Addis Ababa Institute of Technology
 Department of civil and Environmental Engineering

Hydraulics-II (CENG-2162)

Assignment 2 (Dimensional Analysis and Similitude)

1) Spillway model is, to be built to a geometrically similar scale of $1 / 40$ across a flume of 50 cm width. The prototype is 20 m high and maximum head on it is expected to be 2 m .
(i) What height of model and what head on the model should be used
(ii) If the flow over the model at a particular head is 10 liters/s, what flow per meter?

Length of the prototype is expected?
(iii) If the negative pressure in the model is 150 mm , what is the negative pressure in the prototype? Is it practicable?
2) The discharge Q through an orifice is a function of the diameter d, the pressure difference p, the density ρ, and the viscosity μ, where ϕ is some unknown function. Show that, $Q=\frac{d^{2} p^{1 / 2}}{\rho^{1 / 2}} \phi\left(\frac{d \rho^{1 / 2} p^{1 / 2}}{\mu}\right)$
3) A ship 250 m long moves in sea-water, whose density is $1030 \mathrm{~kg} / \mathrm{rn}^{3}$. A $1: 125$ model of this ship is to be tested in wind tunnel. The velocity of air in the wind tunnel around the model is $20 \mathrm{~m} / \mathrm{s}$ and the resistance of the model is 50 N . Determine the velocity of ship in sea-water and also the resistance of the ship in sea-water. The density of air is given as 1.24 $\mathrm{kg} / \mathrm{rn} 3$. Take the kinematic viscosity of sea-water and air as 0.012 stokes and 0.018 stokes.
4) The variables controlling the motion of a floating vessel through water are the drag force F, the speed V, the length L, the density ρ and dynamic viscosity of water and acceleration due to gravity g . Derive an expression for F by dimensional analysis.
5) A 50 cm tall scale model of a proposed 50 m spillway is used to predict prototype flow conditions. If the design flood discharge over the spillway is $20,000 \mathrm{~m}^{3} / \mathrm{s}$, what water flow rate should be tested in the model?

