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1
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Instructional Objectives
After reading this chapter the student will be able to

1. Differentiate between various structural forms such as beams, plane truss,
space truss, plane frame, space frame, arches, cables, plates and shells.

2. State and use conditions of static equilibrium.

3. Calculate the degree of static and kinematic indeterminacy of a given
structure such as beams, truss and frames.

4. Differentiate between stable and unstable structure.

5. Define flexibility and stiffness coefficients.

6. Write force-displacement relations for simple structure.

1.1 Introduction

Structural analysis and design is a very old art and is known to human beings
since early civilizations. The Pyramids constructed by Egyptians around 2000
B.C. stands today as the testimony to the skills of master builders of that
civilization. Many early civilizations produced great builders, skilled craftsmen
who constructed magnificent buildings such as the Parthenon at Athens (2500
years old), the great Stupa at Sanchi (2000 years old), Taj Mahal (350 years old),
Eiffel Tower (120 years old) and many more buildings around the world. These
monuments tell us about the great feats accomplished by these craftsmen in
analysis, design and construction of large structures. Today we see around us
countless houses, bridges, fly-overs, high-rise buildings and spacious shopping
malls. Planning, analysis and construction of these buildings is a science by
itself. The main purpose of any structure is to support the loads coming on it by
properly transferring them to the foundation. Even animals and trees could be
treated as structures. Indeed biomechanics is a branch of mechanics, which
concerns with the working of skeleton and muscular structures. In the early
periods houses were constructed along the riverbanks using the locally available
material. They were designed to withstand rain and moderate wind. Today
structures are designed to withstand earthquakes, tsunamis, cyclones and blast
loadings. Aircraft structures are designed for more complex aerodynamic
loadings. These have been made possible with the advances in structural
engineering and a revolution in electronic computation in the past 50 years. The
construction material industry has also undergone a revolution in the last four
decades resulting in new materials having more strength and stiffness than the
traditional construction material.

In this book we are mainly concerned with the analysis of framed structures
(beam, plane truss, space truss, plane frame, space frame and grid), arches,
cables and suspension bridges subjected to static loads only. The methods that
we would be presenting in this course for analysis of structure were developed
based on certain energy principles, which would be discussed in the first module.
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1.2 Classification of Structures

All structural forms used for load transfer from one point to another are 3-
dimensional in nature. In principle one could model them as 3-dimensional elastic
structure and obtain solutions (response of structures to loads) by solving the
associated partial differential equations. In due course of time, you will appreciate
the difficulty associated with the 3-dimensional analysis. Also, in many of the
structures, one or two dimensions are smaller than other dimensions. This
geometrical feature can be exploited from the analysis point of view. The
dimensional reduction will greatly reduce the complexity of associated governing
equations from 3 to 2 or even to one dimension. This is indeed at a cost. This
reduction is achieved by making certain assumptions (like Bernoulli-Euler’
kinematic assumption in the case of beam theory) based on its observed
behaviour under loads. Structures may be classified as 3-, 2- and 1-dimensional
(see Fig. 1.1(a) and (b)). This simplification will yield results of reasonable and
acceptable accuracy. Most commonly used structural forms for load transfer are:
beams, plane truss, space truss, plane frame, space frame, arches, cables,
plates and shells. Each one of these structural arrangement supports load in a
specific way.

Folded Plate

Plate

Fig 1.1(a) 2D and 3D Structural Forms

Wall
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Beam i

Shell

Fig 1.1(b) Commonly Used Structural Forms

Beams are the simplest structural elements that are used extensively to support
loads. They may be straight or curved ones. For example, the one shown in Fig.
1.2 (a) is hinged at the left support and is supported on roller at the right end.
Usually, the loads are assumed to act on the beam in a plane containing the axis
of symmetry of the cross section and the beam axis. The beams may be
supported on two or more supports as shown in Fig. 1.2(b). The beams may be
curved in plan as shown in Fig. 1.2(c). Beams carry loads by deflecting in the
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same plane and it does not twist. It is possible for the beam to have no axis of
symmetry. In such cases, one needs to consider unsymmetrical bending of
beams. In general, the internal stresses at any cross section of the beam are:
bending moment, shear force and axial force.

P ¥

(a) Simply Supported Beam

1 ’ B ——
T K P

(c ) Curved Beam

Fig 1.2 Beams

In India, one could see plane trusses (vide Fig. 1.3 (a),(b),(c)) commonly in
Railway bridges, at railway stations, and factories. Plane trusses are made of
short thin members interconnected at hinges into triangulated patterns. For the
purpose of analysis statically equivalent loads are applied at joints. From the
above definition of truss, it is clear that the members are subjected to only axial
forces and they are constant along their length. Also, the truss can have only
hinged and roller supports. In field, usually joints are constructed as rigid by
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welding. However, analyses were carried out as though they were pinned. This is
justified as the bending moments introduced due to joint rigidity in trusses are
negligible. Truss joint could move either horizontally or vertically or combination
of them. In space truss (Fig. 1.3 (d)), members may be oriented in any
direction. However, members are subjected to only tensile or compressive
stresses. Crane is an example of space truss.

( ¢ ) Double Warren Truss

Fig 1.3 Trusses
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(d) Space Truss

Plane frames are also made up of beams and columns, the only difference
being they are rigidly connected at the joints as shown in the Fig. 1.4 (a). Major
portion of this course is devoted to evaluation of forces in frames for variety of
loading conditions. Internal forces at any cross section of the plane frame
member are: bending moment, shear force and axial force. As against plane
frame, space frames (vide Fig. 1.4 (b)) members may be oriented in any
direction. In this case, there is no restriction of how loads are applied on the
space frame.
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Plane Frame

Space Frame

Fig 1.4 Frames

1.3 Equations of Static Equilibrium

Consider a case where a book is lying on a frictionless table surface. Now, if we
apply a force F, horizontally as shown in the Fig.1.5 (a), then it starts moving in
the direction of the force. However, if we apply the force perpendicular to the
book as in Fig. 1.5 (b), then book stays in the same position, as in this case the
vector sum of all the forces acting on the book is zero. When does an object
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move and when does it not? This question was answered by Newton when he
formulated his famous second law of motion. In a simple vector equation it may
be stated as follows:

Zn: F. =ma (1.2)

"y /7

Fig 1.5 (a)

Fi

P R 2

’ "

R
(Reaction)

Fig 1.5(b)
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where Z F. is the vector sum of all the external forces acting on the body, mis
i=1

the total mass of the body and a is the acceleration vector. However, if the body

is in the state of static equilibrium then the right hand of equation (1.1) must be

zero. Also for a body to be in equilibrium, the vector sum of all external moments

(ZM =0) about an axis through any point within the body must also vanish.

Hence, the book lying on the table subjected to external force as shown in Fig.
1.5 (b) is in static equilibrium. The equations of equilibrium are the direct
consequences of Newton’s second law of motion. A vector in 3-dimensions can
be resolved into three orthogonal directions viz., x, y and z (Cartesian) co-
ordinate axes. Also, if the resultant force vector is zero then its components in
three mutually perpendicular directions also vanish. Hence, the above two
eguations may also be written in three co-ordinate axes directions as follows:

>F =0;>F,=0;>F=0 (1.2a)
dM,=0;>M,=0;>M,=0 (1.2b)

Now, consider planar structures lying in xy —plane. For such structures we could
have forces acting only in xand vy directions. Also the only external moment that

could act on the structure would be the one about the z-axis. For planar
structures, the resultant of all forces may be a force, a couple or both. The static
equilibrium condition along x-direction requires that there is no net unbalanced
force acting along that direction. For such structures we could express
equilibrium equations as follows:

YF =0;>F =0;>M,=0 (1.3)

Using the above three equations we could find out the reactions at the supports
in the beam shown in Fig. 1.6. After evaluating reactions, one could evaluate
internal stress resultants in the beam. Admissible or correct solution for reaction
and internal stresses must satisfy the equations of static equilibrium for the entire
structure. They must also satisfy equilibrium equations for any part of the
structure taken as a free body. If the number of unknown reactions is more than
the number of equilibrium equations (as in the case of the beam shown in Fig.
1.7), then we can not evaluate reactions with only equilibrium equations. Such
structures are known as the statically indeterminate structures. In such cases we
need to obtain extra equations (compatibility equations) in addition to equilibrium
equations.
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Fig 1.6 Statically Determinate
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Fig 1.7 Statically Indeterminate
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1.4 Static Indeterminacy

The aim of structural analysis is to evaluate the external reactions, the deformed
shape and internal stresses in the structure. If this can be accomplished by
equations of equilibrium, then such structures are known as determinate
structures. However, in many structures it is not possible to determine either
reactions or internal stresses or both using equilibrium equations alone. Such
structures are known as the statically indeterminate structures. The
indeterminacy in a structure may be external, internal or both. A structure is said
to be externally indeterminate if the number of reactions exceeds the number of
equilibrium equations. Beams shown in Fig.1.8(a) and (b) have four reaction
components, whereas we have only 3 equations of equilibrium. Hence the beams
in Figs. 1.8(a) and (b) are externally indeterminate to the first degree. Similarly,
the beam and frame shown in Figs. 1.8(c) and (d) are externally indeterminate to
the 3" degree.
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Fig 1.8 Externally Statically
Indeterminate Structures

Now, consider trusses shown in Figs. 1.9(a) and (b). In these structures,
reactions could be evaluated based on the equations of equilibrium. However,
member forces can not be determined based on statics alone. In Fig. 1.9(a), if
one of the diagonal members is removed (cut) from the structure then the forces
in the members can be calculated based on equations of equilibrium. Thus,
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structures shown in Figs. 1.9(a) and (b) are internally indeterminate to first
degree.The truss and frame shown in Fig. 1.10(a) and (b) are both externally and

internally indeterminate.

(a) Plane Truss

Fig 1.9

(b) Space Truss

Internally Statically Indeterminate Structures
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(a) Plane Truss

A AN =

(b) Plane Frame

Fig 1.10 Externally and Internally Indeterminate
Structures

So far, we have determined the degree of indeterminacy by inspection. Such an
approach runs into difficulty when the number of members in a structure
increases. Hence, let us derive an algebraic expression for calculating degree of
static indeterminacy.

Consider a planar stable truss structure having m members and j joints. Let the

number of unknown reaction components in the structure ber. Now, the total
number of unknowns in the structure ism+r. At each joint we could write two

equilibrium equations for planar truss structure, viz., ZFX =0 andZFy =0.
Hence total number of equations that could be written is2j .
If 2j=m+r then the structure is statically determinate as the number of

unknowns are equal to the number of equations available to calculate them.
The degree of indeterminacy may be calculated as

i=(m+r)-2j (1.4)
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We could write similar expressions for space truss, plane frame, space frame
and grillage. For example, the plane frame shown in Fig.1.11 (c) has 15
members, 12 joints and 9 reaction components. Hence, the degree of
indeterminacy of the structure is

i =(15x3+9)-12x3=18

Please note that here, at each joint we could write 3 equations of equilibrium for
plane frame.

e, i, ¥ il e it

e o

(a) Continuous Beam

(b) Plane Frame

( ¢ ) Plane Frame

Fig 1.11 Indeterminate Structures
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1.5 Kinematic Indeterminacy

When the structure is loaded, the joints undergo displacements in the form of
translations and rotations. In the displacement based analysis, these joint
displacements are treated as unknown quantities. Consider a propped cantilever
beam shown in Fig. 1.12 (a). Usually, the axial rigidity of the beam is so high that
the change in its length along axial direction may be neglected. The
displacements at a fixed support are zero. Hence, for a propped cantilever beam
we have to evaluate only rotation at B and this is known as the kinematic
indeterminacy of the structure. A fixed fixed beam is kinematically determinate
but statically indeterminate to 3™ degree. A simply supported beam and a
cantilever beam are kinematically indeterminate to 2" degree.

A é_h?.—"'_“-u e e N i T T e e O el i B

= =X
= - -
— >

(a) Propped Cantilever Beam

(b) Cantilever Beam

( c ) Simply Supported Beam

Fig 1.12 Kinematically Indeterminate Structures
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The joint displacements in a structure is treated as independent if each
displacement (translation and rotation) can be varied arbitrarily and
independently of all other displacements. The number of independent joint
displacement in a structure is known as the degree of kinematic indeterminacy or
the number of degrees of freedom. In the plane frame shown in Fig. 1.13, the
joints Band Chave 3 degrees of freedom as shown in the figure. However if
axial deformations of the members are neglected then u, =u,and u,and u,can
be neglected. Hence, we have 3 independent joint displacement as shown in Fig.
1.13 i.e. rotations at Band C and one translation.
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Fig 1.13 Rigid Frame
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1.6 Kinematically Unstable Structure

A beam which is supported on roller on both ends (vide. Fig. 1.14) on a
horizontal surface can be in the state of static equilibrium only if the resultant of
the system of applied loads is a vertical force or a couple. Although this beam is
stable under special loading conditions, is unstable under a general type of
loading conditions. When a system of forces whose resultant has a component in
the horizontal direction is applied on this beam, the structure moves as a rigid
body. Such structures are known as kinematically unstable structure. One should
avoid such support conditions.

|

P = gy
| / ]
s ,,a;},
o o P

Fig 1.14 Kinematically Unstable Structures
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1.7 Compatibility Equations

A structure apart from satisfying equilibrium conditions should also satisfy all the
compatibility conditions. These conditions require that the displacements and
rotations be continuous throughout the structure and compatible with the nature
supports conditions. For example, at a fixed support this requires that
displacement and slope should be zero.

1.8 Force-Displacement Relationship

™ o T PR /"d___h"\
4 s -\>< r'(\' } \
i kY

i { ‘||I I,' III ! \I
| ‘ [ | Il.

I / I'l, | =P
! I | } / !
\_“\ fll -\‘ ,-"Ill '\ . ,-"l .\1 / .\J G, '

/"Fﬁ'\‘
P\. kY
!
|

.' ] |: | - ) - I G

Force(P) e Stiffness (k)

Deflection(u)

Fig 1.15 Force displacement Relationship
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Consider linear elastic spring as shown in Fig.1.15. Let us do a simple
experiment. Apply a force P, at the end of spring and measure the deformation

u,. Now increase the load to P, and measure the deformation u,. Likewise
repeat the experiment for different values of load P,P,,...,P,. Result may be

represented in the form of a graph as shown in the above figure where load is
shown on y -axis and deformation on abscissa. The slope of this graph is known

as the stiffness of the spring and is represented by k and is given by

k=B _P (L5)
u,—u, U
P =ku (1.6)

The spring stiffness may be defined as the force required for the unit deformation
of the spring. The stiffness has a unit of force per unit elongation. The inverse of
the stiffness is known as flexibility. It is usually denoted by a and it has a unit of
displacement per unit force.

a=— a.7)

the equation (1.6) may be written as

P=ku= u:%P:aP (1.8)

The above relations discussed for linearly elastic spring will hold good for linearly
elastic structures. As an example consider a simply supported beam subjected to
a unit concentrated load at the centre. Now the deflection at the centre is given

by

3

u:PL orP=£u (2.9)
48El L

The stiffness of a structure is defined as the force required for the unit

deformation of the structure. Hence, the value of stiffness for the beam is equal

to

_ 48El

k E
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As a second example, consider a cantilever beam subjected to a concentrated
load (P) at its tip. Under the action of load, the beam deflects and from first
principles the deflection below the load (u) may be calculated as,

3
U= 3: (1.10)

For a given beam of constant cross section, lengthL, Young’s modulusE, and
moment of inertia 1,, the deflection is directly proportional to the applied load.
The equation (1.10) may be written as

u=aP° (2.11)

3
Where ais the flexibility coefficientand is a = L . Usually it is denoted by a;

2z

the flexibility coefficient at i due to unit force applied at j. Hence, the stiffness of
the beam is

1 3El

=== 1.12
T (1.12)

Summary

In this lesson the structures are classified as: beams, plane truss, space truss,
plane frame, space frame, arches, cables, plates and shell depending on how
they support external load. The way in which the load is supported by each of
these structural systems are discussed. Equations of static equilibrium have
been stated with respect to planar and space and structures. A brief description
of static indeterminacy and kinematic indeterminacy is explained with the help
simple structural forms. The kinematically unstable structures are discussed in
section 1.6. Compatibility equations and force-displacement relationships are
discussed. The term stiffness and flexibility coefficients are defined. In section
1.8, the procedure to calculate stiffness of simple structure is discussed.
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Instructional Objectives

After reading this lesson, the student will be able to

1. State and use principle of superposition.

2. Explain strain energy concept.

3. Differentiate between elastic and inelastic strain energy and state units of
strain energy.

4. Derive an expression for strain energy stored in one-dimensional structure

under axial load.

Derive an expression for elastic strain energy stored in a beam in bending.

Derive an expression for elastic strain energy stored in a beam in shear.

Derive an expression for elastic strain energy stored in a circular shaft under

torsion.

No o

2.1 Introduction

In the analysis of statically indeterminate structures, the knowledge of the
displacements of a structure is necessary. Knowledge of displacements is also
required in the design of members. Several methods are available for the
calculation of displacements of structures. However, if displacements at only a
few locations in structures are required then energy based methods are most
suitable. If displacements are required to solve statically indeterminate
structures, then only the relative values of EA,El and GJ are required. If actual

value of displacement is required as in the case of settlement of supports and
temperature stress calculations, then it is necessary to know actual values of
Eand G. In general deflections are small compared with the dimensions of
structure but for clarity the displacements are drawn to a much larger scale than
the structure itself. Since, displacements are small, it is assumed not to cause
gross displacements of the geometry of the structure so that equilibrium equation
can be based on the original configuration of the structure. When non-linear
behaviour of the structure is considered then such an assumption is not valid as
the structure is appreciably distorted. In this lesson two of the very important
concepts i.e., principle of superposition and strain energy method will be
introduced.

2.2 Principle of Superposition

The principle of superposition is a central concept in the analysis of structures.
This is applicable when there exists a linear relationship between external forces
and corresponding structural displacements. The principle of superposition may
be stated as the deflection at a given point in a structure produced by several
loads acting simultaneously on the structure can be found by superposing
deflections at the same point produced by loads acting individually. This is

Version 2 CE IIT, Kharagpur



illustrated with the help of a simple beam problem. Now consider a cantilever
beam of length L and having constant flexural rigidity EI subjected to two

externally applied forces P and P,as shown in Fig. 2.1. From moment-area

theorem we can evaluate deflection below C, which states that the tangential
deviation of point cfrom the tangent at point A is equal to the first moment of the

area of the %diagram between Aand Cabout C. Hence, the deflection ubelow

C due to loads P, and P, acting simultaneously is (by moment-area theorem),

Py P
Tr
A q v B L ] N
X
3 c
“e
i - )
i
[ %4 |
x
A
A, 1
1 _E|L+ {1 1
e 1
El | 2 HJ'-'L_ E{_sz-]
Aq

Fig 2.1 Cantilever Beam with Two Concentrated
Loads

u=AX +AX, +AX, (2.1)

where uis the tangential deviation of point Cwith respect to a tangent at A.

Since, in this case the tangent at Ais horizontal, the tangential deviation of point
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Cis nothing but the vertical deflection atC. X,X, andX,are the distances from

point C to the centroids of respective areas respectively.

2L _ (L Lj 2L L
X, =—— X, =| —+— X;=——+—
32 2 4 32 2
P,L? P,L? (PL+P,L)L
— A — 2 — 1 2
A 8EI 2 4E A 8EI
Hence,
2 2
u:PzL E£+P2L £+£ +M EL L (22)
8ElI 32 4El|2 4 8EI 32 2

After simplification one can write,

,_PL 5RL

2.3
3El  48El 23)

Now consider the forces being applied separately and evaluate deflection at C
in each of the case.
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Fig 2.2 Deflection Computation
P,L°
u,, = )
22 3E| ( )

where u,,is deflection at C (2) when load P, is applied at C (2) itself. And,
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3
_1PRL L{LJL} _ShL (2.5)

Uy =7 T =
22El1 212 32| A48El

where u,,is the deflection at C(2) when load is applied at B(l). Now the total
deflection at C when both the loads are applied simultaneously is obtained by
adding uyand uy,.

P 5PL

B TT R TY=T

(2.6)

Hence it is seen from equations (2.3) and (2.6) that when the structure behaves
linearly, the total deflection caused by forces P,P,,...,P, at any point in the

structure is the sum of deflection caused by forces PR,P,,...,P, acting

independently on the structure at the same point. This is known as the Principle
of Superposition.

The method of superposition is not valid when the material stress-strain
relationship is non-linear. Also, it is not valid in cases where the geometry of
structure changes on application of load. For example, consider a hinged-hinged
beam-column subjected to only compressive force as shown in Fig. 2.3(a). Let
the compressive force P be less than the Euler's buckling load of the structure.

Then deflection at an arbitrary point C (say) u! is zero. Next, the same beam-
column be subjected to lateral load Q with no axial load as shown in Fig. 2.3(b).
Let the deflection of the beam-column at C be u?. Now consider the case when
the same beam-column is subjected to both axial load P and lateral loadQ. As
per the principle of superposition, the deflection at the centre u’must be the sum

of deflections caused by P and Qwhen applied individually. However this is not
so in the present case. Because of lateral deflection caused by Q, there will be

additional bending moment due to P atC.Hence, the net deflection u’will be
more than the sum of deflections u; and u’.
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2.3 Strain Energy

Consider an elastic spring as shown in the Fig.2.4. When the spring is slowly
pulled, it deflects by a small amount u,. When the load is removed from the

spring, it goes back to the original position. When the spring is pulled by a force,
it does some work and this can be calculated once the load-displacement
relationship is known. It may be noted that, the spring is a mathematical
idealization of the rod being pulled by a force P axially. It is assumed here that
the force is applied gradually so that it slowly increases from zero to a maximum
value P . Such a load is called static loading, as there are no inertial effects due
to motion. Let the load-displacement relationship be as shown in Fig. 2.5. Now,
work done by the external force may be calculated as,

W, . = % Pu, = %( force x displacement) (2.7)

ext
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Fig. 2.5 Force-displacement relation

The area enclosed by force-displacement curve gives the total work done by the
externally applied load. Here it is assumed that the energy is conserved i.e. the
work done by gradually applied loads is equal to energy stored in the structure.
This internal energy is known as strain energy. Now strain energy stored in a
spring is

u :%Plul (2.8)
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Work and energy are expressed in the same units. In SI system, the unit of work
and energy is the joule (J), which is equal to one Newton metre (N.m). The strain
energy may also be defined as the internal work done by the stress resultants in
moving through the corresponding deformations. Consider an infinitesimal
element within a three dimensional homogeneous and isotropic material. In the
most general case, the state of stress acting on such an element may be as

shown in Fig. 2.6. There are normal stresses (Gx,ay and az)and shear stresses
(z'xy,ryz and rZX) acting on the element. Corresponding to normal and shear

stresses we have normal and shear strains. Now strain energy may be written
as,

z Oy

Figure 2.6. Stress on an infinitesimal element .

U =%.\[O'T6‘ dv (2.9)

in which &' is the transpose of the stress column vector i.e.,

{G}T =(0'X,Gy,az,z'xy,ryz,z'zx) and {g}T :(gx18y’nggxy’gyz’SZX) (2.10)
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The strain energy may be further classified as elastic strain energy and inelastic
strain energy as shown in Fig. 2.7. If the force P is removed then the spring
shortens. When the elastic limit of the spring is not exceeded, then on removal of
load, the spring regains its original shape. If the elastic limit of the material is
exceeded, a permanent set will remain on removal of load. In the present case,
load the spring beyond its elastic limit. Then we obtain the load-displacement
curve OABCDO as shown in Fig. 2.7. Now if at B, the load is removed, the spring
gradually shortens. However, a permanent set of OD is till retained. The shaded
area BCD is known as the elastic strain energy. This can be recovered upon
removing the load. The area OABDOrepresents the inelastic portion of strain
energy.

P
F 9
A - Inelastic
strain energy
Elastic strain energy
% .
0 D C

Figure 2.7  Elastic and inelastic strain energy.

The area OABCDOcorresponds to strain energy stored in the structure. The area
OABEO is defined as the complementary strain energy. For the linearly elastic
structure it may be seen that

Area OBC = Area OBE

i.e. Strain energy = Complementary strain energy

This is not the case always as observed from Fig. 2.7. The complementary
energy has no physical meaning. The definition is being used for its convenience

in structural analysis as will be clear from the subsequent chapters.
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Usually structural member is subjected to any one or the combination of bending
moment; shear force, axial force and twisting moment. The member resists these
external actions by internal stresses. In this section, the internal stresses induced
in the structure due to external forces and the associated displacements are
calculated for different actions. Knowing internal stresses due to individual
forces, one could calculate the resulting stress distribution due to combination of
external forces by the method of superposition. After knowing internal stresses
and deformations, one could easily evaluate strain energy stored in a simple
beam due to axial, bending, shear and torsional deformations.

2.3.1 Strain energy under axial load

Consider a member of constant cross sectional area A, subjected to axial force
P as shown in Fig. 2.8. Let E be the Young’s modulus of the material. Let the
member be under equilibrium under the action of this force, which is applied
through the centroid of the cross section. Now, the applied force P is resisted by

. o : : P
uniformly distributed internal stresses given by average stress o = " as shown

by the free body diagram (vide Fig. 2.8). Under the action of axial load P
applied at one end gradually, the beam gets elongated by (say) u. This may be
calculated as follows. The incremental elongation duof small element of length
dx of beam is given by,

du:gdx:gdx:idx (2.11)
E AE

Now the total elongation of the member of length L may be obtained by
integration

idx (2.12)
AE

u=

Oy~
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Now the work done by external loads W :%Pu (2.13)

In a conservative system, the external work is stored as the internal strain
energy. Hence, the strain energy stored in the bar in axial deformation is,

U=%Pu (2.14)

Substituting equation (2.12) in (2.14) we get,
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L 2
U =jp—dx (2.15)
) 2AE

2.3.2 Strain energy due to bending

Consider a prismatic beam subjected to loads as shown in the Fig. 2.9. The
loads are assumed to act on the beam in a plane containing the axis of symmetry
of the cross section and the beam axis. It is assumed that the transverse cross
sections (such as AB and CD), which are perpendicular to centroidal axis, remain
plane and perpendicular to the centroidal axis of beam (as shown in Fig 2.9).

Version 2 CE IIT, Kharagpur



LY L3 L3 | L3 i
| F
+
-P
Shear force diagram
PI3 |'--..FIII"I:i
| + I BMD
= 1
3 - Pure Bending
Bending moment diagram
M > .'_u"l"-\—._.-o-'"'-\.\. P
£ di . Compression
| e { """"" L Sy ".' |
s ; |
:.l.-' d5 \'\.II
""" Foommmmmsmsnssss s st oo -~ No deformation
L1 1 t
s ) Elongation
B l

(Gnmprnunlua stress

.

Fig. 2.9 BENDING DEFORMATION
Version 2 CE IIT, Kharagpur



Consider a small segment of beam of length ds subjected to bending moment as
shown in the Fig. 2.9. Now one cross section rotates about another cross section
by a small amount d& . From the figure,

40 =Lds =M g (2.16)
ROTE

where R is the radius of curvature of the bent beam and El is the flexural rigidity
of the beam. Now the work done by the moment M while rotating through angle
dé will be stored in the segment of beam as strain energy dU . Hence,

du :%M do 2.17)

Substituting for d@ in equation (2.17), we get,

2
du =M 4 (2.18)
2 El

Now, the energy stored in the complete beam of span L may be obtained by
integrating equation (2.18). Thus,

L M 2
U=[_"—ds (2.19)
) 2E
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2.3.3 Strain energy due to transverse shear

A~
Q !
ﬁ.‘
@

Fig. 2.10 (b)
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The shearing stress on a cross section of beam of rectangular cross section may
be found out by the relation

= VQ (2.20)
bl,,

where Q is the first moment of the portion of the cross-sectional area above the
point where shear stress is required about neutral axis, V is the transverse shear
force, b is the width of the rectangular cross-section and 1, is the moment of
inertia of the cross-sectional area about the neutral axis. Due to shear stress, the
angle between the lines which are originally at right angle will change. The shear
stress varies across the height in a parabolic manner in the case of a rectangular
cross-section. Also, the shear stress distribution is different for different shape of
the cross section. However, to simplify the computation shear stress is assumed
to be uniform (which is strictly not correct) across the cross section. Consider a
segment of length ds subjected to shear stressz. The shear stress across the
cross section may be taken as

r=k\i
A

in which A is area of the cross-section and kis the form factor which is
dependent on the shape of the cross section. One could write, the deformation
duas

du=Ayds (2.22)

where Ay is the shear strain and is given by

Ay=—=k— (2.22)
Hence, the total deformation of the beam due to the action of shear force is

u= OLkAV—Gds (2.23)

Now the strain energy stored in the beam due to the action of transverse shear
force is given by,

2
u = 1wy =ijLds (2.24)
2" " honc
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The strain energy due to transverse shear stress is very low compared to strain
energy due to bending and hence is usually neglected. Thus the error induced in
assuming a uniform shear stress across the cross section is very small.

2.3.4 Strain energy due to torsion

Generator before application of torque

2 v e .
sz p £\
[ i L
SN '!I! I".\ ."l
’z \—-./ \\-\..-/
Fixed end
‘/
Y
M, p e D E meEEE oo e
e .
| __-Ii‘_h ] ¥
""'" di M

=M,

Fig 2.11 Generator after application of torque

Consider a circular shaft of length L radiusR, subjected to a torque T at one
end (see Fig. 2.11). Under the action of torque one end of the shaft rotates with
respect to the fixed end by an angled¢. Hence the strain energy stored in the

shaft is,
1
U==T
> ¢

(2.25)
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Consider an elemental length ds of the shaft. Let the one end rotates by a small
amount d¢ with respect to another end. Now the strain energy stored in the

elemental length is,

du :%Td¢ (2.26)
We know that
Tds
dg =— 2.27
¢ G (2.27)

where, G is the shear modulus of the shaft material and J is the polar moment
of area. Substituting for d¢ from (2.27) in equation (2.26), we obtain

T2

du =
2GJ

ds (2.28)

Now, the total strain energy stored in the beam may be obtained by integrating
the above equation.

L T2
U= jo -G398 (2.29)

Hence the elastic strain energy stored in a member of length s (it may be
curved or straight) due to axial force, bending moment, shear force and
torsion is summarized below.

S 2

1. Due to axial force U, = J'P—ds
o 2AE
S

2. Due to bending u, =J2—ds
0

S
3. Due to shear U, = jv—ds
0

S
4. Due to torsion U, = I—ds
0
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Summary

In this lesson, the principle of superposition has been stated and proved. Also, its
limitations have been discussed. In section 2.3, it has been shown that the elastic
strain energy stored in a structure is equal to the work done by applied loads in
deforming the structure. The strain energy expression is also expressed for a 3-
dimensional homogeneous and isotropic material in terms of internal stresses
and strains in a body. In this lesson, the difference between elastic and inelastic
strain energy is explained. Complementary strain energy is discussed. In the
end, expressions are derived for calculating strain stored in a simple beam due to
axial load, bending moment, transverse shear force and torsion.
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Instructional Objectives

After reading this lesson, the reader will be able to;

1. State and prove first theorem of Castigliano.

2. Calculate deflections along the direction of applied load of a statically
determinate structure at the point of application of load.

3. Calculate deflections of a statically determinate structure in any direction at a
point where the load is not acting by fictious (imaginary) load method.

4. State and prove Castigliano’s second theorem.

3.1 Introduction

In the previous chapter concepts of strain energy and complementary strain
energy were discussed. Castigliano’s first theorem is being used in structural
analysis for finding deflection of an elastic structure based on strain energy of the
structure. The Castigliano’s theorem can be applied when the supports of the
structure are unyielding and the temperature of the structure is constant.

3.2 Castigliano’s First Theorem

For linearly elastic structure, where external forces only cause deformations, the
complementary energy is equal to the strain energy. For such structures, the
Castigliano’s first theorem may be stated as the first partial derivative of the
strain energy of the structure with respect to any particular force gives the
displacement of the point of application of that force in the direction of its line of
action.
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Fig. 3.1 Castigliano’s First Theorem

Let P,P,,...,P, be the forces acting at x,,X,,......, X, from the left end on a simply
supported beam of spanL. Let u,,u,,..,u, be the displacements at the loading
points P, P,,...,P, respectively as shown in Fig. 3.1. Now, assume that the

material obeys Hooke’s law and invoking the principle of superposition, the work
done by the external forces is given by (vide eqn. 1.8 of lesson 1)

W :—Plul+%P2u2 Forerenns +%Pnun (3.1)
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Work done by the external forces is stored in the structure as strain energy in a
conservative system. Hence, the strain energy of the structure is,

U =—P1Ul +%P2u2+ .......... +%Pnun (32)

Displacement u;, below point P, is due to the action of P,P,,...,P, acting at

distances x;, X, ,......, X, respectively from left support Hence, u, may be expressed
as,
u, =a;, P +a,P, +...... +a,,P, (3.3)
In general,
u, =a,P +a,P, +......... +a,,P, i=12..n (3.4)

where a; is the flexibility coefficient at i due to unit force applied at j.

Substituting the values of u,,u,,...,.u
get,

in equation (3.2) from equation (3.4), we

n

We know from Maxwell-Betti's reciprocal theorema; =a; . Hence, equation (3.5)
may be simplified as,

U =[P + Pl ot 8, P |+ [3RP + 3PP 4ot 3 PR ] (36)
Now, differentiating the strain energy with any force P, gives,

=a, P +a,P, +...... +a,,P (3.7)

It may be observed that equation (3.7) is nothing but displacement u, at the

loading point.

In general,
ouU
= 3.8
U (3.8)

Hence, for determinate structure within linear elastic range the partial derivative
of the total strain energy with respect to any external load is equal to the
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displacement of the point of application of load in the direction of the applied
load, provided the supports are unyielding and temperature is maintained
constant. This theorem is advantageously used for calculating deflections in
elastic structure. The procedure for calculating the deflection is illustrated with
few examples.

Example 3.1

Find the displacement and slope at the tip of a cantilever beam loaded as in Fig.
3.2. Assume the flexural rigidity of the beam EI to be constant for the beam.

Fictious moment

Fig. 3.2 Example 3.1
Moment at any section at a distance X away from the free end is given by
M =—-Px (2)
VE

Strain energy stored in the beam due to bendingis U =.|'
0

2l dx (2)

Substituting the expression for bending moment M in equation (3.10), we get,

L 2 213
U :J'(PX) dx = P<L (3)
) 2EI 6EI
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Now, according to Castigliano’s theorem, the first partial derivative of strain
energy with respect to external force P gives the deflection u, at A in the
direction of applied force. Thus,

oJ PL®
_— uA =
oP 3El

(4)

To find the slope at the free end, we need to differentiate strain energy with
respect to externally applied momentM atA. As there is no moment at A, apply
a fictitious moment M, at A. Now moment at any section at a distance x away

from the free end is given by
M =-Px-M,

Now, strain energy stored in the beam may be calculated as,

U _'T(PX+M0)2 g PPE L MGPLE ML 5)
-5 =

I 6El 2El 2El
Taking partial derivative of strain energy with respect toM,, we get slope atA.

oU PL* M,L
=0, = +
oM, 2El  El

(6)
But actually there is no moment applied atA. Hence substituteM, =0 in

equation (3.14) we get the slope at A.

_PL?
A 2FE

(7)

Example 3.2

A cantilever beam which is curved in the shape of a quadrant of a circle is loaded
as shown in Fig. 3.3. The radius of curvature of curved beam isR, Young’s
modulus of the material is E and second moment of the area is | about an axis
perpendicular to the plane of the paper through the centroid of the cross section.
Find the vertical displacement of point A on the curved beam.
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Fig. 3.3 Example 3.2

The bending moment at any section & of the curved beam (see Fig. 3.3) is given

by
M = PRsiné (2)

Strain energy U stored in the curved beam due to bending is,

P PPR’(in’9)Rd9 _P°R* z _ zP°R’ @

S M 2
U =I ds =
) 2EI ) 2El 2El 4 8EI
Differentiating strain energy with respect to externally applied load, P we get
ou, =PR’®
U, = = 3
Ao 4E ()

Example 3.3
Find horizontal displacement at D of the frame shown in Fig. 3.4. Assume the
flexural rigidity of the beam EI to be constant through out the member. Neglect

strain energy due to axial deformations.
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Fig. 3.4 Example 3.3

The deflection D may be obtained via. Castigliano’s theorem. The beam
segments BA and DC are subjected to bending moment Px (0<x< L) and the
beam element BC is subjected to a constant bending moment of magnitude PL .

Total strain energy stored in the frame due to bending

After simplifications,

_ P P 5P

U +
3El 2EI 6El

Differentiating strain energy with respect to P we get,

oU 5P L° 5P L°

op P 6EI 3El

(1)

(2)
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Example 3.4

Find the vertical deflection at A of the structure shown Fig. 3.5. Assume the
flexural rigidity EI and torsional rigidity GJ to be constant for the structure.

L b o

Fig.3.5 Example 3.4

The beam segment BCis subjected to bending moment Px (O<x<a; x is
measured from C )and the beam element AB is subjected to torsional moment of
magnitude Pa and a bending moment of Px(0< x <b;xis measured fromB). The

strain energy stored in the beam ABC is,

2

Y ’ (Pa)” . . (PX)’
v _£2EI dx+£ 2GJ Io 2El @)

After simplifications,

2,3 2,2 2113
U=Pa+Pab+Pb )
6El 2GJ 6El

Vertical deflection u, at A is,

oU Pa® Pa’h Pb?
—=Uu, = + + 3)
oP 3Bl GJ  3El

Version 2 CE IIT, Kharagpur



Example 3.5

Find vertical deflection at C of the beam shown in Fig. 3.6. Assume the flexural
rigidity EIl to be constant for the structure.

Fig. 3.6 Example 3.5

The beam segment CB is subjected to bending moment Px (0O<x<a) and
beam element AB is subjected to moment of magnitude Pa.
To find the vertical deflection at C, introduce a imaginary vertical force Qat C.

Now, the strain energy stored in the structure is,

t(Px)° . F(Pa+Qy)’
! e J 261 @

Differentiating strain energy with respect toQ, vertical deflection atC is obtained.

oy _ f 2(Pa+Qy)y, Qy)y 2)
2EI
17 )
c=§£Pay+Qy dy 3)
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(4)

Ue = +
¢ El

1| Pab®  Qb®
2 3

But the force Q is fictitious force and hence equal to zero. Hence, vertical
deflection is,

! _ Pab?
¢ 2FEl

(5)

3.3 Castigliano’s Second Theorem

In any elastic structure having nindependent displacements u,,u,,..,u,
corresponding to external forces P, P,,....,P,along their lines of action, if strain

energy is expressed in terms of displacements then nequilibrium equations may
be written as follows.

S—U:Pj, j=1,2,..n (3.9)
Uj

This may be proved as follows. The strain energy of an elastic body may be
written as

U==PRu, +=RPu, +......... +=P,u, (3.10)
We know from Lesson 1 (equation 1.5) that
P =k,u, +K,u, +...+Kk,u,, 1=12,.,n (3.11)

where k;is the stiffness coefficient and is defined as the force at i due to unit
displacement applied at j. Hence, strain energy may be written as,

1 1 1
U= Eul[kllu1 +K,u, + ...]+§u2[k21u1 + KU, +. ]+ +§Un[kn1U1 +k,u,+..]  (3.12)

We know from reciprocal theoremk; =k;. Hence, equation (3.12) may be
simplified as,

U :%[klluf +KyU2 +..o+ K u2}+[k12u1u2 + KU Uy + o+ Ky U, ]+ (3.13)

nn=n
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Now, differentiating the strain energy with respect to any displacement u, gives
the applied force P at that point, Hence,

Y KU +K Uy +....... +k,u, (3.14)
aul 12

Or,
Y _ P., j=12,..,n (3.15)
au,

Summary

In this lesson, Castigliano’s first theorem has been stated and proved for linearly
elastic structure with unyielding supports. The procedure to calculate deflections
of a statically determinate structure at the point of application of load is illustrated
with examples. Also, the procedure to calculate deflections in a statically
determinate structure at a point where load is applied is illustrated with examples.
The Castigliano’s second theorem is stated for elastic structure and proved in
section 3.4.
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Instructional Objectives

After reading this lesson, the reader will be able to:

1. State and prove theorem of Least Work.
2. Analyse statically indeterminate structure.
3. State and prove Maxwell-Betti’'s Reciprocal theorem.

4.1 Introduction

In the last chapter the Castigliano’s theorems were discussed. In this chapter
theorem of least work and reciprocal theorems are presented along with few
selected problems. We know that for the statically determinate structure, the
partial derivative of strain energy with respect to external force is equal to the
displacement in the direction of that load at the point of application of load. This
theorem when applied to the statically indeterminate structure results in the
theorem of least work.

4.2 Theorem of Least Work

According to this theorem, the partial derivative of strain energy of a statically
indeterminate structure with respect to statically indeterminate action should
vanish as it is the function of such redundant forces to prevent any displacement
at its point of application. The forces developed in a redundant framework are
such that the total internal strain energy is a minimum. This can be proved as
follows. Consider a beam that is fixed at left end and roller supported at right end
as shown in Fig. 4.1a. Let P,P,,..,P, be the forces acting at distances
X;s Xy yey X, from the left end of the beam of spanL. Let u,,u,,..,u, be the
displacements at the loading points P,P,,....,P, respectively as shown in Fig. 4.1a.
This is a statically indeterminate structure and choosing R, as the redundant

reaction, we obtain a simple cantilever beam as shown in Fig. 4.1b. Invoking the
principle of superposition, this may be treated as the superposition of two cases,
viz, a cantilever beam with loads P, P,,...., P, and a cantilever beam with redundant

force R, (see Fig. 4.2a and Fig. 4.2b)

Version 2 CE IIT, Kharagpur



. - |
) il
(a)
P, P, P
B, J { - 2 A
R,
” L B
(b)

Fig.4.1 Theorem of Least work
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Fig. 4.2 (b)Cantilever beam with externally applied
loads and a fictious load

In the first case (4.2a), obtain deflection below A due to applied loads P, P,,....,P,.

This can be easily accomplished through Castigliano’s first theorem as discussed
in Lesson 3. Since there is no load applied at A, apply a fictitious load Qat A as in

Fig. 4.2. Let u, be the deflection below A.

Now the strain energy U, stored in the determinate structure (i.e. the support A
removed) is given by,

U, :%plul +%P2u2 SR +%Pnun +-Qu, (4.1)

It is known that the displacement u, below point P, is due to action of B,P,,....,P,

acting atx;,X,,.....,X, respectively and due to Q at A. Hence, u, may be
expressed as,
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u, =a,P+a,P,+..... +a,P,+a,Q 4.2

where, a;is the flexibility coefficient at i due to unit force applied at j. Similar

equations may be written for u,,u,,....,u, and u,. Substituting for u,,u,,....,u, and u,
in equation (4.1) from equation (4.2), we get,

1 1
U, =3 Rla,P +a,P, +...+a,P, + alaQ]+E Pyla, P +a,P; +..8,,F, +28,,Q] +......

+% Pla,R +a,P +..a,P,+a,Q] +%Q[aa1Pl +a,P,+...+a,P, +a,Q]
Taking partial derivative of strain energy U, with respect to Q, we get deflection
atA.

s _ 8P, +8,,P, + .+ 8, P, +2,,Q (4.4)

aQ

Substitute Q =0 as it is fictitious in the above equation,

oy, =u, =a,P+a,P,+.... +a,,P, (4.5)
aQ

Now the strain energy stored in the beam due to redundant reaction R, is,

RIL
U =-2 4.6
"= BEl (4.6)
Now deflection at A dueto R, is
3
v, =-U, = R,L 4.7)
oR 3El

The deflection due to R, should be in the opposite direction to one caused by
superposed loadsP,P,,...,P,, so that the net deflection at A is zero. From

TN

equation (4.5) and (4.7) one could write,

CLC (4.8)
aQ

* 0R

a

Since Qis fictitious, one could as well replace it by R,. Hence,
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0

U,+U,)=0 4.9
8Ra(s ) (4.9)
or,
M g (4.10)
oR,

This is the statement of theorem of least work. Where U is the total strain energy
of the beam due to superimposed loads P, P,,....,P, and redundant reactionR, .

Example 4.1

Find the reactions of a propped cantilever beam uniformly loaded as shown in Fig.
4.3a. Assume the flexural rigidity of the beam EI to be constant throughout its
length.
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w/unit length

F 3
r

(a)

A

(b)

Fig.4.3 Example 4.1

There three reactions R,,R, and M, as shown in the figure. We have only two
equation of equilibrium viz., Y F,=0and> M =0. This is a statically
indeterminate structure and choosing R, as the redundant reaction, we obtain a

simple cantilever beam as shown in Fig. 4.3b.
Now, the internal strain energy of the beam due to applied loads and redundant
reaction, considering only bending deformations is,

—dx (1)

According to theorem of least work we have,
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L
U _,_iM M

Z= o= (221 2
OR, o El 6R, @
wx?
Bending moment at a distance x from B, M =R x— (3)
M x @)
OR,
Hence,
L iy 2
oU =j(be WX /2)xdx (5)
R, ¢ El
3 4
8U= Rl wL i=o (©)
OR, 3 8 |El
Solving for R, , we get,
3
R, =—wL
° 8
2
Ra:WL—szng and Ma:—W:; (7)

Example 4.2

A ring of radius R is loaded as shown in figure. Determine increase in the
diameter AB of the ring. Young’s modulus of the material is E and second
moment of the area is | about an axis perpendicular to the page through the
centroid of the cross section.

Version 2 CE IIT, Kharagpur



A
C
B
P
(a)
{ .

(b)

Fig.4.4 Example 4.2

Version 2 CE IIT, Kharagpur



The free body diagram of the ring is as shown in Fig. 4.4. Due to symmetry, the
slopes at Cand D is zero. The value of redundant moment M is such as to make

slopes atC and D zero. The bending moment at any section & of the beam is,
M :Mo—?(l—cose) (2)

Now strain energy stored in the ring due to bending deformations is,

27 2
U :jM Rdg 2)
) 2EI

Due to symmetry, one could consider one quarter of the ring. According to
theorem of least work,

U _,_ M oM

=0=| — Rdé 3)
oM, o El oM,
oM
oM,
27
Y Mpag @)
oM, < El
AR 2 PR
0=—/|[M,——(@—cosH)]do 5
- ![ 0= ) (5)
Integrating and solving for M,,,
MOZPR(LEJ )
2
M, =0.182PR

Now, increase in diameter A, may be obtained by taking the first partial derivative
of strain energy with respect toP . Thus,

U

A=
oP
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Now strain energy stored in the ring is given by equation (2). Substituting the value

of M, and equation (1) in (2), we get,

T{E(z—l)——(l cos9)y dé

Now the increase in length of the diameter is,
R™? PR 2
o j { (——1)——(1 cos@)}{—(——l)——(l cos6)}do
After integrating,

3 3
_PR {E_E) 019" PR

4.3 Maxwell-Betti Reciprocal theorem

(7)

(8)

(9)

Consider a simply supported beam of span L as shown in Fig. 4.5. Let this beam
be loaded by two systems of forces P, and P, separately as shown in the figure.

Let u, be the deflection below the load point P,when only load P,is acting.
Similarly let u,, be the deflection below load P,, when only load P, is acting on the

beam.
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Fig. 4.5 Reciprocal theorem

The reciprocal theorem states that the work done by forces acting through
displacement of the second system is the same as the work done by the second
system of forces acting through the displacements of the first system. Hence,
according to reciprocal theorem,

P xuy, =P, xu,, (4.11)

Now, u,, andu, can be calculated using Castiglinao’s first theorem. Substituting
the values of u, andu,, in equation (4.27) we get,

5R,L° ><5P1|_3
48EI ° 48EI

X

(4.12)

1

Hence it is proved. This is also valid even when the first system of forces is
P,P,,..,P, and the second system of forces is given byQ,,Q,,....Q,. Let

u,,u,,..,u, be the displacements caused by the forces P,P,,...,P, only and

0,,0,,....,0, be the displacements due to system of forces Q,,Q,,....,Q, only acting
on the beam as shown in Fig. 4.6.
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u, v +u ——
/ u2 /_0-70_‘37
(a)
P, P, P
A ‘ o [+] [+] [+] - . B
5, . 6# _ +5 :
(b)

Fig. 4.6 Generalized statement of Reciprocal Theorem
Now the reciprocal theorem may be stated as,

Ps =Qu i=12,...n (4.13)

Summary

In lesson 3, the Castigliano’s first theorem has been stated and proved. For
statically determinate structure, the partial derivative of strain energy with respect
to external force is equal to the displacement in the direction of that load at the
point of application of the load. This theorem when applied to the statically
indeterminate structure results in the theorem of Least work. In this chapter the
theorem of Least Work has been stated and proved. Couple of problems is solved
to illustrate the procedure of analysing statically indeterminate structures. In the
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end, the celebrated theorem of Maxwell-Betti’s reciprocal theorem has been sated
and proved.
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Instructional Objectives

After studying this lesson, the student will be able to:

1. Define Virtual Work.

2. Differentiate between external and internal virtual work.

3. Sate principle of virtual displacement and principle of virtual forces.

4. Drive an expression of calculating deflections of structure using unit load
method.

5. Calculate deflections of a statically determinate structure using unit load
method.

6. State unit displacement method.

7. Calculate stiffness coefficients using unit-displacement method.

5.1 Introduction

In the previous chapters the concept of strain energy and Castigliano’s theorems
were discussed. From Castigliano’s theorem it follows that for the statically
determinate structure; the partial derivative of strain energy with respect to
external force is equal to the displacement in the direction of that load. In this
lesson, the principle of virtual work is discussed. As compared to other methods,
virtual work methods are the most direct methods for calculating deflections in
statically determinate and indeterminate structures. This principle can be applied
to both linear and nonlinear structures. The principle of virtual work as applied to
deformable structure is an extension of the virtual work for rigid bodies. This may
be stated as: if a rigid body is in equilibrium under the action of a F —system of
forces and if it continues to remain in equilibrium if the body is given a small
(virtual) displacement, then the virtual work done by the F —system of forces as ‘it
rides’ along these virtual displacements is zero.

5.2 Principle of Virtual Work

Many problems in structural analysis can be solved by the principle of virtual work.
Consider a simply supported beam as shown in Fig.5.1a, which is in equilibrium

under the action of real forces F,,F,,....... ,F, at co-ordinates 1,2......,n respectively.
Let u,u,,....,u, be the corresponding displacements due to the action of
forcesF,F,.,.......,F,. Also, it produces real internal stresses o; and real internal

strains ¢; inside the beam. Now, let the beam be subjected to second system of

forces (which are virtual not real) oF,dF,,.....,0F, in equilibrium as shown in

Fig.5.1b. The second system of forces is called virtual as they are imaginary and
they are not part of the real loading. This produces a displacement
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configuration du,, du,,......... ,ou,. The virtual loading system produces virtual internal
stresses oc; and virtual internal strains oJg; inside the beam. Now, apply the
second system of forces on the beam which has been deformed by first system of
forces. Then, the external loads F, and internal stresses o, do virtual work by
moving along du;and Je;. The product Z:Fiéui is known as the external virtual

work. It may be noted that the above product does not represent the conventional
work since each component is caused due to different source i.e. du, is not due

toF,. Similarly the product Zaijﬁgij is the internal virtual work. In the case of

deformable body, both external and internal forces do work. Since, the beam is in
equilibrium, the external virtual work must be equal to the internal virtual work.
Hence, one needs to consider both internal and external virtual work to establish
equations of equilibrium.

F, F. F.
/'_'/_; Uy u JI—-J‘-
u; y /:)7.4.7;

Fig. 5.1a : Actual system of forces.
5F, 5F, 5F.

v L4 L4 v
_.J" \ 7 \__
}77' X IEUI IE“' IEUI Iéll"] ]

Fig. 5.1b : virtual system of forces.

5.3 Principle of Virtual Displacement

A deformable body is in equilibrium if the total external virtual work done by the
system of true forces moving through the corresponding virtual displacements of

the system i.e. ZFﬁui iIs equal to the total internal virtual work for every
kinematically admissible (consistent with the constraints) virtual displacements.
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That is virtual displacements should be continuous within the structure and also it
must satisfy boundary conditions.

Y F & = [0y o5 dv (5.1)

where o are the true stresses due to true forces F, and dg; are the virtual strains
due to virtual displacements du; .

5.4 Principle of Virtual Forces

For a deformable body, the total external complementary work is equal to the total
internal complementary work for every system of virtual forces and stresses that
satisfy the equations of equilibrium.

D oFu = J.éaij g dv (5.2)

where Jo; are the virtual stresses due to virtual forces oF, and ¢; are the true

strains due to the true displacementsu; .

As stated earlier, the principle of virtual work may be advantageously used to
calculate displacements of structures. In the next section let us see how this can
be used to calculate displacements in a beams and frames. In the next lesson, the
truss deflections are calculated by the method of virtual work.

5.5 Unit Load Method

The principle of virtual force leads to unit load method. It is assumed throughout
our discussion that the method of superposition holds good. For the derivation of
unit load method, we consider two systems of loads. In this section, the principle of
virtual forces and unit load method are discussed in the context of framed
structures. Consider a cantilever beam, which is in equilibrium under the action of
a first system of forces F.F,......,F, causing displacements u,,u,,.....,u, as shown in

Fig. 5.2a. The first system of forces refers to the actual forces acting on the
structure. Let the stress resultants at any section of the beam due to first system of
forces be axial force (P ), bending moment (M ) and shearing force (V). Also the
corresponding incremental deformations are axial deformation (dA), flexural
deformation (d@) and shearing deformation (dA) respectively.

For a conservative system the external work done by the applied forces is equal to
the internal strain energy stored. Hence,
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1 & 1 1 1
EZ Fiui:EJP dA+5jM de+5jv dx

fPXds ¢MZds [Vids
le £2EI I2AG (5:3)

Now, consider a second system of forces oF,,dF,.,.....,oF,, which are virtual and
causing virtual displacements du,,du,,.....,dou, respectively (see Fig. 5.2b). Let the
virtual stress resultants caused by virtual forces be JP,,oM, and ¢V, at any cross
section of the beam. For this system of forces, we could write

:JL-éPvzds +Iélvl *ds J-évvzds

(5.4)
) 2EA ) 2El 2AG

0

where 6P,,0M, and &V, are the virtual axial force, bending moment and shear force

respectively. In the third case, apply the first system of forces on the beam, which
has been deformed, by second system of forces oF,dF,,.....,oF, as shown in Fig

5.2c. From the principle of superposition, now the deflections will be
(u, +au, ), (U, + AU )......, (u, + &, ) respectively

Version 2 CE IIT, Kharagpur



Fig. 5.2a : Actual system.

&F, &F. &F.

Tt
-

S e s e—

B, 5“‘

G,

« e

Fig. 5.2b : Virtual system of forces.

F, + &F,; F: + BF; F. + BF,

e

u, + Bu,

Fig. 5.2c : Combined system.

Since the energy is conserved we could write,

n n n L 2 L 2 L 2 L ~2
lZFJUj +125Fj5uj +Y SFu; :J-gpv dS+I5MV ds+.[é\/v dS+I P ds+
2 & 24 - J2ea T2 ) 2aG ) 2EA

“MZ3ds FV2ids
[5e ]
2El 2AG

0 0

L

] ! (5.5)
+[5PdA+[oM,do+[oV,d2
0 0 0

0 0

In equation (5.5), the term on the left hand side (ZéFjuj), represents the work
done by virtual forces moving through real displacements. Since virtual forces act
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at its full value, (%) does not appear in the equation. Subtracting equation (5.3)

and (5.4) from equation (5.5) we get,
n L L L
Y Fu; = [RdA+[oM,do+ [ ov,da (5.6)
j=1 0 0 0

From Module 1, lesson 3, we know that

dA :P_ds’dezM_ds and dizv—ds. Hence,
EA El AG

n

P Pds FoM Mds oV.Vds
| g
EA El AG

0 0

(5.7)

i1

L
éFjuj:j
0

Note that [%j does not appear on right side of equation (5.7) as the virtual system

resultants act at constant values during the real displacements. In the present
case oP, =0 and if we neglect shear forces then we could write equation (5.7) as

n ' oM Mds
2, =,[ E] (5-8)
0

j=1

If the value of a particular displacement is required, then choose the
corresponding force oF, =1 and all other forces oF; =0 (j=12,...,i-Li+L...,n).

Then the above expression may be written as,

(I, = j M Mds

0

(5.9)

where oM, are the internal virtual moment resultants corresponding to virtual force
at i-th co-ordinate, oF, =1. The above equation may be stated as,

(unit virtual load ) unknown true displacement

5.10
=J'(virtual stress resultants)(real deformations) ds. ( )

The equation (5.9) is known as the unit load method. Here the unit virtual load is
applied at a point where the displacement is required to be evaluated. The unit
load method is extensively used in the calculation of deflection of beams, frames
and trusses. Theoretically this method can be used to calculate deflections in
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statically determinate and indeterminate structures. However it is extensively used
in evaluation of deflections of statically determinate structures only as the method
requires a priori knowledge of internal stress resultants.

Example 5.1

A cantilever beam of span L is subjected to a tip moment M, as shown in Fig 5.3a.
Evaluate slope and deflection at a point (%) from left support. Assume El of the

given beam to be constant.

N il
& % A .
¥
|‘ I _{ ’ ‘ i i
c
L L N [ L4 A
* ” |
Fig. 5.3a Example 5.1 Fig. 5.3c. B. M. diagram of the beam due to unit moment at C.
M, 1
*
y : ] i
B ' c
—*x
| : w

Fig. 5.3d B.M.D due to unit load at C

Fig. 5.3b : B. M. diagram of the beam due to moment M,.

Slope at C

To evaluate slope atC, a virtual unit moment is applied at C as shown in Fig 5.3c.
The bending moment diagrams are drawn for tip moment M, and unit moment

applied at C and is shown in fig 5.3b and 5.3c respectively. Let &, be the rotation
at C due to moment M, applied at tip. According to unit load method, the rotation
at C, 6. is calculated as,
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M, (x)M (x)dx
El

(e, = (1)

= s 1

where oM, (x) and M(x) are the virtual moment resultant and real moment

resultant at any section x. Substituting the value of &M (x) and M (x) in the above
expression, we get

0 :3LJ-/4(1)de+ ¢ (0)Mdx
0 EI 3L/4 EI
3ML
© " 4El @)

Vertical deflection at C

To evaluate vertical deflection at C, a unit virtual vertical force is applied ac C as
shown in Fig 5.3d and the bending moment is also shown in the diagram.
According to unit load method,

M, (x)M (x)dx

(Du, = (3)

O ey
m

In the present case, M, (x)= —(ﬁ - xj

and M (x)=+M,

== (™) (4)

Example 5.2

Find the horizontal displacement at joint B of the frame ABCD as shown in Fig.
5.4a by unit load method. Assume EIl to be constant for all members.
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Fig. 5.4 a Example 5.2 \
5 kN

»

Fig. 5.4 c. Bending moment diagram of the frame for external loading.

5kN

— 77 ;‘i;,‘;
| 1

| 10 kN
10 kN

Fig. 5.4 b. Reactions.

The reactions and bending moment diagram of the frame due to applied external
loading are shown in Fig 5.4b and Fig 5.4c respectively. Since, it is required to

calculate horizontal deflection at B, apply a unit virtual load at B as shown in Fig.
5.4d. The resulting reactions and bending moment diagrams of the frame are
shown in Fig 5.4d.
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5 kN ' \

! . A

N & 7 &
| i

Fig. 5.4 d. Reactions and bending moment diagram of the frame for unit vertical load applied at B.

2

Now horizontal deflection at B, u; may be calculated as

L f M, (M (x)dx
()xu; —IA = @)
_ T M, (XM (x)dx T M, (x)M (x)ax +T M, (X)M (x)dx
_A El : El J El
_ j (x)5x)dx 2fz(z.s ~x)I02.5-x)dx
3 EI 7 El
_ j (5x)ox Tzo(z.s — xdx
) El 3 El
_625 3125 9375
~3El 3El  3El
937.5
Hence, UA_H(_)) @

Example 5.3

Find the rotations of joint B and C of the frame shown in Fig. 5.4a. Assume EIl to
be constant for all members.
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Fig. 5.5a. Reaction and B. M. diagram for the unit moment applied at B.

o S i = B
B c _—
B — c
1 a .
s
i A s ;;I;

Fig. 5.5b. Reaction and B. M. diagram for the unit moment applied at C.

Rotation at B

Apply unit virtual moment at B as shown in Fig 5.5a. The resulting bending
moment diagram is also shown in the same diagram. For the unit load method, the
relevant equation is,

(D%, = | é‘\"v(xé'\l" () 1)

wherein, &, is the actual rotation at B, oM (x)is the virtual stress resultant in the

frame due to the virtual load and I;?dx is the actual deformation of the frame

due to real forces.
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Now, M(x)=10(2.5-x) and oM (x)=0.4(2.5-x)
Substituting the values of M (x) and oM, (X) in the equation (1),
2.5

4
0, =5 I(Z.S —x)dx

0

4 s T 625
= T leasx- 2y A =222 )
El 2 3 o 3EI

Rotation at C

For evaluating rotation at C by unit load method, apply unit virtual moment at C as
shown in Fig 5.5b. Hence,

M, (x)M (x)dx

D
)% 6 = 3
(H)x 6, I = 3
2.5
6. - j10(2.5—x)(0.4x) i
) El
C 425 kT 3125 @
EI| 2 3]  3El

5.6 Unit Displacement Method

Consider a cantilever beam, which is in equilibrium under the action of a system of
forces F,F,.,....F,. Let u,u,.,...,u be the corresponding displacements and

P,M and V be the stress resultants at section of the beam. Consider a second
system of forces (virtual) oF,,0F,,.....,0F, causing virtual
displacementsdu,, du,,.....,ou,. Let JP,0M,and oV, be the virtual axial force,

bending moment and shear force respectively at any section of the beam.
Apply the first system of forces F,F,,.....,F, on the beam, which has been

previously bent by virtual forces JF,dF,,....,dF, . From the principle of virtual
displacements we have,

M (x)oM, (x)ds
El

J
= j o e (5.11)

ZFjan=

j=1
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The left hand side of equation (5.11) refers to the external virtual work done by the
system of true/real forces moving through the corresponding virtual displacements
of the system. The right hand side of equation (5.8) refers to internal virtual work
done. The principle of virtual displacement states that the external virtual work of
the real forces multiplied by virtual displacement is equal to the real stresses
multiplied by virtual strains integrated over volume. If the value of a particular force
element is required then choose corresponding virtual displacement as unity. Let
us say, it is required to evaluate F,, then choose du, =1 and ou,=0 1=23,...,n.

From equation (5.11), one could write,

1) F, - [M(OM,)ds (5.12)

where, (M, ), is the internal virtual stress resultant for 8u, =1. Transposing the
above equation, we get

_ J' (ﬂ\ﬂ )1 Mds (5.13)

The above equation is the statement of unit displacement method. The above
equation is more commonly used in the evaluation of stiffness co-efficient k; .

Apply real displacements u,,.....,u, in the structure. In that set u, =1and the other
all displacementsy; =0  (i=13,.....,n). For such a case the quantity F; in
equation (5.11) becomes k; i.e. force at 1 due to displacement at 2. Apply virtual
displacement du, =1. Now according to unit displacement method,

o= [P (M, )1 M,ds (5.14)

Summary

In this chapter the concept of virtual work is introduced and the principle of virtual
work is discussed. The terms internal virtual work and external virtual work has
been explained and relevant expressions are also derived. Principle of virtual
forces has been stated. It has been shown how the principle of virtual load leads to
unit load method. An expression for calculating deflections at any point of a
structure (both statically determinate and indeterminate structure) is derived. Few
problems have been solved to show the application of unit load method for
calculating deflections in a structure.
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Instructional Objectives

After reading this lesson, the reader will be able to:

1. State and prove Crotti-Engesser theorem.

2. Derive simple expressions for calculating deflections in trusses subjected to
mechanical loading using unit-load method.

3. Derive equations for calculating deflections in trusses subjected to
temperature loads.

4. Compute deflections in trusses using unit-load method due to fabrication
errors.

6.1 Introduction

In the previous lesson, we discussed the principle of virtual work and principle of
virtual displacement. Also, we derived unit — load method from the principle of
virtual work and unit displacement method from the principle of virtual
displacement. In this lesson, the unit load method is employed to calculate
displacements of trusses due to external loading. Initially the Engesser’'s
theorem, which is more general than the Castigliano’s theorem, is discussed. In
the end, few examples are solved to demonstrate the power of virtual work.

6.2 Crotti-Engesser Theorem

The Crotti-Engesser theorem states that the first partial derivative of the
complementary strain energy (U) expressed in terms of applied forces F; is

equal to the corresponding displacement.
Q:Zajkﬁ =u, (6.1)
oF, 4

For the case of indeterminate structures this may be stated as,

AN g 6.2)
oF

Note that Engesser’s theorem is valid for both linear and non-linear structures.
When the complementary strain energy is equal to the strain energy (i.e. in case
of linear structures) the equation (6.1) is nothing but the statement of
Castigliano’s first theorem in terms of complementary strain energy.
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LK
Fig. 6.1 Non-linear Load-displacement curve.

In the above figure the strain energy (area OACO) is not equal to complementary
strain energy (area OABO)

Area OACO =U = [Fdu (6.3)
0

Differentiating strain energy with respect to displacement,

du

o=F (6.4)

This is the statement of Castigliano’s second theorem. Now the complementary
energy is equal to the area enclosed by OABO.

F
U"=[udF (6.5)
0

Differentiating complementary strain energy with respect to force F,

du”
) _y 6.6
dF (6.6)
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This gives deflection in the direction of load. When the load displacement
relationship is linear, the above equation coincides with the Castigliano’s first
theorem given in equation (3.8).

6.3 Unit Load Method as applied to Trusses
6.3.1 External Loading

In case of a plane or a space truss, the only internal forces present are axial as
the external loads are applied at joints. Hence, equation (5.7) may be written as,

n L
Iép Pds (6.7)
0

wherein, OF; is the external virtual load, u;, are the actual deflections of the truss,

0P, is the virtual stress resultant in the frame due to the virtual load and J'OL%ds

is the actual internal deformation of the frame due to real forces. In the above
equation L,E,A respectively represent length of the member, cross-sectional

area of a member and modulus of elasticity of a member. In the unit load
method, oF; =1 and all other components of virtual forces
oF (1=12,..,]-1 j+1..,n) are zero. Also, if the cross sectional area A of truss

remains constant throughout, then integration may be replaced by summation
and hence equation (6.7) may be written as,

(a:))u i | (68)

uy =y e

i=1

where m is the number of members, (éR,); is the internal virtual axial force in

member i due to unit virtual load at j and (Ei)Li is the total deformation of

memberi due to real loads. If we represent total deformation by A, , then

=3 (P, A (6.9)

i=1
where, A, is the true change in length of member i due to real loads.

6.3.2 Temperature Loading

Due to change in the environmental temperature, the truss members either
expand or shrink. This in turn produces joint deflections in the truss. This may be
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calculated by equation (6.9). In this case, the change in length of member A, is
calculated from the relation,

A, = oTL, (6.10)

where « is the co-efficient of thermal expansion member, L, is the length of
member and T is the temperature change.

6.3.3 Fabrication Errors and Camber

Sometimes, there will be errors in fabricating truss members. In some cases, the
truss members are fabricated slightly longer or shorter in order to provide camber
to the truss. Usually camber is provided in bridge truss so that its bottom chord is
curved upward by an equal to its downward deflection of the chord when
subjected to dead. In such instances, also, the truss joint deflection is calculated
by equation (6.9). Here,

A =e (6.11)

where, e is the fabrication error in the length of the member. e is taken as

|
positive when the member lengths are fabricated slightly more than the actual
length otherwise it is taken as negative.

6.4 Procedure for calculating truss deflection

1. First, calculate the real forces in the member of the truss either by method of
joints or by method of sections due to the externally applied forces. From this

: . . . PL
determine the actual deformation (A;) in each member from the equatlon#.
A

Assume tensile forces as positive and compressive forces as negative.

2. Now, consider the virtual load system such that only a unit load is considered
at the joint either in the horizontal or in the vertical direction, where the deflection
is sought. Calculate virtual forces (éP )ij in each member due to the applied unit

v

load at the j-th joint.

3. Now, using equation (6.9), evaluate the j-th joint deflectionu; .

4. If deflection of a joint needs to be calculated due to temperature change, then
determine the actual deformation (A;) in each member from the equation

A =all;.

The application of equation (6.8) is shown with the help of few problems.
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Example 6.1

Find horizontal and vertical deflection of joint C of truss ABCD loaded as shown
in Fig. 6.2a. Assume that, all members have the same axial rigidity.

10 kN 10 kN

{ ) *5 kN

—D

* 5 kN

4m
A g0 5 kN ﬁ@( - 4 0
5;; ‘} -7-C¢- .-}"f Y C’l }
|. i | l
| | 5 kN 15 kN
Fig. 6.2a Example 6.1 Fig. 6.2b Reaction and forces in members.

The given truss is statically determinate one. The reactions are as shown in Fig
6.2b along with member forces which are determined by equations of static
equilibrium. To evaluate horizontal deflection at ‘C’, apply a unit load as shown in
Fig 6.2c and evaluate the virtual forces 6P, in each member. The magnitudes of
internal forces are also shown in the respective figures. The tensile forces are
shown as +ve and compressive forces are shown as —ve. At each end of the bar,

arrows have been drawn indicating the direction in which the force in the member
acts on the joint.
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A
—

/

£

T

Fig. 6.2c Reaction and member forces due
to vertical horizontal force at C.

B

5

#

1

-
i

-
S
=3 -

=

Fig. 6.2d Reaction and member forces
due to vertical horizontal force at C.

Horizontal deflection at joint C is calculated with the help of unit load method.
This may be stated as,

Lxuf = Z—((SPVE)R_H = (1)

For calculating horizontal deflection at C, u_, apply a unit load at the joint C as

shown in Fig.6.2c. The whole calculations are shown in table 6.1. The
calculations are self explanatory.
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Table 6.1 Computational details for horizontal deflection at C

Member | Length [ L/AE, [ P () (R).PL,
EA
units m m/kN kN kN kN.m
AB 4 4/AE 0 0 0
BC 4 4/AE 0 0 0
CD 4 4/AE -15 -1 60/AE
DA 4 4/AE 0 0 0
AC 42 42 IAE 52 J2 4042 IAE
> 60 +40+/2
AE
60 +40+/2 116.569 .
D) »= = Towards right 2
O(ue) AE AE ( ght) (2)
Vertical deflection at joint C
1Xu(\:/ :Z(a:)v )iCPiLi (3)
E,A

In this case, a unit vertical load is applied at joint C of the truss as shown in Fig.
6.2d.

Table 6.2 Computational details for vertical deflection at C

Member Length L/ AE, P (R)); (R,)iBL
EA
units m m/kN kN kN kN.m
AB 4 4/AE 0 0 0
BC 4 4/AE 0 0 0
CD 4 4/AE -15 -1 60/AE
DA 4 4/AE 0 0 0
AC 42 4J2IAE | 52 0 0
3 &
AE
ML) 4= % = % (Downwards) (4)
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Example 6.2

Compute the vertical deflection of joint b and horizontal displacement of joint D
of the truss shown in Fig. 6.3a due to
a) Applied loading as shown in figure.
b) Increase in temperature of 25°C in the top chord BD. Assume

a=?ioo per°C,E =2.00x10° N/mm?. The cross sectional areas of the

members in square centimeters are shown in parentheses.

B (15) D
P, fﬁ\\
P AN / ',
Py \\ r 5,
/ \ / ',
r s _/ kY
i s i L
// N, / \\
/ N 7 *
F i i kY
/ \\‘J-& A \:eﬁ‘ E
Vi %) v Vi \
) , L +
A/ \ v/ i
w b Y b
/ (10) % i (10) \
o \ / ,
P4 X, / *,
/ , / i
F4 b v \
/ g ol N
%
a/ (15) B (15) \/¢ (15) D (15) o
¥ . » & »
N | | '
i ]
fdd !
60 kN 60 kN 60 kN
’. 4 3Im = 12.0m .|

Fig. 6.3a. Example 6.2
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671.5

Fig. 6.3b Reaction and member forces due to applied load

- 0.5625

0.5625

c

A 0.5625 B
’ #

0.75

0.25

Fig. 6.3c Forces in members due to unit virtual vertical force at b.
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B - 0.50 D
1
H’\\ /}‘\\.\
; ¥ o s,
: w i :
¢ 5, /
/ % # b
/ Y / \‘\
¥ N 7 \
i 4
Wi Vo Ll "o
ﬁf N h'i;'jf(f \\\'p,
o YO n?'_f y
i g % A pX
/ 5 / L
x/ \\ / \\\
; kY ; LY
rs ™, i Y
s N A N
F % i \
fﬂ \\ f” N
A/ 0.25 B 0.25 NSB 0.25 D 0.25
X et e —t— ]
fy Y
13 13
L
Fig. 6.3d Forces in members due to unit horizontal force at D.
The complete calculations are shown in the following table.
Table 6.3 Computational details for example 6.2
H
Mem | L) L/AEL P | (@) | (R, | Ag=atly (R),PL| DAL | (R), 8| (R4,
EiA '
units | m| (10°) | kN kN kN m (103) (103 | @o0® | (10
m/kKN kKN.m KN.m KN.m KN.m
aB |5 1.0| -1125]| -0.937 | +0.416 0 1.05 -0.47 0 0
ab |3 10| +67.5| +0.562 | +0.750 0 0.38 0.51 0 0
bc |3 10| +67.5| +0.562 | +0.750 0 0.38 0.51 0 0
Bc |5 10| +375]| -0.312| -0.416 0 -0.12 -0.16 0 0
BD |6 20| -675| -0.562 | +0.500 0.002 0.76 -0.68 -1.13 1
cD |5 1.0| +375]| +0.312 | +0.416 0 0.12 0.16 0 0
cd |3 10| +67.5| +0.187 | +0.250 0 0.13 0.17 0 0
de 3 1.0| +67.5| +0.187 | +0.250 0 0.13 0.17 0 0
De |5 1.0| -1125]| -0.312 | -0.416 0 0.35 0.47 0 0
Bb |4 20| +60.0 1 0 0 1.2 0 0 0
Dd |4 20| +60.0 0 0 0 0 0 0 0
Z 4.38 0.68 -1.13 1
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a) Vertical deflection of joint b
Applying principle of virtual work as applied to an ideal pin jointed truss,

\ (6R); RL

> SFu, =i— )

j=1 i=1 EiA

For calculating vertical deflection at b, apply a unit virtual load 6F, =1. Then the
above equation may be written as,
) i Pl LI

Ll =z% 2)

1) Due to external loads

_ +0.00438 KNm

U, = =0.00438 m
1KN

=4.38 mmy

2) Due to change in temperature

() (uy b) = Z(a:)vv)i Ay

0t 4= —0.001125 KN.m _ 0.00113m

1 KN
ui =1.13 mm T

b) Horizontal displacement of joint ‘D’

1) Due to externally applied loads

H
1><Ul:| :Z(a:)v )|P|L|
E\A
ug' e +0.00068 KNm 000068 m
1 KN
=0.68 mm—
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2) Due to change in temperature

@)(up' =) =D (R )i A

. 0.001 KN.m
Ug >=——"—
1 KN

ugt =1.00 mm—

=0.001m

Summary

In this chapter the Crotti-Engessor’'s theorem which is more general than the
Castigliano’s theorem has been introduced. The unit load method is applied
statically determinate structure for calculating deflections when the truss is
subjected to various types of loadings such as: mechanical loading, temperature
loading and fabrication errors.
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Since twentieth century, indeterminate structures are being widely used for its
obvious merits. It may be recalled that, in the case of indeterminate structures
either the reactions or the internal forces cannot be determined from equations of
statics alone. In such structures, the number of reactions or the number of
internal forces exceeds the number of static equilibrium equations. In addition to
equilibrium equations, compatibility equations are used to evaluate the unknown
reactions and internal forces in statically indeterminate structure. In the analysis
of indeterminate structure it is necessary to satisfy the equilibrium equations
(implying that the structure is in equilibrium) compatibility equations (requirement
if for assuring the continuity of the structure without any breaks) and force
displacement equations (the way in which displacement are related to forces).
We have two distinct method of analysis for statically indeterminate structure
depending upon how the above equations are satisfied:

1. Force method of analysis (also known as flexibility method of analysis,
method of consistent deformation, flexibility matrix method)

2. Displacement method of analysis (also known as stiffness matrix method).

In the force method of analysis, primary unknown are forces. In this method
compatibility equations are written for displacement and rotations (which are
calculated by force displacement equations). Solving these equations, redundant
forces are calculated. Once the redundant forces are calculated, the remaining
reactions are evaluated by equations of equilibrium.

In the displacement method of analysis, the primary unknowns are the
displacements. In this method, first force -displacement relations are computed
and subsequently equations are written satisfying the equilibrium conditions of
the structure. After determining the unknown displacements, the other forces are
calculated satisfying the compatibility conditions and force displacement
relations. The displacement-based method is amenable to computer
programming and hence the method is being widely used in the modern day
structural analysis.

In general, the maximum deflection and the maximum stresses are small as
compared to statically determinate structure. For example, consider two beams
of identical cross section and span carrying uniformly distributed load as shown
in Fig. 7.1a and Fig. 7.1b.
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Fig. 7.1a Fixed - Fixed beam

whkNim

n,.;ﬂ"‘!r ¥ ¥ L l ¥ ¥ l B

constant , El

Fig. 7.1b Simply supported beam

The loads are also the same in both cases. In the first case, the beam is fixed at
both ends and thus is statically indeterminate. The simply supported beam in Fig.

7.1b is a statically determinate structure. The maximum bending moment in case
2 2

W; (which occurs at the supports) as compared to

of fixed- fixed beam is

(at the centre) in case of simply supported beam. Also in the present case, the
4

deflection in the case of fixed- fixed beam wL
384E

I jis five times smaller than that

4
of simply supported beam[:gfél J Also, there is redistribution of stresses in the

case of redundant structure. Hence if one member fails, structure does not
collapse suddenly. The remaining members carry the load. The determinate
structural system collapses if one member fails. However, there are
disadvantages in using indeterminate structures. Due to support settlement,
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there will be additional stresses in the case of redundant structures where as
determinate structures are not affected by support settlement.

The analysis of indeterminate structure differs mainly in two aspects as
compared to determinate structure.

a) To evaluate stresses in indeterminate structures, apart from sectional
properties (area of cross section and moment of inertia), elastic properties are
also required.

b) Stresses are developed in indeterminate structure due to support settlements,
temperature change and fabrication errors etc.

Instructional Objectives

After reading this chapter the student will be

1. Able to analyse statically indeterminate structure of degree one.

2. Able to solve the problem by either treating reaction or moment as redundant.
3. Able to draw shear force and bending moment diagram for statically
indeterminate beams.

4. Able to state advantages and limitations of force method of analysis.

7.1 Introduction.

In this lesson, a general introduction is given to the force method of analysis of
indeterminate structure is given. In the next lesson, this method would be applied
to statically indeterminate beams. Initially the method is introduced with the help
of a simple problem and subsequently it is discussed in detail. The flexibility
method of analysis or force method of analysis (or method of consistent
deformation) was originally developed by J. Maxwell in 1864 and O. C. Mohr in
1874. Since flexibility method requires deflection of statically determinate
structure, a table of formulas for deflections for various load cases and boundary
conditions is also given in this lesson for ready use. The force method of analysis
is not convenient for computer programming as the choice of redundant is not
unique. Further, the bandwidth of the flexibility matrix in the force method is much
larger than the stiffness method. However it is very useful for hand computation.

7.2 Simple Example

Consider a propped cantilever beam (of constant flexural rigidity EI , and span
L), which is carrying uniformly distributed load of w kN/m., as shown in Fig.
7.2a. The beam is statically indeterminate i.e. its reaction cannot be evaluated
from equations of statics alone. To solve the above problem by force method
proceeds as follows.
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1) Determine the degree of statical indeterminacy. In the present case it is one.
Identify the reaction, which can be treated as redundant in the analysis. In the
present case R; or M, can be treated as redundant. Selecting R;as the
redundant, the procedure is illustrated. Subsequently, it will be shown how to
attack the problem by treating M, as redundant.
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Fig. 7.2(a) Fixed - simply supported beam

w kMim
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Fig. 7.2(b) Treating reaction R as redundant

aad o L) U 01 1L e
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Fig. 7.2(c) Cantilever beam with external loading

2 )

Fig. 7.2(d) Cantilever beam with a unit value of load along
redundant R,

- - — —
3 T o .__-__-_.-"" - _f"q._.-"' -
T o i e = i
- - S o r g -
— . - . . o
- = S - 1 - - -,
- et wik P e %)
- —l_ _-"-- _-". "n
T ™

3wl

Shear force diagram

Fig. 7.2(e)
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Solution with Ry as the redundant

2) After selecting R; as redundant, express all other reactions in terms of the

redundantR; . This can be accomplished with the help of equilibrium equations.

Thus,
R, =WL-Rg (7.1a)
and
2
M, = W;‘ “R,L (7.1b)

3) Now release the restraint corresponding to redundant reaction R; . Releasing

restraint in the present case amounts to removing the support atB. Now on the
resulting cantilever beam (please note that the released structure is statically
determinate structure), apply uniformly distributed load w and the redundant
reaction R; as shown in Fig. 7.2b. The released structure with the external loads

is also sometimes referred as the primary structure.

4) The deflection at B of the released structure (cantilever beam, in the present
case) due to uniformly distributed load and due to redundant reaction R; could

be easily computed from any one of the known methods (moment area method
or unit load method). However it is easier to compute deflection at B due to

uniformly distributed load and Rgin two steps. First, consider only uniformly
distributed load and evaluate deflection at B, which is denoted by (A,), as
shown in Fig. 7.2c. Since R;is redundant, calculate the deflection at B due to
unit load at B acting in the direction of R, and is denoted by (A, ),as shown in

In the present case the positive direction of redundant and deflections are
assumed to act upwards. For the present case, (A, ), and (A ),are given by,

wL*
(Ae) =—55 (7.2a)

L3
d A,), =——— 7.2b
an (8 ) =25 (7.2b)

From the principle of superposition, the deflection atB, (A,), is the sum of
deflection due to uniformly distributed load (A;), and deflection Ry(A,), due to
redundant R; . Hence,
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Ag :(AB)1+RB(AB)2 (7.2¢)

5) It is observed that, in the original structure, the deflection at Bis zero. Hence
the compatibility equation can be written as,

Ag :(AB)1+RB(AB)2 =0 (7.3a)

Solving the above equation, the redundant R; can be evaluated as,

R, = — (7.3b)

R, = & (7.3d)

The displacement at B due to unit load acting at B in the direction of R;is known
as the flexibility coefficient and is denoted in this course by agg.

6) Once R;is evaluated, other reaction components can be easily determined
from equations of statics. Thus,

2
M, = WL (7.4)
8

7) Once the reaction components are determined, the bending moment and
shear force at any cross section of the beam can be easily evaluated from
equations of static equilibrium. For the present case, the bending moment and
shear force diagram are shown in Fig. 7.2e.

Solution with M ,as redundant

1) As stated earlier, in the force method the choice of redundant is arbitrary.
Hence, in the above problem instead ofR,one could choose M ,as the

redundant reaction. In this section the above problem is solved by taking M ,as
redundant reaction.
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2) Now release (remove) the restraint corresponding to redundant reaction M ,
This can be done by replacing the fixed support at A by a pin. While releasing
the structure, care must be taken to see that the released structure is stable and
statically determinate.

w kN'm
A | l l
A B

.-.-..._:- - ¥ L ] ¥ ¥ L 4 _,l""x
-~ =, _.-'
.-"'- =
7 L

[ i

Fig.7.3(a) Actual structure

w kNim

A U 05 T P 0 N 1 T
- S

['-' h
R = RB

.

Fig. 7.3(b) Primary structure with external load
load applied

--..___.-I ()

s

Fig. 7.3(c) Primary structure with unit moment
applied in the direction of M, 3)

Calculate the slope at Adue to external loading and redundant momentM ,. This

is done in two steps as shown in Fig. 7.3b and Fig.7.3c. First consider only
uniformly distributed load (see Fig. 7.3b) and compute slope at A, i.e. (GA)lfrom

force displacement relations. Since M ,is redundant, calculate the slope at Adue
to unit moment acting at Ain the direction of M ,which is denoted by (6, ),as in

Fig. 7.3c. Taking anticlockwise moment and anticlockwise rotations as positive,
the slope at A, due to two different cases may be written as,
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(0,), = - 2L (7.5a)

(04), === (7.5b)

From the principle of superposition, the slope atA, &,is the sum of slopes
(6, ), due to external load and M (8, ), due to redundant moment M, . Hence

M, :(HA)1+ MA(QA)Z (7.5¢)
4) From the geometry of the original structure, it is seen that the slope atA is

zero. Hence the required compatibility equation or geometric condition may be
written as,

(QA):(GA)l + MA(QA)z =0 (7.5d)

Solving forM ,,

M,=- ), (7.5e)

Substituting the values of (6,),, and(@,), in equation (7.5e), the value of M ,is
calculated as

—wL?
M = pa]
A L

AEI

_wl?
8

M, (7.5)

5) Now other reaction components can be evaluated using equilibrium equations.
Thus,

R, =W (7.6a)
8
R, :3WTL (7.6b)
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7.3 Summary

The force method of analysis may be summarized as follows.

Step 1. Determine the degree of statical indeterminacy of the structure. ldentify
the redundants that would be treated as unknowns in the analysis. Now, release
the redundants one by one so that a statically determinate structure is obtained.
Releasing the redundant reactions means removing constraint corresponding to
that redundant reaction. As in the above propped cantilever beam, either
reactions R, or M, can be treated as unknown redundant. By choosing R; as

the redundant, the propped cantilever beam can be converted into a cantilever
beam (statically determinate) by releasing the roller support. Similarly by
choosing moment as the redundant reaction, the indeterminate structure can be
released into a determinate structure (i.e. a simply supported beam) by turning
the fixed support into a hinged one. If the redundant force is an internal one, then
releasing the structure amounts to introducing discontinuity in the corresponding
member. The compatibility conditions for the redundant internal forces are the
continuity conditions. That would be discussed further in subsequent lessons.

Step 2. In this step, calculate deflection corresponding to redundant action,
separately due to applied loading and redundant forces from force displacement
relations. Deflection due to redundant force cannot be evaluated without knowing
the magnitude of the redundant force. Hence, apply a unit load in the direction of
redundant force and determine the corresponding deflection. Since the method of
superposition is valid, the deflections due to redundant force can be obtained by
simply multiplying the unknown redundant with the deflection obtained from
applying unit value of force.

Step 3. Now, calculate the total deflection due to applied loading and the
redundant force by applying the principle of superposition. This computed total
deflection along the redundant action must be compatible with the actual
boundary conditions of the original structure. For example, if in the original
structure, the deflection corresponding to the redundant reaction is zero then the
total deflection must be equal to zero. If there is more than one redundant force
then one could construct a set of equations with redundant forces as unknowns
and flexibility coefficients as coefficients of the equations. The total number of
equations equals the number of unknown redundants.

Step 4. In the last step, evaluate all other reactions and internal forces from the
equilibrium equations.

The method of superposition or the force method as discussed above is applied

to any type of structures, i.e. beams, truss and frames or combination of these
structures. It is applicable for all general type of loadings.
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The deflection of statically determinate structure can be obtained by unit-load
method or by moment-area theorem or by any method known to the reader.
However, the deflections of few prismatic beams with different boundary
conditions and subjected to simple loadings are given in Fig. 7.4. These values
will be of help in solving the problems of the present and subsequent lessons.
However the students are strongly advised to practice deriving them instead of
simply memorizing them.

BEAM & LOADING DEFLECTION ROTATION
w {+ve upwords) [*+ve anticlockwise)
A Jl ¥ l ¥ T ¥ l ¥ ¥ B
fb )/;% L = WL =- =
FE4EI
I-— . - —
Lz Lz '
F
A A % B
fot i Ao = EL
L L = 48EI1
I L2 L= Lz i
&n =0

AL LB LSO LY

A-—_‘_j = E B
i Dy = oWk = WL
1 L iy BEI
I i
P
.-'"I ¥
-~ ~mn B
Ll oL __-PL
L L e 0 G = 3EI
. »
.’:j1 - M
- u Moo o =MIL? =ML
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Example 7.1

A continuous beam ABC is carrying a uniformly distributed load of 1 kN/m in
addition to a concentrated load of 10 kN as shown in Fig.7.5a, Draw bending
moment and shear force diagram. Assume EI to be constant for all members.

10kN
—1kN/m
SR A
T“n Re Rey
e Sm 'J|= S * 10m =I

Fig. 7.5a Continuous beam

o A e, G " N N A " S A
a A : e

Fig. 7.5b Primary structure

Fig. 7.5c Flexibility co-efficients
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Fig. 7.5d Reactions

It is observed that the continuous beam is statically indeterminate to first degree.
Choose the reaction at B, RBy as the redundant. The primary structure is a
simply supported beam as shown in Fig.7.5b.

Now, compute the deflection at B, in the released structure due to uniformly

distributed load and concentrated load. This is accomplished by unit load
method. Thus,

—2083.33 1145.84

- El El
~3229.17
A, =222 1
L El (1)

In the next step, apply a unit load at B in the direction of RBy (upwards) and
calculate the deflection at B of the following structure. Thus (see Fig. 7.5¢),

16667 2
TR EI
Now, deflection at B in the primary structure due to redundant Rs is,
Ag = @ x Rs (3)

In the actual structure, the deflection at B is zero. Hence, the compatibility
equation may be written as
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AL + AB =0 (4)
Substituting for A, and A; in equation (4),

—3229.17 N 166.67

Re=0 5
El Bl ©)

Thus,
R; =19.375 kN

The other two reactions are calculated by static equilibrium equations (vide Fig.
7.5d)

R, =7.8125 kN
R, = 2.8125 kN

The shear force and bending moment diagrams are shown in Fig. 7.5e and Fig.
7.5f respectively.

Example 7.2

A propped cantilever beam AB is subjected to a concentrated load of 60 kN at
3m from end A as shown in Fig. 7.6a. Draw the bending moment and shear
force diagrams by the force method. Assume that the flexural rigidity of the
beam, EIl to be constant throughout.

Fig. 7.5e Shear force diagram
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60 kM

L

)
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Fig. 7.6a Example 7.2

60 kM

A j B
Fig. 7.6b Primary structure with external Iuai_ling

e

Fig. 7.6c Primary structure with unit load applied along Rs
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Fig.7.6d Bending moment diagram

51.11

B.B9

Fig.7.6e Shear force diagram

The given problem is statically indeterminate to first degree. Choose the reaction
at B, R,as the redundant. After releasing the redundant, the determinate

structure, a cantilever beam in this case is obtained. The cantilever beam with
the applied loading is chosen in Fig 7.6b.

The deflection of the released structure is,

(A ) __60><33_60><32><6
L 3El 2EI

(A), =——— (1)

The deflection at point B due to unit load applied in the direction of redundant
R,is (vide Fig 7.6c)
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9o 243

ay=——-= 2
"O3El E @)
Now the deflection at B due to redundant R, is
243R
A) = L 3
(Ah==F (3)

From the original structure it is seen that the deflection at B is zero. Hence, the
compatibility condition for the problem may be written as,

_ 2160 243R, _
El  El

0 (4)

Solving equation (4), the redundant R, is obtained.

2160
243 (5)
=8.89 kN

R,

The vertical reaction and fixed end moment at Acan be determined from
equations of statics. Thus,

R, =51.11 kN
R, =99.99 kN.m (6)

Shear force and bending moment diagrams are shown in Fig. 7.6d and Fig. 7.6e
respectively.

Summary

In this lesson flexibility matrix method or the method of consistent deformation or
the force method of analysing statically indeterminate structures has been
introduced with the help of simple problems. The advantages and limitations of
flexibility matrix method have been discussed. Only simple indeterminate beam
problem has been solved to illustrate the procedure. The principle of
superposition has been used to solve statically indeterminate problems.
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Instructional Objectives

After reading this chapter the student will be able to

1. Solve statically indeterminate beams of degree more than one.

2. To solve the problem in matrix notation.

3. To compute reactions at all the supports.

4. To compute internal resisting bending moment at any section of the
continuous beam.

8.1 Introduction

In the last lesson, a general introduction to the force method of analysis is given.
Only, beams, which are statically indeterminate to first degree, were considered.
If the structure is statically indeterminate to a degree more than one, then the
approach presented in the previous example needs to be organized properly. In
the present lesson, a general procedure for analyzing statically indeterminate
beams is discussed.

8.2 Formalization of Procedure

Towards this end, consider a two-span continuous beam as shown in Fig. 8.1a.
The flexural rigidity of this continuous beam is assumed to be constant and is
taken as El . Since, the beam is statically indeterminate to second degree, it is
required to identify two redundant reaction components, which need be released
to make the beam statically determinate.
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Fig. 8.1(a). Continuous beam.

wkM/m PkM

—_— 3C
___________-_ B
-__-_"--______ {ﬁ-l.l:

(&)

IH'.
.\H.

g

Fig. 8.1(b). Primary structure with applied loading.

k=1

Fig. 8.1(c) Primary structure with unit load
applied along R:

B R,=1
Fig. 8.1(d) Primary structure
with unit load applied along R:
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The redundant reactions at A and B are denoted by R, and R, respectively.

The released structure (statically determinate structure) with applied loading is
shown in Fig. 8.1b. The deflection of primary structure at B and C due to
applied loading is denoted by (A ), and (A, ), respectively. Throughout this

module (A, ) notation is used to denote deflection at i" redundant due to
applied loads on the determinate structure.
_wLt 7Pl

(), = 8EI 12EI 8.13)

7wL*  27PL3
A ), =— - 8.1b
@), 24El  16El (8.16)

In fact, the subscript 1 and 2represent, locations of redundant reactions
released. In the present case R,(=R,) and R,(=R,) respectively. In the present

and subsequent lessons of this module, the deflections and the reactions are
taken to be positive in the upward direction. However, it should be kept in mind
that the positive sense of the redundant can be chosen arbitrarily. The deflection
of the point of application of the redundant should likewise be considered positive
when acting in the same sense.

For writing compatibility equations at B andC, it is required to know deflection of
the released structure at B and C due to external loading and due to redundants.
The deflection at B andC due to external loading can be computed easily. Since
redundants R, and R, are not known, in the first step apply a unit load in the
direction of R, and compute deflection, a, at B, and deflection, a,at C, as
shown in Fig.8.1c. Now deflections at Band C of the given released structure
due to redundant R, are,

(AR )11 =a; R (8.2a)
(AR )21 =ay R (8.2b)

In the second step, apply unit load in the direction of redundant R,and compute
deflection at B (point 1), a,, and deflection at C,a,, as shown in Fig 8.1d. It may
be recalled that the flexibility coefficient a; is the deflection at i due to unit value

of force applied at j. Now deflections of the primary structure (released
structure) at B and C due to redundant R, is

(AR)lz =a; R, (8.3a)
(AR )22 =a, R, (8.3b)
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It is observed that, in the actual structure, the deflections at joints B and C is
zero. Now the total deflections at B and C of the primary structure due to applied
external loading and redundants R, and R, is,

Al = (AL )1 + a11R1 +a, Rz (8-43)

A, =(A)), +auR, +a,R, (8.4b)

The equation (8.4a) represents the total displacement at B and is obtained by
superposition of three terms:

1) Deflection at Bdue to actual load acting on the statically determinate

structure,
2) Displacement at B due to the redundant reaction R, acting in the positive

direction at B (point 1) and
3) Displacement at B due to the redundant reaction R, acting in the positive
direction atC .

The second equation (8.4b) similarly represents the total deflection atC. From
the physics of the problem, the compatibility condition can be written as,

A, =(A,), +a,R +a,R, =0 (8.5a)
A, =(A.), +a,R +a,R, =0 (8.5b)

The equation (8.5a) and (8.5b) may be written in matrix notation as follows,

flokbofoe 2 ]-fo

{(a),}+[AlR} = {0} (8.6b)

oo, 12 22 e m-{3]

Solving the above set of algebraic equations, one could obtain the values of
redundants, R,and R,.

In which,

Ri=—{AI"{A.} (8.7)
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In the above equation the vectors {A } contains the displacement values of the
primary structure at point 1 and 2, [A] is the flexibility matrix and {R} is column
vector of redundants required to be evaluated. In equation (8.7) the inverse of the
flexibility matrix is denoted by [A]*. In the above example, the structure is

indeterminate to second degree and the size of flexibility matrix is 2x2. In
general, if the structure is redundant to a degreen, then the flexibility matrix is of
the order nxn. To demonstrate the procedure to evaluate deflection, consider
the problem given in Fig. 8.1a, with loading as given below

W=W; P=wL (8.8a)

Now, the deflection (A, ), and (A, ),of the released structure can be evaluated
from the equations (8.1a) and (8.1b) respectively. Then,

wlt 7wl 17wlf
8EI 12EI  24El

(A ), =~ (8.8b)

(a) _ 7wl 27wt 95wl (8.80)
Y72 24El  16El 48E| '

The negative sign indicates that both deflections are downwards. Hence the
vector {A, }is given by

wL* (34
But=-2a5 {95} (8.8d)

The flexibility matrix is determined from referring to figures 8.1c and 8.1d. Thus,
when the unit load corresponding to R, is acting at B, the deflections are,

L3 52
a, =—, a,, = 8.8e
11 3E| 21 6E| ( )
Similarly when the unit load is acting at C,
5.3 8L’
a, = , a, =—- 8.8f
12 6E| 22 3E| ( )
The flexibility matrix can be written as,
L2 5
Al= 8.8
[ ] 6El {5 16} (8.89)
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The inverse of the flexibility matrix can be evaluated by any of the standard
method. Thus,

. 6EI[16 -5
(A" =—5 {_5 2} (8.8h)

Now using equation (8.7) the redundants are evaluated. Thus,
R,| 6EI wL'|16 -5|[34
= X —
R,] 71° 48El|-5 2 ||95

Hence, R, =%WL and R, =%wL (8.8i)

Once the redundants are evaluated, the other reaction components can be
evaluated by static equations of equilibrium.

Example 8.1
Calculate the support reactions in the continuous beam ABC due to loading as
shown in Fig. 8.2a. Assume EIl to be constant throughout.

SkiM 1Dk
A J t B ¥ -
Ji const. El il const. El A
™ 3m ol L gt Z2.5m e Z.5m M

Fig. 8.2 (a) Example 8.2

SkH A0KMN

- 3m el 2 2.51m 2.5 m
=

] . |
ol I bl |

P
-

Fig. 8.2 (b)) Primary structure with external load
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Select two reactions viz, at B(R,)and C(R,) as redundants, since the given beam

is statically indeterminate to second degree. In this case the primary structure is
a cantilever beam AC . The primary structure with a given loading is shown in Fig.
8.2b.

In the present case, the deflections(A, ),, and (A, ), of the released structure at
B and C can be readily calculated by moment-area method. Thus,

819.16
(AL)l ==

El

2311.875
and (AL)Z Z—T (1)

For the present problem the flexibility matrix is,

125 625
a; = a a, = a

625 1000
a, =—— A,y =— 2
12 6E| 22 3E| ( )
In the actual problem the displacements atBandCare zero. Thus the
compatibility conditions for the problem may be written as,
ayR +a,R, +(AL)1 =0

(3)
a-21R1 + azsz + (AL )2 =0

R, 3EI 1000 -3125| 1 | 819.16 5)
= X —
R,] 27343.75|-3125 125 El [2311.875
Substituting the value of E and 1 in the above equation,
R, =10.609kN and R, =3.620 kN

Using equations of static equilibrium,

R,=0.771 kN and R, =-0.755 kN.m
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Example 8.2
A clamped beam AB of constant flexural rigidity is shown in Fig. 8.3a. The beam
is subjected to a uniform distributed load of w kN/m and a central concentrated

momentM =wL®> kN.m. Draw shear force and bending moment diagrams by
force method.

Constant EI
+ L ::I

Fig. 8.3(a) Clamped beam (Example 8.1)

Fig. 8.3(b) Clamped beam with R:and R: as redundants

Select vertical reaction (R,)and the support moment (R,)at B as the
redundants. The primary structure in this case is a cantilever beam which could
be obtained by releasing the redundants R, and R,. The R, is assumed to be
positive in the upward direction and R, is assumed to be positive in the
counterclockwise direction. Now, calculate deflection at B due to only applied
loading. Let (A, ), be the transverse deflection at B and (A, ), be the slope at B

due to external loading. The positive directions of the selected redundants are
shown in Fig. 8.3b.
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Fig. 8.3(d)Primary structure with unit Igad along R

9 )

WL /8

Z WL
WL

Fig.8.3(h) Shear force diagram.
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The deflection (A, ), and (A, ), of the released structure can be evaluated from
unit load method. Thus,
wlt oswl o wl

(AL)l:_SEI 8EI  2EI @

wl® wLl® 2wlL3
and A - _ —_ 2
(@), 6EI 2EI 3EI )

The negative sign indicates that (A, )is downwards and rotation (A ), is
clockwise. Hence the vector {A, } is given by

o )= {3:} ©

" 6EI

The flexibility matrix is evaluated by first applying unit load along redundant R,
and determining the deflections a,;;, and a,, corresponding to redundants R, and
R, respectively (see Fig. 8.3d). Thus,

L L?

and a, = —— (4)

a,=—
" 3El 2El

Similarly, applying unit load in the direction of redundantR,, one could evaluate
flexibility coefficients a,, and a,, as shown in Fig. 8.3c.

L2
% = 5E

L
and a,, =5 (5)

Now the flexibility matrix is formulated as,

(A= L [25 SL} ©)

TBEI| 3L 6

The inverse of flexibility matrix is formulated as,
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313 |-3L 21

(Al = 6EI{ 6 —31

The redundants are evaluated from equation (8.7). Hence,

R, 6EI|] 6 -3L wL® ) [3L
= —-—— X —_

R, 3L%|-3L 21° 6EI /| 4
W 6L
3|12

R, =2wL and R, =—

wL?
3

(7)

The other two reactions (R,andR,) can be evaluated by equations of statics.
Thus,
wL?

Ry =M, =—=_

and R, =R, =-wL (8)

The bending moment and shear force diagrams are shown in Fig. 8.3g and
Fig.8.3h respectively.

Summary

In this lesson, statically indeterminate beams of degree more than one is solved
systematically using flexibility matrix method. Towards this end matrix notation is
adopted. Few illustrative examples are solved to illustrate the procedure. After
analyzing the continuous beam, reactions are calculated and bending moment
diagrams are drawn.
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Instructional Objectives

After reading this chapter the student will be able to

1. Calculate additional stresses developed in statically indeterminate structures
due to support settlements.

2. Analyse continuous beams which are supported on yielding supports.

3. Sketch the deflected shape of the member.

4. Draw banding moment and shear force diagrams for indeterminate beams
undergoing support settlements.

9.1 Introduction

In the last lesson, the force method of analysis of statically indeterminate beams
subjected to external loads was discussed. It is however, assumed in the
analysis that the supports are unyielding and the temperature remains constant.
In the design of indeterminate structure, it is required to make necessary
provision for future unequal vertical settlement of supports or probable rotation of
supports. It may be observed here that, in case of determinate structures no
stresses are developed due to settlement of supports. The whole structure
displaces as a rigid body (see Fig. 9.1). Hence, construction of determinate
structures is easier than indeterminate structures.
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Fig. 9.1 Effect of support settlement on determinate structure
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Fig. 9.2 Continuous beam with yielding of support
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Fig. 9.3 Effect of temperature change in beam
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Fig. 9.4 Fixed - fixed beam
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Fig. 9.5 Effect on non- uniform temperature change
across the depth of a beam
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The statically determinate structure changes their shape due to support
settlement and this would in turn induce reactions and stresses in the system.
Since, there is no external force system acting on the structures, these forces
form a balanced force system by themselves and the structure would be in
equilibrium. The effect of temperature changes, support settlement can also be
easily included in the force method of analysis. In this lesson few problems,
concerning the effect of support settlement are solved to illustrate the procedure.

9.2 Support Displacements

Consider a two span continuous beam, which is statically indeterminate to
second degree, as shown in Fig. 9.2. Assume the flexural rigidity of this beam to
be constant throughout. In this example, the support Bis assumed to have
settled by an amount A, as shown in the figure.

This problem was solved in the last lesson, when there was no support
settlement (vide section 8.2). In section 8.2, choosing reaction at Band C as the
redundant, the total deflection of the primary structure due to applied external
loading and redundant R, and R, is written as,

Al = (AL )1 + a11R1 +a,, Rz (9-13-)
Az = (AL)Z +a21R1 +azsz (9-1b)

wherein, R, and R, are the redundants at B and C respectively, and(A ), and
(AL)2 are the deflections of the primary structure at Band C due to applied
loading. In the present case, the support B settles by an amount A, in the

direction of the redundant R, . This support movement can be readily incorporated

in the force method of analysis. From the physics of the problem the total
deflection at the support may be equal to the given amount of support movement.
Hence, the compatibility condition may be written as,

AL =-A, (9.2a8)

A, =0 (9.2b)

It must be noted that, the support settlement A, must be negative as it is

displaces downwards. It is assumed that deflections and reactions are positive in
the upward direction. The equation (9.1a) and (9.1b) may be written in compact
form as,
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I RS

[AJR}={a}-{a )} (9.3b)

Solving the above algebraic equations, one could evaluate redundants R,and R,
due to external loading and support settlement.

9.3 Temperature Stresses

Internal stresses are also developed in the statically indeterminate structure if the
free movement of the joint is prevented.

For example, consider a cantilever beam AB as shown in Fig. 9.3. Now, if the
temperature of the member is increased uniformly throughout its length, then the
length of the member is increased by an amount

A =alLT (9.4)

In which, A; is the change in the length of the member due to temperature

change, «a is the coefficient of thermal expansion of the material and T is the
change in temperature. The elongation (the change in the length of the member)
and increase in temperature are taken as positive. However if the end Bis
restrained to move as shown in Fig 9.4, then the beam deformation is prevented.
This would develop an internal axial force and reactions in the indeterminate
structure.

Next consider a cantilever beam AB, subjected to a different temperature, T, at
the top and T, at the bottom as shown in Fig. 9.5(a) and (b). If the top
temperature T, is higher than the bottom beam surface temperatureT,, then the

beam will deform as shown by dotted lines. Consider a small element dxat a
distance xfrom A. The deformation of this small element is shown in Fig. 9.5c.
Due to rise in temperature T,°C on the top surface, the top surface elongates by

Ay =a T dX (9.5a)
Similarly due to rise in temperatureT,, the bottom fibers elongate by

A, =a T,dx (9.5b)
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As the cross section of the member remains plane, the relative angle of rotation
dé between two cross sections at a distance dxis given by

_a(T,-T,)dx
d

do (9.6)

where, dis the depth of beam. If the end Bis fixed as in Fig. 9.4, then the
differential change in temperature would develop support bending moment and
reactions.

The effect of temperature can also be included in the force method of analysis
quite easily. This is done as follows. Calculate the deflection corresponding to
redundant actions separately due to applied loading, due to rise in temperature
(either uniform or differential change in temperature) and redundant forces. The

deflection in the primary structure due to temperature changes is denoted by
(A;). which denotes the deflection corresponding to i" redundant due to

temperature change in the determinate structure. Now the compatibility equation
for statically indeterminate structure of order two can be written as

I R e Y
[AlR}={A}-{(A.)i—{(a; )} (9.7)

Wherein,{AL}is the vector of displacements in the primary structure

corresponding to redundant reactions due to external loads; {AT} is the
displacements in the primary structure corresponding to redundant reactions and
due to temperature changes and {A} is the matrix of support displacements

corresponding to redundant actions. Equation (9.7) can be solved to obtain the
unknown redundants.

Example 9.1
Calculate the support reactions in the continuous beam ABC (see Fig. 9.6a)
having constant flexural rigidity EI throughout, due to vertical settlement of the

support Bby 5 mm as shown in the figure. E =200 GPaand | =4x10"*m*.

Version 2 CE IIT, Kharagpur



R. <‘ fl const. El — 7%_ const. El 7%_
] 2 [ =
¢
»e

Sm |
il |

i‘ 5m
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Fig. 9.6 ( c ) primary structure with unit load along R
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Fig. 9.6(d) Shear force diagram
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As the given beam is statically indeterminate to second degree, choose reaction
at B (R,)and C (R,)as the redundants. In this case the cantilever beam ACis

the basic determinate beam (primary structure). On the determinate beam only
redundant reactions are acting. The first column of flexibility matrix is evaluated

by first applying unit load along the redundant R,and determining deflections
a,;and a,, respectively as shown in Fig. 9.6b.

5 15
% 3El 3El
a, - 125 25 5 625 )
3El  2EI 6EI

Simply by applying the unit load in the direction of redundantR,, one could
evaluate flexibility coefficients a,, and a,, (see Fig. 9.6c).

625 1000
a, =—-— and a,, =—— 2
12 6E| 22 3E| ( )
The compatibility condition for the problem may be written as,
a,R, +a,R, =-5x107°
3)

a,R +a,R, =0

The redundant reactions are,

R, . |-5x%1073
=[A 4
{RZ} [A] { . } (4)
R, 3EI 1000 -3125| [-5x107° 5)
[ X
R,| 27343.75|-3125 125 0

Substituting the values of E and 1 in the above equation, the redundant reactions
are evaluated.

R, =-43.885kN and R, =13.71kN
R,acts downwards and R,acts in the positive direction of the reaction

i.e.upwards. The remaining two reactions R,and R,are evaluated by the
equations of equilibrium.
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> F,=0=>R+R,+R,=0
Hence R, =30.175 kN

> M,=0= R,+5xR +10xR,=0
Solving for R,,

R, =82.325 kN.m (counter clockwise)

The shear force and bending moment diagrams are shown in Figs. 9.6d and 9.6e
respectively.

Example 9.2

Compute reactions and draw bending moment diagram for the continuous beam
ABCD loaded as shown in Fig. 9.7a, due to following support movements.
SupportB, 0.005mvertically downwards.

SupportC, 0.01m vertically downwards.

Assume, E =200GPa: | =1.35x10°m*.
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Fig. 9. 7 (d) Primary structure with unit load along R.

The given beam is statically indeterminate to second degree. Select vertical
reactions at B(R,) and C(R,) as redundants. The primary structure in this case is
a simply supported beam AD as shown in Fig. 9.7b.

The deflection (A, ),and (A, ), of the released structure are evaluated from unit
load method. Thus,
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_ 3 _ 3
(AL)lz 45833.33x10 _ 458933.33><10 =-0.169m
El 200x10” x1.35%10

—45833.33x10°
(A), = = =-0.169m (1)

The flexibility matrix is evaluated as explained in the previous example, i.e. by
first applying unit load corresponding to the redundant R,and determining
deflections a;;and a,, respectively as shown in Fig. 9.7c. Thus,

444 44
11 = El

388.89

£ )

444 .44
El

~388.89
El

12

In this case the compatibility equations may be written as,
-0.169+a,,R, +a,,R, =—-0.005
3)
-0.169+a,R, +a,,R, =-0.01

Solving for redundant reactions,
R, El 44444 -388.89| [0.164 %)
- X
R,| 46291.48|-388.89 444.44 0.159

Substituting the value of E and I in the above equation,

R, =64.48kN  and R, =40.174kN
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BothR, and R,acts in the upward direction. The remaining two reactions R,and
R,are evaluated by the equations of static equilibrium.

>M,=0 10xR,+20xR,+30xR, -5x30x15=0
Hence R, =26.724 kN
> F,=0 R,+R +R,+R,-5x30=0
Hence R, =18.622 kN (5)

The shear force and bending moment diagrams are now constructed and are
shown in Figs. 9.7e and 9.7f respectively.

83.325
Fig. 9.6 (e) Bending moment diagram
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Fig. 9.7 (e) Shear force diagram

62.5

17.24

63.78

Fig. 9.7 (f) Bending moment diagram

Summary

In this lesson, the effect of support settlements on the reactions and stresses in
the case of indeterminate structures is discussed. The procedure to calculate
additional stresses caused due to yielding of supports is explained with the help
of an example. A formula is derived for calculating stresses due to temperature
changes in the case of statically indeterminate beams.
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Instructional Objectives

After reading this chapter the student will be able to

1. Calculate degree of statical indeterminacy of a planar truss

2. Analyse the indeterminate planar truss for external loads

3. Analyse the planar truss for temperature loads

4. Analyse the planar truss for camber and lack of fit of a member.

10.1 Introduction

The truss is said to be statically indeterminate when the total number of reactions
and member axial forces exceed the total number of static equilibrium equations.
In the simple planar truss structures, the degree of indeterminacy can be
determined from inspection. Whenever, this becomes tedious, one could use the
following formula to evaluate the static indeterminacy of static planar truss (see
also section 1.3).

i=(m+r)-2j (10.1)

where m, jand rare number of members, joints and unknown reaction
components respectively. The indeterminacy in the truss may be external,
internal or both. A planar truss is said to be externally indeterminate if the
number of reactions exceeds the number of static equilibrium equations available
(three in the present case) and has exactly (2j —3) members. A truss is said to
be internally indeterminate if it has exactly three reaction components and more
than (2j—3)members. Finally a truss is both internally and externally
indeterminate if it has more than three reaction components and also has more
than (2j —3)members.

The basic method for the analysis of indeterminate truss by force method is
similar to the indeterminate beam analysis discussed in the previous lessons.
Determine the degree of static indeterminacy of the structure. Identify the number
of redundant reactions equal to the degree of indeterminacy. The redundants
must be so selected that when the restraint corresponding to the redundants are
removed, the resulting truss is statically determinate and stable. Select
redundant as the reaction component in excess of three and the rest from the
member forces. However, one could choose redundant actions completely from
member forces. Following examples illustrate the analysis procedure.

Example 10.1

Determine the forces in the truss shown in Fig.10.1a by force method. All the
members have same axial rigidity.
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Fig.10.1 (a) Example 10.1

The plane truss shown in Fig.10.1a is statically indeterminate to first degree. The
truss is externally determinate i.e.the reactions can be evaluated from the
equations of statics alone. Select the bar force F,jin member ADas the

redundant. Now cut the member AD to obtain the released structure as shown in
Fig. 10.1b. The cut redundant member ADremains in the truss as its
deformations need to be included in the calculation of displacements in the

released structure. The redundant (F,)consists of the pair of forces acting on
the released structure.
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Fig.10.1 (b)
Evaluate reactions of the truss by static equations of equilibrium.

R, =-5 kN (downwards)
R, =—5 kN (downwards) (1)
Ry, =15 kN(upwards)

Please note that the member tensile axial force is taken as positive and
horizontal reaction is taken as positive to the right and vertical reaction is taken
as positive when acting upwards. When the member cut ends are displaced
towards one another then it is taken as positive.

The first step in the force method is to calculate displacement (A, )corresponding
to redundant bar force F,;in the released structure due to applied external
loading. This can be readily done by unit-load method.

Version 2 CE IIT, Kharagpur



To calculate displacement(AL), apply external load and calculate member forces
(P,)as shown in Fig. 10.1b and apply unit virtual load along F,, and calculate
member forces (P, ). (see Fig. 10.1c). Thus,

L.
A = Z P| (Pv )i A_llf
_ 103.03

AE

(2)

In the next step, apply a real unit load along the redundant F,jand calculate
displacement a , by unit load method. Thus,

a, =Y (PR

AR 3)
24142
AE
A 12 B
By A
'1 ) '1’2_ 1 g '1 lI 'Ilz_

{;
c A - — o ﬂ'xﬂ
TITTRT =4/ '|||2 _}%‘_

Fig. 10.1 ( ¢ ) Plane truss of Example 10.1

The compatibility condition of the problem is that the relative displacement A, of

the cut member AD due to external loading plus the relative displacement of the
member AD caused by the redundant axial forces must be equal to zero i.e.
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A, +a,F,, =0 (4)

 -103.03

AP 04,142
=—4.268 KkN(compressive)

Now the member forces in the members can be calculated by method of
superposition. Thus,

Fi=P+Fuw(P), (5)

The complete calculations can be done conveniently in a tabular form as shown
in the following table.

Table 10.1 Computation for example 10.1
Member | Length | Forces in Forces in
F -
- iZIeeased iZIeeased R(R) % (R); ﬁ R +Ful(R),
truss due truss due
to applied | to unit
loading load (P, ),
R
m KN KN m m/kN kN
AB 5 0 ~1/2 0 5/2AE 3.017
BD 5 -15 ~1/2 75/ 2AE | 5/2AE -11.983
DC 5 0 ~1//2 0 5/2AE 3.017
CA 5 0 ~1//2 0 5/2AE 3.017
CB 5.2 52 1 50/AE | 5/2/AE 2.803
AD 5.2 0 1 0 5.2 /AE | -4.268
Total 103.03 24.142
AE AE

Example 10.2

Calculate reactions and member forces of the truss shown in Fig. 10.2a by force
method. The cross sectional areas of the members in square centimeters are

shown in parenthesis. Assume E = 2.0 x10° N/mm?.
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The plane truss shown in Fg.10.2a is externally indeterminate to degree one.
Truss is internally determinate. Select the horizontal reaction atE,R.as the

redundant. Releasing the redundant (replacing the hinge at E by a roller support)
a stable determinate truss is obtained as shown in Fig. 10.2b. The member axial
forces and reactions of the released truss are shown in Fig. 10.2b.

Now calculate the displacement A, corresponding to redundant reaction R in

the released structure. This can be conveniently done in a table (see Figs. 10.2b,
10.2c and the table). Hence from the table,

A =2 .R(

AE (1)
=15x10"* m
F P G
, b r
i Ik of 1"&
/ % "4 N
/ \ 8 \
4 ¢ % g ¢ 8
II_,- LA _\.N‘ f.r [: -\_'L’l‘
; N ' Rx
/ \x # .
4 +1 +1 N | +1 E a
VI AN A — - < > < —
i B c -

|EﬂkN
F : -7.5 . 4+ G
/T ‘ AN 30kN
_.-f N, ra B
g Py ",
":'1 *T F'x‘_
/ \ 4
/ £ ‘N
-6.25 / 6.15 -6.25 -68.75
- Y F, e s '\.‘_
.r"f r\...f' ™, .-I_."f l'-i--'I -“x
3 s
- Y %
.-"'F: \"-‘x ..-"I N,
7.5 kN N/ . b 37.5KN
A. e + L . = <

A

& I - oy
- 378 B 375 € 375 D 3.75 i

TEHH TEEKH

Fig. 10. 2 (d) Plane truss (Example 10.2)
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In the next step apply a unit load, along the redundant reaction R, and calculate
the displacement a,; using unit load method.

a11:Z(R/)i2_i

L
AE,
=4x10° m

(2)

The support at E is hinged. Hence the total displacement at E must vanish.

Thus,
A +a;Fp =0 (3)
15x10™* +4x10°R,, =0
_ 15x10°
= 4x10°
=-37.5 kN(towards left)
The actual member forces and reactions are shown in Fig. 10.2d.
Table 10.2 Numerical computation for example 10.2
Member | L, | AE, Forcesin | Forces in
the the L, 2 L i =
released released R(R.) AE (R) AE R +Fu(R),
truss due | truss due '
to applied | to unit
loading load (P, ),
R
m | (10°)kN kN kN 0*)m | @0®)mkn | kN
AB 3 3 33.75 +1 3.375 1 -3.75
BC 3 3 33.75 +1 3.375 1 -3.75
CD 3 3 41.25 +1 4,125 1 3.75
DE 3 3 41.25 +1 4.125 1 3.75
FG 6 3 -7.50 0 0 0 -7.5
FB 4 2 0.00 0 0 0 0
GD 4 2 0.00 0 0 0 0
AF 5 5 -6.25 0 0 0 -6.25
FC 5 5 6.25 0 0 0 6.25
CG 5 5 -6.25 0 0 0 -6.25
GE 5 5 -68.75 0 0 0 -68.75
Total 15 4
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Example 10.3

Determine the reactions and the member axial forces of the truss shown in
Fig.10.3a by force method due to external load and rise in temperature of
member FB by40°C. The cross sectional areas of the members in square

centimeters are shown in  parenthesis.  AssumeE =2.0x10° N/mm?
anda:%Soooper °C.

G0kM
. (15) v
> 20kM ¥
T~ P i
| o
{20} ~{20) {20) .- ~(20)
,-ff ™, ,-*'f ™
-~ ", - -,
- i R \‘x
P l(10) }‘QH (10} by Im
P pd . ,
- 2 R b
f -
- - " i
i " 8 D
A \f” {15) - (15) ~J (15) gl
i i 5
e B c e rcare
T H-n.r r“’l—r
4m I dm 4m |

Fig. 10. 3 (a) Plane truss of Example 10.3

The given truss is indeterminate to second degree. The truss has both internal
and external indeterminacy. Choose horizontal reaction at D (R,)and the axial

force in member EC (R,)as redundant actions. Releasing the restraint against
redundant actions, a stable determinate truss is obtained as shown in Fig. 10.3b.
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Table 10.3a Deflection due to external loading

Member | L, | AE, Forcesin | Forcesin | Forcesin
the the the L L;
released released released | 7 (R) AE RQ.) AE
truss due | truss due | truss due
to applied | to unit to unit
Ioading |Oad (Pv )i |Oad (Qv )i
X
m | (10°)kN kN kN kN @W0*)m | [0*)m
AB 4 3 40 +1 0 5.333 0.000
BC 4 3 60 +1 -0.8 8.000 -6.400
CD 4 3 60 +1 0 8.000 0.000
EF 4 3 -20 0 -0.8 0.000 2.133
EB 3 2 15 0 -0.6 0.000 -1.350
FC 3 2 0 0 -0.6 0.000 0.000
AE 5 4 -25 0 0 0.000 0.000
BF 5 4 -25 0 +1 0.000 -3.125
FD 5 4 -75 0 0 0.000 0.000
EC 5 4 0 0 +1 0.000 0.000
Total 21.333 -8.742

Deflection of the released structure along redundant R, and R,respectively are,

(A.),=21.33x10" m (towards right)

(A)

=-8.742x10" m (shortening)

) —

(1)

In the next step, compute the flexibility coefficients (ref. Fig. 10.3c and Fig. 10.3d
and the accompanying table)
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Table 10.3b Computation of flexibility coefficients

Member | L E, P). L, L) L, L
AR R et 1R ot (R (@)L
AE, AE AE
m | (0°)kN | kN | (10°)mikN | KN | (10°)m/kN | (10~ )m/kN
AB 4 3 +1.00 1.333 0.000 0.000 0.000
BC 4 3 +1.00 1.333 -0.800 0.853 -1.067
CD 4 3 +1.00 1.333 0.000 0.000 0.000
EF 4 3 0 0.000 -0.800 0.853 0.000
EB 3 2 0 0.000 -0.600 0.540 0.000
FC 3 2 0 0.000 -0.600 0.540 0.000
AE 5 4 0 0.000 0.000 0.000 0.000
BF 5 4 0 0.000 1.000 1.250 0.000
FD 5 4 0 0.000 0.000 0.000 0.000
EC 5 4 0 0.000 1.000 1.250 0.000
Total 4.000 5.286 -1.064
Thus,
a, =4x107°
a, =a, =-1.064x10"° (2)
a,, =5.286x107°
Analysis of truss when only external loads are acting
The compatibility conditions of the problem may be written as,
(AL)l +ayR, +a,R, =0
(A,), +a,R, +a,R, =0 (3)

Solving R, =-51.73 kN (towards left) and R, =6.136 kN (tensile)

The actual member forces and reactions in the truss are shown in Fig 10.3c.
Now, compute deflections corresponding to redundants due to rise in
temperature in the member FB. Due to rise in temperature, the change in length
of member FBis,
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A =aTL

(4)

- x40x5=2.67x10"°m
75000

Due to change in temperature, the deflections corresponding to redundants
R,and R, are

(5)
(), = Y@} (a,), 26710 m

When both external loading and temperature loading are acting

When both temperature loading and the external loading are considered, the
compatibility equations can be written as,

(AL)l +(AT )1 +a’11R1 +a“12R2 =0
(AL )2 +(AT )z + a21R1 + 3, Rz =0 (6)

Solving R, =-65.92 kN(towards left) and R,=-47.26 kN (compressive)

The actual member forces and reactions are shown in Fig. 10.3f
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Fig. 10.3 Plane truss of example 10.3
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Summary

In this lesson, the flexibility matrix method is used to analyse statically
indeterminate planar trusses. The equation to calculate the degree of statical
indeterminacy of a planar truss is derived. The forces induced in the members
due to temperature loading and member lack of fit is also discussed in this
lesson. Few examples are solved to illustrate the force method of analysis as
applied to statically indeterminate planar trusses.
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11

The Force Method of
Analysis: Frames
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Instructional Objectives

After reading this chapter the student will be able to

1. Analyse the statically indeterminate plane frame by force method.

2. Analyse the statically indeterminate plane frames undergoing support settlements.
3. Calculate the static deflections of a primary structure (released frame) under
external loads.

4. Write compatibility equations of displacements for the plane deformations.

5. Compute reaction components of the indeterminate frame.

6. Draw shear force and bending moment diagrams for the frame.

7. Draw qualitative elastic curve of the frame.

11.1 Introduction

The force method of analysis can readily be employed to analyze the indeterminate
frames. The basic steps in the analysis of indeterminate frame by force method are
the same as that discussed in the analysis of indeterminate beams in the previous
lessons. Under the action of external loads, the frames undergo axial and bending
deformations. Since the axial rigidity of the members is much higher than the
bending rigidity, the axial deformations are much smaller than the bending
deformations and are normally not considered in the analysis. The compatibility
equations for the frame are written with respect to bending deformations only. The
following examples illustrate the force method of analysis as applied to indeterminate
frames.

Example 11.1

Analyse the rigid frame shown in Fig.11.1a and draw the bending moment diagram.
Young’s modulus E and moment of inertia | are constant for the plane frame.
Neglect axial deformations.
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Fig 11.1 (b) Primary Structure Fig 11.1 ( c )Primary Structure
with redundant R

The given one- storey frame is statically indeterminate to degree one. In the present
case, the primary structure is one that is hinged at A and roller supported atD.

Treat horizontal reaction atD, Rp, as the redundant. The primary structure (which is

stable and determinate) is shown in Fig.11.1.b.The compatibility condition of the
problem is that the horizontal deformation of the primary structure (Fig.11.1.b) due to
external loads plus the horizontal deformation of the support D, due to redundant
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Rpx (vide Fig.11.1.b) must vanish. Calculate deformation 8;; due to unit load at D
in the direction of R, . Multiplying this deformation a,; with Rp, , the deformation due
to redundant reaction can be obtained.

A=a,R,, (1)

Now compute the horizontal deflection A, at D due to externally applied load. This
can be readily determined by unit load method. Apply a unit load along R,, as
shown in Fig.10.1d.

B ‘. B
K
.._- Gm |
o 1
B cJI.
&Bm
EM.= x BM.= - x
L & £
I*‘
x

-l—l - A D.r-. r s —4q
1 et [ 1

Fig 11.1 (d) Primary Structure with unit load
along R

The horizontal deflection A, at D in the primary structure due to external loading is
given by

Y dx (2
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where oM, is the internal virtual moment resultant in the frame due to virtual load
applied at D along the resultantR,, and M is the internal bending moment of the
frame due to external loading (for details refer to Module 1,Lesson 5).Thus,

A, :j-—(lzxglxz)x dx +i—(36;?X)6 dx + j‘i)l()dx
0 0 0

(span AB, origin at A)  (span BC, origin at B) (span DC, originat D)

864
A =—" 3
L= 3)
In the next step, calculate the displacement @,, at D when a real unit load is

applied at D in the direction of R,, (refer to Fig.11.1 d). Please note that the same

Fig. 11.1d is used to represent unit virtual load applied at D and real unit load
applied atD . Thus,

D
allzjlé‘mvmdx
A El
6 2 6 6 2
:J-xdx+ 36dx J»x_dx
0 El 5 El 0EI
360
=— 4
£ (4)

Now, the compatibility condition of the problem may be written as

A, +a,R, =0 (5)
Solving,

R,, =-2.40kN (6)

Dx —

The minus sign indicates that the redundant reaction R, acts towards left.
Remaining reactions are calculated from equations of static equilibrium.

D> F,=0=R,, =-12+240=-9.60 kN (towards lef)
> M, =0=R,, =—9kN (dowwards)

Ry, =+9 kN (upwards)
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The bending moment diagram for the frame is shown in Fig. 11.1e

21.6

21.6 |

Q}MJ\LMMF :

Fig 11.1 (e) Bending moment diagram
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Example 11.2

Analyze the rigid frame shown in Fig.11.2a and draw the bending moment and shear
force diagram. The flexural rigidity for all members is the same. Neglect axial
deformations.

ABKN
2m | Zm 4
. ; al = Re.(=R.)
El T
Re(=R:)
Im
Z4kN
- .
El
3m
R..
————%
- L
M.,
R.,

Fig 11.2 (a) Example 11.2

Five reactions components need to be evaluated in this rigid frame; hence it is
indeterminate to second degree. Select R, (=R;) and R, (=R,) as the redundant

reactions. Hence, the primary structure is one in which support A is fixed and the
support C is free as shown in Fig.11.2b. Also, equations for moments in various
spans of the frame are also given in the figure.
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Fig 11.2 (b) Primary structure
with external load

Calculate horizontal (A, ),and vertical (A, ), deflections at C in the primary structure
due to external loading. This can be done by unit load method. Thus,
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Fig 11.2 (d) Primary structure
with unit load along R:
(A, =_?f(96+23)(3+x)dx +i9£—lxdx +0

(Span DA, origin at D) (Span BD, origin at B) (span BC, Origin B)

2268
- 1
o (1)

+0

© (96 + 24x)(~4)dx % 96(—4)dx © 48x(~2 — x)dx
L )(4) L% ELC
. El ) El ) El
(Span DA, originat D)  (Span BD, originat B)  (Span BE, origin at E)
(Span EC, Origin C)

(8), =22 @
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In the next step, evaluate flexibility coefficients, this is done by applying a unit load
along, R, and determining deflections a;, and a, corresponding to R, and R,

respectively (vide, Fig .11.2 c). Again apply unit load along R, and evaluate
deflections a,, and a;, corresponding to R, and R, and respectively (ref.
Fig.11.2d).

S x? 72
a; = J—dX i 3)

72
=— 4
£ (4)
and
6 4 2
ay, :J.deﬂ-(x) dx
El
0 0
117.33
— =99 5
£ (5)

In the actual structure at C, the horizontal and vertical displacements are zero
.Hence, the compatibility condition may be written as,

(AL)l = a11R1 +a12R2 =0
(AL)Z :a12R1+a22R2 =0 (6)

Substituting the values of(A,),,(4,), ,&,, &, anda,, in the above equations and
solving for and R, , R, we get

R, =-1.056 kN (towards left)
R, =27.44 kN (upwards)

The remaining reactions are calculated from equations of statics and they are shown
in Fig 11.2e. The bending moment and shear force diagrams are shown in Fig. 11.2f.

Version 2 CE IIT, Kharagpur



24 kM

48 kN

A 51.904 kN

f

20.56 kN

c
5:;.,;‘- 1.056 kN
Z7.44 kN

Fig. 11.2e Reaction

Version 2 CE IIT, Kharagpur



48 kN

B 1.056
1.056 ] C

I J13.76 kN.m

Z27.44kMN
Z0.56kN

20.56kM

" 27.44
Shear force diagram

48
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Bending moment diagram

Fig. 11.2f

11.2 Support settlements

As discussed in the case of statically indeterminate beams, the reactions are
induced in the case of indeterminate frame due to yielding of supports even when
there are no external loads acting on it. The yielding of supports may be either linear
displacements or rotations of supports (only in the case of fixed supports) .The
compatibility condition is that the total displacement of the determinate frame
(primary structure) due to external loading and that due to redundant reaction at a
given support must be equal to the predicted amount of yielding at that support. If the
support is unyielding then it must be equal to zero.

Example 11.3

A rigid frame ABC is loaded as shown in the Fig 11.3a, Compute the reactions if the
support D settles by 10 mm. vertically downwards. Assume El to be constant for all
members. Assume E =200 GPa and 1=10" m?’.
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Fig 11.3 (b) Primary Structure Fig 11.3 ( ¢ ) Reactions

This problem is similar to the previous example except for the support settlement
.Hence only change will be in the compatibility equations. The released structure is
as shown in Fig.11.3b .The deflections(A,), and (A, ), at C in the primary structure
due to external loading has already been computed in the previous example. Hence,

2052
(A L )1 = F (1)
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—3296

(AL), = El

Therefore,
(A), =0.1026 m

(A,),=-0.1635 m

The flexibility coefficients are,

72
an El

-72
a, =ay = E

11733

ZEl
Now, the compatibility equations may be written as,
(A),+a,R +a,R, =0
(A), +ayR, +a,R, =-10x10"°
Solving which,
R, =—-2.072 kN (towards left)
R, =+26.4 kKN (upwards)

The reactions are shown in Fig.11.3c.

(2)

(3)

(4)

(5)

(6)

(7)
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Example 11.4

Compute the reactions of the rigid frame shown in Fig.11.4a and draw bending
moment diagram .Also sketch the deformed shape of the frame. Assume El to be

constant for all members.
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Fig 11.4 (a) Example 11.4
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B B BM= -x I
c
c
M=0 I 1
1ZkN
« D
12
x 5M=-4
M=1Zx
L)
. 12kN A 4 3KNm A
LR A F777777

Fig 11.4 (b) Primary structure Fig 11.4 ( c ) Primary structure

with external load with unit load along R:

Select vertical reaction at C, R as the redundant .Releasing constraint against
redundant, the primary structure is obtained. It is shown in Fig.11.4b.
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The deflection (A_ ), in the primary structure due to external loading can be
calculated from unit load method.
3
1 (12x)(-4)dx
(AL)l_.(’)‘T
(span DA, origin at D)

= % (Downwards) (1)

Now, compute the flexibility coefficient,

4 2 6
all:jx—dx+ £dx
o El 5 El
~117.33

T (2)

The compatibility condition at support C is that the displacement at C in the primary
structure due to external loading plus the displacement at C due to redundant must
vanish. Thus,

—216 N 117.33 R, =0 3)
El El
Solving,
R, =184 kN 4)

The remaining reactions are calculated from static equilibrium equations. They are
shown in Fig.11.4d along with the bending moment diagram.
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% L i
ff" T.36
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1Z2KM e
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— f’!f;‘ff ':r_; 28.64
i _ 4 28.64
. / a
1.84 Reactions o =

-

Fig 11.4 (d) bending moment diagram
plotted on Compression side

s T.36

L 1.84

T 1.84

?.35 [\

1

28.64

7 5M=0 . .,
BM -1 am,=-1
I AT
Fig 11.4(f)

Fig 11.4(e)
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To sketch the deformed shape/elastic curve of the frame, it is required to compute
rotations of joints B and C and horizontal displacement of C. These joint rotations
and displacements can also be calculated from the principle of superposition .The
joint rotations are taken to be positive when clockwise. Towards this end first
calculate joint rotations at B (6, ) and C (6., ) and horizontal displacement at C in the

released structure (refer to Fig.11.4b).This can be evaluated by unit load method.

: 12(x)( Dy - —54
O ®
i 12x)( D) gy 54 ©)
! El
_ 7 12x@+x) 270
ACL_! El dx = El 0

Next, calculate the joint rotations and displacements when unit value of redundant is
applied (Fig.11.4c). Let the joint rotations and displacements be 6,;,60.; andA;.

_padc 24
Oer _! El El ®)
CR:i wdx +j3. wdng (9)
El ! El El
C(A)x -T2
A _l o = =0 (10)

Now using the principle of superposition, the actual rotations and displacements at
the joints may be obtained.

‘95 = ‘95L + QBR Rl (11)
_ -54 24x1.84 B _9.84
El El El
(Clockwise rotation)
Oc =0q + O xR, (12)

_-54 32x184 _ 488
El El El

(Counterclockwise rotation)
Ac=Aq +Ax R, (13)

Version 2 CE IIT, Kharagpur



270 72x1.84 137.52

towards right
El El El ( ght)

The qualitative elastic curve is shown in Fig. 11.4h.

1 &M.=0

.

BM. =+ x

L 3

Fl iR e
Fig 11.4 (g)

S . =
\ﬁiﬂ‘ /I(: 4.88

-';.-" .-.:.:

Fig 11.4 (h) Deformed shape
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Summary

In this lesson, the statically indeterminate plane frames are analysed by force
method. For the purpose of illustrations only bending deformations of the frame are
considered as the axial deformations are very small. The problem of yielding of
supports in the case of plane frames is also discussed. The procedure to draw
qualitative elastic curve of the frame is illustrated with the help of typical example.
The bending moment and shear force diagrams are also drawn for the case of plane
frame.
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Instructional Objectives

After reading this chapter the student will be able to

1. Derive three-moment equations for a continuous beam with unyielding
supports.

2. Write compatibility equations of a continuous beam in terms of three
moments.

3. Compute reactions in statically indeterminate beams using three-moment
equations.

4. Analyse continuous beams having different moments of inertia in different
spans using three-moment equations.

12.1 Introduction

Beams that have more than one span are defined as continuous beams.
Continuous beams are very common in bridge and building structures. Hence,
one needs to analyze continuous beams subjected to transverse loads and
support settlements quite often in design. When beam is continuous over many
supports and moment of inertia of different spans is different, the force method of
analysis becomes quite cumbersome if vertical components of reactions are
taken as redundant reactions. However, the force method of analysis could be
further simplified for this particular case (continuous beam) by choosing the
unknown bending moments at the supports as unknowns. One compatibility
equation is written at each intermediate support of a continuous beam in terms of
the loads on the adjacent span and bending moment at left, center (the support
where the compatibility equation is written) and rigid supports. Two consecutive
spans of the continuous beam are considered at one time. Since the compatibility
equation is written in terms of three moments, it is known as the equation of three
moments. In this manner, each span is treated individually as a simply supported
beam with external loads and two end support moments. For each intermediate
support, one compatibility equation is written in terms of three moments. Thus,
we get as many equations as there are unknowns. Each equation will have only
three unknowns. It may be noted that, Clapeyron first proposed this method in
1857. In this lesson, three moment equations are derived for unyielding supports
and in the next lesson the three moment equations are modified to consider
support moments.

12.2 Three-moment equation

A continuous beam is shown in Fig.12.1a. Since, three moment equation relates
moments at three successive supports to applied loading on adjacent spans,
consider two adjacent spans of a continuous beam as shown in Fig.12.1b. M,

M. and M respectively denote support moments at left, center and right
supports. The moments are taken to be positive when they cause tension at
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bottom fibers. The moment of inertia is taken to be different for different spans. In
the present case |, and |, denote respectively moment of inertia of; left and

right support and |, and |, are the left and right span respectively. It is assumed

that supports are unyielding. The yielding of supports could be easily
incorporated in three-moment equation, which will be discussed in the next
lesson. Now it is required to derive a relation betweenM , M. and M. This

relationship is derived from the fact that the tangent to the elastic curve at C is
horizontal. In other words the joint C may be considered rigid. Thus, the
compatibility equation is written as,

O + 0 =0 (12.1)

The rotation left of the support C, 6. and rotation right of the support C,
6. may be calculated from moment area method. Now,

_ Deflection of L from tangent drawn at C(LL)

QCL

IL

Moment of %I diagram between C and L about L

IL

=i ALXL +1 ﬂ IL1|L+1 MC ILEIL
I \EL )2 B )3t 2l El )3
— ALXL + MLIL + MCIL
EI_I_ 6EI_  3El

(12.2)

CL

Note that the actual moment diagram on span LC is broken into two parts (1)
due to loads applied on span LC when it is considered as a simply supported
beam and, (2) due to support moments. In the above equation A and A,
denote respectively area of the bending moment diagrams due to applied loads
on left and right supports. X _and x, denote their respective C.G.(center of
gravity) distances from the left and right support respectively. Similarly,

0. — deflection of R from tangent drawn at C (RR’)
CR —

I,

Moment of N%EI diagram between C and R about R

IR
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_AK  Mgly Ml
El l, 6El, 3El,

(12.3)

CR

Substituting the values of 6., and 6., in the compatibility equation (12.1),

ALXL +MLIL+MCIL+ ARXR +MRIR +MCIR —
Ell, 6El, 3ElI, Ell, 6El, 3El,

(12.4)

which could be simplified to,

M, L +2M, LS +M, o) _OAK BAX (12.5)
I TR I N

The above equation (12.5) is known as the three-moment equation. It relates
three support moments M,, M.and M; with the applied loading on two
adjacent spans. If in a span there are more than one type of loading (for

example, uniformly distributed load and a concentrated load) then it is simpler to
calculate moment diagram separately for each of loading and then to obtain

moment diagram.
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Bending moment diagram due to applied loading.

Bending moment diagram ( B.M.D) due to support moments.

Fig. 12. 1(b) Two adjacent spans of a continuous beam.
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12.3 Alternate derivation

The above three moment equations may also be derived by direct application of
force method as follows. Now chooseM , M.and theM;, the three support

moments at left, centre and right supports respectively as the redundant
moments. The primary determinate structure is obtained by releasing the
constraint corresponding to redundant moments. In this particular case, inserting
hinges atL ,C andR, the primary structure is obtained as below (see Fig. 12.2)

Fig. 12.2. Primary structure

Let displacement (in the primary case rotations) corresponding to rotation M. be
A, which is the sum of rotations 6., and 6.;. Thus,

A =0, +04 (12.6)
It is observed that the rotations 6. and 6., are caused due to only applied

loading as shown in Fig.12.2.This can be easily evaluated by moment area
method as shown previously.

= + (12.7)

In the next step, apply unit value of redundant moments atL,C and R and
calculate rotation at C (i.e. flexibility coefficients).

IL IR
,y = ——+—F"— 12.8
? 3El_ 3El, (12.8)
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Fig. 12.3 (a) Unit redundant force applied at L (1)

r
.
3
¥

f i3
213 { "

Fig. 12.3 (b) Unit redundant force applied at c.
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Fig. 12.3 ( ¢ ) Unit moment applied at R

In the actual structure the relative rotation of both sides is zero. In other words
the compatibility equation is written as,

A +ayM +a,M. +a,M; =0 (12.9)

Substituting the values of flexibility coefficients and Ac in the above equation,

—'A\RXRWL—'A\LXLWLML L +M_ L + l +M, l =0
Ell, EII 6EI, 3EI,  3El, 6EI,

Or,
ML('—L]+2MC{'—L+'—R}+MR('—RJ=—6ARXR _SAX (12.10)
IL IL IR IR IRIR ILIL
when moment of inertia remains constant i.e. Ir=1.=1 ,the above equation
simplifies to,
M (1) +2M{l, +1 1+ M (1) = —GAIRXR - 6AILXL (12.11)
R L
Example 12.1

A continuous beam ABCD is carrying a uniformly distributed load of 1 kN/m over
span ABC in addition to concentrated loads as shown in Fig.12.4a. Calculate
support reactions. Also, draw bending moment and shear force diagram. Assume
El to be constant for all members.
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s s m ——fs 10m

Fig. 12.4 (a) Continuous beam of Example 12 .1

12.5 12.5

A= 83.33 T A= 83.33

i

5 m ——>]

Fig. 12.4 (b) Bending moment diagram due to applied loading

From inspection, it is assumed that the support moments at Ais zero and
support moment at C,

M. =15 kN.m (negative because it causes compression at bottom at C)

Hence, only one redundant moment M, needs to be evaluated. Applying three-
moment equation to span ABC,

2Mc{10+10}+'\/|c(1)=—| - (1)

The bending moment diagrams for each span due to applied uniformly distributed
and concentrated load are shown in Fig.12.4b.
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Equation (1) may be written as,

6x83.33x5 6x125x5 6x83.33x5
10 10 10

40M , —150 = —

Thus,
M, =-18.125 kN.m

After determining the redundant moment, the reactions are evaluated by
equations of static equilibrium. The reactions are shown in Fig.12.4c along with
the external load and support bending moment.
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Fig. 12.4 { c ) Free - body diagram of two members
8.18755
oy
Sl 5.2875
o 3.7175
+
a [ B ki, c D
6.7875 |
= 11.81745

4.T125
Shear force diagram ( 5.F.D )

28.5625

Bending moment diagram ( B.M.D )

Fig. 12.4(d). SHEARE FORCE & BENDING MOMENT DIAGRAM.
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In span AB, R, can be calculated by the condition that ZMB =0. Thus,
R,x10-10x5-10x5+18.125=0

R,=81875 kN (1)

Ry, =11.8125 kN (1)

Similarly from span BC,

Re=47125 kN (1)

Rer =5.3125 kN (1)
The shear force and bending moment diagrams are shown in Fig.12.4d.

Example 12.2

A continuous beam ABC is carrying uniformly distributed load of 2 kN/m as
shown in Fig.12.5a.The moment of inertia of span AB is twice that of span BC.
Evaluate reactions and draw bending moment and shear force diagrams.
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Fig. 12.5 (a) Example 12.2
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L, :
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Fig. 12.5(b) Free body diagram of span AB

, ﬂ;\llllltf.llll“lll,v,ll‘:
S A 5
l

I 10 m =|[= S5m =~]

Fig. 12.5(c) Continuous beam within imaginary span AA :

By inspection it is seen that the moment at support C is zero. The support
moment at A and B needs to be evaluated .For moment atB, the compatibility
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equation is written by noting that the tangent to the elastic curve at B is
horizontal .The compatibility condition corresponding to redundant moment at A
is written as follows. Consider span AB as shown in Fig.12.5b.

The slope at A, 8, may be calculated from moment-area method. Thus,

eA — MBIL + MAIL + A(YL)R
6El, 3El,  Ell,

(1)

Now, compatibility equation is,
0,=0 (2)

It is observed that the tangent to elastic curve at A remains horizontal. This can
also be achieved as follows. Assume an imaginary span AA’ of length L' left of
support A having a very high moment of inertia (see Fig. 12.5c). As the
imaginary span has very high moment of inertia, it does not yield any imaginary

span has very high moment of inertia it does not yield any M/EI diagram and

hence no elastic curve. Hence, the tangent at A to elastic curve remains
horizontal.
Now, consider the span A’AB, applying three-moment equation to support A,

2|\/|A{£+£}+MB(E)z_GALXR 3)
o 2l 21 21(10)

The above equation is the same as the equation (2). The simply supported
bending moment diagram is shown in Fig.12.5d.

25

: 6.25
: A, = 166.67 3 - i
~7 20.833
a : : c
A B I
-
5 m 5m 2.5 m

Fig. 12.5 (d) Bending moment diagram due to applied loading
Thus, equation (3) may be written as,

6x (166.67) x5
10

20M , + M, (10) = —
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20M , +10M, = —500 (4)

Now, consider span ABC, writing three moment equation for support B,

21

MA{10}+2MB{1O 5}__6><166.67><5_6><20.837><2.5

_+_
21 | 21 % (10) I x (5)

5M , +20M, = —250-62.5

=-3125 ®)

Solving equation (4) and (5),
M; =-6.25 kN.m
M, =-37.5kN.m

The remaining reactions are calculated by equilibrium equations (see Fig.12.5€e)
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Fig. 12.5 (e) Free - body diagram of two members
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Fig. 12.5 (f) Shear force and bending moment diagrams
Inspan AB, > M, =0

R, x10-375-2x10x5+6.25=0
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R,=13.125 kN  (T)

Ry =6.875 kN (1)
Similarly from span BC,

Re =375 kN (1)
R =625 kN (T)

The shear force and bending moment diagrams are shown in Fig. 12.5f.

Summary

In this lesson the continuous beam with unyielding supports is analysed by three-
moment equations. The three-moment equations are derived for the case of a
continuous beam having different moment of inertia in different spans. The three-
moment equations also belong to force method of analysis and in this case,
redundants are always taken as support moments. Hence, compatibility
equations are derived in terms of three support moments. Few problems are
solved to illustrate the procedure.
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Instructional Objectives

After reading this chapter the student will be able to

1. Derive three-moment equations for a continuous beam with yielding supports.
2. Write compatibility equations of a continuous beam in terms of three
moments.

3. Compute reactions in statically indeterminate beams using three-moment
equations.

4. Analyse continuous beams having different moments of inertia in different
spans and undergoing support settlements using three-moment equations.

13.1 Introduction

In the last lesson, three-moment equations were developed for continuous
beams with unyielding supports. As discussed earlier, the support may settle by
unequal amount during the lifetime of the structure. Such future unequal
settlement induces extra stresses in statically indeterminate beams. Hence, one
needs to consider these settlements in the analysis. The three-moment
equations developed in the pervious lesson could be easily extended to account
for the support yielding. In the next section three-moment equations are derived
considering the support settlements. In the end, few problems are solved to
illustrate the method.

13.2 Derivation of Three-Moment Equation

Consider a two span of a continuous beam loaded as shown in Fig.13.1. LetM ,
M. and M; be the support moments at left, center and right supports

respectively. As stated in the previous lesson, the moments are taken to be
positive when they cause tension at the bottom fibers. |, and |, denote moment

of inertia of left and right span respectively and |, and |; denote left and right
spans respectively. Let 6,0, and J; be the support settlements of left, centre
and right supports respectively. J,,6. and oJzare taken as negative if the

settlement is downwards. The tangent to the elastic curve at support C makes
an angle 6., at left support and 6., at the right support as shown in Fig. 13.1.

From the figure it is observed that,
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B

— — Elastic curve

original position = Tangent to the elastic curve
at .’

Fig. 13.1 Continuous beam with support settlement
6. =0 (13.1)

The rotations g, and p. due to external loads and support moments are
calculated from the N%EI diagram .They are (see lesson 12)

AX. M M.
_Ax MO Ml

ﬂCL_EILIL 6EI,  3El,

(13.2a)

AX, Mil, M.l
_frXr  Mglr  Mclg

ﬂCR_EIRIR 6El, 3El,

(13.2b)

The rotations of the chord L'C' and C'R' from the original position is given by

(13.3a)

(13.3b)
From Fig. 13.1, one could write,
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O =aq — B (13.4a)

Ocr = Ber — Aer (13.4b)
Thus, from equations (13.1) and (13.4), one could write,

Ao = Por = Ber — Acr (13.5)

Substituting the values of o, ,a, S, and S in the above equation,

M [ leom e Je Ly [la | _8AXe BAX | gpf 0 =0c || gef O = Oc
I TR I R I, I

This may be written as

M, L +2M le +Mg Jo | _8AXe BAX geifdc =91 |, 9 =%
IL IL IR IR IRIR ILIL IL IR

(13.6)

The above equation relates the redundant support moments at three successive
spans with the applied loading on the adjacent spans and the support
settlements.

Example 13.1

Draw the bending moment diagram of a continuous beam BC shown in
Fig.13.2a by three moment equations. The support B settles by 5mm below A
and C. Also evaluate reactions at A, B and C.Assume El to be constant for all

members and E =200 GPa, | =8x10® mm?*
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Fig. 13.2(b) Bending moment diagram
due to applied loading

Assume an imaginary span having infinitely large moment of inertia and arbitrary
span L' left of A as shown in Fig.13.2b .Also it is observed that moment at C is
zero.
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The given problem is statically indeterminate to the second degree. The
momentsM , andM; ,the redundants need to be evaluated. Applying three

moment equation to the span A’AB,

5, =06.=0and 5, =-5x10"°m

1 1 _ _ 73
M'A(LJ+ZMA{L+E}+MB(EJ:—GXSXZ—GE 04 9= (5x107
o0 o | | 1(4) 4

5x107
8M, +4M, = —24 —6EI x (1)
6 -12
Note that, El = 200x10° x%ﬂ.axm?’mmz
Thus,
-3
8M , +4M , = 24— 6x1.6x10° x 10—
8M, +4M, =36 2)

Again applying three moment equation to span ABC the other equations is
obtained. For this case,d, =0,5. =-5x10"m (negative as the settlement is

downwards) and 6, =0.

_ -3 -3
MA{?}+2MB{?+?}:—E—6X1O'667X2—6E( 5><410 _SXiO j

3
AM , +16M , = 2432+ 6x1.6x10° x 210

4M , +16M, =-32 3
Solving equations (2) and (3),

M, =-1.0 kN.m
M, =—4.0 kN.m (4)

Now, reactions are calculated from equations of static equilibrium (see
Fig.13.2c).
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Fig.13.2 ( c) Free - body diagram of two members

4.25kM
S
2.75 g
. — A=4.5156
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Shear force diagram
-
,-'I"-__

I. _(::' i _..II
Wi s el
L ) |
A D B c
I o |
" am - A 1

Bending moment diagram
Fig.13.2(d) Shear force and bending moment diagram

Thus,

S~—"

R, = 2.75kN (1

Re. =1.25kN (1)

Res = 4.25kN (1)

Re =3.75kN (1)
The reactions at B,
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Ry = Rgs + Ry, =5.5kN (5)

The area of each segment of the shear force diagram for the given continuous
beam is also indicated in the above diagram. This could be used to verify the
previously computed moments. For example, the area of the shear force diagram
between A and B is 5.5 kN.m.This must be equal to the change in the bending
moment between A and D, which is indeed the case (-4-1.5=5.5kN.m). Thus,
moments previously calculated are correct.

Example 13.2

A continuous beam ABCD is supported on springs at supports B and C as
shown in Fig.13.3a. The loading is also shown in the figure. The stiffness of

springs isk, :E—(I) and k. =% .Evaluate support reactions and draw bending

moment diagram. Assume El to be constant.
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Fig.13.3(b) Bending moment diagram
on simple spans due to applied loading

4kN/m

I

:
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R.

. 10kN M. BkN

. ¥

Fig.13.3( ¢ ) Computation of reactions

In the given problem it is required to evaluate bending moments at supports B
andC. By inspection it is observed that the support moments at A and D are
zero. Since the continuous beam is supported on springs at B andC, the
support settles. Let Re and Rc be the reactions at B and C respectively. Then

R R .
the support settlement at B and C are k—B and k—c respectively. Both the
B Cc

settlements are negative and in other words they move downwards. Thus,

- ~30R
5,=0,0, = ZEOIRB,ac= 3;0 and 5, =0 (1)
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Now applying three moment equations to span ABC (see Fig.13.2b)

—20R, +30RC
M, 4 +2M, ﬂ+ﬂ M, 4 :_6x21.33x2_6x20><2_6E —ZORB+ El E|
| (I | | x4 | x4 4ElI 4
Simplifying,
16M, +4M, = —124+ 60R, —45R, (2)
Again applying three moment equation to adjacent spans BCandCD,
R
4 4 4 60 (6><9x2+6><3><g><1) _30Re | 20Ry _30R
Mgdol+ 2M =+ S b= o o 3 _BE El El c
I (. I | x4 4 4E|
4M; +16M . =-90+90R. —30R, 3)

In equation (2) and (3) express Ry and R. in terms of Mgyand M (see
Fig.13.2c)

R, =8+0.25M, (1)

Ry =8-0.25M, (1)

Rye =5+0.25M —0.25M, (1)
R =5+0.25M, —0.25M (1)
R =2-0.25M, (1)

R, =6+0.25M. (1)

(4)

Note that initially all reactions are assumed to act in the positive direction (i.e.
upwards) .Now,

Ry = Ry +Rgg =13—-0.5M +0.25M
R. =Ry +Rpz =7+0.25M,; —0.5M . (5)
Now substituting the values of R, and R. in equations (2) and (3),

16M +4M, =-124+60(13—0.5M; +0.25M . )—45(7 +0.25M ;, —0.5M . )
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Or,
57.25M —33.5M, =341 (6)
And from equation 3,
4M, +16M . = -90+90(7 + 0.25M ; —0.5M . )-30(13—0.5M ; +0.25M )
Simplifying,
—33.5M, +68.5M, =150 7)
Solving equations (6) and (7)

M, =7.147 kN.m

(8)
M, =10.138 kN.m

Substituting the values of M;and M. in (4),reactions are obtained.

R,=10535 kN (T) Ry =5465 kN (1)
Rex =4.252 kN (1) Ry =5.748 kN (1)
Rex =0.213 kN (1) R, =7.787 kN (T)

Ry =9.717 kN (T) and R, =5961 kN (T)

The shear force and bending moment diagram are shown in Fig. 13.2d.
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Fig.13.2 ( c) Free - body diagram of two members

4.25kMN
e A=4.5156
A=5.5 +
" ~~ A=3.5158
A e
B B
A=2.5
Z2m 2m 2.125m
3.75kMN

Shear force diagram

= =

o
I 4m T 4m
Bending moment diagram

Fig.13.2(d) Shear force and bending moment diagram
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Example 13.3

Sketch the deflected shape of the continuous beam ABC of example 13.1.
The redundant moments M, and M, for this problem have already been
computed in problem 13.1.They are,

M, =-1.0 kN.m
M, =-4.0 kN.m

The computed reactions are also shown in Fig.13.2c.Now to sketch the deformed
shape of the beam it is required to compute rotations at B and C. These joints
rotations are computed from equations (13.2) and (13.3).

For calculating 8, , consider span A’AB

Op =P — g

_AK Mgl Mylp (5,5,
Ell, 6El, 3El, 4

_ 6x8x2  Mgx4 = M,x4 _(55—@\)
1.6x10°x4 1.6x10°x6 1.6x10°x3 4

6x8x 2 (-1)x4 (-4)x4 (5x10°°
= + + +
16x10°x4 1.6x10°x6 1.6x10°x3 4

=0 (1)
For calculating ;, , consider span ABC

Op. =g — P,

:_[ ALXL + MAIL + MBILJ_'_(&A_&BJ

El 1, 6El_ 3El, I,

_ [ 8x2 (~4)x4  (-1)x4 5x10°
( ; ; H J

1.6x10°x4 1.6x10°x6 1.6x10°x3 4

=1.25x10*radians (2)

For @, consider span ABC
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_ 3
QBR:( 1067x2  (-1)x4 j_(mﬂ]

1.6x10°x4 1.6x10°x3 4

- -1.25x10radians (3)

0 :_( 10.67x2  (-1)x4 )_(58_5CJ

¢ 1.6x10°x4 1.6x10°x3 4

= -3.75x10*radians. 4)

The deflected shape of the beam is shown in Fig. 13.4.
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4.252

10.535
0.215
+ + +
5.465 5.748 T.TBT
| am L 2m L 2m 3m [ 1m
I i ;5 i
Shear force diagram

| 4m 1 Zm _L 2Zm 3m L 1m
I T T i T
Bending moment diagram
Fig.13.3(d) p—
4m d4m
-
ﬁ e i ’--‘___..f% c
i~ arsx10°| 7
S s e e . S0 Tangent to elastic
1.25%10°.. 4 B curve at B

Fig.13.4(a) Elastic curve Example 13.3
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Summary

The continuous beams with unyielding supports are analysed using three-
moment equations in the last lesson. In this lesson, the three-moment-equations
developed in the previous lesson are extended to account for the support
settlements. The three-moment equations are derived for the case of a
continuous beam having different moment of inertia in different spans. Few
examples are derived to illustrate the procedure of analysing continuous beams
undergoing support settlements using three-moment equations.
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Introduction

As pointed out earlier, there are two distinct methods of analysis for statically
indeterminate structures depending on how equations of equilibrium, load
displacement and compatibility conditions are satisfied: 1) force method of
analysis and (2) displacement method of analysis. In the last module, force
method of analysis was discussed. In this module, the displacement method of
analysis will be discussed. In the force method of analysis, primary unknowns are
forces and compatibility of displacements is written in terms of pre-selected
redundant reactions and flexibility coefficients using force displacement relations.
Solving these equations, the unknown redundant reactions are evaluated. The
remaining reactions are obtained from equations of equilibrium.

As the name itself suggests, in the displacement method of analysis, the primary
unknowns are displacements. Once the structural model is defined for the
problem, the unknowns are automatically chosen unlike the force method. Hence
this method is more suitable for computer implementation. In the displacement
method of analysis, first equilibrium equations are satisfied. The equilibrium of
forces is written by expressing the unknown joint displacements in terms of load
by using load displacement relations. These equilibrium equations are solved for
unknown joint displacements. In the next step, the unknown reactions are
computed from compatibility equations using force displacement relations. In
displacement method, three methods which are closely related to each other will
be discussed.

1) Slope-Deflection Method
2) Moment Distribution Method
3) Direct Stiffness Method

In this module first two methods are discussed and direct stiffness method is
treated in the next module. All displacement methods follow the above general
procedure. The Slope-deflection and moment distribution methods were
extensively used for many years before the compute era. After the revolution
occurred in the field of computing only direct stiffness method is preferred.

Degrees of freedom

In the displacement method of analysis, primary unknowns are joint
displacements which are commonly referred to as the degrees of freedom of the
structure. It is necessary to consider all the independent degrees of freedom
while writing the equilibrium equations.These degrees of freedom are specified at
supports, joints and at the free ends. For example, a propped cantilever beam
(see Fig.14.01a) under the action of load P will undergo only rotation at B if axial
deformation is neglected. In this case kinematic degree of freedom of the beam
is only one i.e. g, as shown in the figure.
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In Fig.14.01b, we have nodes at A,B,C and D. Under the action of lateral loads
R,p, and p, this continuous beam deform as shown in the figure. Here axial

deformations are neglected. For this beam we have five degrees of freedom
0,.0,.0. » 6, anda_ as indicated in the figure. In Fig.14.02a, a symmetrical plane

frame is loaded symmetrically. In this case we have only two degrees of
freedomg, andg.. Now consider a frame as shown in Fig.14.02b. It has three
degrees of freedom viz. ¢,,9. and A, as shown. Under the action of horizontal

and vertical load, the frame will be displaced as shown in the figure. It is
observed that nodes at B and C undergo rotation and also get displaced
horizontally by an equal amount.

-
>, F F
2 M. M M.
L A . " o 'll !l »
# -,
A L4 Y L 4 L4 Y Y Y ¥ YYY ¥ Yy Yy .,
o] t - - = A LxB +
. B A - g »
P
M. __,-"'x & =0 1I=|=I:|
- 'k.-'A - |

Constant EI , L

(a) (b}

Hinematically Determinate Structure

{_..-".
2
/::‘ * M. :
7 Vo Wi =
A .-';5' #j {_ — /B
T L a
4 M. ,F’"'/}f

Moment - Rotation relation

Fig.14.2 Derivation of slope - deflection equations
Hence in plane structures, each node can have at the most one linear

displacement and one rotation. In this module first slope-deflection equations as
applied to beams and rigid frames will be discussed.
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Instructional Objectives

After reading this chapter the student will be able to

1. Calculate kinematic degrees of freedom of continuous beam.

2. Derive slope-deflection equations for the case beam with unyielding supports.
3. Differentiate between force method and displacement method of analyses.

4. State advantages of displacement method of analysis as compared to force
method of analysis.

5. Analyse continuous beam using slope-deflection method.

14.1 Introduction

In this lesson the slope-deflection equations are derived for the case of a beam
with unyielding supports .In this method, the unknown slopes and deflections at
nodes are related to the applied loading on the structure. As introduced earlier,
the slope-deflection method can be used to analyze statically determinate and
indeterminate beams and frames. In this method it is assumed that all
deformations are due to bending only. In other words deformations due to axial
forces are neglected. As discussed earlier in the force method of analysis
compatibility equations are written in terms of unknown reactions. It must be
noted that all the unknown reactions appear in each of the compatibility
equations making it difficult to solve resulting equations. The slope-deflection
equations are not that lengthy in comparison.

The slope-deflection method was originally developed by Heinrich Manderla and
Otto Mohr for computing secondary stresses in trusses. The method as used
today was presented by G.A.Maney in 1915 for analyzing rigid jointed structures.

14.2 Slope-Deflection Equations

Consider a typical span of a continuous beam AB as shown in Fig.14.1.The
beam has constant flexural rigidity Eland is subjected to uniformly distributed
loading and concentrated loads as shown in the figure. The beam is kinematically
indeterminate to second degree. In this lesson, the slope-deflection equations
are derived for the simplest case i.e. for the case of continuous beams with
unyielding supports. In the next lesson, the support settlements are included in
the slope-deflection equations.

PR ]

Fig. 14.01
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For this problem, it is required to derive relation between the joint end
momentsm,, and M, in terms of joint rotations ¢, and ¢, and loads acting on the
beam .Two subscripts are used to denote end moments. For example, end
moments M« denote moment acting at joint A of the member AB. Rotations of
the tangent to the elastic curve are denoted by one subscript. Thus, ¢, denotes

the rotation of the tangent to the elastic curve at A. The following sign
conventions are used in the slope-deflection equations (1) Moments acting at the
ends of the member in counterclockwise direction are taken to be positive. (2)
The rotation of the tangent to the elastic curve is taken to be positive when the
tangent to the elastic curve has rotated in the counterclockwise direction from its
original direction. The slope-deflection equations are derived by superimposing
the end moments developed due to (1) applied loads (2) rotation ¢, (3)
rotationg,. This is shown in Fig.14.2 (a)-(c). In Fig. 14.2(b) a kinematically
determinate structure is obtained. This condition is obtained by modifying the
support conditions to fixed so that the unknown joint rotations become zero. The
structure shown in Fig.14.2 (b) is known as kinematically determinate structure or
restrained structure. For this case, the end moments are denoted by m-,andm?, .
The fixed end moments are evaluated by force—-method of analysis as discussed
in the previous module. For example for fixed- fixed beam subjected to uniformly
distributed load, the fixed-end moments are shown in Fig.14.3.
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The fixed end moments are required for various load cases. For ease of
calculations, fixed end forces for various load cases are given at the end of this
lesson. In the actual structure end Arotates by ¢, and end B rotates by ¢,. Now

it is required to derive a relation relating ¢, and ¢, with the end moments m, and
M',,. Towards this end, now consider a simply supported beam acted by moment
M,; at Aas shown in Fig. 14.4. The end moment M,; deflects the beam as
shown in the figure. The rotations #,and 6;are calculated from moment-area
theorem.

M’ L
g, = —Ae— 14.1a
A= 3E] ( )
M’ L
g, = ——h8— 14.1b
B 6EI ( )

Now a similar relation may be derived if only M;,is acting at end B (see Fig.

14.4).
M., L

o = and 14.2a

5 = 3E] ( )
M. L

Ol =——BA— 14.2b

A SEl ( )

Now combining these two relations, we could relate end moments acting at A
and B to rotations produced at A and B as (see Fig. 14.2c)

M. L ML
0, =—28—-——24 14.3
ATT3El 6EI (14.32)
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ML L M.LL
g, =—=2A-___BA 14.3b
B 3E| 6EI ( )

Solving for M)z and Mg, in terms of 6, and 6,

. 2El
M AB = T(ZHA + 98) (144)

., 2El
Miy == (260, +0,) (14.5)

Now writing the equilibrium equation for joint moment at A (see Fig. 14.2).
Mg =M +My (14.6a)
Similarly writing equilibrium equation for joint B
Mg, =ME, + M}, (14.6b)

Substituting the value of M,;from equation (14.4) in equation (14.6a) one
obtains,

2El
My =M +T(29A +0;) (14.7a)
Similarly substituting Mg, from equation (14.6b) in equation (14.6b) one obtains,
Mg, =ML, Jrz—El(zeB +0,) (14.7b)

Sometimes one end is referred to as near end and the other end as the far end.
In that case, the above equation may be stated as the internal moment at the
near end of the span is equal to the fixed end moment at the near end due to

2El .
external loads plus - times the sum of twice the slope at the near end and the

slope at the far end. The above two equations (14.7a) and (14.7b) simply
referred to as slope—deflection equations. The slope-deflection equation is
nothing but a load displacement relationship.
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14.3 Application of Slope-Deflection Equations to Statically
Indeterminate Beams.

The procedure is the same whether it is applied to beams or frames. It may be
summarized as follows:

1.

5.
6.

7.

Identify all kinematic degrees of freedom for the given problem. This can
be done by drawing the deflection shape of the structure. All degrees of
freedom are treated as unknowns in slope-deflection method.

Determine the fixed end moments at each end of the span to applied load.
The table given at the end of this lesson may be used for this purpose.
Express all internal end moments in terms of fixed end moments and near
end, and far end joint rotations by slope-deflection equations.

Write down one equilibrium equation for each unknown joint rotation. For
example, at a support in a continuous beam, the sum of all moments
corresponding to an unknown joint rotation at that support must be zero.
Write down as many equilibrium equations as there are unknown joint
rotations.

Solve the above set of equilibrium equations for joint rotations.

Now substituting these joint rotations in the slope-deflection equations
evaluate the end moments.

Determine all rotations.

Example 14.1

A continuous beam ABC is carrying uniformly distributed load of 2 kN/m in
addition to a concentrated load of 20 kN as shown in Fig.14.5a. Draw bending
moment and shear force diagrams. Assume EI to be constant.

R L

20 kN 2 kM/m
!‘x
2 kM/m b\
F 3 3 3 ry ¥ r i F 3 3 3 ¥ L 4 r r b
/N e
El , constant % B El , constant ,’~:
¥ im JIL im | I 4m |
- .-l—‘ .--|

Fig. 14.5(a) Example 14.1

(a). Degrees of freedom
It is observed that the continuous beam is kinematically indeterminate to first
degree as only one joint rotation #sis unknown. The deflected shape /elastic
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curve of the beam is drawn in Fig.14.5b in order to identify degrees of freedom.
By fixing the support or restraining the support B against rotation, the fixed-fixed
beams area obtained as shown in Fig.14.5c.

20 kN

- —

2 kMim M. 4 kMN/m M.

gt

Fig. 14.5 ( ¢ ) Restrained Structure.

¥ ¥ ¥y L ¥ \ ¥ y Y L 4 ¥ L
= ! !N ] ;
o i~ "
L gy
Im Im 4 m

A

L 4
&
L4

h.l.d'
rl'-l

Fig. 14.5 (b) Elastic curve of the

beam with unknown displacement component

(b). Fixed end moments M ,,M.,,M[. and M/, are calculated referring to the
Fig. 14. and following the sign conventions that counterclockwise moments are

positive.

2 2
MF, = 2X0 203%3 5 inm
12
ME, =—21kN.m
2
ME =24 5 a3 kNm
12
ME, =-5.33 kN.m 1)

(c) Slope-deflection equations
Since ends A and C are fixed, the rotation at the fixed supports is zero,

6, =6. =0. Only one non-zero rotation is to be evaluated for this problem. Now,
write slope-deflection equations for span AB and BC.

2El
MAB = M:B +T(26A +HB)
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M, = 21+2—§|93 2)

Mg, = —21+2|£(295 +6,)

4El

MBA =—21+THB (3)
M, =5.33+ El6, (4)
Mg = -5.33+0.5E16, (5)

(d) Equilibrium equations
In the above four equations (2-5), the member end moments are expressed in
terms of unknown rotation &;. Now, the required equation to solve for the rotation

6;is the moment equilibrium equation at support B. The free body diagram of

support B along with the support moments acting on it is shown in Fig. 14.5d.
For, moment equilibrium at supports, one must have,

Mul. i
K ¥ 4 [
E. e ——— — i - - . B L - —na i - i_ I|
i AN Y ¥ ¥ ¥ ¥ |
B ;;E:' o’ . B Fi

Fig. 14.5 d Free- body diagram of the joint B
ZMB:O MBA+MBC:0 (6)

Substituting the values of M, and M . in the above equilibrium equation,
- 21+%HB +5.33+Elg, =0

=1.6676;El =15.667

9.398 9.40
g, =20 T 7
® El El 0

(e) End moments

After evaluating@s, substitute it in equations (2-5) to evaluate beam end
moments. Thus,
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M, =21+%¢9B

M, = 21+%x% = 24.133kN.m

M, =—21+%(293)

M g :—21+%x 2x94

=—14.733kN.m

Mg = 5.333+9E;:1'EI =14.733kN.m

M g =—5.333+%x%:—0.63 KN.m (8)

(f) Reactions
Now, reactions at supports are evaluated using equilibrium equations (vide Fig.
14.5e)

20 kN
24.133 14.733 14.733 0.63

Fig. 14.5 (e) Free - body diagram of two members

R,x6+14.733-20x3-2x6x3-24.133=0
R, =17.567 kN(T)
Ry =16-1.567 =14.433 kN(T)

Res = 8+w =11.526 kN(T)

R. =8+3.526 = 4.47 kN(T) 9)

The shear force and bending moment diagrams are shown in Fig. 14.5f.
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17.567

e _11.567
11.526
+ .,
=
b
u,
¥+ ~ .
.
| 4.474
8.433 i |
T44.33
L im L Im 4 m _J
Shear force diagram
19.418
1.5075m S
H i ".‘. u-sm ...- .-.'\\
J 1.'-- .": .-.. c
e ) : - 0.63
24433 Y i .
4.874m i
14.733

Bending Moment diagram

Fig. 14.5 f. Shear force and bending moment diagram of continuous
beam ABC
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Example 14.2

Draw shear force and bending moment diagram for the continuous beam ABCD
loaded as shown in Fig.14.6a.The relative stiffness of each span of the beam is
also shown in the figure.

| 10 kN 5 kN

| | l |
-
S T Y ¥ ¥ v ¥ Y
A A 3 ) _,-"1. A L]
Pl

s B C
Constant El % Constant EI @

}_. 8 m _'r 3m + 3__!'1.__+.._35__._

Fig. 14.6a Continuous beam of Example 14.2

For the cantilever beam portion CD, no slope-deflection equation need to be
written as there is no internal moment at end D. First, fixing the supports at B
and C, calculate the fixed end moments for span AB and BC. Thus,

2
M5 =28 16 knm
12

ME, =-16 kN.m
2
ME :M=7.5 kKN.m
M, =-7.5kN.m 1)

In the next step write slope-deflection equation. There are two equations for each
span of the continuous beam.
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M e =16+%(HB) =16+ 0.250,EI

Mg, =—16 + 0.5, El
2 x 2El

My =7.5+ (20, +6,.) = 7.5+1.334E16, + 0.667EI 0,

Mg = —7.5+1.334E16, +0.667EI6, 2)
Equilibrium equations

The free body diagram of members AB,BC and joints B and C are shown in
Fig.14.6b.One could write one equilibrium equation for each joint B and C.

M LR
; oo oo y
I B c \
b ra a! l
) H_}_"'r':—"; Foo4a @ Fo4 /
M M. A1 =15

Fig. 14.6 b Free - body diagrams of joints B and C along
with members

Support B,
> Mg =0 Mga+Mge =0 3)
> M, =0 Mg + Mgy =0 (4)
We know that M, =15 kN.m (5)
= Mg =15 kN.m (6)

Substituting the values of Mc and Meoin the above equations
forM ,;,M;,, M cand M, we get,

6, _ 245 5164
3.001
0. =9.704 (7

Substituting @z, 6cin the slope-deflection equations, we get
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M, =16+0.25E16, =16+ 0.25E] x%zwm kN.m

8.164

Mgy =~16+0.5E10, =—16+0.5E] x—— = =—11.918 KN.m
M, = 7.5+1.334E1 x 2224, 0 667E (%) =11.918 kN.m
8.164 9.704

Mg = —7.5+0.667EI x

+L3MEI(-—_—)=-15kNm  (§)

Reactions are obtained from equilibrium equations (ref. Fig. 14.6c)

,.;1 B.091 ‘tlll ; 1.918 10 ;I\IE
/
lthl l Yy ¥ ¥ l l l K ll\‘ ¥ "'I
R. t. Bm R. T L ple 3 m .T R.

Fig. 14.6 ¢ Computation of reactions

R, x8-18.041-3x8x4+11.918=0
R, =12.765 kN

Ry =5—0.514kN =4.486 kN

R, =11.235 kN

R. =5+0.514kN =5.514 kN

The shear force and bending moment diagrams are shown in Fig. 14.6d.
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b 11.235
I & B T g
Shear force diagram
15
24
b
.5
\
A B c D
15
10.041 11.318
[ Bm |, 3m | 3m _|
3 & 2

Fig. 14.6 (d) Shear force and bending moment diagram

For ease of calculations, fixed end forces for various load cases are given in Fig.
14.7.
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Fig. 14.7 Table of fixed end moments

% PJv b M, = -2 {f.u};
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Summary

In this lesson the slope-deflection equations are derived for beams with
unyielding supports. The kinematically indeterminate beams are analysed by
slope-deflection equations. The advantages of displacement method of analysis
over force method of analysis are clearly brought out here. A couple of examples
are solved to illustrate the slope-deflection equations.
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Instructional Objectives

After reading this chapter the student will be able to

1. Derive slope-deflection equations for the case beam with yielding supports.

2. Estimate the reactions induced in the beam due to support settlements.

3. Analyse the beam undergoing support settlements and subjected to external
loads.

4. Write joint equilibrium equations in terms of moments.

5. Relate moments to joint rotations and support settlements.

15.1 Introduction

In the last lesson, slope-deflection equations were derived without considering
the rotation of the beam axis. In this lesson, slope-deflection equations are
derived considering the rotation of beam axis. In statically indeterminate
structures, the beam axis rotates due to support yielding and this would in turn
induce reactions and stresses in the structure. Hence, in this case the beam end
moments are related to rotations, applied loads and beam axes rotation. After
deriving the slope-deflection equation in section 15.2, few problems are solved to
illustrate the procedure.

Consider a beam AB as shown in Fig.15.1.The support B is at a higher
elevation compared to A by an amountA. Hence, the member axis has rotated
by an amount y from the original direction as shown in the figure. Let L be the
span of the beam and flexural rigidity of the beam El , is assumed to be constant
for the beam. The chord has rotated in the counterclockwise direction with
respect to its original direction. The counterclockwise moment and rotations are
assumed to be positive. As stated earlier, the slopes and rotations are derived by
superposing the end moments developed due to

(1) Externally applied moments on beams.
(2) Displacements 4,,6; and A (settlement)
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c) Beam with end moments

Figure 15.1

The given beam with initial support settlement may be thought of as
superposition of two simple cases as shown in Fig.15.1 (b) and in Fig. 15.1(c). In
Fig.15.1b, the kinematically determinate beam is shown with the applied load.
For this case, the fixed end moments are calculated by force method. Let ¢, and

¢, be the end rotations of the elastic curve with respect to rotated beam axis AB’

(see Fig.15.1c) that are caused by end moments M,, andM,,. Assuming that
rotations and displacements shown in Fig.15.1c are so small that

tamﬂzl//=$ (15.1)
Also, using the moment area theorem, ¢, and ¢, are written as
Myg'L Myg'L
=0, —y=—18—_—" 15.2a
Pa A~ Y 3E| 6EI ( )
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M.,'L M,'L
=0, —y=—>20—~__ A8 15.2b
=0~y 3E| 6E] ( )

Now solving for M, and M, in terms of8,,60, andy,

2El

Mo'= 2520, + 0 ~3p) (15.3a)
M= 2% (26, +0, —3p) (15.3b)

Now superposing the fixed end moments due to external load and end moments
due to displacements, the end moments in the actual structure is obtained .Thus
(see Fig.15.1)

M AB — M ABF +M AB' (15-43-)
Mg, =My, +Mg,' (15.4b)

Substituting for M,, and Mg, in equation (15.4a) and (15.4b), the slope-
deflection equations for the general case are obtained. Thus,

Mge=M," +2%(29A +60, —3y) (15.5a)
r  2El
Mg, =My, +T(20B +6, —3y) (15.5b)

In the above equations, it is important to adopt consistent sign convention. In the
above derivation A is taken to be negative for downward displacements.

Example 15.1

Calculate the support moments in the continuous beam ABC (see Fig.15.2a)
having constant flexural rigidity EI throughout ,due to vertical settlement of the
support B by 5mm. Assume E=200 GPa and |=4x10"m*.Also plot
guantitative elastic curve.
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Figure 15.2 (a)

In the continuous beam ABC, two rotations f;and 6. need to be evaluated.

Hence, beam is kinematically indeterminate to second degree. As there is no
external load on the beam, the fixed end moments in the restrained beam are
zero (see Fig.15.2b).

Figure 15.2 (b)

For each span, two slope-deflection equations need to be written. In span AB,
Bis below A. Hence, the chord AB rotates in clockwise direction. Thus,y ,; is

taken as negative.
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_ -3
Vo = =-1x10° (1)

Writing slope-deflection equation for span AB ,

Mas = 2%(29A +6, 3y )

For span AB, 6, =0, Hence,

M 4 :2%(98 +3x10°%)

M, =0O.4EI6;, +.0012EI (2
Similarly, for beam-end moment at end B, in span AB

M, = 0.4E1(20, +3x107°)
M, = 0.8E16, +0.0012EI (3)

In spanBC, the support C is above supportB, Hence the chord joining B'C
rotates in anticlockwise direction.

Wee =Wep =1x107° 4)
Writing slope-deflection equations for span BC,
M. = 0.8E160, +0.4E16, —1.2x10°El
M, = 0.8E16, +0.4El6, —1.2x10°El (5)

Now, consider the joint equilibrium of support B (see Fig.15.2c)

)

Fig 15.2c Free body diagram of
joint B
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Mg, + Mg, =0 (6)
Substituting the values of M, and M. in equation (6),

0.8E10, +1.2x10°El +0.8E16, +0.4E16, —1.2x10°El =0
Simplifying,

1.60, +0.46, =1.2x10°° (7)
Also, the support C is simply supported and hence, M, =0
Mg =0=0.89, +0.46, -1.2x10°El
0.80, +0.40, =1.2x107° (8)

We have two unknowns #;and 6.and there are two equations in 6, andd. .
Solving equations (7) and (8)

0, =—0.4286 x10° radians

0. =1.7143x10° radians (9)
Substituting the values of 6, ,6. and El in slope-deflection equations,

M,z =82.285kN.m

Mg, =68.570kN.m

M. = —68.573kN.m

M =0KkN.m (10)

Reactions are obtained from equations of static equilibrium (vide Fig.15.2d)
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i . . 68.570
A B B c
£
H-! I R-l'_ { l“
Hu-:

Fig 15.2d Computation of
reactions

In beam AB ,
D> Mg =0, R, =30.171kN(T)
Ry, =—30.171kN()
Rez = —13.714kN({)
R. =13.714 kN(T)

The shear force and bending moment diagram is shown in Fig.15.2e and elastic
curve is shown in Fig.15.2f.

Version 2 CE IIT, Kharagpur



30.171 30171
+
1.1 13.™
Shear force diagram
68.57

| 2.7T2m |

* . +

I |

Bending moment diagram
-82.285

Figure 15.2e Shear force and bending moment diagram

Example 15.2

15.2f Elas

ctic curve

A continuous beam ABCD is carrying a uniformly distributed load of 5 kN/m as
shown in Fig.15.3a. Compute reactions and draw shear force and bending
moment diagram due to following support settlements.
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Support B 0.005m vertically downwards
Support C  0.01 m vertically downwards

Assume E =200 GPa, | =1.35x10°m*

SkM/m
l ¥ ¥ ¥ L4 «!r ¥ ¥ l Y ¥ ¥ L
i | A% 1 Y 1 Ay
l 10m - 10m - 10m >

Fig 15.3a Continuous beam of Example 15.2

In the above continuous beam, four rotationséd,,6,,6. and 6, are to be

evaluated. One equilibrium equation can be written at each support.Hence,
solving the four equilibrium equations, the rotations are evaluated and hence the
moments from slope-deflection equations. Now consider the kinematically
restrained beam as shown in Fig.15.3b.

Referring to standard tables the fixed end moments may be evaluated .Otherwise
one could obtain fixed end moments from force method of analysis. The fixed
end moments in the present case are (vide fig.15.3b)

M, I‘- 10m

Fig 15.3b Kinematically restrained beam

M = 41.667 kN.m
M ¢, =-41.667 KN.m (clockwise)
M f. = 41.667 kN.m (counterclockwise)

M, =-41.667 kN.m (clockwise)
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M /[, =41.667 kN.m (counterclockwise)

M [. = —41.667 kKN.m (clockwise) (1)

In the next step, write slope-deflection equations for each span. In the
span AB, B is below Aand hence the chord joining AB’ rotates in the clockwise
direction (see Fig.15.3c)

Original position

/

A B C J D
5 ] I 7 Fal
il . - L :‘-*-“'
_% L M
e * o
' & D
" i
17} - : N
(1 —I'—{“.—.— TS
M g lu-l.'_

Fig 15.3c New support positions and free body diagrams of support

W ng =%6005=—0.0005 radians (negative as the chord AB’ rotates in the

clockwise direction from the original direction)

wee =—0.0005 radians (negative as the chord B'C’ rotates in the clockwise
direction)

Yo =01'—gl=0.001 radians (positive as the chord C'D rotates in the counter

clockwise direction from the original direction) (2)
Now, writing the expressions for the span end moments, for each of the spans,

M ,; = 41.667 +0.2E1(26, + 6, +0.0005)
M., =—41.667+0.2E1(26, + 6, +0.0005)

Mg =41.667 +0.2E1 (20, + 6, +0.0005)
M s = —41.667 + 0.2E1 (26, + 6, +0.0005)
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My =41.667 +0.2E1 (26, + 6, —0.001)
M e =—-41.667 +0.2E1 (20, + 6, —0.001) 3)

For the present problem, four joint equilibrium equations can be written, one each
for each of the supports. They are

>M,=0=M, =0

D My =0= Mg, + Mg =0

DM =0=Me +Mg, =0

D> Mp=0=M,=0 (4
Substituting the values of beam end moments from equations (3) in equation (4),

four equations are obtained in four unknown rotations 6,,6;,6. and 6,.They
are,

(El =200x10° x1.35x10° = 270,000 kN.m?)
20, + 0y =-1.2716x107°
0, +46; +6. =-0.001
0y + 46, +6, =0.0005
0. +20, =1.7716x10"° (5)

Solving the above sets of simultaneous equations, values ofé,,6;,6. and 6, are
evaluated.

0, =-5.9629x10™* radians
0 =-7.9013x10"° radians
0. =-8.7653x10"° radians

0, =9.2963x10™*  radians (6)

Version 2 CE IIT, Kharagpur



Substituting the values in slope-deflection equations the beam end moments are
evaluated.

M 5 = 41.667 +0.2x 270,000{2(-5.9629 x10 ) + (-7.9013x107°) + 0.0005)} = 0

Mg, =—41.667 +0.2x 270,000{2(-7.9013x107°) —5.9629 x10~* + 0.0005} = —55.40 KN.m
M. =41.667 +0.2x 270,000{2(—7.9013 x10~°) + (-8.7653 x10°) + 0.0005} = 55.40 kN.m
M s = —41.667 + 0.2 x 270,000{2(~8.765x10°) — 7.9013x 10 ° + 0.0005} = —28.40 kN.m
M, =41.667 +0.2x 270,000{2 x (—8.765x107°) +9.2963x10~* —0.001} = 28.40 KN.m

M oo = —41.667 +0.2 x 270,000{2 x 9.2963 x 10 —8.7653x10™° —0.001} = 0kN.m (7)

Reactions are obtained from equilibrium equations. Now consider the free body
diagram of the beam with end moments and external loads as shown in

Fig.15.3d.

18.38 33.09 23.53

31.62 16.91 26.47

&
-
—
!

10m 10m 10m

Fig 15.3d Shear force diagram

R, =19.46 KN(T)
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Ry, =30.54 kN(T)
Ree = 27.7kN(T)
R, =22.3kN(T)
Rep = 27.84 kN(T)
Ry, = 22.16 kN(T)

The shear force and bending moment diagrams are shown in Fig.15.5e.

62.5 66.24 62.5

I*' 10m - 10m + 10m g

Fig. 15.3e Bending moment diagram

Summary

In this lesson, slope-deflection equations are derived for the case of beam with
yielding supports. Moments developed at the ends are related to rotations and
support settlements. The equilibrium equations are written at each support. The
continuous beam is solved using slope-deflection equations. The deflected shape
of the beam is sketched. The bending moment and shear force diagrams are
drawn for the examples solved in this lesson.
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Instructional Objectives

After reading this chapter the student will be able to

1.
2.

3.
4.

State whether plane frames are restrained against sidesway or not.

Able to analyse plane frames restrained against sidesway by slope-deflection
equations.

Draw bending moment and shear force diagrams for the plane frame.

Sketch the deflected shape of the plane frame.

16.1 Introduction

In this lesson, slope deflection equations are applied to solve the statically
indeterminate frames without sidesway. In frames axial deformations are much
smaller than the bending deformations and are neglected in the analysis. With
this assumption the frames shown in Fig 16.1 will not sidesway. i.e. the frames
will not be displaced to the right or left. The frames shown in Fig 16.1(a) and Fig
16.1(b) are properly restrained against sidesway. For example in Fig 16.1(a) the
joint can’t move to the right or left without support A also moving .This is true
also for jointD. Frames shown in Fig 16.1 (c) and (d) are not restrained against
sidesway. However the frames are symmetrical in geometry and in loading and
hence these will not sidesway. In general, frames do not sidesway if

1) They are restrained against sidesway.
2) The frame geometry and loading is symmetrical

A A
# B * D
T e
C E

Fig- 16.1(a)
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Fig- 16.1(b)

Fig- 16.1(c)
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Fig- 16.1(d)

For the frames shown in Fig 16.1, the angle y in slope-deflection equation is
zero. Hence the analysis of such rigid frames by slope deflection equation
essentially follows the same steps as that of continuous beams without support
settlements. However, there is a small difference. In the case of continuous
beam, at a joint only two members meet. Whereas in the case of rigid frames two
or more than two members meet at a joint. At joint C in the frame shown in Fig
16.1(d) three members meet. Now consider the free body diagram of joint C as
shown in fig 16.2 .The equilibrium equation at joint C is

Ml.h ML
- [T .
M. &
Fig- 16.2
ZMC:O: Mg +M +M =0
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At each joint there is only one unknown as all the ends of members meeting at a
joint rotate by the same amount. One would write as many equilibrium equations
as the no of unknowns, and solving these equations joint rotations are evaluated.
Substituting joint rotations in the slope—deflection equations member end
moments are calculated. The whole procedure is illustrated by few examples.
Frames undergoing sidesway will be considered in next lesson.

Example 16.1

Analyse the rigid frame shown in Fig 16.3 (a). Assume El to be constant for all
the members. Draw bending moment diagram and also sketch the elastic curve.

Solution
In this problem only one rotation needs to be determined i. e. 6;. Thus the
required equations to evaluate &, is obtained by considering the equilibrium of

joint B. The moment in the cantilever portion is known. Hence this moment is
applied on frame as shown in Fig 16.3 (b). Now, calculate the fixed-end
moments by fixing the support B (vide Fig 16.3 c). Thus

SkN 10KM

El

FFTTT

|4—2m —»-Iq.—Em _+_Em_.|
Fig- 16.3 a Example 16.1
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5kN 10kN
\ D E

Fig- 16.3 b Moment at joint
B due to overhang

\ 10kN p
31-— 4?:
M,,= SkN.m M= - SkN.m

Me: =

Fig- 16.3 © Kinematically
restrained structure
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M5 =+5kNm

MF = -5kNm
MF. =0kNm
Mg, =0kNm

For writing slope—deflection equations two spans must be considered, BC
andBD. Since supports C and D are fixedg. =6, =0. Also the frame is

restrained against sidesway.

Mo :5+%[268]:5+ ElQ,

Mg = 5+%[&B]: -5+ 0.5E16,
Mg = ElG,
M = 0.5El6, (2)

Now consider the joint equilibrium of support B, (see Fig 16.3 d)

10

Mr.

Fig- 16.3 (d) Free - body diagram
of joint B
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DMg=0 = Mg +My-10=0 (3)

Substituting the value of Mg, and M. and from equation (2) in the above
equation

5+EIg, +El6, —-10=0

25

Q. ==
5 El

(4)

Substituting the values of 6, in equation (2), the beam end moments are
calculated

Mgp =+7.5kN-m
M e =—3.75kN-m
Mg =+2.5KN-m
Mo =+1.25kN-m (5)

The reactions are evaluated from static equations of equilibrium. The free body
diagram of each member of the frame with external load and end moments are
shown in Fig 16.3 (e)
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10kN

SkN
. (78 ¥ 3.75kN.m
4 T 3 i o . 0.93T5kN
¥
5 [10 5.9375 4.0625 KN
10.9375
L
vl ™ * 0.9375
2.5

of frame

c |4 0.9375

Re, =10.9375kN(1)
Re, = —0.9375kN(«)
Ro, = 4.0625kN(*)

Ry, = 0.9375kN(—)

Bending moment diagram is shown in Fig 16.3(f)

Fig-16.3(e) Free - body diagram

(6)
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10

3.75

Gl =L

Fig-16.3(f) Bending moment diagram
plotted on compression side

The vertical hatching is use to represent the bending moment diagram for the
horizontal member (beams) and horizontal hatching is used for bending moment
diagram for the vertical members.

The qualitative elastic curve is shown in Fig 16.3 (g).

i

A B_~<g :
a.:fim - = 'r

.'\.\‘
Eb I
| Elastic eurve

Fig-16.3(g) Elastic curve
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Example 16.2

Compute reactions and beam end moments for the rigid frame shown in Fig 16.4
(a). Draw bending moment and shear force diagram for the frame and also
sketch qualitative elastic curve.

Solution

SkM/m
Ay ¥ ¥ ¥ L ¥ L '
i B I
i '\.1
FEEE 21
2m
SkHN !
ne =y
I Zm
c v
FT T e
™ Gm S

Fig-16.4(a) Example 16.2

In this frame rotations 6, and 6, are evaluated by considering the equilibrium of

joint A and B. The given frame is kinematically indeterminate to second
degree. Evaluate fixed end moments. This is done by considering the
kinematically determinate structure. (Fig 16.4 b)
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c o HI “u

Fig-16.4(b) Kinematically restrained structure

2
ME =200 _i5knm
12
e —5x6?

ME, = = —15kN.m

5x2x22
Mgc :4—2225kNm

_ 2
ME, = 2X2%2 o5k 1)

Note that the frame is restrained against sidesway. The spans must be
considered for writing slope-deflection equations viz, A, B and AC. The beam

end moments are related to unknown rotations 6, and 6, by following slope-
deflection equations. (Force deflection equations). Support C is fixed and hence
6. =0.

2E(21
MAB = MAFBL +#(29A+08)

AB
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M ,; =15—+1.333E10, +0.667E16,
M., =—15+0.667E16, +1.333E16,
M gc = 2.5+ EI6, +0.5E16,

M, = -2.5+0.5E16,

Consider the joint equilibrium of support A (See Fig 16.4 (c))
> M, =0
M ,; =0=15+1.333El6, + 0.667EIG,
1.333E16, ++0.667E16, =-15

—22.489

Or, 26, +0y =——.

Equilibrium of joint B (Fig 16.4(d))

B
AJ 1 1 J (12.5 4
1oy ¢ : % 4 i 12.5
]
12.92 kN [
17.8 .

Fig-16.4© Free - body diagram
of frame

E

(2)

3)

17.8kN

—=1.25

2.5
6.25

. C
17.8
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Fig-16.4(d) Free - body diagram of joint B
ZMB:O = Mge + Mg, =0 (4)
Substituting the value of M. and M, in the above equation,

2.333E16, +0.667E10, =125 (5)

or, 3.4980, +0, = %

Solving equation (3) and (4)

~10.002

Oy (counterclockwise)

6
 —16.245 (©)

7 (clockwise)

Substituting the value of 6, and 6; in equation (2) beam end moments are
evaluated.

M 5 =15+1.333El (_16E'|245j+0.667 El (10'E0|02j =0

M, =—15+0.667El (_16E'|245J+.1.33EI (10;02) =-1

10.002

Mo =25+ EI( j=12.5kN.m

10.002

M =—2.5+O.5EI( j:z.s kN.m (7)
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Using these results, reactions are evaluated from equilibrium equations as shown
in Fig 16.4 (e)

22.5

1d.5

14.5

c 2.5

Fig-16.4(e) B.M.D

The shear force and bending moment diagrams are shown in Fig 16.4(g) and
16.4 h respectively. The qualitative elastic curve is shown in Fig 16.4 (h).
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12.92

| 138
K
\x
s 17.08
7 ':*'
6.25
Fig-16.4(f) S.F.D
M_ e o

Fig.16.4 ( g JElastic Curve
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Fig- 16.4(h) Elastic Curve

Example 16.3

Compute reactions and beam end moments for the rigid frame shown in Fig
16.5(a). Draw bending moment diagram and sketch the elastic curve for the

frame.

Solution

5 kMN/m
o,

'\-\,
.
P
: \fl S l‘lﬂ kM
g T Y

2l

4m

i i
I= 3m =I'~' 3m —>|

Fig-16.5(a) Example 16.3
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The given frame is kinematically indeterminate to third degree so three rotations
are to be calculated, ,,6. and@d,. First calculate the fixed end moments (see

Fig 16.5 b).

H‘H..\_HH
T, HI A
LI )
. 5 10 kN .
- ™ ; ;
1 ¥ Y H‘b B A ¥ F

Fig.16.5b Kinematically restrained structure

2
ME =24 4 kNm
20

_ 2
ME, =224 _ 5667 kN.m
30

2
|\/|BFC=1OX6'°;><3 =7.5kN.m
_ 2
ME = 102;9“3 = —7.5 kN.m
MIIBZD:MSB:MgE:MI'E:CZO (1)

The frame is restrained against sidesway. Four spans must be considered for
rotating slope — deflection equation: AB, BD, BC and CE. The beam end
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moments are related to unknown rotation at B, C, and D. Since the supports A
and E are fixed. 8, =6, =0.

MAB:4+%[29A+QB]

M, =4+EI6, +0.5E16, =4+0.5El0,
Mg, = —2.667EI16, + E16, =—2.667+El6,
M, = E16, +0.5E16,

M os =0.5E16, +EI6,

2E(21)

Mo =75+ [26, +6,]=7.5+1.333E16, +0.667EI 6,

Mg, =—7.5+.667E16, +1.333E14,
M = EI6. +0.5E16, = El6,
M. =0.5E16, +0.5E16, =0.5E16, )

Consider the equilibrium of joints B, D, C (vide Fig. 16.5(c))
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T,
T 5.080
1 \‘[ : 10KN 31.903
e,
6.889 | 1.485
- 1.48 | 1.
Al }\a B /1.013 !
1.03 5 “.B e !
2.794 T
6.095 3.905 - 4.502
9.403 4 302
v 3906
g —0452 L 1488 kN
+ 1.B09
0.452
1.953
. . - 1.485
L .
9.403 4.502

Fig-16.5 ( c ) Free - body diagram

ZMB:O = Mg +My +My, =0 (3)
ZMDzo = Mgz =0 (4)
ZMC =0 = Mg +Mg =0 (5)

Substituting the values of M,,M,.,M;,M;,Mand M. in the equations (3),
(4), and (5)

3.333E16, +0.667EI16, +0.5E16, =-4.833

0.5E16, +El6, =0

2.333E16, +0.667E16, =7.5 (6)
Solving the above set of simultaneous equations, &;,6. and 6, are evaluated.

Elg, =-2.4125
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El6, =3.9057
Elg, =1.2063 )

Substituting the values of 6;,6. and 6,in (2), beam end moments are
computed.

M, = 2.794 kN.m

Mg, = —5.080 kN.m

M, =—1.8094 kN.m

My, =0

M .. =6.859 kN.m

Mg =—3.9028 kN.m

M =3.9057 kN.m

M. =1.953 kN.m 8)

The reactions are computed in Fig 16.5(d), using equilibrium equations known
beam-end moments and given loading.
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Fig-“lﬁ.E[d} Bending moment diagram

Ry, =6.095 kN(T)

Rp, =9.403 kN(T)

Re, = 4.502 kN(T)

Ry =1.013kN(—)

Rox =0.542 kN(—)

Re, =—1.465 kN (<) 9)

The bending moment diagram is shown in Fig 16.5.(e) and the elastic curve is
shown in Fig 16.5(f).
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Summary

In this lesson plane frames restrained against sidesway are analysed using
slope-deflection equations. Equilibrium equations are written at each rigid joint of
the frame and also at the support. Few problems are solved to illustrate the
procedure. The shear force and bending moment diagrams are drawn for the
plane frames.
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Instructional Objectives

After reading this chapter the student will be able to

1. Derive slope-deflection equations for the frames undergoing sidesway.

2. Analyse plane frames undergoing sidesway.

3, Draw shear force and bending moment diagrams.

4. Sketch deflected shape of the plane frame not restrained against sidesway.

17.1 Introduction

In this lesson, slope-deflection equations are applied to analyse statically
indeterminate frames undergoing sidesway. As stated earlier, the axial
deformation of beams and columns are small and are neglected in the analysis.
In the previous lesson, it was observed that sidesway in a frame will not occur if

1. They are restrained against sidesway.
2. If the frame geometry and the loading are symmetrical.

In general loading will never be symmetrical. Hence one could not avoid
sidesway in frames.

I RN e
. |
e | _

ey c C
L3 |
4 Elastic curve
“+——Chord
h | |
i
i
Yap wCD
W
A D
3 L -

Fig.17.1 Plane frame undergoing sway

For example, consider the frame of Fig. 17.1. In this case the frame is
symmetrical but not the loading. Due to unsymmetrical loading the beam end
moments M,. and M., are not equal. If bis greater thana, thenM,. > M ;. In
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such a case joint BandC are displaced toward right as shown in the figure by an
unknown amountA . Hence we have three unknown displacements in this frame:
rotations 6,6, and the linear displacementA. The unknown joint rotations

f,and 6. are related to joint moments by the moment equilibrium equations.

Similarly, when unknown linear displacement occurs, one needs to consider
force-equilibrium equations. While applying slope-deflection equation to columns

. . . A
in the above frame, one must consider the column rotation 1//[:—) as

unknowns. It is observed that in the column AB, the end B undergoes a linear
displacement Awith respect to end A. Hence the slope-deflection equation for
column AB is similar to the one for beam undergoing support settlement.
However, in this case Ais unknown. For each of the members we can write the
following slope-deflection equations.

2El [

M =M +=—[26, +6, _3‘//AB] where y 5 =_%

v ,.s IS assumed to be negative as the chord to the elastic curve rotates in the
clockwise directions.

2El
Mg, = ME's:A +_[295 +0, _SV/AB]
MBC = Mgc +2%[293 +90]
MCB = MCFB +£[20c ""98]

2El A
Mo :M(:FD+_[29c+‘9D_3'//0D] Veo :_F

,: 2El

Mpe =Mpc +_[2‘9D +0c _3‘//CD] (17.1)

As there are three unknowns (6,6, andA), three equations are required to
evaluate them. Two equations are obtained by considering the moment
equilibrium of joint B and C respectively.

> M, =0 = Mg +M__=0 (17.2a)

> M. =0 =  Mg+M_ =0 (17.2b)

Now consider free body diagram of the frame as shown in Fig. 17.2. The
horizontal shear force acting at Aand B of the column AB is given by
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Fig.17.2 Free - body diagrams of columns and beams

H, = Men tMyg ! M (17.3a)

Similarly for memberCD, the shear force H,is given by

H, :w (17.3b)

Now, the required third equation is obtained by considering the equilibrium of
member BC,

> F, =0 =  H,+H,=0

|\/lBAﬁ_I\/lAB +MCD+MDC

=0 17.4
. . (17.4)

Substituting the values of beam end moments from equation (17.1) in equations
(17.2a), (17.2b) and (17.4), we get three simultaneous equations in three
unknowns 6,,6. andA, solving which joint rotations and translations are

evaluated.
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Knowing joint rotations and translations, beam end moments are calculated from
slope-deflection equations. The complete procedure is explained with a few
numerical examples.

Example 17.1

Analyse the rigid frame as shown in Fig. 17.3a. Assume EI to be constant for all
members. Draw bending moment diagram and sketch qualitative elastic curve.

10kN
____1okN_ B Zm 3 Zm c
Y El
3m El El
. AN
A D

Fig.17.3 (a) Example 17.1

Solution

In the given problem, joints Band C rotate and also translate by an amountA .
Hence, in this problem we have three unknown displacements (two rotations and
one translation) to be evaluated. Considering the kinematically determinate
structure, fixed end moments are evaluated. Thus,

M =0 ;M[, =0 ;M. =+10kN.m ;M5 =-10kN.m ;M5 =0 ;M /. =0. (1)

The ends A and D are fixed. Hence, 8, =6, =0. Joints Band C translate by

the same amountA . Hence, chord to the elastic curve AB'and DC' rotates by an
amount (see Fig. 17.3b)

A
Y =W¥eo = 3 (2)

Chords of the elastic curve AB'andDC' rotate in the clockwise direction;
hencey ,; and v, are taken as negative.
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Fig.17.3b Column ratation

Now, writing the slope-deflection equations for the six beam end moments,

2El
M = M,':B +T[20A + 06 _3l//AB]

Mg =0;0,=0 pp =——

2 2
M, =—Elf; +—EIA
=3 BT

4 2
MBA :§EIQB +§EIA
1
Mec =10+EI0, + 2 EI6,
1
Mcg =10+ EIG, +EI0,

4 2
M. =—Elf. +=EIA
co T3 ¢T3
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2 2
Mpe = —Elg; +=EIA 3
DC 3 C 3 ( )

Now, consider the joint equilibrium of BandC (vide Fig. 17.3c).

> My =0 = Mg, +M =0 (4)
> M. =0 =  Mg+M_ =0 (5)
M. Mis
B o [+
] d
- " MLI.'

Fig.17.3c Free - body diagram of joints B and C

The required third equation is written considering the horizontal equilibrium of the
entire frame i.e. » F, =0 (vide Fig. 17.3d).

—H,+10-H, =0

=  H,+H,=10. (6)
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Fig.17.3d Free - body diagram of frame

Considering the equilibrium of the column AB andCD, yields

H — M BA + M AB
' 3
and
HZZMCD+MDC (7)
3
The equation (6) may be written as,
Mgya+M, g +Mp + M. =30 (8)

Substituting the beam end moments from equation (3) in equations (4), (5) and

(6)

2.333E16, +0.5E16,, +0.667EIA = —10 (9)

2.333El6, +0.5E16; +0.667EIA =10 (10)
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2E10, +2E16, +§EIA=30 (11)

Equations (9), (10) and (11) indicate symmetry and this fact may be noted. This
may be used as the check in deriving these equations.

Solving equations (9), (10) and (11),

Elg, =-9.572; Elg. =1.355 and EIA=17.417.

Substituting the values of El&;,El6. and EIAin the slope-deflection equation
(3), one could calculate beam end moments. Thus,

M,z =5.23 kN.m (counterclockwise)
M, =—1.14 kN.m(clockwise)

M. =1.130 kN.m

M = —13.415 kN.m

M., =13.406 kN.m

M. =12.500 kN.m.

The bending moment diagram for the frame is shown in Fig. 17.3 e. And the
elastic curve is shown in Fig 17.3 f. the bending moment diagram is drawn on the
compression side. Also note that the vertical hatching is used to represent
bending moment diagram for the horizontal members (beams).
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Fig.17.3e Bending moment diagram
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Fig.17.3f Elastic curve
Example 17.2

Analyse the rigid frame as shown in Fig. 17.4a and draw the bending moment
diagram. The moment of inertia for all the members is shown in the figure.
Neglect axial deformations.

B c
|
dm Im
12 kM | = l
H——— T
1]
3m
J i
A
i: 4m :-{

Fig.17.4a (Example 17.2)
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Solution:

In this problem rotations and translations at joints B and C need to be evaluated.
Hence, in this problem we have three unknown displacements: two rotations and
one translation. Fixed end moments are

M. :$:QKN.m ‘ME, =-9kN.m ;

1)
ML =0 ;M5 =0;M5 =0;M5. =0.

The joints Band C translate by the same amountA. Hence, the chord to the
elastic curve rotates in the clockwise direction as shown in Fig. 17.3b.

__A
Y = 6
A
and Yeo = 3 2)
. O o O
B B C C
% g
o
W,
# Fig.17.4b Column rotation due to sway

Now, writing the slope-deflection equations for six beam end moments,

2(2El) A
M, =9+ Oy +—
AB 6 |: B 2:|

M, =9+0.667E16, +0.333EIA

M, = —9+1.333E16, +0.333EIA
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Mg = El6, +0.5E16,
M = 0.5E16, + El6,
M, =1.333E16, +0.667EIA
M .. = 0.667EI16, +0.667EIA (3)
Now, consider the joint equilibrium of BandC .
> Mg =0 = Mg +M__=0 (4)
> M. =0 =  Mg+M_ =0 (5)

The required third equation is written considering the horizontal equilibrium of the
entire frame. Considering the free body diagram of the member BC (vide Fig.
17.4c),

H,+H,=0.
(6)
H; " H
— E E..‘_'
s
Mun MI'. Ml
4 _B_.. g D-H"
H1 M'.'. E
1ZkM
g + H,
i H, —
Fo ) D Mee

Fig.17.4c Free - body diagram
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The forces H, and H, are calculated from the free body diagram of column
AB andCD. Thus,

H1 =—6+ MBA+MAB
6
and
H2=MCD+MDC (7)
3
Substituting the values of H, and H, into equation (6) yields,
Mgy, +M g +2M, +2M . =36 (8)

Substituting the beam end moments from equation (3) in equations (4), (5) and
(8), yields

2.333E16; +0.5E16, +0.333EIA =9

2.333E16. +0.5E16; +0.667EIA =0

2E16, +4E16. +3.333EIA =36 9)
Solving equations (9), (10) and (11),
Elg, =2.76; El6. =-4.88 and EIA=15.00.

Substituting the values of Elé&;,El6. and EIAin the slope-deflection equation
(3), one could calculate beam end moments. Thus,

M ,; =15.835 kN.m (counterclockwise)
M, =—0.325 kN.m(clockwise)

Mg =0.32 kN.m

Mz =—3.50 kN.m

My =3.50 kN.m

Mg =6.75 kN.m

The bending moment diagram for the frame is shown in Fig. 17.4 d.
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Example 17.3
Analyse the rigid frame shown in Fig. 17.5 a. Moment of inertia of all the

members are shown in the figure. Draw bending moment diagram.

10kN
S5kM B | c
3 * )
I."|-n—1m —wfs+—1m —h-".ll
/ \
||l II'I
/ \
/
- / 21 In'-.
/ \
f \
/ x
/
L3 \ D
e T

Fig.17.5a Example 17.3

a oy
B g vl -
:?’?%l____..j---- e =i ._lj?t
AjA; B-" W . L
||II -'-. = III| :'
In' '|I ':
/ LT
|III .'. III| I:-
|III 'I.. Illl IIl
||l .': II| I.
III| g '|I ::_l-'_-.\,\.
il e
ff—%ﬂ.£3 ¥ Ra
a ‘l;l-' |II

Fig.17.5b Rotation of
Columns and beams

Under the action of external forces, the frame gets deformed as shown in Fig.
17.5b. In this figure, chord to the elastic curve are shown by dotted line. BB' is
perpendicular to AB and CC"is perpendicular to DC. The chords to the elastic
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curve AB" rotates by an angle y,;, B"C" rotates by y,. and DC rotates by
¥ as shown in figure. Due to symmetry, v, =y ,,. From the geometry of the
figure,

v, = BB" A
AB -
LAB LAB
But
A= A
cos
Thus,
___ A A
Ve LgCosa 5
A
Veo __E
A, 2Atana A
=—== =Atana = — 1
Vac 5 2 5 (1)

We have three independent unknowns for this problem 6;,6. andA. The ends
A and D are fixed. Hence, 6, =6, =0. Fixed end moments are,

ME =0 ;M5 =0 ;MF =+250kN.m ;M5 =—2.50kN.m ;M5 =0 ;MF. =0.

Now, writing the slope-deflection equations for the six beam end moments,

_ 2E(21)

M
AB 51

[‘9A =3 ns ]

M, = 0.784E16, +0.471EIA
M, =1.568E16, +0.471EIA

Mg =2.5+2EIf, + EI6, —0.6EIA
M. =-2.5+EIf, +2E16, —0.6EIA

M, =1.568E16, +0.471EIA
M. = 0.784E10, +0.471EIA )

Now, considering the joint equilibrium of BandC, yields
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> Mg =0 = My +M__ =0

3.568E10, +El6, —0.129EIA = 2.5 3)
> M. =0 =  Mg+M_ =0
3.568E10, +EIf, —0.129EIA = 2.5 (4)

sl | om
f ;
y o ¥ ¥ *lﬁ*'- .
£ “H \ ! ",
Mo | \
I| 1
|III IIIII|
/ \
|III III|
IIIIII IIIIII|I
/ \
/ \
/ \
/ \
Mﬁﬂ ‘ Hﬂ:I.l | g
‘[ v $V

Fig.17.5c Free- body diagram

Shear equation for

Column AB
5H1_MAB_MBA+(1)Vl:O (5)
Column CD
5H2_MCD_MDC+(1)V2:0 (6)
Beam BC
YM, =0 2V, - My —Mg —10=0 )
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> F =0 H,+H,=5 (8)

YF, =0 V,-V,-10=0 (9)

Mg + M +10

From equation (7), V, = >

From equation (8), H,=5-H,

Mg + Mg +10_

From equation (9), V, =V, -10= 10

Substituting the values of V,,H,and V, in equations (5) and (6),

60-10H, —2M ,; —2M, + My + Mg, =0 (10)
—10+10H, —2M ¢, —2M e + Mg + Mg, =0 (11)

Eliminating H, in equation (10) and (11),
Myp+Mg +Myp +Mpe —Mge =M =25 12)

Substituting the values of M ,;,Mg,,M,,M. in (12) we get the required third
equation. Thus,

0.784E16, +0.471EIA + 1.568E16, +0.471EIA + 1.568E16,. +0.471EIA +
0.784El6. +0.471EIA-(2.5+ 2EIG; + ElIG. —0.6EIA)-
(-25+El6; +2E16, —0.6EIA)=25

Simplifying,
—0.648El16,. —0.648E16; +3.084EIA =25 (13)

Solving simultaneously equations (3) (4) and (13), yields

Elg, =-0.741; Elg. =1.205 and EIA=8.204.

Substituting the values of El&;,El6, and EIAin the slope-deflection equation
(3), one could calculate beam end moments. Thus,

M, =3.28 KN.m
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M., =2.70 KN.m

Mge =—2.70 kKN.m

Mg =-5.75 kN.m

Mo =5.75 kN.m

Mo =4.81kN.m. (14)

The bending moment diagram for the frame is shown in Fig. 17.5 d.

2.703
T
Z2.703 My 5.7T51
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|II |I| -.—|-—~I
|I ! \& 1
HF.-' 2.703 ““x'".
A N
|III II| III|- x\"'
f— T
e | —
— § ™
3.28 4.808

Fig.17.5d Bending moment diagram

Summary

In this lesson, slope-deflection equations are derived for the plane frame
undergoing sidesway. Using these equations, plane frames with sidesway are
analysed. The reactions are calculated from static equilibrium equations. A
couple of problems are solved to make things clear. In each numerical example,
the bending moment diagram is drawn and deflected shape is sketched for the
plane frame.
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Instructional Objectives

After reading this chapter the student will be able to
1. Calculate stiffness factors and distribution factors for various members in
a continuous beam.
Define unbalanced moment at a rigid joint.
Compute distribution moment and carry-over moment.
Derive expressions for distribution moment, carry-over moments.
Analyse continuous beam by the moment-distribution method.

abrwn

18.1 Introduction

In the previous lesson we discussed the slope-deflection method. In slope-
deflection analysis, the unknown displacements (rotations and translations) are
related to the applied loading on the structure. The slope-deflection method
results in a set of simultaneous equations of unknown displacements. The
number of simultaneous equations will be equal to the number of unknowns to be
evaluated. Thus one needs to solve these simultaneous equations to obtain
displacements and beam end moments. Today, simultaneous equations could be
solved very easily using a computer. Before the advent of electronic computing,
this really posed a problem as the number of equations in the case of multistory
building is quite large. The moment-distribution method proposed by Hardy Cross
in 1932, actually solves these equations by the method of successive
approximations. In this method, the results may be obtained to any desired
degree of accuracy. Until recently, the moment-distribution method was very
popular among engineers. It is very simple and is being used even today for
preliminary analysis of small structures. It is still being taught in the classroom for
the simplicity and physical insight it gives to the analyst even though stiffness
method is being used more and more. Had the computers not emerged on the
scene, the moment-distribution method could have turned out to be a very
popular method. In this lesson, first moment-distribution method is developed for
continuous beams with unyielding supports.

18.2 Basic Concepts

In moment-distribution method, counterclockwise beam end moments are taken
as positive. The counterclockwise beam end moments produce clockwise
moments on the joint Consider a continuous beam ABCD as shown in Fig.18.1a.
In this beam, ends A and D are fixed and hence,8, =0, =0.Thus, the

deformation of this beam is completely defined by rotations ¢, and ¢, at joints B
and C respectively. The required equation to evaluate ¢; and ¢, is obtained by
considering equilibrium of joints B and C. Hence,
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D Mg=0 = Mg, +My =0 (18.1a)
D Mc=0 = Mg +Mcp =0 (18.1b)

According to slope-deflection equation, the beam end moments are written as

2El
M BA — MEA +L—AB(293)

AB
4E| 5
LAB
byKas .M BFA is the fixed end moment at joint B of beam AB when joint B is fixed.
Thus,

is known as stiffness factor for the beam AB and it is denoted

MBA = M|'3:A+ KABHB

Mg ZMBFC "‘KBC(HB +7]

o
Mcg = M('Z:B +KCB(90 +7Bj

In Fig.18.1b, the counterclockwise beam-end moments M, and M. produce
a clockwise moment Mzon the joint as shown in Fig.18.1b. To start with, in

moment-distribution method, it is assumed that joints are locked i.e. joints are
prevented from rotating. In such a case (vide Fig.18.1b),

0z =60: =0, and hence

MBA:MI'B:A
Mgc =MBFC
Mcs :M('Z:B
Mep = MC'::D (18.3)

Since joints B and C are artificially held locked, the resultant moment at joints B
and C will not be equal to zero. This moment is denoted by Mg and is known as
the unbalanced moment.
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Fig. 18.1a Continuous Beam
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Fig. 18.1b Continuous beam with fixed joints.
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o Lk
M,

Fig. 18.1c Free - body diagram of joints B

Thus,
MB:MBFA+MBFC

In reality joints are not locked. Joints B and C do rotate under external loads.
When the joint B is unlocked, it will rotate under the action of unbalanced

moment M g . Let the joint B rotate by an angle #g; , under the action of Mg . This
will deform the structure as shown in Fig.18.1d and introduces distributed

moment M SA,M SC in the span BA and BC respectively as shown in the figure.

The unknown distributed moments are assumed to be positive and hence act in
counterclockwise direction. The unbalanced moment is the algebraic sum of the
fixed end moments and act on the joint in the clockwise direction. The
unbalanced moment restores the equilibrium of the joint B. Thus,

D Mg=0, MG +Mg+Mg=0 (18.4)
The distributed moments are related to the rotation 6, by the slope-deflection

equation.
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M gA = Kgabs:
M gc = KpcOm (18-5)
Substituting equation (18.5) in (18.4), yields

‘951(KBA+KBC):_MB

In general,

(18.6)

where summation is taken over all the members meeting at that particular joint.
Substituting the value of 65 in equation (18.5), distributed moments are

calculated. Thus,

K
MSA_ iMB

__ZK
KBC

ZK
Kea

The ratio Z < is known as the distribution factor and is represented by DFg, .

Mgc =- Mg (18.7)

Thus,

d
M BA — _DFBA.M B

Mgc =—-DFgc Mg (18.8)

The distribution moments developed in a member meeting at B, when the joint B
is unlocked and allowed to rotate under the action of unbalanced moment Mg is
equal to a distribution factor times the unbalanced moment with its sign reversed.

As the joint B rotates under the action of the unbalanced moment, beam end
moments are developed at ends of members meeting at that joint and are known
as distributed moments. As the joint B rotates, it bends the beam and beam end
moments at the far ends (i.e. at A and C) are developed. They are known as
carry over moments. Now consider the beam BC of continuous beam ABCD.
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When the joint B is unlocked, joint C is locked .The joint B rotates by &g, under

the action of unbalanced moment Mg (vide Fig. 18.1e). Now from slope-
deflection equations

Mgc = KBCQB
1
MBC ZEKBCQB
14
M :EMBC (18.9)

1 -I.F F.-J"Li1 —"‘l':!— E
D e S

Ti;
:
ITET

iy

Fig.18.1e Carry - over moment

The carry over moment is one half of the distributed moment and has the same
sign. With the above discussion, we are in a position to apply moment-
distribution method to statically indeterminate beam. Few problems are solved
here to illustrate the procedure. Carefully go through the first problem, wherein
the moment-distribution method is explained in detail.

Example 18.1

A continuous prismatic beam ABC (see Fig.18.2a) of constant moment of inertia
is carrying a uniformly distributed load of 2 kN/m in addition to a concentrated
load of 10 kN. Draw bending moment diagram. Assume that supports are
unyielding.
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Fig. 18.2a Example 18.1

Solution

Assuming that supports B and C are locked, calculate fixed end moments
developed in the beam due to externally applied load. Note that counterclockwise
moments are taken as positive.

2
ME = Whie _ 294 5ynm
12 12
2
Fo Whe 29 5 m
2 1
2
mp, = Pabt_10x2x4 g nm
L2 16
2
wE P 10x2xd_ o o "

12, 16

Before we start analyzing the beam by moment-distribution method, it is required
to calculate stiffness and distribution factors.

4El
Ken =75
4E|
Kec =74

At B: Z K =2.333EI

L _LABEL_ oo
2.333EI

DFge = —1 = 0.429
2.333El
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AtC: Y K=El

Note that distribution factor is dimensionless. The sum of distribution factor at a
joint, except when it is fixed is always equal to one. The distribution moments are
developed only when the joints rotate under the action of unbalanced moment. In
the case of fixed joint, it does not rotate and hence no distribution moments are
developed and consequently distribution factor is equal to zero.

In Fig.18.2b the fixed end moments and distribution factors are shown on a
working diagram. In this diagram B and C are assumed to be locked.

1.5 .15 +5 . 5

Fig. 18.2b

Now unlock the joint C. Note that joint C starts rotating under the unbalanced
moment of 5 kKN.m (counterclockwise) till a moment of -5 kN.m is developed
(clockwise) at the joint. This in turn develops a beam end moment of +5 kN.m
(l\/l CB ) This is the distributed moment and thus restores equilibrium. Now joint C
is relocked and a line is drawn below +5 kN.m to indicate equilibrium. When joint
C rotates, a carry over moment of +2.5 kKN.m is developed at the B end of
member BC.These are shown in Fig.18.2c.

'.:J—_ 0.571 |

{0428 F——10}—
+1.5 - 1.5 + 5.0 - 5.0
+ 2.5 - + 5.0
a
Fig. 18.2¢c

When joint B is unlocked, it will rotate under an unbalanced moment equal to
algebraic sum of the fixed end moments(+5.0 and -1.5 kN.m) and a carry over
moment of +2.5 kN.m till distributed moments are developed to restore
equilibrium. The unbalanced moment is 6 kN.m. Now the distributed moments
Mg and Mg, are obtained by multiplying the unbalanced moment with the

corresponding  distribution factors and reversing the sign. Thus,
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Mpgc =—-2574KkN.m and Mg, =-3.426 kN.m. These distributed moments restore

the equilibrium of joint B. Lock the joint B. This is shown in Fig.18.2d along with
the carry over moments.

e
,I A B c
i j.'.;l'.- .-:-!_r;
+1.5
- 1.713 = 1.5 + 5.0 - 5.0
- 3426 2 +2.5 50
4.926 2574 — 0
4.926 T L 4,287
Fig. 18.2d

Now, it is seen that joint B is balanced. However joint C is not balanced due to
the carry over moment -1.287 kN.m that is developed when the joint B is allowed
to rotate. The whole procedure of locking and unlocking the joints C and B
successively has to be continued till both joints B and C are balanced
simultaneously. The complete procedure is shown in Fig.18.2e.

B LH
- 0.571 0.428 A
r.:a'.:l'-" .-E:_r.ll'.-
EEM it - 1.5 + 5.0 - 5.0
- 1.7T18 i
Balance C & C.0 * 2.5 —+50
- 3426 - BETH ——0_ o
Balance B & C.Oto Bto Ato C i ot | A e L —
- d.926 + 4. 926 T - 1.2B7
Balance C & C.O - 0.368 0644 * + 1.287
Balance B & C.O - 5.294 - 0276 — o
-~ 0.184 - 0.0394 + 5,264 = . 0138
- 8.333 + 006 +—+ 0.138
- 0030 — 0
Balance C ol i _ + 5333 . D.015
- + 0.013
Final moment - 04497 0

Fig. 18.2e Moment - distribution method : Computation

The iteration procedure is terminated when the change in beam end moments is
less than say 1%. In the above problem the convergence may be improved if we
leave the hinged end C unlocked after the first cycle. This will be discussed in the
next section. In such a case the stiffness of beam BC gets modified. The above
calculations can also be done conveniently in a tabular form as shown in Table
18.1. However the above working method is preferred in this course.
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Table 18.1 Moment-distribution for continuous beam ABC

Joint A B C
Member AB BA BC CB
Stiffness 1.333El 1.333El El El
Distribution 0.571 0.429 1.0
factor
FEM in | +1.5 -1.5 +5.0 -5.0
kKN.m
Balance +2.5 +5.0
joints C ,B|-1.713 -3.426 -2.579 0
and C.O.

-4.926 +4.926 -1.287
Balance C +0.644 1.287
and C.O.
Balance B -0.368 -0.276 -0.138
and C.O.
Balance C | -0.184 -5.294 +5.294 0.138
C.O. +0.069 0
Balance B | -0.02 -0.039 -0.030 -0.015
and C.O.
Balance C +0.015
Balanced -0.417 -5.333 +5.333 0
moments in
kKN.m

Modified stiffness factor when the far end is hinged

As mentioned in the previous example, alternate unlocking and locking at the
hinged joint slows down the convergence of moment-distribution method. At the
hinged end the moment is zero and hence we could allow the hinged joint C in
the previous example to rotate freely after unlocking it first time. This
necessitates certain changes in the stiffness parameters. Now consider beam
ABC as shown in Fig.18.2a. Now if joint C is left unlocked then the stiffness of
member BC changes. When joint B is unlocked, it will rotate by 65, under the

action of unbalanced moment M, .The support C will also rotate by 6., as it is
free to rotate. However, momentM =0. Thus

K
Mcg =Kpcbc + 5 Og (18.7)
But, Mcg =0
g
Now,
K
Mpgc = Kpcbp + ZBC Oc (18.9)
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Substituting the value of &¢ in egn. (18.9),

Kac 3

MBC :KBCQB_ 95 :ZKBCQB (18-10)

Mgc =KgcOs (18.11)

. . . 3
The Kg is known as the reduced stiffness factor and is equal to ZKBC
Accordingly distribution factors also get modified. It must be noted that there is
no carry over to joint C as it was left unlocked.
Example 18.2

Solve the previous example by making the necessary modification for hinged end

! s B T c
,1 | D64 | y, | D36 1.0 | i
" 1.5 L %
- 1.92 « 1.5 + 5.0 = 5.0
. 042 - 3.84 + 2.5 + 5.0
- - 534 - 2.168 o
Sl o (8 e - S

Fig. 18.3 Example 18.2

Fixed end moments are the same. Now calculate stiffness and distribution
factors.

Kga =1.333El, Kge = % El =0.75El

JointB: Y K=2083, D, =064, Dic =036

Joint C: ) K=075El, D& =10

All the calculations are shown in Fig.18.3a

Please note that the same results as obtained in the previous example are
obtained here in only one cycle. All joints are in equilibrium when they are

unlocked. Hence we could stop moment-distribution iteration, as there is no
unbalanced moment anywhere.
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Example 18.3

Draw the bending moment diagram for the continuous beam ABCD loaded as
shown in Fig.18.4a.The relative moment of inertia of each span of the beam is

also shown in the figure.

3 kN/m |10 kN 5 kN
14 v+ ¥ ¢ + 4 ...J’._..'Ii'.-.-j'_.ﬂ_ ¥ < Y
,L-‘- B -d e »le -.=||
Em 3 m 3 m 3 m
Fig. 18.4a Example 18.3
Solution

Note that joint C is hinged and hence stiffness factor BC gets modified. Assuming
that the supports are locked, calculate fixed end moments. They are

MF, =16 kN.m
MF, =-16 kN.m
ME. =7.5kN.m

ME, =—7.5 kN.m | and

ME =15 kN.m

In the next step calculate stiffness and distribution factors

4E|
Kga =——

3 8EI
Kgec =——
BC T4 6
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8EI
oo =78
At joint B:
ZK = 0.5E1 +1.0El =1.5EI
pf, = OBl _ 333
1.5ElI
DBFC :—1'OEI =0.667
5ElI
At C:

D K=El,D§ =10
Now all the calculations are shown in Fig.18.4b

16.00 -16.0 7.50 - 7.5 + 15.0
2.04 + 4.08 - 375 - 7.5

18.04 -11.92 + BT -15.0 T

A— — ¥ 11.92 S

Fig. 18.4b Computation

This problem has also been solved by slope-deflection method (see example
14.2).The bending moment diagram is shown in Fig.18.4c.
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24.0 15.0

11.92 15.0

18.04

Fig. 18.4c Bending - moment diagram

Summary

An introduction to the moment-distribution method is given here. The moment-
distribution method actually solves these equations by the method of successive
approximations. Various terms such as stiffness factor, distribution factor,
unbalanced moment, distributing moment and carry-over-moment are defined in
this lesson. Few problems are solved to illustrate the moment-distribution method
as applied to continuous beams with unyielding supports.
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Instructional Objectives
After reading this chapter the student will be able to
1. Solve continuous beam with support settlements by the moment-

distribution method.

2. Compute reactions at the supports.
3. Draw bending moment and shear force diagrams.
4, Draw the deflected shape of the continuous beam.

19.1 Introduction

In the previous lesson, moment-distribution method was discussed in the context
of statically indeterminate beams with unyielding supports. It is very well known
that support may settle by unequal amount during the lifetime of the structure.
Such support settlements induce fixed end moments in the beams so as to hold

the end slopes of the members as zero (see Fig. 19.1).

[>

M.,
.

y =

3 ; - B
3 [ & &
Fig . 19.1 Support settlement without ratation

In lesson 15, an expression (equation 15.5) for beam end moments were derived

by superposing the end moments developed due to

1. Externally applied loads on beams

2. Due to displacements 6,,0, and A (settlements).
The required equations are,

2El

AB

M, =My + {ZHA +0, —S—A} (19.1a)

AB
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2
M,, =M, +—AB{293 0, —E’—A} (19.1b)

AB AB

This may be written as,

Mg =Mi +2K,5[20, +6,]+ M 3 (19.2a)
Mga = Mg, + 2K 5 [26;, + 6, ]+ M3, (19.2b)
where K ,; = IiIAB is the stiffness factor for the beam AB. The coefficient 4 has

AB
been dropped since only relative values are required in calculating distribution

factors.

6EI A

2
LAB

Note that M, =M 3, =— (19.3)

M3, is the beam end moments due to support settlement and is negative
(clockwise) for positive support settlements (upwards). In the moment-distribution
method, the support moments M, and M:, due to uneven support settlements

are distributed in a similar manner as the fixed end moments, which were

described in details in lesson 18.

It is important to follow consistent sign convention. Here counterclockwise beam
.\ . . A .

end moments are taken as positive and counterclockwise chord rotation (IJ is

taken as positive. The moment-distribution method as applied to statically
indeterminate beams undergoing uneven support settlements is illustrated with a

few examples.
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Example 19.1

Calculate the support moments of the continuous beam ABC (Fig. 19.2a) having
constant flexural rigidity EI throughout, due to vertical settlement of support B

by 5mm. Assume E =200 GPa ; and | =4x10“"m*.

4A B c
= ‘/J] = El éﬁ ¥ El u; |\\t
Simm
B T g
=S
5m 1. 5m I

.
gl

Fig . 19.2a Chord rotation due to support settlement
( Example 19.1 )

Solution

There is no load on the beam and hence fixed end moments are zero. However,
fixed end moments are developed due to support settlement of B by 5mm. In the

span AB , the chord rotates by y ,; in clockwise direction. Thus,

5x107°
YV = 5
6EI 6x200x10° x4x10*( 5x10°°
MiB:MSA:_ ABl//AB:_ (—
L r 5 5
=96000 Nm =96 kNm. (1)

In the spanBC, the chord rotates by .. in the counterclockwise direction and
hence taken as positive.

B 5x10°°
5

Vac
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6EI 6x200x10° x4x10* (5x10°°
MESsc:MgB:_ "W =~ 5 [ 5 ]

= —-96000 Nm = —96 kKNm. (2)
Now calculate stiffness and distribution factors.

El
Ky, =8 _02El and K, :% 2% = 0.15E| 3)

AB BC

Note that, while calculating stiffness factor, the coefficient 4 has been dropped
since only relative values are required in calculating the distribution factors. For
span BC, reduced stiffness factor has been taken as support C is hinged.

AtB:

> K =0.35El
0.2El
= =0.571
o 5E
0.15El
=" =0.429 4
¢ 0.35EI )
At support C:
D K =0.15El ; DF., =1.0.

Now joint moments are balanced as discussed previously by unlocking and
locking each joint in succession and distributing the unbalanced moments till the
joints have rotated to their final positions. The complete procedure is shown in
Fig. 19.2b and also in Table 19.1.
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=l 0.571 B__ | p.420 c

A b Ee
Fixed end mt. +896.0 +06.0 -96.0 -B6.0
Balance joint C 48.0 . i
and com. - 2747 -20.59 o0
AT -
Balance joint B
+66.58 poasiicn
Final momant +82.29

Fig. 19.2b Computation

Table 19.1 Moment-distribution for continuous beam ABC

Joint A B | C
Member BA BC CB
Stiffness factor 0.2El 0.15El 0.15El
Distribution Factor 0.571 0.429 1.000
Fixd End Moments

(KN.m) 96.000 96.000 -96.000 -96.000
Balance joint C and

C.O.toB 48.00 96.000
Balance joint B and

C.O.t0 A -13,704 -27.408 -20.592

Final Moments

(KN.m) 82.296 68.592 -68.592 0.000

Note that there is no carry over to joint C as it was left unlocked.

Example 19.2

A continuous beam ABCD is carrying uniformly distributed load 5kN/m as

shown in Fig. 19.3a. Compute reactions and draw shear force and bending

moment diagram due to following support settlements.

Support B, 0.005m vertically downwards.
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Support C, .0100m vertically downwards.

Assume E = 200GPa; | =1.35%x10°m"*.
SkMN/m
A c D
2.3 > 8 9 N 3 0 S R B9 P N9 P ¢ BB R
S = | = C &
10m 10m 10m

b E | ¥
A 1 7 |

Fig .19.3a Continuous beam of Example 19.2

Solution:

Assume that supports A,B,C and D are locked and calculate fixed end moments

due to externally applied load and support settlements. The fixed end beam
moments due to externally applied loads are,

M5 =200 41 67 kNm: M7, = —41.67 kKN.m
12

M?E =+41.67 kN.m; ME. =-41.67 kN.m
M7, =+41.67 KN.m; MPF. =-41.67 kN.m (1)

In the span AB , the chord joining joints Aand B rotates in the clockwise direction

as B moves vertical downwards with respect to A (see Fig. 19.3b).
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A B C D
"\. I| L F |
Frr g @ 55351 \ @
(T8 Smm N‘m
Bl —1 wl\.u
3 7as [10mm |
"'F.-u [
T e L
k. c* b
= Iln. — e JI Wen
v om

Fig. 19.3b Member rotation due to support settlement

w s =—0.0005 radians (negative as chord AB'rotates in the clockwise direction
from its original position)

Wee =—0.0005 radians

weo =0.001 radians (positive as chord C'D rotates in the counterclockwise
direction).

Now the fixed end beam moments due to support settlements are,

9 -3
M, __6El Ve __6x200x10"x1.35x10 (~0.0005)
Lag 10

=81000 N.m =81.00 kN.m

M, =81.00 kN.m
M. =Mg =81.00 kN.m
M, =MJ. =-162.00 kN.m (3)

In the next step, calculate stiffness and distribution factors. For span AB and CD
modified stiffness factors are used as supports Aand D are hinged. Stiffness

factors are,
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3 El El

Ken :ZE:O.OBEI; K e :E:O.loEl
(4)
K :%:0.1OEI; Kep :%%:0.0755
AtjointA : ) K =0.075El; DF,, =1.0
Atjoint B : > K =0.175El; DF,, =0.429; DF,. =0.571
Atjoint C : > K =0.175El; DF., =0.571; DF., =0.429
AtjointD : > K =0.075El; DF,. =1.0

The complete procedure of successively unlocking the joints, balancing them and
locking them is shown in a working diagram in Fig.19.3c. In the first row, the
distribution factors are entered. Then fixed end moments due to applied loads
and support settlements are entered. In the first step, release joints AandD. The
unbalanced moments at Aand Dare 122.67 kN.m, -203.67 kN.m respectively.
Hence balancing moments at Aand D are -122.67 kN.m, 203.67 kN.m
respectively. (Note that we are dealing with beam end moments and not joint
moments). The joint moments are negative of the beam end moments. Further
leave Aand D unlocked as they are hinged joints. Now carry over moments
-61.34 kN.m and 101.84kN.m to joint Band C respectively. In the next cycle,
balance joints B and C. The unbalanced moment at joint Bis 100.66 kN.m .
Hence balancing moment for beam BAis —-43.19 ( —-100.66x0.429)and for BC is

—57.48 kN.m (-100.66 x 0.571) . The balancing moment on BC gives a carry over
moment of —26.74 kN.m to joint C. The whole procedure is shown in Fig. 19.3c

and in Table 19.2. It must be noted that there is no carryover to joints A and D

as they were left unlocked.
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Qgjyibution "‘““’:;;7}. 1.0 | 0.420| |a.571 | |o.571]  |o.a20 | [1.0]

to ext.loads  41.67 -41.6 +41.67 —41.@ 41.67 @1.5‘.’

FEM due
to supports 81.00 81.00 81.00 81.00 -162.00 -162.00
Settlement

Joint A and D

released and -122.67 +203.67
balanced and

moment convert /

B&C - /

Balance B & ¢ 00 6134 4319 5748 AHEoN.B4.938 =

-65.20 65. ii‘// 27.43 2743

5,95 -26.74
2.552 3.40 16.41 12.33
Balance B & C and e
c.o. 62.65 G2.64 1510 -15.10
8.205 1.70
-3.52 -4.685 097 -0.729
Balance B & C and
c.0. £6.17 “"1/ 15.83 -15.83
-0.49 -2.35
0.208 0.28 o134 101
Balance B & C and
€.0. £5.95 £5.95 14.82 -14.82
-0.67 £0.14
0.29 0.38 008 -0.06
Final moments 0.00 £6.67 66.67 14.88 -14.88 0.00

Fig. 19.3 © Computation
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Table 19.2 Moment-distribution for continuous beam ABCD

Joint

Members
Stiffness factors
Distribution
Factors

FEM due to
externally
applied loads

FEM due to

support
settlements

Total
Balance A and D
released

Carry over

Balance B and C
Carry over

Balance B and C
Carry over to B
and C

Balance B and C
C.O.toBandC

Balance B and C
Carry over

Balance B and C

Final Moments

A

AB
0.075 El
1.000
41.670
81.000

122.670

122.670

0.000

B

BA
0.075 El
0.429

-41.670

81.000

39.330

-61.335

-43.185

2.552

-3.52

0.21

-0.29

-66.67

BC
0.1 El
0.571

41.670

81.000

122.670

-57.480
-5.95

3.40
8.21
-4.69
-0.49

0.28
0.67

-0.38

66.67

C
CB

0.1 El
0.571

-41.670

81.000

39.330

-11.897
-26.740

16.410
1.70
-0.97
-2.33

1.34
0.14

-0.08

14.88

CD
0.075 El
0.429

41.670

162.000
120.330
101.835

-8.94

12.33

-0.73
1.01

-0.06

-14.88

D

DC
0.075 El
1.000

-41.670

162.000

203.670

203.670

0.000
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Example 19.3

Analyse the continuous beam ABC shown in Fig. 19.4a by moment-distribution

method. The support B settles by 5mm below A and C. Assume Elto be

constant for all members E = 200GPa: and | =8x10°mm*.

dkMN
ZkN/m
A C
] * ¥ ¥ ¥ T+ + Y oF T W
El @ El
2m i 2m L 4m

T 7

Fig. 19.4 (a) Example 19.4a

Solution:

Calculate fixed end beam moments due to externally applied loads assuming that

support B and C are locked.

M, =+2 kN.m; Mg, =—2 kN.m

1)
ME. =+2.67 kN.m; M& =-2.67 kN.m

In the next step calculate fixed end moments due to support settlements. In the
span AB, the chord AB' rotates in the clockwise direction and in span BC, the

chord B'C rotates in the counterclockwise direction (Fig. 19.4b).

4 A B =
A I w. gt Wo by
|' | . , -\':I
W G We

Fig. 19.4 (b) Member rotation due to
support settlement
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B 5x107°

=-1.25x103radians

YV =
-3
Wee = 5107 _4 25410 radians (2)
6EI 6x200x10° x8x10°( 5x10°
Mjs =Mg, =~ LA:B‘//AB:_ 4 (_ 4
= 3000 Nm = 3kNm. 3)

M3 =MZ =—3.0kN.m
In the next step, calculate stiffness and distribution factors.

K, = Ky =0.25El

4
Kge =%0.25E| =0.1875El @

Atjoint B :> K =04375El;  DF,, =0.571; DF,. =0.429

Atjoint C :> K =0.1875El;  DFe =10

At fixed joint, the joint does not rotate and hence no distribution moments are
developed and consequently distribution factor is equal to zero. The complete
moment-distribution procedure is shown in Fig. 19.4c and Table 19.3. The
diagram is self explanatory. In this particular case results are obtained in two
cycles. In the first cycle joint Cis balanced and carry over moment is taken to
joint B . In the next cycle , joint B is balanced and carry over moment is taken to

joint A. The bending moment diagram is shown in fig. 19.4d.
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Table 19.3 Moment-distribution for continuous beam ABC

Joints A B C
Member AB BA BC CB
Stiffness factor 0.25 El 0.25 El 0.1875 El 0.1875 El
Distribution Factor 0.571 0.429 1.000
Fixed End Moments 2.000 -2.000 2.667 -2.667
due to applied loads
(KN.m)
Fixed End Moments 3.000 3.000 -3.000 -3.000
due to support
settlements (KN.m)
Total 5.000 1.000 -0.333 -5.667
Balance joint C and 2.835 5.667
C.O.
Total 5.000 1.000 2.502 0.000
Balance joint B and -1.00 -2.000 -1.502
C.O.to A
Final Moments (kN.m) 4.000 -1.000 1.000 0.000
o.F ¥l [os71] ° [oa42e) 5
= T
G o
FEM due to loads +2 -2.0 2.67 -2.67
FEM due to support +3 +3.0 -3.0 -3.0
settlement
Balance joint C and
C.O.toB
2B 4587
Balance B and C.0 to
A 20 .87
1 — ~02.00
Final moment | 4.0 10| - N

Fig. 19.4 ( c ) Computation
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4.0

4.0
A | | # | B . c
' Hll N
. 1.0
4.0
FIG. 19.4 (d) B.M.D
Summary

The moment-distribution method is applied to analyse continuous beam having
support settlements. Each step in the numerical example is explained in detail.
All calculations are shown at appropriate locations. The deflected shape of the
continuous beam is sketched. Also, wherever required, the bending moment
diagram is drawn. The numerical examples are explained with the help of free-
body diagrams.
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Distribution Method:
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Instructional Objectives

After reading this chapter the student will be able to

1. Solve plane frame restrained against sidesway by the moment-distribution
method.

2. Compute reactions at the supports.

3. Draw bending moment and shear force diagrams.

4. Draw the deflected shape of the plane frame.

20.1 Introduction

In this lesson, the statically indeterminate rigid frames properly restrained against
sidesway are analysed using moment-distribution method. Analysis of rigid
frames by moment-distribution method is very similar to that of continuous beams
described in lesson 18. As pointed out earlier, in the case of continuous beams,
at a joint only two members meet, where as in case of rigid frames two or more
than two members meet at a joint. At such joints (for example joint C in Fig.
20.1) where more than two members meet, the unbalanced moment at the
beginning of each cycle is the algebraic sum of fixed end beam moments (in the
first cycle) or the carry over moments (in the subsequent cycles) of the beam
meeting at C. The unbalanced moment is distributed to members CB,CD and

CE according to their distribution factors. Few examples are solved to explain
procedure. The moment-distribution method is carried out on a working diagram.

P
B
c .
Y £
"1
—
F
T e
A E

Fig. 20.1 Plane frame
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Example 20.1

Calculate reactions and beam end moments for the rigid frame shown in Fig.
20.2a. Draw bending moment diagram for the frame. Assume EI to be constant
for all the members.

SkM 10kN
A | B D
J Y Lb’* e
El El
El 4m
TR ?.i
c
- Zm 1. Zm L Zm L

Fig. 20.2a Rigid plane frame of Example 20.1
Solution

In the first step, calculate fixed end moments.

M’ =5.0kN.m

M [ =-5.0 KN.m
1)
Mg. =0.0 kN.m

M =0.0 kN.m
Also, the fixed end moment acting at B on BAis clockwise.

M{, =-10.0 kN.m
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In the next step calculate stiffness and distribution factors.

Koo === 0.25E and K, = == 0.25EI
4 4
At jointB:
> K =0.50El
0.25El
DFep =g =057 DF,. =0.5 (2)

All the calculations are shown in Fig. 20.2b. Please note that cantilever member
does not have any restraining effect on the joint B from rotation. In addition its

stiffness factor is zero. Hence unbalanced moment is distributed between
members BC and BD only.

3.75
=10 +7.3 =
v 1.25
0 +2.5 i
-10.0 5.0 5.0
A [0 1 [05] E
B oF
[0.5]
0
+2.50
+2.5
0.0
128
.25

Fig. 20.2b Moment distribution

In this problem the moment-distribution method is completed in only one cycle,
as equilibrium of only one joint needs to be considered. In other words, there is
only one equation that needs to be solved for the unknown 6, in this problem.
This problem has already been solved by slop- deflection method wherein
reactions are computed from equations of statics. The free body diagram of each
member of the frame with external load and beam end moments are again

reproduced here in Fig. 20.2c for easy reference. The bending moment diagram
is shown in Fig. 20.2d.
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SkM

10 7.5 kMN.m 3.75kNm
g | 09375 g D 0.9375 kM
A T e =
Sk T T 5.9375 kN T g
. l*“-““ 4.0625 kN
|: B —
2.5 4 0.8375kN
C 0.9375
1.25 ——
Tc 10.9375
Fig. 20.2c Reactions
10.0
2.5 AT
: el | T .
[ TE > <}
>l FHLM ' 3.75kNm
L1 7.5
—10
—
—
bed
! I'l,
1 128
Fig. 20.2 (d)

Bending moment diagram
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Example 20.2

Analyse the rigid frame shown in Fig. 20.3a by moment-distribution method.
Moment of inertia of different members are shown in the diagram.

SkM/m
10kN

T |

| -\-"‘-\-\.\_\_\_

A ¥ *rI\t = c s
1

E 21

[ I 4.0m

/{, - 4m Im 3m I

A il

Fig. 20.3 (a) Example 20.2

Solution:
Calculate fixed end moments by locking the joints A,B,C,D and E

2
ME =24 40 kNm
20

M5, =-2.667 kN.m

M [ =7.5kN.m

M& =-7.5 kN.m

Mep =Mpg =M =M. =0 1)

The frame is restrained against sidesway. In the next step calculate stiffness and
distribution factors.

K, =0.25El  and KBC:Z%:O.S%EI
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3 El

Kep 1 0.1875El ; K =0.25El 2)

At jointB:

D K =Ky + Kge +Kgp

= 0.7705ElI

DF,, =0.325; DF,. = 0.432

DF,, =0.243 3)
At jointC:

D K =0.583El

DF., =0.571; DF., = 0.429

In Fig. 20.3b, the complete procedure is shown on a working diagram. The
moment-distribution method is started from jointC. When joint C is unlocked, it
will rotate under the action of unbalanced moment of7.5kN.m. Hence
the7.5 kN.m is distributed among members CBand CE according to their
distribution factors. Now joint C is balanced. To indicate that the joint Cis
balanced a horizontal line is drawn. This balancing moment in turn developed
moments +2.141 kN.m at BC and +1.61 kN.matEC . Now unlock joint B . The joint
B IS unbalanced and the unbalanced moment
iIS—(7.5+2.141-2.67) =-6.971 kN.m. This moment is distributed among three

members meeting at B in proportion to their distribution factors. Also there is no
carry over to joint Dfrom beam end moment BD as it was left unlocked. For
member BD , modified stiffness factor is used as the end D is hinged.

Example 20.3

Analyse the rigid frame shown in Fig. 20.4a by moment-distribution method.
Draw bending moment diagram for the rigid frame. The flexural rigidities of the
members are shown in the figure.
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4kN/m 10KN
- ) i l L | Y Y . l . l L | L 4 vl' Y . L 4 D
El El 2El
2m
3m| El 101-;N_ ‘x 3 2El 4m
;
= T —l—; L ;'?;—G —
E m
}1 ] LR e L] = [
Fig. 20.4a Example 20.3
Solution:
Assuming that the joints are locked, calculate fixed end moments.
My, =1.333 kN.m ; Mf, =-1.333 kN.m
Mi. =4.444 kN.m; M5 =-2.222 kN.m
M, =6.667 kN.m ; M/ . =-6.667 kN.m
Mi =00 kN.m ; ML =00 kNm
M& =50 kN.m ; M7 =-50 kN.m (1)

The frame is restrained against sidesway. Calculate stiffness and distribution

factors.

Kga = 0.5EI ; Kge =0.333El ; Kge = 0.333El

K =0.333El ; Ke =0.5El ; Kee =%%=0.375EI
Kpe =0.5El ; Kpe =0.5El

Joint B:

> K =0.5El +0.333EI +0.333EI =1.166ElI

)
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DF,, =0.428; DF,. =0.286

DF.. =0.286
Joint C:
DK =0.333El +0.5EI +0.375E1 =1.208El
DF., =0.276; DF., =0.414
DF, =031
Joint D:
3 K =1.0El
DF,. =0.50; DF,; =0.50 3)
—_— +3.187 -4.797
ReL¥ 0.016 _— +D.055
e T ooz t——
— -0.006 0.011 3.185 ¥ om
.82 161 00 e A.742
" 0.003 — 6.301 0219 — —  +1.408
+1.087 e
+0.002 “« s i“::aq———__ g 0.705
0031 - 0176 2,699 ¥ 2818
o [ -
+0.046 * -1.86 m#___x"’ -5.978 e 2333
0,264 S, 5.635
1,533 -0.527 -0.352 —— AT P i EE— % - T
1.333 -1.879 2272 B.667 6667
4444
B c D
) 0.428 0.286 [0.276 ﬂ-“q 0.50
A
0.00 288 s n.mﬂ 0.50
-0.352 - .00
-4.22 +3.334
-0.352 1334
+0.021
+3.28
0,331 ——— i
T +3.116 +4.743
-0.320 nn nean
0.00 i L ’ 4.708
il
-0ATE : 3
+0.04 50 F77
i 0.00
#0.001 5.0 Py
+0.705
-0.165 0.00 8038
2.40

Fig. 20.4b Moment distribution computation
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The complete moment-distribution method is shown in Fig. 20.4b. The moment-
distribution is stopped after three cycles. The moment-distribution is started by
releasing and balancing jointD . This is repeated for joints C and B respectively
in that order. After balancing jointF , it is left unlocked throughout as it is a hinged
joint. After balancing each joint a horizontal line is drawn to indicate that joint has
been balanced and locked. When moment-distribution method is finally stopped
all joints except fixed joints will be left unlocked.

Summary

In this lesson plane frames which are restrained against sidesway are analysed
by the moment-distribution method. As many equilibrium equations are written as
there are unknown displacements. The reactions of the frames are computed
from equations of static equilibrium. The bending moment diagram is drawn for
the frame. A few problems are solved to illustrate the procedure. Free-body
diagrams are drawn wherever required.
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Instructional Objectives

After reading this chapter the student will be able to

1. Extend moment-distribution method for frames undergoing sidesway.

2. Draw free-body diagrams of plane frame.

3. Analyse plane frames undergoing sidesway by the moment-distribution
method.

4. Draw shear force and bending moment diagrams.

5. Sketch deflected shape of the plane frame not restrained against sidesway.

21.1 Introduction

In the previous lesson, rigid frames restrained against sidesway are analyzed
using moment-distribution method. It has been pointed in lesson 17, that frames
which are unsymmetrical or frames which are loaded unsymmetrically usually get
displaced either to the right or to the left. In other words, in such frames apart
from evaluating joint rotations, one also needs to evaluate joint translations
(sidesway). For example in frame shown in Fig 21.1, the loading is symmetrical
but the geometry of frame is unsymmetrical and hence sidesway needs to be
considered in the analysis. The number of unknowns is this case are: joint
rotations ¢, and &. and member rotationy . Joint B and C get translated by the

same amount as axial deformations are not considered and hence only one
independent member rotation need to be considered. The procedure to analyze
rigid frames undergoing lateral displacement using moment-distribution method
is explained in section 21.2 using an example.

F

¥

hi2

Fig 21.1 Rigid frame
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21.2 Procedure

A special procedure is required to analyze frames with sidesway using moment-
distribution method. In the first step, identify the number of independent rotations
() in the structure. The procedure to calculate independent rotations is

explained in lesson 22. For analyzing frames with sidesway, the method of
superposition is used. The structure shown in Fig. 21.2a is expressed as the
sum of two systems: Fig. 21.2b and Fig. 21.2c. The systems shown in figures
21.2b and 21.2c are analyzed separately and superposed to obtain the final
answer. In system 21.2b, sidesway is prevented by artificial support atC . Apply
all the external loads on frame shown in Fig. 21.2b. Since for the frame,
sidesway is prevented, moment-distribution method as discussed in the previous
lesson is applied and beam end moments are calculated.

LetM o.My, Moo ,M o, M, and M. be the balanced moments obtained by

distributing fixed end moments due to applied loads while allowing only joint
rotations (#; and 6. ) and preventing sidesway.

Now, calculate reactions H,, andH, (ref. Fig 21.3a).they are ,

_ . By sy ¥y vy YETYTTYC .Bf*r+r+r#?rf¢gf_5 ) c F
's X e |
El
a
P
] f.. L3 k
= > El )
El
HA HA,
S. N [ rebrr— (b) wrt— B
A A A
¥ Hi Il"lu:

e = rrker & =
D

Fig 21.2 Frame with sidesway
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Fig.21.3a Free body diagram

Ho_ M, +M, Pa
" h, h,
Ho, = Meo *Moc (21.1)
hl
again, R=P-(H, +Hpy ) (21.2)
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& am Mq_u
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H..
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M.. W
Hs:
0O =
L]
MIH.

Fig.21.3b Free body diagram of frame

In Fig 21.2c apply a horizontal force F in the opposite direction of R. Now

k F =R, then the superposition of beam end moments of system (b) and ktimes

(c) gives the results for the original structure. However, there is no way one could
analyze the frame for horizontal force F , by moment-distribution method as sway
comes in to picture. Instead of applying F , apply arbitrary known displacement /
sidesway A' as shown in the figure. Calculate the fixed end beam moments in
the column AB and CD for the imposed horizontal displacement. Since joint
displacement is known beforehand, one could use moment-distribution method to

analyse this frame. In this case, member rotations  are related to joint
translation which is known. Let M,;,M_,, M., M,,M,, and M. are the

balanced moment obtained by distributing the fixed end moments due to
assumed sidesway A' at joints B and C. Now, from statics calculate horizontal

force F due to arbitrary sidesway A'.
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h,
M, +M|
H,, = CD:]' DC (21.3)
1
F=(H, +Hp,) (21.4)

In Fig 21.2, by method of superposition
kF=R or k=R/F
Substituting the values of R and F from equations (21.2) and (21.4),

k= P-—(Hyu+Hp)

(21.5)
(HA2+HD2)
Now substituting the values ofH,, H,,, Hy, and H,, in 21.5,
h h h
k= - 2 . (21.6)
M" e M7 + M"cp +M "5
h, h,

Hence, beam end moment in the original structure is obtained as,

M griginat = M s + KM

origina system (b system(c)

If there is more than one independent member rotation, then the above
procedure needs to be modified and is discussed in the next lesson.
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Example 21.1
Analyse the rigid frame shown in Fig 21.4a. Assume EI to be constant for all

members. Also sketch elastic curve.

20kN
10kN_ g v c
El

El

Im

Fig. 21.4a Rigid frame of Example 21.1

Solution
In the given problem, joint Ccan also rotate and also translate by an unknown

amountA . This problem has to be solved in two steps. In the first step, evaluate
the beam-end moment by preventing the sidesway.

In the second step calculate beam end moments by moment-distribution method
for known translation (see Fig 21.4b). By appropriately superposing the two
results, the beam end moment of the original structure is obtained.

a) Calculate stiffness and distribution factors

Kga =0.333El ; Ky =0.25El;
Kes =0.25E1 ; K, = 0.333El
Joint B: K =0.583ElI

DF,, =0.571; DFy. = 0.429

Joint C: > K=0.583El
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DF,, =0.429; DF., =0.571. (1)
b) Calculate fixed end moment due to applied loading.
M, =0; M, =0 kN.m

ME =+10 kN.m; MJ, =-10 kN.m

M&=0kN.m ; MJ.=0kN.m. 2)
20kN 20kN
10KN v g v ‘:,:E_: il e
B B R :
= + K :
(i) (i) {iii)

H H ! M H
o % I e ke b ey
A D A D A

Fig. 21.4b Frame with side - sway

Now the frame is prevented from sidesway by providing a support at C as shown
in Fig 21.4b (ii). The moment-distribution for this frame is shown in Fig 21.4c. Let

M'ys MG, M'ipandM',. be the balanced end moments. Now calculate

horizontal reactions at A and D from equations of statics.

MIAB+MIBA

HA1: 3

_ —3.635+7.268

3
= -3.635 KN ().

_ 3.636-17.269

5 = 3.635 KN(«) .
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R =10 — (~3.635 + 3.635) =—10 kN(—) 3)

| 0.429 | | 0.429 |
+10.0 -10.0 :
(0,571 | -4.29 -2.145 0,571 |
5.210
0.0 +5.71 E;’ME
s +2.605 -6.935 -
P -1.118 -0.559 -
g +0.24 5
-1.487 7.197 +0.319
+0.120 -7.254
- -0.052 -0.026 :'zf;
e — +0.011 g
7.265 et
-T.265 +0.086 T.269
-0.003 0,003 e— =
+3.468
T.268 Lasd +0.10
— +0.008
0.0
-2.855 = mirr +3.636
-0.744
-0.035
-0.001
-3.635

Fig. 21.4c Moment distribution with sidesway prevented

d) Moment-distribution for arbitrary known sidesway A'.

Since A' is arbitrary, Choose any convenient value. Let A'= % Now calculate

fixed end beam moments for this arbitrary sidesway.

6Ely  6EI
MF = — = — X
AB L 3

(- 150): 100 KN.m
3El
M £, =100 kN.m
MCFDz MEC=+1OOkN.m (4)
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| 0.429 |

:l 0.571

+100.00
-44.85

+55.15
-2.064

+533.086
-0.09%5

-52.991

| 0.429 I

0.00
- -42.90
.21.45 4
-33.70 \b -

-16.85
T +7.229
+3.65,
- -52.521
_h‘ﬁ—‘_‘_h—-__,ﬂ.ns
53.086 prigpius
+0.167 4
-0.072

52.974
-52.991

+100.00
= 57.10

+ 42.90
8.62

52.52
+ D45

52.97

+100.00

I

- 2B.55
+ 4.811
+ 0.222

+ T6.483

Fig. 21.4d Moment distribution for sidesway

The moment-distribution for this case is shown in Fig 24.4d. Now calculate

horizontal reactions H,, and H,.

52.98 +76.48

H,,= = 43.15 kN(<-)
H, = 52.97 + 76.49 _ 43.15kN(<)
F =-86.30 kN(—)
Version 2 C
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Let k be a factor by which the solution of case (iii ) needs to be multiplied. Now
actual moments in the frame is obtained by superposing the solution (ii) on the
solution obtained by multiplying case (iii ) by k. Thus kF cancel out the holding

force R such that final result is for the frame without holding force.

Thus, kF =R.

.10
~86.13

=0.1161 (5)

Now the actual end moments in the frame are,

M =M'+kM" g

M,z =—3.635+0.1161(+76.48) = +5.244 kN.m
Mg, = —7.268+0.1161(+52.98) = -1.117 kN.m
M. =+7.268+0.1161(-52.98) = +1.117 kN.m
M =—7.269+0.1161(-52.97) =-13.419 kN.m
M, =+7.268+0.1161(+52.97) =+13.418 kN.m
Mpe =+3.636+0.1161(+76.49) = +12.517 kN.m

The actual sway is computed as,

A =KA'= 0.1161x%

17.415
El

The joint rotations can be calculated using slope-deflection equations.

2El [

MAB:M:B+_20A+9B_3WAB] where y 5 =-—

+2EI[

Mg, = ME's:A — (2064 +‘9A_3V/AB]
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In the above equation, except d,and &, all other quantities are known. Solving

for 6,and 6;,

The elastic curve is shown in Fig. 21.4e.

. 17.415

2y --——E-I—

B |-17 -
c cl

%“--__- ._F{*-F"ff i

g, .-9-604
El e
El

Fig.21.4e Elastic curve
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Example 21.2
Analyse the rigid frame shown in Fig. 21.5a by moment-distribution method. The

moment of inertia of all the members is shown in the figure. Neglect axial

deformations.

3m

21 1

3m

3m

4m N

Fig. 21.5a Example 21.2

Solution:
In this frame joint rotations B and C and translation of joint Band C need to be

evaluated.

a) Calculate stiffness and distribution factors.

Kgs = 0.333EI ; Kege =0.25El
Keg =0.25El ; Kcp = 0.333El
At jointB:
> K =0.583El
DF,, =0.571; DF,. =0.429
At jointC:
D K =0.583El
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DF,, =0.429 ; DF, =0.571

b) Calculate fixed end moments due to applied loading.

2
ME =223 90 kNmiME =-9.0 kN.m
Mf. =0 kN.m; M& =0 kN.m
MG =0 kN.m; M. =0 kN.m

c) Prevent sidesway by providing artificial support at C. Carry out moment-
distribution (i.e.Case A in Fig. 21.5b). The moment-distribution for this case is

shown in Fig. 21.5c.

a c Y L P |-"ﬂ"| |"a"+!“-

+k

12kN D = | = D : [

Fig. 21.5 b Frame with sidesway

Version 2 CE IIT, Kharagpur



|. 0.571 |

0. 040
-1.103

-1.103
-0.051

=-1.154

Frrrrs

| 0.428 | 0.429 |
+— 0.00 0.00
Lo.571 | +3.861 -1.109
-9.00 3.861 -1.103
+5.139 - 0.414 -0.051
+0.178
-3.861 4.154
+0.236 + 1,625
HIES - 0.019
-3.625 + 0.008
0.011
-3.614 + 3,614
+9.00
e *2.57
+0.118
+0.006

+11.694

-0.552
-0.026

-0.57T8

Fig. 21.5c Moment distribution with sidesway prevented

Now calculate horizontal reaction at A and D from equations of statics.

Hm:

11.694 -3.614
H AT

-1.154-0.578

+6=7.347 kN(«)

=-0577 kN(-)

R=12-(7.347-0.577)=-5.23 kN(-)

d) Moment-distribution for arbitrary sidesway A'(case B, Fig. 21.5c)

150

Calculate fixed end moments for the arbitrary sidesway of A'= T

Fo_
MAB_

L

_6E(2|)W=12E|x(—25;)=+50 KN.m ;

Version

M{, =+50 kN.m ;
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MgD=_GE_(')V,:_6Ex(_%):+1oo kN.m

3 3 M. =+100 kN.m ;

The moment-distribution for this case is shown in Fig. 21.5d. Using equations of

static equilibrium, calculate reactions H,,andH,.

0.429 0.429
0.0 0.0 I
Lo.s71 | i Aszas |LREEY |
+50.00 21.45 .38.299 100.00
-28.55 19.15 -49.024 - 50.976
21.45 + B,215 + 4,108 +49.024
10.935 -32.385 - 1.762 - 2.346
+32.365 . O.B84 46.678 46678
+ 0.503 +0.378 + D189 - D108
.37 AEA - 0.081 48.57
32.666 . 0.041
+ 0.025 + 0.016 AB5T
+32.911 +100.00
s . 25.466
1173
0.054
50.00 —_
14275 _73.285
+5468 |
+ 0.252
+0.012
41.457

Fig. 21.5d Moment Distribution for arbitrary known sidesway

_ 32.911+41.457

. =12.395 kN («-)

_ 46,57 +73.285

H., =39.952kN («-)

F = —(12.395 +39.952) = —52.347 kN (—)
e) Final results

Now, the shear condition for the frame is (vide Fig. 21.5b)
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(Hpu +Hp) +k(H,, +Hp,) =12
(7.344-0.577) + k(12.395+ 39.952) =12

k =0.129

Now the actual end moments in the frame are,
My=M';+kM"
M ,; =11.694 +0.129(+41.457) =+17.039 kN.m
Mg, =—3.614+0.129(+32.911) = 0.629 kN.m
M;. =3.614+0.129(-32.911) =-0.629 kN.m
M =-1.154+0.129(—46.457) = —4.853 kN.m
M, =—1.154+0.129(+46.457) = +4.853 kN.m
M. = —0.578+0.129(+73.285) = +8.876 kN.m

The actual sway

A=KA'= 0.129x%

19.35

El
The joint rotations can be calculated using slope-deflection equations.

2E(21)

Mg -MFE =+ 20, +6, -3y |

or

L[ 12Ely L 12Ely
[2‘9A+93]:E MAB_MEB+ L }:4E| [MAB_[MEB_ L ﬂ

L[ 12EI L 12El
[298+9A]:E MBA_M§A+ LW}:4E| |:MBA_[MII3:A_ Ll/jﬂ

M,, =+17.039 kN.m
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Mg, =0.629 kN.m
(M )=9+0.129(50) =15.45 kN.m

9+0.129(50) = —2.55 kN.m

(M5,) =
change in near end + (-;)change in far end

3E%_

6, -
(17.039-15.45) + [—1j(0.629+2.55)
2 ~0.0

3E%

Example 21.3
members are shown in the figure.
10kN

5m
e,

/
Zm

Analyse the rigid frame shown in Fig. 21.6a. The moment of inertia of all the

.
L

wla
e

im .
o
Fia.21.6a Example 21.3
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Solution:
a) Calculate stiffness and distribution factors

K g =%=o.3925| : Kege = 0.50El
Kes =0.50El ; Kep = 0.392El
At jointB:
> K =0.892El
DF,, =0.439 ; DF, =0.561
At jointC:
D K =0.892El
DF; =0.561; DF, =0.439 1)

b) Calculate fixed end moments due to applied loading.

ME =MF =MF =MF. =0 kN.m
Mf =250 kN.m

ME, =-2.50 KkN.m )

c) Prevent sidesway by providing artificial support atC. Carry out moment-

distribution for this case as shown in Fig. 21.6b.
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Fig.21.6b Rotation of
Columns and beams

Now calculate reactions from free body diagram shown in Fig. 21.5d.

561 —.5861

+ 25 - 2.5

0.0

+ 0.T02 +1.403
= 1.796
1.406 -1.097
0.252 - 0.898
- 0141 +0.504
1.517 1.491
0.02 0.071
- 0L.011 = 0.040
+1.526 -1.522
0.0 0.0
-0.703 +0.549
-0.05%6 +0.197
0005 +0.016
=0.T54 +0.7T62

Fig. 21.6 © Moment distribution for applied loading
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1.5251 l""'- lr1 522
ey 3
)
/ B
/ \
/ \
/ \
ﬂ—Z/ \-
0.764 ‘x\
Y > +— H _=-1.458 Fr——4+——H, =1.456
T 0.762
S
W, V.

Fig. 21.6 ( d ) Free - body diagram
Column AB

ZMA =0=5H, +1.526+0.764+V, =0

5H, +V, =-2.29 3
Column CD

D M, =0=5H,,-1.522-0.762-V, =0

5H,, -V, = 2.284 (4)
Beam BC

D M =0=2V,+1.522-1526-10x1=0

V, =5.002 kN(T)

V,=4.998 kN(T) (5)
Thus from (3) H,, =-1.458 kN(—)

from (4) Hy, =1.456 kN(<) (6)
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> F =0

Hy+Hy,;+R-5=0

(7)
R=+5.002 kN(«)

d) Moment-distribution for arbitrary sidesway A'.

Calculate fixed end beam moments for arbitrary sidesway of

Al 12.75
El

The member rotations for this arbitrary sidesway is shown in Fig. 21.6e.

- 6.565 - 6.565
+ 0.005 T0.015
- 0.008 + 0.027
- 6.562 - 6.578
+0.053 - 0.187
- 0.094 - 0.333
-6.521 - 6.724
+0.666 +0.926
+0.463 - 7.65
-T7.65

561 ———{.561

6.0
+0.261 +0.362
+0.021 = 0.07
+0.001 0006
+ 6.299
+6.283

Fig. 21.6 (e) Moment distribution of arbitrary known sidesway
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_BB"__A_ A= A" SIA
Le Ly | ' cosa 5
A2=2A =0.4A"

5

Y

Wag = —g(clockwise) Wep = —%(clockwise)

A 2A'tana A’

Ve = ?2 = =% (counterclockwise)

M = OBl :_6E(2|)(_12.75j:+6_0 N
Lo 5.1 5EI

ML, =+6.0 kN.m

M = BElec =_65(|)£12.75j=_7.65 N
Loc 2\ 5EI

M5, =—-7.65 kN.m

M = BBl :_6E(2|)(_12.75j:+6_0 N
Lo 5.1 5E

MF. =+6.0 kN.m

The moment-distribution for the arbitrary sway is shown in Fig. 21.6f. Now

reactions can be calculated from statics.
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AT . . [=F ]
o T EpE.ﬁ-Eﬁ
- l 6.565 2 l -
“/_'H,u x \ H,.
/ i
, \
/ \
/ \‘.
/’f \\
Jfl. \\.
/ X
/ \\
/ ;
/ \
77_.*'{7_!' -— HAI'-l _?7_}_,.-'7‘_“51
. & 6.286
6.263 |y T LT
Fig. 21.6 (f) Free - body diagram
Column AB
> M, =0=5H,,-6.283-6.567+V, =0
5H, +V, =12.85 (3)
Column CD
ZMD =0=5H,,-6.567-6.283-V, =0
S5H,, -V, =12.85 (4)
Beam BC

D M =0=>2V, +6.567 +6.567 =0
V, =-6.567 kN ({);V,=+6.567 kN(T) (5)

Thus from 3 H,, =+3.883 kN(«)

from 4 H,, =3.883 kN (<) (6)
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F=7.766 kN(<) 7)

e) Final results

kF =R
k= 5002 _ 0.644
7.766

Now the actual end moments in the frame are,
Myg=M"+kM"
M,z =—0.764+0.644(+6.283) = +3.282 kN.m
M, = —1.526+0.644(+6.567) = 2.703 kN.m
M. =1.526+0.644(—6.567) =—2.703 kN.m
M =-1.522+0.644(—6.567) =——5.751 kN.m
M, =1.522+0.644(6.567) =5.751 kN.m
M. =0.762+0.644(6.283) = 4.808 kN.m

The actual sway

A=KA'=0.644x 12"

8212
El

Summary

In this lesson, the frames which are not restrained against sidesway are identified
and solved by the moment-distribution method. The moment-distribution method
is applied in two steps: in the first step, the frame prevented from sidesway but
subjected to external loads is analysed and subsequently, the frame which is
undergoing an arbitrary but known sidesway is analysed. Using shear equation
for the frame, the moments in the frame is obtained. The numerical examples are
explained with the help of free-body diagrams. The deflected shape of the frame
is sketched to understand its deformation under external loads.
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The Multistory Frames
with Sidesway

Version 2 CE IIT, Kharagpur



Instructional Objectives

After reading this chapter the student will be able to

1. Identify the number of independent rotational degrees of freedom of a rigid
frame.

2. Write appropriate number of equilibrium equations to solve rigid frame
having more than one rotational degree of freedom.

3. Draw free-body diagram of multistory frames.

4. Analyse multistory frames with sidesway by the slope-deflection method.

5. Analyse multistory frames with sidesway by the moment-distribution
method.

22.1 Introduction

In lessons 17 and 21, rigid frames having single independent member rotational

(z//(= %]) degree of freedom (or joint translationA) is solved using slope-

deflection and moment-distribution method respectively. However multistory
frames usually have more than one independent rotational degree of freedom.
Such frames can also be analysed by slope-deflection and moment-distribution
methods. Usually number of independent member rotations can be evaluated by
inspection. However if the structure is complex the following method may be
adopted. Consider the structure shown in Fig. 22.1a. Temporarily replace all rigid
joints of the frame by pinned joint and fixed supports by hinged supports as
shown in Fig. 22.1b. Now inspect the stability of the modified structure. If one or
more joints are free to translate without any resistance then the structure is
geometrically unstable. Now introduce forces in appropriate directions to the
structure so as to make it stable. The number of such externally applied forces
represents the number of independent member rotations in the structure.
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B E F
A G
Y 7777 777

Fig. 22.1a Rigid frame

e 7 7

Fig. 22.1b Modified structure
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In the modified structure Fig. 22.1b, two forces are required to be applied at level
CDand level BF for stability of the structure. Hence there are two independent

member rotations () that need to be considered apart from joint rotations in the
analysis.

The number of independent rotations to be considered for the frame shown in
Fig. 22.2a is three and is clear from the modified structure shown in Fig. 22.2b.

Figure 22.2a Rigid frame

F.
w ® @ e
L ]
T s Frrr
F F,

Figure 22.2b Modified structure

From the above procedure it is clear that the frame shown in Fig. 22.3a has three
independent member rotations and frame shown in Fig 22.4a has two
independent member rotations.
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Figure 22.3a Rigid frame

[
f”\a
o
(L, ve) .,
7 o
g \E‘x
B [ (us0) (un,0) "D
A 77T T E

Figure 22.4a Gable frame

For the gable frame shown in Fig. 22.4a, the possible displacements at each joint
are also shown. Horizontal displacement is denoted by u and vertical
displacement is denoted byv. Recall that in the analysis, we are not considering
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the axial deformation. Hence at Band D only horizontal deformation is possible
and joint C can have both horizontal and vertical deformation. The

displacements u;,u.,u,and u, should be such that the lengths BC and CD

must not change as the axial deformation is not considered. Hence we can have
only two independent translations. In the next section slope-deflection method as
applied to multistoried frame is discussed.

22.2 Slope-deflection method

For the two story frame shown in Fig. 22.5, there are four joint rotations
(65,6.,6,and 6. ) and two independent joint translations (sidesway) A, at the

level of CDand A, at the level of BE.

A TANANE
. S ]
> € D
DNy Ay
> <>
P, S /
B
F
A 7777 7777

Fig.22.5 Two story frame.

Six simultaneous equations are required to evaluate the six unknowns (four
rotations and two translations). For each of the member one could write two
slope-deflection equations relating beam end moments to (i) externally applied

loads and (ii) displacements (rotations and translations). Four of the required six
equations are obtained by considering the moment equilibrium of joint B,C, D and
E respectively. For example,
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>M,; =0 =My, + Mg + My =0 (22.1)

The other two equations are obtained by considering the force equilibrium of the
members. Thus, the shear at the base of all columns for any story must be equal
to applied load. Thus > F, =0 at the base of top story gives (ref. Fig. 22.6)

P-H.-H,=0 (22.2)
Similarly > F, =0 at the base of frame results in

P+P,-H,-H.=0 (22.3)

Thus we get six equations in six unknowns. Solving the above six equations all
the unknowns are evaluated. The above procedure is explained in example 22.1.

P,
1 3
c D
P,
—»
<+“—H, +—H,
> >
«—H, L
>
a. Bottom of top story l l
b. Bottom of Frame
Fig. 22.6

Example 22.1

Analyse the two story rigid frame shown in Fig. 22.7a by the slope-deflection
method. Assume EI to be constant for all members.
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20 kN

> C D
El
El El
40 kN
_— S B E
El
El El
A 77rr 7777 F
S5m

i T
= i

Fig.22.7a Example 22.1

In this case all the fixed end moments are zero. The members AB and

: A : . .
EF undergo rotations y, = —?Z(negatlve as it is clockwise) and member BC and

. A iy . :
ED undergo rotationsy, =—?1. Now writing slope-deflection equations for 12

beam end moments.

A

2El By
5

MAB:O+?[20A+QB_3W2] 0, =0; W, =-—

M ., =0.4E16, +0.24EIA,
M, = 0.8E16, +0.24EIA,
M o = 0.8E16, +0.4E10, +0.24EIA,

M s = 0.8E16, +0.4E16, +0.24EIA,
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M. =0.8E16, +0.4E16,
M, =0.8EI6, +0.4E16,
M, =0.8E16, +0.4E16,
M . =0.8E16, +0.4E10,
M o =0.8E16, +0.4E16, +0.24EIA,
M, =0.8E16, +0.4E16, +0.24EIA,

M., =0.8E16, +0.24EIA,

M. =0.4E16, +0.24EIA, (1)
MDt
"
D
Ko am
v
MnE i
K
M, M.,
Yy Y
% %
E
K 4 3 -
M, M. M,
K

Fig. 22.7c Free - body diagram of joints
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20kN
5 >

L)

«—H, Mo
v, g
20kN
—_—p
40kN (i)
—»
4—Hn
I I n
> «

>

Fig.22.7d Free - body diagram

Moment equilibrium of joint B,C,D and E requires that (vide Fig. 22.7c).

Mgy, + My + My =0

Mg +M =0
Mpc + M =0
MEB+MED+MEF=O (2)

The required two more equations are written considering the horizontal
equilibrium at each story level. ie. > F, =0 (vide., Fig. 22.7d). Thus,

He +Hgy =20
H,+H. =60 3)

Considering the equilibrium of column AB, EF,BC and ED, we get (vide 22.7¢)
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MBC +MCB

H. = c
HF:MEFJSrMFE )

Using equation (4), equation (3) may be written as,

Mg + Mg + M + M, =100

M+ Mgy + M + M =300 (5)

Substituting the beam end moments from equation (1) in (2) and (5) the required
equations are obtained. Thus,

2.40, +0.40, +0.40. +0.24A, +0.24A, =0
1.60, +0.40, +0.46, +0.24A, =0
1.60, +0.40, +0.40, +0.24A, =0
240, +0.40, +0.40, +0.24A, +0.24A, =0
1.20, +1.26, +1.26, +1.26 +0.96A, =100

1.26, +1.20, ++0.96A, =300 (6)

Solving above equations, yields

g, = —8>909. o - =223, _-2121s. 65900,
El El El e
337.12 477.27
Al = ; AZ =
El El
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Substituting the above values of rotations and translations in equation (1) beam
end moments are evaluated. They are,

M, =88.18 kN.m ; M, =61.81 kN.m
Mg =17.27 kN.m ; M, =32.72. kN.m
Mg =—79.09 kN.m ; M_, =—79.09 kN.m
Mgy =-32.72 kN.m ; M. =-32.72 kN.m
Mo =32.72 kN.m ; M., =17.27 kN.m

M. =61.81 kN.m ; M, =88.18 kN.m

22.3 Moment-distribution method

The two-story frame shown in Fig. 22.8a has two independent sidesways or
member rotations. Invoking the method of superposition, the structure shown in
Fig. 22.8a is expressed as the sum of three systems;

1)

2)

3)

The system shown in Fig. 22.8b, where in the sidesway is completely
prevented by introducing two supports at Eand D. All external loads are
applied on this frame.

System shown in Fig. 22.8c, wherein the support Eis locked against
sidesway and joint C andD are allowed to displace horizontally. Apply
arbitrary sidesway A'; and calculate fixed end moments in column BC and

DE . Using moment-distribution method, calculate beam end moments.
Structure shown in Fig. 22.8d, the support D is locked against sidesway
and joints Band E are allowed to displace horizontally by removing the
support at E . Calculate fixed end moments in column AB and EF for an
arbitrary sidesway A',as shown the in figure. Since joint displacement as
known beforehand, one could use the moment-distribution method to
analyse the frame.
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A1 A1 D
P, 1 D le—1»| P v
> c ; Ll v
A it i
P, 4—3]' e -131 P, v =
> B e = — B +
A T T F A T T F
(a) (b)
Ay A
f«—»| D f—>| D
c = c (IE
|
7 {
x /B E K = gl
-+ B B
A 7T T F A T 7T F
(c) (d)

Fig.22.8 Two - story frame

All three systems are analysed separately and superposed to obtain the final
answer. Since structures 22.8c and 22.8d are analysed for arbitrary sidesway
A’ and A', respectively, the end moments and the displacements of these two

analyses are to be multiplied by constants k,and k, before superposing with the
results obtained in Fig. 22.8b. The constants k,and k, must be such that
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k,Ay=A, and k,A',=A,. (22.4)

The constants k,and k,are evaluated by solving shear equations. From Fig.

22.9, it is clear that the horizontal forces developed at the beam level CD in Fig.

22.9c and 22.9d must be equal and opposite to the restraining force applied at
the restraining support at D in Fig. 22.9b. Thus,

(a)

.Q‘
P c v P c D c D
‘ + K + Kz
« H<:| - Hdl - Hﬂ < H ¢ } H « Hﬂ
(b) (ec) (d)

Fig.22.9 The free body diagram at top story.
k(He, +Hp, )+ K, (Hes +Hps ) =P (23.5)
From similar reasoning, from Fig. 22.10, one could write,
k,(Hp +Hey)+ Ky (H g + Heg )= P, (23.6)

Solving the above two equations, k, and k, are calculated.
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Q,

T v
P, Q,
B E -
; H ¢ H
A
(a)
P ‘ch P,
— Y <G - E
P lq
2 B B F
S (E“_+ K, (E s K
M — >N, “—H, LR N S " =
> > PH
! ! ! ! ! P
(b) (c) (d)

Fig.22.10 Free body diagram at the base of Frame.

Example 22.2

Analyse the rigid frame of example 22.1 by the moment-distribution method.

Solution:
First calculate stiffness and distribution factors for all the six members.

Kg, = 0.20EI; Kge =0.20El; Kge =0.20El;
K =0.20El; Kep =0.20El; 1)
Ko =0.20El; Ko = 0.20El;
Kg =0.20El; Ke, =0.20EI; Kg =0.20El
JointB: > K =0.60El
DF;, =0.333; DF,. =0.333; DF,. =0.333
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JointC:: > K =0.40El

DF.; =0.50; DF., =0.50
JointD: > K =0.40El
DF,. =0.50; DF,. =0.50
JointE : > K =0.60El
DF.; =0.333; DF., =0.333; DF., =0.333 (2

The frame has two independent sidesways: A, to the right of CDand A, to the

right of BE. The given problem may be broken in to three systems as shown in
Fig.22.11a.
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! | -
] ]
I 1
]
I ]
|’r I
J‘l I
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0
AT " e A e
: (ii)
(i)
/ /
AW AW
< > D AR D '@
c g /D c
,' [/ /
+ X [B = + K B8 B[] E'
7 T 7 7
A F A F
(iii) (iv)

Fig. 22.11a Example 22.2
In the first case, when the sidesway is prevented [Fig. 22.10a (ii)], the only

internal forces induced in the structure being 20kN and 40kN axial forces in
member CD and BErespectively. No bending moment is induced in the

structure. Thus we need to analyse only (iii) and (iv) .
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Casel :

Moment-distribution for sidesway A',at beam CD][Fig. 22.1qa (iii)]. Let the

arbitrary sidesway be A'F% . Thus the fixed end moment in column CBand

DE due to this arbitrary sidesway is

—ggéi—6ax§%=+60kNm

MBFC :MCFB = |2 _E

ME =MF. =+6.0 kN.m 3)

Now moment-distribution is carried out to obtain the balanced end moments. The
whole procedure is shown in Fig. 22.11b. Successively joint D,C,Band E are

released and balanced.
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-3.17 =347

-0.05 -0.01

-3.12 -0.03
— +3.25
+0.19 —_—
+ 0.44 + 0.88
- 3.75 - 113
- - 3.0
-2.25 -3.0
-1.5 M, M. 0.0
™M c 0.0 ™M
cB D DE
+ 6.0 . , + 6.0
- 2.25 - 3.0
212 212
+ 3.75 ' = + 3.0
- 0.81 +0.04 -0.01 - 0.62
+0.19 -0.09 +0.02 +0.88
-2.07 -2.13
+3.13 p— N +3.26
+0.09 pyeisnid o +0.09
- 0.05 -1.62 4 A -2.04 - 0.01
3.17 -1.62 -1.23 + 3.18

- 1.23
+3.25 e | v e +3.27
e +0.17 -0.81 i)
+0.47 T i - 0.18

2008 il
+3.52 =104 S +3.53
- 0.03 - 0.03
- 0.04 - 0.01
3.53 +3.52
M.

Mg 0.0 A7'77 /7‘7; 0.0
- 0.81 - 0.62
+0.09 +0.04
+0.02
-0.7 -0.71

Fig. 22.11b Moment distribution for known sidesway at top story

From the free body diagram of the column shown in Fig. 22.11c, the horizontal
forces are calculated. Thus,
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3.17 3.18 B

1.41 1.42
¥ N p ¥ ) . )
—>H,, —>H,, <—H <«—H,,
A2
L’ H,, &' H.. 0.7 0.7
3.53 kp./ H,.. ”\/ H,.
F

3.53

Fig.22.11c Free - body diagrams of Columns for applied load

353+3.17

He, =1.34 kN; H,, =1.34 kN

_ —0.70-1.41

H,, =-0.42 kN;  H.,=-0.42 kN (4)

Casell:

Moment-distribution for sidesway A',at beam BE[Fig. 22.11a (iv)]. Let the

arbitrary sidesway be A', = g

Thus the fixed end moment in column AB and EF due to this arbitrary sidesway
is

SEIA, BBl 25 .60 kN.m

ME =MF = -
AB oA L2 25 El
MF =M. =+6.0 kN.m (5)

Moment-distribution is carried out to obtain the balanced end moments as shown
in Fig. 22.11d. The whole procedure is shown in Fig. 22.10b. Successively joint
D,C,Band E are released and balanced.
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0.0
- 1.0
+ 0.40
- 0.60
+0.10
-0.03

+0.53

-0.01
-0.54

- 0.03
-0.04

+ 0.61

Cc

+ 0.40
- 0.21 Mc,
0.0

-2.66 -2.67 |T5—|
+0.02 + 0.01
-0.05 +0.01
-2.63 -2.67
+0.21 -0.10
-0.84 +0.10
-2.0 A A - 2.67
-2.0 -1.67
0.0 |m M_ -1.0
BE EB o.o E@
0.33 0.33| | E
+6.0 | Mg, Mg + 6.0
- 2.0 -1.67 0.33
+ 4.0 +4.33
+0.21Y 4 0.10
+4.21 +4.23
+0.02
+4.23
F
O

EF
+ 6.0

- 0.84

- 0.05

Fig. 22.11d Moment distribution for known sidesway at bottom story
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From the free body diagram of the column shown in Fig. 22.11e, the horizontal
forces are calculated. Thus,

0.53
- raes
Sm 5m
1.59 1.59 =
B I
)\._./ Hc: \—/ x
B 4,23
m o
4,27
5m 5m
A | 511 F | 511
<« e
\-.J Hn:s \._../ HF]

Figure 22.11e Free - body diagrams of Columns for
arbitrary known sidesway

~1.59-0.53
Ho == =-042 KN;  Hp,=-042 kN

5.11+4.23
Hy === ——=186 KN; H.,=1.86 kN (6)

For evaluating constants k,andk,, we could write, (see Fig. 22.11a, 22.11c and
22.11d).

k,(He, +Hp,)+k,(Hes + Hpy ) =20
kl(HA2+HF2)+k( A3+HF3):60
k,(1.34+1.34)+k,(~0.42-0.42) = 20
k,(~0.42-0.42)+k,(1.86 +1.86) = 60
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k,(1.34)+k,(-0.42) =10
k,(~0.42)+k,(1.86) = 30

Solving which, k, =13.47 k, =19.17 @)
Thus the final moments are,

M, =88.52 kN.m ; M, =62.09 kN.m

My =17.06 kN.m ; M, =32.54. kN.m

M, =-79.54 kN.m ;M_, =—79.54 kN.m

M., =—32.54 kN.m ;M. =-32.54 kN.m

M,. =32.54 kN.m ; M_, =17.06 kN.m

M. =62.09 kN.m ; M. =8852 kN.m ©)

Summary

A procedure to identify the number of independent rotational degrees of freedom
of a rigid frame is given. The slope-deflection method and the moment-
distribution method are extended in this lesson to solve rigid multistory frames
having more than one independent rotational degrees of freedom. A multistory
frames having side sway is analysed by the slope-deflection method and the
moment-distribution method. Appropriate number of equilibrium equations is
written to evaluate all unknowns. Numerical examples are explained with the help
of free-body diagrams.
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Method: An
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Instructional Objectives:

After reading this chapter the student will be able to

1. Differentiate between the direct stiffness method and the displacement
method.

Formulate flexibility matrix of member.

Define stiffness matrix.

Construct stiffness matrix of a member.

Analyse simple structures by the direct stiffness matrix.

abrwn

23.1 Introduction

All known methods of structural analysis are classified into two distinct groups:-

0] force method of analysis and
(i) displacement method of analysis.

In module 2, the force method of analysis or the method of consistent
deformation is discussed. An introduction to the displacement method of analysis
is given in module 3, where in slope-deflection method and moment- distribution
method are discussed. In this module the direct stiffness method is discussed. In
the displacement method of analysis the equilibrium equations are written by
expressing the unknown joint displacements in terms of loads by using load-
displacement relations. The unknown joint displacements (the degrees of
freedom of the structure) are calculated by solving equilibrium equations. The
slope-deflection and moment-distribution methods were extensively used before
the high speed computing era. After the revolution in computer industry, only
direct stiffness method is used.

The displacement method follows essentially the same steps for both statically
determinate and indeterminate structures. In displacement /stiffness method of
analysis, once the structural model is defined, the unknowns (joint rotations and
translations) are automatically chosen unlike the force method of analysis.
Hence, displacement method of analysis is preferred to computer
implementation. The method follows a rather a set procedure. The direct stiffness
method is closely related to slope-deflection equations.

The general method of analyzing indeterminate structures by displacement
method may be traced to Navier (1785-1836). For example consider a four
member truss as shown in Fig.23.1.The given truss is statically indeterminate to
second degree as there are four bar forces but we have only two equations of
equilibrium. Denote each member by a number, for example (1), (2), (3) and (4).

Let @; be the angle, the i-th member makes with the horizontal. Under the

Version 2 CE IIT, Kharagpur



action of external loads P, and Py, the joint E displaces to E’. Let u and v be its
vertical and horizontal displacements. Navier solved this problem as follows.

In the displacement method of analysis u and v are the only two unknowns for
this structure. The elongation of individual truss members can be expressed in
terms of these two unknown joint displacements. Next, calculate bar forces in the
members by using force—displacement relation. Now at E, two equilibrium

equations can be written viz., Z Fy =0and Z Fy =0 by summing all forces

in x and y directions. The unknown displacements may be calculated by solving
the equilibrium equations. In displacement method of analysis, there will be
exactly as many equilibrium equations as there are unknowns.

Let an elastic body is acted by a force F and the corresponding displacement be
u in the direction of force. In module 1, we have discussed force- displacement
relationship. The force (F) is related to the displacement (u) for the linear elastic
material by the relation

F =ku (23.1)

where the constant of proportionality k is defined as the stiffness of the structure
and it has units of force per unit elongation. The above equation may also be
written as

u=aF (23.2)
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Fig. 23.1 Four member truss

The constant a is known as flexibility of the structure and it has a unit of
displacement per unit force. In general the structures are subjected to n forces at
n different locations on the structure. In such a case, to relate displacement at i
to load at |, it is required to use flexibility coefficients with subscripts. Thus the

flexibility coefficient &;j is the deflection at i due to unit value of force applied at
j. Similarly the stiffness coefficient k; is defined as the force generated at i
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due to unit displacement at j with all other displacements kept at zero. To

illustrate this definition, consider a cantilever beam which is loaded as shown in
Fig.23.2. The two degrees of freedom for this problem are vertical displacement

at B and rotation at B. Let them be denoted by U; and U, (=6;). Denote the
vertical force P by P, and the tip moment M by P,. Now apply a unit vertical
force along P, and calculate deflection U; and U;.The vertical deflection is
denoted by flexibility coefficient a;; and rotation is denoted by flexibility
coefficient@,;. Similarly, by applying a unit force along P;, one could calculate

flexibility coefficient @;, and a,, . Thus i3 is the deflection at 1 corresponding to
P, due to unit force applied at 2 in the direction of P,. By using the principle of

superposition, the displacements Uj;and U, are expressed as the sum of
displacements due to loads P, and P, acting separately on the beam. Thus,

Uy =ay; P +a5,P,
Uy =anP +axyP, (23.3a)

The above equation may be written in matrix notation as

u}=[aliP}

wnere, (o} <2 (e} =) 2 ana 2} {7

Version 2 CE IIT, Kharagpur



Y ‘@a

/
4 Fig. 23.2 (b) Cantilever beam with 4
unit load along P, Fig.23.2(a) Cantilever beam

=
;

Fig. 23.2 © Cantilever beam with unit moment along P,

1

a -
Fig. 23.2(d) Cantilever beam with unit displacement along u,

The forces can also be related to displacements using stiffness coefficients.
Apply a unit displacement along U; (see Fig.23.2d) keeping displacement u, as

zero. Calculate the required forces for this case as Ki; and K .Here, Ky
represents force developed along P, when a unit displacement along Ujis
introduced keeping U, =0. Apply a unit rotation along U, (vide Fig.23.2c) ,keeping
u; =0, Calculate the required forces for this configuration Ki, and K. Invoking
the principle of superposition, the forces P, and P, are expressed as the sum of
forces developed due to displacements U; and U, acting separately on the beam.

Thus,
I:)1 = kllul + k12u2

P, =kyUp +KpU, (23.4)

(P} =[kJiu}
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[k] is defined as the stiffness matrix of the beam.

In this lesson, using stiffness method a few problems will be solved. However this
approach is very rudimentary and is suited for hand computation. A more formal
approach of the stiffness method will be presented in the next lesson.

23.2 A simple example with one degree of freedom

Consider a fixed—simply supported beam of constant flexural rigidity El and span
L which is carrying a uniformly distributed load of w kN/m as shown in Fig.23.3a.

If the axial deformation is neglected, then this beam is kinematically
indeterminate to first degree. The only unknown joint displacement is 6;.Thus

the degrees of freedom for this structure is one (for a brief discussion on degrees
of freedom, please see introduction to module 3).The analysis of above structure
by stiffness method is accomplished in following steps:

1. Recall that in the flexibility /force method the redundants are released (i.e.
made zero) to obtain a statically determinate structure. A similar operation
in the stiffness method is to make all the unknown displacements equal to
zero by altering the boundary conditions. Such an altered structure is
known as kinematically determinate structure as all joint displacements
are known in this case. In the present case the restrained structure is
obtained by preventing the rotation at B as shown in Fig.23.3b. Apply all
the external loads on the kinematically determinate structure. Due to

restraint at B, a moment M g is developed at B. In the stiffness method we

adopt the following sign convention. Counterclockwise moments and
counterclockwise rotations are taken as positive, upward forces and
displacements are taken as positive. Thus,

wl?
BT "o (-ve as My is clockwise) (23.5)

The fixed end moment may be obtained from the table given at the end of lesson
14.
2. In actual structure there is no moment at B. Hence apply an equal and

opposite moment Mg at B as shown in Fig.23.3c. Under the action of (-

M) the joint rotates in the clockwise direction by an unknown amount. It

is observed that superposition of above two cases (Fig.23.3b and
Fig.23.3c) gives the forces in the actual structure. Thus the rotation of joint
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B must be &g which is unknown .The relation between —Mg and 95 is
established as follows. Apply a unit rotation at B and calculate the
moment. (Kgg) caused by it. That is given by the relation

4EI
kBB:T (23.6)

where Kgg is the stiffness coefficient and is defined as the force at joint B due to
unit displacement at joint B. Now, moment caused by g rotation is

Mg =Kgg0g (23.7)

3. Now, write the equilibrium equation for joint B. The total moment at B is
Mg +Kggfs, but in the actual structure the moment at B is zero as
support B is hinged. Hence,

M
98 = __B
Kgg
wl®
On =
B~ 18E] (23.9)
4EI
The relation Mg = TQB has already been derived in slope —deflection method

in lesson 14. Please note that exactly the same steps are followed in slope-
deflection method.
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Fig. 23.3(a) Propped - Cantilever beam : one - degree freedom system
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Fig. 23.3 (d) Computation of stiffness co-efficients
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23.3 Two degrees of freedom structure

Consider a plane truss as shown in Fig.23.4a.There is four members in the truss
and they meet at the common point at E. The truss is subjected to external loads

P1 and P2 acting at E. In the analysis, neglect the self weight of members. There

are two unknown displacements at joint E and are denoted by U; and U,.Thus

the structure is kinematically indeterminate to second degree. The applied forces
and unknown joint displacements are shown in the positive directions. The
members are numbered from (1), (2), (3) and (4) as shown in the figure. The
length and axial rigidity of i-th member is Ii and EA respectively. Now it is sought

to evaluate U; and U, by stiffness method. This is done in following steps:

1. In the first step, make all the unknown displacements equal to zero by
altering the boundary conditions as shown in Fig.23.4b. On this restrained
/kinematically determinate structure, apply all the external loads except
the joint loads and calculate the reactions corresponding to unknown joint

displacements U; and U,. Since, in the present case, there are no

external loads other than the joint loads, the reactions (R, );and (R.),
will be equal to zero. Thus,

R:| [0
(R,), o (23.10)

2. In the next step, calculate stiffness coefficients Ki1,K,1,Ky» and Ky . This is
done as follows. First give a unit displacement along U;holding
displacement along U, to zero and calculate reactions at E corresponding
to unknown displacements U;andU, in the kinematically determinate

structure. They are denoted byKiq,K»1. The joint stiffnessKy1, Ky, of the

whole truss is composed of individual member stiffness of the truss. This
is shown in Fig.23.4c. Now consider the member AE . Under the action of

unit displacement along U, , the joint E displaces to E’. Obviously the new
length is not equal to length AE . Let us denote the new length of the
members byl; +Al;, whereAl, is the change in length of the

member AE’. The member AE’ also makes an angle 6&;with the

horizontal. This is justified as Al is small. From the geometry, the change
in length of the members AE’ is

Al; =cos 6, (23.11a)
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The elongation Al; is related to the force in the member AE’, FAE- by

o
Al = &2
1=TAE (23.11b)

Thus from (23.11a) and (23.11b), the force in the members AE’ is

, E
Fae = I—Al cos 6, (23.11¢)
1

This force acts along the member axis. This force may be resolved along U; and

!

- | CEA o,
U, directions. Thus, horizontal component of force F,: is I CosS™ &1 (23.11d)
1

A .
and vertical component of force Fje is =~ Cos 6y sin6; (23.11e)
1

AW,
,
r‘){u'll IIIII .""'-.
i I." |
o H‘-. A \
ok LY
;___.-"r : = I"II .:
o = & &
'EFJ' ! 'E'- ."III w II- %
/ / "x
i |III '\.\
&
E" |'I'I"-|II-..H.. I'lr--\._lE- x'x"'-.-- E"
A ;T B —L c D El

Fig 23.4a A four - member truss
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Fig. 23.4c Unit displacement along u
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Fig.23.4d Unit displacement along u,
Version 2 CE IIT, Kharagpur



Expressions of similar form as above may be obtained for all members. The sum
of all horizontal components of individual forces gives us the stiffness coefficient

ki; and sum of all vertical component of forces give us the required stiffness
coefficientk,, .

E EA EA. EA
Ky _EA cos? 6, +—2cos® 0, +—=cos® 0, +—2cos’ 6,
I I |
1 2 3 4
CEA
Ky =, oS 6 (23.12)
i1
EA .
Kyy =Z:I—_'cosei sin 6; (23.13)
I

In the next step, give a unit displacement along U, holding displacement along
U equal to zero and calculate reactions at E corresponding to unknown
displacements Ujand U,in the kinematically determinate structure. The

corresponding reactions are denoted by Ki, and Ky, as shown in Fig.23.4d. The
joint E gets displaced to E' when a unit vertical displacement is given to the joint
as shown in the figure. Thus, the new length of the member AE’ is Iy +Al,.

From the geometry, the elongation Al is given by

Thus axial force in the member along its centroidal axis is —l sin o, (23.14b)
1

Resolve the axial force in the member along Uj;and U,directions. Thus,

EA, .
horizontal component of force in the member AE’ isl—s'n 0, CosO;  (23.14c)
1

)
and vertical component of force in the member AE’ is I sin” 6, (23.14d)
1

In order to evaluate K,,, we need to sum vertical components of forces in all the
members meeting at joint E .Thus,
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4
EA
Kgp = ZI—_'SIHZ Z (23.15)
i=1

1
LEA .
Similarly, K12 = ZI—_S”‘ 0; cos g; (23.16)
i1 i

3. Joint forces in the original structure corresponding to unknown
displacements U;and U, are

R (P
w1

Now the equilibrium equations at joint E states that the forces in the original
structure are equal to the superposition of (i) reactions in the kinematically
restrained structure corresponding to unknown joint displacements and (ii)
reactions in the restrained structure due to unknown displacements themselves.
This may be expressed as,

Fi=(Ry ), + kU +kipy

Fo = (RL), +kagly +kpoU, (23.18)
This may be written compactly as

{Fh=1{R;}+[kJu} (23.19)

where,

u}= {312} (23.20)
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For example take P, =P, =P L

91 = 350 , 92 = 700 ’03 21050 and 04 =l40°

Then.

Ky, = Z%cosz 0, 5in 0; = 0.9367 —
Ky, = Z%sin2 0; cos 0,
Ky = Z“%sin2 0, cos6; = 0.0135T

Ky = Z%sim” 6. = 2.1853%

P L

Solving which, yields

U =1.0611§

U, = 0.451E—"A

" sin o,

P| EA[0.9367 0.0135
B 0.0135 2.1853

A=A =A3=A=A and

(23.21)
EA
_ 0013554
L
EA
(23.22)

I

Version 2 CE IIT, Kharagpur



Example 23.1

Analyze the plane frame shown in Fig.23.5a by the direct stiffness method.
Assume that the flexural rigidity for all members is the same .Neglect axial
displacements.

d8kHMN
2m Zm
| 1 &
[F k' |
F B 7 .MG
El 'i;ujr B
Jm
24kM
=¥ + El
3m
A
- .
FEFaFEd,

Fig 23.5a Plane - frame of Example 23.1

Solution
In the first step identify the degrees of freedom of the frame .The given frame has
three degrees of freedom (see Fig.23.5b):

0] Two rotations as indicated by U; and U, and
(i) One horizontal displacement of joint B and C as indicated by Uj.

In the next step make all the displacements equal to zero by fixing joints B and C
as shown in Fig.23.5c. On this kinematically determinate structure apply all the
external loads and calculate reactions corresponding to unknown joint
displacements .Thus,
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F 48x2x4 24x3x9
R )~ 16 36

(1)
=24-18=6 kKN.m

(RS ), =—24 kN.m

(RS ), =12 kN.m )
Thus,
(RE).| (6
(Ro), =1-24 @)
(RF> 12
D /3

Next calculate stiffness coefficients. Apply unit rotation along U; and calculate

reactions corresponding to the unknown joint displacements in the kinematically
determinate structure (vide Fig.23.5d)
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Fig 23.5c Kinematically restrained structure
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Fig 23.5e Unit displacement along u,
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Fig. 23.5f Unit displacement along u,

1B AE o
6
2El
ky ==~ =05El

(4)

ky, =—2EL __0.166E]

6 x

Similarly, apply a unit rotation along u,and calculate reactions corresponding to
three degrees of freedom (see Fig.23.5e)

k,, = 0.5EI
k,, = El
Ky, =0 (5)

Apply a unit displacement along u;and calculate joint reactions corresponding to
unknown displacements in the kinematically determinate structure.
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ko=l — 0.166E
L
kys =0
k33=126';:' _ 0.056EI (6)

Finally applying the principle of superposition of joint forces, yields

F)] (6 1.667 05 -0.166) (u,
Ft=1-24'+EI{ 05 1 0 u,
F| |12 ~0.166 0 0.056 | |u,

f—/;—’\
SSLENLLL
%/_/
Il
f—_/;—’\
o O O

} as there are no loads applied along U;,U; and U3 .Thus the

unknown displacements are,

1

u, [ 1 05 -0166)'(6
Up=—gr| 05 10 | 124 -
U, -0.166 O 0.056 -24
Solving
18.996
SR
14.502
A=
270.587
A= ®)
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Summary

The flexibility coefficient and stiffness coefficients are defined in this section.
Construction of stiffness matrix for a simple member is explained. A few simple
problems are solved by the direct stiffness method. The difference between the
slope-deflection method and the direct stiffness method is clearly brought out.
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Analysis of Statically
Indeterminate

Structures by the Direct
Stiffness Method
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[Lesson

24

The Direct Stiffness
Method: Truss Analysis
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Instructional Objectives

After reading this chapter the student will be able to

1. Derive member stiffness matrix of a truss member.

2. Define local and global co-ordinate system.

3. Transform displacements from local co-ordinate system to global co-ordinate
system.

Transform forces from local to global co-ordinate system.

Transform member stiffness matrix from local to global co-ordinate system.
Assemble member stiffness matrices to obtain the global stiffness matrix.
Analyse plane truss by the direct stiffness matrix.

No ok

24.1 Introduction

An introduction to the stiffness method was given in the previous chapter. The
basic principles involved in the analysis of beams, trusses were discussed. The
problems were solved with hand computation by the direct application of the
basic principles. The procedure discussed in the previous chapter though
enlightening are not suitable for computer programming. It is necessary to keep
hand computation to a minimum while implementing this procedure on the
computer. In this chapter a formal approach has been discussed which may be
readily programmed on a computer. In this lesson the direct stiffness method as
applied to planar truss structure is discussed.

Plane trusses are made up of short thin members interconnected at hinges to
form triangulated patterns. A hinge connection can only transmit forces from one
member to another member but not the moment. For analysis purpose, the truss
is loaded at the joints. Hence, a truss member is subjected to only axial forces
and the forces remain constant along the length of the member. The forces in the
member at its two ends must be of the same magnitude but act in the opposite
directions for equilibrium as shown in Fig. 24.1.
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Fig 24.1 Truss member in equilibrium

Now consider a truss member having cross sectional area A, Young’s modulus
of material E, and length of the memberL . Let the member be subjected to axial
tensile force F as shown in Fig. 24.2. Under the action of constant axial force F ,
applied at each end, the member gets elongated by uas shown in Fig. 24.2.

"

Fig 24.2 Force - displacement relationship

The elongation umay be calculated by (vide lesson 2, module 1).

FL
u_

= (24.1)

Now the force-displacement relation for the truss member may be written as,
F=—u (24.2)
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F =ku (24.3)

where k:E is the stiffness of the truss member and is defined as the force

required for unit deformation of the structure. The above relation (24.3) is true
along the centroidal axis of the truss member. But in reality there are many
members in a truss. For example consider a planer truss shown in Fig. 24.3. For
each member of the truss we could write one equation of the type F =kualong
its axial direction (which is called as local co-ordinate system). Each member has
different local co ordinate system. To analyse the planer truss shown in Fig. 24.3,
it is required to write force-displacement relation for the complete truss in a co
ordinate system common to all members. Such a co-ordinate system is referred
to as global co ordinate system.

l 10kH
— .\ /. , TkN
™, 9 S
. 1
am ™, /
45
™
/ J E
3.
- N\
. * ]

4m

La |
- =

Fig 24.3 Plane truss

24.2 Local and Global Co-ordinate System

Loads and displacements are vector quantities and hence a proper coordinate
system is required to specify their correct sense of direction. Consider a planar
truss as shown in Fig. 24.4. In this truss each node is identified by a number and
each member is identified by a number enclosed in a circle. The displacements
and loads acting on the truss are defined with respect to global co-ordinate
system xyz . The same co ordinate system is used to define each of the loads and

displacements of all loads. In a global co-ordinate system, each node of a planer
truss can have only two displacements: one along Xx-axis and another along vy -

axis. The truss shown in figure has eight displacements. Each displacement
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(degree of freedom) in a truss is shown by a number in the figure at the joint. The
direction of the displacements is shown by an arrow at the node. However out of
eight displacements, five are unknown. The displacements indicated by numbers
6,7 and 8 are zero due to support conditions. The displacements denoted by
numbers 1-5 are known as unconstrained degrees of freedom of the truss and
displacements denoted by 6-8 represent constrained degrees of freedom. In this
course, unknown displacements are denoted by lower numbers and the known
displacements are denoted by higher code numbers.

10kM

2 A
.1-T—|-r'| 1) lz —3
' ——% 5kN
AN 7~
R rd
%
“\//5
) B2 2
2 o
¥ 4 &
B st 5
4 ~
o 4 (3 TS

Fig 24.4 Node and members numbering

To analyse the truss shown in Fig. 24.4, the structural stiffness matrix K need to
be evaluated for the given truss. This may be achieved by suitably adding all the
member stiffness matricesk', which is used to express the force-displacement
relation of the member in local co-ordinate system. Since all members are
oriented at different directions, it is required to transform member displacements
and forces from the local co-ordinate system to global co-ordinate system so that
a global load-displacement relation may be written for the complete truss.

24.3 Member Stiffness Matrix

Consider a member of the truss as shown in Fig. 24.5a in local co-ordinate
system x'y'. As the loads are applied along the centroidal axis, only possible

displacements will be along Xx'-axis. Let the u',and u',be the displacements of
truss members in local co-ordinate system i.e.along x'-axis. Here subscript 1
refers to node 1 of the truss member and subscript 2 refers to node 2 of the truss
member. Give displacement u';at node 1 of the member in the positive x'
direction, keeping all other displacements to zero. This displacement in turn
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. . . EA .
induces a compressive force of magnitude Tu'1 in the member. Thus,

EA . . . .
q'le—lia‘u'1 and q'zz—Tu'1 (24.4a) (—ve as it acts in the —vedirection for
equilibrium). Similarly by giving positive displacements of u',at end 2 of the

member, tensile force of magnitude E—f‘u'z is induced in the member. Thus,

q', = —%u'z and q", = %u'z (24.4b)

Now the forces developed at the ends of the member when both the
displacements are imposed at nodes 1 and 2 respectively may be obtained by
method of superposition. Thus (vide Fig. 24.5d)
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f// P o o
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«:\i// L i 4 }"F/
4 R ;
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(a) &’ (b o ¢ {d)
Fig 24.5 Force displacement reaction in
load co-ordinate
, EA , EA ,
P = Ut (24.53)
EA EA
p',=—u',———u' (24.5b)
2 L 2 L 1

Or we can write
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2L

=k} (24.6b)

Thus the member stiffness matrix is
k':E{ - } (24.7)

L|l-1 1

This may also be obtained by giving unit displacement at node 1 and holding
displacement at node 2 to zero and calculating forces developed at two ends.
This will generate the first column of stiffness matrix. Similarly the second column
of stiffness matrix is obtained by giving unit displacement at 2 and holding
displacement at node 1 to zero and calculating the forces developed at both
ends.

24.4 Transformation from Local to Global Co-ordinate
System.

Displacement Transformation Matrix

A truss member is shown in local and global co ordinate system in Fig. 24.6. Let
x'y'z'be in local co ordinate system and xyz be the global co ordinate system.
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Fig 24.6 Truss element (a) local co-ordinate system
(b) global co-ordinate system

The nodes of the truss member be identified by 1 and 2. Let u’;, and u', be the
displacement of nodes 1 and 2 in local co ordinate system. In global co ordinate
system, each node has two degrees of freedom. Thus, u,,v, and u,,v,are the
nodal displacements at nodes 1 and 2 respectively along x- and vy - directions.
Let the truss member be inclined to xaxis by & as shown in figure. It is observed
from the figure that u';is equal to the projection of u, on x' axis plus projection of

v, on X'-axis. Thus, (vide Fig. 24.7)
u',=u,coséd+v,sin@ (24.8a)
u', =u, Ccosé+v,sinéd (24.8b)
This may be written as

Uy

u'; cosd singd 0O 0 ||v
= ) (24.9)
u', 0 0 cosfd sind ||u,

Va

Introducing direction cosines | = cosé ;m =sin @ ; the above equation is written as
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u' _ Il mO 0|V (24.10a)
u,| [0 0 I ml|u, '

or, wh=[T]{u} (24.10D)

In the above equation [T] is the displacement transformation matrix which

transforms the four global displacement components to two displacement
component in local coordinate system.
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T—* x Fig 24.7 Generalized displacement
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Fig 24.8 A typical truss member
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Let co-ordinates of node 1 be (x,, Y, )and node 2 be(x,,y,). Now from Fig. 24.8,

| —cosp = 2% (24.11a)
m :sinez% (24.11b)
and L =/(x, — %)% + (Y, - y,)° (24.11c)

Force transformation matrix

Let p',,p',be the forces in a truss member at node 1 and 2 respectively
producing displacements u'and u',in the local co-ordinate system
and p,, p,, p;, p, be the force in global co-ordinate system at node 1 and 2
respectively producing displacements u,,v, and u,,v, (refer Fig. 24.9a-d).

o WP
@ 4@
. / T e
2 2
v Vi
=
A% 4
g “. 8
Y
A P rup ® .
] S /
Ps pl
X
x P
i —t = p
2
P:
4 e (d)
——p T ¥y
i e)
p 3
X
X Fig 24.9 Forces transformation from local Co-ordinate

system to global Co-ordinate system
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Referring to fig. 24.9c, the relation between p';and p,, may be written as,
p, = p',cosé (24.12a)

p, =p',sinéd (24.12b)

Similarly referring to Fig. 24.9d, yields
p, = p',coséd (24.12¢)
p, =p',sin@ (24.12d)

Now the relation between forces in the global and local co-ordinate system may
be written as

P, cosé¢ O

P, _|sin@ 0 {p'l} (24.13)
Ps 0 cosé || p',

P, 0 siné

{p}=[rT {p} (24.14)

where matrix {p} stands for global components of force and matrix{p'} are the

components of forces in the local co-ordinate system. The superscript T stands
for the transpose of the matrix. The equation (24.14) transforms the forces in the
local co-ordinate system to the forces in global co-ordinate system. This is

accomplished by force transformation matrix[T|". Force transformation matrix is
the transpose of displacement transformation matrix.

Member Global Stiffness Matrix

From equation (24.6b) we have,
{ph=[kT{u}

Substituting for {p'}in equation (24.14), we get

=T [kTiu} (24.15)
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Making use of the equation (24.10b), the above equation may be written as

{p
{p}=[k] {u}

p=[TT k][ Ju}

(24.16)

(24.17)

Equation (24.17) represents the member load displacement relation in global co-
ordinates and thus [k] is the member global stiffness matrix. Thus,

ik

j=[rT []] (24.18)
cos? @ cosdsin @ —cos’@ —cosdsind
cosdsin @ sin? @ —cosdsind  —sin® @
—cos’@ —cos@sind cos’ @ cosdsin @
|—cos@singd  —sin6@  cos@sing sin” @
12 Im =17 —Im
Im m? —-Im -m?
24.19
-1 —-Im |I? Im ( )
-Im -m?* Im m’

Each component k;of the member stiffness matrix [k] in global co-ordinates
represents the force in x-or y-directions at the end irequired to cause a unit

displacement along x

—or y—directions atend j .

We obtained the member stiffness matrix in the global co-ordinates by
transforming the member stiffness matrix in the local co-ordinates. The member
stiffness matrix in global co-ordinates can also be derived from basic principles in

a direct method. Now

give a unit displacement along x-direction at node 1 of the

truss member. Due to this unit displacement (see Fig. 24.10) the member length
gets changed in the axial direction by an amount equal to Al, =cosé. This axial
change in length is related to the force in the member in two axial directions by

EA

Fo, = Tcos 0 (24.20a)
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Fig 24.10

This force may be resolved along u,and v, directions. Thus horizontal

component of force F,,. is k; =E—|:A‘cos2 0 (24.20b)

Vertical component of force F,.,. is k,, =E—|:Acosesin 7 (24.20c)

The forces at the node 2 are readily found from static equilibrium. Thus,

k= —ky, = —%cosz 0 (24.200)

Ky =—ky = %cos @sin @ (24.20e)

The above four stiffness coefficients constitute the first column of a stiffness
matrix in the global co-ordinate system. Similarly, remaining columns of the
stiffness matrix may be obtained.

24.5 Analysis of plane truss.

Number all the joints and members of a plane truss. Also indicate the degrees of
freedom at each node. In a plane truss at each node, we can have two
displacements. Denote unknown displacements by lower numbers and known
displacements by higher numbers as shown in Fig. 24.4. In the next step
evaluate member stiffness matrix of all the members in the global co ordinate
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system. Assemble all the stiffness matrices in a particular order, the stiffness
matrix K for the entire truss is found. The assembling procedure is best
explained by considering a simple example. For this purpose consider a two
member truss as shown in Fig. 24.11. In the figure, joint numbers, member
numbers and possible displacements of the joints are shown.

o
"|T-'-h-1
™
jxf K‘x
ot ,
.-l_.-" "‘\.H
- B 2
.-"'f - ﬁ:?-{x“‘x B
g e
4 .-"f H'\-\.‘ ‘
¥ _,.-""-. y
2 - B HK"‘
A>3 3 S
— Y
(a)
wa{d)
i
usf 3
A
w2}
i
-__HI 8
1 — " 1)
(b)

Fig 24.11 Analysis of plane - truss

The area of cross-section of the members, its length and its inclination with the
X- axis are also shown. Now the member stiffness matrix in the global co-
ordinate system for both the members are given by
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Global 3 4 1 2
Memb 1 2 3 4

12 Lm -2 -lm,
] EA| bm o m o m oy (24.21a)
L | -2 —m 17 l,m,

2
_Ilml —m, Ilml m,

On the member stiffness matrix the corresponding member degrees of freedom
and global degrees of freedom are also shown.

2 2

|2 Izmz _Iz _Izmz
EA, | Im m,> —Lm, -m,>
2| _ 2 21t 2 211 2
[k ]_L— S 2 (24.21b)
2 ) —I,m, 2 .M,
2 2
_Izmz —-m, |2m2 m,

Note that the member stiffness matrix in global co-ordinate system is derived
referring to Fig. 24.11b. The node 1 and node 2 remain same for all the
members. However in the truss, for member 1, the same node (i.e.node 1 and 2
in Fig. 24.11b) are referred by 2 and 1 respectively. Similarly for member 2, the
nodes 1 and 2 are referred by nodes 3 and 4 in the truss. The member stiffness
matrix is of the order4 x 4. However the truss has six possible displacements and
hence truss stiffness matrix is of the order6x6. Now it is required to put elements
of the member stiffness matrix of the entire truss. The stiffness matrix of the
entire truss is known as assembled stiffness matrix. It is also known as structure
stiffness matrix; as overall stiffness matrix. Thus, it is clear that by algebraically
adding the above two stiffness matrix we get global stiffness matrix. For example
the element k' of the member stiffness matrix of member 1 must go to location
(3,3) in the global stiffness matrix. Similarly k?: must go to location (3,3) in the

global stiffness matrix. The above procedure may be symbolically written as,

n R
K=Yk (24.22)
i=0
2 2 2 2
|1 |1m1 _Il _I1m1 |2 Izmz _Iz _Izmz
2 2 2 2
— EA1 |1m1 m, _Ilml —m, + EAz Izmz m, _Izmz —-m,
2 2 2 2
L _Il _I1m1 I1 |1m1 L, _Iz _Izmz |2 |2m2
2 2 2 2
_Ilml —m, |1m1 m, _Izmz —-m, Izmz m,
(24.23a)
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The assembled stiffness matrix is of the order6x6. Hence, it is easy to visualize
assembly if we expand the member stiffness matrix to 6x6size. The missing

columns and rows in matrices k' and k?are filled with zeroes. Thus,

K:ﬂ =l
Ll _Ilml

0

0

O O O O O o
O O O O O o

_Izmz |2

-1, —I,m, 0
~l,m, -my’ 0
2 ,m, 0
Lm, m} 0
0 0 0
0 0 0

(24.24)

Adding appropriate elements of first matrix with the appropriate elements of the

second matrix,
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ﬂ|2+EA2|2 EAilm-i—EAzlm —ﬂl2 —ﬂlm —EAzl2 —EAzlm
L 1 L2 L 1Ty 2T L 1 L 1Ty L2 L 202
2 2 2 2
%Ilml +E|__A2|2m2 %mlz +EL_A2m22 _%Ilml _%mlz - ELAZ |2mz —EL—Azmz2
2 2 2 2
_EA EA,. EA. EA ) ;
L1 1 L1 11 I—1 h L1 ,m,
K=
- % I,m, —% m, % l,m, % m’ 0 0
_EA EA 0 0 Bl By
L, L, L, L,
L 2 2 2 2 i

If more than one member meet at a joint then the stiffness coefficients of member
stiffness matrix corresponding to that joint are added.

After evaluating global stiffness matrix of the truss, the load displacement
equation for the truss is written as,

{pj=[K] {u} (24.26)

where {p} is the vector of joint loads acting on the truss, {u} is the vector of joint
displacements and [K] is the global stiffness matrix. The above equation is

known as the equilibrium equation. It is observed that some joint loads are known
and some are unknown. Also some displacements are known due to support
conditions and some displacements are unknown. Hence the above equation
may be partitioned and written as,

{ pk } [kll ] [klZ ]:|{{u u }}
= 24.27
{{pu}} [[kzl] ke ] 3 (24.20)
where {p, },{u, }denote vector of known forces and known displacements

respectively. And {p,}{u,} denote vector of unknown forces and unknown
displacements respectively.

Expanding equation 24.27,
{pk}: [kll]{uu}+[k12]{uk} (24-283-)
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{pu}: [k21]{uu}+[k22]{uk} (24.28b)

In the present case (vide Fig. 24.11a) the known displacements are u,,u,,u. and
U, . The known displacements are zero due to boundary conditions. Thus,

{u, }=1{0}. And from equation (24.28a),

{p.} =k, Ku} (24.29)

Solving {u,}=[k,,] " {p.}

where [kn] corresponding to stiffness matrix of the truss corresponding to

unconstrained degrees of freedom. Now the support reactions are evaluated
from equation (24.28b).

{p.}= [k21]{uu} (24.30)

The member forces are evaluated as follows. Substituting equation (24.10b)
{ut=[T]{u} in equation (24.6b) {p'} =[k]{u'}, one obtains

'} =k Jiu} (24.31)

Expanding this equation,
ul

' 1 -1fcos@ singd O 0 ||v
Prl_AE . L (24.32)
P, L[-1 1] O 0 cosé sind ||u,

vV,
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Example 24.1

Analyse the two member truss shown in Fig. 24.12a. Assume EA to be constant
for all members. The length of each member is 5m.

—* 5kN
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A \\ 150°

A 30° R
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Fig 24.12(a) Example 24.1
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Fig 24.12(b) Members and node numbering
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The co-ordinate axes, the number of nodes and members are shown in
Fig.24.12b. The degrees of freedom at each node are also shown. By inspection
it is clear that the displacement u; =u, =u, =u, =0. Also the external loads are

p, =5 kN ;p,=0 kN . (1)

Now member stiffness matrix for each member in global co-ordinate system
is(6, =30°).

0.75 0433 -0.75 -0.433
[kl]— EA| 0.433 025 -0433 -0.25

5] -075 -0433 0.75 0.433 @
-0433 -0.25 0433 0.25
0.75 -0433 -0.75 0.433
[kz]: EA -0.433 0.25 0433 -0.25 3)
51 -075 0433 0.75 -0.433

0433 -0.25 -0433 0.25

The global stiffness matrix of the truss can be obtained by assembling the two
member stiffness matrices. Thus,

1.5 0 | -075 -0433 -075 0.433 ]
|
2005 i-0433 -025 0433 -—0.25
K] EA| 075 ~04331 075 0433 0 0 @
5 [-0433 -0.25 i 0.433  0.25 0 0
-075 0433 | 0 0 0.75 —0.433
| 0433 -0251 O 0 -0433 025 |
Again stiffness matrix for the unconstrained degrees of freedom is,
EA[15 O
Kl=— 5
[K]== {0 0.5} (5)

Writing the load displacement-relation for the truss for the unconstrained degrees
of freedom

{pk}:[kll]{uu} (6)

Version 2 CE IIT, Kharagpur



P, _EA1.5 0 ||u, 7
p,] 5|0 05]u, %

u, ;u, =0 (8)

Support reactions are evaluated using equation (24.30).
{p.}=lk:fu} (©)

Substituting appropriate values in equation (9),

-0.75 -0.433
EA| -0.433 -0.25 | 1 [16.667
pf=— — (10)
51 -0.75 0433 | AE 0
0.433 -0.25
P, -25
-1.443
e (11)
D -2.5
Pe 1.443

The answer can be verified by equilibrium of joint 1. Also,
p;+pPs+5=0
Now force in each member is calculated as follows,

Member 1: 1=0.866; m=05 ;L=5m.
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Us

] AE[1 -11 m o 0]}y,
P,/ L|-1 1]0 01 mlluy

VZ

u3

, AE v
=250 m o1 omp
VZ

:E[-o.see]{m'w}:_z.ss KN
L AE

{pt}

Member 2: 1=-0.866; m=05 ;L=5m.

Us

Pyl AE| 1 -1)I m O O |fv
p,| L|-1 1]0 01 mlly

Va

Summary

The member stiffness matrix of a truss member in local co-ordinate system is
defined. Suitable transformation matrices are derived to transform displacements
and forces from the local to global co-ordinate system. The member stiffness
matrix of truss member is obtained in global co-ordinate system by suitable
transformation. The system stiffness matrix of a plane truss is obtained by
assembling member matrices of individual members in global co-ordinate
system. In the end, a few plane truss problems are solved using the direct
stiffness matrix approach.
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Instructional Objectives

After reading this chapter the student will be able to

1. Transform member stiffness matrix from local to global co-ordinate system.
2. Assemble member stiffness matrices to obtain the global stiffness matrix.
3. Analyse plane truss by the direct stiffness matrix.

4. Analyse plane truss supported on inclined roller supports.

25.1 Introduction

In the previous lesson, the direct stiffness method as applied to trusses was
discussed. The transformation of force and displacement from local co-ordinate
system to global co-ordinate system were accomplished by single transformation
matrix. Also assembly of the member stiffness matrices was discussed. In this
lesson few plane trusses are analysed using the direct stiffness method. Also the
problem of inclined support will be discussed.

Example 25.1

Analyse the truss shown in Fig. 25.1a and evaluate reactions. Assume EA to be
constant for all the members.

B
, E 3
< B
# R
;’; % 4
7 d g
v 8 5
60" 60"
A ,{f’(ﬂ;' F} D - &
- 10kN | ¢ o

Fig.25.1(a) Plane truss of Example 25.1
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Fig. 25.1(b) Node and member numbering

The numbering of joints and members are shown in Fig. 25.1b. Also, the possible
displacements (degrees of freedom) at each node are indicated. Here lower
numbers are used to indicate unconstrained degrees of freedom and higher
numbers are used for constrained degrees of freedom. Thus displacements 6,7
and 8 are zero due to boundary conditions.

First write down stiffness matrix of each member in global co-ordinate system
and assemble them to obtain global stiffness matrix.

Element 1: #=60°, L =4.619 m. Nodal points 4-1

0.25 0433 -0.25 -0.433
[kl]— EA | 0.433 0.75 -0433 -0.75 )
4619 -0.25 -0.433 0.25 0.433

-0433 -0.75 0433 0.75

Element 2: 4 =90°, L =4.00 m. Nodal points 2-1
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0 0 0 O
0 1 0 -1
[k2 :E 2)
400 0 0 O
0 -1 0 1
Element 3: #=120°, L =4.619 m. Nodal points 3-1
025 -0433 -025 0433
[kg]_ EA |-0.433 0.75 0.433 -0.75 3)
© 4.619| —0.25 0.433 025 -0.433
0433 -0.75 -0.433 0.75
Element4: §=0° L=231m. Nodal points 4-2
1 0 -10
0 0 0 O
[k“]: E (4)
231|-1 0 1 O
0 0 0 O
Element 5: #=0° L=231m. Nodal points 2-3
1 0 -10
0 0 0 O
- ®
231|-1 0 1 O
0 0 0 O

The assembled global stiffness matrix of the truss is of the order 8x8. Now
assemble the global stiffness matrix. Note that the element k;, of the member
stiffness matrix of truss member 1 goes to location (7,7)of global stiffness matrix.

On the member stiffness matrix the corresponding global degrees of freedom are
indicated to facilitate assembling. Thus,
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1 2 3 4 5 6 7 8
[ 0.108 0 0 0 —-0.054 | 0.094 -0.054 -0.094]1
0 0.575 0 -0.25 0.094 i -0.162 -0.094 -0.162|2
0 0 0.866 0 —0.433 i 0 —-0.433 0 3
0 -0.25 0 0.25 0 1 0 0 0 4
[K]=EA :
~0054_ 0094 -0433 0 0487 {-0004 0 0 |5
0.094 -0.162 0 0 —0.094 i 0.162 0 0 6
—0.054 -0.094 -0.433 0 o | 0 0.487 0.0934 |7
| —0.094 -0.162 0 0 0 i 0 0.0934 0.162 |8
(6)
Writing the load-displacement relation for the truss, yields
P, [ 0.108 0 0 0 —~0.054 | 0.094 —-0.054 -0.094]
P, 0 0.575 0 -0.25 0.094 i -0.162 -0.094 -0.162
P, 0 0 0.866 0 -0.433 i 0 —-0.433 0
Pel_g O 025 0 0.25 0 i 0 0 0
p;| ~|-0054 0094 -0433 0 0487 {0094 0 0
Pe 0.094 -0.162 0 0 —0.094 i 0.162 0 0
P, —0.054 -0.094 -0.433 0 o | 0 0.487 0.0934
Pg | —0.094 -0.162 0 0 0 i 0 0.0934 0.162 |
(7

The displacements u,to u are unknown. The displacements u, =u, =u, =0.

Also p,=p,=p;=p;=0.But p,=-10 kN.

0 (0108 0 0 0 -0.054](u,
0 0 0575 0 -025 0094 ||u,
0 t=EA 0 0 0866 0 -—0433[u,
~10 0 -025 0 025 0 |lu,
0 |—0.054 0094 -0433 0 0487 ||u,

(8)

Solving which, the unknown displacements are evaluated. Thus,
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6.668 —34.64 6.668 —74.642 13.334
uy=——:;Uu, = s Ug=—— Uy =——F; Uy =

U AE TP AE T AE Y AE " AE
Now reactions are evaluated from equation,

6.668
Pq 0.094 -0.162 0 0 —-0.094 —34.64
p, r=EA -0.054 -0.094 -0.433 0 0 é 6.668
Pg -0.094 -0.162 0 0 0 —74.642
13.334

Thus,
P,=500 kN ; p,= 0 ; p;=500 kN.
Now calculate individual member forces.

Member 1: 1=050; m=0.866 ;L=4.619m .

AE

(P} =[085 —o.see]i{ 6'667}=5.77 kN

AE |-34.64

Member 2: 1=0; m=10 ;L=4.0m.

u3
AZRER L
Puf=gglt m —1 —m] N
u2

AE 1 [-74.642

l=—1 -1|— =-10.0 kN
tpi 4.619[ ]AE{—34.64}
Member 3: 1 =-0.50; m=0.866 ;L=4.619m .
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(11)

(12)

(13)



13.334
(p)=-"E 05 05 -0866]-—1 6667 =577 kN
4.619
~34.64
Member4: 1=1.0;m=0 ;L=2.31.0m.
u,
AE Ug
L=l -1 -
=gl m —t -m
u,
AE 1
=1 -1]-— =-2.88 kN
tpi 2.31[ AE{6.667}
Member 5: 1=10; m=0;L=2310m.
u3
AE U,
L=l -1 -
Puf=ool m]u5
u6
AE 1 [6.667
=1 -1]-— =-2.88 kN
tpi 2.31[ ]AE {13.334}

Example 25.2

(14)

(15)

(16)

Determine the forces in the truss shown in Fig. 25.2a by the direct stiffness

method. Assume that all members have the same axial rigidity.
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Fig. 25.2a Example 25.2
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Fig.25.2b Node and member numbering
The joint and member numbers are indicated in Fig. 25.2b. The possible degree
of freedom are also shown in Fig. 25.2b. In the given problem u,,u,and u,

represent unconstrained degrees of freedom and u, =u; =u; =u, =uy, =0 due

to boundary condition. First let us generate stiffness matrix for each of the six
members in global co-ordinate system.

Element 1: 4=0° L =5.00 m. Nodal points 2-1
3 4 1 2
1 0 -1 03
[kl _EA 0 0 0 0 4 (1)
50(-1 0 1 0|1
0 0 0 0] 2
Element 2: 4=90°, L=5.00m. Nodal points 4-1
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7 8 1 2
0O 0 0 07
[kz _EA 0O 1 0 -1| 8 2
500 0 O 1
0 -1 0 2
Element 3: #=0° L=5.00m. Nodal points 3-4
5 6 7 8
1 0 -1 0|5
[k3 _EA 0 0 0 0|6 3)
50/-1 0 1 0} 7
0O 0 0 0] 8
Element 4: §=90°, L =5.00 m. Nodal points 3-2
5 6 3 4
0 0 0 05
[k“ _EA 0 1 0 -1|6 4)
50/0 0 O 3
0 -1 0 4
Element 5: §=45°, L=7.07 m. Nodal points 3-1
5 6 1 2
05 05 -05 -05|5
[kS]— EA| 05 05 -05 -05| 6 (5)
©707|-05 -05 05 05 |1
-05 -05 05 052
Element 6: #=135°, L=7.07m. Nodal points 4-2
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5
0.5

k]

0.5

8

~05

EA|-05 05
"~ 7.07|-05 05
~05

3

-05
0.5
0.5

-05

4
05 | 7
-05]| 8
-05] 3
05| 4

(6)

There are eight possible global degrees of freedom for the truss shown in the
figure. Hence the global stiffness matrix is of the order (8x8). On the member
stiffness matrix, the corresponding global degrees of freedom are indicated to
facilitate assembly. Thus the global stiffness matrix is,

[K]= AE

0271 0071 -0.2 |
0071 0271 |
~020 0 0271 |

0 0  -0071
—-0.071 -0.071 i
-0.071 -0.071 i

0 0 -0.071!
0 -020 0071 |

-0.071

The force-displacement relation for the truss is,

Py
P,
Ps
P4
Ps
Ps
P7
Ps

=EA

-0.2
0

0
0
-0.071

0.071
-0.20
0
0.271
-0.071

0
0
-0.071

0.271 0.071
0.071 0.271
-0.20 0

0 0
-0.071 -0.071
-0.071 -0.071

0 0

0 -0.20

The displacements U;,U, and Uzare unknowns.
Here, P, =5 kN ;p,=-10 ;p;=0 and U, =Us =Ug =U; =Uy =0,

-0.071 -0.071
-0.071 -0.071
0 0
0.071 -0.20
0271 0.071
0.071 0.271
-0.20 0
0 0
-0.071 -0.071
-0.071 -0.071
0 0
0.071 -0.20
0.271 0.071
0.071 0.271
-0.20 0
0 0

0.071
-0.20
0
0.271
-0.071

0
-0.20
0.071
-0.071

0 (7)

0
-0.071
0.271 |

0 u,
-0.20 ||u,
0.071 ||u,
-0.071] |u,

0 Usg

0 Ug
-0.071{|u,
0.271 ||ug

(8)
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5 0271 0071 -02 | O -0.071 -0.071 0 0 u,
|
-10 0.071 0.271 o 0 -0.071 -0.071 0 -0.20 | |u,
0 020 0 0211 ,-0071 0 0___ 0071 0071 fu;
P, | EA 0 0 -0.071 E 0.271 0.0712 -020 0.071 -0.071]|0
Ps - -0.071 -0.071 0 i 0 0.271 0.071 -0.20 0 0
Ps -0.071 -0.071 0 -020 0.071 0.271 0 0 0
P, 0 0 -0.071} 0.071 -0.20 0 0.271 -0.071|| 0
Ps | 0 -0.20 0.071 ! -0.071 0 0 -0.071 0.271 || 0
9)
Thus,
5 0.271 0.071 -0.20|(u,
-10,=]0.071 0271 O u, (10)
0 -020 O 0.271 ||u,
Solving which, yields
72.855 —55.97 53.825
ul = ; u2 = ; u3 =
AE AE AE
Now reactions are evaluated from the equation,
p,] [ O 0 —0.071]
p.| [-0071 -0071 0 [y 1)
ps =|—-0.071 -0.071 0 u,
p, 0 0 —0.071{|u,
Ps) | O -0.20 0.071 |

p,=-380 kN ; p,=-119 kN ;p,=-1.19 kN ; p,=38 0 kN ; p,=15.00 kN

In the next step evaluate forces in members.

Element 1: 4=0° L =5.00 m. Nodal points 2-1
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AE u,
== -1 =
Puf=gglh m m]ul
u2
AE 1 (53.825
H=—1 -1|— =-3.80 kN 12
tpi 5.0[ ]AE {72.855} (12)
Element 2: #=90°, L =5.00 m. Nodal points 4-1
u7
AE Ug
== -1 -
=50 m -1 -m]t
u2
AE 1 0
t=—I1 -1|— =11.19kN 13
tpi 5 [ ]AE {—55.97} 13
Element 3: #=0° L=5.00m. Nodal points 3-4
AE
(P f=—[0foj=0 (14)
Element 4: #=90°, L =5.00 m. Nodal points 3-2
US
, AE u
{pl}:?“ m -1 —m] UZ
u4
AE 1
'} =2—=[0]-—{53.825! =0 15
(P} = [0l (53825) (15)
Element 5: §=45°, L=7.07 m. Nodal points 3-1
u5
AE Ug
Li=——|l -1 -
Pul=aglh m 1 -]
u

2
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{p'l}:%[—OJO? —0.707]&{252?}:—1.688 kN (16)
Element 6: §=135°, L=7.07 m. Nodal points 4-2
u;
=gl m 1 om}
U,
{ p'l} = %[0.707]%{53.825} =5.38 kN a7

25.2 Inclined supports

Sometimes the truss is supported on a roller placed on an oblique plane (vide
Fig. 25.3a). At a roller support, the displacement perpendicular to roller support is
zero. i.e.displacement along y"is zero in the present case.

¥
g
y"
» -
R
%
R
X
L
Y .,';". - ——
5 A lgr
= u

Fig.25.3(a) Inclined support
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Fig.25.3(b) }‘\

If the stiffness matrix of the entire truss is formulated in global co-ordinate system
then the displacements along y are not zero at the oblique support. So, a special

procedure has to be adopted for incorporating the inclined support in the analysis
of truss just described. One way to handle inclined support is to replace the
inclined support by a member having large cross sectional area as shown in Fig.
25.3b but having the length comparable with other members meeting at that joint.
The inclined member is so placed that its centroidal axis is perpendicular to the
inclined plane. Since the area of cross section of this new member is very high, it
does not allow any displacement along its centroidal axis of the joint A. Another
method of incorporating inclined support in the analysis is to suitably modify the
member stiffness matrix of all the members meeting at the inclined support.

Fig.25.4 Truss member in
global and local co-ordinate system
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Consider a truss member as shown in Fig. 25.4. The nodes are numbered as 1
and 2. At 2, it is connected to a inclined support. Let x'y' be the local co-ordinate

axes of the member. At node 1, the global co-ordinate system xy is also shown.
At node 2, consider nodal co-ordinate system as x"y", where y" is perpendicular
to oblique support. Let u',andu’,be the displacements of nodes 1 and 2 in the
local co-ordinate system. Let u,,v, be the nodal displacements of node 1 in
global co-ordinate systemxy. Let u",,v",be the nodal displacements along x"-
and y"- are in the local co-ordinate system x"y" at node 2. Then from Fig. 25.4,

u',=u,cosé, +v,sing,
u',=u",cosé,. +Vv",siné,. (25.1)

This may be written as

u1
{u'l}_{cosex sing, 0 0 } Vi |
u,] |0 0 cosf, sind,. ||u", (25.2)
V"2
Denoting | =cos@, ;m=sing, ;I"=cosé,. ;m"=sind,.
u1
u' Il mO0 0 ||v
et o © & wr o -
V"2

where [T ']is the displacement transformation matrix.
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p, = p’,c086,

P, = pll sin Hx

o “‘H—»i
:“IFIII
(b)
II
U:i/{ _.-"'-,f
-
- pL
P |
l-__,-"-.
e
el
T
o
e
-".--....
e
(a)

Fig.25.5 Displacement and force transformation

Similarly referring to Fig. 25.5, the force p', has components along x and
y axes. Hence

(25.4a)

(25.4b)
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Similarly, at node 2, the force p', has components along x" and y"axes.
p"; =P, C0S6; (25.5a)

p", = p',sing; (25.5b)

The relation between forces in the global and local co-ordinate system may be
written as,

p, | [cosd, 0

p, | _|sing, 0 p'

p,[ | © cosé; || p, (25.6)
p"] | O sing; |
pt=[TT{p} (25.7)

Using displacement and force transformation matrices, the stiffness matrix for
member having inclined support is obtained.

[k]=[TT [][r]

| 0
[k]— m O E 1 -1l m O O
1o 1m{L|-1 10 0" m" (258)
_0 m"_
Simplifying,
BE Im =" —Im"]
[k]—E Im m?  —ml" —mm"
L -t - 1 rme | (@59)
—Im" —mm" I"m" . m"?

If we use this stiffness matrix, then it is easy to incorporate the condition of zero
displacement perpendicular to the inclined support in the stiffness matrix. This is
shown by a simple example.
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Example 25.3

Analyse the truss shown in Fig. 25.6a by stiffness method. Assume axial rigidity
EA to be constant for all members.

SkM

- \

Fig.25.6(a) Plane truss with
inclined support
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Fig. 25.6(b) Member and node numbering

The nodes and members are numbered in Fig. 25.6b. The global co-ordinate
axes are shown at node 3. At node 2, roller is supported on inclined support.
Hence it is required to use nodal co-ordinates x"-y" at node 2 so that u, could be
set to zero. All the possible displacement degrees of freedom are also shown in
the figure. In the first step calculate member stiffness matrix.

Member 1: 6, =143.13°, 6,. =6.87°, L =5.00 m. Nodal points 1-2

|=-080; m=06; 1"=0.993 ; m"'=0.12 .

1 2 3 4
0.64 -048 0.794 0.096
[kl :E -048 036 -0.59 -0.072
50/ 0794 -0.59 0986 0.119
0.096 -0.072 0.119 0.014

(1)

A W DN -
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Fig.25.6c Member (1)

Member 2: 6, =0°, 6,. =30°, L =4.00 m.Nodal points 2-3
I=1; m=0 ; ["=0.866 ; m"=0.50 .

|_' L] _'|
Ty,
Ty

Fig.25.6(d) Member @
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5 6 3 4

064 -048 0794 009 | 5
[kz _EA -048 036 -0.596 -0.072| 6 (2)
40/10.794 -059% 0986 0.119 | 3
0.096 -0.072 0.119 0.014 | 4
Member 3:6, =90°, L=3.00m.,1=0; m=1Nodal points 3-1
5 6 1 2
0 0 0 0|5
[k3 _EA 0 1 0 -1|6 (3)
3000 0 0 01
0 -1 0 1|2

For the present problem, the global stiffness matrix is of the order(6><6). The
global stiffness matrix for the entire truss is.

1 2 3 4 5 6
[ 0.128 -0.096 0.159 | 0.019 0 0 1
|
-0.096 0405 -0.119-0.014 0  -0.333|2
059 -0119 0385 | 0132 —-0217 0 (3
7 e R L S L S (4)
0019 0014 0132 ! 0065 -0125 0 |4
0 0 -02171-0125 0.25 0 |5
0 -0333 0 | O0 0 0.333 |6

Writing load-displacement equation for the truss for unconstrained degrees of
freedom,

-5 0.128 -0.096 0.159 ||u,
5 =1-009% 0405 -0.119u, (5)
0 0.159 -0.119 0.385 ||u,

Solving ,

, 77408 3728 3312 .
! AE 7 AE 'Y  AE ©)
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Now reactions are evaluated from the equation

P, 0019 0014 0132 (7740
p. L=AE| 0 0 -0217| 4 3728 (6)
D 0 -0333 0 33.12

p,=285 KN ; p,=-719 kN ;p,=-1.24 kN

Summary

Sometimes the truss is supported on a roller placed on an oblique plane. In such
situations, the direct stiffness method as discussed in the previous lesson needs
to be properly modified to make the displacement perpendicular to the roller
support as zero. In the present approach, the inclined support is handled in the
analysis by suitably modifying the member stiffness matrices of all members
meeting at the inclined support. A few problems are solved to illustrate the
procedure.

Version 2 CE IIT, Kharagpur



Module
4

Analysis of Statically
Indeterminate
Structures by the Direct
Stiffness Method

Version 2 CE IIT, Kharagpur



[Lesson

26

The Direct Stifiness
Method: Temperature
Changes and
Fabrication Errorsin
Truss Analysis
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Instructional Objectives

After reading this chapter the student will be able to

1. Compute stresses developed in the truss members due to temperature
changes.

2. Compute stresses developed in truss members due to fabrication members.

3. Compute reactions in plane truss due to temperature changes and fabrication
errors.

26.1 Introduction

In the last four lessons, the direct stiffness method as applied to the truss
analysis was discussed. Assembly of member stiffness matrices, imposition of
boundary conditions, and the problem of inclined supports were discussed. Due
to the change in temperature the truss members either expand or shrink.
However, in the case of statically indeterminate trusses, the length of the
members is prevented from either expansion or contraction. Thus, the stresses
are developed in the members due to changes in temperature. Similarly the error
in fabricating truss members also produces additional stresses in the trusses.
Both these effects can be easily accounted for in the stiffness analysis.

26.2 Temperature Effects and Fabrication Errors

I, ¥ 1

\x 7 (p:y

f,ff:.f".'l
Py
A
A
ikt d
A,
P
A
At
¥ y i
g ik g
A
S

L
Fig.26.1 Truss member subjected
to temperature loads
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Consider truss member of length L, area of cross section A as shown in
Fig.26.1.The change in length Alis given by

Al = oL AT (26.1)

where «ais the coefficient of thermal expansion of the material considered. If the
member is not allowed to change its length (as in the case of statically
indeterminate truss) the change in temperature will induce additional forces in the
member. As the truss element is a one dimensional element in the local
coordinate system, the thermal load can be easily calculated in global co-
ordinate system by

(py), = AEAL (26.23)

(p;); =—AEAL (26.2b)

or

{(p')t }= AEA'—{j} (26.3)

The equation (26.3) can also be used to calculate forces developed in the truss
member in the local coordinate system due to fabrication error. ALwill be
considered positive if the member is too long. The forces in the local coordinate
system can be transformed to global coordinate system by using the equation,

Py )t cos @ 0

pz)t B sin @ 0 (pi)t
P3) 0 cosé (p'Z)t
Pa), 0 sind

(26.4a)

—

A~ N S A/~

where (p,),.(p,),and (ps),,(p,), are the forces in the global coordinate system at

nodes 1 and 2 of the truss member respectively Using equation (26.3), the
eqguation (26.4a) may be written as,

(pl)I COSH
(P)i | _ pgp ) SINO (26.4b)
(Ps); —Cos 6
(p4)t —sing
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The force displacement equation for the entire truss may be written as,
{p}=[kJuj+{(p): | (26.5)

where ,{p}is the vector of external joint loads applied on the truss and {(p)t } is the

vector of joint loads developed in the truss due to change in
temperature/fabrication error of one or more members. As pointed out earlier. in
the truss analysis, some joint displacements are known due to boundary
conditions and some joint loads are known as they are applied
externally. Thus,one could partition the above equation as,

Pk [ky] [keo ]H{Uu}} {(pk)t}
= + 26.6
{pu} {[kﬂ] o 100 (260
where subscript u is used to denote unknown quantities and subscript k is used

to denote known quantities of forces and displacements. Expanding equation
(26.6),

{pich =l Juu 1+ [kaz i }+ (i), § (26.72)

(o =[] fu + [l [{u +{(p0), (26.70)

If the known displacement vector {Uk }= {0} then using equation (26.2a) the
unknown displacements can be calculated as

fug b=l I (- {pi ) }) (26.8a)

If {Uk}¢ 0 then

g =k I (i} Tkaz Hui J= (i ), J) (26.8b)

After evaluating unknown displacements, the unknown force vectors are
calculated using equation (26.7b).After evaluating displacements, the member
forces in the local coordinate system for each member are evaluated by,

'} =k Hub+{p; (26.9a)
or
Uy
o _E{l —1}{0059 sing 0 0 }vl N (pi)t
P, S L[-1 1] 0 0 cos@ sind||u, (p'Z)t
V2
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Expanding the above equation, yields

{p{}:A—LE{cose sind —cos@ —sin@f 'L+ AEAL (26.10a)

And,

{p;}:A—LE{—cose —sin@ cosd sine} — AEAL (26.10b)

Few problems are solved to illustrate the application of the above procedure to
calculate thermal effects /fabrication errors in the truss analysis:-

Example 26.1

Analyze the truss shown in Fig.26.2a, if the temperature of the member (2) is
raised by 40°C .The sectional areas of members in square centimeters are
shown in the figure. Assume E =2x10°N/mm?and @ =1/75,000 per°C.

I: Jm :-I
(1) as
ﬁ.ﬂu 1) 4 Q—
v
-
e
-
i — 5
T > fam
f,-ff 3
.-__.-"'
A
D% c

Fig 26.2a Example 26.2
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Fig 26.2b Node and
Members numbering

The numbering of joints and members are shown in Fig.26.2b. The possible
global displacement degrees of freedom are also shown in the figure. Note that
lower numbers are used to indicate unconstrained degrees of freedom. From the

figure it is obvious that the displacements Uz =U, =Ugs =Ug =U; =Ug =0 due to
boundary conditions.
The temperature of the member (2) has been raised by 40°C . Thus,

AL = ol AT
1 -3
AL=—1 (3y2)40)=2.2627x10
75000( Jao) = om (1)

The forces in member (2) due to rise in temperature in global coordinate system
can be calculated using equation (26.4b).Thus,

(Ps)¢ cos @
(pG)t S|n0
= AEAL
(po), Y (2)
(pZ)t —sind

For member (2),

A=20cm? =20x10"*m?and @ = 45°
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1
V2
(p5)t 1
( Pe )t =20x10"*x2x10"x2.2627 %1072 /103" \/5
(pl)t _i (3)
(p2 )t \/E
1
V2
(p5)t
Pl 1082/ Liaw @)
(pl)t -1
(p2 )t “_1

In the next step, write stiffness matrix of each member in global coordinate
system and assemble them to obtain global stiffness matrix

Element (1): 9=0° L =3m,A=15x10"*m? ,nodal points 4-1

1 0 -1 0

[k-]:15><10_4><2><1011 0O 0 0 O
3x10° 10 1 0 (%)

0 0 0 0

Member (2): 0=45°, L =3/2m, A=20x10"*m?, nodal points 3-1

05 05 -05 -05
[k2]=20x10—4x2x1011 05 05 -05 -05
3/2 -05 -05 05 05 (6)
-05 -05 05 05

Member (3):6=90", A=15x10"*m?, L =30m, nodal points 2-1
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0 0 0 O
[k3]:15x10_4><2><1011 0 1 0 -1 Ko
3x10°x10° |0 0 O O
0 -1 0 1

The global stiffness matrix is of the order 8x8 ,assembling the three member
stiffness matrices, one gets

(14714 4714 0 0 —47.14 -47.14 -100 O]
4714 14714 0 -100 -47.14 -4714 0 O
0 0 0 O 0 0 0 O
k] =10° 0 -100 0 100 0 0 0 O ®)
—4714 -4714 0 O 4714  47.14 0 O
—4714 -4714 0 O 4714  47.14 0 O
-100 0 0 O 0 0 100 0
0 0 0 O 0 0 0 0]
Writing the load displacement equation for the truss
[147.14 4714 0 0 -47.14 -47.14 -100 O] U, »
Ez 47.14 14714 0 -100 -47.14 -4714 0 0] |y, 4
b, 0 0 0 0 0 0 0 0] |ug 0
Pa| =102 0 -100 0 100 0 0 0 0] ]ug +640)°
Ps —-47.14 -47.14 0 0 47.14 47.14 0 0] |Ys 1
Ps —-47.14 -47.14 0 0 47.14 47.14 0 of|Y 1
Pr 100 0 0 0 0 0o 100 of|” .
o o 0 0 0 o o of'"
©)

In the present case, the displacements u,and u,are not known. All other
displacements are zero. Also p; = p, =0(as no joint loads are applied).Thus,
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Py (14714 4714 0 0 -47.14 -4714 -100 O] [y, -1
P, 4714 14714 0 -100 -47.14 -4714 0 O |u, -1
P3 0 0 0 0 0 0 0 0] |us 0
Pal__| O -100 0 100 0 0 0 0] Jus| g0 (10)
Ps ~47.14 -4714 0 0 4714 4714 0 Of|us 1
Pe 4714 -4714 0 0 4714 4714 0 O |ug 1
P, ~100 0 0 0 0 0 100 0| |u, 0
Pe | o 0 0 O 0 0 0 0] |ug 0
Thus unknown displacements are
u | 1 [147.14 47147 (0 -1
=— (1 .+—150.82 ) (11)
u,] 10°| 47.14 147.14 0 -1
u, =7.763x10*m
u, =7.763x10"*m
Now reactions are calculated as
P3 0 0 0 0 0 0 0 o0]}fo 0
P4 0 —-100 0 100 0 0 0 0}l0 0
Ps 3| —47.14 —47.14 ||u, 0 0 4714 4714 0 0}|0 1
=10 + + 640
Ps —-47.14 -47.141\u, 0 0 4714 4714 0 0]|0 1
P, —-100 0 0 O 0 0 100 0|0 0
Ps 0 0 | 0 0 0 0o o0 ojlo 0
Ps 0
P, —77.63
77.63
Pl _ kN (12)
Ps 77.63
P, —77.63
Ps 0
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Fig 26.2c Force in members

The support reactions are shown in Fig.26.2c.The member forces can be easily
calculated from reactions. The member end forces can also be calculated by
using equation (26.10a) and (26.10b). For example, for member (1),

0=0°

0
0
P, =10° x 100 [—1 0 1 0] 7.763x107* (13)
7.763x10™
= 77.763 kKN. Thus the member (1) is in tension.
Member (2)
60 =45°
0
0
p, =10°x94.281[-0.707 -0.707 0.707 0.707] I
3.2942x10
3.2942x1073

p, =—109.78 kN.

Thus member (2) is in compression
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Example 26.2

Analyze the truss shown in Fig.26.3a, if the member BC is made 0.01m too short
before placing it in the truss. Assume AE=300 kN for all members.

fﬂ\ —

"f : \\‘ 4m

Fig 26.3a ( Example 26.2)
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Fig. 26.3b Node and member
numbering

Solution

A similar truss with different boundary conditions has already been solved in
example 25.1. For the sake of completeness the member of nodes and members
are shown in Fig.26.3b.The displacements us;,u,,Us,Ug,U;and ugare zero due to
boundary conditions. For the present problem the unconstrained degrees of
freedom are u;and u,.The assembled stiffness matrix is of the order 8x8 and is
available in example 25.1.

In the given problem the member (2) is short by 0.01m.The forces developed in
member (2) in the global coordinate system due to fabrication error is

(Ps)o cosé
(Pa)o| _ AE(-0.02)]sine
(pl)0 4 —cosé
(p2)0 —sin@
0
— 50.75 KN (1)
0.75

Now force-displacement relations for the truss are
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P [ 0.108 0 0 0 -0.054 0094 -0054 -0.094](u;| [0
P, 0 0.575 0 -025 0094 -0162 -0.094 -0.162|/u,| [0.75
Ps 0 0 086 0 -0433 0 -0433 0 |luz| |0
Pal_pgl O -0.25 0 0.25 0 0 0 0 |Jus| |-075
ps[  |-0054 0094 -0433 0 0487 -009% 0 0 |lus| o
P 0.094 -0162 0 0 -0.094 0.162 0 0 |lug| |0
P, -0.054 -0.094 -0433 0 0 0 0.487 0.0934 ||u,| |0
Pe |-0.094 -0162 0 0 0 0 00934 0.162 |{ug] |0
(2)
Note that Uus =u, =Ug =Ug =U; =Ug =0
Thus, solving
u] 1 [o18 0o T7([o] [0
u,J] AE| 0 0575] (|0] [0.75 3
u, =0
and, u, =-4.3478x10°m (4)
Reactions are calculated as,
P3 0 0 0
Pa 0 -0.25 -0.75
-0.054 0.094 0
Ps | _ AE “ly ©))
Pe 0.094 -0.162|lu,| |0
B -0.054 —0.094 0
Pe |-0.094 -0.162 0
P3 0
ps| |-0.424
-0.123
p5 _ (6)
Ps 0.211
p,| 0123
Ps 0.211

The reactions and member forces are shown in Fig.26.3c. The member forces
can also be calculated by equation (26.10a) and (26.10b). For example, for

member (2),

6 =90"
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Us

. 300 Ug | AEAL
pzzT[O-lol] u L
uz
3% (-4.3478x1072)- 300(-0.01)
' 4
=0.4239 = 0.424 kN (7)

Example 26.3

Evaluate the member forces of truss shown in Fig.26.4a.The temperature of the
member BC is raised by 40°cand member BD is raised by 50°C.Assume

AE=300KN for all members and &= -+ per °C.
75000

S5m bl
™,

|
=&
I

5m

Fig 26.4a ( Example 26.1 )
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Fig 26.4b Node and member numbering

Solution

For this problem assembled stiffness matrix is available in Fig.26.4b.The joints
and members are numbered as shown in Fig.26.4b. In the given problem
u;,U,,uz,usand ugrepresent unconstrained degrees of freedom. Due to support

conditions,Ug =U; =uUg =0,

The temperature of the member (2) is raised by 50° C.Thus,

x5x50 =3.333x10°m

1
AL? = oL AT =
75000 1)

The forces are developed in member (2), as it was prevented from expansion.

(p7)f cosé
(Pe)s _300%3.333x103)°"7
(py); —cosé
(pz)f —sing
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-1 @)
-1
The displacement of the member (5) was raised by 40°C . Thus,
AL® =l AT = 751 5 542 x40 =3.771x10%m
The forces developed in member (5) as it was not allowed to expand is
(ps ), 0.707
0.707
(o) | _ 300x3.771x1073
(ps), ~0.707
(pa )t -0.707
1
=0.8 1
R | ()
-1
The global force vector due to thermal load is
(pl)t -08
(pz )t -1.8
(p3 )t 0
(py )t _ 0
(ps),| |08 4
(Ps )t 0.8
(p7 )t 0
(p8 )t 1

Writing the load-displacement relation for the entire truss is given below.

Version 2 CE IIT, Kharagpur



Py (0271 0071 -0.20 0 -0.071 -0.071 0 0 fu, -0.8

[SP3 0.071 0.271 0 0 -0.071 -0.071 0 -0.2 ||u, -18

P3 -0.20 0 0.271 -0.071 0 0 —-0.071 0.071 ||us 0

Pal _ AE 0 0 -0.071 0.129 0 -02 0.071 0.071 ||uy N 0 (5)
Ps -0.071 -0.071 0 0 0271 0071 -02 0 Ug 0.8

Pe -0.071 -0.071 0 -02 0071 0271 0 0 Ug 0.8

p; 0 0 -0.071 0.071 -0.2 0 0.271 -0.071||u, 0

Ps | 0 -02 0071 -0.071 0 0 -0.071 0.271 ||ug 1

In the above problem P =Py, =P3=Ps=Ps=Pg=PpP;=PpPg=0and
LI6 ZU7 =LI8 :0 .

Thus solving for unknown displacements,

Uy 0271 0071 -02 0 -0071] (0] (-0.8

U, 0.071 0.271 0 0 -0071||0| |-18

Ug :é -0.20 0 0271 -0071 0 0r—40 (5)
Uy 0 0 -0071 0.129 0 0| |0

Us -0.071 -0.071 0 0 0.271 | (0] (0.8

Solving equation (5), the unknown displacements are calculated as

u, = 0.0013m, u, = 0.0020m, u; = —0.0005m, u, =0
Ug = ~0.0013m 6)

Now, reactions are computed as,

Uy
Pe -0.071 -0.071 0 -0.2 0.071||u, 0.8
p; = 0 0 -0.071 0.071 -0.2 Kus ¢+40 )
P 0 -02 0071 -0071 0 |[lu| |1

Us

All reactions are zero as truss is externally determinate and hence change in
temperature does not induce any reaction. Now member forces are calculated by
using equation (26.10b)

Member (1): L=5m,#=0°
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. AE u
P2 =?[-1 010] u4 (8)
1
uz
p, =0.1080 Kn
Member 2: L=5m,#=90°,nodal points 4-1
uz
P, =%[O -101] 38 —-300x3.771x107° (9)
1
uz
=0.1087 kN
Member (3): L=5m, ¢ =0°,nodal points 3-4
Us
'=@[10101 5 (10)
7
Ug
=0.0780kN
Member (4):0=90°,L =5m, nodal points 3-2
Us
| :@[o 101]{" =0 (11)
3
Uy
Member (5): 0=45°, L =52 ,nodal points 3-1
U5
p, =~% 1.0.707 -0.707 0.707 0.707] " | ~300x3.333x10" (12)
5x/_ up
uz
=-0.8619 kN

Member (6) : 9=135°, L =542 ,nodal points 4-2
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Uz

p, =~% 10,707 -0.707 -0.707 0.707]1 " | = 0.0150 kN. (13)
52 Us
Uy
Summary

In the last four lessons, the direct stiffness method as applied to the truss
analysis was discussed. Assembly of member stiffness matrices, imposition of
boundary conditions, and the problem of inclined supports were discussed. Due
to the change in temperature the truss members either expand or shrink.
However, in the case of statically indeterminate trusses, the length of the
members is prevented from either expansion or contraction. Thus, the stresses
are developed in the members due to changes in temperature. Similarly the
errors in fabricating truss members also produce additional stresses in the
trusses. In this lesson, these effects are accounted for in the stiffness analysis. A
couple of problems are solved.
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Instructional Objectives

After reading this chapter the student will be able to

1. Derive member stiffness matrix of a beam element.

2. Assemble member stiffness matrices to obtain the global stiffness matrix for a
beam.

3. Write down global load vector for the beam problem.

4. Write the global load-displacement relation for the beam.

27.1 Introduction.

In chapter 23, a few problems were solved using stiffness method from
fundamentals. The procedure adopted therein is not suitable for computer
implementation. In fact the load displacement relation for the entire structure was
derived from fundamentals. This procedure runs into trouble when the structure
is large and complex. However this can be much simplified provided we follow
the procedure adopted for trusses. In the case of truss, the stiffness matrix of the
entire truss was obtained by assembling the member stiffness matrices of
individual members.

In a similar way, one could obtain the global stiffness matrix of a continuous
beam from assembling member stiffness matrix of individual beam elements.
Towards this end, we break the given beam into a number of beam elements.
The stiffness matrix of each individual beam element can be written very easily.
For example, consider a continuous beam ABCD as shown in Fig. 27.1a. The
given continuous beam is divided into three beam elements as shown in Fig.
27.1b. 1t is noticed that, in this case, nodes are located at the supports. Thus
each span is treated as an individual beam. However sometimes it is required to
consider a node between support points. This is done whenever the cross
sectional area changes suddenly or if it is required to calculate vertical or
rotational displacements at an intermediate point. Such a division is shown in Fig.
27.1c. If the axial deformations are neglected then each node of the beam will
have two degrees of freedom: a vertical displacement (corresponding to shear)
and a rotation (corresponding to bending moment). In Fig. 27.1b, numbers
enclosed in a circle represents beam numbers. The beam ABCD is divided into
three beam members. Hence, there are four nodes and eight degrees of
freedom. The possible displacement degrees of freedom of the beam are also
shown in the figure. Let us use lower numbers to denote unknown degrees of
freedom (unconstrained degrees of freedom) and higher numbers to denote
known (constrained) degrees of freedom. Such a method of identification is
adopted in this course for the ease of imposing boundary conditions directly on
the structure stiffness matrix. However, one could number sequentially as shown
in Fig. 27.1d. This is preferred while solving the problem on a computer.
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Fig 27.1a Continuous beam
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Fig. 27.1b Member and node numbering
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Fig. 27.1c Member and node numbering
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Fig 27.1d Member and node numbering

In the above figures, single headed arrows are used to indicate translational and
double headed arrows are used to indicate rotational degrees of freedom.

27.2 Beam Stiffness Matrix.

Fig. 27.2 shows a prismatic beam of a constant cross section that is fully
restrained at ends in local orthogonal co-ordinate systemx'y'z'. The beam ends

are denoted by nodes jandk. The x' axis coincides with the centroidal axis of
the member with the positive sense being defined from j tok. LetL be the length
of the member, A area of cross section of the member and 1,,is the moment of
inertia about z'axis.

y
A
1 A3
A
o ® #
L A —m e — e — s — s — - — - = = = === e X
1, A
g A2
Al ”
2 4

4

Figure 27.2 Beam member

Two degrees of freedom (one translation and one rotation) are considered at
each end of the member. Hence, there are four possible degrees of freedom for
this member and hence the resulting stiffness matrix is of the order4x4. In this
method counterclockwise moments and counterclockwise rotations are taken as
positive. The positive sense of the translation and rotation are also shown in the
figure. Displacements are considered as positive in the direction of the co-
ordinate axis. The elements of the stiffness matrix indicate the forces exerted on
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the member by the restraints at the ends of the member when unit displacements
are imposed at each end of the member. Let us calculate the forces developed in
the above beam member when unit displacement is imposed along each degree
of freedom holding all other displacements to zero. Now impose a unit
displacement along y'axis at jend of the member while holding all other

displacements to zero as shown in Fig. 27.3a. This displacement causes both
shear and moment in the beam. The restraint actions are also shown in the
figure. By definition they are elements of the member stiffness matrix. In
particular they form the first column of element stiffness matrix.

In Fig. 27.3b, the unit rotation in the positive sense is imposed at j end of the

beam while holding all other displacements to zero. The restraint actions are
shown in the figure. The restraint actions at ends are calculated referring to
tables given in lesson ...

yl

k., 12 El,
T ﬁ L3
1I j 11 j_ 6 EI .
y x' L? - L
i i T j .

( b ) Unit rotation about Z at end j
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( ¢ ) Unit displacement along y'at end k

Ty
K., 4 ElL

1 k. f L

1 X p X' 1 - L

ji e '\*/./’\(k jj» . - y‘Q k

N / 2E,
4 - L T em i 6 El,

| L2 L?

( d ) Unit rotation about z'at end k

Fig. 27.3 Computation of beam stiffness matrix

In Fig. 27.3c, unit displacement along y' axis at end kis imposed and
corresponding restraint actions are calculated. Similarly in Fig. 27.3d, unit
rotation about z' axis at end k is imposed and corresponding stiffness
coefficients are calculated. Hence the member stiffness matrix for the beam
member is

1 2 3 4
[12EI,  6El, | 12E1, 6El, |1
L3 LZ i_ L3 L2
6El, 4El, | 6El,  2El, |2
[k]= I R | R L__ (27.1)
12ElI, 6El, | 12EI, 6EI, |3
T T
6EI, 2EI, | 6El, 4El, |4
L L L L L ]

The stiffness matrix is symmetrical. The stiffness matrix is partitioned to separate
the actions associated with two ends of the member. For continuous beam
problem, if the supports are unyielding, then only rotational degree of freedom
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shown in Fig. 27.4 is possible. In such a case the first and the third rows and
columns will be deleted. The reduced stiffness matrix will be,

4E1, | 2EI,
|
=Lt L
k=] 28; "4El, (27.2)
L L

Instead of imposing unit displacement along y'at j end of the member in Fig.
27.3a, apply a displacement u'; along y'at j end of the member as shown in
Fig. 27.5a, holding all other displacements to zero. Let the restraining forces
developed be denoted by q,,,0,,,9;,andd,, .

N
N

Fig. 27.4

ARTRRY

Fig. 27.5 (a)
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The forces are equal to,
Oy = kyyU'y : Uy =KyU'y O3y = KayU'y : Qy =kyuu'y  (27.3)

Now, give displacements u';,u’,,u';and u', simultaneously along displacement
degrees of freedom 1,2,3and 4respectively. Let the restraining forces developed
at member ends be q,,q,,9;and q,respectively as shown in Fig. 27.5b along

respective degrees of freedom. Then by the principle of superposition, the force
displacement relationship can be written as,

qa U,

Fig. 27.5 (b) Force - displacement relation

- - [ 12El, 6EI, 12EI, 6El, | -, -
ql L3 L2 o L3 L2 u 1
q 6EIl, 4El,  6El, 2El, U
? L2 L L2 L ?
= (27.4)
12El, 6ElI, 12El, 6EI, ,
BllTTE T c ||
q 6EI, 2El,  6El,  4El, U
e L L2 L ] - °
This may also be written in compact form as,
{af=[k] {u'} (27.5)
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27.3 Beam (global) Stiffness Matrix.

The formation of structure (beam) stiffness matrix from its member stiffness
matrices is explained with help of two span continuous beam shown in Fig.
27.6a. Note that no loading is shown on the beam. The orthogonal co-ordinate
system xyz denotes the global co-ordinate system.

Formrmrmmrmr o mmmrmmm e mm e '_2\_ _____________ T;,.
’//7/% El @ El @

Fig. 27.6a Continuous beam
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Fig. 27.6 b

For the case of continuous beam, the x- and x'- axes are collinear and other
axes (yandy', zandz') are parallel to each other. Hence it is not required to

transform member stiffness matrix from local co-ordinate system to global co
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ordinate system as done in the case of trusses. For obtaining the global stiffness
matrix, first assume that all joints are restrained. The node and member
numbering for the possible degrees of freedom are shown in Fig 27.6b. The
continuous beam is divided into two beam members. For this member there are
six possible degrees of freedom. Also in the figure, each beam member with its
displacement degrees of freedom (in local co ordinate system) is also shown.
Since the continuous beam has the same moment of inertia and span, the
member stiffness matrix of element 1 and 2 are the same. They are,

Global d.o.f 1 2 3 4
Local d.o.f 1 2 3 4

Ky Ky Ky k| 101
[k']: Ky Ky Ky Kyl 22 (27.63)
K k' Ky k'y| 33
Ky Ko Ky Ky] 44
Global d.o.f 3 4 5 6
Local d.o.f 1 2 3 4
k%1 k’2 k% kP
[k2]= k’z k’2 k?s k?u (27_6b)

2 2 2 2
K K% ks Ko

k’a k’2 ks K’u

~ o -
o O bW

The local and the global degrees of freedom are also indicated on the top and
side of the element stiffness matrix. This will help us to place the elements of the
element stiffness matrix at the appropriate locations of the global stiffness matrix.
The continuous beam has six degrees of freedom and hence the stiffness matrix
is of the order6x6. Let [K] denotes the continuous beam stiffness matrix of

order6x 6. From Fig. 27.6b, [K] may be written as,
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Member AB (1)

Ky kz 1 kg ky 10 0
Dk ke 0k Ko 10 0
[K]— k;l kéz : ks%s +k121 k§4 +k122 : k123 k124 (27-7)
RS KL TKL +k2 KL +k: 1 K2 k2
___EL______EQ__4_f@__J4__:@___Q_}___§L______%£__
0 0 ! ki ke 1 ks K
| 0 0 1 ki ki, 1 ki ks |

Member BC (2)

The 4 x4 upper left hand section receives contribution from member 1 (AB) and

4 x 4 lower right hand section of global stiffness matrix receives contribution from
member 2. The element of the global stiffness matrix corresponding to global

degrees of freedom 3 and 4 [overlapping portion of equation(27.7)] receives
element from both members 1 and 2.
27.4 Formation of load vector.

Consider a continuous beam ABC as shown in Fig. 27.7.

lp kN w kN/m

AAAAARAAAER
ol AN @ El

b L

Le
#

=

. i
A

Fig.27.7

We have two types of load: member loads and joint loads. Joint loads could be
handled very easily as done in case of trusses. Note that stiffness matrix of each
member was developed for end loading only. Thus it is required to replace the
member loads by equivalent joint loads. The equivalent joint loads must be
evaluated such that the displacements produced by them in the beam should be
the same as the displacements produced by the actual loading on the beam. This
is evaluated by invoking the method of superposition.
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( a) Actual beam with loading
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( b ) Reaction in the restrained beam
Pa_ wi > + 2P
L 2
l Pb/L l
wLZ Pbaz WLZ

( ¢ ) Equivalent joint loads

Fig. 27.8

The loading on the beam shown in Fig. 27.8(a), is equal to the sum of Fig.
27.8(b) and Fig. 27.8(c). In Fig. 27.8(c), the joints are restrained against
displacements and fixed end forces are calculated. In Fig. 27.8(c) these fixed end
actions are shown in reverse direction on the actual beam without any load.
Since the beam in Fig. 27.8(b) is restrained (fixed) against any displacement, the
displacements produced by the joint loads in Fig. 27.8(c) must be equal to the
displacement produced by the actual beam in Fig. 27.8(a). Thus the loads shown
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in Fig. 27.8(c) are the equivalent joint loads .Let, p,, p,, p;, P,, Psand p,be the

equivalent joint loads acting on the continuous beam along displacement
degrees of freedom 1,2,3,4,5and 6 respectively as shown in Fig. 27.8(b). Thus the

global load vector is,

_Pb
L
P, _ Pab’
LZ
P,
_(EN_LJ
Ps3 L 2
D "] (wl? Pba? (27.8)
4 —_ —
(12 L? J
Ps
—(W—L+2Pj
Ps 2
wL?
12

27.5 Solution of equilibrium equations

After establishing the global stiffness matrix and load vector of the beam, the
load displacement relationship for the beam can be written as,

{P}=[KJ{u} (27.9)

where {P}is the global load vector, {u} is displacement vector and [K] is the

global stiffness matrix. This equation is solved exactly in the similar manner as
discussed in the lesson 24. In the above equation some joint displacements are
known from support conditions. The above equation may be written as

{{pk }} {[kn] [k, ]} {{uu }}

= (27.10)
{p.} o] ko ]] Ui}
where {p, }and {u,} denote respectively vector of known forces and known

displacements. And {p,}, {u,} denote respectively vector of unknown forces and
unknown displacements respectively. Now expanding equation (27.10),
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{p.}= [k, Ku,3}+[k, Ku, } (27.11a)
{p.}=[k, Ju, ¥} +[k,, Ku.} (27.11b)

Since {uk} is known, from equation 27.11(a), the unknown joint displacements

can be evaluated. And support reactions are evaluated from equation (27.11b),
after evaluating unknown displacement vector.

Let R,,R;and R,be the reactions along the constrained degrees of freedom as

shown in Fig. 27.9a. Since equivalent joint loads are directly applied at the
supports, they also need to be considered while calculating the actual reactions.
Thus,

R, Py
R3 == P3¢t [K21 ]{uu } (27.12)
R; Ps

The reactions may be calculated as follows. The reactions of the beam shown in
Fig. 27.9a are equal to the sum of reactions shown in Fig. 27.9b, Fig. 27.9c and
Fig. 27.9d.
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Fig. 27.9
From the method of superposition,

Pb

R, = T+ KU, + KU (27.13a)
Pa

R3 = T+ K34U4 + K36u6 (2713b)
wL

R, =7+2P+K54u4 + KU (27.13c)

or
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P% K14 K16
U,
Pa/ L4l Ky, K%{ } (27.14a)
wl U
—+2P Ko Kgg
2
Pb/L K K,
— Pa/L p+|K, K {u“} (27.14b)
W7|+2P Ks Ko °

Member end actions q,,q,,0,,q,are calculated as follows. For example consider

the first element 1.

G
a,
s
a,

Pb

L
Pab?

+[K]

(27.16)

elementl

In the next lesson few problems are solved to illustrate the method so far

discussed.

Summary

In this lesson the beam element stiffness matrix is derived from fundamentals.
Assembling member stiffness matrices, the global stiffness matrix is generated.
The global load vector is defined. The global load-displacemet relation is written
for the complete beam structure. The procedure to impose boundary conditions
on the load-displacement relation is discussed. With this background, one could
analyse continuous beam by the direct stiffness method.
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Instructional Objectives

After reading this chapter the student will be able to

1. Derive member stiffness matrix of a beam element.

2. Assemble member stiffness matrices to obtain the global stiffness matrix for a
beam.

3. Write the global load-displacement relation for the beam.

4. Impose boundary conditions on the load-displacement relation of the beam.

5. Analyse continuous beams by the direct stiffness method.

28.1 Introduction

In the last lesson, the procedure to analyse beams by direct stiffness method has
been discussed. No numerical problems are given in that lesson. In this lesson,
few continuous beam problems are solved numerically by direct stiffness method.
Example 28.1

Analyse the continuous beam shown in Fig. 28.1a. Assume that the supports are
unyielding. Also assume that El is constant for all members.

l 10 kN 2 kN/m

CYVvvvyvy

] ‘.
E # W ;

yy
Y
A
Y
A
Y
A
b

Fig. 28.1a

The numbering of joints and members are shown in Fig. 28.1b. The possible
global degrees of freedom are shown in the figure. Numbers are put for the
unconstrained degrees of freedom first and then that for constrained
displacements.
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Figure 28.1b

The given continuous beam is divided into three beam elements Two degrees of
freedom (one translation and one rotation) are considered at each end of the
member. In the above figure, double headed arrows denote rotations and single
headed arrow represents translations. In the given problem some displacements
are zero, i.e., U, =uU, =U; =U; =U, =U, =0 from support conditions.

In the case of beams, it is not required to transform member stiffness matrix from
local co-ordinate system to global co-ordinate system, as the two co-ordinate
system are parallel to each other.

>
=

E
©, AEk

Figure 28.1c

AN

%

First construct the member stiffness matrix for each member. This may be done
from the fundamentals. However, one could use directly the equation (27.1)
given in the previous lesson and reproduced below for the sake convenience.
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[ 12El,  6El, | 12El, 6El, ]
L 2 1 L2
6EI,  4El, | 6El, 2El,
| —
Py Ll L L @
12EI, " 6EI, | 12EI,  6El,
B
6EI,  2El, | 6El, A4El,
L L L L L

The degrees of freedom of a typical beam member are shown in Fig. 28.1c.
Here equation (1) is used to generate element stiffness matrix.

Member 1:L =4m, node points 1-2.

The member stiffness matrix for all the members are the same, as the length
and flexural rigidity of all members is the same.

Globald.o.f 6 5 3 1
[ 0.1875 0.375 -0.1875 0.375 |

0.375 1.0 —0.375 0.5
k]=El, @

-0.1875 -0.375 0.1875 -0.375

= w o1 O

| 0.375 0.5 —-0.375 1.0

On the member stiffness matrix, the corresponding global degrees of freedom
are indicated to facilitate assembling.

Member 2: L =4m, node points 2-3.

Globald.o.f 3 1 4 2
[ 0.1875 0375 -0.1875 0375 | 3
[kz]: el 0.375 1.0 -0.375 0.5 1 3)
-0.1875 -0.375 0.1875 -0.375 4
| 0375 0.5 -0.375 10 | 2

Member 3:L =4m, node points 3-4.

Version 2 CE IIT, Kharagpur



Global d.o.f 4 2 8 7
[ 01875 0375 -0.1875 0375 | 4
0.375 1.0 —-0.375 0.5 2
k*]=El,
-0.1875 -0.375 0.1875 -0.375| 8
| 0.375 0.5 -0.375 10 | 7

(4)

The assembled global stiffness matrix of the continuous beam is of the

order8x8. The assembled global stiffness matrix may be written as,

2.0
0.5
0

~0.375
[K]=EI

7z

0.5
0.375
0

0

0.5
2.0
0.375
0
0
0
0.5
-0.375

0.0
0.375
0.375

—-0.1875
-0.375
—-0.1875
0
0

—-0.375
0
—-0.1875
0.375
0
0
0.375
—-0.1875

0.5
0

-0.375

0
1.0
0.375
0
0

0.375
0
—-0.1875
0
0.375
0.1875
0
0

0 0
0.5 -0.375
0 0
0.375 -0.1875
0 0
0 0
1.0 -0.375
-0.375 0.1875
(5) _

Now it is required to replace the given members loads by equivalent joint loads.
The equivalent loads for the present case is shown in Fig. 28.1d. The
displacement degrees of freedom are also shown in Fig. 28.1d.
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SkN 9kN 4kN

5kN.m 2.33 kN.m 2.67 kN.m
F 3

F

2 4 3 4

Fig. 28.1 (d) Equivalent joint loads

Thus the global load vector corresponding to unconstrained degree of freedom

{pk}={pl}={_5} (6)
P, 2.33

Writing the load displacement relation for the entire continuous beam,

-5 [ 20 05 | 00 -0375 05 0375 0 0 7 (u
233 05 20 10375 0 0 0 05 -0375] |u,
b, "0 oa7s | 0375 o187 —oas —o187 o o ||u,
D, ~0375 0 . ~0187 0375 0 0 0375 -0187]|u,
oo | ol 05 0 i ~0375 0 10 0375 0 0 | |u
P 0375 0 ' ~0187 0 0375 0187 0O 0 ||y,
D, 0 05 | 0 0375 0 0 10 -0375| |u,
P 0 -0375 0 -0187 O 0 -0375 0187 | |u,
(7)

where {p}is the joint load vector, {u} is displacement vector.
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We know thatu, =u, =uy = U,

u,, yields
-5 20 05] (u,
=El,
2.33 05 2.0 |u,
u, 1 2.0
u,| 3.75El,|_05

1 2.977
El,, | 1.909
Thus displacements are,

2977

1909
' El

and u, £

23 Zz

The unknown joint loads are given by,

D, [0 0.375 |
D, ~0375 0
Ps 0.5 0
—El,
D 0.375 0
p, 0 0.5
Ps | 0 -0.375]
0.715
1.116
—1.488
) -1.116
0.955
—-0.715

2.0

1 [~2977
El,, | 1.909

=Uu, =uUy =0. Thus solving for unknowns u; and

|
" lond

(8)

(9)

(10)

(11)
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The actual reactions at the supports are calculated as,

R,] [pf P, 5 0.715 5.716
R,| |pf P, 9 1.116 10.116
R, psF Ps 0 —1.488 —1.489 (12)
= + = + =
R; p6F Ps 0 -1.116 -1.116
R, p7F p, - 2.67 0.955 -1.715
Rg ng Ps 4 -0.715 3.284
Member end actions for element 1
o} 0 01875 0375 -0.1875 0.375] 0 |
G| 0 CE] 0.375 1.0 -0.375 05 1 0 &
q| |0 ~¥l-01875 —0375 01875 —0375/El,| 0
q, 0 i 0.375 05 -0.375 1.0 | —-2977
-1.116
B -1.488 (13)
| 1116
—-2977
Member end actions for element 2
a, 0.1875 0.375 -0.1875 0.375 0
a, ., 0.375 1.0 -0.375 0.5 1 |-2.977
g,  “|-0.1875 -0375 0.1875 -0375|El,| 0
a, 0.375 0.5 —-0.375 1.0 1.909
4.6
2.98
= 14
5.4 (14)
— 4,58
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Member end actions for element 3

q, 4.0 0.1875 0.375 -0.1875 0.375 0
q,| | 2.67 LE 0.375 1.0 -0.375 0.5 1 (1.909
d; ] 40 “l-0.1875 -0.375 0.1875 -0.375|El,| O
ad, —2.67 0.375 0.5 —-0.375 1.0 0
4.72
4.58
= 15
3.28 (15)
-1.72
Example 28.2

Analyse the continuous beam shown in Fig. 28.2a. Assume that the supports are
unyielding. Assume EIl to be constant for all members.

5 kN/m

Af]HvHr%L¢¢¢¢¢g¢¢¢(¢¢¢¢¢¢¢ .

4m 4m
=

A
Y

Fig. 28.2a

The numbering of joints and members are shown in Fig. 28.2b. The global
degrees of freedom are also shown in the figure.

The given continuous beam is divided into two beam elements. Two degrees of
freedom (one translation and one rotation) are considered at each end of the
member. In the above figure, double headed arrows denote rotations and single
headed arrow represents translations. Also it is observed that displacements
u, =u, =u; =u, =0 from support conditions.

First construct the member stiffness matrix for each member.

Member 1:L =4m, node points 1-2.
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The member stiffness matrix for all the members are the same, as the length and
flexural rigidity of all members is the same.

Global d.o.f 6 5 3 1
[ 0.1875 0375 -0.1875 0375 ] 6
0.375 1.0 -0.375 0.5 5 1)
[k]=EL,
-0.1875 -0.375 0.1875 -0.375| 3
| 0.375 0.5 -0.375 10 | 1

On the member stiffness matrix, the corresponding global degrees of freedom
are indicated to facilitate assembling.

Member 2: L =4m, node points 2-3.

Global d.o.f 3 1 4 2
[ 0.1875 0375 -0.1875 0.375 | 3
[k2]= 1L 0.375 1.0 -0.375 0.5 1 )
-0.1875 -0.375 0.1875 -0.375 4
| 0375 0.5 -0.375 10 | 2

The assembled global stiffness matrix of the continuous beam is of order6x6.
The assembled global stiffness matrix may be written as,

2 0.5 0 —0.375 0.5 0.375 |
0.5 1.0 0.375 —0.375 0 0
0 0.375 0.375 -0.1875 -0.375 -0.1875
[K]: El z (3)
-0375 -0.375 -0.1875 0.1875 0 0
0.5 0 —-0.375 0 1.0 0.375
. 0.375 0 —-0.1875 0 0.375 0.1875 |

Now it is required to replace the given members loads by equivalent joint loads.
The equivalent loads for the present case is shown in Fig. 28.2c. The
displacement degrees of freedom are also shown in figure.
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6.67 kN.m 6.6'1; N.m
v

P 10kN 20kN 10kN

-

A

-~

: % ‘

-~

Fig. 28.2c Equivalent joint loads

Thus the global load vector corresponding to unconstrained degree of freedom

{pk}={pl}={ ’ } (@)
n,| |6.67

Writing the load displacement relation for the entire continuous beam,
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0 (2 05 0 ~0375 05 0375 ] (u,
6.67 0.5 1.0 0375 -0.375 0 0 u,
- 0 0375 0375 -0.875 -0.375 -01875||u,| (s
D, ~0375 -0375 -0.875 0.1875 0 0 u,
D 0.5 0 ~0.375 0 1.0 0375 | |u,
D | 0.375 0 -01875 0 0375  0.1875 | |u,

We know thatu, =u, =u, =u, =0. Thus solving for unknowns u,and u,, yields
0 20 05| (u,

- El, (6)
6.67 05 1.0] |u,
U, 1 1.0 -05|[ O
u,| L75El,|-05 20 ||6.67

-1905
1
= ()
El,, | 762

—-1.905
u, =
El

Thus displacements are,

and u, :7E'I—62

Y24 Zz

The unknown joint loads are given by,

P [0 0.375 |

P, ~0375 -0375| ; (-1905
Ps Y 0 Elzz{ 7.62 }
P, | 0375 0
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2.857
- 2.14
= (8)
- 0.95
- 0.714
The actual support reactions are,
R, 20 2.857 22.857
R 10 -2.14 7.86
o + - 9)
R,| |-6.67 -0.95 -7.62
R, 10 -0.714 9.286
Member end actions for element 1
a, 10 0.1875 0.375 -0.1875 0.375 0
q, | 6.66 +El 0.375 1.0 -0.375 0.5 1 0
d; ] 10 #1-0.1875 -0.375 0.1875 -0.375 El,, 0
ad, —6.66 0.375 0.5 -0.375 1.0 -1.905
9.285
5.707
- (10)
10.714
—8.565
Member end actions for element 2
a, 10 0.1875 0.375 -0.1875 0.375 0
q4 | 6.66 LE| 0.375 1.0 -0.375 0.5 1 |-1.905
a; ] 10 “?1-0.1875 -0.375 0.1875 -0.375 El, 0
ad, —6.66 0.375 0.5 —-0.375 1.0 7.62
12.14
B 8.565
~17.856
0
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Summary

In the previous lesson the beam element stiffness matrix is derived from
fundamentals. Assembling member stiffness matrices, the global stiffness matrix
is generated. The procedure to impose boundary conditions on the load-
displacement relation is discussed. In this lesson, a few continuous beam
problems are analysed by the direct stiffness method.
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[Lesson

29

The Direct Stiffness
Method: Beams
(Continued)
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Instructional Objectives

After reading this chapter the student will be able to

1. Compute moments developed in the continuous beam due to support
settlements.

2. Compute moments developed in statically indeterminate beams due to
temperature changes.

3. Analyse continuous beam subjected to temperature changes and support
settlements.

29.1 Introduction

In the last two lessons, the analysis of continuous beam by direct stiffness matrix
method is discussed. It is assumed in the analysis that the supports are
unyielding and the temperature is maintained constant. However, support
settlements can never be prevented altogether and hence it is necessary to
make provisions in design for future unequal vertical settlements of supports and
probable rotations of fixed supports. The effect of temperature changes and
support settlements can easily be incorporated in the direct stiffness method and
is discussed in this lesson. Both temperature changes and support settlements
induce fixed end actions in the restrained beams. These fixed end forces are
handled in the same way as those due to loads on the members in the analysis.
In other words, the global load vector is formulated by considering fixed end
actions due to both support settlements and external loads. At the end, a few
problems are solved to illustrate the procedure.

29.2 Support settlements

Consider continuous beam ABC as shown in Fig. 29.1a. Assume that the flexural
rigidity of the continuous beam is constant throughout. Let the support B settles
by an amount A as shown in the figure. The fixed end actions due to loads are
shown in Fig. 29.1b. The support settlements also induce fixed end actions and
are shown in Fig. 29.1c. In Fig. 29.1d, the equivalent joint loads are shown. Since
the beam is restrained against displacement in Fig. 29.1b and Fig. 29.1c, the
displacements produced in the beam by the joint loads in Fig. 29.1d must be
equal to the displacement produced in the beam by the actual loads in Fig.
29.1a. Thus to incorporate the effect of support settlement in the analysis it is
required to modify the load vector by considering the negative of the fixed end
actions acting on the restrained beam.
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Fig. 29.1
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29.3 Effect of temperature change

The effect of temperature on the statically indeterminate beams has already been
discussed in lesson 9 of module 2 in connection with the flexibility matrix method.
Consider the continuous beam ABC as shown in Fig. 29.2a, in which span BC is
subjected to a differential temperature T, at top and T, at the bottom of the beam.
Let temperature in span AB be constant. Let d be the depth of beam and El
be the flexural rigidity. As the cross section of the member remains plane after
bending, the relative angle of rotation débetween two cross sections at a
distance dxapart is given by

d¢9=a(T1_T2)dx (29.1)

where «is the co-efficient of the thermal expansion of the material. When beam
is restrained, the temperature change induces fixed end moments in the beam as
shown in Fig. 29.2b. The fixed end moments developed are,

M/ =-M, =a El (TlaTz) (29.2)

Corresponding to the above fixed end moments; the equivalent joint loads can
easily be constructed. Also due to differential temperatures there will not be any
vertical forces/reactions in the beam.
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Example 29.1

L

(c)

Fig. 29.2

Calculate support reactions in the continuous beam ABC (vide Fig. 29.3a) having
constant flexural rigidity EI , throughout due to vertical settlement of supportB , by

5mm as shown in the figure. Assume E =200 GPaand | =4x10"*m*.
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( a) Continuous beam

R o T
: % (1) 2 j (2) 3 E

( b ) Node and member numbering

___ﬁ_;%}___- - T" 96 kN m

38.4 kN

96 kN m

ey W NN

38.4 kN

l 38.4+38.4
= 76.8 kN

( ¢ ) Fixed end actions due to support settelement

38.4 kN

", %96 kN.m ‘ :
Zk | 2 vy 3

i P 2

( d ) Equivalent joint loads
Fig. 29.3 Example 29.1
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The continuous beam considered is divided into two beam elements. The
numbering of the joints and members are shown in Fig. 29.3b. The possible
global degrees of freedom are also shown in the figure. A typical beam element
with two degrees of freedom at each node is also shown in the figure. For this
problem, the unconstrained degrees of freedom are u,andu,. The fixed end

actions due to support settlement are,

MXB:GIIE_#z% kN.m; Mg, =96 kN.m
M. =-96 KNm ;Mg =-96 kN.m 1)

The fixed-end moments due to support settlements are shown in Fig. 29.3c.

The equivalent joint loads due to support settlement are shown in Fig. 29.3d. In
the next step, let us construct member stiffness matrix for each member.

Member 1: L =5m, node points 1-2.

Global d.o.f 6 5 3 1
[ 0096 024 -0.096 0241 6
0.24 0.80 -0.24 0.40 5
k]-Er, @
-0.096 -0.24 0.096 -024| 3
| 0.24 040 -024 080 1
Member 2: L =5m, node points 2-3.
Global d.o.f 3 1 4 2
0.096 024 -0.096 0.24 3
[kz]— - 0.24 080 -0.24 0.40 1 (3)
© %0096 —-024 0096 -024| 4
0.24 040 -0.24 0.80 2

On the member stiffness matrix, the corresponding global degrees of freedom
are indicated to facilitate assembling. The assembled global stiffness matrix is of
order6x 6. Assembled stiffness matrix [KJis given by,
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[K]=ElI

7z

(4)

Thus the global load vector corresponding to unconstrained degrees of freedom

IS,

0
96
Ps
P4
Ps
Ps

=El

[ 1.6

-0.24
0.4
0.24

{pk}z{“}
P,

Thus the load displacement relation for the entire continuous beam is,

0.4

0
0

0

0
96

-0.24
-0.24
—0.096
0.096
0
0

0.4

-0.24
0
0.8
0.24

0.24 |

—0.096
0
0.24

0.096 |

Since, u, =u, =uU, =U, =0due to support conditions. We get,

el

16 04
04 0.8

Thus solving for unknowns u,and u,,

N

1
El,

u, = —0.429x10"° radians;

Now, unknown joint loads are calculated by,

1

T 112EI,

137.14

0.8
-04

It

-04

o)

—34.285 —0.429x107°
B 1.714x107°

0
96

u, =1.714x10"° radians

(5)

(6)

(7)
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D, [0 024

Po| _, |"024 -024] {—34.285} @®)
D “| 04 0o |El,|137.14
Ps | 0.24 0 |
32 .91
— 24 .68
) -13.71
- 8.23

Now the actual support reactions R,,R,,R;and R,must include the fixed end
support reactions. Thus,

R, —-76.8 3291 —43.88
R 38.4 —24.68 13.72
R, 96 -13.71 82.29
Rg 38.4 -8.23 30.17

R, =-43.88kN; R, =13.72kN; Ry =82.29 kN.m; Rs =30.17kN  (10)

Example 29.2

A continuous beam ABCDis carrying a uniformly distributed load of 5kN/m as
shown in Fig. 29.4a. Compute reactions due to following support settlements.

Support B 0.005m vertically downwards.

Support C  0.010m vertically downwards.

Assume E =200 GPaand | =4x10™* m*.
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4 (b) Node and member numbering

_ __F
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By S0 /-/ | 3

\ e ST - p
i St > i
- -192 kN m
96 kN m ;%} - //
s . e
38.4 kN 76.8 kN m
96 + 96 - T
=192 kN m . -
115.2 kN

( ¢ ) Fixed - end action due to support settlement

¢¢¢¢¢¢¢$¢;¢¢$¢¢¢¢¢¢¢E

|
\

G L
10.42 kN m 10.42 kN m T

~_ 70

12.5 kN 25 kN 25 kN 12.5 kN

(d) Fixed - end actions due to external load

%
T
iSO.Q kN : 89.3 kN
%

25 kN 90.2 kN

i i Wi Y 202.42kNm
4106.42 kN m 7| 4192 kN m ¥ | 96 kN m ¥ E

( e ) Equivalent joints loads
Fig. 29.4 Example 29.2
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Solution

The node and member numbering are shown in Fig. 29.4(b), wherein the
continuous beam is divided into three beam elements. It is observed from the
figure that the unconstrained degrees of freedom are u,and u,. The fixed end
actions due to support settlements are shown in Fig. 29.4(c). and fixed end
moments due to external loads are shown in Fig. 29.4(d). The equivalent joint
loads due to support settlement and external loading are shown in Fig. 29.4(e).
The fixed end actions due to support settlement are,

where y is the chord rotation and is taken +ve if the

rotation is counterclockwise.

Substituting the appropriate values in the above equation,

9 —4
MXz—GXZOOXlO >;4><10 _0.005 _ 96 KN.M.
5x10

M{ =96+96=192 kN.m.
ME =96-192=-96 kN.m.

MF =-192 KkN.m. (1)

The vertical reactions are calculated from equations of equilibrium. The fixed end
actions due to external loading are,

w L?
12

=10.42 KkN.m.

Mj =

MF =10.42-10.42=0 kN.m.
ME =0
MF =-10.42 kN.m. )

In the next step, construct member stiffness matrix for each member.

Member 1,L =5m, node points 1-2.
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Global d.o.f 6
[ 0.096

- 0.24

2z

—-0.096

| 024

Member 2,L =5m, node points 2-3.

Globald.o.f 3
" 0.096

g1, 0.24
~0.096

| 024

Member 3,L =5m, node points 3-4.

Globald.o.f 4
[ 0.096

[]-g,
—0.096

| 0.24

5 3
0.24 -0.096
0.80 -0.24

-0.24 0.096
040 -0.24
1 4

0.24 -0.096
0.80 -0.24
-0.24 0.096
040 -0.24
2 8
0.24 -0.096
0.80 -0.24
-0.24 0.096
040 -0.24

0.24 |
0.40
~0.24
0.80

0.24 |
0.40
~0.24

0.80

0.24 |

0.40
-0.24

0.80

R W O o

N b

~N oo b

3)

(4)

(5)

On the member stiffness matrix, the corresponding global degrees of freedom
are indicated to facilitate assembling. The assembled global stiffness matrix is of
the order8x 8. Assembled stiffness matrix [K Jis,
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160 040 | 00 -024 040 024 0 0
040 160 | 0.24 0 0 0 040 -0.24
o0 024 | 0192 -00% -024 -009% 0 ¢ 0o
Klem | 0% O } ~0.09% 0192 0 0 0.24 -0.09 | (6)
| 0.40 0 1-024 0 080 0.4 0 0
0.24 0 1-00% 0 024 00% 0 0
0 040 | 0 0.24 0 0 080 -0.24
| 0 -024! 0 -00% 0 0  -024 009 |

The global load vector corresponding to unconstrained degree of freedom is,
P, -192
{pk}={ } ={ (7)
P, 96

Writing the load displacement relation for the entire continuous beam,

~192 (160 040 | 00 -024 040 0375 0 0 7(u
9 040 160 | 024 0 0 0 040 -0.24 | |u,
o, 0 024 | 0192 -0096 -024 —00%6 0 0 |lu,
D, —024 0 %—0.096 0192 0 0 024 -0.096] |u,
o, | el 0.40 0 ‘ ~024 0 080 024 0 0 | |u,
D 0.24 0 ~0.09% 0 024 0096 0 0 | |u
D, 0 040 | 0 0.24 0 0 080 -024 ||u,
P 0 -024 0 -009% 0 0 -024 009 ||u,

(8)

We know thatu,=u, =u;, =u; =u, =uy,=0. Thus solving for unknowns
displacements u,and u, from equation,

-192 1.60 0.407 (u,
= El, 9)
96 040 1.60] |u,
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u, 1 160 —0.40](-192
u,| 24(80x10°)| _040 1.60 || 96

-1.80x107°° (10)
- 1.20x1078

u, =—1.80x107 radians; u, =1.20x10° radians (11)

The unknown joint loads are calculated as,

P, 0 024
P, -024 0
Ps| (010 040 0 {—1.80x10‘3}
Pe 024 0 1.20x10°°
D, 0 040
D 0 —0.24]
23.04
34.56
| -5760 (12)
~34.56
38.40
-23.04

Now the actual support reactions R,,R,,R.,Rs,R;and Rymust include the fixed
end support reactions. Thus,
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R,] [pf D, 25 23.04 48.04

R,| |pf D, ~90.2 3456 | |-5564

Re| _ |0t BRI 106.42 ) ~57.60| | 4882 (13)
Ry| |pf D 50.9 ~3456| | 16.34

R,| |pFf p,| |-202.42 38.40 | |-164.02

R,] |pf D 89.3 ~23.04] | 66.26

R, =48.04kN; R, =-5564kN; R, =48.82kN.m;
R, =16.34kN; R, =-164.02kN.m; R, =66.26 kN (14)

Summary

The effect of temperature changes and support settlements can easily be
incorporated in the direct stiffness method and is discussed in the present
lesson. Both temperature changes and support settlements induce fixed end
actions in the restrained beams. These fixed end forces are handled in the same
way as those due to loads on the members in the analysis. In other words, the
global load vector is formulated by considering fixed end actions due to both
support settlements and external loads. At the end, a few problems are solved to
illustrate the procedure.
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30

The Direct Stiffness
Method: Plane Frames
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Instructional Objectives

After reading this chapter the student will be able to

1. Derive plane frame member stiffness matrix in local co-ordinate system.

2. Transform plane frame member stiffness matrix from local to global co-
ordinate system.

3. Assemble member stiffness matrices to obtain the global stiffness matrix of

the plane frame.

Write the global load-displacement relation for the plane frame.

Impose boundary conditions on the load-displacement relation.

Analyse plane frames by the direct stiffness matrix method.

o gk

30.1 Introduction

In the case of plane frame, all the members lie in the same plane and are
interconnected by rigid joints. The internal stress resultants at a cross-section of
a plane frame member consist of bending moment, shear force and an axial
force. The significant deformations in the plane frame are only flexural and axial.
In this lesson, the analysis of plane frame by direct stiffness matrix method is
discussed. Initially, the stiffness matrix of the plane frame member is derived in
its local co-ordinate axes and then it is transformed to global co-ordinate system.
In the case of plane frames, members are oriented in different directions and
hence before forming the global stiffness matrix it is necessary to refer all the
member stiffness matrices to the same set of axes. This is achieved by
transformation of forces and displacements to global co-ordinate system.

30.2 Member Stiffness Matrix

Consider a member of a plane frame as shown in Fig. 30.1a in the member co-
ordinate systemx'y'z'. The global orthogonal set of axes xyz is also shown in the

figure. The frame lies in the xy plane. The member is assumed to have uniform

flexural rigidity EI and uniform axial rigidity EA for sake of simplicity. The axial
deformation of member will be considered in the analysis. The possible
displacements at each node of the member are: translation in x'- and y'-

direction and rotation about z'- axis.
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( b ) Member forces

Fig. 30.1 Frame member in local co-ordinate system

Thus the frame members have six (6) degrees of freedom and are shown in
Fig.30.1a. The forces acting on the member at end j and k are shown in Fig.
30.1b. The relation between axial displacement and axial forces is derived in
chapter 24. Similarly the relation between shear force, bending moment with
translation along y' axis and rotation about z' axis are given in lesson 27.

Combining them, we could write the load-displacement relation in the local co-
ordinate axes for the plane frame as shown in Fig 30.1a, b as,
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q 1 T 0 0 —T 0 0 u 1
, 12El, 6EI, 12El, 6El, ,
9 ° E K T zo| [0
q, 0 6IEZIZ 4I|E_IZ 0 _ BEzIZ 2I|E_IZ o,
= AE AE (30.1a)
' -— 0 0 — 0 0 u'
a, . 1 4
, 12El,  6El, 12EI, 6EI, | | .
I L TR RN A
6El 2El 6El 4EI
! 0 z z 0 _ z z u'
Tl | L2 L L2 L J°
This may be succinctly written as
o} =[kT{u'} (30.1b)

where [k'] is the member stiffness matrix. The member stiffness matrix can also

be generated by giving unit displacement along each possible displacement
degree of freedom one at a time and calculating resulting restraint actions.

30.3 Transformation from local to global co-ordinate system

30.3.1 Displacement transformation matrix

In plane frame the members are oriented in different directions and hence it is
necessary to transform stiffness matrix of individual members from local to global
co-ordinate system before formulating the global stiffness matrix by assembly. In
Fig. 30.2a the plane frame member is shown in local coordinate axes x'y'z’ and

in Fig. 30.2b, the plane frame is shown in global coordinate axes xyz. Two ends
of the plane frame member are identified by j andk. Let u',,u’,,u’; and
u',,u’s,u's be respectively displacements of ends j and k of the member in local
coordinate systemx'y'z'. Similarly u,,u,,u, and u,,u.,u, respectively are
displacements of ends j and k of the member in global co-ordinate system.
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(a)

Fig. 30.2 Plane frame member in
(a) Local co-ordinate system
(b) Global co-ordinate system.

Let & be the angle by which the member is inclined to global x-axis. From
Fig.30.2a and b, one could relate u',,u’, ,u'; to u,,u,,u, as,

u',=u,cosé+u,sind (30.2a)
u',=-u,sind+u, cosd (30.2b)
u'y = U (30.2¢)

This may be written as,

Version 2 CE IIT, Kharagpur



u', I m O i 0 0 0]y
w,| |-m 1 0l 0o o0 ofly,
u', 0 01 i 0 0 0] |ug
=== i (30.3a)
u', 0 0 0 Il m 0Of|u,
u's 0 0O i -m | 0] |ug
w) Lo 000 0 1]y
Where, | =cos@andm =sind.
This may be written in compact form as,
'} =[THu} (30.3b)

In the above equation, [T] is defined as the displacement transformation matrix
and it transforms the six global displacement components to six displacement
components in local co-ordinate axes. Again, if the coordinate of node | is

(x,,y,) and coordinate of node k are (x,,Y,), then,

Yo=Y,

X, — X .
2 "1 and m=sm<9=T.

| =cos@ =

Where L = \/(xz —x ) +(y,-vy,) (30.4)
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30.3.2 Force displacement matrix

Fig. 30.3 Plane frame member in
(a) Local co-ordinate axes and
(b) In global co-ordinate system

Let q,,9',,9';and q',,q';,q9'sbe respectively the forces in member at nodes j
and k as shown in Fig. 30.3a in local coordinate system. p,,p,,p; and
P., Ps, Ps are the forces in members at node j and k respectively as shown in
Fig. 30.3b in the global coordinate system. Now from Fig 30.3a and b,

p, =q',cosé—q',sind (30.5a)

p, =q',sind+q', coséd (30.5b)
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Ps =05 (30.5¢)

Thus the forces in global coordinate system can be related to forces in local
coordinate system by

p,] [I -m O i 0 0 0](qy
o,| Im 1 olo o ollg,
P, 0 0 1 i 0 0 0}|qd,
R Ao (30.6a)
P, 0 0 0 Il -m 0||q,
o8 0 0 O i m | 0f]|q;
i
Ps) 1O O 0;0 O 1]|(d§
Where, | =cosf@and m=siné.
This may be compactly written as,
=] {a} (30.6b)

30.3.3 Member global stiffness matrix

From equation (30.1b), we have

{pp=[r] [k} (30.7)
Making use of equation (30.3b), the above equation may be written as

tp}=[TT' k[T Jiu} (30.8)

or

{p}=[k]iu} (30.9)

The equation (30.9) represents the member load-displacement relation in global
coordinate system. The global member stiffness matrix [k] is given by,

k]=[TT [k][r] (30.10)
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After transformation, the assembly of member stiffness matrices is carried out in
a similar procedure as discussed for truss. Finally the global load-displacement
eqguation is written as in the case of continuous beam. Few numerical problems
are solved by direct stiffness method to illustrate the procedure discussed.

Example 30.1

Analyze the rigid frame shown in Fig 30.4a by direct stiffness matrix method.
Assume E =200GPa ; I,, =1.33x10*m* and A=0.04m*. The flexural rigidity
El and axial rigidity EA are the same for both the beams.

48 kN
2m L 2m

e
e

B \

5
| ’

5

Y
>4

24 kN

Fig. 30.4a Rigid Frame.

Solution:

The plane frame is divided in to two beam elements as shown in Fig. 30.4b. The
numbering of joints and members are also shown in Fig. 30.3b. Each node has
three degrees of freedom. Degrees of freedom at all nodes are also shown in the
figure. Also the local degrees of freedom of beam element are shown in the
figure as inset.
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Fig. 30.4b Node and member numbering.

Formulate the element stiffness matrix in local co-ordinate system and then
transform it to global co-ordinate system. The origin of the global co-ordinate
system is taken at node 1. Here the element stiffness matrix in global co-

ordinates is only given.

Member 1:L=6 m ; & =90° node points 1-2; | =0andm =1.
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[ ]=[TT [k ] [T]

1 2 3
[1.48x10° 0 4.44x10°
0 1.333x10° 0
)= 4.44x10° 0 17.78x10°
1.48x10° 0 4.44x10°
0 ~1.333x10° 0
| 4.44x10° 0 8.88x10°

4

1.48x10°
0
4.44%10°
1.48x10°
0
4.44%10°

5 6
0 4.44x10° |
~1.333x10° 0
0 8.88x10°
0 4.44x10°
1.333x10° 0
0 17.78x10° |
1)

Member 2: L=4m ; §=0°; node points 2-3 ; | =1and m=0.

k*]=[T lklir]

4 5 6
2.0x10° 0 0
0 5x10°  10x10°
0 10x10°  26.66x10°
T|—20x100 0 0
0 ~5x10° -10x10°
0 10x10°  8.88x10°
(2)

7
—-2.0x10°

0
0

2.0x10°

0
0

8 9
0 0 4
-5x10° 10x10° 5
-10x10° 8.88x10° | 6
0 0 7
5x10° -10x10° | 8
—-10x10° 26.66x10° | 9

The assembled global stiffness matrix [K] is of the order9x9. Carrying out

assembly in the usual manner, we get,
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[ 1.48 0 -444)-148 0  -444] 0 0 o0
0O 13333 0 | 0 -13833 0 | 0 0 0
—444 0 1777§ 4.44 0 8.88 i 0 0 0
148 0 444 [20005 O 444 |-2000 0 O
[K]=] 0 -13333 0 i 0 13383 10 i 0 -5 10 |(3)
_444 0 888 EL 444 10 444445 0 -10 1333
0 0 0 '-200 0 0 1200 0 0
0 0 0 i 0 -5 -10 i 0 5 10
0 0 o | o 10 1333] 0 -10 26.66
48 kN
] 1 ¢
18 kNm @ @24 kNm
m 24 kNm
LU —— 45 4y
T24 kN 7 T24 kN
246N 1~\

m777‘> €—— 12kN

Fig. 30.4c Fixed end action due to external load in element (1) and (2)
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12 kNm

18 kNm

—_—
12 kN

24 kN
24 kN

/L V6 kN.m

24 kN.m

7777777

Fig. 30.4d Equivalent joint loads.
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A R,

7777777 > R,

e

R,

Fig. 30.4e Support Reactions.

The load vector corresponding to unconstrained degrees of freedom is (vide
30.4d),

P, 12
P }=1pst=1-24 (4)
ps -6

In the given frame constraint degrees of freedom areu,,u,,u;,u,,ug,U,.

Eliminating rows and columns corresponding to constrained degrees of freedom
from global stiffness matrix and writing load-displacement relationship for only
unconstrained degree of freedom,
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12 20015 0 4447 (u,
~241=10°] 0 13383 10 |{u, (5)
-6 444 10 4444 |u,

Solving we get,

u, 6.28x10°
Ug p =1-1.695x10° (6)
Ug -0.13x10°

u, =6.28x10°m., u;=-1.695x10"

Let R,,R,,R;,R,,Rs,Rybe the support reactions along degrees of freedom
1,2,3,7,8,9 respectively (vide Fig. 30.4e). Support reactions are calculated by

4 5 6
R [pf 148 0 —4.44]
R,| |p,f - ®3o0
R _Jnn| [ 44 0 ses u4
R,| |pF ~2000 0 0 u5
Ry| |p, 0 5 10 |
R |p.f 0 10 1333
R (-12] [ 057 ) [-1142
R,| | 0| |2250| | 2259
Ry| |18 |-114| | 1685
- - @)
R,| | o |-1257| |-1257
Ry| |24| | 140 25.40
Ry |-24) |-192] |-2592
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Example 30.2

Analyse the rigid frame shown in Fig 30.5a by direct stiffness matrix method.
Assume E =200 GPa ; 1,,=133x10° m* andA=0.01m?’. The flexural

rigidity El and axial rigidity EA are the same for all beams.

48 kN
10 kN . B 2m v 2m C
> BT T
4m
. S
e Ve
A D

Fig. 30.5a Rigid Frame of Example 30.2

Solution:
The plane frame is divided in to three beam elements as shown in Fig. 30.5b.

The numbering of joints and members are also shown in Fig. 30.5b. The possible
degrees of freedom at nodes are also shown in the figure. The origin of the
global co- ordinate system is taken at A (node 1).
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Fig. 30.5b Node and Member numbering.

Now formulate the element stiffness matrix in local co-ordinate system and then
transform it to global co-ordinate system. In the present case three degrees of
freedom are considered at each node.

Member 1: L=4m; §=90°; node points 1-2 ; I:XZEX1:0and

m=Y2"%_q

L
The following terms are common for all elements.

A—LE =5x10° KN/m; % =9.998x10°KkN

12El =4.999x10% kN/m: 4—5'22.666x103kN.m

3
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[k]= [T kT

1 2 3 4 5 6

[ 0.50x10° 0 ~1x10®° -0.50x10° 0 ~1x10° | 1
0 5x10° 0 0 ~5x10° 0 2
—1x10° 0 2.66x10° 1x10° 0 1.33x10% | 3
—~0.50x10° 0 1x10° 0.50x10° 0 1x10° 4
0 —-5x10° 0 0 5x10° 0 5
| —1x10° 0 1.33x10°  1x10° 0 2.66x10° | 6
(1)
Member 2:L=4m ; 8 =0° node points 2-3; | =1landm=0.
k2 ]=[rT k]0r]
4 5 6 7 8 9
5.0x10° 0 0 —5.0x10° 0 0 4
0 0.5x10° 1x10° 0 -05x10°  1x10° 5
0 1x10°  2.666x10° 0 -1x10° 1.33x10° | 6
—~5.0x10° 0 0 5.0x10° 0 0 7
0 -05x10®° —1x10° 0 0.5x10° ~1x10° | 8
.0 1x10°  1.33x10° 0 —-1x10°  2.666x10°| 9
(2)
Member 3: L=4m; 6=270°; node points 3-4 o Xixi =0and
m=Y2=%_ g

L
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=T kTir]

7 8 9 10 11 12

| 0.50x10° 0 1x10°  —-0.50x10° 0 1x10° | 7
0 5x10° 0 0 —5x10° 0 8

1x10° 0 2.66x10°  —1x10° 0 1.33x10° | 9

| ~0.50x10° 0 ~1x10°  0.50x10° 0 ~1x10° | 10
0 —5x10° 0 0 5x10° 0 11

| 1x10° 0 1.33x10°  -1x10° 0 2.66x10° | 12
3)

The assembled global stiffness matrix [K] is of the order12 x12. Carrying out
assembly in the usual manner, we get,

05 0 -10/-050 0 -10 0 0 0} 0 0 0
0O 50 01! 0 -5 0 0 0 0!0 0 O
10 0 266§ 10 0 13 0 0 0 i 0 0 0
05 0 10505 0 10 -50 0 0,0 0 0
0 -50 0 i 0 5005 10 0 —050 1o§ 0 0 0

K10 10 0 1.335 10 10 533 0 -10 1.335 0o o0 0
0 0 0 1!-50 0 O 5005 0 10!-05 0 10

0o 0 0 i 0 -05 -10 0 5005 —105 0 -500 0
00 0 0 10 1® 10 10 5% 10 0 1%

| |

0o 0 0} 0 0 0 -05 0 -10/05 0 -1

o o0 01! 0 0O 0 0O -50 0! 0 50 O

0 0 0 0 0 0o 10 o0 133] -1 o0 2.66)

(4)
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24 kN m \a/‘ \E/ 24 kN.m
Tz4 T24
N /77777 LLLLLLL
10 kN 10 kN
7777777 7777777

Fig . 30.5¢c Fixed end action due to external load.

24 kN

24 kN
T 24 kN m 24 kN mT

-
'

10 kN

7777777 7777777

Fig. 30.5d Equivalent joint loads.
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The load vector corresponding to unconstrained degrees of freedom is,

P, 10
Ps —24
Pe - 24
P )= 171 o (5)
7
Pg - 24
Py 24

In the given frame, constraint (known) degrees of freedom are
u,,u,,us, Uy, Uy, U, . Eliminating rows and columns corresponding to constrained

degrees of freedom from global stiffness matrix and writing load displacement
relationship,

10 500.5 0 1.0 -500 0 0 u,

- 24 0 5005 1.0 0 -05 1.0 Usg

—24 1.0 1.0 5.33 0 -1.0 133 |ug
-10° (6)

0 -500 0 0 5005 0 1 u,

—24 0 -05 -1 0 5005 -1 Ug

24 0 1 133 1 -1 533y

Solving we get,

u, 1.43x107
U, -3.84x10°
Us| |-8.14x10°
u, ) 1.43x107? @

Ug -5.65x10°

Ug 3.85x10°*
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Let R,R,,R;,R,,R;;,R,,be the support reactions along degrees of freedom
1,2,3,10,11,12 respectively. Support reactions are calculated by

4 5 6 7 8 9

R, p, -05 0 -10 © 0 0 ] (u,
R, D, 0 -50 0 0 0 0 | |ug

F
R, P 10 0 133 0 0 0 | |ug
Ro| [Py 0 0 0 -05 0 -10/]|y,
Rul |py" 0 0 0 0 -500 0 ||u
Ro| [py," |0 0 0 10 0 133]|u,

R,] [0 0.99 0.99

R,| [0 |1971 19.71

R,| 1[0 3.43 3.43

=9+ = (8)

Ro| [0 [-10.99| |-10.99

R,| |0] | 2828 28.28

R,| (0] |19.42 19.42

Summary

In this lesson, the analysis of plane frame by the direct stiffness matrix method is
discussed. Initially, the stiffness matrix of the plane frame member is derived in
its local co-ordinate axes and then it is transformed to global co-ordinate system.
In the case of plane frames, members are oriented in different directions and
hence before forming the global stiffness matrix it is necessary to refer all the
member stiffness matrices to the same set of axes. This is achieved by
transformation of forces and displacements to global co-ordinate system. In the
end, a few problems are solved to illustrate the methodology.
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Cables and Arches
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Lesson

31
Cables
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Instructional Objectives:

After reading this chapter the student will be able to
Differentiate between rigid and deformable structures.
Define funicular structure.

State the type stress in a cable.

Analyse cables subjected to uniformly distributed load.
Analyse cables subjected to concentrated loads.

arwnpE

31.1 Introduction

Cables and arches are closely related to each other and hence they are grouped
in this course in the same module. For long span structures (for e.g. in case
bridges) engineers commonly use cable or arch construction due to their
efficiency. In the first lesson of this module, cables subjected to uniform and
concentrated loads are discussed. In the second lesson, arches in general and
three hinged arches in particular along with illustrative examples are explained.
In the last two lessons of this module, two hinged arch and hingeless arches are
considered.

Structure may be classified into rigid and deformable structures depending on
change in geometry of the structure while supporting the load. Rigid structures
support externally applied loads without appreciable change in their shape
(geometry). Beams trusses and frames are examples of rigid structures. Unlike
rigid structures, deformable structures undergo changes in their shape according
to externally applied loads. However, it should be noted that deformations are still
small. Cables and fabric structures are deformable structures. Cables are mainly
used to support suspension roofs, bridges and cable car system. They are also
used in electrical transmission lines and for structures supporting radio antennas.
In the following sections, cables subjected to concentrated load and cables
subjected to uniform loads are considered.
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Fig. 31.1 Deformable structure.

/////ﬁ E///

Fig 31.2a Unloaded cable
(when dead load is neglected)

Funicular shape

o Bt

Figure 31.2b Cable in tension.

The shape assumed by a rope or a chain (with no stiffness) under the action of
external loads when hung from two supports is known as a funicular shape.
Cable is a funicular structure. It is easy to visualize that a cable hung from two
supports subjected to external load must be in tension (vide Fig. 31.2a and
31.2b). Now let us modify our definition of cable. A cable may be defined as the
structure in pure tension having the funicular shape of the load.
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31.2 Cable subjected to Concentrated Loads

As stated earlier, the cables are considered to be perfectly flexible (no flexural
stiffness) and inextensible. As they are flexible they do not resist shear force and
bending moment. It is subjected to axial tension only and it is always acting
tangential to the cable at any point along the length. If the weight of the cable is
negligible as compared with the externally applied loads then its self weight is
neglected in the analysis. In the present analysis self weight is not considered.

Consider a cable ACDEBas loaded in Fig. 31.2. Let us assume that the cable
lengths L, L,,L,,L, and sag at C,D,E (h,,hy,h,) are known. The four reaction
components at A and B, cable tensions in each of the four segments and three
sag values: a total of eleven unknown quantities are to be determined. From the
geometry, one could write two force equilibrium equations (> F, =0,> F, =0) at

each of the point A,B,C,D and E i.e. a total of ten equations and the required

one more equation may be written from the geometry of the cable. For example,
if one of the sag is given then the problem can be solved easily. Otherwise if the
total length of the cable S is given then the required equation may be written as

S =L +h” +4/L," + (0, —h)? +4/L,° + (0, —h,)? +/L,° +(h +h,)? (31.1)

31.3 Cable subjected to uniform load.

Cables are used to support the dead weight and live loads of the bridge decks
having long spans. The bridge decks are suspended from the cable using the
hangers. The stiffened deck prevents the supporting cable from changing its
shape by distributing the live load moving over it, for a longer length of cable. In
such cases cable is assumed to be uniformly loaded.
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Fig. 31.3a Cable subjected to concentrated load.
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Fig. 31.3b Cable subjected to uniformly Fig. 31.3c Free-body diagram
distributed load.

Consider a cable which is uniformly loaded as shown in Fig 31.3a. Let the slope
of the cable be zero at A. Let us determine the shape of the cable subjected to
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uniformly distributed load q,. Consider a free body diagram of the cable as shown

in Fig 31.3b. As the cable is uniformly loaded, the tension in the cable changes
continuously along the cable length. Let the tension in the cable at m end of the
free body diagram be T and tension at the n end of the cable beT + AT . The
slopes of the cable at m and n are denoted by 8 and 6+A6& respectively.
Applying equations of equilibrium, we get

D> Fy=0 ~Tsin@ + (T +AT)sin(@+A6) —q,(Ax) =0 (31.2a)
D> Fx=0 —T cos&+ (T +AT)cos(@ +AH) =0 (31.2b)
D> Mn=0 — (T cos @) Ay + (T sin 0)Ax+(q0Ax)%:O (31.2¢)

Dividing equations 31.2a, b, ¢ by Ax and noting that in the limit as
AX —> 0,Ay >0 A0 - 0andAT — 0.

lim AT .
—sin(@+ Af) =
AX =0 AX (0+46)=ay
i(I' sind) =q, (31.3a8)
dx
d
—(Tcosh) =0 (31.3b)
dx
lim
—Tcosﬁﬂ+Tsin9+qoﬁ:O
AX— 0 AX 2
y =tané (31.3c)
dx

Integrating equation (31.3b) we get

T cos @ = constant
At support (i.e., atx=0), Tcosd=H (31.4a)
i.e. horizontal component of the force along the length of the cable is constant.

Integrating equation 31.3a,
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Tsind =q,x+C,;
At x=0, Tsing =0, C,=0 as € =0 at that point.
Hence, Tsing =q,x (31.4b)

From equations 31.4a and 31.4b, one could write

tang = 2% (31.4¢)
From the figure, tané = Yy = GoX
dx H
S
ny=——+C
y 2H
0pX’
At x=0y=0=C=0andy=- - (31.5)

Equation 31.5 represents a parabola. Now the tension in the cable may be
evaluated from equations 31.4a and 31.4b. i.e,

T =/, "x* +H?

whenx=1L.

2
T =0’ L +H? =L 1+(1L) (31.6)
q

0

Due to uniformly distributed load, the cable takes a parabolic shape. However
due to its own dead weight it takes a shape of a catenary. However dead weight
of the cable is neglected in the present analysis.

Example 31.1

Determine reaction components at A and B, tension in the cable and the sag
Yg,and y. of the cable shown in Fig. 31.4a. Neglect the self weight of the cable
in the analysis.
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Fig. 31.4b Fig. 31.4c¢
Tdc

Thc

P

D Yde

v cd

Joint C Joint D
Fig. 31.4d Fig. 31.4e

Since there are no horizontal loads, horizontal reactions at A and B should be the
same. Taking moment about E, yields

R, x14-17x20-10x7-10x4=0
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Ry=@=20 KN; R,, =37-20=17kN.
Y14 ¥

Now horizontal reaction H may be evaluated taking moment about point C of all
forces left of C.

Ray><7—H x2-17x3=0
H =445 kN

Taking moment about B of all the forces left of B and settingM, =0, we get

80
R.x4—H =0; =———=1.798m
ay X Ve Yo = 2450
. 68
Similarly, =———=1528m
Yo Yo = 4250

To determine the tension in the cable in the segmentAB, consider the
equilibrium of joint A (vide Fig.31.4b).

> F,=0=>T,cos6, =H

T, = 44.5 = 48.789 kN

¥ rome)

The tension T, may also be obtained as

Tpp =Ry’ +H? =+/20° +445? =48.789 kN

Now considering equilibrium of joint B,C,and Done could calculate tension in
different segments of the cable.

Segment bc
Applying equations of equilibrium,

Z F =0=T,cosd, =T, cosb,,
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44.5

T, = ~44.6 kN
Ve
32 +0.298°
See Fig.31.4c
Segment cd
T, C0s 6, 44.5
== =45.05 kN
cos 6, ( 3 J
/ V3% +0.472
See Fig.31.4d.
See Fig.31.4e.
Segment de
Tgco86, 445 B
= " oos 0. = y =47.636 kN
V4% +1.528?

The tension T,,may also be obtained as

Ty =Ry’ +H? =177 +44.5? =47.636 kN

Example 31.2

A cable of uniform cross section is used to span a distance of 40m as shown in
Fig 31.5. The cable is subjected to uniformly distributed load of 10 kKN/m. run.
The left support is below the right support by 2 m and the lowest point on the
cable C is located below left support by 1 m. Evaluate the reactions and the
maximum and minimum values of tension in the cable.
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Fig. 31.6 Example 31.3
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Assume the lowest point C to be at distance of x m fromB. Let us place our
origin of the co-ordinate system xy atC . Using equation 31.5, one could write,

i 0, (40—x)*  10(40 - x)?
2 2H 2H

(1)

(2)

where y,and vy, be the y co-ordinates of supports A and B respectively. From
equations 1 and 2, one could evaluate the value of x. Thus,

10x2

10(40-x)* = X = 25.359m

From equation 2, the horizontal reaction can be determined.

~ 10x25.359°

H =1071.80 kN

Now taking moment about A of all the forces acting on the cable, yields

_ 10%x40x20+1071.80x 2
by 40

R =253.59 kN

Writing equation of moment equilibrium at pointB , yields

_ 40x20x10-1071.80x 2

N =146.41 kN
40

R

Tension in the cable at supports A and B are

T, =+146.41% +1071.812 =1081.76 kN

T, =+/253.59? +1071.81° =1101.40 kN

The tension in the cable is maximum where the slope is maximum asT cosé =H .
The maximum cable tension occurs at B and the minimum cable tension occurs

at Cwhere % =@¢=0and T, =H =1071.81 kN
X
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Example 31.3

A cable of uniform cross section is used to support the loading shown in Fig 31.6.
Determine the reactions at two supports and the unknown sag y. .

Taking moment of all the forces about supportB,

R, = %[350 +300+100y, ] (1)

R, =65+10y,
Taking moment about B of all the forces left of B and settingM, =0, we get,

R, x3-H,x2=0
= H, =15R, (2)

Taking moment about C of all the forces left of C and settingM. =0, we get
> M =0 R, x7—H, xy. —50x4=0
Substituting the value of H,in terms of R_ in the above equation,
7R,, —~1.5R,, Y. —200 =0 (3)
Using equation (1), the above equation may be written as,
y2 +1.833y, -17=0 (4)
Solving the above quadratic equation, y.can be evaluated. Hence,
Yo =3.307m.
Substituting the value of y. in equation (1),
R,, =98.07 kN

From equation (2),

H, =15R,, =147.05kN
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Now the vertical reaction atD, R, is calculated by taking moment of all the forces
about A,

Ry x10-100x7+100x3.307 -50x3=0
Ry, =51.93 kN.
Taking moment of all the forces right of C about C, and noting thatZMC =0,

Ry x3=Hyxy, =H,=47.109 kN.

Summary

In this lesson, the cable is defined as the structure in pure tension having the
funicular shape of the load. The procedures to analyse cables carrying
concentrated load and uniformly distributed loads are developed. A few
numerical examples are solved to show the application of these methods to
actual problems.
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Instructional Objectives:

After reading this chapter the student will be able to

Define an arch.

Identify three-hinged, two-hinged and hingeless arches.
State advantages of arch construction.

Analyse three-hinged arch.

Evaluate horizontal thrust in three-hinged arch.

arwnpE

32.1 Introduction

In case of beams supporting uniformly distributed load, the maximum bending
moment increases with the square of the span and hence they become
uneconomical for long span structures. In such situations arches could be
advantageously employed, as they would develop horizontal reactions, which in
turn reduce the design bending moment.

P

L/4

3P/ 4 P/4

L L
(a) Arch

v

—

Fig. 32.1 Beam and Arch comparison.

For example, in the case of a simply supported beam shown in Fig. 32.1, the

bending moment below the load is?’lp—6|'. Now consider a two hinged symmetrical

arch of the same span and subjected to similar loading as that of simply
supported beam. The vertical reaction could be calculated by equations of
statics. The horizontal reaction is determined by the method of least work. Now
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the bending moment below the load is %—Hy. It is clear that the bending

moment below the load is reduced in the case of an arch as compared to a
simply supported beam. It is observed in the last lesson that, the cable takes the
shape of the loading and this shape is termed as funicular shape. If an arch were
constructed in an inverted funicular shape then it would be subjected to only
compression for those loadings for which its shape is inverted funicular.

Fam

Funicular shape

e [
Y vy vy v v Y
Cable in tension. Arch in comression

Fig. 32.2 Cable and Arch structure.

Since in practice, the actual shape of the arch differs from the inverted funicular
shape or the loading differs from the one for which the arch is an inverted
funicular, arches are also subjected to bending moment in addition to
compression. As arches are subjected to compression, it must be designed to
resist buckling.

Until the beginning of the 20" century, arches and vaults were commonly used to
span between walls, piers or other supports. Now, arches are mainly used in
bridge construction and doorways. In earlier days arches were constructed using
stones and bricks. In modern times they are being constructed of reinforced
concrete and steel.
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Fig. 32.3

A structure is classified as an arch not based on its shape but the way it supports
the lateral load. Arches support load primarily in compression. For example in Fig
32.3b, no horizontal reaction is developed. Consequently bending moment is not
reduced. It is important to appreciate the point that the definition of an arch is a
structural one, not geometrical.

32.2 Type of arches

There are mainly three types of arches that are commonly used in practice: three
hinged arch, two-hinged arch and fixed-fixed arch. Three-hinged arch is statically
determinate structure and its reactions / internal forces are evaluated by static
equations of equilibrium. Two-hinged arch and fixed-fixed arch are statically
indeterminate structures. The indeterminate reactions are determined by the
method of least work or by the flexibility matrix method. In this lesson three-
hinged arch is discussed.
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Fig. 32.4 Types of arches.
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32.3 Analysis of three-hinged arch

In the case of three-hinged arch, we have three hinges: two at the support and
one at the crown thus making it statically determinate structure. Consider a three
hinged arch subjected to a concentrated force P as shown in Fig 32.5.

L L/4 _JP
[~ g

Y

Fig. 32.5 Three hinged arch.

There are four reaction components in the three-hinged arch. One more equation
is required in addition to three equations of static equilibrium for evaluating the
four reaction components. Taking moment about the hinge of all the forces acting
on either side of the hinge can set up the required equation. Taking moment of all
the forces about hinge A, yields

_PL_ P

w=I=7 (32.1)
> Fy=0 = R, :%P (32.2)
Taking moment of all forces right of hinge C about hinge C leads to
R, L
H,xh=—
2
R, L
—  H,--w-_PL (32.3)
2h  8h
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PL

Applying > Fx =0 to the whole structure gives H, = ™
Now moment below the load is given by ,
Ry, L
Mg = ~H.,b
4
3PL PLb
_3PL 32.4
° 16 8h (32.4)
f 2 1 then M, _SPL_PL 4 125pL (32.5)
h 2 16 16

For a simply supported beam of the same span and loading, moment under the
loading is given by,

_3PL

My == = =0375PL (32.6)

For the particular case considered here, the arch construction has reduced the
moment by 66.66 %.

Example 32.1

A three-hinged parabolic arch of uniform cross section has a span of 60 m and a
rise of 10 m. It is subjected to uniformly distributed load of intensity 10 kN/m as
shown in Fig. 32.6 Show that the bending moment is zero at any cross section of
the arch.
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Solution:

~ 10 kN /m
| 5 . | A
[ |
c {' \\\\\\\\\\\\\\\\\\\\\\\\\\\\\ Yo
H,
. 4—
[+
10m
y
H H, H
—_— A B :4— »
! ! t
R, I R, R
¥ x ¥
| 60 m |
- gl (a)

Free body diagram

(a)
Fia. 32.6 Three hinaed arch of Example 32.1

Reactions:
Taking moment of all the forces about hinge A, yields

_ 10x60

y

=300 kN (1)

R, =R,

Taking moment of forces left of hinge C aboutC, one gets

wa30—Hax10—10x30x%?:O

300x30—10x30x(i?J

H, = o @

=450 kN

From ) Fx=0 one could write, H, =450 kN.
The shear force at the mid span is zero.

Bending moment

The bending moment at any section x from the left end is,
2

X
M, =Ry x—H,y-10-- 3)
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The equation of the three-hinged parabolic arch is

Y= X=X (4)

=300x —300x + 5x> —=5x* =0

In other words a three hinged parabolic arch subjected to uniformly distributed
load is not subjected to bending moment at any cross section. It supports the
load in pure compression. Can you explain why the moment is zero at all points
in a three-hinged parabolic arch?

Example 32.2

A three-hinged semicircular arch of uniform cross section is loaded as shown in
Fig 32.7. Calculate the location and magnitude of maximum bending moment in
the arch.

Solution:
40 kN

. 8m ) c
[0 ° - e

| S =

v

Y
yd
y 13.267 m 15m
a—b{\ ? —>» X s A1 v B‘_

T R,, R,,
¥ g

Fig. 32.7 A semi circular arch of Example 32.2
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Reactions:
Taking moment of all the forces about hinge B leads to,

40%x22

ay

> Fy=0 =R,=1067 kN (T) 1)

=29.33 kN (1

Bending moment
Now making use of the condition that the moment at hinge C of all the forces left

of hingeC is zero gives,
M, =R, x15-H,x15-40x7=0 2

_29.33x15-40x7

Ha
15

=10.66 kN (=)

Considering the horizontal equilibrium of the arch gives,

H, =10.66 kN («)

The maximum positive bending moment occurs below D and it can be calculated
by taking moment of all forces left of D about D.

M, =R, x8-H, x13.267 3)

=29.33x8-10.66x13.267 =93.213 kN
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Example 32.3

A three-hinged parabolic arch is loaded as shown in Fig 32.8a. Calculate the
location and magnitude of maximum bending moment in the arch. Draw bending
moment diagram.

Solution:

~10 kN /m
/‘\/‘\/‘\ﬁﬁf\f\/‘\/‘\(‘\(‘%{“\ﬂf\f\f\/‘\/‘\/‘\/‘\f—\ﬁf\
40 kN
C
‘ — %
../v’.-.-.--
//".'.' )
‘T{ _,/ 8m
w5 e v —
A B
T T Rb
Rq‘l
L 10 m N
I 7
|" ;
Fig. 32.8a Eaxmple 32.3
Reactions:

Taking A as the origin, the equation of the three-hinged parabolic arch is given
by,

1)
Taking moment of all the forces about hinge B leads to,

_40x30+10x20x(2%)

R
& 40

=80 kN (T)
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> Fy=0 =R, =160 kN (1) (2)

Now making use of the condition that, the moment at hinge C of all the forces
left of hinge C is zero gives,

M, =R, x20—H, x8-40x10=0

H - 80x20-40x10

a

=150 kN (—) 3

Considering the horizontal equilibrium of the arch gives,
H, =150 kN (<) 4)

Location of maximum bending moment
Consider a section xfrom end B. Moment at section x in part CBof the arch is
given by (please note that B has been taken as the origin for this calculation),

M, =160x— 8 x-8 xe sy (5)
10 400 2

According to calculus, the necessary condition for extremum (maximum or
oM, 0

minimum) is that

M, _160-[ 2 -8%2, 45010«
400

OX 10 (6)
=40-4x=0
Xx=10 m.

Substituting the value of x in equation (5), the maximum bending moment is
obtained. Thus,

8 8 10
M =160(10)—| — (10) ———(10)? |150 — — (10)?
o =16000)- 2 10)- - 00y 1502200

M, =200 kN.m. ©)
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Shear force at D just left of 40 kN load

Fig. 32.8b

The slope of the arch at D is evaluated by,

dy E_lGX

tanf=—2=—-—— (8)
dx 10 400
Substituting x =10 m.in the above equation, 6, =21.8°
Shear force S, at left of D is
Sy =H,sind-R, cosd 9)
S, =150sin(21.80) —80c0s(21.80)
=-18.57 kN.
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Example 32.4

A three-hinged parabolic arch of constant cross section is subjected to a
uniformly distributed load over a part of its span and a concentrated load of 50
kN, as shown in Fig. 32.9. The dimensions of the arch are shown in the figure.
Evaluate the horizontal thrust and the maximum bending moment in the arch.

Solution:
10 kN /m
k1L 1] ]
Y Y Y Y Y Y Y Y Y
| 5m
50 kN
y ) g
A Y
D 3m
Ha X
—» = >
AA
3.75m
R,, Y
B #Jb
TR,,,
I{ 10 m -,~|4 15 m N
| | il
Fig. 32.9
Reactions:

Taking Aas the origin, the equation of the parabolic arch may be written as,
y =-0.03x* + 0.6 (1)
Taking moment of all the loads about B leads to,

Ry _1 50><20+10><15><E—Ha x3.75
25 2

) (2)
= —[2125-3.75H, |
25

Taking moment of all the forces right of hinge C about the hingeC and setting
M. =0 leads to,
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R, x15-6.75H, —10><15><%=0

R =%[1125+6.75 H, ] (3)

by

Since there are no horizontal loads acting on the arch,

H,=H,=H (say)

a

Applying Z Fy =0 for the whole arch,

Ry + Ry, =10x15+50 = 200

i[2125—3.75H ]+i[1125+6.75H]= 200
25 15

85-0.15H +75+0.45H =200

H _ 40 =133.33 kN (4)
0.3
From equation (2),
R, =65.0 kN
R,, =135.0 kN (5)

Bending moment
From inspection, the maximum negative bending moment occurs in the region
AD and the maximum positive bending moment occurs in the regionCB.

Span AD
Bending moment at any cross section in the span AD is

M =R, X~ H,(~0.03x? +0.6 x) 0<x<5 (6)

For, the maximum negative bending moment in this region,

am _

=0 R, — H,(-0.06x+0.6)=0
OX

Xx=1.8748 m
M =-14.06 kN.m.

For the maximum positive bending moment in this region occurs atD,
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M, =R, 5~ H,(~0.03x 25+ 0.6x5)
=+25.0 kN.m

Span CB
Bending moment at any cross section, in this span is calculated by,

M =R, x— H,(-0.03x? +0.6x) —50(x —5) ~10(x —10) (x—210)

For locating the position of maximum bending moment,

8M =0 :Ray—Ha(—0.06x+O.6) —SO—Ex 2(x—-10)=0
OX 2
Xx=175 m

M = 65x17.5-133.33(~0.03(17.5)% + 0.6(17.5)) — 50(12.5) —%(7.5)2
M =56.25 kN.m

Hence, the maximum positive bending moment occurs in span CB.

Summary

In this lesson, the arch definition is given. The advantages of arch construction
are given in the introduction. Arches are classified as three-hinged, two-hinged
and hingeless arches. The analysis of three-hinged arch is considered here.
Numerical examples are solved in detail to show the general procedure of three-
hinged arch analysis.
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Instructional Objectives:

After reading this chapter the student will be able to

1. Compute horizontal reaction in two-hinged arch by the method of least work.
2. Write strain energy stored in two-hinged arch during deformation.

3. Analyse two-hinged arch for external loading.

4. Compute reactions developed in two hinged arch due to temperature loading.

33.1 Introduction

Mainly three types of arches are used in practice: three-hinged, two-hinged and
hingeless arches. In the early part of the nineteenth century, three-hinged arches
were commonly used for the long span structures as the analysis of such arches
could be done with confidence. However, with the development in structural
analysis, for long span structures starting from late nineteenth century engineers
adopted two-hinged and hingeless arches. Two-hinged arch is the statically
indeterminate structure to degree one. Usually, the horizontal reaction is treated
as the redundant and is evaluated by the method of least work. In this lesson, the
analysis of two-hinged arches is discussed and few problems are solved to
illustrate the procedure for calculating the internal forces.

33.2 Analysis of two-hinged arch

A typical two-hinged arch is shown in Fig. 33.1a. In the case of two-hinged arch,
we have four unknown reactions, but there are only three equations of
equilibrium available. Hence, the degree of statical indeterminacy is one for two-
hinged arch.

P, -

«_ ¥

A

Fig. 33.1a Two - hinged arch.
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) 2 %V
[ Fig. 33.1b

The fourth equation is written considering deformation of the arch. The unknown
redundant reaction H, is calculated by noting that the horizontal displacement of

hinge B is zero. In general the horizontal reaction in the two hinged arch is
evaluated by straightforward application of the theorem of least work (see
module 1, lesson 4), which states that the partial derivative of the strain energy of
a statically indeterminate structure with respect to statically indeterminate action
should vanish. Hence to obtain, horizontal reaction, one must develop an
expression for strain energy. Typically, any section of the arch (vide Fig 33.1b) is
subjected to shear forceV , bending moment M and the axial compressionN .
The strain energy due to bending U, is calculated from the following expression.

S M 2
Uy =y ds (33.1)

0

The above expression is similar to the one used in the case of straight beams.
However, in this case, the integration needs to be evaluated along the curved
arch length. In the above equation, s is the length of the centerline of the arch, 1
is the moment of inertia of the arch cross section, E is the Young’s modulus of
the arch material. The strain energy due to shear is small as compared to the
strain energy due to bending and is usually neglected in the analysis. In the case
of flat arches, the strain energy due to axial compression can be appreciable and
is given by,

U =i—ds (33.2)
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The total strain energy of the arch is given by,

S M 2 S N2
U= j ds+ [——ds (33.3)
J2EI 4 2AE

Now, according to the principle of least work

Q =0, whereH is chosen as the redundant reaction.

oH

QZIM‘?M ds-+ | N N0 (33.4)
oH 5

El oH AE oH

0
Solving equation 33.4, the horizontal reaction H is evaluated.

33.2.1 Symmetrical two hinged arch

Consider a symmetrical two-hinged arch as shown in Fig 33.2a. Let C at crown
be the origin of co-ordinate axes. Now, replace hinge at B with a roller support.
Then we get a simply supported curved beam as shown in Fig 33.2b. Since the
curved beam is free to move horizontally, it will do so as shown by dotted lines in
Fig 33.2b. Let Mj,and N,be the bending moment and axial force at any cross
section of the simply supported curved beam. Since, in the original arch
structure, there is no horizontal displacement, now apply a horizontal force H as
shown in Fig. 33.2c. The horizontal force H should be of such magnitude, that
the displacement at B must vanish.
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Fig. 33.2a

Structure
before applying
external load

Fig. 33.2b.
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Structure before
— applying H

—_—

Fig. 33.2c.

H=N Cos®

Fig. 33.2d.

From Fig. 33.2b and Fig 33.2c, the bending moment at any cross section of the
arch (say D), may be written as
M=M,-H(h-y) (33.5)

The axial compressive force at any cross section (say D) may be written as

N =N, +Hcosé (33.6)

Where @ is the angle made by the tangent at D with horizontal (vide Fig 33.2d).
Substituting the value of M and N in the equation (33.4),

Q_OZ_J-MO—H(h—y)(h_y)dSJrJN0+Hcose

= cosdds (33.7a)
oH 0 El 0
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Let, y=h-y

—IMO_ Y54 +JN +HC0S sods =0 (33.7b)
0 EI 0
Solving forH , yields
—_[MO cos9d3+jmd =0
) El EI
Ih/l;’Yds—I!’coseds
H=2 (33.8)

Using the above equation, the horizontal reaction H for any two-hinged
symmetrical arch may be calculated. The above equation is valid for any general
type of loading. Usually the above equation is further simplified. The second term
in the numerator is small compared with the first terms and is neglected in the
analysis. Only in case of very accurate analysis second term s considered. Also
for flat arched, cosd =1as @ is small. The equation (33.8) is now written as,

'\élo y ds
ds

j ds+|—

JEl - JEA

O e

‘~<z

As axial rigidity is very high, the second term in the denominator may also be
neglected. Finally the horizontal reaction is calculated by the equation

ds
H = (33.10)

O e
rn‘i
- o

<1

l
N

O ey
m ‘~<
o
wn

For an arch with uniform cross section El is constant and hence,
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IMoyds
H=0 —— (33.11)
Iyzds
0

In the above equation, M, is the bending moment at any cross section of the arch
when one of the hinges is replaced by a roller support. y is the height of the arch

as shown in the figure. If the moment of inertia of the arch rib is not constant,
then equation (33.10) must be used to calculate the horizontal reactionH .

33.2.2 Temperature effect

Consider an unloaded two-hinged arch of spanL. When the arch undergoes a
uniform temperature change of T°C, then its span would increase by « LT if it
were allowed to expand freely (vide Fig 33.3a). a is the co-efficient of thermal
expansion of the arch material. Since the arch is restrained from the horizontal

movement, a horizontal force is induced at the support as the temperature is
increased.

A
-

y_

A

A 4

Fig. 33.3a

Version 2 CE IIT, Kharagpur



e o

Fig. 33.3b.

Now applying the Castigliano’s first theorem,

‘ ~2 *Hcos?*@
=T

Solving forH ,

alLT

A= % cos? 49
L S
i) e

ds

Y

(33.12)

(33.13)

The second term in the denominator may be neglected, as the axial rigidity is
quite high. Neglecting the axial rigidity, the above equation can be written as

alT
S =2

Iy ds

H =

(33.14)
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Example 33.1

A semicircular two hinged arch of constant cross section is subjected to a
concentrated load as shown in Fig 33.4a. Calculate reactions of the arch and
draw bending moment diagram.

A
X

A 15m LS
i & . \ B -
- " 2
le ™ o
N |
Ray Rh)‘
L 30 m |
I |
Fig. 33.4a.
Solution:
Taking moment of all forces about hinge B leads to,
R =39%22_ 593 3 kN (M)
y 30
> Fy=0 =R, =10.67 kN (T) 1)
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Fig. 33.4b.
From Fig. 33.4b,
y =Rsiné
Xx=R(l-cos0)
ds=Rdé@ (2)
13.267

tan g, = =0, =62.18°= 7/ oocrad

Now, the horizontal reaction H may be calculated by the following expression,

jMOYds
H=20

: 3)
jyz ds

Now M, the bending moment at any cross section of the arch when one of the
hinges is replaced by a roller support is given by,
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M, =R, x=R, R(1-cosd)

and,

M, =R,, R(1-cos@) —40(x -8)

=R, R(L-c030)~40{R(L-c0s0) -8 0,<0<x )

Integrating the numerator in equation (3),

s 6, b
[Mo¥ds = [R, R*(1—cos0)sin0d0+ [[R,, R(L-cosd) - 40{R(L-cosd) —8}Rsin O RdO
0 0 [Z

c

12.895

=R, R® J(l—cos@)sin@déMRz j[Ray R(L-cos8)sin @ — 40{R(1—cos&)sin & —8sin G} d &
0

712895

712.895 T T V4
=R, R%[-coso]  + R{[Ray R(-cosf)| = —[40R(-cosd)] =~ +[40x8(-cosh)] }
0 712.895

712.895 7 12.895
— 0.533R, R® + R%[[L.4667R,, R]|-[40R(L.4667)]+[40x8(1.4667) ]
=52761.00 + 225(645.275 — 410.676) = 105545.775 (5)

The value of denominator in equation (3), after integration is,

jyzds = ]E(Rsin 0)*Rd6o
0 0

) (6)
=R| 1-c0s20 ;5 _ re( 7 | —5301.46
A 2

Hence, the horizontal thrust at the support is,

_ 105545.775 1990 KN 7)
5301.46
Bending moment diagram

Bending moment M at any cross section of the arch is given by,
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M =M, - Hy

=R, R(l-cosd) - HRsin g 0<6<6, (8)
=439.95(1— cosd) — 298.5sin &
M = 439.95(1— cosd) —298.5sin 8 — 40(15(1 - cos @) — 8) 6.<0<rzr (9)

Using equations (8) and (9), bending moment at any angle ¢ can be computed.
The bending moment diagram is shown in Fig. 33.4c.

93.74kN.m

1)) —

/ T

Fig. 33.4c Bending moment diagram
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Example 33.2

A two hinged parabolic arch of constant cross section has a span of 60m and a
rise of 10m. It is subjected to loading as shown in Fig.33.5a. Calculate reactions
of the arch if the temperature of the arch is raised by40°C . Assume co-efficient

of thermal expansion as a =12x107°/°C.

L 10 m o
[ ]l
40 kN
A
Y
: c
y
T . 10 m
H H
¥ b
—»{ ———»x —r B <
i AT
R., R,,
| 60 m |
I i
Fig. 33.5

Taking A as the origin, the equation of two hinged parabolic arch may be written
as,

(1)

The given problem is solved in two steps. In the first step calculate the horizontal
reaction due to 40 kN load applied atC . In the next step calculate the horizontal
reaction due to rise in temperature. Adding both, one gets the horizontal reaction
at the hinges due to combined external loading and temperature change. The
horizontal reaction due to 40 kN load may be calculated by the following
equation,
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iMoyds

H =t—— (2a)
I y2ds
0
For temperature loading, horizontal reaction is given by,
H,=-2LT (2b)
_[y—ds
) El
Where L is the span of the arch.
For 40 kN load,
S 10 60
jMOyds:jRayxydx+I[Rayx—40(x—1O)]ydx (3)
0 0 10

Please note that in the above equation, the integrations are carried out along the
x-axis instead of the curved arch axis. The error introduced by this change in the
variables in the case of flat arches is negligible. Using equation (1), the above
equation (3) can be easily evaluated.

The vertical reaction A is calculated by taking moment of all forces aboutB .
Hence,

R, =~ [40x50]=33.33 kN
60

R, =6.67 kN.
Now consider the equation (3),

' 10 2 10 0 2 10
M. ydx = [(33.33) x(=x ——x?)dx + |{(33.33)x — 40(x —10) |(= x — — x?) dx
Moyax = (83339 x( 1) dc+ [[(8338)x~40(x -10))(G X~ 5x)

= 6480.76 + 69404.99 = 74885.75 4
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Iy dx = I[ X—W szx

=3200

()

Hence, the horizontal reaction due to applied mechanical loads alone is given by,

M
j oy d _ 7588575
Hl_ |

=23.71 kN (6)
Iy 3200

0

The horizontal reaction due to rise in temperature is calculated by equation (2b),

12x107° x60x 40 _ EI'x12 x107® x60x 40

H, = 3200, B 3200

Taking E=200 kN/mm® and | =0.0333m*
H,=59.94 kN. @)

Hence the total horizontal thrust H =H, + H, =83.65 kN.
: . : . tM,y ty?
When the arch shape is more complicated, the integrations j?ds and Jads
0 0

are accomplished numerically. For this purpose, divide the arch span in to n
equals divisions. Length of each division is represented by (As). (vide Fig.33.5b).

At the midpoint of each division calculate the ordinate y, by using the

equationy = gx _1_02le The above integrals are approximated as,

[ Ejyds——Z(Mo) Y, (As), ®)
S 2 1 n 5
O%dwag(yx (89) ©)

The complete computation for the above problem for the case of external loading
is shown in the following table.
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© @

Fig. 33.5(b)

Table 1. Numerical integration of equations (8) and (9)

|
|
I

®

Segme Horizontal Correspond | Momentat | (M,);y;(As); | (y).2(As),
nt distance x ing y; that
No Measured (m) Point (M),
from A (m) (kNm)

1 3 1.9 99.99 1139.886 21.66

2 9 5.1 299.97 9179.082 156.06

3 15 7.5 299.95 13497.75 337.5

4 21 9.1 259.93 14192.18 496.86

5 27 9.9 219.91 13062.65 588.06

6 33 9.9 179.89 10685.47 588.06

7 39 9.1 139.87 7636.902 496.86

8 45 7.5 99.85 4493.25 337.5

9 51 5.1 59.83 1830.798 156.06

10 57 1.9 19.81 225.834 21.66
> 75943.8 3300.3

_ Z(Mo)i yi(As) 75943.8 _2373 kN (10)

PO (y)A(As),  3200.3

This compares well with the horizontal reaction computed from the exact
integration.

Summary

Two-hinged arch is the statically indeterminate structure to degree one. Usually,
the horizontal reaction is treated as the redundant and is evaluated by the
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method of least work. Towards this end, the strain energy stored in the two-
hinged arch during deformation is given. The reactions developed due to thermal
loadings are discussed. Finally, a few numerical examples are solved to illustrate
the procedure.
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Lesson
34

Symmetrical Hingeless
Arch
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Instructional Objectives:

After reading this chapter the student will be able to

1. Analyse hingeless arch by the method of least work.

2. Analyse the fixed-fixed arch by the elastic-centre method.

3. Compute reactions and stresses in hingeless arch due to temperature
change.

34.1 Introduction

As stated in the previous lesson, two-hinged and three-hinged arches are
commonly used in practice. The deflection and the moment at the center of the
hingeless arch are somewhat smaller than that of the two-hinged arch. However,
the hingeless arch has to be designed for support moment. A hingeless arch
(fixed—fixed arch) is a statically redundant structure having three redundant
reactions. In the case of fixed—fixed arch there are six reaction components;
three at each fixed end. Apart from three equilibrium equations three more
equations are required to calculate bending moment, shear force and horizontal
thrust at any cross section of the arch. These three extra equations may be set
up from the geometry deformation of the arch.

34.2 Analysis of Symmetrical Hingeless Arch

Fig. 34.1 Hingeless Arch

Consider a symmetrical arch of span L and central rise of h, Let the loading on
the arch is also symmetrical as shown in Fig 34.1. Consider reaction components
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at the left support A i.e., bending momentM , vertical reaction R, and horizontal
thrust H, as redundants.

Considering only the strain energy due to axial compression and bending, the
strain energy U of the arch may be written as

S 2 S 2
U:jM ds+des (34.1)
J2E1 ) 2EA

where M and N are respectively the bending moment and axial force of the
arch rib. Since the support Ais fixed, one could write following three equations at
that point.

Ay _g (34.2a)
oM,
Y g (34.2b)
oH,
Y g (34.2¢)
oR,,

Knowing dimensions of the arch and loading, using the above three equations,
the unknown redundant reactions M,,H, and R, may be evaluated.

Since the arch and the loading are symmetrical, the shear force at the crown is
zero. Hence, at the crown we have only two unknowns. Hence, if we take the
internal forces at the crown as the redundant, the problem gets simplified.
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Fig. 34.2

Hence, consider bending moment M_and the axial force N_at the crown as the

redundant. Since the arch and the loading is symmetrical, we can write from the
principle of least work

Yy (34.3a)
M.
N g (34.3b)
oN,
a—U= Ma—'\/IdSJrjﬁa—Nds:O (34.4a)
oM, JEiam, - T EAAM,
& MM s [N gs—0 (34.4b)
N, JEIoN, - JEAGN,

Where, s is the length of centerline of the arch, | is the moment of inertia of the
cross section and A is the area of the cross section of the arch. Let Myand N,

be the bending moment and the axial force at any cross section due to external
loading. Now the bending moment and the axial force at any section is given by
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M=M_+N.y+M, (34.5a)

N =N_cosd+N, (34.5b)
ﬂ:1; %:y;ﬂ:cose; ﬂ:0. (34.6)
oM, ON, ON, oM

Equation (34.4a) and (34.4b) may be simplified as,

M 2N
ja(l)ds+£a(0)ds=o

0

j jyds —SM— ds (34.7a)

0

IM yds+j£cos¢9ds =0
El o EA

0
IM yds+j Ney” ds+J'::;\c0529 ds:—j%ds—jgcose ds (34.7b)
0 0

From equations 34.7a and 34.7b, the redundant M_and N_ may be calculated
provided arch geometry and loading are defined. If the loading is unsymmetrical
or the arch is unsymmetrical, then the problem becomes more complex. For such
problems either column analogy or elastic center method must be adopted.
However, one could still get the answer from the method of least work with little
more effort.
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34.3 Temperature stresses

Fig. 34.3

M,

"

M/l / | :

Consider an unloaded fixed-fixed arch of spanL. The rise in temperature, would
introduce a horizontal thrust H,and a moment M, at the supports. Now due to

rise in temperature, the moment at any cross-section of the arch

M =M, —H,t

Now strain energy stored in the arch

U _-S[Mzds
) 2EI

Now applying the Castigliano’s first theorem,

S
El oH,

ouU a LT JMéM
0

Also,

(34.8)

(34.9)

(34.10)
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Solving equations 34.9 and 34.10, M, and H, may be calculated.

Example 34.1

A semicircular fixed-fixed arch of constant cross section is subjected to
symmetrical concentrated load as shown in Fig 34.4. Determine the reactions of
the arch.
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40kN 40kN

Fig. 34.4 Example 34.1

Fig. 34.5

Solution:
Since, the arch is symmetrical and the loading is also symmetrical,

Ry = Ry, = 40kN (1)

ay

Now the strain energy of the arch is given by,
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+tM3ds §N?2ds
U=] 2El +] 2EA @)
0 0

Let us choose H,and M, as redundants. Then we have,

NV _gand M o 3)
oH

a a
The bending moment at any cross section is given by,

M =R, x-M,-H,y 0<6<60, (4)
M =R, x-M, —H,y-40(x -10) 0, <0<rxl2
N =H, cos(90-6) + R, cosé
N =H,sind+R, coséd 0<6<6, (5)
N =H,sind+ (R, —40)cosé 0 <0<rl2 (6)
y =Rsiné
x=R(l-cos09)

And ds=Rdé

See Fig 34.5.

U M PN
= [ (-Dds+ [—(0)ds =0
oM, !EI( ) !EA()

S

M . . . . . .
Eds=0 Since the arch is symmetrical, integration need to be carried out
0

between limits 0to z/2 and the result is multiplied by two.
zl2
2 j M s =0
. El

7l2 712 7l2 712
j40R(1—cose)Rd9— IMaRde—Ha szineRde— I40[R(1—cos€)—lO]Rdt9=0
0 0 0

712.552
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22.8310R* -1.57IM ,R—H_R?* —-41.304R* +135.92R =0
342.477-1.571IM , —15H, —169.56 +135.92 =0

1.57IM, +15H_, -308.837 =0

o M N
— = |—(-y)ds+ | —(sin@)ds =0
oH, IEI( ) !EA( )

0

72 72
ij( Rsin 0){[40R(1-cos&)]- M, —H (Rsme)}Rde—i [ (~Rsin 0){[40[R(1— cos #) ~10]]}Rd O +
712552
l2 l2
I(H sing+ R COS9)( ing)RdO -~ [sin)a0cosoRd =0
712.552
72 3 3 2 3 R(R, )sin@cosé
J'{—4OR sin0+ 2% ingcoso+ MR ging s HaR gin2 g, HaR o g RRa) Jdo+
't El El El El EA EA
72 3 3 2
J' {40R sinH—40R sin0c036—400R siné’—m—Rsinﬁcosé’}dH:O
712552 EI EA
~40,. 40,1, M,,. H, 40 1
—(1) —(—) (1) (0 785) + )
400
—266+23.58H, +2M_ =0 (7)

Solving equations (6) and (7), H, and M, are evaluated. Thus,

H, =28.28kN
M, =-466.42 kN (8)
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34.4 Elastic centre method

St
d

ot

4
o
"

Fig. 34.6 Elastic centre

Equations (34.7a) and (34.7b) are quite difficult to solve. However, they can be
further simplified if the origin of co-ordinates is moved from C to O in Fig. 34.3.

The distance d is chosen such that y, (= y—d) satisfies the following condition.

S
~d
Ngs fU-d)gs_g (34.10a)
0

El El

O —wn

Solving which, the distance d may be computed as

34.10b)

The point O is known as the elastic centre of the arch. Now equation (34.7a) can
be written with respect to new origin O. Towards this, substitute y=y, +din

equation (34.7a).
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M iE N j(y1+d)d - jﬂds (34.11)

S
In the above equation, j%ds is zero. Hence the above equation is rewritten as
0

(34.12)

Now, (M. +N.d)is the moment M,at O (see Fig. 34.3). Similarly the equation
(34.7b) is also simplified. Thus we obtain,

(34.13)

and,

S S
jMOY1ds+jN°C°S‘9ds
~ o El o EA
Ho=N¢=- s s
.[L Jcos 49
0E 0

(34.14)

34.4.1Temperature stresses

Consider a symmetrical hinge less arch of spanL, subjected to a temperature
rise of T°C . Let elastic centre Obe the origin of co-ordinates and H,,M,be the

redundants. The magnitude of horizontal force ﬁo be such as to counteract the

. . LT . .
increase in the span aTdue to rise in temperature T.Also from Symmetry,

there must not be any rotation at the crown. Hence,

S
jM FOMal (34.15)
aMO JEl 0
S S
v :jM M s o[ NN g LT (34.16)
oHy EloH, o EAdH, 2
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Moment at any section is calculated by,

and

s(g s( g
j M ylds+.[ M Cosmszﬁ
<\ El | EA 2

Simplifying the above equation,

(34.17)

(34.18)

Using equation (34.18), the horizontal thrust He due to uniform temperature rise

in the arch can be easily calculated provided the dimensions of the arch are
known. Usually the area of the cross section and moment of inertia of the arch

vary along the arch axis.

Example 30.2

A symmetrical hinge less circular arch of constant cross section is subjected to a
uniformly distributed load of10 KN/m. The arch dimensions are shown in Fig.

34.7a. Calculate the horizontal thrust and moment at A .

Version 2 CE IIT, Kharagpur



10kN/m
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0‘-!--*30.

Fig. 34 .7a Example 34.2

10kN/m
IRRRITRRTARRRTIRRIRAREIY)

Mo, C

x

X1

i
d
|

Ya

Fig. 34.7b

The distance d of the elastic centre from the crown C is calculated by equation,
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lds
El
" 1)

O —w»n

O —wn

From Fig.34.7b, the ordinate atd , is given by

y =50(1 - cos #)

”f 50(1—cos#)

50d6
d=20
"°50d 6
) El
50(”—1)
6 2
d=—"—"7=22535 m. )
6

The elastic centre O lies at a distance of 2.2535m from the crown. The moment at
the elastic centre may be calculated by equation (34.12). Now the bending
moment at any section of the arch due to applied loading at a distance x from
elastic centre is

2
S
_J.5Lds
-~  , El
MO - SE (3)
o El
In the present case, x=>50sin @ and ds =50d¢, El = constant

zl6
—5x50° J‘ sin?0 do
Iv'o = 8[/6

5ojde
0

r 1. (n«x
5 502 (e‘zs'”(an
M. +N.d=- > =-1081.29 kN.m (4)
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And.

Fig. 34.7c

ST

Fig. 34.7d
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y, = 50(1-cosd)-2.25
y, =47.75-50c0s6

Now H, is given by equation (34.14). Thus

S

JMoylol Ocosé’

c

]
s ; (5)
I y? I cos? 9
0 0

716

J%ds_ jsx (47.75-50c0s0)50 d@
0

716
_ 20 [ (50sin6)’ (47.75-50c0s0) d@

0

716
_ 625000 [ (23.875(1—cos 26)~50c0s fsin’ 6) do

0

625000 “¢°
-

0

[23.875(1— c0s20)— 25(003 0 —%(cos 30 +cos 0))) do

49630.735
_ 29590.755 6)
El

s 716
JNocosedS:iJ10(25_x)0032.9 de
EA

0

7l6
=|15_0 I (25(%)—509%%052 9] do
0

716

~ 20 T (125(1+ c0520)- 25(sin0-+sin0cos20)) 4o

0

_ 10 e 11 e
A(125(0+sm26?)) — 25| —(cosb); E—§c053¢9—cos6’

0
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81795

.
A (7)
7l6
jy— == j (47.75-50c0s6)° 50 do
0 E 0
50 716
== j (2280.06+250000529—4775cos€) do
0
_50 2280.06(£j+1250(£+isin£j—4775sin£
| 6 6 2 3 6
105.046
- 8
£ (8)
S 2 7l6
[ j(1+cosza)d9
EA 2EA
- §(£+1sin1j - 23.915 (9)
EAl6 2 3
) [49630.735 . 81.795}
g El EA
0= [105.046 R 23.915] (10)
El EA
Consider an arch cross section of 300x500 mm :and | =3.125x10°m?*
A=0.15 m?. Then,
N —(15881835.2 +545.3
H =—— ( )=—470.25 kN (11)

’ (33614.72 +159.43)

In equation (5), if the second term in the numerator and the second term in the
denominator were neglected then, we get,
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H,=— El j:—47267 KN

0 (105.046) | (12)
El

_(49630.735

Thus calculating Hoby neglecting second term in the numerator and
denominator induces an error which is less than 0.5%. Hence for all practical
purposes one could simplify the expression for H, as,

S
j Y1 s
o =

i El
0~ JS-L
o El

(13)

Now we have,
M. +N.d =-1081.29

N, =-470.25
M. =-23.22 kN.m (14)
25

Moment atB, Mg =M +10x25x7

=-23. 22+10x25x%

=3101.78 kN.m (15)
AlSO H B = NC .
Since the arch and the loading are symmetrical, M, =Mgand H, =Hg.

Summary

In this lesson, hingeless arches are considered. The analysis of hingeless arch
by the method of least work is given in the beginning. This is followed by the
analysis of hingeless arch by the elastic centre method. The procedure to
compute stresses developed in the hingeless arch due to temperature change is
discussed. A few problems are solved illustrate the various issues involved in the
analysis of hingeless arches.
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Module
6

Approximate Methods
for Indeterminate
Structural Analysis
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Lesson
35

Indeterminate Trusses
and Industrial Frames
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Instructional Objectives:

After reading this chapter the student will be able to

1. Make suitable approximations so that an indeterminate structure is reduced to
a determinate structure.

2. Analyse indeterminate trusses by approximate methods.

3. Analyse industrial frames and portals by approximate methods.

35.1 Introduction

In module 2, force method of analysis is applied to solve indeterminate beams,
trusses and frames. In modules 3 and 4, displacement based methods are
discussed for the analysis of indeterminate structures. These methods satisfy
both equation of compatibility and equilibrium. Hence they are commonly referred
as exact methods. It is observed that prior to analysis of indeterminate structures
either by stiffness method or force method; one must have information regarding
their relative stiffnesses and member material properties. This information is not
available prior to preliminary design of structures. Hence in such cases, one can
not perform indeterminate structural analysis by exact methods. Hence, usually
in such cases, based on few approximations (which are justified on the structural
behaviour under the applied loads) the indeterminate structures are reduced into
determinate structures. The determinate structure is then solved by equations of
statics. The above procedure of reducing indeterminate structures into
determinate and solving them using equations of statics is known as approximate
method of analysis as the results obtained from this procedure are approximate
when compared to those obtained by exact methods. Also, approximate methods
are used by design engineers to detect any gross error in the exact analysis of
the complex structures. Depending upon the validity of assumptions, the results
of approximate methods compare favourably with exact methods of structural
analysis.

In some way, all structural methods of analysis are approximate as the exact
loading on the structure, geometry; the material behaviour and joint resistance at
beam column joints and soil-structure interaction are never known exactly.
However, this is not a good enough reason for using approximate methods of
analysis for the final design. After preliminary design, it is important to analyse
the indeterminate structure by exact method of analysis. Based on these results,
final design must be done. In this module both indeterminate industrial frames
and building frames are analysed by approximate methods for both vertical and
wind loads.
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35.2 Indeterminate Trusses: Parallel-chord trusses with two
diagonals in each panel.
Consider an indeterminate truss, which has two diagonals in each panel as

shown in Fig. 35.1. This truss is commonly used for lateral bracing of building
frames and as top and bottom chords of bridge truss.

U Uy Uz Uz
3m
) L ] L
v 10kN + 10kN
/77 7
Ry o)
3 panels @ 4m each
» o
Fig. 35.1

This truss is externally determinate and internally statically indeterminate to 3"
degree. As discussed in lesson 10, module 2, the degree of static indeterminacy
of the indeterminate planar truss is evaluated by

i=(m+r)-2j (reproduced here for convenience)

Where m, j and r respectively are number of members, joints and unknown

reaction components. Since the given truss is indeterminate to 3" degree, it is
required to make three assumptions to reduce this frame into a statically
determinate truss. For the above type of trusses, two types of analysis are
possible.

1. If the diagonals are going to be designed in such a way that they are
equally capable of carrying either tensile or compressive forces. In such a
situation, it is reasonable to assume, the shear in each panel is equally
divided by two diagonals. In the context of above truss, this amounts to 3
independent assumptions (one in each panel) and hence now the
structure can be solved by equations of static equilibrium alone.

2. In some cases, both the diagonals are going to be designed as long and
slender. In such a case, it is reasonable to assume that panel shear is
resisted by only one of its diagonals, as the compressive force
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carried/resisted by the other diagonal member is very small or negligible.
This may be justified as the compressive diagonal buckles at very small
load. Again, this leads to three independent assumptions and the truss
may be solved by equations of static alone.

Generalizing the above method, it is observed that one need to make n

independent assumptions to solve n™ order statically indeterminate structures by
equations of statics alone. The above procedure is illustrated by the following
examples.

Example 35.1

Evaluate approximately forces in the truss members shown in Fig. 35.2a,
assuming that the diagonals are to be designed such that they are equally
capable of carrying compressive and tensile forces.

I A 1 1
| y ° U 'c Uy
l l l
| I |
| | I
i | i 3m
: : :
to k! : |

| Ly [ [ L3
‘A {20kn' B 2 | 30N ¢

% 7

™ 3 panels @ 3m Rz

|t -—
Fig. 35.2a
Solution:

The given frame is externally determinate and internally indeterminate to order 3.
Hence reactions can be evaluated by equations of statics only. Thus,

R ,=2333 kN (7)
R,=26.67 kN (T) (1)
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Now it is required to make three independent assumptions to evaluate all bar
forces. Based on the given information, it is assumed that, panel shear is equally
resisted by both the diagonals. Hence, compressive and tensile forces in
diagonals of each panel are numerically equal. Now consider the equilibrium of
free body diagram of the truss shown left of A— A. This is shown in Fig. 35.2b.

Uo < FUoU1
N Mg v
<"
LO N > FLO'-1
23.33 kN

Fig.35.2b

For the first panel, the panel shear is23.33 kN . Now in this panel, we have
FUQL]_ = FL0U1 = F (2)

Considering the vertical equilibrium of forces, yields

- FL0U1 Sln 9 - FLOUI Sln e + 2333 = 0 (3)
2F sin 6= 23.33 Sin 6 = ——
| 72
23.33
F=2°21650 kN .
V2 (4)
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Thus,

F,, =16.50 kN (Tension)
F.u, =16.50 kN (Compression)

Considering the jointL,,

Loty
16.50kN
\} Aoy
N .
23.33kN
Fig.35.2¢c

> F,=0=  -F, -16.50sin45+23.33=0

FL, =11.67 kN (Comp.) 5)
> F, =0 = -16.50c0s45+F_ =0
F,, =11.67 kN (Tension) ©)
Similarly, F,, =11.67 kN(comp.)

Now consider equilibrium of truss left of section C —C (ref. Fig. 35.2d)
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| 20kN

7

23.33 kN Fig.35.2d

In this panel, the shear is3.33 kN . Considering the vertical equilibrium of the free
body diagram,

>F,=0= ~Fu,sind5-F,  sin45+23.33-20=0 (7)

Itis given that F,, =F,,, =F

2Fsin@=3.33
3.33
F=——=236 kN
V2

Thus,

R, =2.36 kN (Tension)
F, =236 kN (Compression)

Taking moment about U, of all the forces,
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~F_, x3+ 2.36(ijx3+ 23.33x3=0

V2
F.., =25 kN(Tension) (8)
Taking moment about L, of all the forces,
Fu, =25 kN(Comp.) 9)

Considering the joint equilibrium of L, (ref. Fig. 35.2e),

F
i :‘:u'l 2.36kN
® ~
11.67kNE L iy
v
20kN
Fig.35.2e

D> F,=0=  F, +16.50sin45-2.36sin45-20=0
F.u, =10 kN(Tension) (10)

Consider the equilibrium of right side of the section B-B (ref. Fig. 35.2f) the
forces in the 3" panel are evaluated.
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'3up
- =
i,  Fig.35.2f 4
26.67kN
We know that, F, =F_,, =F

YF,=0=  -F_, sind5+F,, sin45+26.67=0 (11)
=25 10 ko

F.u, =18.86 kN (Comp)

F.,, =18.86 kN (Tension) (12)

Considering the joint equilibrium of L, (ref. Fig. 35.29), yields

F
18.86kN Lay,
4 L
F, 1 3
LoL
Fig.35.2g
26.67kN
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-18.86c0s45+F_ =0

> F=0 =
F_., =13.34 kN(Tension)
> F=0= F.y, =13.33 kN(Comp.)

The bar forces in all the members of the truss are shown in Fig. 35.2h. Also in
the diagram, bar forces obtained by exact method are shown in brackets.

Ug 11.67 U4 25 Uy 4333 s
(-11.22) (-27.64) T (13.23) )
A o 1 | !
- © )
= A4 - q,?’ D\ A
~lN ‘A - Y NS A 5
©|nN S ofw (\ 10 " |
b = T N N ey 3m
b e 7 - = - et £
i . 6:" + rG: .&6‘ ~ ‘70 =
6:6 oo \70 &,
| Y " A X F
~
11.67 25 13.33 2
(1za1) (22.35) (13.43) L,
7210 Ll 20kn Lp| 30kN 4
v s
23.33kN 26.67kN
I 3Panels@3m |
I o
Fig.35.2h
Example 35.2

Determine bar forces in the 3-panel truss of the previous example (shown in Fig.
35.2a) assuming that the diagonals can carry only tensile forces.

Solution:
In this case, the load carried by the compressive diagonal member is zero.

Hence the panel shear is completely resisted by the tension diagonal. Reactions
of the truss are the same as in the previous example and is given by,

(7)
(™)

Consider again the equilibrium of free body diagram of the truss shown left
of A— A. This is shown in Fig. 35.3a.

R, =23.33 kN

R, =26.67 kN (1)
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1—§n Uy

\EJOL‘ l‘u‘
s, ™9
Lg —bll'-:oL1
T23.33KN
Fig.35.3a
U Uy E'luz
B
v
Lo e l';_1|_z
) Uy 20kN
23.33kN
Fig.35.3b
33kN
F 9 F
Lyu,
- > 23.33kN
20kN
Fig.35.3c

Applying > F, =0,
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— Fyy, SiN45+23.33=0
Ry, =23.33/2=33 kN

Fy =0 2

LY;
Itis easily seenthat, F , =0 and F, , =23.33 kN

Considering the vertical equilibrium of jointL,, we get

Fu, =23.33 kN (Comp.) 3)

Since diagonals are inclined at 45° to the horizontal, the vertical and horizontal
components of forces are equal in any panel.

Now consider equilibrium of truss left of section C —C (ref. Fig. 35.3b)

In this panel, the shear is3.33 kN . Considering the vertical equilibrium of the free
body diagram,

YF,=0=  -F,,,sin45+23.33-20=0 (4)

Fu,., =3.33V2 = 4.71kN

FLlU2 =0 (5)
Taking moment of all forces aboutU,,

~F,,, x3+23.33x3=0
F.., =23.33 kN(Tension) (6)

Taking moment about L, of all the forces,

1
_FU1U2 x 3+ 471(ﬁj x3+23.33x3=0

Fou, = 26.67 kN (comp)

Considering the joint equilibrium of L, (ref. Fig. 35.3c), yields
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>F,=0 >  Fy +33sin45-20=0
F_u, =333 kN(comp)

(7)

Considering the equilibrium of right side of the section B - B (ref. Fig. 35.3d) the

forces in the 3™ panel are evaluated.

YF,=0=  -F,, sin45+26.67=0
Fu, =0
FLu, =37.71 kN (Tension)

Considering the joint equilibrium of L, (ref. Fig. 35.3e), yields

fUou;

&

L2lg

Fig.35.3d

(11)

(12)
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0 | st
T
- 's
26.67kN
Fig. 35.3e
YF=0= Fl, =0
> F,=0=> F.u, =26.66 kN(Comp.)

The complete solution is shown in Fig. 35.3f. Also in the diagram, bar forces
obtained by exact method are shown in brackets.
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Up -23.33 L Y 2666 Y2  -26.66 Uz

= 11.22) = = (-27.64) S 15:23) "‘
A N N:bq’ P h
&) <y N
i~ N 4 =
2 g I\- .‘9.9 '\ ’.\':\ = R
{ L = o 7 N 0|9 3
b s ™= < s o|® m
b Q=@ o L o
Q:Qo i B N7 =
‘0 \9
A 6) Y / v
0 23.33 0 _'_
Lo (12.11) (22.35) o (13.43)
v v
2 30kN by
P 3 20kN %
23.33 26.66
3Panels@3m
‘’ve comp

‘+’ve tension

Fig.35.3f Final bar forces

35.3 Industrial frames and portals

Common types of industrial frames are shown in Fig. 35.4a and 35.4b. They
consist of two columns and a truss placed over the columns. They may be
subjected to vertical loads and wind loads (horizontal loads). While analyzing for
the gravity loads, it is assumed that the truss is simply supported on columns.
However, while analyzing the frame for horizontal loads it is assumed that, the
truss is rigidly connected to columns. The base of the column are either hinged
or fixed depending on the column foundation. When the concrete footing at the
column base is small, then it is reasonable to assume that the columns are
hinged at the base. However if the column are built into massive foundation, then
the column ends are considered as fixed for the analysis purposes.
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Before considering the analysis of structures to wind load (horizontal load)
consider the portals which are also used as the end portals of bridge structure
(see Fig. 35.5). Their behaviour is similar to industrial trusses. The portals are
also assumed to be fixed or hinged at the base depending on the type of
foundation.

P B c P B c
h h
A D A D
4» 4% 7777, 777
d d
b ] f——
(a) (b)
c ! D
cw/: ©
E -
o5 - o

Fig.35.5 Portal Frames
Consider a portal which is hinged at the base, as shown in Fig. 35.5a. This
structure is statically indeterminate to degree one. To analyse this frame when
subjected to wind loads by only equations of statics, it is required to make one
assumption. When stiffness of columns is nearly equal then it is assumed that
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the shear at the base of each column is equal. If stiffness of columns is unequal
then it is assumed that the shear at the base of a column is proportional to its
stiffness.

P 2 c
A D
£« A 57 <— Vb
! Ry Rp
Fig.35.6

Reactions and Bending moments:
As per the assumption, shear at the base of columns is given by (vide Fig. 35.6)

Now V, =V, :g

Taking moment about hinge D,

> M, =0 = R,xd =Pxh
= RA:%h(U
And :RD:%h(T)

The bending moment diagram is shown in Fig. 35.7.
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Ph 2 2
2 - ( k. 7
w\ : > K.p:z PfZ:/l §
= Ph/2
A P2 P/2
T Ph
Fig 35.7a Bending Moment P;n b

Diagram

Fig.35.7(b) Reactions

It is clear from the moment diagram, an imaginary hinge forms at the mid point of
the girders. Thus instead of making assumption that the shear is equal at the
column base, one could say that a hinge forms at the mid point of the girder.
Both the assumptions are one and the same.

Now consider a portal frame which is fixed at the base as shown in Fig. 35.5b.
This is statically indeterminate to third degree and one needs to make three
independent assumptions to solve this problem by equations of static equilibrium
alone. Again it is assumed that the shear at the base of each column is equal
provided their stiffnesses are equal. The deformed shape of the portal is shown
in Fig. 35.8a and the deformed shape of the industrial frame is shown in
Fig.35.8b.
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In such a case, the bending moment at the base of the column (at A) produces
tension on outside fibres of column cross section. The bending moment at top of
column produces tension on inside fibres of column. Hence bending moment
changes its sign between column base and top. Thus bending moment must be
zero somewhere along the height of the portal. Approximately the inflexion point
occurs at the mid height of columns. Now we have three independent
assumptions and using them, we could evaluate reactions and moments. In the
case of industrial frames, the inflexion points are assumed to occur at mid height
between AandB.
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Fig.35.9a

Ph/4

Ph/4
Ph/4

~ Ph/4

Ph/4

W Ph/4 W 7

Figure 35.9b
Taking moment of all forces left of hinge 1 about hinge 1 (vide Fig. 35.9a),yields

Ph -M, =0 = MA:P—h
2%x2 4
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Similarly taking moment of all forces left of hinge 2 about hinge 2,

Ph Ph
2><2_MD:O = My =—

Taking moment of all forces right of hinge 1 about hinge 1 gives,

Ph Ph Ph
Rd+M,—-——————=0 = R,=—I|T
P P 22 2 ° Zd()
Similarly
Ph
R,=—«

The bending moment diagram is shown in Fig. 35.9b.

If the base of the column is partially fixed then hinge is assumed at a height of
%rd from the base. Note that when it is hinged at the base of the column, the
inflexion point occurs at the support and when it is fixed, the inflexion point
occurs at mid-height.

Example 35.3

Determine approximately forces in the member of a truss portal shown in Fig.
35.10a.

1&% Ui U2 U3 Ug Us Ug
E
<
Lo L L2 L Ly Ls s
E
@

6 panels @3each

Fig. 35.10a
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In this case, as per the first assumption, the shear at the base of each column is
the same and is given by (ref. 35.10b)

V, =V, =— =5kN (1)

10kN Up Uy Uz U3 Ug Us Us

l
]

4m

18m

Fig. 35.10b
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10kN
A
@ hinge1 hinge2 ¢
5
5 = - ‘
40/9 40/9

Fig 35.10.c
Taking moment of all forces right of hinge 2 about hinge 2, results
P
MB=E><4 = M, =20kN.m (2)

Similarly M, =20 kKN.m 3)

Taking moment of all forces right of hinge 1 about hinge 1 gives,

R, x18 -V, x4+20-10(4+4)=0 = RB=%=%kN(T)
Similarly,
R, =‘;—0kN(¢) 4)

Forces in the truss member can be calculated either by method of sections or by
method of joints. For example, consider the equilibrium of truss left of A—Aas
shown in Fig. 35.10d.
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10kN

£

A
£
<t
! o
—= 5
Y 400
Fig 35.10.d
40 4
sz:0:> _E-’-FUOL]'XE:O
= F,,,, =5.55kN(Comp.) ()

Taking moment about U,

5x8—F,, x4=0

F_., =10kN(Tension) (6)
Taking moment about L,

1O><4+5><4—49—0><3—FUoUl x4=0

Fy,,, =11.66 kN(Comp) (7)
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Summary

It is observed that prior to analysis of indeterminate structures either by stiffness
method or force method; one must have information regarding their relative
stiffnesses and member material properties. This information is not available
prior to preliminary design of structures. Hence in such cases, one can not
perform indeterminate structural analysis by exact methods. Hence, usually in
such cases, based on few approximations (which are justified on the structural
behaviour under the applied loads) the indeterminate structures are reduced into
determinate structures. The determinate structure is then solved by equations of
statics. This methodology has been adopted in this lesson to solve indeterminate
trusses and industrial frames. Depending upon the validity of assumptions, the
results of approximate methods compare favourably with exact methods of
structural analysis as seen from the numerical examples.
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Instructional Objectives:

After reading this chapter the student will be able to

1. Analyse building frames by approximate methods for vertical loads.
2. Analyse building frames by the cantilever method for horizontal loads.
3. Analyse building frame by the portal method for horizontal loads.

36.1 Introduction

The building frames are the most common structural form, an analyst/engineer
encounters in practice. Usually the building frames are designed such that the
beam column joints are rigid. A typical example of building frame is the reinforced
concrete multistory frames. A two-bay, three-storey building plan and sectional
elevation are shown in Fig. 36.1. In principle this is a three dimensional frame.
However, analysis may be carried out by considering planar frame in two
perpendicular directions separately for both vertical and horizontal loads as
shown in Fig. 36.2 and finally superimposing moments appropriately. In the case
of building frames, the beam column joints are monolithic and can resist bending
moment, shear force and axial force. The frame has 12 joints(j), 15 beam

members(b), and 9 reaction components(r). Thus this frame is statically
indeterminate to degree = ((3x15+9)-12x3)=18 (Please see lesson 1, module 1

for more details). Any exact method, such as slope-deflection method, moment
distribution method or direct stiffness method may be used to analyse this rigid
frame. However, in order to estimate the preliminary size of different members,
approximate methods are used to obtain approximate design values of moments,
shear and axial forces in various members. Before applying approximate
methods, it is necessary to reduce the given indeterminate structure to a
determinate structure by suitable assumptions. These will be discussed in this
lesson. In lesson 36.2, analysis of building frames to vertical loads is discussed
and in section 36.3, analysis of building frame to horizontal loads will be
discussed.
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Fig. 36.1 Building frame
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Fig.36.2 Idealized frame for analysis

AT LT A P

Fig.36.3 Building frame subjected to vertical loads
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36. 2 Analysis of Building Frames to Vertical Loads

Consider a building frame subjected to vertical loads as shown in Fig.36.3. Any
typical beam, in this building frame is subjected to axial force, bending moment
and shear force. Hence each beam is statically indeterminate to third degree and
hence 3 assumptions are required to reduce this beam to determinate beam.

Before we discuss the required three assumptions consider a simply supported
beam. In this case zero moment (or point of inflexion) occurs at the supports as
shown in Fig.36.4a. Next consider a fixed-fixed beam, subjected to vertical loads
as shown in Fig. 36.4b. In this case, the point of inflexion or point of zero moment
occurs at 0.21L from both ends of the support.

wkN/m
Inflectlon

o S L LU
A B
|

L -—l

Deflected shape

L * : e
wL 5
/ 8 \\

# + \
/ N

Bending moment diagram

Fig.36. 4a Simply Supported beam
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Inflection

wkN/m point
v
0.21L 0.21L
- - —— -—
—l L —

Deflected shape

wil?
12

Bending moment diagram

Fig.36. 4b Fixed - Fixed beam

Now consider a typical beam of a building frame as shown in Fig.36.4c. In this
case, the support provided by the columns is neither fixed nor simply supported.
For the purpose of approximate analysis the inflexion point or point of zero

0+0.21LJ

moment is assumed to occur at ( ~0.1L from the supports. In reality

the point of zero moment varies depending on the actual rigidity provided by the
columns. Thus the beam is approximated for the analysis as shown in Fig.36.4d.
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For interior beams, the point of inflexion will be slightly more than0.1L. An
experienced engineer will use his past experience to place the points of inflexion
appropriately. Now redundancy has reduced by two for each beam. The third
assumption is that axial force in the beams is zero. With these three assumptions
one could analyse this frame for vertical loads.

Example 36.1

Analyse the building frame shown in Fig. 36.5a for vertical loads using
approximate methods.

ZkN/m

i C BETEE" B WR TN R
£
<

5kN/m
.

B | S‘_ | | | E H
£
<

A D G

STT77 fT777 /7707

6m 6m
Fig.36.5a
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C5k|~lfm
i 4% 4 4 44 44 1 144 4 44 ]
B E
L6m 4.8m .6m{6m 4.8m [6m
Fig.36.5 b

Solution:
In this case the inflexion points are assumed to occur in the beam at 0.1L(= 0.6m)

from columns as shown in Fig. 36.5b. The calculation of beam moments is
shown in Fig. 36.5c.
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Fig.36.5d Axial force in columns
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Now the beam —vemoment is divided equally between lower column and upper
column. It is observed that the middle column is not subjected to any moment, as
the moment from the right and the moment from the left column balance each
other. The —vemoment in the beam BEis8.1kN.m. Hence this moment is

divided between column BCandBA. Hence, M . =M,, :% =4.05kN.m. The

maximum +ve moment in beam BE is 14.4kN.m. The columns do carry axial

loads. The axial compressive loads in the columns can be easily computed. This
is shown in Fig. 36.5d.

36.3 Analysis of Building Frames to lateral (horizontal) Loads

A building frame may be subjected to wind and earthquake loads during its life
time. Thus, the building frames must be designed to withstand lateral loads. A
two-storey two-bay multistory frame subjected to lateral loads is shown in Fig.
36.6. The actual deflected shape (as obtained by exact methods) of the frame is
also shown in the figure by dotted lines. The given frame is statically
indeterminate to degree 12.

e [
P —
= +
I mrnT mrr? rarixl T mrnoTr T
— — — — G G— ——
\'J 2V \'J \'J v \'j \'}

Fig.36.6 Shear in columns
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Fig.36.7b

Hence it is required to make 12 assumptions to reduce the frame in to a statically
determinate structure. From the deformed shape of the frame, it is observed that
inflexion point (point of zero moment) occur at mid height of each column and
mid point of each beam. This leads to 10 assumptions. Depending upon how the
remaining two assumptions are made, we have two different methods of
analysis: i) Portal method and ii) cantilever method. They will be discussed in the

subsequent sections.
36.3.1 Portal method

In this method following assumptions are made.
1) An inflexion point occurs at the mid height of each column.
2) An inflexion point occurs at the mid point of each girder.
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3) The total horizontal shear at each storey is divided between the columns
of that storey such that the interior column carries twice the shear of exterior
column.

The last assumption is clear, if we assume that each bay is made up of a portal
thus the interior column is composed of two columns (Fig. 36.6). Thus the interior
column carries twice the shear of exterior column. This method is illustrated in
example 36.2.

Example 36.2

Analyse the frame shown in Fig. 36.7a and evaluate approximately the column
end moments, beam end moments and reactions.

Solution:
The problem is solved by equations of statics with the help of assumptions made

in the portal method. In this method we have hinges/inflexion points at mid height
of columns and beams. Taking the section through column hinges M.N,O we

get, (ref. Fig. 36.7b).
>F, =0 = V+2V4+V =20

or V =5kN
Taking moment of all forces left of hinge R about R gives,

Vx15-M, x2.5=0
M, =3 kN({)

Column and beam moments are calculates as,

Me =5x1.5=75kN.m ; M, =+7.5kN.m

M. =-7.5kN.m

Taking moment of all forces left of hinge S aboutS gives,

5x1.5-0,x25=0
0, =3kN(1)

N, =0

Taking a section through column hinges J, K, L we get, (ref. Fig. 36.7c).
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Taking moment of all forces about P gives (vide Fig. 36.7d)

DM, =015x1.5+5x15+3x25-J,x25=0

J, =15 kN(Y)
L, =15 kN(T)
3kN
Y
oe [ T5kN
N » 10kN E
n
30kN___P < 10kN 10kN __Q l
E
< 30kN ]
K "l
L.—- 10kN
Fig.36.7e
3kN 3kN
i
N 'o
M. = 5kN ® = 10kN ® = 5kN
B . E ° _H
®J oK eL
— 15kN —t 30kN — 15kN
' 15kN 15kN
Fig.36.7f
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Column and beam moments are calculated as, (ref. Fig. 36.7f)

Mg =5x1.5=7.5kN.m ; M, =15x1.5=22.5 kN.m
Mg =-30 KN.m

Mg =10x1.5=15 kN.m ; M., =30x1.5=45 kN.m
Mg =-30 kNm Mg, =-30 kN.m

M, =5x15=75kN.m ; M, =15x1.5=22.5 kN.m
M, =-30 kN.m

Reactions at the base of the column are shown in Fig. 36.79.

36.3.2 Cantilever method

The cantilever method is suitable if the frame is tall and slender. In the cantilever
method following assumptions are made.

1) An inflexion point occurs at the mid point of each girder.

2) An inflexion point occurs at mid height of each column.

3) In a storey, the intensity of axial stress in a column is proportional to its
horizontal distance from the center of gravity of all the columns in that storey.
Consider a cantilever beam acted by a horizontal load P as shown in Fig. 36.8. In
such a column the bending stress in the column cross section varies linearly from
its neutral axis. The last assumption in the cantilever method is based on this
fact. The method is illustrated in example 36.3.
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Example 36.3

Estimate approximate column reactions, beam and column moments using
cantilever method of the frame shown in Fig. 36.8a. The columns are assumed to
have equal cross sectional areas.

Solution:
This problem is already solved by portal method. The center of gravity of all
column passes through centre column.

2 XA _(0)A+5A+10A
DA A+A+A

X = =5m (from left column)

Beam axis

Fig.36.8a Cantilever Column
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Fig.36.8b

Taking a section through first storey hinges gives us the free body diagram as
shown in Fig. 36.8b. Now the column left of C.G. i.e. CBmust be subjected to
tension and one on the right is subjected to compression.

From the third assumption,

Taking moment about O of all forces gives,

20><1.5—My x10=0

M, =3kN({) ; 0O, =3kn(T)

Taking moment about R of all forces left of R,
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V,, x1.5-3x2.5=0
V, =5 kN(«)

Taking moment of all forces right of S aboutS,

Vyox15-3x25=0 =  V, =5kN.
D Fe=0  Vy+V,+V,-20=0

V,, =10kN.

Moments

M =5x1.5=7.5 kN.m
M =-7.5 kN.m

M. =15 kN.m
M. =-7.5 kN.m
M., =-7.5 kKN.m
M,, =7.5 kN.m

M, =-7.5 kN.m

Tae a section through hinges J,K, L (ref. Fig. 36.8c). Since the center of gravity
passes through centre column the axial force in that column is zero.
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Fig.36.8c

Taking moment about hingeL, J, can be evaluated. Thus,

20><3+40><1.5+3><10—Jy x10=0

J,=15kN() 5 L, =15kN(T)

Taking moment of all forces left of P about P gives,

5x1.5+3x2.5-15x2.5+V;x1.5=0
V, =15kN(«)
Similarly taking moment of all forces right of Q aboutQ gives,
5x1.54+3x2.5-15x2.5+V x1.5=0
V, =15kN(«)

D Fe=0  V,+V, +V, -60=0

V, =30 kN.
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Moments

M, =5x1.5=75 kN.m ; M, =15x1.5=225 kN.m
Mg =—30 kN.m

M. =10x15=15 kN.m ; M., =30x1.5=45 kN.m
Mg =—-30 kKN.m M, =-30 kN.m

M, =5x15=75 kN.m ; M, =15x15=225 kN.m

M, =-30 kN.m

Summary

In this lesson, the building frames are analysed by approximate methods.
Towards this end, the given indeterminate building fame is reduced into a
determinate structure by suitable assumptions. The analysis of building frames to
vertical loads was discussed in section 36.2. In section 36.3, analysis of building
frame to horizontal loads is discussed. Two different methods are used to
analyse building frames to horizontal loads: portal and cantilever method. Typical
numerical problems are solved to illustrate the procedure.
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Instructional Objectives:

The objectives of this lesson are as follows:

e Understand the moving load effect in simpler term

e Study various definitions of influence line

e Introduce to simple procedures for construction of influence lines

37.1 Introduction

In earlier lessons, you were introduced to statically determinate and statically
indeterminate structural analysis under non-moving load (dead load or fixed
loads). In this lecture, you will be introduced to determination of maximum
internal actions at cross-sections of members of statically determinate structured
under the effects of moving loads (live loads).

Common sense tells us that when a load moves over a structure, the deflected
shape of the structural will vary. In the process, we can arrive at simple
conclusion that due to moving load position on the structure, reactions value at
the support also will vary.

From the designer’s point of view, it is essential to have safe structure, which
doesn’t exceed the limits of deformations and also the limits of load carrying
capacity of the structure.

37.2 Definitions of influence line

In the literature, researchers have defined influence line in many ways. Some of
the definitions of influence line are given below.

e An influence line is a diagram whose ordinates, which are plotted as a
function of distance along the span, give the value of an internal force, a
reaction, or a displacement at a particular point in a structure as a unit load
move across the structure.

e Aninfluence line is a curve the ordinate to which at any point equals the value
of some particular function due to unit load acting at that point.

e An influence line represents the variation of either the reaction, shear,
moment, or deflection at a specific point in a member as a unit concentrated
force moves over the member.

37.3 Construction of Influence Lines

In this section, we will discuss about the construction of influence lines. Using
any one of the two approaches (Figure 37.1), one can construct the influence line
at a specific point P in a member for any parameter (Reaction, Shear or
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Moment). In the present approaches it is assumed that the moving load is having
dimensionless magnitude of unity. Classification of the approaches for
construction of influence lines is given in Figure 37.1.

Construction of Influence Lines

Tabulate Values Influence Line-Equation
for co

37.3.1 Tabulate Values

Apply a unit load at different locations along the member, say at x. And these
locations, apply statics to compute the value of parameter (reaction, shear, or
moment) at the specified point. The best way to use this approach is to prepare a
table, listing unit load at x versus the corresponding value of the parameter
calculated at the specific point (i.e. Reaction R, Shear V or moment M) and plot
the tabulated values so that influence line segments can be constructed.

37.3.2 Sign Conventions

Sign convention followed for shear and moment is given below.

Parameter Sign for influence line
Reaction R Positive at the point when it acts upward on the beam.
Shear V Positive for the following case
\V/
Moment M Positive for the fo| \s |g case
M
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37.3.3 Influence Line Equations

Influence line can be constructed by deriving a general mathematical equation to
compute parameters (e.g. reaction, shear or moment) at a specific point under
the effect of moving load at a variable position x.

The above discussed both approaches are demonstrated with the help of simple
numerical examples in the following paragraphs.

37.4 Numerical Examples

Example 1:

Construct the influence line for the reaction at support B for the beam of span 10
m. The beam structure is shown in Figure 37.2.

Figure 37.2: The beam structure

Solution:
As discussed earlier, there are two ways this problem can be solved. Both the
approaches will be demonstrated here.

Tabulate values:

As shown in the figure, a unit load is places at distance x from support A and the
reaction value Rg is calculated by taking moment with reference to support A. Let
us say, if the load is placed at 2.5 m. from support A then the reaction Rg can be
calculated as follows (Figure 37.3).

XMa=0: Rgx10-1x25=0 = Rg =0.25

‘-—-—}(—-—-

ounn Ay

I;__- 10m -_:I

Figure 37.3: The beam structure with unit load

Similarly, the load can be placed at 5.0, 7.5 and 10 m. away from support A and
reaction Rg can be computed and tabulated as given below.
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X Rg

0 0.0
25 0.25
50 05
7.5 0.75
10 1

Graphical representation of influence line for Rg is shown in Figure 37.4.

Re
i 1

/

25 5.0 75 10
Figure 37.4: Influence line for reaction Rg.

Influence Line Equation:

When the unit load is placed at any location between two supports from support
A at distance x then the equation for reaction Rg can be written as

Y>Ma=0: Rgx10-x=0 = Rg =x/10
The influence line using this equation is shown in Figure 37.4.
Example 2:

Construct the influence line for support reaction at B for the given beam as
shown in Fig 37.5.

in AN

‘-—-— 7.5m —-—‘--7 50m —— -

Figure 37.5: The overhang beam structure
Solution:
As explained earlier in example 1, here we will use tabulated values and
influence line equation approach.

Tabulate Values:

As shown in the figure, a unit load is places at distance x from support A and the
reaction value Rg is calculated by taking moment with reference to support A. Let
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us say, if the load is placed at 2.5 m. from support A then the reaction Rg can be
calculated as follows.

XMpa=0: Rgx75-1x25=0 = Rg =0.33

‘--—X —-1

A B C
//%//// %

‘——I— 7.5m ———‘—-7 50m @ — -

Figure 37.6: The beam structure with unit load
Similarly one can place a unit load at distances 5.0 m and 7.5 m from support A
and compute reaction at B. When the load is placed at 10.0 m from support A,
then reaction at B can be computed using following equation.
XMa=0: Rgx75-1x10.0=0 = Rg =1.33

Similarly a unit load can be placed at 12.5 and the reaction at B can be
computed. The values of reaction at B are tabulated as follows.

X Rg

0 0.0

25 0.33
50 0.67
7.5 1.00
10 1.33
125 1.67

Graphical representation of influence line for Rg is shown in Figure 37.7.

Re
A

2:5 5 7.5 10 12.5

Figure 37.7: Influence for reaction Rg.
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Influence line Equation:
Applying the moment equation at A (Figure 37.6),

YXMa=0: Rgx75-1xx=0 = Rg =x/7.5
The influence line using this equation is shown in Figure 37.7.

Example 3:

Construct the influence line for shearing cE)oint C of the beam (Figure 37.8)
A

7
jg————7.5m |t 7.5m

[ 15m
Figure 37.8: Beam Structure

11§>w

Solution:

Tabulated Values:

As discussed earlier, place a unit load at different location at distance x from
support A and find the reactions at A and finally computer shear force taking
section at C. The shear force at C should be carefully computed when unit load is
placed before point C (Figure 37.9) and after point C (Figure 37.10). The
resultant values of shear force at C are tabulated as follows.

f— —l*
A (_: B

| -7.5m o

Figure 37.9: The beam structure — a unit load before section

—

st 7.5m =]

Figure 37.10: The beam structure - a unit load before section
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X Ve

0 0.0
25  -0.16
50  -0.33
75(-) -0.5
7.5(+) 05
10 0.33
125 0.16
150 0O

Graphical representation of influence line for V. is shown in Figure 37.11.

v

0.5 \e= 1-x/15

T

1

1

-0.16 !
-0.33

-0.5
Figure 37.11: Influence line for shear point C

Influence line equation:

In this case, we need to determine two equations as the unit load position before
point C (Figure 37.12) and after point C (Figure 37.13) will show different shear
force sign due to discontinuity. The equations are plotted in Figure 37.11.

J—r— C\ ‘) Me
T .

7.5m

Re= 1-x/15

0<x<7.5m
Figure 37.12: Free body diagram — a unit load before section
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7.5<xs15
Figure 37.13: Free body diagram — a unit load after section

Influence Line for Moment:
Like shear force, we can also construct influence line for moment.

Example 4:
Construct the influence line for the moment at point C of the beam shown in

Figure 37.14

Nel

A

7
jg————7.5m |t 7.5m

[ 15m
Figure 37.14: Beam structure

11§>w

Solution:

Tabulated values:

Place a unit load at different location between two supports and find the support
reactions. Once the support reactions are computed, take a section at C and
compute the moment. For example, we place the unit load at x=2.5 m from
support A (Figure 37.15), then the support reaction at A will be 0.833 and support
reaction B will be 0.167. Taking section at C and computation of moment at C

can be given by

M =0: -M;+Rgx75-=0 = -M:+0167x75-=0=> M:=1.25

f— —l*
A (_: B

[ 7.5m ]|
Figure 37.15: A unit load before section

Similarly, compute the moment M. for difference unit load position in the span.
The values of Mc are tabulated as follows.
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X Mc

0 0.0
2.5 1.25
5.0 2.5
7.5 3.75
10 2.5
125 1.25
150 O

Graphical representation of influence line for M. is shown in Figure 37.16.

ve A

Mc =x/2 Mc=7.5-x/2

—

0 75 15
Figure 37.16: Influence line for moment at section C

Influence Line Equations:
There will be two influence line equations for the section before point C and after
point C.

When the unit load is placed before point C then the moment equation for given
Figure 37.17 can be given by

XM =0: Mc +1(7.5—x) - (1-x/15)x7.5 =0 = M =x/2, where 0<x<7.5

—— >
A G
Ve
-

Ra= 1-x/15
0<x<7.5m
Figure 37.17: Free body diagram - a unit load before section

When the unit load is placed after point C then the moment equation for given
Figure 37.18 can be given by

XM =0: M —(1-x/15)x75 =0 = M;=75-x/2, where7.5 <x < 15.0
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7.5<xs15
Figure 37.18: Free body diagram - a unit load before section

The equations are plotted in Figure 37.16.
Example 5:

Construct the influence line for the moment at point C of the beam shown in
Figure 37.19.

A ¢ B D
@A ?@A
o 10 — 5 -]

Figure 37.19: Overhang beam structure

Solution:

Tabulated values:

Place a unit load at different location between two supports and find the support
reactions. Once the support reactions are computed, take a section at C and
compute the moment. For example as shown in Figure 37.20, we place a unit
load at 2.5 m from support A, then the support reaction at A will be 0.75 and
support reaction B will be 0.25.

e— X 1

PO

A B

Figure 37.20: A unit load before section C

Taking section at C and computation of moment at C can be given by
ZMC:O'Mc+RBX50':O:> 'Mc+025x50 :O: MC:125

Similarly, compute the moment M. for difference unit load position in the span.
The values of Mc are tabulated as follows.
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X M.

0 0
2.5 1.25
5.0 2.5
7.5 1.25
10 0
125 -1.25
15.0 -25

Graphical representation of influence line for M. is shown in Figure 37.21.

Mc A _
Me=x/2
M =5-1/2x

Y

np=————————

10 15

2.5
Figure 37.21: Influence line of moment at section C

Influence Line Equations:
There will be two influence line equations for the section before point C and after
point C.

When a unit load is placed before point C then the moment equation for given
Figure 37.22 can be given by

XM =0: M +1(5.0 %) — (1-x/20)x5.0 =0 = M =x/2, where 0 <x<5.0

A C B

Figure 37.22: A unit load before section C

When a unit load is placed after point C then the moment equation for given
Figure 37.23 can be given by

XM =0: Mc —(1-x/10) x5.0 =0 = M. =5-x/2, where5 <x < 15
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A C B D
QA @A
et X
A c B D

Figure 37.23: A unit load after section C

The equations are plotted in Figure 37.21.

37.5 Influence line for beam having point load and uniformly
distributed load acting at the same time

Generally in beams/girders are main load carrying components in structural
systems. Hence it is necessary to construct the influence line for the reaction,
shear or moment at any specified point in beam to check for criticality. Let us
assume that there are two kinds of load acting on the beam. They are
concentrated load and uniformly distributed load (UDL).

37.5.1 Concentrated load

As shown in the Figure 37.24, let us say, point load P is moving on beam from A
to B. Looking at the position, we need to find out what will be the influence line
for reaction B for this load. Hence, to generalize our approach, like earlier
examples, let us assume that unit load is moving from A to B and influence line
for reaction A can be plotted as shown in Figure 37.25. Now we want to know, if
load P is at the center of span then what will be the value of reaction A? From
Figure 37.24, we can find that for the load position of P, influence line of unit load
gives value of 0.5. Hence, reaction A will be 0.5xP. Similarly, for various load
positions and load value, reactions A can be computed.

| 112 12 —

A B

Figure 37.24: Beam structure
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I
2 |
Figure 37.25: Influence line for support reaction at A

37.5.2 Uniformly Distributed Load

Beam is loaded with uniformly distributed load (UDL) and our objective is to find
influence line for reaction A so that we can generalize the approach. For UDL of
w on span, considering for segment of dx (Figure 37.26), the concentrated load
dP can be given by w.dx acting at x. Let us assume that beam’s influence line
ordinate for some function (reaction, shear, moment) is y as shown in Figure
37.27. In that case, the value of function is given by (dP)(y) = (w.dx).y. For
computation of the effect of all these concentrated loads, we have to integrate
over the entire length of the beam. Hence, we can say that it will be [ w.y.dx = w
[y.dx. The term [ y.dx is equivalent to area under the influence line.

dP=w*dx
w

Figure 37.26: Uniformly distributed load on beam

Figure 37.27: Segment of influence line diagram

Version 2 CE IIT, Kharagpur



For a given example of UDL on beam as shown in Figure 37.28, the influence
line (Figure 37.29) for reaction A can be given by area covered by the influence
line for unit load into UDL value. i.e. [0.5x (1)xI]]w = 0.5 w.l.

AWB

Figure 37.28: UDL on simply supported beam

- X

Ol

Figure 37.29: Influence line for support reaction at A.

37.6 Numerical Example

Find the maximum positive live shear at point C when the beam (Figure 37.30) is
loaded with a concentrated moving load of 10 kN and UDL of 5 kN/m.

A C B

%/A %//ﬁ

s 7.5mt Bt 7.5mt =
Figure 37.30: Simply supported beam

Solution:
As discussed earlier for unit load moving on beam from A to B, the influence line
for the shear at C can be given by following Figure 37.31.
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0.5

-0.5
Figure 37.31: Influence line for shear at section C.

Concentrated load: As shown in Figure 37.31, the maximum live shear force at C
will be when the concentrated load 10 kN is located just before C or just after C.
Our aim is to find positive live shear and hence, we will put 10 kN just after C. In
that case,

¢ =0.5x10 =5kN.

UDL: As shown in Figure 37.31, the maximum positive live shear force at C will
be when the UDL 5 kN/m is acting between x = 7.5 and x = 15.

V:=[0.5x(15-7.5) (0.5)] x5 =9.375
Total maximum Shear at C:
(Vo) max = 5 + 9.375 = 14.375.

Finally the loading positions for maximum shear at C will be as shown in Figure
37.32. For this beam one can easily compute shear at C using statics.
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5kN/m
A W

C

N

7

[}

7.5m B 7.5m =
Figure 37.32: Simply supported beam

37.7 Closing Remarks

In this lesson we have studied the need for influence line and their importance.
Further we studied the available various influence line definitions. Finally we
studied the influence line construction using tabulated values and influence line
equation. The understanding about the simple approach was studied with the
help of many numerical examples.
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Instructional Objectives:

The objectives of this lesson are as follows:

e How to draw qualitative influence lines?

e Understand the behaviour of the beam under rolling loads

e Construction of influence line when the beam is loaded with uniformly
distributed load having shorter or longer length than the span of the beam.

38.1 Miiller Breslau Principle for Qualitative Influence Lines

In 1886, Heinrich Muller Breslau proposed a technique to draw influence lines
quickly. The Muller Breslau Principle states that the ordinate value of an
influence line for any function on any structure is proportional to the ordinates of
the deflected shape that is obtained by removing the restraint corresponding to
the function from the structure and introducing a force that causes a unit
displacement in the positive direction.

Let us say, our objective is to obtain the influence line for the support reaction at
A for the beam shown in Figure 38.1.

A B

A 5,

Figure 38.1: Simply supported beam

First of all remove the support corresponding to the reaction and apply a force
(Figure 38.2) in the positive direction that will cause a unit displacement in the
direction of Ra. The resulting deflected shape will be proportional to the true
influence line (Figure 38.3) for the support reaction at A.

7

Ra
Figure 38.2: Deflected shape of beam
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Figure 38.3: Influence line for support reaction A

The deflected shape due to a unit displacement at A is shown in Figure 38.2 and
matches with the actual influence line shape as shown in Figure 38.3. Note that
the deflected shape is linear, i.e., the beam rotates as a rigid body without any
curvature. This is true only for statically determinate systems.

Similarly some other examples are given below.

Here we are interested to draw the qualitative influence line for shear at section
C of overhang beam as shown in Figure 38.4.

A C B D

Figure 38.4: Overhang beam

As discussed earlier, introduce a roller at section C so that it gives freedom to the
beam in vertical direction as shown in Figure 38.5.

~
/
Voo TS
/ ~a,
rs
/

2 .
N 11 \

~ /

-
-~
-~

A M\‘mﬁ_‘//// r A "“-...\
Ve
Figure 38.5: Deflected shape of beam
Now apply a force in the positive direction that will cause a unit displacement in
the direction of Vc. The resultant deflected shape is shown in Figure 38.5.

Again, note that the deflected shape is linear. Figure 38.6 shows the actual
influence, which matches with the qualitative influence.

Version 2 CE IIT, Kharagpur



Figure 38.6: Influence line for shear at section C

In this second example, we are interested to draw a qualitative influence line for
moment at C for the beam as shown in Figure 38.7.

D A C B E

Figure 38.7: Beam structure

In this example, being our objective to construct influence line for moment, we
will introduce hinge at C and that will only permit rotation at C. Now apply
moment in the positive direction that will cause a unit rotation in the direction of
Mc. The deflected shape due to a unit rotation at C is shown in Figure 38.8 and
matches with the actual shape of the influence line as shown in Figure 38.9.

Figure 38.9: Influence line for moment at section C
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38.2. Maximum shear in beam supporting UDLs

If UDL is rolling on the beam from one end to other end then there are two
possibilities. Either Uniformly distributed load is longer than the span or uniformly
distributed load is shorter than the span. Depending upon the length of the load
and span, the maximum shear in beam supporting UDL will change. Following
section will discuss about these two cases. It should be noted that for maximum
values of shear, maximum areas should be loaded.

38.2.1 UDL longer than the span

Let us assume that the simply supported beam as shown in Figure 38.10 is
loaded with UDL of w moving from left to right where the length of the load is
longer than the span. The influence lines for reactions Ra, Rg and shear at
section C located at x from support A will be as shown in Figure 38.11, 38.12 and
38.13 respectively. UDL of intensity w per unit for the shear at supports A and B
will be given by

e x -
A | C B
A\ | 2,
|} ! ]

Figure 38.10: Beam Structure

x|

X

Figure 38.11: Influence line for support reaction at A
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Figure 38.12: Influence line for support reaction at B

I-x/1

/|
Figure 38.13: Influence line for shear at section C

R, :W><£><I><l:ﬂI
2 2

R :—lexlxlz_—WI
2 2

Suppose we are interested to know shear at given section at C. As shown in
Figure 38.13, maximum negative shear can be achieved when the head of the
load is at the section C. And maximum positive shear can be obtained when the
tail of the load is at the section C. As discussed earlier the shear force is
computed by intensity of the load multiplied by the area of influence line diagram
covered by load. Hence, maximum negative shear is given by

X wx?

1
=——XXX—XW=—

I 21
and maximum positive shear is given by
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38.2.2 UDL shorter than the span

When the length of UDL is shorter than the span, then as discussed earlier,
maximum negative shear can be achieved when the head of the load is at the
section. And maximum positive shear can be obtained when the tail of the load is
at the section. As discussed earlier the shear force is computed by the load
intensity multiplied by the area of influence line diagram covered by load. The
example is demonstrated in previous lesson.

38.3 Maximum bending moment at sections in beams
supporting UDLs.

Like the previous section discussion, the maximum moment at sections in beam
supporting UDLs can either be due to UDL longer than the span or due to ULD
shorter than the span. Following paragraph will explain about computation of
moment in these two cases.

38.3.1 UDL longer than the span

Let us assume the UDL longer than the span is traveling from left end to right
hand for the beam as shown in Figure 38.14. We are interested to know
maximum moment at C located at x from the support A. As discussed earlier, the
maximum bending moment is given by the load intensity multiplied by the area of
influence line (Figure 38.15) covered. In the present case the load will cover the
completed span and hence the moment at section C can be given by

et X —

>

&,

|l ' —]
Figure 38.14: Beam structure

X(1-x)/1

Figure 38.15: Influence line for moment at section C
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x(l - x) ~wx(l =x)
2

W><—><|><

Suppose the section C is at mid span, then maximum moment is given by

WXEXE ~ W|2

2 8

38.3.2 UDL shorter than the span

As shown in Figure 38.16, let us assume that the UDL length y is smaller than
the span of the beam AB. We are interested to find maximum bending moment at
section C located at x from support A. Let say that the mid point of UDL is
located at D as shown in Figure 38.16 at distance of z from support A. Take
moment with reference to A and it will be zero.

- 2 -

- . - — y -'=I wim
& e e :
a c D b
| -

-l
L

Figure 38.16: Beam loaded with UDL shorter in length than span
Hence, the reaction at B is given by
Ry = Wx yx 2= WX('2 X)
And moment at C will be
w y 2
M. =R, (I-xX)——(z+=-x

c =Re(l=X) =2 (z+5-%)

Substituting value of reaction B in above equation, we can obtain

M, =¥(l —x)—g(u%—x)2

To compute maximum value of moment at C, we need to differentiate above
given equation with reference to z and equal to zero.
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—x)—w(z+%—x)=0

nd_ﬂ(I
dz |

Therefore,

I—y(l—x):(z+%—x)

Using geometric expression, we can state that

ab _cb
AB CB

_CB_AB_AB-CB _AC
"Cb ab ab-Cb aC

.aC _AC
""Cb CB

The expression states that for the UDL shorter than span, the load should be
placed in a way so that the section divides it in the same proportion as it divides
the span. In that case, the moment calculated at the section will give maximum
moment value.

38.4 Closing Remarks

In this lesson we studied how to draw qualitative influence line for shear and
moment using Mdller Breslau Principle. Further we studied how to draw the
influence lines for shear and moment when the beam is loaded with UDL. Here,
we studied the two cases where the UDL length is shorter or longer than span.
In the next lesson we will study about two or more than two concentrated loads
moving on the beam.

Suggested Text Books for Further Reading

e Armenakas, A. E. (1988). Classical Structural Analysis — A Modern Approach,
McGraw-Hill Book Company, NY, ISBN 0-07-100120-4

e Hibbeler, R. C. (2002). Structural Analysis, Pearson Education (Singapore)
Pte. Ltd., Delhi, ISBN 81-7808-750-2

e Junarkar, S. B. and Shah, H. J. (1999). Mechanics of Structures — Vol. Il,
Charotar Publishing House, Anand.
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e Leet, K. M. and Uang, C-M. (2003). Fundamentals of Structural Analysis, Tata
McGraw-Hill Publishing Company Limited, New Delhi, ISBN 0-07-058208-4

e Negi, L. S. and Jangid, R.S. (2003). Structural Analysis, Tata McGraw-Hill
Publishing Company Limited, New Delhi, ISBN 0-07-462304-4

e Norris, C. H., Wilbur, J. B. and Utku, S. (1991). Elementary Structural

Analysis, Tata McGraw-Hill Publishing Company Limited, New Delhi, ISBN 0-07-
058116-9
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Instructional Objectives:

The objectives of the present lesson are as follows.

Construction of influence line for maximum shear at sections in a beam
supporting two concentrated loads

Construction of influence line for maximum moment at sections in a beam
supporting two concentrated loads

Construction of influence line for maximum end shear in a beam supporting a
series of moving concentrated loads

Construction of influence line for maximum shear at a section in a beam
supporting a series of moving concentrated loads

Construction of influence line for maximum moment at a section in a beam
supporting a series of moving concentrated loads

Construction of influence line for absolute maximum moment in s beam
supporting a series of moving concentrated loads

Understanding about the envelopes of maximum influence line values

39.1 Introduction

In the previous lessons, we have studied about construction of influence line for
the either single concentrated load or uniformly distributed loads. In the present
lesson, we will study in depth about the beams, which are loaded with a series of
two or more then two concentrated loads.

39.2 Maximum shear at sections in a beam supporting two
concentrated loads

Let us assume that instead of one single point load, there are two point loads P,
and P, spaced at y moving from left to right on the beam as shown in Figure
39.1. We are interested to find maximum shear force in the beam at given
section C. In the present case, we assume that P,<P;.

P1 P2

AP

- | -

Figure 39.1: Beam loaded with two concentrated point loads
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Now there are three possibilities due to load spacing. They are: x<y, x=y and
X>y.

Case 1: x<vy
This case indicates that when load P, will be between A and C then load P4 will

not be on the beam. In that case, maximum negative shear at section C can be
given by

and maximum positive shear at section C will be

vczpz('_lx)

Case 2: x=vy

In this case, load P; will be on support A and P, will be on section C. Maximum
negative shear can be given by

X
Vc :_le_

and maximum positive shear at section C will be

Vc=P2(I_|X)

Case 3: x>y
With reference to Figure 39.2, maximum negative shear force can be obtained

when load P, will be on section C. The maximum negative shear force is
expressed as:
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Figure 39.2: Influence line for shear at section C

Vc1 :_Pzé_Pl(X_yj

And with reference to Figure 39.2, maximum positive shear force can be
obtained when load P; will be on section C. The maximum positive shear force is
expressed as:

VCZ :_Plli_l_ PZ[I_X%yj

From above discussed two values of shear force at section, select the maximum
negative shear value.

39.3 Maximum moment at sections in a beam supporting two
concentrated loads

Let us assume that instead of one single point load, there are two point loads P,
and P, spaced at y moving left to right on the beam as shown in Figure 39.3. We
are interested to find maximum moment in the beam at given section C.

PI P2
)
A r i .C B
AN B
S —
o |

Figure 39.3: Beam loaded with two concentrated loads
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With reference to Figure 39.4, moment can be obtained when load P2 will be on
section C. The moment for this case is expressed as:
Mc ‘ x(-x)

l-x-
(x-y) (1-x) | J-x-y)

I '

—-X

'V.I'Y.|

Figure 39.4: Influence line for moment at section C

Mc' =P (x- y)(I_TXJ + sz(l_l_xj

With reference to Figure 39.4, moment can be obtained when load P; will be on
section C. The moment for this case is expressed as:

M % = Plx(—l _Ixj+ sz(—' _):_ yj

From above two cases, maximum value of moment should be considered for
maximum moment at section C when two point loads are moving from left end to
right end of the beam.

39.4 Maximum end shear in a beam supporting a series of
moving concentrated loads

In real life situation, usually there are more than two point loads, which will be
moving on bridges. Hence, in this case, our aim is to learn, how to find end shear
in beam supporting a series of moving concentrated loads. Let us assume that as
shown in Figure 39.5, four concentrated loads are moving from right end to left
end on beam AB. The spacing of the concentrated load is given in Figure 39.5.
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RA ' RB

Figure 39.5: Beam loaded with a series of loads

As shown in figure, we are interested in end shear at A. We need to draw
influence line for the support reaction A and a point away from the support at
infinitesimal distance on the span for the shear Va. The influence lines for these
cases are shown in Figure 39.6 and 39.7.

RA‘

1.0

—

Figure 39.6: Influence line for reaction at support A

VA

A

1.0

X

—

Figure 39.7: Influence line for shear near to suppoftrA.

When loads are moving from B to A then as they move closer to A, the shear
value will increase. When load passes the support, there could be increase or
decrease in shear value depending upon the next point load approaching support
A. Using this simple logical approach, we will find out the change in shear value
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near support and monitor this change from positive value to negative value.
Here for the present case let us assume that P is summation of the loads
remaining on the beam. When load P; crosses support A, then P, will approach
A. In that case, change in shear will be expressed as

av -2 _p

When load P, crosses support A, then P3 will approach A. In that case change in
shear will be expressed as

dvzﬁ_

2

In case if dV is positive then shear at A has increased and if dV is negative, then
shear at A has decreased. Therefore, first load, which crosses and induces
negative changes in shear, should be placed on support A.

39.4.1 Numerical Example

Compute maximum end shear for the given beam loaded with moving loads as
shown in Figure 39.8.

A

VAN A

4 4

L > J

¢ ! 1 i
- 10m -

Figure 39.8: Beam loaded with a series of four concentrated loads

When first load of 4 KN crosses support A and second load 8 kN is approaching
support A, then change in shear can be given by

D (8+8+4)2
dv =4&=— _ — _4-
10

When second load of 8 kN crosses support A and third load 8 kN is approaching
support A, then change in shear can be given by

_Z(8+4)3
=S -

dv 8=-3.8
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Hence, as discussed earlier, the second load 8 kN has to be placed on support A
to find out maximum end shear (refer Figure 39.9).

VA

0.8
1.0 0.5
0.3

2 5 7
Figure 39.9: Influence line for shear at A.

V, =4x1+8x0.8+8x0.5+4x0.3=15.6kN

39.5 Maximum shear at a section in a beam supporting a
series of moving concentrated loads

In this section we will discuss about the case, when a series of concentrated
loads are moving on beam and we are interested to find maximum shear at a

section. Let us assume that series of loads are moving from right end to left end
as shown in Figure. 39.10.

P1 P2 Ps P4

A

AN
- -
~ |

Figure 39.10: Beam loaded with a series of loads

e

The influence line for shear at the section is shown in Figure 39.11.
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I

Figure 39.11: Influence line for shear at section C

Monitor the sign of change in shear at the section from positive to negative and
apply the concept discussed in earlier section. Following numerical example
explains the same.

39.5.1 Numerical Example

The beam is loaded with concentrated loads, which are moving from right to left
as shown in Figure 39.12. Compute the maximum shear at the section C.

4kN 8kN 8kN 4kN
D N N

AN c Ay

Figure 39.12: Beam loaded with a series of loads

The influence line at section C is shown in following Figure 39.13.

Ve
0.7
0.4
/ 2.2
1 X
10
0.1 8 ) 8

-0.3

Figure 39.13: Influence line for shear at section C

When first load 4kN crosses section C and second load approaches section C
then change in shear at a section can be given by
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20x2
10

dv —4=0

When second load 8 kN crosses section C and third load approaches section C

then change in shear at section can be given by

_12x3
10

dv —8=-44

Hence place the second concentrated load at the section and computed shear at
a section is given by

Ve =0.1x4+0.7x8+0.4x8+0.2x4 =9.2kN

39.6 Maximum Moment at a section in a beam supporting a
series of moving concentrated loads

The approach that we discussed earlier can be applied in the present context
also to determine the maximum positive moment for the beam supporting a
series of moving concentrated loads. The change in moment for a load P; that
moves from position x; to X, over a beam can be obtained by multiplying P1 by the
change in ordinate of the influence line i.e. (y» — y1). Let us assume the slope of
the influence line (Figure 39.14) is S, then (y2 —y1) =S (X2 — X1).

A C D E B
*—@ L 4
>4 .

‘*— X3 ——-—‘

~ —]

—~—— o ——]

y2 -y

Slope =
pe X1 = X2
Me

x(l - x) yi
|

e

s Xy %

Figure 39.14: Beam and Influence line for moment at section C
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Hence change in moment can be given by
dM =P,S(x, —x,)

Let us consider the numerical example for better understanding of the developed
concept.

39.6.1 Numerical Example

The beam is loaded with concentrated loads, which are moving from right to left
as shown in Figure 39.15. Compute the maximum moment at the section C.

40 50 50 40KN
25 | 2 ‘2.5_‘

a4 bld
4—r« 4>
vy

P e

A C

h
_me

[=—= ) “‘I"‘ 30

Figure 39.15: Beam loaded with a series of loads

The influence line for moment at C is shown in Figure 39.16.

M
A

0 10 40

Figure 39.16: Beam loaded with a series of loads

If we place each of the four-concentrated loads at the peak of influence line, then
we can get the largest influence from each force. All the four cases are shown in
Figures 39.17-20.

40 50 50 40KN

‘2'5._42'5._42'5._
. e e
ik C 4B
- 10 o 30 —

Figure 39.17: Beam loaded with a series of loads — First load at section C
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40 50 50 40KN
25| 25|25

;‘ v A
C 2\ B
- 10 e 30 —
Figure 39.18: Beam loaded with a series of loads —

Second load at section C

40 50 50 40KN
2512525

- Ll ] g

A \ 4 A 4 Y v
£ c AR
f—— 10 - 30 -
Figure 39.19: Beam loaded with a series of loads - — Third load at section C

L

40 50 50 40KN
25| 25|25

o bl
-
Y

A A v Vv Vv
i c 4B

- 10— 30 -

Figure 39.20: Beam loaded with a series of loads - — Third load at section C

As shown in Figure 39.17, when the first load crosses the section C, it is
observed that the slope is downward (7.5/10). For other loads, the slope is
upward (7.5/(40-10)). When the first load 40 kN crosses the section and second
load 50 kN is approaching section (Figure 39.17) then change in moment is given

by

dM = —40( 72 12,5+ (50 + 50+ 40) — >
10 (4

2.5=12.5kN.m
0-10)

When the second load 50 kN crosses the section and third load 50 kN is
approaching section (Figure 39.18) then change in moment is given by

75
10

7.5

dM = —(40 + 50)[ M

j2.5+ (50+40){ j2.5 =-112.5kN.m

At this stage, we find negative change in moment; hence place second load at
the section and maximum moment (refer Figure 39.21) will be given by
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MC
6.8775
6.25

5.625| 79

o 75 10 125 15 40
Figure 39.21: Influence line for moment at C

M, = 40(5.625)+ 50(7.5)+ 50(6.8775) + 40(6.25) = 1193.87kNm

39.7 Absolute maximum moment in s beam supporting a
series of moving concentrated loads.

In earlier sections, we have learned to compute the maximum shear and moment
for single load, UDL and series of concentrated loads at specified locations.
However, from design point of view it is necessary to know the critical location of
the point in the beam and the position of the loading on the beam to find
maximum shear and moment induced by the loads. Following paragraph explains
briefly for the cantilever beam or simply supported beam so that quickly
maximum shear and moment can be obtained.

Maximum Shear: As shown in the Figure 39.22, for the cantilever beam,
absolute maximum shear will occur at a point located very near to fixed end of
the beam. After placing the load as close as to fixed support, find the shear at the
section close to fixed end.

P P2 Pa

Vmax

Figure 39.22: Absolute maximum shear case — cantilever beam

Similarly for the simply supported beam, as shown in Figure 39.23, the absolute
maximum shear will occur when one of the loads is placed very close to support.
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Vmax

Figure 39.23: Absolute maximum shear —simply supported beam

Moment:

The absolute maximum bending moment in case of cantilever beam will occur
where the maximum shear has occurred, but the loading position will be at the
free end as shown in Figure 39.24.

&

L

Figure 39.24: Absolute maximum moment — cantilever beam

Mmax

The absolute maximum bending moment in the case of simply supported beam,
one cannot obtain by direct inspection. However, we can identify position
analytically. In this regard, we need to prove an important proposition.

Proposition:

When a series of wheel loads crosses a beam, simply supported ends, the
maximum bending moment under any given wheel occurs when its axis and the
center of gravity of the load system on span are equidistant from the center of the
span.

Let us assume that load P;, P, P3 etc. are spaced shown in Figure 39.25 and
traveling from left to right. Assume Pg to be resultant of the loads, which are on
the beam, located in such way that it nearer to P3 at a distance of d; as shown in
Figure 39.25.
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Figure 39.25: Absolute maximum moment case — simply supported beam
If Pi, is resultant of P; and P, and distance from P3 is d,. Our objective is to find
the maximum bending moment under load Ps;. The bending moment under P3 is

expressed as

Ps X
|

M =

(I _X_dl)_ Plz(dz)

Differentiate the above expression with respect to x for finding out maximum
moment.

d—Mzi(l—ZX—dl):03|—2X+dl=0:>X=l—$
dx I 2 2

Above expression proves the proposition.

Let us have a look to some examples for better understanding of the above-
derived proposition.

39.7.1 Numerical Examples

Example 1:

The beam is loaded with two loads 25 kN each spaced at 2.5 m is traveling on
the beam having span of 10 m. Find the absolute maximum moment

Solution:

When the a load of 25kN and center of gravity of loads are equidistant from the
center of span then absolute bending moment will occur. Hence, place the load
on the beam as shown in Figure 39.26.
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c.g of loads

25KN | 25KN

|
0.625 [
0.625 T
——1.25
|

A A

| 4,375 —— |- 2.5 | e—3.125 —

e 5 ——— 5 ——
Figure 39.26: Simply supported beam (Example 1)

The influence line for My is shown in Figure 39.27

Mx
2.609

1.367

- - — X
Figure 39.27: Influence line for moment at X (Example 1)

Computation of absolute maximum moment is given below.

M, = 25(2.461) + 25(1.367) = 95.70kN.m

Example 2:
Compute the absolute maximum bending moment for the beam having span of
30 m and loaded with a series of concentrated loads moving across the span as

shown in Figure 39.28.
cg
100 100 250 = 150 100

|42>|43 rlnq SH 3>
L] L]

A %

—l] 30 —
Figure 39.28: Simply supported beam (Example 2)

First of all compute the center of gravity of loads from first point load of 100 kN
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_100(2) + 250(5) +150(8) +100(11) _ 3750

=5.357m
100 +100 + 250 +150 + 100 700
Now place the loads as shown in Figure 39.29.
100 100 250 150 100

<. pa Hcg_-.- o e

| 1 1 1
Q 0.1785 » < @
) > < 0.1785 _

—l] 30 o=t

Figure 39.29: Simply supported beam with load positions (Example 2)

Also, draw the influence line as shown in Figure 39.30 for the section X.

A

M

7.5 6.018
5982
4.97 4535

> X
9.8215 11.8215 14.8215 17.8215 20.8215

Figure 39.30: Influence Line for moment at section X (Example 2)

M, =100(4.97) +100(5.982) + 250(7.5) +150(6.018) +100(4.535) = 4326.4kN.m

39.8 Envelopes of maximum influence line values

For easy calculations steps of absolute maximum shear and moment rules for
cantilever beam and simply supported beam were discussed in previous section.
Nevertheless, it is difficult to formulate such rules for other situations. In such
situations, the simple approach is that develop the influence lines for shear and
moment at different points along the entire length of the beam. The values easily
can be obtained using the concepts developed in earlier sections. After obtaining
the values, plot the influence lines for each point under consideration in one plot
and the outcome will be envelop of maximums. From this diagram, both the
absolute maximum value of shear and moment and location can be obtained.
However, the approach is simple but demands tedious calculations for each
point. In that case, these calculations easily can be done using computers.
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39.9 Closing Remarks

In this lesson, we have learned various aspects of constructing influence lines for
the cases when the moving concentrated loads are two or more than two. Also,
we developed simple concept of finding out absolute maximum shear and
moment values in cases of cantilever beam and simply supported beam. Finally,
we discussed about the need of envelopes of maximum influence line values for
design purpose.
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Instructional Objectives:

The objectives of this lesson are as follows.

e Understand the bridge truss floor system and load transfer mechanism
e Draw the influence line for the truss reactions

e Draw the influence line for the truss member forces

40.1 Introduction

In previous lessons, we have studied the development of influence lines for
beams loaded with single point load, UDL and a series of loads. In similar
fashion, one can construct the influence lines for the trusses. The moving loads
are never carried directly on the main girder but are transmitted across cross
girders to the joints of bottom chord. Following section will explain load
transmission to the trusses followed by the influence lines for the truss reactions
and influence lines for truss member forces.

40.2 Bridge Truss Floor System

A typical bridge floor system is shown in Figure 40.1. As shown in Figure, the
loading on bridge deck is transferred to stringers. These stringers in turn transfer
the load to floor beams and then to the joints along the bottom chord of the truss.

U Uy Us U4 Us

OV
Bottom S 6

Floor Beam
Cord

Front view
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—— Truss

Stringers

Truss

Floor Beams

Floor plan
Figure 40.1 Bridge floor system

It should be noted that for any load position; the truss is always loaded at the
joint.

40.3 Influence lines for truss support reaction

Influence line for truss reactions are of similar to that a simply supported beam.
Let us assume that there is truss with overhang on both ends as shown in Figure
40.2. In this case, the loads to truss joints are applied through floor beams as
discussed earlier. These influence lines are useful to find out the support, which
will be critical in terms of maximum loading.

1 1 1
Figure 40.2 Bridge truss

The influence lines for truss reactions at A and B are shown in Figure 40.3.
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- X
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(@) Influence line for Ra
Ra
A
] — - X

(b) Influence line for Rg
Figure 40.3: Influence lines for support reactions

40.4 Influence lines for truss member forces

Influence lines for truss member force can be obtained very easily. Obtain the
ordinate values of influence line for a member by loading each joint along the
deck with a unit load and find member force. The member force can be found out
using the method of joints or method of sections. The data is prepared in tabular
form and plotted for a specific truss member force. The truss member carries
axial loads. In the present discussion, tensile force nature is considered as
positive and compressive force nature is considered as negative.

40.4.1 Numerical Examples

Example 1:
Construct the influence line for the force in member GB of the bridge truss shown
in Figure 40.4.

w

uo mé;}f}

;7’ ; U1 U2 Us

r--—5—--4--—5—--|--—5—-—0--—5—-1

L1 L2 Ls

Figure 40.4: Bridge Truss (Example 1)
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Solution:

Tabulated Values:

In this case, successive joints Lo, L1, Ly, L3, and L4 are loaded with a unit load
and the force Fiu3 in the member L,U3 are using the method of sections. Figure
40.5 shows a case where the joint load is applied at L; and force Fious is
calculated.

L1 L2

0 i ] PP

‘1i
p=tan 5

E A= 50.19 °
E \ FL2U3

‘- F

U”é \ U Uz =

7 Fy=0;075-1.0+F,Sin50.19=0

FLzu_,, =-0.325
Figure 40.5: Member Force Fi,y3 Calculation using method of sections.

The computed values are given below.

X FrLous
0 0

5 -0.325
10 -0.650
15 0.325
20 O

Influence line: Let us plot the tabular data and connected points will give the
influence line for member L,Us The influence line is shown in Figure 40.6. The
figure shows the behaviour of the member under moving load. Similarly other
influence line diagrams can be generated for the other members to find the
critical axial forces in the member.

F'-z‘-b |

0.325

5 10 13.3315 20
-0.325

-0.650
Figure 40.6: Influence line for member force Fious3
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Example 2:
Tabulate the influence line values for all the members of the bridge truss shown
in Figure 40.7.

Ui Uz Us Us Us

5m

5,

5m I 5m |

Figure 40.7: Bridge Truss (Example 2)

5m I 5m ]| 5m

Solution:
Tabulate Values:

Here objective is to construct the influence line for all the members of the bridge
truss, hence it is necessary to place a unit load at each lower joints and find the
forces in the members. Typical cases where the unit load is applied at L; L, and
L3 are shown in Figures 40.8-10 and forces in the members are computed using
method of joints and are tabulated below.

Ui 0.667 Uz 0.50 Us 0.50 U4 0.333 Us
L) v 0‘\3 r 0‘\3 A A Q(:’
. 5] & s s 5
,\';\ & gy © S o ok A oY o o
- o4 «©
=Y
Lo > <+ > <+ > < > <+ > <+ > < Ls
’74; 0.8333 L 0.8333 L=  0.6667 La 0.3337 L« 0.167 Ls  0.167 é g
T

Rue = 0.8333

Rus = 0.167

Figure 40.8: Member forces calculation when unit load is applied at L
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; .\_ 0.667 L1 0.667 L2 1.33 L3 0.667 Ls 0.33 Ls 0.
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33 - éﬁl_s
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Figure 40.9: Member forces calculation when unit load is applied at L,
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Figure 40.10: Member forces calculation when unit load is applied at L3

Member | Member force due to unit load at:

Lo L1 L, Ls La Ls Lg
LoLy 0 0.8333 | 0.6667 | 0.5 0.3333 | 0.1678 |0
Lilo 0 0.8333 | 0.6667 | 0.5 0.3333 | 0.1678 |0
LoLs 0 0.6667 |1.3333 | 1.0 0.6667 |0.3336 |0
Laly 0 0.3336 | 0.6667 | 1.0 1.3333 |0.6667 |0
Lsls 0 0.1678 | 0.3333 | 0.5 0.6667 |0.8333 |0
LsLe 0 0.1678 | 0.3333 | 0.5 0.6667 |0.8333 |0
U,U, 0 -0.6667 | -1.333 -1.0 -0.6667 | -0.333 0
U,oUs3 0 -0.50 -1.000 -1.5 -1.0 -0.50 0
UsU4 0 -0.50 -1.000 -1,5 -1.0 -0.50 0
UsUs 0 -0.333 -0.6667 | -1.0 -1.333 -0.6667 | 0O
LoUq 0 -1.1785 | -0.9428 | -0.7071 |-0.4714 |-0.2357 |0
LiUq 0 1 0 0 0 0 0
LU, 0 -0.2357 | 0.9428 |0.7071 |0.4714 |0.2357 |O
LU, 0 0.167 0.3333 | -0.50 -0.3333 | -0.3333 |0
L3U> 0 -0.2357 | -0.4714 | 0.7071 |0.4714 |0.2357 |O
L3U3 0 0 0 0 0 0 0
L3U4 0 0.2357 | 0.4714 |0.7071 |-0.4714 |-0.2357 |0
LUy 0 -03333 | -0.3333 | -0.50 0.3333 | 0.167 0
LsUs 0 0.2357 | 0.4714 |0.7071 |0.9428 |-0.2357 |0
LsUs 0 0 0 0 0 1 0
LgUs 0 -0.2357 | -0.4714 | -0.7071 | -0.9428 |-1.1785 | O

Influence lines:

Using the values obtained in the above given table, the influence line can be
plotted very easily for truss members.

40.5 Closing Remarks

In this lesson we have studied how the loads are transferred in bridge truss floor
system. Further, we found that there is similarity between the influence line of
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support reactions for simply supported beam and truss structures. Finally we
studied the influence line for truss member forces. It was essential to know the
method of sections and method of joints for the analysis of trusses while drawing
influence lines.
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