
Association for Information Systems
AIS Electronic Library (AISeL)

ECIS 2012 Proceedings European Conference on Information Systems
(ECIS)

5-15-2012

A SOFTWARE TESTING ASSESSMENT TO
MANAGE PROJECT TESTABILITY
Robin Poston
University of Memphis

Jignya Patel
University of Memphis

Jasbir Dhaliwal
University of Memphis

Follow this and additional works at: http://aisel.aisnet.org/ecis2012

This material is brought to you by the European Conference on Information Systems (ECIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in ECIS 2012 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Poston, Robin; Patel, Jignya; and Dhaliwal, Jasbir, "A SOFTWARE TESTING ASSESSMENT TO MANAGE PROJECT
TESTABILITY" (2012). ECIS 2012 Proceedings. 219.
http://aisel.aisnet.org/ecis2012/219

1

A SOFTWARE TESTING ASSESSMENT TO MANAGE

PROJECT TESTABILITY

Poston, Robin, University of Memphis, 300 Fogelman College Administration Building, Memphis,

Tennessee, USA, rposton@memphis.edu

Patel, Jignya, University of Memphis, 300 Fogelman College Administration Building, Memphis,

Tennessee, USA, jmpatel@memphis.edu

Dhaliwal, Jasbir, University of Memphis, 300 Fogelman College Administration Building, Memphis,

Tennessee, USA, jdhaliwl@memphis.edu

Abstract

The demand for testing services is, to a large extend a “derived demand” influenced directly by

the manner in which prior developed activities are undertaken. The early stages of a structured

software development life cycle (SDLC) project can often run behind schedule, shrinking the time

available for performing adequate testing especially when software release deadlines have to be

met. This situation fosters the need to influence pre-testing activities and manage the testing

effort efficiently. Our research examines how to measure testability of a SDLC project before

testing begins. It builds on the “design for testability” perspective by introducing a “manage for

testability” perspective. Software testability focuses on whether the activities of the SDLC

process are progressing in ways that enable the testing team to find software product defects if

they exist. To address this challenge, we develop a software testing assessment. This assessment

is designed to provide testing managers with information needed to: (1) influence pre-testing

activities in ways that ultimately increase testing efficiency and effectiveness, and (2) plan testing

resources to optimize efficient and effective testing. We developed specific software testing

assessment measures through interviews with key informants. We present data collected for the

measures for large-scale structured software development projects to illustrate the assessment’s

usefulness and application.

 Keywords: Testability, Software Project, Design for Testability, Manage for Testability, Qualitative

1. Introduction

Large-scale structured software development can suffer from inadequate quality assurance and

testing in software testing prior to its release. Inadequate quality can result from insufficient testing

activities which are often relegated and compressed into the last stages of the software development

life cycle (SDLC) limiting the time available for finding and fixing defects (Gelperin and Hetzel,

1988). With pre-set release deadlines, the early stages of planning, analysis, design, and development

within a structured SDLC can often run behind schedule, shrinking the time allowed for performing

adequate testing (Whittaker, 2000). One solution would be to better plan the testing process to be more

efficient, while another would be to improve how activities in the earlier stages of the SDLC affect

2

downstream testing acitvities, e.g., by developing less-ambiguous, easier-to-test requirements during

the analysis stage. Studies show that finding and fixing software quality problems earlier in the SDLC

is less costly than during later stages of the SDLC (McGregor, 2007; Pressman, 1992). Given the need

to start early and to manage the testing effort efficiently, this research explores how to assess how

activities in the earlier stages of a project are progressing relative to their effect on the efficiency and

effectiveness of the latter stage of testing.

Many activities in the early stages of the SDLC influence the amount and type of software

testing performed at the end of the SDLC (Adrion et al., 1982; Cohen et al., 2004). For example, how

well requirements are understood along with how well designs delineate interface connections, will

both affect how the testing team verifies that the software is working properly (Li, 1990). While

progressive software development teams include members of the testing team in requirements and

design walkthroughs during the early stages of the SDLC (Singh and Shivani, 2009), a software testing

assessment is lacking that assesses how the activities of the early stages of the SDLC are progressing

relative to their influence on tasks performed during the testing stage. Armed with such measurements,

testing managers could use assessment data to attempt to facilitate positive changes at various points in

the SDLC or as early warning of the testing resources needed prior to the beginning of the testing

stage.

Software testing assessment frameworks currently exist that inform software development

teams on ways to both design software code to be more testable and provide the means of estimating

testing effort (Binder, 1994; Voas and Miller, 1992). From a “design for testability” (DFT)

perspective, software testability reflects whether code has been designed in such a way that the testing

team will be able to find software product problems if they exist (Binder, 1994). A product problem is

an existing defect which is an error, failure, flaw, or weakness in a program or system that produces an

incorrect or unexpected result, or causes unintended behaviors (ISO, 1991). Software testability is a

cumulative measure of the design attributes of a developing software product that reflect how easy it

will be to assess if the product is working, i.e., the level of effort needed to perform adequate testing.

The less testable a software product, the more testing effort will be needed to ensure its quality prior to

its release. Proposed DFT assessments have focused on improving test cases (Bache and Mullerberg,

1990), class diagram interactions (Baudry et al., 2002), input and output states of the code, and state

transitions of the program (Freedman, 1991). These assessments illustrate the importance of utilizing

design and code methodologies to ensure more testable software products enter the testing phase. The

DFT research addresses ways to manage testing efficiency and effectiveness at the software-product

design level, with little attention given to ways to manage testing efficiency and effectiveness at the

SDLC process level.

Our research extends the DFT perspective by introducing notions about how to influence the

testing effort following a “manage for testability” (MFT) perspective. From a MFT perspective,

software testability reflects whether the activities of the SDLC process are progressing in ways that are

informing and supporting the testing team with the appropriate software project information to enable

finding software product problems if they exist, both during the earlier SDLC stages as well as during

the later testing stage. Following MFT, our proposed assessment focuses on the process and product

characteristics of how the activities of the SDLC are progressing relative to their influence on tasks

that will be performed during the testing stage, thus ultimately influencing testing efficiency and

effectiveness. Projects with low (high) software testability assessment scores indicate that greater

(less) testing effort will be needed. Along with important product characteristics, e.g., the ability to

control business rule parameters, our proposed software testability assessment also focuses on process

characteristics, e.g., the test team’s understanding of the business requirements, system requirements,

and interface designs, as well as measures of documentation completeness and test team involvement

in walkthroughs and inspections. In support of the MFT perspective, prior research has acknowledged

the need for assessing testability at the SDLC process level (Binder, 1994); however details of

assessment criteria have not been offered. While the recognition of the need for MFT persists, little

guidance exists as to how a software testing assessment can be developed to help testing managers

3

evaluate how activities performed throughout the SDLC influence a software project’s testability and

the testing effort that will ultimately be required.

The goal of this research is to develop a software testing assessment to manage project

testability. The software testing assessment is designed to provide testing managers information they

need: (1) to influence pre-testing activities in ways that ultimately increase testing efficiency and

effectiveness, and (2) to plan testing resources that facilitate an efficient and effective testing phase.

Thus, in our research, we move beyond the DFT research (e.g., Baudry et al., 2002; Freedman, 1991;

Mouchawrab et al., 2005) to address how activities across the SDLC in large-scale structured projects

influences testing activities. First, we reviewed the prior testability literature from a DFT perspective

to understand the factors that affect testability and testing efforts in order to define an MFT

perspective. We then developed specific software testing assessment measures through several rounds

of interviews with key informants (i.e., testing managers at a global transportation company). We

solicited the expertise of key informants specifically to identify the relevant activities of the SDLC

impacting the amount and type of testing performed for adequate quality assurance. Our aim was to

discover and define measures of testability for testing managers to use to influence how activities of

the SDLC progressed and to better plan testing resources before the start of the testing stage. We next

validated the testability measures with testing managers at a global aviation company and updated our

assessment accordingly. Finally we collected data for the measures for large-scale structured software

development projects at the original global transportation company, as well as, at a global business-to-

business supply chain company. We conclude by discussing implications for practice and research.

2. Testability

To increase the chances of finding software problems, development and testing teams strive to

improve the testability of the software (Mouchawrab et al., 2005). In general, software testability is a

measure of the probability of finding a problem in the software if one exists (ISO, 1991), and as such it

indicates the amount of testing effort needed to find errors. Attributes of the software product, e.g.,

observability of the code’s operations, and attributes of the development process, e.g., how well testers

understand business requirements, contribute to the probability of finding software problems. The

tougher it is to find defects, the more effort is needed to provide adequate quality assurance through

software testing (Binder, 1994). As a result, researchers seek better ways to design software programs

for better testability (DFT), as well as manage the SDLC process to improve software testability

(MFT) (Voas and Miller, 1992). Next we summarize the DFT literature, and then we build on the DFT

perspective to examine the MFT perspective.

2.1 Measurements in Design for Testability

DFT is a strategy focused on aligning the design artifacts of the software development process

to the product’s testability, with the goal of maximizing testing effectiveness (Binder, 1994). Table 1

illustrates a summary of the selected literature on DFT. Researchers generally agree on several

testability heuristics for software designers and programmers to consider:

• Controllability—the degree to which it will be possible to control the state of the product

under test,

• Observability—the degree to which it will be possible to observe the workings of the product,

• Isolateability—the degree to which the component can be tested in isolation,

• Simplicity—the degree to which the product has a single, well-defined responsibility,

• Understandability—the degree to which the product is documented or self-explaining,

• Automatability—the degree to which it will be possible to automate testing of the product, and

4

• Heterogeneity—the degree to which the product involves diverse technologies necessitating

diverse test methods and tools in parallel (Bach, 2003).

Author Testability Definition Study Context Design for Testability

Lammermann et al., 2008 “...evolutionary testing can

automate test case generation for

a given test object… We term

this quality evolutionary

testability of a test object. …”

(p. 1019)

Test case design Propose testability measures:

• Executable Lines of

Code,

• Halstead’s Vocabulary,

• Halstead’s Length,

• Cyclomatic Complexity,

• Myers Interval,

• Nesting Level

Complexity, and

• Number of Test Aims

Tie measures to testing efforts

Baudry et al., 2002 “…design with an unreachable

testing goal can be either

improved or rejected as not

testable” (p. 2)

Object-oriented software UML

class diagrams integration

design

Class interactions highlight:

• Designs needing

improvement,

• Structural

modifications, and

• Constraints

specifications

To improve testability and

testing efforts

Jungmayr, 2002 “...degree to which a software

artifact facilitates test tasks in a

given test context…” (p. 1)

Object-oriented software metrics

for system dependencies and

coupling

Define and use design and

coding metrics:

• Small number of

dependencies has a large

effect on testability

• Coupling is not a good

predictor of these

dependencies

Bertolino and Strigini, 1996 “…probability that a test of the

program on an input drawn from

a specified probability

distribution of the inputs is

rejected, given a specified

oracle and the program is

faulty ” (p. 9)

Measurement of testing

confidence after software

execution and testing is

complete

Program correctness is based on:

• Coverage of the testing

oracle,

• Ability of software to

tolerate internal errors,

• Relationship between

execution profile and

distribution failure

inputs

McGregor and Srinivas, 1996 “Testability is the prediction of

a method's ability to reveal

faults in its implementation

given a particular input

distribution.” (p.4)

Testability of a method in

a class and indirect estimates on

effort

needed to test a class

Visibility into a class method

• Accessibility of

information that must be

inspected to evaluate the

correctness of method’s

execution

How to define and use

accessibility metrics

Voas and Miller, 1995 "…probability that a piece of

software will fail on its next

execution during testing…if the

software includes a fault" (p. 19)

Design improvements in ability

to verify software quality

Design, code, and test phase

metrics used throughout the

SDLC

Voas and Miller, 1992 "..is the tendency of code to

reveal existing faults during

random testing" (p. 1)

Testability design measurements Testability measures using:

• Formal specifications,

• Design documents, and

• Code itself

Freedman, 1991 "Domain testability refers to the

ease of modifying a program so

that it is observable and

controllable" (p. 553)

Testability design measurements

of observability and

Controllability

Testability of programming

structures:

• Define new metric for

program and functional

specifications

• Tie metrics to testing

effort

Table 1. Selected literature on design for testability (DFT)

5

Using the testability heuristics, DFT researchers offer a variety of testability strategies. One

strategy for achieving greater testability involves employing a code measurement system based on the

evolution of code development and its relationship to automating test cases (Lammermann et al.,

2008). Other strategies propose measurements for object-oriented software to improve object-oriented

class interactions (Baudry et al., 2002) and system dependencies and coupling (Jungmayr, 2002) with

the goal of increasing the chances of finding design and programming errors. Other strategies suggest

measuring accessibility attributes (McGregor and Srinivas, 1996) and design measurements of

observability and controllability (Freedman, 1991). Regardless of the strategy used, measuring design

and code testability has been beneficial in offering insights that foster improvements in software

programs during the design, code, and testing phases of the SDLC (Voas and Miller, 1992, 1995).

DFT researchers point out that testability strategies have limitations. Bertolino and Stringini

(1996) illustrate that an over-reliance on increasing code-related testability may “produce a program

which will be less trustworthy, even after successful testing” (p. 1). This suggests measures beyond

testable code (e.g., that of human abilities) should also be considered. In our research, we build on the

concepts of DFT to consider an MFT perspective. We recognize that testability must consider

attributes of software products, and given the need to measure more than code testability, we also

consider attributes of the SDLC process. We extend the notion of testability from a prior focus on

primarily the code level to the project level in the SDLC.

2.2 Measurements in Manage for Testability

Testability studies define DFT at the source code or design level of software projects. We

build on the suggestions of several DFT researchers to define and measure MFT (Binder, 1994; Voas

and Miller, 1992). Binder (1994) uses fishbone diagrams to illustrate the myriad facets of the testing

process which influence testability, and emphasizes that “testability cannot be considered apart from

the [SDLC] process” (p. 88). However, the paper fails to define measures of the activities of the

SDLC process prior to the start of testing that influence testability. Voas and Miller (1992) focus on

random black-box testing DFT and suggest that repeated measures of testability are needed throughout

the SDLC. However, they fail to define measures. Producing high-quality software is not only a

function of creating high-quality software product designs, but also managing high-quality software

development processes. Using the proposed testability assessment, we propose managers could assess

how activities in the earlier stages of a project are progressing relative to their effect on the latter

SDLC stage of testing.

Many activities of the SDLC have facets that affect the testability of software development

products. The software testing assessment comprises a list of testability measures of project

documentation, testing employees, the product being developed, etc., which are measured to develop a

comprehensive score of a project’s testability. Table 2 shows a list of the measures which assess a

variety of SDLC-related activities that influence the project’s testability. For example, in the planning

stage, a testability measure is the quality of (i.e., number of problems found in) the original software in

a modification project. Lower quality (i.e., more problems) in prior versions of the software would

suggest greater challenges in finding problems if they exist as there could be more problems to find,

which involves more testing work. As another example, in the analysis stage, a testability measure is

the level of involvement that testing representatives have in document walkthroughs. Less

involvement means the testing team has less input as well as potentially less understanding of the

project and would suggest greater challenges in finding problems and more testing resources needed.

In these examples, using a software testing assessment earlier in the SDLC would highlight which

testability attributes are deficient and provide information to test managers to work with their SDLC

counterparts on ways to improve the product or process before testing begins. The assessment would

also offer testing managers early warning about the testing challenges to be expected and testing

resources needed prior to the beginning of the testing stage.

6

3. Research Approach

To accomplish the research goals, we created a software testing assessment for testing

managers to use in evaluating testability. Based on our review of the literature, we use the DFT

perspective as the foundation for developing an MFT approach. Using the DFT literature as the base,

we followed three main steps: interviewing key informants to define the appropriate testability

measures to include in the assessment; gathering feedback from additional key informants to determine

the clarity, comprehensiveness, and accuracy of the attributes; and collecting data from testing

managers across multiple Fortune 500 level companies.

In the interviews, six managers, four testing leads and two testing audit managers, involved in

software testing at a global transportation company were asked questions about the attributes of work

performed in software development that affected the ability of the testing team to find problems in

project artifacts and that influenced work activities performed in the testing stage. Each person had an

in-depth understanding of software testing activities and challenges across the SDLC. Multiple

interviews were held with each manager and continued until saturation was reached with no new

measures surfacing. While the key informant pool represents a convenience sample, they were

selected based on the recommendation of senior software testing executives and on the basis of their

knowledge and expertise.

To further establish the validity of our assessment, we used triangulation as part of the

feedback step. Triangulation is accomplished through the use of multiple data sources and multiple

researchers (Mason, 2002). Iterative comparison, contrasting, and cross-examination of our work

across multiple key informant interviewees allow us to ensure that the outcomes of this assessment are

well developed. Two researchers conducted the interviews, with one researcher asking the questions

and the other listening, taking notes, and asking follow-up questions. The presence of multiple

researchers allows us to systematically recognize, discuss, and debate different interpretations and

improve our understanding of the testability measures. To further improve the validity of the

assessment we employed member-checking and peer-debriefing (Corbin, 2008). We presented drafts

of our measures to the members of the testing community including the top testing management team

(senior managing director and vice president at a global transportation company) (i.e., member-

checking) as well as with other researchers and practitioners at a research workshop and a separate

research colloquium to gather additional input (i.e., peer-debriefing). In addition, key informants from

a global aviation company reviewed and commented on each testability measure highlighting wording

issues, ambiguity problems, and missing content, which provided input for updating the assessment.

All these steps serve to ensure the assessment and its results have greater credibility, and validity.

In the final data collection step, face-to-face meetings were held with managers in order to

gather their assessments of current software development project using our testability measures. Each

manager assessed one large-scale development project. A total of fifteen projects were assessed across

five Fortune 500 level companies: five projects from the global transportation company, three from a

global business-to-business supply chain company, three from a global retail company, two from a

major utility company, and one each from a large non-profit healthcare company and worldwide

manufacturer of engineering solutions. All data is from projects which were following a large-scale

structured waterfall development methodology. See Appendix A for an overview of project data. The

purpose of the data collection was to illustrate how the testability measures would be evaluated. The

following sections describe the software testability assessment and its application in more detail.

4. Software Testing Assessment

The software testing assessment with 53 items is provided in Table 2. Measures were

developed for the following information technology components: software, hardware, documentation,

security, data, and facilities. Within these components each area was further broken down into

7

testability facets. When using the assessment for development projects, testing and/or project

managers were asked to rate each testability attribute for their project on a scale of 1 to 7, with 7 being

highest in testability. For example, if error messages provide clear descriptions of the problem, the

associated attribute would be rated 7, meaning this activity provides insightful information about

errors which facilitates the ability of the testing team to find and fix software problems if they exist.

Testability Facets Testability Measures

Software

Quality of original software before testing starts - specifically, unit test results along with build and

known issues are available

Critical applications

Quality of original software before testing starts - specifically, first cycle of integration (end-to-end)

testing results are good

Visibility to data mapping to input and output of interfacing systems Where and how applications are

executed

Ability to control business rule parameters (e.g., modify data retention periods)

Are patches are up-to-date? All patches been applied within the test environment before the start of testing

Data dependencies are documented Input and output controls

 Changes that affect other systems are documented

Error messages provide clear description of the problem

Error handling processes are efficient

Error messages

 Ability to perform fail-over and recovery testing

Hardware

System fileservers: fileserver integrity All fileservers are operational

Documentation

System components

Level of involvement of testing representative(s) in the document walkthrough

Understanding of BRS by testing team members

Comprehensive assumptions and constraints have been included

Detail business scenarios and examples have been included

High level specifications for de-coupling have been included

Stakeholder review and approvals exist

Version control in place and followed

Business Requirements (BRS)

 Open issues are tracked and addressed

Level of involvement of testing representative(s) in the document walkthrough

Understanding of SRS by testing team members

Comprehensive assumptions and constraints have been included

Detail scenarios and examples have been included

Traceability to BRS has been documented

Stakeholder review and approvals exist

Version control in place and followed

System Requirements (SRS)

 Open issues are tracked and addressed

Completed and provided with entire system flow

Visibility of all interface changes

System Architecture Specification

(SAS)

Defined data mapping between systems

Document is complete and provided

Ability to decouple specific functions within a project

De-coupling/ Back-out Plan

 Degree of ability to decouple the code between interfacing systems /domains (more data/switch driven

less code driven)

Stakeholder review and approvals exist

Understanding of DTPS by testing team members

Version control in place and followed

Known location of organized repository of project files

Mitigation and contingency plan known risks

Well defined test strategy

Well defined test cases

Detail Test Plan Specification (DTPS)

 Well defined test data plan

Log files: Defect log files All defects and their remedies are logged in an easily accessible manner by the testing group

Overall Defined process for tracking and resolving testing issues/concerns/queries

Security

Access rights to all impacted systems have been set up before the start of testing Access controls

 Access rights have been completely defined before the start of testing

8

Internal controls on key applications Ability to test software compliance (e.g., HIPPA, SOX, PCI)

Data

Test data is locked down and secure Data security policies: Is there any

formal written data security policy?

Production data is efficiently cleansed of sensitive information

Data files / database access Updates and database files are accurate and available

Ability to simulate sensitive data

Ability to simulate encrypted data

Data encryption

 Level of complexity in decrypting encrypted data

Facilities

Test environment Separate testing environment from the remaining software development team

Table 2. Software testing assessment

To illustrate how the testability attributes were evaluated and their usefulness in designing and

managing for testability, we collected data for fifteen large-scale software development projects. We

asked respondents to consider assessing a project in the testing or release stage of the SDLC in order to

encourage participants to consider how each measure influenced the ability to find defects if they

existed. Limiting our data collection to projects in the final stages of development helped us continue

to validate the newly created testability measures. When specific testability measures are irrelevant,

we ask respondents to enter ‘n/a’ for that attribute. For comparison across projects, we removed the

effects of the irrelevant attributes by calculating the percentage of the total possible score for each

project. Table 3 summarizes the percentage of the total possible score for all projects, illustrating eight

of the fifteen projects were at or below a 70% score suggesting just that over half of the projects

included in this effort would be considered ‘significantly challenged’ based on the testability

measured.

Project Name Total Score Total Possible Testability Score (Total Score/ Possible)

Ink and Toner Saver 183 224 82%

Lab data management 228 287 79%

ePrint 192 245 78%

Management GUI 250.5 336 75%

JRB Conversion 238 323 74%

New service introduction 232 315 74%

I Roads 266 371 72%

International Returns 219 315 70%

Pricing enhancements 200 315 63%

Vendor Conversion 169 294 57%

DSO Process Improvement 206 364 57%

Global Tax Engine 197 357 55%

ILS 155 315 49%

Event Report 161 371 43%

Plant Metric Dashboard 131 350 37%

Table 3. Summary of project software testing assessments

5. Discussion

In this research, we started with an understanding of the DFT perspective, and then developed

testability measures and integrated them into a software testing assessment grounded in an MFT

perspective. The attributes were created based on input from expert informants and cross-validated

with additional testing professionals and academic peers. Data was gathered on fifteen software

projects to assess the project testability and illustrate the assessment’s usefulness. Testability data

scores ranged from 37% to 82%, averaging 64%, which illustrates all projects contained some

testability issues and some projects are heavily challenged in MFT. Based on the findings, facets of

9

DFT and MFT should combine to create a comprehensive assessment of testability. This study

illustrates that not only are design issues important, but SDLC process issues also have the potential to

influence how the test team finds defects in the software project if problems exist. Future research is

needed to determine the means and mechanisms by which different measures of the software testing

assessment influence different types of testing outcomes, e.g., quality of test cases, and within different

phases of SDLC.

The findings must be assessed in light of the study's limitations. For this study, the increased

application afforded by interviewing key informants must be traded off against the inherent limitations

of the approach, primarily that of measurement validity. The use of key informants and the amount and

type of data collected all limit the validity of our results. Key informants from one organization were

identified based on their knowledge and expertise in running software testing projects. To mitigate the

potential bias of having input from only one organizational perspective, we used an approach based on

triangulation involving multiple researchers, presented the testability measures in member-checking

and peer-debriefing sessions, obtained feedback from key informants at a different organization, and

obtained input from managers completing the assessment for real projects. In one company, we shared

the testability scores of the projects with executives of the testing management team (the software

quality managing directors and vice president) to gain their feedback. We asked how well the

testability scores reflected their knowledge of the testing challenges encountered with each project.

The testing executives confirmed that the order from highest to lowest testability scores did reflect the

relative amount of challenges and testing effort incurred within each of the projects. This feedback

supports the validity of the testability assessment. Using input from key informants and testing

executives to create a software testing assessment based on industry best practices enhances face

validity and content validity, however, we cannot adequately assess the predictive, convergent, and

discriminant validity of the measures. Future research should validate the testability measures using

rigorous statistical analysis across multiple organizational contexts and development methods.

Also, this research illustrated how the software testing assessment could be used based on self-

reported measures with one respondent assessing one project in the final stages of development. This

improves homogeneity of responses for comparability and the ability to gather confirmation through

feedback that the measures are valid. However, future research should consider collecting additional

data with projects assessed at different points across the SDLC and with different and multiple SDLC

stakeholder viewpoints. Collecting additional data would allow researchers to use factor analytical

methodologies to determine if common constructs emerge to form a nomological network of factors

that determine which testability measures are most relevant to which stages of the SDLC.

The findings of this research offer several important implications for research. Prior research

has focused primarily on methods for designing better software for testability (DFT) and has

maintained a more granular design and code level view. This research builds on the DFT perspective

and suggestions of several DFT researchers to define and measure testability across the SDLC (Binder,

1994; Voas and Miller, 1992). Producing high-quality software is a function of creating high-quality

software product designs and code and also managing high-quality software development processes.

Future research should utilize this software testing assessment to assess how activities in the earlier

stages of a structured development project are progressing relative to their effect on the latter SDLC

stage of testing to empirically delineate the factors that influence testing outcomes. While the focus of

this study was on waterfall development approaches, this assessment should also be used to assess how

testability occurs in projects following more agile approaches.

Future research can also make use of case study methodologies, e.g., action research, to

examine the cultural implications of adopting the assessment in companies to measure diffusion and

individuals’ reactions to the assessment’s usefulness. This would give a deeper understanding of how

the assessment both affects and is affected by project stakeholders thus educating practitioners on the

optimum ways to use the assessment. Another implication for research is to measure the costs and

benefits of using the assessment to examine whether the cost of its use justifies the improvements to

testing stage activities.

10

The findings also have several important implications for practice. Software testing teams can

use the software testability measures as a benchmark-type tool to determine whether projects are more

or less testable. A database of projects can be gathered and used to determine patterns of the factors

that drive testability. Factors could include project size, project manager style, the use of offsourcing,

criticality of the software to the user base, etc. As benchmark data builds, best practices in software

testability can be derived and shared with future projects assessed to determine if improvements have

been made. Comparing measures across and within SDLC stages may provide useful insights as well.

Through statistical analysis of the data, assessments can be made as to which measures drive testability

and which testability criteria are most critical to the testability of software projects.

6. Summary and Conclusion

Testing managers lack the means to systematically assess how the activities of the SDLC are

progressing in their relationship to a software product’s testability, which ultimately impacts the ability

to find software defects if they exist and the amount of testing effort required in the testing stage. To

address this, we propose managers utilize the software testing assessment. We provide testability

measures which could be used as a useful audit tool or a checklist for project managers to determine

the level of testability in their projects. Assessing development projects before testing begins can help

development teams build testability into their projects and testing managers can gain forewarning of

issues prior to the beginning of the testing stage. Knowing when problems are coming ahead of time

and where testability weaknesses are allows testing managers to better allocate limited resources in

ways that improve testing processes. This also gives the testing management team ways to open

discussions with SDLC stakeholders about areas of improvement.

As shown by the findings of Table 3, issues that affect project testability are pervasive as all

fifteen projects scored below 85%, with eight projects scoring at or below 70%. Armed with such

assessment data, testing managers can use the attributes and their scores for initiating discussions

among SDLC stakeholders to find ways to improve the development process and testing performance.

The software testing assessment proposed by this research offers researchers and practitioners a means

for uncovering and gaining an understanding of socio-technical challenges in SDLC projects that

inhibit the ability to meet the goals of delivering high-quality software solutions faster and less

expensively.

References

Adrion W., Cherniavsky J., Branstad M. (1982). Validation, Verification, and Testing of Computer

Software. Computer Surveys, 14(2), 159-192.

Bach J., (2003). Heuristics of Testability. Downloaded from: www.satifice.com/tools/testable.pdf.

Bache R., and Mullerburg M. (1990). Measures of testability as a basis for quality assurance. Software

Engineering Journal, 5(2), 86-92.

Baudry B., Sunye G., and Traon Y. (2002). Testability Analysis of a UML Class Diagram. IEEE

symposium on Software Metrics.

Bertolono A., and Strigini L. (1996). On the Use of Testability Measures for Dependability Measures.

IEEE Transactions on Software Engineering, 22(2), 97-109.

Binder R. (1994). Design for Testability in Object Orientated Systems. Communication of the ACM,

37(9), 87-101.

Cohen C., Birkin S., Garfield M., and Webb H. (2004). Managing Conflict in Software Testing.

Communication of the ACM, 47(1), 76-81.

Corbin J., and Strauss A. (2008). Basics of Qualitative Research. Sage Publications. California

Freedman R. (1991). Testability of Software Components. IEEE Transactions on Software

Engineering, 17(6), 553-564.

11

Gelperin D., and Hetzel B. (1988). The growth of Software Testing. Communication of the ACM,

31(6), 687-695.

ISO. (1991). International Standard ISO/IEC 9126. Information technology: Software product

evaluation: Quality characteristics and attributes for their use.

Jungmayr S. (2002). Testability Measurement and Software Dependencies. International Workshop on

Software Measurement.

Lammermann F., Baresel A., and Wegener J. (2008). Evaluating evolutionary testability for structure-

oriented testing with Software Measurements. Applied soft Computing, 8, 1018-1027.

Li E. (1990). Software Testing in a System Development Process: A Life Cycle Perspective. Journal of

Systems Management, 41(8), 23-31.

Mason J. (2002). Qualitative Researching. Sage Publications. London.

McGregor J. (2007). Test early, test often. Journal of Object Technology, 6(4), 7-14.

McGregor J., and Srinivas S. (1996). A Measure of the Testing Effort. USENIX. Toronto: Conference

on Object-Oriented Technologies.

Mouchawrab S., Briand L., and Labiche Y. (2005). A Measurement Framework for Object-Oriented

Software Testability. Ottawa, Canada: Software Quality Engineering Laboratory, Carleton

University.

Pressman R. (1992). Software Engineering: A Practitioner's Approach, 3rd Edition. McGraw Hill.

New York.

Singh Y., and Shivani G. (2009). Role of Testing in Phases of SDLC and Quality. International

Journal of Information Technology and Knowledge Management, 2(2), 343-346.

Voas J., and Miller K. (1992). Improving the Software Development Process using Testability

Research. Software Reliability Engineering.

Voas J., and Miller K. (1995). Software Testability: The new Verification. IEEE Software, 12(3), 17-

28.

Whittaker J. (2000). What is Software Testing? And why is it so hard? IEEE Software, 17(1), 70-79.

12

Appendix A: Project Data

Project

name

Pricing

enhance-

ment

Mgmt

GUI

New

service

intro.

Lab

data

mgmt.

I Roads

Ink &

Toner

Saver

Internation

al Returns
ePrint Event Rpt

DSO

Process

Improveme

nt

Global

Tax

Engine

Vendor

Convert.
ILS

JRB

Convert.

Plant

Metric

Dash-

board

Respon-

dent Title

Testing

Manager

Testing

Manage

r

Testing

Manage

r

Project

Manager

Testing

Manager

IT

Manage

r

Testing

Manager

Project

Manage

r

Testing

Manager

Business

Analyst

Busi-

ness

Analyst

Testing

Manager

Testing

Manager

Devel-

oper

Data

Analyst

SDLC

Stage
Release Release Release Release Testing Release Release Release Testing Testing Testing Testing Testing Testing Testing

Number of

interfaces

with other

systems

15+ 25+ 100+ 3 5 0 25+ 0 0 6 3 4 5 4 2

Number of

test cases
1,000+ 2,109 20,000 250 1000+ 2400 3000+ 0 0 750 25 200 110 n/a 0

Project

manager’s

years of

experience

with

testing

8 18 20+ 20 11 20 8 25 0 6 5 0 11 10 0

Project

manager’s

years of

experience

with the

company

4 13 20+ 15 20 25 4 25 1 14 2 4 20 7 9

Number of

staff hours

to code

project

12,000+ 2,500 100,000
 100,000

+
100,000+

100,000

+
100,000+

100,000

+
30 1800 300 500 100,000+ 320 900

Software

new or

modifi-

cation of

existing

code

Modificati

on

Brand

new
Both

Brand

new

Modificatio

n

Brand

new
Brand new

Brand

new

Modificatio

n
Modification

Brand

new

Modificatio

n

Modificatio

n

Brand

new

Brand

new

Org.

Industry

Trans-

portation

Trans-

portatio

n

Trans-

portatio

n

Trans-

portation

Trans-

portation

B2B

Supply

Chain

B2B Supply

Chain

B2B

Supply

Chain

Nonprofit

healthcare
Retail Retail Retail Utility Utility

Manu-

facturin

g

Total

Score
200 250.5 232 228 266 183 219 192 161 206 197 169 155 238 131

Total

Possible
315 336 315 287 371 224 315 245 371 364 357 294 315 323 350

Score /

Possible
0.63 0.75 0.74 0.79 0.72 0.82 0.7 0.78 0.43 0.57 0.55 0.57 0.49 0.74 0.37

