
CHAPTER 4 

KINEMATICS OF FLOW 

4.1 Introduction: 

In hydrostatics one deals with liquids at rest in which 

there is no relative motion between fluid particles and 
therefore no shear stresses exist. Since no friction is 
involved the fluid may be assumed to be either ideal or real. 

In fluid flow problems one often refers to the flow of an 
ideal fluid. An ideal fluid flow as the name implies, is an 
idealized situation in which the fluid is assumed to have no 
viscosity and therefore no shear stresses exist. Boundary 
effects are ignored and velocities assumed to be uniform. Such 
simplification is sometimes useful in solving some engineering 
problems. When dealing with real fluid flow, however, the 
effects of viscosity are introduced thus leading to 
considerations of the developed shear stresses between 
neighbouring fluid layers that are moving at different 
velocities. The flow picture thus becomes complex and can not 
be easily formulated mathematically as in the idealized 
situation. It requires the combination of mathematical theory 
with experiments. Study of fluids in motion thus requires 
consideration of fluid properties (such as specific weight, 
viscosity etc), kinematics and force and energy relationships. 
Kinematics deals only with the geometry of motion i.e. space 
time relationships of fluids only without regard to the forces 
causing the motion. 

4.2 Velocity Field 

There are two methods or frames of reference by which the motion 
of a fluid can be described: 

(i) The lagrangian Method and 
(ii) The Euler ian Method 



The Lagrangian Method: In this method the observer focusses 

his attention on a single fluid particle during its motion 

through space to find out the path it traces and to describe 

its characteristics such as velocity, acceleration, density etc 

as it moves in the flow field with the passage of time. In the 

cartesian coordinate system, the position of a fluid particle 

in space (x,y,z) is expressed with respect to a coordinate 

system (a,b,c) at time to. Thus, a,b,c and to are independent 

variables while x,y,z are dependent variables in this method. 

If u is the velocity of the fluid particle at time t, then its 

position x = a + ut where a is its x coordinate at time to. 
Thus the position of the particle will be: 

x = f, ( a ,  b ,  c, t) 

Y = f 2 ( a , b ,  c, t) 

z = f, ( a , b ,  c ,  t) 

The corresponding velocities u, v and w and accelerations a,, 

a, and a, in the x,y, and z directions will be: 

The Lagrangian Method of analysis is difficult in fluid 

mechanics since it is not easy to identify a fluid particle and 

because every particle has a random motion. 

The Eulerian Method: In this method the observer's concern is 

to know what happens at any given point in the space which is 

filled with a fluid. One is interested in what the velocities, 

accelerations, pressures etc are at various points in the flov 



field at any given time. This method is extensively used in 

fluid mechanics because of its simplicity and due to the fact 

that one is more interested in flow parameters at different 

points in a flow and not in what happens to individual fluid 

particles. The position of a particle in this method is 

expressed with respect to a fixed coordinate system x,y,z at 

a given time t. The Eulerian velcity field is thus given by: 

Since equation (4.2) describes the motion of a single fluid 

particle, the relationship between the Lagrangian and the 

Eulerian equations will be: 

The integration of Equations (4-4) leads to the Lagrangian 

equations (4-1) with the initial conditions x = xo = a; y = yo 

= b; z = z, = c and t = to. Hence, the Lagrangian Method can 

be derived from the Eulerian Method. 

4.3 Velocity and Acceleration: 

The motion of fluid particles in a particular flow phenomenon 

is expressed in terms of a vector quantity known as velocity. 

In figure ( 4 - I ) ,  if As is the distance travelled by a fluid 



particle in time At, then l i m o  - AS is called the velocity 
A t  

V, and it is tangential to the path s. 

Figure 4.1 Tangential velocity 

Since the distance As can be resolved in general into distances 

Ax, Ay and Az in the x , y  and z directions respectively, the 
velocity vector V, inturn can be resolved into components u, v 

and w in the x,y and z directions respectively. The magnitudes 

of each of the component velocities will in general depend on 

the location of the point under consideration i.e on x,y and 

z and also on time t depending upon the type of flow. Thus the 

velocity V, and components can be written in the following 

functional form: 

Consider now a particle of fluid moving from A to B on a stream 

line as shown in figure 4.2 



Figure 4.2 Tangential acceleration 

The velocity of the particle may change for two reasons: 

At a particular instance, the velocity at A may be different 

from the velocity at B and also during the period the given 

particle moves from A to B, the velocity at B might change. 

Thus the total change in the velocity of the particle, dv,, 

will be the sum of its change due to change in position and its 

change due to passage of time interval dt. 

i.e. dv, = - avs ds + - 
as 

. dt. 
at 

The tangential acceleration a, in the flow direction will be: 

avs ~ h u s  a, = vsx + -  a vs 
at 



where : a, = local tangential acceleration 

- aVs - - the local or temporal component a t  

= the rate of change of velocity with respect 

to time at a particular point 

avs = the convective component V"dt 

= the rate of change of velocity due to the 

particle's change of position 

The normal acceleration, which is the result of change in 

direction of velocity may be obtained by considering the curved 

stream line and the velocity vector diagram shown in Figure 

( 4 - 3 ) .  

Figure 4.3 

V is the tangential velocity at A 

V + Av is the tangential velocity at D at a distance As 
from A .  

AV, is the velocity in the normal direction at A. 

R is the radius of curvature of the stream line. 



From the velocity vector diagram, 

The convective acceleration an= in the normal direction is 

given by: 

The normal velocity can also change with time. Hence, the 

a v n  temporal component of the normal acceleration will be -. a t  

Therefore, the normal acceleration with its temporal and 

convective components will be: 

4.4 Pathline, Streak line, Streamline and Steam tube 

Pathline: If an individual particle of fluid is coloured, it 

will describe a pathline which is the trace showing the 

position at successive intervals of times of a particle which 

started from a given point. 

Streakline or Filament line: If, instead of colouring an 

individual particle, the flow pattern is made visible by 

injecting a stream of dye into a liquid, or smoke into a gas, 



the result will be a streakline or filament line, which gives 

an instantaneous picture of the positions of all the particles 

which have passed through the particular point at which the dye 

is being injected. Since the flow pattern may vary from moment 

to moment, a streak line will not necessarily be the same as 

a pathline. 

Streamline: A streamline is defined as an imaginary line drawn 

through a flow field such that the tangent to the line at any 

point on the line indicates the direction of the velocity 

vector at that instant. A streamline thus gives a picture of 

the average direction of flow in a flow field. 

Since the velocity vector at any point on a streamline is 

tangential it will not have a component normal to the 

streamline. Hence there can not be any flow across a 

streamline. Thus the flow between any two streamlines remains 

constant. A smooth flow boundary can also be considered as a 

streamline. If conditions are steady and the flow pattern does 

not change from moment to moment, pathlines and streamlines are 

identical. 

Consider a streamline shown in figure (4-4). The velocity 

vecotr V, at point P(s,y) has components u and v in the x and 

y directions respectively. 

Figure 4.4 Steamline 



Taking 8 as the angle between V, and the x axis, 

Thus, the equation of a streamline in two dimensional flow at 

any instant to is: 

Where u = f, (X,Y,  to) 

v = f2 ( ~ 8 ~ 8  to) 

Example 4.1 If u = +x, and v = 2y, find the equation of the 

streamline through (1,l). 

1 Qnx = - h y  + C 
2 

a t  x = l  and y = 1 8  C = O  

. x = fi i s  the equation o f  the stream l ine  

Streamtube: If a series of streamlines are drawn through every 

point on the perimeter of a small area of a stream crossection, 

they will form a streamtube. Since there is no flow across a 

streamline, there will not be flow across a streamtube and the 

fluid inside a streamtube cannot excape through its walls. The 

flow thus behaves as if it were contained in an imaginary pipe. 

The concept of a streamtube is useful in dealing with the flow 

of fluids since it allows elements of the fluid to be isolated 

for analysis. 



Figure 4.5 Stream tube 

4.5 Classification of flows 

In a general flow field, velocity, pressure, density etc. can 

vary from place to place or can change with respect to time or 

both variations can occur simultaneoussly. It is convenient 

to classify flows on the basis of change in velocity only. 

Accordingly, a flow may be classified as steady or unsteady 

depending upon whether the velocity at a point varies with time 

or not and as uniform or non-uniform depending upon whether the 

velocity at different points on a streamline in a flow field 

at an instant is the same or not. 

When any of the flow parameters at a point do not change with 

time, the flow is said to be steady. Variations of any of the 

flow parameters with time at a point would cause the flow 

unsteady. 

Steady and unsteady conditions refer only to average temporal 

velocity in a flow field and turbulent fluctuations are not 

considered. 

Velocities in a flow field depend on the geometry of the 

boundary. Consider the three situations in Figure 4-6. 



Figure 4.6 Uniform and non-uniform flows 

If the rate of flow does not vary with time i.e the flow is 

steady, then the average velocities at any two sections 1-1 and 

2-2 in Figure 4-6(a) would be the same. In the expanding pipe 

of Figure 4-6(b), the velocities at sections 1-1 and 2-2 are 

different since the cross-sectional areas vary. In the bend 

of constant diameter shown in Figure 4-6(c), eventhough the 

magnitudes of the velocities at sections 1-1 and 2-2 are the 

same, their directions are different and hence there is 

variation in velocity. 

A flow is considred uniform if velocities at different points 

in a steamline (or average velocities at different sections in 

a conduit) in a flow field at an instant are the same both in 

magnitude and direction. If there is variation either in 

magnitude or direction or both, then the flow is said to be 

non-uniform. Thus flow in the straight pipe of uniform diameter 

is classified as uniform while those in the expanding pipe and 

the bend are non-uniform. 

Considering both temporal and spatial (convective) variations 

in the flow parameters, the following four combinations of flow 

are possible: 

i) Steady uniform flow - flow through a uniform 

diameter pipe with a constant rate of flow. 



ii) Steady non-uniform flow - flow through a straight 
pipe with changing diameter (expanding or reducing) 

and a bend with uniform or non-uniform diameter at 

constant rate of flow. 

iii ) Unsteady uniform flow - flow through a uniform 

diameter pipe at changing rates of flow. 

iv) Unsteady non-uniform flow - flow as in (ii) but with 
changing rate of flow. 

4.6 One, Two and Three-Dimensional Flows 

When the velocity components transverse to the main flow 

direction is neglected and only average conditions of flow are 

considered at a section then the flow is said to be one- 

dimensional. The assumption of one dimensional flow can be 

made where there is no wide variation of cross-section, where 

stream lines are not highly curvelinear and where the velocity 

variation across a section is not appreciable. Many 

engineering problems such as flows through a pipe and open 
* 

channel flows are handled by one dimensional analysis by taking 

average values of the flow characteristics at sections. 

In actual flows of real fluids, the presence of fluid viscosity 

and the no slip condition at the boundary require that the 

velocity vary from zero at the boundary to a maximum value 

somewhere in the flow field depending upon the boundary 

conditions. Such a flow where the velocity vector is a 

function of two co-ordinates is known as two-dimensional. Flow 

past a wide flat plate or over a long weir can be considered 

two- dimensional. 

Figure 4 . 7  illustrates one and two-dimensional flows. In 

figure 4 . 7  (a) there is a velocity variation only in the 

flowdirection and velocities are consatant at each of the 



sections 1-1 and 2-2. In figure 4.7(b) velocity variations 

occur in both x and y directions. 

a )  One dimensional b) Two dimensional 

Figure 4.7 One and two dimensional flow 

Three dimensional flow is the most general type of flow in 

which the velocity vector varies in the three coordinate 

directions x, y and z and is generally complex. 

Thus in terms of the velocity vector V, the following apply: 

4.7 Discharge and Mean Velocity 

The total quantity of fluid flowing in unit time past any 

particular cross-section of a stream is called the discharge 

or flow at that section. It can be measured either in terms 



of mass, in which case it is referred to as the mass rate of 

flow m (eg. in kg/s) , or it can be measured in terms of 
volume, when it is known as the volumetric rate of flow Q (eg. 

in m,/s) . 

In many problems, the variation of velocity over the cross- 

section can be ignored and the velocity is assumed to be 
- 

constant and equal to the mean velocity V . If the cross- 

sectional area normal to the direction of flow is A, the volume 

passing the cross-section in unit time would be A . 7  . Thus: 

Q or The mean ve loc i t y  7 = - 
A 

In a real fluid flow, the velocity adjacent to a solid boundary 

will be zero. The velocity profile across a section of a pipe 

for laminar and turbulent flows are as shown in Figure 4.8. 

If u is the velocity at any radius r, the flow dQ through an 

annular element of radius r and thickness dr will be: 

dQ = Area o f  element x ve loc i ty  

= 2nrdr. u 

Hence, Q = / d Q  = / R2nr. u .  d r  
0 



a) Laminar flow b) Turbulent flow 

Figure 4.8 Velocity profiles 

The above integral can be evaluated if the reltation between 

u and r can be extablished. 

In general, if u is the velocity at any arbitrary location in 

the profile and A the total flow area, then the average 

velocity is given by: 

Example 4.1 

The velocity distribution for laminar flow between parallel 

plates is given by: u = K(Dy - y2) where u is the velocity at 
distance y from the bottom plate, D is the distance between the 

plates and K is a constant. Determine the average velocity of 

flow. 



Solution: 

Taking a unit width of the plates, and letting the average 

- 
velocity be V , 

4.8 Continuity Equation 

The equation of continuity is the mathematical expression for 

the principle of conservation of mass flow. 

4.8.1 One Dimension, Steady Flow: 

Consider a steam tube through which passes a steady flow 

of fluid. 

( I )  

,Stream tube 

4 

Figure 4.9 

14 5 



Mass rate of flow through dA, = Q ,  dA, v, 

At Section (1) : 

dAl = cross-sectional area 

of stream tube 

v, = avg velocity through 

stream tube 

- fluid density ( 2 1  - 

For the entire cross-section at (I), it will be k P I V I ~ I  

At Section (2) : 

dA2 = Cross-sectional area 

of stream tube 

v, = avg. velocity through 

stream tube 

Q, = fluid density 

Similarly mass rate of flow through entire section (2) will be 

For steady flow, principle of conservation of mass gives: 

~,v,o!A, = 1 p2V2&, = Constant 
A2 

For steady one dimensional flow where V, and A, represent the 

average velocity and cross-sectional area of section (1) and 

similarly v2 and A, for section(2), then 

PI = P 2  
For incompressible flow 



Therefore, 

vlAl = v2A, = Q = Constant (4 8 )  

Equation 4.8 is the continuity equation for steady, 

incompressible, one-demensional flow. 

L3  Q = A . V =  [-I =volume rateof flow=discharge. 
T 

units of Q : m3/s, t/sec, ft3/sec, etc. 

Example 4.2 

A conical pipe has a diameter of 10 cm and 15 cm at the two 

ends respectively. If the velocity at the 10 cm end is 2m/sec, 

what is the velocity at the other end and what is the discharge 

through the pipe? 

Solution: 

Continuity Equation: 

Q = A1vl = A2v, 

X X given: vl = 2m/sec, A, = - ( o . ~ ) ~ ,  = - ( 0 . 1 5 ) 2  
4 4 

X discharge, Q = vlAl = 2 x - ( 0 . 1 ) ~  = 0.0157 m3/sec 4 

=15.7Q/sec 



4 .8 .2  Two and Three Dimensional Flows 

For the most general three dimensional case the 

continuity equation may be derived by considering an elemental 

volume of sides Ax, Ay and Az in the cartesian co-ordinate 

system as shown in Fig. 4.10. Let the density at the centroid 

if the elemental space be Q and the components of velocity be 

u, v and w in the x, y, and z directions respectively. 

Figure 4.10 Flow through a three-demensional element 

Consider first the mass inflow and out flow through the face 

normal to the x-axis: 

Total mass inflow through the face on the left: 

Mass out flow through the opposite face: 

[ p u  + & I  AyAz ax 2 



Hence the net rate of mass influx into the element 

through these faces is: -a0 A X A ~ A Z  ax 

Similarly, net rate of mass influx through faces perpendicular 

to y axis is 

net rate of mass influx through faces perpendicular 

to z axis 

-a0 A x A y A z  az 

Total excess of mass passing into the element per unit time is: 
- 

The rate of change of mass contained in the element is given 

by: 

According to the prinicple of conservation of mass, the total 

excess rate of mass passing into the element should be equal 

to the rate of change of mass in the elemental volume: 

- I  ~ ( P Y )  + a ( ~ v )  + a01 A x A y A z  = d ( p A x A y A z )  i. e 
ax ay a~ at 



If the elemental volume is allowed to shrink, i.e Ax Ay Az + 

0, then the general equation of continuity in Cartesian 

coordinates becomes: 

For steady flow, it becomes: 

For steady, incompressible flow; it will be: 

For two dimensional, steady , incompressible flow one gets: 

Example 4.3 

Determine the value of v in a two-dimensional flow field when 

u = ax. 

Solution: 

A possible flow should satisfy continuity equation, 

= a Since u = ax, - ax 



a~ av Two dimensional continuity equation is - + = o  
ax ay 

a17 - ' u  = -a There fo re ,  - - -- a~ ax 

I n t e g r a t i n g ,  v = -/say = -ay + f, ( x )  

. . v = - ay  + f, ( x )  

Example 4.4 

- 
Does the velocity field given by U = 5x3 - 15x2 ji + t k  

represent a possible fluid motion? 

Solution : 

Here, u = 5 x 3 ,  v = - 1 5 x 2 ~ ~  = t 

In order to check for a physically possible fluid notion, one 

needs to look for complaince with the Continuity equation. 

For three-dimensional incompressible fluid, the continuity 

equation is: 



From the above, 

Substitution in the continuity equation gives: 

Since continuity equation is satisfied, the given velocity 

field represents a possible fluid motion. 

4.9 Rotational and Irrotational Flows 

The angular velocity of the fluid elements about their mass 

centres should be considered while discussing the kinematics 

of fluid flow. Accordingly, fluid motion in which the fluid 

particles do not rotate about their own axes is known as 

irrotational flow while fluid motion in which the fluid 

particles rotate about their own axes is known as rotational 

flow. These two types of flow are illustrated in figure 4.11 

Figure 4.11(a) refers to an ideal (non-viscous) fluid flow 

between two parallel plates. The velocity distribution is 

uniform. If a stick abc is laid normal to a stream line 0-0, 

it does not undergo rotation about an axis normal to the plane 

of the paper through b and hence it does not change its 

orientation as it moves in the flow direction. Such a flow is 

termed as irrotational. 



Figure 4.11 Irrotational and Rotational flows 

Figure 4.11(b) shows a two dimensional real fluid flow with 

non-uniform velcity distribution with the velocities near the 

bounder being smaller than in the region close to the centre. 

A stick abc kept normal to 0-0 initially rotates about axis at 

b. Since the belocity at c is higher than at a, the stick will 

attain an inclined position after moving through a short 

distance. The stick has started rotating about an axis at b 

and its orientation has changed. Such a flow is termed as 

rotational. 

Rotational and irrotational flows can be identified by 

determining the rotation of the fluid element at every point 

in a flow field. 

Rotation: consider two elementary lengths such as OA and OB 

of length 6x and 6y respectively in a fluid as shown in Figure 

4.12. 

Let v = velocity at o in the y direction. 

u = velocity at o in the x direction. 

av 
Thus, velocity at A in the y direction will be v + -6x ax 

a~ velocity at B in the x direction will be u + -6y 
ay 



Figure 4.12 Rotation 

Since velocities at 0 and A are different in the y direction, 

OA will rotate in the counter clockwise (+ive) direction. 

av (v + -6x) -v 
Thus, the angular velocity of OA - - ax - av - - 

6x ax 

Similarly OB will rotate in the clock wise (-ive) direction.. 

au u + -6y) - u 
The angular velocity of OB a~ - - au - - 

6~ ay 

If the rotation about the z-axis (i.e in the x-y plane), a,, 
is defined as the average rotation of the two elements OA and 

OB, then: 



Similarly: 

If at every point in a flow field the rotations ox, o, and o, 

are zero, then the flow is known as irrotational; otherwise, 

the flow is rotational. 

Thus for a two dimenstional flow in the x-y plan, o, = 0 

leading to - aV - - - aU as the condition of irrotationality. 
ax ay 

Example 4.5 

The velocity components of a two dimensional flow in the x-y 

plane are: u = -3y2 and v = -4x . Does this represent a 

possible flow? If the flow is possible is it rotational or 

irrotational? 

Solution: 

Continuity equation in two-dimensional incompressible flow is: 

Here, a u - = o ,  - av = 0 
ax ay 



Therefore , continuity is satisfied and the flow is possible. 
To check whether the flow is rotational or irrotational, use 

the equation for rotation about the z-axis which is: 

av a~ If a , = - - - = 0 ,  then the flow is irrotational 
ax ay 

otherwise, it is rotational. 

av au Thus - - - ax ay = -4 - (-6y) = -4 + 6y # 0 

Therefore, the flow is rotational. 

4.10 Stream Function 

Consider the streamline pattern of a two dimensional, steady, 

incompressible flow shown in Figure 4.13. 

L x  

Figure 4.13 Stream function 

Let A be a fixed position and B a variable position in the flow 

field. A and B may be joind by arbitrary curves such as APB 

and AOB. Let the thickness of the flow field in the Z 

direction be unity. 



Then, the rate of flow through curve APB is equal to the rate 

of flow through AQB since the flow between two streamlines must 

remain unchanged. But the rate of flow depends upon the 

positions of A and B. If A is fixed, the rate of flow becomes 

a function of the position of B only. This function is known 

as stream function and denoted by \k. If the value of \k at A 

is zero, then the value of \k at B represents the flow rate 

between positions A and B. consider any other point B 1  along 

the streamline through B. Since no flow occurs across BB , the 
flow through AB should be the same as the flow through APB. 

Hence, the value of \k at B t  should be the same as at B. Thus, 

the value of the stream function \k is constant along a 

streamline. Each streamline will have a different value of \k 

such that the difference in P values of two streamlines gives 
the flow rate between the two streamlines. 

The relationship between the velocity components in the x and 

y directions of a two dimensional flow and the stream function 

%P may be developed by considering the two streamlines shown in 

Figure 4.14. 

Figure 4.14 

Let the value of the stream function for streamline AB be \k and 

the value of the stream function for streamline CD be \k + A*. 

The normal distance between the two stream lines is An. Then, 



A$ = q. A n  , where q = average velocity of flow at section nm. 

Note that what is required is the difference in the value of 

the stream functions between two streamlines, and not the 

absolute value of 9, in the determination of the velocity of 

the discharge. Hence the value q = 0 can be assigned to any 

streamline. Flow rate across length mn equals the sum of the 

flow rates across mp and np. 

since = $ (x, Y) , 

Taking the velocity of flow across np (= by) to be u and that 

across mp (= bx) to be - v ,  it is clear that: 

Comparing this equation with the above total differential af 

q, it is clear that: 

u = and v = - 9 
ay ax 

Equation 4.15 is the relationship between the stream functi31-1 

in the x-y plane and the velocity components i.n the x and y 
directions. Examination of the continuity equation for tws- 

demensional incompressible flow i.e 



in light of the relations expressed in equation 4.15 and 

substitution gives: 

which shows that the continuity equation is identically 

satisfied. Therefore, the existence of a stream function \k for 

a flow implies a possible flow and conversely, for any possible 

flow, a stream function \k must exist. Considering the equation 

of a streamline in the x-y plane. 

or u d y -  vdx = 0 

Substituting the values of u and \k from equation 4.15, 

The left hand side of the above equation is the total 

differential d\k of = f(x,y). 

Since d%' = 0, \k = c = constant along a streamline. 



Example 4.6 

A stream function is given by 9 = x + y2 . Determine the 

magnitude of the velocity components in the x and y directions 

at (1,3) . 

Solution: 

The above stream function represents a possible flow since the 

au av continuity equation - + - = 0 + 0 = 0. ax ay 

At point (1,3) 

4.11 Velocity Potential 

Analogous to the principle that electric current flows in the 

direction of decreasing voltage and that the rate of flow of 

current is proportional to the difference in voltage potential 

between two points, the velocity of flow of a fluid in a 

particular direction would depend on certain potential 

difference called velocity potential. The velocity potential, 

denoted by @(phi), decreases in the direction of flow. It has 

no absolute value and is simply a scalar function of position 

and time. For steady flow, the velocity components u,v and w 



in the x, y and z directions respectively, in terms of 

velocity potential are: 

A potential line is a line along which the potential @ is 

constant. Thus if a potential function exists for a certain 

flow, then it is possible to draw lines of constant potential. 

Some of the properties of the potential function may be 

derived by substituting it in the equations of rotation and 

continuity. Substituting the values of the velocity components 

u, v and w of equation 4.16 in the expression for rotation, one 

obtains : 

~f + is a continuous function, 34 = 3k etc. 
azay ayaz 

Hence ox = a, = a, = 0 , which is the condition for 

irrotationality. Therefore, if a velocity potential @ exists 

then the flow should be irrotational and vice versa. 



substitution of the velocity components given in equation 4.16 

in the three dimensional continuity equation 4.10 leads to the 

Laplace Equation: 

Hence, any function @ which satisties the Laplace Equation is 

a case of steady, incompressible, irrotational flow and such 

a flow is known as potential flow. 

It should be noted that the stream function 9' applies both for 

rotational and irrotational flows. However the potential 

function @ is applicable only for irrotational flow. Equations 

4.15 and 4.16 may be used to establish the relationship between 

stream function 9 and potential function @ for an irrotational, 

steady, incompressible flow leading to the following: 

Equations 4.18 are known as the Cauchy-Riemann Equations. 

Example 4.7 

Show that = x2 - y2 represents a case of two dimensional 

flow and find its potential function. 



Solution: 

The two dimensional continuity equation will be: 

Thus continuity is satisfied and the stream function represents 

a case of two dimensional flow. 

Further: 

= ( 3 )  = ( =,  
a x 2  ax ax ax 

a2f - a c a@ a - - - -) = -(-2y) = -2 
ay2 ay a~ a~ 

Therefore, % + = 2 - 2 = o  ax2 ay2 

Thus, since \E satisfies the Laplace equation the flow is alsc 

irrotational. 



The velocity potential that satisfies both (a) and (b) is: 

4 = 2xy + C , where C is constant. 

Example 4.8 

In a two dimensional, incompressible flow velocity components 

are given by: u = x - 4y and v = -y - 4x. Sow that the flow 

satisfies the continuity equation and obtain the expression for 

the stream function. If the flow is potential obtain also the 

expression for the velocity potential. 

Solution: 

For an incompressible, two dimensional flow, the continuity 

equation is: 

Here, u  = x -  4y and v =  -(y + 4x) 

Therefore, - a U = l ,  and - dl7 = -1 ax a~ 

a~ av Thus,  - + -  = 1  + (-1) = O  ax ay 



i.e. the flow satisfies continuity equation. 

To obtain the stream function, 

(i) 

(ii) 

from (i): Jr =[(x-4y)dy=xy- 2y2 + f(x) + c 

But if Jr, = 0 at x = o and y = 0 , then the reference 

streamline passes through the origin, then C = 0 

(iii) Then 9 = xy - 2y2 + f (x) 

~ifferentiating (iii) with respect to x and equation to -v, 

: f (x) = /4xdx = 2x2 

To check whethere the flow is potential, the Laplace equation 

must be satisfied i. e. 



* + a 2 1 1 r = o  
ax2 ay2 

f rom g = 2x2 +xy - 2y2, 

Thus 4 - 4 = 0 showing t h a t  t h e  flow is p o t e n t i a l .  

To o b t a i n  t h e  v e l o c i t y  p o t e n t i a l ,  

But 4 ,=O at x = 0 and y = 0 ,  s o  that C =  0 

d T h e r e f o r e ,  - ( f  (y) = y 
dy 

Y or f (y) = - 
2 

y2 x2 Thus  4 = - + 4yx - - 
2 2 



4 .12  Flow net 

For any two-dimensional irrotational flow of an ideal fluid, 

two series of lines may be drawn as shown in Figure 4.15. 

These are: streamlines i.e. lines along which \k is constant 

and equipotential lines i.e. lines along which @ is constant. 

Consider the equipotential line AB along which is constant 

and equal to say 3. Since @ is constant along such a line, the 

Y )  

velocity tangential to such a line, 2 = v, = 0 . However, 
an 

+ =  @ ( X , Y )  

'+ =\v  ( x , y )  

- x  

since @ is varying in the s direction, the velocity normal tc 

the equipotential line, 3 = v, exists. Equipotential lines 
as 

Figure 4.15 Flow net 

thus have the property that the flow is always at right angle 

to them. 

Along streamlines such as CD, the stream function \k is 

constant. Therefore, 3 = v, = 0 i. e. there is no flow at 
as 



right angles to the ?I' = constant line. But -3 = v, exists. an 

Hence, the flow is always tangential to the ?I' = constant line. 

Thus, at every point along a streamline, the velocity is always 

tangential to it. This shows that tangents to a streamline and 

an equipotential line intersect at 90'. A series of 

streamlines and equipotential lines form an orthogonal grid. 

Such a system represented graphically by finite number of 

equipotential and stream lines is called a flow net. The flow 

net is composed of a family of equipotential lines and a 

corresponding family of streamlines with the constants varying 

in arithmetic progression. 

It is customary to let the change in constant between adjacent 

equipotential lines and adjacent streamlines be the same. If, 

at some small region of the flow net, the distance between 

adjacent streamlines = An and that between adjacent 

equipotential lines = As, then the approximate velocity v, (in 

the s direction) is given by: 

v, = -4 , in terms of the spacing of equipotential lines 
As 

and v, ;- , in terms of the spacing of streamlines. 
An 

Thus: As = An, since A 4  = -A$ . 

The flow net thus consists of an orthogonal grid that reduces 

to perfect squares in the limit as the grid size approaches 

zero. For a given set of boundary conditions there is only one 

possible pattern of flow of an ideal fluid. 



Example 4 .9  

The potential function of a two dimensional irrotational flow 

is given by 4, = Ax where A is a constant. Determine the stream 
function \k and draw a set of streamlines and equipotential 

lines. 

Solution: 

First check if @ = Ax satisfies the Laplace Equation. 

30 = , a24 = 0 ; B = 0 and - 3 = A and - 
ax ax2 ay a~ 2 

Therefore, - + -  94) 84) = 0 
ax2 2y2 

Hence, @ = Ax represents a fluid flow case. 

Next, find the stream function \k 

a0 S i n c e  -- = u =  -A and u = -- aq ax ay ' 

then 3 = A 
ay 

integrating, \k = Ay + f(x) 
Differentiating the above expression for \k with respect to x, 

Therefore, fl(x) = v = 0 

Hence, f (x) = constant 

Thus \k = Ay + C, where C is a constant 



The corresponding streamlines and equipotential lines are shown 

in Figure 4.16 representing the case of parallel flow where the 

streamlines are parallel to the x-axis. 

I . b  = constant 

Y= Constant 

Figure 4.16 

4.12.1 Construction of Flow Nets 

It is clear from the foregoing discussions that obtaining the 

flow pattern or flow net for steady two dimensional 

irrotational flow involves the solution of the Laplace equation 

with given boundary conditions. The Laplace equation is a 

second order linear partial differential equation. Thus for 

flow patterns that can be interpreted as results of 

combinations of simple patterns, the superpostion of the 

solutions of the Laplace equation for the simple patterns can 

lead to the determination of the given flow pattern. 

However, there are complex flow patterns of practical interest 

that are two involved for analytical solutions. In such cases 

fairly good approximations may be obtained by using mostly 

graphical method and electrical analogy method. The graphical 

method of construction of flow nets is presented and discussed 

below. 



Graphical Method: 

The graphical method is illustrated by considering the flow 

through the transition shown in Figure 4.17. 

Figure 4.17 Graphical construction of Flow Net 

Since there is no flow at right angles to the boundary, the 

fixed boundaries AB and CD coincide wirh streamlines. Far to 

the left of section AC and to the right of section BD, the flow 

is uniform and therefore the streamlines will be equally spaced - 
in these regions. Decide first on the number of streamlines. 

The more the number of streamlines, the more accurate will be 

the result, but more time will be spent in constructing the 

net. AC and BD represent equipotential lines. Mark equally 

spaced points on AC and BD representing the intersection of the 

streamlines with the equipotential lines through these 

sections. Between these corresponding points, streamlines car. 

be joined by smooth curves. In the narrower section BD, the 

spacing between the stream lines is narrower than the wider 

section AC and from continuity, the velocities at section BE 

will be higher than at section AC. Equipotential lines can nor; 

be drawn such that: 

- they intersect the boundary and other streamlines at 

right angles. 

- the distance between consecutive streamlines and t h ~  



distance between consecutive equipotential lines are 

equal so that the two form squares. 

- the diagonals of the squares form smooth curves 

which intersect each other normally. 

At the curved boundary, the latter two conditions may not be 

completely satisfied unless the spacings are very close or the 

mesh is very fine. Successive trials may be required to arrive 

at a satisfactory flownet. The flownet so drawn will be the 

same for various discharges and for geometrically similar 

transitions of various sizes. Typical flow nets are shown in 

Figure 4.18. 

Figure 4.18 



4.12.2 U s e s  of the F l o w  N e t  

A flow net of a two dimensional flow field under a given 

boundary condition, drawn to represent the flow pattern using 

a finite set of stream and equipotential lines will have the 

following uses: 

i) The velocity at any point in the flow field can be 

determined if the velocity at a given point is known 

using continuity of flow between two streamlines. 

ii) The flow net enables the determination of the 

velocity distribution and the pressure distribution 

the knowledge of which is necessary to calculate 

drag forces and uplift forces. 

iii) It makes the visualization of flow pattern possible 

thus enabling the modification of boundaries to 

avoid undesirable effects such as separation and 

stagnation. 



EXERCISE PROBLEMS 

4.1 A 200 mm diameter pipe bifurcates into a 120 mm diameter 

pipe and a 100 mm diameter pipe. If the flow through the 

200 mm diameter pipe is 100 t/s assuming the velocity in 

the branch pipes are equal, find the rate of flow through 

each of the branch pipes. (Ans. 59.1 t/s; 40.1 t/s) 

4.2 A diffuser at the end of a 100 mm diameter pipe is as 

show in Figure P 4.2. If the rate of flow throguh the 

pipe is 0.1 m3/s, find the exit velocity at the diffuser. 

What is the ratio between the exit velocity at diffuser 

and the velocity in the 100 mm diameter pipe? 

u 

Fig. P 4.2 

4.3 In a two dimensional incompressible flow the x-component 

of the velocity is given by u = 3x-y. Using the 

continuity equation, find the velocity component in the 

y-direction. (Ans. v = -3y) 

4.4 The velocity components in a two-dimensional flow are 

expressed as: 

u = y3/3 + 4x - x2y; and v = xy2 - 4y - x3/3 
show that these functions represent a possible case of 

irrotational flow. 



4.5 For a three dimensional flow, u = x2 + z2 + 5 and v = y2 

+ z2. Determine w. (Ans. w = -2 (x + y) z) 

4.6 ~etermine the stream function for a fluid flow if u = 2x 

and v = -2y. Determine also the potential function. 

4.7 If for a two dimensional potential flow, the velocity 

potential is given by @ = x(2y - 1) 
i) Determine the velocity at point p(4,5) 
ii) What is the value of the stream function !P at point 

P? 
(Ans. (i) u = 9 and v = 8 units 

(ii) \k = y2 - x2 - y, 4 units) 

4.8 State if the flow represented by: u = 3x + 4y and v = 

2x - 3y is rotational or irrotational. Find the 

potential function if the flow is irrotational and the - 
vorticity if it is rotational. 



CHAPTER 5 

DYNAMICS OF FLUID FLOW 

5.1 Introduction 

Dynamics of fluid flow deals with the forces respossible for 

fluid motion, the resulting accelerations and the energy 

change involved in the flow Phenomenon. 

Just as in mechanics of solids, the mechanics of fluids is 

also governed by Newton's Second Law of motion i.e 

Force = Mass x acceleration 

The force and the acceleration are in the same direction. 

However, since liquids do not possess regidity of form, their 

mass center changes unlike that of solids. Therefore, for 

fluids mass per unit volume is more important than the total 

mass. 

Thus in the x direction, Newton's Equation of motion will be: 

where: ZF, = sum of x components of all forces per unit 

volume acting on the fluid mass. 

a, = total acceleration in the x direction. 

e = mass per unit volume of the fluid. 

5.2 Forces Influencing Motion 

In genera1 the following different types of forces 

influence fluid motion: Force due to gravity, Pressure, 



viscosity, Surface tension, Compressibility, and Turbulence. 

Gravity force F,: is due to the weight of the fluid. Its 

component in the direction of motion causes acceleration in 

problems where gravity is important such as in open channel 

flow. F, is proportional to the volume of the fluid mass under 

consideration. The gravity force per unit volume, f ,  = pg and 

acts vertically downwards. 

Fluid pressure f o r c e  F,: This is the force exerted by a fluid 

mass on any surface in a direction normal to the surface. The 

pressure intensity p is the force per unit area and indicates 

a local intensity of pressure force. Fluid pressure produces 

acceleration in a given direction only if the pressure 

decreases in that direction. 

To determine the magnitude of the pressure force per unit 

volume, consider a small fluid element of cross-sectional area 

dA and length dx as shown in Fig 5.1. 

Figure 5.1 Pressure forces 

P is the pressure on the left face 

* is rate of change of pressure in the x direction 
ax 



P + * d x  is pressure on the right face ax 

Since there is a difference in pressure between the two faces, 

there exists a pressure force F,, in the x direction which can 

cause the fluid to move in the x direction; 

- - ap Thus the pressure force per unit volume is F -  - 
ax 

The negative sign indicates that F,, acts in the direction of 

decreasing pressure. 

Viscouse force F,: This force exists in all real fluids. When 

there is relative motion between two layers of a fluid, a 

tangential force is created due to the effects of viscosity. 

The shear resistance, F,, acts in a direction opposite to that 

of motion thus retarding the flow. 

Surface tension force F,: This force is important when the 

depths of flow or the related length dimensions are extremely 

small. F, = surface tension force/volume. 

Force due to compressibility F,: For incompressible fluids 

this becomes significant in problems of unsteady flow like 

water hammer where the elastic properties of fluids come into 

the picture. 

In most problems, F, and F, are neglected 

Forces due to turbulence F,: In highly turbulent flows, there 

isa continious momentum transfer between adjacent layers which 



causes normal and shear stresses due to turbulence. These are 

known as Reynolds stresses. These stresses, disignated by F, 

must be taken into consideration in cases of turbulent flow. 

5.3 Euler's Equation of Motion 

Fluid motion is influenced by all the forces mentioned 

above. Motion of a fluid in any direction is thus caused by 

the components of all the forces in that direction. Thus for 

the x direction, Newton's Second Law will give the following: 

Similar equations can be written for the other two coordinate 

directions. 

For ideal fluids which have no viscosity and neglecting F,, F,, 

and F,, the equation 5.1 reduces to: 

When proper expression for F,,, F,, and a, are substituted in 

Eqn. 5.2 it becomes what is known as Euler's Equation of Motion 

in the x direction. 

When viscous forces are considered, Equation 5.2 will be: 

This equation gives the Navier-Stoke's Equation in the x 

direction when the proper expressions for the forces and 

accelerations are substituted in it. For turbulent flow, the 

force due to turbulence must also be considered in addition to 



the forces in � qua ti on 5.3. Thus, we have 

F~ + F~~ + F ,  + F ~ ,  = pa, 

This gives the Reynold's Equation of motion in the x direction. 

In this discussion, we will consider Euler's Equation in some 

detail. 

ap In Equation 5.2, introducing 
-- ax 

to replace F,, and letting 

F, represent the gravity force per unit volume, we will have: 

Equation 5.5 is Euler's Equation for one dimensional flow. 

The general three dimensional form of Euler'S Equation of 

Motion can be written as: 

u,v and w are velocity components in the x, y and z directions 

and X I  Y and Z are components of fluid weight per unit mass in 

the x, y and z directions respectively. 



5 . 4  Integration of Eulerms Equation of Motion 

The integration of Euler's Equation along a streamline 

results in an important equation in fluid mechanics known as 

Bernoulli's Equation. 

Consider the forces acting on a fluid element of cross- 

sectional area dA and length ds along a stream line as shown 

in figure 5.2 

Figure 5.2 Forces acting on a fluid element 

The forces acting on the fluid element are those due to gravity 

and due to pressure gradient. It is assumed that the fluid is 

frictionless and all minor forces are neglected. Thus: 

Gravity force in the direction of motion = pgdAds.Cos0 

ap Pressure force in the direction of motion = --ds.dA 
as 

If v = velocity in the direction of motion, then Euler's 

Equation 5.5 becomes: 



Dividing Equation 5.7 by pdA.ds , one gets: 

Considering For steady flow, - a. = 0 
at 

and substituting 

Case = -- aZ the above equation becomes: 
as 

Equation 5.8 can also be written as: 

av a 
pv- = -- ( P  + y z )  

as as 

Equation 5.8 can be integrated along a streamline after 

multiplying each term by ds. Hence: 

v2 T h u s :  - 
2 

+ gz + /+ = C o n s t a n t  

Equation 5.9 is Bernoulii's Equation for both compressible and 

incompressible fluids. 

For incompressible fluid, Q is independent of pressure i.e. Q 

is constant. 



Hence, v2 - 
2 

+ gz + 2 = Constant 
4' 

Equation 5.10 is Bernoulli's Equation for incompressible fluids 

It can be written in the following two alternative forms: 

v2 - + z + 2 = Constant 
2 g  Y 

or Pf + y z + p  = constant 
2 

Each term in Equation 5.10, 5.11 and 5.12 represents energy of 

the fluid. 

The terms in Equation 5.10 describe the energy per unit mass. 

The terms in Equation 5.11 describe the energy per unit wt. 

The terms in Equation 5.12 describe the energy per unit volume. 

- 
Mostly, however, Equation 5.11 is used in pipe and open channel 

flows. Each terms in Equation 5.11 has the dimension of 

length. 

v2 - is known as the velocity head (Kinetic Energy per 
2g 

unit weight), 

- is known as the pressure head (pressure energy per 
Y 

unit weight), 

and 

z is known as the elevation or potential head 

(potential head per unit weight). 



Bernoulli's Equation states that in a steady flow of an ideal 

fluid, the sum of velocity head, pressure head and potential 

head along a stream line is constant. Applying it between two 

sections, 

or Bernoulli's Equation can also be stated as: The total 

energy per unit weight for a steady flow of an ideal fluid 

remains constant along a stream line. 

5 . 5  The Energy Equation 

For real fluids, some energy is converted into heat due to 

viscous shear and consequently there is a certain amount of 

energy loss. Thus, for real fluids, equation 5.13 becomes: 

Total energy at (1) = Total energy at (2) + Loss of 
energy between (1) and (2) 

where subscripts (1) and (2) refer to the two sections under 

consideration and h,, is the energy loss per unit weight of 

fluid between the two sections. Section (1) is the upstream 

and section (2) is the downstream section and flow takes place 

from section (1) towards section (2). Equation 5.14 is the 

enrgy equation for real fluid flow. 

If energy is added to the fluid between sections (1) and (2) 

such as by a pump, then the energy equation will be: 



Where I-$ is the energy head added by the pump. 

If energy is taken out of the system between sections (1) and 
(2) by a turbine, the energy equation will be: 

Where H, is the head supplied to the turbine. 

In all these cases, the velocity is assumed to be constant 

throughout the cross-section. This assumption may be valid in 

turbulent flows where the average velocity is not very 

different from the maximum. With varying velocities across a 

cross-section, a kinetic energy correction factor a should be 

applied to the kinetic energy head term. Referring to the - 
velocity distribution at a cross-section shown in Figure 5.3: 

Figure 5.3 

Let v = the velocity at a particular point in a cross-section 

where the elemental flow area is dA. 



Then, the kinetic energy per unit weight = 
2g 

y.v.dA 
Weight of fluid passing through dA per unit time = 

v2 ~inetic energy passing through dA per unit time = y . v. dA. - 
2g 

The integral of the above expression gives the total kinetic 

energy passing through the whole cross-sectional area A per 

unit time. 

- 
Using the mean velocity v and the kinetic energy correction 

factor a, the kinetic energy per unit time passing through the 

- i7 
section will be y . v.A. a- . 

2g 

Thus : 

Once the kinetic energy correction factor for a particular 

velocity distribution is known, then ~ernoulli~s equation 

between two sections (1) and (2) becomes: 



For laminar flow in a pipe, a = 2. For turbulent flow in a 

pipe, a varies from about 1.01 to 1.10 and is usually taken 

as unity except for precise work. 

Example 5.2 

Calculate the kinetic energy correction factor a for a 

parabolic velocity distribution in a pipe flow of radius r, 

given by: 

Solution : 

Referring to the figure below: 

Figure E 5.2 



Mean Ve loc i t y  7 = 2 = 
1, 

A A 



Example 5.3 

A closed tank of a fire engine is partly filled with water, the 

air space above the water being under pressure. A 5 cm 

diameter hose connected to the tank discharges on the roof of 

a building 4.0 m above the level of water in the tank. The 

frictional head loss in the hose is equivalent to 40 cm head 

of water. What air pressure must be maintained in the air in 

the tank to deliver 12t/s on the roof? 

Solution: 

Referring to Figure E 5.3 

Roof level 

. - c- 

Figure E 5.3 

The discharge Q in the hose = 12e/s = 0.012 mA3/s 

Velocity V in the 5 cm hose = 0'012 = 6.1 m / s  
5 (0.05)~ 
4 

v2 - . The velocity head - - 
6.1' = 1.9 rr, 

2 9  2 ~ 9 . 8 1  

Applying the energy equation between (1) and (2) taking the 

water level in the tank as datum: 



. . p1 - - - 6 . 3  m of water 

Thus, a pressure of 61.80 kN/m2 must be maintained in the air 

above the water in the tank to deliver 12 !/s of water on the 

roof. 

5.6 Power Considerations 

When water under pressure is lead through a turbine, hydraulic 

energy is converted to mechanical energy, in the form of 

turbine rotation, which may then be converted to electrical 

energy by means of a generator coupled to the turbine. Thus 

energy is extracted from the water. Converely, a pump adds 

mechanical energy to the water which enables it to be lifted 

from a lower level to a higher level reservoir or makes the 

transportation of the water from one location to another 

possible by overcoming resistance to flow in the piping system. 

The power extracted from or added to the water may be 

calculated from the following: 



Power P = Work done  per u n i t  t i m e  

= G.  H 

= Y w Q . H  

Where G is the weight rate of flow in N/s 

H is the energy head extracted or added in m 

Q is the discharge in m3/s 

y, is specific weight of water in N/m3 

The power P is in Nm/s. Since 1 nm/s is equal to 1 watt, the 

power P in Equation 5.17 is in watts when y, is in N/m3, Q is 

in m3/s and H is in meters. But in the MKS system y, is in 

kgf/m3 and y, = 1000 kgf/m3. 

Since 1 metric Horse power = 75 kg-m/s, then 

Y wQH P(in Horse power) = - 
75 

, where y, = 1000 kgf/m3 

If the efficiency of a turbine to convert hydraulic energy to 

mechanical energy in 7 ,  and the head of water extracted from 

the flowing water by the turbine is H, metres of water, then 

the power in Horse power supplied to the generator is: 

If the efficiency of a pump to convert mechanical energy tc 

hydraulic energy of the water is r], and the head of water - 
supplied to the water by the pump is H, metres of water, ther 

the pump Horse power required is: 



S i n c e  P(in KW) = 9.81 Q H 

and P ( i n  Horse power) = loooQH, then 
75 

1 Horse power = 0.736 kW 

Example 5 . 4  

Determine the Horepower supplied by the pump is 100 &/s of 

water is flowing through the system shown in Figure 5.4. The 

gauge reading is 100 cm and the gauge liquid is mercury, s = 

13.6. What is the pump Horsepower required if its efficiency 

is 91.5%? 

Figure E 5.4 

19 2 
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Datum 
I + 



Solution: 

Since pressure at c = pressure at D, 

PA + 
( Z A  - 1 . 0 ) ~ ~  + 1 . 0  x 1 3 . 6  x y w  = PB + ZBYw 

Dividing throughout by y,, 

Thus  

VA = v2 - x 4  = 3 . 1 8 m / s  and - - 3.182 = 0 . 5 2 ~  
~ ( 0 . 2 ) ~  2 9  2 x 9 . 8 1  

VB = 
v; - 

= 5 . 6 5  r n / s  and - - 5 . 6 5 2  = 1 . 6 3  m 
.n ( 0 . 1 5 ) ~  2 9  2 x 9 . 8 1  

Let the head supplied by the pump to the system = h,. Applying 

the energy equation between A and B (neglecting losses) and 

taking the plane through CD as datum: 

Thus h, = PB - PA + z A - z B + - - -  V: vA2 
Y, 2 9  2 9  

= 1 2 . 6  + 1 . 6 3  - 0 . 5 2  = 1 3 . 7 1  rn o f  water 



Horsepower supplied by the Pump - - 

The pump Horsepower required = 
Y wQhp - - 1 8 - 3  = 20 

7 5  x "lp 0.915 

Example 5 . 5  

A flow of 450 e/s of water enters a turbine through a 60 cm 

diameter pipe under a pressure of 147.1 kN/m2. The water 

leaves the turbine through a 90 cm diameter pipe under a 

pressure of 34.32 kN/m2. If a vertical distance of 2.0 m 

separates the centre lines of the two pipes, how much poser is 

supplied to the turbine? If the turbine is 90% efficient, how 

much power is made available to the generator? 

Solution: 

Referring to Figure E 5.5 

Applying the energy equation (neglecting losses) between 

sections (1) and(2) : 



Figure E 5.5 

f, 
I 
I \ Dl = 6 0 c m  

I 
0 - 

2 . 0 m  

. . h, = 1 3 . 5 9 4  m of water  

Datum 

Power supplied to the turbine = 9.81 x 0.45 x 13.594 = 60.01kW 

Power made available to the generator = 60.01 x 0.90 = 54.1 kW 

= 73.38 Horsepower 

1 
D - i 

G =  34.32 k ~ / r n ~  
!@ D2= 90cm 

I 1 



5.7 Piezometric Xead and Total Head 

Consider ~ernoullils equation i.e. 

z + 2 + * = constant 
Y 2g 

Each term in the above equation represents energy per unit 

weight of fluid and has the dimension of length. The sum of 

the elevation head and pressure head i.e. ( z + P / Y )  is 

called prezometric head and the sum of all the three is called 

total head, where the elevation head Z is measured with respect 

to an arbitrary datum. A piezometer is a simple device used 

to measure possitive pressures of liquids. It consists of a 

glass tube connected to the pipe wall in which the liquid can 

rise freely without overflowing. If piezometers were to be 

installed at different sections of the condiut shown in Figure 

5.4, the liquid will rise to different levels above the centre 

line of the conduit. 

Total Head line = Energy Grad* l lnr 

A t -  .-- A 

Figure 5.4 Schematic representation of Bernoulli's equation 



Figure 5.4 shows a graphical representation of Bernoulli's 

equation for a frictionless flow through a streamtube. If AA 

is a horizontal datum, the elevation of the centerline of the 

tube with respect to the datum at any section is the elevation 

head. The vertical distance, at any section, from the tube 

centerline to the level up to which the liquid rises in a 

piezometer tube represents the pressure head at that section. 

The locus of all points at a distance ( z  + p l y )  from the 

datum A-A is called the piezometric headline or the hydraulic 

gradeline. The locus of all points at a distance 

P vL (z + - + - )  = H above the datum is called the total headline 
Y 2 g  

or the energy gradeline. Thus at any section the total 

headline is always above the piezometric headline by an amount 

v 2  equal to the velocity head - If the pressure at a section 
2 9  

is sub atmospheric i,e. negative pressure or partial vacuum, 

the hydraulic grade line will be below the centreline of the ... 
cross-section by an amount equal to this negative pressure 

head. 

In real fluid flow, there is reduction of energy along the flow 

due to friction, minor losses due to local changes in velocity 

etc.. If a pump is installed in a piping system, there will 

be an abrupt rise in the energy gradeline by an amount equal 

to the head supplied by the pump. Likewise, there will be an 

abrupt drop in the energy grade line at a turbine by an amount 

equal to the head extracted by the turbine. It may also be 

noted that both the hydraulic and energy, gradelines are 

straight sloping lines irrespective of the pipeline being 

straight or curved since the slopes of these lines are referred 

to per unit length of the pipe and not unit length in any 

specified direction. 



In the following are shown typical Hydraulic gradeline (HGL)  

and energy gradeline [EGL] sketches for various flow 

conditions. 

5.7.1 Gravity flow between two reservoirs through a straight 

pipeline. 

Figure 5.5 HGL and EGL for flow between two reservoirs 
connected by a uniform diameter pipe 

For a straignt and uniform diameter pipe, the EGL and HGL will 

be straight, parallel lines and their slope will represent the 

rate of head loss. There are local (minor) losses at exit from 

reservoir A and at entrance to reservoir B. H is the total 

head loss between reservoir A and B or it is the head causing 

the flow. 



5 . 7 . 2  Pipe discharging freely into the atmosphere from a 

reservoir 

Figure 5.6 H G L  and E G L  for pipe discharging freely into the 
atmosphere 

5.7.3 Two reservoirs connected by varying diameter pipes. 

F i g u r e  5.7 H G L  and E G L  for varying diameter pipes 
connecting two reservoirs 

The smaller diameter pipe in the central portion introduces a 

contraction at its beginning and an enlargement at its end in 

the direction of flow. Thus in addition to frictional losses 



in the straight pipes, there will be local losses called 

entrance loss, contraction loss, enlargement loss, and exit 

loss and the HGL and the EGL will be as shown. It is seen that 

the HGL may rise in the direction of flow when the flow passes 

from a smaller to a larger diameter pipe since there will be 

an increase in pressure with a decrease in velocity and since 

the rate of energy loss and velocity head will be smaller in 

the larger pipe. But the EGL can never rise in the direction 

of flow (unless there is an external input of energy) as there 

is always a continuous loss of energy. 

5 .7 .4  Free discharge through a nozzle in a pipelin~ containing 

a meter and a value. 

m a t o r  Val vo Nozzol  I 

Figure 5.8 

5.7.5 Pipeline with a pump 

A pump in a pipeline system adds energy to the fluid flow and 

thus produces a sudden vertical rise in the hydraulic gradient. 

h, = entrance loss 

h,, = head loss in suction pipe 



Figure 5.9 HGL and E G L  pipe line with a pump 

hl, = head l o s s  in delivery pipe 

v: - = exit velocity head = exit head loss 
2 9  

h, = head supplied by the pump 

z ,  = static lift = level difference between the 

reservoirs. 

It is clear from Figure 5.9 that: 

v; h = 2, + he + h1, + hl, + - 
P 2 g  
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i.e h, = static lift + head loss in suction pipe + head loss in 
delivery pipe. 

5 . 7 . 6  Discharge through a siphon 

The hydraulic gradeline for a full flow condition in a siphon 

will be a straight line as if the pipe were taken straight from 

reservoir to reservoir. 

Figure 5.10 HGL and EGL for siphone flow 

5 . 7 . 7  Discharge in an open channel 

In open channel flow, atmospheric pressure acts on the water 

surface. Therefore the water surface and the hydraulic grade 

line should coincide. 

5 . 7 . 8  Discharge over an ogee spillway 

Figure 5.12 show the HGL and EGL for flow over an Ogee spill~ay 

with a hydraulic jump on the downstream apron. 



(2) 

Figure 5.11 HGL and EGL in open channel flow 

Figure 5.12 HGL and EGL for flow over a spillway 

5 . 8  Impulse - Momentum Equation 

The impulse momentum equation, along with the continuity 

eqcation and Bernoulli's Equation is the third basic tool for 

the solution of flow problems. Its application leads to the 

solution of problems in fluid mechanics involving forces and 

changes in veloctiy and which cannot be solved by the energy 

principle alone. 



In the discussions that follow, steady one dimensional flow 

case will be used to develop the momentum equation since this 

approach has been found to be sufficient in the majority of 

cases. 

The impluse momentum equation for fluids can be derived form 

Newton's 2nd Law of motion which states that the resultant 

external force acting on a fluid mass in any direction is equal 

to the time rate of change of linear momentum in that 

direction. 

This may be obtained from Newton's Second Law of motion as 

follows : 

or d 
F = - (mv)  = r a t e  o f  change o f  Momentum 

d t  

The above may written for steady flow as: 

dv is the change in velocity between the exit and entrance to 
a control volume considered. 

Where v2 is the velocity at exit and v, is the velocity at 

entrance to the control volume and F, v2 and v, are in the same 

direction. 

consider the flow in the stream tube shown in Figure 5.13 

2 0 4  



Figure 5.13 Development of the momentum principle 

Let AA BB be the control volume. 

Within the control volume the internal forces cancel out. 

Summation of forces on the control volume will yield only the 

external forces at the control surfaces. 

Forces acting on the control surfaces are: 

1. Forces F, and F, at ends. 

2. Weight W 

3. Reaction force R on the Whole Control Volume 

Equilibrium equations in the x and y directions will be 

Equation (5.19) and (5.20) give the net force in the x and y 

directions. 



To determine the change of Momentum of the fluid as it passes 

through the control volumes: 

Let in a small internal of time the fluid move from postion AA 

BB to AtAt BIBt. The Mass A'A1 BB does not experience any 

change in Momentum and may be takes as stationary. 

Thus the differential change in Momentum is equal to the change 

in Momentum as the fluid moves form AA to AtAt and BB to BtBt. 

Mass of fluid entering the control volume in time dt is Q~dt. 

Assuming the fluid to be incompressible, the mass of fluid 

leaving the control volume in the same time interval dt is 

Q~.dt. 

Thus the change in momentum as the fluid moves into and out of 

the control volume will be: 

Change in Momentum = Momentum at end BB - Momentum at end AA 

The rate of change of momentum in the x and y directions may 

be obtained from the general equation 5.21. Thus: 

The final momentum equations in the two coordinate directions 

may be obtained from equations 5.18, 5.22 and 5.23 as: 

In the x direction: 

X'F,  = pQ(v2, - v,,) 



In the y driection: 

For a specific situation, the expressions for CF, and CF, are 

substituted in the momentum equation from equations 5.19 and 

5.20 respectively. 

The velocity components in the momentum equation is assumed to 

be constant and is the average velocity at the cross-section 

considered. In situations where the velocity is not constant 

across a cross-section, a correction factor p called the 

momentum correction factor, similar to the kinetic energy 

correction factor explained in section 5.5, needs to be applied 

to the average velocity components. Thus for non-uniform 

velocity of flow, 

Where PI and 0, are the momentum correction factors at section 

1 and section 2 respectively. To obtain the value of P at 

a section, the momentum based on the average velocity is 

equated to the integral of the momentum of the elemental stream 

tubes over the entire cross section. 

Thus : 

PQQPV, = p d Q . v ,  = p l  d Q .  vx 
A A 

where: d Q = v x d A  and Q =  VA 



Substituting, 

of more genergally, 

p = I/ (I)=& 
A A V  

EXERCISE PROBLEBMS 

5.1 Water flows through a horizontal 150 mm pipe under a 

pressure of 4.14 bar. Assuming no losses, what is the 

flow if the pressure at a 75 mm diameter reduction is 

1.38 bar? (Ans. Q = 0.11 m3/s) 

5.2 Water flows upwards in a vertical 300 mm pipe at the rate 

of 0.22 m3/s. At point A in the pipe the pressure is 2.1 

bar. At B, 4.6 m above A, the diameter is 600 mm and the 

head loss from A to B equals 1.8 m of water. ~etermine 

the pressure at B. 

5.3 The pressure inside the pipe at S (fig. P 5.3) must not 

fall below 0.24 bar absolute. Neglecting losses, how 

high above water level A may point S be located? 

(Ans. 6.6 m) 



Fig. P 5.3 

5 .4  In Fig. P 5 .4  the flow was found to be inadequate and it 

was decided to install a pump near the tank to increase 

the flow by 25%.  Neglecting losses calculate the required 

horsepower of the pump. 

IS cm dlam. 

Fig. P 5.4 

5 . 5  A turbine is supplied with water from a reservoir which 

is 2 0 0  m above the level of the discharge pipe. The 

discharge through the pipe is 0 .20  m3/s. If the power 

output from the shaft of the turbine is 3 1 0  kW and it has 

a mechanical efficiency of 9 0  per cent, calculate (a) the 

power drawn from the reservoir, (b) the hydraulic power 

delivered to the turbine. (Ans. 3 9 2 . 4  kW, 344 .4  kW) - 



5.6 A closed tank contains water with air above it. The air 

is maintained at a pressure of 103 kPa and 5 m below the 

water surface a nozzle discharges into the atmosphere. 

At what velocity will water emerge from the nozzle? 

5.7 How much power must be supplied for the pump in Fig. P 

5.7 to maintain readings of 250 mm of Mercury vacuum and 
275 kPa on gages (1) and (2) respectively, while 

delivering a flowrate of 0.15 m3/s of water? (Ans. 54.36 

kW) 

Fig. P 5.7 

5.8 Calculate the discharge per unit width through the 

frictionless sluice gate, shown in Fig. P 5.8, when the 

depth h is 1.5 m. Also calculate the depth h for a flow 

rate of 3.25 m3/s/m. 

Fig. P 5.8 



5.9 The turbine in Fig P 5.9 develops 75 kW when the flow 

rate is 0.6 m3/s. What flow rate may be expected if the 

turbine is removed? (An. 1.118 m3/s) 

Fig. P 5.9 

5.10 Determine the shaft horsepower for an 80 percent 

efficient pump to discharge 30 C/s through the system of 

Fig P 5.10. The system losses, exclusive of pump losses, 

are 12 ~ ~ / 2 ~ ,  and H = 16 m. 

Fig. P 5.10 



CHAPTER 6 

APPLICATIONS OF BERNOULLI'S AND 

MOMENTUM EQUATION 

6.1 Applications of Bernoulli's Equation 

6 . 1 . 1  Introduction: 

Bernoulli's equation is one of the important tools for solving 

many problems in fluid mechanics. It is applied either singly 

or in combination with the continuity and momentum equations 

depending upon the desired result. However, the following 

assumptions that were made in the derivation of Bernoulli's 

equation should be carefully borne in mind while applying the 

equation, 

i) The flow is assumed to be steady i.e. there is no 

variation in the pressure, velocity and the density of the 

fluid at any point with respect to time. However, Bernoulli's 

equation can be applied without appreciable error in problems 

of unsteady flow with gradually changing conditions. Thus a 

problem of emptying a large reservoir, where the liquid level 

does not drop too rapidly, can be solved by applying 

Bernoulli's equation inspite of the fact that the flow is 

strictly unsteady. 

ii) Bernoulli's equation holds true strictly only along 

a streamline since it is derived by integrating Euler's 

equation of motion along a streamline. However, in fully 

turbulent flows where variations in velocity across a section 

is not appreciable, the use of the mean velocity enables the 

application of Bernoulli's equation without appreciable error. 

iii) The flow is assumed to be incompressible . Since 

liquids are generally considered incompressible, Bernoulli's 

equation is applicable for liquids. However, the equation can 



also be applied to gas flow problem when there is little 

variation in pressure and temperature. 

iv) The equation is derived for ideal fluid where loss 

of energy due to friction does not exist. For real fluid flow 

in which frictional head loss occurs, this loss must be 

considered and included in Bernoulli's equation. But when the 

two sections considered are close to each other, frictional 

losses may be neglected. 

Applications of Bernoulli's equation in some important devices 

in both closed conduit and open channel flows will be discussed 

in the sections that follow. In all cases loss of energy 

occurring is ignored in the derivation of the equations and 

then the theoretical results are corrected by experimentally 

determined coefficients to allow for the ignored loss of head. 

6.1.2 The Pitot Tube 

The pitot tube is used to measure the velocity of a stream. 

It consists of a simple L-shaped tube facing the oncoming flow 

(Fig. 6.1 (a) ) . If u is the velocity of the stream at A, a 

particle moving from A to B will be brought to rest so that u, 

at B is zero. B is called the stagnation point. 

From Bernoulli's equation between A and B, datum through AB, 

Total energy per unit = Total energy per unit 

weight at A weight at B 



P~ - PA + -  Thus - - - u , since u,  = o 
Y w  Y w  2g 

P B = h + Z  PA = Z and - Since - 
Y w  Y w  

vel oci tya t A  = u r n  

P A  
( a )  

Hemlsp herlcal 

'"7 w I I I I 

Static 
pressure, 

Figure 6.1 Pitot tube 



When the Pitot tube is used in a channel, the value of h can 

be determined directly, as in Fig. 6.l(a). But if it is to be 

used in a pipe, the difference between the static pressure (p,) 

and the pressure at the impact hole ( e .  the stagnation 

pressure p,) must be measured with a differential pressure 

gauge, using a static pressure tapping in the pipe wall [Fig 

6.l(b)] or a combined Pitot static tube [Fig 6.l(c)]. In the 

Pitot static tube, the inner tube is used to measure the impact 

(stagnation) pressure while the outer sheath has holes in its 

surface to measure the static pressure. 

The theoretical velocity u = requires calibration to 

obtain the real velocity. 

The real velocity u, = C m  , where C is the Pitot-tube 

Coefficient and h is the difference of head measured in terms 

of the flowing fluid. C usually varies between 0.95 and 1.00. 

For the Pitot-static tube [Fig. 6 . l ( c )  ] the value of C is unity 

for Reynolds number p u ~ / p  > 3000 , where D is the diameter of 

the tip of the tube. 

Example 6.1 

A pitot-static tube used to measure air velocity along a wind 

tunnel is coupled to a water manometer which shows a difference 

of head of 5 mm of water. The density of air is 1.2 kg/m3. 

Determine the air velocity assuming the pitot-tube coefficient 

is unity. 



solution: 

V e l o c i t y  o f  a i r  = ~m 
where C = tube coefficient = 1.00 

h = the difference in head expressed in terms of head of 

the flowing fluid i.e. air. 

. V e l o c i t y  o f  a i r  = 1.0 J2 x 9.81 x 4.167 = 9.04 m / s  

6.1.3 The Venturi Meter 

The Venturi meter is a device used to measure the rate of flow 

or the discharge Q in a pipe. It consists of a short 

converging conical tube leading to a cylindrical and straight 

portion called the I1throatw which is followed by a diverging 

section, Fig. 6.2. The entrance and exit diameter is the same 

as that of the pipe line into which it is inserted. The size 

of a venturi meter is specified by the pipe and the throat 

diameter; for instance a 6 by 4 cm venturi meter fits a 6 cm 

diameter pipe and has a throat diameter of 4 cm. The angle of 

the convergent cone is between 20" and 40", the length of the 

throat is equal to the throat diameter, and the angle of the 

divergent cone is 7" to 15". Pressure tappings are taken at the 

entrance and at the throat and the pressure difference is 

measured by a suitable gauge. The pressure difference created 

as a result of the constriction is dependent on the rate of 

flow through the meter. 

The expression for the discharge is obtained by considering 

sections 1 and 2 at the inlet and throat respectively. 



Converging 

Diverging section 

Piazomster rings 

Leads to gauge flllsd with 
liquid In pipeline Spec. wt = T 

Spec. w t. o f  gauge Ilquld = 'Sg 

w 
Figure 6.2 Venturi meter 

Neglecting losses between inlet and throat and applying 

Bernoulli's equation between sections 1 and 2, datum through 

the centerline gives: 

For a horizontal meter, z ,  =z,. 

2 vz" - v1 
T h u s  : - - P1 - P2 

2 9  Y 



From c o n t i n u i t y  e q u a t i o n :  a,v, = a2v ,  

Substituting in equation 6.2, 

Discharge Q = a, vl = 
a1 a2 . r n H  d m  

where H = 
(Pl - P2) 

= pressure difference expressed 
Y 

as head of the flowing fluid with specific 

weight y .  

In equation 6.3, Q is the theoretical discharge. 

a 
1f m = L  is substituted, equation 6.3 becomes: 

a2 



The actual discharge is obtained by multiplyingthe theoretical 

discharge Q by the coefficient of discharge C, obtained 

experimentally. 

T h u s ,  A c t u a l  discharge = CdP = caal  \I 2 gH 
m2 - 1 

The value of C, is a function of the ratio of throat to inlet 

diameter and the Reynolds number. For low diameter ratios and 

high Reynolds number, C, is between 0.97 and 0.99. For the set 

up shown in Figure 6.2, the value of the pressure difference 

H is obtained by writing the manometric equation starting from 

the entry section 1 as: 

It can be shown that where the pressure difference is measured 

by a U-tube differential manometer, the value of x is 

independent of the inclination of the Venturi-meter. 

Example 6.2 

Water flows upwards in a 200 mm by 100 mrn vertical Venturi- 

meter. The U-tube manometer with a gauge liquid of specific 

gravity 1.25 connected to the entrance and the throat registers 

a difference of 1 m of the gauge liquid. Taking the 

coefficient of the meter to be 0.99, determine the rate of 

flow. 



solution: 

From the given data: 

d , = 0 . 2 m 1  d 2 = 0 . 1 m ,  x = l m ,  S q = 1 . 2 5  
a n d  C, = 0.99 

- n x 0 . z2  Thus :  - = 0 .0314  m 2  4  

= 0 .25  m o f  water 

Using Equation 6.4, 

Q = C,. a, 4 
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6.1.4 The Orifice Meter 
 
The orifice meter consists of a concentric, sharp-edged 
circular orifice made in a thin plate which is clamped between 
the flanges of a pipe, Figure 6.3. It is used for measuring the 
flow in a pipe, by relating the pressure difference between a 
section immediately upstream of the plate (section 1) and the 
vena Contracta of the issuing get downstream of the plate 
{section 2). 
 
Figure 6.3 shows an orifice plate inserted in a pipeline. The 
fluid passing through the orifice contracts in area. The 
section of the stream where the cross-sectional area is minimum 
is called the Vena Contracta and forms at a distance of about d1/2 
down stream from the plane of the plate, where d1 is the pipe 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    Figure 6.3 Orifice meter 

A1 

d1 

area 
A0 

Area A2 

(1) (2) 

Specific weight γ 

H 

Specific weight γo 



The flow cross-sectional area at the vena contracta is minimum 

and the velocity is maximum and hence the pressure is minimum. 

Thus, as in the case of the venturi meter, the discharge may 

be calculated by measuring the pressure difference between the 

centers of the sections (1) and ( 2 )  . 

Applying Bernoulli's equation between the centers of the 

sections (1) and (2), datum through the centre line of the 

pipe : 

From continuity equation, a, vl = a, v, 

. . a2 v1 = - a, - a2 .vz = cC- .v2, where cc - - 
dl a, a‘, 

2 

Thus : - c-<] = h 
2g a1 

Introducing the coefficient of velocity c,, the actual velocity 



The actual discharge Q will be 

Q = a2 . v~~ = C, . a,. v2, 

where cca,  = a, and ccc ,  = C, 

The above equation for Q may further be simplified by absorbing 

the two coefficients and the other constants into a single 

coefficient to give: 

If the differential manometer reads a gauge difference x, it 

can be shown that: 

The orifice coefficient C depends upon the ratios of the 

orifice and pipe areas and the Reynolds number of the flow. 

The coefficient C of the orifice meter is much lower than that 
? 

of the venturi meter with values normally ranging from 0.6 to 



Example 6.3 

An orifice meter, fixed to a 25 cm diameter pipe, has a 

diameter of 10 cm. The pipe conveys oil of specific gravity 

0.9. Calculate the discharge if a mercury differential 

manometer reads a difference of 80 cm and C = 0.65. 

Solution: 

From equation 6.5 

Then Q = 0.0718 m 3 / s  = 71.8 Q / s  

6.1.4 Flow Through an Orifice 

An orifice is an opening in the side or bottom of a tank or 

reservoir through which liquid is discharged in the form of a 

jet, normally into the atmosphere. Normally orifices are 

circular in cross-section. The flow velocity and thus the 

discharge through an orifice depend upon the head of the liquid 

above the level of the orifice. The flow is thus strictly 

speaking unsteady since the flow velocity varies with varying 

head as the outflow continues. However, for large tanks where 

the drop in level is small compared to the velocity of outflow 

through the orif ice, steady flow may be assumed and Bernoulli I s  

equation applied without appreciable error. Distinction will 

be made between small orifice and large orifice. 



Small Orifice: The term 'small orifice1 is used for an orifice 

which has diameter or vertical dimension small compared to the 

head producing the flow so that the head is assumed not to vary 

appreciably from point to point across the orif ice. Figure 6.4 - 
shows a small opening in the side of a large tank containing 

a liquid with specific weight y and with a free surface open 

to the atmosphere. At point A, the pressure PA is atmospheric 

and the velocity V, i.e the rate of drop of the reservoir level 

will be negligibly small if the tank is large. Point B is a 

point in the vena contracta where P, is atmospheric and the 

velocity v, is equal to the velocity v of the jet. 

c t a  

Figure 6.4 Flow through a small orifice 

Applying Bernoulli's equation between A and B, datum through 

the center of the orifice and neglecting loss of energy between 

A and B: 

.. veloci ty  of jet  v  = m H  



Equation 6.6 is a statement of Torricellils theorem, which is 

that the velocity of the issuing jet is proportional to the 

square root of the head producing the flow. If A is the cross- 

sectional area of the opening, then 

T h e o r e t i c a l  d i s c h a r g e  Q = A .  m~ 

The actual discharge through the orifice is much less than the 

theoretical discharge and must be obtained by introducing a 

discharge coefficient C,, so that 

The actual discharge is less than the theoretical discharge 

because : 

i) The actual velocity of the jet is less than that 

given by equation 6.6 since there is a loss of 

energy between A and B. Thus 

a c t u a l  vel o c i  t y  a t  B = c, . v = c, . m~ (6-8) 

where c, is coefficient of velocity, which has to 3e 

determined experimentally. c, is of the order of 

0.97. 

ii) The area of the issuing jet at the vena contracra 

i.e. at B, is less than the area of the orifize 

opening 

Actua l  a r e a  of jet a t  B = c,A 



where c, is coefficient of contraction and depends on 

the profile of the orifice. For sharp edged orif ice 

c, is of the order of 0.64. 

- 
Thus, from equation 6.8 and 6.9, the actual discharge will be: 

Actual discharge = Actual velocity at B x Actual area at B 

- - cv .  m~. C, .A  = C , C , A ~ H  

Comparison of the above with equation 6.7 shows that: 

To determine the discharge coefficient c,, the actual volume 

passing through the orifice in a given time is collected and 

compared with the theoretical discharge. 

T h e n ,  cd = 
A c t u a l  m e a s u r e d  d i s c h a r g e  

T h e o r e t i c a l  d i s c h a r g e  

Similarly, by measuring the actual area of the jet and the 

velocity at the vena contracta, the coefficients of contraction 

C, and coefficient of velocity C, could be determined as: 

C, = 
Area  o f  j e t  a t  v e n a  c o n t r a c t a  

Area of o r i f i c e  

C, = 
V e l  oci  t y  a  t v e n a  c o n t r a c t  

T h e o r e  t i c a l  vel o c i  t y  

For the case where the orifice is in the side of a tank (i.e. 

not at the bottom), measurement of the profile of the jet 

enables the determination of the actual velocity of the jet and 

thus that of C,. Referring to Figure 6.5: 



Figure 6.5 Profile of a jet 

In Figure 6.5, point B is the vena contracta and at point C the 

jet falls a distance y vertically in a horizontal distance x 
from the vena contracta. Let t be the time taken for a fluid 

particle to travel from B to C. If air resistance is 

negligible and the horizontal component of the velocity v 

remains unchanged, then the distance travelled in time t will 

be: 

x = v.t 

and since the initial vertical velocity component at B is zero, 

the vertical distance y travelled in the same time t will be: 

from which: v =  - and t = d %  
t 



so that = actual velocity of jet at B. 
2Y 

Since theoretical velocity at B = m H  , then 

A c t u a l  v e l o c i t y  - \ l gx2 /2y  = 4 n b  c, = - 
T h e o r e t i c a l  v e l o c i t y  &m~ 

Hydraulic coefficients of some typical orifices and mouth 

pieces are given in figure 6.6 below. 

Sharp edge orfic; (b)l  Bell rnsuthed oriflce T c )  Mouthpiece u -- - 

Cc=O.s -J$sl.o -=L Vary with 
C p  I .O Cg0.75 f lare  and 

Cd=0.5 length 

1 
( d l  Borda'r (re-entrant l ( e l  Divergent tube 

Mouthpieces 

Figure 6.6 Hydraulic coefficients for some typical orifices 
and mouthpieces 

Example 6 . 4  

Find the diameter of a circular orifice to discharge 0.015 m3/s 

under a head of 2.4 m using a coefficient of discharge of 0.6. 

If the orifice is in a vertical plane and the jet falls , 0 . 2 5  

m in a horizontal distance of 1.3 m from the vena contracts, 

find the value of the coefficient of contraction. 



Solution: 

From the given data: 

Q = 0.015 m3/s, H = 2.4 m C, = 0.6 

and y = 0.25, x = 1.3 m. 

i.e diameter of the orifice = 6.81 cm 

Since cd = c, c, , 

Large Orifice: An orifice is classified as 'large' when the 

vertical height of the orifice is large so that the head 

producing the flow is substantially less at the top of the 

opening then at the bottom. The discharge calculated using the 

formula of small orifice, where the head H is measured to the 

centre of the orifice, will not be the true value since the 

velocity the will vary substantially from top to bottom of the 

opening. In this case theoretical discharge is calculated by 



integrating from top to bottom the flow through thin horizontal 

strips across the orifice. 

Consider the large rectangular orifice of width B and depth D 

shown in Figure 6.7. 

Figure 6.7 Flow through a large orifice 

As shown in Figure 6.6 the top and bottom of the orifice 

opening are at depth H, and H, respectively below the free 

surf ace. 

Consider a horizontal strip across the opening of height dh at 

a depth h below the free surface. 

Area of the strip = Bdh 

Velocity of flow through the strip = 

I 

Discharge through strip, dQ = B F g  . hT dh 

To obtain the discharge through the whole opening, integrate 

dQ from h = H, to h = H, 



1 
2 . Discharge  Q, = B ~ ~ [ ~ ~ ~ ~  & = - B J T ~ ( ~ : / ~  - *:/2) 

H1 3 

2 
The a c t u a l  d i s c h a r g e  Q = - C, . B r g  [H:'~ - H : / ~ ] ,  

3 

Example 6 . 5  

Water flows from a reservoir through a rectangular opening 2 

m high and 1.2 m wide in the vertical face of a dam. Calculate 

the discharge in m3/s when the free surface in the reservoir is 

0.5 m above the top of the opening assuming a coefficient of 

discharge of 0.64. 

Solution 

Referring go Figure 6.6: 

= 2.2679 (3.9528 - 0.3536) 

= 8.16 m 3 / s  

Thus, the d i s c h a r g e  i s  8.16 m 3 / s  



Unsteady Flow Through Small Orifice: Problem of discharge 

through an orifice under varying head strictly fall under 

unsteady flow. But if the rate of fall of the head is very 

small compared to the velocity of efflux, Bernoulli's equation 

may be conveniently applied without appreciable error. The 

following two cases of unsteady flow through small orifice are 

of practical importance and will be considered: 

i) Time required for a desired fall of liquid level in 

a tank due to efflux from an orifice. 

ii) Flow from one tank to another. 

Time required to empty a tank of uniform cross-section: 

Consider a tank of uniform cross-sectional area A discharging 

liquid through an orifice of cross-sectional area a installed 

at its bottom as shown in Fig. 6.8. 

Figure 6.8 Flow through a small orifice at tank bottom 

Let the height of the liquid be at h above the vena contracta 

at some instant. The theoretical outflow velocity at that 

instant will be: 



Let the liquid level fall by an amount dh during a time 

interval dt. The volume of liquid that has flown out in time 

dt will be: 

Volume of liquid that has passed through the orifice in the 

same time interval dt will be: 

The time T required for the liquid level to drop from H, to H, 

may be found by integrating the above equation between the 

limits HI and H,. 

Since H, > H, , the term in brackets is negative, thus T will 
be positive. Taking the minus sign out of the bracket; 



The tank will be fully emptied when H, = 0. 

Equation 6.11 gives the required time in seconds. 

Flow from one tank to another through an orifice: 

Consider two adjacent tanks of uniform cross-sectional area A, 

and A, connected by an orifice of cross-sectional area a as 

shown in Figure 6.9. 

r dh. - 
- T *P 

Area of the O r i f i c e  = a  

Figure 6.9 Flow between adjcent vessels through an orifice 

Let H, = initial difference between the liquid levels in the 

two tanks 

H, = final difference in level between the liquid levels 

in the two tanks 

At any instant, let the difference in levels be H. 

The theoretical velocity of the liquid through the orifice at 

this instant is 

After a small time interval dt, let the fall in head in tank 

A, be dh. The volume that has gone out of tank A, will be dhA,. 

If y is the change in level of tank A,, then the volume cornming 

into tank A, in time dt will be y - A Z -  
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From continutiy, y . A 2  = &A, 

Then the total change in head difference between A, and A, will 

Equating the flow through the orifice for the time dt to the 

volume of displacement: 

Integrating the above between H, and H,, the time T required for 

the level difference in the two tanks to drop from H, to H, is 

The time required for the level between the two tanks to 

equalize is obtained when H, = 0. 



Example 6.6 

A rectangular tank 10 m x 6 m has an orifice with 10 cm 

diameter fitted at its bottom. It water stands initially at 

a height of 5 m above the orifice, what time is required for 

the level to drop to 1 m above the orifice. Take the orifice 

coefficient to be 0.64. 

Solution: 

The time required for the level to drop from H, to H, due to 

flow through an orifice fitted at the bottom of a tank is given 

by Equation 6 . 1 1  as: 

Here; A = 1 0  x 6  = 6 0  M~ 

1 

:. T = 2 x 6O(si - 1 = 6 6 6 5 . 3 7  sec 
0 . 6 4  x 0 . 0 0 7 8 5  42 x 9 . 8 1  

i. e time required i s  : 1 . 8 5 1  hrs. 



Example 6.7  

Two tanks having plan areas of 6 m x 3 m and 1.5 m x 2 m are 

connected by a circular orifice 20 cm in diameter. Before the 

flow through the orifice began, the difference in water levels 

in the tanks was 4 m, with the higher level in the larger tank. 

Determine the time required to bring the difference down to 1.2 

m. Take Cd = 0.61. 

Solution: 

From equation 6.12, the time required to bring the level 

difference between the two tanks from H, to H2 is given by 

where, A, = area of larger tank = 6 x 2 = 12 m2 

A, = area of smaller tank = 1.5 x 2 = 3 m2 

X a = area of orifice = - (0.2) = 0.0314 m2 
4 

. T = 2 x 1 2  (4lI2 - 1. 2112) i2, = 51.18 sec 
0.61 x 0.0314 42 x 9.81 1 + - 



6.1.6 Notches and Weirs 

A notch is a geometrical opening in the side of a tank or 

reservoir extending above the free surface or it may be defined 

as any regular obstruction in open stream over which the flow 

takes place. It is in effect a large orif ice which has no 

upper edge so that it has a variable flow area depending on the 

level of the free surface. A weir is a notch on a large scale, 

used, for example, to measure the discharge of a stream or a 

river. 

A notch or a wier may be classified according to 

a) Shape of the opening: as rectangular, triangular, 

trapezoidal etc. 

b) Shape of the edge: as sharp-crested and broad-crested. 

c) Discharge condition: as free or submerged. 

d) End condition: as weir with end contractions and weir 

without end contraction i.e suppressed weir. 

E n d  C o n d i t i o n s :  I f  the length of the crest of the notch or 

weir is equal to the width of the approach channel, then there 

will be no end contractions of the stream at the sides and the 

width of the nappe or jet flowing over the crest will be equal 

to the length of the crest. This type of weir in which end 

contractions are suppressed is called suppressed weir (Figure 

6.10). Figures 6.10(b) and 6.10(c) illustrate weirs with one 

and two end contractions respectively. 



a) contractions fully b) One end C) contraction at  
suppressed Contraction both ends 

Figure 6.10 Suppressed and contracted weirs 

Discharge  Over Sharp  Crested R e c t a n g u l a r  W e i r :  

The sharp-crested rectangular weir, shown in Figure 6.11, has 

a sharp-edged horizontal crest which is normal to the flow. 

The nape falling over the crest is contracted at top and bottom 

as shown. 

Figure 6.11 Sharp-crested rectangular weir 

An equation for the discharge over the sharp-crested 

rectangular weir can be derived by neglecting the contractions 

of the nappe. Without contractions, the flow appears as shown 

iri Figure 6.12 with the nappe having parallel streamlines with 



atmospheric pressure throughout. 

Figure 6.12 Weir nappe without contraction 

Neglecting the approach velocity and losses and applying 

Bernoulli's equation between (1) and ( 2 ) ,  datum through the 

crest, 

Solving for v, 

v = r 9 y  

The theoretical discharge Q, is: 

where B = length of the weir crest. 
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The actual discharge Q, is obtained by introducing a discharge 

coefficient C, to the theoretical discharge. 

Thus : 

The discharge coefficient C, is a function of H and P and can 

be estimated from: 

i) Bazinfs formula: 

where H = head over crest in metres 

P = height of crest above channel floor in metres 

ii) Rehbock formula: 

where H and P are in metres. 

This formula is valid for a notch with no end 

contractions. 

Generally, however, C, - 0.62 where by: 



Rectangular W e i r  wi th end Contraction : 

When the weir crest does not extend completely across the full 

width of the channel it is said to have end contractions as 

shown in Figure 6.13. In this case the effective width, Be, of 

the crest is less than B as a result of the end contraction. 

Francis found that the end contraction for each contraction is 

about 0.1 H I  where H is the head over the weir crest. 

Figure 6.13 Rectangular weir with end contraction 

Thus Be = (B - 0.1 nH) , where n = number of end contractions. 

For a fully contracted rectangular weir, n = 2 

:. Be = B - 0.2H 

Thus  Q, = 1.84 (B - 0 . 2 ~ )  H ~ ' ~  

When the height P of a weir is small, the approach velocity 

head at point (1) cannot be neglected. In such a situation, 

a correction may be added to the head as: 

where and 



The above equation must be solved for Q by trial since both v 

v2 and Q are unknown. As a first trial the term a- may be 
2g 

neglected to approximate Q. With this trial discharge, a value 

of v is computed. 

The V-notch or Triangular Weir: 

The V-notch or triangular weir, shown in Figure 6.14, is 

particularly convenient for measuring small discharges. The 

contraction of the nappe is neglected and the discharge is 

computed as follows: 

Figure 6.14 V-notch or Triangular weir 

The velocity at depth y in Figure 6.14 is given by 

v = m y  

The theoretical discharge Q, is 



From similar triangles, x may be related to y: 

L But - 0 = tan - 
2H 2 

8 4) ... Q, = - q g  tan - . ~ 5 / 2  1s 2 

The actual discharge is obtained by introducing a discharge 

coefficient C,. Thus: 

8 + Q, = - C d r g .  t a n  - . H ~ / ~  
15 2 

f o r  4 = 90°, C, - 0 . 5 8  so t h a t  

Trapezoidal Weir: A Trapezoidal Weir, shown in Figure 6.15, can 

be considered to be made up of a rectangular weir of width B 

and a triangular weir of apex angle ,i'. 

If C, and C,' represent the discharge coefficients of the 

rectangular weir and the triangular weir respectively, the 
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Figure 6.15 Trapezoidal weir 

discharge Q flowing through the trapezoidal weir under head H 

will be 

Since the rectangular weir is contracted, the discharge will 

2 be reduced by - C, . q g  . (0.2H) H ~ / ~  . If this reduction in 
3 

discharge due to contraction is thought of as being compensated 

by increase in discharge due to the triangular portion, then 

from which one obtains tan * = 1 
2 4 

This particular trapezoidal weir in which the side slopes with 

1 horizontal to 4 vertical is known as ~ippoletti Weir. Thus, 
for a Cippoletti weir, 



The Broad-Crested Weir: A broad-crested weir is one where the 

crest of the weir is broad i.e. the crest width B > 0.4 H 

(Figure 6.16) 

Figure 6.16 Broad-crested weir 

The upstream edge of the weir is rounded to avoid separation. 

Neglecting losses and assuming a parallel stream of flow with 

hydrostatic pressure distribution over the crest, Bernoulli's 

equation applied between points (1) and ( 2 ) ,  neglecting 

approach velocity, gives: 

For a weir of width L normal to the plane of the figure, the 

theoretical discharge is 



For y = H I  Q = 0. Maximum Q occurs for a particular value of 

y. This value is obtained by differentiating Q, with respect 

to y and equating the result to zero for maximum Q. Thus 

1 dQt = 0 = L,/2g(H - y) + L y .  - .  -2g 
d~ 2 4 2 g ( H  - y) 

2 f rom w h i c h  y = - H  = 
3 Y c  

Thus : V2 = 4 2 g ( $ y  - Y )  = fi 

and Qt = 1 . 7 0 5 ~ ~ ~ ~ ~  

The actual discharge is obtained by introducing a discharge 

coefficient C,. Thus 

For a well-rounded upstream edge, C, = 0.98. 

:. Q, = 1 . 6 7  L H ~ / ~  

Example 6.8  

The discharge over a suppressed rectangular weir is to be 0.20 

m3/s when the head over the crest is 30 cm. If the discharge 

coefficient is 0.6, calculate the length of weir crest 

required. 



Solution: 

S u b s t i t u t i n g  Q = 0 . 2 0  m 3 / s ,  C, = 0 . 6  and H = 0 . 3 0  m,  

Example 6.9 

Determine the discharge over a sharp-crested rectangular weir 

with 8 m crest length and a head of 2.4 m. The width of the 

approach channel is 10 m. Take C, = 0.622. 

Solution: 

This is a rectangular weir with end contractions. Thus, 

neglecting the approach velocity, 

S u b s t i t u t i n g  C d = 0 . 6 2 2 ,  B = 8 m ,  H = 2 . 4 m ,  

Example 6.10 

A 90" V-notch has a discharge coefficient of 0.60. Calculate 

the discharge when the observed head is 0.65 m. 



For a V-notch, the discharge is given by: 

8 @ H 5 / 2  
Q = C,. -qg. t a n - .  

15 2 

Substituting C d = 0 . 6 0 ,  H = 0 . 6 5 m  and 

@ = 90°, 

6.2 Applications of the Momentum Equation 

6.2.1 Introduction 

The momentum equation is used in the solution of the following 

two classes of problems: 

i To determine the resultant force acting on the 
boundary of a flow passage by a stream of fluid as 

the stream changes its direction or magnitude or 

both. Problems of this type are forces on pipe 

bends, reducers, stationary and moving vanes, jet 

propulsion etc. 

ii) To determine the characteristics of flow when there 

is an abrupt change of flow section such as in 

sudden enlargement in a pipe and hydraulic jump in 

channels and also to determine the forces involved 

instructures in open channel flow. 

Typical cases of the two types of problems will be discussed 

in the sections that follow. 



6 . 2 . 2  Dynamic force due to a jet impinging on a stationary 

surface. 

F o r c e  on a f l a t  p l a t e :  

Consider a stationary, smooth plate on which a jet of cross- 

sectional area ' a 1  impinges with a velocity V, inclined at an 

angle 8 with the plate. Let g be the density of the fluid and 

assume the plate and the jet to be in a horizontal plane. 

Assume also no frictional and impact losses at the plate so 

that the velocity V, remains unchanged. 

Control volume 

Figure 6.17 A jet impinging on a flat plate 

When a jet strikes a solid surface a stream of fluid is formed 

which moves over the surface and it leaves the surface 

tangentially. 

For the control volume shown, 

Continuity equation gives: Q, = Q, + Qz ( a ) 

In the y direction no force is exerted by the plate on the 

fluid. Thus: 



cfY = 0 = pQIVo - pQ2Vo - ~ Q , V , C O S ~  = 0 

f r o m w h i c h :  Q , - Q ~ = Q , c o s ~  

Solving (a) and (b) 

In the x-direction, the plate exerts a force F on the fluid in 

the control volume in a direction normal to the plate as shown. 

Thus : 

Hence the jet exerts an equal and opposite force to R on the 

plate in the positive x-direction. 

If the inclined plate moves with a velocity v say in the same 

direction as the jet, then the mass of fluid impinging on the 

plate per unit time will be p A  (V, - v )  and it will be less 

than the mass impinging on a stationary plate. 

Summing forces in the x-direction: 

-R = p A ( V ,  - v)[O - (V, - v )  Sine] 

= - p A ( V o  - ~ ) ~ s i n e  



F o r c e  on a curved vane: 

Fixed vanes: 

Since momentum is a vector quantity, change in momentum would 

occur across a control volume when there is change in direction 

only, with or without change in the magnitude of velocity. 

Consider the flow of jet of area A of fluid of density e 
impinging on a fixed curved vane shown in Figure 6.18 with a 

constant velocity V,. 

Figure 6.18 Force on a fixed curved vane 

The entrance and exit angles of the curved vane are a and P 
with respect to the x-axis. 

The Momentum of the fluid at inlet in the x direction is 

p A V .  vcos a and at exit it is - p A v , .  V , c o s  P . Hence, 



The force F shown in the figure is the force exerted by the 

vane on the fluid. An equal and opposite force is exerted by 

the fluid on the vane. The force will be maximum when a = f l  
= 0 i.e. when the vane is semi-circular. 

Moving Vane: 

Consider a curved vane moving at a velocity v in the x- 

direction as shown in Fig. 6.19. 

Figure 6.'19 Force on a moving curved vane 

A jet of absolute velocity V, (= AO) of a fluid density p and 

area A is directed at the vane at an angle a, to the x 
direction i.e. the direction of motion of the vane. The jet 

will enter the vane with a velocity Bo, which is the relative 

velocity of the absolute velocity V, with respect to the vane 

velocity v(=AB). BO is called relative velocity Vr,. This 

relative velocity v,rl of the jet needs to be tangential to the 

inlet blade angle f l ,  for the jet to enter the vane smoothly. 
For smooth vane surface, the jet moves along the vane without 

change in the magnitude of the relative velocity. Let it, 

however, be assumed that there is some change in velocity and 



the velocity of the jet becomes V, as it emerges from the vane 

with the vane outlet angle P,. The absolute velocity of the 

jet leaving the vane will be V,. V, is the relative velocity 

of V, with respect to the vane velocity v. V, is at an angle 

a, with the x-axis. 

Considering the control volume (shown in dashed lines, Figure 

(6.19) ) of the fluid enclosed by the inlet, the vane and the 

outlet, the mass of water entering the control volume per unit 

time is p A V r ,  . Applying the momentum equation in the x 

direction: 

which reduces to: 

Fx = p A V I I  ( V l ~ ~ ~ ~ l  + V i c o s a 2 )  

The force F, shown in Figure 6.19 is the force exerted by the 

vane on the fluid. 

Similarly, 

F~ = F = p A V r ,  ( V 2 s i n a i  - V, s i n a ,  
Y 

(6.23) 

. . F = p A V r l  ( V i s i n a ,  - V, s i n a ,  
Y 

The resultant force R acting on the fluid by the vane is: 



An equal and opposite force to the force R shown in Figure 6.19 
will be exerted by the water on the vane. 

Example 6.11 

A jet of water 4.0 cm in diameter and having a velocity of 20.0 

m/s impinges on a flat plate normally. Find the force exerted 

on the plate if 

a) The plate is stationary 

b) The plate is moving with velocity of 3.0 m/s in the same 

direction and what is the work done? 

Solution: 

a) Mass of water striking the plate when the plate is 

stationary is: 

Force exerted on the plate is: 

b) When the plate is moving in the same direction as the jet, 

the mass of water striking the plate will be 

Force exerted on the plate will be: 

F = M ( V  - V) = 21.36 x 17 = 363.13 N 

Work done = F. v = 363.13 x 3 = 1.089.39 W 

= 1,089 kW 



Example 6.12 

A 5.0 cm diameter jet of water having a velocity of 40 m/s 

strikes a vane (see Figure E) having a deflection angle of 135" - 
and moving at a velocity of 15 m/s in the same direction. 

Assuming no friction, compute: 

i) The x and y components of the force exerted by the 
fluid on the vane. 

ii) Absolute velocity of the jet when it leaves the vane 

and 

iii) The power developed. 

Figure E 6.12 

Solution: 

i) The relative velocity of the jet with respect to the vane 

is (40-15) = 25 m/s 

Therefore, discharge striking the vane will be: 



Since there is no friction the relative velocity as the jet 

leaves the vane will also be 25 m/s 

Thus : 

Theref ore, the force components exerted by the fluid on the 

vane will be: 

ii) The absolute velocity of the jet when it leaves the vane 

at exit can be obtained by combining the relative velocity 

with vane velocity vectorially as shown by the velocity 

triangle. 

AB = relative velocity at exit = 25 m/s 

BC = vane velocity = 15 m/s 

AC = Absolute velocity of jet at exit. 

Since AD = AB sin 45" = 25 x sin 45" = 17.68 m/s 

and CD = BD - BC = AB cos 45 - 15 = 17.68 - 15 
= 2.68 m/s 



Then 

i.e. The absolute velocity as the jet leaves the vane 

is 17.88 m/s 

iii) Power developed will be 

Note that no work is done by the force F, since the vane is not 

moving in that direction. 

6.2.2 Dynamic Force due to Flow Around a Bend 

Flow in a pipe bend, in a vertical or horizontal plane, and 

with or without change in diameter, experiences change in 

momentum. As a result of this change in momentum, a dynamic 

force is exerted by the fluid on the bend which has to be 

resisted by a thrust block or other suitable means. The force 

could be evaluated by a simple application of the momentum 

equation to the fluid mass in the control volume between the 

entrance and exit of the bend. 

Consider a reducing bend in a vertical plane shown in Figure 

6 . 2 0  (a) 

Figure 6 . 2 0  (b) shows the control volume and the forces acting 

on the fluid mass within the control volume. Assuming steady 

flow Q of a fluid of density @ the momentum equation applied 

in the x and y directions gives the force components R, and R, 

exerted by the bed on the fluid as follows: 



Figure 6.20 Force exerted on a bend 

In the x-direction: 

In the y-direction: 

Thus the resultant force R will be 

RY and t#~ = tane1 - 
Rx 



However, for a horizontal bend, the weight W of the fluid mass 

between sections (1) and (2) of the bend will drop out of the 

momentum equation in the y-direction. 

Example 6.13 

The following data are given for a 60' reducer bend in a 

horizontal plane shown in Figure E 6.13. D, = 15 cm, D, = 10 

cm, Q = 0.106 m3/s and P, = 205.94 k~/m, . Assuming no loss 

as water flows from section (1) to section ( 2 ) ,  determine the 

force required to hold the bend in place. 

Figure E 6.13 

Solution: 

From the given data: 



To determine the pressure at section (2) apply Bernoulli's 

equation between sections (1) and (2) : 

. - P2 = 2 0 . 9 9 3  + 1 . 8 3 4  - 9 . 2 8 4  = 1 3 . 5 4 3  m of water 
Y w  

. p 2 = 1 3 . 5 4 3  x y W = 1 3 2 . 8 5 7 W / m 2  

Applying the Momentum equation in the coordinate directions; 

x-direction: 

C F ,  = PIAl - P2A2cos6O0  - F, = p Q ( ~ , ~ o s 6 0 ~  - 5) 

i . e  F, = P,Al - P 2 A 2 c o ~ 6 O 0  - p Q ( v 2 c o s 6 0 0  - v,) 



y-direction: 

Fy = Fy - P2A2sin600 = pQ(v2sin600 - 0) 

The force required to hold the bend in place is R 

R = J3038.03' + 2142.58~ = 3717.56 N 

@ = tan- '  2142-58 = 35-ly2 
3038.03 

6 . 2 . 4  Dynamic Force at a Nozzle 

A nozzle, attached to a pipeline, and discharging to the 

atmosphere provides a good example of a rapid change in 

velocity. The fluid exerts a force on the nozzle and in 

accordance with Newton's third law there is a similar force, 

of opposite sign, exerted by the nozzle on the fluid. This is 

the force which the tension bolts holding the nozzle with the 

pipe must be designed to withstand. 

Consider the nozzle shown in Figure 6.21 discharging a fluid 

of density p with a velocity v, to the atmosphere. The flow 

velocity at the entrance into the nozzle i. e. at section (1) 

is v,. 

Application of the momentum equation between upstream section 

(1) and downstream section (2) will yield the force R, exerted 

by the nozzle on the fluid. 



Figure 6.21 Nozzle discharging to atmosphere 

In Figure 6.21 the component forces acting on the control 

volume are the pressure forces P, A, and P, A, and the force R, 

exerted by the nozzle on the fluid. The rate of change of 

momentum is QQ (v, - v,) . 

The momentum equation in the horizontal direction gives: 

Since the nozzle discharges to the atmosphere, p2 = 0 .  Thus: 

R, = PIAl - p Q ( v 2  - v,) (6.24) 

Example 6 . 1 4  

Calculate the tension force on the flanged connection between 

a 64 mm diameter pipe and a nozzle discharging a jet of water 

with velocity of 30 m/s and diameter of 19 mm. 



Solution: 

Let section (1) be the entrance and section (2) be the exit 

from the nozzle. 

X 
The d ischarge  Q = ZD;. v2 = - (0.019)~ x 30 = 0.0085 m 3 / s  

4 4 

2 2 From continuity, Dl v, = D2 v2 , so that: 

Applying Bernoulli's equation between entry to and exit from 

the nozzle, and neglecting losses, one obtains: 

Y w  2 Thus p, = -(vi - v,) = (302 - 2.652) = 4446.5 k ~ / m ~  
2g 2 x 9.81 

Substituting in Equation 6.24, 

Thus, the tension force on the flanged connection is 1.204 kN. 



6 . 2 . 5  Force Exerted on a Sluice G a t e .  

Water issues at relatively high velocity from the opening 

caused by the raising of a sluice gate such as the one shown 

in Figure 6.22. The flow behavior resembles that of a jet 

issuing from an orifice. The difference is, however, in that 

the presence of the bed prevents the pressure inside the 

issuing jet downstream from a sluice gate from becoming 

atmospheric throughout. The pressure distribution a short 

distance from the opening, i.e at section (2), may be 

approximated to be hydrostatic. 

I 
( I) 

Figure 6.22 Flow under a vertical sluice gate 

Application of Bernoulli's equation between section (1) and (2) 

gives the discharge as: 

Where, C is an overall coefficient of discharge incorporating 

the coefficient of contraction, the effects of downstream head, 

velocity of approach and energy loss, and A is the area of the 

opening of the gate. 

Since there is a change in velocity between section (1) and 

(2), there is a change in momentum leading to a force F exerted 



on the gate. The momentum equation may be conveniently applied 

to the control volume of fluid between sections (1) and (2). 

Assuming hydrostatic pressure distribution at sections (1) and 

(2) and that the gate is installed in a wide rectangular 

channel where the discharge per unit width is q, the forces 

acting on the control volume are: 

- The hydrostatic force per unit width at section (1) 

- The hydrostatic force per unit width at section (2) 

- The force F per unit width of channel exerted by the 
gate on the fluid. 

The change in momentum between section (1) and (2) per unit 

width of channel is pq(v, - v,) . 

Thus : 

h,2 h 2  
F, = Y,- 2 - y - F = pq(v 2 - vl) , so t h a t :  

" 2  

The force exerted by the fluid on the gate is equal and 

opposite to the force F shown in Figure 6.22. 



Example 6.15 

The sluice gate in Figure 6.22 spans a wide rectangular channel 

and is raised 0.25 m above the channel floor. The upstream 

depth h, is 3 m. Estimate the horizontal force per metre width 

of channel exerted on the gate. Take C = 2.5 in Equation 6.25. 

Solution: 

The discharge per unit width is q. 

q = 2.5 x 0.25 x 3lI2 = 1.08 m3/s 

Since q = vl . h,, vl = q/h, = 1.08/3 = 0.36 m/s 

Applying Bernoulli ' s equation between (1) and (2) : 

from which, h, = 0.14 m 

Thus v2 = 1.08/0.14 = 7.71 m/s 

substituting in Equation 6.26 



EXERCISE PROBLEMS 

6 . 1  A venture meter installed in a horizontal water main has 

a throat diameter of 75 mm and a pipe diameter of 1 5 0  

mrn. The coefficient of discharge is 0.97.  Calculate 

the flow rate if the difference of level in a mercury 

U-tube gauge connected to the throat and full bore 

tappings is 1 7 8  mm, the mercury being in contact with 

the water. 

(Ans. 0.0292 m3/s) 

6.2 A 200 mm diameter water pipe has a venturi meter of 

throat diameter 12 .5  cm, which is connected to a mercury 

manometer showing a gauge level difference of 8 7 . 8  cm. 

Find the velocity in the throat and the discharge. If 

the upstream pressure is 60 kN/m, what power would be 

given up by the water if it were allowed to discharge 

to atmospheric pressure? 

6.3 A vertical cylinrical tank, 0.6 m in diameter and 1 . 5  

m high, has an orifice of 25 mm diameter in the bottom. 

The discharge coefficient is 0 .61 .  If the tank is 

originally full of water, what time is required to lower 

the level by 0 . 9  m? (Ans. 192 sec.) 

6.4 Determine the equation of trajectory of a jet of water 

discharging horizontally from a small orifice with head 

of 5.0 m and a velocity coefficient of 0.96. Neglect 

air resistance. 

6.5 Compute the discharge from the tank shown in Fig. P 6.5. 

(Ans. 0 . 0 2 4 1  m3/s) 



2.0 m 
7Omm dlam. 

S.0.92 L -- - 1 - 
7 Cd* 0 . 7 4  

6.6 A 90' v-notch and a rectangular weir and placed in 

series. The length of the rectangular weir is 0.6 m and 

its coefficient is 1.81. If the discharge coefficient 

of the v-notch is 0.61, what will be its working head 

when the head on the weir is 0.15 m? 

6.7 A closed tank partially filled with water discharges 

through an orifice of 12.5 mm diameter and has a 

coefficient of discharge of 0.70. If air is pumped into 

the upper part of the tank, dtermine the pressure 

required to produce a discharge of 0.6 l/s when the 

water surface is 0.90 m above the outlet. (Ans. 15.7 

k ~ / m ~ )  

6.8 How long does it take to raise the water surface of the 

tank in Fig P 6.8 by 2.0 m? The left had surface is 

that of a large reservoir of constant water surface 

elevation. 



F i g .  P 6 .8  

6 .9  A je t  of  wa te r ,  6 . 5  c m 2  i n  c r o s s - s e c t i o n a l  a r e a ,  moving 

a t  1 2  m/s ,  it t u r n e d  th rough  a n  a n g l e  of  135" by a  

curved vane. The vane  is moving a t  4 .5  m / s  i n  t h e  same 

d i r e c t i o n  a s  t h e  j e t .  N e g l e c t i n g  any l o s s  of v e l o c i t y  

by shock o r  f r i c t i o n ,  f i n d  t h e  amount of work done on 

t h e  p l a t e  p e r  sec. (Ans. 281 W )  

6 .10  Determine t h e  head on a  60" v-notch  f o r  a  d i s c h a r g e  of  

1-70 e / s .  

6 . 1 1  A 100 mm d i a m e t e r  o r i f i c e  d i s a r g e s  4 4 . 6  t / s  of w a t e r  

under  a  head of 2.75 m .  A f l a t  p l a t e  h e l d  normal t o  t h e  

je t  j u s t  downstream from t h e  vena c o n t r a c t a  r e q u i r e s  a  

f o r c e  of  320 N t o  resist impact  of t h e  je t .  Find C,, C, 

and C,. 

(Ans. C, = 0 . 7 3 3 ,  C, = 0.977,  C, = 0.791)  

6.12 C a l c u l a t e  t h e  magni tude  and d i r e c t i o n  of t h e  v e r t i c a l  and 

h o r i z o n t a l  componenets and t h e  t o t a l  f o r c e  e x e r t e d  on t h e  

s t a t i o n a r y  vane ,  F ig .  P 6 . 1 2 ,  by a  50 mm j e t  of w a t e r  

moving a t  15  m / s .  



Fig. P 6.12 

6.13 The blade shown in Fig. P 6.13 is one of a series. 

Calculate the force exerted by the jet on the blade 

system. 

(Ans: 2651 N) 

45 m/s - 
5Omm diam. 30 m/r 

jet of water f - 
Fig. P 6.13 

6.14 Calculate the magnitude and direction of the horizontal 

and vertical components of the force exerted by the 

flowing water on the 'flip buckett AB. Assume that the 

water between sections A and B weighs 2.70 kN and that 

downstream from B, the moving fluid may be considered to 

be a free jet. (Fig. P 6.14). 



Fig .  P 6 . 1 4  

6.15 When 300 C i s  of  wa te r  f l o w s  t h r o u g h  t h e  v e r t i c a l  300 mm 

by 200 mm p i p e  r e d u c e r  bend, t h e  p r e s s u r e  a t  t h e  e n t r a n c e  

is 70 kPa.  C a l c u l a t e  t h e  f o r c e  by t h e  f l u i d  on  t h e  bend 

i f  t h e  volume of t h e  bend is  0 .85  m3. 

Ans: F, = 8172 N 

F, = 4218 N 

8 = 27.3' 

Ans. 

70 k Pa 

3 0 0 m m  dia. 

Fig .  P 6 .15  

6 .16  The p l a t e  is  Fig .  P 6.16 covers t h e  125 mm d i a m e t e r  h o l e .  

What is t h e  maximum H t h a t  c a n  be  m a i n t a i n e d  w i t h o u t  

l e a k i n g ?  



Fig. P 6.16 

6.17 For the weir shown in Fig. P 6.17, determine the 

magnitude and direction of the horizontal component of 

the force on the structure. 

(Ans: 18.937 kN/m) in the downstream direction) 

_ _ - _  ----- EGL 

Fig. P 6.17 



6.18 The jet of water of 50 mm diameter moving at 30 m/s is 

divided in half by a "splitter" on the stationary flat 

plate (Fig. P 6.18) . Calculate the magnitude and 

direction of the force on the plate. Assume that the 

flow is in a horizontal plane. 

Fig. P 6.18 
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