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CHAPTER-V 
 

NUMERICAL DIFFERENTIATION & INTEGRATION 
 

5.1 Introduction 
 
Calculus is mathematics of change. Because engineers must continuously deal with systems 
and processes that change, calculus is an essential tool of the engineering profession. Standing 
at the heart of calculus are the related mathematical concepts of differentiation and 
integration. Mathematically, the derivative represents the rate of change of a dependent 
variable with respect to an independent variable. If y is the dependent variable and x is the 
independent variable, the first derivative of y = f(x) w.r.t. to x, represented by dy/dx, is given 
by 
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The inverse process to differentiation in calculus is integration. Mathematically, integration is 
represented by  
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which stands for the integral of the function f(x) w.r.t. the independent variable x, evaluated 
between the limits x = a to x = b. The function f(x) is referred to as the integrand.  
 
Non-Computer Methods for Differentiation and Integration 
 
The function to be differentiated or integrated will typically be in one of the following three 
forms: 

1. A simple continuous function such as a polynomial, an exponential, or a trigonometric 
function. 

2. A complicated continuous function that is difficult or impossible to differentiate or 
integrate directly. 

3. A tabulated function where the values of x and f(x) are given at a number of discrete 
points, as is often the case with experimental or field data. 

 
In the first case, the derivative or integral of a simple function may be evaluated analytically 
using calculus. For the second case, analytical solutions are often impractical, and sometimes 
impossible, to obtain. In these instances, as well as in the third case of discrete data, 
approximate methods must be employed.  
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A non-computer method for determining derivatives from data is called equal-area graphical 
differentiation. In this method, the (x, y) data are tabulated and, for each interval, a simple 
divided difference ∆y/∆x is employed to estimate the slope. Then these values are plotted as a 
stepped curve versus x.  Next a smooth curve is drawn that attempts to approximate the area 
under the stepped curve. That is, it is drawn so that visually, the positive and the negative 
areas are balanced. The rates at given values of x can then be read from the curve.  
 
In the same spirit, visually oriented approaches were employed to integrate tabulated data and 
complicated functions in the pre-computer era. A simple intuitive approach is to plot the 
function on a grid and count the number of boxes that approximate the area. This number 
multiplied by the area of each box provides a rough estimate of the total area under the curve. 
This estimate can be refined, at the expense of additional effort, by using a finer grid. 
 
Another commonsense approach is to divide the area into vertical segments, or strips, with a 
height equal to the function value at the midpoint of each strip. The area of the rectangles can 
be then calculated and summed to estimate the total area. In this approach, it is assumed that 
the value at the midpoint provides a valid approximation of the average height of the function 
for each strip. As with the grid method, refined estimates are possible by using more (and 
thinner) strips to approximate the integral.   
 
5.2 Numerical differentiation 
 

5.2.1 Lower Order Methods 
 

By truncating the second- and higher-derivatives in the Taylor series  
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the following formula for approximating the first derivative, called the first forward 
difference, is obtained  
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where if∆  is referred to as the first forward difference and h is called the step size. The entire 

term  hf∆  is referred to as a first finite divided difference.  

 

Similarly, by truncating the Taylor series between 1−ix  and ix ,  
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f’[1]  

the following formula for approximating the first derivative is obtained 
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where if∇  is referred to as the first backward difference. 

 
A third way to approximate the first derivative is to subtract backward Taylor series 

expansions (between 1−ix  and ix ) from the forward Taylor series expansion (between ix  

and 1+ix ) resulting in 
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from which we obtain 
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The above equation is a centered difference representation of the first derivative.  
 
Example   Consider the function                                                   
 
Compute numerical approximations for  the                           derivative, using step sizes,  
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5.2.2 High-Accuracy Differentiation Formulas 
 
High-accuracy divided difference formulas can be generated by including additional terms 
from the Taylor series expansion. For example, the forward Taylor series expansion can be 
written as  
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which can be solved for  
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The result can be truncated by excluding the second- and higher-derivative terms and were 
thus left with a final result of  
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We can retain the second-derivative term by substituting the following approximation of the 
second derivative 
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into Eq. 5.10 to yield 
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or, collecting terms, 
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Notice that the inclusion of the second-derivative term has improved the accuracy to ( )2hO . 

Similar improved versions can be developed for the backward and centered formulas as well 
as for the approximations of the higher derivatives. The formulas are given below. 
 
Forward Finite-divided Difference Formulas 
 
First Derivative          Error 
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Second Derivative 
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Backward Finite-divided Difference Formulas 
 
First Derivative          Error 
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Second Derivative 
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Centered Finite-divided Difference Formulas 
 
First Derivative 
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Third Derivative 
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5.3 Newton-Cotes integration formulas 
 
The Newton-Cotes formulas are the most common numerical integration schemes. They are 
based on the strategy of replacing a complicated function or tabulated data with an 
approximating function that is easy to integrate: 
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where  fn(x) =  a polynomial of the form 
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where n is the order of the polynomial.  
 
The integral can be approximated by one polynomial or using a series of polynomials applied 
piecewise to the function or date over segments of constant length.  
 
Closed and open forms of the Newton-Cotes formulas are available. The closed forms are 
those where the data points at the beginning and end of the limits of integration are known. 
The open forms have integration limits that extend beyond the range of the data. In this sense, 
they are akin to extrapolation. Open Newton-Cotes formulas are not generally used for 
definite integration. However, they are utilized for evaluating improper integrals and for the 
solution of ordinary differential equations.  
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5.3.1 The Trapezoidal Rule 
 
The trapezoidal rule is the first of the Newton-Cotes closed integration formulas. It 
corresponds to the case where the polynomial in Eq. 5.13 is first-order: 
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The straight line passing through the two points (a, f(a)) and (b, f(b)) is given by 
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The area under this straight line is an estimate of the integral of f(x) between the limits a and 
b: 
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The result of the integration is 
 

( ) ( ) ( )
2

bfaf
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which is called the trapezoidal rule. 
 
Error of the Trapezoidal Rule 
 
When we employ the integral under a straight line to approximate the integral under the curve, 
we obviously can incur an error that may be substantial. An estimate of the local truncation 
error of a single application of the trapezoidal rule is 
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where ξ lies somewhere in the interval from a to b.  
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Multiple-Application of Trapezoidal Rule 
 
One way to improve the accuracy of the trapezoidal rule is to divide the integration interval 
from a to b into a number of segments and apply the method to each segment. The areas of the 
individual segments can then be added to yield the integral for the entire interval. The 
resulting equations are called multiple-application, or composite, integration formulas. 
 
Considering n + 1 equally spaced base points (x0, x1, x2, ..., xn), and n segments of equal 
width: 
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If a and b are designated as x0 and xn, respectively, the total integral can be represented as 
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Substituting the trapezoidal rule for each interval yields 
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or, grouping terms, 
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or, using Eq. 5.20 to express Eq. 5.23 in the following form,  
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Because the summation of the coefficients of f(x) in the numerator divided by 2n is equal to 1, 
the average height represents a weighted average of the function values. According to Eq. 
5.24, the interior points are given twice the weight of the two end points f(x0) and f(xn).  
 

Width Average Height 
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An error for the multiple-application trapezoidal rule can be obtained by summing the 
individual errors for each segment to give 
 

( ) ( )∑
=

′′−−=
n

i
it f

n

ab
E

1
312

ξ      (5.25) 

where f"(ξi) is the second derivative at a point ξi located in segment i. This result can be 
simplified by estimating the mean or the average value of the second derivative for the entire 
interval as  
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Therefore ( ) fnf i ′′≅′′∑ ξ  and Eq. 5.25 can be rewritten as  
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Thus, if the number in the bracket is doubled, the truncation error will be quartered. Note that 
Eq. 5.27 is an approximate error because the approximate nature of Eq. 5.26. 
 
NB: In the multiple-application of the trapezoidal formula, the error decreases as the number 
of segments n increases. However, the rate of decrease of error is gradual. (Doubling the 
number of segments quarters the error.) In the subsequent sections, we will develop higher-
order formulas that are more accurate and that converge more quickly on the true integral as 
the segments are increased.  

Example   Numerically approximate the integral    

 by using the trapezoidal rule with  m = 1, 2, 4, 8, and 16  subintervals. 

     For m = 1 

    For m = 2 
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For m = 4 

 

   For m = 8 

            
 

  For m = 16 

 

 
 
5.3.2 Simpson's Rules 
 
Aside from applying the trapezoidal rule with finer segmentation, another way to obtain a 
more accurate estimate of an integral is to use higher-order polynomial to connect the points. 
For example, if there is an extra point midway between f(a) and f(b), the three points can be 
connected with a parabola. If there are two points equally spaced between f(a) and f(b), the 
four points can be connected with a third-order polynomial. The formulas that result from 
taking the integrals under these polynomials are called Simpson's rules. 
 

i.  Simpson's 1/3 Rule 
 
Simpson's 1/3 rule results when a second-order interpolating polynomial is substituted into       
Eq. 5.13: 
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If a and b are designated as x0 and x2 and f2(x) is represented by a second-order Lagrange 
polynomial, the intergral becomes 
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Numerical Methods (CENG 2084)                                                                   Lecture Note 

AAiT   ADDIS ABABA INSTITUTE OD TECHNOLOGY  12 

After integration and algebraic manipulation, the following formula results 
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where, for this case, ( ) 2abh −= . This equation is known as Simpson's 1/3 rule.  

 
Simpson's 1/3 rule can also be expressed in the following format 
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where 0xa = , 2xb = , and 1x  = the point midway between a and b, which is given by 

( ) 2ab + . Notice that, according to the above equation, the middle point is weighted two-

thirds and the two end points by one-sixth.  
 
It can be shown that a single-segment application of Simpson's 1/3 rule has a truncation error 
of 
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or, because ( ) 2abh −= , 
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where ξ lies somewhere in the interval from a to b. Thus, Simpson's 1/3 rule is more accurate 
that the trapezoidal rule.  
 
 
Multiple Application of Simpson's 1/3 Rule 
 
Just as with the trapezoidal rule, Simpson's rule can be improved by dividing the integration 
interval into a number of segments of equal width: 
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The total integration can be represented as 
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Substituting Simpson's 1/3 rule for the individual integral yields 
 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
6

4
2                

...
6

4
2

6

4
2

12

432210

nnn xfxfxf
h

xfxfxf
h

xfxfxf
hI

++
+

+
++

+
++

≅

−−

 (5.36) 

 
or, combining terms, and using Eq. 5.34, 
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An error estimate for the multiple-application Simpson's rule is obtained in the same fashion 
as for the trapezoidal rule by summing the individual errors for the segments and averaging 
the derivative to yield 
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where ( )4f  is the average fourth derivative for the interval. 

 
 
 
 
 
 
 
 
 
 

 
 
 
 

Width Average Height 
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Example  Numerically approximate the integral    
  
by using Simpson's rule with  m = 1, 2, 4, and 8.  
 

  For m = 1 

 

 
 

For m = 2 
 

 

 
 

   For m = 4 

 
 

 

For m = 8 
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ii. Simpson's 3/8 Rule 
 

In a similar manner to the derivation of the trapezoidal and Simpson's 1/3 rule, a third-order 
Lagrange polynomial can be fit to four points and integrated: 
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b
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 to yield 
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where ( ) 3abh −= . This equation is called Simpson's 3/8 rule because h is multiplied by 3/8. 

It is the third Newton-Cotes closed integration formula. The 3/8 rule can also be expressed in 
the following form: 
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Thus, the two interior points are given weight's are given weights of three-eighths, whereas 
the end points are weighted with one-eighth. Simpson's 3/8 rule has an error of 
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Simpson's 1/3 rule is usually the method of preference because it attains third-order accuracy 
with three points rather than the four points required for the 3/8 version. However, the 3/8 rule 
has utility when the number of segments is odd.  
 
 
Summary of the Newton-Cotes integration formulas is given below.  
 
Segments Points    Name  Formula   Truncation Error 
    (n)  

1    2   Trapezoidal rule        ( ) ( ) ( )
2

10 xfxf
ab

+
−                        ( ) ( )ξfh ′′− 3121  

2    3   Simpson's 1/3 rule     ( ) ( ) ( ) ( )
6

4 210 xfxfxf
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−                           ( ) ( )( )ξ45901 fh−  

3    4   Simpson's 3/8 rule     ( ) ( ) ( ) ( ) ( )
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Example Numerically approximate the integral    
  
by using Simpson's 3/8 rule with  m = 1, 2, 4. 
 
 

For m = 1 

 
 

 
 
For m = 2 

 

 
For m = 3 

 
 

  

 


