

Chapter 2 Hydrostatics

Hydrostatic Forces on Surfaces

Hydraulics I

Zerihun Alemayehu
Rm. E119B

Hydrostatic Forces on Inclined Plane

Hydrostatic Trust

$$
\begin{aligned}
\mathrm{F}=\int_{\mathrm{A}} \mathrm{dF}=\int_{\mathrm{A}} \rho \mathrm{gh} \mathrm{dA} & =\rho \mathrm{g} \sin \theta \int_{\mathrm{A}} \mathrm{dA} \mathrm{x} \\
& =\rho \mathrm{g} \sin \theta \mathrm{~A} \overline{\mathrm{x}} \\
& =\rho \mathrm{gh} \mathrm{~A}
\end{aligned}
$$

where $\overline{\mathrm{h}}$ is the vertical depth of the centroid, G .
Taking moments of these forces about $0-0$

$$
F x_{o}=\rho g \sin \theta \int_{A} d A x^{2}
$$

Hydrostatic Forces on Inclined Plane

\therefore The distance to the centre of pressure, C

$$
\begin{aligned}
x_{0} & =\int_{A} d A x^{2} / \int_{A} d A x \\
& =\frac{\text { second moment of the area about } 0-0}{\text { first moment of the area about } 0-0} \\
& =I_{0} / A \bar{x}
\end{aligned}
$$

But $I_{0}=I_{g}+A \bar{x}^{2}$ (parallel axis rule) where I_{g} is the second moment of area of the surface about an axis through its centroid and parallel to axis $0-0$.

$$
\begin{equation*}
\therefore \mathrm{x}_{\mathrm{o}}=\overline{\mathrm{x}}+\mathrm{I}_{\mathrm{g}} / \mathrm{A} \overline{\mathrm{x}} \tag{2.7}
\end{equation*}
$$

Depth of centre of pressure below free surface, $h_{o}=x_{0} \sin \theta$

$$
\therefore h_{o}=\bar{h}+I_{g} \sin ^{2} \theta / A \bar{h}
$$

Hydrostatic Forces on Vertical Plane

For a vertical surface $\boldsymbol{\theta}=\mathbf{9 0 ^ { \circ }}$

$$
\therefore \mathrm{h}_{\mathrm{o}}=\overline{\mathrm{h}}+\mathrm{I}_{\mathrm{g}} / \mathrm{A} \overline{\mathrm{~h}}
$$

The distance between centroid and center of pressure $G C=I_{g} / A h$
\therefore The moment of F about the centroid,

$$
\begin{aligned}
\mathrm{F} \times \mathrm{GC} & =\rho \mathrm{g} \overline{\mathrm{~h}} \mathrm{~A} \times \mathrm{I}_{\mathrm{g}} / \mathrm{A} \overline{\mathrm{~h}} \\
& =\rho \mathrm{g} \mathrm{I}_{\mathrm{g}}
\end{aligned}
$$

which is independent of depth of submergence.

Hydrostatic Forces on Vertical Plane

When the surface is not symmetrical about the vertical centroidal axis.
$y_{0} \int_{A} d F=\int_{A} d F y$
or $y_{0} \rho g \bar{x} \sin \theta \mathrm{~A}=\int_{\mathrm{A}} \rho \mathrm{gx} \sin \theta \mathrm{dA} y$
$\therefore y_{o}=\frac{1}{A \bar{x}} \int_{\mathrm{A}} \mathrm{xy} \mathrm{dA}$
$0 \rightarrow 0$

Hydrostatic Forces on Curved Surfaces

a. Surface containing liquid

b. Surface displacing liquid
\therefore Total thrust on this area, $\mathrm{dF}=\rho \mathrm{gh} \mathrm{dA}$
Horizontal component of $\mathrm{dF}, \mathrm{dF}_{\mathrm{x}}=\rho \mathrm{gh} \mathrm{dA} \cos \theta$
Vertical component of $\mathrm{dF}, \mathrm{dF}_{\mathrm{y}}=\rho \mathrm{gh} \mathrm{dA} \sin \theta$

Hydrostatic Forces on Curved Surfaces

\therefore Horizontal component of the total thrust on the curved area A,
$\mathrm{F}_{\mathrm{x}}=\int_{\mathrm{A}} \rho \mathrm{gh} \mathrm{dA} \cos \theta=\rho \mathrm{gh} \mathrm{A}_{\mathrm{v}}$
Where A_{v} is the vertically projected area of the curved surface;
or $\mathrm{F}_{\mathrm{x}}=$ pressure intensity at the centroid of a vertically projected area (BD) x vertically projected area

Hydrostatic Forces on Curved Surfaces

and vertical component, $\mathrm{F}_{\mathrm{y}}=\int_{\mathrm{A}} \rho \mathrm{gh} \mathrm{dA} \sin \theta$

$$
=\rho \mathrm{g} \int_{A} d \mathrm{~V}, \mathrm{dV} \text { being the volume of the water }
$$

prism (real or virtual) over the area dA .

$$
\therefore \mathrm{F}_{y}=\rho \mathrm{g} \mathbf{V}
$$

$=$ the weight of water (real or virtual) above the curved surface BC bounded by the vertical BD and the free water surface CD
\therefore The resultant thrust, $F=\sqrt{F_{x}^{2}+F_{y}^{2}}$
acting normally to the surface at an angle,

$$
\alpha=\tan ^{-1}\left(F_{y} / F_{x}\right) \text { to the horizontal. }
$$

Pressure Diagram

Pressure Diagram

Average pressure on the surface $=\rho \mathrm{gH} / 2$
\therefore Total thrust, $\mathrm{F}=$ average pressure \times area of surface

$$
\begin{aligned}
& =(\rho \mathrm{gH} / 2) \mathrm{H} \times \mathrm{B} \\
& =\frac{1}{2} \rho \mathrm{gH}^{2} \times \mathrm{B}
\end{aligned}
$$

$=$ volume of the pressure prism
or total thrust/unit width $=\frac{1}{2} \rho \mathrm{gH}^{2}$

$$
=\text { area of the pressure diagram }
$$

For small pressure T_{1} is smaller than T_{2}, but for large pressure we can assume $T_{1}=T_{2}$
$\mathrm{T}_{1}+\mathrm{T}_{2}=\mathrm{F}=2 \mathrm{pr}$
Since $T_{1}+T_{2}=2 T, \rightarrow T=p r$
Where, T is the tensile force per metre length of pipe

Tensile Stress in a Pipe

- For wall thickness t, the circumferential stress, σ

$$
\sigma=\frac{T}{t \times 1}=\frac{p . r}{t}
$$

For an allowable tensile stress $\sigma_{\text {all }}$, the required wall thickness t will be:

$$
t=\frac{p \cdot r}{\sigma_{a l l}}
$$

Tensile Stress in a Pipe

- For large pressure variation, i.e. $Z_{c}=P_{c} / \gamma \leq 10 r$

$$
\begin{aligned}
& \text { From } \Sigma F_{h}=0: T_{1}+T_{2}=F=2 p . r \\
& \quad \Sigma M_{2}=0: 2 r T_{1}-2 p r(r-e)=0
\end{aligned}
$$

Finally, we get:

$$
\begin{aligned}
& \sigma=\frac{T_{2}}{t}=\frac{p(r+e)}{t} \\
& t=\frac{p(r+e)}{\sigma_{\text {all }}}=\frac{p\left(r+\frac{r^{2} \gamma}{3 p_{c}}\right)}{\sigma_{\text {all }}}
\end{aligned}
$$

Example (1)

Find: Force of block on gate

$$
\begin{array}{ll}
F=\bar{p} A & y_{c p}-\bar{y}
\end{array}=\frac{I}{\bar{y} A}
$$

$$
\begin{aligned}
\sum M & =0 \\
& =0.133 F_{w, g}-2 F_{b, g} \\
F_{b, g} & =\frac{0.133}{2} F_{w, g} \\
& =\frac{0.133}{2} 1569.6 \mathrm{kN} \\
F_{b, g} & =104.378 \mathrm{kN}
\end{aligned}
$$

Example (2)

Find the reaction at A

$$
\begin{aligned}
& F=\bar{p} A=(\gamma \bar{y} \sin \alpha) A \\
& =9810 *(3+3 \cos 30) *(4 * 6) \\
& =1,318,000 \mathrm{~N} \\
& \begin{aligned}
y_{C p}-\bar{y} & =\frac{\bar{I}}{\bar{y} A}=\frac{4 * 6^{3} / 12}{(6.464 * 24)} \\
& =0.4641 \mathrm{~m}
\end{aligned} \\
& \begin{aligned}
\Sigma M & =0 \\
& =6 R_{A}-(3-0.4641) F \\
R_{A} & =\frac{3-0.4641}{6} F \\
& =(0.42265) 1318 \mathrm{kN} \\
R_{A} & =557.05 \mathrm{kN}
\end{aligned}
\end{aligned}
$$

Example 3

Determine the total hydrostatic force and the center of pressure

Example 3 Solution

Example 3 Solution

Total hydrostatic pressure $=\mathrm{F}=\gamma_{\mathrm{w}} \mathrm{h}_{\mathrm{c}}$. A
$h_{c}=y_{c} \operatorname{Sin} 45^{\circ}$
$y_{c}=3 / \operatorname{Sin} 45^{\circ}+4 r / 3 \pi=5.94 \mathrm{~m}$
Therefore, $\mathrm{h}_{\mathrm{c}}=4.20 \mathrm{~m}$
Area of gate, $A=\pi r^{2} / 2=\pi \times 4^{2} / 2=25.13 \mathrm{~m}^{2}$
Thus, $\mathrm{F}=9.81 \times 4.20 \times 25.13=1.035 \mathrm{MN}$

$$
y_{c p}=y_{c}+\frac{I_{c}}{y_{c} A}=5.94+\frac{0.11 \times 4^{4}}{5.94 \times 25.13}=6.13 \mathrm{~m}
$$

And $h_{c p}=y_{c p} \operatorname{Sin} 45^{\circ}=4.33 \mathrm{~m}$

Example 4

Determine the magnitude and direction of the force acting on the quarter circle gate of 1 m long.

$$
\begin{aligned}
F_{x} & =\gamma \bar{y} A_{C B} \\
& =9810 * 3 * 6 * 1 \\
& =176.6 \mathrm{kN}
\end{aligned}
$$

$\mathrm{F}=328.84 \mathrm{kN}$

Example 5

A 3 m diameter roller gate retains water on both sides of a spillway crest as shown in the figure below. Determine (i) the magnitude, direction and location of the resultant hydrostatic thrust acting on the gate per unit length, and (ii) the horizontal water thrust on the spillway per unit length.

Example 5 solution

Left side: horizontal component $=\frac{1}{2} \rho \mathrm{~g} \times 3^{2}$

$$
=44 \cdot 14 \mathrm{kN} / \mathrm{m}
$$

vertical component $=\rho g \times \frac{1}{2} \frac{\pi}{4} 3^{2} \times 1$

$$
=34.67 \mathrm{kN} / \mathrm{m}
$$

Right side: horizontal component $=\frac{1}{2} \rho \mathrm{~g}(1 \cdot 5)^{2}$

$$
=11.03 \mathrm{kN} / \mathrm{m}
$$

$$
\text { vertical component } \quad=\rho \mathrm{g} \times \frac{1}{4} \frac{\pi}{4} 3^{2} \times 1
$$

$$
=17.34 \mathrm{kN} / \mathrm{m}
$$

Example 5 solution

\therefore Net horizontal component on the gate (left to right)

$$
\begin{aligned}
& =44.14-11.03 \\
& =33.11 \mathrm{kN} / \mathrm{m}
\end{aligned}
$$

and net vertical component (upwards) $=34 \cdot 67+17.34$

$$
=50.01 \mathrm{kN} / \mathrm{m}
$$

\therefore Resultant hydrostatic thrust on the gate
$=\sqrt{(33.11)^{2}+(50.01)^{2}}$
$=60 \mathrm{kN} / \mathrm{m}$
acting at an angle, $\alpha=\tan ^{-1}(33 \cdot 11 / 50 \cdot 01)=33^{\circ} 30^{\prime}$ to the vertical and passes through the centre of the gate (normal to the surface).

Example 5 solution

\therefore Depth of centre of pressure $=\mathbf{r}+\mathbf{r} \cos \alpha$
$=1.5\left(1+\cos 33^{\circ} 30^{\prime}\right)$
$=2.75 \mathrm{~m}$ below the free surface of left side.

Example 5 solution

Horizontal thrust on the spillway:
From pressure diagrams (see fig. 2.28), thrust from left-hand side
$=\frac{1}{2}(\rho \mathrm{~g} \times 3+\rho \mathrm{g} \times 4) \times 1$
$=34.33 \mathrm{kN} / \mathrm{m}$
and from right-hand side $=\frac{1}{2}(\rho \mathrm{~g} \times 1.5+\rho \mathrm{g} \times 3.5) \times 2$

$$
=49.05 \mathrm{kN} / \mathrm{m}
$$

\therefore Resultant thrust (horizontal) on the spillway
$=49.05-34.33$
$=14.72 \mathrm{kN} / \mathrm{m}$ towards left.

