CHAPTER - IV SOLUTIONS OF SYSTEMS OF NON LINEAR EQUATIONS

The problem of finding the solution of a set of non linear equations is much more difficult than for linear equations. Moreover, there are no good and general methods for solving systems of more than one non- linear equations.

Consider non- linear problem, where we want to solve simultaneously the system

$$
\begin{align*}
& f_{1}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=0 \\
& f_{2}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=0 \tag{4.1}\\
& \cdots \ldots \\
& f_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=0
\end{align*}
$$

The most commonly used methods of solution are the iterative methods and Newton - Raphson method.

i. Iterative method

Fixed -Point iteration for Functions of Several Variables

Where each function f_{i} of Eqn (4.1) can be thought of as mapping a vector $\mathrm{x}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3},,, \mathrm{x}_{\mathrm{n}}\right)^{\mathrm{t}}$ of the n-dimensional space R^{n} into the real line R. This system of n nonlinear equations in n unknowns can also be represented by defining a function F mapping R^{n} into R^{n} as

$$
\mathbf{F}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(f_{1}\left(x_{1}, x_{2}, \ldots, x_{n}\right), f_{2}\left(x_{1}, x_{2}, \ldots, x_{n}\right), \ldots, f_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right)^{t} .
$$

If vector notation is used to represent the variables $\mathrm{x}_{1}, \mathrm{x}_{2} \mathrm{X}_{\mathrm{n}}$, system (4.1) assumes the form

$$
\begin{equation*}
\mathbf{F}(\mathbf{x})=\mathbf{0} . \tag{4.2}
\end{equation*}
$$

The functions $f_{1}, f_{2}, \ldots, f_{\mathrm{n}}$ are the coordinate functions of \mathbf{F}.

The following procedure can be used for solving non- linear problem by iterative method.
i. the $\mathrm{i}^{\text {th }}$ equation is solved for x_{i}, the system is changed into the fixed-point problem
ii. Using the initial guess $x_{2}, x_{3} \ldots$ solve for x_{1}
iii. Using the values of x_{1} from step $i i$ and x_{3}, x_{4}, \ldots solve for x_{2}
iv. Using the value of x_{1} from step $i i$ and that of x_{2} from step iii solve for x_{3}
v. Repeat this procedure until the required accuracy is achieved. /interval is smaller than some specified tolerance/

Example 1: solve the system of non linear equation by iterative method

$$
\begin{aligned}
3 x_{1}-\cos \left(x_{2} x_{3}\right)-\frac{1}{2} & =0 \\
x_{1}^{2}-81\left(x_{2}+0.1\right)^{2}+\sin x_{3}+1.06 & =0 \\
e^{-x_{1} x_{2}}+20 x_{3}+\frac{10 \pi-3}{3} & =0
\end{aligned}
$$

If the $\mathrm{i}^{\text {th }}$ equation is solved for x_{i}, the system is changed into the fixed-point problem

$$
\begin{align*}
& x_{1}=\frac{1}{3} \cos \left(x_{2} x_{3}\right)+\frac{1}{6}, \\
& x_{2}=\frac{1}{9} \sqrt{x_{1}^{2}+\sin x_{3}+1.06}-0.1, \tag{4.3}\\
& x_{3}=-\frac{1}{20} e^{-x_{1} x_{2}}-\frac{10 \pi-3}{60} .
\end{align*}
$$

Let $\mathbf{G}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be defined by $\mathbf{G}(\mathbf{x})=\left(g_{1}(\mathbf{x}), g_{2}(\mathbf{x}), g_{3}(\mathbf{x})\right)^{t}$, where

$$
\begin{aligned}
& g_{1}\left(x_{1}, x_{2}, x_{3}\right)=\frac{1}{3} \cos \left(x_{2} x_{3}\right)+\frac{1}{6}, \\
& g_{2}\left(x_{1}, x_{2}, x_{3}\right)=\frac{1}{9} \sqrt{x_{1}^{2}+\sin x_{3}+1.06}-0.1, \\
& g_{3}\left(x_{1}, x_{2}, x_{3}\right)=-\frac{1}{20} e^{-x_{1} x_{2}}-\frac{10 \pi-3}{60} .
\end{aligned}
$$

To approximate the fixed point p, we choose $x(0)=(0.1,0.1,-0.1)^{t}$. The sequence of vectors generated by

$$
\begin{aligned}
& x_{1}^{(k)}=\frac{1}{3} \cos x_{2}^{(k-1)} x_{3}^{(k-1)}+\frac{1}{6} \\
& x_{2}^{(k)}=\frac{1}{9} \sqrt{\left(x_{1}^{(k-1)}\right)^{2}+\sin x_{3}^{(k-1)}+1.06}-0.1, \\
& x_{3}^{(k)}=-\frac{1}{20} e^{-x_{1}^{(k-1)} x_{2}^{(k-1)}}-\frac{10 \pi-3}{60}
\end{aligned}
$$

converges to the unique solution of (4.3). The results in Table 4.1 were generated until; the error $/ \mathrm{X}^{(\mathrm{k})}-\mathrm{X}^{(\mathrm{k}-1)} /<10^{-5}$

Table 4.1

	$\mathrm{X}_{1}{ }^{(\mathrm{k})}$	$\mathrm{X}_{2}{ }^{(\mathrm{k})}$	$\mathrm{X}_{3}{ }^{(\mathrm{k})}$	$/ \mathrm{X}^{(\mathrm{k})}-\mathrm{X}^{(\mathrm{k}-1)} /$
k	0.1	0.1	-0.1	
1	0.49998333	0.00944115	-0.52310127	0.423
2	0.49999593	0.00002557	-0.52336331	9.4×10^{-3}
3	0.5000000	0.00001234	-0.52359814	2.3×10^{-4}
4	0.5000000	0.00000003	-0.52359847	1.2×10^{-5}
5	0.5000000	0.00000002	-0.52359877	3.1×10^{-7}

One way to accelerate convergence of the fixed-point iteration is to use the latest estimates $\mathrm{x}_{1}{ }^{(\mathrm{k})}, \ldots, \mathrm{x}_{\mathrm{i}-1}{ }^{(\mathrm{k})}$ instead of $\mathrm{x}_{1}{ }^{(\mathrm{k}-1)}, \ldots, \mathrm{x}_{\mathrm{i}-1}{ }^{(\mathrm{k}-1)}$ to compute $\mathrm{x}_{\mathrm{i}}{ }^{(\mathrm{k})}$, as in the Gauss-Seidel method for linear systems. The component equations then become

$$
\begin{aligned}
& x_{1}^{(k)}=\frac{1}{3} \cos \left(x_{2}^{(k-1)} x_{3}^{(k-1)}\right)+\frac{1}{6} \\
& x_{2}^{(k)}=\frac{1}{9} \sqrt{\left(x_{1}^{(k)}\right)^{2}+\sin x_{3}^{(k-1)}+1.06}-0.1, \\
& x_{3}^{(k)}=-\frac{1}{20} e^{-x_{1}^{(k)} x_{2}^{(k)}}-\frac{10 \pi-3}{60} .
\end{aligned}
$$

So the convergence was indeed accelerated for this problem by using the Gauss-Seidel method. However, this method does not always accelerate the convergence.

Table 4.2

k	$\mathrm{X}_{1}{ }^{(\mathrm{k})}$	$\mathrm{X}_{2}{ }^{(\mathrm{k})}$	$\mathrm{X}_{3}{ }^{(\mathrm{k})}$	$/ \mathrm{X}^{(\mathrm{k})}-\mathrm{X}^{(\mathrm{k}-1)} /$
0	0.1	0.1	-0.10000000	
1	0.49998333	0.02222979	-0.52304613	0.423
2	0.49997747	0.00002815	-0.52359807	2.2×10^{-2}
3	0.5000000	0.00000004	-0.52359877	2.8×10^{-5}
4	0.5000000	0.00000000	-0.52359877	3.8×10^{-8}

ii. Newton - Raphson method

The problem in Example 1 of the previous section is transformed into a convergent fixed- point problem by algebraically solving the three equations for the three variables $\mathrm{x}_{1}, \mathrm{x}_{2}$, and x_{3}. It is, however, rather unusual for this technique to be successful. In this section, we consider an algorithmic procedure to perform the transformation in a more general situation.

One of the methods available for solving such a system /non linear system of equations/ is based on a multi-dimensional version of Newton-Raphson method. The method consists of linearizing the non-linear systems at each iteration step and solving system of linear equations.

To construct the algorithm that led to an appropriate fixed-point method in the one- dimensional case, we found a function ϕ with the property that $g(x)=x-\phi(x) f(x)$ gives quadratic convergence to the fixed point p of the function $g(x)$. From this condition Newton's method evolved by choosing $\phi(\mathrm{x})=1 / \mathrm{f}^{\prime}(\mathrm{x})$, assuming that $\mathrm{f}^{\prime}(\mathrm{x}) \neq 0$. Using a similar approach in the n -dimensional case involves a matrix

$$
A(\mathbf{x})=\left[\begin{array}{cccc}
a_{11}(\mathbf{x}) & a_{12}(\mathbf{x}) & \cdots & a_{1 n}(\mathbf{x}) \\
a_{21}(\mathbf{x}) & a_{22}(\mathbf{x}) & \cdots & a_{2 n}(\mathbf{x}) \\
\vdots & \vdots & & \vdots \\
a_{n 1}(\mathbf{x}) & a_{n 2}(\mathbf{x}) & \cdots & a_{n n}(\mathbf{x})
\end{array}\right]
$$

where each of the entries $a_{i j}(x)$ is a function from R^{n} into R. This requires that $A(x)$ be found so that $G(x)=X-A(x)^{-1} F(x)$ gives quadratic convergence to the solution of $F(x)=0$, assuming that $\mathrm{A}(\mathrm{x})$ is nonsingular at the fixed point p of G .

Defining the matrix $J(\mathbf{x})$ by

$$
J(\mathbf{x})=\left[\begin{array}{cccc}
\frac{\partial f_{1}}{\partial x_{1}}(\mathbf{x}) & \frac{\partial f_{1}}{\partial x_{2}}(\mathbf{x}) & \cdots & \frac{\partial f_{1}}{\partial x_{n}}(\mathbf{x}) \\
\frac{\partial f_{2}}{\partial x_{1}}(\mathbf{x}) & \frac{\partial f_{2}}{\partial x_{2}}(\mathbf{x}) & \cdots & \frac{\partial f_{2}}{\partial x_{n}}(\mathbf{x}) \\
\vdots & \vdots & & \vdots \\
\frac{\partial f_{n}}{\partial x_{1}}(\mathbf{x}) & \frac{\partial f_{n}}{\partial x_{2}}(\mathbf{x}) & \cdots & \frac{\partial f_{n}}{\partial x_{n}}(\mathbf{x})
\end{array}\right],
$$

An appropriate choice for $\mathrm{A}(\mathrm{x})$ is, consequently, $\mathrm{A}(\mathrm{x})=\mathrm{J}(\mathrm{x})$ since this satisfies condition $\partial g_{i}(\mathbf{p}) / \partial x_{k}=0$, for each $i=1,2, \ldots, n$ and $k=1,2, \ldots, n$. The function G is defined by $\mathrm{G}(\mathrm{x})=\mathrm{X}-\mathrm{J}(\mathrm{x}){ }^{-1} \mathrm{~F}(\mathrm{x})$, and the functional iteration procedure evolves from selecting $\mathrm{x}^{(0)}$ and generating, for $\mathrm{k}>1$.

$$
\mathbf{X}^{(k)}=\mathbf{G}\left(\mathbf{x}^{(k-1)}\right)=\mathbf{x}^{(k-1)}-J\left(\mathbf{x}^{(k-1)}\right)^{-1} F\left(\mathbf{x}^{(k-1)}\right)
$$

This is called Newton's method for non-linear systems, and it is generally expected to give quadratic convergence, provided that a sufficiently accurate starting value is known and $\mathrm{J}(\mathrm{p})^{-1}$ exists. The matrix $J(x)$ is called the Jacobian matrix and has a number of applications in analysis.

$$
\left[\begin{array}{l}
x_{1}^{(k)} \\
x_{2}^{(k)} \\
x_{3}^{(k)}
\end{array}\right]=\left[\begin{array}{l}
x_{1}^{(k-1)} \\
x_{2}^{(k-1)} \\
x_{3}^{(k-1)}
\end{array}\right]+\left[\begin{array}{l}
y_{1}^{(k-1)} \\
y_{2}^{(k-1)} \\
y_{3}^{(k-1)}
\end{array}\right],
$$

where

$$
\left[\begin{array}{l}
y_{1}^{(k-1)} \\
y_{2}^{(k-1)} \\
y_{3}^{(k-1)}
\end{array}\right]=-\left(J\left(x_{1}^{(k-1)}, x_{2}^{(k-1)}, x_{3}^{(k-1)}\right)\right)^{-1} \mathbf{F}\left(x_{1}^{(k-1)}, x_{2}^{(k-1)}, x_{3}^{(k-1)}\right)
$$

The disadvantages in Newton's method are:-

- It is often not simple to evaluate the partial derivatives
- For most of the problems, it is not always easy to find initial guesses that will lead to a solution.
- Need to solve system of linear equations at each iterative step.

Example 2: Solve the nonlinear system by Newton's method

$$
\begin{aligned}
3 x_{1}-\cos \left(x_{2} x_{3}\right)-\frac{1}{2} & =0 \\
x_{1}^{2}-81\left(x_{2}+0.1\right)^{2}+\sin x_{3}+1.06 & =0 \\
e^{-x_{1} x_{2}}+20 x_{3}+\frac{10 \pi-3}{3} & =0
\end{aligned}
$$

Newton's method will be used to obtain this approximation using the initial approximation is $\mathrm{x}^{(0)}=(0.1,0.1,-0.1)$ and

$$
\mathbf{F}\left(x_{1}, x_{2}, x_{3}\right)=\left(f_{1}\left(x_{1}, x_{2}, x_{3}\right), f_{2}\left(x_{1}, x_{2}, x_{3}\right), f_{3}\left(x_{1}, x_{2}, x_{3}\right)\right)^{r}
$$

where

$$
\begin{aligned}
& f_{1}\left(x_{1}, x_{2}, x_{3}\right)=3 x_{1}-\cos \left(x_{2} x_{3}\right)-\frac{1}{2} \\
& f_{2}\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2}-81\left(x_{2}+0.1\right)^{2}+\sin x_{3}+1.06 \\
& f_{3}\left(x_{1}, x_{2}, x_{3}\right)=e^{-x_{1} x_{2}}+20 x_{3}+\frac{10 \pi-3}{3}
\end{aligned}
$$

and

The Jacobian matrix $J(\mathbf{x})$ for this system is

$$
J\left(x_{1}, x_{2}, x_{3}\right)=\left[\begin{array}{ccc}
3 & x_{3} \sin x_{2} x_{3} & x_{2} \sin x_{2} x_{3} \\
2 x_{1} & -162\left(x_{2}+0.1\right) & \cos x_{3} \\
-x_{2} e^{-x_{1} x_{2}} & -x_{1} e^{-x_{1} x_{2}} & 20
\end{array}\right]
$$

Thus, at the $\mathrm{k}^{\text {th }}$ step, the linear system $J\left(\mathrm{x}^{(\mathrm{k}-1)}\right) \mathrm{y}^{(\mathrm{k}-1)}=-\mathrm{F}\left(\mathrm{x}^{(\mathrm{k}-1)}\right)$ must be solved.

$$
\left[\begin{array}{l}
y_{1}^{(k-1)} \\
y_{2}^{(k-1)} \\
y_{3}^{(k-1)}
\end{array}\right]=-\left(J\left(x_{1}^{(k-1)}, x_{2}^{(k-1)}, x_{3}^{(k-1)}\right)\right)^{-1} \mathbf{F}\left(x_{1}^{(k-1)}, x_{2}^{(k-1)}, x_{3}^{(k-1)}\right)
$$

$\left[\begin{array}{ccc}3 & x_{3} \sin x_{2} x_{3} & x_{2} \sin x_{2} x_{3} \\ 2 x_{1} & -162\left(x_{2}+0.1\right) & \cos x_{3} \\ -x_{2} e^{-x_{1} x_{2}} & -x_{1} e^{-x_{1} x_{2}} & 20\end{array}\right]\left[\begin{array}{l}y_{1} \\ y_{2} \\ y_{3}\end{array}\right]=-\left[\begin{array}{c}3 x_{1}-\cos x_{2} x_{3}-\frac{1}{2} \\ x_{1}^{2}-81\left(x_{2}+0.1\right)^{2}+\sin x_{3}+1.06 \\ e^{-x_{1} x_{2}}+20 x_{3}+\frac{10 \pi-3}{3}\end{array}\right]$
Taking $\mathrm{x}_{1}{ }^{(0)}=0.1, \mathrm{x}_{2}{ }^{(0)}=0.1$ and $\mathrm{x}_{3}{ }^{(0)}=-0.1$ as initial approximation, equation $\left({ }^{*}\right)$ reduces to

$$
\left|\begin{array}{ccc}
3 & 9.99 \times 10^{-4} & -9.99 \times 10^{-4} \\
0.2 & -32.4 & 0.995 \\
-0.099 & -0.099 & 20
\end{array}\right| \quad\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]=\left|\begin{array}{c}
1.19995 \\
2.2698 \\
-8.46
\end{array}\right|
$$

Solving this linear system of equation, results in $y_{1}=0.39987, y_{2}=-0.0805331$ and $y_{3}=-0.42121$. Use this results, the next approximation for the unknown variables can be calculated as

$$
\begin{aligned}
& {\left[\begin{array}{c}
x_{1}^{(1)} \\
x_{2}^{(1)} \\
x_{3}^{(1)}
\end{array}\right]=\left[\begin{array}{l}
x_{1}^{(0)} \\
x_{2}^{(0)} \\
x_{3}^{(0)}
\end{array}\right]+\left[\begin{array}{l}
y_{1}^{(0)} \\
y_{2}^{(0)} \\
y_{3}^{(0)}
\end{array}\right]} \\
& \mathrm{X}_{1}^{(1)}=\mathrm{x}_{1}^{(0)}+\mathrm{y}_{1}=0.1+0.39987=\underline{\underline{0.49987}} \\
& \mathrm{X}_{2}^{(1)}=\mathrm{x}_{2}^{(0)}+\mathrm{y}_{2}=0.1-0.0805331=\underline{\underline{0.019466}} \text { and } \\
& \mathrm{X}_{3}{ }^{(1)}=\mathrm{x}_{3}{ }^{(0)}+\mathrm{y}_{3}=-0.1-0.42121=-\underline{\underline{0.521520}}
\end{aligned}
$$

Now substituting the calculated values of $X_{1}{ }^{(1)}, \mathrm{X}_{2}{ }^{(1)}$ and $\mathrm{X}_{3}{ }^{(1)}$ in eqn $\left({ }^{*}\right)$, we construct a new linear system and solve it to obtain the new correction factor $\mathrm{y}_{1}, \mathrm{y}_{2}, \mathrm{y}_{3}$ and then calculate the new approximations $\mathrm{X}_{1}^{(2)}, \mathrm{X}_{2}{ }^{(2)}$ and $\mathrm{X}_{3}{ }^{(2)}$. This process is continued until convergent is achieved.

The results using this iterative procedure are shown in table 4.3
Table 4.3

	$\mathrm{X}_{1}{ }^{(\mathrm{k})}$	$\mathrm{X}_{2}{ }^{(\mathrm{k})}$	$\mathrm{X}_{3}{ }^{(\mathrm{k})}$	$/ \mathrm{X}^{(\mathrm{k})}-\mathrm{X}^{(\mathrm{k}-1)} /$
0	0.1	0.1	-0.1	
1	0.49987	0.01946686	-0.52152047	0.422
2	0.50004593	0.00158859	-0.52355711	1.79×10^{-2}
3	0.50000034	0.00001244	-0.52359845	1.58×10^{-3}
4	0.50000000	0.00000000	-0.52359877	1.24×10^{-5}
5	0.50000000	0.00000000	-0.52359877	0

The example illustrates that Newton's method can converge very rapidly once an approximation is obtained that is near the true solution.

