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Abstract

Software process simulation modeling (SPSM) provides a platform for process and project management. On
the other hand, statistical process control (SPC) provides the means to assess a process for stability and
capability through visualization.

This paper provides a framework for integrating SPSM and SPC. The framework realizes their synergy by
leveraging the investment in supporting software measurement processes, ensuring the stability of the
underlying development process, and enhancing simulation output using visualization techniques made possible
through SPC. The paper illustrates the framework by integrating SPC to an existing SPSM. The integrated
model is then used to evaluate the underlying process with respect to capability.

Keywords:  Software project management, software process management, software process simulation
modeling, statistical process control, visualization

Introduction

Software process and project management are tightly coupled. A project may fail due to poor project management despite
adequate technical competence and the execution a quality software development process. Similarly, a project may fail due to
deficient development process despite competent project management. Moreover, the success of both process and project
management relies heavily on the successful development and implementation of effective measurement processes and supporting
quantitative techniques such as simulation. Finally, process and project management may share the same people. Process
management personnel may have project management responsibilities, and project managers may assume process management
responsibility.

This paper focuses on two techniques of particular importance to software process and project management, namely, software
process simulation modeling (SPSM) and statistical process control (SPC). While initial effort to model software processes relied
on informal description of software processes, it was not until the late 1980’s when focus turned to more formal description
resulting in a number of modeling paradigms and numerous modeling techniques. Accordingly, software process modeling
emerged as a technique for defining and analyzing significant aspects of software processes. The aim ranged from facilitating
human understanding, process management, process improvement, process guidance, to project management (Krasner et al. 1992).
Of these techniques, SPSM provides a ‘realistic’ platform for understanding, managing, and improving software processes. From
a project management perspective, SPSM is used for project planning, in particular, cost and schedule estimation, and project
quality, risk, and human resource management. Simulation provides the means to estimate the effect of changes and study the
effect of various ‘what if’ scenarios. However, the process quality dimensions of the software process are often overlooked in
such models.
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On the other hand, SPC is a process monitoring technique that has been widely used in manufacturing industries and, since the
mid-eighties; several attempts have been made to apply SPC to software processes (Cho 1987; Lanphar 1990; Putnam 1991; Card
1994; Card 1999). Since then, a number of applications are reported (Weller 2000;  Florac et al. 2000; Lewis 1999). The
importance of SPC to software project management cannot be undermined. Specifically, project management processes are
responsible for seeing that a software product is developed according to schedule, and budget, and that the resulting software
product meets functional and quality requirements. However, without the underlying process management activities, project
managers assume a significant risk in setting and meeting project objectives.

Inherent in existing applications of SPC to the software process is the view of software as a manufactured product. Accordingly,
techniques of SPC can be applied to software processes just as they have been applied to manufacturing processes (Florac et al.
1997). Nevertheless, as noted by Lantzy (1992), there are fundamental differences between software processes and manufacturing
processes. Software development processes are very different from manufacturing processes in terms of many key process
dimensions such as product volume, level of automation, standardization of processes, among others. Most notably, is that in
software processes, the transformation of user requirement into software are dominated by cognitive activities, this contrasts with
manufacturing activities where cognition is minimized. Moreover, in software processes, the inputs and outputs for a software
process are different for each instance of the process (Lantzy 1992). In other words, each software product generated by a
particular process is different (as determined by user requirements). The interaction between cognitive dominated activities and
different inputs and outputs create challenges to the application of SPC for software. In particular, 

1. The data regarding input and outputs experience great variability, which make it particularly difficult to develop
meaningful control limits.

2. It is difficult to assign causes of variability in the data.
3. It is difficult to visualize the performance of the process using the traditional control limits as they typically contain too

much variability to provide any useful guidance in managing the process.

These weaknesses call into question the applicability and most important the usefulness of SPC to the software development
domain because these weaknesses are common to many software development projects.

Contribution of the Paper

This paper targets software project managers, particularly those with process management responsibilities. In this paper, the author
proposes a framework for integrating SPSM with SPC for directing software process improvement effort in a software project
management context. In essence, simulation provides a ‘controlled’ environment (thereby mitigating the aforementioned shortfalls
of SPC) for evaluating a process for stability and capability, while SPC allows for assessing the process quality dimension through
visualization.  Specifically:

• Several of the activities involved in SPC, such as identifying objectives and measures, and collecting data are also
required for SPSM. The proposed framework makes better utilization of such activities by supporting both SPSM and
SPC.

• In developing SPSM, a step that is often overlooked is to assess the underlying process for stability.  This is important
for accurately capturing the stochastic properties of model input as well as validating and verifying the model. The
integrated model utilizes SPC to assess process stability prior to model development.

• Analysis of simulation output is greatly enhanced by the different visualization techniques made possible through SPC.

Outline of the Paper

The paper is organized as follows; the next section defines software process modeling and its objectives as well as a brief review
of software modeling paradigms and techniques.  Next, is a brief description of statistical process control and its application to
software processes, followed by a presentation of the framework for integrating SPSM and SPC. The case study illustrates the
applicability of the proposed framework. The final section concludes the paper.

Software Process Simulation Modeling

A software process is comprised of a set of policies, organizational structure, technologies, procedures, and artifacts needed to
conceive, develop, deploy, and maintain a software product (Fuggetta 2000).  As such, software process modeling seeks to define
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and analyze significant aspects of these processes (Fuggetta 2000).  While there is not a wide-ranged consensus on the essential
constructs of a process model, most frequently mentioned constructs include agents, roles and artifacts (Curtis et al. 1992) as well
as activities and tools (Fuggetta 2000) as shown in Table 1.

There are a number of objectives driving software process modeling, most notably (Curtis et al. 1992; Kellner et al. 1999):
• Facilitating human understanding and communication
• Supporting process improvement
• Supporting process management
• Automating process guidance and execution
• Supporting project management
• Facilitating training and learning

To that effect, and since the late 1980’s, a number of process modeling paradigms and numerous techniques evolved for modeling
software processes. Examples of which include programming language, Petri-net, object-oriented, and quantitative, e.g., systems
dynamics and discrete event simulation

System Dynamics

In project management, Abdel-Hamid and Madnick (1991) pioneered the application of system dynamics to software process
modeling in general, and to software project management in particular. They present a generic model of software development
and use the model to demonstrate various phenomena encountered in software projects, e.g., the 90% syndrome and Brooks’ Law.
The model also illustrates the potential for cost and schedule estimation under different management scenarios as well as the
economics of quality assurance. 

Table 1.  Software Process Modeling Constructs

Modeling Construct Description
Agents An actor who performs an activity (process element)
Roles Set of responsibilities assigned to an agent

Artifacts A product created or maintained by the activities
Activities Steps that need to achieve process objectives

Tools Are to be utilizes by the process

The use of system dynamics in software project management has also been applied to quality, risk and human resource
management. Madachy (1996) used system dynamics to evaluate the impact of performing formal inspections on project cost,
schedule and quality. The model captured interrelated flows of tasks, errors inspection activities and personnel through the
development process and was calibrated to industrial data. Rus and Collofello (1998) also used system dynamics to quality
planning by evaluating various software reliability engineering strategies. In contrast to static reliability models, the model
presented can be used to track the quality and reliability of the software throughout the development process by tracking project
metrics and adjusts the model accordingly. Another example for the quality planning is a model developed by Tvedt and Collofello
(1995) for an incremental software development process. The objective of the model is to evaluate the impact of various process
improvement initiatives on development cycle time.

With respect to human resource project management, Collofello et al. (1998) uses a system dynamics model to assess the effect
of managerial staffing decision on project’s budget, schedule and quality. Particular attention is paid to evaluating process to
integrate the effects of staff attrition. Abdel-Hamid (1989) also used system dynamics to answer “what-if” questions regarding
various staffing practices with particular emphasis on the interchangeability of persons and months in a software project.

On project risk management, SPSM is particularly valuable for quantitative risk analysis particularly in evaluating the impact of
various management policies on project cost, schedule and quality.
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Discrete Event Simulation Models

In contrast to system dynamics models, discrete event simulation models (DESM) refers to models which evolve in time in
response to the occurrence of discrete events. Such models allows for modeling systems that cannot be easily described by
ordinary differential equations (i.e., system dynamics). Examples of such systems can be found in manufacturing, computer
communication networks, and traffic control (Ho and Cao 1991)

In SPSM, DESM allows for capturing a software development process as a sequence of discrete activities where items (e.g., code
modules) move from one activity to the next (e.g., from coding to testing). Items have attributes such as size, and quality, and
activities change the attributes of items as these items are processes by the activities. Moreover, changes to the values for attributes
may be deterministic or stochastic thereby capturing the uncertainty inherent in some of the attributes.

In software project management, Lakey (2000) of Cognitive Concepts developed a DESM to be used as a project management
tool for estimating schedule, effort and quality during the detailed design for a computer software configuration item (CSCI).
The underlying development process is an iterative and incremental process in which the CSCI is developed incrementally over
a number of iterations. Each iteration includes a development phase, a review phase, and a rework phase. For each of the phases,
the model tracks the effort involved as well as a number of other metrics such as the number of defects generated, found, and
escaped during the process.

An important feature of this model is the incorporation of system dynamics modeling concept of feed back loops. Specifically,
when evaluating these metrics the model takes into account a variety of process and product factors. Examples of product factors
include the size quality and complexity of the input artifacts, while examples of process factors include schedule pressure,
communication overhead and tools support. For more information about this model, please refer to (Lakey 2000).

Statistical Process Control

The increasing demand for software in terms of quantity and quality, places tremendous pressure on the software engineering
community to adopt techniques for continuous improvement of their software development processes (Lantzy 1992). However,
process improvement demands measurement of product and process attributes. In this vein, and over the past decade, concepts
and methods associated with process improvement have gained wide acceptance in the software community (Florac et al. 1997).
Of particular importance is the application of SPC to the software process. The strengths of SPC are that they provide easy to use
graphical tools that enable the manager to visualize the performance of the manufacturing process (system) along multiple
dimensions of performance. Moreover, the Quantitative Process Management Key Process Area of the Capability Maturity Model
requires that projects manage their processes quantitatively and recommend that SPC be applied at this level.

Underlying SPC is the notion that almost all the characteristics of processes and products display variation when measured over
time. This variation has two sources (Florac et al. 1997):

Total variation = common cause variation 
+ assignable cause variation

where common cause variation: variation that stems from natural phenomena that are inherent to the process. The results of
common variation are random and are within predictable bounds.

assignable cause variation: variation that have assignable causes that could have been prevented. Examples of assignable
causes include changes to work environments, hardware failures, programmers’ burnout, inadequate training, and so
forth.

Process stability is at the core of process management. It refers to a predictable ‘in control’ process where the causes for all
variations are attributed to common (natural) causes.  On the other hand, process capability refers to the capability of a process
to satisfy the requirements of the customer “voice of the customer”

Control charts are at the center of statistical process control. Control charts allow a software manager to visually assess a software
process for stability and capability. A typical control chart plots the measured averages of a quality attribute from the process over
time. A center line on the chart represents the process average of the quality attribute that correspond to the stable state. An upper
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control (UCL) and a lower control (LCL) limits on the quality attribute are also plotted (Figure 1). The quality attribute must fall
within this range if the process is to be in control. In depth discussion of various control charts can be found in (Montgomery
1997; Quesenberry 1997).

Figure 1a. X Control Chart for a Stable
and Capable Process

Figure 1b.  X Control Chart for a Stable but
Not Capable Process

For a software process, software entities are one of a kind, and as such we employed the control chart methods for individual
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Figure 2.  Framework for Integrating SPSM and SPC

where  Denotes measurement i for some process attribute for n measurements.:ix
 Center line for the X chart:x

 Moving range for two successive observations:iMR
Center line for the MR chart:RM

 Upper and lower control limits for the X chart, respectively.:, XX LCLUCL
 Upper and lower control limits for the MR chart, respectively.:, MRMR LCLUCL

 1.128, 0, and 3.27, respectively.:,, 432 DDd

The Framework

The proposed framework integrates SPSM and SPC. The underlying premise is that these two approaches complements each other
and that through integration, their synergy is realized as noted at the beginning of the paper.

As shown in Figure 2, the first step is it to establish goals and
objectives. As indicated by (Florac et al. 1997), process measures
are driven by business goals such as improving product quality,
reducing time to market, and reducing cost. Moreover, business
goals also determine the focus of the model. In particular, by
identifying business goals one can answer questions such as why
is one simulating, what is the scope of the model, what questions
is one trying to answer, and so forth (Nordgren 1995).

Next, is the need to conduct a review of the software process
currently in place. The review should include surveying existing
documentation as well as interviewing software developers to
ensure that the implemented process is consistent with the
supporting process documentation. The purpose is to get a
thorough understanding of the software process, thereby
facilitating the development of a mental model of the process.

A mental model represents the picture one has in mind for the
process under consideration. Specifically, it represents the tasks,
resources, and products constituting the software process. As
indicated by (Florac et al. 1997), forming and documenting a
mental model is one technique for identifying key process issues
which is a precursor to selecting and defining measures.
Moreover, the flowcharting of the mental model is the first cut at
the simulation model.

Using the mental model documented in the previous step, the
next step is to select and identify process measures in accordance
with the objectives and goals. Florac et al. (1997) provides
additional information on selecting measures, while Park (1992)
and Florac (1992) provide frameworks for defining operational
definitions for frequently used measures such as size, effort, and
schedule.

After ensuring that all the identified measures are integrated in
the current software process, and after collecting data on these measures, SPC, specifically, control charts can then be used to
visually assess whether the process is stable (in control) or not. If the process is not stable, then one needs to identify and remove
any assignable causes and retest the process for stability.
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Figure 3. SPC Component for Visualizing
Process Performance

Once the process is stabilized, one proceeds with input modeling, the purpose of which is to model the stochastic properties of
the inputs given the data sets collected on the various process attributes of interest (Leemis 1999). Input modeling is then followed
by model development, validation, and verification.

At this point, there is a model that has been developed for a stable process. This model together with control charts can then be
used to assess for process capability, and identify and trace elements for improving the software process. Moreover, using a
simulation model allows for experimenting and testing of various process configurations in a manner that is either not possible
or expensive to conduct in the field.

Case Study

The purpose of this study is to demonstrate the applicability of the proposed framework. Since the development and validation
of a simulation model is beyond the scope of this article, this case study utilizes an existing simulation model and focuses on the
use of SPC to assess the capability of the underlying software process, i.e., whether the process needs improvements in order to
meet the requirements of the customer (project managers, users, …etc.).

Using the simulation model, the case study includes two scenarios. Both scenarios focus on the total effort per iteration as the
measure under consideration. Other measures of interest include schedule and quality. Schedule was excluded due to the particular
nature of the utilized model where effort and schedule are closely related. On the other hand, quality requires the use of a different
type of control charts not described in this article. The primary rational for including the two scenarios is to demonstrate the use
of SPC to assess project capability under normal operating conditions (base scenario or scenario #1) as well as assess the effect
of changes to such conditions (scenario #2).

The Model

This study utilizes the model developed by Peter Lakey of Cognitive Concepts described earlier (Lakey 2000). 

To demonstrate the proposed framework using this model, we
added an SPC component for visualizing process performance
using control charts as shown in Figure 3.

Results and Discussion

In the first scenario, the SPC component of the model is used
to evaluate a base scenario. This is the scenario representing
the current state of the process and is the scenario used as a
benchmark for the study. To calculate the control limits the
model is run for 10 times, with 6 iterations in each run
resulting in a total of 60 observations. Notice that in the
absence of a simulation model, this may not be possible. In
effect, in the field, there are no guarantees regarding the
stochastic properties of the inputs from one iteration to the
next, let alone one CSCI to the next. A simulation model
allows for calculating more reliable control limits. Figure 4
depicts the X and MR control charts for the total effort per
iteration.

In the second scenario the variability of the input scenarios is
increased, thereby affecting the capability of the process. In
effect, by increasing the variability of the input scenarios the
“voice of the process” (wider control limits) is increased as
shown in Figure 5.
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Figure 4a.  Base Scenario X Control Chart for the
Total Effort per Iteration

Figure 4b.  Base Scenario MR Control Chart for
the Total Effort per Iteration

Control charts allow for visualizing such change and comparing the resulting variability with the desired variability “voice of the
customer” (variability limits imposed or desired by the project manager). For project managers, a control chart showing values
outside the desired limit indicates an underlying process that is incapable of consistently meeting project requirements in term
of effort (cost) and schedule and is thereby an indication of higher project risk.

Figure 5a. X Control Chart for an Alternate Scenario Figure 5b. MR Control Chart for an Alternate Scenario

Summary and Conclusions

While SPSM is used for software process and project management, SPC focuses on assessing the stability and capability of
software processes through visualization. Nevertheless, both SPSM and SPC rely on the development of extensive software
measurement systems and thereby support the Quantitative Process Management Key Process Area of the Capability Maturity
Model. 

This paper presents a framework for integrating SPSM and SPC, thereby capturing the synergy between the two approaches for
software process improvement as well as maximizes the return on investment in the development and maintenance of extensive
software measurement systems. The proposed framework is then used to evaluate the capability of a software process.

Suggestions for future research include investigating the use of SPSM to evaluate the stability (as opposed to the capability) of
a software process. In this case, there is a need to be able to explicitly model assignable causes of variation, and the effect of such
causes on process capability.
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