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 Abstract 

 
     This paper presents a method for optimizing software testing efficiency by identifying the 
most critical path clusters in a program. We do this by developing variable length Genetic 
Algorithms that optimize and select the software path clusters which are weighted in 
accordance with the criticality of the path. Exhaustive software testing is rarely possible 
because it becomes intractable for even medium sized software. Typically only parts of a 
program can be tested, but these parts are not necessarily the most error prone. Therefore, 
we are developing a more selective approach to testing by focusing on those parts that are 
most critical so that these paths can be tested first. By identifying the most critical paths, the 
testing efficiency can be increased. 
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1. Introduction 

 The verification and validation of software through dynamic testing is an area of software 
engineering where progress towards automation has been slow. In particular the automatic 
design and generation of test data remains, by and large, a manual activity. Software testing 
remains the primary technique used to gain consumers’ confidence in the software. The 
process of testing any software system is an enormous task which is time consuming and 
costly [1] [2]. Software testing is laborious and time-consuming work; it spends almost 50% 
of software system development resources [1] [2]. Generally, the goal of software testing is to 
design a set of minimal number of test cases such that it reveals as many faults as possible. As 
mentioned earlier, software testing is a lengthy and time-consuming work [3]. Absolutely, an 
automated software testing can significantly reduce the cost of developing software. Other 
benefits include: the test preparation can be done in advance, the test runs would be 
considerably fast, and the confidence of the testing result can be increased. However, 
software testing automation is not a straight forward process. For years, many researchers 
have proposed different methods to generate test data automatically, i.e. different methods for 
developing test data/case generators [4, 5, 6, 7, 8, 9]. The development of techniques that will 
also support the automation of software testing will result in significant cost savings. The 
application of artificial intelligence (AI) techniques in Software Engineering (SE) is an 
emerging area of research that brings about the cross fertilization of ideas across two 
domains.  A number of researchers did the work on software testing using artificial 
inelegance; they examine the effective use of AI for SE related activities which are inherently 
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knowledge intensive and human-centered. These issues necessitate the need to investigate the 
suitability of search algorithms, e.g. simulated annealing, genetic algorithms, and ant colony 
optimization as a better alternative for developing test data generators [4, 5].Using 
evolutionary computations, researchers have done some work in developing genetic 
algorithms (GA)-based test data generators [6, 7, 8, 9, 10]. A variety of techniques for test 
data generation have been developed previously [12, 13, 14, 15, 16] and these can be 
categorized as structural and functional testing.   

In this paper, we present the results of our research into the application of GA search 
approach, to identify the most error prone paths in a software construct. The paper is 
structured in the following way: section 2 describe basic structure of genetic algorithm, in 
section  3 we discussed our proposed algorithm for test data generator, while section 4 
represents the case study of proposed approach using an example and finally in section 
5.describe  the conclusions  part. 
 
2.  Genetic algorithm 
 
     A GA [10] starts with guesses and attempts to improve the guesses by evolution. A GA 
will typically have five parts: (1) a representation of a guess called a chromosome, (2) an 
initial pool of chromosomes, (3) a fitness function, (4) a selection function and (5) a crossover 
operator and a mutation operator. A chromosome can be a binary string or a more elaborate 
data structure. The initial pool of chromosomes can be randomly produced or manually 
created. The fitness function measures the suitability of a chromosome to meet a specified 
objective: for coverage based ATG, a chromosome is fitter if it corresponds to greater 
coverage. The selection function decides which chromosomes will participate in the evolution 
stage of the genetic algorithm made up by the crossover and mutation operators. The 
crossover operator exchanges genes from two chromosomes and creates two new 
chromosomes. The mutation operator changes a gene in a chromosome and creates one new 
chromosome. GA has well-defined steps: 
 

A basic algorithm for a GA is as follows [1] 
The pseudo code for GA is: 
Initialize (population) 
Evaluate (population) 
While (stopping condition not satisfied) do  
{ 
 Selection (population) 
 Crossover (population) 
 Mutate (population) 
 Evaluate (population) 
} 
The algorithm will iterate until the population has evolved to form a solution to the problem, 
or until a maximum number of iterations have taken place (suggesting that a solution is not 
going to be found given the resources available).  
 
3. Proposed Approach 
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This section describes details of our proposed approach, to test data generation using 
GA; more precisely, it describes our fitness function. Our approach uses a weighted 
CFG. Path testing searches the program domain for suitable test cases that covers every 
possible path in the software under test (SUT). However, it is generally impossible to 
achieve this goal, for several reasons. First, a program may contain an infinite number 
of paths when the program has loops. Second, the number of paths in a program is 
exponential to the number of branches in it and many of them may be unfeasible. Third, 
the number of test cases is too large, since each path can be covered by several test 
cases. For these reasons, the problem of path testing can become a NP complete 
problem making the covering of all possible paths computationally impractical. Since it 
is impossible to cover all paths in software, the problem of path testing selects a subset 
of paths to execute and find test data to cover it.  

Our algorithm works on control flow graph (CFG). CFG is a simple notation for the 
representation of control flow. An independent path is any path through the program 
that introduces at least one new set of processing statements or a new condition. When 
stated in terms of a flow graph an independent path must move along at least edge that 
has not been traversed before the path is defined.  

3.1 Procedure 

 
Input: CFG of the code 

Assigning weights to edges of CFG – The first step of algorithm is assigning weights 
to CFG. More weights are assigned to edges which are critical so to say, that are part of 
paths which are more error prone. An initial credit is taken (100 or 10), if CFG is dense 
i.e. large numbers of edges are there than initial credit should be taken as 100 and if 
CFG is sparse (small codes) then it can be taken as 10. 

At each node of CFG the incoming credit (sum of the weights of all the incoming 
edges) is divided and distributed to all the outgoing edges of the node.  

Distribution of weights is done as follows: 

Take ‘n’ to be the number of outgoing edges. 

We have considered an 80-20 rule. 80 percentage of weight of the incoming credit is 
given to loops and branches and the remaining 20 percentage of the incoming credit is 
given to the edges in sequential path. From each node if n1 is the number of edges in 
sequential path and n2 is the number of edges in looping and branching paths, then n1 
edges are given 20 percentage of incoming weight and then divided equally amongst 
them and the remaining 80 percentage is given to n2 edges. 

If there is only one outgoing edge from a particular node than the incoming weight is 
assigned to the outgoing edge. 

In figure 1 of illustration it can be seen that a similar procedure has been followed to 
assign weights to the edges. 

3.2 Selection 

The selection of parents for reproduction is done according to a probability 
distribution based on the individual’s fitness values. First the fitness value is calculated 
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using the Fitness function proposed in the algorithm. Weights are used to determine the 
relative contribution of a path to the fitness calculation. Thus, more weight is assigned 
to a path which is more “critical”. Criticality of the path to test data generation is based 
on the fact that predicate, loop and branch nodes are given preference over sequential 
nodes during software testing.  The fitness function we are using here is  
             n 
       F = ∑ wi 
           i=1 

Where, wi = weight assigned to i-th edge on the path under consideration  

The algorithm works by assigning weights to the edges (depicting flow) of CFG on 
the basis of the importance of path in which the edge lies. Higher weights are assigned 
to the edges of path corresponding to the critical section of the code for example loops, 
branch statements, control statements etc. for which testing is essential. After all the 
fitness function values are calculated, the probability of selection pj for each path j, so 
that  

 
pj = Fj/ ∑. Fj 
Where, j=1 to n  
n= initial population size 

 

Then cumulative probability ck is calculated for each path k with equation: 
 
                                 k 
  ck   =    ∑ pj 

                                        

                                        j=1 

3.3 Reproduction (crossover) 

     In one-point (or single) crossover, two input data selected as potential parents by selection 
process exchange substring information at a random position in the data to produce two new 
data. Crossover happens according to a crossover probability pc, which is an adjustable 
parameter. For each parent selected, generate a random real number r in the range [0, 1]; if r < 
pc then select the parent for crossover. After that, the selected data are formatted randomly. 
Each pair of parents generates two new paths, called offspring.  

The crossover technique used is one point crossover done at the midpoint of the input 
bit string. In this technique, right half of the bits of one parent are swapped with the 
corresponding right half of the other parent. 

3.4 Mutation 

Mutation is performed on a bit-by-bit basis. Every bit of every chromosome in the 
offspring has an equal chance to mutate (change from ‘0’ to ‘1’ or from ‘1’ to ‘0’), and 
the mutation occurs according to a mutation probability pm, which is also an adjustable 
parameter. To perform mutation, for each chromosome in the offspring and for each bit 
within the chromosome, generate a random real number r in the range [0, 1]; if r < pm 
then mutate the bit. 
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These major components including the fitness function will evolve test data to better 
ones, trying to find a candidate that covers the target path. The crossover process tries 
to create better test data from fitter ones, while mutation introduces diversity into 
population, avoiding getting stuck at local optima solutions. 

 
4. Case Study 

I have to check my procedure under case study.  

 

 

Figure1:   Code with weight CFG 

This is the CFG for the above code. The numbers of the nodes correspond to line of 
the code. Since line 1 of the code is an IF statement, node 1 becomes a predicate node 
and two outgoing edges are made to account for the two possible outcomes of the IF 
statement. Line 6 is a while statement and correspondingly node 6 has two outgoing 
edges in the CFG. Also can be seen is an edge from node 9 to node 6 depicting the loop. 
This figure shows the assignments of weights to the CFG following the procedure 
described in section 3.1. Here an initial credit of 10 is taken since it is a small piece of 
code. Then as we traverse CFG from top to bottom, we keep dividing the incoming 
credit at each node following the 80 – 20 rule. 

4.1 Assigning Weights 

 In the given example we started with initial credit of 10 and then distributed it to the 
various edges on the basis of their importance. Values of weights are shown in figure 1 
and are those which are closer to the edges. 

4.2 Solving Case study Using Genetic Algorithms 

The table depicts the procedure and key to the table is: 

X: denotes our test data set 
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F(x): corresponding fitness value calculated for each test data, by adding the weights 
of the path followed by it in the CFG. 

Pi: probability for the corresponding data  

 Pi = F(Xi) / (∑ (F(Xi)) 

Ci: cumulative probability 

Ran: Random number generated for the test data 

Ns: Test data number that has cumulative probability just greater than the 
corresponding random number. 

Mating pool:  This column contains the number of times a test data appears in the Ns 
column.  

Steps for carrying out cross over and mutation: 

The data obtained from the Ns values is written in binary representation 

Pair-wise crossover is done by interchanging the second half off the binary 
representation of the data, for data satisfying the condition that Ran<0.8. This is 
because crossover probability is 80% and crossover is carried out only if its 
corresponding random number is less than this probability. 

Mutation: For each entry in the new data set, bit-wise random number are generated. 
And for random number values less than 0.3, that   corresponding bit is flipped to 
obtain a new data entry. 

Same procedure is carried out for the new data set obtained for further crossover and 
mutation until we start getting better values of the fitness function F(x). 

Example 1: 

Initial population: (n, m) 

(15, 4), (5, 6), (6, 2), (4, 12) 

Fitness function used: 

 Summation of weights of path traversed by a given input data in CFG 

 For example (15, 4) will travel the path 0-1-2-3-4-5-6-7-8-9-6-7-8-9-6-10-11-12 
and therefore its fitness value is 108 

Since the mating pool consists of only (15, 4) therefore this is the test data that 
should be used for the testing of the code during execution. This is because the mating 
pool depicts the population that will mate in the next iteration. Here since the only 
value in mating pool is (15, 4), this shows that no further improvement in the fitness 
function value can be achieved with further reproduction and mutation. Thus (15, 4) is 
the test data that should be used as input for software testing.  
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Example 2 

Initial population: (n, m) 

 (12, 8), (2, 3), (6, 2), (15, 4) 

Iteration: Table 1, 2, 3, 4, 5, 6and Table 7 on the next page show iteration of the 
procedure followed. Fitness function values of input population is calculated in 
coloumn3,then probability is calculated using the formula in section 3.Coloumn5 shown 
the cumulative probability .Random number are generated to simulate the GA process.  

 
 
 5. Conclusion 
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Genetic algorithms are often used for optimization problems in which the evolution of a 
population is a search for a satisfactory solution given a set of constraints. We have reported 
preliminary results from an experiment comparing random test data generation with a new 
approach using genetic search. In this paper we have demonstrated that it is possible to apply 
Genetic Algorithm techniques for finding the most critical paths for improving software 
testing efficiency. The Genetic Algorithms also outperforms the exhaustive search and local 
search techniques. In conclusion, by examining the most critical paths first, we obtain a more 
effective way to approach testing which in turn helps to refine effort and cost estimation in 
the testing phase. Our experiments conducted so far are based on relatively small examples 
and more research needs to be conducted with larger commercial examples. Future research 
will involve comparing GA selected paths in larger test data and further refining the method 
presented. This research would help in generating various software test cases. Also, since GA 
can be used independently for any problem and it is an emerging field so it has tremendous 
importance for users. 
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