward
face

®)

Figure 211 (a) Uphft pressure ona slopmg roof; the wind
speed along path 2 is greater than that along path 1 because of
the greater length of path. Increased velocity reduces pressure
on top-of roof, creating a pressure differential between inside
and -outside of building. The uplift is a function of the roof
angle 8. (b) Increased velocity creates negative pressure (suc-
tion) on sides and leeward face; direct pressure on windward
face AA.
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ity increases, the pressure on the roof reduces (Bernoulli’s principle). This
reduction in pressure exerts an uplift—much like the wind flowing over
the wing of an airplane—that can carry away a poorly anchored roof. A
similar negative pressure occurs on both sides of a building paraliel to
the wind direction and to a smaller extent on the leeward side (see sides
AB and side BB in Fig. 2.11b) as the wind speeds up to pass around the
building. : :

Vortex Shedding. As wind moving at constant velocity passes over
objects in its path, the air particles are retarded by surface friction. Under
certain conditions (critical velocity of wind and shape of surface) small
masses of restrained air periodically break off and flow away (see Fig.
2.12). This process is called vortex shedding. As the air mass moves
away, its velocity causes a change in pressure on the discharge surface.

If the period (time interval) of the vortices leaving the surface is close to

that of the natural period of the structure, oscillations in the structure will
be induced by the pressure variations. With time these oscillations will
increase and shake a structure vigorously. The Tacoma Narrows Bridge
failure shown in Photo 2.1 is a dramatic example of the damage that vor-
tex shedding can wreak. Tall chimuoeys and suspended pipelines are other

R S - K e L ] - s
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direction
of
oscillation
wind
direction
| /
vortex
vortex

e Te

Figure 2.12: Vortices discharging from a steel
girder. As vortex speeds off, a reduction in pres-
sure occurs, causing girder to move vertically.

Photo 2.1: Failure of the Tacoma Narrows Bridge
showing the first section of the roadway as it
crashes into Puget Sound. The breakup of the nar-
row, flexible bridge was produced by large oscilla-
tion induced by the wind,
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spoiler

spoiler

&)

Figure 2.13: Spoilers welded to a suspender -
pipe to change the period of vortices: (@) triangu-
lar plate used as a spoiler; (b) spiral rod welded to
pipe used as spoiler.

Photo 2, 2 Vexrazano Narrows Bndge at the
entrance 1o New York City harbor. This bridge,
opened for traffic in 1964, joins Staten Island to
Brooklyn, The photo shows the suffemng trusses
at the level of the roadway that dampen wind-
induced oscillations.

structures that are susceptible to wind-induced vibrations. To prevent
damage to vibration-sensitive structures by vortex shedding, spoilers (see
Fig. 2.13), which cause the vortices to leave in a random pattern, or
dampers, which absorb energy, may be attached to the discharge surface.
As an alternative solution, the natural period of the structure may be
modified so that it is out of the range that is sensitive to vortex shedding.

~ The natural period is usually modified by i mcreasmg the stiffness of the
structural system.

For several decades after the Tacoma Narrows Bridge failure, design-
ers added stiffening trusses to the sides of suspension bridge roadways to

- minimize bending of the decks (Photo 2.2). Currently designers use stiff
" aerodynamically shaped box sections that resist wind-induced deflec-
tions effectively.

Structural Bracing Systems for Wind
and Earthquake Forces

" The floors of buildings are typically supportéd on columns. Under dead

and live loads that act vertically downward (also called gravity load),
columns are loaded primarily by axial compression forces. Because
columns carry axial load efficiently in direct stress, they have relatively
small cross sections—a desirable condition since owners want to maxi-
mize usable floor space.

When lateral loads, such as wind or the inertia forces generated by an

. earthquake, act on a building, lateral displacements occur, These dis-
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placements are zero at the base of the building and increase with height.
Since slender columns have relatively small cross sections, their bending
stiffniess is small. As a result, in a building with columns as the only sup-
porting elements, large lateral displacements can occur. These lateral dis-
placements can crack partition walls, damage utility lines, and produce
motion sickness in occupants (particularly in the upper floors of mult1~
story buildings where they have the greatest effect).

To limit lateral displacements, structural designers often insert, at
appropriate locations within the building, structural walls of reinforced
masonry or reinforced concrete. These shear walils act in-plane as deep
cantilever beam-columns with large bending stiffnesses several orders of
magnitude greater than those of all the columns combined. Because of
their large stiffness, shear walls often are assumed to carry all transverse
loads from wind or earthquake into the foundation. Since the lateral
loads act normal to the longitudinal axis of the wall, just as the shear acts
in a beam, they are called shear walls (Fig. 2.14a). In fact, these walls must
also be reinforced for bending along both vertical edges since they can
bend in either direction. Figure 2.14b shows the shear and moment dla-
grams for a typical shear wall.

Loads are transmitted to the walls by continuous floor slabs that act
as rigid plates, termed diaphragm action (Fig. 2.14a). In the case of wind,

shear wall

¢levation elevation

Shear Diagram Moment Diagram
@) ’ (B

r e
> x(mm e

B A L <IN e L ]

. duced by the sum of wind loads on the windward
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Figure 2.14: Structural systems to resist lateral
loads from wind or earthquake. (@) Reinforced con-
crete shear wall carries all lateral wind loads.
(b) Shear and moment diagrams for shear wall pro-

and leeward sides of the building in (a). (¢) Plan
of building showing position of shear walls and
columns. (d) Cross-bracing between steel columns

* forms a truss to carry lateral wmd loads into the
foundations.

S e ) * I e




48 Chapter 2 ' Design Loads

Photo 2.3: The cross-bracing, together with the

attached columns and horizontal floor beams in .

the plane of the bracing, forms a deep continu-
ous, vertical truss that extends the full height of
the building (from foundation to roof) and pro-

. duces a stiff, lightweight structural element for
transmitting lateral wind and earthquake forces
imo the foundation.

‘ Bl T *

the floor slabs receive the load from air pressure acting on the exterior
walls. In the case of earthquake, the combined mass of the floors and
attached construction determines the magnitude of the inertia forces trans-
mitted to the shear walls as the building flexes from the ground motion.
Shear walls may be located in the interior of buildings or in the exte-
rior walls (Fig. 2.14c¢). Since only the in-plane flexural stiffness of the wall
is significant, walls are required in both directions. In Figure 2.14¢ two
shear walls, labeled W, are used to resist wind loads acting in the east-
west direction on the shorter side of the building; four shear walls, labeled

-~ W,, are used to resist wind load, in the north-south direction, -acting on
 the longer side of the building.

In buildings constructed of structural steel as an alternative to con-

structing shear walls, the desigher can add X-shaped or V-shaped cross-

bracing between columns to form deep wind trusses, which are very stiff
in the plane of the truss (Fig. 2. 14d and Photo 2.3).

Equations to “Predic;.t Design Wind Pressures

- Qur primary objective in establishing the wind pressures on a building is

to determine the forces that must be used to size the structural members
that make up the wind bracing system. In this section we will discuss pro-
cedures for establishing wind pressures using a simplified format based
on the provisions of the most recent edition of the ASCE Standard for

* Minimum Design Loads on Buildings. This edition of the ASCE standard

contains a major revision of the wind load provisions based on an

improved understanding of a building’s response to wind forces.

If the mass density of air at S9°F (15°C) is substituted into Equation
2.3a, the equation for the static wind pressure g, becomes

g, = 0.00256V? U.S. customary units (2.4a)
g, = 0.613V2 . Slunits =  (24b)

 where q, = static wind pressure, Ib/ft? (mez)

-V ='basic wind speed, mph (m/s). Basic wind speeds, used to
establish the design wind force for particular locations in
the continental United States, are plotted on the map in
Figure 2.15. These wind velocities are measured by
anemometers located 33 ft (10 n) above grade in open
terrain and represent wind speeds that have only a 2 percent

" probability of being exceeded in any given year. Notice that
the greatest wind velocities occur along the coast where the
 friction between wind and water is minimal.

The static wind pressure g, given by Equation 2.4a or b is next mod-
ified in Equation 2.5 by four empirical factors to establish the magnitude
of the velocity wind pressure g, at various elevations above ground level.
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Or using Equation 2.4a, we can replace the first two terms of Equatlon

2.5 by g, to give

where g, =

I

1

i

ern and southeastern coasts of the United States.

q.= QSI Kszth

velocity wind pressure at height z above ground level
importance factor, which represents how essential a given

(2.6)

structure is to the community. For example, I = 1 for
office buildings, but increases to 1.15 for hospitals, police
stations, or other public facilities vital to the safety and
well-being of the community or whose failure might cause .
large loss of life. For structures whose failure produces no
serious economic loss or danger to the public, [ reduces to
0.87 or 0.77 if V exceeds 100 mph.
. = velocity pressure exposure coefficient, which accounts for
both the influence of height above grade and exposure
conditions. Three exposure categories (B through D)
considered are as follows:
B: Urban and suburban, or wooded areas with 1ow

structures, -

AT A -

s
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C: Open terrain with scattered obstructions generally less
than 30 ft (9.1 m) high.

D: Flat, unobstructed areas exposed to wind flowing over
open water for a distance of at least 5000 ft (1.524 km)
or 10 times the building height, whichever is greater.

“Values of K. are tabulated in Table 2.4 and shown

graphically in Figure 2.16.

TABLE 2.4

Velocity Pressure Exposure Coefficient K,
Height z above
Ground Level Exposure
f m B c D
0-15 (0-4.6) 0.57 085 1.03
" 20 (6D ‘ 0.62 090 . 108
25 (g8 066 0.94 1.12
30 ©.1) 0.70 0.98 1.16
40 (12.2) .. 076 1.04 1.22
50 (15.2) _ 0.81 1.09 1.27
60 (s 0.85 1.13 131
70 (21.3) - 0.89 1.17 1.34
80 (24.4) 0.93 1.21 1,38
90 (214 0.96 1.24 1.40
100 (30.5) 0.95 1.26 1.43
120 (36.6) 1.04 1:31 '1.48
140 - @2n 1.09 1.36 1.52
160 (48.8) 1.13 1.39 1.55
180 (549 1.17° 1.43 1.58
- 500
; - 140
a0k - 120
N - 100
& 300 F TE
,Ea 'l - 80 §
£ 200 —460 =
, : : 40
100 e e e e e T 2
+420
0 0
0.0 20

Figure 2.16: Variations of K.
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TABLE 2.5
Wind Directionality Factor K
Structural Type ‘ Ky
Buildings .
Main wind force-resisting system 0.85
Components and cladding 0.85
Chimneys, tanks, and similar structures
Square ' 0.90
Round or hexagonal 0.93
Trussed towers
Triangular, square, rectangular 0.85
All other cross sections : 0.95

K, = topographic factor, which equals 1 if building is located on
level ground; for buildings located on elevated sites (top of
hills), X, increases to account for greater wind speed

K, = wind directionality factor, which accounts for the reduced
probability of maximum winds coming from any given
direction and for the reduced probability of the maximum
pressure developing for any given wind direction (see
Table 2.5) : ‘

- The final step for establishing the design wind pressure p is to mod-

ify g,, given by Equation 2.5a or b, by two additional factors, G and C,;:
p = q,GC, 2.7
where p = design wind pressure on a particular face of the building
G = gust fuctor, which equals 0.85 for rigid structures; that is,
the natural period is less than 1 second. For flexible
structures with a natural period greater than 1 second, a
series of equations for G are available in the ASCE standard.
C, = external pressure coefficient, which establishes how a
fraction of the wind pressure (given by Equation 2.5 or b)

is to be distributed to each of the four sides of the building .

(see Table 2.6). For the wind applied normal to the wall on
the windward side of the building C, = 0.8. On the
leeward side, C, = —0.2 to —0.5. The minus sign
indicates a pressure acting outward from the face of the
building. The magnitude of C, is a function of the ratio of
length L in the windward direction to length B in the
direction normal to the wind. The main wind bracing
system must be sized for the sum of the wind forces on the
windward and leeward sides of the building. Finally, on the
sides of the building perpendicular to the direction of the
wind, where negative pressure also occurs, C, = —0.7.
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Figure 2. ‘i? ’Iyplcal wmd Ioad dzstnbuuon ona
multistory building.

a Ky D - -

TABLE 2.6

................................................................................................................................................

¥ External Pressure Coefficient C,

‘ ; 9, GC

S T
. —
wind T:; —

[I——— -1 e i thCP'

4:GC, L% —=
| a——

o \ L %‘C"Cp

PLAN ‘

Wall Pressure Coefficients C,

Surface L/B

C Use with
Windward wall All values 0.8 q,
Leeward wall R o -0.5 : o
' =4 ~0.2 .
- Side wall All values -07 qn
© Notes: k

1. Plus and minus signs signify pressures acting toward and away from the surfaces,
respectively.
2. Notations: B is the horizontal dimension of the building, in feet (meters) measored

normal to wind direction, and L is the horizontal dimension of the building in feet
(meters), measured parallel to wind direction.

The wind pressure increases with height only on the windward side of a
building where wind pressure acts inward on the walls: On the other three
sides the magnitude of the negative wind pressure, acting outward, is
constant with height, and the value of X, is based on the mean roof height
h. A typical distribution of wind pressure on a multistory building is shown
in Figure 2.17. Example 2.6 illustrates the procedure to evaluate the wind
pressure on the four sides of a building 100 ft high.

Since wind can act in any direction, designers must also consider
additional possibilities of wind loading a building at various angles. For
high-rise buildings in a city—particularly those with an unusual shape—
wind tunnel studies using small-scale models are often employed to deter-
mine maximum wind pressures. For these studies, adjacent high-rise build-
ings, which influence the direction of airflow, must be included. Models
are typically constructed on a small platform that can be inserted into a
wind tunnel and rotated to determine the orientation of the wind that pro-
duces the largest values of positive and negative pressure.
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Determine the wind pressure distribution on the four sides of an eight-
story hotel located on level ground along the South Carolina coast—a
region known for frequent hurricanes. Consider the case of a strong wind
acting directly on face AB of the building in Figure 2.18a. The wind map
shown in Figure 2.15 indicates the building should be designed for a
basic wind speed of V = 130 mph blowing off the ocean. Assume the
building is classified as stiff because its natural period is less than 1 s;
therefore, the gust factor G equals 0.85. The importance factor / equals
1.15. Since the building is located on level ground, K, = 1.

Solution
STEP1  Compute the static wind pressure using Equation 2.4a:
g, = 0.00256V; = 0.00256(130)* = 43.26 1b/ft?

SITEP 2  Compute the magnitude of wind pressure on the windward

' side at the top of the building, 100 ft above grade, using Equa-
tion 2.5a. Since the wind blows off the ocean, exposure D
applies. ‘

windward
face

~

wind =
130 mph

-

,<

! .
‘ 29.6 Ib/?
(@ ' o W

- B e - M e -

EXAMPLE 2.6

L
Figure 2.18: Variation of wind pressure on sides
of buildings,
{continues on next page)
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Example 2.6 continues . . .

=115
K, =143 (Fig. 2.16 or Table 2.4)
K,=1 (level ground)
K, = 0.85 (Table 2.5)

Substituting the above values into Equation 2.6 to determine
the design wind pressure at 100 ft above grade gives

4.~ QSIKszth
= 43,26(1.15)(1.43)(1)(0.85) = 60.4 1b/ft

Note: To compute wind pressures at other elevations on the

windward side, the only factor that changes in the above
. equation is K, tabulated in Table 2.4. For example, at an

elevation of 50 ft, K, = 1.27 and g,.= 53.64 Ib/ft*.

STEP 3 . Determine the design wind pressure on the windward face
AB, using Equation 2.7.

Gust factor G = 0.85, read C, = 0.8 (from Table 2.6). Sub-
stituting into Equation 2.7 produces

p = g,GC, = 60.4(0.85)(0.8) = 41.1 Ib/f’
STEP 4  Determine the wind pressure on the leeward side:
- C,= =05 (Table 2.6) and G = 0.85

- p=¢GC, = 60.4(0.85)(—0.5) = —25.67 Ib/ft?

“STEPS5 Cbmpute'thc wind pressure on the two sides perpendiculdr

to the wind:
C,=-07 G=085

» p= 7.GC, = 60.4(0.85)(—0.7) = —35.94 Ib/ft

- The distribution of wind pressures is shown in Figure 2.18b.
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Simplified Procedure: Wind Loads for Low-Rise Buildings

In addition to the procedure just discussed for computing wind loads, the
ASCE Standard provides a simplified procedure to establish wind pres-
sures on enclosed or partially enclosed low-rise buildings of regular
shape whose mean roof height # does not exceed 60 ft (18.2 m) and to
which the following four conditions apply.

1. Floor and roof slabs {diaphragms) must be designed to act as rigid
plates and connect to the main wind force-resisting system, which
may include shear walls, moment frames, or braced frames.

2. K, = 1 (the building is not subject to topographical effects; i.e., the
ground is level, and no structures nearby create unusual wind
patterns).

3. The building has an approximately symmetric cross section, and the
roof slope @ does not exceed 45°.

4. The building is classified as rigid; that is, its natural frequency is
greater than | Hz. (Most low-rise buildings with wind force-

_resisting systems, such as shear walls, moment frames, or braced
frames, fall in this category.)

For such regular rectangular structures, the procedure to establish the
design pressures follows:

1. Determine the wind velocity at the building site, using Figure 2.15.
2. Establish the design wind pressure p; acting on the walls and roof

P:= )‘IP.SBO (28)

where pgs, is the simplified design wind pressure for exposure B, with h =
30 ft and the importance factor I taken as 1.0 (see Table 2.7). If the
importance factor I differs from 1, substitute its value into Equation 2.8.

TABLE 2.7

- Section 2.5

Wind Load
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Basic Wind Roof ‘ Zones
Speed Angle Horizontal Pressures Vertical Pressures
(mph) (degrees) A B C D E F G H
0to5s° 128 | =67 85 | —-40 | —-154 1 -88 | —-10.7 | —6.8
10° 145 | ~60 | 96 | —35 | =154 | —94 | =107 | =72
15° 16.1 —5.4 107 | =30 [ —154 | ~101 | —-107 | -7.7
90 20° 17.8 —4.7 11.9 =26 | —-154 | -107 | -10.7 | ~8.1
25° 16.1 26 | 117 27 -72 | -98 | -52 | -78
— — — — ~27 1 —-53 1 -07 1 -34
30° to 45° 14.4 9.9 11.5 7.9 11 -88 04| =75
144 9.9 11.5 7.9 56| —43 48 | =31
B, e L R SR "N - AN e - - AR . -
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B TABLE 2.8

%4 Adjustment Factor A
for Building Height
and Exposure

Mean roof Exposure

height h (ft) B C D
15 1.00 1.21 1.47
20 1.00 1.29 1.55
25 1.00 1.35 1.61
30 1.00 1.40 1.66
35 1.05 1.45 1.70
40 1.09 1.49 1.74
45 1.12 1.53 1.78
50 1.16 1.56 1.81
55 1.19 1.59 1.84
60 1.22 1.62 1.87

From ASCE Standard.

I~

MWEFRS "™ | /’ b
* direction being )
evaluated Reference
S " comer
Transverse

Figure 2.19: Distribution of design wind pres-
sures for the simplified method. See Table 2.7
for the magnitude of the pressures in areas A
through H. h = 60 ft. (From ASCE standard.)

KT e - f T B

For exposure C or D and for 4 other than 30 ft, the ASCE standard sup-

plies an adjustment factor A, tabulated in Table 2.8.

The distribution of p; on the walls and roof for wind load in both the
transverse and longitudinal directions is shown in Figure 2.19. Each line
in Table 2.7 lists the values of the uniform wind pressure for eight areas
of a'building’s walls and roof. ’ ‘

+ Plus and minus signs signify pressures acting toward and away
from projected surfaces. ’
«. -Pressures for additional wind speeds are given in the ASCE Standard.

‘These areas, shown in Figure 2.19, are labeled with circled letters (A to

H). Table 2.7 contains values of pg, for buildings subjected to 90-mph
winds; the complete Standard provides data for winds varying from 85
to 170 mph.

The value of a, which defines the extent of regions of greatest wind
pressure (see areas A, B, E, and F on the-walls and roof in Fig. 2.19), is
evaluated as 10 percent of the smaller horizontal dimension of the build-

A(IW'FRS

direction being

/// evaluated
Reference

cormer

Longitudinal
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ing or 0.4k, whichever is smaller (% is the mean height), but not less than
either 4 percent of the least horizontal dimension or 3 ft (0.9 m). Notice
that the wind pressures are largest near the corners of walls and the edges
of roofs, , '

Example 2.7 illustrates the use of the simplified procedure 1o estab-
lish the design wind pressures for the wind analysis of a 45-ft-high rec-
tangular building,

Section 2.6
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Figure 2.15 indicates the velocity of the wind acting on the 45-ft-high,

three-story building in Figure 2.20a is 90 mph. If exposure condition C

applies, deterrnine the wind force transmitted to the building’s foundations
by each of the two large reinforced concrete shear walls that make up the
main wind-resisting system. The walls located at the midpoint of each side
of the building have identical proportions. The importance factor / equals 1.

EXAMPLE 2.7

2a = ¢

34/
E o i g e i — Roof
1 A o — 7
15 .4 w= ==l ‘
15 floor 0.0975 kipfte ||| o £ s w = 0,147 kip/ft
-—2nd s E g e s — 3rd floor
15" floor r
W= — 7. T
0.195 kip/ft 18.8'—~ w = 0,294 kip/ft
' Ve |82 — 20d floor
/
W= :
0.195 kip/ft 188" 1w = 0.294 kip/ft
P, =1961/f? | Shearwall R = 8.4 kips
30' Dl -
<
(@) 40"
®)

2.23 kips

15
445 kips —— )

157
4.45 kips

157

T

3 2 =. 5 .
¥, = 11.13 kips \/' V; = 11.13 kips
le—30"—1 M, = 300.6 kip-ft
(c) id)
e, - [F SO L ] K e

Note: Units of distributed load W are kips/ft.

Figure 2.20: Horizontal wind pressure analysis
by the simplified method. (a) Wind pressure dis-

tribution and details

of the loaded siructure;

(b) wind forces applied by the exterior walls to
the edge of the roof and floor slabs; (c) plan view

~ of the resultant wind force and the reactions of

the shear walls; (d) free body of the shear wall
located in plane ABDF showing the wind forces
applied by the floor slabs and the reactions on base.

Teontinues on next naeel

- - N

F ‘




58 Chapter 2 Design Loads

Example 2.7 continues . . .

BvE e - - G e

Solution

Compute the wind load transmitted from the wall on the windward side to .

the roof and each floor slab. Assume each 1-ft-wide vertical strip of wall
acts as a simply supported beamn spanning 10 ft between floor slabs; there-
fore, one-half of the wind load on the wall between floors is carried to the
slabs above and below by the fictitious beam (see Fig. 2.205).

STEP1  Since the roof is flat, § = 0. For the simplified design wind
. pressures pgag, read the top line in Table 2.7,

Region A: pgy = 12.8 1b/ft?
Region C: pso = 8.5 Ib/ft?

Note: There is no need to compute the values of p, for
zones B and D because the building does not have a
.sloped roof.

STEP 2 Adjust p, for exposure C and a mean height of h = 45 ft.
: Read in Table 2.8 that adjustment factor A = 1.33. Compute
the wind pressure p; = Alpsg.

Region A: p, = 1.53(1)(12.8) = 19.584 round to 19.6 Ib/ft?
Region C: p, = 1.53(1)(8.5) = 13.005 round to 13 lb/ft?

STEP 3 Compute the resultant wind forces transmitted from the exte-
rior walls to the edge of the roof and floor slabs.

Load pér foot, w;. to roof slab (Sée Fig. 2.20b)

15 196 .
= -= X —— =,
Region A:w = 7 1000 0.147 kip/ft
15 13

Cw= — X - = (), i

Region C: w == 2 ™ T000 0.0975 kip/ft
~ Load per foot, w, to second- and third-floor slabs
19.6

Arw = K ez ] i
Region A:w = 15 1000 0.294 kip/ft
Region C:w = 15 X L 0.195 kip/ft

£ 1000 P

. STEP 4 Compute the resultants of the d1stnbuted wind loads

B Roof sldby
=0.147 X 6 + 0.0975 X 34 = 4.197 round to 4.2 kips

] Sécond and third floors:
"R, =0.294 X 6 + 0.195 X 34 = 8,394 round to 8.4 kips
Total horizontal wind force = 4.2 + 8.4 + 8.4 = 21 kips
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STEPS5  Locate the position of the resultant. Sum moments about a
vertical axis through points A and F (see Fig. 2.20c).

At the level of the first floor slab
Rx = ZF-x ‘
4.197% = 0.882(3) + 3.315(6 + 34/2)
x = 18797 ft roundto 18.8 ft
Since the variation of the pressure distribution is identical at
all floor levels on the back of the wall, the resultant of all

forces acting on the ends of the roof and floor slabs is located
a distance of 18.8 ft from the edge of the building (Fig. 2.205),

STEP 6  Compute the shear force at the base of the shear walls. Sum
the moments of all forces about a vertical axis passing through
point A at the comer of the building (see Fig 2.20¢).

SM, =21 X 18.8 — V,(40) and V,=9.87kips Ans.

Compute V- -V, + V, = 21 kips :
V,=21-987=1113kips Ans.

Note: A complete analysis for wind requires that the designer
consider the vertical pressures in zones E to H acting on the
roof, These pressures are carried by a separate structural sys-
tem, composed of the roof slabs and beams, to the columns

as well as to the shear walls. In the case of a flat roof, the wind

flowing over the roof produces upward pressures (uplift) that
reduce the axial compression in the columns.

Section 2.6 Earthquake Forces
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Earthquake Forces

Earthquakes occur in many regions of the world. In certain locations where

‘the intensity of the ground shaking is small, the designer does not have

to consider seismic effects. In other locations—particularly in regions near
an active geological fault (a fracture line in the rock structure), such as
the San Andreas fault that runs along the western coast of California—large
ground motions frequently occur that can damage or destroy buildings
and bridges in large areas of cities (see Photo 2.4a and b). For example,
San Francisco was devastated by an earthquake in 1906, before building
and bridge codes contained seismic provisions.

The ground motions created by major earthquake forces cause build-
ings to sway back and forth. Assuming the building is fixed at its base, the
displacement of floors will vary from zero at the base to a maximum at
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Photo 2.4: Earthquake damage to structures. (@)} Hanshin Expressway collapsed during 1995 Hyogoken-Nanbu, Japan, earthquake. {b) Col-
lapse of the Struve Sough Bridge: The severe shaking of the soil by the 1989 Loma Prieta Earthquake in California produced differential set-
tlements of the foundations supporting rows of columns that carried the roadway slab. This uneven settlernent caused the columns that under-
went the largest settlements to transfer the weight of the bridge deck to adjacent columns whose settlement was smaller. The additional load,

which had to be transferred into the column by shear stresses in the slab around the column’s perimeter, produced the punching shear failures
shown. . o : S . ‘ ]

the roof (see Fig. 2.21a). As the floors move laterally, the lateral bracing
system is stressed as it acts to resist the lateral displacement of the floors.
The forces associated with this motion, inertia forces, are a function of
both the weight of the floors and attached équipment and partitions as
well as the stiffness of the structure. The sum of the lateral inertia forces
acting on all floors and transmitted to the foundations is termed the base
shear and is denoted by V (see Fig. 2.21b). In most buildings in which the
weight of floors is similar in magnitude, the distribution of the inertia
forces is similar to that created by wind, as discussed in Section 2.6.

@ ey Although there are several analytical procedures to determine the
Figuré 321 @ Ijispl acement of floors as build- mggnitude of t_he base shea.r for which buildings must be design.ed, we
ing sways; (b) inertia forces produced by motion ~ Will only consider the equivalent lateral force procedure, described in
of floors. e . S .

| % V=3IF,

tude of the base shear as

Vo 2.8
- "= 1@ 280
but not to exceed
Vi = 2257 (2.8b)
“and not less than .. V L ) a
o Viin = 0.044S,W . (280
where W = total dead load of building and its permanent equipment

and partitions '
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the ANSI/ASCE standard. Using this procedure, we corapute the magni- '
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T = fundamental natural period of building, which can be
computed by the following empirical equation

T=Ch® 2.9)

h, = the building height in feet (meters, above the base), C, = -
0.028 (or 0.068 in SI units), and x = 0.8 for steel rigid
frames (moment frames), C, = 0.016 (0.044 SI) and x = 0,9
for reinforced concrete rigid frames, and C, = 0.02 (0.055
SI) and x = 0.75 for most other systems (for example,
systems with braced frames or structural walls). The natural
period of a building (the time required for a building to go
through one complete cycle of motion) is a function of the
lateral stiffness and the mass of the structure. Since the base
shear V is inversely proportional to the magnitude of the
natural period, it reduces as the lateral stiffness of the
structural bracing system increases. Of course, if the
stiffness of the lateral bracing system is too small, lateral
displacements may become excessive, producing damage to
windows, exterior walls, and other nonstructural elements,

Spi = a factor computed using seismic maps that shows intensity
of design earthguake for structures with 7 = 1 5. Table 2.9
gives the values for several locations.

Spe = a factor computed using seismic maps that shows intensity of
design earthquake at particular locations for structures with
T = 0.2 s. See Table 2.9 for values at several locations.

R = response modification factor, which represents the ability of a
structural system to resist seismic forces. This factor,
which varies from 8 to 1.25, is tabulated in Table 2.10 for-
several common structural systems. The highest values are
assigned to ductile systems; the lowest values, to brittle
systems. Since R occurs in the denominator of Equations |
2.8a and b, a structural system with a large value of R will
permit a large reduction in the seismic force the structural
system must be designed to support.

I = occupancy importance factor, which represents how
essential a given structure is to the community. For
example, [ is 1 for office buildings, but increases to
1.5 for hospitals, police stations, or other public facilities
vital to the safety and well-being of the community or
whose failure might cause large loss of life.

Note: The upper limit given by Equation 2.8b is required because Equa-
tion 2.8a produces values of base shear that are too conservative for very
stiff structures that have short natural periods. The ASCE standard also
sets a lower limit (Eq. 2.8¢) to ensure that the buﬂdmg is designed for a
* minimum seismic force. -

S - - K e L B e e
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TABLE 2.9
Representatwe Values
Of SDS and SD1 at
Selected Cities

City Sos 9 Spi g
Los Angeles, California 1.3 0.5
Salt Lake City, Utah 1.2 0.5
Memphis, Tennessee 0.83 0.27
New York, New York 0.27 0.06

Note: Values of Sy and Sp; are based on the
assumption that foundations are supported on
rock of moderate strength, These values increase
for weaker soils with lower bearing capacity. ‘
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et and ks
O o O

k {(expopent)

! l {
0.5 089 1.5 20 25

T (seconds)

Figure 2.22: Interpolate for & value.

TABLE 2.10

................................................................................

Values of R for Several Common Lateral
Bracing Structural Systems

Description of Structural System

Ordinary reinforced concrete shear walls

R
Dugctile steel or concrete frame with rigid joints 8
4
Ordinary reinforced masonry shear wall 2

.......................................................................................................................................................

Distribution of Seismic Base Shear V to Each Floor Level

The distribution of the seismic base shear Vto each floor is computed using

Equatlon 2.10.

: k
. w ht
F,= -2ty | 2.10)
2 Wy ?z k
‘wheére 'F, the lateral seismic force at level x

w; and w, = deadweight of floor at levels i and x
h; and h, = height from base to floors at levels { and x
k= 1for T=05s,2for T=2.5s. For structures
with a period between 0.5 and 2.5, kis

. determined by linear interpolation between T’
- equalto 1 and 2 as

T—-05
S
See Figure 2.22 for graphical representation of Equation 2.11.

k7.=1+

2.11)

EXAMPLE 2.8

* C Y e

Determine the design seismic forces acting at each floor of the six-story
office building in Figure 2.23, The structure of the building consists of
steel moment frames (all joints are rigid) that have an R value of 8. The
75-ft-tall building is located in a high seismic region with §p; = 0.4g and
Sp1 = 1.0g for a building supported on rock, where-g is the gravitational
acceleration. The deadweight of each floor is 700 kips.

Solution
Compute the fundamental perlod using Equation 2.9:

T = Ch;7 = 0.028(75)%% = Q. 89s
Assuming that the floor deadweight contains an’ allowance for the weight

‘of columns, beams, partitions, ceiling, etc., the total weight W of the build-

ing is
W = 700(6) = 4200 kips
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fd e - ; roof SR— {} .
- I ” ==| 6th floor o 57 44
iﬁ =ss ‘ l = 'i5th floor E e 44.6
§ FI ‘ ” =={ 4th floor Eﬁ - 32.3
= =1 3rd floor — 20.8
] | | 2nd floor w101

ek L
20 40 60 80
force (kips)

Figure 2.23:
(@) () {a) Six-story building; (b) lateral load profile.

The occupancy importance factor / is 1 for office buildings. Compute the !
base shear V using Equations 2.8z and c: ‘ |
S D1 0.4
V= W = 42
TR = osogen) )

but not more than

= 236 kips (2.8a)

Sps 1.0 , i
= Opsp, 10 = 2.8b) -
Vows = 207 = 3 /}(4200) 525 kips (2.8b)

and not less than

Vain = 0.04485,IW = 0.044 X 1.0 X 1 X 4200 = 184.8 kips  (2.8¢)

Therefore, use V = 236 kips. ,

Computations of the lateral seismic force at each floor level are sum-
marized in Table 2.11. To illustrate these computations, we compute the
load at the third floor. Since 7" = 0.89 s lies between 0.5 and 2.5 s, we must
interpolate using Equation 2.11 to compute the & value (see Fig. 2.22):

=1+ T—-05
2
k=104+287-05_,
2 .
hk
F3rdﬂoor= :‘)3 : Vv

2 Wiki’(
=1

B o 700 X 272 (236)
700 X 152 + 700 X 27'2 + 700 X 39'2 + 700 X 512 + 700 X 63! + 700 X 752\
36,537 B ,

= 415,262 (236) = 208 Kips

[continues on next page]
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Example 2.8 continues . . .

Design Ldads

.............................

i=1 =]

TABLE 2 11 ----------------------------------------------------------------------------------
Computatlon of Seismtc Lateral Forces
. k
Floor ‘ W"h
Weight Height b
Floor  w; (kips) h, ft whi 2, Wi F, (kips)
Roof 700 .5 124,501 0.300 70.8
6th 700 63 100,997 0.243 57.4
5th 700 51 78,376 0.189 44.6
4th 700 39 56,804 0.137 32.3
3rd 700 27 36,537 0.088 20.8
2nd 700 15 18,047 0.043 10.1
6 6
W= 3w =4200 2 wht = 415,262 V= > F =263

.....................................................................

AW, _ama

........................................................................................................................................

.~ Other Loads

Snow load on roofs needs to be considered in cold regions. The design
- SDOW load on a sloped roof is given by the ASCE standard as follows:

where p,

P, = 0.7C,C.C,Ip,

25 1b/ft? in Chicago)

(2.12)

= design ground snow load (for example, 40 Ib/fi® in Boston,

C, = roof slope factor (reduces from 1.0 as roof slope increases)
C, = exposure factor (0.7 in windy area and 1.3 in sheltered

areas with little wind)
C, = thermal factor (1.2 in unheated buildings and 1.0 in
heated buildings)
I = importance factor

Flats roofs need to be properly drained to avoid the ponding of rain
water, The ASCE standard requires that each portion of the roof be
designed to support the weight of all rainwater that could accumulate on

it if the primary drainage system for that portion were blocked. If not

- properly considered in design, rain loads may produce excessive deflec-

tions of roof beams, producing an mstab111ty problem (called ponding),
causing the roof to collapse. ‘

‘When appropriate, other types of loading also need to be included in

~ the design of structures. These include soil pressures, hydrostatic pres-

sures, thermally induced forces, among others.
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Section 2.8

The forces (e.g., axial force, moment, shear) produced by various combi-
nations of loads discussed need to be combined in a proper manner and
increased by a factor of safety (load factor) to produce the desired level
of safety. The combined load effect, sometimes called the required fac-
tored strength, represents the minimum strength for which members
need to be designed. Considering the load effect produced by the dead
load D, live load L, roof live load L,, wind load W, and earthquake load E,
and snow load S, the ASCE standard requires that the following load com-
binations be considered:

14D (2.13)

12D + 1.6L + 0.5L, (214
12D + 1.6L, + 0.5L 2.15)
1.2D + 1.6W + 0.5L @16
12D + 1.0E + O.5L + 028 2.17)

The load combination that produces the largest value of force represents

the load for which the member must be designed.

Load Combinations 65

A column in a building is subject to gravity load only. Using the tributary
area concept, the axial loads produced by the dead load, live load, and roof
live load are

PD = 90 kips
P, = 120 kips
P, = 20 kips

What is the required axial strength of the column?

Solution o
1.4Pp, = 1.4(90) = 126 kips (2.13)

1.2Pp + L6P, + 0.5P;, =1.2(90) + 1.6(120) + 0.5(20) = 310kips ~ (2.14)

12P, + 1.6P,, + 0.5P, = 1.2(90) + 1.6(20) + 0.5(120) = 200 kips ~ (2.15)

Therefore, the required axial load is 310 kips. In this case, the load com-
bination in Equation 2.14 governs. However, if the dead load is signifi-
cantly larger than the live loads, Equation 2.13 may govern. -

EXAMPLE 2.9
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66 Chapter 2 Design Loads

EXAMPLE 2.10

To determine the required flexural strength at one end of a beam in a con-
crete frame, the moments produced by dead, live, and wind load are:

My = —100 kip-ft’

M, L= —50 klp'ft

M, = £200 kip-ft
where the minus sign indicates that the beam end is subject to counter-
clockwise moment while the plus sign indicates clockwise moment. Both
the plus and minus signs are assigned to M,, because the wind load can act

on the building in either direction. Compute the required flexural strength
for both positive and negative bending.

Solution
Negatwe bendmg

1.4Mp = 1.4(—100) = ~140 kip-ft T 2.13)
1.2Mp + 1.6M; = 1.2(=100) + 1.6(—50) = —200 kip-ft (2.14)
12MD + 1.6M, + OSML = 1,2(—100) + 1.6(—200) + 0.5(—50)
' = —465 kip-ft (governs) (2.16)
Positive bending: Load combinations from Equations 2.12 and 2.13 need
not be considered because both produce negative moments.
I 2Mp + 1.6M,, + 0.5M, = 1.2(—100) + 1.6(+200) + 0.5(—50)
= +175 kip-ft (2.16)
Therefore the beam needs to be designed for a positive moment of 175

kipft and a negative moment of 465 kip-ft.

R R L i St

.........................................................................................................

“ Summary

+ Loads that engineers must consider in the design of buildings and
bridges include dead loads, live loads, and environmental forces—
wind, earthquake, snow, and rain, Other types of structures such as
dams, water tanks, and foundations must resist fluid and soil

~pressures, and for these cases specialists are often consulted to
evaluate these forces.

+ 'The loads that govern the design of structures are specified by

-national and local building codes. Structural codes also specify
additional loading provisions that apply specifically to construction
materials such as steel, reinforced concrete, aluminum, and wood.
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Since it is unlikely that maximum values of live load, snow, wind,
earthquake, and so forth will act simultaneously, codes permit a
reduction in the values of loads when various load combinations are
considered. Dead load, however, is never reduced unless it provides
a beneficial effect.
To account for dynamic effects from moving veh_lcles, elevators,
supports for reciprocating machinery, and so forth, impact factors
that increase the live load are specified in building codes.
In zones where wind or earthquake forces are small, low-rise buildings
are initially proportioned for live and dead load, and then checked
for wind or earthquake, or both, depending on the region; the design
can be easily modified as needed.

On the other hand, for high-rise buildings located in regions

. where large earthquakes or high winds are common, designers must

give high priority in the preliminary design phase to select structural
systems (for example, shear walls or braced frames) that resist
lateral loads efﬁc1ently

Wind velocities increase with height above the ground. Values of

positive wind pressures are given by the velocity pressure exposure - .

coefficient X, tabulated in Table 2.4.

Negative pressures of uniform intensity develop on three sides of
rectangular buildings that are evaluated by multiplying the magnitude
of the positive windward pressure at the top of the building by the
coefficients in Table 2.6.

‘The wind bracing system in each direction must be designed to carry

the sum of the wind forces on the windward and leeward sides of
the building. '

For tall bulldlngs or for buildings with an unusual profile, wind tunnel
studies using instrurented small-scale models often establish the
magnitude and distribution of wind pressures. The model must also
include adjacent buildings, which influence the magnitude and the
direction of the air pressure on the building being studied.

The ground motions produced by earthquakes cause buildings,
bridges, and other structures to sway. In buildings this motion creates
lateral inertia forces that are assumed to be concentrated at each
floor. The inertia forces are greatest at the top of buildings where
the displacements are greatest. '

The magnitude of the inertia forces depends on the size of the
earthquake, the weight of the building, the natural period of the
building, the stiffness and ductility of the structural frame, and the
soil type.

Buildings with a ductile frame (that can undergo large deformations
without collapsing) may be designed for much smaller seismic
forces than structures that depend on a brittle structural system (for
example, unremforced masonry).
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PROBLEMS

...........................

P2.1. Determine the deadweight of a 1-ft-long segment
of the reinforced concrete ledger beam shown in Figure
P2.1. Beam is constructed with normal weight concrete
(see Table 2.1 for properties).

Inverted tee.
ledger beam

P21

P2.2. Determine the deadweight of a 1-m-long segment
of the reinforced concrete girder in Figure P2.2 con-
structed from lightweight concrete with a unit weight of
16 kN/m3 '

r~410 mm-v}

Prestress concrete
bridge girder

Qe On sy
L—560mm-*¥

Pz2.2

A - . C v e e ‘

P2.3. Determine the deadweight of a 1-ft-long segment
of a typical 20-in-wide unit of a roof supported on a nom-

“inal 2 in >< 16 in southern pme beam (the actual dimen-

[ ST VR ‘ - K e e *

sions are 3 in smaller) The 4-in plywood weighs 3 1b/ft2,

s , three ply felt ”
2 1nsu]gtlon tar and gravel 3;4 plywood

! 20" L oo |

pP2.3

P2.4. Consider the floor plan shown in Figure P2.4.
Compute the tributary areas for (a) floor beam. B,
() girder G1, (c) girder G2, (d) corner column C3, and
(e) interior column B2.

@1 I I
Gl |2 T
2@ 10 =20
: B2
I I I
Bl
. 2@10 =20
©1I I = |
| 30—k 25|
P24

P2.5. Refer to Figure P2;4 for the floor plan. Calculate
the influence areas for (a) floor beam B1, (b) girder G1,

(c) girder G2, (d) corner column C3, and (e) interior
column B2,

33



P2.6. The uniformly distributed live load on the floor
plan in Figure P2.4 is 60 1b/ft?. Establish the loading for
members (a) floor beam B1, (b) girder G1, and (¢) girder
G2. Consider the live load reduction if permitted by the
ASCE standard.

P2.7. The elevation associated with the floor plan in
Figure P2.4 is shown in Figure P2.7. Assume a live load
of 60 1b/ft* on all three floors. Calculate the axial forces
produced by the live load in column B2 in the third and
first stories. Consider any live load reduction if permit-
ted by the ASCE standard.

3@ 10’ = 30" —]

30 | 25" ]

P2.7

P2.8. A five-story building is shown in Figure P2.8. Fol-
lowing the ASCE standard, the wind pressure along the
height on the windward side has been established as
shown in Figure P2.8(c). Considering the windward
pressure in the east-west direction, use the tributary area
concept to compute the resultant wind force at each
floor level.

© @ ® @ O

: r f
®- -
|
o |

k- 4@ 25 = 100" —
(@
P2.8
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20

o0
0

15

13

5@
4
4 :
]
|
q
|
4
F—3ex

wind pressures
in Ib/fi?

®» ©
P2.8 '

P2.9. The dimensions of a 9-m-high warehouse are
shown in Figure P2.9. The windward and leeward wind
pressure profiles in the long direction of the warehouse
are also shown. Establish the wind forces based on the
following information: basic wind speed = 40 m/s, wind
exposure category = B, K, = 0.85, K, = 1.0, G = 0.85,
and C, = 0.8 for windward wall and —0.2 for leeward
wall. Use the K values listed in Table 2.4, What is the

total wind force acting in the long direction of the

warehouse?
ql'GCP . ‘3§:ch
£ - S 7
Es "
L 40 m |
(not to scale)
P2.9.
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70 Chapter 2 Design Loads

P2.10. The dimensions of a gabled building are shown = . positive or negative pressures, and the roof structure
in Figure P2.10a. The external pressures for the wind  should be designed for both loading conditions. The
load perpendicular to the ridge of the building are shown  ASCE standard permits linear interpolation for the value
in Figure P2.10b. Note that the wind pressure can act  of the inclined angle of roof 8. But interpolation should
toward or away from the windward roof surface. For the - only be carried out between values of the same sign.
particular building dimensions given, the C, value for ~ Establish the wind pressures on the building when posi-
the roof based on the ASCE standard can be determined  tive pressure acts on the windward roof. Use the follow-
from Table P2.10, where plus and minus signs signify  ing data: basic wind speed = 100 mi/h, wind exposure
pressures acting toward and away from the surfaces, - category = B,K;=0.85,K,=10,G=085,and C, =
respectively, Where two values of C, are listed, this indi- 0.8 for windward wall and -0.2 for leeward wall.

cates that the windward roof slope is subjected to either ' :

wind

BN

16

16’

(@

Q:GCP thCp
)
‘ P2.10
A BLE P2 10 e
Roof Pressure Coefficient C, *§ defined in Fig. P2.10
Windward Leeward
Angle 6 10 15 20 25 30 35 45 =60 10 15 =20
G, ’ —-0.9 —0.7 0.4 -0.3 -0.2 -0.2 0.0 0.016* ~05 -0.5 ~0.6
: : 0.0 0.2 0.2 0.3 0.4 ‘

.................................................................................................................
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P2.11. Establish the wind pressures on the building in
Problem P2.10 when the windward roof is subjected to
an uplift wind force.

P2.12. (a) Determine the wind pressure distribution
on the four sides of the 10-story hospital shown in Fig-
ure P2.12. The building is located near the Georgia
coast where the wind velocity. contour map in Figure
2.15 of the text specifies a design wind speed of 140
mph. The building, located on level flat ground, is clas-
sified as stiff because its natural period is less than 1 5. On
the windward side, evaluate the magnitude of the wind
pressure every 35 ft in the vertical direction. (b) Assum-
ing the wind pressure on the windward side varies lin-
early between the 35-ft intervals, determine the total
wind force on the building in the direction of the wind.
Include the negative pressure on the leeward side.

B

leeward

Problems 71

P2.13. Consider the five-story building shown in Fig-

ure P2.8. The average weights of the floor and roof are
90 Ib/ft* and 70 1b/ft%, respectively. The values of Spg
and Sp; are equal to 0.9g and 0.4g, respectively. Since

steel moment frames are used in the north-south direc-

tion to resist the seismic forces, the value of R equals 8.
Compute the seismic base shear V. Then distribute the
base shear along the height of the building.

P2.14. When a moment frame does not exceed 12 sto-
ries in height and the story height is at least 10 ft, the
ASCE standard provides a simpler expression to com-
pute the approximate fundamental period:

T=0.1N

where N = number of stories. Recompute T with the
above expression and compare it with that obtained from
Problem P2.13. Which method produces a larger seis-
mic base shear?

L - A e s -
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Space truss des:gned to support the roof of the Hartford Civic Center Arena. This immense structure, which
covered a rectangular area 300 by 360 ft, was supported on four corner columns. To speed construction,
the truss was assembled on the ground before being lifted into place. In the photo the space truss has
been raised a short.distance to permit workers to install ducts, conduit, and other fixtures from the ground.
In 1977 the structure collapsed under the weight of a heavy, wet snow load.
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Statics of Structures—
Reactions

: !ntroductlon

Wlth few exceptions, structures must be stable under all conditions of load;
that is, they must be able to support applied loads (their own weight, antic-
ipated live loads, wind, and so forth) without changing shape, undergoing
large, chsplacements or collapsing. Since structures that are stable do not

- move perceptibly when loaded, their analysis—the determination of both

T

internal and external forces (reactions)—is based in large part on the prin-
ciples and techniques contained in the branch of engineering mechanics
called statics. The subject of statics, which you have studied previously, -
covers force systems acting on rigid bodies at rest (the most common case) .
or ‘moving at constant velocity; that is, in either case the acceleration of the
body is zero. '

Although the structures we will study in this book are not absolutely
rigid because they undergo small elastic deformations when loaded, in
most situations the deflections are so'small that we can (1) treat the struc-
ture or its components as rigid bodies and (2) base the analysis on the ini-
tial dimensions of the structure. ‘

We begin this chapter with a brief review of statics. In this review we
consider the characteristics of forces, discuss the equations of static equi-
librium for two-dimensional (planar) structures, and use the equations of
static equilibrium to determine the reactions and internal forces in a vari-
ety of simple determinate structures such as beams, trusses, and simple
frames.

We conclude this chapter with a discussion of determinacy and stabil-
ity. By determinacy, we mean procedures to establish if the equations of
statics alone are sufficient to permit a complete analysis of a structure. If
the structure cannot be analyzed by the equations of statics, the structure
is termed indeterminate. To analyze an indeterminate structure, we must

A, - - A e - C I O
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Figure 3.1: Force and moment vectors; (o) lin-
ear force vector resolved into x and y compo-
nents; (5) couple of magnitude Fd; (¢) alternative
representation of moment M, by a vector using
the right-hand rule.

y .

(@)

supply additional equations by considering the geometry of the deflected
shape. Indeterminate structures will be discussed in later chapters.

By stability, we mean the geometric arrangement of members and sup-
ports required to produce a stable structure, that is, a structure that can resist
load from any direction without undergoing either a radical change in
shape or large rigid-body displacements. In this chapter we consider the

‘stability and determinacy of structures that can be treated as either a sin-

gle rigid body or as several interconnected rigid bodies. The principles
that we establish for these simple structures will be extended to more com-
plex structures in later chapters.

..............................................................................................

To solve typical structural problems, we use equations involving forces or
their components. Forces may consist of either a linear force that tends
to produce translation or a couple that tends to produce rotation of the
body on which it acts. Since a force has magnitude and direction, it can be

represented by a vector. For example, Figire 3. lashows a force F lyingin - '

the xy plane and passing through point A.
A couple cons1sts of a pair of equal and oppositely directed forces

‘lymg in the same plane (see Fig. 3.15). The moment M associated with the - o

couple equals the product of the force F and the perpendicular distance’ (or

arm) d between forces. Since a moment is a vector, it has magnitude as

well as direction. Although we often represent a moment by a curved arrow
to show that it acts in the clockwise or counterclockwise direction (see
Fig. 3.1¢), we can also represent a moment by a vector—usually a double-
headed arrow-—using the right-hand rule. In the right-hand rule we curl
the fingers of the right hand in the direction of the moment, and the
direction in which the thumb points indicates the direction of the vector.

y ¥
M=Fd . M
PR
d
F t— M
—— X X

) {©)

Byt - I dem * B e - - EF  CTSN




We must frequently carry out computations that require sither resolv-
ing a force into its components or combining several forces to produce a
single resultant force. To facilitate these calculations, it is convenient to
select arbitrarily horizontal and vertical axes—an x-y coordinate system—
as the basic reference directions. ‘ :

A force can be resolved into components by using the geometric rela-
tionship—similar triangles—that exists between the vector components
and the slope of the vector. For example, to express the vertical compo-
nent F, of the vector F in Figure 3.1a in terms of the slope of the vector,
we write, using similar triangles, ‘

Fy
a

o |

and Fy=%F

Similarly, if we set up a proportion between the horizontal component F,
and F and the sides of the slope triangle noted on the vector, we can write

F.=2F
Tooc

If a force is to be resolved into components that are not parallel to an
x-y coordinate system, the law of sines provides a simple relationship
between length of sides and interior angles opposite the respective sides.
For the triangle shown in Figure 3.2, we can state the law of sines as

a b ¢
sinA sinB  sin C

where A is the angle opposite side 4, B is the angle opposite side b, and C
is the angle opposite side c.

Example 3.1 illustrates the use of the law of sines to compute the ortho-
gonal components of a vertical force in arbitrary directions.

Figure 3.2: Diagram to illustrate law of sines.
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EXAMPLE 3.1

Using the law of sines, resolve the 75-1b vertical force F,5 in Figure 3.3a
into components directed along lines a and b.

I NN
N/ 50°
- ¥

| I o e \

)

Solution : :
Through point B draw a line parallel to line &, forming triangle ABC. The
interior angles of the triangle are easily computed from the information

b of force F,5. From the law of sines we can write

sin 80°  sin 40°  sin 60°
75 Fic Fey

where sin 80° = 0.985, sin 60° = 0.866, and sin 40° = 0.643. Solving
for Fyc and Fep yields

sin 40° -
= - (75) = 48. .
Fae = Grsoe ‘(_‘5’) 4896 1b |

sin 60°v : o :
= =65.941b
,.CBL»sin,SQ" (75) A659 1b‘ |

Figure 3.3: Resolution
of a vertical force into
components,

- B e L

Resultant of a Planar Force System

In certain structural problems we will need to determine the magnitude and
location of the resultant of a force system. Since the resultant is a single
force that produces the same external effect on'a body as the original force
system, the resultant R must satisfy the following three conditions:

1. The horizontal component of the resultant R, must equal the
algebraic sum of the horizontal components of all forces:
R, = 2ZF, (3.1a)
2. The vertical component of the resultant R, must equal the algebraic
sum of the vertical components of all forces: ‘
R, =2F, (3.10)

3. The mdmeht_ M, produced by the resultant about a reference axis
through point o must equal the moment about point o produced by
all forces and couples that make up the original force system.

ke - L ] B B - - I M -

N given. Vectors AC and CB (Fig. 3.3b) represent the required components
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M, = Rd = SEd, + =M, . @3.lo

where R = resultant force =V RZ + R? .
d= perpendxcular distance from line of action of resultant
to axis about which moments are computed (3.1d)
2Fd; = moment of all forces about reference axis
ZM; = moment of all couples about reference axis

Computation of a Resultant | " EXAMPLE 3.2

Determine the magnitude and location of the resultant R of the three wheel
loads shown in Figure 3.4.

Solution

Since none of the forces act in the horizontal direction or have components

in the horizontal direction,

R.=0

Using Equation 3.1b gives :
R=R,=2F,=20+20+10=50kN

Locate the position of the resultant using Equation 3.1c; that is, equate the \
- moment produced by the original force system to the moment produced
by the resultant R, Select a reference axis through point A (choice of A

arbitrary).
Rd = SEd,
50d = 2000) + 20(3) + 10(5)
d=22m
R=50kN

Figure 3.4

Resultant of a Distributed Load

In addition to concentrated loads and couples, many structures carry dis-
tributed loads. The external effect of a distributed load (the computation of
reactions it produces, for example) is most easily handled by replacing

K e - S e - CBE B - - AT e - '
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Figure 3.5: (a) Expressions to convert a trape-
zoidal variation of load to a set of statically equiv-
alent, equally spaced, concentrated loads; (b) equa-
tions to convert a parabolic variation of load to a
statically equivalent set of concentrated loads.
Equaticns. are valid for concave downward
parebolas also, and will give a close approsia-
tion for higher-order curves.

K e L CINAT il

| the distributed loads by'an equivélent‘rncsultant force. As you have learned

previously in statics and mechanics of materials courses, the magnitude
of the resultant of a distributed load equals the area under the load curve
and acts at its centroid (see Table A.1 for values of area and location of
the centroid for several common geometric shapes). Example 3.3 illus-
trates the use of integration to compute the magnitude and location of the
resultant of a distributed load with a parabolic variation.

If the shape of a distributed load is complex, the designer can often

-simplify the computation of the magnitude and position of the resultant

by subdividing the area into several smaller geometric areas whose prop-
erties are known. In most cases distributed loads are uniform or vary lin-
early. For the latter case, you can divide the area into triangular and rec~
tangular areas (see Example 3.7).

As an alternative procedure the designer may replace a distributed
load that varies in a complex manner by a statically equivalent set of
concentrated loads using the equations in Figure 3.5. To use these equa-
tions, we divide the distributed loads into an arbitrary number of seg-
ments of length i The ends of the segments are termed the nodes. Figure

3.5 shows two typical segments. The nodes are labeled 1, 2, and 3. The -
- number of segments into which the load is divided depends on the length

and shape of the distributed load and the quantity we will compute. If the
distributed load varies linearly between nodes, the equivalent concen-.
trated force at each node is given by the equations in Figure 3.5a. The equa-
tions for forces labeled P, and P; apply at an exterior node—a segment i$
located on only one side of the node, and P, applies to an interior node—
segments are located on both sides of a node.

Wi )
wl Wa . Wy [
1 2 3 1 3
Py Py Py Py Ps
b —] b b —
v v ' v r, Y
P.= h 2wy + W) _h .
= E( Wy Wy Py= 2—4(7w1 + 6wy~ w3)
Ps= Lé (O} + w4 wy) Py= ;—12 (wy + 10wy + w3)
Fz*v% (2wy +wy) . Py= % (Twy + 6wy - wy)
(a) ‘ &)

- - K e - T -
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For a distributed load with a pambol:c variation {either concave up
or concave down), the equations in Figure 3.5 should be used. These
equations will also give good results (within 1 or 2 percent of the exact
values) for distributed loads whose shape is represented by a higher-order
curve, If the length of the segments is not too large, the simpler equations
in Figure 3.5a can also be applied to a distributed load whose ordinates
lie on a curve such as shown in Figure 3.5b. When they are applied in this
fashion, we are in effect replacing the actual loading curve by a series of
trapezoidal elements, as shown by the dashed line in Figure 3.5b. As we
reduce the distance / between nodes (or equivalently increase the number
of segments), the trapezoidal approximation approaches the actual curve.
Example 3.4 illustrates the use of the equations of Figure 3.5.

Although the resultant of a distributed load produces the same exter-:

nal effect on a body as the original loading, the internal stresses produced
by the resultant are not the same as those produced by the distributed load.
For example, the resultant force can be used to compute the reactions of a
beam, but the computations for internal forces—for example, shear and
moment—must be based on the actual loading.

w
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Compute the magnitude and location of the resultant of the parabolic load-
ing shown in Figure 3.6. The slope of the parabola is zero at the origin.

Solution ‘ o
Compute R by integrating the area under the parabola y = (w/L*)x2

L L 2 37L
wx wx wL
R = = dx = | ——= EoY——
L y L Iz [aff ]o 3

Locate the position of the centroid. Using Equation 3.1¢ and summing

EXAMPLE 3.3

moments about the origin o gives 0 x
L 4L 2
- wx” [© wl P
Rx—L ydx(x) = J' sz dx = {413}0- 2 .
R ) - Figure 3.4

Subastituting R = wL/3 and solving the equation above for x yield
- 3
Ty
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fey

EXAMPLE 3.4

‘The beam in Figure 3.7a supports a distributed load whose ordinates lie
on a parabolic curve. Replace the distributed load by a statically equiva-
lent set of concentrated loads. :

Solution : :

Divide the load into three segments where i = 5 ft. Evaluate the equiv-
“alent loads, using the equations in Figure 3.5b.

P, = _f_(m + 6wz = wg) =2 [7(4) + 6(6.25) — 9] = 11.77 kips

P, = "i%(w‘ + 10w, + wy) = 5[4 + 10(6.25) + 9] = 31.46 kips

J 5 , |
py= ——1'—,;(w2' + 10w+ wy) = (6,25 + 10(9) + 12.25] = 45.21 kips

h 5
= - + i =
P4 ’ 24(7\4/4 ‘ "6’91' Wz) ; 24[ ‘
Also compute the approximate values of loads P, and P,, using the equa-
- tions in Figure-3.5¢ for a trapezoidal distribution of load.

7(12.25)+ 6(9) — 6.25] =27.81 kips

P, n%(zwl ) = %[2‘(4)4 6.25] = 11.88 kips

P, = f—é (wy + iy + 1{3) = 2[4 + 4(625) + 9] = 31.67 kips
The analysis above indicafés that for this case the approximate values of
Py and P, deviate less thag.1 percent from the exact values.

12.25

) I, 5 S g e , ) h
(PO RNy T M Y

S D L )
‘Figure 3.7: (@) Beam with 2 distributed load 10 ‘ 13
(units of load in kips per foot): (5} beam with equiv- ‘ . :
alent concentrated loads, (@) ‘ ' &
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Principle of Transmissibility

The principle of transmissibility states that a force may be moved along
its line of action without changing the external effect that it produces on

. a body. For example, in Figure 3.8a we can see from a consideration of

equilibrium in the x direction that the horizontal force P applied to the
beam at point A creates a horizontal reaction at support C equal to P. If
the force at point A is moved along its line of action to point D at the right
end of the beam (see Fig. 3.85), the same horizontal reaction P develops
at C. Although the effect of moving the force along its line of action pro-
duces no change in the reactions, we can see that the internal force in the
member is affected by the position of the load. For example, in Figure
3.8a compression stresses develop between points A and C. On the other
hand, if the load acts at D, the stress between points A and C'is zero and
tensile stresses are created between C and D (see Fig. 3.8b).

The ability of the engineer to move vectors along their line of action
is used frequently in structural analysis to simplify computations, to solve

- problems involving vectors graphically, and to develop a better under-

standing of behavior. For example, in Figure 3.9 the forces acting on a

retaining wall consist of the weight W of the wall and the thrust of the
‘soil pressure T on the back of the wall. These force vectors can be added

on the figure by sliding T and W along their lines of actions until they inter-
sect at point A. At that point the vectors can be combined to produce the
resultant force R acting on the wall. The magnitude and direction of R are
evaluated graphically in Figure 3.9b, Now—in accordance with the prin-
ciple of transmissibility—the resultant can be moved along its line of
action until it intersects the base at point x. If the resultant intersects the
base within the middle third, it can be shown that compressive stresses exist
over the entire base—a desirable state of stress because soil cannot trans-
mit tension. On the other hand, if the resultant falls outside the middle third
of the base, compression will exist under only a portion of the base, and
the stability of the wall—the possibility the wall will overturn or overstress
the soil—imust be investigated.

........................

ﬁ Suppgrts

~To ensure that a structure or a structural element remains in its required

position under all loading conditions, it is attached to a foundation or

. connected to other structural members by supports. In certain cases of light

33

construction, supports are provided by nailing or bolting members to sup-
porting walls, beams, or columns. Such supports are simple to construct,
and little attention is given to design details. In other cases where large, heav-
ily loaded structures must be supported, large complex mechanical devices
that allow certain displacements to occur while preventing others must
be designed to transmit large loads.

P V. - UKL e - - KT e
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Figure 3.9: Forces acting on a wall: (@) addition
of weight W and soil pressure (thrust) T; (b) vec-
tor addition of W and T to produce R.
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neoprene pad

@

ST

)

Figure 3.10: Influence of supports: Idealized rep-
resentation shown below actual construction con-
dition: (a) right end is free to expand laterally, no
stresses created by temperature change; (b) both
ends are restrained, compressive and bending
stresses develop in beam. Walls crack.

Photo 3.1: One of 3 pin supports of a concrete
shell roof connecting it to the foundation.

G - - B ST

Akhough the devices used as supports can vary widely in shape and

~ form, we can classify most supports in one of four major categories based

on the restraints or reactions the supports exert on the structure. The most
common supports, whose characteristics are summarized in Table 3.1,
include the pin, the roller, the fixed support, and the link.

- The pin support shown in Table 3.1, case (), represents a device that
connects a member to a fixed point by a frictionless pin. Although this sup-
port prevents displacement in any direction, it allows the end of the mem-

~ ber to rotate freely. Fixed supports [see Table 3.1 case (f)], although not

common, occasionally exist when the end of 2 member is deeply embed-
ded in a massive block of concrete or grouted into solid rock (Fig. 3.11).
The system of supports a designer selects will influence the forces that
develop in a structure and also the forces transmitted to the supporting
elements. For example, in Figure 3.10a the left end of a beam is connected
to a wall by a bolt that prevents relative displacement between the beam
and the wall while the right end is supported on a neoprene pad that allows

‘the end of the beam to move laterally without developing any significant

restraining force. If the temperature of the beam increases, the beam will

expand. Since no longitudinal restraint develops at the right end to resist = -

the expansion, no stresses are created in either the beam or the walls. On
the other hand, if both ends of the same beam are bolted to masonry walls

~ (see Fig. 3.10b), an expansion of the beam produced by ‘an increase in

temperature will push the walls outward and possibly crack them. If the
walls are stiff, they will exert a restraining force on the beam that will

8
i3 g e

E

Photo 3.2: Pin support loaded by the thrust from the base of arch and the end of exterior
floor girder.
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TABLE 3.1 Characteristics of Supports

Movements Allowed Reaction Unknowns
Type Sketch Symbol of Prevented - Forces Created
(@) Pin Prevented: horizontal A single linear force of
translation, vertical unknown direction or
translation equivalently
Allowed: rotation A horizontal force and a
vertical force which are
the components of the
single force of unknown
direction
(b} Hinge Prevented: relative Equal and oppositely
——gr—— displacement of directed horizontal and
member ends “vertical forces
Allowed: both rotation
and horizontal and
vertical displacement
(¢) Roller Prevented: vertical A single linear force
translation (either upviard or
Allowed: horizontal downward”)
translation, rotation

(d) Rocker

() Elastomeric
pad

OR

«f ) ‘Fixed end

Prevented: horizontal
translation, vertical
translation, rotation

Allowed: none

Horizontal and vertical
components of a linear
resultant; moment

(&) Link Prevented: translation | A single linear force in
in the direction of link | the direction of the link
Allowed: translation
perpendicular to kink,
rotation

(1) Guide Prevented: vertical A single vertical linear

tranglation, rotation

_ Allowed: horizontal

translation

force; moment

*Although the symbol for a roller support, for the sake of simplicity,

a downward reaction force if necessary.

shows no restraint against upward movement, it is intended that a roller can proviiie
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steel beam

wall

reinforced
concrete

P

Figure 3.11: Fixed-end beam produced by
embedding its left end in a reinforced concrete wall.

stiffener plates
cach side

anchor
bolt

elevation

plan

‘Statics of Structures—Reactions

create compressive stresses {and possibly bending stresses if the supports
are eccentric to the centroid of the member) in the beam. Although these
effects typically have little effect on structures when spans are short or tem-

- perature changes moderate, they can produce undesirable effects (buckle or

overstress members) when spans are long or temperature changes large.

To produce a fixed-end condition for a steel beam or column is expen-
sive and rarely done. For a steel beam a fixed-end condition can be cre-
ated by embedding one end of the beam in 2 massive block of reinforced
concrete (see Fig. 3. 11).

To produce a fixed-end condition at the base of a steel column, the
designer must specify a thick steel baseplate, reinforced by vertical steel
stiffener plates connected to the column and the baseplate (see Fig. 3.12).
In addition, the baseplate must be anchored to the support by heavily ten-
sioned anchor bolts.

On the other hand, when structural members are constructed of rein-
forced concrete, a fixed end or a pin end can be produced more easily. In
the case of a beam, a fixed end is produced by extending reinforcing bars
a specified distance into a supporting element (see Fig. 3.13a).

_For a reinforced concrete. column, the designer can create a hinge at
its base by (1) notching the bottom of the column just above the support-

_ ing wall or footing and (2) crossing the reinforcing bars as shown in Fig-

Figure 3.12: A steel column supported on a stiff-

ened baseplate, which is bolted to a concrete foun-

dation, producing a fixed-end condition at its base.

Figure 3,13: (;cz) A reinforced con-

crete beam with a fixed end; (b) a re-
inforced concrete column whose low-

er end is detailed to act as a pin.

-y e

only beam reinforcement shown

~ e

ure 3.135. If the axijal force in the column is large, to ensure that the con-
crete in the region of the notch does not fail by crushing, additional
vertical reinforcing bars must be added at the centerline of the column to
transfer the axial force. :

reinforcing
bars

. column

foundation

I~ reinforced
concrete
wall
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3.4 Idealizing Structures

Before a structure can be analyzed, the designer must develop a simplified
physical model of the structure and its supports as well as the applied loads.
This model is typically represented by a simple line drawing. To illus-
trate this procedure, we will consider the structural steel rigid frame in
Figure 3.14a. For purposes of analysis, the designer would probably rep-
resent the rigid frame by the simplified sketch in Figure 3.14b. In this
sketch the columns and girders are represented by the centerlines of the
actual members. Although the maximum load applied to the girder of the
frame may be created by a deep uneven pile of heavy, wet snow, the
designer, following code specifications, will design the frame for an equiv-
alent uniform load w. As long as the equivalent load produces, in the mem-
bers, forces of the same magnitude as the real load, the designer will be
able to size the members with the strength required to support the real load.

In the actual structure, plates, welded to the base of the coluruns, are
bolted to foundation walls to support the frame. Sometimes a tension rod
is also run between the bases of the columns to carry the lateral thrust that
is produced by the vertical load on the girder. By using the tension rod to
carry the horizontal forces tending to move the bases of the columns, sup-
ported on foundation walls, outward, the designers can size the walls and
foundations for vertical load only, a condition that reduces the cost of the
walls significantly. Although some rotational restraint obviously develops
at the base of the columns, designers typically neglect it and assume that
- the-actual supports can be represented by frictionless pins. This assumption
is made for the following reasons:

1. The designer has no simple procedure to evaluate the rotational
restraint. ‘

snow load

Section 3.4 Idealizing Structures 85

Figure 3.14: (&) Welded rigid frame with snow
load; (b) idealized frame on which analysis is
based.
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rigid B -
joint C )
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(@

Figure 3.15: Bolted web connection idealized as
a pin support: (@) Perspective of joint. (b) Details
¢f connection shown to an exaggerated scale: slope
of beam 1 bends the flexible web of beam 2. The
flexible joint is assumed to supply no rotational
restraint. (¢) Since the connection supplies only
vertical restraint (its capacity for lateral restraint
is not mobilized), we are free to model the joint
as a pin or roller support as showr in {d).

- e

connection -

» ‘ @

2. The rotational restraint is modest because of the flexural deformation
of the plate, the elongation of the bolts, and small lateral movements
. of the wall. . R
3. Finally, the assumption of a pin support at the base is conservative
(restraints of any type stiffen the structore). -

As an example, we will consider the behavior of the standard web con-

nection between the two steel beams in Figure 3.154. As shown in Figure
- 3.15b, the upper flange of beam 1 is cut back so that the top flanges are at

the same elevation. The connection between the two beams is made by
means of a pair of angles that are bolted (or welded) to the webs of both
beams. The forces applied to the members by the bolts are shown in Fig-
ure 3.15¢. Since the web of beam 2 is relatively flexible, the connection
is typically designed to transfer only vertical load between the two mem-
bers. Although the connection has a limited capacity for horizontal load,
this capacity is not utilized because beam 1 carries primarily gravity load

and little or no axial load. Designers typically model this type of con-
nection as a pin or roller (Fig. 3.15d).

...................................

35 _ Free-Body Diagrams

As a first step in the analysis of a structure, the designer will typically
draw a simplified sketch of the structure or the portion of the structure
under consideration. This sketch, which shows the required dimensions
together with all the external and internal forces acting on the structure,

.......................................................................

- is called a free-body diagram (FBD). For example, Figure 3.16a shows a

free-body diagram of a three-hinged arch that carries two concentrated
loads. Since the reactions at supports A and C are unknown, their direc-
tions must be assumed. ‘

The designer could also represent the arch by the sketch in Figure 3.165.
Although the supports are not shown (as they are in Fig. 3.164) and the
arch is represented by a single line. the free-body diagram contains all the
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information required to analyze the arch. However, since the pin supports
at A and C are not shown, it is not obvious to soimeone unfamiliar with
the problem (and seeing the sketch for the first time) that points A and B
are not free to displace because of the pins at those locations, In each case,
designers must use their judgment to decide what details are required for
clarity. If the internal forces at the center hinge at B are to be computed,
either of the free bodies shown in Figure 3.16¢ could be used.

When the direction of a force acting on a free body is unknown, the
designer is free to assume its direction. If the direction of the force is
assumed correctly, the analysis, using the equations of equilibrium, will
produce a positive value of the force. On the other hand, if the analysis
produces a negative value of an unknown force, the initial direction was
assumed incorrectly, and the designer must reverse the direction of the
force (see Example 3.5).

Free-body diagrams can also be used to determine the internal forces
in structures. At the section to be studied, we imagine the structure is cut
apart by passing an imaginary plane through the element. If the plane is
oriented perpendicular to the longitudinal axis of the member and if the
internal force on the cross section is resolved into components parallel

Section 3.5 Free-Body Diagrams 87

Figure 3.16: Free-body diagrams: (a) free-body
diagram of three-hinged arch; (b) simplified free
body of arch in (a); (¢) free-body diagrams of
arch segments; (d) free-body diagrams to analyze
internal forces at section 1-1.
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Figure 3.17: Equivalent planar force systems

acting on 4 rigid body,

* e

P Y
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and perpendicular to the cut, in the most general case the forces acting
on the cut surface will consist of an axial force F, a shear V, and a
moment M (in this book we will not consider members that carry tor-
sion). Once F, V, and M are evaluated, we can use standard equations

(developed in a basic strength of materials course) to compute the axial,

shear, and bending stresses on the cross section.
For example, if we wished to determine the internal forces at section
1-1 in the left arch segment (see Fig. 3.16¢), we would use the free bodies

~ shown in Figure 3.164. Following Newton’s third law, “for each action

there exists an equal and opposite reaction,” we recognize that the internal

. forces on each side of the cut are equal in magnitude and oppositely

directed. Assuming that the reactions at the base of the arch and the hinge
forces at B have been computed, the shear, moment, and axial forces can
be determined by applying the three equations of staties to either of the

free bodies in Figure 3.164.

....................................................................................

Equations of Statlc Equ;l:bnum

~ As you learned in dynamics, a system of planar forces acting on a rigid

structure (see Fig. 3.17) can always be reduced to two resultant forces:

“* 1. A linear force R passing through the center of gravity of the structure

where R equals the vector sum of the linear forces.

2. A moment M about the center of gravity. The moment M i is evaluated
by summing the moments of all forces and couples acting on the
structure with respect to an axis through the center of gravity and
perpendicular to the plane of the structure. *

The linear acceleration @ of the center of gravity and the angulan
accelerations « of the body about the center of gravity are related to the
resultant forces R and M by Newton’s second law, which can be stated as
follows. ‘

R = ma (3.2a)
M = la (3.2b)
where m is the mass of the body and 7 is the mass moment of mertla of

~ the body with respect to 1ts center of g1av1ty
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If the body is at rest—termed a state of static equilibrium—both the
linear acceleration @ and the angular acceleration a equal zero. For this
condition, Equations 3.2 and 3.2b become

R=0 . (33a)

If R is replaced by its components R, and R,, which can be expressed in
terms of the components of the actual force system by Equations 3.1a and
3.1b, we can write the equations of static equilibrium for a planar force
system as

SF,=0 (3.40)
SF,=0 (3.4b)
M, =0 (3.4¢)

Equations 3.4a and 3.4b establish that the structure is not moving in either
the x or y direction, while Equation 3.4c ensures that the structure is not
rotating. Although Equation 3.4¢ was based on a summation of moments
about the center of gravity of the structure because we were considering
the angular acceleration of the body, this restriction can be removed for
structures in static equilibrium. Obviously, if a structure is at rest, the result-
ant force is zero. Since the actual force system can be replaced by its
resultant, it follows that summing moments about any axis parallel to the
z reference axis and normal to the plane of the structure must equal zero
because the resultant is zero.

As you may remember from your course in statics, either or both of
Equations 3.44 and 3.4b can also be replaced by moment equations. Sev-
eral equally valid sets of equilibrium equations are

SF, =0 (3.50)
SM, =0 T (3.5b)
SM, =0 (3.5¢)
or M, =0 : (3.6a)
=My =0 '  (3.6b)
SM, =0 (360

where points A, B, and z do not lie on the same straight line.

Since the deformations that occur in real structures are generally very
small, we typically write the equations of equilibrium in terms of the ini-
tial dimensions of the structure. In the analysis of flexible columns, long-
span arches, or other flexible structures subject to buckling, the defor-
mations of the structural elements or the structure under certain loading

% S U ey

i _grs

RS

-

|
‘Equations of Static Equilibrium 89 A }

i
!
|
;
{
i
!

g



90

faexcs b

Chap

ter3  Statics of Structures—Reactions

conditions may be large enough to increase the internal forces by a sig-
nificant amount. In these situations the equilibrium equations must be
written in terms of the geometry of the deformed structure if the analy-
sis is to give accurate results. Structures experiencing large deflections of
this type are not covered in this text.

If the forces acting on a structure—including both the reactions and the
internal forces—can be computed using any of the foregoing sets of
equations of static equilibrium, the structure is said to be starically deter-
minate or, more simply, determinate. Examples 3.5 to 3.7 illustrate the use
of the equations of static equilibrium to compute the reactions of a deter-
minate structure that can be treated as a single rigid body.

If the structure is stable but the equations of equilibrium do not pro-
vide sufficient equations to analyze the structure, the structure is termed

indeterminate. To analyze indeterminate structures, we must derive addi-

tional equations from the geometry of the deformed structure to supple-
ment the equations of equilibrium. These topics are covered in Chapters
11,12, and 13.

EXAMPLE 3.5

107

(@)

10’

6 kips

B, 8 kips

®)

e

4 kips

Figure 3.18

12 kips 10 kips

S B

- ¥

. Compute the reactions for the beam in Figure 3.18a.

Solution o _ , L
Resolve the force at C into components and assume directions for the reac-
tions at A and B (see Fig. 3.18)). Ignore the depth of the beam.

Method 1.  Solve for reactions using Equations 3.4a to 3.4c. Assume

a positive direction for forces as indicated by arrows:
-+ 2F, =0 ‘ —A,+6=0 ¢}
t SF,=0 A +B,-8=0 @)
o EM, =0 —10B, + 8(15) = 0 3) -
Solving Equations 1, 2, and 3 gives ‘ '
A, = 6 kips B, = 12 kips A, = —4kips

where a plus sign indicates that the assumed direction is correct and a minus
sign establishes that the assumed direction is incorrect and the reaction
must be reversed. See Figure 3.18¢ for final results.

Method 2. Recompute reactions, using equilibrium equations that con-
tain only one unknown. One possibility is

Ct O EM,=0. —B,J(10) +8(15) =0

L S - B S L
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Gt EIMz=0 A, (10) +8(5)=0 -
>+ 3F,=0 ~A,+6=0
Solving again gives A, = 6 kips, B, = 12 kips, A, = —4 kips.

Compute the reactions for the truss in Figure 3.19. EXAMPLE 3.6

Solution i :
Treat the truss as a rigid body. Assume directions for reactions (see Fig.
3.19). Use equations of static equilibrium.

Gt IMc=0  18(12) — A,(14) =0 (1)
>+ 3F,=0 18-C,=0 (2
t SE =0 —A,+C=0 O

Solving Equations 1, 2, and 3 gives
C, = 18 kips y = 15.43 kips C, = 15.43 kips

NOTE. The reactions were computed using the initial dimensions of the
unloaded structure. Since displacements in well-designed structures are
small, no significant change in the magnitude of the reactions would result
if we had used the dimensions of the deformed structure.

Figure 3.19

[continues on next page]
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Example 3.6 continues . . .

For example, suppose support A moves 0.5 inches to the right and
joint B moves upward 0.25 in. when the 18-kip load is applied; the moment
arms for A, and the 18-kip load in Equation 1 would equal 13.96 ft and
12.02 ft, respectively. Substituting these dimensions into Equation 1, we
would compute A, = 15.47 klps As you can see, the value of A, does not

change enough (0.3 percent in this problem) to justify usmg the dimen-

sions of the deformed structure, which are time-consuming to compute.

EXAMPLE 3.7

The frame in Figure 3.20 carries a dlstnbuted load that varies from 4 to
10 kN/m. Compute the reactions.

Solution

Divide the distributed load into a triangular and a rectangular distributed
" "load (see the dashed line). Replace the d1stmbutcd loads by their resultant.

= 10(4) 40kN

R, = 5(10)(6) = 30kN

Compute A)
O+ EMC =
| (20
A (4) — Ry(S5) - RZ(_{) =0
A, = 100 kN
Compute C,.
t ZF,=0
IOO"RI—RQ‘{‘C).:o,
Figure 3.20
y = —30kN' | (minus sign indicates initial direction incorrectly assumed)
Compute C..
N s EFx wm 0 '
G=0
- ~ By e - B ST ROy - R D e - 3
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Compute the reactions for the beam in Figure 3.214, treating member AB
as a link.

Solution , :

First compute the forces in the link. Since link AB is pinned at A and B, no
moments exist at these points. Assume initially that both shear V and
axial force F are transmitted through the pins (see Fig. 3.215). Using a
coordinate system with an x axis along the longitudinal axis of the mem-
ber, we write the following equilibrium equations:

e EFX"""O 0=FA—FB {1
:‘T. EFy=0 O=VA"’VB (2)
Ct M;=0 0 = Vp(5) 3)

Solving the equations above gives
‘ Fy=Fg(callFyp) and V,=V;=0

These computations show that a member pinned at both ends and not
loaded between its ends carries only axial load, that is, is a two-force
member. ‘

Now compute Fp. Consider beam BC as a free body (see Fig. 3.21¢).
Resolve F,p into components at B and sum moments about C.

G M, =0 0= 08F,(10) —36(2)
»+ ZF,=0 0=06F;-C,

+

r ZF,=0  0=08F;—36+C,
Solving gives Fyp = 9 kips, C, = 5.4 kips, and C, = 28.8 kips.

@ ' , ®

Figure 3.21: (a) Beam BC supported by link
AB; (b) free body of link AB; (¢) free body of beam
BC.

EXAMPLE 3.8 L

R =36kips
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W."}'r"\ Equatlons of Condition

The reactions of many structures can be determined by treating the struc-
ture as a single rigid body. Other stable determinate structures, which con-
sist of several rigid elements connected by a hinge or which contain other
devices or construction conditions that release certain internal restraints,
require that the structure be divided into several rigid bodies in order to
evaluate the reactions. ‘ ‘

Consider, for example, the three-hinged arch shown in Figure 3.16a.
If we write the equations of equilibrium for the entire structure, we will
find that only three equations are available to solve for the four unknown
reaction components A,, A,, C,, and C|. To obtain a solution, we must

establish an additional equation of equilibrium without introducing any

new variables. We can write a fourth independent equilibrium equation
by considering the equilibrium of either arch segment between the hinge
at B and an end support (see Fig. 3.16¢). Since the hinge at B can trans-
fer a force with horizontal and vertical components, but has no capacity
to transfer moment (that is, Mp = 0), we can sum moments about the hinge
at B to produce an additional equation in terms of the support reactions
and applied loads. This additional equation is called an equation,of con-
dition or an equation of construction.

If the arch were continuous (no hinge existed at B), an internal moment
could develop at B and we could not write an additional equation without
introducing an additional unknown—>Mp, the moment at B.

As an alternative approach, we could determine both the reactions at the
supports and the forces at the center hinge by writing and solving three
equations of equilibrium for each segment of the arch'in Figure 3.16¢. Con-
sidering both free bodies, we have six equilibrium equations available to
solve for six unknown forces (A, A,, B, B,, C,, and C,). Examples 3.9
and 3.10 illustrate the procedure to analyze structures with devices (a

“hinge in one case and a roller-in the other) that release internal restraints.

EXAMPLE 3.9

, Compute the reactions for the beam in F1gure 3. 22a A 1oad of 12 kips is

applied. dlrectly to the hinge at C.-

Solutio'n v
The supports provide four reactions. Since three equations of equilibrium
are available for the entire structure in Figure 3.22a and the hinge at C
provides one condition equation, the structure is determinate. Compute
E, by summing moments about C (see Fig. 3.225b).

Gt O EM =0

0=24(5) - E(10) and  E, = 12 kips

CE: e - i ST [ ]
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A
==,
A.‘"

Figure 3.22

Complete the analysis, using the free body in Figuie 3.22a.
-+ 2F, =0 O+E =0
E, =0
cr EM,=0 0 = —B,(10) + 12(15) + 24(20) —12(25)
B, = 36 kips '
L EF,=0 0=A+RB~12-24+F,

Substituting B, = 36 kips and E, =12 kips, we compute A, = —12 kips
(down). ( » :

|
EXAMPLE 3.10

Compute the reactions for the beams in Figure 3.23a.

Solution
If we treat the entire structure in Figure 3.234 as a single rigid body, the
external supports supply five reactions: A,, A,, C, D,, and D,. Since only
three equations of equilibrium are available, the reactions cannot be estab-
lished. A solution is possible because the roller at B supplies two addi-
tional pieces of information (that is, Mz = 0 and B, = 0). By separating
the structure into two free bodies (see Fig. 3.23b), we can write a total of
six equilibrium equations (three for each free body) to determine the six
unknown forces exerted by the external reactions and the roller at B.
Applying the equations of equilibrium to member BD in Figure 3.23b,

we have
>+ 3F,=0 0=15-D, (1)
Gt EMpy=0 0=B10)-2005 (2
; XE} =0 0=B,—20+D, {3) [continues on next page ]
‘ K A ) ‘ ’."’*m A, - ’ h.v: A, e ‘ - M
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F

Figure 3,23

! 10’ — 5’ T 5 I
Ce

F
A, D,
(@)
20 kips
15 ki
p 2 L D
A
B,
B)‘
) }
~
T 10
Ay

»

Solving Equations 1, 2, and 3, we compute D, = 15 kips, B, = 10 kips,
and D, = 10 kips.
With B, evaluated, we can determine the balance of the reactions by
~ applying the equations of equilibrium to member AC in Figure 3.23b. -

-+ SF,=0 0=4, - @
G 3My=0 0=10010) ~15C, ®
- 1 3F,=0 0=A-10+C, (6)

. Solving Equations 4, 5, and 6, we find A, = 0, C, %20/3 kips, and A, =

103 kps.

- . Since the roller at B cannot transfer a horizontal force between beams,
we recognize that the 15-kip horizontal component of the load applied to
BD must be equilibrated by the reaction 1),. Since no horizontal forces
act on member AC, A, = (.

L A e * ST SO - g ST Ve
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Static check: To verify the accuracy of the computations, we apply
2F, = 0 to the entire structure in Figure 3.23a.
A, +C,+D,—08(25) =0
10 20
—+-+10-20=0
3 3

0=0 OK

97

Influence of Reactions on Stability and
Determinacy of Structures

To produce a stable structure, the designer must supply a set of supports
that prevents the structure or any of its components from moving as a
rigid body. The number and types of supports required to stabilize a
structure depend on the geometric arrangement of members, on any con-
struction conditions built into the structure (hinges, for example), and on
‘the position of supports. The equations of equilibrium in Section 3.6
-provide the theory required to understand the influence of reactions on
(1) stability, and (2) determinacy (the ability to compute reactions using
the equations of statics). We begin this discussion by considering struc-
tures composed of a single rigid body, and then we extend the results to
structures composed of several interconnected bodies.
For a set of supports to prevent motion of a structure under all possi-
ble loading conditions, the applied loads and the reactions supplied by
the supports must satisfy the three equations of static equilibrium

IF, =0 (3.4a)
SF,=0 (3.4b)
SM.=0 ‘ (3.4c)

To develop criteria for establishing the stability and the determinacy of a
structure, we will divide this discussion into three cases that are a func-
tion of the number of reactions.

Case 1. Supports Supply Less Than Three Restraints:
R < 3 (R = number of restraints or reactions)

Since three equations of equilibrium must be satisfied for a rigid body to
be in equilibrium, the designer must apply at least three reactions to pro-
duce a stable structure. If the supports supply less than three reactions, then
one or more of the equations of equilibrium -cannot be satisfied, and the
structure is not in equilibrium. A structure not in equilibrium is unstable.

K e - - S e -
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Figure 3.24: (a) Unstable, horizontal restraint
missing; (b) unstable, free to rotate about A4;
(¢) unstable, free to rotate about A: (d) and (¢)
unbalanced moments produce failure; (f) and (g)
stable structures.

i......... % — motion
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For example, let us use the equations of equilibrium to determine the
reactions of the beam in Figure 3.24a. The beam, supported on two rollers,

carries a vertical load P at midspan and a/horizontal force Q.

I SF,=0 O0=R +R,—P (1)
: PL ‘
Gt IM =0 0= —z—’w R,L 2)
o SF, =V‘0 0= inconsistent;
, unstable (3)

Equations 1 and 2 can be satisfied if R, =R, = P/2; however, Equation 3
is not satisfied because Q is a real force and is not equal to zero. Since equi-
librium is not satisfied, the beam is unstable and will move to the right
under the unbalanced force. Mathematicians would say the set of equa-
tions above is inconsistent or incompatible. ,

As a second example, we will apply the equations of equilibrium to
the beam supported by a pin at point A in Figure 3.235.

=+ 3ZF,=0 0=R; -3 @4y
3 SE=0 0=R -4 G
Gf OSM,=0  0=4(10)-31) =37 (6

Examination of Equations 4 through 6 shows that Equations 4 and 5 can
be satisfied if R, = 3-kips and R, = 4 kips; however, Equation 6 is not
satisfied since the right side equals 37 kip-ft and the left side equals zero.
Because the equation of moment equilibrium is not satisfied, the struc-
ture is unstable; that is, the beam will rotate about the pin at A,

>
4
T

bracing

(& o ; @
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Section 3.8 Influence of Reactions on Stability and Determinacy of Structures

As a final example, we apply the equations of equxhbrzum to the col-
umn in Figure 3.24c. A

— EF,{:O ,O::Rx ‘ (7)
i ZF,=0 0=R,~—P (®)
Ct OSM,=0 0=0 ©

Examination of the equilibrium equations shows that if R, = 0 and R, =
P, al} equations are satisfied and the structure is in equilibrium. (Equa-
tion 9 is automatically satisfied because all forces pass through the moment
center.) Even though the equations of equilibrium are satisfied when the
column carries a vertical force, we intuitively recognize that the structure
is unstable. Although the pin support at A prevents the base of the col-
umn from displacing in any direction, it does not supply any rotational
restraint to the column. Therefore, either the application of a small lat-
eral force Q (see Fig. 3.244) or a small deviation of the top joint from the
vertical axis passing through the pin at A while the vertical load P acts
(see Fig. 3.24¢) will produce an overturning moment that will cause the
column to collapse by rotating about the hinge at A. From this example
we see that to be classified as stable, a structure must have the capacity
to resist load from any direction.

To supply restraint against rotation, thereby stabilizing the column,
the designer could do either of the following.

1. ‘Replace the pin at A by a fixed support that can supply a restrammg
. moment to the base of the column (see Fig. 3.241).

2. Asshown in Figure 3.24g, connect the top of the column to a stable
support at C with a horizontal member BC (a member such as BC,
whose primary function is to align the column vertically and not to
carry load, is termed bracing, or a secondary member).

In summary, we conclude that a structure is unstablé if the supports b

supply less than three reactions.

Case 2. Supports Supply Three Reactions: R = 3

If supports supply three reactions, it will usually be possible to satxsfy
the three equations of equilibrinm (the number of unknowns equals the
number of equations). Obviously, if the three equations of static equilib-
rium are satisfied, the structure is in equilibrium (i.e., is.stable}. Further,
if the equations of equilibrium are satisfied, the values of the three reac-
tions are uniquely determined, and we say that the structure is externally
determinate, Finally, since three equations of equilibrium must be satis-
fied, it follows that a minimum of three restraints are required to produce
a stable structure under any loading condition.

T B -» B e - L ]
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Figure 3.25: (a) Geometrically unstable, reac-

tions form a parallel force system; (b} equilibrium
position, horizontal reaction develops as link
elongates and changes slope: (¢) geomeirically
unstable—reactions form a concurrent force sys-

tem passing through the pin at A; (4) indetermi- -

nate beam.

If a system of supports supphes thzee reactions that are configured in
such a way that the equations of equilibrium cannot be satisfied, the

. structure is called geometrically unstable. For example, in Figure 3.25a,

member ABC, which carries a vertical load P and a horizontal force Q,

. is supported by a link and two rollers that apply three restraints to mem-

ber ABC. Since all restraints act vertxcally, they offer no resistance to dis-
placement in the horizontal direction (i.e., the reactions form a parallel
force system), Writing the equation of equilibrium for beam ABC in the
x direction, we find . o

=+ 2F = (

Q=0 (not consistent)

~ Since Q is a real force and is not equal to zero, the equilibrium equation

is not satisfied. Therefore, the structure is unstable. Under the action of
force Q, thé structure will move to the right until the link develops a hor-
izontal component {because of a change in geometry) to equilibrate @

‘(see Fig. 3.25b). Thus for it to be classified as a stable structure, we

require that the applied loads be equilibrated by the original direction of
the reactions in the unloaded structure. A structure that must undergo a
change in geometry before its reactions are mobiliZed to balance applied
loads is classified as unstable.

As a second e‘(ample of an unstable structure restrained by three
reactions, we consider in Figure 3.25¢ a beam supported by a pin at A
and a roller at B whose reaction is directed horizontally. Although equi-
librium in the x and y directions can be satisfied by the horizontal and
vertical restraints supplied by the supports, the restraints are not posi-
tioned to prevent rotation of the structure about point A. Writing the equi-
librium equation for moment about point A gives

ot OSM, =0 - (3.4c)

Pa=0  (notconsistent)

Because neither P nor a is zero, the product Pa cannot equal zero. Thus

an equation of equilibrium is not satisfied—a sign that the structure is

8 kips
6ki )
A,
‘ =12 ———«——-12.——*?
Ay By o
(b} ©) ()
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Section 3.8 Influence of Reactions on Stability and Determinacy of Structures

unstable. Since the lines of action of all reactions pass through the pin at
A (i.e., the reactions are equivalent to a concurrent force system), they are
not able to prevent rotation initially.

In summary, we conclude that for a single rigid body a minimum of
three restraints is necessary to produce a stable structure {one that is in
equilibrium)—subject to the restriction that the restraints not be equzva~
lent to either a parallel or a concurrent force system.

We have also demonstrated that the stability of a structure may always
‘be vetified by analyzing the structure with the equations of equilibrium
for various arbitrary loading conditions. If the analysis produces an incon-
sistent result, that is, the equations of equilibrium are not satisfied for any
portion of the structure, we can conclude the structure is unstable. This
procedure is illustrated in Example 3.11. ’

Case 3. Restraints Greater Than 3: R> 3

If a system of supports, which is not equivalent to either a parallel or a
concurrent force system, supplies more than three restraints to a single

rigid structure, the values of the restraints cannot be uniquely determined

because the number of unknowns exceeds the three equilibrium equations
available for their solution. Since one or more of the reactions cannot be
determined, the structure is termed indeterminate, and the degree of inde-
terminacy equals the number of restraints in excess of 3, that is,

Degree of indeterminacy =R —3 (3.7

where R equals the number of reactions and 3 represents the number of
equations of statics.

As an example, in Figure 3.25d a beam is supported by a pin at A and
rollers at points B and C. Applying the three equations of equilibrium gives

~+ 3F, =0 Ac—6=0
1 ZF,=0 8+ A+ B, +C, =0
Cf EMy=0  —6(3) + 8(15) ~ 12B, — 24C, = 0

Since the four unknowns A4,, A,, B, and G, exist and only three equations
are available, a complete solutxon (A, can be determined from the first
equation) is not possible, and we say that the structure is indeterminate
to the first degree.

If the roller support at B were removed, we would have a stable deter-
minate structure since now the number of unknowns would equal the
number of equilibrium equations. This observation forms the basis of a
common procedure for establishing the degree of indeterminacy. In this
method we establish the degree of indeterminacy by removing restraints
until a stable determinate structure remains. The number of restraints

N e - S B e L
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Figure 3.26: (a) Indeterminate structure; (b) base
(or released) structure remainirg after redundant
supports removed.

- ST Y -

(@)

®

removed is equal to tha degree of indeterminacy. As an example, we will
establish the degree of indeterminacy of the beam in Figure 3.26a by
removing restraints. Although a variety ol choices are available, we [irst
remove the rotational restraint (3,) at support A but retain the horizontal
and vertical restraint. This step is equivalent to replacing the fixed support
with a pin. If we now remove the link at C and the fixed support at D, we
have removed a total of five restraints, producing the stable, determinate
base or released structure shown in Figure 3.26b (the restraints removed
are referred to as redundants). Thus we conclude that the original struc-
ture was indeterminaiz to the fifth degree.

> Det’e-rm'inacy and Stability of Structures Composed
of Several Rigid Bodies

If a structure consists of several rigid bodies interconnected by devices
(hinges, for ekample) that release C internal restraints, C additional equa-
tions of equilibrium (also called condition equations) can be written to
solve for the reactions (see Sec. 3.7). For structures in this category, the
criteria developed for establishing the stability and determinacy of a sin-
gle rigid structure must be modified as follows:

1. If R <3 + C, the structure is unstable.

2. If R = 3 + C and if neither the reactions for the entire structure nor
those for a component of the structure are equivalent to a parallel or
a concurrent force system, the structure is stable and determinate.

S B - ST D - KT e
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3. If R >3 + ( and the reactions are not equivalent to a parallel or a
concurrent force system, the structure is stable and indeterminate;
moreover, the degree of indeterminacy for this condition given by
Equation 3.7 must be modified by subtracting from the number of
reactions the number (3 + C), which represents the number of
equilibrinm equations available to solve for the reactions; that is,

Degree of indeterminacy = R — 3 + O) 3.8)

Table 3.2 summarizes the discussion of the influence of reactions on the
stability and determinacy of structures.

_TABLE 3.2a

Classification of Structure

Stable

Condition* Determinate Indeterminate L _Unstable
R<3 — - Yes; three equations of equilibrium
cannot be satisfied for all
possible conditions of load
R=3 Yes, if reactions are — ’ Only if reactions form a parallel or
‘ uniquely determined concurrent force system
R>3 J— Yes; degree of Only if reactions form a paralle] or

indeterminacy = R — 3 concurrent force system

Summary of the Criteria for Stability and Determinacy of a Single Rigid Structure

*R is the number of reactions.

TABLE 3.2b

Summary of the Criteria for Stability and Determmacy of
Several Interconnected Rigid Structures

Classuﬂcation of Structure

Stable
Condition* Determinate ‘ Indeterminate ‘ Unstable
R<3+C — . ‘ — ‘ Yes; equations of equilibrium can-
‘ not be satisfied for all possible
’ loading conditions
R=3+C Yes, if reactions can be Co = Only if reactions form a parallel
uniquely determined : or concurrent force system

R>3+C _ Yes, degree of indeterminacy Only if reactions form a parallel or

~3+0 concurrent force system

*Here R is the number of reactions; C is the number of conditions.
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EXAMPLE 3.11

Figure 3,27: (a) 'Detailsy of structure; (b) free
body of member AB: (c) free body of member
BD; (d) free body of member DE; (¢) unstable

structure (if AB and DE treated as links, 1.e., reac- ..

tions form a concurrent force system).

Investigate the stability of the structure in Figure 3.27a. Hinges at joints
Band D.-

Solution : :
A necessary condition for stability requires
' R=3+C

Since R, the number of reactions, equals 5 and C, the number of condi-
tion equations, equals 2, the necessary condition is -satisfied. However,
because the structure has so many hinges and pins, the possibility exists
that the structure is geometrically unstable. To investigate this possibility,
we will apply an arbitrary load to the structure to verify that the equations
of equilibrium can be satisfied for each segment. Imagine that we apply a
vertical load of 8 kips to the center of member DE (see Fig. 3.27d).

STEP1  Check the equilibrium of DE.

o+ SF,=0 - E ~D,=0

E =D,

Gt ZMp=0 8(2) —4E, =0
‘ . E, = 4kips

? SF,=0 D,+E-8=0
D, = 4 kips

(@)
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CONCLUSION. Although we were not able to determine either D, or E,,
the equations of equilibrium are satisfied. Also, because the forces acting
on the free body do not comprise either a parallel or a concurrent force
system, there is no indication at this stage that the structure is unstable.

STEP 2 Check the equilibrinm of member BD (see Fig. 3.27¢).

Cr ZM,=0 4D, — 4B, =0
"B, = D, = 4 kips Ans.
-+ XF,. =0 - D, —B.=0
D, =B,

y 3F,=0 -B,+C

¥ y—Dy=0

C, = 8 kips Ans.

CONCLUSION. All equations of equilibrium are capable of being sat-
isfied for member BD. Therefore, there is still no evidence of an unsta-
ble structure,

STEP 3 Check the equilibrium of member AB. (See Fig. 3.27b.)
Gt SM,=0 0= -B(6) (inconsistent equation)

CONCLUSION. Since previous computations for member -BD estab-
lished that B, = 4 kips, the right side of the equilibrium equation equals -
—24 ft-kipsft—not zero. Therefore, the equilibriun equation is not sat-
isfied, indicating that the structure is unstable. A closer examination of
member BCD (see Fig. 3.27¢) shows that the structure is unstable because
it is possible for the reactions supplied by members AB and DE and the
roller C to form a concurrent force system. The dashed line in Figure
3.27a shows one possible deflected shape of the structure as an unstable
mechanisia, : s

Classifying Structures
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. Classifying Structures

One of the major goals of this chapter is to establish guidelines for con-
structing a stable structure. In this process we have seen that the designer
must consider both the geometry of the structure and the number, position,
and type of supports supplied. To conclude this section, we will examine the
structures in Figures 3.28 and 3.29 to establish if they are stable or unstable
with respect to external reactions. For those structares that are stable, we
will also establish if they are determinate or indeterminate. Finally, if a
structure is indeterminate, we will establish the degree of indeterminacy.
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(@

fixed end

3]

Figure 3.28: Examples of stable and unstable
structures: (@) indeterminate to first degree: (b) sta-
ble and determinate; {¢) indeterminate second
degree; (d) indeterminate to first degree
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All the structures in this section will be treated as a single rigid body that
may or may not contain devices that release internal restraints. The effect
of internal hinges or rollers will be taken into account by considering the
number of associated condition equations.

In the majority -of cases, to establish if a structure is determinate or
indeterminate, we simply compare the number of external reactions to the
'equilﬁibriu:m equations available for the solution—that is, three equations

of statics plus any conditivu equations. Next, we check for stability by
. verifying that the reactions are not equivalent to a parallel or a concur-

rent force system. If any doubt still exists, as a final test, we apply a load
to the structure and carry out an analysis using the equations of static equi-
librium. If a solution is possible—indicating that the equations of equi-
librium are satisfied—the structure is stable. Altematwely, if an incon-

_ sistency develops, we recognize that the structure is unstable.

In Figure 3.28a the beam is restrained by four reactions—three at the

. fixed support and one at the roller, Since only three equations of equilib-

rium are available, the structure is indeterminate to the first degree. The

. structure is obviously stable since the reactions are not equivalent to either

a parallel or a concurrent force system.
"The structure in Figure 3.28D is stable and determinate because the

“number of reactions equals the number of equilibrium equations. Five

reactions are supplied—two from the pin at A and one from each the three
rollers. To solve for the reactions, three equations of equilibrium are avail-
-able for the entire structure, and the hinges at C and D supply two condi-
tion equations. We can also deduce that the structure is stable by observ-
ing that member ABC—supported by a pin at A and a roller at B—is



http:indetermim.le

stable. Therefore, the hinge at C, which is attached to member ABC, is a
stable point in space and, like a pin support, can apply both a horizontal
and vertical restraint to member CD. The fact that the hinge at C may
undergo a small displacement due to the elastic deformations of the struc-
ture does not affect its ability to restrain member CD. Since a third
restraint is supplied to CD by the roller at midspan, we conclude that it is
a stable element; that is, it is supported by three restraints that are equiv-
alent to neither a parallel nor a concurrent force system, Recognizing that
the hinge at D is attached to a stable structure, we can see that member
DE is also supported in a stable manner, that is, two restraints from the
hinge and one from the roller at E.

Figure 3.28¢ shows a rigid frame restrained by a fixed support at A
and a pin at D. Since three equations of equilibrium are available but five
restraints are applied by the supports, the structure is indeterminate to the
second degree.

The structure in Figure 3.284 consists of two cantilever beams joined
by a roller at B. If the system is treated as a single rigid body, the fixed
supports at 4 and C supply a total of six restraints. Since the roller pro-

vides two equations of condition (the moment at B is zero and no hori~

zontal force can be transmitted through joint B) and three equations of stat-
.ics are available, the structure is indeterminate to the first degree. As a
second approach, we could establish the degree of indeterminacy by remov-
ing the roller at B, which supplies a single vertical reaction, to produce two
stable determinate cantilever beams. Since it was necessary to remove only
one restraint to produce a determinate base structure (see Fig. 3.26), we
verify that the structure is indeterminate to the first degree. A third method
- for establishing the degree of indeterminacy would be to separate the
structure into two free-body diagrams and to count the unknown reactions
applied by the supports and the internal roller. Each free body would be
acted upon by three reactions from the fixed supports at A or C as well
as a single vertical reaction from the roller at B—a total of seven reac-
tions for the two free bodies. Since a total of six equations of equilibrium
are available—three for each free body—we again conclude that the
structure is indeterminate to the first degree.
In Figure 3.29a six external reactions are supplied by the pins at A and
C and the rollers at D and E. Since three equations of equilibriumn and
two condition equations are available, the structure is indeterminate to
the first degree. Beam BC, supported by a pin at C and a roller at B, is a
stable determinate component of the structure; therefore, regardless of
the load applied to BC, the vertical reaction at the roller at B can always
be computed. The structure is indeterminate because member ADE is
restrained by four reactions—two from’ the pin at A and one each from
the rollers at D and E. '
The frame in Figure 3.295 is restrained by four reaetlons—three from
the fixed support A and one from the roller at D. Since three equilibrium

IR e * S . ‘ ]
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Figure. 3.29: (a) Indeterminate first degree;
(b) unstable—reactions applied to CD form a con-
current force system; (¢) stable and determinate;
(d) unstable R < 3 + C; (¢) unstable, reactions
applied to each truss form a concurrent force sys-
tem; (f) stable and indeterminate; (g) unstable,
reactions on BCDE equivalent to a parallel force
system.
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equations and one condition equation (M, = 0 from the hinge at C) are
available, it appears that the structure may be stable and determinate.

Section 3.9

However, while member ABC is definitely stable because it consists of a

single L-shaped member connected to a fixed support at A, member CD
is not supported in a stable manner because the vertical reaction from the
roller at D passes through the hinge at C. Thus the reactions applied to
member CD make up a concurrent force system, indicating that the mem-
ber is unstable. For example, if we were to apply a horizontal force to
member CD and then sum moments about the hinge at C, an inconsistent
equilibrium equation would result.

In Figure 3.29¢ a truss, which may be considered a rigid body, is sup-
ported by a pin at A and a link BC. Since the reactions apply three restraints

that are equivalent to neither a parallel nor a concurrent force system, the.

structure is externally stable and determinate. (As we will show in Chap.
4 when we examine trusses in greater detail, the structure is also inter-
nally determinate.)

In Figure 3.294 we consider a truss that is composed of two rigid bod-
ies joined by a hinge at B. Considering the structure as a unit, we note
that the supports at A and C supply three restraints. However, since four
equilibrium equations must be satisfied (three for the structure plus a
condition equation at B), we conclude that the structure is unstablé; that
is, there are more equations of equilibrium than reactions.

Treating the truss in Flgure 3.29¢ as a single rigid body contammg a
hinge at B, we find that the pins at A and C supply four reactions. Since
three equations of equilibrium are available for the entire structure and
one condition equation is supplied by the hinge at B, the structure appears
to be stable and determinate. However, if a vertical load P were applied
to the hinge at B, symmetry requires that vertical reactions of P/2 develop
at both supports A and C. If we now take out the truss between A and B
as a free body and sum moments about the hinge at B, we find

‘C+ EMBT‘O

) L=0  (inconsistent)

~ Thus we find that the equilibrium equation £M; = 0 is not satisfied, and

we now conclude that the structure is unstable.

Since the pins at A and C supply four reactions to the pin-connected
bars in Figure 3.29f, and three equations of equilibrium and one condition
equation (at joint B) are available, the structure is stable and determinate,

In Figure 3.29¢ a rigid frame is supported by a link (member AB) and
two rollers. Since all reactions applied to member BCDE act in the ver-
tical direction (they constitute a parallel force system), member BCDE
has no capacity to resist horizontal load, and we conclude that the struc-
ture is unstable.
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Photo 3.3: An example of the collapse of a
bridge composed of simply supported beams dur-
ing the 1964 Nigata earthquake is shown here.

- EE S SN

310 Comparison Between Determinate and
lndetermin_ate Structures

- Since determinate and indeterminate structures are used extensively, it is

important that designers be aware of the difference in their behavior in
order to anticipate problems that might arise during construction or later
when the structure is in service.

If a determinate structure loses a support, immediate failure occurs
because the structure is no longer stable. An example of the collapse of a
bridge composed of simply supported beams during the 1964 Nigata earth-
quake is-shown in Photo 3.3, As the earthquake caused the structure to
sway, in each span the ends of the beams that were supported on rollers
slipped off the piers and fell into the water. Had the ends of girders been
contindous or connected, the bridge in all probability would have survived
with minimum damage. In response to the collapse of similar, simply sup-
ported highway bridges in California during earthquakes, design codes

have been modified to ensure that bridge girders-are.eonnected at supports. -

“On the other hand, in an indeterminate structure alternative paths exist
for load to be transmitted to supports. Loss of one or more supports in an
indeterminate structure can still leave a stable structure as long as the
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Section 3.10 Comparison Between Determinate and Indeterminate Structures 11

remaining supports supply three or more restraints properly arranged.
Although loss of a support in an indeterminate structure can produce in
certain members a significant increase in stress that can lead to large deflec-
tions or even to a partial failure locally, a carefully detailed structure,
which behaves in a ductile manner, may have sufficient strength to resist
complete collapse. Even though a damaged, deformed structure may no
longer be functional, its occupants will probably escape injury.

During World War IT, when cities were bombed or shelled, a number of
buildings with highly indeterminate frames remained standing even though
primary structural members—beams and columns—were heavily damaged
or destroyed. For example, if support C in Figure 3.30¢ is lost, the stable,
determinate cantilever beam shown in Figure 3.305 remains. Alternatively,
loss of support B leaves the stable simple beam shown in Figure 3.30c.

- Indeterminate structures are also stiffer than determinate structures
of the same span because of the additional support supplied by the extra
restraints. For example, if we compare the magnitude of the deflections
of two beams with identical properties in Figure 3.31, we will find that
the midspan deflection of the simply supported determinate beam is 5 times
larger than that of the indeterminate fixed-end beam, Although the verti-
cal reactions at the supports are the same for both beams, in the fixed-end
beam, negative moments at the end supports resist the vertical displace-
ments produced by the applied load. : '

. Since indeterminate structures are more heavily restrained than deter-
" minate structures, support settlements, creep, temperature change, and fab-
rication errors may increase the difficulty of erection during construction
or may produce undesirable stresses during the service life of the struc-
ture. For example, if girder AB in Figure 3.32q is fabricated too long or
increases in length due to a rise in temperature, the bottom end of the
structure will extend beyond the support at C. In order to erect the frame
the field crew, using jacks or other loading devices, must deform the
structure until it can be connected to its supports (see Fig. 3.32b). As a
result of the erection procedure, the members will be stressed and reac-
tions will develop even when no loads are applied to the structure.,

(@ e ®
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Figure 3.30: Alternative modes of transmitting
load to supports.
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Figure 3.31: Comparison of flexibility between
a determinate and indeterminate structure. Deflec-
tion of determinate beam in (a) is 5 times greater
than indeterminate beam in (b).

Figure 3.32: Consequences of fabrication error:
(a) column extends beyond support because girder
is too long; (b) reactions produced by forcing the
bottom of the column into the supports.
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Figure 3.33 shows the forces that develop in a continuous beam when

~ the center support settles. Since no load ‘acts on the heam—neglecting

the beam’s own weight—a set of self-balancing reactions is created. If

this were a reinforced concrete beam, the moment created by the support

settlement when added to those produced by the service loads could pro-

: duce aradical change in the design moments at critical sections. Depend-

(@) : v ing on how the beam is reinforced, the changes in moment could over-

' - stress the beam or produce extensive cracking at certain sections along
L _ the axis of the beam. :

moment
curve

............................................................................................

)

Figure 3.33: (a) Support B settles, creating reze- . *  oince most loaded structures are at rest and restrained against

tions; (b) moment curve produced by support s2t- ~ displacements by their supports, their behavior is governed by the
tlement. laws of statics, which for planar structures can be stated as follows:
o SF. =0 ;
SF,— 0
M, =0

-» Planar structures whose reactions and internal forces can be
determined by applying these three equations of statics are called
determinate structures. Highly restrained structures that cannot be
analyzed by the three equations of statics are termed indeterminate
structures. These structures require additional equations based on
the geometry of the deflected shape. If the equations of statics
cannot be satisfied for a structure or any part of a structure, the
structure is considered unstable.

+ Designers use a variety of symbols to represent actual supports as
summarized in Table 3.1. These symbols represent the primary action
of a particular support; but to simplify analysis, neglect small
secondary effects. For example, a pin support is assumed to apply
restraint against displacement in any direction but to provide no

~_rotational restraint when, in fact, it may supply a small degree of
rotational restraint because of friction in the joint.

* Because indeterminate structures have more supports or members

" than the minimum required to produce a stable determinate structure,
they are therefore generally stiffer than determinate structures and
less likely to collapse if a single support or member fails.

 Analysis by computer is equally simple for both determinate and
indeterminate structures. However, if a computer analysis produces
illogical results, designers should consider the strong possibility
they are analyzing an unstable structure..
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P3.1 1o P3.6. Determine the reactions of each structure
in Figures P3.1 to P3.6.

10 kips

5 kips/ft

- A B am * AL . -

0:8 kip/ft

» £ kips

ke 37 1 |

P3.4

w = 4 kips/ft

P3.5

9 kips/ft

P = 15 kips
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P3.7. The support at A prevents rotation and horizontal: , . n A B .
displacement, but permits vertical displacement. The " 20 kips
shear plate at B is assurned to act as a hinge. Determine
the moment at A and the reactions at C and D. ‘ 20'
20

| P3.7 0

| 150

~ P3.8to P3.10. Determine the reactions for each struc- : - P30
ture. All dimensions are measured from the centerlines : »
of members. - : ’ P3.11. Determine all reactions. The pin joint at C can

T ‘ be treated as a hinge.

B -

- 5 kips/ft
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P3.12. Determine all reactions. The pin joint at D acts

as & hinge.

12KN

P3.12

e 4@3m=12m————

P3.13. Determine the reactions at all supports and the
force transmitted through the hinge at C.

30 kNsm

A 2 kN/m
SEEN
. . hinge e
L~— 6m —--—L~ 4m -—*L- 4m !
P3.13

P3.14, Determine the reactions at supports A and D.

Joints B and C are rigid.

- ST VG

- 3T

PN
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P3.15. Determine all reactions. Joint € can be assumed
to act as a hinge. :

6 kips 6 kips 6 kips 6 kips

7

8 =32 ——
P3.15

P3.16. Determine all reactions, The uniform load on all
girders extends to the centerlines of the columns.

w7-=4kNe"m

L 12m
(not to scale)

P3.1é

0%
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P3.17 and P3.18. Determine all reactions. ' P3.20. The clip angle connecting the beam’s web at A

: ‘ - to the column may be assumed equivalent to a pin sup-
port. Assume member BD acts as an axially loaded pin-
end compression strut. Compute the reactions at points
AandD. :

60 kN

hinge . l ‘ ;

3 kips/ft

L-~3m ! Sm ! 5m— !

(T ITT),

! 8 - 4 ——J

P3.20 -

‘P3.21. Compute the reactions at supports Aﬂand' G, and
the force applied by the hinge to member AD.

— 130’ 150

40 kN

C P38

P3.19. The roof truss is bolted to a reinforced masonry
pier at A and connected to an elastomeric pad at C. The
pad, which can-apply vertical restraint in either direction
but no horizontal restraint, can be treated as a roller. The .
support at A can be treated as a pin. Compute the reac-
tions at siipports A and C produced by the wind load.

e - elastomeric pad 7]
L ' —
e I Ay
b 30 ey 157k 300
P3.19
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P3.22. Compute all reactions.

P3.23. The baseplates at the bottoms of the columns
are connected to the foundations at points A and D by
bolts and may be assumed to act as pin supports. Joint
Bisrigid. At C where the bottom flange of the girder is
bolted to a cap plate welded to the end of the column,
the joint can be assumed to act as a hinge (it has no sig-
nificant capacity to transmit moment). Compute the
reactions at A and D,

w = 2.4 kips/ft

117

Problems

P3.24. Draw free-body diagrams of column AB and
beam BC and joint B by passing cutting planes through
the rigid frame an infinitesimal distance above support
A and to the right and immediately below joint B. Eval-
uate the internal forces on each free body.

we=2kipse  © KPS

I

1:

r

’

6k1ps%

1

L.

Y

A

P3.24

P3.25. The frame in Figure P3.25 is composed of mem-
bers connected by frictionless pins. Draw free-body dia-
grams of each member and determine the forces
applied by the pins to the members.

8 kips

l 62! - J 16’—-!

P3.23
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P3.26. The truss in Figure P3.26 is composed of pin-
jointed members that carry only axial load. Determine
the forces in members, a, b, and ¢ by passing vertical
section 1-1 through the center of the truss. =

10 12 | 10

P3.26

P3.27. (a) in Figure P3.27 trusses 1 and 2 are stable
clements that can be treated as rigid bodies. Compute
all reactions. (b) Draw free-body diagrams of each truss

and evaluate the forces applied to the trusses at joints C,-
B, and D. .

~ 60kips

ke 20" b 200 e 20 e 20 ke 200

- P3.27

- K e - i ST "

P3.28 and P3.29. Classify the structures in Figures
P3.28 and P3.29. Indicate if stable or unstable. If unsta-

" ble, indicate the reason. If the structure is stable, indicate

if determinate or indeterminate. If indeterminate, spec-

- ify the degree.

P3.30. Practical application: A one-lane bridge consists
of a 10-in-thick, 16-ft-wide reinforced concrete slab sup-
ported on two steel girders spaced 10 ft apart. The gird-
ers are 62 ft long and weigh 400 1b/ft. The bridge is to be

- designed for a uniform live load of 700 Ib/ft acting over

the entire length of the bridge. Determine the maximum
reaction applied to an end support due to dead, live, and
impact loads. The live load may be assumed to act along
the centerline of the deck slab and divide equally

between the two girders. Each concrete curb weighs 240

Ib/ft and each rail 120 Ib/ft. Stone concrete has a unit
weight of 150 1b/ft’, Assume an impact factor of 0.29.

: o' |
g €
. curb ) curtb
M R AT S AT E I
P 10 Lyl
Section A-A
F3.30
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P3.28

®

©

P3.29

Problems

63
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Outerbridge Crossing, a continuous truss bridge that links Staten Island with New Jefséi;? ‘ThéVBS’-ﬁ: clear-
ance at midspan of the 750-ft center span permits large merchant ships to pass under the bridge. Replaced
by newer, stronger materials and structural systems, truss bridges have diminished in popularity in recent
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Introduction

A truss is a structural element composed of a stable arrangement of slen-
der interconnected bars (see Fig. 4.1a). The pattern of bars, which often
subdivides the truss into triangular areas, is selected to produce an efficient,
lightweight, load-bearing member. Although joints, typically formed by
‘welding or bolting truss bars to gusset plates, are rigid (see Fig. 4.1b), the
designer normally assumes that members are connected at joints by fric-
tionless pins, as shown in Figure 4.1c. (Example 4.9 clarifies the effect
of this assumption.) Since no moment can be transferred through a fric-
~ tionless pin joint, truss members are assumed to carry only axial force—

upper chord
mémbers

diagonals ‘ lower chord
members

gusset
plate

- KL B ' -

Figure 4.1: (a) Details of a truss; (b) welded joint;
(¢) idealized joint, members connected by a fric-
tionless pin.




122 Chapter 4  Trusses

either tension or compression. Because truss members act in direct stress,
they carry load efficiently and often have relatively small cross sections.

As shown in Figure 4.1a, the upper and lower members, which are
either horizontal or sloping, are called the top and bottom chords. The
LM chords are connected by vertical and diagonal members.

The structural action of many trusses is similar to that of a beam. As
~a matter of fact, a truss can often be viewed as a beam in which excess
materizl has been removed to reduce weight. The chords of a truss cor-
respond to the flanges of a beam. The forces that develop in these mem-
bers make up the internal couple that carries the moment produced by the
apphed loads. The primary function of the vertical and diagonal mem-
bers is to transfer vertical force (shear) to the supports at the ends of the
truss. Generally, on a per pound basis it costs more to fabricate a truss
than to roll a steel beam; however, the truss will require less material
- because the material is used more efficiently. In a long-span structure, say .
200 ft or more, the weight of the structure can represent the major portion
{on the order of 75 to 85 percent) of the design load to be carried by the
structure. By using a truss instead of a beam, the engineer can often d631gn
“a lighter, stiffer structure at a reduced cost. S
Even when spans are short, shallow trusses called bar 301sts are’ often' -
used as substitutes for beams when loads are relatively light. For short ©
. spans these members are often easier to erect than beams of c‘omparable .
capacity because of their lighter weight. Moreover, the openings between -
the web members provide large areas of unobstructed space between the -

(@

ny floor above and the ceiling below the joist through which the mechanical

' T engineer can run heating and air-conditioning ducts, water and waste pipes,
N clectrical conduit, and other essential utilities.

-M -M In addition to varying the area of truss members, the designer can vary

the truss depth to reduce its weight. In regions where the bending moment
is large—at the center of a simply supported structure or at the supports
in a continuous structure—the truss can be deepened (see Fig. 4.2).

The diagonals of a truss typically slope upward at an angle that ranges
from 43 to 60°. In a Jong-span truss the distance between panel points
should not exceed 15 to 20 ft (5 to 7 m) to limit the unsupported length of
® the compression chords, which must be designed as columns. As the slen-

, derness of a compression chord increases, it becomes more susceptible to
" Figure 4.2: (a) and (b) depth of truss varied to buckling. The slenderness of tension members must be limited also to
. conform to ordinates of moment curve. reduce vibrations produced by wind and live load.

: ' If a truss carries equal or nearly equal loads at all panel points, the
direction in which the diagonals slope will determine if they carry tension
or compression forces. Figure 4.3, for example, shows the difference in
forces set up in the diagonals of two trusses that are identical in all
respects (same span, same loads, and so forth) except for the direction in

which the dxagonals slope (T Tepresents tension and C indicates com-
pression).
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; Although trusses are very stiff in their own plane, they are very flex-

ible out of plane and must be braced or stiffened for stability. Since
trusses are often used in pairs or spaced side by side, it is usually possi-
ble to connect several trusses together to form a rigid-box type of struc-
ture. For example, Figure 4.4 shows a bridge constructed from two trusses.
In the horizontal planes of the top and bottom chords, the designer adds
transverse members, running between panel points, and diagonal bracing
to stiffen the structure. The upper and lower chord bracing together with

transverse

diagonal bracing
typical all panels
B
floor
beams

truss

®
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ERTRE

Figure 4.3: Trepresents tension and C compres-
sion.

Figure 4.4: Truss with floor beams and second-
ary bracing: (a) perspective showing truss inter-
connected by transverse beams and diagonal brac-
ing; diagonal bracing in bottom plane, omitted for
clarity, is shown in (b). (b) bottom view showing
floor beams and diagonal bracing. Lighter beams
and bracing are also required in the top plane to
stiffen trusses laterally.
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124 Chapter 4  Trusses

Photo. 4.1: Massive roof trusses with bolted
joints and gusset plates.

(@)

&

Figure 4.5: Pm-jomted frames (a)"s'table;
(&) unstable,

. AT e .
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. Photo. 4.2: Reconstructed Tacoma Narrows bridge showing trusses used to stiffen the

roadway floor system. See original bridge onp. 45. .~ -

the transverse members forms a truss in the horizontal plane to transmit
lateral wind load into the end supports. Engineers also add diagonal knee
bracing in the vertical plane at the ends of the structure to ensure that the
trusses remain perpendicular to the top and bottom planes of the structure,

2 Types of Trusses

. The members of most modern trusses are arranged in triangular patterns
because even when the joints are pinned, the triangular form is geometri-
cally stable and will not collapse under load (see Fig. 4.5a). On the other
hand, a pin-connected rectangular element, which acts like an unstable

linkage (see Fig. 4.5b), will collapse under the smallest lateral load.

One method to establish a stable truss is fo construct a basic triangu-
lar unit (see the shaded tnangular element ABC in ‘Fig. 4.6) and then

establish additional joints by extending bars from the joints of the first -

triangular element. For example, we can form joint D by extending bars

- from joints B and C. Similarly, we can imagine that joint E is formed by
extending bars from joints C and D. Trusses formed in this manner are
called simple trusses.

B B ma




If two or more simple trusses are connected by a pin or a pin and a
tie, the resulting truss is termed a compound truss (see Fig. 4.7). Finally,
if a truss—usually one with an unusual shape—is neither a simple nor a
compound truss, it is termed a complex truss (see Fig. 4.8). In current
practice, where computers are used to analyze, these classifications are

not of great significance.

3. Analysis of Trusses

A truss is completely analyzed when the magnitude and sensé (tension
or compression) of all bar forces and reactions are determined., To com-
pute the reactions of a determinate truss, we treat the entire structure as
arigid body and, as discussed in Section 3.6, apply the equations of static
equilibrium together with any condition equations that may exist. The
analysis used to evaluate the bar forces is based on the following three
assumptions: :

1. Bars are straight and carry only axial load (i.e., bar forces are
directed along the longitudinal axis of truss members). This
assumption also implies that we have neglected the deadweight of
the bar. If the weight of the bar is significant, we can approximate
its effect by applying one-half of the bar weight as a concentrated
load to the joints at each end of the bar.

2. Members are connected to joints by frictionless pins. That is, no
moments can be transferred between the end of a bar and the joint
to which it connects. (If joints are rigid and members stiff, the

- structure should be analyzed as a rigid frame.)

3. Loads are applied only at joints.

As a sign convention (after the sense of a bar force is established) we
label a tensile force positive and a compression force negative. Alterna-
tively, we can denote the sense of a force by adding after its numerical
value a T to indicate a tension force or a C to indicate a compression force,

If a bar is in tension, the axial forces at the ends of the bar act out-
ward (see Fig. 4.9g) and tend to elongate the bar. The equal and opposite
forces on the ends of the bar represent the action of the joints on the bar.
Since the bar applies equal and opposite forces to the joints, a tension bar
will apply a force that acts outward from the center of the joint.

If a bar is in compression, the axial forces at the ends of the bar act
inward and compress the bar (see Fig. 4.95). Correspondingly, a bar in
compression pushes against a joint (i.e., applies a force directed inward
toward the center of the joint). I S

Bar forces may be analyzed by considering the equilibtium of a
joint—the method of joints—or by considering the equilibrium of a sec-
tion of a truss—the method of sections. In the later method, the section
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A

Figure 4.6: Simple truss.

' simple

C

simple

Figure 4.7: Compound truss is made up of sim-

ple trusses.

Figure 4.8: Complex trusses.
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126 Chapter 4  Trusses

» is produced by passmg an 1magmary cuttmg planc through the truss. The
\ A " B method of joints is discussed in Section 4.4; the method of sections is
g Tt B treated in Section 4.6. :

- Method of Joints

To determine bar forces by the method of joints, we analyze frec—body
diagrams of joints. The free- body diagram is established by imagining
Figure 4.9: Free-body diagrams of axially loaded  that we cut the bars by an imaginary section just before the joint. For exam-
bars and adjacent joints: (a) bar AB in tension;  ple in Figure 4.10a to determine the bar forces in members AB and BC,
(b) bar 4B in compression. we use the free body of joint B shown in Figure 4.105. Since the bars
carry axial force, the line of action of each bar force is directed along the
longitudinal axis of the bar.

“Because all forces acting at a joint pass through the pin, they consti-
tute a concurrent force system. For this type of force system, only two
equations of statics (that is, 2F, = 0 and ZF, = 0) are available to eval-

®

available, we can only analyze joints that contain a maximum of two
unknown bar forces. :
The analyst can follow several procedures in the method of Jomts

tially to write the equilibrium equations in terms of the components of
the bar forces. On the other hand, as one gains experience and becomes
familiar with the method, it is possible, without formally writing out the
equilibrium equations, to determine bar forces at a joint that contains
only one sloping bar by observing the magnitude and direction of the
components of the bar forces required to produce equilibrium in a par-
ticular direction. The latter method permits a more rapid analysis of a
truss. We discuss both procedures in this section.

To determine bar forces by writing out the equilibrium equations, we
must assume a direction for each unknown bar force (known bar forces
must be shown in their correct sense). The analyst is free to assume
either tension or compression for any unknown bar force (many engi-
Figure 4.10: (a) Truss (dashed lincs show loca neers like to assume thgt all bars are in tension, that is, th_eyf show all
tion of circular cutting plane used to isolate joint  UTKNOWI: bar forces acting outward from the center of the joint). Next,
BY; (b) free body of joint B. the forces are resolved into their X and ¥ (rectangular) components. As
shown in Figure 4.10b, the force or the components of a force in a par-
‘ticular bar are subscripted with the letters used to label the joints at each
end of the bar. To complete the solution, we write and solve the two

equations of equilibrium.

If only one unknown force acts in a pamcular direction, the compu-
tations are most expeditiously carried out by summing forces in that

&)
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uate unknown bar forces. Since only two equatlons of ethbnum are .

For the student who has not analyzed many trusses, it may be best ini-




direction. After a component is computed, the other component can be
established by setting up a proportion between the components of the
force and the slope of the bar (the slope of the bar and the bar force are
obviously identical). ' ‘

If the solution of an equilibrium equation produces a positive value
of force, the direction initially assumed for the force was correct. On the
other hand, if the value of force is negative, its magnitude is correct, but
the direction initially assumed is incotrect, and the direction of the force
must be reversed on the sketch of the free-body diagram. After the bar
forces are established at a joint, the engineer proceeds to adjacent joints
and repeats the preceding computation until all bar forces are evaluated.
This procedure is illustrated in Example 4.1.

Determination of Bar Forces by Inspection

~ Trusses can often be analyzed rapidly by inspection of the bar forces and
loads acting on a joint that contains one sloping bar in which the force is
unknown. In many cases the direction of certain bar forces will be obvi-
ous after the resultant of the known force or forces is established. For
example, since the applied load of 30 kips at joint B in Figure 4.105 is
directed downward, the y-component, Y, of the force in member AB—
the only bar with a vertical component—must be equal to 30 kips and
directed upward to satisfy equilibrium in the vertical direction. If Y, is
- directed upward, force F,p must act upward and to the right, and its hori-
zontal component X, must be directed to the right. Since X5 is directed
to the right, equilibrium in the horizontal direction requires that Fy.act to
the left. The value of X, is easily computed from similar triangles because
the slopes of the bars and the bar forces are identical (see Sec. 3.2).
Xas _ Yio
4 3
and

: 4 4
Xap = gYAB = 5(30)

X5 =40 kips Ans.
To determine the force Fp, we mentally sum forces in the x direction.
-+ 2F, =0

0= —Fge + 40
Fge = 40 kips Ans.
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EXAMPLE 4.1

Figure 4.11: 13) Truss; (b) joint 4; (¢) joint B;
(d) joint D; (e: summary of bar forces (units in
kips). -

B e ‘ ] R M

Analyze the truss in Figure 4.11a by the method of joints. Reactions are
given. - E

Solution

The slopes of the various members are coinputed and shown on the

sketch. For example, the top chord ABC, which rises 12 ft in 16 ft, is on
aslopeof 3:4.

To begin the analysis, we must start at a joint with a maximum of two
bars. Either joint A or C is acceptable. Since the computations are sim-
plest at a joint with one sloping member, we start at A. On a free body of
joint A (see Fig. 4.11b), we arbitrarily assume that bar forces F,p and Fy,
are tensile forces and show them acting outward on the joint. We next
replace F4 by its rectangular components X, and Y,z Writing the equi-
librium equation in the y-direction, we compute Y, 5.

3;“ ZF:J= 0-

0=-24+Y, and Y= 24kips  Ans.

(d) : (&)
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Section 4.4 Method of Joints 129

Since Y, is positive, it is a tensile force, and the assumed direction on
the sketch is correct. Compute X, and F 45 by proportion, considering the
slope of the bar. ' ’ :

Yap - Xap - Qg

3 4 5
and
4
XAB = —;“_YAB = ’:‘3“(24) = 32 kips

Fip = ‘§YAB = %{24) = 40 kips Ans. :

Compute Fyp.
-+ 3F =0 |
O = —22 +XAB '+' FAD
Fup = =32 + 22 = —10kips Ans.
Since the minus sign indicates that the direction of force F,,, was assumed
incorrectly, the force in member AD is compression, not tension.

- We next isolate joint B and show all forces acting on the joint (see
Fig. 4.11¢). Since we determined F,; = 40 kips tension from the analy-
sis of joint A, it is shown on the sketch acting outward from joint B,
Superimposing an x-y coordinate system on the joint and resolving Fpp

into rectangular components, we evaluate Yy, by summing forces in the
y direction.

+

t ZF =0

Since Ypp = 0, it follows that Fzp, = 0. From the discussion to be pre-
sented in Section 4.5 on zero bars, this result could have been anticipated.
Compute Fp.

=+ ZF. =0
0= Fgc — 40
Fge = 40 kips tension Ans.

Analyze joint D with Fzp = 0 and F pe shown as a compressive force (see
Fig. 4.11d).

—>+ EF,C= 0 0= 10-XDC and XDC= IOkips

+

1 sz =0 0=24— Ype and Ype = 24 kips [continues on next page)
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Example 4.1 continues . ..

As a check of the results, we observe that the components of Fp. are
proportional to the slope of the bar. Since all bar forces are known at this
point, we-can also verify that joint C is in equilibrium, as an alternative
check. The results of the analysis are summarized in Figure 4.11¢ on a
sketch of the truss. A tension force is indicated with a plus sign, 2 com-
pressive force with a minus sign.

&

Flgure 4.12: Conditions that produce zero
forces in bars: (¢) two bars and no external loads,
Fy and F; equal zero; (b) two collinear bars and no
external loads, force in third bar () is zero.

- - s

W o

.........................................................................................

Zero Bars

Trusses, such as those used in highway bridges, typically support mov-
ing loads: As the load moves from one point to another, forces in truss
members vary. For one or more positions of the load, certain bars may
remain unstressed. The unstressed bars are termed zero bars. The designer
can often speed the analysis of a truss by 1dent1fymg bars in which the

forces are zero. In this sectmn we discuss two cases in Wthh bar forces‘

are Zero.

‘Case 1. If No External Load Is Apphed to a Joint That

Consists of Two Bars, the Force in Both' Bars Must
Be Zero

To demonstrate the validity of this statement, we will first assume that
forces Fy and F, exist in both bars of the two-bar joint in Figure 4.12a,
and then we demonstrate that the joint cannot be in equilibrium unless
both forces equal zero. We begin by superimposing on the joint a rec-
tangular coordinate system with an x axis oriented in the direction of
force Fy, and we resclve force F, into components X, and ¥, that are par-
allel to the x and y axes of the coordinate system, respectively. If we sum
forces in the y direction, it is evident that the joint cannot be in equilib-
rium unless Y, equals zero because no other force is available to balance
Y, IfY, equals zero, then F2 is zero, and ethbmum requires that F also
equal zero.

A second case in which a bar force must equal zero occurs when a
Jomt 1s composed of three bars-——two of wh1ch are collinear. -

Case 2. |f No External Load Acts at a Joint Composed of
" . Three Bars—Two of Which Are Collinear—the
Force in the Bar That Is Not Col\mear Is Zero

To demonstrate this' conclusion, we. again superimpose a rectangular
coordinate system on the joint with the x axis oriented along the axis of
the two collinear bars. If we sum forces in the y dlrectxon, the equilib-
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rium equation can be satisfied only if F; equals zero because there is no
other force to balance its y-component ¥; (see Fig. 4.12b).

Although a bar may have zero force under a certain loading condi-
tion, under other loadings the bar may carry stress. Thus the fact that the
force in a bar is zero does not indicate that the bar is not essential and
may be eliminated.

Section4.6  Method of Sections 131

Based on the earlier discussion in Seétion 4.5, label all the bars in the
truss of Figure 4.13 that are unstressed when the 60-kip load acts.

Solution

Although the two cases discussed in this section apply to many of the

bars, we will examine only joints A, E, 7, and H. The verification of the

remaining zero bars is left to the student. Since joints A and E are com-

posed of only two bars and no external load acts on the joints, the forces

in the bars are zero (see Case 1). '
Because no horizontal loads act on the truss, the horizontal reaction at

I is zero. At joint [ the force in bar 1J and the 180-kip reaction are’

collinear; therefore, the force in bar IH must equal zero because no other

* horizontal force acts at the joint. A similar condition exists at joint H.

Since the force in bar IH is zero, the horizontal component of bar HJ must
be zero. If a component of a force is zero, the force must also be zero,

EXAMPLE 4.2

180 kips 120 kipS

Figure 4.13

© Method of Sections

To analyze a stable truss by the method of sections, we imagine that the
truss is divided into two free bodies by passing an imaginary cutting plane
through the structute. The cutting plane must, of course, pass through the
bar whose force is to be determined. At each point where a bar is cut, the
internal force in the bar is applied to the face of the cut as an external
load. Although there is no restriction on the number of bars that can be
cut, we often use sections that cut three bars since three equations of
static equilibrium are available to analyze a free body. For example, if we
wish to determine the bar forces in the chords and diagonal of an interior
panel of the truss in Figure 4.144, we can pass a vertical section through
the truss, producing the free-body diagram shown in Figure 4.145. As we

- [ ST R - C B e -
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Figure 4.14

Trusses

50 kips

40kips 40 kips T

70 kips 50 kips

ke 4@15 =60 — N k15—

saw in the method of joints, the engineer is free to assume the direction
of the bar force. If a force is assumed in the correct direction, solution of
the equilibrium equation will produce a positive value of force. Alterna-
tively, a negative value of force indicates that the direction of the force
was assumed incorrectly.

If the force in a diagonal bar of a truss with parallel chords is 1o be com-”

puted, we cut a free body by passing a vertical section through the diag-
onal bar to be analyzed. An equilibrium equation based on summing forces
in the y-direction will permit us to determine the vertical component. of
force in the diagonal bar. \

If three bars are cut, the force in a particular bar can be determined by
extendmg the forces in the other two bars along their line of action until
they intersect. By summing moments about the axis through the point of
intersection, we can write an equation involving the third force or one of
its components. Example 4.3 illustrates the analysis of typical bars in a
truss with parallel chords. Example 4.4, which covers the analysis of a
determinate truss with four restraints, illustrates a general approach to
the analysis of a complicated truss using both the method of sections and

Vthe method of Jomts

- e

EXAMPLE

4.3

. _a
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o

Using the method of sections, compute the forces or components of force

-in bars HC, HG, and BC of the truss in Figure 4.14a.

iSqutlon

Pass section 1-1 through the &uss cumng the free body shown.in Figure

- 4.14b. The direction of the axial force in each member is arbitrarily

assumed. To simplify the computations, force Fyc is resolved into verti-
cal and horizontal components,




Compute Yy (see Fig. 4.14b).
+
t ZF, =0
0 = 50 — 40 — Y, HC
Yie = 10 kips tension Ans.
From the slope relationship,

Xuc _ Yue

3 4

Xuyc = %YHC = 7.5 kips Ans.

Compute Fze. Sum moments about an axis through H at the inter-
section of forces Fys and Fyp.

oY IMy =0
0 = 30(20) + 50(15) — Fp(20)
Fyge = 67.5 kips tension Ans.
Compute Fyg.
-+ 2F, =0
0=130~ Fyg + Xpye + Fge — 30
Fye = 75 kips compression Aﬁs.

Since the solution of the equilibrium equations above produced pos-
itive values of force, the directions of the forces shown in Figure 4.14b are
correct.

Section 4.6 Method of Sections
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Analyze the determinate truss in Figure 4.154 to determine all bar forces
and reactions.

Solution ;
Since the supports at A, C, and D supply four restraints to the truss in
Figure 4.15a, and only three equations of equilibrium are available, we can-
not determine the value of all the reactions by applying the three equa-
tions of static equilibrium to a free body of the entire structure. However,
recognizing that only one horizontal restraint exists at support A, we can
determine its value by summing forces in the x-direction. -

L * [ TR V. - [ ST VR -

EXAMPLE 4.4

[continues on next page]
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Example 4.4 continues . . .

F E
60 kips il iz F _T
‘ 15’
T C)’ D)’
Ay .
| » . (I
3@ 15" =45 . . : o
80 Kips s
N
Yep B
B0 TED 60 kips
80 kips 80 kips
(d)
Figure 4.15 .
e EFr = {)
—A, + 60 =10
A, = 60 kips Ans,
Since the remaining reactions cannot be determined by the equations of
statics, we must consider using the method either of joints or of sections.
K At this stage the method of joints cannot be applied because three or
more unknown forces act at each joint. Therefore, we will pass a vertical
section through the center panel of the truss to produce the free body
shown in Figure 4.155. We must use the free body to the left of the sec-
" tion because the free body to the right of the section cannot be analyzed
since the reactions at C and D and the bar forces i in membe1s BCand FE
are unknown. T :
ComputeA (see Flg 4. 15b)
EF =0
A, =0  Ans
- TR e - * T e - » - - ] oy
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Section.4.6 Method of Sections

Compute Fp. Sum moments about an axis through joint F.
G+ EM F= 0

60(20) — Fpe(15) = 0

Fye = 80 kips (tension) Ans,
Compute Fpp,
-+ ZF, =0
+60 — 60 + Fye — Frg = 0
Fpp = Fgo = 80 kips (compression) Ans.

Now that several internal bar forces are known, we can complete the
analysis using the method of joints. Isolate joint E (Fig. 4.15¢).

-+ 2F. =0
80 — Xgo = 0
gp = 80 kips (compression) Ans.

Since the slope of bar ED is 1:1, Yz, = Xzp = 80 kips.
' + .
t 2ZF, =0
Fge = Ygp =0
Fze = 80 kips (tension) Ans,

The balance of the bar forces and the reactions at C and D can be deter-
mined by the method of joints. Final results are shown on a sketch of the

truss in Figure 4.154.

135

Determine the forces in bars HG and HC of the truss in Flgure 4.16a by EXAMPLE 4.5

the method of sections.

Solution :

First compute the force in bar HC Pass vertical section 1- 1 through the

truss, and consider the free body to the left of the section (see Fig. 4.165).

The bar forces are applied as external loads to the ends of the bars at the

cut. Since three equations of statics are available, all bar forces can be

determined by the equations of statics, Let F, represent the force in bar

HC. To simplify the computations, we select a moment center (point a that  [continues on next page)
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Example 4.5 continues . . .

lies at the intersection of the lines of action of forces F; and F3). Force

F, is next extended along its line of action to point C and replaced by its -

rectangular components X, and Y,. The distance x between a and the left
support is established by proportion using similar triangles, that is, aHB
and the slope (1:4) of force F;.

60 kips

e : 4@ 24" =96"

Figure 4.16: (a) Details of truss; (byfreebodyto -~ .. L o L e 24— L 24'A. —l

compute force in bar HC, (c) free body to com-

pute force in bar HG.
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Section 4.6

1 __ 4
18 x+ 24
x =481t
Sum moments of the forces about point a and solve for ¥,.
ct EM, =0

0 = —60(48) + 30(72) + Y,(96)
Y, = 7.5 kips tension Ans.
Based on the slope of bar HC, establish X, by proportion.
h_X
3 4
X, = %Yz = 10 kips Ans.

Now compute the force F; in bar HG. Select a moment center at the
intersection of the lines of action of forces F, and Fj, that is, at point C
(see Fig. 4.16¢). Extend force F, to point G and break into rectangular
components, Sum moments about point C.

Ct EM. =0
0 = 60(48) — 30(24) — X,(24)
X, =90 kipé compression Ans.
Establish ¥, by proportion.
X_nh

Method of Sections 137

Using the method of sections, compute the forces in bars BC and JC of
the K truss in Figure 4.17a. ’

Solution . _

Since any vertical section passing through the panel of a K truss cuts
four bars, it is not possible to compute bar forces by the method of sec-
tions because the number of unknowns exceeds the number of equations

EXAMPLE 4.6

of statics. Since no moment center exists through which three of the bar  [continues on next page]
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Example 4.6 continues . . .

24 kips -

—20

Trusses

24 kips

24 kips
e 20—l 2
()

48 kips

Figure 4.17: (a) K truss; (b) free body to the left
of section 1-1 used to evaluate Fy.: (¢) free body

used to compute F - (d) bar forces.

P S

48 kips
20— f— 20—
' ®)

T i i 144 kips
~36
G« |60
RS |
~-leo i
Qi +84 B ) .
) Crmaa— |~ 144 Kips
= \
24kips . 48 Xkips 48 kips 120 kips
@

forces pass, not even a partial solution is possible using a standard verti-
cal section. As we illustrate in this example, it is possible to analyze ak
truss by using two sections in sequence, the first of which is a special

_section curvzng around an interior JOlnt

To compute the force in bar BC, we pass section 1-1 through the tmss
in Figure 4.174. The free body to the left of the section is shown in Fig-
ure 4.17b. Summing moments about the bottom joint G gives

Gt EMg=0
© 30Fp; — 24(20) = 0 }
‘ C Fjc = 16 kips tension

il

Ans.

To. compute F)c, we pass section 2 2 through the panel and consider

again the free body to the left (see Fig. 4.17¢). Since the force in bar BC
has been evaluated, the three unknown bar forces can be determined by

- K e * B e e ' L




Section 4.7

the equations of statics. Use a moment center at F. Extend the force in
bar JC to point C and break into rectangular components.

G+ EMF = () )
0 = 16(30) + X,(30) — 20(48) — 40(24)
X.’C = 48 klpS

Fio = %X 70 = 60 kips tension Ans,

NOTE. ' The K truss can also be analyzed by the method of joints by
starting from an outside joint such as A or H. The results of this analysis
are shown in Figure 4.17d. The K bracing is typically used in deep trusses

-to reduce the length of the diagonal members. As you can see from the

results in Figure 4.174d, the shear in a panel divides equally between the

‘top and bottom diagonals. One diagonal carries compression, and the other

carries tension.

~ Determinacy and Stability
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Determinacy and Stability

Thus far the trusses we have analyzed in this chapter have all been sta-
ble determinate structures; that is, we knew in advance that we could
carry out a complete analysis using the equations of statics alone. Since
indeterminate trusses are also used in practice, an engineer must be able
to recognize a structure of this type because indeterminate trusses require
a special type of analysis. As we will discuss in Chapter 11, compatibil-
ity equations must be used to supplement equilibrium equations.

If you are investigating a truss designed by another engineer, you will
have to establish if the structure is determinate or indeterminate before
you begin the analysis. Further, if you are responsible for establishing the
configuration of a truss for a special situation, you must obviously be
able to select an arrangement of bars that is stable. The purpose of this
section is to extend to trusses the introductory discussion of stability and
determinacy in Sections 3.8 and 3.9—topics you may wish to revxew
before proceedmg to the next paragraph.

If a loaded truss is in equilibrium, all members and joints of the truss
must also be in equilibrium. If load is applied only at the joints and if all
truss members are assumed to carry only axial load (an assumption that
implies the dead load of members may be neglected or applied at the
joints as an equivalent concentrated load), the forces acting on a free-
body diagram of a joint will constltute a concurrent force system. To be
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Trusses

Y

in equilibrium, a concurrent force system must satxsfy the following two

equilibrium equations:

SF,=0
SF, =0

Since we can write two equilibrium equations for each joint in a truss,

the total number of equilibrium equations available to solve for the .

unknown bar forces b and reactions r equals 2n (where n represents the
total number of joints). Therefore, it must follow that if a truss is stable
and determinate, the relationship between bars, reactions, and joints
must satisfy the following criteria;

r+b=72m “.1)

In addition, as we discussed in Section 3.7, the restraints exerted by the
reactions must not constitute either a parallel or a concurrent force system.

Although three equations of statics are available to compute the reac-
tions of a determinate truss, these equations are not independent and they

 cannot be added to the 21 joint equations. Obviously, if all joints of a truss

are in equilibrium, the entire structure must also be equilibrium; that is,
the resultant of the external forces acting on the truss equals zero. If the
resultant is zero, the equations of static equilibrium are automatically sat-
isfied when applied to the entire structure and thus do not supply addi-
tional independent equilibrium equations. . :
If v -
» ' r+b>2n

then the number of unknown forces exceed the available equations of stat-
ics and the truss is indeterminate. The degree of indeterminacy D equals

D=r+b-2n 4.2)
Finally, if - '
: r+b<2n

there are insufficient bar forces and reactions to satisfy the equatmns of

equilibrium, and the structure is unstable. -

Moreover, as we discussed in Section 3.7, you will always find that
the analysis of an unstable structure leads to an inconsistent equilibrinm
equation. Therefore, if you are uncertain about the stability of a structure,
analyze the structure for any arbitrary loading. If a solution that sausﬁes
statics results, the structure is stable.

To illustrate the criteria for stability and determinacy for trusses intro-
duced in this section, we will classify the trusses in Figure 4.18 as stable
or unstable. For those structures that are stable, we will establish whether

‘they are determinate or indeterminate. Finally, if a structure is indeter-

minate, we will also establish the degree of indeterminacy. -
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Figure 4.18a2 : ;
b+r=5+3=8 2n=204)=38

Since b + r = 2n and the reactions are not equivalent to either a con-
current or a parallel force system, the truss is stable and determinate.

Figure 4.18b
btr=14+4=18 2n=2(8) =16

Since b + r exceeds 2xn (18 > 16), the structure is indeterminate to the
second degree, The structure is one degree externally indeterminate because
the supports supply four restraints, and internally indeterminate to the
first degree because an extra diagonal is supplied in the middle panel to
‘transmit shear.

Figure 4.18¢
b+r=14+4=18 2n=29 =

Because b + r = 2n = 18, and the supports are not equivalent to either
a parallel or a concurrent force systein, the structure appears stable. We
" can confirm this conclusion by observing that truss ABC is obviously a
stable component of the structure because it is a simple truss (composed
of triangles) that is supported by three restraints—two supplied by the pin
at A and one supplied by the roller at B. Since the hinge at C is attached
to the stable truss on the left, it, too, is a stable point in space. Like a pin
support, it can supply both horizontal and vertical restraint to the truss on
the right. Thus we can reason that truss CD must also be stable since it,
- {00, is a simple truss supported by three restraints, that is, two supplied
by the hinge at C and one by the roller at D.

(@ ‘ )

AN B - TN B -

Figure 4.18: Classifying trusses: (a) stable deter-
minate; (&) indeterminate second degree; (¢) deter-
minate.
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o3
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Figure 4.18: Classifying trusses: (4) determi-
nate; (e) determinate; (f) unstable; (g) unstable;
(1) unstable. C

- NG e

- Figure 4.18f

Figure 4.18d Two approaches are possible to classify the structure in
Figure 4.184. In the first approach, we can treat triangular element BCE

as a three-bar truss (b = 3) supported by three links—AB, EF, and CD"

(r = 3). Since the truss has three joints (B, C,and E),n = 3. And b + r =
6 equals 2n = 2(3) = 6, and the structure is determinate and stable.

Alternatively, we can treat the entire structure as a six-bar truss (b =

6), with six joints (n = 6), supported by three pins (r = 6), b + r = 12
equals 2n = 2(6) = 12. Again we conclude that the structure is stable and
determinate.

Figure 4.18e : ’
| bor=14+4=18 2n=209)=18

Since b + r = 2n, it appears the structure is stable and determinate; how-

- ever, since a rectangular panel exists between joints B, C, G, and H, we

will verify that the structure is stable by analyzing the truss for an arbi-

trary load of 4 kips applied vertically at joint D (see Example 4.7). Since

analysis by the method of joints produces unique values of bar force in all
members, we conclude that the structure is both stable and determinate.

b+r=8+4=12 2n=2(6) =12

Although the bar count above satisfies the necessary condition for a sta-
ble -determinate structure, the structure appears to be unstable because
the center panel, lacking a diagonal bar, cannot transmit vertical force.
To confirm this conclusion, we will analyze the truss, using the equations
of statics. (The analysis is carried out in Example 4.8.) Since the analy-

sis leads to an inconsistent equilibrium equation, we conclude that the
structure is unstable.

Figure 4.18g
b=16 r=4 n=10
Although b = 2n, %hé smalltrusson the right (DEFG) is unstable

because its supports—the link CD and the roller at E—constitute a par-
allel force system.

Figure 4.18h Truss is geometrically unstable because the reactions
constitute a concurrent force system; that is, the reaction supplied by the

“link BC passes through the pin at A.

- K e = - (3 RTINS R, -
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Figure 4.18i
b=21 r=3 n=10

And b + r = 24, 2n = 20; thefefore, truss is indeterminate to the foufth
degree. Although the reactions can be computed for any loading, the inde-
terminacy is due to the inclusion of double diagonals in all interior panels.

-Figure 4.18j
b=6 r=3 n=35

And b + r =9, 2n = 10; the structure is unstable because there are fewer
restraints than required by the equations of statics. To produce a stable
structure, the reaction at B should be changed from a roller to a pin.

Figure 418k Nowb=9,r=3,andn = 6;alsob + r=12,2n = 12.
However, the structure is unstable because the small triangular truss ABC
at the top is supported by three parallel links, which provide no lateral
restraint. ' -

Figure 4.18: Classifying trusses: (§) indetermi-
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nate fourth degree; (f) unstable; (k) unstable:

&)

Verify that the truss in Figure 4,19 is stable and determinate by demon-
strating that it can be completely analyzed by the equations of statics for
a force of 4 kips at joint F.

- IR e - TS -

EXAMPLE 4.7 |

Figure 4.19: Analysis by method of joints to
verify that truss is stable.

[continues on next page]
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Example 4.7 continues . . .

Solution

Since the structure has four reactions, we cannot start the analysis by com-
puting reactions, but instead must analyze it by the method of joints. We
first determine the zero bars. Next we analyze in sequence joints F, C, G,
H, A, and B. Since all bar forces and reactions can be determined by the

equations of statics (results are shown on Fig. 4.19), we conc]ude that the
truss is stable and determinate.

EXAMPLE 4.8

Figure 4.20: Check of truss stability: (a) details

of truss; (b) free body of joint B; (¢) free body of
joint F; (d) free body of support A, .

Prove that the truss in Figure 4.20q is unstable by demonstrating that its

analysis for a load of arbitrary magnitude leads to an inconsistent equa-- -

tion of equilibrium.

- Solution

Apply a load at joint B, say 3 kips, and compute the reacuons, consider-
ing the entire structure as a free body.

Ct IM, =0 .
S
T 2F, =0

Y_3+RD=0 RAY=2kipS

i . 3kips ‘
D Ruy=2ki S .
AY ps Rp=1kip
e 3 @ 10 = 30—
Fge=3kips . .. . . . . L - 3k§ps , Far
: B : Xap=3kps F 3kips A *4--}@5
Fpp e o' — Fpc —— O

RAX—> O——')'FAE

l ' FAF ‘.‘l ‘
' . 1 ¥ 3kips
3klps ’ Lol YAF-3IQPS ‘ RA}':szS

# 1G] )]
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Equilibrium of joint B (see Fig. 4.20b) requires that Fpr = 3 kips ten-
sion. Equilibrium in the x direction is possible if Fy5 = Fge.

We next consider joint F (see Fig. 4.20¢). To be in equilibrium in the
y-direction, the vertical component of F, must equal 3 kips and be directed

upward, indicating that bar AF is in compression. Since the slope of bar

AF is 1:1, its horizontal component also equals 3 kips. Equilibrium of
joint F in the x direction requires that the force in'bar FE equal 3 kips and
act to the left. ‘ ‘

We now examine support A (Fig. 4.20d). The reaction R, and the
components of force in bar AF, determined previously, are applied to the
joint. Writing the equation of equilibrium in the y-direction, we find

+
t 2F,=0
2-3#0 (inconsistent)

Since the equilibrium eguation is not satisfied, the structure is not stable.
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.. Computer Analysis of Trusses

The preceding sections of this chapter have covered the analysis of
trusses based on the assumptions that (1) members are connected at
joints by frictionless pins and (2) loads are applied at joints only. When
design loads are conservatively chosen, and deflections are not exces-
sive, over the years these simplifying assumptions have generally pro-
duced satisfactory designs.

Since joints in most trusses are constructed by connecting members
to gusset plates by welds, rivet, or high-strength bolts, joints are usually
rigid. To analyze a truss with rigid joints (2 highly indeterminate struc-
ture) would be a lengthy computation by the classical methods of analy-
sis. That is why, in the past, truss analysis has been simplified by allow-
ing designers to assume pinned joints. Now that computer programs are
available, we can analyze both determinate and indeterminate trusses as a
rigid-jointed structure to provide a more precise analysis, and the limi-
tation that loads must be applied at joints is no longer a restriction.

Because computer programs require values of cross-sectional prop-
erties of members—area and moment of inertia—members must be ini-
tially sized. Procedures to estimate the approximate size of members are
discussed in Chapter 15 of the text. In the case of a truss with rigid joints,
the assumption of pin joints will permit you to compute axial forces that
can be used to select the initial cross-sectional areas of members.

To carry out the computer analyses, we will use the RISA-2D com-
puter program that is located on the website of this textbook; that is,

- - - * B P SN,

B e - * X ST
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West P IT Ra R

hitp://www.mhhe.com/leet2e. Although a tutdrial is provided on the

website to explain, step by step, how to use the RISA-2D program, a
~ brief overview of the procedure is given below.

1. Number all joints and members.

2. After the RISA-2D program is opened, click Global at the top of

" the screen. Insert a descriptive title, your name, and the number of
sections.

3. Click Units. Use either Standard Metric or Standard Imperial for
U.S. Customary System units.

4. Click Modify. Set the scale of the grid so the figure of the stracture

 lies within the grid.

5. Fill in tables in Data Entry Box. These include Joint Coordinates,
Boundary Conditions, Member Properties, Joint Loads, etc, Click
View to label members and joints. The figure on the screen permits

" you to check visually that all required information has been
supplied correctly. ,

6. Click Solve to initiate the analysis.

7. Click Results to produce tables listing bar forces, joint defections,
and support reactions. The program will also plot a deflected shape.

EXAMPLE 4. 9

Figure 4.21: Cantilever truss.

S

Using the RISA-2D computer program, analyze the determinate truss in
Figure 4.21, and compare the magnitude of the bar forces and joint dis-
placements, assuming (1) joints are rigid and (2) joints are pinned. Joints
are denoted by numbers in a circle; members, by numbers in a rectangu-
lar box. A preliminary analysis of the truss was used to establish initial

. values- of each member’s cross-sectional properties (see Table 4.1). For

the case of pinned joints, the member data are similar, but the word
pinned appears in the columns titled End Releases.
To facilitate the connection of the members to the gusset plates, the

truss members are often fabricated from pairs of double angles oriented

back to back. The cross-sectional properties of these structural shapes, tabu-

1ated in the AISC Manual of Steel Constructzon, are used in this example.

| 10 | 10’ |
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! TABLE 4.1 :
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Member Data for Case of Rigid Joints

Member : Moment of  Elastic

End Releases
Label -1 Joint JJoint  Area(in® - Inertia{in®) = Modulus (ksi). I-End J-End Length (ft
1 1 2 572 14.7 29,000 8 '
2 2 3 11.5 77 , 29,000 20.396
3 3 4 115 77 29,000 11.662
4 4 1 15.4 75.6 29,000 11.662
5 2 4 5.72 14.7 - 29,000 10.198
Rigid Joints ‘ Pinned Joints
Joint X Translation Y Translation Joint X Translation Y Translation
Label {in) (in} Label . {in} {in}
1 Y 0 | 0 0
2 0 0.011 2 . 0 v 0.012
3 0.257 -0.71 -3 0.266 —-0.738 -
4 0.007 —0.153 4 0 —0.15
A BLE 4. i
Comparison of Member Forces
Rigid Joints Pin Joints
Member Axial Shear Moment Member Axial
Label Section {kips) {kips) {kipeft) Label Section*  (kips)
1 1 —19.256 ~0.36 0918 1 1 —-20
2 -19.256 -036 - 1.965 2 ~20
2 1 —150.325 0.024 © =281 2 1 —152.971
2 —150.325 - 0.024 ~2.314 2 —-152.971
3 1 172.429 0.867 ~2.314 3 1 174.929
' 2 172.429 - 0.867 - 7997 2 174.929
| 4 1 232.546 ~0.452 ‘ 6.193 4 1 233.238
i 2 232.546 —0.452 0.918 2 233.238
‘ 5 1 - —~53216 -0.24 0.845 5 1 —50.99
‘ 2 ~53.216 -0.24 —1.604 2 ~50.99
*Sections 1 and 2 refer to member ends.
CONCLUSIONS: The results of the computer analysis shown in Tables
4.2 and 4.3 indicate that the magnitude of the axial forces in the truss
bars, as well as the joint displacements, are approximately the same for
both pinned and rigid joints. The axial forces are slightly smaller in most  [continues on next page)
[ ST SN, - B e * 2 SR * R R L ]
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Example 4.9 continues . . . ' bars when rigid joints are assumed because a pomon of the load is trans-
mitted by shear and bendmg
Since members in direct stress carry axial load efficiently, cross-
‘sectional areas tend to be small when sized for axial load alone. How-
ever, the flexural stiffness of small compact cross sections is also small.
Therefore, when joints are rigid, bending stress in truss members may be
significant even when the magnitude of the moments is relatively small.
If we check stresses in member M3, which is constructed from two 8 X
4 X /2 in angles, at the section where the moment is 7.797 kip-ft, the
axial stress is P/A = 14.99 kips/in® and the bending stress Mc/I = 6.24
kips/in® In this case, we conclude that bending stresses are significant in
several truss members when the analysis is carried out assuming joints
are rigid, and the designer must verify that the combined stress of 21.23
kips/in? does not exceed the allowable value specified by the AISC design
specifications.

..............................................................................

Summary

» Trusses are composed of slender bars that are assumed to carry only
axial force. Joints in large trusses are formed by welding or bolting
members to gusset plates. If members are relatively small-and
lightly stressed, joints are often formed by welding the ends of
vertical and diagonal members to the top and bottom chords.

» Although trusses are stiff in their own plane, they have little lateral
stiffness; therefore, they must be braced against lateral displacement
at all panel points.

» To be stable and determinate, the followmg relationship must exist
among the number of bars b, reactions r, and joints n:

b+r=2n

In addition, the restraints exerted by the reactions must not constitute
either a parallel or a concurrent force system.

If b + r < 2n, the truss is ynstable. If b + » > 2n, the truss is
indeterminate.

» Determinate trusses can be analyzed either by the method of joints or
by the method of sections. The method of sections is used when the
force in one or two bars is required. The method of joints is used

" when all bar forces are required.

«  If the analysis of a truss results in an inconsistent value of forces, that

is, one or more joints are not in equilibrium, then the truss is unstable.

- - BT e - CERAE . - - BF ST S L T .
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Problems

149

P4.1. Classify the trusses in Figure P4.1 as stable or unstable. If stable, indi-
ate, indicate the degree of

cate if determinate or indeterminate. If indetermin
indeterminacy. ‘

P4.1

TN
‘e
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P4.2. Classify the trusses in Figure P4.2 as stable or unstable. If stable, indicate if determinate or indeterminate. If
indeterminate, indicate the degree.

G

(&) 0] &

P4.2

P4.3 and P4.4. Determine the forces in all bars of the trusses. Indicate tension or compression.

‘P43
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P4.5 to P4.10. Determine the forces in all bars of the trusses. Indicate tension or compression.

20 kN
be 5@5m=25m

- P4.5 P4.8

15 ? 15’ | 15—
all diagonal bars slope at 60°

| 16’ 1 16" |
‘P46

P49
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P4.11 to P4.15. Determine the forces in-all bars of the trusses. Indicate if tension or compression.

24 kips

10%ips® "~ T10Kips T 16 Kips

67
A (R Yo E—l-
1@8 =3 | o PSR AR PR
P4.13 P44
32 kips
34 kips =R, 30 Kips = Re
b i 16— 1 sl g —
P4.15
‘ ER ST SV ‘ S RO U, ‘ c v M e ‘ R

E_=N
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P4.16. Determine the forces in all bars of the truss. Hint:
If you have trouble computing bar forces, review K truss
analysis in Example 4.6.

M3 3y

P4.16

6 kips

e 20—

8 kips
20" ——s

20" —

P4.18

A * * M

153

Problems

P4.17 to P4.19. Determine the forces in all bars of the
trusses. Indicate if tension or compression. '

60 kN

45 kN

30 kN

o L
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P4.20 to P4.24. Determine the fbrces in all truss bars.

20 kips

10 ﬁps

e 4@ = 40— ]

P4.20

r3m»¥<~—4m—~w—3m-
B ‘:-.f.k e N

() TR

e

P4.21

o

CHER

8m

P4,22
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P4.25. Determine the forces in all bars of the truss in
Figure P4.25. If your solution is statically inconsistent,
what conclusions can you draw about the truss? How
might you modify the truss to improve its behavior? Try

- analyzing the truss with your computer program. Explain

your results.

P4.25

P4.26 to P4.28. Determine the forces in all bars.

- IR e e - ™

. o

A B C
24 kips g

Probléms

R 7

24 kips 24 kips

e 10" e 10" e 10 ]

P4.27

155

I
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- P4.29 to P4.31. Determine all bar forces.

20kN  40KkN

5

A0KN

20 kN

P4.30

40 kN 40 kN 40kN 20kN

‘ |
6@4m ! ‘ !

P4.31

L——‘*_—-——4@ 15" =60’

AB, BD, AD, AE, and EF

P4.32

A - B 37

P R

30kips 90kips  30kips

—

6@ 15 =90’ |
BL, KJ, JD, and LC

P4,33

I e - AR e * i T .
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P4.34 and P4.35. Using the method of sections, deter- P4.36 to P4.38. Determine the forces in all bars of the trusses
mine the forces in the bars listed below each figure. in Figures P4.36 to P4.37. Indicate if bar forces are tension or
compression. Hint: Start with the method of sections.

L—M3@12’=36' '——-———-—-**3

FG, GD, DC, HC, CK, and JK

P4.34

30 kips 60 kips 30 kips
e - 4 @20 {
W&S&Wfﬁmﬁﬁﬂﬁﬁuﬁﬂmﬁ E

24 kips

12kN 16 kN 12kN

— 4@4m — ] 12

1), MC, and M1 ' _;

‘PA.35 h?

12

c'—L

PR B T Y|
P4.38 -
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P4.39 to P4.45. Determine the forces or components of force in all bass of the trusses in Figures P4. 39 to P4.45. o
Indicate tension or compression. ’ ‘ -

'

4 & » v & RS S TR RN N By 1 e 2
| 'Tvi,v ‘ L T S v 4@4m=16m |

6 kips o P4.42

!
L_"““"““" @ 18' =547 ——**“"‘-——""2 30 k1ps . T
; . 30 kips
: P4.40 - e seg=3————

R B s - EE ST SR - VI e « S ST

4
:
.
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12 Xkips 18 kips 18 kips 18 kips 12 kips

e 4oy

P4.44

Problems 159

- P4.46. A two-lane highway bridge, supported on two
deck trusses that span 64 ft, consists of an 8-in reinforced
concrete slab supported on four steel stringers. The slab
is protected by a 2-in wearing surface of asphalt. The 16-
ft-long stringers frame into the floor beams, which in
turn transfer the live and dead loads to the panel points of
each truss. The truss, bolted to the left abutment at point
A, may be treated as pin supported. The right end of the

18 kips

94 kips

94 kips

4@4m !
P4.45

truss rests on an elastomeric pad at G. The elastomeric
pad, which permits only horizontal displacement of the
joint, can be treated as a roller. The loads shown repre-
sent the total dead and live loads. The 18-kip load is an
additional live load that represents a heavy wheel load.
Determine the force in the lower chord between panel
points I and J, the force in member JB, and the reaction
applied to the abutment at support A.

2" asphalt
8" slab

l stringer

floor
beam
upper
chord

truss

lower
chord

| 4@ 16 =64'

SR e - AN B -

KK e -

Section A-A
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. P4.47 Computer analysis of a truss. The purpose of this

" displacements as well as the magnitude of the

! study is to show that the magnitude of the joint
- forces in members may control the proportions

" of structural members. For example, building codes typ-

ically - specify maximum permitted displacements to

ensure that excessive cracking of attached construction,.

such as exterior walls and windows, does not occur (see
Photo 1.1 in Sec. 1.3).

A preliminary design of the truss in F}gure P4. 4’?
produces the followmg bar areas: member 1, 2.5 in%
member 2, 3 in? and member 3, 2 in?, Also E = 29,000
kips/in?,

Case 1: Determine all bar forces, joint reactions, and
joint displacements, assuming pin joints. Use the com-
puter.program to plot the deflected shape.

‘Case 2: If the maximum horizontal displacement of

joint 2 is not to exceed 0.25 in, determine the minimum
required area of the truss bars. For this case assume that
all truss members have the same cross-sectional area.
Round the area to the nearest whole number.,

— 30 kips

o 20
‘ 15" |
P4.47
s o ‘ B e e ’

P4.48. Computer study. The objective is to compare the
behavior of a determinate and an mdetemrunate
“structure.

The forces in members of determinate tmsses‘

are not affected by member stiffness. Therefore, there was
no need to specify the cross-sectional properties of the

- bars of the determinate trusses we analyzed by hand com-

putations earlier in this chapter. In a deferminate structure,

- for a given set of loads, only one load path is available to
. transmit the loads into the supports, whereas in an inde-
‘terminate structure, multiple load paths exist (see Sec.

3.10). In the case of trusses, the axial stiffness of members
(a function of a member’s cross-sectional area) that make

up each load path will influence the magnitude of the

force in each member of the load path, We examine this
aspect of behavior by varying the properties of certain
members of the indeterminate truss shown in Figure
P4.48. Use E = 29,000 kips/in.

Case 1: Determine the reactions and the forces in mem-

bers 4 and 5 if the area of all bars is 10'in?

Case 2: Repeat the analysis in Case 1, this time increas-
ing the area of member 4 to 20 in’. The area of all olher
bars remains 10 in?.

Case 3: Repeat the analysis in Case 1, increasing the
area of member 5 to 20 m2 The area of all other bars

‘remains 10 inZ.

What concusions do you reach from the above study?

3 ST Ve - CEE A e » <
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Practical Example

P4.49. Computer analysis of a truss with rigid joints.
The truss in Figure P4.49 is constructed of square
steel tubes welded to form a structure with rigid
joints. The top chord members i, 2, 3, and 4 are

Problgms 1 @1

4 X 4 X V4 inch square tubes with A = 3,59 in’ and [ =
8.22 in*. All other members are 3 X 3 X 4 inch square
tubes withA = 2 59 in*and I = 3.16 in*, Use E = 29,000
kJ.ps/m2

. . . 4kips
24 kips 24 kips 24 kips e 6’ __]
! 4@12 =48’ S
P4.49

(a) Considering all joints as rigid, compute the axial
forces and moments in all bars and the deflection at
midspan when the three 24-kip design loads act at joints
7, 8, and 9. (Ignore the 4-kip load.)

(b) If a hoist is also attached to the lower chord at the k

midpoint of the end panel on the right (labeled joint 6¥) to
raise a concentrated load of 4 kips, determine the forces
and moments in the lower chord (members 5 and 6). If the

maximum stress is not to exceed 25 kzpsfm2 can the
lower chord support the 4-kip load safely in addition to

the three 24-kip loads? Computc the ‘maximum stress,A

usmg the equatlon
F  Mc
o=—+—
A I

where ¢ = 1.5 in (one-half the depth of the lower chord).

*Note: If you wish to compute the forces or deflection at a particular point of a member, designate the point as a joint.

- VO e - B VN
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Shrewsbury-Worcester Bridge (Massachusetts) over Lake Quinsigamond. The designer deepened the con-
tinuous plate girders of this bridge to increase their capacity at the piers where design moments are largest.
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Beams and Frames

| Introduction

Beams

Beams are one of the most common elements found in structures. When
a beam is loaded perpendicular to its longitudinal axis, internal forces—
shear and moment—develop to transmit the applied loads into the sup-
ports. If the ends of a beam are restrained longitudinally by its supports, or
if a beamis a component of a continuous frame, axial force may also
develop. If the axial force is small—the typical situation for most beams-——
it can be neglected when the member is designed. In the case of rein-
forced concrete beams, small values of axial compression actually pro-
duce a modest increase (on the order of 5 to 10 percent) in the flexural
strength of the member.

To design a beam, the engineer must construct the shear and moment

curves to determine the location and magnitude of the maximum values of
these forces. Except for short, heavily loaded beams whose dimensions
are controlled by shear requirements, the proportions of the cross section
are determined by the magnitude of the maximum moment in the span.

After the section is sized at the point of maximum moment, the design is

completed by verifying that the shear stresses at the point of maximum
shear—usually adjacent to a support—are equal to or less than the allow-
able shear strength of the material. Finally, the deflections produced by ser-
vice loads must be checked to ensure that the member has adequate stiff-

* ness. Limits on deflection are set by structural codes. .

_ If behavior is elastic (as, for example, when members are made of steel
or aluminum), and if allowable stress design is used, the required cross
section can be established using the basic begm equation.

Mc |
I 5.1
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where o = flexural stress produced by service load moment M
¢ = distance from neutral axis to the outside fiber where the
- flexural stress ¢ is to be evaluated
I = moment of inertia of the cross section with respect to the
- centroidal axis of the section

To select a cross section, o in Equation 5.1 is set equal to the allowable

flexural stress o0, and the equation is solved for I/c, which is termed

the section modulus and denoted by §,.

I_ M
S,===

< Taiow

(5.2)

S.. a measure of a cross section’s flexural capacity, is tabulated in design
handbooks for standard shapes of beams produced by various manufac-
turers.

- After a cross secuon is s1zed for moment the designer checks shear
stress at the section where the shear force V is maximum. For beams that
behave elastically, shear stresses are computed by the equation

vo

[ i:,,f*""(s.:%“)

where 7 = shear stress produced by shear force V

'V = maximum shear (from shear curve)
Q = static moment of that part of area that lies above or below
- point where shear stress is to be computed; fora

ectangular or an I-shaped Beam, maximum shear stress

. occurs at middepth

- I = moment of inertia of cross- -sectional area about the centroid
of section

b = thickness of cross section at elevation where 7 is computed

When a beam has ai‘ectangular cross section, the maximum shear stress
occurs at middepth. For this case Equation 5.3 reduces to

3V
Tmax = EX

where A equals the area of the cross section.

If strength design (which has largely replaced working stress design)
is used, members are sized for factored loads. Factored loads are pro-
duced by multiplying service loads by load fauctors—numbers that are
typically greater than 1. Using factored loads, the designer carries out an

5.4

elastic analysis—the subject of this text. The forces produced by factored .

loads represent the required strength. The member is sized so that its
design strength is equal to the required strength. The design strength,
evaluated by considering the state of stress associated with a particular

‘ ST SR - B
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mode of failure, is a function of the properties of the cross section, the
stress condition at failure (for example, steel yields or concrete crushes),
and a reduction factor—a number less than 1.

The final step in the design of a beam is to verify that it does not deflect
excessively (ie., that deflections are within the limits specified by the
applicable design code). Beams that are excessively flexible undergo large
deflections that can damage attached nonstructural construction: plaster
ceilings, masonry walls, and rigid piping, for example, may crack.

Since most beams that span short distances, say up to 30 or 40 ft, are
manufactured with a constant cross section, to minimize cost, they have
excess flexural capacity at all sections except the one at which maximum
moment occurs, If spans are long, in the range 150 to 200 ft or more, and
if loads are large, then deep heavy girders are required to support the
design loads. For this situation, in which the weight of the girder may rep-
resent as much as 75 to 80 percent of the total load, some econormy may
be achieved by shaping the beam to conform to the ordinates of the moment
curve. For these largest girders, the moment capacity of the cross section W
can be adjusted either by varying the depth of the beam or by changing
the thickness of the flange (see Fig. 5.1). In addition, reducing the weight
of the girders may result in smaller piers and foundations. :

- Beams are typically classified by the manner in which they are sup- d ‘
ported. A beam supported by a pin at one end and a roller at the other end ’ moment
is called a simply supported beam (see ﬁig. 5.2a). If the end of a simply curve
supported beam extends over a support, it is referred to as a beam with
an overhang (see Fig. 5.2b). A cantilever beam is fixed at one end against
translation and rotation (Fig. 5.2¢). Beams that are supported by several

moment
curve

®»

intermediate supports are called continuous beams (Fig. 5.2d). If both  Figure 5.1: (a) Flange thickness varied to
ends of a beam are fixed by the supports, the beam is termed fixed ended  increase flexural capacity, (b) depth varied to mod-
(see Fig. 5.2¢). Fixed-end beams are not commonly constructed in prac-  ify flexural capacity.

tice, but the values of end moments in them produced by various types

of load are used extensively as the starting point in several methods of

analysis for indeterminate structures (see Fig. 13.5). In this chapter we dis-

cuss only determinate beams that can be analyzed by the three equations

Figure 5.2: Common beam types: (a) simply
supported, (£} beam with overhang, (¢) cantilever,
{d) two-span continuous, (e) fixed ended.
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Photo. 5.1: Harvard Bridge. This bridge is com-~
posed of variable depth girders with overhangs at
each end. :

M B - M B

of statics. Beams of this type are common in wood and bolted or riveted

- steel construction. On the other hand, continuous beams (analyzed in
Chaps. 11 to 13) are commonly found in structures with rigid joints—
welded steel or reinforced concrete frames, for example.

Frames

Frames, as discussed in Chapter 1, are structural elements composed of
beams and columns connected by rigid joints. The angle between the
beam and column is usually 90°, As shown in Figure 5.3a and b, frames
may consist of a single column and girder or, as in the case of a mulu—
story building, of many columns and beams.

Frames may be divided into two categories: braced and unbraced. A

braced frame is one in which the joints at each level are free to rotate but
~ are prevented from moving laterally by attachment to a rigid element that
- can supply lateral restraint to the frame. For example, in a multistory build-

ing, structural frames are often attached to shear walls (stiff structural walls
often constructed of reinforced concrete or reinforced masonry; see Fig.
5.3¢); In simple one-bay frames, light diagonal cross-bracing connected
to the base of columns can be used to resist 1atera1 dxsplacement of top
joints (see Fig. 5.3d).

An unbraced frame (see Fig. 5.3¢) is one in which lateral resistance

'to displacement is supplied by the flexural stiffness of the beams and

columns. In unbraced frames, joints are free to displace laterally as well

“as to rotate. Since unbraced frames tend to be relatively flexible compared

to braced frames, under lateral load they may undergo large transverse

"deflections that damage attached nonstructural elements, for example,

walls, windows, and so forth.

- M B ‘ L NN -
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Although both beams and columns of rigid frames carry axial force,
shear, and moment, the axial force in beams is usually so small that it can
be neglected and the beam sized for moment only. On the other hand, in
columns, the axial force—particularly in the lower interior columns of mul-
tistory frames—is often large, and the moments are small. For columns of
this type, proportions are determined primarily by the axial capacity of
members. ;

If frames are flexible, additional bending moment is created by the lat-
eral displacement of the member. For example, the tops of the columns in
the unbraced frame in Figure 5.3e displace a distance A to the right. To
evaluate the forces in the column, we consider a free body of column AB
in its deflected position (see Fig. 5.3f). The free body is cut by passing
an imaginary plane through the column just below joint B. The cutting
plane is perpendicular to the longitudinal axis of the column. - We can

L e - BT TR S, S
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™ deflected
position

Figure 5.3: (a) Simple frame, (b) multistory con-
tinuous building frame, () frame braced by a shear
wall, (d) frame braced by diagonal bracing,
(e) sidesway of an unbraced frame, (f) free body
of column in deflected position.
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- express the internal moment M; aéting on the cut in terms of the reactions

at the base of the column and the geometry of the deflected shape by
summing moments about a z axis thfough the centerline of the column.

M= AL + A,(4) (.5)

. In Equation 5.5 the first term represents the moment produced by the
applied loads, neglecting the lateral deflection of the column’s axis. This
moment is called the primary moment and associated with a first-order
analysis (described in Sec. 1.7). The second term, A,(A), which repre-
sents the additional moment produced by the eccentricity of the axial
load, is termed the secondary moment or the P-delta moment. The sec-
ondary moment will be small and can be neglected w1th0ut significant

“error under the following two conditions:

1. The axial forces are small (say, less than 10 percent of the axial
capacity of the cross section).

2. The flexural stiffness of the column is large, so that the lateral
displacement of the column’s longitudinal axis produced by
bending is small.

In this book we will only make a first-order analysis; that is, we do
not consider the computation of the secondary moment—a subject usu-
ally covered in advanced courses in structural mechanics. Since we neg-
lect secondary moments, the analysis of frames is similar to that of
beams; that is, the analysis is complete when we establish the shear and
moment curves (also the axial force) based on the initial geometry of the
unloaded frame.

...............................................................

- We begm the study of beams and frames by d15cuss1ng a number of basic

operations that will be used frequently in deflection computations and in
the analysis of indeterminate structures. These operations include

1. Writing expressions for shear and moment at a section in terms of
the applied loads.

2. Constructing shear and moment curves.

3. Sketching the deflected shapes of loaded beams and frames.

Since many of these procedures were introduced previously in stat-
ics and strength of materials courses, much of this chapter for most stu-
dents is a review of basic topics.

In the examples in this chapter, we assume that all beams and frames
are two-dimensional structures supporting in-plane loads that produce
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shear, moment, and possibly axial forces, but no torsion. For this condi-
tion—one of the most common in actual practice—to exist, the in-plane
loads must pass through the centroid of a symmetric section or through
the shear center of an unsymmetric scction (see Fig. 5.4). :

. Equations for Shear and Moment

We begm the study of beams by writing equations that express the shear
V and the moment M at sections along the longitudinal axis of a beam or
frame in terms of the applied loads and the distance from a reference ori-
gin. Although equations for shear have limited use, those for moment are
required in deflection computations for beams and frames by both the
double-integration method (see Chap. 9) and work-energy methods (see
Chap. 10).

As you may remember from the study of beams in mechanics of mate-~
rials or statics courses, shear and moment are the internal forces in a beam
or frame produced by the applied transverse loads. The shear acts per-
pendicular to the longitudinal axis, and the moment represents the inter-
nal couple produced by the bending stresses. These forces are evaluated
at a particular point along the beam’s axis by cutting the beam with an

~ imaginary section perpendicular to the longitudinal axis (see Fig. 5.5b)

and then writing equilibrium equations for the free body to either the left
or the right of the cut. Since the shear force produces equilibrium in the
direction normal to the longitudinal axis of the member, it is evaluated

by summing forces perpendicular to the longitudinal axis; that is, for a

© . @
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P

shear T
center !

centroid

—
centroid

(@) (9]

Figure 5.4: (a) Beam loaded through centroid of
symmetric section, (b) unsymmetric section loaded
through shear center.

Figure 5.5: Sign conventions for shear and
moment: (a) beam cut by section 1; (b) shear V
and moment M occur as pairs of internal forces;
(c) positive shear: resultant R of external forces
on free body to left of section acts up; (d) positive
moment; (¢) negative moment.

(e)
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Figure 5.6: Internal forces acting on sections of

the frame.

horizontal beam, we sum forces in the vertical direction. In this book,
shear in a horizontal member will be considered positive if it acts down-
ward on the face of the free body to the left of the section (see Fig. 5.5¢).
Altemately, we can define shear as positive if it tends to produce clock-
wise rotation of the free body on which it acts. Shear acting downward
on the face of the free body to the left of the section indicates the result-
ant of the external forces acting on the same free body is up. Since the
shear acting on the section to the left represents the force applied by the
free body to the right of the section, an equal but oppositely directed
value of shear force must act upward on the face of the free body to the
right of the section.

The internal moment M at a section is evaluated by summing moments
of the external forces acting on the free body to either side of the section
about an axis (perpendicular to the plane of the member) that passes
through the centroid of the cross section. Moment will be considered pos-
itive if it produces compression stresses in the top fibers of the cross sec-
tion and tension in the bottom fibers (see Fig, 5.5d). Negative moment, on
the other hand, bends 4 member concave down (see Fig. 5.5¢).

_ If a flexural member is vertical, the engineer is free to define the pos-
itive and negative sense of both the shear and moment. For the case of a
single vertical member, one possible approach for establishing the positive
direction for shear and moment is to rotate the computation sheet con-
taining the sketch 90° clockwise so that the member is horizontal, and then
apply the conventions shown in Figure 5.5.

For single-bay frames many analysts define moment as positive when
it produces compression stresses on the outside surface of the member,
where inside is defined as the region within the frame (see Fig. 5.6). The
positive direction for shear is then arbitrarily defined, as shown by the
arrows on Figure 5.6. .

Axial force on a cross section is evaluated by summing all forces per-

pendicular to the cross section. Forces acting outward from the cross sec-

tion are tension forces T those directed toward the cross section are com-
pression forces C (see Fig. 5.6).

EXAMPLE 5

-~ - I ™

1

A,

Write the equations for the variation of shear V and moment M along the
axis of the cantilever beam in Figure 5.7. Using the equation, compute
the moment at section 1-1, 4 ft to the right of point B.

Solutson

Determine the'equanon for shear V between points A and B (see Fig.
5.7b); show V and M in the positive sense. Set origin at A (0 < x; < 6).

] [ ST VG - R e -
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; 2F, =0 | © @ .
‘ R

w =2 kips/ft E

= _4._ 14 ‘ P =4 kips
V = —4kips ‘

Determine the equation of moment M between points A and B Set
the origin at A. Sum the moments about the section.

Cf IM, =0
' 0= —4x, - M
M= “‘4&(1 kip'ft

The minus sign indicates V and M act opposite in sense to the directions

shown in Figure 5.7b.
Determine the equation for shear V between points B and C (see Fig.

5.7¢). Setthe originat B, 0 < x, = 8,

R .
T 2F,=0
O=—4 -2~V
Vo= ~4 - 2x,
The moment M between B and C is
Gt M, =0

0

It

~4(6 + x,) — ZxZ(-’—;E) - M

M = ~24 — 4x, — x3
For M at section 1-1, 4 fi to right of B, set x, = 4 ft,
M= -24 — 16 — 16 = —56 kip-fi
Alternatively, compute M between points B and C, using an origin at A,

and measure distance with x; (see Fig. 5.7d), where 6 = x; < 14, Figure 5.7
ct oIM, =0
, -6
0= —dxy — 2(x; — 6)("32 ) -M
= —x3 + 8x; — 36

Recompute the moment at section 1-1; set x; = 10 ft.
= —10% + 8(10) — 36 =y—_—56 kip-ft
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EXAMPLE 5.2

I

@ 28 ki .
w =4 kips/ft ‘ pe
r

For the beam in Figure 5.8 write the expressions for moment between -
points B and C, using an origin located at (a) support A, (b) support D, and
(c) point B. Using each of the expressions above, evaluate the moment at

- section 1. Shear force on sections is omitted for clarity.

Solution
(a) See Figure 5.8b; summing moments about the cut gives

Gt OEM, =0
0=37x;, —40(x; = 5) - M _
M =200 — 3x,
At section 1, x; = 12 ft; therefore,
M = 200 — 3(12) = 164 kip-ft
(b) See Figure 5.8c; summing moments about the cut yields
ot SM.=0
' 0 =M+ 28(x; — 5) — 31x,
M = 3x, + 140
At section 1, x, = 8 ft; therefore,

M = 3(8) + 140 = 164 kip-ft

& Mk {¢) See Figure 5.84; summing moments about the cut, we have
ps ,
© T EM, =0
37(10 + x3) =405+ x3) = M=0
M = 170 — 3x,
At section 1, x5 = 2 ft; therefore,
: ' | M = 170 — 3(2) =164 kip-ft
Lo 0T S® mleti |
kips NOTE. As this example demonstrates, the moment at a section is single-
4 (‘1)‘ valued and based on equilibrium requirements. The value of the moment
Figure 5.8 does not depend on the location of the origin of the coordinate system.
T e - AR e e L © A B * ’ Bz e
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Write the equations for shear and moment as a function of distance x
along the axis of the beam in Figure 5.9. Select the origin at support A.
Plot the individual terms in the equation for moment as a function of the
distance x. '

Solution .
Pass an imaginary section through the beam a distance x to the right of
support A to produce the free body shown in Figure 5.9b (the shear V and
the moment M are shown in the positive sense). To solve for V, sum
forces in the y direction.

«.‘«
t ZF,=0
. ,
%—wx—vzo
V=-%~-—wx N

To solve for M, sum moments at the cut about a z axis passing through
the centroid.

cr M, =0
0= %(x) - wx(%) -M
m= L - ¥ )
2T '

where in both equations 0 £ x < L,

A plot of the two terms in Equation 2 is shown in Figure 5.9¢, The
first term in Equation 2 (the moment produced by the vertical reaction R,
at support A) is a linear function of x and plots as a straight line sloping
upward to the right, The second term, which represents the moment due
to the uniformly distributed load, is a function of x* and plots as a parabola
sloping downward. When a moment curve is plotted in this manner, we
say that it is plotted by cantilever parts. In Figure 5.9d, the two curves are
combined to give a parabolic curve whose ordinate at midspan equals the
familiar wZ%8. 2 -

EXAMPLE 5.3

()

Figure 5.9: (a) Uniformly loaded beam, (b) free
body of beam segment, (c) moment curve plotted
by “patts,” (d) combined moment diagram, a sym-
metric parabola.
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EXAMPLE 5.4

w =3 kips/ft

C.

Write the equations fqr shear and moment on a vertical section
between supports B and C for the beam in Figure 5.10a.

Using the equation for shear in part (a), determine the point where the
shear is zero (the point of maximum moment).

Plot the variation of the shear and moment between B and C.

Solution

a.

Cut the free body shown in Figure 5.10b by passing a section through
the beam a distance x from point A at the left end. Using similar tri-
angles, express w', the ordinate of the triangular load at the cut (con-
sider the triangular load on the free body and on the beam), in terms
of x and the ordinate of the load curve at support C.

' : ) x
e TR e h =
iy therefore wi=g
Compute the resultant of the triangular load on the free body in Fig-
ure 5.10b. '

SRR VAN S x?

R=7qmw = 2“(8) T 16

Compute V by summing forces in the vertical direction.

+,
t 3F,=0
2
0=16-— -V

16
16 kips 2
| * ) V=16 - =
&) 16 (1)
13.75 Compute M by summing moments about the cut.
o SM, =0
G-
0=16(x—6)~ (> ) - M
SASTAE
x3
M= ~96 + 16x — -
. | P IN T gg )
S moment b, SetV = 0 and solve Equation 1 for x.
(kip-ft) oo
2 6
() 0=16 — — = 3
G 6 an x =161t
Figure 5.10 ¢. See Figure 5.10c for a plot of V and M.
s A - - TR e - * ;kﬂ':. o L ] ‘"
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Write the equations for moment in members AC and CD of the frame in
Figure 5.11. Draw a free body of joint C, showing all forces.

Solution A
Two equations are needed to express the moment in member AC. To com-

pute the moment between A and B, use the free body in Figure 5.115, Take
the origin for x; at support A. Break the vertical reaction into components
parallel and perpendicular to the longitudinal axis of the sloping mem-
ber. Sum moments about the cut.

cf M, =0
0 == 6.5361 - M
M = 6.5x, ¢y

where 0 = x; = 3V2.
Compute the moment between B and C, using the free body in Figure
5.11c. Select an origin at B. Break 20 kN force into components. Sum

moments about the cut.

C
P
V=764kN
' 4.8 kKN-m
F=20.64 kN
) ' : (@
- CIK e L] IR B e

O .

V=9.2kN
F=20kN

EXAMPLE 5.5

Figure 5.11

[continues on next page)
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Example 5.5 continues . . .

Ot =M, =0
0=653V2+x) - 14.14x, - M
M=195V2 - 7.64x, )

where 0 < x, < 3V2.
Compute the moment between D and C, using the free body in Fig-
ure 5.11d- Select an origin at D.

YO IM,=0 |
O = 6.83.'3 - 4.1'3(523) - M
M = 68x; — 2x3 (3)

The free body of joint C is shown in Figure 5.11e. The moment at the

joint can be evaluated with Equation 3 by setting x3 = 4 m.

M = 6.8(4) — 2(4)*= —4.8 kN'm

-

JF PO

........................

5.4 Shear and Moment Curves

..............................

To design a beam, we must establish the magnitude of the shear and
moment (and axial load if it is significant) at all sections along the axis
of the member. If the cross section of a beam is constant along its length,
it is designed for the maximum values of moment and shear within the
span. If the cross section varies, the designer must investigate additional
sections to verify that the member’s capacity is adequate to carry the
shear and moment.

To provide this information graphically, we construct shear and moment
curves. These curves, which preferably should be drawn to scale, consist
of values of shear and moment plotted as ordinates against distance along
the axis of the beam. Although we can construct shear and moment curves

by cutting free bodies at intervals along the axis of a beam and writing
~ equations of ethbnum to establish the values of shear and moment at

particular sections, it is much simpler to construct these curves from the
basic relationships that exist between load, shear, and moment.

Relationship Between Load, Shear, and Moment

To establish the relationship between load, shear, and moment, we will
consider the beam segment shown in Figure 5.12a. The segment is loaded
by a distributed load w = w(x) whose ordinates vary with distance x from.

- AR e e ’ - B STRRN VR, - [ ST SR
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an origin o located to the left of the segment. The load will be considered
positive when it acts upward, as shown in Figure 5.12a.

To derive the relationship between load, shear, and moment, we will
consider the equilibrium of the beam element shown in Figure 5.12d.
The element, cut by passing imaginary vertical planes through the seg-
ment at points 1 and 2 in Figure 5.12a, is located a distance x from the
origin. Since dx is infinitesimally small, the slight variation in the distrib-
uted load acting over the length of the element may be neglected. There-

fore, we can assume that the distributed load is constant over the length V+dv Va :
of the element. Based on this assumption, the resultant of the distributed v, \/"":T‘;‘Q—B
load is located at the midpoint of the element. Xf/ 7 5
The curves representing the variation of the shear and the moment =
along the axis of the member are shown in Figure 5.12b and ¢. We will —l l—as
denote the shear and moment on the left face of the element in Figure 5]

5.12d by V and M respectively. To denote that a small change in shear
- and moment occurs over the length dx of the element, we add the differ-
ential quantities 4V and dM to the shear V and the moment M to estab-
lish the values of shear and moment on the right face. All forces shown
on the element act in the positive sense as defined in Figure 5.5¢ and d.

Considering equilibrium of forces acting in the y direction on the ele-
ment, we can write

]

+ .
t BF,=0

i

O0=V+wdx— (V+dV)

Simplifying and solving for 4V gives
dv =wdx (5.6)

To establish the difference in shear AV, _; between points A and B alohg
the axis of the beam in Figure 5.12a, we must integrate Equation §.6.

@

B B ‘
AV g=Vzs -V, = j av = J w dx (5.7) Figure 5.12: (q) Segment of beam with a dis-
A A tributed load, (b) shear curve, (c) moment curve,

. (@) infinitesimal element located between points
The integral on the left side of Equation 5.7 represents the change in land 2.

shear AV,_p between points A and B. In the integral on the right, the
quantity w dx can be interpreted as an infinitesimal area under the load
curve. The integral or sum of these infinitesimal areas represents the area
under the load curve between points A and B. Therefore, we can state
Equation 5.7 as ‘ B '

AV,_p = area under load curve between A and B (5.7a)

where an upward load produces a positive change in shear and a down-
ward load a negative change, moving from left to right.
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Dmdmg both sides of Equation 5. 6 by dx produces '

o = W (5.8)

Equation 5.8 states that the slope of the shear curve at a particular point
along the axis of a m.ember equals the ordinate of the load, curve at that
point.

If the load acts upward the slope is positive {upward to the nght) If
the load acts downward, the slope is negative (downward to'the right). In
a region of the beam in which no load acts, w = 0. For this condition
Equatzon 5.8 indicates the slope of the shear curve is zero—indicating
that the shear remains constant.

To establish the relationship between shear and moment, we sum
moments of the forces acting on the element about an axis normal to the
plane of the beam and passing through point o (see Fig. 5.12d). Point o is
located at the level of the centroid of the cross section

Gt OsM,=0

M+VVde“(M+dM}+W6‘ix£;‘=O '

‘Since the last term w (dx)%2 contains the product of a differential quan-

tity squared, it is many orders of magnitude smaller that the terms con-
taining a single differential. Therefore, we drop the term. Simplifying the
equation yields

dM =V dx (5.9

To estabhsh the change in moment AMA -p between points A and B, we
will integrate both sides of Equation 5.9.

B B
".AMA;B;MB—-MA%MJ dM = J V dx (5.10)
‘ : SLTT

_The center term in Equation 5.10 represents the difference in moment

AM;_pbetween point A and B. Since the term V dx can be interpreted as
an infinitesimal area under the shear curve between points 1 and 2 (see
Fig. 5.12b), the integral on the right, the sum of all the infinitesimal areas
between points A and B, represents the total area under the shear curve

between points A and B. Based on the observations above, we can state
Equanon 5.10 as

AM g = ‘area undcr shear curve between A and B - (5 10a)

where a posztive area under the shear curve produces a p031t1ve change

in moment and a negative area under the shear curve produces a negauve
change; AM,_p is shown graphically in Figure 5.12c.
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Dividing both sides of Equation 5.9 by dx gives

aM
| I 1 , 61D
Equation 5.11 states that the slope of the moment curve at any point
along the axis of a member is the shear at that point.

If the ordinates of the shear curve are positive, the slope of the

- moment curve is positive (directed upward to the right). Similarly, if the
ordinates of the shear curve are negative, the slope of the moment curve
is negative (directed downward to the right).

At a section where V = 0, Equation 5.11 indicates that the slope of the
moment curve is zero—a condition that establishes the location of a max-
imum value of moment. If the shear is zero at several sections in a span,
the designer must compute the moment at each section and compare
results to establish the absolute maximum value of moment in the span.

Equations 5.6 to 5.11 do not account for the effect of a concentrated
load or moment, A concentrated force produces a sharp change in the ordi-
nate of a shear curve. If we consider equilibrium in the vertical direction
of the element in Figure 5.134, the change in shear between the two faces
of the element equals the magnitude of the concentrated force. Similarly,
the change in moment at a point equals the magnitude of the concentrated

. moment M, at the point (see Fig. 5.13b). In Figure 5.13 all forces are
shown acting in the positive sense. Examples 5.6 to 5.8 illustrate the use of
Equations 5.6 to 5.11 to construct shear and moment curves.

To construct the shear and moment curves for a beam supporting dis-
tributed and concentrated loads, we first compute the shear and moment at
the left end of the member. We then proceed to the right, locating the next
point on the shear curve by adding algebraically, to the shear at the left, the
force represented by (1) the area under the load curve between the two
points or {2) a concentrated load. To establish a third point, load is added
to or subtracted from the value of shear at the second point. The process of
locating additional points is continued until the shear curve is completed,
Typically, we evaluate the ordinates of the shear curve al each point where
a concentrated load acts or where a distributed load begins or ends.

In a similar manner, points on the moment curve are established by
adding algebraically to the moment, at a particular point, the increment
of moment represented by the area under the shear curve between a sec-
ond point.

Sketching Deflected Shapes of Beams

After the shear and moment curves are constructed, the designer may wish
to draw a sketch of the beam’s deflected shape. Although we will discuss
this topic in great detail in Section 5.6, the procedure is introduced
briefly at this point. The deflected shape of a beam must be consistent

- T e - SR B
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Figure 5.13:
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(a) Effect of a concentrated load

on the change in shear, (b) change in internal
moment produced by the applied moment M,.

.
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with (1) the restraints imposed by the supports, and (2) the curvature pro-
duced by the moment. Positive moment bends the beam concave upward,
and negative moment bends the beam concave downward, :

The restraints imposed by various types of supports are summarized
in Table 3.1. For example, at a fixed support, the beam’s 10ng1tudma1 axis
is restrained against rotation and deflection. At a pin support, the beam
is free to rotate but not to deflect. Sketches of deflected shapes to an
exaggerated vertical scale are included in Examples 5.6 to 5.8.

EXAMPLE 5.6

- S - - SRR B -

Draw the shear and moment curves for the simply supported beam in
Figure 5.14.

Solution
Compute reactions (use the resultant of the distributed load).
G EM, =0
24(6) + 13.5(16) —~ 20Rz = 0
' S Ry = 18 kips
; 1 2F,=0
Ry+Rp—24—135=0
R, = 19.5 kips

Shear Curve. 'The shear just to the right of support A equals the reaction
of 19.5 kips. Since the reaction acts upward, the shear is positive. To the right
of the support the uniformly distributed load acting downward reduces the
shear linearly. At the end of the distributed load—12 ft to the right of the
support—the shear equals

Ve = 19.5 — (2)(12)= —4.5 kips

At the 13.5-kip concentrated load, the shear drops to —18 kips. The shear
diagram is shown in Figure 5.14b. The maximum value of moment occurs
where the shear equals zero. To compute the location of the point of zero
shear, denoted by the distance x from the left support, we cons1der the

forces actmg on the free body in Figure 5. 14e.

T ZF, =0
0 =R, - wx where w = 2 kips/ft
. 0=195-2r and x=975ft
Moment Cu(ve. Points along the mdﬁient curve are evaiuated' by adding to
the moment, at the left end, the change in moment between selected points.

The change in moment between any two points is equal to the area under the
shear curve between the two points. For this purpose, the shear curve is divided

R 4

A

-



R =24 kips

w=2Kpst 3 s kips
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Figure 5.14: (a) Beam details, (b) shear curve
(numbers in brackets represent areas under shear
curve), (¢) moment curve, (d) deflected shape,
(e) free body used to establish location of point of
zero shear and maximum moment.

R4 =19.5 kips Rp =18 kips

U

| 12 J
(a)

19.5

)\ moment
(kip+ft)

into two triangular and two rectangular areas. The values of the respective areas
(in units of kip-ft) are given by the numbers in parentheses in Figure 5.14b.
Because the ends of the beam are supported on a roller and a pin, supports
that offer no rotational restraint, the moments at the ends are zero. Since the
moment starts at zero at the left and ends at zero on the right, the algebraic
sum of the areas under the shear curve between ends must equal zero. Because
of rounding errors, you will find the ordinates of the moment curve do not
always satisfy the boundary conditions exactly.

At the left end of the beam, the slope of the moment curve is equal to
19.5 kips—the ordinate of the shear curve. The slope is positive because
the shear is positive. As the distance to the right of support A increases,
the ordinates of the shear curve reduce, and correspondingly the slope of
en mmnmmnnt e vaducas The maximnm moment of 95.06 kip-ft occurs

L ] SRy e * K BAe

[continues on next page]
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Example 5.6 continues . ..

at the point of zero shear. To the right of the point of zero shear, the shear -

is negative, and the slope of the moment curve is downward to the right.
The moment curve is plotted in Figure 5.14¢. Since the moment is posi-
tive over-the entire length, the member is bent concave upward, as shown
by the dashed line in Figure 5.144.

EXAMPLE 5.7

B e e

W

" Draw the shear and moment curves for the uniformly loaded beém in

Figure 5.15a. Sketch the deflected shape.

Solution «
Compute Rp by summing moments of forces about support C. The dis-
tributed load is represented by its resultant of 144 kips.

CY EM, =0

18R, — 144(12) =0 R, = 96 kips

Compute Re.
+

t 3IF,=0

96 — 144 + R R, = 48 kips
Verify equilibrium; check (3% ZMp = 0.
144(6) ~ 48(18) =0  OK

We begin by establishing the values of shear and moment at the left
end of the beam. For this purpose we consider the forces on an infinites-
imal element cut from the left end (at point A) by a vertical section (see
Fig. 5.15b). Expressing the shear and moment in terms of the uniform
load w and the length dx, we observe that as dx approaches zero, both the
shear and the moment reduce to zero.

Shear Curve, Because the magnitude of the load is constant over the entire
length of the beam and directed downward, Equation 5.8 establishes that the
shear curve will be a straight line with a constant slope of —6 kips/ft at all
points (see Fig. 5.15¢). Starting from V = 0 at point A, we compute the shear

‘jtist to the left of support B by evaluating the area under the load curve between

points A and B (Eq. 5.7a). ‘ »
Vy =V, + AV, 5 = 0 + (—6 kips/ft)(6 ft) = —36 kips
Between the left and right sides of the support at B, the reaction, act-

“ing upward, produces a positive 96-kip change in shear; therefore, to the

right of support B the ordinate of the shear curve rises to +60 kips. Between
points B and C, the change in shear (given by the area under the load

curve) equals (—6 kips/ft)(18 ft) = —108 kips. Thus the shear drops lin- -

sarly from 60 kips at B to —48 kips at C.

RC VG L ] B .
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R =6(24) = 144 kips

w=6 kips/ft §

96 kips = Ry 48 kips = R

e gl 18" ]
(@) '

192

moment
{kip-ft)

@)
——
e T A
point of inflection (P1.)
&
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Figure 5.15: () Beam with uniform load,
(&) infinitesimal element used to establish that
V and M equal zero at the left end of the beam,
() shear curve (units in kips), (¢) moment
curve (units in kip-ft), (¢} approximate de-
‘flected shape (vertical deflections shown to
exaggerated scale by dashed line).

To establish the distance x to the right of point B, where the shear
equals zero, we equate the area wx under the load curve in Figure 5.15a

to the 60 kip shear at B.
60 —wx =0
60—“6x—-10 x =101t

Moment Curve. To sketch the moment curve, we will locate the points of
maximum moment, using Equation 5.10a; that is, the area under the shear dia-
gram between two points equals the change in moment between the points. [continues on next page]
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Example 5.7 continues . . ,

B ST VA

‘ g . ‘ By

Thus we must evaluate in sequence the altemate positive and negative areas
(mangles in this example) under the shear curve. We then use Equation 5.11
to establish- the correct slope of the curve between pomts of maximum
moment.

My =My + AMyp = 0 + 5 (6)(~36) = ~108 kip-ft

Compute the value of the maximum pésitive moment between B and C.
The maximum moment occurs 10 ft to the right of support B where V = 0,

M = Mp + area under V-curve betweenx = Gandx = 10
= —108 + — (60)(10) +192 kip-ft

Since the slope of the moment curve is equal to the ordinate of the shear
curve, the slope of the moment curve is zero at point A. To the right of
point A, the slope of the moment curve becomes progressively steeper
because the ordinates of the shear curve increase. Since the shear is neg-
ative between points A and B, the slope is negative (i.e., downward to the
right). Thus to be consistent with the ordinates of the shear curve, the
moment curve must be concave downward between points A and B.

Since the shear is positive to the right of support B, the slope of the
moment curve reverses direction and becomes positive (slopes upward to
the right). Between support B and the point of maximum positive moment,
the slope of the moment curve reduces progressively from 60 kip/ft to
zero, and the moment curve is concave down. To the right of the point of
maximum moment, the shear is negative, and the slope of the moment
curve again changes direction and becomes progressively steeper in the
negative sense toward support C.

Point of Inflection. A point of inflection occurs at a point of zero moment.

- Here the curvature changes from concave up to concave down. To locate a

point of inflection, we use the areas under the shear curve. Since the trian-
gular area A; of the shear diagram between support C and the point of max-
imum positive moment produces a change in moment of 192 kip-ft, an equal
area under the shear curve (see Fig. 5.15¢), extending 8 ft to the left of the
point of maximum moment, will drop the moment to zero. Thus the point of
inflection is located 16 ft to the left of support C or equivalently 2 ft to the
right of support B.

Sketching the Deﬂected Shape. The approximate deflected shape of the
beam is shown in Figure 5.15¢. At the left end where the moment is negative,
the beam is bent concave downward. On the right side, where the moment is

_positive, the beam is bent concave upward. Although we can easily establish

the curvature at all sections along the axis of the beam, the deflected posi-

_ tion of certain points must be assumed. For example, at point A the left end
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of the loaded beam is arbitrarily assumed to deflect upward above the initial
undeflected position represented by the straight line. On the other hand, it is
also possible that point A is located below the undeflected position -of the
beam’s axis if the cantilever is flexible. The actual elevation of pomt A must
be established by computation.

. Shear and Moment Curves
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Draw the shear and moment curves for the beam in Figure 5.16a. Sketch
the deflected shape.

Solution

We begin the analysis by computing the reaction at support C, using a
free body of member BCD. Summing moments of the applied forces
(resultants of the distributed load are shown by wavy arrows) about the
hinge at B, we compute

O EMB = 0
0 = 54(7) + 27(12) — R¢(10)
¢ = 70.2 kips '

After R is computed, the balance of the reactions are computed using
the entire structure as a free body. Even though a hinge is present, the struc-
ture is stable because of the restraints supplied by the supports. The shear
and moment curves are plotted in Figure 5.16b and c. As a check of the
accuracy of the computations, we observe the moment at the hinge is zero.
The curvature (concave up or concave down) associated with positive
-and negative moments is indicated by the short curved lines above or
below the moment curve.

To locate the point of inflection (zero moment) to the left of support C,
we equate the triangular area under the shear curve between the points of
maximum and zero moment to the change in moment of 49.68 kip-ft. The
bage of the triangle is denoted by x and the altitude by y in Fxgure 5.165.
Using similar tnangles, we express y in terms of x. :

x 438
y 432

4320
YT 4

Area under shear curve = AM = 49.68 klp +ft

1 43.2x .
(35)(52) - oasen

x=3321f .

* B - v * I B

"EXAMPLE 5.8

{continues on next page)
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Example 5.8 continues . . .

Figuré 5.16: (a) Beam (reactions given), (#) shear
_curve (kips), (¢) moment curve (kip-ft), (d) de-
flected shape.

W, - S e

54 kips 27 kips
‘ 3: t 2:
M=1dgkipert ONPS hinge oy oe

R4 =208 kips

[FRRPEN P

sh_ear
(kips}

moment
(kip-ft)

{©
- — ~
. =
hinge point of
inflection
)

- The distance of the point of inflection from support C is

, 4.8 — 332 = 1481t ,
The sketch of the deflected shape is shown in Figure 5.164. Since the

-fixed support at A prevents rotation, the longitudinal axis of the beam is

horizontal at support A (i.e., makes an angle of 90° with the vertical face
of the support). Because the moment is negative between A and B, the

‘beam bends concave downward and the hinge displaces downward. Since

the moment changes from positive to negative just to the left of support

- CIKAE L C AR e -
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C, the curvature of member BCD reverses. Although the general shape of
member BCD is consistent with the moment curve, the exact position of
the end of the member at point D) must be established by computation.

54  Shear and Moment Curves 187

Draw the shear and moment curves for the inclined beam in Fi gure 5.17a.

Solution

We begin the analysis by computing the reactions in the usual manner
with the equations of statics. Since shear and moment are produced only by
loads acting perpendicular to the member’s longitudinal axis, all forces
are broken into components parallel and perpendicular to the longitudi-
nal axis (Fig. 5.175). The longitudinal components produce axial com-
pression in the lower half of the member and tension in the upper half

) moment
(kip-ft)

axial
(kips)

* AL e

EXAMPLE 5.9

»
Figure 5.17: (a) Sloping beam, (b) forces and
reactions broken into components parallel and per-
pendicular to the longitudinal axis, (¢) shear curve,
{(d) moment curve, (e) variation of axial load—ten-
sion is positive and compression is negative.

[continues on next pagel
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Example 5.9 continues . . .

(see Fig. 5.17¢). The transverse components produce the shear and
morent curves shown in Figure 5.17¢ and 4.

EXAMPLE 5.10

5%

A -

Draw the shear and moment curves for beam ABC in Figure 5.18a. Also

sketch the deflected shape. Rigid joints connect the vertical members to '

the beam. Elastomeric pad at C equivalent to a roller.

Solution

Compute the reaction at C; sum moments about A of all forces actmg on
Figure 5.18a.

oM EMA»:O
0= 5(8) — 15(4) + 30(6) — 20R,
¢ = 8kips
t SF,=0=8-5+R,
R,y = —3 kips
-+ EF—O
30— 15— Ry, =0
R, x = 15 kips

Figure 5.18b shows free-body diagrams of the beam and the vertical mem-
bers. The forces on the bottom of the vertical members represent forces
applied by the beam. The verticals, in turn, exert equal and oppositely
directed forces on the beam. The shear and moment curves are constructed
next. Because the shear at a section is equal to the sum of the vertical
forces to either side of the section, the concentrated moment and longi-
tudinal forces do not contribute to the shear.

Since a pin support is located at the left end, the end moment starts
at zero. Between points A and B the change in moment, given by the area
under the shear curve, equals —24 kip-ft. At B the counterclockwise con-
centrated moment of 60 kip-ft causes the moment curve to drop sharply
to —84 kip-ft. The action of a concentrated moment that produces a pos-
itive change in moment in the section just to the right of the concentrated
moment is iflustrated in Figure 5.13b. Because the moment at B is opposite
in sense 'to the moment in Figure 5.13b, it produces a negative change.
Between B and C the change in moment is again equal to the area under the

- shear curve. The end moment in the beam at C must balance the 180 kip-ft

applied by member CD.

. Since the moment is negative over the entire length of the beam, the
entire beam bends concave downward, as shown in Figure 5.18¢. The
axis of the beam remains a smooth curve throughout.

- CANNE B ‘ - B e




Section 5.4 Shear and Moment Curves 189

? g — 12 1;

]

()

moment

(kip~f)

P

Figure 5.18: () Details of beam, () free bodies
of the beam and vertical members, (¢) shear
curve, (d) moment curve, (¢) deflected shape to
an exaggerated scale,

Draw the shear and moment curves and sketch the deflected shape of the
continuous beam in Figure 5.19a. The support reactions are given.

Solution ’ :

Because the beam is indeterminate to the second degree, the reactions must

be determined by one of the methods of indeterminate analysis covered in

EXAMPLE 5.11

[continues on next page)
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Example 5.11 continues . . . 40 kips =3 kips/t o
, M= 94.84 (Kip-fi)
Figure 5.19 Bl 1 l l l D ‘
13.1 kips '57.67 kips 29.23 kips
Y Y7 A 20 X
@
30,77
-29.23
-26.9
‘ (FRY FORN
®
104.8
o
PL T e
deflected shape
@
Chapters 11 through 13. Once the reactions are established, the proce-
- dure to draw the shear and moment curves is identical to that used in
Examples 5.6 to 5.10. Figure 5.19d shows the deflected shape of the
structure. Points of inflection are indicated by small black dots.
LT VA, - BT T . * [ T VR, - [ R I UN,
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'm

Draw the shear and moment curves for each member of the frame in Fig-
ure 5.20a. Also sketch the deflected shape and show the forces acting on
a free body of joint C. Treat the connection at B as a hinge.

Solution

We begin the analysis of the frame by analyzing free bodies of the struc-
ture on either side of the hinge at B to compute the reactions. To com-
pute the vertical reaction at the roller (point E), we sum moments about
B of the forces acting on the free body in Figure 5.205.

O+ EMB = {
0 =38.7(20) — 30(9) — E,(12)
E, = 42 kips

The components of the hinge forces at B can now be determined by
summing forces in the x and y directions.

>+ 3R =0
30~-B8,=0 B, = 30kips

+' = £
t 35 =0
~B,+42-387=0 B, =33kips

After the hinge forces at B are established, the cantilever in Figure
5.20c can be analyzed by the equations of statics. The results are shown
on the sketch. With the forces known at the ends of all members, we draw
the shear and moment curves for each member. These results are plotted
next to each member. The curvature associated with each moment curve
is shown by a curved line on the moment diagram.

The free body of joint C is shown in Figure 5.204. As you can verify
by using the equations of statics (that is, 2F, = 0, ZF, = 0, ZM = 0),
the joint is in equilibrium.

A sketch of the deflected shape is shown in Flgure 5.20e. Since A is

a fixed support, the longitudinal axis of the cantilever beam is horizontal
at that point. If we recognize that neither axial forces nor the curvature pro-
duced by moment produces any significant change in the length of mem-
bers, then joint C is restrained against horizontal and vertical displacement
by members CE and ABC, which connect to supports that prevent dis-
placement along the axes of these members. Joint C is free to rotate. As
you can see, the concentrated load at D tends to rotate joint C clockwise.
On the other hand, the distributed load of 30 kips on member CE tries to
rotate the joint counterclockwise. Since member BCD is bent concave
downward over its entire length, the clockwise rotation dominates.

o o ) L IR e _aw - -

EXAMPLE 5.

[continues on next page)
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Example 5.12 continues . . .

5 kips/ft

Figure 5.20: (a) Determinate frame, (b) shear

396

moment

(kip-ft)

@

moment : ‘ . .
N 3.3kips 38.7 kips
(kip+ft) o7t

30 kips {'1 T 1L>

Mg =39.6 kip+ft =t Mp = 309.6 kip-ft
‘ "~ 30kips

\pMCE =270 kip-ft

42 kips
(d}

shear  moment él—-—"g-——-g-——--—~7:\..w-1
~

(kips)  (kip+ft) /

(e)

Although the curvature of member CE is consistent with that indicated

and moment curves for frame BCDE, (c) shear by the moment diagram, the final deflected position of the roller at E in the
and moment curves for cantlever AB, (d) free  porizontal direction is uncertain. Although we show that the roller has

body of joint C, (e) deflected sh . . .. .. . .
ody of joint €, (¢) deflected shape of frame displaced to the left of its initial position, it is possible that it could also

be located to the right of its undeflected position if the column is flexible.
Techniques to compute displacements will be introduced in Chapters 9

and 10.
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EXAMPLE 5.13

Analyze the girder supporting a floor system in Figure 5.21. Stringers,
FE and EDC, the small longitudinal beams that support the floor, are sup-
ported by girder AB. Draw the shear and moment curves for the girder.

30 kips ' 60 kips Figure 5.21

b 107 h— 207 ! 30 L 107l
(@

E
10 kipjrﬂ) kips T
80 kips
&)
10 kips

e

@

{d)
o rﬁofnent
© (kipef)
[continues on next page)
Y EKGE e e - TR A - .

- R

-



http:30'---I.1f

194

Chapter 5

Beams and Frames

Example 5.13 continues .

Solution : '
Since the stringers FE and EDC are statlcally determinate, their reactions
can be determined by statics using the free bodies shown in Figure 5.215.

‘After the reactions of the stringers are computed, they are applied in the

opposite direction to the free body of the girder in Figure 5.21c. At point

E we can combine the reactions and apply a net load of 10 kips upward

to the girder. After the reactions of the girder are computed, the shear and
moment curves are drawn (see Fig. 5.21d and e).

-

A

Figure 5.22

.............................................

Principle of Superposition

Many of the analytical techniques that we develop in this book are based
on the principle of superposition. This principle states:

If a structure behaves in a linearly elastic manner, the force or dis-
placement at a particular point produced by a set of loads acting simul-
taneously can be eévaluated by adding (superimposing) the forces or dis-
placements ‘at the particular point produced by each load of the set
acting individually. In other words, the response of a linear, elastic
‘structure is the same if all loads are applied simultaneously or if the
effects of the individual loads are combined.

The principle of superposition may be illustrated by considering the
forces and deflections produced in the cantilever beam shown in Figure
5.22. Figure 5.22a shows the reactions and the deflected shape produced
by forces P, and P,. Figures 5.22b and ¢ show the reactions and the
deflected shapes produced by the loads acting separately on the beam.
The principle of superposition states that the algebraic sum of the reac-

P, AC
~=—=""cp | +
My ' ‘ .
Py
L |
(a)
)
. T B * IR A - . - -
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tions, or internal forces, or displacements at any particular point in Fig-
ures 5.22b and ¢ will be equal to the reaction, or internal force, or dis-
placement at the corresponding point in Figure 5.22a. In other words, the
following expressions are valid:

R‘A = RAI + RAZ
My =My + My,
Ae= B + A

The principle of superposition does not apply to beam-columns or to
structures that undergo large changes in geometry when loaded. For exam-
ple, Figure 5.23a shows a cantilever column loaded by an axial force P.
The effect of the axial load P is to produce only direct stress in the column;
P produces no moment. Figure 5.23b shows a horizontal force H applied
to the top of the same column. This load produces both shear and moment.

In Figure 5.23¢, the loads in Figure 5.234 and b are applied simultane-
ously to the column. If we sum moments about A to evaluate the morent
at the base of the column in its deflected position (the top has deflected hor-
izontally a distance A), the moment at the base can be expressed as

M = HL+ PA

The first term represents the primary moment produced by the transverse
load H. The second term, called the PA moment, represents moment pro-
duced by the eccentricity of the axial load P. The total moment at the
base obviously exceeds the moment produced by summing cases a and
b. Since the lateral displacement of the top of the column produced by
‘the lateral load creates additional moment at all sections along the length
of the column, the flexural deformations of the column in Figure 5.23¢
are greater than those in Figure 5.235. Because the presence of axial load
increases the deflection of the column, we see that the axial load has the
effect of reducing the flexural stiffness of the column. If the flexural

P

- N [ B CX S U

Figure 5.23: Superposition not applicable.
(a) Axial force produces direct stress, (b) lateral

force produces moment, (¢) axial force produces
PA moment. ‘
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Figure 5.24: Superposition not applicable,
(a) Cable with two equal loads at the third points
of the span, (b) cable with single load at B, (¢) cable
with single load at C.

CA: B - Y o

stiffness of the column is large and A is small or if P is small, the PA

moment will be small and in most practical cases may be neglected.

Figute 5.24 shows a second case in which superposition is invalid. In
Figure 5.24a a flexible cable supports two loads of magnitude P at the
third points of the span. These loads deflect the cable into a symmetric
shape. The sag of the cable at B is denoted by A. If the loads are applied
separately, they produce the deflected shapes shown in Figure 5.24b and
c. Although the sum of the vertical components of the reactions at the
supports in b and ¢ equals those in a, computations clearly indicate that
the sum of the horizontal components H, and H, does not equal H. It is
‘also evident that the sum of the vertical deflections at B, ky, and A, is
much greater than the value of & in case a.

The principle of superposition provides the basis for the analysis of
indeterminate structures by the flexibility method discussed in Chapter 11
as well as matrix methods in Chapters 16, 17, and 18. Superposition is also
used frequently to simplify computations involving the moment curves of
beams that carry several loads. For example, in the moment-area method
(a procedure to compute the slope or deflection at a point along the axis of
a beam) we must evaluate the product of an area and the distance between
‘the area’s. centroid and a reference axis. If several loads are supported by
‘the beam, the shape of the moment diagram may be complicated. If no
simple equations are available to evaluate either the area under the moment
_diagram or the position of the area’s centroid, the required computation
can be carried out only by integrating a complicated function. To avoid this
time-consuming operation, we can analyze the beam separately for the

2P/3 P13
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action of each load. In this way we produce several moment curves with
simple geometric shapes whose area and centroids can be evaluated and
located by standard equations (see back inside cover). Example 5.14 illus-
trates the use of superposition to establish the reactions and moment curve
of a beam loaded with both a uniform load and end moments.

a. Evaluate the reactions and construct the moment diagram for the beam

in Figure 5.25a by superposition of the reactions and moment curves
associated with the individual loads in parts (b), (¢), and (d).

80 kip-ft wEAKIDSR (60 kip.ft :
C f) +M T 80
A B : e moment
’ lo/ , {kip-ft)
-8
? 20’ ? ‘ ~160
Ry Ry
] (@ H
o200
. ©moment
10/ =) (kip-ft)
+ ) +
A - g}(oment
[ " (ip:1)
e =40
4 kips 4 kips
+ () +

A\3

moment

8 kips ’ ‘ 8 kips
)

P e - a* Oy e

A ' S (kip-ft)
* “160 kip-ft M P

-160

SR e

EXAMPLE 5.14

Figure 5.25: (a) Beam with spec-
ified loads (moment curve to right),
(&) uniform load only applied, {¢) re-
actions and moment curve associ-
ated with 80 kip-ft moment, (d) re-
actions and moment curve produced
by end moment of 160 kip-ft at B.

[continues on next pagel
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Example 5.14 continues . .
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b. Céﬁcuiate the moment of the area under the moment diagram between
 the left support and the center of the beam with respect to an axis
through support A.

Solution
a. To solve by superposition, also called moment curves by pan‘s, we
analyze the beam separately for the individual loads. (The reactions
- and moment diagrams are shown in Figure 5.25b, ¢, and d.) The reac-
_ tions and the ordinates of the moment diagram produced by all loads
acting simultaneously (Fig. 5.25a) are then established by summing
algebraically the contribution of the individual cases.

R, =40+ 4 + (—8) = 36 kips
p =40 + (—4) + 8 = 44 kips
M, =0+ (—80) + 0 = —80 kip-ft
Mo = 200 + (—40) + (—80) = 80 kip+ft
‘ n=3

b. Moment of area = ¥, A,-X
1

~ (see Table A.1 for properties of areas)
= —(10)(200)( X 10) + (~40 X 10)(5)

+2(- 40)(10)(1()) " -%(10)&80)[%(10)}

='3000 kip-ft’

N

o,
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- Sketching the Deﬂected Shape of a
- Beam or Frame

To ensure that structures are serviceable—that is, their function is not
1mpaired because of excessive flexibility that permits large deflections or
vibrations under service loads—designers must be able to compute deflec-
‘tions at all critical points in a structure and compare them to allowable
values specified by building codes. As a first step in this procedure, the
designer must be able to draw an accurate sketch of the deflected shape of
the beam or frame. Deflections in well-designed beams and frames are
usually small compared to the dimensions of the structure. For example,
many building codes limit the maximum deflection of a simply supported
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beam under live load to 1/360 of the span length. Therefore, if a simple
beam spans 20 ft (240 in), the maximum daﬂecmon at mxdspan due to the
live load must not exceed £ in.

If we represent a beam spanning 20 ft by a line 2 in long, we are reduc-
ing the dimension along the beam’ s axis by a factor of 120 (or we can say
that we are using a scale factor of 155 with respect to the distance along the
beam’s axis). If we were to use the same scale to show the deflection at
midspan, the § in displacement would have to be plotted as 0.0055 in. A dis-
tance of this dimension, which is about the size of a period, would not be
perceptible to the naked eye. To produce a clear picture of the deflected
shape, we must exaggerate the deflections by using a vertical scale 50 to
100 times greater than the scale applied to the longitudinal dimensions of
the member, Since we use different horizontal and vertical scales to sketch
the deflected shapes of beams and frames, the designer must be aware of
the distortions that must be introduced into the sketch to ensure that the
deflected shape is an accurate representation of the loaded structure.

An accurate sketch must satisfy the following rules:

The curvature must be consistent with the moment curve.

The deflected shape must satisfy the constraints of the boundaries,

The original angle (usually 90°) at a rigid joint must be preserved.

The length of the deformed member is the same as the original

length of the unloaded member.

5. The horizontal projection of a beam or the vertical projection of a
column is equal to the original length of the member.

6. Axial deformations, trivial compared to flexural deformations, are

neglected.

-

NS

For example, in Figure 5.26a the deflected shape of a simply supported
beam with the service load in place is shown by the dashed line. Since the
deflection is almost imperceptible to the naked eye, a sketch of this type
would not be useful to a designer who was interested in computing slopes
or deflections at a particular point along the axis of the beam. Instead, to
show the deflected shape clearly, we will draw the distorted sketch shown
in Figure 5.265. In Figure 5.265 the scale used to draw the deflection & at
midspan is about 75 times greater than the scale used in the longitudinal
direction to show the length of the member. When we show the length of
the bent member to a distorted scale, the distance along the deflected axis
of the member appears much greater than the length of the chord connect-
ing the ends of the member, If a designer were inexperienced, he or she

_ might assume that the roller at the right end of the beam moves to the left
a distance A. Since the midspan deflection is very small (see Fig. 5.26a),
rule 4 applies. Recognizing that there is no significant difference in length

between the loaded and unloaded members, we conclude that the horizon-

tal dlsplacement of the roller at B equals zero, and we show the member
spanning to the original position of support B. '

- N e - SR D -

Figure 5.26
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Figure 5.27: (a) Deflected shape shown by
dashed line to actual scale, (b) moment curve for
cantilever in (a), {¢) horizontal deflections exag-
gerated for clarity.

Figure 5.28: Deflected shape of a braced frame.
Moment diagrams shown above and to the left of
frame.

- TR . - -

As a second example, we draw the deflected shape of the vertical
cantilever beam in Figure 5.27a. The moment curve produced by the hor-
izontal load at joint B is shown in Figure 5.275. The short curved line
within the moment curve indicates the sense of the member’s curvature,
In Figure 5.27c the deflected shape of the cantilever is drawn to an exag-

~geflected  S€rated scale in the horizontal direction. Since the base of the column is

attached to a fixed support, the elastic curve must rise initially from the
support at an angle of 90°. Because the vertical projection of the column
is assumed equal to the initial length (rule 5), the vertical deflection of
the top of the cantilever is assumed to be zero; that is, B moves horizon-
tally to B". To be consistent with the curvature produced by the moment,
the top of the cantilever must displace laterally to the right.

"~ In Figure 5.28 we show with dashed lines the deflected shape pro-
duced by a single concentrated load applied at midspan to girder BD of
a braced frame. In a braced frame all joints are restrained against lateral
displacement by supports or by members connected to immovable sup-
ports. For example, joint B does not move laterally because it is con-
nected by girder BD to a pin at joint D. We can assume that the length of
BD does not change because (1) axial deformations are trivial, and {2) no
change in length is produced by bending. To plot the deflected shape, we
show the column leaving the fixed support at A in the vertical directios.

" The curvature produced by the moment indicates the lower section of the
column develops compressive stresses on the outside face and tension on
the inside face. At the point where the moment reduces to zero—the
point of inflection (P.I.)—the curvature reverses and the column curves
back toward joint B: The applied load bends the girder downward, caus-
ing joint B to rotate in the clockwise direction and joint D in the coun-
terclockwise direction. Since joint B is rigid, the angle between the col-
umn and the girder remains 90°. ' '

T B - C M .
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In Figure 5.2%9¢ we show an L-shaped cantilever with a horizontal
load applied to the top of the column at B. The moment produced by the

“horizontal force at joint B (see Fig. 5.29b) bends the column to the right.

Since no moments develop in beam BC, it remains straight. Figure 5.29¢
shows the deflected shape to an exaggerated scale. We start the sketch
from the fixed support at A because both the slope (90°) and the deflec-
tion (zero)-are known at that point. Because the angular rotation of joint
B is small, the horizontal projection of beam BC can be assumed equal
to the original length L of the member. Notice that both joints B and C
displace the same horizontal distance A to the right. As was the case with
the top of the column in Figure 5.27, joint B is assumed to move hori-

~ zontally only. On the other hand, joint C in addition to moving the same

distance A to the right as joint B moves downward a distance A, = 6L
due to the rotation of member BC through an angle 8. As shown in Fig-

- ure 5.294, the clockwise rotation of joint B (Which is rigid) can be mea-

sured from either the x or the y axis.

The lateral load at joint B of the frame in Figure 5.30a produces

moment that creates compression on the outside faces of both column AB

Vo o

(@)

- .. & o L ] %" TR NG

)

Figure 5.29: (a) Deflected shape shown to scale
by dashed line, (b) moment diagram, (c) deflectad
shape drawn to an exaggerated scale, (d) rotauon
of joint B.

Figure 5.30: (4) Moment curves for frame ABC,
(b) deformed frame in final position, (¢) incorrect
deflected shape: 90° angle at B not preserved.
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Flgure 5, 31 {a) Deformanons produced by load
_ shown. by dashed line, ) pesmon requued by

) ‘constramts of sugperts :
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and girder BC. To begin the sketch of the deflected shape, we start at the
pin at A—the only point on the deflected frame whose final position is
known. We will arbitrarily assume that the bottom of column AB rises
vertically from the pin support at A. Since the moment curve indicates
that the column bends to the left, joint B will move horizontally to B’
(Fig. 5.30b). Because joint B is rigid, we draw the B end of member BC
perpendicular to the top of the column. Since member BC curves con-

cave upward, joint C will move to point C'. Although the frame has the

correct deformed shape in every respect, the position of joint C violates
the boundary conditions imposed by the roller at C. Since C is con-
strained to move horizontally only, it cannot displace vertically to C".
We can establish the correct position of the frame by imagining that
the entire structure is rotated clockwise as a rigid body about the pin at
A until joint C drops to the level of the plane (at C") on which the roller
moves. The path followed by C during the rotation about A is indicated

by the arrow between C’ and C". As the rigid body rotation occurs, joint
B moves horizontally to the right to point B". ‘

As shown in Figure 5.30c, an incorrect sketch, the B end of member
AB cannot enter joint B with a slope that is upward and to the left
because the 90° angle could not be preserved at joint B if the upward cur-
vature of the girder is also maintained. Since joint B is free to move lat-
erally as the column bends, the frame is termed an unbraced frame.

In Figure 5.31a a symmetrically loaded unbraced frame carries a
concentrated load at the midspan of girder BC. Based on the initial
dimensions, we find that the reactions at the pin at A and the roller at D
are both equal to P/2. Since no horizontal reactions develop at the sup-

_ports, the moment in both columns is zero (they carry only axial load),

and the columns remain straight. Girder BC, which acts as a simply sup-
ported beam, bends concave upward. If we sketch the deflected shape of
the girder assuming that it does not displace laterally, the deflected shape
shown by the dashed lines results. Since the right angles must be pre-
served at joints B and C, the bottom ends of the columns will displace
outward horizontally at A’ and D". Although the deflected shape is cor-
rect, joint A cannot move because it is connected to the pin at A. The cor-
rect-position of the frame is established by.shifting the entire deformed

frame as a rigid body to the right.an amount A (see Fig. 5.315). As shown -
* in this figure, joints B and C move horizontally only, and the length of

the loaded girder is the same as its initial undeformed length of L.
Figure 5.32 shows a frame with a hinge at C. Since the curvature of
member AB and the final position of joints A and B are known, we begin

 the sketch by drawing the deflected shape of member AB. Since joint B is

rigid, the 90° dngle is preserved at B, and member BC must slope down-
ward to the right. Since the hinge at C provides no rotational restraint, the
members must frame into each side of the hinge with different slopes

~because of the difference in curvature indicated by the moment curves.

K D e L ] MR e L) o




-morment at a given section. The basic approaches we discussed in Chapter
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Section 5.7 Degree of Indeterminacy

Figure 5.32

.................................................................

5.7 Degree of Indeterminacy

Tn our previous discussion of stability and indeterminacy in Chapter 3, we
considered a group of structures that could be treated as a single rigid body
or as several rigid bodies with internal releases provided by hinges or
rollers, We now want to extend our discussion to include indeterminate
frames—structures composed of members that carry shear, axial load, and

3 still apply. We begin our discussion by considering the rectangular frame
in Figure 5.33a. This rigid jointed structure, fabricated from a single mem-
ber, is supported by a pin support at A and a roller at B. At point D a small
gap exists between the ends of the members which cantilever out from
joints C and E. Since the supports supply three restraints that are neither a
parallel nor a concurrent force system, we conclude.that the structure is
stable and determinate; that is, three equations of statics are available to
compute the three support reactions. After the reactions are evaluated,
internal forces—shear, axial, and moment—at any section can be evalu-
ated by passing a cutting plane through the section and applying the equa-

tions of equilibrium to the free-body diagram on either side of the cut. Photo 5.3: Legs of arigid frame fabricated from

‘If the two ends of the cantilever were now connected by inserting a  sieel plates,
hinge at D (see Fig. _5‘;33b), the structure would no longer be statically
determinate. Although the equations of statics permit us to compute the
reactions for any loading, the internal forces within the structure cannot
be determined because it is not possible to isolate a section of the struc-
ture as a free body that has only three unknown forces. For example, if
we attempt to compute the internal forces at section 1-1 at the center of
member AC in Figure 5.33b by considering the equilibrium of the free

- [ ST PR
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Photo '5.2: Two-legs of a reinforced concrete
rigid frame. Frame supports a cable-stayed bridge.
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Figure 5.33: (a) Stable, externally determinate
frame, (b) internally indeterminate frame to sec-
ond degree, (¢) free body of upper left corner of
hinged frame, {d) closed ring infernally indeter-
minate to the third degree, (¢} free body of upper
left comer of closed ring (see o). .

- ST "N ‘
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body that extends from section 1-1 to the hinge at D (see Fig. 5.33¢), five
internal forces—three at section 1-1 and two at the hinge—must be evalu-
ated. Since only three equations of statics are available for their solution,
we conclude that the structure is indeterminate to the second degree. We
can reach this same conclusion by recognizing that if we remove the
hinge at D, the structure reduces to the determinate frame in Figure
5.33a. In other words, when we connect the two ends of the structure
together with a hinge, both horizontal restraint and vertical restraint are
added at D. These restraints, which provide alternative load paths, make

M e -« - B m - . e
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the structure indeterminate. For example, if a horizontal force is applied
at C to determinate frame in Figure 5.33a, the entire load must be trans-
mitted through member CA to the pin at A and the roller at B. On the other
hand, if the same force is applied to the frame in Figure 5.33b, a certain
percentage of the force is transferred through the hinge to the right side of
the structure to member DE and then through member EB to the pin at B,
If the two ends of the frame at D are welded to form a solid continu-
ous member (see Fig. 5.334), that section will have the capacity to trans-
mit moment as well as shear and axial load. The addition of flexural
restraint at D raises the degree of indeterminacy of the frame to three. As
shown in Figure 5.33¢, a typical free body of any portion of the structure
can develop six unknown internal forces. With only three equations of
equilibrium, the structure is indeterminate internally to the third degree.
In summary, a closed ring is statically indeterminate internally to the
third degree. To establish the degree of indeterminacy of a structure com-
posed of a number of closed rings (a welded steel building frame, e.g.)
we can remove restraints—either internal or external—until a stable base
structure remains. The number of restraints removed equals the degree of
indeterminacy. This procedure was introduced in Section 3.7; see Case 3.
To illustrate this procedure for establishing the degree of indetermi-
nacy of a rigid frame by removing restraints, we will consider the frame
in Figure 5.34a. When evaluating the degree of indeterminacy of a struc-
ture the designer always has a variety of choices with regard to which

- restraints are to be removed. For example, in Figure 5.34b we can imagine

the frame is cut just above the fixed support at B, Since this action
removes three restraints B,, B,, and Mjp, but leaves a stable U-shaped

(@

© - @
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Figure 5.34: Establishing the degree of indeter-
minacy by removing supports until a stable deter-
minate structure remains. (@) A fixed-end frame,
{b) the fixed support at B removed, {c) the girder
cut, {d) roller and pin used to eliminate moment
and horizontal restraint at B and the moment at A.
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: F:gurer 5.35: (@) Frame to be evaluated; (b) re-
moving testraints (numbers on figure refer to

“number of restraints removed at that point to pro-

’ duce the base stmcmre)

- g 373

structure connected to the fixed support at A, we conclude that the origi-
nal structure is indeterminate to the third degree. As an alternative proce-
dure, we can eliminate three restraints (M, V, and F) by cutting the girder
at midspan and leaving two stable determinate L-shaped cantilevers (see
Fig. 5.34¢). As a final example (see Fig. 5.34d), a stable determinate base
structure can be established by removing the moment restraint at A (phys-
ically equivalent to replacing the fixed support by a pin support) and by
removing moment and horizontal restraint at B (the fixed support-is
replaced by a roller).

As a second example, we will establish the degree of indeterminacy of
the frame in Figure 5.35a by removing both internal and external restraints.

~ As one of many possible procedures (see Fig. 5.35b), we can eliminate two

restraints by removing the pin at C completely. A third external restraint
(resistance to horizontal displacement) can be removed by replacing the
pin at B with a roller. At this stage we have removed sufficient restraints to
produce a structure that is externally determinate. If we now cut girders EF
and ED, removing six additional restraints, a stable determinate structure

* remains. Since a total of nine restraints was removed, the structure is

indeterminate to the ninth degree. Figure 5.36 shows several additional
structures whose degree of indeterminacy has been evaluated by the same
method. Students should venfy the results to check their understanding
of this procedure.

" For the frame in Figure 3. 36f one method of establishing the degree
of indeterminacy is to consider the structure in Figure 5.354 with the three
pins at A, B, and C replaced by fixed supports. This modification would
produce a structure similar to the one shown if Figure 5.36f except with-
out internal hinges. This modification would increase the previously estab-
lished ninth degree of indeterminacy to 12 degrees. Now, the addition of
eight hinges to produce the structure in Figure 5.36f would remove eight
internal moment restraints, producing a stable structure that was indeter-
minate to the fourth degree.

» In our discussion of beams and frames, we considered members
loaded primarily by forces (or components of forces) acting
perpendicular to a member’s Jongitudinal axis. These forces bend

~ the member and produce internal forces of shear and moment on
sections normal to the longitudinal axis.

» . We compute the magnitude of the moment on a section by
summing moments of all external forces on a free body to either
‘side of the section. Moments of forces are computed about a
horizontal axis passing through the centroid of the cross section.
The summation must include any reactions acting on the free body.
For horizontal members we assume moments are positive when

B e ) * 3 IO L J Y .
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they produce curvature that is concave up and negative when
curvature is concave down.

Shear is the resultant force acting parallel to the surface of a section
through the beam. We compute its magnitude by summing forces or
components of forces that are parallel to the section, on either side
of the cross section. ;

We established procedures to write equations for shear and moment
at all sections along a member’s axis. These equations will be
required in Chapter 10 to compute deflections of beams and frames
by the method of virtual work.

‘We also established four relauonsh.lps among load, shear, and moment
that facilitate the construction of shear and moment dxagrams

1. The change in shear AV between two points equals the area
under the load curve between the two points.

~ 2. The slope of the shear curve at a given pomt equals the ordmate

of the load curve at that point. -

©

Figure 5.36: Classifying rigid frames; (a) stable
and determinate, 3 reactions, 3 equations of statics;
(b) hingeless arch, indeterminate to third degree, 6
reactions, and 3 equations of statics; (¢) indetermi-
nate first degree, 3 reactions and I unknown force
in tie, 3 equations of statics; (d) indeterminate
sixth degree (internally), (¢) stable determinate
structure, 4 reactions, 3 equations of statics and 1
condition equation at hinge; (f) indeterminate
fourth degree; (g) indeterminate sixth degree.
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3. The change in moment AM between two pomts equals the area
under the shear curve between the two points.

4. The slope of the moment curve at a given point equals the ordinaté |

of the shear curve at that point.

* We also established that points of inflection (where curvature
changes from positive to negative) in a beam’s deflected shape
occur where values of moment equal zero.

* . We also learned to use moment diagrams to supply mformanon
required to draw accurate sketches of the deflected shapes of beams
and frames. The ability of the designer to construct accurate

" deflected shapes is required in the moment-area method covered in
Chapter 9. The moment-area method is used to compute slopes and
deflections at a selected point along the axis of a beam or frame,

+ Finally we established a procedure for determining if a beam or
frame is statically determinate or indeterminate, and if
indeterminate, then the degree of indeterminacy.

PROBLEMS

.....

“P5.1. W’nte the equauons for shear and moment between
points A and B. Select the origin at A. Plot the graph of
cach force underneath a sketch of the beam.

P5.1
PS$.2. Write the equations for shear and moment between
points D and E. Select the origin at D.

w = 3 kips/ft
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.....................

P5.3. Write the equations for shear and moment between

_points A and B. Select the origin at A. Plot the graph of

each force under a sketch of the beam. The re(:ker at A
is equivalent to a roller.

P5.3

P5.4. Write the equations for shear V and moment M
between points B and C. Take the origin at point A.
Evaluate V and M at point C, using the equations.

w= 4kips/ft
2,
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P =15 kips
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P5.5, Write the equations for moment between points
B and C as a function of distance x along the longitudi-
nal axis of the beam in Figure P5.5 for (a) origin of xat
A and (b) origin of x at B.

4 kips
. w =3 kips/ft.

P55

P5.6. Write the equations required to express the
moiment along the entire length of beam in Figure P5.6.
Use an origin at point A, and then repeat computations
using an origin at point D. Verify that both procedures
give the same value of moment at point C.

18 kips

B w=24kipy/ft

44 e

b o — 10 | 8 |

P5.6

P5.7. Write the equations for shear and moment using
the origins shown in the figure. Evaluate the shear and
moment at C, using the equations based on the origin at
point D.

10 kips

w = 5 Kips/ft
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P5.8. Write the equation for moment between points B
and C for the rigid jointed frame in Figure P5.8.

w = 6 kips/ft

! i

P5.8

P5.9. Write the equations for moment as a function of
distance along the longitudinal axes for members AB
and BC of the frame in Fxgare P59. Ongms for each
member are shown.

.
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P5.10. Write. the equations for shear and moment. ~ (f) Evaluate the moment at section A. '
between points B and C for the rigid frame in Figure (g) Locate the section of maximum moment
P5.10. Select the origin at point C. and evaluate M ...
- (h) Write the equations for shear and moment
w =4 kN/m

between B and C using an origin at B.
(i) Evaluate the moment at section A.

4kN:
: 3 kips/ft
16’
! gm , P5.12
PS.10 ~ P5.13 to P5.15. For each beam, draw the shear and
. - S diagrams, label t imu lues of shear
P5.11. Consider the beam shown in Figure P5.11. The ~ 2Oment diagrams, label the maximum va she
N . . : and moment, locate points of inflection, and make an
elastomeric pad at support A is equivalent to a roller.
accurate sketch of the deflected shape.
(a) Write the equations for shear and moment in - ,
. terms of x. Select an origin at A. S - 40kips

w =4 Kips/fc

(b) Locate the section of maximum moment.

(c) Calculate M, ! L l -
) w = 6 kips/ft C
o L oo Ll , L s
w= 2Kkips/ft .. ’ 6 4 10 T4
- 120 kip+ft
P5.13
AR T ™ B
; _,_:1_ . 24 kips 30 kips
60 kip-ft ~ :
l : L=24'- | 120 kip-ft
1] [ Na o =
P5.11 , ;
- S (SRS M N N —
P5.12. Consider the beam shown in Figure P5.12.
. R P5.14
(a) Write the equations for shear and moment ‘
for the beam using an origin at end A. w= 12 kips/ft

(b} Using the equations, evaluate the moment at
section A.

(c) Locate the point of zero shear between B

and C.

(d) Evaluate the maximum moment between =
points B and C. i

10’ L 5] 15

(e) Write the equatlons for shear and moment
using an origin at C. : P5.15
- s e * e e s L KA ke -» C B B
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P5.16. Draw the shear and moment diagrams for Fig-  P5.18. Draw the shear and moment curves for each
ure P5.16. Sketch the deflected shape. member of the frame in Figure P5.18. Sketch the de-
‘ flected shape.

8 kips

45 kN

R ki .
40dps - 6 kips/ft

L—4'»L4'»L— PTRpL Sp 12/ ‘ 6/l

P5.16

P5.17. Draw the shear and moment curves for each
member of the frame in Figure P5.17. Sketch the de-
flected shape. The bolted connections at 4, C, and D are

equivalent to a hinge. . o

l‘ 4m 1 dm |
~ P5.18
~ P5.19. Draw the shear and moment curvés for ‘each
member of the frame in Figure P5.19. Sketch the de-.
lected shape. - S

w=2 kN/m

f : 10m

P5.17

e 3marbe3m - 6m | 6m |

P5.19

- ST UGN - CERT e - - SN e



212 Chapter 5 Beams and Frames

P5.20. Draw the shear and moment-curves for-the

~beam in Figure P5.20. Sketch the deflected shape.

"4kN/m - hinge . 2KN/m

! Zm | Sm Lsz

LZml 6m

P5.20

P5.21. Draw the shear and moment curves for each
member of the frame in Figure P5.21. Sketch the de-
flected shape hinges at B and C.

P5.21

P5.22. Draw. the sheéif aﬁd ”momeiit curves for each
member of the frame in Figure P5.22. Sketch the de-
flected shape. Fixed end at A.

N e

- SR e m -

P5.23. Draw the shear and mdment curves for each
member of the frame in Figure P5.23. Sketch the de-

flected shape.

P5.23

P5.24. Draw the shear and moment curves for each

member of the frame in Figure P5.24. Ske

flected shape,

i 5%

A -

tch the de-

- ¥ -

AW,

-




Problems 213

P5.25. Draw the shear and moment curves for each  P5.28. Draw the shear and moment curves for the inde-
member of the beam in Figure P5.25. Sketch the de-  terminate beam in Figure P5.28. Reactions are given.
Sketch the deflected shape.

flected shape. The shear connection at B acts as a hinge.
w = 4 kips/ft

w = 12 Kips/ft
, 4.5 Kip-ft

15.19 kips 10.5 kips

P5.28

P5.29. Draw the shear and moment curves for the beam
P5.26. Draw the shear and moment curves for the beam i Figure P5.29. Sketch the deflected shape. '
in Figure P5.26. Sketch the deflected shape.

w = 6 Kips/ft

P5.26

P5.27. Draw the shear and moment curves for the
beam in Figure P5.27. Sketch the deflected shape.

PS.29

P5.30. Draw the shear and moment curves for the
beam in Figure P5.30 (reactions given). Locate all poinis
of zero shear and moment. Skétch the deflected shape.

Ps.27 Fim70Ks =3 Kips/it
I i sssunnsy
A T T e T T B e e T
sg 5%.?8
W
R, = 18.85 kips Ry = 85.49 kips Re = 27.66 kips
P5.30

- W e - ) :
ST ™Y -
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- P5.31 and P5.32. Draw the shear and moment diagrams P5.34. (o) Draw the shear and moment cut\}eé for the
for each indeterminate beam. Reactions are given. Label ~ frame in Figure P5.34. Sketch the deflected shape.
maximum values of shear and moment, Locate all inflec- (b) Write the equations for shear and moment in column

tion points, and sketch the deflected shapes. AB. Take the origin at A. (c) Write the shear and moment
‘ ‘ equations for girder BC. Take the origin at joint B.

My=675KN-m | | ’
| \ ‘ T | ) w = 2.4 kips/ft

Ry=3131kKN T ‘

| Rg=25.60 kN

. | - 8 m — I 3m-~>¥
- P31
| | 24’ i3 |
L MA‘='13‘17 klp*ft L o . | = | |

P5.35. Draw the shear and moment curves for each

L3R

A
member of the frame in Figure P5.35. Sketch the de-

? 20’ f 24 ? 6~ - flected shape. Joints B and D are rigid.

]
Ry=4.02kips Rp=139.99 kips Re = 77.99 kips ‘
o P5.32 6 kN w =9 kN/m

. } 2m
P5.33. Draw the shear and moment diagrams for Fig- ’.—~ BlF lE
ure P5.33. Sketch the deflected shape. ‘ L hinge
. i
30KN  30kN 4m
3m 3m ; B
. ,Qf ‘

Lm3m J. 3m i Im 1

- I . ' - K ST R, - AR e - © s

A -~




P5.36. Draw the moment diagrams for each member of
the frame in Figure P5.36. Sketch the deflected shape of
the frame. Joints B and C are rigid.

w =2 Kips/ft '

P5.38. (@) Make an accurate sketch of the deflected

shape of the frame in Figure P5.38. Pay careful atten-

tion to curvature and displacementy. Joint B is rigid. (D)
Draw a free body of joint B and show all forces.

SkN——T

10 kN

ot ‘ [
8 8

Problems 215

P5.37. Draw the shear and moment curves for each
member of the frame in Figure P5.37. Sketch the
deflected shape. Treat the shear plate connection at C as
a hinge. ’ : : :

w = 6 kips/ft

P5.39. For the frame in Figure P5.39, draw the shear
and moment curves for all members. Next draw an accu-
rate sketch of the deflected shape of the frame. Show all
forces acting on a free-body diagram of joint C. (Joint
C is arigid joint.) Fixed support at A.

20 kips

im =
2. ommabh k’lj M, = 120 kip-t
1. 4m ? 1 m+] -
SKN A, =20 kips
P5.38 L—-~ 4'--J1<— 4 —-*l
P5.39
- B B - - NG em - [ TR T ‘ .
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P5.40. (a) Sketch the deflected shape of the frame in
Figure P5.40 accurately. Reactions and moment curves
are given. Curvature is also indicated. Joints B and D are
rigid. The hinge is located at point C. (b) Using an origin
at A, write the equations for shear and moment in mem-
ber AB in terms of the applied load and the distance x.

Y

e § feippg L
20 kips 32 kips
PRV PR VR SN

P5.40

P5.41. Draw the shear and moment curves for all mem-
bers of the frame in Figure P5.41. Sketch the deflected
shapg (reactions given).

Ay=7‘5 klps
e bl

P5.41

FEE A - ~ vz

L NV

Practical Application

P5.42. The combined footing shown in Figure P5.42 is
designed as a narrow reinforced concrete beam. The
footing has been proportioned so that the resultant of
the column loads passes through the centroid of the
footing, producing a uniformly distributed soil pressure
on the base of the footing. Draw the shear and moment
diagrams for the footing in the longitudinal direction.
The width of the footing is controlied by the allowable
soil pressure and does not affect the analysis.

240 kips 560 kips

s<-3’ 1 14.286' i

I T A A
w = 30,77 kips/t ‘
1 26

P5.42

Practical Application

P5.43. The two concentrated loads, supported on the
combined footing in Figure P5.43, produce a trapezoidal
distribution of soil pressure. Construct the shear and
moment diagrams. Label all ordinates of the diagrams.
Sketch the deflected shape.

50 kips

50 kips

8 kips/ft

1 20’ , |

P5.43

B ST W

e

¥

A -
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P5.44 and P5.45. Classify the structures in Figufes P5.44 and P5.45. Indicate whether stable or unstable. If stable, indi-
cate whether determinate or indeterminate. If indeterminate, give the degree. ‘
- hinge.

_
ierpols

@ ® W ©

(d)
P5.44

(@) & (c)

hinge
@ E i ©
P5.45

- - IS TP L SN A - - I .
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Practical ‘Application

© P5.46. The corner panel of a typical floor of a ware-

house is shown in Figure P5.46. It consists of a 10-in-
thick reinforced concrete slab supported on steel beams.
The slab weighs 125 1b/ft2. The weight of light fixtures
and utilities suspended from the bottom of the slab is
estimated to be 5 Ib/ft2. The exterior beams B, and B,

4 B,

support a 14-ft-high masonry wall constructed of light-
weight, hollow concrete block that weighs 38 Ib/ft2, We
assume that the tributary area for each beam is shown
by the dashed lines in Figure P5.46, and the weight of
the beams and their fireproofing is estimated to be 80
Ib/ft. Draw the shear and moment diagrams produced

. by the total dead load for beams B, and B,.

>

10" block

" 10" slab

Section A-A
P5.46

(¥ R - -

PO - S A -
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Practical Example.

P5.47 Computer analysis. The legs and girder of the
rigid frame in Figure P5.474 are fabricated from a
! W18 X 130 wide flange steel beam: A = 38.2
in? and I = 2460 in*. The frame is to be designed
for a uniform load of 4 kips/ft and a lateral wind load of
6 kips; E = 29,000 kips/in®. The weight of the girder is
included in the 4 kips/ft.

(a) Compute the reactions; plot the deflected
shape and the shear and moment curves for the legs and
girder, using the computer program. (Set the number of
sections equal to 7 for all members.)

‘ (b} To avoid ponding™* of rainwater on the roof,
the girder is to be fabricated with a camber equal to the
deflection at midspan of the roof girder produced by the
loads shown. Determine the camber (see Fig. P5.47b).

4 kips/ft

L 40 l
(@)

camber = ?

o unloaded frame
&

P5.47

Problems 219

P5.48. Computer analysis of a continuous beam. The
continuous beam in Figure P5.48 is constructed
! from a W18 X 106 wide flange steel beam with
A = 31.1 in% and I = 1910 in*. Determine the
reactions, plot the shear and moment diagrams and the
deflected shape. Evaluate the deflections. Neglect weight
of beam. E = 29,000 ksi. ‘

w =18 kips/ft

24 kips

*Ponding refers to the pool of water that can collect on a roof when the roof drains are not adequate to carry away rain water or become clogged. This condition has resuited

in the collapse of flat roofs. To avoid ponding, beams may be cambered upward so rain waier cannot accumulate at the center regions of the roof. See Figure P5.47b.

- T B -
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' G.ebr'g:e Wash_i'h'gtbn Bridge spanning the Hudson River between Manhattan and Fort Lee, New Jersey. The

center span is 3500 ft, the towers rise 604 ft above the water, and the overall distance between anchor-

“ages is 4760 ft. Built at a cost of $59 million, the original structure, shown here, was opened to traffic in

1931. A six-lane lower level was added in 1962.
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Cables

Introduction

‘As we dlscussed in Section 1.5, cables constructed of high-strength steel

wires are completely flexible and have a tensile strength four or five times
greater than that of structural steel. Because of their great strength-to-
weightratio, designers use cables to construct long-span structures, includ-
ing suspension bridges and roofs over large arenas and convention halls.
To use cable construction effectively, the designer must deal w1th two

- problems:

1. Preventing large displacements and oscillations from developing in -
cables that carry live loads whose magnitude or direction changes
with time.

‘2. Providing an efficient means of anchoring the large tensile force

carried by cables.

To take advantage of the cable’s high strength while minimizing its
negative features, designers must use greater inventiveness and imagina-

- tion than are required in conventional beam and column structures. For

example, Figure 6.1 shows a schematic drawing of a roof composed of
cables connected to a center tension ring and an outer compression ring.
The small center ring, loaded symmetrically by the cable reactions, is
stressed primarily in direct tension while the outer ring carries mostly
axial compression. By creating a self-balancing system .composed of
members in direct stress, the designer creates an efficient structural form
for gravity loads that requires only vertical supports around its perime-

ter. A number of sports arenas, including Madison Square Garden in-

New York City, are roofed with a cable system of this type.

In a typical cable analysis the designer establishes the position of the
end supports, the magnitude of the applied loads, and the elevation of one
other point on the cable axis (often the sag at midspan; see Fig. 6.2a).
Based on these parameters, the designer applies cable theory to compute
the end reactions, the force in the cable at all other points, and the posi-
tion of other points along the cable axis.

AT P

-» S e -

compression
cable ‘ ., ring”

tension vertical
ring ‘ support

Figure 6.1: Cable-supported roof composed of

three elements: cables, a center tension ring, and
an outer compression ring.

- M e -
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{a)

Figure 6.2: Vertically loaded cables: (a) cable . |

with an inclined chord—the vertical distance
between the chord and the cable, 7, is called the
sag; (b) free body of a cable segment carrying
vertical loads; although the resultant cable force T
varies with the slope of the cable, TF, = 0
requires that H, the horizontal component of 7, is
constant from section to section,

Phote 6.1: Terminal building at Dulles airport.
Roof supported on a net of steel cables spanning
between massive, sloping, remforced concrete
pylons.

JF VR - TERYE e

®)

Chardcterlstlcs of Cables

Cables which are made of a group of high-strength wires twisted together
to form a strand, have an ultimate tensile strength of approximately 270

kips/in® (1862 MP4). The twisting operation imparts a spiral pattern to

the individual wires.

 While the drawing of wires through d1es during the manufacturing
process raises the yield point of the steel, it also reduces its ductility. Wires
can undergo an ultimate elongation of 7 or 8 percent compared to 30 to
40 percent for structural steel with a moderate yield point, say, 36 kips/in®

(248 MPa). Steel cables have a modulus of elasticity of approximately

26,000 kips/in? (179 GPa) compared to a modulus of 29,000 kips/in®
(200 GPa) for structural steel bars. The lower modulus of the cable is due
to the unceiling of the wire’s spiral structure under load.

Since a cable carries only direct stress, the resultant axial force T on
all sections must act tangentially to the longitudinal axis of the cable (see

- S - - i ST VR L
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Section 6.3 ©  Variation of Cable Force

Fig. 6.2b). Because a cable lacks flexural rigidity, designers must use
great care when designing cable structures to ensure that live loads do not
induce either large deflections or vibrations. In early prototypes, many
cable-supported bridges and roofs developed large wind-induced dis-
placements (flutter) that resulted in failure of the structure. The complete
destruction of the Tacoma Narrows Bridge on November 7, 1940, by
wind-induced oscillations is one of the most spectacular examples of a
sttuctural failure of a large cable-supported structure. The bridge, which
spanned 5939 ft (1810 m) over Puget Sound near the City of Tacoma,
Washington, developed vibrations that reached a maximum amplitude in
the vertical direction of 28 ft (8.53 m) before the floor system broke up
and dropped into the water below (see Photo 2.1).

...............

7‘ 6.3 Variation of Cable Force

If a cable supports vertical load only, the horizontal component H of the
cable tension 7T is constant at all sections along the axis of the cable. This
conclusion can be demonstrated by applying the equilibrium equation
2F, = 0 to a segment of cable (see Fig. 6.25). If the cable tension is
expressed in terms of the horizontal component H and the cable slope 8,

T = , , 6.1
cos 6 . :

At a point where the cable is horizontal (e.g., sce point B in Fig. 6.24), 0
equals zero. Since cos 0 = 1, Equation 6.1 shows that 7 = H. The max-
imum value of T typically occurs at the support where the cable slope is
largest. o - ' s

Y I - ST VR, - [ T

223

Photo 6.2: Cable-stayed bridge over Tampa bay.
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@

Fye

Figure 6.3: Vector diagrams: (@) cable with two
vertical loads, (b) forces acting on an-infinitesi-

ma} segment of cable at B, () force polygon for
vectors in (b).

B B - CEN D

Analysis of a Cable Supporting Gravity
(Vertical) Loads

When a set of concentrated loads is applied to a cable of negligible
weight, the cable deflects into a series of linear segments (Fig. 6.34). The
resulting shape is called the funicular polygon. Figure 6.3b shows the
forces acting at point B on a cable segment of infinitesimal length. Since
the segment is in equilibrium, the vector diagram consisting of the cable
forces and the applied load forms a closed force polygon (see Fig. 6.3¢).
A cable supporting vertical load (e.g., see Fig. 6.3a) is a deferminate
member. Four equilibrium equations are available to compute the four
reaction components supplied by the supports. These equations include
the three equations of static equilibrium applied to the free body of the
cable and a condition equation, M, = 0. Since the moment at all sec-
tions of the cable is zero. the condition equation can be written at any
section as long as the cable sag (the vertical distance between the cable
chord and the cable) is known. Typically, the designer sets the maximum
sag to ensure both a required clearance and an economical design.

- To illustrate the é'omputations‘()f the support reactions and the forces
at various points along the cable axis, we will analyze the cable in Fig-

" ure 6.4a. The cable sag at the location of the 12-kip load is set at 6 ft. In
- ‘this analysis we will assume that the weight of the cable is. tnvxal {com-
“pared to the-load) and neglect it. :

STEP 1 Compute D, by summing moments about support A.
Gt IM, =0
(12 kips)(30) + (6 kips)(70) — D,(100) = 0
D,=78kips (6.2)

STEP 2 Compute A,.

P

1 2F=0
o 0=A-12-6+78
A, = 10.2 kips | - (63)
STEP 3 Compute H; sum moments about B (Fig. 6.4b).
o CF ZMp=0
. 0=A,(30) ~ Hhy _
hH = (102)(30) (64
Settmg hg=06ft ylelds
= 51 kips
- :m--,‘; — - W e -




Section 6.5 -

After H is computed, we can establish the cable sag at Cby
considering a free body of the cable Just to the right of C

(Fig. 6.4¢).
STEP 4
O+ EMC =
~D},(30) + Hh = (
”301) ~—30(78) Abf ‘(65
e H 51 ) ' )
To compute the force in the three cable segments, we estab-
lish 8,, 05, and 8. and then use Equation 6.1.
Compute Tp.
tan 6, = 30 and 8, = 11.31°
H 51 ’
= = ez 51 98 ki
T = cos 6, 0981 ps
Compute Ty
6 — 46 e
= = {), = 2°
tan 8y 0 0.035 and Og
H 51
= —— = ——— = §],03ki
BCT s 6, 0.999 ps
Compute T¢p.
4.6
tan 8, = 30 0.153 and B = 8.7°
H 51
= = ——= 51.62Kki
Ten cos B 0.988 ps

Since the slopes of all cable segments in Figure 6.4a are relatively

small, the computations above show that the difference in magnitude
between the horizontal component of cable tensxon H and the total cable
force T is small.

General Cable Theorem

As we carried out the computations for the analysis of the cable in Figure
6.4a, you may have observed that certain of the computations are similar
to those you would make in analyzing a simply supported beam with a
span equal to that of the cable and carrying the same loads applied to the
cable. For example, in Figure 6.4c we apply the cable loads to a beam

TR e

General Cable Theorem
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6 kips
12 kips

(b}.

6 kips

12 kips
A B C D
I.. 30/ b g0 30’-1 '
10.2 kips 7.8 kips
306 kip-ft _ 23akipet

(d)

Figure 6.4: (a) Cable loaded with vertical
forces, cable sag at B set at 6 ft; (b) free body of
cable to left of B, (¢) free body of cable to right of
C; (d) a simply supported beam with same loads
and span as cable (moment diagram below).
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whose span equals that of the cable. If we sum moments about support
A to compute the vertical reaction D, at the right support, the moment
equation is identical to Equation 6.2 previously written to compute the
vertical reaction at the right support of the cable. In addition, you will
notice that the shape of the cable and the rhoment curve for the beam in

Figure 6.4 are identical. A comparison of the computations between those

for a cable and those for a simply supported beam that supports the cable
loads leads to the following statement of the general cable theorem:

At any poinf on a cable supporting vertical loads, the product of the
cable sag & and the horizontal component H of the cable tension equals
the bending moment at the same point in a simply supported beam that
carries the same loads in the same position as those on the cable. The
span of the beam is equal to that of the cable.

The relationship above can be stated by the following equation:
Hh, = ‘ (6.6)

where H honzontal component of cable tension
h, = cable sag at point z where M, is evaluated
o fI = moment at point zin a s:mp}v supported beam carrymg
 the loads apphed to the cable

Smce His constant at all sections, ‘Equation 6.6 shows that the cable sag h

1 is proportional to the ordinates of the moment curve.

To verify the general cable theorem given by Equation 6.6, we will
show that at an arbitrary point z on the cable axis the product of the
horizontal component H of cable thrust and the cable sag h, equals the
moment at the same point in a simply supported beam carrying the cable
loads (see Fig. 6.5). We will also assume that-the end supports of the
cable are located at different elevations. The vertical distance between
the two supports can be expressed in terms of ¢, the slope of the cable
chord, and the cable span L as

y=Ltan o ‘ 6.7

Directly below the cable we show a simply supported beam to which we
apply the cable loads. The distance between loads is the same in both
members. In both the cable and the beam, the arbitrary section at which
we will evaluate the terms in Equation 6.6 is located a distance x to the

 right of the left support. We begin by expressing the vertical reaction of
the cable at support A in terms of the vertical loads and H (Fig. 6.54a).

O+ EMB == 0
0 =A,L - Smy + H(L tan ) (6.8)

where Smjy represents the moment about support B of the vertical loads
(P, through P,) applied to the cable.

TR e - T e - TN e
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B . Figure 6.5

P, P, Py Py
A l | B
23 . |
§z ==
RA RB
X
L J

®

In Equation 6.8 the forces A, and H are the unknowns. Considering a
free body to the left of point z, we sum moments about point z to produce
a second equation in terms of the unknown reactions A, and H.

Y M, =0
0=Ax+H(tana — h,) — Zm, (6.9)
where Zm_ represents the moment about z of the loads on a free body of
the cable to the left of point z. Solving Equation 6.8 for A, gives
Zmg — H(L tan « S
A, = Ll L( ) (6.10)

Substituting A, from Equation 6.10 into Equation 6.9 and simplifying,
we find .

Hh, = }’j—zmg —Sm, (6.11)

IR e - ST

TR e .
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Figure 6.6: Establishing the shape of the funic-
ular arch: (g) loads supported by arch applied toa
cable whose sag h; at midspan equals the midspan

height of the arch; {6} arch (produced by invert-

ing the cable prcﬁle) in dlrect stress.

We next evaluate M the bending moment in the beam at point z (see Fig.
6. Sb) ‘ :

M, =R - Sm, V 6.12)

To evaluate R, in Equanon 6. 12 we sum moments of the forces about the
roller at B. Since the loads on the beam and the cable are identical, as are
the spans of the two structutes, the moment of the apphed loads (P,
through P,) about B also equals Zm.

Gt EMp=0
O = RAL e E?ng
Mg
A= (6.13)
Substituting R, from Equation 6.13 into Equation 6.12 gives
.3
M, = x—?— — Sm (614

Since the right sides of Equations 6.11 and 6.14 are identical, “we can
equate the left sides, giving, Hh Mz, and Equation 6.6 is verified.

.....

66 Estabhshmg the Funicular Shape of an Arch

The material required to construct an arch is minimized when all sections
along the axis of the arch are in direct stress. For a particular set of loads
the arch profile in direct stress is called the funicular arch. By imagining
that the loads carried by the arch are applied to a cable, the designer can
automatically generate a funicular shape for the loads. If the cable shape
is tarned upside down, the designer produces a funicular arch. Since dead
loads are usually much greater than the live loads, a designer might use
them to establish the funicular shape (see Fig. 6.6).

®
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Determine the reactions at the supports produced by the 120-kip load at
midspan (Fig. 6.7) (a) using the equations of static equilibrium and
(b) using the general cable theorem. Neglect the weight of the cable.

Solution

a. Since supports are not on the same level, we must write two equilib- -
rium equations to solve for the unknown reactions at support C. First
consider Figure 6.7a.

Gt EM,=0
0 = 120(50) + 5H — 100C, (1)

-Next consider Figure 6.75.
C* EM=0
0 = 10.5H — 50C,
50
H=—0C, , 2
, 05 & ‘ @
Substitute H from Equation 2 into Equation 1.

, 50
0 = 6000 + 5(10—5— C}) - 100C,

C, = 78.757 kips
Substituting C, into Equation 2 yields
50

H= -1-0_.5—(?835?) = 375 kips

b. Using the general cable theorem, apply Equation 6.6 at midspan where.

the cable sag h, =8 ft and M, = 3000 kip-ft (see Fig. 6.7¢).

Hh, = M,
H(8) = 3000
H = 375 kips

After H is evaluated, sum moments about A in Figure 6.7¢ to com-
pute C, = 78.757 Kips. :

NOTE. Although the vertical reactions at the supports for the cable in
Figure 6.7a and the beam in Figure 6.7¢ are not the same, the final results
are identical. ‘

EXAMPLE 6.1

(2]

120 kips
s 1c
AL B =
? L ?
Ry =60 kips . R =60kips

M = 3000 kip-ft

©

Figure &.7: (¢) Cable with a vertical load at
midspan; (b) free body to the right of B; (¢) sim-
ply supported beam with same length as cable.
Beam supports cable load.
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EXAMPLE 6.2 A cable-supported roof carries a uniform load w = 0.6 kip/ft (see Fig. 6.8a).

If the cable sag at midspan is set at 10 ft, what is the maximum tension in
the cable (a) between points B and D and (b) between points A and B?

Solution

a. Apply Equation 6. 6 at rmdspan to analyze the cable between points
‘B and D. Apply the uniform load to a simply supported beam and
compute the moment M, at midspan (see Fig. 6.8¢). Since the moment
curve is a parabola, the cable is also a parabola between points B and D.

2

Hi = M, ="E

8

0.6(120)?

o 252
= 108 kips

The maximum cable tension in span BD occurs at the supports where
. the slope is maximum. To establish the slope at the supports, we dif-
- ferentiate the equation of the cable y = 4hx%/L? (see F1g 6.8b).

ta T

x

o Z\O/

ek

®

moment diagram

Figure 6.8 ©
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atx = 60 ft, tan § = 8(10)(60)/(120)* = 3, and 6 = 18,43°:

cos § = 0.949
Substituting into
H
" cos 8 &1
108 .
= 0949 113.8 kips

. If we neglect the weight of the cable between points A and B, the cable
can be treated as a straight member. Since the cable slope 8 is 45°,
the cable tension equals

~——— = 152.76 kips

Summary 231

v Summary
Cables, composed of multiple strands of cold-drawn, high-strength
steel wires twisted together, have tensile strengths varying from 250 to
270 ksi. Cables are used to construct long-span structures such as
suspension and cable-stayed bridges, as well as roofs over large arenas
(sports stadiums and exhibition halls) that require column-free space.
Since cables are flexible, they can undergo large changes in geometry
under moving loads; therefore, designers must provide stabilizing
elements to prevent excessive deformations. Also the supports at the
ends of cables must be capable of anchoring large forces. If bedrock
is not present for anchoring the ends of suspension bridge cables,
massive abutments of reinforced concrete may be required.

Because cables (due to their flexibility) have no bending stiffness,
the moment is zero at all sections along the cable.

The general cable theorem establishes a simple equation to relate the
horizontal thrust H and the cable sag 4 to the moment that develops-

in a fictitious, simply supported beam with the same span as the cable

Hh, = M,
where H = horizontal component of cable tension
h, = sag at point z where M, is evaluated. The sag is the
vertical distance from the cable chord to the cable.

M, = moment at point z in a simply supported beam with the
same span as the cable and carrying the same loads as the
cable

‘When cables are used in suspension bridges, floor systems must be
very stiff to distribute the concentrated wheel loads of trucks to
multiple suspenders, thereby minimizing deflections of the roadway.
Since a cable is in direct stress under a given loading (usually the
dead load), the cable shape can be used to generate the funicular
shape of an arch by turning it upside down.
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232 ' Chapter 6  Cables

PROBLEMS

P6.1. Determine the reactions at the supports, the mag-  P6.4. What value of 6 is associated with the minimum

nitude of the cable sag at point B, and the maximum force - volume of cable material required to support the 100-kip -

in the cable in Figure P6.1. \ load in Figure P6.4? The ailowable stress in the cable is
2 : 150 kxps,/m2 ‘

oo

30 kips ]
L—~ 12— 18 L 6/
) ) . ' 100 kips
ped , o
! k 60' b 60 |
P6.2. {a) Determme the reactions at supports A and E
~and the maximum tension in the cable in Figure P6.2. A P6.4

" P6.5. The cables in Figure P6.5 have been dimensioned
. so that a 3-kip tension force develops in each vertical
strand when the main cables are tensioned. What value
of jacking force T must be apphed at supports Band C

(b) Establish the.cable sag at points C and D.

R s [ A " to tension the system?
e L /V‘ < A < == 2 " cable . A T=1
) o “ D e = c |5
o T cable —4. : 1o
k-3 m T Sm ; 2m ! S5m ! ‘ k : )
20kN o o 4 - ’ =5 %"
. P&. 2 . S ‘ | . FRE T=1
P6.3. Compute the support reactions and’ the maximum b @10=60—
_tension in the main cable in Figure P6.3. The hangers , ,
can be assumed to pmwde a simple support for the sus- . ' P6.5 _
-pended beams. P6.6. Compute the support reactions and the maximum

, B, tension in the cable in Flgure P6.6.
\ ’ — — — @ w =8 kN/m

80’ . w=6Kkipsfft - . o
‘ . ”./ - i 20.1 \
o
L b - cable

A

! _30m- | . 30m - |

L - 6 @ 40" = 240" ]

P6.3 P66




P6.7. Compute the support reactions and the maximum
tension in the cable in Figure P6.7.

20kN
17:4st’!11

L——Sm—»gutm#é}m»l«——- 8 m ——]

P6.7 .
P6.8. A cable ABCD is pulled at end E by a force P
(Fig. P6.8). The cable is supported at point D by a rigid
member DF. Compute the force P that produces a sag
of 2 m at points B and C. The horizontal reaction at sup-

port F is zero. Compute the vertical reaction at F.
: D

e emeh—am e amd

P6.8
P6.9. Compute the support reactions and the maximum
tension in the cable in Figure P6.9. The sag at midspan
is 12 ft. Each hanger can be assumed to provide a sim-
ple support for the suspended beam. Determine the sag
at points B and D.
A

Okips 9kips 9kips 9kips

b 30" b 6 @ 15" = 90! sk 30 —]

P6.9

Problems 233

P6.10. Determine the location of the 40-kIN load such
that sags at points B and C are 3 m and 2 m, respec-
tively. Determine the maximum tension in the cable and
the reactions at supports A and D.

L 20m e 10m—b—10m—] | |
P6.10
Practical Application

P6.11. The cable-supported roof for a summer theater,
shown in Figure P6.11, is composed of 24 equally
spaced cables that span from a tension ring at the cen-
ter to a compression ring on the perimeter. The tension
ring lies 12 ft below the compression ring. The roof - . -
weighs 25 1b/ft? based on the horizontal projection of
the roof area. If the sag at midspan of each cable is 4 ft,
determine the tensile force each cable applies to the
compression ring. What is the required area of each
cable if the allowable stress is 110 kips/in*? Determine
the weight of the tension ring required to balance the
vertical components of the cable forces.

compression 15°
ring

1
compression
ring
\

- / - o1 3‘12‘ '

cable tension
© . ring

-

=

e 60—k 0yl
© Section 1-1 f
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French Kng Bndge Greenfeld Massachusetts The trussed arch bridge provides an efficient design to
carry a roadway over a river in a rural area of Western Massachusetts. The arch conftguration of the lower
chord is not only visually attractive, but provndes optimum headroom for boats passing under the bridge.
The large depth of the structure towards the ends produces a stiff structure with slender members.
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As we discussed in Section 1.5, the arch uses material efficiently because
applied loads create mostly axial compression on all cross sections. In
this chapter we show that for a particular set of loads, the designer can
establish one shape of arch-—the funicular shape—in which all sections
are in direct compression (imoments are zero),
Typically, dead load constitutes the major load supported by the arch.
If a funicular shape is based on the dead load distribution, moments will
be created on cross sections by live loads whose distribution differs from
that of the dead load. But normally in most arches, the bending stresses
produced by live load moments are so small compared to the axial stresses
that net compression‘stresses exist on all sections. Because arches use mate-
rial. efﬁmently, designers often use them as the main structural elements
'in long-span bridges (say, 400 to 1800 ft) or buildings that require large
column-free areas, for example, airplane hangers, field houses, or con-
vention halls.
In this chapter we consider the behavmr and analysis of three- hmcved
arches. As part of this study, we derive the equation for the shape of a

i funicular arch that supports a uniformly distributed load, and we apply

the general cable theory (Sec. 6.5) to produce the funicular arch for an
arbitrary set of concentrated loads. Finally, we apply the concept of struc-
tural optimization to establish the minimum Wexght of a simple three-
" hinged arch carrying a concentrated load.

Types of Arches

Arches are often classified by the number of hngS they contain or by
the manner in which their bases are constructed. Figure 7.1 shows the three
main types: three-hinged, two-hinged, and fixed-ended. The three-hinged
arch is statically determinate; the other two types are indeterminate. The
three-hinged arch is the easiest to analyze and construct. Since it is deter-
minate, temperature changes, support settiements, and fabrication errors

- I e o - B e -

NONE

©

Figure 7.1 Types of arches: (a) three-hinged
arch, stable and determinate; (b) two-hinged arch,
indeterminate to the first degree; (¢) fixed-end
arch, indeterminate to the third degree.
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 _2,_346 Chapter7  Arches

Figure 7.2: (a) Buckling of an unsupported
arch; (b) trussed arch, the vertical and diagonal
members brace the. arch rib against buckling in
the»vertical plane; {c} two types of built-up steel
cross sections used to construct an arch rib,

r
o

" do not create stresses. On the other hand, because it contains three hmges,

it is more flexible than the other arch types.

Fixed-ended arches are often constructed of masonry or concrete when
the base of an arch bears on rock, massive blocks of masonry, or heavy
reinforced concrete foundations. Indeterminate arches can be analyzed
by the flexibility method covered in Chapter 11 or more simply and rap-
idly by any general-purpose computer program. To determine the forces
and displacements at arbitrary points along the axis of the arch using a
computer, the designer treats the points as joints that are free to displace.

In long-span bridges, two main arch ribs are used to support the road-

.way beams. The roadway beams can be supported either by tension hang-

ers from the arch (Fig. 1.9a) or by columns that bear on the arch (Photo

- 7.1). Since the arch rib is mostly in compression, the des1gner must also

consider the possibility of its buckling—particularly if it is slender (Fig. |
7.2a). If the arch is constructed of steel members, a built-up 1ib or a box

®

channel

cross section : welded box section

()
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section may be used to increase the bending stiffness of the cross section
and to reduce the likelihood of buckling. In many arches, the floor system
or wind bracing is used to stiffen the arch against lateral buckling. In the
case of the trussed arch shown in Figure 7.2b, the vertical and diagonal
members brace the arch rib against buckling in the vertical plane.

Since many people find the arch form aesthetically pleasing, designers
often use low arches to span small rivers or roads in parks and other public
places. At sites where rock sidewalls exist, designers often construct short-
span highway bridges using barrel arches (see Fig. 7.3). Constructed of
accurately fitted masonry blocks or reinforced concrete, the barrel arch con-
sists of a wide, shallow arch that supports a heavy, compacted fill on which
the engineer places the roadway slab. The large weight of the fill induces
sufficient compression in the barrel arch to neutralize any tensile bending
stresses created by even the heaviest vehicles. Although the loads supported
by the barrel arch may be large, direct stresses in the arch itself are typically
low—on the order of 300 to 500 psi because the cross-sectional area of the
arch is large. A study by the senior author of a number of masonry barrel-
arch bridges built in Philadelphia in the mid-nineteenth century showed that
they have the capacity to support vehicles three to five times heavier than
the standard ASSHTO truck (see Fig. 2.7), which highway bridges are cur-
rently designed to support. Moreover, while many steel and reinforced con-
crete bridges built in the past 100 years are no longer serviceable because
of corrosion produced by salts used to melt snow, many masonry arches,
constructed of good-quality stone, show no deterioration.

7.3 Three-Hinged Arches

To demonstrate certain of the characteristics of arches, we will consider
how the bar forces vary as the slope 8 of the bars changes in the pin-jointed
arch in Figure 7.4a. Since the members carry axial load only, this con-
figuration represents the funicular shape for an arch supporting a single
concentrated load at midspan. '

L
Fes » A7 sing
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Three-Hinged Arches

Photo 7.1: Railroad bridge (1909) over the Land-
wasser Gorge, near Wiesen, Switzerland. Masonry
construction. The main arch is parabolic, has a
span of 55 m and a rise of 33 m. The bridge is nar-
row as the railway is single-track. The arch ribs
are a mere 4.8 m at the crown, tapering to 6 m at
the supports.

roadway

slab fill

O]

Figure 7.3: (@) Barrel arch resembles a curved
slab; (b) barrel arch used to support a compacted
fill and roadway slab.

Figure 7.4: (a) Three-hinged arch with a con-
centrated load; () vector diagram of forces act-
ing on the hinge at B, forces Foyand Fy are equal
because of symmetry; (¢) components of force in
bar 4B.
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Figure 7.5: Variation of volume of material with

slope of bars in Figure 7.4q.

Because of symmetry, the vertical components of the reactions at
supports A and C are identical in magnitude and equal to P/2. Denoting
the slope of bars AB and CB by angle 6, we can express the bar forces
FAB and Fey in terms of P and the slope angle @ (see Fig. 7. 4b) as

sin @ = P/2 fﬁ
Fag Fep
Fup = Fep = ﬂ ‘
sin 8 7.1

Equation 7.1 shows that as 6 increases from 0 to 90°, the force in each
bar decreases from infinity to P/2. We can also observe that as the slope
angle 6 increases, the length of the bars—and consequently the material
required-—also increases. To establish the slope that produces the most eco-
nomical structure for a given span L, we will express the volume V of bar
material required to support the load P in terms of the geometry of the
structure and the compressive strength of the material

v=24L, - ay

.where A is the area of one bar and Ly is the 1ength of a bar.

To express the required area of the bars in terms of load P, we divide

‘the bar forces given by Equatmn 7.1 by the allowable compressxve stress
‘ Uallow

P/2

=0 7.3
(Sin 3)Uallow ( )

We will also express the bar length L; in terms of 6 and fhe span length
Las .
L/2

cos 6

5= (7.4)

Substituting A and LB given by Equations 7.3 and 7.4 into Equation 7.2,

- simplifying, and using the trigonometric identity sin 26 = 2 sin 6 cos 6

we calculate R

V= S — : (7.5)

Zo'auw sin 20 ‘

If Vin Equation 7. 5 is plotted as a function of 8 (see Fig. 7.5), we observe
that the minimum volume of material is associated with an angle of § =
45°. Figure 7.5 also shows that very shallow arches (6 < 15°) and very
deep arches (6 = 75°) require a large volume of material; on the other
hand, the flat curvature in Figure 7.5 when 8 varies between 30 and 60°
indicates that the volume of the bars is not sensitive to the slope between
these limits. Therefore, the designer can vary the shape of the structure
within this range without significantly affecting either its weight or its cost.
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Section 7.4 Funicular Shape for an Arch That Supports a Uniformly Distributed Load 239

In the case of a curved arch carrying a distributed load, the engineer
will alsofind that the volume of material required in the structure, within
a certain range, is not sensitive to the depth of the arch, Of course, the
cost of a very shallow or very deep arch will be greater than that of an
arch of moderate depth. Finally, in establishing the shape of an arch, the
designer will also consider the profile of the site, the location of solid
bearing material for the foundations, and the architectural and functional -
requirements of the project.

 Funicular Shape for an Arch That Supports a
Uniformly Distributed Load

Many arches carry dead loads that have a uniform or nearly uniform dis-
tribution over the span of the structure. For example, the weight per unit
length of the floor system of a bridge will typically be constant. To estab-
lish for a uniformly loaded arch the funicular shape—the form required
if only direct stress is to develop at all points along the axis of an arch—
we will consider the symmetric three-hinged arch in Figure 7.6a4. The
height (or rise) of the arch is denoted by 4. Because of symmetry, the ver-
- tical reactions at supports A and C are equal to wL/2 (one-half the total .
load supported by the structure).-

The horizontal thrust H at the base of the arch can be expressed in
terms of the applied load w and the geometry of the arch by considering
the free body to the right of the center hinge in Figure 7.6b. Summing
moments about the center hinge at B, we find

Figure 7.6: Establishing the funicular shape for
a uniformly loaded arch.

)
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Oﬁ Mg =
wlL\ L wL\ L
= —=]== +
(2)4 (2)2 Hh
wlL? ;
H———S—h—_ (7,6)

To establish the equation of the axis of the arch, we superimpose a
rectangular coordinate system, with an origin o located at B, on the arch,
The positive sense of the vertical y axis is directed downward. We next
express the moment M at an arbitrary section (point D on the arch’s axis)
by considering the free body of the arch between D and the pin at C.

o EMp=0

L E 2w wL(L ,
0 (2 x)z 2(2 x) HMh-y)+M

Solving for M gives

ot e an

If the arch axis follows. the funicular shape, M = 0 at all sections. Sub-
‘stituting this value for M into Bquation 7.7 and solvmg for y establishes

the following mathematlcal relatxonshlp between y and x:

4h 2
LZ
Equation 7.8, of course, represents the equation of a parabola. Even if the

parabolic arch in Figure 7.6 were a fixed-ended arch, a uniformly dis-
tributed load-—assuming no significant change in geometry from axial

y= (7.8)

shortening—would still produce direct stress at all sections because the

arch conforms to the funicular shape for a uniform load.

From a consideration of equilibrium in the horizontal direction, we.

can see that the horizontal thrust at any section of an arch equals H, the
horizontal reaction at the support. In the case of a uniformly loaded par-
abolic arch, the total axial thrust T at any section, a distance x from the

origin at B (see Fig. 7.6b), can be expressed in terms of H and the slope
at the given section as

T= , 7.9
cos 8 o (
To evaluate cos 6, we first differentiate Equation 7.8 with respect to x to give
“dy  8hx
tan =~ == s 7.10
BT (7.10)
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Section 7.4 Funicular Shape for an Arch That Supports a Uniformly Distributed Load

The tangent of 6 can be shown graphically by the triangle in Figure 7.6¢.
From this triangle we can compute the hypotenuse r using r? = x? + y2

Y A%
roe= 1+<L2> (7.11)

From the relationship between the sides of the triangle in Figure 7.6¢ and
the cosine function, we can write

cos 6 = -————1———-— (7.12)
8hx \?
M\

Substituting Equation 7.12 into Equation 7.9 gives

-
T=H 1+ (%—) (7.13)

Equation 7.13 shows that the largest value of thrust occurs at the supports
where x has its maximum value of L/2. If w or the span of the arch is large,
the designer may wish to vary (taper) the cross section in direct propor-
tion to the value of T so that the stress on the cross section is constant.

Example 7.1 illustrates the analysis of a three-hinged trussed arch for
both a set of loads that corresponds to the funicular shape of the arch as
well as for a single concentrated load. Example 7.2 illustrates the use of
cable theory to establish a funicular shape for the set of vertical loads in
Example 7.1.

- 241

Analyze the three-hinged trussed arch in Figure 7.7a for the dead loads
applied at the top chord. Member KJ, which is detailed so that it cannot

transmit axial force, acts as a simple beam instead of a member of the -

truss. Assume joint D acts as a hinge.

Solution o
Because the arch and its loads are symmetric, the vertical reactions at A
and G are equal to 180 kips (one-half the applied load). Compute the hor-
izontal reaction at support G.

Consider the free body of the arch to the right of the hinge at D (Fig.
7.7a), and sum moments about D.

G+ ZMD = () .
0 = 60(30) + 60(60) + 30(90) — 180(90) + 36H
H = 225 kips

EXAMPLE 7.1

[continues on next page]
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Example 7.1 continues . . .

30 kips 60 kips 60 kips 60 kips 60 kips 60 kips 30 kips. 30 kips 60 kips 60 kips 60 kips

? 6 @30 = 180 ?
R : R . 180
4 @ ‘ } ¢ ®
Figure 7.7 We now analyze the truss by the method of joints starting at support A.

Results of the analysis are shown on a sketch of the truss in Figure 7.75.

NOTE. Since the arch rib is the funicular shape for the loads applied at
the top chord, the only members that carry load—other than the rib—are
the vertical columns, which transmit the load down to the arch. The diag-~ - 3
onals and top chords will be stressed when a loading pattern that does not
conform to the funicular shape acts. Figure 7.8 shows the forces pro---
duced in the same truss by a single concentrated Joad at joint L. =~

90 kips

Figure 7.8 60 - o - 30

,E X_A M P LE 7 2 Establish the shape of the funicular arch for the set of loads acting on the

trussed arch in Figure 7.7. The rise of the arch at midspan is set at 36 ft.

Solution

We imagine that the set of loads is applied to a cable that spans the same
. distance as the arch (see Fig. 7.94). The sag of the cable is set at 36 ft—

Ky e - i SR VN - [§ ST Ve - C BN e -
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Section 7.4

Funicular Shape for an Arch That Supports a Uniformly Distributed Load

the height of the arch at midspan. Since the 30-kip loads at each end of
the span act directly at the supports, they do not affect the force or the
shape of the cable and may be neglected. Applying the general cable the-
ory, we imagine that the loads supported by the cable are applied to an
imaginary simply supported beam with a span equal to that of the cable
(Fig. 7,90). We next construct the shear and moment curves. According

to the general cable theorem at every point,

M = Hy

. 60kips
60 kips

(@)

60kips 60kips 60 kips 60 kips 60 Kips

T-H6@30’=180'~—~—~——————'T

150 kips 150 kips
&)
150
shpar
(kips)
- =150
©
_ moment
(kip-fty
@) .

(6.6)

243

Figure 7.9: Use of cable theory to establish the
funicular shape of an arch.
[continues on next page)
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Example 7.2 continues . . .

where M = moment at an arbitrary point in the beam
H = horizontal component of support reaction
~y = cable sag at an arbitrary point

e e

v Since y = 36 ft at midspan and M = 8100 kip-ft, we can apply Equation
~ 6.6 at that point to establish H.

M 8100 ‘
H=" =20 0254
y 36 ps

With H established we next apply Equation 6.6 at 30 and 60 ft from
the supports. Compute y, at 30 ft:

M 4500
y= = =20k
Compute y, at 60 ft:
| ‘M 7200
T T s TR

A cable profile is always a funicular structure because a cable can
only carry direct stress. If the cable profile is turned upside down, a
funicular arch is produced. When the vertical loads acting on the cable |
are applied to the arch, they produce compression forces at all sections

equal in magnitudeto the tension forces in the cable at the corresponding
sections. ‘

SN ke am
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* Although short masonry arches are often used in scenic locations
~ because of their attractive form, they also produce economical
- designs for long-span structures that (1) support large, uniformly
distributed dead load and (2) provide a large unobstructed space ;
under the arch (suitable for convention halls or sports arenas orin - i
the case of a bridge providing clearance for tall ships).
» Arches can be shaped (termed a funicular arch) so that dead load
produces only direct stress—a condition that leads to a minimum
weight structure.

+ For a given set of loads, the ﬁmicizlar shape of arch can be established
using cable theory. o
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PROBLEMS |

P7.1. For the parabolic arch in Figure P7.1, plot the vari~
ation of the thrust T at support A for values of £ = 12,

24, 36, 48, and 60 ft. :
) w =4 kN/m

wi:6ki:ps!ft — (T T e

P7.4. Determine the reactions at supports A and C of the
three-hinged circular-arch.

P7.1

P7.2. Compute the reactions at supports A and E of the
three-hinged parabolic arch in Figure P7.2. Next com-
pute the shear, axial load, and moment at points B and

D, located at the quarter points.
w15 kips/ft

RN

P7.4

P7.5. Compute the support reactions for the arch in Fig-
,’ lj 0kips ure P7.5. (Hint: You will need two moment equations:

A Consider the entire free body for one, and a free body of
the portion of truss to either the left or right of the hinge

at B.)

10 kN 20 KN 30 KN

P7.2

P7.3. Determine the axial load, moment, and shear at
point D of the three-hinged parabolic arch.
15 kN/m ‘ :

L’W 5@8m=40m ——————{

P7.5

- s « . '
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P7.6. Dete'rmi‘ne: all bar forces m the three-hinged,
trussed arch in Figure P7.6. '
20 kips

12 kips 24 kips .~ 20kips 12 kips

e 4@ =%

P7.6

P7.7. (a) In Figure P7.7 compute the horizontal reac-
tion A, at support A for a 10-kip load at joint B. (b)
Repeat the computation if the 10-kip load is also located
at joints C and D respectively. ’

, 40 |

P7.7 .

P7.8. For the arch rib to be funicular for the dead loads

shown, establish the elevation of the lower chord joints
B, C, and E. ‘ :

I5kN

30N 30KN

30kN 30kN I1SkN

§m
"4‘m
S A
b—3@8m——h206m-
‘ P7.8
L } R SR - s

pr DY

P7.9. Determine the reactions at supports A and E of
the three-hinged arch in Figure P7.9. . '

20 kN

20 kN

20kN-

10 m k- 10 m k- 10 m k- 10m |
' P7.9

P’?.IO. Establish the funicular arch for the system of
loads in Figure P7.10. ’

42 kips

42 kips 42 kips

L—-4~——~ 6@ 20" = 120" —— ]
‘P7.10

P7.11. If the arch rib ABCDE in Figure P7.11 is to be
funicular for the dead loads shown at the top joints, estab-
lish the elevation of the lower chord joints at B and D.

40 kips 35 kips 30kips- 35 kips 40 kips

ke 4e30=120—-

P7.11




P7.12. Computer study of a two-hinged arch. The objec-
tive is to establish the difference in response of

! a parabolic arch to (1) uniformly distributed loads
and.(2) a single concentrated load.

(@) The arch in Figure P7.12 supports a roadway con-
sisting of simply supported beams connected to the arch
by high-strength cables with area A = 2 in’ and E =
26,000 ksi, (Bach cable transmits a dead load from the
beams of 36 kips to the arch.) Determine the reactions;
the axial force, shear, and moment at each joint of the

Prﬁblems 247

arch; and the joint displacements. Plot the deflected
shape. Represent the arch by a series of straight segments
between joints. The arch has a constant cross section
with A = 24 in%, ] = 2654 in*, and E = 29,000 ksi.

(D) Repeat the analysis of the arch if a single 48-kips
vertical load acts downward at joint 18. Again, deter-
mine all the forces acting at each joint of the arch, the
joint displacements, etc. and compare results with those
in (a). Briefly describe the difference in behavior.

12
e

20"
|

VSection 1-1

36 kips 36 kips A 36kips 36kips 36kips 36kips 36kips 36 kips 36 kips

L 10 @ 36" = 360’

P7.12

P7.13. Computer study of arch with a continuous floor

girder. Repeat part (b) in problem P7.12 if a
! continuous girder with A = 102.5 in* and I =

40,087 in*, as shown in Figure P7.13, is provided

to suppott the floor system. For both the girder and the

arch, determine all forces acting on the arch joints as
well as the joint displacements. Discuss the results of
your study of P7.12 and P7.13 with particular emphasis
on the magnitude of the forces and dlsplacements pro-
duced by the 48-kip load.

® _© o y: _
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: 48 kips continuous girder ’
L 10 @ 36' = 360" - |
P7.13
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To enhsure the brldge shown below is not overstressed by the vehicles passing over it, the designer sizes
each section for the maximum live load force produced by the vehicles as well as for the dead load force. - :
This chapter deéscribes the construction of influence lines, diagrams used by the designer to establish & =

where to pos:tnon a moving load to maximize a particular type of m‘temal force at a specified section.
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ive Load Forces:
nfluence Lines for
Determinate Structures

Introduction

Thus far we have analyzed structures for a variety of loads without con-
sidering how the position of a concentrated load or the distribution of a
uniform load was established. Further, we have not distinguished between
dead load, which is fixed in position, and live load, which can change
position. In this chapter our objective is to establish how to position live
load (for example, a truck or a train) to maximize the value of a certain
typesof force (shear or moment in a beam or axzaf force ina truss) ata
designated section of a structure.

Influence Lines

As a moving load passes over a structure, the internal forces at each point

in the structure vary. We intuitively recognize that a concentrated load -

applied to a beam at midspan produces much greater bending stresses

and deflection than the same load applied near a support. For example, ,

suppose that you had to cross a small stream filled with alligators by

walking over an old, flexible, partially cracked plank. You would be
‘more concerned about the plank’s capacity to support your weight as you

approached midspan than you would be when you were stdndmg on the
end of the plank at the support (see Fig. 8.1).

If a structure is to be safely designed, we must proportion its mem-
bers and joints so that the maximum force at each section produced by
live and dead load is less than or equal to the available capacity of the
section. To establish maximum design forces at critical sections pro-
duced by moving loads, we frequently construct influence lines.

- TR e

This old
board doesn't
ook safe.

)]

Figure 8.1: Variation of bending with position
of load; (a) no bending at midspan, load at sup-
port; (b) maximum bending and deflection, load
at midspan. Board fails.
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Chapter 8

Live Load Forces: Influence Lines for Deterpinate Structures

TR B

An influence line is a diagram whose ordinates, which are plotted as a
function of distance along the span, give the value of an internal force, a
reaction, or a displacement at a particular point in a structure as a unit
load of 1 kip or 1 kN moves across the structure.

Once the influence line is constructed, we can use it (1) to determine where
to place live load on a structure to maximize the force (shear, moment,
etc.) for which the influence line is drawn, and (2) to evaluate the mag-
nitude of the force (represented by the influence line) produced by the live
load. Although an influence line represents the action of a single moving
load, it can also be used to establish the force at a point produced by sev-
eral concentrated loads or by a uniformly distributed load.

..........

: Construction of an Influence Line:

To mtroduce the procedure for constructing influence lines, we will dis-

~ cuss in detail the steps required to draw the influence line for the reac-

tion R, at support A of the simply supported beam in Figure 8.24.
As noted previously, we can establish the ordinates of the influence
lines for the reaction at A by computing the value of R, for successive posi-

tions of a unit load as it moves across the span. We begin by placing the
* unit load at support A. By summing moments about support B (Fig. 8.2b),

we compute R, = 1 kip. We then arbitrarily move the unit load to a sec~
ond position located a distance L/4 to the nght of support A. Again, sum-
ming moments about B, we compute R, = k1p (Fig. 8.2¢). Next, we
move the load to midspan and compute R, = $ kip (Fig. 8. 2d). For the
final computation, we position the 1-kip load dLrectIy over support B, and
we compute R, = 0 (Fig. 8.2¢). To construct the influence line, we now
plot the numerical values of R, directly below each position of the unit
load associated with the eorresponding value of R,. The resulting influ-
ence line diagram is shown in Figure 8.2f. The influence line shows that
the reaction at A varies linearly from 1 kip when the load is at A to a
value of O when the load is at B. Since the reaction at A is in kips, the
ordinates of the influence line have units of kips per 1 kip of load.

- As you become familiar with the construction of inﬂuenc¢ lines, you
will only have to place the unit load at two or three positions along the
axis.of the beam to establish the correct shape of the influence line. Sev-

- eral points to remember about Figure 8.2f are summarized here:

1. All ordinétes of the influence line reprcsenﬁ values of R,. _
2. Bach value of R 4 18 plotted dxrectly below the position of the unit
load that produced it, -

3. The maximum value of R, occurs when the unit load acts at A

- "L e L [ S -
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1 kip . ’ Figure 8.2: Influence lines for reactions at A and
B; (a) beam; (b), (¢), (d), and (e) show successive
positions of unit load; (f) influence line for R,;
(g) influence line for R,.

b

(d} . : o
1 kip :

P

© ‘ )

4, Since all ordinates of the influence line are positive, a load acting
vertically downward anywhere on the span produces a reaction at A
directed upward. (A negative ordinate would indicate the reaction at
A is directed downward.)
5. The influence line is a straight line. As you will see, influence lines .
for determinate structures are either straight lines or composed of
linear segments. » ~

By plotting values of the reaction of B for various positions of the unit
load, we generate the influence line for R shown in Figure 8.2¢. Since
the sum of the reactions at A and B must always equal 1 (the value of the
applied load) for all positions of the unit load, the sum of the ordinates
of the two influence lines at any section must also equal 1 kip.

In Example 8.1 we construct influence lines for the reactions of a
beam with an overhang. Example 8.2 illustrates the construction of influ-
ence lines for shear and moment in a beam. If the influence lines for the
reactions are drawn first, they will facilitate the construcnon of influence
lines for other forces in the same structure. :

®» SR S * IR e
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Live Load Forces: Influence Lines for Determinate Structures

EXAMPLE 8.1

— Ry ()

@

(N3]

@

Figure 8.3: Influence lines for reactions at sup-
ports A and C; (@) beam; (b) load between A and
C; (¢) unit load between C and D; (d) influence
. Hne for R,; (e) influence line for Re.

" Bvaliiate R, for x, = 0,5,and 10

Construct the influence lines for the reactions at A and C for the beam in
Figure 8.3a. : '

Solution :
To establish a general expression for values of R4 for any position of the

* unit load between supports A and C, we place the unit load a distance x; to

the right of support A (see Fig. 8.3b) and sum moments about support C.

c* 'EMc; 0

10R, ~ (1KN)(10 — x,) = 0
Ry=1-21 1
a=1-7 (1)

~ where 0 = x; < 10.

R

A general expression for R4, when the unit load is located between C and
D, can be written by summing moments about C for the free-body dia-
gram shown in Figure 8.3c.

G SMe=0

10R, + (1KN)(x;) = 0

-2

R4 10

H

where 0 = x, = 5,

The minus sign in Equation 2 indicates that R, acts downward when the
unit load is between points C and D, Forx, = 0, R, = Q; forx, = 5, R, =
A—%. Using the foregoing values of R, from Equations 1 and 2, we draw

the influence line shown in Figure 8.3d.
' ‘To draw the influence line for R (see Fig. 8:3¢), either we can com-

pute the values-of the reaction at C as the unit load moves across the span,
or we can subtract the ordinates of the influence line in Figure 8.3d from
1, because the sum of the reactions for each position of the unit load must
equal 1—the value of the applied load.

- TR e - TN e -
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Draw the influence lines for shear and moment at section B of the beam in
Figure 8.4a. ‘

Solution .
The influence lines for shear and moment at section B are drawn in Figure
8.4c and d. The ordinates of these influence lines were evaluated for the
five positions of the unit load indicated by the circled numbers along the
span of the beam in Figure 8.44. To evaluate the shear and moment at B
produced by the unit load, we will pass an imaginary cut through the beam
at B and consider the equilibrium of the free body to the left of the section.
(The positive directions for shear and moment are defined in Fig. 8.4b.)
To establish the ordinates of the influence lines for V,; and M at the
left end (support A), we place the unit load directly over the support at A

b

Vp (kips)

My (Kip+ft)
@
s is
l«-«s‘—w——:’ M3=-Z M8=-Z'
4 o _
| © ‘ * W

" N [ [ ST ey - TEr M

EXAMPLE 8.2

Figure 8.4: Influence lines for shear apd

moment at section B, (a) position of unit load;

(b} positive sense of shear and moment defined;
(¢) influence line for shear at B; (d) influence
line for moment at B; (¢) unit load to left of sec-
tion B; (f) unit load to right of section B;
(8) unit load at midspan.

r3jin

[continues on next page]
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Example 8.2 continues . . .

and compute the shear and moment at section B. Since the entire unit load
is carried by the reaction at support A, the beam is unstressed; thus the

shear and moment at section B are zero. We next position the unit load at .

point 2, an infinitesimal distance to the left of section B, and evaluate the
shear Vp and moment My at the section (see Fig. 8.4¢). Summing
moments about an axis through section B to evaluate the moment, we see
that the unit load, which passes through the moment center, does not con-
tribute to Mp. On the other hand, when we sum forces in the vertical direc-
tion to evaluate the shear Vp, the unit load appears in the summation.
We next move the unit load to position 3, an infinitesimal distance to
the right of section B. Although the reaction at A remains the same, the
unit load is no longer on the free body to the left of the section (see Fig.
8.4f). Therefore, the shear reverses direction and undergoes a 1-kip
change in magnitude (from —3 to +3 kip). The 1-kip jump that occurs
between sides of a cut is a characteristic of influence lines for shear. On
the other hand, the moment does not change as the unit load moves an
infinitesimal distance from one side of the section to the other. _
~ As the unit load moves from B to D, the ordinates of the influence

lines reduce linearly to zero at support D because both the shear and the
moment at B are a direct function of the reaction at A, which in turn
~ varies linearly with the position of the load between B and D.

e

EXAMPLE 8.3

Figure 8.5

B SR -

RS ST V.

Sl

- For the frame in Figure 8.5, construct the influence lines for the horizon-
' tal and vertical components of the reactions A, and A, at support A and

for the vertical component of force Fp, applied by member BD to joint
B. The bolted connection of member BD to the girder may be treated as
a pin connection, making BD a two-force member (or a link).

Solution : ,
To establish the ordinates of the influence lines, we position a unit load
a distance x, from support A on a free body of member ABC (Fig. 8.6a).
Next we apply the three equations of equilibrium to express the reactions
at points A and B in terms of the unit load and the distance x,.

Since the force Fj in member BD acts along the axis of the member,
the horizontal and vertical components of Fj are proportional to the
slope of the member; therefore,

1 3
and R =2 )
, T3 o
‘ N e ‘ ;o e e




Section 8.3

Summing forces acting on member ABC (Fig. 8.6a) in the y direction gives
+ ‘ ' N
T 2ZF,=0
Osz+FBy-lkjp
= 1kip — Fp, @

Next, a sum of forces in the x direction produces

-+ 2F, =0
Ax - FBx =0
A, = Fy, ©)

Substituting Equation 1 into Equation 3, we can express A, in terms of
Fj, as
A, = @ ' @
3
To express Fp, in terms of x;, we sum moments of forces on member
ABC about the pin at support A:

Cf EM,=0
(Lkip)x; — Fp,(30) =0
Fpy = -L s
By 30 )

Substituting Fp, gwen by Equation 5 into Equations 2 and 4 permits us
to express A, and A, in terms of the distance x;:

X1 » : '
A,=1Kp - 3 - ®
-
A, = 90 )]

To construct the influence lines for the reactions shown in Figure 8.65,
¢, and d, we evaluate Fj,, A,, and A,, given by Equations 5, 6, and 7, for
values of x; = 0, 30, and 40 ft. '

X4 ng Ay> ‘ A
i

X

0 0 0
30 1 0 3
o F -y 3

~ As we can observe from examining the shape of the influence lines
in Examples 8.1 through 8.3, influence lines for determinate structures

KF T SNy
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Construction of an Influence Line
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Figure 8.6: Influence lines.

‘[continues on next pagel
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Example 8.3 continues . . . consist of a series of straight lines; therefore, we can define most influence
' lines by connecting the ordinates at a few critical points along the axis of
a beam where the slope of the influence lin€ changes or is discontinuous.
" These points are located at supports, hinges, ends of cantilevers, and, in
the case of shear forces, on each side of the section on which they act. To
illustrate this procedure, we will construct the influence lines for the reac-
tions at the supports of the beam in Example 8.4.

EXAMPLE 8.4

Draw the influence lines for reactions R4 and M, at the fixed support at
A and for reaction R at the roller support at C (see Fig. 8.7a). The arrows
shown in Figure 8.74 indicate the positive sense for each reaction. -

k 10’ TSN M T

&

Figure 8.7 , @.
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Section 8.3

Solution : »
In Figure 8.8a, b, d, and e, we position the unit load at four points to sup-
ply the forces required to draw the influence lines for the support reactions.
In Figure 8.8a, we place the unit load at the face of the fixed support at
point A, In this position the entire load flows directly into the support,
producing the reaction R,. Since no load is transmitted through the rest
of the structure, and all other reactions are equal to zero, the structure is
unstressed. o

We next move the unit load to the hinge at point B (Fig. 8.85). If we
consider a free body of beam BCD to the right of the hinge (Fig. 8.8¢)
and sum moments about the hinge at B, the reaction R must be equal
to zero because no external loads act on beam BD. If we sum forces in
the vertical direction, it follows that the force Ry applied by the hinge
also equals zero. Therefore, we conclude that the entire load is sup-
ported by cantilever AB and produces the reactions at A shown in Fig-
ure 8.85. ‘ '

We next position the unit load directly over support C (Fig. 8.84). In
this position the entire force is transmitted through the beam into the sup-
port at C, and the balance of the beam is unstressed. In the final position,
we move the unit load to the end of the cantilever at point D (Fig. 8.8¢).
Summing moments about the hinge at B gives

O+ EMB =
0 = 1kip(12 ft) — R¢ (6 ft)
Ry = 2kips

Summing forces on member BCD in the vertical direction, we establish
that the pin at B applies a force of 1 kip downward on member BCD. In
turn, an equal and opposite force of 1 kip must act upward at the B end of
member AB, producing the reactions shown at support A.

We now have all the information required to plot the influence lines
shown in Figure 8.7b, ¢, and d. Figure 8.8a supplies the values of the influ-
ence line ordinates at support A for the three influence lines; i.e., in Fig-
ure 8.75, R, = 1 kip, in Figure 8.7¢, M, = 0, and in Figure 8.7d, R, = 0.

Figure 8.8b supplies the values of the three influence line ordinates
at point B, that is, R4 = 1 kip, M, = — 10 kip-ft (counterclockwise), and
Rc = 0. Figure 8.84 supplies the ordinates of the influence lines at sup-
port C, and Figure 8.8¢ gives the value of the influence line ordinates at
point D, the cantilever tip. Drawing straight lines between the four
points completes the construction of the influence lines for the three
reactions. '

Constructig)n of an Influence Line

257
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(@)

R, (kips)

@

Figure 8.9: Construction of the influence line
. for R, by the Miiller-Breslau principle. () Sim-
_ ply suppoited beam. (b The released structure.
(c) Displacement introduced that corresponds to
reaction at A. The deflected shape is the influence

line to some unknown scale. (d) The influence
. line for R,.

- TN B -

......................

The Miiller—Breslau pnnc1ple provxdes a snnple procedure for estabhsh-
ing the shape of influence lines for the reactions or the internal forces
(shear and moment) in beams. Although the procedure does not produce
numerical values of influence line ordinates (except where they are zero),

the qualitative influence lines, which can be quickly sketched, can be used
in the following three ways:

1. To verify that the shape of an influence line, produced by movmg a
unit load across a structure, is correct.

2. To establish where to position live load on a structure to maximize

~ a particular function without evaluating the ordinates of the

influence line. Once the critical position of the load is established, it
is simpler to analyze certain types of structures directly for the
specified live load than to draw the influence line.

3. To determine the location of the maximum and minimum ordinates
of an influence line so that only a few positions of the unit load
must be considered when the influence line ordinates are computed

Although the Miiller—Breslau method applies to both determinate andj'{\m
indeterminate beams, we limit the discussion in this chapter to determitsate

members. Influence lines for indeterminate beams are covered in Chapter

~ 14. Since the derivation of the method requires an understanding of work-., o

energy, covered in Chapter 10, the proof is deferred to Chapter 14.
The Miiller-Breslau principle states:

The ordinates of an influence line for any force are proportional to the
deflected shape of the strueture produced by removing the capacity of
the structure to carry the force and then introducing into the modified
(released) structure a displacement that corresponds to the restraint
removed.

To introduce the method, we will draw the influence line for the reac-
tion at A of the simply supported beam in Figure 8.9a. We begin by
removing the vertical restraint supplied by the reaction at 4, producing the
released structure shown in P1gure 8.9b. We next displace the left end of
the beam vertically upward, in the direction of R, an arbitrary amount A
(see Fig. 8.9¢). Since the beam must rotate about the pin at B, its deflected
shape, which is the influence line to some scale, is a triangle that varies
from O at B to A at A’. This result confirms the shape of the influence line
for the reaction at A that we constructed in Section 8.2 (see Fig. 8.2f).

A simple way to produce the deflected shape is to imagine the force,
associated with the restraint that has been removed, is applied to the
released structure and displaces the member into its deflected position.

Once the shape of the influence line is established, we can evaluate
the maximum ordinate at the left end by placing a unit load on the actual

B e e




Section 8.4 The Milller-Breslau Principle

beam directly over support A and computing R, = 1 kip. The complete
influence line is shown in Figure 8.94.

As a second example, we will draw the influence line for the reaction
at B for the beam in Figure 8.10a. Figure 8.10b shows the released struc-
ture produced by removing the support at B. We now introduce a verti-
cal displacement A that corresponds to the reaction at B producing the
deflected shape, which is the influence line to some unspecified scale
{see Fig. 8.10¢). Recognizing that the reaction at B in the actual structure
equals 1 kip when the unit load is at support B, we can establish the value
of the influence line ordinate at point B. From similar {riangles, we com-
pute the value of the ordinate of the influence line at point C as %

To construct an influence line for shear at a section of a beam by the
Miiller-Breslau method, we must remove the capacity of the cross sec-
tion to transmit shear but not axial force or moment. We will irnagine that
the device constructed of plates and rollers in Figure 8.11a permits this
modification when introduced into a beam.

To illustrate the Miiller—Breslau method, we will construct the influ-
ence line for shear at point C of the beam in Figure 8.115. In Figure 8.11¢

15’ 1
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Figure 8.10: Influence line for the reaction at B:
(@) cantilever beam with hinge at C; (b) réaction
(o) dis-
placement of released structure by reaction at B
establishes the shape of the influence line;

removed, producing the released stéuctire;

(d) influence line for reaction at B.

Figure 8.11: Influence line for shear using

Miiller-Breslau method; (a) device to
shear capacity of cross section; (b) beam

(¢) shear capacity released at section C; (d) influ-

ence line for shear at section C.
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Figure 8.12: Influence line for moment: {a) details
of beam; (b) released structure—hinge inserted at
midspan; (c) displacement of released structure by
moment; (4) influence line for moment at midspan.

deflected
M M shape

- M (kip-ft)

@

we insert the plate and roller device at section C to release the shear
- capacity of the cross section. By introducing the deflections shown in
~ Figure 8.11¢, we produce the influence line for shear at section C. The
influence line is completed by placing a unit load on the actual structure
1mmed1ately before section C, and calculating a neganve value of shear
of —%. The positive ordinate to the right of the section is computed by
placmg the unit load just to the right of section C.
 Todraw an influence line for moment at an arbitrary section of a beam
using the Miiller—Breslau method, we introduce a hinge at the section to
produce the released structure. We then introduce a displacement corre-
sponding to-a moment, and the deflected shape is the influence line to
some scale. For example, to establish the shape of the influence line for
moment at midspan of the simply supported beam in Figure 8.124, we
- introduce a hinge at midspan as shown in Figure 8.126, We now intro-
duce a displacement corresponding to a positive moment as shown in
Figure 8.12¢. The effect of a positive moment is to bend the segments of
the beam on either side of the hinge concave upward, as shown by the
- dashed lines in Figure 8.12¢. This deformation causes the hinge at midspan
to move vertically upward, forming a triangle as the two segments of the
beam rotate about the end supports. Because influence lines for determi-
nate structures are composed of straight lines, we neglect the small curva-
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ture produced by the moment. To evaluate the maximum ordinate of the
influence line, we apply a unit load at midspan of the original beam and
compute 2 5 kipft moment at midspan. The final influence line is shown
in Figure 8.124.

In Figure 8.13 we use the M'Liller—Breslau method to construct the influ-
ence line for the moment M at the fixed support of a cantilever beam. The
released structure is established by introducing a pin at the left support.
‘When the moment at A is applied to the released structure, the beam rotates
counterclockwise about the pin at A, producing the deflected shape shown
in Figure 8.13¢. A unit load applied to point B of the original structure in
Figure 8.13a produces a moment of 11 kip-ft at A, which represents the
value of the influence line ordinate at B (see Fig. 8.134).

i 5 Use of Influence Lines

As noted prevmusly, we construct influence lines to establish the maximum
value of reactions or internal forces produced by live load. In this section

- we describe how to use an influence line to compute the maximum value

of a function when the live load, which can act anywhere on the struc-
ture, is either a single concentrated load or a uniformly distributed Ioad
of variable length.

Since the ordinate of an influence line represents the value of a certain
function preduced by a unit load, the value produced by a concentrated
load can be established by multiplying the influence line ordinate by the
magnitude of the concentrated load. This computation simply recognizes
that the forces created in an elastic structure are directly proportional to
the magnitude of the applied load.

If the influence line is positive in certain regions and negative in oth-
ers, the function represented by the influence line reverses direction for
certain positions of the live load. To design members in which the direc-
tion of the force has a significant influence on behavior, we must estab-
lish the value of the largest force in each direction by multiplying both
the maximum positive and the maximum negative ordinates of the influ-
ence line by the magnitude of the concentrated load. For example, if a
support reaction reverses direction, the support must be detailed to trans-
mit the largest values of tension (uplift) as well as the largest value of
compression into the foundation,

In the design of buildings and bridges, live load is frequently repre-
sented by a uniformly distributed load. For example, a building code may
require that floors of parking garages be designed for a uniformly dis-
tributed live load of a certain magmtude mstead of a spec1ﬁed set of
wheel loads.

To establish the maximum value of a function produced by a umform
load w of variable length, we must distribute the load over the member

- CBRx e - DI D e - T
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Figure 8.13: Influence line for moment at sup-
port A: (a) details of structure; (b) released strue-
ture; (¢} deformalipn produced by moment at sup-
port A; () influence line for moment at A,
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wids).

beam

influence line

Figpre 8.14

- .in the region or regions in which the ordinates of the influence line are
* either positive or negative. We will demonstrate next that the value of the

function produced by a distributed load w acting over a certain regicn of "

-an influence line is equal to the area under the influence line in that

region multiplied by the magmtude w of the distributed load.

To establish the value of a function F produced by a uniform load w
acting over a section of beam of length a between points A and B (see
Fig. 8.14), we will replace the distributed load by a series of infinitesi-
mal forces dP, and then sum the increments of the function (dF) produced
by the infinitesimal forces. As shown in Figure 8.14, the force dP produced
by the uniform load w acting on an infinitesimal beam segment. of length
dx equals the pmduct of the distributed load and the length of the segment,
that is,

dP = w dx V ‘; ‘ 3.1

To establish the increment of the function dF prociﬁced by ‘th'e_ force 4P,
we multiply dP by the ordinate y of the influence line at the same point,
to give :

dF = (dP)y ey
~ Substituting dP given in Equation 8.1 into Equation 8 2gives .o

| B
To eval‘uate the magnitude of the function F between any two pomts A

dF = wdxy

and B, we integrate both sides of Equation 8.3 between those limits to

. give.

B B » :
F=4(dF=dexy‘ ' (8.4)
A A

Since the value of w 1s a constant, we can factor it out of the mtegral
producing

. '. B ) » b
,F=WJ, y dx ' (8.5)
. A . . . :

Recognizing that y dx represents an infinitesimal area dA under the influ-
ence line, we can interpret the integral on the right side of Equation 8.5
as the area under the influence line between points A and B. Thus,

‘ F = w(area ) o - (8.6)
where area,y is the ‘area under the influence hne between A and B.
In Example 8.5 we apply the principles established in this section to

evaluate the maximum values of positive and negative moment at midspan -

of a beam that supports both a distributed load of variable length and a
concentrated force. )
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Section 8.5.  Use of Influence Lines 263

The beam in Figure 8.154 is to be designed to support its deadweight of
0.45 kip/ft and a live load that consists of a 30-kip concentrated load and
a variable length, uniformly distributed load of 0.8 kip/ft. The live loads
can act anywhere on the span. The influence line for moment at point C
is given in Figure 8.15b. Compute (@) the maximum positive and nega-
tive values of live load moment at section C and (b) the moment at C pro-
duced by the beam’s weight.

Solution :
{a) To compute the maximum posztzve live load moment, we load the
region of the beam where the ordinates of the influence line are positive

30 kips .
w = 0.8 kip/ft

l [ { ] I A B E
[+ variable —|

o1 | 10" e 6]

&
30 kips

w = 0.8 kip/ft

R

©

- w=0.8 kip/ft

@

- o ™ L VN s

EXAMPLE 8.5

Figure 8.15: () Dimensions of beam with design

live loads indicated at the left end; (b) influence .

line for moment at C; (c) position of live load to
maximize positive moment at C; (d) position of
live load to maximize negative moment at C. Alter-
nately, the 30-Kip load could be positioned at E.

Mg (kip+ft)

[continues on next page]
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Example 8.5 continues . .

“(see Fig. 8.15¢). The concentrated load is positioned at the maximum

positive ordinate of the influence line:
Max. + Mc = 30(5) + 0.8[4(20)5] = 190 kip-ft

(b) For maximum negative live load moment at C, we position the loads
as shown in Fig. 8.15(d). Because of syminetry, the same result occurs if
the 30-kip load is positioned at E.

Max. — Mc = (30 kips)(—3) + 0.8[3(6)(=3)](2) = —104.4 kip-ft

(¢) For the moment at C due to dead load, multiply the area under the entire
influence line by the magnitude of the dead load.

0.43[4(6)(~3)](2) + 0.45[4(20)5]
—8.1 + 225 = +14.4 kip-ft

Mc

Influence Lines for Girders Supportmg
Floor Systems

Figure 8.16a shows a schematic drawing of a structural framing system

“‘commonly used to support a bridge deck. The system is composed of

" three types of beams: stringers, floor beams, and girders. To show the

main flexural members clearly, we simplify the sketch by omitting the
deck, cross-bracing, and connection details between members.

In this gsystem a relatively flexible slab is supported on a series of
small longitudinal beams—the stringers—that span between transverse

" floor beams. Stringers are typically spaced about 8 to 10 ft apart. The

thickness of the slab depends on the spacing between stringers. If the span

“of the slab is reduced by spacing the stringers close together, the designer

can reduce the depth of the slab. As the spacing between stringers increases,
increasing the span of the slab, the slab depth must be increased to can'y
larger design moments and to limit deflections.

The load from the stringers is transferred to the floor beams, which

in turn transmit that load together with their own weight to the girders.

In the case of a steel bridge, if the connections of both the stringers to the

floor beams and. the floor beams to the girders are made with standard

steel clip angles, we assume that the connections can transfer only verti-

cal load (no 'moment) and treat them (the connections) as simple sup-
ports. Except for the weight of the girder, all loads are transferred into
the girders by the floor beams. The points at wh1ch the floor beams con-
nect to the girders are termed panel points.

In a deck-type bridge, the roadway is positioned at the top of the gird-
ers (see the cross section in Fig. 8.16b). In this configuration it is possi-
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stringer Figure 8.16: (a) Sketch of stringer, floor beam,
anfi girder system; (b) deck bridge; (c) half-through
bridge; (d) schematic representation of (a);
{e) one lane loaded.
@
slab .
stringer
girder : ©
floor beam
&
floor beam stringer

@ | e

ble to cantilever the slab beyond the girders to increase the width of the
roadway. Often the cantilevers support pedestrian walkways. If the floor
beams are positioned near the bottom flange of the girders (see Fig.
8.16¢)-—a half-through bridge—the distance from the bottom of the bridge
to the top of vehicles is reduced. If a bridge must run under a second bridge
and over a highway (for example, at an intersection where three highways
cross), a half-through bridge will reduce the required headroom.
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266 Chapter 8 Live Load Forces: Influence Lines for Determinate Structures

To analyze the girder, it is modeled as shown in Figure 8.164. In this
figure the stringers are shown as simply supported beams. For clarity we
often omit the rollers and pins under the stringers and just show them rest-
ing on the floor beams. Recognizing that the girder in Figure 8.16d actu-
ally represents both the girders in Figure 8.16a, we must make an addi-
tional computation to establish the proportion of the vehicle’s wheel loads
that is distributed to each girder. For example, if a single vehicle is cen-
tered between girders in the middle of the roadway, both girders will carry
one-half the vehicle weight. On the other hand, if the resultant of the wheel
loads is located at the quarter point of a floor beam, three-fourths of the
load will go to the near girder and one-fourth to the far girder (see Fig.
8.16¢). Establishing the portion of the vehicle loads that go to each girder

. is a separate computation that we make after the influence lines are drawn.

EXAMPLE 8.6

| SR -

C BN e - i STR VR - § STV

For the girder in Figure 8.17a, draw the influence lines for the reaction at
A, the shear in panel BC, and the moment at C.

Solution g
To establish the ordinates of the influence lines, we will move a unit load of

1 kN across stringers and compute the forces and reactions réquired to con-
struct the influence lines. The arrows above the stringers denote the various.

positions of the unit load we will consider. We start with the unit load posi-
tioned above support A. Treating the entire structure as a rigid body, and
summing morments about the right support, we compute R, = 1 kN. Since
the unit load passes directly into the support, the balance of the structure is
unstressed, Thus the values of shear and moment at all points within the

girder are zero, and the ordinates at the left end of the influence lines for

shear Vy- and moment M are zero, as shown in Figure 8.17¢ and d.

To compute the ordinates of the influence lines at B, we next move
the unit load to panel point B, and we compute R, = kN (Fig. 8.17¢).
Since the unit load is directly at the floor beam, 1 kN i 1s transmitted into
the girder at panel point B and the reactions at all floor beams are zero.
To compute the shear in panel BC, we pass section 1 through the girder,

- producing the free body shown in Figure 8.17¢. Following the conven-

tion for positive shear defined in Section 5.3, we show V¢ acting down-
ward on the face of the section. To compute V., we consider equilibrium
of the forces in the y direction

by 4
+ 2F=O="’=""1“VBC
‘ VB —"'"kN

where the minus sign indicates that the shear is opposite in sense to that
shown on the free body (Fig. 8.17¢).




jw

@

®)

hinge
/
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e

B

R,y (kN)

Figure 8.17: (2) Dimensions of the structure;
(b) influence line for R,; (¢) influence line for
shear in panel BC; (d) influence line for moment
in girder at C; (¢) free body for shear in panel BC
with unit load at B; (f) computation of M, with
unit load at B; (g) computation of Vi with unit load
at C; (7) computation of M, with unit load at C.

[continues on next pagel
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Example 8.6 continues . . . : To compute the moment at C with the unit load at B, we pass section
2 through the girder, producmg the: free body shown in Figure 8.17f
Summing moments about an axis, normal to the plane of the member and
passing through the centroid of the section at point C, we compute M.

O+ EMC =0
5(12) - 1(6) - Mc =0
Me =2 kxN'm

, We now shift the unit load to panel point C and compute R, = 2 kN.
- To compute Vpe, we consider equilibrium of the free body to the left of
section 1 (Fig. 8.17g). Since the unit load is at C, no forces are applied
to the girder by the floor beams at A and B, and the reaction at A is the
only external force apphed to the free bcdy Summing forces in the y
direction gives us

4+

1 EF}, =,(,) ::—.% bt VBC and VBC = %kN

Using the free body in Figure 8.17h, we sum moments about C to com-
pute M = kN m.
When the unit load is positioned to the right of panel point C, the

 reactions of the floor beams on the freg-body diagrams to the left of sec- -

tions 1 and 2 are zero (the reaction at A js the only external force). Since

the reaction at A varies linearly as the load moves from point C to point

F, Ve and M—Dboth linear functions of the reaction at A—also vary lin-

early, reducing to zero at the right end of the girder.

EXAMPLE 8.7 Construct the influence line for the bcndmg moment M at point C in the

girder shown in Figure 8.18a. The influence line for the support reactlon
R is given in Figure 8.18b.

Solutlon
" To establish the influence hne showing the variation of M, we position
the unit load at each panel point (the location of the floor beams). The
moment in the girder is computed using a free body cut by passing a ver-
tical plane through the floor system at point C. The value of the girder
* reaction R at the left support is read from the influence line for R; shown
in Figure 8.18b.
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We can establish two points on the influence line' without computa-
tion by observing that when the unit load is positioned over the girder .
supports at points B and E, the entire load passes directly into the sup-
ports, no stresses develop in the girder, and accordingly the moment on
a section through point C is zero. The free bodies and the coniputation of
M for the unit load at points A and C are shown in Figure 8.184 and e.
The complete influence line for M is shown in Figure 8.18¢. Again, we
observe that the influence lines for a determinate structure are composed
of straight lines. ‘

C D

B
, wﬁg

t RG
b 5@20' =100 —————

(a)

=== Ry (kips)

tudfome

®

] M (kip+ft)

w|B

+ +
7 (SMc=0 (Eme=0
~1X 40+ % (20)-Me=0 2 20)-Me=0
3 40 3 40, .
Mc=Ruipse Me=Pkipte
e T O)
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Figure 8.18: Influence lines for cantilever bridge
girder. (a) details of floor system; (b) influence
line for Rg; (¢) influence line for M.
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Figure 8.19: Influence lines for bridge girder

EXAMPLE 8.8

loaded by stringers with cantilevers.

Draw the influence line for the bending moment -on a vertical section
through point B on the girder (Fig. 8.19a). At points A and F the connec-
tion of the stringers to the floor beam is equivalent to a.pin. At points B
and E, the connections of the stringers to the floor beam are equivalent to
a roller. The influence line for the reaction at A is given in Figure 8.19b.

Solution

When the unit load is positioned at point A, the entire load passes directly
through the floor beam into the pin support at point A. Since no stresses
develop in sections of the girder away from the support, the bending
moment on the section at point B is zero.

We next move the unit load to point B, producing a reaction R, of
2 kN (Fig. 8.195). Summing moments of the applied loads, about the sec-
tion at point B, we compute My = ¥ kN-m (Fig. 8.194).

i}

oo|n

Ry(kN)

T INE e - C BN e -

~ My (kN+m)
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Next, the unit load is moved to point C, the tip of the cantilever, pro-
ducing the stringer reactions shown in Figure 8.19e. The forces on the
girder are equal in magnitude to the reactions on the stringer but directed
in the opposite direction. Again summing moments about the vertical
section at point B, we compute My = 5 kN'm:. When the unit load is
moved an infinitesimal distance across the gap to point D at the tip of the
‘cantilever on the right, stringer ABC is no longer loaded; however, the
reaction at A, the only force acting on the free body of the girder to the
left of section B, remains equal to 3 kN. We now sum moments about B
and find that My has reduced to 3 kN-m (Fig. 8.19f). As the unit load
moves from point D to point F, computations show that the moment at
section B reduces linearly to zero.

Influence Lines for Trusses

271

. Influence Lines for Trusses

Since truss members are typically designed for axial force, their cross sec-
tions are relatively small because of the efficient use of material in direct
stress. Because a truss member with a small cross section bends easily,

transverse loads applied directly to the member between its joints would -

produce excessive flexural deflections. Therefore, if the members of the
truss are to carry axial force only, loads must be applied to the joints. If a
floor system is not an integral part of the structural system supported by
a truss, the designer must add a set of secondary beams to carry load into
the joints (see Fig. 8.20). These members, together with light diagonal
bracing in the top and bottom planes, form a rigid horizontal truss that sta-
bilizes the main vertical truss and prevents its compression chord from

buckling laterally. Although an isolated truss has great stiffness in its own -

plane, it has no significant lateral stiffness. Without the lateral bracing
system, the compression chord of the truss would buckle at a low level of
stress, limiting the capacity of the truss for vertical load. '

Since load is transmitted to a truss through a system of beams simi-
lar to those shown in Figure 8.164g for girders supporting a floor system,
the procedure to construct influence lines for the bars of a truss is simi-
lar to that for a girder with a floor system; that is, the unit load is posi-
tioned at successive panel points, and the corresponding bar forces are plot-
ted directly below the position of the load.

Loads can be transmitted to trusses through either the top or bottom
panel points. If load is applied to the joints of the top chord, the truss i$
known as a deck truss. Alternatively, if load is applied to the bottom chord
panel points, the truss is termed a through truss. '

SR VR - ARG D - - ST VA -
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Figure 8.20: A typical panel of a truss bridge
showing floor system which supports concrete slab
roadway. Load on roadway slab transmitted to
lower chord panel points of truss by floor beams.

upper chord
bracing

upper chord
of main truss

/ concrete
slab

AN

lower chord
of main truss

abutment

Constructmn of Inﬂuence Lines for a Truss

To. illustrate the procedure for constructing mﬂuence lines for a truss, we
will compute the ordinates of the influence lines for the reaction at A and
for bars BK, CK,and CD of the truss in Figure 8.21a. In this example we
will assume that load is transmitted to the truss through the lower chord
panel points.

‘We begin by constructing the mﬂuence line for the reaction at A.
Since the truss is a rigid body, we compute the ordinate of the influence
line at any panel point by placing the unit load at that point and summing

- C BN e e - i ST - [ SR - CB: e
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PN st oo - D e G
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T—— 6@15 =90 — |

Ry
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R, (kips)
®)

20
24

tension

FBK (kips)
5t 72 !

Fx (kips)

FCD (klps)

moments about an axis through the right support. The computations show
that the influence line for the reaction at A is a straight line whose ordi-
nates vary from 1 at the left support to-zero at the right support (see Fig,.
8.21b). This example shows that the influence lines for the support reac-
tions of simply supported beams and trusses are identical.

To construct the influence line for the force in bar BK, we apply the
unit load to a panel point and then determine the force in bar BK by ana-
lyzing a free body of the truss cut by a vertical section passing through

- ST Vi * SN O e -

Figure 8.21: Influence lines for truss: (a) details
of truss; (b) influence line for reaction. at A;
(c) influence line for bar BK; (d) influence line
for bar CK;; (e) influence line for bar CD.
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B B
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the second panel of the truss (see section 1 in Fig. 8.21a). Figure 8.22a
shows the free body of the truss to the left of section 1 when the unit load

. is at the first panel point. By summing forces in the y direction, we com-

pute the vertical component Yz of the force in bar BK.
+ . - . . ’
T SF=0
% -1+ Y%, BE & 0 ’
Yax = £ kip (compression)

Since the sides of the slope triangle of the bar are inaratioof 3:4:5,
we compute Fpe by simple proportion.

Fox _ Yax
5 "4 |

5 5 ..
stf“zyax“ 24k1P

Because Fgy is a compressmn force, we plot itasa ezegatzve influence

line ordinate (see Fig. 8.21c¢).
Figure 8.22b-shows the free body to the left of section 1 when the unit

load acts at joint K. Since the unit load is no Ionger on the free body, the-
vertical component of force in bar BK must equal £ kip and act downward .

to balance the reaction at support A. Multiplying Yy by 2, we compute a
tensile force Fyy equal to 22 kip. Since the reaction of A reduces linearly to
zero as the unit load moves to the right support, the influence line for the
force in bar BK must also reduce linearly to zero at the right support.

To evaluate the ordinates of the influence line for the force in bar CK,
we will analyze the free body of the truss to the left of section 2, shown
in Figure 8.21a. Figure 8.22¢, d, and ¢ shows free bodies of this section
for three successive positions of the unit load. The force in the bar CK,
which changes from tension to compression as the unit load moves from

~ panel point X to J, is evaluated by summing forces in the y direction. The

resulting influence line for bar CK is shown in Figure 8.214. To the right
of point X the distance at which the influence line passes through zero is
determined by similar triangles:

1 1

A
x 15-x
x=06ft

The influence line for the force in bar CD is computed by analyzing

‘a free body of the truss cut by a vertical section through the third panel

(see section 3 in Fig. 8.21a). Figure 8.22f shows a free body of the truss
to the left of sectlon 3 when the unit load is at panel point X. The force in
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© : @ )

: Figure 8.22: Free-body diagrams to construct
N @ influence lines.

CD is evaluated by summing moments about the intersection of the other
two bar forces at J. o

G =EM;=0
§(45) = 1(15) — Fep(20) = 0
' ' Fep = 3kip (compression}
Figure 8.22g shows the free body of the truss to the left of section 3 when

the unit load is at joint J. Again we evaluate F;, by summing moments
about J. : " o
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ot SM; =0
0 = 2(45) — Fp(20)

Fep = Lkips (compression)

The influence line for bar CD is shown in Figure 8.21e.

Influence Lines for a Trussed Arch

_As another example, we will construct the influence lines for the reac-
tions at A and for the forces in bars Al, BI, and CD of the three-hinged
trussed arch in Figure 8.23a. The arch is constructed by joining two truss
segments with a pin at midspan. We assume that 1oads are transmlttedv

T through the upper chord panel points.

) Kips) To begin the analysis, we construct the influence line for A,, the ver-

tical reaction at A, by summing moments of forces about an axis through

the pin support at G. Since the horizontal reactions at both supports pass
through G, the computations for the-ordinates of the influence line are

identical to those of a simply supported beam. The mﬂuence hne for A,

(a)

' ' 5 is shown in F:gure 8.235.
© - ips) Now that A, is established for all posmons of the unit load, we next
Fy compute the mﬂuence line for A,, the horizontal reaction at A. In this -

(kips)  computation we will analyze a free body of the truss to the left of the
center hinge at point D. For example, Figure 8.24a shows the free body
used to compute A, when the unit load is positioned at the second panel
point By summing moments about the hinge at D, we write an equation
in which A is the only unknown. : .

C" Mp=0
0 = 3(24) — A,(17) — 1(12)
A, = Fkip

The complete influence line for A, is shown in Figore 8.23c¢.

To evaluate the axial force in bar Al, we isolate the support at A (see
Fig. 8.24b). Since the horizontal component of the force in bar Al must
equal A,, the ordinates of the influence line for Al will be proportional to .
those of A,. Because bar Af is on a slope of 45°, F,; = \/gX w= V2A,. N
The influence line for F,; is shown in Figure-8.234. ’

Figure 8.24¢ shows the free body used to determine the influence line
for the force in bar CD. This free body is cut from the truss by a vertical : ’
; , section through the center of the second panel. Using the values of A, and |

Figure 8.23: Influence lines for a trussed arch: from the influence lines in Figure 8.23b and ¢, we can solve for the 1
(a) truss details; (5) reaction A,; () reaction A,; force in bar €D by summing moments about a reference axis through ‘11
(d) force in bar AZ, (¢) force in bar CD; (f) force  joint L. Plotting the ordinates of Fp, for various positions of the unit load, \
- inbar BL we draw the influence line shown in Figure 8.23¢. '
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~To determine the force in bar BI, we consider a free body of the truss
to the left of a vertical section passing through the first panel (see Fig.
8.24d). By summing moments of the forces about an axis at point X (the
intersection of the lines of action of the forces in bars Al and BC), we can
write a moment equation in terms of the force Fj; We can further sim-
plify the computation by extending force Fy, along its line of action to
joint B and resolving the force into rectangular components. Since X,
passes through the moment center at point X, only the y-component of

Fg; appears in the moment equanon From the slope relatlonsth, we can

express Fyg; as
Y B1
The influence line for Fp; is plotted in Figure 8. 23f

Live Loads for Highway and Railroad Bridges

N

In Section 8.5 we established how to use an influence line to evaluate the
force at a section produced by either a uniformly distributed or a con-
centrated live load. We now will extend the discussion to include estab-
lishing the maximum force at a section produced by a set of moving
loads such as those applied by the wheels of a truck or train. In this sec-
tion we describe briefly the characteristics of the live loads (the standard
trucks and trains) for which highway and railroad bridges are designed.
In Section 8.9 we describe the mcrease——decrease method for posmonmg
the wheel loads. :

Highway Bridges

The live loads for which highway brxdges in the United States must be
designed are specified by the American Association of State and Highway
Transportation Officials (AASHTO). At present major highway bridges

-« TR B - T e
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Figure 8.24: Free bodies used to analyze the
three-hinged arch in Figure 8.23a.
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Figure 8.25: Lane loads used to design highway = -
bridges; (a) standard 72-kip, HS 20-44 truck; or
(b} uniform load plus concentrated load which.is

positioned to maximize force in structure.

PO L - g

-0
clearance and
load lane width

, i

140" v

W = Combined weight on the first two axles, which is the same as for the corresponding H truck

V = Variable spacing — 14 ft to 30 ft inclusive. Spacing to bé used is that which produces maximum stresses.

@
w=0.64 kip/ft concentrated load: 18 kips for moment
_oflaneload = . . 26 kips for shear
N A T N Y Y O O I B
@ -

must be designed to carry in each lane either the standard 72-kip six-

wheel HS 20-44 truck shown in Figure 8.25a or a lane loading consist-
ing of the uniformly distributed and concentrated loads shown in Figure
8.25b. The forces produced by a standard truck usually control the

design of members whose spans are less than 145 ft. When spans exceed.

145 ft, the forces created by.a lane loading generally exceed those pro-
duced by a standard truck. If a bridge is to be constructed over a sec-
ondary road and only light vehicles are expected to traverse the bridge,
the standard truck and lanes loads can be reduced by either 25 or 50 per-
cent, depending on the anticipated weight of vehicles. These reduced
vehicle loads are termed HS 15 and HS 10 loadings, respectively.
Although not used extensively by engineers, the AASHTO code also
specifies a lighter (40 kips) four-wheeled HS 20 truck for secondary-road
bridges that do not carry heavy trucks. Since a bridge will often have a
life of 50 to 100 years or even more, and since it is difficult to predict the
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types of vehicles that will use a particular bridge in the future, use of live
load based on a heavier truck may be prudent. Moreover, because a heav-
ier truck also results in thicker members, the useful life of bridges that
are subject to corrosion from salting or acid rain will be longer than those
designed for lighter trucks.

Although the distance between the front and middle wheels of the stan-
dard HS truck (see Fig. 8.25q) is fixed at 14 ft, the designer is free to set a
value of Vbetween 14 and 30 ft for the spacing between the middle and rear
wheels. The wheel spacing the designer selects should maximize the value
of the design force being computed. In all designs, the engineer should con-
sider the possibility of the truck moving in either direction across the span.

Although it might seem logical to consider two or more trucks acting
on the span of bridges spanning 100 ft or more, the AASHTO specifica-
tions require only that the designer consider a single truck or, alternatively,
the lane loading. Although highway bridges fail occasionally because of
deterioration, faulty construction, material defects, and so forth, no
recorded cases exist of bridge failures from overstress when the members
have been sized for either an HS 15 or an HS 20 truck.

Railroad Bridges

The design loads for railroad bridges are contained in the specifications of
the American Railroad Engineering Association (AREMA). The AREMA
specifications require that bridges be designed for a train composed of
two engines followed by a line of railroad cars. As shown in Figure 8.26,
the wheels of the engines are represented by concentrated loads and the
railroad cars by a uniformly distributed load. The live load representing
the weight of trains is specified in terms of a Cooper E loading. Most
bridges today are designed for the Cooper E-72 loading shown in Figure
8.26. The number 72 in the Cooper designation represents the axle load
in units of kips applied by the main drive wheels of the locomotive.
Other Cooper loadings are also used. These loadings are propgrtional to
those of the Cooper E-72. For example, to establish a Cooper E-80 load-
ing, all forces in Figure 8.26 should be multiplied by the ratio 80/72.

!mpa‘ct

If you have traveled by truck or car, you probably recognize that moving
vehicles bounce up and down as they move over a roadway—springs are
supplied to dampen these oscillations. The vertical motion of a vehicle is

Figure 8.26: Cooper E-72 train for design of
railroad bridges (whee! loads in kips).
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a function of the roughness of the roadway surface. Bumps, an uneven sur-
face, expansion joints, potholes, spalls, and so forth all contribute to ver-
tical sinusoidal motion of the vehicle. The downward vertical movement
of the vehicle’s mass increases the force applied to the bridge through the
wheels. Since the dynamic force, a function of the natural periods of both
the bridge and the vehicle, is difficult to predict, we account for it by
increasing the value of the live load stresses by an impact factor 1. For
highway bridges the AASHTO spec1ﬁcat10ns require that for a part:cular
member

| I= _0 but not more than 0.3 (8.7)

L+ 125
where L is the length in feet of the section of span that must be loaded to
produce the maximum stress in a particular member.

For example, to compute the impact factor for the tension force in
member BK of the truss in Figure 8.21a, we use the influence line in Fig-
ure 8.21¢ to establish L = 72 ft {the length of the region in which the
ordinates of the influence line are positive). Subsmutmg this length mto
the equation for 7, we compute _ L

50
72 + 125

Therefore, the force in bar BK produced by the live load must be multi-
plied by 1.254 to establish the total force due to live load and impact.

= (.254

If we were computing the maximum live load compression force in-

bar BK, the impact factor would change. As indicated by the influence line
in Figure 8.21¢, compression is created in the bar when load acts on the
truss over a distance of 18 ft to the right of support A. Substituting L =
18 ft into the impact equation, we compute

50

I= 18+ 15 035 (0.3 control)

Since 0.35 exceeds 0.3, we use the upper limit of 0.3.

The dead load stresses are not increased by the impact factor. Other
bridge codes have similar equations for impact.

In Section 8.5 we discussed how to use an influence line to evaluate the
maximum value of a function when the live load is represented by either
a single concentrated load or a uniformly distributed load. We now want
to extend the discussion to include maximizing a function when the live
load consists of a set of concentrated loads whose relative position is

fixed. Such a set of loads might represent the forces exerted by the wheels
of a truck or a train.
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In the increase-decrease method, we position the set of loads on the
structure so that the leading load is located at the maximum ordinate of
the influence line. For example, in Figure 8.27 we show a beam that is to
be designed to carry a live load applied by five wheels. To begin the
analysis, we imagine that the loads have been moved onto the structure
so that force F, is directly below the maximum ordinate y of the infiu-
ence line. In this case the last load F; is not on the structure. We make no
computations at this stage. ‘

‘We now shift the entire set of loads forward a distance x, so that the
second wheel is located at the maximum ordinate of the influence line. As
a result of the shift, the value of the function (represented by the influence
line) changes. The contribution of the first wheel F| to the function
decreases (i.e., at the new location the ordinate of the influence line y' is
smaller than the former ordinate y). On the other hand, the contribution of

i

&)
Fl FZ F3 F, 4 ’ F. 5
x X, X3 Xy .
Y ¥ 2 y f Position 1
)
F 1 F2 F 3 F, 4 Fs
W T ot 4 5y
Y ¥ A Y y ! Position 2
@ :
Fi Fy Fy Fy Fs
x| x X3 1 X
Yy v ¥ Y Position 3
(e}
L ) | ST VR - i _STRN P
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Figure 8.27: Increase~decrease method for estab-
lishing the maximum values of a function produced
by a set of congentrated live loads. (@) Beam.
(&) Influence line for some function whose maxi-
mum ordinate equals y. (¢} Position 1: the first
wheel load F, is located at maximum ordinate y.
(d) In position 2: all wheel loads moved forward a
distance x;, bringing wheel F, up to the maximum
ordinate. (e) Position 3: all wheels moved forward
a distance x,, bringing wheel F; up to the maxi-
mum ordinate.
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F,, F;, and F, increases because they have moved to a position where the
ordinates of the influence line are larger. Since wheel Fs is now on the
structure, it too stresses the member. If the net change is a decrease in the
value of the function, the first position of the loads is more critical than

‘the second position, and we can evaluate the function by multiplying the

loads in position 1 (see Fig. 8.27¢) by the corresponding ordinates of the
influence line (that is, F, is multiplied by y). However, if the shift of loads
to position 2 (see Fig. 8.27d) produces an increase in value of the func-
tion, the second position is more critical than the first.

To ensure that the second position is the most critical, we will shift
all loads forward again a distance x, so that force F) is at the maximum
ordinate (see Fig. 8.27¢). We again compute the change in magnitude of
the function produced by the shift. If the function decreases, the previ-
ous position is critical. If the function increases, we again shift the loads.
This procedure is continued until a shift of the loads results in a decrease
in value of the function. Once we secure this result, we establish that the
previous position of the loads maximizes the function.

-The change in value of the function produced by the movement of a
pamcular wheel equals the difference between the product of the wheel
load and the ordinate of the influence line in the two positions. For exam-
ple, the change in the function Af due to wheel F| as it moves forward a
distance x, equals

Af=F(y —y') = Fi(Ay) (8.8)

where the difference in ordinates of the influence line Ay =y — y'.
If m,.is the slope of the influence line in the region of the shift, we
can express Ay as a function of the slope and the magnitude of the shift

by considering the proportions between the slope triangle and the shaded
area shown in Figure 8.275:

. Ay _m
X1 1 ’
A}, = myXx, (89)
Substituting Equation 8.9 into Equaﬁbn 8.8 gives .
' Af = Flmp:, (8.10)

where the slope m, can be negative or posmve and F, is the wheel load.
If a load moves on or off the structure, its contribution Afto the func-
tion would be evaluated by subsututmg the actual distance it moves into

Equation 8.10. For example, the contribution of force Fs (see Fig. 8.27d) -

as it moves on to the structure would be equal to
Af = Fomyxs

where x; is the distance from the end of the beam to load F. The increase~

decrease method is illustrated in Bxample 8.9,
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The 80-ft bridge girder in Figure 8.285 must be designed to support the
whee] loads shown in Figure 8.284. Using the increase—decrease method,
determine the maximum value of moment at panel point B. The wheels
can move in either direction. The influence line for moment at panel
point B is given in Figure 8.285.

10 kips 20 kips 20 kips " 30 kips 30 kips

w sl ow ls
Y K Y 12
1 23 4 5
(@

e 4e20=80—
15 kip-ft

fimns

Influence line

) - for moment
105 20% 208 30 30¢ : _atpanel B
w sl w |5
‘1’ 2’ ‘3' : 5’ Position 1
10k 20k 20% .30k 30k
’! 2' ! {' i Position 2
105 20%20% - 30k30%
'11 £ i i £ *Position 3

Influence line
30kips  20kips 10 kips §$;m?g“‘
slow s e
F Y Y ¥ ¥ -
. t
4 T Position 1
'51 4' £ i { : Position 2
" CASE2
©
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EXAMPLE 8.9

Figure 8.28

{continues on next page]
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Solution :
Case 1. A 10-kip load moves from rzgizt to left Begin th the 10—k1p

load at panel B (see position in Fig. 8.28b). Calculate the change in

moment as all loads shift left 10 ft; that is, load 2 moves up to panel pomt
B (see position 2). Use Equation 8.10.

1
Increase in moment = (20 + 20 + 30 + 30) (Z) (10) = +250 kip-ft
(loads 2, 3, 4, and 3)

3
Decrease in moment = 10(» --) (10) = —75 kipft
(10ad 1)

Net change = +175 kip-ft
‘CONCLUSION. Position 2 is more critical than position 1.
- Shift the loads again to determine if the moment continues to increase,

Calculate the change in moment as the loads move 5 ft to the left to posi-
tion 3; that is, load 3 moves upv to panel point B.

Increase in moment = (20 + 30 + 30) (5)( ) = +100.0 kip»ft
(loads 3, 4, and 5) ‘ :

3\
‘Decrease in moment = (10 + 20)(5) (—-— Z) = —112.5 kip-ft
(loads 2 and 3)

S Netchnge = —12.5kipft
'CONCLUSION. Position 2 is more critical than position 3. :
Evaluate the maximum moment at panel point B. Multiply each load
by the corresponding influence line ordinate (number in parentheses).

= 10(7.5) +20(15) + 20(13 75) + -30(1125) + 30(10)
= 1287.5 kip+ft
Case 2. The 30-kip load moves from right to left. Begin with a 30-kip

load at panel B (see position 1 in Fig. 8.28¢). Compute the change in
‘moment as loads move 5 ft left to position 2.,

il

: Increase in moment.. = (80 klps)(s)(z> ,

+100.0 kip-ft
~ (loads 4,3,2,and 1) S

" Decrease in moment = (30 kips) (5) (~ 3) = —112.5 kip-ft
(load 5) I 4

- Net change. = —12.5 kip-ft
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CONCLUSION. Position 1 is more critical than position 2. .
Compute the moment at panel point 2, using influence line ordinates.

My = 30(15) + 30(13.75) + 20(11.25) + 20(10) + 10(7.5)
= 1362.5 kip-ft controls design > 1287.5 kip-ft -

0 Absolute Maximum Live Load Moment

Case 1. Single Concentrated Load

A single concentrated load acting on a beam produces a triangular moment
curve whose maximum ordinate occurs directly at the load. As a concen-
trated load moves across a simply supported beam, the value of the max-
imum moment directly under the load incréases from zero when the load
is at either support to 0.25PL when the load is at midspan. Figure 8.295,
¢, and d shows the moment curves produced by a single concentrated
load P for three loading positions, a distance L/6, L/3, and L/2 from the
left support, respectively. In Figure 8.29¢, the dashed line, termed the
moment envelope, represents the maximum value of live load moment
produced by the concentrated load that can develop at each section of the
simply supported beam in Figure 8.294. The moment envelope is estab-
lished by plotting the ordinates of the moment curves in Figure 8.295 to
d. Since a beam must be designed to carry the maximum moment at each
section, the flexural capacity of the member must equal or exceed that
given by the moment envelope (rather than by the moment curve shown
in Fig. 8.29d). The absolute maximum live load moment due to a single

load on a simple beam occurs at midspan.

Case 2. Series of Wheel Loads

The increase~decrease method provides a procedure to establish the max-
imum moment produced at an arbitrary section of a beam by a set of mov-
ing loads. To use this method, we must first construct the influence line
for moment at the section where the moment is to be evaluated. Although
we recognize that the maximum moment produced by a set of wheel loads
will be larger for sections at or near midspan than for sections located
near a support, thus far we have not established how to locate the one
section in the span at which the wheel loads produce the greatest value
of moment. To locate this section for a simply supported beam and to
establish the value of the absolute maximum moment produced by a par-
ticular set of wheel loads, we will investigate the moment produced by
the wheel loads acting on the beam in Figure 8.30. In this discussion we
will assume that the resultant R of the wheel loads is located a distance

{b)
0.222PL

0.25PL

(d)

Figure 8.29: Muoment envelope for a concen-
trated load on a simply supported beam: (@) four
loading positions (A through D) considered for
construction of moment envelope; (b) moment
curve for load at point B; (¢) moment curve for
load at point C; (¢) moment curve for load at point
D (midspan): (¢) moment envelope, curve show-
ing maximum value of moment at each section.
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Figure 8.30: Set of wheel loads with a resultant R.

A e e

i ST

d to the right of wheel 2. (The procedure to locate the resultant of a set
of concentrated loads i§ covered in Example 3.2.) ,
Although we cannot specify with absolute certainty the wheel at which
the maximum moment occurs, experience indicates that it will probably
occur under one of the wheels adjacent to the resultant of the force system.
From our experience with the moment produced by a single concentrated
load, we recognize that the maximum moment occurs when the wheel
loads are located near the center of the beam. We will arbitrarily assume
that the maximum moment occurs under wheel 2, which is located a dis-
tance x to the left of the beam’s centerline. To determine the value of x
that maximizes the moment under wheel 2, we will express the moment
in the beam under wheel 2 as a function of x. By differentiating the expres-
sion for moment with respect to x and setting the derivative equal to zero,
we will establish the position of wheel 2 that maximizes the moment. To
compute the moment under wheel 2, we use the resultant R of the wheel

loads to establish the reaction at support A. Summing moments about
support B gives '

Gt EMz=0

R.@—R[fi-— (d-x>] —0
V L2 - . .
Ry = %(% —d+ x) ®8.11)

To compute the moment M in the beam at wheel 2 by summing moments
about a section through the beam at that point, we write

M= RA(% - x) - Wia (8.12)

where a is the distance between W, and W,. Substituting R, given by
Equation 8.11 into Equation 8.12 and simplifying give

}fm«z;—m——»-fm———x—-—_wla (8.13)

To establish the maximum value M, we differentiate Equation 8.13 with
respect to x and set the derivative equal to zero.

; dM R R
0 o —— — —— —
, d 3 2x 7

d .

d - x== 14
an N (8.14)

For x to equal d/2 requires that we position the loads so that the center-
line of the beam splits the distance between the resultant and the wheel

o - CBE e - G B s
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under which the maximum moment is assumed to occur. In Example 8.10
we will use the foregoing principle to establish the absolute maximum
moment produced in a simply supported beam by a set of wheel loads..

Determine the absolute maximum moment produced in a simply sup-

ported beam with a span of 30 ft by the set of loads shown in Figure 8.314.

R =60 kips
30 kips - 20 kips 10 kips
gi =55 él
| v |
(@)

11:75 11.’?5 i

{c)

TG e L BNl Y

EXAMPLE 8.10

Figure 8.31: (a) Wheel loads; (b) position of
loads to check maximum moment under 30-kip
load; (¢) position of loads to check maximum
moment under 20-kip load.

[continues on next pagel
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So|ut|on

Compute the magnitude and location of the resultant of the loads shown
in Flgure 8 3la.-

R=ZF, =30+ 20 + 10.= 60 kips

Locate the position of the resultant by summing moments about the 30-
kip load.

‘RfE:EFn'xu )
60% = 20(9) + 10(15)
F=55ft

Assume that the maximum moment occurs under the 30-kip load.
Position the loads as shown in Figure 8.31b; that is, the beam’s center-
line divides the distance between the 30-kip load and the resultant. Com-
pute R, by summing moments about B.

Ot IMy =0 = R,(30) — 60(12.25)
o A = 24.5 kips
Moment at 30-kip load = 24.5(12.25) = 300 kip-ft’

Assume that the maximum moment occurs under the 20-kip load. Posi-
tion the loads as shown in Figure 8.31c; that is, the centerline of the beam
is located halfway between the 20-kip load and the resultant.

Compute Rp by summing moments about A.

v SM, =0 = 60(13.25) — R5(30)
Rz = 26.5 kips
Moment at 20- k1p load = 13.25(26. 5) - 10(6) = 291.1 kip-ft

Absolute maximum moment = 300 kip-ft under 30-kip load

- Y

e,

Maximum Shear -

The maximum value of shear in a beam (simply supported or continu-
ous) typically occurs adjacent to a support. In a simply supported beam,
the shear at the end of a beam will be equal to the reaction; therefore, to
maximize the shear, we position loads to maximize the reaction. The
influence line for the reaction (see Fig. 8.32b) indicates that load should
be placed as close to the support as possible and that the entire span

[ ST VR - [ ST PR, - [ TR VO
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should be loaded. If a simple beam carries a set of moving loads, the
increase~decrease method of Section 8.9 can be used to establish the
position of the loads on the member to maximize the reaction.

To maximize the shear at a particular section B-B, the influence line
in Figure 8.32¢ indicates that load should be placed (1) only on one side
of the section and (2) on the side that is most distant from the support,
For example, if the beam in Figure 8.32a supports a uniformly distrib-
uted live load of variable length, to maximize the shear at section B, the
live load should be placed between B and C.

If a simply supported beam carries a uniform live load of variable
length, the designer may wish to establish the critical live load shear at sec-
tions along the beam’s axis by constructing an envelope of maximum shear,
An acceptable envelope can be produced by running a straight line between
the maximum shear at the support and the maximum shear at midspan (see
Fig. 8.33). The maximum shear at the support equals wl/2 and occurs
when the entire span is loaded. The maximum shear at midspan equals
wL/8 and occurs when load is placed on either half of the span.

- ()
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@

Figure 8.32: Maximum shear in a simply sup-
ported beam: (a) positive sense of shear at B;
{b) influence line for R,;*(c) influence line for
shear at section B.

Figure 8.33: Loading conditions to establish the
shear envelope for a beam supporting a uniform
live load of variable length: (a) entire span loaded
to maximum shear at support; (b) maximum shear

at midspan produced by loading on half of span:

(c) shear envelope.
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. Summary

« . Influence lines are used 1o establish where to position a moving
load or a vaﬁable'length of uniformly distributed live load on a
structure to maximize the value of an internal force at a partlcula;r
section of a beam, truss, or other type of structure.
Influence lines are constructed for an internal force or a reaction at
a particular point in a structure by evaluating the value of the force
at the particular point as a unit load moves over the structure, The
value of the internal force for each position of the unit load is plotted
directly below the position of the unit load.
» Influence lines consist of a series of straight lines for determinate
structures and curved lines for indeterminate structures.
The Miiller-Breslau principle provides a simple procedure for
establishing the qualitative shape of an influence line. The principle
states: The ordinates of an influence line for a particular force are
proportional to the deflected shape of the structure produced by
removing the capacity of the structure to carry the force and then
introducing into the modified structure a dzsplacement that
corresponds to the restraint removed.

F;R‘OBLEMS |

P8.1. Draw the influence lines for the reaction at A and

for the shear and moment at points B and C. The rocker
at D is equivalent to a roller.

P8.3. Draw the influence lines for the reactions at sup-
ports A and C, the shear and moment at section B, and
the shear just to the left of support C.

RAT~S' sl 10— ?RD

' P8.1

P8, 2 For the beam shown in Figure P8.2, draw the

influence lines for the reactions M, and R, and the shear P83
and moment at points B and C.

P8.2

: e - ST SN - R SN




P8.4. For the beam in Figure P8.4, draw the influence
lines for the reactions at A, C, and E and the shear and
the moment at B. Determine the maximum value of
each reaction (both positive and negative) if the beam is
subject to a concentrated load of 20 kN and a 1.8 kN/m
uniform load of variable length. -

:
N

4m -! Zm 1 4m J.

P8.5. (@) Draw the influence lines for reactions R, Rp,
and Ry of the beam in Figure P8.5 and the shear and
moment at E. (b) Assuming that the span can be loaded
with a 1.2 kips/ft uniform load of variable length, deter-
mine the maximum positive and negative values of the
reactions.

P8.5

B e e * TR e

Problems 291

P8.6. Load moves along girder BCDE. Draw the influ-

ence lines for the reactions at supports A and D, the
shear and moment at section C, and the moment at D.
Point C is located directly above support A.

10’ e 5

P8.6

P8.7. Vertical load moves along member ABC. Draw
the influence lines for the horizontal and vertical com-
ponents of the reaction at support A, the shear to the left

of joint B, the moment at B, and the axial force in strut
BD. '

\ 12 e ]

| P87
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P8.8 to P8.11. Using the Miiller-Breslau- prinéiple,
sketch the shape of the influence lines for the reactions
and internal forces noted below each structure.

12 NI VRN NPT

VA, MB’ A‘fc, and RC

12— 12’ P TN

My, Ry, M, and Ve (to left of support )
Pg.9
© D E
e
|

A

B
T YR 12! 6'—

Ry, Ve, M, and Vg (1o right of support B)

BEEE XTI
“hinge -

— 20 e gl o e 100

© Ry Re, Mp, and Vp

P

- P81
P8.12. For the beam shown in Figure P8.12, draw the

-influence lines for the reactions at A, C, and E; the

moment in the beam at C; and the shear to the left of
support C. '

- TN e - SRS e
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P8.13. Draw thé influence lines for the shear between
points A and B and for moment at point E in the girder
GH shown in Figure P8.13.

A . B c D E F

[ 5@ 24" =120' ————]

P8.13

P8.14. For the floor system shown in Figure P8.13,
draw the influence lines for shear between points B and
C and for the moment at points C and E in the girder.

P8.15. For the girder in Figure P8.15, draw the influ-
ence lines for the reaction at A, the moment at point C,
and the shear between points B and C in girder AE.

B C D

— g g g
P8.15

P8.16. (a) Draw the influence lines for the reactions at
B and E, the shear between CD, the moment at B and D
for the girder in Figure P8.16. (D) If the dead load of the
floor system (stringers and slab) is approximated by a
uniformly distributed load of 3 kip/ft, the reaction of the
floor beam’s dead load to each panel point equals 1.5
kips, and the deadweight of the girder is 2.4 kips/ft, deter-
mine the moment in the girder at D and the shear just to
the right of C. Assume the floor system is supported by
two outside girders (see Fig. 8.16, for example).

A B c D E ' F

P e e




P8.17. For the girder in Figure P8.17, draw the influ-
ence lines for the reaction at 7, the shear to the right of
support /, the moment at C, and the shear between CE.

A B ¢ D E F G

= E el . B

YR PR YV DL V0 N TN D7,
P8.17

P8.18. For the girder in Figure P8.18, draw the influ-
ence lines for the support reactions at G and F, the
moment at C, and the shear to the left of support F.

{2 m]

6m§6m!6m-§6m

P8.18

P8.19. (&) For the girder HIJ shown in Figure P8.19,
draw the influence line for moment at C. (b) Draw the
‘influence line for the reactions at support H and K.

A B C D E F G
AT 3

E - K | S | ST R I | SR i S
AT BE
5 RS % e e

b 3@5m L

25m 25m

2@5m-——I
P89

P8.20. For girder GK in Figure 8.20, draw the influ-
ence lines for the reaction at K and the shear and moment
at point [, located at midspan.

k16— g gl 12k 120 8'4«8';3«—46'—’3

P8.20

T e

Problems 293

P8.21. For the girder EG shown in Figure P8.21, draw

‘the influence lines for the reaction at G and the -shear

and moment at F, located at midspan of girder EG.

A B
i- l
A= -
PR DO DU PRV A
P8.21

P8.22. For girder AF shown in Figure P8.22, draw the
influence lines for the reaction at A, the moment at C,

the shear immediately to the right of support A, and the
shear between C and D.

hinge
Es. ) BL! B
A g 1IcC
P-ém—»i‘?) mee— 6 m—h3 mebe— 6 m—!

R,

. p8.22.

P8.23. Draw the influence lines for the bar forces in
members AB, BK, BC, and LK if the live load is applied
to the truss in Figure P8.23 through the lower chord.

L 6@ 15 =90’ — -

P8.23

P8.24. Draw the influence lines for the bar fcféés in
members CD, KD, HG, and EF if the live load in Fig-

ure P8.23 is applied through the lower chord panel
points.

- -
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PSQZS, I)lArlawv the influence lines for RA and the bar forces in members
AD, EF, EM, and NM. Loads are transmitted into the truss through the

lower chord panel points. Vertical members EN and GL are 18 ft long, k

FMis 16 ft, o

P8.25

P8.26. Draw the inﬂuence“lines for the bar forces in members CJ, CK,
KL, BC, and DJ if the live load is applied to the truss in Figure P8.26
through the lower chord panel puints.. ' : ‘

6@ 16 =96’ N
P26
P8.27. Draw the influence lines for bar forcés in members ML, BL, CD,

EJ, DJ, and FH of the cantilever truss in Figure P8.27 if the live load is
applied through the lower chord panel points.

7@ 15 =105

p8.27

L e - - B e - ‘

- B

A -

hE %

P




P8.28. Draw the influence lines for the reactions at A
and F and for the shear and moment at section 1. Using
the influence lines, determine the reactions at supports
A and F if the dead load of the floor system can be

approximated by a uniform load of 10 kN/m. See Fig-
ure P8.28.

L 20 mab 20 mok—— 40 m——v20 m+k20 m

Pg.28

P8.29. The horizontal load P can act at any location

‘along the length of member AC shown in Figure P8.29.

Draw the influence lines for the horizontal reactions at
A and D, and the moment at section 1.

SN e - IR e
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P8.30. Draw the influence lines for the vertical and hor-
izontal reactions, Ay and A,, at support A and the bar
forces in members AD, CD, and BC. If the truss is
loaded by a uniform dead load of 4 kips/ft over the entire
length of the top chord, determine the magnitude of the
bar forces in members AD and CD.

e sewes0—o ]

P8.30

P8.31. Draw the influence lines for the forces in mem-
bers BC, AC, CD, and CG. Load is transferred from the
roadway .to the upper panel points by a system of
stringers and floor beams (not shown)..If the truss is to
be designed for a uniform live load of 0.32 kip/ft thal
can be placed anywhere on the span in addition to a con-
centrated live load of 24 kips that can be positioned

-where it will produce the largest force in bar CG, deter-

mine the maximum value of live load force (tension,
compression, or both) created in bar CG.

P8.31
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P8.32. A bridge is composed of two trusses whose con-
figuration is shown in Figure P8.32. The trusses are
loaded at their top chord panel points by the reactions
from a stringer and floor beam system that supports a
roadway slab. Draw the influence lines for forces in
bars FE and CE. Assume that vehicles move along the

Live Load Forces: Influence Lines for Determinate Structures

center of the roadway so one-half the load is carried by
each truss. If a fully loaded motorized ore carrier with a

total weight of 70 kN crosses the bridge, determine the

maximum live load forces in bars FE and CE. Assume the
truck can move in either direction. Consider the possibil-
ity of both tension and compression force in each bar.

F

e 6@e3m=18m ——

'P8.33. Draw the: inﬂﬁeurhu‘:ewlizélebsA_fcy)rﬁ fofées m béré AL -

~and K7 in Figure P8.33. Using the influence lines,

determine the maximum live load force (consider both

tension and compression) produced by the 54-kip truck
as it transverses the bridge, which consists of two

20 kips 24 kips 10 kips

P8.32

 trusses. Assume the truck moves along the center of the
_ roadway so that one-half of the truck load is carried by

each truss. Assume the truck can travel in either direc-

tion.

6@ 20" =120’ : : —

PB.33
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P8.34. (@) Load is applied to the three-hinged trussed
arch in Figure P8.34 through the upper chord panel
points by a floor beam and stringer floor system. Draw
the influence lines for the horizontal and vertical reac-
tions at support A and the forces or components of force
in members BC, CM, and ML. (b) Assuming that the
dead load of the arch and floor system can be repre-

Problems 297

sented by a uniform load of 4.8 kip/ft, determine the
forces in bars CM and ML produced by the dead load.
(c) If the live load is represented by a uniformly: dis-
tributed load of 0.8 kip/ft of variable length and a con-

- centrated load of 20 kips, determine the maximum force

in bar CM produced by the live load. Consider both ten-

- sion and compression. Joint E acts as a hinge. -

6 panels @ 24' = 44—

P8.34

P8.35. Compute the absolute maximum shear and

moment produced in a simply supported beam by two
.concentrated live loads of 20 kips spaced 10 ft apart.
.- The beam spans 30 ft.

P8.36. Draw the envelopes for maximum shear and
moment in a 24-ft-long simply supported beamn produced
by a live load that consists of both a uniformly distributed
load of 0.4 kip/ft of variable length and a concentrated
load of 10 kips (Fig. P8.36). The 10 kip load can act at any
point. Compute values of the envelope at the supports,
quarter points, and midspan (see Secs. 8.10 and 8.11).

10 kips P8.37
w=04kipt B
! variable —i I 24’ J
P8.36
- Ba: B - TG e - B e e L ] E %

P8.37. Determine (@) the absolute maximum values of
shear and moment in the beam produced by the wheel
loads and (&) the maximum value of moment when the

middle wheel is positioned at the center of the beam.

See Figure P8.37.

24kN  32KN SN
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PS. 38 Determme (@) the absolute maxnnum value of |

live load moment and shear produced in the 36-ft girder
and (b) the maximum value of moment at midspan (Fig.

P8.38). Hint: For part b) use the influence lme for
moment ‘

4 kips’

8kips 6kips

6 L6

24’

P8.38

P8.39. Determine the absolute maximum value of live
load shear and moment produced in a simply supported
beam spanning 40 ft by the wheel loads shown in Flg—
ure P8.39.

24 kips

6 kips 24 kips

<&

P8.39

P8.40. For the beam shown in Figure P8.40, draw the
influence lines for the reactions at B, D, and F; the

moment at B and E; and the shear to the left and right
at D,

10— 12" b 127 g1

k10 —be—10"

P8.40

P8.41. (a) Consider the beam shown in Figure P8.40.
Position the HS 20-44 truck (see Fig. 8.25a in the text)
to produce the maximum reaction at B. (b) Position the
HS 20-44 lane loading (see Fig. 8.25b) that produces
the maximum positive moment at E. Reposition the
loading to produce the maximum negative moment at E.

Live Load Forces: Influence Lines for Determinate Structures

v PS 42 The beam shown in Figure PS. 421is sub_]ected toa

moving concentrated load of 80 kN. Construct the enve-

. lope of both maximum positive and negative moments for

the beam.

" 80 kN

p8.42

P8.43. Consider the beam shown in Figure P8.42. Con-
struct the envelope of maximum positive shear assuming
the beam supports a 6 kN/m uniformly distributed load
of variable length.

P8.44. Consider the beam shown in Figure P8.44. Posi-
tion the HS 20-44 lane loading (see Fig. 8.25b) to pro-

duce the maximum positive moment at B and the max-
imum shear to the left of support C.

20/ |

1 20’ |

- P8.44

P8.45. (a) The three-hinged arch shown in Figure P8.45
has a parabolic profile. Draw the influence lines for
both the horizontal and vertical reactions at A and the
moment at D. (b) Compute the horizontal and vertical
reactions at support A if the arch is loaded by a uniform
load of 10 kN/m. (¢) Compute the maximum moment at
point D,

w= 10 kN/m

L—lSm*J'«lSm 1

(¢) Compute the moment at E produced by a uniformly 30 1 ——)
distributed dead load of 3 kips/ft over the entire span.
‘  P8.45
- "‘&Z‘u Y -« AR e - - B YT W, -




P8.46. (g) Draw the influence lines-for bar forces in
members IB, BC, and FE of the truss shown in Figure
P8.46. The load moves along the bottom chord of the
truss. {b) Compute the force in member HG if panel
points F, G, and H are each loaded by a concentrated
vertical load of 30 kN.

Problems 299

P8.48. Computer application. Construction of an influ-
ence line for an indeterminate beam. (a) For the
! indeterminate beam shown in Figure P8.48, con-
struct the influence lines for M,, R,; and Ry by
applying a unit load to the beam at 4-ft intervals to com-
pute the corresponding magnitudes of the reactions.
(b) Using the influence line in part (a), deter-
mine the maximum value of the reaction Ry produced by
two concentrated 20-kip wheel loads spaced 8 ft apart.

20 kips 20 kips

3
g
P8.46 e se4 =20 H——»T« 4
. RB .
P8.47. Draw the influence lines for bar forces in mem- « ‘
bers CD, EL, and ML of the truss shown in Figure P8.48
P8.47. The load moves along BH of the truss. .
K J 1
6m
B E 6
: TR TN TR H —*
" F G i ]
hinge im
i
l 6@6m J
P8.47
i ETRIN TRy ‘ IR e e ‘ BW: e ‘




: Coilapse of th Brazos River Bridge, Brazos, Texas, during erection of the 973-ft, continuous steel plate
girders that support the roadway. The failure was initiated by overstress of the connections between the
web and ﬂange during erection. Structures are particularly vulnerable to failure during erection because

stiffening elements-—for example, floor slabs and bracing—may not be in place. In addition, the structure’s

strength may be reduced when certain connections are partially bolted or not fully welded to permit pre-
cise alignment of members.

AR e e -




Deflections of Beams
and Frames

‘When a structure is loaded, its stressed elements deform. In a truss, bars
in tension elongate and bars in compression shorten. Beams bend and
cables stretch. As these deformations occur, the structure changes shape
and points on the structure displace. Although these deflections are nor-
mally small, as part of the total design, the engineer must verify that these
deflections are within the limits specified by the governing design code to
gnsure that the structure is serviceable. For example, large deflections of
beams can lead to cracking of nonstructural elements such as plaster ceil-
" ings, tile walls, or brittle pipes. The lateral displacement of buildings pro-
duced by wind forces must be limited to prevent cracking of walls and
windows. Since the magnitude of deflections is also a measure of a mem-
ber’s stiffness, limiting deflections also ensures that excessive vibrations
of building floors and bridge decks are not created by moving loads.
Deflection computations are also an integral part of a number of ana-
lytical procedures for analyzing indeterminate structures, computing buck-
ling loads, and determining the natural periods of vibrating members.
In this chapter we consider several methods of computing deflections
and slopes at points along the axis of beams and frames. These methods
¢ are based on the differential equation of the elastic curve of a beam. This
i - equation relates curvature at a point along the beam’s longitudinal axis
to the bending moment at that point and the properties of the cross sec-
tion and the material.

Double Integration Method

The double integration method is a procedure to establish the equations
for slope and deflection at points along the longitudinal axis (elastic
curve) of a loaded beam. The equations are derived by integrating the

- TENE - TR - - ] [ ST VR, - CEK: e - -
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line tangent at B

line tangent at A
() ‘

Figure 9.1

Deflections of Beams and Frames

differential equation of the elastic curve twice, hence the name double
integration. The method assumes that all deformations are produced by
moment. Shear deformations, which are typically less than 1 percent of
the flexural deformations in beams of normal proportions, are not usu-
ally included. But if beams are deep, have thin webs, or are constructed
of a material with a low modulus of rigidity (plywocd, for example), the

“magnitude of the shear deformations can be significant and should be

investigated.
To understand the principles on which the double integration method
is based, we first review the geometry of curves. Next, we derive the dif-

. ferential equation of the elastic curve—the equation that relates the cur-

vature at a point on the elastic curve to the moment and the flexural stiff-

ness of the cross section. In the final step we integrate the differential

equation of the elastic curve twice and then evaluate the constants of
integration by considering the boundary conditions imposed by the sup-
ports. The first integration produces the equation for slope; the second
integration establishes the equation for deflection. Although the method

is not used extensively in practice since evaluating the constants of inte- - -
grétion is time-consuming for many types of beams, we begin our stiudy

of deflections with this method because several other important proce

dures for computing deflections in beams and frames are based on the’

differential equation: of the elastic curve.

- Geometry of Shallow Curves

To establish the geometric relationships required to derive the differen-
tial equation of the elastic curve, we will consider the deformations of
the cantilever beam in Figure 9.1a. The deflected shape is represcnted in
Figure 9.1b by the displaced position of the longitudinal axis (also called
the elastic curve). As reference axes, we establish an x-y coordinate sys-

tem whose origin is located at thé fixed end. Por clarity, vertical dis-

tances in this figure are greatly exaggerated. Slopes, for example, are

typically very small-—on the order of a few tenths of a degree. If we were

to show the deflected shape to scale, it would appear as a straight line.

. To establish the geometry of a curved element, we will consider an
infinitesimal element of length ds located a distance x-from the fixed end.
As shown in Figure 9.1¢, we denote the radius of the curved segment by p.

At points A and B we draw tangent lines to the curve. The infinitesimal-

angle between these tangents is denoted by dé. Since the tangents to the
curve are perpendicular to the radii at points A and B, it follows that the

angle between the radii is also dG The slope of the curve at pomt A
equals

dy

T = tan@
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If the angles are small (tan =~ 8 radians), the slope can be written

dy
w—e 9.1)

From the geometry of the triangular segment ABe in Figure 9.1¢, we
can write

pdd =ds 9.2)

Dividing each side of the equation above by ds and rearranging terms give
== 9.3)

where db/ds, representing the change in slope per unit length of distance
along the curve, is called the curvature and denoted by the symbol 4.
Since slopes are small in actual beams, ds = dx, and we can express the
curvature in Equation 9.3 as

a 1

dc - p
Differentiating both sides of Equation 9.1 with respect to x, we can

express the curvature d/dx in Equation 9.4 in terms of rectangular coor-
dinates as ' C

©.4)

2

SRS
i
{&
e
-
=

9.5)

&
[

(a}

Differential Equation of the Elastic Curve

To express the curvature of a beam at a particular point in terms of the
moment acting at that point and the properties of the cross section, we
will consider the flexural deformations of the small beamn segment of length
dx, shown with darker shading in Figure 9.2a. The two vertical lines rep-
resenting the sides of the element are perpendicular to the longitudinal axis

dé
~

r——df
E - M
. \ a0 €
Figure 9.2: Flexural deformations of seg- D—-k»—AL———— —_
ment dx: (@) unloaded beam; (b) loaded beam A
and moment curve; (¢} ¢cross section of beam; - ‘|
{d) flexural deformations of the small beam L de —»l
segment; (e) longitudinal strain; (f) flexural (©
stresses. ) (e} W
B ST - S * B o en - TR . - TR Ve,
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of the unloaded beam. As load is applied, moment is created, and the
beam bends (see Fig. 9.2b); the elément deforms into a trapezoid as the
sides of the segment, which remain straight, rotate about a horizontal axis
(the neutral axis) passing through the centroid of the section (Fig. 9.2¢).
In Figure 9.2d the deformed element is superimposed on the original
unstressed element of length dx. The left sides are aligned so that the
deformations are shown on the right. As shown in this figure, the longi-
tudinal fibers of the segment located above the neutral axis shorten
because they are stressed in compression. Below the neutral axis the lon-
gitudinal fibers, stressed in tension, lengthen. Since the change in length
of the longitudinal fibers (flexural deformations) is zero at the neutral
axis (N.A.), the strains and stresses at that level equal zero. The variation
of longitudinal strain with depth is shown in Figure 9.2e. Since the strain
is equal to the longitudinal deformations divided by the original length
dx, it also varies linearly with distance from the neutral axis. .
Considering triangle DFE in Figure 9.2d, we can express the change
in length of the top fiber 4l in terms of d6 and the distance ¢ from the
neutral ax1s to the top fiber as

dl=doc - (9.6)

: By deﬁmtlon the stram €at the top surface can be expressed as

o7 |

I _gre

=2
Using Equation 9.6 to eliminate df in Equation 9.7 giv
dae ' ‘
€ ='Zx-c - 9.8)

Using Equation 9.5 to express the curvature d/dx in rectangular coordi- |
nates, we can write Equation 9.8 as
d%y €
= ©.9)

If behavior is elastic, the flexural stress, o, can be related to the strain

€ at the top fiber by Hooke s law, which states that

’ o = Fe
. where E = the modulus of elasticity '

Solving for € gives

N o « ‘ ,

= — : 9.10
€=% | (9.10)

Using Equation 9.10 to eliminate € in Equation 9.9 produces

== @11

A

dx*  Ec
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~ For elastic behavior the relationship between the flexural stress at the top
fiber and the moment acting on the cross section is given by

_Me
I
Substituting the value of o given by Equation 5.1 into Equation 9.11 pro-
duces the basic differential equation of the elastic curve
dy_M
dx* EI ,
In Examples 9.1 and 9.2 we use Equation 9.12 to establish the equa-
tions for both the slope and the deflection of the elastic curve of a beam.
This operation is carried out by expressing the bending moment in terms
of the applied load and distance x along the beam’s axis, substituting the
equation for moment in Equation 9.12, and integrating twice. The
method is simplest to apply when the loading and support conditions per-
mit the moment to be expressed by a single equation that is valid over the
entire length of the member-—the case for Examples 9.1 and 9.2. For
beams of constant cross section, E and [ are constant along the length of
the member. If £ or [ varies, it must also be expressed as a function of x
in order to carry out the integration of Equation 9.12. If the loads or the
cross section varies in a complex manner along the axis of the member,
the equations for moment or for [ may be difficult to integrate. For this
situation approximate procedures can be used to facilitate the solution
(see, for example, the finite summation in Example 10.15).

o (5.1)

(9.12)
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For the cantilever beam in Figure 9.3a, establish the equations for slope
and deflection by the double integration method. Also determine the mag-
nitude of the slope 85 and deflection Ay at the tip of the cantilever. EI is
constant.

Solution

Establish a rectangular coordinate system with the origin at the fixed
support A. Positive directions for the axes are up (y-axis) and to the right
(x-axis). Since the slope is negative and becomes steeper in the positive
x direction, the curvature is negative. Passing a section through the beam
a distance x from the origin and considering a free body to the right of
the cut (see Fig. 9.35), we can express the bending moment at the cut as

M= P(L—x)

Substituting M into Equation 9.12 and adding a minus sign because the
curvature is negative lead to

dy M —P(L-x)
dx* EI EI

IR e - ST .
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Figure 9.3

B _SCRR "R

[continues on next page]
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ExampEe 9.1 continues . . .
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f

Integrating twice to establish the equations for slope and deflection yields
dy —PLx Px’

=+ 4
dx EI * 28 g M
—PILx?  Px?
= + = + + _
Y= Tem TG @

To evaluate the constants of integration C; and C, in Equations 1 and 2,
we use the boundary conditions imposed by the fixed support at A:

1. Whenx =40,y = (s then from Equation 2,Cy =10,

2. When x = 0, dy/dx = 0; then from Equation 1, C; = 0.

The final equations are

=" "m T2m 3)
- —=PLx®* Px?
Y= om Y eE @)

To establish 65 and Ap, we substitute x = L in Equations 3 and 410
compute o o '
—PpI?

- Ans. .
2E1 o ot
{
—PL’ i
A = Ans. !
B 3E1 “

EXAMPLE 9.2

- at midspan, and positive at B), the curvature is positive. If we consider a

Using the double integratioh method, establish the equations for slope
and deflection for the uniformly loaded beam in Figure 9.4. Evaluate the
deflection at midspan and the slope at support A, EI is constant.

Solution ,
Establish a rectangular coordinate system with.the origin at support A.
Since the slope increases as x increases (the slope is negative at A, zero

free body of the beam cut by a vertical section located a distance x from
the origin at A (see Fig. 9.4b), we can write the internal moment at the
section as

M= wlx  wx?

2 2

SR e - IR e - I e -
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Substituting M into Equation 9.12 gives

El—=——=—F" 6]

dy  wlx®*  wx’

El - = —— — ——— 4 2
ar 4 6 1 ' 2
Ey =Mt e 3) (@
YE T T T T
R . R =wx
To evaluate the constants of integration C; and C,, we use the bound-  x
ary conditions at supports A and B. At A4, x = 0 and y = 0. Substituting Wy 2 =YL E
these values into Equation 3, we find that C; = 0. At B,x = Landy = (. )- 2 2

Substituting these values into Equation 3 and solving for C; gives

wl*  wL*
= — = — + C,L
TRETIMA
, wL? x |
“ = ,
: (&)
Substituting C; and C, into Equations 2 and 3 and dividing both sides by ’
El yields Figure 9.4
0=5d2=wsz_£§i~wL3 @
de 4EI  6EI  24E]
wLx®  wx*  wlx
Y= o T o ®)
12EI  24EI  24EI
Compute the deflection at midspan by substituting x = L/2 into
Equation 5. ‘
_ SwL*
Y " 38481 |

Compute the slope at A by substituting x = 0 into Equation 4.
dy wL? Ans. '

Moment-Area Method

As we observed in the double integration method, based on Eqﬁation
9.12, the stope and deflection of points along the elastic curve of a beam
or a frame are functions of the bending moment M, moment of inertia I,

T AL e s - i CEra .
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and modulus of elasticity E. In the moment-area method we will estab-
lish a procedure that utilizes the area of the moment diagrams [actually,
the M/EI diagrams) to evaluate the slope or deflection at selected points

~ along the axis of a beam or frame.

- This method, which requires an accurate sketch of the deﬂected shape,

308 - Deflections of Beams and Frames
y undeflected tangent
beam atB

tangent
atA

Figure 9.5 -

employs two theorems. One theorem is used to calculate a change in
slope between two points on the elastic curve. The other theorem is used
to compute the vertical distance (called a tangential deviation) between
a point on the elastic curve and a line tangent to the elastic curve at a sec-
ond point. These quantities are illustrated in Figure 9.5. At points A and
B, tangent lines, which make a slope of 8, and 65 with the horizontal axis,
are drawn to the elastic curve. For the coordinate system shown, the slope
at A is negative and the slope at B is positive. The change in slope between
points A and B is denoted by Af,5. The tangential deviation at point B—
the vertical distance between point B on the elastic curve and point C on
the line drawn tangent to the elastic curve at A—is denoted as #5,. We
will use two subscripts to label all tangential deviations. The first sub-
script indicates the location of the tangential deviation; the second sub-
script specifies the point at which the tangent line is drawn. As you can

see in Figure 9.5, #3, is not the deflection of point B (v, is the deflection).

With some guidance you will quickly learn to use tangential deviations

and changes in slope to compute values of slope and déflection at any

désired point on the elastic curve. In the next section we develop the two

moment-area theorems and illustrate their application to a variety of beams

and frames.

Derivation of the Moment-Area Theorems

Figure 9.6b shows a portion of the elastic curve of a loaded beam. At

“points A and B tangent lines are drawn to the curve. The total angle

between the two tangents is denoted by A,5. To express Afl,p in terms
of the properties of the cross section and the moment produced by the

" applied loads, we will consider the increment of angle change d8 that

occurs over the length ds of the infinitesimal segment located a distance
x to the left of point B. Previously, we established that the curvature at a
pomt on the elasﬂc curve can be expressed as

4o _ M

dx  EI 012

- where E is the modulus of elasticity and I is the moment of inertia. Mul-

tiplying both sides of Equation 9.12 by dx gives

d@“&!—dx

I, (9.13)




elastic

/ ©de

El = constant tangent at A

{a) Moment diagram El

)

To establish the total angle change A8,,, we must sum up- the df incre-
ments for all segments of length ds between points A and B by integration.

B B
Mdx |
Ay = J do = f dx (9.14)
A A ’

El

We can evaluate the quantity M dx/EI in the integral of Equation 9.14
graphically by dividing the ordinates of the moment curve by E/ to pro-
duce an M/EI curve (see Fig. 9.6¢). If EI is constant along the beam’s
axis the (most common case), the M/EI curve has the same shape as the
moment diagram. Recognizing that the quantity M dx/EI represents an
infinitesimal area of height M/EI and length dx (see the crosshatched
area in Fig. 9.6¢), we can interpret the integral in Equation 9.14 as rep-
resenting the area under the M/EI diagram between points A and B. This
relationship constitutes the first moment-area prmc:lp}e, which can be
stated as

The change in slope between any two poinfs on a smooth continuous elas-
tic curve is equal to the area under the M/EI curve between these points.

You will notice that the first moment-area theorem applies only to the
case where the elastic curve is continuous between two points. If a hinge
occurs between two points, the area under the M/EI diagram will not
account for the difference in slope that can exist on either side of the
hinge. Therefore, we must determine the slopes at a hinge by working
with the elastic curve on either side.

ST a
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tangent at B
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To establish the second moment-area theorem, which enables us to
evaluate a tangential deviation, we must sum the infinitesimal increments
of length dr that make up the total tangential deviation 75, (see Fig. 9.6b).

- The magnitude of a typical increment dt contributed to the tangential

deviation 1y, by the curvature of a typical segment ds between points 1
and 2 on the elastic curve can be expressed in terms of the angle between
the lines tangent to the ends of the segment and the distance x between
the segment and point B as

dr = db x » | (9.15)
Expressing d9 in Equation 9.15 by Equation 9.13, we can write

M dx

dt = E[V x (9.16)

To evaluate 754, we must sum all increments of dr by integrating the con-

- tribution of all the infinitesimal segmems between points A and B:

Mx
38“:4( dt=J —dx .17
A “A = 0 ' T

Remembering that the quantity M dx/EI represents an infinitesimal area

under the M/EI diagram and that x is the distance from that area to point
B, we can interpret the integral in Equation 9.17 as the moment about
point B of the area under the M/EI diagram between points A and B, This

result constitutes the second moment-area theorem, which can be stated
as follows:

The tangential deviation ata point B on a continuous elastic curve from
the tangent line drawn to the elastic curve at a second point A is equal

- to the moment about B of the area under the M/EI daagram between the
. two points.

Although it is possible to evaluate the integral in Equation 9.17 by

-expressing the moment M as a function of x and integrating, it is faster
“and simpler to carry out the computation graphically. In this procedure
" we divide the area of the M/EI diagram into simple geometric shapes—

rectangies triangles, parabolas, and so forth. Then the moment of each

area is evaluated by multiplymg each area by the distance from its cen-
* troid to the point at which the tangential deviation is to be computed. For

this computation, we can use the table inside the back cover, which tab-
ulates properties of areas you will frequently encounter.

L ] S B e - [ ST SN




Application of the Moment-Area Theorems

The first step in computing the slope or deflection of a point on the elas-
tic curve of a member is to draw an accurate sketch of the deflected
shape. As discussed in Section 5.6, the curvature of the elastic curve must
be consistent with the moment curve, and the ends of members must sat-
isfy the constraints imposed by the supports. Once you have constructed
a sketch of the deflected shape, the next step is to find a point on the elas-
tic curve where the slope of a tangent to the curve is known. After this
reference tangent is established, the slope or deflection at any other point
on the continuous elastic curve can easily be established by using the
moment-area theorems,

The strategy for computing slopes and deflections by the moment-area
method will depend on how a structure is supported and loaded. Most con-
tinuous members will fall into one of the following three categories:

1. Cantilevers
2. Structures with a vertical axis of symmetry that are loaded
) symmetrically
3. Structures that contain a member whose ends do not displace in the
direction normal to the original position of the member’s
longitudinal axis

If a member is not continuous because of a hinge, the deflection at
the hinge must be computed initially to establish the position of the end-
points of the member. This procedure is illustrated in Example 9.10. In
the next sections we discuss the procedure for computing slopes and
deflections for members in each of the foregoing categories.

Case 1. 1Ina cantilever, a tangent line of known slope can be drawn to
the elastic curve at the fixed support. For example, in Figure 9.74 the line
tangent to the elastic curve at the fixed support is horizontal (i.e., the
slope of the elastic curve at A is zero because the fixed support prevents
the end of the member from rotating): The slope at a second point B on
" the elastic curve can then be computed by adding algebraically, to the
slope at A, the change in slope A8, between the two points. This rela-
tionship can be stated as

0y =0, + My 9.18)

where 8,4 is the slope at the fixed end (that is, 8, = 0) and A@AB is equal
to the area under the M/EI diagram between points A and B.

Since the reference tangent is horizontal, tangential deviations—the
'vertical distance between the tangent line and the elastic curve—are, in
fact, displacements. Examples 9.3 to 9.5 cover the computation of slopes

SRR e - W e - I _erS
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reference
Gy=0 tangent

4 3/ / ) B
1 ~_ JP

(@)

Figure 9.7: Position of tangent line: {(a) can-~
tilever, point of tangency at fixed support.
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: reference
reference ) tangent
P tangent | Oc=0 P .

R A

/%%a GR =N
'Bc vc, D |
et S
€3] o ) ‘
A :
A 2
P s LA
= t

reference

Figure 9.7: (b) and (c) symmetric members with tangent reference

symmetric loading, point of tangency at intersec- tangent

tion of axis of symmetry and elastic curve; and . L L |

(d) and (e} point of tangency at left end of mem- s o ‘ o . o
“ber AB. A . Ly o - O]

- and deflections in cantilevers. Example 9.4 illustrates how to modify an
M/EI curve for a member whose moment of inertia varies. In Example
9.5 the moment curves produced by both a uniform and a concentrated
load are plotted separately in order to produce moment curves with a
known geometry. (See Table A.1 for the properties of these areas.)

Case 2. Figures 9.7b and ¢ show examples of symmetric structures
loaded symmetrically with respect to the vertical axis of symmetry at the
center of the structure. Because of symmetry the slope of the elastic curve
is zero at the point where the axis of symmetry intersects the elastic
curve. At this point the tangent to the elastic curve is horizontal. For the
beams in Figure 9.7b and ¢ we conclude, based on the first moment-area
principle, that the slope at any point on the elastic curve equals the area
under the M/EI curve between that point and the axis of symmetry.
The computation of deflections for points along the axis of the beam
in Figure 9.7¢, which has an even number of spans, is similar to that of
the cantilever in Figure 9.7a. At the point of tangency (point B), both the
deflection and slope of the elastic curve equal zero. Since the tangent to
" the elastic'curve is horizontal, deflections at any other poirit are equal to
tangential deviations from the tangent line drawn to the elastic curve at
support B.
When a symmetric structure consists of an odd number of spans (one,
three, and so on), the foregoing procedure must be modified slightly. For




example, in Figure 9.7b we observe that the tangent to the élastic curve
is horizontal at the axis of symmetry. Computation of slopes will again
be referenced from the point of tangency at C. However, the centerline of
the beam has displaced upward a distance v; therefore, tangential devi-
ations from the reference tangents are usually not deflections. We can
compute v by noting that the vertical distance between the tangent line
and the elastic curve at either support B or C is a tangential deviation that
equals v For example, in Figure 9.7b v, equals fp. After v is com-
puted, the deflection of any other point that lies above the original posi-
tion of the unloaded member equals v, minus the tangential deviation of
the point from the reference tangent. If a point lies below the undeflected
position of the beam (for example, the tips of the cantilever at A or E),
the deflection is equal to the tangential deviation of the point minus v¢.
Examples 9.6 and 9.7 illustrate the computation of deflections in a sym-
metric structure.

Case 3. The structure is not symmetric but contains a member whose
ends do not displace in a direction normal to the member’s longitudinal
axis. Examples of this case are shown in Figure 9.7d and e. Since the
frame in Figure 9.7d is not symmetric and the beam in Figure 9.7¢ is not
symmetrically loaded, the point at which a tangent to the elastic curve is
horizontal is not initially known. Therefore, we must use a sloping tan-
gent line as a reference for computing both slopes and deflections at
points along the elastic curve, For this case we establish the slope of the
elasti¢ curve at either end of the member. At one end of the member, we
draw a tangent to the curve and compute the tangential deviation at the
opposite end. For example, in either Figure 9.7d or ¢, because deflections
are small the slope of the tangent to the elastic curve at A can be written

t
tan 6, = % 9.19)

Since tan 6, = 6, in radians, we can write Equation 9.19 as
.t
By =—

4L

At a second point C, the slope would equal

where A8, equals the area under the M/EI curve between points A and C.

To compute the displacements of a point C located a distance x to the
right of support A (see Fig. 9.7¢), we first compute the vertical distance
CC’ between the initial position of the longitudinal axis and the refer-
ence tangent. Since 6, is small, we can write

TN e e -« TN e -
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tangent at A

(a)

tangent at A

\
=

-M

b)

ga

v

-M

Figure 9.8: Position of reference tangent: (@) pos-
_itive moment; () negative moment.

- Deflections of Beams and Frames

The d1fference between CC' and the tanoennal deviation 7.4 equals the

: deﬂchon ve

= CC' - SCA

Examples 9.8 to 9.12 illustrate the procedure to compute slopes and
deflections in members with inclined reference tangents.

If the M/EI curve between two points on the elastic curve contains
both positive and negative areas, the net angle change in slope between
those points equals the algebraic sum of the areas. If an accurate sketch
of the deflected shape is drawn, the direction of both the angle changes
and the deflections are generally apparent, and the student does not have
to be concerned with establishing a formal sign convention to establish
if a slope or deflection increases or decreases. Where the moment is pos-
itive (see Fig. 9.8a), the member bends concave upward, and a tangent
drawn to either end of the elastic curve will lie below the curve. In other
words, we can interpret a positive value of tangential deviation as an
indication that we move upward from the tangent line to the elastic
curve. Conversely, if the tangential deviation is associated with a nega-
tive area under the M/EI curve, the tangent line lies above the elastic
curve (see Fig. 9.8b), and we move downward vertically from the tangent
line to reach the elastic curve. ' '

I
| EXAMPLE

9.3

M=PL T i
P . Y
L L |
(@ "
r——A X = gL
A . 3 ) 1 B
X e
‘ FF curve
_PL |
El
&)
Figure 9.9
- AL B -

Corhpﬁte the slope 83 :'and the deflection vy at the'tip of the cantilever
beam in Figure 9.9a. EI is constant.

Solution

‘Draw the moment curve and divide all ordinates by EI (Fig. 9.98),

Compute 65 by adding to the slope at A the change in slope A,
between points A and B. Since the fixed support prevents rotation, 6, = 0.

Op = 04 + ABus = AByp ' )

By the first moméﬁf—area i:hébrem, AGAB equalé the area under the trian-
gular M/EI curve between points A and B.

1 ~PL -PL?
. L =
Abas = ( )( EI ) 2ET @)
_ Substituting Equation 2 into Equation 1 gives
6, = _.Eéi A
Y s

T e m - BT e - L EF e



http:Fig.9.8b

Since the tangent line at B slopes downward to the right, its slope is neg-
ative. In this case the negative ordinate of the M/EI curve gave the cor-
rect sign. In most problems the direction of the slope is evident from the
sketch of the deflected shape.

Compute the deflection vy at the tip of the cantilever using the sec-
ond moment-area theorem. The black dot in the M/ET curve denotes the
centroid of the area.

Ug = Igs = moment of triangular area of
M/EI diagram about point B

I ( -PL ) 2L _  PL’ (minus sign indicates that the
3 SEI tangent line lies above elastic curve)

Nl»—*

A4
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Ans.

Beam with a Variable Moment of Inertia

Compute the deflection of point C at the tip of the cantilever beam in Fig-
ure 9.10 if E = 29,000 kips/in? I3 = 21, and Igc = I, where I = 400 i,

Solution v
To produce the M/EI curve, the ordinates of the moment curve are divided
by the respective moments of inertia. Since I, is twice as large as [,
the ordinates of the M/EI curve between A and B will be one-half the size
of those between B and C. Since the deflection at C, denoted by v,
equals t-4, we compute the moment of the area of the M/EI diagram
about point C. For this computation, we divide the M/EI diagram into
two rectangular areas.

4500

EXAMPLE 9.4

+M 100 kip-ft "

100
= = &)
U = feq = 2EI (6) (9) + (6)(3) EI
4500(1728)
7 in Ans.
ve= a9 000(400) =067in
where 1728 converts cubic feet to cubic inches.
’ ' (©)
Figure 9.10: (a) Deflected shape; () moment
curve; (¢) M/EI diagram divided into two rectan-
gular areas.
ey ‘ [E ST VRO - EE _STRN VR ‘ B e ‘
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Deflections of Beams and Frames

| EXAMPLE 9.5

(a)

x=10'

RIS

@

Figure 9.11: Moment curve by “parts”; (a) beam;
(b) M/EI curve associated with P; (c) M/EI curve

Use of Moment Curve by “Parts”

Compute the'slope of the elastic curve at B and C and the deflection at C
for the cantilever beam in Figure 9.11a; EI is constant.

Solution
To produce simple geometric shapes in which the location of the centroid
is known, the moment curves produced by the concentrated load P and the
uniform load w are plotted separately and divided by EI in Figure 9.115
and c¢. Table A.1 provides equations for evaluating the areas of common
geometric shapes and the position of their centroids.

Compute the slope at C where A, is given by the sum of the areas
under the M/EI diagrams in Figure 9.11b and c; 6, = 0 (see Fig. 9.11d).

C=9A+ ABAC
1 —48 1 =72
=0+ (6) — ) + =2 ==
0 y 2(6)( EI ) 3(12)( EI )

. 432
6. = B radians Ans.

Compute the slope at B. The area between A and B in Figure 9.11c is

" computed by deducting the parabolic area between B and C in Figure

9.11c from the total area between A and C. Since the slope at B is smaller
than the slope at C, the area between B and C will be treated as a posi-
tive quantity to reduce the negative slope at C.

03 = ec + AGBC
432 1 18
= —— 4 — —_
EI 3 (6)(EI>
396 '

0z & radians Ans.

Compute A, the deflection at C. The deflection at C equals the tangen-
tial deviation of C from the tangent to the elastic curve at A (see Fig. 9.11d).

A¢ = tc, = moments of areas under M/EI curves between
A and Cin Figure 9.11b and ¢

1 0(Z)e+o+tan(2)o

associated with uniform load w; (d) deflected _ —4032
shape. A= El _Ans-
i 2T VR e i ST Y * Bz e - - Bz e
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Analysis of a Symmetric Beam

For the beam in Figure 9.12a, compute the slope at B and the deflections
at midspan and at point A. Also EI is constant.

Solution

Because both the beam and its loading are symmetric with respect to the
vertical axis of symmetry at midspan, the slope of the elastic curve is
zero at midspan and the tangent line at that point is horizontal. Since no
bending moments develop in the cantilevers (they are unloaded), the elas-
tic curve is a straight line between points A and B and points D and E.
See Appendix for geometric properties of a parabolic area.”

. Compute 8. - ‘
03 = ec + &6(;3

—o+ Z(é)(ﬁ)
~ 342 8EI
L
_ wh Ans.
24ET

axis of symmetry

L_ L L__ L
— 372 2 3 —
C)
M
EI
straight straight
A [/
oy B -
"’AI 63?‘ -~ B ‘ C .~ -
- s m@’?‘: — 17 =T
tangentat
©
C K B - AN . -« B B

EXAMPLE 9.6

Figure 2.12: {a) Symmetric beam; () M/El dia-
gram; (c) geometry of the deflected shape.

"[continues on next page]
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Example 9.6 continues . . .

Deflections of Beams and Frames

Compute v Since the tangent at C is horizontal, v equals 5. Using
the second moment-area theorem, we compute the moment of the para-
bolic area between B and C about B.

-, _g_(L)(ME)(SL) 5wL4 An
Ve = Iac 2 J\8EI J\16) ~ 384EI ns.
Cbmpute v,. Since the cantilever AB is straight,
3 ) 4
3 24EI 3  T2EI

where 05 is evaluated in the first computation.

EXAMPLE 9.7

The beam in Figure 9.13a supports a concentrated load P at midspan
(point C). Compute the deflections at points B and C. Also compute the
slope at A. EI is constant. '

Solution
Compute 6 .- Since the structure is symmetrically loaded, the slope of the
line tangent to the elastic curve at rmdspan is zero; that i 1s, ec =0 (see
Fig. 9.13¢). ~

64 = 0c+ Abyc

*. .
where Af,. is equal to the area under M/EI curve between A and C.

ol

PL
8EI
PD>
SEI M
b,

. A . B C D
t};—‘ ) /\\ b Ve ///5%
_Jv__ :BC.P . " - .

. / ) 9C =0
tangertat C

«©

radians Ans,

”9 _041(14)<PL> _ PI?
A 2\ 2/ \4EI 16EI

Compute v, the deflection at midspan. Since the tangent at C is hor-
izontal, v = #,c, where 1,¢ equals the moment about A of the triangular
area under the M/EI curve between A and C.

PL?

Ve = é(é‘)(zg;)@ @ ~ 4sEl

Compute v, the deflection at the quarter point. As shown in Figure
9.13¢, « .

&)

PL
48E1
where fpc is the moment about B of the area under the M/EI curve

between B and C. For convenience, we divide this area into a triangle and
a rectangle. See the shaded area in Figure 9.13b.

(2)

Up t Igc = Uc =

- Figure 9.13: (@) Beam details; (b) M/EI curve; Cfp == _1~ L P L\ £ .;. L PL L = SPL3
(€) deflected shape. v ) SEI 8EI 768EI
o e - - Ao oime - e dme - ‘n--;x.-




Substituting #5¢ into Equation 2, we compute vg.

11,3
T68EI

Up =

Section 93 . Moment-Area Method
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Analysis Using a Sloping Reference Tangent

For the steel beam in Figure 9.14a, compute the slope at A and C. Also
determine the location and value of the maximum deflection. If the max-
imum deflection is not to exceed 0.6 in, what is the minimum required
value of 7? We know that EI is constant and E = 29,000 kips/in.

Solution

Compute the slope GA at support A by drawmg a line tangent to the elas-

tic curve at that point. This will éstablish a reference line of known direc-
tion (see Fig. 9.14¢).

' ¢ ‘
tan 8, *—Z—’? ¢))

Since for small angles tan B, ~ 8, (radians), Equation 1 can be written
8, == 2
A= 2

tcy = moment of M/EI area between A and C about C

1 96 \[ 18 + 6 6912
”2U$<m)( 3 )" El
where the expression for the moment arm is given in the right-hand col-
umn of Table A.1, case (a). Substituting ¢, into Equation 2 gives

~6912/EI 384
- e 2T Ans.
A 3 7 radians ;

A minus sign is added, because moving in the positive x direction, the tan-
gent line, directed downward, has a negative slope.
Compute 6.

Gc = 04 + Abye
~where Af,c »evquals, area under M/EI curve between A and C.

Oc = ——:ﬁ‘}- + -(1 )( ) = radians Ans.

Y ‘~ - L C PN v e -

EXAMPLE 9.8

P =24 kips

tangent at A

()

Figure 9.14: (a) Beam; (b)) M/EI diagram;

(c) geometry of deflected shape.

{continues on next page]
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Example 9.8 continues . ..

- Compute the maximum deflection. The point of maximum deflection
occurs at point D where the slope of the elastic curve equals zero (that
is, 8 = 0). To determine this point, located an unknown distance x from
support A, we must determine the area under the M/EI curve between A .
and D that equals the slope at A. Letting y equal the ordinate of the M/EI
curve at D (Fig. 9.14b) gives

Bp=6,+ Abyp
- 384 -1
= - 4 —
0 2 T3Y .3

Expressing y in terms of x by using similar triangles afg and aed (see Fig.
9.14b) yields

96/(EI)
12 x
8x
= 4
Y= C)
Substituting the foregoing value of y into Equation 3 and solving for x give
x =98 ft
‘ Substituting x into Equation 4 gives
_ 784
| YT E
Compute the maximum deflection vy, at x = 9.8 ft
 Up=DE-—tp L ®)
where the terms in Equation 5 are illustrated in Figure 9.14c.
384 3763.2
= .Y ER e B) = ———
S 1, (784N (98 1254.9
tps = (area p)x = 5 (9-8)( El )( 3 )"’ £l

Substituting DE and 5, into Equation 5 gives
_ 37632 12549 25083 6
El EI El ©

Compute I, if vp, is not to exceed 0.6 in; in Equation 6 set v, = 0.6 in
and solve for I ;.

Up

_ 2508.3(1728) _
VP T 0 0000,
Iy, = 249.1in*  Ans.

0.6 in Ans.

- i 2T

. e

SR e - CBE e . L
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For the beam in Figure 9.15, compute the slope of the elastic curve at points
A and C. Also determine the deflection at A. Assume rocker at C eqmv-
" alent to a roller. :

Solution
Since the moment curve is negative at all sections along the axis of the

beam, it is bent concave downward (see the dashed line in Fig. 9.15¢). To -

compute §., we draw a tangent to the elastic curve at point € and com-

pute f_gc. » .
96.___@:9720(1)# 540 40
18  EI \18 EI

180 ) ( 18 ) _ 9720
EIJ\3 EI
(Since the tangent line slopes downward to the nght the slope 6 is

negative.)
Compute 8,.

where  tpo = areaBCF-Ec = -2-'(18)(—

GA = 9(; + ABAC

where Af, is the area under the M/EI curve between A and C. Since the
elastic curve is concave downward between points A and C, the slope at
A must be opposite in sense to the slope at C; therefore, A8, must be
treated as a positive quantity.

540 1 180 1620
Oy =— EI (24)( ) . Ans.
Compute 8,.
V : ' 640
84 = tyc — Y (see Fig. 9.15¢) = % Ans.

where 4. = areaye+X

1 180\ (6 + 24 _ 21,600
5(24)(51)( 3 )” El

{See case (a) in the table on the back inside cover (left) for the equation

for x.]
540
Y =240, = 24( EI) =

12,960
EI

EXAMPLE 9*9|

_180
Er
b
f———f— tangent aC
Y [
e 3 tge T - c
8 % /W%ﬂ' i w&u
;;F

©

Figure 9.15: (@) Beam, (b) M/EI diagram,

{¢) geometry of deflected shape.
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EXAMPL E, 7. 1, 0 The beam in Figure 9.16a contains a hinge at B, Compute the deflection vy

of the hinge, the slope of the elastic curve at support E, and the end slopes

65, and 5, of the beams on either side of the hinge (see Fig. 9.164). Also

locate the point of maximum deflection in span BE. EI is constant. The elas-
“tomeric pad at E is equivalent to a roller.

Solution ' ‘ ;

The deflection of the hinge at B, denoted by v, equals 7, the tangential
deviation of B from the tangent to the fixed support at A. Deflection £z,
equals the moment of the area under the M/EI curve between A and B
about B (see Fig. 9.16b). ' '

-1 ( 108\, . 2916
v? =gy = area-X = (—- ————) (9)(6) = — N

108 kip-ft 12kips 12 kips

A 0,=0

Figure 9.16: (@) Beam with hinge é.t B;
{b) deflected shape; (¢) M/EI curve; (d) detail 108

showing the difference in slope of the elastic El
curve on each side of the hinge, (c)
- - IR B - - W e - - TN e -




Compute 65, the slope of the B end of cantilever AB.
s = 04 + Abyp

1 —486 -
=0+ = (9)( 08) EI radians

where A8, is equal to the triangular area under the M/EI curve between
A and B and 8, = 0 because the fixed support at A prevents rotation.
Compute &y, the slope of the elastic curve at E (see Fig. 9.165).

g = Yot _ (2916 N 7776><i> _ 5% o
£ 18 EI EI /\18 EI

where 1z, equals the moment of the area under the M/EI curve between B
and E about B. This computation is simplified by dividing the trapezoidal
area into two triangles-and a rectangle (see the dashed lines in Fig. 9.16c¢).

ne=26(2) @+ 62 )0+ 162 )an - 20

Locate the point of maximum deflection in span BE. The point of max-
imum deflection, labeled point F, is located at the point in span BE where
the tangent to the elastic curve is zero. Between F and support E, a distance
x, the slope goes from O to §;. Since the change in slope is given by the
area under the M/EI curve between these two points, we can write

0p = 0 + ABgp 8]
where 6, = 0 and 6z = 594/EI rad. Between points D and E the change

in slope produced by the area under the M/EI curve equals 216/F1. Since
this value is less than 6y, the slope at D has a positive value of

radians

8
Op=0p— Mpp=—+ — 7~ = 378 radians 2)

Between D and C the area under the M/EI curve equals 432/EL Since this
value of change in slope exceeds 378/EI, the point of zero slope must lie
between C and D. We can now use Equation 1 to solve for distance x.

594 2 72
+ . —
w0t ( 1>(6) g &0
x=1125ft Ans.
Compute 6.

Opr = 0 — Abgg

-2 - Zo+50(5))

- 270 A
= "EI— radians Ans.

Section 9.3
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EXAMPLE 9.1 1_ Determine the deflection of the hinge at € and the rotation of joint B for

the braced frame in Figure 9.174. For all members EI is constant.

Solution ; , ,

To establish the angular rotation of joint B, we consider the deflected
shape of member AB in Figure 9.17b. (Becanse member BCD contains a
hinge, its elastic curve is not continuous, and it is not possible initially to
compute the slope at any point along its axis.) ‘

1 .72
9_@_21255(8)“2_88 N
BT 2 12 E ns.

Deflection of hinge:

A = 663 + ’ICB

= (@(%?) + é—(@(%) (4) =%2 | Am -

| T“ 6 b 67 —sh— 61—l ®
Figure 9.17: (@) Frame and M/EI curves; 12 kips .
(b) deflected shape. (a)
- T B - * SR e me - f S . - By Be e
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Compute the horizontal deflection of joint B of the frame shown in Fig- EXAMPLE 9.12

ure 9.18a. EI is constant all members. Assume elastomeric pad at C acts

as a roller.
Solution
Begin by establishing the slope of the girder at joint B.
' tea ‘
Bz = — 1
8= ey
Figure 9.18: (a) Frame and M/EI curves; (b) de-
flected shape; (¢) detail of joint B in deflected
. position,
120 B C
= . elastomeric
' . pad
10 kips
|
(@
. i As..i
8, r X 8
By c ¢ A
,,,,, - r
: = lcp
V i
Oy tangent at B i deflected
By position
.. tangent at B
- vertical line ©
D
tag ek 126,
(] ' [econtinues on next page)
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Example 9.12 continues . . .

Chapter 9

Deflections of Beams and Frames

‘where 1,5 equals the moment of the M/EI diagram between A and B
- about A, and the M/EI diagram is broken into two areas.

o 120 5760 o '
where fcp = ( ){12)(8) and L= 121t
5760 480 .
Thus 0 = EI ( N 2) = radians

Because joint B is rigid, the top of column AB also rotates through an
angle 65 (see Fig. 9.18¢). Since the deflection Ay at joint B is equal to the
horizontal distance AD at the base of the column, we can write

Ap=AD =t + 120, ,
-2 o0+ L (2 o)+ (12)(480) a

13,680
EI

Ans.

- and moment curves for a beam. Thus the elastlc load method eliminates

Figure 9.19: Beam with an angle change of @ at

point B,

‘shape of a beam whose longitudinal axis is composed of two straight

The elastic load method is a procedure for computing slopes and deflec-
tions in simply supported beams. Although the calculations in this method
are identical to those of the moment-area method, the procedure appears
simpler because we replace computations of tangential deviations and
changes in slope with the more familiar procedure of constructing shear

the need (1) to draw an accurate sketch of the member’s deflected shape
and (2) to consider which tangential deviations and angle changes to eval-
uate in order to establish the deflection or the slope at a specific point:
In the elastic load method, we imagine that the M/EI diagram, whose
ordinates represent angle change per unit length, is applied to the beam as
a load (the elastic load). We then compute the shear and moment curves. As :
we will demonstrate next, the ordinates of the shear and the moment curves 3
at each point equal the slope and deflection, respectively, in the real beam. '
To illustrate that the shear and moment at a section produced by an
angle change, applied to a simply supported beam as a fictitious load,
equal the slope and deflection at the same section, we examine the deflected

segments that intersect at-a small angle 6. The geometry of the bent ‘
member is shown by the solid line in Figure 9.19. _
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If the beam ABC’ is connected to the support at A so that segment AB
is horizontal, the right end of the beam at C’ will be located a distance
A above support C. In terms of the dimensions of the beam and the
angle @ (see triangle C'BC), we find

Ap=6(L - %) -

The sloping line AC’, which connects the ends of the beam, makes an
angle 6, with a horizontal axis through A. Considering the right triangle
ACC’, we can express 8, in terms of A as

Ac
= 2
B4 2 » @
Subst1tut1ng Equation 1 into Equation 2 leads to
o(L - x)
—_— 3
0, = L 3

We now rotate member ABC’ clockwise about the pin at A until chord
AC’ coincides with the horizontal line AC and point C' rests on the roller
at C. The final position of the beam is shown by the heavy dashed line

AB'C. As a result of the rotation, segment AB slopes downward to the

right at an angle 6.
To express A, the vertical deflection at B, in terms of the geometry of

the deflected member, we consider triangle ABB’ Assuming that angles
are small, we can write

A = éAJ'C (4)
Substituting 8, given by Equation 3 into Equation 4 gives’
6(L — x)x
B= T ®

Alternatively, we can compute identical values of 8, and Ay by com-
puting the shear and moment produced by the angle change 8 applied as
an elastic load to the beam at point B (see Fig. 9.20a). Summing moments
about support C to compute R, produces

ct SM:=0
O(L —x) —RL =0 |
8L~
RA=(—LL) (6)

After R, is computed, we draw the shear and moment curves in the usual
manner (see Fig. 9.20b and c). Since the shear just to the right of support
A equals R,, we observe that the shear given by Equation 6 is equal to the
slope given by Equation 3. Further, because the shear is constant between
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BL-n)

Shear (slope)
(%)

MB:;;B:’“’_(E‘_@

Moment (deflection)

©

Figure 9.20: (o) Angle change 6 applied as a
lodd at point B; (&) shear produced by.load

_ equals slope in real beam; (c) moment produced

by 8 equals deflection in real beam (see Fig.
9.19).
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&)

T ()

Figure 9.21: (g) Positive €lastic load; (b) posi- .
tive shear and positive slope; (c) positive moment

1+aA=M

and positive (upward) deflection.

the support and point B, the slope of the real structure must also be con-
stant in the same region.
Recognizing that the moment M} at point B equals the area under the
shear curve between A and B, we find
6(L — x)x K
Bp=My=—"7—"" )

Comparing the value of deflections at B given by Equations 5 and 7, we
verify that the moment M produced by load 6 is equal to the value of A,
based on the geometry of the bent beam. We also observe that the maxi-
mum deflection occurs at the section where the shear produced by the
elastic load is zero.

Sign Convention

. If we treat positive values of the M/EI diagram applied to the beam as a

distributed load acting upward and negative values of M/EI as a down-

“ward load, positive shear denotes a positive slope and negative shear a

negative slope (see Fig. 9.21). Further, negative values of moment indi-

" cate a downward deﬂectxon and positive values of moment an upward

deflection.
Examples 9. 13 and 9.14 illustrate the use of the elastic load method
to compute deflections of simply supported beams.

| EXAMPLE 9.

13

S B e e

and

Compute the maximum deflection and the slope at each support for the
beam in Figure 9.22a. Note that EJ is a constant.

Solution - - . ,

As shown in Figure 9.22b, the M/EI diagram is applied to the beam as
an upward load. The resultants of the triangular distributed loads between
AB and BC, which equal 720/EI and 360/EI, respectively, are shown by

heavy arrows. That is,
120 720 .
(12>( 0)- =

w(6)<120> g_EsTo

Us‘m‘g,the resultants, we, compute the reactions at supports A and C. The

shear and moment curves, drawn in the conventional manner, are plotted
in Figure 9.22¢ and d. To establish the point of maximum deflection, we

‘ MGG MM me ‘ B e =
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locate the point of zero shear by determining the area under the load
curve (shown shaded) required to balance the left reaction of 480/EL

1 480

2~ W

Using similar triangles (see Fig. 9.22b) yields

Yy *
120/(ED 12
10
2
and y=5* 2y

Substituting Equation 2 into Equation 1 and solving for x give

= V06 = 9.8 ft

To evaluate the maximum deflection, we compute the moment at x = 9.8
ft by summing moments of the forces acting on the free body to the left of
a section through the beam at that point. (See shaded area in Fig, 9.225.)

Elastic loads
)]

480}

Bl
480 x ~ L———x 94 _w.!
Amx M= (9 8) + (3> k ’ Shear (slope) .
{©)
Using Equation 2 to express y in terms of x and subsntutmg x = 9.8 ft,
we compute

3135.3 ! | 3‘1“35.3

Apex = = El - Ans. “TEr

The values of the end slopes, read directly from the shear curve in Fig- Moment g;ﬂwion)
ure 8.22¢, are

g, = _i%q g = @ Aus Figure 9.22: '(a) Beam; (b) beam loaded by M/EI

A EI ¢ EI : ‘ diagram; (c) variation of slope; (d) deflected shape.

Compute the deflection at point B of the beam in Figure 9.234. Also locate EXAMPLE 9.14
the point of maximum deflection; E is a constant, but I varies as shown on
the figure. .
Solution

To establish the M, /Ei curve, we divide the ordinates of the moment curve
(see Fig. 9.23b) by 2EI between A and B and by El between B and C. The
resultmc M/EI dlagram is applied to the beam as an upward load in  [continues on next page)
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Example 9.14 continues . . .

wlS
L=}
[¥33
8
[=
=
—1
E
Z

®)

Elastic .
loads

58333 Je—oberh— 3.5'm . 4m | 39167
EI yim : : { El
(C}' ) .
391.67
. Bl
. Pt Shear (slope)

: 485 m ——]

@

‘ Figure 9.23 } s (&)

Figure 9.23c. The maximum deflection occurs 4.85 m to the left of sup-
port C, where the elastic shear equals zero (Fig. 9.234).

To compute the deflection at B, we compute the moment produced at
that point by the elastic loads using the free body shown in Figure 9.23e.
Summing moments of the applied loads about B, we compute

B . - L TP e - - B e - & YO e
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600 1391.67
Ms ="/ 2) = =% ©)
1150

AB = “-ET Ans.

>
W
I

Conjugate Beam Method

In Sectxon 9.4 we used the elastic load method to compute slopes and
deflections at points in a simply supported beam. The conjugate beam
method, the topic of this section, permits us to extend the elastic load
method to beams with other types of supports and boundary conditions
by replacing the actual supports with conjugate supports to produce a
conjugate beam. The effect of these fictitious supports is to impose
boundary conditions which ensure that the shear and moment, produced
in a beam loaded by the M/EI diagram, are equal to the slope and the
deflection, respectively, in the real beam.

To explain the method, we consider the relationship between the shear
and moment (produced by the elastic loads) and the deflected shape of
the cantilever beam shown in Figure 9.24a. The M/EI curve associated
with the concentrated load P acting on the real structure establishes the
curvature at all points along the axis of the beam (see Fig. 9.24b). For

_example, at B, where the moment is zero, the curvature is zero. On the other
hand, at A the curvature is greatest and equal to —PL/EI. Since the curva-
ture is negative at all sections along the axis of the member, the beam is
bent concave downward over its entire length, as shown by the curve
labeled 1 in Figure 9.24¢. Although the deflected shape given by curve 1
is consistent with the M/EI diagram, we recognize that it does not repre-
serit the correct deflected shape of the cantilever because the slope at the

left end is not consistent with. the boundary conditions imposed by the.

fixed support at A; that is, the slope (and the deflection) at A must he
zero, as shown by the curve labeled 2.

Therefore, we can reason that if the slope and deflection at A must be
zero, the values of elastic shear and elastic moment at A must also equal
zero. Since the only boundary condition that satisfies this requirement is
a free end, we must imagine that the support A is removed—if no support
exists, no reactions can develop. By establishing the cormect slope and
deflection at the end of the member, we ensure that the member is ori-
ented correctly.

On the other hand, since both slope and deflection can exist at the
free end of the actnal cantilever, a support that has a capacity for shear
and moment must be provided at B, Therefore, in the conjngate beam we
must introduce an imaginary fixed support at B. Figure 9.24d shows the
conjugate beam loaded by the M/EI diagram. The reactions at B in the

] BF ST VR, - T VO -

(d)

Figure 9.24: (a) Deflected shape of a cantilever
beam. (b) M/EI diagram which establishes varia-
tion of curvature. {¢) Curve 1 shows a deflected
shape consistent with M/EI diagram in (&) but not
with the boundary conditions at A. Curve 2 shows
curve 1 rotated clockwise as a rigid body until the
slope at A is horizontal. (d) Conjugate beam with
elastic load.
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Figure 2.25: Conjugate supports. -

LS VR

Deflections of Beams and Frames

conjugate beam produced by the elastic load [M/EI diagram] give the
slope and deflection in the real beam.

Figure 9.25 shows the conjugate supports that correspond to a vari-
ety of standard supports. Two supports that we have not discussed previ-
ously-—the interior roller and the hinge—are shown in Figure 9.25d and
e. Since an interior roller (Fig. 9.25d) provides vertical restraint only, the
deflection at the roller is zero but the member is free to rotate. Because
the member is continuous, the slope is the same on each side of the joint.
To satisfy these geometric requirements, the conjugate support must have

Real Support Conjugate Support
14
(a) - REusa
‘Pin or roller Pin or roller
A=0 M=0
8#0 V0
&) \
Freeend
Az0
80
\
@ Fixed end Free end
A=0 M=0
6=0 V=0
8, /’% F _°+ :
L7 » 1Al A
@ Interior support Hinge
A=0 M=0
6L= BR#:O VLmVR#O
gt Mo Vip y
t f Y Ve
(e) Hinge Interjor roller
A#0 M=0
0; and 6 may have V, and Vg may have
different values - different values
TR em . - Bz e - -

5T

A =
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zero capacity for moment (thus, zero deflection), but must permit equal
values of shear to exist on each side of the support—hence the hinge.

Since a hinge provides no restraint against deflection or rotation in a
real structure (see Fig. 9.25¢), the device introduced into the conjugate
structure must ensure that moment as well as differ