Assignment 2

Instructions: Attempt all questions. Select your functions based on the ID column, which you can calculate by using your AAiT ID No. Example: If your ID is ATR/2353/09, then divide 2353 by 6 and the ID is going to be the remainder you get from the division. If the remainder is 0 , choose $\mathrm{ID}=\mathbf{5}$.

The functions $\mathrm{f}(\mathrm{x}), \mathrm{g}(\mathrm{x})$ and $\mathrm{h}(\mathrm{x})$ are defined as:

$$
\left\{\begin{array}{l}
f(x)=k / y^{z} \\
g(x)=k * z \\
h(x)=k *\left(b * x^{3}+a * x^{2}\right)
\end{array}\right.
$$

where:

ID	k	y	z	a	b	c
1	$\sqrt{1+2 x^{2}}$	2	x	3	5	4.5
2	$3 x^{2}+x$	3	$\sin (x)$	-1	2	0
3	$\ln (x+1)$	4	$\cos (x)$	2	4	3
4	$1 /(\sin (2 x)+3)$	e	$x^{2}+x$	-3	3	1
5	$10^{3 x-5}$	$2 e$	$1 /(5+x)$	-2	1	0

1. [NUMERICAL DIFFERENTIATION AND INTEGRATION]

a. Numerically evaluate the integral of $f(x)$ for the given interval $[\mathbf{a}, \mathbf{b}]$ using (i) The trapezoidal rule with $\mathrm{n}=10$ (ii) Simpson's $1 / 3$ rule with $\mathrm{n}=12$.
b. Numerically evaluate the first derivative of $g(x)$ at $\mathrm{x}=1$ and $\mathrm{x}=3$ using all three divided difference formula.
2. [DIFFERENTIAL EQUATIONS] Given the differential equation $y^{\prime}=h(x):$
a. Use Euler's method to to numerically integrate between a and b. Compare your results to 1(a).
b. Use fourth order Runge-Kutta method to numerically integrate between a and b. Compare your results to 1 (a) and 2(a).
3. [INTERPOLATION] For both $f(x)$ and $g(x)$, interpolate the value at $\mathbf{x}=\mathbf{c}$:
a. Using third order Newton's divided difference.
b. Using the fourth Lagrangian interpolation polynomial.

Take the initial values to be points located at equal intervals between a and \mathbf{b}.
4. [REGRESSION] For the following data, find the best fit linear/nonlinear regression equation with the highest correlation coefficient. The equation doesn't need to be linear.

$\mathrm{ID}=1$	$\mathrm{ID}=2$	$\mathrm{ID}=3$	$\mathrm{ID}=4$	$\mathrm{ID}=5$	
$x_{I D=1}$	$x_{I D=2}$	$x_{I D=3}$	$x_{I D=4}$	$x_{I D=5}$	y
7.8	4.3	11.5	6.3	5.2	14.8
6.9	3.9	14.3	7.4	6.7	12.1
9.3	8.4	9.4	5.9	8.3	19.0
6.8	10.3	15.2	8.7	11.4	14.5
11.7	6.4	8.8	9.1	5.5	16.6
8.5	5.7	9.8	5.6	7.5	17.2
12.6	6.8	11.2	6.8	8.1	17.5
7.5	4.2	10.9	7.4	15.4	14.1
8.4	7.3	14.7	8.2	9.5	13.8
11.3	8.8	15.1	9.2	10.4	14.7
10.7	3.6	8.7	4.7	5.6	17.7
7.3	4.9	8.6	5.5	7.4	17.0
8.4	7.3	9.3	6.6	9.0	17.6
6.7	9.7	10.8	8.7	4.6	16.3

