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Instructional Objectives 
After reading this chapter the student will be able to 
 
1. Differentiate between various structural forms such as beams, plane truss, 
space truss, plane frame, space frame, arches, cables, plates and shells. 
2. State and use conditions of static equilibrium. 
3. Calculate the degree of static and kinematic indeterminacy of a given 
structure such as beams, truss and frames.  
4. Differentiate between stable and unstable structure. 
5. Define flexibility and stiffness coefficients. 
6. Write force-displacement relations for simple structure.  
  
 

1.1  Introduction 
Structural analysis and design is a very old art and is known to human beings 
since early civilizations. The Pyramids constructed by Egyptians around 2000 
B.C. stands today as the testimony to the skills of master builders of that 
civilization.  Many early civilizations produced great builders, skilled craftsmen 
who constructed magnificent buildings such as the Parthenon at Athens (2500 
years old), the great Stupa at Sanchi (2000 years old), Taj Mahal (350 years old), 
Eiffel Tower (120 years old) and many more buildings around the world. These 
monuments tell us about the great feats accomplished by these craftsmen in 
analysis, design and construction of large structures. Today we see around us 
countless houses, bridges, fly-overs, high-rise buildings and spacious shopping 
malls. Planning, analysis and construction of these buildings is a science by 
itself.  The main purpose of any structure is to support the loads coming on it by 
properly transferring them to the foundation. Even animals and trees could be 
treated as structures. Indeed biomechanics is a branch of mechanics, which 
concerns with the working of skeleton and muscular structures. In the early 
periods houses were constructed along the riverbanks using the locally available 
material. They were designed to withstand rain and moderate wind. Today 
structures are designed to withstand earthquakes, tsunamis, cyclones and blast 
loadings. Aircraft structures are designed for more complex aerodynamic 
loadings. These have been made possible with the advances in structural 
engineering and a revolution in electronic computation in the past 50 years. The 
construction material industry has also undergone a revolution in the last four 
decades resulting in new materials having more strength and stiffness than the 
traditional construction material. 
 
In this book we are mainly concerned with the analysis of framed structures 
(beam, plane truss, space truss, plane frame, space frame and grid), arches, 
cables and suspension bridges subjected to static loads only. The methods that 
we would be presenting in this course for analysis of structure were developed 
based on certain energy principles, which would be discussed in the first module. 
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1.2 Classification of Structures 
All structural forms used for load transfer from one point to another are 3-
dimensional in nature. In principle one could model them as 3-dimensional elastic 
structure and obtain solutions (response of structures to loads) by solving the 
associated partial differential equations. In due course of time, you will appreciate 
the difficulty associated with the 3-dimensional analysis. Also, in many of the 
structures, one or two dimensions are smaller than other dimensions. This 
geometrical feature can be exploited from the analysis point of view. The 
dimensional reduction will greatly reduce the complexity of associated governing 
equations from 3 to 2 or even to one dimension. This is indeed at a cost. This 
reduction is achieved by making certain assumptions (like Bernoulli-Euler’ 
kinematic assumption in the case of beam theory) based on its observed 
behaviour under loads. Structures may be classified as 3-, 2- and 1-dimensional 
(see Fig. 1.1(a) and (b)). This simplification will yield results of reasonable and 
acceptable accuracy. Most commonly used structural forms for load transfer are: 
beams, plane truss, space truss, plane frame, space frame, arches, cables, 
plates and shells. Each one of these structural arrangement supports load in a 
specific way. 
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Beams are the simplest structural elements that are used extensively to support 
loads. They may be straight or curved ones. For example, the one shown in Fig. 
1.2 (a) is hinged at the left support and is supported on roller at the right end. 
Usually, the loads are assumed to act on the beam in a plane containing the axis 
of symmetry of the cross section and the beam axis. The beams may be 
supported on two or more supports as shown in Fig. 1.2(b). The beams may be 
curved in plan as shown in Fig. 1.2(c). Beams carry loads by deflecting in the 
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same plane and it does not twist. It is possible for the beam to have no axis of 
symmetry. In such cases, one needs to consider unsymmetrical bending of 
beams. In general, the internal stresses at any cross section of the beam are: 
bending moment, shear force and axial force. 
 

 
 
In India, one could see plane trusses (vide Fig. 1.3 (a),(b),(c)) commonly in 
Railway bridges, at railway stations, and factories. Plane trusses are made of 
short thin members interconnected at hinges into triangulated patterns. For the 
purpose of analysis statically equivalent loads are applied at joints. From the 
above definition of truss, it is clear that the members are subjected to only axial 
forces and they are constant along their length. Also, the truss can have only 
hinged and roller supports. In field, usually joints are constructed as rigid by 

Version 2 CE IIT, Kharagpur 
 



welding. However, analyses were carried out as though they were pinned. This is 
justified as the bending moments introduced due to joint rigidity in trusses are 
negligible. Truss joint could move either horizontally or vertically or combination 
of them.  In space truss (Fig. 1.3 (d)), members may be oriented in any 
direction. However, members are subjected to only tensile or compressive 
stresses. Crane is an example of space truss. 
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Plane frames are also made up of beams and columns, the only difference 
being they are rigidly connected at the joints as shown in the Fig. 1.4 (a).  Major 
portion of this course is devoted to evaluation of forces in frames for variety of 
loading conditions. Internal forces at any cross section of the plane frame 
member are: bending moment, shear force and axial force. As against plane 
frame, space frames (vide Fig. 1.4 (b)) members may be oriented in any 
direction. In this case, there is no restriction of how loads are applied on the 
space frame. 
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1.3 Equations of Static Equilibrium 
Consider a case where a book is lying on a frictionless table surface. Now, if we 
apply a force  horizontally as shown in the Fig.1.5 (a), then it starts moving in 
the direction of the force. However, if we apply the force perpendicular to the 
book as in Fig. 1.5 (b), then book stays in the same position, as in this case the 
vector sum of all the forces acting on the book is zero. When does an object 

1F
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move and when does it not? This question was answered by Newton when he 
formulated his famous second law of motion. In a simple vector equation it may 
be stated as follows: 
 

         (1.1) maF
n

i
i =∑

=1
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where  is the vector sum of all the external forces acting on the body,    is 

the total mass of the body and  is the acceleration vector. However, if the body 
is in the state of static equilibrium then the right hand of equation (1.1) must be 
zero. Also for a body to be in equilibrium, the vector sum of all external moments 
( ) about an axis through any point within the body must also vanish. 
Hence, the book lying on the table subjected to external force as shown in Fig. 
1.5 (b) is in static equilibrium. The equations of equilibrium are the direct 
consequences of Newton’s second law of motion. A vector in 3-dimensions can 
be resolved into three orthogonal directions viz., x, y and z (Cartesian) co-
ordinate axes. Also, if the resultant force vector is zero then its components in 
three mutually perpendicular directions also vanish. Hence, the above two 
equations may also be written in three co-ordinate axes directions as follows: 

∑
=

n

i
iF

1

m

a

∑ = 0M

 
  ; 0=∑ xF ∑ = 0yF ; ∑ = 0zF     (1.2a) 
 

  ;0=∑ xM 0=∑ yM ; 0=∑ zM     (1.2b) 

 

Now, consider planar structures lying in −xy plane. For such structures we could 
have forces acting only in x and directions. Also the only external moment that 
could act on the structure would be the one about the -axis.  For planar 
structures, the resultant of all forces may be a force, a couple or both. The static 
equilibrium condition along 

y
z

x -direction requires that there is no net unbalanced 
force acting along that direction. For such structures we could express 
equilibrium equations as follows: 
 
  ;0=∑ xF ∑ = 0yF ; 0=∑ zM     (1.3) 
 
Using the above three equations we could find out the reactions at the supports 
in the beam shown in Fig. 1.6. After evaluating reactions, one could evaluate 
internal stress resultants in the beam. Admissible or correct solution for reaction 
and internal stresses must satisfy the equations of static equilibrium for the entire 
structure. They must also satisfy equilibrium equations for any part of the 
structure taken as a free body. If the number of unknown reactions is more than 
the number of equilibrium equations (as in the case of the beam shown in Fig. 
1.7), then we can not evaluate reactions with only equilibrium equations. Such 
structures are known as the statically indeterminate structures. In such cases we 
need to obtain extra equations (compatibility equations) in addition to equilibrium 
equations. 
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1.4   Static Indeterminacy 
The aim of structural analysis is to evaluate the external reactions, the deformed 
shape and internal stresses in the structure. If this can be accomplished by 
equations of equilibrium, then such structures are known as determinate 
structures. However, in many structures it is not possible to determine either 
reactions or internal stresses or both using equilibrium equations alone. Such 
structures are known as the statically indeterminate structures. The 
indeterminacy in a structure may be external, internal or both. A structure is said 
to be externally indeterminate if the number of reactions exceeds the number of 
equilibrium equations. Beams shown in Fig.1.8(a) and (b) have four reaction 
components, whereas we have only 3 equations of equilibrium. Hence the beams 
in Figs. 1.8(a) and (b) are externally indeterminate to the first degree. Similarly, 
the beam and frame shown in Figs. 1.8(c) and (d) are externally indeterminate to 
the 3rd degree. 
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Now, consider trusses shown in Figs. 1.9(a) and (b). In these structures, 
reactions could be evaluated based on the equations of equilibrium. However, 
member forces can not be determined based on statics alone. In Fig. 1.9(a), if 
one of the diagonal members is removed (cut) from the structure then the forces 
in the members can be calculated based on equations of equilibrium. Thus, 

Version 2 CE IIT, Kharagpur 
 



structures shown in Figs. 1.9(a) and (b) are internally indeterminate to first 
degree.The truss and frame shown in Fig. 1.10(a) and (b) are both externally and 
internally indeterminate.  
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So far, we have determined the degree of indeterminacy by inspection. Such an 
approach runs into difficulty when the number of members in a structure 
increases. Hence, let us derive an algebraic expression for calculating degree of 
static indeterminacy.   
Consider a planar stable truss structure having  members and m j  joints. Let the 
number of unknown reaction components in the structure be r . Now, the total 
number of unknowns in the structure is rm + . At each joint we could write two 
equilibrium equations for planar truss structure, viz., 0=∑ xF  and . 
Hence total number of equations that could be written is . 

∑ = 0yF
j2

If  then the structure is statically determinate as the number of 
unknowns are equal to the number of equations available to calculate them.  

rmj +=2

The degree of indeterminacy may be calculated as  
 
   jrmi 2)( −+=      (1.4) 
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We could write similar expressions for space truss, plane frame, space frame 
and grillage. For example, the plane frame shown in Fig.1.11 (c) has 15 
members, 12 joints and 9 reaction components. Hence, the degree of 
indeterminacy of the structure is  
 

18312)9315( =×−+×=i  
  
Please note that here, at each joint we could write 3 equations of equilibrium for 
plane frame. 
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1.5   Kinematic Indeterminacy 
When the structure is loaded, the joints undergo displacements in the form of 
translations and rotations. In the displacement based analysis, these joint 
displacements are treated as unknown quantities. Consider a propped cantilever 
beam shown in Fig. 1.12 (a).  Usually, the axial rigidity of the beam is so high that 
the change in its length along axial direction may be neglected.  The 
displacements at a fixed support are zero. Hence, for a propped cantilever beam 
we have to evaluate only rotation at B  and this is known as the kinematic 
indeterminacy of the structure.  A fixed fixed beam is kinematically determinate 
but statically indeterminate to 3rd degree. A simply supported beam and a 
cantilever beam are kinematically indeterminate to 2nd degree.  
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The joint displacements in a structure is treated as independent if each 
displacement (translation and rotation) can be varied arbitrarily and 
independently of all other displacements. The number of independent joint 
displacement in a structure is known as the degree of kinematic indeterminacy or 
the number of degrees of freedom. In the plane frame shown in Fig. 1.13, the 
joints B and have 3 degrees of freedom as shown in the figure. However if 
axial deformations of the members are neglected then 

C
41 uu = and and can 

be neglected. Hence, we have 3 independent joint displacement as shown in Fig. 
1.13 i.e. rotations at 

2u 4u

B and C  and one translation.  
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1.6   Kinematically Unstable Structure 
A beam which is supported on roller on both ends (vide. Fig. 1.14) on a 
horizontal surface can be in the state of static equilibrium only if the resultant of 
the system of applied loads is a vertical force or a couple. Although this beam is 
stable under special loading conditions, is unstable under a general type of 
loading conditions. When a system of forces whose resultant has a component in 
the horizontal direction is applied on this beam, the structure moves as a rigid 
body. Such structures are known as kinematically unstable structure. One should 
avoid such support conditions. 
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1.7    Compatibility Equations 
A structure apart from satisfying equilibrium conditions should also satisfy all the 
compatibility conditions. These conditions require that the displacements and 
rotations be continuous throughout the structure and compatible with the nature 
supports conditions. For example, at a fixed support this requires that 
displacement and slope should be zero.  
                             
                                                                                                                                                             

1.8    Force-Displacement Relationship  
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Consider linear elastic spring as shown in Fig.1.15. Let us do a simple 
experiment. Apply a force  at the end of spring and measure the deformation 

. Now increase the load to  and measure the deformation . Likewise 
repeat the experiment for different values of load . Result may be 
represented in the form of a graph as shown in the above figure where load is 
shown on -axis and deformation on abscissa. The slope of this graph is known 
as the stiffness of the spring and is represented by  and is given by 

1P

1u 2P 2u

nPPP ,....,, 21

y
k

 

u
P

uu
PPk =

−
−

=
12

12              (1.5) 

 
kuP =       (1.6) 

 
The spring stiffness may be defined as the force required for the unit deformation 
of the spring. The stiffness has a unit of force per unit elongation. The inverse of 
the stiffness is known as flexibility. It is usually denoted by  and it has a unit of 
displacement per unit force. 

a

 

k
a 1
=       (1.7) 

 
the equation (1.6) may be written as  
 

⇒= kuP            aPP
k

u ==
1     (1.8) 

   
The above relations discussed for linearly elastic spring will hold good for linearly 
elastic structures. As an example consider a simply supported beam subjected to 
a unit concentrated load at the centre. Now the deflection at the centre is given 
by  
 

EI
PLu

48

3

=   or u
L
EIP  48
3 ⎟

⎠
⎞

⎜
⎝
⎛=      (1.9) 

 

The stiffness of a structure is defined as the force required for the unit 

deformation of the structure. Hence, the value of stiffness for the beam is equal 

to 

 3

48
L
EIk =   
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As a second example, consider a cantilever beam subjected to a concentrated 
load ( P ) at its tip. Under the action of load, the beam deflects and from first 
principles the deflection below the load (u ) may be calculated as,  
 

zzEI
PLu

3

3

=      (1.10) 

 
For a given beam of constant cross section, length L , Young’s modulus E , and 
moment of inertia  the deflection is directly proportional to the applied load. 
The equation (1.10) may be written as  

ZZI

 
Pau =      (1.11) 

 

Where is the flexibility coefficient and is a
zzEI

La
3

3

= . Usually it is denoted by  

the flexibility coefficient at i  due to unit force applied at 

ija

j . Hence, the stiffness of 
the beam is 
 

     3
11

11
31
L
EI

a
k ==       (1.12)      

 
 
Summary 
In this lesson the structures are classified as: beams, plane truss, space truss, 
plane frame, space frame, arches, cables, plates and shell depending on how 
they support external load. The way in which the load is supported by each of 
these structural systems are discussed. Equations of static equilibrium have 
been stated with respect to planar and space and structures. A brief description 
of static indeterminacy and kinematic indeterminacy is explained with the help 
simple structural forms. The kinematically unstable structures are discussed in 
section 1.6.  Compatibility equations and force-displacement relationships are 
discussed. The term stiffness and flexibility coefficients are defined. In section 
1.8, the procedure to calculate stiffness of simple structure is discussed.   
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Instructional Objectives 
After reading this lesson, the student will be able to 

1. State and use principle of superposition.  
2. Explain strain energy concept. 
3. Differentiate between elastic and inelastic strain energy and state units of 

strain energy. 
4. Derive an expression for strain energy stored in one-dimensional structure 

under axial load.  
5. Derive an expression for elastic strain energy stored in a beam in bending.  
6. Derive an expression for elastic strain energy stored in a beam in shear. 
7. Derive an expression for elastic strain energy stored in a circular shaft under 

torsion. 
  

  

2.1 Introduction 
In the analysis of statically indeterminate structures, the knowledge of the 
displacements of a structure is necessary. Knowledge of displacements is also 
required in the design of members. Several methods are available for the 
calculation of displacements of structures. However, if displacements at only a 
few locations in structures are required then energy based methods are most 
suitable. If displacements are required to solve statically indeterminate 
structures, then only the relative values of  and are required. If actual 
value of displacement is required as in the case of settlement of supports and 
temperature stress calculations, then it is necessary to know actual values of 

EIEA, GJ

E and . In general deflections are small compared with the dimensions of 
structure but for clarity the displacements are drawn to a much larger scale than 
the structure itself. Since, displacements are small, it is assumed not to cause 
gross displacements of the geometry of the structure so that equilibrium equation 
can be based on the original configuration of the structure. When non-linear 
behaviour of the structure is considered then such an assumption is not valid as 
the structure is appreciably distorted. In this lesson two of the very important 
concepts i.e., principle of superposition and strain energy method will be 
introduced.  

G

 
 
2.2 Principle of Superposition 
The principle of superposition is a central concept in the analysis of structures. 
This is applicable when there exists a linear relationship between external forces 
and corresponding structural displacements. The principle of superposition may 
be stated as the deflection at a given point in a structure produced by several 
loads acting simultaneously on the structure can be found by superposing 
deflections at the same point produced by loads acting individually. This is 
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illustrated with the help of a simple beam problem. Now consider a cantilever 
beam of length L  and having constant flexural rigidity EI subjected to two 
externally applied forces and as shown in Fig. 2.1.  From moment-area 
theorem we can evaluate deflection below , which states that the tangential 
deviation of point from the tangent at point 

1P 2P
C

c A  is equal to the first moment of the 

area of the 
EI
M diagram between A and C about . Hence, the deflection below 

 due to loads and acting simultaneously is (by moment-area theorem), 

C u

C 1P 2P
 
 

 
 

332211 xAxAxAu ++=     (2.1) 

 

where is the tangential deviation of point C with respect to a tangent at u A . 

Since, in this case the tangent at A is horizontal, the tangential deviation of point 
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C is nothing but the vertical deflection atC . 21, xx  and 3x are the distances from 

point C to the centroids of respective areas respectively. 
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⎠
⎞

⎜
⎝
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EI
LPu   (2.2) 

 

After simplification one can write, 

 

EI
LP

EI
LPu

48
5

3

3
1

3
2 +=      (2.3) 

 
Now consider the forces being applied separately and evaluate deflection at   
in each of the case. 

C
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EI
LPu

3

3
2

22 =      (2.4) 

 

where is deflection at C (2) when load  is applied at (2) itself. And, 22u 1P C
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LPLLL

EI
LPu

48
5

23
2

2222
1 3

11
21 =⎥⎦

⎤
⎢⎣
⎡ +=     (2.5) 

 

where is the deflection at C (2) when load is applied at 21u (1)B . Now the total 
deflection at C  when both the loads are applied simultaneously is obtained by 
adding   and .  22u 21u
 

     
EI
LP

EI
LPuuu

48
5

3

3
1

3
2

2122 +=+=     (2.6) 

 

Hence it is seen from equations (2.3) and (2.6) that when the structure behaves 
linearly, the total deflection caused by forces nPPP ,....,, 21  at any point in the 
structure is the sum of deflection caused by forces  acting 
independently on the structure at the same point. This is known as the Principle 
of Superposition. 

nPPP ,....,, 21

The method of superposition is not valid when the material stress-strain 
relationship is non-linear. Also, it is not valid in cases where the geometry of 
structure changes on application of load. For example, consider a hinged-hinged 
beam-column subjected to only compressive force as shown in Fig. 2.3(a). Let 
the compressive force P  be less than the Euler’s buckling load of the structure. 
Then deflection at an arbitrary point C  (say)  is zero. Next, the same beam-
column be subjected to lateral load Q with no axial load as shown in Fig. 2.3(b). 
Let the deflection of the beam-column at C  be . Now consider the case when 
the same beam-column is subjected to both axial load and lateral load . As 
per the principle of superposition, the deflection at the centre must be the sum 
of deflections caused by 

1
cu

2
cu

P Q
3
cu

P and when applied individually. However this is not 
so in the present case. Because of lateral deflection caused by Q , there will be 
additional bending moment due to  atC .Hence, the net deflection will be 
more than the sum of deflections  and .   

Q

P 3
cu

1
cu 2

cu
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2.3 Strain Energy 
Consider an elastic spring as shown in the Fig.2.4. When the spring is slowly 
pulled, it deflects by a small amount . When the load is removed from the 
spring, it goes back to the original position.  When the spring is pulled by a force, 
it does some work and this can be calculated once the load-displacement 
relationship is known. It may be noted that, the spring is a mathematical 
idealization of the rod being pulled by a force 

1u

P axially. It is assumed here that 
the force is applied gradually so that it slowly increases from zero to a maximum 
value P . Such a load is called static loading, as there are no inertial effects due 
to motion.  Let the load-displacement relationship be as shown in Fig. 2.5. Now, 
work done by the external force may be calculated as,  
 

)(
2
1

2
1

11 ntdisplacemeforceuPWext ×==     (2.7)   
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The area enclosed by force-displacement curve gives the total work done by the 
externally applied load. Here it is assumed that the energy is conserved i.e. the 
work done by gradually applied loads is equal to energy stored in the structure. 
This internal energy is known as strain energy. Now strain energy stored in a 
spring is 

1 1
1
2

U P= u      (2.8) 
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Work and energy are expressed in the same units. In SI system, the unit of work 
and energy is the joule (J), which is equal to one Newton metre (N.m). The strain 
energy may also be defined as the internal work done by the stress resultants in 
moving through the corresponding deformations. Consider an infinitesimal 
element within a three dimensional homogeneous and isotropic material. In the 
most general case, the state of stress acting on such an element may be as 
shown in Fig. 2.6.  There are normal stresses ( ),  and x y zσ σ σ and shear stresses 

( ),  and xy yz zxτ τ τ acting on the element. Corresponding to normal and shear 
stresses we have normal and shear strains.  Now strain energy may be written 
as, 
 

 
 

1
2

T

v

U dvσ ε= ∫      (2.9) 

 
in which Tσ is the transpose of the stress column vector i.e., 
 

{ } ( ), , , , ,T
x y z xy yz zxσ σ σ σ τ τ τ=  and { } ( ), , , , ,T

x y z xy yz zxε ε ε ε ε ε ε=   (2.10) 
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The strain energy may be further classified as elastic strain energy and inelastic 
strain energy as shown in Fig. 2.7. If the force P  is removed then the spring 
shortens. When the elastic limit of the spring is not exceeded, then on removal of 
load, the spring regains its original shape. If the elastic limit of the material is 
exceeded, a permanent set will remain on removal of load. In the present case, 
load the spring beyond its elastic limit. Then we obtain the load-displacement 
curve  as shown in Fig. 2.7. Now if at B, the load is removed, the spring 
gradually shortens. However, a permanent set of OD  is till retained. The shaded 
area  is known as the elastic strain energy. This can be recovered upon 
removing the load. The area represents the inelastic portion of strain 
energy. 

OABCDO

BCD
OABDO

 

 
 
The area corresponds to strain energy stored in the structure. The area 

 is defined as the complementary strain energy. For the linearly elastic 
structure it may be seen that  

OABCDO
OABEO

 
Area OBC = Area OBE 
 
i.e. Strain energy = Complementary strain energy  
 
This is not the case always as observed from Fig. 2.7. The complementary 
energy has no physical meaning. The definition is being used for its convenience 
in structural analysis as will be clear from the subsequent chapters.  
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Usually structural member is subjected to any one or the combination of bending 
moment; shear force, axial force and twisting moment. The member resists these 
external actions by internal stresses. In this section, the internal stresses induced 
in the structure due to external forces and the associated displacements are 
calculated for different actions.  Knowing internal stresses due to individual 
forces, one could calculate the resulting stress distribution due to combination of 
external forces by the method of superposition. After knowing internal stresses 
and deformations, one could easily evaluate strain energy stored in a simple 
beam due to axial, bending, shear and torsional deformations. 
 
2.3.1 Strain energy under axial load  
Consider a member of constant cross sectional area A , subjected to axial force 
P as shown in Fig. 2.8. Let E be the Young’s modulus of the material. Let the 
member be under equilibrium under the action of this force, which is applied 
through the centroid of the cross section. Now, the applied force P is resisted by 

uniformly distributed internal stresses given by average stress 
A
P

=σ  as shown 

by the free body diagram (vide Fig. 2.8).  Under the action of axial load P  
applied at one end gradually, the beam gets elongated by (say) . This may be 
calculated as follows. The incremental elongation of small element of length 

of beam is given by,  

u
du

dx
 

dx
AE
Pdx

E
dxdu ===

σε      (2.11) 

 
Now the total elongation of the member of length L may be obtained by 
integration 

 

0

L Pu dx
AE

= ∫      (2.12) 
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Now the work done by external loads 1
2

W P= u      (2.13)  

In a conservative system, the external work is stored as the internal strain 
energy. Hence, the strain energy stored in the bar in axial deformation is,  
 

1
2

U P= u      (2.14) 

 
Substituting equation (2.12) in (2.14) we get, 
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2

0 2

L PU dx
AE

= ∫       (2.15) 

 

2.3.2 Strain energy due to bending 
Consider a prismatic beam subjected to loads as shown in the Fig. 2.9. The 
loads are assumed to act on the beam in a plane containing the axis of symmetry 
of the cross section and the beam axis.  It is assumed that the transverse cross 
sections (such as AB and CD), which are perpendicular to centroidal axis, remain 
plane and perpendicular to the centroidal axis of beam (as shown in Fig 2.9). 
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Consider a small segment of beam of length subjected to bending moment as 
shown in the Fig. 2.9. Now one cross section rotates about another cross section 
by a small amount 

ds

θd . From the figure,  
 

ds
EI
Mds

R
d ==

1θ      (2.16) 

   
where R  is the radius of curvature of the bent beam and EI is the flexural rigidity 
of the beam. Now the work done by the moment M  while rotating through angle 
θd will be stored in the segment of beam as strain energy . Hence, dU

θdMdU  
2
1

=       (2.17) 

 
Substituting for θd  in equation (2.17), we get, 
 

ds
EI
MdU

2

2
1

=      (2.18) 

 
Now, the energy stored in the complete beam of span L may be obtained by 
integrating equation (2.18). Thus, 
 

ds
EI

MU
L

 
20

2

∫=       (2.19) 
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2.3.3 Strain energy due to transverse shear 
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The shearing stress on a cross section of beam of rectangular cross section may 
be found out by the relation  
 

ZZbI
VQ

=τ      (2.20) 

 
where  is the first moment of the portion of the cross-sectional area above the 
point where shear stress is required about neutral axis, V is the transverse shear 
force,  is the width of the rectangular cross-section and 

Q

b zzI is the moment of 
inertia of the cross-sectional area about the neutral axis. Due to shear stress, the 
angle between the lines which are originally at right angle will change. The shear 
stress varies across the height in a parabolic manner in the case of a rectangular 
cross-section. Also, the shear stress distribution is different for different shape of 
the cross section. However, to simplify the computation shear stress is assumed 
to be uniform (which is strictly not correct) across the cross section. Consider a 
segment of length  subjected to shear stressds τ . The shear stress across the 
cross section may be taken as  
 

      Vk
A

τ =  

 
 in which A  is area of the  cross-section and is the form factor which is 
dependent on the shape of the cross section. One could write, the deformation 

as 

k

du
 

dsdu  γΔ=      (2.21) 
 

where γΔ is the shear strain and is given by 
 

Vk
G AG
τγΔ = =       (2.22)              

 
Hence, the total deformation of the beam due to the action of shear force is  
 

0

L Vu k ds
AG

= ∫     (2.23) 

 
Now the strain energy stored in the beam due to the action of transverse shear 
force is given by, 
 

2

0

1
2 2

L kVU Vu d
AG

= = ∫ s      (2.24) 
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The strain energy due to transverse shear stress is very low compared to strain 
energy due to bending and hence is usually neglected. Thus the error induced in 
assuming a uniform shear stress across the cross section is very small. 
 
 

2.3.4 Strain energy due to torsion 

 

 
 
Consider a circular shaft of length L  radius R , subjected to a torque T  at one 
end (see Fig. 2.11). Under the action of torque one end of the shaft rotates with 
respect to the fixed end by an angle φd . Hence the strain energy stored in the 
shaft is, 

φTU
2
1

=      (2.25) 
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Consider an elemental length  of the shaft. Let the one end rotates by a small 
amount 

ds
φd  with respect to another end. Now the strain energy stored in the 

elemental length is, 

φTddU
2
1

=      (2.26) 

 
We know that  

GJ
Tdsd =φ      (2.27) 

 
where,  is the shear modulus of the shaft material and  is the polar moment 
of area. Substituting for 

G J
φd  from (2.27) in equation (2.26), we obtain 

 

ds
GJ
TdU

2

2

=      (2.28) 

 
Now, the total strain energy stored in the beam may be obtained by integrating 
the above equation. 

∫=
L

ds
GJ
TU

0

2

2
    (2.29) 

 
Hence the elastic strain energy stored in a member of length s  (it may be 
curved or straight) due to axial force, bending moment, shear force and 
torsion is summarized below. 
 

1. Due to axial force    ds
AE
PU

s

∫=
0

2

1 2
 

 

2. Due to bending           ∫=
s

ds
EI

MU
0

2

2 2
 

 

3. Due to shear               ds
AG

VU
s

∫=
0

2

3 2
 

 

4. Due to torsion             ds
GJ
TU

s

∫=
0

2

4 2
 

 
 
 

Version 2 CE IIT, Kharagpur 
 



In this lesson, the principle of superposition has been stated and proved. Also, its 
limitations have been discussed. In section 2.3, it has been shown that the elastic 
strain energy stored in a structure is equal to the work done by applied loads in 
deforming the structure. The strain energy expression is also expressed for a 3-
dimensional homogeneous and isotropic material in terms of internal stresses 
and strains in a body. In this lesson, the difference between elastic and inelastic 
strain energy is explained. Complementary strain energy is discussed. In the 
end, expressions are derived for calculating strain stored in a simple beam due to 
axial load, bending moment, transverse shear force and torsion. 

 

Version 2 CE IIT, Kharagpur 
 

 
Summary 



 
 
 
 
 
 
 

Module 
1 

  

Energy Methods in 
Structural Analysis 

Version 2 CE IIT, Kharagpur 
 



 
 
 
 
 
 
 
 

Lesson  
3 

 

Castigliano’s Theorems 
 

Version 2 CE IIT, Kharagpur 
 



Instructional Objectives 
After reading this lesson, the reader will be able to; 
1. State and prove first theorem of Castigliano. 
2. Calculate deflections along the direction of applied load of a statically 

determinate structure at the point of application of load. 
3. Calculate deflections of a statically determinate structure in any direction at a 

point where the load is not acting by fictious (imaginary) load method. 
4. State and prove Castigliano’s second theorem. 
  

  

3.1 Introduction  
In the previous chapter concepts of strain energy and complementary strain 
energy were discussed. Castigliano’s first theorem is being used in structural 
analysis for finding deflection of an elastic structure based on strain energy of the 
structure. The Castigliano’s theorem can be applied when the supports of the 
structure are unyielding and the temperature of the structure is constant. 
 
 
3.2 Castigliano’s First Theorem  
For linearly elastic structure, where external forces only cause deformations, the 
complementary energy is equal to the strain energy. For such structures, the 
Castigliano’s first theorem may be stated as the first partial derivative of the 
strain energy of the structure with respect to any particular force gives the 
displacement of the point of application of that force in the direction of its line of 
action.  
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Let  be the forces acting at  from the left end on a simply 
supported beam of span

nPPP ,....,, 21 nxxx ,......,, 21

L . Let  be the displacements at the loading 
points  respectively as shown in Fig. 3.1. Now, assume that the 
material obeys Hooke’s law and invoking the principle of superposition, the work 
done by the external forces is given by (vide eqn. 1.8 of lesson 1) 

nuuu ,...,, 21

nPPP ,....,, 21

 

    nnuPuPuPW
2
1..........

2
1

2
1

2211 +++=     (3.1) 
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Work done by the external forces is stored in the structure as strain energy in a 
conservative system. Hence, the strain energy of the structure is, 
 

nnuPuPuPU
2
1..........

2
1

2
1

2211 +++=    (3.2) 

 
Displacement  below point  is due to the action of  acting at 
distances  respectively from left support. Hence,  may be expressed 
as, 

1u 1P nPPP ,....,, 21

nxxx ,......,, 21 1u

 
nn PaPaPau 12121111 ..........+++=     (3.3) 

 
In general,  
 

   niPaPaPau niniii ,...2,1             ..........2211 =+++=   (3.4) 
 
where  is the flexibility coefficient at  due to unit force applied at ija i j . 
Substituting the values of  in equation (3.2) from equation (3.4), we 
get, 

nuuu ,...,, 21

 

...][
2
1..........][

2
1...][

2
1

221122212122121111 +++++++++= PaPaPPaPaPPaPaPU nnn (3.5) 

 
We know from Maxwell-Betti’s reciprocal theorem jiij aa = . Hence, equation (3.5) 
may be simplified as,  
 

[ ]2 2 2
11 1 22 2 12 1 2 13 1 3 1 1

1 .... .... ...
2 nn n n nU a P a P a P a PP a PP a PP⎡ ⎤= + + + + + + +⎣ ⎦ +  (3.6) 

 
Now, differentiating the strain energy with any force  gives,  1P
 

nn PaPaPa
P
U

1212111
1

.......... +++=
∂
∂     (3.7) 

 
It may be observed that equation (3.7) is nothing but displacement  at the 
loading point. 

1u

In general,  

n
n

u
P
U

=
∂
∂      (3.8) 

 
Hence, for determinate structure within linear elastic range the partial derivative 
of the total strain energy with respect to any external load is equal to the 
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displacement of the point of application of load in the direction of the applied 
load, provided the supports are unyielding and temperature is maintained 
constant. This theorem is advantageously used for calculating deflections in 
elastic structure. The procedure for calculating the deflection is illustrated with 
few examples.  
 
Example 3.1 
Find the displacement and slope at the tip of a cantilever beam loaded as in Fig. 
3.2. Assume the flexural rigidity of the beam EI to be constant for the beam. 
 

 
 
Moment at any section at a distance x  away from the free end is given by 
 

PxM −=       (1) 
 

Strain energy stored in the beam due to bending is   ∫=
L

dx
EI

MU
0

2

2
  (2)  

 
Substituting the expression for bending moment M in equation (3.10), we get, 

 

∫ ==
L

EI
LPdx

EI
PxU

0

322

62
)(     (3) 
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Now, according to Castigliano’s theorem, the first partial derivative of strain 
energy with respect to external force P  gives the deflection  at A in the 
direction of applied force. Thus,  

Au

    

        
EI

PLu
P
U

A 3

3

==
∂
∂      (4) 

  
To find the slope at the free end, we need to differentiate strain energy with 
respect to externally applied moment M  at A . As there is no moment at A , apply 
a fictitious moment  at0M A . Now moment at any section at a distance x  away 
from the free end is given by    
 

0MPxM −−=  
 
Now, strain energy stored in the beam may be calculated as, 
 

    ∫ ++=
+

=
L

EI
LM

EI
PLM

EI
LPdx

EI
MPx

U
0

2
0

2
0

322
0

2262
)(

   (5) 

     
Taking partial derivative of strain energy with respect to , we get slope at0M A . 
 

2
0

0 2A
M LU PL

M EI EI
θ∂

= = +
∂

    (6) 

 
But actually there is no moment applied at A . Hence substitute  in 
equation (3.14) we get the slope at A. 

00 =M

 

   
EI

PL
A 2

2

=θ       (7) 

 
Example 3.2 
A cantilever beam which is curved in the shape of a quadrant of a circle is loaded 
as shown in Fig. 3.3. The radius of curvature of curved beam is R , Young’s 
modulus of the material is E  and second moment of the area is I about an axis 
perpendicular to the plane of the paper through the centroid of the cross section. 
Find the vertical displacement of point A  on the curved beam. 
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The bending moment at any section θ  of the curved beam (see Fig. 3.3) is given 
by  
 
     θsin PRM =      (1)  
 
Strain energy U  stored in the curved beam due to bending is, 
 

  
/ 22 2 2 2 2 3 2 3

0 0

(sin )
2 2 2 4

s

8
M P R Rd P R P RU ds
EI EI EI

π θ θ π π
= = = =∫ ∫ EI

  (2) 

 
Differentiating strain energy with respect to externally applied load, P  we get 
 

     
3

4
b

A
U PRu
P E

π∂
= =

∂ I
    (3) 

 
Example 3.3 
Find horizontal displacement at D of the frame shown in Fig. 3.4. Assume the 
flexural rigidity of the beam EI to be constant through out the member. Neglect 
strain energy due to axial deformations. 
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The deflection D may be obtained via. Castigliano’s theorem. The beam 
segments BA  and  are subjected to bending moment  ( ) and the 
beam element BC is subjected to a constant bending moment of magnitude . 

DC Px Lx <<0
PL

 
Total strain energy stored in the frame due to bending   
 

    dx
EI

PLdx
EI

PxU
LL

∫∫ +=
0

2

0

2

2
)(

2
)(2     (1) 

After simplifications, 
 

    
EI

LP
EI
LP

EI
LPU

6
5

23

323232

=+=     (2)  

 
Differentiating strain energy with respect to  we get, P

 

EI
LP

EI
LPu

P
U

D 3
5

6
52

33

===
∂
∂
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Example 3.4 
Find the vertical deflection at A  of the structure shown Fig. 3.5. Assume the 
flexural rigidity EI and torsional rigidity GJ  to be constant for the structure. 
 

 
 
The beam segment is subjected to bending moment   ( ; x is 
measured from C )and the beam element 

BC Px ax <<0
AB  is subjected to torsional moment of 

magnitude  and a bending moment of Pa )bx(Px B from measured isx ; 0 ≤≤ . The 
strain energy stored in the beam  is,  ABC
 

    dx
EI

Pxdx
GJ

Padx
EI

MU
b

ba

∫∫∫ ++=
0

2

0

2

0

2

2
)(

2
)(

2
      (1) 

After simplifications, 
     

    
GJ

baP
EI
aPU

26

2232

+= +
EI
bP

6

32

        (2) 

 
Vertical deflection  at Au A  is, 
 

    
GJ

bPa
EI

Pau
P
U

A

23

3
+==

∂
∂

EI
Pb
3

3

+        (3) 
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Example 3.5 

Find vertical deflection at C  of the beam shown in Fig. 3.6. Assume the flexural 
rigidity EI to be constant for the structure. 
 

 
 
The beam segment CB  is subjected to bending moment  ( ) and 
beam element 

Px ax <<0
AB  is subjected to moment of magnitude .  Pa

To find the vertical deflection at , introduce a imaginary vertical force Q at . 
Now, the strain energy stored in the structure is, 

C C

 

      dy
EI
QyPadx

EI
PxU

ba

∫∫
+

+=
0

2

0

2

2
)(

2
)(          (1) 

 
Differentiating strain energy with respect toQ , vertical deflection atC  is obtained. 
 

    dy
EI

yQyPau
Q
U b

C ∫
+

==
∂
∂

0 2
)(2     (2) 

     

          dyQyPay
EI

u
b

C ∫ +=
0

21     (3) 
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    ⎥
⎦

⎤
⎢
⎣

⎡
+=

32
1 32 QbPab
EI

uC     (4)       

 
 But the force  is fictitious force and hence equal to zero. Hence, vertical 
deflection is, 

Q

 

     
EI

PabuC 2

2

=      (5)  

 
 
3.3 Castigliano’s Second Theorem  
In any elastic structure having independent displacements  
corresponding to external forces along their lines of action, if strain 
energy is expressed in terms of displacements then equilibrium equations may 
be written as follows. 

n nuuu ,...,, 21

nPPP ,....,, 21

n

 

    ,     1, 2,...,j
j

U P j
u
∂

= =
∂

n      (3.9) 

 
This may be proved as follows. The strain energy of an elastic body may be 
written as 
 

    nnuPuPuPU
2
1..........

2
1

2
1

2211 +++=   (3.10) 

 
We know from Lesson 1 (equation 1.5) that  
  
       (3.11)  1 1 2 2 ..... ,        1, 2,..,i i i in nP k u k u k u i n= + + + =
 
where is the stiffness coefficient and is defined as the force at  due to unit 
displacement applied at 

ijk i
j . Hence, strain energy may be written as, 

 

1 11 1 12 2 2 21 1 22 2 1 1 2 2
1 1 1[ ...] [ ...] ....... [ ...]
2 2 2 n n nU u k u k u u k u k u u k u k u= + + + + + + + + +  (3.12)  

 
We know from reciprocal theorem ij jik k= . Hence, equation (3.12) may be 
simplified as,  
 

[ ]2 2 2
11 1 22 2 12 1 2 13 1 3 1 1

1 .... .... ...
2 nn n n nU k u k u k u k u u k u u k u u⎡ ⎤= + + + + + + + +⎣ ⎦  (3.13) 
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Now, differentiating the strain energy with respect to any displacement  gives 
the applied force  at that point, Hence,   

1u

1P
 

   
1211 1 2 1

1

........ n n
U k u k u k u
u
∂

= + + +
∂

    (3.14) 

 
Or, 
 

   ,             1, 2,...,j
j

U P j
u
∂

= =
∂

n      (3.15) 

  
     
Summary 
In this lesson, Castigliano’s first theorem has been stated and proved for linearly 
elastic structure with unyielding supports. The procedure to calculate deflections 
of a statically determinate structure at the point of application of load is illustrated 
with examples. Also, the procedure to calculate deflections in a statically 
determinate structure at a point where load is applied is illustrated with examples. 
The Castigliano’s second theorem is stated for elastic structure and proved in 
section 3.4.  
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Instructional Objectives 
After reading this lesson, the reader will be able to: 

1. State and prove theorem of Least Work. 
2. Analyse statically indeterminate structure. 
3. State and prove Maxwell-Betti’s Reciprocal theorem. 
  
 

4.1    Introduction  
In the last chapter the Castigliano’s theorems were discussed. In this chapter 
theorem of least work and reciprocal theorems are presented along with few 
selected problems. We know that for the statically determinate structure, the 
partial derivative of strain energy with respect to external force is equal to the 
displacement in the direction of that load at the point of application of load. This 
theorem when applied to the statically indeterminate structure results in the 
theorem of least work.  
 
 
4.2    Theorem of Least Work  
According to this theorem, the partial derivative of strain energy of a statically 
indeterminate structure with respect to statically indeterminate action should 
vanish as it is the function of such redundant forces to prevent any displacement 
at its point of application. The forces developed in a redundant framework are 
such that the total internal strain energy is a minimum.  This can be proved as 
follows. Consider a beam that is fixed at left end and roller supported at right end 
as shown in Fig. 4.1a. Let  be the forces acting at distances 

 from the left end of the beam of span
nPPP ,....,, 21

nxxx ,......,, 21 L . Let  be the 
displacements at the loading points  respectively as shown in Fig. 4.1a. 
This is a statically indeterminate structure and choosing 

nuuu ,...,, 21

nPPP ,....,, 21

aR as the redundant 
reaction, we obtain a simple cantilever beam as shown in Fig. 4.1b. Invoking the 
principle of superposition, this may be treated as the superposition of two cases, 
viz, a cantilever beam with loads  and a cantilever beam with redundant 
force 

nPPP ,....,, 21

aR  (see Fig. 4.2a and Fig. 4.2b) 
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In the first case (4.2a), obtain deflection below A  due to applied loads . 
This can be easily accomplished through Castigliano’s first theorem as discussed 
in Lesson 3. Since there is no load applied at 

nPPP ,....,, 21

A , apply a fictitious load atQ A  as in 
Fig. 4.2. Let be the deflection below au A .  
Now the strain energy sU  stored in the determinate structure (i.e. the support A  
removed) is given by,   
 

   annS QuuPuPuPU
2
1

2
1..........

2
1

2
1

2211 ++++=   (4.1) 

 
It is known that the displacement  below point  is due to action of  
acting at  respectively and due to Q  at 

1u 1P 1 2, ,...., nP P P

nxxx ,......,, 21 A . Hence,  may be 
expressed as, 

1u
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      (4.2) 1 11 1 12 2 1 1.......... n n au a P a P a P a Q= + + + +
 
where, is the flexibility coefficient at  due to unit force applied at ija i j . Similar 
equations may be written for . Substituting for  
in equation (4.1) from equation (4.2), we get, 

2 3, ,....,  and nu u u ua 2 3, ,....,  and n au u u u

 

1 11 1 12 2 1 1 2 21 1 22 2 2 2

1 1 2 2 1 1 2 2

1 1[ ... ] [ ... ] .......
2 2
1 1     [ ... ] [ .... ]
2 2

S n n a n n

n n n nn n na a a an n aa

U P a P a P a P a Q P a P a P a P a Q

P a P a P a P a Q Q a P a P a P a Q

= + + + + + + + + +

+ + + + + + + + +

a

 (4.3) 

 
Taking partial derivative of strain energy sU  with respect to Q , we get deflection 
at A .  
 

1 1 2 2 ........s
a a an n aa

U a P a P a P a Q
Q

∂
= + + + +

∂
   (4.4) 

 
Substitute  as it is fictitious in the above equation,  0Q =
 

1 1 2 2 ........s
a a a an

U u a P a P a P
Q

∂
= = + + +

∂ n    (4.5) 

 
Now the strain energy stored in the beam due to redundant reaction AR  is, 
 

     
2 3

6
a

r
R LU

EI
=      (4.6) 

 
Now deflection at A  due to aR  is 
 

     
3

3
ar

a
a

R LU u
R EI

∂
= − =

∂
    (4.7) 

 
The deflection due to should be in the opposite direction to one caused by 
superposed loads , so that the net deflection at 

aR

1 2, ,...., nP P P A  is zero. From 
equation (4.5) and (4.7) one could write, 
 

     r
a

a

UUs u
Q R

∂∂
= = −

∂ ∂
    (4.8) 

Since is fictitious, one could as well replace it by Q aR . Hence, 
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     ( )s r
a

U U
R

0∂
+ =

∂
    (4.9) 

 
or,  
 

           0
a

U
R
∂

=
∂

              (4.10) 

 
This is the statement of theorem of least work. Where U  is the total strain energy 
of the beam due to superimposed loads  and redundant reaction . 1 2, ,...., nP P P aR
 
Example 4.1 
Find the reactions of a propped cantilever beam uniformly loaded as shown in Fig. 
4.3a. Assume the flexural rigidity of the beam EI to be constant throughout its 
length. 
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There three reactions as shown in the figure. We have only two 
equation of equilibrium viz., 

bba MRR  and ,

∑∑ == 0 and  0 MFy . This is a statically 
indeterminate structure and choosing  as the redundant reaction, we obtain a 
simple cantilever beam as shown in Fig. 4.3b. 

bR

Now, the internal strain energy of the beam due to applied loads and redundant 
reaction, considering only bending deformations is, 
 

     dx
EI

MU
L

∫=
0

2

2
     (1) 

 
According to theorem of least work we have, 
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b

L

b R
M

EI
M

R
U

∂
∂

==
∂
∂

∫
0

0                (2) 

Bending moment at a distance x  from B , 
2

2wxxRM b −=     (3) 

 

     x
R
M

b

=
∂
∂      (4) 

 
Hence,     
 

    dx
EI

xwxxR
R
U L

b

b
∫

−
=

∂
∂

0

2 )2/(
    (5) 

 

    01
83

43

=⎥
⎦

⎤
⎢
⎣

⎡
−=

∂
∂

EI
wLLR

R
U B

b

    (6) 

 
Solving for , we get, bR
 

     wLRB 8
3

=  

 

   wLRwLR ba 8
5

=−=   and 
8

2wLM a −=    (7) 

 
Example 4.2  
A ring of radius R  is loaded as shown in figure. Determine increase in the 
diameter AB  of the ring. Young’s modulus of the material is E  and second 
moment of the area is I about an axis perpendicular to the page through the 
centroid of the cross section. 
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The free body diagram of the ring is as shown in Fig. 4.4. Due to symmetry, the 
slopes at  is zero.  The value of redundant moment is such as to make 
slopes at  zero.  The bending moment at any section 

DC  and 0M
DC  and θ  of the beam is, 

 

    )cos1(
20 θ−−=

PRMM     (1) 

 
Now strain energy stored in the ring due to bending deformations is, 
 

          ∫=
π

θ
2

0

2

2
d

EI
RMU      (2) 

 
Due to symmetry, one could consider one quarter of the ring. According to 
theorem of least work, 
 

    θ
π

Rd
M
M

EI
M

M
U

0

2

0
0

0
∂
∂

==
∂
∂

∫     (3) 

 

     1
0

=
∂
∂
M
M  

 

          θ
π

Rd
EI
M

M
U

∫=
∂
∂ 2

00

        (4) 

     ∫ −−=
2

0
0  )]cos1(

2
[40

π

θθ dPRM
EI
R     (5) 

 
Integrating and solving for 0M , 
 

     0
1 1
2

M PR
π

⎛= −⎜
⎝ ⎠

⎞
⎟      (6) 

 
     PRM 182.00 =  
 
Now, increase in diameter , may be obtained by taking the first partial derivative 
of strain energy with respect to . Thus,   

Δ
P

 

         U
P

∂
Δ =

∂
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Now strain energy stored in the ring is given by equation (2). Substituting the value 
of  and equation (1) in (2), we get, 0M
  

   ∫ −−−=
2/

0

2)}cos1(
2

)12(
2

{2 π

θθ
π

dPRPR
EI
RU    (7) 

 
Now the increase in length of the diameter is, 
 

 ∫ −−−−−−=
∂
∂ 2/

0

)}cos1(
2

)12(
2

)}{cos1(
2

)12(
2

{22 π

θθ
π

θ
π

dRRPRPR
EI
R

P
U      (8) 

 
After integrating, 
 

    
3 32{ ) 0.149

4
PR PR
EI EI

π
π

Δ = − =    (9) 

 
 

4.3     Maxwell–Betti Reciprocal theorem   
Consider a simply supported beam of span L  as shown in Fig. 4.5. Let this beam 
be loaded by two systems of forces  and   separately   as shown in the figure. 
Let be the deflection below the load point when only load is acting. 
Similarly let be the deflection below load , when only load is acting on the 
beam. 

1P 2P

21u 2P 1P

12u 1P 2P
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The reciprocal theorem states that the work done by forces acting through 
displacement of the second system is the same as the work done by the second 
system of forces acting through the displacements of the first system. Hence, 
according to reciprocal theorem, 
 

212121 uPuP ×=×      (4.11) 
 
Now, can be calculated using Castiglinao’s first theorem. Substituting 
the values of  in equation (4.27) we get, 

2112  and uu

2112  and uu
 

EI
LPP

EI
LPP

48
5

48
5 3

1
2

3
2

1 ×=×     (4.12) 

  
Hence it is proved. This is also valid even when the first system of forces is 

 and the second system of forces is given by . Let 
 be the displacements caused by the forces  only and 

nPPP ,....,, 21 nQQQ ,....,, 21

nuuu ,....,, 21 nPPP ,....,, 21

nδδδ ,....,, 21 be the displacements due to system of forces  only acting 
on the beam as shown in Fig. 4.6.  

nQQQ ,....,, 21
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Now the reciprocal theorem may be stated as, 
 

niuQP iiii ,....,2,1                        ==δ    (4.13) 
 
 

Summary 
In lesson 3, the Castigliano’s first theorem has been stated and proved. For 
statically determinate structure, the partial derivative of strain energy with respect 
to external force is equal to the displacement in the direction of that load at the 
point of application of the load. This theorem when applied to the statically 
indeterminate structure results in the theorem of Least work. In this chapter the 
theorem of Least Work has been stated and proved. Couple of problems is solved 
to illustrate the procedure of analysing statically indeterminate structures. In the 
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end, the celebrated theorem of Maxwell-Betti’s reciprocal theorem has been sated 
and proved. 
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Instructional Objectives 

After studying this lesson, the student will be able to: 

1. Define Virtual Work. 
2. Differentiate between external and internal virtual work. 
3. Sate principle of virtual displacement and principle of virtual forces. 
4. Drive an expression of calculating deflections of structure using unit load 
method. 
5. Calculate deflections of a statically determinate structure using unit load 
method. 
6. State unit displacement method. 
7. Calculate stiffness coefficients using unit-displacement method. 
  

  

5.1 Introduction 
In the previous chapters the concept of strain energy and Castigliano’s theorems 
were discussed. From Castigliano’s theorem it follows that for the statically 
determinate structure; the partial derivative of strain energy with respect to 
external force is equal to the displacement in the direction of that load. In this 
lesson, the principle of virtual work is discussed. As compared to other methods, 
virtual work methods are the most direct methods for calculating deflections in 
statically determinate and indeterminate structures. This principle can be applied 
to both linear and nonlinear structures. The principle of virtual work as applied to 
deformable structure is an extension of the virtual work for rigid bodies. This may 
be stated as: if a rigid body is in equilibrium under the action of a system of 
forces and if it continues to remain in equilibrium if the body is given a small 
(virtual) displacement, then the virtual work done by the 

F −

F − system of forces as ‘it 
rides’ along these virtual displacements is zero.   
 
 

5.2 Principle of Virtual Work 
Many problems in structural analysis can be solved by the principle of virtual work. 
Consider a simply supported beam as shown in Fig.5.1a, which is in equilibrium 
under the action of real forces  at co-ordinates  respectively. 
Let  be the corresponding displacements due to the action of 
forces . Also, it produces real internal stresses 

nFFF ,.......,, 21 n,.....,2,1

nuuu ,......,, 21

nFFF ,.......,, 21 ijσ  and real internal 
strains ijε  inside the beam. Now, let the beam be subjected to second system of 
forces (which are virtual not real) nFFF δδδ ,......,, 21  in equilibrium as shown in 
Fig.5.1b. The second system of forces is called virtual as they are imaginary and 
they are not part of the real loading. This produces a displacement 
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configuration nuuu δδδ ,,........., 21 . The virtual loading system produces virtual internal 
stresses ijδσ  and virtual internal strains ijδε  inside the beam. Now, apply the 
second system of forces on the beam which has been deformed by first system of 
forces. Then, the external loads  and internal stresses iF ijσ  do virtual work by 

moving along iuδ and ijδε . The product ii uFδ∑  is known as the external virtual 
work. It may be noted that the above product does not represent the conventional 
work since each component is caused due to different source i.e. iuδ  is not due 
to . Similarly the product iF ij ijσ δε∑  is the internal virtual work. In the case of 
deformable body, both external and internal forces do work. Since, the beam is in 
equilibrium, the external virtual work must be equal to the internal virtual work. 
Hence, one needs to consider both internal and external virtual work to establish 
equations of equilibrium.  
 

 
 

 

5.3 Principle of Virtual Displacement 
A deformable body is in equilibrium if the total external virtual work done by the 
system of true forces moving through the corresponding virtual displacements of 
the system i.e.  is equal to the total internal virtual work for every 
kinematically admissible (consistent with the constraints) virtual displacements.  

ii uFδ∑
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That is virtual displacements should be continuous within the structure and also it 
must satisfy boundary conditions. 
 

    dvuF ijijii    δεσδ ∫∑ =                                               (5.1) 

where ijσ  are the true stresses due to true forces  and iF ijδε  are the virtual strains 
due to virtual displacements iuδ . 
 
 
5.4 Principle of Virtual Forces 
For a deformable body, the total external complementary work is equal to the total 
internal complementary work for every system of virtual forces and stresses that 
satisfy the equations of equilibrium.  
 
    dvuF ijijii    εδσδ ∫∑ =                                               (5.2) 
 
where ijδσ  are the virtual stresses due to virtual forces iFδ  and ijε  are the true 
strains due to the true displacements . iu
As stated earlier, the principle of virtual work may be advantageously used to 
calculate displacements of structures. In the next section let us see how this can 
be used to calculate displacements in a beams and frames. In the next lesson, the 
truss deflections are calculated by the method of virtual work. 
 
 
5.5 Unit Load Method 
The principle of virtual force leads to unit load method. It is assumed throughout 
our discussion that the method of superposition holds good. For the derivation of 
unit load method, we consider two systems of loads. In this section, the principle of 
virtual forces and unit load method are discussed in the context of framed 
structures. Consider a cantilever beam, which is in equilibrium under the action of 
a first system of forces  causing displacements as shown in 
Fig. 5.2a. The first system of forces refers to the actual forces acting on the 
structure. Let the stress resultants at any section of the beam due to first system of 
forces be axial force (

nFFF ,.....,, 21 nuuu ,.....,, 21

P ), bending moment ( M ) and shearing force (V ). Also the 
corresponding incremental deformations are axial deformation ( ), flexural 
deformation (

Δd
θd ) and shearing deformation ( λd ) respectively.  

For a conservative system the external work done by the applied forces is equal to 
the internal strain energy stored. Hence, 
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1

1 1 1 1 dΔ  dθ  dλ
2 2 2 2

n

i i
i

F u P M V
=

= + +∑ ∫ ∫ ∫  

                  ∫∫∫ ++=
LLL

AG
dsV

EI
dsM

EA
dsP

0

2

0

2

0

2

222
         (5.3) 

  
Now, consider a second system of forces nFFF δδδ ,.....,, 21 , which are virtual and 
causing virtual displacements nuuu δδδ ,.....,, 21 respectively (see Fig. 5.2b). Let the 
virtual stress resultants caused by virtual forces be vv MP δδ , and vVδ at any cross 
section of the beam. For this system of forces, we could write 
   

∫∫∫∑ ++=
=

L
v

L
v

L
v

n

i
ii AG

dsV
EI

dsM
EA

dsPuF
0

2

0

2

0

2

1 2222
1 δδδδδ        (5.4) 

 
where vv MP δδ , and vVδ are the virtual axial force, bending moment and shear force 
respectively. In the third case, apply the first system of forces on the beam, which 
has been deformed, by second system of forces nFFF δδδ ,.....,, 21  as shown in Fig 
5.2c. From the principle of superposition, now the deflections will be 
( ) ( ) ( nn uuuuuu )δδδ +++ ,......,, 2211  respectively 
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Since the energy is conserved we could write, 

 
2 2 2 2

1 1 1 0 0 0 0

2 2

0 0 0 0 0

1 1
2 2 2 2 2 2

2 2

L L L Ln n n
v v v

j j j j j j
j j j

L L L L L

v v

P ds M ds V ds P dsF u F u F u

v

EA EI AG E

M ds V ds P d M d V d
EI AG

δ δ δδ δ δ
A

δ δ θ δ

= = =

+ + = + + +

+ + Δ + +

∑ ∑ ∑ ∫ ∫ ∫ ∫

∫ ∫ ∫ ∫ ∫ λ

+

     (5.5) 

 
In equation (5.5), the term on the left hand side ( )∑ jjuFδ , represents the work 
done by virtual forces moving through real displacements. Since virtual forces act 
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at its full value, ⎟
⎠
⎞

⎜
⎝
⎛

2
1 does not appear in the equation. Subtracting equation (5.3) 

and (5.4) from equation (5.5) we get, 
 

∑ ∫∫∫
=

++Δ=
n

j

L

v

L

v

L

vjj dVdMdPuF
1 000

λδθδδδ                 (5.6) 

 
From Module 1, lesson 3, we know that  
 

EI
Mdsd

EA
Pdsd ==Δ θ,  and .

AG
Vdsd =λ Hence, 

 
 

∑ ∫∫∫
=

++=
n

j

L
v

L
v

L
v

jj AG
VdsV

EI
MdsM

EA
PdsPuF

1 000

δδδδ                            (5.7) 

Note that ⎟
⎠
⎞

⎜
⎝
⎛

2
1 does not appear on right side of equation (5.7) as the virtual system 

resultants act at constant values during the real displacements. In the present 
case 0=vPδ  and if we neglect shear forces then we could write equation (5.7) as  
 

∑ ∫
=

=
n

j

L
v

jj EI
MdsMuF

1 0

δδ                     (5.8) 

 
If the value of a particular displacement is required, then choose the 
corresponding force 1=iFδ  and all other forces 0=jFδ  ( )niij ,....,1,1,....,2,1 +−= . 
Then the above expression may be written as,  
 

∫=
L

v
i EI

MdsMu
0

)1( δ                                                        (5.9) 

 
where vMδ  are the internal virtual moment resultants corresponding to virtual force 
at i-th co-ordinate, 1=iFδ . The above equation may be stated as, 
 

( )(
( )  

              .

unit virtual load unknown true displacement

virtual stress resultants real deformations ds= ∫ )    (5.10) 

 
The equation (5.9) is known as the unit load method. Here the unit virtual load is 
applied at a point where the displacement is required to be evaluated. The unit 
load method is extensively used in the calculation of deflection of beams, frames 
and trusses. Theoretically this method can be used to calculate deflections in 
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statically determinate and indeterminate structures. However it is extensively used 
in evaluation of deflections of statically determinate structures only as the method 
requires a priori knowledge of internal stress resultants. 
 
Example 5.1 

A cantilever beam of span L is subjected to a tip moment as shown in Fig 5.3a. 

Evaluate slope and deflection at a point 

0M

⎟
⎠
⎞

⎜
⎝
⎛

4
3L from left support. Assume EI  of the 

given beam to be constant. 
 

 
 
Slope at C  
 
To evaluate slope at , a virtual unit moment is applied at  as shown in Fig 5.3c. 
The bending moment diagrams are drawn for tip moment  and unit moment 
applied at  and is shown in fig 5.3b and 5.3c respectively. Let 

C C
0M

C cθ  be the rotation 
at  due to moment  applied at tip. According to unit load method, the rotation 
at , 

C 0M
C cθ  is calculated as, 
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( ) ( )
∫=
L

v
c EI

dxxMxM

0

)1( δθ                                                 (1) 

 
where ( )xMvδ  and  are the virtual moment resultant and real moment 
resultant at any section

( )xM
x . Substituting the value of ( )xMvδ  and  in the above 

expression, we get  
( )xM

 
( ) ( )

∫∫ +=
L

L

L

c EI
Mdx

EI
Mdx

4/3

4/3

0

01)1( θ  

   

EI
ML

c 4
3

=θ                      (2) 

 
Vertical deflection at C  
 
To evaluate vertical deflection at C , a unit virtual vertical force is applied ac  as 
shown in Fig 5.3d and the bending moment is also shown in the diagram. 
According to unit load method,  

C

 
( ) ( )

∫=
L

v
A EI

dxxMxMu
0

)1( δ                       (3) 

In the present case,  ( ) ⎟
⎠
⎞

⎜
⎝
⎛ −−= xLxMv 4

3δ  

    and  ( ) 0MxM +=  
 

∫
⎟
⎠
⎞

⎜
⎝
⎛ −−

=
4

3

0

4
3L

A dx
EI

MxL

u  

dxxL
EI
M L

∫ ⎟
⎠
⎞

⎜
⎝
⎛ −−= 4

3

0 4
3  

4
3

0

2

24
3

L

xxL
EI
M

⎥
⎦

⎤
⎢
⎣

⎡
−−=  

EI
ML

32
9 2

−= (↑ )               (4) 

 
Example 5.2 
Find the horizontal displacement at joint B of the frame ABCD as shown in Fig. 
5.4a by unit load method. Assume EI  to be constant for all members. 
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The reactions and bending moment diagram of the frame due to applied external 
loading are shown in Fig 5.4b and Fig 5.4c respectively. Since, it is required to 
calculate horizontal deflection at B, apply a unit virtual load at B as shown in Fig. 
5.4d. The resulting reactions and bending moment diagrams of the frame are 
shown in Fig 5.4d. 
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Now horizontal deflection at B, may be calculated as  Bu
 

( ) ( )
∫=×
D

A

vB
H EI

dxxMxMu δ)1(                        (1) 

 
( ) ( ) ( ) ( ) ( ) ( )

∫∫∫ ++=
D

C

v
C

B

v
B

A

v

EI
dxxMxM

EI
dxxMxM

EI
dxxMxM δδδ  

 

 ( )( ) ( ) ( ) 05.2105.225 5.2

0

5

0

+
−−

+= ∫∫ EI
dxxx

EI
dxxx  

 
( ) ( )

∫∫
−

+=
5.2

0

25

0

2 5.2205
EI

dxx
EI

dxx  

 

EIEIEI 3
5.937

3
5.312

3
625

=+=  

 

Hence,     
EI

uA 3
5.937

= (→ )                (2) 

 
Example 5.3 
Find the rotations of joint B and C of the frame shown in Fig. 5.4a. Assume EI  to 
be constant for all members. 
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Rotation at B 
 
Apply unit virtual moment at B as shown in Fig 5.5a. The resulting bending 
moment diagram is also shown in the same diagram. For the unit load method, the 
relevant equation is, 
 

( ) ( )
∫=×
D

A

v
B EI

dxxMxMδθ)1(            (1) 

 
wherein, Bθ  is the actual rotation at B, ( )vM xδ is the virtual stress resultant in the 

frame due to the virtual load and ( )D

A

M x dx
EI∫  is the actual deformation of the frame 

due to real forces. 
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Now,  and ( ) ( )xxM −= 5.210 ( ) ( )xxMv −= 5.24.0δ  
Substituting the values of ( )M x  and ( )vM xδ  in the equation (1), 
 

( )∫ −=
5.2

0

25.24 dxx
EIBθ  

EI
xxx

EI 3
5.62

32
525.64

5.2

0

32

=⎥
⎦

⎤
⎢
⎣

⎡
+−=            (2) 

  
Rotation at C 
 
For evaluating rotation at C by unit load method, apply unit virtual moment at C as 
shown in Fig 5.5b. Hence,  
 

( ) ( )
∫=×
D

A

v
C EI

dxxMxMδθ)1(             (3) 

 
( )( )

∫
−

=
5.2

0

4.05.210 dx
EI

xx
Cθ  

 

EI
xx

EI 3
25.31

32
5.24

5.2

0

32

=⎥
⎦

⎤
⎢
⎣

⎡
−=              (4) 

 
 
5.6 Unit Displacement Method 
Consider a cantilever beam, which is in equilibrium under the action of a system of 
forces . Let be the corresponding displacements and 

and be the stress resultants at section of the beam. Consider a second 
system of forces (virtual) 

nFFF ,.....,, 21 nuuu ,.....,, 21

MP, V

nFFF δδδ ,.....,, 21  causing virtual 
displacements nuuu δδδ ,.....,, 21 . Let vv MP δδ , and vVδ be the virtual axial force, 
bending moment and shear force respectively at any section of the beam. 
Apply the first system of forces  on the beam, which has been 
previously bent by virtual forces 

nFFF ,.....,, 21

nFFF δδδ ,.....,, 21 . From the principle of virtual 
displacements we have, 
 

     ( ) ( )∑ ∫
=

=
n

j

v
jj EI

dsxMxMuF
1

δδ  

                                                  (5.11) ∫=
V

T vδδεσ
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The left hand side of equation (5.11) refers to the external virtual work done by the 
system of true/real forces moving through the corresponding virtual displacements 
of the system. The right hand side of equation (5.8) refers to internal virtual work 
done. The principle of virtual displacement states that the external virtual work of 
the real forces multiplied by virtual displacement is equal to the real stresses 
multiplied by virtual strains integrated over volume. If the value of a particular force 
element is required then choose corresponding virtual displacement as unity. Let 
us say, it is required to evaluate , then choose 1F 11 =uδ  and niui ,.....,3,20 ==δ . 
From equation (5.11), one could write, 
 

( ) ∫= EI
dsMMF v 1

1
)(1 δ      (5.12) 

 
where, ( 1vM )δ  is the internal virtual stress resultant for 11 =uδ . Transposing the 
above equation, we get  
 

∫= EI
MdsMF v 1

1
)(δ           (5.13) 

 
The above equation is the statement of unit displacement method. The above 
equation is more commonly used in the evaluation of stiffness co-efficient . ijk
Apply real displacements  in the structure. In that set and the other 
all displacements . For such a case the quantity  in 
equation (5.11) becomes  i.e. force at 1 due to displacement at 2. Apply virtual 
displacement 

nuu ,.....,1 12 =u
),......,3,1(0 niui == jF

ijk
11 =uδ . Now according to unit displacement method,  

 

( ) ∫= EI
dsMMk v 21

12
)(1 δ     (5.14) 

 
 
Summary 
In this chapter the concept of virtual work is introduced and the principle of virtual 
work is discussed. The terms internal virtual work and external virtual work has 
been explained and relevant expressions are also derived. Principle of virtual 
forces has been stated. It has been shown how the principle of virtual load leads to 
unit load method. An expression for calculating deflections at any point of a 
structure (both statically determinate and indeterminate structure) is derived. Few 
problems have been solved to show the application of unit load method for 
calculating deflections in a structure. 
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Lesson  
6 

 

Engesser’s Theorem and 
Truss Deflections by 

Virtual Work Principles 



Instructional Objectives 

After reading this lesson, the reader will be able to: 

1. State and prove Crotti-Engesser theorem. 
2. Derive simple expressions for calculating deflections in trusses subjected to 
mechanical loading using unit-load method. 
3. Derive equations for calculating deflections in trusses subjected to 
temperature loads. 
4. Compute deflections in trusses using unit-load method due to fabrication 
errors. 
 
 
6.1 Introduction 
In the previous lesson, we discussed the principle of virtual work and principle of 
virtual displacement. Also, we derived unit – load method from the principle of 
virtual work and unit displacement method from the principle of virtual 
displacement. In this lesson, the unit load method is employed to calculate 
displacements of trusses due to external loading. Initially the Engesser’s 
theorem, which is more general than the Castigliano’s theorem, is discussed. In 
the end, few examples are solved to demonstrate the power of virtual work. 
 
 
6.2 Crotti-Engesser Theorem  
The Crotti-Engesser theorem states that the first partial derivative of the 
complementary strain energy ( )*U  expressed in terms of applied forces  is 
equal to the corresponding displacement. 

jF

 
*

1

n

jk k j
kj

U a F u
F =

∂
= =

∂ ∑                  (6.1) 

 
For the case of indeterminate structures this may be stated as, 
 

0
*

=
∂
∂

jF
U      (6.2) 

 
Note that Engesser’s theorem is valid for both linear and non-linear structures. 
When the complementary strain energy is equal to the strain energy (i.e. in case 
of linear structures) the equation (6.1) is nothing but the statement of 
Castigliano’s first theorem in terms of complementary strain energy. 
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In the above figure the strain energy (area OACO) is not equal to complementary 
strain energy (area OABO) 
 

∫==
u

duFUOACOArea
0

    (6.3) 

 
Differentiating strain energy with respect to displacement,  
 

F
du
dU

=      (6.4) 

 
This is the statement of Castigliano’s second theorem. Now the complementary 
energy is equal to the area enclosed by OABO. 
 

∫=
F

dFuU
0

*      (6.5)  

 
Differentiating complementary strain energy with respect to force , F
 

u
dF
dU

=
*

     (6.6) 
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This gives deflection in the direction of load. When the load displacement 
relationship is linear, the above equation coincides with the Castigliano’s first 
theorem given in equation (3.8).   
 
 

6.3 Unit Load Method as applied to Trusses 
6.3.1 External Loading 
In case of a plane or a space truss, the only internal forces present are axial as 
the external loads are applied at joints. Hence, equation (5.7) may be written as, 
 

∑ ∫
=

=
n

j

L
v

jj EA
PdsP

uF
1 0

δ
δ      (6.7) 

 
wherein, jFδ  is the external virtual load,  are the actual deflections of the truss, ju

vPδ is the virtual stress resultant in the frame due to the virtual load and 
0

L P ds
EA∫  

is the actual internal deformation of the frame due to real forces. In the above 
equation , ,L E A  respectively represent length of the member, cross-sectional 
area of a member and modulus of elasticity of a member. In the unit load 
method, 1=jFδ  and all other components of virtual forces 

),...,1,1,...,2,1( njjiFi +−=δ  are zero. Also, if the cross sectional area A  of truss 
remains constant throughout, then integration may be replaced by summation 
and hence equation (6.7) may be written as, 
 

∑
=

=
m

i ii

iiijv
j AE

LPP
u

1

)(δ
      (6.8) 

 
where  is the number of members, m ijvP )(δ  is the internal virtual axial force in 

member  due to unit virtual load ati j  and ( )i
i

i i

P L
E A

 is the total deformation of 

member  due to real loads.  If we represent total deformation by , then  i iΔ
 

∑
=

Δ=
m

i
iijvj Pu

1
)(δ       (6.9) 

 
where,  is the true change in length of member i  due to real loads.   iΔ
 
6.3.2 Temperature Loading 
Due to change in the environmental temperature, the truss members either 
expand or shrink. This in turn produces joint deflections in the truss. This may be 
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calculated by equation (6.9). In this case, the change in length of member iΔ is 
calculated from the relation,  
 

ii TLα=Δ       (6.10)    
 
where α  is the co-efficient of thermal expansion member,  is the length of 
member and T  is the temperature change.   

iL

 
6.3.3 Fabrication Errors and Camber 
Sometimes, there will be errors in fabricating truss members. In some cases, the 
truss members are fabricated slightly longer or shorter in order to provide camber 
to the truss. Usually camber is provided in bridge truss so that its bottom chord is 
curved upward by an equal to its downward deflection of the chord when 
subjected to dead.  In such instances, also, the truss joint deflection is calculated 
by equation (6.9). Here, 
 

i eiΔ =       (6.11) 
 
where, is the fabrication error in the length of the member.   is taken as 
positive when the member lengths are fabricated slightly more than the actual 
length otherwise it is taken as negative.  

ie ie

 
 
6.4 Procedure for calculating truss deflection 
1. First, calculate the real forces in the member of the truss either by method of 
joints or by method of sections due to the externally applied forces. From this 

determine the actual deformation ( iΔ ) in each member from the equation
ii

ii

AE
LP

.  

Assume tensile forces as positive and compressive forces as negative.  
 
2. Now, consider the virtual load system such that only a unit load is considered 
at the joint either in the horizontal or in the vertical direction, where the deflection 
is sought. Calculate virtual forces ( )ijvPδ  in each member due to the applied unit 
load at the j-th joint. 
 
3. Now, using equation (6.9), evaluate the j-th joint deflection . ju
 
4. If deflection of a joint needs to be calculated due to temperature change, then 
determine the actual deformation ( iΔ ) in each member from the equation 

ii TLα=Δ . 
 
The application of equation (6.8) is shown with the help of few problems. 

Version 2 CE IIT, Kharagpur 
 



 
Example 6.1 
Find horizontal and vertical deflection of joint C of truss ABCD loaded as shown 
in Fig. 6.2a. Assume that, all members have the same axial rigidity.  
 
 

 
 
 
The given truss is statically determinate one. The reactions are as shown in Fig 
6.2b along with member forces which are determined by equations of static 
equilibrium. To evaluate horizontal deflection at ‘C’, apply a unit load as shown in 
Fig 6.2c and evaluate the virtual forces vPδ  in each member. The magnitudes of 
internal forces are also shown in the respective figures. The tensile forces are 
shown as +ve and compressive forces are shown as –ve. At each end of the bar, 
arrows have been drawn indicating the direction in which the force in the member 
acts on the joint. 
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Horizontal deflection at joint C is calculated with the help of unit load method. 
This may be stated as, 
 

∑=×
ii

iiicvH
c AE

LPP
u

)(
1

δ      (1)  

         
For calculating horizontal deflection at C, , apply a unit load at the joint C as 
shown in Fig.6.2c. The whole calculations are shown in table 6.1. The 
calculations are self explanatory. 

cu
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Table 6.1 Computational details for horizontal deflection at  C
 

Member Length iii EAL /  iP  ivP )(δ  

ii

iiiv

AE
LPP )(δ

 

units m m/kN kN kN kN.m 
AB 4 4/AE 0 0 0 
BC 4 4/AE 0 0 0 
CD 4 4/AE -15 -1 60/AE 
DA 4 4/AE 0 0 0 
AC 24  24 /AE 25  2  240 /AE 

    ∑  

AE
24060 +

 

 

                    
AEAE

u H
C

569.11624060))(1( =
+

→=          (Towards right)        (2) 

 
Vertical deflection at joint C 
 

∑=×
ii

iiic
v

vv
c AE

LPP
u

)(
1

δ             (3) 

In this case, a unit vertical load is applied at joint C of the truss as shown in Fig. 

6.2d. 

Table 6.2 Computational details for vertical deflection at  C
 

Member Length iii EAL /  iP  i
v

vP )(δ  
ii

iiiv

AE
LPP )(δ

 

units m m/kN kN kN kN.m 
AB 4 4/AE 0 0 0 
BC 4 4/AE 0 0 0 
CD 4 4/AE -15 -1 60/AE 
DA 4 4/AE 0 0 0 
AC 24  24 /AE 25  0 0 

    ∑  
AE
60  

 

AEAE
uv

C
6060))(1( =↓=          (Downwards)        (4) 
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Example 6.2 

Compute the vertical deflection of joint  and horizontal displacement of joint  
of the truss shown in Fig. 6.3a due to  

b D

a) Applied loading as shown in figure. 
b) Increase in temperature of  in the top chord BD. Assume 025  C

1 C
75000

perα = ° , . The cross sectional areas of the 

members in square centimeters are shown in parentheses.    

25 /1000.2 mmNE ×=
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The complete calculations are shown in the following table.  
 
Table 6.3 Computational details for example 6.2 
 

Mem iL
 

iii EAL /
 

iP  i
v

vP )(δ  i
H

vP )(δ
 

iti tLα=Δ
 ii

iii
v

v

AE
LPP )(δ

 

ii

iii
H

v

AE
LPP )(δ  tii

v
vP Δ)(δ
 

tii
H

vP Δ)(δ
 

units m (10-5) 
m/kN 

kN kN kN m (10-3) 
kN.m 

(10-3) 
kN.m 

(10-3) 
kN.m 

(10-3) 
kN.m 

aB 5 1.0 -112.5 -0.937 +0.416 0 1.05 -0.47 0 0
ab 3 1.0 +67.5 +0.562 +0.750 0 0.38 0.51 0 0
bc 3 1.0 +67.5 +0.562 +0.750 0 0.38 0.51 0 0
Bc 5 1.0 +37.5 -0.312 -0.416 0 -0.12 -0.16 0 0
BD 6 2.0 -67.5 -0.562 +0.500 0.002 0.76 -0.68 -1.13 1
cD 5 1.0 +37.5 +0.312 +0.416 0 0.12 0.16 0 0
cd 3 1.0 +67.5 +0.187 +0.250 0 0.13 0.17 0 0
de  3 1.0 +67.5 +0.187 +0.250 0 0.13 0.17 0 0
De 5 1.0 -112.5 -0.312 -0.416 0 0.35 0.47 0 0
Bb 4 2.0 +60.0 1 0 0 1.2 0 0 0
Dd 4 2.0 +60.0 0 0 0 0 0 0 0

 
    ∑ 4.38 0.68 -1.13 1
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a) Vertical deflection of joint  b
Applying principle of virtual work as applied to an ideal pin jointed truss, 
 

1

1 1

( )m
v ij i i

j j
j i i i

P PL
F u

E A
δ

δ
= =

=∑ ∑           (1) 

 
For calculating vertical deflection at b , apply a unit virtual load 1bFδ = . Then the 
above equation may be written as, 
 

∑=×
ii

iii
v

vv
b AE

LPP
u

)(
1

δ           (2) 

 
1) Due to external loads 
 
  

↓=

=
+

↓=

mm

m
KN

KNmub

38.4

00438.0
1

00438.0
 

 
2) Due to change in temperature  
 
 

∑ Δ=↓ tii
v

v
t
b Pu )())(1( δ  

 

m
KN

mKNut
b 00113.0

1
.001125.0

−=
−

↓=  

↑= mmut
b 13.1  

 
 
 
b) Horizontal displacement of joint ‘D’  
 
1) Due to externally applied loads 
 
  

∑=×
ii

iii
H

vH
b AE

LPP
u

)(
1

δ  

→=

=
+

→=

mm

m
KN

KNmu H
D

68.0

00068.0
1

00068.0
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2) Due to change in temperature  
 
 

∑ Δ=→ tii
H

v
Ht
D Pu )())(1( δ  

 

m
KN

mKNu Ht
D 001.0

1
.001.0

=→=  

→= mmu Ht
D 00.1  

 
 
Summary 
In this chapter the Crotti-Engessor’s theorem which is more general than the 
Castigliano’s theorem has been introduced. The unit load method is applied 
statically determinate structure for calculating deflections when the truss is 
subjected to various types of loadings such as: mechanical loading, temperature 
loading and fabrication errors. 
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Since twentieth century, indeterminate structures are being widely used for its 
obvious merits. It may be recalled that, in the case of indeterminate structures 
either the reactions or the internal forces cannot be determined from equations of 
statics alone. In such structures, the number of reactions or the number of 
internal forces exceeds the number of static equilibrium equations. In addition to 
equilibrium equations, compatibility equations are used to evaluate the unknown 
reactions and internal forces in statically indeterminate structure. In the analysis 
of indeterminate structure it is necessary to satisfy the equilibrium equations 
(implying that the structure is in equilibrium) compatibility equations (requirement 
if for assuring the continuity of the structure without any breaks) and force 
displacement equations (the way in which displacement are related to forces). 
We have two distinct method of analysis for statically indeterminate structure 
depending upon how the above equations are satisfied: 
 
1. Force method of analysis (also known as flexibility method of analysis, 
method of consistent deformation, flexibility matrix method) 
 
2. Displacement method of analysis (also known as stiffness matrix method). 
 
In the force method of analysis, primary unknown are forces. In this method 
compatibility equations are written for displacement and rotations (which are 
calculated by force displacement equations). Solving these equations, redundant 
forces are calculated. Once the redundant forces are calculated, the remaining 
reactions are evaluated by equations of equilibrium. 
 
In the displacement method of analysis, the primary unknowns are the 
displacements. In this method, first force -displacement relations are computed 
and subsequently equations are written satisfying the equilibrium conditions of 
the structure. After determining the unknown displacements, the other forces are 
calculated satisfying the compatibility conditions and force displacement 
relations. The displacement-based method is amenable to computer 
programming and hence the method is being widely used in the modern day 
structural analysis.  
In general, the maximum deflection and the maximum stresses are small as 
compared to statically determinate structure. For example, consider two beams 
of identical cross section and span carrying uniformly distributed load as shown 
in Fig. 7.1a and Fig. 7.1b.  
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The loads are also the same in both cases. In the first case, the beam is fixed at 
both ends and thus is statically indeterminate. The simply supported beam in Fig. 
7.1b is a statically determinate structure. The maximum bending moment in case 

of fixed- fixed beam is 
12

2wL (which occurs at the supports) as compared to 
8

2wL  

(at the centre) in case of simply supported beam. Also in the present case, the 

deflection in the case of fixed- fixed beam ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
EI

wL
384

4

is five times smaller than that 

of simply supported beam ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
EI

wL
384
5 4

. Also, there is redistribution of stresses in the 

case of redundant structure. Hence if one member fails, structure does not 
collapse suddenly. The remaining members carry the load. The determinate 
structural system collapses if one member fails. However, there are 
disadvantages in using indeterminate structures. Due to support settlement, 
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there will be additional stresses in the case of redundant structures where as 
determinate structures are not affected by support settlement. 
The analysis of indeterminate structure differs mainly in two aspects as 
compared to determinate structure.  
 
a) To evaluate stresses in indeterminate structures, apart from sectional 
properties (area of cross section and moment of inertia), elastic properties are 
also required. 
b) Stresses are developed in indeterminate structure due to support settlements, 
temperature change and fabrication errors etc. 
 
 

Instructional Objectives 
After reading this chapter the student will be  
1. Able to analyse statically indeterminate structure of degree one. 
2. Able to solve the problem by either treating reaction or moment as redundant. 
3. Able to draw shear force and bending moment diagram for statically 
indeterminate beams.  
4. Able to state advantages and limitations of force method of analysis. 
 
 

7.1 Introduction. 
 In this lesson, a general introduction is given to the force method of analysis of 
indeterminate structure is given. In the next lesson, this method would be applied 
to statically indeterminate beams. Initially the method is introduced with the help 
of a simple problem and subsequently it is discussed in detail. The flexibility 
method of analysis or force method of analysis (or method of consistent 
deformation) was originally developed by J. Maxwell in 1864 and O. C. Mohr in 
1874. Since flexibility method requires deflection of statically determinate 
structure, a table of formulas for deflections for various load cases and boundary 
conditions is also given in this lesson for ready use. The force method of analysis 
is not convenient for computer programming as the choice of redundant is not 
unique. Further, the bandwidth of the flexibility matrix in the force method is much 
larger than the stiffness method.  However it is very useful for hand computation. 
 
 

7.2 Simple Example 
Consider a propped cantilever beam (of constant flexural rigidity EI , and span 
L ), which is carrying uniformly distributed load of  as shown in Fig. 
7.2a. The beam is statically indeterminate i.e. its reaction cannot be evaluated 
from equations of statics alone. To solve the above problem by force method 
proceeds as follows. 

kN/m.,w
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1) Determine the degree of statical indeterminacy. In the present case it is one. 
Identify the reaction, which can be treated as redundant in the analysis. In the 
present case  or  can be treated as redundant. Selecting as the 
redundant, the procedure is illustrated. Subsequently, it will be shown how to 
attack the problem by treating  as redundant.                      

BR AM BR

AM
 

Version 2 CE IIT, Kharagpur 
 



 
Version 2 CE IIT, Kharagpur 

 



Solution with as the redundant BR
 
2) After selecting  as redundant, express all other reactions in terms of the 

redundant . This can be accomplished with the help of equilibrium equations. 

Thus,  

BR

BR

 
BA RwLR −=              (7.1a)  

 
and  

LRwLM BA −=
2

2

            (7.1b) 

 
3) Now release the restraint corresponding to redundant reaction . Releasing 
restraint in the present case amounts to removing the support at

BR
B . Now on the 

resulting cantilever beam (please note that the released structure is statically 
determinate structure), apply uniformly distributed load  and the redundant 
reaction  as shown in Fig. 7.2b. The released structure with the external loads 
is also sometimes referred as the primary structure. 

w
BR

   
4) The deflection at B of the released structure (cantilever beam, in the present 
case) due to uniformly distributed load and due to redundant reaction could 
be easily computed from any one of the known methods (moment area method 
or unit load method). However it is easier to compute deflection at 

BR

B due to 
uniformly distributed load and in two steps. First, consider only uniformly 
distributed load and evaluate deflection at 

BR
B , which is denoted by  as 

shown in Fig. 7.2c. Since is redundant, calculate the deflection at 
( )1BΔ

BR B due to 
unit load at B acting in the direction of and is denoted by BR ( )2BΔ as shown in  
 
In the present case the positive direction of redundant and deflections are 
assumed to act upwards. For the present case, ( )1BΔ and ( )2BΔ are given by, 
 

( )
EI

wL
B 8

4

1 −=Δ               (7.2a)   

 

and     ( )
EI
L

B 3

3

2 −=Δ               (7.2b)   

 
From the principle of superposition, the deflection at B , ( )BΔ , is the sum of 
deflection due to uniformly distributed load ( )1BΔ  and deflection  due to 
redundant . Hence,  

( )2BBR Δ

BR
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( ) ( )21 BBBB R Δ+Δ=Δ     (7.2c)  
 
5) It is observed that, in the original structure, the deflection at B is zero. Hence 
the compatibility equation can be written as,     
 

( ) ( ) 021 =Δ+Δ=Δ BBBB R                (7.3a)   
                         
                                  
Solving the above equation, the redundant can be evaluated as, BR
 

( )
( )2

1

B

B
BR

Δ
Δ

−=       (7.3b) 

 
Substituting values of and ( )1BΔ ( )2BΔ , the value of is obtained as, BR
 

    
8

3wLRB =       (7.3d)   

 
The displacement at B due to unit load acting at B in the direction of is known 
as the flexibility coefficient and is denoted in this course by . 

BR

BBa
 
 6) Once is evaluated, other reaction components can be easily determined 
from equations of statics. Thus, 

BR

 

8

2wLM A =       (7.4a)  

 

8
5

8
3 wLwLwLRA =−=     (7.4b)     

 
7) Once the reaction components are determined, the bending moment and 
shear force at any cross section of the beam can be easily evaluated from 
equations of static equilibrium. For the present case, the bending moment and 
shear force diagram are shown in Fig. 7.2e. 
 
Solution with as redundant  AM

1) As stated earlier, in the force method the choice of redundant is arbitrary. 
Hence, in the above problem instead of one could choose as the 
redundant reaction. In this section the above problem is solved by taking as 
redundant reaction.  

BR M
M

A

A
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2) Now release (remove) the restraint corresponding to redundant reaction . 
This can be done by replacing the fixed support at 

AM
A  by a pin. While releasing 

the structure, care must be taken to see that the released structure is stable and 
statically determinate. 

3)  

Calculate the slope at A due to external loading and redundant moment . This 
is done in two steps as shown in Fig. 7.3b and Fig.7.3c. First consider only 
uniformly distributed load (see Fig. 7.3b) and compute slope at 

AM

( )1AA , i.e. θ from 
force displacement relations. Since is redundant, calculate the slope at AM A due 
to unit moment acting at A in the direction of which is denoted by (AM )2Aθ as in 
Fig. 7.3c. Taking anticlockwise moment and anticlockwise rotations as positive, 
the slope at A , due to two different cases may be written as, 
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( )
EI

wL
A 24

3

1 −=θ                   (7.5a)                 

( )
EI
L

A 32 =θ       (7.5b) 

From the principle of superposition, the slope at A , Aθ is the sum of slopes 
( )1A ( )M 2AAθ due to external load and θ due to redundant moment . Hence  AM

( ) ( )21 AAAA MM θθ +=     (7.5c)    

4) From the geometry of the original structure, it is seen that the slope at A  is 
zero. Hence the required compatibility equation or geometric condition may be 
written as, 

     ( ) ( ) ( ) 021 =+= AAAA M θθθ     (7.5d) 

Solving for , AM

( )
( )2

1

A

A
AM

θ
θ

−=       (7.5e) 

Substituting the values of ( )1Aθ , and ( )2Aθ  in equation (7.5e), the value of is 
calculated as  

AM

 

3

24

3
A

wL
EIM L

EI

−
= −   

2

8A
wLM =      (7.5f) 

          

5) Now other reaction components can be evaluated using equilibrium equations. 
Thus, 

8
5wLRA =      (7.6a)  

8
3wLRB =      (7.6b) 
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7.3 Summary 
The force method of analysis may be summarized as follows. 
 
Step 1. Determine the degree of statical indeterminacy of the structure. Identify 
the redundants that would be treated as unknowns in the analysis. Now, release 
the redundants one by one so that a statically determinate structure is obtained. 
Releasing the redundant reactions means removing constraint corresponding to 
that redundant reaction. As in the above propped cantilever beam, either 
reactions  or  can be treated as unknown redundant. By choosing as 
the redundant, the propped cantilever beam can be converted into a cantilever 
beam (statically determinate) by releasing the roller support. Similarly by 
choosing moment as the redundant reaction, the indeterminate structure can be 
released into a determinate structure (i.e. a simply supported beam) by turning 
the fixed support into a hinged one. If the redundant force is an internal one, then 
releasing the structure amounts to introducing discontinuity in the corresponding 
member. The compatibility conditions for the redundant internal forces are the 
continuity conditions. That would be discussed further in subsequent lessons. 

BR AM BR

 
Step 2. In this step, calculate deflection corresponding to redundant action, 
separately due to applied loading and redundant forces from force displacement 
relations. Deflection due to redundant force cannot be evaluated without knowing 
the magnitude of the redundant force. Hence, apply a unit load in the direction of 
redundant force and determine the corresponding deflection. Since the method of 
superposition is valid, the deflections due to redundant force can be obtained by 
simply multiplying the unknown redundant with the deflection obtained from 
applying unit value of force. 
 
Step 3. Now, calculate the total deflection due to applied loading and the 
redundant force by applying the principle of superposition. This computed total 
deflection along the redundant action must be compatible with the actual 
boundary conditions of the original structure. For example, if in the original 
structure, the deflection corresponding to the redundant reaction is zero then the 
total deflection must be equal to zero. If there is more than one redundant force 
then one could construct a set of equations with redundant forces as unknowns 
and flexibility coefficients as coefficients of the equations. The total number of 
equations equals the number of unknown redundants. 
 
Step 4. In the last step, evaluate all other reactions and internal forces from the 
equilibrium equations.  
 
The method of superposition or the force method as discussed above is applied 
to any type of structures, i.e. beams, truss and frames or combination of these 
structures. It is applicable for all general type of loadings.  
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The deflection of statically determinate structure can be obtained by unit-load 
method or by moment-area theorem or by any method known to the reader. 
However, the deflections of few prismatic beams with different boundary 
conditions and subjected to simple loadings are given in Fig. 7.4. These values 
will be of help in solving the problems of the present and subsequent lessons. 
However the students are strongly advised to practice deriving them instead of 
simply memorizing them. 
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Example 7.1 
A continuous beam ABC is carrying a uniformly distributed load of 1 kN/m in 
addition to a concentrated load of 10 kN as shown in Fig.7.5a, Draw bending 
moment and shear force diagram. Assume EI to be constant for all members. 
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It is observed that the continuous beam is statically indeterminate to first degree. 
Choose the reaction at B, ByR  as the redundant. The primary structure is a 
simply supported beam as shown in Fig.7.5b. 
Now, compute the deflection at B, in the released structure due to uniformly 
distributed load and concentrated load. This is accomplished by unit load 
method. Thus, 
 

2083.33 1145.84
L EI E

−
Δ = −

I
 

 
3229.17

L EI
−

Δ =             (1) 

 
In the next step, apply a unit load at B in the direction of ByR (upwards) and 
calculate the deflection at B of the following structure. Thus (see Fig. 7.5c),  
 

3

11
166.67

48
La
EI EI

= =           (2) 

 
 
Now, deflection at B in the primary structure due to redundant BR  is,  
 

166.67
BB R

EI
Δ = ×          (3) 

 
In the actual structure, the deflection at B is zero. Hence, the compatibility 
equation may be written as  
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0L BΔ + Δ =         (4) 
 
Substituting for in equation (4),  and LΔ BΔ
 

3229.17 166.67 0BR
EI EI

−
+ =        (5) 

 
Thus, 

19.375 kNBR =  
 
The other two reactions are calculated by static equilibrium equations (vide Fig. 
7.5d) 
 
 

7.8125 kNAR =  

2.8125 kNBR =  
 
The shear force and bending moment diagrams are shown in Fig. 7.5e and Fig. 
7.5f respectively. 

 
Example 7.2 
A propped cantilever beam AB is subjected to a concentrated load of 60 kN at 
3m from end A  as shown in Fig. 7.6a. Draw the bending moment and shear 
force diagrams by the force method. Assume that the flexural rigidity of the 
beam, EI to be constant throughout. 
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The given problem is statically indeterminate to first degree. Choose the reaction 
at B , as the redundant. After releasing the redundant, the determinate 
structure, a cantilever beam in this case is obtained. The cantilever beam with 
the applied loading is chosen in Fig 7.6b. 

1R

 
The deflection of the released structure is, 
 

( )
3 2

1

60 3 60 3 6
3 2L EI EI
× × ×

Δ = − −        

 

( )1
2160

L EI
−

Δ =           (1) 

 
The deflection at point B  due to unit load applied in the direction of redundant 

is (vide Fig 7.6c) 1R
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EIEI
a 243

3
93

11 ==            (2) 

 
Now the deflection at B due to redundant  is  1R

( )
EI

R1
1

243
=Δ            (3) 

From the original structure it is seen that the deflection at B  is zero. Hence, the 
compatibility condition for the problem may be written as, 

02432160 1 =+−
EI

R
EI

          (4) 

Solving equation (4), the redundant  is obtained. 1R

1
2160
243

8.89 kN

R =

=
         (5) 

The vertical reaction and fixed end moment at A can be determined from 
equations of statics. Thus, 

2 51.11 kNR =  

3 99.99 kN.mR =          (6)  

Shear force and bending moment diagrams are shown in Fig. 7.6d and Fig. 7.6e 
respectively.  
 
 
Summary 
In this lesson flexibility matrix method or the method of consistent deformation or 
the force method of analysing statically indeterminate structures has been 
introduced with the help of simple problems.  The advantages and limitations of 
flexibility matrix method have been discussed. Only simple indeterminate beam 
problem has been solved to illustrate the procedure. The principle of 
superposition has been used to solve statically indeterminate problems.  
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Instructional Objectives 
After reading this chapter the student will be able to 

1. Solve statically indeterminate beams of degree more than one. 
2. To solve the problem in matrix notation. 
3. To compute reactions at all the supports. 
4. To compute internal resisting bending moment at any section of the 

continuous beam. 

 
8.1 Introduction 
In the last lesson, a general introduction to the force method of analysis is given. 
Only, beams, which are statically indeterminate to first degree, were considered. 
If the structure is statically indeterminate to a degree more than one, then the 
approach presented in the previous example needs to be organized properly. In 
the present lesson, a general procedure for analyzing statically indeterminate 
beams is discussed.  
 
 
8.2  Formalization of Procedure 
Towards this end, consider a two-span continuous beam as shown in Fig. 8.1a. 
The flexural rigidity of this continuous beam is assumed to be constant and is 
taken as EI . Since, the beam is statically indeterminate to second degree, it is 
required to identify two redundant reaction components, which need be released 
to make the beam statically determinate. 

Version 2 CE IIT, Kharagpur 
 



 
Version 2 CE IIT, Kharagpur 

 



The redundant reactions at A  and B  are denoted by  and  respectively. 
The released structure (statically determinate structure) with applied loading is 
shown in Fig. 8.1b. The deflection of primary structure at 

1R 2R

B  and C  due to 
applied loading is denoted by ( )1LΔ  and ( )2LΔ  respectively. Throughout this 
module  notation is used to denote deflection at  redundant due to 
applied loads on the determinate structure. 

( )iLΔ
thi

 

( )
EI

PL
EI

wL
L 12

7
8

34

1 −−=Δ      (8.1a) 

 

( )
EI
PL

EI
wL

L 16
27

24
7 34

2 −−=Δ     (8.1b)  

 
In fact, the subscript 1 and represent, locations of redundant reactions 
released. In the present case 

2
( )1RRA =  and ( )2RRB =  respectively. In the present 

and subsequent lessons of this module, the deflections and the reactions are 
taken to be positive in the upward direction. However, it should be kept in mind 
that the positive sense of the redundant can be chosen arbitrarily. The deflection 
of the point of application of the redundant should likewise be considered positive 
when acting in the same sense. 
For writing compatibility equations at B  and , it is required to know deflection of 
the released structure at 

C
B  and due to external loading and due to redundants. 

The deflection at 
C

B  andC due to external loading can be computed easily. Since 
redundants  and  are not known, in the first step apply a unit load in the 
direction of and compute deflection,  at 

1R 2R

1R 11a B , and deflection, at , as 
shown in Fig.8.1c. Now deflections at 

21a C
B and  of the given released structure 

due to redundant  are, 
C

1R
 

( ) 11111 RaR =Δ      (8.2a)       
     

( ) 12121 RaR =Δ      (8.2b) 
 
In the second step, apply unit load in the direction of redundant and compute 
deflection at 

2R
B (point 1), and deflection at ,  as shown in Fig 8.1d. It may 

be recalled that the flexibility coefficient  is the deflection at  due to unit value 
of force applied at 

12a C 22a
ija i

j . Now deflections of the primary structure (released 
structure) at B  and C  due to redundant  is              2R
 

( ) 21212 RaR =Δ        (8.3a)       
     

( ) 22222 RaR =Δ      (8.3b) 
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It is observed that, in the actual structure, the deflections at joints B  and C  is 
zero. Now the total deflections at B  and C of the primary structure due to applied 
external loading and redundants  and  is, 1R 2R
 

( ) 21211111 RaRaL ++Δ=Δ      (8.4a)    
 

( ) 22212122 RaRaL ++Δ=Δ      (8.4b)    
 
The equation (8.4a) represents the total displacement at B and is obtained by 
superposition of three terms: 
 

1) Deflection at B due to actual load acting on the statically determinate 
structure, 

2) Displacement at B due to the redundant reaction  acting in the positive 
direction at 

1R
B (point 1) and  

3) Displacement at B due to the redundant reaction  acting in the positive 
direction at . 

2R
C

 
The second equation (8.4b) similarly represents the total deflection at . From 
the physics of the problem, the compatibility condition can be written as,  

C

 
( ) 021211111 =++Δ=Δ RaRaL     (8.5a)    

 
( ) 022212122 =++Δ=Δ RaRaL     (8.5b)  

 
The equation (8.5a) and (8.5b) may be written in matrix notation as follows, 
   

( )
( ) ⎭

⎬
⎫

⎩
⎨
⎧

=
⎭
⎬
⎫

⎩
⎨
⎧
⎥
⎦

⎤
⎢
⎣

⎡
+

⎭
⎬
⎫

⎩
⎨
⎧
Δ
Δ

0
0

2

1

2221

1211

2

1

R
R

aa
aa

L

L     (8.6a) 

 
( ){ } [ ]{ } { }01 =+Δ RAL       (8.6b) 

 
In which, 
 

( ){ } ( )
( )

1
1

2

L
L

L

⎧ ⎫Δ⎪ ⎪Δ = ⎨ ⎬Δ⎪ ⎪⎩ ⎭
; [ ] 11 12

21 22

a a
A

a a
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 and { } 1

2

R
R

R
⎧ ⎫

= ⎨ ⎬
⎩ ⎭

 

 
Solving the above set of algebraic equations, one could obtain the values of 
redundants, and . 1R 2R
 

{ } [ ] { }LAR Δ−= −1      (8.7) 
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In the above equation the vectors { }LΔ  contains the displacement values of the 
primary structure at point 1 and 2, [ ]A  is the flexibility matrix and {  is column 
vector of redundants required to be evaluated. In equation (8.7) the inverse of the 
flexibility matrix is denoted by 

}R

[ ] 1−A . In the above example, the structure is 
indeterminate to second degree and the size of flexibility matrix is . In 
general, if the structure is redundant to a degree , then the flexibility matrix is of 
the order . To demonstrate the procedure to evaluate deflection, consider 
the problem given in Fig. 8.1a, with loading as given below 

22×
n

nn×

 
wLPww == ;    (8.8a) 

 
Now, the deflection  and ( )1LΔ ( )2LΔ of the released structure can be evaluated 
from the equations (8.1a) and (8.1b) respectively. Then, 
 

( )
EI

wL
EI

wL
EI

wL
L 24

17
12
7

8

444

1 −=−−=Δ     (8.8b) 

    

( )
EI

wL
EI
wL

EI
wL

L 48
95

16
27

24
7 444

2 −=−−=Δ    (8.8c) 

 
The negative sign indicates that both deflections are downwards. Hence the 
vector { is given by }LΔ
 

{ }
⎭
⎬
⎫

⎩
⎨
⎧

−=Δ
95
34

48

4

EI
wL

L      (8.8d) 

 
The flexibility matrix is determined from referring to figures 8.1c and 8.1d. Thus, 
when the unit load corresponding to  is acting at 1R B , the deflections are, 
 

EI
La

EI
La

6
5,

3

3

21

3

11 ==        (8.8e) 

 
Similarly when the unit load is acting at C , 
 

EI
La

EI
La

3
8,

6
5 3

22

3

12 ==    (8.8f) 

 
The flexibility matrix can be written as, 
 

[ ] ⎥
⎦

⎤
⎢
⎣

⎡
=

165
52

6

3

EI
LA        (8.8g) 
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The inverse of the flexibility matrix can be evaluated by any of the standard 
method. Thus, 
 

       [ ] ⎥
⎦

⎤
⎢
⎣

⎡
−

−
=−

25
516

7
6

3
1

L
EIA      (8.8h) 

 
Now using equation (8.7) the redundants are evaluated. Thus, 
 

⎭
⎬
⎫

⎩
⎨
⎧
⎥
⎦

⎤
⎢
⎣

⎡
−

−
×=

⎭
⎬
⎫

⎩
⎨
⎧

95
34

25
516

487
6 4

3
2

1

EI
wL

L
EI

R
R

 

Hence, wLR
56
69

1 =  and wLR
56
20

2 =       (8.8i) 

 
Once the redundants are evaluated, the other reaction components can be 
evaluated by static equations of equilibrium.    

Example 8.1 
Calculate the support reactions in the continuous beam  due to loading as 
shown in Fig. 8.2a. Assume 

ABC
EI  to be constant throughout. 
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Select two reactions viz, at and ( )1RB ( )2RC  as redundants, since the given beam 
is statically indeterminate to second degree. In this case the primary structure is 
a cantilever beam . The primary structure with a given loading is shown in Fig. 
8.2b.    

AC

 
In the present case, the deflections ( )1LΔ , and ( )2LΔ  of the released structure at 
B and C  can be readily calculated by moment-area method. Thus, 
 

( )
EIL

16.819
1 −=Δ  

and      ( )
EIL

875.2311
2 −=Δ          (1) 

 
For the present problem the flexibility matrix is, 
 

EI
a

3
125

11 =  
EI

a
6
625

21 =   

 

EI
a

6
625

12 =   
EI

a
3
1000

22 =          (2) 

 
 
In the actual problem the displacements at B and are zero. Thus the 
compatibility conditions for the problem may be written as, 

C

 
( ) 01212111 =Δ++ LRaRa  

               (3) 
( ) 02222121 =Δ++ LRaRa   

 

⎭
⎬
⎫

⎩
⎨
⎧

×⎥
⎦

⎤
⎢
⎣

⎡
−

−
=

⎭
⎬
⎫

⎩
⎨
⎧

875.2311
16.8191

1255.312
5.3121000

75.27343
3

2

1

EI
EI

R
R

      (5) 

 
 
Substituting the value of E and I in the above equation, 
 

1 10.609kNR =      and 2 3.620 kNR =    
 
Using equations of static equilibrium, 
 

3 0.771 kNR =        and 4 0.755 kN.mR = −   
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Example 8.2 
A clamped beam AB  of constant flexural rigidity is shown in Fig. 8.3a. The beam 
is subjected to a uniform distributed load of  and a central concentrated 
moment . Draw shear force and bending moment diagrams by 
force method. 

kN/mw
2 kN.mM wL=

 

 
 
Select vertical reaction and the support moment ( )1R ( )2R at B  as the 
redundants. The primary structure in this case is a cantilever beam which could 
be obtained by releasing the redundants  and . The  is assumed to be 
positive in the upward direction and  is assumed to be positive in the 
counterclockwise direction. Now, calculate deflection at 

1R 2R 1R

2R
B  due to only applied 

loading. Let be the transverse deflection at ( )1LΔ B  and ( )2LΔ  be the slope at B  
due to external loading. The positive directions of the selected redundants are 
shown in Fig. 8.3b. 
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The deflection  and  of the released structure can be evaluated from 
unit load method. Thus,  

( )1LΔ ( )2LΔ

 

( )
EI

wL
EI

wL
EI

wL
L 28

3
8

444

1 −=−−=Δ         (1) 

 
 

and    ( )
EI
wL

EI
wL

EI
wL

L 3
2

26

333

2 −=−−=Δ        (2) 

 
 
The negative sign indicates that ( )1LΔ is downwards and rotation  is 
clockwise. Hence the vector {

( )2LΔ
}LΔ  is given by 

 

{ }
⎭
⎬
⎫

⎩
⎨
⎧

−=Δ
4

3
6

3 L
EI

wL
L          (3)  

   
The flexibility matrix is evaluated by first applying unit load along redundant  
and determining the deflections  and  corresponding to redundants  and 

 respectively (see Fig. 8.3d). Thus, 

1R

11a 21a 1R

2R
 

EI
La

3

3

11 =   and 
EI
La

2

2

21 =         (4) 

 
 
Similarly, applying unit load in the direction of redundant , one could evaluate 
flexibility coefficients  and  as shown in Fig. 8.3c. 

2R

12a 22a
   

EI
La

2

2

12 =   and 
EI
La =22          (5) 

 
 
Now the flexibility matrix is formulated as, 
 

[ ] ⎥
⎦

⎤
⎢
⎣

⎡
=

63
32

6

2

L
LL

EI
LA           (6) 

 
The inverse of flexibility matrix is formulated as, 
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    [ ] ⎥
⎦

⎤
⎢
⎣

⎡
−

−
=−

23
1

23
36

3
6

LL
L

L
EIA  

 
The redundants are evaluated from equation (8.7). Hence, 
 

⎭
⎬
⎫

⎩
⎨
⎧
−

=

⎭
⎬
⎫

⎩
⎨
⎧
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−×⎥

⎦

⎤
⎢
⎣

⎡
−

−
−=

⎭
⎬
⎫

⎩
⎨
⎧

2

3

23
2

1

6
3

4
3

623
36

3
6

L
Lw

L
EI

wL
LL
L

L
EI

R
R

    

 
 

3
2

2

21
wLRandwLR −==         (7) 

 
 
The other two reactions ( and ) can be evaluated by equations of statics. 
Thus, 

3R 4R

6

2

4
wLMR A −==   and wLRR A −==1        (8)  

 
The bending moment and shear force diagrams are shown in Fig. 8.3g and 
Fig.8.3h respectively. 
 
 
Summary 
In this lesson, statically indeterminate beams of degree more than one is solved 
systematically using flexibility matrix method. Towards this end matrix notation is 
adopted. Few illustrative examples are solved to illustrate the procedure. After 
analyzing the continuous beam, reactions are calculated and bending moment 
diagrams are drawn. 
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Instructional Objectives 
After reading this chapter the student will be able to 

1. Calculate additional stresses developed in statically indeterminate structures 
due to support settlements. 
2. Analyse continuous beams which are supported on yielding supports. 
3. Sketch the deflected shape of the member. 
4. Draw banding moment and shear force diagrams for indeterminate beams 
undergoing support settlements. 
  
 
9.1 Introduction 
In the last lesson, the force method of analysis of statically indeterminate beams 
subjected to external loads was discussed. It is however, assumed in the 
analysis that the supports are unyielding and the temperature remains constant. 
In the design of indeterminate structure, it is required to make necessary 
provision for future unequal vertical settlement of supports or probable rotation of 
supports. It may be observed here that, in case of determinate structures no 
stresses are developed due to settlement of supports. The whole structure 
displaces as a rigid body (see Fig. 9.1). Hence, construction of determinate 
structures is easier than indeterminate structures.              
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The statically determinate structure changes their shape due to support 
settlement and this would in turn induce reactions and stresses in the system. 
Since, there is no external force system acting on the structures, these forces 
form a balanced force system by themselves and the structure would be in 
equilibrium. The effect of temperature changes, support settlement can also be 
easily included in the force method of analysis. In this lesson few problems, 
concerning the effect of support settlement are solved to illustrate the procedure. 
 
 
9.2 Support Displacements 
Consider a two span continuous beam, which is statically indeterminate to 
second degree, as shown in Fig. 9.2. Assume the flexural rigidity of this beam to 
be constant throughout. In this example, the support B is assumed to have 
settled by an amount  as shown in the figure. bΔ
 
This problem was solved in the last lesson, when there was no support 
settlement (vide section 8.2). In section 8.2, choosing reaction at B and C  as the 
redundant, the total deflection of the primary structure due to applied external 
loading and redundant  and  is written as, 1R 2R
 

( ) 21211111 RaRaL ++Δ=Δ     (9.1a) 
 

( ) 22212122 RaRaL ++Δ=Δ     (9.1b) 
 
wherein,  and  are the redundants at 1R 2R B  and C  respectively, and , and 

 are the deflections of the primary structure at 
( )1LΔ

( )2LΔ B and  due to applied 
loading. In the present case, the support 

C
B settles by an amount  in the 

direction of the redundant . This support movement can be readily incorporated 
in the force method of analysis. From the physics of the problem the total 
deflection at the support may be equal to the given amount of support movement. 
Hence, the compatibility condition may be written as, 

bΔ

1R

 
bΔ−=Δ1      (9.2a) 

 
02 =Δ       (9.2b) 

 
It must be noted that, the support settlement bΔ  must be negative as it is 
displaces downwards. It is assumed that deflections and reactions are positive in 
the upward direction. The equation (9.1a) and (9.1b) may be written in compact 
form as, 
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( )
( ) ⎭

⎬
⎫

⎩
⎨
⎧
Δ
Δ

−
⎭
⎬
⎫

⎩
⎨
⎧
Δ
Δ

=
⎭
⎬
⎫

⎩
⎨
⎧
⎥
⎦

⎤
⎢
⎣

⎡

2

1

2

1

2

1

2221

1211

L

L

R
R

aa
aa

    (9.3a) 

 
 
    [ ]{ } { } ( ){ }LRA Δ−Δ=      (9.3b) 
   
Solving the above algebraic equations, one could evaluate redundants and  
due to external loading and support settlement. 

1R 2R

 
 
9.3 Temperature Stresses 
Internal stresses are also developed in the statically indeterminate structure if the 
free movement of the joint is prevented. 
 
For example, consider a cantilever beam AB  as shown in Fig. 9.3. Now, if the 
temperature of the member is increased uniformly throughout its length, then the 
length of the member is increased by an amount  
 

TLT α=Δ       (9.4) 
 
In which,  is the change in the length of the member due to temperature 
change, 

TΔ
α  is the coefficient of thermal expansion of the material and T  is the 

change in temperature. The elongation (the change in the length of the member) 
and increase in temperature are taken as positive. However if the end B is 
restrained to move as shown in Fig 9.4, then the beam deformation is prevented. 
This would develop an internal axial force and reactions in the indeterminate 
structure. 
 
Next consider a cantilever beam AB , subjected to a different temperature, at 
the top and  at the bottom as shown in Fig. 9.5(a) and (b). If the top 
temperature  is higher than the bottom beam surface temperature , then the 
beam will deform as shown by dotted lines. Consider a small element at a 
distance 

1T

2T

1T 2T
dx

x from A . The deformation of this small element is shown in Fig. 9.5c. 
Due to rise in temperature  on the top surface, the top surface elongates by         CT °1

 
dxTT 11

α=Δ      (9.5a) 
 
Similarly due to rise in temperature , the bottom fibers elongate by  2T
 

dxTT 22
α=Δ      (9.5b) 
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As the cross section of the member remains plane, the relative angle of rotation 
θd between two cross sections at a distance is given by dx

 

d
dxTTd )( 21 −=

αθ         (9.6) 

 
where, is the depth of beam. If the end d B is fixed as in Fig. 9.4, then the 
differential change in temperature would develop support bending moment and 
reactions. 
 
The effect of temperature can also be included in the force method of analysis 
quite easily. This is done as follows. Calculate the deflection corresponding to 
redundant actions separately due to applied loading, due to rise in temperature 
(either uniform or differential change in temperature) and redundant forces. The 
deflection in the primary structure due to temperature changes is denoted by 

 which denotes the deflection corresponding to  redundant due to 
temperature change in the determinate structure. Now the compatibility equation 
for statically indeterminate structure of order two can be written as 

( )iTΔ
thi

 
( )
( )

( )
( ) ⎭

⎬
⎫

⎩
⎨
⎧
Δ
Δ

−
⎭
⎬
⎫

⎩
⎨
⎧
Δ
Δ

−
⎭
⎬
⎫

⎩
⎨
⎧
Δ
Δ

=
⎭
⎬
⎫

⎩
⎨
⎧
⎥
⎦

⎤
⎢
⎣

⎡

2

1

2

1

2

1

2

1

2221

1211

T

T

L

L

R
R

aa
aa

     

 
[ ]{ } { } ( ){ } ( ){ }TLRA Δ−Δ−Δ=           (9.7)  

 
wherein,{ }LΔ is the vector of displacements in the primary structure 

corresponding to redundant reactions due to external loads; { }TΔ  is the 
displacements in the primary structure corresponding to redundant reactions and 
due to temperature changes and { }Δ is the matrix of support displacements 
corresponding to redundant actions. Equation (9.7) can be solved to obtain the 
unknown redundants.   
 
Example 9.1 
Calculate the support reactions in the continuous beam  (see Fig. 9.6a) 
having constant flexural rigidity 

ABC
EI throughout, due to vertical settlement of the 

support B by 5 m  as shown in the figure. m 200 GPaE = and . 4 44 10 mI −= ×
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As the given beam is statically indeterminate to second degree, choose reaction 
at B )( 1R and as the redundants. In this case the cantilever beam is 
the basic determinate beam (primary structure). On the determinate beam only 
redundant reactions are acting. The first column of flexibility matrix is evaluated 
by first applying unit load along the redundant and determining deflections 

and respectively as shown in Fig. 9.6b. 

C )( 2R AC

1R

11a 21a
 

EIEI
a

3
125

3
53

11 ==  

 

EIEIEI
a

6
6255

2
25

3
125

21 =×+=      (1)  

       
Simply by applying the unit load in the direction of redundant , one could 
evaluate flexibility coefficients and (see Fig. 9.6c). 

2R

12a 22a
 

EI
a

6
625

12 =  and 
EI

a
3
1000

22 =    (2) 

 
The compatibility condition for the problem may be written as, 
 

3
212111 105 −×−=+ RaRa  

           (3) 
0222121 =+ RaRa   

 
The redundant reactions are, 
 

[ ]
⎭
⎬
⎫

⎩
⎨
⎧ ×−

=
⎭
⎬
⎫

⎩
⎨
⎧ −

−

0
105 3

1

2

1 A
R
R

    (4) 

 

⎭
⎬
⎫

⎩
⎨
⎧ ×−

×⎥
⎦

⎤
⎢
⎣

⎡
−

−
=

⎭
⎬
⎫

⎩
⎨
⎧ −

0
105

1255.312
5.3121000

75.27343
3 3

2

1 EI
R
R

   (5) 

 
Substituting the values of E and I in the above equation, the redundant reactions 
are evaluated. 
 

1 43.885 kNR = −      and 2 13.71 kNR =    
 

1R acts downwards and acts in the positive direction of the reaction 
upwards. The remaining two reactions and are evaluated by the 

equations of equilibrium.  

2R
..ei 3R 4R
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1 2 30 0yF R R R= ⇒ + + =∑  

 
Hence      3 30.175 kNR =
 

4 1 20 5 10AM R R R 0= ⇒ + × + × =∑  
 
Solving for 4R , 
 

4 82.325 kN.m (counter clockwise)R =  
 
The shear force and bending moment diagrams are shown in Figs. 9.6d and 9.6e 
respectively. 
 
Example 9.2 
Compute reactions and draw bending moment diagram for the continuous beam 

 loaded as shown in Fig. 9.7a, due to following support movements. ABCD
Support B , vertically downwards. m005.0
Support , vertically downwards. C m01.0
 
Assume, ; . GPaE 200= 431035.1 mI −×=
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The given beam is statically indeterminate to second degree. Select vertical 
reactions at  and  as redundants. The primary structure in this case is 
a simply supported beam 

( )1RB ( 2RC )
AD as shown in Fig. 9.7b. 

The deflection ( and  of the released structure are evaluated from unit 
load method. Thus,  

)1LΔ ( )2LΔ
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( ) m
EIL 169.0

1035.110200
1033.458331033.45833

39

33

1 −=
×××

×−
=

×−
=Δ −   

  

( ) m
EIL 169.01033.45833 3

2 −=
×−

=Δ     (1) 

 
 
The flexibility matrix is evaluated as explained in the previous example,  by 
first applying unit load corresponding to the redundant and determining 
deflections and respectively as shown in Fig. 9.7c. Thus, 

..ei

1R

11a 21a
 

EI
a 44.444

11 =  

 
 

EI
a 89.388

21 =      (2) 

 
 

      
EI

a 44.444
22 =  

 

EI
a 89.388

12 =  

 
 
In this case the compatibility equations may be written as,  
 

005.0169.0 212111 −=++− RaRa  
            (3) 

01.0169.0 222121 −=++− RaRa   
 
Solving for redundant reactions, 
 
       

⎭
⎬
⎫

⎩
⎨
⎧

×⎥
⎦

⎤
⎢
⎣

⎡
−

−
=

⎭
⎬
⎫

⎩
⎨
⎧

159.0
164.0

44.44489.388
89.38844.444

48.462912

1 EI
R
R

   (4) 

 
 
Substituting the value of E and I in the above equation, 
 

kNR 48.641 =      and kNR 174.402 =    
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Both  and acts in the upward direction. The remaining two reactions and 
are evaluated by the equations of static equilibrium.  

1R 2R 3R

4R
 

0153053020100 421 =××−×+×+×=∑ RRRM A  
 
Hence   4 26.724 kNR =
 

3 1 2 40 5yF R R R R= + + + − × =∑ 30 0  
 
Hence             (5) 3 18.622 kNR =
 
The shear force and bending moment diagrams are now constructed and are 
shown in Figs. 9.7e and 9.7f respectively. 
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Summary 
In this lesson, the effect of support settlements on the reactions and stresses in 
the case of indeterminate structures is discussed. The procedure to calculate 
additional stresses caused due to yielding of supports is explained with the help 
of an example. A formula is derived for calculating stresses due to temperature 
changes in the case of statically indeterminate beams. 
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Instructional Objectives 
After reading this chapter the student will be able to 

1. Calculate degree of statical indeterminacy of a planar truss 
2. Analyse the indeterminate planar truss for external loads 
3. Analyse the planar truss for temperature loads 
4. Analyse the planar truss for camber and lack of fit of a member. 
 
 
10.1 Introduction  
The truss is said to be statically indeterminate when the total number of reactions 
and member axial forces exceed the total number of static equilibrium equations. 
In the simple planar truss structures, the degree of indeterminacy can be 
determined from inspection. Whenever, this becomes tedious, one could use the 
following formula to evaluate the static indeterminacy of static planar truss (see 
also section 1.3). 
 

jrmi 2)( −+=     (10.1) 
 
where jm, and r are number of members, joints and unknown reaction 
components respectively. The indeterminacy in the truss may be external, 
internal or both. A planar truss is said to be externally indeterminate if the 
number of reactions exceeds the number of static equilibrium equations available 
(three in the present case) and has exactly ( )32 −j  members. A truss is said to 
be internally indeterminate if it has exactly three reaction components and more 
than members. Finally a truss is both internally and externally 
indeterminate if it has more than three reaction components and also has more 
than members. 

( 32 −j )

)( 32 −j
 
The basic method for the analysis of indeterminate truss by force method is 
similar to the indeterminate beam analysis discussed in the previous lessons. 
Determine the degree of static indeterminacy of the structure. Identify the number 
of redundant reactions equal to the degree of indeterminacy. The redundants 
must be so selected that when the restraint corresponding to the redundants are 
removed, the resulting truss is statically determinate and stable. Select 
redundant as the reaction component in excess of three and the rest from the 
member forces. However, one could choose redundant actions completely from 
member forces. Following examples illustrate the analysis procedure. 
 
Example 10.1  
Determine the forces in the truss shown in Fig.10.1a by force method. All the 
members have same axial rigidity. 
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The plane truss shown in Fig.10.1a is statically indeterminate to first degree. The 
truss is externally determinate the reactions can be evaluated from the 
equations of statics alone. Select the bar force in member 

..ei

ADF AD as the 
redundant. Now cut the member AD to obtain the released structure as shown in 
Fig. 10.1b. The cut redundant member AD remains in the truss as its 
deformations need to be included in the calculation of displacements in the 
released structure. The redundant ( )ADF consists of the pair of forces acting on 
the released structure. 
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Evaluate reactions of the truss by static equations of equilibrium. 
 

5 kN (downwards)

5 kN (downwards)
15 kN(upwards)

Cy

Cx

Dy

R

R
R

= −

= −
=

    (1) 

 
 
Please note that the member tensile axial force is taken as positive and 
horizontal reaction is taken as positive to the right and vertical reaction is taken 
as positive when acting upwards. When the member cut ends are displaced 
towards one another then it is taken as positive. 
 
 
The first step in the force method is to calculate displacement ( )LΔ corresponding 
to redundant bar force in the released structure due to applied external 
loading. This can be readily done by unit-load method.    

ADF
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To calculate displacement , apply external load and calculate member forces 
as shown in Fig. 10.1b and apply unit virtual load along  and calculate 

member forces ( (see Fig. 10.1c). Thus, 

( LΔ )
( )iP ADF

)ivP
 

( )

AE

AE
LPP i

iviL

03.103
=

=Δ ∑
    (2) 

 
 
In the next step, apply a real unit load along the redundant and calculate 
displacement by unit load method. Thus, 

ADF

11a
 

( )

AE

EA
LPa

ii

i
iv

142.24

2
11

=

= ∑
      (3) 

 

 
 
The compatibility condition of the problem is that the relative displacement LΔ of 
the cut member AD due to external loading plus the relative displacement of the 
member AD caused by the redundant axial forces must be equal to zero  ..ei
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011 =+Δ ADL Fa      (4) 
 

103.03
24.142
4.268 kN(compressive)

ADF −
=

= −
  

 
Now the member forces in the members can be calculated by method of 
superposition. Thus, 
 

( )ivADii PFPF +=      (5) 
 
The complete calculations can be done conveniently in a tabular form as shown 
in the following table.  
 
Table 10.1 Computation for example 10.1 
Member Length 

iL  
Forces in 
the 
released 
truss due 
to applied 
loading 

iP  

Forces in 
the 
released 
truss due 
to unit 
load ( )ivP  

 

( )
AE
LPP i

ivi

 

 

( )
ii

i
iv EA

LP 2

 

 

( )ivADi

i

PFP
F
+
=  

 m kN kN m m/kN kN 
AB 5 0 2/1−  0 AE2/5  3.017 
BD 5 -15 2/1−  AE2/75

 
AE2/5  -11.983 

DC 5 0 2/1−  0 AE2/5  3.017 
CA 5 0 2/1−  0 AE2/5  3.017 
CB 25  25  1 AE/50  AE/25  2.803 
AD 25  0 1 0 AE/25  -4.268 

   Total 
AE

03.103  
AE
142.24   

 
Example 10.2  
Calculate reactions and member forces of the truss shown in Fig. 10.2a by force 
method. The cross sectional areas of the members in square centimeters are 
shown in parenthesis. Assume . 25 N/mm100.2 ×=E
 

Version 2 CE IIT, Kharagpur 
 



 

Version 2 CE IIT, Kharagpur 
 



The plane truss shown in Fg.10.2a is externally indeterminate to degree one. 
Truss is internally determinate. Select the horizontal reaction at E , as the 
redundant. Releasing the redundant (replacing the hinge at 

ExR
E by a roller support) 

a stable determinate truss is obtained as shown in Fig. 10.2b. The member axial 
forces and reactions of the released truss are shown in Fig. 10.2b. 
 
Now calculate the displacement LΔ corresponding to redundant reaction in 
the released structure. This can be conveniently done in a table (see Figs. 10.2b, 
10.2c and the table). Hence from the table, 

ExR

 

( )
415 10 m

i
L i v i

i i

LP P
A E

−

Δ =

= ×

∑     (1) 
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In the next step apply a unit load, along the redundant reaction  and calculate 
the displacement using unit load method. 

ExR

11a
 

( )2
11

54 10 m

i
v i

i i

La P
A E

−

=

= ×

∑       (2) 

 
The support at E  is hinged. Hence the total displacement at E must vanish. 
Thus, 
      011 =+Δ ADL Fa     (3) 
 

01041015 54 =×+× −−
ExR  

 
4

5

15 10
4 10

37.5 kN(towards left)

ExR
−

−

×
= −

×

= −
 

 
The actual member forces and reactions are shown in Fig. 10.2d. 
 
Table 10.2 Numerical computation for example 10.2 
 
Member iL  ii EA  Forces in 

the 
released 
truss due 
to applied 
loading 

iP  

Forces in 
the 
released 
truss due 
to unit 
load ( )ivP  

 

( )
AE
LPP i

ivi

 

 

( )
ii

i
iv EA

LP 2  

 

( )ivADi

i

PFP
F
+
=  

 m ( )510 kN kN kN ( )410− m ( )510− m/Kn kN 
AB 3 3 33.75 +1 3.375 1 -3.75 
BC 3 3 33.75 +1 3.375 1 -3.75 
CD 3 3 41.25 +1 4.125 1 3.75 
DE 3 3 41.25 +1 4.125 1 3.75 
FG 6 3 -7.50 0 0 0 -7.5 
FB 4 2 0.00 0 0 0 0 
GD 4 2 0.00 0 0 0 0 
AF 5 5 -6.25 0 0 0 -6.25 
FC 5 5 6.25 0 0 0 6.25 
CG 5 5 -6.25 0 0 0 -6.25 
GE 5 5 -68.75 0 0 0 -68.75 

    Total 15 4  
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Example 10.3 
Determine the reactions and the member axial forces of the truss shown in 
Fig.10.3a by force method due to external load and rise in temperature of 
member  by . The cross sectional areas of the members in square 
centimeters are shown in parenthesis. Assume  
and

FB C°40
5 22.0 10 N/mmE = ×

1 per °C75000α = . 

 

 
 
The given truss is indeterminate to second degree. The truss has both internal 
and external indeterminacy. Choose horizontal reaction at and the axial 
force in member as redundant actions. Releasing the restraint against 
redundant actions, a stable determinate truss is obtained as shown in Fig. 10.3b. 

D ( )1R
EC ( )2R
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Table 10.3a Deflection due to external loading 
 
Member iL  ii EA  Forces in 

the 
released 
truss due 
to applied 
loading 

iP  

Forces in 
the 
released 
truss due 
to unit 
load ( )ivP  

Forces in 
the 
released 
truss due 
to unit 
load ( )ivQ  

 

( )
AE
LPP i

ivi

 

 

( )
AE
LQP i

ivi  

 m ( )510 kN kN kN kN ( )410− m ( )410− m 
AB 4 3 40 +1 0 5.333 0.000
BC 4 3 60 +1 -0.8 8.000 -6.400
CD 4 3 60 +1 0 8.000 0.000
EF 4 3 -20 0 -0.8 0.000 2.133
EB 3 2 15 0 -0.6 0.000 -1.350
FC 3 2 0 0 -0.6 0.000 0.000
AE 5 4 -25 0 0 0.000 0.000
BF 5 4 -25 0 +1 0.000 -3.125
FD 5 4 -75 0 0 0.000 0.000
EC 5 4 0 0 +1 0.000 0.000

    Total  21.333 -8.742
 
Deflection of the released structure along redundant and respectively are, 1R 2R
 

( ) 4
1

21.33 10 m (towards right)L
−Δ = ×  

 
( ) 4

2
8.742 10 m (shortening)L

−Δ = − ×    (1) 
 
In the next step, compute the flexibility coefficients (ref. Fig. 10.3c and Fig. 10.3d 
and the accompanying table)   
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Table 10.3b Computation of flexibility coefficients 
 
Member iL  ii EA  ( )ivP  ( )

ii

i
iv EA

LP 2  ( )ivQ  ( )
ii

i
iv EA

LQ 2  ( ) ( )
AE
LQP i

iviv

 
 m ( )510 kN kN ( )510− m/kN kN ( )510− m/kN ( )510− m/kN 

AB 4 3 +1.00 1.333 0.000 0.000 0.000
BC 4 3 +1.00 1.333 -0.800 0.853 -1.067
CD 4 3 +1.00 1.333 0.000 0.000 0.000
EF 4 3 0 0.000 -0.800 0.853 0.000
EB 3 2 0 0.000 -0.600 0.540 0.000
FC 3 2 0 0.000 -0.600 0.540 0.000
AE 5 4 0 0.000 0.000 0.000 0.000
BF 5 4 0 0.000 1.000 1.250 0.000
FD 5 4 0 0.000 0.000 0.000 0.000
EC 5 4 0 0.000 1.000 1.250 0.000

   Total 4.000   5.286 -1.064
 
Thus, 
 

5
22

5
2112

5
11

10286.5

10064.1

104

−

−

−

×=

×−==

×=

a

aa

a

   (2) 

 
Analysis of truss when only external loads are acting  

The compatibility conditions of the problem may be written as, 
   

( ) 02121111 =++Δ RaRaL  
 

( ) 02221212 =++Δ RaRaL    (3) 
 
Solving     and 1 51.73 kN (towards left)R = − 2 6.136 kN (tensile)R =  
 
The actual member forces and reactions in the truss are shown in Fig 10.3c. 
Now, compute deflections corresponding to redundants due to rise in 
temperature in the member .  Due to rise in temperature, the change in length 
of member is, 

FB
FB
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m

LTT

31067.2540
75000

1 −×=××=

=Δ α
   (4) 

 
Due to change in temperature, the deflections corresponding to redundants 

and  are  1R 2R
 

( ) ( ) ( )

( ) ( ) ( ) mQ

P

iTivT

iTivT

3
2

1

1067.2

0

−×=Δ=Δ

=Δ=Δ

∑

∑
   (5) 

 
When both external loading and temperature loading are acting  

When both temperature loading and the external loading are considered, the 
compatibility equations can be written as, 
   

( ) ( ) 021211111 =++Δ+Δ RaRaTL  
 

( ) ( ) 022212122 =++Δ+Δ RaRaTL     (6) 
 
Solving     and 1 65.92 kN(towards left)R = − 2 47.26 kN (compressive)R = −  
 
The actual member forces and reactions are shown in Fig. 10.3f 
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Summary 
In this lesson, the flexibility matrix method is used to analyse statically 
indeterminate planar trusses. The equation to calculate the degree of statical 
indeterminacy of a planar truss is derived. The forces induced in the members 
due to temperature loading and member lack of fit is also discussed in this 
lesson.  Few examples are solved to illustrate the force method of analysis as 
applied to statically indeterminate planar trusses. 
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Instructional Objectives 
After reading this chapter the student will be able to 

1. Analyse the statically indeterminate plane frame by force method. 
2. Analyse the statically indeterminate plane frames undergoing support settlements. 
3. Calculate the static deflections of a primary structure (released frame) under 
external loads. 
4. Write compatibility equations of displacements for the plane deformations. 
5. Compute reaction components of the indeterminate frame. 
6. Draw shear force and bending moment diagrams for the frame. 
7. Draw qualitative elastic curve of the frame. 
 

 

11.1 Introduction 
The force method of analysis can readily be employed to analyze the indeterminate 
frames. The basic steps in the analysis of indeterminate frame by force method are 
the same as that discussed in the analysis of indeterminate beams in the previous 
lessons. Under the action of external loads, the frames undergo axial and bending 
deformations. Since the axial rigidity of the members is much higher than the 
bending rigidity, the axial deformations are much smaller than the bending 
deformations and are normally not considered in the analysis. The compatibility 
equations for the frame are written with respect to bending deformations only. The 
following examples illustrate the force method of analysis as applied to indeterminate 
frames. 
 
Example 11.1 
Analyse the rigid frame shown in Fig.11.1a and draw the bending moment diagram. 
Young’s modulus E  and moment of inertia I are constant for the plane frame. 
Neglect axial deformations. 
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The given one- storey frame is statically indeterminate to degree one. In the present 
case, the primary structure is one that is hinged at A  and roller supported at . 
Treat horizontal reaction at ,  as the redundant. The primary structure (which is 
stable and determinate) is shown in Fig.11.1.b.The compatibility condition of the 
problem is that the horizontal deformation of the primary structure (Fig.11.1.b) due to 
external loads plus the horizontal deformation of the support , due to redundant 

D
D DxR

D
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DxR  (vide Fig.11.1.b) must vanish. Calculate deformation  due to unit load at  

in the direction of . Multiplying this deformation with , the deformation due 
to redundant reaction can be obtained. 

11a D

DxR 11a DxR

 
DxRa11=Δ       (1) 

 
Now compute the horizontal deflection LΔ  at  due to externally applied load. This 
can be readily determined by unit load method. Apply a unit load along   as 
shown in Fig.10.1d.  

D

DxR

 

 
 
The horizontal deflection  at  in the primary structure due to external loading is 
given by  

LΔ D

 

               ∫=Δ
D

A

v
L dx

EI
MMδ      (2) 
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where  vMδ  is the internal virtual moment resultant in the frame due to virtual load 
applied at  along the resultant  and D DxR M  is the internal bending moment of the 
frame due to external loading (for details refer to Module 1,Lesson 5).Thus, 
 

      ( ) ( )
∫ ∫ +

−
+

−
=Δ

6

0

6

0

6

0

2 0        6)936(      12 dx
EI
xdx

EI
xdx

EI
xxx

L ∫    

   
 (span AB, origin at A)      (span BC, origin at B)        (span DC, origin at )    D
   

           
EIL

864
=Δ      (3) 

 
In the next step, calculate the displacement  at  when a real unit load is 
applied at  in the direction of 

11a D
D DxR  (refer to Fig.11.1 d). Please note that the same 

Fig. 11.1d is used to represent unit virtual load applied at  and real unit load 
applied at . Thus, 

D
D

 

                                    dx
EI

mm
a

D

A

v∫=
δ

11                                       

                               

                         
6 6 62 2

0 0 0

36x dx dx x dx
EI EI EI

= + +∫ ∫ ∫            

   

                         
EI

360
=          (4) 

 
Now, the compatibility condition of the problem may be written as  
 
                  011 =+Δ DxL Ra     (5) 
 
Solving, 
 

kN 40.2−=DxR     (6) 
         
The minus sign indicates that the redundant reaction  acts towards left. 
Remaining reactions are calculated from equations of static equilibrium. 

DxR

 
0 12 2.40 9.60 kN (towards left)x AxF R= ⇒ = − + = −∑  

 
0 9 kN (dowwards)D AyM R= ⇒ = −∑  

     
                        9 kN (upwards)DyR = +
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The bending moment diagram for the frame is shown in Fig. 11.1e 
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Example 11.2 
Analyze the rigid frame shown in Fig.11.2a and draw the bending moment and shear 
force diagram. The flexural rigidity for all members is the same. Neglect axial 
deformations. 
 

 
 
Five reactions components need to be evaluated in this rigid frame; hence it is 
indeterminate to second degree. Select )( 1RRcx =  and )( 2RRcy =  as the redundant 
reactions. Hence, the primary structure is one in which support A is fixed and the 
support C is free as shown in Fig.11.2b. Also, equations for moments in various 
spans of the frame are also given in the figure. 
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Calculate horizontal and vertical 1)( LΔ 2)( LΔ  deflections at C in the primary structure 
due to external loading. This can be done by unit load method. Thus, 
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0               96                 )3)(2496()(
3

0

3

0
1 ++

++
=Δ ∫∫ dx

EI
xdx

EI
xx

L  

                (Span DA, origin at D)        (Span BD, origin at B)  (span BC, Origin B) 
                   

 2268
EI

=       (1) 

 

 0          )2(48          )4(96          )4)(2496()(
2

0

3

0

3

0
2 +

−−
+

−
+

−+
=Δ ∫∫∫ EI

dxxx
EI

dx
EI

dxx
L  

                (Span DA, origin at D)      (Span BD, origin at B)      (Span BE, origin at E)  
(Span EC, Origin C)     
                

                          ( )2

3056
L EI

Δ = −     (2) 
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In the next step, evaluate flexibility coefficients, this is done by applying a unit load 
along,  and determining deflections    and    corresponding to  and  
respectively (vide, Fig .11.2 c). Again apply   unit load along  and evaluate 
deflections    and   corresponding to     and   and respectively (ref. 
Fig.11.2d). 

1R 11a 21a 1R 2R

2R

22a 12a 2R 1R

 

 
EI

dx
EI
xa 726

0

2

11 == ∫      (3) 

 

0)4(6

0
2112 +

−
== ∫ dx

EI
xaa  

                       
EI
72

=       (4) 

 
and       

 ∫ ∫+=
6

0

4

0

2

22
)(16 dx

EI
xdx

EI
a  

 

 
EI

33.117
=      (5) 

       
In the actual structure at C, the horizontal and vertical displacements are zero 
.Hence, the compatibility condition may be written as, 
 
     0)( 2121111 =+=Δ RaRaL

 
        (6) 2 12 1 22 2( ) 0L a R a RΔ = + =
 
Substituting the values of ,1)( LΔ 2)( lΔ  , ,  and  in the above equations and 
solving for   and  ,   we get 

11a 12a 22a

1R 2R
 
    (towards left) kN056.11 −=R
    (upwards) kN44.272 =R
 
The remaining reactions are calculated from equations of statics and they are shown 
in Fig 11.2e. The bending moment and shear force diagrams are shown in Fig. 11.2f. 
. 
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11.2 Support settlements 
As discussed in the case of statically indeterminate beams, the reactions are 
induced in the case of indeterminate frame due to yielding of supports even when 
there are no external loads acting on it. The yielding of supports may be either linear 
displacements or rotations of supports (only in the case of fixed supports) .The 
compatibility condition is that the total displacement of the determinate frame 
(primary structure) due to external loading and that due to redundant reaction at a 
given support must be equal to the predicted amount of yielding at that support. If the 
support is unyielding then it must be equal to zero. 
 
Example 11.3       

A rigid frame  is loaded as shown in the Fig 11.3a, Compute the reactions if the 
support  settles by 10 mm. vertically downwards. Assume 

ABC
D EI  to be constant for all 

members. Assume . 4 2200 10E GPa and I m−= =
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This problem is similar to the previous example except for   the support settlement 
.Hence only change will be in the compatibility equations. The released structure is 
as shown in Fig.11.3b .The deflections 1)( LΔ  and 2)( LΔ  at C in the primary structure 
due to external loading has already been computed in the previous example. Hence, 
 

     
EIL

2052)( 1 =Δ      (1) 
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EIL
3296)( 2

−
=Δ     (2) 

 
Therefore, 
     mL 1026.0)( 1 =Δ  
 

 
 

mL 1635.0)( 2 −=Δ

The flexibility coefficients are, 
 

     
EI

a 72
11 =      (3) 

 

     
EI

aa 72
2112

−
==     (4) 

 

     
EI

a 33.117
22 =      (5) 

 
Now, the compatibility equations may be written as, 
 
    0)( 2121111 =++Δ RaRaL  
 
       (6) 3

2221212 1010)( −×−=++Δ RaRaL

 
Solving which, 
 
    (towards left) kN072.21 −=R
 
    (upwards)    (7) kN4.262 +=R
 
The reactions are shown in Fig.11.3c. 
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Example 11.4 
eactions of the rigid frame shown in Fig.11.4a and draw bending Compute the r

moment diagram .Also sketch the deformed shape of the frame. Assume EI  to be 
constant for all members. 
 

 
 

elect vertical reaction at C, as the redundant .Releasing constraint against S 1R
redundant, the primary structure is obtained. It is shown in Fig.11.4b. 
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The deflection  in the primary structure due to external loading can be 
calculated from unit load method. 

1)( LΔ

 

    ∫
−

=Δ
3

0
1

)4)(12()(
EI

dxx
L  

                   (span DA, origin at D) 
 

             
EI
216−

=  (Downwards)   (1) 

 
Now, compute the flexibility coefficient, 
 

    ∫ ∫+=
4

0

6

0

2

11
16 dx
EI

dx
EI
xa  

               
EI

33.117
=      (2) 

 
The compatibility condition at support C is that the displacement at C in the primary 
structure due to external loading plus the displacement at C due to redundant must 
vanish. Thus, 
 

    033.117216
1 =+

− R
EIEI

    (3) 

 
Solving, 
 
          (4) kN84.11 =R
 
The remaining reactions are calculated from static equilibrium equations. They are 
shown in Fig.11.4d along with the bending moment diagram. 
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To sketch the deformed shape/elastic curve of the frame, it is required to compute 
rotations of joints B  and  and horizontal displacement of C . These joint rotations 
and displacements can also be calculated from the principle of superposition .The 
joint rotations are taken to be positive when clockwise. Towards this end first 
calculate joint rotations at 

C

)( BLB θ and )( CLC θ and horizontal displacement at  in the 
released structure (refer to Fig.11.4b).This can be evaluated by unit load method.  

C

 

    
EI

dx
EI
x

BL
54)1)((123

0

−
=

−
= ∫θ    (5) 

             

    
EI

dx
EI
x

CL
54)1)(12(3

0

−
=

−
= ∫θ     (6) 

 

    ∫
+

=Δ
3

0

)3(12 dx
EI

xx
CL EI

270
=    (7) 

 
Next, calculate the joint rotations and displacements when unit value of redundant is 
applied (Fig.11.4c). Let the joint rotations and displacements be CRBR θθ ,   and . CRΔ

 

      ∫=
6

0

4
EI
dx

BRθ  
EI
24

=     (8) 

  

   
EI

dx
EI

dx
EI
x

CR
32)1)(4()1)(( 6

0

4

0

=
−−

+
−−

= ∫∫θ   (9) 

 
 

    ∫
−

=
−

=Δ
6

0

72)4(
EI

dx
EI

x
CR     (10) 

            
Now using the principle of superposition, the actual rotations and displacements at 
the joints may be obtained. 
     1RBRBLB θθθ +=     (11) 
 

        54 24 1.84 9.84
EI EI E
− ×

= + = −
I

                 

(Clockwise rotation) 
 
     1RCRCLC ×+= θθθ       (12) 
      

    
EIEIEI
88.484.13254

=
×

+
−

=       

(Counterclockwise rotation) 
     1RCRCLC Δ+Δ=Δ      (13) 
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EIEI

84.172270 ×
−=

EI
52.137

=     (towards right)  

 
The qualitative elastic curve is shown in Fig. 11.4h. 
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Summary 
In this lesson, the statically indeterminate plane frames are analysed by force 
method. For the purpose of illustrations only bending deformations of the frame are 
considered as the axial deformations are very small. The problem of yielding of 
supports in the case of plane frames is also discussed.  The procedure to draw 
qualitative elastic curve of the frame is illustrated with the help of typical example. 
The bending moment and shear force diagrams are also drawn for the case of plane 
frame. 
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Instructional Objectives 
After reading this chapter the student will be able to 
1. Derive three-moment equations for a continuous beam with unyielding 

supports. 
2. Write compatibility equations of a continuous beam in terms of three 

moments. 
3. Compute reactions in statically indeterminate beams using three-moment 

equations. 
4. Analyse continuous beams having different moments of inertia in different 

spans using three-moment equations.  
 
 
12.1 Introduction 
Beams that have more than one span are defined as continuous beams. 
Continuous beams are very common in bridge and building structures. Hence, 
one needs to analyze continuous beams subjected to transverse loads and 
support settlements quite often in design. When beam is continuous over many 
supports and moment of inertia of different spans is different, the force method of 
analysis becomes quite cumbersome if vertical components of reactions are 
taken as redundant reactions. However, the force method of analysis could be 
further simplified for this particular case (continuous beam) by choosing the 
unknown bending moments at the supports as unknowns. One compatibility 
equation is written at each intermediate support of a continuous beam in terms of 
the loads on the adjacent span and bending moment at left, center (the support 
where the compatibility equation is written) and rigid supports. Two consecutive 
spans of the continuous beam are considered at one time. Since the compatibility 
equation is written in terms of three moments, it is known as the equation of three 
moments. In this manner, each span is treated individually as a simply supported 
beam with external loads and two end support moments. For each intermediate 
support, one compatibility equation is written in terms of three moments. Thus, 
we get as many equations as there are unknowns. Each equation will have only 
three unknowns. It may be noted that, Clapeyron first proposed this method in 
1857. In this lesson, three moment equations are derived for unyielding supports 
and in the next lesson the three moment equations are modified to consider 
support moments. 
 
 
12.2 Three-moment equation 
A continuous beam is shown in Fig.12.1a. Since, three moment equation relates 
moments at three successive supports to applied loading on adjacent spans, 
consider two adjacent spans of a continuous beam as shown in Fig.12.1b. , 

 and  respectively denote support moments at left, center and right 
supports. The moments are taken to be positive when they cause tension at 

LM

CM RM
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bottom fibers. The moment of inertia is taken to be different for different spans. In 
the present case  and  denote respectively moment of inertia of; left and 
right support and  and  are the left and right span respectively. It is assumed 
that supports are unyielding. The yielding of supports could be easily 
incorporated in three-moment equation, which will be discussed in the next 
lesson. Now it is required to derive a relation between ,  and . This 
relationship is derived from the fact that the tangent to the elastic curve at  is 
horizontal. In other words the joint C may be considered rigid. Thus, the 
compatibility equation is written as, 

LI RI

Ll Rl

LM CM RM
C

  
0=+ CRCL θθ      (12.1) 

 
The rotation left of the support C , CLθ and rotation right of the support C , 

CRθ   may be calculated from moment area method. Now, 
 

CLθ
'Deflection of L from tangent drawn at C(LL)

Ll
=  

            
MMoment of   diagram between C and L about L EI

Ll
=  

 

           
⎭
⎬
⎫

⎩
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= LL

L

C
LL

L

L

L

LL

L

ll
EI
M

ll
EI
M

EI
xA

l 3
2

2
1

3
1

2
11  

 

L

LC

L

LL

LL

LL
CL EI

lM
EI

lM
lEI
xA

36
++=θ     (12.2)   

 
Note that the actual moment diagram on span  is broken into two parts (1) 
due to loads applied on span  when it is considered as a simply supported 
beam and, (2) due to support moments. In the above equation  and  
denote respectively area of the bending moment diagrams due to applied loads 
on left and right supports. and  denote their respective C.G.(center of 
gravity) distances from the left and right support respectively. Similarly, 

LC
LC

LA RA

Lx Rx

 
deflection of R from  tangent drawn at C (RR')

CR
Rl

θ =   

              
MMoment of   diagram between C and R about R EI

Rl
=  
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R

RC

R

RR

RR

RR
CR EI

lM
EI

lM
lEI
xA

36
++=θ     (12.3)     

 
Substituting the values of CLθ  and CRθ  in the compatibility equation (12.1), 
 

0
3636

=+++++
R

RC

R

RR

RR

RR

L

LC

L

LL

LL

LL

EI
lM

EI
lM

lEI
xA

EI
lM

EI
lM

lEI
xA

  (12.4) 

 
which could be simplified to, 
 

LL

LL

RR

RR

R

R
R

R

R

L

L
C

L

L
L lI

xA
lI
xA

I
lM

I
l

I
lM

I
lM 662 −−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

⎭
⎬
⎫

⎩
⎨
⎧

++⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
 (12.5) 

 
The above equation (12.5) is known as the three-moment equation. It relates 
three support moments , and  with the applied loading on two 
adjacent spans. If in a span there are more than one type of loading (for 
example, uniformly distributed load and a concentrated load) then it is simpler to 
calculate moment diagram separately for each of loading and then to obtain 
moment diagram. 

LM CM RM
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12.3 Alternate derivation 
The above three moment equations may also be derived by direct application of 
force method as follows. Now choose , and the , the three support 
moments at left, centre and right supports respectively as the redundant 
moments. The primary determinate structure is obtained by releasing the 
constraint corresponding to redundant moments. In this particular case, inserting 
hinges at

LM CM RM

L ,C  and R , the primary structure is obtained as below (see Fig. 12.2) 
 

 
 

Let displacement (in the primary case rotations) corresponding to rotation  be 
, which is the sum of rotations 

CM

LΔ CLθ  and CRθ . Thus, 
 
      CRCLL θθ +=Δ                (12.6) 
 
It is observed that the rotations CLθ  and CRθ  are caused due to only applied 
loading as shown in Fig.12.2.This can be easily evaluated by moment area 
method as shown previously.  
 

      
RR

RR

LL

LL
L lEI

xA
lEI
xA

+=Δ    (12.7) 

 
In the next step, apply unit value of redundant moments at L ,  and C R  and 
calculate rotation at C (i.e. flexibility coefficients). 
 

L

L

EI
la

621 =  

R

R

L

L

EI
l

EI
la

3322 +=    (12.8) 

R

R

EI
la

623 =     
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In the actual structure the relative rotation of both sides is zero. In other words 
the compatibility equation is written as, 
 

0232221 =+++Δ RCLL MaMaMa    (12.9) 
 
Substituting the values of flexibility coefficients and LΔ  in the above equation, 
 

0
6336

=⎟⎟
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⎭
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lEI
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Or, 
 

LL
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R

R
R

R

R

L

L
C

L

L
L lI

xA
lI
xA

I
lM

I
l

I
lM

I
lM 662 −−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
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⎭
⎬
⎫

⎩
⎨
⎧

++⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
 (12.10) 

 
when moment of inertia remains constant i.e. R LI I I= =  ,the above equation 
simplifies to, 
 

( ) { } ( )
L

LL

R

RR
RRRLCLL l

xA
l

xAlMllMlM 662 −−=+++  (12.11) 

Example 12.1 
A continuous beam ABCD is carrying a uniformly distributed load of 1 kN/m over 
span  in addition to concentrated loads as shown in Fig.12.4a. Calculate 
support reactions. Also, draw bending moment and shear force diagram. Assume 

ABC

EI  to be constant for all members. 

Version 2 CE IIT, Kharagpur 
 



 
 
From inspection, it is assumed that the support moments at A is zero and 
support moment at C , 

15 kN.mCM =  (negative because it causes compression at bottom at C ) 
Hence, only one redundant moment  needs to be evaluated. Applying three-
moment equation to span , 

BM
ABC

 

{ } ( )
L

LL

R

RR
CC l

xA
l

xAMM 661010102 −−=++   (1) 

 
The bending moment diagrams for each span due to applied uniformly distributed 
and concentrated load are shown in Fig.12.4b. 
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Equation (1) may be written as, 
 

              
10

533.836
10

51256
10

533.83615040 ××
−

××
−

××
−=−BM  

 
Thus, 
                                        18.125 kN.mBM = −
 
After determining the redundant moment, the reactions are evaluated by 
equations of static equilibrium. The reactions are shown in Fig.12.4c along with 
the external load and support bending moment. 
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In span AB , can be calculated by the condition that AR ∑ = 0BM . Thus, 
 

0125.1851051010 =+×−×−×AR  
 

( )8.1875 kNAR = ↑  
 

( )11.8125 kNBLR = ↑  
 
Similarly from span , BC
 

( )4.7125 kNCR = ↑  
 

( )5.3125 kNBRR = ↑  
The shear force and bending moment diagrams are shown in Fig.12.4d. 
 
Example 12.2 

A continuous beam  is carrying uniformly distributed load of 2 kN/m as 
shown in Fig.12.5a.The moment of inertia of span 

ABC
AB  is twice that of span . 

Evaluate reactions and draw bending moment and shear force diagrams. 
BC
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By inspection it is seen that the moment at support  is zero. The support 
moment at 

C
A  and B  needs to be evaluated .For moment at B , the compatibility 
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equation is written by noting that the tangent to the elastic curve at B  is 
horizontal .The compatibility condition corresponding to redundant moment at A  
is written as follows. Consider span AB  as shown in Fig.12.5b. 
 
The slope at A , Aθ  may be calculated from moment-area method. Thus, 
 

L

RL

L

LA

L

LB
A EIl

xA
EI

lM
EI

lM )(
36

++=θ    (1) 

 
Now, compatibility equation is, 
 

0=Aθ      (2) 
 
It is observed that the tangent to elastic curve at A  remains horizontal. This can 
also be achieved as follows. Assume an imaginary span AA′  of length L′  left of 
support A  having a very high moment of inertia (see Fig. 12.5c). As the 
imaginary span has very high moment of inertia, it does not yield any imaginary 
span has very high moment of inertia it does not yield any EI

M diagram and 

hence no elastic curve. Hence, the tangent at A  to elastic curve remains 
horizontal. 
Now, consider the span ABA′ , applying three-moment equation to support A , 
 

)10(2
6

2
10

2
10'2

I
xA

I
M

I
LM RR

BA −=⎟
⎠
⎞

⎜
⎝
⎛+

⎭
⎬
⎫

⎩
⎨
⎧ +
∞

  (3) 

 
The above equation is the same as the equation (2). The simply supported 
bending moment diagram is shown in Fig.12.5d. 
 

 
 
Thus, equation (3) may be written as, 
 

10
5)67.166(6)10(20 ××

−=+ BA MM  
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5001020 −=+ BA MM    (4) 

 
Now, consider span , writing three moment equation for support ABC B , 
 

)5(
5.2837.206

)10(2
567.16665

2
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2
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××

−
×

××
−=

⎭
⎬
⎫

⎩
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⎧ ++

⎭
⎬
⎫

⎩
⎨
⎧

IIII
M

I
M BA  

 

5.312
5.62250205

−=
−−=+ BA MM     (5)  

                  
Solving equation (4) and (5), 
 

kN.m25.6−=BM  
 

kN.m5.37−=AM  
 

The remaining reactions are calculated by equilibrium equations (see Fig.12.5e) 
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In span AB ,  ∑ = 0BM
 

025.651025.3710 =+××−−×AR  
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( )13.125 kNAR = ↑  
 

( )6.875 kNBLR = ↑  
Similarly from span , BC
 

( )3.75 kNCR = ↑  
 

( )6.25 kNBRR = ↑  
  
The shear force and bending moment diagrams are shown in Fig. 12.5f. 
 

 

Summary 
In this lesson the continuous beam with unyielding supports is analysed by three-
moment equations. The three-moment equations are derived for the case of a 
continuous beam having different moment of inertia in different spans. The three-
moment equations also belong to force method of analysis and in this case, 
redundants are always taken as support moments. Hence, compatibility 
equations are derived in terms of three support moments.  Few problems are 
solved to illustrate the procedure. 
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Instructional Objectives 
After reading this chapter the student will be able to 
1. Derive three-moment equations for a continuous beam with yielding supports. 
2. Write compatibility equations of a continuous beam in terms of three 
moments. 
3. Compute reactions in statically indeterminate beams using three-moment 
equations. 
4. Analyse continuous beams having different moments of inertia in different 
spans and undergoing support settlements using three-moment equations.  
 
 
13.1 Introduction 
In the last lesson, three-moment equations were developed for continuous 
beams with unyielding supports. As discussed earlier, the support may settle by 
unequal amount during the lifetime of the structure. Such future unequal 
settlement induces extra stresses in statically indeterminate beams. Hence, one 
needs to consider these settlements in the analysis. The three-moment 
equations developed in the pervious lesson could be easily extended to account 
for the support yielding. In the next section three-moment equations are derived 
considering the support settlements. In the end, few problems are solved to 
illustrate the method. 
 
 
13.2 Derivation of Three-Moment Equation 
Consider a two span of a continuous beam loaded as shown in Fig.13.1. Let , 

 and  be the support moments at left, center and right supports 
respectively. As stated in the previous lesson, the moments are taken to be 
positive when they cause tension at the bottom fibers.  and denote moment 
of inertia of left and right span respectively and  and  denote left and right 
spans respectively. Let 

LM

CM RM

LI RI

Ll Rl

CL δδ ,  and Rδ  be the support settlements of left, centre 
and right supports respectively. CL δδ ,  and Rδ are taken as negative if the 
settlement is downwards. The tangent to the elastic curve at support  makes 
an angle 

C
CLθ  at left support and CRθ  at the right support as shown in Fig. 13.1. 

From the figure it is observed that, 
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CRCL θθ =     (13.1) 
 
The rotations CLβ  and CRβ   due to external loads and support moments are 

calculated from the EI
M  diagram .They are (see lesson 12) 
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LL
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LL
CL EI

lM
EI

lM
lEI
xA

36
++=β   (13.2a) 

        

R
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R

RR

RR

RR
CR EI

lM
EI

lM
lEI
xA

36
++=β   (13.2b) 

 
The rotations of the chord  and '  from the original position is given by ''CL 'RC
 

L

CL
CL l

δδ
α

−
=    (13.3a) 

R

CR
CR l

δδ
α

−
=    (13.3b) 

 
From Fig. 13.1, one could write, 
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CLCLCL βαθ −=     (13.4a) 

 
CRCRCR αβθ −=     (13.4b) 

 
Thus, from equations (13.1) and (13.4), one could write, 
 

CRCRCLCL αββα −=−    (13.5) 
 

Substituting the values of CLCRCL βαα ,,  and CRβ  in the above equation, 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
+−−=⎟⎟
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⎞
⎜⎜
⎝

⎛
+

⎭
⎬
⎫

⎩
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⎠

⎞
⎜⎜
⎝

⎛

R

CR

L

CL

LL
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RR
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R

R
R

R

R

L

L
C

L

L
L l

E
l

E
lI
xA

lI
xA

I
lM

I
l

I
lM

I
lM

δδδδ
66662

 
This may be written as  
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⎦
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RR
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R
R

R
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L
C
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L
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E
lI
xA

lI
xA

I
l

M
I
l

I
l

M
I
l

M
δδδδ

6
66

2   

(13.6) 
 
The above equation relates the redundant support moments at three successive 
spans with the applied loading on the adjacent spans and the support 
settlements. 
 
Example 13.1 
Draw the bending moment diagram of a continuous beam  shown in 
Fig.13.2a by three moment equations. The support 

BC
B settles by 5mm below A  

and . Also evaluate reactions atC A , B  and C .Assume EI  to be constant for all 
members and ,  200 GPaE = 6 48 10 mmI = ×
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Assume an imaginary span having infinitely large moment of inertia and arbitrary 
span L′  left of A  as shown in Fig.13.2b .Also it is observed  that moment at C  is 
zero. 
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The given problem is statically indeterminate to the second degree. The 
moments  and ,the redundants need to be evaluated. Applying three 
moment equation to the span A’AB,  

AM BM

 
0== CL δδ  and  mR

3105 −×−=δ
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ×−−
+−

××
−=⎟

⎠
⎞

⎜
⎝
⎛+

⎭
⎬
⎫

⎩
⎨
⎧ +
∞

+⎟
⎠
⎞

⎜
⎝
⎛
∞

−

4
105(006

)4(
28644'2''

3

E
II

M
I

LMLM BAA    

 

4
10562448

3−×
×−−=+ EIMM BA    (1) 

 

Note that, 23
3

126
9 kNm106.1

10
1010810200 ×=

××
××=

−

EI   

Thus, 

4
105106.162448

3
3

−×
×××−−=+ BA MM  

 
3648 −=+ BA MM     (2)   

 
Again applying three moment equation to span  the other equations is 
obtained. For this case,

ABC
0=Lδ , (negative as the settlement is 

downwards) and 
mC

3105 −×−=δ
0=Rδ . 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ×
−

×−
−

×
××

−−=
⎭
⎬
⎫

⎩
⎨
⎧ ++

⎭
⎬
⎫

⎩
⎨
⎧ −−

4
105

4
1056

4
2667.106244424 33

E
IIII

M
I

M BA  

 

4
1010106.163224164

3
3 ×
×××+−−=+ BA MM  

 
32164 −=+ BA MM     (3) 

 
Solving equations (2) and (3), 
 

1.0 kN.mBM = −  
4.0 kN.mAM = −        (4) 

 
Now, reactions are calculated from equations of static equilibrium (see 
Fig.13.2c). 
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Thus, 

( )
( )
( )
( )↑=

↑=

↑=

↑=

kN75.3
kN25.4
kN25.1

kN75.2

C

BR

BL

A

R
R
R

R

 

The reactions at B, 
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kN5.5=+= BLBRB RRR        (5) 
 
The area of each segment of the shear force diagram for the given continuous 
beam is also indicated in the above diagram. This could be used to verify the 
previously computed moments. For example, the area of the shear force diagram 
between A and B is .This must be equal to the change in the bending 
moment between A and D, which is indeed the case (

5.5 kN.m
4 1.5 5.5 kN.m− − = ). Thus, 

moments previously calculated are correct. 
 
Example 13.2 
A continuous beam  is supported on springs at supports ABCD B  and  as 
shown in Fig.13.3a. The loading is also shown in the figure. The stiffness of 

springs is

C

20
EIkB =  and 

30
EIkC =  .Evaluate support reactions and draw bending 

moment diagram. Assume EI  to be constant. 
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In the given problem it is required to evaluate bending moments at supports B  
and . By inspection it is observed that the support moments at C A  and  are 
zero. Since the continuous beam is supported on springs at 

D
B  andC , the 

support settles. Let BR  and  be the reactions at CR B  and  respectively. Then 

the support settlement at 

C

B  and C  are 
B

B

k
R  and 

C

C

k
R

 respectively. Both the 

settlements are negative and in other words they move downwards. Thus, 
 

0=Aδ ,
EI

RB
B

20−
=δ ,

EI
RC

C
30−

=δ  and 0=Dδ   (1) 
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Now applying three moment equations to span (see Fig.13.2b) ABC
 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣
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⎨
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4

233.21644424 EI
R

EI
R

EI
R

E
III

M
II

M
I

M
CB

B
CBA

 
Simplifying, 
 

CBCB RRMM 4560124416 −+−=+    (2) 
 
Again applying three moment equation to adjacent spans , CDBC  and 
 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
−

+
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−
×

×××+××
−−=

⎭
⎬
⎫

⎩
⎨
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⎭
⎬
⎫

⎩
⎨
⎧

EI
REI

R
EI
R

E
IIII

M
I

M C

BC

CB 4
30

4

2030

6
4

)1
3
236296(604424

   
BCCB RRMM 309090164 −+−=+     (3) 

                            
In equation (2) and (3) express  and  in terms of and (see 
Fig.13.2c) 

BR CR BM CM

 
( )
( )

( )
( )

( )
( )↑+=

↑−=

↑−+=

↑−+=

↑−=

↑+=

CD

CCR

CBCL

BCBR

BBL

BA

MR

MR

MMR

MMR

MR
MR

25.06

25.02

25.025.05

25.025.05

25.08
25.08

    (4) 

 
Note that initially all reactions are assumed to act in the positive direction (i.e. 
upwards) .Now, 
 

CBBRBLB MMRRR 25.05.013 +−=+=  
 

CBCRCLC MMRRR 5.025.07 −+=+=    (5) 
  
Now substituting the values of  and  in equations (2) and (3), BR CR
 

( ) ( )CBCBCB MMMMMM 5.025.074525.05.01360124416 −+−+−+−=+  
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Or, 
 

3415.3325.57 =− CB MM     (6) 
 
And from equation 3, 
 

( ) ( )CBCBCB MMMMMM 25.05.013305.025.079090164 +−−−++−=+  
 
Simplifying,  
 

1505.685.33 =+− CB MM     (7) 
 
Solving equations (6) and (7) 
 

7.147 kN.m
10.138 kN.m

C

B

M
M

=
=

     (8) 

 
Substituting the values of and in (4),reactions are obtained. BM CM
 

( ) ( )
( ) ( )
( ) ( )
( ) ( )

10.535 kN 5.465 kN

4.252 kN 5.748 kN

0.213 kN 7.787 kN

9.717 kN 5.961 kN

A BL

BR CL

CR D

B C

R R

R R

R R

R and R

= ↑ = ↑

= ↑ = ↑

= ↑ =

= ↑ =

↑

↑

 

 
The shear force and bending moment diagram are shown in Fig. 13.2d. 
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Example 13.3 
Sketch the deflected shape of the continuous beam ABC of example 13.1.  
The redundant moments  and  for this problem have already been 
computed in problem 13.1.They are, 

AM BM

 
1.0 kN.mBM = −  
4.0 kN.mAM = −   

 
The computed reactions are also shown in Fig.13.2c.Now to sketch the deformed 
shape of the beam it is required to compute rotations at B and C. These joints 
rotations are computed from equations (13.2) and (13.3). 
For calculating Aθ , consider span A’AB 
 

      ARARA αβθ −=  
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⎠
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0=         (1) 

 
For calculating BLθ , consider span ABC 
 

     BLBLBL βαθ −=  
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31025.1 −×= radians      (2) 

 
For BRθ  consider span ABC 
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The deflected shape of the beam is shown in Fig. 13.4. 
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Summary 
The continuous beams with unyielding supports are analysed using three-
moment equations in the last lesson. In this lesson, the three-moment-equations 
developed in the previous lesson are extended to account for the support 
settlements. The three-moment equations are derived for the case of a 
continuous beam having different moment of inertia in different spans. Few 
examples are derived to illustrate the procedure of analysing continuous beams 
undergoing support settlements using three-moment equations. 
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Introduction 
As pointed out earlier, there are two distinct methods of analysis for statically 
indeterminate structures depending on how equations of equilibrium, load 
displacement and compatibility conditions are satisfied: 1) force method of 
analysis and (2) displacement method of analysis. In the last module, force 
method of analysis was discussed. In this module, the displacement method of 
analysis will be discussed. In the force method of analysis, primary unknowns are 
forces and compatibility of displacements is written in terms of pre-selected 
redundant reactions and flexibility coefficients using force displacement relations. 
Solving these equations, the unknown redundant reactions are evaluated. The 
remaining reactions are obtained from equations of equilibrium.  
As the name itself suggests, in the displacement method of analysis, the primary 
unknowns are displacements. Once the structural model is defined for the 
problem, the unknowns are automatically chosen unlike the force method. Hence 
this method is more suitable for computer implementation. In the displacement 
method of analysis, first equilibrium equations are satisfied. The equilibrium of 
forces is written by expressing the unknown joint displacements in terms of load 
by using load displacement relations. These equilibrium equations are solved for 
unknown joint displacements. In the next step, the unknown reactions are 
computed from compatibility equations using force displacement relations. In 
displacement method, three methods which are closely related to each other will 
be discussed.  

 
1) Slope-Deflection Method  
2) Moment Distribution Method 
3) Direct Stiffness Method 

 
In this module first two methods are discussed and direct stiffness method is 
treated in the next module. All displacement methods follow the above general 
procedure. The Slope-deflection and moment distribution methods were 
extensively used for many years before the compute era. After the revolution 
occurred in the field of computing only direct stiffness method is preferred. 
 
Degrees of freedom 
In the displacement method of analysis, primary unknowns are joint 
displacements which are commonly referred to as the degrees of freedom of the 
structure. It is necessary to consider all the independent degrees of freedom 
while writing the equilibrium equations.These degrees of freedom are specified at 
supports, joints and at the free ends. For example, a propped cantilever beam 
(see Fig.14.01a) under the action of load P will undergo only rotation at B if axial 
deformation is neglected. In this case kinematic degree of freedom of the beam 
is only one i.e. Bθ  as shown in the figure. 
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In Fig.14.01b, we have nodes at A,B,C and D. Under the action of lateral loads   
   and , this continuous beam deform as shown in the figure. Here axial 

deformations are neglected. For this beam we have five degrees of freedom 
21, PP 3P

CBA θθθ ,,  ,  and   as indicated in the figure. In Fig.14.02a, a symmetrical plane 
frame is loaded symmetrically. In this case we have only two degrees of 
freedom

Dθ DΔ

Bθ   and Cθ . Now consider a frame as shown in Fig.14.02b. It has three 
degrees of freedom viz. Bθ , Cθ  and DΔ  as shown. Under the action of horizontal 
and vertical load, the frame will be displaced as shown in the figure. It is 
observed that nodes at B and C undergo rotation and also get displaced 
horizontally by an equal amount. 
 

 
 
Hence in plane structures, each node can have at the most one linear 
displacement and one rotation. In this module first slope-deflection equations as 
applied to beams and rigid frames will be discussed.  
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Instructional Objectives 
After reading this chapter the student will be able to 
1. Calculate kinematic degrees of freedom of continuous beam. 
2. Derive slope-deflection equations for the case beam with unyielding supports. 
3. Differentiate between force method and displacement method of analyses. 
4. State advantages of displacement method of analysis as compared to force 
method of analysis. 
5. Analyse continuous beam using slope-deflection method. 
 
 
14.1 Introduction 
In this lesson the slope-deflection equations are derived for the case of a beam 
with unyielding supports .In this method, the unknown slopes and deflections at 
nodes are related to the applied loading on the structure. As introduced earlier, 
the slope-deflection method can be used to analyze statically determinate and 
indeterminate beams and frames. In this method it is assumed that all 
deformations are due to bending only. In other words deformations due to axial 
forces are neglected. As discussed earlier in the force method of analysis 
compatibility equations are written in terms of unknown reactions. It must be 
noted that all the unknown reactions appear in each of the compatibility 
equations making it difficult to solve resulting equations. The slope-deflection 
equations are not that lengthy in comparison. 
The slope-deflection method was originally developed by Heinrich Manderla and 
Otto Mohr for computing secondary stresses in trusses. The method as used 
today was presented by G.A.Maney in 1915 for analyzing rigid jointed structures. 
 
 
14.2 Slope-Deflection Equations 
Consider a typical span of a continuous beam AB  as shown in Fig.14.1.The 
beam has constant flexural rigidity EI and is subjected to uniformly distributed 
loading and concentrated loads as shown in the figure. The beam is kinematically 
indeterminate to second degree. In this lesson, the slope-deflection equations 
are derived for the simplest case i.e. for the case of continuous beams with 
unyielding supports. In the next lesson, the support settlements are included in 
the slope-deflection equations. 
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For this problem, it is required to derive relation between the joint end 
moments  and in terms of joint rotations ABM BAM Aθ  and Bθ and loads acting on the 
beam .Two subscripts are used to denote end moments. For example, end 
moments ABM  denote moment acting at joint A of the member AB. Rotations of 
the tangent to the elastic curve are denoted by one subscript. Thus, Aθ  denotes 
the rotation of the tangent to the elastic curve at A. The following sign 
conventions are used in the slope-deflection equations (1) Moments acting at the 
ends of the member in counterclockwise direction are taken to be positive. (2) 
The rotation of the tangent to the elastic curve is taken to be positive when the 
tangent to the elastic curve has rotated in the counterclockwise direction from its 
original direction. The slope-deflection equations are derived by superimposing 
the end moments developed due to (1) applied loads (2) rotation Aθ  (3) 
rotation Bθ . This is shown in Fig.14.2 (a)-(c). In Fig. 14.2(b) a kinematically 
determinate structure is obtained. This condition is obtained by modifying the 
support conditions to fixed so that the unknown joint rotations become zero. The 
structure shown in Fig.14.2 (b) is known as kinematically determinate structure or 
restrained structure. For this case, the end moments are denoted by and . 
The fixed end moments are evaluated by force–method of analysis as discussed 
in the previous module. For example for fixed- fixed beam subjected to uniformly 
distributed load, the fixed-end moments are shown in Fig.14.3. 

F
ABM F

BAM
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The fixed end moments are required for various load cases. For ease of 
calculations, fixed end forces for various load cases are given at the end of this 
lesson. In the actual structure end A rotates by Aθ  and end B rotates by Bθ . Now 
it is required to derive a relation relating Aθ  and Bθ  with the end moments  and 

. Towards this end, now consider a simply supported beam acted by moment 
ABM ′

BAM ′

ABM ′  at A as shown in Fig. 14.4. The end moment ABM ′ deflects the beam as 
shown in the figure. The rotations Aθ′ and Bθ′ are calculated from moment-area 
theorem. 
 

3
AB

A
M L

EI
θ

′
′ =     (14.1a) 

6
AB

B
M L

EI
θ

′
′ = −     (14.1b) 

 
Now a similar relation may be derived if only BAM ′ is acting at end B (see Fig. 
14.4). 

3
BA

B
M L

EI
θ

′
′′ =  and    (14.2a) 

6
BA

A
M L

EI
θ

′
′′ = −     (14.2b) 

 
Now combining these two relations, we could relate end moments acting at A  
and B  to rotations produced at A  and B as (see Fig. 14.2c) 
 

EI
LM

EI
LM BAAB

A 63

''

−=θ   (14.3a) 
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EI
LM

EI
LM BABA

B 63
′

−
′

=θ    (14.3b) 

 
Solving for and  in terms of ABM ′ BAM ′ Aθ  and Bθ , 
 

)2(2
BAAB L

EIM θθ +=′    (14.4) 

)2(2
ABBA L

EIM θθ +=′    (14.5) 

 
Now writing the equilibrium equation for joint moment at A (see Fig. 14.2). 
 

AB
F
ABAB MMM ′+=     (14.6a) 

 
Similarly writing equilibrium equation for joint  B  
 

BA
F
BABA MMM ′+=     (14.6b) 

 
Substituting the value of ABM ′ from equation (14.4) in equation (14.6a) one 
obtains, 
 

)2(2
BA

F
ABAB L

EIMM θθ ++=   (14.7a) 

 
Similarly substituting BAM ′ from equation (14.6b) in equation (14.6b) one obtains, 
 

)2(2
AB

F
BABA L

EIMM θθ ++=   (14.7b) 

 
Sometimes one end is referred to as near end and the other end as the far end. 
In that case, the above equation may be stated as the internal moment at the 
near end of the span is equal to the fixed end moment at the near end due to 

external loads plus 
L
EI2

 times the sum of twice the slope at the near end and the 

slope at the far end. The above two equations (14.7a) and (14.7b) simply 
referred to as slope–deflection equations. The slope-deflection equation is 
nothing but a load displacement relationship. 
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14.3 Application of Slope-Deflection Equations to Statically 
Indeterminate Beams. 
The procedure is the same whether it is applied to beams or frames. It may be 
summarized as follows: 

1. Identify all kinematic degrees of freedom for the given problem. This can 
be done by drawing the deflection shape of the structure. All degrees of 
freedom are treated as unknowns in slope-deflection method. 

2. Determine the fixed end moments at each end of the span to applied load. 
The table given at the end of this lesson may be used for this purpose. 

3. Express all internal end moments in terms of fixed end moments and near 
end, and far end joint rotations by slope-deflection equations. 

4. Write down one equilibrium equation for each unknown joint rotation. For 
example, at a support in a continuous beam, the sum of all moments 
corresponding to an unknown joint rotation at that support must be zero. 
Write down as many equilibrium equations as there are unknown joint 
rotations. 

5. Solve the above set of equilibrium equations for joint rotations. 
6. Now substituting these joint rotations in the slope-deflection equations 

evaluate the end moments. 
7. Determine all rotations. 
 

Example 14.1 
A continuous beam  is carrying uniformly distributed load of 2 kN/m in 
addition to a concentrated load of 20 kN as shown in Fig.14.5a. Draw bending 
moment and shear force diagrams. Assume EI to be constant. 

ABC

 

 
 
(a). Degrees of freedom  
 It is observed that the continuous beam is kinematically indeterminate to first 
degree as only one joint rotation Bθ is unknown. The deflected shape /elastic 
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curve of the beam is drawn in Fig.14.5b in order to identify degrees of freedom. 
By fixing the support or restraining the support against rotation, the fixed-fixed 
beams area obtained as shown in Fig.14.5c. 

B

 

  
 
(b). Fixed end moments  and  are calculated referring to the 
Fig. 14. and following the sign conventions that counterclockwise moments are 
positive. 

F
BC

F
BA

F
AB MMM ,, F

CBM

2 2

2

2 6 20 3 3 21 kN.m
12 6

F
ABM × × ×
= + =  

21 kN.mF
BAM = −  

24 4 5.33 kN.m
12

F
BCM ×
= =  

5.33 kN.mF
CBM = −      (1) 

 
(c) Slope-deflection equations 
Since ends A and C are fixed, the rotation at the fixed supports is zero, 

0== CA θθ . Only one non-zero rotation is to be evaluated for this problem. Now, 
write slope-deflection equations for span AB and BC. 

)2(2
BA

F
ABAB l

EIMM θθ ++=  
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BAB
EIM θ
6

221+=      (2) 

 

)2(221 ABBA l
EIM θθ ++−=      

    

BBA
EIM θ
6

421+−=      (3) 

 
BBC EIM θ+= 33.5      (4) 

 
BCB EIM θ5.033.5 +−=     (5) 

 
(d) Equilibrium equations 
In the above four equations (2-5), the member end moments are expressed in 
terms of unknown rotation Bθ . Now, the required equation to solve for the rotation 

Bθ is the moment equilibrium equation at support B . The free body diagram of 
support B  along with the support moments acting on it is shown in Fig. 14.5d. 
For, moment equilibrium at supportB , one must have, 
 

 
 

0=∑ BM   0=+ BCBA MM    (6) 
 
Substituting the values of and in the above equilibrium equation, BAM BCM

033.5
6

421 =+++− BB EIEI θθ  

667.15667.1 =⇒ EIBθ  
 

EIEIB
40.9398.9

≅=θ      (7) 

 
(e) End moments 
After evaluating Bθ , substitute it in equations (2-5) to evaluate beam end 
moments. Thus, 
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BAB
EIM θ
3

21+=  

 

kN.m133.24398.9
3

21 =×+=
EI

EIM AB  

 

)2(
3

21 BBA
EIM θ+−=  

 

kN.m733.144.92
3

21 −=
×

×+−=
EI

EIM BA  

 

kN.m733.144.9333.5 =+= EI
EI

M BC  

 
9.45.333 0.63 kN.m

2CB
EIM

EI
= − + × = −    (8) 

 
(f) Reactions 
Now, reactions at supports are evaluated using equilibrium equations (vide Fig. 
14.5e) 
 

 
 

0133.24362320733.146 =−××−×−+×AR  
17.567 kN( )AR = ↑  
16 1.567 14.433 kN( )BLR = − = ↑  

14.733 0.638 11.526 kN( )
4BRR −

= + = ↑  

 
8 3.526 4.47 kN( )CR = + = ↑      (9) 

 
The shear force and bending moment diagrams are shown in Fig. 14.5f. 
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Example 14.2 
Draw shear force and bending moment diagram for the continuous beam  
loaded as shown in Fig.14.6a.The relative stiffness of each span of the beam is 
also shown in the figure. 

ABCD

 

 
 
For the cantilever beam portion CD, no slope-deflection equation need to be 
written as there is no internal moment at end D.  First, fixing the supports at B 
and C, calculate the fixed end moments for span AB and BC. Thus, 
 

     
23 8 16 kN.m

12
F
ABM ×
= =  

 
16 kN.mF

BAM = −  
 

2

2

10 3 3 7.5 kN.m
6

F
BCM × ×

= =  

 
7.5 kN.mF

CBM = −      (1) 
 
In the next step write slope-deflection equation. There are two equations for each 
span of the continuous beam. 
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EIEIM BBAB θθ 25.016)(
8

216 +=+=  

EIM BBA θ5.016 +−=  

CBCBBC EIEIEIM θθθθ 667.0334.15.7)2(
6
225.7 ++=+

×
+=  

BCCB EIEIM θθ 667.0334.15.7 ++−=     (2) 
 
Equilibrium equations 
The free body diagram of members AB ,  and joints BC B  and C  are shown in 
Fig.14.6b.One could write one equilibrium equation for each joint B and C. 
 

 
 
Support B,  
 

0=∑ BM    0=+ BCBA MM    (3) 
 

0=∑ CM    0=+ CDCB MM    (4) 
 
We know that        (5) 15 kN.mCDM =
 

15 kN.mCBM⇒ = −      (6) 
 
Substituting the values of CBM  and CDM in the above equations 
for and   we get, BCBAAB MMM ,, CBM
 

164.8
001.3

5.24
==Bθ   

       
704.9=Cθ       (7) 

 
Substituting Bθ , Cθ in the slope-deflection equations, we get 
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8.16416 0.25 16 0.25 18.04 kN.mAB BM EI EI
EI

θ= + = + × =  

8.16416 0.5 16 0.5 11.918 kN.mBA BM EI EI
EI

θ= − + = − + × = −  

8.164 9.7047.5 1.334 0.667 ( ) 11.918 kN.mBCM EI EI
EI EI

= + × + =  

8.164 9.7047.5 0.667 1.334 ( ) 15 kN.mCBM EI EI
EI EI

= − + × + − = −  (8) 

 
Reactions are obtained from equilibrium equations (ref. Fig. 14.6c) 
 

 
 

0918.11483041.188 =+××−−×AR  
 

12.765 kNAR =  
 

5 0.514 4.486 kNBRR kN= − =  
 

11.235 kNBLR =  
 

5 0.514 5.514 kNCR kN= + =  
 

The shear force and bending moment diagrams are shown in Fig. 14.6d. 
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For ease of calculations, fixed end forces for various load cases are given in Fig. 
14.7. 
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Summary 
In this lesson the slope-deflection equations are derived for beams with 
unyielding supports. The kinematically indeterminate beams are analysed by 
slope-deflection equations. The advantages of displacement method of analysis 
over force method of analysis are clearly brought out here. A couple of examples 
are solved to illustrate the slope-deflection equations. 
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Instructional Objectives 
After reading this chapter the student will be able to 

1. Derive slope-deflection equations for the case beam with yielding supports. 
2. Estimate the reactions induced in the beam due to support settlements. 
3. Analyse the beam undergoing support settlements and subjected to external 

loads. 
4. Write joint equilibrium equations in terms of moments. 
5. Relate moments to joint rotations and support settlements. 
 
 
15.1 Introduction  
In the last lesson, slope-deflection equations were derived without considering 
the rotation of the beam axis. In this lesson, slope-deflection equations are 
derived considering the rotation of beam axis. In statically indeterminate 
structures, the beam axis rotates due to support yielding and this would in turn 
induce reactions and stresses in the structure. Hence, in this case the beam end 
moments are related to rotations, applied loads and beam axes rotation. After 
deriving the slope-deflection equation in section 15.2, few problems are solved to 
illustrate the procedure. 
 
Consider a beam AB  as shown in Fig.15.1.The support B  is at a higher 
elevation compared to A  by an amountΔ . Hence, the member axis has rotated 
by an amount ψ from the original direction as shown in the figure. Let L  be the 
span of the beam and flexural rigidity of the beam EI , is assumed to be constant 
for the beam. The chord has rotated in the counterclockwise direction with 
respect to its original direction. The counterclockwise moment and rotations are 
assumed to be positive. As stated earlier, the slopes and rotations are derived by 
superposing the end moments developed due to  
 

(1) Externally applied moments on beams. 
(2) Displacements Aθ , Bθ  and Δ (settlement) 
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The given beam with initial support settlement may be thought of as 
superposition of two simple cases as shown in Fig.15.1 (b) and in Fig. 15.1(c). In 
Fig.15.1b, the kinematically determinate beam is shown with the applied load. 
For this case, the fixed end moments are calculated by force method. Let Aφ  and 

Bφ  be the end rotations of the elastic curve with respect to rotated beam axis AB’ 
(see Fig.15.1c) that are caused by end moments  and . Assuming that 
rotations and displacements shown in Fig.15.1c are so small that  

'
ABM '

BAM

 

l
Δ

==ψψtan     (15.1) 

 
Also, using the moment area theorem, Aφ  and Bφ  are written as  
 

    
EI

LM
EI

LM ABAB
AA 6

'
3

'
−=−= ψθφ   (15.2a) 
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EI
LM

EI
LM ABBA

BB 6
'

3
'

−=−= ψθφ    (15.2b) 

 
Now solving for  and  in terms of'

AM '
BM Aθ , Bθ  andψ , 

 

)32(2' ψθθ −+= BAAB L
EIM     (15.3a) 

 

)32(2' ψθθ −+= ABBA L
EIM     (15.3b) 

 
Now superposing the fixed end moments due to external load and end moments 
due to displacements, the end moments in the actual structure is obtained .Thus 
(see Fig.15.1) 
 

'AB
F

ABAB MMM +=      (15.4a) 
 

'      (15.4b) BA
F

BABA MMM +=
 
Substituting for   and   in equation (15.4a) and (15.4b), the slope-
deflection equations for the general case are obtained. Thus, 

'
ABM '

BAM

 

)32(2 ψθθ −++= BA
F

ABAB L
EIMM     (15.5a) 

)32(2 ψθθ −++= AB
F

BABA L
EIMM     (15.5b) 

 
In the above equations, it is important to adopt consistent sign convention. In the 
above derivation Δ  is taken to be negative for downward displacements. 
 
Example 15.1 

Calculate the support moments in the continuous beam (see Fig.15.2a) 
having constant flexural rigidity 

ABC
EI  throughout ,due to vertical settlement of the 

support B  by 5mm. Assume E =200 GPa and I = .Also plot 
quantitative elastic curve. 

44104 m−×
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In the continuous beam , two rotations ABC Bθ and Cθ  need to be evaluated. 
Hence, beam is kinematically indeterminate to second degree. As there is no 
external load on the beam, the fixed end moments in the restrained beam are 
zero (see Fig.15.2b). 
 

 
 
For each span, two slope-deflection equations need to be written. In span AB , 
B is below A . Hence, the chord AB  rotates in clockwise direction. Thus, ABψ  is 
taken as negative. 
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3
3

101
5
105 −

−

×−=
×−

=ABψ    (1) 

 
Writing slope-deflection equation for span AB , 
 

( ABBAAB )
L
EIM ψθθ 322

−+=     

  
For span AB , ,0=Aθ Hence, 

  ( )3103
5

2 −×+= BAB
EIM θ  

 
EIEIOM BAB 0012.4. += θ    (2) 

 
Similarly, for beam-end moment at end B , in span AB  
 

( )310324.0 −×+= BBA EIM θ  
EIEIM BBA 0012.08.0 += θ    (3) 

 
In span , the support  is above supportBC C B , Hence the chord joining CB′  
rotates in anticlockwise direction. 
 

3101 −×== CBBC ψψ     (4) 
 

Writing slope-deflection equations for span , BC
 

EIEIEIM CBBC
3102.14.08.0 −×−+= θθ     

   
EIEIEIM BCCB

3102.14.08.0 −×−+= θθ   (5) 
 
Now, consider the joint equilibrium of support B (see Fig.15.2c) 
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0=+ BCBA MM     (6) 
 
Substituting the values of  and  in equation (6), BAM BCM
 
  0102.14.08.0102.18.0 33 =×−++×+ −− EIEIEIEIEI CBB θθθ
Simplifying, 
 
         (7) 3102.14.06.1 −×=+ CB θθ
 
Also, the support C  is simply supported and hence, 0=CBM  
 
    EIM BCCB

3102.14.08.00 −×−+== θθ
 
       (8) 3102.14.08.0 −×=+ BC θθ
 
We have two unknowns Bθ and Cθ and there are two equations in Bθ  and Cθ . 
Solving equations (7) and (8) 
 
    radians 3104286.0 −×−=Bθ
 
      radians    (9)  3107143.1 −×=Cθ
 
Substituting the values of Bθ , Cθ  and EI  in slope-deflection equations, 
 
    kN.m 285.82=ABM  
 
    kN.m 570.68=BAM  
 
    kN.m 573.68−=BCM  
 
    kN.m 0=CBM     (10) 
 
Reactions are obtained from equations of static equilibrium (vide Fig.15.2d) 
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In beam AB , 
 
    ,  0=∑ BM )(kN 171.30 ↑=AR
 
     )(kN 171.30 ↓−=BLR
 
     )(kN 714.13 ↓−=BRR
 
     )(kN 714.13 ↑=CR
 
The shear force and bending moment diagram is shown in Fig.15.2e and elastic 
curve is shown in Fig.15.2f. 
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Example 15.2 
A continuous beam  is carrying a uniformly distributed load of 5 kN/m as 
shown in Fig.15.3a. Compute reactions and draw shear force and bending 
moment diagram due to following support settlements. 

ABCD
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Support B    0.005m vertically downwards 
Support C     0.01 m vertically downwards 
Assume E =200 GPa,  431035.1 mI −×=
 

 
 
In the above continuous beam, four rotations Aθ , Bθ , Cθ  and Dθ  are to be 
evaluated. One equilibrium equation can be written at each support.Hence, 
solving the four equilibrium equations, the rotations are evaluated and hence the 
moments from slope-deflection equations. Now consider the kinematically 
restrained beam as shown in Fig.15.3b. 
 
Referring to standard tables the fixed end moments may be evaluated .Otherwise 
one could obtain fixed end moments from force method of analysis. The fixed 
end moments in the present case are (vide fig.15.3b) 
 

 
 
    kN.m 667.41=F

ABM
 
   (clockwise) kN.m 667.41−=F

BAM
 
   (counterclockwise) kN.m 667.41=F

BCM
 
    (clockwise) kN.m 667.41−=F

CBM
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    (counterclockwise) kN.m 667.41=F
CDM

 
   (clockwise)    (1) kN.m 667.41−=F

DCM
 
In the next step, write slope-deflection equations for each span. In the 
span AB , B  is below A and hence the chord joining BA ′  rotates in the clockwise 
direction (see Fig.15.3c) 
 

 
 

0005.0
10

005.00
−=

−
=ABψ radians (negative as the chord BA ′  rotates in the 

clockwise direction from the original direction) 
 

0005.0−=BCψ  radians (negative as the chord CB ′′  rotates in the clockwise 
direction) 
 

001.0
10
01.0

==CDψ  radians (positive as the chord DC ′  rotates in the counter 

clockwise direction from the original direction)     (2) 
 
Now, writing the expressions for the span end moments, for each of the spans,  
 
  )0005.02(2.0667.41 +++= BAAB EIM θθ  
  )0005.02(2.0667.41 +++−= ABBA EIM θθ  
 
  )0005.02(2.0667.41 +++= CBBC EIM θθ  
  )0005.02(2.0667.41 +++−= BCCB EIM θθ  
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  )001.02(2.0667.41 −++= DCCD EIM θθ  
  )001.02(2.0667.41 −++−= CDDC EIM θθ    (3) 
 
For the present problem, four joint equilibrium equations can be written, one each 
for each of the supports. They are  
 
     00 =⇒=∑ ABA MM
 
     00 =+⇒=∑ BCBAB MMM
 
     00 =+⇒=∑ CDCBC MMM
 
        (4) 00 =⇒=∑ DCD MM
 
Substituting the values of beam end moments from equations (3) in equation (4), 
four equations are obtained in four unknown rotations Aθ , Bθ , Cθ  and Dθ .They 
are, 
 
    ( ) 263 kN.m 000,2701035.110200 =×××= −EI
 
     3102716.12 −×−=+ BA θθ
 
    001.04 −=++ CBA θθθ  
 
    0005.04 =++ DCB θθθ   
 
        (5) 3107716.12 −×=+ DC θθ
 
Solving the above sets of simultaneous equations, values of Aθ , Bθ , Cθ  and Dθ are 
evaluated. 
 
      radians 4109629.5 −×−=Aθ
 
      radians 5109013.7 −×−=Bθ
 
      radians 5107653.8 −×−=Cθ
 
      radians   (6) 4102963.9 −×=Dθ
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Substituting the values in slope-deflection equations the beam end moments are 
evaluated. 
 

0)}0005.0)109013.7()109629.5(2{000,2702.0667.41 54 =+×−+×−×+= −−
ABM  

 
kN.m 40.55}0005.0109629.5)109013.7(2{000,2702.0667.41 45 −=+×−×−×+−= −−

BAM
 

kN.m 40.55}0005.0)107653.8()109013.7(2{000,2702.0667.41 55 =+×−+×−×+= −−
BCM

 
kN.m 40.28}0005.0109013.7)10765.8(2{000,2702.0667.41 55 −=+×−×−×+−= −−

CBM
 

kN.m 40.28}001.0102963.9)10765.8(2{000,2702.0667.41 45 =−×+×−××+= −−
CDM  

 
kN.m 0}001.0107653.8102963.92{000,2702.0667.41 54 =−×−×××+−= −−

DCM   (7) 
 
Reactions are obtained from equilibrium equations. Now consider the free body 
diagram of the beam with end moments and external loads as shown in 
Fig.15.3d. 
 

 
 
      )(kN 46.19 ↑=AR
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      )(kN 54.30 ↑=BLR
 
      )(kN 7.27 ↑=BRR
 
      )(kN 3.22 ↑=CLR
 
      )(kN 84.27 ↑=CRR
 
      )(kN 16.22 ↑=DR

 
The shear force and bending moment diagrams are shown in Fig.15.5e. 

 
 
 
Summary 
In this lesson, slope-deflection equations are derived for the case of beam with 
yielding supports. Moments developed at the ends are related to rotations and 
support settlements. The equilibrium equations are written at each support. The 
continuous beam is solved using slope-deflection equations. The deflected shape 
of the beam is sketched. The bending moment and shear force diagrams are 
drawn for the examples solved in this lesson. 
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Lesson  
16 

The Slope-Deflection 
Method: Frames 

Without Sidesway 



Instructional Objectives 
After reading this chapter the student will be able to 
1. State whether plane frames are restrained against sidesway or not.  
2. Able to analyse plane frames restrained against sidesway by slope-deflection 

equations. 
3. Draw bending moment and shear force diagrams for the plane frame. 
4. Sketch the deflected shape of the plane frame. 
 
 
16.1 Introduction 
In this lesson, slope deflection equations are applied to solve the statically 
indeterminate frames without sidesway. In frames axial deformations are much 
smaller than the bending deformations and are neglected in the analysis. With 
this assumption the frames shown in Fig 16.1 will not sidesway. i.e. the frames 
will not be displaced to the right or left. The frames shown in Fig 16.1(a) and Fig 
16.1(b) are properly restrained against sidesway. For example in Fig 16.1(a) the 
joint can’t move to the right or left without support A  also moving .This is true 
also for joint . Frames shown in Fig 16.1 (c) and (d) are not restrained against 
sidesway. However the frames are symmetrical in geometry and in loading and 
hence these will not sidesway. In general, frames do not sidesway if 

D

 
1) They are restrained against sidesway. 
2) The frame geometry and loading is symmetrical 
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For the frames shown in Fig 16.1, the angle ψ  in slope-deflection equation is 
zero. Hence the analysis of such rigid frames by slope deflection equation 
essentially follows the same steps as that of continuous beams without support 
settlements. However, there is a small difference. In the case of continuous 
beam, at a joint only two members meet. Whereas in the case of rigid frames two 
or more than two members meet at a joint. At joint  in the frame shown in Fig 
16.1(d) three members meet. Now consider the free body diagram of joint C  as 
shown in fig 16.2 .The equilibrium equation at joint C  is 

C

 

 
  

∑ = 0CM ⇒          0=++ CDCECB MMM  
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At each joint there is only one unknown as all the ends of members meeting at a 
joint rotate by the same amount. One would write as many equilibrium equations 
as the no of unknowns, and solving these equations joint rotations are evaluated. 
Substituting joint rotations in the slope–deflection equations member end 
moments are calculated. The whole procedure is illustrated by few examples. 
Frames undergoing sidesway will be considered in next lesson. 
 
Example 16.1 
Analyse the rigid frame shown in Fig 16.3 (a). Assume EI  to be constant for all 
the members. Draw bending moment diagram and also sketch the elastic curve.  
 
Solution 
In this problem only one rotation needs to be determined i. e. .Bθ  Thus the 
required equations to evaluate Bθ  is obtained by considering the equilibrium of 
joint B . The moment in the cantilever portion is known. Hence this moment is 
applied on frame as shown in Fig 16.3 (b).  Now, calculate the fixed-end 
moments by fixing the support B (vide Fig 16.3 c). Thus 
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kNm 5+=F
BDM  

           
kNm 5−=F

DBM  
 

kNm 0=F
BCM  

 
kNm 0=F

BCM  
 
For writing slope–deflection equations two spans must be considered,  
and

BC
BD . Since supports  and  are fixedC D 0== DC θθ . Also the frame is 

restrained against sidesway. 
   

[ ] BBBD EIEIM θθ +=+= 52
4

25  

[ ] BBDB EIEIM θθ 5.05
4

25 +−=+=  

BBC EIM θ=  

BCB EIM θ5.0=       (2) 
 
Now consider the joint equilibrium of support B , (see Fig 16.3 d) 
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∑ = 0BM     ⇒      010 =−+ BCBD MM     (3) 
 
Substituting the value of  and  and from equation (2) in the above 
equation 

BDM BCM

 
0105 =−++ BB EIEI θθ  

 

EIB
5.2

=θ       (4) 

 
Substituting the values of Bθ  in equation (2), the beam end moments are 
calculated 
 

mkN 5.7 ⋅+=BDM  
 

mkN 75.3 ⋅−=DBM  
 

mkN 5.2 ⋅+=BCM  
 

mkN 25.1 ⋅+=CBM      (5) 
 
The reactions are evaluated from static equations of equilibrium. The free body 
diagram of each member of the frame with external load and end moments are 
shown in Fig 16.3 (e) 
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( )↑= kN 9375.10CyR    
 

( )←−= kN 9375.0CxR  
 

( )↑= kN 0625.4DyR  
 

( )→= kN 9375.0DxR      (6) 
 
 
Bending moment diagram is shown in Fig 16.3(f) 
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The vertical hatching is use to represent the bending moment diagram for the 
horizontal member (beams) and horizontal hatching is used for bending moment 
diagram for the vertical members. 
The qualitative elastic curve is shown in Fig 16.3 (g). 
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Example 16.2 
Compute reactions and beam end moments for the rigid frame shown in Fig 16.4 
(a). Draw bending moment and shear force diagram for the frame and also 
sketch qualitative elastic curve. 
 
Solution 
 

 
 
In this frame rotations Aθ  and Bθ  are evaluated by considering the equilibrium of 
joint A  and B .  The given frame is kinematically indeterminate to second 
degree. Evaluate fixed end moments. This is done by considering the 
kinematically determinate structure. (Fig 16.4 b) 
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kN.m 15
12

65 2

=
×

=F
DBM  

 

kN.m 15
12

65 2

−=
×−

=F
BAM  

 

kN.m 5.2
4

225
2

2

=
××

=F
BCM  

 

kN.m 5.2
4

225
2

2

−=
××−

=F
CDM    (1) 

 
Note that the frame is restrained against sidesway. The spans must be 
considered for writing slope-deflection equations viz, A , B  and . The beam 
end moments are related to unknown rotations 

AC
Aθ  and Bθ  by following slope-

deflection equations. (Force deflection equations). Support  is fixed and hence C
.0=Cθ  

 
( ) ( )BA
AB

F
ABLAB L

IEMM θθ ++= 222  
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BAAB EIEIM θθ 667.0333.115 ++−=  
 

BABA EIEIM θθ 333.1667.015 ++−=  
 

CBBC EIEIM θθ 5.05.2 ++=  
 

BCB EIM θ5.05.2 +−=     (2) 
 
 
Consider the joint equilibrium of support A (See Fig 16.4 (c)) 
 

∑ = 0AM       
 

BAAB EIEIM θθ 667.0333.1150 ++==   (3) 
 

15667.0333.1 −=++ BA EIEI θθ  
 

Or, 
EIBA

489.222 −
=+θθ  

 
Equilibrium of joint B  (Fig 16.4(d)) 
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∑ = 0BM        ⇒         0=+ BABC MM    (4)  
 
Substituting the value of  and  in the above equation, BCM BAM
 
    5.12667.0333.2 =+ AB EIEI θθ     (5) 
 

Or,     
EIAB
741.18498.3 =+θθ  

 
Solving equation (3) and (4) 
 

)(245.16

)(002.10

clockwise
EI

ckwisecounterclo
EI

B

B

−
=

=

θ

θ
    (6)  

 
Substituting the value of Aθ  and  Bθ   in equation (2) beam end moments are 
evaluated. 
 

0002.10667.0245.16333.115 =⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛ −+=

EI
EI

EI
EIM AB  

 

1002.1033.1.245.16667.015 −=⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛ −+−=

EI
EI

EI
EIM BA  

 

kN.m 5.12002.105.2 =⎟
⎠
⎞

⎜
⎝
⎛+=

EI
EIM BC  

 

kN.m 5.2002.105.05.2 =⎟
⎠
⎞

⎜
⎝
⎛+−=

EI
EIM CB     (7) 
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Using these results, reactions are evaluated from equilibrium equations as shown 
in Fig 16.4 (e) 
 

 
 

The shear force and bending moment diagrams are shown in Fig 16.4(g) and 
16.4 h respectively. The qualitative elastic curve is shown in Fig 16.4 (h). 
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Example 16.3 
Compute reactions and beam end moments for the rigid frame shown in Fig 
16.5(a). Draw bending moment diagram and sketch the elastic curve for the 
frame. 
 
Solution 
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The given frame is kinematically indeterminate to third degree so three rotations 
are to be calculated, CB θθ ,   and Dθ .  First calculate the fixed end moments (see 
Fig 16.5 b). 
 

 
 

25 4 4 kN.m
20

F
ABM ×
= =  

 
25 4 2.667 kN.m

30
F
BAM − ×
= = −  

 
2

2

10 3 3 7.5 kN.m
6

F
BCM × ×

= =  

 
2

2

10 3 3 7.5 kN.m
6

F
CBM − × ×
= = −  

 
    (1) 0==== F

EC
F
CE

F
DB

F
BD MMMM

 
 

The frame is restrained against sidesway. Four spans must be considered for 
rotating slope – deflection equation: AB, BD, BC and CE. The beam end 
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moments are related to unknown rotation at B, C, and D. Since the supports A 
and E are fixed. 0== EA θθ . 

 

[ ]24 2
4AB A B
EIM θ θ= + +  

 
4 0.5 4 0.5AB A B BM EI EI EIθ θ θ= + + = +  

 
 

2.667 2.667BA A B BM EI EI EIθ θ θ= − + = − +  
 
 

0.5BD B DM EI EIθ θ= +  
 
 

0.5DB B DM EI EIθ θ= +  
 

( ) [ ]2 2
7.5 2 7.5 1.333 0.667

6BC B C B C

E I
M EI EIθ θ θ= + + = + + θ  

 
7.5 .667 1.333CB B CM EI EIθ θ= − + +  

 
0.5CE C E CM EI EI EIθ θ θ= + =  

 
0.5 0.5 0.5EC C E CM EI EI EIθ θ= + = θ     (2) 

 
Consider the equilibrium of joints B, D, C (vide Fig. 16.5(c)) 
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                         ⇒      ∑ = 0BM 0=++ BDBCBA MMM    (3) 
 
                               ∑ = 0DM ⇒ 0=DBM      (4)  
 
                         ⇒       ∑ = 0CM 0=+ CECB MM     (5) 
 
Substituting the values of and in the equations (3), 
(4), and (5) 

CBDBBDBCBA MMMMM ,,,, CEM

                                         
3.333 0.667 0.5 4.833B C DEI EI EIθ θ θ+ + = −  
 
0.5 0B DEI EIθ θ+ =  
 
2.333 0.667 7.5C BEI EIθ θ+ =     (6)  

 
Solving the above set of simultaneous equations, CB θθ ,  and  Dθ  are evaluated. 
 

2.4125BEIθ = −  
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3.9057CEIθ =  
 

1.2063DEIθ =      (7) 
 
Substituting the values of CB θθ ,  and Dθ in (2), beam end moments are 
computed.  
 

2.794 kN.mABM =  
 

5.080 kN.mBAM = −  
 

1.8094 kN.mBDM = −  
 

0DBM =  
 

6.859 kN.mBCM =  
 

3.9028 kN.mCBM = −  
 

3.9057 kN.mCEM =  
 

1.953 kN.mECM =      (8) 
 
The reactions are computed in Fig 16.5(d), using equilibrium equations known 
beam-end moments and given loading. 
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( )6.095 kNAyR = ↑  
 

( )9.403 kNDyR = ↑  
 

( )4.502 kNEyR = ↑  
 

( )1.013 kNAxR = →  
 

( )0.542 kNDxR = →  
 

( )1.465 kNExR = − ←      (9) 
 

The bending moment diagram is shown in Fig 16.5.(e)  and the elastic curve is  
shown in Fig 16.5(f). 
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Summary 
In this lesson plane frames restrained against sidesway are analysed using 
slope-deflection equations. Equilibrium equations are written at each rigid joint of 
the frame and also at the support. Few problems are solved to illustrate the 
procedure. The shear force and bending moment diagrams are drawn for the 
plane frames.  

Version 2 CE IIT, Kharagpur 
 



 
 
 
 
 
 

Module 
3 

  

Analysis of Statically 
Indeterminate 

Structures by the 
Displacement Method 

Version 2 CE IIT, Kharagpur 
 



 
 
 
 
 
 
 

Lesson  
17 

 

The Slope-Deflection 
Method: Frames with 

Sidesway  
Version 2 CE IIT, Kharagpur 

 



Instructional Objectives 
After reading this chapter the student will be able to 
1. Derive slope-deflection equations for the frames undergoing sidesway. 
2. Analyse plane frames undergoing sidesway. 
3, Draw shear force and bending moment diagrams. 
4. Sketch deflected shape of the plane frame not restrained against sidesway. 
 
 
17.1 Introduction  
In this lesson, slope-deflection equations are applied to analyse statically 
indeterminate frames undergoing sidesway. As stated earlier, the axial 
deformation of beams and columns are small and are neglected in the analysis. 
In the previous lesson, it was observed that sidesway in a frame will not occur if 
 

1. They are restrained against sidesway. 
2. If the frame geometry and the loading are symmetrical. 
 

In general loading will never be symmetrical. Hence one could not avoid 
sidesway in frames. 
 

 
For example, consider the frame of Fig. 17.1. In this case the frame is 
symmetrical but not the loading. Due to unsymmetrical loading the beam end 
moments  and  are not equal. If is greater than , then . In BCM CBM b a CBBC MM >
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such a case joint B andC  are displaced toward right as shown in the figure by an 
unknown amountΔ . Hence we have three unknown displacements in this frame: 
rotations CB θθ ,  and the linear displacementΔ . The unknown joint rotations 

Bθ and Cθ  are related to joint moments by the moment equilibrium equations. 
Similarly, when unknown linear displacement occurs, one needs to consider 
force-equilibrium equations. While applying slope-deflection equation to columns 

in the above frame, one must consider the column rotation ⎟
⎠
⎞

⎜
⎝
⎛ Δ
=

h
ψ  as 

unknowns. It is observed that in the column AB , the end B undergoes a linear 
displacement with respect to endΔ A . Hence the slope-deflection equation for 
column AB  is similar to the one for beam undergoing support settlement. 
However, in this case is unknown. For each of the members we can write the 
following slope-deflection equations. 

Δ

 
 

[ ABBA
F
ABAB ]MM ψθθ 322

−++=
h
EI     where 

hAB
Δ

−=ψ               

 
ABψ  is assumed to be negative as the chord to the elastic curve rotates in the 

clockwise directions. 
 

[ ]ABAB
F
BABA h

EIMM ψθθ 322
−++=  

[ ]CB
F
BCBC h

EIMM θθ ++= 22  

[ ]BC
F
CBCB h

EIMM θθ ++= 22  

[ ]CDDC
F
CDCD h

EIMM ψθθ 322
−++=   

hCD
Δ

−=ψ  

[ CDCD
F
DCDC h

EIMM ψθθ 322
−++= ]   (17.1) 

 
As there are three unknowns ( CB θθ ,  andΔ ), three equations are required to 
evaluate them. Two equations are obtained by considering the moment 
equilibrium of joint B and C respectively. 
 

00 =+⇒=∑ BCBAB MMM    (17.2a) 
    

00 =+⇒=∑ CDCBC MMM   (17.2b) 
 
Now consider free body diagram of the frame as shown in Fig. 17.2. The 
horizontal shear force acting at A and B of the column AB is given by 
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h
MMH ABBA +=1      (17.3a) 

 
Similarly for memberCD , the shear force is given by 3H
 

 3
CD DCM MH

h
+

=     (17.3b) 

 
Now, the required third equation is obtained by considering the equilibrium of 
member , BC
 

  1 30 0XF H= ⇒ +∑ H =
 

0=
+

+
+

h
MM

h
MM DCCDABBA    (17.4) 

 
Substituting the values of beam end moments from equation (17.1) in equations 
(17.2a), (17.2b) and (17.4), we get three simultaneous equations in three 
unknowns CB θθ ,  and , solving which joint rotations and translations are 
evaluated.   

Δ
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Knowing joint rotations and translations, beam end moments are calculated from 
slope-deflection equations. The complete procedure is explained with a few 
numerical examples. 

Example 17.1 

Analyse the rigid frame as shown in Fig. 17.3a. Assume EI to be constant for all 
members. Draw bending moment diagram and sketch qualitative elastic curve. 
 

 
 
Solution 
In the given problem, joints B and  rotate and also translate by an amountC Δ . 
Hence, in this problem we have three unknown displacements (two rotations and 
one translation) to be evaluated. Considering the kinematically determinate 
structure, fixed end moments are evaluated. Thus, 
 

.0;0;.10;.10;0;0 ==−=+=== F
DC

F
CD

F
CB

F
BC

F
BA

F
AB MMmkNMmkNMMM         (1)   

 
The ends A  and  are fixed. Hence, D .0== DA θθ  Joints B and  translate by 
the same amount . Hence, chord to the elastic curve 

C
Δ 'AB and '  rotates by an 

amount (see Fig. 17.3b) 
DC

 

3
Δ

−== CDAB ψψ        (2) 

 
Chords of the elastic curve 'AB and '  rotate in the clockwise direction; 
hence

DC
ABψ  and CDψ  are taken as negative. 
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Now, writing the slope-deflection equations for the six beam end moments, 
 

[ ]ABBA
F
ABAB

EIMM ψθθ 32
3

2
−++=  

 

.
3

;0;0 Δ
−=== ABA

F
ABM ψθ  

 

Δ+= EIEIM BAB 3
2

3
2 θ  

 

Δ+= EIEIM BBA 3
2

3
4 θ  

 

CBBC EIEIM θθ
2
110 ++=  

 

CBCB EIEIM θθ ++−=
2
110  

   

Δ+= EIEIM CCD 3
2

3
4 θ  
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Δ+= EIEIM CDC 3
2

3
2 θ     (3) 

 
Now, consider the joint equilibrium of B andC  (vide Fig. 17.3c). 
 

00 =+⇒=∑ BCBAB MMM   (4) 
 
      (5) 00 =+⇒=∑ CDCBC MMM
 

 
 
The required third equation is written considering the horizontal equilibrium of the 
entire frame   (vide Fig. 17.3d). ..ei ∑ = 0XF
 
 
    010 21 =−+− HH  
       
    1021 =+⇒ HH .   (6) 
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Considering the equilibrium of the column AB andCD , yields 
 

31
ABBA MMH +

=       

   
and  
 

     
32

DCCD MM
H

+
=       (7) 

 
The equation (6) may be written as, 
 

30=+++ DCCDABBA MMMM      (8) 
 
Substituting the beam end moments from equation (3) in equations (4), (5) and 
(6) 
 

10667.05.0333.2 −=Δ++ EIEIEI CB θθ   (9) 
 

10667.05.0333.2 =Δ++ EIEIEI BC θθ   (10) 
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30
3
822 =Δ++ EIEIEI CB θθ     (11) 

 
Equations (9), (10) and (11) indicate symmetry and this fact may be noted. This 
may be used as the check in deriving these equations. 
 
Solving equations (9), (10) and (11), 
 

355.1;572.9 =−= CB EIEI θθ      and    417.17=ΔEI . 
 
Substituting the values of CB EIEI θθ ,  and ΔEI in the slope-deflection equation 
(3), one could calculate beam end moments. Thus, 
 

5.23 kN.m (counterclockwise)ABM =  
 

1.14 kN.m(clockwise)BAM = −  
 

1.130 kN.mBCM =  
 

13.415 kN.mCBM = −  
 

13.406 kN.mCDM =  
 

12.500 kN.mDCM = . 
 
The bending moment diagram for the frame is shown in Fig. 17.3 e. And the 
elastic curve is shown in Fig 17.3 f. the bending moment diagram is drawn on the 
compression side. Also note that the vertical hatching is used to represent 
bending moment diagram for the horizontal members (beams). 
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Example 17.2 

Analyse the rigid frame as shown in Fig. 17.4a and draw the bending moment 
diagram. The moment of inertia for all the members is shown in the figure. 
Neglect axial deformations. 
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Solution: 
 
In this problem rotations and translations at joints B and need to be evaluated. 
Hence, in this problem we have three unknown displacements: two rotations and 
one translation. Fixed end moments are  

C

 

.0;0;0;0

;.9;.9
36

9312

====

−==
××

=

F
DC

F
CD

F
CB

F
BC

F
BA

F
AB

MMMM

mkNMmkNM
       (1)   

 
The joints B and  translate by the same amountC Δ . Hence, the chord to the 
elastic curve rotates in the clockwise direction as shown in Fig. 17.3b. 
 

6
Δ

−=ABψ      

and     
3
Δ

−=CDψ        (2) 

 

 
 
Now, writing the slope-deflection equations for six beam end moments, 
 

⎥⎦
⎤

⎢⎣
⎡ Δ

++=
26

)2(29 BAB
EIM θ  

 
Δ++= EIEIM BAB 333.0667.09 θ  

 
Δ++−= EIEIM BBA 333.0333.19 θ  
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CBBC EIEIM θθ 5.0+=  
 

CBCB EIEIM θθ += 5.0  
   

Δ+= EIEIM CCD 667.0333.1 θ  
 

Δ+= EIEIM CDC 667.0667.0 θ     (3) 
 
Now, consider the joint equilibrium of B andC . 

 
00 =+⇒=∑ BCBAB MMM         (4) 

 
00 =+⇒=∑ CDCBC MMM          (5) 

 
The required third equation is written considering the horizontal equilibrium of the 
entire frame. Considering the free body diagram of the member  (vide Fig. 
17.4c), 

BC

       
021 =+ HH .   

        (6) 
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The forces  and  are calculated from the free body diagram of column 1H 2H
AB andCD . Thus, 
 

6
61

ABBA MMH +
+−=       

 
and  

 
32

DCCD MM
H

+
=      (7) 

 
Substituting the values of  and  into equation (6) yields, 1H 2H
 

3622 =+++ DCCDABBA MMMM       (8) 
 
 
 
Substituting the beam end moments from equation (3) in equations (4), (5) and 
(8), yields 
 

9333.05.0333.2 =Δ++ EIEIEI CB θθ      
        
 

0667.05.0333.2 =Δ++ EIEIEI BC θθ      
      
  

36333.342 =Δ++ EIEIEI CB θθ       (9) 
 
Solving equations (9), (10) and (11), 
 

88.4;76.2 −== CB EIEI θθ      and    00.15=ΔEI . 
 
Substituting the values of CB EIEI θθ ,  and ΔEI in the slope-deflection equation 
(3), one could calculate beam end moments. Thus, 
 

15.835 kN.m (counterclockwise)ABM =  
0.325 kN.m(clockwise)BAM = −  

0.32 kN.mBCM =  
3.50 kN.mCBM = −    

3.50 kN.mCDM =  
6.75 kN.mDCM = . 

 
The bending moment diagram for the frame is shown in Fig. 17.4 d.  
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Example 17.3 
Analyse the rigid frame shown in Fig. 17.5 a. Moment of inertia of all the 
members are shown in the figure. Draw bending moment diagram. 
 

 
 

Under the action of external forces, the frame gets deformed as shown in Fig. 
17.5b. In this figure, chord to the elastic curve are shown by dotted line. 'BB  is 
perpendicular to AB and is perpendicular to . The chords to the elastic "CC DC
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curve "AB  rotates by an angle ABψ ,  rotates by ""CB BCψ  and  rotates by DC

CDψ  as shown in figure. Due to symmetry, ABCD ψψ = . From the geometry of the 
figure, 
 

ABAB
AB LL

BB 1" Δ
−==ψ  

 
But  

αcos1
Δ

=Δ  

Thus,  

5cos
Δ

−=
Δ

−=
α

ψ
AB

AB L
      

 

5
Δ

−=CDψ  

  

5
tan

2
tan2

2
2 Δ

=Δ=
Δ

=
Δ

= ααψ BC    (1) 

 
We have three independent unknowns for this problem CB θθ ,  and . The ends Δ

A  and  are fixed. Hence, D .0== DA θθ  Fixed end moments are, 
 

.0;0;.50.2;.50.2;0;0 ==−=+=== F
DC

F
CD

F
CB

F
BC

F
BA

F
AB MMmkNMmkNMMM    

 
Now, writing the slope-deflection equations for the six beam end moments, 
 

[ ]ABAAB
IEM ψθ 3

1.5
)2(2

−=  

 
Δ+= EIEIM BAB 471.0784.0 θ  
Δ+= EIEIM BBA 471.0568.1 θ  

 
Δ−++= EIEIEIM CBBC 6.025.2 θθ  
Δ−++−= EIEIEIM CBBC 6.025.2 θθ  

   
Δ+= EIEIM CCD 471.0568.1 θ  
Δ+= EIEIM CDC 471.0784.0 θ    (2) 

 
Now, considering the joint equilibrium of B andC , yields 
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00 =+⇒=∑ BCBAB MMM        
     

5.2129.0568.3 −=Δ−+ EIEIEI CB θθ      (3) 
 

00 =+⇒=∑ CDCBC MMM               
  

5.2129.0568.3 =Δ−+ EIEIEI BC θθ       (4) 
 

 
 
Shear equation for 
Column AB  

0)1(5 11 =+−− VMMH BAAB     (5) 
  

Column  CD
0)1(5 22 =+−− VMMH DCCD      (6) 

           
Beam  BC

01020 1 =−−−=∑ CBBCC MMVM      (7) 
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∑ =+= 50 21 HHFX    (8) 
 

∑ =−−= 0100 21 VVFY    (9) 
 
 

From equation (7),  
2

10
1

++
= CBBC MM

V        

 
From equation (8),  21 5 HH −=
 

From equation (9), 10
2

10
1012 −

++
=−= CBBC MM

VV  

 
Substituting the values of and in equations (5) and (6), 11, HV 2V
 

0221060 2 =++−−− CBBCBAAB MMMMH    (10) 
0221010 2 =++−−+− CBBCDCCD MMMMH    (11) 

 
Eliminating  in equation (10) and (11), 2H
 

25=−−+++ CBBCDCCDBAAB MMMMMM    (12) 
 
Substituting the values of  in (12) we get the required third 
equation. Thus, 

DCCDBAAB MMMM ,,,

 
+Δ+ EIEI B 471.0784.0 θ +Δ+ EIEI B 471.0568.1 θ +Δ+ EIEI C 471.0568.1 θ  

Δ+ EIEI C 471.0784.0 θ -( Δ−++ EIEIEI CB 6.025.2 θθ )-
( Δ−++− EIEIEI CB 6.025.2 θθ ) 25=  

 
Simplifying, 
 

25084.3648.0648.0 =Δ+−− EIEIEI BC θθ    (13) 
 
Solving simultaneously equations (3) (4) and (13), yields 
 

205.1;741.0 =−= CB EIEI θθ      and    204.8=ΔEI . 
 
Substituting the values of CB EIEI θθ ,  and ΔEI in the slope-deflection equation 
(3), one could calculate beam end moments. Thus, 
  

3.28 kN.mABM =  
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2.70 kN.mBAM =  
 

2.70 kN.mBCM = −  
 

5.75 kN.mCBM = −   
  

5.75 kN.mCDM =  
 

4.81 kN.mDCM = .      (14) 
 
The bending moment diagram for the frame is shown in Fig. 17.5 d.  
 

 
 
 
Summary 
In this lesson, slope-deflection equations are derived for the plane frame 
undergoing sidesway. Using these equations, plane frames with sidesway are 
analysed. The reactions are calculated from static equilibrium equations. A 
couple of problems are solved to make things clear. In each numerical example, 
the bending moment diagram is drawn and deflected shape is sketched for the 
plane frame. 
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Instructional Objectives 
After reading this chapter the student will be able to 

1. Calculate stiffness factors and distribution factors for various members in 
a continuous beam. 

2. Define unbalanced moment at a rigid joint. 
3. Compute distribution moment and carry-over moment. 
4. Derive expressions for distribution moment, carry-over moments. 
5. Analyse continuous beam by the moment-distribution method. 

 
 
18.1 Introduction 
In the previous lesson we discussed the slope-deflection method. In slope-
deflection analysis, the unknown displacements (rotations and translations) are 
related to the applied loading on the structure. The slope-deflection method 
results in a set of simultaneous equations of unknown displacements. The 
number of simultaneous equations will be equal to the number of unknowns to be 
evaluated. Thus one needs to solve these simultaneous equations to obtain 
displacements and beam end moments. Today, simultaneous equations could be 
solved very easily using a computer. Before the advent of electronic computing, 
this really posed a problem as the number of equations in the case of multistory 
building is quite large. The moment-distribution method proposed by Hardy Cross 
in 1932, actually solves these equations by the method of successive 
approximations. In this method, the results may be obtained to any desired 
degree of accuracy. Until recently, the moment-distribution method was very 
popular among engineers. It is very simple and is being used even today for 
preliminary analysis of small structures. It is still being taught in the classroom for 
the simplicity and physical insight it gives to the analyst even though stiffness 
method is being used more and more. Had the computers not emerged on the 
scene, the moment-distribution method could have turned out to be a very 
popular method. In this lesson, first moment-distribution method is developed for 
continuous beams with unyielding supports. 
 
 
18.2 Basic Concepts 
In moment-distribution method, counterclockwise beam end moments are taken 
as positive. The counterclockwise beam end moments produce clockwise 
moments on the joint Consider a continuous beam ABCD as shown in Fig.18.1a. 
In this beam, ends A and D are fixed and hence, 0== DA θθ .Thus, the 
deformation of this beam is completely defined by rotations Bθ  and Cθ  at joints B 
and C respectively. The required equation to evaluate  Bθ  and  Cθ  is obtained by 
considering equilibrium of joints B and C. Hence, 
 

Version 2 CE IIT, Kharagpur 
 



0=∑ BM      ⇒ 0=+ BCBA MM           (18.1a)  

0=∑ CM      ⇒ 0=+ CDCB MM           (18.1b)  
 
According to slope-deflection equation, the beam end moments are written as  
 

)2(
2

B
AB

ABF
BABA L

EI
MM θ+=  

  
AB

AB

L
EI4

 is known as stiffness factor for the beam AB and it is denoted 

by .  is the fixed end moment at joint B of beam AB when joint B is fixed.  
Thus, 

ABk F
BAM

 

BAB
F
BABA KMM θ+=  

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++=

2
C

BBC
F
BCBC KMM

θ
θ  

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++=

2
B

CCB
F
CBCB KMM

θ
θ  

 

CCD
F
CDCD KMM θ+=       (18.2)    

 
In Fig.18.1b, the counterclockwise beam-end moments  and     produce 
a clockwise moment on the joint as shown in Fig.18.1b. To start with, in 
moment-distribution method, it is assumed that joints are locked i.e. joints are 
prevented from rotating. In such a case (vide Fig.18.1b), 

BAM BCM

BM

0== CB θθ , and hence  
 

F
BABA MM =  
F
BCBC MM =  
F
CBCB MM =  
F
CDCD MM =       (18.3) 

 
Since joints B and C are artificially held locked, the resultant moment at joints B 
and C will not be equal to zero. This moment is denoted by  and is known as 
the unbalanced moment.  

BM
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Thus, 

F
BC

F
BAB MMM +=  

 
In reality joints are not locked. Joints B and C do rotate under external loads. 
When the joint B is unlocked, it will rotate under the action of unbalanced 
moment . Let the joint B rotate by an angleBM 1Bθ , under the action of . This 
will deform the structure as shown in Fig.18.1d and introduces distributed 
moment   in the span BA and BC respectively as shown in the figure. 
The unknown distributed moments are assumed to be positive and hence act in 
counterclockwise direction. The unbalanced moment is the algebraic sum of the 
fixed end moments and act on the joint in the clockwise direction. The 
unbalanced moment restores the equilibrium of the joint B. Thus, 

BM

d
BC

d
BA MM ,

 
,0=∑ BM         (18.4) 0=++ B

d
BC

d
BA MMM

 
The distributed moments are related to the rotation   1Bθ   by the slope-deflection 
equation. 
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1BBA
d
BA KM θ=       

     
1BBC

d
BC KM θ=      (18.5) 

 
Substituting equation (18.5) in (18.4), yields 

 
( ) BBCBAB MKK −=+1θ  

 

BCBA

B
B KK

M
+

−=1θ  

In general, 
 

∑
−=

K
M B

B1θ               (18.6)     

where summation is taken over all the members meeting at that particular joint. 
Substituting the value of 1Bθ in equation (18.5), distributed moments are 
calculated. Thus, 
 

B
BAd

BA M
K

K
M

∑
−=  

 

B
BCd

BC M
K

K
M

∑
−=       (18.7) 

The ratio ∑K
K BA is known as the distribution factor and is represented by . BADF

Thus, 
 

BBA
d
BA MDFM .−=  

 

BBC
d
BC MDFM .−=       (18.8) 

 
The distribution moments developed in a member meeting at B, when the joint B 
is unlocked and allowed to rotate under the action of unbalanced moment  is 
equal to a distribution factor times the unbalanced moment with its sign reversed. 

BM

 
As the joint B rotates under the action of the unbalanced moment, beam end 
moments are developed at ends of members meeting at that joint and are known 
as distributed moments. As the joint B rotates, it bends the beam and beam end 
moments at the far ends (i.e. at A and C) are developed. They are known as 
carry over moments. Now consider the beam BC of continuous beam ABCD. 
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When the joint B is unlocked, joint C is locked .The joint B rotates by 1Bθ  under 
the action of unbalanced moment (vide Fig. 18.1e). Now from slope-
deflection equations  

BM

 
BBC

d
BC KM θ=  

BBCBC KM θ
2
1

=  

1
2

d
CB BCM M=      (18.9) 

 

 

 
 
The carry over moment is one half of the distributed moment and has the same 
sign. With the above discussion, we are in a position to apply moment-
distribution method to statically indeterminate beam. Few problems are solved 
here to illustrate the procedure. Carefully go through the first problem, wherein 
the moment-distribution method is explained in detail. 
 
Example 18.1 
A continuous prismatic beam ABC (see Fig.18.2a) of constant moment of inertia 
is carrying a uniformly distributed load of 2 kN/m in addition to a concentrated 
load of 10 kN. Draw bending moment diagram. Assume that supports are 
unyielding. 
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Solution 
Assuming that supports B and C are locked, calculate fixed end moments 
developed in the beam due to externally applied load. Note that counterclockwise 
moments are taken as positive. 
 

2 2 9 1.5 kN.m
12 12

F AB
AB

wLM ×
= = =  

 
2 2 9 1.5 kN.m

12 12
F AB
BA

wLM ×
= − = − = −  

 
2

2

10 2 4 5 kN.m
16

F
BC

BC

PabM
L

× ×
= = =  

 
2

2

10 2 4 5 kN.m
16

F
CB

BC

Pa bM
L

× ×
= − = − = −    (1) 

 
Before we start analyzing the beam by moment-distribution method, it is required 
to calculate stiffness and distribution factors. 
 

3
4EIK BA =  

 

4
4EIK BC =  

 
At B: ∑ = EIK 333.2  
 

571.0
333.2
333.1

==
EI
EIDFBA  

 

429.0
333.2

==
EI

EIDFBC  
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At C:  ∑ = EIK  
 

0.1=CBDF  
 
Note that distribution factor is dimensionless. The sum of distribution factor at a 
joint, except when it is fixed is always equal to one. The distribution moments are 
developed only when the joints rotate under the action of unbalanced moment. In 
the case of fixed joint, it does not rotate and hence no distribution moments are 
developed and consequently distribution factor is equal to zero. 
In Fig.18.2b the fixed end moments and distribution factors are shown on a 
working diagram. In this diagram B and C are assumed to be locked. 
 

 
 
Now unlock the joint C. Note that joint C starts rotating under the unbalanced 
moment of 5 kN.m (counterclockwise) till a moment of -5 kN.m is developed 
(clockwise) at the joint. This in turn develops a beam end moment of +5 kN.m 

. This is the distributed moment and thus restores equilibrium. Now joint C 
is relocked and a line is drawn below +5 kN.m to indicate equilibrium. When joint 
C rotates, a carry over moment of +2.5 kN.m is developed at the B end of 
member BC.These are shown in Fig.18.2c. 

( CBM )

 

 
 
When joint B is unlocked, it will rotate under an unbalanced moment equal to 
algebraic sum of the fixed end moments(+5.0 and -1.5 kN.m) and a carry over 
moment of +2.5 kN.m till distributed moments are developed to restore 
equilibrium. The unbalanced moment is 6 kN.m. Now the distributed moments 

 and  are obtained by multiplying the unbalanced moment with the 
corresponding distribution factors and reversing the sign. Thus, 

BCM BAM
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574.2−=BCM kN.m and 426.3−=BAM  kN.m. These distributed moments restore 
the equilibrium of joint B. Lock the joint B. This is shown in Fig.18.2d along with 
the carry over moments. 
 

 
 
Now, it is seen that joint B is balanced. However joint C is not balanced due to 
the carry over moment -1.287 kN.m that is developed when the joint B is allowed 
to rotate. The whole procedure of locking and unlocking the joints C and B 
successively has to be continued till both joints B and C are balanced 
simultaneously. The complete procedure is shown in Fig.18.2e. 
 

 
 
The iteration procedure is terminated when the change in beam end moments is 
less than say 1%. In the above problem the convergence may be improved if we 
leave the hinged end C unlocked after the first cycle. This will be discussed in the 
next section. In such a case the stiffness of beam BC gets modified. The above 
calculations can also be done conveniently in a tabular form as shown in Table 
18.1. However the above working method is preferred in this course. 
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Table 18.1 Moment-distribution for continuous beam ABC 
 

Joint A B C 
Member AB BA BC CB 
Stiffness 1.333EI 1.333EI EI EI 
Distribution 
factor 

 0.571 0.429 1.0 

FEM in 
kN.m 

+1.5 -1.5 +5.0 -5.0 

Balance 
joints C ,B 
and C.O. 

 
-1.713 

 
-3.426 

+2.5 
-2.579 

+5.0 
0 

  -4.926 +4.926 -1.287 
Balance C 
and C.O. 

  +0.644 1.287 

Balance B 
and C.O. 

 -0.368 -0.276 -0.138 

Balance C -0.184 -5.294 +5.294 0.138 
C.O.   +0.069 0 
Balance B 
and C.O. 

-0.02 -0.039 -0.030 -0.015 

Balance C    +0.015 
Balanced 
moments in 
kN.m 

-0.417 -5.333 +5.333 0 

 
Modified stiffness factor when the far end is hinged 
As mentioned in the previous example, alternate unlocking and locking at the 
hinged joint slows down the convergence of moment-distribution method. At the 
hinged end the moment is zero and hence we could allow the hinged joint C in 
the previous example to rotate freely after unlocking it first time. This 
necessitates certain changes in the stiffness parameters. Now consider beam 
ABC as shown in Fig.18.2a. Now if joint C is left unlocked then the stiffness of 
member BC changes. When joint B is unlocked, it will rotate by 1Bθ  under the 
action of unbalanced moment .The support C will also rotate by BM 1Cθ as it is 
free to rotate. However, moment 0=CBM . Thus 

B
BC

CBCCB
K

KM θθ
2

+=      (18.7) 

But, 0=CBM    

⇒
2
B

C
θ

θ −=        (18.8) 

Now,  

C
BC

BBCBC
K

KM θθ
2

+=       (18.9) 
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Substituting the value of Cθ  in eqn. (18.9), 

BBCB
BC

BBCBC K
K

KM θθθ
4
3

4
=−=     (18.10) 

B
R
BCBC KM θ=        (18.11) 

 

The  is known as the reduced stiffness factor and is equal to R
BCK BCK

4
3

 

.Accordingly distribution factors also get modified. It must be noted that there is 
no carry over to joint C as it was left unlocked. 
 
Example 18.2 
Solve the previous example by making the necessary modification for hinged end 
C. 
 

 
 
Fixed end moments are the same. Now calculate stiffness and distribution 
factors. 
 

EIEIKEIK BCBA 75.0
4
3,333.1 ===  

Joint B:       ,    ∑ = ,083.2K 64.0=F
BAD 36.0=F

BCD

Joint C: ∑       = ,75.0 EIK 0.1=F
CBD

 
All the calculations are shown in Fig.18.3a 
 
Please note that the same results as obtained in the previous example are 
obtained here in only one cycle. All joints are in equilibrium when they are 
unlocked. Hence we could stop moment-distribution iteration, as there is no 
unbalanced moment anywhere. 
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Example 18.3 
Draw the bending moment diagram for the continuous beam ABCD loaded as 
shown in Fig.18.4a.The relative moment of inertia of each span of the beam is 
also shown in the figure. 
 

 
 
Solution 
Note that joint C is hinged and hence stiffness factor BC gets modified. Assuming 
that the supports are locked, calculate fixed end moments. They are  
 

16 kN.mF
ABM =  

 
16 kN.mF

BAM = −  
 

7.5 kN.mF
BCM =  

 
7.5 kN.mF

CBM = −  , and 
 

15 kN.mF
CDM =  

 
In the next step calculate stiffness and distribution factors 
 

8
4EIK BA =  

6
8

4
3 EIK BC =  
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6
8EIKCB =  

 
At joint B: 
 

∑ =+= EIEIEIK 5.10.15.0  
 

0.5 0.333
1.5

F
BA

EID
EI

= =  

 
1.0 0.667
1.5

F
BC

EID
EI

= =  

At C:  
0.1, ==∑ F

CBDEIK  
Now all the calculations are shown in Fig.18.4b 

 
This problem has also been solved by slope-deflection method (see example 
14.2).The bending moment diagram is shown in Fig.18.4c. 
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Summary 

An introduction to the moment-distribution method is given here. The moment-
distribution method actually solves these equations by the method of successive 
approximations. Various terms such as stiffness factor, distribution factor, 
unbalanced moment, distributing moment and carry-over-moment are defined in 
this lesson. Few problems are solved to illustrate the moment-distribution method 
as applied to continuous beams with unyielding supports. 
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Instructional Objectives 
After reading this chapter the student will be able to 

1. Solve continuous beam with support settlements by the moment-

distribution method. 

2. Compute reactions at the supports. 

3. Draw bending moment and shear force diagrams. 

4. Draw the deflected shape of the continuous beam. 

 

19.1 Introduction 
 
In the previous lesson, moment-distribution method was discussed in the context 

of statically indeterminate beams with unyielding supports. It is very well known 

that support may settle by unequal amount during the lifetime of the structure. 

Such support settlements induce fixed end moments in the beams so as to hold 

the end slopes of the members as zero (see Fig. 19.1). 

 

 
In lesson 15, an expression (equation 15.5) for beam end moments were derived 

by superposing the end moments developed due to 

 
1. Externally applied loads on beams 

2. Due to displacements BA θθ , and Δ  (settlements). 
 
The required equations are, 
 

⎥
⎦

⎤
⎢
⎣

⎡ Δ
−++=

AB
BA

AB

ABF
ABAB LL

EIMM 322
θθ       (19.1a) 
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⎥
⎦

⎤
⎢
⎣

⎡ Δ
−++=

AB
AB

AB

ABF
BABA LL

EIMM 322
θθ      (19.1b) 

 
 
This may be written as, 
 
       (19.2a) [ ] S

ABBAAB
F
ABAB MKMM +++= θθ22

 
[ ]2 2F

BA BA AB B A BA
SM M K Mθ θ= + + +        (19.2b) 

 

where 
AB

AB
AB L

EIK =   is the stiffness factor for the beam AB. The coefficient 4 has 

been dropped since only relative values are required in calculating distribution 

factors. 

 

Note that 2

6

AB

ABS
BA

S
AB L

EIMM Δ
−==        (19.3)  

 
S
ABM  is the beam end moments due to support settlement and is negative 

(clockwise) for positive support settlements (upwards). In the moment-distribution 

method, the support moments  and  due to uneven support settlements 

are distributed in a similar manner as the fixed end moments, which were 

described in details in lesson 18. 

S
ABM S

BAM

 
It is important to follow consistent sign convention. Here counterclockwise beam 

end moments are taken as positive and counterclockwise chord rotation ⎟
⎠
⎞

⎜
⎝
⎛ Δ

L
 is 

taken as positive. The moment-distribution method as applied to statically 

indeterminate beams undergoing uneven support settlements is illustrated with a  

few examples. 
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Example 19.1 
 
Calculate the support moments of the continuous beam  (Fig. 19.2a) having 

constant flexural rigidity 

ABC

EI  throughout, due to vertical settlement of support B  

by 5mm. Assume ; and . 200 GPaE = 4 44 10 mI −= ×

 
 
Solution 
 
There is no load on the beam and hence fixed end moments are zero. However, 

fixed end moments are developed due to support settlement of B  by 5mm. In the 

span AB , the chord rotates by ABψ  in clockwise direction. Thus,  

5
105 3−×

−=ABψ  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ×
−

××××
−=−==

−−

5
105

5
1041020066 349

AB
AB

ABS
BA

S
AB L

EI
MM ψ  

 
 

96000 Nm 96 kNm.= =                  (1)  
 
In the span , the chord rotates by BC BCψ  in the counterclockwise direction and 

hence taken as positive. 

5
105 3−×

=BCψ  
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⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ×××××
−=−==

−−

5
105

5
1041020066 349

BC
BC

BCS
CB

S
BC L

EI
MM ψ  

 
 

.9696000 kNmNm −=−=       (2)  
 
Now calculate stiffness and distribution factors. 
 

EI
L
EIK

AB

AB
BA 2.0==    and  EI

L
EI

K
BC

BC
BC 15.0

4
3

==     (3) 

 
  
 Note that, while calculating stiffness factor, the coefficient 4 has been dropped 

since only relative values are required in calculating the distribution factors. For 

span , reduced stiffness factor has been taken as support C  is hinged.  BC

At B : 
 

EIK 35.0=∑  
 

571.0
35.0
2.0

==
EI
EI

DFBA  

429.0
35.0
15.0

==
EI
EIDFBC         (4) 

 
 
At support C : 
 

EIK 15.0=∑ ; . 0.1=CBDF
 
Now joint moments are balanced as discussed previously by unlocking and 

locking each joint in succession and distributing the unbalanced moments till the 

joints have rotated to their final positions. The complete procedure is shown in 

Fig. 19.2b   and also in Table 19.1. 
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Table 19.1 Moment-distribution for continuous beam ABC 
 
Joint A B C 
Member  BA BC CB 
Stiffness factor  0.2EI 0.15EI 0.15EI 
Distribution Factor  0.571 0.429 1.000 
Fixd End Moments 
(kN.m) 96.000 96.000 -96.000 -96.000 
 Balance joint C and 
C.O. to B   48.00 96.000 
Balance joint B and 
C.O. to A  -13,704 -27.408 -20.592  
      
Final Moments 
(kN.m) 82.296 68.592 -68.592 0.000 

 
  
Note that there is no carry over to joint as it was left unlocked. C
 
 
Example 19.2 
 
A continuous beam  is carrying uniformly distributed load  as 

shown in Fig. 19.3a. Compute reactions and draw shear force and bending 

moment diagram due to following support settlements. 

ABCD mkN /5

 
,    0.005m vertically downwards. Support B
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Support C ,    .0100m vertically downwards.   
 
 
Assume ; . GPaE 200= 431035.1 mI −×=
 
 
 
 

 
Solution: 
 
Assume that supports and  are locked and calculate fixed end moments 

due to externally applied load and support settlements. The fixed end beam 

moments due to externally applied loads are,  

DCBA ,,

5 100 41.67 kN.m;
12

F
ABM ×
= = 41.67 kN.mF

BAM = −  

41.67 kN.m;F
BCM = +   41.67 kN.mF

BCM = −

41.67 kN.m;F
CDM = +          (1) 41.67 kN.mF

DCM = −
 
 

, the chord joining joints and In the span AB A B rotates in the clockwise direction 

as  moves vertical downwards with respect to (see Fig. 19.3b). B A
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0.0005 radiansABψ = −  (negative as chord 'AB rotates in the clockwise direction 
from its original position) 
 

0.0005 radiansBCψ = −  
    

0.001 radiansCDψ = (positive as chord  rotates in the counterclockwise 
direction). 

DC'

 
 
Now the fixed end beam moments due to support settlements are, 
 

9 36 6 200 10 1.35 10 ( 0.0005)
10

81000 N.m 81.00 kN.m

S AB
AB AB

AB

EIM
L

ψ
−× × × ×

= − = − −

= =

   

81.00 kN.mS
BAM =  

81.00 kN.mS S
BC CBM M= =  

162.00 kN.mS S
CD DCM M= = −        (3) 

 
 
In the next step, calculate stiffness and distribution factors. For span AB and  

modified stiffness factors are used as supports 

CD

A and  are hinged. Stiffness 

factors are, 

D
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EIEIKEIEIK

EIEIKEIEIK

CDCB

BCBA

075.0
104

3;10.0
10

10.0
10

;075.0
104

3

====

====

     (4) 

 
 
At joint  :  0.1;075.0 ==∑ ABDFEIKA
 
At joint  :     571.0;429.0;175.0 ===∑ BCBA DFDFEIKB
 
At joint C  :     429.0;571.0;175.0 ===∑ CDCB DFDFEIK
 
At joint  :  0.1;075.0 ==∑ DCDFEIKD
 
The complete procedure of successively unlocking the joints, balancing them and 

locking them is shown in a working diagram in Fig.19.3c. In the first row, the 

distribution factors are entered. Then fixed end moments due to applied loads 

and support settlements are entered. In the first step, release joints A and . The 

unbalanced moments at 

D

A and are 122.67 kN.m, -203.67 kN.m respectively. 

Hence balancing moments at 

D

A and  are -122.67 kN.m, 203.67 kN.m 

respectively. (Note that we are dealing with beam end moments and not joint 

moments). The joint moments are negative of the beam end moments. Further 

leave 

D

and  unlocked as they are hinged joints. Now carry over moments 

 and  to joint 

A D

-61.34 kN.m kN.m 101.84 B and  respectively. In the next cycle, 

balance joints 

C

 and C . The unbalanced moment at joint B B is . 

Hence balancing moment for beam 

100.66 kN.m

BA is 43.19 ( 100.66 0.429)− − × and for  is 

. The balancing moment on  gives a carry over 

moment of  to joint C . The whole procedure is shown in Fig. 19.3c 

and in Table 19.2. It must be noted that there is no carryover to joints 

BC

BC57.48 kN.m (-100.66 x 0.571)−

26.74 kN.m−

A  and  

as they were left unlocked.   

D
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Table 19.2 Moment-distribution for continuous beam ABCD 
 
Joint A B C D 

 
Members AB  BA BC CB CD DC 
Stiffness factors 0.075 EI 0.075 EI 0.1 EI 0.1 EI 0.075 EI 0.075 EI
Distribution 
Factors 

1.000 0.429 0.571 0.571 0.429 1.000 

        
FEM due to 
externally 
applied loads 

41.670 -41.670 41.670 -41.670 41.670 -41.670 

        
FEM due to 
support 
settlements 

81.000 81.000 81.000 81.000 -
162.000 

-
162.000 

        
Total 122.670 39.330 122.670 39.330 -

120.330 
-
203.670 

        
Balance A and D 
released  

-
122.670 

    203.670 

Carry over  -61.335   101.835  
        
Balance B and C  -43.185 -57.480 -11.897 -8.94  
Carry over   -5.95 -26.740   
       
Balance B and C  2.552 3.40 16.410 12.33  
Carry over to B 
and C 

  8.21 1.70   

        
Balance B and C  -3.52 -4.69 -0.97 -0.73  
C.O. to B and C   -0.49 -2.33   
        
Balance B and C  0.21 0.28 1.34 1.01  
Carry over   0.67 0.14   
        
Balance B and C  -0.29 -0.38 -0.08 -0.06  
        
Final Moments 0.000 -66.67 66.67 14.88 -14.88 0.000 
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Example 19.3 
 
Analyse the continuous beam shown in Fig. 19.4a by moment-distribution 

method. The support 

ABC

B  settles by  below mm5  and C . Assume A EI to be 

constant for all members ; and . GPaE 200= 46108 mmI ×=

 

 
 
Solution: 
 
Calculate fixed end beam moments due to externally applied loads assuming that 

support  and C  are locked. B

 
 

mkNMmkNM

mkNMmkNM
F
CB

F
BC

F
BA

F
AB

.67.2;.67.2

.2;.2

−=+=

−=+=
     (1) 

 
 
 
In the next step calculate fixed end moments due to support settlements. In the 

span AB , the chord 'AB  rotates in the clockwise direction and in span , the 

chord  rotates in the counterclockwise direction (Fig. 19.4b). 

BC

CB'
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radiansAB
3

3

1025.1
4
105 −

−

×−=
×

−=ψ  

 

radiansBC
3

3

1025.1
4
105 −

−

×=
×

=ψ        (2) 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ×
−

××××
−=−==

−−

4
105

4
1081020066 369

AB
AB

ABS
BA

S
AB L

EIMM ψ  

 
.         (3)  33000 kNmNm ==

 
mkNMM S

CB
S
BC .0.3−==  

 
In the next step, calculate stiffness and distribution factors.  
 

EIEIK

EIKK

BC

BAAB

1875.025.0
4
3

25.0

==

==
          (4) 

 
At joint  :     429.0;571.0;4375.0 ===∑ BCBA DFDFEIKB
 
At joint C  :     0.1;1875.0 ==∑ CBDFEIK
 
 
At fixed joint, the joint does not rotate and hence no distribution moments are 

developed and consequently distribution factor is equal to zero. The complete 

moment-distribution procedure is shown in Fig. 19.4c and Table 19.3. The 

diagram is self explanatory. In this particular case results are obtained in two 

cycles. In the first cycle joint is balanced and carry over moment is taken to 

joint 

C

. In the next cycle , joint B B  is balanced and carry over moment is taken to 

joint . The bending moment diagram is shown in fig. 19.4d.       A
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Table 19.3 Moment-distribution for continuous beam ABC 
 
Joints A B C 

 
Member AB BA BC CB 
Stiffness factor 0.25 EI 0.25 EI 0.1875 EI 0.1875 EI 
Distribution Factor  0.571 0.429 1.000 
      
Fixed End Moments 
due to applied loads 
(kN.m) 

2.000 -2.000 2.667 -2.667 

Fixed End Moments 
due to support 
settlements (kN.m) 

3.000 3.000 -3.000 -3.000 

Total 5.000 1.000 -0.333 -5.667 
      
Balance joint C and 
C.O. 

  2.835 5.667 

      
Total 5.000 1.000 2.502 0.000 
      
Balance joint B and 
C.O. to A 

-1.00 -2.000 -1.502  

      
Final Moments (kN.m) 4.000 -1.000 1.000 0.000 
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Summary 
 
The moment-distribution method is applied to analyse continuous beam having 

support settlements. Each step in the numerical example is explained in detail. 

All calculations are shown at appropriate locations. The deflected shape of the 

continuous beam is sketched. Also, wherever required, the bending moment 

diagram is drawn. The numerical examples are explained with the help of free-

body diagrams.  
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Instructional Objectives 
After reading this chapter the student will be able to 
1. Solve plane frame restrained against sidesway by the moment-distribution 

method. 
2. Compute reactions at the supports. 
3. Draw bending moment and shear force diagrams. 
4. Draw the deflected shape of the plane frame. 
 
 
20.1 Introduction 
In this lesson, the statically indeterminate rigid frames properly restrained against 
sidesway are analysed using moment-distribution method. Analysis of rigid 
frames by moment-distribution method is very similar to that of continuous beams 
described in lesson 18. As pointed out earlier, in the case of continuous beams, 
at a joint only two members meet, where as in case of rigid frames two or more 
than two members meet at a joint. At such joints (for example joint C  in Fig. 
20.1) where more than two members meet, the unbalanced moment at the 
beginning of each cycle is the algebraic sum of fixed end beam moments (in the 
first cycle) or the carry over moments (in the subsequent cycles) of the beam 
meeting at C . The unbalanced moment is distributed to members and 

 according to their distribution factors. Few examples are solved to explain 
procedure. The moment-distribution method is carried out on a working diagram.  

CDCB,
CE
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Example 20.1 
Calculate reactions and beam end moments for the rigid frame shown in Fig. 
20.2a. Draw bending moment diagram for the frame. Assume EI to be constant 
for all the members. 
 

 
 
Solution 
 
In the first step, calculate fixed end moments. 
 

mkNM

mkNM

mkNM

mkNM

F
CB

F
BC

F
DB

F
BD

.0.0

.0.0

.0.5

.0.5

=

=

−=

=

     (1) 

 
Also, the fixed end moment acting at B on BA is clockwise.  
 

mkNM F
BA .0.10−=  
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In the next step calculate stiffness and distribution factors. 
  

EIEIK BD 25.0
4

==    and  EIEIK BC 25.0
4

==    

 
At joint B : 
 

EIK 50.0=∑  
 

5.0;5.0
5.0

25.0
=== BCBD DF

EI
EIDF   (2) 

 
All the calculations are shown in Fig. 20.2b. Please note that cantilever member 
does not have any restraining effect on the joint B from rotation. In addition its 
stiffness factor is zero. Hence unbalanced moment is distributed between 
members and BC BD only. 
 

 
 
In this problem the moment-distribution method is completed in only one cycle, 
as equilibrium of only one joint needs to be considered. In other words, there is 
only one equation that needs to be solved for the unknown Bθ  in this problem. 
This problem has already been solved by slop- deflection method wherein 
reactions are computed from equations of statics. The free body diagram of each 
member of the frame with external load and beam end moments are again 
reproduced here in Fig. 20.2c for easy reference. The bending moment diagram 
is shown in Fig. 20.2d. 
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Version 2 CE IIT, Kharagpur 
 



Example 20.2 
Analyse the rigid frame shown in Fig. 20.3a by moment-distribution method. 
Moment of inertia of different members are shown in the diagram. 

 
 
Solution:  
Calculate fixed end moments by locking the joints  and DCBA ,,, E   

 
25 4 4.0 kN.m

20
F
ABM ×
= =  

 
kN.m667.2−=F

BAM  
 

kN.m5.7=F
BCM  

 
kN.m5.7−=F

CBM    
     

0==== F
EC

F
CE

F
DB

F
BD MMMM     (1) 

 
The frame is restrained against sidesway. In the next step calculate stiffness and 
distribution factors. 
 

EIKBA 25.0=    and  EIEIK BC 333.0
6

2
==  
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EIKEIEIK CEBD 25.0;1875.0
44

3
===    (2)   

 
At joint B : 
 

EI
KKKK BDBCBA

7705.0=

++=∑  

 
432.0;325.0 == BCBA DFDF  

 
243.0=BDDF       (3) 

 
 
At joint : C
 

EIK 583.0=∑  
 

429.0;571.0 == CDCB DFDF  
 
In Fig. 20.3b, the complete procedure is shown on a working diagram. The 
moment-distribution method is started from joint . When joint  is unlocked, it 
will rotate under the action of unbalanced moment of . Hence 
the  is distributed among members and  according to their 
distribution factors. Now joint C  is balanced. To indicate that the joint C is 
balanced a horizontal line is drawn. This balancing moment in turn developed 
moments  at and 

C C
7.5 kN.m

7.5 kN.m CB CE

2.141 kN.m+ BC 1.61 kN.m+ at . Now unlock jointEC B . The joint 
B  is unbalanced and the unbalanced moment 
is . This moment is distributed among three 
members meeting at 

(7.5 2.141 2.67) 6.971 kN.m− + − = −
B in proportion to their distribution factors. Also there is no 

carry over to joint from beam end moment D BD  as it was left unlocked. For 
member BD , modified stiffness factor is used as the end  is hinged.           D
 
Example 20.3 
Analyse the rigid frame shown in Fig. 20.4a by moment-distribution method. 
Draw bending moment diagram for the rigid frame. The flexural rigidities of the 
members are shown in the figure. 
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Solution: 
Assuming that the joints are locked, calculate fixed end moments.  
 

1.333 kN.m ;F
ABM =   1.333 kN.mF

BAM = −
 

4.444 kN.m;F
BCM =     2.222 kN.mF

CBM = −
 

6.667 kN.m ;F
CDM = 6.667 kN.mF

DCM = −  
 

0.0 kN.m ;F
BEM =     0.0 kN.mF

EBM =
 

5.0 kN.m ;F
CFM =         (1)      5.0 kN.mF

FCM = −
    
 
The frame is restrained against sidesway. Calculate stiffness and distribution 
factors.    
 

EIKEIKEIK BEBCBA 333.0;333.0;5.0 ===  
 

EIEIKEIKEIK CFCDCB 375.0
4

2
4
3;5.0;333.0 ====  

 
EIKEIK DGDC 5.0;5.0 ==       (2) 

 
Joint B :  

EIEIEIEIK 166.1333.0333.05.0 =++=∑  
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286.0;428.0 == BCBA DFDF  
 

286.0=BEDF          
 
Joint C : 

EIEIEIEIK 208.1375.05.0333.0 =++=∑  
 

414.0;276.0 == CDCB DFDF  
 

31.0=CFDF   
 
Joint : D

EIK 0.1=∑  
 

50.0;50.0 == DGDC DFDF      (3) 
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The complete moment-distribution method is shown in Fig. 20.4b. The moment-
distribution is stopped after three cycles. The moment-distribution is started by 
releasing and balancing joint . This is repeated for joints C  and D B respectively 
in that order. After balancing joint , it is left unlocked throughout as it is a hinged 
joint. After balancing each joint a horizontal line is drawn to indicate that joint has 
been balanced and locked. When moment-distribution method is finally stopped 
all joints except fixed joints will be left unlocked.      

F

 
 
Summary 
In this lesson plane frames which are restrained against sidesway are analysed 
by the moment-distribution method. As many equilibrium equations are written as 
there are unknown displacements. The reactions of the frames are computed 
from equations of static equilibrium. The bending moment diagram is drawn for 
the frame. A few problems are solved to illustrate the procedure. Free-body 
diagrams are drawn wherever required. 
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21 

 

The Moment-
Distribution Method: 

Frames with Sidesway  

 

 



Instructional Objectives 
After reading this chapter the student will be able to 

1. Extend moment-distribution method for frames undergoing sidesway. 
2. Draw free-body diagrams of plane frame. 
3. Analyse plane frames undergoing sidesway by the moment-distribution 

method. 
4. Draw shear force and bending moment diagrams. 
5. Sketch deflected shape of the plane frame not restrained against sidesway. 
 
 
21.1 Introduction 
In the previous lesson, rigid frames restrained against sidesway are analyzed 
using moment-distribution method. It has been pointed in lesson 17, that frames 
which are unsymmetrical or frames which are loaded unsymmetrically usually get 
displaced either to the right or to the left. In other words, in such frames apart 
from evaluating joint rotations, one also needs to evaluate joint translations 
(sidesway). For example in frame shown in Fig 21.1, the loading is symmetrical 
but the geometry of frame is unsymmetrical and hence sidesway needs to be 
considered in the analysis. The number of unknowns is this case are: joint 
rotations Bθ  and Cθ  and member rotationψ . Joint B  and C get translated by the 
same amount as axial deformations are not considered and hence only one 
independent member rotation need to be considered. The procedure to analyze 
rigid frames undergoing lateral displacement using moment-distribution method 
is explained in section 21.2 using an example. 
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21.2 Procedure 
 A special procedure is required to analyze frames with sidesway using moment-
distribution method. In the first step, identify the number of independent rotations 
(ψ ) in the structure. The procedure to calculate independent rotations is 
explained in lesson 22. For analyzing frames with sidesway, the method of 
superposition is used. The structure shown in Fig. 21.2a is expressed as the 
sum of two systems: Fig. 21.2b and Fig. 21.2c. The systems shown in figures  
21.2b and 21.2c are analyzed separately and superposed to obtain the final 
answer. In system 21.2b, sidesway is prevented by artificial support atC . Apply 
all the external loads on frame shown in Fig. 21.2b. Since for the frame, 
sidesway is prevented, moment-distribution method as discussed in the previous 
lesson is applied and beam end moments are calculated. 
Let  and  be the balanced moments obtained by 
distributing fixed end moments due to applied loads while allowing only joint 
rotations  (

''''' ,,,, CDCBBCBAAB MMMMM '
DCM

Bθ  and Cθ ) and preventing sidesway. 
Now, calculate reactions  and (ref. Fig 21.3a).they are , 1AH 1DH
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22

''

1 h
Pa

h
MMH BAAB

A +
+

=  

 

1

''

1 h
MM

H DCCD
D

+
=        (21.1)  

 
again,            (21.2) )( 11 DA HHPR +−=
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In Fig 21.2c apply a horizontal force  in the opposite direction ofF R . Now 

, then the superposition of beam end moments of system (b) and times 

(c) gives the results for the original structure. However, there is no way one could 

analyze the frame for horizontal force , by moment-distribution method as sway 

comes in to picture. Instead of applying , apply arbitrary known displacement / 

sidesway '  as shown in the figure. Calculate the fixed end beam moments in 

the column 

RFk = k

F

F

Δ

AB  and CD  for the imposed horizontal displacement. Since joint 

displacement is known beforehand, one could use moment-distribution method to 

analyse this frame. In this case, member rotations  ψ  are related to joint 

translation which is known. Let  and are the 

balanced moment obtained by distributing the fixed end moments due to 

assumed sidesway  at joints 

'''''''''' ,,,, CDCBBCBAAB MMMMM ''
DCM

'Δ B  and . Now, from statics calculate horizontal 

force due to arbitrary sidesway

C

F 'Δ . 
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2

''''

2 h
MMH BAAB

A
+

=  

 

1

''''

2 h
MM

H DCCD
D

+
=       (21.3) 

 
)( 22 DA HHF +=          (21.4) 

 
 
 
In Fig 21.2, by method of superposition 
 

RkF =   or  FRk /=
 
Substituting the values of R  and from equations (21.2) and (21.4), F
 

)(
)(

22

11

DA

DA

HH
HHPk

+
+−

=            (21.5)  

 
Now substituting the values of , ,  and  in 21.5, 1AH 2AH 1DH 2DH
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
+

+
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

+
−

=
+

12

122

''''''''

''''

h
MM

h
MM

h
MM

h
Pa

h
MM

P
k

DCCDBAAB

DCCDBAAB

    (21.6) 

 
Hence, beam end moment in the original structure is obtained as, 
 

)()( csystembsystemoriginal kMMM +=  
 
If there is more than one independent member rotation, then the above 
procedure needs to be modified and is discussed in the next lesson. 
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Example 21.1 
Analyse the rigid frame shown in Fig 21.4a. Assume EI to be constant for all 

members. Also sketch elastic curve. 

 

 
 
Solution 
In the given problem, joint can also rotate and also translate by an unknown 

amount . This problem has to be solved in two steps. In the first step, evaluate 

the beam-end moment by preventing the sidesway. 

C

Δ

In the second step calculate beam end moments by moment-distribution method 

for known translation (see Fig 21.4b). By appropriately superposing the two 

results, the beam end moment of the original structure is obtained. 

 
a) Calculate stiffness and distribution factors 
 

EIKBA 333.0=  ; EIK BC 25.0= ; 
        

EIKCB 25.0=  ; EIKCD 333.0=  
 
Joint   :B EIK 583.0=∑  
 

571.0=BADF ; 429.0=BCDF  
 
Joint   :C ∑ = EIK 583.0  
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429.0=CBDF ; 571.0=CDDF .    (1) 
   
b) Calculate fixed end moment due to applied loading. 
 

0=F
ABM ;          kN.m 0=F

BAM
 
 ;     kN.m01+=F

BCM kN.m01−=F
CBM

        
kN.m0=F

CDM     ;     .   (2) kN.m0=F
DCM

 

 
 

Now the frame is prevented from sidesway by providing a support at C as shown 

in Fig 21.4b (ii). The moment-distribution for this frame is shown in Fig 21.4c.  Let 

, and  be the balanced end moments. Now calculate 

horizontal reactions at A and D from equations of statics. 

BAAB MM ',' CDM ' DCM '

 

3
''

1
BAAB

A
MMH +

=  

       

        = 
3

268.7635.3 +−  

        . )(635.3 →−= KN
 

)(kN 635.3
3

269.17636.3
1 ←=

−
=DH . 
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)(kN 10)635.3635.3(10 →−=+−−=R    (3)  
 

           
 
d) Moment-distribution for arbitrary known sidesway  'Δ  . 
 

Since  is arbitrary, Choose any convenient value. Let  'Δ 'Δ = 
EI

150    Now calculate 

fixed end beam moments for this arbitrary sidesway. 
 

L
EIM F

AB
ψ6

−=   )
3
150(

3
6

EI
EI

−×−= =   kN.m100

 
kN.m100=F

BAM  
 

kN.m100+== F
DC

F
CD MM      (4) 
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The moment-distribution for this case is shown in Fig 24.4d. Now calculate 

horizontal reactions  and . 2AH 2DH

 

 = 2AH )(kN15.43
3

48.7698.52
←=

+  

2DH  = )(kN15.43
3

49.7697.52
←=

+   

 
)(kN30.86 →−=F  
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Let  be a factor by which the solution of case ( iik i ) needs to be multiplied. Now 

actual moments in the frame is obtained by superposing the solution ( ) on the 

solution obtained by multiplying case ( ii

ii

i ) by . Thus cancel out the holding 

force R such that final result is for the frame without holding force. 

k kF

  
Thus, .   RFk =
 

1161.0
13.86

10
=

−
−

=k      (5) 

 
 
Now the actual end moments in the frame are, 
 

ABABAB MkMM ''' +=  

3.635 0.1161( 76.48) 5.244 kN.mABM = − + + = +  

7.268 0.1161( 52.98) 1.117 kN.mBAM = − + + = −  

7.268 0.1161( 52.98) 1.117 kN.mBCM = + + − = +  

7.269 0.1161( 52.97) 13.419 kN.mCBM = − + − = −  

7.268 0.1161( 52.97) 13.418 kN.mCDM = + + + = +  

3.636 0.1161( 76.49) 12.517 kN.mDCM = + + + = +  

 
The actual sway is computed as,  

EI
k 1501161.0' ×=Δ=Δ  

 

    
EI
415.17

=  

  
The joint rotations can be calculated using slope-deflection equations. 
 
 

[ ABBA
F
ABAB ]

L
EIMM ψθθ 322

−++=     where 
LAB
Δ

−=ψ               

 

[ ]ABAB
F
BABA L

EIMM ψθθ 322
−++=  
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In the above equation, except Aθ and Bθ all other quantities are known. Solving 

for Aθ and Bθ , 

EIBA
55.9;0 −

== θθ . 

 
The elastic curve is shown in Fig. 21.4e. 
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Example 21.2 
Analyse the rigid frame shown in Fig. 21.5a by moment-distribution method. The 

moment of inertia of all the members is shown in the figure. Neglect axial 

deformations.  

 

 
 
Solution: 
In this frame joint rotations B and and translation of joint C B and need to be 

evaluated. 

C

 
a) Calculate stiffness and distribution factors. 
 

EIKEIK BCBA 25.0;333.0 ==  
 

EIKEIK CDCB 333.0;25.0 ==     
  

At joint B : 
 

EIK 583.0=∑  
 

429.0;571.0 == BCBA DFDF  
 
At joint : C
 

EIK 583.0=∑  
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571.0;429.0 == CDCB DFDF  

 
b) Calculate fixed end moments due to applied loading.  
 

2

2

12 3 3 9.0 kN.m
6

F
ABM × ×
= = ;  9.0 kN.mF

BAM = −

 

0 kN.mF
BCM = ;     0 kN.mF

CBM =

 

0 kN.mF
CDM = ;      0 kN.mF

DCM =

 
c) Prevent sidesway by providing artificial support at C . Carry out moment-

distribution ( Case ..ei A  in Fig. 21.5b). The moment-distribution for this case is 

shown in Fig. 21.5c.  
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Now calculate horizontal reaction at A  and  from equations of statics. D
 

( )1
11.694 3.614 6 7.347 kN

6AH −
= + = ←  

( )1
1.154 0.578 0.577 kN

3DH − −
= = − →  

( )12 (7.347 0.577) 5.23 kNR = − − = − →  
 
d) Moment-distribution for arbitrary sidesway 'Δ (case B, Fig. 21.5c) 
 

Calculate fixed end moments for the arbitrary sidesway of 
EI

150'=Δ . 

 
6 (2 ) 12 150( ) 50 kN.m ; 50 kN.m ;

6 6
F F
AB BA

E I EIM M
L EI

ψ= − = × − = + = +

 
 

Version 2 CE IIT, Kharagpur 
 



6 ( ) 6 150( ) 100 kN.m ; 100 kN.m ;
3 3

F F
CD DC

E I EIM M
L EI

ψ= − = − × − = + = +

 
The moment-distribution for this case is shown in Fig. 21.5d. Using equations of 

static equilibrium, calculate reactions and . 2AH 2DH

 

 
  

)(395.12
6

457.41911.32
2 ←=

+
= kNH A  

)(952.39
3

285.7357.46
2 ←=

+
= kNH D   

 
)(347.52)952.39395.12( →−=+−= kNF  

 
e) Final results 
 
Now, the shear condition for the frame is (vide Fig. 21.5b) 
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129.0

12)952.39395.12()577.0344.7(

12)()( 2211

=

=++−

=+++

k

k

HHkHH DADA

 

 
Now the actual end moments in the frame are, 
 

ABABAB MkMM ''' +=  

11.694 0.129( 41.457) 17.039 kN.mABM = + + = +  

3.614 0.129( 32.911) 0.629 kN.mBAM = − + + =  

3.614 0.129( 32.911) 0.629 kN.mBCM = + − = −  

1.154 0.129( 46.457) 4.853 kN.mCBM = − + − = −  

1.154 0.129( 46.457) 4.853 kN.mCDM = − + + = +  

0.578 0.129( 73.285) 8.876 kN.mDCM = − + + = +  

 
The actual sway  
 

EI
k 150129.0' ×=Δ=Δ  

 

    
EI

35.19
=  

 
The joint rotations can be calculated using slope-deflection equations. 
 

[ ]ψθθ 32)2(2
−++=− BA

F
ABAB L

IEMM                  

or  

[ ] ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −−=⎥⎦

⎤
⎢⎣
⎡ +−=+

L
EIMM

EI
L

L
EIMM

EI
L F

ABAB
F
ABABBA

ψψθθ 12
4

12
4

2  

 

[ ] ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −−=⎥⎦

⎤
⎢⎣
⎡ +−=+

L
EIMM

EI
L

L
EIMM

EI
L F

BABA
F
BABAAB

ψψθθ 12
4

12
4

2  

 
 

17.039 kN.mABM = +  

Version 2 CE IIT, Kharagpur 
 



 
0.629 kN.mBAM =  

 
( ) 9 0.129(50) 15.45 kN.mF

ABM = + =  
 
( ) 9 0.129(50) 2.55 kN.mF

BAM = − + = −  
 

1change in near end + - change in far end
2

3

1(17.039 15.45) (0.629 2.55)
2 0.03

6

A EI
L

EI

θ

⎛ ⎞
⎜ ⎟
⎝ ⎠=

⎛ ⎞− + − +⎜ ⎟
⎝ ⎠= =

 

4.769
B EI

θ =  

 
Example 21.3 
Analyse the rigid frame shown in Fig. 21.6a. The moment of inertia of all the 

members are shown in the figure. 
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Solution: 
a) Calculate stiffness and distribution factors 
 

EIKEIEIK BCBA 50.0;392.0
1.5

2
===  

 
EIKEIK CDCB 392.0;50.0 ==     

  
 
At joint B : 
 

EIK 892.0=∑  
 

561.0;439.0 == BCBA DFDF  
 
At joint : C
 

EIK 892.0=∑  
 

439.0;561.0 == CDCB DFDF   (1) 
 
 
b) Calculate fixed end moments due to applied loading.  

 

0 kN.mF F F F
AB BA CD DCM M M M= = = =  

2.50 kN.mF
BCM =  

2.50 kN.mF
CBM = −       (2) 

 
c) Prevent sidesway by providing artificial support atC . Carry out moment-

distribution for this case as shown in Fig. 21.6b.  
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Now calculate reactions from free body diagram shown in Fig. 21.5d. 
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Column AB  

1 10 5 1.526 0.764 0A AM H V= ⇒ + + + =∑   

1 15 2.29AH V+ = −       (3) 

 
Column  CD

10 5 1.522 0.762 0D DM H V= ⇒ − − − =∑ 2     

       (4) 1 25 2.284DH V− =

 
Beam  BC

10 2 1.522 1.526 10 1 0CM V= ⇒ + − − × =∑     

( )1 5.002 kNV = ↑  

( )2 4.998 kNV = ↑       (5) 

 
Thus from (3) ( )1 1.458 kNAH = − →  
 
         from (4) ( )1 1.456 kNDH = ←       (6) 
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0=

( )
1 10 5

5.002 kN
X A DF H H R

R

= + + −

= + ←
∑      (7) 

 
d) Moment-distribution for arbitrary sidesway 'Δ . 
 
Calculate fixed end beam moments for arbitrary sidesway of  
 

EI
75.12'=Δ  

 
The member rotations for this arbitrary sidesway is shown in Fig. 21.6e.   
 

 



1
1

" ';
cos 5AB

AB AB

BB
L L

5.1 'ψ
α

Δ Δ Δ
= = − Δ = =  

2
2 ' 0.4 '
5
Δ

Δ = = Δ  

' ( )
5AB clockwiseψ Δ

= − ; ' ( )
5CD clockwiseψ Δ

= −  

2 2 ' tan ' ( )
2 2 5BC counterclockwiseαψ Δ Δ Δ

= = =  

 

6 6 (2 ) 12.75 6.0 kN.m
5.1 5

F AB
AB AB

AB

EI E IM
L EI

ψ ⎛ ⎞= − = − − = +⎜ ⎟
⎝ ⎠

 

6.0 kN.mF
BAM = +  

6 6 ( ) 12.75 7.65 kN.m
2 5

F BC
BC BC

BC

EI E IM
L EI

ψ ⎛ ⎞= − = − = −⎜ ⎟
⎝ ⎠

 

7.65 kN.mF
CBM = −  

6 6 (2 ) 12.75 6.0 kN.m
5.1 5

F CD
CD CD

CD

EI E IM
L EI

ψ ⎛ ⎞= − = − − = +⎜ ⎟
⎝ ⎠

 

6.0 kN.mF
DCM = +  

 
The moment-distribution for the arbitrary sway is shown in Fig. 21.6f. Now 

reactions can be calculated from statics. 
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Column AB  
 

2 10 5 6.283 6.567 0A AM H V= ⇒ − − + =∑   

1 15 12.85AH V+ =       (3) 
 
Column  CD
 

2 20 5 6.567 6.283 0D DM H V= ⇒ − − − =∑   

1 25 12.85DH V− =       (4) 
 
 
Beam  BC

10 2 6.567 6.567 0CM V= ⇒ + + =∑    

( )1 6.567V kN ( )2 6.567 kNV= − ↓ ; + ↑    (5) =

Thus from 3 ( )2 3.883 kNAH = + ←  
 
         from 4        (6) ( )2 3.883 kNDH = ←
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( )7.766 kNF = ←      (7) 
 
 
e) Final results 
 

 RFk =  
 

644.0
766.7
002.5

==k  

 
Now the actual end moments in the frame are, 
 

ABABAB MkMM ''' +=  

0.764 0.644( 6.283) 3.282 kN.mABM = − + + = +  

1.526 0.644( 6.567) 2.703 kN.mBAM = − + + =  

1.526 0.644( 6.567) 2.703 kN.mBCM = + − = −  

1.522 0.644( 6.567) 5.751 kN.mCBM = − + − = − −  

1.522 0.644(6.567) 5.751 kN.mCDM = + =  

0.762 0.644(6.283) 4.808 kN.mDCM = + =  

 
The actual sway  
 

EI
k 75.12644.0' ×=Δ=Δ  

    
EI
212.8

=  

 
Summary 
In this lesson, the frames which are not restrained against sidesway are identified 
and solved by the moment-distribution method. The moment-distribution method 
is applied in two steps: in the first step, the frame prevented from sidesway but 
subjected to external loads is analysed and subsequently, the frame which is 
undergoing an arbitrary but known sidesway is analysed. Using shear equation 
for the frame, the moments in the frame is obtained. The numerical examples are 
explained with the help of free-body diagrams. The deflected shape of the frame 
is sketched to understand its deformation under external loads. 
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Instructional Objectives 
After reading this chapter the student will be able to 

1. Identify the number of independent rotational degrees of freedom of a rigid 
frame. 

2. Write appropriate number of equilibrium equations to solve rigid frame 
having more than one rotational degree of freedom. 

3. Draw free-body diagram of multistory frames. 
4. Analyse multistory frames with sidesway by the slope-deflection method. 
5. Analyse multistory frames with sidesway by the moment-distribution 

method. 
 
 
22.1 Introduction 
In lessons 17 and 21, rigid frames having single independent member rotational 

( ⎟
⎠
⎞

⎜
⎝
⎛ Δ
=

h
ψ ) degree of freedom (or joint translationΔ ) is solved using slope-

deflection and moment-distribution method respectively. However multistory 
frames usually have more than one independent rotational degree of freedom. 
Such frames can also be analysed by slope-deflection and moment-distribution 
methods. Usually number of independent member rotations can be evaluated by 
inspection. However if the structure is complex the following method may be 
adopted. Consider the structure shown in Fig. 22.1a. Temporarily replace all rigid 
joints of the frame by pinned joint and fixed supports by hinged supports as 
shown in Fig. 22.1b. Now inspect the stability of the modified structure. If one or 
more joints are free to translate without any resistance then the structure is 
geometrically unstable. Now introduce forces in appropriate directions to the 
structure so as to make it stable. The number of such externally applied forces 
represents the number of independent member rotations in the structure. 
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In the modified structure Fig. 22.1b, two forces are required to be applied at level 
and level CD BF for stability of the structure. Hence there are two independent 

member rotations ( )ψ  that need to be considered apart from joint rotations in the 
analysis. 
 
The number of independent rotations to be considered for the frame shown in 
Fig. 22.2a is three and is clear from the modified structure shown in Fig. 22.2b. 
 

 
 

 
 
From the above procedure it is clear that the frame shown in Fig. 22.3a has three 
independent member rotations and frame shown in Fig 22.4a has two 
independent member rotations. 
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For the gable frame shown in Fig. 22.4a, the possible displacements at each joint 
are also shown. Horizontal displacement is denoted by  and vertical 
displacement is denoted by v . Recall that in the analysis, we are not considering 

u
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the axial deformation. Hence at B and  only horizontal deformation is possible 
and joint C  can have both horizontal and vertical deformation. The 
displacements and  should be such that the lengths  and  
must not change as the axial deformation is not considered. Hence we can have 
only two independent translations. In the next section slope-deflection method as 
applied to multistoried frame is discussed.  

D

DCB uuu ,, Du BC CD

 
 
22.2 Slope-deflection method 
For the two story frame shown in Fig. 22.5, there are four joint rotations 
( EDCB )andθθθ ,,θ  and two independent joint translations (sidesway) at the 
level of CD and at the level of

1Δ

2Δ BE . 
 

 
 
Six simultaneous equations are required to evaluate the six unknowns (four 
rotations and two translations). For each of the member one could write two 
slope-deflection equations relating beam end moments to  externally applied 
loads and  displacements (rotations and translations). Four of the required six 
equations are obtained by considering the moment equilibrium of joint and 

)(i
)(ii

DCB ,,
E  respectively. For example, 
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∑ =++⇒= 00 BEBCBAB MMMM     (22.1) 
 
The other two equations are obtained by considering the force equilibrium of the  
members. Thus, the shear at the base of all columns for any story must be equal 
to applied load. Thus  at the base of top story gives (ref. Fig. 22.6) ∑ = 0XF
 

01 =−− DC HHP       (22.2) 
 
Similarly  at the base of frame results in  ∑ = 0XF
 

021 =−−+ FA HHPP      (22.3) 
 
Thus we get six equations in six unknowns. Solving the above six equations all 
the unknowns are evaluated. The above procedure is explained in example 22.1. 
 

 
 
Example 22.1 
Analyse the two story rigid frame shown in Fig. 22.7a by the slope-deflection 
method. Assume EI to be constant for all members.  
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In this case all the fixed end moments are zero. The members AB and 

EF undergo rotations 
5

2
2

Δ
−=ψ (negative as it is clockwise) and member and BC

ED undergo rotations
5

1
1

Δ
−=ψ . Now writing slope-deflection equations for 12 

beam end moments. 
 

[ ]232
5

20 ψθθ −++= BAAB
EIM   ;0=Aθ  

5
2

2
Δ

−=ψ  

 
   224.04.0 Δ+= EIEIM BAB θ  
 

224.08.0 Δ+= EIEIM BBA θ  
 

124.04.08.0 Δ++= EIEIEIM CBBC θθ  
 

124.04.08.0 Δ++= EIEIEIM BCCB θθ  
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EBBE EIEIM θθ 4.08.0 +=  
 

BEEB EIEIM θθ 4.08.0 +=  
 

DCCD EIEIM θθ 4.08.0 +=  
 

CDDC EIEIM θθ 4.08.0 +=  
 

124.04.08.0 Δ++= EIEIEIM EDDE θθ  
 

124.04.08.0 Δ++= EIEIEIM DEED θθ  
 

224.08.0 Δ+= EIEIM EEF θ  
 

224.04.0 Δ+= EIEIM EFE θ      (1)  
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Moment equilibrium of joint and DCB ,, E  requires that (vide Fig. 22.7c). 
 

0=++ BEBCBA MMM  
0=+ CDCB MM  
0=+ DEDC MM  

0=++ EFEDEB MMM      (2) 
 
The required two more equations are written considering the horizontal 
equilibrium at each story level. ∑ = 0.. XFei (vide., Fig. 22.7d). Thus, 
 

20=+ DC HH        
  

60=+ FA HH        (3) 
 
Considering the equilibrium of column andBCEFAB ,, ED , we get (vide 22.7c) 
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5
CBBC

C
MMH +

=  

 

5
EDDE

D
MMH +

=  

 

5
BAAB

A
MMH +

=  

 

5
FEEF

F
MMH +

=       (4) 

 
Using equation (4), equation (3) may be written as, 
 

100=+++ EDDECBBC MMMM  
 

300=+++ FEEFBAAB MMMM     (5) 
 
 
Substituting the beam end moments from equation (1) in (2) and (5) the required 
equations are obtained. Thus, 
 

024.024.04.04.04.2 21 =Δ+Δ+++ ECB θθθ  
 

024.04.04.06.1 1 =Δ+++ BDC θθθ  
 

024.04.04.06.1 1 =Δ+++ ECD θθθ  
 

024.024.04.04.04.2 21 =Δ+Δ+++ DBE θθθ  
 

10096.02.12.12.12.1 1 =Δ++++ EDCB θθθθ  
 

30096.02.12.1 2 =Δ+++ EB θθ     (6) 
 
Solving above equations, yields 
 

EIEI

EIEIEIEI DECB

27.477;12.337

;909.65;273.27;273.27;909.65

21 =Δ=Δ

−
=

−
=

−
=

−
= θθθθ

 (7) 
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Substituting the above values of rotations and translations in equation (1) beam 
end moments are evaluated. They are,    
 

88.18 kN.m ; 61.81 kN.mAB BAM M= =  
 

17.27 kN.m ; 32.72. kN.mBC CBM M= =  
 

79.09 kN.m ;  79.09 kN.mBE EBM M= − = −  
 

32.72 kN.m ;  32.72 kN.mCD DCM M= − = −  
 

32.72 kN.m ; 17.27 kN.mDE EDM M= =  
 

61.81 kN.m ; 88.18 kN.mEF FEM M= =  
 
 
22.3 Moment-distribution method 
The two-story frame shown in Fig. 22.8a has two independent sidesways or 
member rotations. Invoking the method of superposition, the structure shown in 
Fig. 22.8a is expressed as the sum of three systems; 
 

1) The system shown in Fig. 22.8b, where in the sidesway is completely 
prevented by introducing two supports at E and . All external loads are 
applied on this frame. 

D

2) System shown in Fig. 22.8c, wherein the support E is locked against 
sidesway and joint  and  are allowed to displace horizontally. Apply 
arbitrary sidesway  and calculate fixed end moments in column and 

C D
1'Δ BC

DE . Using moment-distribution method, calculate beam end moments. 
3) Structure shown in Fig. 22.8d, the support  is locked against sidesway 

and joints 
D

B and E  are allowed to displace horizontally by removing the 
support at E . Calculate fixed end moments in column AB and EF for an 
arbitrary sidesway as shown the in figure. Since joint displacement as 
known beforehand, one could use the moment-distribution method to 
analyse the frame. 

2'Δ
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All three systems are analysed separately and superposed to obtain the final 
answer. Since structures 22.8c and 22.8d are analysed for arbitrary sidesway 

and  respectively, the end moments and the displacements of these two 
analyses are to be multiplied by constants and  before superposing with the 
results obtained in Fig. 22.8b. The constants and  must be such that 

1'Δ 2'Δ

1k 2k

1k 2k
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111 ' Δ=Δk   and 222 ' Δ=Δk .     (22.4)  

 
The constants and are evaluated by solving shear equations. From Fig. 
22.9, it is clear that the horizontal forces developed at the beam level  in Fig. 
22.9c and 22.9d must be equal and opposite to the restraining force applied at 
the restraining support at  in Fig. 22.9b. Thus, 

1k 2k
CD

D
 

 
 

( ) ( ) 1332221 PHHkHHk DCDC =+++      (23.5) 
 
From similar reasoning, from Fig. 22.10, one could write, 
 

( ) ( ) 2332221 PHHkHHk FAFA =+++      (23.6) 
 
Solving the above two equations,  and are calculated. 1k 2k
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Example 22.2 
Analyse the rigid frame of example 22.1 by the moment-distribution method. 
 
Solution: 
First calculate stiffness and distribution factors for all the six members. 
 

EIKEIKEIK
EIKEIK
EIKEIK

EIKEIKEIK

EFEDEB

DEDC

CDCB

BEBCBA

20.0;20.0;20.0
;20.0;20.0
;20.0;20.0

;20.0;20.0;20.0

===
==
==

===

  (1) 

 
Joint   :B ∑ = EIK 60.0
  333.0;333.0;333.0 === BEBCBA DFDFDF  
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JointC :  ∑ = EIK 40.0
  50.0;50.0 == CDCB DFDF  
 
Joint :  D ∑ = EIK 40.0
  50.0;50.0 == DEDC DFDF  
 
Joint E :  ∑ = EIK 60.0
  333.0;333.0;333.0 === EFEDEB DFDFDF        (2) 
 
The frame has two independent sidesways: 1Δ to the right of CD and  to the 
right of

2Δ
BE . The given problem may be broken in to three systems as shown in 

Fig.22.11a. 
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In the first case, when the sidesway is prevented [Fig. 22.10a ( )], the only 
internal forces induced in the structure being and axial forces in 
member  and 

ii
kN20 kN40

CD BE respectively. No bending moment is induced in the 
structure. Thus we need to analyse only and . )(iii )(iv
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Case I : 
 
Moment-distribution for sidesway 1'Δ at beam CD [Fig. 22.1qa ( )]. Let the 

arbitrary sidesway be 

iii

EI
25'1 =Δ   . Thus the fixed end moment in column CBand 

DE due to this arbitrary sidesway is 
 

1
2

6 ' 6 25 6.0 kN.m
25

F F
BC CB

EI EIM M
L EI
Δ

= = = × = +  

 
6.0 kN.mF F

ED DEM M= = +         (3) 
 
Now moment-distribution is carried out to obtain the balanced end moments. The 
whole procedure is shown in Fig. 22.11b. Successively joint and BCD ,, E  are 
released and balanced.  
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From the free body diagram of the column shown in Fig. 22.11c, the horizontal 
forces are calculated. Thus, 
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2
3.53 3.17 1.34 kN;

5CH +
= =  2 1.34 kNDH =  

2
0.70 1.41 0.42 kN;

5AH − −
= = −  2 0.42 kNFH = −   (4)  

 
Case II : 
 
Moment-distribution for sidesway 2'Δ at beam BE [Fig. 22.11a ( iv )]. Let the 

arbitrary sidesway be 
EI
25'2 =Δ   

Thus the fixed end moment in column AB and EF due to this arbitrary sidesway 
is 
 

2
2

6 ' 6 25 6.0 kN.m
25

F F
AB BA

EI EIM M
L EI
Δ

= = = × = +  

 
6.0 kN.mF F

FE EFM M= = +        (5) 
 
Moment-distribution is carried out to obtain the balanced end moments as shown 
in Fig. 22.11d. The whole procedure is shown in Fig. 22.10b. Successively joint 

and BCD ,, E  are released and balanced.  
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From the free body diagram of the column shown in Fig. 22.11e, the horizontal 
forces are calculated. Thus, 
 

 
 

3 3
1.59 0.53 0.42 kN; 0.42 kN

5C DH H− −
= = − = −  

3 3
5.11 4.23 1.86 kN; 1.86 kN

5A FH H+
= = =    (6) 

 
For evaluating constants and , we could write, (see Fig. 22.11a, 22.11c and 
22.11d). 

1k 2k

 
( ) ( ) 20332221 =+++ DCDC HHkHHk  
( ) ( ) 60332221 =+++ FAFA HHkHHk  
( ) ( ) 2042.042.034.134.1 21 =−−++ kk  
( ) ( ) 6086.186.142.042.0 21 =++−− kk  
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( ) ( ) 1042.034.1 21 =−+ kk  
( ) ( ) 3086.142.0 21 =+− kk  

 
Solving which, 17.1947.13 21 == kk      (7) 
 
Thus the final moments are, 
 

88.52 kN.m ; 62.09 kN.mAB BAM M= =  
 

17.06 kN.m ; 32.54. kN.mBC CBM M= =  
 

79.54 kN.m ; 79.54 kN.mBE EBM M= − = −  
 

32.54 kN.m ; 32.54 kN.mCD DCM M= − = −  
 

32.54 kN.m ; 17.06 kN.mDE EDM M= =  
 

62.09 kN.m ; 88.52 kN.mEF FEM M= =     (8) 
     
 
Summary 
A procedure to identify the number of independent rotational degrees of freedom 
of a rigid frame is given. The slope-deflection method and the moment-
distribution method are extended in this lesson to solve rigid multistory frames 
having more than one independent rotational degrees of freedom.  A multistory 
frames having side sway is analysed by the slope-deflection method and the 
moment-distribution method. Appropriate number of equilibrium equations is 
written to evaluate all unknowns. Numerical examples are explained with the help 
of free-body diagrams. 
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Instructional Objectives: 
After reading this chapter the student will be able to 
1. Differentiate between the direct stiffness method and the displacement 

method. 
2. Formulate flexibility matrix of member. 
3. Define stiffness matrix. 
4. Construct stiffness matrix of a member. 
5. Analyse simple structures by the direct stiffness matrix. 
 
 
23.1 Introduction 
All known methods of structural analysis are classified into two distinct groups:- 
 
(i) force method of analysis and 
(ii) displacement method of analysis. 
 
In module 2, the force method of analysis or the method of consistent 
deformation is discussed. An introduction to the displacement method of analysis 
is given in module 3, where in slope-deflection method and moment- distribution 
method are discussed. In this module the direct stiffness method is discussed. In 
the displacement method of analysis the equilibrium equations are written by 
expressing the unknown joint displacements in terms of loads by using load-
displacement relations. The unknown joint displacements (the degrees of 
freedom of the structure) are calculated by solving equilibrium equations. The 
slope-deflection and moment-distribution methods were extensively used before 
the high speed computing era. After the revolution in computer industry, only 
direct stiffness method is used. 
 
The displacement method follows essentially the same steps for both statically 
determinate and indeterminate structures. In displacement /stiffness method of 
analysis, once the structural model is defined, the unknowns (joint rotations and 
translations) are automatically chosen unlike the force method of analysis. 
Hence, displacement method of analysis is preferred to computer 
implementation. The method follows a rather a set procedure. The direct stiffness 
method is closely related to slope-deflection equations. 
 
The general method of analyzing indeterminate structures by displacement 
method may be traced to Navier (1785-1836). For example consider a four 
member truss as shown in Fig.23.1.The given truss is statically indeterminate to 
second degree as there are four bar forces but we have only two equations of 
equilibrium. Denote each member by a number, for example (1), (2), (3) and (4). 
Let iα    be the angle, the i-th member makes with the horizontal. Under the 

Version 2 CE IIT, Kharagpur 

                                                         



action of external loads  and , the joint E displaces to E’. Let u and v be its 
vertical and horizontal displacements. Navier solved this problem as follows. 

xP yP

 
In the displacement method of analysis u and v are the only two unknowns for 
this structure. The elongation of individual truss members can be expressed in 
terms of these two unknown joint displacements. Next, calculate bar forces in the 
members by using force–displacement relation. Now at E, two equilibrium 

equations can be written viz., 0=∑ xF and 0=∑ yF  by summing all forces 
in x and y directions. The unknown displacements may be calculated by solving 
the equilibrium equations. In displacement method of analysis, there will be 
exactly as many equilibrium equations as there are unknowns. 
 
Let an elastic body is acted by a force F and the corresponding displacement be 
u in the direction of force. In module 1, we have discussed force- displacement 
relationship. The force (F) is related to the displacement (u) for the linear elastic 
material by the relation 

kuF =      (23.1) 
 

where the constant of proportionality k is defined as the stiffness of the structure 
and it has units of force per unit elongation. The above equation may also be 
written as 
 

aFu =       (23.2)  
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The constant  is known as flexibility of the structure and it has a unit of 
displacement per unit force. In general the structures are subjected to  forces at 

 different locations on the structure. In such a case, to relate displacement at i  
to load at 

a
n

n
j , it is required to use flexibility coefficients with subscripts. Thus the 

flexibility coefficient   is the deflection at  due to unit value of force applied at ija i
j . Similarly the stiffness coefficient  is defined as the force generated at i   ijk
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due to unit displacement at j  with all other displacements kept at zero. To 
illustrate this definition, consider a cantilever beam which is loaded as shown in 
Fig.23.2. The two degrees of freedom for this problem are vertical displacement 
at B and rotation at B. Let them be denoted by  and  (=1u 2u 1θ ). Denote the 
vertical force P by  and the tip moment M by . Now apply a unit vertical 
force along  and calculate deflection  and .The vertical deflection is 
denoted by flexibility coefficient  and rotation is denoted by flexibility 
coefficient . Similarly, by applying a unit force along , one could calculate 
flexibility coefficient  and . Thus is the deflection at 1 corresponding to 

due to unit force applied at 2 in the direction of . By using the principle of 
superposition, the displacements and  are expressed as the sum of 
displacements due to loads  and  acting separately on the beam. Thus, 

1P 2P

1P 1u 2u

11a

21a 1P

12a 22a 12a

1P 2P

1u 2u

1P 2P
 

2121111 PaPau +=  

2221212 PaPau +=          (23.3a) 
 
The above equation may be written in matrix notation as 
 

{ } [ ]{ }Pau =  
 

where, { }  { } ; and { }1

2

;
u

u
u
⎧ ⎫

= ⎨ ⎬
⎩ ⎭

11 12

21 22

a a
a

a a
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

1

2

P
P

P
⎧ ⎫

= ⎨ ⎬
⎩ ⎭
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The forces can also be related to displacements using stiffness coefficients. 
Apply a unit displacement along  (see Fig.23.2d) keeping displacement  as 
zero. Calculate the required forces for this case as  and .Here,  
represents force developed along  when a unit displacement along is 
introduced keeping =0. Apply a unit rotation along (vide Fig.23.2c) ,keeping 

. Calculate the required forces for this configuration and . Invoking 
the principle of superposition, the forces  and are expressed as the sum of 
forces developed due to displacements and acting separately on the beam. 
Thus, 

1u 2u

11k 21k 21k

2P 1u

2u 2u
01 =u 12k 22k

1P 2P

1u 2u

 

2121111 ukukP +=  
 

2221212 ukukP +=      (23.4) 
  

{ } [ ]{ }ukP =  
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where, { } ; { } ;and { }1

2

P
P

P
⎧ ⎫

= ⎨ ⎬
⎩ ⎭

11 12

21 22

k k
k

k k
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

1

2

u
u

u
⎧ ⎫

= ⎨ ⎬
⎩ ⎭

. 

 
[ ]k  is defined as the stiffness matrix of the beam. 
In this lesson, using stiffness method a few problems will be solved. However this 
approach is very rudimentary and is suited for hand computation. A more formal 
approach of the stiffness method will be presented in the next lesson. 
 
 
23.2 A simple example with one degree of freedom 
Consider a fixed–simply supported beam of constant flexural rigidity EI and span 
L which is carrying a uniformly distributed load of w kN/m as shown in Fig.23.3a. 
 
If the axial deformation is neglected, then this beam is kinematically 
indeterminate to first degree. The only unknown joint displacement is Bθ .Thus 
the degrees of freedom for this structure is one (for a brief discussion on degrees 
of freedom, please see introduction to module 3).The analysis of above structure 
by stiffness method is accomplished in following steps: 
 

1. Recall that in the flexibility /force method the redundants  are released (i.e. 
made zero) to obtain a statically determinate structure. A similar operation 
in the stiffness method is to make all the unknown displacements equal to 
zero by altering the boundary conditions. Such an altered structure is 
known as kinematically determinate structure as all joint displacements 
are known in this case. In the present case the restrained structure is 
obtained by preventing the rotation at B as shown in Fig.23.3b. Apply all 
the external loads on the   kinematically determinate structure. Due to 
restraint at B, a moment is developed at B. In the stiffness method we 
adopt the following sign convention. Counterclockwise moments and 
counterclockwise rotations are taken as positive, upward forces and 
displacements are taken as positive. Thus, 

BM

 

12

2wlM B −=    (-ve as  is clockwise)  (23.5) BM

 
The fixed end moment may be obtained from the table given at the end of lesson 
14. 

2. In actual structure there is no moment at B. Hence apply an equal and 
opposite moment at B as shown in Fig.23.3c. Under the action of (-

) the joint rotates in the clockwise direction by an unknown amount. It 
is observed that superposition of above two cases (Fig.23.3b and 
Fig.23.3c) gives the forces in the actual structure. Thus the rotation of joint 

BM

BM
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B must be Bθ which is unknown .The relation between  and BM− Bθ is 
established as follows. Apply a unit rotation at B and calculate the 
moment. ( caused by it. That is given by the relation  )BBk

 

L
EIk BB

4
=      (23.6) 

 
where  is the stiffness coefficient and is defined as the force at joint B due to 
unit displacement at joint B. Now, moment caused by 

BBk

Bθ rotation is 
 

BBBB kM θ=      (23.7) 
 

3. Now, write the equilibrium equation for joint B. The total moment at B is 
BBBB kM θ+ , but in the actual structure the moment at B is zero as 

support B is hinged. Hence, 
 

0=+ BBBB kM θ     (23.8) 
 

BB

B
B k

M
−=θ  

 

EI
wl

B 48

3
=θ      (23.9) 

 

The relation BB L
EIM θ4

=  has already been derived in slope –deflection method 

in lesson 14. Please note that exactly the same steps are followed in slope-
deflection method. 
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23.3 Two degrees of freedom structure 
Consider a plane truss as shown in Fig.23.4a.There is four members in the truss 
and they meet at the common point at E. The truss is subjected to external loads 

and acting at E. In the analysis, neglect the self weight of members. There 

are two unknown displacements at joint E and are denoted by  and .Thus 
the structure is kinematically indeterminate to second degree. The applied forces 
and unknown joint displacements are shown in the positive directions. The 
members are numbered from (1), (2), (3) and (4) as shown in the figure. The 
length and axial rigidity of i-th member is and respectively. Now it is sought 

to evaluate  and by stiffness method. This is done in following steps: 

1P 2P

1u 2u

il iEA

1u 2u
 

1. In the first step, make all the unknown displacements equal to zero by 
altering the boundary conditions as shown in Fig.23.4b. On this restrained 
/kinematically determinate structure, apply all the external loads except 
the joint loads and calculate the reactions corresponding to unknown joint 
displacements  and . Since, in the present case, there are no 
external loads other than the joint loads, the reactions and  
will be equal to zero. Thus, 

1u 2u

1)( LR 2)( LR

 

⎭
⎬
⎫

⎩
⎨
⎧

=
⎭
⎬
⎫

⎩
⎨
⎧

0
0

)(
)(

2

1

L

L

R
R

         (23.10) 

 
2. In the next step, calculate stiffness coefficients and .This is 

done as follows. First give a unit displacement along holding 
displacement along to zero and calculate reactions at E corresponding 
to unknown displacements and  in the kinematically determinate 
structure. They are denoted by . The joint stiffness  of the 
whole truss is composed of individual member stiffness of the truss. This 
is shown in Fig.23.4c. Now consider the member

122111 ,, kkk 22k

1u

2u

1u 2u

2111 , kk 2111 , kk

AE . Under the action of 
unit displacement along , the joint 1u E  displaces to E ′ . Obviously the new 
length is not equal to length AE . Let us denote the new length of the 
members by , where11 ll Δ+ lΔ , is the change in length of the 
member EA ′ . The member EA ′  also makes an angle 1θ with the 
horizontal. This is justified as 1lΔ is small. From the geometry, the change 
in length of the members EA ′  is 

 
11 cosθ=Δl      (23.11a) 
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The elongation is related to the force in the member1lΔ EA ′ ,  by 'AEF
 

EA
lF

l AE

1

1
1

'
=Δ      (23.11b) 

 
Thus from (23.11a) and (23.11b), the force in the members EA ′  is  
 

1
1

1 cosθ
l

EAFAE =′     (23.11c) 

 
This force acts along the member axis. This force may be resolved along and 

directions. Thus, horizontal component of force 

1u

2u AEF ′  is 1
2

1

1 cos θ
l

EA
 (23.11d) 

and vertical component of force AEF ′  is 11
1

1 sincos θθ
l

EA
   (23.11e) 
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Expressions of similar form as above may be obtained for all  members. The sum 
of all horizontal components of individual forces gives us the stiffness coefficient 

 and sum of all vertical component of forces give us the required stiffness 
coefficient . 

11k
21k

 

4
2

4

4
3

2

3

3
2

2

2

2
1

2

1

1
11 coscoscoscos θθθθ

l
EA

l
EA

l
EA

l
EA

k +++=  

 

i
i i

i

l
EA

k θ2
4

1
11 cos∑

=

=       (23.12) 

 

ii
i

i

l
EA

k θθ sincos21 ∑=      (23.13) 

 
In the next step, give a unit displacement along holding displacement along 

equal to zero and calculate reactions at 
2u

1u E  corresponding to unknown 
displacements and in the kinematically determinate structure. The 
corresponding reactions are denoted by and  as shown in Fig.23.4d. The 
joint 

1u 2u

12k 22k
E  gets displaced to E ′  when a unit vertical displacement is given to the joint 

as shown in the figure. Thus, the new length of the member EA ′  is 11 ll Δ+ . 
From the geometry, the elongation 1lΔ is given by 
 

11 sinθ=Δl          (23.14a) 
 

Thus axial force in the member along its centroidal axis  is 1
1

1 sinθ
l

EA
 (23.14b) 

 
Resolve the axial force in the member along and directions. Thus, 

horizontal component of force in the member 

1u 2u

EA ′  is 11
1

1 cossin θθ
l

EA
      (23.14c)  

and vertical component of force in the member EA ′  is  1
2

1

1 sin θ
l

EA
       (23.14d) 

 
In order to evaluate , we need to sum vertical components of forces in all the 
members meeting at joint 

22k
E  .Thus, 
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i
i i

i

l
EA

k θ2
4

1
22 sin∑

=

=     (23.15) 

 

Similarly, ii
i i

i

l
EA

k θθ cossin
4

1
12 ∑

=

=      (23.16) 

 
3. Joint forces in the original structure corresponding to unknown 

displacements and  are  1u 2u
 

⎭
⎬
⎫

⎩
⎨
⎧

=
⎭
⎬
⎫

⎩
⎨
⎧

2

1

2

1

P
P

F
F

      (23.17) 

Now the equilibrium equations at joint E  states that the forces in the original 
structure are equal to the superposition of (i) reactions in the kinematically 
restrained structure corresponding to unknown joint displacements and (ii) 
reactions in the restrained structure due to unknown displacements themselves. 
This may be expressed as, 
 

( ) 21211111 ukukRF L ++=  
( ) 22212122 ukukRF L ++=    (23.18) 

 
This may be written compactly as 
 

{ } { } [ ]{ }ukRF i +=      (23.19) 
 
where, 
 

{ }
⎭
⎬
⎫

⎩
⎨
⎧

=
2

1

F
F

F ; 

 

{ } ( )
( ) ⎭

⎬
⎫

⎩
⎨
⎧

=
2

1

L

L
L R

R
R  

 

[ ] ⎥
⎦

⎤
⎢
⎣

⎡
=

2221

1211

kk
kk

k  

 

{ }
⎭
⎬
⎫

⎩
⎨
⎧

=
2

1

u
u

u       (23.20) 
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For example take PPP == 21 ,
i

i
LL
θsin

= , AAAAA ==== 4321  and 

°= 351θ , °= 702θ , °=1053θ and °=1404θ  
 
Then. 
 

{ }
⎭
⎬
⎫

⎩
⎨
⎧

=
P
P

F      (23.21) 

 

{ }
⎭
⎬
⎫

⎩
⎨
⎧

=
0
0

LR  

 

L
EA

L
EAk ii 9367.0sincos 2

11 ==∑ θθ  

 

L
EA

L
EAk ii 0135.0cossin 2

12 ==∑ θθ  

 

L
EA

L
EAk ii 0135.0cossin 2

21 ==∑ θθ  

 

L
EA

L
EAk i 1853.2sin 3

22 ==∑ θ    (23.22) 

 
1

2

0.9367 0.0135
0.0135 2.1853

uP EA
uP L
⎧ ⎫⎧ ⎫ ⎡ ⎤

=⎨ ⎬ ⎨ ⎬⎢ ⎥
⎩ ⎭ ⎣ ⎦ ⎩ ⎭

 

 
Solving which, yields 
 

EA
Lu 0611.11 =  

EA
Lu 451.02 =  
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Example 23.1 
Analyze the plane frame shown in Fig.23.5a by the direct stiffness method. 
Assume that the flexural rigidity for all members is the same .Neglect axial 
displacements. 
 

 
 
Solution 
In the first step identify the degrees of freedom of the frame .The given frame has 
three degrees of freedom (see Fig.23.5b): 
 
(i) Two rotations as indicated by and and 1u 2u
(ii) One horizontal displacement of joint B and C as indicated by . 3u
 
In the next step make all the displacements equal to zero by fixing joints B and C 
as shown in Fig.23.5c. On this kinematically determinate structure apply all the 
external loads and calculate reactions corresponding to unknown joint 
displacements .Thus, 
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( ) ⎟
⎠
⎞

⎜
⎝
⎛ ××
−+

××
=

36
9324

16
4248

1
F
DR       

 (1) 
 

24 18 6 kN.m= − =        
  
  

( )
2

24 kN.mF
DR = −  

 

( )
3

12 kN.mF
DR =        (2) 

 
Thus, 
 

( )
( )
( )

1

2

3

6
24

12

F
D

F
D

F
D

R

R

R

⎧ ⎫
⎧ ⎫⎪ ⎪

⎪ ⎪ ⎪= −⎨ ⎬ ⎨
⎪ ⎪ ⎪

⎩ ⎭⎪ ⎪⎩ ⎭

⎪
⎬
⎪       (3) 

Next calculate stiffness coefficients. Apply unit rotation along and calculate 
reactions corresponding to the unknown joint displacements in the kinematically 
determinate structure (vide Fig.23.5d) 

1u
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667.1
6

4
4

4
11 =+=

EIEIk  

 

EIEIk 5.0
4

2
21 ==  

 

EIEIk 166.0
66

6
31 −=

×
−=       (4) 

 
Similarly, apply a unit rotation along and calculate reactions corresponding to 
three degrees of freedom (see Fig.23.5e) 

2u

 
EIk 5.012 =  

 
EIk =22  

 
032 =k         (5) 

 
Apply a unit displacement along and calculate joint reactions corresponding to 
unknown displacements in the kinematically determinate structure. 

3u
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E
L
EIk 166.06

213 −=−=  

 
023 =k  

 

EIEIk 056.0
6

12
333 ==      (6) 

 
Finally applying the principle of superposition of joint forces, yields 
 

1 1

2 2

3 3

6 1.667 0.5 0.166
24 0.5 1 0

12 0.166 0 0.056

F u
F EI u
F u

−⎧ ⎫ ⎧ ⎫⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪= − +⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎨ ⎬
⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪−⎩ ⎭ ⎩ ⎭⎩ ⎭ ⎩ ⎭

 

 
Now, 
 

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
=

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

0
0
0

3

2

1

F
F
F

 as there are no loads applied along  and .Thus the  21 , uu 3u

 
unknown displacements are, 
 

1
1

2

3

1 0.5 0.166 6
1 0.5 1 0 24

0.166 0 0.056 24

u
u

EI
u

−−⎧ ⎫ ⎡ ⎤
⎪ ⎪ ⎪ ⎪⎢ ⎥= − −⎨ ⎬ ⎨ ⎬⎢
⎪ ⎪ ⎪ ⎪⎢ ⎥− −⎣ ⎦⎩ ⎭

⎧ ⎫

⎥
⎩ ⎭

  (7) 

 
Solving 
 

1
18.996u

EI
=  

 

2
14.502u

EI
=  

 

3
270.587u

EI
= −       (8) 
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Summary 
The flexibility coefficient and stiffness coefficients are defined in this section. 
Construction of stiffness matrix for a simple member is explained. A few simple 
problems are solved by the direct stiffness method. The difference between the 
slope-deflection method and the direct stiffness method is clearly brought out. 
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24 

The Direct Stiffness 
Method: Truss Analysis  
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Instructional Objectives 
After reading this chapter the student will be able to 
1. Derive member stiffness matrix of a truss member. 
2. Define local and global co-ordinate system. 
3. Transform displacements from local co-ordinate system to global co-ordinate 

system. 
4. Transform forces from local to global co-ordinate system. 
5. Transform member stiffness matrix from local to global co-ordinate system. 
6. Assemble member stiffness matrices to obtain the global stiffness matrix. 
7. Analyse plane truss by the direct stiffness matrix. 
 
 
24.1 Introduction 
An introduction to the stiffness method was given in the previous chapter. The 
basic principles involved in the analysis of beams, trusses were discussed. The 
problems were solved with hand computation by the direct application of the 
basic principles. The procedure discussed in the previous chapter though 
enlightening are not suitable for computer programming. It is necessary to keep 
hand computation to a minimum while implementing this procedure on the 
computer. In this chapter a formal approach has been discussed which may be 
readily programmed on a computer. In this lesson the direct stiffness method as 
applied to planar truss structure is discussed. 
 
Plane trusses are made up of short thin members interconnected at hinges to 
form triangulated patterns. A hinge connection can only transmit forces from one 
member to another member but not the moment. For analysis purpose, the truss 
is loaded at the joints. Hence, a truss member is subjected to only axial forces 
and the forces remain constant along the length of the member. The forces in the 
member at its two ends must be of the same magnitude but act in the opposite 
directions for equilibrium as shown in Fig. 24.1. 
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Now consider a truss member having cross sectional area A , Young’s modulus 
of material E , and length of the member L . Let the member be subjected to axial 
tensile force as shown in Fig. 24.2. Under the action of constant axial force , 
applied at each end, the member gets elongated by as shown in Fig. 24.2. 

F F
u

 

 
 

The elongation may be calculated by (vide lesson 2, module 1). u
 

AE
FLu =       (24.1)  

   
Now the force-displacement relation for the truss member may be written as, 
 
  

u
L

AEF =      (24.2) 
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F ku=      (24.3) 
 

where 
L

AEk =  is the stiffness of the truss member and is defined as the force 

required for unit deformation of the structure. The above relation (24.3) is true 
along the centroidal axis of the truss member. But in reality there are many 
members in a truss. For example consider a planer truss shown in Fig. 24.3. For 
each member of the truss we could write one equation of the type along 
its axial direction (which is called as local co-ordinate system). Each member has 
different local co ordinate system. To analyse the planer truss shown in Fig. 24.3, 
it is required to write force-displacement relation for the complete truss in a co 
ordinate system common to all members. Such a co-ordinate system is referred 
to as global co ordinate system.   

F ku=

 
 
 

24.2 Local and Global Co-ordinate System 
Loads and displacements are vector quantities and hence a proper coordinate 
system is required to specify their correct sense of direction. Consider a planar 
truss as shown in Fig. 24.4. In this truss each node is identified by a number and 
each member is identified by a number enclosed in a circle. The displacements 
and loads acting on the truss are defined with respect to global co-ordinate 
system xyz . The same co ordinate system is used to define each of the loads and 
displacements of all loads. In a global co-ordinate system, each node of a planer 
truss can have only two displacements: one along x -axis and another along -
axis. The truss shown in figure has eight displacements. Each displacement 

y
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(degree of freedom) in a truss is shown by a number in the figure at the joint. The 
direction of the displacements is shown by an arrow at the node. However out of 
eight displacements, five are unknown. The displacements indicated by numbers 
6,7 and 8 are zero due to support conditions. The displacements denoted by 
numbers 1-5 are known as unconstrained degrees of freedom of the truss and 
displacements denoted by 6-8 represent constrained degrees of freedom. In this 
course, unknown displacements are denoted by lower numbers and the known 
displacements are denoted by higher code numbers. 
 

 
 
To analyse the truss shown in Fig. 24.4, the structural stiffness matrix K  need to 
be evaluated for the given truss. This may be achieved by suitably adding all the 
member stiffness matrices , which is used to express the force-displacement 
relation of the member in local co-ordinate system. Since all members are 
oriented at different directions, it is required to transform member displacements 
and forces from the local co-ordinate system to global co-ordinate system so that 
a global load-displacement relation may be written for the complete truss. 

'k

 
 
24.3 Member Stiffness Matrix 
Consider a member of the truss as shown in Fig. 24.5a in local co-ordinate 
system . As the loads are applied along the centroidal axis, only possible 
displacements will be along -axis. Let the and be the displacements of 
truss members in local co-ordinate system along -axis. Here subscript 1 
refers to node 1 of the truss member and subscript 2 refers to node 2 of the truss 
member. Give displacement at node 1 of the member in the positive  
direction, keeping all other displacements to zero. This displacement in turn 

'' yx
'x 1'u 2'u

..ei 'x

1'u 'x
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induces a compressive force of magnitude 1'u
L

EA  in the member. Thus, 

11 '' u
L

EAq =  and 12 '' u
L

EAq −=  (24.4a) ( ve−  as it acts in the direction for 

equilibrium). Similarly by giving positive displacements of at end 2 of the 

member, tensile force of magnitude  

ve−

2'u

2'u
L

EA is induced in the member. Thus, 

 

21 '" u
L

EAq −=  and 22 '" u
L

EAq =            (24.4b) 

 
Now the forces developed at the ends of the member when both the 
displacements are imposed at nodes 1 and 2 respectively may be obtained by 
method of superposition. Thus (vide Fig. 24.5d) 
 

 
                

1 1' 'EA EAp u 2'u
L L

= −           (24.5a) 

 

2 2' ' 1'
EA EAp u u
L L

= −                          (24.5b) 

 
Or we can write 
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⎭
⎬
⎫

⎩
⎨
⎧
⎥
⎦

⎤
⎢
⎣

⎡
−

−
=

⎭
⎬
⎫

⎩
⎨
⎧

2

1

2

1

'
'

11
11

'
'

u
u

L
EA

p
p

             (24.6a) 

 
{ } [ ]{ }''' ukp =               (24.6b) 

 
Thus the member stiffness matrix is  
 

⎥
⎦

⎤
⎢
⎣

⎡
−

−
=

11
11

'
L

EAk       (24.7) 

 
This may also be obtained by giving unit displacement at node 1 and holding 
displacement at node 2 to zero and calculating forces developed at two ends. 
This will generate the first column of stiffness matrix. Similarly the second column 
of stiffness matrix is obtained by giving unit displacement at 2 and holding 
displacement at node 1 to zero and calculating the forces developed at both 
ends.  
 
 
24.4 Transformation from Local to Global Co-ordinate 
System. 
 
Displacement Transformation Matrix 
A truss member is shown in local and global co ordinate system in Fig. 24.6. Let 

be in local co ordinate system and ''' zyx xyz  be the global co ordinate system. 
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The nodes of the truss member be identified by 1 and 2. Let  and  be the 
displacement of nodes 1 and 2 in local co ordinate system. In global co ordinate 
system, each node has two degrees of freedom. Thus,  and are the 
nodal displacements at nodes 1 and 2 respectively along 

1'u 2'u

11 ,vu 22 ,vu
x - and - directions. 

Let the truss member be inclined to 
y

x axis by θ  as shown in figure. It is observed 
from the figure that is equal to the projection of  on  axis plus projection of 

 on -axis. Thus, (vide Fig. 24.7) 
1'u 1u 'x

1v 'x
 

θθ sincos' 111 vuu +=             (24.8a) 
 

θθ sincos' 222 vuu +=                     (24.8b) 
  
This may be written as  
 

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

⎥
⎦

⎤
⎢
⎣

⎡
=

⎭
⎬
⎫

⎩
⎨
⎧

2

2

1

1

2

1

sincos
00

00
sincos

'
'

v
u
v
u

u
u

θθ
θθ

  (24.9) 

 
Introducing direction cosines ;sin;cos θθ == ml the above equation is written as 
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⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

⎥
⎦

⎤
⎢
⎣

⎡
=

⎭
⎬
⎫

⎩
⎨
⎧

2

2

1

1

2

1 00
00'

'

v
u
v
u

ml
ml

u
u

    (24.10a) 

 
Or,          (24.10b) { } [ ] { }uTu ='
 
In the above equation  is the displacement transformation matrix which 
transforms the four global displacement components to two displacement 
component in local coordinate system. 

[ ]T

 

 

 
 

Version 2 CE IIT, Kharagpur 
                                                         



Let co-ordinates of node 1 be ( )11, yx and node 2 be ( )22 , yx . Now from Fig. 24.8,  
 

L
xxl 12cos −

== θ       (24.11a) 

L
yym 12sin −

== θ       (24.11b) 

 
and 2

12
2

12 )()( yyxxL −+−=     (24.11c) 
 
Force transformation matrix  

Let be the forces in a truss member at node 1 and 2 respectively 
producing displacements and in the local co-ordinate system 
and ,  be the force in global co-ordinate system at node 1 and 2 
respectively producing displacements  and (refer Fig. 24.9a-d). 

21 ',' pp

1'u 2'u

321 ,, ppp 4p

11 ,vu 22 ,vu
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Referring to fig. 24.9c, the relation between and , may be written as,     1'p 1p
 

θcos'11 pp =                       (24.12a) 
 

θsin'12 pp =              (24.12b) 
  

 
 
Similarly referring to Fig. 24.9d, yields 
 

θcos'23 pp =                       (24.12c) 
 

θsin'24 pp =              (24.12d) 
  
Now the relation between forces in the global and local co-ordinate system may 
be written as 
 

⎭
⎬
⎫

⎩
⎨
⎧

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

2

1

4

3

2

1

'
'

sin
cos

0
0

0
0

sin
cos

p
p

p
p
p
p

θ
θ

θ
θ

    (24.13) 

 
{ } [ ] { }'pTp T=         (24.14) 

 
where matrix {  stands for global components of force and matrix{  are the 
components of forces in the local co-ordinate system. The superscript T  stands 
for the transpose of the matrix. The equation (24.14) transforms the forces in the 
local co-ordinate system to the forces in global co-ordinate system. This is 
accomplished by force transformation matrix

}p }'p

[ ]TT . Force transformation matrix is 
the transpose of displacement transformation matrix.  
 
Member Global Stiffness Matrix 
From equation (24.6b) we have, 
 

{ } [ ] { }''' ukp =  
 
Substituting for { in equation (24.14), we get }'p
 

{ } [ ] [ ] { }'' ukTp T=      (24.15) 
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Making use of the equation (24.10b), the above equation may be written as  
{ } [ ] [ ][ ]{ }uTkTp T '=      (24.16) 
  
{ } [ ] { }ukp =       (24.17) 

 
Equation (24.17) represents the member load displacement relation in global co- 
ordinates and thus [  is the member global stiffness matrix. Thus,   ]k
 

{ } [ ] [ ][ ]TkTk T '=      (24.18) 
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lmllml
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lmllml

L
EAk    (24.19)  

 
Each component of the member stiffness matrix ijk [ ]k  in global co-ordinates 
represents the force in x -or -directions at the end required to cause a unit 
displacement along 

y i
x− or y −directions at end j . 

 
 
We obtained the member stiffness matrix in the global co-ordinates by 
transforming the member stiffness matrix in the local co-ordinates. The member 
stiffness matrix in global co-ordinates can also be derived from basic principles in 
a direct method. Now give a unit displacement along x -direction at node 1 of the 
truss member. Due to this unit displacement (see Fig. 24.10) the member length 
gets changed in the axial direction by an amount equal to θcos1 =Δl . This axial 
change in length is related to the force in the member in two axial directions by 
 

θcos'2'1 L
EAF =     (24.20a) 
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This force may be resolved along and  directions. Thus horizontal 

component of force  is 

1u 1v

'2'1F θ2
11 cos

L
EAk =     (24.20b) 

Vertical component of force  is '2'1F θθ sincos21 L
EAk =    (24.20c) 

 
The forces at the node 2 are readily found from static equilibrium. Thus,     
 

θ2
1131 cos

L
EAkk −=−=     (24.20d) 

θθ sincos2141 L
EAkk =−=     (24.20e) 

  
The above four stiffness coefficients constitute the first column of a stiffness 
matrix in the global co-ordinate system. Similarly, remaining columns of the 
stiffness matrix may be obtained. 
 
 
24.5 Analysis of plane truss. 
Number all the joints and members of a plane truss. Also indicate the degrees of 
freedom at each node. In a plane truss at each node, we can have two 
displacements. Denote unknown displacements by lower numbers and known 
displacements by higher numbers as shown in Fig. 24.4. In the next step 
evaluate member stiffness matrix of all the members in the global co ordinate 
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system. Assemble all the stiffness matrices in a particular order, the stiffness 
matrix K  for the entire truss is found. The assembling procedure is best 
explained by considering a simple example. For this purpose consider a two 
member truss as shown in Fig. 24.11. In the figure, joint numbers, member 
numbers and possible displacements of the joints are shown.  
 

 
 
The area of cross-section of the members, its length and its inclination with the 
x - axis are also shown. Now the member stiffness matrix in the global co- 
ordinate system for both the members are given by 
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2 2
1 1 1 1 1
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1 1 1 1 1 1 11
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  (24.21a)  

 
On the member stiffness matrix the corresponding member degrees of freedom 
and global degrees of freedom are also shown. 
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L
EAk  (24.21b) 

 
Note that the member stiffness matrix in global co-ordinate system is derived 
referring to Fig. 24.11b. The node 1 and node 2 remain same for all the 
members. However in the truss, for member 1, the same node ( node 1 and 2 
in Fig. 24.11b) are referred by 2 and 1 respectively. Similarly for member 2, the 
nodes 1 and 2 are referred by nodes 3 and 4 in the truss. The member stiffness 
matrix is of the order . However the truss has six possible displacements and 
hence truss stiffness matrix is of the order

..ei

44×
66× . Now it is required to put elements 

of the member stiffness matrix of the entire truss. The stiffness matrix of the 
entire truss is known as assembled stiffness matrix. It is also known as structure 
stiffness matrix; as overall stiffness matrix. Thus, it is clear that by algebraically 
adding the above two stiffness matrix we get global stiffness matrix. For example 
the element of the member stiffness matrix of member 1 must go to location 

 in the global stiffness matrix. Similarly  must go to location  in the 
global stiffness matrix. The above procedure may be symbolically written as, 

11
1k

( 3,3 ) )11
2k ( 3,3

 

∑
=

=
n

i

ikK
0

           (24.22) 
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                                                                                 (24.23a)  
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The assembled stiffness matrix is of the order 66× . Hence, it is easy to visualize 
assembly if we expand the member stiffness matrix to 66× size. The missing 
columns and rows in matrices  and are filled with zeroes. Thus,   1k 2k
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                          (24.24) 
 
Adding appropriate elements of first matrix with the appropriate elements of the 
second matrix, 
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If more than one member meet at a joint then the stiffness coefficients of member 
stiffness matrix corresponding to that joint are added.  
 
After evaluating global stiffness matrix of the truss, the load displacement 
equation for the truss is written as, 
 

{ } [ ] { }p K u=      (24.26) 
 
where  is the vector of joint loads acting on the truss, { }p { }u  is the vector of joint 
displacements and  is the global stiffness matrix. The above equation is 
known as the equilibrium equation. It is observed that some joint loads are known 
and some are unknown. Also some displacements are known due to support 
conditions and some displacements are unknown. Hence the above equation 
may be partitioned and written as,  

[ ]K
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   (24.27) 

 
where denote vector of known forces and known displacements 
respectively. And { }  denote vector of unknown forces and unknown 
displacements respectively. 

{ } { }kk up ,
{ }uu up ,

 
Expanding equation 24.27, 
 

[ ] [ ]11 12{ } { } { }k u kp k u k u= +     (24.28a) 
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[ ] [ ]21 22{ } { } { }u u kp k u k u= +      (24.28b) 
 
In the present case (vide Fig. 24.11a) the known displacements are and 

. The known displacements are zero due to boundary conditions. Thus,  
543 ,, uuu

6u
 
{ } { }0=ku . And from equation (24.28a), 
  

[ ] }{}{ 11 uk ukp =      (24.29) 
 
Solving   [ ] }{}{ 1

11 ku pku −=
 
where  corresponding to stiffness matrix of the truss corresponding to 
unconstrained degrees of freedom. Now the support reactions are evaluated 
from equation (24.28b). 

[ 11k ]

 
[ ] }{}{ 21 uu ukp =      (24.30) 

 
The member forces are evaluated as follows. Substituting equation (24.10b) 

 in equation (24.6b) { } [ ] { }uTu =' { } [ ]{ }''' ukp = , one obtains 
 

{ } [ ][ ]{ }uTkp '' =       (24.31) 
  
Expanding this equation, 
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Example 24.1 
Analyse the two member truss shown in Fig. 24.12a. Assume EA  to be constant 
for all members. The length of each member is . m5
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The co-ordinate axes, the number of nodes and members are shown in 
Fig.24.12b. The degrees of freedom at each node are also shown. By inspection 
it is clear that the displacement 06543 ==== uuuu .  Also the external loads are 
 

1 25 kN ; 0 kp p= = N .              (1) 
 
Now member stiffness matrix for each member in global co-ordinate system 
is ( )°= 301θ . 
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The global stiffness matrix of the truss can be obtained by assembling the two 
member stiffness matrices. Thus, 
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Again stiffness matrix for the unconstrained degrees of freedom is, 
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5
EAK       (5) 

 
Writing the load displacement-relation for the truss for the unconstrained degrees 
of freedom 
 

[ ]11{ } { }k up k u=       (6) 
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Support reactions are evaluated using equation (24.30). 
 

[ ] }{}{ 21 uu ukp =       (9) 
 
Substituting appropriate values in equation (9), 
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The answer can be verified by equilibrium of joint 1. Also, 
 

0553 =++ pp  
 
Now force in each member is calculated as follows, 
 
Member 1:  mLml 5;5.0;866.0 === . 

 
{ } [ ]{ }''' ukp =   
 

[ ][ ]{ }uTk '=       
    

 
 

Version 2 CE IIT, Kharagpur 
                                                         



⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
−

−
=

⎭
⎬
⎫

⎩
⎨
⎧

2

1

4

3

2

1 00
0011

11
'
'

v
u
v
u

ml
ml

L
AE

p
p

  

 

{ } [ ]
⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

−−=

2

1

4

3

1'

v
u
v
u

mlml
L

AEp  

 

{ } [ ]1
16.667' 0.866 2.88 kNAEp

L AE
⎧ ⎫= − = −⎨ ⎬
⎩ ⎭

 

 
 
Member 2:  mLml 5;5.0;866.0 ==−= . 
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Summary 
The member stiffness matrix of a truss member in local co-ordinate system is 
defined. Suitable transformation matrices are derived to transform displacements 
and forces from the local to global co-ordinate system. The member stiffness 
matrix of truss member is obtained in global co-ordinate system by suitable 
transformation. The system stiffness matrix of a plane truss is obtained by 
assembling member matrices of individual members in global co-ordinate 
system. In the end, a few plane truss problems are solved using the direct 
stiffness matrix approach. 
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Instructional Objectives 
After reading this chapter the student will be able to 
1. Transform member stiffness matrix from local to global co-ordinate system. 
2. Assemble member stiffness matrices to obtain the global stiffness matrix. 
3. Analyse plane truss by the direct stiffness matrix. 
4. Analyse plane truss supported on inclined roller supports. 
 
 
25.1 Introduction  
In the previous lesson, the direct stiffness method as applied to trusses was 
discussed. The transformation of force and displacement from local co-ordinate 
system to global co-ordinate system were accomplished by single transformation 
matrix. Also assembly of the member stiffness matrices was discussed. In this 
lesson few plane trusses are analysed using the direct stiffness method. Also the 
problem of inclined support will be discussed. 
 
Example 25.1  
Analyse the truss shown in Fig. 25.1a and evaluate reactions. Assume EA  to be 
constant for all the members. 
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The numbering of joints and members are shown in Fig. 25.1b. Also, the possible 
displacements (degrees of freedom) at each node are indicated. Here lower 
numbers are used to indicate unconstrained degrees of freedom and higher 
numbers are used for constrained degrees of freedom. Thus displacements 6,7 
and 8 are zero due to boundary conditions.  
 
First write down stiffness matrix of each member in global co-ordinate system 
and assemble them to obtain global stiffness matrix. 
 
Element 1: .619.4,60 mL =°=θ Nodal points 4-1 
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Element 2: .00.4,90 mL =°=θ Nodal points 2-1 
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Element 3: .619.4,120 mL =°=θ Nodal points 3-1 
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Element 4: .31.2,0 mL =°=θ Nodal points 4-2 
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Element 5: .31.2,0 mL =°=θ Nodal points 2-3 
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The assembled global stiffness matrix of the truss is of the order 88× . Now 
assemble the global stiffness matrix. Note that the element 1

11k of the member 
stiffness matrix of truss member 1 goes to location ( )7,7 of global stiffness matrix. 
On the member stiffness matrix the corresponding global degrees of freedom are 
indicated to facilitate assembling. Thus,  
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[ ]

8
7
6
5
4
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00094.0487.00433.0094.0054.0
000025.0025.00
0433.00433.00866.000
162.0094.0162.0094.025.00575.00
094.0054.0094.0054.0000108.0

87654321

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−
−−−

−−
−−−

−
−−

−−−−
−−−

= EAK
  

 
           (6)  
 
Writing the load-displacement relation for the truss, yields 
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           (7) 
 
The displacements 1u to 5u are unknown. The displacements 0876 === uuu .  
 
Also  05321 ==== pppp  . But 4 10 kNp = − . 
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Solving which, the unknown displacements are evaluated. Thus,  
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AE
u

AE
u

AE
u
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u
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u 334.13;642.74;668.6;64.34;668.6

54321 =
−

==
−

==   (9) 

Now reactions are evaluated from equation, 
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Thus, 
 

6 7 85.00 kN ; 0 ; 5.00 kNp p p= = = .    (11) 
 
Now calculate individual member forces. 
 
Member 1:  mLml 619.4;866.0;50.0 === . 
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Member 2:  mLml 0.4;0.1;0 === . 
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Member 3:  mLml 619.4;866.0;50.0 ==−= . 
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Member 4:  mLml 0.31.2;0;0.1 === . 
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Member 5:  mLml 0.31.2;0;0.1 === . 
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Example 25.2 
Determine the forces in the truss shown in Fig. 25.2a by the direct stiffness 
method. Assume that all members have the same axial rigidity. 
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The joint and member numbers are indicated in Fig. 25.2b. The possible degree 
of freedom are also shown in Fig. 25.2b. In the given problem 21 ,uu and 3u  
represent unconstrained degrees of freedom and  087654 ===== uuuuu  due 
to boundary condition. First let us generate stiffness matrix for each of the six 
members in global co-ordinate system. 
 
Element 1: .00.5,0 mL =°=θ Nodal points 2-1 
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Element 2: .00.5,90 mL =°=θ Nodal points 4-1 
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Element 3: .00.5,0 mL =°=θ Nodal points 3-4 
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Element 4: .00.5,90 mL =°=θ Nodal points 3-2 
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Element 5: .07.7,45 mL =°=θ Nodal points 3-1 
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Element 6: .07.7,135 mL =°=θ Nodal points 4-2 
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There are eight possible global degrees of freedom for the truss shown in the 
figure. Hence the global stiffness matrix is of the order ( 88× ). On the member 
stiffness matrix, the corresponding global degrees of freedom are indicated to 
facilitate assembly. Thus the global stiffness matrix is, 
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AEK      (7) 

 
The force-displacement relation for the truss is, 
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           (8) 
 
The displacements 21,uu and 3u are unknowns. 

Here, 1 2 35 kN ; 10 ; 0p p p= = − =  and 087654 ===== uuuuu . 
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Thus, 
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Solving which, yields 
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u
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u
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u 825.53;97.55;855.72

321 =
−

==  

 
Now reactions are evaluated from the equation, 
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4 5 6 7 83.80 kN ; 1.19 kN ; 1.19 kN ; 3.8 0 ; 15.00 kNp p p p kN p= − = − = − = =
 

In the next step evaluate forces in members. 
 
Element 1: .00.5,0 mL =°=θ Nodal points 2-1 
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Element 2: .00.5,90 mL =°=θ Nodal points 4-1 
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    (13) 

 
Element 3: .00.5,0 mL =°=θ Nodal points 3-4 
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AEp         (14) 

 
Element 4: .00.5,90 mL =°=θ Nodal points 3-2 
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Element 5: .07.7,45 mL =°=θ Nodal points 3-1 
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Element 6: .07.7,135 mL =°=θ Nodal points 4-2 
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25.2 Inclined supports 
Sometimes the truss is supported on a roller placed on an oblique plane (vide 
Fig. 25.3a). At a roller support, the displacement perpendicular to roller support is 
zero. ..ei displacement along "y is zero in the present case. 
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If the stiffness matrix of the entire truss is formulated in global co-ordinate system 
then the displacements along y are not zero at the oblique support. So, a special 
procedure has to be adopted for incorporating the inclined support in the analysis 
of truss just described. One way to handle inclined support is to replace the 
inclined support by a member having large cross sectional area as shown in Fig. 
25.3b but having the length comparable with other members meeting at that joint. 
The inclined member is so placed that its centroidal axis is perpendicular to the 
inclined plane. Since the area of cross section of this new member is very high, it 
does not allow any displacement along its centroidal axis of the joint A . Another 
method of incorporating inclined support in the analysis is to suitably modify the 
member stiffness matrix of all the members meeting at the inclined support. 
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Consider a truss member as shown in Fig. 25.4. The nodes are numbered as 1 
and 2. At 2, it is connected to a inclined support. Let '' yx  be the local co-ordinate 
axes of the member. At node 1, the global co-ordinate system xy  is also shown. 
At node 2, consider nodal co-ordinate system as "" yx , where "y  is perpendicular 
to oblique support. Let 1'u and 2'u be the displacements of nodes 1 and 2 in the 
local co-ordinate system. Let 11 ,vu  be the nodal displacements of node 1 in 
global co-ordinate system xy . Let 2 2" , "u v be the nodal displacements along "x -
and "y - are in the local co-ordinate system "" yx  at node 2. Then from Fig. 25.4, 
 

xx vuu θθ sincos' 111 +=       
 

"2"22 sin"cos"' xx vuu θθ +=       (25.1) 
 
This may be written as  
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  (25.2) 

Denoting "" sin";cos";sin;cos xxxx mlml θθθθ ====  
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              (25.3a) 

 
 or  { } [ ]{ }uTu '' =        
 
where [ ]'T is the displacement transformation matrix. 
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Similarly referring to Fig. 25.5, the force 1'p  has components along x  and 
y axes. Hence  
 

xpp θcos'11 =      (25.4a) 
 

xpp θsin'12 =      (25.4b) 
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Similarly, at node 2, the force 2'p  has components along "x  and "y axes. 

3 2" ' cos xp p θ ′′=      (25.5a)  
 

4 2" ' sin xp p θ ′′=      (25.5b) 
 
The relation between forces in the global and local co-ordinate system may be 
written as, 
 

1

2 1

3 2

4

0cos
0 'sin

cos" '0
sin" 0

x

x

x

x

p
p p
p p
p

θ
θ

θ
θ

⎡ ⎤⎧ ⎫
⎢ ⎥⎪ ⎪ ⎧ ⎫⎪ ⎪ ⎢ ⎥=⎨ ⎬ ⎨ ⎬′′⎢ ⎥ ⎩ ⎭⎪ ⎪ ⎢ ⎥⎪ ⎪ ′′⎢ ⎥⎩ ⎭ ⎣ ⎦

   (25.6) 

 
{ } [ ] { }'' pTp T=       (25.7) 

 
Using displacement and force transformation matrices, the stiffness matrix for 
member having inclined support is obtained. 
 

[ ] [ ] [ ][ ]''' TkTk T=  
 

[ ] ⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
−

−

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=
""

00
0011

11

"0
"0
0
0

ml
ml

L
AE

m
l

m
l

k  (25.8) 

 
Simplifying, 
 

[ ]

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−
−−

−−
−−

=

2

2

2

2

"""""
"""""
""
""

mmlmmlm
mllmlll

mmmlmlm
lmlllml

L
EAk   (25.9) 

 
If we use this stiffness matrix, then it is easy to incorporate the condition of zero 
displacement perpendicular to the inclined support in the stiffness matrix. This is 
shown by a simple example. 
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Example 25.3 
Analyse the truss shown in Fig. 25.6a by stiffness method. Assume axial rigidity 
EA  to be constant for all members. 
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The nodes and members are numbered in Fig. 25.6b. The global co-ordinate 
axes are shown at node 3. At node 2, roller is supported on inclined support. 
Hence it is required to use nodal co-ordinates "" yx −  at node 2 so that 4u could be 
set to zero. All the possible displacement degrees of freedom are also shown in 
the figure. In the first step calculate member stiffness matrix. 
 
Member 1: .00.5,87.6,13.143 " mLxx =°=°= θθ Nodal points 1-2 
         12.0";993.0";6.0;80.0 ===−= mlml .     
     

 [ ]
4
3
2
1

014.0119.0072.0096.0
119.0986.0596.0794.0
072.0596.036.048.0

096.0794.048.064.0

0.5

4321

1

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−

−−−
−

=
EAk

   (1) 
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Member 2: .00.4,30,0 " mLxx =°=°= θθ Nodal points 2-3 
         50.0";866.0";0;1 ==== mlml .     
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 [ ]
4
3
6
5

014.0119.0072.0096.0
119.0986.0596.0794.0
072.0596.036.048.0

096.0794.048.064.0
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2

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−

−−−
−

=
EAk

   (2) 

 
Member 3: .00.3,90 mLx =°=θ , 1;0 == ml Nodal points 3-1 
         .   

      [ ]
2
1
6
5

1010
0000
1010

0000

0.3

2165

3

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−
=

EAk
     (3) 

 
     
For the present problem, the global stiffness matrix is of the order ( )66× . The 
global stiffness matrix for the entire truss is. 
 

[ ]

6
5
4
3
2
1

333.0000333.00
025.0125.0217.000
0125.0065.0132.0014.0.019.0
0217.0132.0385.0119.0159.0
333.00014.0119.0405.0096.0

00019.0159.0096.0128.0
654321

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−−

−
−−

−−−−
−

= EAk   (4) 

 
Writing load-displacement equation for the truss for unconstrained degrees of 
freedom, 
 

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
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−
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⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧−

3

2

1

385.0119.0159.0
119.0405.0096.0

159.0096.0128.0

0
5
5

u
u
u

    (5) 

 
Solving , 
 

AE
u

AE
u

AE
u 12.33;728.3;408.77

321 ==
−

=    (6) 
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Now reactions are evaluated from the equation 
 

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−=

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

12.33
728.3

40.77
1

0333.00
217.000

132.0014.0.019.0

6

5

4

AE
AE

p
p
p

   (6) 

 

4 5 62.85 kN ; 7.19 kN ; 1.24 kNp p p= = − = −  
 
 
Summary 
Sometimes the truss is supported on a roller placed on an oblique plane. In such 
situations, the direct stiffness method as discussed in the previous lesson needs 
to be properly modified to make the displacement perpendicular to the roller 
support as zero. In the present approach, the inclined support is handled in the 
analysis by suitably modifying the member stiffness matrices of all members 
meeting at the inclined support. A few problems are solved to illustrate the 
procedure. 
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Instructional Objectives 
After reading this chapter the student will be able to 
1. Compute stresses developed in the truss members due to temperature 

changes. 
2. Compute stresses developed in truss members due to fabrication members. 
3. Compute reactions in plane truss due to temperature changes and fabrication 

errors. 
 
 
26.1 Introduction 
In the last four lessons, the direct stiffness method as applied to the truss 
analysis was discussed. Assembly of member stiffness matrices, imposition of 
boundary conditions, and the problem of inclined supports were discussed. Due 
to the change in temperature the truss members either expand or shrink. 
However, in the case of statically indeterminate trusses, the length of the 
members is prevented from either expansion or contraction. Thus, the stresses 
are developed in the members due to changes in temperature. Similarly the error 
in fabricating truss members also produces additional stresses in the trusses. 
Both these effects can be easily accounted for in the stiffness analysis. 
 
 
26.2 Temperature Effects and Fabrication Errors 
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Consider truss member of length L, area of cross section A as shown in 
Fig.26.1.The change in length lΔ is given by 
 

TLl Δ=Δ α       (26.1) 
 
where α is the coefficient of thermal expansion of the material considered. If the 
member is not allowed to change its length (as in the case of statically 
indeterminate truss) the change in temperature will induce additional forces in the 
member. As the truss element is a one dimensional element in the local 
coordinate system, the thermal load can be easily calculated in global co-
ordinate system by 
 

1( )tp AE L′ = Δ               (26.2a) 
 

2( )tp AE L′ = − Δ               (26.2b) 
 
or 
 

( ){ }
⎭
⎬
⎫

⎩
⎨
⎧
−
+

Δ=
1
1' LAEp t                (26.3) 

 
The equation (26.3) can also be used to calculate forces developed in the truss 
member in the local coordinate system due to fabrication error. LΔ will be 
considered positive if the member is too long. The forces in the local coordinate 
system can be transformed to global coordinate system by using the equation, 
 

( )
( )
( )
( )
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⎥
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⎪
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⎪

⎨

⎧

t

t

t

t

t

t

p

p

p
p
p
p

'
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'
1

4
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1

sin0
cos0

0sin
0cos

θ
θ

θ
θ

             (26.4a) 

 
where ( ) ( )tt pp 21 , and ( ) ( )tt pp 43 , are the forces in the global coordinate system at 
nodes 1 and 2 of the truss member respectively Using equation (26.3), the 
equation (26.4a) may be written as, 
 

1

2

3

4

( ) cos
( ) sin
( ) cos
( ) sin

t

t

t

t

p
p

AE L
p
p

θ
θ
θ
θ

⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪= Δ⎨ ⎬ ⎨ ⎬−⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪−⎩ ⎭⎩ ⎭

             (26.4b) 
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The force displacement equation for the entire truss may be written as, 
 

{ } [ ]{ } { }tpukp )(+=                (26.5) 
 
where ,{ }p is the vector of external joint loads applied on the truss and ( ){ }tp is the 
vector of joint loads developed in the truss due to change in 
temperature/fabrication error of one or more members. As pointed out earlier. in 
the truss analysis, some joint displacements are known due to boundary 
conditions and some joint loads are known as they are applied 
externally.Thus,one could partition the above equation as, 
 

[ ] [ ]
[ ] [ ]

{ }
{ }

( )
( ) ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+
⎭
⎬
⎫

⎩
⎨
⎧
⎥
⎦

⎤
⎢
⎣

⎡
=

⎭
⎬
⎫

⎩
⎨
⎧

tu

tk

k

u

u

k

p
p

u
u

kk
kk

p
p

2221

1211     (26.6) 

 
where subscript u is used to denote unknown quantities and subscript k is used 
to denote known quantities of forces and displacements. Expanding equation 
(26.6), 
 

{ } [ ]{ } [ ]{ } ( ){ }tkkuk pukukp ++= 1211    (26.7a) 

{ } [ ]{ } [ ]{ } ( ){ }21 22u u k u t
p k u k u p= + +   (26.7b) 

 
If the known displacement vector { } { }0=ku  then using equation (26.2a) the 
unknown displacements can be calculated as 
 

{ } [ ] { } ( ){ }( )tkku ppku −= −1
11     (26.8a) 

If { } 0≠ku then 

{ } [ ] { } [ ]{ } ( ){ }( )tkkkuu pukpku −−= −
12

1    (26.8b) 
 
After evaluating unknown displacements, the unknown force vectors are 
calculated  using equation (26.7b).After evaluating displacements, the member 
forces in the local coordinate system for each member are evaluated by, 
 

{ } [ ][ ]{ } { }tpuTkp ′+′=′      (26.9a) 
or 
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Expanding the above equation, yields 
 

{ } { } LAE

v
u
v
u

L
AEp Δ+

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

−−=′

2

2

1

1

1 sincossincos θθθθ    (26.10a) 

And, 
 

{ } { }

1

1
2

2

2

cos sin cos sin

u
vAEp AE L
uL
v

θ θ θ θ

⎧ ⎫
⎪ ⎪
⎪ ⎪′ = − − − Δ⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

   (26.10b) 

Few problems are solved to illustrate the application of the above procedure to 
calculate thermal effects /fabrication errors in the truss analysis:- 
 
Example 26.1 
Analyze the truss shown in Fig.26.2a, if the temperature of the member (2) is 
raised by Co40 .The sectional areas of members in square centimeters are 
shown in the figure. Assume 25 /102 mmNE ×= and 1/ 75,000α =  per Co . 
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The numbering of joints and members are shown in Fig.26.2b. The possible 
global displacement degrees of freedom are also shown in the figure. Note that 
lower numbers are used to indicate unconstrained degrees of freedom. From the 
figure it is obvious that the displacements 0876543 ====== uuuuuu due to 
boundary conditions. 
The temperature of the member (2) has been raised by Co40 . Thus, 
 

TLL Δ=Δ α  

( )( ) 3102627.24023
75000

1 −×==ΔL m    (1) 

 
The forces in member (2) due to rise in temperature in global coordinate system 
can be calculated using equation (26.4b).Thus, 
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⎭

⎪
⎪
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⎪
⎨
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⎪
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t

t

t
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     (2) 

 
For member (2), 
 

242 102020 mcmA −×== and o45=θ  
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⎪ ⎪
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1
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p
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    (4) 

 
In the next step, write stiffness matrix of each member in global coordinate 
system and assemble them to obtain global stiffness matrix 
 
Element (1): 240 1015,3,0 mAmL −×===θ ,nodal points 4-1 
 

4 11
'

3

1 0 1 0
0 0 0 015 10 2 10
1 0 1 03 10

0 0 0 0

k
−

−⎡ ⎤
⎢ ⎥× × × ⎢ ⎥⎡ ⎤ =⎣ ⎦ ⎢ ⎥−×
⎢ ⎥
⎣ ⎦

   (5) 

 
Member (2): 241020,23,45 mAmL −×=== oθ , nodal points 3-1 
 

[ ]
⎥
⎥
⎥
⎥

⎦

⎤
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1021020 114

2k   (6) 

 
Member (3): ,30,1015,90 24 mLmA =×== −oθ nodal points 2-1 
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4 11
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3 3

0 0 0 0
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    (7)  

 
The global stiffness matrix is of the order 88×  ,assembling the three member 
stiffness matrices, one gets 
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Writing the load displacement equation for the truss 
 
 

⎪
⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

⎨

⎧

8

7

6

5

4

3

2

1

p
p
p
p
p
p
p
p

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−−
−−
−

−−−
−−−

00000000
010000000100
0014.4714.470014.4714.47
0014.4714.470014.4714.47
000010001000
00000000
0014.4714.47100014.14714.47
010014.4714.470014.4714.147

103

⎪
⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

⎨

⎧

8

7

6

5

4

3

2

1

u
u
u
u
u
u
u
u

+

⎪
⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

⎨

⎧
−
−

0
0
1
1
0
0

1
1

640            

(9) 
 
In the present case, the displacements 1u and 2u are not known. All other 
displacements are zero. Also 021 == pp (as no joint loads are applied).Thus, 
 



Version 2 CE IIT, Kharagpur 

                                                         

⎪
⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

⎨

⎧

8

7

6

5

4

3

2

1

p
p
p
p
p
p
p
p

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−−
−−
−

−−−
−−−

=

00000000
010000000100
0014.4714.470014.4714.47
0014.4714.470014.4714.47
000010001000
00000000
0014.4714.47100014.14714.47
010014.4714.470014.4714.147

⎪
⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

⎨

⎧

8

7

6

5

4

3

2

1

u
u
u
u
u
u
u
u

+

⎪
⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

⎨

⎧
−
−

0
0
1
1
0
0

1
1

640   (10) 

 
Thus unknown displacements are 
 

1
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Now reactions are calculated as 
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The support reactions are shown in Fig.26.2c.The member forces can be easily 
calculated from reactions. The member end forces can also be calculated by 
using equation (26.10a) and (26.10b). For example, for member (1), 

o0=θ  

100103'
2 ×=p [ ]0101− 4

4

0
0
7.763 10
7.763 10

−

−

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎨ ⎬×⎪ ⎪
⎪ ⎪×⎩ ⎭

    (13) 

      = 77.763 kN. Thus the member (1) is in tension. 
 
Member (2) 

o45=θ  

281.94103'
2 ×=p [-0.707 -0.707 0.707 0.707]
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⎪
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⎨

⎧

×

×
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−

3

3

102942.3

102942.3

0
0

 

kN. 78.1092 −=′p  
 
Thus member (2) is in compression 
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Example  26.2  

Analyze the truss shown in Fig.26.3a, if the member BC is made 0.01m too short 
before placing it in the truss. Assume AE=300 kN for all members. 
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Solution 
A similar truss with different boundary conditions has already been solved in 
example 25.1. For the sake of completeness the member of nodes and members 
are shown in Fig.26.3b.The displacements 6543 ,,, uuuu , 7u and 8u are zero due to 
boundary conditions. For the present problem the unconstrained degrees of 
freedom are 1u and 2u .The assembled stiffness matrix is of the order 88× and is 
available in example 25.1. 
In the given problem the member (2) is short by 0.01m.The forces developed in 
member (2) in the global coordinate system due to fabrication error is 
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⎨
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kN        (1) 

Now force-displacement relations for the truss are  
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 (2) 
 
Note that 0876543 ====== uuuuuu  
Thus, solving 
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01 =u  
and, mu 3

2 103478.4 −×−=         (4) 
 
Reactions are calculated as, 
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The reactions and member forces are shown in Fig.26.3c. The member forces 
can also be calculated by equation (26.10a) and (26.10b). For example, for 
member (2), 
 

o90=θ  
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4
300'

2 =p [0 -1 0 1] L
LAE

u
u
u
u

Δ
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  ( ) ( )
4

01.0300103478.4
4

300 3 −
−×−= −  

 
  kN 424.04239.0 ≅=       (7) 

 
Example 26.3 
Evaluate the member forces of truss shown in Fig.26.4a.The temperature of the 
member BC is raised by Co40 and member BD is raised by Co50 .Assume 

AE=300KN for all members and 
75000

1
=α per o C. 
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Solution 
For this problem assembled stiffness matrix is available in Fig.26.4b.The joints 
and members are numbered as shown in Fig.26.4b. In the given problem 

4321 ,,, uuuu and 5u represent unconstrained degrees of freedom. Due to support 
conditions, 0876 === uuu . 
 
The temperature of the member (2) is raised by o50 C.Thus, 
 

mTLL 32 10333.3505
75000

1 −×=××=Δ=Δ α      (1) 

 
The forces are developed in member (2), as it was prevented from expansion.  
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The displacement of the member (5) was raised by Co40 . Thus, 
 

mTLL 35 10771.34025
000,75
1 −×=××=Δ=Δ α  

 
The forces developed in member (5) as it was not allowed to expand is 
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The global force vector due to thermal load is 
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Writing the load-displacement relation for the entire truss is given below. 
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In the above problem 087654321 ======== pppppppp and 

0876 === uuu . 
 
Thus solving for unknown displacements, 
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Solving equation (5), the unknown displacements are calculated as 
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Now, reactions are computed as, 
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All reactions are zero as truss is externally determinate and hence change in 
temperature does not induce any reaction. Now member forces are calculated by 
using equation (26.10b) 
 
Member (1): L=5m, o0=θ  
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='

2p 0.1080 Kn 
 
Member 2:  L=5m, o90=θ ,nodal points 4-1 
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      =0.1087 kN 
 
Member (3): L=5m, o0=θ ,nodal points 3-4 
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   =0.0780kN 
 
Member (4): ,5,90 mL == oθ nodal points 3-2 
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Member (5): 25,45 == Loθ ,nodal points 3-1 
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      =-0.8619 kN 
 
Member (6) : 25,135 == Loθ ,nodal points 4-2 



Version 2 CE IIT, Kharagpur 

                                                         

25
300'

2 =p [0.707 -0.707 -0.707 0.707]

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

4

3

8

7

u
u
u
u

= 0.0150 kN.     (13) 

 
 
Summary 
In the last four lessons, the direct stiffness method as applied to the truss 
analysis was discussed. Assembly of member stiffness matrices, imposition of 
boundary conditions, and the problem of inclined supports were discussed. Due 
to the change in temperature the truss members either expand or shrink. 
However, in the case of statically indeterminate trusses, the length of the 
members is prevented from either expansion or contraction. Thus, the stresses 
are developed in the members due to changes in temperature. Similarly the 
errors in fabricating truss members also produce additional stresses in the 
trusses. In this lesson, these effects are accounted for in the stiffness analysis. A 
couple of problems are solved. 
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Instructional Objectives 
After reading this chapter the student will be able to 
1. Derive member stiffness matrix of a beam element. 
2. Assemble member stiffness matrices to obtain the global stiffness matrix for a 

beam. 
3. Write down global load vector for the beam problem. 
4. Write the global load-displacement relation for the beam. 
 
 
27.1 Introduction. 
In chapter 23, a few problems were solved using stiffness method from 
fundamentals. The procedure adopted therein is not suitable for computer 
implementation. In fact the load displacement relation for the entire structure was 
derived from fundamentals. This procedure runs into trouble when the structure 
is large and complex. However this can be much simplified provided we follow 
the procedure adopted for trusses. In the case of truss, the stiffness matrix of the 
entire truss was obtained by assembling the member stiffness matrices of 
individual members.  
In a similar way, one could obtain the global stiffness matrix of a continuous 
beam from assembling member stiffness matrix of individual beam elements. 
Towards this end, we break the given beam into a number of beam elements. 
The stiffness matrix of each individual beam element can be written very easily. 
For example, consider a continuous beam  as shown in Fig. 27.1a. The 
given continuous beam is divided into three beam elements as shown in Fig. 
27.1b. It is noticed that, in this case, nodes are located at the supports. Thus 
each span is treated as an individual beam. However sometimes it is required to 
consider a node between support points. This is done whenever the cross 
sectional area changes suddenly or if it is required to calculate vertical or 
rotational displacements at an intermediate point. Such a division is shown in Fig. 
27.1c. If the axial deformations are neglected then each node of the beam will 
have two degrees of freedom: a vertical displacement (corresponding to shear) 
and a rotation (corresponding to bending moment). In Fig. 27.1b, numbers 
enclosed in a circle represents beam numbers. The beam  is divided into 
three beam members. Hence, there are four nodes and eight degrees of 
freedom. The possible displacement degrees of freedom of the beam are also 
shown in the figure. Let us use lower numbers to denote unknown degrees of 
freedom (unconstrained degrees of freedom) and higher numbers to denote 
known (constrained) degrees of freedom. Such a method of identification is 
adopted in this course for the ease of imposing boundary conditions directly on 
the structure stiffness matrix. However, one could number sequentially as shown 
in Fig. 27.1d.  This is preferred while solving the problem on a computer.           

ABCD

ABCD
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In the above figures, single headed arrows are used to indicate translational and 
double headed arrows are used to indicate rotational degrees of freedom. 
 
 
27.2 Beam Stiffness Matrix. 
Fig. 27.2 shows a prismatic beam of a constant cross section that is fully 
restrained at ends in local orthogonal co-ordinate system . The beam ends 
are denoted by nodes 

''' zyx
j and . The  axis coincides with the centroidal axis of 

the member with the positive sense being defined from
k 'x

j  to . Letk L  be the length 
of the member, A  area of cross section of the member and is the moment of 
inertia about 'axis. 

zzI
z

 

 
 
Two degrees of freedom (one translation and one rotation) are considered at 
each end of the member. Hence, there are four possible degrees of freedom for 
this member and hence the resulting stiffness matrix is of the order . In this 
method counterclockwise moments and counterclockwise rotations are taken as 
positive. The positive sense of the translation and rotation are also shown in the 
figure. Displacements are considered as positive in the direction of the co- 
ordinate axis. The elements of the stiffness matrix indicate the forces exerted on 

44×
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the member by the restraints at the ends of the member when unit displacements 
are imposed at each end of the member. Let us calculate the forces developed in 
the above beam member when unit displacement is imposed along each degree 
of freedom holding all other displacements to zero. Now impose a unit 
displacement along axis at 'y j end of the member while holding all other 
displacements to zero as shown in Fig. 27.3a. This displacement causes both 
shear and moment in the beam. The restraint actions are also shown in the 
figure. By definition they are elements of the member stiffness matrix. In 
particular they form the first column of element stiffness matrix.  
In Fig. 27.3b, the unit rotation in the positive sense is imposed at j  end of the 
beam while holding all other displacements to zero. The restraint actions are 
shown in the figure. The restraint actions at ends are calculated referring to 
tables given in lesson …  
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In Fig. 27.3c, unit displacement along  axis at end is imposed and 
corresponding restraint actions are calculated. Similarly in Fig. 27.3d, unit 
rotation about '  axis at end  is imposed and corresponding stiffness 
coefficients are calculated. Hence the member stiffness matrix for the beam 
member is 

'y k

z k
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     (27.1) 

 
The stiffness matrix is symmetrical. The stiffness matrix is partitioned to separate 
the actions associated with two ends of the member. For continuous beam 
problem, if the supports are unyielding, then only rotational degree of freedom 
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shown in Fig. 27.4 is possible. In such a case the first and the third rows and 
columns will be deleted. The reduced stiffness matrix will be, 
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Instead of imposing unit displacement along at 'y j  end of the member in Fig. 
27.3a, apply a displacement  along at 1'u 'y j  end of the member as shown in 
Fig. 27.5a, holding all other displacements to zero. Let the restraining forces 
developed be denoted by and . 312111 ,, qqq 41q
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The forces are equal to, 
 

14141131311212111111 ';';';' ukqukqukqukq ====   (27.3) 
 
Now, give displacements and  simultaneously along displacement 
degrees of freedom and respectively. Let the restraining forces developed 
at member ends be and respectively as shown in Fig. 27.5b along 
respective degrees of freedom. Then by the principle of superposition, the force 
displacement relationship can be written as, 
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   (27.4) 

 
This may also be written in compact form as, 
 

{ } [ ] { }'ukq =        (27.5) 
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27.3 Beam (global) Stiffness Matrix. 
The formation of structure (beam) stiffness matrix from its member stiffness 
matrices is explained with help of two span continuous beam shown in Fig. 
27.6a. Note that no loading is shown on the beam. The orthogonal co-ordinate 
system xyz denotes the global co-ordinate system.  
 

 
 

 
 
For the case of continuous beam, the x - and - axes are collinear and other 
axes ( and , and ) are parallel to each other. Hence it is not required to 
transform member stiffness matrix from local co-ordinate system to global co 

'x
y 'y z 'z
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ordinate system as done in the case of trusses. For obtaining the global stiffness 
matrix, first assume that all joints are restrained. The node and member 
numbering for the possible degrees of freedom are shown in Fig 27.6b. The 
continuous beam is divided into two beam members. For this member there are 
six possible degrees of freedom. Also in the figure, each beam member with its 
displacement degrees of freedom (in local co ordinate system) is also shown. 
Since the continuous beam has the same moment of inertia and span, the 
member stiffness matrix of element 1 and 2 are the same. They are, 
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          (27.6b) 
 
 
 
 
The local and the global degrees of freedom are also indicated on the top and 
side of the element stiffness matrix. This will help us to place the elements of the 
element stiffness matrix at the appropriate locations of the global stiffness matrix. 
The continuous beam has six degrees of freedom and hence the stiffness matrix 
is of the order 6 . Let  denotes the continuous beam stiffness matrix of 
order . From Fig. 27.6b,  may be written as, 

6 [ ]K
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The upper left hand section receives contribution from member 1  and 

lower right hand section of global stiffness matrix receives contribution from 
member 2. The element of the global stiffness matrix corresponding to global 
degrees of freedom 3 and 4 [overlapping portion of equation ( ] receives 
element from both members 1 and 2. 

44× )(AB
44×

)7.27

 
27.4 Formation of load vector. 
Consider a continuous beam as shown in Fig. 27.7. ABC
 

 
 
We have two types of load: member loads and joint loads. Joint loads could be 
handled very easily as done in case of trusses. Note that stiffness matrix of each 
member was developed for end loading only. Thus it is required to replace the 
member loads by equivalent joint loads. The equivalent joint loads must be 
evaluated such that the displacements produced by them in the beam should be 
the same as the displacements produced by the actual loading on the beam. This 
is evaluated by invoking the method of superposition.  
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The loading on the beam shown in Fig. 27.8(a), is equal to the sum of Fig. 
27.8(b) and Fig. 27.8(c). In Fig. 27.8(c), the joints are restrained against 
displacements and fixed end forces are calculated. In Fig. 27.8(c) these fixed end 
actions are shown in reverse direction on the actual beam without any load. 
Since the beam in Fig. 27.8(b) is restrained (fixed) against any displacement, the 
displacements produced by the joint loads in Fig. 27.8(c) must be equal to the 
displacement produced by the actual beam in Fig. 27.8(a). Thus the loads shown 
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in Fig. 27.8(c) are the equivalent joint loads .Let, and be the 
equivalent joint loads acting on the continuous beam along displacement 
degrees of freedom and 6 respectively as shown in Fig. 27.8(b). Thus the 
global load vector is, 

54321 ,,,, ppppp 6p
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27.5 Solution of equilibrium equations 
After establishing the global stiffness matrix and load vector of the beam, the 
load displacement relationship for the beam can be written as, 
 

{ } [ ]{ }uKP =        (27.9) 
 
where is the global load vector, { }P { }u  is displacement vector and  is the 
global stiffness matrix. This equation is solved exactly in the similar manner as 
discussed in the lesson 24. In the above equation some joint displacements are 
known from support conditions. The above equation may be written as 
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where and  denote respectively vector of known forces and known 
displacements. And { }, {  denote respectively vector of unknown forces and 
unknown displacements respectively. Now expanding equation (27.10),  

{ }kp { }ku

up }uu
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[ ] [ ] }{}{}{ 1211 kuk ukukp +=     (27.11a) 
[ ] [ ] }{}{}{ 2221 kuu ukukp +=     (27.11b) 

     
Since  is known, from equation 27.11(a), the unknown joint displacements 
can be evaluated. And support reactions are evaluated from equation (27.11b), 
after evaluating unknown displacement vector. 

{ }ku

 
Let and be the reactions along the constrained degrees of freedom as 
shown in Fig. 27.9a. Since equivalent joint loads are directly applied at the 
supports, they also need to be considered while calculating the actual reactions. 
Thus, 
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The reactions may be calculated as follows. The reactions of the beam shown in 
Fig. 27.9a are equal to the sum of reactions shown in Fig. 27.9b, Fig. 27.9c and 
Fig. 27.9d. 
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From the method of superposition, 
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or 
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Equation (27.14a) may be written as, 
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Member end actions are calculated as follows. For example consider 
the first element 1. 
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In the next lesson few problems are solved to illustrate the method so far 
discussed. 
 
 
Summary 
In this lesson the beam element stiffness matrix is derived from fundamentals. 
Assembling member stiffness matrices, the global stiffness matrix is generated. 
The global load vector is defined. The global load-displacemet relation is written 
for the complete beam structure. The procedure to impose boundary conditions 
on the load-displacement relation is discussed. With this background, one could 
analyse continuous beam by the direct stiffness method. 
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Method: Beams 
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Instructional Objectives 
After reading this chapter the student will be able to 
1. Derive member stiffness matrix of a beam element. 
2. Assemble member stiffness matrices to obtain the global stiffness matrix for a 

beam. 
3. Write the global load-displacement relation for the beam. 
4. Impose boundary conditions on the load-displacement relation of the beam. 
5. Analyse continuous beams by the direct stiffness method. 
 
 
28.1 Introduction 
In the last lesson, the procedure to analyse beams by direct stiffness method has 
been discussed. No numerical problems are given in that lesson. In this lesson, 
few continuous beam problems are solved numerically by direct stiffness method.   
 
Example 28.1  

Analyse the continuous beam shown in Fig. 28.1a. Assume that the supports are 
unyielding. Also assume that EI is constant for all members. 
 

 
 
The numbering of joints and members are shown in Fig. 28.1b. The possible 
global degrees of freedom are shown in the figure. Numbers are put for the 
unconstrained degrees of freedom first and then that for constrained 
displacements.  
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The given continuous beam is divided into three beam elements Two degrees of 
freedom (one translation and one rotation) are considered at each end of the 
member. In the above figure, double headed arrows denote rotations and single 
headed arrow represents translations. In the given problem some displacements 
are zero, i.e.,  0876543 ====== uuuuuu  from support conditions.  
 
In the case of beams, it is not required to transform member stiffness matrix from 
local co-ordinate system to global co-ordinate system, as the two co-ordinate 
system are parallel to each other. 
 

 
 
First construct the member stiffness matrix for each member. This may be done 
from the fundamentals. However, one could use directly the equation (27.1) 
given in the previous lesson and reproduced below for the sake convenience. 
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The degrees of freedom of a typical beam member are shown in Fig. 28.1c.  
Here equation (1) is used to generate element stiffness matrix.  
 
 
Member 1: , node points 1-2. mL 4=
 
 The member stiffness matrix for all the members are the same, as the length 
and flexural rigidity of all members is the same. 
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On the member stiffness matrix, the corresponding global degrees of freedom 
are indicated to facilitate assembling.  
 
Member 2: , node points 2-3. mL 4=
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Member 3: , node points 3-4. mL 4=
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The assembled global stiffness matrix of the continuous beam is of the 
order . The assembled global stiffness matrix may be written as, 88×
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                                                                                                                             (5) 
 
Now it is required to replace the given members loads by equivalent joint loads. 
The equivalent loads for the present case is shown in Fig. 28.1d. The 
displacement degrees of freedom are also shown in Fig. 28.1d.  
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Thus the global load vector corresponding to unconstrained degree of freedom 
is,  
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Writing the load displacement relation for the entire continuous beam, 
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where is the joint load vector, { }p { }u  is displacement vector. 
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We know that 0876543 ====== uuuuuu . Thus solving for unknowns  and 
, yields 

1u

2u
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Thus displacements are, 
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The unknown joint loads are given by, 
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The actual reactions at the supports are calculated as, 
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Member end actions for element 1 
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Member end actions for element 2 
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Member end actions for element 3 
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Example 28.2  
Analyse the continuous beam shown in Fig. 28.2a. Assume that the supports are 
unyielding. Assume EI  to be constant for all members. 
 

 
 
The numbering of joints and members are shown in Fig. 28.2b. The global 
degrees of freedom are also shown in the figure. 
 
The given continuous beam is divided into two beam elements. Two degrees of 
freedom (one translation and one rotation) are considered at each end of the 
member. In the above figure, double headed arrows denote rotations and single 
headed arrow represents translations. Also it is observed that displacements 

 from support conditions.  06543 ==== uuuu
First construct the member stiffness matrix for each member.  
 
 
Member 1: , node points 1-2. mL 4=
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The member stiffness matrix for all the members are the same, as the length and 
flexural rigidity of all members is the same. 
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On the member stiffness matrix, the corresponding global degrees of freedom 
are indicated to facilitate assembling.  
   
Member 2: , node points 2-3. mL 4=
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The assembled global stiffness matrix of the continuous beam is of order 66× . 
The assembled global stiffness matrix may be written as, 
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Now it is required to replace the given members loads by equivalent joint loads. 
The equivalent loads for the present case is shown in Fig. 28.2c. The 
displacement degrees of freedom are also shown in figure.  
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Thus the global load vector corresponding to unconstrained degree of freedom 
is,  
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Writing the load displacement relation for the entire continuous beam, 
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   (5) 
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We know that 06543 ==== uuuu . Thus solving for unknowns and , yields 1u 2u
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Thus displacements are, 
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The unknown joint loads are given by, 
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The actual support reactions are, 
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Member end actions for element 1 
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Member end actions for element 2 
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⎪
⎬
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Summary 
In the previous lesson the beam element stiffness matrix is derived from 
fundamentals. Assembling member stiffness matrices, the global stiffness matrix 
is generated. The procedure to impose boundary conditions on the load-
displacement relation is discussed. In this lesson, a few continuous beam 
problems are analysed by the direct stiffness method. 
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Method: Beams 
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Instructional Objectives 
After reading this chapter the student will be able to 
1. Compute moments developed in the continuous beam due to support 

settlements. 
2. Compute moments developed in statically indeterminate beams due to 

temperature changes. 
3. Analyse continuous beam subjected to temperature changes and support 

settlements. 
 
 

29.1 Introduction 
In the last two lessons, the analysis of continuous beam by direct stiffness matrix 
method is discussed. It is assumed in the analysis that the supports are 
unyielding and the temperature is maintained constant. However, support 
settlements can never be prevented altogether and hence it is necessary to 
make provisions in design for future unequal vertical settlements of supports and 
probable rotations of fixed supports. The effect of temperature changes and 
support settlements can easily be incorporated in the direct stiffness method and 
is discussed in this lesson. Both temperature changes and support settlements 
induce fixed end actions in the restrained beams. These fixed end forces are 
handled in the same way as those due to loads on the members in the analysis. 
In other words, the global load vector is formulated by considering fixed end 
actions due to both support settlements and external loads. At the end, a few 
problems are solved to illustrate the procedure. 
 
 
29.2 Support settlements 
Consider continuous beam ABC as shown in Fig. 29.1a. Assume that the flexural 
rigidity of the continuous beam is constant throughout. Let the support B  settles 
by an amount Δ  as shown in the figure. The fixed end actions due to loads are 
shown in Fig. 29.1b. The support settlements also induce fixed end actions and 
are shown in Fig. 29.1c. In Fig. 29.1d, the equivalent joint loads are shown. Since 
the beam is restrained against displacement in Fig. 29.1b and Fig. 29.1c, the 
displacements produced in the beam by the joint loads in Fig. 29.1d must be 
equal to the displacement produced in the beam by the actual loads in Fig. 
29.1a. Thus to incorporate the effect of support settlement in the analysis it is 
required to modify the load vector by considering the negative of the fixed end 
actions acting on the restrained beam. 
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29.3 Effect of temperature change 
The effect of temperature on the statically indeterminate beams has already been 
discussed in lesson 9 of module 2 in connection with the flexibility matrix method. 
Consider the continuous beam ABC as shown in Fig. 29.2a, in which span BC  is 
subjected to a differential temperature 1T  at top and 2T at the bottom of the beam.  
Let temperature in span AB  be constant. Let d   be the depth of beam and EI  
be the flexural rigidity. As the cross section of the member remains plane after 
bending, the relative angle of rotation θd between two cross sections at a 
distance dx apart is given by 
 

( )
dx

d
TT

d 21 −= αθ      (29.1) 

 
where α is the co-efficient of the thermal expansion of the material. When beam 
is restrained, the temperature change induces fixed end moments in the beam as 
shown in Fig. 29.2b.  The fixed end moments developed are,  
 

( )
d

TT
EIMM TT 21

21
−

=−= α     (29.2) 

 
Corresponding to the above fixed end moments; the equivalent joint loads can 
easily be constructed. Also due to differential temperatures there will not be any 
vertical forces/reactions in the beam. 
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Example 29.1  
Calculate support reactions in the continuous beam ABC (vide Fig. 29.3a) having 
constant flexural rigidity EI , throughout due to vertical settlement of support B , by 

mm5  as shown in the figure. Assume GPaE 200= and 44104 mI −×= . 
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The continuous beam considered is divided into two beam elements. The 
numbering of the joints and members are shown in Fig. 29.3b. The possible 
global degrees of freedom are also shown in the figure. A typical beam element 
with two degrees of freedom at each node is also shown in the figure. For this 
problem, the unconstrained degrees of freedom are 1u and 2u . The fixed end 
actions due to support settlement are, 
 

2

6 96 kN.m;            96 kN.mF F
AB BA

EIM M
L
Δ

= = =  

 
96 kN.m ; 96 kN.mF F

BC CBM M= − = −     (1) 
 
The fixed-end moments due to support settlements are shown in Fig. 29.3c. 
 
The equivalent joint loads due to support settlement are shown in Fig. 29.3d. In 
the next step, let us construct member stiffness matrix for each member.   
 
Member 1: mL 5= , node points 1-2. 
  
       

[ ]

1

3

5

6

80.024.040.024.0

24.0096.024.0096.0

40.024.080.024.0

24.0096.024.0096.0

'

1356..

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−−−

−

−

= zzEIk

fodGlobal

   (2) 

 
 
Member 2: mL 5= , node points 2-3. 
  

      [ ]
2
4
1
3

80.024.040.024.0
24.0096.024.0096.0

40.024.080.024.0
24.0096.024.0096.0

2413..

2

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−−−

−
−

= zzEIk

fodGlobal

  (3) 

 
On the member stiffness matrix, the corresponding global degrees of freedom 
are indicated to facilitate assembling. The assembled global stiffness matrix is of 
order 66× . Assembled stiffness matrix [ ]K is given by, 
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[ ]

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−
−−−

−−−
−
−

= zzEIK   (4) 

 
Thus the global load vector corresponding to unconstrained degrees of freedom 
is,  
 

{ }
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

=
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

=
96

0

2

1

p

p
pk       (5) 

 
Thus the load displacement relation for the entire continuous beam is, 
 

⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪

⎩
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⎪
⎪

⎨
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⎥
⎥
⎥
⎥
⎥
⎥
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⎥

⎦

⎤

⎢
⎢
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⎢
⎢
⎢
⎢

⎣

⎡

−
−
−−−

−−−
−
−
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⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

6

5

4

3

2

1

6

5

4

3

096.024.00096.0024.0
24.08.0024.004.0
00096.0096.024.024.0
096.024.0096.0192.024.00

0024.024.08.04.0
24.04.024.004.06.1

96
0

u
u
u
u
u
u

EI

p
p
p
p

zz
  (6) 

 
Since, 06543 ==== uuuu due to support conditions. We get, 
 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

2

1

8.04.0

4.06.1

96

0

u

u
EI zz  

 
Thus solving for unknowns 1u and 2u , 
 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤
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⎪⎩
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⎧
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0

6.14.0
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1

2

1

zzEIu

u
 

 
 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

×

×−
=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧−

=
−

−

3

3

10714.1

10429.0

14.137

285.341

zzEI
 

 
radians 10714.1                                 ;radians 10429.0 3

2
3

1
−− ×=×−= uu   (7) 

 
Now, unknown joint loads are calculated by, 
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    (8) 
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68.24
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Now the actual support reactions 543 ,, RRR and 6R must include the fixed end 
support reactions. Thus, 
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R

R

R
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    (9) 

 
  kN 17.30         kN.m; 29.82         kN; 72.13    kN; 88.43 6543 ===−= RRRR     (10) 
 
Example 29.2 
A continuous beam ABCD is carrying a uniformly distributed load of mkN /5  as 
shown in Fig. 29.4a. Compute reactions due to following support settlements. 
 
Support B  m005.0  vertically downwards. 
 
Support C  m010.0  vertically downwards. 
 
Assume GPaE 200= and 44104 mI −×= . 
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Solution 
The node and member numbering are shown in Fig. 29.4(b), wherein the 
continuous beam is divided into three beam elements. It is observed from the 
figure that the unconstrained degrees of freedom are 1u and 2u . The fixed end 
actions due to support settlements are shown in Fig. 29.4(c). and fixed end 
moments due to external loads are shown in Fig. 29.4(d). The equivalent joint 
loads due to support settlement and external loading are shown in Fig. 29.4(e). 
The fixed end actions due to support settlement are, 
 

( )ψ
L
EIM F

A
6

−=  where ψ  is the chord rotation and is taken ve+  if the 

rotation is counterclockwise.   
 
 
Substituting the appropriate values in the above equation, 
 

9 4

3

6 200 10 4 10 0.005 96 kN.m.
5 10 5

F
AM

−× × × × ⎛ ⎞= − − =⎜ ⎟× ⎝ ⎠
 

 
96 96 192 kN.m.F

BM = + =  
 

 
96 192 96 kN.m.F

CM = − = −  
 

 
192 kN.m.F

DM = −        (1) 
 
The vertical reactions are calculated from equations of equilibrium. The fixed end 
actions due to external loading are, 
 

2

10.42 kN.m.
12

F
A

w LM = =  

 
10.42 10.42 0 kN.m.F

BM = − =  
 

0F
CM =  

 
10.42 kN.m.F

DM = −        (2) 
 
In the next step, construct member stiffness matrix for each member. 
 
Member 1, mL 5= , node points 1-2. 
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Member 2, mL 5= , node points 2-3. 
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Member 3, mL 5= , node points 3-4. 
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On the member stiffness matrix, the corresponding global degrees of freedom 
are indicated to facilitate assembling. The assembled global stiffness matrix is of 
the order 88× . Assembled stiffness matrix [ ]K is, 
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The global load vector corresponding to unconstrained degree of freedom is,  
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Writing the load displacement relation for the entire continuous beam, 
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           (8) 
We know that 0876543 ====== uuuuuu . Thus solving for unknowns 
displacements 1u and 2u  from equation, 
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The unknown joint loads are calculated as, 
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Now the actual support reactions 76543 ,,,, RRRRR and 8R must include the fixed 
end support reactions. Thus, 
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    kN.m; 82.48         kN; 64.55    kN; 04.48 543 =−== RRR  

     kN 2666     kN.m; 02.164     kN; 34.16 876 .RRR =−==    (14) 
 
 
Summary 
The effect of temperature changes and support settlements can easily be 
incorporated in the direct stiffness method and is discussed in the present 
lesson. Both temperature changes and support settlements induce fixed end 
actions in the restrained beams. These fixed end forces are handled in the same 
way as those due to loads on the members in the analysis. In other words, the 
global load vector is formulated by considering fixed end actions due to both 
support settlements and external loads. At the end, a few problems are solved to 
illustrate the procedure. 
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Instructional Objectives 
After reading this chapter the student will be able to 
1. Derive plane frame member stiffness matrix in local co-ordinate system. 
2. Transform plane frame member stiffness matrix from local to global co-

ordinate system. 
3. Assemble member stiffness matrices to obtain the global stiffness matrix of 

the plane frame. 
4. Write the global load-displacement relation for the plane frame. 
5. Impose boundary conditions on the load-displacement relation. 
6. Analyse plane frames by the direct stiffness matrix method. 
 
 
 30.1 Introduction 
 In the case of plane frame, all the members lie in the same plane and are 
interconnected by rigid joints. The internal stress resultants at a cross-section of 
a plane frame member consist of bending moment, shear force and an axial 
force.  The significant deformations in the plane frame are only flexural and axial. 
In this lesson, the analysis of plane frame by direct stiffness matrix method is 
discussed. Initially, the stiffness matrix of the plane frame member is derived in 
its local co-ordinate axes and then it is transformed to global co-ordinate system. 
In the case of plane frames, members are oriented in different directions and 
hence before forming the global stiffness matrix it is necessary to refer all the 
member stiffness matrices to the same set of axes. This is achieved by 
transformation of forces and displacements to global co-ordinate system. 
 
 
30.2 Member Stiffness Matrix 
Consider a member of a plane frame as shown in Fig. 30.1a in the member co-
ordinate system ' .  The global orthogonal set of axes '' zyx xyz is also shown in the 
figure. The frame lies in the xy  plane. The member is assumed to have uniform 
flexural rigidity EI  and uniform axial rigidity EA  for sake of simplicity. The axial 
deformation of member will be considered in the analysis. The possible 
displacements at each node of the member are: translation in - and - 
direction and rotation about - axis.  

'x 'y
'z
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Thus the frame members have six (6) degrees of freedom and are shown in 
Fig.30.1a. The forces acting on the member at end j  and  are shown in Fig. 
30.1b. The relation between axial displacement and axial forces is derived in 
chapter 24. Similarly the relation between shear force, bending moment with 
translation along  axis and rotation about  axis are given in lesson 27. 
Combining them, we could write the load-displacement relation in the local co-
ordinate axes for the plane frame as shown in Fig 30.1a, b as, 

k

'y 'z
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 (30.1a) 

  
This may be succinctly written as  
 

{ } [ ]{ }''' ukq =       (30.1b) 
 
 
where  is the member stiffness matrix. The member stiffness matrix can also 
be generated by giving unit displacement along each possible displacement 
degree of freedom one at a time and calculating resulting restraint actions. 

[ ]'k

 
 
30.3  Transformation from local to global co-ordinate system 
30.3.1 Displacement transformation matrix  

In plane frame the members are oriented in different directions and hence it is 
necessary to transform stiffness matrix of individual members from local to global 
co-ordinate system before formulating the global stiffness matrix by assembly. In 
Fig. 30.2a the plane frame member is shown in local coordinate axes zyx ′′′  and 
in Fig. 30.2b, the plane frame is shown in global coordinate axes xyz . Two ends 
of the plane frame member are identified by j  and . Let   and 

 be respectively displacements of ends 
k 321 ',',' uuu

654 ',',' uuu j  and  of the member in local 
coordinate system ' . Similarly  and  respectively are 
displacements of ends 

k
'' zyx 321 ,, uuu 654 ,, uuu
j  and k  of the member in global co-ordinate system.  
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Let θ  be the angle by which the member is inclined to global  x -axis. From 
Fig.30.2a and b, one could relate  to  as, 321 ',',' uuu 321 ,, uuu
 

θθ sincos' 211 uuu +=         (30.2a) 
 

θθ cossin' 212 uuu +−=                (30.2b) 
 

33' uu =           (30.2c) 
 
This may be written as, 
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       (30.3a) 

 
Where, θcos=l and θsin=m . 
 
This may be written in compact form as, 
 

{ } [ ]{ }uTu ='          (30.3b)  
 
 
In the above equation, [  is defined as the displacement transformation matrix 
and it transforms the six global displacement components to six displacement 
components in local co-ordinate axes. Again, if the coordinate of node 

]T

j  is 
 and coordinate of node  are ( 11, yx ) k ( )22 , yx , then, 

 

L
xxl 12cos −

== θ    and   
L

yym 12sin −
== θ . 

 
Where ( ) ( )2

12
2

12 yyxxL −+−=              (30.4) 
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30.3.2 Force displacement matrix 
 

 
 
Let and be respectively the forces in member at nodes 321 ',',' qqq 654 ',',' qqq j  
and  as shown in Fig. 30.3a in local coordinate system.  and 

are the forces in members at node 
k 321 ,, ppp

654 ,, ppp j  and  respectively as shown in 
Fig. 30.3b  in the global coordinate system. Now from Fig 30.3a and b, 

k

 
θθ sin'cos' 211 qqp −=             (30.5a) 

 
θθ cos'sin' 212 qqp +=                     (30.5b) 

 

Version 2 CE IIT, Kharagpur 
                                                         



33 'qp =              (30.5c) 
 
Thus the forces in global coordinate system can be related to forces in local 
coordinate system by  
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           (30.6a) 

 
Where, θcos=l and θsin=m . 
 
This may be compactly written as, 
 

{ } [ ] { }'qTp T=              (30.6b)  
 
30.3.3 Member global stiffness matrix 

From equation (30.1b), we have  
 

{ } [ ]{ }''' ukq =  
 
Substituting the above value of { }'q  in equation (30.6b) results in, 
 

{ } [ ] [ ]{ }'' ukTp T=       (30.7) 
 
Making use of equation (30.3b), the above equation may be written as 
 
  

{ } [ ] [ ][ ]{ }uTkTp T '=       (30.8) 
or   
 

{ } [ ]{ }ukp =        (30.9) 
 
The equation (30.9) represents the member load-displacement relation in global 
coordinate system. The global member stiffness matrix [ ]k  is given by, 
 

[ ] [ ] [ ][ ]TkTk T '=                (30.10) 
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After transformation, the assembly of member stiffness matrices is carried out in 
a similar procedure as discussed for truss. Finally the global load-displacement 
equation is written as in the case of continuous beam. Few numerical problems 
are solved by direct stiffness method to illustrate the procedure discussed. 
 
Example 30.1  
Analyze the rigid frame shown in Fig 30.4a by direct stiffness matrix method. 
Assume and . The flexural rigidity 441033.1;200 mIGPaE ZZ

−×== 204.0 mA =
EI and axial rigidity EA  are the same for both the beams.  
   

 
 
Solution: 
The plane frame is divided in to two beam elements as shown in Fig. 30.4b. The 
numbering of joints and members are also shown in Fig. 30.3b. Each node has 
three degrees of freedom. Degrees of freedom at all nodes are also shown in the 
figure. Also the local degrees of freedom of beam element are shown in the 
figure as inset. 
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Formulate the element stiffness matrix in local co-ordinate system and then 
transform it to global co-ordinate system. The origin of the global co-ordinate 
system is taken at node 1. Here the element stiffness matrix in global co-
ordinates is only given. 
 
Member 1: °== 90;6 θmL  node points 1-2; 0=l and 1=m . 
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[ ] [ ] [ ]1 'Tk T k T⎡ ⎤ =⎣ ⎦

3 3 3 3
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Member 2: °== 0;4 θmL ;  node points 2-3  ; 1=l and 0=m . 
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 (2) 
The assembled global stiffness matrix [ ]K  is of the order 99× . Carrying out 
assembly in the usual manner, we get,  
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The load vector corresponding to unconstrained degrees of freedom is (vide 
30.4d), 
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In the given frame constraint degrees of freedom are . 
Eliminating rows and columns corresponding to constrained degrees of freedom 
from global stiffness matrix and writing load-displacement relationship for only 
unconstrained degree of freedom, 

987321 ,,,,, uuuuuu
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Solving we get, 
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6 5

4 56.28 10 m.,     1.695 10u u− −= × = − ×  
 
Let be the support reactions along degrees of freedom 

 respectively (vide Fig. 30.4e). Support reactions are calculated by 
987321 ,,,,, RRRRRR

9,8,7,3,2,1
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Example 30.2 
Analyse the rigid frame shown in Fig 30.5a by direct stiffness matrix method. 
Assume and . The flexural 
rigidity 

5 4200 GPa ; 1.33 10 mZZE I −= = × 201.0 mA =
EI and axial rigidity EA  are the same for all beams.  

 

 
 
Solution: 
The plane frame is divided in to three beam elements as shown in Fig. 30.5b. 
The numbering of joints and members are also shown in Fig. 30.5b. The possible 
degrees of freedom at nodes are also shown in the figure. The origin of the 
global co- ordinate system is taken at A (node 1). 
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Now formulate the element stiffness matrix in local co-ordinate system and then 
transform it to global co-ordinate system. In the present case three degrees of 
freedom are considered at each node. 
 

Member 1: °== 90;4 θmL ;  node points 1-2  ; 2 1 0x xl
L
−

= = and 

2 1 1y ym
L
−

= = . 

 
The following terms are common for all elements. 
 

5 2
2

65 10  kN/m;     9.998 10 kNAE EI
L L

= × = ×  

 
2 3

3

12 44.999 10  kN/m;     2.666 10 kN.mEI EI
L L

= × = ×  
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Member 2: °== 0;4 θmL  node points 2-3; 1=l and 0=m . 
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Member 3: °== 270;4 θmL ;  node points 3-4  ; 2 1 0x xl
L
−

= = and 

2 1 1y ym
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−

= = − . 
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The assembled global stiffness matrix [ ]K  is of the order 1212× . Carrying out 
assembly in the usual manner, we get,  
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The load vector corresponding to unconstrained degrees of freedom is, 
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In the given frame, constraint (known) degrees of freedom are 

. Eliminating rows and columns corresponding to constrained 
degrees of freedom from global stiffness matrix and writing load displacement 
relationship, 

121110321 ,,,,, uuuuuu
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Solving we get, 
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Let be the support reactions along degrees of freedom 
 respectively. Support reactions are calculated by 

121110321 ,,,,, RRRRRR
12,11,10,3,2,1
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Summary 
In this lesson, the analysis of plane frame by the direct stiffness matrix method is 
discussed. Initially, the stiffness matrix of the plane frame member is derived in 
its local co-ordinate axes and then it is transformed to global co-ordinate system. 
In the case of plane frames, members are oriented in different directions and 
hence before forming the global stiffness matrix it is necessary to refer all the 
member stiffness matrices to the same set of axes. This is achieved by 
transformation of forces and displacements to global co-ordinate system. In the 
end, a few problems are solved to illustrate the methodology. 
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Instructional Objectives: 
After reading this chapter the student will be able to 
1. Differentiate between rigid and deformable structures. 
2. Define funicular structure. 
3. State the type stress in a cable. 
4. Analyse cables subjected to uniformly distributed load. 
5. Analyse cables subjected to concentrated loads. 
 
 
31.1  Introduction 
Cables and arches are closely related to each other and hence they are grouped 
in this course in the same module. For long span structures (for e.g. in case 
bridges) engineers commonly use cable or arch construction due to their 
efficiency. In the first lesson of this module, cables subjected to uniform and 
concentrated loads are discussed. In the second lesson, arches in general and 
three hinged arches in particular along with illustrative examples are explained. 
In the last two lessons of this module, two hinged arch and hingeless arches are 
considered. 
Structure may be classified into rigid and deformable structures depending on 
change in geometry of the structure while supporting the load. Rigid structures 
support externally applied loads without appreciable change in their shape 
(geometry). Beams trusses and frames are examples of rigid structures. Unlike 
rigid structures, deformable structures undergo changes in their shape according 
to externally applied loads. However, it should be noted that deformations are still 
small. Cables and fabric structures are deformable structures. Cables are mainly 
used to support suspension roofs, bridges and cable car system. They are also 
used in electrical transmission lines and for structures supporting radio antennas. 
In the following sections, cables subjected to concentrated load and cables 
subjected to uniform loads are considered. 
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The shape assumed by a rope or a chain (with no stiffness) under the action of 
external loads when hung from two supports is known as a funicular shape. 
Cable is a funicular structure. It is easy to visualize that a cable hung from two 
supports subjected to external load must be in tension (vide Fig. 31.2a and 
31.2b). Now let us modify our definition of cable. A cable may be defined as the 
structure in pure tension having the funicular shape of the load. 
 
 

                                                                             Version 2 CE IIT, Kharagpur 
                                                         



31.2   Cable subjected to Concentrated Loads  
As stated earlier, the cables are considered to be perfectly flexible (no flexural 
stiffness) and inextensible. As they are flexible they do not resist shear force and 
bending moment. It is subjected to axial tension only and it is always acting 
tangential to the cable at any point along the length. If the weight of the cable is 
negligible as compared with the externally applied loads then its self weight is 
neglected in the analysis. In the present analysis self weight is not considered. 
 
Consider a cable as loaded in Fig. 31.2. Let us assume that the cable 
lengths  and sag at  ( ) are known. The four reaction 
components at 

ACDEB
4321 ,,, LLLL EDC ,, edc hhh ,,

A  and B , cable tensions in each of the four segments and three 
sag values: a total of eleven unknown quantities are to be determined. From the 
geometry, one could write two force equilibrium equations ( 0,0 == ∑∑ yx FF ) at 
each of the point  and DCBA ,,, E  i.e. a total of ten equations and the required 
one more equation may be written from the geometry of the cable. For example, 
if one of the sag is given then the problem can be solved easily. Otherwise if the 
total length of the cable  is given then the required equation may be written as  S
 

22
2

22
2

22
2

22
1 )()()( eedcdc hhLhhLhhLhLS +++−++−+++=      (31.1) 

 
 
31.3   Cable subjected to uniform load. 
Cables are used to support the dead weight and live loads of the bridge decks 
having long spans. The bridge decks are suspended from the cable using the 
hangers. The stiffened deck prevents the supporting cable from changing its 
shape by distributing the live load moving over it, for a longer length of cable. In 
such cases cable is assumed to be uniformly loaded. 
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Consider a cable which is uniformly loaded as shown in Fig 31.3a. Let the slope 
of the cable be zero at A . Let us determine the shape of the cable subjected to 
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uniformly distributed load . Consider a free body diagram of the cable as shown 
in Fig 31.3b. As the cable is uniformly loaded, the tension in the cable changes 
continuously along the cable length. Let the tension in the cable at  end of the 
free body diagram be T  and tension at the  end of the cable be . The 
slopes of the cable at  and  are denoted by 

0q

m
n TT Δ+

m n θ  and θθ Δ+  respectively. 
Applying equations of equilibrium, we get    
 
∑ =Δ−Δ+Δ++ (−= 0)()sin()sin0 0 xqTTTFy θθθ    (31.2a) 
 
∑ =Δ+Δ++−= 0)cos()(cos0 θθθ TTTFx     (31.2b) 
 

0
2

)()sin()cos(0 0 =
Δ

Δ+Δ+Δ−=∑ xxqxTyTMn θθ   (31.2c) 

 
Dividing equations 31.2a, b, c by xΔ  and noting that in the limit as 

 0,0 →Δ→Δ yx 0→Δθ and . 0→ΔT
 
 

0

0

)sin(

)sin(
0

lim

qT
dx
d

q
x
T

x

=

=Δ+
Δ
Δ

→Δ

θ

θθ

                                                   (31.3a) 

                        0)cos( =θT
dx
d              (31.3b)  

 

0
2

sincos
0

lim 0
0 =++

Δ
Δ

−
→Δ

x
qT

x
yT

x
θθ  

 

θtan=
dx
dy                                       (31.3c) 

 
 
Integrating equation (31.3b) we get  
 

cos constantT θ =  
 

At support (i.e., at ),    0x = HT =θcos     (31.4a)  
 
i.e. horizontal component of the force along the length of the cable is constant. 
 
Integrating equation 31.3a, 
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10sin CxqT +=θ  
 
At 0,0sin,0 1 === CTx θ           as 0=θ  at that point. 
 
Hence, xqT 0sin =θ        (31.4b)  
 
From equations 31.4a and 31.4b, one could write  
 

H
xq0tan =θ                            (31.4c) 

 

From the figure,     
H

xq
dx
dy 0tan ==θ  

 
2

0

2
q xy C

H
∴ = +   

 

At 
2

00, 0 0 and 
2
q xx y C y

H
= = ⇒ = =       (31.5)  

 
Equation 31.5 represents a parabola. Now the tension in the cable may be 
evaluated from equations 31.4a and 31.4b. i.e, 
  

222
0 HxqT +=  

 
maxT T= ,        when . Lx =

 
2

2 2 2
max 0 0

0

1 HT q L H q L
q L

⎛ ⎞
= + = + ⎜ ⎟

⎝ ⎠
    (31.6) 

 
Due to uniformly distributed load, the cable takes a parabolic shape. However 
due to its own dead weight it takes a shape of a catenary. However dead weight 
of the cable is neglected in the present analysis.  
 
Example 31.1  
Determine reaction components at A and B, tension in the cable and the sag 

 of the cable shown in Fig. 31.4a. Neglect the self weight of the cable 
in the analysis. 

EB yy  and ,
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Since there are no horizontal loads, horizontal reactions at A and B should be the 
same. Taking moment about E, yields 
 

0410710201714 =×−×−×−×ayR    
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280 20 kN; 37 20 17kN.
14ay eyR R= = = − =  

 
Now horizontal reaction H  may be evaluated taking moment about point  of all 
forces left ofC . 

C

 
031727 =×−×−× HRay  

 
44.5 kNH =  

 
Taking moment about B of all the forces left of B and setting , we get 0=BM
 

myyHR BBay 798.1
50.44

80;04 ===×−×  

 

Similarly, myD 528.1
50.44

68
==  

 
To determine the tension in the cable in the segment AB , consider the 
equilibrium of joint A  (vide Fig.31.4b).  
 

2 2

0 cos
44.5 48.789 kN

3
3 0.298

x ab ab

ab

F T H

T

θ= ⇒ =

= =
⎛ ⎞
⎜ ⎟+⎝ ⎠

∑
 

 
The tension may also be obtained as  abT
 

2 2 2 220 44.5 48.789 kNab ayT R H= + = + =  
 
 
Now considering equilibrium of joint and one could calculate tension in 
different segments of the cable.  

,,CB D

 
Segment bc 
Applying equations of equilibrium,  
     

bcbcababx TTF θθ coscos0 =⇒=∑   
 

                                                                             Version 2 CE IIT, Kharagpur 
                                                         



2 2
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3

3 0.298

bcT = ≅
⎛ ⎞
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See Fig.31.4c 
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2 2

cos 44.5 45.05 kN
cos 3

3 0.472

bc bc
cd

cd

TT θ
θ

= = =
⎛ ⎞
⎜ ⎟+⎝ ⎠

 

 
See Fig.31.4d. 
See Fig.31.4e. 
 
Segment de   
   

2 2

cos 44.5 47.636 kN4cos
4 1.528

cd cd
de

de

TT θ
θ

= = =

+

 

   
The tension may also be obtained as deT
 

2 2 2 217 44.5 47.636 kNde eyT R H= + = + =  
 
Example 31.2 
A cable of uniform cross section is used to span a distance of 40m as shown in 
Fig 31.5. The cable is subjected to uniformly distributed load of 10 kN/m. run. 
The left support is below the right support by 2 m and the lowest point on the 
cable  is located below left support by 1 m. Evaluate the reactions and the 
maximum and minimum values of tension in the cable. 

C
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Assume the lowest point C  to be at distance of x  m from B . Let us place our 
origin of the co-ordinate system xy  at . Using equation 31.5, one could write, C
 

H
x

H
xq

ya 2
)40(10

2
)40(

1
22

0 −
=

−
==                                  (1) 

  

H
xyb 2

103
2

==                    (2) 

 
where ay and by be the y co-ordinates of supports A  and B  respectively. From 
equations 1 and 2, one could evaluate the value of x . Thus, 
 

mxxx 359.25
3

10)40(10
2

2 =⇒=−  

 
From equation 2, the horizontal reaction can be determined. 
 

210 25.359 1071.80 kN
6

H ×
= =  

 
Now taking moment about A  of all the forces acting on the cable, yields 
 

10 40 20 1071.80 2 253.59 kN
40byR × × + ×

= =       

 
Writing equation of moment equilibrium at point B , yields 
 

 40 20 10 1071.80 2 146.41 kN
40ayR × × − ×

= =  

 
Tension in the cable at supports A  and B  are  
 

2 2146.41 1071.81 1081.76 kNAT = + =  
 

2 2253.59 1071.81 1101.40 kNBT = + =  
   
The tension in the cable is maximum where the slope is maximum as HT =θcos . 
The maximum cable tension occurs at B and the minimum cable tension occurs 

at C where 0== θ
dx
dy and 1071.81 kNCT H= =  
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Example 31.3 
A cable of uniform cross section is used to support the loading shown in Fig 31.6. 
Determine the reactions at two supports and the unknown sag .  Cy
 
Taking moment of all the forces about support B , 
 

[ cay yR 100300350
10
1

++= ]                      (1) 

 
cay yR 1065 +=  

Taking moment about B of all the forces left of B and setting , we get, 0=BM
 

023 =×−× aay HR  

aya RH 5.1=⇒              (2) 
 
Taking moment about C of all the forces left of and setting , we get C 0=CM
 

04507            0 =×−×−×=∑ CaayC yHRM  
 
Substituting the value of in terms of in the above equation, aH ayR
 

02005.17 =−− Cayay yRR                 (3)  
 
Using equation (1), the above equation may be written as, 
 

017833.12 =−+ CC yy       (4) 
 
Solving the above quadratic equation, can be evaluated. Hence, Cy
 

.307.3 myC =  
 
Substituting the value of  in equation (1),  Cy
 

kN 07.98=ayR  
 
From equation (2),  
 

kN 05.1475.1 == aya RH  
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Now the vertical reaction at , is calculated by taking moment of all the forces 
about

D dyR
A , 

 
0350307.3100710010 =×−×+×−×dyR  

 
51.93  kN.dyR =  

 
Taking moment of all the forces right of  about and noting that , C ,C 0=∑ CM
 

Cddy yHR ×=× 3    kN.  109.47=⇒ dH  
 
 
Summary 
In this lesson, the cable is defined as the structure in pure tension having the 
funicular shape of the load. The procedures to analyse cables carrying 
concentrated load and uniformly distributed loads are developed. A few 
numerical examples are solved to show the application of these methods to 
actual problems. 
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Instructional Objectives: 
After reading this chapter the student will be able to 
1. Define an arch. 
2. Identify three-hinged, two-hinged and hingeless arches. 
3. State advantages of arch construction. 
4. Analyse three-hinged arch. 
5. Evaluate horizontal thrust in three-hinged arch. 
 
 
32.1 Introduction  
In case of beams supporting uniformly distributed load, the maximum bending 
moment increases with the square of the span and hence they become 
uneconomical for long span structures. In such situations arches could be 
advantageously employed, as they would develop horizontal reactions, which in 
turn reduce the design bending moment. 
 

  
 
For example, in the case of a simply supported beam shown in Fig. 32.1, the 

bending moment below the load is
16

3PL . Now consider a two hinged symmetrical 

arch of the same span and subjected to similar loading as that of simply 
supported beam. The vertical reaction could be calculated by equations of 
statics. The horizontal reaction is determined by the method of least work. Now 
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the bending moment below the load is HyPL
−

16
3 . It is clear that the bending 

moment below the load is reduced in the case of an arch as compared to a 
simply supported beam. It is observed in the last lesson that, the cable takes the 
shape of the loading and this shape is termed as funicular shape. If an arch were 
constructed in an inverted funicular shape then it would be subjected to only 
compression for those loadings for which its shape is inverted funicular.  
 

 
 
Since in practice, the actual shape of the arch differs from the inverted funicular 
shape or the loading differs from the one for which the arch is an inverted 
funicular, arches are also subjected to bending moment in addition to 
compression. As arches are subjected to compression, it must be designed to 
resist buckling. 
 
Until the beginning of the 20th century, arches and vaults were commonly used to 
span between walls, piers or other supports. Now, arches are mainly used in 
bridge construction and doorways. In earlier days arches were constructed using 
stones and bricks. In modern times they are being constructed of reinforced 
concrete and steel.   
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A structure is classified as an arch not based on its shape but the way it supports 
the lateral load. Arches support load primarily in compression. For example in Fig 
32.3b, no horizontal reaction is developed. Consequently bending moment is not 
reduced. It is important to appreciate the point that the definition of an arch is a 
structural one, not geometrical.    
     
 
32.2 Type of arches 
There are mainly three types of arches that are commonly used in practice: three 
hinged arch, two-hinged arch and fixed-fixed arch. Three-hinged arch is statically 
determinate structure and its reactions / internal forces are evaluated by static 
equations of equilibrium. Two-hinged arch and fixed-fixed arch are statically 
indeterminate structures. The indeterminate reactions are determined by the 
method of least work or by the flexibility matrix method. In this lesson three-
hinged arch is discussed. 
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32.3 Analysis of three-hinged arch  
In the case of three-hinged arch, we have three hinges: two at the support and 
one at the crown thus making it statically determinate structure. Consider a three 
hinged arch subjected to a concentrated force P  as shown in Fig 32.5.  
 

 
 
There are four reaction components in the three-hinged arch. One more equation 
is required in addition to three equations of static equilibrium for evaluating the 
four reaction components. Taking moment about the hinge of all the forces acting 
on either side of the hinge can set up the required equation. Taking moment of all 
the forces about hinge A , yields 
 

44
P

L
PLRby ==                                              (32.1) 

 

∑ =⇒=
4

30 PRFy ay      (32.2) 

 
Taking moment of all forces right of hinge C  about hinge  leads to   C
 

2
LR

hH by
b =×  

h
PL

h
LR

H by
b 82

==⇒       (32.3) 
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Applying  to the whole structure gives  ∑ = 0Fx
h

PLHa 8
=  

 
Now moment below the load is given by , 
 

bH
LR

M a
ay

D −=
4

 

h
PLbPLM D 816

3
−=         (32.4)   

 

If  
2
1

=
h
b   then  PLPLPLM D 125.0

1616
3

=−=     (32.5) 

 
For a simply supported beam of the same span and loading, moment under the 
loading is given by, 
 

PLPLM D 375.0
16

3
==     (32.6)  

 
For the particular case considered here, the arch construction has reduced the 
moment by 66.66 %. 
 
Example 32.1 
A three-hinged parabolic arch of uniform cross section has a span of 60 m and a 
rise of 10 m. It is subjected to uniformly distributed load of intensity 10 kN/m as 
shown in Fig. 32.6 Show that the bending moment is zero at any cross section of 
the arch. 
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Solution:

 
 

Reactions: 
Taking moment of all the forces about hinge A , yields 
 

10 60 300 kN
2ay byR R ×

= = =                (1) 

 
Taking moment of forces left of hinge about , one gets C C
 

0
2

3030101030 =××−×−× aay HR  

 
30300 30 10 30
2

10
450 kN

aH

⎛ ⎞× − × ×⎜ ⎟
⎝ ⎠=

=

    (2) 

 
From  one could write,∑ = 0Fx 450 kNbH = . 
The shear force at the mid span is zero. 

Bending moment 
The bending moment at any section x  from the left end is, 

2
10

2xyHxRM aayx −−=      (3) 
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The equation of the three-hinged parabolic arch is  
 

2
230

10
3
2 xxy −=      (4) 

    

 
055300300

5450
30
10

3
2300

22

22
2

=−+−=

−⎟
⎠
⎞

⎜
⎝
⎛ −−=

xxxx

xxxxM x

 

 
In other words a three hinged parabolic arch subjected to uniformly distributed 
load is not subjected to bending moment at any cross section. It supports the 
load in pure compression. Can you explain why the moment is zero at all points 
in a three-hinged parabolic arch?  
 
Example 32.2 
A three-hinged semicircular arch of uniform cross section is loaded as shown in 
Fig 32.7. Calculate the location and magnitude of maximum bending moment in 
the arch.  
 
Solution: 
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Reactions: 
Taking moment of all the forces about hinge B  leads to, 
 

40 22 29.33 kN ( )
30ayR ×

= = ↑

↑

 

0 10.67 kN ( )byFy R= ⇒ =∑       (1) 
 
Bending moment 
Now making use of the condition that the moment at hinge  of all the forces left 
of hinge  is zero gives, 

C
C

07401515 =×−×−×= aayc HRM        (2) 
 

29.33 15 40 7 10.66 kN ( )
15aH × − ×

= = →       

 
Considering the horizontal equilibrium of the arch gives, 
 

10.66 kN ( )bH = ←  
The maximum positive bending moment occurs below  and it can be calculated 
by taking moment of all forces left of about . 

D
D D

 
267.138 ×−×= aayD HRM           (3) 

 
29.33 8 10.66 13.267 93.213 kN= × − × =  
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Example 32.3 
A three-hinged parabolic arch is loaded as shown in Fig 32.8a. Calculate the 
location and magnitude of maximum bending moment in the arch. Draw bending 
moment diagram. 
 
Solution: 
 

 
 
Reactions: 
Taking A  as the origin, the equation of the three-hinged parabolic arch is given 
by, 
 

2

400
8

10
8 xxy −=      (1) 

 
Taking moment of all the forces about hinge B  leads to, 
 

( )2040 30 10 20 2 80 kN ( )
40ayR

× + × ×
= = ↑  
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0 160 kN ( )byFy R= ⇒ =∑ ↑    (2) 
 
Now making use of the condition that, the moment at hinge C  of all the forces 
left of hingeC  is zero gives, 
 

01040820 =×−×−×= aayc HRM  
 

80 20 40 10 150 kN ( )
8aH × − ×

= = →       (3) 

 
Considering the horizontal equilibrium of the arch gives, 
 

150 kN ( )bH = ←      (4) 
 
Location of maximum bending moment 
Consider a section x from end B . Moment at section x  in part CB of the arch is 
given by (please note that B has been taken as the origin for this calculation), 
 

28 8 10160 150
10 400 2x

2M x x x⎛ ⎞= − − −⎜ ⎟
⎝ ⎠

x    (5) 

 
According to calculus, the necessary condition for extremum (maximum or 

minimum) is that   0xM
x

∂
=

∂
. 

 

 
8 8 2160 150 10

10 400
40 4 0

xM x x
x

x

∂ ×⎛ ⎞= − − −⎜ ⎟∂ ⎝ ⎠
= − =

    (6) 

 
10 m.x =  

 
Substituting the value of x  in equation (5), the maximum bending moment is 
obtained. Thus, 
 

2 2
max

8 8 10160(10) (10) (10) 150 (10)
10 400 2

M ⎛ ⎞= − − −⎜ ⎟
⎝ ⎠

 

max 200 kN.m.M =       (7) 
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Shear force at  just left of 40 kN load  D
 

 
 
The slope of the arch at  is evaluated by, D
 

8 16tan
10 400

dy x
dx

θ = = −     (8) 

 
Substituting in the above equation,  10 m.x = 021.8Dθ =
 
Shear force  at left of  is dS D
 

sin cosd a ayS H Rθ θ= −     (9) 
150sin(21.80) 80cos(21.80)dS = −  

   18.57 kN.= −  
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Example 32.4 
A three-hinged parabolic arch of constant cross section is subjected to a 
uniformly distributed load over a part of its span and a concentrated load of 50 
kN, as shown in Fig. 32.9. The dimensions of the arch are shown in the figure. 
Evaluate the horizontal thrust and the maximum bending moment in the arch. 
 
Solution: 
 

Reactions: 
Taking A as the origin, the equation of the parabolic arch may be written as,  
 

xxy 6.003.0 2 +−=            (1)   
 
Taking moment of all the loads about B  leads to,  
 

[ ]a

aay

H

HR

75.32125
25
1

75.3
2

1515102050
25
1

−=

⎥⎦
⎤

⎢⎣
⎡ ×−××+×=

          (2)  

 
Taking moment of all the forces right of hinge C about the hingeC  and setting 

 leads to,  0=cM
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0
2

15151075.615 =××−−× bby HR  

[ ]bby HR 75.61125
15
1

+=           (3)  

 
Since there are no horizontal loads acting on the arch, 
 

)(sayHHH ba ==        
         
Applying  for the whole arch, 0=∑Fy
 

200501510 =+×=+ byay RR  

[ ] [ ] 20075.61125
15
175.32125

25
1

=++− HH  

20045.07515.085 =++− HH  
 

40 133.33 kN
0.3

H = =       (4) 

 
From equation (2), 
 

65.0 kNayR =  
135.0 kNbyR =      (5) 

 
Bending moment 
From inspection, the maximum negative bending moment occurs in the region 
AD  and the maximum positive bending moment occurs in the regionCB . 
 
Span AD 
Bending moment at any cross section in the span AD is  
 

50)6.003.0( 2 ≤≤+−−= xxxHxRM aay   (6) 
 
For, the maximum negative bending moment in this region, 
 

0 ( 0.06 0.6) 0ay a
M R H x
x

∂
= ⇒ − − + =

∂
 

1.8748 mx =  
14.06 kN.m.M = −  

 
For the maximum positive bending moment in this region occurs at , D
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5 ( 0.03 25 0.6 5)

25.0 kN.m
D ay aM R H= − − × + ×

= +
 

 
Span CB 
Bending moment at any cross section, in this span is calculated by, 
 

2
)10()10(10)5(50)6.003.0( 2 −

−−−−+−−=
xxxxxHxRM aay  

 
For locating the position of maximum bending moment, 
 

0)10(2
2

1050)6.006.0(0 =−×−−+−−==
∂
∂ xxHR

x
M

aay  

 
17.5 mx =   

 
22 )5.7(

2
10)5.12(50))5.17(6.0)5.17(03.0(33.1335.1765 −−+−−×=M  

56.25 kN.mM =  
 
Hence, the maximum positive bending moment occurs in span CB. 
 
Summary 
In this lesson, the arch definition is given. The advantages of arch construction 
are given in the introduction.  Arches are classified as three-hinged, two-hinged 
and hingeless arches. The analysis of three-hinged arch is considered here. 
Numerical examples are solved in detail to show the general procedure of three-
hinged arch analysis. 
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Instructional Objectives: 
After reading this chapter the student will be able to 
1. Compute horizontal reaction in two-hinged arch by the method of least work. 
2. Write strain energy stored in two-hinged arch during deformation. 
3. Analyse two-hinged arch for external loading. 
4. Compute reactions developed in two hinged arch due to temperature loading. 

 
 

33.1 Introduction 
Mainly three types of arches are used in practice: three-hinged, two-hinged and 
hingeless arches. In the early part of the nineteenth century, three-hinged arches 
were commonly used for the long span structures as the analysis of such arches 
could be done with confidence. However, with the development in structural 
analysis, for long span structures starting from late nineteenth century engineers 
adopted two-hinged and hingeless arches. Two-hinged arch is the statically 
indeterminate structure to degree one. Usually, the horizontal reaction is treated 
as the redundant and is evaluated by the method of least work. In this lesson, the 
analysis of two-hinged arches is discussed and few problems are solved to 
illustrate the procedure for calculating the internal forces.  
 
 
33.2 Analysis of two-hinged arch  
A typical two-hinged arch is shown in Fig. 33.1a. In the case of two-hinged arch, 
we have four unknown reactions, but there are only three equations of 
equilibrium available. Hence, the degree of statical indeterminacy is one for two-
hinged arch. 
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The fourth equation is written considering deformation of the arch. The unknown 
redundant reaction  is calculated by noting that the horizontal displacement of 
hinge 

bH
B  is zero. In general the horizontal reaction in the two hinged arch is 

evaluated by straightforward application of the theorem of least work (see 
module 1, lesson 4), which states that the partial derivative of the strain energy of 
a statically indeterminate structure with respect to statically indeterminate action 
should vanish. Hence to obtain, horizontal reaction, one must develop an 
expression for strain energy. Typically, any section of the arch (vide Fig 33.1b) is 
subjected to shear forceV , bending moment M and the axial compression . 
The strain energy due to bending  is calculated from the following expression. 

N
bU

 

       ∫=
s

b ds
EI

MU
0

2

2
                  (33.1) 

 
The above expression is similar to the one used in the case of straight beams. 
However, in this case, the integration needs to be evaluated along the curved 
arch length. In the above equation,  is the length of the centerline of the arch, s I  
is the moment of inertia of the arch cross section, E  is the Young’s modulus of 
the arch material. The strain energy due to shear is small as compared to the 
strain energy due to bending and is usually neglected in the analysis. In the case 
of flat arches, the strain energy due to axial compression can be appreciable and 
is given by,  
 

ds
AE
NU

s

a ∫=
0

2

2
      (33.2) 
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The total strain energy of the arch is given by,  
 

     ds
AE
Nds

EI
MU

ss

∫∫ +=
0

2

0

2

22
    (33.3) 

 
Now, according to the principle of least work  
 

0=
∂
∂
H
U , where H  is chosen as the redundant reaction. 

 

0
00

=
∂
∂

+
∂
∂

=
∂
∂

∫∫ ds
H
N

AE
Nds

H
M

EI
M

H
U ss

    (33.4) 

 
Solving equation 33.4, the horizontal reaction H is evaluated. 
 
33.2.1 Symmetrical two hinged arch 

Consider a symmetrical two-hinged arch as shown in Fig 33.2a. Let  at crown 
be the origin of co-ordinate axes. Now, replace hinge at 

C
B with a roller support. 

Then we get a simply supported curved beam as shown in Fig 33.2b. Since the 
curved beam is free to move horizontally, it will do so as shown by dotted lines in 
Fig 33.2b. Let and be the bending moment and axial force at any cross 
section of the simply supported curved beam. Since, in the original arch 
structure, there is no horizontal displacement, now apply a horizontal force 

0M 0N

H  as 
shown in Fig. 33.2c. The horizontal force H  should be of such magnitude, that 
the displacement at B  must vanish. 
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From Fig. 33.2b and Fig 33.2c, the bending moment at any cross section of the 
arch (say ), may be written as  D
 

)(0 yhHMM −−=      (33.5) 
 
The axial compressive force at any cross section (say ) may be written as  D
 

θcos0 HNN +=       (33.6) 
 
Where θ  is the angle made by the tangent at with horizontal (vide Fig 33.2d). D
Substituting the value of M and in the equation (33.4), N
 

ds
EA
HNdsyh

EI
yhHM

H
U ss

θ
θ coscos)()(0

0

0

0

0 ∫∫
+

+−
−−

−==
∂
∂           (33.7a)  
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Let,     yhy −=~  
 
 

0coscos~~

0

0

0

0 =
+

+
−

− ∫∫ ds
EA
HNdsy

EI
yHM ss

θ
θ         (33.7b) 

 
Solving for H , yields 
 

0coscos
~~

0

2

0

0

0

2

0

0 =+++− ∫∫∫∫ ds
EA

Hds
EA
N

ds
EI
yHdsy

EI
M ssss θθ  

 

ds
EA

ds
EI
y

ds
EA
Ndsy

EI
M

H ss

ss

∫∫

∫∫

+

−
=

0

2

0

2
0

0

0

0

cos~

cos~

θ

θ
           (33.8) 

 
Using the above equation, the horizontal reaction H for any two-hinged 
symmetrical arch may be calculated. The above equation is valid for any general 
type of loading. Usually the above equation is further simplified. The second term 
in the numerator is small compared with the first terms and is neglected in the 
analysis. Only in case of very accurate analysis second term s considered. Also 
for flat arched, 1cos ≅θ as θ  is small. The equation (33.8) is now written as,          
   

∫∫

∫

+
= ss

s

EA
dsds

EI
y

dsy
EI
M

H

00

2
0

0

~

~

      (33.9)      

 
As axial rigidity is very high, the second term in the denominator may also be 
neglected. Finally the horizontal reaction is calculated by the equation 
 

∫

∫
= s

s

ds
EI
y

dsy
EI
M

H

0

2
0

0

~

~

              (33.10) 

 
For an arch with uniform cross section EI  is constant and hence, 
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∫

∫
= s

s

dsy

dsyM
H

0

2

0
0

~

~

         (33.11) 

 
In the above equation,  is the bending moment at any cross section of the arch 
when one of the hinges is replaced by a roller support.  is the height of the arch 
as shown in the figure. If the moment of inertia of the arch rib is not constant, 
then equation (33.10) must be used to calculate the horizontal reaction

0M
y~

H . 
 
33.2.2 Temperature effect  
Consider an unloaded two-hinged arch of span L . When the arch undergoes a 
uniform temperature change of T , then its span would increase by C° TLα  if it 
were allowed to expand freely (vide Fig 33.3a). α  is the co-efficient of thermal 
expansion of the arch material. Since the arch is restrained from the horizontal 
movement, a horizontal force is induced at the support as the temperature is 
increased.  
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Now applying the Castigliano’s first theorem, 
 

ds
EA

Hds
EI
yHTL

H
U ss

∫∫ +==
∂
∂

0

2

0

2 cos~ θα   (33.12) 

 
Solving for H ,  
 

ds
EA

ds
EI
y

TLH ss

∫∫ +
=

0

2

0

2 cos~ θ
α                         (33.13) 

 
The second term in the denominator may be neglected, as the axial rigidity is 
quite high. Neglecting the axial rigidity, the above equation can be written as   
 
          

∫
= s

ds
EI
y

TLH

0

2~
α                         (33.14) 
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Example 33.1  
A semicircular two hinged arch of constant cross section is subjected to a 
concentrated load as shown in Fig 33.4a. Calculate reactions of the arch and 
draw bending moment diagram. 
 

 
 
Solution: 
Taking moment of all forces about hinge B  leads to,  
 

40 22 29.3 3 kN ( )
30ayR ×

= = ↑

↑

     

  
 

0 10.67 kN ( )byFy R= ⇒ =∑    (1) 
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From Fig. 33.4b, 

 
θsin~ Ry =  

 
)cos1( θ−= Rx  

 
θdRds =        (2) 

 

radcc 895.218.62
7
267.13tan πθθ =°=⇒=  

 
Now, the horizontal reaction H  may be calculated by the following expression, 
 

 

∫

∫
= s

s

dsy

dsyM
H

0

2

0
0

~

~

      (3) 

 
 
Now  the bending moment at any cross section of the arch when one of the 
hinges is replaced by a roller support is given by,  

0M
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cayay RRxRM θθθ ≤≤−== 0)cos1(0    
 
and, 
 

πθθθθ

θ

≤≤−−−−=

−−−=

cay

ay

RRR

xRRM

}8)cos1({40)cos1(

)8(40)cos1(0  (4) 

 
Integrating the numerator in equation (3), 
 

∫∫∫ −−−−+−=
π

θ

θ

θθθθθθθ
c

c

RdRRRRdRRdsyM ayay

s

sin}]8)cos1({40)cos1([sin)cos1(~
0

3

0
0

 

∫∫ −−−−+−=
π

π

π

θθθθθθθθθ
895.2/

2
895.2/

0

3 }]sin8sin)cos1({40sin)cos1([sin)cos1( dRRRRdRR ayay

 

[ ] [ ] [ ] [ ] ⎥⎦
⎤

⎢⎣
⎡ −×+−−−+−=

π

π

π

π

π

π

π
θθθθ

895.2/895.2/895.2/

2
895.2/

0

3 )cos(840)cos(40)cos(cos RRRRRR ayay

 
[ ] [ ] [ ][ ])4667.1(840)4667.1(404667.1533.0 23 ×+−+= RRRRRR ayay  

 
775.105545)676.410275.645(22500.52761 =−+=     (5) 

 
The value of denominator in equation (3), after integration is, 
 

46.5301
22

2cos1

)sin(~

3

0

3

0

2

0

2

=⎟
⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛ −

=

=

∫

∫∫
πθθ

θθ

π

π

RdR

RdRdsy
s

     (6) 

 
Hence, the horizontal thrust at the support is, 
 

105545.775 19.90 kN
5301.46

H = =     (7) 

 
Bending moment diagram 
 
Bending moment M at any cross section of the arch is given by, 
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θθ

θθθθ

sin5.298)cos1(95.439

0sin)cos1(

~
0

−−=

≤≤−−=
−=

cay HRRR
yHMM

 (8) 

 

πθθθθθ ≤≤−−−−−= cM )8)cos1(15(40sin5.298)cos1(95.439   (9) 

 
Using equations (8) and (9), bending moment at any angle θ  can be computed. 
The bending moment diagram is shown in Fig. 33.4c. 
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Example 33.2 
A two hinged parabolic arch of constant cross section has a span of 60m and a 
rise of 10m. It is subjected to loading as shown in Fig.33.5a. Calculate reactions 
of the arch if the temperature of the arch is raised by . Assume co-efficient 
of thermal expansion as  

C°40
./1012 6 C°×= −α

 

 
 
Taking A  as the origin, the equation of two hinged parabolic arch may be written 
as, 
 

2
230

10
3
2 xxy −=      (1) 

 
The given problem is solved in two steps. In the first step calculate the horizontal 
reaction due to load applied at . In the next step calculate the horizontal 
reaction due to rise in temperature. Adding both, one gets the horizontal reaction 
at the hinges due to combined external loading and temperature change. The 
horizontal reaction due to  load may be calculated by the following 
equation,    

40 kN C

40 kN
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∫

∫
= s

s

dsy

dsyM
H

0

2

0
0

1
~

        (2a) 

 
For temperature loading, horizontal reaction is given by, 
 

∫
= s

ds
EI
y

TLH

0

22
α          (2b) 

  
Where L  is the span of the arch. 
 
For  load, 40 kN
 

[ dxyxxRdxyxRdsyM ayay

s

∫∫∫ −−+=
60

10

10

00
0 )10(40 ]         (3) 

 
Please note that in the above equation, the integrations are carried out along the 
x-axis instead of the curved arch axis. The error introduced by this change in the 
variables in the case of flat arches is negligible. Using equation (1), the above 
equation (3) can be easily evaluated.  
 
The vertical reaction A  is calculated by taking moment of all forces about B . 
Hence, 
 

[ ]1 40 50 33.33 kN
60ayR = × =  

 
6.67 kNbyR = .    

 
Now consider the equation (3), 
 

[ ] dxxxxxdxxxxdxyM
l

)
30
10

3
2()10(40)33.33()

30
10

3
2()33.33( 2

2

60

10

2
2

10

00
0 −−−+−= ∫∫∫  

 
75.7488599.6940476.6480 =+=       (4) 
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3200

30
10

3
260

0

2
2

2
0

2

=

⎥⎦
⎤

⎢⎣
⎡ −= ∫∫ dxxxdxy

l

     (5) 

 
 
Hence, the horizontal reaction due to applied mechanical loads alone is given by, 
 

0
0

1
2

0

75885.75 23.71 kN
3200

l

l

M y dx
H

y dx
= = =
∫

∫
   (6) 

 
The horizontal reaction due to rise in temperature is calculated by equation (2b),  
 

3200
40601012

3200
40601012 66

2
××××

=
×××

=
−− EI

EI
H  

 
Taking and  2200 kN/mmE = 40333.0 mI =
 

2 59.94 kN.H =          (7) 
 
Hence the total horizontal thrust 1 2 83.65 kN.H H H= + =  

When the arch shape is more complicated, the integrations ds
EI

yMs

∫
0

0  and ∫
s

ds
EI
y

0

2

 

are accomplished numerically. For this purpose, divide the arch span in to  
equals divisions. Length of each division is represented by 

n
is)(Δ (vide Fig.33.5b).  

At the midpoint of each division calculate the ordinate  by using the 

equation

iy
2

230
10

3
2 xxy −= . The above integrals are approximated as, 

 

∑∫
=

Δ=
n

i
iii

s

syM
EI

ds
EI

yM
1

0
0

0 )()(1     (8) 

 

∑∫
=

Δ=
n

i
ii

s

sy
EI

ds
EI
y

1

2

0

2

)()(1      (9) 

The complete computation for the above problem for the case of external loading 
is shown in the following table.  
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Table 1. Numerical integration of equations (8) and (9) 
 

Segme
nt 
No 

Horizontal 
distance x 
Measured 
from A (m) 

Correspond
ing  iy

(m) 

Moment at 
that 

Point  iM )( 0

(kNm) 

iii syM )()( 0 Δ
 

ii sy )()( 2 Δ
 

1 3 1.9 99.99 1139.886 21.66 
2 9 5.1 299.97 9179.082 156.06 
3 15 7.5 299.95 13497.75 337.5 
4 21 9.1 259.93 14192.18 496.86 
5 27 9.9 219.91 13062.65 588.06 
6 33 9.9 179.89 10685.47 588.06 
7 39 9.1 139.87 7636.902 496.86 
8 45 7.5 99.85 4493.25 337.5 
9 51 5.1 59.83 1830.798 156.06 

10 57 1.9 19.81 225.834 21.66 
   ∑  75943.8 3300.3 

 
0

1 2

( ) ( ) 75943.8 23.73 kN
( ) ( ) 3200.3

i i

i i

M y s
H

y s
Δ

= = =
Δ

∑
∑

  (10) 

 
This compares well with the horizontal reaction computed from the exact 
integration. 
 
 
Summary 
Two-hinged arch is the statically indeterminate structure to degree one. Usually, 
the horizontal reaction is treated as the redundant and is evaluated by the 
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method of least work. Towards this end, the strain energy stored in the two-
hinged arch during deformation is given. The reactions developed due to thermal 
loadings are discussed. Finally, a few numerical examples are solved to illustrate 
the procedure. 
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Instructional Objectives: 
After reading this chapter the student will be able to 
1. Analyse hingeless arch by the method of least work. 
2. Analyse the fixed-fixed arch by the elastic-centre method. 
3. Compute reactions and stresses in hingeless arch due to temperature 

change. 
 
 
34.1 Introduction  
As stated in the previous lesson, two-hinged and three-hinged arches are 
commonly used in practice. The deflection and the moment at the center of the 
hingeless arch are somewhat smaller than that of the two-hinged arch. However, 
the hingeless arch has to be designed for support moment. A hingeless arch 
(fixed–fixed arch) is a statically redundant structure having three redundant 
reactions. In the case of fixed–fixed arch there are six reaction components; 
three at each fixed end. Apart from three equilibrium equations three more 
equations are required to calculate bending moment, shear force and horizontal 
thrust at any cross section of the arch. These three extra equations may be set 
up from the geometry deformation of the arch.  
 
 
34.2 Analysis of Symmetrical Hingeless Arch  
 

 
 
Consider a symmetrical arch of span L and central rise of Let the loading on 
the arch is also symmetrical as shown in Fig 34.1. Consider reaction components 

ch
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at the left support A  i.e., bending moment , vertical reaction and horizontal 
thrust  as redundants.  

aM ayR

aH
 
Considering only the strain energy due to axial compression and bending, the 
strain energy U of the arch may be written as 
 

∫∫ +=
ss

EA
dsN

EI
dsMU

0

2

0

2

22
    (34.1)      

 
where M  and  are respectively the bending moment and axial force of the 
arch rib. Since the support

N
A is fixed, one could write following three equations at 

that point. 
 

0=
∂
∂

aM
U          (34.2a) 

 

0=
∂
∂

aH
U          (34.2b) 

 

0=
∂
∂

ayR
U          (34.2c) 

 
Knowing dimensions of the arch and loading, using the above three equations, 
the unknown redundant reactions and may be evaluated. aa HM , ayR
Since the arch and the loading are symmetrical, the shear force at the crown is 
zero. Hence, at the crown we have only two unknowns. Hence, if we take the 
internal forces at the crown as the redundant, the problem gets simplified. 
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Hence, consider bending moment and the axial force at the crown as the 
redundant. Since the arch and the loading is symmetrical, we can write from the 
principle of least work 

cM cN

 

0=
∂
∂

cM
U         (34.3a) 

 

0=
∂
∂

cN
U       (34.3b) 

         

0
00

=
∂
∂

+
∂
∂

=
∂
∂

∫∫
s

c

s

cc

ds
M
N

EA
Nds

M
M

EI
M

M
U   (34.4a)  

 

0
00

=
∂
∂

+
∂
∂

=
∂
∂

∫∫
s

c

s

cc

ds
N
N

EA
Nds

N
M

EI
M

N
U                       (34.4b) 

 
Where,  is the length of centerline of the arch,s I  is the moment of inertia of the 
cross section and A  is the area of the cross section of the arch. Let and  
be the bending moment and the axial force at any cross section due to external 
loading. Now the bending moment and the axial force at any section is given by     

0M 0N
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0MyNMM cc ++=                           (34.5a) 
 

0cos NNN c += θ                         (34.5b) 
 

1=
∂
∂

cM
M ; y

N
M

c

=
∂
∂ ; θcos=

∂
∂

cN
N ; 0=

∂
∂

cM
N .       (34.6) 

 
Equation (34.4a) and (34.4b) may be simplified as, 
 

0)0()1(
00

=+ ∫∫
ss

ds
EA
Nds

EI
M  

 

0

0 0 0

 s s s

c c
Mds y dsM N ds

EI EI EI
+ = −∫ ∫ ∫     (34.7a) 

 

0cos
00

=+ ∫∫
ss

ds
EA
Nyds

EI
M θ  

 
2

2 0 0

0 0 0 0 0

cos cos
s s s s s

c c cM y N y N M y Nds ds ds ds ds
EI EI EA EI EA

θ θ+ + = − −∫ ∫ ∫ ∫ ∫            (34.7b)  

 
From equations 34.7a and 34.7b, the redundant and may be calculated 
provided arch geometry and loading are defined. If the loading is unsymmetrical 
or the arch is unsymmetrical, then the problem becomes more complex. For such 
problems either column analogy or elastic center method must be adopted. 
However, one could still get the answer from the method of least work with little 
more effort. 

cM cN
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Consider an unloaded fixed-fixed arch of span L . The rise in temperature, would 
introduce a horizontal thrust and a moment at the supports. Now due to 
rise in temperature, the moment at any cross-section of the arch  

tH tM

 
tHMM tt −=      (34.8) 

 
Now strain energy stored in the arch  
 

∫=
s

EI
dsMU

0

2

2
  

 
Now applying the Castigliano’s first theorem, 
 

0

s

t t

U ML T ds
H EI

α∂
= =

∂ ∂∫
M
H
∂   

 
2

0 0

s s
t

t
M y yLT ds H ds
EI E

α == −∫ ∫ I
   (34.9) 

 
Also, 
 

ds
M
M

EI
M

M
U s

tt
∫ ∂

∂
==

∂
∂

0

0  

 

0)(

0

=
−

∫
s

tt ds
EI

yHM  

 

∫ ∫ =−
s s

tt EI
ydsH

EI
dsM

0 0

0     (34.10) 
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34.3 Temperature stresses 



Solving equations 34.9 and 34.10,  and  may be calculated. tM tH
 
 
 
 
 
 
 
 
Example 34.1 
A semicircular fixed-fixed arch of constant cross section is subjected to 
symmetrical concentrated load as shown in Fig 34.4. Determine the reactions of 
the arch. 
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Solution: 
Since, the arch is symmetrical and the loading is also symmetrical, 
 

kN40== byay RR     (1)    
 
Now the strain energy of the arch is given by, 
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∫∫ +=
ss

EA
dsN

EI
dsMU

0

2

0

2

22
    (2) 

 
Let us choose and  as redundants. Then we have,   aH aM
 

0=
∂
∂

aM
U  and 0=

∂
∂

aH
U        (3) 

 
The bending moment at any cross section is given by, 
 

Daaay yHMxRM θθ ≤≤−−= 0   (4)     
 

2/)10(40 πθθ ≤≤−−−−= Daaay xyHMxRM  
 

θθ cos)90cos( aa RHN +−=  
 

Daa RHN θθθθ ≤≤+= 0cossin   (5) 
 

sin ( 40)cosa aN H Rθ θ= + −    / 2θ θ π≤ ≤   (6) 
 

θsinRy =  
 

)cos1( θ−= Rx  
 

And θRdds =  
 
See Fig 34.5. 
  

0)0()1(
00

=+−=
∂
∂

∫∫
ss

a

ds
EA
Nds

EI
M

M
U  

 

0
0

=∫
s

ds
EI
M  Since the arch is symmetrical, integration need to be carried out 

between limits 2/0 πto  and the result is multiplied by two. 
 

       02
2/

0

=∫
π

ds
EI
M  

 

0]10)cos1([40sin)cos1(40
2/

552.2/

2/

0

2/

0

2/

0

=−−−−−− ∫∫∫∫ θθθθθθθ
π

π

πππ

RdRRdRHRdMRdR aa  
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092.135304.41571.18310.22 222 =+−−− RRRHRMR aa  

 
092.13556.16915571.1477.342 =+−−− aa HM  

 
0837.30815571.1 =−+ aa HM  

 

0)(sin)(
00

=+−=
∂
∂

∫∫
ss

a

ds
EA
Ndsy

EI
M

H
U θ  

 
 

0cos40)(sin1)(sin)cossin(

]]}10)cos1([40){[sin(1)}sin()]cos1(40){[sin(1

2/

552.2/

2/

0

2/

552.2/

2/

0

=−
+

+−−−−−−−−

∫∫

∫∫
π

π

π

π

π

π

θθθθθθθ

θθθθθθθ

Rd
EA

Rd
EA

RH

RdRR
EI

RdRHMRR
EI

aa

aa

 
 

∫

∫

=−−−

+−++++−

2/

552.2/

233

2
2/

0

2
3233

0}cossin40sin400cossin40sin40{

}
cossin)(

sinsinsincossin40sin40{

π

π

π

θθθθθθθ

θ
θθ

θθθθθθ

d
EA

R
EI

R
EI
R

EI
R

d
EA

RR
EA

RH
EI

RH
EI

RM
EI
R

EI
R ayaaa

 

0)0555.0(40)333.0(400)0554.0(40)333.0(40

)
2
1(40)785.0()785.0()1()

2
1(40)1(40

2

22

=−−−

+−++++
−

ARRIII

ARAR
H

I
H

IR
M

II
aaa

 

 
0258.23266 =++− aa MH         (7) 

 
Solving equations (6) and (7),  and are evaluated. Thus, aH aM
 

kN 28.28=aH  
kN 42.466−=aM      (8) 
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Equations (34.7a) and (34.7b) are quite difficult to solve. However, they can be 
further simplified if the origin of co-ordinates is moved from  to  in Fig. 34.3. 
The distance d  is chosen such that 

C O
1 ( )y y d= − satisfies the following condition. 

 
( ) 0

00

1 =
−

= ∫∫
ss

ds
EI

dyds
EI
y

   (34.10a) 

 
Solving which, the distance d  may be computed as 
 
 

∫

∫
= s

s

EI
ds

ds
EI
y

d

0

0     34.10b) 

 
The point  is known as the elastic centre of the arch. Now equation (34.7a) can 
be written with respect to new origin . Towards this, substitute 

O
O dyy += 1 in 

equation (34.7a). 
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34.4 Elastic centre method 



∫∫∫ −=
+

+
ss

c

s

c ds
EI
M

ds
EI

dy
N

EI
dsM

0

0

0

1

0

)(
             (34.11) 

 

In the above equation,  ∫
s

ds
EI
y

0

1  is zero. Hence the above equation is rewritten as  

 

∫

∫
−=+ s

s

cc

EI
ds

ds
EI
M

dNM

0

0

0

             (34.12) 

 
Now, is the moment )( dNM cc + 0

~M at  (see Fig. 34.3). Similarly the equation 
(34.7b) is also simplified. Thus we obtain,  

O

 

∫

∫
−=+= s

s

cc

EI
ds

ds
EI
M

dNMM

0

0

0

0
~

        (34.13) 

 
and,  
 

∫ ∫

∫ ∫

+

+
−==

s s

s s

c

ds
EA

ds
EI
y

ds
EA

N
ds

EI
yM

NH

0 0

2
1

2
0 0

010

0
cos

cos
~

θ

θ

        (34.14) 

 
34.4.1Temperature stresses  
Consider a symmetrical hinge less arch of span L , subjected to a temperature 
rise of . Let elastic centre O be the origin of co-ordinates and be the 
redundants. The magnitude of horizontal force  be such as to counteract the 

increase in the span 

CT ° 00
~,~ MH

0
~H

2
LTα

due to rise in temperature Also from Symmetry, 

there must not be any rotation at the crown. Hence, 

.T

 

∫ =
∂
∂

==
∂
∂ s

OO
ds

M
M

EI
M

M
U

0
0~0      (34.15) 

 

2~~~
00

TL
ds

H
N

EA
Nds

H
M

EI
M

H
U s

O

s

OO

α
∫∫ =

∂
∂

+
∂
∂

=
∂
∂             (34.16)  

 

                                                                             Version 2 CE IIT, Kharagpur 
                                                         



Moment at any section is calculated by, 
 

yHMM OO
~~ +=  

 
θcos~

OHN =  
 

0
~

0

=∫
s

O ds
EI
M

 

0~
=OM       (34.17) 

 
and  
 
 

2
cos

cos~~

0 0
1

1 LTds
EA

H
dsy

EI
yHs s

OO αθ
θ

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
∫ ∫  

 
Simplifying the above equation, 
 

∫ ∫ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

s sO

ds
EA

ds
EI
y

LT

H

0 0

2
1

2 cos
2~

θ

α

     (34.18) 

 
Using equation (34.18), the horizontal thrust due to uniform temperature rise 
in the arch can be easily calculated provided the dimensions of the arch are 
known. Usually the area of the cross section and moment of inertia of the arch 
vary along the arch axis.  

OH~

 
 
 
 
Example 30.2 
A symmetrical hinge less circular arch of constant cross section is subjected to a 
uniformly distributed load of . The arch dimensions are shown in Fig. 
34.7a. Calculate the horizontal thrust and moment at

kN/m10
A . 
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The distance  of the elastic centre from the crown  is calculated by equation, d C
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∫

∫
= s

s

EI
ds

ds
EI
y

d

0

0       (1) 

 
From Fig.34.7b, the ordinate at , is given by  d
 

( )θcos150 −=y   
 

( )

∫

∫
−

= 6/

0

6/

0

50

50cos150

π

π

θ

θθ

EI
d

d
EI

d  

 
150

6 2 2.2535 m.

6

d

π

π

⎛ ⎞−⎜ ⎟
⎝ ⎠= =     (2) 

 
The elastic centre O  lies at a distance of  from the crown. The moment at 
the elastic centre may be calculated by equation (34.12). Now the bending 
moment at any section of the arch due to applied loading at a distance 

m2535.2

x  from 
elastic centre is  
 

∫

∫−
= s

s

O

EI
ds

ds
EI
x

M

0

0

2
5

~
      (3) 

  
In the present case, θsin50=x and θdds 50= , constant=EI  
 

/ 6
3 2

0
/ 6

0

5 50 sin

50
O

d
M

d

π

π

θ θ

θ

− ×
=

∫

∫
%  

2

1 sin
6 2 35 50 1081.29 kN.m

2
6

C CM N d

π π

π

⎛ ⎞⎛ ⎞− ⎜ ⎟⎜ ⎟× ⎝ ⎠⎝ ⎠+ = − = −    (4) 
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10 cos
2O
LN x θ⎛ ⎞= −⎜ ⎟

⎝ ⎠
 

 

 
And. 
 

1y y d= −  
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( )1 50 1 cos 2.25y θ= − −  
 
 1 47.75 50cosy θ= −   

 
Now OH~ is given by equation (34.14). Thus 
 

   
∫ ∫

∫ ∫

+

+

−==
s s

s s

c

ds
EA

ds
EI
y

ds
EA

N
ds

EI
yM

NH

0 0

2
1

2
0 0

010

0
cos

cos
~

θ

θ

    (5) 

 

( )
/ 6

20 1

0 0

1 5 47.75 50cos 50
s M y ds x d

EI EI

π

θ θ= −∫ ∫  

 

 ( ) ( )
/ 6

2

0

250 50sin 47.75 50cos d
EI

π

θ θ θ= −∫  

 

( )( )
/ 6

2

0

625000 23.875 1 cos 2 50cos sin d
EI

π

θ θ θ= − −∫ θ  

 

( ) ( )
/ 6

0

625000 123.875 1 cos 2 25 cos cos3 cos
2

d
EI

π

θ θ θ θ⎛ ⎞⎛ ⎞= − − − +⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∫ θ

 
 

49630.735
EI

=       (6) 

 
 

( )
/ 6

20

0 0

cos 1 10 25 cos
s N ds x d

EA EA

πθ θ θ= −∫ ∫  

 

  
/ 6

2

0

10 1 cos 225 50sin cos
2

d
EA

π θ θ θ θ⎛ + ⎞⎛ ⎞= −⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∫  

 

 ( ) ( )( )
/ 6

0

10 12.5 1 cos 2 25 sin sin cos 2 d
EA

π

θ θ θ θ= + − +∫ θ  

 

 ( )( )
/ 6

/ 6 / 6
00

0

10 1 112.5 sin 2 25 (cos ) cos3 cos
2 3EA

π
π πθ θ θ θ θ

⎛ ⎞⎛ ⎞= + − − + − −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
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 81.795
EA

=        (7) 

 

        ( )
/ 62

21

0 0

1 47.75 50cos 50
s y ds d

EI EI

π

θ θ= −∫ ∫  

 

            ( )
/ 6

2

0

50 2280.06 2500cos 4775cos d
EI

π

θ θ θ= + −∫  

 

             50 12280.06 1250 sin 4775sin
6 6 2 3EI 6
π π π⎛ ⎞⎛ ⎞ ⎛ ⎞= + + −⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

π  

 

             105.046
EI

=          (8) 

 
/ 62

0 0

cos 50 (1 cos 2 )
2

s

ds d
EA EA

πθ θ θ= +∫ ∫  

 

                  25 1 sin 23.915
6 2 3EA
π π⎛ ⎞= + =⎜ ⎟
⎝ ⎠

      (9) 

      

 
⎟
⎠
⎞

⎜
⎝
⎛ +

⎟
⎠
⎞

⎜
⎝
⎛ +−

−=

EAEI

EAEIH
915.23046.105

795.81735.49630
~

0      (10) 

   
Consider an arch cross section of 300 500 mm× ; and  3 43.125 10 mI −= ×

20.15 mA = . Then, 
 

 
( )
( )0

15881835.2 545.3
470.25 kN

33614.72 159.43
H

− +
= − = −

+
%    (11) 

 
 
In equation (5), if the second term in the numerator and the second term in the 
denominator were neglected then, we get, 
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  0

49630.735

472.67 kN
105.046

EIH

EI

⎛ ⎞−⎜ ⎟
⎝ ⎠= − = −
⎛ ⎞
⎜ ⎟
⎝ ⎠

%     (12) 

 
Thus calculating OH~ by neglecting second term in the numerator and 
denominator induces an error which is less than 0.5%. Hence for all practical 
purposes one could simplify the expression for OH~ as,   
 

   
∫

∫
−=

s

s

ds
EI
y

ds
EI

yM

H

0

1
2

0

10

0
~

      (13) 

 
Now we have, 

1081.29C CM N d+ = −  
 

470.25CN = −  
 

23.22 kN.mCM = −       (14) 
 

Moment at , B
2
252510 ××+= CB MM  

          
2
25251022.23 ××+−=  

                (15) 3101.78 kN.m=
Also . CB NH =

 Since the arch and the loading are symmetrical, BA MM = and . BA HH =
 
 
Summary 
In this lesson, hingeless arches are considered. The analysis of hingeless arch 
by the method of least work is given in the beginning. This is followed by the 
analysis of hingeless arch by the elastic centre method. The procedure to 
compute stresses developed in the hingeless arch due to temperature change is 
discussed. A few problems are solved illustrate the various issues involved in the 
analysis of hingeless arches. 
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Instructional Objectives: 
After reading this chapter the student will be able to 
1. Make suitable approximations so that an indeterminate structure is reduced to 

a determinate structure. 
2. Analyse indeterminate trusses by approximate methods. 
3. Analyse industrial frames and portals by approximate methods. 
 
 
35.1 Introduction 

In module 2, force method of analysis is applied to solve indeterminate beams, 
trusses and frames. In modules 3 and 4, displacement based methods are 
discussed for the analysis of indeterminate structures. These methods satisfy 
both equation of compatibility and equilibrium. Hence they are commonly referred 
as exact methods. It is observed that prior to analysis of indeterminate structures 
either by stiffness method or force method; one must have information regarding 
their relative stiffnesses and member material properties. This information is not 
available prior to preliminary design of structures. Hence in such cases, one can 
not perform indeterminate structural analysis by exact methods. Hence, usually 
in such cases, based on few approximations (which are justified on the structural 
behaviour under the applied loads) the indeterminate structures are reduced into 
determinate structures. The determinate structure is then solved by equations of 
statics. The above procedure of reducing indeterminate structures into 
determinate and solving them using equations of statics is known as approximate 
method of analysis as the results obtained from this procedure are approximate 
when compared to those obtained by exact methods. Also, approximate methods 
are used by design engineers to detect any gross error in the exact analysis of 
the complex structures. Depending upon the validity of assumptions, the results 
of approximate methods compare favourably with exact methods of structural 
analysis. 
In some way, all structural methods of analysis are approximate as the exact 
loading on the structure, geometry; the material behaviour and joint resistance at 
beam column joints and soil-structure interaction are never known exactly. 
However, this is not a good enough reason for using approximate methods of 
analysis for the final design. After preliminary design, it is important to analyse 
the indeterminate structure by exact method of analysis. Based on these results, 
final design must be done. In this module both indeterminate industrial frames 
and building frames are analysed by approximate methods for both vertical and 
wind loads. 
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35.2 Indeterminate Trusses: Parallel-chord trusses with two 
diagonals in each panel. 
 
Consider an indeterminate truss, which has two diagonals in each panel as 
shown in Fig. 35.1. This truss is commonly used for lateral bracing of building 
frames and as top and bottom chords of bridge truss. 
 

 
 
This truss is externally determinate and internally statically indeterminate to  
degree. As discussed in lesson 10, module 2, the degree of static indeterminacy 
of the indeterminate planar truss is evaluated by 

rd3

 
( ) jrmi 2−+=   (reproduced here for convenience)  

      
Where jm,  and r  respectively are number of members, joints and unknown 
reaction components. Since the given truss is indeterminate to  degree, it is 
required to make three assumptions to reduce this frame into a statically 
determinate truss. For the above type of trusses, two types of analysis are 
possible. 

rd3

 
1. If the diagonals are going to be designed in such a way that they are 

equally capable of carrying either tensile or compressive forces. In such a 
situation, it is reasonable to assume, the shear in each panel is equally 
divided by two diagonals. In the context of above truss, this amounts to 3 
independent assumptions (one in each panel) and hence now the 
structure can be solved by equations of static equilibrium alone. 

2. In some cases, both the diagonals are going to be designed as long and 
slender. In such a case, it is reasonable to assume that panel shear is 
resisted by only one of its diagonals, as the compressive force 
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carried/resisted by the other diagonal member is very small or negligible. 
This may be justified as the compressive diagonal buckles at very small 
load. Again, this leads to three independent assumptions and the truss 
may be solved by equations of static alone. 

 
Generalizing the above method, it is observed that one need to make  
independent assumptions to solve  order statically indeterminate structures by 
equations of statics alone. The above procedure is illustrated by the following 
examples. 

n
thn

 
Example 35.1 
Evaluate approximately forces in the truss members shown in Fig. 35.2a, 
assuming that the diagonals are to be designed such that they are equally 
capable of carrying compressive and tensile forces. 
 

 
 
Solution: 
The given frame is externally determinate and internally indeterminate to order 3. 
Hence reactions can be evaluated by equations of statics only. Thus, 
 

( )1 23.33 kNR = ↑  

( )2 26.67 kNR = ↑     (1)               
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Now it is required to make three independent assumptions to evaluate all bar 
forces. Based on the given information, it is assumed that, panel shear is equally 
resisted by both the diagonals. Hence, compressive and tensile forces in 
diagonals of each panel are numerically equal. Now consider the equilibrium of 
free body diagram of the truss shown left of AA − . This is shown in Fig. 35.2b. 
 

 
 
For the first panel, the panel shear is . Now in this panel, we have 23.33 kN
 

FFF ULLU ==
1010

     (2) 
 
Considering the vertical equilibrium of forces, yields 

 
033.23sinsin

1010
=+−− θθ ULUL FF     (3) 

 
12 sin 23.33 sin
2

F θ θ= =  

 
23.33 16.50 kN

2
F = ≅      (4) 
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Thus, 
 

( )
( )

0 1

0 1

16.50 kN

16.50 kN
U L

L U

F Tensi

F Compression

=

=

on
 

 
Considering the joint , 0L
 

 
 

0 0
0 16.50sin 45 23.33 0y L UF F= ⇒ − − + =∑  

 
( )

0 0
11.67 kN .L UF = Comp

L

     (5) 
 

0 1
0 16.50cos 45 0x LF F= ⇒ − + =∑  

 
( )

0 1
11.67 kNL LF T= ension

omp

     (6) 
 
Similarly,  ( )

0 1
11.67 kN .U UF c=

 
Now consider equilibrium of truss left of section CC − (ref. Fig. 35.2d) 
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In this panel, the shear is . Considering the vertical equilibrium of the free 
body diagram, 

3.33 kN

 
∑ =−+−−⇒= 02033.2345sin45sin0

2121 LUULy FFF   (7) 
    
It is given that  FFF LUUL ==

2121

 
2 sin 3.33F θ =  
 

3.33 2.36 kN
2

F = ≅      

 
Thus, 
 

( )
( )

1 2

1 2

2.36 kN

2.36 kN
U L

L U

F Tension

F Compression

=

=
 

 
Taking moment about of all the forces,  1U

                                                                             Version 2 CE IIT, Kharagpur 
                                                         



1 2

13 2.36 3 23.33 3 0
2L LF ⎛ ⎞− × + × + × =⎜ ⎟

⎝ ⎠
 

 
( )

1 2
25 kNL LF Ten= sion      (8) 

 
Taking moment about of all the forces,  1L
 

( )
1 2

25 kN .U UF C= omp      (9) 
 
Considering the joint equilibrium of (ref. Fig. 35.2e), 1L
 

 
 

1 1
0 16.50sin 45 2.36sin 45 20 0y LUF F= ⇒ + − − =∑  

(
1 1

10 kNLUF Ten= )sion       (10) 
 
Consider the equilibrium of right side of the section BB − (ref. Fig. 35.2f) the 
forces in the panel are evaluated. rd3
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We know that,  FFF ULUL ==

3223

 
∑ =++−⇒= 067.2645sin45sin0

3223 ULULy FFF   (11) 
 

26.67 18.86 kN
2

F = ≅  

 
( )

3 2
18.86 kN .L UF C= omp  

 
( )

2 3
18.86 kNL UF = Tension      (12) 

 
Considering the joint equilibrium of (ref. Fig. 35.2g), yields 3L
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2 3
0 18.86cos 45 0x LF F= ⇒ − + =∑ L  

 
( )

2 3
13.34 kNL LF T= ension  

 
( )

3 3
0 13.33 kN .y L UF F= ⇒ =∑ Comp   

 
The bar forces in all the members of the truss are shown in Fig. 35.2h. Also in 
the diagram, bar forces obtained by exact method are shown in brackets. 
 

 
 
Example 35.2 
Determine bar forces in the 3-panel truss of the previous example (shown in Fig. 
35.2a) assuming that the diagonals can carry only tensile forces.  
 
Solution: 
In this case, the load carried by the compressive diagonal member is zero. 
Hence the panel shear is completely resisted by the tension diagonal. Reactions 
of the truss are the same as in the previous example and is given by, 
 

( )1 23.33 kNR = ↑  

( )2 26.67 kNR = ↑     (1) 
 

Consider again the equilibrium of free body diagram of the truss shown left 
of AA − . This is shown in Fig. 35.3a. 
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Applying , ∑ = 0yF
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033.2345sin
10

=+− LUF  
 

0 1
23.33 2 33 kNU LF = ≅  

 
0 1

0L UF =        (2)  
 

It is easily seen that,  and 0
10
=LLF

0 1
23.33 kNU UF =  

 
Considering the vertical equilibrium of joint , we get 0L
 

(
0 0

23.33 kN .L UF = )Comp         (3) 
 
Since diagonals are inclined at  to the horizontal, the vertical and horizontal 
components of forces are equal in any panel.  

°45

 
Now consider equilibrium of truss left of section CC − (ref. Fig. 35.3b) 
 
In this panel, the shear is . Considering the vertical equilibrium of the free 
body diagram, 

3.33 kN

 
∑ =−+−⇒= 02033.2345sin0

21LUy FF   (4) 
    

kNF LU 71.4233.3
21

≅=      
 

0
21
=ULF        (5) 

 
Taking moment of all forces about ,  1U
 

1 2
3 23.33 3 0L LF− × + × =  

( )
1 2

23.33 kNL LF T= ension      (6) 
 
Taking moment about of all the forces,  1L
 

1 2

13 4.71 3 23.33 3 0
2U UF ⎛ ⎞− × + × + × =⎜ ⎟

⎝ ⎠
 

( )
1 2

26.67 kNU UF c= omp  
 
Considering the joint equilibrium of (ref. Fig. 35.3c), yields 1L
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1 1
0 33sin 45 20 0y LUF F= ⇒ + − =∑  

(
1 1

3.33 kNLUF = )comp       (7) 
 
Considering the equilibrium of right side of the section BB − (ref. Fig. 35.3d) the 
forces in the panel are evaluated. rd3

 
∑ =+−⇒= 067.2645sin0

32ULy FF     (11) 

3 2
0L UF =  

( )
2 3

37.71 kNL UF = Tension      (12) 
 
Considering the joint equilibrium of (ref. Fig. 35.3e), yields 3L
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00

32
=⇒=∑ LLx FF  

 
( )

3 3
0 26.66 kN .y L UF F= ⇒ =∑ Comp   

The complete solution is shown in Fig. 35.3f. Also in the diagram, bar forces 
obtained by exact method are shown in brackets. 
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35.3 Industrial frames and portals  
 

Common types of industrial frames are shown in Fig. 35.4a and 35.4b. They 
consist of two columns and a truss placed over the columns. They may be 
subjected to vertical loads and wind loads (horizontal loads). While analyzing for 
the gravity loads, it is assumed that the truss is simply supported on columns. 
However, while analyzing the frame for horizontal loads it is assumed that, the 
truss is rigidly connected to columns. The base of the column are either hinged 
or fixed depending on the column foundation. When the concrete footing at the 
column base is small, then it is reasonable to assume that the columns are 
hinged at the base. However if the column are built into massive foundation, then 
the column ends are considered as fixed for the analysis purposes. 
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Before considering the analysis of structures to wind load (horizontal load) 
consider the portals which are also used as the end portals of bridge structure 
(see Fig. 35.5). Their behaviour is similar to industrial trusses. The portals are 
also assumed to be fixed or hinged at the base depending on the type of 
foundation.  
 

 
Consider a portal which is hinged at the base, as shown in Fig. 35.5a. This 
structure is statically indeterminate to degree one. To analyse this frame when 
subjected to wind loads by only equations of statics, it is required to make one 
assumption. When stiffness of columns is nearly equal then it is assumed that 
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the shear at the base of each column is equal. If stiffness of columns is unequal 
then it is assumed that the shear at the base of a column is proportional to its 
stiffness.   
 
 

 
 
Reactions and Bending moments: 
As per the assumption, shear at the base of columns is given by (vide Fig. 35.6) 
 

Now 
2
PVV DA ==  

 
Taking moment about hinge , D
 
∑ ×=×⇒= hPdRM AD 0  
 

       ( )↓=⇒
d
PhRA  

And          ( )↑=⇒
d
PhRD  

The bending moment diagram is shown in Fig. 35.7.  
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It is clear from the moment diagram, an imaginary hinge forms at the mid point of 
the girders. Thus instead of making assumption that the shear is equal at the 
column base, one could say that a hinge forms at the mid point of the girder. 
Both the assumptions are one and the same.  
Now consider a portal frame which is fixed at the base as shown in Fig. 35.5b. 
This is statically indeterminate to third degree and one needs to make three 
independent assumptions to solve this problem by equations of static equilibrium 
alone. Again it is assumed that the shear at the base of each column is equal 
provided their stiffnesses are equal. The deformed shape of the portal is shown 
in Fig. 35.8a and the deformed shape of the industrial frame is shown in 
Fig.35.8b.  
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In such a case, the bending moment at the base of the column (at A ) produces 
tension on outside fibres of column cross section. The bending moment at top of 
column produces tension on inside fibres of column. Hence bending moment 
changes its sign between column base and top. Thus bending moment must be 
zero somewhere along the height of the portal. Approximately the inflexion point 
occurs at the mid height of columns. Now we have three independent 
assumptions and using them, we could evaluate reactions and moments. In the 
case of industrial frames, the inflexion points are assumed to occur at mid height 
between A and B . 
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Taking moment of all forces left of hinge 1 about hinge 1 (vide Fig. 35.9a),yields 
 

4
0

22
PhMMPh

AA =⇒=−
×
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Similarly taking moment of all forces left of hinge 2 about hinge 2, 
 

4
0

22
PhMMPh

DD =⇒=−
×

 

 
Taking moment of all forces right of hinge 1 about hinge 1 gives,  
 

( )↑=⇒=−−+
d

PhRPhhPMdR DDD 2
0

222
 

 
Similarly 

( )↓=
d

PhRA 2
 

The bending moment diagram is shown in Fig. 35.9b. 
 
If the base of the column is partially fixed then hinge is assumed at a height of 

rd

3
1 from the base. Note that when it is hinged at the base of the column, the 

inflexion point occurs at the support and when it is fixed, the inflexion point 
occurs at mid-height.   
 
Example 35.3 
Determine approximately forces in the member of a truss portal shown in Fig. 
35.10a. 
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In this case, as per the first assumption, the shear at the base of each column is 
the same and is given by (ref. 35.10b) 
 

kNVV DA 5
2

10
===       (1) 
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Taking moment of all forces right of hinge 2 about hinge 2, results 
 

kN.m 204
2

=⇒×= BB MPM    (2) 

  
Similarly         (3) kN.m 20=AM
 
Taking moment of all forces right of hinge 1 about hinge 1 gives,  
 

( ) ( )↑==⇒=+−+×−× kNRVR BBB 9
40

18
800441020418  

 
Similarly, 
 

( )↓= kNRA 9
40      (4) 

 
Forces in the truss member can be calculated either by method of sections or by 
method of joints. For example, consider the equilibrium of truss left of AA − as 
shown in Fig. 35.10d. 
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∑ =×+−⇒= 0
5
4

9
400

10LUy FF  

 
( ).kN55.5

10
CompF LU =⇒     (5) 

 
Taking moment about , 0U
 

0485
10

=×−× LLF  
 

( )TensionF LL kN10
10
=      (6) 

 
Taking moment about , 1L
 

043
9
4045410

10
=×−×−×+× UUF  

 
( )CompF UU kN66.11

10
=      (7) 
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Summary 

It is observed that prior to analysis of indeterminate structures either by stiffness 
method or force method; one must have information regarding their relative 
stiffnesses and member material properties. This information is not available 
prior to preliminary design of structures. Hence in such cases, one can not 
perform indeterminate structural analysis by exact methods. Hence, usually in 
such cases, based on few approximations (which are justified on the structural 
behaviour under the applied loads) the indeterminate structures are reduced into 
determinate structures. The determinate structure is then solved by equations of 
statics. This methodology has been adopted in this lesson to solve indeterminate 
trusses and industrial frames. Depending upon the validity of assumptions, the 
results of approximate methods compare favourably with exact methods of 
structural analysis as seen from the numerical examples. 
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Instructional Objectives: 
After reading this chapter the student will be able to 
1. Analyse building frames by approximate methods for vertical loads. 
2. Analyse building frames by the cantilever method for horizontal loads. 
3. Analyse building frame by the portal method for horizontal loads. 
 
 
36.1 Introduction 
The building frames are the most common structural form, an analyst/engineer 
encounters in practice. Usually the building frames are designed such that the 
beam column joints are rigid. A typical example of building frame is the reinforced 
concrete multistory frames. A two-bay, three-storey building plan and sectional 
elevation are shown in Fig. 36.1. In principle this is a three dimensional frame. 
However, analysis may be carried out by considering planar frame in two 
perpendicular directions separately for both vertical and horizontal loads as 
shown in Fig. 36.2 and finally superimposing moments appropriately. In the case 
of building frames, the beam column joints are monolithic and can resist bending 
moment, shear force and axial force. The frame has 12 joints , 15 beam 
members ( , and 9 reaction components

( )j
)b ( )r . Thus this frame is statically 

indeterminate to degree ( )( 183129153 ) =×−+×=  (Please see lesson 1, module 1 
for more details). Any exact method, such as slope-deflection method, moment 
distribution method or direct stiffness method may be used to analyse this rigid 
frame. However, in order to estimate the preliminary size of different members, 
approximate methods are used to obtain approximate design values of moments, 
shear and axial forces in various members. Before applying approximate 
methods, it is necessary to reduce the given indeterminate structure to a 
determinate structure by suitable assumptions. These will be discussed in this 
lesson. In lesson 36.2, analysis of building frames to vertical loads is discussed 
and in section 36.3, analysis of building frame to horizontal loads will be 
discussed. 
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36. 2 Analysis of Building Frames to Vertical Loads  
Consider a building frame subjected to vertical loads as shown in Fig.36.3. Any 
typical beam, in this building frame is subjected to axial force, bending moment 
and shear force. Hence each beam is statically indeterminate to third degree and 
hence 3 assumptions are required to reduce this beam to determinate beam. 
 
Before we discuss the required three assumptions consider a simply supported 
beam. In this case zero moment (or point of inflexion) occurs at the supports as 
shown in Fig.36.4a. Next consider a fixed-fixed beam, subjected to vertical loads 
as shown in Fig. 36.4b. In this case, the point of inflexion or point of zero moment 
occurs at from both ends of the support. L21.0
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Now consider a typical beam of a building frame as shown in Fig.36.4c. In this 
case, the support provided by the columns is neither fixed nor simply supported. 
For the purpose of approximate analysis the inflexion point or point of zero 

moment is assumed to occur at LL 1.0
2

21.00
≈⎟

⎠
⎞

⎜
⎝
⎛ +  from the supports. In reality 

the point of zero moment varies depending on the actual rigidity provided by the 
columns. Thus the beam is approximated for the analysis as shown in Fig.36.4d. 
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For interior beams, the point of inflexion will be slightly more than . An 
experienced engineer will use his past experience to place the points of inflexion 
appropriately. Now redundancy has reduced by two for each beam. The third 
assumption is that axial force in the beams is zero. With these three assumptions 
one could analyse this frame for vertical loads.  

L1.0

 
Example 36.1  
Analyse the building frame shown in Fig. 36.5a for vertical loads using 
approximate methods.   
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Solution:  
In this case the inflexion points are assumed to occur in the beam at  
from columns as shown in Fig. 36.5b. The calculation of beam moments is 
shown in Fig. 36.5c.  

( )mL 6.01.0 =
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Now the beam moment is divided equally between lower column and upper 
column. It is observed that the middle column is not subjected to any moment, as 
the moment from the right and the moment from the left column balance each 
other. The moment in the beam 

ve−

ve− BE is . Hence this moment is 

divided between column and

kN.m1.8

BC BA . Hence, kN.m05.4
2
1.8
=== BABC MM . The 

maximum  moment in beam ve+ BE  is . The columns do carry axial 
loads. The axial compressive loads in the columns can be easily computed. This 
is shown in Fig. 36.5d. 

kN.m4.14

 
 
36.3 Analysis of Building Frames to lateral (horizontal) Loads 
A building frame may be subjected to wind and earthquake loads during its life 
time. Thus, the building frames must be designed to withstand lateral loads. A 
two-storey two-bay multistory frame subjected to lateral loads is shown in Fig. 
36.6. The actual deflected shape (as obtained by exact methods) of the frame is 
also shown in the figure by dotted lines. The given frame is statically 
indeterminate to degree 12.  
 

 
 

                                                                             Version 2 CE IIT, Kharagpur 
                                                         



 
 
Hence it is required to make 12 assumptions to reduce the frame in to a statically 
determinate structure. From the deformed shape of the frame, it is observed that 
inflexion point (point of zero moment) occur at mid height of each column and 
mid point of each beam. This leads to 10 assumptions. Depending upon how the 
remaining two assumptions are made, we have two different methods of 
analysis: Portal method and cantilever method. They will be discussed in the 
subsequent sections. 

)i )ii

 
36.3.1 Portal method 
In this method following assumptions are made.  
1) An inflexion point occurs at the mid height of each column. 
2) An inflexion point occurs at the mid point of each girder.  
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3) The total horizontal shear at each storey is divided between the columns 
of that storey such that the interior column carries twice the shear of exterior 
column.  
The last assumption is clear, if we assume that each bay is made up of a portal 
thus the interior column is composed of two columns (Fig. 36.6). Thus the interior 
column carries twice the shear of exterior column. This method is illustrated in 
example 36.2. 
 
Example 36.2  
Analyse the frame shown in Fig. 36.7a and evaluate approximately the column 
end moments, beam end moments and reactions. 
 
Solution:  
The problem is solved by equations of statics with the help of assumptions made 
in the portal method. In this method we have hinges/inflexion points at mid height 
of columns and beams. Taking the section through column hinges we 
get, (ref. Fig. 36.7b). 

ONM ,.

 
2020 =++⇒=∑ VVVFX  

                  
  or  kN5=V
Taking moment of all forces left of hinge R  about R gives,  
 

05.25.1 =×−× yMV  

( )↓= kN 3yM  
 
Column and beam moments are calculates as, 
 

kN.m5.7

kN.m5.7;kN.m5.75.15

−=

+==×=

CF

IHCB

M

MM
 

 
Taking moment of all forces left of hinge  about  gives, S S
 

( )

0

kN3

05.25.15

=

↑=

=×−×

y

y

y

N

O

O

 

 
Taking a section through column hinges we get, (ref. Fig. 36.7c). LKJ ,,
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60''2'0 =++⇒=∑ VVVFX  
                  
  or ' 1  5 kNV =
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Taking moment of all forces about P gives (vide Fig. 36.7d) 
 

( )
( )

015 1.5 5 1.5 3 2.5 2.5 0

15 kN

15 kN

p y

y

y

M J

J

L

= × + × + × − × =

= ↓

= ↑

∑
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Column and beam moments are calculated as, (ref. Fig. 36.7f)  
 

kN.m 5.225.115;.5.75.15 =×==×= BABC MmkNM  
 

kN.m 30−=BEM  
 

kN.m 455.130;kN.m 155.110 =×==×= EDEF MM  
 

kN.m 30kN.m 30 −=−= EHEB MM  
 

kN.m 5.225.115;kN.m 5.75.15 =×==×= HGHI MM  
 

kN.m 30−=HEM  
 
Reactions at the base of the column are shown in Fig. 36.7g. 
 
 
36.3.2 Cantilever method 
The cantilever method is suitable if the frame is tall and slender. In the cantilever 
method following assumptions are made.  
1) An inflexion point occurs at the mid point of each girder.  
2) An inflexion point occurs at mid height of each column. 
3) In a storey, the intensity of axial stress in a column is proportional to its 
horizontal distance from the center of gravity of all the columns in that storey. 
Consider a cantilever beam acted by a horizontal load as shown in Fig. 36.8. In 
such a column the bending stress in the column cross section varies linearly from 
its neutral axis. The last assumption in the cantilever method is based on this 
fact. The method is illustrated in example 36.3. 

P
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Example 36.3 
Estimate approximate column reactions, beam and column moments using 
cantilever method of the frame shown in Fig. 36.8a. The columns are assumed to 
have equal cross sectional areas. 
 
Solution: 
This problem is already solved by portal method. The center of gravity of all 
column passes through centre column. 
 

( ) m51050
=

++
++

==
∑
∑

AAA
AAA

A
xA

x  (from left column) 

 

 
 

                                                                             Version 2 CE IIT, Kharagpur 
                                                         



 
 
Taking a section through first storey hinges gives us the free body diagram as 
shown in Fig. 36.8b. Now the column left of C.G. must be subjected to 
tension and one on the right is subjected to compression.  

..ei CB

From the third assumption, 
 

yy
yy OM
A

O
A

M
−=⇒

×
−=

× 55
 

 
Taking moment about O of all forces gives, 
 

( ) ( )↑=↓=

=×−×

kN3;kN3

0105.120

yy

y

OM

M
 

 
Taking moment about R  of all forces left of R ,  
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( )

1.5 3 2.5 0

5 kN

M

M

V

V

× − × =

= ←

 

 
 
Taking moment of all forces right of about , S S
 

.kN505.235.1 =⇒=×−× OO VV  
0200 =−++=∑ ONMX VVVF  

 
.kN10=NV  

 
Moments  
 

kN.m 5.75.15 =×=CBM  
 

kN.m 5.7−=CFM  
 

kN.m 5.7

kN.m 5.7

kN.m 5.7

kN.m 5.7

kN.m 15

−=

=

−=

−=

=

IF

IH

FI

FC

FE

M

M

M

M

M

 

 
 
Tae a section through hinges (ref. Fig. 36.8c). Since the center of gravity 
passes through centre column the axial force in that column is zero. 

LKJ ,,
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Taking moment about hinge L , can be evaluated. Thus, yJ

 
0101035.140320 =×−×+×+× yJ  

 
( ) ( )↑=↓= kN15;kN15 yy LJ  

 
  
Taking moment of all forces left of  about gives, P P
 

05.15.2155.235.15 =×+×−×+× jV  
 

( )←= kN15JV  
 
Similarly taking moment of all forces right of Q aboutQ  gives, 

 
05.15.2155.235.15 =×+×−×+× LV  

 
( )←= kN15LV  

 
0 6

30 kN.

X J K L

K

F V V V

V

= + + −

=

∑ 0 0=
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Moments 
 

5 1.5 7.5 kN.m ; 15 1.5 22.5 kN.mBC BAM M= × = = × =  
 

30 kN.mBEM = −  
 

10 1.5 15 kN.m ; 30 1.5 45 kN.mEF EDM M= × = = × =  
 

30 kN.m 30 kN.mEB EHM M= − = −  
 

5 1.5 7.5 kN.m ; 15 1.5 22.5 kN.mHI HGM M= × = = × =  
 

30 kN.mHEM = −  
 
 
Summary 
In this lesson, the building frames are analysed by approximate methods. 
Towards this end, the given indeterminate building fame is reduced into a 
determinate structure by suitable assumptions. The analysis of building frames to 
vertical loads was discussed in section 36.2.  In section 36.3, analysis of building 
frame to horizontal loads is discussed. Two different methods are used to 
analyse building frames to horizontal loads: portal and cantilever method. Typical 
numerical problems are solved to illustrate the procedure. 
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Instructional Objectives: 
The objectives of this lesson are as follows: 
• Understand the moving load effect in simpler term 
• Study various definitions of influence line 
• Introduce to simple procedures for construction of influence lines 
 
 
37.1 Introduction 
In earlier lessons, you were introduced to statically determinate and statically 
indeterminate structural analysis under non-moving load (dead load or fixed 
loads).  In this lecture, you will be introduced to determination of maximum 
internal actions at cross-sections of members of statically determinate structured 
under the effects of moving loads (live loads).  
 
Common sense tells us that when a load moves over a structure, the deflected 
shape of the structural will vary. In the process, we can arrive at simple 
conclusion that due to moving load position on the structure, reactions value at 
the support also will vary.  
 
From the designer’s point of view, it is essential to have safe structure, which 
doesn’t exceed the limits of deformations and also the limits of load carrying 
capacity of the structure.  
 
 
37.2 Definitions of influence line 
In the literature, researchers have defined influence line in many ways. Some of 
the definitions of influence line are given below. 
 
• An influence line is a diagram whose ordinates, which are plotted as a 

function of distance along the span, give the value of an internal force, a 
reaction, or a displacement at a particular point in a structure as a unit load 
move across the structure. 

• An influence line is a curve the ordinate to which at any point equals the value 
of some particular function due to unit load acting at that point.  

• An influence line represents the variation of either the reaction, shear, 
moment, or deflection at a specific point in a member as a unit concentrated 
force moves over the member.  

 
 
37.3 Construction of Influence Lines 
In this section, we will discuss about the construction of influence lines. Using 
any one of the two approaches (Figure 37.1), one can construct the influence line 
at a specific point P in a member for any parameter (Reaction, Shear or 
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Moment). In the present approaches it is assumed that the moving load is having 
dimensionless magnitude of unity.  Classification of the approaches for 
construction of influence lines is given in Figure 37.1.  
 

 
 
 
 
 

Figure 37.1: Approaches for construction of influence line 

Construction of Influence Lines

Tabulate Values Influence Line-Equation 

 
 
37.3.1 Tabulate Values 
Apply a unit load at different locations along the member, say at x. And these 
locations, apply statics to compute the value of parameter (reaction, shear, or 
moment) at the specified point. The best way to use this approach is to prepare a 
table, listing unit load at x versus the corresponding value of the parameter 
calculated at the specific point (i.e. Reaction R, Shear V or moment M) and plot 
the tabulated values so that influence line segments can be constructed. 
 
37.3.2 Sign Conventions 
Sign convention followed for shear and moment is given below.  
 
Parameter Sign for influence line 
Reaction R Positive at the point when it acts upward on the beam. 

 
Shear V Positive for the following case 

 
 
 
 
 
 

V

Moment M Positive for the following case 
 
 
 
 
 

V
M

M
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37.3.3 Influence Line Equations 
Influence line can be constructed by deriving a general mathematical equation to 
compute parameters (e.g. reaction, shear or moment) at a specific point under 
the effect of moving load at a variable position x.  
 
The above discussed both approaches are demonstrated with the help of simple 
numerical examples in the following paragraphs. 
 
 
37.4 Numerical Examples 
Example 1:   
Construct the influence line for the reaction at support B for the beam of span 10 
m. The beam structure is shown in Figure 37.2. 
 

 
Figure 37.2: The beam structure 

 
Solution: 
As discussed earlier, there are two ways this problem can be solved. Both the 
approaches will be demonstrated here. 
 
Tabulate values: 
As shown in the figure, a unit load is places at distance x from support A and the 
reaction value RB is calculated by taking moment with reference to support A. Let 
us say, if the load is placed at 2.5 m. from support A then the reaction RB can be 
calculated as follows (Figure 37.3). 
 

Σ MA  = 0 :  RB  x 10 - 1 x 2.5 = 0  ⇒  RB  = 0.25 
 

 
Figure 37.3: The beam structure with unit load 

 
Similarly, the load can be placed at 5.0, 7.5 and 10 m. away from support A and 
reaction RB can be computed and tabulated as given below. 
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x RB
0 0.0 
2.5 0.25 
5.0 0.5 
7.5 0.75 
10 1 

 
Graphical representation of influence line for RB is shown in Figure 37.4. 
  

 
Figure 37.4: Influence line for reaction RB. 

 
Influence Line Equation: 
When the unit load is placed at any location between two supports from support 
A at distance x then the equation for reaction RB   can be written as 
 

Σ MA  = 0 :  RB  x 10 – x = 0  ⇒  RB  = x/10 
 
The influence line using this equation is shown in Figure 37.4. 
 
Example 2:   
Construct the influence line for support reaction at B for the given beam as 
shown in Fig 37.5.  
 

 
Figure 37.5: The overhang beam structure 

Solution: 
As explained earlier in example 1, here we will use tabulated values and 
influence line equation approach. 
 
Tabulate Values: 
As shown in the figure, a unit load is places at distance x from support A and the 
reaction value RB is calculated by taking moment with reference to support A. Let 
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us say, if the load is placed at 2.5 m. from support A then the reaction RB can be 
calculated as follows. 
 

Σ MA  = 0 :  RB  x 7.5 - 1 x 2.5 = 0  ⇒  RB  = 0.33 
 

 
Figure 37.6: The beam structure with unit load 

 
Similarly one can place a unit load at distances 5.0 m and 7.5 m from support A 
and compute reaction at B. When the load is placed at 10.0 m from support A, 
then reaction at B can be computed using following equation. 
 

Σ MA  = 0 :  RB  x 7.5 - 1 x 10.0 = 0  ⇒  RB  = 1.33 
 
Similarly a unit load can be placed at 12.5 and the reaction at B can be 
computed. The values of reaction at B are tabulated as follows. 
 

x RB
0 0.0 
2.5 0.33 
5.0 0.67 
7.5 1.00 
10 1.33 
12.5 1.67 

 
Graphical representation of influence line for RB is shown in Figure 37.7.  
 

 
 

Figure 37.7: Influence for reaction RB. 
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Influence line Equation: 
Applying the moment equation at A (Figure 37.6),  
 
Σ MA  = 0 :  RB  x 7.5 - 1 x x = 0  ⇒  RB  = x/7.5 
 
 The influence line using this equation is shown in Figure 37.7. 
 
Example 3:  
Construct the influence line for shearing point C of the beam (Figure 37.8) 

 
Figure 37.8: Beam Structure 

 
Solution: 
Tabulated Values:  
As discussed earlier, place a unit load at different location at distance x from 
support A and find the reactions at A and finally computer shear force taking 
section at C. The shear force at C should be carefully computed when unit load is 
placed before point C (Figure 37.9) and after point C (Figure 37.10). The 
resultant values of shear force at C are tabulated as follows. 
 

 
 

Figure 37.9: The beam structure – a unit load before section 
 
 

 
 

Figure 37.10: The beam structure - a unit load before section 
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X Vc
0 0.0 
2.5 -0.16 
5.0 -0.33 
7.5(-) -0.5 
7.5(+) 0.5 
10 0.33 
12.5 0.16 
15.0 0 

 
Graphical representation of influence line for Vc is shown in Figure 37.11. 
  

 
Figure 37.11: Influence line for shear point C 

 
Influence line equation: 
In this case, we need to determine two equations as the unit load position before 
point C (Figure 37.12) and after point C (Figure 37.13) will show different shear 
force sign due to discontinuity. The equations are plotted in Figure 37.11. 
 

 
Figure 37.12: Free body diagram – a unit load before section 
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Figure 37.13: Free body diagram – a unit load after section 

 
Influence Line for Moment:  
Like shear force, we can also construct influence line for moment.   
 
Example 4:   
Construct the influence line for the moment at point C of the beam shown in 
Figure 37.14 
 

 
Figure 37.14: Beam structure 

 
Solution: 
Tabulated values:  
Place a unit load at different location between two supports and find the support 
reactions. Once the support reactions are computed, take a section at C and 
compute the moment. For example, we place the unit load at x=2.5 m from 
support A (Figure 37.15), then the support reaction at A will be 0.833 and support 
reaction B will be 0.167. Taking section at C and computation of moment at C 
can be given by 
 
Σ Mc  = 0 :  - Mc  +  RB  x 7.5 -  = 0  ⇒   - Mc  +  0.167  x 7.5 -  = 0  ⇒    Mc = 1.25 
 

 
Figure 37.15:  A unit load before section 

 
Similarly, compute the moment Mc for difference unit load position in the span.  
The values of Mc are tabulated as follows. 
 

       Version 2 CE IIT, Kharagpur 
                                                         



X Mc
0 0.0 
2.5 1.25 
5.0 2.5 
7.5 3.75 
10 2.5 
12.5 1.25 
15.0 0 

 
Graphical representation of influence line for Mc is shown in Figure 37.16.  
 

 
Figure 37.16: Influence line for moment at section C 

 
Influence Line Equations: 
There will be two influence line equations for the section before point C and after 
point C.  
 
When the unit load is placed before point C then the moment equation for given 
Figure 37.17 can be given by 
 
Σ Mc  = 0 :  Mc    + 1(7.5 –x) – (1-x/15)x7.5  = 0  ⇒   Mc  = x/2,  where 0 ≤ x ≤ 7.5 
 

 
Figure 37.17: Free body diagram - a unit load before section 

 
When the unit load is placed after point C then the moment equation for given 
Figure 37.18 can be given by 
 
Σ Mc  = 0 :  Mc   – (1-x/15) x 7.5  = 0  ⇒   Mc  = 7.5 - x/2,  where 7.5  < x  ≤  15.0 
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Figure 37.18: Free body diagram - a unit load before section 

 
The equations are plotted in Figure 37.16. 
 
Example 5:   
Construct the influence line for the moment at point C of the beam shown in 
Figure 37.19. 
 

 
Figure 37.19: Overhang beam structure 

 
Solution: 
Tabulated values:  
Place a unit load at different location between two supports and find the support 
reactions. Once the support reactions are computed, take a section at C and 
compute the moment. For example as shown in Figure 37.20, we place a unit 
load at 2.5 m from support A, then the support reaction at A will be 0.75 and 
support reaction B will be 0.25.  
 

 
Figure 37.20: A unit load before section C 

 
Taking section at C and computation of moment at C can be given by 
 
Σ Mc  = 0 :  - Mc  +  RB  x 5.0 -  = 0  ⇒   - Mc  +  0.25  x 5.0   = 0  ⇒    Mc = 1.25 
 
Similarly, compute the moment Mc for difference unit load position in the span.  
The values of Mc are tabulated as follows. 
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x Mc
0 0 
2.5 1.25 
5.0 2.5 
7.5 1.25 
10 0 
12.5 -1.25 
15.0 -2.5 

 
Graphical representation of influence line for Mc is shown in Figure 37.21.  
 

 
Figure 37.21: Influence line of moment at section C 

 
Influence Line Equations: 
There will be two influence line equations for the section before point C and after 
point C.  
 
When a unit load is placed before point C then the moment equation for given 
Figure 37.22 can be given by 
 
Σ Mc  = 0 :  Mc    + 1(5.0 –x) – (1-x/10)x5.0  = 0  ⇒   Mc  = x/2,  where 0 ≤ x ≤ 5.0 
 

 
Figure 37.22: A unit load before section C 

 
When a unit load is placed after point C then the moment equation for given 
Figure 37.23 can be given by 
 
Σ Mc  = 0 :  Mc   – (1-x/10) x 5.0  = 0  ⇒   Mc  = 5 - x/2,  where 5  < x  ≤  15 
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Figure 37.23: A unit load after section C 

 
The equations are plotted in Figure 37.21. 
 
 
37.5 Influence line for beam having point load and uniformly 
distributed load acting at the same time 
 
Generally in beams/girders are main load carrying components in structural 
systems. Hence it is necessary to construct the influence line for the reaction, 
shear or moment at any specified point in beam to check for criticality. Let us 
assume that there are two kinds of load acting on the beam. They are 
concentrated load and uniformly distributed load (UDL).  
 
37.5.1 Concentrated load 
As shown in the Figure 37.24, let us say, point load P is moving on beam from A 
to B. Looking at the position, we need to find out what will be the influence line 
for reaction B for this load. Hence, to generalize our approach, like earlier 
examples, let us assume that unit load is moving from A to B and influence line 
for reaction A can be plotted as shown in Figure 37.25. Now we want to know, if 
load P is at the center of span then what will be the value of reaction A? From 
Figure 37.24, we can find that for the load position of P, influence line of unit load 
gives value of 0.5.  Hence, reaction A will be 0.5xP. Similarly, for various load 
positions and load value, reactions A can be computed.  
 

 
Figure 37.24: Beam structure 
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Figure 37.25: Influence line for support reaction at A 

 
37.5.2 Uniformly Distributed Load 
Beam is loaded with uniformly distributed load (UDL) and our objective is to find 
influence line for reaction A so that we can generalize the approach. For UDL of 
w on span, considering for segment of dx (Figure 37.26), the concentrated load 
dP can be given by w.dx acting at x.  Let us assume that beam’s influence line 
ordinate for some function (reaction, shear, moment) is y as shown in Figure 
37.27. In that case, the value of function is given by (dP)(y) = (w.dx).y. For 
computation of the effect of all these concentrated loads, we have to integrate 
over the entire length of the beam.  Hence, we can say that it will be ∫ w.y.dx = w 
∫ y.dx. The term ∫ y.dx is equivalent to area under the influence line.  
 

 
Figure 37.26:  Uniformly distributed load on beam 

 
Figure 37.27: Segment of influence line diagram 
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For a given example of UDL on beam as shown in Figure 37.28, the influence 
line  (Figure 37.29) for reaction A can be given by area covered by the influence 
line for unit load into UDL value. i.e.  [0.5x (1)xl] w = 0.5 w.l.  
 

 
Figure 37.28: UDL on simply supported beam 

 
Figure 37.29: Influence line for support reaction at A. 

 
 
37.6 Numerical Example 
Find the maximum positive live shear at point C when the beam (Figure 37.30) is 
loaded with a concentrated moving load of 10 kN and UDL of 5 kN/m.  
 

 
Figure 37.30: Simply supported beam 

 
Solution: 
As discussed earlier for unit load moving on beam from A to B, the influence line 
for the shear at C can be given by following Figure 37.31. 
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Figure 37.31: Influence line for shear at section C. 

 
Concentrated load: As shown in Figure 37.31, the maximum live shear force at C 
will be when the concentrated load 10 kN is located just before C or just after C. 
Our aim is to find positive live shear and hence, we will put 10 kN just after C. In 
that case, 
 

Vc = 0.5 x 10  = 5 kN. 
 
UDL: As shown in Figure 37.31, the maximum positive live shear force at C will 
be when the UDL 5 kN/m is acting between x = 7.5 and x = 15.  
 

Vc = [ 0.5 x (15 –7.5) (0.5)] x 5 = 9.375 
 
Total maximum Shear at C: 
 

(Vc) max = 5 + 9.375 = 14.375. 
 
Finally the loading positions for maximum shear at C will be as shown in Figure 
37.32. For this beam one can easily compute shear at C using statics.  
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Figure 37.32: Simply supported beam 

 
 
37.7 Closing Remarks 
In this lesson we have studied the need for influence line and their importance. 
Further we studied the available various influence line definitions. Finally we 
studied the influence line construction using tabulated values and influence line 
equation. The understanding about the simple approach was studied with the 
help of many numerical examples.  
 
 
Suggested Text Books for Further Reading 
• Armenakas, A. E. (1988). Classical Structural Analysis – A Modern Approach, 

McGraw-Hill Book Company, NY, ISBN 0-07-100120-4 
 
• Hibbeler, R. C.  (2002). Structural Analysis, Pearson Education (Singapore) 

Pte. Ltd., Delhi, ISBN 81-7808-750-2 
 
• Junarkar, S. B. and Shah, H. J. (1999). Mechanics of Structures – Vol. II, 

Charotar Publishing House, Anand. 
 
• Leet, K. M. and Uang, C-M. (2003). Fundamentals of Structural Analysis, Tata 

McGraw-Hill Publishing Company Limited, New Delhi, ISBN 0-07-058208-4 
 
• Negi, L. S. and Jangid, R.S. (2003).  Structural Analysis,  Tata McGraw-Hill 

Publishing Company Limited, New Delhi, ISBN 0-07-462304-4 
 
• Norris, C. H., Wilbur, J. B. and Utku, S. (1991). Elementary Structural 

Analysis, Tata McGraw-Hill Publishing Company Limited, New Delhi, ISBN 0-
07-058116-9 
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38 

Influence Lines  
for Beams 
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Instructional Objectives: 
The objectives of this lesson are as follows: 
• How to draw qualitative influence lines? 
• Understand the behaviour of the beam under rolling loads  
• Construction of influence line when the beam is loaded with uniformly 
distributed load having shorter or longer length than the span of the beam. 
 
 
38.1 Müller Breslau Principle for Qualitative Influence Lines  
In 1886, Heinrich Müller Breslau proposed a technique to draw influence lines 
quickly. The Müller Breslau Principle states that the ordinate value of an 
influence line for any function on any structure is proportional to the ordinates of 
the deflected shape that is obtained by removing the restraint corresponding to 
the function from the structure and introducing a force that causes a unit 
displacement in the positive direction.  
 
Let us say, our objective is to obtain the influence line for the support reaction at 
A for the beam shown in Figure 38.1.  
 

 
 

Figure 38.1: Simply supported beam 
 
First of all remove the support corresponding to the reaction and apply a force 
(Figure 38.2) in the positive direction that will cause a unit displacement in the 
direction of RA. The resulting deflected shape will be proportional to the true 
influence line (Figure 38.3) for the support reaction at A.  
 

 
Figure 38.2: Deflected shape of beam 
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Figure 38.3: Influence line for support reaction A 

 
The deflected shape due to a unit displacement at A is shown in Figure 38.2 and 
matches with the actual influence line shape as shown in Figure 38.3. Note that 
the deflected shape is linear, i.e., the beam rotates as a rigid body without any 
curvature. This is true only for statically determinate systems.  
 
Similarly some other examples are given below. 
 
Here we are interested to draw the qualitative influence line for shear at section 
C of overhang beam as shown in Figure 38.4.  
 

 
Figure 38.4: Overhang beam 

 
As discussed earlier, introduce a roller at section C so that it gives freedom to the 
beam in vertical direction as shown in Figure 38.5.  
 

 
Figure 38.5: Deflected shape of beam 

 
Now apply a force in the positive direction that will cause a unit displacement in 
the direction of  VC. The resultant deflected shape is shown in Figure 38.5.  
Again, note that the deflected shape is linear.  Figure 38.6 shows the actual 
influence, which matches with the qualitative influence. 
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Figure 38.6: Influence line for shear at section C 

 
In this second example, we are interested to draw a qualitative influence line for 
moment at C for the beam as shown in Figure 38.7.   
 

 
Figure 38.7: Beam structure 

 
In this example, being our objective to construct influence line for moment, we 
will introduce hinge at C and that will only permit rotation at C.  Now apply 
moment in the positive direction that will cause a unit rotation in the direction of 
Mc.  The deflected shape due to a unit rotation at C is shown in Figure 38.8 and 
matches with the actual shape of the influence line as shown in Figure 38.9. 
  

 
Figure 38.8: Deflected shape of beam 

 
Figure 38.9: Influence line for moment at section C 
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38.2. Maximum shear in beam supporting UDLs 
If UDL is rolling on the beam from one end to other end then there are two 
possibilities. Either Uniformly distributed load is longer than the span or uniformly 
distributed load is shorter than the span. Depending upon the length of the load 
and span, the maximum shear in beam supporting UDL will change. Following 
section will discuss about these two cases. It should be noted that for maximum 
values of shear, maximum areas should be loaded.  
 
38.2.1 UDL longer than the span 
Let us assume that the simply supported beam as shown in Figure 38.10 is 
loaded with UDL of w moving from left to right where the length of the load is 
longer than the span. The influence lines for reactions RA, RB and shear at 
section C located at x from support A will be as shown in Figure 38.11, 38.12 and 
38.13 respectively.  UDL of intensity w per unit for the shear at supports A and B 
will be given by 
 

 
Figure 38.10: Beam Structure 

 

 
Figure 38.11: Influence line for support reaction at A 
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Figure 38.12: Influence line for support reaction at B 

 

 
Figure 38.13: Influence line for shear at section C 
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Suppose we are interested to know shear at given section at C. As shown in 
Figure 38.13, maximum negative shear can be achieved when the head of the 
load is at the section C. And maximum positive shear can be obtained when the 
tail of the load is at the section C.  As discussed earlier the shear force is 
computed by intensity of the load multiplied by the area of influence line diagram 
covered by load. Hence, maximum negative shear is given by 
 

l
wxw

l
xx

22
1 2

−=×××−=  

and maximum positive shear is given by 
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38.2.2 UDL shorter than the span 

When the length of UDL is shorter than the span, then as discussed earlier, 
maximum negative shear can be achieved when the head of the load is at the 
section. And maximum positive shear can be obtained when the tail of the load is 
at the section.  As discussed earlier the shear force is computed by the load 
intensity multiplied by the area of influence line diagram covered by load. The 
example is demonstrated in previous lesson.  
 
 
38.3 Maximum bending moment at sections in beams 
supporting UDLs.  
 
Like the previous section discussion, the maximum moment at sections in beam 
supporting UDLs can either be due to UDL longer than the span or due to ULD 
shorter than the span. Following paragraph will explain about computation of 
moment in these two cases. 
 
38.3.1 UDL longer than the span 
Let us assume the UDL longer than the span is traveling from left end to right 
hand for the beam as shown in Figure 38.14. We are interested to know 
maximum moment at C located at x from the support A.  As discussed earlier, the 
maximum bending moment is given by the load intensity multiplied by the area of 
influence line (Figure 38.15) covered. In the present case the load will cover the 
completed span and hence the moment at section C can be given by 
 

 
Figure 38.14: Beam structure 

 
Figure 38.15: Influence line for moment at section C 
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Suppose the section C is at mid span, then maximum moment is given by 
 

82
22

2wl
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=

××
 

 
38.3.2 UDL shorter than the span 

As shown in Figure 38.16, let us assume that the UDL length y is smaller than 
the span of the beam AB. We are interested to find maximum bending moment at 
section C located at x from support A. Let say that the mid point of UDL is 
located at D as shown in Figure 38.16 at distance of z from support A.  Take 
moment with reference to A and it will be zero.  
 

 
Figure 38.16: Beam loaded with UDL shorter in length than span 

 
Hence, the reaction at B is given by 
 

2
)( xlwx

l
zywRB

−
−=××=  

And moment at C will be 
 

2)
2

(
2

)( xyzwxlRM BC −+−−=  

 
Substituting value of reaction B in above equation, we can obtain 
 

2)
2

(
2

)( xyzwxl
l

wyzM C −+−−=  

 
To compute maximum value of moment at C, we need to differentiate above 
given equation with reference to z and equal to zero. 
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Using geometric expression, we can state that 
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The expression states that for the UDL shorter than span, the load should be 
placed in a way so that the section divides it in the same proportion as it divides 
the span. In that case, the moment calculated at the section will give maximum 
moment value. 
 
 
38.4 Closing Remarks 
In this lesson we studied how to draw qualitative influence line for shear and 
moment using Müller Breslau Principle.  Further we studied how to draw the 
influence lines for shear and moment when the beam is loaded with UDL. Here, 
we studied the two cases where the UDL length is shorter or longer than span.  
In the next lesson we will study about two or more than two concentrated loads 
moving on the beam.  
 
 
Suggested Text Books for Further Reading 
• Armenakas, A. E. (1988). Classical Structural Analysis – A Modern Approach, 
McGraw-Hill Book Company, NY, ISBN 0-07-100120-4 
 
• Hibbeler, R. C.  (2002). Structural Analysis, Pearson Education (Singapore) 
Pte. Ltd., Delhi, ISBN 81-7808-750-2 
 
• Junarkar, S. B. and Shah, H. J. (1999). Mechanics of Structures – Vol. II, 
Charotar Publishing House, Anand. 
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• Leet, K. M. and Uang, C-M. (2003). Fundamentals of Structural Analysis, Tata 
McGraw-Hill Publishing Company Limited, New Delhi, ISBN 0-07-058208-4 
 
• Negi, L. S. and Jangid, R.S. (2003).  Structural Analysis,  Tata McGraw-Hill 
Publishing Company Limited, New Delhi, ISBN 0-07-462304-4 
 
• Norris, C. H., Wilbur, J. B. and Utku, S. (1991). Elementary Structural 
Analysis, Tata McGraw-Hill Publishing Company Limited, New Delhi, ISBN 0-07-
058116-9 
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Influence Lines for 
Beams 

(Contd.) 
 

                                                                             Version 2 CE IIT, Kharagpur 
                                                         



Instructional Objectives: 
The objectives of the present lesson are as follows. 
 

• Construction of influence line for maximum shear at sections in a beam 
supporting two concentrated loads 

• Construction of influence line for maximum moment at sections in a beam 
supporting two concentrated loads 

• Construction of influence line for maximum end shear in a beam supporting a 
series of moving concentrated loads 

• Construction of influence line for maximum shear at a section in a beam 
supporting a series of moving concentrated loads 

• Construction of influence line for maximum moment at a section in a beam 
supporting a series of moving concentrated loads 

• Construction of influence line for absolute maximum moment in s beam 
supporting a series of moving concentrated loads 

• Understanding about the envelopes of maximum influence line values 
 
 
39.1 Introduction 
In the previous lessons, we have studied about construction of influence line for 
the either single concentrated load or uniformly distributed loads. In the present 
lesson, we will study in depth about the beams, which are loaded with a series of 
two or more then two concentrated loads.  
 
 
39.2 Maximum shear at sections in a beam supporting two 
concentrated loads 
 
Let us assume that instead of one single point load, there are two point loads P1 
and P2 spaced at y moving from left to right on the beam as shown in Figure 
39.1. We are interested to find maximum shear force in the beam at given 
section C. In the present case, we assume that P2<P1.  
 

 
Figure 39.1: Beam loaded with two concentrated point loads 
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Now there are three possibilities due to load spacing. They are:  x<y, x=y and 
x>y.  
 
Case 1: x<y 
 
This case indicates that when load P2 will be between A and C then load P1 will 
not be on the beam. In that case, maximum negative shear at section C can be 
given by  
 

l
xPVC 2−=  

 
and maximum positive shear at section C will be 
 

l
xlPVC
)(

2
−

=  

 
Case 2: x=y
 
In this case, load P1 will be on support A and P2 will be on section C.  Maximum 
negative shear can be given by 
 

l
xPVC 2−=  

and maximum positive shear at section C will be 
 

l
xlPVC
)(

2
−

=  

 
Case 3: x>y 
 
With reference to Figure 39.2, maximum negative shear force can be obtained 
when load P2 will be on section C.  The maximum negative shear force is 
expressed as: 
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Figure 39.2: Influence line for shear at section C 
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And with reference to Figure 39.2, maximum positive shear force can be 
obtained when load P1 will be on section C.  The maximum positive shear force is 
expressed as: 
 

⎟
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From above discussed two values of shear force at section, select the maximum 
negative shear value.  
 
 
39.3 Maximum moment at sections in a beam supporting two 
concentrated loads 
 
Let us assume that instead of one single point load, there are two point loads P1 
and P2 spaced at y moving left to right on the beam as shown in Figure 39.3. We 
are interested to find maximum moment in the beam at given section C.  
 

 
Figure 39.3: Beam loaded with two concentrated loads 
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With reference to Figure 39.4, moment can be obtained when load P2 will be on 
section C.  The moment for this case is expressed as: 
 

 
Figure 39.4: Influence line for moment at section C 
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With reference to Figure 39.4, moment can be obtained when load P1 will be on 
section C.  The moment for this case is expressed as: 
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From above two cases, maximum value of moment should be considered for 
maximum moment at section C when two point loads are moving from left end to 
right end of the beam.  
 
 
39.4 Maximum end shear in a beam supporting a series of 
moving concentrated loads 
 
In real life situation, usually there are more than two point loads, which will be 
moving on bridges. Hence, in this case, our aim is to learn, how to find end shear 
in beam supporting a series of moving concentrated loads. Let us assume that as 
shown in Figure 39.5, four concentrated loads are moving from right end to left 
end on beam AB.  The spacing of the concentrated load is given in Figure 39.5.  
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Figure 39.5: Beam loaded with a series of loads 

 
As shown in figure, we are interested in end shear at A. We need to draw 
influence line for the support reaction A and a point away from the support at 
infinitesimal distance on the span for the shear VA. The influence lines for these 
cases are shown in Figure 39.6 and 39.7.   
 

 
Figure 39.6: Influence line for reaction at support A 

 

 
Figure 39.7: Influence line for shear near to support A. 

 
When loads are moving from B to A then as they move closer to A, the shear 
value will increase. When load passes the support, there could be increase or 
decrease in shear value depending upon the next point load approaching support 
A. Using this simple logical approach, we will find out the change in shear value 
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near support and monitor this change from positive value to negative value.  
Here for the present case let us assume that ΣP is summation of the loads 
remaining on the beam.  When load P1 crosses support A, then P2 will approach 
A. In that case, change in shear will be expressed as  
 

1P
l
Px

dV −= ∑  

 
When load P2 crosses support A, then P3 will approach A. In that case change in 
shear will be expressed as  
 

2P
l
Py

dV −= ∑  

 
In case if dV is positive then shear at A has increased and if dV is negative, then 
shear at A has decreased. Therefore, first load, which crosses and induces 
negative changes in shear, should be placed on support A.  
 
39.4.1 Numerical Example 
Compute maximum end shear for the given beam loaded with moving loads as 
shown in Figure 39.8.  
 

 
Figure 39.8: Beam loaded with a series of four concentrated loads 

 
When first load of 4 kN crosses support A and second load 8 kN is approaching 
support A, then change in shear can be given by 
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2)488(
=−

++
= ∑dV  

 
When second load of 8 kN crosses support A and third load 8 kN is approaching 
support A, then change in shear can be given by 
 

8.38
10

3)48(
−=−

+
= ∑dV  
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Hence, as discussed earlier, the second load 8 kN has to be placed on support A 
to find out maximum end shear (refer Figure 39.9). 
 

 
Figure 39.9: Influence line for shear at A. 

 
kNVA 6.153.045.088.0814 =×+×+×+×=  

 
 
39.5 Maximum shear at a section in a beam supporting a 
series of moving concentrated loads 
 
In this section we will discuss about the case, when a series of concentrated 
loads are moving on beam and we are interested to find maximum shear at a 
section. Let us assume that series of loads are moving from right end to left end 
as shown in Figure. 39.10.  
 

 
Figure 39.10: Beam loaded with a series of loads 

 
 
The influence line for shear at the section is shown in Figure 39.11. 
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Figure 39.11: Influence line for shear at section C 

 
Monitor the sign of change in shear at the section from positive to negative and 
apply the concept discussed in earlier section. Following numerical example 
explains the same. 
 
39.5.1 Numerical Example 
The beam is loaded with concentrated loads, which are moving from right to left 
as shown in Figure 39.12. Compute the maximum shear at the section C. 
 

 
Figure 39.12: Beam loaded with a series of loads 

 
The influence line at section C is shown in following Figure 39.13. 
 

 
Figure 39.13: Influence line for shear at section C 

 
When first load 4kN crosses section C and second load approaches section C 
then change in shear at a section can be given by 
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When second load 8 kN crosses section C and third load approaches section C 
then change in shear at section can be given by 
 

4.48
10

312
−=−

×
=dV  

 
Hence place the second concentrated load at the section and computed shear at 
a section is  given by 
 

kNVC 2.942.084.087.041.0 =×+×+×+×==  
 
 
39.6 Maximum Moment at a section in a beam supporting a 
series of moving concentrated loads  
 
The approach that we discussed earlier can be applied in the present context 
also to determine the maximum positive moment for the beam supporting a 
series of moving concentrated loads.  The change in moment for a load P1 that 
moves from position x1 to x2 over a beam can be obtained by multiplying P1 by the 
change in ordinate of the influence line i.e. (y2 – y1). Let us assume the slope of 
the influence line  (Figure 39.14) is S, then (y2 – y1) = S (x2 – x1).   
 

 
Figure 39.14: Beam and Influence line for moment at section C 
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Hence change in moment can be given by 
 

)( 121 xxSPdM −=  
 
Let us consider the numerical example for better understanding of the developed 
concept. 
 
39.6.1 Numerical Example 
The beam is loaded with concentrated loads, which are moving from right to left 
as shown in Figure 39.15. Compute the maximum moment at the section C. 
 

 
Figure 39.15: Beam loaded with a series of loads 

 
The influence line for moment at C is shown in Figure 39.16. 
 

 
Figure 39.16: Beam loaded with a series of loads 

 
If we place each of the four-concentrated loads at the peak of influence line, then 
we can get the largest influence from each force. All the four cases are shown in 
Figures 39.17-20. 
 

 
Figure 39.17: Beam loaded with a series of loads – First load at section C 
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Figure 39.18: Beam loaded with a series of loads –  

Second load at section C 
 
 

 
Figure 39.19: Beam loaded with a series of loads - – Third load at section C 
 

 
Figure 39.20: Beam loaded with a series of loads - – Third load at section C 
 
As shown in Figure 39.17, when the first load crosses the section C, it is 
observed that the slope is downward (7.5/10). For other loads, the slope is 
upward (7.5/(40-10)).  When the first load 40 kN crosses the section and second 
load 50 kN is approaching section (Figure 39.17) then change in moment is given 
by 
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When the second load 50 kN crosses the section and third load 50 kN is 
approaching section (Figure 39.18) then change in moment is given by 
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At this stage, we find negative change in moment; hence place second load at 
the section and maximum moment (refer Figure 39.21) will be given by 
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Figure 39.21: Influence line for moment at C 
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39.7 Absolute maximum moment in s beam supporting a 
series of moving concentrated loads. 
 
In earlier sections, we have learned to compute the maximum shear and moment 
for single load, UDL and series of concentrated loads at specified locations. 
However, from design point of view it is necessary to know the critical location of 
the point in the beam and the position of the loading on the beam to find 
maximum shear and moment induced by the loads. Following paragraph explains 
briefly for the cantilever beam or simply supported beam so that quickly 
maximum shear and moment can be obtained. 
 
Maximum Shear:  As shown in the Figure 39.22, for the cantilever beam, 
absolute maximum shear will occur at a point located very near to fixed end of 
the beam. After placing the load as close as to fixed support, find the shear at the 
section close to fixed end.   
 

 
Figure 39.22: Absolute maximum shear case – cantilever beam 

 
Similarly for the simply supported beam, as shown in Figure 39.23, the absolute 
maximum shear will occur when one of the loads is placed very close to support.  
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Figure 39.23: Absolute maximum shear  – simply supported beam 

 
Moment: 
The absolute maximum bending moment in case of cantilever beam will occur 
where the maximum shear has occurred, but the loading position will be at the 
free end as shown in Figure 39.24. 
 

 
Figure 39.24: Absolute maximum moment  – cantilever beam 

 
The absolute maximum bending moment in the case of simply supported beam, 
one cannot obtain by direct inspection. However, we can identify position 
analytically. In this regard, we need to prove an important proposition. 
 
Proposition: 
When a series of wheel loads crosses a beam, simply supported ends, the 
maximum bending moment under any given wheel occurs when its axis and the 
center of gravity of the load system on span are equidistant from the center of the 
span.  
 
Let us assume that load P1, P2, P3 etc. are spaced shown in Figure 39.25 and 
traveling from left to right. Assume PR to be resultant of the loads, which are on 
the beam, located in such way that it nearer to P3 at a distance of d1 as shown in 
Figure 39.25.  
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Figure 39.25: Absolute maximum moment case – simply supported beam 

 
If  P12 is resultant of P1 and P2, and distance from P3 is d2. Our objective is to find 
the maximum bending moment under load P3. The bending moment under P3 is 
expressed as  
 

)()( 2121 dPdxl
l
xPM R −−−=  

 
Differentiate the above expression with respect to x for finding out maximum 
moment. 
 

22
020)2( 1

11
dlxdxldxl

l
P

dx
dM R −=⇒=+−⇒=−−=  

 
Above expression proves the proposition.  
 
Let us have a look to some examples for better understanding of the above-
derived proposition. 
 
39.7.1 Numerical Examples 

Example 1: 
The beam is loaded with two loads 25 kN each spaced at 2.5 m is traveling on 
the beam having span of 10 m. Find the absolute maximum moment 
 
Solution: 
When the a load of 25kN and center of gravity of loads are equidistant from the 
center of span then absolute bending moment will occur. Hence, place the load 
on the beam as shown in Figure 39.26. 
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Figure 39.26: Simply supported beam (Example 1) 

 
The influence line for Mx is shown in Figure 39.27  
 

 
Figure 39.27: Influence line for moment at X (Example 1) 

 
Computation of absolute maximum moment is given below. 
 

mkNM x .70.95)367.1(25)461.2(25 =+=  
 
Example 2: 
Compute the absolute maximum bending moment for the beam having span of 
30 m and loaded with a series of concentrated loads moving across the span as 
shown in Figure 39.28.  
 

 
Figure 39.28: Simply supported beam (Example 2) 

 
First of all compute the center of gravity of loads from first point load of 100 kN  
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Now place the loads as shown in Figure 39.29.  
 

 
Figure 39.29: Simply supported beam with load positions (Example 2) 

 
Also, draw the influence line as shown in Figure 39.30 for the section X.  
 

 
Figure 39.30: Influence Line for moment at section X (Example 2) 

 
mkNM x .4.4326)535.4(100)018.6(150)5.7(250)982.5(100)97.4(100 =++++=  

 
 
39.8 Envelopes of maximum influence line values 
For easy calculations steps of absolute maximum shear and moment rules for 
cantilever beam and simply supported beam were discussed in previous section. 
Nevertheless, it is difficult to formulate such rules for other situations. In such 
situations, the simple approach is that develop the influence lines for shear and 
moment at different points along the entire length of the beam. The values easily 
can be obtained using the concepts developed in earlier sections. After obtaining 
the values, plot the influence lines for each point under consideration in one plot 
and the outcome will be envelop of maximums. From this diagram, both the 
absolute maximum value of shear and moment and location can be obtained. 
However, the approach is simple but demands tedious calculations for each 
point. In that case, these calculations easily can be done using computers.  
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39.9 Closing Remarks 
In this lesson, we have learned various aspects of constructing influence lines for 
the cases when the moving concentrated loads are two or more than two. Also, 
we developed simple concept of finding out absolute maximum shear and 
moment values in cases of cantilever beam and simply supported beam.  Finally, 
we discussed about the need of envelopes of maximum influence line values for 
design purpose.  
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Instructional Objectives: 
The objectives of this lesson are as follows. 
• Understand the bridge truss floor system and load transfer mechanism 
• Draw the influence line for the truss reactions 
• Draw the influence line for the truss member forces 
 
 
40.1 Introduction 
In previous lessons, we have studied the development of influence lines for 
beams loaded with single point load, UDL and a series of loads. In similar 
fashion, one can construct the influence lines for the trusses. The moving loads 
are never carried directly on the main girder but are transmitted across cross 
girders to the joints of bottom chord. Following section will explain load 
transmission to the trusses followed by the influence lines for the truss reactions 
and influence lines for truss member forces.  
 
 
40.2 Bridge Truss Floor System 
A typical bridge floor system is shown in Figure 40.1. As shown in Figure, the 
loading on bridge deck is transferred to stringers. These stringers in turn transfer 
the load to floor beams and then to the joints along the bottom chord of the truss.  
 

 
 

Front view 
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Floor plan 
 

Figure 40.1 Bridge floor system 
 
It should be noted that for any load position; the truss is always loaded at the 
joint. 
 
 
40.3 Influence lines for truss support reaction 
Influence line for truss reactions are of similar to that a simply supported beam. 
Let us assume that there is truss with overhang on both ends as shown in Figure 
40.2. In this case, the loads to truss joints are applied through floor beams as 
discussed earlier. These influence lines are useful to find out the support, which 
will be critical in terms of maximum loading.  
 

 
Figure 40.2 Bridge truss 

 
The influence lines for truss reactions at A and B are shown in Figure 40.3. 
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(a) Influence line for RA

 
(b) Influence line for RB

Figure 40.3: Influence lines for support reactions 
 
 
40.4 Influence lines for truss member forces 
Influence lines for truss member force can be obtained very easily.  Obtain the 
ordinate values of influence line for a member by loading each joint along the 
deck with a unit load and find member force. The member force can be found out 
using the method of joints or method of sections. The data is prepared in tabular 
form and plotted for a specific truss member force. The truss member carries 
axial loads. In the present discussion, tensile force nature is considered as 
positive and compressive force nature is considered as negative.  
 
40.4.1 Numerical Examples 
Example 1:  
Construct the influence line for the force in member GB of the bridge truss shown 
in Figure 40.4. 

 
 

Figure 40.4: Bridge Truss (Example 1) 
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Solution: 
Tabulated Values: 
In this case, successive joints L0, L1, L2, L3, and L4 are loaded with a unit load 
and the force FL2U3 in the member L2U3 are using the method of sections. Figure 
40.5 shows a case where the joint load is applied at L1 and force FL2U3 is 
calculated.  
 

 
Figure 40.5: Member Force FL2U3 Calculation using method of sections. 

 
The computed values are given below. 
 

x FL2U3
0 0 
5 -0.325 
10 -0.650 
15 0.325 
20 0 

 
Influence line: Let us plot the tabular data and connected points will give the 
influence line for member L2U3.  The influence line is shown in Figure 40.6. The 
figure shows the behaviour of the member under moving load. Similarly other 
influence line diagrams can be generated for the other members to find the 
critical axial forces in the member.  
 

 
Figure 40.6: Influence line for member force FL2U3
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Example 2: 
Tabulate the influence line values for all the members of the bridge truss shown 
in Figure 40.7. 
 

 
Figure 40.7: Bridge Truss (Example 2) 

 
Solution: 
Tabulate Values:  
 
Here objective is to construct the influence line for all the members of the bridge 
truss, hence it is necessary to place a unit load at each lower joints and find the 
forces in the members. Typical cases where the unit load is applied at L1, L2 and 
L3 are shown in Figures 40.8-10 and forces in the members are computed using 
method of joints and are tabulated below. 
 

 
Figure 40.8: Member forces calculation when unit load is applied at L1

 

 
Figure 40.9: Member forces calculation when unit load is applied at L2
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Figure 40.10: Member forces calculation when unit load is applied at L3

 
Member force due to unit load at: Member 
L0 L1 L2 L3 L4 L5 L6

L0L1 0 0.8333 0.6667 0.5 0.3333 0.1678 0 
L1L2 0 0.8333 0.6667 0.5 0.3333 0.1678 0 
L2L3 0 0.6667 1.3333 1.0 0.6667 0.3336 0 
L3L4 0 0.3336 0.6667 1.0 1.3333 0.6667 0 
L4L5 0 0.1678 0.3333 0.5 0.6667 0.8333 0 
L5L6 0 0.1678 0.3333 0.5 0.6667 0.8333 0 
U1U2 0 -0.6667 -1.333 -1.0 -0.6667 -0.333 0 
U2U3 0 -0.50 -1.000 -1.5 -1.0 -0.50 0 
U3U4 0 -0.50 -1.000 -1,5 -1.0 -0.50 0 
U4U5 0 -0.333 -0.6667 -1.0 -1.333 -0.6667 0 
L0U1 0 -1.1785 -0.9428 -0.7071 -0.4714 -0.2357 0 
L1U1 0 1 0 0 0 0 0 
L2U1 0 -0.2357 0.9428 0.7071 0.4714 0.2357 0 
L2U2 0 0.167 0.3333 -0.50 -0.3333 -0.3333 0 
L3U2 0 -0.2357 -0.4714 0.7071 0.4714 0.2357 0 
L3U3 0 0 0 0 0 0 0 
L3U4 0 0.2357 0.4714 0.7071 -0.4714 -0.2357 0 
L4U4 0 -03333 -0.3333 -0.50 0.3333 0.167 0 
L4U5 0 0.2357 0.4714 0.7071 0.9428 -0.2357 0 
L5U5 0 0 0 0 0 1 0 
L6U5 0 -0.2357 -0.4714 -0.7071 -0.9428 -1.1785 0 
 
Influence lines: 
 
Using the values obtained in the above given table, the influence line can be 
plotted very easily for truss members.   
 
 
40.5 Closing Remarks 
In this lesson we have studied how the loads are transferred in bridge truss floor 
system. Further, we found that there is similarity between the influence line of 
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support reactions for simply supported beam and truss structures. Finally we 
studied the influence line for truss member forces. It was essential to know the 
method of sections and method of joints for the analysis of trusses while drawing 
influence lines. 
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