CHAPTER III

LINEAR ALGEBRAIC EQUATIONS

ELIAS Y.

3.1 INTRODUCTION

\square 3.1.1 Objective

- How to solve systems that have the form of:

$$
\begin{aligned}
& f_{1}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=0 \\
& f_{2}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=0 \\
& \ldots \ldots \\
& f_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=0
\end{aligned}
$$

Where $f_{1}, f_{2}, f_{3}, \ldots, f_{n}$ are linear functions dependent on $x_{1}, x_{2} \ldots$
3.1.2 Contents
\square Graphical Method
\square Cramer's rule
\square Elimination
\square Naïve Gauss Elimination
\square Gauss-Jordan Elimination
\square LU-Decomposition
\square Gauss-Seidel Method

3.2 Graphical Method

\square For a system of linear equations, representing every equation graphically i.e.

- Lines for 2 variables
\square Planes for 3 variables
\square For n variables, holding m variables constants and studying behavior graphically by varying the rest of the variables($\mathrm{n}-\mathrm{m}<3$)

3.2 Graphical Method

\square Example
$\square\{-2 x+4 y=10 ; 2 x-y=11\}$ solution $=\{x=9.0, y=7.0\}$

3.2 Graphical Method

\square Advantages
\square Help in visualizing the nature of such systems.

3.2 Graphical Method

\square Disadvantages
\square Useless for systems with rank>=3.
\square 4D and 5D systems aren't what you'd think.

3.3 Cramer's Rule

\square Applicable for smaller problems

$$
x_{1}=\frac{\left|\begin{array}{lll}
b_{1} & a_{12} & a_{13} \\
b_{2} & a_{22} & a_{23} \\
b_{3} & a_{32} & a_{33}
\end{array}\right|}{D}
$$

\square [EXAMPLE]
\square [SCILAB DEMONSTRATION]

3.3 Cramer's Rule

\square [EXAMPLE]
$\square 3 x+5 y=10$
$\square x+2 y=5$
$\square \mathrm{D}=1$; $\mathrm{D} 1=-5$; $\mathrm{D} 2=5$
\square [solution : $x=D 1 / D=-5 ; y=D 2 / D=5]$
\square [SCILAB]

3.3 Cramer's Rule

\square LIMITATIONS
\square If system is larger than rank 3, then evaluation of determinants becomes impractical.

3.4 Elimination methods

\square Naïve Gauss Elimination
Gauss-Jordan Elimination

- Pitfalls of Gauss Elimination
- Division by Zero
- Round-off Errors
- III-Conditioned systems
- Singular systems

3.4.1 Naïve Gaussian Elimination

\square Elimination until Upper triangular matrix forms
\square [EXAMPLE][MAXIMA demo]

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
1 & 2 & 3 \\
-3 & 1 & 5 \\
2 & 4 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
3 \\
-2 \\
-1
\end{array}\right]} \\
& {\left[\begin{array}{cccc}
1 & 2 & 3 & 3 \\
0 & 7 & 14 & 7 \\
0 & 0 & -7 & -7
\end{array}\right]} \\
& {\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
2 \\
-1 \\
1
\end{array}\right]}
\end{aligned}
$$

3.4.1 Naïve Gaussian Elimination

\square [SCILAB] (matrices and the "inv" function)
$\square \ggg a=[123 ;-313 ; 24-1] ;$
$\square \ggg b=[3 ;-2 ;-1] ;$
$\square \ggg x=i n v(a)^{*} b$
$\square \ggg 2$.
-1 .
1.

3.4.2 Gauss-Jordan Elimination

\square Perform until the IDENTITY matrix forms on the left side.

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

3.4.2 Gauss-Jordan Elimination

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
1 & 2 & 3 \\
-3 & 1 & 5 \\
2 & 4 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
3 \\
-2 \\
-1
\end{array}\right]} \\
& {\left[\begin{array}{cccc}
1 & 2 & 3 & 3 \\
0 & 7 & 14 & 7 \\
0 & 0 & -7 & -7
\end{array}\right]} \\
& {\left[\begin{array}{llll}
1 & 0 & 0 & 2 \\
0 & 1 & 0 & -1 \\
0 & 0 & -1 & 1
\end{array}\right]} \\
& {\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
2 \\
-1 \\
1
\end{array}\right]}
\end{aligned}
$$

3.5 LU Decomposition

\square STEPS:
\square 1.Initial : $[A]\{X\}=\{B\}$
\square 2.Decompose [A] into [U] and [L]
\square 3. Construct new sets of systems:

- [L]\{D\}=\{B\}.......(1)
- [U]\{x\}=\{D\}.......(2)
\square 4. Solve (1) and get $\{D\}$
$\square 5$. Use $\{D\}$ from step 4 to solve (2) and get $\{x\}$

3.5 LU Decomposition

3.5 LU Decomposition

\square [EXAMPLE]

$$
\left[\begin{array}{ccc}
8 & 4 & -1 \\
-2 & 5 & 1 \\
2 & -1 & 6
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
11 \\
4 \\
7
\end{array}\right]
$$

\square Step 1: Decomposition

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
8 & 4 & -1 \\
-2 & 5 & 1 \\
2 & -1 & 6
\end{array}\right]
$$

3.5 LU Decomposition

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
1 & 0 & 0 \\
-\frac{1}{4} & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
8 & 4 & -1 \\
0 & 6 & \frac{3}{4} \\
2 & -1 & 6
\end{array}\right]} \\
& {\left[\begin{array}{ccc}
1 & 0 & 0 \\
-\frac{1}{4} & 1 & 0 \\
\frac{1}{4} & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
8 & 4 & -1 \\
0 & 6 & \frac{3}{4} \\
0 & -2 & \frac{25}{4}
\end{array}\right]} \\
& {\left[\begin{array}{ccc}
1 & 0 & 0 \\
-\frac{1}{4} & 1 & 0 \\
\frac{1}{4} & -\frac{1}{3} & 1
\end{array}\right]\left[\begin{array}{ccc}
8 & 4 & -1 \\
0 & 6 & \frac{3}{4} \\
0 & 0 & \frac{26}{4}
\end{array}\right]}
\end{aligned}
$$

3.5 LU Decomposition

\square Step 2: Solve $[\bar{L}][D]=[b]$

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
1 & 0 & 0 \\
-\frac{1}{4} & 1 & 0 \\
\frac{1}{4} & -\frac{1}{3} & 1
\end{array}\right]\{D\}=\left[\begin{array}{c}
11 \\
4 \\
7
\end{array}\right]} \\
& \{D\}=\left[\begin{array}{c}
11 \\
6.75 \\
6.5
\end{array}\right]
\end{aligned}
$$

3.5 LU Decomposition

\square Step 3: Solve $[U][x]=[D]$

$$
\left[\begin{array}{ccc}
8 & 4 & -1 \\
0 & 6 & \frac{3}{4} \\
0 & 0 & \frac{26}{4}
\end{array}\right]\{x\}=\left[\begin{array}{c}
11 \\
6.75 \\
6.5
\end{array}\right]
$$

3.5 LU Decomposition

\square Example 2: Alternate Decomposition Method

$$
\left[\begin{array}{ccc}
8 & 4 & -1 \\
-2 & 5 & 1 \\
2 & -1 & 6
\end{array}\right]=\left[\begin{array}{ccc}
l_{11} & 0 & 0 \\
l_{21} & l_{22} & 0 \\
l_{31} & l_{32} & l_{33}
\end{array}\right] *\left[\begin{array}{ccc}
u_{11} & u_{12} & u_{13} \\
0 & u_{22} & u_{23} \\
0 & 0 & u_{33}
\end{array}\right]
$$

3.5 LU Decomposition

let l_{11}, l_{22}, l_{33} be unity, then we have:

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
8 & 4 & -1 \\
-2 & 5 & 1 \\
2 & -1 & 6
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
l_{21} & 1 & 0 \\
l_{31} & l_{32} & 1
\end{array}\right] *\left[\begin{array}{ccc}
u_{11} & u_{12} & u_{13} \\
0 & u_{22} & u_{23} \\
0 & 0 & u_{33}
\end{array}\right]} \\
& u_{11}=8 \\
& u_{12}=4 \\
& u_{13}=-1 \\
& l_{21} * u_{11}=-2 \Rightarrow l_{21}=-\frac{1}{4} \\
& l_{21} * u_{12}+u_{22}=5 \Rightarrow-\frac{1}{4} * 4+u_{22}=5 \Rightarrow u_{22}=6 \\
& l_{21} * u_{13}+u_{23}=1 \Rightarrow-1 *-\frac{1}{4}+u_{23}=1 \Rightarrow u_{23}=4 \\
& l_{31} * u_{11}=2 \Rightarrow l_{31}=\frac{1}{4} \\
& l_{31} * u_{12}+l_{32} * u_{22}=-1 \Rightarrow \frac{1}{4} * 4+l_{32} * 6=5 \Rightarrow l_{32}=-\frac{1}{3} \\
& l_{31} * u_{13}+l_{32} * u_{23}+u_{33}=6 \Rightarrow \frac{1}{4} *-1+-\frac{1}{3} * \frac{3}{4}+u_{33}=6 \Rightarrow u_{33}=\frac{26}{4}
\end{aligned}
$$

3.6 The Gauss-Seidel Iterative Method

Consider the following system:

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}=b_{2} \\
& a_{31} x_{1}+a_{32} x_{2}+a_{33} x_{3}=b_{3}
\end{aligned}
$$

\square This system can be transformed into:

$$
\begin{aligned}
& x_{1}=\frac{b_{1}-a_{12} x_{2}-a_{13} x_{3}}{a_{11}} \\
& x_{2}=\frac{b_{2}-a_{21} x_{1}-a_{23} x_{3}}{a_{22}} \\
& x_{3}=\frac{b_{3}-a_{31} x_{1}-a_{32} x_{2}}{a_{33}}
\end{aligned}
$$

3.6 The Gauss-Seidel Iterative Method

\square Steps:
$\square 1$. Assume initial guesses of $\times 2, \times 3 \ldots \times x=$ selected values(usually zero)
\square 2. Compute x 1
\square 3. Using the result from (2) and initial guesses from step (1),Compute $\times 2, \times 3, \times 4 \ldots, \times n$
$\square 4$. Using newly computed values of $x 2, x 3, \times 4 \ldots x n$ compute xl .
\square 5. DO until convergence

3.6 The Gauss-Seidel Iterative Method

\square [Example][FORTRAN Demo]

$$
\begin{gathered}
5 x_{1}-x_{2}+x_{3}=4 \\
x_{1}+3 x_{2}+x_{3}=2 \\
-x_{1}+x_{2}+4 x_{3}=3 \\
x_{1}=\frac{4+x_{2}-x_{3}}{5} \quad x_{2}=\frac{2-x_{1}-x_{3}}{3} \quad x_{3}=\frac{3+x_{1}-x_{2}}{4}
\end{gathered}
$$

3.6 The Gauss-Seidel Iterative Method

\square DIAGONAL DOMINANCE
\square An $\mathrm{N}_{x N}$ matrix is called diagonally dominant, if the diagonal element in every row is greater in magnitude(Absolute Values) than the sum of the elements in that row excluding the diagonal element.
\square i.e.

$$
\left|A_{i i}\right|>\sum_{\substack{j=1 \\ j \neq i}}^{n}\left|A_{i j}\right|(i=1,2, \ldots, n)
$$

3.6 The Gauss-Seidel Iterative Method

\square [Example]
\square The matrix

$$
\left[\begin{array}{rrr}
-2 & 4 & -1 \\
1 & -1 & 3 \\
4 & -2 & 1
\end{array}\right]
$$

is not diagonally dominant.
CHECK: row 1: $|-2|<|4|+|-1|$

$$
\begin{aligned}
& \text { row 2: }|-1|<|1|+|3| \\
& \text { row 3: }|1|<|4|+|-2|
\end{aligned}
$$

3.6 The Gauss-Seidel Iterative Method

\square The matrix can be made diagonally dominant by exchanging rows

$$
\left[\begin{array}{rrr}
4 & -2 & 1 \\
-2 & 4 & -1 \\
1 & -1 & 3
\end{array}\right]
$$

\square Can be used to facilitate convergence for iterative methods...

3.7 The Conjugate Gradient Method

[READING ASSIGNMENT]

ANY QUESTIONS ?

