Numerical Methods (CENG 2084) Leauxote

CHAPTER-V
NUMERICAL DIFFERENTIATION & INTEGRATION

5.1 Introduction

Calculus is mathematics of change. Because engimeest continuously deal with systems
and processes that change, calculus is an esdedlialf the engineering profession. Standing
at the heart of calculus are the related mathealatoncepts of differentiation and
integration. Mathematically, the derivative reprasethe rate of change of a dependent
variable with respect to an independent varialflg. is the dependent variable ards the
independent variable, the first derivativeyof f(x) w.r.t. tox, represented bgly/dx is given

by

dy m f(xi +Ax)— f(xi)

=i
dx -0 AV

(5.1)

The inverse process to differentiation in calcutustegration. Mathematically, integration is
represented by

| = [ f(Xdx (5.2)

D ey T

which stands for the integral of the functif{r) w.r.t. the independent varial¥e evaluated
between the limitg = ato x = b. The functiorf(x) is referred to as thiategrand

Non-Computer Methods for Differentiation and Intsgwn

The function to be differentiated or integratedlwypically be in one of the following three
forms:
1. A simple continuous function such as a polynonaalexponential, or a trigonometric
function.
2. A complicated continuous function that is difficadt impossible to differentiate or
integrate directly.
3. A tabulated function where the valuesxoéndf(x) are given at a number of discrete
points, as is often the case with experimentaledd Qata.

In the first case, the derivative or integral dfimple function may be evaluated analytically
using calculus. For the second case, analyticakisols are often impractical, and sometimes
impossible, to obtain. In these instances, as wasllin the third case of discrete data,
approximate methods must be employed.
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A non-computer method for determining derivativesf data is calleéqual-area graphical
differentiation In this method, théx, y) data are tabulated and, for each interval, a simple
divided differencely/4x is employed to estimate the slope. Then theseesave plotted as a
stepped curve versus Next a smooth curve is drawn that attempts fwr@pmate the area
under the stepped curve. That is, it is drawn s tisually, the positive and the negative
areas are balanced. The rates at given valuesar then be read from the curve.

In the same spirit, visually oriented approacheseveenployed to integrate tabulated data and
complicated functions in the pre-computer era. mpde intuitive approach is to plot the
function on a grid and count the number of boxes Hpproximate the area. This number
multiplied by the area of each box provides a roesgtimate of the total area under the curve.
This estimate can be refined, at the expense afiadal effort, by using a finer grid.

Another commonsense approach is to divide theiateavertical segments, or strips, with a
height equal to the function value at the midpoin¢ach strip. The area of the rectangles can
be then calculated and summed to estimate thedrgal In this approach, it is assumed that
the value at the midpoint provides a valid appration of the average height of the function
for each strip. As with the grid method, refinediraates are possible by using more (and
thinner) strips to approximate the integral.

5.2 Numerical differentiation
5.2.1 Lower Order Methods

By truncating the second- and higher-derivativethenTaylor series
f(x,.)= f(x)+ f'(xi)h+#h2+.... (5.3)

the following formula for approximating the firstedvative, called thefirst forward
difference is obtained

ri) =10 05). ()= 20, o) (5.4

where Af, is referred to as thierst forward differenceandh is called the step size. The entire
term Af /h is referred to as first finite divided difference

Similarly, by truncating the Taylor series between andx ,

f(x)= f(x.)- "0+ f"é!xi)hz - 5.5)
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the following formula for approximating the firseédvative is obtained

i) =52l 10) s o= oy 59

where[f; is referred to as thfa'st backward difference

A third way to approximate the first derivative is subtract backward Taylor series
expansions (betweern_, andx) from the forward Taylor series expansion (between

andx,,) resulting in

F(x.a)= Flx)+2f(x )+ fséxi)hw... (5.7)
from which we obtain
f'(xi)z f(xi+l)_ f(xi—l)_o(hz) (58)

2h
The above equation iscgéntered differenceepresentation of the first derivative.
Example Consider the function  f£[x] = e™ sin[x]

Compute numerical approximations for thef'l1l derivative, using step sizes,
h=0.1, 0.01, 0.001

f[x] = e ™ 8in[x]

Using h = 0.1

£'[1.] = ((0.296657) - (0.31847711/7(0.2)
£'[1.] =« [(-0.0Z18198)/(0.2)

£'[1.] = -0.109099

£[x] = ™ %in[x]

Using h = 0.01

£1[1.] = ((0.308432) — (0.3106481)/(0.02)
£'[1.] » (-0.00221554)/(0.02)

£'[1.] = -0.110777
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£[x] = ™ %in[x]

Using h = 0.001

£1[1.] = ((0.309449) — (0.309671]/(0.002)
£'[1.] = (-0.000221587)/(0.002)

£'[1.] = -0.110794

f[x] = e ™ 8in[x]

The true walue is:
Cos[1] Sinfl]

E

E'[l] =

£'[1] = -0.110794
5.2.2High-Accuracy Differentiation Formulas
High-accuracy divided difference formulas can beegated by including additional terms

from the Taylor series expansion. For example,ftheard Taylor series expansion can be
written as

h? +... (5.9)

_ (s )
f(x.a)= Fx)+ F/(x )+ 5

which can be solved for

f'(xi): f(xi+1)_ f(Xi)_ fngxi)hZ +O(h2) (5.10)

The result can be truncated by excluding the secand higher-derivative terms and were
thus left with a final result of

f'(x

)= f(Xi+1)h_ f(x) +0(h) (5.11)

We can retain the second-derivative term by sulistg the following approximation of the
second derivative
f"(Xi): f(Xi+2)_2L(ZXi+l)+ f(Xl)+O(h) (512)

into Eq. 5.10 to yield

f'(Xi): f(Xi+1)h_ f(Xi)_ f(Xi+2)_22frE)2(i+l)+ f(xi)h+0(h2) (5.11)
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or, collecting terms,

F(x)= - f(Xi+z)+4;(‘xi+l)—3f(xi)+O(h2) (5.12)

Notice that the inclusion of the second-derivati®en has improved the accuracy(tl(hz).

Similar improved versions can be developed forithekward and centered formulas as well
as for the approximations of the higher derivatividge formulas are given below.

Forward Finite-divided Difference Formulas

First Derivative Error
F/(x )= fx +1)h‘ f(x) o(h)
f'(Xi)z - f(Xi+2)+4f(Xi+1)_3f(Xi) O(hz)

2h

Second Derivative

f"(xi): f(xi+2)_2:](zxi+1)+ f(xi) O(hz)
f"(xi): - f()(i+3)+4f()(i+2r?2—5f(xi+l)+2f(Xi) O(hz)

Third Derivative

fm(xi): f(Xi+3)_3f(xi+23]:3f(xi+l)_ f(xi) O(h)
f'"(X-): —3f(Xi+4)+14f(Xi+3)—24f(Xi+2)+18f(Xi+l)—5f(Xi) O(hz)
i 2h?

Fourth Derivative

f(4)(x_): f()(i+4)—4f()(i+3)+6f(Xi+2)—4f(Xi+l)+ f(XI) O(h)
i h
f (4)()(i ) - 2f (Xi+5)+11f(xi+4)_ 241 (Xi+:21+ 26f(Xi+2)_14f(Xi+1)+ 3f(xi ) O(hz)
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Backward Finite-divided Difference Formulas
First Derivative Error
f'(x )= f(xi)_hf(xi—l) o(h)
f ( I):3f(xi)_4f(xi—1)"' f(Xi—Z) O(hz)
2h
Second Derivative
()= T2l 1) o)
£(x )= 2f(x)-5f(x.) +24 f(x_5) = fxs) O(hz)
h
Third Derivative
o) = [ER) 21 ) 31 ) ol
£7(x )= 5f(x )-18f(x.)+ 24f2()r?3_2)_14f (%s) +3F(x_,) O(hz)
Fourth Derivative
f (4)()(i )= f(x)-4f(x,)+ 6f(Xi;2)— 41 (x_s)* fxa) o(h)
h
)« 3106)14700.)+ 261000 =241 () 1111 () 210xs) )
h
Centered Finite-divided Difference Formulas
First Derivative
f(x,,)- f(x_)

f ! )= i+1 i—1 h2

()= olr)
f ,(Xi ) - f(Xi+2) +8f (Xi+1) -8f (Xi—l) +f (Xi—2) O(h4)

12h

Second Derivative
f"(xi): f(Xi+l)_2.:’](2xi)+ f(Xi—l) O(hz)
ol )= = F5.2)+167(x,.) =301 (x)+161(x. ) 1(x..) ol

12h?
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Third Derivative

f"’(XA)= f(xi+2)_2f(xi+l)+Zf(xi—l)_ f(xi—z) o(hz)
i 2h3

f'"(X)= B f(Xi+3)+8f(Xi+2)_13f(Xi+l)+13f(Xi—l)_8f(xi—2)+ f(xi—3) O(h4)
' 8h®

Fourth Derivative

f(4)(xi): f(xi+2)_4f(xi+l)+6L(4xi)_4f(xi—l)+ f(Xi—z) O(hz)

FO(x)=— f(X.5) +12F(x.,) = 39F(x.,) +56f(x )=39F(x,) +12f(x_,) + f(x_5)
| 6h’

5.3Newton-Cotes integration formulas

The Newton-Cotes formulas are the most common nigalentegration schemes. They are
based on the strategy of replacing a complicatetction or tabulated data with an
approximating function that is easy to integrate:

I =jl f( X)dx Djl f (x)dx (5.13)

where fy(x) = a polynomial of the form

f (x)=a,+ax+..+a,_x""+ax" (5.14)

wheren is the order of the polynomial.

The integral can be approximated by one polynoomalsing a series of polynomials applied
piecewise to the function or date over segmentooétant length.

Closed and open forms of the Newton-Cotes formalasavailable. The closed forms are
those where the data points at the beginning addoéthe limits of integration are known.
The open forms have integration limits that extbaglond the range of the data. In this sense,
they are akin to extrapolation. Open Newton-Cotasntilas are not generally used for
definite integration. However, they are utilized &valuating improper integrals and for the
solution of ordinary differential equations.
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5.3.1The Trapezoidal Rule

The trapezoidal rule is the first of the Newton-€votclosed integration formulas. It
corresponds to the case where the polynomial irbB@ is first-order:

| =T f( X)dx Df f, (X)dx (5.15)

The straight line passing through the two po{ats(a)) and(b, f(b))is given by

f(x) = f(a)+M(x—a) (5.16)

b:

| :T[f(a)+W(x—a)}dx (5.17)
The result of the integration is
Il =(b- a)M (5.18)

2
which is called thérapezoidal rule
Error of the Trapezoidal Rule
When we employ the integral under a straight lmagproximate the integral under the curve,
we obviously can incur an error that may be sulbstarAn estimate of the local truncation

error of a single application of the trapezoidé¢ris

__i " P ¥
E =- f"(¢)b-a) (5.19)

whereg lies somewhere in the interval fraarto b.
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Multiple-Application of Trapezoidal Rule

One way to improve the accuracy of the trapezaidl is to divide the integration interval
from atob into a number of segments and apply the metheadt¢b segment. The areas of the
individual segments can then be added to yield itihegral for the entire interval. The
resulting equations are callatlltiple-application or composite, integration formulas.

Consideringn + 1 equally spaced base pointg, (X, X, ..., X»), andn segments of equal
width:

h=P-a (5.20)

If a andb are designated ag andx,, respectively, the total integral can be repre=diat

I =]} f(x)dx+]2 f(Xx+...+ ]' f( X)dlx (5.21)

X

Substituting the trapezoidal rule for each integialds

or, grouping terms,
h n-1
=] 1)+ 28 1)+ 1) 529
i=1
or, using Eq. 5.20 to express Eq. 5.23 in the valg form,

fl)+ 25 1)+ 1(x)

2n P

| =(b-a)
H_J — ~—
Width Average Height

(5.24)

Because the summation of the coefficient§xfin the numerator divided byn2s equal to 1,
the average height represents a weighted averagfgediunction values. According to Eq.
5.24, the interior points are given twice the weighthe two end point§xy) andf(x,).
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An error for the multiple-application trapezoidalle can be obtained by summing the
individual errors for each segment to give

_—

__b-a)g s
B = (&) (5.25)

wheref"(&) is the second derivative at a poifitlocated in segmernit This result can be
simplified by estimating the mean or the averageesaf the second derivative for the entire
interval as

1P
.
N

froit — (5.26)
n
Therefored_ (&) Onf" and Eq. 5.25 can be rewritten as
(b-a) ;
E,=- f" 5.27
? 12n? (®-27)

Thus, if the number in the bracket is doubled,tthacation error will be quartered. Note that
Eq. 5.27 is an approximate error because the appate nature of Eq. 5.26.

NB: In the multiple-application of the trapezoidalrfarla, the error decreases as the number
of segment: increases. However, the rate of decrease of érgradual. (Doubling the
number of segments quarters the error.) In theegpent sections, we will develop higher-
order formulas that are more accurate and thatergevmore quickly on the true integral as
the segments are increased.

Example Numerically approximate the integral r (2+Cos[2x]) dx
1]
by using the trapezoidal rule with m =1, 2, 4a8d 16 subintervals.

Form=1
5+Cos[2v 2|

4.04864
Form=2

% (5+2 (2+Cos[2]) +Cos[z+2])

3.60317

(5+2(2+Cos[2]) +2 (2+Cos[V2]) +Coa[zv 2] +2 (2+Cos[VE])]

1
4
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Form=4

3.4971

Form =38
% (§+2(2+Coa[1]) +2 (2+Cag(2]) +2 (2+Cas[v2 ]} +Cas[22] +2 (2+Coa[Va]]) +2 {2+ Coa[v5 ) + 2 (2+ Cos[¥E ]} +2 [2+ Coa [T |])

3. 46928

Form =16
% [5+2 (Z+Cos[1]] +2 (2+Coz[2]) +2 [2+Cos[£]] 2 [2+Cosl%]] $2 [2+Cosl%]] +2 (2+Coa[¥2]) +Cos[2v2] 42 [2+Cos[£]] .

2 (2+0os[V3 ) 42 [2+Eusl£l]+2 (24+Cos[5]) +2 2+Cosl\/§]] +2(2+Cos[vE])+2 [2+CDSI\/§]] +2{2etos[47]] 42 [2+E°Sl\/T?SI]]

3. 46232

5.3.2 Simpson's Rules

Aside from applying the trapezoidal rule with fineegmentation, another way to obtain a
more accurate estimate of an integral is to uskdngrder polynomial to connect the points.
For example, if there is an extra point midway lesnf(a) andf(b), the three points can be
connected with a parabola. If there are two po@gsally spaced betwed(a) andf(b), the
four points can be connected with a third-orderypoimial. The formulas that result from
taking the integrals under these polynomials alled¢&impson's rules

i. Simpson's 1/3 Rule

Simpson's 1/3 rule results when a second-orderpoliting polynomial is substituted into
Eq. 5.13:

| :T f( x)dlx DT f,(x)dx (5.28)

If a andb are designated ag andx, andf,(x) is represented by a second-order Lagrange
polynomial, the intergral becomes

|:T[((x—><1)(><—x2) f(x0)+((x‘xo)(x‘xz) f(Xl)+((x—x1)(x—x2) f(xz)}dx (5.29)

Xo ~ Xl)(XO - Xz) Xo ~ Xl)(XO - Xz) Xo ~ Xl)(XO - Xz)

X
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After integration and algebraic manipulation, th#dwing formula results

| Dg[f(xo)+4f(x1)+ f(x,)] (5.30)

where, for this casehy = (b—a)/2. This equation is known & mpson's 1/3 rule

Simpson's 1/3 rule can also be expressed in theniolg format

| D(b_a) f(XO)+4f(X1)+ f(XZ) ‘(531)
— — ~— 6 _/
Width Average Height

where a=x,, b=x,, and x, = the point midway betweea and b, which is given by
(b+a)/2. Notice that, according to the above equation,rtfigdle point is weighted two-
thirds and the two end points by one-sixth.

It can be shown that a single-segment applicatfid@impson’s 1/3 rule has a truncation error
of

__Lisc
E =5 (€) (5.32)
or, becauséh = (b—a)/2,
- (b — a)5 (4)
= gac | (€) (5.33)

whereg lies somewhere in the interval fraato b. Thus, Simpson's 1/3 rule is more accurate
that the trapezoidal rule.

Multiple Application of Simpson's 1/3 Rule

Just as with the trapezoidal rule, Simpson's rale lee improved by dividing the integration
interval into a number of segments of equal width:

h=—2% (5.34)
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The total integration can be represented as
Xo

j x)dx+j (X)dx+.. +jf(x)dx (5.35)

Xo X2 Xn-2

Substituting Simpson's 1/3 rule for the individirdegral yields

| Don )+ AT0a)+ Fx) oy flg)+4106)+ flx,)
6 6

(5.36)
oo F ) #4100, ) + 1)
6
or, combining terms, and using Eq. 5.34,
n-2
() +a S f(x)+2 S 1)+ 1)
| O(b-a) 2135 7248 (5.37)
Y S~ TN 3n —
Width Average Height

An error estimate for the multiple-application Ssop's rule is obtained in the same fashion
as for the trapezoidal rule by summing the indiaiderrors for the segments and averaging
the derivative to yield

i 5 _
E,=- (fgcjl £ (5.38)

where f @ is the average fourth derivative for the interval.
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)
Example Numerically approximate the integral J; (2+Cos[z4x |) ax

by using Simpson's rule with m=1, 2, 4, and 8.

Form=1

% (5+4(2+Cos[2]) +Cos[zv2])

3.4613495419

Form=2

% (5+2(2+Cos[2]) +4 (2+Cos[V2]) + o[z 2] +a {2+ Cos[VE])]

3.46005250951

Form=4
% (5+4(2+Coa[1]) +2 (2+Cas[2]) +2 (2+Cas[v2 ) + Cos[2+/2] + 4 (240033 ]} + (24 Cos[v5 |) + 2 (24 Caz[vE]) + 4 (24 Caa[y7]])

3.46000297964

Form =8
— |

yz

2+CUS[E]] +2(z+Coz[vE])+4

2+C03[J§]] *
2+Cos[@]] +2 [z+Tos[¥7]) +4[2+C03’\/T?5]]]

1
=5 [5+2 @+ Cos[l]) 42 (2+Cosl2]) +4 2+Cos[

]] +2(2+Cos[¥Z])+Cos[242] -4

2+Cos[£]] +d

2 {2+ Coz[¥3]) +4[2+C03’\/§]]+2 (z+cos[V5]) 4

3
+4[2+Cos[r
z

3.45999500397
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ii. Simpson's 3/8 Rule

In a similar manner to the derivation of the trapdal and Simpson's 1/3 rule, a third-order
Lagrange polynomial can be fit to four points antkgrated:

| =T f( X)dx DT f,(X)dx (5.39)

to yield

| 30 F(x)+3(x)+37(x,)+ f(x;)
8 8

(5.40)

whereh = (b— a)/3. This equation is calle8impson's 3/8 rulbecausd is multiplied by 3/8.

It is the third Newton-Cotes closed integratiomiata. The 3/8 rule can also be expressed in
the following form:

o B 21(6) 310 ) 1) o
— ~— 8 ~
Width Average Height

Thus, the two interior points are given weight's given weights of three-eighths, whereas
the end points are weighted with one-eighth. Sim|ssg&/8 rule has an error of

E =- £@(¢) (5.42)

Simpson's 1/3 rule is usually the method of prefeeebecause it attains third-order accuracy
with three points rather than the four points reeplifor the 3/8 version. However, the 3/8 rule
has utility when the number of segments is odd.

Summary of the Newton-Cotes integration formulagiven below.

Se(gr;wents Points Name Formula Truncation Error

n

1 2 Trapezoidalrule (b- a)w - (¥12)n% (&)

2 3 Simpson's 1/3 rule (b-a) flo) + 4féxl)+ f(r) ~(¥90)h®f W(¢)
3 4 Simpson's 3/8 rule (b-a) f(x,)+3f(x)+3f(x,)+ f(x,) ~-(380)h°f (&)

8
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)
Example Numerically approximate the integral J; (2+cos[24x ]) dx

by using Simpson's 3/8 rule with m =1, 2, 4.

Form=1

L [5+3 [2+cns[2 |IE ]] +Cos[zvz2] +3 [2+cns[i]]]
4 3 Ve

3. 46059895098

Form=2

% [5+2 (2+Cas[2]) +3 [2+Ens’2@]]+3 [2+C05[2\/§]] +Cos[2v2]+3 [2+Ens’%]] +3 [2+Ens’%l]]

3.4600353533145

Form=3

% [5+2 (2 +Co3[2]) +3 [2+CDS[EI]+3 [2+Ens’2@]] +3 [2+cns[2£]]+2 (2+cos[¥2]) +
2+E03’%]] +3 [2+E03’%]]+3 [2+CDS[E}] +3 [zn:ns[\/g]]»fz (2+Coz[v6]) +3 [2+Cos’\/§]]]

3.46000003113

Cos[z2v2]+3
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