CHAPTER - IV

SOLUTIONS OF SYSTEMS OF NON LINEAR EQUATIONS

The problem of finding the solution of a set of non linear equations is much more difficult than for linear equations. Moreover, there are no good and general methods for solving systems of more than one non-linear equations.

Consider non-linear problem, where we want to solve simultaneously the system

$$f_{1}(x_{1}, x_{2},..., x_{n}) = 0$$

$$f_{2}(x_{1}, x_{2},..., x_{n}) = 0$$

.....

$$f_{n}(x_{1}, x_{2},..., x_{n}) = 0$$

(4.1)

The most commonly used methods of solution are the iterative methods and Newton – Raphson method.

i. <u>Iterative method</u>

Fixed -Point iteration for Functions of Several Variables

Where each function f_i of Eqn (4.1) can be thought of as mapping a vector $\mathbf{x} = (x_1, x_2, x_3, ..., x_n)^t$ of the n-dimensional space \mathbb{R}^n into the real line R. This system of n nonlinear equations in n unknowns can also be represented by defining a function F mapping \mathbb{R}^n into \mathbb{R}^n as

$$\mathbf{F}(x_1, x_2, \ldots, x_n) = (f_1(x_1, x_2, \ldots, x_n), f_2(x_1, x_2, \ldots, x_n), \ldots, f_n(x_1, x_2, \ldots, x_n))^t$$

If vector notation is used to represent the variables x_1, x_2, x_n , system (4.1) assumes the form

$$\mathbf{F}(\mathbf{x}) = \mathbf{0}. \tag{4.2}$$

The functions f_1, f_2, \dots, f_n are the coordinate functions of **F**.

The following procedure can be used for solving non-linear problem by iterative method.

- i. the i^{th} equation is solved for x_i , the system is changed into the fixed-point problem
- **ii.** Using the initial guess $x_2, x_3 \dots$ solve for x_1
- iii. Using the values of x_1 from step *ii* and x_3 , x_4 , ... solve for x_2
- iv. Using the value of x_1 from step *ii* and that of x_2 from step *iii* solve for x_3
- v. Repeat this procedure until the required accuracy is achieved. /interval is smaller than some specified tolerance/

$$3x_1 - \cos(x_2 x_3) - \frac{1}{2} = 0,$$

$$x_1^2 - 81(x_2 + 0.1)^2 + \sin x_3 + 1.06 = 0,$$

$$e^{-x_1 x_2} + 20x_3 + \frac{10\pi - 3}{3} = 0$$

If the ith equation is solved for x_i, the system is changed into the fixed-point problem

$$x_{1} = \frac{1}{3}\cos(x_{2}x_{3}) + \frac{1}{6},$$

$$x_{2} = \frac{1}{9}\sqrt{x_{1}^{2} + \sin x_{3} + 1.06} - 0.1,$$

$$x_{3} = -\frac{1}{20}e^{-x_{1}x_{2}} - \frac{10\pi - 3}{60}.$$

(4.3)

Let $\mathbf{G}: \mathbb{R}^3 \to \mathbb{R}^3$ be defined by $\mathbf{G}(\mathbf{x}) = (g_1(\mathbf{x}), g_2(\mathbf{x}), g_3(\mathbf{x}))^t$, where

$$g_1(x_1, x_2, x_3) = \frac{1}{3}\cos(x_2x_3) + \frac{1}{6},$$

$$g_2(x_1, x_2, x_3) = \frac{1}{9}\sqrt{x_1^2 + \sin x_3 + 1.06} - 0.1,$$

$$g_3(x_1, x_2, x_3) = -\frac{1}{20}e^{-x_1x_2} - \frac{10\pi - 3}{60}.$$

To approximate the fixed point p, we choose $x(0) = (0.1, 0.1, -0.1)^t$. The sequence of vectors generated by

$$\begin{aligned} x_1^{(k)} &= \frac{1}{3}\cos x_2^{(k-1)} x_3^{(k-1)} + \frac{1}{6}, \\ x_2^{(k)} &= \frac{1}{9} \sqrt{\left(x_1^{(k-1)}\right)^2 + \sin x_3^{(k-1)} + 1.06} - 0.1, \\ x_3^{(k)} &= -\frac{1}{20} e^{-x_1^{(k-1)} x_2^{(k-1)}} - \frac{10\pi - 3}{60} \end{aligned}$$

converges to the unique solution of (4.3). The results in Table 4.1 were generated until; the error /X $^{(k)}$ - X $^{(k-1)}$ / $<10^{-5}$

	1		l	1
k	$X_1^{(k)}$	$\mathbf{X}_{2}^{(k)}$	$X_{3}^{(k)}$	/X ^(k) - X ^(k-1) /
0	0.1	0.1	-0.1	
1	0.49998333	0.00944115	-0.52310127	0.423
2	0.49999593	0.00002557	-0.52336331	9.4 x 10 ⁻³
3	0.5000000	0.00001234	-0.52359814	2.3 x 10 ⁻⁴
4	0.5000000	0.00000003	-0.52359847	1.2 x 10 ⁻⁵
5	0.5000000	0.00000002	-0.52359877	3.1 x 10 ⁻⁷

<u>Table 4.1</u>

One way to accelerate convergence of the fixed-point iteration is to use the latest estimates $x_1^{(k)}, \ldots, x_{i-1}^{(k)}$ instead of $x_1^{(k-1)}, \ldots, x_{i-1}^{(k-1)}$ to compute $x_i^{(k)}$, as in the **Gauss-Seidel method** for linear systems. The component equations then become

$$\begin{aligned} x_1^{(k)} &= \frac{1}{3} \cos\left(x_2^{(k-1)} x_3^{(k-1)}\right) + \frac{1}{6}, \\ x_2^{(k)} &= \frac{1}{9} \sqrt{\left(x_1^{(k)}\right)^2 + \sin x_3^{(k-1)} + 1.06} - 0.1, \\ x_3^{(k)} &= -\frac{1}{20} e^{-x_1^{(k)} x_2^{(k)}} - \frac{10\pi - 3}{60}. \end{aligned}$$

So the convergence was indeed accelerated for this problem by using **the Gauss-Seidel method**. However, this method does not always accelerate the convergence.

k	$X_1^{(k)}$	$X_2^{(k)}$	$X_3^{(k)}$	/X ^(k) - X ^(k-1) /
0	0.1	0.1	-0.10000000	
1	0.49998333	0.02222979	-0.52304613	0.423
2	0.49997747	0.00002815	-0.52359807	2.2 x 10 ⁻²
3	0.5000000	0.00000004	-0.52359877	2.8 x 10 ⁻⁵
4	0.5000000	0.00000000	-0.52359877	3.8 x 10 ⁻⁸

Table 4.2

ii. <u>Newton – Raphson method</u>

The problem in Example 1 of the previous section is transformed into a convergent fixed- point problem by algebraically solving the three equations for the three variables x_1 , x_2 , and x_3 . It is, however, rather unusual for this technique to be successful. In this section, we consider an algorithmic procedure to perform the transformation in a more general situation.

One of the methods available for solving such a system /non linear system of equations/ is based on a multi-dimensional version of Newton–Raphson method. The method consists of linearizing the non-linear systems at each iteration step and solving system of linear equations.

To construct the algorithm that led to an appropriate fixed-point method in the one- dimensional case, we found a function ϕ with the property that $g(x) = x \cdot \phi(x) f(x)$ gives quadratic convergence to the fixed point p of the function g(x). From this condition Newton's method evolved by choosing $\phi(x) = 1/f'(x)$, assuming that $f'(x) \neq 0$. Using a similar approach in the n-dimensional case involves a matrix

$$A(\mathbf{x}) = \begin{bmatrix} a_{11}(\mathbf{x}) & a_{12}(\mathbf{x}) & \cdots & a_{1n}(\mathbf{x}) \\ a_{21}(\mathbf{x}) & a_{22}(\mathbf{x}) & \cdots & a_{2n}(\mathbf{x}) \\ \vdots & \vdots & & \vdots \\ a_{n1}(\mathbf{x}) & a_{n2}(\mathbf{x}) & \cdots & a_{nn}(\mathbf{x}) \end{bmatrix},$$

where each of the entries $a_{ij}(x)$ is a function from \mathbb{R}^n into \mathbb{R} . This requires that A(x) be found so that $G(x) = X - A(x)^{-1}F(x)$ gives quadratic convergence to the solution of $\mathbf{F}(\mathbf{x}) = 0$, assuming that A(x) is nonsingular at the fixed point p of G.

Defining the matrix $J(\mathbf{x})$ by

$$J(\mathbf{x}) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1}(\mathbf{x}) & \frac{\partial f_1}{\partial x_2}(\mathbf{x}) & \cdots & \frac{\partial f_1}{\partial x_n}(\mathbf{x}) \\ \frac{\partial f_2}{\partial x_1}(\mathbf{x}) & \frac{\partial f_2}{\partial x_2}(\mathbf{x}) & \cdots & \frac{\partial f_2}{\partial x_n}(\mathbf{x}) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial x_1}(\mathbf{x}) & \frac{\partial f_n}{\partial x_2}(\mathbf{x}) & \cdots & \frac{\partial f_n}{\partial x_n}(\mathbf{x}) \end{bmatrix}$$

An appropriate choice for A (x) is, consequently, A (x) = J (x) since this satisfies condition $\partial g_i(\mathbf{p})/\partial x_k = 0$, for each i = 1, 2, ..., n and k = 1, 2, ..., n. The function G is defined by $G(x)=X-J(x)^{-1}F(x)$, and the functional iteration procedure evolves from selecting $x^{(0)}$ and generating, for k > 1.

$$\mathbf{X}^{(k)} = \mathbf{G}(\mathbf{x}^{(k-1)}) = \mathbf{x}^{(k-1)} - \mathbf{J}(\mathbf{x}^{(k-1)})^{-1} \mathbf{F}(\mathbf{x}^{(k-1)})$$

This is called **Newton's method for non-linear systems**, and it is generally expected to give quadratic convergence, provided that a sufficiently accurate starting value is known and $J(p)^{-1}$ exists. The matrix J(x) is called the **Jacobian matrix** and has a number of applications in analysis.

$$\begin{bmatrix} x_1^{(k)} \\ x_2^{(k)} \\ x_3^{(k)} \end{bmatrix} = \begin{bmatrix} x_1^{(k-1)} \\ x_2^{(k-1)} \\ x_3^{(k-1)} \end{bmatrix} + \begin{bmatrix} y_1^{(k-1)} \\ y_2^{(k-1)} \\ y_3^{(k-1)} \end{bmatrix},$$

where

$$\begin{bmatrix} y_1^{(k-1)} \\ y_2^{(k-1)} \\ y_3^{(k-1)} \end{bmatrix} = -\left(J\left(x_1^{(k-1)}, x_2^{(k-1)}, x_3^{(k-1)}\right)\right)^{-1} \mathbf{F}\left(x_1^{(k-1)}, x_2^{(k-1)}, x_3^{(k-1)}\right)$$

The disadvantages in Newton's method are:-

- It is often not simple to evaluate the partial derivatives
- For most of the problems, it is not always easy to find initial guesses that will lead to a solution.
- Need to solve system of linear equations at each iterative step.

Example 2: Solve the nonlinear system by Newton's method

$$3x_1 - \cos(x_2x_3) - \frac{1}{2} = 0,$$

$$x_1^2 - 81(x_2 + 0.1)^2 + \sin x_3 + 1.06 = 0,$$

$$e^{-x_1x_2} + 20x_3 + \frac{10\pi - 3}{3} = 0$$

Newton's method will be used to obtain this approximation using the initial approximation is $x^{(0)}=(0.1,0.1,-0.1)$ and

$$\mathbf{F}(x_1, x_2, x_3) = (f_1(x_1, x_2, x_3), f_2(x_1, x_2, x_3), f_3(x_1, x_2, x_3))^t$$

where

$$f_1(x_1, x_2, x_3) = 3x_1 - \cos(x_2 x_3) - \frac{1}{2},$$

$$f_2(x_1, x_2, x_3) = x_1^2 - 81(x_2 + 0.1)^2 + \sin x_3 + 1.06,$$

$$f_3(x_1, x_2, x_3) = e^{-x_1 x_2} + 20x_3 + \frac{10\pi - 3}{3}.$$

and

The Jacobian matrix $J(\mathbf{x})$ for this system is

$$J(x_1, x_2, x_3) = \begin{bmatrix} 3 & x_3 \sin x_2 x_3 & x_2 \sin x_2 x_3 \\ 2x_1 & -162(x_2 + 0.1) & \cos x_3 \\ -x_2 e^{-x_1 x_2} & -x_1 e^{-x_1 x_2} & 20 \end{bmatrix}$$

Thus, at the kth step, the linear system $J(x^{(k-1)})y^{(k-1)} = -F(x^{(k-1)})$ must be solved.

$$\begin{bmatrix} y_1^{(k-1)} \\ y_2^{(k-1)} \\ y_3^{(k-1)} \end{bmatrix} = -\left(J\left(x_1^{(k-1)}, x_2^{(k-1)}, x_3^{(k-1)}\right)\right)^{-1} \mathbf{F}\left(x_1^{(k-1)}, x_2^{(k-1)}, x_3^{(k-1)}\right)$$

$$\begin{bmatrix} 3 & x_3 \sin x_2 x_3 & x_2 \sin x_2 x_3 \\ 2x_1 & -162(x_2 + 0.1) & \cos x_3 \\ -x_2 e^{-x_1 x_2} & -x_1 e^{-x_1 x_2} & 20 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = -\begin{bmatrix} 3x_1 - \cos x_2 x_3 - \frac{1}{2} \\ x_1^2 - 81 (x_2 + 0.1)^2 + \sin x_3 + 1.06 \\ e^{-x_1 x_2} + 20 x_3 + \frac{10\pi - 3}{3} \end{bmatrix}$$

Taking $x_1^{(0)}=0.1$, $x_2^{(0)}=0.1$ and $x_3^{(0)}=-0.1$ as initial approximation, equation (*) reduces to

3	9.99x 10 ⁻⁴	-9.99x 10 ⁻⁴	$\begin{bmatrix} y_1 \end{bmatrix}$		1.19995
0.2	-32.4	0.995	<i>y</i> ₂	Η	2.2698
-0.099	-0.099	20	$\lfloor y_3 \rfloor$		-8.46

Solving this linear system of equation, results in $y_1=0.39987$, $y_2=-0.0805331$ and $y_3=-0.42121$. Use this results, the next approximation for the unknown variables can be calculated as

$$\begin{bmatrix} x_1^{(1)} \\ x_2^{(1)} \\ x_3^{(1)} \end{bmatrix} = \begin{bmatrix} x_1^{(0)} \\ x_2^{(0)} \\ x_3^{(0)} \end{bmatrix} + \begin{bmatrix} y_1^{(0)} \\ y_2^{(0)} \\ y_3^{(0)} \end{bmatrix}$$
$$X_1^{(1)} = x_1^{(0)} + y_1 = 0.1 + 0.39987 = \underline{0.49987}$$
$$X_2^{(1)} = x_2^{(0)} + y_2 = 0.1 - 0.0805331 = \underline{0.019466} \text{ and}$$
$$X_3^{(1)} = x_3^{(0)} + y_3 = -0.1 - 0.42121 = -\underline{0.521520}$$

Now substituting the calculated values of $X_1^{(1)}$, $X_2^{(1)}$ and $X_3^{(1)}$ in eqn (*),we construct a new linear system and solve it to obtain the new correction factor y_1 , y_2 , y_3 and then calculate the new approximations $X_1^{(2)}$, $X_2^{(2)}$ and $X_3^{(2)}$. This process is continued until convergent is achieved.

The results using this iterative procedure are shown in table 4.3

k	$X_1^{(k)}$	$X_2^{(k)}$	${X_3}^{(k)}$	/X $^{(k)}$ - X $^{(k-1)}$ /
0	0.1	0.1	-0.1	
1	0.49987	0.01946686	-0.52152047	0.422
2	0.50004593	0.00158859	-0.52355711	1.79 x 10 ⁻²
3	0.50000034	0.00001244	-0.52359845	1.58 x 10 ⁻³
4	0.50000000	0.00000000	-0.52359877	1.24 x 10 ⁻⁵
5	0.50000000	0.00000000	-0.52359877	0

Table 4.3

The example illustrates that Newton's method can converge very rapidly once an approximation is obtained that is near the true solution.