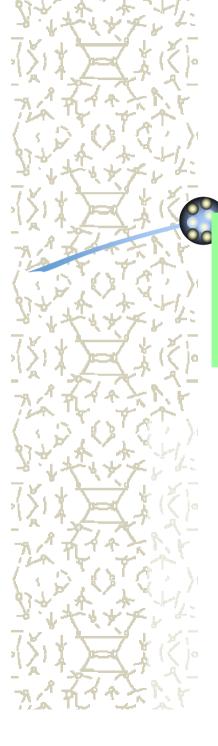
Chapter Four

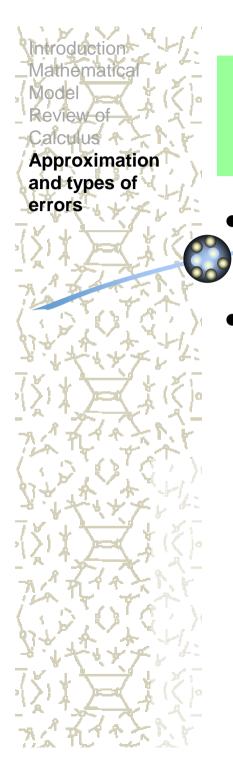
Roots of Equations



Numerical Methods

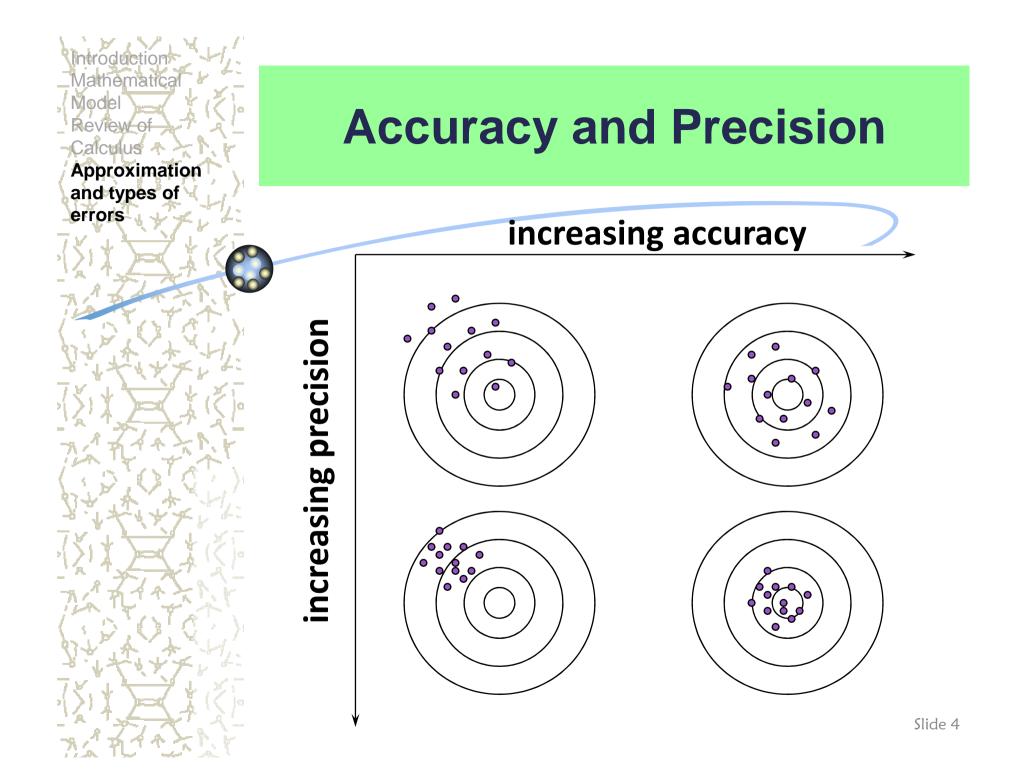
Numerical methods:

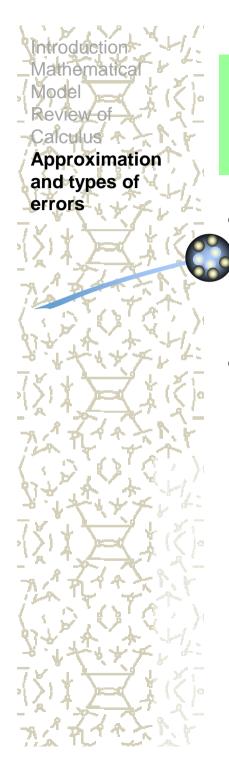
- techniques by which mathematical problems are formulated so that they can be solved with arithmetic operations.
- algorithms that are used to obtain numerical solutions of a mathematical problem



Approximation and errors

- Accuracy how closely a computed or measured value agrees with the true value
- Precision how closely individual computed or measured values agree with each other
 - number of significant figures
 - spread in repeated measurements or computations

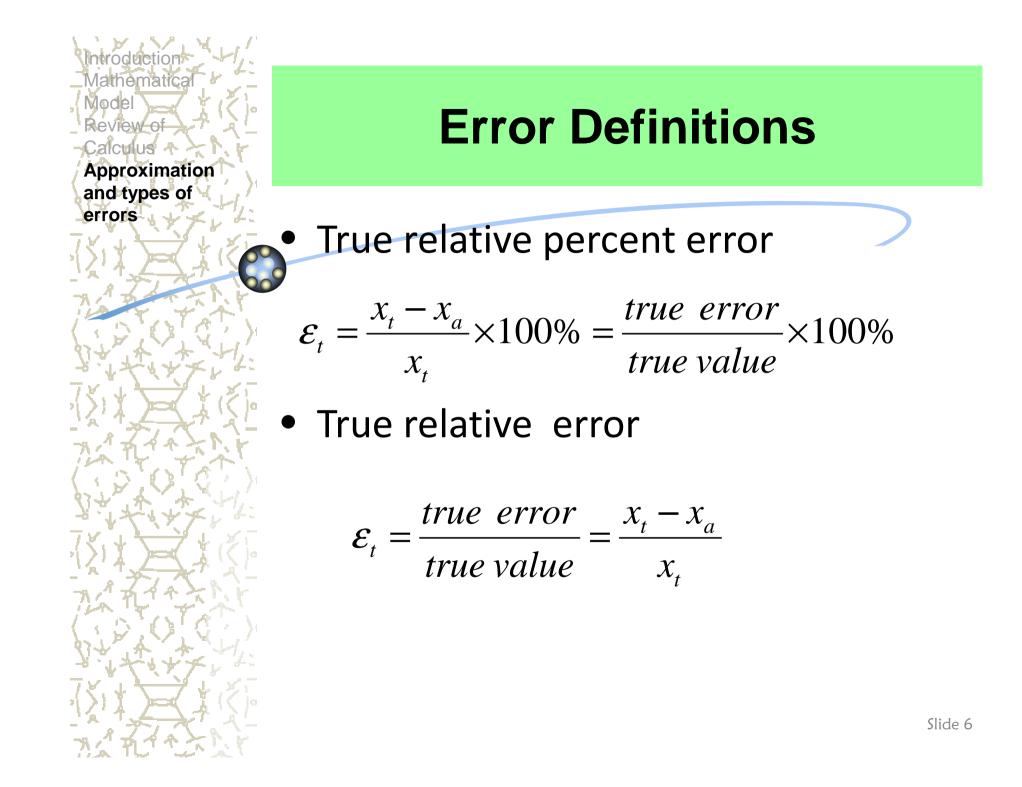


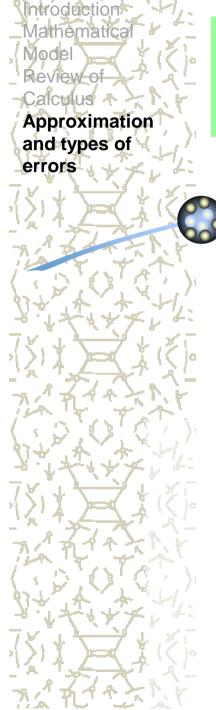


Error Definitions

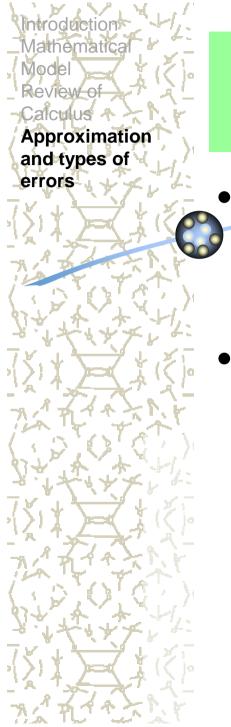
- **Numerical error** use of approximations to represent exact mathematical operations and quantities
- true value (x_t) = approximation (x_a) + error
 - error, ε_t = true value(x_t) approximation (x_a)
 - subscript t represents the true error
 - shortcoming....gives no sense of magnitude

$$\mathcal{E}_t = true \ error = x_t - x_a$$





- Consider a problem where the true answer is 7.91712. If you report the value as 7.92, answer the following questions.
- 1. How many significant figures did you use?
- 2. What is the true error?
- 3. What is the relative error?



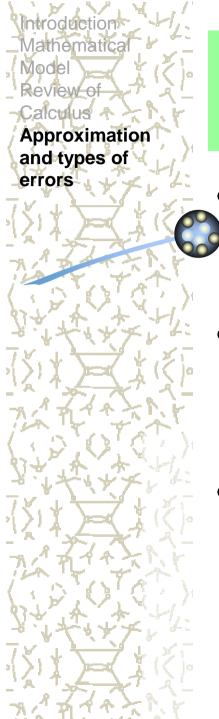
Error definitions

May not know the true answer prior

 $\varepsilon_a = \frac{approximate\ error}{approximation} \times 100$

• This leads us to develop an iterative approach of numerical methods

$$\varepsilon_a = \frac{present approx - previous approx}{present approx} \times 100$$



Error Definitions

Approximate error

$$\mathcal{E}_a = x_a(i) - x_a(i-1)$$

• Approximate relative error

$$\varepsilon_a = \frac{x_a(i) - x_a(i-1)}{x_a(i)}$$

• Approximate percentage relative error

$$\varepsilon_a = \frac{x_a(i) - x_a(i-1)}{x_a(i)} \times 100\%$$

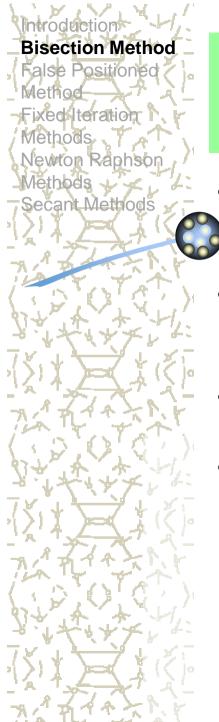
Mathematical Model Review of Calculus Approximation and types of errors

Error Definitions

- Round off error originate from the fact that computers retain only a fixed number of significant figures
- Truncation errors errors that result from using an approximation in place of an exact mathematical procedure

Introduction to Roots of Equations

- The roots or zeros of equations can be simply defined as the values of x that makes f(x) = 0.
- can be found easily by solving the equations directly
- there are also other cases where solving the equations directly or analytically is not so possible
- only alternatives will be approximate solution techniques



Bisection Method

- The Bisection Method is a *successive* approximation method that narrows down an interval that contains a root of the function f(x)
- The Bisection Method is given an initial interval [a,b] that contains a root (We can use the property sign of f(a) ≠ sign of f(b) to find such an initial interval)
- The Bisection Method will *cut the interval* into 2 halves and check which half interval contains a root of the function
- The Bisection Method will keep cut the interval in halves until the resulting interval is extremely small

The root is then *approximately equal* to *any value* in the final (very small) interval.

Bisection Method

Bisection Method

Positioned

Given a function f(x) continuous on the interval $[a_0, b_0]$ and such that $f(a_0) \times f(b_0) <=0$ For n = 0, 1, 2, ..., until satisfied, do:Set $m = (a_n + b_n)/2$ If $f(a_n) \times f(m) <=0$, set $a_{n+1} = a_n$, $b_{n+1} = m$ Otherwise set $a_{n+1} = m$, $b_{n+1} = b_n$ Then f(x) has a zero in the interval $[a_{n+1}, b_{n+1}]$

Find all the real solutions to the cubic equation

 $x^3 + 4x^2 - 10 = 0$

Introduction

Bisection Method False Positioned

ethods

i	a _i	f(a _i)	c _i	b _i	f(b _i)	f(c _i)
1	1.0000	-5.0000	1.5000	2.0000	14.0000	2.3750
2	1.0000	-5.0000	1.2500	1.5000	2.3750	-1.7969
3	1.2500	-1.7969	1.3750	1.5000	2.3750	0.1621
4	1.2500	-1.7969	1.3125	1.3750	0.1621	-0.8484
5	1.3125	-0.8484	1.3438	1.3750	0.1621	-0.3510
6	1.3438	-0.3510	1.3594	1.3750	0.1621	-0.0964
7	1.3594	-0.0964	1.3672	1.3750	0.1621	0.0324
8	1.3594	-0.0964	1.3633	1.3672	0.0324	-0.0321
9	1.3633	-0.0321	1.3652	1.3672	0.0324	0.0001
10	1.3633	-0.0321	1.3643	1.3652	0.0001	-0.0160

Regula Falsi

Given a function f(x) continuous on the interval $[a_0, b_0]$ and such that $f(a_0) \times f(b_0) < 0$ For n = 0, 1, 2, ..., until satisfied, do: Calculate $w = [f(b_n) \times a_n - f(a_n) \times b_n]/[f(b_n) - f(a_n)]$ If $f(a_n) \times f(w) <= 0$,

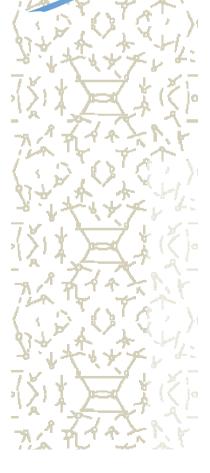
Otherwise,

Set
$$a_{n+1} = w$$
, $b_{n+1} = b_n$

Find all the real solutions to the cubic equation

 $x^3 + 4x^2 - 10 = 0$

i	a _i	f(a _i)	w _i	b _i	f(b _i)	f(w _i)
1	1.0000	-5.0000	1.2632	2.0000	14.0000	-1.6023
2	1.2632	-1.6023	1.3388	2.0000	14.0000	-0.4304
3	1.3388	-0.4304	1.3585	2.0000	14.0000	-0.1100
4	1.3585	-0.1100	1.3635	2.0000	14.0000	-0.0278
5	1.3635	-0.0278	1.3648	2.0000	14.0000	-0.0070
6	1.3648	-0.0070	1.3651	2.0000	14.0000	-0.0018
7	1.3651	-0.0018	1.3652	2.0000	14.0000	-0.0004
8	1.3652	-0.0004	1.3652	2.0000	14.0000	-0.0001
9	1.3652	-0.0001	1.3652	2.0000	14.0000	0.0000
10	1.3652	0.0000	1.3652	2.0000	14.0000	0.0000



False Positioned

Method

ecan

Meth

Fixed Iteration

Slide 16

Modified Regula Falsi

Given a function f(x) continuous on the interval $[a_0, b_0]$ and such that $f(a_0) \times f(b_0) < 0$ Set F = $f(a_0)$, G = $f(b_0)$, w₀ = a_0 For n = 0, 1, 2, ..., until satisfied, do: Calculate $W_{n+1} = [G x a_n - F x b_n]/[G - F]$ If $f(a_n) \ge f(w_{n+1}) \le 0$, set $a_{n+1} = a_n$, $b_{n+1} = w_{n+1}$, $G = f(w_{n+1})$ If also $f(w_n) \ge f(w_{n+1}) > 0$, set F = F/2Otherwise, set $a_{n+1} = w_{n+1}$, $F = f(w_{n+1})$, $b_{n+1} = b_n$ If also $f(w_n) \ge f(w_{n+1}) > 0$, set G = G/2Then f(x) has a zero in the interval $[a_{n+1}, b_{n+1}]$

Fixed Point Iteration Eixed Iteration Methods ewton Hanh Given an iteration function g(x) and a Starting point x₀ For n = 0, 1, 2, ..., until satisfied , do: Calculate $x_{n+1} = g(x_n)$ For this algorithm to be useful, we must prove: For the given starting point x0, we can calculate successively i. x1, x2, ... The sequence x1, x2, ... converges to some point ξ ii. The limit ξ is a fixed point of g(x), that is, $\xi = g(\xi)$ iii.

Fixed Point Iteration

Iterative techniques are used to find roots of equations, solutions of linear and nonlinear systems of equations and solutions of differential equations. A rule or function g(x) for computing successive terms is needed and it can be found by rearranging the function f(x) = 0 so that x is on the left side of the equation.

x = g(x)

Moreover a starting value P₀ is also required and the sequence of values {P_k} is obtained using the iterative rule P_{k+1} = g(P_k). The sequence has the pattern

$$P_{1} = g(P_{0})$$

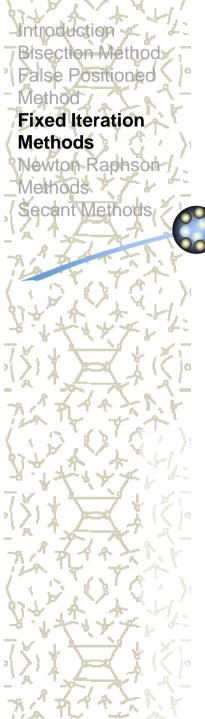
$$P_{2} = g(P_{1})$$

$$.$$

$$.$$

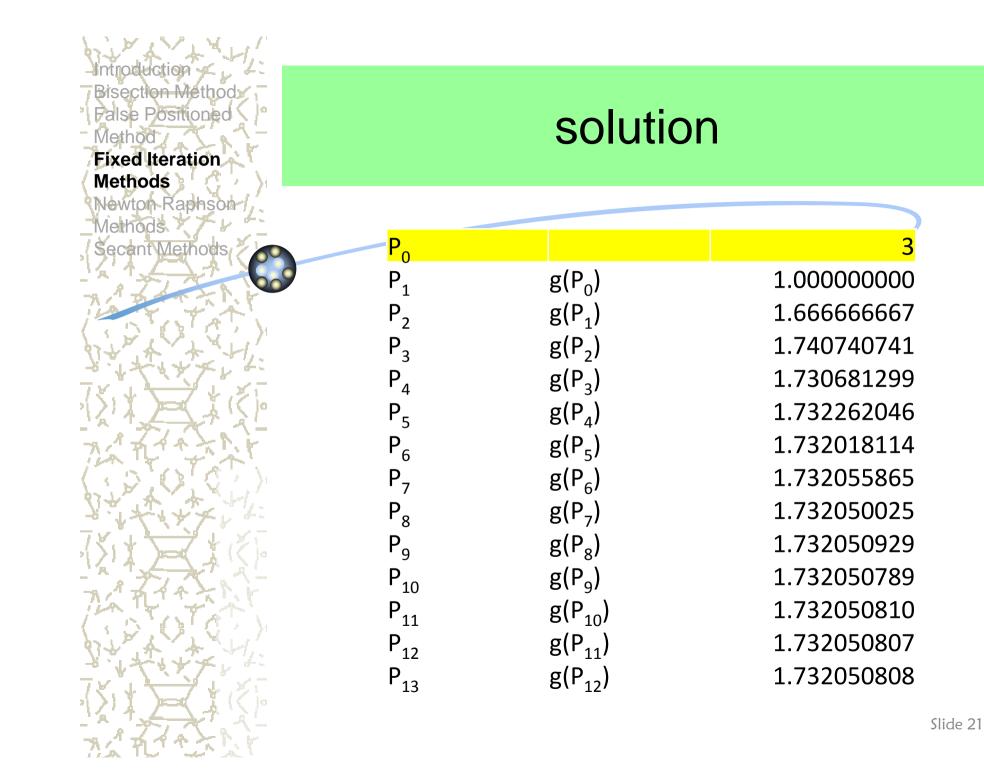
$$P_{k} = g(P_{k-1})$$

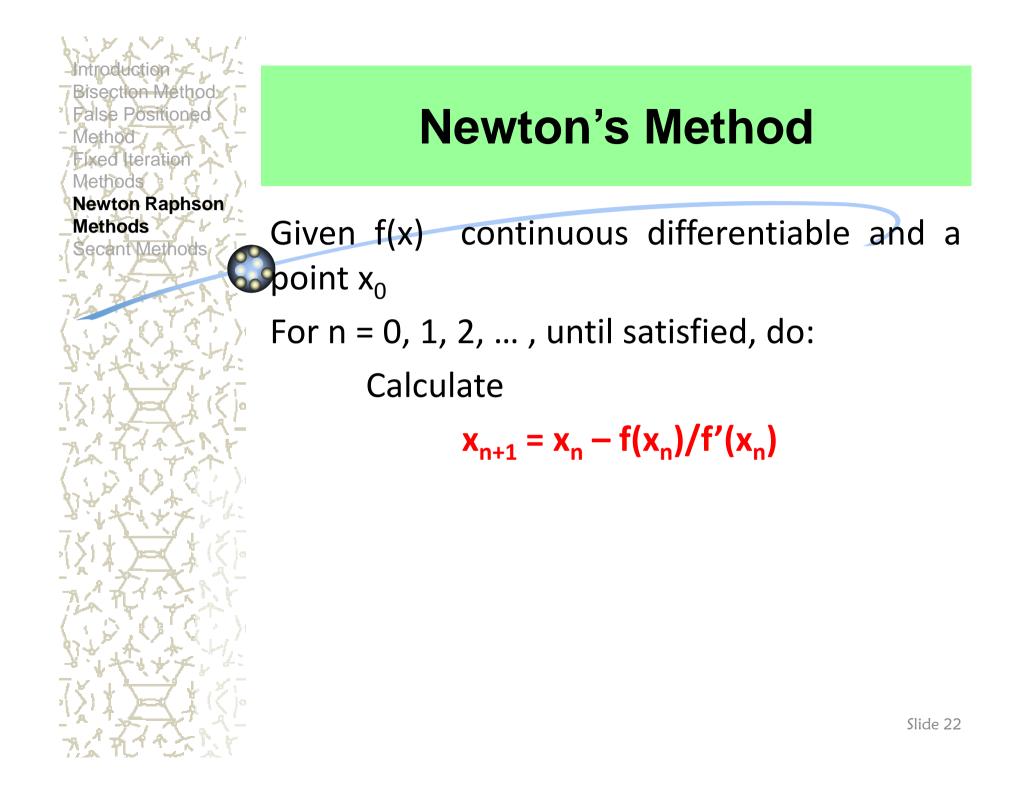
$$P_{k+1} = g(P_{k})$$



Use fixed point iteration to find the fixed point(s) for the function $g(x) = 1 + x - (x^2/3)$

By plotting the graph of the function we can find that there is a real root between **3** and **7** where the graph crosses the x - axis and performing fixed point iteration between **3** and **7** we have:





Introduction + +++						
Bisection Method Palse Positioned Method Fixed Iteration Methods	Example					
Newton Raphson Methods Secant Methods	Find all the real solutions to the cubic equation $x^3 + 4x^2 - 10 = 0$					
(in the second	i	x _i	f(x _i)	f'(x _i)		
- + + + + + + + + + + + + + + + + + + +	1	1.0000	-5.0000	11		
·(): *)=< *().	2	1.4545	1.5402	17		
7 AT A AN	3	1.3689	0.0607	16		
	4	1.3652	0.0001	16		
A HAY FILL	5	1.3652	0.0000	16		
$\langle \Sigma \chi \Sigma = \langle \chi \chi \rangle$	6	1.3652	0.0000	16		
nA TAA SIL	7	1.3652	0.0000	16		
(Tototot)	8	1.3652	0.0000	16		
States + + + + + + + + + + + + + + + + + + +	9	1.3652	0.0000	16		
	10	1.3652	0.0000	16		
NA THAT ALL						

Slide 23

f'(x_i)

11.0000

17.9835

16.5729

16.5135

16.5134

16.5134

16.5134

16.5134

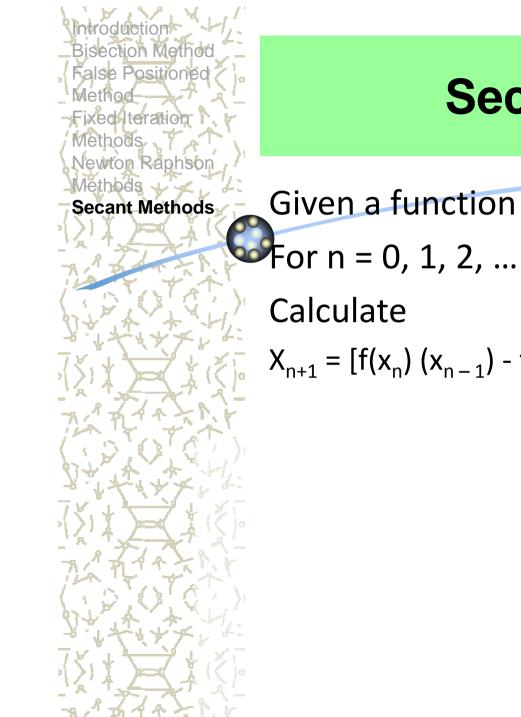
16.5134

16.5134



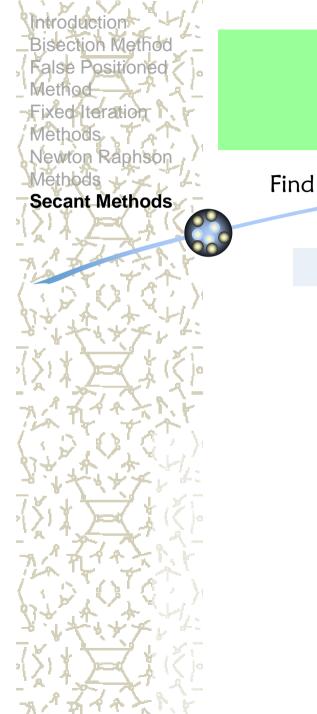
Secant Method

- The secant method is a recursive method used to find the solution to an equation
- it requires two initial guesses for the root.
- The big advantage of the secant method over Newton's Method is that it does not require the given function f(x) to be a differential function or for the algorithm to have to compute a derivative.
- The recursive function h(x,y) depends on two parameters x and y the x-coordinates of two points on the function.



Secant Method

Given a function f(x) and two points x_{-1} , x_0 For n = 0, 1, 2, ..., until satisfied, do: Calculate $X_{n+1} = [f(x_n) (x_{n-1}) - f(x_{n-1}) (x_n)]/[f(x_n) - f(x_{n-1})]$



Find all the real solutions to the cubic equation $x^3 + 4x^2 - 10 = 0$

	x _i	f(x _i)
0	1.000000	-5.00000000
1	2.000000	14.00000000
2	1.263158	-1.602274384
3	1.338828	-0.430364748
4	1.366616	0.022909431
5	1.365212	-0.000299068
6	1.365230	-0.00000203
7	1.365230	0.00000000
8	1.365230	0.00000000
9	1.365230	0.00000000